ID
int64
0
2.65k
Language
stringclasses
1 value
Repository Name
stringclasses
21 values
File Name
stringlengths
2
48
File Path in Repository
stringlengths
10
111
File Path for Unit Test
stringlengths
16
116
Code
stringlengths
66
1.91M
Unit Test - (Ground Truth)
stringlengths
40
32.1k
900
cpp
tensorflow/tensorflow
batch_matmul
tensorflow/lite/kernels/batch_matmul.cc
tensorflow/lite/kernels/batch_matmul_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_BATCH_MATMUL_H_ #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_BATCH_MATMUL_H_ #include <algorithm> #include <cstdint> #include "tensorflow/lite/kernels/internal/common.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/kernels/internal/portable_tensor_utils.h" #include "tensorflow/lite/kernels/internal/types.h" namespace tflite { namespace reference_ops { namespace batch_matmul { inline int broadcast_dim(int lhs_dim, int rhs_dim) { if (lhs_dim == rhs_dim) return lhs_dim; if (lhs_dim == 1) return rhs_dim; TFLITE_DCHECK_EQ(rhs_dim, 1); return lhs_dim; } inline int extent(const RuntimeShape& shape, int x) { if (shape.Dims(x) == 1) { return 0; } int prod = 1; for (int i = x + 1; i < shape.DimensionsCount(); ++i) { prod *= shape.Dims(i); } return prod; } } template <typename Ta, typename Tb, typename Tout> inline void BatchMatMul(const RuntimeShape& lhs_shape, const Ta* lhs_data, const RuntimeShape& rhs_shape, const Tb* rhs_data, const RuntimeShape& output_shape, Tout* output_data) { const RuntimeShape extended_lhs_shape = RuntimeShape::ExtendedShape(5, lhs_shape); const RuntimeShape extended_rhs_shape = RuntimeShape::ExtendedShape(5, rhs_shape); const int batch_dim0 = batch_matmul::broadcast_dim( extended_lhs_shape.Dims(0), extended_rhs_shape.Dims(0)); const int batch_dim1 = batch_matmul::broadcast_dim( extended_lhs_shape.Dims(1), extended_rhs_shape.Dims(1)); const int batch_dim2 = batch_matmul::broadcast_dim( extended_lhs_shape.Dims(2), extended_rhs_shape.Dims(2)); const int lhs_ext0 = batch_matmul::extent(extended_lhs_shape, 0); const int lhs_ext1 = batch_matmul::extent(extended_lhs_shape, 1); const int lhs_ext2 = batch_matmul::extent(extended_lhs_shape, 2); const int rhs_ext0 = batch_matmul::extent(extended_rhs_shape, 0); const int rhs_ext1 = batch_matmul::extent(extended_rhs_shape, 1); const int rhs_ext2 = batch_matmul::extent(extended_rhs_shape, 2); const int lhs_rows = extended_lhs_shape.Dims(3); const int rhs_cols = extended_rhs_shape.Dims(4); const int accum_depth = extended_lhs_shape.Dims(4); for (int b0 = 0; b0 < batch_dim0; ++b0) { const Ta* lhs_ptr0 = lhs_data + (b0 * lhs_ext0); const Tb* rhs_ptr0 = rhs_data + (b0 * rhs_ext0); for (int b1 = 0; b1 < batch_dim1; ++b1) { const Ta* lhs_ptr1 = lhs_ptr0 + b1 * lhs_ext1; const Tb* rhs_ptr1 = rhs_ptr0 + b1 * rhs_ext1; for (int b2 = 0; b2 < batch_dim2; ++b2) { const Ta* lhs_ptr2 = lhs_ptr1 + b2 * lhs_ext2; const Tb* rhs_ptr2 = rhs_ptr1 + b2 * rhs_ext2; Tout* out_ptr = output_data + ((b0 * batch_dim1 * batch_dim2) + b1 * batch_dim2 + b2) * lhs_rows * rhs_cols; for (int j = 0; j < rhs_cols; ++j) { for (int i = 0; i < lhs_rows; ++i) { Tout total = 0; for (int k = 0; k < accum_depth; ++k) { total += static_cast<Tout>(lhs_ptr2[accum_depth * i + k]) * static_cast<Tout>(rhs_ptr2[j * accum_depth + k]); } int idx = lhs_rows * j + i; out_ptr[idx] = total; } } } } } } inline void BatchMatMul(const RuntimeShape& lhs_shape, const int8_t* lhs_data, const RuntimeShape& rhs_shape, const int8_t* rhs_data, const float* scaling_factors, const int32_t* input_offset, int32_t* row_sums, const RuntimeShape& output_shape, float* output_data, bool* compute_row_sums) { const RuntimeShape extended_lhs_shape = RuntimeShape::ExtendedShape(5, lhs_shape); const RuntimeShape extended_rhs_shape = RuntimeShape::ExtendedShape(5, rhs_shape); const int batch_dim0 = batch_matmul::broadcast_dim( extended_lhs_shape.Dims(0), extended_rhs_shape.Dims(0)); const int batch_dim1 = batch_matmul::broadcast_dim( extended_lhs_shape.Dims(1), extended_rhs_shape.Dims(1)); const int batch_dim2 = batch_matmul::broadcast_dim( extended_lhs_shape.Dims(2), extended_rhs_shape.Dims(2)); const int lhs_ext0 = batch_matmul::extent(extended_lhs_shape, 0); const int lhs_ext1 = batch_matmul::extent(extended_lhs_shape, 1); const int lhs_ext2 = batch_matmul::extent(extended_lhs_shape, 2); const int rhs_ext0 = batch_matmul::extent(extended_rhs_shape, 0); const int rhs_ext1 = batch_matmul::extent(extended_rhs_shape, 1); const int rhs_ext2 = batch_matmul::extent(extended_rhs_shape, 2); const int lhs_rows = extended_lhs_shape.Dims(3); const int rhs_cols = extended_rhs_shape.Dims(4); const int accum_depth = extended_lhs_shape.Dims(4); const int ioff_ext0 = rhs_ext0 == 0 ? 0 : rhs_cols; const int ioff_ext1 = rhs_ext1 == 0 ? 0 : rhs_cols; const int ioff_ext2 = rhs_ext2 == 0 ? 0 : rhs_cols; const int woff_ext0 = lhs_ext0 == 0 ? 0 : lhs_rows; const int woff_ext1 = lhs_ext1 == 0 ? 0 : lhs_rows; const int woff_ext2 = lhs_ext2 == 0 ? 0 : lhs_rows; if (!compute_row_sums || *compute_row_sums) { int num_weights_matrices = 1; for (int i = 1; i < extended_lhs_shape.DimensionsCount() - 2; ++i) { num_weights_matrices *= extended_lhs_shape.Dims(i); } tensor_utils::ReductionSumVector( lhs_data, row_sums, num_weights_matrices * lhs_rows, accum_depth); if (compute_row_sums) { *compute_row_sums = false; } } for (int b0 = 0; b0 < batch_dim0; ++b0) { const int8_t* lhs_ptr0 = lhs_data + (b0 * lhs_ext0); const int8_t* rhs_ptr0 = rhs_data + (b0 * rhs_ext0); const int32_t* ioff_ptr0 = input_offset + (b0 * ioff_ext0); const float* scale_ptr0 = scaling_factors + (b0 * ioff_ext0); const int32_t* woff_ptr0 = row_sums + (b0 * woff_ext0); for (int b1 = 0; b1 < batch_dim1; ++b1) { const int8_t* lhs_ptr1 = lhs_ptr0 + b1 * lhs_ext1; const int8_t* rhs_ptr1 = rhs_ptr0 + b1 * rhs_ext1; const int32_t* ioff_ptr1 = ioff_ptr0 + (b1 * ioff_ext1); const float* scale_ptr1 = scale_ptr0 + (b1 * ioff_ext1); const int32_t* woff_ptr1 = woff_ptr0 + (b1 * woff_ext1); for (int b2 = 0; b2 < batch_dim2; ++b2) { const int8_t* lhs_ptr2 = lhs_ptr1 + b2 * lhs_ext2; const int8_t* rhs_ptr2 = rhs_ptr1 + b2 * rhs_ext2; const int32_t* ioff_ptr2 = ioff_ptr1 + (b2 * ioff_ext2); const float* scale_ptr2 = scale_ptr1 + (b2 * ioff_ext2); const int32_t* woff_ptr2 = woff_ptr1 + (b2 * woff_ext2); float* out_ptr = output_data + ((b0 * batch_dim1 * batch_dim2) + b1 * batch_dim2 + b2) * lhs_rows * rhs_cols; for (int j = 0; j < rhs_cols; ++j) { const float batch_scaling_factor = scale_ptr2[j]; const float batch_offset = static_cast<float>(ioff_ptr2[j]); for (int i = 0; i < lhs_rows; ++i) { int32_t total = 0; for (int k = 0; k < accum_depth; ++k) { total += lhs_ptr2[accum_depth * i + k] * rhs_ptr2[j * accum_depth + k]; } int32_t row_sum = woff_ptr2[i]; total -= row_sum * batch_offset; int idx = lhs_rows * j + i; out_ptr[idx] += batch_scaling_factor * total; } } } } } } template <typename T, typename AccumT> inline void BatchMatMul(const FullyConnectedParams& params, const RuntimeShape& lhs_shape, const T* lhs_data, const RuntimeShape& rhs_shape, const T* rhs_data, const RuntimeShape& output_shape, T* output_data) { const RuntimeShape extended_lhs_shape = RuntimeShape::ExtendedShape(5, lhs_shape); const RuntimeShape extended_rhs_shape = RuntimeShape::ExtendedShape(5, rhs_shape); const int batch_dim0 = batch_matmul::broadcast_dim( extended_lhs_shape.Dims(0), extended_rhs_shape.Dims(0)); const int batch_dim1 = batch_matmul::broadcast_dim( extended_lhs_shape.Dims(1), extended_rhs_shape.Dims(1)); const int batch_dim2 = batch_matmul::broadcast_dim( extended_lhs_shape.Dims(2), extended_rhs_shape.Dims(2)); const int lhs_ext0 = batch_matmul::extent(extended_lhs_shape, 0); const int lhs_ext1 = batch_matmul::extent(extended_lhs_shape, 1); const int lhs_ext2 = batch_matmul::extent(extended_lhs_shape, 2); const int rhs_ext0 = batch_matmul::extent(extended_rhs_shape, 0); const int rhs_ext1 = batch_matmul::extent(extended_rhs_shape, 1); const int rhs_ext2 = batch_matmul::extent(extended_rhs_shape, 2); const int lhs_rows = extended_lhs_shape.Dims(3); const int rhs_cols = extended_rhs_shape.Dims(4); const int accum_depth = extended_lhs_shape.Dims(4); const int32_t input_offset = params.input_offset; const int32_t filter_offset = params.weights_offset; const int32_t output_offset = params.output_offset; const int32_t output_multiplier = params.output_multiplier; const int output_shift = params.output_shift; const int32_t output_activation_min = params.quantized_activation_min; const int32_t output_activation_max = params.quantized_activation_max; TFLITE_DCHECK_LE(output_activation_min, output_activation_max); for (int b0 = 0; b0 < batch_dim0; ++b0) { const T* lhs_ptr0 = lhs_data + (b0 * lhs_ext0); const T* rhs_ptr0 = rhs_data + (b0 * rhs_ext0); for (int b1 = 0; b1 < batch_dim1; ++b1) { const T* lhs_ptr1 = lhs_ptr0 + b1 * lhs_ext1; const T* rhs_ptr1 = rhs_ptr0 + b1 * rhs_ext1; for (int b2 = 0; b2 < batch_dim2; ++b2) { const T* lhs_ptr2 = lhs_ptr1 + b2 * lhs_ext2; const T* rhs_ptr2 = rhs_ptr1 + b2 * rhs_ext2; T* out_ptr = output_data + ((b0 * batch_dim1 * batch_dim2) + b1 * batch_dim2 + b2) * lhs_rows * rhs_cols; for (int j = 0; j < rhs_cols; ++j) { for (int i = 0; i < lhs_rows; ++i) { AccumT total = 0; for (int k = 0; k < accum_depth; ++k) { AccumT lhs_val = lhs_ptr2[accum_depth * i + k]; AccumT rhs_val = rhs_ptr2[accum_depth * j + k]; total += (lhs_val + filter_offset) * (rhs_val + input_offset); } int32_t total_scaled = MultiplyByQuantizedMultiplier( total, output_multiplier, output_shift); total_scaled += output_offset; total_scaled = std::max(total_scaled, output_activation_min); total_scaled = std::min(total_scaled, output_activation_max); const int idx = lhs_rows * j + i; out_ptr[idx] = static_cast<T>(total_scaled); } } } } } } } } #endif #include "tensorflow/lite/kernels/internal/reference/batch_matmul.h" #include <stddef.h> #include <algorithm> #include <cstdint> #include <limits> #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/cpu_backend_context.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/kernels/internal/optimized/batch_matmul.h" #include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h" #include "tensorflow/lite/kernels/internal/reference/reference_ops.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/internal/tensor_utils.h" #include "tensorflow/lite/kernels/internal/types.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace builtin { namespace batch_matmul { static const int kInputLHSTensor = 0; static const int kInputRHSTensor = 1; static const int kOutputTensor = 0; static const int kNumTempTensorsForAdjoints = 2; static const int kNumTempTensorsForHybrid = 5; enum KernelType { kReference, kGenericOptimized, }; struct OpData { int32_t output_multiplier; int output_shift; int32_t output_activation_min; int32_t output_activation_max; int scratch_tensor_index; bool rhs_transposed; bool compute_row_sums = false; }; struct OpContext { OpContext(TfLiteContext* context, TfLiteNode* node) { params = reinterpret_cast<TfLiteBatchMatMulParams*>(node->builtin_data); lhs = GetInput(context, node, kInputLHSTensor); rhs = GetInput(context, node, kInputRHSTensor); output = GetOutput(context, node, 0); } TfLiteBatchMatMulParams* params; const TfLiteTensor* lhs; const TfLiteTensor* rhs; TfLiteTensor* output; }; void* Init(TfLiteContext* context, const char* buffer, size_t length) { auto* op_data = new OpData(); op_data->rhs_transposed = false; context->AddTensors(context, kNumTempTensorsForAdjoints + kNumTempTensorsForHybrid, &op_data->scratch_tensor_index); return op_data; } void Free(TfLiteContext* context, void* buffer) { delete static_cast<OpData*>(buffer); } TfLiteStatus ResizeOutputTensor(TfLiteContext* context, const RuntimeShape& extended_lhs_shape, const RuntimeShape& extended_rhs_shape, bool adj_x, bool adj_y, int output_rank, TfLiteTensor* output) { TfLiteIntArray* output_shape = TfLiteIntArrayCreate(output_rank); for (int i = 0; i < output_rank - 2; ++i) { const int lhs_dim = extended_lhs_shape.Dims(i); const int rhs_dim = extended_rhs_shape.Dims(i); int broadcast_dim = lhs_dim; if ((lhs_dim != rhs_dim) && (lhs_dim == 1)) { broadcast_dim = rhs_dim; } output_shape->data[i] = broadcast_dim; } int lhs_rows_index = adj_x ? output_rank - 1 : output_rank - 2; int rhs_cols_index = adj_y ? output_rank - 2 : output_rank - 1; output_shape->data[output_rank - 2] = extended_lhs_shape.Dims(lhs_rows_index); output_shape->data[output_rank - 1] = extended_rhs_shape.Dims(rhs_cols_index); TfLiteStatus stat = context->ResizeTensor(context, output, output_shape); return stat; } TfLiteStatus InitializeTemporaries(TfLiteContext* context, TfLiteNode* node, OpContext* op_context) { OpData* op_data = reinterpret_cast<OpData*>(node->user_data); const TfLiteTensor* lhs = op_context->lhs; const TfLiteTensor* rhs = op_context->rhs; TfLiteIntArrayFree(node->temporaries); bool is_hybrid = (op_context->lhs->type == kTfLiteFloat32 && rhs->type == kTfLiteInt8); if (is_hybrid) { node->temporaries = TfLiteIntArrayCreate(kNumTempTensorsForAdjoints + kNumTempTensorsForHybrid); } else { node->temporaries = TfLiteIntArrayCreate(kNumTempTensorsForAdjoints); } const int lhs_rank = NumDimensions(lhs); const int rhs_rank = NumDimensions(rhs); const int batch_size = op_context->params->adj_x ? lhs->dims->data[lhs_rank - 1] : lhs->dims->data[lhs_rank - 2]; const int num_units = op_context->params->adj_y ? rhs->dims->data[rhs_rank - 2] : rhs->dims->data[rhs_rank - 1]; { node->temporaries->data[0] = op_data->scratch_tensor_index; TfLiteTensor* scratch_buffer; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, 0, &scratch_buffer)); TfLiteIntArray* scratch_buffer_size = TfLiteIntArrayCreate(lhs_rank); for (int i = 0; i < lhs_rank - 2; ++i) { scratch_buffer_size->data[i] = lhs->dims->data[i]; } scratch_buffer_size->data[lhs_rank - 2] = lhs->dims->data[lhs_rank - 1]; scratch_buffer_size->data[lhs_rank - 1] = lhs->dims->data[lhs_rank - 2]; scratch_buffer->type = op_context->lhs->type; scratch_buffer->allocation_type = kTfLiteArenaRw; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, scratch_buffer, scratch_buffer_size)); } { node->temporaries->data[1] = op_data->scratch_tensor_index + 1; TfLiteTensor* scratch_buffer; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, 1, &scratch_buffer)); scratch_buffer->name = "BatchMatMul_scratch_buffer"; const TfLiteTensor* rhs = op_context->rhs; int rhs_rank = NumDimensions(rhs); TfLiteIntArray* scratch_buffer_size = TfLiteIntArrayCreate(rhs_rank); for (int i = 0; i < rhs_rank - 2; ++i) { scratch_buffer_size->data[i] = rhs->dims->data[i]; } scratch_buffer_size->data[rhs_rank - 2] = rhs->dims->data[rhs_rank - 1]; scratch_buffer_size->data[rhs_rank - 1] = rhs->dims->data[rhs_rank - 2]; if (IsConstantTensor(op_context->rhs)) { scratch_buffer->allocation_type = kTfLiteArenaRwPersistent; } else { scratch_buffer->allocation_type = kTfLiteArenaRw; } scratch_buffer->type = op_context->rhs->type; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, scratch_buffer, scratch_buffer_size)); } if (is_hybrid) { int num_batches = 1; for (int i = 0; i < lhs_rank - 2; ++i) { num_batches *= lhs->dims->data[i]; } int num_weights_matrices = 1; for (int i = 0; i < rhs_rank - 2; ++i) { num_weights_matrices *= rhs->dims->data[i]; } op_data->compute_row_sums = true; node->temporaries->data[2] = op_data->scratch_tensor_index + 2; TfLiteTensor* input_quantized; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, 2, &input_quantized)); input_quantized->type = op_context->rhs->type; input_quantized->allocation_type = kTfLiteArenaRw; TfLiteIntArray* input_quantized_size = TfLiteIntArrayCopy(op_context->lhs->dims); TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, input_quantized, input_quantized_size)); node->temporaries->data[3] = op_data->scratch_tensor_index + 3; TfLiteTensor* scaling_factors; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, 3, &scaling_factors)); scaling_factors->type = kTfLiteFloat32; scaling_factors->allocation_type = kTfLiteArenaRw; int scaling_dims[1] = {num_batches * batch_size}; if (!TfLiteIntArrayEqualsArray(scaling_factors->dims, 1, scaling_dims)) { TfLiteIntArray* scaling_factors_size = TfLiteIntArrayCreate(1); scaling_factors_size->data[0] = scaling_dims[0]; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, scaling_factors, scaling_factors_size)); } node->temporaries->data[4] = op_data->scratch_tensor_index + 4; TfLiteTensor* accum_scratch; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, 4, &accum_scratch)); accum_scratch->type = kTfLiteInt32; accum_scratch->allocation_type = kTfLiteArenaRw; int accum_scratch_dims[2] = {num_units, batch_size}; if (!TfLiteIntArrayEqualsArray(accum_scratch->dims, 2, accum_scratch_dims)) { TfLiteIntArray* accum_size = TfLiteIntArrayCreate(2); accum_size->data[0] = num_units; accum_size->data[1] = batch_size; TF_LITE_ENSURE_OK( context, context->ResizeTensor(context, accum_scratch, accum_size)); } node->temporaries->data[5] = op_data->scratch_tensor_index + 5; TfLiteTensor* input_offsets; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, 5, &input_offsets)); input_offsets->type = kTfLiteInt32; input_offsets->allocation_type = kTfLiteArenaRw; if (!TfLiteIntArrayEqualsArray(input_offsets->dims, 1, scaling_dims)) { TfLiteIntArray* input_offsets_size = TfLiteIntArrayCreate(1); input_offsets_size->data[0] = num_batches * batch_size; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, input_offsets, input_offsets_size)); } node->temporaries->data[6] = op_data->scratch_tensor_index + 6; TfLiteTensor* row_sums; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, 6, &row_sums)); row_sums->type = kTfLiteInt32; row_sums->allocation_type = kTfLiteArenaRwPersistent; int row_sums_dims[1] = {num_weights_matrices * num_units}; if (!TfLiteIntArrayEqualsArray(row_sums->dims, 1, row_sums_dims)) { TfLiteIntArray* row_sums_size = TfLiteIntArrayCreate(1); row_sums_size->data[0] = row_sums_dims[0]; TF_LITE_ENSURE_OK( context, context->ResizeTensor(context, row_sums, row_sums_size)); } } return kTfLiteOk; } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); OpContext op_context(context, node); TF_LITE_ENSURE_OK(context, InitializeTemporaries(context, node, &op_context)); OpData* op_data = reinterpret_cast<OpData*>(node->user_data); bool adj_x = op_context.params->adj_x; bool adj_y = op_context.params->adj_y; const TfLiteTensor* lhs_data; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputLHSTensor, &lhs_data)); const TfLiteTensor* rhs_data; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputRHSTensor, &rhs_data)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); if ((lhs_data->type == kTfLiteInt8 || lhs_data->type == kTfLiteInt16) && output->type != kTfLiteInt32) { double real_multiplier = 0.0; TF_LITE_ENSURE_STATUS(GetQuantizedConvolutionMultipler( context, lhs_data, rhs_data, output, &real_multiplier)); int exponent; QuantizeMultiplier(real_multiplier, &op_data->output_multiplier, &exponent); op_data->output_shift = exponent; if (lhs_data->type == kTfLiteInt8) { op_data->output_activation_min = std::numeric_limits<int8_t>::min(); op_data->output_activation_max = std::numeric_limits<int8_t>::max(); } else { op_data->output_activation_min = std::numeric_limits<int16_t>::min(); op_data->output_activation_max = std::numeric_limits<int16_t>::max(); } } if (lhs_data->type == kTfLiteInt16) { TF_LITE_ENSURE_EQ(context, lhs_data->params.zero_point, 0); TF_LITE_ENSURE_EQ(context, rhs_data->params.zero_point, 0); TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0); } TF_LITE_ENSURE(context, lhs_data->type == kTfLiteFloat32 || lhs_data->type == kTfLiteInt8 || lhs_data->type == kTfLiteInt16); TF_LITE_ENSURE(context, rhs_data->type == kTfLiteFloat32 || rhs_data->type == kTfLiteInt8 || rhs_data->type == kTfLiteInt16); TF_LITE_ENSURE(context, (lhs_data->type == kTfLiteFloat32 && rhs_data->type == kTfLiteInt8) || lhs_data->type == rhs_data->type); TF_LITE_ENSURE(context, NumDimensions(lhs_data) >= 2); TF_LITE_ENSURE(context, NumDimensions(lhs_data) <= 5); TF_LITE_ENSURE(context, NumDimensions(rhs_data) >= 2); TF_LITE_ENSURE(context, NumDimensions(rhs_data) <= 5); const int lhs_rank = NumDimensions(lhs_data); const int rhs_rank = NumDimensions(rhs_data); const int output_rank = std::max(lhs_rank, rhs_rank); const RuntimeShape extended_lhs_shape = RuntimeShape::ExtendedShape(output_rank, GetTensorShape(lhs_data)); const RuntimeShape extended_rhs_shape = RuntimeShape::ExtendedShape(output_rank, GetTensorShape(rhs_data)); for (int i = 0; i < output_rank - 2; ++i) { const int lhs_dim = extended_lhs_shape.Dims(i); const int rhs_dim = extended_rhs_shape.Dims(i); if (lhs_dim != rhs_dim) { if (lhs_dim != 1) { TF_LITE_ENSURE_EQ(context, rhs_dim, 1); } } } int accum_dim_lhs = adj_x ? extended_lhs_shape.Dims(output_rank - 2) : extended_lhs_shape.Dims(output_rank - 1); int accum_dim_rhs = adj_y ? extended_rhs_shape.Dims(output_rank - 1) : extended_rhs_shape.Dims(output_rank - 2); TF_LITE_ENSURE_EQ(context, accum_dim_lhs, accum_dim_rhs); TfLiteStatus status = ResizeOutputTensor(context, extended_lhs_shape, extended_rhs_shape, adj_x, adj_y, output_rank, output); return status; } template <typename scalar> void TransposeRowsColumnsImpl(const TfLiteTensor* tensor_in, const scalar* input, TfLiteTensor* tensor_out, scalar* output) { RuntimeShape transposed_shape(GetTensorShape(tensor_in)); RuntimeShape shape(GetTensorShape(tensor_in)); TransposeParams params; int rank = NumDimensions(tensor_in); params.perm_count = rank; for (int i = 0; i < rank - 2; ++i) { params.perm[i] = i; } params.perm[rank - 2] = rank - 1; params.perm[rank - 1] = rank - 2; transposed_shape.SetDim(rank - 1, shape.Dims(rank - 2)); transposed_shape.SetDim(rank - 2, shape.Dims(rank - 1)); optimized_ops::Transpose(params, shape, input, transposed_shape, output); } TfLiteStatus TransposeRowsColumns(TfLiteContext* context, const TfLiteTensor* tensor_in, TfLiteTensor* tensor_out) { if (tensor_in->type == kTfLiteFloat32) { TransposeRowsColumnsImpl<float>(tensor_in, GetTensorData<float>(tensor_in), tensor_out, GetTensorData<float>(tensor_out)); return kTfLiteOk; } else if (tensor_in->type == kTfLiteInt8) { TransposeRowsColumnsImpl<int8_t>( tensor_in, GetTensorData<int8_t>(tensor_in), tensor_out, GetTensorData<int8_t>(tensor_out)); return kTfLiteOk; } else if (tensor_in->type == kTfLiteInt16) { TransposeRowsColumnsImpl<int16_t>( tensor_in, GetTensorData<int16_t>(tensor_in), tensor_out, GetTensorData<int16_t>(tensor_out)); return kTfLiteOk; } else { TF_LITE_KERNEL_LOG( context, "Can only transpose tensors with float, int8 or int16 type."); return kTfLiteError; } } RuntimeShape SwapRowColumnDims(const RuntimeShape& shape) { RuntimeShape swapped_shape(shape); const int32_t dims = shape.DimensionsCount(); swapped_shape.SetDim(dims - 2, shape.Dims(dims - 1)); swapped_shape.SetDim(dims - 1, shape.Dims(dims - 2)); return swapped_shape; } template <KernelType kernel_type> TfLiteStatus EvalHybrid(TfLiteContext* context, TfLiteNode* node, OpData* data, const RuntimeShape& input_shape, const TfLiteTensor* input, const RuntimeShape& filter_shape, const TfLiteTensor* filter, TfLiteTensor* input_quantized, TfLiteTensor* scaling_factors, TfLiteTensor* accum_scratch, TfLiteTensor* row_sums, TfLiteTensor* input_offsets, TfLiteTensor* output) { const auto* params = reinterpret_cast<TfLiteBatchMatMulParams*>(node->builtin_data); const int32_t num_input_dims = input_shape.DimensionsCount(); const int input_size = input_shape.Dims(num_input_dims - 2); const int batch_size = input_shape.Dims(num_input_dims - 1); int num_batches_to_quantize = batch_size; for (int i = 0; i < input_shape.DimensionsCount() - 2; ++i) { num_batches_to_quantize *= input_shape.Dims(i); } const int scaling_factor_size = GetTensorShape(scaling_factors).FlatSize(); TF_LITE_ENSURE(context, scaling_factor_size >= num_batches_to_quantize); float* scaling_factors_ptr = GetTensorData<float>(scaling_factors); int32_t* input_offset_ptr = nullptr; int32_t* row_sums_ptr = nullptr; input_offset_ptr = GetTensorData<int32_t>(input_offsets); row_sums_p
#include <stddef.h> #include <stdint.h> #include <initializer_list> #include <limits> #include <map> #include <numeric> #include <type_traits> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/string_type.h" namespace tflite { namespace ops { namespace builtin { TfLiteRegistration* Register_BATCH_MATMUL_REF(); TfLiteRegistration* Register_BATCH_MATMUL_GENERIC_OPTIMIZED(); } } namespace { using ::testing::ElementsAre; using ::testing::ElementsAreArray; template <typename T> tflite::TensorType GetTFLiteType() { if (std::is_same<T, int8_t>::value) { return TensorType_INT8; } if (std::is_same<T, int16_t>::value) { return TensorType_INT16; } if (std::is_same<T, int32_t>::value) { return TensorType_INT32; } return TensorType_FLOAT32; } template <typename T> class BatchMatMulOpModel : public SingleOpModel { public: BatchMatMulOpModel(const TensorData& lhs, const TensorData& rhs, bool adj_x = false, bool adj_y = false) { lhs_id_ = AddInput(lhs); rhs_id_ = AddInput(rhs); output_id_ = AddOutput(GetTFLiteType<T>()); SetBuiltinOp(BuiltinOperator_BATCH_MATMUL, BuiltinOptions_BatchMatMulOptions, CreateBatchMatMulOptions(builder_, adj_x, adj_y).Union()); BuildInterpreter({GetShape(lhs_id_), GetShape(rhs_id_)}); } int lhs() const { return lhs_id_; } int rhs() const { return rhs_id_; } std::vector<T> GetOutput() { return ExtractVector<T>(output_id_); } std::vector<int32_t> GetOutputShape() { return GetTensorShape(output_id_); } protected: int lhs_id_; int rhs_id_; int output_id_; }; const auto kKernelMap = new std::map<string, TfLiteRegistration*>({ {"Reference", ops::builtin::Register_BATCH_MATMUL_REF()}, {"GenericOptimized", ops::builtin::Register_BATCH_MATMUL_GENERIC_OPTIMIZED()}, }); class BatchMatMulOpTest : public SingleOpTest { protected: const std::map<string, TfLiteRegistration*>& GetKernelMap() override { return *kKernelMap; } }; TEST_P(BatchMatMulOpTest, Float32Test_Ones) { BatchMatMulOpModel<float> model({TensorType_FLOAT32, {3, 2, 1, 4}}, {TensorType_FLOAT32, {3, 1, 4, 1}}); std::vector<float> lhs(24); std::iota(lhs.begin(), lhs.end(), 1); std::vector<float> rhs(12); std::iota(rhs.begin(), rhs.end(), 1); std::vector<float> res{30, 70, 278, 382, 782, 950}; model.PopulateTensor<float>(model.lhs(), lhs); model.PopulateTensor<float>(model.rhs(), rhs); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAreArray(res)); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({3, 2, 1, 1})); } TEST_P(BatchMatMulOpTest, Float32Test_Flatten) { BatchMatMulOpModel<float> model({TensorType_FLOAT32, {3, 2, 2, 4}}, {TensorType_FLOAT32, {3, 1, 4, 1}}); std::vector<float> lhs(48); std::iota(lhs.begin(), lhs.end(), 1); std::vector<float> rhs(12); std::iota(rhs.begin(), rhs.end(), 1); std::vector<float> res{30, 70, 110, 150, 486, 590, 694, 798, 1454, 1622, 1790, 1958}; model.PopulateTensor<float>(model.lhs(), lhs); model.PopulateTensor<float>(model.rhs(), rhs); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAreArray(res)); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({3, 2, 2, 1})); } TEST_P(BatchMatMulOpTest, Float32Test_Simple) { BatchMatMulOpModel<float> model({TensorType_FLOAT32, {1, 2, 3}}, {TensorType_FLOAT32, {1, 3, 4}}); model.PopulateTensor<float>(model.lhs(), {1, 2, 3, 4, 5, 6}); model.PopulateTensor<float>(model.rhs(), {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAreArray({74., 80., 86., 92., 173., 188., 203., 218.})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 2, 4})); } TEST_P(BatchMatMulOpTest, Int8Test_Simple) { BatchMatMulOpModel<int32_t> model({TensorType_INT8, {1, 2, 3}}, {TensorType_INT8, {1, 3, 4}}); model.PopulateTensor<int8_t>(model.lhs(), {1, 2, 3, 4, 5, 6}); model.PopulateTensor<int8_t>(model.rhs(), {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAreArray({74, 80, 86, 92, 173, 188, 203, 218})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 2, 4})); } TEST_P(BatchMatMulOpTest, Int8Test_LargeElement) { BatchMatMulOpModel<int32_t> model({TensorType_INT8, {1, 2, 3}}, {TensorType_INT8, {1, 3, 4}}); model.PopulateTensor<int8_t>(model.lhs(), {121, 122, 123, 124, 125, 126}); model.PopulateTensor<int8_t>(model.rhs(), {117, 118, 119, 110, 111, 112, 113, 114, 115, 116, 117, 118}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAreArray( {41844, 42210, 42576, 41732, 42873, 43248, 43623, 42758})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 2, 4})); } TEST_P(BatchMatMulOpTest, Float32Test_SimpleRHSAdjoint) { BatchMatMulOpModel<float> model({TensorType_FLOAT32, {1, 2, 3}}, {TensorType_FLOAT32, {1, 4, 3}}, false, true); model.PopulateTensor<float>(model.lhs(), {1, 2, 3, 4, 5, 6}); model.PopulateTensor<float>(model.rhs(), {7, 11, 15, 8, 12, 16, 9, 13, 17, 10, 14, 18}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAreArray({74., 80., 86., 92., 173., 188., 203., 218.})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 2, 4})); } TEST_P(BatchMatMulOpTest, Float32Test_SimpleLHSAdjoint) { BatchMatMulOpModel<float> model({TensorType_FLOAT32, {1, 3, 2}}, {TensorType_FLOAT32, {1, 3, 4}}, true, false); model.PopulateTensor<float>(model.lhs(), {1, 4, 2, 5, 3, 6}); model.PopulateTensor<float>(model.rhs(), {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAreArray({74., 80., 86., 92., 173., 188., 203., 218.})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 2, 4})); } TEST_P(BatchMatMulOpTest, Float32Test_BatchSizeTwo) { BatchMatMulOpModel<float> model({TensorType_FLOAT32, {2, 2, 3}}, {TensorType_FLOAT32, {2, 3, 4}}); model.PopulateTensor<float>(model.lhs(), {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}); model.PopulateTensor<float>(model.rhs(), {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT( model.GetOutput(), ElementsAreArray({74., 80., 86., 92., 173., 188., 203., 218., 560., 584., 608., 632., 767., 800., 833., 866.})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({2, 2, 4})); } TEST_P(BatchMatMulOpTest, Float32Test_Broadcast) { BatchMatMulOpModel<float> model({TensorType_FLOAT32, {2, 2, 3}}, {TensorType_FLOAT32, {3, 4}}); model.PopulateTensor<float>(model.lhs(), {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}); model.PopulateTensor<float>(model.rhs(), {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT( model.GetOutput(), ElementsAreArray({74., 80., 86., 92., 173., 188., 203., 218., 272., 296., 320., 344., 371., 404., 437., 470.})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({2, 2, 4})); } TEST_P(BatchMatMulOpTest, Float32Test_BroadcastLHSAdjoint) { BatchMatMulOpModel<float> model({TensorType_FLOAT32, {2, 3, 2}}, {TensorType_FLOAT32, {3, 4}}, true, false); model.PopulateTensor<float>(model.lhs(), {1, 4, 2, 5, 3, 6, 7, 10, 8, 11, 9, 12}); model.PopulateTensor<float>(model.rhs(), {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT( model.GetOutput(), ElementsAreArray({74., 80., 86., 92., 173., 188., 203., 218., 272., 296., 320., 344., 371., 404., 437., 470.})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({2, 2, 4})); } TEST_P(BatchMatMulOpTest, Float32Test_Broadcast2) { BatchMatMulOpModel<float> model({TensorType_FLOAT32, {2, 1, 3, 2}}, {TensorType_FLOAT32, {3, 2, 4}}); model.PopulateTensor<float>(model.lhs(), {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}); model.PopulateTensor<float>(model.rhs(), {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT( model.GetOutput(), ElementsAreArray({29., 32., 35., 38., 65., 72., 79., 86., 101., 112., 123., 134., 53., 56., 59., 62., 121., 128., 135., 142., 189., 200., 211., 222., 77., 80., 83., 86., 177., 184., 191., 198., 277., 288., 299., 310., 137., 152., 167., 182., 173., 192., 211., 230., 209., 232., 255., 278., 257., 272., 287., 302., 325., 344., 363., 382., 393., 416., 439., 462., 377., 392., 407., 422., 477., 496., 515., 534., 577., 600., 623., 646.})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({2, 3, 3, 4})); } TEST_P(BatchMatMulOpTest, Float32Test_Broadcast2LHSAdjoint) { BatchMatMulOpModel<float> model({TensorType_FLOAT32, {2, 1, 2, 3}}, {TensorType_FLOAT32, {3, 2, 4}}, true, false); model.PopulateTensor<float>(model.lhs(), {1, 3, 5, 2, 4, 6, 7, 9, 11, 8, 10, 12}); model.PopulateTensor<float>(model.rhs(), {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT( model.GetOutput(), ElementsAreArray({29., 32., 35., 38., 65., 72., 79., 86., 101., 112., 123., 134., 53., 56., 59., 62., 121., 128., 135., 142., 189., 200., 211., 222., 77., 80., 83., 86., 177., 184., 191., 198., 277., 288., 299., 310., 137., 152., 167., 182., 173., 192., 211., 230., 209., 232., 255., 278., 257., 272., 287., 302., 325., 344., 363., 382., 393., 416., 439., 462., 377., 392., 407., 422., 477., 496., 515., 534., 577., 600., 623., 646.})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({2, 3, 3, 4})); } TEST_P(BatchMatMulOpTest, Float32Test_Broadcast2RHSAdjoint) { BatchMatMulOpModel<float> model({TensorType_FLOAT32, {2, 1, 3, 2}}, {TensorType_FLOAT32, {3, 4, 2}}, false, true); model.PopulateTensor<float>(model.lhs(), {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}); model.PopulateTensor<float>(model.rhs(), {7, 11, 8, 12, 9, 13, 10, 14, 15, 19, 16, 20, 17, 21, 18, 22, 23, 27, 24, 28, 25, 29, 26, 30}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT( model.GetOutput(), ElementsAreArray({29., 32., 35., 38., 65., 72., 79., 86., 101., 112., 123., 134., 53., 56., 59., 62., 121., 128., 135., 142., 189., 200., 211., 222., 77., 80., 83., 86., 177., 184., 191., 198., 277., 288., 299., 310., 137., 152., 167., 182., 173., 192., 211., 230., 209., 232., 255., 278., 257., 272., 287., 302., 325., 344., 363., 382., 393., 416., 439., 462., 377., 392., 407., 422., 477., 496., 515., 534., 577., 600., 623., 646.})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({2, 3, 3, 4})); } TEST_P(BatchMatMulOpTest, Float32Test_Broadcast2BothAdjoint) { BatchMatMulOpModel<float> model({TensorType_FLOAT32, {2, 1, 2, 3}}, {TensorType_FLOAT32, {3, 4, 2}}, true, true); model.PopulateTensor<float>(model.lhs(), {1, 3, 5, 2, 4, 6, 7, 9, 11, 8, 10, 12}); model.PopulateTensor<float>(model.rhs(), {7, 11, 8, 12, 9, 13, 10, 14, 15, 19, 16, 20, 17, 21, 18, 22, 23, 27, 24, 28, 25, 29, 26, 30}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT( model.GetOutput(), ElementsAreArray({29., 32., 35., 38., 65., 72., 79., 86., 101., 112., 123., 134., 53., 56., 59., 62., 121., 128., 135., 142., 189., 200., 211., 222., 77., 80., 83., 86., 177., 184., 191., 198., 277., 288., 299., 310., 137., 152., 167., 182., 173., 192., 211., 230., 209., 232., 255., 278., 257., 272., 287., 302., 325., 344., 363., 382., 393., 416., 439., 462., 377., 392., 407., 422., 477., 496., 515., 534., 577., 600., 623., 646.})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({2, 3, 3, 4})); } TEST_P(BatchMatMulOpTest, Float32Test_BroadcastFromRHS) { BatchMatMulOpModel<float> model({TensorType_FLOAT32, {4, 5}}, {TensorType_FLOAT32, {3, 1, 5, 2}}); model.PopulateTensor<float>( model.lhs(), {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}); model.PopulateTensor<float>( model.rhs(), {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT( model.GetOutput(), ElementsAreArray({185., 200., 460., 500., 735., 800., 1010., 1100., 335., 350., 860., 900., 1385., 1450., 1910., 2000., 485., 500., 1260., 1300., 2035., 2100., 2810., 2900.})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({3, 1, 4, 2})); } INSTANTIATE_TEST_SUITE_P( BatchMatMulOpTest, BatchMatMulOpTest, ::testing::ValuesIn(SingleOpTest::GetKernelTags(*kKernelMap))); class ConstRHSBatchMatMulOpModel : public MultiOpModel { public: ConstRHSBatchMatMulOpModel(const TensorData& lhs, std::initializer_list<int> rhs_shape, std::initializer_list<float> rhs_data, bool adj_x = false, bool adj_y = false) { lhs_id_ = AddInput(lhs); rhs_id_ = AddConstInput<float>(TensorType_FLOAT32, rhs_data, rhs_shape); matmul_output_id_ = AddOutput(lhs.type); std::vector<int> matmul_inputs{lhs_id_, rhs_id_}; std::vector<int> matmul_outputs{matmul_output_id_}; AddBuiltinOp(BuiltinOperator_BATCH_MATMUL, BuiltinOptions_BatchMatMulOptions, CreateBatchMatMulOptions(builder_, adj_x, adj_y).Union(), matmul_inputs, matmul_outputs); neg_output_id_ = AddOutput(lhs.type); std::vector<int> neg_inputs{matmul_output_id_}; std::vector<int> neg_outputs{neg_output_id_}; AddBuiltinOp(BuiltinOperator_NEG, BuiltinOptions_NegOptions, CreateNegOptions(builder_).Union(), neg_inputs, neg_outputs); BuildInterpreter({GetShape(lhs_id_), GetShape(rhs_id_)}); } int lhs() const { return lhs_id_; } std::vector<float> GetOutput() { return ExtractVector<float>(neg_output_id_); } std::vector<int32_t> GetOutputShape() { return GetTensorShape(neg_output_id_); } protected: int lhs_id_; int rhs_id_; int matmul_output_id_; int neg_output_id_; }; TEST(ConstRHSBatchMatMulOpModel, RHSNotAdjoint) { ConstRHSBatchMatMulOpModel model({TensorType_FLOAT32, {1, 6, 2}}, {2, 3}, {6, 3, 7, 4, 6, 9}); model.PopulateTensor<float>(model.lhs(), {6, 3, 7, 4, 6, 9, 2, 6, 7, 4, 3, 7}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAreArray({-48, -36, -69, -58, -45, -85, -72, -72, -123, -36, -42, -68, -58, -45, -85, -46, -51, -84})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 6, 3})); model.PopulateTensor<float>(model.lhs(), {6, 3, 7, 4, 6, 9, 2, 6, 7, 4, 3, 7}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAreArray({-48, -36, -69, -58, -45, -85, -72, -72, -123, -36, -42, -68, -58, -45, -85, -46, -51, -84})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 6, 3})); } class HybridBatchMatMulOpModel : public SingleOpModel { public: HybridBatchMatMulOpModel(int units, int batches, const TensorData& lhs, const TensorData& rhs, const TensorData& output = {TensorType_FLOAT32}, bool asymmetric_quantize_inputs = true, bool adj_x = false, bool adj_y = false) : units_(units), batches_(batches) { int total_input_size = 1; for (size_t i = 0; i < lhs.shape.size(); ++i) { total_input_size *= lhs.shape[i]; } input_size_ = total_input_size / batches_; lhs_id_ = AddInput(lhs); rhs_id_ = AddInput(rhs); output_id_ = AddOutput(output); SetBuiltinOp(BuiltinOperator_BATCH_MATMUL, BuiltinOptions_BatchMatMulOptions, CreateBatchMatMulOptions(builder_, adj_x, adj_y, asymmetric_quantize_inputs) .Union()); BuildInterpreter({GetShape(lhs_id_), GetShape(rhs_id_)}, -1, false, false); } void SetWeights(const std::vector<float>& data) { SymmetricQuantizeAndPopulate(rhs_id_, data); AllocateAndDelegate(true); } void SetSignedWeights(std::initializer_list<float> f) { SignedSymmetricQuantizeAndPopulate(rhs_id_, f); AllocateAndDelegate(true); } void SetInput(const std::vector<float>& f) { PopulateTensor(lhs_id_, f); } std::vector<float> GetOutput() { return ExtractVector<float>(output_id_); } std::vector<int> GetOutputShape() { return GetTensorShape(output_id_); } int input_size() { return input_size_; } int num_units() { return units_; } int num_batches() { return batches_; } int lhs() const { return lhs_id_; } int rhs() const { return rhs_id_; } protected: int lhs_id_; int rhs_id_; int output_id_; int units_; int batches_; int input_size_; }; class HybridAsymmetricBatchMatMulOpTest : public SingleOpTest { protected: const std::map<string, TfLiteRegistration*>& GetKernelMap() override { return *kKernelMap; } }; TEST_P(HybridAsymmetricBatchMatMulOpTest, SimpleTestQuantizedInt8) { HybridBatchMatMulOpModel m( 3, 2, {TensorType_FLOAT32, {2, 10}}, {TensorType_INT8, {10, 3}, 0, 0, 10.0 / 127.0, 0}); m.SetSignedWeights({ 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, }); m.SetInput({ 11, 12, 13, 14, 15, 16, 17, 18, -19, -20, 11, 12, 13, 14, 15, 16, 17, -18, 19, -20, }); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray(ArrayFloatNear( { 193, 193, 193, 247, 247, 247, }, 3.f))); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 3})); } TEST_P(HybridAsymmetricBatchMatMulOpTest, MultipleNumBatchQuantizedInt8) { HybridBatchMatMulOpModel m( 10, 4, {TensorType_FLOAT32, {1, 2, 2, 3}}, {TensorType_INT8, {3, 10}, 0, 0, 10.0 / 127.0, 0}); m.SetSignedWeights({ 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, }); m.SetInput({ 11, 12, 13, 11, 12, 13, 11, 12, 13, 11, 12, 13, }); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray(ArrayFloatNear( { 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, }, 0.64f))); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({1, 2, 2, 10})); } TEST_P(HybridAsymmetricBatchMatMulOpTest, RegressionTestQuantizedInt8) { HybridBatchMatMulOpModel m( 10, 2, {TensorType_FLOAT32, {2, 3}}, {TensorType_INT8, {3, 10}, 0, 0, 10.0 / 127.0, 0}); m.SetSignedWeights({ 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, }); m.SetInput({ 11, 12, 13, 11, 12, 13, }); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray(ArrayFloatNear( { 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, }, 0.64f))); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 10})); } TEST_P(HybridAsymmetricBatchMatMulOpTest, TestQuantizedInt8BatchesAndUnitsGreaterThanAccumDimSize) { HybridBatchMatMulOpModel m( 8, 6, {TensorType_FLOAT32, {6, 3}}, {TensorType_INT8, {3, 8}, 0, 0, 10.0 / 127.0, 0}); m.SetSignedWeights( {1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3}); m.SetInput({ 11, 12, 13, 11, 12, 13, 11, 12, 13, 11, 12, 13, 11, 12, 13, 11, 12, 13, }); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT( m.GetOutput(), ElementsAreArray(ArrayFloatNear( {74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74}, 0.15f))); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({6, 8})); } TEST_P(HybridAsymmetricBatchMatMulOpTest, TestQuantizedInt8BatchesAndUnitsGreaterThanAccumDimSizeAdjX) { HybridBatchMatMulOpModel m( 8, 6, {TensorType_FLOAT32, {3, 6}}, {TensorType_INT8, {3, 8}, 0, 0, 10.0 / 127.0, 0}, {TensorType_FLOAT32}, true, true); m.SetSignedWeights( {1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3}); m.SetInput( {11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT( m.GetOutput(), ElementsAreArray(ArrayFloatNear( {74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74}, 0.15f))); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({6, 8})); } TEST_P(HybridAsymmetricBatchMatMulOpTest, TestQuantizedInt8BatchesAndUnitsGreaterThanAccumDimSizeAdjY) { HybridBatchMatMulOpModel m( 8, 6, {TensorType_FLOAT32, {6, 3}}, {TensorType_INT8, {8, 3}, 0, 0, 10.0 / 127.0, 0}, {TensorType_FLOAT32}, true, false, true); m.SetSignedWeights( {1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3}); m.SetInput({ 11, 12, 13, 11, 12, 13, 11, 12, 13, 11, 12, 13, 11, 12, 13, 11, 12, 13, }); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT( m.GetOutput(), ElementsAreArray(ArrayFloatNear( {74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74}, 0.15f))); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({6, 8})); } TEST_P(HybridAsymmetricBatchMatMulOpTest, TestQuantizedInt8BatchesAndUnitsGreaterThanAccumDimSizeAdjXAdjY) { HybridBatchMatMulOpModel m( 8, 6, {TensorType_FLOAT32, {3, 6}}, {TensorType_INT8, {8, 3}, 0, 0, 10.0 / 127.0, 0}, {TensorType_FLOAT32}, true, true, true); m.SetSignedWeights( {1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3}); m.SetInput( {11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT( m.GetOutput(), ElementsAreArray(ArrayFloatNear( {74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74}, 0.15f))); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({6, 8})); } TEST_P(HybridAsymmetricBatchMatMulOpTest, QuantizedInt8BroadcastWeights) { HybridBatchMatMulOpModel m( 3, 2, {TensorType_FLOAT32, {2, 2, 10}}, {TensorType_INT8, {10, 3}, 0, 0, 10.0 / 127.0, 0}); m.SetSignedWeights({ 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, }); m.SetInput({ 1, 2, 3, 4, 5, 6, 7, 8, -9, -10, 1, 2, 3, 4, 5, 6, 7, -8, 9, -10, 11, 12, 13, 14, 15, 16, 17, 18, -19, -20, 11, 12, 13, 14, 15, 16, 17, -18, 19, -20, }); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray(ArrayFloatNear( { 23, 23, 23, 57, 57, 57, 193, 193, 193, 247, 247, 247, }, 3.f))); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 2, 3})); } TEST_P(HybridAsymmetricBatchMatMulOpTest, QuantizedInt8BroadcastBigWeights) { HybridBatchMatMulOpModel m( 9, 2, {TensorType_FLOAT32, {2, 2, 10}}, {TensorType_INT8, {10, 9}, 0, 0, 10.0 / 127.0, 0}); m.SetSignedWeights({ 1, 1, 1, 17, 17, 17, 26, 26, 26, 2, 2, 2, 18, 18, 18, 27, 27, 27, 3, 3, 3, 19, 19, 19, 28, 28, 28, 4, 4, 4, 20, 20, 20, 29, 29, 29, 5, 5, 5, 21, 21, 21, 30, 30, 30, 6, 6, 6, 22, 22, 22, 31, 31, 31, 7, 7, 7, 23, 23, 23, 32, 32, 32, 8, 8, 8, 24, 24, 24, 33, 33, 33, 9, 9, 9, 25, 25, 25, 34, 34, 34, 10, 10, 10, 26, 26, 26, 35, 35, 35, }); m.SetInput({ 1, 2, 3, 4, 5, 6, 7, 8, -9, -10, 1, 2, 3, 4, 5, 6, 7, -8, 9, -10, 11, 12, 13, 14, 15, 16, 17, 18, -19, -20, 11, 12, 13, 14, 15, 16, 17, -18, 19, -20, }); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray(ArrayFloatNear( { 23, 23, 23, 295, 295, 295, 448, 448, 448, 57, 57, 57, 361, 361, 361, 532, 532, 532, 193, 193, 193, 1425, 1425, 1425, 2118, 2118, 2118, 247, 247, 247, 1511, 1511, 1511, 2222, 2222, 2222 }, 10.0f))); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 2, 9})); } TEST_P(HybridAsymmetricBatchMatMulOpTest, QuantizedInt8BroadcastInputs) { HybridBatchMatMulOpModel m( 3, 2, {TensorType_FLOAT32, {2, 10}}, {TensorType_INT8, {2, 10, 3}, 0, 0, 10.0 / 127.0, 0}); m.SetSignedWeights({ 1, -3, 1, 2, -2, 2, 3, -1, 3, 4, 0, 4, 5, 1, 5, 6, 2, 6, 7, 3, 7, 8, 4, 8, 9, 5, 9, 10, 6, 10, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5,
901
cpp
tensorflow/tensorflow
conv3d
tensorflow/lite/kernels/conv3d.cc
tensorflow/lite/kernels/conv3d_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CONV3D_H_ #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CONV3D_H_ #include "tensorflow/lite/kernels/internal/common.h" #include "tensorflow/lite/kernels/internal/types.h" namespace tflite { namespace reference_ops { inline void Conv3D(const Conv3DParams& params, const RuntimeShape& input_shape, const float* input_data, const RuntimeShape& filter_shape, const float* filter_data, const RuntimeShape& bias_shape, const float* bias_data, const RuntimeShape& output_shape, float* output_data) { TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 5); TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 5); TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 5); const int batches = MatchingDim(input_shape, 0, output_shape, 0); const int input_num_channels = MatchingDim(input_shape, 4, filter_shape, 3); const int output_num_channels = MatchingDim(filter_shape, 4, output_shape, 4); if (bias_data) { TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_num_channels); } const int input_width = input_shape.Dims(3); const int input_height = input_shape.Dims(2); const int input_depth = input_shape.Dims(1); const int filter_width = filter_shape.Dims(2); const int filter_height = filter_shape.Dims(1); const int filter_depth = filter_shape.Dims(0); const int output_width = output_shape.Dims(3); const int output_height = output_shape.Dims(2); const int output_depth = output_shape.Dims(1); const int pad_width = params.padding_values.width; const int pad_height = params.padding_values.height; const int pad_depth = params.padding_values.depth; for (int batch = 0; batch < batches; ++batch) { for (int out_d = 0; out_d < output_depth; ++out_d) { const int in_d_origin = (out_d * params.stride_depth) - pad_depth; for (int out_y = 0; out_y < output_height; ++out_y) { const int in_y_origin = (out_y * params.stride_height) - pad_height; for (int out_x = 0; out_x < output_width; ++out_x) { const int in_x_origin = (out_x * params.stride_width) - pad_width; for (int out_channel = 0; out_channel < output_num_channels; ++out_channel) { float total = 0.f; for (int filter_d = 0; filter_d < filter_depth; ++filter_d) { const int in_d = in_d_origin + params.dilation_depth * filter_d; for (int filter_y = 0; filter_y < filter_height; ++filter_y) { const int in_y = in_y_origin + params.dilation_height * filter_y; for (int filter_x = 0; filter_x < filter_width; ++filter_x) { const int in_x = in_x_origin + params.dilation_width * filter_x; const bool is_point_inside_image = (in_x >= 0) && (in_x < input_width) && (in_y >= 0) && (in_y < input_height) && (in_d >= 0) && (in_d < input_depth); if (!is_point_inside_image) { continue; } for (int in_channel = 0; in_channel < input_num_channels; ++in_channel) { float input_value = input_data[Offset( input_shape, batch, in_d, in_y, in_x, in_channel)]; float filter_value = filter_data[Offset(filter_shape, filter_d, filter_y, filter_x, in_channel, out_channel)]; total += (input_value * filter_value); } } } } float bias_value = 0.0f; if (bias_data) { bias_value = bias_data[out_channel]; } output_data[Offset(output_shape, batch, out_d, out_y, out_x, out_channel)] = ActivationFunctionWithMinMax(total + bias_value, params.float_activation_min, params.float_activation_max); } } } } } } } } #endif #include "tensorflow/lite/kernels/internal/reference/conv3d.h" #include <cstddef> #include <cstdint> #include <vector> #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/cpu_backend_context.h" #include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/internal/types.h" #include "tensorflow/lite/kernels/kernel_util.h" #include "tensorflow/lite/kernels/padding.h" #include "tensorflow/lite/util.h" namespace tflite { namespace ops { namespace builtin { namespace conv3d { enum KernelType { kReference, kGenericOptimized, }; const int kTensorNotAllocated = -1; static constexpr size_t kMaxIm2colBufferSizeMobile = 1024 * 1024 * 1024; struct OpData { Padding3DValues padding; int im2col_tensor_id = kTensorNotAllocated; bool need_im2col = false; bool im2col_oversized = false; int32_t im2col_index; }; void* Init(TfLiteContext* context, const char* buffer, size_t length) { auto* opdata = new OpData; return opdata; } void Free(TfLiteContext* context, void* buffer) { delete static_cast<OpData*>(buffer); } TfLiteStatus AllocateTemporaryTensorsIfRequired( KernelType kernel_type, TfLiteContext* context, TfLiteNode* node, OpData* opdata, TfLiteConv3DParams* params, const TfLiteTensor* filter, size_t im2col_bytes) { int temporaries_count = 0; const bool need_dilated_im2col = params->dilation_width_factor != 1 || params->dilation_height_factor != 1 || params->dilation_depth_factor != 1; const bool need_non_dilated_im2col = params->stride_depth != 1 || params->stride_width != 1 || params->stride_height != 1 || filter->dims->data[2] != 1 || filter->dims->data[1] != 1 || filter->dims->data[0] != 1; opdata->need_im2col = (kernel_type == kGenericOptimized) && (need_dilated_im2col || need_non_dilated_im2col); if (IsMobilePlatform() && opdata->need_im2col && im2col_bytes >= kMaxIm2colBufferSizeMobile) { opdata->need_im2col = false; opdata->im2col_oversized = true; } if (opdata->need_im2col) { if (opdata->im2col_tensor_id == kTensorNotAllocated) { TF_LITE_ENSURE_OK( context, context->AddTensors(context, 1, &opdata->im2col_tensor_id)); } opdata->im2col_index = temporaries_count++; } TfLiteIntArrayFree(node->temporaries); node->temporaries = TfLiteIntArrayCreate(temporaries_count); return kTfLiteOk; } TfLiteStatus Prepare(KernelType kernel_type, TfLiteContext* context, TfLiteNode* node) { auto* params = static_cast<TfLiteConv3DParams*>(node->builtin_data); OpData* opdata = reinterpret_cast<OpData*>(node->user_data); TF_LITE_ENSURE(context, node->inputs->size == 2 || node->inputs->size == 3); TF_LITE_ENSURE_EQ(context, node->outputs->size, 1); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output)); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input)); const TfLiteTensor* filter; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 1, &filter)); TF_LITE_ENSURE_EQ(context, input->dims->size, 5); TF_LITE_ENSURE_EQ(context, filter->dims->size, 5); TF_LITE_ENSURE_EQ(context, input->dims->data[4], filter->dims->data[3]); TfLiteType input_type = input->type; TF_LITE_ENSURE_TYPES_EQ(context, input_type, kTfLiteFloat32); TF_LITE_ENSURE_TYPES_EQ(context, filter->type, kTfLiteFloat32); TF_LITE_ENSURE_TYPES_EQ(context, output->type, input_type); const TfLiteTensor* bias = GetInput(context, node, 2); if (bias) { TF_LITE_ENSURE_TYPES_EQ(context, bias->type, input_type); TF_LITE_ENSURE_EQ(context, NumElements(bias), SizeOfDimension(filter, 4)); } int batches = input->dims->data[0]; int channels_out = filter->dims->data[4]; int depth = input->dims->data[1]; int height = input->dims->data[2]; int width = input->dims->data[3]; int filter_depth = filter->dims->data[0]; int filter_height = filter->dims->data[1]; int filter_width = filter->dims->data[2]; int input_channel = filter->dims->data[3]; int out_width, out_height, out_depth; opdata->padding = ComputePadding3DValues( params->stride_height, params->stride_width, params->stride_depth, params->dilation_height_factor, params->dilation_width_factor, params->dilation_depth_factor, height, width, depth, filter_height, filter_width, filter_depth, params->padding, &out_height, &out_width, &out_depth); TfLiteIntArray* output_size = TfLiteIntArrayCreate(5); output_size->data[0] = batches; output_size->data[1] = out_depth; output_size->data[2] = out_height; output_size->data[3] = out_width; output_size->data[4] = channels_out; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, output, output_size)); size_t input_type_size; TF_LITE_ENSURE_STATUS(GetSizeOfType(context, input->type, &input_type_size)); const size_t im2col_bytes = batches * out_depth * out_height * out_width * input_channel * filter_depth * filter_height * filter_width * input_type_size; TF_LITE_ENSURE_OK(context, AllocateTemporaryTensorsIfRequired( kernel_type, context, node, opdata, params, filter, im2col_bytes)); if (opdata->need_im2col) { TfLiteIntArray* im2col_size = TfLiteIntArrayCreate(5); im2col_size->data[0] = output_size->data[0]; im2col_size->data[1] = output_size->data[1]; im2col_size->data[2] = output_size->data[2]; im2col_size->data[3] = output_size->data[3]; im2col_size->data[4] = input_channel * filter_depth * filter_height * filter_width; TfLiteTensor* im2col; node->temporaries->data[opdata->im2col_index] = opdata->im2col_tensor_id; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, opdata->im2col_index, &im2col)); im2col->type = input->type; im2col->allocation_type = kTfLiteArenaRw; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, im2col, im2col_size)); } return kTfLiteOk; } template <KernelType kernel_type> TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { return Prepare(kernel_type, context, node); } TfLiteStatus EvalFloat(KernelType kernel_type, TfLiteContext* context, TfLiteNode* node, TfLiteConv3DParams* params, OpData* opdata, const TfLiteTensor* input, const TfLiteTensor* filter, const TfLiteTensor* bias, TfLiteTensor* im2col, TfLiteTensor* output) { float output_activation_min, output_activation_max; CalculateActivationRange(params->activation, &output_activation_min, &output_activation_max); Conv3DParams runtime_params; runtime_params.padding_values = opdata->padding; runtime_params.stride_depth = params->stride_depth; runtime_params.stride_height = params->stride_height; runtime_params.stride_width = params->stride_width; runtime_params.dilation_depth = params->dilation_depth_factor; runtime_params.dilation_height = params->dilation_height_factor; runtime_params.dilation_width = params->dilation_width_factor; runtime_params.float_activation_min = output_activation_min; runtime_params.float_activation_max = output_activation_max; switch (kernel_type) { case kReference: { reference_ops::Conv3D(runtime_params, GetTensorShape(input), GetTensorData<float>(input), GetTensorShape(filter), GetTensorData<float>(filter), GetTensorShape(bias), GetTensorData<float>(bias), GetTensorShape(output), GetTensorData<float>(output)); return kTfLiteOk; } case kGenericOptimized: { return optimized_ops::Conv3D( runtime_params, GetTensorShape(input), GetTensorData<float>(input), GetTensorShape(filter), GetTensorData<float>(filter), GetTensorShape(bias), GetTensorData<float>(bias), GetTensorShape(output), GetTensorData<float>(output), GetTensorShape(im2col), GetTensorData<float>(im2col), CpuBackendContext::GetFromContext(context)); } } } TfLiteStatus Eval(KernelType kernel_type, TfLiteContext* context, TfLiteNode* node) { auto* params = reinterpret_cast<TfLiteConv3DParams*>(node->builtin_data); OpData* opdata = reinterpret_cast<OpData*>(node->user_data); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output)); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input)); const TfLiteTensor* filter; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 1, &filter)); const TfLiteTensor* bias = GetInput(context, node, 2); TfLiteTensor* im2col = opdata->need_im2col ? &context->tensors[opdata->im2col_tensor_id] : nullptr; if (opdata->im2col_oversized) { kernel_type = kReference; } switch (input->type) { case kTfLiteFloat32: return EvalFloat(kernel_type, context, node, params, opdata, input, filter, bias, im2col, output); default: TF_LITE_KERNEL_LOG(context, "Type %s currently not supported.", TfLiteTypeGetName(input->type)); return kTfLiteError; } return kTfLiteOk; } template <KernelType kernel_type> TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { return Eval(kernel_type, context, node); } } TfLiteRegistration* Register_CONV_3D_REF() { static TfLiteRegistration r = {conv3d::Init, conv3d::Free, conv3d::Prepare<conv3d::kReference>, conv3d::Eval<conv3d::kReference>}; return &r; } TfLiteRegistration* Register_CONV_3D_GENERIC_OPT() { static TfLiteRegistration r = {conv3d::Init, conv3d::Free, conv3d::Prepare<conv3d::kGenericOptimized>, conv3d::Eval<conv3d::kGenericOptimized>}; return &r; } TfLiteRegistration* Register_CONV_3D() { return Register_CONV_3D_GENERIC_OPT(); } } } }
#include <cstdint> #include <initializer_list> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { using ::testing::ElementsAre; using ::testing::ElementsAreArray; class Conv3dOpModel : public SingleOpModel { public: Conv3dOpModel(const TensorData& input, const TensorData& filter, const TensorData& bias, const TensorData& output, Padding padding = Padding_VALID, int32_t stride_depth = 1, int32_t stride_width = 1, int32_t stride_height = 1, ActivationFunctionType activation = ActivationFunctionType_NONE, int32_t dilation_depth = 1, int32_t dilation_width = 1, int32_t dilation_height = 1) { input_ = AddInput(input); filter_ = AddInput(filter); bias_ = AddInput(bias); output_ = AddOutput(output); SetBuiltinOp( BuiltinOperator_CONV_3D, BuiltinOptions_Conv3DOptions, CreateConv3DOptions(builder_, padding, stride_depth, stride_width, stride_height, activation, dilation_depth, dilation_width, dilation_height) .Union()); BuildInterpreter({GetShape(input_), GetShape(filter_), GetShape(bias_)}); } Conv3dOpModel(const TensorData& input, const TensorData& filter, const TensorData& output, Padding padding = Padding_VALID, int32_t stride_depth = 1, int32_t stride_width = 1, int32_t stride_height = 1, ActivationFunctionType activation = ActivationFunctionType_NONE, int32_t dilation_depth = 1, int32_t dilation_width = 1, int32_t dilation_height = 1) { input_ = AddInput(input); filter_ = AddInput(filter); output_ = AddOutput(output); SetBuiltinOp( BuiltinOperator_CONV_3D, BuiltinOptions_Conv3DOptions, CreateConv3DOptions(builder_, padding, stride_depth, stride_width, stride_height, activation, dilation_depth, dilation_width, dilation_height) .Union()); BuildInterpreter({GetShape(input_), GetShape(filter_)}); } void SetFilter(std::vector<float> f) { PopulateTensor(filter_, f); } void SetBias(std::initializer_list<float> f) { PopulateTensor(bias_, f); } void SetInput(std::vector<float> data) { PopulateTensor(input_, data); } std::vector<float> GetOutput() { return ExtractVector<float>(output_); } std::vector<int> GetOutputShape() { return GetTensorShape(output_); } private: int input_; int filter_; int bias_; int output_; }; template <typename T> std::vector<T> CreateRangeVector(int N) { std::vector<T> result; for (int i = 0; i < N; ++i) result.push_back(i); return result; } TEST(Conv3dOpModel, InvalidInputDimsTest) { EXPECT_DEATH_IF_SUPPORTED(Conv3dOpModel m({TensorType_FLOAT32, {2, 2, 4, 1}}, {TensorType_FLOAT32, {3, 2, 2, 1}}, {TensorType_FLOAT32, {}}), "input->dims->size != 5"); } TEST(Conv3dOpModel, InvalidFilterDimsTest) { EXPECT_DEATH_IF_SUPPORTED( Conv3dOpModel m({TensorType_FLOAT32, {1, 2, 2, 4, 1}}, {TensorType_FLOAT32, {3, 2, 2, 1}}, {TensorType_FLOAT32, {}}), "filter->dims->size != 5"); } TEST(Conv3dOpModel, MismatchChannelSizeTest) { EXPECT_DEATH_IF_SUPPORTED( Conv3dOpModel m({TensorType_FLOAT32, {1, 2, 2, 4, 1}}, {TensorType_FLOAT32, {1, 3, 2, 2, 2}}, {TensorType_FLOAT32, {}}), "input->dims->data.4. != filter->dims->data.3."); } TEST(Conv3dOpModel, MismatchBiasSizeTest) { EXPECT_DEATH_IF_SUPPORTED( Conv3dOpModel m({TensorType_FLOAT32, {1, 2, 2, 4, 2}}, {TensorType_FLOAT32, {1, 3, 2, 2, 1}}, {TensorType_FLOAT32, {2}}, {TensorType_FLOAT32, {}}), "NumElements.bias. != SizeOfDimension.filter, 4."); } TEST(Conv3dOpModel, SimpleFloat32Test) { Conv3dOpModel m({TensorType_FLOAT32, {1, 2, 2, 4, 2}}, {TensorType_FLOAT32, {2, 2, 2, 2, 2}}, {TensorType_FLOAT32, {}}); m.SetInput(CreateRangeVector<float>(32)); m.SetFilter({-1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, 1, -1}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAre(1, 1, 1, 3, 2)); EXPECT_THAT(m.GetOutput(), ElementsAreArray({30, 6, 26, 10, 22, 14})); } TEST(Conv3dOpModel, PaddingValidTest) { Conv3dOpModel m({TensorType_FLOAT32, {1, 3, 4, 5, 2}}, {TensorType_FLOAT32, {2, 2, 2, 2, 2}}, {TensorType_FLOAT32, {}}); m.SetInput(CreateRangeVector<float>(120)); m.SetFilter({-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, 1, 1}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAre(1, 2, 3, 4, 2)); EXPECT_THAT( m.GetOutput(), ElementsAreArray({-214, 266, -234, 270, -254, 274, -274, 278, -314, 286, -334, 290, -354, 294, -374, 298, -414, 306, -434, 310, -454, 314, -474, 318, -614, 346, -634, 350, -654, 354, -674, 358, -714, 366, -734, 370, -754, 374, -774, 378, -814, 386, -834, 390, -854, 394, -874, 398})); } TEST(Conv3dOpModel, PaddingSameTest) { Conv3dOpModel m({TensorType_FLOAT32, {1, 3, 4, 5, 2}}, {TensorType_FLOAT32, {2, 2, 2, 2, 2}}, {TensorType_FLOAT32, {}}, Padding_SAME); m.SetInput(CreateRangeVector<float>(120)); m.SetFilter({1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAre(1, 3, 4, 5, 2)); EXPECT_THAT( m.GetOutput(), ElementsAreArray( {-172, 290, -176, 298, -180, 306, -184, 314, 36, 198, -192, 330, -196, 338, -200, 346, -204, 354, 56, 218, -212, 370, -216, 378, -220, 386, -224, 394, 76, 238, -226, 82, -230, 82, -234, 82, -238, 82, -80, 80, -252, 450, -256, 458, -260, 466, -264, 474, 116, 278, -272, 490, -276, 498, -280, 506, -284, 514, 136, 298, -292, 530, -296, 538, -300, 546, -304, 554, 156, 318, -306, 82, -310, 82, -314, 82, -318, 82, -80, 80, 158, -158, 162, -162, 166, -166, 170, -170, 176, -176, 178, -178, 182, -182, 186, -186, 190, -190, 196, -196, 198, -198, 202, -202, 206, -206, 210, -210, 216, -216, 220, -220, 224, -224, 228, -228, 232, -232, 237, -237})); } TEST(Conv3dOpModel, StrideTest) { Conv3dOpModel m({TensorType_FLOAT32, {2, 2, 3, 4, 2}}, {TensorType_FLOAT32, {2, 2, 2, 2, 2}}, {TensorType_FLOAT32, {}}, Padding_VALID, 2, 2, 2); m.SetInput(CreateRangeVector<float>(96)); m.SetFilter({1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAre(2, 1, 1, 2, 2)); EXPECT_THAT(m.GetOutput(), ElementsAreArray({52, 8, 68, 8, 244, 8, 260, 8})); } TEST(Conv3dOpModel, StrideAndPaddingSameTest) { Conv3dOpModel m({TensorType_FLOAT32, {2, 2, 3, 4, 2}}, {TensorType_FLOAT32, {2, 2, 2, 2, 2}}, {TensorType_FLOAT32, {}}, Padding_SAME, 2, 2, 2); m.SetInput(CreateRangeVector<float>(96)); m.SetFilter({-1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAre(2, 1, 2, 2, 2)); EXPECT_THAT(m.GetOutput(), ElementsAreArray({-70, -28, -86, -12, -82, -16, -90, -8, -262, 164, -278, 180, -178, 80, -186, 88})); } TEST(Conv3dOpModel, DilationTest) { Conv3dOpModel m({TensorType_FLOAT32, {2, 2, 3, 4, 2}}, {TensorType_FLOAT32, {2, 2, 2, 2, 2}}, {TensorType_FLOAT32, {}}, Padding_VALID, 1, 1, 1, ActivationFunctionType_NONE, 1, 1, 2); m.SetInput(CreateRangeVector<float>(96)); m.SetFilter(CreateRangeVector<float>(32)); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAre(2, 1, 1, 3, 2)); EXPECT_THAT(m.GetOutput(), ElementsAreArray({7248, 7592, 7728, 8104, 8208, 8616, 18768, 19880, 19248, 20392, 19728, 20904})); } TEST(Conv3dOpModel, BiasTest) { Conv3dOpModel m({TensorType_FLOAT32, {2, 2, 3, 4, 2}}, {TensorType_FLOAT32, {2, 2, 2, 2, 2}}, {TensorType_FLOAT32, {2}}, {TensorType_FLOAT32, {}}, Padding_VALID, 2, 2, 2); m.SetInput(CreateRangeVector<float>(96)); m.SetFilter({1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1}); m.SetBias({1, 2}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAre(2, 1, 1, 2, 2)); EXPECT_THAT(m.GetOutput(), ElementsAreArray({53, 10, 69, 10, 245, 10, 261, 10})); } TEST(Conv3dOpModel, NoIm2ColTensorTest) { Conv3dOpModel m({TensorType_FLOAT32, {1, 2, 2, 2, 4}}, {TensorType_FLOAT32, {1, 1, 1, 4, 4}}, {TensorType_FLOAT32, {}}, Padding_VALID); m.SetInput(CreateRangeVector<float>(32)); m.SetFilter(CreateRangeVector<float>(16)); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAre(1, 2, 2, 2, 4)); EXPECT_THAT( m.GetOutput(), ElementsAreArray({56, 62, 68, 74, 152, 174, 196, 218, 248, 286, 324, 362, 344, 398, 452, 506, 440, 510, 580, 650, 536, 622, 708, 794, 632, 734, 836, 938, 728, 846, 964, 1082})); } } }
902
cpp
tensorflow/tensorflow
add
tensorflow/lite/kernels/add.cc
tensorflow/lite/kernels/add_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_GL_KERNELS_ADD_H_ #define TENSORFLOW_LITE_DELEGATES_GPU_GL_KERNELS_ADD_H_ #include <memory> #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/gl/node_shader.h" namespace tflite { namespace gpu { namespace gl { std::unique_ptr<NodeShader> NewAddNodeShader(); } } } #endif #include "tensorflow/lite/delegates/gpu/gl/kernels/add.h" #include <algorithm> #include <any> #include <cstdint> #include <cstring> #include <memory> #include <string> #include <utility> #include <variant> #include <vector> #include "absl/memory/memory.h" #include "absl/strings/str_cat.h" #include "tensorflow/lite/delegates/gpu/common/convert.h" #include "tensorflow/lite/delegates/gpu/common/data_type.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/types.h" namespace tflite { namespace gpu { namespace gl { namespace { class Add : public NodeShader { public: absl::Status GenerateCode(const GenerationContext& ctx, GeneratedCode* generated_code) const final { const auto& attr = std::any_cast<const ElementwiseAttributes&>(ctx.op_attr); auto adds = std::get_if<Tensor<Linear, DataType::FLOAT32>>(&attr.param); auto scalar = std::get_if<float>(&attr.param); const auto* hwc_tensor = std::get_if<Tensor<HWC, DataType::FLOAT32>>(&attr.param); if (hwc_tensor) { std::string code; const std::string x_coord = hwc_tensor->shape.w == 1 ? "0" : "gid.x"; const std::string y_coord = hwc_tensor->shape.h == 1 ? "0" : "gid.y"; const std::string s_coord = hwc_tensor->shape.c == 1 ? "0" : "gid.z"; code = absl::StrCat("vec4 second_val = $hwc_buffer[", x_coord, ", ", y_coord, ", ", s_coord, "]$;\n"); if (hwc_tensor->shape.c == 1) { code += " second_val.y = second_val.x;\n"; code += " second_val.z = second_val.x;\n"; code += " second_val.w = second_val.x;\n"; } code += " value_0 += second_val;\n"; *generated_code = { {}, {{"hwc_buffer", MakeReadonlyObject( uint3(hwc_tensor->shape.w, hwc_tensor->shape.h, DivideRoundUp(hwc_tensor->shape.c, 4)), ConvertToPHWC4( std::get<Tensor<HWC, DataType::FLOAT32>>(attr.param)))}}, {}, uint3(static_cast<int>(ctx.input_shapes[0][2]), static_cast<int>(ctx.input_shapes[0][1]), DivideRoundUp(static_cast<int>(ctx.input_shapes[0][3]), 4)), uint3(), std::move(code), IOStructure::AUTO, IOStructure::AUTO, }; return absl::OkStatus(); } if (!adds && !scalar) { if (ctx.input_shapes.size() == 2 && ctx.input_shapes[0] != ctx.input_shapes[1] && ctx.input_shapes[1][1] == 1 && ctx.input_shapes[1][2] == 1 && ctx.input_shapes[0][3] == ctx.input_shapes[1][3]) { *generated_code = { {}, {}, {}, uint3(), uint3(), "value_0 = $input_data_0[gid.x, gid.y, gid.z]$ + " " $input_data_1[0, 0, gid.z]$;", IOStructure::ONLY_DEFINITIONS, IOStructure::AUTO, }; return absl::OkStatus(); } std::string code = "value_0 = value_0"; for (int index = 1; index < ctx.input_shapes.size(); ++index) { if (ctx.input_shapes[index] != ctx.input_shapes[0]) { return absl::InvalidArgumentError("Shapes are not equal"); } absl::StrAppend(&code, " + value_", index); } absl::StrAppend(&code, ";"); *generated_code = { {}, {}, {}, uint3(), uint3(), std::move(code), IOStructure::AUTO, IOStructure::AUTO, }; return absl::OkStatus(); } if (scalar) { *generated_code = { {{"scalar", *scalar}}, {}, {}, uint3(), uint3(), "value_0 += $scalar$;", IOStructure::AUTO, IOStructure::AUTO, }; return absl::OkStatus(); } *generated_code = { {}, {{"add_buffer", MakeReadonlyObject(adds->data)}}, {}, uint3(ctx.input_shapes[0][2], ctx.input_shapes[0][1], DivideRoundUp(ctx.input_shapes[0][3], 4)), uint3(), "value_0 += $add_buffer[gid.z]$;", IOStructure::AUTO, IOStructure::AUTO, }; return absl::OkStatus(); } }; } std::unique_ptr<NodeShader> NewAddNodeShader() { return std::make_unique<Add>(); } } } }
#include "tensorflow/lite/delegates/gpu/gl/kernels/add.h" #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/gl/kernels/test_util.h" using ::testing::FloatNear; using ::testing::Pointwise; namespace tflite { namespace gpu { namespace gl { namespace { TEST(AddTest, TwoInputTensorsOfTheSameShape) { TensorRef<BHWC> augend, addend, output; augend.type = DataType::FLOAT32; augend.ref = 0; augend.shape = BHWC(1, 2, 2, 1); addend.type = DataType::FLOAT32; addend.ref = 1; addend.shape = BHWC(1, 2, 2, 1); output.type = DataType::FLOAT32; output.ref = 2; output.shape = BHWC(1, 2, 2, 1); ElementwiseAttributes attr; SingleOpModel model({ToString(OperationType::ADD), std::move(attr)}, {augend, addend}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {-2.0, 0.2, 0.7, 0.8})); ASSERT_TRUE(model.PopulateTensor(1, {0.1, 0.2, 0.3, 0.5})); ASSERT_OK(model.Invoke(*NewAddNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {-1.9, 0.4, 1.0, 1.3})); } TEST(AddTest, InputTensorAndScalar) { ElementwiseAttributes attr; attr.param = 0.1f; TensorRef<BHWC> input, output; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 3, 1, 2); output.type = DataType::FLOAT32; output.ref = 1; output.shape = BHWC(1, 3, 1, 2); SingleOpModel model({ToString(OperationType::ADD), std::move(attr)}, {input}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {-2.0, 0.2, 0.7, 0.8, 1.1, 2.0})); ASSERT_OK(model.Invoke(*NewAddNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {-1.9, 0.3, 0.8, 0.9, 1.2, 2.1})); } TEST(AddTest, InputTensorWithConstantBroadcast) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 2, 2, 2); ElementwiseAttributes attr; Tensor<Linear, DataType::FLOAT32> tensor; tensor.shape.v = 2; tensor.id = 1; tensor.data.push_back(10.0); tensor.data.push_back(20.0); attr.param = std::move(tensor); TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 2; output.shape = BHWC(1, 2, 2, 2); SingleOpModel model({ToString(OperationType::ADD), std::move(attr)}, {input}, {output}); ASSERT_TRUE( model.PopulateTensor(0, {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0})); ASSERT_OK(model.Invoke(*NewAddNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {11.0, 22.0, 13.0, 24.0, 15.0, 26.0, 17.0, 28.0})); } TEST(AddTest, InputTensorWithRuntimeBroadcast) { TensorRef<BHWC> input1; input1.type = DataType::FLOAT32; input1.ref = 0; input1.shape = BHWC(1, 2, 2, 2); TensorRef<BHWC> input2; input2.type = DataType::FLOAT32; input2.ref = 1; input2.shape = BHWC(1, 1, 1, 2); ElementwiseAttributes attr; TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 2; output.shape = BHWC(1, 2, 2, 2); SingleOpModel model({ToString(OperationType::ADD), std::move(attr)}, {input1, input2}, {output}); ASSERT_TRUE( model.PopulateTensor(0, {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0})); ASSERT_TRUE(model.PopulateTensor(1, {10.0, 20.0})); ASSERT_OK(model.Invoke(*NewAddNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {11.0, 22.0, 13.0, 24.0, 15.0, 26.0, 17.0, 28.0})); } TEST(AddTest, InputTensorWithConstantHWC) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 2, 2, 2); ElementwiseAttributes attr; Tensor<HWC, DataType::FLOAT32> tensor; tensor.shape = HWC(2, 2, 2); tensor.id = 1; tensor.data = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0}; attr.param = std::move(tensor); TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 2; output.shape = BHWC(1, 2, 2, 2); SingleOpModel model({ToString(OperationType::ADD), std::move(attr)}, {input}, {output}); ASSERT_TRUE( model.PopulateTensor(0, {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0})); ASSERT_OK(model.Invoke(*NewAddNodeShader())); EXPECT_THAT( model.GetOutput(0), Pointwise(FloatNear(1e-6), {2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0})); } TEST(AddTest, InputTensorWithConstantHWCBroadcastChannels) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 2, 2, 2); ElementwiseAttributes attr; Tensor<HWC, DataType::FLOAT32> tensor; tensor.shape = HWC(2, 2, 1); tensor.id = 1; tensor.data = {1.0, 2.0, 3.0, 4.0}; attr.param = std::move(tensor); TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 2; output.shape = BHWC(1, 2, 2, 2); SingleOpModel model({ToString(OperationType::ADD), std::move(attr)}, {input}, {output}); ASSERT_TRUE( model.PopulateTensor(0, {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0})); ASSERT_OK(model.Invoke(*NewAddNodeShader())); EXPECT_THAT( model.GetOutput(0), Pointwise(FloatNear(1e-6), {2.0, 3.0, 5.0, 6.0, 8.0, 9.0, 11.0, 12.0})); } TEST(AddTest, InputTensorWithConstantHWCBroadcastWidth) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 2, 2, 2); ElementwiseAttributes attr; Tensor<HWC, DataType::FLOAT32> tensor; tensor.shape = HWC(2, 1, 2); tensor.id = 1; tensor.data = {1.0, 2.0, 3.0, 4.0}; attr.param = std::move(tensor); TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 2; output.shape = BHWC(1, 2, 2, 2); SingleOpModel model({ToString(OperationType::ADD), std::move(attr)}, {input}, {output}); ASSERT_TRUE( model.PopulateTensor(0, {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0})); ASSERT_OK(model.Invoke(*NewAddNodeShader())); EXPECT_THAT( model.GetOutput(0), Pointwise(FloatNear(1e-6), {2.0, 4.0, 4.0, 6.0, 8.0, 10.0, 10.0, 12.0})); } } } } }
903
cpp
tensorflow/tensorflow
tile
tensorflow/lite/kernels/tile.cc
tensorflow/lite/kernels/tile_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_GL_KERNELS_TILE_H_ #define TENSORFLOW_LITE_DELEGATES_GPU_GL_KERNELS_TILE_H_ #include <memory> #include "tensorflow/lite/delegates/gpu/gl/node_shader.h" namespace tflite { namespace gpu { namespace gl { std::unique_ptr<NodeShader> NewTileNodeShader(); } } } #endif #if GOOGLE_CUDA && GOOGLE_TENSORRT #include "tensorflow/compiler/tf2tensorrt/convert/convert_nodes.h" #include "tensorflow/compiler/tf2tensorrt/convert/op_converter_registry.h" #include "tensorflow/compiler/tf2tensorrt/convert/ops/layer_utils.h" namespace tensorflow { namespace tensorrt { namespace convert { class ConvertTile : public OpConverterBase<ConvertTile> { public: explicit ConvertTile(const OpConverterParams *params) : OpConverterBase<ConvertTile>( params, {DataType::DT_FLOAT, DataType::DT_HALF, DataType::DT_INT32}) {} static constexpr std::array<InputArgSpec, 2> InputSpec() { return std::array<InputArgSpec, 2>{ InputArgSpec::Create("input_tensor", TrtInputArg::kBoth), InputArgSpec::Create("weight", TrtInputArg::kBoth)}; } Status Validate() { const auto &params = *this->params_; const auto &inputs = params.inputs; const auto &repl = inputs.at(1); if (params.use_implicit_batch && repl.is_tensor()) { return errors::InvalidArgument( "Conversion for Tile is not implemented for multipliers " "passed as a tensor in implicit batch mode."); } nvinfer1::DataType dtype; const int *multiplies; if (repl.is_weights()) { TFTRT_CHECK_SHAPE_TENSOR(repl.weights().GetTensor()); dtype = repl.weights().TrtDType(); multiplies = repl.weights().GetPointer<int>(); } else { dtype = repl.tensor()->getType(); multiplies = nullptr; } const auto &node = params.node_def; TF_RETURN_IF_ERROR(check_type(dtype, nvinfer1::DataType::kINT32, node, 1)); const auto dims = inputs.at(0).GetTrtDims(); const auto nb_dims = dims.nbDims + (params.use_implicit_batch && inputs.at(0).is_tensor() ? 1 : 0); if (multiplies) { const int mult_numb = repl.weights().count(); if (mult_numb != nb_dims) { return errors::InvalidArgument( "The length of the replication vector (", mult_numb, ") of the Tile operation in '", node.name(), "' is expected to be equal to the rank of the input vector (", nb_dims, ")."); } if (std::any_of(multiplies, multiplies + nb_dims, [](int i) { return i <= 0; })) { const auto &mul = absl::StrJoin(multiplies, multiplies + nb_dims, ", "); return errors::InvalidArgument( "All replications of the Tile operation in '", node.name(), "' should be positive, got (", mul, ")."); } if (params.use_implicit_batch && multiplies[0] > 1) { return errors::Unimplemented( "The Tile operation along the batch dimension in '", node.name(), "' is not implemented."); } } else { const auto &repl_dims = repl.GetTrtDims(); if (repl_dims.nbDims != 1) { return errors::InvalidArgument( "When replications are defined as a tensor, that tensor must be " "1-dimensional. Got ", repl_dims.nbDims, "-dimensional tensor."); } if (repl_dims.d[0] >= 0 && repl_dims.d[0] != nb_dims) { return errors::InvalidArgument( "When replications are defined as a tensor, " "the number of its elements (", repl_dims.d[0], ") must be equal to the rank of the input tensor (", nb_dims, ")."); } } return OkStatus(); } Status Convert() { const auto &params = *this->params_; const auto &inputs = params.inputs; auto *converter = params.converter; auto *network = converter->network(); const auto &tensor = inputs.at(0); const auto &replics = inputs.at(1); const auto dims = tensor.GetTrtDims(); const auto nb_dims = dims.nbDims; nvinfer1::Dims output_size{nb_dims, {1}}; bool dynamic_flag = replics.is_tensor() || !HasStaticShape(dims); if (!dynamic_flag) { const auto dim_offset = params.use_implicit_batch && tensor.is_tensor() ? 1 : 0; const auto *input_size = dims.d; const int *pReplics = replics.weights().GetPointer<int>() + dim_offset; for (int i = 0; i < nb_dims; i++) output_size.d[i] = pReplics[i] * input_size[i]; } StatusOr<TRTNetworkBuilder> builder; if (tensor.is_weights() || (dynamic_flag && replics.is_weights())) { builder = TRTNetworkBuilder::Create(converter->network(), params.weight_store); TRT_ENSURE_OK(builder); } ITensorProxyPtr input_tensor; if (tensor.is_weights()) { StatusOr<nvinfer1::IConstantLayer *> weights_const = builder->WeightsToConstant(tensor.weights().GetTrtWeights(), dims); TRT_ENSURE_PTR_OK(weights_const); input_tensor = (*weights_const)->getOutput(0); } else { input_tensor = tensor.tensor(); } auto &input_trt_tensor = *input_tensor->trt_tensor(); nvinfer1::ITensor *target_shape = nullptr; if (dynamic_flag) { nvinfer1::ITensor *mult; if (replics.is_weights()) { StatusOr<nvinfer1::IConstantLayer *> weights_const = builder->WeightsToConstant(replics.weights().GetTrtWeights(), replics.GetTrtDims()); TRT_ENSURE_PTR_OK(weights_const); mult = (*weights_const)->getOutput(0); } else { const ITensorProxyPtr multiplies = replics.tensor()->trt_tensor(); mult = multiplies->trt_tensor(); } nvinfer1::ITensor *shape = network->addShape(input_trt_tensor)->getOutput(0); target_shape = network ->addElementWise(*shape, *mult, nvinfer1::ElementWiseOperation::kPROD) ->getOutput(0); } nvinfer1::Dims start{nb_dims, {}}; DimsAdapter stride(std::vector<int>(nb_dims, 1)); auto layer = network->addSlice(input_trt_tensor, start, output_size, stride.AsTrtDims()); layer->setMode(nvinfer1::SliceMode::kWRAP); if (target_shape) layer->setInput(2, *target_shape); converter->SetLayerName(layer, params.node_def.name(), "to_tile"); ITensorProxyPtr output_tensor = layer->getOutput(0); if (tensor.is_weights() && params.use_implicit_batch) { DimsAdapter adap(output_tensor->getDimensions()); TF_RETURN_IF_ERROR(adap.RemoveBatchDimension()); TF_RETURN_IF_ERROR(PrepareTensorForShape( params.converter, TRT_TensorOrWeights(output_tensor), adap.AsTrtDims(), false, &output_tensor, params.node_def)); } AddOutput(TRT_TensorOrWeights(output_tensor)); return OkStatus(); } }; REGISTER_DEFAULT_TRT_OP_CONVERTER(MakeConverterFunction<ConvertTile>(), "Tile"); } } } #endif
#include "tensorflow/lite/delegates/gpu/gl/kernels/tile.h" #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/gl/kernels/test_util.h" using ::testing::FloatNear; using ::testing::Pointwise; namespace tflite { namespace gpu { namespace gl { namespace { TEST(TileTest, ChannelsTiling) { const TensorRef<BHWC> input = { .type = DataType::FLOAT32, .shape = BHWC(1, 2, 1, 3), .ref = 0}; const TensorRef<BHWC> output = { .type = DataType::FLOAT32, .shape = BHWC(1, 2, 1, 6), .ref = 1}; SingleOpModel model({ToString(OperationType::TILE)}, {input}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f})); ASSERT_OK(model.Invoke(*NewTileNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {1.0f, 2.0f, 3.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 4.0f, 5.0f, 6.0f})); } TEST(TileTest, WidthTiling) { const TensorRef<BHWC> input = { .type = DataType::FLOAT32, .shape = BHWC(1, 1, 2, 3), .ref = 0}; const TensorRef<BHWC> output = { .type = DataType::FLOAT32, .shape = BHWC(1, 1, 4, 3), .ref = 1}; SingleOpModel model({ToString(OperationType::TILE)}, {input}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f})); ASSERT_OK(model.Invoke(*NewTileNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f})); } TEST(TileTest, HeightTiling) { const TensorRef<BHWC> input = { .type = DataType::FLOAT32, .shape = BHWC(1, 2, 1, 3), .ref = 0}; const TensorRef<BHWC> output = { .type = DataType::FLOAT32, .shape = BHWC(1, 4, 1, 3), .ref = 1}; SingleOpModel model({ToString(OperationType::TILE)}, {input}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f})); ASSERT_OK(model.Invoke(*NewTileNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f})); } TEST(TileTest, HWCTiling) { const TensorRef<BHWC> input = { .type = DataType::FLOAT32, .shape = BHWC(1, 2, 2, 3), .ref = 0}; const TensorRef<BHWC> output = { .type = DataType::FLOAT32, .shape = BHWC(1, 4, 4, 6), .ref = 1}; SingleOpModel model({ToString(OperationType::TILE)}, {input}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 12.0f})); ASSERT_OK(model.Invoke(*NewTileNodeShader())); EXPECT_THAT( model.GetOutput(0), Pointwise( FloatNear(1e-6), {1.0f, 2.0f, 3.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 4.0f, 5.0f, 6.0f, 1.0f, 2.0f, 3.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 12.0f, 10.0f, 11.0f, 12.0f, 7.0f, 8.0f, 9.0f, 7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 12.0f, 10.0f, 11.0f, 12.0f, 1.0f, 2.0f, 3.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 4.0f, 5.0f, 6.0f, 1.0f, 2.0f, 3.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 12.0f, 10.0f, 11.0f, 12.0f, 7.0f, 8.0f, 9.0f, 7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 12.0f, 10.0f, 11.0f, 12.0f})); } } } } }
904
cpp
tensorflow/tensorflow
mfcc
tensorflow/lite/kernels/internal/mfcc.cc
tensorflow/lite/kernels/mfcc_test.cc
#ifndef TENSORFLOW_CORE_KERNELS_MFCC_H_ #define TENSORFLOW_CORE_KERNELS_MFCC_H_ #include <vector> #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/kernels/mfcc_dct.h" #include "tensorflow/core/kernels/mfcc_mel_filterbank.h" #include "tensorflow/core/platform/logging.h" namespace tensorflow { class Mfcc { public: Mfcc(); bool Initialize(int input_length, double input_sample_rate); void Compute(const std::vector<double>& spectrogram_frame, std::vector<double>* output) const; void set_upper_frequency_limit(double upper_frequency_limit) { CHECK(!initialized_) << "Set frequency limits before calling Initialize."; upper_frequency_limit_ = upper_frequency_limit; } void set_lower_frequency_limit(double lower_frequency_limit) { CHECK(!initialized_) << "Set frequency limits before calling Initialize."; lower_frequency_limit_ = lower_frequency_limit; } void set_filterbank_channel_count(int filterbank_channel_count) { CHECK(!initialized_) << "Set channel count before calling Initialize."; filterbank_channel_count_ = filterbank_channel_count; } void set_dct_coefficient_count(int dct_coefficient_count) { CHECK(!initialized_) << "Set coefficient count before calling Initialize."; dct_coefficient_count_ = dct_coefficient_count; } private: MfccMelFilterbank mel_filterbank_; MfccDct dct_; bool initialized_; double lower_frequency_limit_; double upper_frequency_limit_; int filterbank_channel_count_; int dct_coefficient_count_; Mfcc(const Mfcc&) = delete; void operator=(const Mfcc&) = delete; }; } #endif #include <math.h> #include "tensorflow/core/kernels/mfcc.h" #include "tensorflow/core/platform/logging.h" namespace tensorflow { const double kDefaultUpperFrequencyLimit = 4000; const double kDefaultLowerFrequencyLimit = 20; const double kFilterbankFloor = 1e-12; const int kDefaultFilterbankChannelCount = 40; const int kDefaultDCTCoefficientCount = 13; Mfcc::Mfcc() : initialized_(false), lower_frequency_limit_(kDefaultLowerFrequencyLimit), upper_frequency_limit_(kDefaultUpperFrequencyLimit), filterbank_channel_count_(kDefaultFilterbankChannelCount), dct_coefficient_count_(kDefaultDCTCoefficientCount) {} bool Mfcc::Initialize(int input_length, double input_sample_rate) { bool initialized = mel_filterbank_.Initialize( input_length, input_sample_rate, filterbank_channel_count_, lower_frequency_limit_, upper_frequency_limit_); if (initialized) { initialized = dct_.Initialize(filterbank_channel_count_, dct_coefficient_count_); } initialized_ = initialized; return initialized; } void Mfcc::Compute(const std::vector<double>& spectrogram_frame, std::vector<double>* output) const { if (!initialized_) { LOG(ERROR) << "Mfcc not initialized."; return; } std::vector<double> working; mel_filterbank_.Compute(spectrogram_frame, &working); for (int i = 0; i < working.size(); ++i) { double val = working[i]; if (val < kFilterbankFloor) { val = kFilterbankFloor; } working[i] = log(val); } dct_.Compute(working, output); } }
#include "tensorflow/core/kernels/mfcc.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/platform/logging.h" namespace tensorflow { TEST(MfccTest, AgreesWithPythonGoldenValues) { Mfcc mfcc; std::vector<double> input; const int kSampleCount = 513; input.reserve(kSampleCount); for (int i = 0; i < kSampleCount; ++i) { input.push_back(i + 1); } ASSERT_TRUE(mfcc.Initialize(input.size(), 22050 )); std::vector<double> output; mfcc.Compute(input, &output); std::vector<double> expected = { 29.13970072, -6.41568601, -0.61903012, -0.96778652, -0.26819878, -0.40907028, -0.15614748, -0.23203119, -0.10481487, -0.1543029, -0.0769791, -0.10806114, -0.06047613}; ASSERT_EQ(expected.size(), output.size()); for (int i = 0; i < output.size(); ++i) { EXPECT_NEAR(output[i], expected[i], 1e-04); } } TEST(MfccTest, AvoidsNansWithZeroInput) { Mfcc mfcc; std::vector<double> input; const int kSampleCount = 513; input.reserve(kSampleCount); for (int i = 0; i < kSampleCount; ++i) { input.push_back(0.0); } ASSERT_TRUE(mfcc.Initialize(input.size(), 22050 )); std::vector<double> output; mfcc.Compute(input, &output); int expected_size = 13; ASSERT_EQ(expected_size, output.size()); for (const double value : output) { EXPECT_FALSE(std::isnan(value)); } } TEST(MfccTest, SimpleInputSaneResult) { Mfcc mfcc; mfcc.set_lower_frequency_limit(125.0); mfcc.set_upper_frequency_limit(3800.0); mfcc.set_filterbank_channel_count(40); mfcc.set_dct_coefficient_count(40); const int kSpectrogramSize = 129; std::vector<double> input(kSpectrogramSize, 0.0); const int kHotBin = 10; input[kHotBin] = 1.0; ASSERT_TRUE(mfcc.Initialize(input.size(), 8000)); std::vector<double> output; mfcc.Compute(input, &output); EXPECT_EQ(output.begin() + 1, std::max_element(output.begin(), output.end())); } }
905
cpp
tensorflow/tensorflow
broadcast_to
tensorflow/lite/kernels/broadcast_to.cc
tensorflow/lite/kernels/broadcast_to_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_BROADCAST_TO_H_ #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_BROADCAST_TO_H_ #include "tensorflow/lite/kernels/internal/common.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace reference_ops { template <int N> void BroadcastImpl(const NdArrayDesc<N>& input_desc, const char* input_data, const NdArrayDesc<N>& output_desc, char* output_data, int indexes[N], int dim, const int last_broadcasting_dim, const int type_size) { if (dim == last_broadcasting_dim) { int copy_size = output_desc.strides[dim] * type_size; const char* data_src = input_data + SubscriptToIndex(input_desc, indexes) * type_size; char* data_dst = output_data + SubscriptToIndex(output_desc, indexes) * type_size; for (int i = 0; i < output_desc.extents[dim]; ++i, data_dst += copy_size) { memcpy(data_dst, data_src, copy_size); } return; } for (indexes[dim] = 0; indexes[dim] < input_desc.extents[dim]; ++indexes[dim]) { BroadcastImpl<N>(input_desc, input_data, output_desc, output_data, indexes, dim + 1, last_broadcasting_dim, type_size); } indexes[dim] = 0; if (input_desc.extents[dim] != output_desc.extents[dim]) { int copy_size = output_desc.strides[dim] * type_size; char* data_src = output_data + SubscriptToIndex(output_desc, indexes) * type_size; char* data_dst = data_src + copy_size; for (int i = 1; i < output_desc.extents[dim]; ++i, data_dst += copy_size) { memcpy(data_dst, data_src, copy_size); } } } template <int N> inline void BroadcastTo(const RuntimeShape& unextended_input_shape, const char* input_data, const RuntimeShape& unextended_output_shape, char* output_data, TfLiteType data_type) { NdArrayDesc<N> input_desc; NdArrayDesc<N> output_desc; CopyDimsToDesc(RuntimeShape::ExtendedShape(N, unextended_input_shape), &input_desc); CopyDimsToDesc(RuntimeShape::ExtendedShape(N, unextended_output_shape), &output_desc); int last_broadcast_dim = -1; for (int i = N - 1; i >= 0; --i) { if (input_desc.extents[i] != output_desc.extents[i]) { last_broadcast_dim = i; break; } } if (last_broadcast_dim == -1) { memcpy(output_data, input_data, unextended_input_shape.FlatSize() * TfLiteTypeGetSize(data_type)); return; } int indexes[N] = {0}; BroadcastImpl<N>(input_desc, input_data, output_desc, output_data, indexes, 0, last_broadcast_dim, TfLiteTypeGetSize(data_type)); } } } #endif #include "tensorflow/lite/kernels/internal/reference/broadcast_to.h" #include <string.h> #include <cstdint> #include <memory> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace builtin { namespace broadcastto { constexpr int kInputTensor = 0; constexpr int kShapeTensor = 1; constexpr int kOutputTensor = 0; constexpr int kMaxDims = 8; struct BroadcastToContext { BroadcastToContext(TfLiteContext* context, TfLiteNode* node) { input = GetInput(context, node, kInputTensor); shape = GetInput(context, node, kShapeTensor); output = GetOutput(context, node, kOutputTensor); } const TfLiteTensor* input; const TfLiteTensor* shape; TfLiteTensor* output; }; TfLiteStatus ResizeOutputTensor(TfLiteContext* context, BroadcastToContext* op_context) { TF_LITE_ENSURE_EQ(context, NumDimensions(op_context->shape), 1); int input_num_dims = NumDimensions(op_context->input); int output_num_dims = SizeOfDimension(op_context->shape, 0); TF_LITE_ENSURE_MSG(context, input_num_dims <= output_num_dims, "Output shape must be broadcastable from input shape."); TF_LITE_ENSURE_MSG(context, output_num_dims <= kMaxDims, "BroadcastTo only supports 1-8D tensor."); auto get_shape_data = [op_context](int i) -> int32_t { if (op_context->shape->type == kTfLiteInt32) { return GetTensorData<int32_t>(op_context->shape)[i]; } else { return GetTensorData<int64_t>(op_context->shape)[i]; } }; int extending_dims = output_num_dims - input_num_dims; for (int idx = 0; idx < input_num_dims; ++idx) { TF_LITE_ENSURE_MSG(context, (SizeOfDimension(op_context->input, idx) == 1 || SizeOfDimension(op_context->input, idx) == get_shape_data(extending_dims + idx)), "Output shape must be broadcastable from input shape."); } TfLiteIntArray* output_shape = TfLiteIntArrayCreate(output_num_dims); std::unique_ptr<TfLiteIntArray, void (*)(TfLiteIntArray*)> scoped_output_shape(output_shape, TfLiteIntArrayFree); for (int idx = 0; idx < output_num_dims; ++idx) { output_shape->data[idx] = get_shape_data(idx); } return context->ResizeTensor(context, op_context->output, scoped_output_shape.release()); } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE(context, NumInputs(node) == 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); TF_LITE_ENSURE_MSG(context, (NumDimensions(GetInput(context, node, 0)) <= kMaxDims), "BroadcastTo only supports 1-8D tensor."); BroadcastToContext op_context(context, node); TF_LITE_ENSURE(context, op_context.shape->type == kTfLiteInt32 || op_context.shape->type == kTfLiteInt64); TF_LITE_ENSURE_EQ(context, op_context.input->type, op_context.output->type); TF_LITE_ENSURE(context, op_context.input->type != kTfLiteString); if (IsConstantOrPersistentTensor(op_context.shape)) { return ResizeOutputTensor(context, &op_context); } SetTensorToDynamic(op_context.output); return kTfLiteOk; } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { BroadcastToContext op_context(context, node); if (IsDynamicTensor(op_context.output)) { TF_LITE_ENSURE_OK(context, ResizeOutputTensor(context, &op_context)); } reference_ops::BroadcastTo<kMaxDims>( GetTensorShape(op_context.input), op_context.input->data.raw, GetTensorShape(op_context.output), op_context.output->data.raw, op_context.input->type); return kTfLiteOk; } } TfLiteRegistration* Register_BROADCAST_TO() { static TfLiteRegistration r = {nullptr, nullptr, broadcastto::Prepare, broadcastto::Eval}; return &r; } } } }
#include <cstdint> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/core/interpreter.h" #include "tensorflow/lite/core/kernels/register.h" #include "tensorflow/lite/core/model.h" #include "tensorflow/lite/kernels/test_util.h" namespace tflite { namespace { using ::testing::ElementsAreArray; template <class InputType, class ShapeType = int32_t> class BroadcastToOpModel : public SingleOpModel { public: BroadcastToOpModel(std::initializer_list<int> input_shape, std::initializer_list<int> shape_shape) { input_ = AddInput({GetTensorType<InputType>(), input_shape}); shape_ = AddInput({GetTensorType<ShapeType>(), shape_shape}); output_ = AddOutput(GetTensorType<InputType>()); SetBuiltinOp(BuiltinOperator_BROADCAST_TO, BuiltinOptions_BroadcastToOptions, CreateBroadcastToOptions(builder_).Union()); BuildInterpreter({input_shape, shape_shape}); } BroadcastToOpModel(std::initializer_list<int> input_shape, std::initializer_list<int> shape_shape, std::initializer_list<ShapeType> shape_values) { input_ = AddInput({GetTensorType<InputType>(), input_shape}); shape_ = AddConstInput(GetTensorType<ShapeType>(), shape_values, shape_shape); output_ = AddOutput(GetTensorType<InputType>()); SetBuiltinOp(BuiltinOperator_BROADCAST_TO, BuiltinOptions_BroadcastToOptions, CreateBroadcastToOptions(builder_).Union()); BuildInterpreter({input_shape, shape_shape}); } void SetInput(std::initializer_list<InputType> data) { PopulateTensor(input_, data); } void SetShape(std::initializer_list<ShapeType> data) { PopulateTensor(shape_, data); } std::vector<InputType> GetOutput() { return ExtractVector<InputType>(output_); } std::vector<int> GetOutputShape() { return GetTensorShape(output_); } protected: int input_; int shape_; int output_; }; template <typename T> class BroadcastToOpTest : public ::testing::Test {}; using DataTypes = ::testing::Types<float, uint8_t, int8_t, int16_t, int32_t>; TYPED_TEST_SUITE(BroadcastToOpTest, DataTypes); #if GTEST_HAS_DEATH_TEST TYPED_TEST(BroadcastToOpTest, ShapeMustBe1D) { EXPECT_DEATH( BroadcastToOpModel<TypeParam>({2, 3, 4, 4}, {2, 2}, {2, 3, 4, 4}), ""); BroadcastToOpModel<TypeParam> m({2, 3, 4, 4}, {2, 2}); m.SetShape({2, 3, 4, 4}); EXPECT_THAT(m.Invoke(), kTfLiteError); } TYPED_TEST(BroadcastToOpTest, TooManyDimensions) { EXPECT_DEATH(BroadcastToOpModel<TypeParam>({1, 2, 3, 4, 5, 6, 7, 8, 9}, {9}, {2, 2, 3, 4, 5, 6, 7, 8, 9}), "BroadcastTo only supports 1-8D tensor."); EXPECT_DEATH(BroadcastToOpModel<TypeParam>({1, 2, 3, 4, 5, 6, 7, 8, 9}, {9}), "BroadcastTo only supports 1-8D tensor."); } TYPED_TEST(BroadcastToOpTest, MismatchDimension) { EXPECT_DEATH(BroadcastToOpModel<TypeParam>({2, 4, 1, 2}, {4}, {2, 4, 1, 3}), "Output shape must be broadcastable from input shape."); EXPECT_DEATH( BroadcastToOpModel<TypeParam>({2, 4, 1, 2, 3}, {4}, {2, 4, 1, 2}), "Output shape must be broadcastable from input shape."); BroadcastToOpModel<TypeParam> m1({2, 4, 1, 2}, {4}); m1.SetShape({2, 3, 4, 4}); EXPECT_THAT(m1.Invoke(), kTfLiteError); BroadcastToOpModel<TypeParam> m2({2, 4, 1, 2}, {5}); m2.SetShape({1, 2, 3, 4, 4}); EXPECT_THAT(m2.Invoke(), kTfLiteError); } #endif TYPED_TEST(BroadcastToOpTest, BroadcastTo1DConstTest) { BroadcastToOpModel<TypeParam> m({1}, {1}, {4}); m.SetInput({3}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({4})); EXPECT_THAT(m.GetOutput(), ElementsAreArray({3, 3, 3, 3})); } TYPED_TEST(BroadcastToOpTest, BroadcastTo4DConstTest) { BroadcastToOpModel<TypeParam> m({1, 1, 1, 2}, {4}, {1, 1, 2, 2}); m.SetInput({3, 4}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({1, 1, 2, 2})); EXPECT_THAT(m.GetOutput(), ElementsAreArray({3, 4, 3, 4})); } TYPED_TEST(BroadcastToOpTest, BroadcastTo8DConstTest) { BroadcastToOpModel<TypeParam> m({1, 1, 1, 1, 1, 1, 2, 1}, {8}, {1, 1, 1, 1, 1, 1, 2, 2}); m.SetInput({3, 4}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({1, 1, 1, 1, 1, 1, 2, 2})); EXPECT_THAT(m.GetOutput(), ElementsAreArray({3, 3, 4, 4})); } TYPED_TEST(BroadcastToOpTest, BroadcastTo1DDynamicTest) { BroadcastToOpModel<TypeParam> m({1}, {1}); m.SetInput({3}); m.SetShape({4}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({4})); EXPECT_THAT(m.GetOutput(), ElementsAreArray({3, 3, 3, 3})); } TYPED_TEST(BroadcastToOpTest, BroadcastTo4DDynamicTest) { BroadcastToOpModel<TypeParam> m({1, 1, 1, 2}, {4}); m.SetInput({3, 4}); m.SetShape({1, 1, 2, 2}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({1, 1, 2, 2})); EXPECT_THAT(m.GetOutput(), ElementsAreArray({3, 4, 3, 4})); } TYPED_TEST(BroadcastToOpTest, BroadcastTo8DDynamicTest) { BroadcastToOpModel<TypeParam> m({1, 1, 1, 1, 1, 1, 2, 1}, {8}); m.SetInput({3, 4}); m.SetShape({1, 1, 1, 1, 1, 1, 2, 2}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({1, 1, 1, 1, 1, 1, 2, 2})); EXPECT_THAT(m.GetOutput(), ElementsAreArray({3, 3, 4, 4})); } TYPED_TEST(BroadcastToOpTest, ComplexBroadcast4DConstTest) { BroadcastToOpModel<TypeParam> m({1, 3, 1, 2}, {4}, {3, 3, 2, 2}); m.SetInput({1, 2, 3, 4, 5, 6}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({3, 3, 2, 2})); EXPECT_THAT( m.GetOutput(), ElementsAreArray({1, 2, 1, 2, 3, 4, 3, 4, 5, 6, 5, 6, 1, 2, 1, 2, 3, 4, 3, 4, 5, 6, 5, 6, 1, 2, 1, 2, 3, 4, 3, 4, 5, 6, 5, 6})); } TYPED_TEST(BroadcastToOpTest, ComplexBroadcast4DDynamicTest) { BroadcastToOpModel<TypeParam> m({1, 3, 1, 2}, {4}); m.SetInput({1, 2, 3, 4, 5, 6}); m.SetShape({3, 3, 2, 2}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({3, 3, 2, 2})); EXPECT_THAT( m.GetOutput(), ElementsAreArray({1, 2, 1, 2, 3, 4, 3, 4, 5, 6, 5, 6, 1, 2, 1, 2, 3, 4, 3, 4, 5, 6, 5, 6, 1, 2, 1, 2, 3, 4, 3, 4, 5, 6, 5, 6})); } TYPED_TEST(BroadcastToOpTest, ComplexBroadcast6DConstTest) { BroadcastToOpModel<TypeParam> m({1, 2, 1, 3, 1, 2}, {6}, {2, 2, 1, 3, 2, 2}); m.SetInput({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 2, 1, 3, 2, 2})); EXPECT_THAT(m.GetOutput(), ElementsAreArray({1, 2, 1, 2, 3, 4, 3, 4, 5, 6, 5, 6, 7, 8, 7, 8, 9, 10, 9, 10, 11, 12, 11, 12, 1, 2, 1, 2, 3, 4, 3, 4, 5, 6, 5, 6, 7, 8, 7, 8, 9, 10, 9, 10, 11, 12, 11, 12})); } TYPED_TEST(BroadcastToOpTest, ComplexBroadcast6DDynamicTest) { BroadcastToOpModel<TypeParam> m({1, 2, 1, 3, 1, 2}, {6}); m.SetInput({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}); m.SetShape({2, 2, 1, 3, 2, 2}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 2, 1, 3, 2, 2})); EXPECT_THAT(m.GetOutput(), ElementsAreArray({1, 2, 1, 2, 3, 4, 3, 4, 5, 6, 5, 6, 7, 8, 7, 8, 9, 10, 9, 10, 11, 12, 11, 12, 1, 2, 1, 2, 3, 4, 3, 4, 5, 6, 5, 6, 7, 8, 7, 8, 9, 10, 9, 10, 11, 12, 11, 12})); } TYPED_TEST(BroadcastToOpTest, ComplexBroadcast8DConstTest) { BroadcastToOpModel<TypeParam> m({1, 3, 1, 2, 1, 4, 1, 1}, {8}, {2, 3, 1, 2, 2, 4, 1, 1}); m.SetInput({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 3, 1, 2, 2, 4, 1, 1})); EXPECT_THAT( m.GetOutput(), ElementsAreArray({1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8, 9, 10, 11, 12, 9, 10, 11, 12, 13, 14, 15, 16, 13, 14, 15, 16, 17, 18, 19, 20, 17, 18, 19, 20, 21, 22, 23, 24, 21, 22, 23, 24, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8, 9, 10, 11, 12, 9, 10, 11, 12, 13, 14, 15, 16, 13, 14, 15, 16, 17, 18, 19, 20, 17, 18, 19, 20, 21, 22, 23, 24, 21, 22, 23, 24})); } TYPED_TEST(BroadcastToOpTest, ComplexBroadcast8DDynamicTest) { BroadcastToOpModel<TypeParam> m({2, 1, 1, 2, 1, 4, 1, 1}, {8}); m.SetInput({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}); m.SetShape({2, 3, 2, 2, 2, 4, 1, 1}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 3, 2, 2, 2, 4, 1, 1})); EXPECT_THAT( m.GetOutput(), ElementsAreArray( {1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8, 9, 10, 11, 12, 9, 10, 11, 12, 13, 14, 15, 16, 13, 14, 15, 16, 9, 10, 11, 12, 9, 10, 11, 12, 13, 14, 15, 16, 13, 14, 15, 16, 9, 10, 11, 12, 9, 10, 11, 12, 13, 14, 15, 16, 13, 14, 15, 16, 9, 10, 11, 12, 9, 10, 11, 12, 13, 14, 15, 16, 13, 14, 15, 16, 9, 10, 11, 12, 9, 10, 11, 12, 13, 14, 15, 16, 13, 14, 15, 16, 9, 10, 11, 12, 9, 10, 11, 12, 13, 14, 15, 16, 13, 14, 15, 16})); } TYPED_TEST(BroadcastToOpTest, ExtendingShape4DConstTest) { BroadcastToOpModel<TypeParam> m({3, 1, 2}, {4}, {3, 3, 2, 2}); m.SetInput({1, 2, 3, 4, 5, 6}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({3, 3, 2, 2})); EXPECT_THAT( m.GetOutput(), ElementsAreArray({1, 2, 1, 2, 3, 4, 3, 4, 5, 6, 5, 6, 1, 2, 1, 2, 3, 4, 3, 4, 5, 6, 5, 6, 1, 2, 1, 2, 3, 4, 3, 4, 5, 6, 5, 6})); } TYPED_TEST(BroadcastToOpTest, NoBroadcastingConstTest) { BroadcastToOpModel<TypeParam> m({3, 1, 2}, {3}, {3, 1, 2}); m.SetInput({1, 2, 3, 4, 5, 6}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({3, 1, 2})); EXPECT_THAT(m.GetOutput(), ElementsAreArray({1, 2, 3, 4, 5, 6})); } TYPED_TEST(BroadcastToOpTest, NoBroadcasting8DConstTest) { BroadcastToOpModel<TypeParam> m({3, 1, 1, 1, 1, 1, 1, 2}, {8}, {3, 1, 1, 1, 1, 1, 1, 2}); m.SetInput({1, 2, 3, 4, 5, 6}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({3, 1, 1, 1, 1, 1, 1, 2})); EXPECT_THAT(m.GetOutput(), ElementsAreArray({1, 2, 3, 4, 5, 6})); } TYPED_TEST(BroadcastToOpTest, Int64ShapeConstTest) { BroadcastToOpModel<TypeParam, int64_t> m({1, 1, 1, 1, 1, 1, 2, 1}, {8}, {1, 1, 1, 1, 1, 1, 2, 2}); m.SetInput({3, 4}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({1, 1, 1, 1, 1, 1, 2, 2})); EXPECT_THAT(m.GetOutput(), ElementsAreArray({3, 3, 4, 4})); } TYPED_TEST(BroadcastToOpTest, Int64ShapeDDynamicTest) { BroadcastToOpModel<TypeParam, int64_t> m({1, 1, 1, 1, 1, 1, 2, 1}, {8}); m.SetInput({3, 4}); m.SetShape({1, 1, 1, 1, 1, 1, 2, 2}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({1, 1, 1, 1, 1, 1, 2, 2})); EXPECT_THAT(m.GetOutput(), ElementsAreArray({3, 3, 4, 4})); } TYPED_TEST(BroadcastToOpTest, BroadcastToEmtpyShapeTest) { BroadcastToOpModel<TypeParam> m({3, 1, 2}, {3}, {3, 0, 2}); m.SetInput({1, 2, 3, 4, 5, 6}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({3, 0, 2})); } } }
906
cpp
tensorflow/tensorflow
maximum_minimum
tensorflow/lite/kernels/maximum_minimum.cc
tensorflow/lite/kernels/maximum_minimum_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_MAXIMUM_MINIMUM_H_ #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_MAXIMUM_MINIMUM_H_ #include "tensorflow/lite/kernels/internal/common.h" #include "tensorflow/lite/kernels/internal/types.h" namespace tflite { namespace reference_ops { template <typename T, typename Op, int N = 5> void MaximumMinimumBroadcastSlow(const RuntimeShape& unextended_input1_shape, const T* input1_data, const RuntimeShape& unextended_input2_shape, const T* input2_data, const RuntimeShape& unextended_output_shape, T* output_data, Op op) { if (unextended_input1_shape == unextended_input2_shape) { const int flat_size = MatchingElementsSize(unextended_input1_shape, unextended_input2_shape, unextended_output_shape); for (int i = 0; i < flat_size; ++i) { output_data[i] = op(input1_data[i], input2_data[i]); } } else { TFLITE_DCHECK_LE(unextended_input1_shape.DimensionsCount(), N); TFLITE_DCHECK_LE(unextended_input2_shape.DimensionsCount(), N); TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), N); NdArrayDesc<N> desc1; NdArrayDesc<N> desc2; NdArrayDesc<N> output_desc; NdArrayDescsForElementwiseBroadcast( unextended_input1_shape, unextended_input2_shape, &desc1, &desc2); CopyDimsToDesc(RuntimeShape::ExtendedShape(N, unextended_output_shape), &output_desc); auto maxmin_func = [&](int indexes[N]) { output_data[SubscriptToIndex(output_desc, indexes)] = op(input1_data[SubscriptToIndex(desc1, indexes)], input2_data[SubscriptToIndex(desc2, indexes)]); }; NDOpsHelper<N>(output_desc, maxmin_func); } } } } #endif #include "tensorflow/lite/kernels/internal/reference/maximum_minimum.h" #include <stdint.h> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h" #include "tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h" #include "tensorflow/lite/kernels/internal/reference/reference_ops.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/internal/types.h" #include "tensorflow/lite/kernels/kernel_util.h" #ifdef TFLITE_KERNEL_USE_XNNPACK #include <algorithm> #include <array> #include <limits> #include "xnnpack.h" #include "tensorflow/lite/kernels/cpu_backend_context.h" #include "tensorflow/lite/minimal_logging.h" #endif namespace tflite { namespace ops { namespace builtin { namespace maximum_minimum { enum KernelType { kReference, kGenericOptimized, }; constexpr int kInputTensor1 = 0; constexpr int kInputTensor2 = 1; constexpr int kOutputTensor = 0; struct OpContext { OpContext(TfLiteContext* context, TfLiteNode* node) { input1 = GetInput(context, node, kInputTensor1); input2 = GetInput(context, node, kInputTensor2); output = GetOutput(context, node, kOutputTensor); } const TfLiteTensor* input1; const TfLiteTensor* input2; TfLiteTensor* output; }; TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); OpContext op_context(context, node); TF_LITE_ENSURE_TYPES_EQ(context, op_context.input1->type, op_context.input2->type); op_context.output->type = op_context.input1->type; bool requires_broadcast = !HaveSameShapes(op_context.input1, op_context.input2); TfLiteIntArray* output_size = nullptr; if (requires_broadcast) { TF_LITE_ENSURE_OK( context, CalculateShapeForBroadcast(context, op_context.input1, op_context.input2, &output_size)); } else { output_size = TfLiteIntArrayCopy(op_context.input1->dims); } return context->ResizeTensor(context, op_context.output, output_size); } struct MaximumOp { template <typename data_type> static data_type op(data_type el1, data_type el2) { return el1 > el2 ? el1 : el2; } }; struct MinimumOp { template <typename data_type> static data_type op(data_type el1, data_type el2) { return el1 < el2 ? el1 : el2; } }; template <KernelType kernel_type, typename data_type, typename op_type> void TFLiteOperation(TfLiteContext* context, TfLiteNode* node, const OpContext& op_context) { reference_ops::MaximumMinimumBroadcastSlow( GetTensorShape(op_context.input1), GetTensorData<data_type>(op_context.input1), GetTensorShape(op_context.input2), GetTensorData<data_type>(op_context.input2), GetTensorShape(op_context.output), GetTensorData<data_type>(op_context.output), op_type::template op<data_type>); } template <> void TFLiteOperation<maximum_minimum::kGenericOptimized, int8, MaximumOp>( TfLiteContext* context, TfLiteNode* node, const OpContext& op_context) { tflite::ArithmeticParams op_params; const bool need_broadcast = optimized_ops::ProcessBroadcastShapes( GetTensorShape(op_context.input1), GetTensorShape(op_context.input2), &op_params); if (need_broadcast) { optimized_ops::BroadcastMaximumDispatch( op_params, GetTensorShape(op_context.input1), GetTensorData<int8>(op_context.input1), GetTensorShape(op_context.input2), GetTensorData<int8>(op_context.input2), GetTensorShape(op_context.output), GetTensorData<int8>(op_context.output), MaximumOp::template op<int8>); return; } reference_ops::MaximumMinimumBroadcastSlow( GetTensorShape(op_context.input1), GetTensorData<int8>(op_context.input1), GetTensorShape(op_context.input2), GetTensorData<int8>(op_context.input2), GetTensorShape(op_context.output), GetTensorData<int8>(op_context.output), MaximumOp::template op<int8>); } template <> void TFLiteOperation<maximum_minimum::kGenericOptimized, int8, MinimumOp>( TfLiteContext* context, TfLiteNode* node, const OpContext& op_context) { tflite::ArithmeticParams op_params; const bool need_broadcast = optimized_ops::ProcessBroadcastShapes( GetTensorShape(op_context.input1), GetTensorShape(op_context.input2), &op_params); if (need_broadcast) { optimized_ops::BroadcastMinimumDispatch( op_params, GetTensorShape(op_context.input1), GetTensorData<int8>(op_context.input1), GetTensorShape(op_context.input2), GetTensorData<int8>(op_context.input2), GetTensorShape(op_context.output), GetTensorData<int8>(op_context.output), MinimumOp::template op<int8>); return; } reference_ops::MaximumMinimumBroadcastSlow( GetTensorShape(op_context.input1), GetTensorData<int8>(op_context.input1), GetTensorShape(op_context.input2), GetTensorData<int8>(op_context.input2), GetTensorShape(op_context.output), GetTensorData<int8>(op_context.output), MinimumOp::template op<int8>); } template <KernelType kernel_type, typename OpType> TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { OpContext op_context(context, node); if (NumElements(op_context.input1) == 0 || NumElements(op_context.input2) == 0) { return kTfLiteOk; } switch (op_context.output->type) { case kTfLiteFloat32: { #ifdef TFLITE_KERNEL_USE_XNNPACK size_t num_input1_dims = static_cast<size_t>( GetTensorShape(op_context.input1).DimensionsCount()); size_t num_input2_dims = static_cast<size_t>( GetTensorShape(op_context.input2).DimensionsCount()); if (std::max(num_input1_dims, num_input2_dims) < XNN_MAX_TENSOR_DIMS) { std::array<size_t, XNN_MAX_TENSOR_DIMS> input1_shape; std::array<size_t, XNN_MAX_TENSOR_DIMS> input2_shape; for (size_t i = 0; i < num_input1_dims; ++i) { input1_shape[i] = GetTensorShape(op_context.input1).Dims(i); } for (size_t i = 0; i < num_input2_dims; ++i) { input2_shape[i] = GetTensorShape(op_context.input2).Dims(i); } CpuBackendContext* cpu_backend_context = CpuBackendContext::GetFromContext(context); pthreadpool_t threadpool = cpu_backend_context->get_xnnpack_threadpool(); enum xnn_status status = xnn_status_invalid_parameter; if (std::is_same<OpType, MaximumOp>::value) { status = xnn_run_maximum_nd_f32( num_input1_dims, input1_shape.data(), num_input2_dims, input2_shape.data(), GetTensorData<float>(op_context.input1), GetTensorData<float>(op_context.input2), GetTensorData<float>(op_context.output), XNN_FLAG_YIELD_WORKERS, threadpool); if (status != xnn_status_success) { TFLITE_LOG(TFLITE_LOG_INFO, "Failed to run xnn_run_maximum_nd_f32. Error code: %d", status); TFLiteOperation<kernel_type, float, OpType>(context, node, op_context); } } else if (std::is_same<OpType, MinimumOp>::value) { status = xnn_run_minimum_nd_f32( num_input1_dims, input1_shape.data(), num_input2_dims, input2_shape.data(), GetTensorData<float>(op_context.input1), GetTensorData<float>(op_context.input2), GetTensorData<float>(op_context.output), XNN_FLAG_YIELD_WORKERS, threadpool); if (status != xnn_status_success) { TFLITE_LOG(TFLITE_LOG_INFO, "Failed to run xnn_run_minimum_nd_f32. Error code: %d", status); TFLiteOperation<kernel_type, float, OpType>(context, node, op_context); } } break; } #endif TFLiteOperation<kernel_type, float, OpType>(context, node, op_context); break; } case kTfLiteUInt8: TFLiteOperation<kernel_type, uint8_t, OpType>(context, node, op_context); break; case kTfLiteInt8: TFLiteOperation<kernel_type, int8_t, OpType>(context, node, op_context); break; case kTfLiteInt32: TFLiteOperation<kernel_type, int32_t, OpType>(context, node, op_context); break; case kTfLiteInt64: TFLiteOperation<kernel_type, int64_t, OpType>(context, node, op_context); break; case kTfLiteInt16: TFLiteOperation<kernel_type, int16_t, OpType>(context, node, op_context); break; default: TF_LITE_KERNEL_LOG(context, "Type %d is currently not supported by Maximum.", op_context.output->type); return kTfLiteError; } return kTfLiteOk; } } TfLiteRegistration* Register_MAXIMUM_REF() { static TfLiteRegistration r = { nullptr, nullptr, maximum_minimum::Prepare, maximum_minimum::Eval<maximum_minimum::kReference, maximum_minimum::MaximumOp>}; return &r; } TfLiteRegistration* Register_MAXIMUM_GENERIC_OPT() { static TfLiteRegistration r = { nullptr, nullptr, maximum_minimum::Prepare, maximum_minimum::Eval<maximum_minimum::kGenericOptimized, maximum_minimum::MaximumOp>}; return &r; } TfLiteRegistration* Register_MINIMUM_REF() { static TfLiteRegistration r = { nullptr, nullptr, maximum_minimum::Prepare, maximum_minimum::Eval<maximum_minimum::kReference, maximum_minimum::MinimumOp>}; return &r; } TfLiteRegistration* Register_MINIMUM_GENERIC_OPT() { static TfLiteRegistration r = { nullptr, nullptr, maximum_minimum::Prepare, maximum_minimum::Eval<maximum_minimum::kGenericOptimized, maximum_minimum::MinimumOp>}; return &r; } TfLiteRegistration* Register_MAXIMUM() { return Register_MAXIMUM_GENERIC_OPT(); } TfLiteRegistration* Register_MINIMUM() { return Register_MINIMUM_GENERIC_OPT(); } } } }
#include <stdint.h> #include <initializer_list> #include <memory> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { using ::testing::ElementsAreArray; template <class T> class MaxMinOpModel : public SingleOpModel { public: MaxMinOpModel(tflite::BuiltinOperator op, const TensorData& input1, const TensorData& input2, const TensorType& output) { input1_ = AddInput(input1); input2_ = AddInput(input2); output_ = AddOutput(output); SetBuiltinOp(op, BuiltinOptions_MaximumMinimumOptions, CreateMaximumMinimumOptions(builder_).Union()); BuildInterpreter({GetShape(input1_), GetShape(input2_)}); } MaxMinOpModel(tflite::BuiltinOperator op, const TensorData& input1, const TensorData& input2, std::initializer_list<T> input2_values, const TensorType& output) { input1_ = AddInput(input1); input2_ = AddConstInput<T>(input2, input2_values); output_ = AddOutput(output); SetBuiltinOp(op, BuiltinOptions_MaximumMinimumOptions, CreateMaximumMinimumOptions(builder_).Union()); BuildInterpreter({GetShape(input1_), GetShape(input2_)}); } void SetInput1(std::initializer_list<T> data) { PopulateTensor(input1_, data); } void SetInput2(std::initializer_list<T> data) { PopulateTensor(input2_, data); } std::vector<T> GetOutput() { return ExtractVector<T>(output_); } std::vector<int> GetOutputShape() { return GetTensorShape(output_); } protected: int input1_; int input2_; int output_; }; template <typename data_type> void TestModel(tflite::BuiltinOperator op, const TensorData& input1, const TensorData& input2, const TensorData& output, std::initializer_list<data_type> input1_values, std::initializer_list<data_type> input2_values, std::initializer_list<data_type> output_values, int is_constant = false) { std::unique_ptr<MaxMinOpModel<data_type>> m; if (is_constant) { m = std::make_unique<MaxMinOpModel<data_type>>(op, input1, input2, input2_values, output.type); } else { m = std::make_unique<MaxMinOpModel<data_type>>(op, input1, input2, output.type); m->SetInput2(input2_values); } m->SetInput1(input1_values); ASSERT_EQ(m->Invoke(), kTfLiteOk); EXPECT_THAT(m->GetOutputShape(), ElementsAreArray(output.shape)); EXPECT_THAT(m->GetOutput(), ElementsAreArray(output_values)); } TEST(MaximumOpTest, FloatTest) { std::initializer_list<float> data1 = {1.0, 0.0, -1.0, 11.0, -2.0, -1.44}; std::initializer_list<float> data2 = {-1.0, 0.0, 1.0, 12.0, -3.0, -1.43}; TestModel<float>(BuiltinOperator_MAXIMUM, {TensorType_FLOAT32, {3, 1, 2}}, {TensorType_FLOAT32, {3, 1, 2}}, {TensorType_FLOAT32, {3, 1, 2}}, data1, data2, {1.0, 0.0, 1.0, 12.0, -2.0, -1.43}); TestModel<float>(BuiltinOperator_MINIMUM, {TensorType_FLOAT32, {3, 1, 2}}, {TensorType_FLOAT32, {3, 1, 2}}, {TensorType_FLOAT32, {3, 1, 2}}, data1, data2, {-1.0, 0.0, -1.0, 11.0, -3.0, -1.44}); } TEST(MaxMinOpTest, Uint8Test) { std::initializer_list<uint8_t> data1 = {1, 0, 2, 11, 2, 23}; std::initializer_list<uint8_t> data2 = {0, 0, 1, 12, 255, 1}; TestModel<uint8_t>(BuiltinOperator_MAXIMUM, {TensorType_UINT8, {3, 1, 2}}, {TensorType_UINT8, {3, 1, 2}}, {TensorType_UINT8, {3, 1, 2}}, data1, data2, {1, 0, 2, 12, 255, 23}); TestModel<uint8_t>(BuiltinOperator_MINIMUM, {TensorType_UINT8, {3, 1, 2}}, {TensorType_UINT8, {3, 1, 2}}, {TensorType_UINT8, {3, 1, 2}}, data1, data2, {0, 0, 1, 11, 2, 1}); } TEST(MaxMinOpTest, Int8Test) { std::initializer_list<int8_t> data1 = {1, 0, 2, 11, 2, 23}; std::initializer_list<int8_t> data2 = {0, 0, 1, 12, 123, 1}; TestModel<int8_t>(BuiltinOperator_MAXIMUM, {TensorType_INT8, {3, 1, 2}}, {TensorType_INT8, {3, 1, 2}}, {TensorType_INT8, {3, 1, 2}}, data1, data2, {1, 0, 2, 12, 123, 23}); TestModel<int8_t>(BuiltinOperator_MINIMUM, {TensorType_INT8, {3, 1, 2}}, {TensorType_INT8, {3, 1, 2}}, {TensorType_INT8, {3, 1, 2}}, data1, data2, {0, 0, 1, 11, 2, 1}); } TEST(MaxMinOpTest, Int16Test) { std::initializer_list<int16_t> data1 = {-32768, 0, 2, 11, 2, 23}; std::initializer_list<int16_t> data2 = {0, 0, 1, 32767, 123, 1}; TestModel<int16_t>(BuiltinOperator_MAXIMUM, {TensorType_INT16, {3, 1, 2}}, {TensorType_INT16, {3, 1, 2}}, {TensorType_INT16, {3, 1, 2}}, data1, data2, {0, 0, 2, 32767, 123, 23}); TestModel<int16_t>(BuiltinOperator_MINIMUM, {TensorType_INT16, {3, 1, 2}}, {TensorType_INT16, {3, 1, 2}}, {TensorType_INT16, {3, 1, 2}}, data1, data2, {-32768, 0, 1, 11, 2, 1}); } TEST(MaximumOpTest, FloatWithBroadcastTest) { std::initializer_list<float> data1 = {1.0, 0.0, -1.0, -2.0, -1.44, 11.0}; std::initializer_list<float> data2 = {0.5, 2.0}; TestModel<float>(BuiltinOperator_MAXIMUM, {TensorType_FLOAT32, {3, 1, 2}}, {TensorType_FLOAT32, {2}}, {TensorType_FLOAT32, {3, 1, 2}}, data1, data2, {1.0, 2.0, 0.5, 2.0, 0.5, 11.0}); TestModel<float>(BuiltinOperator_MINIMUM, {TensorType_FLOAT32, {3, 1, 2}}, {TensorType_FLOAT32, {2}}, {TensorType_FLOAT32, {3, 1, 2}}, data1, data2, {0.5, 0.0, -1.0, -2.0, -1.44, 2.0}); } TEST(MaximumOpTest, FloatWithBroadcastTest_ScalarY) { std::initializer_list<float> data1 = {1.0, 0.0, -1.0, -2.0, -1.44, 11.0}; std::initializer_list<float> data2 = {0.5}; TestModel<float>(BuiltinOperator_MAXIMUM, {TensorType_FLOAT32, {3, 1, 2}}, {TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {3, 1, 2}}, data1, data2, {1.0, 0.5, 0.5, 0.5, 0.5, 11.0}, true); TestModel<float>(BuiltinOperator_MINIMUM, {TensorType_FLOAT32, {3, 1, 2}}, {TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {3, 1, 2}}, data1, data2, {0.5, 0.0, -1.0, -2.0, -1.44, 0.5}, true); } TEST(MaximumOpTest, Int32WithBroadcastTest) { std::initializer_list<int32_t> data1 = {1, 0, -1, -2, 3, 11}; std::initializer_list<int32_t> data2 = {2}; TestModel<int32_t>(BuiltinOperator_MAXIMUM, {TensorType_INT32, {3, 1, 2}}, {TensorType_INT32, {1}}, {TensorType_INT32, {3, 1, 2}}, data1, data2, {2, 2, 2, 2, 3, 11}); TestModel<int32_t>(BuiltinOperator_MINIMUM, {TensorType_INT32, {3, 1, 2}}, {TensorType_INT32, {1}}, {TensorType_INT32, {3, 1, 2}}, data1, data2, {1, 0, -1, -2, 2, 2}); } TEST(MaximumOpTest, Int32WithBroadcastTest_ScalarY) { std::initializer_list<int32_t> data1 = {1, 0, -1, -2, 3, 11}; std::initializer_list<int32_t> data2 = {2}; TestModel<int32_t>(BuiltinOperator_MAXIMUM, {TensorType_INT32, {3, 1, 2}}, {TensorType_INT32, {}}, {TensorType_INT32, {3, 1, 2}}, data1, data2, {2, 2, 2, 2, 3, 11}, true); TestModel<int32_t>(BuiltinOperator_MINIMUM, {TensorType_INT32, {3, 1, 2}}, {TensorType_INT32, {}}, {TensorType_INT32, {3, 1, 2}}, data1, data2, {1, 0, -1, -2, 2, 2}, true); } TEST(MaximumOpTest, Int8WithBroadcastTest_ScalarY) { std::initializer_list<int8_t> data1 = {1, 0, -1, -2, 3, 11}; std::initializer_list<int8_t> data2 = {2}; TestModel<int8_t>(BuiltinOperator_MAXIMUM, {TensorType_INT8, {3, 1, 2}}, {TensorType_INT8, {}}, {TensorType_INT8, {3, 1, 2}}, data1, data2, {2, 2, 2, 2, 3, 11}, true); TestModel<int8_t>(BuiltinOperator_MINIMUM, {TensorType_INT8, {3, 1, 2}}, {TensorType_INT8, {}}, {TensorType_INT8, {3, 1, 2}}, data1, data2, {1, 0, -1, -2, 2, 2}, true); } TEST(MaxMinOpTest, Int8Test8D) { std::initializer_list<int8_t> data1 = {1, 0, 2, 11, 2, 23}; std::initializer_list<int8_t> data2 = {0, 0, 1, 12, 123, 1}; TestModel<int8_t>(BuiltinOperator_MAXIMUM, {TensorType_INT8, {3, 1, 2, 1, 1, 1, 1, 1}}, {TensorType_INT8, {3, 1, 2, 1, 1, 1, 1, 1}}, {TensorType_INT8, {3, 1, 2, 1, 1, 1, 1, 1}}, data1, data2, {1, 0, 2, 12, 123, 23}); TestModel<int8_t>(BuiltinOperator_MINIMUM, {TensorType_INT8, {3, 1, 2, 1, 1, 1, 1, 1}}, {TensorType_INT8, {3, 1, 2, 1, 1, 1, 1, 1}}, {TensorType_INT8, {3, 1, 2, 1, 1, 1, 1, 1}}, data1, data2, {0, 0, 1, 11, 2, 1}); } TEST(MaximumOpTest, FloatWithBroadcastTest5D) { std::initializer_list<float> data1 = {1.0, 0.0, -1.0, -2.0, -1.44, 11.0}; std::initializer_list<float> data2 = {0.5, 2.0}; TestModel<float>( BuiltinOperator_MAXIMUM, {TensorType_FLOAT32, {3, 1, 1, 1, 2}}, {TensorType_FLOAT32, {2}}, {TensorType_FLOAT32, {3, 1, 1, 1, 2}}, data1, data2, {1.0, 2.0, 0.5, 2.0, 0.5, 11.0}); TestModel<float>( BuiltinOperator_MINIMUM, {TensorType_FLOAT32, {3, 1, 1, 1, 2}}, {TensorType_FLOAT32, {2}}, {TensorType_FLOAT32, {3, 1, 1, 1, 2}}, data1, data2, {0.5, 0.0, -1.0, -2.0, -1.44, 2.0}); } TEST(MaximumOpTest, Int32WithBroadcastTest5D) { std::initializer_list<int32_t> data1 = {1, 0, -1, -2, 3, 11}; std::initializer_list<int32_t> data2 = {2}; TestModel<int32_t>( BuiltinOperator_MAXIMUM, {TensorType_INT32, {3, 1, 2, 1, 1}}, {TensorType_INT32, {1}}, {TensorType_INT32, {3, 1, 2, 1, 1}}, data1, data2, {2, 2, 2, 2, 3, 11}); TestModel<int32_t>( BuiltinOperator_MINIMUM, {TensorType_INT32, {3, 1, 2, 1, 1}}, {TensorType_INT32, {1}}, {TensorType_INT32, {3, 1, 2, 1, 1}}, data1, data2, {1, 0, -1, -2, 2, 2}); } } }
907
cpp
tensorflow/tensorflow
conv3d_transpose
tensorflow/lite/kernels/conv3d_transpose.cc
tensorflow/lite/kernels/conv3d_transpose_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CONV3D_TRANSPOSE_H_ #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CONV3D_TRANSPOSE_H_ #include "tensorflow/lite/kernels/internal/common.h" #include "tensorflow/lite/kernels/internal/types.h" namespace tflite { namespace reference_ops { inline void Conv3DTranspose( const Conv3DTransposeParams& params, const RuntimeShape& input_shape, const float* input_data, const RuntimeShape& filter_shape, const float* filter_data, const RuntimeShape& bias_shape, const float* bias_data, const RuntimeShape& output_shape, float* output_data) { const int stride_width = params.stride_width; const int stride_height = params.stride_height; const int stride_depth = params.stride_depth; const int pad_width = params.padding_values.width; const int pad_height = params.padding_values.height; const int pad_depth = params.padding_values.depth; TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 5); TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 5); TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 5); const int batches = MatchingDim(input_shape, 0, output_shape, 0); const int input_num_channels = MatchingDim(input_shape, 4, filter_shape, 4); const int output_num_channels = output_shape.Dims(4); const int input_depth = input_shape.Dims(1); const int input_height = input_shape.Dims(2); const int input_width = input_shape.Dims(3); const int filter_depth = filter_shape.Dims(0); const int filter_height = filter_shape.Dims(1); const int filter_width = filter_shape.Dims(2); const int output_depth = output_shape.Dims(1); const int output_height = output_shape.Dims(2); const int output_width = output_shape.Dims(3); if (bias_data) { TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_num_channels); } const int num_elements = output_shape.FlatSize(); for (int i = 0; i < num_elements; i++) { output_data[i] = 0.0f; } for (int batch = 0; batch < batches; ++batch) { for (int in_d = 0; in_d < input_depth; ++in_d) { for (int in_y = 0; in_y < input_height; ++in_y) { for (int in_x = 0; in_x < input_width; ++in_x) { for (int in_channel = 0; in_channel < input_num_channels; ++in_channel) { const int out_x_origin = (in_x * stride_width) - pad_width; const int out_y_origin = (in_y * stride_height) - pad_height; const int out_d_origin = (in_d * stride_depth) - pad_depth; for (int filter_d = 0; filter_d < filter_depth; ++filter_d) { for (int filter_y = 0; filter_y < filter_height; ++filter_y) { for (int filter_x = 0; filter_x < filter_width; ++filter_x) { for (int out_channel = 0; out_channel < output_num_channels; ++out_channel) { const int out_x = out_x_origin + params.dilation_width * filter_x; const int out_y = out_y_origin + params.dilation_height * filter_y; const int out_d = out_d_origin + params.dilation_depth * filter_d; if ((out_x >= 0) && (out_x < output_width) && (out_y >= 0) && (out_y < output_height) && (out_d >= 0) && (out_d < output_depth)) { float input_value = input_data[Offset( input_shape, batch, in_d, in_y, in_x, in_channel)]; float filter_value = filter_data[Offset( filter_shape, filter_d, filter_y, filter_x, out_channel, in_channel)]; output_data[Offset(output_shape, batch, out_d, out_y, out_x, out_channel)] += input_value * filter_value; } } } } } } } } } } const float float_activation_min = params.float_activation_min; const float float_activation_max = params.float_activation_max; float* data_ptr = output_data; if (bias_data) { const int outer_size = batches * output_depth * output_height * output_width; for (int n = 0; n < outer_size; ++n) { for (int c = 0; c < output_num_channels; ++c) { data_ptr[c] = ActivationFunctionWithMinMax(data_ptr[c] + bias_data[c], float_activation_min, float_activation_max); } data_ptr += output_num_channels; } } else { const int flat_size = output_shape.FlatSize(); for (int i = 0; i < flat_size; ++i) { data_ptr[i] = ActivationFunctionWithMinMax( data_ptr[i], float_activation_min, float_activation_max); } } } } } #endif #include "tensorflow/lite/kernels/internal/reference/conv3d_transpose.h" #include <cstddef> #include <cstdint> #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/cpu_backend_context.h" #include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/internal/types.h" #include "tensorflow/lite/kernels/kernel_util.h" #include "tensorflow/lite/kernels/padding.h" namespace tflite { namespace ops { namespace builtin { namespace conv3d_transpose { enum KernelType { kReference, kGenericOptimized, }; const int kTensorNotAllocated = -1; struct OpData { Padding3DValues padding; int col2im_id = kTensorNotAllocated; int col2im_index; bool need_col2im = false; }; void* Init(TfLiteContext* context, const char* buffer, size_t length) { auto* opdata = new OpData; return opdata; } void Free(TfLiteContext* context, void* buffer) { delete static_cast<OpData*>(buffer); } static TfLiteStatus AllocateTemporaryTensorsIfRequired(TfLiteContext* context, TfLiteNode* node, KernelType kernel_type) { OpData* data = reinterpret_cast<OpData*>(node->user_data); int temporaries_count = 0; if (kernel_type == kGenericOptimized) { if (data->col2im_id == kTensorNotAllocated) { context->AddTensors(context, 1, &data->col2im_id); } data->col2im_index = temporaries_count++; data->need_col2im = true; } TfLiteIntArrayFree(node->temporaries); node->temporaries = TfLiteIntArrayCreate(temporaries_count); return kTfLiteOk; } TfLiteStatus ResizeOutputAndTemporaryTensors( TfLiteContext* context, OpData* opdata, TfLiteConv3DTransposeParams* params, const TfLiteTensor* shape_tensor, const TfLiteTensor* filter, const TfLiteTensor* input, TfLiteTensor* col2im, TfLiteTensor* output) { auto shape_data = GetTensorData<int32_t>(shape_tensor); TF_LITE_ENSURE_EQ(context, shape_data[0], SizeOfDimension(input, 0)); TF_LITE_ENSURE_EQ(context, shape_data[4] % SizeOfDimension(filter, 3), 0); const RuntimeShape& filter_shape = GetTensorShape(filter); const int depth = shape_data[1]; const int height = shape_data[2]; const int width = shape_data[3]; const int filter_depth = filter_shape.Dims(0); const int filter_height = filter_shape.Dims(1); const int filter_width = filter_shape.Dims(2); int unused_out_width, unused_out_height, unused_out_depth; opdata->padding = ComputePadding3DValues( params->stride_height, params->stride_width, params->stride_depth, params->dilation_height_factor, params->dilation_width_factor, params->dilation_depth_factor, height, width, depth, filter_height, filter_width, filter_depth, params->padding, &unused_out_height, &unused_out_width, &unused_out_depth); TF_LITE_ENSURE_EQ(context, unused_out_depth, SizeOfDimension(input, 1)); TF_LITE_ENSURE_EQ(context, unused_out_height, SizeOfDimension(input, 2)); TF_LITE_ENSURE_EQ(context, unused_out_width, SizeOfDimension(input, 3)); TfLiteIntArray* output_shape = TfLiteIntArrayCreate(NumElements(shape_tensor)); for (int i = 0; i < output_shape->size; ++i) { output_shape->data[i] = GetTensorData<int32_t>(shape_tensor)[i]; } TF_LITE_ENSURE_STATUS(context->ResizeTensor(context, output, output_shape)); if (opdata->need_col2im) { TfLiteIntArray* col2im_shape_array = TfLiteIntArrayCreate(2); const RuntimeShape& input_shape = GetTensorShape(input); col2im_shape_array->data[0] = input_shape.Dims(1) * input_shape.Dims(2) * input_shape.Dims(3); col2im_shape_array->data[1] = filter_depth * filter_height * filter_width * filter_shape.Dims(3); col2im->type = kTfLiteFloat32; col2im->allocation_type = kTfLiteDynamic; return context->ResizeTensor(context, col2im, col2im_shape_array); } return kTfLiteOk; } TfLiteStatus Prepare(KernelType kernel_type, TfLiteContext* context, TfLiteNode* node) { auto* params = reinterpret_cast<TfLiteConv3DTransposeParams*>(node->builtin_data); OpData* opdata = reinterpret_cast<OpData*>(node->user_data); TF_LITE_ENSURE(context, node->inputs->size == 3 || node->inputs->size == 4); TF_LITE_ENSURE_EQ(context, node->outputs->size, 1); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output)); const TfLiteTensor* output_shape; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &output_shape)); const TfLiteTensor* filter; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 1, &filter)); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 2, &input)); TF_LITE_ENSURE_EQ(context, output_shape->dims->size, 1); TF_LITE_ENSURE_EQ(context, NumElements(output_shape), 5); TF_LITE_ENSURE_EQ(context, input->dims->size, 5); TF_LITE_ENSURE_EQ(context, filter->dims->size, 5); TF_LITE_ENSURE_EQ(context, SizeOfDimension(input, 4), SizeOfDimension(filter, 4)); TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteFloat32); TF_LITE_ENSURE_TYPES_EQ(context, filter->type, kTfLiteFloat32); TF_LITE_ENSURE_TYPES_EQ(context, output->type, input->type); TF_LITE_ENSURE_TYPES_EQ(context, output_shape->type, kTfLiteInt32); const TfLiteTensor* bias = GetInput(context, node, 3); if (bias) { TF_LITE_ENSURE_TYPES_EQ(context, bias->type, input->type); TF_LITE_ENSURE_EQ(context, NumElements(bias), SizeOfDimension(filter, 3)); } if (params->dilation_depth_factor > 1 || params->dilation_height_factor > 1 || params->dilation_width_factor > 1) { kernel_type = kReference; } TF_LITE_ENSURE_STATUS( AllocateTemporaryTensorsIfRequired(context, node, kernel_type)); TfLiteTensor* col2im = nullptr; if (opdata->need_col2im) { node->temporaries->data[opdata->col2im_index] = opdata->col2im_id; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, opdata->col2im_index, &col2im)); } if (!IsConstantOrPersistentTensor(output_shape)) { SetTensorToDynamic(output); if (opdata->need_col2im) { SetTensorToDynamic(col2im); } } else { TF_LITE_ENSURE_STATUS(ResizeOutputAndTemporaryTensors( context, opdata, params, output_shape, filter, input, col2im, output)); } return kTfLiteOk; } template <KernelType kernel_type> TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { return Prepare(kernel_type, context, node); } void EvalFloat(KernelType kernel_type, TfLiteContext* context, TfLiteNode* node, TfLiteConv3DTransposeParams* params, OpData* opdata, const TfLiteTensor* input, const TfLiteTensor* filter, const TfLiteTensor* bias, TfLiteTensor* col2im, TfLiteTensor* output) { float output_activation_min, output_activation_max; CalculateActivationRange(params->activation, &output_activation_min, &output_activation_max); Conv3DTransposeParams runtime_params; runtime_params.padding_values = opdata->padding; runtime_params.stride_depth = params->stride_depth; runtime_params.stride_height = params->stride_height; runtime_params.stride_width = params->stride_width; runtime_params.dilation_depth = params->dilation_depth_factor; runtime_params.dilation_height = params->dilation_height_factor; runtime_params.dilation_width = params->dilation_width_factor; runtime_params.float_activation_min = output_activation_min; runtime_params.float_activation_max = output_activation_max; switch (kernel_type) { case kReference: { reference_ops::Conv3DTranspose( runtime_params, GetTensorShape(input), GetTensorData<float>(input), GetTensorShape(filter), GetTensorData<float>(filter), GetTensorShape(bias), GetTensorData<float>(bias), GetTensorShape(output), GetTensorData<float>(output)); break; } case kGenericOptimized: { optimized_ops::Conv3DTranspose( runtime_params, GetTensorShape(input), GetTensorData<float>(input), GetTensorShape(filter), GetTensorData<float>(filter), GetTensorShape(bias), GetTensorData<float>(bias), GetTensorShape(output), GetTensorData<float>(output), GetTensorShape(col2im), GetTensorData<float>(col2im), CpuBackendContext::GetFromContext(context)); } break; } } TfLiteStatus Eval(KernelType kernel_type, TfLiteContext* context, TfLiteNode* node) { auto* params = reinterpret_cast<TfLiteConv3DTransposeParams*>(node->builtin_data); OpData* opdata = reinterpret_cast<OpData*>(node->user_data); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output)); const TfLiteTensor* output_shape; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &output_shape)); const TfLiteTensor* filter; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 1, &filter)); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 2, &input)); const TfLiteTensor* bias = GetInput(context, node, 3); TfLiteTensor* col2im = opdata->need_col2im ? GetTemporary(context, node, opdata->col2im_index) : nullptr; if (IsDynamicTensor(output)) { TF_LITE_ENSURE_OK(context, ResizeOutputAndTemporaryTensors( context, opdata, params, output_shape, filter, input, col2im, output)); } if (params->dilation_depth_factor > 1 || params->dilation_height_factor > 1 || params->dilation_width_factor > 1) { kernel_type = kReference; } switch (input->type) { case kTfLiteFloat32: EvalFloat(kernel_type, context, node, params, opdata, input, filter, bias, col2im, output); break; default: TF_LITE_KERNEL_LOG(context, "Type %s currently not supported.", TfLiteTypeGetName(input->type)); return kTfLiteError; } return kTfLiteOk; } template <KernelType kernel_type> TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { return Eval(kernel_type, context, node); } } TfLiteRegistration* Register_CONV_3D_TRANSPOSE_REF() { static TfLiteRegistration r = { conv3d_transpose::Init, conv3d_transpose::Free, conv3d_transpose::Prepare<conv3d_transpose::kReference>, conv3d_transpose::Eval<conv3d_transpose::kReference>}; return &r; } TfLiteRegistration* Register_CONV_3D_TRANSPOSE_GENERIC_OPT() { static TfLiteRegistration r = { conv3d_transpose::Init, conv3d_transpose::Free, conv3d_transpose::Prepare<conv3d_transpose::kGenericOptimized>, conv3d_transpose::Eval<conv3d_transpose::kGenericOptimized>}; return &r; } TfLiteRegistration* Register_CONV_3D_TRANSPOSE() { return Register_CONV_3D_TRANSPOSE_GENERIC_OPT(); } } } }
#include <cstdint> #include <initializer_list> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { using ::testing::ElementsAre; using ::testing::ElementsAreArray; enum class TestType { kConst = 0, kDynamic = 1, }; class Conv3dTransposeOpModel : public SingleOpModel { public: Conv3dTransposeOpModel( std::initializer_list<int> output_shape_data, const TensorData& filter, const TensorData& input, const TensorData& bias, const TensorData& output, TestType test_type, Padding padding = Padding_VALID, int32_t stride_depth = 1, int32_t stride_width = 1, int32_t stride_height = 1, ActivationFunctionType activation = ActivationFunctionType_NONE, int32_t dilation_depth = 1, int32_t dilation_width = 1, int32_t dilation_height = 1) { if (test_type == TestType::kDynamic) { output_shape_ = AddInput({TensorType_INT32, {5}}); } else { output_shape_ = AddConstInput(TensorType_INT32, output_shape_data, {5}); } filter_ = AddInput(filter); input_ = AddInput(input); bias_ = AddInput(bias); output_ = AddOutput(output); SetBuiltinOp( BuiltinOperator_CONV_3D_TRANSPOSE, BuiltinOptions_Conv3DOptions, CreateConv3DOptions(builder_, padding, stride_depth, stride_width, stride_height, activation, dilation_depth, dilation_width, dilation_height) .Union()); BuildInterpreter({GetShape(output_shape_), GetShape(filter_), GetShape(input_), GetShape(bias_)}); if (test_type == TestType::kDynamic) { PopulateTensor(output_shape_, output_shape_data); } } Conv3dTransposeOpModel( std::initializer_list<int> output_shape_data, const TensorData& filter, const TensorData& input, const TensorData& output, TestType test_type, Padding padding = Padding_VALID, int32_t stride_depth = 1, int32_t stride_width = 1, int32_t stride_height = 1, ActivationFunctionType activation = ActivationFunctionType_NONE, int32_t dilation_depth = 1, int32_t dilation_width = 1, int32_t dilation_height = 1) { if (test_type == TestType::kDynamic) { output_shape_ = AddInput({TensorType_INT32, {5}}); } else { output_shape_ = AddConstInput(TensorType_INT32, output_shape_data, {5}); } filter_ = AddInput(filter); input_ = AddInput(input); output_ = AddOutput(output); SetBuiltinOp( BuiltinOperator_CONV_3D_TRANSPOSE, BuiltinOptions_Conv3DOptions, CreateConv3DOptions(builder_, padding, stride_depth, stride_width, stride_height, activation, dilation_depth, dilation_width, dilation_height) .Union()); BuildInterpreter( {GetShape(output_shape_), GetShape(filter_), GetShape(input_)}); if (test_type == TestType::kDynamic) { PopulateTensor(output_shape_, output_shape_data); } } void SetFilter(std::vector<float> f) { PopulateTensor(filter_, f); } void SetBias(std::initializer_list<float> f) { PopulateTensor(bias_, f); } void SetInput(std::vector<float> data) { PopulateTensor(input_, data); } std::vector<float> GetOutput() { return ExtractVector<float>(output_); } std::vector<int> GetOutputShape() { return GetTensorShape(output_); } private: int output_shape_; int input_; int filter_; int bias_; int output_; }; template <typename T> std::vector<T> CreateRangeVector(int N) { std::vector<T> result; for (int i = 0; i < N; ++i) result.push_back(i); return result; } class Conv3dTransposeOpTest : public ::testing::TestWithParam<TestType> {}; TEST_P(Conv3dTransposeOpTest, InvalidInputDimsTest) { EXPECT_DEATH_IF_SUPPORTED( Conv3dTransposeOpModel m( {1, 2, 3, 4, 5}, {TensorType_FLOAT32, {2, 2, 4, 1}}, {TensorType_FLOAT32, {3, 2, 2, 1}}, {TensorType_FLOAT32, {}}, Conv3dTransposeOpTest::GetParam()), "input->dims->size != 5"); } TEST_P(Conv3dTransposeOpTest, InvalidFilterDimsTest) { EXPECT_DEATH_IF_SUPPORTED( Conv3dTransposeOpModel m( {1, 2, 3, 4, 5}, {TensorType_FLOAT32, {2, 2, 4, 1}}, {TensorType_FLOAT32, {1, 3, 2, 2, 1}}, {TensorType_FLOAT32, {}}, Conv3dTransposeOpTest::GetParam()), "filter->dims->size != 5"); } TEST_P(Conv3dTransposeOpTest, MismatchChannelSizeTest) { EXPECT_DEATH_IF_SUPPORTED( Conv3dTransposeOpModel m( {1, 2, 3, 4, 5}, {TensorType_FLOAT32, {1, 2, 2, 4, 1}}, {TensorType_FLOAT32, {1, 3, 2, 2, 2}}, {TensorType_FLOAT32, {}}, Conv3dTransposeOpTest::GetParam()), "SizeOfDimension.input, 4. != SizeOfDimension.filter, 4."); } TEST_P(Conv3dTransposeOpTest, MismatchBiasSizeTest) { EXPECT_DEATH_IF_SUPPORTED( Conv3dTransposeOpModel m( {1, 2, 3, 4, 5}, {TensorType_FLOAT32, {1, 3, 2, 2, 2}}, {TensorType_FLOAT32, {1, 2, 2, 4, 2}}, {TensorType_FLOAT32, {3}}, {TensorType_FLOAT32, {}}, Conv3dTransposeOpTest::GetParam()), "NumElements.bias. != SizeOfDimension.filter, 3."); } TEST_P(Conv3dTransposeOpTest, SimpleFloat32Test) { Conv3dTransposeOpModel m( {1, 3, 3, 5, 2}, {TensorType_FLOAT32, {2, 2, 2, 2, 2}}, {TensorType_FLOAT32, {1, 2, 2, 4, 2}}, {TensorType_FLOAT32, {}}, Conv3dTransposeOpTest::GetParam()); m.SetInput(CreateRangeVector<float>(32)); m.SetFilter({-1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, 1, -1}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAre(1, 3, 3, 5, 2)); EXPECT_THAT( m.GetOutput(), ElementsAreArray( {-1, -1, -4, -4, -8, -8, -12, -12, 1, 1, -16, -16, -18, -16, -18, -20, -18, -24, 14, -12, 1, 17, 18, 4, 22, 4, 26, 4, 29, -29, -34, -32, -36, -30, -36, -30, -36, -30, 14, 2, -50, 2, -8, -26, -8, -26, -8, -26, 74, -44, -16, 50, 28, 4, 28, 4, 28, 4, 60, -62, -1, 33, 32, 38, 36, 42, 40, 46, 45, 1, -34, 50, 10, 54, 10, 58, 10, 62, 60, 0, -49, 1, -54, 0, -58, 0, -62, 0, -1, -1})); } TEST_P(Conv3dTransposeOpTest, PaddingValidTest) { Conv3dTransposeOpModel m( {1, 4, 5, 6, 2}, {TensorType_FLOAT32, {2, 2, 2, 2, 2}}, {TensorType_FLOAT32, {1, 3, 4, 5, 2}}, {TensorType_FLOAT32, {}}, Conv3dTransposeOpTest::GetParam()); m.SetInput(CreateRangeVector<float>(120)); m.SetFilter({-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, 1, 1}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAre(1, 4, 5, 6, 2)); EXPECT_THAT( m.GetOutput(), ElementsAreArray( {-1, -1, -6, -6, -14, -14, -22, -22, -30, -30, -17, -17, -22, -20, -50, -46, -58, -58, -66, -70, -74, -82, -20, -54, -62, -40, -90, -106, -98, -118, -106, -130, -114, -142, -20, -94, -102, -60, -130, -166, -138, -178, -146, -190, -154, -202, -20, -134, -61, 1, -4, -60, -4, -64, -4, -68, -4, -72, 77, -77, -80, -80, -160, -164, -164, -172, -168, -180, -172, -188, -96, -96, -162, -98, -188, -282, -196, -290, -204, -298, -212, -306, -18, -196, -202, -118, -228, -322, -236, -330, -244, -338, -252, -346, -18, -216, -242, -138, -268, -362, -276, -370, -284, -378, -292, -386, -18, -236, -202, 2, -68, -78, -72, -78, -76, -78, -80, -78, 158, -80, -80, -160, -240, -324, -244, -332, -248, -340, -252, -348, -176, -176, -322, -178, -348, -442, -356, -450, -364, -458, -372, -466, -18, -276, -362, -198, -388, -482, -396, -490, -404, -498, -412, -506, -18, -296, -402, -218, -428, -522, -436, -530, -444, -538, -452, -546, -18, -316, -362, 2, -148, -78, -152, -78, -156, -78, -160, -78, 238, -80, 161, 1, 166, 2, 170, 2, 174, 2, 178, 2, 1, 1, 20, 2, 22, 164, 22, 168, 22, 172, 22, 176, 2, 178, 20, 2, 22, 184, 22, 188, 22, 192, 22, 196, 2, 198, 20, 2, 22, 204, 22, 208, 22, 212, 22, 216, 2, 218, -221, 1, -224, 222, -228, 226, -232, 230, -236, 234, 1, 237})); } TEST_P(Conv3dTransposeOpTest, PaddingSameTest) { Conv3dTransposeOpModel m( {1, 3, 4, 5, 2}, {TensorType_FLOAT32, {2, 2, 2, 2, 2}}, {TensorType_FLOAT32, {1, 3, 4, 5, 2}}, {TensorType_FLOAT32, {}}, Conv3dTransposeOpTest::GetParam(), Padding_SAME); m.SetInput(CreateRangeVector<float>(120)); m.SetFilter({1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAre(1, 3, 4, 5, 2)); EXPECT_THAT( m.GetOutput(), ElementsAreArray( {-1, -1, -2, 0, -2, 0, -2, 0, -2, 0, -2, 0, -4, 2, -4, 2, -4, 2, -4, 2, -2, 0, -4, 2, -4, 2, -4, 2, -4, 2, -2, 0, -4, 2, -4, 2, -4, 2, -4, 2, 0, 0, -2, 2, -6, 2, -10, 2, -14, 2, 0, 2, -18, 10, -18, 14, -18, 18, -18, 22, 20, 22, -18, 30, -18, 34, -18, 38, -18, 42, 40, 42, -18, 50, -18, 54, -18, 58, -18, 62, 0, 0, -82, 2, -86, 2, -90, 2, -94, 2, 80, 82, -18, 90, -18, 94, -18, 98, -18, 102, 100, 102, -18, 110, -18, 114, -18, 118, -18, 122, 120, 122, -18, 130, -18, 134, -18, 138, -18, 142})); } TEST_P(Conv3dTransposeOpTest, PaddingValidComplexTest) { Conv3dTransposeOpModel m( {2, 4, 3, 2, 2}, {TensorType_FLOAT32, {2, 2, 2, 2, 2}}, {TensorType_FLOAT32, {2, 3, 2, 1, 2}}, {TensorType_FLOAT32, {}}, Conv3dTransposeOpTest::GetParam(), Padding_VALID); m.SetInput(CreateRangeVector<float>(24)); m.SetFilter({1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAre(2, 4, 3, 2, 2)); EXPECT_THAT( m.GetOutput(), ElementsAreArray( {-1, 1, 1, -1, -2, 4, 2, 0, -1, -5, 1, 5, -2, 10, 2, -2, -4, 8, 4, 8, -2, -18, 2, 18, -2, 26, 2, -2, -4, 8, 4, 24, -2, -34, 2, 34, -1, 17, 1, -1, -2, 4, 2, 16, -1, -21, 1, 21, -1, 25, 1, -1, -2, 4, 2, 24, -1, -29, 1, 29, -2, 58, 2, -2, -4, 8, 4, 56, -2, -66, 2, 66, -2, 74, 2, -2, -4, 8, 4, 72, -2, -82, 2, 82, -1, 41, 1, -1, -2, 4, 2, 40, -1, -45, 1, 45})); } TEST_P(Conv3dTransposeOpTest, StrideTest) { Conv3dTransposeOpModel m( {2, 4, 3, 2, 2}, {TensorType_FLOAT32, {2, 2, 2, 2, 2}}, {TensorType_FLOAT32, {2, 2, 2, 1, 2}}, {TensorType_FLOAT32, {}}, Conv3dTransposeOpTest::GetParam(), Padding_VALID, 2, 1, 1); m.SetInput(CreateRangeVector<float>(16)); m.SetFilter({1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAre(2, 4, 3, 2, 2)); EXPECT_THAT( m.GetOutput(), ElementsAreArray( {-1, 1, 1, -1, -2, 4, 2, 0, -1, -5, 1, 5, -1, 1, 1, -1, -2, 4, 2, 0, -1, -5, 1, 5, -1, 9, 1, -1, -2, 4, 2, 8, -1, -13, 1, 13, -1, 9, 1, -1, -2, 4, 2, 8, -1, -13, 1, 13, -1, 17, 1, -1, -2, 4, 2, 16, -1, -21, 1, 21, -1, 17, 1, -1, -2, 4, 2, 16, -1, -21, 1, 21, -1, 25, 1, -1, -2, 4, 2, 24, -1, -29, 1, 29, -1, 25, 1, -1, -2, 4, 2, 24, -1, -29, 1, 29})); } TEST_P(Conv3dTransposeOpTest, StrideAndPaddingSameTest) { Conv3dTransposeOpModel m( {2, 4, 2, 1, 2}, {TensorType_FLOAT32, {2, 2, 2, 2, 2}}, {TensorType_FLOAT32, {2, 2, 2, 1, 2}}, {TensorType_FLOAT32, {}}, Conv3dTransposeOpTest::GetParam(), Padding_SAME, 2, 1, 1); m.SetInput(CreateRangeVector<float>(16)); m.SetFilter({1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAre(2, 4, 2, 1, 2)); EXPECT_THAT(m.GetOutput(), ElementsAreArray({-1, 1, -2, 4, -1, 1, -2, 4, -1, 9, -2, 4, -1, 9, -2, 4, -1, 17, -2, 4, -1, 17, -2, 4, -1, 25, -2, 4, -1, 25, -2, 4})); } TEST_P(Conv3dTransposeOpTest, DilationTest) { Conv3dTransposeOpModel m( {1, 3, 3, 2, 2}, {TensorType_FLOAT32, {1, 2, 2, 2, 1}}, {TensorType_FLOAT32, {1, 3, 1, 1, 1}}, {TensorType_FLOAT32, {}}, Conv3dTransposeOpTest::GetParam(), Padding_VALID, 1, 1, 1, ActivationFunctionType_NONE, 1, 1, 2); m.SetInput(CreateRangeVector<float>(3)); m.SetFilter({1, -1, 1, 1, -1, 1, 1, -1}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAre(1, 3, 3, 2, 2)); EXPECT_THAT(m.GetOutput(), ElementsAreArray({0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, 1, 0, 0, 0, 0, -1, 1, 1, -1, 2, -2, 2, 2, 0, 0, 0, 0, -2, 2, 2, -2})); } TEST_P(Conv3dTransposeOpTest, BiasTest) { Conv3dTransposeOpModel m({2, 4, 3, 2, 2}, {TensorType_FLOAT32, {2, 2, 2, 2, 2}}, {TensorType_FLOAT32, {2, 3, 2, 1, 2}}, {TensorType_FLOAT32, {2}}, {TensorType_FLOAT32, {}}, Conv3dTransposeOpTest::GetParam(), Padding_VALID); m.SetInput(CreateRangeVector<float>(24)); m.SetFilter({1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1}); m.SetBias({1, 2}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAre(2, 4, 3, 2, 2)); EXPECT_THAT( m.GetOutput(), ElementsAreArray( {0, 3, 2, 1, -1, 6, 3, 2, 0, -3, 2, 7, -1, 12, 3, 0, -3, 10, 5, 10, -1, -16, 3, 20, -1, 28, 3, 0, -3, 10, 5, 26, -1, -32, 3, 36, 0, 19, 2, 1, -1, 6, 3, 18, 0, -19, 2, 23, 0, 27, 2, 1, -1, 6, 3, 26, 0, -27, 2, 31, -1, 60, 3, 0, -3, 10, 5, 58, -1, -64, 3, 68, -1, 76, 3, 0, -3, 10, 5, 74, -1, -80, 3, 84, 0, 43, 2, 1, -1, 6, 3, 42, 0, -43, 2, 47})); } INSTANTIATE_TEST_SUITE_P(Conv3dTransposeOpTest, Conv3dTransposeOpTest, ::testing::Values(TestType::kConst, TestType::kDynamic)); } }
908
cpp
tensorflow/tensorflow
resize_nearest_neighbor
tensorflow/lite/kernels/resize_nearest_neighbor.cc
tensorflow/lite/kernels/internal/resize_nearest_neighbor_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_RESIZE_NEAREST_NEIGHBOR_H_ #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_RESIZE_NEAREST_NEIGHBOR_H_ #include <algorithm> #include <cmath> #include "tensorflow/lite/kernels/internal/cppmath.h" #include "tensorflow/lite/kernels/internal/types.h" namespace tflite { namespace reference_ops { inline int32_t GetNearestNeighbor(const int input_value, const int32_t input_size, const int32_t output_size, const bool align_corners, const bool half_pixel_centers) { const float scale = (align_corners && output_size > 1) ? (input_size - 1) / static_cast<float>(output_size - 1) : input_size / static_cast<float>(output_size); const float offset = half_pixel_centers ? 0.5f : 0.0f; int32_t output_value = std::min( align_corners ? static_cast<int32_t>(TfLiteRound((input_value + offset) * scale)) : static_cast<int32_t>(std::floor((input_value + offset) * scale)), input_size - 1); if (half_pixel_centers) { output_value = std::max(static_cast<int32_t>(0), output_value); } return output_value; } template <typename T> inline void ResizeNearestNeighbor( const tflite::ResizeNearestNeighborParams& op_params, const RuntimeShape& unextended_input_shape, const T* input_data, const RuntimeShape& output_size_shape, const int32_t* output_size_data, const RuntimeShape& unextended_output_shape, T* output_data) { TFLITE_DCHECK_LE(unextended_input_shape.DimensionsCount(), 4); TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), 4); const RuntimeShape input_shape = RuntimeShape::ExtendedShape(4, unextended_input_shape); const RuntimeShape output_shape = RuntimeShape::ExtendedShape(4, unextended_output_shape); int32_t batches = MatchingDim(input_shape, 0, output_shape, 0); int32_t input_height = input_shape.Dims(1); int32_t input_width = input_shape.Dims(2); int32_t depth = MatchingDim(input_shape, 3, output_shape, 3); TFLITE_DCHECK_EQ(output_size_shape.FlatSize(), 2); int32_t output_height = output_size_data[0]; int32_t output_width = output_size_data[1]; const int col_offset = input_shape.Dims(3); const int row_offset = input_shape.Dims(2) * col_offset; const int batch_offset = input_shape.Dims(1) * row_offset; const T* input_ptr = input_data; T* output_ptr = output_data; for (int b = 0; b < batches; ++b) { for (int y = 0; y < output_height; ++y) { int32_t in_y = GetNearestNeighbor(y, input_height, output_height, op_params.align_corners, op_params.half_pixel_centers); const T* y_input_ptr = input_ptr + in_y * row_offset; for (int x = 0; x < output_width; ++x) { int32_t in_x = GetNearestNeighbor(x, input_width, output_width, op_params.align_corners, op_params.half_pixel_centers); const T* x_input_ptr = y_input_ptr + in_x * col_offset; memcpy(output_ptr, x_input_ptr, depth * sizeof(T)); output_ptr += depth; } } input_ptr += batch_offset; } } } } #endif #include "tensorflow/lite/kernels/internal/reference/resize_nearest_neighbor.h" #include <stdint.h> #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/kernels/internal/optimized/neon_check.h" #include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h" #include "tensorflow/lite/kernels/internal/reference/reference_ops.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/internal/types.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace builtin { namespace resize_nearest_neighbor { enum KernelType { kReference, kGenericOptimized, kNeonOptimized, }; constexpr int kInputTensor = 0; constexpr int kSizeTensor = 1; constexpr int kOutputTensor = 0; TfLiteStatus ResizeOutputTensor(TfLiteContext* context, const TfLiteTensor* input, const TfLiteTensor* size, TfLiteTensor* output) { TfLiteIntArray* output_size = TfLiteIntArrayCreate(4); output_size->data[0] = input->dims->data[0]; const int32* size_data = GetTensorData<int32>(size); output_size->data[1] = size_data[0]; output_size->data[2] = size_data[1]; output_size->data[3] = input->dims->data[3]; return context->ResizeTensor(context, output, output_size); } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input)); const TfLiteTensor* size; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kSizeTensor, &size)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); TF_LITE_ENSURE_EQ(context, NumDimensions(input), 4); TF_LITE_ENSURE_EQ(context, NumDimensions(size), 1); TF_LITE_ENSURE_TYPES_EQ(context, size->type, kTfLiteInt32); TF_LITE_ENSURE_EQ(context, size->dims->data[0], 2); output->type = input->type; if (!IsConstantOrPersistentTensor(size)) { SetTensorToDynamic(output); return kTfLiteOk; } return ResizeOutputTensor(context, input, size, output); } template <KernelType kernel_type> TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { auto* params = reinterpret_cast<TfLiteResizeNearestNeighborParams*>(node->builtin_data); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); const TfLiteTensor* size; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kSizeTensor, &size)); if (IsDynamicTensor(output)) { TF_LITE_ENSURE_OK(context, ResizeOutputTensor(context, input, size, output)); } tflite::ResizeNearestNeighborParams op_params; op_params.align_corners = params->align_corners; op_params.half_pixel_centers = params->half_pixel_centers; if (output->type == kTfLiteFloat32) { reference_ops::ResizeNearestNeighbor( op_params, GetTensorShape(input), GetTensorData<int32>(input), GetTensorShape(size), GetTensorData<int32>(size), GetTensorShape(output), GetTensorData<int32>(output)); } else if (output->type == kTfLiteUInt8) { if (kernel_type == kReference) { reference_ops::ResizeNearestNeighbor( op_params, GetTensorShape(input), GetTensorData<uint8_t>(input), GetTensorShape(size), GetTensorData<int32>(size), GetTensorShape(output), GetTensorData<uint8_t>(output)); } if (kernel_type == kGenericOptimized || kernel_type == kNeonOptimized) { optimized_ops::ResizeNearestNeighbor( op_params, GetTensorShape(input), GetTensorData<uint8_t>(input), GetTensorShape(size), GetTensorData<int32>(size), GetTensorShape(output), GetTensorData<uint8_t>(output)); } } else if (output->type == kTfLiteInt8) { reference_ops::ResizeNearestNeighbor( op_params, GetTensorShape(input), GetTensorData<int8_t>(input), GetTensorShape(size), GetTensorData<int32>(size), GetTensorShape(output), GetTensorData<int8_t>(output)); } else if (output->type == kTfLiteInt16) { reference_ops::ResizeNearestNeighbor( op_params, GetTensorShape(input), GetTensorData<int16_t>(input), GetTensorShape(size), GetTensorData<int32>(size), GetTensorShape(output), GetTensorData<int16_t>(output)); } else { TF_LITE_KERNEL_LOG( context, "Output type is %s, requires float, uint8, int8 or int16.", TfLiteTypeGetName(output->type)); return kTfLiteError; } return kTfLiteOk; } } TfLiteRegistration* Register_RESIZE_NEAREST_NEIGHBOR_REF() { static TfLiteRegistration r = { nullptr, nullptr, resize_nearest_neighbor::Prepare, resize_nearest_neighbor::Eval<resize_nearest_neighbor::kReference>}; return &r; } TfLiteRegistration* Register_RESIZE_NEAREST_NEIGHBOR_GENERIC_OPT() { static TfLiteRegistration r = { nullptr, nullptr, resize_nearest_neighbor::Prepare, resize_nearest_neighbor::Eval< resize_nearest_neighbor::kGenericOptimized>}; return &r; } TfLiteRegistration* Register_RESIZE_NEAREST_NEIGHBOR_NEON_OPT() { static TfLiteRegistration r = { nullptr, nullptr, resize_nearest_neighbor::Prepare, resize_nearest_neighbor::Eval<resize_nearest_neighbor::kNeonOptimized>}; return &r; } TfLiteRegistration* Register_RESIZE_NEAREST_NEIGHBOR() { #ifdef USE_NEON return Register_RESIZE_NEAREST_NEIGHBOR_NEON_OPT(); #else return Register_RESIZE_NEAREST_NEIGHBOR_GENERIC_OPT(); #endif } } } }
#include <algorithm> #include <cmath> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h" #include "tensorflow/lite/kernels/internal/reference/reference_ops.h" #include "tensorflow/lite/kernels/internal/test_util.h" #include "tensorflow/lite/kernels/internal/types.h" namespace tflite { namespace { template <typename T> void TestReferenceResizeNearestNeighbor( const RuntimeShape& input_shape, const std::vector<T>& input_data, const std::vector<int32>& output_size_data, const RuntimeShape& output_shape, const std::vector<T>& expected_output_data, bool align_corners = false, bool half_pixel_centers = false) { ResizeNearestNeighborParams op_params{align_corners, half_pixel_centers}; RuntimeShape output_size_shape({1, 1, 1, 2}); std::vector<T> output_data(expected_output_data.size()); reference_ops::ResizeNearestNeighbor( op_params, input_shape, input_data.data(), output_size_shape, output_size_data.data(), output_shape, output_data.data()); ASSERT_EQ(expected_output_data, output_data); } TEST(ResizeNearestNeighborReference, Test2x2To1x1) { RuntimeShape input_shape = {1, 2, 2, 1}; std::vector<float> input_data = {1, 2, 3, 4}; std::vector<int32> output_size_data = {1, 1}; RuntimeShape output_shape = {1, 1, 1, 1}; std::vector<float> output_data = {1}; TestReferenceResizeNearestNeighbor(input_shape, input_data, output_size_data, output_shape, output_data); } TEST(ResizeNearestNeighborReference, Test2x2To1x1_AlignCorners) { RuntimeShape input_shape = {1, 2, 2, 1}; std::vector<float> input_data = {1, 2, 3, 4}; std::vector<int32> output_size_data = {1, 1}; RuntimeShape output_shape = {1, 1, 1, 1}; std::vector<float> output_data = {1}; TestReferenceResizeNearestNeighbor(input_shape, input_data, output_size_data, output_shape, output_data, true); } TEST(ResizeNearestNeighborReference, Test2x2To1x1_HalfPixelCenters) { RuntimeShape input_shape = {1, 2, 2, 1}; std::vector<float> input_data = {1, 2, 3, 4}; std::vector<int32> output_size_data = {1, 1}; RuntimeShape output_shape = {1, 1, 1, 1}; std::vector<float> output_data = {4}; TestReferenceResizeNearestNeighbor( input_shape, input_data, output_size_data, output_shape, output_data, false, true); } TEST(ResizeNearestNeighborReference, Test2x2To3x3) { RuntimeShape input_shape = {1, 2, 2, 1}; std::vector<uint8> input_data = {1, 2, 3, 4}; std::vector<int32> output_size_data = {3, 3}; RuntimeShape output_shape = {1, 3, 3, 1}; std::vector<uint8> output_data = {1, 1, 2, 1, 1, 2, 3, 3, 4}; TestReferenceResizeNearestNeighbor(input_shape, input_data, output_size_data, output_shape, output_data); } TEST(ResizeNearestNeighborReference, Test2x2To3x3Int16) { RuntimeShape input_shape = {1, 2, 2, 1}; std::vector<int16_t> input_data = {1, 2, 3, 4}; std::vector<int32> output_size_data = {3, 3}; RuntimeShape output_shape = {1, 3, 3, 1}; std::vector<int16_t> output_data = {1, 1, 2, 1, 1, 2, 3, 3, 4}; TestReferenceResizeNearestNeighbor(input_shape, input_data, output_size_data, output_shape, output_data); } TEST(ResizeNearestNeighborReference, Test2x2To3x3_AlignCorners) { RuntimeShape input_shape = {1, 2, 2, 1}; std::vector<uint8> input_data = {1, 2, 3, 4}; std::vector<int32> output_size_data = {3, 3}; RuntimeShape output_shape = {1, 3, 3, 1}; std::vector<uint8> output_data = {1, 2, 2, 3, 4, 4, 3, 4, 4}; TestReferenceResizeNearestNeighbor(input_shape, input_data, output_size_data, output_shape, output_data, true); } TEST(ResizeNearestNeighborReference, Test2x2To3x3_HalfPixelCenters) { RuntimeShape input_shape = {1, 2, 2, 1}; std::vector<uint8> input_data = {1, 2, 3, 4}; std::vector<int32> output_size_data = {3, 3}; RuntimeShape output_shape = {1, 3, 3, 1}; std::vector<uint8> output_data = {1, 2, 2, 3, 4, 4, 3, 4, 4}; TestReferenceResizeNearestNeighbor( input_shape, input_data, output_size_data, output_shape, output_data, false, true); } TEST(ResizeNearestNeighborReference, Test3x3To2x2) { RuntimeShape input_shape = {1, 3, 3, 1}; std::vector<float> input_data = {1, 2, 3, 4, 5, 6, 7, 8, 9}; std::vector<int32> output_size_data = {2, 2}; RuntimeShape output_shape = {1, 2, 2, 1}; std::vector<float> output_data = {1, 2, 4, 5}; TestReferenceResizeNearestNeighbor(input_shape, input_data, output_size_data, output_shape, output_data); } TEST(ResizeNearestNeighborReference, Test3x3To2x2_AlignCorners) { RuntimeShape input_shape = {1, 3, 3, 1}; std::vector<float> input_data = {1, 2, 3, 4, 5, 6, 7, 8, 9}; std::vector<int32> output_size_data = {2, 2}; RuntimeShape output_shape = {1, 2, 2, 1}; std::vector<float> output_data = {1, 3, 7, 9}; TestReferenceResizeNearestNeighbor(input_shape, input_data, output_size_data, output_shape, output_data, true); } TEST(ResizeNearestNeighborReference, Test3x3To2x2_HalfPixelCenters) { RuntimeShape input_shape = {1, 3, 3, 1}; std::vector<float> input_data = {1, 2, 3, 4, 5, 6, 7, 8, 9}; std::vector<int32> output_size_data = {2, 2}; RuntimeShape output_shape = {1, 2, 2, 1}; std::vector<float> output_data = {1, 3, 7, 9}; TestReferenceResizeNearestNeighbor( input_shape, input_data, output_size_data, output_shape, output_data, false, true); } TEST(ResizeNearestNeighborReference, Test2x2To2x5) { RuntimeShape input_shape = {1, 2, 2, 1}; std::vector<uint8> input_data = {1, 2, 3, 4}; std::vector<int32> output_size_data = {2, 5}; RuntimeShape output_shape = {1, 2, 5, 1}; std::vector<uint8> output_data = {1, 1, 1, 2, 2, 3, 3, 3, 4, 4}; TestReferenceResizeNearestNeighbor(input_shape, input_data, output_size_data, output_shape, output_data); } TEST(ResizeNearestNeighborReference, Test2x2To2x5_HalfPixelCenters) { RuntimeShape input_shape = {1, 2, 2, 1}; std::vector<uint8> input_data = {1, 2, 3, 4}; std::vector<int32> output_size_data = {2, 5}; RuntimeShape output_shape = {1, 2, 5, 1}; std::vector<uint8> output_data = {1, 1, 2, 2, 2, 3, 3, 4, 4, 4}; TestReferenceResizeNearestNeighbor( input_shape, input_data, output_size_data, output_shape, output_data, false, true); } TEST(ResizeNearestNeighborReference, Test4x4To3x3) { RuntimeShape input_shape = {1, 4, 4, 1}; std::vector<uint8> input_data = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}; std::vector<int32> output_size_data = {3, 3}; RuntimeShape output_shape = {1, 3, 3, 1}; std::vector<uint8> output_data = {1, 2, 3, 5, 6, 7, 9, 10, 11}; TestReferenceResizeNearestNeighbor(input_shape, input_data, output_size_data, output_shape, output_data); } TEST(ResizeNearestNeighborReference, Test4x4To3x3_AlignCorners) { RuntimeShape input_shape = {1, 4, 4, 1}; std::vector<uint8> input_data = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}; std::vector<int32> output_size_data = {3, 3}; RuntimeShape output_shape = {1, 3, 3, 1}; std::vector<uint8> output_data = {1, 3, 4, 9, 11, 12, 13, 15, 16}; TestReferenceResizeNearestNeighbor(input_shape, input_data, output_size_data, output_shape, output_data, true); } TEST(ResizeNearestNeighborReference, Test4x4To3x3_HalfPixelCenters) { RuntimeShape input_shape = {1, 4, 4, 1}; std::vector<uint8> input_data = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}; std::vector<int32> output_size_data = {3, 3}; RuntimeShape output_shape = {1, 3, 3, 1}; std::vector<uint8> output_data = {1, 3, 4, 9, 11, 12, 13, 15, 16}; TestReferenceResizeNearestNeighbor( input_shape, input_data, output_size_data, output_shape, output_data, false, true); } TEST(ResizeNearestNeighborReference, Test2x2To5x2) { RuntimeShape input_shape = {1, 2, 2, 1}; std::vector<float> input_data = {1, 2, 3, 4}; std::vector<int32> output_size_data = {5, 2}; RuntimeShape output_shape = {1, 5, 2, 1}; std::vector<float> output_data = {1, 2, 1, 2, 1, 2, 3, 4, 3, 4}; TestReferenceResizeNearestNeighbor(input_shape, input_data, output_size_data, output_shape, output_data); } TEST(ResizeNearestNeighborReference, Test2x2To5x2_HalfPixelCenters) { RuntimeShape input_shape = {1, 2, 2, 1}; std::vector<float> input_data = {1, 2, 3, 4}; std::vector<int32> output_size_data = {5, 2}; RuntimeShape output_shape = {1, 5, 2, 1}; std::vector<float> output_data = {1, 2, 1, 2, 3, 4, 3, 4, 3, 4}; TestReferenceResizeNearestNeighbor( input_shape, input_data, output_size_data, output_shape, output_data, false, true); } TEST(ResizeNearestNeighborReference, Test2x2To5x2_HalfPixelCenters_AlignCorners) { RuntimeShape input_shape = {1, 2, 2, 1}; std::vector<float> input_data = {1, 2, 3, 4}; std::vector<int32> output_size_data = {5, 2}; RuntimeShape output_shape = {1, 5, 2, 1}; std::vector<float> output_data = {2, 2, 2, 2, 4, 4, 4, 4, 4, 4}; TestReferenceResizeNearestNeighbor( input_shape, input_data, output_size_data, output_shape, output_data, true, true); } TEST(ResizeNearestNeighborReference, Test2x2To4x4) { RuntimeShape input_shape = {1, 2, 2, 1}; std::vector<uint8> input_data = {1, 2, 3, 4}; std::vector<int32> output_size_data = {4, 4}; RuntimeShape output_shape = {1, 4, 4, 1}; std::vector<uint8> output_data = {1, 1, 2, 2, 1, 1, 2, 2, 3, 3, 4, 4, 3, 3, 4, 4}; TestReferenceResizeNearestNeighbor(input_shape, input_data, output_size_data, output_shape, output_data); } TEST(ResizeNearestNeighborReference, Test2x2x2x2To2x3x3x2) { RuntimeShape input_shape = {2, 2, 2, 2}; std::vector<float> input_data = {1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8}; std::vector<int32> output_size_data = {3, 3}; RuntimeShape output_shape = {2, 3, 3, 2}; std::vector<float> output_data = {1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 5, 5, 5, 5, 6, 6, 7, 7, 7, 7, 8, 8}; TestReferenceResizeNearestNeighbor(input_shape, input_data, output_size_data, output_shape, output_data); } TEST(ResizeNearestNeighborReference, Test2x2x2x2To2x3x3x2_AlignCorners) { RuntimeShape input_shape = {2, 2, 2, 2}; std::vector<float> input_data = {1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8}; std::vector<int32> output_size_data = {3, 3}; RuntimeShape output_shape = {2, 3, 3, 2}; std::vector<float> output_data = { 1, 2, 3, 4, 3, 4, 5, 6, 7, 8, 7, 8, 5, 6, 7, 8, 7, 8, 1, 2, 3, 4, 3, 4, 5, 6, 7, 8, 7, 8, 5, 6, 7, 8, 7, 8, }; TestReferenceResizeNearestNeighbor( input_shape, input_data, output_size_data, output_shape, output_data, true, false); } TEST(ResizeNearestNeighborReference, Test2x2x2x2To2x3x3x2_HalfPixelCenters) { RuntimeShape input_shape = {2, 2, 2, 2}; std::vector<float> input_data = {1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8}; std::vector<int32> output_size_data = {3, 3}; RuntimeShape output_shape = {2, 3, 3, 2}; std::vector<float> output_data = {1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 7, 7, 8, 8, 8, 8}; TestReferenceResizeNearestNeighbor( input_shape, input_data, output_size_data, output_shape, output_data, false, true); } TEST(ResizeNearestNeighborReference, Test2x2x2x2To2x3x3x2_HalfPixelCenters_AlignCorners) { RuntimeShape input_shape = {2, 2, 2, 2}; std::vector<float> input_data = {1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8}; std::vector<int32> output_size_data = {3, 3}; RuntimeShape output_shape = {2, 3, 3, 2}; std::vector<float> output_data = {1, 2, 3, 4, 3, 4, 5, 6, 7, 8, 7, 8, 5, 6, 7, 8, 7, 8, 1, 2, 3, 4, 3, 4, 5, 6, 7, 8, 7, 8, 5, 6, 7, 8, 7, 8}; TestReferenceResizeNearestNeighbor( input_shape, input_data, output_size_data, output_shape, output_data, true, true); } void TestOptimizedResizeNearestNeighbor(int batch, int depth, int input_width, int input_height, int output_width, int output_height) { RuntimeShape output_size_shape({1, 1, 1, 2}); RuntimeShape input_shape({batch, input_height, input_width, depth}); RuntimeShape output_shape({batch, output_height, output_width, depth}); std::vector<uint8> input_data(input_shape.FlatSize(), 0); FillRandom(&input_data, static_cast<uint8>(0), static_cast<uint8>(255)); std::vector<uint8> reference_output_data(output_shape.FlatSize(), 0); std::vector<uint8> output_data(output_shape.FlatSize(), 3); std::vector<int32> output_size_data = {output_height, output_width}; ResizeNearestNeighborParams op_params{false, false}; reference_ops::ResizeNearestNeighbor( op_params, input_shape, input_data.data(), output_size_shape, output_size_data.data(), output_shape, reference_output_data.data()); optimized_ops::ResizeNearestNeighbor( op_params, input_shape, input_data.data(), output_size_shape, output_size_data.data(), output_shape, output_data.data()); ASSERT_EQ(reference_output_data, output_data); op_params.align_corners = true; reference_ops::ResizeNearestNeighbor( op_params, input_shape, input_data.data(), output_size_shape, output_size_data.data(), output_shape, reference_output_data.data()); optimized_ops::ResizeNearestNeighbor( op_params, input_shape, input_data.data(), output_size_shape, output_size_data.data(), output_shape, output_data.data()); ASSERT_EQ(reference_output_data, output_data); op_params.align_corners = false; op_params.half_pixel_centers = true; reference_ops::ResizeNearestNeighbor( op_params, input_shape, input_data.data(), output_size_shape, output_size_data.data(), output_shape, reference_output_data.data()); optimized_ops::ResizeNearestNeighbor( op_params, input_shape, input_data.data(), output_size_shape, output_size_data.data(), output_shape, output_data.data()); ASSERT_EQ(reference_output_data, output_data); op_params.align_corners = true; op_params.half_pixel_centers = true; reference_ops::ResizeNearestNeighbor( op_params, input_shape, input_data.data(), output_size_shape, output_size_data.data(), output_shape, reference_output_data.data()); optimized_ops::ResizeNearestNeighbor( op_params, input_shape, input_data.data(), output_size_shape, output_size_data.data(), output_shape, output_data.data()); ASSERT_EQ(reference_output_data, output_data); } bool is_valid_scale(int input_width, int input_height, int output_width, int output_height) { const float height_scale_float = static_cast<float>(input_height) / output_height; const float width_scale_float = static_cast<float>(input_width) / output_width; int32 height_scale_int = (input_height << 16) / output_height + 1; int32 width_scale_int = (input_width << 16) / output_width + 1; for (int y = 0; y < output_height; ++y) { int32 in_y_float = std::min(static_cast<int32>(std::floor(y * height_scale_float)), input_height - 1); int32 in_y_int = std::min((y * height_scale_int) >> 16, input_height - 1); if (in_y_int != in_y_float) { return false; } for (int x = 0; x < output_width; ++x) { int32 in_x_float = std::min(static_cast<int32>(std::floor(x * width_scale_float)), input_width - 1); int32 in_x_int = std::min((x * width_scale_int) >> 16, input_width - 1); if (in_x_int != in_x_float) { return false; } } } return true; } TEST(ResizeNearestNeighborOptimized, TestReferenceParity) { int invalid_count = 0; const int kTestsToRun = 10000; for (int i = 0; i < kTestsToRun; i++) { const int batch = ExponentialRandomPositiveInt(0.9f, 3, 20); const int depth = ExponentialRandomPositiveInt(0.9f, 6, 50); const int input_width = ExponentialRandomPositiveInt(0.9f, 20, 200); const int input_height = ExponentialRandomPositiveInt(0.9f, 20, 200); const int output_width = ExponentialRandomPositiveInt(0.9f, 20, 200); const int output_height = ExponentialRandomPositiveInt(0.9f, 20, 200); if (is_valid_scale(input_width, input_height, output_width, output_height)) { TestOptimizedResizeNearestNeighbor( batch, depth, input_width, input_height, output_width, output_height); } else { invalid_count++; } } ASSERT_LT(static_cast<float>(invalid_count) / kTestsToRun, 0.001f); } } }
909
cpp
tensorflow/tensorflow
gather
tensorflow/lite/kernels/gather.cc
tensorflow/lite/kernels/gather_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_COMMON_TASKS_GATHER_H_ #define TENSORFLOW_LITE_DELEGATES_GPU_COMMON_TASKS_GATHER_H_ #include "tensorflow/lite/delegates/gpu/common/gpu_info.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/task/gpu_operation.h" #include "tensorflow/lite/delegates/gpu/common/types.h" namespace tflite { namespace gpu { GPUOperation CreateGather(const GpuInfo& gpu_info, const OperationDef& op_def, const GatherAttributes& attr); } } #endif #include "tensorflow/lite/delegates/gpu/common/tasks/gather.h" #include <memory> #include <string> #include <utility> #include <vector> #include "tensorflow/lite/delegates/gpu/common/data_type.h" #include "tensorflow/lite/delegates/gpu/common/gpu_info.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/shape.h" #include "tensorflow/lite/delegates/gpu/common/task/gpu_operation.h" #include "tensorflow/lite/delegates/gpu/common/task/tensor_desc.h" namespace tflite { namespace gpu { namespace { std::string GetGatherCode(const OperationDef& op_def, GatherAttributes attr) { std::string c; c += "MAIN_FUNCTION($0) {\n"; if (op_def.IsBatchSupported()) { c += " int linear_id = GLOBAL_ID_0;\n"; c += " int X = linear_id / args.dst_tensor.Batch();\n"; c += " int B = linear_id % args.dst_tensor.Batch();\n"; c += " args.dst_tensor.SetBatchRef(B);\n"; c += " args.src_tensor.SetBatchRef(B);\n"; } else { c += " int X = GLOBAL_ID_0;\n"; } c += " int Y = GLOBAL_ID_1;\n"; c += " int S = GLOBAL_ID_2;\n"; c += " if (X >= args.dst_tensor.Width() || Y >= args.dst_tensor.Height() || " "S >= args.dst_tensor.Slices()) { \n"; c += " return; \n"; c += " } \n"; c += " int idx;\n"; c += " args.src_tensor::type result;\n"; switch (attr.axis) { case Axis::BATCH: c += " idx = args.indices.Read<int>(0, 0, 0, B).x;\n"; c += " result = args.src_tensor.Read(X, Y, " "S, idx);\n"; break; case Axis::HEIGHT: c += " idx = args.indices.Read<int>(0, 0, 0, Y).x;\n"; c += " result = args.src_tensor.Read(X, idx, " "S, B);\n"; break; case Axis::WIDTH: c += " idx = args.indices.Read<int>(0, 0, 0, X).x;\n"; c += " result = args.src_tensor.Read(idx, Y, " ", S, B);\n"; break; case Axis::CHANNELS: c += " idx = args.indices.Read<int>(0, 0, 0, S * 4).x;\n"; c += " args.src_tensor.ReadPerChannel(result.x, X, Y, idx, B);\n"; c += " idx = args.indices.Read<int>(0, 0, 0, S * 4 + 1).x;\n"; c += " args.src_tensor.ReadPerChannel(result.y, X, Y, idx, B);\n"; c += " idx = args.indices.Read<int>(0, 0, 0, S * 4 + 2).x;\n"; c += " args.src_tensor.ReadPerChannel(result.z, X, Y, idx, B);\n"; c += " idx = args.indices.Read<int>(0, 0, 0, S * 4 + 3).x;\n"; c += " args.src_tensor.ReadPerChannel(result.w, X, Y, idx, B);\n"; break; default: c += " return;\n"; } c += " args.dst_tensor.Write(result, X, Y, S);\n"; c += "}\n"; return c; } } GPUOperation CreateGather(const GpuInfo& gpu_info, const OperationDef& op_def, const GatherAttributes& attr) { GPUOperation op(op_def); op.AddSrcTensor("src_tensor", op_def.src_tensors[0]); op.AddDstTensor("dst_tensor", op_def.dst_tensors[0]); if (op_def.src_tensors.size() == 1) { BHWC shape = BHWC(attr.indices.shape.v, 1, 1, 1); TensorStorageType storage_type = GetStorageTypeForLinearTensor( gpu_info, DataType::INT32, attr.indices.shape); TensorDescriptor indices = CreateBhwcTensorDescriptor(DataType::INT32, storage_type, shape); indices.UploadData(attr.indices); op.args_.AddObject("indices", std::make_unique<TensorDescriptor>(std::move(indices))); } else { op.AddSrcTensor("indices", op_def.src_tensors[1]); } op.code_ = GetGatherCode(op_def, attr); op.tensor_to_grid_ = TensorToGrid::kWBToX_HDToY_SToZ; return op; } } }
#include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/gpu/cl/kernels/cl_test.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/tasks/gather_test_util.h" namespace tflite { namespace gpu { namespace cl { TEST_F(OpenCLOperationTest, GatherBatch) { auto status = GatherBatchTest(&exec_env_, false); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, GatherBatchConst) { auto status = GatherBatchTest(&exec_env_, true); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, GatherHeight) { auto status = GatherHeightTest(&exec_env_, false); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, GatherHeightConst) { auto status = GatherHeightTest(&exec_env_, true); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, GatherWidth) { auto status = GatherWidthTest(&exec_env_, false); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, GatherWidthConst) { auto status = GatherWidthTest(&exec_env_, true); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, GatherChannels) { auto status = GatherChannelsTest(&exec_env_, false); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, GatherChannelsConst) { auto status = GatherChannelsTest(&exec_env_, true); ASSERT_TRUE(status.ok()) << status.message(); } } } }
910
cpp
tensorflow/tensorflow
comparisons
tensorflow/lite/kernels/internal/reference/comparisons.cc
tensorflow/lite/kernels/comparisons_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_COMPARISONS_H_ #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_COMPARISONS_H_ #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/common.h" #include "tensorflow/lite/kernels/internal/types.h" namespace tflite { namespace reference_ops { template <typename T> inline bool EqualFn(T lhs, T rhs) { return lhs == rhs; } template <typename T> inline bool NotEqualFn(T lhs, T rhs) { return lhs != rhs; } template <typename T> inline bool GreaterFn(T lhs, T rhs) { return lhs > rhs; } template <typename T> inline bool GreaterEqualFn(T lhs, T rhs) { return lhs >= rhs; } template <typename T> inline bool LessFn(T lhs, T rhs) { return lhs < rhs; } template <typename T> inline bool LessEqualFn(T lhs, T rhs) { return lhs <= rhs; } template <typename T> using ComparisonFn = bool (*)(T, T); template <typename T, ComparisonFn<T> F> inline void ComparisonImpl( const ComparisonParams& op_params, const RuntimeShape& input1_shape, const T* input1_data, const RuntimeShape& input2_shape, const T* input2_data, const RuntimeShape& output_shape, bool* output_data) { const int64_t flatsize = MatchingFlatSize(input1_shape, input2_shape, output_shape); for (int64_t i = 0; i < flatsize; ++i) { output_data[i] = F(input1_data[i], input2_data[i]); } } template <ComparisonFn<float> F> inline void Comparison(const ComparisonParams& op_params, const RuntimeShape& input1_shape, const float* input1_data, const RuntimeShape& input2_shape, const float* input2_data, const RuntimeShape& output_shape, bool* output_data) { ComparisonImpl<float, F>(op_params, input1_shape, input1_data, input2_shape, input2_data, output_shape, output_data); } template <typename T, ComparisonFn<int32_t> F> inline void ComparisonWithScaling( const ComparisonParams& op_params, const RuntimeShape& input1_shape, const T* input1_data, const RuntimeShape& input2_shape, const T* input2_data, const RuntimeShape& output_shape, bool* output_data) { int left_shift = op_params.left_shift; int32_t input1_offset = op_params.input1_offset; int32_t input1_multiplier = op_params.input1_multiplier; int input1_shift = op_params.input1_shift; int32_t input2_offset = op_params.input2_offset; int32_t input2_multiplier = op_params.input2_multiplier; int input2_shift = op_params.input2_shift; const int64_t flatsize = MatchingFlatSize(input1_shape, input2_shape, output_shape); for (int64_t i = 0; i < flatsize; ++i) { const int32_t input1_val = input1_offset + input1_data[i]; const int32_t input2_val = input2_offset + input2_data[i]; const int32_t shifted_input1_val = input1_val * (1 << left_shift); const int32_t shifted_input2_val = input2_val * (1 << left_shift); const int32_t scaled_input1_val = MultiplyByQuantizedMultiplierSmallerThanOneExp( shifted_input1_val, input1_multiplier, input1_shift); const int32_t scaled_input2_val = MultiplyByQuantizedMultiplierSmallerThanOneExp( shifted_input2_val, input2_multiplier, input2_shift); output_data[i] = F(scaled_input1_val, scaled_input2_val); } } struct BroadcastComparison4DSlowCommon { const RuntimeShape output_shape; NdArrayDesc<4> desc1; NdArrayDesc<4> desc2; }; TFLITE_NOINLINE BroadcastComparison4DSlowCommon BroadcastComparison4DSlowPreprocess( const RuntimeShape& unextended_input1_shape, const RuntimeShape& unextended_input2_shape, const RuntimeShape& unextended_output_shape); template <typename T, ComparisonFn<T> F> inline void BroadcastComparison4DSlowImpl( const ComparisonParams& op_params, const RuntimeShape& unextended_input1_shape, const T* input1_data, const RuntimeShape& unextended_input2_shape, const T* input2_data, const RuntimeShape& unextended_output_shape, bool* output_data) { const BroadcastComparison4DSlowCommon dims = BroadcastComparison4DSlowPreprocess(unextended_input1_shape, unextended_input2_shape, unextended_output_shape); for (int b = 0; b < dims.output_shape.Dims(0); ++b) { for (int y = 0; y < dims.output_shape.Dims(1); ++y) { for (int x = 0; x < dims.output_shape.Dims(2); ++x) { for (int c = 0; c < dims.output_shape.Dims(3); ++c) { output_data[Offset(dims.output_shape, b, y, x, c)] = F(input1_data[SubscriptToIndex(dims.desc1, b, y, x, c)], input2_data[SubscriptToIndex(dims.desc2, b, y, x, c)]); } } } } } template <ComparisonFn<float> F> inline void BroadcastComparison4DSlow(const ComparisonParams& op_params, const RuntimeShape& input1_shape, const float* input1_data, const RuntimeShape& input2_shape, const float* input2_data, const RuntimeShape& output_shape, bool* output_data) { BroadcastComparison4DSlowImpl<float, F>(op_params, input1_shape, input1_data, input2_shape, input2_data, output_shape, output_data); } template <typename T, ComparisonFn<int32_t> F> inline void BroadcastComparison4DSlowWithScaling( const ComparisonParams& op_params, const RuntimeShape& unextended_input1_shape, const T* input1_data, const RuntimeShape& unextended_input2_shape, const T* input2_data, const RuntimeShape& unextended_output_shape, bool* output_data) { const BroadcastComparison4DSlowCommon dims = BroadcastComparison4DSlowPreprocess(unextended_input1_shape, unextended_input2_shape, unextended_output_shape); int left_shift = op_params.left_shift; int32_t input1_offset = op_params.input1_offset; int32_t input1_multiplier = op_params.input1_multiplier; int input1_shift = op_params.input1_shift; int32_t input2_offset = op_params.input2_offset; int32_t input2_multiplier = op_params.input2_multiplier; int input2_shift = op_params.input2_shift; for (int b = 0; b < dims.output_shape.Dims(0); ++b) { for (int y = 0; y < dims.output_shape.Dims(1); ++y) { for (int x = 0; x < dims.output_shape.Dims(2); ++x) { for (int c = 0; c < dims.output_shape.Dims(3); ++c) { const int32_t input1_val = input1_offset + input1_data[SubscriptToIndex(dims.desc1, b, y, x, c)]; const int32_t input2_val = input2_offset + input2_data[SubscriptToIndex(dims.desc2, b, y, x, c)]; const int32_t shifted_input1_val = input1_val * (1 << left_shift); const int32_t shifted_input2_val = input2_val * (1 << left_shift); const int32_t scaled_input1_val = MultiplyByQuantizedMultiplierSmallerThanOneExp( shifted_input1_val, input1_multiplier, input1_shift); const int32_t scaled_input2_val = MultiplyByQuantizedMultiplierSmallerThanOneExp( shifted_input2_val, input2_multiplier, input2_shift); output_data[Offset(dims.output_shape, b, y, x, c)] = F(scaled_input1_val, scaled_input2_val); } } } } } #define TFLITE_COMPARISON_OP(name) \ inline void name(const ComparisonParams& op_params, \ const RuntimeShape& input1_shape, const float* input1_data, \ const RuntimeShape& input2_shape, const float* input2_data, \ const RuntimeShape& output_shape, bool* output_data) { \ Comparison<name##Fn>(op_params, input1_shape, input1_data, input2_shape, \ input2_data, output_shape, output_data); \ } \ template <typename T> \ inline void name##NoScaling( \ const ComparisonParams& op_params, const RuntimeShape& input1_shape, \ const T* input1_data, const RuntimeShape& input2_shape, \ const T* input2_data, const RuntimeShape& output_shape, \ bool* output_data) { \ ComparisonImpl<T, name##Fn>(op_params, input1_shape, input1_data, \ input2_shape, input2_data, output_shape, \ output_data); \ } \ template <typename T> \ inline void name##WithScaling( \ const ComparisonParams& op_params, const RuntimeShape& input1_shape, \ const T* input1_data, const RuntimeShape& input2_shape, \ const T* input2_data, const RuntimeShape& output_shape, \ bool* output_data) { \ ComparisonWithScaling<T, name##Fn>(op_params, input1_shape, input1_data, \ input2_shape, input2_data, \ output_shape, output_data); \ } \ template <typename T> \ inline void Broadcast4DSlow##name##NoScaling( \ const ComparisonParams& op_params, const RuntimeShape& input1_shape, \ const T* input1_data, const RuntimeShape& input2_shape, \ const T* input2_data, const RuntimeShape& output_shape, \ bool* output_data) { \ BroadcastComparison4DSlowImpl<T, name##Fn>( \ op_params, input1_shape, input1_data, input2_shape, input2_data, \ output_shape, output_data); \ } \ inline void Broadcast4DSlow##name( \ const ComparisonParams& op_params, const RuntimeShape& input1_shape, \ const float* input1_data, const RuntimeShape& input2_shape, \ const float* input2_data, const RuntimeShape& output_shape, \ bool* output_data) { \ BroadcastComparison4DSlow<name##Fn>(op_params, input1_shape, input1_data, \ input2_shape, input2_data, \ output_shape, output_data); \ } \ template <typename T> \ inline void Broadcast4DSlow##name##WithScaling( \ const ComparisonParams& op_params, const RuntimeShape& input1_shape, \ const T* input1_data, const RuntimeShape& input2_shape, \ const T* input2_data, const RuntimeShape& output_shape, \ bool* output_data) { \ BroadcastComparison4DSlowWithScaling<T, name##Fn>( \ op_params, input1_shape, input1_data, input2_shape, input2_data, \ output_shape, output_data); \ } TFLITE_COMPARISON_OP(Equal) TFLITE_COMPARISON_OP(NotEqual) TFLITE_COMPARISON_OP(Greater) TFLITE_COMPARISON_OP(GreaterEqual) TFLITE_COMPARISON_OP(Less) TFLITE_COMPARISON_OP(LessEqual) #undef TFLITE_COMPARISON_OP } } #endif #include "tensorflow/lite/kernels/internal/reference/comparisons.h" namespace tflite { namespace reference_ops { BroadcastComparison4DSlowCommon BroadcastComparison4DSlowPreprocess( const RuntimeShape& unextended_input1_shape, const RuntimeShape& unextended_input2_shape, const RuntimeShape& unextended_output_shape) { TFLITE_DCHECK_LE(unextended_input1_shape.DimensionsCount(), 4); TFLITE_DCHECK_LE(unextended_input2_shape.DimensionsCount(), 4); TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), 4); NdArrayDesc<4> desc1; NdArrayDesc<4> desc2; NdArrayDescsForElementwiseBroadcast(unextended_input1_shape, unextended_input2_shape, &desc1, &desc2); return {RuntimeShape::ExtendedShape(4, unextended_output_shape), desc1, desc2}; } } }
#include <stdint.h> #include <initializer_list> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "flatbuffers/flatbuffers.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/string_type.h" namespace tflite { namespace { using ::testing::ElementsAre; class ComparisonOpModel : public SingleOpModel { public: ComparisonOpModel(std::initializer_list<int> input1_shape, std::initializer_list<int> input2_shape, TensorType input_type, BuiltinOperator op) { input1_ = AddInput(input_type); input2_ = AddInput(input_type); output_ = AddOutput(TensorType_BOOL); ConfigureBuiltinOp(op); BuildInterpreter({input1_shape, input2_shape}); } ComparisonOpModel(const TensorData& input1, const TensorData& input2, TensorType input_type, BuiltinOperator op) { input1_ = AddInput(input1); input2_ = AddInput(input2); output_ = AddOutput(TensorType_BOOL); ConfigureBuiltinOp(op); BuildInterpreter({GetShape(input1_), GetShape(input2_)}); } int input1() { return input1_; } int input2() { return input2_; } std::vector<bool> GetOutput() { return ExtractVector<bool>(output_); } std::vector<int> GetOutputShape() { return GetTensorShape(output_); } private: int input1_; int input2_; int output_; void ConfigureBuiltinOp(BuiltinOperator op) { switch (op) { case BuiltinOperator_EQUAL: { SetBuiltinOp(op, BuiltinOptions_EqualOptions, CreateEqualOptions(builder_).Union()); break; } case BuiltinOperator_NOT_EQUAL: { SetBuiltinOp(op, BuiltinOptions_NotEqualOptions, CreateNotEqualOptions(builder_).Union()); break; } case BuiltinOperator_GREATER: { SetBuiltinOp(op, BuiltinOptions_GreaterOptions, CreateGreaterOptions(builder_).Union()); break; } case BuiltinOperator_GREATER_EQUAL: { SetBuiltinOp(op, BuiltinOptions_GreaterEqualOptions, CreateGreaterEqualOptions(builder_).Union()); break; } case BuiltinOperator_LESS: { SetBuiltinOp(op, BuiltinOptions_LessOptions, CreateLessOptions(builder_).Union()); break; } case BuiltinOperator_LESS_EQUAL: { SetBuiltinOp(op, BuiltinOptions_LessEqualOptions, CreateLessEqualOptions(builder_).Union()); break; } default: { FAIL() << "We shouldn't get here."; } } } }; TEST(ComparisonsTest, EqualBool) { ComparisonOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, TensorType_BOOL, BuiltinOperator_EQUAL); model.PopulateTensor<bool>(model.input1(), {true, false, true, false}); model.PopulateTensor<bool>(model.input2(), {true, true, false, false}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(true, false, false, true)); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 1, 4)); } TEST(ComparisonsTest, EqualFloat) { ComparisonOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, TensorType_FLOAT32, BuiltinOperator_EQUAL); model.PopulateTensor<float>(model.input1(), {0.1, 0.9, 0.7, 0.3}); model.PopulateTensor<float>(model.input2(), {0.1, 0.2, 0.6, 0.5}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(true, false, false, false)); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 1, 4)); } TEST(ComparisonsTest, EqualInt) { ComparisonOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, TensorType_INT32, BuiltinOperator_EQUAL); model.PopulateTensor<int>(model.input1(), {-1, 9, 7, 3}); model.PopulateTensor<int>(model.input2(), {1, 2, 7, 5}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(false, false, true, false)); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 1, 4)); } TEST(ComparisonsTest, EqualInt16) { ComparisonOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, TensorType_INT16, BuiltinOperator_EQUAL); model.PopulateTensor<int16_t>(model.input1(), {-1, 9, 7, 3}); model.PopulateTensor<int16_t>(model.input2(), {1, 2, 7, 5}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(false, false, true, false)); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 1, 4)); } TEST(ComparisonsTest, EqualString) { if (SingleOpModel::GetForceUseNnapi()) { return; } ComparisonOpModel model({1, 1, 1, 4, 1}, {1, 1, 1, 4, 1}, TensorType_STRING, BuiltinOperator_EQUAL); model.PopulateTensor<std::string>(model.input1(), {"A", "B", "C", "D"}); model.PopulateTensor<std::string>(model.input2(), {"A", "C", "B", "D"}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(true, false, false, true)); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 1, 4, 1)); } TEST(ComparisonsTest, EqualBroadcast) { ComparisonOpModel model({1, 1, 1, 4}, {1, 1, 1, 1}, TensorType_INT32, BuiltinOperator_EQUAL); model.PopulateTensor<int>(model.input1(), {-1, 9, 7, 3}); model.PopulateTensor<int>(model.input2(), {7}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(false, false, true, false)); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 1, 4)); } TEST(ComparisonsTest, EqualBroadcastTwoD) { ComparisonOpModel model({1, 1, 2, 4}, {1, 1, 1, 4}, TensorType_INT32, BuiltinOperator_EQUAL); model.PopulateTensor<int>(model.input1(), {-1, 9, 7, 3, 2, 4, 2, 8}); model.PopulateTensor<int>(model.input2(), {7, 1, 2, 4}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(false, false, false, false, false, false, true, false)); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 2, 4)); } TEST(ComparisonsTest, EqualBroadcastString) { if (SingleOpModel::GetForceUseNnapi()) { return; } ComparisonOpModel model({1, 1, 1, 4}, {1, 1, 1, 1}, TensorType_STRING, BuiltinOperator_EQUAL); model.PopulateTensor<std::string>(model.input1(), {"A", "B", "A", "B"}); model.PopulateTensor<std::string>(model.input2(), {"A"}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(true, false, true, false)); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 1, 4)); } TEST(ComparisonsTest, NotEqualBool) { ComparisonOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, TensorType_BOOL, BuiltinOperator_NOT_EQUAL); model.PopulateTensor<bool>(model.input1(), {true, false, true, false}); model.PopulateTensor<bool>(model.input2(), {true, true, false, false}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(false, true, true, false)); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 1, 4)); } TEST(ComparisonsTest, NotEqualFloat) { ComparisonOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, TensorType_FLOAT32, BuiltinOperator_NOT_EQUAL); model.PopulateTensor<float>(model.input1(), {0.1, 0.9, 0.7, 0.3}); model.PopulateTensor<float>(model.input2(), {0.1, 0.2, 0.6, 0.5}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(false, true, true, true)); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 1, 4)); } TEST(ComparisonsTest, NotEqualInt) { ComparisonOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, TensorType_INT32, BuiltinOperator_NOT_EQUAL); model.PopulateTensor<int>(model.input1(), {-1, 9, 7, 3}); model.PopulateTensor<int>(model.input2(), {1, 2, 7, 5}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(true, true, false, true)); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 1, 4)); } TEST(ComparisonsTest, NotEqualString) { if (SingleOpModel::GetForceUseNnapi()) { return; } ComparisonOpModel model({1, 1, 1, 1, 4}, {1, 1, 1, 1, 4}, TensorType_STRING, BuiltinOperator_NOT_EQUAL); model.PopulateTensor<std::string>(model.input1(), {"A", "B", "C", "D"}); model.PopulateTensor<std::string>(model.input2(), {"A", "C", "B", "D"}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(false, true, true, false)); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 1, 1, 4)); } TEST(ComparisonsTest, NotEqualBroadcast) { ComparisonOpModel model({1, 1, 1, 4}, {1, 1, 1, 1}, TensorType_INT32, BuiltinOperator_NOT_EQUAL); model.PopulateTensor<int>(model.input1(), {-1, 9, 7, 3}); model.PopulateTensor<int>(model.input2(), {7}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(true, true, false, true)); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 1, 4)); } TEST(ComparisonsTest, NotEqualBroadcastTwoD) { ComparisonOpModel model({1, 1, 2, 4}, {1, 1, 1, 4}, TensorType_INT32, BuiltinOperator_NOT_EQUAL); model.PopulateTensor<int>(model.input1(), {-1, 9, 7, 3, 2, 4, 2, 8}); model.PopulateTensor<int>(model.input2(), {7, 1, 2, 4}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(true, true, true, true, true, true, false, true)); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 2, 4)); } TEST(ComparisonsTest, NotEqualBroadcastString) { if (SingleOpModel::GetForceUseNnapi()) { return; } ComparisonOpModel model({1, 1, 1, 4}, {1, 1, 1, 1}, TensorType_STRING, BuiltinOperator_NOT_EQUAL); model.PopulateTensor<std::string>(model.input1(), {"A", "B", "A", "B"}); model.PopulateTensor<std::string>(model.input2(), {"A"}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(false, true, false, true)); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 1, 4)); } TEST(ComparisonsTest, GreaterFloat) { ComparisonOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, TensorType_FLOAT32, BuiltinOperator_GREATER); model.PopulateTensor<float>(model.input1(), {0.1, 0.9, 0.7, 0.3}); model.PopulateTensor<float>(model.input2(), {0.1, 0.2, 0.6, 0.5}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(false, true, true, false)); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 1, 4)); } TEST(ComparisonsTest, GreaterInt) { ComparisonOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, TensorType_INT32, BuiltinOperator_GREATER); model.PopulateTensor<int>(model.input1(), {-1, 9, 7, 3}); model.PopulateTensor<int>(model.input2(), {1, 2, 7, 5}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(false, true, false, false)); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 1, 4)); } TEST(ComparisonsTest, GreaterBroadcast) { ComparisonOpModel model({1, 1, 1, 4}, {1, 1, 1, 1}, TensorType_INT32, BuiltinOperator_GREATER); model.PopulateTensor<int>(model.input1(), {-1, 9, 7, 3}); model.PopulateTensor<int>(model.input2(), {7}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(false, true, false, false)); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 1, 4)); } TEST(ComparisonsTest, GreaterBroadcastTwoD) { ComparisonOpModel model({1, 1, 2, 4}, {1, 1, 1, 4}, TensorType_INT32, BuiltinOperator_GREATER); model.PopulateTensor<int>(model.input1(), {-1, 9, 7, 3, 2, 4, 2, 8}); model.PopulateTensor<int>(model.input2(), {7, 1, 2, 4}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(false, true, true, false, false, true, false, true)); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 2, 4)); } TEST(ComparisonsTest, GreaterEqualFloat) { ComparisonOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, TensorType_FLOAT32, BuiltinOperator_GREATER_EQUAL); model.PopulateTensor<float>(model.input1(), {0.1, 0.9, 0.7, 0.3}); model.PopulateTensor<float>(model.input2(), {0.1, 0.2, 0.6, 0.5}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(true, true, true, false)); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 1, 4)); } TEST(ComparisonsTest, GreaterEqualInt) { ComparisonOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, TensorType_INT32, BuiltinOperator_GREATER_EQUAL); model.PopulateTensor<int>(model.input1(), {-1, 9, 7, 3}); model.PopulateTensor<int>(model.input2(), {1, 2, 7, 5}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(false, true, true, false)); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 1, 4)); } TEST(ComparisonsTest, GreaterEqualInt16) { ComparisonOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, TensorType_INT16, BuiltinOperator_GREATER_EQUAL); model.PopulateTensor<int16_t>(model.input1(), {-1, 9, 7, 3}); model.PopulateTensor<int16_t>(model.input2(), {1, 2, 7, 5}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(false, true, true, false)); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 1, 4)); } TEST(ComparisonsTest, GreaterEqualBroadcast) { ComparisonOpModel model({1, 1, 1, 4}, {1, 1, 1, 1}, TensorType_INT32, BuiltinOperator_GREATER_EQUAL); model.PopulateTensor<int>(model.input1(), {-1, 9, 7, 3}); model.PopulateTensor<int>(model.input2(), {7}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(false, true, true, false)); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 1, 4)); } TEST(ComparisonsTest, GreaterEqualBroadcastTwoD) { ComparisonOpModel model({1, 1, 2, 4}, {1, 1, 1, 4}, TensorType_INT32, BuiltinOperator_GREATER_EQUAL); model.PopulateTensor<int>(model.input1(), {-1, 9, 7, 3, 2, 4, 2, 8}); model.PopulateTensor<int>(model.input2(), {7, 1, 2, 4}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(false, true, true, false, false, true, true, true)); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 2, 4)); } TEST(ComparisonsTest, LessFloat) { ComparisonOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, TensorType_FLOAT32, BuiltinOperator_LESS); model.PopulateTensor<float>(model.input1(), {0.1, 0.9, 0.7, 0.3}); model.PopulateTensor<float>(model.input2(), {0.1, 0.2, 0.6, 0.5}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(false, false, false, true)); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 1, 4)); } TEST(ComparisonsTest, LessInt) { ComparisonOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, TensorType_INT32, BuiltinOperator_LESS); model.PopulateTensor<int>(model.input1(), {-1, 9, 7, 3}); model.PopulateTensor<int>(model.input2(), {1, 2, 6, 5}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(true, false, false, true)); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 1, 4)); } TEST(ComparisonsTest, LessInt16) { ComparisonOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, TensorType_INT16, BuiltinOperator_LESS); model.PopulateTensor<int16_t>(model.input1(), {-1, 9, 7, 3}); model.PopulateTensor<int16_t>(model.input2(), {1, 2, 6, 5}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(true, false, false, true)); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 1, 4)); } TEST(ComparisonsTest, LessBroadcast) { ComparisonOpModel model({1, 1, 1, 4}, {1, 1, 1, 1}, TensorType_INT32, BuiltinOperator_LESS); model.PopulateTensor<int>(model.input1(), {-1, 9, 7, 3}); model.PopulateTensor<int>(model.input2(), {7}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(true, false, false, true)); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 1, 4)); } TEST(ComparisonsTest, LessBroadcastTwoD) { ComparisonOpModel model({1, 1, 2, 4}, {1, 1, 1, 4}, TensorType_INT32, BuiltinOperator_LESS); model.PopulateTensor<int>(model.input1(), {-1, 9, 7, 3, 2, 4, 6, 8}); model.PopulateTensor<int>(model.input2(), {7, 1, 2, 4}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(true, false, false, true, true, false, false, false)); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 2, 4)); } TEST(ComparisonsTest, LessEqualFloat) { ComparisonOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, TensorType_FLOAT32, BuiltinOperator_LESS_EQUAL); model.PopulateTensor<float>(model.input1(), {0.1, 0.9, 0.7, 0.3}); model.PopulateTensor<float>(model.input2(), {0.1, 0.2, 0.6, 0.5}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(true, false, false, true)); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 1, 4)); } TEST(ComparisonsTest, LessEqualInt) { ComparisonOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, TensorType_INT32, BuiltinOperator_LESS_EQUAL); model.PopulateTensor<int>(model.input1(), {-1, 9, 7, 3}); model.PopulateTensor<int>(model.input2(), {1, 2, 7, 5}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(true, false, true, true)); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 1, 4)); } TEST(ComparisonsTest, LessEqualBroadcast) { ComparisonOpModel model({1, 1, 1, 4}, {1, 1, 1, 1}, TensorType_INT32, BuiltinOperator_LESS_EQUAL); model.PopulateTensor<int>(model.input1(), {-1, 9, 7, 3}); model.PopulateTensor<int>(model.input2(), {7}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(true, false, true, true)); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 1, 4)); } TEST(ComparisonsTest, LessEqualBroadcastTwoD) { ComparisonOpModel model({1, 1, 2, 4}, {1, 1, 1, 4}, TensorType_INT32, BuiltinOperator_LESS_EQUAL); model.PopulateTensor<int>(model.input1(), {-1, 9, 7, 3, 2, 4, 2, 8}); model.PopulateTensor<int>(model.input2(), {7, 1, 2, 4}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(true, false, false, true, true, false, true, false)); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 2, 4)); } TEST(QuantizedComparisonsTest, EqualUInt8Quantized) { const float kMin = -1.f; const float kMax = 128.f; ComparisonOpModel model({TensorType_UINT8, {1, 2, 2, 1}, kMin, kMax}, {TensorType_UINT8, {1, 2, 2, 1}, kMin, kMax}, TensorType_UINT8, BuiltinOperator_EQUAL); model.QuantizeAndPopulate<uint8_t>(model.input1(), {1, 9, 7, 3}); model.QuantizeAndPopulate<uint8_t>(model.input2(), {1, 2, 7, 5}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(true, false, true, false)); } TEST(QuantizedComparisonsTest, EqualInt8Quantized) { const float kMin = -127.f; const float kMax = 127.f; ComparisonOpModel model({TensorType_INT8, {1, 2, 2, 1}, kMin, kMax}, {TensorType_INT8, {1, 2, 2, 1}, kMin, kMax}, TensorType_INT8, BuiltinOperator_EQUAL); model.QuantizeAndPopulate<int8_t>(model.input1(), {1, -9, 7, 3}); model.QuantizeAndPopulate<int8_t>(model.input2(), {-1, 2, 7, 5}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(false, false, true, false)); } TEST(QuantizedComparisonsTest, NotEqualUInt8Quantized) { const float kMin = -1.f; const float kMax = 128.f; ComparisonOpModel model({TensorType_UINT8, {1, 2, 2, 1}, kMin, kMax}, {TensorType_UINT8, {1, 2, 2, 1}, kMin, kMax}, TensorType_UINT8, BuiltinOperator_NOT_EQUAL); model.QuantizeAndPopulate<uint8_t>(model.input1(), {1, 9, 7, 3}); model.QuantizeAndPopulate<uint8_t>(model.input2(), {1, 2, 7, 0}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(false, true, false, true)); } TEST(QuantizedComparisonsTest, NotEqualInt8Quantized) { const float kMin = -127.f; const float kMax = 127.f; ComparisonOpModel model({TensorType_INT8, {1, 2, 2, 1}, kMin, kMax}, {TensorType_INT8, {1, 2, 2, 1}, kMin, kMax}, TensorType_INT8, BuiltinOperator_NOT_EQUAL); model.QuantizeAndPopulate<int8_t>(model.input1(), {1, -9, 7, 3}); model.QuantizeAndPopulate<int8_t>(model.input2(), {1, 2, 7, 5}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(false, true, false, true)); } TEST(ComparisonsTest, GreaterQuantized) { const float kMin = -1.f; const float kMax = 128.f; ComparisonOpModel model({TensorType_UINT8, {1, 2, 2, 1}, kMin, kMax}, {TensorType_UINT8, {1, 2, 2, 1}, kMin, kMax}, TensorType_UINT8, BuiltinOperator_GREATER); model.QuantizeAndPopulate<uint8_t>(model.input1(), {1, 9, 7, 3}); model.QuantizeAndPopulate<uint8_t>(model.input2(), {1, 2, 6, 5}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(false, true, true, false)); } TEST(ComparisonsTest, GreaterQuantizedSmallRange) { ComparisonOpModel model({TensorType_UINT8, {1, 2, 2, 1}, 0.0, 1.0}, {TensorType_UINT8, {1, 2, 2, 1}, 0.0, 2.0}, TensorType_UINT8, BuiltinOperator_GREATER); model.QuantizeAndPopulate<uint8_t>(model.input1(), {1.0, 0.5, 0.35, 0.1}); model.QuantizeAndPopulate<uint8_t>(model.input2(), {1.01, 0.25, 0.3, 0.4}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(false, true, true, false)); } TEST(ComparisonsTest, GreaterEqualQuantized) { const float kMin = -1.f; const float kMax = 128.f; ComparisonOpModel model({TensorType_UINT8, {1, 2, 2, 1}, kMin, kMax}, {TensorType_UINT8, {1, 2, 2, 1}, kMin, kMax}, TensorType_UINT8, BuiltinOperator_GREATER_EQUAL); model.QuantizeAndPopulate<uint8_t>(model.input1(), {1, 9, 7, 3}); model.QuantizeAndPopulate<uint8_t>(model.input2(), {1, 2, 6, 5}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(true, true, true, false)); } TEST(ComparisonsTest, LessQuantized) { const float kMin = -1.f; const float kMax = 128.f; ComparisonOpModel model({TensorType_UINT8, {1, 2, 2, 1}, kMin, kMax}, {TensorType_UINT8, {1, 2, 2, 1}, kMin, kMax}, TensorType_UINT8, BuiltinOperator_LESS); model.QuantizeAndPopulate<uint8_t>(model.input1(), {1, 9, 7, 3}); model.QuantizeAndPopulate<uint8_t>(model.input2(), {1, 2, 6, 5}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(false, false, false, true)); } TEST(ComparisonsTest, LessEqualQuantized) { const float kMin = -1.f; const float kMax = 128.f; ComparisonOpModel model({TensorType_UINT8, {1, 2, 2, 1}, kMin, kMax}, {TensorType_UINT8, {1, 2, 2, 1}, kMin, kMax}, TensorType_UINT8, BuiltinOperator_LESS_EQUAL); model.QuantizeAndPopulate<uint8_t>(model.input1(), {1, 9, 7, 3}); model.QuantizeAndPopulate<uint8_t>(model.input2(), {1, 2, 6, 5}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(true, false, false, true)); } TEST(ComparisonsTest, QuantizedEqualWithBroadcast) { const float kMin = -1.f; const float kMax = 128.f; std::vector<std::vector<int>> test_shapes = { {6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}}; for (int i = 0; i < test_shapes.size(); ++i) { ComparisonOpModel model({TensorType_UINT8, test_shapes[i], kMin, kMax}, {TensorType_UINT8, {}, kMin, kMax}, TensorType_UINT8, BuiltinOperator_EQUAL); model.QuantizeAndPopulate<uint8_t>(model.input1(), {20, 2, 7, 8, 11, 20}); model.QuantizeAndPopulate<uint8_t>(model.input2(), {2}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(false, true, false, false, false, false)) << "With shape number " << i; } } TEST(ComparisonsTest, QuantizedUInt8NotEqualWithBroadcast) { const float kMin = -1.f; const float kMax = 128.f; std::vector<std::vector<int>> test_shapes = { {6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}}; for (int i = 0; i < test_shapes.size(); ++i) { ComparisonOpModel model({TensorType_UINT8, test_shapes[i], kMin, kMax}, {TensorType_UINT8, {}, kMin, kMax}, TensorType_UINT8, BuiltinOperator_NOT_EQUAL); model.QuantizeAndPopulate<uint8_t>(model.input1(), {20, 2, 7, 8, 11, 20}); model.QuantizeAndPopulate<uint8_t>(model.input2(), {2}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(true, false, true, true, true, true)) << "With shape number " << i; } } TEST(ComparisonsTest, QuantizedInt8NotEqualWithBroadcast) { const float kMin = -127.f; const float kMax = 127.f; std::vector<std::vector<int>> test_shapes = { {6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}}; for (int i = 0; i < test_shapes.size(); ++i) { ComparisonOpModel model({TensorType_INT8, test_shapes[i], kMin, kMax}, {TensorType_INT8, {}, kMin, kMax}, TensorType_INT8, BuiltinOperator_NOT_EQUAL); model.QuantizeAndPopulate<int8_t>(model.input1(), {-20, 2, 7, -8, 11, 20}); model.QuantizeAndPopulate<int8_t>(model.input2(), {2}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(true, false, true, true, true, true)) << "With shape number " << i; } } TEST(ComparisonsTest, QuantizedUInt8GreaterWithBroadcast) { const float kMin = -1.f; const float kMax = 128.f; std::vector<std::vector<int>> test_shapes = { {6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}}; for (int i = 0; i < test_shapes.size(); ++i) { ComparisonOpModel model({TensorType_UINT8, test_shapes[i], kMin, kMax}, {TensorType_UINT8, {}, kMin, kMax}, TensorType_UINT8, BuiltinOperator_GREATER); model.QuantizeAndPopulate<uint8_t>(model.input1(), {20, 2, 7, 8, 11, 20}); model.QuantizeAndPopulate<uint8_t>(model.input2(), {8}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(true, false, false, false, true, true)) << "With shape number " << i; } } TEST(ComparisonsTest, QuantizedInt8GreaterWithBroadcast) { const float kMin = -127.f; const float kMax = 127.f; std::vector<std::vector<int>> test_shapes = { {6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}}; for (int i = 0; i < test_shapes.size(); ++i) { ComparisonOpModel model({TensorType_INT8, test_shapes[i], kMin, kMax}, {TensorType_INT8, {}, kMin, kMax}, TensorType_INT8, BuiltinOperator_GREATER); model.QuantizeAndPopulate<int8_t>(model.input1(), {20, -2, -71, 8, 11, 20}); model.QuantizeAndPopulate<int8_t>(model.input2(), {8}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(true, false, false, false, true, true)) << "With shape number " << i; } } TEST(ComparisonsTest, QuantizedInt8GreaterWithBroadcastMultiplierGreaterThanOne) { const float kMin = -127.f; const float kMax = 127.f; std::vector<std::vector<int>> test_shapes = { {6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}}; for (int i = 0; i < test_shapes.size(); ++i) { ComparisonOpModel model({TensorType_INT8, test_shapes[i], kMin, kMax}, {TensorType_INT8, {}, kMin, kMax}, TensorType_INT8, BuiltinOperator_GREATER); model.QuantizeAndPopulate<int8_t>(model.input1(), {572, -2, -71, 8, 11, 20}); model.QuantizeAndPopulate<int8_t>(model.input2(), {8}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(true, false, false, false, true, true)) << "With shape number " << i; } } TEST(ComparisonsTest, QuantizedUInt8GreaterEqualWithBroadcast) { const float kMin = -1.f; const float kMax = 128.f; std::vector<std::vector<int>> test_shapes = { {6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}}; for (int i = 0; i < test_shapes.size(); ++i) { ComparisonOpModel model({TensorType_UINT8, test_shapes[i], kMin, kMax}, {TensorType_UINT8, {}, kMin, kMax}, TensorType_UINT8, BuiltinOperator_GREATER_EQUAL); model.QuantizeAndPopulate<uint8_t>(model.input1(), {20, 2, 7, 8, 11, 20}); model.QuantizeAndPopulate<uint8_t>(model.input2(), {8}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(true, false, false, true, true, true)) << "With shape number " << i; } } TEST(ComparisonsTest, QuantizedInt8GreaterEqualWithBroadcast) { const float kMin = -127.f; const float kMax = 127.f; std::vector<std::vector<int>> test_shapes = { {6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}}; for (int i = 0; i < test_shapes.size(); ++i) { ComparisonOpModel model({TensorType_INT8, test_shapes[i], kMin, kMax}, {TensorType_INT8, {}, kMin, kMax}, TensorType_INT8, BuiltinOperator_GREATER_EQUAL); model.QuantizeAndPopulate<int8_t>(model.input1(), {20, -2, -71, 8, 11, 20}); model.QuantizeAndPopulate<int8_t>(model.input2(), {8}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(true, false, false, true, true, true)) << "With shape number " << i; } } TEST(ComparisonsTest, QuantizedUInt8LessWithBroadcast) { const float kMin = -1.f; const float kMax = 128.f; std::vector<std::vector<int>> test_shapes = { {6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}}; for (int i = 0; i < test_shapes.size(); ++i) { ComparisonOpModel model({TensorType_UINT8, test_shapes[i], kMin, kMax}, {TensorType_UINT8, {}, kMin, kMax}, TensorType_UINT8, BuiltinOperator_LESS); model.QuantizeAndPopulate<uint8_t>(model.input1(), {20, 2, 7, 8, 11, 20}); model.QuantizeAndPopulate<uint8_t>(model.input2(), {8}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(false, true, true, false, false, false)) << "With shape number " << i; } } TEST(ComparisonsTest, QuantizedInt8LessWithBroadcast) { const float kMin = -127.f; const float kMax = 127.f; std::vector<std::vector<int>> test_shapes = { {6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}}; for (int i = 0; i < test_shapes.size(); ++i) { ComparisonOpModel model({TensorType_INT8, test_shapes[i], kMin, kMax}, {TensorType_INT8, {}, kMin, kMax}, TensorType_INT8, BuiltinOperator_LESS); model.QuantizeAndPopulate<int8_t>(model.input1(), {20, -2, -71, 8, 11, 20}); model.QuantizeAndPopulate<int8_t>(model.input2(), {8}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(false, true, true, false, false, false)) << "With shape number " << i; } } TEST(ComparisonsTest, QuantizedUInt8L
911
cpp
tensorflow/tensorflow
test_delegate_providers
tensorflow/lite/kernels/test_delegate_providers.cc
tensorflow/lite/kernels/test_delegate_providers_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_TEST_DELEGATE_PROVIDERS_H_ #define TENSORFLOW_LITE_KERNELS_TEST_DELEGATE_PROVIDERS_H_ #include <vector> #include "tensorflow/lite/tools/delegates/delegate_provider.h" #include "tensorflow/lite/tools/tool_params.h" namespace tflite { class KernelTestDelegateProviders { public: static KernelTestDelegateProviders* Get(); KernelTestDelegateProviders(); bool InitFromCmdlineArgs(int* argc, const char** argv); tools::ToolParams* MutableParams() { return &params_; } const tools::ToolParams& ConstParams() const { return params_; } std::vector<tools::ProvidedDelegateList::ProvidedDelegate> CreateAllDelegates( const tools::ToolParams& params) const { tools::ProvidedDelegateList util; return util.CreateAllRankedDelegates(params); } std::vector<tools::ProvidedDelegateList::ProvidedDelegate> CreateAllDelegates() const { return delegate_list_util_.CreateAllRankedDelegates(); } static constexpr char kUseSimpleAllocator[] = "use_simple_allocator"; static constexpr char kAccelerationTestConfigPath[] = "acceleration_test_config_path"; private: tools::ToolParams params_; tools::ProvidedDelegateList delegate_list_util_; }; } #endif #include "tensorflow/lite/kernels/test_delegate_providers.h" #include <string> #include <vector> #include "tensorflow/lite/tools/command_line_flags.h" #include "tensorflow/lite/tools/logging.h" #include "tensorflow/lite/tools/tool_params.h" namespace tflite { constexpr char KernelTestDelegateProviders::kAccelerationTestConfigPath[]; constexpr char KernelTestDelegateProviders::kUseSimpleAllocator[]; KernelTestDelegateProviders* KernelTestDelegateProviders::Get() { static KernelTestDelegateProviders* const providers = new KernelTestDelegateProviders(); return providers; } KernelTestDelegateProviders::KernelTestDelegateProviders() : delegate_list_util_(&params_) { delegate_list_util_.AddAllDelegateParams(); params_.AddParam(kAccelerationTestConfigPath, tools::ToolParam::Create<std::string>("")); params_.AddParam(kUseSimpleAllocator, tools::ToolParam::Create<bool>(false)); } bool KernelTestDelegateProviders::InitFromCmdlineArgs(int* argc, const char** argv) { std::vector<tflite::Flag> flags = { Flag( kAccelerationTestConfigPath, [this](const std::string& val, int argv_position) { this->params_.Set<std::string>(kAccelerationTestConfigPath, val, argv_position); }, "", "Acceleration test config file for SingleOpModel", Flag::kOptional), Flag( kUseSimpleAllocator, [this](const bool& val, int argv_position) { this->params_.Set<bool>(kUseSimpleAllocator, val, argv_position); }, false, "Use Simple Memory Allocator for SingleOpModel", Flag::kOptional)}; delegate_list_util_.AppendCmdlineFlags(flags); bool parse_result = tflite::Flags::Parse(argc, argv, flags); if (!parse_result || params_.Get<bool>("help")) { std::string usage = Flags::Usage(argv[0], flags); TFLITE_LOG(ERROR) << usage; parse_result = false; } return parse_result; } }
#include "tensorflow/lite/kernels/test_delegate_providers.h" #include <gmock/gmock.h> #include <gtest/gtest.h> namespace tflite { namespace { TEST(KernelTestDelegateProvidersTest, DelegateProvidersParams) { KernelTestDelegateProviders providers; const auto& params = providers.ConstParams(); EXPECT_TRUE(params.HasParam("use_xnnpack")); EXPECT_TRUE(params.HasParam("use_nnapi")); int argc = 3; const char* argv[] = {"program_name", "--use_nnapi=true", "--other_undefined_flag=1"}; EXPECT_TRUE(providers.InitFromCmdlineArgs(&argc, argv)); EXPECT_TRUE(params.Get<bool>("use_nnapi")); EXPECT_EQ(2, argc); EXPECT_EQ("--other_undefined_flag=1", argv[1]); } TEST(KernelTestDelegateProvidersTest, CreateTfLiteDelegates) { #if !defined(__Fuchsia__) && !defined(__s390x__) && \ !defined(TFLITE_WITHOUT_XNNPACK) KernelTestDelegateProviders providers; providers.MutableParams()->Set<bool>("use_xnnpack", true); EXPECT_GE(providers.CreateAllDelegates().size(), 1); tools::ToolParams local_params; local_params.Merge(providers.ConstParams()); local_params.Set<bool>("use_xnnpack", false); EXPECT_TRUE(providers.CreateAllDelegates(local_params).empty()); #endif } } }
912
cpp
tensorflow/tensorflow
broadcast_args
tensorflow/lite/kernels/broadcast_args.cc
tensorflow/lite/kernels/broadcast_args_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_BROADCAST_ARGS_H_ #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_BROADCAST_ARGS_H_ #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/kernels/internal/types.h" namespace tflite { namespace reference_ops { template <typename T> void BroadcastArgs(const RuntimeShape& input1_shape, const T* input1_data, const RuntimeShape& input2_shape, const T* input2_data, const RuntimeShape& output_shape, T* output_data) { auto get_shape_data = [](const RuntimeShape& shape, const T* data, int backward_idx) -> T { int forward_idx = shape.FlatSize() - 1 - backward_idx; if (forward_idx < 0) return 1; return data[forward_idx]; }; int output_num_elements = output_shape.FlatSize(); for (int i = 0; i < output_num_elements; ++i) { int backward_i = output_num_elements - 1 - i; int shape1_i = get_shape_data(input1_shape, input1_data, i); int shape2_i = get_shape_data(input2_shape, input2_data, i); if (shape1_i == 1) { output_data[backward_i] = shape2_i; } else if (shape2_i == 1) { output_data[backward_i] = shape1_i; } else { TFLITE_CHECK_EQ(shape1_i, shape2_i); output_data[backward_i] = shape1_i; } } } } } #endif #include "tensorflow/lite/kernels/internal/reference/broadcast_args.h" #include <algorithm> #include <cstdint> #include <memory> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace builtin { namespace broadcast_args { constexpr int kShape1Tensor = 0; constexpr int kShape2Tensor = 1; constexpr int kOutputTensor = 0; struct BroadcastArgsContext { BroadcastArgsContext(TfLiteContext* context, TfLiteNode* node) { shape1 = GetInput(context, node, kShape1Tensor); shape2 = GetInput(context, node, kShape2Tensor); output = GetOutput(context, node, kOutputTensor); } const TfLiteTensor* shape1; const TfLiteTensor* shape2; TfLiteTensor* output; }; TfLiteStatus EvalImpl(TfLiteContext* context, TfLiteNode* node); TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE(context, NumInputs(node) == 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); BroadcastArgsContext op_context(context, node); TF_LITE_ENSURE(context, op_context.shape1->type == kTfLiteInt32 || op_context.shape1->type == kTfLiteInt64); TF_LITE_ENSURE_EQ(context, op_context.shape1->type, op_context.shape2->type); TF_LITE_ENSURE_EQ(context, op_context.shape1->type, op_context.output->type); TF_LITE_ENSURE_EQ(context, NumDimensions(op_context.shape1), 1); TF_LITE_ENSURE_EQ(context, NumDimensions(op_context.shape2), 1); TfLiteIntArray* output_shape = TfLiteIntArrayCreate(1); output_shape->data[0] = std::max(SizeOfDimension(op_context.shape1, 0), SizeOfDimension(op_context.shape2, 0)); if (IsConstantOrPersistentTensor(op_context.shape1) && IsConstantOrPersistentTensor(op_context.shape2)) { SetTensorToPersistentRo(op_context.output); TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, op_context.output, output_shape)); return EvalImpl(context, node); } return context->ResizeTensor(context, op_context.output, output_shape); } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { BroadcastArgsContext op_context(context, node); if (IsConstantOrPersistentTensor(op_context.output)) { return kTfLiteOk; } else { return EvalImpl(context, node); } } TfLiteStatus EvalImpl(TfLiteContext* context, TfLiteNode* node) { BroadcastArgsContext op_context(context, node); #define TF_LITE_BROADCAST_ARG(data_type) \ reference_ops::BroadcastArgs(GetTensorShape(op_context.shape1), \ GetTensorData<data_type>(op_context.shape1), \ GetTensorShape(op_context.shape2), \ GetTensorData<data_type>(op_context.shape2), \ GetTensorShape(op_context.output), \ GetTensorData<data_type>(op_context.output)) if (op_context.output->type == kTfLiteInt32) { TF_LITE_BROADCAST_ARG(int32_t); } else { TF_LITE_BROADCAST_ARG(int64_t); } #undef TF_LITE_BROADCAST_ARG return kTfLiteOk; } } TfLiteRegistration* Register_BROADCAST_ARGS() { static TfLiteRegistration r = {nullptr, nullptr, broadcast_args::Prepare, broadcast_args::Eval}; return &r; } } } }
#include <cstdint> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/core/interpreter.h" #include "tensorflow/lite/core/kernels/register.h" #include "tensorflow/lite/core/model.h" #include "tensorflow/lite/kernels/test_util.h" namespace tflite { namespace { using ::testing::ElementsAreArray; template <class ShapeType = int32_t> class BroadcastArgsOpModel : public SingleOpModel { public: BroadcastArgsOpModel(std::initializer_list<ShapeType> input1, std::initializer_list<ShapeType> input2, bool constant_tensor) { int input1_length = input1.size(); int input2_length = input2.size(); if (constant_tensor) { shape1_ = AddConstInput({GetTensorType<ShapeType>(), {input1_length}}, input1); shape2_ = AddConstInput({GetTensorType<ShapeType>(), {input2_length}}, input2); } else { shape1_ = AddInput({GetTensorType<ShapeType>(), {input1_length}}); shape2_ = AddInput({GetTensorType<ShapeType>(), {input2_length}}); } output_ = AddOutput(GetTensorType<ShapeType>()); SetBuiltinOp(BuiltinOperator_BROADCAST_ARGS, BuiltinOptions_NONE, 0); BuildInterpreter({{input1_length}, {input2_length}}); if (!constant_tensor) { if (input1.size() > 0) SetInput1(input1); if (input2.size() > 0) SetInput2(input2); } } void SetInput1(std::initializer_list<ShapeType> data) { PopulateTensor(shape1_, data); } void SetInput2(std::initializer_list<ShapeType> data) { PopulateTensor(shape2_, data); } std::vector<ShapeType> GetOutput() { return ExtractVector<ShapeType>(output_); } std::vector<int> GetOutputShape() { return GetTensorShape(output_); } protected: int shape1_; int shape2_; int output_; }; template <typename T> class BroadcastArgsOpTest : public ::testing::Test {}; using DataTypes = ::testing::Types<int64_t, int32_t>; TYPED_TEST_SUITE(BroadcastArgsOpTest, DataTypes); #if GTEST_HAS_DEATH_TEST TYPED_TEST(BroadcastArgsOpTest, ShapeNotBroadcastableConstant) { EXPECT_DEATH(BroadcastArgsOpModel<TypeParam> m({2, 3, 4, 4}, {2, 2}, true), ""); } TYPED_TEST(BroadcastArgsOpTest, ShapeNotBroadcastable) { BroadcastArgsOpModel<TypeParam> m({2, 3, 4, 4}, {2, 2}, false); EXPECT_DEATH(ASSERT_EQ(m.Invoke(), kTfLiteOk), ""); } #endif TYPED_TEST(BroadcastArgsOpTest, BroadcastArgsWithScalar) { for (bool constant_tensor : {true, false}) { BroadcastArgsOpModel<TypeParam> m({}, {2, 4}, constant_tensor); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2})); EXPECT_THAT(m.GetOutput(), ElementsAreArray({2, 4})); } } TYPED_TEST(BroadcastArgsOpTest, BroadcastArgsDifferentDims) { for (bool constant_tensor : {true, false}) { BroadcastArgsOpModel<TypeParam> m({1}, {2, 4}, constant_tensor); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2})); EXPECT_THAT(m.GetOutput(), ElementsAreArray({2, 4})); } } TYPED_TEST(BroadcastArgsOpTest, BroadcastArgsSameDims) { for (bool constant_tensor : {true, false}) { BroadcastArgsOpModel<TypeParam> m({1, 4, 6, 3, 1, 5}, {4, 4, 1, 3, 4, 1}, constant_tensor); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({6})); EXPECT_THAT(m.GetOutput(), ElementsAreArray({4, 4, 6, 3, 4, 5})); } } TYPED_TEST(BroadcastArgsOpTest, BroadcastArgsComplex) { for (bool constant_tensor : {true, false}) { BroadcastArgsOpModel<TypeParam> m({6, 3, 1, 5}, {4, 4, 1, 3, 4, 1}, constant_tensor); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({6})); EXPECT_THAT(m.GetOutput(), ElementsAreArray({4, 4, 6, 3, 4, 5})); } } } }
913
cpp
tensorflow/tensorflow
cast
tensorflow/lite/kernels/cast.cc
tensorflow/lite/kernels/cast_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_COMMON_TASKS_CAST_H_ #define TENSORFLOW_LITE_DELEGATES_GPU_COMMON_TASKS_CAST_H_ #include "tensorflow/lite/delegates/gpu/common/task/gpu_operation.h" namespace tflite { namespace gpu { GPUOperation CreateCast(const OperationDef& definition, const GpuInfo& gpu_info); } } #endif #include "tensorflow/lite/delegates/gpu/common/tasks/cast.h" #include <map> #include <string> #include <utility> #include <vector> #include "absl/strings/substitute.h" #include "tensorflow/lite/delegates/gpu/common/task/util.h" namespace tflite { namespace gpu { GPUOperation CreateCast(const OperationDef& definition, const GpuInfo& gpu_info) { ElementwiseDescriptor op_desc; const std::string conversion = GetTypeConversion(gpu_info, definition.src_tensors[0].GetDataType(), definition.dst_tensors[0].GetDataType(), 4); op_desc.code = "out_value = " + absl::Substitute(conversion, "in_value") + ";\n"; return CreateGpuOperation(definition, std::move(op_desc)); } } }
#include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/gpu/cl/kernels/cl_test.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/tasks/cast_test_util.h" namespace tflite { namespace gpu { namespace cl { namespace { TEST_F(OpenCLOperationTest, Cast) { auto status = CastTests(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, CastToBool) { auto status = CastToBoolTests(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, CastFromBool) { auto status = CastFromBoolTests(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } } } } }
914
cpp
tensorflow/tensorflow
div
tensorflow/lite/kernels/div.cc
tensorflow/lite/kernels/div_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DIV_H_ #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DIV_H_ #include <algorithm> #include "tensorflow/lite/kernels/internal/common.h" namespace tflite { namespace reference_ops { template <typename T> inline void DivCheckArithmeticParams(const ArithmeticParams& params) { TFLITE_DCHECK_LE(params.quantized_activation_min, params.quantized_activation_max); constexpr int32_t max_value = static_cast<int32_t>(std::numeric_limits<T>::max()); TFLITE_DCHECK_GE(params.input1_offset, -max_value); TFLITE_DCHECK_LE(params.input1_offset, max_value); TFLITE_DCHECK_GE(params.input2_offset, -max_value); TFLITE_DCHECK_LE(params.input2_offset, max_value); TFLITE_DCHECK_GE(params.output_offset, -max_value); TFLITE_DCHECK_LE(params.output_offset, max_value); } template <typename T> inline void DivElementwise(int size, const ArithmeticParams& params, const T* input1_data, const T* input2_data, T* output_data) { DivCheckArithmeticParams<T>(params); for (int i = 0; i < size; ++i) { int32_t input1_val = params.input1_offset + input1_data[i]; int32_t input2_val = params.input2_offset + input2_data[i]; TFLITE_DCHECK_NE(input2_val, 0); if (input2_val < 0) { input1_val = -input1_val; input2_val = -input2_val; } int recip_shift; const int32_t input2_inv = GetReciprocal(input2_val, 31, &recip_shift); const int headroom = CountLeadingSignBits(input1_val); const int32_t unscaled_quotient = MultiplyByQuantizedMultiplierGreaterThanOne(input1_val, input2_inv, headroom); const int total_shift = params.output_shift - recip_shift - headroom; const int32_t unclamped_result = params.output_offset + MultiplyByQuantizedMultiplierSmallerThanOneExp( unscaled_quotient, params.output_multiplier, total_shift); const int32_t clamped_output = std::min(params.quantized_activation_max, std::max(params.quantized_activation_min, unclamped_result)); output_data[i] = static_cast<T>(clamped_output); } } inline void Div(const ArithmeticParams& params, const RuntimeShape& input1_shape, const uint8_t* input1_data, const RuntimeShape& input2_shape, const uint8_t* input2_data, const RuntimeShape& output_shape, uint8_t* output_data) { TFLITE_DCHECK_LE(params.quantized_activation_min, params.quantized_activation_max); const int flat_size = MatchingElementsSize(input1_shape, input2_shape, output_shape); DivElementwise(flat_size, params, input1_data, input2_data, output_data); } inline void Div(const ArithmeticParams& params, const RuntimeShape& input1_shape, const int8_t* input1_data, const RuntimeShape& input2_shape, const int8_t* input2_data, const RuntimeShape& output_shape, int8_t* output_data) { TFLITE_DCHECK_LE(params.quantized_activation_min, params.quantized_activation_max); const int flat_size = MatchingElementsSize(input1_shape, input2_shape, output_shape); DivElementwise(flat_size, params, input1_data, input2_data, output_data); } template <typename T, int N = 5> inline void BroadcastDivSlowQuantized( const ArithmeticParams& params, const RuntimeShape& unextended_input1_shape, const T* input1_data, const RuntimeShape& unextended_input2_shape, const T* input2_data, const RuntimeShape& unextended_output_shape, T* output_data) { TFLITE_DCHECK_LE(unextended_input1_shape.DimensionsCount(), N); TFLITE_DCHECK_LE(unextended_input2_shape.DimensionsCount(), N); TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), N); NdArrayDesc<N> desc1; NdArrayDesc<N> desc2; NdArrayDesc<N> output_desc; NdArrayDescsForElementwiseBroadcast(unextended_input1_shape, unextended_input2_shape, &desc1, &desc2); CopyDimsToDesc(RuntimeShape::ExtendedShape(N, unextended_output_shape), &output_desc); DivCheckArithmeticParams<T>(params); auto div_func = [&](int indexes[N]) { int32_t input1_val = params.input1_offset + input1_data[SubscriptToIndex(desc1, indexes)]; int32_t input2_val = params.input2_offset + input2_data[SubscriptToIndex(desc2, indexes)]; TFLITE_DCHECK_NE(input2_val, 0); if (input2_val < 0) { input1_val = -input1_val; input2_val = -input2_val; } int recip_shift; const int32_t input2_inv = GetReciprocal(input2_val, 31, &recip_shift); const int headroom = CountLeadingSignBits(input1_val); const int32_t unscaled_quotient = MultiplyByQuantizedMultiplierGreaterThanOne(input1_val, input2_inv, headroom); const int total_shift = params.output_shift - recip_shift - headroom; const int32_t unclamped_result = params.output_offset + MultiplyByQuantizedMultiplierSmallerThanOneExp( unscaled_quotient, params.output_multiplier, total_shift); const int32_t clamped_output = std::min(params.quantized_activation_max, std::max(params.quantized_activation_min, unclamped_result)); output_data[SubscriptToIndex(output_desc, indexes)] = static_cast<T>(clamped_output); }; NDOpsHelper<N>(output_desc, div_func); } template <int N = 5> inline void BroadcastDivSlow(const ArithmeticParams& params, const RuntimeShape& unextended_input1_shape, const uint8_t* input1_data, const RuntimeShape& unextended_input2_shape, const uint8_t* input2_data, const RuntimeShape& unextended_output_shape, uint8_t* output_data) { BroadcastDivSlowQuantized<uint8_t, N>( params, unextended_input1_shape, input1_data, unextended_input2_shape, input2_data, unextended_output_shape, output_data); } template <int N = 5> inline void BroadcastDivSlow(const ArithmeticParams& params, const RuntimeShape& unextended_input1_shape, const int8_t* input1_data, const RuntimeShape& unextended_input2_shape, const int8_t* input2_data, const RuntimeShape& unextended_output_shape, int8_t* output_data) { BroadcastDivSlowQuantized<int8_t, N>( params, unextended_input1_shape, input1_data, unextended_input2_shape, input2_data, unextended_output_shape, output_data); } template <typename T, int N = 5> void BroadcastDivSlow(const ArithmeticParams& params, const RuntimeShape& unextended_input1_shape, const T* input1_data, const RuntimeShape& unextended_input2_shape, const T* input2_data, const RuntimeShape& unextended_output_shape, T* output_data) { T output_activation_min; T output_activation_max; GetActivationParams(params, &output_activation_min, &output_activation_max); TFLITE_DCHECK_LE(unextended_input1_shape.DimensionsCount(), N); TFLITE_DCHECK_LE(unextended_input2_shape.DimensionsCount(), N); TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), N); NdArrayDesc<N> desc1; NdArrayDesc<N> desc2; NdArrayDesc<N> output_desc; NdArrayDescsForElementwiseBroadcast(unextended_input1_shape, unextended_input2_shape, &desc1, &desc2); CopyDimsToDesc(RuntimeShape::ExtendedShape(N, unextended_output_shape), &output_desc); auto div_func = [&](int indexes[N]) { output_data[SubscriptToIndex(output_desc, indexes)] = ActivationFunctionWithMinMax( input1_data[SubscriptToIndex(desc1, indexes)] / input2_data[SubscriptToIndex(desc2, indexes)], output_activation_min, output_activation_max); }; NDOpsHelper<N>(output_desc, div_func); } template <typename T> inline void Div(const ArithmeticParams& params, const RuntimeShape& input1_shape, const T* input1_data, const RuntimeShape& input2_shape, const T* input2_data, const RuntimeShape& output_shape, T* output_data) { T output_activation_min; T output_activation_max; GetActivationParams(params, &output_activation_min, &output_activation_max); const int flat_size = MatchingElementsSize(input1_shape, input2_shape, output_shape); for (int i = 0; i < flat_size; ++i) { output_data[i] = ActivationFunctionWithMinMax( input1_data[i] / input2_data[i], output_activation_min, output_activation_max); } } } } #endif #include <stddef.h> #include <stdint.h> #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/kernels/internal/optimized/cpu_check.h" #include "tensorflow/lite/kernels/internal/optimized/neon_check.h" #include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h" #include "tensorflow/lite/kernels/internal/quantization_util.h" #include "tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h" #include "tensorflow/lite/kernels/internal/reference/reference_ops.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/internal/types.h" #include "tensorflow/lite/kernels/kernel_util.h" #ifdef TFLITE_KERNEL_USE_XNNPACK #include <algorithm> #include <array> #include <limits> #include "xnnpack.h" #include "tensorflow/lite/kernels/cpu_backend_context.h" #include "tensorflow/lite/minimal_logging.h" #endif namespace tflite { namespace ops { namespace builtin { namespace div { enum KernelType { kReference, kGenericOptimized, kNeonOptimized, }; constexpr int kInputTensor1 = 0; constexpr int kInputTensor2 = 1; constexpr int kOutputTensor = 0; struct OpData { bool requires_broadcast; int32 output_activation_min; int32 output_activation_max; int32_t output_multiplier; int output_shift; }; void* Init(TfLiteContext* context, const char* buffer, size_t length) { auto* data = new OpData; data->requires_broadcast = false; return data; } void Free(TfLiteContext* context, void* buffer) { delete reinterpret_cast<OpData*>(buffer); } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { auto* params = reinterpret_cast<TfLiteDivParams*>(node->builtin_data); OpData* data = reinterpret_cast<OpData*>(node->user_data); TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input1; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor1, &input1)); const TfLiteTensor* input2; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor2, &input2)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); TF_LITE_ENSURE_TYPES_EQ(context, input1->type, input2->type); output->type = input2->type; data->requires_broadcast = !HaveSameShapes(input1, input2); TfLiteIntArray* output_size = nullptr; if (data->requires_broadcast) { TF_LITE_ENSURE_OK(context, CalculateShapeForBroadcast( context, input1, input2, &output_size)); } else { output_size = TfLiteIntArrayCopy(input1->dims); } if (output->type == kTfLiteUInt8) { TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized( context, params->activation, output, &data->output_activation_min, &data->output_activation_max)); const double real_multiplier = input1->params.scale / (input2->params.scale * output->params.scale); QuantizeMultiplier(real_multiplier, &data->output_multiplier, &data->output_shift); } return context->ResizeTensor(context, output, output_size); } template <KernelType kernel_type> void EvalDiv(TfLiteContext* context, TfLiteNode* node, TfLiteDivParams* params, const OpData* data, const TfLiteTensor* input1, const TfLiteTensor* input2, TfLiteTensor* output) { #define TF_LITE_DIV(type, opname, data_type) \ tflite::ArithmeticParams op_params; \ data_type output_activation_min, output_activation_max; \ CalculateActivationRange(params->activation, &output_activation_min, \ &output_activation_max); \ SetActivationParams(output_activation_min, output_activation_max, \ &op_params); \ type::opname(op_params, GetTensorShape(input1), \ GetTensorData<data_type>(input1), GetTensorShape(input2), \ GetTensorData<data_type>(input2), GetTensorShape(output), \ GetTensorData<data_type>(output)) if (output->type == kTfLiteInt32) { if (kernel_type == kReference) { if (data->requires_broadcast) { TF_LITE_DIV(reference_ops, BroadcastDivSlow, int32_t); } else { TF_LITE_DIV(reference_ops, Div, int32_t); } } else { if (data->requires_broadcast) { TF_LITE_DIV(optimized_ops, BroadcastDivSlow, int32_t); } else { TF_LITE_DIV(optimized_ops, Div, int32_t); } } } else if (output->type == kTfLiteFloat32) { if (kernel_type == kReference) { if (data->requires_broadcast) { TF_LITE_DIV(reference_ops, BroadcastDivSlow, float); } else { TF_LITE_DIV(reference_ops, Div, float); } } else { #ifdef TFLITE_KERNEL_USE_XNNPACK size_t num_input1_dims = static_cast<size_t>(GetTensorShape(input1).DimensionsCount()); size_t num_input2_dims = static_cast<size_t>(GetTensorShape(input2).DimensionsCount()); if (std::max(num_input1_dims, num_input2_dims) <= XNN_MAX_TENSOR_DIMS) { std::array<size_t, XNN_MAX_TENSOR_DIMS> input1_shape; std::array<size_t, XNN_MAX_TENSOR_DIMS> input2_shape; for (size_t i = 0; i < num_input1_dims; ++i) { input1_shape[i] = GetTensorShape(input1).Dims(i); } for (size_t i = 0; i < num_input2_dims; ++i) { input2_shape[i] = GetTensorShape(input2).Dims(i); } CpuBackendContext* cpu_backend_context = CpuBackendContext::GetFromContext(context); pthreadpool_t threadpool = cpu_backend_context->get_xnnpack_threadpool(); float output_min = -std::numeric_limits<float>::infinity(); float output_max = std::numeric_limits<float>::infinity(); CalculateActivationRange(params->activation, &output_min, &output_max); const enum xnn_status status = xnn_run_divide_nd_f32( num_input1_dims, input1_shape.data(), num_input2_dims, input2_shape.data(), GetTensorData<float>(input1), GetTensorData<float>(input2), GetTensorData<float>(output), output_min, output_max, XNN_FLAG_YIELD_WORKERS, threadpool); if (status == xnn_status_success) { return; } TFLITE_LOG( TFLITE_LOG_INFO, "Failed to run xnnpack xnn_run_divide_nd_f32. Error code: %d", status); } #endif if (data->requires_broadcast) { TF_LITE_DIV(optimized_ops, BroadcastDivSlow, float); } else { TF_LITE_DIV(optimized_ops, Div, float); } } } #undef TF_LITE_DIV } template <KernelType kernel_type> TfLiteStatus EvalQuantized(TfLiteContext* context, TfLiteNode* node, TfLiteDivParams* params, const OpData* data, const TfLiteTensor* input1, const TfLiteTensor* input2, TfLiteTensor* output) { if (input1->type == kTfLiteUInt8 && input2->type == kTfLiteUInt8 && output->type == kTfLiteUInt8) { tflite::ArithmeticParams op_params; SetActivationParams(data->output_activation_min, data->output_activation_max, &op_params); op_params.input1_offset = -input1->params.zero_point; op_params.input2_offset = -input2->params.zero_point; op_params.output_offset = output->params.zero_point; op_params.output_multiplier = data->output_multiplier; op_params.output_shift = data->output_shift; bool need_broadcast = optimized_ops::ProcessBroadcastShapes( GetTensorShape(input1), GetTensorShape(input2), &op_params); #define TF_LITE_DIV(type, opname, dtype) \ type::opname(op_params, GetTensorShape(input1), \ GetTensorData<dtype>(input1), GetTensorShape(input2), \ GetTensorData<dtype>(input2), GetTensorShape(output), \ GetTensorData<dtype>(output)) if (kernel_type == kReference) { if (need_broadcast) { TF_LITE_DIV(reference_ops, BroadcastDivSlow, uint8_t); } else { TF_LITE_DIV(reference_ops, Div, uint8_t); } } else { if (need_broadcast) { TF_LITE_DIV(optimized_ops, BroadcastDivSlow, uint8_t); } else { TF_LITE_DIV(optimized_ops, Div, uint8_t); } } #undef TF_LITE_DIV } else { TF_LITE_KERNEL_LOG( context, "Unsupported combination of input and output types in Div."); return kTfLiteError; } return kTfLiteOk; } template <typename T> TfLiteStatus CheckNonZero(TfLiteContext* context, const TfLiteTensor* tensor) { const auto* data = GetTensorData<T>(tensor); const size_t number_elements = tensor->bytes / sizeof(T); for (size_t i = 0; i < number_elements; i++) { TF_LITE_ENSURE(context, data[i] != 0); } return kTfLiteOk; } template <KernelType kernel_type> TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { auto* params = reinterpret_cast<TfLiteDivParams*>(node->builtin_data); OpData* data = reinterpret_cast<OpData*>(node->user_data); const TfLiteTensor* input1; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor1, &input1)); const TfLiteTensor* input2; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor2, &input2)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); if (output->type == kTfLiteFloat32) { EvalDiv<kernel_type>(context, node, params, data, input1, input2, output); } else if (output->type == kTfLiteInt32) { CheckNonZero<int32_t>(context, input2); EvalDiv<kernel_type>(context, node, params, data, input1, input2, output); } else if (output->type == kTfLiteUInt8) { CheckNonZero<uint8_t>(context, input2); TF_LITE_ENSURE_OK( context, EvalQuantized<kernel_type>(context, node, params, data, input1, input2, output)); } else { TF_LITE_KERNEL_LOG( context, "Div only supports FLOAT32, INT32 and quantized UINT8 now, got %d.", output->type); return kTfLiteError; } return kTfLiteOk; } } TfLiteRegistration* Register_DIV_REF() { static TfLiteRegistration r = { div::Init, div::Free, div::Prepare, div::Eval<div::kReference>, nullptr, 0, nullptr, 0, nullptr, nullptr, kTfLiteInplaceOpInput0Shared | kTfLiteInplaceOpInput1Shared}; return &r; } TfLiteRegistration* Register_DIV_GENERIC_OPT() { static TfLiteRegistration r = { div::Init, div::Free, div::Prepare, div::Eval<div::kGenericOptimized>, nullptr, 0, nullptr, 0, nullptr, nullptr, kTfLiteInplaceOpInput0Shared | kTfLiteInplaceOpInput1Shared}; return &r; } TfLiteRegistration* Register_DIV_NEON_OPT() { static TfLiteRegistration r = { div::Init, div::Free, div::Prepare, div::Eval<div::kNeonOptimized>, nullptr, 0, nullptr, 0, nullptr, nullptr, kTfLiteInplaceOpInput0Shared | kTfLiteInplaceOpInput1Shared}; return &r; } TfLiteRegistration* Register_DIV() { #ifdef USE_NEON return Register_DIV_NEON_OPT(); #else return Register_DIV_GENERIC_OPT(); #endif } } } }
#include <cstdint> #include <functional> #include <memory> #include <random> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/xnnpack/binary_elementwise_tester.h" #include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h" namespace tflite { namespace xnnpack { TEST(Div, 4DBy4D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); } TEST(Div, 4DBy4DBroadcastChannels) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, 1, 1, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, 1, 1, channels}) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); } TEST(Div, 4DBy4DBroadcastWidth) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, 1, width, 1}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, 1, width, 1}) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); } TEST(Div, 4DBy4DBroadcastHeight) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, height, 1, 1}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, height, 1, 1}) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); } TEST(Div, 4DBy4DBroadcastBatch) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, 1, 1, 1}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, 1, 1, 1}) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); } TEST(Div, 4DBy4DBroadcastHeightWidthChannels) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, height, width, channels}) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); } TEST(Div, 4DBy3D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({height, width, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({height, width, channels}) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); } TEST(Div, 4DBy2D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({width, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({width, channels}) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); } TEST(Div, 4DBy1D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({channels}) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); } TEST(Div, 4DBy0D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({}) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); } TEST(Div, 2DBy2D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({batch, channels}) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); } TEST(Div, 2DBy1D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({channels}) .Input2Shape({batch, channels}) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({channels}) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); } TEST(Div, 2DBy0D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({}) .Input2Shape({batch, channels}) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({}) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); } TEST(Div, 4DByStatic4D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input2Static(true) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); } TEST(Div, 4DByStatic4DBroadcastChannels) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, 1, 1, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, 1, 1, channels}) .Input2Static(true) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); } TEST(Div, 4DByStatic4DBroadcastWidth) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, 1, width, 1}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, 1, width, 1}) .Input2Static(true) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); } TEST(Div, 4DByStatic4DBroadcastHeight) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, height, 1, 1}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, height, 1, 1}) .Input2Static(true) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); } TEST(Div, 4DByStatic4DBroadcastBatch) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, 1, 1, 1}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, 1, 1, 1}) .Input2Static(true) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); } TEST(Div, 4DByStatic4DBroadcastHeightWidthChannels) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, height, width, channels}) .Input2Static(true) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); } TEST(Div, 4DByStatic3D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({height, width, channels}) .Input2Static(true) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); } TEST(Div, 4DByStatic2D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({width, channels}) .Input2Static(true) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); } TEST(Div, 4DByStatic1D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({channels}) .Input2Static(true) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); } TEST(Div, 4DByStatic0D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({}) .Input2Static(true) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); } TEST(Div, 2DByStatic2D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({batch, channels}) .Input1Static(true) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({batch, channels}) .Input2Static(true) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); } TEST(Div, 2DByStatic1D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({channels}) .Input2Shape({batch, channels}) .Input1Static(true) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({channels}) .Input2Static(true) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); } TEST(Div, 2DByStatic0D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({}) .Input2Shape({batch, channels}) .Input1Static(true) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({}) .Input2Static(true) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); } TEST(Div, FP16Weights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .FP16Weights() .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input2Static(true) .FP16Weights() .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); } TEST(Div, INT8Weights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .INT8Weights() .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input2Static(true) .INT8Weights() .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); } TEST(Div, INT8ChannelWiseWeights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .INT8ChannelWiseWeights() .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input2Static(true) .INT8ChannelWiseWeights() .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); } TEST(Div, SparseWeights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .SparseWeights() .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input2Static(true) .SparseWeights() .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); } TEST(Div, ReluActivation) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .ReluActivation() .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); } TEST(Div, Relu6Activation) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Relu6Activation() .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); } TEST(Div, ReluMinus1To1Activation) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .ReluMinus1To1Activation() .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); } TEST(Div, DISABLED_TanhActivation) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .TanhActivation() .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); } TEST(Div, DISABLED_SignBitActivation) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .SignBitActivation() .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); } TEST(Div, MultiThreading) { TfLiteXNNPackDelegateOptions delegate_options = TfLiteXNNPackDelegateOptionsDefault(); delegate_options.num_threads = 2; std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_DIV, xnnpack_delegate.get()); } } }
915
cpp
tensorflow/tensorflow
floor_div
tensorflow/lite/kernels/floor_div.cc
tensorflow/lite/kernels/floor_div_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_FLOOR_DIV_H_ #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_FLOOR_DIV_H_ #include <cmath> #include <functional> #include "tensorflow/lite/kernels/internal/types.h" namespace tflite { namespace reference_ops { template <typename T> T FloorDiv(T input1, T input2) { return std::floor(std::divides<double>()(static_cast<double>(input1), static_cast<double>(input2))); } } } #endif #include <math.h> #include <stddef.h> #include <stdint.h> #include <functional> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/reference/binary_function.h" #include "tensorflow/lite/kernels/internal/reference/reference_ops.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace builtin { namespace floor_div { namespace { constexpr int kInputTensor1 = 0; constexpr int kInputTensor2 = 1; constexpr int kOutputTensor = 0; struct OpData { bool requires_broadcast; }; void* Init(TfLiteContext* context, const char* buffer, size_t length) { auto* data = new OpData; data->requires_broadcast = false; return data; } void Free(TfLiteContext* context, void* buffer) { delete reinterpret_cast<OpData*>(buffer); } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); OpData* data = reinterpret_cast<OpData*>(node->user_data); const TfLiteTensor* input1; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor1, &input1)); const TfLiteTensor* input2; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor2, &input2)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); TF_LITE_ENSURE_TYPES_EQ(context, input1->type, input2->type); const TfLiteType type = input1->type; switch (type) { case kTfLiteFloat32: case kTfLiteInt32: case kTfLiteInt16: case kTfLiteInt8: break; default: TF_LITE_KERNEL_LOG(context, "Type '%s' is not supported by floor_div.", TfLiteTypeGetName(type)); return kTfLiteError; } output->type = type; data->requires_broadcast = !HaveSameShapes(input1, input2); TfLiteIntArray* output_size = nullptr; if (data->requires_broadcast) { TF_LITE_ENSURE_OK(context, CalculateShapeForBroadcast( context, input1, input2, &output_size)); } else { output_size = TfLiteIntArrayCopy(input1->dims); } return context->ResizeTensor(context, output, output_size); } template <typename T> TfLiteStatus EvalImpl(TfLiteContext* context, bool requires_broadcast, const TfLiteTensor* input1, const TfLiteTensor* input2, TfLiteTensor* output) { const T* denominator_data = GetTensorData<T>(input2); for (int i = 0; i < NumElements(input2); ++i) { if (std::equal_to<T>()(denominator_data[i], 0)) { TF_LITE_KERNEL_LOG(context, "Division by 0"); return kTfLiteError; } } if (requires_broadcast) { reference_ops::BroadcastBinaryFunction4DSlow<T, T, T>( GetTensorShape(input1), GetTensorData<T>(input1), GetTensorShape(input2), denominator_data, GetTensorShape(output), GetTensorData<T>(output), reference_ops::FloorDiv<T>); } else { reference_ops::BinaryFunction<T, T, T>( GetTensorShape(input1), GetTensorData<T>(input1), GetTensorShape(input2), GetTensorData<T>(input2), GetTensorShape(output), GetTensorData<T>(output), reference_ops::FloorDiv<T>); } return kTfLiteOk; } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { OpData* data = reinterpret_cast<OpData*>(node->user_data); const TfLiteTensor* input1; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor1, &input1)); const TfLiteTensor* input2; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor2, &input2)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); switch (input1->type) { case kTfLiteInt8: { return EvalImpl<int8_t>(context, data->requires_broadcast, input1, input2, output); } case kTfLiteInt16: { return EvalImpl<int16_t>(context, data->requires_broadcast, input1, input2, output); } case kTfLiteInt32: { return EvalImpl<int32_t>(context, data->requires_broadcast, input1, input2, output); } case kTfLiteFloat32: { return EvalImpl<float>(context, data->requires_broadcast, input1, input2, output); } default: { TF_LITE_KERNEL_LOG(context, "Type '%s' is not supported by floor_div.", TfLiteTypeGetName(input1->type)); return kTfLiteError; } } } } } TfLiteRegistration* Register_FLOOR_DIV() { static TfLiteRegistration r = {floor_div::Init, floor_div::Free, floor_div::Prepare, floor_div::Eval}; return &r; } } } }
#include <stdint.h> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { using ::testing::ElementsAre; template <typename T> class FloorDivModel : public SingleOpModel { public: FloorDivModel(const TensorData& input1, const TensorData& input2, const TensorData& output) { input1_ = AddInput(input1); input2_ = AddInput(input2); output_ = AddOutput(output); SetBuiltinOp(BuiltinOperator_FLOOR_DIV, BuiltinOptions_FloorDivOptions, CreateFloorDivOptions(builder_).Union()); BuildInterpreter({GetShape(input1_), GetShape(input2_)}); } int input1() { return input1_; } int input2() { return input2_; } std::vector<T> GetOutput() { return ExtractVector<T>(output_); } std::vector<int> GetOutputShape() { return GetTensorShape(output_); } private: int input1_; int input2_; int output_; }; TEST(FloorDivModel, Simple) { FloorDivModel<int32_t> model({TensorType_INT32, {1, 2, 2, 1}}, {TensorType_INT32, {1, 2, 2, 1}}, {TensorType_INT32, {}}); model.PopulateTensor<int32_t>(model.input1(), {10, 9, 11, 3}); model.PopulateTensor<int32_t>(model.input2(), {2, 2, 3, 4}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 2, 2, 1)); EXPECT_THAT(model.GetOutput(), ElementsAre(5, 4, 3, 0)); } TEST(FloorDivModel, NegativeValue) { FloorDivModel<int32_t> model({TensorType_INT32, {1, 2, 2, 1}}, {TensorType_INT32, {1, 2, 2, 1}}, {TensorType_INT32, {}}); model.PopulateTensor<int32_t>(model.input1(), {10, -9, -11, 7}); model.PopulateTensor<int32_t>(model.input2(), {2, 2, -3, -4}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 2, 2, 1)); EXPECT_THAT(model.GetOutput(), ElementsAre(5, -5, 3, -2)); } TEST(FloorDivModel, BroadcastFloorDiv) { FloorDivModel<int32_t> model({TensorType_INT32, {1, 2, 2, 1}}, {TensorType_INT32, {1}}, {TensorType_INT32, {}}); model.PopulateTensor<int32_t>(model.input1(), {10, -9, -11, 7}); model.PopulateTensor<int32_t>(model.input2(), {-3}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 2, 2, 1)); EXPECT_THAT(model.GetOutput(), ElementsAre(-4, 3, 3, -3)); } TEST(FloorDivModel, SimpleFloat) { FloorDivModel<float> model({TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {}}); model.PopulateTensor<float>(model.input1(), {10.05, 9.09, 11.9, 3.01}); model.PopulateTensor<float>(model.input2(), {2.05, 2.03, 3.03, 4.03}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 2, 2, 1)); EXPECT_THAT(model.GetOutput(), ElementsAre(4.0, 4.0, 3.0, 0.0)); } TEST(FloorDivModel, NegativeValueFloat) { FloorDivModel<float> model({TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {}}); model.PopulateTensor<float>(model.input1(), {10.03, -9.9, -11.0, 7.0}); model.PopulateTensor<float>(model.input2(), {2.0, 2.3, -3.0, -4.1}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 2, 2, 1)); EXPECT_THAT(model.GetOutput(), ElementsAre(5.0, -5.0, 3.0, -2.0)); } TEST(FloorDivModel, BroadcastFloorDivFloat) { FloorDivModel<float> model({TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {1}}, {TensorType_FLOAT32, {}}); model.PopulateTensor<float>(model.input1(), {10.03, -9.9, -11.0, 7.0}); model.PopulateTensor<float>(model.input2(), {-3.3}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 2, 2, 1)); EXPECT_THAT(model.GetOutput(), ElementsAre(-4.0, 2.0, 3.0, -3.0)); } TEST(FloorDivModel, SimpleInt16) { FloorDivModel<int16_t> model({TensorType_INT16, {1, 2, 2, 1}}, {TensorType_INT16, {1, 2, 2, 1}}, {TensorType_INT16, {}}); model.PopulateTensor<int16_t>(model.input1(), {10, 9, 11, 3}); model.PopulateTensor<int16_t>(model.input2(), {2, 2, 3, 4}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 2, 2, 1)); EXPECT_THAT(model.GetOutput(), ElementsAre(5, 4, 3, 0)); } TEST(FloorDivModel, NegativeValueInt16) { FloorDivModel<int16_t> model({TensorType_INT16, {1, 2, 2, 1}}, {TensorType_INT16, {1, 2, 2, 1}}, {TensorType_INT16, {}}); model.PopulateTensor<int16_t>(model.input1(), {10, -9, -11, 7}); model.PopulateTensor<int16_t>(model.input2(), {2, 2, -3, -4}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 2, 2, 1)); EXPECT_THAT(model.GetOutput(), ElementsAre(5, -5, 3, -2)); } TEST(FloorDivModel, BroadcastFloorDivInt16) { FloorDivModel<int16_t> model({TensorType_INT16, {1, 2, 2, 1}}, {TensorType_INT16, {1}}, {TensorType_INT16, {}}); model.PopulateTensor<int16_t>(model.input1(), {10, -9, -11, 7}); model.PopulateTensor<int16_t>(model.input2(), {-3}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 2, 2, 1)); EXPECT_THAT(model.GetOutput(), ElementsAre(-4, 3, 3, -3)); } } }
916
cpp
tensorflow/tensorflow
mul
tensorflow/lite/kernels/mul.cc
tensorflow/lite/kernels/mul_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_GL_KERNELS_MUL_H_ #define TENSORFLOW_LITE_DELEGATES_GPU_GL_KERNELS_MUL_H_ #include <memory> #include "tensorflow/lite/delegates/gpu/gl/node_shader.h" namespace tflite { namespace gpu { namespace gl { std::unique_ptr<NodeShader> NewMultiplyNodeShader(); } } } #endif #include "tensorflow/lite/delegates/gpu/gl/kernels/mul.h" #include <memory> #include <string> #include <utility> #include <variant> #include <vector> #include "absl/strings/str_cat.h" #include "tensorflow/lite/delegates/gpu/common/convert.h" #include "tensorflow/lite/delegates/gpu/common/data_type.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/shape.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/tensor.h" #include "tensorflow/lite/delegates/gpu/common/types.h" #include "tensorflow/lite/delegates/gpu/common/util.h" namespace tflite { namespace gpu { namespace gl { namespace { absl::Status GetCoordinate(const NodeShader::GenerationContext& ctx, int dim, const std::string& default_coord, std::string* coord) { std::string result; if (ctx.input_shapes[1][dim] == 1 && ctx.input_shapes[0][dim] != 1) { result = "0"; } else if (ctx.input_shapes[0][dim] == ctx.input_shapes[1][dim]) { result = default_coord; } else { return absl::InvalidArgumentError( absl::StrCat("Second runtime tensor dimension ", dim, " must either match " "first tensor's dimensions or be 1.")); } *coord = result; return absl::OkStatus(); } absl::Status GenerateMultiplyRuntimeTensorCode( const NodeShader::GenerationContext& ctx, GeneratedCode* generated_code) { std::string x_coord, y_coord, z_coord; RETURN_IF_ERROR( GetCoordinate(ctx, 2, "gid.x", &x_coord)); RETURN_IF_ERROR( GetCoordinate(ctx, 1, "gid.y", &y_coord)); RETURN_IF_ERROR( GetCoordinate(ctx, 3, "gid.z", &z_coord)); std::string source = absl::StrCat("vec4 input1_value = $input_data_1[", x_coord, ", ", y_coord, ", ", z_coord, "]$;"); if (ctx.input_shapes[1][3] == 1 && ctx.input_shapes[0][3] != 1) { absl::StrAppend( &source, "\ninput1_value = vec4(input1_value.x, input1_value.x, input1_value.x, " "input1_value.x);\n"); } absl::StrAppend( &source, "value_0 = $input_data_0[gid.x, gid.y, gid.z]$ * input1_value;"); *generated_code = { {}, {}, {}, uint3(), uint3(), std::move(source), IOStructure::ONLY_DEFINITIONS, IOStructure::AUTO, }; return absl::OkStatus(); } absl::Status GenerateMultiplyConstantTensorCode( const NodeShader::GenerationContext& ctx, GeneratedCode* generated_code) { const auto& attr = std::any_cast<const ElementwiseAttributes&>(ctx.op_attr); if (std::holds_alternative<float>(attr.param)) { *generated_code = { {{"scalar", std::get<float>(attr.param)}}, {}, {}, uint3(), uint3(), "value_0 *= $scalar$;", IOStructure::AUTO, IOStructure::AUTO, }; return absl::OkStatus(); } if (std::holds_alternative<Tensor<Linear, DataType::FLOAT32>>(attr.param)) { *generated_code = { {}, {{"mul_buffer", MakeReadonlyObject( std::get<Tensor<Linear, DataType::FLOAT32>>(attr.param).data)}}, {}, uint3(static_cast<int>(ctx.input_shapes[0][2]), static_cast<int>(ctx.input_shapes[0][1]), DivideRoundUp(static_cast<int>(ctx.input_shapes[0][3]), 4)), uint3(), "value_0 *= $mul_buffer[gid.z]$;", IOStructure::AUTO, IOStructure::AUTO, }; return absl::OkStatus(); } if (std::holds_alternative<Tensor<HWC, DataType::FLOAT32>>(attr.param)) { std::string source; if (ctx.input_shapes[0][1] == 1 && ctx.input_shapes[0][2] == 1 && ctx.input_shapes[0][3] == 1) { source = R"( value_0 = $input_data_0[0, 0, 0]$; value_0 = vec4(value_0.x, value_0.x, value_0.x, value_0.x); )"; } auto param_shape = std::get<Tensor<HWC, DataType::FLOAT32>>(attr.param).shape; if (param_shape.c == 1) { if (param_shape.h == 1 && param_shape.w == 1) { absl::StrAppend(&source, "vec4 const_val = $hwc_buffer[0, 0, 0]$;"); } else { absl::StrAppend(&source, "vec4 const_val = $hwc_buffer[gid.x, gid.y, 0]$;"); } absl::StrAppend(&source, "const_val = vec4(const_val.x, const_val.x, const_val.x, " "const_val.x);"); } else { source += "vec4 const_val = $hwc_buffer[gid.x, gid.y, gid.z]$;"; } absl::StrAppend(&source, "value_0 *= const_val;"); *generated_code = { {}, {{"hwc_buffer", MakeReadonlyObject( uint3(param_shape.w, param_shape.h, DivideRoundUp(param_shape.c, 4)), ConvertToPHWC4( std::get<Tensor<HWC, DataType::FLOAT32>>(attr.param)))}}, {}, uint3(static_cast<int>(ctx.input_shapes[0][2]), static_cast<int>(ctx.input_shapes[0][1]), DivideRoundUp(static_cast<int>(ctx.input_shapes[0][3]), 4)), uint3(), std::move(source), IOStructure::AUTO, IOStructure::AUTO, }; return absl::OkStatus(); } return absl::InvalidArgumentError("Unsupported Multiplication case."); } class Multiply : public NodeShader { public: absl::Status GenerateCode(const GenerationContext& ctx, GeneratedCode* generated_code) const final { if (ctx.input_shapes.size() == 2) { return GenerateMultiplyRuntimeTensorCode(ctx, generated_code); } else { return GenerateMultiplyConstantTensorCode(ctx, generated_code); } } }; } std::unique_ptr<NodeShader> NewMultiplyNodeShader() { return std::make_unique<Multiply>(); } } } }
#include "tensorflow/lite/delegates/gpu/gl/kernels/mul.h" #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/gl/kernels/test_util.h" using ::testing::FloatNear; using ::testing::Pointwise; namespace tflite { namespace gpu { namespace gl { namespace { TEST(MulTest, ConstantTensorMatchingShape) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 1, 2, 2); TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 1; output.shape = input.shape; ElementwiseAttributes attr; Tensor<HWC, DataType::FLOAT32> tensor_3d; tensor_3d.shape.h = input.shape.h; tensor_3d.shape.w = input.shape.w; tensor_3d.shape.c = input.shape.c; tensor_3d.id = 2; tensor_3d.data = {-2, 2, -3, 3}; attr.param = std::move(tensor_3d); SingleOpModel model({ToString(OperationType::MUL), attr}, {input}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {1, 2, 3, 4})); ASSERT_OK(model.Invoke(*NewMultiplyNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {-2, 4, -9, 12})); } TEST(MulTest, ConstantTensorSingleChannel) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 1, 2, 2); TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 1; output.shape = input.shape; ElementwiseAttributes attr; Tensor<HWC, DataType::FLOAT32> tensor_3d; tensor_3d.shape.h = input.shape.h; tensor_3d.shape.w = input.shape.w; tensor_3d.shape.c = 1; tensor_3d.id = 2; tensor_3d.data = {-2, 2}; attr.param = std::move(tensor_3d); SingleOpModel model({ToString(OperationType::MUL), attr}, {input}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {1, 2, 3, 4})); ASSERT_OK(model.Invoke(*NewMultiplyNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {-2, -4, 6, 8})); } TEST(MulTest, DegenerateConstantTensorSingleValue) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 1, 2, 2); TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 1; output.shape = input.shape; ElementwiseAttributes attr; Tensor<HWC, DataType::FLOAT32> tensor_3d; tensor_3d.shape.h = 1; tensor_3d.shape.w = 1; tensor_3d.shape.c = 1; tensor_3d.id = 2; tensor_3d.data = {-2}; attr.param = std::move(tensor_3d); SingleOpModel model({ToString(OperationType::MUL), attr}, {input}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {1, 2, 3, 4})); ASSERT_OK(model.Invoke(*NewMultiplyNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {-2, -4, -6, -8})); } TEST(MulTest, ConstantTensorLinear) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 1, 2, 2); TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 1; output.shape = input.shape; ElementwiseAttributes attr; Tensor<Linear, DataType::FLOAT32> tensor; tensor.shape.v = 2; tensor.id = 1; tensor.data = {2, 3}; attr.param = std::move(tensor); SingleOpModel model({ToString(OperationType::MUL), attr}, {input}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {1, 2, 3, 4})); ASSERT_OK(model.Invoke(*NewMultiplyNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {2, 6, 6, 12})); } TEST(MulTest, ConstantTensorScalar) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 2, 2, 1); TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 1; output.shape = input.shape; ElementwiseAttributes attr; attr.param = 2.f; SingleOpModel model({ToString(OperationType::MUL), attr}, {input}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {1, 2, 3, 4})); ASSERT_OK(model.Invoke(*NewMultiplyNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {2, 4, 6, 8})); } TEST(MulTest, RuntimeTensorMatchingShapeNonOnes) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 2, 2, 2); TensorRef<BHWC> mask; mask.type = DataType::FLOAT32; mask.ref = 1; mask.shape = input.shape; TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 2; output.shape = input.shape; SingleOpModel model({ToString(OperationType::MUL), {}}, {input, mask}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {1, 2, 3, 4, -1, -2, -3, -4})); ASSERT_TRUE(model.PopulateTensor(1, {5, 6, 7, 8, 9, 10, 11, 12})); ASSERT_OK(model.Invoke(*NewMultiplyNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {5, 12, 21, 32, -9, -20, -33, -48})); } TEST(MulTest, RuntimeTensorMatchingShapeHeightOne) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 1, 2, 2); TensorRef<BHWC> mask; mask.type = DataType::FLOAT32; mask.ref = 1; mask.shape = input.shape; TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 2; output.shape = input.shape; SingleOpModel model({ToString(OperationType::MUL), {}}, {input, mask}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {1, 2, 3, 4})); ASSERT_TRUE(model.PopulateTensor(1, {1, 2, 3, 4})); ASSERT_OK(model.Invoke(*NewMultiplyNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {1, 4, 9, 16})); } TEST(MulTest, RuntimeTensorSingleChannel) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 1, 2, 2); TensorRef<BHWC> mask; mask.type = DataType::FLOAT32; mask.ref = 1; mask.shape = BHWC(1, input.shape.h, input.shape.w, 1); TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 2; output.shape = input.shape; SingleOpModel model({ToString(OperationType::MUL), {}}, {input, mask}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {1, 2, 3, 4})); ASSERT_TRUE(model.PopulateTensor(1, {2, 3})); ASSERT_OK(model.Invoke(*NewMultiplyNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {2, 4, 9, 12})); } TEST(MulTest, RuntimeTensorLinear) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 1, 2, 2); TensorRef<BHWC> mask; mask.type = DataType::FLOAT32; mask.ref = 1; mask.shape = BHWC(1, 1, 1, input.shape.c); TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 2; output.shape = input.shape; SingleOpModel model({ToString(OperationType::MUL), {}}, {input, mask}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {1, 2, 3, 4})); ASSERT_TRUE(model.PopulateTensor(1, {1, 2})); ASSERT_OK(model.Invoke(*NewMultiplyNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {1, 4, 3, 8})); } TEST(MulTest, RuntimeTensorScalar) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 1, 2, 2); TensorRef<BHWC> mask; mask.type = DataType::FLOAT32; mask.ref = 1; mask.shape = BHWC(1, 1, 1, 1); TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 2; output.shape = input.shape; SingleOpModel model({ToString(OperationType::MUL), {}}, {input, mask}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {1, 2, 3, 4})); ASSERT_TRUE(model.PopulateTensor(1, {5})); ASSERT_OK(model.Invoke(*NewMultiplyNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {5, 10, 15, 20})); } } } } }
917
cpp
tensorflow/tensorflow
floor_mod
tensorflow/lite/kernels/floor_mod.cc
tensorflow/lite/kernels/floor_mod_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_FLOOR_MOD_H_ #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_FLOOR_MOD_H_ #include <cmath> #include <functional> namespace tflite { namespace reference_ops { template <typename T> T FloorMod(T input1, T input2) { struct FloatMod { float operator()(const float lhs, const float rhs) const { return std::fmod(lhs, rhs); } }; using ModFunc = typename std::conditional<std::is_integral<T>::value, std::modulus<T>, FloatMod>::type; ModFunc mod_func; T trunc_mod = mod_func(input1, input2); return (trunc_mod != 0) && ((input2 < 0) != (trunc_mod < 0)) ? (trunc_mod + input2) : trunc_mod; } } } #endif #include <stddef.h> #include <stdint.h> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/reference/binary_function.h" #include "tensorflow/lite/kernels/internal/reference/reference_ops.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace builtin { namespace floor_mod { namespace { constexpr int kInputTensor1 = 0; constexpr int kInputTensor2 = 1; constexpr int kOutputTensor = 0; struct OpData { bool requires_broadcast; }; void* Init(TfLiteContext* context, const char* buffer, size_t length) { auto* data = new OpData; data->requires_broadcast = false; return data; } void Free(TfLiteContext* context, void* buffer) { delete reinterpret_cast<OpData*>(buffer); } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); OpData* data = reinterpret_cast<OpData*>(node->user_data); const TfLiteTensor* input1; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor1, &input1)); const TfLiteTensor* input2; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor2, &input2)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); TF_LITE_ENSURE_TYPES_EQ(context, input1->type, input2->type); const TfLiteType type = input1->type; if (type != kTfLiteInt8 && type != kTfLiteInt16 && type != kTfLiteInt32 && type != kTfLiteFloat32 && type != kTfLiteInt64) { TF_LITE_KERNEL_LOG(context, "Type '%s' is not supported by floor_mod.", TfLiteTypeGetName(type)); return kTfLiteError; } output->type = type; data->requires_broadcast = !HaveSameShapes(input1, input2); TfLiteIntArray* output_size = nullptr; if (data->requires_broadcast) { TF_LITE_ENSURE_OK(context, CalculateShapeForBroadcast( context, input1, input2, &output_size)); } else { output_size = TfLiteIntArrayCopy(input1->dims); } return context->ResizeTensor(context, output, output_size); } template <typename T> TfLiteStatus EvalImpl(TfLiteContext* context, bool requires_broadcast, const TfLiteTensor* input1, const TfLiteTensor* input2, TfLiteTensor* output) { const T* denominator_data = GetTensorData<T>(input2); if (input2->type == kTfLiteInt8 || input2->type == kTfLiteInt16 || input2->type == kTfLiteInt32 || input2->type == kTfLiteInt64) { const int num_elements = NumElements(input2); for (int i = 0; i < num_elements; ++i) { if (denominator_data[i] == 0) { TF_LITE_KERNEL_LOG(context, "Division by 0"); return kTfLiteError; } } } if (requires_broadcast) { reference_ops::BroadcastBinaryFunction4DSlow<T, T, T>( GetTensorShape(input1), GetTensorData<T>(input1), GetTensorShape(input2), denominator_data, GetTensorShape(output), GetTensorData<T>(output), reference_ops::FloorMod<T>); } else { reference_ops::BinaryFunction<T, T, T>( GetTensorShape(input1), GetTensorData<T>(input1), GetTensorShape(input2), GetTensorData<T>(input2), GetTensorShape(output), GetTensorData<T>(output), reference_ops::FloorMod<T>); } return kTfLiteOk; } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { OpData* data = reinterpret_cast<OpData*>(node->user_data); const TfLiteTensor* input1; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor1, &input1)); const TfLiteTensor* input2; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor2, &input2)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); switch (input1->type) { case kTfLiteInt8: { return EvalImpl<int8_t>(context, data->requires_broadcast, input1, input2, output); } case kTfLiteInt16: { return EvalImpl<int16_t>(context, data->requires_broadcast, input1, input2, output); } case kTfLiteInt32: { return EvalImpl<int32_t>(context, data->requires_broadcast, input1, input2, output); } case kTfLiteInt64: { return EvalImpl<int64_t>(context, data->requires_broadcast, input1, input2, output); } case kTfLiteFloat32: { return EvalImpl<float>(context, data->requires_broadcast, input1, input2, output); } default: { TF_LITE_KERNEL_LOG(context, "Type '%s' is not supported by floor_mod.", TfLiteTypeGetName(input1->type)); return kTfLiteError; } } } } } TfLiteRegistration* Register_FLOOR_MOD() { static TfLiteRegistration r = {floor_mod::Init, floor_mod::Free, floor_mod::Prepare, floor_mod::Eval}; return &r; } } } }
#include <stdint.h> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/kernels/floor_mod_test_common.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { using ::testing::ElementsAre; TEST(FloorModModel, Simple) { FloorModModel<int32_t> model({TensorType_INT32, {1, 2, 2, 1}}, {TensorType_INT32, {1, 2, 2, 1}}, {TensorType_INT32, {}}); model.PopulateTensor<int32_t>(model.input1(), {10, 9, 11, 3}); model.PopulateTensor<int32_t>(model.input2(), {2, 2, 3, 4}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 2, 2, 1)); EXPECT_THAT(model.GetOutput(), ElementsAre(0, 1, 2, 3)); } TEST(FloorModModel, NegativeValue) { FloorModModel<int32_t> model({TensorType_INT32, {1, 2, 2, 1}}, {TensorType_INT32, {1, 2, 2, 1}}, {TensorType_INT32, {}}); model.PopulateTensor<int32_t>(model.input1(), {10, -9, -11, 7}); model.PopulateTensor<int32_t>(model.input2(), {2, 2, -3, -4}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 2, 2, 1)); EXPECT_THAT(model.GetOutput(), ElementsAre(0, 1, -2, -1)); } TEST(FloorModModel, BroadcastFloorMod) { FloorModModel<int32_t> model({TensorType_INT32, {1, 2, 2, 1}}, {TensorType_INT32, {1}}, {TensorType_INT32, {}}); model.PopulateTensor<int32_t>(model.input1(), {10, -9, -11, 7}); model.PopulateTensor<int32_t>(model.input2(), {-3}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 2, 2, 1)); EXPECT_THAT(model.GetOutput(), ElementsAre(-2, 0, -2, -2)); } TEST(FloorModModel, Int64WithBroadcast) { FloorModModel<int64_t> model({TensorType_INT64, {1, 2, 2, 1}}, {TensorType_INT64, {1}}, {TensorType_INT64, {}}); model.PopulateTensor<int64_t>(model.input1(), {10, -9, -11, (1LL << 34) + 9}); model.PopulateTensor<int64_t>(model.input2(), {-(1LL << 33)}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 2, 2, 1)); EXPECT_THAT(model.GetOutput(), ElementsAre(-8589934582, -9, -11, -8589934583)); } TEST(FloorModModel, FloatSimple) { FloorModModel<float> model({TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {}}); model.PopulateTensor<float>(model.input1(), {10, 9, 11, 3}); model.PopulateTensor<float>(model.input2(), {2, 2, 3, 4}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 2, 2, 1)); EXPECT_THAT(model.GetOutput(), ElementsAre(0, 1, 2, 3)); } TEST(FloorModModel, FloatNegativeValue) { FloorModModel<float> model({TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {}}); model.PopulateTensor<float>(model.input1(), {10, -9, -11, 7}); model.PopulateTensor<float>(model.input2(), {2, 2, -3, -4}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 2, 2, 1)); EXPECT_THAT(model.GetOutput(), ElementsAre(0, 1, -2, -1)); } TEST(FloorModModel, FloatBroadcastFloorMod) { FloorModModel<float> model({TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {1}}, {TensorType_FLOAT32, {}}); model.PopulateTensor<float>(model.input1(), {10, -9, -11, 7}); model.PopulateTensor<float>(model.input2(), {-3}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 2, 2, 1)); EXPECT_THAT(model.GetOutput(), ElementsAre(-2, 0, -2, -2)); } TEST(FloorModModel, SimpleInt16) { FloorModModel<int16_t> model({TensorType_INT16, {1, 2, 2, 1}}, {TensorType_INT16, {1, 2, 2, 1}}, {TensorType_INT16, {}}); model.PopulateTensor<int16_t>(model.input1(), {10, 9, 11, 3}); model.PopulateTensor<int16_t>(model.input2(), {2, 2, 3, 4}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 2, 2, 1)); EXPECT_THAT(model.GetOutput(), ElementsAre(0, 1, 2, 3)); } TEST(FloorModModel, NegativeValueInt16) { FloorModModel<int16_t> model({TensorType_INT16, {1, 2, 2, 1}}, {TensorType_INT16, {1, 2, 2, 1}}, {TensorType_INT16, {}}); model.PopulateTensor<int16_t>(model.input1(), {10, -9, -11, 7}); model.PopulateTensor<int16_t>(model.input2(), {2, 2, -3, -4}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 2, 2, 1)); EXPECT_THAT(model.GetOutput(), ElementsAre(0, 1, -2, -1)); } TEST(FloorModModel, BroadcastFloorModInt16) { FloorModModel<int16_t> model({TensorType_INT16, {1, 2, 2, 1}}, {TensorType_INT16, {1}}, {TensorType_INT16, {}}); model.PopulateTensor<int16_t>(model.input1(), {10, -9, -11, 7}); model.PopulateTensor<int16_t>(model.input2(), {-3}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 2, 2, 1)); EXPECT_THAT(model.GetOutput(), ElementsAre(-2, 0, -2, -2)); } } }
918
cpp
tensorflow/tensorflow
kernel_util
tensorflow/lite/kernels/kernel_util.cc
tensorflow/lite/kernels/kernel_util_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_KERNEL_UTIL_H_ #define TENSORFLOW_LITE_KERNELS_KERNEL_UTIL_H_ #include <stdint.h> #include <limits> #ifndef TF_LITE_STATIC_MEMORY #include <string> #endif #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/common.h" #ifndef NDEBUG #include "tensorflow/lite/kernels/op_macros.h" #endif namespace tflite { const TfLiteTensor* GetInput(const TfLiteContext* context, const TfLiteNode* node, int index); TfLiteStatus GetInputSafe(const TfLiteContext* context, const TfLiteNode* node, int index, const TfLiteTensor** tensor); TfLiteTensor* GetVariableInput(TfLiteContext* context, const TfLiteNode* node, int index); TfLiteTensor* GetOutput(TfLiteContext* context, const TfLiteNode* node, int index); TfLiteStatus GetOutputSafe(const TfLiteContext* context, const TfLiteNode* node, int index, TfLiteTensor** tensor); const TfLiteTensor* GetOptionalInputTensor(const TfLiteContext* context, const TfLiteNode* node, int index); #ifndef TF_LITE_STATIC_MEMORY TfLiteTensor* GetTemporary(TfLiteContext* context, const TfLiteNode* node, int index); TfLiteStatus GetTemporarySafe(const TfLiteContext* context, const TfLiteNode* node, int index, TfLiteTensor** tensor); const TfLiteTensor* GetIntermediates(TfLiteContext* context, const TfLiteNode* node, int index); TfLiteStatus GetIntermediatesSafe(const TfLiteContext* context, const TfLiteNode* node, int index, TfLiteTensor** tensor); #endif inline int NumDimensions(const TfLiteTensor* t) { return t->dims->size; } inline int SizeOfDimension(const TfLiteTensor* t, int dim) { return t->dims->data[dim]; } inline int NumInputs(const TfLiteNode* node) { return node->inputs == nullptr ? 0 : node->inputs->size; } inline int NumOutputs(const TfLiteNode* node) { return node->outputs == nullptr ? 0 : node->outputs->size; } #ifndef TF_LITE_STATIC_MEMORY inline int NumIntermediates(const TfLiteNode* node) { return node->intermediates->size; } #endif inline int64_t NumElements(const int* dims, int num_dims) { int64_t count = 1; for (int i = 0; i < num_dims; ++i) { #ifndef NDEBUG if (count <= 0) { break; } TF_LITE_ASSERT(dims[i] < std::numeric_limits<int>::max() / count); #endif count *= dims[i]; } return count; } inline int64_t NumElements(const TfLiteIntArray* dims) { return NumElements(dims->data, dims->size); } inline int64_t NumElements(const TfLiteTensor* t) { return NumElements(t->dims); } inline bool IsConstantTensor(const TfLiteTensor* tensor) { return tensor->allocation_type == kTfLiteMmapRo; } inline bool IsConstantOrPersistentTensor(const TfLiteTensor* tensor) { return IsConstantTensor(tensor) || (tensor->allocation_type == kTfLitePersistentRo); } inline bool IsDynamicTensor(const TfLiteTensor* tensor) { return tensor->allocation_type == kTfLiteDynamic; } #ifndef TF_LITE_STATIC_MEMORY inline void SetTensorToDynamic(TfLiteTensor* tensor) { if (tensor->allocation_type != kTfLiteDynamic) { TfLiteTensorDataFree(tensor); tensor->allocation_type = kTfLiteDynamic; } } inline void SetTensorToPersistentRo(TfLiteTensor* tensor) { if (tensor->allocation_type != kTfLitePersistentRo) { TfLiteTensorDataFree(tensor); tensor->allocation_type = kTfLitePersistentRo; } } #endif inline bool IsHybridOp(const TfLiteTensor* input, const TfLiteTensor* weight) { return ((weight->type == kTfLiteUInt8 || weight->type == kTfLiteInt8) && input->type == kTfLiteFloat32); } TfLiteStatus PopulateConvolutionQuantizationParams( TfLiteContext* context, const TfLiteTensor* input, const TfLiteTensor* filter, const TfLiteTensor* bias, TfLiteTensor* output, const TfLiteFusedActivation& activation, int32_t* multiplier, int* shift, int32_t* output_activation_min, int32_t* output_activation_max, int32_t* per_channel_multiplier, int32_t* per_channel_shift); TfLiteStatus PopulateConvolutionQuantizationParams( TfLiteContext* context, const TfLiteTensor* input, const TfLiteTensor* filter, const TfLiteTensor* bias, TfLiteTensor* output, const TfLiteFusedActivation& activation, int32_t* multiplier, int* shift, int32_t* output_activation_min, int32_t* output_activation_max, int32_t* per_channel_multiplier, int32_t* per_channel_shift, int num_channels); TfLiteStatus GetQuantizedConvolutionMultipler(TfLiteContext* context, const TfLiteTensor* input, const TfLiteTensor* filter, const TfLiteTensor* bias, TfLiteTensor* output, double* multiplier); TfLiteStatus GetQuantizedConvolutionMultipler(TfLiteContext* context, const TfLiteTensor* input, const TfLiteTensor* filter, TfLiteTensor* output, double* multiplier); TfLiteStatus CalculateActivationRangeQuantized(TfLiteContext* context, TfLiteFusedActivation activation, TfLiteTensor* output, int32_t* act_min, int32_t* act_max); template <typename T> void CalculateActivationRange(TfLiteFusedActivation activation, T* activation_min, T* activation_max) { if (activation == kTfLiteActRelu) { *activation_min = 0; *activation_max = std::numeric_limits<T>::max(); } else if (activation == kTfLiteActRelu6) { *activation_min = 0; *activation_max = 6; } else if (activation == kTfLiteActReluN1To1) { *activation_min = -1; *activation_max = 1; } else { *activation_min = std::numeric_limits<T>::lowest(); *activation_max = std::numeric_limits<T>::max(); } } bool HaveSameShapes(const TfLiteTensor* input1, const TfLiteTensor* input2); #if !defined(TF_LITE_STATIC_MEMORY) TfLiteStatus GetOutputShapeFromInput(TfLiteContext* context, const TfLiteTensor* input, TfLiteIntArray** output_shape); std::string GetShapeDebugString(const TfLiteIntArray* shape); #endif TfLiteStatus CalculateShapeForBroadcast(TfLiteContext* context, const TfLiteTensor* input1, const TfLiteTensor* input2, TfLiteIntArray** output_shape); TfLiteStatus CalculateShapeForBroadcast(TfLiteContext* context, const TfLiteTensor* input1, const TfLiteTensor* input2, const TfLiteTensor* input3, TfLiteIntArray** output_shape); int TfLiteTypeGetSize(TfLiteType type); bool IsMobilePlatform(); bool HasUnspecifiedDimension(const TfLiteTensor* tensor); } #endif #include "tensorflow/lite/kernels/kernel_util.h" #include <stdint.h> #include <stdlib.h> #include <algorithm> #include <complex> #include <limits> #include <memory> #ifndef TF_LITE_STATIC_MEMORY #include <string> #include "tensorflow/lite/array.h" #endif #include "tensorflow/lite/context_util.h" #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/cppmath.h" #include "tensorflow/lite/kernels/internal/quantization_util.h" #if defined(__APPLE__) #include "TargetConditionals.h" #endif namespace tflite { namespace { inline TfLiteTensor* GetTensorAtIndex(const TfLiteContext* context, int tensor_index) { if (context->tensors != nullptr) { return &context->tensors[tensor_index]; } else { return context->GetTensor(context, tensor_index); } } inline TfLiteStatus ValidateTensorIndexingSafe(const TfLiteContext* context, int index, int max_size, const int* tensor_indices, int* tensor_index) { if (index < 0 || index >= max_size) { TF_LITE_KERNEL_LOG(const_cast<TfLiteContext*>(context), "Invalid tensor index %d (not in [0, %d))\n", index, max_size); return kTfLiteError; } if (tensor_indices[index] == kTfLiteOptionalTensor) { TF_LITE_KERNEL_LOG(const_cast<TfLiteContext*>(context), "Tensor at index %d was optional but was expected\n", index); return kTfLiteError; } *tensor_index = tensor_indices[index]; return kTfLiteOk; } inline int ValidateTensorIndexing(const TfLiteContext* context, int index, int max_size, const int* tensor_indices) { if (index >= 0 && index < max_size) { const int tensor_index = tensor_indices[index]; if (tensor_index != kTfLiteOptionalTensor) { return tensor_index; } } return -1; } inline TfLiteTensor* GetMutableInput(const TfLiteContext* context, const TfLiteNode* node, int index) { const int tensor_index = ValidateTensorIndexing( context, index, node->inputs->size, node->inputs->data); if (tensor_index < 0) { return nullptr; } return GetTensorAtIndex(context, tensor_index); } inline TfLiteStatus GetMutableInputSafe(const TfLiteContext* context, const TfLiteNode* node, int index, const TfLiteTensor** tensor) { int tensor_index; TF_LITE_ENSURE_OK( context, ValidateTensorIndexingSafe(context, index, node->inputs->size, node->inputs->data, &tensor_index)); *tensor = GetTensorAtIndex(context, tensor_index); return kTfLiteOk; } } const TfLiteTensor* GetInput(const TfLiteContext* context, const TfLiteNode* node, int index) { return GetMutableInput(context, node, index); } TfLiteStatus GetInputSafe(const TfLiteContext* context, const TfLiteNode* node, int index, const TfLiteTensor** tensor) { return GetMutableInputSafe(context, node, index, tensor); } TfLiteTensor* GetVariableInput(TfLiteContext* context, const TfLiteNode* node, int index) { TfLiteTensor* tensor = GetMutableInput(context, node, index); if (tensor == nullptr) return nullptr; return tensor->is_variable ? tensor : nullptr; } TfLiteTensor* GetOutput(TfLiteContext* context, const TfLiteNode* node, int index) { const int tensor_index = ValidateTensorIndexing( context, index, node->outputs->size, node->outputs->data); if (tensor_index < 0) { return nullptr; } return GetTensorAtIndex(context, tensor_index); } TfLiteStatus GetOutputSafe(const TfLiteContext* context, const TfLiteNode* node, int index, TfLiteTensor** tensor) { int tensor_index; TF_LITE_ENSURE_OK( context, ValidateTensorIndexingSafe(context, index, node->outputs->size, node->outputs->data, &tensor_index)); *tensor = GetTensorAtIndex(context, tensor_index); return kTfLiteOk; } const TfLiteTensor* GetOptionalInputTensor(const TfLiteContext* context, const TfLiteNode* node, int index) { return GetInput(context, node, index); } #ifndef TF_LITE_STATIC_MEMORY TfLiteTensor* GetTemporary(TfLiteContext* context, const TfLiteNode* node, int index) { const int tensor_index = ValidateTensorIndexing( context, index, node->temporaries->size, node->temporaries->data); if (tensor_index < 0) { return nullptr; } return GetTensorAtIndex(context, tensor_index); } TfLiteStatus GetTemporarySafe(const TfLiteContext* context, const TfLiteNode* node, int index, TfLiteTensor** tensor) { int tensor_index; TF_LITE_ENSURE_OK(context, ValidateTensorIndexingSafe( context, index, node->temporaries->size, node->temporaries->data, &tensor_index)); *tensor = GetTensorAtIndex(context, tensor_index); return kTfLiteOk; } const TfLiteTensor* GetIntermediates(TfLiteContext* context, const TfLiteNode* node, int index) { const int tensor_index = ValidateTensorIndexing( context, index, node->intermediates->size, node->intermediates->data); if (tensor_index < 0) { return nullptr; } return GetTensorAtIndex(context, tensor_index); } TfLiteStatus GetIntermediatesSafe(const TfLiteContext* context, const TfLiteNode* node, int index, TfLiteTensor** tensor) { int tensor_index; TF_LITE_ENSURE_OK(context, ValidateTensorIndexingSafe( context, index, node->intermediates->size, node->intermediates->data, &tensor_index)); *tensor = GetTensorAtIndex(context, tensor_index); return kTfLiteOk; } #endif TfLiteStatus PopulateConvolutionQuantizationParams( TfLiteContext* context, const TfLiteTensor* input, const TfLiteTensor* filter, const TfLiteTensor* bias, TfLiteTensor* output, const TfLiteFusedActivation& activation, int32_t* multiplier, int* shift, int32_t* output_activation_min, int32_t* output_activation_max, int32_t* per_channel_multiplier, int32_t* per_channel_shift) { const auto* affine_quantization = reinterpret_cast<TfLiteAffineQuantization*>(filter->quantization.params); return PopulateConvolutionQuantizationParams( context, input, filter, bias, output, activation, multiplier, shift, output_activation_min, output_activation_max, per_channel_multiplier, per_channel_shift, affine_quantization->scale->size); } TfLiteStatus PopulateConvolutionQuantizationParams( TfLiteContext* context, const TfLiteTensor* input, const TfLiteTensor* filter, const TfLiteTensor* bias, TfLiteTensor* output, const TfLiteFusedActivation& activation, int32_t* multiplier, int* shift, int32_t* output_activation_min, int32_t* output_activation_max, int32_t* per_channel_multiplier, int32_t* per_channel_shift, int num_channels) { TF_LITE_ENSURE_EQ(context, input->quantization.type, kTfLiteAffineQuantization); TF_LITE_ENSURE_EQ(context, filter->quantization.type, kTfLiteAffineQuantization); const auto* affine_quantization = reinterpret_cast<TfLiteAffineQuantization*>(filter->quantization.params); TF_LITE_ENSURE(context, affine_quantization); TF_LITE_ENSURE(context, affine_quantization->scale); const bool is_per_channel = affine_quantization->scale->size > 1; if (is_per_channel) { TF_LITE_ENSURE(context, input->type == kTfLiteInt8 || input->type == kTfLiteInt16); TF_LITE_ENSURE(context, filter->type == kTfLiteInt8 || filter->type == kTfLiteInt4); TF_LITE_ENSURE_EQ(context, affine_quantization->scale->size, num_channels); TF_LITE_ENSURE_EQ( context, num_channels, filter->dims->data[affine_quantization->quantized_dimension]); } const float input_scale = input->params.scale; const float output_scale = output->params.scale; const float* filter_scales = affine_quantization->scale->data; for (int i = 0; i < num_channels; ++i) { const float scale = is_per_channel ? filter_scales[i] : filter_scales[0]; const double filter_scale = static_cast<double>(scale); const double effective_output_scale = static_cast<double>(input_scale) * filter_scale / static_cast<double>(output_scale); int32_t significand; int channel_shift; QuantizeMultiplier(effective_output_scale, &significand, &channel_shift); per_channel_multiplier[i] = significand; per_channel_shift[i] = channel_shift; } if (input->type == kTfLiteUInt8) { double real_multiplier = 0.0; TF_LITE_ENSURE_STATUS(GetQuantizedConvolutionMultipler( context, input, filter, bias, output, &real_multiplier)); int exponent; QuantizeMultiplier(real_multiplier, multiplier, &exponent); *shift = -exponent; } if (input->type == kTfLiteInt8 || input->type == kTfLiteUInt8 || input->type == kTfLiteInt16) { TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized( context, activation, output, output_activation_min, output_activation_max)); } return kTfLiteOk; } TfLiteStatus GetQuantizedConvolutionMultipler(TfLiteContext* context, const TfLiteTensor* input, const TfLiteTensor* filter, const TfLiteTensor* bias, TfLiteTensor* output, double* multiplier) { const double input_product_scale = static_cast<double>(input->params.scale) * static_cast<double>(filter->params.scale); if (bias) { const double bias_scale = static_cast<double>(bias->params.scale); const double scale_diff = std::abs(input_product_scale - bias_scale); const double output_scale = static_cast<double>(output->params.scale); TF_LITE_ENSURE(context, scale_diff / output_scale <= 0.02); } return GetQuantizedConvolutionMultipler(context, input, filter, output, multiplier); } TfLiteStatus GetQuantizedConvolutionMultipler(TfLiteContext* context, const TfLiteTensor* input, const TfLiteTensor* filter, TfLiteTensor* output, double* multiplier) { const double input_product_scale = static_cast<double>(input->params.scale * filter->params.scale); TF_LITE_ENSURE(context, input_product_scale >= 0); *multiplier = input_product_scale / static_cast<double>(output->params.scale); return kTfLiteOk; } namespace { inline TfLiteStatus Quantize(TfLiteContext* context, float scale, int32_t zero_point, float f, int32_t& q) { const float tmp = TfLiteRound(f / scale); const bool no_integer_overflow_from_quantization = (tmp >= static_cast<float>(std::numeric_limits<int32_t>::min()) && tmp <= static_cast<float>(std::numeric_limits<int32_t>::max())); TF_LITE_ENSURE(context, no_integer_overflow_from_quantization); q = zero_point + static_cast<int32_t>(tmp); return kTfLiteOk; } TfLiteStatus CalculateActivationRangeQuantizedImpl( TfLiteContext* context, TfLiteFusedActivation activation, int32_t qmin, int32_t qmax, TfLiteTensor* output, int32_t* act_min, int32_t* act_max) { const auto scale = output->params.scale; const auto zero_point = output->params.zero_point; int32_t tmp_q; if (activation == kTfLiteActRelu) { TF_LITE_ENSURE_OK(context, Quantize(context, scale, zero_point, 0.0, tmp_q)); *act_min = std::max(qmin, tmp_q); *act_max = qmax; } else if (activation == kTfLiteActRelu6) { TF_LITE_ENSURE_OK(context, Quantize(context, scale, zero_point, 0.0, tmp_q)); *act_min = std::max(qmin, tmp_q); TF_LITE_ENSURE_OK(context, Quantize(context, scale, zero_point, 6.0, tmp_q)); *act_max = std::min(qmax, tmp_q); } else if (activation == kTfLiteActReluN1To1) { TF_LITE_ENSURE_OK(context, Quantize(context, scale, zero_point, -1.0, tmp_q)); *act_min = std::max(qmin, tmp_q); TF_LITE_ENSURE_OK(context, Quantize(context, scale, zero_point, 1.0, tmp_q)); *act_max = std::min(qmax, tmp_q); } else { *act_min = qmin; *act_max = qmax; } return kTfLiteOk; } } TfLiteStatus CalculateActivationRangeQuantized(TfLiteContext* context, TfLiteFusedActivation activation, TfLiteTensor* output, int32_t* act_min, int32_t* act_max) { int32_t qmin = 0; int32_t qmax = 0; if (output->type == kTfLiteUInt8) { qmin = std::numeric_limits<uint8_t>::min(); qmax = std::numeric_limits<uint8_t>::max(); } else if (output->type == kTfLiteInt8) { qmin = std::numeric_limits<int8_t>::min(); qmax = std::numeric_limits<int8_t>::max(); } else if (output->type == kTfLiteInt16) { qmin = std::numeric_limits<int16_t>::min(); qmax = std::numeric_limits<int16_t>::max(); } else { TF_LITE_ENSURE(context, false); } return CalculateActivationRangeQuantizedImpl(context, activation, qmin, qmax, output, act_min, act_max); } bool HaveSameShapes(const TfLiteTensor* input1, const TfLiteTensor* input2) { return TfLiteIntArrayEqual(input1->dims, input2->dims); } #ifndef TF_LITE_STATIC_MEMORY TfLiteStatus GetOutputShapeFromInput(TfLiteContext* context, const TfLiteTensor* input, TfLiteIntArray** output_shape) { if (NumDimensions(input) != 1) { TF_LITE_KERNEL_LOG(const_cast<TfLiteContext*>(context), "Invalid %dD input tensor (must be a 1D tensor).", NumDimensions(input)); return kTfLiteError; } const int output_dims = SizeOfDimension(input, 0); IntArrayUniquePtr shape(TfLiteIntArrayCreate(output_dims)); for (int i = 0; i < output_dims; i++) { shape->data[i] = input->data.i32[i]; } *output_shape = shape.release(); return kTfLiteOk; } std::string GetShapeDebugString(const TfLiteIntArray* shape) { std::string str; for (int d = 0; d < shape->size; ++d) { if (str.empty()) str = "[" + std::to_string(shape->data[d]); else
#include "tensorflow/lite/kernels/kernel_util.h" #include <math.h> #include <stdint.h> #include <stdlib.h> #include <string.h> #include <initializer_list> #include <memory> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/match.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/interpreter.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/util.h" namespace tflite { namespace { using ::testing::ElementsAre; struct TestContext : public TfLiteContext { string error; }; void ReportError(TfLiteContext* context, const char* format, ...) { TestContext* c = static_cast<TestContext*>(context); const size_t kBufferSize = 1024; char temp_buffer[kBufferSize]; va_list args; va_start(args, format); vsnprintf(temp_buffer, kBufferSize, format, args); va_end(args); c->error = temp_buffer; } class TestWithTfLiteContext : public ::testing::Test { public: TestWithTfLiteContext() { context_.ReportError = ReportError; } TensorUniquePtr BuildTfLiteTensorForTest(std::initializer_list<int> dims) { return BuildTfLiteTensor(kTfLiteInt32, dims, kTfLiteDynamic); } protected: TestContext context_; }; class HaveSameShapeTest : public TestWithTfLiteContext {}; TEST_F(HaveSameShapeTest, NullPointerIsSameShape) { TensorUniquePtr t1 = BuildTfLiteTensor(); t1->dims = nullptr; TensorUniquePtr t2 = BuildTfLiteTensor(); t2->dims = nullptr; EXPECT_TRUE(HaveSameShapes(t1.get(), t2.get())); } TEST_F(HaveSameShapeTest, NotSameShapeFalse) { TensorUniquePtr t1 = BuildTfLiteTensorForTest({2, 3}); TensorUniquePtr t2 = BuildTfLiteTensorForTest({3}); EXPECT_FALSE(HaveSameShapes(t1.get(), t2.get())); } TEST_F(HaveSameShapeTest, EmptyShapeEqualTrue) { TensorUniquePtr t1 = BuildTfLiteTensor(); TensorUniquePtr t2 = BuildTfLiteTensor(); EXPECT_TRUE(HaveSameShapes(t1.get(), t2.get())); } class BroadcastShapeTest : public TestWithTfLiteContext {}; TEST_F(BroadcastShapeTest, IncompatibleDimNullptr) { TensorUniquePtr t1 = BuildTfLiteTensorForTest({1, 2}); TensorUniquePtr t2 = BuildTfLiteTensorForTest({1, 3}); TfLiteIntArray* output = nullptr; EXPECT_NE(kTfLiteOk, CalculateShapeForBroadcast(&context_, t1.get(), t2.get(), &output)); EXPECT_EQ(output, nullptr); EXPECT_EQ(context_.error, "Given shapes, [1,2] and [1,3], are not broadcastable."); } TEST_F(BroadcastShapeTest, IncompatibleDimWithZeroNullptr) { TensorUniquePtr t1 = BuildTfLiteTensorForTest({1, 0}); TensorUniquePtr t2 = BuildTfLiteTensorForTest({1, 3}); TfLiteIntArray* output = nullptr; EXPECT_NE(kTfLiteOk, CalculateShapeForBroadcast(&context_, t1.get(), t2.get(), &output)); EXPECT_EQ(output, nullptr); EXPECT_EQ(context_.error, "Given shapes, [1,0] and [1,3], are not broadcastable."); } TEST_F(BroadcastShapeTest, BroadCastSecondDimension) { TensorUniquePtr t1 = BuildTfLiteTensorForTest({1, 1}); TensorUniquePtr t2 = BuildTfLiteTensorForTest({1, 3}); TfLiteIntArray* raw_output; auto status = CalculateShapeForBroadcast(&context_, t1.get(), t2.get(), &raw_output); ASSERT_EQ(kTfLiteOk, status); IntArrayUniquePtr output(raw_output); EXPECT_THAT(output.get(), DimsAre({1, 3})); } TEST_F(BroadcastShapeTest, ScalarAnd2dBroadcastsTo2d) { TensorUniquePtr t1 = BuildTfLiteTensorForTest({1, 2}); TensorUniquePtr t2 = BuildTfLiteTensorForTest({}); TfLiteIntArray* raw_output; EXPECT_EQ(kTfLiteOk, CalculateShapeForBroadcast(&context_, t1.get(), t2.get(), &raw_output)); IntArrayUniquePtr output(raw_output); EXPECT_THAT(output.get(), DimsAre({1, 2})); } TEST_F(BroadcastShapeTest, DifferentRankBroadcastsToHigherRank) { TensorUniquePtr t1 = BuildTfLiteTensorForTest({1, 2}); TensorUniquePtr t2 = BuildTfLiteTensorForTest({3, 1, 2}); TfLiteIntArray* raw_output; EXPECT_EQ(kTfLiteOk, CalculateShapeForBroadcast(&context_, t1.get(), t2.get(), &raw_output)); IntArrayUniquePtr output(raw_output); EXPECT_THAT(output.get(), DimsAre({3, 1, 2})); } TEST_F(BroadcastShapeTest, ZeroDimDifferentRankBroadcastsToHigherRank) { TensorUniquePtr t1 = BuildTfLiteTensorForTest({1, 2}); TensorUniquePtr t2 = BuildTfLiteTensorForTest({3, 0, 2}); TfLiteIntArray* raw_output; EXPECT_EQ(kTfLiteOk, CalculateShapeForBroadcast(&context_, t1.get(), t2.get(), &raw_output)); IntArrayUniquePtr output(raw_output); EXPECT_THAT(output.get(), DimsAre({3, 0, 2})); } TEST_F(BroadcastShapeTest, ZeroDimSameRankBroadcastsToHigherRank) { TensorUniquePtr t1 = BuildTfLiteTensorForTest({1, 2}); TensorUniquePtr t2 = BuildTfLiteTensorForTest({3, 0, 1}); TfLiteIntArray* raw_output; EXPECT_EQ(kTfLiteOk, CalculateShapeForBroadcast(&context_, t1.get(), t2.get(), &raw_output)); IntArrayUniquePtr output(raw_output); EXPECT_THAT(output.get(), DimsAre({3, 0, 2})); } TEST_F(BroadcastShapeTest, IncompatibleDimOnThreeTensorsNullptr) { TensorUniquePtr t1 = BuildTfLiteTensorForTest({1, 2}); TensorUniquePtr t2 = BuildTfLiteTensorForTest({1, 3}); TensorUniquePtr t3 = BuildTfLiteTensorForTest({1, 4}); TfLiteIntArray* raw_output = nullptr; EXPECT_NE(kTfLiteOk, CalculateShapeForBroadcast(&context_, t1.get(), t2.get(), t3.get(), &raw_output)); EXPECT_EQ(raw_output, nullptr); EXPECT_EQ(context_.error, "Given shapes, [1,2], [1,3] and [1,4], are not broadcastable."); } TEST_F(BroadcastShapeTest, IncompatibleDimWithZeroOnThreeTensorsNullptr) { TensorUniquePtr t1 = BuildTfLiteTensorForTest({1, 1}); TensorUniquePtr t2 = BuildTfLiteTensorForTest({1, 3}); TensorUniquePtr t3 = BuildTfLiteTensorForTest({1, 0}); TfLiteIntArray* raw_output = nullptr; EXPECT_NE(kTfLiteOk, CalculateShapeForBroadcast(&context_, t1.get(), t2.get(), t3.get(), &raw_output)); EXPECT_EQ(raw_output, nullptr); EXPECT_EQ(context_.error, "Given shapes, [1,1], [1,3] and [1,0], are not broadcastable."); } TEST_F(BroadcastShapeTest, ThreeTensorsBroadcastToLarger2ndDim) { TensorUniquePtr t1 = BuildTfLiteTensorForTest({1, 1}); TensorUniquePtr t2 = BuildTfLiteTensorForTest({1, 1}); TensorUniquePtr t3 = BuildTfLiteTensorForTest({1, 3}); TfLiteIntArray* raw_output; EXPECT_EQ(kTfLiteOk, CalculateShapeForBroadcast(&context_, t1.get(), t2.get(), t3.get(), &raw_output)); IntArrayUniquePtr output(raw_output); EXPECT_THAT(output.get(), DimsAre({1, 3})); } TEST_F(BroadcastShapeTest, TwoScalarsBroadcastTo2d) { TensorUniquePtr t1 = BuildTfLiteTensorForTest({1, 2}); TensorUniquePtr t2 = BuildTfLiteTensorForTest({}); TensorUniquePtr t3 = BuildTfLiteTensorForTest({}); TfLiteIntArray* raw_output; EXPECT_EQ(kTfLiteOk, CalculateShapeForBroadcast(&context_, t1.get(), t2.get(), t3.get(), &raw_output)); IntArrayUniquePtr output(raw_output); EXPECT_THAT(output.get(), DimsAre({1, 2})); } TEST_F(BroadcastShapeTest, DifferentSizesOnThreeTensorsBroadcastToLargerRank) { TensorUniquePtr t1 = BuildTfLiteTensorForTest({1, 2}); TensorUniquePtr t2 = BuildTfLiteTensorForTest({3, 1, 1}); TensorUniquePtr t3 = BuildTfLiteTensorForTest({3, 1}); TfLiteIntArray* raw_output; EXPECT_EQ(kTfLiteOk, CalculateShapeForBroadcast(&context_, t1.get(), t2.get(), t3.get(), &raw_output)); IntArrayUniquePtr output(raw_output); EXPECT_THAT(output.get(), DimsAre({3, 3, 2})); } TEST_F(BroadcastShapeTest, DifferentSizesOnThreeTensors4dBroadcastToLargerRank) { TensorUniquePtr t1 = BuildTfLiteTensorForTest({3, 4}); TensorUniquePtr t2 = BuildTfLiteTensorForTest({1, 3, 1}); TensorUniquePtr t3 = BuildTfLiteTensorForTest({1, 2, 1, 1}); TfLiteIntArray* raw_output; EXPECT_EQ(kTfLiteOk, CalculateShapeForBroadcast(&context_, t1.get(), t2.get(), t3.get(), &raw_output)); IntArrayUniquePtr output(raw_output); EXPECT_THAT(output.get(), DimsAre({1, 2, 3, 4})); } TEST_F(BroadcastShapeTest, ZeroOnThreeTensorsBroadcastToLargerRank) { TensorUniquePtr t1 = BuildTfLiteTensorForTest({1, 2}); TensorUniquePtr t2 = BuildTfLiteTensorForTest({3, 1, 1}); TensorUniquePtr t3 = BuildTfLiteTensorForTest({0, 1}); TfLiteIntArray* raw_output; EXPECT_EQ(kTfLiteOk, CalculateShapeForBroadcast(&context_, t1.get(), t2.get(), t3.get(), &raw_output)); IntArrayUniquePtr output(raw_output); EXPECT_THAT(output.get(), DimsAre({3, 0, 2})); } TEST(GetShapeDebugStringTest, GetShapeDebugString) { IntArrayUniquePtr dims0 = BuildTfLiteArray({}); EXPECT_EQ("[]", GetShapeDebugString(dims0.get())); IntArrayUniquePtr dims1 = BuildTfLiteArray({1}); dims1->data[0] = 1; EXPECT_EQ("[1]", GetShapeDebugString(dims1.get())); IntArrayUniquePtr dims2 = BuildTfLiteArray({2, 3}); dims2->data[0] = 2; dims2->data[1] = 3; EXPECT_EQ("[2,3]", GetShapeDebugString(dims2.get())); IntArrayUniquePtr dims3 = BuildTfLiteArray({4, 5, 6}); dims3->data[0] = 4; dims3->data[1] = 5; dims3->data[2] = 6; EXPECT_EQ("[4,5,6]", GetShapeDebugString(dims3.get())); } class QuantizationParamsTest : public TestWithTfLiteContext {}; TEST_F(QuantizationParamsTest, PerChannelConvolution) { TensorUniquePtr input = BuildTfLiteTensor(); input->type = kTfLiteInt8; input->allocation_type = kTfLiteArenaRw; input->dims = TfLiteIntArrayCreate(1); input->dims->data[0] = 2; TfLiteQuantizationParams input_quant = {0.5, 5}; input->params = input_quant; input->quantization.type = kTfLiteAffineQuantization; auto* input_params = reinterpret_cast<TfLiteAffineQuantization*>( malloc(sizeof(TfLiteAffineQuantization))); input_params->scale = TfLiteFloatArrayCreate(1); input_params->scale->data[0] = 0.5; input_params->zero_point = TfLiteIntArrayCreate(1); input_params->zero_point->data[0] = 5; input->quantization.params = reinterpret_cast<void*>(input_params); TensorUniquePtr filter = BuildTfLiteTensor(); filter->type = kTfLiteInt8; filter->allocation_type = kTfLiteArenaRw; filter->dims = TfLiteIntArrayCreate(4); filter->dims->data[0] = 3; filter->dims->data[1] = 4; filter->dims->data[2] = 5; filter->dims->data[3] = 6; TfLiteQuantizationParams filter_quant = {0.25, 0}; filter->params = filter_quant; filter->quantization.type = kTfLiteAffineQuantization; auto* filter_params = reinterpret_cast<TfLiteAffineQuantization*>( malloc(sizeof(TfLiteAffineQuantization))); filter_params->scale = TfLiteFloatArrayCreate(3); filter_params->scale->data[0] = 0.25; filter_params->scale->data[1] = 0.125; filter_params->scale->data[2] = 0.25; filter_params->zero_point = TfLiteIntArrayCreate(3); filter_params->zero_point->data[0] = 0; filter_params->zero_point->data[1] = 0; filter_params->zero_point->data[2] = 0; filter_params->quantized_dimension = 0; filter->quantization.params = reinterpret_cast<void*>(filter_params); TensorUniquePtr bias = BuildTfLiteTensor(); bias->type = kTfLiteInt32; bias->allocation_type = kTfLiteArenaRw; bias->dims = TfLiteIntArrayCreate(4); TfLiteQuantizationParams bias_quant = {0.125, 9}; bias->params = bias_quant; bias->quantization.type = kTfLiteAffineQuantization; auto* bias_params = reinterpret_cast<TfLiteAffineQuantization*>( malloc(sizeof(TfLiteAffineQuantization))); bias_params->scale = TfLiteFloatArrayCreate(3); bias_params->scale->data[0] = 0.125; bias_params->scale->data[1] = 0.0625; bias_params->scale->data[2] = 0.125; bias_params->zero_point = TfLiteIntArrayCreate(3); bias_params->zero_point->data[0] = 11; bias_params->zero_point->data[1] = 12; bias_params->zero_point->data[2] = 15; bias->quantization.params = reinterpret_cast<void*>(bias_params); TensorUniquePtr output = BuildTfLiteTensor(); output->type = kTfLiteInt8; output->allocation_type = kTfLiteArenaRw; output->dims = nullptr; TfLiteQuantizationParams output_quant = {0.5, -128}; output->params = output_quant; output->quantization.type = kTfLiteAffineQuantization; auto* output_params = reinterpret_cast<TfLiteAffineQuantization*>( malloc(sizeof(TfLiteAffineQuantization))); output_params->scale = TfLiteFloatArrayCreate(1); output_params->scale->data[0] = 0.5; output_params->zero_point = TfLiteIntArrayCreate(1); output_params->zero_point->data[0] = -128; output->quantization.params = reinterpret_cast<void*>(output_params); int32_t multiplier; int shift; int32_t output_activation_min; int32_t output_activation_max; std::vector<int32_t> per_channel_multiplier(3); std::vector<int32_t> per_channel_shift(3); auto status = PopulateConvolutionQuantizationParams( &context_, input.get(), filter.get(), bias.get(), output.get(), kTfLiteActRelu, &multiplier, &shift, &output_activation_min, &output_activation_max, per_channel_multiplier.data(), per_channel_shift.data()); EXPECT_EQ(kTfLiteOk, status); EXPECT_THAT(per_channel_multiplier, ElementsAre(1073741824, 1073741824, 1073741824)); EXPECT_THAT(per_channel_shift, ElementsAre(-1, -2, -1)); } TEST_F(QuantizationParamsTest, CheckAndPopulateShift) { TensorUniquePtr input = BuildTfLiteTensor(); input->type = kTfLiteUInt8; input->allocation_type = kTfLiteArenaRw; input->dims = TfLiteIntArrayCreate(1); input->dims->data[0] = 2; TfLiteQuantizationParams input_quant = {0.5, 5}; input->params = input_quant; input->quantization.type = kTfLiteAffineQuantization; auto* input_params = reinterpret_cast<TfLiteAffineQuantization*>( malloc(sizeof(TfLiteAffineQuantization))); input_params->scale = TfLiteFloatArrayCreate(1); input_params->scale->data[0] = 0.5; input_params->zero_point = TfLiteIntArrayCreate(1); input_params->zero_point->data[0] = 5; input->quantization.params = reinterpret_cast<void*>(input_params); TensorUniquePtr filter = BuildTfLiteTensor(); filter->type = kTfLiteUInt8; filter->allocation_type = kTfLiteArenaRw; filter->dims = TfLiteIntArrayCreate(4); filter->dims->data[0] = 3; filter->dims->data[1] = 4; filter->dims->data[2] = 5; filter->dims->data[3] = 6; TfLiteQuantizationParams filter_quant = {0.25, 0}; filter->params = filter_quant; filter->quantization.type = kTfLiteAffineQuantization; auto* filter_params = reinterpret_cast<TfLiteAffineQuantization*>( malloc(sizeof(TfLiteAffineQuantization))); filter_params->scale = TfLiteFloatArrayCreate(1); filter_params->scale->data[0] = 0.25; filter_params->zero_point = TfLiteIntArrayCreate(1); filter_params->zero_point->data[0] = 0; filter_params->quantized_dimension = 0; filter->quantization.params = reinterpret_cast<void*>(filter_params); TensorUniquePtr bias = BuildTfLiteTensor(); bias->type = kTfLiteUInt8; bias->allocation_type = kTfLiteArenaRw; bias->dims = TfLiteIntArrayCreate(4); TfLiteQuantizationParams bias_quant = {0.125, 9}; bias->params = bias_quant; bias->quantization.type = kTfLiteAffineQuantization; auto* bias_params = reinterpret_cast<TfLiteAffineQuantization*>( malloc(sizeof(TfLiteAffineQuantization))); bias_params->scale = TfLiteFloatArrayCreate(3); bias_params->scale->data[0] = 0.125; bias_params->scale->data[1] = 0.0625; bias_params->scale->data[2] = 0.125; bias_params->zero_point = TfLiteIntArrayCreate(3); bias_params->zero_point->data[0] = 11; bias_params->zero_point->data[1] = 12; bias_params->zero_point->data[2] = 15; bias->quantization.params = reinterpret_cast<void*>(bias_params); TensorUniquePtr output = BuildTfLiteTensor(); output->type = kTfLiteUInt8; output->allocation_type = kTfLiteArenaRw; output->dims = nullptr; TfLiteQuantizationParams output_quant = {0.5, 128}; output->params = output_quant; output->quantization.type = kTfLiteAffineQuantization; auto* output_params = reinterpret_cast<TfLiteAffineQuantization*>( malloc(sizeof(TfLiteAffineQuantization))); output_params->scale = TfLiteFloatArrayCreate(1); output_params->scale->data[0] = 0.5; output_params->zero_point = TfLiteIntArrayCreate(1); output_params->zero_point->data[0] = 128; output->quantization.params = reinterpret_cast<void*>(output_params); int32_t multiplier; int shift; int32_t output_activation_min; int32_t output_activation_max; std::vector<int32_t> per_channel_multiplier(3); std::vector<int> per_channel_shift(3); EXPECT_EQ(kTfLiteOk, PopulateConvolutionQuantizationParams( &context_, input.get(), filter.get(), bias.get(), output.get(), kTfLiteActRelu, &multiplier, &shift, &output_activation_min, &output_activation_max, per_channel_multiplier.data(), per_channel_shift.data(), 3)); EXPECT_THAT(per_channel_multiplier, ElementsAre(1073741824, 1073741824, 1073741824)); EXPECT_THAT(per_channel_shift, ElementsAre(-1, -1, -1)); EXPECT_EQ(shift, 1); EXPECT_EQ(multiplier, 1073741824); } #ifndef __APPLE__ TEST_F(QuantizationParamsTest, CheckAndPopulateZeroValue) { auto input = BuildTfLiteTensor(); input->type = kTfLiteInt8; input->allocation_type = kTfLiteArenaRw; input->dims = TfLiteIntArrayCreate(1); input->dims->data[0] = 2; TfLiteQuantizationParams input_quant = {1, 5}; input->params = input_quant; input->quantization.type = kTfLiteAffineQuantization; auto* input_params = reinterpret_cast<TfLiteAffineQuantization*>( malloc(sizeof(TfLiteAffineQuantization))); input_params->scale = TfLiteFloatArrayCreate(1); input_params->scale->data[0] = 1; input_params->zero_point = TfLiteIntArrayCreate(1); input_params->zero_point->data[0] = 5; input->quantization.params = reinterpret_cast<void*>(input_params); auto filter = BuildTfLiteTensor(); filter->type = kTfLiteInt8; filter->allocation_type = kTfLiteArenaRw; filter->dims = TfLiteIntArrayCreate(4); filter->dims->data[0] = 3; filter->dims->data[1] = 4; filter->dims->data[2] = 5; filter->dims->data[3] = 6; TfLiteQuantizationParams filter_quant = {4.6566129e-10, 0}; filter->params = filter_quant; filter->quantization.type = kTfLiteAffineQuantization; auto* filter_params = reinterpret_cast<TfLiteAffineQuantization*>( malloc(sizeof(TfLiteAffineQuantization))); filter_params->scale = TfLiteFloatArrayCreate(3); filter_params->scale->data[0] = std::ldexp(1.0f, -31); filter_params->scale->data[1] = std::ldexp(1.0f, -32); filter_params->scale->data[2] = std::ldexp(1.0f, -33); filter_params->zero_point = TfLiteIntArrayCreate(3); filter_params->zero_point->data[0] = 0; filter_params->zero_point->data[1] = 0; filter_params->zero_point->data[2] = 0; filter_params->quantized_dimension = 0; filter->quantization.params = reinterpret_cast<void*>(filter_params); auto bias = BuildTfLiteTensor(); bias->type = kTfLiteInt32; bias->allocation_type = kTfLiteArenaRw; bias->dims = TfLiteIntArrayCreate(4); TfLiteQuantizationParams bias_quant = {4.6566129e-10, 9}; bias->params = bias_quant; bias->quantization.type = kTfLiteAffineQuantization; auto* bias_params = reinterpret_cast<TfLiteAffineQuantization*>( malloc(sizeof(TfLiteAffineQuantization))); bias_params->scale = TfLiteFloatArrayCreate(3); bias_params->scale->data[0] = std::ldexp(1.0f, -31); bias_params->scale->data[1] = std::ldexp(1.0f, -32); bias_params->scale->data[2] = std::ldexp(1.0f, -33); bias_params->zero_point = TfLiteIntArrayCreate(3); bias_params->zero_point->data[0] = 11; bias_params->zero_point->data[1] = 12; bias_params->zero_point->data[2] = 15; bias->quantization.params = reinterpret_cast<void*>(bias_params); auto output = BuildTfLiteTensor(); output->type = kTfLiteInt8; output->allocation_type = kTfLiteArenaRw; output->dims = nullptr; TfLiteQuantizationParams output_quant = {1, -128}; output->params = output_quant; output->quantization.type = kTfLiteAffineQuantization; auto* output_params = reinterpret_cast<TfLiteAffineQuantization*>( malloc(sizeof(TfLiteAffineQuantization))); output_params->scale = TfLiteFloatArrayCreate(1); output_params->scale->data[0] = 1; output_params->zero_point = TfLiteIntArrayCreate(1); output_params->zero_point->data[0] = -128; output->quantization.params = reinterpret_cast<void*>(output_params); int32_t multiplier; int shift; int32_t output_activation_min; int32_t output_activation_max; std::vector<int32_t> per_channel_multiplier(3); std::vector<int> per_channel_shift(3); EXPECT_EQ(kTfLiteOk, PopulateConvolutionQuantizationParams( &context_, input.get(), filter.get(), bias.get(), output.get(), kTfLiteActRelu, &multiplier, &shift, &output_activation_min, &output_activation_max, per_channel_multiplier.data(), per_channel_shift.data(), 3)); EXPECT_THAT(per_channel_multiplier, ElementsAre(1073741824, 1073741824, 0)); EXPECT_THAT(per_channel_shift, ElementsAre(-30, -31, 0)); } #endif TEST_F(QuantizationParamsTest, CheckAndPopulateUint8) { auto input = BuildTfLiteTensor(); input->type = kTfLiteUInt8; input->allocation_type = kTfLiteArenaRw; input->dims = TfLiteIntArrayCreate(1); input->dims->data[0] = 2; TfLiteQuantizationParams input_quant = {1, 5}; input->params = input_quant; input->quantization.type = kTfLiteAffineQuantization; auto* input_params = reinterpret_cast<TfLiteAffineQuantization*>( malloc(sizeof(TfLiteAffineQuantization))); input_params->scale = TfLiteFloatArrayCreate(1); input_params->scale->data[0] = 1; input_params->zero_point = TfLiteIntArrayCreate(1); input_params->zero_point->data[0] = 5; input->quantization.params = reinterpret_cast<void*>(input_params); auto filter = BuildTfLiteTensor(); filter->type = kTfLiteUInt8; filter->allocation_type = kTfLiteArenaRw; filter->dims = TfLiteIntArrayCreate(4); filter->dims->data[0] = 3; filter->dims->data[1] = 4; filter->dims->data[2] = 5; filter->dims->data[3] = 6; TfLiteQuantizationParams filter_quant = {4.6566129e-10, 0}; filter->params = filter_quant; filter->quantization.type = kTfLiteAffineQuantization; auto* filter_params = reinterpret_cast<TfLiteAffineQuantization*>( malloc(sizeof(TfLiteAffineQuantization))); filter_params->scale = TfLiteFloatArrayCreate(1); int32_t two_pow_neg_31 = 0x30000000; filter_params->scale->data[0] = *reinterpret_cast<float*>(&two_pow_neg_31); filter_params->zero_point = TfLiteIntArrayCreate(1); filter_params->zero_point->data[0] = 0; filter_params->quantized_dimension = 0; filter->quantization.params = reinterpret_cast<void*>(filter_params); auto bias = BuildTfLiteTensor(); bias->type = kTfLiteInt32; bias->allocation_type = kTfLiteArenaRw; bias->dims = TfLiteIntArrayCreate(4); TfLiteQuantizationParams bias_quant = {4.6566129e-10, 9}; bias->params = bias_quant; bias->quantization.type = kTfLiteAffineQuantization; auto* bias_params = reinterpret_cast<TfLiteAffineQuantization*>( malloc(sizeof(TfLiteAffineQuantization))); bias_params->scale = TfLiteFloatArrayCreate(1); bias_params->scale->data[0] = 4.6566129e-10; bias_params->zero_point = TfLiteIntArrayCreate(1); bias_params->zero_point->data[0] = 11; bias->quantization.params = reinterpret_cast<void*>(bias_params); auto output = BuildTfLiteTensor(); output->type = kTfLiteUInt8; output->allocation_type = kTfLiteArenaRw; output->dims = nullptr; TfLiteQuantizationParams output_quant = {1, -128}; output->params = output_quant; output->quantization.type = kTfLiteAffineQuantization; auto* output_params = reinterpret_cast<TfLiteAffineQuantization*>( malloc(sizeof(TfLiteAffineQuantization))); output_params->scale = TfLiteFloatArrayCreate(1); output_params->scale->data[0] = 1; output_params->zero_point = TfLiteIntArrayCreate(1); output_params->zero_point->data[0] = -128; output->quantization.params = reinterpret_cast<void*>(output_params); int32_t multiplier; int shift; int32_t output_activation_min; int32_t output_activation_max; std::vector<int32_t> per_channel_multiplier(3); std::vector<int> per_channel_shift(3); EXPECT_EQ(kTfLiteOk, PopulateConvolutionQuantizationParams( &context_, input.get(), filter.get(), bias.get(), output.get(), kTfLiteActRelu, &multiplier, &shift, &output_activation_min, &output_activation_max, per_channel_multiplier.data(), per_channel_shift.data(), 3)); EXPECT_THAT(per_channel_multiplier, ElementsAre(1073741824, 1073741824, 1073741824)); EXPECT_THAT(per_channel_shift, ElementsAre(-30, -30, -30)); } TEST_F(QuantizationParamsTest, CheckAndPopulateWithoutBias) { auto input = BuildTfLiteTensor(); input->type = kTfLiteUInt8; input->allocation_type = kTfLiteArenaRw; input->dims = TfLiteIntArrayCreate(1); input->dims->data[0] = 2; TfLiteQuantizationParams input_quant = {1, 5}; input->params = input_quant; input->quantization.type = kTfLiteAffineQuantization; auto* input_params = reinterpret_cast<TfLiteAffineQuantization*>( malloc(sizeof(TfLiteAffineQuantization))); input_params->scale = TfLiteFloatArrayCreate(1); input_params->scale->data[0] = 1; input_params->zero_point = TfLiteIntArrayCreate(1); input_params->zero_point->data[0] = 5; input->quantization.params = reinterpret_cast<void*>(input_params); auto filter = BuildTfLiteTensor(); filter->type = kTfLiteUInt8; filter->allocation_type = kTfLiteArenaRw; filter->dims = TfLiteIntArrayCreate(4); filter->dims->data[0] = 3; filter->dims->data[1] = 4; filter->dims->data[2] = 5; filter->dims->data[3] = 6; TfLiteQuantizationParams filter_quant = {4.6566129e-10, 0}; filter->params = filter_quant; filter->quantization.type = kTfLiteAffineQuantization; auto* filter_params = reinterpret_cast<TfLiteAffineQuantization*>( malloc(sizeof(TfLiteAffineQuantization))); filter_params->scale = TfLiteFloatArrayCreate(1); int32_t two_pow_neg_31 = 0x30000000; filter_params->scale->data[0] = *reinterpret_cast<float*>(&two_pow_neg_31); filter_params->zero_point = TfLiteIntArrayCreate(1); filter_params->zero_point->data[0] = 0; filter_params->quantized_dimension = 0; filter->quantization.params = reinterpret_cast<void*>(filter_params); auto output = BuildTfLiteTensor(); output->type = kTfLiteUInt8; output->allocation_type = kTfLiteArenaRw; output->dims = nullptr; TfLiteQuantizationParams output_quant = {1, -128}; output->params = output_quant; output->quantization.type = kTfLiteAffineQuantization; auto* output_params = reinterpret_cast<TfLiteAffineQuantization*>( malloc(sizeof(TfLiteAffineQuantization))); output_params->scale = TfLiteFloatArrayCreate(1); output_params->scale->data[0] = 1; output_params->zero_point = TfLiteIntArrayCreate(1); output_params->zero_point->data[0] = -128; output->quantization.params = reinterpret_cast<void*>(output_params); int32_t multiplier; int shift; int32_t output_activation_min; int32_t output_activation_max; std::vector<int32_t> per_channel_multiplier(3); std::vector<int> per_channel_shift(3); EXPECT_EQ(kTfLiteOk, PopulateConvolutionQuantizationParams( &context_, input.get(), filter.get(), nullptr, output.get(), kTfLiteActRelu, &multiplier, &shift, &output_activation_min, &output_activation_max, per_channel_multiplier.data(), per_channel_shift.data(), 3)); EXPECT_THAT(per_channel_multiplier, ElementsAre(1073741824, 1073741824, 1073741824)); EXPECT_THAT(per_channel_shift, ElementsAre(-30, -30, -30)); } TEST_F(QuantizationParamsTest, ActivationRangeQuantizedOverflow) { auto output = BuildTfLiteTensor(); output->type = kTfLiteUInt8; output->allocation_type = kTfLiteArenaRw; output->dims = nullptr; TfLiteQuantizationParams output_quant = {1e-10, -128}; output->params = output_quant; output->quantization.type = kTfLiteAffineQuantization; auto* output_params = reinterpret_cast<TfLiteAffineQuantization*>( malloc(sizeof(TfLiteAffineQuantization))); output_params->scale = TfLiteFloatArrayCreate(1); output_params->scale->data[0] = 1; output_params->zero_point = TfLiteIntArrayCreate(1); output_params->zero_point->data[0] = -128; output->quantization.params = reinterpret_cast<void*>(output_params); int32_t act_min, act_max; ASSERT_EQ(kTfLiteOk, CalculateActivationRangeQuantized( &context_, kTfLiteActRelu, output.get(), &act_min, &act_max)); ASSERT_NE(kTfLiteOk, CalculateActivationRangeQuantized( &context_, kTfLiteActRelu6, output.get(), &act_min, &act_max)); EXPECT_TRUE(absl::StrContains( context_.error, "no_integer_overflow_from_quantization was not true")); ASSERT_NE(kTfLiteOk, CalculateActivationRangeQuantized( &context_, kTfLiteActReluN1To1, output.get(), &act_min, &act_max)); EXPECT_TRUE(absl::StrContains( context_.error, "no_integer_overflow_from_quantization was not true")); } TEST_F(QuantizationParamsTest, IsMobilePlatform) { #if defined(__ANDROID__) EXPECT_TRUE(IsMobilePlatform()); #elif defined(__linux__) EXPECT_FALSE(IsMobilePlatform()); #elif defined(_WIN32) EXPECT_FALSE(IsMobilePlatform()); #endif } TEST(HasUnspecifiedDimensions, ReturnsTrueIfADimIsMinusOne) { auto tensor = BuildTfLiteTensor(kTfLiteInt32, {1, 1, 3}, kTfLiteDynamic); tensor->dims_signature = ConvertVectorToTfLiteIntArray({1, -1, 3}); EXPECT_TRUE(HasUnspecifiedDimension(tensor.get())); } TEST(HasUnspecifiedDimensions, ReturnsFalseIfAllPostiveDims) { auto tensor = BuildTfLiteTensor(kTfLiteInt32, {1, 1, 3}, kTfLiteDynamic); tensor->dims_signature = ConvertVectorToTfLiteIntArray({1, 1, 3}); EXPECT_FALSE(HasUnspecifiedDimension(tensor.get())); }
919
cpp
tensorflow/tensorflow
strided_slice
tensorflow/lite/kernels/strided_slice.cc
tensorflow/lite/kernels/strided_slice_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_COMMON_TASKS_STRIDED_SLICE_H_ #define TENSORFLOW_LITE_DELEGATES_GPU_COMMON_TASKS_STRIDED_SLICE_H_ #include <string> #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/task/gpu_operation.h" #include "tensorflow/lite/delegates/gpu/common/types.h" namespace tflite { namespace gpu { class StridedSlice : public GPUOperation { public: StridedSlice(const OperationDef& definition, const SliceAttributes& attr); absl::Status BindArguments(ArgumentsBinder* args) override; int3 GetGridSize() const override; StridedSlice(StridedSlice&& operation); StridedSlice& operator=(StridedSlice&& operation); StridedSlice(const StridedSlice&) = delete; StridedSlice& operator=(const StridedSlice&) = delete; private: std::string GetStridedSliceCode(const OperationDef& op_def, bool alignedx4); SliceAttributes attributes_; }; StridedSlice CreateStridedSlice(const OperationDef& definition, const SliceAttributes& attr); } } #endif #include "tensorflow/lite/delegates/gpu/common/tasks/strided_slice.h" #include <string> #include <utility> #include "tensorflow/lite/delegates/gpu/common/task/work_group_picking.h" namespace tflite { namespace gpu { namespace { bool Is4Aligned(const SliceAttributes& attr) { return attr.strides.c == 1 && attr.starts.c % 4 == 0; } int4 GetOffset(const SliceAttributes& attr, int src_width, int src_height, int src_channels, int src_batch) { int4 offset; if (attr.strides.w > 0) { offset.x = attr.starts.w; } else { if (attr.ends.w > 0) { offset.x = attr.ends.w; } else { offset.x = src_width + attr.ends.w; } } if (attr.strides.h > 0) { offset.y = attr.starts.h; } else { if (attr.ends.h > 0) { offset.y = attr.ends.h; } else { offset.y = src_height + attr.ends.h; } } if (attr.strides.c > 0) { offset.z = attr.starts.c; } else { if (attr.ends.c > 0) { offset.z = attr.ends.c; } else { offset.z = src_channels + attr.ends.c; } } if (Is4Aligned(attr)) { offset.z /= 4; } if (attr.strides.b > 0) { offset.w = attr.starts.b; } else { if (attr.ends.b > 0) { offset.w = attr.ends.b; } else { offset.w = src_batch + attr.ends.b; } } return offset; } } StridedSlice::StridedSlice(const OperationDef& definition, const SliceAttributes& attr) : GPUOperation(definition), attributes_(attr) { work_group_size_ = int3(8, 4, 1); code_ = GetStridedSliceCode(definition_, Is4Aligned(attributes_)); } StridedSlice::StridedSlice(StridedSlice&& operation) : GPUOperation(std::move(operation)), attributes_(operation.attributes_) {} StridedSlice& StridedSlice::operator=(StridedSlice&& operation) { if (this != &operation) { attributes_ = operation.attributes_; GPUOperation::operator=(std::move(operation)); } return *this; } std::string StridedSlice::GetStridedSliceCode(const OperationDef& op_def, bool alignedx4) { AddSrcTensor("src_tensor", op_def.src_tensors[0]); AddDstTensor("dst_tensor", op_def.dst_tensors[0]); args_.AddInt("offset_x"); args_.AddInt("offset_y"); args_.AddInt("offset_z"); args_.AddInt("offset_b"); args_.AddInt("stride_x"); args_.AddInt("stride_y"); args_.AddInt("stride_z"); args_.AddInt("stride_b"); const std::string batch_id = op_def.dst_tensors[0].HasAxis(Axis::BATCH) ? "B" : "0"; std::string c; c += "MAIN_FUNCTION($0) {\n"; if (op_def.dst_tensors[0].HasAxis(Axis::BATCH)) { c += " int linear_id = GLOBAL_ID_0;\n"; c += " int X = linear_id / args.dst_tensor.Batch();\n"; c += " int B = linear_id % args.dst_tensor.Batch();\n"; c += " args.dst_tensor.SetBatchRef(B);\n"; } else { c += " int X = GLOBAL_ID_0;\n"; } c += " int Y = GLOBAL_ID_1;\n"; c += " int S = GLOBAL_ID_2;\n"; c += " if (X >= args.dst_tensor.Width() || Y >= args.dst_tensor.Height() || " "S >= args.dst_tensor.Slices()) { \n"; c += " return; \n"; c += " } \n"; c += " int s_x = X * args.stride_x + args.offset_x;\n"; c += " int s_y = Y * args.stride_y + args.offset_y;\n"; if (op_def.src_tensors[0].HasAxis(Axis::BATCH)) { c += " int s_b = " + batch_id + " * args.stride_b + args.offset_b;\n"; c += " args.src_tensor.SetBatchRef(s_b);\n"; } if (alignedx4) { c += " int s_z = S + args.offset_z;\n"; c += " args.src_tensor::type result = args.src_tensor.Read(s_x, s_y, " "s_z);\n"; } else { c += " args.src_tensor::type result;\n"; const std::string postfixes[] = {"x", "y", "z", "w"}; for (int i = 0; i < 4; ++i) { c += " {\n"; const std::string channel = "(S * 4 + " + std::to_string(i) + ")"; c += " int s_ch = min(" + channel + " * args.stride_z + args.offset_z, args.src_tensor.Channels() - " "1);\n"; c += " args.src_tensor.ReadPerChannel(result." + postfixes[i] + ", s_x, s_y, s_ch);\n"; c += " }\n"; } } c += " args.dst_tensor.Write(result, X, Y, S);\n"; c += "}\n"; return c; } absl::Status StridedSlice::BindArguments(ArgumentsBinder* args) { int4 offset = GetOffset(attributes_, src_[0]->Width(), src_[0]->Height(), src_[0]->Channels(), src_[0]->Batch()); RETURN_IF_ERROR(args->SetInt("offset_x", offset.x)); RETURN_IF_ERROR(args->SetInt("offset_y", offset.y)); RETURN_IF_ERROR(args->SetInt("offset_z", offset.z)); RETURN_IF_ERROR(args->SetInt("offset_b", offset.w)); RETURN_IF_ERROR(args->SetInt("stride_x", attributes_.strides.w)); RETURN_IF_ERROR(args->SetInt("stride_y", attributes_.strides.h)); RETURN_IF_ERROR(args->SetInt("stride_z", attributes_.strides.c)); RETURN_IF_ERROR(args->SetInt("stride_b", attributes_.strides.b)); return absl::OkStatus(); } int3 StridedSlice::GetGridSize() const { const int grid_x = dst_[0]->Width() * dst_[0]->Batch(); const int grid_y = dst_[0]->Height(); const int grid_z = dst_[0]->Slices(); return int3(grid_x, grid_y, grid_z); } StridedSlice CreateStridedSlice(const OperationDef& definition, const SliceAttributes& attr) { return StridedSlice(definition, attr); } } }
#include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/gpu/cl/kernels/cl_test.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/tasks/strided_slice_test_util.h" namespace tflite { namespace gpu { namespace cl { namespace { TEST_F(OpenCLOperationTest, StridedSlice) { auto status = StridedSliceTest(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } } } } }
920
cpp
tensorflow/tensorflow
cumsum
tensorflow/lite/kernels/cumsum.cc
tensorflow/lite/kernels/cumsum_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_COMMON_TASKS_CUMSUM_H_ #define TENSORFLOW_LITE_DELEGATES_GPU_COMMON_TASKS_CUMSUM_H_ #include <string> #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/task/gpu_operation.h" #include "tensorflow/lite/delegates/gpu/common/types.h" namespace tflite { namespace gpu { class Cumsum : public GPUOperation { public: Cumsum() = default; explicit Cumsum(const OperationDef& definition, Axis axis) : GPUOperation(definition), axis_(axis) {} int3 GetGridSize() const override; Cumsum(Cumsum&& operation); Cumsum& operator=(Cumsum&& operation); Cumsum(const Cumsum&) = delete; Cumsum& operator=(const Cumsum&) = delete; void GetCumsumCode(const OperationDef& op_def); private: Axis axis_; }; Cumsum CreateCumsum(const OperationDef& definition, const CumsumAttributes& attr); } } #endif #include "tensorflow/lite/delegates/gpu/common/tasks/cumsum.h" #include <string> #include <utility> #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/shape.h" namespace tflite { namespace gpu { void Cumsum::GetCumsumCode(const OperationDef& op_def) { AddSrcTensor("src_tensor", op_def.src_tensors[0]); AddDstTensor("dst_tensor", op_def.dst_tensors[0]); std::map<Axis, std::string> task_sizes = { {Axis::WIDTH, "args.src_tensor.Width()"}, {Axis::HEIGHT, "args.src_tensor.Height()"}, {Axis::DEPTH, "args.src_tensor.Depth()"}, {Axis::CHANNELS, "args.src_tensor.Slices()"}, {Axis::BATCH, "args.src_tensor.Batch()"}, }; std::string limit = task_sizes[axis_]; task_sizes[axis_] = "1"; std::map<Axis, std::string> index_name = { {Axis::WIDTH, "X"}, {Axis::HEIGHT, "Y"}, {Axis::DEPTH, "Z"}, {Axis::CHANNELS, "S"}, {Axis::BATCH, "B"}, }; std::string indexes = "X, Y"; std::string c; c += "MAIN_FUNCTION($0) {\n"; if (definition_.dst_tensors[0].HasAxis(Axis::DEPTH)) { indexes += ", Z"; c += " int linear_id = GLOBAL_ID_1;\n"; c += " int Y = linear_id % " + task_sizes[Axis::HEIGHT] + ";\n"; c += " int D = linear_id / " + task_sizes[Axis::HEIGHT] + ";\n"; c += " if (D >= " + task_sizes[Axis::DEPTH] + ") return;\n"; } else { c += " int Y = GLOBAL_ID_1;\n"; c += " if (Y >= " + task_sizes[Axis::HEIGHT] + ") return;\n"; } indexes += ", S"; if (op_def.dst_tensors[0].HasAxis(Axis::BATCH)) { indexes += ", B"; c += " int linear_id = GLOBAL_ID_0;\n"; c += " int X = linear_id / " + task_sizes[Axis::BATCH] + ";\n"; c += " int B = linear_id % " + task_sizes[Axis::BATCH] + ";\n"; c += " if (X >= " + task_sizes[Axis::WIDTH] + ") return;\n"; } else { c += " int X = GLOBAL_ID_0;\n"; c += " if (X >= " + task_sizes[Axis::WIDTH] + ") return;\n"; } c += " int S = GLOBAL_ID_2;\n"; c += " if (S >= " + task_sizes[Axis::CHANNELS] + ") return;\n"; c += " args.src_tensor::type res = args.src_tensor::zero_value;\n"; c += " for (; " + index_name[axis_] + " < " + limit + "; " + index_name[axis_] + "++) {\n"; c += " args.src_tensor::type curr = args.src_tensor.Read(" + indexes + ");\n"; if (axis_ == Axis::CHANNELS) { c += " res.x = res.w + curr.x;\n"; c += " res.y = res.x + curr.y;\n"; c += " res.z = res.y + curr.z;\n"; c += " res.w = res.z + curr.w;\n"; } else { c += " res += curr;\n"; } c += " args.dst_tensor.Write(res, " + indexes + ");\n"; c += " }\n"; c += "}\n"; code_ = c; } int3 Cumsum::GetGridSize() const { const int width = axis_ == Axis::WIDTH ? 1 : src_[0]->Width(); const int height = axis_ == Axis::HEIGHT ? 1 : src_[0]->Height(); const int depth = axis_ == Axis::DEPTH ? 1 : src_[0]->Depth(); const int batch = axis_ == Axis::BATCH ? 1 : src_[0]->Batch(); const int slices = axis_ == Axis::CHANNELS ? 1 : src_[0]->Slices(); const int grid_x = width * batch; const int grid_y = height * depth; const int grid_z = slices; return int3(grid_x, grid_y, grid_z); } Cumsum::Cumsum(Cumsum&& operation) : GPUOperation(std::move(operation)), axis_(operation.axis_) {} Cumsum& Cumsum::operator=(Cumsum&& operation) { if (this != &operation) { axis_ = operation.axis_; GPUOperation::operator=(std::move(operation)); } return *this; } Cumsum CreateCumsum(const OperationDef& definition, const CumsumAttributes& attr) { Cumsum op(definition, attr.axis); op.GetCumsumCode(definition); return op; } } }
#include <gtest/gtest.h> #include "tensorflow/lite/delegates/gpu/cl/kernels/cl_test.h" #include "tensorflow/lite/delegates/gpu/common/tasks/cumsum_test_util.h" namespace tflite { namespace gpu { namespace cl { namespace { TEST_F(OpenCLOperationTest, CumsumHWCTest) { absl::Status status = CumsumHWCTest(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, CumsumBHWCTest) { absl::Status status = CumsumBHWCTest(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } } } } }
921
cpp
tensorflow/tensorflow
reshape
tensorflow/lite/kernels/reshape.cc
third_party/xla/xla/tests/reshape_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_GL_KERNELS_RESHAPE_H_ #define TENSORFLOW_LITE_DELEGATES_GPU_GL_KERNELS_RESHAPE_H_ #include <memory> #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/gl/node_shader.h" namespace tflite { namespace gpu { namespace gl { std::unique_ptr<NodeShader> NewReshapeNodeShader(); } } } #endif #include "tensorflow/lite/delegates/gpu/gl/kernels/reshape.h" #include <algorithm> #include <any> #include <cstdint> #include <cstring> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/memory/memory.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/types.h" namespace tflite { namespace gpu { namespace gl { namespace { class Reshape : public NodeShader { public: absl::Status GenerateCode(const GenerationContext& ctx, GeneratedCode* generated_code) const final { if (ctx.input_shapes[0][1] * ctx.input_shapes[0][2] * ctx.input_shapes[0][3] != ctx.output_shapes[0][1] * ctx.output_shapes[0][2] * ctx.output_shapes[0][3]) { return absl::InvalidArgumentError( "Number of elements in input & output tensors don't match."); } const auto& attr = std::any_cast<const ReshapeAttributes&>(ctx.op_attr); if (attr.new_shape.h != ctx.output_shapes[0][1] || attr.new_shape.w != ctx.output_shapes[0][2] || attr.new_shape.c != ctx.output_shapes[0][3]) { return absl::InvalidArgumentError( "Dimensions for output does not match new_shape attribute"); } std::string code = R"( int input_ch_w = $input_channels$ * $input_data_0_w$; int output_ch_w = $output_channels$ * $output_data_0_w$; for (int i = 0; i < 4; ++i) { int dst_channel = gid.z * 4 + i; if (dst_channel >= $output_channels$) { continue; } int p = dst_channel + $output_channels$ * gid.x + output_ch_w * gid.y; int src_y = p / input_ch_w; int src_x = (p % input_ch_w) / $input_channels$; int src_z = (p % input_ch_w) % $input_channels$; int src_layer = src_z / 4; int src_channel = src_z % 4; value_0[i] = $input_data_0[src_x, src_y, src_layer]$[src_channel]; } )"; *generated_code = { { {"input_data_0_w", static_cast<int>(ctx.input_shapes[0][2])}, {"input_channels", static_cast<int>(ctx.input_shapes[0][3])}, {"output_data_0_w", static_cast<int>(ctx.output_shapes[0][2])}, {"output_channels", static_cast<int>(ctx.output_shapes[0][3])}, }, {}, {}, uint3(), uint3(), std::move(code), IOStructure::ONLY_DEFINITIONS, IOStructure::AUTO, }; return absl::OkStatus(); } }; } std::unique_ptr<NodeShader> NewReshapeNodeShader() { return std::make_unique<Reshape>(); } } } }
#include <memory> #include <numeric> #include <random> #include <vector> #include "absl/status/statusor.h" #include "absl/types/span.h" #include "xla/array2d.h" #include "xla/array4d.h" #include "xla/client/global_data.h" #include "xla/client/local_client.h" #include "xla/client/xla_builder.h" #include "xla/client/xla_computation.h" #include "xla/layout_util.h" #include "xla/literal_util.h" #include "xla/reference_util.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/test.h" #include "xla/tests/client_library_test_base.h" #include "xla/tests/literal_test_util.h" #include "xla/tests/test_macros.h" #include "xla/xla_data.pb.h" namespace xla { namespace { class ReshapeTest : public ::testing::WithParamInterface<bool>, public ClientLibraryTestBase { public: ReshapeTest() { set_use_bfloat16(GetParam()); } ErrorSpec zero_error_spec_{0.0}; }; XLA_TEST_P(ReshapeTest, CollapseTrivial1x1) { XlaBuilder builder(TestName()); Array2D<float> input_array(1, 1); input_array.Fill(1.0f); auto input_literal = LiteralUtil::CreateR2FromArray2D(input_array); XlaOp parameter; TF_ASSERT_OK_AND_ASSIGN( auto input, CreateParameterAndTransferLiteral( 0, input_literal, "parameter", &builder, &parameter)); Collapse(parameter, {0, 1}); auto expected_literal = LiteralUtil::CreateR1<float>({1.0f}); ComputeAndCompareLiteral(&builder, expected_literal, {input.get()}, zero_error_spec_); } XLA_TEST_P(ReshapeTest, CollapseTrivialR1EmptyDims) { XlaBuilder builder(TestName()); auto input_literal = LiteralUtil::CreateR1<float>({1.0f}); XlaOp parameter; TF_ASSERT_OK_AND_ASSIGN( auto input, CreateParameterAndTransferLiteral( 0, input_literal, "parameter", &builder, &parameter)); Collapse(parameter, {}); auto expected_literal = LiteralUtil::CreateR1<float>({1.0f}); ComputeAndCompareLiteral(&builder, expected_literal, {input.get()}, zero_error_spec_); } XLA_TEST_P(ReshapeTest, CollapseTrivialR1OnlyDim) { XlaBuilder builder(TestName()); auto input_literal = LiteralUtil::CreateR1<float>({1.0f}); XlaOp parameter; TF_ASSERT_OK_AND_ASSIGN( auto input, CreateParameterAndTransferLiteral( 0, input_literal, "parameter", &builder, &parameter)); Collapse(parameter, {0}); auto expected_literal = LiteralUtil::CreateR1<float>({1.0f}); ComputeAndCompareLiteral(&builder, expected_literal, {input.get()}, zero_error_spec_); } XLA_TEST_P(ReshapeTest, SingleElementArrayToScalar) { XlaBuilder builder(TestName()); Array2D<float> input_array(1, 1); input_array.Fill(1.0f); auto input_literal = LiteralUtil::CreateR2FromArray2D(input_array); XlaOp parameter; TF_ASSERT_OK_AND_ASSIGN( auto input, CreateParameterAndTransferLiteral( 0, input_literal, "parameter", &builder, &parameter)); auto reshape = Reshape(parameter, {0, 1}, {}); auto new_shape = builder.GetShape(reshape).value(); auto expected_literal = LiteralUtil::CreateR0<float>(1.0f); ComputeAndCompareLiteral(&builder, expected_literal, {input.get()}, zero_error_spec_); } XLA_TEST_P(ReshapeTest, ScalarToSingleElementArray) { XlaBuilder builder(TestName()); Literal param0_literal = LiteralUtil::CreateR0<float>(1.0f); XlaOp parameter; TF_ASSERT_OK_AND_ASSIGN( auto input, CreateParameterAndTransferLiteral(0, param0_literal, "param0", &builder, &parameter)); auto a = Neg(parameter); Reshape(a, {}, {1}); auto expected_literal = LiteralUtil::CreateR1<float>({-1.0f}); ComputeAndCompareLiteral(&builder, expected_literal, {input.get()}, zero_error_spec_); } XLA_TEST_P(ReshapeTest, Trivial0x3) { XlaBuilder builder(TestName()); Array2D<float> input_array(0, 3); auto input_literal = LiteralUtil::CreateR2FromArray2D(input_array); XlaOp parameter; TF_ASSERT_OK_AND_ASSIGN( auto input, CreateParameterAndTransferLiteral(0, input_literal, "input", &builder, &parameter)); Collapse(parameter, {0, 1}); auto expected_literal = LiteralUtil::CreateR1<float>({}); ComputeAndCompareLiteral(&builder, expected_literal, {input.get()}, zero_error_spec_); } XLA_TEST_P(ReshapeTest, Trivial0x3WithParameter) { XlaBuilder builder(TestName()); Literal param0_literal = LiteralUtil::CreateR2FromArray2D<float>(Array2D<float>(0, 3)); XlaOp parameter; TF_ASSERT_OK_AND_ASSIGN( auto input, CreateParameterAndTransferLiteral(0, param0_literal, "param0", &builder, &parameter)); Collapse(parameter, {0, 1}); auto expected_literal = LiteralUtil::CreateR1<float>({}); ComputeAndCompareLiteral(&builder, expected_literal, {input.get()}, zero_error_spec_); } XLA_TEST_P(ReshapeTest, Trivial3x0) { XlaBuilder builder(TestName()); Array2D<float> input_array(3, 0); auto input_literal = LiteralUtil::CreateR2FromArray2D(input_array); XlaOp parameter; TF_ASSERT_OK_AND_ASSIGN( auto input, CreateParameterAndTransferLiteral(0, input_literal, "input", &builder, &parameter)); Collapse(parameter, {0, 1}); auto expected_literal = LiteralUtil::CreateR1<float>({}); ComputeAndCompareLiteral(&builder, expected_literal, {input.get()}, zero_error_spec_); } XLA_TEST_P(ReshapeTest, Trivial1x3) { XlaBuilder builder(TestName()); auto input_literal = LiteralUtil::CreateR2<float>({{1.0f, 2.0f, 3.0f}}); XlaOp parameter; TF_ASSERT_OK_AND_ASSIGN( auto input, CreateParameterAndTransferLiteral(0, input_literal, "input", &builder, &parameter)); Collapse(parameter, {0, 1}); auto expected_literal = LiteralUtil::CreateR1<float>({1.0f, 2.0f, 3.0f}); ComputeAndCompareLiteral(&builder, expected_literal, {input.get()}, zero_error_spec_); } XLA_TEST_P(ReshapeTest, Trivial3x1) { XlaBuilder builder(TestName()); auto input_literal = LiteralUtil::CreateR2<float>({{1.0f}, {2.0f}, {3.0f}}); XlaOp parameter; TF_ASSERT_OK_AND_ASSIGN( auto input, CreateParameterAndTransferLiteral(0, input_literal, "input", &builder, &parameter)); Collapse(parameter, {0, 1}); auto expected_literal = LiteralUtil::CreateR1<float>({1.0f, 2.0f, 3.0f}); ComputeAndCompareLiteral(&builder, expected_literal, {input.get()}, zero_error_spec_); } XLA_TEST_P(ReshapeTest, R1ToR2_0_To_2x0) { XlaBuilder builder(TestName()); auto input_literal = LiteralUtil::CreateR1<float>({}); XlaOp parameter; TF_ASSERT_OK_AND_ASSIGN( auto input, CreateParameterAndTransferLiteral(0, input_literal, "input", &builder, &parameter)); Reshape(parameter, {0}, {2, 0}); auto expected_literal = LiteralUtil::CreateR2<float>({{}, {}}); ComputeAndCompareLiteral(&builder, expected_literal, {input.get()}, zero_error_spec_); } XLA_TEST_P(ReshapeTest, R1ToR2_6_To_2x3) { XlaBuilder builder(TestName()); auto input_literal = LiteralUtil::CreateR1<float>({1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f}); XlaOp parameter; TF_ASSERT_OK_AND_ASSIGN( auto input, CreateParameterAndTransferLiteral(0, input_literal, "input", &builder, &parameter)); Reshape(parameter, {0}, {2, 3}); auto expected_literal = LiteralUtil::CreateR2<float>({{1.0f, 2.0f, 3.0f}, {4.0f, 5.0f, 6.0f}}); ComputeAndCompareLiteral(&builder, expected_literal, {input.get()}, zero_error_spec_); } XLA_TEST_P(ReshapeTest, Reshape0x2To2x0) { XlaBuilder builder(TestName()); auto input_literal = LiteralUtil::CreateFromArray(Array2D<float>(0, 2)); XlaOp parameter; TF_ASSERT_OK_AND_ASSIGN( auto input, CreateParameterAndTransferLiteral(0, input_literal, "input", &builder, &parameter)); Reshape(parameter, {0, 1}, {2, 0}); auto expected_literal = LiteralUtil::CreateR2<float>({{}, {}}); ComputeAndCompareLiteral(&builder, expected_literal, {input.get()}, zero_error_spec_); } XLA_TEST_P(ReshapeTest, ReshapeRowToCol) { XlaBuilder builder(TestName()); auto simple = MakeLinspaceArray2D(1.0f, 3.0f, 1, 3); auto input_literal = LiteralUtil::CreateFromArray(*simple); XlaOp parameter; TF_ASSERT_OK_AND_ASSIGN( auto input, CreateParameterAndTransferLiteral(0, input_literal, "input", &builder, &parameter)); Reshape(parameter, {0, 1}, {3, 1}); auto expected = ReferenceUtil::TransposeArray2D(*simple); auto expected_literal = LiteralUtil::CreateFromArray(*expected); ComputeAndCompareLiteral(&builder, expected_literal, {input.get()}, zero_error_spec_); } XLA_TEST_P(ReshapeTest, TransposeAsReshape) { XlaBuilder builder(TestName()); auto a4x3 = MakeLinspaceArray2D(1.0f, 12.0f, 4, 3); auto input_literal = LiteralUtil::CreateFromArray(*a4x3); XlaOp parameter; TF_ASSERT_OK_AND_ASSIGN( auto input, CreateParameterAndTransferLiteral(0, input_literal, "input", &builder, &parameter)); Reshape(parameter, {1, 0}, {3, 4}); auto expected = ReferenceUtil::TransposeArray2D(*a4x3); auto expected_literal = LiteralUtil::CreateFromArray(*expected); ComputeAndCompareLiteral(&builder, expected_literal, {input.get()}, zero_error_spec_); } XLA_TEST_P(ReshapeTest, Transpose0x4) { XlaBuilder builder(TestName()); auto input_literal = LiteralUtil::CreateFromArray(Array2D<float>(0, 4)); XlaOp parameter; TF_ASSERT_OK_AND_ASSIGN( auto input, CreateParameterAndTransferLiteral(0, input_literal, "input", &builder, &parameter)); Transpose(parameter, {1, 0}); auto expected_literal = LiteralUtil::CreateR2<float>({{}, {}, {}, {}}); ComputeAndCompareLiteral(&builder, expected_literal, {input.get()}, zero_error_spec_); } XLA_TEST_P(ReshapeTest, Transpose4x3) { XlaBuilder builder(TestName()); auto a4x3 = MakeLinspaceArray2D(1.0f, 12.0f, 4, 3); auto input_literal = LiteralUtil::CreateFromArray(*a4x3); XlaOp parameter; TF_ASSERT_OK_AND_ASSIGN( auto input, CreateParameterAndTransferLiteral(0, input_literal, "input", &builder, &parameter)); Transpose(parameter, {1, 0}); auto expected = ReferenceUtil::TransposeArray2D(*a4x3); auto expected_literal = LiteralUtil::CreateFromArray(*expected); ComputeAndCompareLiteral(&builder, expected_literal, {input.get()}, zero_error_spec_); } XLA_TEST_P(ReshapeTest, ReshapeSplitNoShuffleZeroElements) { XlaBuilder builder(TestName()); auto input_literal = LiteralUtil::CreateFromArray(Array2D<float>(6, 0)); XlaOp parameter; TF_ASSERT_OK_AND_ASSIGN( auto input, CreateParameterAndTransferLiteral(0, input_literal, "input", &builder, &parameter)); Reshape(parameter, {0, 1}, {2, 3, 0, 0}); auto expected_literal = LiteralUtil::CreateFromArray(Array4D<float>(2, 3, 0, 0)); ComputeAndCompareLiteral(&builder, expected_literal, {input.get()}, zero_error_spec_); } XLA_TEST_P(ReshapeTest, ReshapeR4ToR2ZeroElements) { XlaBuilder builder(TestName()); auto input_literal = LiteralUtil::CreateFromArray(Array4D<float>(2, 3, 4, 0)); XlaOp parameter; TF_ASSERT_OK_AND_ASSIGN( auto input, CreateParameterAndTransferLiteral(0, input_literal, "input", &builder, &parameter)); Reshape(parameter, {0, 1, 2, 3}, {24, 0}); auto expected_literal = LiteralUtil::CreateFromArray(Array2D<float>(24, 0)); ComputeAndCompareLiteral(&builder, expected_literal, {input.get()}, zero_error_spec_); } XLA_TEST_P(ReshapeTest, ReshapeSplitNoShuffle) { XlaBuilder builder(TestName()); auto a4x3 = MakeLinspaceArray2D(1.0f, 12.0f, 4, 3); auto input_literal = LiteralUtil::CreateFromArray(*a4x3); XlaOp parameter; TF_ASSERT_OK_AND_ASSIGN( auto input, CreateParameterAndTransferLiteral(0, input_literal, "input", &builder, &parameter)); Reshape(parameter, {0, 1}, {2, 6}); auto expected = MakeLinspaceArray2D(1.0f, 12.0f, 2, 6); auto expected_literal = LiteralUtil::CreateFromArray(*expected); ComputeAndCompareLiteral(&builder, expected_literal, {input.get()}, zero_error_spec_); } XLA_TEST_P(ReshapeTest, ReshapeSplitAndShuffleZeroElements) { XlaBuilder builder(TestName()); auto input_literal = LiteralUtil::CreateFromArray(Array2D<float>(0, 6)); XlaOp parameter; TF_ASSERT_OK_AND_ASSIGN( auto input, CreateParameterAndTransferLiteral(0, input_literal, "input", &builder, &parameter)); Reshape(parameter, {1, 0}, {3, 0}); auto expected_literal = LiteralUtil::CreateFromArray(Array2D<float>(3, 0)); ComputeAndCompareLiteral(&builder, expected_literal, {input.get()}, zero_error_spec_); } XLA_TEST_P(ReshapeTest, ReshapeSplitAndShuffle) { XlaBuilder builder(TestName()); auto a4x3 = MakeLinspaceArray2D(1.0f, 12.0f, 4, 3); auto input_literal = LiteralUtil::CreateFromArray(*a4x3); XlaOp parameter; TF_ASSERT_OK_AND_ASSIGN( auto input, CreateParameterAndTransferLiteral(0, input_literal, "input", &builder, &parameter)); Reshape(parameter, {1, 0}, {2, 6}); Array2D<float> expected({{1.0f, 4.0f, 7.0f, 10.0f, 2.0f, 5.0f}, {8.0f, 11.0f, 3.0f, 6.0f, 9.0f, 12.0f}}); auto expected_literal = LiteralUtil::CreateFromArray(expected); ComputeAndCompareLiteral(&builder, expected_literal, {input.get()}, zero_error_spec_); } static Array3D<float> ArrayForDocR3Tests() { return Array3D<float>({{{10, 11, 12}, {15, 16, 17}}, {{20, 21, 22}, {25, 26, 27}}, {{30, 31, 32}, {35, 36, 37}}, {{40, 41, 42}, {45, 46, 47}}}); } XLA_TEST_P(ReshapeTest, DocR3_R1_Collapse_012) { XlaBuilder builder(TestName()); auto input_literal = LiteralUtil::CreateFromArray(ArrayForDocR3Tests()); XlaOp parameter; TF_ASSERT_OK_AND_ASSIGN( auto input, CreateParameterAndTransferLiteral(0, input_literal, "input", &builder, &parameter)); Reshape(parameter, {0, 1, 2}, {24}); auto expected_literal = LiteralUtil::CreateR1<float>( {10, 11, 12, 15, 16, 17, 20, 21, 22, 25, 26, 27, 30, 31, 32, 35, 36, 37, 40, 41, 42, 45, 46, 47}); ComputeAndCompareLiteral(&builder, expected_literal, {input.get()}, zero_error_spec_); } XLA_TEST_P(ReshapeTest, DocR3_R2_Collapse_012_Refine_83) { XlaBuilder builder(TestName()); auto input_literal = LiteralUtil::CreateFromArray(ArrayForDocR3Tests()); XlaOp parameter; TF_ASSERT_OK_AND_ASSIGN( auto input, CreateParameterAndTransferLiteral(0, input_literal, "input", &builder, &parameter)); Reshape(parameter, {0, 1, 2}, {8, 3}); auto expected_literal = LiteralUtil::CreateR2<float>({{10, 11, 12}, {15, 16, 17}, {20, 21, 22}, {25, 26, 27}, {30, 31, 32}, {35, 36, 37}, {40, 41, 42}, {45, 46, 47}}); ComputeAndCompareLiteral(&builder, expected_literal, {input.get()}, zero_error_spec_); } XLA_TEST_P(ReshapeTest, DocR3_R1_Collapse_120) { XlaBuilder builder(TestName()); auto input_literal = LiteralUtil::CreateFromArray(ArrayForDocR3Tests()); XlaOp parameter; TF_ASSERT_OK_AND_ASSIGN( auto input, CreateParameterAndTransferLiteral(0, input_literal, "input", &builder, &parameter)); Reshape(parameter, {1, 2, 0}, {24}); auto expected_literal = LiteralUtil::CreateR1<float>( {10, 20, 30, 40, 11, 21, 31, 41, 12, 22, 32, 42, 15, 25, 35, 45, 16, 26, 36, 46, 17, 27, 37, 47}); ComputeAndCompareLiteral(&builder, expected_literal, {input.get()}, zero_error_spec_); } XLA_TEST_P(ReshapeTest, DocR3_R2_Collapse_120_Refine_83) { XlaBuilder builder(TestName()); auto input_literal = LiteralUtil::CreateFromArray(ArrayForDocR3Tests()); XlaOp parameter; TF_ASSERT_OK_AND_ASSIGN( auto input, CreateParameterAndTransferLiteral(0, input_literal, "input", &builder, &parameter)); Reshape(parameter, {1, 2, 0}, {8, 3}); auto expected_literal = LiteralUtil::CreateR2<float>({{10, 20, 30}, {40, 11, 21}, {31, 41, 12}, {22, 32, 42}, {15, 25, 35}, {45, 16, 26}, {36, 46, 17}, {27, 37, 47}}); ComputeAndCompareLiteral(&builder, expected_literal, {input.get()}, zero_error_spec_); } XLA_TEST_P(ReshapeTest, DocR3_R3_Collapse_120_Refine_262) { XlaBuilder builder(TestName()); auto input_literal = LiteralUtil::CreateFromArray(ArrayForDocR3Tests()); XlaOp parameter; TF_ASSERT_OK_AND_ASSIGN( auto input, CreateParameterAndTransferLiteral(0, input_literal, "input", &builder, &parameter)); Reshape(parameter, {1, 2, 0}, {2, 6, 2}); auto expected_literal = LiteralUtil::CreateR3<float>( {{{10, 20}, {30, 40}, {11, 21}, {31, 41}, {12, 22}, {32, 42}}, {{15, 25}, {35, 45}, {16, 26}, {36, 46}, {17, 27}, {37, 47}}}); ComputeAndCompareLiteral(&builder, expected_literal, {input.get()}, zero_error_spec_); } XLA_TEST_P(ReshapeTest, FullyConnectedCollapse) { XlaBuilder builder(TestName()); Array4D<float> t2x2x2x3(2, 2, 2, 3); auto filler2x3 = MakeLinspaceArray2D(1.0f, 6.0f, 2, 3); t2x2x2x3.FillWithYX(*filler2x3); auto input_literal = LiteralUtil::CreateFromArray(t2x2x2x3); XlaOp parameter; TF_ASSERT_OK_AND_ASSIGN( auto input, CreateParameterAndTransferLiteral(0, input_literal, "input", &builder, &parameter)); Collapse(parameter, {1, 2, 3}); auto expected_literal = LiteralUtil::CreateR2<float>( {{1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f}, {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f}}); ComputeAndCompareLiteral(&builder, expected_literal, {input.get()}, zero_error_spec_); } XLA_TEST_P(ReshapeTest, FullyConnectedCollapseDesugared) { XlaBuilder builder(TestName()); Array4D<float> t(2, 1, 2, 2); t(0, 0, 0, 0) = 0; t(0, 0, 0, 1) = 1; t(0, 0, 1, 0) = 2; t(0, 0, 1, 1) = 3; t(1, 0, 0, 0) = 4; t(1, 0, 0, 1) = 5; t(1, 0, 1, 0) = 6; t(1, 0, 1, 1) = 7; auto input_literal = LiteralUtil::CreateFromArray(t); XlaOp parameter; TF_ASSERT_OK_AND_ASSIGN( auto input, CreateParameterAndTransferLiteral(0, input_literal, "input", &builder, &parameter)); Reshape(parameter, {0, 1, 2, 3}, {2, 4}); auto expected_literal = LiteralUtil::CreateR2<float>({{0, 1, 2, 3}, {4, 5, 6, 7}}); ComputeAndCompareLiteral(&builder, expected_literal, {input.get()}, zero_error_spec_); } XLA_TEST_P(ReshapeTest, ToScalar) { for (int rank = 0; rank < 8; ++rank) { XlaBuilder b(TestName()); std::vector<int64_t> ones(rank, 1); std::vector<int64_t> dimensions(rank); std::iota(dimensions.begin(), dimensions.end(), 0); Literal input_literal(ShapeUtil::MakeShape(F32, ones)); std::vector<int64_t> zeros(rank, 0); input_literal.Set<float>(zeros, 83.0f); XlaOp parameter; TF_ASSERT_OK_AND_ASSIGN( auto input, CreateParameterAndTransferLiteral(0, input_literal, "input", &b, &parameter)); Reshape(parameter, dimensions, {}); auto expected_literal = LiteralUtil::CreateR0<float>(83.0f); ComputeAndCompareLiteral(&b, expected_literal, {input.get()}, zero_error_spec_); } } XLA_TEST_P(ReshapeTest, BadDimensions) { XlaBuilder b(TestName()); auto input_literal = LiteralUtil::CreateR1<float>({1.0f}); XlaOp parameter; TF_ASSERT_OK_AND_ASSIGN( auto input, CreateParameterAndTransferLiteral(0, input_literal, "input", &b, &parameter)); Reshape(parameter, {}, {}); EXPECT_THAT( ExecuteToString(&b, {}), ::testing::HasSubstr("not a permutation of the operand dimensions")); } XLA_TEST_P(ReshapeTest, BadNewSizes) { XlaBuilder b(TestName()); auto input_literal = LiteralUtil::CreateR1<float>({1.0f, 2.0f}); XlaOp parameter; TF_ASSERT_OK_AND_ASSIGN( auto input, CreateParameterAndTransferLiteral(0, input_literal, "input", &b, &parameter)); Reshape(parameter, {1}, {}); EXPECT_THAT(ExecuteToString(&b, {}), ::testing::HasSubstr("mismatched element counts")); } XLA_TEST_P(ReshapeTest, R4Dim0MinorLayoutToR2Dim0MajorLayout) { XlaBuilder builder(TestName()); auto input_literal = LiteralUtil::CreateR4FromArray4DWithLayout( Array4D<float>{ { { {0, 1}, {2, 3}, }, { {100, 101}, {102, 103}, }, }, { { {222, 333}, {444, 555}, }, { {666, 777}, {888, 999}, }, }, }, LayoutUtil::MakeLayout({0, 1, 2, 3})); XlaOp parameter; TF_ASSERT_OK_AND_ASSIGN( auto input, CreateParameterAndTransferLiteral(0, input_literal, "input", &builder, &parameter)); Reshape(parameter, {0, 1, 2, 3}, {2, 8}); Array2D<float> expected_array({ {0, 1, 2, 3, 100, 101, 102, 103}, {222, 333, 444, 555, 666, 777, 888, 999}, }); XlaComputation computation = builder.Build().value(); ExecutionOptions execution_options = execution_options_; *execution_options.mutable_shape_with_output_layout() = ShapeUtil::MakeShapeWithDenseLayout(use_bfloat16() ? BF16 : F32, {2, 8}, {1, 0}) .ToProto(); Literal actual = client_ ->ExecuteAndTransfer(computation, {input.get()}, &execution_options) .value(); Literal expected = LiteralUtil::CreateR2FromArray2D<float>(expected_array); if (use_bfloat16()) { expected = LiteralUtil::ConvertF32ToBF16(expected); } EXPECT_TRUE(LiteralTestUtil::Equal(expected, actual)); } XLA_TEST_P(ReshapeTest, R2ToR4_3x8_To_3x2x1x4) { XlaBuilder builder(TestName()); Literal input_literal = LiteralUtil::CreateR2<float>({ {0, 1, 2, 3, 4, 5, 6, 7}, {100, 101, 102, 103, 104, 105, 106, 107}, {200, 201, 202, 203, 204, 205, 206, 207}, }); XlaOp parameter; TF_ASSERT_OK_AND_ASSIGN( auto input, CreateParameterAndTransferLiteral(0, input_literal, "input", &builder, &parameter)); Reshape(parameter, {0, 1}, {3, 2, 1, 4}); auto expected_literal = LiteralUtil::CreateR4<float>({ {{{0, 1, 2, 3}}, {{4, 5, 6, 7}}}, {{{100, 101, 102, 103}}, {{104, 105, 106, 107}}}, {{{200, 201, 202, 203}}, {{204, 205, 206, 207}}} }); ComputeAndCompareLiteral(&builder, expected_literal, {input.get()}, zero_error_spec_); } XLA_TEST_P(ReshapeTest, R2ToR4_3x8_To_3x2x1x4_Dimensions_10) { XlaBuilder builder(TestName()); Literal input_literal = LiteralUtil::CreateR2<float>({ {0, 1, 2, 3, 4, 5, 6, 7}, {100, 101, 102, 103, 104, 105, 106, 107}, {200, 201, 202, 203, 204, 205, 206, 207}, }); XlaOp parameter; TF_ASSERT_OK_AND_ASSIGN( auto input, CreateParameterAndTransferLiteral(0, input_literal, "input", &builder, &parameter)); Reshape(parameter, {1, 0}, {3, 2, 1, 4}); auto expected_literal = LiteralUtil::CreateR4<float>({ {{{0, 100, 200, 1}}, {{101, 201, 2, 102}}}, {{{202, 3, 103, 203}}, {{4, 104, 204, 5}}}, {{{105, 205, 6, 106}}, {{206, 7, 107, 207}}} }); ComputeAndCompareLiteral(&builder, expected_literal, {input.get()}, zero_error_spec_); } XLA_TEST_P(ReshapeTest, R4ToR2_2x1x1x1_To_2x1) { XlaBuilder builder(TestName()); std::mt19937 rng; std::uniform_real_distribution<float> distribution; Array4D<float> input(2, 1, 1, 1); input.Each([&rng, &distribution](absl::Span<const int64_t> , float* cell) { *cell = distribution(rng); }); Literal input_literal = LiteralUtil::CreateR4FromArray4DWithLayout( input, LayoutUtil::MakeLayout({3, 2, 1, 0})); XlaOp parameter; TF_ASSERT_OK_AND_ASSIGN(auto input_data, CreateParameterAndTransferLiteral( 0, input_literal, "input", &builder, &parameter)); Reshape(parameter, {0, 1, 2, 3}, {2, 1}); Literal expected = LiteralUtil::ReshapeSlice({2, 1}, {1, 0}, input_literal); ComputeAndCompareLiteral(&builder, expected, {input_data.get()}, zero_error_spec_); } XLA_TEST_P(ReshapeTest, R4ToR2_2x1x4x1_To_4x2) { XlaBuilder builder(TestName()); std::mt19937 rng; std::uniform_real_distribution<float> distribution; Array4D<float> input(2, 1, 4, 1); input.Each([&rng, &distribution](absl::Span<const int64_t> , float* cell) { *cell = distribution(rng); }); Literal input_literal = LiteralUtil::CreateR4FromArray4DWithLayout( input, LayoutUtil::MakeLayout({3, 2, 1, 0})); XlaOp parameter; TF_ASSERT_OK_AND_ASSIGN(auto input_data, CreateParameterAndTransferLiteral( 0, input_literal, "input", &builder, &parameter)); Reshape(parameter, {0, 1, 2, 3}, {4, 2}); Literal expected = LiteralUtil::ReshapeSlice({4, 2}, {1, 0}, input_literal); ComputeAndCompareLiteral(&builder, expected, {input_data.get()}, zero_error_spec_); } XLA_TEST_P(ReshapeTest, R4ToR2_5x10x2x3_To_5x60_Dimensions_0213) { XlaBuilder builder(TestName()); std::mt19937 rng; std::uniform_real_distribution<float> distribution; Array4D<float> input(5, 10, 2, 3); input.Each([&rng, &distribution](absl::Span<const int64_t> , float* cell) { *cell = distribution(rng); }); Literal input_literal = LiteralUtil::CreateR4FromArray4DWithLayout( input, LayoutUtil::MakeLayout({3, 2, 1, 0})); XlaOp parameter; TF_ASSERT_OK_AND_ASSIGN(auto input_data, CreateParameterAndTransferLiteral( 0, input_literal, "input", &builder, &parameter)); Reshape(parameter, {0, 2, 1, 3}, {5, 60}); Array2D<float> expected_array(5, 60); input.Each([&](absl::Span<const int64_t> indices, float* cell) { expected_array(indices[0], indices[2] * 30 + indices[1] * 3 + indices[3]) = *cell; }); auto expected = LiteralUtil::CreateR2FromArray2D(expected_array); ComputeAndCompareLiteral(&builder, expected, {input_data.get()},
922
cpp
tensorflow/tensorflow
round
tensorflow/lite/kernels/round.cc
tensorflow/lite/kernels/round_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ROUND_H_ #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ROUND_H_ #include <cmath> #include "tensorflow/lite/kernels/internal/types.h" namespace tflite { namespace reference_ops { inline float RoundToNearest(float value) { auto floor_val = std::floor(value); auto diff = value - floor_val; if ((diff < 0.5f) || ((diff == 0.5f) && (static_cast<int>(floor_val) % 2 == 0))) { return floor_val; } else { return floor_val = floor_val + 1.0f; } } inline void Round(const RuntimeShape& input_shape, const float* input_data, const RuntimeShape& output_shape, float* output_data) { const int flat_size = MatchingFlatSize(input_shape, output_shape); for (int i = 0; i < flat_size; ++i) { output_data[i] = RoundToNearest(input_data[i]); } } } } #endif #include "tensorflow/lite/kernels/internal/reference/round.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace builtin { namespace round { constexpr int kInputTensor = 0; constexpr int kOutputTensor = 0; TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteFloat32); output->type = input->type; TfLiteIntArray* output_size = TfLiteIntArrayCopy(input->dims); return context->ResizeTensor(context, output, output_size); } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); optimized_ops::Round(GetTensorShape(input), GetTensorData<float>(input), GetTensorShape(output), GetTensorData<float>(output)); return kTfLiteOk; } } TfLiteRegistration* Register_ROUND() { static TfLiteRegistration r = {nullptr, nullptr, round::Prepare, round::Eval}; return &r; } } } }
#include <cstdint> #include <functional> #include <memory> #include <random> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/xnnpack/unary_elementwise_tester.h" #include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h" namespace tflite { namespace xnnpack { TEST(Round, 4D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); UnaryElementwiseTester() .Shape({batch, height, width, channels}) .Test(BuiltinOperator_ROUND, xnnpack_delegate.get()); } TEST(Round, 3D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); UnaryElementwiseTester() .Shape({batch, width, channels}) .Test(BuiltinOperator_ROUND, xnnpack_delegate.get()); } TEST(Round, 2D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); UnaryElementwiseTester() .Shape({batch, channels}) .Test(BuiltinOperator_ROUND, xnnpack_delegate.get()); } TEST(Round, 1D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); UnaryElementwiseTester().Shape({batch}).Test(BuiltinOperator_ROUND, xnnpack_delegate.get()); } TEST(Round, MultiThreading) { TfLiteXNNPackDelegateOptions delegate_options = TfLiteXNNPackDelegateOptionsDefault(); delegate_options.num_threads = 2; std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); UnaryElementwiseTester() .Shape({batch, height, width, channels}) .Test(BuiltinOperator_ROUND, xnnpack_delegate.get()); } } }
923
cpp
tensorflow/tensorflow
batch_to_space_nd
tensorflow/lite/kernels/batch_to_space_nd.cc
tensorflow/lite/kernels/internal/batch_to_space_nd_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_BATCH_TO_SPACE_ND_H_ #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_BATCH_TO_SPACE_ND_H_ #include <cmath> #include "ruy/profiler/instrumentation.h" #include "tensorflow/lite/kernels/internal/types.h" namespace tflite { namespace reference_ops { inline RuntimeShape ExtendShapeBatchToSpace(const RuntimeShape& shape) { if (shape.DimensionsCount() == 4) { return shape; } RuntimeShape new_shape(4, 1); new_shape.SetDim(0, shape.Dims(0)); new_shape.SetDim(1, shape.Dims(1)); new_shape.SetDim(3, shape.Dims(2)); return new_shape; } template <typename T> inline void BatchToSpaceND(const RuntimeShape& unextended_input1_shape, const T* input1_data, const RuntimeShape& unextended_input2_shape, const int32_t* block_shape_data, const RuntimeShape& unextended_input3_shape, const int32_t* crops_data, const RuntimeShape& unextended_output_shape, T* output_data) { ruy::profiler::ScopeLabel label("BatchToSpaceND"); TFLITE_DCHECK_GE(unextended_input1_shape.DimensionsCount(), 3); TFLITE_DCHECK_LE(unextended_input1_shape.DimensionsCount(), 4); TFLITE_DCHECK_EQ(unextended_input1_shape.DimensionsCount(), unextended_output_shape.DimensionsCount()); const RuntimeShape input1_shape = ExtendShapeBatchToSpace(unextended_input1_shape); const RuntimeShape output_shape = ExtendShapeBatchToSpace(unextended_output_shape); const int output_width = output_shape.Dims(2); const int output_height = output_shape.Dims(1); const int output_batch_size = output_shape.Dims(0); const int depth = input1_shape.Dims(3); const int input_width = input1_shape.Dims(2); const int input_height = input1_shape.Dims(1); const int input_batch_size = input1_shape.Dims(0); const int block_shape_height = block_shape_data[0]; const int block_shape_width = unextended_input1_shape.DimensionsCount() == 4 ? block_shape_data[1] : 1; const int crops_top = crops_data[0]; const int crops_left = unextended_input1_shape.DimensionsCount() == 4 ? crops_data[2] : 0; for (int in_batch = 0; in_batch < input_batch_size; ++in_batch) { const int out_batch = in_batch % output_batch_size; const int spatial_offset = in_batch / output_batch_size; for (int in_h = 0; in_h < input_height; ++in_h) { const int out_h = in_h * block_shape_height + spatial_offset / block_shape_width - crops_top; if (out_h < 0 || out_h >= output_height) { continue; } for (int in_w = 0; in_w < input_width; ++in_w) { const int out_w = in_w * block_shape_width + spatial_offset % block_shape_width - crops_left; if (out_w < 0 || out_w >= output_width) { continue; } T* out = output_data + Offset(output_shape, out_batch, out_h, out_w, 0); const T* in = input1_data + Offset(input1_shape, in_batch, in_h, in_w, 0); memcpy(out, in, depth * sizeof(T)); } } } } } } #endif #include <stdint.h> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h" #include "tensorflow/lite/kernels/internal/reference/reference_ops.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace builtin { namespace batch_to_space_nd { enum KernelType { kReference, kGenericOptimized, }; struct BatchToSpaceNDContext { BatchToSpaceNDContext(TfLiteContext* context, TfLiteNode* node) { input = GetInput(context, node, 0); block_shape = GetInput(context, node, 1); crops = GetInput(context, node, 2); output = GetOutput(context, node, 0); } const TfLiteTensor* input; const TfLiteTensor* block_shape; const TfLiteTensor* crops; TfLiteTensor* output; }; const int kInputMinDimensionNum = 3; const int kInputMaxDimensionNum = 4; TfLiteStatus ResizeOutputTensor(TfLiteContext* context, BatchToSpaceNDContext* op_context) { TfLiteIntArray* input_size = op_context->input->dims; const int* block_shape = GetTensorData<int32>(op_context->block_shape); const int* crops = GetTensorData<int32>(op_context->crops); int spatial_dims_num = input_size->size - 2; TF_LITE_ENSURE_EQ(context, NumDimensions(op_context->block_shape), 1); TF_LITE_ENSURE_EQ(context, op_context->block_shape->dims->data[0], spatial_dims_num); TF_LITE_ENSURE_EQ(context, NumDimensions(op_context->crops), 2); TF_LITE_ENSURE_EQ(context, op_context->crops->dims->data[0], spatial_dims_num); TF_LITE_ENSURE_EQ(context, op_context->crops->dims->data[1], 2); for (int i = 0; i < spatial_dims_num * 2; ++i) { TF_LITE_ENSURE(context, crops[i] >= 0); } TfLiteIntArray* output_size = TfLiteIntArrayCopy(input_size); int output_batch_size = input_size->data[0]; for (int dim = 0; dim < spatial_dims_num; ++dim) { TF_LITE_ENSURE(context, block_shape[dim] != 0); TF_LITE_ENSURE_EQ(context, output_batch_size % block_shape[dim], 0); output_batch_size = output_batch_size / block_shape[dim]; output_size->data[dim + 1] = input_size->data[dim + 1] * block_shape[dim] - crops[dim * 2] - crops[dim * 2 + 1]; } output_size->data[0] = output_batch_size; output_size->data[input_size->size - 1] = input_size->data[input_size->size - 1]; return context->ResizeTensor(context, op_context->output, output_size); } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 3); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); BatchToSpaceNDContext op_context(context, node); TF_LITE_ENSURE(context, NumDimensions(op_context.input) >= kInputMinDimensionNum); TF_LITE_ENSURE(context, NumDimensions(op_context.input) <= kInputMaxDimensionNum); TF_LITE_ENSURE_EQ(context, op_context.input->type, op_context.output->type); if (op_context.input->type == kTfLiteUInt8 || op_context.input->type == kTfLiteInt8 || op_context.input->type == kTfLiteInt16) { TF_LITE_ENSURE_EQ(context, op_context.input->params.scale, op_context.output->params.scale); TF_LITE_ENSURE_EQ(context, op_context.input->params.zero_point, op_context.output->params.zero_point); } if (op_context.input->type == kTfLiteInt16) { TF_LITE_ENSURE_EQ(context, op_context.input->params.zero_point, 0); TF_LITE_ENSURE_EQ(context, op_context.output->params.zero_point, 0); } if (!IsConstantOrPersistentTensor(op_context.block_shape) || !IsConstantOrPersistentTensor(op_context.crops)) { SetTensorToDynamic(op_context.output); return kTfLiteOk; } return ResizeOutputTensor(context, &op_context); } template <KernelType kernel_type> TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { BatchToSpaceNDContext op_context(context, node); if (IsDynamicTensor(op_context.output)) { TF_LITE_ENSURE_OK(context, ResizeOutputTensor(context, &op_context)); } #define TF_LITE_BATCH_TO_SPACE_ND(type, scalar) \ type::BatchToSpaceND(GetTensorShape(op_context.input), \ GetTensorData<scalar>(op_context.input), \ GetTensorShape(op_context.block_shape), \ GetTensorData<int32_t>(op_context.block_shape), \ GetTensorShape(op_context.crops), \ GetTensorData<int32_t>(op_context.crops), \ GetTensorShape(op_context.output), \ GetTensorData<scalar>(op_context.output)) switch (op_context.input->type) { case kTfLiteFloat32: if (kernel_type == kReference) { TF_LITE_BATCH_TO_SPACE_ND(reference_ops, float); } else { TF_LITE_BATCH_TO_SPACE_ND(optimized_ops, float); } break; case kTfLiteUInt8: if (kernel_type == kReference) { TF_LITE_BATCH_TO_SPACE_ND(reference_ops, uint8_t); } else { TF_LITE_BATCH_TO_SPACE_ND(optimized_ops, uint8_t); } break; case kTfLiteInt8: if (kernel_type == kReference) { TF_LITE_BATCH_TO_SPACE_ND(reference_ops, int8_t); } else { TF_LITE_BATCH_TO_SPACE_ND(optimized_ops, int8_t); } break; case kTfLiteInt16: if (kernel_type == kReference) { TF_LITE_BATCH_TO_SPACE_ND(reference_ops, int16_t); } else { TF_LITE_BATCH_TO_SPACE_ND(optimized_ops, int16_t); } break; case kTfLiteInt32: if (kernel_type == kReference) { TF_LITE_BATCH_TO_SPACE_ND(reference_ops, int32_t); } else { TF_LITE_BATCH_TO_SPACE_ND(optimized_ops, int32_t); } break; case kTfLiteInt64: if (kernel_type == kReference) { TF_LITE_BATCH_TO_SPACE_ND(reference_ops, int64_t); } else { TF_LITE_BATCH_TO_SPACE_ND(optimized_ops, int64_t); } break; default: TF_LITE_KERNEL_LOG(context, "Type %d is currently not supported by BatchToSpace.", op_context.input->type); return kTfLiteError; } #undef TF_LITE_BATCH_TO_SPACE_ND return kTfLiteOk; } } TfLiteRegistration* Register_BATCH_TO_SPACE_ND_REF() { static TfLiteRegistration r = { nullptr, nullptr, batch_to_space_nd::Prepare, batch_to_space_nd::Eval<batch_to_space_nd::kReference>}; return &r; } TfLiteRegistration* Register_BATCH_TO_SPACE_ND_GENERIC_OPT() { static TfLiteRegistration r = { nullptr, nullptr, batch_to_space_nd::Prepare, batch_to_space_nd::Eval<batch_to_space_nd::kGenericOptimized>}; return &r; } TfLiteRegistration* Register_BATCH_TO_SPACE_ND() { return Register_BATCH_TO_SPACE_ND_GENERIC_OPT(); } } } }
#include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h" #include <gtest/gtest.h> namespace tflite { namespace { std::pair<int, int> GetIndexRange(int spatial_index_dim, int block_shape_dim, int input_dim, int output_dim) { int index_start = 0; int index_end = 0; optimized_ops::GetIndexRange(spatial_index_dim, block_shape_dim, input_dim, output_dim, &index_start, &index_end); return {index_start, index_end}; } TEST(BatchToSpaceNDTest, TestIndexRange) { EXPECT_EQ(GetIndexRange(3, 6, 1, 6), std::make_pair(0, 1)); EXPECT_EQ(GetIndexRange(2, 6, 5, 30), std::make_pair(0, 5)); EXPECT_EQ(GetIndexRange(0, 2, 3, 4), std::make_pair(0, 2)); EXPECT_EQ(GetIndexRange(-2, 2, 3, 4), std::make_pair(1, 3)); EXPECT_EQ(GetIndexRange(-30, 5, 7, 5), std::make_pair(6, 7)); EXPECT_EQ(GetIndexRange(-26, 5, 7, 5), std::make_pair(6, 7)); EXPECT_EQ(GetIndexRange(0, 5, 7, 5), std::make_pair(0, 1)); EXPECT_EQ(GetIndexRange(4, 5, 7, 5), std::make_pair(0, 1)); EXPECT_EQ(GetIndexRange(3, 5, 7, 5), std::make_pair(0, 1)); EXPECT_EQ(GetIndexRange(0, 5, 7, 1), std::make_pair(0, 1)); EXPECT_EQ(GetIndexRange(-30, 5, 7, 1), std::make_pair(6, 7)); EXPECT_EQ(GetIndexRange(1, 5, 7, 1), std::make_pair(0, 0)); EXPECT_EQ(GetIndexRange(-29, 5, 7, 1), std::make_pair(6, 6)); } } }
924
cpp
tensorflow/tensorflow
concatenation
tensorflow/lite/kernels/concatenation.cc
tensorflow/lite/kernels/concatenation_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CONCATENATION_H_ #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CONCATENATION_H_ #include <algorithm> #include "tensorflow/lite/kernels/internal/common.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/kernels/internal/cppmath.h" #include "tensorflow/lite/kernels/internal/types.h" namespace tflite { namespace reference_ops { template <typename Scalar> inline void Concatenation(const ConcatenationParams& params, const RuntimeShape* const* input_shapes, const Scalar* const* input_data, const RuntimeShape& output_shape, Scalar* output_data) { int axis = params.axis; int inputs_count = params.inputs_count; const int concat_dimensions = output_shape.DimensionsCount(); TFLITE_DCHECK_LT(axis, concat_dimensions); int64_t concat_size = 0; for (int i = 0; i < inputs_count; i++) { TFLITE_DCHECK_EQ(input_shapes[i]->DimensionsCount(), concat_dimensions); for (int j = 0; j < concat_dimensions; j++) { if (j != axis) { MatchingDim(*input_shapes[i], j, output_shape, j); } } concat_size += input_shapes[i]->Dims(axis); } TFLITE_DCHECK_EQ(concat_size, output_shape.Dims(axis)); int64_t outer_size = 1; for (int i = 0; i < axis; ++i) { outer_size *= output_shape.Dims(i); } int64_t base_inner_size = 1; for (int i = axis + 1; i < concat_dimensions; ++i) { base_inner_size *= output_shape.Dims(i); } Scalar* output_ptr = output_data; for (int k = 0; k < outer_size; k++) { for (int i = 0; i < inputs_count; ++i) { const int copy_size = input_shapes[i]->Dims(axis) * base_inner_size; const Scalar* input_ptr = input_data[i] + k * copy_size; memcpy(output_ptr, input_ptr, copy_size * sizeof(Scalar)); output_ptr += copy_size; } } } inline void ConcatenationWithScaling(const ConcatenationParams& params, const RuntimeShape* const* input_shapes, const uint8_t* const* input_data, const RuntimeShape& output_shape, uint8_t* output_data) { int axis = params.axis; const int32_t* input_zeropoint = params.input_zeropoint; const float* input_scale = params.input_scale; int inputs_count = params.inputs_count; const int32_t output_zeropoint = params.output_zeropoint; const float output_scale = params.output_scale; const int concat_dimensions = output_shape.DimensionsCount(); TFLITE_DCHECK_LT(axis, concat_dimensions); int64_t concat_size = 0; for (int i = 0; i < inputs_count; i++) { TFLITE_DCHECK_EQ(input_shapes[i]->DimensionsCount(), concat_dimensions); for (int j = 0; j < concat_dimensions; j++) { if (j != axis) { MatchingDim(*input_shapes[i], j, output_shape, j); } } concat_size += input_shapes[i]->Dims(axis); } TFLITE_DCHECK_EQ(concat_size, output_shape.Dims(axis)); int64_t outer_size = 1; for (int i = 0; i < axis; ++i) { outer_size *= output_shape.Dims(i); } int64_t base_inner_size = 1; for (int i = axis + 1; i < concat_dimensions; ++i) { base_inner_size *= output_shape.Dims(i); } const float inverse_output_scale = 1.f / output_scale; uint8_t* output_ptr = output_data; for (int k = 0; k < outer_size; k++) { for (int i = 0; i < inputs_count; ++i) { const int copy_size = input_shapes[i]->Dims(axis) * base_inner_size; const uint8_t* input_ptr = input_data[i] + k * copy_size; if (input_zeropoint[i] == output_zeropoint && input_scale[i] == output_scale) { memcpy(output_ptr, input_ptr, copy_size); } else { const float scale = input_scale[i] * inverse_output_scale; const float bias = -input_zeropoint[i] * scale; for (int j = 0; j < copy_size; ++j) { const int32_t value = static_cast<int32_t>(tflite::TfLiteRound( input_ptr[j] * scale + bias)) + output_zeropoint; output_ptr[j] = static_cast<uint8_t>( std::max<int32_t>(std::min<int32_t>(255, value), 0)); } } output_ptr += copy_size; } } } } } #endif #include "tensorflow/lite/kernels/internal/reference/concatenation.h" #include <stdint.h> #include <cstddef> #include <cstring> #include <limits> #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h" #include "tensorflow/lite/kernels/internal/reference/reference_ops.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/internal/types.h" #include "tensorflow/lite/kernels/kernel_util.h" #include "tensorflow/lite/util.h" namespace tflite { namespace ops { namespace builtin { namespace concatenation { enum KernelType { kReference, kGenericOptimized, }; template <KernelType kernel_type> TfLiteStatus EvalImpl(TfLiteContext* context, TfLiteNode* node, int axis, TfLiteTensor* output) { #define TF_LITE_CONCATENATION(scalar) \ { \ VectorOfTensors<scalar> all_inputs(*context, *node->inputs); \ tflite::ConcatenationParams op_params; \ op_params.axis = axis; \ op_params.inputs_count = node->inputs->size; \ if (kernel_type == kReference) { \ reference_ops::Concatenation(op_params, all_inputs.shapes(), \ all_inputs.data(), GetTensorShape(output), \ GetTensorData<scalar>(output)); \ } else { \ optimized_ops::Concatenation(op_params, all_inputs.shapes(), \ all_inputs.data(), GetTensorShape(output), \ GetTensorData<scalar>(output)); \ } \ } #define TF_LITE_CONCATENATION_QUANTIZED() \ { \ VectorOfQuantizedTensors all_inputs(*context, *node->inputs); \ tflite::ConcatenationParams op_params; \ op_params.axis = axis; \ op_params.input_zeropoint = all_inputs.zero_point(); \ op_params.input_scale = all_inputs.scale(); \ op_params.inputs_count = node->inputs->size; \ op_params.output_zeropoint = output->params.zero_point; \ op_params.output_scale = output->params.scale; \ if (kernel_type == kReference) { \ reference_ops::ConcatenationWithScaling( \ op_params, all_inputs.shapes(), all_inputs.data(), \ GetTensorShape(output), GetTensorData<uint8>(output)); \ } else { \ optimized_ops::ConcatenationWithScaling( \ op_params, all_inputs.shapes(), all_inputs.data(), \ GetTensorShape(output), GetTensorData<uint8>(output)); \ } \ } switch (output->type) { case kTfLiteFloat32: TF_LITE_CONCATENATION(float); break; case kTfLiteInt32: TF_LITE_CONCATENATION(int32); break; case kTfLiteUInt32: TF_LITE_CONCATENATION(uint32_t); break; case kTfLiteUInt8: TF_LITE_CONCATENATION_QUANTIZED(); break; case kTfLiteInt8: TF_LITE_CONCATENATION(int8_t); break; case kTfLiteInt64: TF_LITE_CONCATENATION(int64_t); break; case kTfLiteInt16: TF_LITE_CONCATENATION(int16_t); break; case kTfLiteBool: TF_LITE_CONCATENATION(bool); break; default: TF_LITE_KERNEL_LOG(context, "Type '%s' is not supported currently.", TfLiteTypeGetName(output->type)); return kTfLiteError; } #undef TF_LITE_CONCATENATION_QUANTIZED #undef TF_LITE_CONCATENATION return kTfLiteOk; } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { auto* params = reinterpret_cast<TfLiteConcatenationParams*>(node->builtin_data); int axis = params->axis; int num_inputs = node->inputs->size; const TfLiteTensor* t0; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &t0)); TfLiteType input_type = t0->type; if (axis < 0) axis += t0->dims->size; TF_LITE_ENSURE(context, axis >= 0); TF_LITE_ENSURE(context, axis < t0->dims->size || (t0->dims->size == 0 && axis == 0)); TF_LITE_ENSURE_EQ(context, params->activation, kTfLiteActNone); TF_LITE_ENSURE(context, input_type == kTfLiteFloat32 || input_type == kTfLiteUInt8 || input_type == kTfLiteInt8 || input_type == kTfLiteInt16 || input_type == kTfLiteInt32 || input_type == kTfLiteInt64 || input_type == kTfLiteBool || input_type == kTfLiteUInt32); bool all_inputs_at_prepare = true; for (int i = 0; i < num_inputs; ++i) { const TfLiteTensor* t; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, i, &t)); if (!IsConstantOrPersistentTensor(t)) { all_inputs_at_prepare = false; break; } } int sum_axis = t0->dims->size > 0 ? t0->dims->data[axis] : 1; if (all_inputs_at_prepare && t0->dims->size == 0 && axis == 0) { for (int i = 1; i < num_inputs; ++i) { const TfLiteTensor* t; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, i, &t)); TF_LITE_ENSURE_EQ(context, t->dims->size, t0->dims->size); } TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output)); TfLiteIntArray* output_size = TfLiteIntArrayCreate(1); output_size->data[0] = num_inputs; SetTensorToPersistentRo(output); context->ResizeTensor(context, output, output_size); size_t input_type_size; TF_LITE_ENSURE_STATUS(GetSizeOfType(context, t0->type, &input_type_size)); void* o_data = output->data.data; for (int i = 0; i < num_inputs; ++i) { const TfLiteTensor* t; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, i, &t)); const void* i_data = t->data.data; memcpy(o_data, i_data, input_type_size); o_data = (void*)((uintptr_t)o_data + input_type_size); } return kTfLiteOk; } else { for (int i = 1; i < num_inputs; ++i) { const TfLiteTensor* t; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, i, &t)); TF_LITE_ENSURE_EQ(context, t->dims->size, t0->dims->size); TF_LITE_ENSURE_EQ(context, t->type, input_type); for (int d = 0; d < t0->dims->size; ++d) { if (d == axis) { TF_LITE_ENSURE(context, t->dims->data[axis] >= 0); TF_LITE_ENSURE(context, t->dims->data[axis] <= std::numeric_limits<int>::max() - sum_axis); sum_axis += t->dims->data[axis]; } else { TF_LITE_ENSURE_EQ(context, t->dims->data[d], t0->dims->data[d]); } } } } TfLiteIntArray* output_size = TfLiteIntArrayCreate(t0->dims->size); for (int d = 0; d < t0->dims->size; ++d) { output_size->data[d] = (d == axis) ? sum_axis : t0->dims->data[d]; } TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output)); TF_LITE_ENSURE_TYPES_EQ(context, output->type, input_type); if (input_type == kTfLiteInt8) { VectorOfTensors<int8_t> all_inputs(*context, *node->inputs); for (int i = 0; i < node->inputs->size; ++i) { const TfLiteTensor* t; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, i, &t)); TF_LITE_ENSURE_EQ(context, t->params.scale, output->params.scale); TF_LITE_ENSURE_EQ(context, t->params.zero_point, output->params.zero_point); } } if (input_type == kTfLiteInt16) { for (int i = 0; i < node->inputs->size; ++i) { const TfLiteTensor* t = GetInput(context, node, i); TF_LITE_ENSURE_EQ(context, t->params.zero_point, 0); } TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0); } if (all_inputs_at_prepare) { SetTensorToPersistentRo(output); context->ResizeTensor(context, output, output_size); return EvalImpl<kReference>(context, node, axis, output); } return context->ResizeTensor(context, output, output_size); } template <KernelType kernel_type> TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { auto* params = reinterpret_cast<TfLiteConcatenationParams*>(node->builtin_data); int axis = params->axis; TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output)); if (IsConstantOrPersistentTensor(output)) { return kTfLiteOk; } if (axis < 0) axis += output->dims->size; return EvalImpl<kernel_type>(context, node, axis, output); } #undef TF_LITE_MACRO_DISPATCH } TfLiteRegistration* Register_CONCATENATION_REF() { static TfLiteRegistration r = { nullptr, nullptr, concatenation::Prepare, concatenation::Eval<concatenation::kReference>}; return &r; } TfLiteRegistration* Register_CONCATENATION_GENERIC_OPT() { static TfLiteRegistration r = { nullptr, nullptr, concatenation::Prepare, concatenation::Eval<concatenation::kGenericOptimized>}; return &r; } TfLiteRegistration* Register_CONCATENATION() { return Register_CONCATENATION_GENERIC_OPT(); } } } }
#include <algorithm> #include <cstdint> #include <functional> #include <memory> #include <random> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/xnnpack/concatenation_tester.h" #include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h" namespace tflite { namespace xnnpack { TEST(Concatenation, 1D_2_inputs) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 10), std::ref(rng)); const std::vector<int32_t> shape1({shape_rng()}); const std::vector<int32_t> shape2({shape_rng()}); for (int i = -1; i < 1; i++) { ConcatenationTester() .InputShapes({shape1, shape2}) .Axis(i) .Test(TensorType_FLOAT32, xnnpack_delegate.get()); } } TEST(Concatenation, 2D_2_inputs) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 10), std::ref(rng)); for (int i = -2; i < 2; i++) { const std::vector<int32_t> shape1({shape_rng(), shape_rng()}); auto shape2 = SameShapeDifferentAxis(shape1, i, shape_rng()); ConcatenationTester() .InputShapes({shape1, shape2}) .Axis(i) .Test(TensorType_FLOAT32, xnnpack_delegate.get()); } } TEST(Concatenation, 3D_2_inputs) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 10), std::ref(rng)); for (int i = -3; i < 3; i++) { const std::vector<int32_t> shape1({shape_rng(), shape_rng(), shape_rng()}); auto shape2 = SameShapeDifferentAxis(shape1, i, shape_rng()); ConcatenationTester() .InputShapes({shape1, shape2}) .Axis(i) .Test(TensorType_FLOAT32, xnnpack_delegate.get()); } } TEST(Concatenation, 4D_2_inputs) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 10), std::ref(rng)); for (int i = -4; i < 4; i++) { const std::vector<int32_t> shape1( {shape_rng(), shape_rng(), shape_rng(), shape_rng()}); auto shape2 = SameShapeDifferentAxis(shape1, i, shape_rng()); ConcatenationTester() .InputShapes({shape1, shape2}) .Axis(i) .Test(TensorType_FLOAT32, xnnpack_delegate.get()); } } TEST(Concatenation, 1D_of_3) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 10), std::ref(rng)); const std::vector<int32_t> shape1({shape_rng()}); const std::vector<int32_t> shape2({shape_rng()}); const std::vector<int32_t> shape3({shape_rng()}); for (int i = -1; i < 1; i++) { ConcatenationTester() .InputShapes({shape1, shape2, shape3}) .Axis(i) .Test(TensorType_FLOAT32, xnnpack_delegate.get()); } } TEST(Concatenation, 2D_of_3) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 10), std::ref(rng)); for (int i = -2; i < 2; i++) { const std::vector<int32_t> shape1({shape_rng(), shape_rng()}); auto shape2 = SameShapeDifferentAxis(shape1, i, shape_rng()); auto shape3 = SameShapeDifferentAxis(shape1, i, shape_rng()); ConcatenationTester() .InputShapes({shape1, shape2, shape3}) .Axis(i) .Test(TensorType_FLOAT32, xnnpack_delegate.get()); } } TEST(Concatenation, 3D_of_3) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 10), std::ref(rng)); for (int i = -3; i < 3; i++) { const std::vector<int32_t> shape1({shape_rng(), shape_rng(), shape_rng()}); auto shape2 = SameShapeDifferentAxis(shape1, i, shape_rng()); auto shape3 = SameShapeDifferentAxis(shape1, i, shape_rng()); ConcatenationTester() .InputShapes({shape1, shape2, shape3}) .Axis(i) .Test(TensorType_FLOAT32, xnnpack_delegate.get()); } } TEST(Concatenation, 4D_of_3) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 10), std::ref(rng)); for (int i = -4; i < 4; i++) { const std::vector<int32_t> shape1( {shape_rng(), shape_rng(), shape_rng(), shape_rng()}); auto shape2 = SameShapeDifferentAxis(shape1, i, shape_rng()); auto shape3 = SameShapeDifferentAxis(shape1, i, shape_rng()); ConcatenationTester() .InputShapes({shape1, shape2, shape3}) .Axis(i) .Test(TensorType_FLOAT32, xnnpack_delegate.get()); } } TEST(Concatenation, 1D_of_4) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 10), std::ref(rng)); const std::vector<int32_t> shape1({shape_rng()}); const std::vector<int32_t> shape2({shape_rng()}); const std::vector<int32_t> shape3({shape_rng()}); const std::vector<int32_t> shape4({shape_rng()}); for (int i = -1; i < 1; i++) { ConcatenationTester() .InputShapes({shape1, shape2, shape3, shape4}) .Axis(i) .Test(TensorType_FLOAT32, xnnpack_delegate.get()); } } TEST(Concatenation, 2D_of_4) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 10), std::ref(rng)); for (int i = -2; i < 2; i++) { const std::vector<int32_t> shape1({shape_rng(), shape_rng()}); auto shape2 = SameShapeDifferentAxis(shape1, i, shape_rng()); auto shape3 = SameShapeDifferentAxis(shape1, i, shape_rng()); auto shape4 = SameShapeDifferentAxis(shape1, i, shape_rng()); ConcatenationTester() .InputShapes({shape1, shape2, shape3, shape4}) .Axis(i) .Test(TensorType_FLOAT32, xnnpack_delegate.get()); } } TEST(Concatenation, 3D_of_4) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 10), std::ref(rng)); for (int i = -3; i < 3; i++) { const std::vector<int32_t> shape1({shape_rng(), shape_rng(), shape_rng()}); auto shape2 = SameShapeDifferentAxis(shape1, i, shape_rng()); auto shape3 = SameShapeDifferentAxis(shape1, i, shape_rng()); auto shape4 = SameShapeDifferentAxis(shape1, i, shape_rng()); ConcatenationTester() .InputShapes({shape1, shape2, shape3, shape4}) .Axis(i) .Test(TensorType_FLOAT32, xnnpack_delegate.get()); } } TEST(Concatenation, 4D_of_4) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 10), std::ref(rng)); for (int i = -4; i < 4; i++) { const std::vector<int32_t> shape1( {shape_rng(), shape_rng(), shape_rng(), shape_rng()}); auto shape2 = SameShapeDifferentAxis(shape1, i, shape_rng()); auto shape3 = SameShapeDifferentAxis(shape1, i, shape_rng()); auto shape4 = SameShapeDifferentAxis(shape1, i, shape_rng()); ConcatenationTester() .InputShapes({shape1, shape2, shape3, shape4}) .Axis(i) .Test(TensorType_FLOAT32, xnnpack_delegate.get()); } } TEST(Concatenation, 1D_of_5) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 10), std::ref(rng)); const std::vector<int32_t> shape1({shape_rng()}); const std::vector<int32_t> shape2({shape_rng()}); const std::vector<int32_t> shape3({shape_rng()}); const std::vector<int32_t> shape4({shape_rng()}); const std::vector<int32_t> shape5({shape_rng()}); for (int i = -1; i < 1; i++) { ConcatenationTester() .InputShapes({shape1, shape2, shape3, shape4, shape5}) .Axis(i) .Test(TensorType_FLOAT32, xnnpack_delegate.get()); } } TEST(Concatenation, 2D_of_5) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 10), std::ref(rng)); for (int i = -2; i < 2; i++) { const std::vector<int32_t> shape1({shape_rng(), shape_rng()}); auto shape2 = SameShapeDifferentAxis(shape1, i, shape_rng()); auto shape3 = SameShapeDifferentAxis(shape1, i, shape_rng()); auto shape4 = SameShapeDifferentAxis(shape1, i, shape_rng()); auto shape5 = SameShapeDifferentAxis(shape1, i, shape_rng()); ConcatenationTester() .InputShapes({shape1, shape2, shape3, shape4, shape5}) .Axis(i) .Test(TensorType_FLOAT32, xnnpack_delegate.get()); } } TEST(Concatenation, 3D_of_5) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 10), std::ref(rng)); for (int i = -3; i < 3; i++) { const std::vector<int32_t> shape1({shape_rng(), shape_rng(), shape_rng()}); auto shape2 = SameShapeDifferentAxis(shape1, i, shape_rng()); auto shape3 = SameShapeDifferentAxis(shape1, i, shape_rng()); auto shape4 = SameShapeDifferentAxis(shape1, i, shape_rng()); auto shape5 = SameShapeDifferentAxis(shape1, i, shape_rng()); ConcatenationTester() .InputShapes({shape1, shape2, shape3, shape4, shape5}) .Axis(i) .Test(TensorType_FLOAT32, xnnpack_delegate.get()); } } TEST(Concatenation, 4D_of_5) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 10), std::ref(rng)); for (int i = -4; i < 4; i++) { const std::vector<int32_t> shape1( {shape_rng(), shape_rng(), shape_rng(), shape_rng()}); auto shape2 = SameShapeDifferentAxis(shape1, i, shape_rng()); auto shape3 = SameShapeDifferentAxis(shape1, i, shape_rng()); auto shape4 = SameShapeDifferentAxis(shape1, i, shape_rng()); auto shape5 = SameShapeDifferentAxis(shape1, i, shape_rng()); ConcatenationTester() .InputShapes({shape1, shape2, shape3, shape4, shape5}) .Axis(i) .Test(TensorType_FLOAT32, xnnpack_delegate.get()); } } } }
925
cpp
tensorflow/tensorflow
slice
third_party/xla/xla/service/memory_space_assignment/slice.cc
third_party/xla/xla/service/memory_space_assignment/slice_test.cc
#ifndef XLA_SERVICE_MEMORY_SPACE_ASSIGNMENT_SLICE_H_ #define XLA_SERVICE_MEMORY_SPACE_ASSIGNMENT_SLICE_H_ #include <cstdint> #include <ostream> #include <string> #include <tuple> #include <type_traits> #include <vector> #include "absl/functional/any_invocable.h" #include "xla/service/heap_simulator/heap_simulator.h" #include "xla/service/memory_space_assignment/memory_space_assignment.pb.h" #include "xla/shape.h" namespace xla::memory_space_assignment { inline constexpr char kConcatBitcastCustomCall[] = "ConcatBitcast"; struct SliceParam { std::string ToString() const; bool operator==(const SliceParam& other) const; int64_t start_inclusive; int64_t end_exclusive; }; struct SliceProposal { std::string ToString() const; friend std::ostream& operator<<(std::ostream& os, const SliceProposal& proposal); std::tuple<const Shape&, const std::vector<SliceParam>&, int64_t> ToTuple() const; bool operator==(const SliceProposal& other) const; Shape slice_shape; std::vector<SliceParam> slice_params; int64_t slice_size; }; using SliceProposalCollection = std::vector<SliceProposal>; using SliceProposalFunction = std::function<absl::StatusOr<SliceProposalCollection>( const Shape& shape, const SlicedPrefetchOptions& options)>; struct SliceDecision { std::string ToString() const; bool operator==(const SliceDecision& other) const; HeapSimulator::Chunk chunk; int64_t exclusive_start_time; SliceProposal sizing; float copy_resource_consumed; }; bool IsUniformSliceSizingEnabled(const SlicedPrefetchOptions& options); class SlicedPrefetchStartTimePicker { public: using ElapsedTimeFn = std::add_pointer<float( int64_t exclusive_start_time, int64_t exclusive_end_time) const>::type; using SameComputationParentFn = std::add_pointer<bool(int64_t lhs_time, int64_t rhs_time) const>::type; static std::vector<int64_t> Pick( int64_t num_slices, int64_t exclusive_prefetch_start_time, int64_t prefetch_end_time, absl::AnyInvocable<ElapsedTimeFn> elapsed_fn, absl::AnyInvocable<SameComputationParentFn> has_same_parent_fn); }; } #endif #include "xla/service/memory_space_assignment/slice.h" #include <algorithm> #include <cstdint> #include <functional> #include <ostream> #include <string> #include <tuple> #include <vector> #include "absl/functional/any_invocable.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "xla/service/heap_simulator/heap_simulator.h" #include "xla/service/time_utils.h" #include "xla/shape.h" namespace xla::memory_space_assignment { std::tuple<const HeapSimulator::Chunk&, int64_t, const SliceProposal&, float> SliceDecisionToTuple(const SliceDecision& decision) { return std::make_tuple( std::ref(decision.chunk), decision.exclusive_start_time, std::ref(decision.sizing), decision.copy_resource_consumed); } std::string SliceDecision::ToString() const { return absl::StrCat("{ chunk: ", chunk.ToString(), ", (exclusive) start_time: ", exclusive_start_time, ", sizing: ", sizing.ToString(), ", copy_resource_consumed: ", copy_resource_consumed, " }"); } bool SliceDecision::operator==(const SliceDecision& other) const { return SliceDecisionToTuple(*this) == SliceDecisionToTuple(other); } std::string SliceProposal::ToString() const { return absl::StrCat( "{ slice_shape: ", slice_shape.ToString(true), ", slice_params: { ", absl::StrJoin(slice_params, ", ", [](std::string* out, const SliceParam& param) { absl::StrAppend(out, param.ToString()); }), " }, slice_size: ", slice_size, " }"); } std::ostream& operator<<(std::ostream& os, const SliceProposal& proposal) { os << proposal.ToString(); return os; } std::tuple<const Shape&, const std::vector<SliceParam>&, int64_t> SliceProposal::ToTuple() const { return std::make_tuple(std::ref(slice_shape), std::ref(slice_params), slice_size); } bool SliceProposal::operator==(const SliceProposal& other) const { return ToTuple() == other.ToTuple(); } std::string SliceParam::ToString() const { return absl::StrCat("[", start_inclusive, ",", end_exclusive, ")"); } bool SliceParam::operator==(const SliceParam& other) const { return start_inclusive == other.start_inclusive && end_exclusive == other.end_exclusive; } bool IsUniformSliceSizingEnabled(const SlicedPrefetchOptions& options) { return options.max_slices() > 0 && options.preferred_slice_size() > 0; } std::vector<int64_t> SlicedPrefetchStartTimePicker::Pick( int64_t num_slices, int64_t exclusive_prefetch_start_time, int64_t prefetch_end_time, absl::AnyInvocable<ElapsedTimeFn> elapsed_fn, absl::AnyInvocable<SameComputationParentFn> has_same_parent_fn) { CHECK_LE(exclusive_prefetch_start_time, prefetch_end_time); VLOG(5) << "Picking slice start times. num_slices = " << num_slices << "; exclusive_prefetch_start_time = " << exclusive_prefetch_start_time << "; prefetch_end_time = " << prefetch_end_time; if (exclusive_prefetch_start_time >= prefetch_end_time - 2 || num_slices == 1) { return std::vector<int64_t>(num_slices, exclusive_prefetch_start_time); } float total_elapsed = elapsed_fn(exclusive_prefetch_start_time, prefetch_end_time); if (total_elapsed <= 0.0) { return std::vector<int64_t>(num_slices, exclusive_prefetch_start_time); } std::vector<int64_t> start_times; start_times.reserve(num_slices); start_times.push_back(exclusive_prefetch_start_time); int64_t last_valid_candidate = exclusive_prefetch_start_time; int64_t candidate = exclusive_prefetch_start_time; while (candidate < prefetch_end_time - 1 && start_times.size() < num_slices) { float target_elapsed = total_elapsed * static_cast<float>(num_slices - start_times.size()) / static_cast<float>(num_slices); float elapsed = elapsed_fn(candidate, prefetch_end_time); if (elapsed < target_elapsed) { start_times.push_back(last_valid_candidate); continue; } bool updating_candidate_impacts_elapsed = last_valid_candidate != candidate && elapsed_fn(last_valid_candidate, ExclusiveToInclusiveStartTime(candidate)) > 0.0; if (has_same_parent_fn(std::max<int64_t>(0, exclusive_prefetch_start_time), std::max<int64_t>(0, candidate)) && updating_candidate_impacts_elapsed) { last_valid_candidate = candidate; } ++candidate; } while (start_times.size() < num_slices) { start_times.push_back(last_valid_candidate); } return start_times; } }
#include <numeric> #include <vector> #include "absl/container/inlined_vector.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/types/span.h" #include "xla/array2d.h" #include "xla/client/local_client.h" #include "xla/client/xla_builder.h" #include "xla/reference_util.h" #include "xla/tests/client_library_test_base.h" #include "xla/tests/literal_test_util.h" #include "xla/tests/test_macros.h" #include "tsl/platform/test.h" namespace xla { namespace { class SliceTest : public ClientLibraryTestBase {}; TEST_F(SliceTest, Slice3x3x3_To_3x3x1_F32) { Array3D<float> values(3, 3, 3); values.FillIota(0); XlaBuilder builder(TestName()); auto original = ConstantR3FromArray3D<float>(&builder, values); Slice(original, {0, 0, 0}, {3, 3, 1}, {1, 1, 1}); Array3D<float> expected{ {{0.0}, {3.0}, {6.0}}, {{9.0}, {12.0}, {15.0}}, {{18.0}, {21.0}, {24.0}}}; ComputeAndCompareR3<float>(&builder, expected, {}, ErrorSpec(0.000001)); } TEST_F(SliceTest, Slice3x3x3_To_3x1x3_F32) { Array3D<float> values(3, 3, 3); values.FillIota(0); XlaBuilder builder(TestName()); auto original = ConstantR3FromArray3D<float>(&builder, values); Slice(original, {0, 0, 0}, {3, 1, 3}, {1, 1, 1}); Array3D<float> expected{ {{0.0, 1.0, 2.0}}, {{9.0, 10.0, 11.0}}, {{18.0, 19.0, 20.0}}}; ComputeAndCompareR3<float>(&builder, expected, {}, ErrorSpec(0.000001)); } TEST_F(SliceTest, Slice3x3x3_To_1x3x3_F32) { Array3D<float> values(3, 3, 3); values.FillIota(0); XlaBuilder builder(TestName()); auto original = ConstantR3FromArray3D<float>(&builder, values); Slice(original, {0, 0, 0}, {1, 3, 3}, {1, 1, 1}); Array3D<float> expected{ {{{0.0, 1.0, 2.0}, {3.0, 4.0, 5.0}, {6.0, 7.0, 8.0}}}}; ComputeAndCompareR3<float>(&builder, expected, {}, ErrorSpec(0.000001)); } XLA_TEST_F(SliceTest, Slice0x0to0x0F32) { XlaBuilder builder(TestName()); auto original = ConstantR2FromArray2D<float>(&builder, Array2D<float>(0, 0)); Slice(original, {0, 0}, {0, 0}, {1, 1}); ComputeAndCompareR2<float>(&builder, Array2D<float>(0, 0), {}); } XLA_TEST_F(SliceTest, Slice0x20to0x5F32) { XlaBuilder builder(TestName()); auto original = ConstantR2FromArray2D<float>(&builder, Array2D<float>(0, 20)); Slice(original, {0, 15}, {0, 20}, {1, 1}); ComputeAndCompareR2<float>(&builder, Array2D<float>(0, 5), {}); } XLA_TEST_F(SliceTest, Slice3x0to2x0F32) { XlaBuilder builder(TestName()); auto original = ConstantR2FromArray2D<float>(&builder, Array2D<float>(3, 0)); Slice(original, {1, 0}, {3, 0}, {1, 1}); ComputeAndCompareR2<float>(&builder, Array2D<float>(2, 0), {}); } XLA_TEST_F(SliceTest, SliceQuadrantOf256x256) { Array2D<float> values(256, 256); for (int row = 0; row < 256; ++row) { for (int col = 0; col < 256; ++col) { values(row, col) = (row << 10) | col; } } XlaBuilder builder(TestName()); auto original = ConstantR2FromArray2D<float>(&builder, values); Slice(original, {128, 128}, {256, 256}, {1, 1}); Array2D<float> expected(128, 128); for (int row = 0; row < 128; ++row) { for (int col = 0; col < 128; ++col) { expected(row, col) = ((row + 128) << 10) | (col + 128); } } ComputeAndCompareR2<float>(&builder, expected, {}, ErrorSpec(0.000001)); } TEST_F(SliceTest, Slice_1x4096_To_1x1024) { Array2D<float> values(1, 4096); std::iota(values.data(), values.data() + 4096, 0.0); XlaBuilder builder(TestName()); auto original = ConstantR2FromArray2D<float>(&builder, values); Slice(original, {0, 3072}, {1, 4096}, {1, 1}); Array2D<float> expected(1, 1024); std::iota(expected.data(), expected.data() + 1024, 3072.0); ComputeAndCompareR2<float>(&builder, expected, {}, ErrorSpec(0.000001)); } TEST_F(SliceTest, Slice_16x4_To_16x2) { Array2D<float> values(16, 4); Array2D<float> expected(16, 2); for (int row = 0; row < 16; ++row) { for (int col = 0; col < 4; ++col) { values(row, col) = (row << 10) | col; if (col < 2) { expected(row, col) = (row << 10) | col; } } } XlaBuilder builder(TestName()); auto original = ConstantR2FromArray2D<float>(&builder, values); Slice(original, {0, 0}, {16, 2}, {1, 1}); ComputeAndCompareR2<float>(&builder, expected, {}, ErrorSpec(0.000001)); } TEST_F(SliceTest, SliceR4ThreeDimsMiddleMinor) { Array4D<float> values(2, 2, 24, 256); values.FillRandom(3.14f); auto expected = ReferenceUtil::Slice4D( values, {{1, 0, 8, 0}}, {{2, 2, 16, 128}}, {{1, 1, 1, 1}}); XlaBuilder builder(TestName()); auto original = ConstantR4FromArray4D(&builder, values); Slice(original, {1, 0, 8, 0}, {2, 2, 16, 128}, {1, 1, 1, 1}); ComputeAndCompareR4(&builder, *expected, {}, ErrorSpec(0.000001)); } TEST_F(SliceTest, SliceOfReshape) { Array2D<int> values(2 * 3 * 24, 7); values.FillIota(1); XlaBuilder builder(TestName()); auto original = ConstantR2FromArray2D(&builder, values); auto reshape = Reshape(original, {24, 3, 2, 7}); Slice(reshape, {0, 0, 0, 0}, {11, 3, 2, 7}, {1, 1, 1, 1}); ComputeAndCompare(&builder, {}); } TEST_F(SliceTest, SliceOfCollapsingReshape) { Array4D<int> values(2, 3, 5, 7); values.FillIota(1); XlaBuilder builder(TestName()); auto original = ConstantR4FromArray4D(&builder, values); auto reshape = Reshape(original, {2 * 3 * 5, 7}); Slice(reshape, {0, 0}, {4, 7}, {1, 1}); ComputeAndCompare(&builder, {}); } XLA_TEST_F(SliceTest, StridedSliceR4WithOutputLayout) { Array4D<float> values(2, 4, 6, 8); values.FillRandom(3.14f); auto expected = ReferenceUtil::Slice4D(values, {{0, 0, 0, 0}}, {{2, 4, 6, 8}}, {{1, 1, 2, 1}}); auto expected_literal = LiteralUtil::CreateR4FromArray4DWithLayout( *expected, LayoutUtil::MakeLayout({0, 1, 2, 3})); XlaBuilder builder(TestName()); auto original = ConstantR4FromArray4D(&builder, values); Slice(original, {0, 0, 0, 0}, {2, 4, 6, 8}, {1, 1, 2, 1}); ComputeAndCompareLiteral(&builder, expected_literal, {}, ErrorSpec(0.000001), &expected_literal.shape()); } struct R1Spec { int64_t input_dim0; int64_t slice_start; int64_t slice_limit; int64_t slice_stride; }; class SliceR1Test : public ClientLibraryTestBase, public ::testing::WithParamInterface<R1Spec> { protected: template <typename NativeT> void Run(const R1Spec& spec) { absl::InlinedVector<NativeT, 1> input(spec.input_dim0); for (size_t i = 0; i < input.size(); ++i) { input[i] = static_cast<NativeT>(i); } auto literal = LiteralUtil::CreateR1<NativeT>(input); XlaBuilder builder(TestName()); auto original = Parameter(&builder, 0, literal.shape(), "p0"); Slice(original, {spec.slice_start}, {spec.slice_limit}, {spec.slice_stride}); absl::InlinedVector<NativeT, 1> expected; for (int i = spec.slice_start; i < spec.slice_limit; i += spec.slice_stride) { expected.push_back(i); } TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<GlobalData> arg, client_->TransferToServer(literal)); ComputeAndCompareR1<NativeT>(&builder, expected, {arg.get()}); } }; class SliceR1LargeTest : public SliceR1Test {}; std::string SliceR1TestDataToString( const ::testing::TestParamInfo<R1Spec>& data) { const R1Spec& spec = data.param; return absl::StrFormat("%d_%d_%d_%d", spec.input_dim0, spec.slice_start, spec.slice_limit, spec.slice_stride); } XLA_TEST_P(SliceR1Test, DoIt_F32) { Run<float>(GetParam()); } XLA_TEST_P(SliceR1Test, DoIt_F64) { Run<double>(GetParam()); } XLA_TEST_P(SliceR1Test, DoIt_U32) { Run<uint32_t>(GetParam()); } XLA_TEST_P(SliceR1Test, DoIt_S32) { Run<int32_t>(GetParam()); } XLA_TEST_P(SliceR1Test, DoIt_U64) { Run<uint64_t>(GetParam()); } XLA_TEST_P(SliceR1Test, DoIt_S64) { Run<int64_t>(GetParam()); } XLA_TEST_P(SliceR1LargeTest, DISABLED_ON_GPU(DoIt_F32)) { Run<float>(GetParam()); } XLA_TEST_P(SliceR1LargeTest, DISABLED_ON_GPU(DoIt_F64)) { Run<double>(GetParam()); } XLA_TEST_P(SliceR1LargeTest, DISABLED_ON_GPU(DoIt_U32)) { Run<uint32_t>(GetParam()); } XLA_TEST_P(SliceR1LargeTest, DISABLED_ON_GPU(DoIt_S32)) { Run<int32_t>(GetParam()); } XLA_TEST_P(SliceR1LargeTest, DISABLED_ON_GPU(DoIt_U64)) { Run<uint64_t>(GetParam()); } XLA_TEST_P(SliceR1LargeTest, DISABLED_ON_GPU(DoIt_S64)) { Run<int64_t>(GetParam()); } XLA_TEST_P(SliceR1Test, DoIt_PRED) { Run<bool>(GetParam()); } INSTANTIATE_TEST_CASE_P( SliceR1TestInstantiation, SliceR1Test, ::testing::Values( R1Spec{10, 0, 0, 1}, R1Spec{10, 7, 7, 1}, R1Spec{10, 0, 5, 1}, R1Spec{10, 3, 5, 1}, R1Spec{10, 0, 10, 1}, R1Spec{1024, 0, 5, 1}, R1Spec{1024, 3, 5, 1}, R1Spec{1024 + 17, 0, 5, 1}, R1Spec{1024 + 17, 3, 5, 1}, R1Spec{1024 + 17, 1024, 1024 + 6, 1}, R1Spec{1024 + 17, 1024 + 1, 1024 + 6, 1}, R1Spec{1024, 1024 - 4, 1024, 1}, R1Spec{4 * 1024, 7, 7 + 1024, 1}, R1Spec{4 * 1024, 0, 4 * 1024, 1}, R1Spec{4 * 1024, 1, 4 * 1024 - 1, 1}, R1Spec{4 * 1024, 1024, 3 * 1024, 1}, R1Spec{4 * 1024, 1024 + 1, 3 * 1024 - 1, 1}, R1Spec{16 * 1024, 0, 5, 1}, R1Spec{16 * 1024, 3, 5, 1}, R1Spec{16 * 1024 + 17, 0, 5, 1}, R1Spec{16 * 1024 + 17, 3, 5, 1}, R1Spec{16 * 1024 + 17, 16 * 1024, 16 * 1024 + 6, 1}, R1Spec{16 * 1024 + 17, 16 * 1024 + 1, 16 * 1024 + 6, 1}, R1Spec{16 * 1024, 4 * 1024 - 17, 8 * 1024 - 18, 1}, R1Spec{64 * 1024, 0, 64 * 1024, 1}, R1Spec{64 * 1024, 1, 64 * 1024 - 1, 1}, R1Spec{64 * 1024, 1024, 63 * 1024, 1}, R1Spec{64 * 1024, 1024 + 1, 63 * 1024 - 1, 1}, R1Spec{64 * 1024, 32 * 1024, 33 * 1024, 1}, R1Spec{64 * 1024, 32 * 1024 + 1, 33 * 1024 - 1, 1}, R1Spec{64 * 1024, 32 * 1024 - 17, 36 * 1024 - 18, 1} ), SliceR1TestDataToString ); INSTANTIATE_TEST_CASE_P( SliceR1TestBigSlicesInstantiation, SliceR1LargeTest, ::testing::Values( R1Spec{ 16 * 1024 * 1024, 4 * 1024 * 1024, 12 * 1024 * 1024, 1}, R1Spec{ 16 * 1024 * 1024, 4 * 1024 * 1024 + 1, 12 * 1024 * 1024 - 1, 1}, R1Spec{ 16 * 1024 * 1024, 4 * 1024 * 1024 - 1, 12 * 1024 * 1024 + 1, 1} ), SliceR1TestDataToString ); INSTANTIATE_TEST_CASE_P( SliceStridedR1TestInstantiation, SliceR1Test, ::testing::Values( R1Spec{10, 2, 4, 2}, R1Spec{10, 0, 10, 2}, R1Spec{10, 0, 10, 3}, R1Spec{10, 0, 10, 4}, R1Spec{10, 0, 10, 5}, R1Spec{10, 0, 10, 10}, R1Spec{500, 200, 400, 7}, R1Spec{4096, 1, 4095, 3}, R1Spec{2047, 1024 - 24, 1024 + 160, 31}, R1Spec{2047, 1, 2046, 3 * 128}, R1Spec{4096, 1024 + 3, 4095, 500}, R1Spec{8192, 0, 8192, 1024 * 3 + 400}, R1Spec{1024 * 1024, 0, 1024 * 1024, 2}, R1Spec{1024 * 1024, 0, 1024 * 1024, 8}, R1Spec{1024 * 1024, 0, 1024 * 1024, 7}, R1Spec{1024 * 1024, 0, 1024 * 1024, 125}, R1Spec{1024 * 1024, 3, 1024 - 9, 2}, R1Spec{1024 * 1024, 3, 1024 - 9, 8}, R1Spec{1024 * 1024, 3, 1024 - 9, 7}, R1Spec{1024 * 1024, 3, 1024 - 9, 125}, R1Spec{1024 * 1024, 3, 1024 * 512 - 9, 2}, R1Spec{1024 * 1024, 3, 1024 * 512 - 9, 8}, R1Spec{1024 * 1024, 3, 1024 * 512 - 9, 7}, R1Spec{1024 * 1024, 3, 1024 * 512 - 9, 125}, R1Spec{1024 * 1024 + 71, 3, 1024 * 512 - 9, 2}, R1Spec{1024 * 1024 + 71, 3, 1024 * 512 - 9, 8}, R1Spec{1024 * 1024 + 71, 3, 1024 * 512 - 9, 7}, R1Spec{1024 * 1024 + 71, 3, 1024 * 512 - 9, 125}, R1Spec{16 * 1024 * 1024, 0, 16 * 1024 * 1024, 4097}, R1Spec{16 * 1024 * 1024, 0, 16 * 1024 * 1024, 4093}, R1Spec{16 * 1024 * 1024, 12 * 1024 + 17, 16 * 1024 * 1024 - 231, 4097}, R1Spec{16 * 1024 * 1024, 12 * 1024 + 17, 16 * 1024 * 1024 - 231, 4093} ), SliceR1TestDataToString ); struct R2Spec { int64_t input_dim0; int64_t input_dim1; std::array<int64_t, 2> slice_starts; std::array<int64_t, 2> slice_limits; std::array<int64_t, 2> slice_strides; std::array<int64_t, 2> layout; }; class SliceR2Test : public ClientLibraryTestBase, public ::testing::WithParamInterface<R2Spec> {}; XLA_TEST_P(SliceR2Test, DoIt) { const R2Spec& spec = GetParam(); Array2D<int32_t> input(spec.input_dim0, spec.input_dim1); input.FillUnique(); auto literal = LiteralUtil::CreateR2FromArray2DWithLayout( input, LayoutUtil::MakeLayout(spec.layout)); XlaBuilder builder(TestName()); auto a = Parameter(&builder, 0, literal.shape(), "p0"); Slice(a, spec.slice_starts, spec.slice_limits, spec.slice_strides); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<GlobalData> arg, client_->TransferToServer(literal)); std::unique_ptr<Array2D<int32_t>> expected = ReferenceUtil::Slice2D( input, spec.slice_starts, spec.slice_limits, spec.slice_strides); ComputeAndCompareR2<int32_t>(&builder, *expected, {arg.get()}); } INSTANTIATE_TEST_CASE_P( SliceR2TestInstantiation, SliceR2Test, ::testing::Values( R2Spec{4, 12, {{0, 3}}, {{4, 6}}, {{1, 1}}, {{0, 1}}}, R2Spec{4, 12, {{0, 3}}, {{4, 6}}, {{1, 1}}, {{1, 0}}}, R2Spec{16, 4, {{0, 2}}, {{16, 4}}, {{1, 1}}, {{0, 1}}}, R2Spec{16, 4, {{0, 2}}, {{16, 4}}, {{1, 1}}, {{1, 0}}}, R2Spec{256, 400, {{0, 300}}, {{256, 400}}, {{1, 1}}, {{1, 0}}}, R2Spec{500, 400, {{111, 123}}, {{300, 257}}, {{1, 1}}, {{1, 0}}}, R2Spec{500, 400, {{111, 123}}, {{300, 400}}, {{1, 1}}, {{1, 0}}}, R2Spec{384, 512, {{128, 256}}, {{256, 384}}, {{1, 1}}, {{1, 0}}}, R2Spec{357, 512, {{111, 256}}, {{301, 384}}, {{1, 1}}, {{1, 0}}}, R2Spec{10, 10, {{0, 0}}, {{10, 10}}, {{1, 2}}, {{0, 1}}}, R2Spec{10, 10, {{0, 0}}, {{10, 10}}, {{1, 2}}, {{1, 0}}}, R2Spec{10, 10, {{0, 0}}, {{10, 10}}, {{2, 1}}, {{0, 1}}}, R2Spec{10, 10, {{0, 0}}, {{10, 10}}, {{2, 1}}, {{1, 0}}}, R2Spec{10, 10, {{0, 0}}, {{10, 10}}, {{2, 2}}, {{0, 1}}}, R2Spec{10, 10, {{0, 0}}, {{10, 10}}, {{2, 2}}, {{1, 0}}}, R2Spec{256, 400, {{100, 129}}, {{256, 400}}, {{3, 5}}, {{1, 0}}}, R2Spec{256, 400, {{100, 129}}, {{256, 400}}, {{3, 5}}, {{0, 1}}}, R2Spec{256, 400, {{100, 129}}, {{256, 400}}, {{5, 3}}, {{1, 0}}}, R2Spec{256, 400, {{100, 129}}, {{256, 400}}, {{5, 3}}, {{0, 1}}}, R2Spec{511, 513, {{129, 300}}, {{400, 500}}, {{7, 11}}, {{1, 0}}}, R2Spec{511, 513, {{129, 300}}, {{400, 500}}, {{7, 11}}, {{0, 1}}}, R2Spec{511, 513, {{129, 300}}, {{400, 500}}, {{11, 7}}, {{1, 0}}}, R2Spec{511, 513, {{129, 300}}, {{400, 500}}, {{11, 7}}, {{0, 1}}}, R2Spec{8672, 512, {{8, 0}}, {{8672, 512}}, {{542, 1}}, {{1, 0}}}, R2Spec{ 511, 513, {{129, 300}}, {{400, 500}}, {{101, 129}}, {{1, 0}}}, R2Spec{ 511, 513, {{129, 300}}, {{400, 500}}, {{101, 129}}, {{0, 1}}}, R2Spec{ 511, 513, {{129, 300}}, {{400, 500}}, {{129, 101}}, {{1, 0}}}, R2Spec{ 511, 513, {{129, 300}}, {{400, 500}}, {{129, 101}}, {{0, 1}}}, R2Spec{ 511, 1023, {{129, 257}}, {{500, 1000}}, {{129, 255}}, {{1, 0}}}, R2Spec{ 511, 1023, {{129, 257}}, {{500, 1000}}, {{129, 255}}, {{0, 1}}}, R2Spec{511, 513, {{129, 255}}, {{511 - 129, 513 - 140}}, {{13, 19}}, {{1, 0}}}, R2Spec{511, 513, {{129, 255}}, {{511 - 129, 513 - 140}}, {{13, 19}}, {{0, 1}}} )); struct R4Spec { std::array<int64_t, 4> input_dims; std::array<int64_t, 4> input_layout; std::array<int64_t, 4> slice_starts; std::array<int64_t, 4> slice_limits; std::array<int64_t, 4> slice_strides; }; std::string R4SpecToString(const ::testing::TestParamInfo<R4Spec>& data) { const R4Spec& spec = data.param; return absl::StrCat("input_", absl::StrJoin(spec.input_dims, "x"), "__layout_", absl::StrJoin(spec.input_layout, ""), "__starts_", absl::StrJoin(spec.slice_starts, "x"), "__limits_", absl::StrJoin(spec.slice_limits, "x"), "__strides_", absl::StrJoin(spec.slice_strides, "x")); } class SliceR4Test : public ClientLibraryTestBase, public ::testing::WithParamInterface<R4Spec> { protected: void Run(const R4Spec& spec) { Array4D<float> values(spec.input_dims[0], spec.input_dims[1], spec.input_dims[2], spec.input_dims[3]); values.FillIota(3.14159); auto expected = ReferenceUtil::Slice4D( values, spec.slice_starts, spec.slice_limits, spec.slice_strides); XlaBuilder builder(TestName()); auto literal = LiteralUtil::CreateR4FromArray4DWithLayout( values, LayoutUtil::MakeLayout(spec.input_layout)); auto parameter = Parameter(&builder, 0, literal.shape(), "p0"); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<GlobalData> arg, client_->TransferToServer(literal)); Slice(parameter, spec.slice_starts, spec.slice_limits, spec.slice_strides); ComputeAndCompareR4(&builder, *expected, {arg.get()}, ErrorSpec(0.000001)); } }; XLA_TEST_P(SliceR4Test, DoIt) { Run(GetParam()); } const R4Spec kR4SpecValues[] = { R4Spec{{{2, 2, 2, 2}}, {{3, 2, 1, 0}}, {{0, 0, 0, 0}}, {{0, 0, 0, 0}}, {{1, 1, 1, 1}}}, R4Spec{{{3, 3, 4, 4}}, {{3, 2, 1, 0}}, {{0, 0, 0, 0}}, {{3, 3, 4, 4}}, {{1, 1, 2, 1}}}, R4Spec{{{2, 3, 16, 4}}, {{3, 2, 1, 0}}, {{0, 0, 0, 0}}, {{2, 3, 16, 4}}, {{1, 1, 3, 1}}}, R4Spec{{{4, 16, 3, 2}}, {{0, 1, 2, 3}}, {{1, 4, 1, 0}}, {{3, 12, 3, 2}}, {{1, 1, 3, 2}}}, R4Spec{{{2, 2, 257, 129}}, {{3, 2, 1, 0}}, {{1, 1, 62, 64}}, {{2, 2, 195, 129}}, {{1, 1, 3, 1}}}, R4Spec{{{3, 5, 257, 129}}, {{3, 2, 1, 0}}, {{1, 2, 61, 64}}, {{3, 5, 199, 129}}, {{1, 1, 3, 1}}}, R4Spec{{{5, 8, 257, 129}}, {{3, 2, 1, 0}}, {{2, 3, 60, 64}}, {{3, 5, 200, 68}}, {{1, 1, 1, 1}}}, R4Spec{{{8, 10, 256, 130}}, {{3, 2, 1, 0}}, {{1, 2, 60, 127}}, {{7, 9, 166, 129}}, {{4, 2, 3, 1}}}, R4Spec{{{2, 4, 8, 4}}, {{3, 2, 1, 0}}, {{1, 2, 0, 1}}, {{2, 4, 8, 3}}, {{1, 1, 7, 1}}}, R4Spec{{{10, 21, 256, 150}}, {{3, 2, 1, 0}}, {{1, 2, 9, 127}}, {{9, 16, 82, 133}}, {{3, 5, 7, 2}}}, R4Spec{{{15, 25, 256, 150}}, {{3, 2, 1, 0}}, {{4, 6, 19, 126}}, {{15, 25, 89, 135}}, {{5, 7, 7, 3}}}, R4Spec{{{2, 4, 256, 150}}, {{3, 2, 1, 0}}, {{1, 2, 29, 125}}, {{2, 4, 159, 145}}, {{1, 1, 7, 7}}}, R4Spec{{{2, 4, 256, 150}}, {{3, 2, 1, 0}}, {{1, 2, 39, 119}}, {{2, 4, 158, 145}}, {{1, 1, 7, 11}}}, R4Spec{{{1, 1, 5, 512}}, {{3, 2, 1, 0}}, {{0, 0, 0, 0}}, {{1, 1, 5, 512}}, {{1, 1, 4, 1}}}, R4Spec{{{1, 1, 513, 513}}, {{3, 2, 1, 0}}, {{0, 0, 0, 0}}, {{1, 1, 513, 513}}, {{1, 1, 512, 512}}}, R4Spec{{{1, 1, 1024, 4}}, {{3, 2, 1, 0}}, {{0, 0, 15, 0}}, {{1, 1, 1022, 4}}, {{1, 1, 23, 1}}}, R4Spec{{{1, 1, 1024, 4}}, {{3, 2, 1, 0}}, {{0, 0, 14, 0}}, {{1, 1, 1023, 4}}, {{1, 1, 101, 1}}}, R4Spec{{{1, 1, 4, 1024}}, {{3, 2, 1, 0}}, {{0, 0, 1, 20}}, {{1, 1, 4, 1023}}, {{1, 1, 1, 129}}}, R4Spec{{{5, 5, 512, 1024}}, {{3, 2, 1, 0}}, {{1, 1, 0, 0}}, {{4, 4, 512, 1024}}, {{2, 2, 2, 1}}}, R4Spec{{{5, 5, 512, 1024}}, {{3, 2, 1, 0}}, {{1, 1, 0, 0}}, {{4, 4, 512, 1024}}, {{2, 1, 1, 400}}}, R4Spec{{{32, 64, 128, 256}}, {{3, 2, 1, 0}}, {{10, 20, 30, 40}}, {{30, 60, 100, 200}}, {{11, 21, 31, 41}}}, R4Spec{{{1, 1, 14, 2048}}, {{3, 2, 1, 0}}, {{0, 0, 2, 0}}, {{1, 1, 14, 2}}, {{1, 1, 1, 1}}}, }; INSTANTIATE_TEST_CASE_P(SliceR4TestInstantiation, SliceR4Test, ::testing::ValuesIn(kR4SpecValues), R4SpecToString); } }
926
cpp
tensorflow/tensorflow
list_ops_util
tensorflow/lite/kernels/variants/list_ops_util.cc
tensorflow/lite/kernels/variants/list_ops_util_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_VARIANTS_LIST_OPS_UTIL_H_ #define TENSORFLOW_LITE_KERNELS_VARIANTS_LIST_OPS_UTIL_H_ #include "tensorflow/lite/array.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/variants/tensor_array.h" #include "tensorflow/lite/util.h" namespace tflite { namespace variants { IntArrayUniquePtr TensorAsShape(const TfLiteTensor& shape); IntArrayUniquePtr MergeShapesOrNull(IntArrayUniquePtr l, IntArrayUniquePtr r); bool IsShapeFullyDefined(const TfLiteIntArray& shape); TfLiteStatus GetShapeIfAllEqual(const TensorArray& arr, IntArrayUniquePtr& result); } } #endif #include "tensorflow/lite/kernels/variants/list_ops_util.h" #include "tensorflow/lite/array.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/variants/tensor_array.h" #include "tensorflow/lite/util.h" namespace tflite { namespace variants { IntArrayUniquePtr TensorAsShape(const TfLiteTensor& shape) { if (shape.dims->size == 0) { return BuildTfLiteArray({}); } const int rank = shape.dims->data[0]; const int* begin = reinterpret_cast<const int*>(shape.data.data); const int* end = begin + rank; return BuildTfLiteArray(std::vector<int>(begin, end)); } IntArrayUniquePtr MergeShapesOrNull(IntArrayUniquePtr l, IntArrayUniquePtr r) { if (l == nullptr) { return r; } if (r == nullptr) { return l; } if (l->size == 0) { return r; } if (r->size == 0) { return l; } if (l->size != r->size) { return nullptr; } for (int i = 0; i < r->size; ++i) { if (l->data[i] == -1) { l->data[i] = r->data[i]; } else if (r->data[i] != -1 && l->data[i] != r->data[i]) { return nullptr; } } return l; } bool IsShapeFullyDefined(const TfLiteIntArray& shape) { for (int i = 0; i < shape.size; ++i) { if (shape.data[i] < 0) { return false; } } return true; } TfLiteStatus GetShapeIfAllEqual(const TensorArray& arr, IntArrayUniquePtr& result) { const TfLiteIntArray* common_shape = nullptr; for (int i = 0; i < arr.NumElements(); ++i) { const TfLiteTensor* cur_element = arr.At(i); if (cur_element == nullptr) { continue; } if (common_shape == nullptr) { common_shape = cur_element->dims; continue; } if (!TfLiteIntArrayEqual(common_shape, cur_element->dims)) { return kTfLiteError; } } result = common_shape != nullptr ? BuildTfLiteArray(*common_shape) : nullptr; return kTfLiteOk; } } }
#include "tensorflow/lite/kernels/variants/list_ops_util.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/array.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/kernels/variants/tensor_array.h" #include "tensorflow/lite/util.h" namespace tflite { namespace variants { namespace { TEST(TensorAsShape, ScalarTensor_ReturnsEmptyIntArray) { TensorUniquePtr scalar_tensor = BuildTfLiteTensor(kTfLiteInt32, BuildTfLiteArray({}), kTfLiteDynamic); IntArrayUniquePtr shape_from_tensor = TensorAsShape(*scalar_tensor); ASSERT_THAT(shape_from_tensor.get(), DimsAre({})); } TEST(TensorAsShape, SingleElementTensor_ReturnsSize1Shape) { TensorUniquePtr single_el_tensor = BuildTfLiteTensor(kTfLiteInt32, BuildTfLiteArray({1}), kTfLiteDynamic); single_el_tensor->data.i32[0] = 10; IntArrayUniquePtr shape_from_tensor = TensorAsShape(*single_el_tensor); ASSERT_THAT(shape_from_tensor.get(), DimsAre({10})); } TEST(TensorAsShape, OneDMultipleElementShape_ReturnsHighRankedShape) { TensorUniquePtr one_d_mul_el_tensor = BuildTfLiteTensor(kTfLiteInt32, BuildTfLiteArray({3}), kTfLiteDynamic); one_d_mul_el_tensor->data.i32[0] = 10; one_d_mul_el_tensor->data.i32[1] = 9; one_d_mul_el_tensor->data.i32[2] = 8; IntArrayUniquePtr shape_from_tensor = TensorAsShape(*one_d_mul_el_tensor); ASSERT_THAT(shape_from_tensor.get(), DimsAre({10, 9, 8})); } TEST(MergeShapesOrNull, IncompatibleSameRank_ReturnsNull) { IntArrayUniquePtr l = BuildTfLiteArray({2, 3}); IntArrayUniquePtr r = BuildTfLiteArray({3, 3}); EXPECT_EQ(MergeShapesOrNull(std::move(l), std::move(r)).get(), nullptr); } TEST(MergeShapesOrNull, NotSameRank_ReturnsNull) { IntArrayUniquePtr l = BuildTfLiteArray({1}); IntArrayUniquePtr r = BuildTfLiteArray({1, 2}); EXPECT_EQ(MergeShapesOrNull(std::move(l), std::move(r)).get(), nullptr); } TEST(MergeShapesOrNull, MergeShapesOrNullSameRankNENull) { IntArrayUniquePtr l = BuildTfLiteArray({1}); IntArrayUniquePtr r = BuildTfLiteArray({2}); EXPECT_EQ(MergeShapesOrNull(std::move(l), std::move(r)).get(), nullptr); } TEST(MergeShapesOrNull, RankedUnknownLKnownR_ReturnsStatic) { IntArrayUniquePtr l = BuildTfLiteArray({-1}); IntArrayUniquePtr r = BuildTfLiteArray({2}); EXPECT_THAT(MergeShapesOrNull(std::move(l), std::move(r)).get(), DimsAre({2})); } TEST(MergeShapesOrNull, UnknownRKnownL_ReturnsStatic) { IntArrayUniquePtr l = BuildTfLiteArray({2}); IntArrayUniquePtr r = BuildTfLiteArray({-1}); EXPECT_THAT(MergeShapesOrNull(std::move(l), std::move(r)).get(), DimsAre({2})); } TEST(MergeShapesOrNull, UnknownBoth_ReturnsUnknown) { IntArrayUniquePtr l = BuildTfLiteArray({-1}); IntArrayUniquePtr r = BuildTfLiteArray({-1}); EXPECT_THAT(MergeShapesOrNull(std::move(l), std::move(r)).get(), DimsAre({-1})); } TEST(MergeShapesOrNull, RankedUnknownDifferentDims_ConstrainsUnknownDims) { IntArrayUniquePtr l = BuildTfLiteArray({-1, 2, 5}); IntArrayUniquePtr r = BuildTfLiteArray({1, -1, 5}); EXPECT_THAT(MergeShapesOrNull(std::move(l), std::move(r)).get(), DimsAre({1, 2, 5})); } TEST(MergeShapesOrNull, BothUnranked_ReturnsUnranked) { IntArrayUniquePtr l = BuildTfLiteArray({}); IntArrayUniquePtr r = BuildTfLiteArray({}); EXPECT_THAT(MergeShapesOrNull(std::move(l), std::move(r)).get(), DimsAre({})); } TEST(MergeShapesOrNull, UrankedAndStatic1D_ReturnsStatic1D) { IntArrayUniquePtr l = BuildTfLiteArray({}); IntArrayUniquePtr r = BuildTfLiteArray({1}); EXPECT_THAT(MergeShapesOrNull(std::move(l), std::move(r)).get(), DimsAre({1})); } TEST(MergeShapesOrNull, UnrankedAndStaticND_ReturnsStaticND) { IntArrayUniquePtr l = BuildTfLiteArray({}); IntArrayUniquePtr r = BuildTfLiteArray({2, 3}); EXPECT_THAT(MergeShapesOrNull(std::move(l), std::move(r)).get(), DimsAre({2, 3})); } TEST(MergeShapesOrNull, UnrankedAndRankedUnknown_ReturnsRankedUnknown) { IntArrayUniquePtr l = BuildTfLiteArray({}); IntArrayUniquePtr r = BuildTfLiteArray({-1}); EXPECT_THAT(MergeShapesOrNull(std::move(l), std::move(r)).get(), DimsAre({-1})); } TEST(MergeShapesOrNull, NullInput_ReturnsOther) { EXPECT_THAT(MergeShapesOrNull(BuildTfLiteArray({3}), nullptr).get(), DimsAre({3})); EXPECT_THAT(MergeShapesOrNull(nullptr, BuildTfLiteArray({2})).get(), DimsAre({2})); EXPECT_EQ(MergeShapesOrNull(nullptr, nullptr).get(), nullptr); } TEST(MergeShapesOrNull, NullInput_ReturnsUnrankedOther) { EXPECT_THAT(MergeShapesOrNull(BuildTfLiteArray({}), nullptr).get(), DimsAre({})); EXPECT_THAT(MergeShapesOrNull(nullptr, BuildTfLiteArray({})).get(), DimsAre({})); } TEST(ElementsSameShape, NoElements_SucceedsWithNullptr) { TensorArray arr = {kTfLiteInt32, BuildTfLiteArray({})}; arr.Resize(2); IntArrayUniquePtr res; ASSERT_EQ(GetShapeIfAllEqual(arr, res), kTfLiteOk); EXPECT_EQ(res.get(), nullptr); } TEST(ElementsSameShape, ZeroSize_SucceedsWithNullptr) { TensorArray arr = {kTfLiteInt32, BuildTfLiteArray({})}; IntArrayUniquePtr res; ASSERT_EQ(GetShapeIfAllEqual(arr, res), kTfLiteOk); EXPECT_EQ(res.get(), nullptr); } TEST(ElementsSameShape, OneSize_SucceedsWithShape) { TensorArray arr = {kTfLiteInt32, BuildTfLiteArray({})}; arr.Resize(1); arr.Set(0, BuildTfLiteTensor(kTfLiteInt32, BuildTfLiteArray({2}), kTfLiteDynamic)); IntArrayUniquePtr res; ASSERT_EQ(GetShapeIfAllEqual(arr, res), kTfLiteOk); EXPECT_THAT(res.get(), DimsAre({2})); } TEST(ElementsSameShape, MultipleElements_AllSet_SucceedsWithShape) { TensorArray arr = {kTfLiteInt32, BuildTfLiteArray({})}; arr.Resize(2); arr.Set(0, BuildTfLiteTensor(kTfLiteInt32, BuildTfLiteArray({2}), kTfLiteDynamic)); arr.Set(1, BuildTfLiteTensor(kTfLiteInt32, BuildTfLiteArray({2}), kTfLiteDynamic)); IntArrayUniquePtr res; EXPECT_EQ(GetShapeIfAllEqual(arr, res), kTfLiteOk); EXPECT_THAT(res.get(), DimsAre({2})); } TEST(ElementsSameShape, MultipleElements_SomeSet_SucceedsWithShape) { TensorArray arr = {kTfLiteInt32, BuildTfLiteArray({})}; arr.Resize(3); arr.Set(0, BuildTfLiteTensor(kTfLiteInt32, BuildTfLiteArray({2}), kTfLiteDynamic)); arr.Set(2, BuildTfLiteTensor(kTfLiteInt32, BuildTfLiteArray({2}), kTfLiteDynamic)); IntArrayUniquePtr res; EXPECT_EQ(GetShapeIfAllEqual(arr, res), kTfLiteOk); EXPECT_THAT(res.get(), DimsAre({2})); } TEST(ElementsSameShape, MultipleElements_SomeSetNotSameRank_Fails) { TensorArray arr = {kTfLiteInt32, BuildTfLiteArray({})}; arr.Resize(3); arr.Set(0, BuildTfLiteTensor(kTfLiteInt32, BuildTfLiteArray({2}), kTfLiteDynamic)); arr.Set(2, BuildTfLiteTensor(kTfLiteInt32, BuildTfLiteArray({2, 3}), kTfLiteDynamic)); IntArrayUniquePtr res; EXPECT_EQ(GetShapeIfAllEqual(arr, res), kTfLiteError); } TEST(ElementsSameShape, MultipleElements_SomeSetNotSameDim_Fails) { TensorArray arr = {kTfLiteInt32, BuildTfLiteArray({})}; arr.Resize(3); arr.Set(0, BuildTfLiteTensor(kTfLiteInt32, BuildTfLiteArray({2, 2}), kTfLiteDynamic)); arr.Set(2, BuildTfLiteTensor(kTfLiteInt32, BuildTfLiteArray({2, 3}), kTfLiteDynamic)); IntArrayUniquePtr res; EXPECT_EQ(GetShapeIfAllEqual(arr, res), kTfLiteError); } } } }
927
cpp
tensorflow/tensorflow
tensor_array
tensorflow/lite/kernels/variants/tensor_array.cc
tensorflow/lite/kernels/variants/tensor_array_test.cc
#ifndef TENSORFLOW_CORE_KERNELS_TENSOR_ARRAY_H_ #define TENSORFLOW_CORE_KERNELS_TENSOR_ARRAY_H_ #include <limits.h> #include <vector> #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/partial_tensor_shape.h" #include "tensorflow/core/framework/register_types.h" #include "tensorflow/core/framework/resource_mgr.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/kernels/aggregate_ops.h" #include "tensorflow/core/kernels/fill_functor.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { typedef Eigen::ThreadPoolDevice CPUDevice; typedef Eigen::GpuDevice GPUDevice; namespace tensor_array { template <typename Device, typename T> Status AddToTensor(OpKernelContext* ctx, Tensor* sum, const Tensor* current, const Tensor* add) { return errors::InvalidArgument( "tensor_array::AddToTensor type not supported: ", DataTypeString(DataTypeToEnum<T>::value)); } #define TENSOR_ARRAY_WRITE_OR_ADD(Device, T) \ template <> \ Status AddToTensor<Device, T>(OpKernelContext * ctx, Tensor * sum, \ const Tensor* current, const Tensor* add); #define TENSOR_ARRAY_WRITE_OR_ADD_CPU(T) TENSOR_ARRAY_WRITE_OR_ADD(CPUDevice, T) TF_CALL_NUMBER_TYPES(TENSOR_ARRAY_WRITE_OR_ADD_CPU) #undef TENSOR_ARRAY_WRITE_OR_ADD_CPU #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM #define TENSOR_ARRAY_WRITE_OR_ADD_GPU(T) TENSOR_ARRAY_WRITE_OR_ADD(GPUDevice, T) TF_CALL_GPU_NUMBER_TYPES(TENSOR_ARRAY_WRITE_OR_ADD_GPU); TF_CALL_COMPLEX_TYPES(TENSOR_ARRAY_WRITE_OR_ADD_GPU); #undef TENSOR_ARRAY_WRITE_OR_ADD_GPU #endif #undef TENSOR_ARRAY_WRITE_OR_ADD template <typename Device, typename T> Status TensorSetZero(OpKernelContext* ctx, Tensor* value) { return errors::InvalidArgument( "tensor_array::TensorSetZero type not supported: ", DataTypeString(DataTypeToEnum<T>::value)); } #define TENSOR_ARRAY_SET_ZERO(Device, T) \ template <> \ Status TensorSetZero<Device, T>(OpKernelContext * ctx, Tensor * value); #define TENSOR_ARRAY_SET_ZERO_CPU(T) TENSOR_ARRAY_SET_ZERO(CPUDevice, T) TF_CALL_NUMBER_TYPES(TENSOR_ARRAY_SET_ZERO_CPU); TF_CALL_bool(TENSOR_ARRAY_SET_ZERO_CPU); #undef TENSOR_ARRAY_SET_ZERO_CPU #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM #define TENSOR_ARRAY_SET_ZERO_GPU(T) TENSOR_ARRAY_SET_ZERO(GPUDevice, T) TF_CALL_GPU_NUMBER_TYPES(TENSOR_ARRAY_SET_ZERO_GPU); TF_CALL_COMPLEX_TYPES(TENSOR_ARRAY_SET_ZERO_GPU); #undef TENSOR_ARRAY_SET_ZERO_GPU #endif #undef TENSOR_ARRAY_SET_ZERO } class TensorArray : public ResourceBase { public: static std::atomic<int64_t> tensor_array_counter; TensorArray(const string& key, const DataType& dtype, const Tensor& handle, int32_t N, const PartialTensorShape& element_shape, bool identical_element_shapes, bool dynamic_size, bool multiple_writes_aggregate, bool is_grad, int32_t marked_size, bool clear_after_read) : key_(key), dtype_(dtype), handle_(handle), closed_(false), dynamic_size_(dynamic_size), multiple_writes_aggregate_(multiple_writes_aggregate), gradients_disallowed_(false), clear_after_read_(clear_after_read), is_grad_(is_grad), marked_size_(marked_size), element_shape_(element_shape), identical_element_shapes_(identical_element_shapes), tensors_(N) {} template <typename Device, typename T> Status WriteOrAggregate(OpKernelContext* ctx, const int32_t index, const Tensor* value) { mutex_lock l(mu_); return LockedWriteOrAggregate<Device, T>(ctx, index, value); } template <typename Device, typename T> Status WriteOrAggregateMany(OpKernelContext* ctx, const std::vector<int32>& indices, std::vector<Tensor>* values) { mutex_lock l(mu_); int32_t i = 0; for (const int32_t ix : indices) { Status s = LockedWriteOrAggregate<Device, T>(ctx, ix, &(*values)[i]); ++i; TF_RETURN_IF_ERROR(s); } return absl::OkStatus(); } template <typename Device, typename T> Status Read(OpKernelContext* ctx, const int32_t index, Tensor* value) { mutex_lock l(mu_); return LockedRead<Device, T>(ctx, index, value); } template <typename Device, typename T> Status ReadMany(OpKernelContext* ctx, const std::vector<int32>& indices, std::vector<Tensor>* values) { mutex_lock l(mu_); values->clear(); values->resize(indices.size()); int32_t i = 0; for (const int32_t ix : indices) { Status s = LockedRead<Device, T>(ctx, ix, &(*values)[i]); ++i; if (!s.ok()) return s; } return absl::OkStatus(); } DataType ElemType() const { return dtype_; } PartialTensorShape ElemShape() { mutex_lock l(mu_); return element_shape_; } Status SetElemShape(const PartialTensorShape& candidate) { mutex_lock l(mu_); PartialTensorShape new_element_shape_; Status s = element_shape_.MergeWith(candidate, &new_element_shape_); if (!s.ok()) { return s; } element_shape_ = new_element_shape_; return absl::OkStatus(); } string DebugString() const override { mutex_lock l(mu_); CHECK(!closed_); return strings::StrCat("TensorArray[", tensors_.size(), "]"); } bool IsClosed() { mutex_lock l(mu_); return closed_; } Status Size(int32* size) { mutex_lock l(mu_); TF_RETURN_IF_ERROR(LockedReturnIfClosed()); *size = tensors_.size(); return absl::OkStatus(); } Status SetMarkedSize(int32_t size) { mutex_lock l(mu_); TF_RETURN_IF_ERROR(LockedReturnIfClosed()); if (!is_grad_) { marked_size_ = size; } return absl::OkStatus(); } Status MarkedSize(int32* size) { mutex_lock l(mu_); TF_RETURN_IF_ERROR(LockedReturnIfClosed()); *size = marked_size_; return absl::OkStatus(); } Status PackOrConcatSize(int32* size) { mutex_lock l(mu_); TF_RETURN_IF_ERROR(LockedReturnIfClosed()); *size = is_grad_ ? marked_size_ : tensors_.size(); return absl::OkStatus(); } void DisableDynamicSize() { mutex_lock l(mu_); dynamic_size_ = false; } bool HasDynamicSize() { mutex_lock l(mu_); return dynamic_size_; } bool GradientsAllowed() { mutex_lock l(mu_); return !gradients_disallowed_; } bool HasIdenticalElementShapes() const { return identical_element_shapes_; } Status CopyShapesFrom(TensorArray* rhs, const TensorShape* shape_to_prepend); void ClearAndMarkClosed() { mutex_lock l(mu_); tensors_.clear(); closed_ = true; } mutex* mu() { return &mu_; } Tensor* handle() { return &handle_; } ResourceHandle resource_handle(OpKernelContext* ctx) { return ctx->step_container()->MakeResourceHandle<TensorArray>( key_, *ctx->device()); } private: Status LockedWrite(OpKernelContext* ctx, const int32_t index, Tensor* value) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); template <typename Device, typename T> Status LockedWriteOrAggregate(OpKernelContext* ctx, const int32_t index, const Tensor* value) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); template <typename Device, typename T> Status LockedRead(OpKernelContext* ctx, const int32_t index, Tensor* value) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_); Status LockedReturnIfClosed() const TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (closed_) { return errors::InvalidArgument("TensorArray ", handle_.vec<tstring>()(1), " has already been closed."); } return absl::OkStatus(); } const string key_; const DataType dtype_; Tensor handle_; mutable mutex mu_; bool closed_ TF_GUARDED_BY(mu_); bool dynamic_size_; const bool multiple_writes_aggregate_; bool gradients_disallowed_ TF_GUARDED_BY(mu_); const bool clear_after_read_; const bool is_grad_; int32 marked_size_; PartialTensorShape element_shape_ TF_GUARDED_BY(mu_); const bool identical_element_shapes_; struct TensorAndState { TensorAndState() : written(false), read(false), cleared(false), local_copy(false) {} Tensor tensor; TensorShape shape; bool written; bool read; bool cleared; bool local_copy; }; std::vector<TensorAndState> tensors_ TF_GUARDED_BY(mu_); }; template <typename Device, typename T> Status TensorArray::LockedWriteOrAggregate(OpKernelContext* ctx, const int32_t index, const Tensor* value) { TF_RETURN_IF_ERROR(LockedReturnIfClosed()); size_t index_size = static_cast<size_t>(index); if (index < 0 || (!dynamic_size_ && index_size >= tensors_.size())) { return errors::InvalidArgument( "TensorArray ", handle_.vec<tstring>()(1), ": Tried to write to index ", index, " but array is not resizeable and size is: ", tensors_.size()); } if (dynamic_size_) { if (index_size >= tensors_.capacity()) { tensors_.reserve(2 * (index_size + 1)); } if (index_size >= tensors_.size()) { tensors_.resize(index_size + 1); } } TensorAndState& t = tensors_[index]; if (value->dtype() != dtype_) { return errors::InvalidArgument( "TensorArray ", handle_.vec<tstring>()(1), ": Could not write to TensorArray index ", index, " because the value dtype is ", DataTypeString(value->dtype()), " but TensorArray dtype is ", DataTypeString(dtype_), "."); } if (!element_shape_.IsCompatibleWith(value->shape())) { return errors::InvalidArgument( "TensorArray ", handle_.vec<tstring>()(1), ": Could not write to TensorArray index ", index, " because the value shape is ", value->shape().DebugString(), " which is incompatible with the TensorArray's inferred element " "shape: ", element_shape_.DebugString(), " (consider setting infer_shape=False)."); } else if (identical_element_shapes_ && !element_shape_.IsFullyDefined()) { element_shape_ = PartialTensorShape(value->shape().dim_sizes()); } if (t.read) { return errors::InvalidArgument("TensorArray ", handle_.vec<tstring>()(1), ": Could not write to TensorArray index ", index, " because it has already been read."); } if (!multiple_writes_aggregate_ && t.written) { return errors::InvalidArgument("TensorArray ", handle_.vec<tstring>()(1), ": Could not write to TensorArray index ", index, " because it has already been written to."); } if (t.written) { DCHECK(multiple_writes_aggregate_); if (value->shape() != t.shape) { return errors::InvalidArgument( "TensorArray ", handle_.vec<tstring>()(1), ": Could not aggregate to TensorArray index ", index, " because the existing shape is ", t.shape.DebugString(), " but the new input shape is ", value->shape().DebugString(), "."); } if (!t.tensor.IsInitialized() || t.tensor.NumElements() == 0) { t.tensor = *value; return absl::OkStatus(); } Tensor* existing_t = &t.tensor; if (t.local_copy) { Status s = tensor_array::AddToTensor<Device, T>(ctx, existing_t, existing_t, value); TF_RETURN_IF_ERROR(s); } else { Tensor local_tensor; TF_RETURN_IF_ERROR( ctx->allocate_temp(dtype_, existing_t->shape(), &local_tensor)); Status s = tensor_array::AddToTensor<Device, T>(ctx, &local_tensor, existing_t, value); TF_RETURN_IF_ERROR(s); t.tensor = local_tensor; t.local_copy = true; } gradients_disallowed_ = true; } else { t.tensor = *value; t.shape = value->shape(); t.written = true; } return absl::OkStatus(); } template <typename Device, typename T> Status TensorArray::LockedRead(OpKernelContext* ctx, const int32_t index, Tensor* value) { TF_RETURN_IF_ERROR(LockedReturnIfClosed()); if ((index < 0) || (!is_grad_ && (static_cast<size_t>(index) >= tensors_.size()))) { return errors::InvalidArgument("Tried to read from index ", index, " but array size is: ", tensors_.size()); } size_t index_t = static_cast<size_t>(index); if ((is_grad_ && (index_t >= tensors_.size() || !tensors_[index].written)) || (!is_grad_ && (index_t < tensors_.size() && !tensors_[index].written))) { TensorShape element_shape; if (is_grad_ && index_t < tensors_.size() && tensors_[index].shape.dims() > 0) { element_shape = tensors_[index].shape; } else if (!element_shape_.IsFullyDefined()) { return errors::InvalidArgument( "TensorArray ", handle_.vec<tstring>()(1), ": Could not read from TensorArray index ", index, ". Furthermore, the element shape is not fully defined: ", element_shape_.DebugString(), ". It is possible you are working with a resizeable TensorArray and " "stop_gradients is not allowing the gradients to be written. If you " "set the full " "element_shape property on the forward TensorArray, the proper " "all-zeros tensor " "will be returned instead of incurring this error."); } else { element_shape_.AsTensorShape(&element_shape); } if (index_t >= tensors_.size()) { size_t old_tensors_size = tensors_.size(); tensors_.resize(index + 1); for (size_t i = old_tensors_size; i < index + 1; ++i) { tensors_[i].shape = element_shape; tensors_[i].written = true; } } else { tensors_[index].shape = element_shape; tensors_[index].written = true; } } TensorAndState& t = tensors_[index]; if (t.cleared) { return errors::InvalidArgument("TensorArray ", handle_.vec<tstring>()(1), ": Could not read index ", index, " twice because it was cleared after a " "previous read (perhaps try setting " "clear_after_read = false?)."); } if (!t.tensor.IsInitialized() || t.tensor.NumElements() == 0) { TF_RETURN_IF_ERROR(ctx->allocate_temp(dtype_, t.shape, &t.tensor)); if (t.shape.num_elements() > 0) { Status s = tensor_array::TensorSetZero<Device, T>(ctx, &t.tensor); if (!s.ok()) return s; } } *value = t.tensor; if (clear_after_read_) { t.tensor = Tensor(); t.cleared = true; } t.read = true; return absl::OkStatus(); } } #endif #define EIGEN_USE_THREADS #include "tensorflow/core/kernels/tensor_array.h" #include "unsupported/Eigen/CXX11/Tensor" #include "tensorflow/core/framework/register_types.h" #include "tensorflow/core/framework/tensor_util.h" #include "tensorflow/core/kernels/aggregate_ops_cpu.h" namespace tensorflow { typedef Eigen::ThreadPoolDevice CPUDevice; typedef Eigen::GpuDevice GPUDevice; namespace tensor_array { #define TENSOR_ARRAY_WRITE_OR_ADD(Device, T) \ template <> \ Status AddToTensor<Device, T>(OpKernelContext * ctx, Tensor * sum, \ const Tensor* current, const Tensor* add) { \ functor::Add2Functor<Device, T> add_functor; \ add_functor(ctx->template eigen_device<Device>(), sum->flat<T>(), \ current->flat<T>(), add->flat<T>()); \ return OkStatus(); \ } #define TENSOR_ARRAY_WRITE_OR_ADD_CPU(T) TENSOR_ARRAY_WRITE_OR_ADD(CPUDevice, T) TF_CALL_NUMBER_TYPES(TENSOR_ARRAY_WRITE_OR_ADD_CPU) #undef TENSOR_ARRAY_WRITE_OR_ADD_CPU #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM #define TENSOR_ARRAY_WRITE_OR_ADD_GPU(T) TENSOR_ARRAY_WRITE_OR_ADD(GPUDevice, T) TF_CALL_GPU_NUMBER_TYPES(TENSOR_ARRAY_WRITE_OR_ADD_GPU); TF_CALL_COMPLEX_TYPES(TENSOR_ARRAY_WRITE_OR_ADD_GPU); #undef TENSOR_ARRAY_WRITE_OR_ADD_GPU #endif #undef TENSOR_ARRAY_WRITE_OR_ADD #define TENSOR_ARRAY_SET_ZERO(Device, T) \ template <> \ Status TensorSetZero<Device, T>(OpKernelContext * ctx, Tensor * value) { \ functor::SetZeroFunctor<Device, T> set_zero_functor; \ set_zero_functor(ctx->template eigen_device<Device>(), value->flat<T>()); \ return OkStatus(); \ } #define TENSOR_ARRAY_SET_ZERO_CPU(T) TENSOR_ARRAY_SET_ZERO(CPUDevice, T) TF_CALL_NUMBER_TYPES(TENSOR_ARRAY_SET_ZERO_CPU); TF_CALL_bool(TENSOR_ARRAY_SET_ZERO_CPU); #undef TENSOR_ARRAY_SET_ZERO_CPU #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM #define TENSOR_ARRAY_SET_ZERO_GPU(T) TENSOR_ARRAY_SET_ZERO(GPUDevice, T) TF_CALL_GPU_NUMBER_TYPES(TENSOR_ARRAY_SET_ZERO_GPU); TF_CALL_COMPLEX_TYPES(TENSOR_ARRAY_SET_ZERO_GPU); #undef TENSOR_ARRAY_SET_ZERO_GPU #endif #undef TENSOR_ARRAY_SET_ZERO } std::atomic<int64_t> TensorArray::tensor_array_counter{0}; Status TensorArray::CopyShapesFrom(TensorArray* rhs, const TensorShape* shape_to_prepend) { mutex_lock l(mu_); mutex_lock l_rhs(rhs->mu_); TF_RETURN_IF_ERROR(LockedReturnIfClosed()); TF_RETURN_IF_ERROR(rhs->LockedReturnIfClosed()); if (tensors_.size() != rhs->tensors_.size()) { return errors::InvalidArgument( "TensorArray sizes do not match during CopyShapesFrom: ", handle_.vec<tstring>()(1), " has size ", tensors_.size(), " but rhs ", rhs->handle_.vec<tstring>()(1), " has size ", rhs->tensors_.size()); } for (std::size_t i = 0; i < tensors_.size(); ++i) { if (!rhs->tensors_[i].written) continue; if (shape_to_prepend) { tensors_[i].shape = *shape_to_prepend; tensors_[i].shape.AppendShape(rhs->tensors_[i].shape); } else { tensors_[i].shape = rhs->tensors_[i].shape; } tensors_[i].written = true; } return absl::OkStatus(); } }
#include "tensorflow/lite/kernels/variants/tensor_array.h" #include <memory> #include <numeric> #include <optional> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/portable_type_to_tflitetype.h" #include "tensorflow/lite/util.h" namespace tflite { namespace variants { namespace { template <typename T> TensorUniquePtr MakeTensorWithData(std::vector<int> dims, const std::vector<T>& data) { TensorUniquePtr tensor = BuildTfLiteTensor(typeToTfLiteType<T>(), dims, kTfLiteDynamic); const int num_elements = std::accumulate(dims.begin(), dims.end(), 1, std::multiplies<int>()); T* data_start = (T*)tensor->data.data; for (int i = 0; i < num_elements; ++i) { data_start[i] = data[i]; } return tensor; } TensorArray MakeTensorArrayForTest(const std::vector<int>& dims) { return TensorArray(kTfLiteInt32, BuildTfLiteArray(dims)); } TEST(TensorArrayTest, InsertSingleElement) { auto arr = MakeTensorArrayForTest({}); arr.Resize(2); ASSERT_TRUE(arr.Set(0, MakeTensorWithData<int>({2}, {3, 4}))); const TfLiteTensor* added_tensor = arr.At(0); ASSERT_TRUE(added_tensor != nullptr); ASSERT_THAT(added_tensor, DimsAre({2})); EXPECT_EQ(added_tensor->data.i32[0], 3); EXPECT_EQ(added_tensor->data.i32[1], 4); } TEST(TensorArrayTest, ResizeToZero) { auto arr = MakeTensorArrayForTest({}); arr.Resize(2); EXPECT_EQ(arr.NumElements(), 2); arr.Resize(0); EXPECT_EQ(arr.NumElements(), 0); } TEST(TensorArrayTest, InsertOOB) { auto arr = MakeTensorArrayForTest({}); TensorUniquePtr tensor = MakeTensorWithData<int>({2}, {3, 4}); arr.Resize(1); ASSERT_FALSE(arr.Set(-1, std::move(tensor))); EXPECT_FALSE(arr.At(0)); } TEST(TensorArrayTest, InsertMultipleElements) { auto arr = MakeTensorArrayForTest({}); arr.Resize(2); EXPECT_TRUE(arr.Set(0, MakeTensorWithData<int>({2}, {3, 4}))); EXPECT_TRUE(arr.Set(1, MakeTensorWithData<int>({3}, {3, 4, 5}))); EXPECT_THAT(arr.At(0), DimsAre({2})); EXPECT_THAT(arr.At(1), DimsAre({3})); } TEST(TensorArrayTest, InsertSameIndexTwiceDeletes) { auto arr = MakeTensorArrayForTest({}); arr.Resize(2); EXPECT_TRUE(arr.Set(0, MakeTensorWithData<int>({2}, {3, 2}))); EXPECT_TRUE(arr.Set(0, MakeTensorWithData<int>({3}, {3, 4, 5}))); EXPECT_THAT(arr.At(0), DimsAre({3})); } TEST(TensorArrayTest, ResizeUpWithElements) { auto arr = MakeTensorArrayForTest({}); arr.Resize(1); ASSERT_TRUE(arr.Set(0, MakeTensorWithData<int>({2}, {3, 4}))); arr.Resize(2); EXPECT_THAT(arr.At(0), DimsAre({2})); EXPECT_FALSE(arr.At(1)); EXPECT_EQ(arr.NumElements(), 2); } TEST(TensorArrayTest, ResizeDownDeletesElements) { auto arr = MakeTensorArrayForTest({}); arr.Resize(2); ASSERT_TRUE(arr.Set(1, MakeTensorWithData<int>({2}, {3, 4}))); arr.Resize(1); EXPECT_EQ(arr.NumElements(), 1); EXPECT_FALSE(arr.At(0)); } TEST(TensorArrayTest, CopyListWithZeroLength) { auto arr = MakeTensorArrayForTest({}); TensorArray arr2{arr}; EXPECT_EQ(arr.NumElements(), arr2.NumElements()); EXPECT_EQ(arr.NumElements(), 0); } TEST(TensorArrayTest, CopyAssignListWithZeroLength) { auto arr = MakeTensorArrayForTest({}); arr = MakeTensorArrayForTest({2, 2}); EXPECT_EQ(arr.NumElements(), 0); EXPECT_THAT(arr.ElementShape(), DimsAre({2, 2})); } TEST(TensorArrayTest, CopyEmptyList) { auto arr = MakeTensorArrayForTest({}); arr.Resize(2); TensorArray arr2{arr}; EXPECT_EQ(arr.NumElements(), arr2.NumElements()); EXPECT_EQ(arr.NumElements(), 2); } TEST(TensorArrayTest, CopyAssignToEmptyList) { auto arr = MakeTensorArrayForTest({}); auto target_arr = MakeTensorArrayForTest({2, 2}); target_arr.Resize(2); target_arr = arr; EXPECT_EQ(target_arr.NumElements(), 0); EXPECT_THAT(target_arr.ElementShape(), DimsAre({})); } TEST(TensorArrayTest, CopyListWithItem) { std::optional<TensorArray> arr = TensorArray(kTfLiteInt32, {}); arr->Resize(1); ASSERT_TRUE(arr->Set(0, MakeTensorWithData<int>({2}, {3, 4}))); TensorArray arr2{*arr}; EXPECT_EQ(arr->NumElements(), arr2.NumElements()); EXPECT_EQ(arr->At(0), arr2.At(0)); arr.reset(); EXPECT_THAT(arr2.At(0), DimsAre({2})); } TEST(TensorArrayTest, CopyAssignToListWithItem) { auto target_arr = MakeTensorArrayForTest({}); target_arr.Resize(2); ASSERT_TRUE(target_arr.Set(0, MakeTensorWithData<int>({2}, {3, 4}))); auto src_arr = MakeTensorArrayForTest({2, 2}); src_arr.Resize(1); target_arr = src_arr; EXPECT_EQ(target_arr.NumElements(), src_arr.NumElements()); EXPECT_EQ(target_arr.At(0), nullptr); } TEST(TensorArrayTest, CopyAssignFromListWithItem) { auto target_arr = MakeTensorArrayForTest({2, 2}); target_arr.Resize(1); auto src_arr = MakeTensorArrayForTest({}); src_arr.Resize(2); ASSERT_TRUE(src_arr.Set(0, MakeTensorWithData<int>({2}, {3, 4}))); target_arr = src_arr; EXPECT_EQ(target_arr.NumElements(), src_arr.NumElements()); EXPECT_EQ(src_arr.At(0), target_arr.At(0)); } TEST(TensorArrayTest, DeleteEmptyTensorArray) { TensorArray* arr = new TensorArray{kTfLiteInt32, {}}; delete arr; } TEST(TensorArrayTest, DeleteResizedEmptyTensorArray) { TensorArray* arr = new TensorArray{kTfLiteInt32, {}}; arr->Resize(2); delete arr; } TEST(OpaqueVariantTensorArrayDataTest, CastThroughVoidAndCopy) { TensorArray* arr = new TensorArray{kTfLiteFloat32, {}}; arr->Resize(2); ASSERT_TRUE(arr->Set(0, MakeTensorWithData<int>({2}, {3, 4}))); void* erased = static_cast<VariantData*>(arr); VariantData* d = static_cast<VariantData*>(erased); VariantData* copied_d = d->CloneTo(nullptr); auto* copied_arr = static_cast<TensorArray*>(copied_d); ASSERT_THAT(copied_arr->At(0), DimsAre({2})); ASSERT_THAT(arr->At(0), DimsAre({2})); ASSERT_EQ(arr->At(0), arr->At(0)); delete d; delete copied_d; } } } }
928
cpp
tensorflow/tensorflow
bcast_grad_args
tensorflow/lite/kernels/gradient/bcast_grad_args.cc
tensorflow/lite/kernels/gradient/bcast_grad_args_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_GRADIENT_BCAST_GRAD_ARGS_H_ #define TENSORFLOW_LITE_KERNELS_GRADIENT_BCAST_GRAD_ARGS_H_ #include "tensorflow/lite/core/c/common.h" namespace tflite { namespace ops { namespace custom { TfLiteRegistration* Register_BROADCAST_GRADIENT_ARGS(); } } } #endif #include <algorithm> #include <array> #include <cmath> #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/common.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/internal/types.h" #include "tensorflow/lite/kernels/kernel_util.h" #include "tensorflow/lite/kernels/padding.h" namespace tflite { namespace ops { namespace custom { namespace { static const int kInputOneTensor = 0; static const int kInputTwoTensor = 1; static const int kOutputOneTensor = 0; static const int kOutputTwoTensor = 1; TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); const TfLiteTensor* input1 = GetInput(context, node, kInputOneTensor); TF_LITE_ENSURE(context, input1 != nullptr); const RuntimeShape input1_shape = GetTensorShape(input1); TF_LITE_ENSURE(context, input1->type == kTfLiteInt32 || input1->type == kTfLiteInt64); TF_LITE_ENSURE_EQ(context, input1_shape.DimensionsCount(), 1); const TfLiteTensor* input2 = GetInput(context, node, kInputTwoTensor); TF_LITE_ENSURE(context, input2 != nullptr); const RuntimeShape input2_shape = GetTensorShape(input2); TF_LITE_ENSURE_TYPES_EQ(context, input2->type, input1->type); TF_LITE_ENSURE_EQ(context, input2_shape.DimensionsCount(), 1); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 2); TfLiteTensor* output1 = GetOutput(context, node, kOutputOneTensor); TF_LITE_ENSURE(context, output1 != nullptr); TF_LITE_ENSURE_TYPES_EQ(context, output1->type, input1->type); TfLiteTensor* output2 = GetOutput(context, node, kOutputTwoTensor); TF_LITE_ENSURE(context, output2 != nullptr); TF_LITE_ENSURE_TYPES_EQ(context, output2->type, input1->type); SetTensorToDynamic(output1); SetTensorToDynamic(output2); return kTfLiteOk; } TfLiteStatus Invoke(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input1 = GetInput(context, node, kInputOneTensor); TF_LITE_ENSURE(context, input1 != nullptr); const RuntimeShape input1_shape = GetTensorShape(input1); const TfLiteTensor* input2 = GetInput(context, node, kInputTwoTensor); TF_LITE_ENSURE(context, input2 != nullptr); const RuntimeShape input2_shape = GetTensorShape(input2); TfLiteTensor* output1 = GetOutput(context, node, kOutputOneTensor); TF_LITE_ENSURE(context, output1 != nullptr); TfLiteTensor* output2 = GetOutput(context, node, kOutputTwoTensor); TF_LITE_ENSURE(context, output2 != nullptr); std::vector<int64_t> input1_vec; std::vector<int64_t> input2_vec; if (input1->type == kTfLiteInt32) { input1_vec = std::vector<int64_t>(input1->data.i32, input1->data.i32 + input1_shape.Dims(0)); } else { input1_vec = std::vector<int64_t>(input1->data.i64, input1->data.i64 + input1_shape.Dims(0)); } if (input2->type == kTfLiteInt32) { input2_vec = std::vector<int64_t>(input2->data.i32, input2->data.i32 + input2_shape.Dims(0)); } else { input2_vec = std::vector<int64_t>(input2->data.i64, input2->data.i64 + input2_shape.Dims(0)); } if (input1_vec == input2_vec) { TfLiteIntArray* output1_shape = TfLiteIntArrayCreate(1); output1_shape->data[0] = 0; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, output1, output1_shape)); TfLiteIntArray* output2_shape = TfLiteIntArrayCreate(1); output2_shape->data[0] = 0; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, output2, output2_shape)); return kTfLiteOk; } size_t largest_rank = std::max(input1_vec.size(), input2_vec.size()); std::vector<int64_t> copy[2]; copy[0] = std::vector<int64_t>(input1_vec.rbegin(), input1_vec.rend()); copy[1] = std::vector<int64_t>(input2_vec.rbegin(), input2_vec.rend()); for (int i = 0; i < 2; ++i) { if (copy[i].size() < largest_rank) { copy[i].resize(largest_rank, 1); } } std::array<bool, 2> prev_is_one = {false, false}; std::array<bool, 2> current_is_one = {false, false}; bool set_one = false; std::vector<int64_t> grad_reduce_idx[2]; for (int j = 0; j < largest_rank; ++j) { int output_dim = -1; int output_dim_set = false; bool none_is_one = true; for (int i = 0; i < 2; ++i) { if (copy[i][j] == 1) { current_is_one[i] = true; none_is_one = false; } else { current_is_one[i] = false; if (!output_dim_set || copy[i][j] == output_dim) { output_dim = copy[i][j]; output_dim_set = true; } else { return kTfLiteError; } } } if (!output_dim_set) { for (int i = 0; i < 2; ++i) { grad_reduce_idx[i].push_back(largest_rank - 1 - j); } continue; } else if (current_is_one == prev_is_one && set_one) { for (int i = 0; i < 2; ++i) { if (current_is_one[i] && !none_is_one) { grad_reduce_idx[i].push_back(largest_rank - 1 - j); } } } else { for (int i = 0; i < 2; ++i) { if (current_is_one[i] && !none_is_one) { grad_reduce_idx[i].push_back(largest_rank - 1 - j); } } } set_one = true; for (int i = 0; i < 2; ++i) { prev_is_one[i] = current_is_one[i]; } } for (int i = 0; i < 2; ++i) { std::reverse(grad_reduce_idx[i].begin(), grad_reduce_idx[i].end()); } TfLiteIntArray* output1_shape = TfLiteIntArrayCreate(1); output1_shape->data[0] = grad_reduce_idx[0].size(); TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, output1, output1_shape)); if (output1->type == kTfLiteInt32) { for (int i = 0; i < grad_reduce_idx[0].size(); ++i) { output1->data.i32[i] = grad_reduce_idx[0][i]; } } else if (output1->type == kTfLiteInt64) { for (int i = 0; i < grad_reduce_idx[0].size(); ++i) { output1->data.i64[i] = grad_reduce_idx[0][i]; } } TfLiteIntArray* output2_shape = TfLiteIntArrayCreate(1); output2_shape->data[0] = grad_reduce_idx[1].size(); TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, output2, output2_shape)); if (output2->type == kTfLiteInt32) { for (int i = 0; i < grad_reduce_idx[1].size(); ++i) { output2->data.i32[i] = grad_reduce_idx[1][i]; } } else if (output2->type == kTfLiteInt64) { for (int i = 0; i < grad_reduce_idx[1].size(); ++i) { output2->data.i64[i] = grad_reduce_idx[1][i]; } } return kTfLiteOk; } } TfLiteRegistration* Register_BROADCAST_GRADIENT_ARGS() { static TfLiteRegistration reg = {nullptr, nullptr, Prepare, Invoke}; return &reg; } } } }
#include "tensorflow/lite/kernels/gradient/bcast_grad_args.h" #include <cstdint> #include <vector> #include "tensorflow/lite/core/interpreter.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/testing/util.h" namespace tflite { namespace ops { namespace custom { namespace { using testing::ElementsAreArray; class BcastGradArgsInt32OpModel : public SingleOpModel { public: BcastGradArgsInt32OpModel(const TensorData& input1, const TensorData& input2, const TensorData& output1, const TensorData& output2) { input1_ = AddInput(input1); input2_ = AddInput(input2); output1_ = AddOutput(output1); output2_ = AddOutput(output2); std::vector<uint8_t> custom_option; SetCustomOp("BroadcastGradientArgs", custom_option, Register_BROADCAST_GRADIENT_ARGS); BuildInterpreter({GetShape(input1_), GetShape(input2_)}); } void SetInput1(const std::vector<int>& data) { PopulateTensor(input1_, data); } void SetInput2(const std::vector<int>& data) { PopulateTensor(input2_, data); } std::vector<int> GetOutput1() { return ExtractVector<int>(output1_); } std::vector<int> GetOutput1Shape() { return GetTensorShape(output1_); } std::vector<int> GetOutput2() { return ExtractVector<int>(output2_); } std::vector<int> GetOutput2Shape() { return GetTensorShape(output2_); } protected: int input1_; int input2_; int output1_; int output2_; }; TEST(BcastGradArgsInt32OpModel, AllEqualsInt32DTypes) { BcastGradArgsInt32OpModel model( {TensorType_INT32, {4}}, {TensorType_INT32, {4}}, {TensorType_INT32, {}}, {TensorType_INT32, {}}); model.SetInput1({3, 1, 2, 3}); model.SetInput2({3, 1, 2, 3}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput1().size(), 0); EXPECT_THAT(model.GetOutput2().size(), 0); } TEST(BcastGradArgsInt32OpModel, BroadcastableDimAtInput1Int32DTypes) { BcastGradArgsInt32OpModel model( {TensorType_INT32, {4}}, {TensorType_INT32, {4}}, {TensorType_INT32, {}}, {TensorType_INT32, {}}); model.SetInput1({3, 4, 1, 3}); model.SetInput2({3, 4, 2, 3}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput1(), ElementsAreArray({2})); EXPECT_THAT(model.GetOutput2().size(), 0); } TEST(BcastGradArgsInt32OpModel, BroadcastableDimAtInput2Int32DTypes) { BcastGradArgsInt32OpModel model( {TensorType_INT32, {4}}, {TensorType_INT32, {4}}, {TensorType_INT32, {}}, {TensorType_INT32, {}}); model.SetInput1({3, 4, 2, 3}); model.SetInput2({3, 1, 2, 3}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput1().size(), 0); EXPECT_THAT(model.GetOutput2(), ElementsAreArray({1})); } TEST(BcastGradArgsInt32OpModel, DifferentInputSizesInt32DTypes) { BcastGradArgsInt32OpModel model( {TensorType_INT32, {4}}, {TensorType_INT32, {3}}, {TensorType_INT32, {}}, {TensorType_INT32, {}}); model.SetInput1({3, 4, 2, 3}); model.SetInput2({4, 2, 3}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput1().size(), 0); EXPECT_THAT(model.GetOutput2(), ElementsAreArray({0})); } TEST(BcastGradArgsInt32OpModel, NonBroadcastableDimsInt32DTypes) { BcastGradArgsInt32OpModel model( {TensorType_INT32, {4}}, {TensorType_INT32, {4}}, {TensorType_INT32, {}}, {TensorType_INT32, {}}); model.SetInput1({3, 4, 2, 3}); model.SetInput2({9, 9, 9, 9}); EXPECT_THAT(model.Invoke(), kTfLiteError); } class BcastGradArgsInt64OpModel : public SingleOpModel { public: BcastGradArgsInt64OpModel(const TensorData& input1, const TensorData& input2, const TensorData& output1, const TensorData& output2) { input1_ = AddInput(input1); input2_ = AddInput(input2); output1_ = AddOutput(output1); output2_ = AddOutput(output2); std::vector<uint8_t> custom_option; SetCustomOp("BroadcastGradientArgs", custom_option, Register_BROADCAST_GRADIENT_ARGS); BuildInterpreter({GetShape(input1_), GetShape(input2_)}); } void SetInput1(const std::vector<int64_t>& data) { PopulateTensor(input1_, data); } void SetInput2(const std::vector<int64_t>& data) { PopulateTensor(input2_, data); } std::vector<int64_t> GetOutput1() { return ExtractVector<int64_t>(output1_); } std::vector<int> GetOutput1Shape() { return GetTensorShape(output1_); } std::vector<int64_t> GetOutput2() { return ExtractVector<int64_t>(output2_); } std::vector<int> GetOutput2Shape() { return GetTensorShape(output2_); } protected: int input1_; int input2_; int output1_; int output2_; }; TEST(BcastGradArgsInt32OpModel, AllEqualsInt64DTypes) { BcastGradArgsInt64OpModel model( {TensorType_INT64, {4}}, {TensorType_INT64, {4}}, {TensorType_INT64, {}}, {TensorType_INT64, {}}); model.SetInput1({3, 1, 2, 3}); model.SetInput2({3, 1, 2, 3}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput1().size(), 0); EXPECT_THAT(model.GetOutput2().size(), 0); } TEST(BcastGradArgsInt32OpModel, BroadcastableDimAtInput1Int64DTypes) { BcastGradArgsInt64OpModel model( {TensorType_INT64, {4}}, {TensorType_INT64, {4}}, {TensorType_INT64, {}}, {TensorType_INT64, {}}); model.SetInput1({3, 4, 1, 3}); model.SetInput2({3, 4, 2, 3}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput1(), ElementsAreArray({2})); EXPECT_THAT(model.GetOutput2().size(), 0); } TEST(BcastGradArgsInt32OpModel, BroadcastableDimAtInput2Int64DTypes) { BcastGradArgsInt64OpModel model( {TensorType_INT64, {4}}, {TensorType_INT64, {4}}, {TensorType_INT64, {}}, {TensorType_INT64, {}}); model.SetInput1({3, 4, 2, 3}); model.SetInput2({3, 1, 2, 3}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput1().size(), 0); EXPECT_THAT(model.GetOutput2(), ElementsAreArray({1})); } TEST(BcastGradArgsInt32OpModel, DifferentInputSizesInt64DTypes) { BcastGradArgsInt64OpModel model( {TensorType_INT64, {4}}, {TensorType_INT64, {3}}, {TensorType_INT64, {}}, {TensorType_INT64, {}}); model.SetInput1({3, 4, 2, 3}); model.SetInput2({4, 2, 3}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput1().size(), 0); EXPECT_THAT(model.GetOutput2(), ElementsAreArray({0})); } TEST(BcastGradArgsInt32OpModel, NonBroadcastableDimsInt64DTypes) { BcastGradArgsInt64OpModel model( {TensorType_INT64, {4}}, {TensorType_INT64, {4}}, {TensorType_INT64, {}}, {TensorType_INT64, {}}); model.SetInput1({3, 4, 2, 3}); model.SetInput2({9, 9, 9, 9}); EXPECT_THAT(model.Invoke(), kTfLiteError); } } } } }
929
cpp
tensorflow/tensorflow
tf_tensor_view
tensorflow/lite/kernels/shim/tf_tensor_view.cc
tensorflow/lite/kernels/shim/tf_tensor_view_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_SHIM_TF_TENSOR_VIEW_H_ #define TENSORFLOW_LITE_KERNELS_SHIM_TF_TENSOR_VIEW_H_ #include <vector> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/lite/kernels/shim/tensor_view.h" namespace tflite { namespace shim { class TfTensorView : public TensorView { public: TfTensorView(TfTensorView &&o) noexcept; TfTensorView(const TfTensorView &o); TfTensorView &operator=(TfTensorView &&o) noexcept; TfTensorView &operator=(const TfTensorView &); protected: template <typename DType> TfTensorView(const ::tensorflow::Tensor *wrapped_tensor, const DType &dtype); template <typename TfTensorType> friend absl::StatusOr< typename MatchConstNess<TfTensorType, TfTensorView>::Type> TfTensorViewTemplatizedNew(TfTensorType *wrapped_tensor); std::vector<int> shape_data_; }; template <> struct TensorViewSubType<::tensorflow::Tensor> { using Type = TfTensorView; }; template <> struct TensorViewSubType<const ::tensorflow::Tensor> { using Type = const TfTensorView; }; template <> absl::StatusOr<TfTensorView> TensorView::New<::tensorflow::Tensor>( ::tensorflow::Tensor *wrapped_tensor); template <> absl::StatusOr<const TfTensorView> TensorView::New<const ::tensorflow::Tensor>( const ::tensorflow::Tensor *wrapped_tensor); template <typename DType> TfTensorView::TfTensorView(const ::tensorflow::Tensor *wrapped_tensor, const DType &dtype) : TensorView({}, wrapped_tensor->data(), wrapped_tensor->tensor_data().size(), dtype) { shape_data_.resize(wrapped_tensor->shape().dims()); for (int dim = 0; dim < wrapped_tensor->shape().dims(); ++dim) { shape_data_[dim] = wrapped_tensor->shape().dim_size(dim); } shape_ = absl::Span<int>(shape_data_); } } } #endif #include "tensorflow/lite/kernels/shim/tf_tensor_view.h" #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "tensorflow/core/framework/types.pb.h" #define CASE_FOR_DTYPE_GIVEN_CPP_DTYPE(TF_DTYPE, CPP_DTYPE) \ case TF_DTYPE: { \ using DType = typename CPP_DTYPE; \ return TfTensorView(wrapped_tensor, DType()); \ } #define CASE_FOR_DTYPE(TF_DTYPE) \ CASE_FOR_DTYPE_GIVEN_CPP_DTYPE(TF_DTYPE, \ ::tensorflow::EnumToDataType<TF_DTYPE>::Type) namespace tflite { namespace shim { TfTensorView::TfTensorView(TfTensorView &&o) noexcept : TensorView(std::move(o)), shape_data_(std::move(o.shape_data_)) { shape_ = absl::Span<int>(shape_data_); } TfTensorView::TfTensorView(const TfTensorView &o) : TensorView(o), shape_data_(o.shape_data_) { shape_ = absl::Span<int>(shape_data_); } TfTensorView &TfTensorView::operator=(TfTensorView &&o) noexcept { shape_data_ = std::move(o.shape_data_); TensorView::operator=(std::move(o)); shape_ = absl::Span<int>(shape_data_); return *this; } TfTensorView &TfTensorView::operator=(const TfTensorView &o) { if (&o == this) return *this; TensorView::operator=(o); shape_data_ = o.shape_data_; shape_ = absl::Span<int>(shape_data_); return *this; } template <typename TfTensorType> absl::StatusOr<typename MatchConstNess<TfTensorType, TfTensorView>::Type> TfTensorViewTemplatizedNew(TfTensorType *wrapped_tensor) { switch (wrapped_tensor->dtype()) { CASE_FOR_DTYPE(::tensorflow::DT_BOOL); CASE_FOR_DTYPE(::tensorflow::DT_UINT8); CASE_FOR_DTYPE(::tensorflow::DT_UINT64); CASE_FOR_DTYPE(::tensorflow::DT_INT8); CASE_FOR_DTYPE(::tensorflow::DT_INT16); CASE_FOR_DTYPE(::tensorflow::DT_INT32); CASE_FOR_DTYPE_GIVEN_CPP_DTYPE(::tensorflow::DT_INT64, std::int64_t); CASE_FOR_DTYPE(::tensorflow::DT_FLOAT); CASE_FOR_DTYPE(::tensorflow::DT_DOUBLE); CASE_FOR_DTYPE(::tensorflow::DT_STRING); default: { return absl::UnimplementedError( absl::StrCat("Unsupported data type: ", wrapped_tensor->dtype())); } } } template <> absl::StatusOr<TfTensorView> TensorView::New<::tensorflow::Tensor>( ::tensorflow::Tensor *wrapped_tensor) { return TfTensorViewTemplatizedNew(wrapped_tensor); } template <> absl::StatusOr<const TfTensorView> TensorView::New<const ::tensorflow::Tensor>( const ::tensorflow::Tensor *wrapped_tensor) { return TfTensorViewTemplatizedNew(wrapped_tensor); } } }
#include "tensorflow/lite/kernels/shim/tf_tensor_view.h" #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/tstring.h" namespace tflite { namespace shim { namespace { using ::tensorflow::protobuf::TextFormat; TEST(TfTensorView, Bool) { ::tensorflow::TensorProto tf_tensor_pb; ASSERT_TRUE(TextFormat::ParseFromString( R"pb( dtype: DT_BOOL tensor_shape { dim: [ { size: 3 } , { size: 2 }] } bool_val: [ false, false, false, false, false, false ] )pb", &tf_tensor_pb)); ::tensorflow::Tensor tf_tensor; ASSERT_TRUE(tf_tensor.FromProto(tf_tensor_pb)); auto t_premove_or = TensorView::New(&tf_tensor); ASSERT_TRUE(t_premove_or.ok()) << t_premove_or.status(); auto t = std::move(t_premove_or.value()); auto tensor_data_as_vector = t.Data<bool>(); for (int i = 0; i < 3 * 2; ++i) tensor_data_as_vector[i] = i % 5 == 0; ASSERT_THAT(tf_tensor.SummarizeValue(10, true), ::testing::Eq("[[1 0]\n [0 0]\n [0 1]]")); } TEST(TfTensorView, Int32) { ::tensorflow::TensorProto tf_tensor_pb; ASSERT_TRUE(TextFormat::ParseFromString( R"pb( dtype: DT_INT32 tensor_shape { dim: [ { size: 3 } , { size: 2 }] } int_val: [ 0, 0, 0, 0, 0, 0 ] )pb", &tf_tensor_pb)); ::tensorflow::Tensor tf_tensor; ASSERT_TRUE(tf_tensor.FromProto(tf_tensor_pb)); auto t_premove_or = TensorView::New(&tf_tensor); ASSERT_TRUE(t_premove_or.ok()) << t_premove_or.status(); auto t = std::move(t_premove_or.value()); auto tensor_data_as_vector = t.Data<int32_t>(); for (int i = 0; i < 3 * 2; ++i) tensor_data_as_vector[i] = i; ASSERT_THAT(tf_tensor.SummarizeValue(10, true), ::testing::Eq("[[0 1]\n [2 3]\n [4 5]]")); } TEST(TfTensorView, Int64) { ::tensorflow::TensorProto tf_tensor_pb; ASSERT_TRUE(TextFormat::ParseFromString( R"pb( dtype: DT_INT64 tensor_shape { dim: [ { size: 3 } , { size: 2 }] } int_val: [ 0, 0, 0, 0, 0, 0 ] )pb", &tf_tensor_pb)); ::tensorflow::Tensor tf_tensor; ASSERT_TRUE(tf_tensor.FromProto(tf_tensor_pb)); auto t_or = TensorView::New(&tf_tensor); ASSERT_TRUE(t_or.ok()) << t_or.status(); auto& t = t_or.value(); auto tensor_data_as_vector = t.Data<int64_t>(); for (int i = 0; i < 3 * 2; ++i) tensor_data_as_vector[i] = i; ASSERT_THAT(tf_tensor.SummarizeValue(10, true), ::testing::Eq("[[0 1]\n [2 3]\n [4 5]]")); } TEST(TfTensorView, Float) { ::tensorflow::TensorProto tf_tensor_pb; ASSERT_TRUE(TextFormat::ParseFromString( R"pb( dtype: DT_FLOAT tensor_shape { dim: [ { size: 3 } , { size: 2 }] } float_val: [ 0, 0, 0, 0, 0, 0 ] )pb", &tf_tensor_pb)); ::tensorflow::Tensor tf_tensor; ASSERT_TRUE(tf_tensor.FromProto(tf_tensor_pb)); auto t_or = TensorView::New(&tf_tensor); ASSERT_TRUE(t_or.ok()) << t_or.status(); auto& t = t_or.value(); auto tensor_data_as_vector = t.Data<float>(); for (int i = 0; i < 3 * 2; ++i) tensor_data_as_vector[i] = static_cast<float>(i) / 2.0; ASSERT_THAT(tf_tensor.SummarizeValue(10, true), ::testing::Eq("[[0 0.5]\n [1 1.5]\n [2 2.5]]")); } TEST(TfTensorView, Double) { ::tensorflow::TensorProto tf_tensor_pb; ASSERT_TRUE(TextFormat::ParseFromString( R"pb( dtype: DT_DOUBLE tensor_shape { dim: [ { size: 3 } , { size: 2 }] } double_val: [ 0, 0, 0, 0, 0, 0 ] )pb", &tf_tensor_pb)); ::tensorflow::Tensor tf_tensor; ASSERT_TRUE(tf_tensor.FromProto(tf_tensor_pb)); auto t_or = TensorView::New(&tf_tensor); ASSERT_TRUE(t_or.ok()) << t_or.status(); auto& t = t_or.value(); auto tensor_data_as_vector = t.Data<double>(); for (int i = 0; i < 3 * 2; ++i) tensor_data_as_vector[i] = static_cast<double>(i) / 2.0; ASSERT_THAT(tf_tensor.SummarizeValue(10, true), ::testing::Eq("[[0 0.5]\n [1 1.5]\n [2 2.5]]")); } TEST(TfTensorView, Str) { ::tensorflow::TensorProto tf_tensor_pb; ASSERT_TRUE(TextFormat::ParseFromString( R"pb( dtype: DT_STRING tensor_shape { dim: [ { size: 3 } , { size: 2 }] } string_val: [ "", "", "", "", "", "" ] )pb", &tf_tensor_pb)); ::tensorflow::Tensor tf_tensor; ASSERT_TRUE(tf_tensor.FromProto(tf_tensor_pb)); auto t_or = TensorView::New(&tf_tensor); ASSERT_TRUE(t_or.ok()) << t_or.status(); auto& t = t_or.value(); auto tensor_data_as_vector = t.Data<::tensorflow::tstring>(); tensor_data_as_vector[0] = "a"; tensor_data_as_vector[1] = "bc"; tensor_data_as_vector[2] = "def"; tensor_data_as_vector[3] = "g"; tensor_data_as_vector[4] = "hi"; tensor_data_as_vector[5] = ""; EXPECT_THAT(t.Data<::tensorflow::tstring>(), ::testing::ElementsAre("a", "bc", "def", "g", "hi", "")); const auto& const_tf_tensor = tf_tensor; const auto const_t_or = TensorView::New(&const_tf_tensor); ASSERT_TRUE(const_t_or.ok()) << const_t_or.status(); const auto& const_t = const_t_or.value(); EXPECT_THAT(const_t.Data<::tensorflow::tstring>(), ::testing::ElementsAre("a", "bc", "def", "g", "hi", "")); const char expectation[] = R"( [["a" "bc"] ["def" "g"] ["hi" ""]])"; EXPECT_THAT(tf_tensor.SummarizeValue(10, true), ::testing::Eq(absl::string_view(expectation).substr(1))); } } } }
930
cpp
tensorflow/tensorflow
tflite_tensor_view
tensorflow/lite/kernels/shim/tflite_tensor_view.cc
tensorflow/lite/kernels/shim/tflite_tensor_view_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_SHIM_TFLITE_TENSOR_VIEW_H_ #define TENSORFLOW_LITE_KERNELS_SHIM_TFLITE_TENSOR_VIEW_H_ #include <cstring> #include <memory> #include <vector> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/shim/tensor_view.h" namespace tflite { namespace shim { class TfLiteTensorView : public TensorView { public: TfLiteTensorView(TfLiteTensorView &&o) noexcept; TfLiteTensorView(const TfLiteTensorView &o); TfLiteTensorView &operator=(TfLiteTensorView &&o) noexcept; TfLiteTensorView &operator=(const TfLiteTensorView &); protected: template <typename DType> TfLiteTensorView(::TfLiteTensor *wrapped_tensor, const DType &dtype) : TensorView(absl::Span<int>(wrapped_tensor->dims->data, wrapped_tensor->dims->size), wrapped_tensor->data.raw, wrapped_tensor->bytes, dtype), wrapped_tensor_(wrapped_tensor), const_wrapped_tensor_(wrapped_tensor) {} TfLiteTensorView(::TfLiteTensor *wrapped_tensor, const ::tensorflow::tstring &dtype); template <typename DType> TfLiteTensorView(const ::TfLiteTensor *wrapped_tensor, const DType &dtype) : TensorView(absl::Span<int>(wrapped_tensor->dims->data, wrapped_tensor->dims->size), wrapped_tensor->data.raw, wrapped_tensor->bytes, dtype), const_wrapped_tensor_(wrapped_tensor) {} TfLiteTensorView(const ::TfLiteTensor *wrapped_tensor, const ::tensorflow::tstring &dtype); template <typename TfLiteTensorType> friend absl::StatusOr< typename MatchConstNess<TfLiteTensorType, TfLiteTensorView>::Type> TfLiteTensorViewTemplatizedNew(TfLiteTensorType *wrapped_tensor); struct StringBuffer { explicit StringBuffer(TfLiteTensorView *t_view); ~StringBuffer(); std::vector<::tensorflow::tstring> buffer; ::TfLiteTensor *wrapped_tensor = nullptr; }; void InitForStringDType(); ::TfLiteTensor *wrapped_tensor_ = nullptr; const ::TfLiteTensor *const_wrapped_tensor_ = nullptr; std::shared_ptr<StringBuffer> str_vec_ = nullptr; }; template <> struct TensorViewSubType<::TfLiteTensor> { using Type = TfLiteTensorView; }; template <> struct TensorViewSubType<const ::TfLiteTensor> { using Type = const TfLiteTensorView; }; template <> absl::StatusOr<TfLiteTensorView> TensorView::New<::TfLiteTensor>( ::TfLiteTensor *wrapped_tensor); template <> absl::StatusOr<const TfLiteTensorView> TensorView::New<const ::TfLiteTensor>( const ::TfLiteTensor *wrapped_tensor); } } #endif #include "tensorflow/lite/kernels/shim/tflite_tensor_view.h" #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/types/variant.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/shim/tensor_view.h" #include "tensorflow/lite/string_util.h" #include "tensorflow/lite/type_to_tflitetype.h" #define CASE_FOR_DTYPE_GIVEN_CPP_DTYPE(TFLITE_DTYPE, CPP_DTYPE) \ case TFLITE_DTYPE: { \ using DType = typename CPP_DTYPE; \ return TfLiteTensorView(wrapped_tensor, DType()); \ } #define CASE_FOR_DTYPE(TFLITE_DTYPE) \ CASE_FOR_DTYPE_GIVEN_CPP_DTYPE( \ TFLITE_DTYPE, ::tflite::TfLiteTypeToType<TFLITE_DTYPE>::Type) namespace tflite { namespace shim { TfLiteTensorView::TfLiteTensorView(::TfLiteTensor *wrapped_tensor, const ::tensorflow::tstring &dtype) : TensorView(absl::Span<int>(wrapped_tensor->dims->data, wrapped_tensor->dims->size), nullptr, 0, dtype), wrapped_tensor_(wrapped_tensor), const_wrapped_tensor_(wrapped_tensor) { InitForStringDType(); } TfLiteTensorView::TfLiteTensorView(const ::TfLiteTensor *wrapped_tensor, const ::tensorflow::tstring &dtype) : TensorView(absl::Span<int>(wrapped_tensor->dims->data, wrapped_tensor->dims->size), nullptr, 0, dtype), const_wrapped_tensor_(wrapped_tensor) { InitForStringDType(); } TfLiteTensorView::TfLiteTensorView(TfLiteTensorView &&o) noexcept : TensorView(std::move(o)), wrapped_tensor_(o.wrapped_tensor_), const_wrapped_tensor_(o.const_wrapped_tensor_), str_vec_(std::move(o.str_vec_)) { } TfLiteTensorView::TfLiteTensorView(const TfLiteTensorView &o) : TensorView(o), wrapped_tensor_(o.wrapped_tensor_), const_wrapped_tensor_(o.const_wrapped_tensor_), str_vec_(o.str_vec_) { } TfLiteTensorView &TfLiteTensorView::operator=(TfLiteTensorView &&o) noexcept { wrapped_tensor_ = o.wrapped_tensor_; const_wrapped_tensor_ = o.const_wrapped_tensor_; str_vec_ = std::move(o.str_vec_); TensorView::operator=(std::move(o)); return *this; } TfLiteTensorView &TfLiteTensorView::operator=(const TfLiteTensorView &o) { if (&o == this) return *this; TensorView::operator=(o); wrapped_tensor_ = o.wrapped_tensor_; const_wrapped_tensor_ = o.const_wrapped_tensor_; str_vec_ = o.str_vec_; return *this; } void TfLiteTensorView::InitForStringDType() { if (str_vec_ == nullptr) { str_vec_ = std::make_shared<StringBuffer>(this); } data_ = absl::Span<::tensorflow::tstring>(str_vec_->buffer); } TfLiteTensorView::StringBuffer::StringBuffer(TfLiteTensorView *t_view) : wrapped_tensor(t_view->wrapped_tensor_) { buffer.resize(NumElements(t_view->shape_)); const auto const_wrapped_tensor = t_view->const_wrapped_tensor_; std::size_t str_count; if (const_wrapped_tensor->data.raw == nullptr) str_count = 0; else str_count = ::tflite::GetStringCount(const_wrapped_tensor); for (int i = 0; i < str_count; ++i) { const auto str_ref = ::tflite::GetString(const_wrapped_tensor, i); buffer[i].assign_as_view(str_ref.str, str_ref.len); } } TfLiteTensorView::StringBuffer::~StringBuffer() { if (wrapped_tensor == nullptr) return; tflite::DynamicBuffer buf; for (const auto &s : buffer) buf.AddString(s.data(), s.length()); buf.WriteToTensor(wrapped_tensor, nullptr); } template <typename TfLiteTensorType> absl::StatusOr< typename MatchConstNess<TfLiteTensorType, TfLiteTensorView>::Type> TfLiteTensorViewTemplatizedNew(TfLiteTensorType *wrapped_tensor) { switch (wrapped_tensor->type) { CASE_FOR_DTYPE(kTfLiteBool); CASE_FOR_DTYPE(kTfLiteUInt8); CASE_FOR_DTYPE(kTfLiteUInt64); CASE_FOR_DTYPE(kTfLiteInt8); CASE_FOR_DTYPE(kTfLiteInt16); CASE_FOR_DTYPE(kTfLiteInt32); CASE_FOR_DTYPE(kTfLiteInt64); CASE_FOR_DTYPE(kTfLiteFloat32); CASE_FOR_DTYPE(kTfLiteFloat64); CASE_FOR_DTYPE_GIVEN_CPP_DTYPE(kTfLiteString, ::tensorflow::tstring); default: { return absl::UnimplementedError( absl::StrCat("Unsupported dtype: ", wrapped_tensor->type)); } } } template <> absl::StatusOr<TfLiteTensorView> TensorView::New<::TfLiteTensor>( ::TfLiteTensor *wrapped_tensor) { return TfLiteTensorViewTemplatizedNew(wrapped_tensor); } template <> absl::StatusOr<const TfLiteTensorView> TensorView::New<const ::TfLiteTensor>( const ::TfLiteTensor *wrapped_tensor) { return TfLiteTensorViewTemplatizedNew(wrapped_tensor); } } }
#include "tensorflow/lite/kernels/shim/tflite_tensor_view.h" #include <cstdint> #include <string> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/core/interpreter.h" #include "tensorflow/lite/kernels/shim/test_util.h" #include "tensorflow/lite/string_util.h" namespace tflite { namespace shim { namespace { using ::testing::Eq; TEST(TfLiteTensorW, Bool) { ::tflite::Interpreter interpreter; interpreter.AddTensors(1); interpreter.AllocateTensors(); auto* tflite_tensor = interpreter.tensor(0); ReallocDynamicTensor<bool>({3, 2}, tflite_tensor); tflite_tensor->name = "test_bool"; auto owned_tflite_tensor = UniqueTfLiteTensor(tflite_tensor); auto t_premove_or = TensorView::New(tflite_tensor); ASSERT_TRUE(t_premove_or.ok()) << t_premove_or.status(); auto t = std::move(t_premove_or.value()); auto data = t.Data<bool>(); for (int32_t i = 0; i < 3 * 2; ++i) data[i] = (i % 5 == 0); ASSERT_THAT(TfliteTensorDebugString(tflite_tensor), Eq("[[1, 0], [0, 0], [0, 1]]")); } template <typename IntType> void IntTest() { ::tflite::Interpreter interpreter; interpreter.AddTensors(1); interpreter.AllocateTensors(); auto* tflite_tensor = interpreter.tensor(0); ReallocDynamicTensor<IntType>({3, 2}, tflite_tensor); tflite_tensor->name = "test_int"; auto owned_tflite_tensor = UniqueTfLiteTensor(tflite_tensor); auto t_premove_or = TensorView::New(tflite_tensor); ASSERT_TRUE(t_premove_or.ok()) << t_premove_or.status(); auto t = std::move(t_premove_or.value()); auto data = t.Data<IntType>(); for (int32_t i = 0; i < 3 * 2; ++i) data[i] = i; ASSERT_THAT(TfliteTensorDebugString(tflite_tensor), Eq("[[0, 1], [2, 3], [4, 5]]")); } TEST(TfLiteTensorW, Int8) { IntTest<int8_t>(); } TEST(TfLiteTensorW, UInt8) { IntTest<uint8_t>(); } TEST(TfLiteTensorW, Int16) { IntTest<int16_t>(); } TEST(TfLiteTensorW, Int32) { IntTest<int32_t>(); } TEST(TfLiteTensorW, Int64) { IntTest<int64_t>(); } template <typename FloatType> void FloatTest() { ::tflite::Interpreter interpreter; interpreter.AddTensors(1); interpreter.AllocateTensors(); auto* tflite_tensor = interpreter.tensor(0); ReallocDynamicTensor<FloatType>({3, 2}, tflite_tensor); tflite_tensor->name = "test_float"; auto owned_tflite_tensor = UniqueTfLiteTensor(tflite_tensor); auto t_or = TensorView::New(tflite_tensor); ASSERT_TRUE(t_or.ok()) << t_or.status(); auto& t = t_or.value(); auto data = t.Data<FloatType>(); for (int32_t i = 0; i < 3 * 2; ++i) data[i] = static_cast<FloatType>(i) / 2.; ASSERT_THAT(TfliteTensorDebugString(tflite_tensor), Eq("[[0, 0.5], [1, 1.5], [2, 2.5]]")); } TEST(TfLiteTensorW, Float) { FloatTest<float>(); } TEST(TfLiteTensorW, Double) { FloatTest<double>(); } TEST(TfLiteTensorW, Str) { ::tflite::Interpreter interpreter; interpreter.AddTensors(1); interpreter.AllocateTensors(); auto* tflite_tensor = interpreter.tensor(0); ReallocDynamicTensor<std::string>({3, 2}, tflite_tensor); tflite_tensor->name = "test_str"; auto owned_tflite_tensor = UniqueTfLiteTensor(tflite_tensor); { auto t_or = TensorView::New(tflite_tensor); ASSERT_TRUE(t_or.ok()) << t_or.status(); auto& t = t_or.value(); auto t_mat = t.As<::tensorflow::tstring, 2>(); t.Data<::tensorflow::tstring>()[0] = "a"; t.Data<::tensorflow::tstring>()[1] = "bc"; t_mat(1, 0) = "def"; t.Data<::tensorflow::tstring>()[3] = "g"; t.Data<::tensorflow::tstring>()[4] = ""; t_mat(2, 1) = "hi"; } { auto t_or = TensorView::New(tflite_tensor); ASSERT_TRUE(t_or.ok()) << t_or.status(); auto& t = t_or.value(); EXPECT_THAT(t.Data<::tensorflow::tstring>(), ::testing::ElementsAre("a", "bc", "def", "g", "", "hi")); } const auto const_tflite_tensor = tflite_tensor; { const auto t_or = TensorView::New(const_tflite_tensor); ASSERT_TRUE(t_or.ok()) << t_or.status(); const auto& t = t_or.value(); EXPECT_THAT(t.Data<::tensorflow::tstring>(), ::testing::ElementsAre("a", "bc", "def", "g", "", "hi")); } EXPECT_THAT(TfliteTensorDebugString(tflite_tensor), Eq("[[a, bc], [def, g], [, hi]]")); } TEST(TfLiteTensorW, EmptyStr) { ::tflite::Interpreter interpreter; interpreter.AddTensors(1); interpreter.AllocateTensors(); auto* tflite_tensor = interpreter.tensor(0); ReallocDynamicTensor<std::string>({0}, tflite_tensor); tflite_tensor->name = "test_str"; auto owned_tflite_tensor = UniqueTfLiteTensor(tflite_tensor); { auto t_or = TensorView::New(tflite_tensor); ASSERT_TRUE(t_or.ok()) << t_or.status(); } EXPECT_THAT(GetStringCount(tflite_tensor), Eq(0)); } } } }
931
cpp
tensorflow/tensorflow
tmpl_tflite_op
tensorflow/lite/kernels/shim/test_op/tmpl_tflite_op.cc
tensorflow/lite/kernels/shim/test_op/tmpl_tflite_op_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_SHIM_TEST_OP_TMPL_TFLITE_OP_H_ #define TENSORFLOW_LITE_KERNELS_SHIM_TEST_OP_TMPL_TFLITE_OP_H_ #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/mutable_op_resolver.h" namespace tflite { namespace ops { namespace custom { void AddTmplOp(MutableOpResolver* resolver); TfLiteRegistration* Register_TMPL_OP(); const char* OpName_TMPL_OP(); } } } #endif #include "tensorflow/lite/kernels/shim/test_op/tmpl_tflite_op.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/kernels/shim/test_op/tmpl_op.h" #include "tensorflow/lite/kernels/shim/tflite_op_shim.h" #include "tensorflow/lite/kernels/shim/tflite_op_wrapper.h" namespace tflite { namespace ops { namespace custom { namespace { const char a_type[]("AType"), b_type[]("BType"); } using ::tflite::shim::op_wrapper::Attr; using ::tflite::shim::op_wrapper::AttrName; using ::tflite::shim::op_wrapper::OpWrapper; template <shim::Runtime Rt> using Op = OpWrapper<Rt, shim::TmplOp, Attr<AttrName<a_type>, int32_t, float>, Attr<AttrName<b_type>, int32_t, int64_t, bool>>; using OpKernel = ::tflite::shim::TfLiteOpKernel<Op>; void AddTmplOp(MutableOpResolver* resolver) { OpKernel::Add(resolver); } TfLiteRegistration* Register_TMPL_OP() { return OpKernel::GetTfLiteRegistration(); } const char* OpName_TMPL_OP() { return OpKernel::OpName(); } } } }
#include "tensorflow/lite/kernels/shim/test_op/tmpl_tflite_op.h" #include <cstdint> #include <vector> #include <gtest/gtest.h> #include "flatbuffers/flexbuffers.h" #include "tensorflow/lite/kernels/test_util.h" namespace tflite { namespace shim { namespace { template <typename AType, typename BType> class TmplOpModel : public SingleOpModel { public: TmplOpModel(const std::vector<uint8_t>& op_options, const std::vector<tflite::TensorType>& input_types, const std::vector<std::vector<int>>& input_shapes, const std::vector<AType>& input0, const std::vector<BType>& input1, const std::vector<tflite::TensorType>& output_types) { std::vector<int> input_idx; for (const auto input_type : input_types) { input_idx.push_back(AddInput(input_type)); } for (const auto output_type : output_types) { output_idx_.push_back(AddOutput(output_type)); } SetCustomOp(ops::custom::OpName_TMPL_OP(), op_options, ops::custom::Register_TMPL_OP); BuildInterpreter(input_shapes); PopulateTensor(input_idx[0], input0); PopulateTensor(input_idx[1], input1); } template <typename T> std::vector<T> GetOutput(const int i) { return ExtractVector<T>(output_idx_[i]); } std::vector<int> GetOutputShape(const int i) { return GetTensorShape(output_idx_[i]); } protected: std::vector<int> output_idx_; }; TEST(TmplOpModel, float_int32) { flexbuffers::Builder builder; builder.Map([&]() { builder.Int("AType", kTfLiteFloat32); builder.Int("BType", kTfLiteInt32); }); builder.Finish(); std::vector<std::vector<int>> input_shapes = {{}, {}}; std::vector<tflite::TensorType> input_types = {tflite::TensorType_FLOAT32, tflite::TensorType_INT32}; std::vector<tflite::TensorType> output_types = {tflite::TensorType_FLOAT32}; const std::vector<float> input0 = {5.6f}; const std::vector<int32_t> input1 = {3}; TmplOpModel<float, int32_t> m( builder.GetBuffer(), input_types, input_shapes, input0, input1, output_types); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput<float>(0), testing::ElementsAre(8.6f)); } TEST(TmplOpModel, int32_int64) { flexbuffers::Builder builder; builder.Map([&]() { builder.Int("AType", kTfLiteInt32); builder.Int("BType", kTfLiteInt64); }); builder.Finish(); std::vector<std::vector<int>> input_shapes = {{}, {}}; std::vector<tflite::TensorType> input_types = {tflite::TensorType_INT32, tflite::TensorType_INT64}; std::vector<tflite::TensorType> output_types = {tflite::TensorType_FLOAT32}; const std::vector<int32_t> input0 = {12}; const std::vector<int64_t> input1 = {33l}; TmplOpModel<int32_t, int64_t> m( builder.GetBuffer(), input_types, input_shapes, input0, input1, output_types); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput<float>(0), testing::ElementsAre(45.0f)); } TEST(TmplOpModel, int32_bool) { flexbuffers::Builder builder; builder.Map([&]() { builder.Int("AType", kTfLiteInt32); builder.Int("BType", kTfLiteBool); }); builder.Finish(); std::vector<std::vector<int>> input_shapes = {{}, {}}; std::vector<tflite::TensorType> input_types = {tflite::TensorType_INT32, tflite::TensorType_BOOL}; std::vector<tflite::TensorType> output_types = {tflite::TensorType_FLOAT32}; const std::vector<int32_t> input0 = {12}; const std::vector<bool> input1 = {true}; TmplOpModel<int32_t, bool> m( builder.GetBuffer(), input_types, input_shapes, input0, input1, output_types); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput<float>(0), testing::ElementsAre(13.0f)); } } } }
932
cpp
tensorflow/tensorflow
simple_tf_op
tensorflow/lite/kernels/shim/test_op/simple_tf_op.cc
tensorflow/lite/kernels/shim/test_op/simple_tf_op_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_SHIM_TEST_OP_SIMPLE_TF_OP_H_ #define TENSORFLOW_LITE_KERNELS_SHIM_TEST_OP_SIMPLE_TF_OP_H_ #include "tensorflow/lite/kernels/shim/test_op/simple_op.h" #include "tensorflow/lite/kernels/shim/tf_op_shim.h" namespace tflite { namespace shim { class SimpleOpKernel : public TfOpKernel<SimpleOp> { public: using TfOpKernel::TfOpKernel; }; } } #endif #include "tensorflow/lite/kernels/shim/test_op/simple_tf_op.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/types.h" namespace tflite { namespace shim { REGISTER_TF_OP_SHIM(SimpleOpKernel); REGISTER_KERNEL_BUILDER( Name(SimpleOpKernel::OpName()).Device(::tensorflow::DEVICE_CPU), SimpleOpKernel); } }
#include <cstdint> #include <gtest/gtest.h> #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/platform/tstring.h" namespace tflite { namespace shim { namespace { using ::tensorflow::DT_INT64; using ::tensorflow::DT_STRING; using ::tensorflow::FakeInput; using ::tensorflow::NodeDefBuilder; using ::tensorflow::TensorShape; using ::tensorflow::tstring; using ::tensorflow::test::AsTensor; using ::tensorflow::test::ExpectTensorEqual; class SimpleOpTfTest : public ::tensorflow::OpsTestBase {}; TEST_F(SimpleOpTfTest, Output1Size_5_N_2) { TF_ASSERT_OK(NodeDefBuilder("simple_op", "SimpleOperation") .Attr("output1_size", 5) .Attr("output2_suffix", "foo") .Attr("N", 2) .Input(FakeInput(DT_STRING)) .Input(FakeInput(2, DT_INT64)) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<tstring>(TensorShape({}), {"abc"}); AddInputFromArray<int64_t>(TensorShape({}), {123}); AddInputFromArray<int64_t>(TensorShape({2}), {456, 789}); TF_ASSERT_OK(RunOpKernel()); ExpectTensorEqual<int>(*GetOutput(0), AsTensor<int>({0, 1, 2, 3, 4}, {5})); ExpectTensorEqual<float>( *GetOutput(1), AsTensor<float>({0, 0.5, 1., 1.5, 2.}, {5})); ExpectTensorEqual<tstring>( *GetOutput(2), AsTensor<tstring>({"0", "1", "2", "foo"}, {4})); ExpectTensorEqual<int64_t>(*GetOutput(3), AsTensor<int64_t>({124}, {})); ExpectTensorEqual<int64_t>(*GetOutput(4), AsTensor<int64_t>({457, 790}, {2})); } TEST_F(SimpleOpTfTest, Output1Size_3_N_0) { TF_ASSERT_OK(NodeDefBuilder("simple_op", "SimpleOperation") .Attr("output1_size", 3) .Attr("output2_suffix", "foo") .Attr("N", 0) .Input(FakeInput(DT_STRING)) .Input(FakeInput(0, DT_INT64)) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<tstring>(TensorShape({}), {"abcde"}); TF_ASSERT_OK(RunOpKernel()); ExpectTensorEqual<int>(*GetOutput(0), AsTensor<int>({0, 1, 2, 3, 4}, {5})); ExpectTensorEqual<float>(*GetOutput(1), AsTensor<float>({0, 0.5, 1.}, {3})); ExpectTensorEqual<tstring>( *GetOutput(2), AsTensor<tstring>({"0", "1", "2", "3", "4", "foo"}, {6})); } } } }
933
cpp
tensorflow/tensorflow
tmpl_tf_op
tensorflow/lite/kernels/shim/test_op/tmpl_tf_op.cc
tensorflow/lite/kernels/shim/test_op/tmpl_tf_op_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_SHIM_TEST_OP_TMPL_TF_OP_H_ #define TENSORFLOW_LITE_KERNELS_SHIM_TEST_OP_TMPL_TF_OP_H_ #include "tensorflow/lite/kernels/shim/test_op/tmpl_op.h" #include "tensorflow/lite/kernels/shim/tf_op_shim.h" namespace tflite { namespace shim { template <typename AType, typename BType> class TmplOpKernel : public TfOpKernel<TmplOp, AType, BType> { public: using TfOpKernel<TmplOp, AType, BType>::TfOpKernel; }; } } #endif #include "tensorflow/lite/kernels/shim/test_op/tmpl_tf_op.h" #include <cstdint> #include "tensorflow/core/framework/types.h" namespace tflite { namespace shim { using TmplOpKernelInstance = TmplOpKernel<float, int32_t>; REGISTER_TF_OP_SHIM(TmplOpKernelInstance); REGISTER_KERNEL_BUILDER(Name(TmplOpKernelInstance::OpName()) .Device(::tensorflow::DEVICE_CPU) .TypeConstraint<float>("AType") .TypeConstraint<int32_t>("BType"), TmplOpKernel<float, int32_t>); REGISTER_KERNEL_BUILDER(Name(TmplOpKernelInstance::OpName()) .Device(::tensorflow::DEVICE_CPU) .TypeConstraint<int32_t>("AType") .TypeConstraint<int64_t>("BType"), TmplOpKernel<int32_t, int64_t>); } }
#include <cstdint> #include <gtest/gtest.h> #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/kernels/ops_testutil.h" namespace tflite { namespace shim { namespace { using ::tensorflow::DT_FLOAT; using ::tensorflow::DT_INT32; using ::tensorflow::DT_INT64; using ::tensorflow::FakeInput; using ::tensorflow::NodeDefBuilder; using ::tensorflow::TensorShape; using ::tensorflow::test::AsTensor; using ::tensorflow::test::ExpectTensorEqual; class TmplOpTfTest : public ::tensorflow::OpsTestBase {}; TEST_F(TmplOpTfTest, float_int32) { TF_ASSERT_OK(NodeDefBuilder("tmpl_op", "TemplatizedOperation") .Attr("AType", DT_FLOAT) .Attr("BType", DT_INT32) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<float>(TensorShape({}), {10.5}); AddInputFromArray<int32_t>(TensorShape({}), {20}); TF_ASSERT_OK(RunOpKernel()); ExpectTensorEqual<float>(*GetOutput(0), AsTensor<float>({30.5}, {})); } TEST_F(TmplOpTfTest, int32_int64) { TF_ASSERT_OK(NodeDefBuilder("tmpl_op", "TemplatizedOperation") .Attr("AType", DT_INT32) .Attr("BType", DT_INT64) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_INT64)) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<int32_t>(TensorShape({}), {10}); AddInputFromArray<int64_t>(TensorShape({}), {20}); TF_ASSERT_OK(RunOpKernel()); ExpectTensorEqual<float>(*GetOutput(0), AsTensor<float>({30}, {})); } } } }
934
cpp
tensorflow/tensorflow
simple_tflite_op
tensorflow/lite/kernels/shim/test_op/simple_tflite_op.cc
tensorflow/lite/kernels/shim/test_op/simple_tflite_op_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_SHIM_TEST_OP_SIMPLE_TFLITE_OP_H_ #define TENSORFLOW_LITE_KERNELS_SHIM_TEST_OP_SIMPLE_TFLITE_OP_H_ #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/mutable_op_resolver.h" namespace tflite { namespace ops { namespace custom { void AddSimpleOp(MutableOpResolver* resolver); TfLiteRegistration* Register_SIMPLE_OP(); const char* OpName_SIMPLE_OP(); } } } #endif #include "tensorflow/lite/kernels/shim/test_op/simple_tflite_op.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/shim/test_op/simple_op.h" #include "tensorflow/lite/kernels/shim/tflite_op_shim.h" namespace tflite { namespace ops { namespace custom { using OpKernel = ::tflite::shim::TfLiteOpKernel<tflite::shim::SimpleOp>; void AddSimpleOp(MutableOpResolver* resolver) { OpKernel::Add(resolver); } TfLiteRegistration* Register_SIMPLE_OP() { return OpKernel::GetTfLiteRegistration(); } const char* OpName_SIMPLE_OP() { return OpKernel::OpName(); } } } }
#include "tensorflow/lite/kernels/shim/test_op/simple_tflite_op.h" #include <cstring> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "flatbuffers/flexbuffers.h" #include "tensorflow/lite/kernels/test_util.h" namespace tflite { namespace ops { namespace custom { namespace { class SimpleOpModel : public SingleOpModel { public: SimpleOpModel(const std::vector<uint8_t>& op_options, const std::vector<tflite::TensorType>& input_types, const std::vector<std::vector<int>>& input_shapes, const std::string& input0, const std::vector<std::vector<int64_t>>& input1, const std::vector<tflite::TensorType>& output_types) { std::vector<int> input_idx; for (const auto input_type : input_types) { input_idx.push_back(AddInput(input_type)); } for (const auto output_type : output_types) { output_idx_.push_back(AddOutput(output_type)); } SetCustomOp(OpName_SIMPLE_OP(), op_options, Register_SIMPLE_OP); BuildInterpreter(input_shapes); PopulateStringTensor(input_idx[0], {input0}); for (int i = 0; i < input1.size(); ++i) { PopulateTensor(input_idx[1 + i], input1[i]); } } template <typename T> std::vector<T> GetOutput(const int i) { return ExtractVector<T>(output_idx_[i]); } std::vector<int> GetOutputShape(const int i) { return GetTensorShape(output_idx_[i]); } protected: std::vector<int> output_idx_; }; TEST(SimpleOpModel, OutputSize_5_N_2) { flexbuffers::Builder builder; builder.Map([&]() { builder.Int("output1_size", 5); builder.String("output2_suffix", "foo"); builder.Int("N", 2); }); builder.Finish(); std::vector<std::vector<int>> input_shapes = {{}, {}, {2}}; std::vector<tflite::TensorType> input_types = {tflite::TensorType_STRING, tflite::TensorType_INT64, tflite::TensorType_INT64}; std::vector<tflite::TensorType> output_types = { tflite::TensorType_INT32, tflite::TensorType_FLOAT32, tflite::TensorType_STRING, tflite::TensorType_INT64, tflite::TensorType_INT64}; const std::string input0 = "abc"; const std::vector<std::vector<int64_t>> input1 = {{123}, {456, 789}}; SimpleOpModel m(builder.GetBuffer(), input_types, input_shapes, input0, input1, output_types); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput<int>(0), testing::ElementsAre(0, 1, 2, 3, 4)); EXPECT_THAT(m.GetOutput<float>(1), testing::ElementsAre(0, 0.5, 1.0, 1.5, 2.0)); EXPECT_THAT(m.GetOutput<std::string>(2), testing::ElementsAre("0", "1", "2", "foo")); EXPECT_THAT(m.GetOutput<int64_t>(3), testing::ElementsAre(124)); EXPECT_THAT(m.GetOutputShape(3), testing::ElementsAre()); EXPECT_THAT(m.GetOutput<int64_t>(4), testing::ElementsAre(457, 790)); EXPECT_THAT(m.GetOutputShape(4), testing::ElementsAre(2)); } TEST(SimpleOpModel, OutputSize_3_N_0) { flexbuffers::Builder builder; builder.Map([&]() { builder.Int("output1_size", 3); builder.String("output2_suffix", "foo"); builder.Int("N", 0); }); builder.Finish(); std::vector<std::vector<int>> input_shapes = {{}}; std::vector<tflite::TensorType> input_types = {tflite::TensorType_STRING}; std::vector<tflite::TensorType> output_types = {tflite::TensorType_INT32, tflite::TensorType_FLOAT32, tflite::TensorType_STRING}; const std::string input0 = "abcde"; const std::vector<std::vector<int64_t>> input1; SimpleOpModel m(builder.GetBuffer(), input_types, input_shapes, input0, input1, output_types); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput<int>(0), testing::ElementsAre(0, 1, 2, 3, 4)); EXPECT_THAT(m.GetOutput<float>(1), testing::ElementsAre(0, 0.5, 1.0)); EXPECT_THAT(m.GetOutput<std::string>(2), testing::ElementsAre("0", "1", "2", "3", "4", "foo")); } } } } }
935
cpp
tensorflow/tensorflow
tensor_utils
tensorflow/lite/core/api/tensor_utils.cc
tensorflow/lite/kernels/internal/tensor_utils_test.cc
#ifndef TENSORFLOW_CORE_KERNELS_UNIFORM_QUANT_OPS_TENSOR_UTILS_H_ #define TENSORFLOW_CORE_KERNELS_UNIFORM_QUANT_OPS_TENSOR_UTILS_H_ #include "tensorflow/core/framework/ops_util.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/lib/gtl/array_slice.h" namespace tensorflow { template <typename T> bool AllElementsPositive(const Tensor& tensor) { Eigen::Tensor<bool, 0, Eigen::RowMajor> positive = (tensor.flat<T>() > 0).all(); return positive(); } Status QuantizationAxisAndShapeValid(const TensorShape& data_shape, const TensorShape& scales_shape, const TensorShape& zero_points_shape, int quantization_axis); TensorShape TransposedShape(const TensorShape& in_shape, const gtl::ArraySlice<int32_t> perm); template <typename T> void Transpose(const Tensor& in, const gtl::ArraySlice<int32_t> perm, Tensor& out) { gtl::InlinedVector<int64_t, 8> in_strides = ComputeStride<int64_t>(in.shape()); gtl::InlinedVector<int64_t, 8> out_strides = ComputeStride<int64_t>(out.shape()); const T* in_data = in.flat<T>().data(); T* out_data = out.flat<T>().data(); for (int64_t out_idx = 0; out_idx < out.NumElements(); ++out_idx) { int64_t in_idx = 0; int64_t remain_out_idx = out_idx; for (int dim = 0; dim < out.dims(); ++dim) { const int64_t ratio = remain_out_idx / out_strides[dim]; remain_out_idx -= ratio * out_strides[dim]; in_idx += ratio * in_strides[perm[dim]]; } out_data[out_idx] = in_data[in_idx]; } } } #endif #include "tensorflow/core/kernels/uniform_quant_ops/tensor_utils.h" namespace tensorflow { using tensorflow::errors::InvalidArgument; Status QuantizationAxisAndShapeValid(const TensorShape& data_shape, const TensorShape& scales_shape, const TensorShape& zero_points_shape, int quantization_axis) { if (!scales_shape.IsSameSize(zero_points_shape)) { return InvalidArgument( "scales and zero_points shape must be same, but given scales shape ", scales_shape.DebugString(), " and zero_points shape ", zero_points_shape.DebugString()); } if (quantization_axis < -1 || quantization_axis >= data_shape.dims()) { return InvalidArgument( "quantization_axis must be -1 or in range [0, input.rank), but given ", quantization_axis); } if (quantization_axis == -1) { if (scales_shape.dims() != 0) { return InvalidArgument( "If quantization_axis is -1, scales and zero_points must be scalar " "tensors, but given scales shape ", scales_shape.DebugString(), " and zero_points shape ", zero_points_shape.DebugString()); } } else { if (!(scales_shape.dims() == 1 && scales_shape.dim_size(0) == data_shape.dim_size(quantization_axis))) { return InvalidArgument( "If quantization_axis is not -1, scales and zero_points must be a " "tensor of rank 1 and the size must be equal to the " "input.dim_size(quantization_axis), but given quantization_axis ", quantization_axis, ", scales shape ", scales_shape.DebugString(), " and zero_points shape ", zero_points_shape.DebugString()); } } return absl::OkStatus(); } TensorShape TransposedShape(const TensorShape& in_shape, const absl::Span<const int32_t> perm) { TensorShape out_shape = in_shape; for (int i = 0; i < out_shape.dims(); ++i) { out_shape.set_dim(i, in_shape.dim_size(perm[i])); } return out_shape; } }
#include "tensorflow/core/kernels/uniform_quant_ops/tensor_utils.h" #include <cstdint> #include <vector> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/platform/test.h" #include "tsl/lib/core/status_test_util.h" namespace tensorflow { TEST(TensorUtilsTest, AllElementsPositive) { EXPECT_TRUE(AllElementsPositive<int32_t>( test::AsTensor<int32_t>({1, 2, 3, 4, 5}, {5}))); EXPECT_FALSE(AllElementsPositive<int32_t>( test::AsTensor<int32_t>({1, 2, 0, 4, 5}, {5}))); EXPECT_FALSE(AllElementsPositive<int32_t>( test::AsTensor<int32_t>({1, 2, -2, 4, 5}, {5}))); } TEST(TensorUtilsTest, QuantizationAxisAndShapeValid) { TF_EXPECT_OK(QuantizationAxisAndShapeValid({2, 3, 4}, {3}, {3}, 1)); TF_EXPECT_OK(QuantizationAxisAndShapeValid({2, 3, 4}, {}, {}, -1)); EXPECT_TRUE(absl::IsInvalidArgument( QuantizationAxisAndShapeValid({2, 3, 4}, {3}, {2}, 1))); EXPECT_TRUE(absl::IsInvalidArgument( QuantizationAxisAndShapeValid({2, 3, 4}, {3}, {3}, 3))); EXPECT_TRUE(absl::IsInvalidArgument( QuantizationAxisAndShapeValid({2, 3, 4}, {3}, {3}, -1))); EXPECT_TRUE(absl::IsInvalidArgument( QuantizationAxisAndShapeValid({2, 3, 4}, {5}, {5}, 1))); } TEST(TensorUtilsTest, TransposedShape) { EXPECT_EQ(TransposedShape({2, 3, 4, 5}, {1, 2, 3, 0}), TensorShape({3, 4, 5, 2})); } TEST(TensorUtilsTest, Transpose) { const std::vector<int32_t> perm = {1, 2, 0}; const TensorShape shape({2, 3, 4}); const TensorShape transposed_shape = TransposedShape(shape, perm); Tensor transposed_tensor = test::AsTensor<int32_t>( std::vector<int32_t>(2 * 3 * 4, 0), transposed_shape); Transpose<int32_t>( test::AsTensor<int32_t>({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23}, shape), perm, transposed_tensor); test::ExpectTensorEqual<int32_t>( transposed_tensor, test::AsTensor<int32_t>({0, 12, 1, 13, 2, 14, 3, 15, 4, 16, 5, 17, 6, 18, 7, 19, 8, 20, 9, 21, 10, 22, 11, 23}, transposed_shape)); } }
936
cpp
tensorflow/tensorflow
runtime_shape
tensorflow/lite/kernels/internal/runtime_shape.cc
tensorflow/lite/kernels/internal/runtime_shape_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_RUNTIME_SHAPE_H_ #define TENSORFLOW_LITE_KERNELS_INTERNAL_RUNTIME_SHAPE_H_ #include <cstdint> #include <cstring> #include <initializer_list> #include <iterator> #include <memory> #include "tensorflow/lite/kernels/internal/compatibility.h" namespace tflite { template <int N> struct Dims { int sizes[N]; int strides[N]; }; class RuntimeShape { public: static constexpr int kMaxSmallSize = 6; RuntimeShape& operator=(RuntimeShape const&) = delete; RuntimeShape() : size_(0) {} explicit RuntimeShape(int dimensions_count) : size_(dimensions_count) { if (dimensions_count > kMaxSmallSize) { dims_pointer_ = new int32_t[dimensions_count]; } } RuntimeShape(int shape_size, int32_t value) : size_(0) { Resize(shape_size); for (int i = 0; i < shape_size; ++i) { SetDim(i, value); } } RuntimeShape(int dimensions_count, const int32_t* dims_data) : size_(0) { ReplaceWith(dimensions_count, dims_data); } RuntimeShape(const std::initializer_list<int> init_list) : size_(0) { BuildFrom(init_list); } RuntimeShape(RuntimeShape const& other) : size_(other.DimensionsCount()) { if (size_ > kMaxSmallSize) { dims_pointer_ = new int32_t[size_]; } std::memcpy(DimsData(), other.DimsData(), sizeof(int32_t) * size_); } bool operator==(const RuntimeShape& comp) const { return this->size_ == comp.size_ && std::memcmp(DimsData(), comp.DimsData(), size_ * sizeof(int32_t)) == 0; } ~RuntimeShape(); inline int32_t DimensionsCount() const { return size_; } int32_t Dims(int i) const; inline void SetDim(int i, int32_t val) { TFLITE_DCHECK_GE(i, 0); TFLITE_DCHECK_LT(i, size_); if (size_ > kMaxSmallSize) { dims_pointer_[i] = val; } else { dims_[i] = val; } } inline int32_t* DimsData() { return size_ > kMaxSmallSize ? dims_pointer_ : dims_; } inline const int32_t* DimsData() const { return size_ > kMaxSmallSize ? dims_pointer_ : dims_; } inline const int32_t* DimsDataUpTo5D() const { return dims_; } inline void Resize(int dimensions_count) { const int32_t old_size = size_; size_ = dimensions_count; if (old_size <= kMaxSmallSize) { if (dimensions_count <= kMaxSmallSize) { return; } else { int32_t* new_big_data = new int32_t[dimensions_count]; memcpy(new_big_data, dims_, sizeof(int32_t) * old_size); dims_pointer_ = new_big_data; } } else { if (dimensions_count > kMaxSmallSize && dimensions_count <= old_size) { return; } std::unique_ptr<int32_t[]> old_data(dims_pointer_); if (dimensions_count <= old_size) { memcpy(dims_, old_data.get(), sizeof(int32_t) * dimensions_count); } else { dims_pointer_ = new int32_t[dimensions_count]; memcpy(dims_pointer_, old_data.get(), sizeof(int32_t) * old_size); } } } void ReplaceWith(int dimensions_count, const int32_t* dims_data); template <typename T> inline void BuildFrom(const T& src_iterable) { const int dimensions_count = std::distance(src_iterable.begin(), src_iterable.end()); Resize(dimensions_count); int32_t* data = DimsData(); for (auto it : src_iterable) { *data = it; ++data; } } inline static RuntimeShape ExtendedShape(int new_shape_size, const RuntimeShape& shape) { return RuntimeShape(new_shape_size, shape, 1); } inline void BuildFrom(const std::initializer_list<int> init_list) { BuildFrom<const std::initializer_list<int>>(init_list); } int FlatSize() const; bool operator!=(const RuntimeShape& comp) const { return !((*this) == comp); } private: RuntimeShape(int new_shape_size, const RuntimeShape& shape, int pad_value) : size_(0) { TFLITE_CHECK_GE(new_shape_size, shape.DimensionsCount()); Resize(new_shape_size); const int size_increase = new_shape_size - shape.DimensionsCount(); for (int i = 0; i < size_increase; ++i) { SetDim(i, pad_value); } std::memcpy(DimsData() + size_increase, shape.DimsData(), sizeof(int32_t) * shape.DimensionsCount()); } int32_t size_; union { int32_t dims_[kMaxSmallSize]; int32_t* dims_pointer_; }; }; inline tflite::Dims<4> ToRuntimeDims(const tflite::RuntimeShape& array_shape) { tflite::Dims<4> result; const int dimensions_count = array_shape.DimensionsCount(); TFLITE_CHECK_LE(dimensions_count, 4); int cum_prod = 1; for (int i = 0; i < 4; i++) { const int new_dim = (i < dimensions_count) ? array_shape.Dims(dimensions_count - 1 - i) : 1; result.sizes[i] = new_dim; result.strides[i] = cum_prod; cum_prod *= new_dim; } return result; } inline RuntimeShape DimsToShape(const tflite::Dims<4>& dims) { return RuntimeShape( {dims.sizes[3], dims.sizes[2], dims.sizes[1], dims.sizes[0]}); } inline int Offset(const RuntimeShape& shape, int i0, int i1, int i2, int i3) { TFLITE_DCHECK_EQ(shape.DimensionsCount(), 4); const int* dims_data = reinterpret_cast<const int*>(shape.DimsDataUpTo5D()); TFLITE_DCHECK((dims_data[0] == 0 && i0 == 0) || (i0 >= 0 && i0 < dims_data[0])); TFLITE_DCHECK((dims_data[1] == 0 && i1 == 0) || (i1 >= 0 && i1 < dims_data[1])); TFLITE_DCHECK((dims_data[2] == 0 && i2 == 0) || (i2 >= 0 && i2 < dims_data[2])); TFLITE_DCHECK((dims_data[3] == 0 && i3 == 0) || (i3 >= 0 && i3 < dims_data[3])); return ((i0 * dims_data[1] + i1) * dims_data[2] + i2) * dims_data[3] + i3; } inline int Offset(const RuntimeShape& shape, int i0, int i1, int i2, int i3, int i4) { TFLITE_DCHECK_EQ(shape.DimensionsCount(), 5); const int* dims_data = reinterpret_cast<const int*>(shape.DimsDataUpTo5D()); TFLITE_DCHECK((dims_data[0] == 0 && i0 == 0) || (i0 >= 0 && i0 < dims_data[0])); TFLITE_DCHECK((dims_data[1] == 0 && i1 == 0) || (i1 >= 0 && i1 < dims_data[1])); TFLITE_DCHECK((dims_data[2] == 0 && i2 == 0) || (i2 >= 0 && i2 < dims_data[2])); TFLITE_DCHECK((dims_data[3] == 0 && i3 == 0) || (i3 >= 0 && i3 < dims_data[3])); TFLITE_DCHECK((dims_data[4] == 0 && i4 == 0) || (i4 >= 0 && i4 < dims_data[4])); return (((i0 * dims_data[1] + i1) * dims_data[2] + i2) * dims_data[3] + i3) * dims_data[4] + i4; } inline int Offset(const RuntimeShape& shape, int* index) { return Offset(shape, index[0], index[1], index[2], index[3]); } } #endif #include "tensorflow/lite/kernels/internal/runtime_shape.h" #include <cstring> namespace tflite { RuntimeShape::~RuntimeShape() { if (size_ > kMaxSmallSize) { delete[] dims_pointer_; } } int32_t RuntimeShape::Dims(int i) const { TFLITE_DCHECK_GE(i, 0); TFLITE_DCHECK_LT(i, size_); return size_ > kMaxSmallSize ? dims_pointer_[i] : dims_[i]; } void RuntimeShape::ReplaceWith(int dimensions_count, const int32_t* dims_data) { Resize(dimensions_count); int32_t* dst_dims = DimsData(); std::memcpy(dst_dims, dims_data, dimensions_count * sizeof(int32_t)); } int RuntimeShape::FlatSize() const { int buffer_size = 1; const int* dims_data = reinterpret_cast<const int*>(DimsData()); for (int i = 0; i < size_; i++) { buffer_size *= dims_data[i]; } return buffer_size; } }
#include "tensorflow/lite/kernels/internal/runtime_shape.h" #include <algorithm> #include <cstdint> #include <functional> #include <initializer_list> #include <numeric> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/algorithm/container.h" #include "absl/types/span.h" using testing::Each; using testing::ElementsAreArray; namespace tflite { namespace { constexpr int kSmallSize = RuntimeShape::kMaxSmallSize; constexpr int kBigSize = RuntimeShape::kMaxSmallSize + 1; std::vector<int32_t> IotaVector(int size, int start = 0) { std::vector<int32_t> vec(size); absl::c_iota(vec, start); return vec; } absl::Span<const int32_t> AsSpan(const RuntimeShape& shape) { return absl::Span<const int32_t>(shape.DimsData(), shape.DimensionsCount()); } class RuntimeShapeTest : public testing::TestWithParam<int> {}; TEST(RuntimeShapeTest, TestDefaultConstructor) { const RuntimeShape shape; EXPECT_EQ(shape.DimensionsCount(), 0); } TEST_P(RuntimeShapeTest, TestConstructorWithSize) { const int size = GetParam(); const RuntimeShape shape(size); EXPECT_EQ(shape.DimensionsCount(), size); } TEST_P(RuntimeShapeTest, TestConstructorWithSizeAndDefaultValue) { const int size = GetParam(); const RuntimeShape shape(size, 34); EXPECT_EQ(shape.DimensionsCount(), size); EXPECT_THAT(AsSpan(shape), Each(34)); } TEST_P(RuntimeShapeTest, TestConstructorFromCArray) { const int size = GetParam(); const std::vector<int32_t> src = IotaVector(size); const RuntimeShape shape(size, src.data()); EXPECT_EQ(shape.DimensionsCount(), size); EXPECT_THAT(AsSpan(shape), ElementsAreArray(src)); } TEST(RuntimeShapeTest, TestConstructorFromSmallInitList) { std::initializer_list<int> init{1, 2, 3}; ASSERT_LE(init.size(), RuntimeShape::kMaxSmallSize); const RuntimeShape shape(init); EXPECT_EQ(shape.DimensionsCount(), init.size()); EXPECT_THAT(AsSpan(shape), ElementsAreArray(init)); } TEST(RuntimeShapeTest, TestConstructorFromBigInitList) { std::initializer_list<int> init{1, 2, 3, 4, 5, 6, 7, 8, 9}; ASSERT_GT(init.size(), RuntimeShape::kMaxSmallSize); const RuntimeShape shape(init); EXPECT_EQ(shape.DimensionsCount(), init.size()); EXPECT_THAT(AsSpan(shape), ElementsAreArray(init)); } TEST_P(RuntimeShapeTest, TestCopyConstructorFromShape) { const int size = GetParam(); const RuntimeShape src(size, 34); const RuntimeShape dst(src); EXPECT_EQ(dst.DimensionsCount(), src.DimensionsCount()); EXPECT_THAT(AsSpan(dst), ElementsAreArray(AsSpan(src))); } TEST_P(RuntimeShapeTest, TestEqualityOperator) { const int size = GetParam(); const RuntimeShape shape1(size, 34); const RuntimeShape shape2(size, 34); EXPECT_TRUE(shape1 == shape2); EXPECT_FALSE(shape1 != shape2); } TEST_P(RuntimeShapeTest, TestEqualityOperatorDifferentSizes) { const int size = GetParam(); const RuntimeShape shape1(size, 34); const RuntimeShape shape2(size + 1, 34); EXPECT_FALSE(shape1 == shape2); EXPECT_TRUE(shape1 != shape2); } TEST_P(RuntimeShapeTest, TestEqualityOperatorDifferentValues) { const int size = GetParam(); const RuntimeShape shape1(size, 34); const RuntimeShape shape2(size, 43); EXPECT_FALSE(shape1 == shape2); EXPECT_TRUE(shape1 != shape2); } TEST_P(RuntimeShapeTest, TestSetterGetter) { const int size = GetParam(); RuntimeShape shape(size); for (int i = 0; i < size; ++i) { shape.SetDim(i, i); EXPECT_EQ(shape.Dims(i), i); } EXPECT_THAT(AsSpan(shape), ElementsAreArray(IotaVector(size))); } TEST(RuntimeShapeTest, TestResizeSmallSmall) { ASSERT_GE(kSmallSize, 1); RuntimeShape shape(kSmallSize - 1, 23); shape.Resize(kSmallSize); EXPECT_EQ(shape.DimensionsCount(), kSmallSize); EXPECT_THAT(absl::Span<const int32_t>(shape.DimsData(), kSmallSize - 1), Each(23)); } TEST(RuntimeShapeTest, TestResizeSmallBig) { RuntimeShape shape(kSmallSize, 23); shape.Resize(kBigSize); EXPECT_EQ(shape.DimensionsCount(), kBigSize); EXPECT_THAT(absl::Span<const int32_t>(shape.DimsData(), kSmallSize), Each(23)); } TEST(RuntimeShapeTest, TestResizeBigSmall) { RuntimeShape shape(kBigSize, 23); shape.Resize(kSmallSize); EXPECT_EQ(shape.DimensionsCount(), kSmallSize); EXPECT_THAT(absl::Span<const int32_t>(shape.DimsData(), kSmallSize), Each(23)); } TEST(RuntimeShapeTest, TestResizeDownBigBig) { RuntimeShape shape(kBigSize + 3, 23); shape.Resize(kBigSize); EXPECT_EQ(shape.DimensionsCount(), kBigSize); EXPECT_THAT(absl::Span<const int32_t>(shape.DimsData(), kBigSize), Each(23)); } TEST(RuntimeShapeTest, TestResizeUpBigBig) { RuntimeShape shape(kBigSize, 23); shape.Resize(kBigSize + 1); EXPECT_EQ(shape.DimensionsCount(), kBigSize + 1); EXPECT_THAT(absl::Span<const int32_t>(shape.DimsData(), kBigSize), Each(23)); } TEST_P(RuntimeShapeTest, TestReplaceWith) { static_assert( RuntimeShape::kMaxSmallSize > 2, "kMaxSmallSize should be greater than 2 for this test to work."); const int size = GetParam(); for (const int offset : {-2, 2}) { const std::vector<int32_t> src = IotaVector(offset + RuntimeShape::kMaxSmallSize); RuntimeShape shape(size); shape.ReplaceWith(src.size(), src.data()); EXPECT_EQ(shape.DimensionsCount(), src.size()); EXPECT_THAT(AsSpan(shape), testing::ElementsAreArray(src)); } } TEST_P(RuntimeShapeTest, TestBuildFrom) { const int size = GetParam(); const std::vector<int32_t> src = IotaVector(size); RuntimeShape shape; shape.BuildFrom(src); EXPECT_EQ(shape.DimensionsCount(), src.size()); EXPECT_THAT(AsSpan(shape), testing::ElementsAreArray(src)); } TEST(RuntimeShapeTest, TestExtendedShapeSmall) { ASSERT_GE(kSmallSize, 2); const std::vector<int32_t> dims = IotaVector(kSmallSize - 2); const RuntimeShape src(dims.size(), dims.data()); const RuntimeShape extended = RuntimeShape::ExtendedShape(kSmallSize, src); EXPECT_EQ(extended.DimensionsCount(), kSmallSize); EXPECT_EQ(extended.Dims(0), 1); EXPECT_EQ(extended.Dims(1), 1); EXPECT_THAT(absl::Span<const int32_t>(extended.DimsData() + 2, dims.size()), ElementsAreArray(dims)); } TEST(RuntimeShapeTest, TestExtendedShapeBig) { ASSERT_GE(kSmallSize, 2); const std::vector<int32_t> dims = IotaVector(kBigSize); const RuntimeShape src(dims.size(), dims.data()); const RuntimeShape extended = RuntimeShape::ExtendedShape(kBigSize + 2, src); EXPECT_EQ(extended.DimensionsCount(), kBigSize + 2); EXPECT_EQ(extended.Dims(0), 1); EXPECT_EQ(extended.Dims(1), 1); EXPECT_THAT(absl::Span<const int32_t>(extended.DimsData() + 2, dims.size()), ElementsAreArray(dims)); } TEST(RuntimeShapeTest, TestExtendedShapeSmallToBig) { const std::vector<int32_t> dims = IotaVector(kSmallSize); const RuntimeShape src(dims.size(), dims.data()); const RuntimeShape extended = RuntimeShape::ExtendedShape(kBigSize, src); EXPECT_EQ(extended.DimensionsCount(), kBigSize); EXPECT_THAT( absl::Span<const int32_t>(extended.DimsData(), kBigSize - kSmallSize), Each(1)); EXPECT_THAT(absl::Span<const int32_t>( extended.DimsData() + kBigSize - kSmallSize, dims.size()), ElementsAreArray(dims)); } TEST_P(RuntimeShapeTest, TestFlatSize) { const std::vector<int32_t> src = IotaVector(kSmallSize); const RuntimeShape shape(src.size(), src.data()); EXPECT_EQ(shape.FlatSize(), std::reduce(src.begin(), src.end(), 1, std::multiplies<int>{})); } INSTANTIATE_TEST_SUITE_P(BigSmall, RuntimeShapeTest, testing::Values(kSmallSize, kBigSize), [](const testing::TestParamInfo<int>& info) { return info.param == kSmallSize ? "Small" : "Big"; }); } }
937
cpp
tensorflow/tensorflow
mfcc_dct
tensorflow/lite/kernels/internal/mfcc_dct.cc
tensorflow/core/kernels/mfcc_dct_test.cc
#ifndef TENSORFLOW_CORE_KERNELS_MFCC_DCT_H_ #define TENSORFLOW_CORE_KERNELS_MFCC_DCT_H_ #include <vector> #include "tensorflow/core/framework/op_kernel.h" namespace tensorflow { class MfccDct { public: MfccDct(); bool Initialize(int input_length, int coefficient_count); void Compute(const std::vector<double>& input, std::vector<double>* output) const; private: bool initialized_; int coefficient_count_; int input_length_; std::vector<std::vector<double> > cosines_; MfccDct(const MfccDct&) = delete; void operator=(const MfccDct&) = delete; }; } #endif #include "tensorflow/core/kernels/mfcc_dct.h" #include <math.h> #include "tensorflow/core/platform/logging.h" namespace tensorflow { MfccDct::MfccDct() : initialized_(false) {} bool MfccDct::Initialize(int input_length, int coefficient_count) { coefficient_count_ = coefficient_count; input_length_ = input_length; if (coefficient_count_ < 1) { LOG(ERROR) << "Coefficient count must be positive."; return false; } if (input_length < 1) { LOG(ERROR) << "Input length must be positive."; return false; } if (coefficient_count_ > input_length_) { LOG(ERROR) << "Coefficient count must be less than or equal to " << "input length."; return false; } cosines_.resize(coefficient_count_); double fnorm = sqrt(2.0 / input_length_); const double pi = std::atan(1) * 4; double arg = pi / input_length_; for (int i = 0; i < coefficient_count_; ++i) { cosines_[i].resize(input_length_); for (int j = 0; j < input_length_; ++j) { cosines_[i][j] = fnorm * cos(i * arg * (j + 0.5)); } } initialized_ = true; return true; } void MfccDct::Compute(const std::vector<double> &input, std::vector<double> *output) const { if (!initialized_) { LOG(ERROR) << "DCT not initialized."; return; } output->resize(coefficient_count_); int length = input.size(); if (length > input_length_) { length = input_length_; } for (int i = 0; i < coefficient_count_; ++i) { double sum = 0.0; for (int j = 0; j < length; ++j) { sum += cosines_[i][j] * input[j]; } (*output)[i] = sum; } } }
#include "tensorflow/core/kernels/mfcc_dct.h" #include <vector> #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { TEST(MfccDctTest, AgreesWithMatlab) { MfccDct dct; std::vector<double> input = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0}; const int kCoefficientCount = 6; ASSERT_TRUE(dct.Initialize(input.size(), kCoefficientCount)); std::vector<double> output; dct.Compute(input, &output); std::vector<double> expected = {12.1243556530, -4.1625617959, 0.0, -0.4082482905, 0.0, -0.0800788912}; ASSERT_EQ(output.size(), kCoefficientCount); for (int i = 0; i < kCoefficientCount; ++i) { EXPECT_NEAR(output[i], expected[i], 1e-10); } } TEST(MfccDctTest, InitializeFailsOnInvalidInput) { MfccDct dct1; EXPECT_FALSE(dct1.Initialize(-50, 1)); EXPECT_FALSE(dct1.Initialize(10, -4)); EXPECT_FALSE(dct1.Initialize(-1, -1)); EXPECT_FALSE(dct1.Initialize(20, 21)); } }
938
cpp
tensorflow/tensorflow
mfcc_mel_filterbank
tensorflow/lite/kernels/internal/mfcc_mel_filterbank.cc
tensorflow/core/kernels/mfcc_mel_filterbank_test.cc
#ifndef TENSORFLOW_CORE_KERNELS_MFCC_MEL_FILTERBANK_H_ #define TENSORFLOW_CORE_KERNELS_MFCC_MEL_FILTERBANK_H_ #include <vector> #include "tensorflow/core/framework/op_kernel.h" namespace tensorflow { class MfccMelFilterbank { public: MfccMelFilterbank(); bool Initialize(int input_length, double input_sample_rate, int output_channel_count, double lower_frequency_limit, double upper_frequency_limit); void Compute(const std::vector<double>& input, std::vector<double>* output) const; private: double FreqToMel(double freq) const; bool initialized_; int num_channels_; double sample_rate_; int input_length_; std::vector<double> center_frequencies_; std::vector<double> weights_; std::vector<int> band_mapper_; int start_index_; int end_index_; MfccMelFilterbank(const MfccMelFilterbank&) = delete; void operator=(const MfccMelFilterbank&) = delete; }; } #endif #include "tensorflow/core/kernels/mfcc_mel_filterbank.h" #include <math.h> #include <limits> #include "tensorflow/core/platform/logging.h" namespace tensorflow { MfccMelFilterbank::MfccMelFilterbank() : initialized_(false) {} bool MfccMelFilterbank::Initialize(int input_length, double input_sample_rate, int output_channel_count, double lower_frequency_limit, double upper_frequency_limit) { num_channels_ = output_channel_count; sample_rate_ = input_sample_rate; input_length_ = input_length; if (num_channels_ < 1) { LOG(ERROR) << "Number of filterbank channels must be positive."; return false; } if (sample_rate_ <= 0) { LOG(ERROR) << "Sample rate must be positive."; return false; } if (input_length < 2) { LOG(ERROR) << "Input length must greater than 1."; return false; } if (lower_frequency_limit < 0) { LOG(ERROR) << "Lower frequency limit must be nonnegative."; return false; } if (upper_frequency_limit <= lower_frequency_limit) { LOG(ERROR) << "Upper frequency limit must be greater than " << "lower frequency limit."; return false; } std::size_t center_frequencies_size = std::size_t(num_channels_) + 1; if (center_frequencies_size >= std::numeric_limits<int>::max() || center_frequencies_size > center_frequencies_.max_size()) { LOG(ERROR) << "Number of filterbank channels must be less than " << std::numeric_limits<int>::max() << " and less than or equal to " << center_frequencies_.max_size(); return false; } center_frequencies_.resize(center_frequencies_size); const double mel_low = FreqToMel(lower_frequency_limit); const double mel_hi = FreqToMel(upper_frequency_limit); const double mel_span = mel_hi - mel_low; const double mel_spacing = mel_span / static_cast<double>(num_channels_ + 1); for (int i = 0; i < num_channels_ + 1; ++i) { center_frequencies_[i] = mel_low + (mel_spacing * (i + 1)); } const double hz_per_sbin = 0.5 * sample_rate_ / static_cast<double>(input_length_ - 1); start_index_ = static_cast<int>(1.5 + (lower_frequency_limit / hz_per_sbin)); end_index_ = static_cast<int>(upper_frequency_limit / hz_per_sbin); band_mapper_.resize(input_length_); int channel = 0; for (int i = 0; i < input_length_; ++i) { double melf = FreqToMel(i * hz_per_sbin); if ((i < start_index_) || (i > end_index_)) { band_mapper_[i] = -2; } else { while ((channel < num_channels_) && (center_frequencies_[channel] < melf)) { ++channel; } band_mapper_[i] = channel - 1; } } weights_.resize(input_length_); for (int i = 0; i < input_length_; ++i) { channel = band_mapper_[i]; if ((i < start_index_) || (i > end_index_)) { weights_[i] = 0.0; } else { if (channel >= 0) { weights_[i] = (center_frequencies_[channel + 1] - FreqToMel(i * hz_per_sbin)) / (center_frequencies_[channel + 1] - center_frequencies_[channel]); } else { weights_[i] = (center_frequencies_[0] - FreqToMel(i * hz_per_sbin)) / (center_frequencies_[0] - mel_low); } } } std::vector<int> bad_channels; for (int c = 0; c < num_channels_; ++c) { float band_weights_sum = 0.0; for (int i = 0; i < input_length_; ++i) { if (band_mapper_[i] == c - 1) { band_weights_sum += (1.0 - weights_[i]); } else if (band_mapper_[i] == c) { band_weights_sum += weights_[i]; } } if (band_weights_sum < 0.5) { bad_channels.push_back(c); } } if (!bad_channels.empty()) { LOG(ERROR) << "Missing " << bad_channels.size() << " bands " << " starting at " << bad_channels[0] << " in mel-frequency design. " << "Perhaps too many channels or " << "not enough frequency resolution in spectrum. (" << "input_length: " << input_length << " input_sample_rate: " << input_sample_rate << " output_channel_count: " << output_channel_count << " lower_frequency_limit: " << lower_frequency_limit << " upper_frequency_limit: " << upper_frequency_limit; } initialized_ = true; return true; } void MfccMelFilterbank::Compute(const std::vector<double> &input, std::vector<double> *output) const { if (!initialized_) { LOG(ERROR) << "Mel Filterbank not initialized."; return; } if (input.size() <= end_index_) { LOG(ERROR) << "Input too short to compute filterbank"; return; } output->assign(num_channels_, 0.0); for (int i = start_index_; i <= end_index_; i++) { double spec_val = sqrt(input[i]); double weighted = spec_val * weights_[i]; int channel = band_mapper_[i]; if (channel >= 0) (*output)[channel] += weighted; channel++; if (channel < num_channels_) (*output)[channel] += spec_val - weighted; } } double MfccMelFilterbank::FreqToMel(double freq) const { return 1127.0 * log1p(freq / 700.0); } }
#include "tensorflow/core/kernels/mfcc_mel_filterbank.h" #include <limits> #include <vector> #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { TEST(MfccMelFilterbankTest, AgreesWithPythonGoldenValues) { MfccMelFilterbank filterbank; std::vector<double> input; const int kSampleCount = 513; input.reserve(kSampleCount); for (int i = 0; i < kSampleCount; ++i) { input.push_back(i + 1); } const int kChannelCount = 20; filterbank.Initialize( input.size(), 22050 , kChannelCount , 20.0 , 4000.0 ); std::vector<double> output; filterbank.Compute(input, &output); std::vector<double> expected = { 7.38894574, 10.30330648, 13.72703292, 17.24158686, 21.35253118, 25.77781089, 31.30624108, 37.05877236, 43.9436536, 51.80306637, 60.79867148, 71.14363376, 82.90910141, 96.50069158, 112.08428368, 129.96721968, 150.4277597, 173.74997634, 200.86037462, 231.59802942}; ASSERT_EQ(output.size(), kChannelCount); for (int i = 0; i < kChannelCount; ++i) { EXPECT_NEAR(output[i], expected[i], 1e-04); } } TEST(MfccMelFilterbankTest, IgnoresExistingContentOfOutputVector) { MfccMelFilterbank filterbank; const int kSampleCount = 513; std::vector<double> input; std::vector<double> output; filterbank.Initialize(kSampleCount, 22050 , 20 , 20.0 , 4000.0 ); input.assign(kSampleCount, 1.0); filterbank.Compute(input, &output); for (const double value : output) { EXPECT_LE(0.0, value); } input.assign(kSampleCount, 0.0); filterbank.Compute(input, &output); for (const double value : output) { EXPECT_EQ(0.0, value); } } TEST(MfccMelFilterbankTest, FailsWhenChannelsGreaterThanMaxIntValue) { MfccMelFilterbank filterbank; const int kSampleCount = 513; std::size_t num_channels = std::numeric_limits<int>::max(); bool initialized = filterbank.Initialize( kSampleCount, 2 , num_channels , 1.0 , 5.0 ); EXPECT_FALSE(initialized); } TEST(MfccMelFilterbankTest, FailsWhenChannelsGreaterThanMaxSize) { MfccMelFilterbank filterbank; const int kSampleCount = 513; std::size_t num_channels = std::vector<double>().max_size() + 1; bool initialized = filterbank.Initialize( kSampleCount, 2 , num_channels , 1.0 , 5.0 ); EXPECT_FALSE(initialized); } }
939
cpp
tensorflow/tensorflow
spectrogram
tensorflow/lite/kernels/internal/spectrogram.cc
tensorflow/core/kernels/spectrogram_test.cc
#ifndef TENSORFLOW_CORE_KERNELS_SPECTROGRAM_H_ #define TENSORFLOW_CORE_KERNELS_SPECTROGRAM_H_ #include <complex> #include <deque> #include <vector> #include "third_party/fft2d/fft.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" namespace tensorflow { class Spectrogram { public: Spectrogram() : initialized_(false) {} ~Spectrogram() {} bool Initialize(int window_length, int step_length); bool Initialize(const std::vector<double>& window, int step_length); bool Reset(); template <class InputSample, class OutputSample> bool ComputeComplexSpectrogram( const std::vector<InputSample>& input, std::vector<std::vector<std::complex<OutputSample>>>* output); template <class InputSample, class OutputSample> bool ComputeSquaredMagnitudeSpectrogram( const std::vector<InputSample>& input, std::vector<std::vector<OutputSample>>* output); const std::vector<double>& GetWindow() const { return window_; } int output_frequency_channels() const { return output_frequency_channels_; } private: template <class InputSample> bool GetNextWindowOfSamples(const std::vector<InputSample>& input, int* input_start); void ProcessCoreFFT(); int fft_length_; int output_frequency_channels_; int window_length_; int step_length_; bool initialized_; int samples_to_next_step_; std::vector<double> window_; std::vector<double> fft_input_output_; std::deque<double> input_queue_; std::vector<int> fft_integer_working_area_; std::vector<double> fft_double_working_area_; Spectrogram(const Spectrogram&) = delete; void operator=(const Spectrogram&) = delete; }; } #endif #include "tensorflow/core/kernels/spectrogram.h" #include <math.h> #include "third_party/fft2d/fft.h" #include "tensorflow/core/lib/core/bits.h" namespace tensorflow { using std::complex; namespace { void GetPeriodicHann(int window_length, std::vector<double>* window) { const double pi = std::atan(1) * 4; window->resize(window_length); for (int i = 0; i < window_length; ++i) { (*window)[i] = 0.5 - 0.5 * cos((2 * pi * i) / window_length); } } } bool Spectrogram::Initialize(int window_length, int step_length) { std::vector<double> window; GetPeriodicHann(window_length, &window); return Initialize(window, step_length); } bool Spectrogram::Initialize(const std::vector<double>& window, int step_length) { window_length_ = window.size(); window_ = window; if (window_length_ < 2) { LOG(ERROR) << "Window length too short."; initialized_ = false; return false; } step_length_ = step_length; if (step_length_ < 1) { LOG(ERROR) << "Step length must be positive."; initialized_ = false; return false; } fft_length_ = NextPowerOfTwo(window_length_); CHECK(fft_length_ >= window_length_); output_frequency_channels_ = 1 + fft_length_ / 2; fft_input_output_.resize(fft_length_ + 2); int half_fft_length = fft_length_ / 2; fft_double_working_area_.resize(half_fft_length); fft_integer_working_area_.resize(2 + static_cast<int>(sqrt(half_fft_length))); initialized_ = true; if (!Reset()) { LOG(ERROR) << "Failed to Reset()"; return false; } return true; } bool Spectrogram::Reset() { if (!initialized_) { LOG(ERROR) << "Initialize() has to be called, before Reset()."; return false; } std::fill(fft_double_working_area_.begin(), fft_double_working_area_.end(), 0.0); std::fill(fft_integer_working_area_.begin(), fft_integer_working_area_.end(), 0); fft_integer_working_area_[0] = 0; input_queue_.clear(); samples_to_next_step_ = window_length_; return true; } template <class InputSample, class OutputSample> bool Spectrogram::ComputeComplexSpectrogram( const std::vector<InputSample>& input, std::vector<std::vector<complex<OutputSample>>>* output) { if (!initialized_) { LOG(ERROR) << "ComputeComplexSpectrogram() called before successful call " << "to Initialize()."; return false; } CHECK(output); output->clear(); int input_start = 0; while (GetNextWindowOfSamples(input, &input_start)) { DCHECK_EQ(input_queue_.size(), window_length_); ProcessCoreFFT(); output->resize(output->size() + 1); auto& spectrogram_slice = output->back(); spectrogram_slice.resize(output_frequency_channels_); for (int i = 0; i < output_frequency_channels_; ++i) { spectrogram_slice[i] = complex<OutputSample>( fft_input_output_[2 * i], fft_input_output_[2 * i + 1]); } } return true; } template bool Spectrogram::ComputeComplexSpectrogram( const std::vector<float>& input, std::vector<std::vector<complex<float>>>*); template bool Spectrogram::ComputeComplexSpectrogram( const std::vector<double>& input, std::vector<std::vector<complex<float>>>*); template bool Spectrogram::ComputeComplexSpectrogram( const std::vector<float>& input, std::vector<std::vector<complex<double>>>*); template bool Spectrogram::ComputeComplexSpectrogram( const std::vector<double>& input, std::vector<std::vector<complex<double>>>*); template <class InputSample, class OutputSample> bool Spectrogram::ComputeSquaredMagnitudeSpectrogram( const std::vector<InputSample>& input, std::vector<std::vector<OutputSample>>* output) { if (!initialized_) { LOG(ERROR) << "ComputeSquaredMagnitudeSpectrogram() called before " << "successful call to Initialize()."; return false; } CHECK(output); output->clear(); int input_start = 0; while (GetNextWindowOfSamples(input, &input_start)) { DCHECK_EQ(input_queue_.size(), window_length_); ProcessCoreFFT(); output->resize(output->size() + 1); auto& spectrogram_slice = output->back(); spectrogram_slice.resize(output_frequency_channels_); for (int i = 0; i < output_frequency_channels_; ++i) { const double re = fft_input_output_[2 * i]; const double im = fft_input_output_[2 * i + 1]; spectrogram_slice[i] = re * re + im * im; } } return true; } template bool Spectrogram::ComputeSquaredMagnitudeSpectrogram( const std::vector<float>& input, std::vector<std::vector<float>>*); template bool Spectrogram::ComputeSquaredMagnitudeSpectrogram( const std::vector<double>& input, std::vector<std::vector<float>>*); template bool Spectrogram::ComputeSquaredMagnitudeSpectrogram( const std::vector<float>& input, std::vector<std::vector<double>>*); template bool Spectrogram::ComputeSquaredMagnitudeSpectrogram( const std::vector<double>& input, std::vector<std::vector<double>>*); template <class InputSample> bool Spectrogram::GetNextWindowOfSamples(const std::vector<InputSample>& input, int* input_start) { auto input_it = input.begin() + *input_start; int input_remaining = input.end() - input_it; if (samples_to_next_step_ > input_remaining) { input_queue_.insert(input_queue_.end(), input_it, input.end()); *input_start += input_remaining; samples_to_next_step_ -= input_remaining; return false; } else { input_queue_.insert(input_queue_.end(), input_it, input_it + samples_to_next_step_); *input_start += samples_to_next_step_; input_queue_.erase( input_queue_.begin(), input_queue_.begin() + input_queue_.size() - window_length_); DCHECK_EQ(window_length_, input_queue_.size()); samples_to_next_step_ = step_length_; return true; } } void Spectrogram::ProcessCoreFFT() { for (int j = 0; j < window_length_; ++j) { fft_input_output_[j] = input_queue_[j] * window_[j]; } for (int j = window_length_; j < fft_length_; ++j) { fft_input_output_[j] = 0.0; } const int kForwardFFT = 1; rdft(fft_length_, kForwardFFT, &fft_input_output_[0], &fft_integer_working_area_[0], &fft_double_working_area_[0]); fft_input_output_[fft_length_] = fft_input_output_[1]; fft_input_output_[fft_length_ + 1] = 0; fft_input_output_[1] = 0; } }
#include "tensorflow/core/kernels/spectrogram.h" #include <complex> #include <vector> #include "tensorflow/core/kernels/spectrogram_test_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { using ::std::complex; string InputFilename() { return io::JoinPath("tensorflow", "core", "kernels", "spectrogram_test_data", "short_test_segment.wav"); } string ExpectedFilename() { return io::JoinPath("tensorflow", "core", "kernels", "spectrogram_test_data", "short_test_segment_spectrogram.csv.bin"); } const int kDataVectorLength = 257; const int kNumberOfFramesInTestData = 178; string ExpectedNonPowerOfTwoFilename() { return io::JoinPath("tensorflow", "core", "kernels", "spectrogram_test_data", "short_test_segment_spectrogram_400_200.csv.bin"); } const int kNonPowerOfTwoDataVectorLength = 257; const int kNumberOfFramesInNonPowerOfTwoTestData = 228; TEST(SpectrogramTest, TooLittleDataYieldsNoFrames) { Spectrogram sgram; sgram.Initialize(400, 200); std::vector<double> input; SineWave(44100, 1000.0, 0.001, &input); EXPECT_EQ(44, input.size()); std::vector<std::vector<complex<double>>> output; sgram.ComputeComplexSpectrogram(input, &output); EXPECT_EQ(0, output.size()); } TEST(SpectrogramTest, StepSizeSmallerThanWindow) { Spectrogram sgram; EXPECT_TRUE(sgram.Initialize(400, 200)); std::vector<double> input; SineWave(44100, 1000.0, 0.015, &input); EXPECT_EQ(661, input.size()); std::vector<std::vector<complex<double>>> output; sgram.ComputeComplexSpectrogram(input, &output); EXPECT_EQ(2, output.size()); } TEST(SpectrogramTest, StepSizeBiggerThanWindow) { Spectrogram sgram; EXPECT_TRUE(sgram.Initialize(200, 400)); std::vector<double> input; SineWave(44100, 1000.0, 0.02, &input); EXPECT_EQ(882, input.size()); std::vector<std::vector<complex<double>>> output; sgram.ComputeComplexSpectrogram(input, &output); EXPECT_EQ(2, output.size()); } TEST(SpectrogramTest, StepSizeBiggerThanWindow2) { Spectrogram sgram; EXPECT_TRUE(sgram.Initialize(200, 400)); std::vector<double> input; SineWave(44100, 1000.0, 0.016, &input); EXPECT_GT(input.size(), 600); EXPECT_LT(input.size(), 800); std::vector<std::vector<complex<double>>> output; sgram.ComputeComplexSpectrogram(input, &output); EXPECT_EQ(2, output.size()); } TEST(SpectrogramTest, MultipleCallsToComputeComplexSpectrogramMayYieldDifferentNumbersOfFrames) { Spectrogram sgram; sgram.Initialize(200, 400); std::vector<double> input; SineWave(44100, 1000.0, 0.02, &input); EXPECT_EQ(882, input.size()); std::vector<std::vector<complex<double>>> output; const std::vector<int> expected_output_sizes = { 2, 2, 3, }; for (int expected_output_size : expected_output_sizes) { sgram.ComputeComplexSpectrogram(input, &output); EXPECT_EQ(expected_output_size, output.size()); } } TEST(SpectrogramTest, CumulatingExcessInputsForOverlappingFrames) { Spectrogram sgram; sgram.Initialize(400, 200); std::vector<double> input; SineWave(44100, 1000.0, 0.02, &input); EXPECT_EQ(882, input.size()); std::vector<std::vector<complex<double>>> output; const std::vector<int> expected_output_sizes = { 3, 4, 5, }; for (int expected_output_size : expected_output_sizes) { sgram.ComputeComplexSpectrogram(input, &output); EXPECT_EQ(expected_output_size, output.size()); } } TEST(SpectrogramTest, StepSizeEqualToWindowWorks) { Spectrogram sgram; sgram.Initialize(200, 200); std::vector<double> input; SineWave(44100, 1000.0, 0.05, &input); EXPECT_EQ(2205, input.size()); std::vector<std::vector<complex<double>>> output; sgram.ComputeComplexSpectrogram(input, &output); EXPECT_EQ(11, output.size()); } template <class ExpectedSample, class ActualSample> void CompareComplexData( const std::vector<std::vector<complex<ExpectedSample>>>& expected, const std::vector<std::vector<complex<ActualSample>>>& actual, double tolerance) { ASSERT_EQ(actual.size(), expected.size()); for (int i = 0; i < expected.size(); ++i) { ASSERT_EQ(expected[i].size(), actual[i].size()); for (int j = 0; j < expected[i].size(); ++j) { ASSERT_NEAR(real(expected[i][j]), real(actual[i][j]), tolerance) << ": where i=" << i << " and j=" << j << "."; ASSERT_NEAR(imag(expected[i][j]), imag(actual[i][j]), tolerance) << ": where i=" << i << " and j=" << j << "."; } } } template <class Sample> double GetMaximumAbsolute(const std::vector<std::vector<Sample>>& spectrogram) { double max_absolute = 0.0; for (int i = 0; i < spectrogram.size(); ++i) { for (int j = 0; j < spectrogram[i].size(); ++j) { double absolute_value = std::abs(spectrogram[i][j]); if (absolute_value > max_absolute) { max_absolute = absolute_value; } } } return max_absolute; } template <class ExpectedSample, class ActualSample> void CompareMagnitudeData( const std::vector<std::vector<complex<ExpectedSample>>>& expected_complex_output, const std::vector<std::vector<ActualSample>>& actual_squared_magnitude, double tolerance) { ASSERT_EQ(actual_squared_magnitude.size(), expected_complex_output.size()); for (int i = 0; i < expected_complex_output.size(); ++i) { ASSERT_EQ(expected_complex_output[i].size(), actual_squared_magnitude[i].size()); for (int j = 0; j < expected_complex_output[i].size(); ++j) { ASSERT_NEAR(norm(expected_complex_output[i][j]), actual_squared_magnitude[i][j], tolerance) << ": where i=" << i << " and j=" << j << "."; } } } TEST(SpectrogramTest, ReInitializationWorks) { Spectrogram sgram; sgram.Initialize(512, 256); std::vector<double> input; CHECK( ReadWaveFileToVector(GetDataDependencyFilepath(InputFilename()), &input)); std::vector<std::vector<complex<double>>> first_output; std::vector<std::vector<complex<double>>> second_output; sgram.Initialize(512, 256); sgram.ComputeComplexSpectrogram(input, &first_output); sgram.Initialize(512, 256); sgram.ComputeComplexSpectrogram(input, &second_output); ASSERT_EQ(first_output.size(), second_output.size()); int slice_size = first_output[0].size(); for (int i = 0; i < first_output.size(); ++i) { ASSERT_EQ(slice_size, first_output[i].size()); ASSERT_EQ(slice_size, second_output[i].size()); for (int j = 0; j < slice_size; ++j) { ASSERT_EQ(first_output[i][j], second_output[i][j]); } } } TEST(SpectrogramTest, ComputedComplexDataAgreeWithMatlab) { const int kInputDataLength = 45870; Spectrogram sgram; sgram.Initialize(512, 256); std::vector<double> input; CHECK( ReadWaveFileToVector(GetDataDependencyFilepath(InputFilename()), &input)); EXPECT_EQ(kInputDataLength, input.size()); std::vector<std::vector<complex<double>>> expected_output; ASSERT_TRUE(ReadRawFloatFileToComplexVector( GetDataDependencyFilepath(ExpectedFilename()), kDataVectorLength, &expected_output)); EXPECT_EQ(kNumberOfFramesInTestData, expected_output.size()); EXPECT_EQ(kDataVectorLength, expected_output[0].size()); std::vector<std::vector<complex<double>>> output; sgram.ComputeComplexSpectrogram(input, &output); CompareComplexData(expected_output, output, 1e-5); } TEST(SpectrogramTest, ComputedFloatComplexDataAgreeWithMatlab) { const int kInputDataLength = 45870; Spectrogram sgram; sgram.Initialize(512, 256); std::vector<double> double_input; CHECK(ReadWaveFileToVector(GetDataDependencyFilepath(InputFilename()), &double_input)); std::vector<float> input; input.assign(double_input.begin(), double_input.end()); EXPECT_EQ(kInputDataLength, input.size()); std::vector<std::vector<complex<double>>> expected_output; ASSERT_TRUE(ReadRawFloatFileToComplexVector( GetDataDependencyFilepath(ExpectedFilename()), kDataVectorLength, &expected_output)); EXPECT_EQ(kNumberOfFramesInTestData, expected_output.size()); EXPECT_EQ(kDataVectorLength, expected_output[0].size()); std::vector<std::vector<complex<float>>> output; sgram.ComputeComplexSpectrogram(input, &output); CompareComplexData(expected_output, output, 1e-4); } TEST(SpectrogramTest, ComputedSquaredMagnitudeDataAgreeWithMatlab) { const int kInputDataLength = 45870; Spectrogram sgram; sgram.Initialize(512, 256); std::vector<double> input; CHECK( ReadWaveFileToVector(GetDataDependencyFilepath(InputFilename()), &input)); EXPECT_EQ(kInputDataLength, input.size()); std::vector<std::vector<complex<double>>> expected_output; ASSERT_TRUE(ReadRawFloatFileToComplexVector( GetDataDependencyFilepath(ExpectedFilename()), kDataVectorLength, &expected_output)); EXPECT_EQ(kNumberOfFramesInTestData, expected_output.size()); EXPECT_EQ(kDataVectorLength, expected_output[0].size()); std::vector<std::vector<double>> output; sgram.ComputeSquaredMagnitudeSpectrogram(input, &output); CompareMagnitudeData(expected_output, output, 1e-3); } TEST(SpectrogramTest, ComputedFloatSquaredMagnitudeDataAgreeWithMatlab) { const int kInputDataLength = 45870; Spectrogram sgram; sgram.Initialize(512, 256); std::vector<double> double_input; CHECK(ReadWaveFileToVector(GetDataDependencyFilepath(InputFilename()), &double_input)); EXPECT_EQ(kInputDataLength, double_input.size()); std::vector<float> input; input.assign(double_input.begin(), double_input.end()); std::vector<std::vector<complex<double>>> expected_output; ASSERT_TRUE(ReadRawFloatFileToComplexVector( GetDataDependencyFilepath(ExpectedFilename()), kDataVectorLength, &expected_output)); EXPECT_EQ(kNumberOfFramesInTestData, expected_output.size()); EXPECT_EQ(kDataVectorLength, expected_output[0].size()); std::vector<std::vector<float>> output; sgram.ComputeSquaredMagnitudeSpectrogram(input, &output); double max_absolute = GetMaximumAbsolute(output); EXPECT_GT(max_absolute, 2300.0); CompareMagnitudeData(expected_output, output, 2e-4); } TEST(SpectrogramTest, ComputedNonPowerOfTwoComplexDataAgreeWithMatlab) { const int kInputDataLength = 45870; Spectrogram sgram; sgram.Initialize(400, 200); std::vector<double> input; CHECK( ReadWaveFileToVector(GetDataDependencyFilepath(InputFilename()), &input)); EXPECT_EQ(kInputDataLength, input.size()); std::vector<std::vector<complex<double>>> expected_output; ASSERT_TRUE(ReadRawFloatFileToComplexVector( GetDataDependencyFilepath(ExpectedNonPowerOfTwoFilename()), kNonPowerOfTwoDataVectorLength, &expected_output)); EXPECT_EQ(kNumberOfFramesInNonPowerOfTwoTestData, expected_output.size()); EXPECT_EQ(kNonPowerOfTwoDataVectorLength, expected_output[0].size()); std::vector<std::vector<complex<double>>> output; sgram.ComputeComplexSpectrogram(input, &output); CompareComplexData(expected_output, output, 1e-5); } }
940
cpp
tensorflow/tensorflow
common
tensorflow/lite/core/c/common.cc
tensorflow/lite/core/c/common_test.cc
#ifndef TENSORFLOW_CORE_DATA_SERVICE_CLIENT_COMMON_H_ #define TENSORFLOW_CORE_DATA_SERVICE_CLIENT_COMMON_H_ #include <cstdint> #include <optional> #include <string> #include "absl/time/time.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/protobuf/data_service.pb.h" namespace tensorflow { namespace data { struct DataServiceParams final { std::string dataset_id; ProcessingModeDef processing_mode; std::string address; std::string protocol; std::string data_transfer_protocol; std::string job_name; int64_t repetition = 0; std::optional<int64_t> num_consumers; std::optional<int64_t> consumer_index; int64_t max_outstanding_requests = 0; absl::Duration task_refresh_interval; TargetWorkers target_workers = TargetWorkers::TARGET_WORKERS_UNSPECIFIED; DataServiceMetadata metadata; std::optional<CrossTrainerCacheOptions> cross_trainer_cache_options; }; } } #endif #include "tensorflow/core/data/service/common.h" #include <string> #include "absl/strings/string_view.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/framework/dataset_options.pb.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/protobuf/data_service.pb.h" namespace tensorflow { namespace data { namespace { constexpr const char kAuto[] = "AUTO"; constexpr const char kAny[] = "ANY"; constexpr const char kLocal[] = "LOCAL"; constexpr const char kColocated[] = "COLOCATED"; constexpr const char kRemote[] = "REMOTE"; constexpr const char kHybrid[] = "HYBRID"; } bool IsNoShard(const ProcessingModeDef& processing_mode) { return processing_mode.sharding_policy() == ProcessingModeDef::OFF; } bool IsDynamicShard(const ProcessingModeDef& processing_mode) { return processing_mode.sharding_policy() == ProcessingModeDef::DYNAMIC; } bool IsStaticShard(const ProcessingModeDef& processing_mode) { return processing_mode.sharding_policy() == ProcessingModeDef::FILE || processing_mode.sharding_policy() == ProcessingModeDef::DATA || processing_mode.sharding_policy() == ProcessingModeDef::FILE_OR_DATA || processing_mode.sharding_policy() == ProcessingModeDef::HINT; } Status ValidateProcessingMode(const ProcessingModeDef& processing_mode) { if (!IsNoShard(processing_mode) && !IsDynamicShard(processing_mode) && !IsStaticShard(processing_mode)) { return errors::Internal( "ProcessingMode ", processing_mode.ShortDebugString(), " does not " "specify a valid sharding policy. Please add the policy to either " "`IsDynamicShard` or `IsStaticShard` (i.e., auto-shard)."); } return absl::OkStatus(); } absl::StatusOr<AutoShardPolicy> ToAutoShardPolicy( const ProcessingModeDef::ShardingPolicy sharding_policy) { switch (sharding_policy) { case ProcessingModeDef::FILE: return AutoShardPolicy::FILE; case ProcessingModeDef::DATA: return AutoShardPolicy::DATA; case ProcessingModeDef::FILE_OR_DATA: return AutoShardPolicy::AUTO; case ProcessingModeDef::HINT: return AutoShardPolicy::HINT; case ProcessingModeDef::DYNAMIC: case ProcessingModeDef::OFF: return AutoShardPolicy::OFF; default: return errors::Internal( "tf.data service sharding policy ", ProcessingModeDef::ShardingPolicy_Name(sharding_policy), " is not convertible to a valid auto-shard policy. If you're " "defining a new sharding policy, please update the policy mapping."); } } absl::StatusOr<TargetWorkers> ParseTargetWorkers(absl::string_view s) { std::string str_upper = absl::AsciiStrToUpper(s); if (str_upper.empty() || str_upper == kAuto) { return TARGET_WORKERS_AUTO; } if (str_upper == kAny) { return TARGET_WORKERS_ANY; } if (str_upper == kLocal) { return TARGET_WORKERS_LOCAL; } return errors::InvalidArgument("Unrecognized target workers: ", s); } std::string TargetWorkersToString(TargetWorkers target_workers) { switch (target_workers) { case TARGET_WORKERS_AUTO: return kAuto; case TARGET_WORKERS_ANY: return kAny; case TARGET_WORKERS_LOCAL: return kLocal; default: DCHECK(false); return "UNKNOWN"; } } absl::StatusOr<DeploymentMode> ParseDeploymentMode(absl::string_view s) { std::string str_upper = absl::AsciiStrToUpper(s); if (str_upper == kColocated) { return DEPLOYMENT_MODE_COLOCATED; } if (str_upper == kRemote) { return DEPLOYMENT_MODE_REMOTE; } if (str_upper == kHybrid) { return DEPLOYMENT_MODE_HYBRID; } return errors::InvalidArgument("Invalid tf.data service deployment mode: ", s, ". Supported modes are " "COLOCATED, REMOTE, and HYBRID."); } bool IsPreemptedError(const Status& status) { return errors::IsAborted(status) || errors::IsCancelled(status) || errors::IsUnavailable(status); } } }
#include "tensorflow/core/data/service/common.h" #include <vector> #include "tensorflow/core/framework/dataset_options.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/data_service.pb.h" #include "tensorflow/core/protobuf/error_codes.pb.h" namespace tensorflow { namespace data { namespace { using ::tensorflow::testing::IsOkAndHolds; using ::tensorflow::testing::StatusIs; using ::testing::HasSubstr; std::vector<ProcessingModeDef::ShardingPolicy> EnumerateShardingPolicies() { std::vector<ProcessingModeDef::ShardingPolicy> result; const ::tensorflow::protobuf::EnumDescriptor* enum_descriptor = ::tensorflow::protobuf::GetEnumDescriptor< ProcessingModeDef::ShardingPolicy>(); for (int i = 0; i < enum_descriptor->value_count(); ++i) { result.push_back(static_cast<ProcessingModeDef::ShardingPolicy>( enum_descriptor->value(i)->number())); } return result; } TEST(CommonTest, NoShard) { ProcessingModeDef processing_mode; processing_mode.set_sharding_policy(ProcessingModeDef::OFF); EXPECT_TRUE(IsNoShard(processing_mode)); EXPECT_FALSE(IsDynamicShard(processing_mode)); EXPECT_FALSE(IsStaticShard(processing_mode)); } TEST(CommonTest, DynamicShard) { ProcessingModeDef processing_mode; processing_mode.set_sharding_policy(ProcessingModeDef::DYNAMIC); EXPECT_FALSE(IsNoShard(processing_mode)); EXPECT_TRUE(IsDynamicShard(processing_mode)); EXPECT_FALSE(IsStaticShard(processing_mode)); } TEST(CommonTest, StaticShard) { ProcessingModeDef processing_mode; std::vector<ProcessingModeDef::ShardingPolicy> policies = { ProcessingModeDef::FILE, ProcessingModeDef::DATA, ProcessingModeDef::FILE_OR_DATA, ProcessingModeDef::HINT}; for (const ProcessingModeDef::ShardingPolicy policy : policies) { processing_mode.set_sharding_policy(policy); EXPECT_FALSE(IsNoShard(processing_mode)); EXPECT_FALSE(IsDynamicShard(processing_mode)); EXPECT_TRUE(IsStaticShard(processing_mode)); } } TEST(CommonTest, DefaultShardingPolicyIsNoShard) { ProcessingModeDef processing_mode; EXPECT_TRUE(IsNoShard(processing_mode)); EXPECT_FALSE(IsDynamicShard(processing_mode)); EXPECT_FALSE(IsStaticShard(processing_mode)); } TEST(CommonTest, ToAutoShardPolicy) { EXPECT_THAT(ToAutoShardPolicy(ProcessingModeDef::FILE_OR_DATA), IsOkAndHolds(AutoShardPolicy::AUTO)); EXPECT_THAT(ToAutoShardPolicy(ProcessingModeDef::HINT), IsOkAndHolds(AutoShardPolicy::HINT)); EXPECT_THAT(ToAutoShardPolicy(ProcessingModeDef::OFF), IsOkAndHolds(AutoShardPolicy::OFF)); EXPECT_THAT(ToAutoShardPolicy(ProcessingModeDef::DYNAMIC), IsOkAndHolds(AutoShardPolicy::OFF)); } TEST(CommonTest, ConvertValidShardingPolicyToAutoShardPolicy) { for (const ProcessingModeDef::ShardingPolicy sharding_policy : EnumerateShardingPolicies()) { TF_EXPECT_OK(ToAutoShardPolicy(sharding_policy).status()); } } TEST(CommonTest, ConvertInvalidShardingPolicyToAutoShardPolicy) { const ProcessingModeDef::ShardingPolicy sharding_policy = static_cast<ProcessingModeDef::ShardingPolicy>(-100); EXPECT_THAT(ToAutoShardPolicy(sharding_policy), StatusIs(error::INTERNAL, HasSubstr("please update the policy mapping."))); } TEST(CommonTest, ValidateProcessingMode) { for (const ProcessingModeDef::ShardingPolicy policy : EnumerateShardingPolicies()) { ProcessingModeDef processing_mode; processing_mode.set_sharding_policy(policy); TF_EXPECT_OK(ValidateProcessingMode(processing_mode)); } } TEST(CommonTest, InvalidProcessingMode) { ProcessingModeDef processing_mode; processing_mode.set_sharding_policy( static_cast<ProcessingModeDef::ShardingPolicy>(100)); EXPECT_THAT(ValidateProcessingMode(processing_mode), StatusIs(error::INTERNAL, HasSubstr("does not specify a valid sharding policy."))); } TEST(CommonTest, ParseTargetWorkers) { EXPECT_THAT(ParseTargetWorkers("AUTO"), IsOkAndHolds(TARGET_WORKERS_AUTO)); EXPECT_THAT(ParseTargetWorkers("Auto"), IsOkAndHolds(TARGET_WORKERS_AUTO)); EXPECT_THAT(ParseTargetWorkers("ANY"), IsOkAndHolds(TARGET_WORKERS_ANY)); EXPECT_THAT(ParseTargetWorkers("any"), IsOkAndHolds(TARGET_WORKERS_ANY)); EXPECT_THAT(ParseTargetWorkers("LOCAL"), IsOkAndHolds(TARGET_WORKERS_LOCAL)); EXPECT_THAT(ParseTargetWorkers("local"), IsOkAndHolds(TARGET_WORKERS_LOCAL)); EXPECT_THAT(ParseTargetWorkers(""), IsOkAndHolds(TARGET_WORKERS_AUTO)); } TEST(CommonTest, ParseInvalidTargetWorkers) { EXPECT_THAT(ParseTargetWorkers("TARGET_WORKERS_UNSPECIFIED"), testing::StatusIs(error::INVALID_ARGUMENT)); EXPECT_THAT(ParseTargetWorkers("UNSET"), testing::StatusIs(error::INVALID_ARGUMENT)); } TEST(CommonTest, TargetWorkersToString) { EXPECT_EQ(TargetWorkersToString(TARGET_WORKERS_AUTO), "AUTO"); EXPECT_EQ(TargetWorkersToString(TARGET_WORKERS_ANY), "ANY"); EXPECT_EQ(TargetWorkersToString(TARGET_WORKERS_LOCAL), "LOCAL"); } TEST(CommonTest, ParseDeploymentMode) { EXPECT_THAT(ParseDeploymentMode("COLOCATED"), IsOkAndHolds(DeploymentMode::DEPLOYMENT_MODE_COLOCATED)); EXPECT_THAT(ParseDeploymentMode("Colocated"), IsOkAndHolds(DeploymentMode::DEPLOYMENT_MODE_COLOCATED)); EXPECT_THAT(ParseDeploymentMode("REMOTE"), IsOkAndHolds(DeploymentMode::DEPLOYMENT_MODE_REMOTE)); EXPECT_THAT(ParseDeploymentMode("remote"), IsOkAndHolds(DeploymentMode::DEPLOYMENT_MODE_REMOTE)); EXPECT_THAT(ParseDeploymentMode("HYBRID"), IsOkAndHolds(DeploymentMode::DEPLOYMENT_MODE_HYBRID)); EXPECT_THAT(ParseDeploymentMode("hybrid"), IsOkAndHolds(DeploymentMode::DEPLOYMENT_MODE_HYBRID)); } TEST(CommonTest, ParseInvalidDeploymentMode) { EXPECT_THAT(ParseDeploymentMode("DEPLOYMENT_MODE_UNSPECIFIED"), testing::StatusIs(error::INVALID_ARGUMENT)); } TEST(CommonTest, IsPreemptedError) { EXPECT_TRUE(IsPreemptedError(errors::Aborted("Aborted"))); EXPECT_TRUE(IsPreemptedError(errors::Cancelled("Cancelled"))); EXPECT_TRUE(IsPreemptedError(errors::Unavailable("Unavailable"))); EXPECT_FALSE(IsPreemptedError(absl::OkStatus())); } TEST(CommonTest, IsPermanentError) { EXPECT_FALSE( IsPreemptedError(errors::FailedPrecondition("Failed precondition"))); EXPECT_FALSE(IsPreemptedError(errors::Internal("Internal"))); EXPECT_FALSE(IsPreemptedError(errors::InvalidArgument("Invalid argument"))); EXPECT_FALSE(IsPreemptedError(errors::NotFound("Not found"))); EXPECT_FALSE(IsPreemptedError(errors::OutOfRange("Out of range"))); EXPECT_FALSE(IsPreemptedError(errors::Unknown("Unknown"))); } } } }
941
cpp
tensorflow/tensorflow
transpose_utils
tensorflow/lite/kernels/internal/transpose_utils.cc
tensorflow/lite/kernels/internal/transpose_utils_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_TRANSPOSE_UTILS_H_ #define TENSORFLOW_LITE_KERNELS_INTERNAL_TRANSPOSE_UTILS_H_ #include "tensorflow/lite/kernels/internal/types.h" namespace tflite { namespace transpose_utils { bool IsTranspose2DApplicable(const TransposeParams& params, const RuntimeShape& input_shape, int* dim0, int* dim1); void RemoveOneSizeDimensions(RuntimeShape* input_shape, RuntimeShape* output_shape, TransposeParams* params); size_t Flatten(const RuntimeShape& input_shape, const RuntimeShape& output_shape, const TransposeParams& params, RuntimeShape* non_flatten_input_shape, RuntimeShape* non_flatten_output_shape, TransposeParams* non_flatten_params); } } #endif #include "tensorflow/lite/kernels/internal/transpose_utils.h" namespace tflite { namespace transpose_utils { bool IsTranspose2DApplicable(const TransposeParams& params, const RuntimeShape& input_shape, int* dim0, int* dim1) { const int dims_cnt = input_shape.DimensionsCount(); if (dims_cnt == 2) { *dim0 = input_shape.Dims(0); *dim1 = input_shape.Dims(1); return true; } const int first_perm = params.perm[0]; for (int i = 1; i < dims_cnt; ++i) { int rebased = params.perm[i] - first_perm; if (rebased < 0) { rebased += dims_cnt; } if (rebased != i) { return false; } } *dim0 = 1; *dim1 = 1; for (int i = 0; i < dims_cnt; ++i) { if (i < first_perm) { *dim0 *= input_shape.Dims(i); } else { *dim1 *= input_shape.Dims(i); } } return true; } void RemoveOneSizeDimensions(RuntimeShape* input_shape, RuntimeShape* output_shape, TransposeParams* params) { const int dims_cnt = input_shape->DimensionsCount(); TFLITE_DCHECK_EQ(params->perm_count, dims_cnt); bool foundOneSizeDim = false; for (int i = 0; i < dims_cnt; ++i) { if (input_shape->Dims(i) == 1) { foundOneSizeDim = true; break; } } if (!foundOneSizeDim) return; if (input_shape->FlatSize() == 1) { input_shape->Resize(1); input_shape->SetDim(0, 1); output_shape->Resize(1); output_shape->SetDim(0, 1); params->perm_count = 1; params->perm[0] = 0; return; } int new_dims_cnt = 0; for (int i = 0; i < dims_cnt; ++i) { if (input_shape->Dims(i) == 1) { continue; } input_shape->SetDim(new_dims_cnt, input_shape->Dims(i)); ++new_dims_cnt; } input_shape->Resize(new_dims_cnt); TransposeParams new_params; new_dims_cnt = 0; for (int i = 0; i < dims_cnt; ++i) { if (output_shape->Dims(i) == 1) { continue; } new_params.perm[new_dims_cnt] = params->perm[i]; output_shape->SetDim(new_dims_cnt, output_shape->Dims(i)); ++new_dims_cnt; } output_shape->Resize(new_dims_cnt); new_params.perm_count = new_dims_cnt; for (int i = 0; i < new_dims_cnt; ++i) { int min_val_idx = -1; for (int j = 0; j < new_dims_cnt; ++j) { if (new_params.perm[j] >= i && (min_val_idx == -1 || new_params.perm[min_val_idx] > new_params.perm[j])) { min_val_idx = j; } } new_params.perm[min_val_idx] = i; } *params = new_params; } size_t Flatten(const RuntimeShape& input_shape, const RuntimeShape& output_shape, const TransposeParams& params, RuntimeShape* non_flatten_input_shape, RuntimeShape* non_flatten_output_shape, TransposeParams* non_flatten_params) { int skip_dims_cnt = 0; size_t flat_size = input_shape.FlatSize(); for (int i = 0; i < params.perm_count; ++i) { if (params.perm[i] == i) { flat_size /= input_shape.Dims(i); ++skip_dims_cnt; } else { break; } } const int new_dims_cnt = params.perm_count - skip_dims_cnt; non_flatten_input_shape->Resize(new_dims_cnt); non_flatten_output_shape->Resize(new_dims_cnt); non_flatten_params->perm_count = new_dims_cnt; for (int i = skip_dims_cnt; i < params.perm_count; ++i) { non_flatten_input_shape->SetDim(i - skip_dims_cnt, input_shape.Dims(i)); non_flatten_output_shape->SetDim(i - skip_dims_cnt, output_shape.Dims(i)); non_flatten_params->perm[i - skip_dims_cnt] = params.perm[i] - skip_dims_cnt; } return flat_size; } } }
#include "tensorflow/lite/kernels/internal/transpose_utils.h" #include <gmock/gmock.h> #include <gtest/gtest.h> namespace tflite { namespace { TEST(TransposeUtilsTest, RemoveOneSizeDimensions_1DNoChanges) { RuntimeShape input_shape({9}); RuntimeShape output_shape({9}); TransposeParams params; params.perm_count = 1; params.perm[0] = 0; transpose_utils::RemoveOneSizeDimensions(&input_shape, &output_shape, &params); EXPECT_EQ(input_shape, RuntimeShape({9})); EXPECT_EQ(output_shape, RuntimeShape({9})); EXPECT_EQ(params.perm_count, 1); EXPECT_EQ(params.perm[0], 0); } TEST(TransposeUtilsTest, RemoveOneSizeDimensions_2DNoChanges) { RuntimeShape input_shape({9, 3}); RuntimeShape output_shape({3, 9}); TransposeParams params; params.perm_count = 2; params.perm[0] = 1; params.perm[1] = 0; transpose_utils::RemoveOneSizeDimensions(&input_shape, &output_shape, &params); EXPECT_EQ(input_shape, RuntimeShape({9, 3})); EXPECT_EQ(output_shape, RuntimeShape({3, 9})); EXPECT_EQ(params.perm_count, 2); EXPECT_EQ(params.perm[0], 1); EXPECT_EQ(params.perm[1], 0); } TEST(TransposeUtilsTest, RemoveOneSizeDimensions_2DShrinking) { RuntimeShape input_shape({9, 1}); RuntimeShape output_shape({1, 9}); TransposeParams params; params.perm_count = 2; params.perm[0] = 1; params.perm[1] = 0; transpose_utils::RemoveOneSizeDimensions(&input_shape, &output_shape, &params); EXPECT_EQ(input_shape, RuntimeShape({9})); EXPECT_EQ(output_shape, RuntimeShape({9})); EXPECT_EQ(params.perm_count, 1); EXPECT_EQ(params.perm[0], 0); } TEST(TransposeUtilsTest, RemoveOneSizeDimensions_3DNoChanges) { RuntimeShape input_shape({4, 3, 8}); RuntimeShape output_shape({8, 4, 3}); TransposeParams params; params.perm_count = 3; params.perm[0] = 2; params.perm[1] = 0; params.perm[2] = 1; transpose_utils::RemoveOneSizeDimensions(&input_shape, &output_shape, &params); EXPECT_EQ(input_shape, RuntimeShape({4, 3, 8})); EXPECT_EQ(output_shape, RuntimeShape({8, 4, 3})); EXPECT_EQ(params.perm_count, 3); EXPECT_EQ(params.perm[0], 2); EXPECT_EQ(params.perm[1], 0); EXPECT_EQ(params.perm[2], 1); } TEST(TransposeUtilsTest, RemoveOneSizeDimensions_3DShrinkingOnce) { RuntimeShape input_shape({4, 1, 8}); RuntimeShape output_shape({8, 4, 1}); TransposeParams params; params.perm_count = 3; params.perm[0] = 2; params.perm[1] = 0; params.perm[2] = 1; transpose_utils::RemoveOneSizeDimensions(&input_shape, &output_shape, &params); EXPECT_EQ(input_shape, RuntimeShape({4, 8})); EXPECT_EQ(output_shape, RuntimeShape({8, 4})); EXPECT_EQ(output_shape.Dims(1), 4); EXPECT_EQ(params.perm_count, 2); EXPECT_EQ(params.perm[0], 1); EXPECT_EQ(params.perm[1], 0); } TEST(TransposeUtilsTest, RemoveOneSizeDimensions_3DShrinkingTwice) { RuntimeShape input_shape({4, 1, 1}); RuntimeShape output_shape({1, 4, 1}); TransposeParams params; params.perm_count = 3; params.perm[0] = 2; params.perm[1] = 0; params.perm[2] = 1; transpose_utils::RemoveOneSizeDimensions(&input_shape, &output_shape, &params); EXPECT_EQ(input_shape, RuntimeShape({4})); EXPECT_EQ(output_shape, RuntimeShape({4})); EXPECT_EQ(params.perm_count, 1); EXPECT_EQ(params.perm[0], 0); } TEST(TransposeUtilsTest, RemoveOneSizeDimensions_3DAllOnes) { RuntimeShape input_shape({1, 1, 1}); RuntimeShape output_shape({1, 1, 1}); TransposeParams params; params.perm_count = 3; params.perm[0] = 2; params.perm[1] = 0; params.perm[2] = 1; transpose_utils::RemoveOneSizeDimensions(&input_shape, &output_shape, &params); EXPECT_EQ(input_shape, RuntimeShape({1})); EXPECT_EQ(output_shape, RuntimeShape({1})); EXPECT_EQ(params.perm_count, 1); EXPECT_EQ(params.perm[0], 0); } TEST(TransposeUtilsTest, RemoveOneSizeDimensions_4DNoChanges) { RuntimeShape input_shape({9, 3, 2, 4}); RuntimeShape output_shape({3, 9, 4, 2}); TransposeParams params; params.perm_count = 4; params.perm[0] = 1; params.perm[1] = 0; params.perm[2] = 3; params.perm[3] = 2; transpose_utils::RemoveOneSizeDimensions(&input_shape, &output_shape, &params); EXPECT_EQ(input_shape, RuntimeShape({9, 3, 2, 4})); EXPECT_EQ(output_shape, RuntimeShape({3, 9, 4, 2})); EXPECT_EQ(params.perm_count, 4); EXPECT_EQ(params.perm[0], 1); EXPECT_EQ(params.perm[1], 0); EXPECT_EQ(params.perm[2], 3); EXPECT_EQ(params.perm[3], 2); } TEST(TransposeUtilsTest, RemoveOneSizeDimensions_4DShrinkingOnce) { RuntimeShape input_shape({9, 3, 1, 4}); RuntimeShape output_shape({3, 9, 4, 1}); TransposeParams params; params.perm_count = 4; params.perm[0] = 1; params.perm[1] = 0; params.perm[2] = 3; params.perm[3] = 2; transpose_utils::RemoveOneSizeDimensions(&input_shape, &output_shape, &params); EXPECT_EQ(input_shape, RuntimeShape({9, 3, 4})); EXPECT_EQ(output_shape, RuntimeShape({3, 9, 4})); EXPECT_EQ(params.perm_count, 3); EXPECT_EQ(params.perm[0], 1); EXPECT_EQ(params.perm[1], 0); EXPECT_EQ(params.perm[2], 2); } TEST(TransposeUtilsTest, RemoveOneSizeDimensions_4DShrinkingTwice) { RuntimeShape input_shape({1, 3, 1, 4}); RuntimeShape output_shape({3, 1, 4, 1}); TransposeParams params; params.perm_count = 4; params.perm[0] = 1; params.perm[1] = 2; params.perm[2] = 3; params.perm[3] = 0; transpose_utils::RemoveOneSizeDimensions(&input_shape, &output_shape, &params); EXPECT_EQ(input_shape, RuntimeShape({3, 4})); EXPECT_EQ(output_shape, RuntimeShape({3, 4})); EXPECT_EQ(params.perm_count, 2); EXPECT_EQ(params.perm[0], 0); EXPECT_EQ(params.perm[1], 1); } TEST(TransposeUtilsTest, RemoveOneSizeDimensions_4DShrinkingThirdTimes) { RuntimeShape input_shape({1, 1, 7, 1}); RuntimeShape output_shape({1, 7, 1, 1}); TransposeParams params; params.perm_count = 4; params.perm[0] = 0; params.perm[1] = 2; params.perm[2] = 1; params.perm[3] = 3; transpose_utils::RemoveOneSizeDimensions(&input_shape, &output_shape, &params); EXPECT_EQ(input_shape, RuntimeShape({7})); EXPECT_EQ(output_shape, RuntimeShape({7})); EXPECT_EQ(params.perm_count, 1); EXPECT_EQ(params.perm[0], 0); } TEST(TransposeUtilsTest, RemoveOneSizeDimensions_4DAllOnes) { RuntimeShape input_shape({1, 1, 1, 1}); RuntimeShape output_shape({1, 1, 1, 1}); TransposeParams params; params.perm_count = 4; params.perm[0] = 0; params.perm[1] = 2; params.perm[2] = 1; params.perm[3] = 3; transpose_utils::RemoveOneSizeDimensions(&input_shape, &output_shape, &params); EXPECT_EQ(input_shape, RuntimeShape({1})); EXPECT_EQ(output_shape, RuntimeShape({1})); EXPECT_EQ(params.perm_count, 1); EXPECT_EQ(params.perm[0], 0); } TEST(TransposeUtilsTest, Flatten3D) { RuntimeShape input_shape({3, 5, 7}); RuntimeShape output_shape({3, 7, 5}); TransposeParams params; params.perm_count = 3; params.perm[0] = 0; params.perm[1] = 2; params.perm[2] = 1; RuntimeShape non_flatten_input_shape; RuntimeShape non_flatten_output_shape; TransposeParams non_flatten_params; size_t non_flatten_size = transpose_utils::Flatten( input_shape, output_shape, params, &non_flatten_input_shape, &non_flatten_output_shape, &non_flatten_params); EXPECT_EQ(non_flatten_input_shape, RuntimeShape({5, 7})); EXPECT_EQ(non_flatten_output_shape, RuntimeShape({7, 5})); EXPECT_EQ(non_flatten_size, 5 * 7); EXPECT_EQ(non_flatten_params.perm_count, 2); EXPECT_EQ(non_flatten_params.perm[0], 1); EXPECT_EQ(non_flatten_params.perm[1], 0); } TEST(TransposeUtilsTest, Flatten4DFlattenOnce) { RuntimeShape input_shape({3, 5, 7, 9}); RuntimeShape output_shape({3, 7, 5, 9}); TransposeParams params; params.perm_count = 4; params.perm[0] = 0; params.perm[1] = 2; params.perm[2] = 1; params.perm[3] = 3; RuntimeShape non_flatten_input_shape; RuntimeShape non_flatten_output_shape; TransposeParams non_flatten_params; size_t non_flatten_size = transpose_utils::Flatten( input_shape, output_shape, params, &non_flatten_input_shape, &non_flatten_output_shape, &non_flatten_params); EXPECT_EQ(non_flatten_input_shape, RuntimeShape({5, 7, 9})); EXPECT_EQ(non_flatten_output_shape, RuntimeShape({7, 5, 9})); EXPECT_EQ(non_flatten_size, 5 * 7 * 9); EXPECT_EQ(non_flatten_params.perm_count, 3); EXPECT_EQ(non_flatten_params.perm[0], 1); EXPECT_EQ(non_flatten_params.perm[1], 0); EXPECT_EQ(non_flatten_params.perm[2], 2); } TEST(TransposeUtilsTest, Flatten4DFlattenTwice) { RuntimeShape input_shape({3, 5, 7, 9}); RuntimeShape output_shape({3, 5, 9, 7}); TransposeParams params; params.perm_count = 4; params.perm[0] = 0; params.perm[1] = 1; params.perm[2] = 3; params.perm[3] = 2; RuntimeShape non_flatten_input_shape; RuntimeShape non_flatten_output_shape; TransposeParams non_flatten_params; size_t non_flatten_size = transpose_utils::Flatten( input_shape, output_shape, params, &non_flatten_input_shape, &non_flatten_output_shape, &non_flatten_params); EXPECT_EQ(non_flatten_input_shape, RuntimeShape({7, 9})); EXPECT_EQ(non_flatten_output_shape, RuntimeShape({9, 7})); EXPECT_EQ(non_flatten_size, 7 * 9); EXPECT_EQ(non_flatten_params.perm_count, 2); EXPECT_EQ(non_flatten_params.perm[0], 1); EXPECT_EQ(non_flatten_params.perm[1], 0); } TEST(TransposeUtilsTest, IsTranspose2DApplicable2D) { RuntimeShape input_shape({4, 5}); TransposeParams params; params.perm_count = 2; params.perm[0] = 1; params.perm[1] = 0; int dim0, dim1; bool applicable = transpose_utils::IsTranspose2DApplicable( params, input_shape, &dim0, &dim1); EXPECT_TRUE(applicable); EXPECT_EQ(dim0, 4); EXPECT_EQ(dim1, 5); } TEST(TransposeUtilsTest, IsTranspose2DApplicable3DOne) { RuntimeShape input_shape({4, 5, 6}); TransposeParams params; params.perm_count = 3; params.perm[0] = 1; params.perm[1] = 2; params.perm[2] = 0; int dim0, dim1; bool applicable = transpose_utils::IsTranspose2DApplicable( params, input_shape, &dim0, &dim1); EXPECT_TRUE(applicable); EXPECT_EQ(dim0, 4); EXPECT_EQ(dim1, 30); } TEST(TransposeUtilsTest, IsTranspose2DApplicable3DTwo) { RuntimeShape input_shape({4, 5, 6}); TransposeParams params; params.perm_count = 3; params.perm[0] = 2; params.perm[1] = 0; params.perm[2] = 1; int dim0, dim1; bool applicable = transpose_utils::IsTranspose2DApplicable( params, input_shape, &dim0, &dim1); EXPECT_TRUE(applicable); EXPECT_EQ(dim0, 20); EXPECT_EQ(dim1, 6); } TEST(TransposeUtilsTest, IsTranspose2DApplicable3DNotApplicable) { RuntimeShape input_shape({4, 5, 6}); TransposeParams params; params.perm_count = 3; params.perm[0] = 2; params.perm[1] = 1; params.perm[2] = 0; int dim0, dim1; bool applicable = transpose_utils::IsTranspose2DApplicable( params, input_shape, &dim0, &dim1); EXPECT_FALSE(applicable); } TEST(TransposeUtilsTest, IsTranspose2DApplicable4DOne) { RuntimeShape input_shape({4, 5, 6, 7}); TransposeParams params; params.perm_count = 4; params.perm[0] = 1; params.perm[1] = 2; params.perm[2] = 3; params.perm[3] = 0; int dim0, dim1; bool applicable = transpose_utils::IsTranspose2DApplicable( params, input_shape, &dim0, &dim1); EXPECT_TRUE(applicable); EXPECT_EQ(dim0, 4); EXPECT_EQ(dim1, 210); } TEST(TransposeUtilsTest, IsTranspose2DApplicable4DTwo) { RuntimeShape input_shape({4, 5, 6, 7}); TransposeParams params; params.perm_count = 4; params.perm[0] = 2; params.perm[1] = 3; params.perm[2] = 0; params.perm[3] = 1; int dim0, dim1; bool applicable = transpose_utils::IsTranspose2DApplicable( params, input_shape, &dim0, &dim1); EXPECT_TRUE(applicable); EXPECT_EQ(dim0, 20); EXPECT_EQ(dim1, 42); } TEST(TransposeUtilsTest, IsTranspose2DApplicable4DThird) { RuntimeShape input_shape({4, 5, 6, 7}); TransposeParams params; params.perm_count = 4; params.perm[0] = 3; params.perm[1] = 0; params.perm[2] = 1; params.perm[3] = 2; int dim0, dim1; bool applicable = transpose_utils::IsTranspose2DApplicable( params, input_shape, &dim0, &dim1); EXPECT_TRUE(applicable); EXPECT_EQ(dim0, 120); EXPECT_EQ(dim1, 7); } TEST(TransposeUtilsTest, IsTranspose2DApplicable4DNotApplicable) { RuntimeShape input_shape({4, 5, 6, 7}); TransposeParams params; params.perm_count = 4; params.perm[0] = 3; params.perm[1] = 2; params.perm[2] = 1; params.perm[3] = 0; int dim0, dim1; bool applicable = transpose_utils::IsTranspose2DApplicable( params, input_shape, &dim0, &dim1); EXPECT_FALSE(applicable); } } }
942
cpp
tensorflow/tensorflow
sparsity_format_converter
tensorflow/lite/kernels/internal/utils/sparsity_format_converter.cc
tensorflow/lite/kernels/internal/utils/sparsity_format_converter_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_UTILS_SPARSITY_FORMAT_CONVERTER_H_ #define TENSORFLOW_LITE_KERNELS_INTERNAL_UTILS_SPARSITY_FORMAT_CONVERTER_H_ #include <vector> #include "Eigen/Core" #include "tensorflow/lite/core/c/common.h" namespace tflite { namespace internal { namespace sparsity { template <typename T> class FormatConverter { public: FormatConverter(const std::vector<int>& shape, const std::vector<int>& traversal_order, const std::vector<TfLiteDimensionType>& format, const std::vector<int>& block_size = {}, const std::vector<int>& block_map = {}); FormatConverter(const std::vector<int>& shape, const std::vector<int>& traversal_order, const std::vector<TfLiteDimensionType>& format, const std::vector<int>& dense_size, const std::vector<std::vector<int>>& segments, const std::vector<std::vector<int>>& indices, const std::vector<int>& block_map = {}); FormatConverter(const std::vector<int>& shape, const TfLiteSparsity& sparsity); const std::vector<T>& GetData() { return data_; } const std::vector<std::vector<int>>& GetDimMetadata() { return dim_metadata_; } TfLiteStatus DenseToSparse(const T* src_data); TfLiteStatus SparseToDense(const T* src_data); TfLiteStatus SparseToDense(const T* src_data, const size_t dest_size, T* dest_data, TfLiteContext* context = nullptr); private: void InitSparseToDenseConverter(std::vector<int> shape, std::vector<int> traversal_order, std::vector<TfLiteDimensionType> format, std::vector<int> dense_size, std::vector<std::vector<int>> segments, std::vector<std::vector<int>> indices, std::vector<int> block_map); void Populate(const T* src_data, std::vector<int> indices, int level, int prev_idx, int* src_data_ptr, T* dest_data); bool IsZero(const T val); std::vector<int> dense_shape_; std::vector<int> blocked_shape_; size_t dense_size_; std::vector<int> traversal_order_; std::vector<TfLiteDimensionType> format_; std::vector<int> block_size_; std::vector<int> block_map_; std::vector<std::vector<int>> dim_metadata_; std::vector<T> data_; }; extern template class FormatConverter<int32_t>; extern template class FormatConverter<int8_t>; extern template class FormatConverter<float>; extern template class FormatConverter<Eigen::half>; } } } #endif #include "tensorflow/lite/kernels/internal/utils/sparsity_format_converter.h" #include <algorithm> #include <cstdint> #include <utility> #include <vector> namespace tflite { namespace internal { namespace sparsity { namespace { uint64_t GetFlattenedIndex(const std::vector<int>& indices, const std::vector<int>& shape) { uint64_t index = 0; int sub_elements = 1; for (int i = shape.size() - 1; i >= 0; i--) { index += indices[i] * sub_elements; sub_elements *= shape[i]; } return index; } std::vector<int> TfLiteIntArrayToVector(const TfLiteIntArray* int_array) { std::vector<int> values; if (!int_array) { return values; } values.resize(int_array->size); for (size_t i = 0; i < int_array->size; i++) { values[i] = int_array->data[i]; } return values; } } template <typename T> FormatConverter<T>::FormatConverter( const std::vector<int>& shape, const std::vector<int>& traversal_order, const std::vector<TfLiteDimensionType>& format, const std::vector<int>& block_size, const std::vector<int>& block_map) : dense_shape_(shape), traversal_order_(traversal_order), block_size_(block_size), block_map_(block_map) { dense_size_ = 1; int block_dim = 0; blocked_shape_.resize(shape.size()); format_.resize(shape.size() + block_map.size()); for (int i = 0; i < shape.size(); i++) { format_[i] = format[traversal_order[i]]; dense_size_ *= shape[i]; if (block_dim < block_map.size() && block_map[block_dim] == i) { blocked_shape_[i] = shape[i] / block_size[block_dim]; block_dim++; } else { blocked_shape_[i] = shape[i]; } } for (int i = 0; i < block_map.size(); i++) { format_[i + shape.size()] = kTfLiteDimDense; } } template <typename T> TfLiteStatus FormatConverter<T>::DenseToSparse(const T* src_data) { int num_original_dims = dense_shape_.size(); int num_block_dims = block_map_.size(); int num_expanded_dims = num_original_dims + num_block_dims; std::vector<int> expanded_shape(num_expanded_dims); for (int i = 0; i < num_expanded_dims; i++) { if (i < num_original_dims) { expanded_shape[i] = blocked_shape_[i]; } else { expanded_shape[i] = block_size_[i - num_original_dims]; } } std::vector<int> shape_offset(num_original_dims); shape_offset[shape_offset.size() - 1] = 1; for (int i = num_original_dims - 1; i > 0; --i) { shape_offset[i - 1] = shape_offset[i] * dense_shape_[i]; } std::vector<int> expanded_shape_offset(num_expanded_dims); for (int i = 0; i < num_original_dims; ++i) { expanded_shape_offset[i] = shape_offset[i]; } for (int i = 0; i < num_block_dims; ++i) { int mapped_dim = block_map_[i]; expanded_shape_offset[num_original_dims + i] = shape_offset[mapped_dim]; expanded_shape_offset[mapped_dim] *= block_size_[i]; } std::vector<int> dst_ordered_offset(num_expanded_dims); for (int i = 0; i < num_expanded_dims; ++i) { dst_ordered_offset[i] = expanded_shape_offset[traversal_order_[i]]; } std::vector<bool> dst_dim_has_nonzeroes(num_expanded_dims); std::fill(dst_dim_has_nonzeroes.begin(), dst_dim_has_nonzeroes.end(), false); std::vector<int> inner_compressed_dim(num_expanded_dims); int most_recent_compressed_dim = -1; std::vector<int> num_segments_of_next_compressed_dim(num_expanded_dims); int segment_count = 1; for (int i = num_expanded_dims - 1; i >= 0; --i) { inner_compressed_dim[i] = most_recent_compressed_dim; if (format_[i] == kTfLiteDimSparseCSR) { most_recent_compressed_dim = i; num_segments_of_next_compressed_dim[i] = segment_count; segment_count = 1; } else { num_segments_of_next_compressed_dim[i] = -1; segment_count *= expanded_shape[traversal_order_[i]]; } } dim_metadata_.resize(num_expanded_dims * 2); std::vector<int> dst_sparse_dims; dst_sparse_dims.reserve(num_expanded_dims); for (int i = 0; i < num_expanded_dims; ++i) { dim_metadata_[i * 2].clear(); dim_metadata_[i * 2 + 1].clear(); if (format_[i] == kTfLiteDimDense) { dim_metadata_[i * 2].push_back(expanded_shape[traversal_order_[i]]); } else { dim_metadata_[i * 2].push_back(0); dst_sparse_dims.push_back(i); } } int dst_dim_idx = num_expanded_dims; std::vector<int> coordinate(num_expanded_dims, 0); int dense_tensor_idx = 0; while (dst_dim_idx >= 0) { if (dst_dim_idx == num_expanded_dims) { if (!IsZero(src_data[dense_tensor_idx])) { data_.push_back(src_data[dense_tensor_idx]); for (auto dst_dim : dst_sparse_dims) { if (!dst_dim_has_nonzeroes[dst_dim]) { dim_metadata_[2 * dst_dim + 1].push_back(coordinate[dst_dim]); dst_dim_has_nonzeroes[dst_dim] = true; } } } else if (format_[num_expanded_dims - 1] == kTfLiteDimDense) { data_.push_back(src_data[dense_tensor_idx]); } --dst_dim_idx; } else { int original_dim_idx = traversal_order_[dst_dim_idx]; int dim_size = expanded_shape[original_dim_idx]; if (dst_dim_has_nonzeroes[dst_dim_idx]) { dst_dim_has_nonzeroes[dst_dim_idx] = false; } else if (format_[dst_dim_idx] == kTfLiteDimSparseCSR) { int next_compressed_dim = inner_compressed_dim[dst_dim_idx]; int erase_offset = dim_metadata_[2 * dst_dim_idx + 1].size() * num_segments_of_next_compressed_dim[dst_dim_idx]; if (next_compressed_dim >= 0) { auto& segments = dim_metadata_[2 * inner_compressed_dim[dst_dim_idx]]; segments.erase(segments.begin() + 1 + erase_offset, segments.end()); } else { data_.erase(data_.begin() + erase_offset, data_.end()); } } if (++coordinate[dst_dim_idx] < dim_size) { dense_tensor_idx += dst_ordered_offset[dst_dim_idx]; ++dst_dim_idx; } else { if (format_[dst_dim_idx] == kTfLiteDimSparseCSR) { dim_metadata_[2 * dst_dim_idx].push_back( dim_metadata_[2 * dst_dim_idx + 1].size()); } coordinate[dst_dim_idx] = -1; dense_tensor_idx -= dst_ordered_offset[dst_dim_idx] * dim_size; --dst_dim_idx; } } } return kTfLiteOk; } template <typename T> FormatConverter<T>::FormatConverter( const std::vector<int>& shape, const std::vector<int>& traversal_order, const std::vector<TfLiteDimensionType>& format, const std::vector<int>& dense_size, const std::vector<std::vector<int>>& segments, const std::vector<std::vector<int>>& indices, const std::vector<int>& block_map) { InitSparseToDenseConverter(shape, traversal_order, format, dense_size, segments, indices, block_map); } template <typename T> FormatConverter<T>::FormatConverter(const std::vector<int>& shape, const TfLiteSparsity& sparsity) { auto traversal_order = TfLiteIntArrayToVector(sparsity.traversal_order); auto block_map = TfLiteIntArrayToVector(sparsity.block_map); std::vector<TfLiteDimensionType> format(sparsity.dim_metadata_size); std::vector<int> dense_size(sparsity.dim_metadata_size); std::vector<std::vector<int>> segments(sparsity.dim_metadata_size); std::vector<std::vector<int>> indices(sparsity.dim_metadata_size); for (int i = 0; i < sparsity.dim_metadata_size; i++) { format[i] = sparsity.dim_metadata[i].format; dense_size[i] = sparsity.dim_metadata[i].dense_size; segments[i] = TfLiteIntArrayToVector(sparsity.dim_metadata[i].array_segments); indices[i] = TfLiteIntArrayToVector(sparsity.dim_metadata[i].array_indices); } InitSparseToDenseConverter(shape, std::move(traversal_order), std::move(format), std::move(dense_size), std::move(segments), std::move(indices), std::move(block_map)); } template <typename T> void FormatConverter<T>::InitSparseToDenseConverter( std::vector<int> shape, std::vector<int> traversal_order, std::vector<TfLiteDimensionType> format, std::vector<int> dense_size, std::vector<std::vector<int>> segments, std::vector<std::vector<int>> indices, std::vector<int> block_map) { dense_shape_ = std::move(shape); traversal_order_ = std::move(traversal_order); block_map_ = std::move(block_map); format_ = std::move(format); dense_size_ = 1; for (int i = 0; i < dense_shape_.size(); i++) { dense_size_ *= dense_shape_[i]; } dim_metadata_.resize(2 * format_.size()); for (int i = 0; i < format_.size(); i++) { if (format_[i] == kTfLiteDimDense) { dim_metadata_[2 * i] = {dense_size[i]}; } else { dim_metadata_[2 * i] = std::move(segments[i]); dim_metadata_[2 * i + 1] = std::move(indices[i]); } } int original_rank = dense_shape_.size(); int block_dim = 0; blocked_shape_.resize(original_rank); block_size_.resize(block_map_.size()); for (int i = 0; i < original_rank; i++) { if (block_dim < block_map_.size() && block_map_[block_dim] == i) { if (original_rank + block_dim < traversal_order_.size()) { int orig_dim = traversal_order_[original_rank + block_dim]; block_size_[block_dim] = dense_size[orig_dim]; blocked_shape_[i] = dense_shape_[i] / dense_size[orig_dim]; block_dim++; } } else { blocked_shape_[i] = dense_shape_[i]; } } } template <typename T> void FormatConverter<T>::Populate(const T* src_data, std::vector<int> indices, int level, int prev_idx, int* src_data_ptr, T* dest_data) { if (level == indices.size()) { int orig_rank = dense_shape_.size(); std::vector<int> orig_idx; orig_idx.resize(orig_rank); int i = 0; for (; i < orig_idx.size(); i++) { int orig_dim = traversal_order_[i]; orig_idx[orig_dim] = indices[i]; } for (; i < indices.size(); i++) { const int block_idx = traversal_order_[i] - orig_rank; const int orig_dim = block_map_[block_idx]; orig_idx[orig_dim] = orig_idx[orig_dim] * block_size_[block_idx] + indices[i]; } dest_data[GetFlattenedIndex(orig_idx, dense_shape_)] = src_data[*src_data_ptr]; *src_data_ptr = *src_data_ptr + 1; return; } const int metadata_idx = 2 * level; const int shape_of_level = dim_metadata_[metadata_idx][0]; if (format_[level] == kTfLiteDimDense) { for (int i = 0; i < shape_of_level; i++) { indices[level] = i; Populate(src_data, indices, level + 1, prev_idx * shape_of_level + i, src_data_ptr, dest_data); } } else if (prev_idx + 1 < dim_metadata_[metadata_idx].size()) { const auto& array_segments = dim_metadata_[metadata_idx]; const auto& array_indices = dim_metadata_[metadata_idx + 1]; for (int i = array_segments[prev_idx]; i < array_segments[prev_idx + 1]; i++) { if (i < array_indices.size() && level < indices.size()) { indices[level] = array_indices[i]; Populate(src_data, indices, level + 1, i, src_data_ptr, dest_data); } } } } template <typename T> TfLiteStatus FormatConverter<T>::SparseToDense(const T* src_data) { data_.resize(dense_size_); std::fill(data_.begin(), data_.end(), T(0)); int total_rank = traversal_order_.size(); int src_data_ptr = 0; std::vector<int> indices(total_rank); Populate(src_data, indices, 0, 0, &src_data_ptr, data_.data()); return kTfLiteOk; } template <typename T> TfLiteStatus FormatConverter<T>::SparseToDense(const T* src_data, const size_t dest_size, T* dest_data, TfLiteContext* context) { if (dest_size != dense_size_) { TF_LITE_MAYBE_KERNEL_LOG( context, "unexpected buffer size for densified data, expected %zu.\n", dense_size_); return kTfLiteError; } for (auto i = 0; i < dest_size; i++) { dest_data[i] = T(0); } const int total_rank = traversal_order_.size(); int src_data_ptr = 0; std::vector<int> indices(total_rank); Populate(src_data, indices, 0, 0, &src_data_ptr, dest_data); return kTfLiteOk; } template <typename T> bool FormatConverter<T>::IsZero(const T val) { return (val == static_cast<T>(0)); } template class FormatConverter<int32_t>; template class FormatConverter<int8_t>; template class FormatConverter<float>; template class FormatConverter<Eigen::half>; } } }
#include "tensorflow/lite/kernels/internal/utils/sparsity_format_converter.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/core/model.h" namespace tflite { namespace internal { namespace sparsity { namespace { TEST(FormatConverterTest, SimpleTestD0D1) { const std::vector<int> dense_values = {6, 0, 9, 8, 0, 0, 0, 0, 5, 0, 0, 7}; const std::vector<int> dense_shape = {3, 4}; const std::vector<int> traversal_order = {0, 1}; const std::vector<TfLiteDimensionType> format = {kTfLiteDimDense, kTfLiteDimDense}; FormatConverter<int> converter(dense_shape, traversal_order, format); converter.DenseToSparse(dense_values.data()); const auto& dim_metadata = converter.GetDimMetadata(); const std::vector<int> dm0 = {3}; const std::vector<int> dm1 = {4}; EXPECT_EQ(dm0, dim_metadata[0]); EXPECT_EQ(dm1, dim_metadata[2]); const auto& data = converter.GetData(); const std::vector<int> expected_data = {6, 0, 9, 8, 0, 0, 0, 0, 5, 0, 0, 7}; EXPECT_EQ(expected_data, data); converter.SparseToDense(expected_data.data()); const auto& data_back = converter.GetData(); EXPECT_EQ(data_back, dense_values); std::vector<int> dense_data(dense_values.size()); converter.SparseToDense(expected_data.data(), dense_data.size(), dense_data.data(), nullptr); EXPECT_EQ(dense_data, dense_values); } TEST(FormatConverterTest, SimpleTestS0D1) { const std::vector<int> dense_values = {6, 0, 9, 8, 0, 0, 0, 0, 5, 0, 0, 7}; const std::vector<int> dense_shape = {3, 4}; const std::vector<int> traversal_order = {0, 1}; const std::vector<TfLiteDimensionType> format = {kTfLiteDimSparseCSR, kTfLiteDimDense}; FormatConverter<int> converter(dense_shape, traversal_order, format); converter.DenseToSparse(dense_values.data()); const auto& dim_metadata = converter.GetDimMetadata(); const std::vector<int> dm0_0 = {0, 2}; const std::vector<int> dm0_1 = {0, 2}; const std::vector<int> dm1 = {4}; EXPECT_EQ(dm0_0, dim_metadata[0]); EXPECT_EQ(dm0_1, dim_metadata[1]); EXPECT_EQ(dm1, dim_metadata[2]); const auto& data = converter.GetData(); const std::vector<int> expected_data = {6, 0, 9, 8, 5, 0, 0, 7}; EXPECT_EQ(expected_data, data); converter.SparseToDense(expected_data.data()); const auto& data_back = converter.GetData(); EXPECT_EQ(data_back, dense_values); std::vector<int> dense_data(dense_values.size()); converter.SparseToDense(expected_data.data(), dense_data.size(), dense_data.data(), nullptr); EXPECT_EQ(dense_data, dense_values); } TEST(FormatConverterTest, SimpleTestD0S1) { const std::vector<int> dense_values = {6, 0, 9, 8, 0, 0, 0, 0, 5, 0, 0, 7}; const std::vector<int> dense_shape = {3, 4}; const std::vector<int> traversal_order = {0, 1}; const std::vector<TfLiteDimensionType> format = {kTfLiteDimDense, kTfLiteDimSparseCSR}; FormatConverter<int> converter(dense_shape, traversal_order, format); converter.DenseToSparse(dense_values.data()); const auto& dim_metadata = converter.GetDimMetadata(); const std::vector<int> dm0 = {3}; const std::vector<int> dm1_0 = {0, 3, 3, 5}; const std::vector<int> dm1_1 = {0, 2, 3, 0, 3}; EXPECT_EQ(dm0, dim_metadata[0]); EXPECT_EQ(dm1_0, dim_metadata[2]); EXPECT_EQ(dm1_1, dim_metadata[3]); const auto& data = converter.GetData(); const std::vector<int> expected_data = {6, 9, 8, 5, 7}; EXPECT_EQ(expected_data, data); converter.SparseToDense(expected_data.data()); const auto& data_back = converter.GetData(); EXPECT_EQ(data_back, dense_values); std::vector<int> dense_data(dense_values.size()); converter.SparseToDense(expected_data.data(), dense_data.size(), dense_data.data(), nullptr); EXPECT_EQ(dense_data, dense_values); } TEST(FormatConverterTest, SimpleTestS0S1) { const std::vector<int> dense_values = {6, 0, 9, 8, 0, 0, 0, 0, 5, 0, 0, 7}; const std::vector<int> dense_shape = {3, 4}; const std::vector<int> traversal_order = {0, 1}; const std::vector<TfLiteDimensionType> format = {kTfLiteDimSparseCSR, kTfLiteDimSparseCSR}; FormatConverter<int> converter(dense_shape, traversal_order, format); converter.DenseToSparse(dense_values.data()); const auto& dim_metadata = converter.GetDimMetadata(); const std::vector<int> dm0_0 = {0, 2}; const std::vector<int> dm0_1 = {0, 2}; const std::vector<int> dm1_0 = {0, 3, 5}; const std::vector<int> dm1_1 = {0, 2, 3, 0, 3}; EXPECT_EQ(dm0_0, dim_metadata[0]); EXPECT_EQ(dm0_1, dim_metadata[1]); EXPECT_EQ(dm1_0, dim_metadata[2]); EXPECT_EQ(dm1_1, dim_metadata[3]); const auto& data = converter.GetData(); const std::vector<int> expected_data = {6, 9, 8, 5, 7}; EXPECT_EQ(expected_data, data); converter.SparseToDense(expected_data.data()); const auto& data_back = converter.GetData(); EXPECT_EQ(data_back, dense_values); std::vector<int> dense_data(dense_values.size()); converter.SparseToDense(expected_data.data(), dense_data.size(), dense_data.data(), nullptr); EXPECT_EQ(dense_data, dense_values); } TEST(FormatConverterTest, SimpleTestD1D0) { const std::vector<int> dense_values = {6, 0, 9, 8, 0, 0, 0, 0, 5, 0, 0, 7}; const std::vector<int> dense_shape = {3, 4}; const std::vector<int> traversal_order = {1, 0}; const std::vector<TfLiteDimensionType> format = {kTfLiteDimDense, kTfLiteDimDense}; FormatConverter<int> converter(dense_shape, traversal_order, format); converter.DenseToSparse(dense_values.data()); const auto& dim_metadata = converter.GetDimMetadata(); const std::vector<int> dm0 = {4}; const std::vector<int> dm1 = {3}; EXPECT_EQ(dm0, dim_metadata[0]); EXPECT_EQ(dm1, dim_metadata[2]); const auto& data = converter.GetData(); const std::vector<int> expected_data = {6, 0, 5, 0, 0, 0, 9, 0, 0, 8, 0, 7}; EXPECT_EQ(expected_data, data); converter.SparseToDense(expected_data.data()); const auto& data_back = converter.GetData(); EXPECT_EQ(data_back, dense_values); std::vector<int> dense_data(dense_values.size()); converter.SparseToDense(expected_data.data(), dense_data.size(), dense_data.data(), nullptr); EXPECT_EQ(dense_data, dense_values); } TEST(FormatConverterTest, SimpleTestS1D0) { const std::vector<int> dense_values = {6, 0, 9, 8, 0, 0, 0, 0, 5, 0, 0, 7}; const std::vector<int> dense_shape = {3, 4}; const std::vector<int> traversal_order = {1, 0}; const std::vector<TfLiteDimensionType> format = {kTfLiteDimDense, kTfLiteDimSparseCSR}; FormatConverter<int> converter(dense_shape, traversal_order, format); converter.DenseToSparse(dense_values.data()); const auto& dim_metadata = converter.GetDimMetadata(); const std::vector<int> dm0_0 = {0, 3}; const std::vector<int> dm0_1 = {0, 2, 3}; const std::vector<int> dm1 = {3}; EXPECT_EQ(dm0_0, dim_metadata[0]); EXPECT_EQ(dm0_1, dim_metadata[1]); EXPECT_EQ(dm1, dim_metadata[2]); const auto& data = converter.GetData(); const std::vector<int> expected_data = {6, 0, 5, 9, 0, 0, 8, 0, 7}; EXPECT_EQ(expected_data, data); converter.SparseToDense(expected_data.data()); const auto& data_back = converter.GetData(); EXPECT_EQ(data_back, dense_values); std::vector<int> dense_data(dense_values.size()); converter.SparseToDense(expected_data.data(), dense_data.size(), dense_data.data(), nullptr); EXPECT_EQ(dense_data, dense_values); } TEST(FormatConverterTest, SimpleTestD1S0) { const std::vector<int> dense_values = {6, 0, 9, 8, 0, 0, 0, 0, 5, 0, 0, 7}; const std::vector<int> dense_shape = {3, 4}; const std::vector<int> traversal_order = {1, 0}; const std::vector<TfLiteDimensionType> format = {kTfLiteDimSparseCSR, kTfLiteDimDense}; FormatConverter<int> converter(dense_shape, traversal_order, format); converter.DenseToSparse(dense_values.data()); const auto& dim_metadata = converter.GetDimMetadata(); const std::vector<int> dm0 = {4}; const std::vector<int> dm1_0 = {0, 2, 2, 3, 5}; const std::vector<int> dm1_1 = {0, 2, 0, 0, 2}; EXPECT_EQ(dm0, dim_metadata[0]); EXPECT_EQ(dm1_0, dim_metadata[2]); EXPECT_EQ(dm1_1, dim_metadata[3]); const auto& data = converter.GetData(); const std::vector<int> expected_data = {6, 5, 9, 8, 7}; EXPECT_EQ(expected_data, data); converter.SparseToDense(expected_data.data()); const auto& data_back = converter.GetData(); EXPECT_EQ(data_back, dense_values); std::vector<int> dense_data(dense_values.size()); converter.SparseToDense(expected_data.data(), dense_data.size(), dense_data.data(), nullptr); EXPECT_EQ(dense_data, dense_values); } TEST(FormatConverterTest, SimpleTestS1S0) { const std::vector<int> dense_values = {6, 0, 9, 8, 0, 0, 0, 0, 5, 0, 0, 7}; const std::vector<int> dense_shape = {3, 4}; const std::vector<int> traversal_order = {1, 0}; const std::vector<TfLiteDimensionType> format = {kTfLiteDimSparseCSR, kTfLiteDimSparseCSR}; FormatConverter<int> converter(dense_shape, traversal_order, format); converter.DenseToSparse(dense_values.data()); const auto& dim_metadata = converter.GetDimMetadata(); const std::vector<int> dm0_0 = {0, 3}; const std::vector<int> dm0_1 = {0, 2, 3}; const std::vector<int> dm1_0 = {0, 2, 3, 5}; const std::vector<int> dm1_1 = {0, 2, 0, 0, 2}; EXPECT_EQ(dm0_0, dim_metadata[0]); EXPECT_EQ(dm0_1, dim_metadata[1]); EXPECT_EQ(dm1_0, dim_metadata[2]); EXPECT_EQ(dm1_1, dim_metadata[3]); const auto& data = converter.GetData(); const std::vector<int> expected_data = {6, 5, 9, 8, 7}; EXPECT_EQ(expected_data, data); converter.SparseToDense(expected_data.data()); const auto& data_back = converter.GetData(); EXPECT_EQ(data_back, dense_values); std::vector<int> dense_data(dense_values.size()); converter.SparseToDense(expected_data.data(), dense_data.size(), dense_data.data(), nullptr); EXPECT_EQ(dense_data, dense_values); } TEST(FormatConverterTest, 3DTestS0D1S2) { const std::vector<int> dense_values = {6, 0, 9, 8, 0, 0, 0, 0, 5, 0, 0, 7}; const std::vector<int> dense_shape = {3, 2, 2}; const std::vector<int> traversal_order = {0, 1, 2}; const std::vector<TfLiteDimensionType> format = { kTfLiteDimSparseCSR, kTfLiteDimDense, kTfLiteDimSparseCSR}; FormatConverter<int> converter(dense_shape, traversal_order, format); converter.DenseToSparse(dense_values.data()); const auto& dim_metadata = converter.GetDimMetadata(); const std::vector<int> dm0_0 = {0, 2}; const std::vector<int> dm0_1 = {0, 2}; const std::vector<int> dm1 = {2}; const std::vector<int> dm2_0 = {0, 1, 3, 4, 5}; const std::vector<int> dm2_1 = {0, 0, 1, 0, 1}; EXPECT_EQ(dm0_0, dim_metadata[0]); EXPECT_EQ(dm0_1, dim_metadata[1]); EXPECT_EQ(dm1, dim_metadata[2]); EXPECT_EQ(dm2_0, dim_metadata[4]); EXPECT_EQ(dm2_1, dim_metadata[5]); const auto& data = converter.GetData(); const std::vector<int> expected_data = {6, 9, 8, 5, 7}; EXPECT_EQ(expected_data, data); converter.SparseToDense(expected_data.data()); const auto& data_back = converter.GetData(); EXPECT_EQ(data_back, dense_values); std::vector<int> dense_data(dense_values.size()); converter.SparseToDense(expected_data.data(), dense_data.size(), dense_data.data(), nullptr); EXPECT_EQ(dense_data, dense_values); } TEST(FormatConverterTest, 3DTestD0D1S2) { const std::vector<int> dense_values = {6, 0, 9, 8, 0, 0, 0, 0, 5, 0, 0, 7}; const std::vector<int> dense_shape = {3, 2, 2}; const std::vector<int> traversal_order = {0, 1, 2}; const std::vector<TfLiteDimensionType> format = { kTfLiteDimDense, kTfLiteDimDense, kTfLiteDimSparseCSR}; FormatConverter<int> converter(dense_shape, traversal_order, format); converter.DenseToSparse(dense_values.data()); const auto& dim_metadata = converter.GetDimMetadata(); const std::vector<int> dm0 = {3}; const std::vector<int> dm1 = {2}; const std::vector<int> dm2_0 = {0, 1, 3, 3, 3, 4, 5}; const std::vector<int> dm2_1 = {0, 0, 1, 0, 1}; EXPECT_EQ(dm0, dim_metadata[0]); EXPECT_EQ(dm1, dim_metadata[2]); EXPECT_EQ(dm2_0, dim_metadata[4]); EXPECT_EQ(dm2_1, dim_metadata[5]); const auto& data = converter.GetData(); const std::vector<int> expected_data = {6, 9, 8, 5, 7}; EXPECT_EQ(expected_data, data); converter.SparseToDense(expected_data.data()); const auto& data_back = converter.GetData(); EXPECT_EQ(data_back, dense_values); std::vector<int> dense_data(dense_values.size()); converter.SparseToDense(expected_data.data(), dense_data.size(), dense_data.data(), nullptr); EXPECT_EQ(dense_data, dense_values); } TEST(FormatConverterTest, 3DTestS0S1S2) { const std::vector<int> dense_values = {1, 7, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 4, 8, 3, 9}; const std::vector<int> dense_shape = {3, 4, 2}; const std::vector<int> traversal_order = {0, 1, 2}; const std::vector<TfLiteDimensionType> format = { kTfLiteDimSparseCSR, kTfLiteDimSparseCSR, kTfLiteDimSparseCSR}; FormatConverter<int> converter(dense_shape, traversal_order, format); converter.DenseToSparse(dense_values.data()); const auto& dim_metadata = converter.GetDimMetadata(); const std::vector<int> dm0_0 = {0, 2}; const std::vector<int> dm0_1 = {0, 2}; const std::vector<int> dm1_0 = {0, 2, 5}; const std::vector<int> dm1_1 = {0, 2, 0, 2, 3}; const std::vector<int> dm2_0 = {0, 2, 3, 4, 6, 8}; const std::vector<int> dm2_1 = {0, 1, 1, 1, 0, 1, 0, 1}; EXPECT_EQ(dm0_0, dim_metadata[0]); EXPECT_EQ(dm0_1, dim_metadata[1]); EXPECT_EQ(dm1_0, dim_metadata[2]); EXPECT_EQ(dm1_1, dim_metadata[3]); EXPECT_EQ(dm2_0, dim_metadata[4]); EXPECT_EQ(dm2_1, dim_metadata[5]); const auto& data = converter.GetData(); const std::vector<int> expected_data = {1, 7, 5, 2, 4, 8, 3, 9}; EXPECT_EQ(expected_data, data); converter.SparseToDense(expected_data.data()); const auto& data_back = converter.GetData(); EXPECT_EQ(data_back, dense_values); std::vector<int> dense_data(dense_values.size()); converter.SparseToDense(expected_data.data(), dense_data.size(), dense_data.data(), nullptr); EXPECT_EQ(dense_data, dense_values); } TEST(FormatConverterTest, 3DTestS0S2S1) { const std::vector<int> dense_values = {1, 0, 0, 0, 7, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 3, 2, 0, 8, 9}; const std::vector<int> dense_shape = {3, 2, 4}; const std::vector<int> traversal_order = {0, 2, 1}; const std::vector<TfLiteDimensionType> format = { kTfLiteDimSparseCSR, kTfLiteDimSparseCSR, kTfLiteDimSparseCSR}; FormatConverter<int> converter(dense_shape, traversal_order, format); converter.DenseToSparse(dense_values.data()); const auto& dim_metadata = converter.GetDimMetadata(); const std::vector<int> dm0_0 = {0, 2}; const std::vector<int> dm0_1 = {0, 2}; const std::vector<int> dm1_0 = {0, 2, 5}; const std::vector<int> dm1_1 = {0, 2, 0, 2, 3}; const std::vector<int> dm2_0 = {0, 2, 3, 4, 6, 8}; const std::vector<int> dm2_1 = {0, 1, 1, 1, 0, 1, 0, 1}; EXPECT_EQ(dm0_0, dim_metadata[0]); EXPECT_EQ(dm0_1, dim_metadata[1]); EXPECT_EQ(dm1_0, dim_metadata[2]); EXPECT_EQ(dm1_1, dim_metadata[3]); EXPECT_EQ(dm2_0, dim_metadata[4]); EXPECT_EQ(dm2_1, dim_metadata[5]); const auto& data = converter.GetData(); const std::vector<int> expected_data = {1, 7, 5, 2, 4, 8, 3, 9}; EXPECT_EQ(expected_data, data); converter.SparseToDense(expected_data.data()); const auto& data_back = converter.GetData(); EXPECT_EQ(data_back, dense_values); std::vector<int> dense_data(dense_values.size()); converter.SparseToDense(expected_data.data(), dense_data.size(), dense_data.data(), nullptr); EXPECT_EQ(dense_data, dense_values); } TEST(FormatConverterTest, BlockTestD0D1) { const std::vector<int> dense_values = {1, 0, 2, 3, 0, 4, 0, 0, 0, 0, 5, 0, 0, 0, 0, 6}; const std::vector<int> dense_shape = {4, 4}; const std::vector<int> traversal_order = {0, 1, 2, 3}; const std::vector<TfLiteDimensionType> format = {kTfLiteDimDense, kTfLiteDimDense}; const std::vector<int> block_size = {2, 2}; const std::vector<int> block_map = {0, 1}; FormatConverter<int> converter(dense_shape, traversal_order, format, block_size, block_map); converter.DenseToSparse(dense_values.data()); const auto& dim_metadata = converter.GetDimMetadata(); const std::vector<int> dm = {2}; EXPECT_EQ(dm, dim_metadata[0]); EXPECT_EQ(dm, dim_metadata[2]); EXPECT_EQ(dm, dim_metadata[4]); EXPECT_EQ(dm, dim_metadata[6]); const auto& data = converter.GetData(); const std::vector<int> expected_data = {1, 0, 0, 4, 2, 3, 0, 0, 0, 0, 0, 0, 5, 0, 0, 6}; EXPECT_EQ(expected_data, data); converter.SparseToDense(expected_data.data()); const auto& data_back = converter.GetData(); EXPECT_EQ(data_back, dense_values); std::vector<int> dense_data(dense_values.size()); converter.SparseToDense(expected_data.data(), dense_data.size(), dense_data.data(), nullptr); EXPECT_EQ(dense_data, dense_values); } TEST(FormatConverterTest, BlockTestD0S11DBlock) { const std::vector<int> dense_values = {1, 0, 2, 3, 0, 4, 0, 0, 0, 0, 5, 0, 0, 0, 0, 6}; const std::vector<int> dense_shape = {4, 4}; const std::vector<int> traversal_order = {0, 1, 2}; const std::vector<TfLiteDimensionType> format = {kTfLiteDimDense, kTfLiteDimSparseCSR}; const std::vector<int> block_size = {2}; const std::vector<int> block_map = {1}; FormatConverter<int> converter(dense_shape, traversal_order, format, block_size, block_map); converter.DenseToSparse(dense_values.data()); const auto& dim_metadata = converter.GetDimMetadata(); const std::vector<int> dm0 = {4}; const std::vector<int> dm2 = {2}; const std::vector<int> dm1_0 = {0, 2, 3, 4, 5}; const std::vector<int> dm1_1 = {0, 1, 0, 1, 1}; EXPECT_EQ(dm0, dim_metadata[0]); EXPECT_EQ(dm1_0, dim_metadata[2]); EXPECT_EQ(dm1_1, dim_metadata[3]); EXPECT_EQ(dm2, dim_metadata[4]); const auto& data = converter.GetData(); const std::vector<int> expected_data = {1, 0, 2, 3, 0, 4, 5, 0, 0, 6}; EXPECT_EQ(expected_data, data); converter.SparseToDense(expected_data.data()); const auto& data_back = converter.GetData(); EXPECT_EQ(data_back, dense_values); std::vector<int> dense_data(dense_values.size()); converter.SparseToDense(expected_data.data(), dense_data.size(), dense_data.data(), nullptr); EXPECT_EQ(dense_data, dense_values); } TEST(FormatConverterTest, BlockTestD0S12DBlock) { const std::vector<int> dense_values = {1, 0, 2, 3, 0, 4, 0, 0, 0, 0, 5, 0, 0, 0, 0, 6}; const std::vector<int> dense_shape = {4, 4}; const std::vector<int> traversal_order = {0, 1, 2, 3}; const std::vector<TfLiteDimensionType> format = {kTfLiteDimDense, kTfLiteDimSparseCSR}; const std::vector<int> block_size = {2, 2}; const std::vector<int> block_map = {0, 1}; FormatConverter<int> converter(dense_shape, traversal_order, format, block_size, block_map); converter.DenseToSparse(dense_values.data()); const auto& dim_metadata = converter.GetDimMetadata(); const std::vector<int> dm = {2}; const std::vector<int> dm1_0 = {0, 2, 3}; const std::vector<int> dm1_1 = {0, 1, 1}; EXPECT_EQ(dm, dim_metadata[0]); EXPECT_EQ(dm1_0, dim_metadata[2]); EXPECT_EQ(dm1_1, dim_metadata[3]); EXPECT_EQ(dm, dim_metadata[4]); EXPECT_EQ(dm, dim_metadata[6]); const auto& data = converter.GetData(); const std::vector<int> expected_data = {1, 0, 0, 4, 2, 3, 0, 0, 5, 0, 0, 6}; EXPECT_EQ(expected_data, data); converter.SparseToDense(expected_data.data()); const auto& data_back = converter.GetData(); EXPECT_EQ(data_back, dense_values); std::vector<int> dense_data(dense_values.size()); converter.SparseToDense(expected_data.data(), dense_data.size(), dense_data.data(), nullptr); EXPECT_EQ(dense_data, dense_values); } TEST(FormatConverterTest, BlockTestD1S0) { const std::vector<int> dense_values = {1, 0, 2, 3, 0, 4, 0, 0, 0, 0, 5, 0, 0, 0, 0, 6}; const std::vector<int> dense_shape = {4, 4}; const std::vector<int> traversal_order = {1, 0, 3, 2}; const std::vector<TfLiteDimensionType> format = {kTfLiteDimSparseCSR, kTfLiteDimDense}; const std::vector<int> block_size = {2, 2}; const std::vector<int> block_map = {0, 1}; FormatConverter<int> converter(dense_shape, traversal_order, format, block_size, block_map); converter.DenseToSparse(dense_values.data()); const auto& dim_metadata = converter.GetDimMetadata(); const std::vector<int> dm = {2}; const std::vector<int> dm1_0 = {0, 1, 3}; const std::vector<int> dm1_1 = {0, 0, 1}; EXPECT_EQ(dm, dim_metadata[0]); EXPECT_EQ(dm1_0, dim_metadata[2]); EXPECT_EQ(dm1_1, dim_metadata[3]); EXPECT_EQ(dm, dim_metadata[4]); EXPECT_EQ(dm, dim_metadata[6]); const auto& data = converter.GetData(); const std::vector<int> expected_data = {1, 0, 0, 4, 2, 0, 3, 0, 5, 0, 0, 6}; EXPECT_EQ(expected_data, data); converter.SparseToDense(expected_data.data()); const auto& data_back = converter.GetData(); EXPECT_EQ(data_back, dense_values); std::vector<int> dense_data(dense_values.size()); converter.SparseToDense(expected_data.data(), dense_data.size(), dense_data.data(), nullptr); EXPECT_EQ(dense_data, dense_values); } TEST(FormatConverterTest, BlockTestD0S1LastBlockEmpty) { const std::vector<int> dense_values = {1, 0, 2, 3, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; const std::vector<int> dense_shape = {4, 4}; const std::vector<int> traversal_order = {0, 1, 2, 3}; const std::vector<TfLiteDimensionType> format = {kTfLiteDimDense, kTfLiteDimSparseCSR}; const std::vector<int> block_size = {2, 2}; const std::vector<int> block_map = {0, 1}; FormatConverter<int> converter(dense_shape, traversal_order, format, block_size, block_map); converter.DenseToSparse(dense_values.data()); const auto& dim_metadata = converter.GetDimMetadata(); const std::vector<int> dm = {2}; const std::vector<int> dm1_0 = {0, 2, 2}; const std::vector<int> dm1_1 = {0, 1}; EXPECT_EQ(dm, dim_metadata[0]); EXPECT_EQ(dm1_0, dim_metadata[2]); EXPECT_EQ(dm1_1, dim_metadata[3]); EXPECT_EQ(dm, dim_metadata[4]); EXPECT_EQ(dm, dim_metadata[6]); const auto& data = converter.GetData(); const std::vector<int> expected_data = {1, 0, 0, 4, 2, 3, 0, 0}; EXPECT_EQ(expected_data, data); converter.SparseToDense(expected_data.data()); const auto& data_back = converter.GetData(); EXPECT_EQ(data_back, dense_values); std::vector<int> dense_data(dense_values.size()); converter.SparseToDense(expected_data.data(), dense_data.size(), dense_data.data(), nullptr); EXPECT_EQ(dense_data, dense_values); } TEST(FormatConverterTest, BlockTestD0S1ColMajorBlock) { const std::vector<int> dense_values = {1, 0, 2, 3, 0, 4, 0, 0, 1, 0, 2, 3, 0, 4, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; const std::vector<int> dense_shape = {4, 8}; const std::vector<int> traversal_order = {0, 1, 3, 2}; const std::vector<TfLiteDimensionType> format = {kTfLiteDimDense, kTfLiteDimSparseCSR}; const std::vector<int> block_size = {2, 2}; const std::vector<int> block_map = {0, 1}; FormatConverter<int> converter(dense_shape, traversal_order, format, block_size, block_map); converter.DenseToSparse(dense_values.data()); const auto& dim_metadata = converter.GetDimMetadata(); const std::vector<int> dm = {2}; const std::vector<int> dm1_0 = {0, 3, 4}; const std::vector<int> dm1_1 = {0, 1, 2, 1}; EXPECT_EQ(dm, dim_metadata[0]); EXPECT_EQ(dm1_0, dim_metadata[2]); EXPECT_EQ(dm1_1, dim_metadata[3]); EXPECT_EQ(dm, dim_metadata[4]); EXPECT_EQ(dm, dim_metadata[6]); const auto& data = converter.GetData(); const std::vector<int> expected_data = {1, 1, 0, 0, 2, 2, 3, 3, 0, 0, 4, 4, 5, 0, 0, 0}; EXPECT_EQ(expected_data, data); converter.SparseToDense(expected_data.data()); const auto& data_back = converter.GetData(); EXPECT_EQ(data_back, dense_values); std::vector<int> dense_data(dense_values.size()); converter.SparseToDense(expected_data.data(), dense_data.size(), dense_data.data(), nullptr); EXPECT_EQ(dense_data, dense_values); } } } } }
943
cpp
tensorflow/tensorflow
parse_example
tensorflow/lite/kernels/parse_example/parse_example.cc
tensorflow/lite/kernels/parse_example/parse_example_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_PARSE_EXAMPLE_PARSE_EXAMPLE_H_ #define TENSORFLOW_LITE_KERNELS_PARSE_EXAMPLE_PARSE_EXAMPLE_H_ #include "tensorflow/lite/mutable_op_resolver.h" namespace tflite { namespace ops { namespace custom { TfLiteRegistration* Register_PARSE_EXAMPLE(); TfLiteRegistration* Register_PARSE_EXAMPLE_V2(); extern "C" void AddParseExampleOp(::tflite::MutableOpResolver* resolver); } } } #endif #include "tensorflow/lite/kernels/parse_example/parse_example.h" #include <algorithm> #include <cstddef> #include <memory> #include <string> #include <unordered_map> #include <utility> #include "flatbuffers/flexbuffers.h" #include "tensorflow/core/example/feature.pb.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/platform/blocking_counter.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/fingerprint.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/util/example_proto_fast_parsing.h" #include "tensorflow/core/util/presized_cuckoo_map.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/kernel_util.h" #include "tensorflow/lite/kernels/parse_example/example_proto_fast_parsing.h" #include "tensorflow/lite/mutable_op_resolver.h" #include "tensorflow/lite/string_util.h" namespace tflite { namespace ops { namespace custom { namespace parse_example { namespace { namespace tf = ::tensorflow; using tf::Status; using tf::StringPiece; using tf::tstring; using tf::example::CopyOrMoveBlock; using tf::example::FastParseExampleConfig; using tf::example::GetListFromBuffer; using tf::example::LimitedArraySlice; using tf::example::ParseExample; using tf::example::SeededHasher; using tf::example::SmallVector; using tf::example::SparseBuffer; using tf::example::Type; using tf::example::parsed::Example; using ConfigIndex = tf::PresizedCuckooMap<std::pair<int32_t, Type>>; struct TfLiteResult { std::vector<TfLiteTensor*> dense_values; std::vector<TfLiteTensor*> sparse_values; std::vector<TfLiteTensor*> sparse_indices; std::vector<TfLiteTensor*> sparse_shapes; std::map<int, tf::Tensor> dense_tensors; }; template <typename T> void FillAndCopyVarLen(const int d, const size_t num_elements, const size_t num_elements_per_minibatch, const FastParseExampleConfig& config, std::vector<SparseBuffer>& varlen_dense_buffers, TfLiteTensor* values) { const tf::Tensor& default_value = config.dense[d].default_value; std::fill(reinterpret_cast<T*>(values->data.raw), reinterpret_cast<T*>(values->data.raw) + num_elements, default_value.flat<T>()(0)); auto data = reinterpret_cast<T*>(values->data.raw); const SparseBuffer& buffer = varlen_dense_buffers[d]; const auto& end_indices = buffer.example_end_indices; const size_t examples_in_buffer = end_indices.size(); const auto& list = GetListFromBuffer<T>(buffer); auto list_ptr = list.begin(); size_t elements_tally = 0; for (size_t j = 0; j < examples_in_buffer; ++j) { const size_t num_elems = end_indices[j] - elements_tally; CopyOrMoveBlock(list_ptr, list_ptr + num_elems, data); list_ptr += num_elems; data += num_elements_per_minibatch; elements_tally = end_indices[j]; } DCHECK(elements_tally == list.size()); } bool ParseExample(StringRef serialized, Example* example) { DCHECK(example != nullptr); tf::protobuf::io::CodedInputStream stream( reinterpret_cast<const uint8*>(serialized.str), serialized.len); tensorflow::example::EnableAliasing(&stream); return ParseExample(&stream, example); } Status FastParseSerializedExample( StringRef serialized_example, const tstring& example_name, const size_t example_index, const FastParseExampleConfig& config, bool* quick_filter, int quick_filter_size, const std::unique_ptr<ConfigIndex>& config_index, int config_index_size, SeededHasher* hasher, std::vector<TfLiteTensor*>* output_dense, std::vector<SparseBuffer>* output_varlen_dense, std::vector<SparseBuffer>* output_sparse, std::map<absl::string_view, int>& stats, TfLiteResult* result) { DCHECK(output_dense != nullptr); tensorflow::example::parsed::Example parsed_example; if (!ParseExample(serialized_example, &parsed_example)) { return tf::errors::Internal("Failed to parse example"); } std::vector<int64_t> dense_feature_last_example(config.dense.size(), -1); std::vector<int64_t> sparse_feature_last_example(config.sparse.size(), -1); const size_t parsed_example_size = parsed_example.size(); for (size_t i = 0; i < parsed_example_size; ++i) { tensorflow::example::parsed::FeatureMapEntry& name_and_feature = parsed_example[parsed_example_size - i - 1]; const StringPiece feature_name = name_and_feature.first; tensorflow::example::parsed::Feature& feature = name_and_feature.second; if (feature_name.length() >= quick_filter_size || !quick_filter[feature_name.length()]) { continue; } const uint64_t h = (*hasher)(feature_name); std::pair<int32_t, Type> d_and_type; if (!config_index->Find(h, &d_and_type)) { continue; } size_t d = d_and_type.first; bool is_dense = d_and_type.second == Type::Dense; auto example_error = [&](StringPiece suffix) { return tf::errors::Internal("Name: ", example_name, ", Key: ", feature_name, ", Index: ", example_index, ". ", suffix); }; auto parse_error = [&] { return example_error("Can't parse serialized Example."); }; tf::DataType example_dtype; if (feature.ParseDataType(&example_dtype) != absl::OkStatus()) { return parse_error(); } if (is_dense) { if (example_dtype == tf::DT_INVALID) continue; dense_feature_last_example[d] = example_index; if (example_dtype != config.dense[d].dtype) { return example_error(absl::StrCat( "Data types don't match. Data type: ", DataTypeString(example_dtype), " but expected type: ", DataTypeString(config.dense[d].dtype))); } if (!config.dense[d].variable_length) { TfLiteTensor* out = (*output_dense)[d]; const std::size_t num_elements = config.dense[d].elements_per_stride; const std::size_t offset = example_index * num_elements; auto shape_error = [&](size_t size, StringPiece type_str) { return example_error(absl::StrCat( "Number of ", type_str, " values != expected. " "Values size:", size, " but output shape: ", config.dense[d].shape.DebugString())); }; switch (config.dense[d].dtype) { case tf::DT_INT64: { auto out_p = reinterpret_cast<int64_t*>(out->data.raw) + offset; LimitedArraySlice<int64_t> slice(out_p, num_elements); if (!feature.ParseInt64List(&slice)) return parse_error(); if (slice.EndDistance() != 0) { return shape_error(num_elements - slice.EndDistance(), "int64"); } break; } case tf::DT_FLOAT: { auto out_p = reinterpret_cast<float*>(out->data.raw) + offset; LimitedArraySlice<float> slice(out_p, num_elements); if (!feature.ParseFloatList(&slice)) return parse_error(); if (slice.EndDistance() != 0) { return shape_error(num_elements - slice.EndDistance(), "float"); } break; } case tf::DT_STRING: { auto& out_tensor = result->dense_tensors[d]; auto out_p = out_tensor.flat<tstring>().data() + offset; LimitedArraySlice<tstring> slice(out_p, num_elements); if (!feature.ParseBytesList(&slice)) return parse_error(); if (slice.EndDistance() != 0) { return shape_error(num_elements - slice.EndDistance(), "bytes"); } break; } default: return tf::errors::Internal("Unrecognized dense type: ", config.dense[d].dtype); } } else { SparseBuffer& out = (*output_varlen_dense)[d]; const std::size_t num_elements = config.dense[d].elements_per_stride; if (example_dtype != tf::DT_INVALID && example_dtype != config.dense[d].dtype) { return example_error(absl::StrCat( "Data types don't match. ", "Expected type: ", DataTypeString(config.dense[d].dtype))); } auto shape_error = [&](size_t size, StringPiece type_str) { return example_error( absl::StrCat("Number of ", type_str, " values is not a multiple of stride length. Saw ", size, " values but output shape is: ", config.dense[d].shape.DebugString())); }; switch (config.dense[d].dtype) { case tf::DT_INT64: { if (example_dtype != tf::DT_INVALID) { if (!feature.ParseInt64List(&out.int64_list)) { return parse_error(); } if (out.int64_list.size() % num_elements != 0) { return shape_error(out.int64_list.size(), "int64"); } } out.example_end_indices.push_back(out.int64_list.size()); break; } case tf::DT_FLOAT: { if (example_dtype != tf::DT_INVALID) { if (!feature.ParseFloatList(&out.float_list)) { return parse_error(); } if (out.float_list.size() % num_elements != 0) { return shape_error(out.float_list.size(), "float"); } } out.example_end_indices.push_back(out.float_list.size()); break; } case tf::DT_STRING: { if (example_dtype != tf::DT_INVALID) { if (!feature.ParseBytesList(&out.bytes_list)) { return parse_error(); } if (out.bytes_list.size() % num_elements != 0) { return shape_error(out.bytes_list.size(), "byte"); } } out.example_end_indices.push_back(out.bytes_list.size()); break; } default: return tf::errors::Internal("Should not happen: ", config.dense[d].dtype); } } } else { auto& last_example = sparse_feature_last_example; if (last_example[d] == example_index) { continue; } last_example[d] = example_index; SparseBuffer& out = (*output_sparse)[d]; tf::DataType feature_dtype = config.sparse[d].dtype; if (example_dtype != tf::DT_INVALID && example_dtype != feature_dtype) { return tf::errors::Internal("Data types don't match:", example_dtype, " != ", feature_dtype); } switch (feature_dtype) { case tf::DT_INT64: { if (example_dtype != tf::DT_INVALID) { if (!feature.ParseInt64List(&out.int64_list)) { return parse_error(); } } out.example_end_indices.push_back(out.int64_list.size()); break; } case tf::DT_FLOAT: { if (example_dtype != tf::DT_INVALID) { if (!feature.ParseFloatList(&out.float_list)) { return parse_error(); } } out.example_end_indices.push_back(out.float_list.size()); break; } case tf::DT_STRING: { if (example_dtype != tf::DT_INVALID) { if (!feature.ParseBytesList(&out.bytes_list)) { return parse_error(); } } out.example_end_indices.push_back(out.bytes_list.size()); break; } default: return tf::errors::Internal("Should not happen: ", feature_dtype); } } } for (size_t d = 0; d < config.dense.size(); ++d) { if (config.dense[d].variable_length) continue; if (dense_feature_last_example[d] == example_index) continue; if (config.dense[d].default_value.NumElements() == 0) { return tf::errors::Internal( "Name: ", example_name, ", Feature: ", config.dense[d].feature_name, " (data type: ", DataTypeString(config.dense[d].dtype), ")", " is required but could not be found."); } const tf::Tensor& in = config.dense[d].default_value; TfLiteTensor* out = result->dense_values[d]; const std::size_t num_elements = in.shape().num_elements(); const std::size_t offset = example_index * num_elements; switch (config.dense[d].dtype) { case tf::DT_INT64: { std::copy_n(in.flat<int64_t>().data(), num_elements, out->data.i64 + offset); break; } case tf::DT_FLOAT: { std::copy_n(in.flat<float>().data(), num_elements, out->data.f + offset); break; } case tf::DT_STRING: { auto& out_tensor = result->dense_tensors[d]; std::copy_n(in.flat<tstring>().data(), num_elements, out_tensor.flat<tstring>().data() + offset); break; } default: return tf::errors::Internal("Should not happen: ", config.dense[d].dtype); } } for (size_t d = 0; d < config.dense.size(); ++d) { if (!config.dense[d].variable_length) continue; if (dense_feature_last_example[d] == example_index) continue; SparseBuffer& out = (*output_varlen_dense)[d]; size_t prev_example_end_index = out.example_end_indices.empty() ? 0 : out.example_end_indices.back(); out.example_end_indices.push_back(prev_example_end_index); } for (size_t d = 0; d < config.sparse.size(); ++d) { if (sparse_feature_last_example[d] == example_index) continue; SparseBuffer& out = (*output_sparse)[d]; size_t prev_example_end_index = out.example_end_indices.empty() ? 0 : out.example_end_indices.back(); out.example_end_indices.push_back(prev_example_end_index); } return absl::OkStatus(); } void CountSparseFeatures(const SparseBuffer& sparse_buffer, size_t* total_num_features, size_t* max_num_features) { const std::vector<size_t>& end_indices = sparse_buffer.example_end_indices; *total_num_features += end_indices.back(); *max_num_features = std::max(*max_num_features, end_indices[0]); for (size_t i = 1; i < end_indices.size(); ++i) { size_t example_size = end_indices[i] - end_indices[i - 1]; *max_num_features = std::max(*max_num_features, example_size); } } void CopySparseBufferToTensor(tf::DataType dtype, size_t offset, SparseBuffer* src, TfLiteTensor* dst) { switch (dtype) { case tf::DT_INT64: { std::copy(src->int64_list.begin(), src->int64_list.end(), reinterpret_cast<int64_t*>(dst->data.raw) + offset); break; } case tf::DT_FLOAT: { std::copy(src->float_list.begin(), src->float_list.end(), reinterpret_cast<float*>(dst->data.raw) + offset); break; } case tf::DT_STRING: { DynamicBuffer buffer; for (auto* begin = src->bytes_list.begin(); begin != src->bytes_list.end(); begin++) { buffer.AddString(begin->c_str(), begin->size()); } buffer.WriteToTensor(dst, nullptr); break; } default: DCHECK(false) << "Encountered unexpected DataType " << DataTypeString(dtype) << "in variable that should have been checked."; } } inline void CopyToBuffer(absl::Span<const tstring> vec, char* tensor_buffer, int num_examples, int batch_size, int elements_per_stride) { int i = 0, k = 0; int start = 0; for (; i < num_examples; ++i) { for (int j = 0; j < elements_per_stride; ++j) { memcpy(tensor_buffer + start, vec[k].c_str(), vec[k].size()); start += vec[k].size(); k++; } } for (; i < batch_size; ++i) { for (int j = 0; j < elements_per_stride; ++j) { memcpy(tensor_buffer + start, vec[k].c_str(), vec[k].size()); start += vec[k].size(); k++; } } } Status FastParseExampleLite( const FastParseExampleConfig& config, const TfLiteTensor* serialized, absl::Span<const tstring> example_names, bool* quick_filter, int quick_filter_size, const std::unique_ptr<ConfigIndex>& config_index, int config_index_size, SeededHasher* hasher, TfLiteResult* result, std::map<absl::string_view, int>& stats, TfLiteContext* context) { if (result == nullptr) { return tf::errors::Internal("Result is null"); } const int count = GetStringCount(serialized); std::vector<tf::Tensor> fixed_dense_values(config.dense.size()); std::vector<SparseBuffer> sparse_buffers(config.sparse.size()); std::vector<SparseBuffer> varlen_dense_buffers(config.dense.size()); Status status_of_minibatch; for (size_t e = 0; e < count; ++e) { status_of_minibatch = FastParseSerializedExample( GetString(serialized, e), (!example_names.empty() ? example_names[e] : "<unknown>"), e, config, quick_filter, quick_filter_size, config_index, config_index_size, hasher, &result->dense_values, &varlen_dense_buffers, &sparse_buffers, stats, result); if (!status_of_minibatch.ok()) break; } if (!status_of_minibatch.ok()) { return status_of_minibatch; } for (size_t d = 0; d < config.sparse.size(); ++d) { size_t total_num_features = 0; size_t max_num_features = 0; CountSparseFeatures(sparse_buffers[d], &total_num_features, &max_num_features); tf::TensorShape indices_shape; TfLiteTensor* indices = result->sparse_indices[d]; TfLiteTensor* values = result->sparse_values[d]; TfLiteTensor* sparse_shape = result->sparse_shapes[d]; auto* sparse_shape_ptr = reinterpret_cast<int64_t*>(sparse_shape->data.raw); sparse_shape_ptr[1] = max_num_features; TfLiteIntArray* index_shape = TfLiteIntArrayCreate(2); index_shape->data[0] = total_num_features; index_shape->data[1] = 2; context->ResizeTensor(context, indices, index_shape); TfLiteIntArray* output_shape = TfLiteIntArrayCreate(1); output_shape->data[0] = total_num_features; context->ResizeTensor(context, values, output_shape); SparseBuffer& buffer = sparse_buffers[d]; auto* indices_p = reinterpret_cast<int64_t*>(indices->data.raw); if (!indices_p) { return tf::errors::Internal("Indices tensor not allocated!"); } if (total_num_features > 0) { int64_t* ix_p = indices_p; size_t example_index = 0; int idx0 = 0; size_t delta = 0; for (size_t example_end_index : buffer.example_end_indices) { size_t feature_index = 0; for (; delta < example_end_index; ++delta) { if (idx0 < total_num_features) { *ix_p = example_index; *(ix_p + 1) = feature_index; ix_p += 2; } ++feature_index; ++idx0; } ++example_index; } CopySparseBufferToTensor(config.sparse[d].dtype, 0, &buffer, values); } } for (size_t d = 0; d < config.dense.size(); ++d) { if (!config.dense[d].variable_length) { continue; } size_t max_num_features = 0; std::vector<size_t>& end_indices = varlen_dense_buffers[d].example_end_indices; max_num_features = std::max(max_num_features, end_indices[0]); for (size_t i = 1; i < end_indices.size(); ++i) { size_t example_size = end_indices[i] - end_indices[i - 1]; max_num_features = std::max(max_num_features, example_size); } const size_t stride_size = config.dense[d].elements_per_stride; const size_t max_num_elements = max_num_features / stride_size; tf::TensorShape values_shape; DCHECK_EQ(max_num_features % config.dense[d].elements_per_stride, 0); const size_t batch_size = GetStringCount(serialized); TF_RETURN_IF_ERROR(values_shape.AddDimWithStatus(batch_size)); TF_RETURN_IF_ERROR(values_shape.AddDimWithStatus(max_num_elements)); for (int i = 1; i < config.dense[d].shape.dims(); ++i) { TF_RETURN_IF_ERROR( values_shape.AddDimWithStatus(config.dense[d].shape.dim_size(i))); } TfLiteTensor* values = result->dense_values[d]; const size_t num_elements = GetTensorShape(values).FlatSize(); if (num_elements == 0) { continue; } const size_t num_elements_per_minibatch = num_elements / batch_size; switch (config.dense[d].dtype) { case tf::DT_INT64: { FillAndCopyVarLen<int64_t>(d, num_elements, num_elements_per_minibatch, config, varlen_dense_buffers, values); break; } case tf::DT_FLOAT: { FillAndCopyVarLen<float>(d, num_elements, num_elements_per_minibatch, config, varlen_dense_buffers, values); break; } default: DCHECK(false) << "Encountered unexpected DataType " << config.dense[d].dtype << "in variable that should have been checked"; } } for (size_t d = 0; d < config.dense.size(); ++d) { if (config.dense[d].variable_length) { continue; } if (result->dense_values[d]->type == kTfLiteString) { auto& in = result->dense_tensors[d]; auto vec = in.vec<tstring>(); const int batch_size = result->dense_values[d]->dims->data[0]; const int elements_per_stride = config.dense[d].elements_per_stride; int total_size = 0; std::vector<int32_t> offsets; offsets.reserve(vec.size() + 1); offsets.push_back(0); int k = 0; for (int i = 0; i < batch_size; ++i) { for (int j = 0; j < elements_per_stride; ++j) { if (i < count) { total_size += vec(k++).size(); offsets.push_back(total_size); } else { offsets.push_back(total_size); } } } const int32_t num_strings = offsets.size() - 1; const size_t required_bytes = sizeof(int32_t) * (num_strings + 2) + total_size; char* tensor_buffer = reinterpret_cast<char*>(result->dense_values[d]->data.raw); if (result->dense_values[d]->bytes < required_bytes) { if (result->dense_values[d]->data.raw) { free(result->dense_values[d]->data.raw); } tensor_buffer = reinterpret_cast<char*>(malloc(required_bytes)); result->dense_values[d]->data.raw = tensor_buffer; result->dense_values[d]->bytes = required_bytes; } const int32_t start = sizeof(int32_t) * (num_strings + 2); memcpy(tensor_buffer, &num_strings, sizeof(int32_t)); for (size_t i = 0; i < offsets.size(); i++) { int32_t offset_i = start + offsets[i]; memcpy(tensor_buffer + sizeof(int32_t) * (i + 1), &offset_i, sizeof(int32_t)); } absl::Span<const tstring> slice(vec.data(), vec.size()); CopyToBuffer(slice, tensor_buffer + start, count, batch_size, elements_per_stride); } } return absl::OkStatus(); } } enum InputTensor { kExampleTensor = 0, kNamesTensor = 1, kSparseKeysTensor = 2, kDenseKeysTensor = 3, kRaggedKeysTensor = 4, }; struct OpData { FastParseExampleConfig config; std::vector<tf::TensorShape> dense_shapes; int dense_size = 0; int sparse_size = 0; std::unique_ptr<ConfigIndex> config_index; int config_index_size; SeededHasher hasher; TfLiteResult got; bool* quick_filter = nullptr; int quick_filter_size; bool created = false; ~OpData() { if (quick_filter) { free(quick_filter); } } }; void* Init(TfLiteContext* context, const char* buffer, size_t length) { return new OpData; } template <typename T> tf::Tensor AsTensor(const std::vector<T>& val) { tf::Tensor ret(tf::DataTypeToEnum<T>::value, {static_cast<int64_t>(val.size())}); std::copy_n(val.begin(), val.size(), ret.flat<T>().data()); return ret; } enum Version { V1, V2, }; tf::TensorShape TfLiteToTfShape(TfLiteIntArray* array) { tf::TensorShape shape; for (int i = 0; i < array->size; i++) { shape.AddDim(array->data[i]); } return shape; } template <Version version> TfLiteStatus PrepareParseExample(TfLiteContext* context, TfLiteNode* node) { OpData* data = reinterpret_cast<OpData*>(node->user_data); TF_LITE_ENSURE(context, node->custom_initial_data); data->config.dense.clear(); data->config.sparse.clear(); data->got.dense_values.clear(); const flexbuffers::Vector& v = flexbuffers::GetRoot( reinterpret_cast<const uint8_t*>(node->custom_initial_data), node->custom_initial_data_size) .AsVector(); if (v.size() == 2) { tf::NodeDef nodedef; TF_LITE_ENSURE_EQ(context, nodedef.ParseFromString(v[1].AsString().str()), true); if (version == V1) { data->dense_size = nodedef.attr().at("Ndense").i(); data->sparse_size = nodedef.attr().at("Nsparse").i(); } else if (version == V2) { data->dense_size = nodedef.attr().at("Tdense").list().type_size(); data->sparse_size = nodedef.attr().at("num_sparse").i(); } auto dense_shapes = nodedef.attr().at("dense_shapes").list(); if (data->dense_shapes.empty()) { for (int i = 0; i < dense_shapes.shape_size(); ++i) { data->dense_shapes.push_back(dense_shapes.shape(i)); } } } else { const flexbuffers::Map& m = flexbuffers::GetRoot( reinterpret_cast<const uint8_t*>(node->custom_initial_data), node->custom_initial_data_size) .AsMap(); const flexbuffers::TypedVector keys = m.Keys(); int num_sparse = 0; int num_dense = 0; for (int k = 0; k < keys.size(); ++k) { const std::string key = keys[k].ToString(); const auto value = m[key]; if (key == "Nsparse" || key == "num_sparse") { num_sparse = value.AsInt32(); } if (key == "Ndense") { num_dense = value.AsInt32(); } } data->sparse_size = num_sparse; data->dense_size = num_dense; if (version == V2) { const TfLiteTensor* dense_key_tensor = GetInput(context, node, kDenseKeysTensor); data->dense_size = GetTensorShape(dense_key_tensor).FlatSize(); } } data->config.dense.reserve(data->dense_size); data->config.sparse.reserve(data->sparse_size); data->dense_shapes.reserve(data->dense_size); const auto* serialized = GetInput(context, node, 0); const int batch_size = serialized->dims->size > 0 ? serialized->dims->data[0] : 1; const bool missing_shape_info = data->dense_shapes.empty(); for (int i = 0; i < data->dense_size; i++) { TfLiteTensor* dense_key_tensor = GetOutput(context, node, data->sparse_size * 3 + i); TfLiteIntArray* output_size = TfLiteIntArrayCopy(dense_key_tensor->dims); if (missing_shape_info) { data->dense_shapes.push_back(TfLiteToTfShape(output_size)); } const int original_size = data->dense_shapes[i].dims() > 0 ? data->dense_shapes[i].dim_size(0) : 1; output_size->data[0] = batch_size * original_size; context->ResizeTensor(context, dense_key_tensor, output_size); } size_t offset = 0; for (int i = 0; i < data->sparse_size; i++) { auto* parse_output = GetOutput(context, node, i + offset); SetTensorToDynamic(parse_output); TfLiteIntArray* sparse_size = TfLiteIntArrayCreate(2); sparse_size->data[0] = batch_size; sparse_size->data[1] = 2; context->ResizeTensor(context, parse_output, sparse_size); data->got.sparse_indices.push_back(parse_output); } offset += data->sparse_size; for (int i = 0; i < data->sparse_size; i++) { auto* parse_output = GetOutput(context, node, i + offset); SetTensorToDynamic(parse_output); TfLiteIntArray* sparse_size = TfLiteIntArrayCreate(1); sparse_size->data[0] = 0; context->ResizeTensor(context, parse_output, sparse_size); data->got.sparse_values.push_back(parse_output); } offset += data->sparse_size; for (int i = 0; i < data->sparse_size; i++) { TfLiteTensor* parse_output = GetOutput(context, node, i + offset); SetTensorToDynamic(parse_output); TfLiteIntArray* sparse_size = TfLiteIntArrayCreate(1); sparse_size->data[0] = 2; context->ResizeTensor(context, parse_output, sparse_size); auto* shapes_shape_t = reinterpret_cast<int64_t*>(parse_output->data.i64); shapes_shape_t[0] = batch_size; shapes_shape_t[1] = 1; data->got.sparse_shapes.push_back(parse_output); } data->created = false; return kTfLiteOk; } template <Version version> TfLiteStatus EvalParseExample(TfLiteContext* context, TfLiteNode* node) { OpData* data = reinterpret_cast<OpData*>(node->user_data); if (!data->created) { for (int i = 0; i < data->sparse_size; i++) { int input_index = version == V1 ? kSparseKeysTensor + i : kSparseKeysTensor; int string_index = version == V1 ? 0 : i; const TfLiteTensor* sparse_key_tensor = GetInput(context, node, input_index); const auto key = GetString(sparse_key_tensor, string_index); const auto* sparse_output = GetOutput(context, node, i + data->sparse_size); std::string k(key.str, key.len); switch (sparse_output->type)
#include "tensorflow/lite/kernels/parse_example/parse_example.h" #include <cstdint> #include <initializer_list> #include <string> #include "flatbuffers/flexbuffers.h" #include "tensorflow/core/example/feature_util.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/tstring.h" #include "tensorflow/lite/core/api/op_resolver.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/interpreter.h" #include "tensorflow/lite/core/interpreter_builder.h" #include "tensorflow/lite/core/kernels/register.h" #include "tensorflow/lite/core/model_builder.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/string_util.h" namespace tflite { namespace ops { namespace custom { namespace tf = ::tensorflow; const char* kNodeDefTxt = R"pb( name: "ParseExample/ParseExample" op: "ParseExample" input: "serialized" input: "ParseExample/ParseExample/names" input: "ParseExample/ParseExample/dense_keys_0" input: "ParseExample/Const" attr { key: "Ndense" value { i: 1 } } attr { key: "Nsparse" value { i: 0 } } attr { key: "Tdense" value { list { type: DT_FLOAT } } } attr { key: "dense_shapes" value { list { shape { dim { size: 2 } } } } } attr { key: "sparse_types" value { list { type: DT_FLOAT } } } )pb"; const char* kNodeDefTxt2 = R"pb( name: "ParseExample/ParseExample" op: "ParseExample" input: "serialized" input: "ParseExample/ParseExample/names" input: "ParseExample/ParseExample/sparse_keys_0" attr { key: "Ndense" value { i: 0 } } attr { key: "Nsparse" value { i: 1 } } attr { key: "Tdense" value {} } attr { key: "dense_shapes" value {} } attr { key: "sparse_types" value { list { type: DT_FLOAT } } } )pb"; const char* kNodeDefTxt3 = R"pb( name: "ParseExample/ParseExample" op: "ParseExample" input: "serialized" input: "ParseExample/ParseExample/names" input: "ParseExample/ParseExample/sparse_keys_0" attr { key: "Ndense" value { i: 1 } } attr { key: "Nsparse" value { i: 0 } } attr { key: "Tdense" value { list { type: DT_STRING } } } attr { key: "dense_shapes" value { list { shape { dim { size: 1 } } } } } attr { key: "sparse_types" value { list { type: DT_FLOAT } } } )pb"; const char* kNodeDefTxt4 = R"pb( name: "ParseExample/ParseExample" op: "ParseExample" input: "serialized" input: "ParseExample/ParseExample/names" input: "ParseExample/ParseExample/sparse_keys_0" attr { key: "Ndense" value { i: 0 } } attr { key: "Nsparse" value { i: 1 } } attr { key: "Tdense" value {} } attr { key: "dense_shapes" value {} } attr { key: "sparse_types" value { list { type: DT_STRING } } } )pb"; const char* kNodeDefTxt5 = R"pb( name: "ParseExample/ParseExample" op: "ParseExample" input: "serialized" input: "ParseExample/ParseExample/names" input: "ParseExample/ParseExample/dense_keys_0" input: "ParseExample/Const" attr { key: "Ndense" value { i: 1 } } attr { key: "Nsparse" value { i: 0 } } attr { key: "Tdense" value { list { type: DT_FLOAT } } } attr { key: "dense_shapes" value {} } attr { key: "sparse_types" value { list { type: DT_FLOAT } } } )pb"; template <typename DefaultType> class ParseExampleOpModel : public SingleOpModel { public: ParseExampleOpModel(std::vector<std::string> serialized_examples, std::vector<std::string> sparse_keys, std::vector<std::string> dense_keys, std::initializer_list<DefaultType> dense_defaults, std::vector<TensorType> dense_types, std::vector<TensorType> sparse_types, const char* text_def, int dense_size = 2) { const int input_size = serialized_examples.size(); auto input_tensor_data = TensorData(TensorType_STRING, {input_size}); string_indices_.push_back(AddInput(input_tensor_data)); string_indices_.push_back( AddConstInput<std::string>(TensorData(TensorType_STRING, {0}), {""})); std::for_each(sparse_keys.begin(), sparse_keys.end(), [&](auto&&) { string_indices_.push_back(AddInput(TensorData(TensorType_STRING, {1}))); }); std::for_each(dense_keys.begin(), dense_keys.end(), [&](auto&&) { string_indices_.push_back(AddInput(TensorData(TensorType_STRING, {1}))); }); if (dense_size > 0) { dense_defaults_ = AddConstInput<DefaultType>( TensorData(dense_types[0], {dense_size}), dense_defaults); } if (!sparse_keys.empty()) { for (int i = 0; i < sparse_keys.size(); i++) { sparse_indices_outputs_.push_back(AddOutput(TensorType_INT64)); } for (int i = 0; i < sparse_keys.size(); i++) { sparse_values_outputs_.push_back(AddOutput(sparse_types[i])); } for (int i = 0; i < sparse_keys.size(); i++) { sparse_shapes_outputs_.push_back(AddOutput({TensorType_INT64, {2}})); } } for (int i = 0; i < dense_keys.size(); i++) { dense_outputs_.push_back(AddOutput({dense_types[i], {dense_size}})); } tf::NodeDef nodedef; tf::protobuf::TextFormat::Parser parser; tf::protobuf::io::ArrayInputStream input_stream(text_def, strlen(text_def)); if (!parser.Parse(&input_stream, &nodedef)) { abort(); } std::string serialized_nodedef; nodedef.SerializeToString(&serialized_nodedef); flexbuffers::Builder fbb; fbb.Vector([&]() { fbb.String(nodedef.op()); fbb.String(serialized_nodedef); }); fbb.Finish(); const auto buffer = fbb.GetBuffer(); SetCustomOp("ParseExample", buffer, Register_PARSE_EXAMPLE); BuildInterpreter({{input_size}}); int idx = 0; PopulateStringTensor(string_indices_[idx++], serialized_examples); PopulateStringTensor(string_indices_[idx++], {""}); for (const auto& key : sparse_keys) { PopulateStringTensor(string_indices_[idx++], {key}); } for (const auto& key : dense_keys) { PopulateStringTensor(string_indices_[idx++], {key}); } } void ResizeInputTensor(std::vector<std::vector<int>> input_shapes) { for (size_t i = 0; i < input_shapes.size(); ++i) { const int input_idx = interpreter_->inputs()[i]; if (input_idx == kTfLiteOptionalTensor) continue; const auto& shape = input_shapes[i]; if (shape.empty()) continue; CHECK(interpreter_->ResizeInputTensor(input_idx, shape) == kTfLiteOk); } } template <typename T> std::vector<T> GetSparseIndicesOutput(int i) { return ExtractVector<T>(sparse_indices_outputs_[i]); } template <typename T> std::vector<T> GetSparseValuesOutput(int i) { return ExtractVector<T>(sparse_values_outputs_[i]); } template <typename T> std::vector<T> GetSparseShapesOutput(int i) { return ExtractVector<T>(sparse_shapes_outputs_[i]); } template <typename T> std::vector<T> GetDenseOutput(int i) { return ExtractVector<T>(dense_outputs_[i]); } std::vector<std::string> GetStringOutput(int i) { auto* t = interpreter_->tensor(i); int count = GetStringCount(t); std::vector<std::string> v; for (int i = 0; i < count; ++i) { auto ref = GetString(t, i); v.emplace_back(ref.str, ref.len); } return v; } int DenseDefaults() { return dense_defaults_; } int SparseValuesOutputs(int i) { return sparse_values_outputs_[i]; } int DenseOutputs(int i) { return dense_outputs_[i]; } std::vector<int> dense_outputs_; std::vector<int> sparse_indices_outputs_; std::vector<int> sparse_shapes_outputs_; std::vector<int> sparse_values_outputs_; std::vector<int> string_indices_; int dense_defaults_ = -1; }; TEST(ParseExampleOpsTest, SimpleTest) { tf::Example example; tf::AppendFeatureValues<float>({1.5f, 1.5f}, "time", &example); tf::AppendFeatureValues<float>({1.0f, 1.0f}, "num", &example); ParseExampleOpModel<float> m({example.SerializeAsString()}, {}, {"time"}, {0.f, 0.f}, {TensorType_FLOAT32}, {}, kNodeDefTxt); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetDenseOutput<float>(0), ElementsAreArray(ArrayFloatNear({1.5f, 1.5f}))); } TEST(ParseExampleOpsTest, SparseTest) { tf::Example example; tf::AppendFeatureValues<float>({1.5f}, "time", &example); ParseExampleOpModel<float> m({example.SerializeAsString()}, {"time"}, {}, {}, {}, {TensorType_FLOAT32}, kNodeDefTxt2, 0); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetSparseIndicesOutput<int64_t>(0), ElementsAreArray(ArrayFloatNear({0, 0}))); EXPECT_THAT(m.GetSparseValuesOutput<float>(0), ElementsAreArray(ArrayFloatNear({1.5f}))); EXPECT_THAT(m.GetSparseShapesOutput<int64_t>(0), ElementsAreArray(ArrayFloatNear({1, 1}))); } TEST(ParseExampleOpsTest, SimpleBytesTest) { tf::Example example; const std::string test_data = "simpletest"; tf::AppendFeatureValues<tensorflow::tstring>({test_data}, "time", &example); tf::AppendFeatureValues<float>({1.0f, 1.0f}, "num", &example); std::string default_value = "missing"; ParseExampleOpModel<std::string> m({example.SerializeAsString()}, {}, {"time"}, {default_value}, {TensorType_STRING}, {}, kNodeDefTxt3, 1); m.PopulateStringTensor(m.DenseDefaults(), {default_value}); ASSERT_EQ(m.Invoke(), kTfLiteOk); std::vector<string> c = m.GetStringOutput(m.DenseOutputs(0)); EXPECT_EQ(1, c.size()); EXPECT_EQ(test_data, c[0]); } TEST(ParseExampleOpsTest, SparseBytesTest) { tf::Example example; const std::string test_data = "simpletest"; tf::AppendFeatureValues<tensorflow::tstring>({test_data, test_data}, "time", &example); tf::AppendFeatureValues<float>({1.0f, 1.0f}, "num", &example); ParseExampleOpModel<std::string> m({example.SerializeAsString()}, {"time"}, {}, {}, {}, {TensorType_STRING}, kNodeDefTxt4, 0); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetSparseIndicesOutput<int64_t>(0), testing::ElementsAreArray({0, 0, 0, 1})); auto values = m.GetStringOutput(m.SparseValuesOutputs(0)); EXPECT_EQ(2, values.size()); EXPECT_EQ(test_data, values[0]); EXPECT_EQ(test_data, values[1]); EXPECT_THAT(m.GetSparseShapesOutput<int64_t>(0), testing::ElementsAreArray({1, 2})); } TEST(ParseExampleOpsTest, ResizeTest) { const int num_tests = 3; std::vector<tf::Example> examples(num_tests); std::vector<std::vector<float>> expected(num_tests); std::vector<std::vector<std::string>> inputs(num_tests); std::vector<int> sizes; for (int i = 0; i < num_tests; ++i) { float val = i; std::initializer_list<float> floats = {val + val / 10.f, -val - val / 10.f}; tf::AppendFeatureValues<float>({val, val}, "num", &examples[i]); tf::AppendFeatureValues<float>(floats, "time", &examples[i]); sizes.push_back((num_tests - i) * 2); for (int j = 0; j < sizes.back(); ++j) { inputs[i].push_back(examples[i].SerializeAsString()); expected[i].insert(expected[i].end(), floats.begin(), floats.end()); } } ParseExampleOpModel<float> m(inputs[0], {}, {"time"}, {0.f, 0.f}, {TensorType_FLOAT32}, {}, kNodeDefTxt); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetDenseOutput<float>(0), ElementsAreArray(ArrayFloatNear(expected[0]))); for (int i = 1; i < num_tests; ++i) { m.ResizeInputTensor({{sizes[i]}}); m.AllocateAndDelegate(false); m.PopulateStringTensor(0, inputs[i]); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetDenseOutput<float>(0), ElementsAreArray(ArrayFloatNear(expected[i]))); } } TEST(ParseExampleOpsTest, ResizeMissingInfoTest) { const int num_tests = 3; std::vector<tf::Example> examples(num_tests); std::vector<std::vector<float>> expected(num_tests); std::vector<std::vector<std::string>> inputs(num_tests); std::vector<int> sizes; for (int i = 0; i < num_tests; ++i) { float val = i; std::initializer_list<float> floats = {val + val / 10.f, -val - val / 10.f}; tf::AppendFeatureValues<float>({val, val}, "num", &examples[i]); tf::AppendFeatureValues<float>(floats, "time", &examples[i]); sizes.push_back((num_tests - i) * 2); for (int j = 0; j < sizes.back(); ++j) { inputs[i].push_back(examples[i].SerializeAsString()); expected[i].insert(expected[i].end(), floats.begin(), floats.end()); } } ParseExampleOpModel<float> m(inputs[0], {}, {"time"}, {0.f, 0.f}, {TensorType_FLOAT32}, {}, kNodeDefTxt5); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetDenseOutput<float>(0), ElementsAreArray(ArrayFloatNear(expected[0]))); for (int i = 1; i < num_tests; ++i) { m.ResizeInputTensor({{sizes[i]}}); m.AllocateAndDelegate(false); m.PopulateStringTensor(0, inputs[i]); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetDenseOutput<float>(0), ElementsAreArray(ArrayFloatNear(expected[i]))); } } } } }
944
cpp
tensorflow/tensorflow
example_proto_fast_parsing
tensorflow/lite/kernels/parse_example/example_proto_fast_parsing.cc
tensorflow/core/util/example_proto_fast_parsing_test.cc
#ifndef TENSORFLOW_CORE_UTIL_EXAMPLE_PROTO_FAST_PARSING_H_ #define TENSORFLOW_CORE_UTIL_EXAMPLE_PROTO_FAST_PARSING_H_ #include <string> #include <unordered_map> #include <utility> #include <vector> #include "tensorflow/core/example/example.pb.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/partial_tensor_shape.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/lib/gtl/array_slice.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/util/sparse/sparse_tensor.h" namespace tensorflow { namespace example { struct FastParseExampleConfig { struct Dense { Dense(StringPiece feature_name, DataType dtype, PartialTensorShape shape, Tensor default_value, bool variable_length, std::size_t elements_per_stride) : feature_name(feature_name), dtype(dtype), shape(std::move(shape)), default_value(std::move(default_value)), variable_length(variable_length), elements_per_stride(elements_per_stride) {} Dense() = default; tstring feature_name; DataType dtype; PartialTensorShape shape; Tensor default_value; bool variable_length; std::size_t elements_per_stride; }; struct Sparse { Sparse(StringPiece feature_name, DataType dtype) : feature_name(feature_name), dtype(dtype) {} Sparse() = default; tstring feature_name; DataType dtype; }; struct Ragged { Ragged(StringPiece feature_name, DataType dtype, DataType splits_dtype) : feature_name(feature_name), dtype(dtype), splits_dtype(splits_dtype) {} Ragged() = default; tstring feature_name; DataType dtype; DataType splits_dtype; }; std::vector<Dense> dense; std::vector<Sparse> sparse; std::vector<Ragged> ragged; bool collect_feature_stats = false; }; struct PerExampleFeatureStats { size_t features_count = 0; size_t feature_values_count = 0; }; struct Result { std::vector<Tensor> sparse_indices; std::vector<Tensor> sparse_values; std::vector<Tensor> sparse_shapes; std::vector<Tensor> dense_values; std::vector<Tensor> ragged_values; std::vector<Tensor> ragged_splits; std::vector<Tensor> ragged_outer_splits; std::vector<PerExampleFeatureStats> feature_stats; }; Status FastParseExample(const FastParseExampleConfig& config, absl::Span<const tstring> serialized, absl::Span<const tstring> example_names, thread::ThreadPool* thread_pool, Result* result); typedef FastParseExampleConfig FastParseSingleExampleConfig; Status FastParseSingleExample(const FastParseSingleExampleConfig& config, StringPiece serialized, Result* result); Status FastParseSequenceExample( const example::FastParseExampleConfig& context_config, const example::FastParseExampleConfig& sequence_config, absl::Span<const tstring> serialized, absl::Span<const tstring> example_names, thread::ThreadPool* thread_pool, example::Result* context_result, example::Result* sequence_result, std::vector<Tensor>* dense_feature_lengths, bool is_batch = true); bool TestFastParse(const string& serialized, Example* example); } } #endif #include "tensorflow/core/util/example_proto_fast_parsing.h" #include <algorithm> #include <functional> #include <optional> #include <utility> #include <vector> #include "absl/base/casts.h" #include "absl/container/flat_hash_map.h" #include "tensorflow/core/example/example.pb.h" #include "tensorflow/core/example/feature.pb.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/numeric_op.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/register_types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/threadpool.h" #include "tensorflow/core/lib/gtl/inlined_vector.h" #include "tensorflow/core/lib/monitoring/counter.h" #include "tensorflow/core/platform/blocking_counter.h" #include "tensorflow/core/platform/byte_order.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/util/presized_cuckoo_map.h" #include "tensorflow/core/util/sparse/sparse_tensor.h" namespace tensorflow { namespace example { namespace { template <typename T> using SmallVector = gtl::InlinedVector<T, 4>; template <typename T> class LimitedArraySlice { public: using value_type = T; LimitedArraySlice(T* begin, size_t num_elements) : current_(begin), begin_(begin), end_(begin + num_elements) {} int64_t EndDistance() const { return end_ - current_; } void push_back(T&& value) { if (EndDistance() > 0) *current_ = std::move(value); ++current_; } T& construct_at_end() { DCHECK_GT(EndDistance(), 0); return *(current_++); } T& back() { return *(current_ - 1); } size_t size() const { return std::min(current_ - begin_, end_ - begin_); } void resize(size_t size) { current_ = begin_ + size; } T* data() { return begin_; } private: T* current_; T* begin_; T* end_; }; template <typename A> auto EnableAliasing(A* a) -> decltype(a->EnableAliasing(true), void()) { a->EnableAliasing(true); } template <typename A> void EnableAliasing(A&& a) {} uint8 PeekTag(protobuf::io::CodedInputStream* stream) { DCHECK(stream != nullptr); const void* ptr; int size; if (!stream->GetDirectBufferPointer(&ptr, &size)) return 0; return *static_cast<const uint8*>(ptr); } constexpr uint8 kVarintTag(uint32 tag) { return (tag << 3) | 0; } constexpr uint8 kDelimitedTag(uint32 tag) { return (tag << 3) | 2; } constexpr uint8 kFixed32Tag(uint32 tag) { return (tag << 3) | 5; } namespace parsed { class Feature { public: Feature() = default; explicit Feature(StringPiece serialized) : serialized_(serialized) {} Status ParseDataType(DataType* dtype) { DCHECK(dtype != nullptr); if (serialized_.empty()) { *dtype = DT_INVALID; return absl::OkStatus(); } uint8 oneof_tag = static_cast<uint8>(*serialized_.data()); serialized_.remove_prefix(1); switch (oneof_tag) { case kDelimitedTag(1): *dtype = DT_STRING; break; case kDelimitedTag(2): *dtype = DT_FLOAT; break; case kDelimitedTag(3): *dtype = DT_INT64; break; default: *dtype = DT_INVALID; return errors::InvalidArgument("Unsupported datatype."); } return absl::OkStatus(); } bool GetNumElementsInBytesList(int* num_elements) { protobuf::io::CodedInputStream stream( reinterpret_cast<const uint8*>(serialized_.data()), serialized_.size()); EnableAliasing(&stream); uint32 length = 0; if (!stream.ReadVarint32(&length)) return false; auto limit = stream.PushLimit(length); *num_elements = 0; while (!stream.ExpectAtEnd()) { if (!stream.ExpectTag(kDelimitedTag(1))) return false; uint32 bytes_length = 0; if (!stream.ReadVarint32(&bytes_length)) return false; if (!stream.Skip(bytes_length)) return false; ++*num_elements; } stream.PopLimit(limit); return true; } tstring* construct_at_end(LimitedArraySlice<tstring>* bytes_list) { if (bytes_list->EndDistance() <= 0) { return nullptr; } return &bytes_list->construct_at_end(); } tstring* construct_at_end(SmallVector<tstring>* bytes_list) { return &bytes_list->emplace_back(); } template <typename Result> bool ParseBytesList(Result* bytes_list) { DCHECK(bytes_list != nullptr); protobuf::io::CodedInputStream stream( reinterpret_cast<const uint8*>(serialized_.data()), serialized_.size()); EnableAliasing(&stream); uint32 length; if (!stream.ReadVarint32(&length)) return false; auto limit = stream.PushLimit(length); while (!stream.ExpectAtEnd()) { if (!stream.ExpectTag(kDelimitedTag(1))) return false; uint32 bytes_length; if (!stream.ReadVarint32(&bytes_length)) return false; tstring* bytes = construct_at_end(bytes_list); if (bytes == nullptr) return false; bytes->resize_uninitialized(bytes_length); if (!stream.ReadRaw(bytes->data(), bytes_length)) return false; } stream.PopLimit(limit); return true; } template <typename Result> bool ParseFloatList(Result* float_list) { DCHECK(float_list != nullptr); protobuf::io::CodedInputStream stream( reinterpret_cast<const uint8*>(serialized_.data()), serialized_.size()); EnableAliasing(&stream); uint32 length; if (!stream.ReadVarint32(&length)) return false; auto limit = stream.PushLimit(length); if (!stream.ExpectAtEnd()) { uint8 peek_tag = PeekTag(&stream); if (peek_tag != kDelimitedTag(1) && peek_tag != kFixed32Tag(1)) { return false; } constexpr int32_t kNumFloatBytes = 4; if (peek_tag == kDelimitedTag(1)) { if (!stream.ExpectTag(kDelimitedTag(1))) return false; uint32 packed_length; if (!stream.ReadVarint32(&packed_length)) return false; auto packed_limit = stream.PushLimit(packed_length); const size_t initial_size = float_list->size(); float_list->resize(initial_size + packed_length / kNumFloatBytes); if (port::kLittleEndian && sizeof(typename Result::value_type) == kNumFloatBytes) { const uint32 bytes_to_copy = std::min(static_cast<uint32>((float_list->size() - initial_size) * kNumFloatBytes), packed_length); if (!stream.ReadRaw(float_list->data() + initial_size, bytes_to_copy)) return false; } else { int64_t index = initial_size; while (!stream.ExpectAtEnd()) { uint32 buffer32; if (!stream.ReadLittleEndian32(&buffer32)) return false; if (index < float_list->size()) { float_list->data()[index] = absl::bit_cast<float>(buffer32); ++index; } } } stream.PopLimit(packed_limit); } else { const size_t initial_size = float_list->size(); const int64_t num_elements = stream.BytesUntilLimit() / (1 + kNumFloatBytes); float_list->resize(initial_size + num_elements); int64_t index = initial_size; while (!stream.ExpectAtEnd()) { if (!stream.ExpectTag(kFixed32Tag(1))) return false; uint32 buffer32; if (!stream.ReadLittleEndian32(&buffer32)) return false; float_list->data()[index] = absl::bit_cast<float>(buffer32); ++index; } } } stream.PopLimit(limit); return true; } template <typename Result> bool ParseInt64List(Result* int64_list) { DCHECK(int64_list != nullptr); protobuf::io::CodedInputStream stream( reinterpret_cast<const uint8*>(serialized_.data()), serialized_.size()); EnableAliasing(&stream); uint32 length; if (!stream.ReadVarint32(&length)) return false; auto limit = stream.PushLimit(length); if (!stream.ExpectAtEnd()) { uint8 peek_tag = PeekTag(&stream); if (peek_tag != kDelimitedTag(1) && peek_tag != kVarintTag(1)) { return false; } if (peek_tag == kDelimitedTag(1)) { if (!stream.ExpectTag(kDelimitedTag(1))) return false; uint32 packed_length; if (!stream.ReadVarint32(&packed_length)) return false; auto packed_limit = stream.PushLimit(packed_length); while (!stream.ExpectAtEnd()) { protobuf_uint64 n; if (!stream.ReadVarint64(&n)) return false; int64_list->push_back(static_cast<int64_t>(n)); } stream.PopLimit(packed_limit); } else { while (!stream.ExpectAtEnd()) { if (!stream.ExpectTag(kVarintTag(1))) return false; protobuf_uint64 n; if (!stream.ReadVarint64(&n)) return false; int64_list->push_back(static_cast<int64_t>(n)); } } } stream.PopLimit(limit); return true; } StringPiece GetSerialized() const { return serialized_; } private: StringPiece serialized_; }; using FeatureMapEntry = std::pair<StringPiece, Feature>; using Example = std::vector<FeatureMapEntry>; } inline bool SkipExtraneousTag(protobuf::io::CodedInputStream* stream) { uint32 data; protobuf_uint64 dummy; switch (stream->ReadTag() & 0x7) { case 0: if (!stream->ReadVarint32(&data)) return false; return true; case 1: if (!stream->ReadLittleEndian64(&dummy)) return false; return true; case 2: if (!stream->ReadVarint32(&data)) return false; stream->Skip(data); return true; case 3: return false; case 4: return false; case 5: if (!stream->ReadLittleEndian32(&data)) return false; return true; } return false; } bool ParseString(protobuf::io::CodedInputStream* stream, StringPiece* result) { DCHECK(stream != nullptr); DCHECK(result != nullptr); uint32 length; if (!stream->ReadVarint32(&length)) return false; if (length == 0) { *result = StringPiece(nullptr, 0); return true; } const void* stream_alias; int stream_size; if (!stream->GetDirectBufferPointer(&stream_alias, &stream_size)) { return false; } if (static_cast<uint32>(stream_size) < length) return false; *result = StringPiece(static_cast<const char*>(stream_alias), length); stream->Skip(length); return true; } bool ParseFeatureMapEntry(protobuf::io::CodedInputStream* stream, parsed::FeatureMapEntry* feature_map_entry) { DCHECK(stream != nullptr); DCHECK(feature_map_entry != nullptr); uint32 length; if (!stream->ReadVarint32(&length)) return false; auto limit = stream->PushLimit(length); for (int n = 0; n < 2; ++n) { const uint32_t tag = stream->ReadTag(); switch (tag) { case kDelimitedTag(1): if (!ParseString(stream, &feature_map_entry->first)) return false; break; case kDelimitedTag(2): { StringPiece feature_string_piece; if (!ParseString(stream, &feature_string_piece)) return false; feature_map_entry->second = parsed::Feature(feature_string_piece); break; } default: return false; } } if (!stream->ExpectAtEnd()) return false; stream->PopLimit(limit); return true; } bool ParseFeatures(protobuf::io::CodedInputStream* stream, parsed::Example* example) { DCHECK(stream != nullptr); DCHECK(example != nullptr); uint32 length; if (!stream->ReadVarint32(&length)) return false; auto limit = stream->PushLimit(length); while (!stream->ExpectAtEnd()) { parsed::FeatureMapEntry feature_map_entry; if (!stream->ExpectTag(kDelimitedTag(1))) return false; if (!ParseFeatureMapEntry(stream, &feature_map_entry)) return false; example->push_back(std::move(feature_map_entry)); } stream->PopLimit(limit); return true; } bool ParseExample(protobuf::io::CodedInputStream* stream, parsed::Example* example) { DCHECK(stream != nullptr); DCHECK(example != nullptr); while (!stream->ExpectAtEnd()) { if (!stream->ExpectTag(kDelimitedTag(1))) { if (!SkipExtraneousTag(stream)) return false; } else { if (!ParseFeatures(stream, example)) return false; } } return true; } bool ParseExample(StringPiece serialized, parsed::Example* example) { DCHECK(example != nullptr); protobuf::io::CodedInputStream stream( reinterpret_cast<const uint8*>(serialized.data()), serialized.size()); EnableAliasing(&stream); return ParseExample(&stream, example); } } bool TestFastParse(const string& serialized, Example* example) { DCHECK(example != nullptr); parsed::Example parsed_example; if (!ParseExample(serialized, &parsed_example)) return false; auto& features = *example->mutable_features(); size_t parsed_example_size = parsed_example.size(); for (size_t i = 0; i < parsed_example_size; ++i) { parsed::FeatureMapEntry& name_and_feature = parsed_example[parsed_example_size - i - 1]; string name(name_and_feature.first); if ((*features.mutable_feature()).count(name) > 0) continue; auto& value = (*features.mutable_feature())[name]; DataType dtype; if (!name_and_feature.second.ParseDataType(&dtype).ok()) return false; switch (dtype) { case DT_INVALID: break; case DT_STRING: { SmallVector<tstring> list; if (!name_and_feature.second.ParseBytesList(&list)) return false; auto* result_list = value.mutable_bytes_list(); for (auto& bytes : list) { result_list->add_value(bytes.data(), bytes.size()); } break; } case DT_FLOAT: { SmallVector<float> list; if (!name_and_feature.second.ParseFloatList(&list)) return false; auto* result_list = value.mutable_float_list(); for (float f : list) { result_list->add_value(f); } break; } case DT_INT64: { SmallVector<int64_t> list; if (!name_and_feature.second.ParseInt64List(&list)) return false; auto* result_list = value.mutable_int64_list(); for (int64_t i : list) { result_list->add_value(i); } break; } default: LOG(FATAL) << "Should not happen."; } } return true; } namespace { using Config = FastParseExampleConfig; void ParallelFor(const std::function<void(size_t)>& f, size_t n, thread::ThreadPool* thread_pool) { if (n == 0) return; if (thread_pool == nullptr) { for (size_t i = 0; i < n; ++i) { f(i); } } else { BlockingCounter counter(n - 1); for (size_t i = 1; i < n; ++i) { thread_pool->Schedule([i, &f, &counter] { f(i); counter.DecrementCount(); }); } f(0); counter.Wait(); } } enum class Type { Dense, Sparse, Ragged }; struct SparseBuffer { SmallVector<tstring> bytes_list; SmallVector<float> float_list; SmallVector<int64_t> int64_list; std::vector<size_t> example_end_indices; }; struct SeededHasher { uint64 operator()(StringPiece s) const { return Hash64(s.data(), s.size(), seed); } uint64 seed{0xDECAFCAFFE}; }; void LogDenseFeatureDataLoss(StringPiece feature_name) { LOG(WARNING) << "Data loss! Feature '" << feature_name << "' is present in multiple concatenated " "tf.Examples. Ignoring all but last one."; static auto* duplicated_dense_feature = monitoring::Counter<0>::New( "/tensorflow/core/util/example_proto_fast_parsing/" "duplicated_dense_feature", "Dense feature appears twice in a tf.Example"); duplicated_dense_feature->GetCell()->IncrementBy(1); } void LogSparseFeatureDataLoss(StringPiece feature_name) { LOG(WARNING) << "Data loss! Feature '" << feature_name << "' is present in multiple concatenated " "tf.Examples. Ignoring all but last one."; static auto* duplicated_sparse_feature = monitoring::Counter<0>::New( "/tensorflow/core/util/example_proto_fast_parsing/" "duplicated_sparse_feature", "Sparse feature appears twice in a tf.Example"); duplicated_sparse_feature->GetCell()->IncrementBy(1); } Status FastParseSerializedExample( const tstring& serialized_example, const tstring& example_name, const size_t example_index, const Config& config, const PresizedCuckooMap<std::pair<size_t, Type>>& config_index, SeededHasher hasher, std::vector<Tensor>* output_dense, std::vector<SparseBuffer>* output_varlen_dense, std::vector<SparseBuffer>* output_sparse, std::vector<SparseBuffer>* output_ragged, PerExampleFeatureStats* output_stats) { DCHECK(output_dense != nullptr); DCHECK(output_sparse != nullptr); DCHECK(output_ragged != nullptr); parsed::Example parsed_example; if (!ParseExample(serialized_example, &parsed_example)) { return errors::InvalidArgument("Could not parse example input, value: '", serialized_example, "'"); } std::vector<int64_t> sparse_feature_last_example(config.sparse.size(), -1); std::vector<int64_t> dense_feature_last_example(config.dense.size(), -1); std::vector<int64_t> ragged_feature_last_example(config.ragged.size(), -1); const size_t parsed_example_size = parsed_example.size(); if (output_stats) { output_stats->features_count = parsed_example_size; } for (size_t i = 0; i < parsed_example_size; ++i) { parsed::FeatureMapEntry& name_and_feature = parsed_example[parsed_example_size - i - 1]; const StringPiece feature_name = name_and_feature.first; parsed::Feature& feature = name_and_feature.second; std::pair<size_t, Type> d_and_type; uint64 h = hasher(feature_name); if (!config_index.Find(h, &d_and_type)) continue; size_t d = d_and_type.first; bool is_dense = d_and_type.second == Type::Dense; bool is_ragged = d_and_type.second == Type::Ragged; { const tstring& config_feature_name = is_dense ? config.dense[d].feature_name : (is_ragged ? config.ragged[d].feature_name : config.sparse[d].feature_name); if (feature_name != config_feature_name) continue; } auto example_error = [&](StringPiece suffix) { return errors::InvalidArgument("Name: ", example_name, ", Key: ", feature_name, ", Index: ", example_index, ". ", suffix); }; auto parse_error = [&] { return example_error("Can't parse serialized Example."); }; DataType example_dtype; TF_RETURN_IF_ERROR(feature.ParseDataType(&example_dtype)); if (is_dense) { if (example_dtype == DT_INVALID) continue; if (dense_feature_last_example[d] == example_index) { LogDenseFeatureDataLoss(feature_name); continue; } dense_feature_last_example[d] = example_index; if (example_dtype != config.dense[d].dtype) { return example_error(strings::StrCat( "Data types don't match. Data type: ", DataTypeString(example_dtype), " but expected type: ", DataTypeString(config.dense[d].dtype))); } if (!config.dense[d].variable_length) { Tensor& out = (*output_dense)[d]; const std::size_t num_elements = config.dense[d].elements_per_stride; if (output_stats) { output_stats->feature_values_count += num_elements; } const std::size_t offset = example_index * num_elements; auto shape_error = [&](size_t size, StringPiece type_str) { return example_error(strings::StrCat( "Number of ", type_str, " values != expected. " "Values size: ", size, " but output shape: ", config.dense[d].shape.DebugString())); }; switch (config.dense[d].dtype) { case DT_INT64: { auto out_p = out.flat<int64_t>().data() + offset; LimitedArraySlice<int64_t> slice(out_p, num_elements); if (!feature.ParseInt64List(&slice)) return parse_error(); if (slice.EndDistance() != 0) { return shape_error(num_elements - slice.EndDistance(), "int64"); } break; } case DT_FLOAT: { auto out_p = out.flat<float>().data() + offset; LimitedArraySlice<float> slice(out_p, num_elements); if (!feature.ParseFloatList(&slice)) return parse_error(); if (slice.EndDistance() != 0) { return shape_error(num_elements - slice.EndDistance(), "float"); } break; } case DT_STRING: { auto out_p = out.flat<tstring>().data() + offset; LimitedArraySlice<tstring> slice(out_p, num_elements); if (!feature.ParseBytesList(&slice)) return parse_error(); if (slice.EndDistance() != 0) { return shape_error(num_elements - slice.EndDistance(), "bytes"); } break; } default
#include "tensorflow/core/util/example_proto_fast_parsing.h" #include <unordered_set> #include <utility> #include <vector> #include "tensorflow/core/example/example.pb.h" #include "tensorflow/core/example/feature.pb.h" #include "tensorflow/core/lib/random/philox_random.h" #include "tensorflow/core/lib/random/simple_philox.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/util/example_proto_fast_parsing_test.pb.h" namespace tensorflow { namespace example { namespace { constexpr char kDenseInt64Key[] = "dense_int64"; constexpr char kDenseFloatKey[] = "dense_float"; constexpr char kDenseStringKey[] = "dense_string"; constexpr char kSparseInt64Key[] = "sparse_int64"; constexpr char kSparseFloatKey[] = "sparse_float"; constexpr char kSparseStringKey[] = "sparse_string"; string SerializedToReadable(string serialized) { string result; result += '"'; for (char c : serialized) result += strings::StrCat("\\x", strings::Hex(c, strings::kZeroPad2)); result += '"'; return result; } template <class T> string Serialize(const T& example) { string serialized; example.SerializeToString(&serialized); return serialized; } void TestCorrectness(const string& serialized) { Example example; Example fast_example; EXPECT_TRUE(example.ParseFromString(serialized)); example.DiscardUnknownFields(); EXPECT_TRUE(TestFastParse(serialized, &fast_example)); EXPECT_EQ(example.DebugString(), fast_example.DebugString()); if (example.DebugString() != fast_example.DebugString()) { LOG(ERROR) << "Bad serialized: " << SerializedToReadable(serialized); } } TEST(FastParse, IgnoresPrecedingUnknownTopLevelFields) { ExampleWithExtras example; (*example.mutable_features()->mutable_feature())["age"] .mutable_int64_list() ->add_value(13); example.set_extra1("some_str"); example.set_extra2(123); example.set_extra3(234); example.set_extra4(345); example.set_extra5(4.56); example.add_extra6(5.67); example.add_extra6(6.78); (*example.mutable_extra7()->mutable_feature())["extra7"] .mutable_int64_list() ->add_value(1337); Example context; (*context.mutable_features()->mutable_feature())["zipcode"] .mutable_int64_list() ->add_value(94043); TestCorrectness(strings::StrCat(Serialize(example), Serialize(context))); } TEST(FastParse, IgnoresTrailingUnknownTopLevelFields) { Example example; (*example.mutable_features()->mutable_feature())["age"] .mutable_int64_list() ->add_value(13); ExampleWithExtras context; (*context.mutable_features()->mutable_feature())["zipcode"] .mutable_int64_list() ->add_value(94043); context.set_extra1("some_str"); context.set_extra2(123); context.set_extra3(234); context.set_extra4(345); context.set_extra5(4.56); context.add_extra6(5.67); context.add_extra6(6.78); (*context.mutable_extra7()->mutable_feature())["extra7"] .mutable_int64_list() ->add_value(1337); TestCorrectness(strings::StrCat(Serialize(example), Serialize(context))); } TEST(FastParse, SingleInt64WithContext) { Example example; (*example.mutable_features()->mutable_feature())["age"] .mutable_int64_list() ->add_value(13); Example context; (*context.mutable_features()->mutable_feature())["zipcode"] .mutable_int64_list() ->add_value(94043); TestCorrectness(strings::StrCat(Serialize(example), Serialize(context))); } TEST(FastParse, DenseInt64WithContext) { Example example; (*example.mutable_features()->mutable_feature())["age"] .mutable_int64_list() ->add_value(0); Example context; (*context.mutable_features()->mutable_feature())["age"] .mutable_int64_list() ->add_value(15); string serialized = Serialize(example) + Serialize(context); { Example deserialized; EXPECT_TRUE(deserialized.ParseFromString(serialized)); EXPECT_EQ(deserialized.DebugString(), context.DebugString()); } TestCorrectness(serialized); } TEST(FastParse, NonPacked) { TestCorrectness( "\x0a\x0e\x0a\x0c\x0a\x03\x61\x67\x65\x12\x05\x1a\x03\x0a\x01\x0d"); } TEST(FastParse, Packed) { TestCorrectness( "\x0a\x0d\x0a\x0b\x0a\x03\x61\x67\x65\x12\x04\x1a\x02\x08\x0d"); } TEST(FastParse, ValueBeforeKeyInMap) { TestCorrectness("\x0a\x12\x0a\x10\x12\x09\x0a\x07\x0a\x05value\x0a\x03key"); } TEST(FastParse, EmptyFeatures) { Example example; example.mutable_features(); TestCorrectness(Serialize(example)); } void TestCorrectnessJson(const string& json) { auto resolver = protobuf::util::NewTypeResolverForDescriptorPool( "type.googleapis.com", protobuf::DescriptorPool::generated_pool()); string serialized; auto s = protobuf::util::JsonToBinaryString( resolver, "type.googleapis.com/tensorflow.Example", json, &serialized); EXPECT_TRUE(s.ok()) << s; delete resolver; TestCorrectness(serialized); } TEST(FastParse, JsonUnivalent) { TestCorrectnessJson( "{'features': {" " 'feature': {'age': {'int64_list': {'value': [0]} }}, " " 'feature': {'flo': {'float_list': {'value': [1.1]} }}, " " 'feature': {'byt': {'bytes_list': {'value': ['WW8='] }}}" "}}"); } TEST(FastParse, JsonMultivalent) { TestCorrectnessJson( "{'features': {" " 'feature': {'age': {'int64_list': {'value': [0, 13, 23]} }}, " " 'feature': {'flo': {'float_list': {'value': [1.1, 1.2, 1.3]} }}, " " 'feature': {'byt': {'bytes_list': {'value': ['WW8=', 'WW8K'] }}}" "}}"); } TEST(FastParse, SingleInt64) { Example example; (*example.mutable_features()->mutable_feature())["age"] .mutable_int64_list() ->add_value(13); TestCorrectness(Serialize(example)); } static string ExampleWithSomeFeatures() { Example example; (*example.mutable_features()->mutable_feature())[""]; (*example.mutable_features()->mutable_feature())["empty_bytes_list"] .mutable_bytes_list(); (*example.mutable_features()->mutable_feature())["empty_float_list"] .mutable_float_list(); (*example.mutable_features()->mutable_feature())["empty_int64_list"] .mutable_int64_list(); BytesList* bytes_list = (*example.mutable_features()->mutable_feature())["bytes_list"] .mutable_bytes_list(); bytes_list->add_value("bytes1"); bytes_list->add_value("bytes2"); FloatList* float_list = (*example.mutable_features()->mutable_feature())["float_list"] .mutable_float_list(); float_list->add_value(1.0); float_list->add_value(2.0); Int64List* int64_list = (*example.mutable_features()->mutable_feature())["int64_list"] .mutable_int64_list(); int64_list->add_value(3); int64_list->add_value(270); int64_list->add_value(86942); return Serialize(example); } TEST(FastParse, SomeFeatures) { TestCorrectness(ExampleWithSomeFeatures()); } static void AddDenseFeature(const char* feature_name, DataType dtype, PartialTensorShape shape, bool variable_length, size_t elements_per_stride, FastParseExampleConfig* out_config) { out_config->dense.emplace_back(); auto& new_feature = out_config->dense.back(); new_feature.feature_name = feature_name; new_feature.dtype = dtype; new_feature.shape = std::move(shape); new_feature.default_value = Tensor(dtype, {}); new_feature.variable_length = variable_length; new_feature.elements_per_stride = elements_per_stride; } static void AddSparseFeature(const char* feature_name, DataType dtype, FastParseExampleConfig* out_config) { out_config->sparse.emplace_back(); auto& new_feature = out_config->sparse.back(); new_feature.feature_name = feature_name; new_feature.dtype = dtype; } TEST(FastParse, StatsCollection) { const size_t kNumExamples = 13; std::vector<tstring> serialized(kNumExamples, ExampleWithSomeFeatures()); FastParseExampleConfig config_dense; AddDenseFeature("bytes_list", DT_STRING, {2}, false, 2, &config_dense); AddDenseFeature("float_list", DT_FLOAT, {2}, false, 2, &config_dense); AddDenseFeature("int64_list", DT_INT64, {3}, false, 3, &config_dense); config_dense.collect_feature_stats = true; FastParseExampleConfig config_varlen; AddDenseFeature("bytes_list", DT_STRING, {-1}, true, 1, &config_varlen); AddDenseFeature("float_list", DT_FLOAT, {-1}, true, 1, &config_varlen); AddDenseFeature("int64_list", DT_INT64, {-1}, true, 1, &config_varlen); config_varlen.collect_feature_stats = true; FastParseExampleConfig config_sparse; AddSparseFeature("bytes_list", DT_STRING, &config_sparse); AddSparseFeature("float_list", DT_FLOAT, &config_sparse); AddSparseFeature("int64_list", DT_INT64, &config_sparse); config_sparse.collect_feature_stats = true; FastParseExampleConfig config_mixed; AddDenseFeature("bytes_list", DT_STRING, {2}, false, 2, &config_mixed); AddDenseFeature("float_list", DT_FLOAT, {-1}, true, 1, &config_mixed); AddSparseFeature("int64_list", DT_INT64, &config_mixed); config_mixed.collect_feature_stats = true; for (const FastParseExampleConfig& config : {config_dense, config_varlen, config_sparse, config_mixed}) { { Result result; TF_CHECK_OK(FastParseExample(config, serialized, {}, nullptr, &result)); EXPECT_EQ(kNumExamples, result.feature_stats.size()); for (const PerExampleFeatureStats& stats : result.feature_stats) { EXPECT_EQ(7, stats.features_count); EXPECT_EQ(7, stats.feature_values_count); } } { Result result; TF_CHECK_OK(FastParseSingleExample(config, serialized[0], &result)); EXPECT_EQ(1, result.feature_stats.size()); EXPECT_EQ(7, result.feature_stats[0].features_count); EXPECT_EQ(7, result.feature_stats[0].feature_values_count); } } } string RandStr(random::SimplePhilox* rng) { static const char key_char_lookup[] = "0123456789{}~`!@#$%^&*()" "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "abcdefghijklmnopqrstuvwxyz"; auto len = 1 + rng->Rand32() % 200; string str; str.reserve(len); while (len-- > 0) { str.push_back( key_char_lookup[rng->Rand32() % (sizeof(key_char_lookup) / sizeof(key_char_lookup[0]))]); } return str; } void Fuzz(random::SimplePhilox* rng) { auto num_keys = 1 + rng->Rand32() % 100; std::unordered_set<string> unique_keys; for (auto i = 0; i < num_keys; ++i) { unique_keys.emplace(RandStr(rng)); } Example example; string serialized_example; auto num_concats = 1 + rng->Rand32() % 4; std::vector<Feature::KindCase> feat_types( {Feature::kBytesList, Feature::kFloatList, Feature::kInt64List}); std::vector<string> all_keys(unique_keys.begin(), unique_keys.end()); while (num_concats--) { example.Clear(); auto num_active_keys = 1 + rng->Rand32() % all_keys.size(); for (auto i = 0; i < num_active_keys; ++i) { auto fkey = all_keys[rng->Rand32() % all_keys.size()]; auto ftype_idx = rng->Rand32() % feat_types.size(); auto num_features = 1 + rng->Rand32() % 5; switch (static_cast<Feature::KindCase>(feat_types[ftype_idx])) { case Feature::kBytesList: { BytesList* bytes_list = (*example.mutable_features()->mutable_feature())[fkey] .mutable_bytes_list(); while (num_features--) { bytes_list->add_value(RandStr(rng)); } break; } case Feature::kFloatList: { FloatList* float_list = (*example.mutable_features()->mutable_feature())[fkey] .mutable_float_list(); while (num_features--) { float_list->add_value(rng->RandFloat()); } break; } case Feature::kInt64List: { Int64List* int64_list = (*example.mutable_features()->mutable_feature())[fkey] .mutable_int64_list(); while (num_features--) { int64_list->add_value(rng->Rand64()); } break; } default: { LOG(QFATAL); break; } } } serialized_example += example.SerializeAsString(); } TestCorrectness(serialized_example); } TEST(FastParse, FuzzTest) { const uint64 seed = 1337; random::PhiloxRandom philox(seed); random::SimplePhilox rng(&philox); auto num_runs = 200; while (num_runs--) { LOG(INFO) << "runs left: " << num_runs; Fuzz(&rng); } } TEST(TestFastParseExample, Empty) { Result result; FastParseExampleConfig config; config.sparse.push_back({"test", DT_STRING}); Status status = FastParseExample(config, absl::Span<const tstring>(), absl::Span<const tstring>(), nullptr, &result); EXPECT_TRUE(status.ok()) << status; } } } }
945
cpp
tensorflow/tensorflow
signature_runner
tensorflow/lite/core/signature_runner.cc
tensorflow/lite/core/signature_runner_test.cc
#ifndef TENSORFLOW_LITE_CORE_SIGNATURE_RUNNER_H_ #define TENSORFLOW_LITE_CORE_SIGNATURE_RUNNER_H_ #include <cstddef> #include <cstdint> #include <string> #include <vector> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/subgraph.h" #include "tensorflow/lite/internal/signature_def.h" namespace tflite { namespace impl { class Interpreter; } class SignatureRunnerHelper; class SignatureRunnerJNIHelper; class TensorHandle; namespace impl { class SignatureRunner { public: const std::string& signature_key() { return signature_def_->signature_key; } size_t input_size() const { return subgraph_->inputs().size(); } size_t output_size() const { return subgraph_->outputs().size(); } const std::vector<const char*>& input_names() { return input_names_; } const std::vector<const char*>& output_names() { return output_names_; } TfLiteTensor* input_tensor(const char* input_name); const TfLiteTensor* output_tensor(const char* output_name) const; TfLiteStatus ResizeInputTensor(const char* input_name, const std::vector<int>& new_size); TfLiteStatus ResizeInputTensorStrict(const char* input_name, const std::vector<int>& new_size); TfLiteStatus AllocateTensors() { return subgraph_->AllocateTensors(); } TfLiteStatus Invoke(); TfLiteStatus Cancel() { return subgraph_->Cancel(); } TfLiteStatus SetCustomAllocationForInputTensor( const char* input_name, const TfLiteCustomAllocation& allocation, int64_t flags = kTfLiteCustomAllocationFlagsNone); TfLiteStatus SetCustomAllocationForOutputTensor( const char* output_name, const TfLiteCustomAllocation& allocation, int64_t flags = kTfLiteCustomAllocationFlagsNone); void SetAllowBufferHandleOutput(bool allow_buffer_handle_output) { allow_buffer_handle_output_ = allow_buffer_handle_output; } private: SignatureRunner(const internal::SignatureDef* signature_def, Subgraph* subgraph); friend class ::tflite::impl::Interpreter; friend class ::tflite::SignatureRunnerHelper; friend class ::tflite::SignatureRunnerJNIHelper; friend class ::tflite::TensorHandle; const internal::SignatureDef* signature_def_; Subgraph* subgraph_; std::vector<const char*> input_names_; std::vector<const char*> output_names_; bool allow_buffer_handle_output_ = false; }; } } #endif #include "tensorflow/lite/core/signature_runner.h" #include <vector> #include "tensorflow/lite/core/c/c_api_types.h" namespace tflite { namespace impl { SignatureRunner::SignatureRunner(const internal::SignatureDef* signature_def, Subgraph* subgraph) : signature_def_(signature_def), subgraph_(subgraph) { for (const auto& it : signature_def_->inputs) { input_names_.push_back(it.first.c_str()); } for (const auto& it : signature_def_->outputs) { output_names_.push_back(it.first.c_str()); } } TfLiteTensor* SignatureRunner::input_tensor(const char* input_name) { const auto& it = signature_def_->inputs.find(input_name); if (it == signature_def_->inputs.end()) { subgraph_->ReportError("Input name %s was not found", input_name); return nullptr; } return subgraph_->tensor(it->second); } const TfLiteTensor* SignatureRunner::output_tensor( const char* output_name) const { const auto& it = signature_def_->outputs.find(output_name); if (it == signature_def_->outputs.end()) { subgraph_->ReportError("Output name %s was not found", output_name); return nullptr; } return subgraph_->tensor(it->second); } TfLiteStatus SignatureRunner::ResizeInputTensor( const char* input_name, const std::vector<int>& new_size) { const auto& it = signature_def_->inputs.find(input_name); if (it == signature_def_->inputs.end()) { subgraph_->ReportError("Input name %s was not found", input_name); return kTfLiteError; } return subgraph_->ResizeInputTensor(it->second, new_size); } TfLiteStatus SignatureRunner::ResizeInputTensorStrict( const char* input_name, const std::vector<int>& new_size) { const auto& it = signature_def_->inputs.find(input_name); if (it == signature_def_->inputs.end()) { subgraph_->ReportError("Input name %s was not found", input_name); return kTfLiteError; } return subgraph_->ResizeInputTensorStrict(it->second, new_size); } TfLiteStatus SignatureRunner::Invoke() { if (subgraph_->continue_invocation_) (void)subgraph_->continue_invocation_->test_and_set(); TF_LITE_ENSURE_STATUS(subgraph_->Invoke()); if (!allow_buffer_handle_output_) { for (int tensor_index : subgraph_->outputs()) { TF_LITE_ENSURE_STATUS( subgraph_->EnsureTensorDataIsReadable(tensor_index)); } } return kTfLiteOk; } TfLiteStatus SignatureRunner::SetCustomAllocationForInputTensor( const char* input_name, const TfLiteCustomAllocation& allocation, int64_t flags) { const auto& it = signature_def_->inputs.find(input_name); if (it == signature_def_->inputs.end()) { subgraph_->ReportError("Input name %s was not found", input_name); return kTfLiteError; } return subgraph_->SetCustomAllocationForTensor(it->second, allocation, flags); } TfLiteStatus SignatureRunner::SetCustomAllocationForOutputTensor( const char* output_name, const TfLiteCustomAllocation& allocation, int64_t flags) { const auto& it = signature_def_->outputs.find(output_name); if (it == signature_def_->outputs.end()) { subgraph_->ReportError("Output name %s was not found", output_name); return kTfLiteError; } return subgraph_->SetCustomAllocationForTensor(it->second, allocation, flags); } } }
#include "tensorflow/lite/core/signature_runner.h" #include <memory> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/core/interpreter.h" #include "tensorflow/lite/core/interpreter_builder.h" #include "tensorflow/lite/core/kernels/register.h" #include "tensorflow/lite/testing/util.h" namespace tflite { namespace impl { namespace { TEST(SignatureRunnerTest, TestMultiSignatures) { TestErrorReporter reporter; auto model = FlatBufferModel::BuildFromFile( "tensorflow/lite/testdata/multi_signatures.bin", &reporter); ASSERT_TRUE(model); ops::builtin::BuiltinOpResolver resolver; InterpreterBuilder builder(*model, resolver); std::unique_ptr<Interpreter> interpreter; ASSERT_EQ(builder(&interpreter), kTfLiteOk); ASSERT_NE(interpreter, nullptr); std::vector<const std::string*> signature_defs = interpreter->signature_keys(); ASSERT_EQ(signature_defs.size(), 2); ASSERT_EQ(*(signature_defs[0]), "add"); ASSERT_EQ(*(signature_defs[1]), "sub"); ASSERT_EQ(interpreter->GetSignatureRunner("dummy"), nullptr); SignatureRunner* add_runner = interpreter->GetSignatureRunner(signature_defs[0]->c_str()); ASSERT_NE(add_runner, nullptr); ASSERT_EQ(add_runner->signature_key(), "add"); const std::vector<const char*>& input_names = add_runner->input_names(); const std::vector<const char*>& output_names = add_runner->output_names(); ASSERT_EQ(input_names.size(), 1); ASSERT_EQ(std::string(input_names[0]), "x"); ASSERT_EQ(output_names.size(), 1); ASSERT_EQ(std::string(output_names[0]), "output_0"); ASSERT_EQ(add_runner->ResizeInputTensor("x", {2}), kTfLiteOk); ASSERT_EQ(add_runner->AllocateTensors(), kTfLiteOk); TfLiteTensor* add_input = add_runner->input_tensor("x"); ASSERT_EQ(add_runner->input_tensor("dummy"), nullptr); const TfLiteTensor* add_output = add_runner->output_tensor("output_0"); ASSERT_EQ(add_runner->output_tensor("dummy"), nullptr); ASSERT_NE(add_input, nullptr); ASSERT_NE(add_output, nullptr); add_input->data.f[0] = 2; add_input->data.f[1] = 4; ASSERT_EQ(add_runner->Invoke(), kTfLiteOk); ASSERT_EQ(add_output->data.f[0], 4); ASSERT_EQ(add_output->data.f[1], 6); SignatureRunner* sub_runner = interpreter->GetSignatureRunner("sub"); ASSERT_NE(sub_runner, nullptr); ASSERT_EQ(sub_runner->signature_key(), "sub"); const std::vector<const char*>& input_names2 = sub_runner->input_names(); const std::vector<const char*>& output_names2 = sub_runner->output_names(); ASSERT_EQ(input_names2.size(), 1); ASSERT_EQ(std::string(input_names2[0]), "x"); ASSERT_EQ(output_names2.size(), 1); ASSERT_EQ(std::string(output_names2[0]), "output_0"); ASSERT_EQ(sub_runner->ResizeInputTensor("x", {3}), kTfLiteOk); ASSERT_EQ(sub_runner->AllocateTensors(), kTfLiteOk); TfLiteTensor* sub_input = sub_runner->input_tensor("x"); const TfLiteTensor* sub_output = sub_runner->output_tensor("output_0"); ASSERT_NE(sub_input, nullptr); ASSERT_NE(sub_output, nullptr); sub_input->data.f[0] = 2; sub_input->data.f[1] = 4; sub_input->data.f[2] = 6; ASSERT_EQ(sub_runner->Invoke(), kTfLiteOk); ASSERT_EQ(sub_output->data.f[0], -1); ASSERT_EQ(sub_output->data.f[1], 1); ASSERT_EQ(sub_output->data.f[2], 3); } } } }
946
cpp
tensorflow/tensorflow
model_builder
tensorflow/lite/delegates/gpu/common/model_builder.cc
tensorflow/lite/delegates/gpu/common/model_builder_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_COMMON_MODEL_BUILDER_H_ #define TENSORFLOW_LITE_DELEGATES_GPU_COMMON_MODEL_BUILDER_H_ #include <limits> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "tensorflow/lite/builtin_ops.h" #include "tensorflow/lite/core/api/op_resolver.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/model.h" #include "tensorflow/lite/delegates/gpu/common/model.h" #include "tensorflow/lite/delegates/gpu/common/shape.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/tensor.h" namespace tflite { namespace gpu { TfLiteIntArray* GetOpsToReplace( TfLiteContext* context, bool allow_quant_ops = false, int max_delegated_partitions = 1, const absl::flat_hash_set<TfLiteBuiltinOperator>* excluded_ops = nullptr, int start_node_index = 0, int end_node_index = std::numeric_limits<int>::max()); absl::Status BuildModel( TfLiteContext* context, const TfLiteDelegateParams* delegate_params, GraphFloat32* graph, absl::flat_hash_map<int, int>* quant_conversion_map = nullptr); absl::Status BuildModelEnforceIO( TfLiteContext* context, const TfLiteDelegateParams* delegate_params, const std::vector<int>& input_ids, const std::vector<int>& output_ids, GraphFloat32* graph, absl::flat_hash_map<int, int>* quant_conversion_map = nullptr); absl::Status BuildFinalModel( TfLiteContext* context, const TfLiteDelegateParams* delegate_params, GraphFloat32* graph, absl::flat_hash_map<int, int>* quant_conversion_map = nullptr); absl::Status BuildFromFlatBuffer(const FlatBufferModel& flatbuffer, const OpResolver& op_resolver, GraphFloat32* graph, bool allow_quant_ops = false); absl::Status ConvertTfLiteTensorToTensorRef(const TfLiteTensor& tflite_tensor, TensorRef<BHWC>* tensor_ref); } } #endif #include "tensorflow/lite/delegates/gpu/common/model_builder.h" #include <algorithm> #include <cstdint> #include <map> #include <memory> #include <set> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "tensorflow/lite/builtin_ops.h" #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/delegates/gpu/common/custom_parsers.h" #include "tensorflow/lite/delegates/gpu/common/data_type.h" #include "tensorflow/lite/delegates/gpu/common/lstm_parser.h" #include "tensorflow/lite/delegates/gpu/common/model.h" #include "tensorflow/lite/delegates/gpu/common/model_builder_helper.h" #include "tensorflow/lite/delegates/gpu/common/model_builder_internal.h" #include "tensorflow/lite/delegates/gpu/common/model_transformer.h" #include "tensorflow/lite/delegates/gpu/common/object_reader.h" #include "tensorflow/lite/delegates/gpu/common/operation_parser.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/shape.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/tensor.h" #include "tensorflow/lite/delegates/gpu/common/transformations/model_transformations.h" #include "tensorflow/lite/delegates/utils.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/kernel_util.h" #include "tensorflow/lite/tools/versioning/gpu_compatibility.h" #include "tensorflow/lite/util.h" namespace tflite { namespace gpu { namespace { absl::Status GetFullyConnectedAttributes(int weights_tensor_id, int bias_tensor_id, ObjectReader* reader, FullyConnectedAttributes* attr) { Tensor<HW, DataType::FLOAT32> weights; RETURN_IF_ERROR(reader->ReadTensor(weights_tensor_id, &weights)); attr->weights.data = std::move(weights.data); attr->weights.id = weights.id; attr->weights.shape.h = 1; attr->weights.shape.w = 1; attr->weights.shape.o = weights.shape.h; attr->weights.shape.i = weights.shape.w; reader->ReadTensor(bias_tensor_id, &attr->bias).IgnoreError(); return absl::OkStatus(); } template <typename ParamsT> absl::Status RetrieveBuiltinData(const TfLiteNode* tflite_node, const ParamsT** tf_options) { *tf_options = static_cast<const ParamsT*>(tflite_node->builtin_data); if (!*tf_options) { return absl::InternalError("Unable to retrieve builtin_data."); } return absl::OkStatus(); } template <typename ParamsT> absl::Status RetrieveCustomInitialData(const TfLiteNode* tflite_node, const ParamsT** tf_options) { *tf_options = static_cast<const ParamsT*>(tflite_node->custom_initial_data); if (!*tf_options) { return absl::InternalError("Unable to retrieve custom_initial_data."); } return absl::OkStatus(); } absl::Status NewConstNode(TensorFloat32 t, GraphFloat32* graph, Value** value) { ConstTensorAttributes attr; attr.tensor = std::move(t); Node* node = graph->NewNode(); node->operation.attributes = attr; node->operation.type = ToString(OperationType::CONSTANT); *value = graph->NewValue(); RETURN_IF_ERROR(graph->SetProducer(node->id, (*value)->id)); (*value)->tensor.ref = attr.tensor.id; (*value)->tensor.type = attr.tensor.kType; (*value)->tensor.shape = attr.tensor.shape; return absl::OkStatus(); } template <DataType DataTypeT, typename T> absl::Status ParseInputsWithConstTensorImpl( Node* node, ObjectReader* reader, TensorOrScalarBase<DataTypeT, T>* tensor_or_scalar) { const std::string& opname = node->operation.type; const TfLiteTensor* input0 = reader->GetInputTensor(0); if (!input0) { return absl::InvalidArgumentError("Couldn't get the 1st input tensor for " + opname); } const TfLiteTensor* input1 = reader->GetInputTensor(1); if (!input1) { return absl::InvalidArgumentError("Couldn't get the 2nd input tensor for " + opname); } const bool constant_tensor0 = IsConstantTensor(input0); const bool constant_tensor1 = IsConstantTensor(input1); if (constant_tensor0 && constant_tensor1) { return absl::InvalidArgumentError("No runtime input tensors for " + opname); } const bool runtime_tensor0 = !constant_tensor0; const bool runtime_tensor1 = !constant_tensor1; if (runtime_tensor0 && runtime_tensor1) { RETURN_IF_ERROR(reader->AddInput(node, 0)); RETURN_IF_ERROR(reader->AddInput(node, 1)); } else { int runtime_tensor = 0; int constant_tensor = 1; TfLiteIntArray* constant_dims = input1->dims; if (constant_tensor0 && runtime_tensor1) { runtime_tensor = 1; constant_tensor = 0; constant_dims = input0->dims; } RETURN_IF_ERROR(reader->AddInput(node, runtime_tensor)); if (constant_dims->size <= 0 || NumElements(constant_dims) == 1) { Tensor<Scalar, DataTypeT> tensor; RETURN_IF_ERROR(reader->ReadTensor(constant_tensor, &tensor)); *tensor_or_scalar = static_cast<T>(tensor.data[0]); } else { if (CheckIfLinearConvertible(constant_dims).ok()) { Tensor<Linear, DataTypeT> tensor; RETURN_IF_ERROR(reader->ReadTensor(constant_tensor, &tensor)); *tensor_or_scalar = std::move(tensor); } else if (constant_dims->size == 2) { Tensor<HW, DataTypeT> tensor_hw; RETURN_IF_ERROR(reader->ReadTensor(constant_tensor, &tensor_hw)); Tensor<HWC, DataTypeT> tensor; tensor.id = tensor_hw.id; tensor.shape = HWC(1, tensor_hw.shape.h, tensor_hw.shape.w); tensor.data = tensor_hw.data; *tensor_or_scalar = std::move(tensor); } else { Tensor<HWC, DataTypeT> tensor; RETURN_IF_ERROR(reader->ReadTensor(constant_tensor, &tensor)); if (tensor.data.size() == 1) { *tensor_or_scalar = static_cast<T>(tensor.data[0]); } else { *tensor_or_scalar = std::move(tensor); } } } } return absl::OkStatus(); } absl::Status ParseInputsWithConstTensor(Node* node, ObjectReader* reader, const TfLiteTensor* input0) { switch (input0->type) { case kTfLiteBool: { ElementwiseAttributesBase<DataType::BOOL, bool> attr; RETURN_IF_ERROR( ParseInputsWithConstTensorImpl(node, reader, &attr.param)); attr.runtime_tensor_is_second = IsConstantTensor(reader->GetInputTensor(0)); node->operation.attributes = std::move(attr); return absl::OkStatus(); } case kTfLiteInt32: { ElementwiseAttributesBase<DataType::INT32, int32_t> attr; RETURN_IF_ERROR( ParseInputsWithConstTensorImpl(node, reader, &attr.param)); attr.runtime_tensor_is_second = IsConstantTensor(reader->GetInputTensor(0)); node->operation.attributes = std::move(attr); return absl::OkStatus(); } default: { ElementwiseAttributes attr; RETURN_IF_ERROR( ParseInputsWithConstTensorImpl(node, reader, &attr.param)); attr.runtime_tensor_is_second = IsConstantTensor(reader->GetInputTensor(0)); node->operation.attributes = std::move(attr); return absl::OkStatus(); } } } absl::Status MaybeFuseActivationForElementwiseNode( OperationType operation_type, const TfLiteNode* tflite_node, GraphFloat32* graph, Node* node) { TfLiteFusedActivation activation = kTfLiteActNone; switch (operation_type) { case OperationType::MUL: { const TfLiteMulParams* tf_options; if (RetrieveBuiltinData(tflite_node, &tf_options).ok()) { activation = tf_options->activation; } break; } case OperationType::ADD: { const TfLiteAddParams* tf_options; if (RetrieveBuiltinData(tflite_node, &tf_options).ok()) { activation = tf_options->activation; } break; } case OperationType::SUB: { const TfLiteSubParams* tf_options; if (RetrieveBuiltinData(tflite_node, &tf_options).ok()) { activation = tf_options->activation; } break; } case OperationType::DIV: { const TfLiteDivParams* tf_options; if (RetrieveBuiltinData(tflite_node, &tf_options).ok()) { activation = tf_options->activation; } break; } default: activation = kTfLiteActNone; } if (activation) { return MaybeFuseActivation(activation, graph, node); } return absl::OkStatus(); } struct TensorInfo { std::vector<std::pair<TfLiteNode*, TfLiteRegistration*>> producers; std::vector<std::pair<TfLiteNode*, TfLiteRegistration*>> consumers; }; absl::Status GetTensorInfo(const TfLiteContext* context, int tensor_id, TensorInfo* result) { TfLiteIntArray* execution_plan = nullptr; if (context->GetExecutionPlan(const_cast<TfLiteContext*>(context), &execution_plan) != kTfLiteOk) { return absl::UnavailableError("Unable to get graph execution plan."); } for (int i = 0; i < execution_plan->size; ++i) { const int node_index = execution_plan->data[i]; TfLiteNode* node = nullptr; TfLiteRegistration* registration = nullptr; if (context->GetNodeAndRegistration(const_cast<TfLiteContext*>(context), node_index, &node, &registration) != kTfLiteOk) { return absl::UnavailableError( "Unable to get node and registration for node."); } for (int j = 0; j < node->inputs->size; ++j) { if (tensor_id == node->inputs->data[j]) { result->consumers.push_back({node, registration}); } } for (int j = 0; j < node->outputs->size; ++j) { if (tensor_id == node->outputs->data[j]) { result->producers.push_back({node, registration}); } } } return absl::OkStatus(); } bool IsLogicalCode(int32_t builtin_code) { return builtin_code == kTfLiteBuiltinGreater || builtin_code == kTfLiteBuiltinGreaterEqual || builtin_code == kTfLiteBuiltinLess || builtin_code == kTfLiteBuiltinLessEqual || builtin_code == kTfLiteBuiltinEqual || builtin_code == kTfLiteBuiltinNotEqual; } bool IsLogicalOp(tflite::gpu::OperationType op_type) { return op_type == tflite::gpu::OperationType::GREATER || op_type == tflite::gpu::OperationType::GREATER_EQUAL || op_type == tflite::gpu::OperationType::LESS || op_type == tflite::gpu::OperationType::LESS_EQUAL || op_type == tflite::gpu::OperationType::EQUAL || op_type == tflite::gpu::OperationType::NOT_EQUAL; } class BatchedMatMulOperationParser : public TFLiteOperationParser { public: absl::Status IsSupported(const TfLiteContext* context, const TfLiteNode* tflite_node, const TfLiteRegistration* registration) final { return CheckGpuDelegateCompatibility(context, tflite_node, registration); } absl::Status Parse(const TfLiteNode* tflite_node, const TfLiteRegistration* registration, GraphFloat32* graph, ObjectReader* reader) final { if (reader->GetNumberOfRuntimeInputs() == 2) { Node* node = graph->NewNode(); node->operation.type = ToString(OperationType::BATCHED_MATMUL); RETURN_IF_ERROR(reader->AddInput(node, 0)); RETURN_IF_ERROR(reader->AddInput(node, 1)); RETURN_IF_ERROR(reader->AddOutputs(node)); return absl::OkStatus(); } else if (reader->GetNumberOfRuntimeInputs() == 1) { const TfLiteTensor* second_input = reader->GetInputTensor(1); if (!IsConstantTensor(second_input) || second_input->dims->size != 2) { return absl::UnavailableError("Not supported batched mat mul case"); } Node* node = graph->NewNode(); node->operation.type = ToString(OperationType::CONVOLUTION_2D); RETURN_IF_ERROR(reader->AddInput(node, 0)); RETURN_IF_ERROR(reader->AddOutputs(node)); Tensor<HW, DataType::FLOAT32> weights; RETURN_IF_ERROR(reader->ReadTensor(1, &weights)); Convolution2DAttributes attr; attr.weights.data.resize(weights.shape.w * weights.shape.h); for (int i = 0; i < weights.shape.w; ++i) { for (int j = 0; j < weights.shape.h; ++j) { attr.weights.data[i * weights.shape.h + j] = weights.data[j * weights.shape.w + i]; } } attr.weights.id = weights.id; attr.weights.shape.h = 1; attr.weights.shape.w = 1; attr.weights.shape.o = weights.shape.w; attr.weights.shape.i = weights.shape.h; attr.strides = HW(1, 1); attr.dilations = HW(1, 1); attr.padding.appended = HW(0, 0); attr.padding.prepended = HW(0, 0); node->operation.attributes = std::move(attr); return absl::OkStatus(); } else { return absl::UnavailableError("Not supported batched mat mul case"); } return absl::OkStatus(); } }; class CastOperationParser : public TFLiteOperationParser { public: absl::Status IsSupported(const TfLiteContext* context, const TfLiteNode* tflite_node, const TfLiteRegistration* registration) final { TfLiteType src_type = context->tensors[tflite_node->inputs->data[0]].type; TfLiteType dst_type = context->tensors[tflite_node->outputs->data[0]].type; if (src_type == kTfLiteBool && (dst_type == kTfLiteFloat16 || dst_type == kTfLiteFloat32)) { TensorInfo input_tensor_info; RETURN_IF_ERROR(GetTensorInfo(context, tflite_node->inputs->data[0], &input_tensor_info)); if (input_tensor_info.producers.size() != 1 || input_tensor_info.consumers.size() != 1) { return absl::UnavailableError("Not supported cast case"); } TensorInfo output_tensor_info; RETURN_IF_ERROR(GetTensorInfo(context, tflite_node->outputs->data[0], &output_tensor_info)); if (output_tensor_info.consumers.size() != 1) { return absl::UnavailableError( "Cast from bool not supported for outputs"); } if (IsLogicalCode(input_tensor_info.producers[0].second->builtin_code)) { return absl::OkStatus(); } } return CheckGpuDelegateCompatibility(context, tflite_node, registration); } absl::Status Parse(const TfLiteNode* tflite_node, const TfLiteRegistration* registration, GraphFloat32* graph, ObjectReader* reader) final { Node* node = graph->NewNode(); node->operation.type = ToString(OperationType::CAST); RETURN_IF_ERROR(reader->AddInput(node, 0)); RETURN_IF_ERROR(reader->AddOutputs(node)); return absl::OkStatus(); } }; class ClampOperationsParser : public TFLiteOperationParser { public: explicit ClampOperationsParser(float clamp_a, float clamp_b) : clamp_a_(clamp_a), clamp_b_(clamp_b) {} absl::Status IsSupported(const TfLiteContext* context, const TfLiteNode* tflite_node, const TfLiteRegistration* registration) final { return absl::OkStatus(); } absl::Status Parse(const TfLiteNode* tflite_node, const TfLiteRegistration* registration, GraphFloat32* graph, ObjectReader* reader) final { Node* node_sub = graph->NewNode(); Node* node_relu = graph->NewNode(); Node* node_add = graph->NewNode(); ElementwiseAttributes sub_attr; sub_attr.param = -clamp_a_; node_sub->operation.type = ToString(OperationType::ADD); node_sub->operation.attributes = std::move(sub_attr); ReLUAttributes relu_attr; relu_attr.alpha = 0.0f; relu_attr.activation_max = clamp_b_ - clamp_a_; node_relu->operation.type = ToString(OperationType::RELU); node_relu->operation.attributes = relu_attr; ElementwiseAttributes add_attr; add_attr.param = clamp_a_; node_add->operation.type = ToString(OperationType::ADD); node_add->operation.attributes = std::move(add_attr); RETURN_IF_ERROR(reader->AddInput(node_sub, 0)); auto input = graph->FindInputs(node_sub->id)[0]; Value* v0 = graph->NewValue(); Value* v1 = graph->NewValue(); v0->tensor.type = input->tensor.type; v0->tensor.shape = input->tensor.shape; v1->tensor.type = input->tensor.type; v1->tensor.shape = input->tensor.shape; RETURN_IF_ERROR(graph->SetProducer(node_sub->id, v0->id)); RETURN_IF_ERROR(graph->AddConsumer(node_relu->id, v0->id)); RETURN_IF_ERROR(graph->SetProducer(node_relu->id, v1->id)); RETURN_IF_ERROR(graph->AddConsumer(node_add->id, v1->id)); RETURN_IF_ERROR(reader->AddOutputs(node_add)); return absl::OkStatus(); } private: const float clamp_a_, clamp_b_; }; class ConcatenationOperationParser : public TFLiteOperationParser { public: absl::Status IsSupported(const TfLiteContext* context, const TfLiteNode* tflite_node, const TfLiteRegistration* registration) final { RETURN_IF_ERROR(CheckMaxSupportedOpVersion(registration, 2)); return CheckGpuDelegateCompatibility(context, tflite_node, registration); } absl::Status Parse(const TfLiteNode* tflite_node, const TfLiteRegistration* registration, GraphFloat32* graph, ObjectReader* reader) final { ConcatAttributes attr; std::vector<const Value*> inputs; for (uint32_t idx = 0; idx < tflite_node->inputs->size; ++idx) { Value* value; const auto status = reader->ReadValue(idx, &value); if (status.ok()) { inputs.push_back(value); } else { TensorFloat32 tensor; RETURN_IF_ERROR(reader->ReadTensor(idx, &tensor)); Value* value; RETURN_IF_ERROR(NewConstNode(std::move(tensor), graph, &value)); inputs.push_back(value); } } for (int i = 0; i < inputs.size(); ++i) { for (int j = 0; j < i; ++j) { if (inputs[i] == inputs[j]) { Node* node_copy = graph->NewNode(); node_copy->operation.type = ToString(OperationType::COPY); RETURN_IF_ERROR(graph->AddConsumer(node_copy->id, inputs[j]->id)); Value* copy_value = graph->NewValue(); copy_value->tensor.type = inputs[j]->tensor.type; copy_value->tensor.shape = inputs[j]->tensor.shape; RETURN_IF_ERROR(graph->SetProducer(node_copy->id, copy_value->id)); inputs[i] = copy_value; break; } } } Node* node = graph->NewNode(); node->operation.type = ToString(OperationType::CONCAT); RETURN_IF_ERROR(reader->AddOutputs(node)); for (int i = 0; i < inputs.size(); ++i) { RETURN_IF_ERROR(graph->AddConsumer(node->id, inputs[i]->id)); } std::vector<BHWC> input_shapes; for (auto input : graph->FindInputs(node->id)) { input_shapes.push_back(input->tensor.shape); } RETURN_IF_ERROR(SetAxis(input_shapes, &attr.axis)); BHWC output_shape = graph->FindOutputs(node->id)[0]->tensor.shape; for (auto input : graph->FindInputs(node->id)) { if (input->tensor.shape.h != output_shape.h) { attr.axis = Axis::HEIGHT; break; } if (input->tensor.shape.w != output_shape.w) { attr.axis = Axis::WIDTH; break; } if (input->tensor.shape.c != output_shape.c) { attr.axis = Axis::CHANNELS; break; } } const TfLiteConcatenationParams* tf_options; RETURN_IF_ERROR(RetrieveBuiltinData(tflite_node, &tf_options)); RETURN_IF_ERROR(MaybeFuseActivation(tf_options->activation, graph, node)); node->operation.attributes = attr; return absl::OkStatus(); } private: absl::Status SetAxis(const std::vector<BHWC>& input_shapes, Axis* axis) { *axis = Axis::BATCH; for (int i = 1; i < input_shapes.size(); i++) { if (input_shapes[0].h != input_shapes[i].h && input_shapes[0].w != input_shapes[i].w && input_shapes[0].c != input_shapes[i].c) { *axis = Axis::HEIGHT; break; } } if (*axis == Axis::BATCH) return absl::OkStatus(); for (int i = 1; i < input_shapes.size(); i++) { if (input_shapes[0].b != input_shapes[i].b && input_shapes[0].w != input_shapes[i].w && input_shapes[0].c != input_shapes[i].c) { *axis = Axis::WIDTH; break; } } if (*axis == Axis::HEIGHT) return absl::OkStatus(); for (int i = 1; i < input_shapes.size(); i++) { if (input_shapes[0].b != input_shapes[i].b && input_shapes[0].h != input_shapes[i].h && input_shapes[0].c != input_shapes[i].c) { *axis = Axis::CHANNELS; break; } } if (*axis == Axis::WIDTH) return absl::OkStatus(); for (int i = 1; i < input_shapes.size(); i++) { if (input_shapes[0].b != input_shapes[i].b && input_shapes[0].w != input_shapes[i].w && input_shapes[0].h != input_shapes[i].h) { return absl::UnimplementedError( "Can concatenate tensors only by batch, height, width, or " "channels."); } } return absl::OkStatus(); } }; class Conv2DOperationParser : public TFLiteOperationParser { public: absl::Status IsSupported(const TfLiteContext* context, const TfLiteNode* tflite_node, const TfLiteRegistration* registration) final { RETURN_IF_ERROR(CheckMaxSupportedOpVersion(registration, 6)); return CheckGpuDelegateCompatibility(context, tflite_node, registration); } absl::Status Parse(const TfLiteNode* tflite_node, const TfLiteRegistration* registration, GraphFloat32* graph, ObjectReader* reader) final { const TfLiteConvParams* tf_options; RETURN_IF_ERROR(RetrieveBuiltinData(tflite_node, &tf_options)); Convolution2DAttributes attr; RETURN_IF_ERROR(ReadAttributes(tflite_node, tf_options, reader, &attr)); const int runtime_inputs = reader->GetNumberOfRuntimeInputs(); if (runtime_inputs == 2) { const TfLiteTensor* src_tensor = reader->GetInputTensor(0); const TfLiteTensor* weights_tensor = reader->GetInputTensor(1); BHWC src_shape, weights_shape; RETURN_IF_ERROR(ExtractTensorShape(*src_tensor, &src_shape)); RETURN_IF_ERROR(ExtractTensorShape(*weights_tensor, &weights_shape)); if (src_shape.c != weights_shape.c) { return absl::InternalError( "No support of CONVOLUTION_2D with runtime grouped weights."); } Node* node = graph->NewNode(); node->operation.type = ToString(OperationType::CONVOLUTION_2D); node->operation.attributes = std::move(attr); RETURN_IF_ERROR(reader->AddInput(node, 0)); RETURN_IF_ERROR(reader->AddInput(node, 1)); RETURN_IF_ERROR(reader->AddOutputs(node)); RETURN_IF_ERROR(MaybeFuseActivation(tf_options->activation, graph, node)); return absl::OkStatus(); } else { BHWC src_shape, dst_shape; RETURN_IF_ERROR( ExtractTensorShape(*reader->GetInputTensor(0), &src_shape)); RETURN_IF_ERROR( ExtractTensorShape(*reader->GetOutputTensor(0), &dst_shape)); const int src_group_size = attr.weights.shape.i; if (attr.weights.shape.i == 1 && src_shape.c == dst_shape.c) { DepthwiseConvolution2DAttributes dw_attr; dw_attr.weights.id = attr.weights.id; dw_attr.weights.shape = OHWI(attr.weights.shape.i, attr.weights.shape.h, attr.weights.shape.w, attr.weights.shape.o); dw_attr.weights.data.resize(dw_attr.weights.shape.DimensionsProduct()); for (int o = 0; o < dw_attr.weights.shape.o; ++o) { for (int h = 0; h < dw_attr.weights.shape.h; ++h) { for (int w = 0; w < dw_attr.weights.shape.w; ++w) { for (int i = 0; i < dw_attr.weights.shape.i; ++i) { dw_attr.weights .data[dw_attr.weights.shape.LinearIndex({o, h, w, i})] = attr.weights .data[attr.weights.shape.LinearIndex({i, h, w, o})]; } } } } dw_attr.bias = attr.bias; dw_attr.strides = attr.strides; dw_attr.dilations = attr.dilations; dw_attr.padding = attr.padding; Node* node = graph->NewNode(); node->operation.type = ToString(OperationType::DEPTHWISE_CONVOLUTION); node->operation.attributes = std::move(dw_attr); RETURN_IF_ERROR(reader->AddInput(node, 0)); RETURN_IF_ERROR(reader->AddOutputs(node)); RETURN_IF_ERROR( MaybeFuseActivation(tf_options->activation, graph, node)); return absl::OkStatus(); } const int dst_group_size = attr.weights.shape.o / attr.groups; const bool supported_grouped_conv = src_group_size % 4 == 0 && dst_group_size % 4 == 0; if (attr.groups != 1 && !supported_grouped_conv) { return ResolveGroupedConvolution(attr, tf_options, reader, graph); } else { Node* node = graph->N
#include "tensorflow/lite/delegates/gpu/common/model_builder.h" #include <stddef.h> #include <stdint.h> #include <cstdlib> #include <cstring> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/types/span.h" #include "tensorflow/lite/builtin_ops.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/subgraph.h" #include "tensorflow/lite/delegates/gpu/common/data_type.h" #include "tensorflow/lite/delegates/gpu/common/model_builder_internal.h" #include "tensorflow/lite/delegates/gpu/common/shape.h" #include "tensorflow/lite/delegates/gpu/common/tensor.h" #include "tensorflow/lite/interpreter.h" namespace tflite { namespace gpu { namespace { TEST(ModelBuilderTest, ConvertTfLiteTensorToTensorRefSucceedsForRank0) { TfLiteTensor tflite_tensor; tflite_tensor.name = "tensor_name"; tflite_tensor.type = TfLiteType::kTfLiteFloat32; tflite_tensor.dims = TfLiteIntArrayCreate(1); tflite_tensor.dims->data[0] = 4; TensorRef<BHWC> tensor_ref; const auto status = ConvertTfLiteTensorToTensorRef(tflite_tensor, &tensor_ref); TfLiteIntArrayFree(tflite_tensor.dims); ASSERT_TRUE(status.ok()); EXPECT_EQ(tensor_ref.type, DataType::FLOAT32); EXPECT_EQ(tensor_ref.shape, BHWC(4, 1, 1, 1)); } TEST(ModelBuilderTest, ConvertTfLiteTensorToTensorRefSucceedsForRank1) { TfLiteTensor tflite_tensor; tflite_tensor.name = "tensor_name"; tflite_tensor.type = TfLiteType::kTfLiteInt32; tflite_tensor.dims = TfLiteIntArrayCreate(2); tflite_tensor.dims->data[0] = 4; tflite_tensor.dims->data[1] = 5; TensorRef<BHWC> tensor_ref; const auto status = ConvertTfLiteTensorToTensorRef(tflite_tensor, &tensor_ref); TfLiteIntArrayFree(tflite_tensor.dims); ASSERT_TRUE(status.ok()); EXPECT_EQ(tensor_ref.type, DataType::INT32); EXPECT_EQ(tensor_ref.shape, BHWC(4, 1, 1, 5)); } TEST(ModelBuilderTest, ConvertTfLiteTensorToTensorRefSucceedsForRank2) { TfLiteTensor tflite_tensor; tflite_tensor.name = "tensor_name"; tflite_tensor.type = TfLiteType::kTfLiteInt64; tflite_tensor.dims = TfLiteIntArrayCreate(3); tflite_tensor.dims->data[0] = 4; tflite_tensor.dims->data[1] = 5; tflite_tensor.dims->data[2] = 6; TensorRef<BHWC> tensor_ref; const auto status = ConvertTfLiteTensorToTensorRef(tflite_tensor, &tensor_ref); TfLiteIntArrayFree(tflite_tensor.dims); ASSERT_TRUE(status.ok()); EXPECT_EQ(tensor_ref.type, DataType::INT64); EXPECT_EQ(tensor_ref.shape, BHWC(4, 1, 5, 6)); } TEST(ModelBuilderTest, ConvertTfLiteTensorToTensorRefSucceedsForRank3) { TfLiteTensor tflite_tensor; tflite_tensor.name = "tensor_name"; tflite_tensor.type = TfLiteType::kTfLiteUInt8; tflite_tensor.dims = TfLiteIntArrayCreate(4); tflite_tensor.dims->data[0] = 4; tflite_tensor.dims->data[1] = 5; tflite_tensor.dims->data[2] = 6; tflite_tensor.dims->data[3] = 7; TensorRef<BHWC> tensor_ref; const auto status = ConvertTfLiteTensorToTensorRef(tflite_tensor, &tensor_ref); TfLiteIntArrayFree(tflite_tensor.dims); ASSERT_TRUE(status.ok()); EXPECT_EQ(tensor_ref.type, DataType::UINT8); EXPECT_EQ(tensor_ref.shape, BHWC(4, 5, 6, 7)); } TEST(ModelBuilderTest, ConvertTfLiteTensorToTensorRefFailsForRankLT0) { TfLiteTensor tflite_tensor; tflite_tensor.name = "tensor_name"; tflite_tensor.type = TfLiteType::kTfLiteFloat32; tflite_tensor.dims = TfLiteIntArrayCreate(0); TensorRef<BHWC> tensor_ref; const auto status = ConvertTfLiteTensorToTensorRef(tflite_tensor, &tensor_ref); TfLiteIntArrayFree(tflite_tensor.dims); EXPECT_FALSE(status.ok()); } TEST(ModelBuilderTest, ConvertTfLiteTensorToTensorRefFailsForRankGT3) { TfLiteTensor tflite_tensor; tflite_tensor.name = "tensor_name"; tflite_tensor.type = TfLiteType::kTfLiteFloat32; tflite_tensor.dims = TfLiteIntArrayCreate(5); TensorRef<BHWC> tensor_ref; const auto status = ConvertTfLiteTensorToTensorRef(tflite_tensor, &tensor_ref); TfLiteIntArrayFree(tflite_tensor.dims); EXPECT_FALSE(status.ok()); } class DelegatedInterpreter { public: explicit DelegatedInterpreter(int num_nodes) { exec_plan_ = TfLiteIntArrayCreate(num_nodes); } virtual ~DelegatedInterpreter() { TfLiteIntArrayFree(exec_plan_); for (auto params : delegate_params_) { TfLiteIntArrayFree(params.nodes_to_replace); TfLiteIntArrayFree(params.input_tensors); TfLiteIntArrayFree(params.output_tensors); } } TfLiteContext* context() { return interpreter_.primary_subgraph().context(); } TfLiteNode* node(int index) { const std::pair<TfLiteNode, TfLiteRegistration>* node_and_registration = interpreter_.primary_subgraph().node_and_registration(index); return const_cast<TfLiteNode*>(&node_and_registration->first); } TfLiteRegistration* registration(int index) { const std::pair<TfLiteNode, TfLiteRegistration>* node_and_registration = interpreter_.primary_subgraph().node_and_registration(index); return const_cast<TfLiteRegistration*>(&node_and_registration->second); } TfLiteIntArray* exec_plan() { const int num_nodes = exec_plan_->size; TfLiteIntArray* new_array = TfLiteIntArrayCreate(num_nodes); std::memcpy(new_array->data, exec_plan_->data, num_nodes * sizeof(int32_t)); TfLiteIntArrayFree(exec_plan_); exec_plan_ = new_array; return exec_plan_; } TfLiteDelegateParams* add_delegate_params() { delegate_params_.push_back(TfLiteDelegateParams()); return &delegate_params_.back(); } TfLiteDelegateParams* delegate_params() { return &delegate_params_.front(); } int num_delegate_params() { return delegate_params_.size(); } protected: Interpreter interpreter_; private: TfLiteIntArray* exec_plan_ = nullptr; std::vector<TfLiteDelegateParams> delegate_params_; }; class InterpreterFp16 : public DelegatedInterpreter { public: explicit InterpreterFp16(TfLiteBuiltinOperator op, bool const_dequantize_inputs = true) : DelegatedInterpreter(3) { void* builtin_data = malloc(sizeof(int)); EXPECT_EQ(interpreter_.AddTensors(5), kTfLiteOk); EXPECT_EQ(interpreter_.SetInputs({0, 1}), kTfLiteOk); EXPECT_EQ(interpreter_.SetOutputs({4}), kTfLiteOk); const TfLiteRegistration reg_dequant0 = { nullptr, nullptr, nullptr, nullptr, nullptr, kTfLiteBuiltinDequantize}; EXPECT_EQ(interpreter_.AddNodeWithParameters( {0}, {1}, nullptr, 0, nullptr, &reg_dequant0), kTfLiteOk); const TfLiteRegistration reg_dequant1 = { nullptr, nullptr, nullptr, nullptr, nullptr, kTfLiteBuiltinDequantize}; EXPECT_EQ(interpreter_.AddNodeWithParameters( {2}, {3}, nullptr, 0, nullptr, &reg_dequant1), kTfLiteOk); const TfLiteRegistration reg_op0 = { [](TfLiteContext* context, const char* buffer, size_t length) { return reinterpret_cast<void*>(new int(1)); }, [](TfLiteContext* context, void* buffer) { delete reinterpret_cast<int*>(buffer); }, nullptr, nullptr, nullptr, op}; EXPECT_EQ(interpreter_.AddNodeWithParameters( {1, 3}, {4}, nullptr, 0, builtin_data, &reg_op0), kTfLiteOk); const std::vector<int> dims = {1}; TfLiteQuantization quantization; quantization.type = kTfLiteNoQuantization; EXPECT_EQ( interpreter_.SetTensorParametersReadWrite( 0, TfLiteType::kTfLiteFloat16, "t0", dims, quantization, false), kTfLiteOk); EXPECT_EQ( interpreter_.SetTensorParametersReadWrite( 2, TfLiteType::kTfLiteFloat16, "t2", dims, quantization, false), kTfLiteOk); if (const_dequantize_inputs) { auto* tensor0 = interpreter_.tensor(0); auto* tensor2 = interpreter_.tensor(2); tensor0->allocation_type = kTfLiteMmapRo; tensor2->allocation_type = kTfLiteMmapRo; } EXPECT_EQ( interpreter_.SetTensorParametersReadWrite( 1, TfLiteType::kTfLiteFloat32, "t1", dims, quantization, false), kTfLiteOk); EXPECT_EQ( interpreter_.SetTensorParametersReadWrite( 3, TfLiteType::kTfLiteFloat32, "t3", dims, quantization, false), kTfLiteOk); exec_plan()->data[0] = 0; exec_plan()->data[1] = 1; exec_plan()->data[2] = 2; } }; InterpreterFp16* interpreter_fp16_add_op = new InterpreterFp16(kTfLiteBuiltinAdd); TEST(ModelBuilderTest, GetOpsToReplaceAcceptsFp16DequantizeNodes) { TfLiteContext* context = interpreter_fp16_add_op->context(); context->GetExecutionPlan = [](struct TfLiteContext* context, TfLiteIntArray** execution_plan) { *execution_plan = interpreter_fp16_add_op->exec_plan(); return kTfLiteOk; }; context->GetNodeAndRegistration = [](struct TfLiteContext*, int node_index, TfLiteNode** node, TfLiteRegistration** registration) { *node = interpreter_fp16_add_op->node(node_index); *registration = interpreter_fp16_add_op->registration(node_index); return kTfLiteOk; }; context->PreviewDelegatePartitioning = [](struct TfLiteContext* context, const TfLiteIntArray* nodes_to_replace, TfLiteDelegateParams** partition_params_array, int* num_partitions) { EXPECT_EQ(nodes_to_replace->size, 1); auto params = interpreter_fp16_add_op->add_delegate_params(); params->nodes_to_replace = TfLiteIntArrayCreate(1); params->nodes_to_replace->data[0] = 2; params->input_tensors = TfLiteIntArrayCreate(2); params->input_tensors->data[0] = 1; params->input_tensors->data[1] = 3; params->output_tensors = TfLiteIntArrayCreate(1); params->output_tensors->data[0] = 4; *partition_params_array = interpreter_fp16_add_op->delegate_params(); *num_partitions = interpreter_fp16_add_op->num_delegate_params(); return kTfLiteOk; }; TfLiteIntArray* ops_to_replace = GetOpsToReplace(context); EXPECT_EQ(ops_to_replace->size, 3); TfLiteNode* node = nullptr; TfLiteRegistration* registration = nullptr; context->GetNodeAndRegistration(context, 2, &node, &registration); EXPECT_EQ(context->tensors[node->inputs->data[0]].type, TfLiteType::kTfLiteFloat16); EXPECT_EQ(context->tensors[node->inputs->data[1]].type, TfLiteType::kTfLiteFloat16); TfLiteIntArrayFree(ops_to_replace); } InterpreterFp16* interpreter_fp16_non_constant = new InterpreterFp16(kTfLiteBuiltinAdd, false); TEST(ModelBuilderTest, GetOpsToReplaceRejectsNonConstantFp16DequantizeNodes) { TfLiteContext* context = interpreter_fp16_non_constant->context(); context->GetExecutionPlan = [](struct TfLiteContext* context, TfLiteIntArray** execution_plan) { *execution_plan = interpreter_fp16_non_constant->exec_plan(); return kTfLiteOk; }; context->GetNodeAndRegistration = [](struct TfLiteContext*, int node_index, TfLiteNode** node, TfLiteRegistration** registration) { *node = interpreter_fp16_non_constant->node(node_index); *registration = interpreter_fp16_non_constant->registration(node_index); return kTfLiteOk; }; context->PreviewDelegatePartitioning = [](struct TfLiteContext* context, const TfLiteIntArray* nodes_to_replace, TfLiteDelegateParams** partition_params_array, int* num_partitions) { EXPECT_EQ(nodes_to_replace->size, 1); auto params = interpreter_fp16_non_constant->add_delegate_params(); params->nodes_to_replace = TfLiteIntArrayCreate(1); params->nodes_to_replace->data[0] = 2; params->input_tensors = TfLiteIntArrayCreate(2); params->input_tensors->data[0] = 1; params->input_tensors->data[1] = 3; params->output_tensors = TfLiteIntArrayCreate(1); params->output_tensors->data[0] = 4; *partition_params_array = interpreter_fp16_non_constant->delegate_params(); *num_partitions = interpreter_fp16_non_constant->num_delegate_params(); return kTfLiteOk; }; TfLiteIntArray* ops_to_replace = GetOpsToReplace(context); EXPECT_EQ(ops_to_replace->size, 1); TfLiteNode* node = nullptr; TfLiteRegistration* registration = nullptr; context->GetNodeAndRegistration(context, ops_to_replace->data[0], &node, &registration); EXPECT_EQ(context->tensors[node->inputs->data[0]].type, TfLiteType::kTfLiteFloat32); EXPECT_EQ(context->tensors[node->inputs->data[1]].type, TfLiteType::kTfLiteFloat32); TfLiteIntArrayFree(ops_to_replace); } InterpreterFp16* interpreter_fp16_gt_op = new InterpreterFp16(kTfLiteBuiltinGreater); TEST(ModelBuilderTest, GetOpsToReplaceRejectsFp16DequantizeNodes) { TfLiteContext* context = interpreter_fp16_gt_op->context(); context->GetExecutionPlan = [](struct TfLiteContext* context, TfLiteIntArray** execution_plan) { *execution_plan = interpreter_fp16_gt_op->exec_plan(); return kTfLiteOk; }; context->GetNodeAndRegistration = [](struct TfLiteContext*, int node_index, TfLiteNode** node, TfLiteRegistration** registration) { *node = interpreter_fp16_gt_op->node(node_index); *registration = interpreter_fp16_gt_op->registration(node_index); return kTfLiteOk; }; context->PreviewDelegatePartitioning = [](struct TfLiteContext* context, const TfLiteIntArray* nodes_to_replace, TfLiteDelegateParams** partition_params_array, int* num_partitions) { EXPECT_EQ(nodes_to_replace->size, 0); *partition_params_array = nullptr; *num_partitions = 0; return kTfLiteOk; }; TfLiteIntArray* ops_to_replace = GetOpsToReplace(context); EXPECT_EQ(ops_to_replace->size, 0); TfLiteNode* node = nullptr; TfLiteRegistration* registration = nullptr; const int kGreaterOpIndex = 2; context->GetNodeAndRegistration(context, kGreaterOpIndex, &node, &registration); EXPECT_EQ(context->tensors[node->inputs->data[0]].type, TfLiteType::kTfLiteFloat32); EXPECT_EQ(context->tensors[node->inputs->data[1]].type, TfLiteType::kTfLiteFloat32); TfLiteIntArrayFree(ops_to_replace); } class InterpreterFp32 : public DelegatedInterpreter { public: InterpreterFp32() : DelegatedInterpreter(2) { void* builtin_data = malloc(sizeof(int)); EXPECT_EQ(interpreter_.AddTensors(4), kTfLiteOk); EXPECT_EQ(interpreter_.SetInputs({0, 2}), kTfLiteOk); EXPECT_EQ(interpreter_.SetOutputs({3}), kTfLiteOk); const TfLiteRegistration reg_dequant0 = {nullptr, nullptr, nullptr, nullptr, nullptr, kTfLiteBuiltinDequantize}; EXPECT_EQ(interpreter_.AddNodeWithParameters( {0}, {1}, nullptr, 0, nullptr, &reg_dequant0), kTfLiteOk); const TfLiteRegistration reg_add0 = { [](TfLiteContext* context, const char* buffer, size_t length) { return reinterpret_cast<void*>(new int(1)); }, [](TfLiteContext* context, void* buffer) { delete reinterpret_cast<int*>(buffer); }, nullptr, nullptr, nullptr, kTfLiteBuiltinAdd}; EXPECT_EQ(interpreter_.AddNodeWithParameters( {1, 2}, {3}, nullptr, 0, builtin_data, &reg_add0), kTfLiteOk); const std::vector<int> dims = {1}; TfLiteQuantization quantization; quantization.type = kTfLiteNoQuantization; EXPECT_EQ(interpreter_.SetTensorParametersReadWrite( 0, TfLiteType::kTfLiteUInt8, "t0", dims, quantization, false), kTfLiteOk); EXPECT_EQ( interpreter_.SetTensorParametersReadWrite( 1, TfLiteType::kTfLiteFloat32, "t1", dims, quantization, false), kTfLiteOk); EXPECT_EQ( interpreter_.SetTensorParametersReadWrite( 2, TfLiteType::kTfLiteFloat32, "t2", dims, quantization, false), kTfLiteOk); exec_plan()->data[0] = 0; exec_plan()->data[1] = 1; } }; InterpreterFp32* interpreter_fp32 = new InterpreterFp32(); TEST(ModelBuilderTest, GetOpsToReplaceDoesNotPruneUint8) { TfLiteContext* context = interpreter_fp32->context(); context->GetExecutionPlan = [](struct TfLiteContext* context, TfLiteIntArray** execution_plan) { *execution_plan = interpreter_fp32->exec_plan(); return kTfLiteOk; }; context->GetNodeAndRegistration = [](struct TfLiteContext*, int node_index, TfLiteNode** node, TfLiteRegistration** registration) { *node = interpreter_fp32->node(node_index); *registration = interpreter_fp32->registration(node_index); return kTfLiteOk; }; context->PreviewDelegatePartitioning = [](struct TfLiteContext* context, const TfLiteIntArray* nodes_to_replace, TfLiteDelegateParams** partition_params_array, int* num_partitions) { auto params = interpreter_fp32->add_delegate_params(); params->nodes_to_replace = TfLiteIntArrayCreate(1); params->nodes_to_replace->data[0] = 1; params->input_tensors = TfLiteIntArrayCreate(2); params->input_tensors->data[0] = 1; params->input_tensors->data[1] = 2; params->output_tensors = TfLiteIntArrayCreate(1); params->output_tensors->data[0] = 3; *partition_params_array = interpreter_fp32->delegate_params(); *num_partitions = interpreter_fp32->num_delegate_params(); return kTfLiteOk; }; TfLiteIntArray* ops_to_replace = GetOpsToReplace(context); EXPECT_EQ(ops_to_replace->size, 1); EXPECT_EQ(1, ops_to_replace->data[0]); TfLiteIntArrayFree(ops_to_replace); } class Interpreter2Fp32 : public DelegatedInterpreter { public: Interpreter2Fp32() : DelegatedInterpreter(4) { void* builtin_data = malloc(sizeof(int)); EXPECT_EQ(interpreter_.AddTensors(8), kTfLiteOk); EXPECT_EQ(interpreter_.SetInputs({0, 2, 4, 6}), kTfLiteOk); EXPECT_EQ(interpreter_.SetOutputs({7}), kTfLiteOk); const TfLiteRegistration reg_dequant = {nullptr, nullptr, nullptr, nullptr, nullptr, kTfLiteBuiltinDequantize}; EXPECT_EQ(interpreter_.AddNodeWithParameters( {0}, {1}, nullptr, 0, nullptr, &reg_dequant), kTfLiteOk); const TfLiteRegistration reg_add0 = { [](TfLiteContext* context, const char* buffer, size_t length) { return reinterpret_cast<void*>(new int(1)); }, [](TfLiteContext* context, void* buffer) { delete reinterpret_cast<int*>(buffer); }, nullptr, nullptr, nullptr, kTfLiteBuiltinAdd}; EXPECT_EQ(interpreter_.AddNodeWithParameters( {1, 2}, {3}, nullptr, 0, builtin_data, &reg_add0), kTfLiteOk); const TfLiteRegistration reg_pack = {nullptr, nullptr, nullptr, nullptr, nullptr, kTfLiteBuiltinPack}; EXPECT_EQ(interpreter_.AddNodeWithParameters( {3, 4}, {5}, nullptr, 0, nullptr, &reg_pack), kTfLiteOk); const TfLiteRegistration reg_add1 = { [](TfLiteContext* context, const char* buffer, size_t length) { return reinterpret_cast<void*>(new int[2]); }, [](TfLiteContext* context, void* buffer) { delete reinterpret_cast<int*>(buffer); }, nullptr, nullptr, nullptr, kTfLiteBuiltinAdd}; EXPECT_EQ(interpreter_.AddNodeWithParameters( {5, 6}, {7}, nullptr, 0, builtin_data, &reg_add1), kTfLiteOk); std::vector<int> dims = {1}; TfLiteQuantization quantization; quantization.type = kTfLiteNoQuantization; EXPECT_EQ(interpreter_.SetTensorParametersReadWrite( 0, TfLiteType::kTfLiteUInt8, "t0", dims, quantization, false), kTfLiteOk); EXPECT_EQ( interpreter_.SetTensorParametersReadWrite( 1, TfLiteType::kTfLiteFloat32, "t1", dims, quantization, false), kTfLiteOk); EXPECT_EQ( interpreter_.SetTensorParametersReadWrite( 2, TfLiteType::kTfLiteFloat32, "t2", dims, quantization, false), kTfLiteOk); EXPECT_EQ( interpreter_.SetTensorParametersReadWrite( 3, TfLiteType::kTfLiteFloat32, "t3", dims, quantization, false), kTfLiteOk); EXPECT_EQ( interpreter_.SetTensorParametersReadWrite( 4, TfLiteType::kTfLiteFloat32, "t4", dims, quantization, false), kTfLiteOk); dims.push_back(2); EXPECT_EQ( interpreter_.SetTensorParametersReadWrite( 5, TfLiteType::kTfLiteFloat32, "t5", dims, quantization, false), kTfLiteOk); EXPECT_EQ( interpreter_.SetTensorParametersReadWrite( 6, TfLiteType::kTfLiteFloat32, "t6", dims, quantization, false), kTfLiteOk); exec_plan()->data[0] = 0; exec_plan()->data[1] = 1; exec_plan()->data[2] = 2; exec_plan()->data[3] = 3; } }; Interpreter2Fp32* interpreter2_fp32 = new Interpreter2Fp32(); TEST(ModelBuilderTest, GetOpsToReplaceMultiplePartitions) { TfLiteContext* context = interpreter2_fp32->context(); context->GetExecutionPlan = [](struct TfLiteContext* context, TfLiteIntArray** execution_plan) { *execution_plan = interpreter2_fp32->exec_plan(); return kTfLiteOk; }; context->GetNodeAndRegistration = [](struct TfLiteContext*, int node_index, TfLiteNode** node, TfLiteRegistration** registration) { *node = interpreter2_fp32->node(node_index); *registration = interpreter2_fp32->registration(node_index); return kTfLiteOk; }; context->PreviewDelegatePartitioning = [](struct TfLiteContext* context, const TfLiteIntArray* nodes_to_replace, TfLiteDelegateParams** partition_params_array, int* num_partitions) { auto params = interpreter2_fp32->add_delegate_params(); params->nodes_to_replace = TfLiteIntArrayCreate(1); params->nodes_to_replace->data[0] = 1; params->input_tensors = TfLiteIntArrayCreate(2); params->input_tensors->data[0] = 1; params->input_tensors->data[1] = 2; params->output_tensors = TfLiteIntArrayCreate(1); params->output_tensors->data[0] = 3; params = interpreter2_fp32->add_delegate_params(); params->nodes_to_replace = TfLiteIntArrayCreate(1); params->nodes_to_replace->data[0] = 3; params->input_tensors = TfLiteIntArrayCreate(2); params->input_tensors->data[0] = 5; params->input_tensors->data[1] = 6; params->output_tensors = TfLiteIntArrayCreate(1); params->output_tensors->data[0] = 7; *partition_params_array = interpreter2_fp32->delegate_params(); *num_partitions = interpreter2_fp32->num_delegate_params(); return kTfLiteOk; }; TfLiteIntArray* ops_to_replace = GetOpsToReplace( context, false, 2); ASSERT_EQ(ops_to_replace->size, 2); EXPECT_THAT(absl::MakeConstSpan(ops_to_replace->data, 2), testing::UnorderedElementsAre(1, 3)); TfLiteIntArrayFree(ops_to_replace); } class InterpreterMultiNode : public DelegatedInterpreter { public: explicit InterpreterMultiNode(bool both_ops_supported = true) : DelegatedInterpreter(5) { void* builtin_data = malloc(sizeof(int)); EXPECT_EQ(interpreter_.AddTensors(8), kTfLiteOk); EXPECT_EQ(interpreter_.SetInputs({0, 1, 2}), kTfLiteOk); EXPECT_EQ(interpreter_.SetOutputs({6, 7}), kTfLiteOk); for (int i = 0; i < 3; ++i) { const TfLiteRegistration reg_dequant = {nullptr, nullptr, nullptr, nullptr,
947
cpp
tensorflow/tensorflow
interpreter
third_party/xla/xla/mlir/tools/mlir_interpreter/framework/interpreter.cc
tensorflow/lite/interpreter_test.cc
#ifndef XLA_MLIR_TOOLS_MLIR_INTERPRETER_FRAMEWORK_INTERPRETER_H_ #define XLA_MLIR_TOOLS_MLIR_INTERPRETER_FRAMEWORK_INTERPRETER_H_ #include <cstdint> #include <functional> #include <limits> #include <memory> #include <optional> #include "absl/status/statusor.h" #include "llvm/ADT/StringRef.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Support/LLVM.h" #include "xla/mlir/tools/mlir_interpreter/framework/interpreter_value.h" namespace mlir { namespace interpreter { class InterpreterScope; class InterpreterListener { public: virtual ~InterpreterListener() = default; virtual void BeforeOp(ArrayRef<InterpreterValue> args, mlir::Operation*) {} virtual void AfterOp(ArrayRef<InterpreterValue> results) {} virtual void EnterRegion(ArrayRef<InterpreterValue> args, mlir::Region& region) {} virtual void LeaveRegion(ArrayRef<InterpreterValue> terminator_args) {} }; struct InterpreterStats { int64_t heap_size = 0; int64_t peak_heap_size = 0; int64_t num_allocations = 0; int64_t num_deallocations = 0; }; struct InterpreterOptions { InterpreterListener* listener = nullptr; std::optional<int64_t> max_steps = std::nullopt; bool disable_deallocations = false; std::function<void(llvm::StringRef)> error_handler = [](llvm::StringRef failure) { llvm::errs() << "Interpreter failure: " << failure << "\n"; }; InterpreterStats* stats = nullptr; }; class InterpreterState { public: InterpreterState(const mlir::SymbolTable& symbols, InterpreterOptions options); void Step() { if (remaining_steps_ == 0) { AddFailure("maximum number of steps exceeded"); return; } --remaining_steps_; } void AddFailure(llvm::StringRef failure); bool HasFailure() const { return failed_; } void CheckSuccess(LogicalResult result, llvm::StringRef failure) { if (!result.succeeded()) { AddFailure(failure); } } InterpreterScope* GetTopScope() { return top_scope_; } const mlir::SymbolTable& GetSymbols() const { return symbols_; } const InterpreterOptions& GetOptions() { return options_; } private: const mlir::SymbolTable& symbols_; InterpreterScope* top_scope_ = nullptr; bool failed_ = false; InterpreterOptions options_; int64_t remaining_steps_ = std::numeric_limits<int64_t>::max(); friend class InterpreterScope; friend class InterpreterScopeStash; }; class InterpreterSideChannel { public: virtual ~InterpreterSideChannel() = default; }; class InterpreterScope { public: InterpreterScope(InterpreterScope&&) = delete; explicit InterpreterScope(InterpreterState& state) : state_(state), parent_scope_(state.top_scope_) { state.top_scope_ = this; } ~InterpreterScope(); void Set(Value v, InterpreterValue iv) { values_[v] = std::move(iv); } const InterpreterValue& Get(Value v) { auto ret = values_.find(v); if (ret == values_.end()) { if (!parent_scope_) { v.dump(); } assert(parent_scope_ && "value not found"); return parent_scope_->Get(v); } return ret->second; } void Verify() const; template <typename T> T* GetSideChannel(bool optional = false) { for (auto& side_channel : side_channels_) { if (auto it = dynamic_cast<T*>(side_channel.get())) { return it; } } if (!parent_scope_ && optional) return nullptr; assert(parent_scope_ && "side channel not found"); return parent_scope_->GetSideChannel<T>(optional); } void SetSideChannel(std::shared_ptr<InterpreterSideChannel> side_channel) { side_channels_.push_back(std::move(side_channel)); } InterpreterScope* GetParentScope() const { return parent_scope_; } private: DenseMap<Value, InterpreterValue> values_; SmallVector<std::shared_ptr<InterpreterSideChannel>> side_channels_; InterpreterState& state_; InterpreterScope* parent_scope_; friend class InterpreterScopeStash; }; SmallVector<InterpreterValue> Interpret(InterpreterState& state, Region& region, ArrayRef<InterpreterValue> bbargs); absl::StatusOr<SmallVector<InterpreterValue>> RunInterpreter( const mlir::SymbolTable& symbols, mlir::func::FuncOp function, ArrayRef<InterpreterValue> args, InterpreterOptions options = {}); } } #endif #include "xla/mlir/tools/mlir_interpreter/framework/interpreter.h" #include <cassert> #include <functional> #include <memory> #include <optional> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" #include "mlir/IR/OpDefinition.h" #include "mlir/IR/Operation.h" #include "mlir/IR/Region.h" #include "mlir/IR/SymbolTable.h" #include "mlir/Support/LLVM.h" #include "xla/mlir/tools/mlir_interpreter/framework/interpreter_value.h" #include "xla/mlir/tools/mlir_interpreter/framework/registration.h" namespace mlir { namespace interpreter { SmallVector<InterpreterValue> Interpret(InterpreterState& state, Operation& op) { auto fn = detail::GetFunction(op.getName().getStringRef()); if (!fn) { llvm::errs() << "Unsupported op: " << op.getName().getStringRef() << "\n"; op.dump(); state.AddFailure("unsupported op"); return {}; } SmallVector<InterpreterValue> operands; for (auto operand : op.getOperands()) { operands.push_back(state.GetTopScope()->Get(operand)); } state.GetOptions().listener->BeforeOp(operands, &op); auto results = fn(operands, &op, state); for (auto* scope = state.GetTopScope(); scope != nullptr; scope = scope->GetParentScope()) { scope->Verify(); } if (state.HasFailure()) { llvm::errs() << "Encountered failure while executing " << op << "\n"; } state.GetOptions().listener->AfterOp(results); state.Step(); return results; } SmallVector<InterpreterValue> Interpret(InterpreterState& state, Region& region, ArrayRef<InterpreterValue> bbargs) { if (state.HasFailure()) return {}; assert(region.hasOneBlock() && "expected region to have one block"); state.GetOptions().listener->EnterRegion(bbargs, region); InterpreterScope scope(state); auto& block = region.getBlocks().front(); for (auto [value, interpreter_value] : llvm::zip(block.getArguments(), bbargs)) { scope.Set(value, interpreter_value); } std::optional<SmallVector<InterpreterValue>> block_results; for (mlir::Operation& op : block) { auto results = Interpret(state, op); if (state.HasFailure()) return {}; if (op.hasTrait<OpTrait::IsTerminator>()) { assert(!block_results.has_value() && "Expected at most one terminator"); block_results = results; } else { if (results.size() != op.getNumResults()) { llvm::errs() << "Unexpected number of results while interpreting " << op.getName().getStringRef() << ". Interpreter bug?\n"; llvm_unreachable("unexpected number of results"); } for (auto [v, iv] : llvm::zip(op.getResults(), results)) { scope.Set(v, iv); } } } if (!block_results) { block_results = SmallVector<InterpreterValue>{}; } state.GetOptions().listener->LeaveRegion(*block_results); return *std::move(block_results); } InterpreterState::InterpreterState(const mlir::SymbolTable& symbols, InterpreterOptions options) : symbols_(symbols), options_(options) { if (!options_.listener) { static auto& no_op_listener = *new InterpreterListener(); this->options_.listener = &no_op_listener; } if (options_.max_steps) { remaining_steps_ = *options_.max_steps; } } void InterpreterState::AddFailure(llvm::StringRef failure) { failed_ = true; options_.error_handler(failure); } void InterpreterScope::Verify() const { for (auto& [_, value] : values_) { if (value.IsTensor() && value.GetBuffer() && !value.GetBuffer()->GetFailure().empty()) { state_.AddFailure(value.GetBuffer()->GetFailure()); break; } } } InterpreterScope::~InterpreterScope() { Verify(); state_.top_scope_ = parent_scope_; } absl::StatusOr<SmallVector<InterpreterValue>> RunInterpreter( const mlir::SymbolTable& symbols, mlir::func::FuncOp function, ArrayRef<InterpreterValue> args, InterpreterOptions options) { InterpreterState state{symbols, std::move(options)}; auto results = Interpret(state, function.getBody(), args); if (state.HasFailure()) { return absl::InvalidArgumentError("Interpreter failed, check error logs"); } return results; } } }
#include <cstdint> #include <cstring> #include <memory> #include <numeric> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/synchronization/notification.h" #include "absl/types/span.h" #include "benchmark/benchmark.h" #include "tensorflow/core/tfrt/mlrt/bytecode/bytecode.h" #include "tensorflow/core/tfrt/mlrt/bytecode/executable.h" #include "tensorflow/core/tfrt/mlrt/interpreter/async_handle.h" #include "tensorflow/core/tfrt/mlrt/interpreter/builtin_kernels.h" #include "tensorflow/core/tfrt/mlrt/interpreter/context.h" #include "tensorflow/core/tfrt/mlrt/interpreter/execute.h" #include "tensorflow/core/tfrt/mlrt/interpreter/future.h" #include "tensorflow/core/tfrt/mlrt/interpreter/interpreter_testutil.h" #include "tensorflow/core/tfrt/mlrt/interpreter/register_span.h" #include "tensorflow/core/tfrt/mlrt/interpreter/value.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/test_benchmark.h" #include "tfrt/host_context/concurrent_work_queue.h" namespace mlrt { namespace { class AddI32Kernel : public KernelFrame { public: using KernelFrame::KernelFrame; int32_t arg0() const { return arguments()[kArg0Index].Get<int32_t>(); } int32_t arg1() const { return arguments()[kArg1Index].Get<int32_t>(); } void set_result(int32_t result) { results()[kResultIndex].Set(result); } void Invoke() { set_result(arg0() + arg1()); } static constexpr char kName[] = "add"; private: static constexpr int kArg0Index = 0; static constexpr int kArg1Index = 1; static constexpr int kResultIndex = 0; }; void AddI32Const(KernelFrame frame) { auto args = frame.arguments(); int32_t constant = frame.attributes().GetAs<int32_t>(0); frame.results()[0].Set(args[0].Get<int32_t>() + constant); } bc::Buffer CreateSequentialAddExecutable(int num_add) { bc::Buffer buffer; bc::Allocator allocator(&buffer); auto executable_ctor = bc::New<bc::Executable>(&allocator); testing::SymbolTable kernels; std::vector<std::string> names = {"add", "return"}; executable_ctor.construct_kernel_names(2).Assign(names); kernels.Def(names); auto functions_ctor = executable_ctor.construct_functions(1); auto function_ctor = functions_ctor.ConstructAt(0); testing::SymbolTable regs; function_ctor.construct_name("main"); function_ctor.construct_input_regs(1).Assign({regs.Def("r0")}); function_ctor.construct_output_last_uses(1).Assign({true}); auto kernels_ctor = function_ctor.construct_kernels(num_add + 1); { auto kernel_ctor = kernels_ctor.ConstructAt(0); kernel_ctor.set_code(kernels.Use("add")); kernel_ctor.construct_arguments(2).Assign(regs.Use({"r0", "r0"})); kernel_ctor.construct_results(1).Assign({regs.Def("r1")}); } for (int i = 1; i < num_add; ++i) { auto kernel_ctor = kernels_ctor.ConstructAt(i); kernel_ctor.set_code(kernels.Use("add")); kernel_ctor.construct_arguments(2).Assign( regs.Use({absl::StrCat("r", (i + 1) % 2 + 1), "r0"})); kernel_ctor.construct_results(1).Assign( {regs.Def(absl::StrCat("r", i % 2 + 1))}); } auto kernel_ctor = kernels_ctor.ConstructAt(num_add); kernel_ctor.set_code(kernels.Use("return")); kernel_ctor.construct_arguments(1).Assign( {regs.Use(absl::StrCat("r", (num_add - 1) % 2 + 1))}); function_ctor.construct_output_regs(1).Assign( {regs.Use(absl::StrCat("r", (num_add - 1) % 2 + 1))}); function_ctor.set_num_regs(regs.size()); return buffer; } bc::Buffer CreateSequentialAddAttributesExecutable(int num_add) { bc::Buffer buffer; bc::Allocator allocator(&buffer); auto executable_ctor = bc::New<bc::Executable>(&allocator); testing::SymbolTable kernels; std::vector<std::string> names = {"add.const", "return"}; executable_ctor.construct_kernel_names(2).Assign(names); kernels.Def(names); testing::AttributeTable attributes(executable_ctor.construct_attributes(1)); attributes.Add("op_key", 1); auto functions_ctor = executable_ctor.construct_functions(1); auto function_ctor = functions_ctor.ConstructAt(0); testing::SymbolTable regs; function_ctor.construct_name("main"); function_ctor.construct_input_regs(1).Assign({regs.Def("r0")}); auto kernels_ctor = function_ctor.construct_kernels(num_add + 1); for (int i = 0; i < num_add; ++i) { auto kernel_ctor = kernels_ctor.ConstructAt(i); kernel_ctor.set_code(kernels.Use("add.const")); kernel_ctor.construct_arguments(1).Assign({regs.Use(absl::StrCat("r", i))}); kernel_ctor.construct_results(1).Assign( {regs.Def(absl::StrCat("r", i + 1))}); kernel_ctor.construct_attributes(1).Assign( {attributes.GetHandle("op_key")}); } auto kernel_ctor = kernels_ctor.ConstructAt(num_add); kernel_ctor.set_code(kernels.Use("return")); kernel_ctor.construct_arguments(1).Assign( {regs.Use(absl::StrCat("r", num_add))}); function_ctor.construct_output_regs(1).Assign( {regs.Use(absl::StrCat("r", num_add))}); function_ctor.set_num_regs(regs.size()); return buffer; } TEST(InterpreterTest, SequentialAdd) { auto buffer = CreateSequentialAddExecutable(99); bc::Executable executable(buffer.data()); KernelRegistry kernel_registry; RegisterBuiltinKernels(kernel_registry); kernel_registry.Register<AddI32Kernel>(); LoadedExecutable loaded_executable(executable, kernel_registry); absl::Notification notification; ExecutionContext execution_context(&loaded_executable); execution_context.set_exit_handler([&]() { notification.Notify(); }); int32_t v = 1; mlrt::Value arg(v); mlrt::Value result; auto function = loaded_executable.GetFunction("main"); ASSERT_TRUE(function); std::vector<uint8_t> last_uses = {true}; execution_context.Call(function, last_uses, absl::Span<Value>(&arg, 1), absl::Span<Value>(&result, 1)); Execute(execution_context); notification.WaitForNotification(); EXPECT_EQ(result.Get<int32_t>(), 100); } TEST(InterpreterTest, SequentialAddAttributes) { auto buffer = CreateSequentialAddAttributesExecutable(99); bc::Executable executable(buffer.Get(0)); KernelRegistry kernel_registry; RegisterBuiltinKernels(kernel_registry); kernel_registry.Register("add.const", &AddI32Const); LoadedExecutable loaded_executable(executable, kernel_registry); absl::Notification notification; ExecutionContext execution_context(&loaded_executable); execution_context.set_exit_handler([&]() { notification.Notify(); }); int32_t v = 1; mlrt::Value arg(v); mlrt::Value result; auto function = loaded_executable.GetFunction("main"); ASSERT_TRUE(function); std::vector<uint8_t> last_uses = {true}; execution_context.Call(function, last_uses, absl::Span<Value>(&arg, 1), absl::Span<Value>(&result, 1)); Execute(execution_context); notification.WaitForNotification(); EXPECT_EQ(result.Get<int32_t>(), 100); } bc::Buffer CreateCallExecutable() { bc::Buffer buffer; bc::Allocator allocator(&buffer); auto executable_ctor = bc::New<bc::Executable>(&allocator); testing::AttributeTable attributes(executable_ctor.construct_attributes(1)); attributes.Add("op_key", 1); testing::SymbolTable kernels; std::vector<std::string> names = {"call", "return"}; executable_ctor.construct_kernel_names(2).Assign(names); kernels.Def(names); auto functions_ctor = executable_ctor.construct_functions(2); { testing::SymbolTable regs; auto caller_ctor = functions_ctor.ConstructAt(0); caller_ctor.construct_name("caller"); caller_ctor.construct_input_regs(1).Assign({regs.Def("arg")}); auto kernels_ctor = caller_ctor.construct_kernels(2); { auto kernel_ctor = kernels_ctor.ConstructAt(0); kernel_ctor.set_code(kernels.Use("call")); kernel_ctor.construct_arguments(1).Assign({regs.Use("arg")}); kernel_ctor.construct_last_uses(1).Assign({true}); kernel_ctor.construct_results(1).Assign({regs.Def("result")}); kernel_ctor.construct_attributes(1).Assign( {attributes.GetHandle("op_key")}); } { auto kernel_ctor = kernels_ctor.ConstructAt(1); kernel_ctor.set_code(kernels.Use("return")); kernel_ctor.construct_arguments(1).Assign({regs.Use("result")}); } caller_ctor.construct_output_regs(1).Assign({regs.Use("result")}); caller_ctor.set_num_regs(regs.size()); } { testing::SymbolTable regs; auto callee_ctor = functions_ctor.ConstructAt(1); callee_ctor.construct_name("callee"); callee_ctor.construct_input_regs(1).Assign({regs.Def("arg")}); { auto kernels_ctor = callee_ctor.construct_kernels(1); auto kernel_ctor = kernels_ctor.ConstructAt(0); kernel_ctor.set_code(kernels.Use("return")); kernel_ctor.construct_arguments(1).Assign({regs.Use("arg")}); } callee_ctor.construct_output_regs(1).Assign({regs.Use("arg")}); callee_ctor.set_num_regs(regs.size()); } return buffer; } TEST(InterpreterTest, Call) { auto buffer = CreateCallExecutable(); bc::Executable executable(buffer.data()); KernelRegistry kernel_registry; RegisterBuiltinKernels(kernel_registry); LoadedExecutable loaded_executable(executable, kernel_registry); ExecutionContext execution_context(&loaded_executable); auto function = loaded_executable.GetFunction("caller"); ASSERT_TRUE(function); Value input(123); Value output; std::vector<uint8_t> last_uses = {false}; execution_context.Call(function, last_uses, absl::Span<Value>(&input, 1), absl::Span<Value>(&output, 1)); Execute(execution_context); TF_ASSERT_OK(execution_context.status()); EXPECT_EQ(output.Get<int>(), 123); EXPECT_TRUE(input.HasValue()); } bc::Buffer CreateCondExecutable() { bc::Buffer buffer; bc::Allocator allocator(&buffer); auto executable_ctor = bc::New<bc::Executable>(&allocator); testing::AttributeTable attributes(executable_ctor.construct_attributes(2)); attributes.Add("then_idx", 1); attributes.Add("else_idx", 2); testing::SymbolTable kernels; std::vector<std::string> names = {"mlrt.cond", "return"}; executable_ctor.construct_kernel_names(2).Assign(names); kernels.Def(names); auto functions_ctor = executable_ctor.construct_functions(3); { auto caller_ctor = functions_ctor.ConstructAt(0); caller_ctor.construct_name("caller"); testing::SymbolTable regs; caller_ctor.construct_input_regs(3).Assign(regs.Def({"cond", "x", "y"})); { auto kernels_ctor = caller_ctor.construct_kernels(2); { auto kernel_ctor = kernels_ctor.ConstructAt(0); kernel_ctor.set_code(kernels.Use("mlrt.cond")); kernel_ctor.construct_arguments(3).Assign(regs.Use({"cond", "x", "y"})); kernel_ctor.construct_last_uses(3).Assign({true, true, true}); kernel_ctor.construct_results(1).Assign({regs.Def("z")}); kernel_ctor.construct_attributes(2).Assign( {attributes.GetHandle("then_idx"), attributes.GetHandle("else_idx")}); } { auto kernel_ctor = kernels_ctor.ConstructAt(1); kernel_ctor.set_code(kernels.Use("return")); kernel_ctor.construct_arguments(1).Assign({regs.Use("z")}); } } caller_ctor.set_num_regs(regs.size()); caller_ctor.construct_output_regs(1).Assign({regs.Use("z")}); } { auto then_ctor = functions_ctor.ConstructAt(1); then_ctor.construct_name("then"); testing::SymbolTable regs; then_ctor.construct_input_regs(2).Assign( regs.Def(absl::Span<const std::string>{"x", "y"})); { auto kernels_ctor = then_ctor.construct_kernels(1); auto kernel_ctor = kernels_ctor.ConstructAt(0); kernel_ctor.set_code(kernels.Use("return")); kernel_ctor.construct_arguments(1).Assign({regs.Use("x")}); } then_ctor.set_num_regs(regs.size()); then_ctor.construct_output_regs(1).Assign({regs.Use("x")}); } { auto else_ctor = functions_ctor.ConstructAt(2); else_ctor.construct_name("else"); testing::SymbolTable regs; else_ctor.construct_input_regs(2).Assign( regs.Def(absl::Span<const std::string>{"x", "y"})); { auto kernels_ctor = else_ctor.construct_kernels(1); auto kernel_ctor = kernels_ctor.ConstructAt(0); kernel_ctor.set_code(kernels.Use("return")); kernel_ctor.construct_arguments(1).Assign({regs.Use("y")}); } else_ctor.set_num_regs(regs.size()); else_ctor.construct_output_regs(1).Assign({regs.Use("y")}); } return buffer; } TEST(InterpreterTest, Cond) { auto buffer = CreateCondExecutable(); bc::Executable executable(buffer.data()); KernelRegistry kernel_registry; RegisterBuiltinKernels(kernel_registry); LoadedExecutable loaded_executable(executable, kernel_registry); ExecutionContext execution_context(&loaded_executable); auto function = loaded_executable.GetFunction("caller"); ASSERT_TRUE(function); Value inputs[3]; inputs[0].Set(true); inputs[1].Set(100); inputs[2].Set(200); Value output; std::vector<uint8_t> last_uses = {true, false, false}; execution_context.Call(function, last_uses, absl::MakeSpan(inputs), absl::Span<Value>(&output, 1)); Execute(execution_context); TF_ASSERT_OK(execution_context.status()); EXPECT_EQ(output.Get<int>(), 100); ASSERT_TRUE(inputs[1].HasValue()); ASSERT_TRUE(inputs[2].HasValue()); ASSERT_EQ(inputs[1].Get<int>(), 100); ASSERT_EQ(inputs[2].Get<int>(), 200); inputs[0].Set(false); execution_context.Call(function, last_uses, absl::MakeSpan(inputs), absl::Span<Value>(&output, 1)); Execute(execution_context); TF_ASSERT_OK(execution_context.status()); EXPECT_EQ(output.Get<int>(), 200); } bc::Buffer CreateNestedCallExecutable(int num_calls) { bc::Buffer buffer; bc::Allocator allocator(&buffer); auto executable_ctor = bc::New<bc::Executable>(&allocator); testing::AttributeTable attributes(executable_ctor.construct_attributes(1)); for (int i = 0; i < num_calls; ++i) { attributes.Add(absl::StrCat("f_id_", i), i); } testing::SymbolTable kernels; std::vector<std::string> names = {"call", "return"}; executable_ctor.construct_kernel_names(2).Assign(names); kernels.Def(names); auto functions_ctor = executable_ctor.construct_functions(num_calls); for (int i = 0; i < num_calls - 1; ++i) { testing::SymbolTable regs; auto caller_ctor = functions_ctor.ConstructAt(i); caller_ctor.construct_name(absl::StrCat("call_", i)); caller_ctor.construct_input_regs(1).Assign({regs.Def("arg")}); auto kernels_ctor = caller_ctor.construct_kernels(2); { auto kernel_ctor = kernels_ctor.ConstructAt(0); kernel_ctor.set_code(kernels.Use("call")); kernel_ctor.construct_arguments(1).Assign({regs.Use("arg")}); kernel_ctor.construct_last_uses(1).Assign({true}); kernel_ctor.construct_results(1).Assign({regs.Def("result")}); kernel_ctor.construct_attributes(1).Assign( {attributes.GetHandle(absl::StrCat("f_id_", i + 1))}); } { auto kernel_ctor = kernels_ctor.ConstructAt(1); kernel_ctor.set_code(kernels.Use("return")); kernel_ctor.construct_arguments(1).Assign({regs.Use("result")}); } caller_ctor.construct_output_regs(1).Assign({regs.Use("result")}); caller_ctor.set_num_regs(regs.size()); } { testing::SymbolTable regs; auto callee_ctor = functions_ctor.ConstructAt(num_calls - 1); callee_ctor.construct_name(absl::StrCat("call_", num_calls)); callee_ctor.construct_input_regs(1).Assign({regs.Def("arg")}); { auto kernels_ctor = callee_ctor.construct_kernels(1); auto kernel_ctor = kernels_ctor.ConstructAt(0); kernel_ctor.set_code(kernels.Use("return")); kernel_ctor.construct_arguments(1).Assign({regs.Use("arg")}); } callee_ctor.construct_output_regs(1).Assign({regs.Use("arg")}); callee_ctor.set_num_regs(regs.size()); } return buffer; } TEST(InterpreterTest, NestedCall) { auto buffer = CreateNestedCallExecutable(32); bc::Executable executable(buffer.data()); KernelRegistry kernel_registry; RegisterBuiltinKernels(kernel_registry); LoadedExecutable loaded_executable(executable, kernel_registry); ExecutionContext execution_context(&loaded_executable); auto function = loaded_executable.GetFunction("call_0"); ASSERT_TRUE(function); Value input(123); Value output; std::vector<uint8_t> last_uses = {true}; execution_context.Call(function, last_uses, absl::Span<Value>(&input, 1), absl::Span<Value>(&output, 1)); Execute(execution_context); TF_ASSERT_OK(execution_context.status()); EXPECT_EQ(output.Get<int>(), 123); } bc::Buffer CreateFailExecutable() { bc::Buffer buffer; bc::Allocator allocator(&buffer); auto executable_ctor = bc::New<bc::Executable>(&allocator); testing::SymbolTable kernels; std::vector<std::string> names = {"fail", "return"}; executable_ctor.construct_kernel_names(2).Assign(names); kernels.Def(names); auto functions_ctor = executable_ctor.construct_functions(1); auto function_ctor = functions_ctor.ConstructAt(0); function_ctor.construct_name("main"); auto kernels_ctor = function_ctor.construct_kernels(2); { auto kernel_ctor = kernels_ctor.ConstructAt(0); kernel_ctor.set_code(kernels.Use("fail")); } { auto kernel_ctor = kernels_ctor.ConstructAt(1); kernel_ctor.set_code(kernels.Use("return")); } return buffer; } void Fail(KernelFrame frame) { frame.execution_context().Fail(absl::InternalError("test error")); } TEST(InterpreterTest, Fail) { auto buffer = CreateFailExecutable(); bc::Executable executable(buffer.data()); KernelRegistry kernel_registry; RegisterBuiltinKernels(kernel_registry); kernel_registry.Register("fail", &Fail); LoadedExecutable loaded_executable(executable, kernel_registry); ExecutionContext execution_context(&loaded_executable); auto function = loaded_executable.GetFunction("main"); ASSERT_TRUE(function); std::vector<uint8_t> last_uses; execution_context.Call(function, last_uses, absl::Span<Value>(), absl::Span<Value>()); Execute(execution_context); EXPECT_THAT( execution_context.status(), ::tsl::testing::StatusIs(absl::StatusCode::kInternal, "test error")); } bc::Buffer CreateAwaitExecutable() { bc::Buffer buffer; bc::Allocator allocator(&buffer); auto executable_ctor = bc::New<bc::Executable>(&allocator); testing::SymbolTable kernels; std::vector<std::string> names = {"await.i32", "return"}; executable_ctor.construct_kernel_names(2).Assign(names); kernels.Def(names); auto functions_ctor = executable_ctor.construct_functions(1); auto function_ctor = functions_ctor.ConstructAt(0); function_ctor.construct_name("main"); testing::SymbolTable regs; function_ctor.construct_input_regs(1).Assign({regs.Def("future")}); auto kernels_ctor = function_ctor.construct_kernels(2); { auto kernel_ctor = kernels_ctor.ConstructAt(0); kernel_ctor.set_code(kernels.Use("await.i32")); kernel_ctor.construct_arguments(1).Assign({regs.Use("future")}); kernel_ctor.construct_results(1).Assign({regs.Def("result")}); } { auto kernel_ctor = kernels_ctor.ConstructAt(1); kernel_ctor.set_code(kernels.Use("return")); kernel_ctor.construct_arguments(1).Assign({regs.Use("result")}); } function_ctor.set_num_regs(regs.size()); function_ctor.construct_output_regs(1).Assign({regs.Use("result")}); function_ctor.construct_output_last_uses(1).Assign({true}); return buffer; } void AwaitI32(KernelFrame frame) { auto& future = frame.arguments()[0].Get<Future>(); frame.execution_context().Await<int32_t>(future, &frame.results()[0]); } TEST(InterpreterTest, Await) { auto buffer = CreateAwaitExecutable(); bc::Executable executable(buffer.data()); KernelRegistry kernel_registry; RegisterBuiltinKernels(kernel_registry); kernel_registry.Register("await.i32", &AwaitI32); LoadedExecutable loaded_executable(executable, kernel_registry); auto work_queue = tfrt::CreateMultiThreadedWorkQueue( 4, 4); ExecutionContext execution_context(&loaded_executable); execution_context.set_work_queue(work_queue.get()); absl::Notification notification; execution_context.set_exit_handler( [&notification]() { notification.Notify(); }); auto promise = Promise::Allocate<int32_t>(); Value input(promise.GetFuture()); Value output; std::vector<uint8_t> last_uses = {true}; execution_context.Call(executable.functions()[0], last_uses, absl::Span<Value>(&input, 1), absl::Span<Value>(&output, 1)); Execute(execution_context); std::move(promise).Set<int32_t>(100); notification.WaitForNotification(); TF_ASSERT_OK(execution_context.status()); EXPECT_EQ(output.Get<int32_t>(), 100); } struct TestPayload { TestPayload() = default; TestPayload(const TestPayload& other) : copy(other.copy + 1), move(other.move) {} TestPayload& operator=(const TestPayload& other) { copy = other.copy + 1; move = other.move; return *this; } TestPayload(TestPayload&& other) : copy(other.copy), move(other.move + 1) {} TestPayload& operator=(TestPayload&& other) { copy = other.copy; move = other.move + 1; return *this; } int copy = 0; int move = 0; }; void AwaitTestPayload(KernelFrame frame) { auto& future = frame.arguments()[0].Get<Future>(); frame.execution_context().Await<TestPayload>(std::move(future), &frame.results()[0]); } TEST(InterpreterTest, AwaitMove) { auto buffer = CreateAwaitExecutable(); bc::Executable executable(buffer.data()); KernelRegistry kernel_registry; RegisterBuiltinKernels(kernel_registry); kernel_registry.Register("await.i32", &AwaitTestPayload); LoadedExecutable loaded_executable(executable, kernel_registry); auto work_queue = tfrt::CreateMultiThreadedWorkQueue( 4, 4); ExecutionContext execution_context(&loaded_executable); execution_context.set_work_queue(work_queue.get()); { absl::Notification notification; execution_context.set_exit_handler( [&notification]() { notification.Notify(); }); auto promise = Promise::Allocate<TestPayload>(); Value input(promise.GetFuture()); Value output; std::vector<uint8_t> last_uses = {true}; execution_context.Call(executable.functions()[0], last_uses, absl::Span<Value>(&input, 1), absl::Span<Value>(&output, 1)); Execute(execution_context); std::move(promise).Set<TestPayload>(TestPayload{}); notification.WaitForNotification(); TF_ASSERT_OK(execution_context.status()); EXPECT_EQ(output.Get<TestPayload>().copy, 0); EXPECT_EQ(output.Get<TestPayload>().move, 4); } { absl::Notification notification; execution_context.set_exit_handler( [&notification]() { notification.Notify(); }); auto promise = Promise::Allocate<TestPayload>(); Value input(promise.GetFuture()); Value output; std::vector<uint8_t> last_uses = {true}; execution_context.Call(executable.functions()[0], last_uses, absl::Span<Value>(&input, 1), absl::Span<Value>(&output, 1)); std::move(promise).Set<TestPayload>(TestPayload{}); Execute(execution_context); notification.WaitForNotification(); TF_ASSERT_OK(execution_context.status()); EXPECT_EQ(output.Get<TestPayload>().copy, 0); EXPECT_EQ(output.Get<TestPayload>().move, 4); } } TEST(InterpreterTest, AwaitError) { auto buffer = CreateAwaitExecutable(); bc::Executable executable(buffer.data()); KernelRegistry kernel_registry; RegisterBuiltinKernels(kernel_registry); kernel_registry.Register("await.i32", &AwaitI32); LoadedExecutable loaded_executable(executable, kernel_registry); auto work_queue = tfrt::CreateMultiThreadedWorkQueue( 4, 4); ExecutionContext execution_context(&loaded_executable); execution_context.set_work_queue(work_queue.get()); absl::Notification notification; execution_context.set_exit_handler( [&notification]() { notification.Notify(); }); auto promise = Promise::Allocate<int32_t>(); Value input(promise.GetFuture()); Value output; std::vector<uint8_t> last_uses = {true}; execution_context.Call(executable.functions()[0], last_uses, absl::Span<Value>(&input, 1), absl::Span<Value>(&output, 1)); Execute(execution_context); std::move(promise).SetError(absl::InternalError("test error")); notification.WaitForNotification(); EXPECT_THAT( execution_context.status(), ::tsl::testing::StatusIs(absl::StatusCode::kInternal, "test error")); } bc::Buffer CreateAwaitAllExecutable() { bc::Buffer buffer; bc::Allocator allocator(&buffer); auto executable_ctor = bc::New<bc::Executable>(&allocator); testing::SymbolTable kernels; std::vector<std::string> names = {"await_all.i32", "return"}; executable_ctor.construct_kernel_names(2).Assign(names); kernels.Def(names); auto functions_ctor = executable_ctor.construct_functions(1); auto function_ctor = functions_ctor.ConstructAt(0); function_ctor.construct_name("main"); testing::SymbolTable regs; function_ctor.construct_input_regs(2).Assign( regs.Def(absl::Span<const std::string>{"f0", "f1"})); auto kernels_ctor = function_ctor.construct_kernels(2); { auto kernel_ctor = kernels_ctor.ConstructAt(0); kernel_ctor.set_code(kernels.Use("await_all.i32")); kernel_ctor.construct_arguments(2).Assign(regs.Use({"f0", "f1"})); kernel_ctor.construct_last_uses(2).Assign({true, true}); kernel_ctor.construct_results(2).Assign( regs.Def(absl::Span<const std::string>{"r0", "r1"})); } { auto kernel_ctor = kernels_ctor.ConstructAt(1); kernel_ctor.set_code(kernels.Use("return")); kernel_ctor.construct_arguments(2).Assign(regs.Use({"r0", "r1"})); } function_ctor.set_num_regs(regs.size()); function_ctor.construct_output_regs(2).Assign(regs.Use({"r0", "r1"})); return buffer; } void AwaitAllI32(KernelFrame frame) { RegisterValueSpan<Future> futures(frame.arguments()); frame.execution_context().AwaitAll<int32_t>(futures, frame.results()); } TEST(InterpreterTest, AwaitAll) { auto buffer = CreateAwaitAllExecutable(); bc::Executable executable(buffer.data()); KernelRegistry kernel_registry; RegisterBuiltinKernels(kernel_registry); kernel_registry.Register("await_all.i32", &AwaitAllI32); LoadedExecutable loaded_executable(executable, kernel_registry); auto work_queue = tfrt::CreateMultiThreadedWorkQueue( 4, 4); ExecutionContext execution_context(&loaded_executable); execution_context.set_work_queue(work_queue.get()); absl::Notification notification; execution_context.set_exit_handler( [&notification]() { notification.Notify(); }); auto p0 = Promise::Allocate<int32_t>(); auto p1 = Promise::Allocate<int32_t>(); std::vector<Value> inputs(2); inputs[0].Set(p0.GetFuture()); inputs[1].Set(p1.GetFuture()); std::vector<Value> outputs(2); std::vector<uint8_t> last_uses = {true, true}; execution_context.Call(loaded_executable.GetFunction("main"), last_uses, absl::MakeSpan(inputs), absl::MakeSpan(outputs)); Execute(execution_context); std::move(p0).Set<int32_t>(100); std::move(p1).Set<int32_t>(200); notification.WaitForNotification(); TF_ASSERT_OK(execution_context.status()); EXPECT_EQ(outputs[0].Get<int32_t>(), 100); EXPECT_EQ(outputs[1].Get<int32_t>(), 200); } void AwaitAllSharedPtrI32(KernelFrame frame) { RegisterValueSpan<Future> futures(frame.arguments()); frame.execution_context().AwaitAll<std::shared_ptr<int32_t>>(futures, frame.results()); for (int i = 0; i < futures.size(); ++i) { if (frame.last_uses()[i]) { futures.Destroy(i); } } } TEST(InterpreterTest, AwaitAllSingleProducerMultiConsumers) { auto buffer = CreateAwaitAllExecutable(); bc::Executable executable(buffer.data()); KernelRegistry kernel_registry; RegisterBuiltinKernels(kernel_registry); kernel_registry.Register("await_all.i32", &AwaitAllSharedPtrI32); LoadedExecutable loaded_executable(executable, kernel_registry); auto work_queue = tfrt::CreateMultiThreadedWorkQueue( 4, 4); ExecutionContext execution_context(&loaded_executable); execution_context.set_work_queue(work_queue.get()); absl::Notification notification; execution_context.set_exit_handler( [&notification]() { notification.Notify(); }); auto p = Promise::Allocate<std::shared_ptr<int32_t>>(); std::vector<Value> inputs(2); inputs[0].Set(p.GetFuture()); inputs[1].Set(p.GetFuture()); std::vector<Value> outputs(2); std::vector<uint8_t> last_uses = {true, true}; execution_context.Call(loaded_executable.GetFunction("main"), last_uses, absl::MakeSpan(inputs), absl::MakeSpan(outputs)); Execute(execution_context); work_queue->AddTask([p = std::move(p)]() mutable { std::move(p).Set<std::shared_ptr<int32_t>>(std::make_shared<int32_t>(123)); }); notification.WaitForNotification(); TF_ASSERT_OK(execution_context.status()); EXPECT_EQ(*outputs[0].Get<std::shared_ptr<int32_t>>(), 123); EXPECT_EQ(*outputs[1].Get<std::shared_ptr<int32_t>>(), 123); } TEST(InterpreterTest, AwaitAllError) { auto buffer = CreateAwaitAllExecutable(); bc::Executable executable(buffer.data()); KernelRegistry kernel_registry; RegisterBuiltinKernels(kernel_registry); kernel_registry.Register("await_all.i32", &AwaitAllI32); LoadedExecutable loaded_executable(executable, kernel_registry); auto work_queue = tfrt::CreateMultiThreadedWorkQueue( 4, 4); ExecutionContext execution_context(&loaded_executable); execution_context.set_work_queue(work_queue.get()); absl::Notification notification; execution_context.set_exit_handler( [&notification]() { notification.Notify(); }); auto p0 = Promise::Allocate<int32_t>(); auto p1 = Promise::Allocate<int32_t>(); std::vector<Value> inputs(2); inputs[0].Set(p0.GetFuture()); inputs[1].Set(p1.GetFuture()); std::vector<Value> outputs(2); std::vector<uint8_t> last_uses = {true, true}; execution_context.Call(loaded_executable.GetFunction("main"), last_uses, absl::MakeSpan(inputs), absl::MakeSpan(outputs)); Execute(execution_context); std::move(p0).Set<int32_t>(100); ASSERT_FALSE(notification.HasBeenNotified()); std::move(p1).SetError(absl::InternalError("test error")); notification.WaitForNotification(); EXPECT_THAT( execution_context.status(), ::tsl::testing::StatusIs(absl::StatusCode::kInternal, "test error")); } struct TestState : UserContext<TestState> { int* state = nullptr; }; void WriteState(KernelFrame frame) { auto& test_
948
cpp
tensorflow/tensorflow
subgraph
tensorflow/lite/core/subgraph.cc
tensorflow/lite/core/subgraph_test.cc
#ifndef TENSORFLOW_CORE_GRAPH_SUBGRAPH_H_ #define TENSORFLOW_CORE_GRAPH_SUBGRAPH_H_ #include <string> #include "tensorflow/core/framework/device_attributes.pb.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/gtl/array_slice.h" #include "tensorflow/core/protobuf/config.pb.h" namespace tensorflow { namespace subgraph { struct RewriteGraphMetadata { DataTypeVector feed_types; DataTypeVector fetch_types; }; class PruneRewrite { public: PruneRewrite(const string* endpoint_name, const DeviceAttributes* device_info) : endpoint_name_(endpoint_name), device_info_(device_info) {} virtual ~PruneRewrite() {} virtual Status AddNode(Graph* g, NodeBuilder::NodeOut tensor, Node** out_node) = 0; const string& endpoint_name() { return *endpoint_name_; } protected: const DeviceAttributes& device_info() { return *device_info_; } private: const string* const endpoint_name_; const DeviceAttributes* const device_info_; }; Status RewriteGraphForExecution( Graph* g, const absl::Span<const string>& fed_outputs, const absl::Span<const string>& fetch_outputs, const absl::Span<const string>& target_node_names, const DeviceAttributes& device_info, bool use_function_convention, RewriteGraphMetadata* out_metadata); Status RewriteGraphForExecution( Graph* g, const std::vector<std::unique_ptr<PruneRewrite>>& feed_rewrites, const std::vector<std::unique_ptr<PruneRewrite>>& fetch_rewrites, const absl::Span<const string>& target_node_names, RewriteGraphMetadata* out_metadata); class ArgFeedRewrite : public PruneRewrite { public: ArgFeedRewrite(const string* endpoint_name, const DeviceAttributes* device_info, int32_t arg_index) : PruneRewrite(endpoint_name, device_info), arg_index_(arg_index) {} Status AddNode(Graph* g, NodeBuilder::NodeOut feed_tensor, Node** out_node) override; private: const int32 arg_index_; }; class RecvFeedRewrite : public PruneRewrite { public: using PruneRewrite::PruneRewrite; Status AddNode(Graph* g, NodeBuilder::NodeOut feed_tensor, Node** out_node) override; }; class RetvalFetchRewrite : public PruneRewrite { public: RetvalFetchRewrite(const string* endpoint_name, const DeviceAttributes* device_info, int32_t retval_index) : PruneRewrite(endpoint_name, device_info), retval_index_(retval_index) {} Status AddNode(Graph* g, NodeBuilder::NodeOut fetch_tensor, Node** out_node) override; private: const int32 retval_index_; }; class SendFetchRewrite : public PruneRewrite { public: using PruneRewrite::PruneRewrite; Status AddNode(Graph* g, NodeBuilder::NodeOut fetch_tensor, Node** out_node) override; }; } } #endif #include "tensorflow/core/graph/subgraph.h" #include <algorithm> #include <deque> #include <string> #include <unordered_map> #include <unordered_set> #include <vector> #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/graph/algorithm.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/tensor_id.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/platform/logging.h" namespace tensorflow { namespace subgraph { namespace { typedef std::unordered_map<StringPiece, Node*, StringPieceHasher> NameIndex; Status FeedInputs( Graph* g, const std::vector<std::unique_ptr<PruneRewrite>>& feed_rewrites, NameIndex* name_index, DataTypeVector* out_feed_types) { out_feed_types->clear(); out_feed_types->reserve(feed_rewrites.size()); for (size_t i = 0; i < feed_rewrites.size(); ++i) { const string& t = feed_rewrites[i]->endpoint_name(); TensorId id(ParseTensorName(t)); auto iter = name_index->find(id.first); if (iter == name_index->end()) { return errors::NotFound("FeedInputs: unable to find feed output ", t); } Node* n = iter->second; DCHECK_EQ(n->name(), id.first); if (id.second >= n->num_outputs()) { return errors::InvalidArgument( "FeedInputs: ", t, " should have output index < ", n->num_outputs()); } Node* feed_node; TF_RETURN_IF_ERROR( feed_rewrites[i]->AddNode(g, {n, id.second}, &feed_node)); (*name_index)[feed_node->name()] = feed_node; g->AddControlEdge(g->source_node(), feed_node, true); std::vector<const Edge*> to_remove; for (const Edge* e : n->out_edges()) { if (e->src_output() == id.second) { to_remove.emplace_back(e); } else if (e->src_output() == Graph::kControlSlot && (n->type_string() == "Placeholder" || n->type_string() == "PlaceholderV2")) { to_remove.emplace_back(e); } } for (const Edge* e : to_remove) { if (e->src_output() == id.second) { g->AddEdge(feed_node, 0, e->dst(), e->dst_input()); } else { CHECK_EQ(Graph::kControlSlot, e->src_output()); g->AddControlEdge(feed_node, e->dst(), true); } g->RemoveEdge(e); } out_feed_types->push_back(BaseType(n->output_type(id.second))); } return absl::OkStatus(); } Status FetchOutputs( Graph* g, const std::vector<std::unique_ptr<PruneRewrite>>& fetch_rewrites, NameIndex* name_index, std::vector<Node*>* out_fetch_nodes, DataTypeVector* out_fetch_types) { out_fetch_nodes->clear(); out_fetch_nodes->reserve(fetch_rewrites.size()); for (size_t i = 0; i < fetch_rewrites.size(); ++i) { const string& t = fetch_rewrites[i]->endpoint_name(); TensorId id(ParseTensorName(t)); auto iter = name_index->find(id.first); if (iter == name_index->end()) { return errors::NotFound("FetchOutputs node ", t, ": not found"); } Node* n = iter->second; DCHECK_EQ(n->name(), id.first); VLOG(2) << "Found fetch node for " << t; if (n->num_outputs() == 0) { return errors::InvalidArgument( "Tried to fetch data for '", t, "', which produces no output. To run to a node but not fetch any " "data, pass '", t, "' as an argument to the 'target_node_names' argument of the " "Session::Run API."); } else if (id.second >= n->num_outputs()) { return errors::InvalidArgument("FetchOutputs ", t, ": output index too large, must be < ", n->num_outputs()); } Node* fetch_node; TF_RETURN_IF_ERROR( fetch_rewrites[i]->AddNode(g, {n, id.second}, &fetch_node)); (*name_index)[fetch_node->name()] = fetch_node; g->AddControlEdge(fetch_node, g->sink_node(), true); out_fetch_nodes->push_back(fetch_node); out_fetch_types->push_back(BaseType(n->output_type(id.second))); } return absl::OkStatus(); } bool AddNodeToTargets(const string& node_or_tensor_name, const NameIndex& name_index, std::unordered_set<const Node*>* targets) { TensorId id = ParseTensorName(node_or_tensor_name); auto iter = name_index.find(id.first); if (iter == name_index.end()) { return false; } const Node* n = iter->second; CHECK_EQ(n->name(), id.first); targets->insert(n); return true; } Status PruneForTargets(Graph* g, const NameIndex& name_index, const std::vector<Node*>& fetch_nodes, const absl::Span<const string>& target_nodes) { string not_found; std::unordered_set<const Node*> targets; for (Node* n : fetch_nodes) { if (!AddNodeToTargets(n->name(), name_index, &targets)) { strings::StrAppend(&not_found, n->name(), " "); } } for (const string& s : target_nodes) { if (!AddNodeToTargets(s, name_index, &targets)) { strings::StrAppend(&not_found, s, " "); } } if (!not_found.empty()) { return errors::NotFound("PruneForTargets: Some target nodes not found: ", not_found); } PruneForReverseReachability(g, std::move(targets)); FixupSourceAndSinkEdges(g); return absl::OkStatus(); } } Status ArgFeedRewrite::AddNode(Graph* g, NodeBuilder::NodeOut feed_tensor, Node** out_node) { TF_RETURN_IF_ERROR( NodeBuilder(strings::StrCat("_arg_", feed_tensor.node->name(), "_", feed_tensor.index, "_", arg_index_), "_Arg") .Attr("T", BaseType(feed_tensor.node->output_type(feed_tensor.index))) .Attr("index", arg_index_) .Finalize(g, out_node, true)); (*out_node)->set_assigned_device_name(device_info().name()); return absl::OkStatus(); } Status RecvFeedRewrite::AddNode(Graph* g, NodeBuilder::NodeOut feed_tensor, Node** out_node) { TF_RETURN_IF_ERROR( NodeBuilder(strings::StrCat("_recv_", feed_tensor.node->name(), "_", feed_tensor.index), "_Recv") .Attr("tensor_type", BaseType(feed_tensor.node->output_type(feed_tensor.index))) .Attr("tensor_name", endpoint_name()) .Attr("send_device", device_info().name()) .Attr("recv_device", device_info().name()) .Attr("send_device_incarnation", static_cast<int64_t>(device_info().incarnation())) .Attr("client_terminated", true) .Finalize(g, out_node, true)); (*out_node)->set_assigned_device_name(device_info().name()); return absl::OkStatus(); } Status RetvalFetchRewrite::AddNode(Graph* g, NodeBuilder::NodeOut fetch_tensor, Node** out_node) { TF_RETURN_IF_ERROR( NodeBuilder(strings::StrCat("_retval_", fetch_tensor.node->name(), "_", fetch_tensor.index, "_", retval_index_), "_Retval") .Input(fetch_tensor.node, fetch_tensor.index) .Attr("T", BaseType(fetch_tensor.node->output_type(fetch_tensor.index))) .Attr("index", retval_index_) .Finalize(g, out_node, true)); (*out_node)->set_assigned_device_name(device_info().name()); return absl::OkStatus(); } Status SendFetchRewrite::AddNode(Graph* g, NodeBuilder::NodeOut fetch_tensor, Node** out_node) { TF_RETURN_IF_ERROR( NodeBuilder(strings::StrCat("_send_", fetch_tensor.node->name(), "_", fetch_tensor.index), "_Send") .Input(fetch_tensor.node, fetch_tensor.index) .Attr("tensor_name", endpoint_name()) .Attr("send_device", device_info().name()) .Attr("recv_device", device_info().name()) .Attr("send_device_incarnation", static_cast<int64_t>(device_info().incarnation())) .Attr("client_terminated", true) .Finalize(g, out_node, true)); (*out_node)->set_assigned_device_name(device_info().name()); return absl::OkStatus(); } Status RewriteGraphForExecution( Graph* g, const absl::Span<const string>& fed_outputs, const absl::Span<const string>& fetch_outputs, const absl::Span<const string>& target_node_names, const DeviceAttributes& device_info, bool use_function_convention, RewriteGraphMetadata* out_metadata) { std::vector<std::unique_ptr<PruneRewrite>> feed_rewrites; feed_rewrites.reserve(fed_outputs.size()); if (use_function_convention) { for (size_t i = 0; i < fed_outputs.size(); ++i) { feed_rewrites.emplace_back(new ArgFeedRewrite( &fed_outputs[i], &device_info, static_cast<int32>(i))); } } else { for (const string& fed_output : fed_outputs) { feed_rewrites.emplace_back( new RecvFeedRewrite(&fed_output, &device_info)); } } std::vector<std::unique_ptr<PruneRewrite>> fetch_rewrites; fetch_rewrites.reserve(fetch_outputs.size()); if (use_function_convention) { for (size_t i = 0; i < fetch_outputs.size(); ++i) { fetch_rewrites.emplace_back(new RetvalFetchRewrite( &fetch_outputs[i], &device_info, static_cast<int32>(i))); } } else { for (const string& fetch_output : fetch_outputs) { fetch_rewrites.emplace_back( new SendFetchRewrite(&fetch_output, &device_info)); } } return RewriteGraphForExecution(g, feed_rewrites, fetch_rewrites, target_node_names, out_metadata); } namespace { template <typename StringContainer> std::vector<string> ConvertToVector(StringContainer field) { return std::vector<string>(field.begin(), field.end()); } } Status RewriteGraphForExecution( Graph* g, const std::vector<std::unique_ptr<PruneRewrite>>& feed_rewrites, const std::vector<std::unique_ptr<PruneRewrite>>& fetch_rewrites, const absl::Span<const string>& target_node_names, RewriteGraphMetadata* out_metadata) { if (fetch_rewrites.empty() && target_node_names.empty()) { return errors::InvalidArgument( "Must specify at least one target to fetch or execute."); } std::unordered_set<string> endpoints; for (const auto& feed_rewrite : feed_rewrites) { auto result = endpoints.insert(feed_rewrite->endpoint_name()); if (!result.second) { return errors::InvalidArgument("Endpoint \"", feed_rewrite->endpoint_name(), "\" fed more than once."); } } for (const auto& fetch_rewrite : fetch_rewrites) { if (endpoints.count(fetch_rewrite->endpoint_name()) > 0) { return errors::InvalidArgument(fetch_rewrite->endpoint_name(), " is both fed and fetched."); } } NameIndex name_index; name_index.reserve(g->num_nodes()); for (Node* n : g->nodes()) { name_index[n->name()] = n; } if (!feed_rewrites.empty()) { TF_RETURN_IF_ERROR( FeedInputs(g, feed_rewrites, &name_index, &out_metadata->feed_types)); } std::vector<Node*> fetch_nodes; if (!fetch_rewrites.empty()) { TF_RETURN_IF_ERROR(FetchOutputs(g, fetch_rewrites, &name_index, &fetch_nodes, &out_metadata->fetch_types)); } if (!fetch_nodes.empty() || !target_node_names.empty()) { TF_RETURN_IF_ERROR( PruneForTargets(g, name_index, fetch_nodes, target_node_names)); } return absl::OkStatus(); } } }
#include "tensorflow/core/graph/subgraph.h" #include <string> #include <vector> #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/graph_def_builder_util.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/partial_tensor_shape.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" namespace tensorflow { namespace { class SubgraphTest : public ::testing::Test { protected: SubgraphTest() : g_(new Graph(OpRegistry::Global())) { device_info_.set_name("/job:a/replica:0/task:0/cpu:0"); device_info_.set_device_type(DeviceType(DEVICE_CPU).type()); device_info_.set_incarnation(0); } ~SubgraphTest() override {} void ExpectOK(const string& gdef_ascii) { CHECK(protobuf::TextFormat::ParseFromString(gdef_ascii, &gdef_)); GraphConstructorOptions opts; TF_CHECK_OK(ConvertGraphDefToGraph(opts, gdef_, g_.get())); } Node* FindNode(const string& name) { for (Node* n : g_->nodes()) { if (n->name() == name) return n; } return nullptr; } bool HasNode(const string& name) { return FindNode(name) != nullptr; } void ExpectNodes(const string& nodes) { int count = 0; std::vector<string> actual_nodes; for (Node* n : g_->nodes()) { if (n->IsOp()) { count++; actual_nodes.push_back(n->name()); } } std::sort(actual_nodes.begin(), actual_nodes.end()); LOG(INFO) << "Nodes present: " << absl::StrJoin(actual_nodes, " "); std::vector<string> expected_nodes = str_util::Split(nodes, ','); std::sort(expected_nodes.begin(), expected_nodes.end()); for (const string& s : expected_nodes) { Node* n = FindNode(s); EXPECT_TRUE(n != nullptr) << s; if (n->type_string() == "_Send" || n->type_string() == "_Recv") { EXPECT_EQ(device_info_.name(), n->assigned_device_name()) << s; } } EXPECT_TRUE(actual_nodes.size() == expected_nodes.size()) << "\nActual: " << absl::StrJoin(actual_nodes, ",") << "\nExpected: " << absl::StrJoin(expected_nodes, ","); } bool HasEdge(const string& src, int src_out, const string& dst, int dst_in) { for (const Edge* e : g_->edges()) { if (e->src()->name() == src && e->src_output() == src_out && e->dst()->name() == dst && e->dst_input() == dst_in) return true; } return false; } bool HasControlEdge(const string& src, const string& dst) { return HasEdge(src, Graph::kControlSlot, dst, Graph::kControlSlot); } string Subgraph(const string& fed_str, const string& fetch_str, const string& targets_str, bool use_function_convention = false) { Graph* subgraph = new Graph(OpRegistry::Global()); CopyGraph(*g_, subgraph); std::vector<string> fed = str_util::Split(fed_str, ',', str_util::SkipEmpty()); std::vector<string> fetch = str_util::Split(fetch_str, ',', str_util::SkipEmpty()); std::vector<string> targets = str_util::Split(targets_str, ',', str_util::SkipEmpty()); subgraph::RewriteGraphMetadata metadata; Status s = subgraph::RewriteGraphForExecution( subgraph, fed, fetch, targets, device_info_, use_function_convention, &metadata); if (!s.ok()) { delete subgraph; return s.ToString(); } EXPECT_EQ(fed.size(), metadata.feed_types.size()); EXPECT_EQ(fetch.size(), metadata.fetch_types.size()); g_.reset(subgraph); return "OK"; } Graph* graph() { return g_.get(); } private: GraphDef gdef_; std::unique_ptr<Graph> g_; DeviceAttributes device_info_; }; REGISTER_OP("TestParams").Output("o: float"); REGISTER_OP("TestInput").Output("a: float").Output("b: float"); REGISTER_OP("TestRelu").Input("i: float").Output("o: float"); REGISTER_OP("TestMul").Input("a: float").Input("b: float").Output("o: float"); TEST_F(SubgraphTest, Targets1) { ExpectOK( "node { name: 'W1' op: 'TestParams' }" "node { name: 'W2' op: 'TestParams' }" "node { name: 'input' op: 'TestInput' }" "node { name: 't1' op: 'TestMul' input: [ 'W1', 'input:1' ] }" "node { name: 't2' op: 'TestMul' input: [ 'W2', 't1' ] }" "node { name: 't3_a' op: 'TestRelu' input: 't2' }" "node { name: 't3_b' op: 'TestRelu' input: 't2' }"); EXPECT_EQ("OK", Subgraph("", "", "t1")); ExpectNodes("W1,input,t1"); } TEST_F(SubgraphTest, Targets2) { ExpectOK( "node { name: 'W1' op: 'TestParams' }" "node { name: 'W2' op: 'TestParams' }" "node { name: 'input' op: 'TestInput' }" "node { name: 't1' op: 'TestMul' input: 'W1' input: 'input:1' }" "node { name: 't2' op: 'TestMul' input: 'W2' input: 't1' }" "node { name: 't3_a' op: 'TestRelu' input: 't2' }" "node { name: 't3_b' op: 'TestRelu' input: 't2' }"); EXPECT_EQ("OK", Subgraph("", "", "t2,t3_a")); ExpectNodes("W1,W2,input,t1,t2,t3_a"); } TEST_F(SubgraphTest, FedOutputs1) { ExpectOK( "node { name: 'W1' op: 'TestParams' }" "node { name: 'W2' op: 'TestParams' }" "node { name: 'input' op: 'TestInput' }" "node { name: 't1' op: 'TestMul' input: [ 'W1', 'input:1' ] }" "node { name: 't2' op: 'TestMul' input: [ 'W2', 't1' ] }" "node { name: 't3_a' op: 'TestRelu' input: 't2' }" "node { name: 't3_b' op: 'TestRelu' input: 't2' }"); EXPECT_EQ("OK", Subgraph("input:1", "", "t2")); ExpectNodes("W1,W2,_recv_input_1,t1,t2"); } TEST_F(SubgraphTest, FedOutputs1_FunctionConvention) { ExpectOK( "node { name: 'W1' op: 'TestParams' }" "node { name: 'W2' op: 'TestParams' }" "node { name: 'input' op: 'TestInput' }" "node { name: 't1' op: 'TestMul' input: [ 'W1', 'input:1' ] }" "node { name: 't2' op: 'TestMul' input: [ 'W2', 't1' ] }" "node { name: 't3_a' op: 'TestRelu' input: 't2' }" "node { name: 't3_b' op: 'TestRelu' input: 't2' }"); EXPECT_EQ("OK", Subgraph("input:1", "", "t2", true )); ExpectNodes("W1,W2,_arg_input_1_0,t1,t2"); } TEST_F(SubgraphTest, FedRefNode) { ExpectOK( "node { name: 'W1' op: 'TestParams' }" "node { name: 'W2' op: 'TestParams' }" "node { name: 't1' op: 'TestMul' input: [ 'W2', 'W1' ] }"); EXPECT_EQ("OK", Subgraph("W1:0", "", "t1")); ExpectNodes("_recv_W1_0,W2,t1"); Node* n = FindNode("_recv_W1_0"); EXPECT_FALSE(IsRefType(CHECK_NOTNULL(n)->output_type(0))); } TEST_F(SubgraphTest, FedRefNode_FunctionConvention) { ExpectOK( "node { name: 'W1' op: 'TestParams' }" "node { name: 'W2' op: 'TestParams' }" "node { name: 't1' op: 'TestMul' input: [ 'W2', 'W1' ] }"); EXPECT_EQ("OK", Subgraph("W1:0", "", "t1", true )); ExpectNodes("_arg_W1_0_0,W2,t1"); Node* n = FindNode("_arg_W1_0_0"); EXPECT_FALSE(IsRefType(CHECK_NOTNULL(n)->output_type(0))); } TEST_F(SubgraphTest, FedOutputs2_FunctionConvention) { ExpectOK( "node { name: 'W1' op: 'TestParams' }" "node { name: 'W2' op: 'TestParams' }" "node { name: 'input' op: 'TestInput' }" "node { name: 't1' op: 'TestMul' input: [ 'W1', 'input:1' ] }" "node { name: 't2' op: 'TestMul' input: [ 'W2', 't1' ] }" "node { name: 't3_a' op: 'TestRelu' input: 't2' }" "node { name: 't3_b' op: 'TestRelu' input: 't2' }"); EXPECT_EQ("OK", Subgraph("input:1,t1,W2", "", "t2", true )); ExpectNodes("_arg_t1_0_1,_arg_W2_0_2,t2"); } TEST_F(SubgraphTest, FetchOutputs1) { ExpectOK( "node { name: 'W1' op: 'TestParams' }" "node { name: 'W2' op: 'TestParams' }" "node { name: 'input' op: 'TestInput' }" "node { name: 't1' op: 'TestMul' input: [ 'W1', 'input:1' ] }" "node { name: 't2' op: 'TestMul' input: [ 'W2', 't1' ] }" "node { name: 't3_a' op: 'TestRelu' input: 't2' }" "node { name: 't3_b' op: 'TestRelu' input: 't2' }"); EXPECT_EQ("OK", Subgraph("", "W2,input:1,t1,t2", "t2")); ExpectNodes( "W1,W2,input,t1,t2,_send_W2_0,_send_input_1,_send_t1_0,_send_t2_0"); } TEST_F(SubgraphTest, FetchOutputs1_FunctionConvention) { ExpectOK( "node { name: 'W1' op: 'TestParams' }" "node { name: 'W2' op: 'TestParams' }" "node { name: 'input' op: 'TestInput' }" "node { name: 't1' op: 'TestMul' input: [ 'W1', 'input:1' ] }" "node { name: 't2' op: 'TestMul' input: [ 'W2', 't1' ] }" "node { name: 't3_a' op: 'TestRelu' input: 't2' }" "node { name: 't3_b' op: 'TestRelu' input: 't2' }"); EXPECT_EQ("OK", Subgraph("", "W2,input:1,t1,t2", "t2", true )); ExpectNodes( "W1,W2,input,t1,t2,_retval_W2_0_0,_retval_input_1_1,_retval_t1_0_2,_" "retval_t2_0_3"); } TEST_F(SubgraphTest, FetchOutputs2) { ExpectOK( "node { name: 'W1' op: 'TestParams' }" "node { name: 'W2' op: 'TestParams' }" "node { name: 'input' op: 'TestInput' }" "node { name: 't1' op: 'TestMul' input: [ 'W1', 'input:1' ] }" "node { name: 't2' op: 'TestMul' input: [ 'W2', 't1' ] }" "node { name: 't3_a' op: 'TestRelu' input: 't2' }" "node { name: 't3_b' op: 'TestRelu' input: 't2' }"); EXPECT_EQ("OK", Subgraph("", "t3_a", "t2")); ExpectNodes("W1,W2,input,t1,t2,t3_a,_send_t3_a_0"); } TEST_F(SubgraphTest, FetchOutputs2_FunctionConvention) { ExpectOK( "node { name: 'W1' op: 'TestParams' }" "node { name: 'W2' op: 'TestParams' }" "node { name: 'input' op: 'TestInput' }" "node { name: 't1' op: 'TestMul' input: [ 'W1', 'input:1' ] }" "node { name: 't2' op: 'TestMul' input: [ 'W2', 't1' ] }" "node { name: 't3_a' op: 'TestRelu' input: 't2' }" "node { name: 't3_b' op: 'TestRelu' input: 't2' }"); EXPECT_EQ("OK", Subgraph("", "t3_a", "t2", true )); ExpectNodes("W1,W2,input,t1,t2,t3_a,_retval_t3_a_0_0"); } TEST_F(SubgraphTest, ChainOfFools) { ExpectOK( "node { name: 'a' op: 'TestParams' }" "node { name: 'b' op: 'TestRelu' input: 'a'}" "node { name: 'c' op: 'TestRelu' input: 'b'}" "node { name: 'd' op: 'TestRelu' input: 'c'}" "node { name: 'e' op: 'TestRelu' input: 'd'}" "node { name: 'f' op: 'TestRelu' input: 'e'}"); EXPECT_EQ("OK", Subgraph("c:0", "b:0,e:0", "")); ExpectNodes("a,b,_send_b_0,_recv_c_0,d,e,_send_e_0"); EXPECT_TRUE(HasEdge("a", 0, "b", 0)); EXPECT_TRUE(HasEdge("b", 0, "_send_b_0", 0)); EXPECT_TRUE(HasEdge("_recv_c_0", 0, "d", 0)); EXPECT_TRUE(HasEdge("d", 0, "e", 0)); EXPECT_TRUE(HasEdge("e", 0, "_send_e_0", 0)); } static bool HasSubstr(StringPiece base, StringPiece substr) { bool ok = absl::StrContains(base, substr); EXPECT_TRUE(ok) << base << ", expected substring " << substr; return ok; } TEST_F(SubgraphTest, Errors) { ExpectOK( "node { name: 'a' op: 'TestParams' }" "node { name: 'b' op: 'TestRelu' input: 'a'}" "node { name: 'c' op: 'TestRelu' input: 'b'}" "node { name: 'd' op: 'TestRelu' input: 'c'}" "node { name: 'e' op: 'TestRelu' input: 'd'}" "node { name: 'f' op: 'TestRelu' input: 'e'}"); EXPECT_TRUE( HasSubstr(Subgraph("c:0", "b:0,c:0", ""), "both fed and fetched")); EXPECT_TRUE(HasSubstr(Subgraph("foo:0", "c:0", ""), "unable to find")); EXPECT_TRUE(HasSubstr(Subgraph("", "foo:0", ""), "not found")); EXPECT_TRUE(HasSubstr(Subgraph("", "", "foo"), "not found")); EXPECT_TRUE(HasSubstr(Subgraph("", "", ""), "at least one target")); } REGISTER_OP("In").Output("o: float"); REGISTER_OP("Op").Input("i: float").Output("o: float"); void BM_SubgraphHelper(::testing::benchmark::State& state, bool use_function_convention) { const int num_nodes = state.range(0); DeviceAttributes device_info; device_info.set_name("/job:a/replica:0/task:0/cpu:0"); device_info.set_device_type(DeviceType(DEVICE_CPU).type()); device_info.set_incarnation(0); Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* last_node = nullptr; for (int i = 0; i < num_nodes; i++) { string name = strings::StrCat("N", i); if (i > 0) { last_node = ops::UnaryOp("Op", last_node, b.opts().WithName(name)); } else { last_node = ops::SourceOp("In", b.opts().WithName(name)); } } TF_CHECK_OK(GraphDefBuilderToGraph(b, &g)); } std::vector<string> fed; if (num_nodes > 1000) { fed.push_back(strings::StrCat("N", num_nodes - 1000)); } std::vector<string> fetch; std::vector<string> targets = {strings::StrCat("N", num_nodes - 1)}; for (auto s : state) { Graph* subgraph = new Graph(OpRegistry::Global()); CopyGraph(g, subgraph); subgraph::RewriteGraphMetadata metadata; TF_CHECK_OK(subgraph::RewriteGraphForExecution( subgraph, fed, fetch, targets, device_info, use_function_convention, &metadata)); delete subgraph; } } void BM_Subgraph(::testing::benchmark::State& state) { BM_SubgraphHelper(state, false ); } void BM_SubgraphFunctionConvention(::testing::benchmark::State& state) { BM_SubgraphHelper(state, true ); } BENCHMARK(BM_Subgraph)->Arg(100)->Arg(1000)->Arg(10000)->Arg(100000); BENCHMARK(BM_SubgraphFunctionConvention) ->Arg(100) ->Arg(1000) ->Arg(10000) ->Arg(100000); } }
949
cpp
tensorflow/tensorflow
c_api
tensorflow/lite/core/experimental/acceleration/mini_benchmark/c/c_api.cc
tensorflow/lite/core/experimental/acceleration/mini_benchmark/c/c_api_test.cc
#ifndef XLA_FFI_API_C_API_H_ #define XLA_FFI_API_C_API_H_ #include <stddef.h> #include <stdint.h> #define XLA_FFI_STRUCT_SIZE(struct_type, last_field) \ (offsetof(struct_type, last_field) + sizeof(((struct_type*)0)->last_field)) #define XLA_FFI_DEFINE_STRUCT_TRAITS(sname, last_field) \ typedef struct sname sname; \ enum { sname##_STRUCT_SIZE = XLA_FFI_STRUCT_SIZE(sname, last_field) } #ifdef __cplusplus extern "C" { #endif typedef struct XLA_FFI_Api XLA_FFI_Api; typedef struct XLA_FFI_InternalApi XLA_FFI_InternalApi; #define XLA_FFI_API_MAJOR 0 #define XLA_FFI_API_MINOR 0 struct XLA_FFI_Api_Version { size_t struct_size; void* priv; int major_version; int minor_version; }; XLA_FFI_DEFINE_STRUCT_TRAITS(XLA_FFI_Api_Version, minor_version); typedef struct XLA_FFI_Error XLA_FFI_Error; typedef enum { XLA_FFI_Error_Code_OK = 0, XLA_FFI_Error_Code_CANCELLED = 1, XLA_FFI_Error_Code_UNKNOWN = 2, XLA_FFI_Error_Code_INVALID_ARGUMENT = 3, XLA_FFI_Error_Code_DEADLINE_EXCEEDED = 4, XLA_FFI_Error_Code_NOT_FOUND = 5, XLA_FFI_Error_Code_ALREADY_EXISTS = 6, XLA_FFI_Error_Code_PERMISSION_DENIED = 7, XLA_FFI_Error_Code_RESOURCE_EXHAUSTED = 8, XLA_FFI_Error_Code_FAILED_PRECONDITION = 9, XLA_FFI_Error_Code_ABORTED = 10, XLA_FFI_Error_Code_OUT_OF_RANGE = 11, XLA_FFI_Error_Code_UNIMPLEMENTED = 12, XLA_FFI_Error_Code_INTERNAL = 13, XLA_FFI_Error_Code_UNAVAILABLE = 14, XLA_FFI_Error_Code_DATA_LOSS = 15, XLA_FFI_Error_Code_UNAUTHENTICATED = 16 } XLA_FFI_Error_Code; struct XLA_FFI_Error_Create_Args { size_t struct_size; void* priv; const char* message; XLA_FFI_Error_Code errc; }; XLA_FFI_DEFINE_STRUCT_TRAITS(XLA_FFI_Error_Create_Args, errc); typedef XLA_FFI_Error* XLA_FFI_Error_Create(XLA_FFI_Error_Create_Args* args); struct XLA_FFI_Error_GetMessage_Args { size_t struct_size; void* priv; XLA_FFI_Error* error; const char* message; }; XLA_FFI_DEFINE_STRUCT_TRAITS(XLA_FFI_Error_GetMessage_Args, message); typedef void XLA_FFI_Error_GetMessage(XLA_FFI_Error_GetMessage_Args* args); struct XLA_FFI_Error_Destroy_Args { size_t struct_size; void* priv; XLA_FFI_Error* error; }; XLA_FFI_DEFINE_STRUCT_TRAITS(XLA_FFI_Error_Destroy_Args, error); typedef void XLA_FFI_Error_Destroy(XLA_FFI_Error_Destroy_Args* args); typedef enum { XLA_FFI_DataType_INVALID = 0, XLA_FFI_DataType_PRED = 1, XLA_FFI_DataType_S8 = 2, XLA_FFI_DataType_S16 = 3, XLA_FFI_DataType_S32 = 4, XLA_FFI_DataType_S64 = 5, XLA_FFI_DataType_U8 = 6, XLA_FFI_DataType_U16 = 7, XLA_FFI_DataType_U32 = 8, XLA_FFI_DataType_U64 = 9, XLA_FFI_DataType_F16 = 10, XLA_FFI_DataType_F32 = 11, XLA_FFI_DataType_F64 = 12, XLA_FFI_DataType_BF16 = 16, XLA_FFI_DataType_C64 = 15, XLA_FFI_DataType_C128 = 18, XLA_FFI_DataType_TOKEN = 17, XLA_FFI_DataType_F8E5M2 = 19, XLA_FFI_DataType_F8E4M3FN = 20, XLA_FFI_DataType_F8E4M3B11FNUZ = 23, XLA_FFI_DataType_F8E5M2FNUZ = 24, XLA_FFI_DataType_F8E4M3FNUZ = 25, } XLA_FFI_DataType; struct XLA_FFI_Buffer { size_t struct_size; void* priv; XLA_FFI_DataType dtype; void* data; int64_t rank; int64_t* dims; }; XLA_FFI_DEFINE_STRUCT_TRAITS(XLA_FFI_Buffer, dims); typedef enum { XLA_FFI_ArgType_BUFFER = 1, } XLA_FFI_ArgType; typedef enum { XLA_FFI_RetType_BUFFER = 1, } XLA_FFI_RetType; typedef enum { XLA_FFI_AttrType_ARRAY = 1, XLA_FFI_AttrType_DICTIONARY = 2, XLA_FFI_AttrType_SCALAR = 3, XLA_FFI_AttrType_STRING = 4, } XLA_FFI_AttrType; typedef struct XLA_FFI_ExecutionContext XLA_FFI_ExecutionContext; struct XLA_FFI_TypeId { int64_t type_id; }; struct XLA_FFI_ByteSpan { const char* ptr; size_t len; }; struct XLA_FFI_Scalar { XLA_FFI_DataType dtype; void* value; }; struct XLA_FFI_Array { XLA_FFI_DataType dtype; size_t size; void* data; }; typedef enum { XLA_FFI_ExecutionStage_PREPARE = 0, XLA_FFI_ExecutionStage_INITIALIZE = 1, XLA_FFI_ExecutionStage_EXECUTE = 2, } XLA_FFI_ExecutionStage; struct XLA_FFI_Args { size_t struct_size; void* priv; int64_t size; XLA_FFI_ArgType* types; void** args; }; XLA_FFI_DEFINE_STRUCT_TRAITS(XLA_FFI_Args, args); struct XLA_FFI_Rets { size_t struct_size; void* priv; int64_t size; XLA_FFI_RetType* types; void** rets; }; XLA_FFI_DEFINE_STRUCT_TRAITS(XLA_FFI_Rets, rets); struct XLA_FFI_Attrs { size_t struct_size; void* priv; int64_t size; XLA_FFI_AttrType* types; XLA_FFI_ByteSpan** names; void** attrs; }; XLA_FFI_DEFINE_STRUCT_TRAITS(XLA_FFI_Attrs, attrs); struct XLA_FFI_CallFrame { size_t struct_size; void* priv; const XLA_FFI_Api* api; XLA_FFI_ExecutionContext* ctx; XLA_FFI_ExecutionStage stage; XLA_FFI_Args args; XLA_FFI_Rets rets; XLA_FFI_Attrs attrs; }; XLA_FFI_DEFINE_STRUCT_TRAITS(XLA_FFI_CallFrame, attrs); typedef XLA_FFI_Error* XLA_FFI_Handler(XLA_FFI_CallFrame* call_frame); struct XLA_FFI_Handler_Bundle { XLA_FFI_Handler* prepare; XLA_FFI_Handler* initialize; XLA_FFI_Handler* execute; }; enum XLA_FFI_Handler_TraitsBits { XLA_FFI_HANDLER_TRAITS_COMMAND_BUFFER_COMPATIBLE = 1u << 0, }; typedef uint32_t XLA_FFI_Handler_Traits; struct XLA_FFI_Handler_Register_Args { size_t struct_size; void* priv; XLA_FFI_ByteSpan name; XLA_FFI_ByteSpan platform; XLA_FFI_Handler_Bundle bundle; XLA_FFI_Handler_Traits traits; }; XLA_FFI_DEFINE_STRUCT_TRAITS(XLA_FFI_Handler_Register_Args, traits); typedef XLA_FFI_Error* XLA_FFI_Handler_Register( XLA_FFI_Handler_Register_Args* args); struct XLA_FFI_TypeId_Register_Args { size_t struct_size; void* priv; XLA_FFI_ByteSpan name; XLA_FFI_TypeId* type_id; }; XLA_FFI_DEFINE_STRUCT_TRAITS(XLA_FFI_TypeId_Register_Args, type_id); typedef XLA_FFI_Error* XLA_FFI_TypeId_Register( XLA_FFI_TypeId_Register_Args* args); struct XLA_FFI_ExecutionContext_Get_Args { size_t struct_size; void* priv; XLA_FFI_ExecutionContext* ctx; XLA_FFI_TypeId* type_id; void* data; }; XLA_FFI_DEFINE_STRUCT_TRAITS(XLA_FFI_ExecutionContext_Get_Args, data); typedef XLA_FFI_Error* XLA_FFI_ExecutionContext_Get( XLA_FFI_ExecutionContext_Get_Args* args); struct XLA_FFI_Stream_Get_Args { size_t struct_size; void* priv; XLA_FFI_ExecutionContext* ctx; void* stream; }; XLA_FFI_DEFINE_STRUCT_TRAITS(XLA_FFI_Stream_Get_Args, stream); typedef XLA_FFI_Error* XLA_FFI_Stream_Get(XLA_FFI_Stream_Get_Args* args); struct XLA_FFI_DeviceMemory_Allocate_Args { size_t struct_size; void* priv; XLA_FFI_ExecutionContext* ctx; size_t size; size_t alignment; void* data; }; XLA_FFI_DEFINE_STRUCT_TRAITS(XLA_FFI_DeviceMemory_Allocate_Args, data); typedef XLA_FFI_Error* XLA_FFI_DeviceMemory_Allocate( XLA_FFI_DeviceMemory_Allocate_Args* args); struct XLA_FFI_DeviceMemory_Free_Args { size_t struct_size; void* priv; XLA_FFI_ExecutionContext* ctx; size_t size; void* data; }; XLA_FFI_DEFINE_STRUCT_TRAITS(XLA_FFI_DeviceMemory_Free_Args, data); typedef XLA_FFI_Error* XLA_FFI_DeviceMemory_Free( XLA_FFI_DeviceMemory_Free_Args* args); #define _XLA_FFI_API_STRUCT_FIELD(fn_type) fn_type* fn_type struct XLA_FFI_Api { size_t struct_size; void* priv; XLA_FFI_InternalApi* internal_api; _XLA_FFI_API_STRUCT_FIELD(XLA_FFI_Error_Create); _XLA_FFI_API_STRUCT_FIELD(XLA_FFI_Error_GetMessage); _XLA_FFI_API_STRUCT_FIELD(XLA_FFI_Error_Destroy); _XLA_FFI_API_STRUCT_FIELD(XLA_FFI_Handler_Register); _XLA_FFI_API_STRUCT_FIELD(XLA_FFI_Stream_Get); _XLA_FFI_API_STRUCT_FIELD(XLA_FFI_TypeId_Register); _XLA_FFI_API_STRUCT_FIELD(XLA_FFI_ExecutionContext_Get); _XLA_FFI_API_STRUCT_FIELD(XLA_FFI_DeviceMemory_Allocate); _XLA_FFI_API_STRUCT_FIELD(XLA_FFI_DeviceMemory_Free); }; #undef _XLA_FFI_API_STRUCT_FIELD XLA_FFI_DEFINE_STRUCT_TRAITS(XLA_FFI_Api, XLA_FFI_Stream_Get); const XLA_FFI_Api* XLA_FFI_GetApi(); #ifdef __cplusplus } #endif #endif #include "tensorflow/c/eager/c_api.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/memory/memory.h" #include "tensorflow/c/c_api.h" #include "tensorflow/c/c_api_internal.h" #include "tensorflow/c/eager/abstract_tensor_handle.h" #include "tensorflow/c/eager/c_api_experimental.h" #include "tensorflow/c/eager/c_api_internal.h" #include "tensorflow/c/eager/immediate_execution_operation.h" #include "tensorflow/c/eager/immediate_execution_tensor_handle.h" #include "tensorflow/c/eager/tfe_context_internal.h" #include "tensorflow/c/eager/tfe_op_internal.h" #include "tensorflow/c/eager/tfe_tensorhandle_internal.h" #include "tensorflow/c/tf_buffer_internal.h" #include "tensorflow/c/tf_status.h" #include "tensorflow/c/tf_tensor_internal.h" #include "xla/tsl/c/tsl_status_internal.h" #include "tensorflow/core/common_runtime/copy_tensor.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/eager/attr_builder.h" #include "tensorflow/core/common_runtime/eager/context.h" #include "tensorflow/core/common_runtime/eager/custom_device.h" #include "tensorflow/core/common_runtime/eager/custom_device_op_handler.h" #include "tensorflow/core/common_runtime/eager/execute.h" #include "tensorflow/core/common_runtime/eager/placement_utils.h" #include "tensorflow/core/common_runtime/eager/tensor_handle.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/device_attributes.pb.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/rendezvous.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/platform/casts.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/platform.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/profiler/lib/traceme.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tensorflow/core/public/version.h" #if !defined(IS_MOBILE_PLATFORM) #include "tensorflow/core/common_runtime/eager/context_distributed_manager.h" #endif using tensorflow::string; namespace { string DeviceName(const tensorflow::Device* d) { return (d == nullptr) ? "cpu:0" : d->name(); } void AnnotateEagerRuntimeConstructionContext( tensorflow::FunctionDef& function_def) { tensorflow::AttrValue value; SetAttrValue("kEagerRuntime", &value); (*function_def.mutable_attr())["_construction_context"] = value; } } extern "C" { TFE_ContextOptions* TFE_NewContextOptions() { return new TFE_ContextOptions; } void TFE_ContextOptionsSetConfig(TFE_ContextOptions* options, const void* proto, size_t proto_len, TF_Status* status) { TF_SetConfig(&options->session_options, proto, proto_len, status); } void TFE_ContextOptionsSetAsync(TFE_ContextOptions* options, unsigned char enable) { options->async = enable; } void TFE_ContextOptionsSetDevicePlacementPolicy( TFE_ContextOptions* options, TFE_ContextDevicePlacementPolicy policy) { options->device_placement_policy = policy; } void TFE_DeleteContextOptions(TFE_ContextOptions* options) { delete options; } TFE_Context* TFE_NewContext(const TFE_ContextOptions* opts, TF_Status* status) { if (opts->use_tfrt) { status->status = tensorflow::errors::Unimplemented("TFRT is not supported"); return nullptr; } std::vector<std::unique_ptr<tensorflow::Device>> devices; status->status = tensorflow::DeviceFactory::AddDevices( opts->session_options.options, "/job:localhost/replica:0/task:0", &devices); if (!status->status.ok()) return nullptr; std::unique_ptr<tensorflow::DeviceMgr> device_mgr( new tensorflow::DynamicDeviceMgr(std::move(devices))); auto r = tsl::core::RefCountPtr<tensorflow::IntraProcessRendezvous>( new tensorflow::IntraProcessRendezvous(device_mgr.get())); tensorflow::EagerContext* eager_context = new tensorflow::EagerContext( opts->session_options.options, static_cast<tensorflow::ContextDevicePlacementPolicy>( opts->device_placement_policy), opts->async, device_mgr.release(), true, std::move(r), nullptr, nullptr, opts->run_eager_op_as_function, opts->jit_compile_rewrite); #if !defined(IS_MOBILE_PLATFORM) eager_context->SetDistributedManager( std::make_unique<tensorflow::EagerContextDistributedManager>( eager_context)); #endif return tensorflow::wrap(eager_context); } void TFE_DeleteContext(TFE_Context* ctx) { if (ctx == nullptr) { return; } tensorflow::unwrap(ctx)->Release(); } TF_DeviceList* TFE_ContextListDevices(TFE_Context* ctx, TF_Status* status) { TF_DeviceList* l = new TF_DeviceList; tensorflow::unwrap(ctx)->ListDevices(&l->response); return l; } void TFE_ContextClearCaches(TFE_Context* ctx) { tensorflow::unwrap(ctx)->ClearCachesAndThreadExecutors(); } TF_CAPI_EXPORT extern void TFE_ContextSetServerDef(TFE_Context* ctx, int keep_alive_secs, const void* proto, size_t proto_len, TF_Status* status) { TFE_ContextSetServerDefWithTimeoutAndRetries( ctx, keep_alive_secs, proto, proto_len, 0, 0, status, false); } TF_CAPI_EXPORT extern void TFE_ContextSetServerDefWithTimeout( TFE_Context* ctx, int keep_alive_secs, const void* proto, size_t proto_len, int64_t init_timeout_in_ms, TF_Status* status, bool clear_existing_contexts) { TFE_ContextSetServerDefWithTimeoutAndRetries( ctx, keep_alive_secs, proto, proto_len, init_timeout_in_ms, 0, status, clear_existing_contexts); } TF_CAPI_EXPORT extern void TFE_ContextSetServerDefWithTimeoutAndRetries( TFE_Context* ctx, int keep_alive_secs, const void* proto, size_t proto_len, int64_t init_timeout_in_ms, int retries, TF_Status* status, bool clear_existing_contexts) { #if defined(IS_MOBILE_PLATFORM) status->status = tensorflow::errors::Unimplemented( "TFE_ContextSetServerDef not supported on mobile"); #else tensorflow::ServerDef server_def; if (!server_def.ParseFromArray(proto, proto_len)) { status->status = tensorflow::errors::InvalidArgument( "Invalid tensorflow.ServerDef protocol buffer"); return; } status->status = tensorflow::unwrap(ctx)->GetDistributedManager()->SetOrUpdateServerDef( server_def, true, keep_alive_secs, init_timeout_in_ms, retries, clear_existing_contexts); #endif } TF_CAPI_EXPORT extern void TFE_ContextUpdateServerDef(TFE_Context* ctx, int keep_alive_secs, const void* proto, size_t proto_len, TF_Status* status) { TFE_ContextUpdateServerDefWithTimeout(ctx, keep_alive_secs, proto, proto_len, 0, status); } TF_CAPI_EXPORT extern void TFE_ContextUpdateServerDefWithTimeout( TFE_Context* ctx, int keep_alive_secs, const void* proto, size_t proto_len, int64_t init_timeout_in_ms, TF_Status* status) { #if defined(IS_MOBILE_PLATFORM) status->status = tensorflow::errors::Unimplemented( "TFE_ContextUpdateServerDef not supported on mobile"); #else tensorflow::ServerDef server_def; tensorflow::EagerContext* context = tensorflow::ContextFromInterface(tensorflow::unwrap(ctx)); if (!server_def.ParseFromArray(proto, proto_len)) { status->status = tensorflow::errors::InvalidArgument( "Invalid tensorflow.ServerDef protocol buffer"); return; } else if (context->GetContextId() == tensorflow::EagerContext::kInvalidContextId) { status->status = tensorflow::errors::InvalidArgument( "Trying to update a context with invalid context id."); } status->status = tensorflow::unwrap(ctx)->GetDistributedManager()->SetOrUpdateServerDef( server_def, false, keep_alive_secs, init_timeout_in_ms, 0); #endif } TF_CAPI_EXPORT extern bool TFE_ContextCheckAlive(TFE_Context* ctx, const char* worker_name, TF_Status* status) { #if defined(IS_MOBILE_PLATFORM) status->status = tensorflow::errors::Unimplemented( "TFE_ContextSetServerDef not supported on mobile"); return false; #else bool is_alive; status->status = tensorflow::unwrap(ctx)->GetDistributedManager()->CheckRemoteAlive( worker_name, &is_alive); return is_alive; #endif } TF_CAPI_EXPORT extern void TFE_ContextAsyncWait(TFE_Context* ctx, TF_Status* status) { #if defined(IS_MOBILE_PLATFORM) status->status = tensorflow::OkStatus(); #else status->status = tensorflow::unwrap(ctx)->AsyncWait(); #endif } void TFE_ContextSetThreadLocalDevicePlacementPolicy( TFE_Context* ctx, TFE_ContextDevicePlacementPolicy policy) { tensorflow::unwrap(ctx)->SetThreadLocalDevicePlacementPolicy( static_cast<tensorflow::ContextDevicePlacementPolicy>(policy)); } extern TFE_ContextDevicePlacementPolicy TFE_ContextGetDevicePlacementPolicy( TFE_Context* ctx) { return static_cast<TFE_ContextDevicePlacementPolicy>( tensorflow::unwrap(ctx)->GetDevicePlacementPolicy()); } TFE_TensorHandle* TFE_NewTensorHandle(const TF_Tensor* t, TF_Status* status) { tensorflow::Tensor tensor; status->status = tensorflow::TF_TensorToTensor(t, &tensor); if (!status->status.ok()) return nullptr; return tensorflow::wrap(tensorflow::TensorHandle::CreateLocalHandle(tensor)); } void TFE_DeleteTensorHandle(TFE_TensorHandle* h) { if (h == nullptr) return; tsl::profiler::TraceMe activity("TFE_DeleteTensorHandle", tsl::profiler::TraceMeLevel::kInfo); if (h) { tensorflow::unwrap(h)->Unref(); } } TF_DataType TFE_TensorHandleDataType(TFE_TensorHandle* h) { return static_cast<TF_DataType>(tensorflow::unwrap(h)->DataType()); } int TFE_TensorHandleNumDims(TFE_TensorHandle* h, TF_Status* status) { if (h == nullptr) { status->status = tensorflow::errors::InvalidArgument("Invalid handle"); return -1; } int num_dims = -1; status->status = tensorflow::unwrap(h)->NumDims(&num_dims); return num_dims; } int64_t TFE_TensorHandleNumElements(TFE_TensorHandle* h, TF_Status* status) { if (h == nullptr) { status->status = tensorflow::errors::InvalidArgument("Invalid handle"); return -1; } int64_t num_elements = -1; status->status = tensorflow::unwrap(h)->NumElements(&num_elements); return num_elements; } int64_t TFE_TensorHandleDim(TFE_TensorHandle* h, int dim_index, TF_Status* status) { if (h == nullptr) { status->status = tensorflow::errors::InvalidArgument("Invalid handle"); return -1; } int64_t dim = -1; status->status = tensorflow::unwrap(h)->Dim(dim_index, &dim); return dim; } const char* TFE_TensorHandleDeviceName(TFE_TensorHandle* h, TF_Status* status) { if (h == nullptr) { status->status = tensorflow::errors::InvalidArgument("Invalid handle"); return nullptr; } return tensorflow::unwrap(h)->DeviceName(&status->status); } const char* TFE_TensorHandleBackingDeviceName(TFE_TensorHandle* h, TF_Status* status) { if (h == nullptr) { status->status = tensorflow::errors::InvalidArgument("Invalid handle"); return nullptr; } return tensorflow::unwrap(h)->BackingDeviceName(&status->status); } TF_CAPI_EXPORT extern TFE_TensorHandle* TFE_TensorHandleCopySharingTensor( TFE_TensorHandle* h, TF_Status* status) { if (h == nullptr) { status->status = tensorflow::errors::InvalidArgument("Invalid handle"); return nullptr; } tensorflow::unwrap(h)->Ref(); return h; } TF_Tensor* TFE_TensorHandleResolve(TFE_TensorHandle* h, TF_Status* status) { if (h == nullptr) { status->status = tensorflow::errors::InvalidArgument("Invalid handle"); return nullptr; } tensorflow::AbstractTensorInterface* t = tensorflow::unwrap(h)->Resolve(&status->status); if (t == nullptr) { return nullptr; } return new TF_Tensor{t}; } void* TFE_TensorHandleDevicePointer(TFE_TensorHandle* h, TF_Status* status) { if (h == nullptr) { status->status = tensorflow::errors::InvalidArgument("Invalid handle"); return nullptr; } tensorflow::ImmediateExecutionTensorHandle* unwrapped_handle = tensorflow::unwrap(h); if (tensorflow::CustomDeviceTensorHandle::classof(unwrapped_handle)) { return tensorflow::down_cast<tensorflow::CustomDeviceTensorHandle*>( unwrapped_handle) ->DevicePointer(); } if (!tensorflow::TensorHandle::classof(unwrapped_handle)) { status->status = tensorflow::errors::InvalidArgument("Invalid handle"); return nullptr; } tensorflow::TensorHandle* handle = tensorflow::TensorHandleFromInterface(unwrapped_handle); if (handle->Type() != tensorflow::TensorHandle::LOCAL) { status->status = tensorflow::errors::InvalidArgument( "TFE_TensorHandleDevicePointer may not be called on a ", handle->TypeString(), " tensor handle."); return nullptr; } tensorflow::Device* device(handle->device()); if (device != nullptr) { status->status = device->Sync(); if (!status->status.ok()) { return nullptr; } } const tensorflow::Tensor* tensor; status->status = handle->Tensor(&tensor); if (!status->status.ok()) { return nullptr; } return const_cast<void*>( static_cast<const void*>(tensor->tensor_data().data())); } namespace tensorflow { nam
#include "tensorflow/c/eager/c_api.h" #include <string.h> #include <memory> #include <string> #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/platform.h" #include "absl/strings/match.h" #include "tensorflow/c/eager/c_api_experimental.h" #include "tensorflow/c/eager/c_api_internal.h" #include "tensorflow/c/eager/c_api_test_util.h" #include "tensorflow/c/eager/tfe_op_internal.h" #include "tensorflow/c/eager/tfe_tensorhandle_internal.h" #include "tensorflow/c/tf_datatype.h" #include "tensorflow/c/tf_status.h" #include "tensorflow/c/tf_tensor.h" #include "tensorflow/core/common_runtime/eager/eager_operation.h" #include "tensorflow/core/common_runtime/eager/tensor_handle.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_server_lib.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/platform/casts.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/strcat.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/protobuf/cluster.pb.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/protobuf/rewriter_config.pb.h" #include "tensorflow/core/protobuf/tensorflow_server.pb.h" using tensorflow::string; namespace { void BM_InitOp(::testing::benchmark::State& state) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* m = TestMatrixTensorHandle(ctx); for (auto s : state) { TFE_Op* matmul = MatMulOp(ctx, m, m); TFE_DeleteOp(matmul); } TFE_DeleteTensorHandle(m); TFE_DeleteContext(ctx); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); } BENCHMARK(BM_InitOp); void BM_Execute(::testing::benchmark::State& state) { const int async = state.range(0); state.SetLabel(async ? "ExecuteAsync" : "Execute"); TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetAsync(opts, static_cast<unsigned char>(async)); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* m = TestMatrixTensorHandle(ctx); TFE_Op* matmul = TFE_NewOp(ctx, "MatMul", status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_TensorHandle* retvals[1]; int num_retvals = 1; for (auto s : state) { TFE_OpReset(matmul, "MatMul", nullptr, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpAddInput(matmul, m, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpAddInput(matmul, m, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Execute(matmul, &retvals[0], &num_retvals, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); if (state.iterations() >= state.max_iterations && async) { TFE_Executor* executor = TFE_ContextGetExecutorForThread(ctx); TFE_ExecutorWaitForAllPendingNodes(executor, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteExecutor(executor); } } TFE_DeleteOp(matmul); TFE_DeleteTensorHandle(m); TFE_DeleteContext(ctx); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); } BENCHMARK(BM_Execute)->Arg(0)->Arg(1); void BM_Execute_Identity(::testing::benchmark::State& state) { const int async = state.range(0); state.SetLabel(async ? "ExecuteIdentityAsync" : "ExecuteIdentity"); TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetAsync(opts, static_cast<unsigned char>(async)); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* m = TestMatrixTensorHandle(ctx); TFE_Op* identity = TFE_NewOp(ctx, "Identity", status); TFE_TensorHandle* retvals[1]; int num_retvals = 1; for (auto s : state) { TFE_OpReset(identity, "Identity", nullptr, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpAddInput(identity, m, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Execute(identity, &retvals[0], &num_retvals, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); if (state.iterations() >= state.max_iterations && async) { TFE_Executor* executor = TFE_ContextGetExecutorForThread(ctx); TFE_ExecutorWaitForAllPendingNodes(executor, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteExecutor(executor); } } TFE_DeleteOp(identity); TFE_DeleteTensorHandle(m); TFE_DeleteContext(ctx); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); } BENCHMARK(BM_Execute_Identity)->Arg(0)->Arg(1); TEST(CAPI, Context) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); TFE_DeleteContextOptions(opts); TF_DeviceList* devices = TFE_ContextListDevices(ctx, status); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContext(ctx); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); const int num_devices = TF_DeviceListCount(devices); EXPECT_GE(num_devices, 1) << "At least one CPU device should exist"; for (int i = 0; i < num_devices; ++i) { EXPECT_NE("", TF_DeviceListName(devices, i, status)) << i; EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); } TF_DeleteDeviceList(devices); TF_DeleteStatus(status); } TEST(CAPI, TensorHandle) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status.get()); CHECK_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TFE_DeleteContextOptions(opts); TFE_TensorHandle* h = TestMatrixTensorHandle(ctx); EXPECT_EQ(TF_FLOAT, TFE_TensorHandleDataType(h)); TF_Tensor* t = TFE_TensorHandleResolve(h, status.get()); ASSERT_EQ(16, TF_TensorByteSize(t)); float data[4] = {0}; memcpy(&data[0], TF_TensorData(t), TF_TensorByteSize(t)); EXPECT_EQ(1.0, data[0]); EXPECT_EQ(2.0, data[1]); EXPECT_EQ(3.0, data[2]); EXPECT_EQ(4.0, data[3]); TF_DeleteTensor(t); TFE_DeleteTensorHandle(h); TFE_DeleteContext(ctx); } void TensorHandleCopyBetweenDevices(bool async) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetAsync(opts, static_cast<unsigned char>(async)); TFE_Context* ctx = TFE_NewContext(opts, status.get()); TFE_DeleteContextOptions(opts); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TFE_TensorHandle* hcpu = TestMatrixTensorHandle(ctx); TF_Tensor* t = TFE_TensorHandleResolve(hcpu, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TF_DeviceList* devices = TFE_ContextListDevices(ctx, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); const int num_devices = TF_DeviceListCount(devices); const char* kCPUDevice = "CPU:0"; for (int i = 0; i < num_devices; ++i) { const string name(TF_DeviceListName(devices, i, status.get())); if (TF_GetCode(status.get()) != TF_OK) { ADD_FAILURE() << i << " -- " << TF_Message(status.get()); continue; } auto tag = tensorflow::strings::StrCat("Device #", i, " (", name, ")"); TFE_TensorHandle* hdevice = TFE_TensorHandleCopyToDevice(hcpu, ctx, name.c_str(), status.get()); if (TF_GetCode(status.get()) != TF_OK) { ADD_FAILURE() << tag << " -- " << TF_Message(status.get()); continue; } TFE_TensorHandle* hdevice2 = TFE_TensorHandleCopyToDevice(hdevice, ctx, name.c_str(), status.get()); if (TF_GetCode(status.get()) != TF_OK) { ADD_FAILURE() << tag << " -- " << TF_Message(status.get()); continue; } TFE_DeleteTensorHandle(hdevice); TFE_TensorHandle* hcopy = TFE_TensorHandleCopyToDevice(hdevice2, ctx, kCPUDevice, status.get()); if (TF_GetCode(status.get()) != TF_OK) { ADD_FAILURE() << tag << " -- " << TF_Message(status.get()); continue; } TFE_DeleteTensorHandle(hdevice2); TF_Tensor* tcopy = TFE_TensorHandleResolve(hcopy, status.get()); TFE_DeleteTensorHandle(hcopy); if (TF_GetCode(status.get()) != TF_OK) { ADD_FAILURE() << tag; continue; } EXPECT_EQ(TF_TensorByteSize(t), TF_TensorByteSize(tcopy)) << tag; EXPECT_EQ( 0, memcmp(TF_TensorData(t), TF_TensorData(tcopy), TF_TensorByteSize(t))) << tag; TF_DeleteTensor(tcopy); } TF_DeleteDeviceList(devices); TF_DeleteTensor(t); TFE_DeleteTensorHandle(hcpu); TFE_DeleteContext(ctx); } TEST(CAPI, TensorHandleCopyBetweenDevices) { TensorHandleCopyBetweenDevices(false); } TEST(CAPI, TensorHandleCopyBetweenDevicesAsync) { TensorHandleCopyBetweenDevices(true); } void TensorHandleCopyBetweenDevicesError(bool async) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetAsync(opts, static_cast<unsigned char>(async)); TFE_Context* ctx = TFE_NewContext(opts, status.get()); TFE_DeleteContextOptions(opts); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TFE_TensorHandle* hcpu = TestMatrixTensorHandle(ctx); const char* kErrorDevice = "NoSuchDevice:0"; TFE_TensorHandle* hdevice = TFE_TensorHandleCopyToDevice(hcpu, ctx, kErrorDevice, status.get()); EXPECT_NE(TF_OK, TF_GetCode(status.get())); const char* msg = "NoSuchDevice:0 unknown device"; EXPECT_TRUE(strstr(TF_Message(status.get()), msg) != nullptr) << TF_Message(status.get()); TF_SetStatus(status.get(), TF_OK, ""); const char* kCPUDevice = "CPU:0"; TFE_TensorHandle* hcopy = TFE_TensorHandleCopyToDevice(hcpu, ctx, kCPUDevice, status.get()); EXPECT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TFE_Executor* executor = TFE_ContextGetExecutorForThread(ctx); TFE_ExecutorWaitForAllPendingNodes(executor, status.get()); EXPECT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TFE_DeleteExecutor(executor); TFE_DeleteTensorHandle(hcopy); TFE_DeleteTensorHandle(hcpu); if (hdevice != nullptr) TFE_DeleteTensorHandle(hdevice); TFE_DeleteContext(ctx); } TEST(CAPI, TensorHandleCopyBetweenDevicesError) { TensorHandleCopyBetweenDevicesError(false); } TEST(CAPI, TensorHandleCopyBetweenDevicesErrorAsync) { TensorHandleCopyBetweenDevicesError(true); } void TensorHandleCopyBetweenTwoGPUDevices(bool async) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetAsync(opts, static_cast<unsigned char>(async)); TFE_Context* ctx = TFE_NewContext(opts, status.get()); TFE_DeleteContextOptions(opts); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TFE_TensorHandle* hcpu = TestMatrixTensorHandle(ctx); TF_Tensor* t = TFE_TensorHandleResolve(hcpu, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TF_DeviceList* devices = TFE_ContextListDevices(ctx, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); const int num_devices = TF_DeviceListCount(devices); bool has_gpu0 = false; bool has_gpu1 = false; for (int i = 0; i < num_devices; ++i) { const char* dev = TF_DeviceListName(devices, i, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); string device_name(dev); if (device_name.find("GPU:0") != string::npos) { has_gpu0 = true; } if (device_name.find("GPU:1") != string::npos) { has_gpu1 = true; } } const char* kCPUDevice = "CPU:0"; if (!has_gpu0 || !has_gpu1) { TF_DeleteDeviceList(devices); TF_DeleteTensor(t); TFE_DeleteTensorHandle(hcpu); TFE_DeleteContext(ctx); return; } const string gpu_1_name(TF_DeviceListName(devices, 1, status.get())); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK); const string gpu_2_name(TF_DeviceListName(devices, 2, status.get())); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK); TFE_TensorHandle* hdevice = TFE_TensorHandleCopyToDevice(hcpu, ctx, gpu_1_name.c_str(), status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK); TFE_TensorHandle* hdevice2 = TFE_TensorHandleCopyToDevice( hdevice, ctx, gpu_2_name.c_str(), status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK); TFE_DeleteTensorHandle(hdevice); TFE_TensorHandle* hcopy = TFE_TensorHandleCopyToDevice(hdevice2, ctx, kCPUDevice, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK); TFE_DeleteTensorHandle(hdevice2); TF_Tensor* tcopy = TFE_TensorHandleResolve(hcopy, status.get()); TFE_DeleteTensorHandle(hcopy); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK); EXPECT_EQ(TF_TensorByteSize(t), TF_TensorByteSize(tcopy)); EXPECT_EQ( 0, memcmp(TF_TensorData(t), TF_TensorData(tcopy), TF_TensorByteSize(t))); TF_DeleteTensor(tcopy); TF_DeleteDeviceList(devices); TF_DeleteTensor(t); TFE_DeleteTensorHandle(hcpu); TFE_DeleteContext(ctx); } TEST(CAPI, TensorHandleCopyBetweenTwoGPUDevices) { TensorHandleCopyBetweenTwoGPUDevices(false); } TEST(CAPI, TensorHandleCopyBetweenTwoGPUDevicesAsync) { TensorHandleCopyBetweenTwoGPUDevices(true); } void TensorHandleSilentCopy(bool async, TFE_ContextDevicePlacementPolicy global_policy, TFE_ContextDevicePlacementPolicy thread_policy, bool cpu_op) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetAsync(opts, static_cast<unsigned char>(async)); TFE_ContextOptionsSetDevicePlacementPolicy(opts, global_policy); TFE_Context* ctx = TFE_NewContext(opts, status.get()); if (thread_policy != global_policy) { TFE_ContextSetThreadLocalDevicePlacementPolicy(ctx, thread_policy); } TFE_DeleteContextOptions(opts); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); TFE_TensorHandle* hcpu = TestMatrixTensorHandle(ctx); TF_Tensor* t = TFE_TensorHandleResolve(hcpu, status.get()); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); string gpu_device_name; if (GetDeviceName(ctx, &gpu_device_name, "GPU")) { TFE_TensorHandle* hgpu = TFE_TensorHandleCopyToDevice( hcpu, ctx, gpu_device_name.c_str(), status.get()); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); auto cpu_arg = tensorflow::TensorHandleFromInterface(tensorflow::unwrap(hcpu)); auto gpu_arg = tensorflow::TensorHandleFromInterface(tensorflow::unwrap(hgpu)); auto gpu_device = gpu_arg->device(); ASSERT_FALSE(cpu_arg->HasLocalMirror(gpu_device)); TFE_Op* matmul = MatMulOp(ctx, hcpu, hgpu); if (cpu_op) { string cpu_device_name; ASSERT_TRUE(GetDeviceName(ctx, &cpu_device_name, "CPU")); TFE_OpSetDevice(matmul, cpu_device_name.c_str(), status.get()); } else { TFE_OpSetDevice(matmul, gpu_device_name.c_str(), status.get()); } ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); TFE_TensorHandle* retvals[1]; int num_retvals = 1; TFE_Execute(matmul, &retvals[0], &num_retvals, status.get()); ASSERT_EQ(TF_GetCode(status.get()), TF_OK) << TF_Message(status.get()); ASSERT_TRUE(cpu_arg->HasLocalMirror(gpu_device)); TFE_DeleteOp(matmul); TFE_DeleteTensorHandle(retvals[0]); TFE_DeleteTensorHandle(hgpu); } TF_DeleteTensor(t); TFE_DeleteTensorHandle(hcpu); TFE_Executor* executor = TFE_ContextGetExecutorForThread(ctx); TFE_ExecutorWaitForAllPendingNodes(executor, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TFE_DeleteExecutor(executor); TFE_DeleteContext(ctx); } TEST(CAPI, TensorHandleSilentCopy) { TensorHandleSilentCopy(false, TFE_DEVICE_PLACEMENT_SILENT, TFE_DEVICE_PLACEMENT_SILENT, false); } TEST(CAPI, TensorHandleSilentCopyAsync) { TensorHandleSilentCopy(true, TFE_DEVICE_PLACEMENT_SILENT, TFE_DEVICE_PLACEMENT_SILENT, false); } TEST(CAPI, TensorHandleSilentCopyLocalPolicy) { TensorHandleSilentCopy(false, TFE_DEVICE_PLACEMENT_EXPLICIT, TFE_DEVICE_PLACEMENT_SILENT, false); } TEST(CAPI, TensorHandleSilentCopyLocalPolicyAsync) { TensorHandleSilentCopy(true, TFE_DEVICE_PLACEMENT_EXPLICIT, TFE_DEVICE_PLACEMENT_SILENT, false); } void SetAndGetOpDevices(bool async) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* m = TestMatrixTensorHandle(ctx); TFE_Op* matmul = MatMulOp(ctx, m, m); string gpu_device_name; if (GetDeviceName(ctx, &gpu_device_name, "GPU")) { TFE_OpSetDevice(matmul, "GPU:0", status); ASSERT_TRUE(TF_GetCode(status) == TF_OK) << TF_Message(status); const char* device_name = TFE_OpGetDevice(matmul, status); ASSERT_TRUE(strstr(device_name, "GPU:0") != nullptr); TFE_OpSetDevice(matmul, "CPU:0", status); ASSERT_TRUE(TF_GetCode(status) == TF_OK) << TF_Message(status); device_name = TFE_OpGetDevice(matmul, status); ASSERT_TRUE(strstr(device_name, "CPU:0") != nullptr); } TFE_DeleteOp(matmul); TFE_DeleteTensorHandle(m); TFE_DeleteContext(ctx); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); } TEST(CAPI, TensorHandleNullptr) { TFE_TensorHandle* h = nullptr; std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); TF_Tensor* t = TFE_TensorHandleResolve(h, status.get()); ASSERT_EQ(TF_INVALID_ARGUMENT, TF_GetCode(status.get())); ASSERT_EQ(t, nullptr); ASSERT_EQ("Invalid handle", string(TF_Message(status.get()))); TF_SetStatus(status.get(), TF_OK, ""); const char* device_name = TFE_TensorHandleDeviceName(h, status.get()); ASSERT_EQ(TF_INVALID_ARGUMENT, TF_GetCode(status.get())); ASSERT_EQ(device_name, nullptr); ASSERT_EQ("Invalid handle", string(TF_Message(status.get()))); TF_SetStatus(status.get(), TF_OK, ""); device_name = TFE_TensorHandleBackingDeviceName(h, status.get()); ASSERT_EQ(TF_INVALID_ARGUMENT, TF_GetCode(status.get())); ASSERT_EQ(device_name, nullptr); ASSERT_EQ("Invalid handle", string(TF_Message(status.get()))); TF_SetStatus(status.get(), TF_OK, ""); int num_dims = TFE_TensorHandleNumDims(h, status.get()); ASSERT_EQ(TF_INVALID_ARGUMENT, TF_GetCode(status.get())); ASSERT_EQ(num_dims, -1); ASSERT_EQ("Invalid handle", string(TF_Message(status.get()))); TF_SetStatus(status.get(), TF_OK, ""); int dim = TFE_TensorHandleDim(h, 0, status.get()); ASSERT_EQ(TF_INVALID_ARGUMENT, TF_GetCode(status.get())); ASSERT_EQ(dim, -1); ASSERT_EQ("Invalid handle", string(TF_Message(status.get()))); } TEST(CAPI, TensorHandleDevices) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status.get()); TFE_DeleteContextOptions(opts); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TFE_TensorHandle* hcpu = TestMatrixTensorHandle(ctx); const char* device_name = TFE_TensorHandleDeviceName(hcpu, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); ASSERT_TRUE(absl::StrContains(device_name, "CPU:0")) << device_name; const char* backing_device_name = TFE_TensorHandleBackingDeviceName(hcpu, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); ASSERT_TRUE(absl::StrContains(backing_device_name, "CPU:0")) << backing_device_name; string gpu_device_name; if (GetDeviceName(ctx, &gpu_device_name, "GPU")) { TFE_TensorHandle* hgpu = TFE_TensorHandleCopyToDevice( hcpu, ctx, gpu_device_name.c_str(), status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); TFE_Op* shape_op = ShapeOp(ctx, hgpu); TFE_OpSetDevice(shape_op, gpu_device_name.c_str(), status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); TFE_TensorHandle* retvals[1]; int num_retvals = 1; TFE_Execute(shape_op, &retvals[0], &num_retvals, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); device_name = TFE_TensorHandleDeviceName(retvals[0], status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); ASSERT_TRUE(absl::StrContains(device_name, "GPU:0")) << device_name; backing_device_name = TFE_TensorHandleBackingDeviceName(retvals[0], status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); ASSERT_TRUE(absl::StrContains(backing_device_name, "CPU:0")) << backing_device_name; TFE_DeleteOp(shape_op); TFE_DeleteTensorHandle(retvals[0]); TFE_DeleteTensorHandle(hgpu); } TFE_DeleteTensorHandle(hcpu); TFE_Executor* executor = TFE_ContextGetExecutorForThread(ctx); TFE_ExecutorWaitForAllPendingNodes(executor, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TFE_DeleteExecutor(executor); TFE_DeleteContext(ctx); } void ExecuteAdd(bool async, bool forward_input, bool tfrt) { #ifdef PLATFORM_WINDOWS return; #else TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetTfrt(opts, tfrt); TFE_ContextOptionsSetAsync(opts, static_cast<unsigned char>(async)); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* n = TestMatrixTensorHandle100x100(ctx); std::string gpu_device_name; if (GetDeviceName(ctx, &gpu_device_name, "GPU")) { TFE_TensorHandle* n_gpu = TFE_TensorHandleCopyToDevice(n, ctx, gpu_device_name.c_str(), status); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteTensorHandle(n); n = n_gpu; } TFE_TensorHandle* m = TestMatrixTensorHandle100x100(ctx); TF_Tensor* orig = TFE_TensorHandleResolve(n, status); void* orig_ptr = TF_TensorData(orig); TF_DeleteTensor(orig); TFE_Op* add_op = AddOp(ctx, n, m); std::string cpu_device_name; ASSERT_TRUE(GetDeviceName(ctx, &cpu_device_name, "CPU")); TFE_OpSetDevice(add_op, cpu_device_name.c_str(), status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); if (forward_input) { TFE_DeleteTensorHandle(n); } int num_retvals = 1; if (async) { for (int i = 0; i < 100000; ++i) { TFE_Op* add_op_dummy = AddOp(ctx, m, m); TFE_OpSetDevice(add_op_dummy, cpu_device_name.c_str(), status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_TensorHandle* dummy = nullptr; TFE_Execute(add_op_dummy, &dummy, &num_retvals, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteTensorHandle(dummy); TFE_DeleteOp(add_op_dummy); } } TFE_TensorHandle* retval = nullptr; TFE_Execute(add_op, &retval, &num_retvals, status); EXPECT_EQ(1, num_retvals); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); if (!forward_input) { TFE_DeleteTensorHandle(n); } TFE_DeleteOp(add_op); TF_Tensor* t = TFE_TensorHandleResolve(retval, status); if (async) { if (forward_input) { EXPECT_EQ(orig_ptr, TF_TensorData(t)); } else { EXPECT_EQ(orig_ptr, TF_TensorData(t)); } } else { if (forward_input) { EXPECT_EQ(orig_ptr, TF_TensorData(t)); } else { EXPECT_NE(orig_ptr, TF_TensorData(t)); } } ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteTensorHandle(m); TFE_DeleteTensorHandle(retval); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); float result[100 * 100] = {0}; EXPECT_EQ(sizeof(result), TF_TensorByteSize(t)); memcpy(&result[0], TF_TensorData(t), TF_TensorByteSize(t)); TF_DeleteTensor(t); for (int i = 0; i < 100 * 100; ++i) { EXPECT_EQ(2.0f, result[i]); } TFE_DeleteContext(ctx); TF_DeleteStatus(status); #endif } TEST(CAPI, ExecuteAdd) { ExecuteAdd( false, false, false); } TEST(CAPI, DISABLED_ExecuteAddAsync) { ExecuteAdd( true, false, false); } TEST(CAPI, ExecuteAddForward) { ExecuteAdd( false, true, false); } TEST(CAPI, ExecuteAddForwardAsync) { ExecuteAdd( true, true, false); } #ifdef PLATFORM_GOOGLE TEST(CAPI, DISABLED_ExecuteAddTfrt) { ExecuteAdd( false, false, true); } #endif void Execute_MatMul_CPU(bool async) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetAsync(opts, static_cast<unsigned char>(async)); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* m = TestMatrixTensorHandle(ctx); TFE_Op* matmul = MatMulOp(ctx, m, m); TFE_TensorHandle* retvals[2] = {nullptr, nullptr}; int num_retvals = 2; TFE_Execute(matmul, &retvals[0], &num_retvals, status); EXPECT_EQ(1, num_retvals); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteOp(matmul); TFE_DeleteTensorHandle(m); TF_Tensor* t = TFE_TensorHandleResolve(retvals[0], status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteTensorHandle(retvals[0]); TFE_DeleteContext(ctx); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); float product[4] = {0}; EXPECT_EQ(sizeof(product), TF_TensorByteSize(t)); memcpy(&product[0], TF_TensorData(t), TF_TensorByteSize(t)); TF_DeleteTensor(t); EXPECT_EQ(7, product[0]); EXPECT_EQ(10, product[1]); EXPECT_EQ(15, product[2]); EXPECT_EQ(22, product[3]); TF_DeleteStatus(status); } TEST(CAPI, Execute_MatMul_CPU) { Execute_MatMul_CPU(false); } TEST(CAPI, Execute_MatMul_CPUAsync) { Execute_MatMul_CPU(true); } void Execute_MatMul_CPU_Runtime_Error(bool async) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_ContextOptionsSetAsync(opts, static_cast<unsigned char>(async)); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* m1 = TestMatrixTensorHandle(ctx); TFE_TensorHandle* m2 = DoubleTestMatrixTensorHandle3X2(ctx); TFE_Op* matmul = MatMulOp(ctx, m1, m2); TFE_OpSetDevice(matmul, "/job:localhost/replica:0/task:0/device:CPU:0", status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Op* matmul2 = MatMulOp(ctx, m1, m1); TFE_OpSetDevice(matmul2, "/job:localhost/replica:0/task:0/device:CPU:0", status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_TensorHandle* retvals[1] = {nullptr}; int num_retvals = 1; TFE_Execute(matmul, &retvals[0], &num_retvals, status); TFE_DeleteOp(matmul); if (!async) { EXPECT_NE(TF_OK, TF_GetCode(status)); } else { TF_Tensor* t = TFE_TensorHandleResolve(retvals[0], status); EXPECT_NE(TF_OK, TF_GetCode(status)); EXPECT_EQ(nullptr, t); const char* msg = "Matrix size-incompatible: In[0]: [2,2], In[1]: [3,2]"; EXPECT_TRUE(strstr(TF_Message(status), msg) != nullptr) << TF_Message(status); TF_SetStatus(status, TF_OK, ""); TFE_DeleteTensorHandle(retvals[0]); TFE_Executor* executor = TFE_ContextGetExecutorForThread(ctx); TFE_ExecutorWaitForAllPendingNodes(executor, status); EXPECT_NE(TF_OK, TF_GetCode(status)); TF_SetStatus(status, TF_OK, ""); retvals[0] = nullptr; TFE_Execute(matmul2, &retvals[0], &num_retvals, status); EXPECT_NE(TF_OK, TF_GetCode(status)); TFE_ExecutorClearError(executor); TFE_ExecutorWaitForAllPendingNodes(executor, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteExecutor(executor); } TF_SetStatus(status, TF_OK, ""); if (retvals[0] != nullptr) { TFE_DeleteTensorHandle(retvals[0]); } retvals[0] = nullptr; TFE_Execute(matmul2, &retvals[0], &num_retvals, status); EXPECT_EQ(TF_OK, TF_GetCode(status)); TF_Tensor* t = TFE_TensorHandleResolve(retvals[0], status); EXPECT_EQ(TF_
950
cpp
tensorflow/tensorflow
c_api_experimental
tensorflow/lite/core/c/c_api_experimental.cc
tensorflow/lite/core/c/c_api_experimental_test.cc
#ifndef TENSORFLOW_C_EAGER_C_API_EXPERIMENTAL_H_ #define TENSORFLOW_C_EAGER_C_API_EXPERIMENTAL_H_ #include "tensorflow/c/c_api.h" #include "tensorflow/c/c_api_macros.h" #include "tensorflow/c/eager/c_api.h" #ifdef __cplusplus extern "C" { #endif TF_CAPI_EXPORT extern void TFE_OpReset(TFE_Op* op_to_reset, const char* op_or_function_name, const char* raw_device_name, TF_Status* status); TF_CAPI_EXPORT extern void TFE_ContextEnableGraphCollection(TFE_Context* ctx); TF_CAPI_EXPORT extern void TFE_ContextDisableGraphCollection(TFE_Context* ctx); typedef struct TFE_MonitoringCounterCell TFE_MonitoringCounterCell; TF_CAPI_EXPORT extern void TFE_MonitoringCounterCellIncrementBy( TFE_MonitoringCounterCell* cell, int64_t value); TF_CAPI_EXPORT extern int64_t TFE_MonitoringCounterCellValue( TFE_MonitoringCounterCell* cell); typedef struct TFE_MonitoringCounter0 TFE_MonitoringCounter0; TF_CAPI_EXPORT extern TFE_MonitoringCounter0* TFE_MonitoringNewCounter0( const char* name, TF_Status* status, const char* description); TF_CAPI_EXPORT extern void TFE_MonitoringDeleteCounter0( TFE_MonitoringCounter0* counter); TF_CAPI_EXPORT extern TFE_MonitoringCounterCell* TFE_MonitoringGetCellCounter0( TFE_MonitoringCounter0* counter); typedef struct TFE_MonitoringCounter1 TFE_MonitoringCounter1; TF_CAPI_EXPORT extern TFE_MonitoringCounter1* TFE_MonitoringNewCounter1( const char* name, TF_Status* status, const char* description, const char* label1); TF_CAPI_EXPORT extern void TFE_MonitoringDeleteCounter1( TFE_MonitoringCounter1* counter); TF_CAPI_EXPORT extern TFE_MonitoringCounterCell* TFE_MonitoringGetCellCounter1( TFE_MonitoringCounter1* counter, const char* label1); typedef struct TFE_MonitoringCounter2 TFE_MonitoringCounter2; TF_CAPI_EXPORT extern TFE_MonitoringCounter2* TFE_MonitoringNewCounter2( const char* name, TF_Status* status, const char* description, const char* label1, const char* label2); TF_CAPI_EXPORT extern void TFE_MonitoringDeleteCounter2( TFE_MonitoringCounter2* counter); TF_CAPI_EXPORT extern TFE_MonitoringCounterCell* TFE_MonitoringGetCellCounter2( TFE_MonitoringCounter2* counter, const char* label1, const char* label2); typedef struct TFE_MonitoringIntGaugeCell TFE_MonitoringIntGaugeCell; TF_CAPI_EXPORT extern void TFE_MonitoringIntGaugeCellSet( TFE_MonitoringIntGaugeCell* cell, int64_t value); TF_CAPI_EXPORT extern int64_t TFE_MonitoringIntGaugeCellValue( TFE_MonitoringIntGaugeCell* cell); typedef struct TFE_MonitoringIntGauge0 TFE_MonitoringIntGauge0; TF_CAPI_EXPORT extern TFE_MonitoringIntGauge0* TFE_MonitoringNewIntGauge0( const char* name, TF_Status* out_status, const char* description); TF_CAPI_EXPORT extern void TFE_MonitoringDeleteIntGauge0( TFE_MonitoringIntGauge0* gauge); TF_CAPI_EXPORT extern TFE_MonitoringIntGaugeCell* TFE_MonitoringGetCellIntGauge0(TFE_MonitoringIntGauge0* gauge); typedef struct TFE_MonitoringIntGauge1 TFE_MonitoringIntGauge1; TF_CAPI_EXPORT extern TFE_MonitoringIntGauge1* TFE_MonitoringNewIntGauge1( const char* name, TF_Status* out_status, const char* description, const char* label1); TF_CAPI_EXPORT extern void TFE_MonitoringDeleteIntGauge1( TFE_MonitoringIntGauge1* gauge); TF_CAPI_EXPORT extern TFE_MonitoringIntGaugeCell* TFE_MonitoringGetCellIntGauge1(TFE_MonitoringIntGauge1* gauge, const char* label1); typedef struct TFE_MonitoringIntGauge2 TFE_MonitoringIntGauge2; TF_CAPI_EXPORT extern TFE_MonitoringIntGauge2* TFE_MonitoringNewIntGauge2( const char* name, TF_Status* out_status, const char* description, const char* label1, const char* label2); TF_CAPI_EXPORT extern void TFE_MonitoringDeleteIntGauge2( TFE_MonitoringIntGauge2* gauge); TF_CAPI_EXPORT extern TFE_MonitoringIntGaugeCell* TFE_MonitoringGetCellIntGauge2(TFE_MonitoringIntGauge2* gauge, const char* label1, const char* label2); typedef struct TFE_MonitoringStringGaugeCell TFE_MonitoringStringGaugeCell; TF_CAPI_EXPORT extern void TFE_MonitoringStringGaugeCellSet( TFE_MonitoringStringGaugeCell* cell, const char* value); TF_CAPI_EXPORT extern const void TFE_MonitoringStringGaugeCellValue( TFE_MonitoringStringGaugeCell* cell, TF_Buffer* buf); typedef struct TFE_MonitoringStringGauge0 TFE_MonitoringStringGauge0; TF_CAPI_EXPORT extern TFE_MonitoringStringGauge0* TFE_MonitoringNewStringGauge0( const char* name, TF_Status* out_status, const char* description); TF_CAPI_EXPORT extern void TFE_MonitoringDeleteStringGauge0( TFE_MonitoringStringGauge0* gauge); TF_CAPI_EXPORT extern TFE_MonitoringStringGaugeCell* TFE_MonitoringGetCellStringGauge0(TFE_MonitoringStringGauge0* gauge); typedef struct TFE_MonitoringStringGauge1 TFE_MonitoringStringGauge1; TF_CAPI_EXPORT extern TFE_MonitoringStringGauge1* TFE_MonitoringNewStringGauge1( const char* name, TF_Status* out_status, const char* description, const char* label1); TF_CAPI_EXPORT extern void TFE_MonitoringDeleteStringGauge1( TFE_MonitoringStringGauge1* gauge); TF_CAPI_EXPORT extern TFE_MonitoringStringGaugeCell* TFE_MonitoringGetCellStringGauge1(TFE_MonitoringStringGauge1* gauge, const char* label1); typedef struct TFE_MonitoringStringGauge2 TFE_MonitoringStringGauge2; TF_CAPI_EXPORT extern TFE_MonitoringStringGauge2* TFE_MonitoringNewStringGauge2( const char* name, TF_Status* out_status, const char* description, const char* label1, const char* label2); TF_CAPI_EXPORT extern void TFE_MonitoringDeleteStringGauge2( TFE_MonitoringStringGauge2* gauge); TF_CAPI_EXPORT extern TFE_MonitoringStringGaugeCell* TFE_MonitoringGetCellStringGauge2(TFE_MonitoringStringGauge2* gauge, const char* label1, const char* label2); typedef struct TFE_MonitoringStringGauge3 TFE_MonitoringStringGauge3; TF_CAPI_EXPORT extern TFE_MonitoringStringGauge3* TFE_MonitoringNewStringGauge3( const char* name, TF_Status* out_status, const char* description, const char* label1, const char* label2, const char* label3); TF_CAPI_EXPORT extern void TFE_MonitoringDeleteStringGauge3( TFE_MonitoringStringGauge3* gauge); TF_CAPI_EXPORT extern TFE_MonitoringStringGaugeCell* TFE_MonitoringGetCellStringGauge3(TFE_MonitoringStringGauge3* gauge, const char* label1, const char* label2, const char* label3); typedef struct TFE_MonitoringStringGauge4 TFE_MonitoringStringGauge4; TF_CAPI_EXPORT extern TFE_MonitoringStringGauge4* TFE_MonitoringNewStringGauge4( const char* name, TF_Status* out_status, const char* description, const char* label1, const char* label2, const char* label3, const char* label4); TF_CAPI_EXPORT extern void TFE_MonitoringDeleteStringGauge4( TFE_MonitoringStringGauge4* gauge); TF_CAPI_EXPORT extern TFE_MonitoringStringGaugeCell* TFE_MonitoringGetCellStringGauge4(TFE_MonitoringStringGauge4* gauge, const char* label1, const char* label2, const char* label3, const char* label4); typedef struct TFE_MonitoringBoolGaugeCell TFE_MonitoringBoolGaugeCell; TF_CAPI_EXPORT extern void TFE_MonitoringBoolGaugeCellSet( TFE_MonitoringBoolGaugeCell* cell, bool value); TF_CAPI_EXPORT extern bool TFE_MonitoringBoolGaugeCellValue( TFE_MonitoringBoolGaugeCell* cell); typedef struct TFE_MonitoringBoolGauge0 TFE_MonitoringBoolGauge0; TF_CAPI_EXPORT extern TFE_MonitoringBoolGauge0* TFE_MonitoringNewBoolGauge0( const char* name, TF_Status* out_status, const char* description); TF_CAPI_EXPORT extern void TFE_MonitoringDeleteBoolGauge0( TFE_MonitoringBoolGauge0* gauge); TF_CAPI_EXPORT extern TFE_MonitoringBoolGaugeCell* TFE_MonitoringGetCellBoolGauge0(TFE_MonitoringBoolGauge0* gauge); typedef struct TFE_MonitoringBoolGauge1 TFE_MonitoringBoolGauge1; TF_CAPI_EXPORT extern TFE_MonitoringBoolGauge1* TFE_MonitoringNewBoolGauge1( const char* name, TF_Status* out_status, const char* description, const char* label1); TF_CAPI_EXPORT extern void TFE_MonitoringDeleteBoolGauge1( TFE_MonitoringBoolGauge1* gauge); TF_CAPI_EXPORT extern TFE_MonitoringBoolGaugeCell* TFE_MonitoringGetCellBoolGauge1(TFE_MonitoringBoolGauge1* gauge, const char* label1); typedef struct TFE_MonitoringBoolGauge2 TFE_MonitoringBoolGauge2; TF_CAPI_EXPORT extern TFE_MonitoringBoolGauge2* TFE_MonitoringNewBoolGauge2( const char* name, TF_Status* out_status, const char* description, const char* label1, const char* label2); TF_CAPI_EXPORT extern void TFE_MonitoringDeleteBoolGauge2( TFE_MonitoringBoolGauge2* gauge); TF_CAPI_EXPORT extern TFE_MonitoringBoolGaugeCell* TFE_MonitoringGetCellBoolGauge2(TFE_MonitoringBoolGauge2* gauge, const char* label1, const char* label2); typedef struct TFE_MonitoringSamplerCell TFE_MonitoringSamplerCell; TF_CAPI_EXPORT extern void TFE_MonitoringSamplerCellAdd( TFE_MonitoringSamplerCell* cell, double value); TF_CAPI_EXPORT extern void TFE_MonitoringSamplerCellValue( TFE_MonitoringSamplerCell* cell, TF_Buffer* buf); typedef struct TFE_MonitoringBuckets TFE_MonitoringBuckets; TF_CAPI_EXPORT extern TFE_MonitoringBuckets* TFE_MonitoringNewExponentialBuckets(double scale, double growth_factor, int bucket_count); TF_CAPI_EXPORT extern void TFE_MonitoringDeleteBuckets( TFE_MonitoringBuckets* buckets); typedef struct TFE_MonitoringSampler0 TFE_MonitoringSampler0; TF_CAPI_EXPORT extern TFE_MonitoringSampler0* TFE_MonitoringNewSampler0( const char* name, TFE_MonitoringBuckets* buckets, TF_Status* out_status, const char* description); TF_CAPI_EXPORT extern void TFE_MonitoringDeleteSampler0( TFE_MonitoringSampler0* sampler); TF_CAPI_EXPORT extern TFE_MonitoringSamplerCell* TFE_MonitoringGetCellSampler0( TFE_MonitoringSampler0* sampler); typedef struct TFE_MonitoringSampler1 TFE_MonitoringSampler1; TF_CAPI_EXPORT extern TFE_MonitoringSampler1* TFE_MonitoringNewSampler1( const char* name, TFE_MonitoringBuckets* buckets, TF_Status* out_status, const char* description, const char* label1); TF_CAPI_EXPORT extern void TFE_MonitoringDeleteSampler1( TFE_MonitoringSampler1* sampler); TF_CAPI_EXPORT extern TFE_MonitoringSamplerCell* TFE_MonitoringGetCellSampler1( TFE_MonitoringSampler1* sampler, const char* label1); typedef struct TFE_MonitoringSampler2 TFE_MonitoringSampler2; TF_CAPI_EXPORT extern TFE_MonitoringSampler2* TFE_MonitoringNewSampler2( const char* name, TFE_MonitoringBuckets* buckets, TF_Status* out_status, const char* description, const char* label1, const char* label2); TF_CAPI_EXPORT extern void TFE_MonitoringDeleteSampler2( TFE_MonitoringSampler2* sampler); TF_CAPI_EXPORT extern TFE_MonitoringSamplerCell* TFE_MonitoringGetCellSampler2( TFE_MonitoringSampler2* sampler, const char* label1, const char* label2); TF_CAPI_EXPORT extern void TFE_ContextOptionsSetTfrt(TFE_ContextOptions*, bool use_tfrt); TF_CAPI_EXPORT extern uint64_t TFE_GetContextId(TFE_Context* ctx); typedef struct TFE_CancellationManager TFE_CancellationManager; typedef int64_t TFE_CancellationToken; typedef struct TFE_CancelCallback { void (*callback)(void* context); void* context; } TFE_CancelCallback; TF_CAPI_EXPORT extern TFE_CancellationManager* TFE_NewCancellationManager(); TF_CAPI_EXPORT extern bool TFE_CancellationManagerIsCancelled( TFE_CancellationManager*); TF_CAPI_EXPORT extern bool TFE_CancellationManagerIsCancelling( TFE_CancellationManager*); TF_CAPI_EXPORT extern void TFE_CancellationManagerStartCancel( TFE_CancellationManager*); TF_CAPI_EXPORT extern TFE_CancellationToken TFE_CancellationManagerGetToken( TFE_CancellationManager*); TF_CAPI_EXPORT extern bool TFE_CancellationManagerRegisterCallback( TFE_CancellationManager*, TFE_CancellationToken token, const TFE_CancelCallback* c_callback, const char* callback_name); TF_CAPI_EXPORT extern bool TFE_CancellationManagerDeregisterCallback( TFE_CancellationManager*, TFE_CancellationToken token); TF_CAPI_EXPORT extern bool TFE_CancellationManagerTryDeregisterCallback( TFE_CancellationManager*, TFE_CancellationToken token); TF_CAPI_EXPORT extern void TFE_DeleteCancellationManager( TFE_CancellationManager*); typedef struct TFE_CancellationManager TFE_CancellationManager; TF_CAPI_EXPORT extern void TFE_OpSetCancellationManager( TFE_Op* op, TFE_CancellationManager* cancellation_manager, TF_Status* status); typedef struct TFE_Executor TFE_Executor; TF_CAPI_EXPORT extern TFE_Executor* TFE_NewExecutor( bool is_async, bool enable_streaming_enqueue, int in_flight_nodes_limit); TF_CAPI_EXPORT extern void TFE_DeleteExecutor(TFE_Executor*); TF_CAPI_EXPORT extern bool TFE_ExecutorIsAsync(TFE_Executor*); TF_CAPI_EXPORT extern void TFE_ExecutorWaitForAllPendingNodes( TFE_Executor*, TF_Status* status); TF_CAPI_EXPORT extern void TFE_ExecutorClearError(TFE_Executor*); TF_CAPI_EXPORT extern void TFE_ContextSetExecutorForThread(TFE_Context*, TFE_Executor*); TF_CAPI_EXPORT extern TFE_Executor* TFE_ContextGetExecutorForThread( TFE_Context*); TF_CAPI_EXPORT extern void TFE_ContextUpdateServerDef(TFE_Context* ctx, int keep_alive_secs, const void* proto, size_t proto_len, TF_Status* status); TF_CAPI_EXPORT extern void TFE_ContextUpdateServerDefWithTimeout( TFE_Context* ctx, int keep_alive_secs, const void* proto, size_t proto_len, int64_t init_timeout_in_ms, TF_Status* status); TF_CAPI_EXPORT extern void TFE_ContextSetServerDefWithTimeout( TFE_Context* ctx, int keep_alive_secs, const void* proto, size_t proto_len, int64_t init_timeout_in_ms, TF_Status* status, bool clear_existing_contexts); TF_CAPI_EXPORT extern void TFE_ContextSetServerDefWithTimeoutAndRetries( TFE_Context* ctx, int keep_alive_secs, const void* proto, size_t proto_len, int64_t init_timeout_in_ms, int retries, TF_Status* status, bool clear_existing_contexts); TF_CAPI_EXPORT extern bool TFE_ContextCheckAlive(TFE_Context* ctx, const char* worker_name, TF_Status* status); TF_CAPI_EXPORT extern void TFE_ContextAsyncWait(TFE_Context* ctx, TF_Status* status); TF_CAPI_EXPORT extern void* TFE_TensorHandleDevicePointer(TFE_TensorHandle*, TF_Status*); TF_CAPI_EXPORT extern size_t TFE_TensorHandleDeviceMemorySize(TFE_TensorHandle*, TF_Status*); TF_CAPI_EXPORT extern TFE_TensorHandle* TFE_NewTensorHandleFromDeviceMemory( TFE_Context* ctx, const char* device_name, TF_DataType, const int64_t* dims, int num_dims, void* data, size_t len, void (*deallocator)(void* data, size_t len, void* arg), void* deallocator_arg, TF_Status* status); TF_CAPI_EXPORT extern void TFE_HostAddressSpace(TFE_Context* ctx, TF_Buffer* buf); typedef struct TFE_OpAttrs TFE_OpAttrs; TF_CAPI_EXPORT extern const TFE_OpAttrs* TFE_OpGetAttrs(const TFE_Op* op); TF_CAPI_EXPORT extern void TFE_OpAddAttrs(TFE_Op* op, const TFE_OpAttrs* attrs); TF_CAPI_EXPORT extern void TFE_OpAttrsSerialize(const TFE_OpAttrs* attrs, TF_Buffer* buf, TF_Status* status); TF_CAPI_EXPORT extern void TFE_OpSetAttrValueProto(const TFE_Op* op, const char* attr_name, const void* proto, size_t proto_len, TF_Status* status); #define TFE_CUSTOM_DEVICE_VERSION 4 typedef struct TFE_CustomDevice { int version = TFE_CUSTOM_DEVICE_VERSION; TFE_TensorHandle* (*copy_tensor_to_device)(TFE_Context* context, TFE_TensorHandle* tensor, TF_Status* status, void* device_info); TFE_TensorHandle* (*copy_tensor_from_device)(TFE_Context* context, TFE_TensorHandle* tensor, const char* target_device_name, TF_Status* status, void* device_info); void (*execute)(const TFE_Op* op, int* num_outputs, TFE_TensorHandle** outputs, TF_Status* s, void* device_info); void (*delete_device)(void* device_info); TFE_TensorHandle* (*pack)(TFE_Context* context, TFE_TensorHandle** handles, int num_handles, TF_Status* s, void* device_info) = nullptr; bool (*shall_pin_to_this_device)(const TFE_Op* op, TF_Status* s) = nullptr; } TFE_CustomDevice; TF_CAPI_EXPORT extern void TFE_RegisterCustomDevice(TFE_Context* ctx, TFE_CustomDevice device, const char* device_name, void* device_info, TF_Status* status); TF_CAPI_EXPORT extern bool TFE_IsCustomDevice(TFE_Context* ctx, const char* device_name); typedef struct TFE_CustomDeviceTensorHandleMethods { int version = TFE_CUSTOM_DEVICE_VERSION; int (*num_dims)(void* data, TF_Status* status); int64_t (*dim)(void* data, int dim_index, TF_Status* status); void (*deallocator)(void* data); TF_Buffer* (*summarize)(void* data, TF_Status* status) = nullptr; } TFE_CustomDeviceTensorHandle; TF_CAPI_EXPORT extern TFE_TensorHandle* TFE_NewCustomDeviceTensorHandle( TFE_Context*, const char* device_name, TF_DataType, void* data, TFE_CustomDeviceTensorHandle methods, TF_Status* status); TF_CAPI_EXPORT extern void TFE_ContextGetFunctionDef(TFE_Context* ctx, const char* function_name, TF_Buffer* buf, TF_Status* status); TF_CAPI_EXPORT extern void TFE_Contex
#include "tensorflow/c/eager/c_api_experimental.h" #include <string.h> #include <string> #include "tensorflow/c/eager/c_api.h" #include "tensorflow/c/eager/c_api_internal.h" #include "tensorflow/c/eager/c_api_test_util.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_server_lib.h" #include "tensorflow/core/distributed_runtime/server_lib.h" #include "tensorflow/core/lib/monitoring/collection_registry.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/str_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/protobuf/cluster.pb.h" #include "tensorflow/core/protobuf/config.pb.h" using tensorflow::string; namespace tensorflow { namespace { static bool HasSubstr(absl::string_view base, absl::string_view substr) { bool ok = absl::StrContains(base, substr); EXPECT_TRUE(ok) << base << ", expected substring " << substr; return ok; } TEST(CAPI, MonitoringCounter0) { TF_Status* status = TF_NewStatus(); auto* counter = TFE_MonitoringNewCounter0("test/counter", status, "description"); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); auto* cell = TFE_MonitoringGetCellCounter0(counter); TFE_MonitoringCounterCellIncrementBy(cell, 1); EXPECT_EQ(TFE_MonitoringCounterCellValue(cell), 1); auto* collection_registry = monitoring::CollectionRegistry::Default(); monitoring::CollectionRegistry::CollectMetricsOptions options; std::unique_ptr<monitoring::CollectedMetrics> metrics = collection_registry->CollectMetrics(options); EXPECT_EQ("test/counter", metrics->point_set_map.at("test/counter")->metric_name); EXPECT_EQ( 1, metrics->point_set_map.at("test/counter")->points.at(0)->int64_value); TFE_MonitoringCounterCellIncrementBy(cell, 5); EXPECT_EQ(TFE_MonitoringCounterCellValue(cell), 6); metrics = collection_registry->CollectMetrics(options); EXPECT_EQ( 6, metrics->point_set_map.at("test/counter")->points.at(0)->int64_value); TFE_MonitoringDeleteCounter0(counter); metrics = collection_registry->CollectMetrics(options); EXPECT_EQ(metrics->point_set_map.end(), metrics->point_set_map.find("test/counter")); } TEST(CAPI, MonitoringCounterMultiple) { TF_Status* status = TF_NewStatus(); auto* counter1 = TFE_MonitoringNewCounter1("test/counter1", status, "description", "label1"); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); auto* cell1 = TFE_MonitoringGetCellCounter1(counter1, "test"); TFE_MonitoringCounterCellIncrementBy(cell1, 1); EXPECT_EQ(TFE_MonitoringCounterCellValue(cell1), 1); auto* counter2 = TFE_MonitoringNewCounter2("test/counter2", status, "description", "label1", "label2"); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); auto* cell2 = TFE_MonitoringGetCellCounter2(counter2, "foo", "bar"); TFE_MonitoringCounterCellIncrementBy(cell2, 2); EXPECT_EQ(TFE_MonitoringCounterCellValue(cell2), 2); TFE_MonitoringDeleteCounter1(counter1); TFE_MonitoringDeleteCounter2(counter2); } TEST(CAPI, MonitoringGauge0) { TF_Status* status = TF_NewStatus(); auto* gauge = TFE_MonitoringNewIntGauge0("test/gauge", status, "test"); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); auto* cell = TFE_MonitoringGetCellIntGauge0(gauge); TFE_MonitoringIntGaugeCellSet(cell, 1); EXPECT_EQ(TFE_MonitoringIntGaugeCellValue(cell), 1); auto* collection_registry = monitoring::CollectionRegistry::Default(); monitoring::CollectionRegistry::CollectMetricsOptions options; std::unique_ptr<monitoring::CollectedMetrics> metrics = collection_registry->CollectMetrics(options); EXPECT_EQ("test/gauge", metrics->point_set_map.at("test/gauge")->metric_name); EXPECT_EQ(1, metrics->point_set_map.at("test/gauge")->points.at(0)->int64_value); TFE_MonitoringIntGaugeCellSet(cell, 5); metrics = collection_registry->CollectMetrics(options); EXPECT_EQ(5, metrics->point_set_map.at("test/gauge")->points.at(0)->int64_value); TFE_MonitoringDeleteIntGauge0(gauge); TF_DeleteStatus(status); } TEST(CAPI, MonitoringMultipleGauge) { TF_Status* status = TF_NewStatus(); auto* gauge1 = TFE_MonitoringNewBoolGauge1("test/gauge1", status, "test", "label1"); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); auto* cell1 = TFE_MonitoringGetCellBoolGauge1(gauge1, "foo"); TFE_MonitoringBoolGaugeCellSet(cell1, true); EXPECT_TRUE(TFE_MonitoringBoolGaugeCellValue(cell1)); TFE_MonitoringDeleteBoolGauge1(gauge1); auto* gauge2 = TFE_MonitoringNewStringGauge2("test/gauge2", status, "test", "label1", "label2"); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); auto* cell2 = TFE_MonitoringGetCellStringGauge2(gauge2, "foo", "bar"); TFE_MonitoringStringGaugeCellSet(cell2, "str"); auto* buf = new TF_Buffer; TFE_MonitoringStringGaugeCellValue(cell2, buf); string data(static_cast<const char*>(buf->data), buf->length); TF_DeleteBuffer(buf); EXPECT_EQ(data, "str"); TFE_MonitoringDeleteStringGauge2(gauge2); TF_DeleteStatus(status); } TEST(CAPI, MonitoringSampler0) { TF_Status* status = TF_NewStatus(); auto* buckets = TFE_MonitoringNewExponentialBuckets(1.0, 2.0, 2); auto* sampler = TFE_MonitoringNewSampler0("test/sampler", buckets, status, "test"); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); auto* cell = TFE_MonitoringGetCellSampler0(sampler); TFE_MonitoringSamplerCellAdd(cell, 1.0); auto* collection_registry = monitoring::CollectionRegistry::Default(); monitoring::CollectionRegistry::CollectMetricsOptions options; std::unique_ptr<monitoring::CollectedMetrics> metrics = collection_registry->CollectMetrics(options); EXPECT_EQ("test/sampler", metrics->point_set_map.at("test/sampler")->metric_name); EXPECT_EQ(1.0, metrics->point_set_map.at("test/sampler") ->points.at(0) ->histogram_value.sum()); TFE_MonitoringSamplerCellAdd(cell, 5.0); metrics = collection_registry->CollectMetrics(options); EXPECT_EQ(6.0, metrics->point_set_map.at("test/sampler") ->points.at(0) ->histogram_value.sum()); TFE_MonitoringDeleteBuckets(buckets); TFE_MonitoringDeleteSampler0(sampler); TF_DeleteStatus(status); } TEST(CAPI, MonitoringMultipleSampler) { TF_Status* status = TF_NewStatus(); auto* buckets = TFE_MonitoringNewExponentialBuckets(1.0, 2.0, 2); auto* sampler1 = TFE_MonitoringNewSampler1("test/sampler1", buckets, status, "test", "label1"); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); auto* cell1 = TFE_MonitoringGetCellSampler1(sampler1, "foo"); TFE_MonitoringSamplerCellAdd(cell1, 1.0); TFE_MonitoringSamplerCellAdd(cell1, 2.0); TF_Buffer* result1 = TF_NewBuffer(); TFE_MonitoringSamplerCellValue(cell1, result1); tensorflow::HistogramProto histogram1; EXPECT_TRUE(histogram1.ParseFromString( {reinterpret_cast<const char*>(result1->data), result1->length})); EXPECT_EQ(histogram1.sum(), 3.0); TF_DeleteBuffer(result1); TFE_MonitoringDeleteSampler1(sampler1); auto* sampler2 = TFE_MonitoringNewSampler2("test/sampler2", buckets, status, "test", "label1", "label2"); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); auto* cell2 = TFE_MonitoringGetCellSampler2(sampler2, "foo", "bar"); TFE_MonitoringSamplerCellAdd(cell2, 2.0); TFE_MonitoringSamplerCellAdd(cell2, 3.0); TF_Buffer* result2 = TF_NewBuffer(); TFE_MonitoringSamplerCellValue(cell2, result2); tensorflow::HistogramProto histogram2; EXPECT_TRUE(histogram2.ParseFromString( {reinterpret_cast<const char*>(result2->data), result2->length})); EXPECT_EQ(histogram2.sum(), 5.0); TF_DeleteBuffer(result2); TFE_MonitoringDeleteSampler2(sampler2); TFE_MonitoringDeleteBuckets(buckets); TF_DeleteStatus(status); } TEST(CAPI, CancellationManager) { TFE_CancellationManager* c_mgr = TFE_NewCancellationManager(); EXPECT_FALSE(TFE_CancellationManagerIsCancelled(c_mgr)); TFE_CancelCallback callback1; callback1.callback = [](void* context) { ADD_FAILURE() << "Callback1 should be deregistered."; }; TFE_CancellationToken token1 = TFE_CancellationManagerGetToken(c_mgr); EXPECT_TRUE(TFE_CancellationManagerRegisterCallback(c_mgr, token1, &callback1, "callback1")); TFE_CancelCallback callback2; bool callback2_invoked = false; callback2.context = &callback2_invoked; callback2.callback = [](void* context) { *reinterpret_cast<bool*>(context) = true; }; TFE_CancellationToken token2 = TFE_CancellationManagerGetToken(c_mgr); EXPECT_TRUE(TFE_CancellationManagerRegisterCallback(c_mgr, token2, &callback2, "callback2")); TFE_CancellationToken token3 = TFE_CancellationManagerGetToken(c_mgr); EXPECT_TRUE(TFE_CancellationManagerRegisterCallback(c_mgr, token3, &callback1, "callback3")); EXPECT_TRUE(TFE_CancellationManagerDeregisterCallback(c_mgr, token1)); EXPECT_TRUE(TFE_CancellationManagerTryDeregisterCallback(c_mgr, token3)); TFE_CancellationManagerStartCancel(c_mgr); EXPECT_TRUE(TFE_CancellationManagerIsCancelled(c_mgr)); EXPECT_TRUE(callback2_invoked); TFE_DeleteCancellationManager(c_mgr); } TEST(CAPI, ExecutorContextDestructionOrder) { TF_Status* status = TF_NewStatus(); { TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); ASSERT_TRUE(TF_GetCode(status) == TF_OK) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_Executor* executor = TFE_NewExecutor( false, true, 0); TFE_ContextSetExecutorForThread(ctx, executor); TFE_DeleteContext(ctx); TFE_DeleteExecutor(executor); } { TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); ASSERT_TRUE(TF_GetCode(status) == TF_OK) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_Executor* executor = TFE_NewExecutor( false, true, 0); TFE_ContextSetExecutorForThread(ctx, executor); TFE_DeleteExecutor(executor); TFE_DeleteContext(ctx); } TF_DeleteStatus(status); } TEST(CAPI, Function_ident_CPU) { TF_Graph* function_graph = TF_NewGraph(); TF_OperationDescription* arg_descr = TF_NewOperation(function_graph, "Placeholder", "arg"); TF_SetAttrType(arg_descr, "dtype", TF_INT32); TF_Status* status = TF_NewStatus(); TF_Operation* arg = TF_FinishOperation(arg_descr, status); ASSERT_TRUE(TF_GetCode(status) == TF_OK) << TF_Message(status); TF_OperationDescription* id_descr = TF_NewOperation(function_graph, "Identity", "id"); TF_SetAttrType(id_descr, "T", TF_INT32); TF_AddInput(id_descr, {arg, 0}); TF_Operation* id = TF_FinishOperation(id_descr, status); ASSERT_TRUE(TF_GetCode(status) == TF_OK) << TF_Message(status); TF_Output input{arg, 0}; TF_Output output{id, 0}; TF_Function* fn = TF_GraphToFunction(function_graph, "ident", 0, 1, &id, 1, &input, 1, &output, nullptr, nullptr, "test", status); ASSERT_TRUE(TF_GetCode(status) == TF_OK) << TF_Message(status); TF_DeleteGraph(function_graph); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); ASSERT_TRUE(TF_GetCode(status) == TF_OK) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_ContextAddFunction(ctx, fn, status); ASSERT_TRUE(TF_GetCode(status) == TF_OK) << TF_Message(status); TF_DeleteFunction(fn); for (bool async : {false, true, false}) { TFE_Executor* old_executor = TFE_ContextGetExecutorForThread(ctx); TFE_Executor* executor = TFE_NewExecutor( async, true, 0); TFE_ContextSetExecutorForThread(ctx, executor); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_Tensor* t = TF_AllocateTensor(TF_INT32, nullptr, 0, 1 * sizeof(tensorflow::int32)); *reinterpret_cast<tensorflow::int32*>(TF_TensorData(t)) = 42; TFE_TensorHandle* h = TFE_NewTensorHandle(t, status); ASSERT_TRUE(TF_GetCode(status) == TF_OK) << TF_Message(status); TF_DeleteTensor(t); TFE_Op* op = TFE_NewOp(ctx, "ident", status); ASSERT_TRUE(TF_GetCode(status) == TF_OK) << TF_Message(status); TFE_OpAddInput(op, h, status); ASSERT_TRUE(TF_GetCode(status) == TF_OK) << TF_Message(status); std::vector<TFE_TensorHandle*> result; result.push_back(nullptr); int num_retvals = 1; TFE_Execute(op, result.data(), &num_retvals, status); TFE_DeleteOp(op); ASSERT_TRUE(TF_GetCode(status) == TF_OK) << TF_Message(status); ASSERT_EQ(num_retvals, 1); TF_Tensor* r = TFE_TensorHandleResolve(result[0], status); ASSERT_TRUE(TF_GetCode(status) == TF_OK) << TF_Message(status); EXPECT_EQ(*reinterpret_cast<tensorflow::int32*>(TF_TensorData(r)), 42); TFE_ContextSetExecutorForThread(ctx, old_executor); TFE_ExecutorWaitForAllPendingNodes(executor, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteExecutor(executor); TFE_DeleteExecutor(old_executor); TFE_DeleteTensorHandle(h); TF_DeleteTensor(r); TFE_DeleteTensorHandle(result[0]); } TFE_ContextRemoveFunction(ctx, "ident", status); ASSERT_TRUE(TF_GetCode(status) == TF_OK) << TF_Message(status); TFE_DeleteContext(ctx); ASSERT_TRUE(TF_GetCode(status) == TF_OK) << TF_Message(status); TF_DeleteStatus(status); } void Executor_MatMul_CPU(bool async) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_Executor* old_executor = TFE_ContextGetExecutorForThread(ctx); TFE_Executor* executor = TFE_NewExecutor( async, true, 0); TFE_ContextSetExecutorForThread(ctx, executor); TFE_TensorHandle* m = TestMatrixTensorHandle(ctx); TFE_Op* matmul = MatMulOp(ctx, m, m); TFE_TensorHandle* retvals[2] = {nullptr, nullptr}; int num_retvals = 2; TFE_Execute(matmul, &retvals[0], &num_retvals, status); EXPECT_EQ(1, num_retvals); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteOp(matmul); TFE_DeleteTensorHandle(m); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_Tensor* t = TFE_TensorHandleResolve(retvals[0], status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteTensorHandle(retvals[0]); TFE_ContextSetExecutorForThread(ctx, old_executor); TFE_ExecutorWaitForAllPendingNodes(executor, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteExecutor(executor); TFE_DeleteExecutor(old_executor); TFE_DeleteContext(ctx); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); float product[4] = {0}; EXPECT_EQ(sizeof(product), TF_TensorByteSize(t)); memcpy(&product[0], TF_TensorData(t), TF_TensorByteSize(t)); TF_DeleteTensor(t); EXPECT_EQ(7, product[0]); EXPECT_EQ(10, product[1]); EXPECT_EQ(15, product[2]); EXPECT_EQ(22, product[3]); TF_DeleteStatus(status); } TEST(CAPI, Executor_MatMul_CPU) { Executor_MatMul_CPU(false); } TEST(CAPI, Executor_MatMul_CPUAsync) { Executor_MatMul_CPU(true); } void Deleter(void* data, size_t unused, void* tensor_handle) { TFE_DeleteTensorHandle(static_cast<TFE_TensorHandle*>(tensor_handle)); } TEST(CAPI, TensorHandleOnDeviceMemory) { TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_TensorHandle* m = TestMatrixTensorHandle(ctx); TF_Tensor* m_data = TFE_TensorHandleResolve(m, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); float* m_float = static_cast<float*>(TF_TensorData(m_data)); TF_DeviceList* devices = TFE_ContextListDevices(ctx, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); int num_devices = TF_DeviceListCount(devices); for (int d = 0; d < num_devices; ++d) { const char* name = TF_DeviceListName(devices, d, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_TensorHandle* copy = TFE_TensorHandleCopyToDevice(m, ctx, name, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); void* data = TFE_TensorHandleDevicePointer(copy, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); size_t size = TFE_TensorHandleDeviceMemorySize(copy, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); int64_t dims[] = {2, 2}; TFE_TensorHandle* copy_aliased = TFE_NewTensorHandleFromDeviceMemory( ctx, name, TF_FLOAT, dims, 2, data, size, &Deleter, copy, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_TensorHandle* on_host = TFE_TensorHandleCopyToDevice(copy_aliased, ctx, "CPU:0", status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_Tensor* resolved = TFE_TensorHandleResolve(on_host, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); const float* resolved_data = static_cast<const float*>(TF_TensorData(resolved)); EXPECT_EQ(0, memcmp(m_float, resolved_data, 4 * sizeof(float))); TF_DeleteTensor(resolved); TFE_DeleteTensorHandle(copy_aliased); TFE_DeleteTensorHandle(on_host); } TF_DeleteDeviceList(devices); TF_DeleteTensor(m_data); TFE_DeleteTensorHandle(m); TFE_DeleteContext(ctx); TF_DeleteStatus(status); } TEST(CAPI, TensorHandleNullptr) { TFE_TensorHandle* h = nullptr; std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); const char* device_type = TFE_TensorHandleDeviceType(h, status.get()); ASSERT_EQ(TF_INVALID_ARGUMENT, TF_GetCode(status.get())); ASSERT_EQ(device_type, nullptr); ASSERT_EQ("Invalid handle", string(TF_Message(status.get()))); TF_SetStatus(status.get(), TF_OK, ""); int device_id = TFE_TensorHandleDeviceID(h, status.get()); ASSERT_EQ(TF_INVALID_ARGUMENT, TF_GetCode(status.get())); ASSERT_EQ(device_id, -1); ASSERT_EQ("Invalid handle", string(TF_Message(status.get()))); } TEST(CAPI, TensorHandleDevices) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status.get()); TFE_DeleteContextOptions(opts); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TFE_TensorHandle* hcpu = TestMatrixTensorHandle(ctx); const char* device_type = TFE_TensorHandleDeviceType(hcpu, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); ASSERT_TRUE(absl::StrContains(device_type, "CPU")) << device_type; int device_id = TFE_TensorHandleDeviceID(hcpu, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); ASSERT_EQ(0, device_id) << device_id; string gpu_device_name; if (GetDeviceName(ctx, &gpu_device_name, "GPU")) { TFE_TensorHandle* hgpu = TFE_TensorHandleCopyToDevice( hcpu, ctx, gpu_device_name.c_str(), status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); TFE_Op* shape_op = ShapeOp(ctx, hgpu); TFE_OpSetDevice(shape_op, gpu_device_name.c_str(), status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); TFE_TensorHandle* retvals[1]; int num_retvals = 1; TFE_Execute(shape_op, &retvals[0], &num_retvals, status.get()); ASSERT_TRUE(TF_GetCode(status.get()) == TF_OK) << TF_Message(status.get()); device_type = TFE_TensorHandleDeviceType(retvals[0], status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); ASSERT_TRUE(absl::StrContains(device_type, "GPU")) << device_type; device_id = TFE_TensorHandleDeviceID(retvals[0], status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); ASSERT_EQ(0, device_id) << device_id; TFE_DeleteOp(shape_op); TFE_DeleteTensorHandle(retvals[0]); TFE_DeleteTensorHandle(hgpu); } TFE_DeleteTensorHandle(hcpu); TFE_Executor* executor = TFE_ContextGetExecutorForThread(ctx); TFE_ExecutorWaitForAllPendingNodes(executor, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TFE_DeleteExecutor(executor); TFE_DeleteContext(ctx); } TEST(CAPI, TensorHandleDefaults) { std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status( TF_NewStatus(), TF_DeleteStatus); TFE_ContextOptions* opts = TFE_NewContextOptions(); TFE_Context* ctx = TFE_NewContext(opts, status.get()); TFE_DeleteContextOptions(opts); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TFE_TensorHandle* h_default = TestMatrixTensorHandle(ctx); const char* device_type = TFE_TensorHandleDeviceType(h_default, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); ASSERT_TRUE(absl::StrContains(device_type, "CPU")) << device_type; int device_id = TFE_TensorHandleDeviceID(h_default, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); ASSERT_EQ(0, device_id) << device_id; TFE_TensorHandle* h_cpu = TFE_TensorHandleCopyToDevice( h_default, ctx, "/device:CPU:0", status.get()); const char* device_type_cpu = TFE_TensorHandleDeviceType(h_cpu, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); ASSERT_TRUE(absl::StrContains(device_type_cpu, "CPU")) << device_type_cpu; int device_id_cpu = TFE_TensorHandleDeviceID(h_cpu, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); ASSERT_EQ(0, device_id_cpu) << device_id_cpu; TFE_DeleteTensorHandle(h_default); TFE_DeleteTensorHandle(h_cpu); TFE_Executor* executor = TFE_ContextGetExecutorForThread(ctx); TFE_ExecutorWaitForAllPendingNodes(executor, status.get()); ASSERT_EQ(TF_OK, TF_GetCode(status.get())) << TF_Message(status.get()); TFE_DeleteExecutor(executor); TFE_DeleteContext(ctx); } TEST(CAPI, CreateLocalContextAsReset) { tensorflow::ServerDef server_def = GetServerDef("worker", 2); server_def.mutable_default_session_config()->set_isolate_session_state(false); ServerFactory* factory; ASSERT_TRUE(ServerFactory::GetFactory(server_def, &factory).ok()); server_def.set_job_name("worker"); server_def.set_task_index(0); std::unique_ptr<tensorflow::ServerInterface> w0; ASSERT_TRUE( factory->NewServer(server_def, ServerFactory::Options(), &w0).ok()); ASSERT_TRUE(w0->Start().ok()); server_def.set_task_index(1); std::unique_ptr<tensorflow::ServerInterface> w1; ASSERT_TRUE( factory->NewServer(server_def, ServerFactory::Options(), &w1).ok()); ASSERT_TRUE(w1->Start().ok()); TF_Status* status = TF_NewStatus(); TFE_ContextOptions* opts = TFE_NewContextOptions(); opts->session_options.options.config.set_isolate_session_state(false); TFE_ContextOptionsSetDevicePlacementPolicy(opts, TFE_DEVICE_PLACEMENT_SILENT); TFE_Context* ctx = TFE_NewContext(opts, status); EXPECT_EQ(TF_GetCode(status), TF_OK) << TF_Message(status); server_def.set_task_index(0); auto cluster = server_def.mutable_cluster(); auto client_job = cluster->add_job(); client_job->set_name("localhost"); int client_port = tensorflow::testing::PickUnusedPortOrDie(); client_job->mutable_tasks()->insert( {0, strings::StrCat("localhost:", client_port)}); server_def.set_job_name("localhost"); auto serialized = server_def.SerializeAsString(); TFE_ContextSetServerDef(ctx, 0, serialized.data(), serialized.size(), status); EXPECT_EQ(TF_GetCode(status), TF_OK) << TF_Message(status); EXPECT_EQ(TF_GetCode(status), TF_OK) << TF_Message(status); server_def.set_job_name("worker"); server_def.set_task_index(0); tensorflow::ClusterDef* cluster_def = server_def.mutable_cluster(); tensorflow::JobDef* job_def = cluster_def->mutable_job(0); int worker_port = tensorflow::testing::PickUnusedPortOrDie(); job_def->mutable_tasks()->at(0) = tensorflow::strings::StrCat("localhost:", worker_port); serialized = server_def.SerializeAsString(); TFE_InitializeLocalOnlyContext(ctx, 0, serialized.data(), serialized.size(), status); EXPECT_EQ(TF_GetCode(status), TF_OK) << TF_Message(status); TFE_DeleteContextOptions(opts); TFE_DeleteContext(ctx); TF_DeleteStatus(status); w0.release(); w1.release(); } TEST(CAPI, ShareVariableAcrossContextsAfterUpdateContextWorksWithTimeout) { tensorflow::ServerDef server_def_0 = GetServerDef(3); server_def_0.mutable_default_session_config()->set_isolate_session_state( false); tensorflow::ServerDef server_def_1 = ReplaceTaskInServerDef(server_def_0, 0); string serialized_server_def_0 = server_def_0.SerializeAsString(); string serialized_server_def_1 = server_def_1.SerializeAsString(); server_def_0.set_task_index(1); std::unique_ptr<tensorflow::GrpcServer> worker_server1; ASSERT_TRUE(tensorflow::GrpcServer::Create( server_def_0, tensorflow::Env::Default(), &worker_server1) .ok()); ASSERT_TRUE(worker_server1->Start().ok()); server_def_0.set_task_index(2); std::unique_ptr<tensorflow::GrpcServer> worker_server2; ASSERT_TRUE(tensorflow::GrpcServer::Create( server_def_0, tensorflow::Env::Default(), &worker_server2) .ok()); ASSERT_TRUE(worker_server2->Start().ok()); int32_t init_timeout_in_ms = 300000; TFE_Context* ctx_0 = CreateContext(serialized_server_def_0, false, init_timeout_in_ms); TFE_Context* ctx_1 = CreateContext(serialized_server_def_1, false, init_timeout_in_ms); const char remote_device[] = "/job:localhost/replica:0/task:2/device:CPU:0"; { const std::vector<std::string>& device_names = ListDeviceNames(ctx_0); ASSERT_TRUE(std::find(device_names.begin(), device_names.end(), remote_device) != device_names.end()); } { const std::vector<std::string>& device_names = ListDeviceNames(ctx_1); ASSERT_TRUE(std::find(device_names.begin(), device_names.end(), remote_device) != device_names.end()); } TFE_TensorHandle* handle_0 = CreateVariable(ctx_0, 1.2, remote_device, "var"); TF_Status* status = TF_NewStatus(); TFE_ContextAsyncWait(ctx_0, status); EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); int port = tensorflow::testing::PickUnusedPortOrDie(); ReplaceTaskInServerDef(&server_def_0, 1, "localhost", port); ReplaceTaskInServerDef(&server_def_1, 1, "localhost", port); server_def_0.set_task_index(1); worker_server1.release(); ASSERT_TRUE(tensorflow::GrpcServer::Create( server_def_0, tensorflow::Env::Default(), &worker_server1) .ok()); ASSERT_TRUE(worker_server1->Start().ok()); { server_def_0.set_task_index(0); string serialized_update = server_def_0.SerializeAsString(); TF_Status* status = TF_NewStatus(); TFE_ContextUpdateServerDefWithTimeout(ctx_0, 0, serialized_update.data(), serialized_update.size(), init_timeout_in_ms, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); } { server_def_1.set_task_index(0); string serialized_update = server_def_1.SerializeAsString(); TF_Status* status = TF_NewStatus(); TFE_ContextUpdateServerDefWithTimeout(ctx_1, 0, serialized_update.data(), serialized_update.size(), init_timeout_in_ms, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TF_DeleteStatus(status); } { TFE_TensorHandle* var_handle = CreateVarHandle(ctx_1, remote_device, "var"); TFE_TensorHandle* handle_1 = nullptr; int num_retvals = 1; TF_Status* status = TF_NewStatus(); TFE_Op* op = TFE_NewOp(ctx_1, "ReadVariableOp", status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_OpSetAttrType(op, "dtype", TF_FLOAT); TFE_OpAddInput(op, var_handle, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_Execute(op, &handle_1, &num_retvals, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); TFE_DeleteOp(op); ASSERT_EQ(1, num_retvals); EXPECT_EQ(TF_FLOAT, TFE_TensorHandleDataType(handle_1)); EXPECT_EQ(0, TFE_TensorHandleNumDims(handle_1, status)); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); float value = 0.0f; TF_Tensor* t = TFE_TensorHandleResolve(handle_1, status); ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); ASSERT_EQ(sizeof(float), TF_TensorByteSize(t)); memcpy(&value, TF_TensorData(t), sizeof(float)); TF_DeleteTensor(t); EXPECT_EQ(1.2f, value); TFE_DeleteTensorHandle(handle_1); TF_DeleteStatus(status); TFE_DeleteTensorHandle(var_handle); } TFE_DeleteTensorHandle(handle_0); TFE_DeleteContext(ctx_0); TFE_DeleteContext(ctx_1); worker_server1.release(); worker_server2.release(); } } }
951
cpp
tensorflow/tensorflow
c_api_opaque
tensorflow/lite/core/c/c_api_opaque.cc
tensorflow/lite/core/c/c_api_opaque_test.cc
#ifndef TENSORFLOW_LITE_CORE_C_C_API_OPAQUE_H_ #define TENSORFLOW_LITE_CORE_C_C_API_OPAQUE_H_ #include <stddef.h> #include <stdint.h> #include "tensorflow/lite/core/c/c_api.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/c/operator.h" #ifdef __cplusplus extern "C" { #endif TFL_CAPI_EXPORT extern TfLiteType TfLiteOpaqueTensorType( const TfLiteOpaqueTensor* opaque_tensor); TFL_CAPI_EXPORT extern int32_t TfLiteOpaqueTensorNumDims( const TfLiteOpaqueTensor* opaque_tensor); TFL_CAPI_EXPORT extern int32_t TfLiteOpaqueTensorDim( const TfLiteOpaqueTensor* opaque_tensor, int32_t dim_index); TFL_CAPI_EXPORT extern TfLiteStatus TfLiteOpaqueTensorGetNumDimsSignature( const TfLiteOpaqueTensor* opaque_tensor, int32_t* num_dims); TFL_CAPI_EXPORT extern TfLiteStatus TfLiteOpaqueTensorGetDimSignature( const TfLiteOpaqueTensor* opaque_tensor, int32_t dim_index, int32_t* dim_length); TFL_CAPI_EXPORT extern int TfLiteOpaqueTensorIsVariable( const TfLiteOpaqueTensor* opaque_tensor); TFL_CAPI_EXPORT extern size_t TfLiteOpaqueTensorByteSize( const TfLiteOpaqueTensor* opaque_tensor); TFL_CAPI_EXPORT extern void* TfLiteOpaqueTensorData( const TfLiteOpaqueTensor* opaque_tensor); TFL_CAPI_EXPORT extern TfLiteAllocationType TfLiteOpaqueTensorGetAllocationType( const TfLiteOpaqueTensor* opaque_tensor); TFL_CAPI_EXPORT extern TfLiteAllocationStrategy TfLiteOpaqueTensorGetAllocationStrategy(const TfLiteOpaqueTensor* t); TFL_CAPI_EXPORT extern TfLiteRunStability TfLiteOpaqueTensorGetBufferAddressStability(const TfLiteOpaqueTensor* t); TFL_CAPI_EXPORT extern TfLiteRunStability TfLiteOpaqueTensorGetDataStability( const TfLiteOpaqueTensor* t); TFL_CAPI_EXPORT extern TfLiteRunStep TfLiteOpaqueTensorGetDataKnownStep( const TfLiteOpaqueTensor* t); TFL_CAPI_EXPORT extern TfLiteRunStep TfLiteOpaqueTensorGetShapeKnownStep( const TfLiteOpaqueTensor* t); TFL_CAPI_EXPORT extern const char* TfLiteOpaqueTensorName( const TfLiteOpaqueTensor* opaque_tensor); TFL_CAPI_EXPORT extern TfLiteQuantization TfLiteOpaqueTensorGetQuantization( const TfLiteOpaqueTensor* opaque_tensor); TFL_CAPI_EXPORT extern TfLiteQuantizationParams TfLiteOpaqueTensorGetQuantizationParams( const TfLiteOpaqueTensor* opaque_tensor); TFL_CAPI_EXPORT extern TfLiteStatus TfLiteOpaqueTensorCopyFromBuffer( TfLiteOpaqueTensor* opaque_tensor, const void* input_data, size_t input_data_size); TFL_CAPI_EXPORT extern TfLiteStatus TfLiteOpaqueTensorCopyToBuffer( const TfLiteOpaqueTensor* opaque_tensor, void* output_data, size_t output_data_size); int TfLiteOpaqueTensorGetStringCount(const TfLiteOpaqueTensor* tensor); TfLiteStatus TfLiteOpaqueTensorGetString(const TfLiteOpaqueTensor* tensor, int index, const char** str, int* len); TfLiteStatus TfLiteOpaqueTensorWriteStrings(TfLiteOpaqueTensor* tensor, const char* const* str_array, int str_array_len, const int* str_n_len); TfLiteStatus TfLiteOpaqueTensorWriteString(TfLiteOpaqueTensor* tensor, const char* str, int len); typedef struct TfLiteOpaqueTensorBuilder TfLiteOpaqueTensorBuilder; TfLiteOpaqueTensorBuilder* TfLiteOpaqueTensorBuilderCreate(); void TfLiteOpaqueTensorBuilderDelete(TfLiteOpaqueTensorBuilder* builder); TfLiteOpaqueTensorBuilder* TfLiteOpaqueTensorBuilderSetType( TfLiteOpaqueTensorBuilder* builder, TfLiteType type); TfLiteOpaqueTensorBuilder* TfLiteOpaqueTensorBuilderSetData( TfLiteOpaqueTensorBuilder* builder, void* data); TfLiteOpaqueTensorBuilder* TfLiteOpaqueTensorBuilderSetAllocationType( TfLiteOpaqueTensorBuilder* builder, TfLiteAllocationType allocation_type); TfLiteOpaqueTensorBuilder* TfLiteOpaqueTensorBuilderSetQuantizationParams( TfLiteOpaqueTensorBuilder* builder, TfLiteQuantizationParams params); TfLiteOpaqueTensorBuilder* TfLiteOpaqueTensorBuilderSetQuantization( TfLiteOpaqueTensorBuilder* builder, TfLiteQuantization quantization); void TfLiteOpaqueTensorSetAllocationTypeToDynamic(TfLiteOpaqueTensor* tensor); TFL_CAPI_EXPORT extern const TfLiteOpaqueTensor* TfLiteOpaqueNodeGetInput( const TfLiteOpaqueContext* opaque_context, const TfLiteOpaqueNode* opaque_node, int index); TFL_CAPI_EXPORT extern TfLiteOpaqueTensor* TfLiteOpaqueNodeGetOutput( TfLiteOpaqueContext* opaque_context, const TfLiteOpaqueNode* opaque_node, int index); TFL_CAPI_EXPORT int TfLiteOpaqueNodeNumberOfInputs( const TfLiteOpaqueNode* opaque_node); TFL_CAPI_EXPORT int TfLiteOpaqueNodeNumberOfOutputs( const TfLiteOpaqueNode* opaque_node); TFL_CAPI_EXPORT extern void* TfLiteOpaqueNodeGetUserData( const TfLiteOpaqueNode* opaque_node); TFL_CAPI_EXPORT extern void* TfLiteOpaqueNodeGetBuiltinData( const TfLiteOpaqueNode* opaque_node); TFL_CAPI_EXPORT extern TfLiteStatus TfLiteOpaqueNodeGetCustomInitialData( const TfLiteOpaqueNode* opaque_node, const void** init_data, int* size); TFL_CAPI_EXPORT TfLiteStatus TfLiteOpaqueNodeInputs( const TfLiteOpaqueNode* opaque_node, const int** inputs, int* num_inputs); TFL_CAPI_EXPORT TfLiteStatus TfLiteOpaqueNodeOutputs( const TfLiteOpaqueNode* opaque_node, const int** outputs, int* num_outputs); TFL_CAPI_EXPORT TfLiteStatus TfLiteOpaqueNodeSetTemporaries( TfLiteOpaqueNode* opaque_node, const int* temporaries, int num_temporaries); TFL_CAPI_EXPORT TfLiteStatus TfLiteOpaqueNodeTemporaries(const TfLiteOpaqueNode* opaque_node, const int** temporaries, int* num_temporaries); TFL_CAPI_EXPORT int TfLiteOpaqueNodeGetInputTensorIndex(const TfLiteOpaqueNode* opaque_node, int index_of_input); TFL_CAPI_EXPORT int TfLiteOpaqueNodeGetOutputTensorIndex(const TfLiteOpaqueNode* opaque_node, int index_of_output); typedef struct TfLiteIntArray TfLiteIntArray; TFL_CAPI_EXPORT extern TfLiteStatus TfLiteOpaqueContextGetExecutionPlan( TfLiteOpaqueContext* opaque_context, TfLiteIntArray** execution_plan); TFL_CAPI_EXPORT TfLiteStatus TfLiteOpaqueContextGetNodeAndRegistration( struct TfLiteOpaqueContext* opaque_context, int node_index, TfLiteOpaqueNode** node, TfLiteOperator** registration_external); TFL_CAPI_EXPORT TfLiteStatus TfLiteOpaqueContextReplaceNodeSubsetsWithDelegateKernels( struct TfLiteOpaqueContext* opaque_context, TfLiteOperator* registration_external, const TfLiteIntArray* nodes_to_replace, TfLiteOpaqueDelegate* opaque_delegate); TFL_CAPI_EXPORT TfLiteOpaqueTensor* TfLiteOpaqueContextGetOpaqueTensor( const TfLiteOpaqueContext* opaque_context, int index); TFL_CAPI_EXPORT TfLiteStatus TfLiteOpaqueContextGetInputs( const struct TfLiteOpaqueContext* opaque_context, const int** inputs, int* num_inputs); TFL_CAPI_EXPORT TfLiteStatus TfLiteOpaqueContextGetOutputs( const struct TfLiteOpaqueContext* opaque_context, const int** outputs, int* num_outputs); TFL_CAPI_EXPORT TfLiteStatus TfLiteOpaqueContextGetVariables( const struct TfLiteOpaqueContext* opaque_context, const int** variables, int* num_variables); TFL_CAPI_EXPORT size_t TfLiteOpaqueContextGetNumNodes( const struct TfLiteOpaqueContext* opaque_context); TFL_CAPI_EXPORT size_t TfLiteOpaqueContextGetNumTensors( const struct TfLiteOpaqueContext* opaque_context); TFL_CAPI_EXPORT const char* TfLiteOpaqueContextGetName( const struct TfLiteOpaqueContext* opaque_context); TFL_CAPI_EXPORT TfLiteStatus TfLiteOpaqueContextResizeTensor(TfLiteOpaqueContext* context, TfLiteOpaqueTensor* tensor, TfLiteIntArray* new_size); TFL_CAPI_EXPORT TfLiteStatus TfLiteOpaqueContextAcquireSubgraphContext( struct TfLiteOpaqueContext* opaque_context, int subgraph_index, TfLiteOpaqueContext** acquired_opaque_context); TFL_CAPI_EXPORT TfLiteStatus TfLiteOpaqueContextReleaseSubgraphContext( struct TfLiteOpaqueContext* opaque_context, int subgraph_index); TFL_CAPI_EXPORT TfLiteStatus TfLiteOpaqueContextMarkSubgraphAsDelegationSkippable( TfLiteOpaqueContext* opaque_context, int subgraph_index); TFL_CAPI_EXPORT TfLiteStatus TfLiteOpaqueContextGetNodeInitDataMmapInfo( const TfLiteOpaqueContext* context, const TfLiteOpaqueNode* node, int* fd, int64_t* custom_initial_data_offset_in_file, int64_t* custom_initial_data_size); TFL_CAPI_EXPORT TfLiteStatus TfLiteOpaqueContextAddTensor(TfLiteOpaqueContext* context, TfLiteOpaqueTensorBuilder* builder, int* new_tensor_index); TFL_CAPI_EXPORT TfLiteSta
#include "tensorflow/lite/core/c/c_api_opaque.h" #include <stddef.h> #include <cstring> #include <memory> #include <gtest/gtest.h> #include "tensorflow/lite/builtin_ops.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/core/c/c_api.h" namespace tflite { namespace { TEST(TestTfLiteOpaqueTensorGetAllocationStrategy, WithMemNoneBehavesAsTfLiteTensorGetAllocationStrategy) { TfLiteTensor t; t.allocation_type = kTfLiteMemNone; EXPECT_EQ(TfLiteOpaqueTensorGetAllocationStrategy( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetAllocationStrategy(&t)); } TEST(TestTfLiteOpaqueTensorGetAllocationStrategy, WithMmapRoBehavesAsTfLiteTensorGetAllocationStrategy) { TfLiteTensor t; t.allocation_type = kTfLiteMmapRo; EXPECT_EQ(TfLiteOpaqueTensorGetAllocationStrategy( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetAllocationStrategy(&t)); } TEST(TestTfLiteOpaqueTensorGetAllocationStrategy, WithArenaRwBehavesAsTfLiteTensorGetAllocationStrategy) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRw; EXPECT_EQ(TfLiteOpaqueTensorGetAllocationStrategy( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetAllocationStrategy(&t)); } TEST(TestTfLiteOpaqueTensorGetAllocationStrategy, WithArenaRwPersistentBehavesAsTfLiteTensorGetAllocationStrategy) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRwPersistent; EXPECT_EQ(TfLiteOpaqueTensorGetAllocationStrategy( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetAllocationStrategy(&t)); } TEST(TestTfLiteOpaqueTensorGetAllocationStrategy, WithDynamicBehavesAsTfLiteTensorGetAllocationStrategy) { TfLiteTensor t; t.allocation_type = kTfLiteDynamic; EXPECT_EQ(TfLiteOpaqueTensorGetAllocationStrategy( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetAllocationStrategy(&t)); } TEST(TestTfLiteOpaqueTensorGetAllocationStrategy, WithPersistentRoBehavesAsTfLiteTensorGetAllocationStrategy) { TfLiteTensor t; t.allocation_type = kTfLitePersistentRo; EXPECT_EQ(TfLiteOpaqueTensorGetAllocationStrategy( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetAllocationStrategy(&t)); } TEST(TestTfLiteOpaqueTensorGetAllocationStrategy, WithCustomBehavesAsTfLiteTensorGetAllocationStrategy) { TfLiteTensor t; t.allocation_type = kTfLiteCustom; EXPECT_EQ(TfLiteOpaqueTensorGetAllocationStrategy( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetAllocationStrategy(&t)); } TEST(TestTfLiteOpaqueTensorGetAllocationStrategy, WithVariantObjectBehavesAsTfLiteTensorGetAllocationStrategy) { TfLiteTensor t; t.allocation_type = kTfLiteVariantObject; EXPECT_EQ(TfLiteOpaqueTensorGetAllocationStrategy( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetAllocationStrategy(&t)); } TEST(TestTfLiteOpaqueTensorGetBufferAddressStability, WithMemNoneBehavesAsTfLiteTensorGetBufferAddressStability) { TfLiteTensor t; t.allocation_type = kTfLiteMemNone; EXPECT_EQ(TfLiteOpaqueTensorGetBufferAddressStability( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetBufferAddressStability(&t)); } TEST(TestTfLiteOpaqueTensorGetBufferAddressStability, WithMmapRoBehavesAsTfLiteTensorGetBufferAddressStability) { TfLiteTensor t; t.allocation_type = kTfLiteMmapRo; EXPECT_EQ(TfLiteOpaqueTensorGetBufferAddressStability( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetBufferAddressStability(&t)); } TEST(TestTfLiteOpaqueTensorGetBufferAddressStability, WithArenaRwBehavesAsTfLiteTensorGetBufferAddressStability) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRw; EXPECT_EQ(TfLiteOpaqueTensorGetBufferAddressStability( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetBufferAddressStability(&t)); } TEST(TestTfLiteOpaqueTensorGetBufferAddressStability, WithArenaRwPersistentBehavesAsTfLiteTensorGetBufferAddressStability) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRwPersistent; EXPECT_EQ(TfLiteOpaqueTensorGetBufferAddressStability( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetBufferAddressStability(&t)); } TEST(TestTfLiteOpaqueTensorGetBufferAddressStability, WithDynamicBehavesAsTfLiteTensorGetBufferAddressStability) { TfLiteTensor t; t.allocation_type = kTfLiteDynamic; EXPECT_EQ(TfLiteOpaqueTensorGetBufferAddressStability( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetBufferAddressStability(&t)); } TEST(TestTfLiteOpaqueTensorGetBufferAddressStability, WithPersistentRoBehavesAsTfLiteTensorGetBufferAddressStability) { TfLiteTensor t; t.allocation_type = kTfLitePersistentRo; EXPECT_EQ(TfLiteOpaqueTensorGetBufferAddressStability( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetBufferAddressStability(&t)); } TEST(TestTfLiteOpaqueTensorGetBufferAddressStability, WithCustomBehavesAsTfLiteTensorGetBufferAddressStability) { TfLiteTensor t; t.allocation_type = kTfLiteCustom; EXPECT_EQ(TfLiteOpaqueTensorGetBufferAddressStability( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetBufferAddressStability(&t)); } TEST(TestTfLiteOpaqueTensorGetBufferAddressStability, WithVariantObjectBehavesAsTfLiteTensorGetBufferAddressStability) { TfLiteTensor t; t.allocation_type = kTfLiteVariantObject; EXPECT_EQ(TfLiteOpaqueTensorGetBufferAddressStability( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetBufferAddressStability(&t)); } TEST(TestTfLiteOpaqueTensorData, ValidInput) { TfLiteTensor t; char data[] = "data"; t.data.raw = data; EXPECT_EQ(TfLiteOpaqueTensorData(reinterpret_cast<TfLiteOpaqueTensor*>(&t)), data); } TEST(TestTfLiteOpaqueTensorData, NullInput) { EXPECT_EQ(TfLiteOpaqueTensorData(nullptr), nullptr); } TEST(TestTfLiteOpaqueTensorGetDataStability, WithMemNoneBehavesAsTfLiteTensorGetDataStability) { TfLiteTensor t; t.allocation_type = kTfLiteMemNone; EXPECT_EQ(TfLiteOpaqueTensorGetDataStability( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetDataStability(&t)); } TEST(TestTfLiteOpaqueTensorGetDataStability, WithMmapRoBehavesAsTfLiteTensorGetDataStability) { TfLiteTensor t; t.allocation_type = kTfLiteMmapRo; EXPECT_EQ(TfLiteOpaqueTensorGetDataStability( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetDataStability(&t)); } TEST(TestTfLiteOpaqueTensorGetDataStability, WithArenaRwBehavesAsTfLiteTensorGetDataStability) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRw; EXPECT_EQ(TfLiteOpaqueTensorGetDataStability( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetDataStability(&t)); } TEST(TestTfLiteOpaqueTensorGetDataStability, WithArenaRwPersistentBehavesAsTfLiteTensorGetDataStability) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRwPersistent; EXPECT_EQ(TfLiteOpaqueTensorGetDataStability( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetDataStability(&t)); } TEST(TestTfLiteOpaqueTensorGetDataStability, WithDynamicBehavesAsTfLiteTensorGetDataStability) { TfLiteTensor t; t.allocation_type = kTfLiteDynamic; EXPECT_EQ(TfLiteOpaqueTensorGetDataStability( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetDataStability(&t)); } TEST(TestTfLiteOpaqueTensorGetDataStability, WithPersistentRoBehavesAsTfLiteTensorGetDataStability) { TfLiteTensor t; t.allocation_type = kTfLitePersistentRo; EXPECT_EQ(TfLiteOpaqueTensorGetDataStability( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetDataStability(&t)); } TEST(TestTfLiteOpaqueTensorGetDataStability, WithCustomBehavesAsTfLiteTensorGetDataStability) { TfLiteTensor t; t.allocation_type = kTfLiteCustom; EXPECT_EQ(TfLiteOpaqueTensorGetDataStability( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetDataStability(&t)); } TEST(TestTfLiteOpaqueTensorGetDataStability, WithVariantObjectBehavesAsTfLiteTensorGetDataStability) { TfLiteTensor t; t.allocation_type = kTfLiteVariantObject; EXPECT_EQ(TfLiteOpaqueTensorGetDataStability( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetDataStability(&t)); } TEST(TestTfLiteOpaqueTensorGetDataKnownStep, WithMemNoneBehavesAsTfLiteTensorGetDataKnownStep) { TfLiteTensor t; t.allocation_type = kTfLiteMemNone; EXPECT_EQ(TfLiteOpaqueTensorGetDataKnownStep( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetDataKnownStep(&t)); } TEST(TestTfLiteOpaqueTensorGetDataKnownStep, WithMmapRoBehavesAsTfLiteTensorGetDataKnownStep) { TfLiteTensor t; t.allocation_type = kTfLiteMmapRo; EXPECT_EQ(TfLiteOpaqueTensorGetDataKnownStep( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetDataKnownStep(&t)); } TEST(TestTfLiteOpaqueTensorGetDataKnownStep, WithArenaRwBehavesAsTfLiteTensorGetDataKnownStep) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRw; EXPECT_EQ(TfLiteOpaqueTensorGetDataKnownStep( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetDataKnownStep(&t)); } TEST(TestTfLiteOpaqueTensorGetDataKnownStep, WithArenaRwPersistentBehavesAsTfLiteTensorGetDataKnownStep) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRwPersistent; EXPECT_EQ(TfLiteOpaqueTensorGetDataKnownStep( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetDataKnownStep(&t)); } TEST(TestTfLiteOpaqueTensorGetDataKnownStep, WithDynamicBehavesAsTfLiteTensorGetDataKnownStep) { TfLiteTensor t; t.allocation_type = kTfLiteDynamic; EXPECT_EQ(TfLiteOpaqueTensorGetDataKnownStep( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetDataKnownStep(&t)); } TEST(TestTfLiteOpaqueTensorGetDataKnownStep, WithPersistentRoBehavesAsTfLiteTensorGetDataKnownStep) { TfLiteTensor t; t.allocation_type = kTfLitePersistentRo; EXPECT_EQ(TfLiteOpaqueTensorGetDataKnownStep( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetDataKnownStep(&t)); } TEST(TestTfLiteOpaqueTensorGetDataKnownStep, WithCustomBehavesAsTfLiteTensorGetDataKnownStep) { TfLiteTensor t; t.allocation_type = kTfLiteCustom; EXPECT_EQ(TfLiteOpaqueTensorGetDataKnownStep( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetDataKnownStep(&t)); } TEST(TestTfLiteOpaqueTensorGetDataKnownStep, WithVariantObjectBehavesAsTfLiteTensorGetDataKnownStep) { TfLiteTensor t; t.allocation_type = kTfLiteVariantObject; EXPECT_EQ(TfLiteOpaqueTensorGetDataKnownStep( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetDataKnownStep(&t)); } TEST(TestTfLiteOpaqueTensorGetShapeKnownStep, WithMemNoneBehavesAsTfLiteTensorGetShapeKnownStep) { TfLiteTensor t; t.allocation_type = kTfLiteMemNone; EXPECT_EQ(TfLiteOpaqueTensorGetShapeKnownStep( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetShapeKnownStep(&t)); } TEST(TestTfLiteOpaqueTensorGetShapeKnownStep, WithMmapRoBehavesAsTfLiteTensorGetShapeKnownStep) { TfLiteTensor t; t.allocation_type = kTfLiteMmapRo; EXPECT_EQ(TfLiteOpaqueTensorGetShapeKnownStep( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetShapeKnownStep(&t)); } TEST(TestTfLiteOpaqueTensorGetShapeKnownStep, WithArenaRwBehavesAsTfLiteTensorGetShapeKnownStep) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRw; EXPECT_EQ(TfLiteOpaqueTensorGetShapeKnownStep( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetShapeKnownStep(&t)); } TEST(TestTfLiteOpaqueTensorGetShapeKnownStep, WithArenaRwPersistentBehavesAsTfLiteTensorGetShapeKnownStep) { TfLiteTensor t; t.allocation_type = kTfLiteArenaRwPersistent; EXPECT_EQ(TfLiteOpaqueTensorGetShapeKnownStep( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetShapeKnownStep(&t)); } TEST(TestTfLiteOpaqueTensorGetShapeKnownStep, WithDynamicBehavesAsTfLiteTensorGetShapeKnownStep) { TfLiteTensor t; t.allocation_type = kTfLiteDynamic; EXPECT_EQ(TfLiteOpaqueTensorGetShapeKnownStep( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetShapeKnownStep(&t)); } TEST(TestTfLiteOpaqueTensorGetShapeKnownStep, WithPersistentRoBehavesAsTfLiteTensorGetShapeKnownStep) { TfLiteTensor t; t.allocation_type = kTfLitePersistentRo; EXPECT_EQ(TfLiteOpaqueTensorGetShapeKnownStep( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetShapeKnownStep(&t)); } TEST(TestTfLiteOpaqueTensorGetShapeKnownStep, WithCustomBehavesAsTfLiteTensorGetShapeKnownStep) { TfLiteTensor t; t.allocation_type = kTfLiteCustom; EXPECT_EQ(TfLiteOpaqueTensorGetShapeKnownStep( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetShapeKnownStep(&t)); } TEST(TestTfLiteOpaqueTensorGetShapeKnownStep, WithVariantObjectBehavesAsTfLiteTensorGetShapeKnownStep) { TfLiteTensor t; t.allocation_type = kTfLiteVariantObject; EXPECT_EQ(TfLiteOpaqueTensorGetShapeKnownStep( reinterpret_cast<TfLiteOpaqueTensor*>(&t)), TfLiteTensorGetShapeKnownStep(&t)); } TEST(TestTfLiteOpaqueDelegate, CreateAndDelete) { std::unique_ptr<TfLiteOpaqueDelegateBuilder> opaque_delegate_builder( new TfLiteOpaqueDelegateBuilder{}); TfLiteOpaqueDelegate* opaque_delegate = TfLiteOpaqueDelegateCreate(opaque_delegate_builder.get()); TfLiteOpaqueDelegateDelete(opaque_delegate); } TEST(TestTfLiteOpaqueDelegate, Create_WithNull) { EXPECT_EQ(nullptr, TfLiteOpaqueDelegateCreate(nullptr)); } TEST(TestTfLiteOpaqueDelegate, Delete_WithNull) { TfLiteOpaqueDelegateDelete(nullptr); } TEST(TestTfLiteOpaqueDelegate, GetData_WellFormedOpaqueDelegate) { int delegate_data = 42; TfLiteOpaqueDelegateBuilder builder{}; builder.data = &delegate_data; TfLiteOpaqueDelegate* opaque_delegate = TfLiteOpaqueDelegateCreate(&builder); EXPECT_EQ(&delegate_data, TfLiteOpaqueDelegateGetData(opaque_delegate)); TfLiteOpaqueDelegateDelete(opaque_delegate); } TEST(TestTfLiteOpaqueDelegate, GetData_NotConstructedWithTfLiteOpaqueDelegateCreate) { int delegate_data = 42; TfLiteDelegate non_opaque_delegate = TfLiteDelegateCreate(); non_opaque_delegate.data_ = &delegate_data; auto* opaque_delegate = reinterpret_cast<TfLiteOpaqueDelegate*>(&non_opaque_delegate); EXPECT_EQ(&delegate_data, TfLiteOpaqueDelegateGetData(opaque_delegate)); } TEST(TestTfLiteOpaqueDelegate, GetData_NoDataSetViaOpaqueDelegateBuilder) { TfLiteOpaqueDelegateBuilder builder{}; TfLiteOpaqueDelegate* opaque_delegate = TfLiteOpaqueDelegateCreate(&builder); EXPECT_EQ(nullptr, TfLiteOpaqueDelegateGetData(opaque_delegate)); TfLiteOpaqueDelegateDelete(opaque_delegate); } namespace my_custom_op { struct MyOpData { int temp_tensor_index; }; void* Init(TfLiteOpaqueContext* context, const char* buffer, size_t length) { auto* op_data = new MyOpData{}; return op_data; } void Free(TfLiteOpaqueContext* context, void* buffer) { delete reinterpret_cast<MyOpData*>(buffer); } TfLiteStatus Prepare(TfLiteOpaqueContext* context, TfLiteOpaqueNode* node) { auto* op_data = reinterpret_cast<MyOpData*>(TfLiteOpaqueNodeGetUserData(node)); const int num_temporaries = 1; int temporary_tensor_indices[num_temporaries]; TfLiteStatus status = TfLiteOpaqueNodeSetTemporaries(node, temporary_tensor_indices, -1); TF_LITE_OPAQUE_ENSURE(context, status == kTfLiteError); status = TfLiteOpaqueNodeSetTemporaries(node, temporary_tensor_indices, 0); TF_LITE_OPAQUE_ENSURE(context, status == kTfLiteOk); TfLiteOpaqueTensorBuilder* builder = TfLiteOpaqueTensorBuilderCreate(); TfLiteOpaqueTensorBuilderSetType(builder, kTfLiteFloat32); TfLiteOpaqueTensorBuilderSetAllocationType(builder, kTfLiteArenaRw); TfLiteOpaqueContextAddTensor(context, builder, &temporary_tensor_indices[0]); TfLiteOpaqueTensorBuilderDelete(builder); status = TfLiteOpaqueNodeSetTemporaries(node, temporary_tensor_indices, num_temporaries); TF_LITE_OPAQUE_ENSURE(context, status == kTfLiteOk); op_data->temp_tensor_index = temporary_tensor_indices[0]; TfLiteOpaqueTensor* temp_tensor = TfLiteOpaqueContextGetOpaqueTensor(context, op_data->temp_tensor_index); TfLiteIntArray* temp_size = TfLiteIntArrayCreate(1); temp_size->data[0] = 1; return TfLiteOpaqueContextResizeTensor(context, temp_tensor, temp_size); } TfLiteStatus Invoke(TfLiteOpaqueContext* context, TfLiteOpaqueNode* node) { auto* op_data = reinterpret_cast<MyOpData*>(TfLiteOpaqueNodeGetUserData(node)); const int* temporary_tensor_indices; int num_temporaries; TfLiteOpaqueNodeTemporaries(node, &temporary_tensor_indices, &num_temporaries); TF_LITE_OPAQUE_ENSURE(context, num_temporaries == 1); TF_LITE_OPAQUE_ENSURE( context, temporary_tensor_indices[0] == op_data->temp_tensor_index); TfLiteOpaqueTensor* temp_tensor = TfLiteOpaqueContextGetOpaqueTensor(context, op_data->temp_tensor_index); TF_LITE_OPAQUE_ENSURE(context, TfLiteOpaqueTensorType(temp_tensor) == kTfLiteFloat32); TF_LITE_OPAQUE_ENSURE(context, TfLiteOpaqueTensorGetAllocationType( temp_tensor) == kTfLiteArenaRw); size_t temp_bytes = TfLiteOpaqueTensorByteSize(temp_tensor); void* temp_data = TfLiteOpaqueTensorData(temp_tensor); TF_LITE_OPAQUE_ENSURE(context, temp_bytes != 0); TF_LITE_OPAQUE_ENSURE(context, temp_data != nullptr); EXPECT_EQ(1, TfLiteOpaqueNodeNumberOfInputs(node)); const TfLiteOpaqueTensor* input = TfLiteOpaqueNodeGetInput(context, node, 0); size_t input_bytes = TfLiteOpaqueTensorByteSize(input); void* input_data = TfLiteOpaqueTensorData(input); EXPECT_EQ(input_bytes, temp_bytes); std::memcpy(temp_data, input_data, input_bytes); EXPECT_EQ(1, TfLiteOpaqueNodeNumberOfOutputs(node)); TfLiteOpaqueTensor* output = TfLiteOpaqueNodeGetOutput(context, node, 0); size_t output_bytes = TfLiteOpaqueTensorByteSize(output); void* output_data = TfLiteOpaqueTensorData(output); EXPECT_EQ(output_bytes, temp_bytes); std::memcpy(output_data, temp_data, output_bytes); return kTfLiteOk; } } TEST(TestTfLiteOpaqueNode, CustomOpWithSetAndGetTemporaries) { TfLiteModel* model = TfLiteModelCreateFromFile( "tensorflow/lite/testdata/custom_sinh.bin"); ASSERT_NE(model, nullptr); TfLiteOperator* reg = TfLiteOperatorCreateWithData(kTfLiteBuiltinCustom, "Sinh", 1, nullptr); TfLiteOperatorSetPrepare(reg, my_custom_op::Prepare); TfLiteOperatorSetInit(reg, my_custom_op::Init); TfLiteOperatorSetFree(reg, my_custom_op::Free); TfLiteOperatorSetInvoke(reg, my_custom_op::Invoke); TfLiteInterpreterOptions* options = TfLiteInterpreterOptionsCreate(); TfLiteInterpreterOptionsAddOperator(options, reg); TfLiteInterpreter* interpreter = TfLiteInterpreterCreate(model, options); TfLiteInterpreterOptionsDelete(options); ASSERT_EQ(TfLiteInterpreterAllocateTensors(interpreter), kTfLiteOk); TfLiteTensor* input_tensor = TfLiteInterpreterGetInputTensor(interpreter, 0); const float input_value = 42.0f; TfLiteTensorCopyFromBuffer(input_tensor, &input_value, sizeof(float)); EXPECT_EQ(TfLiteInterpreterInvoke(interpreter), kTfLiteOk); const TfLiteTensor* output_tensor = TfLiteInterpreterGetOutputTensor(interpreter, 0); float output_value; TfLiteTensorCopyToBuffer(output_tensor, &output_value, sizeof(float)); EXPECT_EQ(output_value, input_value); TfLiteInterpreterDelete(interpreter); TfLiteOperatorDelete(reg); TfLiteModelDelete(model); } TEST(TestTfLiteOpaqueNode, CustomOpWithLegacyCallbacks) { TfLiteModel* model = TfLiteModelCreateFromFile( "tensorflow/lite/testdata/custom_sinh.bin"); ASSERT_NE(model, nullptr); TfLiteOperator* reg = TfLiteOperatorCreateWithData(kTfLiteBuiltinCustom, "Sinh", 1, nullptr); TfLiteOperatorSetPrepare(reg, [](auto context, auto node) { return my_custom_op::Prepare(context, node); }); TfLiteOperatorSetInit(reg, [](auto context, auto buffer, auto length) { return my_custom_op::Init(context, buffer, length); }); TfLiteOperatorSetFree( reg, [](auto context, auto data) { my_custom_op::Free(context, data); }); TfLiteOperatorSetInvoke(reg, [](auto context, auto node) { return my_custom_op::Invoke(context, node); }); TfLiteInterpreterOptions* options = TfLiteInterpreterOptionsCreate(); TfLiteInterpreterOptionsAddOperator(options, reg); TfLiteInterpreter* interpreter = TfLiteInterpreterCreate(model, options); TfLiteInterpreterOptionsDelete(options); ASSERT_EQ(TfLiteInterpreterAllocateTensors(interpreter), kTfLiteOk); TfLiteTensor* input_tensor = TfLiteInterpreterGetInputTensor(interpreter, 0); const float input_value = 42.0f; TfLiteTensorCopyFromBuffer(input_tensor, &input_value, sizeof(float)); EXPECT_EQ(TfLiteInterpreterInvoke(interpreter), kTfLiteOk); const TfLiteTensor* output_tensor = TfLiteInterpreterGetOutputTensor(interpreter, 0); float output_value; TfLiteTensorCopyToBuffer(output_tensor, &output_value, sizeof(float)); EXPECT_EQ(output_value, input_value); TfLiteInterpreterDelete(interpreter); TfLiteOperatorDelete(reg); TfLiteModelDelete(model); } TEST(TestTfLiteOpaqueNode, CustomOpWithNoUserData) { TfLiteModel* model = TfLiteModelCreateFromFile( "tensorflow/lite/testdata/custom_sinh.bin"); ASSERT_NE(model, nullptr); TfLiteOperator* reg = TfLiteOperatorCreateWithData(kTfLiteBuiltinCustom, "Sinh", 1, nullptr); TfLiteOperatorSetPrepareWithData( reg, [](auto user_data, auto context, auto node) { EXPECT_EQ(nullptr, user_data); return my_custom_op::Prepare(context, node); }); TfLiteOperatorSetInitWithData( reg, [](auto user_data, auto context, auto buffer, auto length) { EXPECT_EQ(nullptr, user_data); return my_custom_op::Init(context, buffer, length); }); TfLiteOperatorSetFreeWithData(reg, [](auto user_data, auto context, auto data) { EXPECT_EQ(nullptr, user_data); my_custom_op::Free(context, data); }); TfLiteOperatorSetInvokeWithData(reg, [](auto user_data, auto context, auto node) { EXPECT_EQ(nullptr, user_data); return my_custom_op::Invoke(context, node); }); TfLiteInterpreterOptions* options = TfLiteInterpreterOptionsCreate(); TfLiteInterpreterOptionsAddOperator(options, reg); TfLiteInterpreter* interpreter = TfLiteInterpreterCreate(model, options); TfLiteInterpreterOptionsDelete(options); ASSERT_EQ(TfLiteInterpreterAllocateTensors(interpreter), kTfLiteOk); TfLiteTensor* input_tensor = TfLiteInterpreterGetInputTensor(interpreter, 0); const float input_value = 42.0f; TfLiteTensorCopyFromBuffer(input_tensor, &input_value, sizeof(float)); EXPECT_EQ(TfLiteInterpreterInvoke(interpreter), kTfLiteOk); const TfLiteTensor* output_tensor = TfLiteInterpreterGetOutputTensor(interpreter, 0); float output_value; TfLiteTensorCopyToBuffer(output_tensor, &output_value, sizeof(float)); EXPECT_EQ(output_value, input_value); TfLiteInterpreterDelete(interpreter); TfLiteOperatorDelete(reg); TfLiteModelDelete(model); } TEST(TestTfLiteOpaqueNode, CustomOpWithData) { TfLiteModel* model = TfLiteModelCreateFromFile( "tensorflow/lite/testdata/custom_sinh.bin"); ASSERT_NE(model, nullptr); TfLiteOperator* reg = TfLiteOperatorCreateWithData(kTfLiteBuiltinCustom, "Sinh", 1, reinterpret_cast<void*>(345)); TfLiteOperatorSetPrepareWithData( reg, [](auto user_data, auto context, auto node) { EXPECT_EQ(reinterpret_cast<void*>(345), user_data); return my_custom_op::Prepare(context, node); }); TfLiteOperatorSetInitWithData( reg, [](auto user_data, auto context, auto buffer, auto length) { EXPECT_EQ(reinterpret_cast<void*>(345), user_data); return my_custom_op::Init(context, buffer, length); }); TfLiteOperatorSetFreeWithData( reg, [](auto user_data, auto context, auto data) { EXPECT_EQ(reinterpret_cast<void*>(345), user_data); my_custom_op::Free(context, data); }); TfLiteOperatorSetInvokeWithData( reg, [](auto user_data, auto context, auto node) { EXPECT_EQ(reinterpret_cast<void*>(345), user_data); return my_custom_op::Invoke(context, node); }); TfLiteInterpreterOptions* options = TfLiteInterpreterOptionsCreate(); TfLiteInterpreterOptionsAddOperator(options, reg); TfLiteInterpreter* interpreter = TfLiteInterpreterCreate(model, options); TfLiteInterpreterOptionsDelete(options); ASSERT_EQ(TfLiteInterpreterAllocateTensors(interpreter), kTfLiteOk); TfLiteTensor* input_tensor = TfLiteInterpreterGetInputTensor(interpreter, 0); const float input_value = 42.0f; TfLiteTensorCopyFromBuffer(input_tensor, &input_value, sizeof(float)); EXPECT_EQ(TfLiteInterpreterInvoke(interpreter), kTfLiteOk); const TfLiteTensor* output_tensor = TfLiteInterpreterGetOutputTensor(interpreter, 0); float output_value; TfLiteTensorCopyToBuffer(output_tensor, &output_value, sizeof(float)); EXPECT_EQ(output_value, input_value); TfLiteInterpreterDelete(interpreter); TfLiteOperatorDelete(reg); TfLiteModelDelete(model); } } }
952
cpp
tensorflow/tensorflow
flatbuffer_conversions
tensorflow/lite/core/api/flatbuffer_conversions.cc
tensorflow/lite/core/api/flatbuffer_conversions_test.cc
#ifndef TENSORFLOW_LITE_CORE_API_FLATBUFFER_CONVERSIONS_H_ #define TENSORFLOW_LITE_CORE_API_FLATBUFFER_CONVERSIONS_H_ #include <cstddef> #include <new> #include <type_traits> #include "tensorflow/lite/core/api/error_reporter.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { class BuiltinDataAllocator { public: virtual void* Allocate(size_t size, size_t alignment_hint) = 0; virtual void Deallocate(void* data) = 0; template <typename T> T* AllocatePOD() { static_assert(std::is_pod<T>::value, "Builtin data structure must be POD."); void* allocated_memory = this->Allocate(sizeof(T), alignof(T)); return new (allocated_memory) T(); } virtual ~BuiltinDataAllocator() {} }; TfLiteStatus ParseOpData(const Operator* op, BuiltinOperator op_type, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ConvertTensorType(TensorType tensor_type, TfLiteType* type, ErrorReporter* error_reporter); TfLiteStatus ParseAbs(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseAdd(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseAddN(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseArgMax(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseArgMin(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseAssignVariable(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseBatchMatMul(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseBatchToSpaceNd(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseBroadcastArgs(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseBroadcastTo(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseCallOnce(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseCeil(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseCast(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseConcatenation(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseConv2D(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseCos(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseCumsum(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseDepthToSpace(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseDepthwiseConv2D(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseDequantize(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseDiv(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseElu(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseEmbeddingLookup(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseEqual(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseExp(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseExpandDims(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseFill(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseFloor(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseFloorDiv(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseFloorMod(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseFullyConnected(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseGather(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseGatherNd(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseGreater(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseGreaterEqual(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseHardSwish(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseIf(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseL2Normalization(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseLeakyRelu(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseLess(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseLessEqual(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseLog(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseLogicalAnd(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseLogicalNot(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseLogicalOr(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseLogistic(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseLogSoftmax(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseLSTM(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseMaximum(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseMinimum(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseMirrorPad(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseMul(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseNeg(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseNotEqual(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParsePack(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParsePad(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParsePadV2(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParsePool(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParsePow(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParsePrelu(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseQuantize(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseReadVariable(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseReducer(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseRelu(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseRelu6(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseReshape(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseResizeBilinear(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseResizeNearestNeighbor(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseRound(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseRsqrt(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseSelectV2(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseShape(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseSin(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseSlice(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseSoftmax(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseSpaceToBatchNd(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseSpaceToDepth(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseSplit(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseSplitV(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseSqueeze(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseSqrt(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseSquare(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseSquaredDifference(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseStridedSlice(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseSub(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseSvdf(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseTanh(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseTranspose(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseTransposeConv(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseUnpack(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseUnidirectionalSequenceLSTM(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseVarHandle(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseWhile(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseZerosLike(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseBitwiseXor(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseRightShift(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseStablehloScatter(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseStablehloRngBitGenerator(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseStablehloGather(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseStablehloReduceWindow(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseStablehloPad(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); TfLiteStatus ParseStablehloComposite(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data); } #endif #include "tensorflow/lite/core/api/flatbuffer_conversions.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <memory> #include "flatbuffers/flatbuffers.h" #include "flatbuffers/vector.h" #include "tensorflow/lite/core/api/error_reporter.h" #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { class SafeBuiltinDataAllocator { public: class BuiltinDataDeleter { public: explicit BuiltinDataDeleter(BuiltinDataAllocator* allocator) : allocator_(allocator) {} void operator()(void* data) { allocator_->Deallocate(data); } private: BuiltinDataAllocator* allocator_; }; template <typename T> using BuiltinDataPtr = std::unique_ptr<T, BuiltinDataDeleter>; explicit SafeBuiltinDataAllocator(BuiltinDataAllocator* allocator) : allocator_(allocator) {} template <typename T> BuiltinDataPtr<T> Allocate() { return BuiltinDataPtr<T>(allocator_->AllocatePOD<T>(), BuiltinDataDeleter(allocator_)); } private: BuiltinDataAllocator* allocator_; }; void CheckParsePointerParams(const Operator* op, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { TFLITE_DCHECK(op != nullptr); TFLITE_DCHECK(error_reporter != nullptr); TFLITE_DCHECK(allocator != nullptr); TFLITE_DCHECK(builtin_data != nullptr); } template <typename DataType = int32_t> static TfLiteStatus FlatBufferIntVectorToArray( int max_size_of_buffer, const flatbuffers::Vector<DataType>* flat_vector, DataType* buffer, ErrorReporter* error_reporter, const char* op_name) { if (!flat_vector) { TF_LITE_REPORT_ERROR(error_reporter, "Input array not provided for operation '%s'.\n", op_name); return kTfLiteError; } else { size_t num_dimensions = flat_vector->size(); if (num_dimensions > max_size_of_buffer / sizeof(DataType)) { TF_LITE_REPORT_ERROR( error_reporter, "Found too many dimensions in the input array of operation '%s'.\n", op_name); return kTfLiteError; } else { for (size_t i = 0; i < num_dimensions; ++i) { buffer[i] = flat_vector->Get(i); } } } return kTfLiteOk; } TfLiteFusedActivation ConvertActivation(ActivationFunctionType activation) { switch (activation) { case ActivationFunctionType_NONE: return kTfLiteActNone; case ActivationFunctionType_RELU: return kTfLiteActRelu; case ActivationFunctionType_RELU_N1_TO_1: return kTfLiteActReluN1To1; case ActivationFunctionType_RELU6: return kTfLiteActRelu6; case ActivationFunctionType_TANH: return kTfLiteActTanh; case ActivationFunctionType_SIGN_BIT: return kTfLiteActSignBit; } return kTfLiteActNone; } TfLitePadding ConvertPadding(Padding padding) { switch (padding) { case Padding_SAME: return kTfLitePaddingSame; case Padding_VALID: return kTfLitePaddingValid; } return kTfLitePaddingUnknown; } TfLiteMirrorPaddingMode ConvertMirrorPadding(MirrorPadMode padding) { switch (padding) { case MirrorPadMode_REFLECT: return kTfLiteMirrorPaddingReflect; case MirrorPadMode_SYMMETRIC: return kTfLiteMirrorPaddingSymmetric; } return kTfLiteMirrorPaddingUnknown; } TfLiteRngAlgorithm ConvertRngAlgorithm(RngAlgorithm algorithm) { switch (algorithm) { case RngAlgorithm_THREEFRY: return kTfLiteRngAlgorithmThreefry; case RngAlgorithm_PHILOX: return kTfLiteRngAlgorithmPhilox; case RngAlgorithm_DEFAULT: return kTfLiteRngAlgorithmDefault; } return kTfLiteRngAlgorithmUnknown; } #ifndef TF_LITE_STATIC_MEMORY TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type, ErrorReporter* error_reporter, BuiltinDataAllocator* allocator, void** builtin_data) { auto parseLSHProjectionType = [](LSHProjectionType type) { switch (type) { case LSHProjectionType_SPARSE: return kTfLiteLshProjectionSparse; case LSHProjectionType_DENSE: return kTfLiteLshProjectionDense; default: return kTfLiteLshProjectionUnknown; } }; auto parseCombinerType = [](CombinerType type) { switch (type) { case CombinerType_MEAN: return kTfLiteCombinerTypeMean; case CombinerType_SQRTN: return kTfLiteCombinerTypeSqrtn; case CombinerType_SUM: default: return kTfLiteCombinerTypeSum; } }; SafeBuiltinDataAllocator safe_allocator(allocator); *builtin_data = nullptr; switch (op_type) { case BuiltinOperator_ABS: { return ParseAbs(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_ADD: { return ParseAdd(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_ADD_N: { return ParseAddN(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_ARG_MAX: { return ParseArgMax(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_ARG_MIN: { return ParseArgMin(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_ASSIGN_VARIABLE: { return ParseAssignVariable(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_AVERAGE_POOL_2D: { return ParsePool(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_BATCH_MATMUL: { return ParseBatchMatMul(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_BATCH_TO_SPACE_ND: { return ParseBatchToSpaceNd(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_BROADCAST_ARGS: { return ParseBroadcastArgs(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_BROADCAST_TO: { return ParseBroadcastTo(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_CALL_ONCE: { return ParseCallOnce(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_CEIL: { return ParseCeil(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_CONCATENATION: { return ParseConcatenation(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_CONV_2D: { return ParseConv2D(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_CUMSUM: { return ParseCumsum(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_DEPTH_TO_SPACE: { return ParseDepthToSpace(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_DEPTHWISE_CONV_2D: { return ParseDepthwiseConv2D(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_DEQUANTIZE: { return ParseDequantize(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_DIV: { return ParseDiv(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_ELU: { return ParseElu(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_EMBEDDING_LOOKUP: { return ParseEmbeddingLookup(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_EXP: { return ParseExp(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_EXPAND_DIMS: { return ParseExpandDims(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_FILL: { return ParseFill(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_FLOOR: { return ParseFloor(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_FLOOR_DIV: { return ParseFloorDiv(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_FLOOR_MOD: { return ParseFloorMod(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_FULLY_CONNECTED: { return ParseFullyConnected(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_GATHER_ND: { return ParseGatherNd(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_GREATER: { return ParseGreater(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_GREATER_EQUAL: { return ParseGreaterEqual(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_HARD_SWISH: { return ParseHardSwish(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_L2_NORMALIZATION: { return ParseL2Normalization(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_L2_POOL_2D: { return ParsePool(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_LEAKY_RELU: { return ParseLeakyRelu(op, error_reporter, allocator, builtin_data); } case BuiltinOperator_LESS: { return ParseLess(op, error_reporter, allo
#include "tensorflow/lite/core/api/flatbuffer_conversions.h" #include <cstdarg> #include <cstdint> #include <cstdio> #include <cstring> #include <tuple> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "flatbuffers/buffer.h" #include "flatbuffers/flatbuffer_builder.h" #include "tensorflow/lite/core/api/error_reporter.h" #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/string_type.h" using testing::AllOf; using testing::Each; using testing::ElementsAre; using testing::Eq; using testing::HasSubstr; using testing::StrEq; namespace tflite { namespace { class MockErrorReporter : public ErrorReporter { public: MockErrorReporter() : buffer_size_(0) {} int Report(const char* format, va_list args) override { buffer_size_ += vsnprintf(buffer_ + buffer_size_, kBufferSize - buffer_size_, format, args); return buffer_size_; } const char* GetBuffer() const { return buffer_; } int GetBufferSize() const { return buffer_size_; } bool IsEmpty() const { return !buffer_size_; } string GetString() const { return string(buffer_, buffer_size_); } private: static constexpr int kBufferSize = 256; char buffer_[kBufferSize]; int buffer_size_; }; class MockDataAllocator : public BuiltinDataAllocator { public: MockDataAllocator() : is_allocated_(false) {} void* Allocate(size_t size, size_t alignment_hint) override { EXPECT_FALSE(is_allocated_); const int max_size = kBufferSize; EXPECT_LE(size, max_size); is_allocated_ = true; return buffer_; } void Deallocate(void* data) override { is_allocated_ = false; } private: static constexpr int kBufferSize = 1024; char buffer_[kBufferSize]; bool is_allocated_; }; } class FlatbufferConversionsTest : public ::testing::Test { public: const Operator* BuildTestOperator(BuiltinOptions op_type, flatbuffers::Offset<void> options) { flatbuffers::Offset<Operator> offset = CreateOperatorDirect(builder_, 0, nullptr, nullptr, op_type, options, nullptr, CustomOptionsFormat_FLEXBUFFERS, nullptr); builder_.Finish(offset); void* pointer = builder_.GetBufferPointer(); return flatbuffers::GetRoot<Operator>(pointer); } const Operator* BuildTestOperator(BuiltinOptions2 op_type, flatbuffers::Offset<void> options) { flatbuffers::Offset<Operator> offset = CreateOperatorDirect( builder_, 0, nullptr, nullptr, tflite::BuiltinOptions_NONE, 0, nullptr, tflite::CustomOptionsFormat_FLEXBUFFERS, nullptr, nullptr, 0, 0, op_type, options); builder_.Finish(offset); void* pointer = builder_.GetBufferPointer(); return flatbuffers::GetRoot<Operator>(pointer); } protected: MockErrorReporter mock_reporter_; MockDataAllocator mock_allocator_; flatbuffers::FlatBufferBuilder builder_; }; TEST_F(FlatbufferConversionsTest, ParseSqueezeAll) { const Operator* op = BuildTestOperator( BuiltinOptions_SqueezeOptions, CreateSqueezeOptions(builder_).Union()); void* output_data = nullptr; EXPECT_EQ(kTfLiteOk, ParseOpData(op, BuiltinOperator_SQUEEZE, &mock_reporter_, &mock_allocator_, &output_data)); } TEST_F(FlatbufferConversionsTest, ParseDynamicReshape) { const Operator* op = BuildTestOperator( BuiltinOptions_ReshapeOptions, CreateReshapeOptions(builder_).Union()); void* output_data = nullptr; EXPECT_EQ(kTfLiteOk, ParseOpData(op, BuiltinOperator_RESHAPE, &mock_reporter_, &mock_allocator_, &output_data)); } TEST_F(FlatbufferConversionsTest, TestParseOpDataConv) { const Operator* conv_op = BuildTestOperator(BuiltinOptions_Conv2DOptions, CreateConv2DOptions(builder_, Padding_SAME, 1, 2, ActivationFunctionType_RELU, 3, 4) .Union()); void* output_data = nullptr; EXPECT_EQ(kTfLiteOk, ParseOpData(conv_op, BuiltinOperator_CONV_2D, &mock_reporter_, &mock_allocator_, &output_data)); EXPECT_NE(nullptr, output_data); TfLiteConvParams* params = reinterpret_cast<TfLiteConvParams*>(output_data); EXPECT_EQ(kTfLitePaddingSame, params->padding); EXPECT_EQ(1, params->stride_width); EXPECT_EQ(2, params->stride_height); EXPECT_EQ(kTfLiteActRelu, params->activation); EXPECT_EQ(3, params->dilation_width_factor); EXPECT_EQ(4, params->dilation_height_factor); } TEST_F(FlatbufferConversionsTest, ParseBadFullyConnected) { const Operator* conv_op = BuildTestOperator( BuiltinOptions_FullyConnectedOptions, CreateFullyConnectedOptions( builder_, ActivationFunctionType_RELU, static_cast<FullyConnectedOptionsWeightsFormat>(-1), true) .Union()); void* output_data = nullptr; EXPECT_EQ(kTfLiteError, ParseOpData(conv_op, BuiltinOperator_FULLY_CONNECTED, &mock_reporter_, &mock_allocator_, &output_data)); } TEST_F(FlatbufferConversionsTest, TestParseOpDataCustom) { const Operator* custom_op = BuildTestOperator(BuiltinOptions_NONE, flatbuffers::Offset<void>()); void* output_data = nullptr; EXPECT_EQ(kTfLiteOk, ParseOpData(custom_op, BuiltinOperator_CUSTOM, &mock_reporter_, &mock_allocator_, &output_data)); EXPECT_EQ(nullptr, output_data); } TEST_F(FlatbufferConversionsTest, TestConvertTensorType) { TfLiteType type; EXPECT_EQ(kTfLiteOk, ConvertTensorType(TensorType_FLOAT32, &type, &mock_reporter_)); EXPECT_EQ(kTfLiteFloat32, type); } TEST_F(FlatbufferConversionsTest, TestConvertTensorTypeFloat16) { TfLiteType type; EXPECT_EQ(kTfLiteOk, ConvertTensorType(TensorType_FLOAT16, &type, &mock_reporter_)); EXPECT_EQ(kTfLiteFloat16, type); } TEST_F(FlatbufferConversionsTest, TestConvertTensorTypeBFloat16) { TfLiteType type; EXPECT_EQ(kTfLiteOk, ConvertTensorType(TensorType_BFLOAT16, &type, &mock_reporter_)); EXPECT_EQ(kTfLiteBFloat16, type); } TEST_F(FlatbufferConversionsTest, TestConvertTensorTypeInt4) { TfLiteType type; EXPECT_EQ(kTfLiteOk, ConvertTensorType(TensorType_INT4, &type, &mock_reporter_)); EXPECT_EQ(kTfLiteInt4, type); } class StablehloReduceWindowFlatbufferConversionsTest : public FlatbufferConversionsTest { public: static constexpr int kMaxDims = TFLITE_STABLEHLO_REDUCE_WINDOW_PARAMS_MAX_DIMENSION_COUNT; static constexpr int64_t kValidValue = 5; auto ValidAttr() { return builder_.CreateVector(std::vector<int64_t>(kMaxDims, kValidValue)); } auto InvalidAttr() { return builder_.CreateVector( std::vector<int64_t>(kMaxDims + 1, kValidValue)); } auto ValidPaddingAttr() { return builder_.CreateVector( std::vector<int64_t>(2 * kMaxDims, kValidValue)); } auto InvalidPaddingAttr() { return builder_.CreateVector( std::vector<int64_t>(2 * kMaxDims + 1, kValidValue)); } auto EmptyAttr() { return builder_.CreateVector<int64_t>({}); } }; TEST_F(StablehloReduceWindowFlatbufferConversionsTest, Succeeds) { const Operator* stablehlo_reduce_window_op = BuildTestOperator( BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, builder_.CreateVector<int64_t>({1, 2}), builder_.CreateVector<int64_t>({3, 4}), builder_.CreateVector<int64_t>({5, 6}), builder_.CreateVector<int64_t>({7, 8}), builder_.CreateVector<int64_t>({9, 10, 11, 12}), 13) .Union()); TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ( ParseOpData(stablehlo_reduce_window_op, BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteOk); EXPECT_THAT(std::make_tuple(output_data->window_dimensions, 2), ElementsAre(1, 2)); EXPECT_THAT(std::make_tuple(output_data->window_strides, 2), ElementsAre(3, 4)); EXPECT_THAT(std::make_tuple(output_data->base_dilations, 2), ElementsAre(5, 6)); EXPECT_THAT(std::make_tuple(output_data->window_dilations, 2), ElementsAre(7, 8)); EXPECT_THAT(std::make_tuple(output_data->padding, 4), ElementsAre(9, 10, 11, 12)); EXPECT_THAT(output_data->body_subgraph_index, Eq(13)); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, FailsWithNoWindowDimensions) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, 0, ValidAttr(), ValidAttr(), ValidAttr(), ValidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteError); EXPECT_THAT(mock_reporter_.GetString(), HasSubstr("'window_dimensions' attribute is not optional for " "'stablehlo.reduce_window' and cannot be empty.")); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, SucceedsWithNoWindowStrides) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), 0, ValidAttr(), ValidAttr(), ValidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteOk); EXPECT_THAT(mock_reporter_.GetString(), StrEq("")); EXPECT_THAT(std::make_tuple(output_data->window_dimensions, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_strides, kMaxDims), Each(1)); EXPECT_THAT(std::make_tuple(output_data->base_dilations, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_dilations, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->padding, 2 * kMaxDims), Each(kValidValue)); EXPECT_THAT(output_data->body_subgraph_index, Eq(13)); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, SucceedsWithNoBaseDilations) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), ValidAttr(), 0, ValidAttr(), ValidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteOk); EXPECT_THAT(mock_reporter_.GetString(), StrEq("")); EXPECT_THAT(std::make_tuple(output_data->window_dimensions, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_strides, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->base_dilations, kMaxDims), Each(1)); EXPECT_THAT(std::make_tuple(output_data->window_dilations, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->padding, 2 * kMaxDims), Each(kValidValue)); EXPECT_THAT(output_data->body_subgraph_index, Eq(13)); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, SucceedsWithNoWindowDilations) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), ValidAttr(), ValidAttr(), 0, ValidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteOk); EXPECT_THAT(mock_reporter_.GetString(), StrEq("")); EXPECT_THAT(std::make_tuple(output_data->window_dimensions, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_strides, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->base_dilations, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_dilations, kMaxDims), Each(1)); EXPECT_THAT(std::make_tuple(output_data->padding, 2 * kMaxDims), Each(kValidValue)); EXPECT_THAT(output_data->body_subgraph_index, Eq(13)); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, SucceedsWithNoPadding) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), ValidAttr(), ValidAttr(), ValidAttr(), 0, 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteOk); EXPECT_THAT(mock_reporter_.GetString(), StrEq("")); EXPECT_THAT(std::make_tuple(output_data->window_dimensions, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_strides, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->base_dilations, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_dilations, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->padding, 2 * kMaxDims), Each(0)); EXPECT_THAT(output_data->body_subgraph_index, Eq(13)); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, FailsWithEmptyWindowDimensions) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, EmptyAttr(), ValidAttr(), ValidAttr(), ValidAttr(), ValidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteError); EXPECT_THAT(mock_reporter_.GetString(), HasSubstr("'window_dimensions' attribute is not optional for " "'stablehlo.reduce_window' and cannot be empty.")); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, SucceedsWithEmptyWindowStrides) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), EmptyAttr(), ValidAttr(), ValidAttr(), ValidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteOk); EXPECT_THAT(mock_reporter_.GetString(), StrEq("")); EXPECT_THAT(std::make_tuple(output_data->window_dimensions, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_strides, kMaxDims), Each(1)); EXPECT_THAT(std::make_tuple(output_data->base_dilations, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_dilations, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->padding, 2 * kMaxDims), Each(kValidValue)); EXPECT_THAT(output_data->body_subgraph_index, Eq(13)); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, SucceedsWithEmptyBaseDilations) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), ValidAttr(), EmptyAttr(), ValidAttr(), ValidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteOk); EXPECT_THAT(mock_reporter_.GetString(), StrEq("")); EXPECT_THAT(std::make_tuple(output_data->window_dimensions, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_strides, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->base_dilations, kMaxDims), Each(1)); EXPECT_THAT(std::make_tuple(output_data->window_dilations, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->padding, 2 * kMaxDims), Each(kValidValue)); EXPECT_THAT(output_data->body_subgraph_index, Eq(13)); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, SucceedsWithEmptyWindowDilations) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), ValidAttr(), ValidAttr(), EmptyAttr(), ValidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteOk); EXPECT_THAT(mock_reporter_.GetString(), StrEq("")); EXPECT_THAT(std::make_tuple(output_data->window_dimensions, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_strides, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->base_dilations, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_dilations, kMaxDims), Each(1)); EXPECT_THAT(std::make_tuple(output_data->padding, 2 * kMaxDims), Each(kValidValue)); EXPECT_THAT(output_data->body_subgraph_index, Eq(13)); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, SucceedsWithEmptyPadding) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), ValidAttr(), ValidAttr(), ValidAttr(), EmptyAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteOk); EXPECT_THAT(mock_reporter_.GetString(), StrEq("")); EXPECT_THAT(std::make_tuple(output_data->window_dimensions, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_strides, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->base_dilations, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->window_dilations, kMaxDims), Each(kValidValue)); EXPECT_THAT(std::make_tuple(output_data->padding, 2 * kMaxDims), Each(0)); EXPECT_THAT(output_data->body_subgraph_index, Eq(13)); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, SucceedsWithParamsAtMaxDims) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), ValidAttr(), ValidAttr(), ValidAttr(), ValidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteOk); EXPECT_THAT(mock_reporter_.GetString(), StrEq("")); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, FailsWhenWindowDimensionsHasMoreThanMaxDims) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, InvalidAttr(), ValidAttr(), ValidAttr(), ValidAttr(), ValidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteError); EXPECT_THAT(mock_reporter_.GetString(), AllOf(HasSubstr("Found too many dimensions in the input array of " "operation 'stablehlo.reduce_window'."), HasSubstr("Check the 'window_dimensions' attribute."))); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, FailsWhenWindowStridesHasWrongDimCount) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), InvalidAttr(), ValidAttr(), ValidAttr(), ValidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteError); EXPECT_THAT( mock_reporter_.GetString(), HasSubstr("'window_strides' attribute of 'stablehlo.reduce_window' does " "not have the expected size")); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, FailsWhenBaseDilationsHasWrongDimCount) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), ValidAttr(), InvalidAttr(), ValidAttr(), ValidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteError); EXPECT_THAT( mock_reporter_.GetString(), HasSubstr("'base_dilations' attribute of 'stablehlo.reduce_window' does " "not have the expected size")); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, FailsWhenWindowDilationsHasWrongDimCount) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), ValidAttr(), ValidAttr(), InvalidAttr(), ValidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteError); EXPECT_THAT( mock_reporter_.GetString(), HasSubstr( "'window_dilations' attribute of 'stablehlo.reduce_window' does " "not have the expected size")); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, FailsWhenPaddingHasWrongDimCount) { TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ(ParseOpData( BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, ValidAttr(), ValidAttr(), ValidAttr(), ValidAttr(), InvalidPaddingAttr(), 13) .Union()), BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data), kTfLiteError); EXPECT_THAT(mock_reporter_.GetString(), HasSubstr("'padding' attribute of 'stablehlo.reduce_window' does " "not have the expected size")); } TEST_F(StablehloReduceWindowFlatbufferConversionsTest, FailsWithWrongOptions) { const Operator* stablehlo_reduce_window_op = BuildTestOperator(BuiltinOptions2_StablehloReduceWindowOptions, 0); TfLiteStablehloReduceWindowParams* output_data = nullptr; EXPECT_EQ( ParseOpData(stablehlo_reduce_window_op, BuiltinOperator_STABLEHLO_REDUCE_WINDOW, &mock_reporter_, &mock_allocator_, (void**)&output_data),
953
cpp
tensorflow/tensorflow
error_reporter
tensorflow/compiler/mlir/lite/core/api/error_reporter.cc
tensorflow/compiler/mlir/lite/core/api/error_reporter_test.cc
#ifndef TENSORFLOW_LITE_CORE_API_ERROR_REPORTER_H_ #define TENSORFLOW_LITE_CORE_API_ERROR_REPORTER_H_ #include <cstdarg> namespace tflite { class ErrorReporter { public: virtual ~ErrorReporter() = default; virtual int Report(const char* format, va_list args) = 0; int Report(const char* format, ...); int ReportError(void*, const char* format, ...); }; } #ifndef TF_LITE_STRIP_ERROR_STRINGS #define TF_LITE_REPORT_ERROR(reporter, ...) \ do { \ static_cast<::tflite::ErrorReporter*>(reporter)->Report(__VA_ARGS__); \ } while (false) #else #define TF_LITE_REPORT_ERROR(reporter, ...) #endif #endif #include "tensorflow/lite/core/api/error_reporter.h" #include <cstdarg> namespace tflite { int ErrorReporter::Report(const char* format, ...) { va_list args; va_start(args, format); int code = Report(format, args); va_end(args); return code; } int ErrorReporter::ReportError(void*, const char* format, ...) { va_list args; va_start(args, format); int code = Report(format, args); va_end(args); return code; } }
#include "tensorflow/lite/core/api/error_reporter.h" #include <cstdio> #include <gtest/gtest.h> namespace tflite { class MockErrorReporter : public ErrorReporter { public: MockErrorReporter() { buffer_[0] = 0; } int Report(const char* format, va_list args) override { vsnprintf(buffer_, kBufferSize, format, args); return 0; } char* GetBuffer() { return buffer_; } private: static constexpr int kBufferSize = 256; char buffer_[kBufferSize]; }; TEST(ErrorReporter, TestReport) { MockErrorReporter mock_reporter; ErrorReporter* reporter = &mock_reporter; reporter->Report("Error: %d", 23); EXPECT_EQ(0, strcmp(mock_reporter.GetBuffer(), "Error: 23")); } TEST(ErrorReporter, TestReportMacro) { MockErrorReporter mock_reporter; #ifndef TF_LITE_STRIP_ERROR_STRINGS ErrorReporter* reporter = &mock_reporter; #endif TF_LITE_REPORT_ERROR(reporter, "Error: %d", 23); #ifndef TF_LITE_STRIP_ERROR_STRINGS EXPECT_EQ(0, strcmp(mock_reporter.GetBuffer(), "Error: 23")); #else EXPECT_EQ(0, strcmp(mock_reporter.GetBuffer(), "")); #endif } }
954
cpp
tensorflow/tensorflow
op_resolver
tensorflow/lite/core/api/op_resolver.cc
tensorflow/lite/core/api/op_resolver_test.cc
#ifndef TENSORFLOW_LITE_CORE_API_OP_RESOLVER_H_ #define TENSORFLOW_LITE_CORE_API_OP_RESOLVER_H_ #include <functional> #include <limits> #include <memory> #include <string> #include <unordered_map> #include <vector> #include "tensorflow/lite/core/api/error_reporter.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { #ifndef DOXYGEN_SKIP class OpResolverInternal; class Subgraph; namespace internal { class CommonOpaqueConversionUtil; class OperatorsCache; } #endif class OpResolver { public: virtual const TfLiteRegistration* FindOp(tflite::BuiltinOperator op, int version) const = 0; virtual const TfLiteRegistration* FindOp(const char* op, int version) const = 0; using TfLiteDelegatePtrVector = std::vector<std::unique_ptr<TfLiteDelegate, void (*)(TfLiteDelegate*)>>; virtual TfLiteDelegatePtrVector GetDelegates(int num_threads) const { return {}; } using TfLiteDelegateCreator = std::function<std::unique_ptr<TfLiteDelegate, void (*)(TfLiteDelegate*)>( TfLiteContext* )>; using TfLiteDelegateCreators = std::vector<TfLiteDelegateCreator>; virtual TfLiteDelegateCreators GetDelegateCreators() const { return {}; } using TfLiteOpaqueDelegatePtr = std::unique_ptr<TfLiteOpaqueDelegate, void (*)(TfLiteOpaqueDelegate*)>; using TfLiteOpaqueDelegateCreator = std::function<TfLiteOpaqueDelegatePtr(int )>; using TfLiteOpaqueDelegateCreators = std::vector<TfLiteOpaqueDelegateCreator>; virtual TfLiteOpaqueDelegateCreators GetOpaqueDelegateCreators() const { return {}; } virtual ~OpResolver() = default; OpResolver() = default; OpResolver(const OpResolver& other) = default; private: virtual bool MayContainUserDefinedOps() const { return true; } #ifndef DOXYGEN_SKIP friend class OpResolverInternal; friend class Subgraph; friend class tflite::internal::CommonOpaqueConversionUtil; friend class tflite::internal::OperatorsCache; #endif struct OpId { int builtin_code; const char* custom_name; int version; bool operator==(const OpId& other) const { return builtin_code == other.builtin_code && custom_name == other.custom_name && version == other.version; } struct Hasher { size_t operator()(const OpId& op_id) const { size_t hash_builtin_code = std::hash<int>()(op_id.builtin_code); size_t hash_custom_name = op_id.custom_name != nullptr ? std::hash<std::string>()(std::string(op_id.custom_name)) : 0; size_t hash_version = std::hash<int>()(op_id.version); return Combine(hash_builtin_code, Combine(hash_custom_name, hash_version)); } private: static size_t Combine(size_t hash1, size_t hash2) { constexpr int num_bits_to_rotate_left = 21; constexpr int num_bits_to_rotate_right = std::numeric_limits<size_t>::digits - num_bits_to_rotate_left; size_t hash1_rotated = (hash1 << num_bits_to_rotate_left) | (hash1 >> num_bits_to_rotate_right); return hash1_rotated + hash2; } }; }; mutable std::shared_ptr<internal::OperatorsCache> registration_externals_cache_; }; #ifndef DOXYGEN_SKIP namespace internal { class OperatorsCache : private std::unordered_map<OpResolver::OpId, std::unique_ptr<TfLiteOperator>, OpResolver::OpId::Hasher> { friend class ::tflite::Subgraph; friend class ::tflite::internal::CommonOpaqueConversionUtil; }; } #endif TfLiteStatus GetRegistrationFromOpCode(const OperatorCode* opcode, const OpResolver& op_resolver, ErrorReporter* error_reporter, const TfLiteRegistration** registration); } #endif #include "tensorflow/lite/core/api/op_resolver.h" #include "flatbuffers/flatbuffers.h" #include "tensorflow/lite/core/api/error_reporter.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/schema/schema_utils.h" namespace tflite { TfLiteStatus GetRegistrationFromOpCode( const OperatorCode* opcode, const OpResolver& op_resolver, ErrorReporter* error_reporter, const TfLiteRegistration** registration) { TfLiteStatus status = kTfLiteOk; *registration = nullptr; auto builtin_code = GetBuiltinCode(opcode); int version = opcode->version(); if (builtin_code > BuiltinOperator_MAX) { TF_LITE_REPORT_ERROR( error_reporter, "Op builtin_code out of range: %d. Are you using old TFLite binary " "with newer model?", builtin_code); status = kTfLiteError; } else if (builtin_code != BuiltinOperator_CUSTOM) { *registration = op_resolver.FindOp(builtin_code, version); if (*registration == nullptr) { TF_LITE_REPORT_ERROR( error_reporter, "Didn't find op for builtin opcode '%s' version '%d'. " "An older version of this builtin might be supported. " "Are you using an old TFLite binary with a newer model?\n", EnumNameBuiltinOperator(builtin_code), version); status = kTfLiteError; } } else if (!opcode->custom_code()) { TF_LITE_REPORT_ERROR( error_reporter, "Operator with CUSTOM builtin_code has no custom_code.\n"); status = kTfLiteError; } else { const char* name = opcode->custom_code()->c_str(); *registration = op_resolver.FindOp(name, version); if (*registration == nullptr) { status = kTfLiteError; } } return status; } }
#include "tensorflow/lite/core/api/op_resolver.h" #include <cstring> #include <gtest/gtest.h> #include "tensorflow/lite/schema/schema_conversion_utils.h" namespace tflite { namespace { void* MockInit(TfLiteContext* context, const char* buffer, size_t length) { return nullptr; } void MockFree(TfLiteContext* context, void* buffer) { } TfLiteStatus MockPrepare(TfLiteContext* context, TfLiteNode* node) { return kTfLiteOk; } TfLiteStatus MockInvoke(TfLiteContext* context, TfLiteNode* node) { return kTfLiteOk; } class MockOpResolver : public OpResolver { public: const TfLiteRegistration* FindOp(BuiltinOperator op, int version) const override { if (op == BuiltinOperator_CONV_2D) { static TfLiteRegistration r = {MockInit, MockFree, MockPrepare, MockInvoke}; return &r; } else { return nullptr; } } const TfLiteRegistration* FindOp(const char* op, int version) const override { if (strcmp(op, "mock_custom") == 0) { static TfLiteRegistration r = {MockInit, MockFree, MockPrepare, MockInvoke}; return &r; } else { return nullptr; } } }; class MockErrorReporter : public ErrorReporter { public: MockErrorReporter() : buffer_size_(0) {} int Report(const char* format, va_list args) override { buffer_size_ = vsnprintf(buffer_, kBufferSize, format, args); return buffer_size_; } char* GetBuffer() { return buffer_; } int GetBufferSize() { return buffer_size_; } private: static constexpr int kBufferSize = 256; char buffer_[kBufferSize]; int buffer_size_; }; } TEST(OpResolver, TestResolver) { MockOpResolver mock_resolver; OpResolver* resolver = &mock_resolver; const TfLiteRegistration* registration = resolver->FindOp(BuiltinOperator_CONV_2D, 0); EXPECT_NE(nullptr, registration); EXPECT_EQ(nullptr, registration->init(nullptr, nullptr, 0)); EXPECT_EQ(kTfLiteOk, registration->prepare(nullptr, nullptr)); EXPECT_EQ(kTfLiteOk, registration->invoke(nullptr, nullptr)); registration = resolver->FindOp(BuiltinOperator_CAST, 0); EXPECT_EQ(nullptr, registration); registration = resolver->FindOp("mock_custom", 0); EXPECT_NE(nullptr, registration); EXPECT_EQ(nullptr, registration->init(nullptr, nullptr, 0)); EXPECT_EQ(kTfLiteOk, registration->prepare(nullptr, nullptr)); EXPECT_EQ(kTfLiteOk, registration->invoke(nullptr, nullptr)); registration = resolver->FindOp("nonexistent_custom", 0); EXPECT_EQ(nullptr, registration); } TEST(OpResolver, TestGetRegistrationFromOpCodeConv) { MockOpResolver mock_resolver; OpResolver* resolver = &mock_resolver; MockErrorReporter mock_reporter; ErrorReporter* reporter = &mock_reporter; flatbuffers::FlatBufferBuilder builder; flatbuffers::Offset<OperatorCode> conv_offset = CreateOperatorCodeDirect(builder, BuiltinOperator_CONV_2D, nullptr, 0); builder.Finish(conv_offset); void* conv_pointer = builder.GetBufferPointer(); const OperatorCode* conv_code = flatbuffers::GetRoot<OperatorCode>(conv_pointer); const TfLiteRegistration* registration = nullptr; EXPECT_EQ(kTfLiteOk, GetRegistrationFromOpCode(conv_code, *resolver, reporter, &registration)); EXPECT_NE(nullptr, registration); EXPECT_EQ(nullptr, registration->init(nullptr, nullptr, 0)); EXPECT_EQ(kTfLiteOk, registration->prepare(nullptr, nullptr)); EXPECT_EQ(kTfLiteOk, registration->invoke(nullptr, nullptr)); EXPECT_EQ(0, mock_reporter.GetBufferSize()); } TEST(OpResolver, TestGetRegistrationFromOpCodeCast) { MockOpResolver mock_resolver; OpResolver* resolver = &mock_resolver; MockErrorReporter mock_reporter; ErrorReporter* reporter = &mock_reporter; flatbuffers::FlatBufferBuilder builder; flatbuffers::Offset<OperatorCode> conv_offset = CreateOperatorCodeDirect(builder, BuiltinOperator_CAST, nullptr, 0); builder.Finish(conv_offset); void* conv_pointer = builder.GetBufferPointer(); const OperatorCode* conv_code = flatbuffers::GetRoot<OperatorCode>(conv_pointer); const TfLiteRegistration* registration = nullptr; EXPECT_EQ(kTfLiteError, GetRegistrationFromOpCode(conv_code, *resolver, reporter, &registration)); EXPECT_EQ(nullptr, registration); EXPECT_NE(0, mock_reporter.GetBufferSize()); } TEST(OpResolver, TestGetRegistrationFromOpCodeCustom) { MockOpResolver mock_resolver; OpResolver* resolver = &mock_resolver; MockErrorReporter mock_reporter; ErrorReporter* reporter = &mock_reporter; flatbuffers::FlatBufferBuilder builder; flatbuffers::Offset<OperatorCode> conv_offset = CreateOperatorCodeDirect( builder, BuiltinOperator_CUSTOM, "mock_custom", 0); builder.Finish(conv_offset); void* conv_pointer = builder.GetBufferPointer(); const OperatorCode* conv_code = flatbuffers::GetRoot<OperatorCode>(conv_pointer); const TfLiteRegistration* registration = nullptr; EXPECT_EQ(kTfLiteOk, GetRegistrationFromOpCode(conv_code, *resolver, reporter, &registration)); EXPECT_NE(nullptr, registration); EXPECT_EQ(nullptr, registration->init(nullptr, nullptr, 0)); EXPECT_EQ(kTfLiteOk, registration->prepare(nullptr, nullptr)); EXPECT_EQ(kTfLiteOk, registration->invoke(nullptr, nullptr)); EXPECT_EQ(0, mock_reporter.GetBufferSize()); } TEST(OpResolver, TestGetRegistrationFromOpCodeNonexistentCustom) { MockOpResolver mock_resolver; OpResolver* resolver = &mock_resolver; MockErrorReporter mock_reporter; ErrorReporter* reporter = &mock_reporter; flatbuffers::FlatBufferBuilder builder; flatbuffers::Offset<OperatorCode> conv_offset = CreateOperatorCodeDirect( builder, BuiltinOperator_CUSTOM, "nonexistent_custom", 0); builder.Finish(conv_offset); void* conv_pointer = builder.GetBufferPointer(); const OperatorCode* conv_code = flatbuffers::GetRoot<OperatorCode>(conv_pointer); const TfLiteRegistration* registration = nullptr; EXPECT_EQ(kTfLiteError, GetRegistrationFromOpCode(conv_code, *resolver, reporter, &registration)); EXPECT_EQ(nullptr, registration); EXPECT_EQ(0, mock_reporter.GetBufferSize()); } }
955
cpp
tensorflow/tensorflow
task_internal
tensorflow/lite/core/async/task_internal.cc
tensorflow/lite/core/async/task_internal_test.cc
#ifndef TENSORFLOW_LITE_CORE_ASYNC_TASK_INTERNAL_H_ #define TENSORFLOW_LITE_CORE_ASYNC_TASK_INTERNAL_H_ #include <atomic> #include <map> #include <memory> #include <string> #include "tensorflow/lite/core/async/async_kernel_internal.h" #include "tensorflow/lite/core/async/c/types.h" #include "tensorflow/lite/core/async/interop/c/types.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" namespace tflite::async { class ExecutionTask; } struct TfLiteExecutionTask { TfLiteExecutionTask(); std::unique_ptr<tflite::async::ExecutionTask> task; }; namespace tflite { namespace async { class ExecutionTask { public: TfLiteBufferHandle GetBufferHandle(TfLiteIoType io_type, const char* name) const; TfLiteBufferHandle GetBufferHandle(int tensor_index) const; TfLiteStatus SetBufferHandle(TfLiteIoType io_type, const char* name, TfLiteBufferHandle handle); TfLiteStatus SetBufferHandle(int tensor_index, TfLiteBufferHandle handle); TfLiteSynchronization* GetSynchronization(TfLiteIoType io_type, const char* name) const; TfLiteSynchronization* GetSynchronization(int tensor_index) const; TfLiteStatus SetSynchronization(TfLiteIoType io_type, const char* name, TfLiteSynchronization* sync); TfLiteStatus SetSynchronization(int tensor_index, TfLiteSynchronization* sync); using TensorNameMapT = std::map<std::string, uint32_t>; void SetInputNameMap(const TensorNameMapT* input_name_to_idx) { input_name_to_idx_ = input_name_to_idx; } void SetOutputNameMap(const TensorNameMapT* output_name_to_idx) { output_name_to_idx_ = output_name_to_idx; } bool Scheduled() const { return scheduled_.load(); } bool SetScheduled(bool scheduled) { return scheduled_.exchange(scheduled); } TfLiteStatus Status() const { return status_.load(); } void SetStatus(TfLiteStatus status) { status_.store(status); } void SetDelegateExecutionData(TfLiteAsyncKernel* kernel, void* data) { data_ = data; } void* GetDelegateExecutionData(TfLiteAsyncKernel* kernel) const { return data_; } private: struct IOData { TfLiteBufferHandle buf = kTfLiteNullBufferHandle; TfLiteSynchronization* sync = nullptr; }; bool GetTensorIdx(TfLiteIoType io_type, const char* name, int* idx) const; std::map<int, IOData> io_data_; std::atomic_bool scheduled_ = false; std::atomic<TfLiteStatus> status_ = kTfLiteOk; const TensorNameMapT* input_name_to_idx_ = nullptr; const TensorNameMapT* output_name_to_idx_ = nullptr; void* data_ = nullptr; }; } } #endif #include "tensorflow/lite/core/async/task_internal.h" #include <cstdint> #include <map> #include <memory> #include <string> #include "tensorflow/lite/core/async/async_kernel_internal.h" #include "tensorflow/lite/core/async/c/types.h" #include "tensorflow/lite/core/async/interop/c/types.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" namespace tflite { namespace async { bool ExecutionTask::GetTensorIdx(TfLiteIoType io_type, const char* name, int* idx) const { const std::map<std::string, uint32_t>* map = nullptr; if (io_type == kTfLiteIoTypeInput) { map = input_name_to_idx_; } else { map = output_name_to_idx_; } if (!map) return false; if (auto it_idx = map->find(name); it_idx != map->end()) { *idx = it_idx->second; return true; } return false; } TfLiteBufferHandle ExecutionTask::GetBufferHandle(TfLiteIoType io_type, const char* name) const { int index = 0; if (!GetTensorIdx(io_type, name, &index)) { return kTfLiteNullBufferHandle; } return GetBufferHandle(index); } TfLiteBufferHandle ExecutionTask::GetBufferHandle(int tensor_index) const { if (auto it = io_data_.find(tensor_index); it != io_data_.end()) { return it->second.buf; } return kTfLiteNullBufferHandle; } TfLiteStatus ExecutionTask::SetBufferHandle(TfLiteIoType io_type, const char* name, TfLiteBufferHandle handle) { int index = 0; if (!GetTensorIdx(io_type, name, &index)) { return kTfLiteError; } return SetBufferHandle(index, handle); } TfLiteStatus ExecutionTask::SetBufferHandle(int tensor_index, TfLiteBufferHandle handle) { io_data_[tensor_index].buf = handle; return kTfLiteOk; } TfLiteSynchronization* ExecutionTask::GetSynchronization( TfLiteIoType io_type, const char* name) const { int index = 0; if (!GetTensorIdx(io_type, name, &index)) { return nullptr; } return GetSynchronization(index); } TfLiteSynchronization* ExecutionTask::GetSynchronization( int tensor_index) const { if (auto it = io_data_.find(tensor_index); it != io_data_.end()) { return it->second.sync; } return nullptr; } TfLiteStatus ExecutionTask::SetSynchronization(TfLiteIoType io_type, const char* name, TfLiteSynchronization* sync) { int index = 0; if (!GetTensorIdx(io_type, name, &index)) { return kTfLiteError; } return SetSynchronization(index, sync); } TfLiteStatus ExecutionTask::SetSynchronization(int tensor_index, TfLiteSynchronization* sync) { io_data_[tensor_index].sync = sync; return kTfLiteOk; } } } TfLiteExecutionTask::TfLiteExecutionTask() { task = std::make_unique<tflite::async::ExecutionTask>(); }
#include "tensorflow/lite/core/async/task_internal.h" #include <string> #include <gtest/gtest.h> #include "tensorflow/lite/core/async/async_kernel_internal.h" #include "tensorflow/lite/core/async/c/types.h" #include "tensorflow/lite/core/async/interop/c/types.h" namespace tflite::async { TEST(TfLiteExecutionTaskTest, BasicTest) { tflite::async::ExecutionTask task; tflite::async::ExecutionTask::TensorNameMapT input_names; input_names["x"] = 1; input_names["y"] = 2; tflite::async::ExecutionTask::TensorNameMapT output_names; output_names["a"] = 3; task.SetInputNameMap(&input_names); task.SetOutputNameMap(&output_names); auto* sync = TfLiteSynchronizationCreate(); EXPECT_EQ(kTfLiteOk, task.SetBufferHandle(kTfLiteIoTypeInput, "x", 42)); EXPECT_EQ(kTfLiteOk, task.SetBufferHandle(kTfLiteIoTypeInput, "y", 43)); EXPECT_EQ(kTfLiteOk, task.SetBufferHandle(kTfLiteIoTypeOutput, "a", 44)); EXPECT_EQ(kTfLiteOk, task.SetSynchronization(kTfLiteIoTypeInput, "x", sync)); EXPECT_EQ(42, task.GetBufferHandle(kTfLiteIoTypeInput, "x")); EXPECT_EQ(43, task.GetBufferHandle(kTfLiteIoTypeInput, "y")); EXPECT_EQ(44, task.GetBufferHandle(kTfLiteIoTypeOutput, "a")); EXPECT_EQ(sync, task.GetSynchronization(kTfLiteIoTypeInput, "x")); EXPECT_EQ(nullptr, task.GetSynchronization(kTfLiteIoTypeInput, "y")); EXPECT_EQ(nullptr, task.GetSynchronization(kTfLiteIoTypeOutput, "a")); TfLiteSynchronizationDelete(sync); } TEST(TfLiteExecutionTaskTest, NameMapUninitialized) { tflite::async::ExecutionTask task; EXPECT_EQ(kTfLiteNullBufferHandle, task.GetBufferHandle(kTfLiteIoTypeInput, "foo")); EXPECT_EQ(kTfLiteNullBufferHandle, task.GetBufferHandle(kTfLiteIoTypeOutput, "foo")); EXPECT_EQ(nullptr, task.GetSynchronization(kTfLiteIoTypeOutput, "foo")); EXPECT_EQ(nullptr, task.GetSynchronization(kTfLiteIoTypeOutput, "foo")); } TEST(TfLiteExecutionTaskTest, NoMatchingName) { tflite::async::ExecutionTask task; tflite::async::ExecutionTask::TensorNameMapT input_names; input_names["x"] = 1; input_names["y"] = 2; tflite::async::ExecutionTask::TensorNameMapT output_names; output_names["a"] = 3; task.SetInputNameMap(&input_names); task.SetOutputNameMap(&output_names); auto* sync = TfLiteSynchronizationCreate(); EXPECT_EQ(kTfLiteError, task.SetBufferHandle(kTfLiteIoTypeInput, "xx", 42)); EXPECT_EQ(kTfLiteError, task.SetBufferHandle(kTfLiteIoTypeOutput, "aa", 44)); EXPECT_EQ(kTfLiteError, task.SetSynchronization(kTfLiteIoTypeInput, "xx", sync)); EXPECT_EQ(kTfLiteError, task.SetSynchronization(kTfLiteIoTypeOutput, "aa", sync)); EXPECT_EQ(kTfLiteNullBufferHandle, task.GetBufferHandle(kTfLiteIoTypeInput, "xx")); EXPECT_EQ(kTfLiteNullBufferHandle, task.GetBufferHandle(kTfLiteIoTypeOutput, "aa")); EXPECT_EQ(nullptr, task.GetSynchronization(kTfLiteIoTypeInput, "xx")); EXPECT_EQ(nullptr, task.GetSynchronization(kTfLiteIoTypeOutput, "aa")); TfLiteSynchronizationDelete(sync); } TEST(TfLiteExecutionTaskTest, DelegateData) { TfLiteAsyncKernel kernel{}; int data = 0; tflite::async::ExecutionTask task; EXPECT_EQ(nullptr, task.GetDelegateExecutionData(&kernel)); task.SetDelegateExecutionData(&kernel, &data); EXPECT_EQ(&data, task.GetDelegateExecutionData(&kernel)); } }
956
cpp
tensorflow/tensorflow
async_subgraph
tensorflow/lite/core/async/async_subgraph.cc
tensorflow/lite/core/async/async_subgraph_test.cc
#ifndef TENSORFLOW_LITE_CORE_ASYNC_ASYNC_SUBGRAPH_H_ #define TENSORFLOW_LITE_CORE_ASYNC_ASYNC_SUBGRAPH_H_ #include <atomic> #include <map> #include <vector> #include "tensorflow/lite/core/async/async_kernel_internal.h" #include "tensorflow/lite/core/async/c/types.h" #include "tensorflow/lite/core/async/interop/c/types.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/subgraph.h" namespace tflite { namespace async { class AsyncSubgraphTestPeer; class AsyncSubgraph { public: explicit AsyncSubgraph(Subgraph* subgraph); Subgraph* subgraph() const; TfLiteContext* context() const; TfLiteStatus RegisterBuffer(TfLiteIoType io_type, const TfLiteBackendBuffer* buffer, const TfLiteAttributeMap* attrs, TfLiteBufferHandle* handle); TfLiteStatus RegisterBufferSlice(TfLiteBufferHandle buffer_pool, const TfLiteAttributeMap* attrs, TfLiteBufferHandle* handle); TfLiteStatus UnregisterBuffer(TfLiteBufferHandle handle); const std::vector<const char*>& SupportedBufferTypes( TfLiteIoType io_type) const; const std::vector<const char*>& SupportedSynchronizations( TfLiteIoType io_type) const; bool ReconcileRestrictions(int tensor_index, const TfLiteAttributeMap* user_provided_attributes, TfLiteAttributeMap* merged, TfLiteAttributeMap* conflict) const; TfLiteStatus SetAttributes(int tensor_index, const TfLiteAttributeMap* attrs); TfLiteStatus SetBufferAttributes(const TfLiteBackendBuffer* buffer, const TfLiteAttributeMap* attrs); TfLiteStatus GetBufferAttributes(const TfLiteBackendBuffer* buffer, TfLiteAttributeMap* attrs); TfLiteStatus Prepare(); TfLiteExecutionTask* CreateTask(); TfLiteStatus InvokeAsync(TfLiteExecutionTask* task); TfLiteStatus Wait(TfLiteExecutionTask* task); TfLiteStatus Finish(TfLiteExecutionTask* task); private: friend class AsyncSubgraphTestPeer; bool IsFullyDelegated() const; TfLiteOpaqueContext* opaque_context() const; TfLiteAsyncKernel* async_kernel() const; Subgraph* subgraph_ = nullptr; std::atomic<TfLiteBufferHandle> next_buffer_handle_ = {0}; std::map<TfLiteIoType, std::vector<const char*>> supported_buffer_types_; std::map<TfLiteIoType, std::vector<const char*>> supported_synchronizations_; mutable TfLiteAsyncKernel* async_kernel_ = nullptr; TfLiteOpaqueNode* opaque_node_ = nullptr; }; } } #endif #include "tensorflow/lite/core/async/async_subgraph.h" #include <vector> #include "tensorflow/lite/core/async/async_kernel_internal.h" #include "tensorflow/lite/core/async/c/types.h" #include "tensorflow/lite/core/async/task_internal.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/subgraph.h" #include "tensorflow/lite/logger.h" #include "tensorflow/lite/minimal_logging.h" namespace tflite { namespace async { namespace { TfLiteAsyncKernel* GetAsyncKernel(TfLiteContext* context, const TfLiteRegistration& op_reg, TfLiteNode& node) { if (op_reg.registration_external) { auto* context_ = reinterpret_cast<TfLiteOpaqueContext*>(context); auto* node_ = reinterpret_cast<TfLiteOpaqueNode*>(&node); if (op_reg.registration_external->async_kernel_with_data) { auto user_data = op_reg.registration_external->user_data; return op_reg.registration_external->async_kernel_with_data( user_data, context_, node_); } else if (op_reg.registration_external->async_kernel) { return op_reg.registration_external->async_kernel(context_, node_); } } if (op_reg.async_kernel) { return op_reg.async_kernel(context, &node); } return nullptr; } } Subgraph* AsyncSubgraph::subgraph() const { return subgraph_; } TfLiteContext* AsyncSubgraph::context() const { return subgraph_->context(); } TfLiteOpaqueContext* AsyncSubgraph::opaque_context() const { return reinterpret_cast<TfLiteOpaqueContext*>(context()); } TfLiteAsyncKernel* AsyncSubgraph::async_kernel() const { return async_kernel_; } AsyncSubgraph::AsyncSubgraph(Subgraph* subgraph) : subgraph_(subgraph) { if (!IsFullyDelegated()) { subgraph->ReportError("Model is not fully delegated by 1 backend."); return; } auto node_index = subgraph_->execution_plan()[0]; TfLiteNode& node = subgraph_->nodes_and_registration_[node_index].first; const TfLiteRegistration& registration = subgraph_->nodes_and_registration_[node_index].second; async_kernel_ = GetAsyncKernel(context(), registration, node); if (!async_kernel_) { subgraph->ReportError("Backend does not support asynchronous execution."); return; } opaque_node_ = reinterpret_cast<TfLiteOpaqueNode*>(const_cast<TfLiteNode*>(&node)); #define POPULATE_VECTOR(io_type, accessor, dest) \ { \ const char* const* types = nullptr; \ size_t n_types = 0; \ (*async_kernel_->accessor)(async_kernel_, io_type, &types, &n_types); \ dest[io_type] = std::vector<const char*>(types, types + n_types); \ } POPULATE_VECTOR(kTfLiteIoTypeInput, supported_buffer_types, supported_buffer_types_); POPULATE_VECTOR(kTfLiteIoTypeOutput, supported_buffer_types, supported_buffer_types_); POPULATE_VECTOR(kTfLiteIoTypeInput, supported_synchronizations, supported_synchronizations_); POPULATE_VECTOR(kTfLiteIoTypeOutput, supported_synchronizations, supported_synchronizations_); #undef POPULATE_VECTOR } bool AsyncSubgraph::IsFullyDelegated() const { if (subgraph_->execution_plan().size() != 1) return false; const TfLiteNode& node = subgraph_->nodes_and_registration()[subgraph_->execution_plan()[0]].first; if (node.delegate == nullptr) return false; return true; } TfLiteStatus AsyncSubgraph::RegisterBuffer(TfLiteIoType io_type, const TfLiteBackendBuffer* buffer, const TfLiteAttributeMap* attrs, TfLiteBufferHandle* handle) { if (buffer == nullptr || attrs == nullptr || handle == nullptr || async_kernel() == nullptr) { return kTfLiteError; } *handle = next_buffer_handle_.fetch_add(1, std::memory_order_relaxed); return (*async_kernel_->register_buffer)( async_kernel_, reinterpret_cast<TfLiteOpaqueContext*>(context()), io_type, buffer, attrs, *handle); } TfLiteStatus AsyncSubgraph::RegisterBufferSlice(TfLiteBufferHandle buffer_pool, const TfLiteAttributeMap* attrs, TfLiteBufferHandle* handle) { if (attrs == nullptr || handle == nullptr || async_kernel() == nullptr) { return kTfLiteError; } *handle = next_buffer_handle_.fetch_add(1, std::memory_order_relaxed); return (*async_kernel_->register_buffer_slice)( async_kernel_, opaque_context(), buffer_pool, attrs, *handle); } TfLiteStatus AsyncSubgraph::UnregisterBuffer(TfLiteBufferHandle handle) { if (async_kernel() == nullptr) return kTfLiteError; return (*async_kernel_->unregister_buffer)(async_kernel_, opaque_context(), handle); } const std::vector<const char*>& AsyncSubgraph::SupportedBufferTypes( TfLiteIoType io_type) const { return supported_buffer_types_.at(io_type); } const std::vector<const char*>& AsyncSubgraph::SupportedSynchronizations( TfLiteIoType io_type) const { return supported_synchronizations_.at(io_type); } bool AsyncSubgraph::ReconcileRestrictions( int tensor_index, const TfLiteAttributeMap* user_provided_attributes, TfLiteAttributeMap* merged, TfLiteAttributeMap* conflict) const { if (user_provided_attributes == nullptr || merged == nullptr || async_kernel() == nullptr) { return false; } if (tensor_index < 0 || tensor_index >= subgraph_->tensors_size()) { return false; } return (*async_kernel_->reconcile_restrictions)( async_kernel_, opaque_context(), opaque_node_, tensor_index, user_provided_attributes, merged, conflict); } TfLiteStatus AsyncSubgraph::SetAttributes(int tensor_index, const TfLiteAttributeMap* attrs) { if (attrs == nullptr || async_kernel() == nullptr) { return kTfLiteError; } if (tensor_index < 0 || tensor_index >= subgraph_->tensors_size()) { return kTfLiteError; } return (*async_kernel_->set_attributes)(async_kernel_, opaque_context(), opaque_node_, tensor_index, attrs); } TfLiteStatus AsyncSubgraph::SetBufferAttributes( const TfLiteBackendBuffer* buffer, const TfLiteAttributeMap* attrs) { return (*async_kernel_->set_buffer_attributes)(async_kernel_, buffer, attrs); } TfLiteStatus AsyncSubgraph::GetBufferAttributes( const TfLiteBackendBuffer* buffer, TfLiteAttributeMap* attrs) { return (*async_kernel_->get_buffer_attributes)(async_kernel_, buffer, attrs); } TfLiteStatus AsyncSubgraph::Prepare() { if (async_kernel() == nullptr) return kTfLiteError; return (*async_kernel_->prepare)(async_kernel_, opaque_context(), opaque_node_); } TfLiteExecutionTask* AsyncSubgraph::CreateTask() { return new TfLiteExecutionTask; } TfLiteStatus AsyncSubgraph::InvokeAsync(TfLiteExecutionTask* task) { if (task == nullptr || async_kernel() == nullptr) { return kTfLiteError; } if (task->task->SetScheduled(true)) { TFLITE_LOG(tflite::TFLITE_LOG_ERROR, "The task has already been scheduled for execution."); return kTfLiteError; } auto ret = (*async_kernel_->eval)(async_kernel_, opaque_context(), opaque_node_, task); task->task->SetStatus(ret); return ret; } TfLiteStatus AsyncSubgraph::Wait(TfLiteExecutionTask* task) { if (task == nullptr || async_kernel() == nullptr) { return kTfLiteError; } if (!task->task->Scheduled()) { return task->task->Status(); } auto ret = (*async_kernel_->wait)(async_kernel_, opaque_context(), task); task->task->SetStatus(ret); task->task->SetScheduled(false); return ret; } TfLiteStatus AsyncSubgraph::Finish(TfLiteExecutionTask* task) { if (async_kernel() == nullptr) return kTfLiteError; auto ret = (*async_kernel_->finish)(async_kernel_, opaque_context(), task); if (ret != kTfLiteOk) { subgraph_->ReportError("Failed to finish task."); } delete task; return ret; } } }
#include "tensorflow/lite/core/async/async_subgraph.h" #include <memory> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/core/async/async_kernel_internal.h" #include "tensorflow/lite/core/async/backend_async_kernel_interface.h" #include "tensorflow/lite/core/async/c/types.h" #include "tensorflow/lite/core/async/interop/attribute_map_internal.h" #include "tensorflow/lite/core/async/interop/c/types.h" #include "tensorflow/lite/core/async/task_internal.h" #include "tensorflow/lite/core/async/testing/mock_async_kernel.h" #include "tensorflow/lite/core/async/testing/test_backend.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/interpreter.h" #include "tensorflow/lite/core/kernels/builtin_op_kernels.h" using ::testing::_; namespace tflite { namespace async { class AsyncSubgraphTestPeer { public: explicit AsyncSubgraphTestPeer(AsyncSubgraph* subgraph) : subgraph_(subgraph) {} bool IsFullyDelegated() const { return subgraph_->IsFullyDelegated(); } private: AsyncSubgraph* subgraph_; }; class AsyncSubgraphTest : public ::testing::Test { protected: void SetUp() override { kernel_ = std::make_unique<testing::MockAsyncKernel>(); backend_ = std::make_unique<testing::TestBackend>(kernel_->kernel()); interpreter_ = std::make_unique<Interpreter>(); interpreter_->AddTensors(5); interpreter_->SetInputs({0, 1}); interpreter_->SetOutputs({3, 4}); TfLiteQuantizationParams quant; interpreter_->SetTensorParametersReadWrite(0, kTfLiteFloat32, "", {3}, quant); interpreter_->SetTensorParametersReadWrite(1, kTfLiteFloat32, "", {3}, quant); interpreter_->SetTensorParametersReadWrite(2, kTfLiteFloat32, "", {3}, quant); interpreter_->SetTensorParametersReadWrite(3, kTfLiteFloat32, "", {3}, quant); interpreter_->SetTensorParametersReadWrite(4, kTfLiteFloat32, "", {3}, quant); TfLiteRegistration* reg = ops::builtin::Register_ADD(); void* builtin_data_1 = malloc(sizeof(int)); void* builtin_data_2 = malloc(sizeof(int)); void* builtin_data_3 = malloc(sizeof(int)); interpreter_->AddNodeWithParameters({0, 0}, {2}, nullptr, 0, builtin_data_1, reg); interpreter_->AddNodeWithParameters({1, 1}, {3}, nullptr, 0, builtin_data_2, reg); interpreter_->AddNodeWithParameters({2, 1}, {4}, nullptr, 0, builtin_data_3, reg); } void BuildAsyncSubgraph() { interpreter_->ModifyGraphWithDelegate(backend_->get_delegate()); subgraph_ = std::make_unique<AsyncSubgraph>(interpreter_->subgraph(0)); } void TearDown() override { subgraph_.reset(); } protected: std::unique_ptr<testing::MockAsyncKernel> kernel_; std::unique_ptr<testing::TestBackend> backend_; std::unique_ptr<Interpreter> interpreter_; std::unique_ptr<AsyncSubgraph> subgraph_; }; TEST_F(AsyncSubgraphTest, FullyDelegated) { BuildAsyncSubgraph(); EXPECT_TRUE(AsyncSubgraphTestPeer(subgraph_.get()).IsFullyDelegated()); } TEST_F(AsyncSubgraphTest, NotFullyDelegated) { backend_->SetMinPartitionedNodes(42); BuildAsyncSubgraph(); EXPECT_FALSE(AsyncSubgraphTestPeer(subgraph_.get()).IsFullyDelegated()); } TEST_F(AsyncSubgraphTest, BasicTest) { BuildAsyncSubgraph(); EXPECT_CALL(*kernel_, RegisterBuffer(_, _, _, _, _)); EXPECT_CALL(*kernel_, RegisterBufferSlice(_, _, _, _)); EXPECT_CALL(*kernel_, UnregisterBuffer(_, _)); EXPECT_CALL(*kernel_, ReconcileRestrictions(_, _, _, _, _, _)); EXPECT_CALL(*kernel_, SetAttributes(_, _, _, _)); EXPECT_CALL(*kernel_, Prepare(_, _)); EXPECT_CALL(*kernel_, Eval(_, _, _)); EXPECT_CALL(*kernel_, Wait(_, _)); EXPECT_CALL(*kernel_, Finish(_, _)); auto* buffer = TfLiteBackendBufferCreate(); auto* attrs = new TfLiteAttributeMap(kTfLiteAttrMapTypeBuffer); TfLiteBufferHandle handle = 1; TfLiteBufferHandle another_handle = 1; auto* task = new TfLiteExecutionTask; EXPECT_FALSE(task->task->Scheduled()); subgraph_->RegisterBuffer(kTfLiteIoTypeInput, buffer, attrs, &handle); subgraph_->RegisterBufferSlice(handle, attrs, &another_handle); subgraph_->UnregisterBuffer(handle); subgraph_->ReconcileRestrictions(0, attrs, attrs, attrs); subgraph_->SetAttributes(0, attrs); subgraph_->Prepare(); EXPECT_EQ(kTfLiteOk, subgraph_->InvokeAsync(task)); EXPECT_TRUE(task->task->Scheduled()); EXPECT_EQ(kTfLiteError, subgraph_->InvokeAsync(task)); EXPECT_TRUE(task->task->Scheduled()); EXPECT_EQ(kTfLiteOk, task->task->Status()); EXPECT_EQ(kTfLiteOk, subgraph_->Wait(task)); task->task->SetStatus(kTfLiteError); EXPECT_EQ(kTfLiteError, subgraph_->Wait(task)); EXPECT_EQ(kTfLiteError, subgraph_->Wait(task)); EXPECT_FALSE(task->task->Scheduled()); subgraph_->Finish(task); TfLiteBackendBufferDelete(buffer); delete attrs; EXPECT_NE(handle, another_handle); } TEST_F(AsyncSubgraphTest, OutOfBoundTest) { BuildAsyncSubgraph(); auto* attrs = new TfLiteAttributeMap(kTfLiteAttrMapTypeBuffer); EXPECT_FALSE(subgraph_->ReconcileRestrictions(42, attrs, attrs, attrs)); EXPECT_EQ(kTfLiteError, subgraph_->SetAttributes(42, attrs)); delete attrs; } } }
957
cpp
tensorflow/tensorflow
async_signature_runner
tensorflow/lite/core/async/c/async_signature_runner.cc
tensorflow/lite/core/async/c/async_signature_runner_test.cc
#ifndef TENSORFLOW_LITE_CORE_ASYNC_C_ASYNC_SIGNATURE_RUNNER_H_ #define TENSORFLOW_LITE_CORE_ASYNC_C_ASYNC_SIGNATURE_RUNNER_H_ #include <stdbool.h> #include <stdint.h> #include "tensorflow/lite/core/async/c/types.h" #include "tensorflow/lite/core/async/interop/c/attribute_map.h" #include "tensorflow/lite/core/async/interop/c/types.h" #include "tensorflow/lite/core/c/c_api.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #ifdef __cplusplus extern "C" { #endif typedef struct TfLiteAsyncSignatureRunner TfLiteAsyncSignatureRunner; TFL_CAPI_EXPORT extern TfLiteAsyncSignatureRunner* TfLiteInterpreterGetAsyncSignatureRunner(const TfLiteInterpreter* interpreter, const char* signature_key); TFL_CAPI_EXPORT extern TfLiteStatus TfLiteAsyncSignatureRunnerRegisterBuffer( TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteIoType io_type, const TfLiteBackendBuffer* buffer, const TfLiteAttributeMap* attrs, TfLiteBufferHandle* handle); TFL_CAPI_EXPORT extern TfLiteStatus TfLiteAsyncSignatureRunnerRegisterBufferSlice( TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteBufferHandle buffer_pool, const TfLiteAttributeMap* attrs, TfLiteBufferHandle* handle); TFL_CAPI_EXPORT extern TfLiteStatus TfLiteAsyncSignatureRunnerUnregisterBuffer( TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteBufferHandle handle); TFL_CAPI_EXPORT extern TfLiteStatus TfLiteAsyncSignatureRunnerGetSupportedBufferTypes( const TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteIoType io_type, const char* const** types, size_t* num_types); TFL_CAPI_EXPORT extern TfLiteStatus TfLiteAsyncSignatureRunnerGetSupportedSynchronizationTypes( const TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteIoType io_type, const char* const** types, size_t* num_types); TFL_CAPI_EXPORT extern bool TfLiteAsyncSignatureRunnerReconcileRestrictions( const TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteIoType io_type, const char* name, const TfLiteAttributeMap* user_provided_attributes, TfLiteAttributeMap* merged, TfLiteAttributeMap* conflict); TFL_CAPI_EXPORT extern bool TfLiteAsyncSignatureRunnerReconcileRestrictionsByIndex( const TfLiteAsyncSignatureRunner* async_signature_runner, int tensor_index, const TfLiteAttributeMap* user_provided_attributes, TfLiteAttributeMap* merged, TfLiteAttributeMap* conflict); TFL_CAPI_EXPORT extern TfLiteStatus TfLiteAsyncSignatureRunnerSetAttributes( TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteIoType io_type, const char* name, const TfLiteAttributeMap* attrs); TFL_CAPI_EXPORT extern TfLiteStatus TfLiteAsyncSignatureRunnerSetAttributesByIndex( TfLiteAsyncSignatureRunner* async_signature_runner, int tensor_index, const TfLiteAttributeMap* attrs); TFL_CAPI_EXPORT extern TfLiteStatus TfLiteAsyncSignatureRunnerPrepareBackends( TfLiteAsyncSignatureRunner* async_signature_runner); TFL_CAPI_EXPORT extern TfLiteExecutionTask* TfLiteAsyncSignatureRunnerCreateTask( TfLiteAsyncSignatureRunner* async_signature_runner); TFL_CAPI_EXPORT extern TfLiteStatus TfLiteAsyncSignatureRunnerInvokeAsync( TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteExecutionTask* task); TFL_CAPI_EXPORT extern TfLiteStatus TfLiteAsyncSignatureRunnerWait( TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteExecutionTask* task); TFL_CAPI_EXPORT extern TfLiteStatus TfLiteAsyncSignatureRunnerFinish( TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteExecutionTask* task); TFL_CAPI_EXPORT extern size_t TfLiteAsyncSignatureRunnerGetInputCount( const TfLiteAsyncSignatureRunner* async_signature_runner); TFL_CAPI_EXPORT extern const char* TfLiteAsyncSignatureRunnerGetInputName( const TfLiteAsyncSignatureRunner* async_signature_runner, int32_t input_index); TFL_CAPI_EXPORT extern size_t TfLiteAsyncSignatureRunnerGetOutputCount( const TfLiteAsyncSignatureRunner* async_signature_runner); TFL_CAPI_EXPORT extern const char* TfLiteAsyncSignatureRunnerGetOutputName( const TfLiteAsyncSignatureRunner* async_signature_runner, int32_t output_index); TFL_CAPI_EXPORT extern const TfLiteOpaqueTensor* TfLiteAsyncSignatureRunnerGetInputTensor( TfLiteAsyncSignatureRunner* async_signature_runner, const char* input_name); TFL_CAPI_EXPORT extern const TfLiteOpaqueTensor* TfLiteAsyncSignatureRunnerGetOutputTensor( const TfLiteAsyncSignatureRunner* async_signature_runner, const char* output_name); TFL_CAPI_EXPORT extern void TfLiteAsyncSignatureRunnerDelete( TfLiteAsyncSignatureRunner* signature_runner); TFL_CAPI_EXPORT extern const int* TfLiteAsyncSignatureRunnerInputTensorIndices( const TfLiteAsyncSignatureRunner* async_signature_runner); TFL_CAPI_EXPORT extern const int* TfLiteAsyncSignatureRunnerOutputTensorIndices( const TfLiteAsyncSignatureRunner* async_signature_runner); TFL_CAPI_EXPORT extern const TfLiteOpaqueTensor* TfLiteAsyncSignatureRunnerGetTensor( const TfLiteAsyncSignatureRunner* async_signature_runner, int index); #ifdef __cplusplus } #endif #endif #include "tensorflow/lite/core/async/c/async_signature_runner.h" #include "tensorflow/lite/c/c_api_internal.h" #include "tensorflow/lite/core/async/async_signature_runner.h" #include "tensorflow/lite/core/async/c/internal.h" #include "tensorflow/lite/core/c/c_api_types.h" TfLiteAsyncSignatureRunner* TfLiteInterpreterGetAsyncSignatureRunner( const TfLiteInterpreter* interpreter, const char* signature_key) { if (!interpreter) return nullptr; tflite::async::AsyncSignatureRunner* runner = interpreter->impl->GetAsyncSignatureRunner(signature_key); if (!runner) return nullptr; return new TfLiteAsyncSignatureRunner{runner}; } TfLiteStatus TfLiteAsyncSignatureRunnerRegisterBuffer( TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteIoType io_type, const TfLiteBackendBuffer* buffer, const TfLiteAttributeMap* attrs, TfLiteBufferHandle* handle) { if (!async_signature_runner) return kTfLiteError; return async_signature_runner->impl->RegisterBuffer(io_type, buffer, attrs, handle); } TfLiteStatus TfLiteAsyncSignatureRunnerRegisterBufferSlice( TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteBufferHandle buffer_pool, const TfLiteAttributeMap* attrs, TfLiteBufferHandle* handle) { if (!async_signature_runner) return kTfLiteError; return async_signature_runner->impl->RegisterBufferSlice(buffer_pool, attrs, handle); } TfLiteStatus TfLiteAsyncSignatureRunnerUnregisterBuffer( TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteBufferHandle handle) { if (!async_signature_runner) return kTfLiteError; return async_signature_runner->impl->UnregisterBuffer(handle); } TfLiteStatus TfLiteAsyncSignatureRunnerGetSupportedBufferTypes( const TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteIoType io_type, const char* const** types, size_t* num_types) { if (async_signature_runner == nullptr || types == nullptr || num_types == nullptr) return kTfLiteError; const auto& buffer_types = async_signature_runner->impl->SupportedBufferTypes(io_type); *types = buffer_types.data(); *num_types = buffer_types.size(); return kTfLiteOk; } TfLiteStatus TfLiteAsyncSignatureRunnerGetSupportedSynchronizationTypes( const TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteIoType io_type, const char* const** types, size_t* num_types) { if (async_signature_runner == nullptr || types == nullptr || num_types == nullptr) return kTfLiteError; const auto& synchronization_types = async_signature_runner->impl->SupportedSynchronizations(io_type); *types = synchronization_types.data(); *num_types = synchronization_types.size(); return kTfLiteOk; } bool TfLiteAsyncSignatureRunnerReconcileRestrictions( const TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteIoType io_type, const char* name, const TfLiteAttributeMap* user_provided_attributes, TfLiteAttributeMap* merged, TfLiteAttributeMap* conflict) { if (!async_signature_runner) return false; return async_signature_runner->impl->ReconcileRestrictions( io_type, name, user_provided_attributes, merged, conflict); } bool TfLiteAsyncSignatureRunnerReconcileRestrictionsByIndex( const TfLiteAsyncSignatureRunner* async_signature_runner, int tensor_index, const TfLiteAttributeMap* user_provided_attributes, TfLiteAttributeMap* merged, TfLiteAttributeMap* conflict) { if (!async_signature_runner) return false; return async_signature_runner->impl->ReconcileRestrictions( tensor_index, user_provided_attributes, merged, conflict); } TfLiteStatus TfLiteAsyncSignatureRunnerSetAttributes( TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteIoType io_type, const char* name, const TfLiteAttributeMap* attrs) { if (!async_signature_runner) return kTfLiteError; return async_signature_runner->impl->SetAttributes(io_type, name, attrs); } TfLiteStatus TfLiteAsyncSignatureRunnerSetAttributesByIndex( TfLiteAsyncSignatureRunner* async_signature_runner, int tensor_index, const TfLiteAttributeMap* attrs) { if (!async_signature_runner) return kTfLiteError; return async_signature_runner->impl->SetAttributes(tensor_index, attrs); } TfLiteStatus TfLiteAsyncSignatureRunnerPrepareBackends( TfLiteAsyncSignatureRunner* async_signature_runner) { if (!async_signature_runner) return kTfLiteError; return async_signature_runner->impl->PrepareBackends(); } TfLiteExecutionTask* TfLiteAsyncSignatureRunnerCreateTask( TfLiteAsyncSignatureRunner* async_signature_runner) { if (!async_signature_runner) return nullptr; return async_signature_runner->impl->CreateTask(); } TfLiteStatus TfLiteAsyncSignatureRunnerInvokeAsync( TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteExecutionTask* task) { if (!async_signature_runner) return kTfLiteError; return async_signature_runner->impl->InvokeAsync(task); } TfLiteStatus TfLiteAsyncSignatureRunnerWait( TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteExecutionTask* task) { if (!async_signature_runner) return kTfLiteError; return async_signature_runner->impl->Wait(task); } TfLiteStatus TfLiteAsyncSignatureRunnerFinish( TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteExecutionTask* task) { if (!async_signature_runner) return kTfLiteError; return async_signature_runner->impl->Finish(task); } size_t TfLiteAsyncSignatureRunnerGetInputCount( const TfLiteAsyncSignatureRunner* async_signature_runner) { if (!async_signature_runner) return 0; return async_signature_runner->impl->input_size(); } const char* TfLiteAsyncSignatureRunnerGetInputName( const TfLiteAsyncSignatureRunner* async_signature_runner, int32_t input_index) { if (!async_signature_runner) return nullptr; size_t count = TfLiteAsyncSignatureRunnerGetInputCount(async_signature_runner); if (input_index < 0 || input_index >= count) { return nullptr; } const auto& input_names = async_signature_runner->impl->input_names(); if (input_index >= input_names.size()) { return nullptr; } return input_names[input_index]; } size_t TfLiteAsyncSignatureRunnerGetOutputCount( const TfLiteAsyncSignatureRunner* async_signature_runner) { if (!async_signature_runner) return 0; return async_signature_runner->impl->output_size(); } const char* TfLiteAsyncSignatureRunnerGetOutputName( const TfLiteAsyncSignatureRunner* async_signature_runner, int32_t output_index) { if (!async_signature_runner) return nullptr; size_t count = TfLiteAsyncSignatureRunnerGetOutputCount(async_signature_runner); if (output_index < 0 || output_index >= count) { return nullptr; } const auto& output_names = async_signature_runner->impl->output_names(); if (output_index >= output_names.size()) { return nullptr; } return async_signature_runner->impl->output_names()[output_index]; } const TfLiteOpaqueTensor* TfLiteAsyncSignatureRunnerGetInputTensor( TfLiteAsyncSignatureRunner* async_signature_runner, const char* input_name) { if (!async_signature_runner) return nullptr; return async_signature_runner->impl->input_tensor(input_name); } const TfLiteOpaqueTensor* TfLiteAsyncSignatureRunnerGetOutputTensor( const TfLiteAsyncSignatureRunner* async_signature_runner, const char* output_name) { if (!async_signature_runner) return nullptr; return async_signature_runner->impl->output_tensor(output_name); } void TfLiteAsyncSignatureRunnerDelete( TfLiteAsyncSignatureRunner* signature_runner) { delete signature_runner; } const int* TfLiteAsyncSignatureRunnerInputTensorIndices( const TfLiteAsyncSignatureRunner* async_signature_runner) { if (!async_signature_runner) return nullptr; return async_signature_runner->impl->inputs().data(); } const int* TfLiteAsyncSignatureRunnerOutputTensorIndices( const TfLiteAsyncSignatureRunner* async_signature_runner) { if (!async_signature_runner) return nullptr; return async_signature_runner->impl->outputs().data(); } const TfLiteOpaqueTensor* TfLiteAsyncSignatureRunnerGetTensor( const TfLiteAsyncSignatureRunner* async_signature_runner, int index) { if (!async_signature_runner) return nullptr; return async_signature_runner->impl->tensor(index); }
#include "tensorflow/lite/core/async/c/async_signature_runner.h" #include <memory> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/c/c_api_internal.h" #include "tensorflow/lite/c/c_api_opaque.h" #include "tensorflow/lite/core/async/async_kernel_internal.h" #include "tensorflow/lite/core/async/backend_async_kernel_interface.h" #include "tensorflow/lite/core/async/c/internal.h" #include "tensorflow/lite/core/async/c/task.h" #include "tensorflow/lite/core/async/c/types.h" #include "tensorflow/lite/core/async/interop/c/attribute_map.h" #include "tensorflow/lite/core/async/interop/c/types.h" #include "tensorflow/lite/core/async/testing/mock_async_kernel.h" #include "tensorflow/lite/core/async/testing/test_backend.h" #include "tensorflow/lite/core/c/c_api.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/interpreter.h" #include "tensorflow/lite/core/kernels/builtin_op_kernels.h" #include "tensorflow/lite/interpreter_test_util.h" using ::testing::_; using ::testing::Return; namespace tflite { namespace async { class AsyncSignatureRunnerTest : public InterpreterTest, public ::testing::WithParamInterface<bool> { protected: void SetUp() override { kernel_ = std::make_unique<::testing::StrictMock<testing::MockAsyncKernel>>(); backend_ = std::make_unique<testing::TestBackend>(kernel_->kernel()); auto interpreter = std::make_unique<Interpreter>(); interpreter->AddTensors(2); interpreter->SetInputs({0}); interpreter->SetOutputs({1}); TfLiteQuantizationParams quant; interpreter->SetTensorParametersReadWrite(0, kTfLiteFloat32, "x", {3}, quant); interpreter->SetTensorParametersReadWrite(1, kTfLiteFloat32, "a", {3}, quant); TfLiteRegistration* reg = ops::builtin::Register_ADD(); void* builtin_data_1 = malloc(sizeof(int)); interpreter->AddNodeWithParameters({0, 0}, {1}, nullptr, 0, builtin_data_1, reg); tflite_interpreter_.impl = std::move(interpreter); } void BuildRunner(bool has_signature) { auto* interpreter = tflite_interpreter_.impl.get(); if (has_signature) { const char kSignatureKey[] = "serving_default"; BuildSignature(interpreter, kSignatureKey, {{"input", 0}}, {{"output", 1}}); interpreter->ModifyGraphWithDelegate(backend_->get_delegate()); runner_ = TfLiteInterpreterGetAsyncSignatureRunner(&tflite_interpreter_, kSignatureKey); } else { interpreter->ModifyGraphWithDelegate(backend_->get_delegate()); runner_ = TfLiteInterpreterGetAsyncSignatureRunner(&tflite_interpreter_, nullptr); } ASSERT_NE(nullptr, runner_); } void TearDown() override { TfLiteAsyncSignatureRunnerDelete(runner_); } protected: TfLiteAsyncSignatureRunner* runner_ = nullptr; std::unique_ptr<::testing::StrictMock<testing::MockAsyncKernel>> kernel_; std::unique_ptr<testing::TestBackend> backend_; internal::SignatureDef signature_def_; TfLiteInterpreter tflite_interpreter_{}; }; INSTANTIATE_TEST_SUITE_P(AsyncSignatureRunnerTest, AsyncSignatureRunnerTest, ::testing::Bool()); TEST_P(AsyncSignatureRunnerTest, RegisterBufferTest) { BuildRunner(GetParam()); EXPECT_CALL(*kernel_, RegisterBuffer(_, _, _, _, _)) .WillOnce(Return(kTfLiteOk)); EXPECT_CALL(*kernel_, RegisterBufferSlice(_, _, _, _)) .WillOnce(Return(kTfLiteOk)); EXPECT_CALL(*kernel_, UnregisterBuffer(_, _)).WillOnce(Return(kTfLiteOk)); TfLiteBufferHandle handle; auto* attr = TfLiteAttributeMapCreate(kTfLiteAttrMapTypeBuffer); auto* buf = TfLiteBackendBufferCreate(); EXPECT_EQ(kTfLiteOk, TfLiteAsyncSignatureRunnerRegisterBuffer( runner_, kTfLiteIoTypeInput, buf, attr, &handle)); EXPECT_EQ(kTfLiteOk, TfLiteAsyncSignatureRunnerRegisterBufferSlice( runner_, handle, attr, &handle)); EXPECT_EQ(kTfLiteOk, TfLiteAsyncSignatureRunnerUnregisterBuffer(runner_, handle)); TfLiteAttributeMapDelete(attr); TfLiteBackendBufferDelete(buf); } TEST_P(AsyncSignatureRunnerTest, SupportedTypesTest) { BuildRunner(GetParam()); const char* const* buffer_types = nullptr; size_t num_buffer_types = 0; EXPECT_EQ(kTfLiteOk, TfLiteAsyncSignatureRunnerGetSupportedBufferTypes( runner_, kTfLiteIoTypeInput, &buffer_types, &num_buffer_types)); EXPECT_EQ(1, num_buffer_types); EXPECT_STREQ("buffer_type", buffer_types[0]); const char* const* sync_types = nullptr; size_t num_sync_types = 0; EXPECT_EQ(kTfLiteOk, TfLiteAsyncSignatureRunnerGetSupportedSynchronizationTypes( runner_, kTfLiteIoTypeInput, &sync_types, &num_sync_types)); EXPECT_EQ(1, num_sync_types); EXPECT_STREQ("sync_type", sync_types[0]); } TEST_P(AsyncSignatureRunnerTest, ReconcileTest) { bool has_signature = GetParam(); BuildRunner(has_signature); EXPECT_CALL(*kernel_, ReconcileRestrictions(_, _, _, _, _, _)) .WillOnce(Return(true)); EXPECT_CALL(*kernel_, SetAttributes(_, _, _, _)).WillOnce(Return(kTfLiteOk)); auto* attr = TfLiteAttributeMapCreate(kTfLiteAttrMapTypeBuffer); if (has_signature) { EXPECT_TRUE(TfLiteAsyncSignatureRunnerReconcileRestrictions( runner_, kTfLiteIoTypeInput, "input", attr, attr, nullptr)); EXPECT_EQ(kTfLiteOk, TfLiteAsyncSignatureRunnerSetAttributes( runner_, kTfLiteIoTypeInput, "input", attr)); } else { EXPECT_TRUE(TfLiteAsyncSignatureRunnerReconcileRestrictionsByIndex( runner_, 0, attr, attr, nullptr)); EXPECT_EQ(kTfLiteOk, TfLiteAsyncSignatureRunnerSetAttributesByIndex(runner_, 0, attr)); } TfLiteAttributeMapDelete(attr); } TEST_P(AsyncSignatureRunnerTest, ExecutionTest) { BuildRunner(GetParam()); EXPECT_CALL(*kernel_, Prepare(_, _)).WillOnce(Return(kTfLiteOk)); EXPECT_CALL(*kernel_, Eval(_, _, _)).WillOnce(Return(kTfLiteOk)); EXPECT_CALL(*kernel_, Wait(_, _)).WillOnce(Return(kTfLiteOk)); EXPECT_CALL(*kernel_, Finish(_, _)).WillOnce(Return(kTfLiteOk)); EXPECT_EQ(kTfLiteOk, TfLiteAsyncSignatureRunnerPrepareBackends(runner_)); auto* task = TfLiteAsyncSignatureRunnerCreateTask(runner_); EXPECT_EQ(kTfLiteOk, TfLiteAsyncSignatureRunnerInvokeAsync(runner_, task)); EXPECT_EQ(kTfLiteOk, TfLiteAsyncSignatureRunnerWait(runner_, task)); EXPECT_EQ(kTfLiteOk, TfLiteAsyncSignatureRunnerFinish(runner_, task)); } TEST_P(AsyncSignatureRunnerTest, InputsTest) { bool has_signature = GetParam(); BuildRunner(has_signature); EXPECT_EQ(1, TfLiteAsyncSignatureRunnerGetInputCount(runner_)); if (has_signature) { EXPECT_STREQ("input", TfLiteAsyncSignatureRunnerGetInputName(runner_, 0)); EXPECT_STREQ( "x", TfLiteOpaqueTensorName( TfLiteAsyncSignatureRunnerGetInputTensor(runner_, "input"))); } else { EXPECT_EQ(nullptr, TfLiteAsyncSignatureRunnerGetInputName(runner_, 0)); EXPECT_EQ(nullptr, TfLiteAsyncSignatureRunnerGetInputTensor(runner_, "input")); } } TEST_P(AsyncSignatureRunnerTest, OutputsTest) { bool has_signature = GetParam(); BuildRunner(has_signature); EXPECT_EQ(1, TfLiteAsyncSignatureRunnerGetOutputCount(runner_)); if (has_signature) { EXPECT_STREQ("output", TfLiteAsyncSignatureRunnerGetOutputName(runner_, 0)); EXPECT_STREQ( "a", TfLiteOpaqueTensorName( TfLiteAsyncSignatureRunnerGetOutputTensor(runner_, "output"))); } else { EXPECT_EQ(nullptr, TfLiteAsyncSignatureRunnerGetOutputName(runner_, 0)); EXPECT_EQ(nullptr, TfLiteAsyncSignatureRunnerGetOutputTensor(runner_, "output")); } } TEST_P(AsyncSignatureRunnerTest, InputByIndexTest) { BuildRunner(GetParam()); EXPECT_EQ(1, TfLiteAsyncSignatureRunnerGetInputCount(runner_)); auto* indices = TfLiteAsyncSignatureRunnerInputTensorIndices(runner_); EXPECT_NE(nullptr, indices); auto indice = indices[0]; EXPECT_STREQ("x", TfLiteOpaqueTensorName( TfLiteAsyncSignatureRunnerGetTensor(runner_, indice))); } TEST_P(AsyncSignatureRunnerTest, OutputsByIndexTest) { BuildRunner(GetParam()); EXPECT_EQ(1, TfLiteAsyncSignatureRunnerGetOutputCount(runner_)); auto* indices = TfLiteAsyncSignatureRunnerOutputTensorIndices(runner_); EXPECT_NE(nullptr, indices); auto indice = indices[0]; EXPECT_STREQ("a", TfLiteOpaqueTensorName( TfLiteAsyncSignatureRunnerGetTensor(runner_, indice))); } TEST_P(AsyncSignatureRunnerTest, IndexOutOfBound) { BuildRunner(GetParam()); EXPECT_EQ(nullptr, TfLiteAsyncSignatureRunnerGetTensor(runner_, 42)); } } }
958
cpp
tensorflow/tensorflow
task
tensorflow/lite/core/async/c/task.cc
tensorflow/lite/core/async/c/task_test.cc
#ifndef XLA_SERVICE_CPU_RUNTIME_TASK_H_ #define XLA_SERVICE_CPU_RUNTIME_TASK_H_ #include <memory> #include <utility> #include "absl/functional/any_invocable.h" namespace xla::cpu { inline auto ToCopyableTask(absl::AnyInvocable<void()> task) { return [shared_task = std::make_shared<decltype(task)>(std::move(task))] { (*shared_task)(); }; } } #endif #include "tensorflow/lite/core/async/c/task.h" #include "tensorflow/lite/core/async/c/types.h" #include "tensorflow/lite/core/async/task_internal.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" extern "C" { TfLiteStatus TfLiteExecutionTaskSetBuffer(TfLiteExecutionTask* task, TfLiteIoType io_type, const char* tensor_signature_name, TfLiteBufferHandle handle) { if (task == nullptr || task->task == nullptr || tensor_signature_name == nullptr) return kTfLiteError; return task->task->SetBufferHandle(io_type, tensor_signature_name, handle); } TfLiteStatus TfLiteExecutionTaskSetBufferByIndex(TfLiteExecutionTask* task, int tensor_index, TfLiteBufferHandle handle) { if (task == nullptr || task->task == nullptr) return kTfLiteError; return task->task->SetBufferHandle(tensor_index, handle); } TfLiteStatus TfLiteExecutionTaskSetSync(TfLiteExecutionTask* task, TfLiteIoType io_type, const char* tensor_signature_name, TfLiteSynchronization* sync) { if (task == nullptr || task->task == nullptr || tensor_signature_name == nullptr) return kTfLiteError; return task->task->SetSynchronization(io_type, tensor_signature_name, sync); } TfLiteStatus TfLiteExecutionTaskSetSyncByIndex(TfLiteExecutionTask* task, int tensor_index, TfLiteSynchronization* sync) { if (task == nullptr || task->task == nullptr) return kTfLiteError; return task->task->SetSynchronization(tensor_index, sync); } TfLiteBufferHandle TfLiteExecutionTaskGetBufferByName( const TfLiteExecutionTask* task, TfLiteIoType io_type, const char* tensor_signature_name) { if (task == nullptr || task->task == nullptr || tensor_signature_name == nullptr) return kTfLiteNullBufferHandle; return task->task->GetBufferHandle(io_type, tensor_signature_name); } TfLiteSynchronization* TfLiteExecutionTaskGetSyncByName( const TfLiteExecutionTask* task, TfLiteIoType io_type, const char* tensor_signature_name) { if (task == nullptr || task->task == nullptr || tensor_signature_name == nullptr) return nullptr; return task->task->GetSynchronization(io_type, tensor_signature_name); } TfLiteBufferHandle TfLiteExecutionTaskGetBufferByIndex( const TfLiteExecutionTask* task, int tensor_index) { if (task == nullptr || task->task == nullptr) return kTfLiteNullBufferHandle; return task->task->GetBufferHandle(tensor_index); } TfLiteSynchronization* TfLiteExecutionTaskGetSyncByIndex( const TfLiteExecutionTask* task, int tensor_index) { if (task == nullptr || task->task == nullptr) return nullptr; return task->task->GetSynchronization(tensor_index); } void* TfLiteExecutionTaskGetDelegateExecutionData( const TfLiteExecutionTask* task, TfLiteAsyncKernel* kernel) { if (task == nullptr || task->task == nullptr) return nullptr; return task->task->GetDelegateExecutionData(kernel); } void TfLiteExecutionTaskSetDelegateExecutionData(TfLiteExecutionTask* task, TfLiteAsyncKernel* kernel, void* data) { if (task == nullptr || task->task == nullptr) return; task->task->SetDelegateExecutionData(kernel, data); } TfLiteStatus TfLiteExecutionTaskGetStatus(const TfLiteExecutionTask* task) { if (task == nullptr || task->task == nullptr) return kTfLiteError; return task->task->Status(); } void TfLiteExecutionTaskSetStatus(TfLiteExecutionTask* task, TfLiteStatus status) { if (task == nullptr || task->task == nullptr) return; task->task->SetStatus(status); } }
#include "tensorflow/lite/core/async/c/task.h" #include <gtest/gtest.h> #include "tensorflow/lite/core/async/c/types.h" #include "tensorflow/lite/core/async/interop/c/types.h" #include "tensorflow/lite/core/async/task_internal.h" #include "tensorflow/lite/core/c/common.h" namespace { class TfLiteExecutionTaskTest : public ::testing::Test { protected: void SetUp() override { input_names_["x"] = 1; input_names_["y"] = 2; output_names_["a"] = 3; task_.task->SetInputNameMap(&input_names_); task_.task->SetOutputNameMap(&output_names_); } TfLiteExecutionTask* task() { return &task_; } protected: tflite::async::ExecutionTask::TensorNameMapT input_names_; tflite::async::ExecutionTask::TensorNameMapT output_names_; TfLiteExecutionTask task_; }; TEST_F(TfLiteExecutionTaskTest, BasicTest) { auto* sync = TfLiteSynchronizationCreate(); EXPECT_EQ(kTfLiteOk, TfLiteExecutionTaskSetBuffer(task(), kTfLiteIoTypeInput, "x", 42)); EXPECT_EQ(kTfLiteOk, TfLiteExecutionTaskSetBuffer(task(), kTfLiteIoTypeInput, "y", 43)); EXPECT_EQ(kTfLiteOk, TfLiteExecutionTaskSetBuffer(task(), kTfLiteIoTypeOutput, "a", 44)); EXPECT_EQ(kTfLiteOk, TfLiteExecutionTaskSetSync(task(), kTfLiteIoTypeInput, "x", sync)); EXPECT_EQ( 42, TfLiteExecutionTaskGetBufferByName(task(), kTfLiteIoTypeInput, "x")); EXPECT_EQ( 43, TfLiteExecutionTaskGetBufferByName(task(), kTfLiteIoTypeInput, "y")); EXPECT_EQ( 44, TfLiteExecutionTaskGetBufferByName(task(), kTfLiteIoTypeOutput, "a")); EXPECT_EQ(sync, TfLiteExecutionTaskGetSyncByName(task(), kTfLiteIoTypeInput, "x")); EXPECT_EQ(nullptr, TfLiteExecutionTaskGetSyncByName(task(), kTfLiteIoTypeInput, "y")); EXPECT_EQ(nullptr, TfLiteExecutionTaskGetSyncByName(task(), kTfLiteIoTypeOutput, "a")); TfLiteSynchronizationDelete(sync); } TEST_F(TfLiteExecutionTaskTest, BasicTestByTensorIndex) { auto* sync = TfLiteSynchronizationCreate(); EXPECT_EQ(kTfLiteOk, TfLiteExecutionTaskSetBuffer(task(), kTfLiteIoTypeInput, "x", 42)); EXPECT_EQ(kTfLiteOk, TfLiteExecutionTaskSetBuffer(task(), kTfLiteIoTypeInput, "y", 43)); EXPECT_EQ(kTfLiteOk, TfLiteExecutionTaskSetBuffer(task(), kTfLiteIoTypeOutput, "a", 44)); EXPECT_EQ(kTfLiteOk, TfLiteExecutionTaskSetSync(task(), kTfLiteIoTypeInput, "x", sync)); EXPECT_EQ(42, TfLiteExecutionTaskGetBufferByIndex(task(), 1)); EXPECT_EQ(43, TfLiteExecutionTaskGetBufferByIndex(task(), 2)); EXPECT_EQ(44, TfLiteExecutionTaskGetBufferByIndex(task(), 3)); EXPECT_EQ(sync, TfLiteExecutionTaskGetSyncByIndex(task(), 1)); EXPECT_EQ(nullptr, TfLiteExecutionTaskGetSyncByIndex(task(), 2)); EXPECT_EQ(nullptr, TfLiteExecutionTaskGetSyncByIndex(task(), 3)); TfLiteSynchronizationDelete(sync); } TEST_F(TfLiteExecutionTaskTest, NullTest) { EXPECT_EQ(kTfLiteError, TfLiteExecutionTaskSetBuffer(nullptr, kTfLiteIoTypeInput, "x", 42)); EXPECT_EQ(kTfLiteError, TfLiteExecutionTaskSetSync( nullptr, kTfLiteIoTypeInput, "x", nullptr)); EXPECT_EQ(kTfLiteNullBufferHandle, TfLiteExecutionTaskGetBufferByName( nullptr, kTfLiteIoTypeOutput, "a")); EXPECT_EQ(nullptr, TfLiteExecutionTaskGetSyncByName(nullptr, kTfLiteIoTypeInput, "x")); EXPECT_EQ(kTfLiteNullBufferHandle, TfLiteExecutionTaskGetBufferByIndex(nullptr, 3)); EXPECT_EQ(nullptr, TfLiteExecutionTaskGetSyncByIndex(nullptr, 3)); EXPECT_EQ(kTfLiteError, TfLiteExecutionTaskGetStatus(nullptr)); TfLiteExecutionTaskSetStatus(nullptr, kTfLiteOk); EXPECT_EQ(kTfLiteError, TfLiteExecutionTaskSetBufferByIndex(nullptr, 0, 0)); EXPECT_EQ(kTfLiteError, TfLiteExecutionTaskSetSyncByIndex(nullptr, 0, nullptr)); } TEST_F(TfLiteExecutionTaskTest, StatusTest) { EXPECT_EQ(kTfLiteOk, TfLiteExecutionTaskGetStatus(task())); TfLiteExecutionTaskSetStatus(task(), kTfLiteError); EXPECT_EQ(kTfLiteError, TfLiteExecutionTaskGetStatus(task())); } }
959
cpp
tensorflow/tensorflow
reconcile_fns
tensorflow/lite/core/async/interop/reconcile_fns.cc
tensorflow/lite/core/async/interop/reconcile_fns_test.cc
#ifndef TENSORFLOW_LITE_CORE_ASYNC_INTEROP_RECONCILE_FNS_H_ #define TENSORFLOW_LITE_CORE_ASYNC_INTEROP_RECONCILE_FNS_H_ #include "tensorflow/lite/core/async/interop/attribute_map_internal.h" #include "tensorflow/lite/core/async/interop/c/types.h" namespace tflite { namespace interop { bool ReconcileGeneralAttributeKeys(TfLiteAttrMapType type, const AttributeMap::ContainerT* lhs, const AttributeMap::ContainerT* rhs, AttributeMap::ContainerT* merged, AttributeMap::ContainerT* conflict); bool CheckGeneralAttributeKeysCoverage(TfLiteAttrMapType type, const AttributeMap::ContainerT* lhs, const AttributeMap::ContainerT* rhs, AttributeMap::ContainerT* conflict); } } #endif #include "tensorflow/lite/core/async/interop/reconcile_fns.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <iterator> #include <set> #include "tensorflow/lite/core/async/interop/attribute_map_internal.h" #include "tensorflow/lite/core/async/interop/c/types.h" namespace tflite { namespace interop { namespace { template <typename T> T gcd(T x, T y) { while (y) { auto m = x % y; x = y; y = m; } return x; } template <typename T> T lcm(T x, T y) { return x / gcd(x, y) * y; } void ReconcileAlignment(size_t l, size_t r, AttributeMap::ContainerT* merged) { merged->insert_or_assign(static_cast<size_t>(kTfLiteBufferAttrKeyAlignment), lcm(l, r)); } void ReconcilePadding(size_t l, size_t r, AttributeMap::ContainerT* merged) { merged->insert_or_assign(static_cast<size_t>(kTfLiteBufferAttrKeyPadding), lcm(l, r)); } bool CheckMultiples(size_t l, size_t r) { return l % r == 0; } void ReconcileSize(size_t l, size_t r, AttributeMap::ContainerT* merged) { merged->insert_or_assign(static_cast<size_t>(kTfLiteBufferAttrKeySize), std::max(l, r)); } bool CheckSize(size_t l, size_t r) { return l >= r; } } bool ReconcileGeneralAttributeKeys(TfLiteAttrMapType type, const AttributeMap::ContainerT* lhs, const AttributeMap::ContainerT* rhs, AttributeMap::ContainerT* merged, AttributeMap::ContainerT* conflict) { if (lhs == nullptr || rhs == nullptr || merged == nullptr) return false; bool ret = true; std::set<uint32_t> keys; std::transform(lhs->begin(), lhs->end(), std::inserter(keys, keys.end()), [](auto pair) { return pair.first; }); std::transform(rhs->begin(), rhs->end(), std::inserter(keys, keys.end()), [](auto pair) { return pair.first; }); for (auto k : keys) { const auto l = lhs->find(k); const auto r = rhs->find(k); if (l == lhs->end() || l->second.GetPtr() == nullptr) { merged->insert_or_assign(k, r->second); continue; } if (r == rhs->end() || r->second.GetPtr() == nullptr) { merged->insert_or_assign(k, l->second); continue; } if (type == kTfLiteAttrMapTypeBuffer) { switch (static_cast<TfLiteBufferAttrKey>(k)) { case kTfLiteBufferAttrKeySize: ReconcileSize(*l->second.Get<size_t>(), *r->second.Get<size_t>(), merged); break; case kTfLiteBufferAttrKeyAlignment: ReconcileAlignment(*l->second.Get<size_t>(), *r->second.Get<size_t>(), merged); break; case kTfLiteBufferAttrKeyPadding: ReconcilePadding(*l->second.Get<size_t>(), *r->second.Get<size_t>(), merged); break; default: if (l->second == r->second) { merged->insert_or_assign(k, l->second); } else { ret = false; if (conflict) conflict->insert_or_assign(k, r->second); } } } else { if (l->second == r->second) { merged->insert_or_assign(k, l->second); } else { ret = false; if (conflict) conflict->insert_or_assign(k, r->second); } } } return ret; } bool CheckGeneralAttributeKeysCoverage(TfLiteAttrMapType type, const AttributeMap::ContainerT* lhs, const AttributeMap::ContainerT* rhs, AttributeMap::ContainerT* conflict) { if (lhs == nullptr || rhs == nullptr) return false; bool ret = true; std::set<uint32_t> keys; std::transform(lhs->begin(), lhs->end(), std::inserter(keys, keys.end()), [](auto pair) { return pair.first; }); std::transform(rhs->begin(), rhs->end(), std::inserter(keys, keys.end()), [](auto pair) { return pair.first; }); for (auto k : keys) { bool has_conflict = false; const auto l = lhs->find(k); const auto r = rhs->find(k); if (r == rhs->end() || r->second.GetPtr() == nullptr) { continue; } else if (l == lhs->end() || l->second.GetPtr() == nullptr) { has_conflict = true; } else { if (type == kTfLiteAttrMapTypeBuffer) { switch (static_cast<TfLiteBufferAttrKey>(k)) { case kTfLiteBufferAttrKeySize: has_conflict |= !CheckSize(*l->second.Get<size_t>(), *r->second.Get<size_t>()); break; case kTfLiteBufferAttrKeyAlignment: has_conflict |= !CheckMultiples(*l->second.Get<size_t>(), *r->second.Get<size_t>()); break; case kTfLiteBufferAttrKeyPadding: has_conflict |= !CheckSize(*l->second.Get<size_t>(), *r->second.Get<size_t>()); break; default: if (l->second != r->second) { has_conflict = true; } } } else { if (l->second != r->second) { has_conflict = true; } } } if (has_conflict) { if (conflict != nullptr) conflict->insert_or_assign(k, r->second); ret = false; } } return ret; } } }
#include "tensorflow/lite/core/async/interop/reconcile_fns.h" #include <cstddef> #include <cstdint> #include <cstring> #include <string> #include <tuple> #include <gtest/gtest.h> #include "tensorflow/lite/core/async/interop/attribute_map_internal.h" #include "tensorflow/lite/core/async/interop/c/types.h" namespace tflite::interop { namespace { using ContainerT = AttributeMap::ContainerT; template <typename ValT, typename KeyT> void SetAttr(ContainerT* c, KeyT k, ValT v) { c->insert_or_assign(static_cast<uint32_t>(k), v); } template <typename ValT, typename KeyT> ValT GetAttr(const ContainerT& c, KeyT k) { return *(c.at(static_cast<uint32_t>(k)).Get<ValT>()); } TEST(ReconcileTest, NullCheck) { ContainerT m1, m2; EXPECT_FALSE(ReconcileGeneralAttributeKeys(kTfLiteAttrMapTypeBuffer, &m1, &m2, nullptr, nullptr)); EXPECT_FALSE(ReconcileGeneralAttributeKeys(kTfLiteAttrMapTypeBuffer, nullptr, &m1, &m2, nullptr)); EXPECT_FALSE(ReconcileGeneralAttributeKeys(kTfLiteAttrMapTypeBuffer, &m1, nullptr, &m2, nullptr)); EXPECT_FALSE(CheckGeneralAttributeKeysCoverage(kTfLiteAttrMapTypeBuffer, nullptr, &m1, &m2)); EXPECT_FALSE(CheckGeneralAttributeKeysCoverage(kTfLiteAttrMapTypeBuffer, &m1, nullptr, &m2)); } TEST(ReconcileTest, MissingAttributeTest) { { ContainerT lhs, rhs, merged; SetAttr(&lhs, kTfLiteBufferAttrKeyAlignment, size_t(4)); EXPECT_TRUE(ReconcileGeneralAttributeKeys(kTfLiteAttrMapTypeBuffer, &lhs, &rhs, &merged, nullptr)); EXPECT_EQ(4, GetAttr<size_t>(merged, kTfLiteBufferAttrKeyAlignment)); } { ContainerT lhs, rhs, merged; SetAttr(&rhs, kTfLiteBufferAttrKeyAlignment, size_t(4)); EXPECT_TRUE(ReconcileGeneralAttributeKeys(kTfLiteAttrMapTypeBuffer, &lhs, &rhs, &merged, nullptr)); EXPECT_EQ(4, GetAttr<size_t>(merged, kTfLiteBufferAttrKeyAlignment)); } { ContainerT lhs, rhs, merged; const char value[] = "string"; SetAttr(&rhs, kTfLiteSynchronizationAttrKeyObjectTypeName, value); EXPECT_TRUE(ReconcileGeneralAttributeKeys(kTfLiteAttrMapTypeSync, &lhs, &rhs, &merged, nullptr)); EXPECT_EQ(value, GetAttr<const char*>( merged, kTfLiteSynchronizationAttrKeyObjectTypeName)); } } TEST(CheckCoverageTest, MissingAttributeTest) { { ContainerT lhs, rhs; SetAttr(&lhs, kTfLiteBufferAttrKeyAlignment, size_t(4)); EXPECT_TRUE(CheckGeneralAttributeKeysCoverage(kTfLiteAttrMapTypeBuffer, &lhs, &rhs, nullptr)); } { ContainerT lhs, rhs, merged; SetAttr(&rhs, kTfLiteBufferAttrKeyAlignment, size_t(4)); EXPECT_TRUE(ReconcileGeneralAttributeKeys(kTfLiteAttrMapTypeBuffer, &lhs, &rhs, &merged, nullptr)); EXPECT_FALSE(CheckGeneralAttributeKeysCoverage(kTfLiteAttrMapTypeBuffer, &lhs, &rhs, nullptr)); } } class ReconcileAlignmentTest : public testing::TestWithParam<std::tuple<size_t, size_t, size_t>> {}; TEST_P(ReconcileAlignmentTest, Test) { ContainerT lhs, rhs, merged; SetAttr(&lhs, kTfLiteBufferAttrKeyAlignment, std::get<0>(GetParam())); SetAttr(&rhs, kTfLiteBufferAttrKeyAlignment, std::get<1>(GetParam())); EXPECT_TRUE(ReconcileGeneralAttributeKeys(kTfLiteAttrMapTypeBuffer, &lhs, &rhs, &merged, nullptr)); EXPECT_EQ(std::get<2>(GetParam()), GetAttr<size_t>(merged, kTfLiteBufferAttrKeyAlignment)); } INSTANTIATE_TEST_SUITE_P(ReconcileAlignmentTest, ReconcileAlignmentTest, testing::Values(std::make_tuple(4, 4, 4), std::make_tuple(1, 4, 4), std::make_tuple(8, 4, 8), std::make_tuple(8, 3, 24))); class CheckAlignmentTest : public testing::TestWithParam<std::tuple<size_t, size_t, bool>> {}; TEST_P(CheckAlignmentTest, Test) { ContainerT lhs, rhs, conflict; SetAttr(&lhs, kTfLiteBufferAttrKeyAlignment, std::get<0>(GetParam())); SetAttr(&rhs, kTfLiteBufferAttrKeyAlignment, std::get<1>(GetParam())); EXPECT_EQ(std::get<2>(GetParam()), CheckGeneralAttributeKeysCoverage(kTfLiteAttrMapTypeBuffer, &lhs, &rhs, &conflict)); EXPECT_EQ( !std::get<2>(GetParam()), conflict.count(static_cast<uint32_t>(kTfLiteBufferAttrKeyAlignment))); } INSTANTIATE_TEST_SUITE_P(CheckAlignmentTest, CheckAlignmentTest, testing::Values(std::make_tuple(4, 4, true), std::make_tuple(4, 1, true), std::make_tuple(1, 4, false))); class ReconcilePaddingTest : public testing::TestWithParam<std::tuple<size_t, size_t, size_t>> {}; TEST_P(ReconcilePaddingTest, Test) { ContainerT lhs, rhs, merged; SetAttr(&lhs, kTfLiteBufferAttrKeyPadding, std::get<0>(GetParam())); SetAttr(&rhs, kTfLiteBufferAttrKeyPadding, std::get<1>(GetParam())); EXPECT_TRUE(ReconcileGeneralAttributeKeys(kTfLiteAttrMapTypeBuffer, &lhs, &rhs, &merged, nullptr)); EXPECT_EQ(std::get<2>(GetParam()), GetAttr<size_t>(merged, kTfLiteBufferAttrKeyPadding)); } INSTANTIATE_TEST_SUITE_P(ReconcilePaddingTest, ReconcilePaddingTest, testing::Values(std::make_tuple(4, 4, 4), std::make_tuple(1, 4, 4), std::make_tuple(8, 4, 8), std::make_tuple(8, 3, 24))); class CheckPaddingTest : public testing::TestWithParam<std::tuple<size_t, size_t, bool>> {}; TEST_P(CheckPaddingTest, Test) { ContainerT lhs, rhs, conflict; SetAttr(&lhs, kTfLiteBufferAttrKeyPadding, std::get<0>(GetParam())); SetAttr(&rhs, kTfLiteBufferAttrKeyPadding, std::get<1>(GetParam())); EXPECT_EQ(std::get<2>(GetParam()), CheckGeneralAttributeKeysCoverage(kTfLiteAttrMapTypeBuffer, &lhs, &rhs, &conflict)); EXPECT_EQ(!std::get<2>(GetParam()), conflict.count(static_cast<uint32_t>(kTfLiteBufferAttrKeyPadding))); } INSTANTIATE_TEST_SUITE_P(CheckPaddingTest, CheckPaddingTest, testing::Values(std::make_tuple(4, 4, true), std::make_tuple(4, 1, true), std::make_tuple(1, 4, false))); class ReconcileSizeTest : public testing::TestWithParam<std::tuple<size_t, size_t, size_t>> {}; TEST_P(ReconcileSizeTest, Test) { ContainerT lhs, rhs, merged; SetAttr(&lhs, kTfLiteBufferAttrKeySize, std::get<0>(GetParam())); SetAttr(&rhs, kTfLiteBufferAttrKeySize, std::get<1>(GetParam())); EXPECT_TRUE(ReconcileGeneralAttributeKeys(kTfLiteAttrMapTypeBuffer, &lhs, &rhs, &merged, nullptr)); EXPECT_EQ(std::get<2>(GetParam()), GetAttr<size_t>(merged, kTfLiteBufferAttrKeySize)); } INSTANTIATE_TEST_SUITE_P(ReconcileSizeTest, ReconcileSizeTest, testing::Values(std::make_tuple(4, 4, 4), std::make_tuple(1, 4, 4), std::make_tuple(8, 4, 8), std::make_tuple(8, 3, 8))); class CheckSizeTest : public testing::TestWithParam<std::tuple<size_t, size_t, bool>> {}; TEST_P(CheckSizeTest, Test) { ContainerT lhs, rhs, conflict; SetAttr(&lhs, kTfLiteBufferAttrKeySize, std::get<0>(GetParam())); SetAttr(&rhs, kTfLiteBufferAttrKeySize, std::get<1>(GetParam())); EXPECT_EQ(std::get<2>(GetParam()), CheckGeneralAttributeKeysCoverage(kTfLiteAttrMapTypeBuffer, &lhs, &rhs, &conflict)); EXPECT_EQ(!std::get<2>(GetParam()), conflict.count(static_cast<uint32_t>(kTfLiteBufferAttrKeySize))); } INSTANTIATE_TEST_SUITE_P(CheckSizeTest, CheckSizeTest, testing::Values(std::make_tuple(4, 4, true), std::make_tuple(4, 1, true), std::make_tuple(1, 4, false))); class ReconcileNameTest : public testing::TestWithParam<std::tuple<TfLiteAttrMapType, uint32_t>> {}; TEST_P(ReconcileNameTest, Test) { constexpr char name_string1[] = "string1"; std::string name_string1_1 = "string1"; constexpr char name_string2[] = "string2"; { ContainerT lhs, rhs, merged; SetAttr(&lhs, std::get<1>(GetParam()), name_string1); SetAttr(&rhs, std::get<1>(GetParam()), name_string1_1.c_str()); EXPECT_TRUE(ReconcileGeneralAttributeKeys(std::get<0>(GetParam()), &lhs, &rhs, &merged, nullptr)); EXPECT_EQ(0, strcmp(GetAttr<const char*>(merged, std::get<1>(GetParam())), name_string1)); } { ContainerT lhs, rhs, merged, conflict; SetAttr(&lhs, std::get<1>(GetParam()), name_string1); SetAttr(&rhs, std::get<1>(GetParam()), name_string2); EXPECT_FALSE(ReconcileGeneralAttributeKeys(std::get<0>(GetParam()), &lhs, &rhs, &merged, &conflict)); EXPECT_TRUE(conflict.count(std::get<1>(GetParam()))); } } INSTANTIATE_TEST_SUITE_P( ReconcileNameTest, ReconcileNameTest, testing::Values( std::make_tuple( kTfLiteAttrMapTypeBuffer, static_cast<uint32_t>(kTfLiteBufferAttrKeyResourceTypeName)), std::make_tuple(kTfLiteAttrMapTypeSync, static_cast<uint32_t>( kTfLiteSynchronizationAttrKeyObjectTypeName)))); class CheckNameTest : public testing::TestWithParam<std::tuple<TfLiteAttrMapType, uint32_t>> {}; TEST_P(CheckNameTest, Test) { constexpr char name_string1[] = "string1"; std::string name_string1_1 = "string1"; constexpr char name_string2[] = "string2"; { ContainerT lhs, rhs; SetAttr(&lhs, std::get<1>(GetParam()), name_string1); SetAttr(&rhs, std::get<1>(GetParam()), name_string1_1.c_str()); EXPECT_TRUE(CheckGeneralAttributeKeysCoverage(std::get<0>(GetParam()), &lhs, &rhs, nullptr)); } { ContainerT lhs, rhs, conflict; SetAttr(&lhs, std::get<1>(GetParam()), name_string1); SetAttr(&rhs, std::get<1>(GetParam()), name_string2); EXPECT_FALSE(CheckGeneralAttributeKeysCoverage(std::get<0>(GetParam()), &lhs, &rhs, &conflict)); EXPECT_TRUE(conflict.count(std::get<1>(GetParam()))); } } INSTANTIATE_TEST_SUITE_P( CheckNameTest, CheckNameTest, testing::Values( std::make_tuple( kTfLiteAttrMapTypeBuffer, static_cast<uint32_t>(kTfLiteBufferAttrKeyResourceTypeName)), std::make_tuple(kTfLiteAttrMapTypeSync, static_cast<uint32_t>( kTfLiteSynchronizationAttrKeyObjectTypeName)))); } }
960
cpp
tensorflow/tensorflow
attribute_map_internal
tensorflow/lite/core/async/interop/attribute_map_internal.cc
tensorflow/lite/core/async/interop/attribute_map_internal_test.cc
#ifndef TENSORFLOW_LITE_CORE_ASYNC_INTEROP_ATTRIBUTE_MAP_INTERNAL_H_ #define TENSORFLOW_LITE_CORE_ASYNC_INTEROP_ATTRIBUTE_MAP_INTERNAL_H_ #include <cstdint> #include <map> #include <string> #include "tensorflow/lite/core/async/interop/c/types.h" #include "tensorflow/lite/core/async/interop/variant.h" namespace tflite { namespace interop { class AttributeMap { public: explicit AttributeMap(TfLiteAttrMapType type) : type_(type) {} using KeyT = uint32_t; using CustomKeyT = std::string; using ValueT = tflite::interop::Variant; using ContainerT = std::map<KeyT, ValueT>; using CustomContainerT = std::map<CustomKeyT, ValueT>; bool IsBufferAttributeMap() const { return type_ == kTfLiteAttrMapTypeBuffer; } bool IsSyncAttributeMap() const { return type_ == kTfLiteAttrMapTypeSync; } bool ReconcileAttributes(const AttributeMap* other, AttributeMap* merged, AttributeMap* conflict) const; bool CheckAttributeCoverage(const AttributeMap* other, AttributeMap* conflict) const; template <typename AttrKeyT, typename ValueT> bool GetAttr(AttrKeyT key, ValueT* value) const { if (auto it = attrs_.find(static_cast<uint32_t>(key)); it != attrs_.end()) { if (auto* v = it->second.Get<ValueT>(); v != nullptr) { *value = *v; return true; } } return false; } template <typename AttrKeyT, typename ValueT> void SetAttr(AttrKeyT key, ValueT value) { attrs_.insert_or_assign(static_cast<KeyT>(key), value); } template <typename ValueT> bool GetCustomAttr(CustomKeyT key, ValueT* value) const { if (auto it = custom_attrs_.find(key); it != custom_attrs_.end()) { if (auto* v = it->second.Get<ValueT>(); v != nullptr) { *value = *v; return true; } } return false; } template <typename ValueT> void SetCustomAttr(CustomKeyT key, ValueT value) { custom_attrs_.insert_or_assign(key, value); } private: TfLiteAttrMapType type_; ContainerT attrs_; CustomContainerT custom_attrs_; }; } } struct TfLiteAttributeMap { explicit TfLiteAttributeMap(TfLiteAttrMapType type) : impl(type) {} tflite::interop::AttributeMap impl; }; #endif #include "tensorflow/lite/core/async/interop/attribute_map_internal.h" #include "tensorflow/lite/core/async/interop/reconcile_fns.h" namespace tflite { namespace interop { bool AttributeMap::ReconcileAttributes(const AttributeMap* other, AttributeMap* merged, AttributeMap* conflict) const { if (other == nullptr || merged == nullptr) return false; if (type_ != other->type_) return false; merged->type_ = type_; if (conflict) conflict->type_ = type_; return tflite::interop::ReconcileGeneralAttributeKeys( type_, &attrs_, &other->attrs_, &merged->attrs_, conflict ? &conflict->attrs_ : nullptr); } bool AttributeMap::CheckAttributeCoverage(const AttributeMap* other, AttributeMap* conflict) const { if (other == nullptr) return false; if (type_ != other->type_) return false; if (conflict) conflict->type_ = type_; return tflite::interop::CheckGeneralAttributeKeysCoverage( type_, &attrs_, &other->attrs_, conflict ? &conflict->attrs_ : nullptr); } } }
#include "tensorflow/lite/core/async/interop/attribute_map_internal.h" #include <cstdint> #include <gtest/gtest.h> #include "tensorflow/lite/core/async/interop/c/types.h" namespace tflite { namespace interop { namespace { TEST(AttributeMapTest, TypeTest) { { auto attrs = AttributeMap(kTfLiteAttrMapTypeBuffer); EXPECT_TRUE(attrs.IsBufferAttributeMap()); EXPECT_FALSE(attrs.IsSyncAttributeMap()); } { auto attrs = AttributeMap(kTfLiteAttrMapTypeSync); EXPECT_TRUE(attrs.IsSyncAttributeMap()); EXPECT_FALSE(attrs.IsBufferAttributeMap()); } } TEST(AttributeMapTest, AccessorTest) { auto attrs = AttributeMap(kTfLiteAttrMapTypeBuffer); { attrs.SetAttr(kTfLiteBufferAttrKeyAlignment, size_t(8)); size_t result; EXPECT_TRUE(attrs.GetAttr(kTfLiteBufferAttrKeyAlignment, &result)); EXPECT_EQ(8, result); } { attrs.SetCustomAttr("Foo", 12); int result; EXPECT_FALSE(attrs.GetCustomAttr("Bar", &result)); EXPECT_TRUE(attrs.GetCustomAttr("Foo", &result)); EXPECT_EQ(12, result); } } TEST(AttributeMapTest, ReconcileFailDifferentTypes) { auto attrs1 = AttributeMap(kTfLiteAttrMapTypeBuffer); auto attrs2 = AttributeMap(kTfLiteAttrMapTypeSync); auto attrs3 = AttributeMap(kTfLiteAttrMapTypeBuffer); EXPECT_FALSE( attrs1.ReconcileAttributes(&attrs2, &attrs3, nullptr)); EXPECT_FALSE(attrs1.CheckAttributeCoverage(&attrs2, &attrs3)); } TEST(AttributeMapTest, NullptrTest) { auto attrs1 = AttributeMap(kTfLiteAttrMapTypeBuffer); auto attrs2 = AttributeMap(kTfLiteAttrMapTypeBuffer); EXPECT_FALSE(attrs1.ReconcileAttributes(nullptr, &attrs2, nullptr)); EXPECT_FALSE(attrs1.ReconcileAttributes(&attrs2, nullptr, nullptr)); EXPECT_FALSE(attrs1.CheckAttributeCoverage(nullptr, nullptr)); } TEST(AttributeMapTest, ReconcileDifferentTypes) { auto attrs1 = AttributeMap(kTfLiteAttrMapTypeBuffer); auto attrs2 = AttributeMap(kTfLiteAttrMapTypeSync); auto attrs3 = AttributeMap(kTfLiteAttrMapTypeBuffer); EXPECT_FALSE(attrs1.ReconcileAttributes(&attrs2, &attrs3, nullptr)); } TEST(AttributeMapTest, ReconcileTest) { auto attrs1 = AttributeMap(kTfLiteAttrMapTypeBuffer); attrs1.SetAttr(kTfLiteBufferAttrKeyAlignment, size_t(8)); auto attrs2 = AttributeMap(kTfLiteAttrMapTypeBuffer); attrs2.SetAttr(kTfLiteBufferAttrKeyAlignment, size_t(4)); auto attrs3 = AttributeMap(kTfLiteAttrMapTypeSync); auto attrs4 = AttributeMap(kTfLiteAttrMapTypeSync); EXPECT_TRUE(attrs1.ReconcileAttributes(&attrs2, &attrs3, &attrs4)); EXPECT_TRUE(attrs3.IsBufferAttributeMap()); EXPECT_TRUE(attrs4.IsBufferAttributeMap()); size_t result; EXPECT_TRUE(attrs3.GetAttr(kTfLiteBufferAttrKeyAlignment, &result)); EXPECT_EQ(8, result); } TEST(AttributeMapTest, CoverageTest) { auto attrs1 = AttributeMap(kTfLiteAttrMapTypeBuffer); attrs1.SetAttr(kTfLiteBufferAttrKeyAlignment, size_t(8)); auto attrs2 = AttributeMap(kTfLiteAttrMapTypeBuffer); attrs2.SetAttr(kTfLiteBufferAttrKeyAlignment, size_t(4)); auto attrs3 = AttributeMap(kTfLiteAttrMapTypeSync); EXPECT_TRUE(attrs1.CheckAttributeCoverage(&attrs2, &attrs3)); EXPECT_TRUE(attrs3.IsBufferAttributeMap()); } TEST(AttributeMapTest, CoverageFailedTest) { auto attrs1 = AttributeMap(kTfLiteAttrMapTypeBuffer); attrs1.SetAttr(kTfLiteBufferAttrKeyAlignment, size_t(10)); auto attrs2 = AttributeMap(kTfLiteAttrMapTypeBuffer); attrs2.SetAttr(kTfLiteBufferAttrKeyAlignment, size_t(4)); auto conflict = AttributeMap(kTfLiteAttrMapTypeSync); EXPECT_FALSE(attrs1.CheckAttributeCoverage(&attrs2, &conflict)); EXPECT_TRUE(conflict.IsBufferAttributeMap()); size_t result; EXPECT_TRUE(conflict.GetAttr(kTfLiteBufferAttrKeyAlignment, &result)); EXPECT_EQ(4, result); } } } }
961
cpp
tensorflow/tensorflow
variant
tensorflow/lite/core/async/interop/variant.cc
tensorflow/lite/core/async/interop/variant_test.cc
#ifndef TENSORFLOW_CORE_FRAMEWORK_VARIANT_H_ #define TENSORFLOW_CORE_FRAMEWORK_VARIANT_H_ #include <functional> #include <iostream> #include <memory> #include <type_traits> #include <unordered_map> #include <utility> #include "absl/memory/memory.h" #include "tensorflow/core/framework/type_index.h" #include "tensorflow/core/framework/variant_encode_decode.h" #include "tensorflow/core/framework/variant_tensor_data.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/strcat.h" namespace tensorflow { template <typename T> std::string TypeNameVariant(const T& value); template <typename T> std::string DebugStringVariant(const T& value); template <typename T> bool DecodeVariant(VariantTensorData* data, T* value); template <typename T> bool DecodeVariant(std::string* buf, T* value); template <typename T> void EncodeVariant(const T& value, VariantTensorData* data); template <typename T> void EncodeVariant(const T& value, std::string* buf); class Variant { public: Variant() noexcept : heap_value_(nullptr), is_inline_(false) {} ~Variant(); Variant(const Variant& other); Variant(Variant&& other) noexcept; template <typename T, typename VT = typename std::decay<T>::type, typename std::enable_if<!std::is_same<Variant, VT>::value && std::is_move_constructible<VT>::value, void>::type* = nullptr> Variant(T&& value); template <typename T, typename VT = typename std::decay<T>::type, typename std::enable_if<!std::is_same<Variant, VT>::value && std::is_copy_constructible<VT>::value, void>::type* = nullptr> Variant(const T& value); template <typename T, typename VT = typename std::decay<T>::type, typename std::enable_if<!std::is_same<Variant, VT>::value && std::is_copy_constructible<VT>::value, void>::type* = nullptr> Variant& operator=(const T& value); template <typename T, typename VT = typename std::decay<T>::type, typename std::enable_if<!std::is_same<Variant, VT>::value && std::is_move_constructible<VT>::value, void>::type* = nullptr> Variant& operator=(T&& value); Variant& operator=(const Variant& rhs) { if (&rhs == this) return *this; Variant(rhs).swap(*this); return *this; } Variant& operator=(Variant&& rhs) noexcept { if (&rhs == this) return *this; Variant(std::move(rhs)).swap(*this); return *this; } template <typename T, class... Args> T& emplace(Args&&... args) { ResetMemory(); is_inline_ = CanInlineType<T>(); if (is_inline_) { new (&inline_value_) InlineValue(InlineValue::Tag<T>{}, std::forward<Args>(args)...); return static_cast<Variant::Value<T>*>(inline_value_.AsValueInterface()) ->value; } else { new (&heap_value_) HeapValue( absl::make_unique<Value<T>>(InPlace(), std::forward<Args>(args)...)); return static_cast<Variant::Value<T>*>(heap_value_.get())->value; } } bool is_empty() const { return GetValue() == nullptr; } void clear() noexcept; void swap(Variant& other) noexcept; TypeIndex TypeId() const { const TypeIndex VoidTypeIndex = TypeIndex::Make<void>(); if (is_empty()) { return VoidTypeIndex; } return GetValue()->TypeId(); } std::string DebugString() const { return strings::StrCat("Variant<type: ", TypeName(), " value: ", SummarizeValue(), ">"); } std::string SummarizeValue() const { return is_empty() ? "[empty]" : GetValue()->DebugString(); } template <typename T> T* get() { const TypeIndex TTypeIndex = TypeIndex::Make<T>(); if (is_empty() || (TTypeIndex != TypeId())) return nullptr; return std::addressof(static_cast<Variant::Value<T>*>(GetValue())->value); } template <typename T> const T* get() const { const TypeIndex TTypeIndex = TypeIndex::Make<T>(); if (is_empty() || (TTypeIndex != TypeId())) return nullptr; return std::addressof( static_cast<const Variant::Value<T>*>(GetValue())->value); } std::string TypeName() const { if (is_empty()) { return ""; } return GetValue()->TypeName(); } void Encode(VariantTensorData* data) const { if (!is_empty()) { GetValue()->Encode(data); } } bool Decode(VariantTensorData data); void Encode(std::string* buf) const { if (!is_empty()) { GetValue()->Encode(buf); } } bool Decode(std::string buf) { if (!is_empty()) { return GetValue()->Decode(std::move(buf)); } return true; } template <typename VT> static constexpr bool CanInlineType() { return ((sizeof(Value<VT>) <= InlineValue::kMaxValueSize) && (alignof(Value<VT>) <= kMaxInlineValueAlignSize)); } private: struct in_place_t {}; static constexpr in_place_t InPlace() { return in_place_t{}; } struct ValueInterface { virtual ~ValueInterface() = default; virtual TypeIndex TypeId() const = 0; virtual void* RawPtr() = 0; virtual const void* RawPtr() const = 0; virtual std::unique_ptr<ValueInterface> Clone() const = 0; virtual void CloneInto(ValueInterface* memory) const = 0; virtual void MoveAssign(ValueInterface* memory) = 0; virtual void MoveInto(ValueInterface* memory) = 0; virtual std::string TypeName() const = 0; virtual std::string DebugString() const = 0; virtual void Encode(VariantTensorData* data) const = 0; virtual bool Decode(VariantTensorData data) = 0; virtual void Encode(std::string* buf) const = 0; virtual bool Decode(std::string data) = 0; }; template <typename T> struct Value final : ValueInterface { template <class... Args> explicit Value(in_place_t , Args&&... args) : value(std::forward<Args>(args)...) {} ~Value() final = default; TypeIndex TypeId() const final { const TypeIndex value_type_index = TypeIndex::Make<typename std::decay<T>::type>(); return value_type_index; } void* RawPtr() final { return &value; } const void* RawPtr() const final { return &value; } std::unique_ptr<ValueInterface> Clone() const final { return absl::make_unique<Value>(InPlace(), value); } void MoveAssign(ValueInterface* memory) final { CHECK(TypeId() == memory->TypeId()) << TypeId().name() << " vs. " << memory->TypeId().name(); static_cast<Value*>(memory)->value = std::move(value); } void CloneInto(ValueInterface* memory) const final { new (memory) Value(InPlace(), value); } void MoveInto(ValueInterface* memory) final { new (memory) Value(InPlace(), std::move(value)); } std::string TypeName() const final { return TypeNameVariant(value); } std::string DebugString() const final { return DebugStringVariant(value); } void Encode(VariantTensorData* data) const final { EncodeVariant(value, data); } bool Decode(VariantTensorData data) final { return DecodeVariant(&data, &value); } void Encode(std::string* buf) const final { EncodeVariant(value, buf); } bool Decode(std::string buf) final { return DecodeVariant(&buf, &value); } T value; }; static constexpr int kMaxInlineValueAlignSize = alignof(Value<void*>); using HeapValue = std::unique_ptr<ValueInterface>; struct InlineValue { static constexpr int kMaxValueSize = (64 - 8); typedef char ValueDataArray[kMaxValueSize]; alignas(kMaxInlineValueAlignSize) ValueDataArray value_data; template <typename VT> struct Tag {}; template <typename VT, class... Args> explicit InlineValue(Tag<VT> , Args&&... args) noexcept { Value<VT>* inline_value_data = reinterpret_cast<Value<VT>*>(value_data); new (inline_value_data) Value<VT>(InPlace(), std::forward<Args>(args)...); } InlineValue(const InlineValue& other) noexcept { other.AsValueInterface()->CloneInto(AsValueInterface()); } InlineValue(InlineValue&& other) noexcept { other.AsValueInterface()->MoveInto(AsValueInterface()); } void ResetMemory() { AsValueInterface()->~ValueInterface(); } InlineValue& operator=(const InlineValue& other) { if (&other == this) return *this; ResetMemory(); other.AsValueInterface()->CloneInto(AsValueInterface()); return *this; } InlineValue& operator=(InlineValue&& other) { if (&other == this) return *this; if (AsValueInterface()->TypeId() == other.AsValueInterface()->TypeId()) { other.AsValueInterface()->MoveAssign(AsValueInterface()); } else { ResetMemory(); other.AsValueInterface()->MoveInto(AsValueInterface()); } return *this; } ValueInterface* AsValueInterface() { return reinterpret_cast<ValueInterface*>(value_data); } const ValueInterface* AsValueInterface() const { return reinterpret_cast<const ValueInterface*>(value_data); } ~InlineValue() { ResetMemory(); } }; union { HeapValue heap_value_; InlineValue inline_value_; }; bool is_inline_; bool IsInlineValue() const { return is_inline_; } void ResetMemory() { if (IsInlineValue()) { inline_value_.~InlineValue(); } else { heap_value_.~HeapValue(); } } template <typename... Args> void ResetAndSetInline(Args&&... args) noexcept { ResetMemory(); new (&inline_value_) InlineValue(std::forward<Args>(args)...); is_inline_ = true; } template <typename... Args> void ResetAndSetHeap(Args&&... args) noexcept { ResetMemory(); new (&heap_value_) HeapValue(std::forward<Args>(args)...); is_inline_ = false; } ValueInterface* GetValue() { if (IsInlineValue()) { return inline_value_.AsValueInterface(); } else { return heap_value_.get(); } } const ValueInterface* GetValue() const { if (IsInlineValue()) { return inline_value_.AsValueInterface(); } else { return heap_value_.get(); } } template <typename VT, typename T> void InsertValue(T&& value) { if (IsInlineValue()) { new (&inline_value_) InlineValue(InlineValue::Tag<VT>{}, std::forward<T>(value)); } else { new (&heap_value_) HeapValue( absl::make_unique<Value<VT>>(InPlace(), std::forward<T>(value))); } } }; static_assert(sizeof(Variant) <= 64, "Expected internal representation to be 64 bytes."); inline Variant::Variant(const Variant& other) : is_inline_(other.IsInlineValue()) { if (IsInlineValue()) { new (&inline_value_) InlineValue(other.inline_value_); } else { new (&heap_value_) HeapValue(other.heap_value_ ? other.heap_value_->Clone() : nullptr); } } inline Variant::Variant(Variant&& other) noexcept : is_inline_(other.IsInlineValue()) { if (IsInlineValue()) { new (&inline_value_) InlineValue(std::move(other.inline_value_)); } else { new (&heap_value_) HeapValue(std::move(other.heap_value_)); } } template <typename T, typename VT, typename std::enable_if<!std::is_same<Variant, VT>::value && std::is_move_constructible<VT>::value, void>::type*> inline Variant::Variant(T&& value) : is_inline_(CanInlineType<VT>()) { InsertValue<VT>(std::forward<T>(value)); } template <typename T, typename VT, typename std::enable_if<!std::is_same<Variant, VT>::value && std::is_copy_constructible<VT>::value, void>::type*> inline Variant::Variant(const T& value) : is_inline_(CanInlineType<VT>()) { InsertValue<VT>(value); } template <typename T, typename VT, typename std::enable_if<!std::is_same<Variant, VT>::value && std::is_move_constructible<VT>::value, void>::type*> inline Variant& Variant::operator=(T&& value) { ResetMemory(); is_inline_ = CanInlineType<VT>(); InsertValue<VT>(std::forward<T>(value)); return *this; } template <typename T, typename VT, typename std::enable_if<!std::is_same<Variant, VT>::value && std::is_copy_constructible<VT>::value, void>::type*> inline Variant& Variant::operator=(const T& value) { ResetMemory(); is_inline_ = CanInlineType<VT>(); InsertValue<VT>(value); return *this; } inline void Variant::clear() noexcept { ResetAndSetHeap(nullptr); } inline void Variant::swap(Variant& other) noexcept { if (is_empty()) { if (other.IsInlineValue()) { ResetAndSetInline(std::move(other.inline_value_)); } else { ResetAndSetHeap(std::move(other.heap_value_)); } other.clear(); } else if (other.is_empty()) { if (IsInlineValue()) { other.ResetAndSetInline(std::move(inline_value_)); } else { other.ResetAndSetHeap(std::move(heap_value_)); } clear(); } else { if (other.IsInlineValue() && IsInlineValue()) { std::swap(inline_value_, other.inline_value_); } else if (!other.IsInlineValue() && !IsInlineValue()) { std::swap(heap_value_, other.heap_value_); } else if (other.IsInlineValue() && !IsInlineValue()) { HeapValue v = std::move(heap_value_); ResetAndSetInline(std::move(other.inline_value_)); other.ResetAndSetHeap(std::move(v)); } else { HeapValue v = std::move(other.heap_value_); other.ResetAndSetInline(std::move(inline_value_)); ResetAndSetHeap(std::move(v)); } } } template <> void* Variant::get(); template <> const void* Variant::get() const; } #endif #include "tensorflow/core/framework/variant.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/variant_encode_decode.h" #include "tensorflow/core/framework/variant_op_registry.h" namespace tensorflow { Variant::~Variant() { ResetMemory(); } bool Variant::Decode(VariantTensorData data) { if (!is_empty()) { return GetValue()->Decode(std::move(data)); } return true; } template <> void* Variant::get() { if (is_empty()) { return nullptr; } return GetValue()->RawPtr(); } template <> const void* Variant::get() const { if (is_empty()) { return nullptr; } return GetValue()->RawPtr(); } template <> string TypeNameVariant(const VariantTensorDataProto& value) { return value.type_name(); } template <> void EncodeVariant(const VariantTensorDataProto& value, VariantTensorData* data) { data->FromConstProto(value); } template <> bool DecodeVariant(VariantTensorData* data, VariantTensorDataProto* value) { data->ToProto(value); return true; } template <> void EncodeVariant(const VariantTensorDataProto& value, string* buf) { value.SerializeToString(buf); } template <> bool DecodeVariant(string* buf, VariantTensorDataProto* value) { return value->ParseFromString(*buf); } void EncodeVariantList(const Variant* variant_array, int64_t n, std::unique_ptr<port::StringListEncoder> e) { for (int i = 0; i < n; ++i) { string s; variant_array[i].Encode(&s); e->Append(s); } e->Finalize(); } bool DecodeVariantList(std::unique_ptr<port::StringListDecoder> d, Variant* variant_array, int64_t n) { std::vector<uint32> sizes(n); if (!d->ReadSizes(&sizes)) return false; for (int i = 0; i < n; ++i) { if (variant_array[i].is_empty()) { variant_array[i] = VariantTensorDataProto(); } string str(d->Data(sizes[i]), sizes[i]); if (!variant_array[i].Decode(std::move(str))) return false; if (!DecodeUnaryVariant(&variant_array[i])) { LOG(ERROR) << "Could not decode variant with type_name: \"" << variant_array[i].TypeName() << "\". Perhaps you forgot to register a " "decoder via REGISTER_UNARY_VARIANT_DECODE_FUNCTION?"; return false; } } return true; } }
#include "tensorflow/core/framework/variant.h" #include <cstddef> #if defined(__x86_64__) #include <xmmintrin.h> #endif #include <vector> #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/variant_encode_decode.h" #include "tensorflow/core/framework/variant_tensor_data.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/lib/core/coding.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { template <typename T, bool BIG> struct Wrapper { T value; char big[BIG ? 256 : 1]; string TypeName() const { return "POD"; } }; template <bool BIG> using Int = Wrapper<int, BIG>; template <bool BIG> using Float = Wrapper<float, BIG>; template <bool BIG> class MaybeAlive { public: MaybeAlive() : alive_(false) {} explicit MaybeAlive(bool alive) : alive_(alive) { if (alive) ++live_counter_; } ~MaybeAlive() { if (alive_) --live_counter_; } MaybeAlive(const MaybeAlive& rhs) : alive_(rhs.alive_) { if (alive_) ++live_counter_; } MaybeAlive& operator=(const MaybeAlive& rhs) { if (this == &rhs) return *this; if (alive_) --live_counter_; alive_ = rhs.alive_; if (alive_) ++live_counter_; return *this; } MaybeAlive(MaybeAlive&& rhs) : alive_(false) { alive_ = std::move(rhs.alive_); if (alive_) ++live_counter_; } MaybeAlive& operator=(MaybeAlive&& rhs) { if (this == &rhs) return *this; if (alive_) --live_counter_; alive_ = std::move(rhs.alive_); if (alive_) ++live_counter_; return *this; } static int LiveCounter() { return live_counter_; } string TypeName() const { return "MaybeAlive"; } void Encode(VariantTensorData* data) const {} bool Decode(VariantTensorData data) { return false; } private: bool alive_; char big_[BIG ? 256 : 1]; static int live_counter_; }; template <> int MaybeAlive<false>::live_counter_ = 0; template <> int MaybeAlive<true>::live_counter_ = 0; template <bool BIG> class DeleteCounter { public: DeleteCounter() : big_{}, counter_(nullptr) {} explicit DeleteCounter(int* counter) : big_{}, counter_(counter) {} ~DeleteCounter() { if (counter_) ++*counter_; } DeleteCounter& operator=(const DeleteCounter& rhs) = default; DeleteCounter& operator=(DeleteCounter&& rhs) { if (this == &rhs) return *this; counter_ = rhs.counter_; rhs.counter_ = nullptr; return *this; } DeleteCounter(DeleteCounter&& rhs) { counter_ = rhs.counter_; rhs.counter_ = nullptr; } DeleteCounter(const DeleteCounter& rhs) = default; char big_[BIG ? 256 : 1]; int* counter_; string TypeName() const { return "DeleteCounter"; } void Encode(VariantTensorData* data) const {} bool Decode(VariantTensorData data) { return false; } }; } TEST(VariantTest, MoveAndCopyBetweenBigAndSmall) { Variant x; int deleted_big = 0; int deleted_small = 0; x = DeleteCounter<true>(&deleted_big); EXPECT_EQ(deleted_big, 0); x = DeleteCounter<false>(&deleted_small); EXPECT_EQ(deleted_big, 1); EXPECT_EQ(deleted_small, 0); x = DeleteCounter<true>(&deleted_big); EXPECT_EQ(deleted_big, 1); EXPECT_EQ(deleted_small, 1); x.clear(); EXPECT_EQ(deleted_big, 2); EXPECT_EQ(deleted_small, 1); DeleteCounter<true> big(&deleted_big); DeleteCounter<false> small(&deleted_small); EXPECT_EQ(deleted_big, 2); EXPECT_EQ(deleted_small, 1); x = big; EXPECT_EQ(deleted_big, 2); EXPECT_EQ(deleted_small, 1); x = small; EXPECT_EQ(deleted_big, 3); EXPECT_EQ(deleted_small, 1); x = std::move(big); EXPECT_EQ(deleted_big, 3); EXPECT_EQ(deleted_small, 2); x = std::move(small); EXPECT_EQ(deleted_big, 4); EXPECT_EQ(deleted_small, 2); x.clear(); EXPECT_EQ(deleted_big, 4); EXPECT_EQ(deleted_small, 3); } TEST(VariantTest, MoveAndCopyBetweenBigAndSmallVariants) { int deleted_big = 0; int deleted_small = 0; { Variant x = DeleteCounter<true>(&deleted_big); Variant y = DeleteCounter<false>(&deleted_small); EXPECT_EQ(deleted_big, 0); EXPECT_EQ(deleted_small, 0); x = y; EXPECT_EQ(deleted_big, 1); EXPECT_EQ(deleted_small, 0); x = x; EXPECT_EQ(deleted_big, 1); EXPECT_EQ(deleted_small, 0); EXPECT_NE(x.get<DeleteCounter<false>>(), nullptr); EXPECT_NE(y.get<DeleteCounter<false>>(), nullptr); x = std::move(y); EXPECT_EQ(deleted_small, 1); EXPECT_NE(x.get<DeleteCounter<false>>(), nullptr); } EXPECT_EQ(deleted_big, 1); EXPECT_EQ(deleted_small, 2); deleted_big = 0; deleted_small = 0; { Variant x = DeleteCounter<false>(&deleted_small); Variant y = DeleteCounter<true>(&deleted_big); EXPECT_EQ(deleted_big, 0); EXPECT_EQ(deleted_small, 0); x = y; EXPECT_EQ(deleted_big, 0); EXPECT_EQ(deleted_small, 1); x = x; EXPECT_EQ(deleted_big, 0); EXPECT_EQ(deleted_small, 1); EXPECT_NE(x.get<DeleteCounter<true>>(), nullptr); EXPECT_NE(y.get<DeleteCounter<true>>(), nullptr); x = std::move(y); EXPECT_EQ(deleted_big, 1); EXPECT_NE(x.get<DeleteCounter<true>>(), nullptr); } EXPECT_EQ(deleted_big, 2); EXPECT_EQ(deleted_small, 1); } namespace { template <bool BIG> class MoveAndCopyCounter { public: MoveAndCopyCounter() : big_{}, move_counter_(nullptr), copy_counter_(nullptr) {} explicit MoveAndCopyCounter(int* move_counter, int* copy_counter) : big_{}, move_counter_(move_counter), copy_counter_(copy_counter) {} MoveAndCopyCounter& operator=(const MoveAndCopyCounter& rhs) { copy_counter_ = rhs.copy_counter_; if (copy_counter_) ++*copy_counter_; return *this; } MoveAndCopyCounter& operator=(MoveAndCopyCounter&& rhs) { move_counter_ = rhs.move_counter_; if (move_counter_) ++*move_counter_; return *this; } MoveAndCopyCounter(MoveAndCopyCounter&& rhs) { move_counter_ = rhs.move_counter_; if (move_counter_) ++*move_counter_; } MoveAndCopyCounter(const MoveAndCopyCounter& rhs) { copy_counter_ = rhs.copy_counter_; if (copy_counter_) ++*copy_counter_; } char big_[BIG ? 256 : 1]; int* move_counter_; int* copy_counter_; string TypeName() const { return "MoveAndCopyCounter"; } void Encode(VariantTensorData* data) const {} bool Decode(VariantTensorData data) { return false; } }; } TEST(VariantTest, EmplaceBigAndSmallVariants) { { int moved_big = 0; int moved_small = 0; int copied_big = 0; int copied_small = 0; Variant x = MoveAndCopyCounter<true>(&moved_big, &copied_big); EXPECT_EQ(moved_big, 1); EXPECT_EQ(copied_big, 0); Variant y = MoveAndCopyCounter<false>(&moved_small, &copied_small); EXPECT_EQ(moved_small, 1); EXPECT_EQ(copied_small, 0); } { int moved_big = 0; int moved_small = 0; int copied_big = 0; int copied_small = 0; Variant x(MoveAndCopyCounter<true>(&moved_big, &copied_big)); EXPECT_EQ(moved_big, 1); EXPECT_EQ(copied_big, 0); Variant y(MoveAndCopyCounter<false>(&moved_small, &copied_small)); EXPECT_EQ(moved_small, 1); EXPECT_EQ(copied_small, 0); } { int moved_big = 0; int moved_small = 0; int copied_big = 0; int copied_small = 0; Variant x; x.emplace<MoveAndCopyCounter<true>>(&moved_big, &copied_big); EXPECT_EQ(moved_big, 0); EXPECT_EQ(copied_big, 0); Variant y; y.emplace<MoveAndCopyCounter<false>>(&moved_small, &copied_small); EXPECT_EQ(moved_small, 0); EXPECT_EQ(copied_small, 0); } } template <bool BIG> void TestDestructOnVariantMove() { CHECK_EQ(MaybeAlive<BIG>::LiveCounter(), 0); { Variant a = MaybeAlive<BIG>(true); Variant b = std::move(a); } EXPECT_EQ(MaybeAlive<BIG>::LiveCounter(), 0); } TEST(VariantTest, RHSDestructOnVariantMoveBig) { TestDestructOnVariantMove<true>(); } TEST(VariantTest, RHSDestructOnVariantMoveSmall) { TestDestructOnVariantMove<false>(); } TEST(VariantTest, Int) { Variant x; EXPECT_EQ(x.get<void>(), nullptr); x = 3; EXPECT_NE(x.get<void>(), nullptr); EXPECT_EQ(*x.get<int>(), 3); EXPECT_EQ(x.TypeName(), "int"); } #if defined(__x86_64__) struct MayCreateAlignmentDifficulties { int a; __m128 b; }; bool M128AllEqual(const __m128& a, const __m128& b) { return _mm_movemask_ps(_mm_cmpeq_ps(a, b)) == 0xf; } TEST(VariantTest, NotAlignable) { Variant x; EXPECT_EQ(x.get<void>(), nullptr); __m128 v = _mm_set_ps(1.0, 2.0, 3.0, 4.0); x = MayCreateAlignmentDifficulties{-1, v}; EXPECT_NE(x.get<void>(), nullptr); auto* x_val = x.get<MayCreateAlignmentDifficulties>(); Variant y = x; EXPECT_EQ(x_val->a, -1); EXPECT_TRUE(M128AllEqual(x_val->b, v)); auto* y_val = y.get<MayCreateAlignmentDifficulties>(); EXPECT_EQ(y_val->a, -1); EXPECT_TRUE(M128AllEqual(y_val->b, v)); Variant z = std::move(y); auto* z_val = z.get<MayCreateAlignmentDifficulties>(); EXPECT_EQ(z_val->a, -1); EXPECT_TRUE(M128AllEqual(z_val->b, v)); } #endif template <bool BIG> void TestBasic() { Variant x; EXPECT_EQ(x.get<void>(), nullptr); x = Int<BIG>{42}; EXPECT_NE(x.get<void>(), nullptr); EXPECT_NE(x.get<Int<BIG>>(), nullptr); EXPECT_EQ(x.get<Int<BIG>>()->value, 42); EXPECT_EQ(x.TypeName(), "POD"); } TEST(VariantTest, Basic) { TestBasic<false>(); } TEST(VariantTest, BasicBig) { TestBasic<true>(); } template <bool BIG> void TestConstGet() { Variant x; EXPECT_EQ(x.get<void>(), nullptr); x = Int<BIG>{42}; const Variant y = x; EXPECT_NE(y.get<void>(), nullptr); EXPECT_NE(y.get<Int<BIG>>(), nullptr); EXPECT_EQ(y.get<Int<BIG>>()->value, 42); } TEST(VariantTest, ConstGet) { TestConstGet<false>(); } TEST(VariantTest, ConstGetBig) { TestConstGet<true>(); } template <bool BIG> void TestClear() { Variant x; EXPECT_EQ(x.get<void>(), nullptr); x = Int<BIG>{42}; EXPECT_NE(x.get<void>(), nullptr); EXPECT_NE(x.get<Int<BIG>>(), nullptr); EXPECT_EQ(x.get<Int<BIG>>()->value, 42); x.clear(); EXPECT_EQ(x.get<void>(), nullptr); } TEST(VariantTest, Clear) { TestClear<false>(); } TEST(VariantTest, ClearBig) { TestClear<true>(); } template <bool BIG> void TestClearDeletes() { Variant x; EXPECT_EQ(x.get<void>(), nullptr); int deleted_count = 0; using DC = DeleteCounter<BIG>; DC dc(&deleted_count); EXPECT_EQ(deleted_count, 0); x = dc; EXPECT_EQ(deleted_count, 0); EXPECT_NE(x.get<void>(), nullptr); EXPECT_NE(x.get<DC>(), nullptr); x.clear(); EXPECT_EQ(x.get<void>(), nullptr); EXPECT_EQ(deleted_count, 1); x = dc; EXPECT_EQ(deleted_count, 1); Variant y = x; EXPECT_EQ(deleted_count, 1); x.clear(); EXPECT_EQ(deleted_count, 2); y.clear(); EXPECT_EQ(deleted_count, 3); } TEST(VariantTest, ClearDeletesOnHeap) { TestClearDeletes<true>(); } TEST(VariantTest, ClearDeletesOnStack) { TestClearDeletes<false>(); } TEST(VariantTest, Tensor) { Variant x; Tensor t(DT_FLOAT, {}); t.flat<float>()(0) = 42.0f; x = t; EXPECT_NE(x.get<Tensor>(), nullptr); EXPECT_EQ(x.get<Tensor>()->flat<float>()(0), 42.0f); x.get<Tensor>()->flat<float>()(0) += 1.0f; EXPECT_EQ(x.get<Tensor>()->flat<float>()(0), 43.0f); EXPECT_EQ(x.TypeName(), "tensorflow::Tensor"); Tensor& foo_t = x.emplace<Tensor>("foo"); EXPECT_NE(x.get<Tensor>(), nullptr); EXPECT_EQ(x.get<Tensor>()->scalar<tstring>()(), "foo"); EXPECT_EQ(&foo_t, x.get<Tensor>()); EXPECT_EQ(x.TypeName(), "tensorflow::Tensor"); Tensor& bar_t = x.emplace<Tensor>(DT_INT64, TensorShape({1})); EXPECT_EQ(&bar_t, x.get<Tensor>()); bar_t.vec<int64_t>()(0) = 17; EXPECT_EQ(x.get<Tensor>()->vec<int64_t>()(0), 17); bar_t.vec<int64_t>()(0) += 1; EXPECT_EQ(x.get<Tensor>()->vec<int64_t>()(0), 18); } TEST(VariantTest, NontrivialTensorVariantCopy) { Tensor variants(DT_VARIANT, {}); Tensor t(true); test::FillValues<Variant>(&variants, absl::Span<const Variant>({t})); const Tensor* t_c = variants.flat<Variant>()(0).get<Tensor>(); EXPECT_EQ(t_c->dtype(), t.dtype()); EXPECT_EQ(t_c->shape(), t.shape()); EXPECT_EQ(t_c->scalar<bool>()(), t.scalar<bool>()()); } TEST(VariantTest, TensorProto) { Variant x; TensorProto t; t.set_dtype(DT_FLOAT); t.mutable_tensor_shape()->set_unknown_rank(true); x = t; EXPECT_EQ(x.TypeName(), "tensorflow.TensorProto"); EXPECT_NE(x.get<TensorProto>(), nullptr); EXPECT_EQ(x.get<TensorProto>()->dtype(), DT_FLOAT); EXPECT_EQ(x.get<TensorProto>()->tensor_shape().unknown_rank(), true); } template <bool BIG> void TestCopyValue() { Variant x, y; x = Int<BIG>{10}; y = x; EXPECT_EQ(x.get<Int<BIG>>()->value, 10); EXPECT_EQ(x.get<Int<BIG>>()->value, y.get<Int<BIG>>()->value); } TEST(VariantTest, CopyValue) { TestCopyValue<false>(); } TEST(VariantTest, CopyValueBig) { TestCopyValue<true>(); } template <bool BIG> void TestMoveValue() { Variant x; x = []() -> Variant { Variant y; y = Int<BIG>{10}; return y; }(); EXPECT_EQ(x.get<Int<BIG>>()->value, 10); } TEST(VariantTest, MoveValue) { TestMoveValue<false>(); } TEST(VariantTest, MoveValueBig) { TestMoveValue<true>(); } TEST(VariantTest, TypeMismatch) { Variant x; x = Int<false>{10}; EXPECT_EQ(x.get<float>(), nullptr); EXPECT_EQ(x.get<int>(), nullptr); EXPECT_NE(x.get<Int<false>>(), nullptr); } struct TensorList { void Encode(VariantTensorData* data) const { data->tensors_ = vec; } bool Decode(VariantTensorData data) { vec = std::move(data.tensors_); return true; } string TypeName() const { return "TensorList"; } std::vector<Tensor> vec; }; TEST(VariantTest, TensorListTest) { Variant x; TensorList vec; for (int i = 0; i < 4; ++i) { Tensor elem(DT_INT32, {1}); elem.flat<int>()(0) = i; vec.vec.push_back(elem); } for (int i = 0; i < 4; ++i) { Tensor elem(DT_FLOAT, {1}); elem.flat<float>()(0) = 2 * i; vec.vec.push_back(elem); } x = vec; EXPECT_EQ(x.TypeName(), "TensorList"); EXPECT_EQ(x.DebugString(), "Variant<type: TensorList value: ?>"); const TensorList& stored_vec = *x.get<TensorList>(); for (int i = 0; i < 4; ++i) { EXPECT_EQ(stored_vec.vec[i].flat<int>()(0), i); } for (int i = 0; i < 4; ++i) { EXPECT_EQ(stored_vec.vec[i + 4].flat<float>()(0), 2 * i); } VariantTensorData serialized; x.Encode(&serialized); Variant y = TensorList(); y.Decode(serialized); const TensorList& decoded_vec = *y.get<TensorList>(); for (int i = 0; i < 4; ++i) { EXPECT_EQ(decoded_vec.vec[i].flat<int>()(0), i); } for (int i = 0; i < 4; ++i) { EXPECT_EQ(decoded_vec.vec[i + 4].flat<float>()(0), 2 * i); } VariantTensorDataProto data; serialized.ToProto(&data); const Variant y_unknown = data; EXPECT_EQ(y_unknown.TypeName(), "TensorList"); EXPECT_EQ(y_unknown.TypeId(), TypeIndex::Make<VariantTensorDataProto>()); EXPECT_EQ(y_unknown.DebugString(), strings::StrCat( "Variant<type: TensorList value: ", data.DebugString(), ">")); } template <bool BIG> void TestVariantArray() { Variant x[2]; x[0] = Int<BIG>{2}; x[1] = Float<BIG>{2.0f}; EXPECT_EQ(x[0].get<Int<BIG>>()->value, 2); EXPECT_EQ(x[1].get<Float<BIG>>()->value, 2.0f); } TEST(VariantTest, VariantArray) { TestVariantArray<false>(); } TEST(VariantTest, VariantArrayBig) { TestVariantArray<true>(); } template <bool BIG> void PodUpdateTest() { struct Pod { int x; float y; char big[BIG ? 256 : 1]; string TypeName() const { return "POD"; } }; Variant x = Pod{10, 20.f}; EXPECT_NE(x.get<Pod>(), nullptr); EXPECT_EQ(x.TypeName(), "POD"); EXPECT_EQ(x.DebugString(), "Variant<type: POD value: ?>"); x.get<Pod>()->x += x.get<Pod>()->y; EXPECT_EQ(x.get<Pod>()->x, 30); } TEST(VariantTest, PodUpdate) { PodUpdateTest<false>(); } TEST(VariantTest, PodUpdateBig) { PodUpdateTest<true>(); } template <bool BIG> void TestEncodeDecodePod() { struct Pod { int x; float y; char big[BIG ? 256 : 1]; string TypeName() const { return "POD"; } }; Variant x; Pod p{10, 20.0f}; x = p; VariantTensorData serialized; x.Encode(&serialized); Variant y = Pod{}; y.Decode(serialized); EXPECT_EQ(p.x, y.get<Pod>()->x); EXPECT_EQ(p.y, y.get<Pod>()->y); } TEST(VariantTest, EncodeDecodePod) { TestEncodeDecodePod<false>(); } TEST(VariantTest, EncodeDecodePodBig) { TestEncodeDecodePod<true>(); } TEST(VariantTest, EncodeDecodeTensor) { Variant x; Tensor t(DT_INT32, {}); t.flat<int>()(0) = 42; x = t; VariantTensorData serialized; x.Encode(&serialized); Variant y = Tensor(); y.Decode(serialized); EXPECT_EQ(y.DebugString(), "Variant<type: tensorflow::Tensor value: Tensor<type: int32 shape: " "[] values: 42>>"); EXPECT_EQ(x.get<Tensor>()->flat<int>()(0), y.get<Tensor>()->flat<int>()(0)); } TEST(BoolVariantTest, DecodeNonBool) { Tensor parsed(DT_VARIANT); TensorProto tensor_proto; tensor_proto.set_dtype(DT_VARIANT); VariantTensorDataProto* variant = tensor_proto.add_variant_val(); variant->set_type_name("bool"); variant->set_metadata("-"); EXPECT_TRUE(parsed.FromProto(tensor_proto)); EXPECT_EQ(parsed.NumElements(), 1); EXPECT_TRUE(parsed.flat<Variant>()(0).get<bool>()); } }
962
cpp
tensorflow/tensorflow
attribute_map
third_party/xla/xla/ffi/attribute_map.cc
third_party/xla/xla/python/ifrt/attribute_map_test.cc
#ifndef XLA_FFI_ATTRIBUTE_MAP_H_ #define XLA_FFI_ATTRIBUTE_MAP_H_ #include "absl/status/statusor.h" #include "mlir/IR/BuiltinAttributes.h" #include "xla/ffi/call_frame.h" namespace xla::ffi { absl::StatusOr<CallFrameBuilder::FlatAttributesMap> BuildAttributesMap( mlir::DictionaryAttr dict); } #endif #include "xla/ffi/attribute_map.h" #include <cstdint> #include <string_view> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "llvm/ADT/TypeSwitch.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/Support/LLVM.h" #include "xla/ffi/call_frame.h" #include "tsl/platform/errors.h" using FlatAttribute = xla::ffi::CallFrameBuilder::FlatAttribute; using FlatAttributesMap = xla::ffi::CallFrameBuilder::FlatAttributesMap; namespace xla::ffi { absl::StatusOr<FlatAttributesMap> BuildAttributesMap( mlir::DictionaryAttr dict) { FlatAttributesMap attributes; for (auto& kv : dict) { std::string_view name = kv.getName().strref(); auto boolean = [&](mlir::BoolAttr boolean) { attributes[name] = static_cast<bool>(boolean.getValue()); return absl::OkStatus(); }; auto integer = [&](mlir::IntegerAttr integer) { if (integer.getType().isUnsignedInteger()) { switch (integer.getType().getIntOrFloatBitWidth()) { case 8: attributes[name] = static_cast<uint8_t>(integer.getUInt()); return absl::OkStatus(); case 16: attributes[name] = static_cast<uint16_t>(integer.getUInt()); return absl::OkStatus(); case 32: attributes[name] = static_cast<uint32_t>(integer.getUInt()); return absl::OkStatus(); case 64: attributes[name] = static_cast<uint64_t>(integer.getUInt()); return absl::OkStatus(); default: return absl::InvalidArgumentError(absl::StrCat( "Unsupported integer attribute bit width for attribute: ", name)); } } else { switch (integer.getType().getIntOrFloatBitWidth()) { case 8: attributes[name] = static_cast<int8_t>(integer.getInt()); return absl::OkStatus(); case 16: attributes[name] = static_cast<int16_t>(integer.getInt()); return absl::OkStatus(); case 32: attributes[name] = static_cast<int32_t>(integer.getInt()); return absl::OkStatus(); case 64: attributes[name] = static_cast<int64_t>(integer.getInt()); return absl::OkStatus(); default: return absl::InvalidArgumentError(absl::StrCat( "Unsupported integer attribute bit width for attribute: ", name)); } } }; auto fp = [&](mlir::FloatAttr fp) { switch (fp.getType().getIntOrFloatBitWidth()) { case 32: attributes[name] = static_cast<float>(fp.getValue().convertToFloat()); return absl::OkStatus(); case 64: attributes[name] = static_cast<double>(fp.getValue().convertToDouble()); return absl::OkStatus(); default: return absl::InvalidArgumentError(absl::StrCat( "Unsupported float attribute bit width for attribute: ", name)); } }; auto arr = [&](mlir::DenseArrayAttr arr) { if (auto dense = mlir::dyn_cast<mlir::DenseI8ArrayAttr>(arr)) { attributes[name] = dense.asArrayRef().vec(); return absl::OkStatus(); } else if (auto dense = mlir::dyn_cast<mlir::DenseI16ArrayAttr>(arr)) { attributes[name] = dense.asArrayRef().vec(); return absl::OkStatus(); } else if (auto dense = mlir::dyn_cast<mlir::DenseI32ArrayAttr>(arr)) { attributes[name] = dense.asArrayRef().vec(); return absl::OkStatus(); } else if (auto dense = mlir::dyn_cast<mlir::DenseI64ArrayAttr>(arr)) { attributes[name] = dense.asArrayRef().vec(); return absl::OkStatus(); } else if (auto dense = mlir::dyn_cast<mlir::DenseF32ArrayAttr>(arr)) { attributes[name] = dense.asArrayRef().vec(); return absl::OkStatus(); } else if (auto dense = mlir::dyn_cast<mlir::DenseF64ArrayAttr>(arr)) { attributes[name] = dense.asArrayRef().vec(); return absl::OkStatus(); } else { return absl::InvalidArgumentError(absl::StrCat( "Unsupported array element type for attribute: ", name)); } }; auto str = [&](mlir::StringAttr str) { attributes[name] = str.getValue().str(); return absl::OkStatus(); }; TF_RETURN_IF_ERROR( llvm::TypeSwitch<mlir::Attribute, absl::Status>(kv.getValue()) .Case<mlir::BoolAttr>(boolean) .Case<mlir::IntegerAttr>(integer) .Case<mlir::FloatAttr>(fp) .Case<mlir::DenseArrayAttr>(arr) .Case<mlir::StringAttr>(str) .Default([&](mlir::Attribute) { return absl::InvalidArgumentError(absl::StrCat( "Unsupported attribute type for attribute: ", name)); })); } return attributes; } }
#include "xla/python/ifrt/attribute_map.h" #include <cstdint> #include <string> #include <vector> #include <gtest/gtest.h> #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace { TEST(AttributeMapTest, MapElements) { AttributeMap map({ {"string", AttributeMap::StringValue("value")}, {"bool", AttributeMap::BoolValue(true)}, {"int64", AttributeMap::Int64Value(123)}, {"int64_list", AttributeMap::Int64ListValue({int64_t{1}, int64_t{2}})}, {"float", AttributeMap::FloatValue(1.23f)}, }); EXPECT_EQ(map.map(), AttributeMap::Map({ {"string", AttributeMap::StringValue("value")}, {"bool", AttributeMap::BoolValue(true)}, {"int64", AttributeMap::Int64Value(123)}, {"int64_list", AttributeMap::Int64ListValue( {int64_t{1}, int64_t{2}})}, {"float", AttributeMap::FloatValue(1.23f)}, })) << map.DebugString(); } TEST(AttributeMapTest, ToFromProto) { AttributeMap map({ {"string", AttributeMap::StringValue("value")}, {"bool", AttributeMap::BoolValue(true)}, {"int64", AttributeMap::Int64Value(123)}, {"int64_list", AttributeMap::Int64ListValue({int64_t{1}, int64_t{2}})}, {"float", AttributeMap::FloatValue(1.23f)}, }); TF_ASSERT_OK_AND_ASSIGN(auto map_copy, AttributeMap::FromProto(map.ToProto())); EXPECT_EQ(map_copy.map(), map.map()) << map_copy.DebugString(); } } } }
963
cpp
tensorflow/tensorflow
constants
third_party/xla/xla/client/lib/constants.cc
third_party/xla/xla/client/lib/constants_test.cc
#ifndef XLA_CLIENT_LIB_CONSTANTS_H_ #define XLA_CLIENT_LIB_CONSTANTS_H_ #include <type_traits> #include "xla/client/xla_builder.h" #include "xla/primitive_util.h" #include "xla/types.h" #include "xla/xla_data.pb.h" #include "tsl/platform/ml_dtypes.h" namespace xla { template <typename T> XlaOp ConstantR0WithType(XlaBuilder* builder, PrimitiveType type, T value) { if (std::is_floating_point<T>::value && !(primitive_util::IsFloatingPointType(type) || primitive_util::IsComplexType(type))) { return builder->ReportError(InvalidArgument( "Invalid cast from floating point type to %s in ConstantR0WithType.", PrimitiveType_Name(type))); } if (std::is_same<T, complex64>::value && !primitive_util::IsComplexType(type)) { return builder->ReportError(InvalidArgument( "Invalid cast from complex type to %s in ConstantR0WithType.", PrimitiveType_Name(type))); } return primitive_util::PrimitiveTypeSwitch<XlaOp>( [&](auto primitive_type_constant) -> XlaOp { if constexpr (primitive_util::IsArrayType(primitive_type_constant)) { using NativeT = primitive_util::NativeTypeOf<primitive_type_constant>; return ConstantR0<NativeT>(builder, static_cast<NativeT>(value)); } return builder->ReportError( InvalidArgument("Invalid type for ConstantR0WithType (%s).", PrimitiveType_Name(type))); }, type); } template <typename T> XlaOp ScalarLike(XlaOp prototype, T value) { XlaBuilder* builder = prototype.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape shape, builder->GetShape(prototype)); return ConstantR0WithType(builder, shape.element_type(), value); }); } template <typename T> XlaOp FullLike(XlaOp prototype, T value) { XlaBuilder* builder = prototype.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape shape, builder->GetShape(prototype)); if (ShapeUtil::IsScalar(shape) || shape.IsArray()) { return Broadcast(ScalarLike(prototype, value), shape.dimensions()); } else { return InvalidArgument( "Prototype shape for BroadcastConstantLike must be a scalar or " "array, but was %s", shape.ToString()); } }); } XlaOp Zero(XlaBuilder* builder, PrimitiveType type); XlaOp Zeros(XlaBuilder* builder, const Shape& shape); XlaOp ZerosLike(XlaOp prototype); XlaOp One(XlaBuilder* builder, PrimitiveType type); XlaOp Epsilon(XlaBuilder* builder, PrimitiveType type); XlaOp MinValue(XlaBuilder* builder, PrimitiveType type); XlaOp MinFiniteValue(XlaBuilder* builder, PrimitiveType type); XlaOp MinPositiveNormalValue(XlaBuilder* builder, PrimitiveType type); XlaOp MaxValue(XlaBuilder* builder, PrimitiveType type); XlaOp MaxFiniteValue(XlaBuilder* builder, PrimitiveType type); XlaOp NanValue(XlaBuilder* builder, PrimitiveType type); } #endif #include "xla/client/lib/constants.h" #include <limits> #include "xla/literal_util.h" #include "xla/primitive_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/ml_dtypes.h" namespace xla { XlaOp Zero(XlaBuilder* builder, PrimitiveType type) { return ConstantLiteral(builder, LiteralUtil::Zero(type)); } XlaOp Zeros(XlaBuilder* builder, const Shape& shape) { return Broadcast(Zero(builder, shape.element_type()), shape.dimensions()); } XlaOp ZerosLike(XlaOp prototype) { XlaBuilder* builder = prototype.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape shape, builder->GetShape(prototype)); return Zeros(builder, shape); }); } XlaOp One(XlaBuilder* builder, PrimitiveType type) { return ConstantLiteral(builder, LiteralUtil::One(type)); } XlaOp Epsilon(XlaBuilder* builder, PrimitiveType type) { return primitive_util::PrimitiveTypeSwitch<XlaOp>( [&](auto primitive_type_constant) -> XlaOp { if constexpr (primitive_util::IsFloatingPointType( primitive_type_constant)) { using NativeT = typename primitive_util::PrimitiveTypeToNative< primitive_type_constant>::type; return ConstantR0<NativeT>(builder, std::numeric_limits<NativeT>::epsilon()); } return builder->ReportError(InvalidArgument( "Invalid type for Epsilon (%s).", PrimitiveType_Name(type))); }, type); } XlaOp MinValue(XlaBuilder* builder, PrimitiveType type) { return ConstantLiteral(builder, LiteralUtil::MinValue(type)); } XlaOp MinFiniteValue(XlaBuilder* builder, PrimitiveType type) { return primitive_util::PrimitiveTypeSwitch<XlaOp>( [&](auto primitive_type_constant) -> XlaOp { if constexpr (primitive_util::IsFloatingPointType( primitive_type_constant)) { using NativeT = typename primitive_util::PrimitiveTypeToNative< primitive_type_constant>::type; return ConstantR0<NativeT>(builder, std::numeric_limits<NativeT>::lowest()); } return MinValue(builder, type); }, type); } XlaOp MinPositiveNormalValue(XlaBuilder* builder, PrimitiveType type) { return primitive_util::PrimitiveTypeSwitch<XlaOp>( [&](auto primitive_type_constant) -> XlaOp { if constexpr (primitive_util::IsFloatingPointType( primitive_type_constant)) { using NativeT = typename primitive_util::PrimitiveTypeToNative< primitive_type_constant>::type; return ConstantR0<NativeT>(builder, std::numeric_limits<NativeT>::min()); } return builder->ReportError( InvalidArgument("Invalid type for MinPositiveNormalValue (%s).", PrimitiveType_Name(type))); }, type); } XlaOp MaxValue(XlaBuilder* builder, PrimitiveType type) { return ConstantLiteral(builder, LiteralUtil::MaxValue(type)); } XlaOp MaxFiniteValue(XlaBuilder* builder, PrimitiveType type) { return primitive_util::PrimitiveTypeSwitch<XlaOp>( [&](auto primitive_type_constant) -> XlaOp { if constexpr (primitive_util::IsFloatingPointType( primitive_type_constant)) { using NativeT = typename primitive_util::PrimitiveTypeToNative< primitive_type_constant>::type; return ConstantR0<NativeT>(builder, std::numeric_limits<NativeT>::max()); } return MaxValue(builder, type); }, type); } XlaOp NanValue(XlaBuilder* builder, PrimitiveType type) { return primitive_util::PrimitiveTypeSwitch<XlaOp>( [&](auto primitive_type_constant) -> XlaOp { if constexpr (primitive_util::IsFloatingPointType( primitive_type_constant)) { using NativeT = typename primitive_util::PrimitiveTypeToNative< primitive_type_constant>::type; return ConstantR0<NativeT>(builder, std::numeric_limits<NativeT>::quiet_NaN()); } return builder->ReportError(InvalidArgument( "Invalid type for NanValue (%s).", PrimitiveType_Name(type))); }, type); } }
#include "xla/client/lib/constants.h" #include <limits> #include "xla/client/xla_builder.h" #include "xla/test.h" #include "xla/tests/client_library_test_base.h" #include "xla/tests/test_macros.h" #include "xla/types.h" #include "xla/xla_data.pb.h" namespace xla { namespace { using ConstantsTest = ClientLibraryTestBase; using ::testing::HasSubstr; XLA_TEST_F(ConstantsTest, ConstantR0WithTypeS32) { XlaBuilder builder(TestName()); ConstantR0WithType(&builder, xla::S32, 4); ComputeAndCompareR0<int32_t>(&builder, 4, {}); } XLA_TEST_F(ConstantsTest, ConstantR0WithTypeS32DoesNotAcceptFloats) { XlaBuilder builder(TestName()); ConstantR0WithType(&builder, xla::S32, 4.5); auto statusor = builder.Build(); ASSERT_FALSE(statusor.ok()); EXPECT_THAT(statusor.status().message(), HasSubstr("Invalid cast")); } XLA_TEST_F(ConstantsTest, ConstantR0WithTypeF32) { XlaBuilder builder(TestName()); ConstantR0WithType(&builder, xla::F32, -7); ComputeAndCompareR0<float>(&builder, -7, {}); ConstantR0WithType(&builder, xla::F32, 0.5); ComputeAndCompareR0<float>(&builder, 0.5, {}); } XLA_TEST_F(ConstantsTest, ScalarLikeS32) { XlaBuilder builder(TestName()); ScalarLike(ConstantR0<int32_t>(&builder, 42), -3); ComputeAndCompareR0<int32_t>(&builder, -3, {}); } XLA_TEST_F(ConstantsTest, ScalarLikeF32) { XlaBuilder builder(TestName()); ScalarLike(ConstantR0<float>(&builder, 42.75), -3.2); ComputeAndCompareR0<float>(&builder, -3.2, {}); } XLA_TEST_F(ConstantsTest, ZeroS32) { XlaBuilder builder(TestName()); Zero(&builder, S32); ComputeAndCompareR0<int32_t>(&builder, 0, {}); } XLA_TEST_F(ConstantsTest, ZeroF32) { XlaBuilder builder(TestName()); Zero(&builder, F32); ComputeAndCompareR0<float>(&builder, 0.0, {}); } XLA_TEST_F(ConstantsTest, ZerosS32) { XlaBuilder builder(TestName()); Zeros(&builder, ShapeUtil::MakeShape(S32, {2, 2})); ComputeAndCompareR2<int32_t>(&builder, {{0, 0}, {0, 0}}, {}); } XLA_TEST_F(ConstantsTest, ZerosLikeF32) { XlaBuilder builder(TestName()); ZerosLike(ConstantR1<float>(&builder, {1., 2., 3.})); ComputeAndCompareR1<float>(&builder, {0., 0., 0.}, {}); } XLA_TEST_F(ConstantsTest, OneS32) { XlaBuilder builder(TestName()); One(&builder, S32); ComputeAndCompareR0<int32_t>(&builder, 1, {}); } XLA_TEST_F(ConstantsTest, OneF32) { XlaBuilder builder(TestName()); One(&builder, F32); ComputeAndCompareR0<float>(&builder, 1., {}); } XLA_TEST_F(ConstantsTest, EpsilonF32) { XlaBuilder builder(TestName()); Epsilon(&builder, F32); ComputeAndCompareR0<float>(&builder, std::numeric_limits<float>::epsilon(), {}); } XLA_TEST_F(ConstantsTest, MinFiniteValueS32) { XlaBuilder builder(TestName()); MinFiniteValue(&builder, S32); ComputeAndCompareR0<int32_t>(&builder, std::numeric_limits<int32_t>::min(), {}); } XLA_TEST_F(ConstantsTest, MaxFiniteValueS32) { XlaBuilder builder(TestName()); MaxFiniteValue(&builder, S32); ComputeAndCompareR0<int32_t>(&builder, std::numeric_limits<int32_t>::max(), {}); } XLA_TEST_F(ConstantsTest, MinFiniteValueF32) { XlaBuilder builder(TestName()); MinFiniteValue(&builder, F32); ComputeAndCompareR0<float>(&builder, -std::numeric_limits<float>::max(), {}); } XLA_TEST_F(ConstantsTest, MaxFiniteValueF32) { XlaBuilder builder(TestName()); MaxFiniteValue(&builder, F32); ComputeAndCompareR0<float>(&builder, std::numeric_limits<float>::max(), {}); } XLA_TEST_F(ConstantsTest, MinValueS32) { XlaBuilder builder(TestName()); MinValue(&builder, S32); ComputeAndCompareR0<int32_t>(&builder, std::numeric_limits<int32_t>::min(), {}); } XLA_TEST_F(ConstantsTest, MaxValueS32) { XlaBuilder builder(TestName()); MaxValue(&builder, S32); ComputeAndCompareR0<int32_t>(&builder, std::numeric_limits<int32_t>::max(), {}); } XLA_TEST_F(ConstantsTest, MinValueF32) { XlaBuilder builder(TestName()); MinValue(&builder, F32); ComputeAndCompareR0<float>(&builder, -std::numeric_limits<float>::infinity(), {}); } XLA_TEST_F(ConstantsTest, MaxValueF32) { XlaBuilder builder(TestName()); MaxValue(&builder, F32); ComputeAndCompareR0<float>(&builder, std::numeric_limits<float>::infinity(), {}); } XLA_TEST_F(ConstantsTest, NanValueF32) { XlaBuilder builder(TestName()); NanValue(&builder, F32); ComputeAndCompareR0<float>(&builder, std::numeric_limits<float>::quiet_NaN(), {}); } } }
964
cpp
tensorflow/tensorflow
verifier_internal
tensorflow/lite/core/tools/verifier_internal.cc
tensorflow/lite/core/tools/verifier_internal_test.cc
#ifndef TENSORFLOW_LITE_CORE_TOOLS_VERIFIER_INTERNAL_H_ #define TENSORFLOW_LITE_CORE_TOOLS_VERIFIER_INTERNAL_H_ #include <stddef.h> #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace internal { const Model* VerifyFlatBufferAndGetModel(const void* buf, size_t len); } } #endif #include "tensorflow/lite/core/tools/verifier_internal.h" #include "flatbuffers/verifier.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace internal { const Model* VerifyFlatBufferAndGetModel(const void* buf, size_t len) { ::flatbuffers::Verifier verifier(static_cast<const uint8_t*>(buf), len); if (VerifyModelBuffer(verifier)) { return ::tflite::GetModel(buf); } else { return nullptr; } } } }
#include "tensorflow/lite/core/tools/verifier_internal.h" #include <memory> #include <string> #include <vector> #include <gtest/gtest.h> #include "flatbuffers/buffer.h" #include "flatbuffers/flatbuffer_builder.h" #include "flatbuffers/vector.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/mutable_op_resolver.h" #include "tensorflow/lite/op_resolver.h" #include "tensorflow/lite/schema/schema_conversion_utils.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/version.h" namespace tflite { class TfLiteFlatbufferModelBuilder { public: TfLiteFlatbufferModelBuilder() { buffers_.push_back( CreateBuffer(builder_, builder_.CreateVector(std::vector<uint8_t>{}))); } TfLiteFlatbufferModelBuilder(const std::vector<BuiltinOperator>& builtin_ops, const std::vector<std::string>& custom_ops) { buffers_.push_back( CreateBuffer(builder_, builder_.CreateVector(std::vector<uint8_t>{}))); for (const auto& iter : builtin_ops) { resolver_.AddBuiltin(iter, &fake_op_); } for (const auto& iter : custom_ops) { resolver_.AddCustom(iter.data(), &fake_op_); } } void AddTensor(const std::vector<int>& shape, tflite::TensorType type, const std::vector<uint8_t>& buffer, const char* name, const bool is_variable = false) { int buffer_index = 0; if (!buffer.empty()) { buffer_index = buffers_.size(); buffers_.push_back(CreateBuffer(builder_, builder_.CreateVector(buffer))); } if (shape.empty()) { tensors_.push_back(CreateTensorDirect(builder_, nullptr, type, buffer_index, name, 0, is_variable)); return; } tensors_.push_back(CreateTensorDirect(builder_, &shape, type, buffer_index, name, 0, is_variable)); } void AddOperator(const std::vector<int32_t>& inputs, const std::vector<int32_t>& outputs, tflite::BuiltinOperator builtin_op, const char* custom_op) { operator_codes_.push_back( CreateOperatorCodeDirect(builder_, builtin_op, custom_op)); operators_.push_back(CreateOperator( builder_, operator_codes_.size() - 1, builder_.CreateVector(inputs), builder_.CreateVector(outputs), BuiltinOptions_NONE, 0, 0, tflite::CustomOptionsFormat_FLEXBUFFERS)); } enum BuilderMode { kBuilderModeEmptyVectorIsEmpty, kBuilderModeEmptyVectorIsNull, kBuilderModeDefault = kBuilderModeEmptyVectorIsEmpty, }; void FinishModel(const std::vector<int32_t>& inputs, const std::vector<int32_t>& outputs, BuilderMode mode = kBuilderModeDefault) { auto subgraph = std::vector<flatbuffers::Offset<SubGraph>>({CreateSubGraph( builder_, CreateVector(tensors_, mode), CreateVector(inputs, mode), CreateVector(outputs, mode), CreateVector(operators_, mode), builder_.CreateString("test_subgraph"))}); auto result = CreateModel( builder_, TFLITE_SCHEMA_VERSION, CreateVector(operator_codes_, mode), CreateVector(subgraph, mode), builder_.CreateString("test_model"), CreateVector(buffers_, mode)); tflite::FinishModelBuffer(builder_, result); } bool Verify(const void* buf, size_t length) { return tflite::internal::VerifyFlatBufferAndGetModel(buf, length); } bool Verify() { return Verify(builder_.GetBufferPointer(), builder_.GetSize()); } private: template <typename T> flatbuffers::Offset<flatbuffers::Vector<T>> CreateVector( const std::vector<T>& v, BuilderMode mode) { if (mode == kBuilderModeEmptyVectorIsNull && v.empty()) { return 0; } return builder_.CreateVector(v); } flatbuffers::FlatBufferBuilder builder_; MutableOpResolver resolver_; TfLiteRegistration fake_op_{}; std::vector<flatbuffers::Offset<Operator>> operators_; std::vector<flatbuffers::Offset<OperatorCode>> operator_codes_; std::vector<flatbuffers::Offset<Tensor>> tensors_; std::vector<flatbuffers::Offset<Buffer>> buffers_; }; TEST(VerifyModel, TestEmptyModel) { flatbuffers::FlatBufferBuilder builder; auto model = CreateModel(builder, TFLITE_SCHEMA_VERSION, 0, 0, 0, 0); ::tflite::FinishModelBuffer(builder, model); ASSERT_TRUE(::tflite::internal::VerifyFlatBufferAndGetModel( builder.GetBufferPointer(), builder.GetSize())); } TEST(VerifyModel, TestSimpleModel) { TfLiteFlatbufferModelBuilder builder({}, {"test"}); builder.AddOperator({0, 1}, {2}, BuiltinOperator_CUSTOM, "test"); builder.AddTensor({2, 3}, TensorType_UINT8, {1, 2, 3, 4, 5, 6}, "input"); builder.AddTensor( {2}, TensorType_STRING, {2, 0, 0, 0, 16, 0, 0, 0, 17, 0, 0, 0, 19, 0, 0, 0, 'A', 'B', 'C'}, "data"); builder.AddTensor({2, 3}, TensorType_INT32, {}, "output"); builder.FinishModel({0, 1}, {2}); ASSERT_TRUE(builder.Verify()); } TEST(VerifyModel, TestCorruptedData) { std::string model = "123"; ASSERT_FALSE(::tflite::internal::VerifyFlatBufferAndGetModel(model.data(), model.size())); } TEST(VerifyModel, TestRandomModificationIsNotAllowed) { flatbuffers::FlatBufferBuilder builder; auto model = CreateModel(builder, TFLITE_SCHEMA_VERSION, 0, 0, 0, 0); ::tflite::FinishModelBuffer(builder, model); std::string model_content(reinterpret_cast<char*>(builder.GetBufferPointer()), builder.GetSize()); for (size_t i = 0; i < model_content.size(); i++) { model_content[i] = (model_content[i] + 137) % 255; EXPECT_FALSE(tflite::internal::VerifyFlatBufferAndGetModel( model_content.data(), model_content.size())) << "Fail at position: " << i; } } }
965
cpp
tensorflow/tensorflow
verifier
tensorflow/lite/core/tools/verifier.cc
tensorflow/lite/core/tools/verifier_test.cc
#ifndef TENSORFLOW_LITE_CORE_TOOLS_VERIFIER_H_ #define TENSORFLOW_LITE_CORE_TOOLS_VERIFIER_H_ #include <stdio.h> #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/core/api/error_reporter.h" #include "tensorflow/lite/core/api/op_resolver.h" #include "tensorflow/lite/core/model.h" #include "tensorflow/lite/error_reporter.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { class AlwaysTrueResolver : public OpResolver { public: AlwaysTrueResolver() {} const TfLiteRegistration* FindOp(tflite::BuiltinOperator op, int version) const override { static TfLiteRegistration null_registration = {nullptr, nullptr, nullptr, nullptr}; return &null_registration; } const TfLiteRegistration* FindOp(const char* op, int version) const override { static TfLiteRegistration null_registration = {nullptr, nullptr, nullptr, nullptr}; return &null_registration; } }; bool Verify(const void* buf, size_t len, const OpResolver& resolver, ErrorReporter* error_reporter); bool Verify(const void* buf, size_t len, ErrorReporter* error_reporter); } #endif #include "tensorflow/lite/core/tools/verifier.h" #include <algorithm> #include <climits> #include <complex> #include <cstdint> #include <cstring> #include "absl/container/flat_hash_set.h" #include "absl/types/optional.h" #include "flatbuffers/string.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/core/api/error_reporter.h" #include "tensorflow/lite/core/api/op_resolver.h" #include "tensorflow/lite/core/tools/verifier_internal.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/schema/schema_utils.h" #include "tensorflow/lite/util.h" #include "tensorflow/lite/version.h" namespace tflite { namespace { const char* NameOrEmptyString(const flatbuffers::String* str) { if (str == nullptr || str->c_str() == nullptr) { return ""; } return str->c_str(); } bool IsNullOrEmptyString(const flatbuffers::String* str) { return strcmp(NameOrEmptyString(str), "") == 0; } void ReportError(ErrorReporter* error_reporter, const char* format, ...) { if (error_reporter) { va_list args; va_start(args, format); TF_LITE_REPORT_ERROR(error_reporter, format, args); va_end(args); } } const uint32_t GetIntPtr(const char* ptr) { #if defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__) && \ __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ return flatbuffers::EndianScalar(*reinterpret_cast<const uint32_t*>(ptr)); #else return *reinterpret_cast<const uint32_t*>(ptr); #endif } const uint32_t kMaxNumString = UINT_MAX / sizeof(int32_t) - 2; bool VerifyStringTensorBuffer(const Tensor& tensor, const Buffer& buffer, ErrorReporter* error_reporter) { uint32_t buffer_size = buffer.data()->size(); if (buffer_size < sizeof(uint32_t)) { ReportError(error_reporter, "String tensor %s is invalid (empty)", NameOrEmptyString(tensor.name())); return false; } const char* buffer_ptr = reinterpret_cast<const char*>(buffer.data()->data()); uint32_t num_strings = GetIntPtr(buffer_ptr); if (num_strings > kMaxNumString) { ReportError(error_reporter, "String tensor %s has invalid num of string set: %d", NameOrEmptyString(tensor.name()), num_strings); return false; } uint32_t header_offsets = static_cast<uint32_t>(num_strings + 2) * sizeof(int32_t); if (buffer_size < header_offsets) { ReportError(error_reporter, "String tensor %s buffer requires at least %d bytes, but is " "allocated with %d bytes", NameOrEmptyString(tensor.name()), header_offsets, buffer_size); return false; } uint32_t prev_ptr = header_offsets; uint32_t offset = sizeof(int32_t); if (GetIntPtr(buffer_ptr + offset) != header_offsets) { ReportError(error_reporter, "String tensor %s buffer initial offset must be: %d", NameOrEmptyString(tensor.name()), header_offsets); return false; } offset += sizeof(int32_t); for (int i = 1, end = num_strings; i <= end; i++, offset += sizeof(int32_t)) { int string_offset = GetIntPtr(buffer_ptr + offset); if (string_offset < static_cast<int>(prev_ptr) || string_offset > static_cast<int>(buffer_size)) { ReportError(error_reporter, "String tensor %s buffer is invalid: index %d", NameOrEmptyString(tensor.name()), i); return false; } } if (GetIntPtr(buffer_ptr + offset - sizeof(int32_t)) != buffer_size) { ReportError(error_reporter, "String tensor %s buffer last offset must be %d", NameOrEmptyString(tensor.name()), buffer_size); return false; } return true; } bool CheckArraySegments(const DimensionMetadata* dim_metadata) { if (dim_metadata->array_segments() == nullptr) { return false; } switch (dim_metadata->array_segments_type()) { case SparseIndexVector_Int32Vector: return (dim_metadata->array_segments_as_Int32Vector()->values() != nullptr); case SparseIndexVector_Uint16Vector: return (dim_metadata->array_segments_as_Uint16Vector()->values() != nullptr); case SparseIndexVector_Uint8Vector: return (dim_metadata->array_segments_as_Uint8Vector()->values() != nullptr); default: return false; } } int GetSizeOfSegments(const DimensionMetadata* dim_metadata) { switch (dim_metadata->array_segments_type()) { case SparseIndexVector_Int32Vector: return dim_metadata->array_segments_as_Int32Vector()->values()->size(); case SparseIndexVector_Uint16Vector: return dim_metadata->array_segments_as_Uint16Vector()->values()->size(); case SparseIndexVector_Uint8Vector: return dim_metadata->array_segments_as_Uint8Vector()->values()->size(); default: return -1; } } int GetValueOfSegmentsAt(const DimensionMetadata* dim_metadata, const int i) { switch (dim_metadata->array_segments_type()) { case SparseIndexVector_Int32Vector: return static_cast<int>( dim_metadata->array_segments_as_Int32Vector()->values()->Get(i)); case SparseIndexVector_Uint16Vector: return static_cast<int>( dim_metadata->array_segments_as_Uint16Vector()->values()->Get(i)); case SparseIndexVector_Uint8Vector: return static_cast<int>( dim_metadata->array_segments_as_Uint8Vector()->values()->Get(i)); default: return -1; } } bool CheckArrayIndices(const DimensionMetadata* dim_metadata) { if (dim_metadata->array_indices() == nullptr) { return false; } switch (dim_metadata->array_indices_type()) { case SparseIndexVector_Int32Vector: return (dim_metadata->array_indices_as_Int32Vector()->values() != nullptr); case SparseIndexVector_Uint16Vector: return (dim_metadata->array_indices_as_Uint16Vector()->values() != nullptr); case SparseIndexVector_Uint8Vector: return (dim_metadata->array_indices_as_Uint8Vector()->values() != nullptr); default: return false; } } int GetSizeOfIndices(const DimensionMetadata* dim_metadata) { switch (dim_metadata->array_indices_type()) { case SparseIndexVector_Int32Vector: return dim_metadata->array_indices_as_Int32Vector()->values()->size(); case SparseIndexVector_Uint16Vector: return dim_metadata->array_indices_as_Uint16Vector()->values()->size(); case SparseIndexVector_Uint8Vector: return dim_metadata->array_indices_as_Uint8Vector()->values()->size(); default: return -1; } } int GetValueOfIndicesAt(const DimensionMetadata* dim_metadata, const int i) { switch (dim_metadata->array_indices_type()) { case SparseIndexVector_Int32Vector: return static_cast<int>( dim_metadata->array_indices_as_Int32Vector()->values()->Get(i)); case SparseIndexVector_Uint16Vector: return static_cast<int>( dim_metadata->array_indices_as_Uint16Vector()->values()->Get(i)); case SparseIndexVector_Uint8Vector: return static_cast<int>( dim_metadata->array_indices_as_Uint8Vector()->values()->Get(i)); default: return -1; } return -1; } absl::optional<uint64_t> VerifyAndCountElements( const SparsityParameters& sparsity, const std::vector<int>& dim_sizes) { const int total_level = sparsity.traversal_order()->size(); uint64_t num_elements = 1; for (int i = 0; i < total_level; i++) { const int original_dim = sparsity.traversal_order()->Get(i); const auto* dim_metadata = sparsity.dim_metadata()->Get(i); if (dim_metadata->format() == DimensionType_DENSE) { if (dim_metadata->dense_size() != dim_sizes[original_dim]) { return absl::nullopt; } num_elements *= dim_metadata->dense_size(); } else { if (!CheckArraySegments(dim_metadata) || !CheckArrayIndices(dim_metadata)) { return absl::nullopt; } int array_segments_size = GetSizeOfSegments(dim_metadata); int array_indices_size = GetSizeOfIndices(dim_metadata); for (int j = 0; j < array_segments_size - 1; j++) { if (GetValueOfSegmentsAt(dim_metadata, j) < 0 || GetValueOfSegmentsAt(dim_metadata, j + 1) < 0 || GetValueOfSegmentsAt(dim_metadata, j) > GetValueOfSegmentsAt(dim_metadata, j + 1)) { return absl::nullopt; } } if (static_cast<int>(num_elements) != array_segments_size - 1) { return absl::nullopt; } if (array_indices_size != GetValueOfSegmentsAt(dim_metadata, array_segments_size - 1)) { return absl::nullopt; } for (int j = 0; j < array_indices_size; j++) { if (GetValueOfIndicesAt(dim_metadata, j) < 0 || GetValueOfIndicesAt(dim_metadata, j) >= dim_sizes[original_dim]) { return absl::nullopt; } } num_elements = array_indices_size; } } return num_elements; } absl::optional<uint64_t> VerifyAndCountSparseElements(const Tensor& tensor) { const auto* sparsity = tensor.sparsity(); if (sparsity->traversal_order() == nullptr || sparsity->dim_metadata() == nullptr) { return absl::nullopt; } const int total_dims = sparsity->traversal_order()->size(); const int original_rank = tensor.shape()->size(); const int sparsity_dim_metadata_size = sparsity->dim_metadata()->size(); if (total_dims < original_rank || sparsity_dim_metadata_size != total_dims) { return absl::nullopt; } const int block_rank = total_dims - original_rank; if (block_rank > 0) { if (sparsity->block_map() == nullptr) { return absl::nullopt; } const int sparse_rank = sparsity->block_map()->size(); if (sparse_rank != block_rank) { return absl::nullopt; } } std::vector<int> traversal_order(total_dims); for (int i = 0; i < total_dims; i++) { traversal_order[i] = sparsity->traversal_order()->Get(i); } std::sort(traversal_order.begin(), traversal_order.begin() + original_rank); for (int i = 0; i < original_rank; i++) { if (traversal_order[i] != i) { return absl::nullopt; } } std::sort(traversal_order.begin() + original_rank, traversal_order.end()); for (int i = original_rank; i < total_dims; i++) { if (traversal_order[i] != i) { return absl::nullopt; } } std::vector<int> expanded_dim_sizes; expanded_dim_sizes.resize(total_dims); for (int i = 0; i < original_rank; i++) { expanded_dim_sizes[i] = tensor.shape()->Get(i); } for (int i = 0; i < block_rank; i++) { int original_block_dim = sparsity->traversal_order()->Get(i + original_rank); if (original_block_dim < 0 || original_block_dim >= total_dims) { return absl::nullopt; } int block_dim_size = sparsity->dim_metadata()->Get(i + original_rank)->dense_size(); if (block_dim_size <= 0) { return absl::nullopt; } expanded_dim_sizes[original_block_dim] = block_dim_size; int mapped_block_dim = sparsity->block_map()->Get(i); if (mapped_block_dim < 0 || mapped_block_dim >= total_dims) { return absl::nullopt; } expanded_dim_sizes[mapped_block_dim] /= block_dim_size; } return VerifyAndCountElements(*sparsity, expanded_dim_sizes); } bool VerifyNumericTensorBuffer(const Tensor& tensor, const Buffer& buffer, ErrorReporter* error_reporter) { uint64_t bytes_required = 1; if (!tensor.shape()) { return true; } if (tensor.sparsity() != nullptr) { const auto num_elements = VerifyAndCountSparseElements(tensor); if (!num_elements.has_value()) { ReportError(error_reporter, "Tensor %s has invalid sparsity parameters", NameOrEmptyString(tensor.name())); return false; } bytes_required = num_elements.value(); if (bytes_required > UINT_MAX) { ReportError(error_reporter, "Tensor %s dimension overflow", NameOrEmptyString(tensor.name())); return false; } } else { for (int dim : *tensor.shape()) { bytes_required *= dim; if (bytes_required > UINT_MAX) { ReportError(error_reporter, "Tensor %s dimension overflow", NameOrEmptyString(tensor.name())); return false; } } } switch (tensor.type()) { case TensorType_FLOAT32: bytes_required *= sizeof(float); break; case TensorType_FLOAT16: bytes_required *= sizeof(uint16_t); break; case TensorType_BFLOAT16: bytes_required *= sizeof(uint16_t); break; case TensorType_FLOAT64: bytes_required *= sizeof(double); break; case TensorType_INT32: bytes_required *= sizeof(int32_t); break; case TensorType_UINT32: bytes_required *= sizeof(uint32_t); break; case TensorType_INT4: bytes_required *= sizeof(int8_t); break; case TensorType_UINT8: bytes_required *= sizeof(uint8_t); break; case TensorType_INT8: bytes_required *= sizeof(int8_t); break; case TensorType_INT64: bytes_required *= sizeof(int64_t); break; case TensorType_UINT64: bytes_required *= sizeof(uint64_t); break; case TensorType_BOOL: bytes_required *= sizeof(bool); break; case TensorType_INT16: bytes_required *= sizeof(uint16_t); break; case TensorType_UINT16: bytes_required *= sizeof(uint16_t); break; case TensorType_COMPLEX64: bytes_required *= sizeof(std::complex<float>); break; case TensorType_COMPLEX128: bytes_required *= sizeof(std::complex<double>); break; default: ReportError(error_reporter, "Tensor %s invalid type: %d", NameOrEmptyString(tensor.name()), tensor.type()); return false; } if (bytes_required > UINT_MAX) { ReportError(error_reporter, "Tensor %s dimension overflow", NameOrEmptyString(tensor.name())); return false; } if (bytes_required != buffer.data()->size()) { ReportError( error_reporter, "Tensor %s requires %d bytes, but is allocated with %d bytes buffer", NameOrEmptyString(tensor.name()), bytes_required, buffer.data()->size()); return false; } return true; } using flatbuffers::Offset; using flatbuffers::Vector; bool VerifyOperators(const Vector<Offset<Operator>>& operators, ErrorReporter* error_reporter) { for (const auto* op : operators) { if (!op->inputs()) { ReportError(error_reporter, "Missing 'inputs' for operator."); return false; } if (!op->outputs()) { ReportError(error_reporter, "Missing 'outputs' for operator."); return false; } } return true; } bool IsConstantTensor(const Tensor& tensor, const Model& model) { if (!tensor.buffer() || !model.buffers()) return false; if (tensor.buffer() > 0 && tensor.buffer() < model.buffers()->size()) { auto* buffer = model.buffers()->Get(tensor.buffer()); if (buffer && buffer->data()) { return true; } } return false; } bool VerifySubGraphConsistency(const Model& model, const SubGraph& subgraph, ErrorReporter* error_reporter) { absl::flat_hash_set<int> subgraph_input_tensors, constant_tensors, variable_tensors, output_tensors; if (subgraph.tensors()) { for (int i = 0, end = subgraph.tensors()->size(); i < end; ++i) { const auto* tensor = subgraph.tensors()->Get(i); if (IsConstantTensor(*tensor, model)) { constant_tensors.insert(i); } else if (tensor->is_variable()) { variable_tensors.insert(i); } } } if (subgraph.inputs()) { for (const int tensor_idx : *subgraph.inputs()) { subgraph_input_tensors.insert(tensor_idx); } } if (subgraph.operators()) { for (int op_idx = 0, end = subgraph.operators()->size(); op_idx < end; ++op_idx) { const auto* op = subgraph.operators()->Get(op_idx); if (!model.operator_codes() || (op->opcode_index() >= model.operator_codes()->size())) { ReportError(error_reporter, "Operator %d does not exist in model op codes", op->opcode_index()); return false; } const auto& opcode = model.operator_codes()->Get(op->opcode_index()); auto builtin_code = GetBuiltinCode(opcode); for (const int input_idx : *op->inputs()) { if (input_idx == kTfLiteOptionalTensor) continue; if (constant_tensors.find(input_idx) == constant_tensors.end() && variable_tensors.find(input_idx) == variable_tensors.end() && subgraph_input_tensors.find(input_idx) == subgraph_input_tensors.end() && output_tensors.find(input_idx) == output_tensors.end()) { ReportError(error_reporter, "Input tensor %d to op %d (%s) is not produced", input_idx, op_idx, EnumNameBuiltinOperator(builtin_code)); return false; } } for (const int output_idx : *op->outputs()) { if (constant_tensors.find(output_idx) != constant_tensors.end()) { ReportError( error_reporter, "Output tensor %d to op %d (%s) is a constant", output_idx, op_idx, EnumNameBuiltinOperator(builtin_code)); return false; } else if (variable_tensors.find(output_idx) != variable_tensors.end()) { ReportError( error_reporter, "Output tensor %d to op %d (%s) is a variable", output_idx, op_idx, EnumNameBuiltinOperator(builtin_code)); return false; } else if (subgraph_input_tensors.find(output_idx) != subgraph_input_tensors.end()) { ReportError(error_reporter, "Output tensor %d to op %d (%s) is a subgraph input", output_idx, op_idx, EnumNameBuiltinOperator(builtin_code)); return false; } else if (output_tensors.find(output_idx) != output_tensors.end()) { ReportError(error_reporter, "Output tensor %d to op %d (%s) is an output from " "another op. There is a cycle in the graph", output_idx, op_idx, EnumNameBuiltinOperator(builtin_code)); return false; } output_tensors.insert(output_idx); } } } return true; } bool VerifySubGraphs(const Model& model, ErrorReporter* error_reporter) { if (!model.subgraphs()) { ReportError(error_reporter, "Missing 'subgraphs' section."); return false; } for (const auto* subgraph : *model.subgraphs()) { if (!subgraph->operators()) { ReportError(error_reporter, "Missing 'operators' section in subgraph."); return false; } if (!VerifyOperators(*subgraph->operators(), error_reporter)) { return false; } if (!VerifySubGraphConsistency(model, *subgraph, error_reporter)) { return false; } } return true; } bool VerifyTensors(const Model& model, ErrorReporter* error_reporter) { if (!model.subgraphs()) { return true; } if (!model.buffers()) { ReportError(error_reporter, "Missing 'buffers' section."); return false; } for (const auto* subgraph : *model.subgraphs()) { if (!subgraph->tensors()) { continue; } for (const auto* tensor : *subgraph->tensors()) { if (!tensor->buffer()) { continue; } if (tensor->buffer() >= model.buffers()->size()) { ReportError(error_reporter, "Tensor %s invalid buffer index: %d", NameOrEmptyString(tensor->name()), tensor->buffer()); return false; } auto* buffer = model.buffers()->Get(tensor->buffer()); if (!buffer) { ReportError(error_reporter, "Tensor %s buffer %d not set", NameOrEmptyString(tensor->name()), tensor->buffer()); return false; } if (buffer->data()) { if (tensor->type() == TensorType_STRING) { if (!VerifyStringTensorBuffer(*tensor, *buffer, error_reporter)) { return false; } } else { if (!VerifyNumericTensorBuffer(*tensor, *buffer, error_reporter)) { return false; } } } } } return true; } bool VerifyOps(const Model& model, const OpResolver& resolver, ErrorReporter* error_reporter) { if (!model.operator_codes()) { return true; } absl::flat_hash_set<int> regular_code_indices; absl::flat_hash_set<int> validation_code_indices; for (const auto* subgraph : *model.subgraphs()) { if (!subgraph->operators()) { continue; } if (subgraph->name() && IsValidationSubgraph(subgraph->name()->c_str())) { for (const auto& op : *(subgraph->operators())) { validation_code_indices.insert(op->opcode_index()); } } else { for (const auto* op : *(subgraph->operators())) { regular_code_indices.insert(op->opcode_index()); } } } for (int i = 0; i < model.operator_codes()->size(); i++) { const auto* opcode = model.operator_codes()->Get(i); auto builtin_code = GetBuiltinCode(opcode); if (builtin_code < BuiltinOperator_MIN || builtin_code > BuiltinOperator_MAX) { ReportError(error_reporter, "Operator id '%d' is out of range.", builtin_code); return false; } if (builtin_code == BuiltinOperator_CUSTOM) { if (IsNullOrEmptyString(opcode->custom_code())) { ReportError(error_reporter, "Invalid custom op name, cannot be null/empty."); return false; } else if (!resolver.FindOp(opcode->custom_code()->c_str(), opcode->version())) { if (regular_code_indices.contains(i) || !validation_code_indices.contains(i)) { ReportError(error_reporter, "Unsupported custom op: %s, version: %d", opcode->custom_code()->c_str(), opcode->version()); return false; } } } else { if (!resolver.FindOp(builtin_code, opcode->version())) { ReportError(error_reporter, "Unsupported builtin op: %s, version: %d", EnumNameBuiltinOperator(builtin_code), opcode->version()); return false; } } } return true; } bool VerifyModel(const Model* model, ErrorReporter* error_reporter) { if (model == nullptr) { ReportError(error_reporter, "Invalid flatbuffer format"); return false; } if (model->version() != TFLITE_SCHEMA_VERSION) { ReportError(error_reporter, "Invalid model version %d", model->version()); return false; } if (!VerifySubGraphs(*model, error_reporter)) { return false; } if (!VerifyTensors(*model, error_reporter)) { return false; } return true; } } bool Verify(const void* buf, size_t len, ErrorReporter* error_reporter) { const Model* model = internal::VerifyFlatBufferAndGetModel(buf, len); return VerifyModel(model, error_reporter); } bool Verify(const void* buf, size_t len, const OpResolver& resolver, ErrorReporter* error_reporter) { const Model* model = internal::VerifyFlatBufferAndGetModel(buf, len); if (!VerifyModel(model, error_reporter)) { return false; } if (!VerifyOps(*model, resolver, error_reporter)) { return false; } return true; } }
#include "tensorflow/lite/core/tools/verifier.h" #include <memory> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "flatbuffers/buffer.h" #include "flatbuffers/flatbuffer_builder.h" #include "flatbuffers/vector.h" #include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/core/api/flatbuffer_conversions.h" #include "tensorflow/lite/error_reporter.h" #include "tensorflow/lite/model_builder.h" #include "tensorflow/lite/mutable_op_resolver.h" #include "tensorflow/lite/op_resolver.h" #include "tensorflow/lite/schema/schema_conversion_utils.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/string_type.h" #include "tensorflow/lite/util.h" #include "tensorflow/lite/version.h" namespace tflite { namespace { static const char* kSparseTensorTestModel = "tensorflow/lite/testdata/sparse_tensor.bin"; } class MockErrorReporter : public ErrorReporter { public: MockErrorReporter() : buffer_size_(0) {} int Report(const char* format, va_list args) override { buffer_size_ = vsnprintf(buffer_, kBufferSize, format, args); return buffer_size_; } int GetBufferSize() { return buffer_size_; } string GetAsString() const { return string(buffer_, buffer_size_); } private: static constexpr int kBufferSize = 256; char buffer_[kBufferSize]; int buffer_size_; }; class TfLiteFlatbufferModelBuilder { public: TfLiteFlatbufferModelBuilder() { buffers_.push_back( CreateBuffer(builder_, builder_.CreateVector(std::vector<uint8_t>{}))); } TfLiteFlatbufferModelBuilder(const std::vector<BuiltinOperator>& builtin_ops, const std::vector<std::string>& custom_ops) { buffers_.push_back( CreateBuffer(builder_, builder_.CreateVector(std::vector<uint8_t>{}))); for (const auto& iter : builtin_ops) { resolver_.AddBuiltin(iter, &fake_op_); } for (const auto& iter : custom_ops) { resolver_.AddCustom(iter.data(), &fake_op_); } } void AddTensor(const std::vector<int>& shape, tflite::TensorType type, const std::vector<uint8_t>& buffer, const char* name, const bool is_variable = false) { int buffer_index = 0; if (!buffer.empty()) { buffer_index = buffers_.size(); buffers_.push_back(CreateBuffer(builder_, builder_.CreateVector(buffer))); } if (shape.empty()) { tensors_.push_back(CreateTensorDirect(builder_, nullptr, type, buffer_index, name, 0, is_variable)); return; } tensors_.push_back(CreateTensorDirect(builder_, &shape, type, buffer_index, name, 0, is_variable)); } void AddOperator(const std::vector<int32_t>& inputs, const std::vector<int32_t>& outputs, tflite::BuiltinOperator builtin_op, const char* custom_op) { operator_codes_.push_back( CreateOperatorCodeDirect(builder_, builtin_op, custom_op)); operators_.push_back(CreateOperator( builder_, operator_codes_.size() - 1, builder_.CreateVector(inputs), builder_.CreateVector(outputs), BuiltinOptions_NONE, 0, 0, tflite::CustomOptionsFormat_FLEXBUFFERS)); } enum BuilderMode { kBuilderModeEmptyVectorIsEmpty, kBuilderModeEmptyVectorIsNull, kBuilderModeDefault = kBuilderModeEmptyVectorIsEmpty, }; void FinishModel(const std::vector<int32_t>& inputs, const std::vector<int32_t>& outputs, BuilderMode mode = kBuilderModeDefault) { auto subgraph = std::vector<flatbuffers::Offset<SubGraph>>({CreateSubGraph( builder_, CreateVector(tensors_, mode), CreateVector(inputs, mode), CreateVector(outputs, mode), CreateVector(operators_, mode), builder_.CreateString("test_subgraph"))}); auto result = CreateModel( builder_, TFLITE_SCHEMA_VERSION, CreateVector(operator_codes_, mode), CreateVector(subgraph, mode), builder_.CreateString("test_model"), CreateVector(buffers_, mode)); tflite::FinishModelBuffer(builder_, result); } bool Verify() { return tflite::Verify(builder_.GetBufferPointer(), builder_.GetSize(), &mock_reporter_); } bool VerifyWithOpResolver() { return tflite::Verify(builder_.GetBufferPointer(), builder_.GetSize(), resolver_, &mock_reporter_); } string GetErrorString() { return mock_reporter_.GetAsString(); } private: template <typename T> flatbuffers::Offset<flatbuffers::Vector<T>> CreateVector( const std::vector<T>& v, BuilderMode mode) { if (mode == kBuilderModeEmptyVectorIsNull && v.empty()) { return 0; } return builder_.CreateVector(v); } flatbuffers::FlatBufferBuilder builder_; MutableOpResolver resolver_; TfLiteRegistration fake_op_{}; MockErrorReporter mock_reporter_; std::vector<flatbuffers::Offset<Operator>> operators_; std::vector<flatbuffers::Offset<OperatorCode>> operator_codes_; std::vector<flatbuffers::Offset<Tensor>> tensors_; std::vector<flatbuffers::Offset<Buffer>> buffers_; }; TEST(VerifyModel, TestEmptyModel) { flatbuffers::FlatBufferBuilder builder; auto model = CreateModel(builder, TFLITE_SCHEMA_VERSION, 0, 0, 0, 0); ::tflite::FinishModelBuffer(builder, model); MockErrorReporter mock_reporter; ASSERT_FALSE( Verify(builder.GetBufferPointer(), builder.GetSize(), &mock_reporter)); ASSERT_FALSE(Verify(builder.GetBufferPointer(), builder.GetSize(), MutableOpResolver{}, &mock_reporter)); EXPECT_THAT(mock_reporter.GetAsString(), ::testing::ContainsRegex("Missing 'subgraphs' section.")); } TEST(VerifyModel, TestEmptyVector) { TfLiteFlatbufferModelBuilder builder({}, {"test"}); builder.AddOperator({0, 1}, {3}, BuiltinOperator_CUSTOM, "test"); builder.AddTensor({2, 3}, TensorType_UINT8, {1, 2, 3, 4, 5, 6}, "input"); builder.AddTensor({}, TensorType_UINT8, {}, "empty_vector"); builder.AddTensor( {2}, TensorType_STRING, {2, 0, 0, 0, 16, 0, 0, 0, 17, 0, 0, 0, 19, 0, 0, 0, 'A', 'B', 'C'}, "data"); builder.AddTensor({2, 3}, TensorType_INT32, {}, "output"); builder.FinishModel({0, 1}, {3}); ASSERT_TRUE(builder.Verify()); ASSERT_TRUE(builder.VerifyWithOpResolver()); } TEST(VerifyModel, TestSimpleModel) { TfLiteFlatbufferModelBuilder builder({}, {"test"}); builder.AddOperator({0, 1}, {2}, BuiltinOperator_CUSTOM, "test"); builder.AddTensor({2, 3}, TensorType_UINT8, {1, 2, 3, 4, 5, 6}, "input"); builder.AddTensor( {2}, TensorType_STRING, {2, 0, 0, 0, 16, 0, 0, 0, 17, 0, 0, 0, 19, 0, 0, 0, 'A', 'B', 'C'}, "data"); builder.AddTensor({2, 3}, TensorType_INT32, {}, "output"); builder.FinishModel({0, 1}, {2}); ASSERT_TRUE(builder.Verify()); ASSERT_TRUE(builder.VerifyWithOpResolver()); EXPECT_EQ("", builder.GetErrorString()); } TEST(VerifyModel, TestNullTensors) { TfLiteFlatbufferModelBuilder builder({}, {"test"}); builder.AddOperator({0, 1}, {2}, BuiltinOperator_CUSTOM, "test"); builder.FinishModel( {}, {2}, TfLiteFlatbufferModelBuilder::kBuilderModeEmptyVectorIsNull); ASSERT_FALSE(builder.Verify()); ASSERT_FALSE(builder.VerifyWithOpResolver()); EXPECT_EQ(builder.GetErrorString(), "Input tensor 0 to op 0 (CUSTOM) is not produced"); } TEST(VerifyModel, TestNullOperators) { TfLiteFlatbufferModelBuilder builder({}, {"test"}); builder.FinishModel( {0, 1}, {2}, TfLiteFlatbufferModelBuilder::kBuilderModeEmptyVectorIsNull); ASSERT_FALSE(builder.Verify()); ASSERT_FALSE(builder.VerifyWithOpResolver()); EXPECT_THAT( builder.GetErrorString(), ::testing::ContainsRegex("Missing 'operators' section in subgraph")); } TEST(VerifyModel, TestNullInputs) { TfLiteFlatbufferModelBuilder builder({}, {"test"}); builder.AddOperator({0, 1}, {2}, BuiltinOperator_CUSTOM, "test"); builder.AddTensor({2, 3}, TensorType_UINT8, {1, 2, 3, 4, 5, 6}, "input"); builder.AddTensor( {2}, TensorType_STRING, {2, 0, 0, 0, 16, 0, 0, 0, 17, 0, 0, 0, 19, 0, 0, 0, 'A', 'B', 'C'}, "data"); builder.AddTensor({2, 3}, TensorType_INT32, {}, "output"); builder.FinishModel( {}, {2}, TfLiteFlatbufferModelBuilder::kBuilderModeEmptyVectorIsNull); ASSERT_TRUE(builder.Verify()); ASSERT_TRUE(builder.VerifyWithOpResolver()); EXPECT_EQ("", builder.GetErrorString()); } TEST(VerifyModel, TestCorruptedData) { std::string model = "123"; MockErrorReporter mock_reporter; ASSERT_FALSE( Verify(model.data(), model.size(), MutableOpResolver{}, &mock_reporter)); EXPECT_THAT(mock_reporter.GetAsString(), ::testing::ContainsRegex("Invalid flatbuffer format")); } TEST(VerifyModel, TestUnsupportedVersion) { flatbuffers::FlatBufferBuilder builder; auto model = CreateModel(builder, 1, 0, 0, 0, 0); ::tflite::FinishModelBuffer(builder, model); MockErrorReporter mock_reporter; ASSERT_FALSE(Verify(builder.GetBufferPointer(), builder.GetSize(), MutableOpResolver{}, &mock_reporter)); EXPECT_THAT(mock_reporter.GetAsString(), ::testing::ContainsRegex("Invalid model version 1")); } TEST(VerifyModel, TestRandomModificationIsNotAllowed) { flatbuffers::FlatBufferBuilder builder; auto model = CreateModel(builder, TFLITE_SCHEMA_VERSION, 0, 0, 0, 0); ::tflite::FinishModelBuffer(builder, model); std::string model_content(reinterpret_cast<char*>(builder.GetBufferPointer()), builder.GetSize()); for (size_t i = 0; i < model_content.size(); i++) { model_content[i] = (model_content[i] + 137) % 255; EXPECT_FALSE(Verify(model_content.data(), model_content.size(), MutableOpResolver{}, DefaultErrorReporter())) << "Fail at position: " << i; } } TEST(VerifyModel, TestIntTensorShapeIsGreaterThanBuffer) { TfLiteFlatbufferModelBuilder builder; builder.AddTensor({2, 3}, TensorType_UINT8, {1, 2, 3, 4}, "input"); builder.FinishModel({}, {}); ASSERT_FALSE(builder.Verify()); ASSERT_FALSE(builder.VerifyWithOpResolver()); EXPECT_THAT(builder.GetErrorString(), ::testing::ContainsRegex("Tensor input requires 6 bytes, but is " "allocated with 4 bytes buffer")); } TEST(VerifyModel, TestIntTensorShapeIsSmallerThanBuffer) { TfLiteFlatbufferModelBuilder builder; builder.AddTensor({2, 1}, TensorType_UINT8, {1, 2, 3, 4}, "input"); builder.FinishModel({}, {}); ASSERT_FALSE(builder.Verify()); ASSERT_FALSE(builder.VerifyWithOpResolver()); EXPECT_THAT(builder.GetErrorString(), ::testing::ContainsRegex("Tensor input requires 2 bytes, but is " "allocated with 4 bytes buffer")); } TEST(VerifyModel, TestIntTensorShapeOverflow) { TfLiteFlatbufferModelBuilder builder; builder.AddTensor({1024, 2048, 4096}, TensorType_UINT8, {1, 2, 3, 4}, "input"); builder.FinishModel({}, {}); ASSERT_FALSE(builder.Verify()); ASSERT_FALSE(builder.VerifyWithOpResolver()); EXPECT_THAT(builder.GetErrorString(), ::testing::ContainsRegex("Tensor input dimension overflow")); } TEST(VerifyModel, TensorBufferIsNotValid) { flatbuffers::FlatBufferBuilder builder; std::vector<int> shape = {2, 3}; auto tensors = builder.CreateVector(std::vector<flatbuffers::Offset<Tensor>>{ CreateTensorDirect(builder, &shape, TensorType_INT32, 2, "input", 0)}); auto subgraph = std::vector<flatbuffers::Offset<SubGraph>>( {CreateSubGraph(builder, tensors, 0, 0, 0, builder.CreateString("Main"))}); auto buffers = builder.CreateVector(std::vector<flatbuffers::Offset<Buffer>>{ CreateBuffer(builder, builder.CreateVector( std::vector<uint8_t>{1, 2, 3, 4, 5, 6})), }); auto model = CreateModel(builder, TFLITE_SCHEMA_VERSION, 0, builder.CreateVector(subgraph), builder.CreateString("SmartReply"), buffers); ::tflite::FinishModelBuffer(builder, model); MockErrorReporter mock_reporter; ASSERT_FALSE( Verify(builder.GetBufferPointer(), builder.GetSize(), &mock_reporter)); ASSERT_FALSE(Verify(builder.GetBufferPointer(), builder.GetSize(), MutableOpResolver{}, &mock_reporter)); EXPECT_THAT( mock_reporter.GetAsString(), ::testing::ContainsRegex("Missing 'operators' section in subgraph.")); } TEST(VerifyModel, StringTensorIsEmpty) { TfLiteFlatbufferModelBuilder builder; builder.AddTensor({2}, TensorType_STRING, {0x00}, "input"); builder.FinishModel({}, {}); ASSERT_FALSE(builder.Verify()); ASSERT_FALSE(builder.VerifyWithOpResolver()); EXPECT_EQ(builder.GetErrorString(), "String tensor input is invalid (empty)"); } TEST(VerifyModel, StringTensorHasInvalidNumString) { TfLiteFlatbufferModelBuilder builder; builder.AddTensor( {2}, TensorType_STRING, {0x00, 0x00, 0x00, 0x20, 16, 0, 0, 0, 17, 0, 0, 0, 18, 0, 0, 0, 'A', 'B'}, "input"); builder.FinishModel({}, {}); ASSERT_FALSE(builder.Verify()); ASSERT_FALSE(builder.VerifyWithOpResolver()); EXPECT_THAT( builder.GetErrorString(), ::testing::ContainsRegex( "String tensor input buffer requires at least -2147483640 bytes, " "but is allocated with 18 bytes")); } TEST(VerifyModel, StringTensorOffsetTooSmall) { TfLiteFlatbufferModelBuilder builder; builder.AddTensor( {2}, TensorType_STRING, {2, 0, 0, 0, 12, 0, 0, 0, 17, 0, 0, 0, 18, 0, 0, 0, 'A', 'B'}, "input"); builder.FinishModel({}, {}); ASSERT_FALSE(builder.Verify()); ASSERT_FALSE(builder.VerifyWithOpResolver()); EXPECT_THAT(builder.GetErrorString(), ::testing::ContainsRegex( "String tensor input buffer initial offset must be: 16")); } TEST(VerifyModel, StringTensorOffsetOutOfRange) { TfLiteFlatbufferModelBuilder builder; builder.AddTensor( {2}, TensorType_STRING, {2, 0, 0, 0, 16, 0, 0, 0, 17, 0, 0, 0, 22, 0, 0, 0, 'A', 'B'}, "input"); builder.FinishModel({}, {}); ASSERT_FALSE(builder.Verify()); ASSERT_FALSE(builder.VerifyWithOpResolver()); EXPECT_THAT(builder.GetErrorString(), ::testing::ContainsRegex( "String tensor input buffer is invalid: index 2")); } TEST(VerifyModel, StringTensorIsLargerThanRequired) { TfLiteFlatbufferModelBuilder builder; builder.AddTensor( {2}, TensorType_STRING, {2, 0, 0, 0, 16, 0, 0, 0, 17, 0, 0, 0, 18, 0, 0, 0, 'A', 'B', 'C'}, "input"); builder.FinishModel({}, {}); ASSERT_FALSE(builder.Verify()); ASSERT_FALSE(builder.VerifyWithOpResolver()); EXPECT_THAT(builder.GetErrorString(), ::testing::ContainsRegex( "String tensor input buffer last offset must be 19")); } TEST(VerifyModel, AllOpsAreSupported) { TfLiteFlatbufferModelBuilder builder({BuiltinOperator_ADD}, {"CustomOp"}); builder.AddTensor({2, 2}, TensorType_UINT8, {1, 2, 3, 4}, "input1"); builder.AddTensor({2, 2}, TensorType_UINT8, {1, 2, 3, 4}, "input2"); builder.AddTensor({2, 2}, TensorType_UINT8, {}, "output1"); builder.AddTensor({2, 2}, TensorType_UINT8, {}, "output2"); builder.AddOperator({0, 1}, {2}, BuiltinOperator_ADD, nullptr); builder.AddOperator({0, 1}, {3}, BuiltinOperator_CUSTOM, "CustomOp"); builder.FinishModel({}, {}); ASSERT_TRUE(builder.Verify()); ASSERT_TRUE(builder.VerifyWithOpResolver()); EXPECT_EQ("", builder.GetErrorString()); } TEST(VerifyModel, UseUnsupportedBuiltinOps) { TfLiteFlatbufferModelBuilder builder({BuiltinOperator_SUB}, {"CustomOp"}); builder.AddTensor({2, 2}, TensorType_UINT8, {1, 2, 3, 4}, "input1"); builder.AddTensor({2, 2}, TensorType_UINT8, {1, 2, 3, 4}, "input2"); builder.AddTensor({2, 2}, TensorType_UINT8, {}, "output"); builder.AddOperator({0, 1}, {2}, BuiltinOperator_ADD, nullptr); builder.FinishModel({}, {}); ASSERT_TRUE(builder.Verify()); EXPECT_EQ("", builder.GetErrorString()); ASSERT_FALSE(builder.VerifyWithOpResolver()); EXPECT_THAT( builder.GetErrorString(), ::testing::ContainsRegex("Unsupported builtin op: ADD, version: 1")); } TEST(VerifyModel, UseUnsupportedCustomOps) { TfLiteFlatbufferModelBuilder builder({BuiltinOperator_ADD}, {"NewOp"}); builder.AddTensor({2, 2}, TensorType_UINT8, {1, 2, 3, 4}, "input1"); builder.AddTensor({2, 2}, TensorType_UINT8, {1, 2, 3, 4}, "input2"); builder.AddTensor({2, 2}, TensorType_UINT8, {}, "output"); builder.AddOperator({0, 1}, {2}, BuiltinOperator_CUSTOM, "Not supported"); builder.FinishModel({}, {}); ASSERT_TRUE(builder.Verify()); EXPECT_EQ("", builder.GetErrorString()); ASSERT_FALSE(builder.VerifyWithOpResolver()); EXPECT_THAT(builder.GetErrorString(), ::testing::ContainsRegex( "Unsupported custom op: Not supported, version: 1")); } TEST(VerifyModel, UseUnnamedCustomOps) { TfLiteFlatbufferModelBuilder builder({BuiltinOperator_ADD}, {"NewOp"}); builder.AddTensor({2, 2}, TensorType_UINT8, {1, 2, 3, 4}, "input1"); builder.AddTensor({2, 2}, TensorType_UINT8, {1, 2, 3, 4}, "input2"); builder.AddTensor({2, 2}, TensorType_UINT8, {}, "output"); builder.AddOperator({0, 1}, {2}, BuiltinOperator_CUSTOM, ""); builder.FinishModel({}, {}); ASSERT_TRUE(builder.Verify()); EXPECT_EQ("", builder.GetErrorString()); ASSERT_FALSE(builder.VerifyWithOpResolver()); EXPECT_THAT(builder.GetErrorString(), ::testing::ContainsRegex( "Invalid custom op name, cannot be null/empty.")); } TEST(VerifyModel, UnpopulatedInputToOp) { TfLiteFlatbufferModelBuilder builder({}, {"test"}); builder.AddOperator({1, 2}, {3}, BuiltinOperator_CUSTOM, "test"); builder.AddTensor({2, 3}, TensorType_UINT8, {1, 2, 3, 4, 5, 6}, "input"); builder.AddTensor({2, 3}, TensorType_UINT8, {}, "invalid_input"); builder.AddTensor( {2}, TensorType_STRING, {2, 0, 0, 0, 16, 0, 0, 0, 17, 0, 0, 0, 19, 0, 0, 0, 'A', 'B', 'C'}, "data"); builder.AddTensor({2, 3}, TensorType_INT32, {}, "output"); builder.FinishModel({0, 2}, {3}); ASSERT_FALSE(builder.Verify()); ASSERT_FALSE(builder.VerifyWithOpResolver()); EXPECT_EQ("Input tensor 1 to op 0 (CUSTOM) is not produced", builder.GetErrorString()); } TEST(VerifyModel, MultipleOpsOutputToSameTensor) { TfLiteFlatbufferModelBuilder builder({BuiltinOperator_ADD}, {"CustomOp"}); builder.AddTensor({2, 2}, TensorType_UINT8, {1, 2, 3, 4}, "input1"); builder.AddTensor({2, 2}, TensorType_UINT8, {1, 2, 3, 4}, "input2"); builder.AddTensor({2, 2}, TensorType_UINT8, {}, "output1"); builder.AddOperator({0, 1}, {2}, BuiltinOperator_ADD, nullptr); builder.AddOperator({0, 1}, {2}, BuiltinOperator_CUSTOM, "CustomOp"); builder.FinishModel({}, {}); ASSERT_FALSE(builder.Verify()); ASSERT_FALSE(builder.VerifyWithOpResolver()); EXPECT_EQ( "Output tensor 2 to op 1 (CUSTOM) is an output from another op. " "There is a cycle in the graph", builder.GetErrorString()); } TEST(VerifyModel, OutputIsAConstantTensor) { TfLiteFlatbufferModelBuilder builder({}, {"test"}); builder.AddOperator({0, 1}, {2}, BuiltinOperator_CUSTOM, "test"); builder.AddTensor({2, 3}, TensorType_UINT8, {1, 2, 3, 4, 5, 6}, "input"); builder.AddTensor( {2}, TensorType_STRING, {2, 0, 0, 0, 16, 0, 0, 0, 17, 0, 0, 0, 19, 0, 0, 0, 'A', 'B', 'C'}, "data"); builder.AddTensor({2, 3}, TensorType_INT32, {1, 2, 3, 4, 5, 6}, "output"); builder.FinishModel({0, 1}, {2}); ASSERT_FALSE(builder.Verify()); ASSERT_FALSE(builder.VerifyWithOpResolver()); EXPECT_EQ("Output tensor 2 to op 0 (CUSTOM) is a constant", builder.GetErrorString()); } TEST(VerifyModel, OutputIsSubgraphInput) { TfLiteFlatbufferModelBuilder builder({}, {"test"}); builder.AddOperator({0, 1}, {2}, BuiltinOperator_CUSTOM, "test"); builder.AddTensor({2, 3}, TensorType_UINT8, {1, 2, 3, 4, 5, 6}, "input"); builder.AddTensor( {2}, TensorType_STRING, {2, 0, 0, 0, 16, 0, 0, 0, 17, 0, 0, 0, 19, 0, 0, 0, 'A', 'B', 'C'}, "data"); builder.AddTensor({2, 3}, TensorType_INT32, {}, "output"); builder.FinishModel({0, 1, 2}, {2}); ASSERT_FALSE(builder.Verify()); ASSERT_FALSE(builder.VerifyWithOpResolver()); EXPECT_EQ("Output tensor 2 to op 0 (CUSTOM) is a subgraph input", builder.GetErrorString()); } TEST(VerifyModel, OutputIsAVariable) { TfLiteFlatbufferModelBuilder builder({}, {"test"}); builder.AddOperator({0, 1}, {2}, BuiltinOperator_CUSTOM, "test"); builder.AddTensor({2, 3}, TensorType_UINT8, {1, 2, 3, 4, 5, 6}, "input"); builder.AddTensor( {2}, TensorType_STRING, {2, 0, 0, 0, 16, 0, 0, 0, 17, 0, 0, 0, 19, 0, 0, 0, 'A', 'B', 'C'}, "data"); builder.AddTensor({2, 3}, TensorType_INT32, {}, "output", true); builder.FinishModel({0, 1}, {2}); ASSERT_FALSE(builder.Verify()); ASSERT_FALSE(builder.VerifyWithOpResolver()); EXPECT_EQ("Output tensor 2 to op 0 (CUSTOM) is a variable", builder.GetErrorString()); } TEST(VerifyModel, OpWithOptionalTensor) { TfLiteFlatbufferModelBuilder builder({}, {"test"}); builder.AddOperator({kTfLiteOptionalTensor, 0, 1}, {2}, BuiltinOperator_CUSTOM, "test"); builder.AddTensor({2, 3}, TensorType_UINT8, {1, 2, 3, 4, 5, 6}, "input"); builder.AddTensor( {2}, TensorType_STRING, {2, 0, 0, 0, 16, 0, 0, 0, 17, 0, 0, 0, 19, 0, 0, 0, 'A', 'B', 'C'}, "data"); builder.AddTensor({2, 3}, TensorType_INT32, {}, "output"); builder.FinishModel({0, 1}, {2}); ASSERT_TRUE(builder.Verify()); ASSERT_TRUE(builder.VerifyWithOpResolver()); EXPECT_EQ("", builder.GetErrorString()); } TEST(VerifyModel, TypedTensorShapeMismatchWithTensorBufferSize) { TfLiteFlatbufferModelBuilder builder; for (int tensor_type = TensorType_MIN; tensor_type <= TensorType_MAX; ++tensor_type) { if (tensor_type == TensorType_STRING) continue; builder.AddTensor({2, 3}, static_cast<TensorType>(tensor_type), {1, 2, 3, 4}, "input"); builder.FinishModel({}, {}); ASSERT_FALSE(builder.Verify()); ASSERT_FALSE(builder.VerifyWithOpResolver()); EXPECT_THAT( builder.GetErrorString(), ::testing::ContainsRegex("Tensor input requires .* bytes, but is " "allocated with 4 bytes buffer")); } } TEST(VerifyModel, TypedTensorShapeMatchesTensorBufferSize) { TfLiteFlatbufferModelBuilder builder; for (int tensor_type = TensorType_MIN; tensor_type <= TensorType_MAX; ++tensor_type) { if (tensor_type == TensorType_STRING || tensor_type == TensorType_RESOURCE || tensor_type == TensorType_VARIANT) continue; TfLiteType lite_type = kTfLiteNoType; ASSERT_EQ(ConvertTensorType(static_cast<TensorType>(tensor_type), &lite_type, nullptr), kTfLiteOk); size_t size_bytes = 0; ASSERT_EQ(GetSizeOfType(nullptr, lite_type, &size_bytes), kTfLiteOk); std::vector<uint8_t> buffer(size_bytes); builder.AddTensor({1}, static_cast<TensorType>(tensor_type), buffer, "input"); builder.FinishModel({}, {}); ASSERT_TRUE(builder.Verify()); ASSERT_TRUE(builder.VerifyWithOpResolver()); } } TEST(VerifyModel, SimpleValidSparseTensor) { const auto model = FlatBufferModel::BuildFromFile( tensorflow::GetDataDependencyFilepath(kSparseTensorTestModel).c_str()); ASSERT_TRUE(model); std::unique_ptr<ModelT> scoped_model; scoped_model.reset(model->GetModel()->UnPack()); flatbuffers::FlatBufferBuilder builder; auto model_ = Model::Pack(builder, scoped_model.get()); ::tflite::FinishModelBuffer(builder, model_); MockErrorReporter mock_reporter; MutableOpResolver resolver; TfLiteRegistration fake_op{}; resolver.AddCustom("FakeOp", &fake_op); ASSERT_TRUE( Verify(builder.GetBufferPointer(), builder.GetSize(), &mock_reporter)); ASSERT_TRUE(Verify(builder.GetBufferPointer(), builder.GetSize(), resolver, &mock_reporter)); } TEST(VerifyModel, InvalidSparseTensorMissingBlockMap) { const auto model = FlatBufferModel::BuildFromFile( tensorflow::GetDataDependencyFilepath(kSparseTensorTestModel).c_str()); ASSERT_TRUE(model); std::unique_ptr<ModelT> scoped_model; scoped_model.reset(model->GetModel()->UnPack()); auto* tensor = scoped_model->subgraphs[0]->tensors[0].get(); tensor->sparsity->block_map = {}; flatbuffers::FlatBufferBuilder builder; auto model_ = Model::Pack(builder, scoped_model.get()); ::tflite::FinishModelBuffer(builder, model_); MockErrorReporter mock_reporter; MutableOpResolver resolver; TfLiteRegistration fake_op{}; resolver.AddCustom("FakeOp", &fake_op); ASSERT_FALSE( Verify(builder.GetBufferPointer(), builder.GetSize(), &mock_reporter)); ASSERT_FALSE(Verify(builder.GetBufferPointer(), builder.GetSize(), resolver, &mock_reporter)); EXPECT_THAT(mock_reporter.GetAsString(), ::testing::ContainsRegex("invalid sparsity parameters")); } TEST(VerifyModel, InvalidSparseTensorIndexOutOfBound) { const auto model = FlatBufferModel::BuildFromFile( tensorflow::GetDataDependencyFilepath(kSparseTensorTestModel).c_str()); ASSERT_TRUE(model); std::unique_ptr<ModelT> scoped_model; scoped_model.reset(model->GetModel()->UnPack()); auto* tensor = scoped_model->subgraphs[0]->tensors[0].get(); tensor->sparsity->dim_metadata[1]->array_indices.AsUint8Vector()->values[1] = 5; flatbuffers::FlatBufferBuilder builder; auto model_ = Model::Pack(builder, scoped_model.get()); ::tflite::FinishModelBuffer(builder, model_); MockErrorReporter mock_reporter; MutableOpResolver resolver; TfLiteRegistration fake_op{}; resolver.AddCustom("FakeOp", &fake_op); ASSERT_FALSE( Verify(builder.GetBufferPointer(), builder.GetSize(), &mock_reporter)); ASSERT_FALSE(Verify(builder.GetBufferPointer(), builder.GetSize(), resolver, &mock_reporter)); EXPECT_THAT(mock_reporter.GetAsString(), ::testing::ContainsRegex("invalid sparsity parameters")); } TEST(VerifyModel, InvalidSparseTensorInvalidBuffer) { const auto model = FlatBufferModel::BuildFromFile( tensorflow::GetDataDependencyFilepath(kSparseTensorTestModel).c_str()); ASSERT_TRUE(model); std::unique_ptr<ModelT> scoped_model; scoped_model.reset(model->GetModel()->UnPack()); scoped_model->buffers[1]->data = {0, 1, 2, 3, 4, 5, 6, 7}; flatbuffers::FlatBufferBuilder builder; auto model_ = Model::Pack(builder, scoped_model.get()); ::tflite::FinishModelBuffer(builder, model_); MockErrorReporter mock_reporter; MutableOpResolver resolver; TfLiteRegistration fake_op{}; resolver.AddCustom("FakeOp", &fake_op); ASSERT_FALSE( Verify(builder.GetBufferPointer(), builder.GetSize(), &mock_reporter)); ASSERT_FALSE(Verify(builder.GetBufferPointer(), builder.GetSize(), resolver, &mock_reporter)); EXPECT_THAT(mock_reporter.GetAsString(), ::testing::ContainsRegex( "requires 12 bytes, but is allocated with 8 bytes buffer")); } TEST(VerifyModel, InvalidSparseTensorInvalidTraversalOrder) { const auto model = FlatBufferModel::BuildFromFile( tensorflow::GetDataDependencyFilepath(kSparseTensorTestModel).c_str()); ASSERT_TRUE(model); std::unique_ptr<ModelT> scoped_model; scoped_model.reset(model->GetModel()->UnPack()); auto* tensor = scoped_model->subgraphs[0]->tensors[0].get(); tensor->sparsity->traversal_order[0] = 10; flatbuffers::FlatBufferBuilder builder; auto model_ = Model::Pack(builder, scoped_model.get()); ::tflite::FinishModelBuffer(builder, model_); MockErrorReporter mock_reporter; MutableOpResolver resolver; TfLiteRegistration fake_op{}; resolver.AddCustom("FakeOp", &fake_op); ASSERT_FALSE( Verify(builder.GetBufferPointer(), builder.GetSize(), &mock_reporter)); ASSERT_FALSE(Verify(builder.GetBufferPointer(), builder.GetSize(), resolver, &mock_reporter)); EXPECT_THAT(mock_reporter.GetAsString(), ::testing::ContainsRegex("invalid sparsity parameters")); } TEST(VerifyModel, ValidSparseTensorBCSC) { const auto model = FlatBufferModel::BuildFromFile( tensorflow::GetDataDependencyFilepath(kSparseTensorTestModel).c_str()); ASSERT_TRUE(model); std::unique_ptr<ModelT> scoped_model; scoped_model.reset(model->GetModel()->UnPack()); auto* tensor = scoped_model->subgraphs[0]->tensors[0].get(); tensor->sparsity->traversal_order = {1, 0, 3, 2}; tensor->sparsity->block_map = {0, 1}; tensor->sparsity->dim_metadata[0]->format = DimensionType_DENSE; tensor->sparsity->dim_metadata[0]->dense_size = 2; tensor->sparsity->dim_metadata[1]->format = DimensionType_SPARSE_CSR; tensor->sparsity->dim_metadata[1]->array_segments.AsUint8Vector()->values = { 0, 1, 3}; tensor->sparsity->dim_metadata[1]->array_indices.AsUint8Vector()->values = { 0, 0, 1}; tensor->sparsity->dim_metadata[2]->format = DimensionType_DENSE; tensor->sparsity->dim_metadata[2]->dense_size = 2; tensor->sparsity->dim_metadata[3]->format = DimensionType_DENSE; tensor->sparsity->dim_metadata[3]->dense_size = 2; flatbuffers::FlatBufferBuilder builder; auto model_ = Model::Pack(builder, scoped_model.get()); ::tflite::FinishModelBuffer(builder, model_); MockErrorReporter mock_reporter; MutableOpResolver resolver; TfLiteRegistration fake_op{}; resolver.AddCustom("FakeOp", &fake_op); ASSERT_TRUE( Verify(builder.GetBufferPointer(), builder.GetSize(), &mock_reporter)); ASSERT_TRUE(Verify(builder.GetBufferPointer(), builder.GetSize(), resolver, &mock_reporter)); } }
966
cpp
tensorflow/tensorflow
stable_delegate_registry
tensorflow/lite/core/acceleration/configuration/stable_delegate_registry.cc
tensorflow/lite/core/acceleration/configuration/stable_delegate_registry_test.cc
#ifndef TENSORFLOW_LITE_CORE_ACCELERATION_CONFIGURATION_STABLE_DELEGATE_REGISTRY_H_ #define TENSORFLOW_LITE_CORE_ACCELERATION_CONFIGURATION_STABLE_DELEGATE_REGISTRY_H_ #include <string> #include <unordered_map> #include "absl/synchronization/mutex.h" #include "tensorflow/lite/core/acceleration/configuration/c/stable_delegate.h" namespace tflite { namespace delegates { class StableDelegateRegistry { public: static void RegisterStableDelegate(const TfLiteStableDelegate* delegate); static const TfLiteStableDelegate* RetrieveStableDelegate( const std::string& name); private: static StableDelegateRegistry* GetSingleton(); void RegisterStableDelegateImpl(const TfLiteStableDelegate* delegate); const TfLiteStableDelegate* RetrieveStableDelegateImpl( const std::string& name); absl::Mutex mutex_; std::unordered_map<std::string, const TfLiteStableDelegate*> registry_ ABSL_GUARDED_BY(mutex_); }; } } #endif #include "tensorflow/lite/core/acceleration/configuration/stable_delegate_registry.h" #include <string> #include "absl/synchronization/mutex.h" namespace tflite { namespace delegates { void StableDelegateRegistry::RegisterStableDelegate( const TfLiteStableDelegate* delegate) { auto* const instance = StableDelegateRegistry::GetSingleton(); instance->RegisterStableDelegateImpl(delegate); } const TfLiteStableDelegate* StableDelegateRegistry::RetrieveStableDelegate( const std::string& name) { auto* const instance = StableDelegateRegistry::GetSingleton(); return instance->RetrieveStableDelegateImpl(name); } void StableDelegateRegistry::RegisterStableDelegateImpl( const TfLiteStableDelegate* delegate) { absl::MutexLock lock(&mutex_); registry_[delegate->delegate_name] = delegate; } const TfLiteStableDelegate* StableDelegateRegistry::RetrieveStableDelegateImpl( const std::string& name) { absl::MutexLock lock(&mutex_); if (registry_.find(name) == registry_.end()) { return nullptr; } else { return registry_[name]; } } StableDelegateRegistry* StableDelegateRegistry::GetSingleton() { static auto* instance = new StableDelegateRegistry(); return instance; } } }
#include "tensorflow/lite/core/acceleration/configuration/stable_delegate_registry.h" #include <gtest/gtest.h> namespace { using tflite::delegates::StableDelegateRegistry; TfLiteStableDelegate CreateTestStableDelegate() { TfLiteStableDelegate stable_delegate = {TFL_STABLE_DELEGATE_ABI_VERSION, "test_delegate", "V1.0.0", nullptr}; return stable_delegate; } class StableDelegateRegistryTest : public testing::Test { public: void SetUp() override { stable_delegate_ = CreateTestStableDelegate(); StableDelegateRegistry::RegisterStableDelegate(&stable_delegate_); } protected: TfLiteStableDelegate stable_delegate_; }; TEST_F(StableDelegateRegistryTest, TestRetrieval) { EXPECT_EQ(StableDelegateRegistry::RetrieveStableDelegate("test_delegate"), &stable_delegate_); } TEST_F(StableDelegateRegistryTest, NoRegistrationFound) { EXPECT_EQ( StableDelegateRegistry::RetrieveStableDelegate("not_valid_delegate"), nullptr); } }
967
cpp
tensorflow/tensorflow
nnapi_plugin
tensorflow/lite/core/acceleration/configuration/c/nnapi_plugin.cc
tensorflow/lite/core/acceleration/configuration/c/nnapi_plugin_test.cc
#ifndef TENSORFLOW_LITE_CORE_ACCELERATION_CONFIGURATION_C_NNAPI_PLUGIN_H_ #define TENSORFLOW_LITE_CORE_ACCELERATION_CONFIGURATION_C_NNAPI_PLUGIN_H_ #include "tensorflow/lite/core/acceleration/configuration/c/delegate_plugin.h" #ifdef __cplusplus extern "C" { #endif const TfLiteDelegatePlugin* TfLiteNnapiDelegatePluginCApi(); #ifdef __cplusplus } #endif #endif #include "tensorflow/lite/core/acceleration/configuration/c/nnapi_plugin.h" #include <memory> #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/core/acceleration/configuration/nnapi_plugin.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/delegates/nnapi/nnapi_delegate.h" extern "C" { static TfLiteDelegate* CreateDelegate(const void* settings) { const ::tflite::TFLiteSettings* tflite_settings = static_cast<const ::tflite::TFLiteSettings*>(settings); tflite::delegates::NnapiPlugin nnapi_plugin(*tflite_settings); auto support_library_handle = nnapi_plugin.GetSupportLibraryHandle(); if (support_library_handle) { auto nnapi_support_library_driver = reinterpret_cast<const NnApiSLDriverImplFL5*>(support_library_handle); return new tflite::StatefulNnApiDelegate(nnapi_support_library_driver, nnapi_plugin.Options()); } return new tflite::StatefulNnApiDelegate(nnapi_plugin.Options()); } static void DestroyDelegate(TfLiteDelegate* delegate) { delete static_cast<tflite::StatefulNnApiDelegate*>(delegate); } static int DelegateErrno(TfLiteDelegate* from_delegate) { auto nnapi_delegate = static_cast<tflite::StatefulNnApiDelegate*>(from_delegate); return nnapi_delegate->GetNnApiErrno(); } static constexpr TfLiteDelegatePlugin kPluginCApi{ CreateDelegate, DestroyDelegate, DelegateErrno, }; const TfLiteDelegatePlugin* TfLiteNnapiDelegatePluginCApi() { return &kPluginCApi; } }
#include "tensorflow/lite/core/acceleration/configuration/c/nnapi_plugin.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/core/c/common.h" namespace tflite { class NnapiTest : public testing::Test { public: void SetUp() override { NNAPISettingsBuilder nnapi_settings_builder(flatbuffer_builder_); flatbuffers::Offset<NNAPISettings> nnapi_settings = nnapi_settings_builder.Finish(); TFLiteSettingsBuilder tflite_settings_builder(flatbuffer_builder_); tflite_settings_builder.add_nnapi_settings(nnapi_settings); flatbuffers::Offset<TFLiteSettings> tflite_settings = tflite_settings_builder.Finish(); flatbuffer_builder_.Finish(tflite_settings); settings_ = flatbuffers::GetRoot<TFLiteSettings>( flatbuffer_builder_.GetBufferPointer()); } ~NnapiTest() override {} protected: flatbuffers::FlatBufferBuilder flatbuffer_builder_; const TFLiteSettings *settings_; }; TEST_F(NnapiTest, CanCreateAndDestroyDelegate) { TfLiteDelegate *delegate = TfLiteNnapiDelegatePluginCApi()->create(settings_); EXPECT_NE(delegate, nullptr); TfLiteNnapiDelegatePluginCApi()->destroy(delegate); } TEST_F(NnapiTest, CanGetDelegateErrno) { TfLiteDelegate *delegate = TfLiteNnapiDelegatePluginCApi()->create(settings_); int error_number = TfLiteNnapiDelegatePluginCApi()->get_delegate_errno(delegate); EXPECT_EQ(error_number, 0); TfLiteNnapiDelegatePluginCApi()->destroy(delegate); } }
968
cpp
tensorflow/tensorflow
xnnpack_plugin
tensorflow/lite/core/acceleration/configuration/c/xnnpack_plugin.cc
tensorflow/lite/core/acceleration/configuration/c/xnnpack_plugin_test.cc
#ifndef TENSORFLOW_LITE_CORE_ACCELERATION_CONFIGURATION_C_XNNPACK_PLUGIN_H_ #define TENSORFLOW_LITE_CORE_ACCELERATION_CONFIGURATION_C_XNNPACK_PLUGIN_H_ #include "tensorflow/lite/core/acceleration/configuration/c/delegate_plugin.h" #ifdef __cplusplus extern "C" { #endif const TfLiteDelegatePlugin* TfLiteXnnpackDelegatePluginCApi(); #ifdef __cplusplus } #endif #endif #include "tensorflow/lite/core/acceleration/configuration/c/xnnpack_plugin.h" #include <memory> #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h" extern "C" { static TfLiteDelegate* CreateDelegate(const void* settings) { const ::tflite::TFLiteSettings* tflite_settings = static_cast<const ::tflite::TFLiteSettings*>(settings); auto options(TfLiteXNNPackDelegateOptionsDefault()); const auto* xnnpack_settings = tflite_settings->xnnpack_settings(); if (xnnpack_settings) { options.num_threads = xnnpack_settings->num_threads(); if (xnnpack_settings->flags()) { options.flags = xnnpack_settings->flags(); } if (xnnpack_settings->experimental_weight_cache_file_path()) { options.experimental_weight_cache_file_path = xnnpack_settings->experimental_weight_cache_file_path()->c_str(); } } return TfLiteXNNPackDelegateCreate(&options); } static void DestroyDelegate(TfLiteDelegate* delegate) { TfLiteXNNPackDelegateDelete(delegate); } static int DelegateErrno(TfLiteDelegate* from_delegate) { return 0; } static constexpr TfLiteDelegatePlugin kPluginCApi{ CreateDelegate, DestroyDelegate, DelegateErrno, }; const TfLiteDelegatePlugin* TfLiteXnnpackDelegatePluginCApi() { return &kPluginCApi; } }
#include "tensorflow/lite/core/acceleration/configuration/c/xnnpack_plugin.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "pthreadpool.h" #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h" namespace tflite { class XnnpackTest : public testing::Test { public: static constexpr int kNumThreadsForTest = 7; void SetUp() override { XNNPackSettingsBuilder xnnpack_settings_builder(flatbuffer_builder_); xnnpack_settings_builder.add_num_threads(kNumThreadsForTest); flatbuffers::Offset<XNNPackSettings> xnnpack_settings = xnnpack_settings_builder.Finish(); TFLiteSettingsBuilder tflite_settings_builder(flatbuffer_builder_); tflite_settings_builder.add_xnnpack_settings(xnnpack_settings); flatbuffers::Offset<TFLiteSettings> tflite_settings = tflite_settings_builder.Finish(); flatbuffer_builder_.Finish(tflite_settings); settings_ = flatbuffers::GetRoot<TFLiteSettings>( flatbuffer_builder_.GetBufferPointer()); } ~XnnpackTest() override = default; protected: flatbuffers::FlatBufferBuilder flatbuffer_builder_; const TFLiteSettings *settings_; }; constexpr int XnnpackTest::kNumThreadsForTest; TEST_F(XnnpackTest, CanCreateAndDestroyDelegate) { TfLiteDelegate *delegate = TfLiteXnnpackDelegatePluginCApi()->create(settings_); EXPECT_NE(delegate, nullptr); TfLiteXnnpackDelegatePluginCApi()->destroy(delegate); } TEST_F(XnnpackTest, CanGetDelegateErrno) { TfLiteDelegate *delegate = TfLiteXnnpackDelegatePluginCApi()->create(settings_); int error_number = TfLiteXnnpackDelegatePluginCApi()->get_delegate_errno(delegate); EXPECT_EQ(error_number, 0); TfLiteXnnpackDelegatePluginCApi()->destroy(delegate); } TEST_F(XnnpackTest, SetsCorrectThreadCount) { TfLiteDelegate *delegate = TfLiteXnnpackDelegatePluginCApi()->create(settings_); pthreadpool_t threadpool = static_cast<pthreadpool_t>(TfLiteXNNPackDelegateGetThreadPool(delegate)); int thread_count = pthreadpool_get_threads_count(threadpool); EXPECT_EQ(thread_count, kNumThreadsForTest); TfLiteXnnpackDelegatePluginCApi()->destroy(delegate); } TEST_F(XnnpackTest, UsesDefaultFlagsByDefault) { TfLiteDelegate *delegate = TfLiteXnnpackDelegatePluginCApi()->create(settings_); int flags = TfLiteXNNPackDelegateGetFlags(delegate); EXPECT_EQ(flags, TfLiteXNNPackDelegateOptionsDefault().flags); TfLiteXnnpackDelegatePluginCApi()->destroy(delegate); } TEST_F(XnnpackTest, UsesSpecifiedFlagsWhenNonzero) { XNNPackSettingsBuilder xnnpack_settings_builder(flatbuffer_builder_); xnnpack_settings_builder.add_flags( tflite::XNNPackFlags_TFLITE_XNNPACK_DELEGATE_FLAG_QU8); flatbuffers::Offset<XNNPackSettings> xnnpack_settings = xnnpack_settings_builder.Finish(); TFLiteSettingsBuilder tflite_settings_builder(flatbuffer_builder_); tflite_settings_builder.add_xnnpack_settings(xnnpack_settings); flatbuffers::Offset<TFLiteSettings> tflite_settings = tflite_settings_builder.Finish(); flatbuffer_builder_.Finish(tflite_settings); settings_ = flatbuffers::GetRoot<TFLiteSettings>( flatbuffer_builder_.GetBufferPointer()); TfLiteDelegate *delegate = TfLiteXnnpackDelegatePluginCApi()->create(settings_); int flags = TfLiteXNNPackDelegateGetFlags(delegate); EXPECT_EQ(flags, tflite::XNNPackFlags_TFLITE_XNNPACK_DELEGATE_FLAG_QU8); TfLiteXnnpackDelegatePluginCApi()->destroy(delegate); } TEST_F(XnnpackTest, UsesDefaultFlagsWhenZero) { XNNPackSettingsBuilder xnnpack_settings_builder(flatbuffer_builder_); xnnpack_settings_builder.add_flags( tflite::XNNPackFlags_TFLITE_XNNPACK_DELEGATE_NO_FLAGS); flatbuffers::Offset<XNNPackSettings> xnnpack_settings = xnnpack_settings_builder.Finish(); TFLiteSettingsBuilder tflite_settings_builder(flatbuffer_builder_); tflite_settings_builder.add_xnnpack_settings(xnnpack_settings); flatbuffers::Offset<TFLiteSettings> tflite_settings = tflite_settings_builder.Finish(); flatbuffer_builder_.Finish(tflite_settings); settings_ = flatbuffers::GetRoot<TFLiteSettings>( flatbuffer_builder_.GetBufferPointer()); TfLiteDelegate *delegate = TfLiteXnnpackDelegatePluginCApi()->create(settings_); int flags = TfLiteXNNPackDelegateGetFlags(delegate); EXPECT_EQ(flags, TfLiteXNNPackDelegateOptionsDefault().flags); TfLiteXnnpackDelegatePluginCApi()->destroy(delegate); } }
969
cpp
tensorflow/tensorflow
register
tensorflow/lite/core/kernels/register.cc
tensorflow/lite/core/kernels/register_test.cc
#ifndef MLIR_HLO_DIALECT_MHLO_IR_REGISTER_H_ #define MLIR_HLO_DIALECT_MHLO_IR_REGISTER_H_ namespace mlir { class DialectRegistry; namespace mhlo { void registerAllMhloDialects(DialectRegistry &registry); } } #endif #include "tensorflow/lite/core/kernels/register.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/kernels/builtin_op_kernels.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/tflite_with_xnnpack_optional.h" namespace tflite { namespace ops { namespace custom { TfLiteRegistration* Register_NUMERIC_VERIFY(); TfLiteRegistration* Register_AUDIO_SPECTROGRAM(); TfLiteRegistration* Register_MFCC(); TfLiteRegistration* Register_DETECTION_POSTPROCESS(); } namespace builtin { BuiltinOpResolver::BuiltinOpResolver() { AddBuiltin(BuiltinOperator_ABS, Register_ABS(), 1, 5); AddBuiltin(BuiltinOperator_HARD_SWISH, Register_HARD_SWISH()); AddBuiltin(BuiltinOperator_RELU, Register_RELU(), 1, 3); AddBuiltin(BuiltinOperator_RELU_N1_TO_1, Register_RELU_N1_TO_1()); AddBuiltin(BuiltinOperator_RELU_0_TO_1, Register_RELU_0_TO_1()); AddBuiltin(BuiltinOperator_RELU6, Register_RELU6(), 1, 3); AddBuiltin(BuiltinOperator_TANH, Register_TANH(), 1, 3); AddBuiltin(BuiltinOperator_LOGISTIC, Register_LOGISTIC(), 1, 3); AddBuiltin(BuiltinOperator_AVERAGE_POOL_2D, Register_AVERAGE_POOL_2D(), 1, 3); AddBuiltin(BuiltinOperator_MAX_POOL_2D, Register_MAX_POOL_2D(), 1, 3); AddBuiltin(BuiltinOperator_L2_POOL_2D, Register_L2_POOL_2D()); AddBuiltin(BuiltinOperator_CONV_2D, Register_CONV_2D(), 1, 8); AddBuiltin(BuiltinOperator_DEPTHWISE_CONV_2D, Register_DEPTHWISE_CONV_2D(), 1, 7); AddBuiltin(BuiltinOperator_SVDF, Register_SVDF(), 1, 4); AddBuiltin(BuiltinOperator_RNN, Register_RNN(), 1, 3); AddBuiltin(BuiltinOperator_BIDIRECTIONAL_SEQUENCE_RNN, Register_BIDIRECTIONAL_SEQUENCE_RNN(), 1, 3); AddBuiltin(BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_RNN, Register_UNIDIRECTIONAL_SEQUENCE_RNN(), 1, 3); AddBuiltin(BuiltinOperator_EMBEDDING_LOOKUP, Register_EMBEDDING_LOOKUP(), 1, 3); AddBuiltin(BuiltinOperator_EMBEDDING_LOOKUP_SPARSE, Register_EMBEDDING_LOOKUP_SPARSE()); AddBuiltin(BuiltinOperator_FULLY_CONNECTED, Register_FULLY_CONNECTED(), 1, 12); AddBuiltin(BuiltinOperator_LSH_PROJECTION, Register_LSH_PROJECTION()); AddBuiltin(BuiltinOperator_HASHTABLE_LOOKUP, Register_HASHTABLE_LOOKUP()); AddBuiltin(BuiltinOperator_SOFTMAX, Register_SOFTMAX(), 1, 3); AddBuiltin(BuiltinOperator_CONCATENATION, Register_CONCATENATION(), 1, 4); AddBuiltin(BuiltinOperator_ADD, Register_ADD(), 1, 5); AddBuiltin(BuiltinOperator_SPACE_TO_BATCH_ND, Register_SPACE_TO_BATCH_ND(), 1, 4); AddBuiltin(BuiltinOperator_BATCH_TO_SPACE_ND, Register_BATCH_TO_SPACE_ND(), 1, 4); AddBuiltin(BuiltinOperator_MUL, Register_MUL(), 1, 7); AddBuiltin(BuiltinOperator_L2_NORMALIZATION, Register_L2_NORMALIZATION(), 1, 2); AddBuiltin(BuiltinOperator_LOCAL_RESPONSE_NORMALIZATION, Register_LOCAL_RESPONSE_NORMALIZATION()); AddBuiltin(BuiltinOperator_LSTM, Register_LSTM(), 1, 4); AddBuiltin(BuiltinOperator_BIDIRECTIONAL_SEQUENCE_LSTM, Register_BIDIRECTIONAL_SEQUENCE_LSTM(), 1, 3); AddBuiltin(BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_LSTM, Register_UNIDIRECTIONAL_SEQUENCE_LSTM(), 1, 4); AddBuiltin(BuiltinOperator_PAD, Register_PAD(), 1, 4); AddBuiltin(BuiltinOperator_PADV2, Register_PADV2(), 1, 4); AddBuiltin(BuiltinOperator_RESHAPE, Register_RESHAPE()); AddBuiltin(BuiltinOperator_RESIZE_BILINEAR, Register_RESIZE_BILINEAR(), 1, 4); AddBuiltin(BuiltinOperator_RESIZE_NEAREST_NEIGHBOR, Register_RESIZE_NEAREST_NEIGHBOR(), 1, 4); AddBuiltin(BuiltinOperator_SKIP_GRAM, Register_SKIP_GRAM()); AddBuiltin(BuiltinOperator_SPACE_TO_DEPTH, Register_SPACE_TO_DEPTH(), 1, 2); AddBuiltin(BuiltinOperator_DEPTH_TO_SPACE, Register_DEPTH_TO_SPACE(), 1, 2); AddBuiltin(BuiltinOperator_GATHER, Register_GATHER(), 1, 7); AddBuiltin(BuiltinOperator_TRANSPOSE, Register_TRANSPOSE(), 1, 6); AddBuiltin(BuiltinOperator_MEAN, Register_MEAN(), 1, 3); AddBuiltin(BuiltinOperator_DIV, Register_DIV(), 1, 2); AddBuiltin(BuiltinOperator_SUB, Register_SUB(), 1, 5); AddBuiltin(BuiltinOperator_SPLIT, Register_SPLIT(), 1, 4); AddBuiltin(BuiltinOperator_SPLIT_V, Register_SPLIT_V(), 1, 2); AddBuiltin(BuiltinOperator_SQUEEZE, Register_SQUEEZE(), 1, 2); AddBuiltin(BuiltinOperator_STRIDED_SLICE, Register_STRIDED_SLICE(), 1, 8); AddBuiltin(BuiltinOperator_EXP, Register_EXP(), 1, 2); AddBuiltin(BuiltinOperator_TOPK_V2, Register_TOPK_V2(), 1, 3); AddBuiltin(BuiltinOperator_LOG, Register_LOG(), 1, 2); AddBuiltin(BuiltinOperator_LOG_SOFTMAX, Register_LOG_SOFTMAX(), 1, 2); AddBuiltin(BuiltinOperator_CAST, Register_CAST(), 1, 6); AddBuiltin(BuiltinOperator_DEQUANTIZE, Register_DEQUANTIZE(), 1, 6); AddBuiltin(BuiltinOperator_PRELU, Register_PRELU()); AddBuiltin(BuiltinOperator_MAXIMUM, Register_MAXIMUM(), 1, 4); AddBuiltin(BuiltinOperator_MINIMUM, Register_MINIMUM(), 1, 4); AddBuiltin(BuiltinOperator_ARG_MAX, Register_ARG_MAX(), 1, 3); AddBuiltin(BuiltinOperator_ARG_MIN, Register_ARG_MIN(), 1, 3); AddBuiltin(BuiltinOperator_GREATER, Register_GREATER(), 1, 2); AddBuiltin(BuiltinOperator_GREATER_EQUAL, Register_GREATER_EQUAL(), 1, 3); AddBuiltin(BuiltinOperator_LESS, Register_LESS(), 1, 3); AddBuiltin(BuiltinOperator_LESS_EQUAL, Register_LESS_EQUAL(), 1, 2); AddBuiltin(BuiltinOperator_FLOOR, Register_FLOOR()); AddBuiltin(BuiltinOperator_CEIL, Register_CEIL()); AddBuiltin(BuiltinOperator_ROUND, Register_ROUND()); AddBuiltin(BuiltinOperator_NEG, Register_NEG()); AddBuiltin(BuiltinOperator_SELECT, Register_SELECT(), 1, 4); AddBuiltin(BuiltinOperator_SELECT_V2, Register_SELECT_V2(), 1, 2); AddBuiltin(BuiltinOperator_SLICE, Register_SLICE(), 1, 6); AddBuiltin(BuiltinOperator_SIN, Register_SIN()); AddBuiltin(BuiltinOperator_COS, Register_COS()); AddBuiltin(BuiltinOperator_TRANSPOSE_CONV, Register_TRANSPOSE_CONV(), 1, 5); AddBuiltin(BuiltinOperator_TILE, Register_TILE(), 1, 3); AddBuiltin(BuiltinOperator_SUM, Register_SUM(), 1, 2); AddBuiltin(BuiltinOperator_REDUCE_PROD, Register_REDUCE_PROD(), 1, 2); AddBuiltin(BuiltinOperator_REDUCE_MAX, Register_REDUCE_MAX(), 1, 3); AddBuiltin(BuiltinOperator_REDUCE_MIN, Register_REDUCE_MIN(), 1, 3); AddBuiltin(BuiltinOperator_REDUCE_ANY, Register_REDUCE_ANY()); AddBuiltin(BuiltinOperator_REDUCE_ALL, Register_REDUCE_ALL()); AddBuiltin(BuiltinOperator_EXPAND_DIMS, Register_EXPAND_DIMS()); AddBuiltin(BuiltinOperator_SPARSE_TO_DENSE, Register_SPARSE_TO_DENSE(), 1, 3); AddBuiltin(BuiltinOperator_EQUAL, Register_EQUAL(), 1, 4); AddBuiltin(BuiltinOperator_NOT_EQUAL, Register_NOT_EQUAL(), 1, 3); AddBuiltin(BuiltinOperator_SQRT, Register_SQRT()); AddBuiltin(BuiltinOperator_RSQRT, Register_RSQRT(), 1, 3); AddBuiltin(BuiltinOperator_SHAPE, Register_SHAPE()); AddBuiltin(BuiltinOperator_RANK, Register_RANK()); AddBuiltin(BuiltinOperator_POW, Register_POW()); AddBuiltin(BuiltinOperator_FAKE_QUANT, Register_FAKE_QUANT(), 1, 2); AddBuiltin(BuiltinOperator_PACK, Register_PACK(), 1, 4); AddBuiltin(BuiltinOperator_ONE_HOT, Register_ONE_HOT()); AddBuiltin(BuiltinOperator_LOGICAL_OR, Register_LOGICAL_OR()); AddBuiltin(BuiltinOperator_LOGICAL_AND, Register_LOGICAL_AND()); AddBuiltin(BuiltinOperator_LOGICAL_NOT, Register_LOGICAL_NOT()); AddBuiltin(BuiltinOperator_UNPACK, Register_UNPACK(), 1, 4); AddBuiltin(BuiltinOperator_FLOOR_DIV, Register_FLOOR_DIV(), 1, 3); AddBuiltin(BuiltinOperator_SQUARE, Register_SQUARE()); AddBuiltin(BuiltinOperator_ZEROS_LIKE, Register_ZEROS_LIKE()); AddBuiltin(BuiltinOperator_FLOOR_MOD, Register_FLOOR_MOD(), 1, 2); AddBuiltin(BuiltinOperator_RANGE, Register_RANGE(), 1, 2); AddBuiltin(BuiltinOperator_LEAKY_RELU, Register_LEAKY_RELU(), 1, 2); AddBuiltin(BuiltinOperator_SQUARED_DIFFERENCE, Register_SQUARED_DIFFERENCE(), 1, 2); AddBuiltin(BuiltinOperator_FILL, Register_FILL(), 1, 4); AddBuiltin(BuiltinOperator_MIRROR_PAD, Register_MIRROR_PAD(), 1, 3); AddBuiltin(BuiltinOperator_UNIQUE, Register_UNIQUE()); AddBuiltin(BuiltinOperator_REVERSE_V2, Register_REVERSE_V2(), 1, 3); AddBuiltin(BuiltinOperator_ADD_N, Register_ADD_N()); AddBuiltin(BuiltinOperator_GATHER_ND, Register_GATHER_ND(), 1, 5); AddBuiltin(BuiltinOperator_WHERE, Register_WHERE(), 1, 2); AddBuiltin(BuiltinOperator_ELU, Register_ELU()); AddBuiltin(BuiltinOperator_REVERSE_SEQUENCE, Register_REVERSE_SEQUENCE()); AddBuiltin(BuiltinOperator_MATRIX_DIAG, Register_MATRIX_DIAG()); AddBuiltin(BuiltinOperator_QUANTIZE, Register_QUANTIZE(), 1, 3); AddBuiltin(BuiltinOperator_MATRIX_SET_DIAG, Register_MATRIX_SET_DIAG()); AddBuiltin(BuiltinOperator_IF, tflite::ops::builtin::Register_IF()); AddBuiltin(BuiltinOperator_WHILE, tflite::ops::builtin::Register_WHILE()); AddBuiltin(BuiltinOperator_NON_MAX_SUPPRESSION_V4, Register_NON_MAX_SUPPRESSION_V4()); AddBuiltin(BuiltinOperator_NON_MAX_SUPPRESSION_V5, Register_NON_MAX_SUPPRESSION_V5()); AddBuiltin(BuiltinOperator_SCATTER_ND, Register_SCATTER_ND()); AddBuiltin(BuiltinOperator_DENSIFY, Register_DENSIFY()); AddBuiltin(BuiltinOperator_SEGMENT_SUM, Register_SEGMENT_SUM()); AddBuiltin(BuiltinOperator_BATCH_MATMUL, Register_BATCH_MATMUL(), 1, 4); AddBuiltin(BuiltinOperator_CUMSUM, Register_CUMSUM()); AddBuiltin(BuiltinOperator_BROADCAST_TO, Register_BROADCAST_TO(), 2, 3); AddBuiltin(BuiltinOperator_CALL_ONCE, tflite::ops::builtin::Register_CALL_ONCE()); AddBuiltin(BuiltinOperator_RFFT2D, Register_RFFT2D()); AddBuiltin(BuiltinOperator_CONV_3D, Register_CONV_3D()); AddBuiltin(BuiltinOperator_IMAG, Register_IMAG()); AddBuiltin(BuiltinOperator_REAL, Register_REAL()); AddBuiltin(BuiltinOperator_COMPLEX_ABS, Register_COMPLEX_ABS()); AddBuiltin(BuiltinOperator_BROADCAST_ARGS, Register_BROADCAST_ARGS()); AddBuiltin(BuiltinOperator_HASHTABLE, Register_HASHTABLE()); AddBuiltin(BuiltinOperator_HASHTABLE_FIND, Register_HASHTABLE_FIND()); AddBuiltin(BuiltinOperator_HASHTABLE_IMPORT, Register_HASHTABLE_IMPORT()); AddBuiltin(BuiltinOperator_HASHTABLE_SIZE, Register_HASHTABLE_SIZE()); AddBuiltin(BuiltinOperator_CONV_3D_TRANSPOSE, Register_CONV_3D_TRANSPOSE()); AddBuiltin(BuiltinOperator_VAR_HANDLE, Register_VAR_HANDLE()); AddBuiltin(BuiltinOperator_READ_VARIABLE, Register_READ_VARIABLE()); AddBuiltin(BuiltinOperator_ASSIGN_VARIABLE, Register_ASSIGN_VARIABLE()); AddBuiltin(BuiltinOperator_MULTINOMIAL, Register_MULTINOMIAL()); AddBuiltin(BuiltinOperator_RANDOM_STANDARD_NORMAL, Register_RANDOM_STANDARD_NORMAL()); AddBuiltin(BuiltinOperator_BUCKETIZE, Register_BUCKETIZE()); AddBuiltin(BuiltinOperator_RANDOM_UNIFORM, Register_RANDOM_UNIFORM()); AddBuiltin(BuiltinOperator_GELU, Register_GELU(), 1, 2); AddBuiltin(BuiltinOperator_DYNAMIC_UPDATE_SLICE, Register_DYNAMIC_UPDATE_SLICE(), 1, 2); AddBuiltin(BuiltinOperator_UNSORTED_SEGMENT_PROD, Register_UNSORTED_SEGMENT_PROD()); AddBuiltin(BuiltinOperator_UNSORTED_SEGMENT_MAX, Register_UNSORTED_SEGMENT_MAX()); AddBuiltin(BuiltinOperator_UNSORTED_SEGMENT_MIN, Register_UNSORTED_SEGMENT_MIN()); AddBuiltin(BuiltinOperator_UNSORTED_SEGMENT_SUM, Register_UNSORTED_SEGMENT_SUM()); AddBuiltin(BuiltinOperator_ATAN2, Register_ATAN2()); AddBuiltin(BuiltinOperator_SIGN, Register_SIGN(), 1, 2); AddBuiltin(BuiltinOperator_BITCAST, Register_BITCAST()); AddBuiltin(BuiltinOperator_BITWISE_XOR, Register_BITWISE_XOR()); AddBuiltin(BuiltinOperator_RIGHT_SHIFT, Register_RIGHT_SHIFT()); AddBuiltin(BuiltinOperator_STABLEHLO_SCATTER, Register_STABLEHLO_SCATTER()); AddBuiltin(BuiltinOperator_DILATE, Register_DILATE()); AddBuiltin(BuiltinOperator_STABLEHLO_RNG_BIT_GENERATOR, Register_STABLEHLO_RNG_BIT_GENERATOR()); AddBuiltin(BuiltinOperator_REDUCE_WINDOW, Register_REDUCE_WINDOW()); AddBuiltin(BuiltinOperator_STABLEHLO_REDUCE_WINDOW, Register_STABLEHLO_REDUCE_WINDOW()); AddBuiltin(BuiltinOperator_STABLEHLO_GATHER, Register_STABLEHLO_GATHER()); AddBuiltin(BuiltinOperator_STABLEHLO_ADD, Register_STABLEHLO_ADD()); AddBuiltin(BuiltinOperator_STABLEHLO_MULTIPLY, Register_STABLEHLO_MULTIPLY()); AddBuiltin(BuiltinOperator_STABLEHLO_MAXIMUM, Register_STABLEHLO_MAXIMUM()); AddBuiltin(BuiltinOperator_STABLEHLO_MINIMUM, Register_STABLEHLO_MINIMUM()); AddBuiltin(BuiltinOperator_STABLEHLO_PAD, Register_STABLEHLO_PAD()); AddBuiltin(BuiltinOperator_STABLEHLO_COMPOSITE, Register_STABLEHLO_COMPOSITE()); AddCustom("NumericVerify", tflite::ops::custom::Register_NUMERIC_VERIFY()); AddCustom("Mfcc", tflite::ops::custom::Register_MFCC()); AddCustom("AudioSpectrogram", tflite::ops::custom::Register_AUDIO_SPECTROGRAM()); AddCustom("TFLite_Detection_PostProcess", tflite::ops::custom::Register_DETECTION_POSTPROCESS()); may_directly_contain_user_defined_ops_ = false; delegate_creators_.push_back([](TfLiteContext* context) { return tflite::MaybeCreateXNNPACKDelegate(context, XNNPackQS8Options::default_value); }); } BuiltinOpResolverWithXNNPACK::BuiltinOpResolverWithXNNPACK( bool enable_xnnpack_unsigned_quantized) { delegate_creators_.clear(); XNNPackQS8Options xnnpack_qs8_options = enable_xnnpack_unsigned_quantized ? XNNPackQS8Options::enabled : XNNPackQS8Options::disabled; delegate_creators_.push_back([xnnpack_qs8_options](TfLiteContext* context) { return tflite::MaybeCreateXNNPACKDelegate(context, xnnpack_qs8_options); }); } } } }
#include "tensorflow/lite/core/kernels/register.h" #include <memory> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h" #include "tensorflow/lite/mutable_op_resolver.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite::ops::builtin { namespace { TEST(BuiltinOpResolverTest, SupportsAdd) { BuiltinOpResolver builtin_op_resolver; const TfLiteRegistration *add = builtin_op_resolver.FindOp(::tflite::BuiltinOperator_ADD, 1); ASSERT_NE(add, nullptr); ASSERT_NE(add->init, nullptr); ASSERT_NE(add->free, nullptr); ASSERT_NE(add->prepare, nullptr); ASSERT_NE(add->invoke, nullptr); } TEST(BuiltinOpResolverTest, CopySupportsAdd) { BuiltinOpResolver builtin_op_resolver; MutableOpResolver copy = builtin_op_resolver; const TfLiteRegistration *add = copy.FindOp(::tflite::BuiltinOperator_ADD, 1); ASSERT_NE(add, nullptr); ASSERT_NE(add->init, nullptr); ASSERT_NE(add->free, nullptr); ASSERT_NE(add->prepare, nullptr); ASSERT_NE(add->invoke, nullptr); } #if defined(TFLITE_WITHOUT_XNNPACK) TEST(BuiltinOpResolverTest, HasXNNPACKDelegate_QS8) { BuiltinOpResolver builtin_op_resolver; ASSERT_EQ(builtin_op_resolver.GetDelegateCreators().size(), 1); BuiltinOpResolver::TfLiteDelegateCreator delegate_creator = builtin_op_resolver.GetDelegateCreators()[0]; std::unique_ptr<TfLiteDelegate, void (*)(TfLiteDelegate *)> delegate = delegate_creator(nullptr); const TfLiteXNNPackDelegateOptions *options = TfLiteXNNPackDelegateGetOptions(delegate.get()); ASSERT_EQ(options->flags & TFLITE_XNNPACK_DELEGATE_FLAG_QU8, TFLITE_XNNPACK_DELEGATE_FLAG_QU8); ASSERT_EQ(options->flags & TFLITE_XNNPACK_DELEGATE_FLAG_QS8, TFLITE_XNNPACK_DELEGATE_FLAG_QS8); } TEST(BuiltinOpResolverTest, HasXNNPACKDelegate_QS8_QU8) { BuiltinOpResolver builtin_op_resolver; ASSERT_EQ(builtin_op_resolver.GetDelegateCreators().size(), 1); BuiltinOpResolver::TfLiteDelegateCreator delegate_creator = builtin_op_resolver.GetDelegateCreators()[0]; std::unique_ptr<TfLiteDelegate, void (*)(TfLiteDelegate *)> delegate = delegate_creator(nullptr); const TfLiteXNNPackDelegateOptions *options = TfLiteXNNPackDelegateGetOptions(delegate.get()); ASSERT_EQ(options->flags & TFLITE_XNNPACK_DELEGATE_FLAG_QU8, TFLITE_XNNPACK_DELEGATE_FLAG_QU8); ASSERT_EQ(options->flags & TFLITE_XNNPACK_DELEGATE_FLAG_QS8, TFLITE_XNNPACK_DELEGATE_FLAG_QS8); } TEST(BuiltinOpResolverTest, Disable_QU8) { BuiltinOpResolverWithXNNPACK builtin_op_resolver(false); ASSERT_EQ(builtin_op_resolver.GetDelegateCreators().size(), 1); BuiltinOpResolver::TfLiteDelegateCreator delegate_creator = builtin_op_resolver.GetDelegateCreators()[0]; std::unique_ptr<TfLiteDelegate, void (*)(TfLiteDelegate *)> delegate = delegate_creator(nullptr); const TfLiteXNNPackDelegateOptions *options = TfLiteXNNPackDelegateGetOptions(delegate.get()); ASSERT_EQ(options->flags & TFLITE_XNNPACK_DELEGATE_FLAG_QU8, 0); ASSERT_EQ(options->flags & TFLITE_XNNPACK_DELEGATE_FLAG_QS8, TFLITE_XNNPACK_DELEGATE_FLAG_QS8); } #endif } }
970
cpp
tensorflow/tensorflow
serialization
tensorflow/lite/delegates/gpu/gl/serialization.cc
tensorflow/lite/delegates/gpu/gl/serialization_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_GL_SERIALIZATION_H_ #define TENSORFLOW_LITE_DELEGATES_GPU_GL_SERIALIZATION_H_ #include <cstdint> #include <functional> #include <string> #include <vector> #include "absl/types/span.h" #include "flatbuffers/flatbuffers.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/types.h" #include "tensorflow/lite/delegates/gpu/gl/compiled_model_generated.h" #include "tensorflow/lite/delegates/gpu/gl/object.h" #include "tensorflow/lite/delegates/gpu/gl/variable.h" namespace tflite { namespace gpu { namespace gl { struct CompiledModelOptions { bool dynamic_batch = false; }; class SerializedCompiledModelBuilder { public: SerializedCompiledModelBuilder() : builder_(32 * 1024) {} void AddShader(const std::string& shader_src); void AddProgram(const std::vector<Variable>& parameters, const std::vector<Object>& objects, const uint3& workgroup_size, const uint3& num_workgroups, size_t shader_index); absl::Span<const uint8_t> Finalize(const CompiledModelOptions& options); private: std::vector<flatbuffers::Offset<flatbuffers::String>> shaders_; std::vector<flatbuffers::Offset<data::Program>> programs_; ::flatbuffers::FlatBufferBuilder builder_; }; class DeserializationHandler { public: virtual ~DeserializationHandler() = default; virtual absl::Status OnShader(absl::Span<const char> shader_src) = 0; virtual absl::Status OnProgram(const std::vector<Variable>& parameters, const std::vector<Object>& objects, const uint3& workgroup_size, const uint3& num_workgroups, size_t shader_index) = 0; virtual void OnOptions(const CompiledModelOptions& options) = 0; }; absl::Status DeserializeCompiledModel(absl::Span<const uint8_t> serialized, DeserializationHandler* handler); } } } #endif #include "tensorflow/lite/delegates/gpu/gl/serialization.h" #include <string> #include <utility> #include <variant> #include "absl/types/variant.h" #include "tensorflow/lite/delegates/gpu/common/data_type.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/types.h" #include "tensorflow/lite/delegates/gpu/gl/variable.h" namespace tflite { namespace gpu { namespace gl { using flatbuffers::Offset; using flatbuffers::Vector; namespace { struct ParameterValueGetter { Offset<void> operator()(int32_t value) { auto offset = builder->CreateVector(std::vector<int32_t>{value}); data::DataInt32Builder data(*builder); data.add_data(offset); return data.Finish().Union(); } Offset<void> operator()(const int2& value) { auto offset = builder->CreateVector(std::vector<int32_t>{value.x, value.y}); data::DataInt32Builder data(*builder); data.add_data(offset); return data.Finish().Union(); } Offset<void> operator()(const int4& value) { auto offset = builder->CreateVector( std::vector<int32_t>{value.x, value.y, value.z, value.w}); data::DataInt32Builder data(*builder); data.add_data(offset); return data.Finish().Union(); } Offset<void> operator()(const std::vector<int2>& value) { std::vector<int32_t> d(value.size() * 2); for (size_t i = 0; i < value.size(); ++i) { d[i * 2] = value[i].x; d[i * 2 + 1] = value[i].y; } auto offset = builder->CreateVector(d); data::DataInt32Builder data(*builder); data.add_data(offset); return data.Finish().Union(); } Offset<void> operator()(uint32_t value) { auto offset = builder->CreateVector(std::vector<uint32_t>{value}); data::DataUint32Builder data(*builder); data.add_data(offset); return data.Finish().Union(); } Offset<void> operator()(const uint4& value) { auto offset = builder->CreateVector( std::vector<uint32_t>{value.x, value.y, value.z, value.w}); data::DataUint32Builder data(*builder); data.add_data(offset); return data.Finish().Union(); } Offset<void> operator()(float value) { auto offset = builder->CreateVector(std::vector<float>{value}); data::DataFloatBuilder data(*builder); data.add_data(offset); return data.Finish().Union(); } Offset<void> operator()(const float2& value) { auto offset = builder->CreateVector(std::vector<float>{value.x, value.y}); data::DataFloatBuilder data(*builder); data.add_data(offset); return data.Finish().Union(); } Offset<void> operator()(const float4& value) { auto offset = builder->CreateVector( std::vector<float>{value.x, value.y, value.z, value.w}); data::DataFloatBuilder data(*builder); data.add_data(offset); return data.Finish().Union(); } Offset<void> operator()(const std::vector<float4>& value) { std::vector<float> d(value.size() * 4); for (size_t i = 0; i < value.size(); ++i) { d[i * 4] = value[i].x; d[i * 4 + 1] = value[i].y; d[i * 4 + 2] = value[i].z; d[i * 4 + 3] = value[i].w; } auto offset = builder->CreateVector(d); data::DataFloatBuilder data(*builder); data.add_data(offset); return data.Finish().Union(); } ::flatbuffers::FlatBufferBuilder* builder; }; struct DataVariantTypeGetter { data::DataVariant operator()(int32_t) const { return data::DataVariant::DataInt32; } data::DataVariant operator()(const int2&) const { return data::DataVariant::DataInt32; } data::DataVariant operator()(const int4&) const { return data::DataVariant::DataInt32; } data::DataVariant operator()(const std::vector<int2>&) const { return data::DataVariant::DataInt32; } data::DataVariant operator()(uint32_t) const { return data::DataVariant::DataUint32; } data::DataVariant operator()(const uint4&) const { return data::DataVariant::DataUint32; } data::DataVariant operator()(float) const { return data::DataVariant::DataFloat; } data::DataVariant operator()(const float2&) const { return data::DataVariant::DataFloat; } data::DataVariant operator()(const float4&) const { return data::DataVariant::DataFloat; } data::DataVariant operator()(const std::vector<float4>&) const { return data::DataVariant::DataFloat; } }; struct ParameterTypeGetter { data::ParameterType operator()(int32_t) const { return data::ParameterType::INT32; } data::ParameterType operator()(const int2&) const { return data::ParameterType::INT32; } data::ParameterType operator()(const int4&) const { return data::ParameterType::INT32; } data::ParameterType operator()(const std::vector<int2>&) const { return data::ParameterType::INT32_2; } data::ParameterType operator()(uint32_t) const { return data::ParameterType::UINT32; } data::ParameterType operator()(const uint4&) const { return data::ParameterType::UINT32; } data::ParameterType operator()(float) const { return data::ParameterType::FLOAT32; } data::ParameterType operator()(const float2&) const { return data::ParameterType::FLOAT32; } data::ParameterType operator()(const float4&) const { return data::ParameterType::FLOAT32; } data::ParameterType operator()(const std::vector<float4>&) const { return data::ParameterType::FLOAT32; } }; data::DataType ToFB(DataType type) { switch (type) { case DataType::INT16: return data::DataType::INT16; case DataType::INT32: return data::DataType::INT32; case DataType::FLOAT16: return data::DataType::FLOAT16; case DataType::FLOAT32: return data::DataType::FLOAT32; default: return data::DataType::UNKNOWN; } } data::ObjectType ToFB(ObjectType type) { switch (type) { case ObjectType::TEXTURE: return data::ObjectType::TEXTURE; case ObjectType::BUFFER: return data::ObjectType::BUFFER; default: return data::ObjectType::UNKNOWN; } } struct ObjectSizeGetter { Offset<void> operator()(const uint3& shape) { data::Uint3Builder shape_builder(*builder); shape_builder.add_x(shape.x); shape_builder.add_y(shape.y); shape_builder.add_z(shape.z); return shape_builder.Finish().Union(); } Offset<void> operator()(const uint2& shape) { data::Uint2Builder shape_builder(*builder); shape_builder.add_x(shape.x); shape_builder.add_y(shape.y); return shape_builder.Finish().Union(); } Offset<void> operator()(uint32_t shape) { data::Uint1Builder shape_builder(*builder); shape_builder.add_x(shape); return shape_builder.Finish().Union(); } ::flatbuffers::FlatBufferBuilder* builder; }; struct ObjectSizeTypeGetter { data::ObjectSize operator()(const uint3&) const { return data::ObjectSize::Uint3; } data::ObjectSize operator()(const uint2&) const { return data::ObjectSize::Uint2; } data::ObjectSize operator()(const uint32_t) const { return data::ObjectSize::Uint1; } }; struct ObjectGetter { Offset<void> operator()(const ObjectData& data) { auto fb_data = builder->CreateVector(data); data::ObjectDataBuilder data_builder(*builder); data_builder.add_data(fb_data); return data_builder.Finish().Union(); } Offset<void> operator()(ObjectRef ref) { data::ObjectRefBuilder ref_builder(*builder); ref_builder.add_global_id(ref); return ref_builder.Finish().Union(); } ::flatbuffers::FlatBufferBuilder* builder; }; struct ObjectTypeGetter { data::ObjectVariant operator()(const ObjectData&) const { return data::ObjectVariant::ObjectData; } data::ObjectVariant operator()(const ObjectRef&) const { return data::ObjectVariant::ObjectRef; } }; data::AccessType ToFB(AccessType type) { switch (type) { case AccessType::READ: return data::AccessType::READ; case AccessType::WRITE: return data::AccessType::WRITE; case AccessType::READ_WRITE: return data::AccessType::READ_WRITE; } } Offset<data::Uint3> Encode(const uint3& v, ::flatbuffers::FlatBufferBuilder* builder) { data::Uint3Builder uint3_builder(*builder); uint3_builder.add_x(v.x); uint3_builder.add_y(v.y); uint3_builder.add_z(v.z); return uint3_builder.Finish(); } Offset<data::Parameters> Encode(const CompiledModelOptions& options, ::flatbuffers::FlatBufferBuilder* builder) { data::ParametersBuilder params_builder(*builder); params_builder.add_dynamic_batch(options.dynamic_batch); return params_builder.Finish(); } } void SerializedCompiledModelBuilder::AddShader(const std::string& shader_src) { shaders_.push_back(builder_.CreateString(shader_src)); } void SerializedCompiledModelBuilder::AddProgram( const std::vector<Variable>& parameters, const std::vector<Object>& objects, const uint3& workgroup_size, const uint3& num_workgroups, size_t shader_index) { Offset<data::Uint3> fb_workgroups = Encode(num_workgroups, &builder_); Offset<data::Uint3> fb_workgroup_size = Encode(workgroup_size, &builder_); Offset<Vector<Offset<data::UniformParameter>>> fb_params; { std::vector<Offset<data::UniformParameter>> offsets; for (const Variable& param : parameters) { auto name = builder_.CreateString(param.name); auto data = std::visit(ParameterValueGetter{&builder_}, param.value); data::UniformParameterBuilder builder(builder_); builder.add_name(name); builder.add_data_type(std::visit(DataVariantTypeGetter{}, param.value)); builder.add_data(data); builder.add_type(std::visit(ParameterTypeGetter{}, param.value)); offsets.push_back(builder.Finish()); } fb_params = builder_.CreateVector(offsets); } Offset<Vector<Offset<data::Object>>> fb_objects; { std::vector<Offset<data::Object>> offsets; for (const Object& object : objects) { auto object_variant = std::visit(ObjectGetter{&builder_}, object.object); auto size = std::visit(ObjectSizeGetter{&builder_}, object.size); data::ObjectBuilder builder(builder_); builder.add_access(ToFB(object.access)); builder.add_binding(object.binding); builder.add_type(ToFB(object.object_type)); builder.add_data_type(ToFB(object.data_type)); builder.add_size_type(std::visit(ObjectSizeTypeGetter{}, object.size)); builder.add_size(size); builder.add_object_type(std::visit(ObjectTypeGetter{}, object.object)); builder.add_object(object_variant); offsets.push_back(builder.Finish()); } fb_objects = builder_.CreateVector(offsets); } data::ProgramBuilder program_builder(builder_); program_builder.add_number_workgroups(fb_workgroups); program_builder.add_workgroup_size(fb_workgroup_size); program_builder.add_parameters(fb_params); program_builder.add_objects(fb_objects); program_builder.add_shader_index(shader_index); programs_.push_back(program_builder.Finish()); } absl::Span<const uint8_t> SerializedCompiledModelBuilder::Finalize( const CompiledModelOptions& options) { auto shaders = builder_.CreateVector(shaders_); auto programs = builder_.CreateVector(programs_); auto parameters = Encode(options, &builder_); data::CompiledModelBuilder model_builder(builder_); model_builder.add_shaders(shaders); model_builder.add_programs(programs); model_builder.add_parameters(parameters); data::FinishCompiledModelBuffer(builder_, model_builder.Finish()); return absl::MakeConstSpan(builder_.GetBufferPointer(), builder_.GetSize()); } namespace { absl::Status ParseParameter(const data::UniformParameter& fb_parameter, Variable* parameter) { parameter->name = fb_parameter.name()->str(); switch (fb_parameter.type()) { case data::ParameterType::INT32: { auto* ptr = fb_parameter.data_as_DataInt32(); if (ptr == nullptr) { return absl::InvalidArgumentError("Unexpected data type '" + parameter->name + "'"); } switch (ptr->data()->size()) { case 1: parameter->value = (*ptr->data())[0]; break; case 2: parameter->value = int2((*ptr->data())[0], (*ptr->data())[1]); break; case 4: parameter->value = int4((*ptr->data())[0], (*ptr->data())[1], (*ptr->data())[2], (*ptr->data())[3]); break; default: return absl::InvalidArgumentError("Unexpected size for parameter '" + parameter->name + "'"); } break; } case data::ParameterType::UINT32: { auto* ptr = fb_parameter.data_as_DataUint32(); if (ptr == nullptr) { return absl::InvalidArgumentError("Unexpected data type '" + parameter->name + "'"); } switch (ptr->data()->size()) { case 1: parameter->value = (*ptr->data())[0]; break; case 4: parameter->value = uint4((*ptr->data())[0], (*ptr->data())[1], (*ptr->data())[2], (*ptr->data())[3]); break; default: return absl::InvalidArgumentError("Unexpected size for parameter '" + parameter->name + "'"); } break; } case data::ParameterType::FLOAT32: { auto* ptr = fb_parameter.data_as_DataFloat(); if (ptr == nullptr) { return absl::InvalidArgumentError("Unexpected data type '" + parameter->name + "'"); } switch (ptr->data()->size()) { case 1: parameter->value = (*ptr->data())[0]; break; case 2: parameter->value = float2((*ptr->data())[0], (*ptr->data())[1]); break; case 4: parameter->value = float4((*ptr->data())[0], (*ptr->data())[1], (*ptr->data())[2], (*ptr->data())[3]); break; default: return absl::InvalidArgumentError("Unexpected size for parameter '" + parameter->name + "'"); } break; } case data::ParameterType::INT32_2: { auto* ptr = fb_parameter.data_as_DataInt32(); if (ptr == nullptr) { return absl::InvalidArgumentError("Unexpected data type '" + parameter->name + "'"); } if (ptr->data()->size() % 2 != 0) { return absl::InvalidArgumentError("Unexpected size for parameter '" + parameter->name + "'"); } std::vector<int2> values(ptr->data()->size() / 2); for (int i = 0; i < values.size(); ++i) { values[i] = int2((*ptr->data())[i * 2], (*ptr->data())[i * 2 + 1]); } parameter->value = values; break; } } return absl::OkStatus(); } DataType ToEnum(data::DataType type) { switch (type) { case data::DataType::INT16: return DataType::INT16; case data::DataType::INT32: return DataType::INT32; case data::DataType::FLOAT16: return DataType::FLOAT16; case data::DataType::FLOAT32: return DataType::FLOAT32; default: return DataType::UNKNOWN; } } ObjectType ToEnum(data::ObjectType type) { switch (type) { case data::ObjectType::TEXTURE: return ObjectType::TEXTURE; case data::ObjectType::BUFFER: return ObjectType::BUFFER; default: return ObjectType::UNKNOWN; } } AccessType ToEnum(data::AccessType type) { switch (type) { case data::AccessType::READ: return AccessType::READ; case data::AccessType::WRITE: return AccessType::WRITE; case data::AccessType::READ_WRITE: return AccessType::READ_WRITE; } } absl::Status ParseObject(const data::Object& fb_object, Object* object) { object->access = ToEnum(fb_object.access()); object->binding = fb_object.binding(); object->object_type = ToEnum(fb_object.type()); object->data_type = ToEnum(fb_object.data_type()); switch (fb_object.size_type()) { case data::ObjectSize::Uint3: { auto* size = fb_object.size_as_Uint3(); object->size = uint3(size->x(), size->y(), size->z()); break; } case data::ObjectSize::Uint2: { auto* size = fb_object.size_as_Uint2(); object->size = uint2(size->x(), size->y()); break; } case data::ObjectSize::Uint1: { auto* size = fb_object.size_as_Uint1(); object->size = size->x(); break; } case data::ObjectSize::NONE: return absl::InvalidArgumentError("Texture size is not set"); } switch (fb_object.object_type()) { case data::ObjectVariant::ObjectData: { auto* fb_data = fb_object.object_as_ObjectData(); object->object = std::vector<uint8_t>( fb_data->data()->data(), fb_data->data()->data() + fb_data->data()->size()); break; } case data::ObjectVariant::ObjectRef: { auto* fb_ref = fb_object.object_as_ObjectRef(); object->object = fb_ref->global_id(); break; } case data::ObjectVariant::NONE: { return absl::InvalidArgumentError("Object is not set"); } } return absl::OkStatus(); } CompiledModelOptions ParseParameters(const data::Parameters& fb_parameters) { CompiledModelOptions options; options.dynamic_batch = fb_parameters.dynamic_batch(); return options; } } absl::Status DeserializeCompiledModel(absl::Span<const uint8_t> serialized, DeserializationHandler* handler) { flatbuffers::Verifier verifier(serialized.data(), serialized.size()); if (!data::VerifyCompiledModelBuffer(verifier)) { return absl::InvalidArgumentError("Serialized model is corrupted."); } auto model = data::GetCompiledModel(serialized.data()); for (auto shader : *model->shaders()) { RETURN_IF_ERROR( handler->OnShader(absl::MakeSpan(shader->c_str(), shader->size()))); } std::vector<Variable> parameters; std::vector<Object> objects; for (auto program : *model->programs()) { parameters.clear(); objects.clear(); for (auto fb_parameter : *program->parameters()) { Variable parameter; RETURN_IF_ERROR(ParseParameter(*fb_parameter, &parameter)); parameters.push_back(std::move(parameter)); } for (auto fb_object : *program->objects()) { Object object; RETURN_IF_ERROR(ParseObject(*fb_object, &object)); objects.push_back(std::move(object)); } uint3 workgroup_size(program->workgroup_size()->x(), program->workgroup_size()->y(), program->workgroup_size()->z()); uint3 num_workgroups(program->number_workgroups()->x(), program->number_workgroups()->y(), program->number_workgroups()->z()); RETURN_IF_ERROR(handler->OnProgram(parameters, objects, workgroup_size, num_workgroups, program->shader_index())); } handler->OnOptions(ParseParameters(*model->parameters())); return absl::OkStatus(); } } } }
#include "tensorflow/lite/delegates/gpu/gl/serialization.h" #include <stddef.h> #include <sys/types.h> #include <cstdint> #include <string> #include <variant> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/types/span.h" #include "tensorflow/lite/delegates/gpu/common/shape.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/types.h" #include "tensorflow/lite/delegates/gpu/gl/object.h" #include "tensorflow/lite/delegates/gpu/gl/variable.h" namespace tflite { namespace gpu { namespace gl { namespace { struct ProgramDesc { std::vector<Variable> parameters; std::vector<Object> objects; uint3 workgroup_size; uint3 num_workgroups; size_t shader_index; }; struct Handler : public DeserializationHandler { absl::Status OnShader(absl::Span<const char> shader_src) final { shaders.push_back(std::string(shader_src.data(), shader_src.size())); return absl::OkStatus(); } absl::Status OnProgram(const std::vector<Variable>& parameters, const std::vector<Object>& objects, const uint3& workgroup_size, const uint3& num_workgroups, size_t shader_index) final { programs.push_back( {parameters, objects, workgroup_size, num_workgroups, shader_index}); return absl::OkStatus(); } void OnOptions(const CompiledModelOptions& o) final { options = o; } std::vector<std::string> shaders; std::vector<ProgramDesc> programs; CompiledModelOptions options; }; struct ParameterComparator { bool operator()(int32_t value) const { return value == std::get<int32_t>(a.value); } bool operator()(const int2& value) const { auto v = std::get<int2>(a.value); return value.x == v.x && value.y == v.y; } bool operator()(const int4& value) const { auto v = std::get<int4>(a.value); return value.x == v.x && value.y == v.y && value.z == v.z && value.w == v.w; } bool operator()(const std::vector<int2>& value) const { auto v = std::get<std::vector<int2>>(a.value); if (v.size() != value.size()) { return false; } for (int i = 0; i < v.size(); ++i) { if (v[i].x != value[i].x || v[i].y != value[i].y) { return false; } } return true; } bool operator()(uint32_t value) const { return value == std::get<uint32_t>(a.value); } bool operator()(const uint4& value) const { auto v = std::get<uint4>(a.value); return value.x == v.x && value.y == v.y && value.z == v.z && value.w == v.w; } bool operator()(float value) const { return value == std::get<float>(a.value); } bool operator()(float2 value) const { auto v = std::get<float2>(a.value); return value.x == v.x && value.y == v.y; } bool operator()(const float4& value) const { auto v = std::get<float4>(a.value); return value.x == v.x && value.y == v.y && value.z == v.z && value.w == v.w; } bool operator()(const std::vector<float4>& value) const { auto v = std::get<std::vector<float4>>(a.value); if (v.size() != value.size()) { return false; } for (int i = 0; i < v.size(); ++i) { if (v[i].x != value[i].x || v[i].y != value[i].y) { return false; } } return true; } Variable a; }; bool Eq(const Variable& a, const Variable& b) { return a.name == b.name && std::visit(ParameterComparator{a}, b.value); } struct ObjectComparator { bool operator()(const ObjectData& data) const { return std::get<ObjectData>(a.object) == data; } bool operator()(const ObjectRef& ref) const { return std::get<ObjectRef>(a.object) == ref; } Object a; }; bool Eq(const Object& a, const Object& b) { return a.access == b.access && a.binding == b.binding && std::visit(ObjectComparator{a}, b.object); } TEST(Smoke, Read) { std::string shader1 = "A"; std::string shader2 = "B"; SerializedCompiledModelBuilder builder; builder.AddShader(shader1); builder.AddShader(shader2); std::vector<Variable> parameters; parameters.push_back({"1", int32_t(1)}); parameters.push_back({"2", int2(1, 2)}); parameters.push_back({"3", int4(1, 2, 3, 4)}); parameters.push_back({"4", uint32_t(10)}); parameters.push_back({"5", uint4(10, 20, 30, 40)}); parameters.push_back({"6", -2.0f}); parameters.push_back({"7", float2(1, -1)}); parameters.push_back({"8", float4(1, -1, 2, -2)}); parameters.push_back( {"9", std::vector<int2>{int2(1, 2), int2(3, 4), int2(5, 6)}}); std::vector<Object> objects; objects.push_back(MakeReadonlyBuffer(std::vector<float>{1, 2, 3, 4})); objects.push_back(Object{AccessType::WRITE, DataType::FLOAT32, ObjectType::TEXTURE, 5, uint3(1, 2, 3), 100u}); objects.push_back(Object{AccessType::READ_WRITE, DataType::INT8, ObjectType::BUFFER, 6, uint2(2, 1), std::vector<uint8_t>{7, 9}}); uint3 num_workgroups(10, 20, 30); uint3 workgroup_size(1, 2, 3); builder.AddProgram(parameters, objects, workgroup_size, num_workgroups, 1); Handler handler; CompiledModelOptions options; options.dynamic_batch = true; ASSERT_TRUE( DeserializeCompiledModel(builder.Finalize(options), &handler).ok()); EXPECT_EQ(num_workgroups.data_, handler.programs[0].num_workgroups.data_); EXPECT_EQ(workgroup_size.data_, handler.programs[0].workgroup_size.data_); EXPECT_THAT(handler.shaders, ::testing::ElementsAre(shader1, shader2)); EXPECT_EQ(handler.programs[0].parameters.size(), parameters.size()); for (int i = 0; i < parameters.size(); ++i) { EXPECT_TRUE(Eq(parameters[i], handler.programs[0].parameters[i])) << i; } EXPECT_EQ(handler.programs[0].objects.size(), objects.size()); for (int i = 0; i < objects.size(); ++i) { EXPECT_TRUE(Eq(objects[i], handler.programs[0].objects[i])) << i; } EXPECT_TRUE(handler.options.dynamic_batch); } } } } }
971
cpp
tensorflow/tensorflow
interpreter_utils
tensorflow/lite/delegates/gpu/common/testing/interpreter_utils.cc
tensorflow/lite/delegates/interpreter_utils_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_COMMON_TESTING_INTERPRETER_UTILS_H_ #define TENSORFLOW_LITE_DELEGATES_GPU_COMMON_TESTING_INTERPRETER_UTILS_H_ #include <vector> #include "tensorflow/lite/core/api/op_resolver.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/tensor.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace gpu { namespace testing { absl::Status InterpreterInvokeWithOpResolver( const ::tflite::Model* model, TfLiteDelegate* delegate, const OpResolver& op_resolver, const std::vector<TensorFloat32>& inputs, std::vector<TensorFloat32>* outputs); absl::Status InterpreterInvoke(const ::tflite::Model* model, TfLiteDelegate* delegate, const std::vector<TensorFloat32>& inputs, std::vector<TensorFloat32>* outputs); } } } #endif #include "tensorflow/lite/delegates/gpu/common/testing/interpreter_utils.h" #include <cstring> #include <memory> #include <string> #include <vector> #include "tensorflow/lite/core/api/op_resolver.h" #include "tensorflow/lite/core/interpreter_builder.h" #include "tensorflow/lite/core/kernels/register.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/tensor.h" #include "tensorflow/lite/interpreter.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace gpu { namespace testing { absl::Status InterpreterInvokeWithOpResolver( const ::tflite::Model* model, TfLiteDelegate* delegate, const OpResolver& op_resolver, const std::vector<TensorFloat32>& inputs, std::vector<TensorFloat32>* outputs) { auto interpreter = std::make_unique<Interpreter>(); if (InterpreterBuilder(model, op_resolver)(&interpreter) != kTfLiteOk) { return absl::InternalError("Unable to create TfLite InterpreterBuilder"); } if (delegate && interpreter->ModifyGraphWithDelegate(delegate) != kTfLiteOk) { return absl::InternalError( "Unable to modify TfLite graph with the delegate"); } interpreter->SetNumThreads(1); if (interpreter->AllocateTensors() != kTfLiteOk) { return absl::InternalError("Unable to allocate TfLite tensors"); } for (int i = 0; i < inputs.size(); ++i) { if (interpreter->tensor(interpreter->inputs()[i])->type != kTfLiteFloat32) { return absl::InternalError("input data_type is not float32"); } float* tflite_data = interpreter->typed_tensor<float>(interpreter->inputs()[i]); if (inputs[i].data.size() * sizeof(float) > interpreter->tensor(interpreter->inputs()[i])->bytes) { return absl::InternalError("too big input data"); } std::memcpy(tflite_data, inputs[i].data.data(), inputs[i].data.size() * sizeof(float)); } if (interpreter->Invoke() != kTfLiteOk) { return absl::InternalError("Unable to invoke TfLite interpreter"); } if (!outputs || !outputs->empty()) { return absl::InternalError("Invalid outputs pointer"); } outputs->reserve(interpreter->outputs().size()); for (auto t : interpreter->outputs()) { const TfLiteTensor* out_tensor = interpreter->tensor(t); TensorFloat32 bhwc; bhwc.id = t; if (out_tensor->dims->data[0] != 1) { return absl::InternalError("Batch dimension is expected to be 1"); } bhwc.shape.b = out_tensor->dims->data[0]; switch (out_tensor->dims->size) { case 2: bhwc.shape.h = 1; bhwc.shape.w = 1; bhwc.shape.c = out_tensor->dims->data[1]; break; case 3: bhwc.shape.h = 1; bhwc.shape.w = out_tensor->dims->data[1]; bhwc.shape.c = out_tensor->dims->data[2]; break; case 4: bhwc.shape.h = out_tensor->dims->data[1]; bhwc.shape.w = out_tensor->dims->data[2]; bhwc.shape.c = out_tensor->dims->data[3]; break; default: return absl::InternalError("Unsupported dimensions size " + std::to_string(out_tensor->dims->size)); } bhwc.data = std::vector<float>( out_tensor->data.f, out_tensor->data.f + out_tensor->bytes / sizeof(float)); outputs->push_back(bhwc); } return absl::OkStatus(); } absl::Status InterpreterInvoke(const ::tflite::Model* model, TfLiteDelegate* delegate, const std::vector<TensorFloat32>& inputs, std::vector<TensorFloat32>* outputs) { ops::builtin::BuiltinOpResolver builtin_op_resolver; return InterpreterInvokeWithOpResolver(model, delegate, builtin_op_resolver, inputs, outputs); } } } }
#include "tensorflow/lite/delegates/interpreter_utils.h" #include <string.h> #include <memory> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/delegate_test_util.h" #include "tensorflow/lite/interpreter.h" namespace tflite { namespace delegates { using test_utils::SimpleDelegate; using test_utils::TestDelegate; using test_utils::TestFP16Delegation; namespace { TEST_F(TestDelegate, DelegateNodeInvokeFailureFallback) { delegate_ = std::unique_ptr<SimpleDelegate>(new SimpleDelegate( {0, 1, 2}, kTfLiteDelegateFlagsNone, false , 0 , true )); ASSERT_EQ( interpreter_->ModifyGraphWithDelegate(delegate_->get_tf_lite_delegate()), kTfLiteOk); ASSERT_EQ(interpreter_->execution_plan().size(), 1); std::vector<float> input = {1.0f, 2.0f, 3.0f}; std::vector<float> expected_output = {2.0f, 4.0f, 6.0f}; constexpr int kOutputTensorIndex = 3; memcpy(interpreter_->typed_tensor<float>(0), input.data(), 3 * sizeof(float)); memcpy(interpreter_->typed_tensor<float>(1), input.data(), 3 * sizeof(float)); EXPECT_EQ( delegates::InterpreterUtils::InvokeWithCPUFallback(interpreter_.get()), kTfLiteDelegateError); ASSERT_EQ(interpreter_->execution_plan().size(), 3); TfLiteTensor* tensor = interpreter_->tensor(kOutputTensorIndex); for (int i = 0; i < 3; ++i) { EXPECT_EQ(tensor->data.f[i], expected_output[i]) << i; } } TEST_F(TestDelegate, TestFallbackWithMultipleDelegates) { delegate_ = std::unique_ptr<SimpleDelegate>( new SimpleDelegate({0}, kTfLiteDelegateFlagsAllowDynamicTensors)); delegate2_ = std::unique_ptr<SimpleDelegate>(new SimpleDelegate( {1, 2}, kTfLiteDelegateFlagsNone, false , 0 , true )); ASSERT_EQ(interpreter_->execution_plan().size(), 3); ASSERT_EQ( interpreter_->ModifyGraphWithDelegate(delegate_->get_tf_lite_delegate()), kTfLiteOk); ASSERT_EQ( interpreter_->ModifyGraphWithDelegate(delegate2_->get_tf_lite_delegate()), kTfLiteOk); ASSERT_EQ(interpreter_->execution_plan().size(), 2); std::vector<float> input = {1.0f, 2.0f, 3.0f}; std::vector<float> expected_output = {2.0f, 4.0f, 6.0f}; constexpr int kOutputTensorIndex = 2; TfLiteTensor* tensor = interpreter_->tensor(kOutputTensorIndex); memcpy(interpreter_->typed_tensor<float>(0), input.data(), 3 * sizeof(float)); memcpy(interpreter_->typed_tensor<float>(1), input.data(), 3 * sizeof(float)); EXPECT_EQ( delegates::InterpreterUtils::InvokeWithCPUFallback(interpreter_.get()), kTfLiteDelegateError); EXPECT_EQ(interpreter_->execution_plan().size(), 3); for (int i = 0; i < 3; ++i) { EXPECT_EQ(tensor->data.f[i], expected_output[i]) << i; } } TEST_P(TestFP16Delegation, DelegateInvokeWithCPUFallback) { delegate_ = std::make_unique<FP16Delegate>( GetParam(), false, true); ASSERT_EQ( interpreter_->ModifyGraphWithDelegate(delegate_->get_tf_lite_delegate()), kTfLiteOk); std::vector<float> input = {3.0f}; std::vector<float> expected_output = {16.0f}; const int input_tensor_idx = interpreter_->inputs()[0]; const int output_tensor_idx = interpreter_->outputs()[0]; memcpy(interpreter_->typed_tensor<float>(input_tensor_idx), input.data(), sizeof(float)); EXPECT_EQ( delegates::InterpreterUtils::InvokeWithCPUFallback(interpreter_.get()), kTfLiteDelegateError); TfLiteTensor* output_tensor = interpreter_->tensor(output_tensor_idx); for (int i = 0; i < 1; ++i) { EXPECT_EQ(output_tensor->data.f[i], expected_output[i]) << i; } ASSERT_EQ(interpreter_->execution_plan().size(), 8); VerifyInvoke(); } INSTANTIATE_TEST_SUITE_P(TestFP16Delegation, TestFP16Delegation, ::testing::Values(1, 2)); } } }
972
cpp
tensorflow/tensorflow
simple_delegate
tensorflow/lite/delegates/utils/simple_delegate.cc
tensorflow/lite/delegates/utils/simple_delegate_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_UTILS_SIMPLE_DELEGATE_H_ #define TENSORFLOW_LITE_DELEGATES_UTILS_SIMPLE_DELEGATE_H_ #include <stdint.h> #include <memory> #include <utility> #include "tensorflow/lite/core/c/common.h" namespace tflite { using TfLiteDelegateUniquePtr = std::unique_ptr<TfLiteDelegate, void (*)(TfLiteDelegate*)>; class SimpleDelegateKernelInterface { public: virtual ~SimpleDelegateKernelInterface() = default; virtual TfLiteStatus Init(TfLiteContext* context, const TfLiteDelegateParams* params) = 0; virtual TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) = 0; virtual TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) = 0; }; class SimpleDelegateInterface { public: struct Options { int max_delegated_partitions = 0; int min_nodes_per_partition = 0; }; virtual ~SimpleDelegateInterface() = default; virtual bool IsNodeSupportedByDelegate(const TfLiteRegistration* registration, const TfLiteNode* node, TfLiteContext* context) const = 0; virtual TfLiteStatus Initialize(TfLiteContext* context) = 0; virtual const char* Name() const = 0; virtual std::unique_ptr<SimpleDelegateKernelInterface> CreateDelegateKernelInterface() = 0; virtual SimpleDelegateInterface::Options DelegateOptions() const = 0; virtual TfLiteStatus CopyFromBufferHandle(TfLiteContext* context, TfLiteBufferHandle buffer_handle, TfLiteTensor* tensor) { return kTfLiteError; } virtual TfLiteStatus CopyToBufferHandle(TfLiteContext* context, TfLiteBufferHandle buffer_handle, const TfLiteTensor* tensor) { return kTfLiteError; } virtual void FreeBufferHandle(TfLiteContext* context, TfLiteBufferHandle* handle) {} }; class TfLiteDelegateFactory { public: static TfLiteDelegate* CreateSimpleDelegate( std::unique_ptr<SimpleDelegateInterface> simple_delegate, int64_t flags = kTfLiteDelegateFlagsNone); static void DeleteSimpleDelegate(TfLiteDelegate* delegate); inline static TfLiteDelegateUniquePtr Create( std::unique_ptr<SimpleDelegateInterface> simple_delegate) { return TfLiteDelegateUniquePtr( CreateSimpleDelegate(std::move(simple_delegate)), DeleteSimpleDelegate); } }; } #endif #include "tensorflow/lite/delegates/utils/simple_delegate.h" #include <stddef.h> #include <stdint.h> #include <limits> #include <memory> #include <string> #include <vector> #include "tensorflow/lite/array.h" #include "tensorflow/lite/builtin_ops.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/delegates/utils.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/logger.h" #include "tensorflow/lite/minimal_logging.h" namespace tflite { namespace { TfLiteRegistration GetDelegateKernelRegistration( SimpleDelegateInterface* delegate) { TfLiteRegistration kernel_registration{}; kernel_registration.profiling_string = nullptr; kernel_registration.builtin_code = kTfLiteBuiltinDelegate; kernel_registration.custom_name = delegate->Name(); kernel_registration.version = 1; kernel_registration.free = [](TfLiteContext* context, void* buffer) -> void { delete reinterpret_cast<SimpleDelegateKernelInterface*>(buffer); }; kernel_registration.init = [](TfLiteContext* context, const char* buffer, size_t length) -> void* { const TfLiteDelegateParams* params = reinterpret_cast<const TfLiteDelegateParams*>(buffer); if (params == nullptr) { TF_LITE_KERNEL_LOG(context, "NULL TfLiteDelegateParams passed."); return nullptr; } auto* delegate = reinterpret_cast<SimpleDelegateInterface*>(params->delegate->data_); std::unique_ptr<SimpleDelegateKernelInterface> delegate_kernel( delegate->CreateDelegateKernelInterface()); if (delegate_kernel->Init(context, params) != kTfLiteOk) { return nullptr; } return delegate_kernel.release(); }; kernel_registration.prepare = [](TfLiteContext* context, TfLiteNode* node) -> TfLiteStatus { if (node->user_data == nullptr) { TF_LITE_KERNEL_LOG(context, "Delegate kernel was not initialized"); return kTfLiteError; } SimpleDelegateKernelInterface* delegate_kernel = reinterpret_cast<SimpleDelegateKernelInterface*>(node->user_data); return delegate_kernel->Prepare(context, node); }; kernel_registration.invoke = [](TfLiteContext* context, TfLiteNode* node) -> TfLiteStatus { SimpleDelegateKernelInterface* delegate_kernel = reinterpret_cast<SimpleDelegateKernelInterface*>(node->user_data); TFLITE_DCHECK(delegate_kernel != nullptr); return delegate_kernel->Eval(context, node); }; return kernel_registration; } TfLiteStatus DelegatePrepare(TfLiteContext* context, TfLiteDelegate* base_delegate) { auto* delegate = reinterpret_cast<SimpleDelegateInterface*>(base_delegate->data_); auto delegate_options = delegate->DelegateOptions(); if (delegate_options.max_delegated_partitions <= 0) delegate_options.max_delegated_partitions = std::numeric_limits<int>::max(); TF_LITE_ENSURE_STATUS(delegate->Initialize(context)); delegates::IsNodeSupportedFn node_supported_fn = [=](TfLiteContext* context, TfLiteNode* node, TfLiteRegistration* registration, std::string* unsupported_details) -> bool { return delegate->IsNodeSupportedByDelegate(registration, node, context); }; delegates::GraphPartitionHelper helper(context, node_supported_fn); TF_LITE_ENSURE_STATUS(helper.Partition(nullptr)); std::vector<int> supported_nodes = helper.GetNodesOfFirstNLargestPartitions( delegate_options.max_delegated_partitions, delegate_options.min_nodes_per_partition); TFLITE_LOG_PROD_ONCE(tflite::TFLITE_LOG_INFO, "%s delegate: %d nodes delegated out of %d nodes with " "%d partitions.\n", delegate->Name(), supported_nodes.size(), helper.num_total_nodes(), helper.num_partitions()); TfLiteRegistration delegate_kernel_registration = GetDelegateKernelRegistration(delegate); return context->ReplaceNodeSubsetsWithDelegateKernels( context, delegate_kernel_registration, BuildTfLiteArray(supported_nodes).get(), base_delegate); } } TfLiteDelegate* TfLiteDelegateFactory::CreateSimpleDelegate( std::unique_ptr<SimpleDelegateInterface> simple_delegate, int64_t flag) { if (simple_delegate == nullptr) { return nullptr; } auto delegate = new TfLiteDelegate{}; delegate->Prepare = &DelegatePrepare; delegate->flags = flag; delegate->data_ = simple_delegate.release(); delegate->CopyFromBufferHandle = [](TfLiteContext* context, TfLiteDelegate* delegate, TfLiteBufferHandle buffer_handle, TfLiteTensor* tensor) -> TfLiteStatus { auto* simple_delegate = reinterpret_cast<SimpleDelegateInterface*>(delegate->data_); return simple_delegate->CopyFromBufferHandle(context, buffer_handle, tensor); }; delegate->CopyToBufferHandle = [](TfLiteContext* context, TfLiteDelegate* delegate, TfLiteBufferHandle buffer_handle, TfLiteTensor* tensor) -> TfLiteStatus { auto* simple_delegate = reinterpret_cast<SimpleDelegateInterface*>(delegate->data_); return simple_delegate->CopyToBufferHandle(context, buffer_handle, tensor); }; delegate->FreeBufferHandle = [](TfLiteContext* context, TfLiteDelegate* delegate, TfLiteBufferHandle* buffer_handle) { auto* simple_delegate = reinterpret_cast<SimpleDelegateInterface*>(delegate->data_); simple_delegate->FreeBufferHandle(context, buffer_handle); }; return delegate; } void TfLiteDelegateFactory::DeleteSimpleDelegate(TfLiteDelegate* delegate) { if (!delegate) return; SimpleDelegateInterface* simple_delegate = reinterpret_cast<SimpleDelegateInterface*>(delegate->data_); delete simple_delegate; delete delegate; } }
#include <stdlib.h> #include <memory> #include <utility> #include <gtest/gtest.h> #include "tensorflow/lite/builtin_ops.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/kernels/builtin_op_kernels.h" #include "tensorflow/lite/delegates/utils/dummy_delegate/dummy_delegate.h" #include "tensorflow/lite/interpreter.h" namespace tflite { namespace { class TestDelegate : public ::testing::Test { protected: void SetUp() override { interpreter_ = std::make_unique<Interpreter>(); interpreter_->AddTensors(5); interpreter_->SetInputs({0, 1}); interpreter_->SetOutputs({3, 4}); TfLiteQuantizationParams quant; interpreter_->SetTensorParametersReadWrite(0, kTfLiteFloat32, "", {3}, quant); interpreter_->SetTensorParametersReadWrite(1, kTfLiteFloat32, "", {3}, quant); interpreter_->SetTensorParametersReadWrite(2, kTfLiteFloat32, "", {3}, quant); interpreter_->SetTensorParametersReadWrite(3, kTfLiteFloat32, "", {3}, quant); interpreter_->SetTensorParametersReadWrite(4, kTfLiteFloat32, "", {3}, quant); TfLiteRegistration* reg = ops::builtin::Register_ADD(); void* builtin_data_1 = malloc(sizeof(int)); void* builtin_data_2 = malloc(sizeof(int)); void* builtin_data_3 = malloc(sizeof(int)); interpreter_->AddNodeWithParameters({0, 0}, {2}, nullptr, 0, builtin_data_1, reg); interpreter_->AddNodeWithParameters({1, 1}, {3}, nullptr, 0, builtin_data_2, reg); interpreter_->AddNodeWithParameters({2, 1}, {4}, nullptr, 0, builtin_data_3, reg); } void TearDown() override { interpreter_.reset(); } protected: std::unique_ptr<Interpreter> interpreter_; }; TEST_F(TestDelegate, BasicDelegate) { DummyDelegateOptions options = TfLiteDummyDelegateOptionsDefault(); options.allowed_builtin_code = kTfLiteBuiltinAdd; auto delegate = TfLiteDummyDelegateCreateUnique(&options); interpreter_->ModifyGraphWithDelegate(std::move(delegate)); ASSERT_EQ(interpreter_->execution_plan().size(), 1); int node = interpreter_->execution_plan()[0]; const auto* node_and_reg = interpreter_->node_and_registration(node); EXPECT_STREQ("DummyDelegate", node_and_reg->second.custom_name); EXPECT_EQ(1, node_and_reg->second.version); const TfLiteDelegateParams* params = static_cast<const TfLiteDelegateParams*>( node_and_reg->first.builtin_data); ASSERT_EQ(params->nodes_to_replace->size, 3); EXPECT_EQ(params->nodes_to_replace->data[0], 0); EXPECT_EQ(params->nodes_to_replace->data[1], 1); EXPECT_EQ(params->nodes_to_replace->data[2], 2); ASSERT_EQ(params->input_tensors->size, 2); EXPECT_EQ(params->input_tensors->data[0], 0); EXPECT_EQ(params->input_tensors->data[1], 1); ASSERT_EQ(params->output_tensors->size, 2); EXPECT_EQ(params->output_tensors->data[0], 3); EXPECT_EQ(params->output_tensors->data[1], 4); } TEST_F(TestDelegate, NoNodesToDelegate) { DummyDelegateOptions options = TfLiteDummyDelegateOptionsDefault(); options.allowed_builtin_code = kTfLiteBuiltinSub; auto delegate = TfLiteDummyDelegateCreateUnique(&options); interpreter_->ModifyGraphWithDelegate(std::move(delegate)); ASSERT_EQ(interpreter_->execution_plan().size(), 3); } TEST_F(TestDelegate, DelegateFailedPrepare) { DummyDelegateOptions options = TfLiteDummyDelegateOptionsDefault(); options.allowed_builtin_code = kTfLiteBuiltinAdd; options.error_during_prepare = true; auto delegate = TfLiteDummyDelegateCreateUnique(&options); ASSERT_EQ(kTfLiteDelegateError, interpreter_->ModifyGraphWithDelegate(std::move(delegate))); } TEST_F(TestDelegate, DelegateFailedInvoke) { DummyDelegateOptions options = TfLiteDummyDelegateOptionsDefault(); options.allowed_builtin_code = kTfLiteBuiltinAdd; options.error_during_invoke = true; auto delegate = TfLiteDummyDelegateCreateUnique(&options); ASSERT_EQ(kTfLiteOk, interpreter_->ModifyGraphWithDelegate(std::move(delegate))); ASSERT_EQ(kTfLiteError, interpreter_->Invoke()); } TEST_F(TestDelegate, DelegateFailedInit) { DummyDelegateOptions options = TfLiteDummyDelegateOptionsDefault(); options.allowed_builtin_code = kTfLiteBuiltinAdd; options.error_during_init = true; auto delegate = TfLiteDummyDelegateCreateUnique(&options); ASSERT_EQ(kTfLiteDelegateError, interpreter_->ModifyGraphWithDelegate(std::move(delegate))); } } }
973
cpp
tensorflow/tensorflow
simple_opaque_delegate
tensorflow/lite/delegates/utils/simple_opaque_delegate.cc
tensorflow/lite/delegates/utils/simple_opaque_delegate_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_UTILS_SIMPLE_OPAQUE_DELEGATE_H_ #define TENSORFLOW_LITE_DELEGATES_UTILS_SIMPLE_OPAQUE_DELEGATE_H_ #include <stdint.h> #include <memory> #include <utility> #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/c/common.h" namespace tflite { using TfLiteOpaqueDelegateUniquePtr = std::unique_ptr<TfLiteOpaqueDelegate, void (*)(TfLiteOpaqueDelegate*)>; class SimpleOpaqueDelegateKernelInterface { public: virtual ~SimpleOpaqueDelegateKernelInterface() = default; virtual TfLiteStatus Init(TfLiteOpaqueContext* context, const TfLiteOpaqueDelegateParams* params) = 0; virtual TfLiteStatus Prepare(TfLiteOpaqueContext* context, TfLiteOpaqueNode* node) = 0; virtual TfLiteStatus Eval(TfLiteOpaqueContext* context, TfLiteOpaqueNode* node) = 0; }; class SimpleOpaqueDelegateInterface { public: virtual ~SimpleOpaqueDelegateInterface() = default; virtual bool IsNodeSupportedByDelegate( const TfLiteOperator* registration_external, const TfLiteOpaqueNode* node, TfLiteOpaqueContext* context) const = 0; virtual TfLiteStatus Initialize(TfLiteOpaqueContext* context) = 0; virtual const char* Name() const = 0; virtual std::unique_ptr<SimpleOpaqueDelegateKernelInterface> CreateDelegateKernelInterface() = 0; virtual TfLiteStatus CopyFromBufferHandle(TfLiteOpaqueContext* context, TfLiteBufferHandle buffer_handle, TfLiteOpaqueTensor* tensor) { return kTfLiteError; } virtual TfLiteStatus CopyToBufferHandle(TfLiteOpaqueContext* context, TfLiteBufferHandle buffer_handle, const TfLiteOpaqueTensor* tensor) { return kTfLiteError; } virtual void FreeBufferHandle(TfLiteOpaqueContext* context, TfLiteBufferHandle* handle) {} }; class TfLiteOpaqueDelegateFactory { public: static TfLiteOpaqueDelegate* CreateSimpleDelegate( std::unique_ptr<SimpleOpaqueDelegateInterface> simple_delegate, int64_t flags = kTfLiteDelegateFlagsNone); static void DeleteSimpleDelegate(TfLiteOpaqueDelegate* opaque_delegate); inline static TfLiteOpaqueDelegateUniquePtr Create( std::unique_ptr<SimpleOpaqueDelegateInterface> simple_delegate) { return TfLiteOpaqueDelegateUniquePtr( CreateSimpleDelegate(std::move(simple_delegate)), DeleteSimpleDelegate); } }; } #endif #include "tensorflow/lite/delegates/utils/simple_opaque_delegate.h" #include <stddef.h> #include <stdint.h> #include <memory> #include <vector> #include "tensorflow/lite/array.h" #include "tensorflow/lite/builtin_ops.h" #include "tensorflow/lite/c/c_api.h" #include "tensorflow/lite/c/c_api_opaque.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/kernels/internal/compatibility.h" namespace tflite { namespace { TfLiteOperator* CreateDelegateKernelRegistration( SimpleOpaqueDelegateInterface* delegate) { TfLiteOperator* kernel_registration = TfLiteOperatorCreateWithData(kTfLiteBuiltinDelegate, delegate->Name(), 1, nullptr); TfLiteOperatorSetFreeWithData( kernel_registration, [](void* user_data, TfLiteOpaqueContext* context, void* buffer) -> void { delete reinterpret_cast<SimpleOpaqueDelegateInterface*>(buffer); }); TfLiteOperatorSetInitWithData( kernel_registration, [](void* user_data, TfLiteOpaqueContext* context, const char* buffer, size_t length) -> void* { const TfLiteOpaqueDelegateParams* params = reinterpret_cast<const TfLiteOpaqueDelegateParams*>(buffer); if (params == nullptr) { return nullptr; } auto* delegate_data = reinterpret_cast<SimpleOpaqueDelegateInterface*>( params->delegate_data); std::unique_ptr<SimpleOpaqueDelegateKernelInterface> delegate_kernel( delegate_data->CreateDelegateKernelInterface()); if (delegate_kernel->Init(context, params) != kTfLiteOk) { return nullptr; } return delegate_kernel.release(); }); TfLiteOperatorSetPrepareWithData( kernel_registration, [](void* user_data, TfLiteOpaqueContext* context, TfLiteOpaqueNode* opaque_node) -> TfLiteStatus { SimpleOpaqueDelegateKernelInterface* delegate_kernel = reinterpret_cast<SimpleOpaqueDelegateKernelInterface*>( TfLiteOpaqueNodeGetUserData(opaque_node)); return delegate_kernel->Prepare(context, opaque_node); }); TfLiteOperatorSetInvokeWithData( kernel_registration, [](void* user_data, TfLiteOpaqueContext* context, TfLiteOpaqueNode* opaque_node) -> TfLiteStatus { SimpleOpaqueDelegateKernelInterface* delegate_kernel = reinterpret_cast<SimpleOpaqueDelegateKernelInterface*>( TfLiteOpaqueNodeGetUserData(opaque_node)); TFLITE_DCHECK(delegate_kernel != nullptr); return delegate_kernel->Eval(context, opaque_node); }); return kernel_registration; } TfLiteStatus DelegatePrepare(TfLiteOpaqueContext* opaque_context, TfLiteOpaqueDelegate* opaque_delegate, void* data) { auto* simple_opaque_delegate = reinterpret_cast<SimpleOpaqueDelegateInterface*>(data); TF_LITE_ENSURE_STATUS(simple_opaque_delegate->Initialize(opaque_context)); std::vector<int> supported_nodes; TfLiteIntArray* execution_plan; TF_LITE_ENSURE_STATUS( TfLiteOpaqueContextGetExecutionPlan(opaque_context, &execution_plan)); IntArrayUniquePtr plan(TfLiteIntArrayCopy(execution_plan)); for (int i = 0; i < plan->size; ++i) { const int node_id = plan->data[i]; TfLiteOpaqueNode* opaque_node; TfLiteOperator* registration_external; TfLiteOpaqueContextGetNodeAndRegistration( opaque_context, node_id, &opaque_node, &registration_external); if (simple_opaque_delegate->IsNodeSupportedByDelegate( registration_external, opaque_node, opaque_context)) { supported_nodes.push_back(node_id); } } TfLiteOperator* delegate_kernel_registration = CreateDelegateKernelRegistration(simple_opaque_delegate); return TfLiteOpaqueContextReplaceNodeSubsetsWithDelegateKernels( opaque_context, delegate_kernel_registration, BuildTfLiteArray(supported_nodes).get(), opaque_delegate); } } TfLiteOpaqueDelegate* TfLiteOpaqueDelegateFactory::CreateSimpleDelegate( std::unique_ptr<SimpleOpaqueDelegateInterface> simple_delegate, int64_t flags) { if (simple_delegate == nullptr) { return {}; } TfLiteOpaqueDelegateBuilder opaque_delegate_builder{}; opaque_delegate_builder.Prepare = &DelegatePrepare; opaque_delegate_builder.flags = flags; opaque_delegate_builder.data = simple_delegate.release(); opaque_delegate_builder.CopyFromBufferHandle = [](TfLiteOpaqueContext* context, TfLiteOpaqueDelegate* delegate, void* data, TfLiteBufferHandle buffer_handle, TfLiteOpaqueTensor* tensor) { auto* simple_delegate = reinterpret_cast<SimpleOpaqueDelegateInterface*>(data); return simple_delegate->CopyFromBufferHandle(context, buffer_handle, tensor); }; opaque_delegate_builder.CopyToBufferHandle = [](TfLiteOpaqueContext* context, TfLiteOpaqueDelegate* delegate, void* data, TfLiteBufferHandle buffer_handle, TfLiteOpaqueTensor* tensor) { auto* simple_delegate = reinterpret_cast<SimpleOpaqueDelegateInterface*>(data); return simple_delegate->CopyToBufferHandle(context, buffer_handle, tensor); }; opaque_delegate_builder.FreeBufferHandle = [](TfLiteOpaqueContext* context, TfLiteOpaqueDelegate* delegate, void* data, TfLiteBufferHandle* buffer_handle) { auto* simple_delegate = reinterpret_cast<SimpleOpaqueDelegateInterface*>(data); simple_delegate->FreeBufferHandle(context, buffer_handle); }; return TfLiteOpaqueDelegateCreate(&opaque_delegate_builder); } void TfLiteOpaqueDelegateFactory::DeleteSimpleDelegate( TfLiteOpaqueDelegate* opaque_delegate) { if (!opaque_delegate) return; auto* simple_delegate = reinterpret_cast<SimpleOpaqueDelegateInterface*>( TfLiteOpaqueDelegateGetData(opaque_delegate)); delete simple_delegate; TfLiteOpaqueDelegateDelete(opaque_delegate); } }
#include "tensorflow/lite/delegates/utils/simple_opaque_delegate.h" #include <stddef.h> #include <stdint.h> #include <string.h> #include <array> #include <memory> #include <utility> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/builtin_ops.h" #include "tensorflow/lite/c/c_api.h" #include "tensorflow/lite/c/c_api_opaque.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/delegates/delegate_test_util.h" #include "tensorflow/lite/delegates/utils/experimental/sample_stable_delegate/sample_stable_delegate.h" #include "tensorflow/lite/interpreter.h" #include "tensorflow/lite/interpreter_builder.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/kernels/kernel_util.h" #include "tensorflow/lite/kernels/register.h" #include "tensorflow/lite/model_builder.h" namespace tflite { class TestDelegate : public ::testing::Test {}; TEST_F(TestDelegate, TestDataAddBin_SingleInputSingleOutput_FullyDelegated) { TfLiteOpaqueDelegateUniquePtr my_opaque_delegate = TfLiteOpaqueDelegateFactory::Create( std::make_unique<example::SampleStableDelegate>()); TfLiteModel* model = TfLiteModelCreateFromFile("tensorflow/lite/testdata/add.bin"); ASSERT_NE(model, nullptr); TfLiteInterpreterOptions* options = TfLiteInterpreterOptionsCreate(); ASSERT_NE(options, nullptr); TfLiteInterpreterOptionsSetNumThreads(options, 2); TfLiteInterpreterOptionsAddDelegate(options, my_opaque_delegate.get()); TfLiteInterpreter* interpreter = TfLiteInterpreterCreate(model, options); ASSERT_NE(interpreter, nullptr); TfLiteInterpreterOptionsDelete(options); ASSERT_EQ(TfLiteInterpreterAllocateTensors(interpreter), kTfLiteOk); ASSERT_EQ(TfLiteInterpreterGetInputTensorCount(interpreter), 1); ASSERT_EQ(TfLiteInterpreterGetOutputTensorCount(interpreter), 1); TfLiteTensor* input_tensor = TfLiteInterpreterGetInputTensor(interpreter, 0); ASSERT_NE(input_tensor, nullptr); EXPECT_EQ(TfLiteTensorType(input_tensor), kTfLiteFloat32); EXPECT_NE(TfLiteTensorData(input_tensor), nullptr); EXPECT_STREQ(TfLiteTensorName(input_tensor), "input"); TfLiteQuantizationParams input_params = TfLiteTensorQuantizationParams(input_tensor); EXPECT_EQ(input_params.scale, 0.f); EXPECT_EQ(input_params.zero_point, 0); const float kTensorCellValue = 3.f; int64_t n = tflite::NumElements(input_tensor); std::vector<float> input(n, kTensorCellValue); ASSERT_EQ(TfLiteTensorCopyFromBuffer(input_tensor, input.data(), input.size() * sizeof(float)), kTfLiteOk); ASSERT_EQ(TfLiteInterpreterInvoke(interpreter), kTfLiteOk); const TfLiteTensor* output_tensor = TfLiteInterpreterGetOutputTensor(interpreter, 0); ASSERT_NE(output_tensor, nullptr); EXPECT_EQ(TfLiteTensorType(output_tensor), kTfLiteFloat32); EXPECT_NE(TfLiteTensorData(output_tensor), nullptr); EXPECT_STREQ(TfLiteTensorName(output_tensor), "output"); TfLiteQuantizationParams output_params = TfLiteTensorQuantizationParams(output_tensor); EXPECT_EQ(output_params.scale, 0.f); EXPECT_EQ(output_params.zero_point, 0); std::vector<float> output(n, 0); ASSERT_EQ(TfLiteTensorCopyToBuffer(output_tensor, output.data(), output.size() * sizeof(float)), kTfLiteOk); for (int i = 0; i < output.size(); ++i) { EXPECT_EQ(output[i], kTensorCellValue * 3); } TfLiteInterpreterDelete(interpreter); TfLiteModelDelete(model); } TEST(DelegateTest, TestDataAddBin_SingleInputSingleOutput_FullyDelegated_ResizeInputTensors) { TfLiteOpaqueDelegateUniquePtr my_opaque_delegate = TfLiteOpaqueDelegateFactory::Create( std::make_unique<example::SampleStableDelegate>()); TfLiteModel* model = TfLiteModelCreateFromFile("tensorflow/lite/testdata/add.bin"); ASSERT_NE(model, nullptr); TfLiteInterpreterOptions* options = TfLiteInterpreterOptionsCreate(); ASSERT_NE(options, nullptr); TfLiteInterpreterOptionsSetNumThreads(options, 2); TfLiteInterpreterOptionsAddDelegate(options, my_opaque_delegate.get()); TfLiteInterpreter* interpreter = TfLiteInterpreterCreate(model, options); ASSERT_NE(interpreter, nullptr); TfLiteInterpreterOptionsDelete(options); ASSERT_EQ(TfLiteInterpreterAllocateTensors(interpreter), kTfLiteOk); ASSERT_EQ(TfLiteInterpreterGetInputTensorCount(interpreter), 1); ASSERT_EQ(TfLiteInterpreterGetOutputTensorCount(interpreter), 1); std::array<int, 1> input_dims = {2}; ASSERT_EQ(TfLiteInterpreterResizeInputTensor( interpreter, 0, input_dims.data(), input_dims.size()), kTfLiteOk); ASSERT_EQ(TfLiteInterpreterAllocateTensors(interpreter), kTfLiteOk); TfLiteTensor* input_tensor = TfLiteInterpreterGetInputTensor(interpreter, 0); ASSERT_NE(input_tensor, nullptr); EXPECT_EQ(TfLiteTensorType(input_tensor), kTfLiteFloat32); EXPECT_EQ(TfLiteTensorNumDims(input_tensor), 1); EXPECT_EQ(TfLiteTensorDim(input_tensor, 0), 2); EXPECT_EQ(TfLiteTensorByteSize(input_tensor), sizeof(float) * 2); EXPECT_NE(TfLiteTensorData(input_tensor), nullptr); EXPECT_STREQ(TfLiteTensorName(input_tensor), "input"); TfLiteQuantizationParams input_params = TfLiteTensorQuantizationParams(input_tensor); EXPECT_EQ(input_params.scale, 0.f); EXPECT_EQ(input_params.zero_point, 0); std::array<float, 2> input = {1.f, 3.f}; ASSERT_EQ(TfLiteTensorCopyFromBuffer(input_tensor, input.data(), input.size() * sizeof(float)), kTfLiteOk); ASSERT_EQ(TfLiteInterpreterInvoke(interpreter), kTfLiteOk); const TfLiteTensor* output_tensor = TfLiteInterpreterGetOutputTensor(interpreter, 0); ASSERT_NE(output_tensor, nullptr); EXPECT_EQ(TfLiteTensorType(output_tensor), kTfLiteFloat32); EXPECT_EQ(TfLiteTensorNumDims(output_tensor), 1); EXPECT_EQ(TfLiteTensorDim(output_tensor, 0), 2); EXPECT_EQ(TfLiteTensorByteSize(output_tensor), sizeof(float) * 2); EXPECT_NE(TfLiteTensorData(output_tensor), nullptr); EXPECT_STREQ(TfLiteTensorName(output_tensor), "output"); TfLiteQuantizationParams output_params = TfLiteTensorQuantizationParams(output_tensor); EXPECT_EQ(output_params.scale, 0.f); EXPECT_EQ(output_params.zero_point, 0); std::array<float, 2> output; ASSERT_EQ(TfLiteTensorCopyToBuffer(output_tensor, output.data(), output.size() * sizeof(float)), kTfLiteOk); EXPECT_EQ(output[0], 3.f); EXPECT_EQ(output[1], 9.f); TfLiteInterpreterDelete(interpreter); TfLiteModelDelete(model); } TEST(DelegateTest, TestDataMultiAddBin_MultiInputMultiOutput_FullyDelegated) { TfLiteOpaqueDelegateUniquePtr my_opaque_delegate = TfLiteOpaqueDelegateFactory::Create( std::make_unique<example::SampleStableDelegate>()); TfLiteModel* model = TfLiteModelCreateFromFile( "tensorflow/lite/testdata/multi_add.bin"); ASSERT_NE(model, nullptr); TfLiteInterpreterOptions* options = TfLiteInterpreterOptionsCreate(); ASSERT_NE(options, nullptr); TfLiteInterpreterOptionsSetNumThreads(options, 2); TfLiteInterpreterOptionsAddDelegate(options, my_opaque_delegate.get()); TfLiteInterpreter* interpreter = TfLiteInterpreterCreate(model, options); ASSERT_NE(interpreter, nullptr); TfLiteInterpreterOptionsDelete(options); ASSERT_EQ(TfLiteInterpreterAllocateTensors(interpreter), kTfLiteOk); ASSERT_EQ(TfLiteInterpreterGetInputTensorCount(interpreter), 4); ASSERT_EQ(TfLiteInterpreterGetOutputTensorCount(interpreter), 2); TfLiteTensor* input_tensor0 = TfLiteInterpreterGetInputTensor(interpreter, 0); TfLiteTensor* input_tensor1 = TfLiteInterpreterGetInputTensor(interpreter, 1); TfLiteTensor* input_tensor2 = TfLiteInterpreterGetInputTensor(interpreter, 2); TfLiteTensor* input_tensor3 = TfLiteInterpreterGetInputTensor(interpreter, 3); std::vector<TfLiteTensor*> input_tensors{input_tensor0, input_tensor1, input_tensor2, input_tensor3}; for (TfLiteTensor* input_tensor : input_tensors) { const float kTensorCellValue = 1.f; int64_t n = tflite::NumElements(input_tensor); std::vector<float> input(n, kTensorCellValue); ASSERT_EQ(TfLiteTensorCopyFromBuffer(input_tensor, input.data(), input.size() * sizeof(float)), kTfLiteOk); } ASSERT_EQ(TfLiteInterpreterInvoke(interpreter), kTfLiteOk); const TfLiteTensor* output_tensor0 = TfLiteInterpreterGetOutputTensor(interpreter, 0); const TfLiteTensor* output_tensor1 = TfLiteInterpreterGetOutputTensor(interpreter, 1); std::vector<const TfLiteTensor*> output_tensors{output_tensor0, output_tensor1}; for (const TfLiteTensor* output_tensor : output_tensors) { int64_t n = tflite::NumElements(output_tensor); std::vector<float> output_tensor_values(n, 0); ASSERT_EQ( TfLiteTensorCopyToBuffer(output_tensor, output_tensor_values.data(), output_tensor_values.size() * sizeof(float)), kTfLiteOk); for (int i = 0; i < n; ++i) { EXPECT_EQ(output_tensor_values[i], 3.f); } } TfLiteInterpreterDelete(interpreter); TfLiteModelDelete(model); } TfLiteOperator* CreateDelegateKernelRegistrationImpl( SimpleOpaqueDelegateInterface* delegate) { TfLiteOperator* kernel_registration = TfLiteOperatorCreateWithData( kTfLiteBuiltinDelegate, delegate->Name(), 1, nullptr); TfLiteOperatorSetFreeWithData( kernel_registration, [](void* user_data, TfLiteOpaqueContext* context, void* buffer) -> void { delete reinterpret_cast<SimpleOpaqueDelegateInterface*>(buffer); }); TfLiteOperatorSetInitWithData( kernel_registration, [](void* user_data, TfLiteOpaqueContext* context, const char* buffer, size_t length) -> void* { auto* params = reinterpret_cast<const TfLiteOpaqueDelegateParams*>(buffer); if (params == nullptr) { return nullptr; } auto* simple_delegate = reinterpret_cast<SimpleOpaqueDelegateInterface*>( params->delegate_data); std::unique_ptr<SimpleOpaqueDelegateKernelInterface> delegate_kernel( simple_delegate->CreateDelegateKernelInterface()); if (delegate_kernel->Init(context, params) != kTfLiteOk) { return nullptr; } return delegate_kernel.release(); }); TfLiteOperatorSetPrepareWithData( kernel_registration, [](void* user_data, TfLiteOpaqueContext* context, TfLiteOpaqueNode* opaque_node) -> TfLiteStatus { SimpleOpaqueDelegateKernelInterface* delegate_kernel = reinterpret_cast<SimpleOpaqueDelegateKernelInterface*>( TfLiteOpaqueNodeGetUserData(opaque_node)); return delegate_kernel->Prepare(context, opaque_node); }); TfLiteOperatorSetInvokeWithData( kernel_registration, [](void* user_data, TfLiteOpaqueContext* context, TfLiteOpaqueNode* opaque_node) -> TfLiteStatus { SimpleOpaqueDelegateKernelInterface* delegate_kernel = reinterpret_cast<SimpleOpaqueDelegateKernelInterface*>( TfLiteOpaqueNodeGetUserData(opaque_node)); TFLITE_DCHECK(delegate_kernel != nullptr); return delegate_kernel->Eval(context, opaque_node); }); return kernel_registration; } using ::tflite::delegates::test_utils::TestFP16Delegation; TEST_F(TestFP16Delegation, MultipleDelegateKernels) { auto my_simple_delegate = std::make_unique<example::SampleStableDelegate>(); TfLiteOpaqueDelegate* opaque_delegate = TfLiteOpaqueDelegateFactory::CreateSimpleDelegate( std::move(my_simple_delegate)); ASSERT_EQ(interpreter_->ModifyGraphWithDelegate( reinterpret_cast<TfLiteDelegate*>(opaque_delegate)), kTfLiteOk); ASSERT_EQ(interpreter_->execution_plan().size(), 7); VerifyInvoke(); TfLiteOpaqueDelegateFactory::DeleteSimpleDelegate(opaque_delegate); } class MySimpleOpaqueDelegateWithBufferHandleSupport : public example::SampleStableDelegate { public: static constexpr int kDelegateOutputValue = 42; TfLiteStatus CopyFromBufferHandle(TfLiteOpaqueContext* context, TfLiteBufferHandle buffer_handle, TfLiteOpaqueTensor* tensor) override { auto* output = reinterpret_cast<float*>(TfLiteOpaqueTensorData(tensor)); std::vector<float> test_output( example::helpers::CalculateNumElements(tensor), kDelegateOutputValue); memcpy(output, test_output.data(), test_output.size() * sizeof(float)); return kTfLiteOk; } void FreeBufferHandle(TfLiteOpaqueContext* context, TfLiteBufferHandle* handle) override { recorded_buffer_handle_ = *handle; free_buffer_handle_called_ = true; } int recorded_buffer_handle_ = -1; bool free_buffer_handle_called_ = false; }; TEST_F(TestDelegate, SetBufferHandle) { MySimpleOpaqueDelegateWithBufferHandleSupport my_simple_delegate; TfLiteOpaqueDelegateBuilder opaque_delegate_builder{}; opaque_delegate_builder.Prepare = [](TfLiteOpaqueContext* opaque_context, TfLiteOpaqueDelegate* opaque_delegate, void* data) { auto* simple_opaque_delegate = reinterpret_cast<SimpleOpaqueDelegateInterface*>(data); TF_LITE_ENSURE_STATUS(simple_opaque_delegate->Initialize(opaque_context)); TfLiteIntArray* execution_plan; TF_LITE_ENSURE_STATUS( TfLiteOpaqueContextGetExecutionPlan(opaque_context, &execution_plan)); TfLiteOperator* delegate_kernel_registration = CreateDelegateKernelRegistrationImpl(simple_opaque_delegate); return TfLiteOpaqueContextReplaceNodeSubsetsWithDelegateKernels( opaque_context, delegate_kernel_registration, execution_plan, opaque_delegate); }; opaque_delegate_builder.flags = kTfLiteDelegateFlagsNone; opaque_delegate_builder.data = &my_simple_delegate; opaque_delegate_builder.CopyFromBufferHandle = [](TfLiteOpaqueContext* context, TfLiteOpaqueDelegate* delegate, void* data, TfLiteBufferHandle buffer_handle, TfLiteOpaqueTensor* tensor) -> TfLiteStatus { auto* simple_opaque_delegate = reinterpret_cast<MySimpleOpaqueDelegateWithBufferHandleSupport*>(data); simple_opaque_delegate->CopyFromBufferHandle(context, buffer_handle, tensor); return kTfLiteOk; }; opaque_delegate_builder.FreeBufferHandle = [](TfLiteOpaqueContext* context, TfLiteOpaqueDelegate* delegate, void* data, TfLiteBufferHandle* handle) { auto* simple_opaque_delegate = reinterpret_cast<MySimpleOpaqueDelegateWithBufferHandleSupport*>(data); simple_opaque_delegate->FreeBufferHandle(context, handle); }; TfLiteDelegate tflite_delegate{}; tflite_delegate.opaque_delegate_builder = &opaque_delegate_builder; std::unique_ptr<tflite::FlatBufferModel> model = tflite::FlatBufferModel::BuildFromFile( "tensorflow/lite/testdata/add.bin"); ASSERT_NE(model, nullptr); tflite::ops::builtin::BuiltinOpResolver resolver; tflite::InterpreterBuilder builder(*model, resolver); builder.AddDelegate(&tflite_delegate); std::unique_ptr<tflite::Interpreter> interpreter; builder(&interpreter); ASSERT_NE(interpreter, nullptr); ASSERT_EQ(interpreter->AllocateTensors(), kTfLiteOk); constexpr int kTensorDimensions = 1 * 8 * 8 * 3; std::vector<float> floats(kTensorDimensions, 1); memcpy(interpreter->typed_input_tensor<float>(0), floats.data(), floats.size() * sizeof(float)); EXPECT_FALSE(my_simple_delegate.free_buffer_handle_called_); int first_buffer_handle = 1; const int kOutputTensorIndex = 2; interpreter->SetBufferHandle( kOutputTensorIndex, first_buffer_handle, reinterpret_cast<TfLiteDelegate*>(&tflite_delegate)); TfLiteTensor* output_t = interpreter->output_tensor(0); output_t->data_is_stale = true; EXPECT_FALSE(my_simple_delegate.free_buffer_handle_called_); EXPECT_NE(my_simple_delegate.recorded_buffer_handle_, first_buffer_handle); ASSERT_EQ(interpreter->Invoke(), kTfLiteOk); std::vector<float> outputs(kTensorDimensions, 0); memcpy(outputs.data(), interpreter->typed_output_tensor<float>(0), outputs.size() * sizeof(float)); for (int i = 0; i < outputs.size(); ++i) { EXPECT_EQ( outputs[i], MySimpleOpaqueDelegateWithBufferHandleSupport::kDelegateOutputValue); } int next_buffer_handle = first_buffer_handle + 1; interpreter->SetBufferHandle(kOutputTensorIndex, next_buffer_handle, &tflite_delegate); EXPECT_TRUE(my_simple_delegate.free_buffer_handle_called_); EXPECT_EQ(my_simple_delegate.recorded_buffer_handle_, first_buffer_handle); my_simple_delegate.free_buffer_handle_called_ = false; my_simple_delegate.recorded_buffer_handle_ = first_buffer_handle = -1; interpreter.reset(); EXPECT_TRUE(my_simple_delegate.free_buffer_handle_called_); EXPECT_EQ(my_simple_delegate.recorded_buffer_handle_, next_buffer_handle); } TEST(DelegateTest, TestDataConvHugeIm2ColBin_MultiInputSingleOutput_PartiallyDelegated) { TfLiteOpaqueDelegateUniquePtr my_opaque_delegate = TfLiteOpaqueDelegateFactory::Create( std::make_unique<example::SampleStableDelegate>()); TfLiteModel* model = TfLiteModelCreateFromFile( "tensorflow/lite/testdata/conv_huge_im2col.bin"); ASSERT_NE(model, nullptr); TfLiteInterpreterOptions* options = TfLiteInterpreterOptionsCreate(); ASSERT_NE(options, nullptr); TfLiteInterpreterOptionsSetNumThreads(options, 2); TfLiteInterpreterOptionsAddDelegate(options, my_opaque_delegate.get()); TfLiteInterpreter* interpreter = TfLiteInterpreterCreate(model, options); ASSERT_NE(interpreter, nullptr); TfLiteInterpreterOptionsDelete(options); ASSERT_EQ(TfLiteInterpreterAllocateTensors(interpreter), kTfLiteOk); ASSERT_EQ(TfLiteInterpreterGetInputTensorCount(interpreter), 4); ASSERT_EQ(TfLiteInterpreterGetOutputTensorCount(interpreter), 1); TfLiteTensor* input_tensor0 = TfLiteInterpreterGetInputTensor(interpreter, 0); TfLiteTensor* input_tensor1 = TfLiteInterpreterGetInputTensor(interpreter, 1); TfLiteTensor* input_tensor2 = TfLiteInterpreterGetInputTensor(interpreter, 2); TfLiteTensor* input_tensor3 = TfLiteInterpreterGetInputTensor(interpreter, 3); std::vector<TfLiteTensor*> input_tensors{input_tensor0, input_tensor1, input_tensor2, input_tensor3}; for (TfLiteTensor* input_tensor : input_tensors) { const float kTensorCellValue = 4.f; int64_t n = tflite::NumElements(input_tensor); std::vector<float> input(n, kTensorCellValue); ASSERT_EQ(TfLiteTensorCopyFromBuffer(input_tensor, input.data(), input.size() * sizeof(float)), kTfLiteOk); } ASSERT_EQ(TfLiteInterpreterInvoke(interpreter), kTfLiteOk); const TfLiteTensor* output_tensor = TfLiteInterpreterGetOutputTensor(interpreter, 0); ASSERT_NE(output_tensor, nullptr); EXPECT_EQ(TfLiteTensorType(output_tensor), kTfLiteFloat32); EXPECT_NE(TfLiteTensorData(output_tensor), nullptr); TfLiteQuantizationParams output_params = TfLiteTensorQuantizationParams(output_tensor); EXPECT_EQ(output_params.scale, 0.f); EXPECT_EQ(output_params.zero_point, 0); int64_t n = tflite::NumElements(output_tensor); std::vector<float> output(n, 0); ASSERT_EQ(TfLiteTensorCopyToBuffer(output_tensor, output.data(), output.size() * sizeof(float)), kTfLiteOk); for (int i = 0; i < n; ++i) { EXPECT_EQ(output[i], 4); } TfLiteInterpreterDelete(interpreter); TfLiteModelDelete(model); } }
974
cpp
tensorflow/tensorflow
sample_stable_delegate
tensorflow/lite/delegates/utils/experimental/sample_stable_delegate/sample_stable_delegate.cc
tensorflow/lite/delegates/utils/experimental/sample_stable_delegate/sample_stable_delegate_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_UTILS_EXPERIMENTAL_SAMPLE_STABLE_DELEGATE_SAMPLE_STABLE_DELEGATE_H_ #define TENSORFLOW_LITE_DELEGATES_UTILS_EXPERIMENTAL_SAMPLE_STABLE_DELEGATE_SAMPLE_STABLE_DELEGATE_H_ #include <memory> #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/delegates/utils/simple_opaque_delegate.h" namespace tflite { namespace example { namespace helpers { int CalculateNumElements(const TfLiteOpaqueTensor* opaque_tensor); } static const char kSampleStableDelegateName[] = "google_sample_delegate"; static const char kSampleStableDelegateVersion[] = "1.0.0"; class SampleStableDelegate : public SimpleOpaqueDelegateInterface { public: bool IsNodeSupportedByDelegate(const TfLiteOperator* registration_external, const TfLiteOpaqueNode* node, TfLiteOpaqueContext* context) const override; TfLiteStatus Initialize(TfLiteOpaqueContext* context) override; const char* Name() const override; std::unique_ptr<SimpleOpaqueDelegateKernelInterface> CreateDelegateKernelInterface() override; }; } } #endif #include "tensorflow/lite/delegates/utils/experimental/sample_stable_delegate/sample_stable_delegate.h" #include <memory> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "tensorflow/lite/c/builtin_op_data.h" #include "tensorflow/lite/c/c_api.h" #include "tensorflow/lite/c/c_api_opaque.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/delegates/utils/simple_opaque_delegate.h" namespace tflite { namespace example { namespace { class SampleStableDelegateKernel : public SimpleOpaqueDelegateKernelInterface { bool IsExternalTensor(const TfLiteOpaqueTensor* opaque_tensor) const { return external_tensors_.count(opaque_tensor) != 0; } void DeriveExternalTensors() { for (const TfLiteOpaqueTensor* tensor : node_input_tensors_set_) { if (node_output_tensors_set_.count(tensor) == 0) { external_tensors_.insert(tensor); } } for (const TfLiteOpaqueTensor* tensor : node_output_tensors_set_) { if (node_input_tensors_set_.count(tensor) == 0) { external_tensors_.insert(tensor); } } } public: TfLiteStatus Init(TfLiteOpaqueContext* context, const TfLiteOpaqueDelegateParams* params) override { if (params->delegate == nullptr) return kTfLiteDelegateError; context_ = context; builtin_code_.resize(params->nodes_to_replace->size); node_input_tensors_.resize(params->nodes_to_replace->size); node_output_tensors_.resize(params->nodes_to_replace->size); for (int i = 0; i < params->nodes_to_replace->size; ++i) { const int node_index = params->nodes_to_replace->data[i]; TfLiteOpaqueNode* delegated_node = nullptr; TfLiteOperator* delegated_node_registration = nullptr; TfLiteOpaqueContextGetNodeAndRegistration( context, node_index, &delegated_node, &delegated_node_registration); auto input_tensor1 = TfLiteOpaqueNodeGetInput(context, delegated_node, 0); node_input_tensors_[i].push_back(input_tensor1); node_input_tensors_set_.insert(input_tensor1); auto input_tensor2 = TfLiteOpaqueNodeGetInput(context, delegated_node, 1); node_input_tensors_[i].push_back(input_tensor2); node_input_tensors_set_.insert(input_tensor2); auto output_tensor = TfLiteOpaqueNodeGetOutput(context, delegated_node, 0); node_output_tensors_[i] = output_tensor; node_output_tensors_set_.insert(output_tensor); builtin_code_[i] = TfLiteOperatorGetBuiltInCode(delegated_node_registration); } DeriveExternalTensors(); return kTfLiteOk; } TfLiteStatus Prepare(TfLiteOpaqueContext* context, TfLiteOpaqueNode* delegated_node) override { if (external_tensors_.empty()) return kTfLiteOk; const int kTheInputTensorSize = helpers::CalculateNumElements((*external_tensors_.begin())); for (std::vector<const TfLiteOpaqueTensor*>& vecs : node_input_tensors_) { for (const TfLiteOpaqueTensor* tensor : vecs) { if (IsExternalTensor(tensor)) continue; std::vector<float>& vec_memory = internal_tensors_memory_[tensor]; vec_memory.resize(kTheInputTensorSize); } } for (const TfLiteOpaqueTensor* tensor : node_output_tensors_) { if (IsExternalTensor(tensor)) continue; std::vector<float>& vec_memory = internal_tensors_memory_[tensor]; vec_memory.resize(kTheInputTensorSize); } return kTfLiteOk; } void ComputeImpl(float* input_1, float* input_2, float* output, int builtin_code, int number_of_elements) { for (int i = 0; i < number_of_elements; ++i) { if (builtin_code == kTfLiteBuiltinAdd) { output[i] = input_1[i] + input_2[i]; } else { output[i] = input_1[i] - input_2[i]; } } } float* GetRawDataSource(TfLiteOpaqueContext* context, const TfLiteOpaqueTensor* tensor) { if (IsExternalTensor(tensor)) { return reinterpret_cast<float*>(TfLiteOpaqueTensorData(tensor)); } else { return internal_tensors_memory_[tensor].data(); } } TfLiteStatus Eval(TfLiteOpaqueContext* context, TfLiteOpaqueNode* delegated_node) override { for (int i = 0; i < node_input_tensors_.size(); ++i) { float* input1 = GetRawDataSource(context, node_input_tensors_[i][0]); float* input2 = GetRawDataSource(context, node_input_tensors_[i][1]); float* output = GetRawDataSource(context, node_output_tensors_[i]); ComputeImpl(input1, input2, output, builtin_code_[i], helpers::CalculateNumElements(node_output_tensors_[i])); } return kTfLiteOk; } private: std::vector<std::vector<const TfLiteOpaqueTensor*>> node_input_tensors_; absl::flat_hash_set<const TfLiteOpaqueTensor*> node_input_tensors_set_; std::vector<const TfLiteOpaqueTensor*> node_output_tensors_; absl::flat_hash_set<const TfLiteOpaqueTensor*> node_output_tensors_set_; absl::flat_hash_set<const TfLiteOpaqueTensor*> external_tensors_; absl::flat_hash_map<const TfLiteOpaqueTensor*, std::vector<float>> internal_tensors_memory_; TfLiteOpaqueContext* context_; std::vector<int> builtin_code_; }; } int helpers::CalculateNumElements(const TfLiteOpaqueTensor* opaque_tensor) { int total_num_elements = 1; for (int i = 0; i < TfLiteOpaqueTensorNumDims(opaque_tensor); ++i) { total_num_elements *= TfLiteOpaqueTensorDim(opaque_tensor, i); } return total_num_elements; } bool SampleStableDelegate::IsNodeSupportedByDelegate( const TfLiteOperator* registration_external, const TfLiteOpaqueNode* node, TfLiteOpaqueContext* context) const { TfLiteBuiltinOperator builtin_operator = TfLiteOperatorGetBuiltInCode(registration_external); void* builtin_data = TfLiteOpaqueNodeGetBuiltinData(node); if (builtin_operator == kTfLiteBuiltinAdd) { TfLiteAddParams* params = reinterpret_cast<TfLiteAddParams*>(builtin_data); if (!params || params->activation != kTfLiteActNone) return false; } else if (builtin_operator == kTfLiteBuiltinSub) { TfLiteSubParams* params = reinterpret_cast<TfLiteSubParams*>(builtin_data); if (!params || params->activation != kTfLiteActNone) return false; } else { return false; } if (TfLiteOpaqueNodeNumberOfInputs(node) != 2) return false; const TfLiteOpaqueTensor* tensor_1 = TfLiteOpaqueNodeGetInput(context, node, 0); const TfLiteOpaqueTensor* tensor_2 = TfLiteOpaqueNodeGetInput(context, node, 1); if (!tensor_1 || TfLiteOpaqueTensorType(tensor_1) != kTfLiteFloat32) return false; if (!tensor_2 || TfLiteOpaqueTensorType(tensor_2) != kTfLiteFloat32) return false; if (TfLiteOpaqueTensorNumDims(tensor_1) != TfLiteOpaqueTensorNumDims(tensor_2)) return false; for (int i = 0; i < TfLiteOpaqueTensorNumDims(tensor_1); ++i) { if (TfLiteOpaqueTensorDim(tensor_1, i) != TfLiteOpaqueTensorDim(tensor_2, i)) { return false; } } return true; } TfLiteStatus SampleStableDelegate::Initialize(TfLiteOpaqueContext* context) { return kTfLiteOk; } const char* SampleStableDelegate::Name() const { return kSampleStableDelegateName; } std::unique_ptr<SimpleOpaqueDelegateKernelInterface> SampleStableDelegate::CreateDelegateKernelInterface() { return std::make_unique<SampleStableDelegateKernel>(); } } }
#include "tensorflow/lite/delegates/utils/experimental/sample_stable_delegate/sample_stable_delegate.h" #include <cstddef> #include <memory> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/c/c_api.h" #include "tensorflow/lite/c/c_api_opaque.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace { TEST(SampleStableDelegate, StaticallyLinkedDelegateAndModelWithAdd) { tflite::TfLiteOpaqueDelegateUniquePtr opaque_delegate = tflite::TfLiteOpaqueDelegateFactory::Create( std::make_unique<tflite::example::SampleStableDelegate>()); ASSERT_NE(opaque_delegate, nullptr); TfLiteModel* model = TfLiteModelCreateFromFile("tensorflow/lite/testdata/add.bin"); ASSERT_NE(model, nullptr); TfLiteInterpreterOptions* options = TfLiteInterpreterOptionsCreate(); ASSERT_NE(options, nullptr); TfLiteInterpreterOptionsAddDelegate(options, opaque_delegate.get()); TfLiteInterpreter* interpreter = TfLiteInterpreterCreate(model, options); ASSERT_NE(interpreter, nullptr); TfLiteInterpreterOptionsDelete(options); ASSERT_EQ(TfLiteInterpreterAllocateTensors(interpreter), kTfLiteOk); TfLiteTensor* input_tensor = TfLiteInterpreterGetInputTensor(interpreter, 0); ASSERT_NE(input_tensor, nullptr); const float kTensorCellValue = 3.f; int64_t n = tflite::NumElements(input_tensor); std::vector<float> input(n, kTensorCellValue); ASSERT_EQ(TfLiteTensorCopyFromBuffer(input_tensor, input.data(), input.size() * sizeof(float)), kTfLiteOk); ASSERT_EQ(TfLiteInterpreterInvoke(interpreter), kTfLiteOk); const TfLiteTensor* output_tensor = TfLiteInterpreterGetOutputTensor(interpreter, 0); ASSERT_NE(output_tensor, nullptr); std::vector<float> output(n, 0); ASSERT_EQ(TfLiteTensorCopyToBuffer(output_tensor, output.data(), output.size() * sizeof(float)), kTfLiteOk); for (int i = 0; i < output.size(); ++i) { EXPECT_EQ(output[i], kTensorCellValue * 3); } TfLiteInterpreterDelete(interpreter); TfLiteModelDelete(model); } TEST(SampleStableDelegate, StaticallyLinkedDelegateAndModelWithSub) { tflite::TfLiteOpaqueDelegateUniquePtr opaque_delegate = tflite::TfLiteOpaqueDelegateFactory::Create( std::make_unique<tflite::example::SampleStableDelegate>()); ASSERT_NE(opaque_delegate, nullptr); TfLiteModel* model = TfLiteModelCreateFromFile("tensorflow/lite/testdata/sub.bin"); ASSERT_NE(model, nullptr); TfLiteInterpreterOptions* options = TfLiteInterpreterOptionsCreate(); ASSERT_NE(options, nullptr); TfLiteInterpreterOptionsAddDelegate(options, opaque_delegate.get()); TfLiteInterpreter* interpreter = TfLiteInterpreterCreate(model, options); ASSERT_NE(interpreter, nullptr); TfLiteInterpreterOptionsDelete(options); ASSERT_EQ(TfLiteInterpreterAllocateTensors(interpreter), kTfLiteOk); TfLiteTensor* input_tensor_0 = TfLiteInterpreterGetInputTensor(interpreter, 0); ASSERT_NE(input_tensor_0, nullptr); const float kTensor0CellValue = 3.f; int64_t n = tflite::NumElements(input_tensor_0); std::vector<float> input_0(n, kTensor0CellValue); ASSERT_EQ(TfLiteTensorCopyFromBuffer(input_tensor_0, input_0.data(), input_0.size() * sizeof(float)), kTfLiteOk); ASSERT_EQ(TfLiteInterpreterAllocateTensors(interpreter), kTfLiteOk); TfLiteTensor* input_tensor_1 = TfLiteInterpreterGetInputTensor(interpreter, 1); ASSERT_NE(input_tensor_1, nullptr); n = tflite::NumElements(input_tensor_1); const float kTensor1CellValue = 2.f; std::vector<float> input_1(n, kTensor1CellValue); ASSERT_EQ(TfLiteTensorCopyFromBuffer(input_tensor_1, input_1.data(), input_1.size() * sizeof(float)), kTfLiteOk); ASSERT_EQ(TfLiteInterpreterInvoke(interpreter), kTfLiteOk); const TfLiteTensor* output_tensor = TfLiteInterpreterGetOutputTensor(interpreter, 0); ASSERT_NE(output_tensor, nullptr); std::vector<float> output(n, 0); ASSERT_EQ(TfLiteTensorCopyToBuffer(output_tensor, output.data(), output.size() * sizeof(float)), kTfLiteOk); for (int i = 0; i < output.size(); ++i) { EXPECT_EQ(output[i], kTensor0CellValue - kTensor1CellValue); } TfLiteInterpreterDelete(interpreter); TfLiteModelDelete(model); } }
975
cpp
tensorflow/tensorflow
sample_stable_delegate_with_control_flow
tensorflow/lite/delegates/utils/experimental/sample_stable_delegate/sample_stable_delegate_with_control_flow.cc
tensorflow/lite/delegates/utils/experimental/sample_stable_delegate/sample_stable_delegate_with_control_flow_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_UTILS_EXPERIMENTAL_SAMPLE_STABLE_DELEGATE_SAMPLE_STABLE_DELEGATE_WITH_CONTROL_FLOW_H_ #define TENSORFLOW_LITE_DELEGATES_UTILS_EXPERIMENTAL_SAMPLE_STABLE_DELEGATE_SAMPLE_STABLE_DELEGATE_WITH_CONTROL_FLOW_H_ #include <memory> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/delegates/utils/simple_opaque_delegate.h" namespace tflite { namespace example { namespace helpers { int CalculateNumElements(const TfLiteOpaqueTensor* opaque_tensor); } static const char kSampleStableDelegateName[] = "google_sample_delegate"; static const char kSampleStableDelegateVersion[] = "1.0.0"; class SampleStableDelegate : public SimpleOpaqueDelegateInterface { public: bool IsNodeSupportedByDelegate(const TfLiteOperator* registration_external, const TfLiteOpaqueNode* node, TfLiteOpaqueContext* context) const override; TfLiteStatus Initialize(TfLiteOpaqueContext* context) override; const char* Name() const override; std::unique_ptr<SimpleOpaqueDelegateKernelInterface> CreateDelegateKernelInterface() override; private: TfLiteStatus ComputeCompatibleCalleeSubgraphs( TfLiteOpaqueContext* opaque_context, int subgraph_index); TfLiteStatus PrepareControlFlow(TfLiteOpaqueContext* opaque_context); void AddCalleeSubgraphToCallerSubgraph(int callee_subgraph_index, int caller_subgraph_index) { control_flow_subgraph_tree_[caller_subgraph_index].insert( callee_subgraph_index); } void AddCompatibleCalleeSubgraph(int subgraph_index) { compatible_callee_subgraph_indices_.insert(subgraph_index); } bool IsCompatibleCalleeSubgraph(int subgraph_index) const { return compatible_callee_subgraph_indices_.contains(subgraph_index); } absl::flat_hash_map<int, absl::flat_hash_set<int>> control_flow_subgraph_tree_; absl::flat_hash_set<int> compatible_callee_subgraph_indices_; bool has_been_initialized_ = false; }; } } #endif #include "tensorflow/lite/delegates/utils/experimental/sample_stable_delegate/sample_stable_delegate_with_control_flow.h" #include <memory> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "tensorflow/lite/c/builtin_op_data.h" #include "tensorflow/lite/c/c_api.h" #include "tensorflow/lite/c/c_api_opaque.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/delegates/utils/simple_opaque_delegate.h" namespace tflite { namespace example { static const int kTopLevelSubgraphIndex = -1; namespace { class SampleStableDelegateKernel : public SimpleOpaqueDelegateKernelInterface { bool IsExternalTensor(const TfLiteOpaqueTensor* opaque_tensor) const { return external_tensors_.count(opaque_tensor) != 0; } void DeriveExternalTensors() { for (const TfLiteOpaqueTensor* tensor : node_input_tensors_set_) { if (node_output_tensors_set_.count(tensor) == 0) { external_tensors_.insert(tensor); } } for (const TfLiteOpaqueTensor* tensor : node_output_tensors_set_) { if (node_input_tensors_set_.count(tensor) == 0) { external_tensors_.insert(tensor); } } } public: TfLiteStatus Init(TfLiteOpaqueContext* context, const TfLiteOpaqueDelegateParams* params) override { if (params->delegate == nullptr) return kTfLiteDelegateError; context_ = context; std::vector<int> callee_subgraph_indices; TfLiteStatus status = InitSubgraphNodes(context, kTopLevelSubgraphIndex, params->nodes_to_replace, callee_subgraph_indices); if (status != kTfLiteOk) return status; DeriveExternalTensors(); return kTfLiteOk; } TfLiteStatus InitSubgraphNodes(TfLiteOpaqueContext* context, int subgraph_index, const TfLiteIntArray* nodes_to_execute, std::vector<int>& callee_subgraph_indices) { node_input_tensors_[subgraph_index].resize(nodes_to_execute->size); node_output_tensors_[subgraph_index].resize(nodes_to_execute->size); builtin_codes_[subgraph_index].resize(nodes_to_execute->size); for (int i = 0; i < nodes_to_execute->size; ++i) { const int node_index = nodes_to_execute->data[i]; TfLiteOpaqueNode* delegated_node = nullptr; TfLiteOperator* delegated_node_registration = nullptr; TfLiteOpaqueContextGetNodeAndRegistration( context, node_index, &delegated_node, &delegated_node_registration); builtin_codes_[subgraph_index][i] = TfLiteOperatorGetBuiltInCode(delegated_node_registration); for (int n = 0; n < TfLiteOpaqueNodeNumberOfInputs(delegated_node); ++n) { auto input_tensor = TfLiteOpaqueNodeGetInput(context, delegated_node, n); node_input_tensors_[subgraph_index][i].push_back(input_tensor); if (subgraph_index == kTopLevelSubgraphIndex) { node_input_tensors_set_.insert(input_tensor); } } for (int n = 0; n < TfLiteOpaqueNodeNumberOfOutputs(delegated_node); ++n) { auto output_tensor = TfLiteOpaqueNodeGetOutput(context, delegated_node, n); node_output_tensors_[subgraph_index][i].push_back(output_tensor); if (subgraph_index == kTopLevelSubgraphIndex) { node_output_tensors_set_.insert(output_tensor); } } if (builtin_codes_[subgraph_index][i] == kTfLiteBuiltinWhile) { void* builtin_data = TfLiteOpaqueNodeGetBuiltinData(delegated_node); TfLiteWhileParams* params = reinterpret_cast<TfLiteWhileParams*>(builtin_data); control_flow_branch_indices_[subgraph_index][i] = { params->cond_subgraph_index, params->body_subgraph_index}; for (int branch_index : control_flow_branch_indices_[subgraph_index][i]) { callee_subgraph_indices.push_back(branch_index); TfLiteStatus status; TfLiteIntArray* execution_plan; TfLiteOpaqueContext* branch_context; status = TfLiteOpaqueContextAcquireSubgraphContext( context, branch_index, &branch_context); if (status != kTfLiteOk) return status; status = TfLiteOpaqueContextGetExecutionPlan(branch_context, &execution_plan); if (status != kTfLiteOk) return status; status = InitSubgraphNodes(branch_context, branch_index, execution_plan, callee_subgraph_indices); if (status != kTfLiteOk) return status; status = TfLiteOpaqueContextReleaseSubgraphContext(context, branch_index); if (status != kTfLiteOk) return status; } } } return kTfLiteOk; } TfLiteStatus Prepare(TfLiteOpaqueContext* context, TfLiteOpaqueNode* delegated_node) override { if (external_tensors_.empty()) return kTfLiteOk; const int kTheInputTensorSize = helpers::CalculateNumElements((*external_tensors_.begin())); for (auto [_, node_input_tensors] : node_input_tensors_) { for (std::vector<const TfLiteOpaqueTensor*>& vecs : node_input_tensors) { for (const TfLiteOpaqueTensor* tensor : vecs) { if (IsExternalTensor(tensor)) continue; std::vector<float>& vec_memory = internal_float_tensors_memory_[tensor]; vec_memory.resize(kTheInputTensorSize); } } } for (auto [subgraph_index, node_output_tensors] : node_output_tensors_) { for (int i = 0; i < node_output_tensors.size(); ++i) { std::vector<const TfLiteOpaqueTensor*>& vecs = node_output_tensors[i]; for (int j = 0; j < vecs.size(); ++j) { const TfLiteOpaqueTensor* tensor = vecs[j]; if (IsExternalTensor(tensor)) break; if (builtin_codes_[subgraph_index][i] == kTfLiteBuiltinEqual) { std::vector<int>& vec_memory = internal_int_tensors_memory_[tensor]; vec_memory.resize(kTheInputTensorSize); } else { std::vector<float>& vec_memory = internal_float_tensors_memory_[tensor]; vec_memory.resize(kTheInputTensorSize); } } } } return kTfLiteOk; } int* GetIntRawDataSource(const TfLiteOpaqueTensor* tensor) { if (IsExternalTensor(tensor)) { return reinterpret_cast<int*>(TfLiteOpaqueTensorData(tensor)); } else { return internal_int_tensors_memory_[tensor].data(); } } float* GetFloatRawDataSource(const TfLiteOpaqueTensor* tensor) { if (IsExternalTensor(tensor)) { return reinterpret_cast<float*>(TfLiteOpaqueTensorData(tensor)); } else { return internal_float_tensors_memory_[tensor].data(); } } void CopyRawDataSource(const TfLiteOpaqueTensor* from_tensor, const TfLiteOpaqueTensor* to_tensor) { float* from_data = GetFloatRawDataSource(from_tensor); float* to_data = GetFloatRawDataSource(to_tensor); int number_of_elements = helpers::CalculateNumElements(to_tensor); memcpy(to_data, from_data, number_of_elements * sizeof(float)); } TfLiteStatus EvalArithmeticOp(int subgraph_index, int node_index) { auto node_input_tensors = node_input_tensors_[subgraph_index]; auto node_output_tensors = node_output_tensors_[subgraph_index]; auto builtin_codes = builtin_codes_[subgraph_index]; float* input1 = GetFloatRawDataSource(node_input_tensors[node_index][0]); float* input2 = GetFloatRawDataSource(node_input_tensors[node_index][1]); float* output = GetFloatRawDataSource(node_output_tensors[node_index][0]); int number_of_elements = helpers::CalculateNumElements(node_output_tensors[node_index][0]); for (int i = 0; i < number_of_elements; ++i) { switch (builtin_codes[node_index]) { case kTfLiteBuiltinAdd: output[i] = input1[i] + input2[i]; break; case kTfLiteBuiltinSub: output[i] = input1[i] - input2[i]; break; case kTfLiteBuiltinMul: output[i] = input1[i] * input2[i]; break; default: return kTfLiteDelegateError; } } return kTfLiteOk; } TfLiteStatus EvalComparisonOp(int subgraph_index, int node_index) { auto node_input_tensors = node_input_tensors_[subgraph_index]; auto node_output_tensors = node_output_tensors_[subgraph_index]; auto builtin_codes = builtin_codes_[subgraph_index]; float* input1 = GetFloatRawDataSource(node_input_tensors[node_index][0]); float* input2 = GetFloatRawDataSource(node_input_tensors[node_index][1]); int* output = GetIntRawDataSource(node_output_tensors[node_index][0]); int number_of_elements = helpers::CalculateNumElements(node_output_tensors[node_index][0]); for (int i = 0; i < number_of_elements; ++i) { switch (builtin_codes[node_index]) { case kTfLiteBuiltinEqual: output[i] = input1[i] == input2[i]; break; default: return kTfLiteDelegateError; } } return kTfLiteOk; } TfLiteStatus EvalWhileOp(int while_subgraph_index, int while_node_index) { auto branch_indices = control_flow_branch_indices_[while_subgraph_index][while_node_index]; int cond_subgraph_index = branch_indices[0]; int body_subgraph_index = branch_indices[1]; int last_cond_node_index = node_output_tensors_[cond_subgraph_index].size() - 1; int last_body_node_index = node_output_tensors_[body_subgraph_index].size() - 1; CopyRawDataSource( node_input_tensors_[while_subgraph_index][while_node_index][0], node_input_tensors_[cond_subgraph_index][0][0]); TfLiteStatus status; while (true) { status = EvalSubgraph(cond_subgraph_index); if (status != kTfLiteOk) return status; int* cond_output = GetIntRawDataSource( node_output_tensors_[cond_subgraph_index][last_cond_node_index][0]); int number_of_elements = helpers::CalculateNumElements( node_output_tensors_[cond_subgraph_index][last_cond_node_index][0]); bool condition = true; for (int i = 0; i < number_of_elements; ++i) { if (cond_output[i] == 0) { condition = false; break; } } if (!condition) { CopyRawDataSource( node_output_tensors_[body_subgraph_index][last_body_node_index][0], node_output_tensors_[while_subgraph_index][while_node_index][0]); break; } CopyRawDataSource(node_input_tensors_[cond_subgraph_index][0][0], node_input_tensors_[body_subgraph_index][0][0]); status = EvalSubgraph(body_subgraph_index); if (status != kTfLiteOk) return status; CopyRawDataSource( node_output_tensors_[body_subgraph_index][last_body_node_index][0], node_input_tensors_[cond_subgraph_index][0][0]); } return kTfLiteOk; } TfLiteStatus EvalSubgraph(int subgraph_index) { TfLiteStatus status; for (int i = 0; i < node_input_tensors_[subgraph_index].size(); ++i) { status = EvalNode(subgraph_index, i); if (status != kTfLiteOk) return status; } return kTfLiteOk; } TfLiteStatus Eval(TfLiteOpaqueContext* context, TfLiteOpaqueNode* delegated_node) override { return EvalSubgraph(kTopLevelSubgraphIndex); } TfLiteStatus EvalNode(int subgraph_index, int node_index) { TfLiteStatus status; switch (builtin_codes_[subgraph_index][node_index]) { case kTfLiteBuiltinAdd: case kTfLiteBuiltinSub: case kTfLiteBuiltinMul: status = EvalArithmeticOp(subgraph_index, node_index); break; case kTfLiteBuiltinEqual: status = EvalComparisonOp(subgraph_index, node_index); break; case kTfLiteBuiltinWhile: status = EvalWhileOp(subgraph_index, node_index); break; default: return kTfLiteDelegateError; } if (status != kTfLiteOk) { return status; } return kTfLiteOk; } private: absl::flat_hash_map<int, absl::flat_hash_map<int, std::vector<int>>> control_flow_branch_indices_; absl::flat_hash_map<int, std::vector<std::vector<const TfLiteOpaqueTensor*>>> node_input_tensors_; absl::flat_hash_set<const TfLiteOpaqueTensor*> node_input_tensors_set_; absl::flat_hash_map<int, std::vector<std::vector<const TfLiteOpaqueTensor*>>> node_output_tensors_; absl::flat_hash_set<const TfLiteOpaqueTensor*> node_output_tensors_set_; absl::flat_hash_set<const TfLiteOpaqueTensor*> external_tensors_; absl::flat_hash_map<const TfLiteOpaqueTensor*, std::vector<float>> internal_float_tensors_memory_; absl::flat_hash_map<const TfLiteOpaqueTensor*, std::vector<int>> internal_int_tensors_memory_; TfLiteOpaqueContext* context_; absl::flat_hash_map<int, std::vector<int>> builtin_codes_; }; } TfLiteStatus SampleStableDelegate::ComputeCompatibleCalleeSubgraphs( TfLiteOpaqueContext* opaque_context, int subgraph_index) { TfLiteStatus status; TfLiteOpaqueContext* current_context; status = TfLiteOpaqueContextAcquireSubgraphContext( opaque_context, subgraph_index, &current_context); if (status != kTfLiteOk) { return status; } TfLiteIntArray* execution_plan; status = TfLiteOpaqueContextGetExecutionPlan(current_context, &execution_plan); if (status != kTfLiteOk) { return status; } bool is_compatible_subgraph = true; for (int i = 0; i < execution_plan->size; ++i) { int node_index = execution_plan->data[i]; TfLiteOpaqueNode* node = nullptr; TfLiteOperator* registration = nullptr; status = TfLiteOpaqueContextGetNodeAndRegistration( current_context, node_index, &node, &registration); if (status != kTfLiteOk) { return status; } TfLiteBuiltinOperator builtin_operator = TfLiteOperatorGetBuiltInCode(registration); if (builtin_operator == kTfLiteBuiltinWhile) { void* builtin_data = TfLiteOpaqueNodeGetBuiltinData(node); const auto* op_data = reinterpret_cast<const TfLiteWhileParams*>(builtin_data); AddCalleeSubgraphToCallerSubgraph(op_data->cond_subgraph_index, subgraph_index); ComputeCompatibleCalleeSubgraphs(opaque_context, op_data->cond_subgraph_index); AddCalleeSubgraphToCallerSubgraph(op_data->body_subgraph_index, subgraph_index); ComputeCompatibleCalleeSubgraphs(opaque_context, op_data->body_subgraph_index); } if (!IsNodeSupportedByDelegate(registration, node, current_context)) { is_compatible_subgraph = false; } } if (is_compatible_subgraph) { AddCompatibleCalleeSubgraph(subgraph_index); } status = TfLiteOpaqueContextReleaseSubgraphContext(opaque_context, subgraph_index); if (status != kTfLiteOk) { return status; } return kTfLiteOk; } TfLiteStatus SampleStableDelegate::PrepareControlFlow( TfLiteOpaqueContext* opaque_context) { constexpr int kPrimarySubgraphIndex = 0; ComputeCompatibleCalleeSubgraphs(opaque_context, kPrimarySubgraphIndex); for (const auto& [caller_subgraph_index, callee_subgraph_indices] : control_flow_subgraph_tree_) { if (callee_subgraph_indices.empty()) { continue; } bool callee_subgraphs_all_delegatable = true; for (int callee_subgraph_index : callee_subgraph_indices) { if (!IsCompatibleCalleeSubgraph(callee_subgraph_index)) { callee_subgraphs_all_delegatable = false; } } if (!callee_subgraphs_all_delegatable) { continue; } for (int callee_subgraph_index : callee_subgraph_indices) { TfLiteOpaqueContextMarkSubgraphAsDelegationSkippable( opaque_context, callee_subgraph_index); } } return kTfLiteOk; } int helpers::CalculateNumElements(const TfLiteOpaqueTensor* opaque_tensor) { int total_num_elements = 1; for (int i = 0; i < TfLiteOpaqueTensorNumDims(opaque_tensor); ++i) { total_num_elements *= TfLiteOpaqueTensorDim(opaque_tensor, i); } return total_num_elements; } bool SampleStableDelegate::IsNodeSupportedByDelegate( const TfLiteOperator* registration_external, const TfLiteOpaqueNode* node, TfLiteOpaqueContext* context) const { TfLiteBuiltinOperator builtin_operator = TfLiteOperatorGetBuiltInCode(registration_external); void* builtin_data = TfLiteOpaqueNodeGetBuiltinData(node); switch (builtin_operator) { case kTfLiteBuiltinAdd: { TfLiteAddParams* params = reinterpret_cast<TfLiteAddParams*>(builtin_data); if (!params || params->activation != kTfLiteActNone) return false; break; } case kTfLiteBuiltinSub: { TfLiteSubParams* params = reinterpret_cast<TfLiteSubParams*>(builtin_data); if (!params || params->activation != kTfLiteActNone) return false; break; } case kTfLiteBuiltinMul: { TfLiteMulParams* params = reinterpret_cast<TfLiteMulParams*>(builtin_data); if (!params || params->activation != kTfLiteActNone) return false; break; } case kTfLiteBuiltinEqual: break; case kTfLiteBuiltinWhile: { TfLiteWhileParams* params = reinterpret_cast<TfLiteWhileParams*>(builtin_data); if (!params || !IsCompatibleCalleeSubgraph(params->cond_subgraph_index) || !IsCompatibleCalleeSubgraph(params->body_subgraph_index)) { return false; } break; } default: return false; } if (builtin_operator == kTfLiteBuiltinWhile) { if (TfLiteOpaqueNodeNumberOfInputs(node) != 1) return false; const TfLiteOpaqueTensor* tensor = TfLiteOpaqueNodeGetInput(context, node, 0); if (!tensor || TfLiteOpaqueTensorType(tensor) != kTfLiteFloat32) return false; } else { if (TfLiteOpaqueNodeNumberOfInputs(node) != 2) return false; const TfLiteOpaqueTensor* tensor_1 = TfLiteOpaqueNodeGetInput(context, node, 0); const TfLiteOpaqueTensor* tensor_2 = TfLiteOpaqueNodeGetInput(context, node, 1); if (!tensor_1 || TfLiteOpaqueTensorType(tensor_1) != kTfLiteFloat32) return false; if (!tensor_2 || TfLiteOpaqueTensorType(tensor_2) != kTfLiteFloat32) return false; if (TfLiteOpaqueTensorNumDims(tensor_1) != TfLiteOpaqueTensorNumDims(tensor_2)) return false; for (int i = 0; i < TfLiteOpaqueTensorNumDims(tensor_1); ++i) { if (TfLiteOpaqueTensorDim(tensor_1, i) != TfLiteOpaqueTensorDim(tensor_2, i)) { return false; } } } return true; } TfLiteStatus SampleStableDelegate::Initialize(TfLiteOpaqueContext* context) { if (!has_been_initialized_) { PrepareControlFlow(context); has_been_initialized_ = true; } return kTfLiteOk; } const char* SampleStableDelegate::Name() const { return kSampleStableDelegateName; } std::unique_ptr<SimpleOpaqueDelegateKernelInterface> SampleStableDelegate::CreateDelegateKernelInterface() { return std::make_unique<SampleStableDelegateKernel>(); } } }
#include "tensorflow/lite/delegates/utils/experimental/sample_stable_delegate/sample_stable_delegate_with_control_flow.h" #include <cstddef> #include <memory> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/c/c_api.h" #include "tensorflow/lite/c/c_api_opaque.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace { TEST(SampleStableDelegate, StaticallyLinkedDelegateAndModelWithAdd) { tflite::TfLiteOpaqueDelegateUniquePtr opaque_delegate = tflite::TfLiteOpaqueDelegateFactory::Create( std::make_unique<tflite::example::SampleStableDelegate>()); ASSERT_NE(opaque_delegate, nullptr); TfLiteModel* model = TfLiteModelCreateFromFile("tensorflow/lite/testdata/add.bin"); ASSERT_NE(model, nullptr); TfLiteInterpreterOptions* options = TfLiteInterpreterOptionsCreate(); ASSERT_NE(options, nullptr); TfLiteInterpreterOptionsAddDelegate(options, opaque_delegate.get()); TfLiteInterpreter* interpreter = TfLiteInterpreterCreate(model, options); ASSERT_NE(interpreter, nullptr); TfLiteInterpreterOptionsDelete(options); ASSERT_EQ(TfLiteInterpreterAllocateTensors(interpreter), kTfLiteOk); TfLiteTensor* input_tensor = TfLiteInterpreterGetInputTensor(interpreter, 0); ASSERT_NE(input_tensor, nullptr); const float kTensorCellValue = 3.f; int64_t n = tflite::NumElements(input_tensor); std::vector<float> input(n, kTensorCellValue); ASSERT_EQ(TfLiteTensorCopyFromBuffer(input_tensor, input.data(), input.size() * sizeof(float)), kTfLiteOk); ASSERT_EQ(TfLiteInterpreterInvoke(interpreter), kTfLiteOk); const TfLiteTensor* output_tensor = TfLiteInterpreterGetOutputTensor(interpreter, 0); ASSERT_NE(output_tensor, nullptr); std::vector<float> output(n, 0); ASSERT_EQ(TfLiteTensorCopyToBuffer(output_tensor, output.data(), output.size() * sizeof(float)), kTfLiteOk); for (int i = 0; i < output.size(); ++i) { EXPECT_EQ(output[i], kTensorCellValue * 3); } TfLiteInterpreterDelete(interpreter); TfLiteModelDelete(model); } TEST(SampleStableDelegate, StaticallyLinkedDelegateAndModelWithSub) { tflite::TfLiteOpaqueDelegateUniquePtr opaque_delegate = tflite::TfLiteOpaqueDelegateFactory::Create( std::make_unique<tflite::example::SampleStableDelegate>()); ASSERT_NE(opaque_delegate, nullptr); TfLiteModel* model = TfLiteModelCreateFromFile("tensorflow/lite/testdata/sub.bin"); ASSERT_NE(model, nullptr); TfLiteInterpreterOptions* options = TfLiteInterpreterOptionsCreate(); ASSERT_NE(options, nullptr); TfLiteInterpreterOptionsAddDelegate(options, opaque_delegate.get()); TfLiteInterpreter* interpreter = TfLiteInterpreterCreate(model, options); ASSERT_NE(interpreter, nullptr); TfLiteInterpreterOptionsDelete(options); ASSERT_EQ(TfLiteInterpreterAllocateTensors(interpreter), kTfLiteOk); TfLiteTensor* input_tensor_0 = TfLiteInterpreterGetInputTensor(interpreter, 0); ASSERT_NE(input_tensor_0, nullptr); const float kTensor0CellValue = 3.f; int64_t n = tflite::NumElements(input_tensor_0); std::vector<float> input_0(n, kTensor0CellValue); ASSERT_EQ(TfLiteTensorCopyFromBuffer(input_tensor_0, input_0.data(), input_0.size() * sizeof(float)), kTfLiteOk); ASSERT_EQ(TfLiteInterpreterAllocateTensors(interpreter), kTfLiteOk); TfLiteTensor* input_tensor_1 = TfLiteInterpreterGetInputTensor(interpreter, 1); ASSERT_NE(input_tensor_1, nullptr); n = tflite::NumElements(input_tensor_1); const float kTensor1CellValue = 2.f; std::vector<float> input_1(n, kTensor1CellValue); ASSERT_EQ(TfLiteTensorCopyFromBuffer(input_tensor_1, input_1.data(), input_1.size() * sizeof(float)), kTfLiteOk); ASSERT_EQ(TfLiteInterpreterInvoke(interpreter), kTfLiteOk); const TfLiteTensor* output_tensor = TfLiteInterpreterGetOutputTensor(interpreter, 0); ASSERT_NE(output_tensor, nullptr); std::vector<float> output(n, 0); ASSERT_EQ(TfLiteTensorCopyToBuffer(output_tensor, output.data(), output.size() * sizeof(float)), kTfLiteOk); for (int i = 0; i < output.size(); ++i) { EXPECT_EQ(output[i], kTensor0CellValue - kTensor1CellValue); } TfLiteInterpreterDelete(interpreter); TfLiteModelDelete(model); } TEST(SampleStableDelegate, StaticallyLinkedDelegateAndModelWithNestedWhile) { tflite::TfLiteOpaqueDelegateUniquePtr opaque_delegate = tflite::TfLiteOpaqueDelegateFactory::Create( std::make_unique<tflite::example::SampleStableDelegate>()); ASSERT_NE(opaque_delegate, nullptr); TfLiteModel* model = TfLiteModelCreateFromFile( "tensorflow/lite/testdata/nested_while.bin"); ASSERT_NE(model, nullptr); TfLiteInterpreterOptions* options = TfLiteInterpreterOptionsCreate(); ASSERT_NE(options, nullptr); TfLiteInterpreterOptionsAddDelegate(options, opaque_delegate.get()); TfLiteInterpreter* interpreter = TfLiteInterpreterCreate(model, options); ASSERT_NE(interpreter, nullptr); TfLiteInterpreterOptionsDelete(options); ASSERT_EQ(TfLiteInterpreterAllocateTensors(interpreter), kTfLiteOk); TfLiteTensor* input_tensor = TfLiteInterpreterGetInputTensor(interpreter, 0); ASSERT_NE(input_tensor, nullptr); const float kTensorCellValue = 1.f; int64_t n = tflite::NumElements(input_tensor); std::vector<float> input(n, kTensorCellValue); ASSERT_EQ(TfLiteTensorCopyFromBuffer(input_tensor, input.data(), input.size() * sizeof(float)), kTfLiteOk); ASSERT_EQ(TfLiteInterpreterInvoke(interpreter), kTfLiteOk); const TfLiteTensor* output_tensor = TfLiteInterpreterGetOutputTensor(interpreter, 0); ASSERT_NE(output_tensor, nullptr); std::vector<float> output(n, 0); ASSERT_EQ(TfLiteTensorCopyToBuffer(output_tensor, output.data(), output.size() * sizeof(float)), kTfLiteOk); for (int i = 0; i < output.size(); ++i) { EXPECT_EQ(output[i], kTensorCellValue * 2); } TfLiteInterpreterDelete(interpreter); TfLiteModelDelete(model); } }
976
cpp
tensorflow/tensorflow
tflite_settings_json_parser
tensorflow/lite/delegates/utils/experimental/stable_delegate/tflite_settings_json_parser.cc
tensorflow/lite/delegates/utils/experimental/stable_delegate/tflite_settings_json_parser_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_UTILS_EXPERIMENTAL_STABLE_DELEGATE_TFLITE_SETTINGS_JSON_PARSER_H_ #define TENSORFLOW_LITE_DELEGATES_UTILS_EXPERIMENTAL_STABLE_DELEGATE_TFLITE_SETTINGS_JSON_PARSER_H_ #include <string> #include "flatbuffers/idl.h" #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" namespace tflite { namespace delegates { namespace utils { class TfLiteSettingsJsonParser { public: TfLiteSettingsJsonParser(); const TFLiteSettings* Parse(const std::string& json_file_path); const uint8_t* GetBufferPointer(); flatbuffers::uoffset_t GetBufferSize(); private: bool LoadFromJsonFile(const std::string& json_file_path); flatbuffers::Parser parser_; uint8_t* buffer_pointer_; flatbuffers::uoffset_t buffer_size_; }; } } } #endif #include "tensorflow/lite/delegates/utils/experimental/stable_delegate/tflite_settings_json_parser.h" #include <string> #include "flatbuffers/idl.h" #include "tensorflow/lite/acceleration/configuration/configuration_fbs_contents-inl.h" #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/tools/logging.h" namespace tflite { namespace delegates { namespace utils { TfLiteSettingsJsonParser::TfLiteSettingsJsonParser() { TFLITE_DCHECK(parser_.Parse(configuration_fbs_contents) && parser_.SetRootType("TFLiteSettings")); } const TFLiteSettings* TfLiteSettingsJsonParser::Parse( const std::string& json_file_path) { if (!LoadFromJsonFile(json_file_path) || buffer_pointer_ == nullptr) { return nullptr; } return flatbuffers::GetRoot<TFLiteSettings>(buffer_pointer_); } const uint8_t* TfLiteSettingsJsonParser::GetBufferPointer() { return buffer_pointer_; } flatbuffers::uoffset_t TfLiteSettingsJsonParser::GetBufferSize() { return buffer_size_; } bool TfLiteSettingsJsonParser::LoadFromJsonFile( const std::string& json_file_path) { buffer_size_ = 0; buffer_pointer_ = nullptr; if (json_file_path.empty()) { TFLITE_LOG(ERROR) << "Invalid JSON file path."; return false; } std::string json_file; if (!flatbuffers::LoadFile(json_file_path.c_str(), false, &json_file)) { TFLITE_LOG(ERROR) << "Failed to load the delegate settings file (" << json_file_path << ")."; return false; } if (!parser_.Parse(json_file.c_str())) { TFLITE_LOG(ERROR) << "Failed to parse the delegate settings file (" << json_file_path << ")."; return false; } buffer_size_ = parser_.builder_.GetSize(); buffer_pointer_ = parser_.builder_.GetBufferPointer(); return true; } } } }
#include "tensorflow/lite/delegates/utils/experimental/stable_delegate/tflite_settings_json_parser.h" #include <gtest/gtest.h> #include "flatbuffers/buffer.h" #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" namespace { using tflite::TFLiteSettings; using tflite::delegates::utils::TfLiteSettingsJsonParser; TEST(TfLiteSettingsJsonParserTest, SuccessWithValidXNNPackDelegateSettings) { TfLiteSettingsJsonParser parser; const TFLiteSettings* tflite_settings = parser.Parse( "tensorflow/lite/delegates/utils/experimental/" "stable_delegate/test_xnnpack_settings.json"); EXPECT_NE(parser.GetBufferPointer(), nullptr); EXPECT_NE(parser.GetBufferSize(), 0); ASSERT_NE(tflite_settings, nullptr); EXPECT_EQ(tflite_settings->delegate(), tflite::Delegate_XNNPACK); ASSERT_NE(tflite_settings->xnnpack_settings(), nullptr); EXPECT_EQ(tflite_settings->xnnpack_settings()->num_threads(), 5); } TEST(TfLiteSettingsJsonParserTest, GetBufferPointerReturnsValidBufferPointers) { TfLiteSettingsJsonParser parser; parser.Parse( "tensorflow/lite/delegates/utils/experimental/" "stable_delegate/test_xnnpack_settings.json"); const uint8_t* buffer_pointer = parser.GetBufferPointer(); ASSERT_NE(buffer_pointer, nullptr); ASSERT_NE(parser.GetBufferSize(), 0); const TFLiteSettings* tflite_settings = flatbuffers::GetRoot<TFLiteSettings>(buffer_pointer); ASSERT_NE(tflite_settings, nullptr); EXPECT_EQ(tflite_settings->delegate(), tflite::Delegate_XNNPACK); ASSERT_NE(tflite_settings->xnnpack_settings(), nullptr); EXPECT_EQ(tflite_settings->xnnpack_settings()->num_threads(), 5); } TEST(TfLiteSettingsJsonParserTest, FailedToParseInvalidSettings) { TfLiteSettingsJsonParser parser; EXPECT_EQ( parser.Parse("tensorflow/lite/tools/delegates/experimental/" "stable_delegate/test_invalid_settings.json"), nullptr); EXPECT_EQ(parser.GetBufferPointer(), nullptr); EXPECT_EQ(parser.GetBufferSize(), 0); } }
977
cpp
tensorflow/tensorflow
delegate_loader
tensorflow/lite/delegates/utils/experimental/stable_delegate/delegate_loader.cc
tensorflow/lite/delegates/utils/experimental/stable_delegate/delegate_loader_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_UTILS_EXPERIMENTAL_STABLE_DELEGATE_DELEGATE_LOADER_H_ #define TENSORFLOW_LITE_DELEGATES_UTILS_EXPERIMENTAL_STABLE_DELEGATE_DELEGATE_LOADER_H_ #include <string> #include "tensorflow/lite/acceleration/configuration/c/stable_delegate.h" namespace tflite { namespace delegates { namespace utils { constexpr char kTfLiteStableDelegateSymbol[] = "TFL_TheStableDelegate"; constexpr char kTfLiteLibraryPathEnvironmentVariable[] = "TFLITE_STABLE_DELEGATE_LIBRARY_PATH"; const TfLiteStableDelegate* LoadDelegateFromSharedLibrary( const std::string& delegate_path); void* LoadSymbolFromSharedLibrary(const std::string& delegate_path, const std::string& delegate_symbol); } } } #endif #include "tensorflow/lite/delegates/utils/experimental/stable_delegate/delegate_loader.h" #include <dlfcn.h> #include <stdlib.h> #include <string.h> #include <cerrno> #include <string> #include "absl/strings/numbers.h" #include "tensorflow/lite/acceleration/configuration/c/stable_delegate.h" #include "tensorflow/lite/experimental/acceleration/compatibility/android_info.h" #include "tensorflow/lite/tools/logging.h" namespace tflite { namespace delegates { namespace utils { namespace { void setLibraryPathEnvironmentVariable(const std::string& delegate_path) { std::string directory_path = ""; size_t last_slash_index = delegate_path.rfind('/'); if (last_slash_index != std::string::npos) { directory_path = delegate_path.substr(0, last_slash_index); } if (setenv(kTfLiteLibraryPathEnvironmentVariable, directory_path.c_str(), 1) != 0) { TFLITE_LOG(WARN) << "Error setting environment variable " << kTfLiteLibraryPathEnvironmentVariable << " with error: " << strerror(errno); } } } using ::tflite::acceleration::AndroidInfo; using ::tflite::acceleration::RequestAndroidInfo; const TfLiteStableDelegate* LoadDelegateFromSharedLibrary( const std::string& delegate_path) { void* symbol_pointer = LoadSymbolFromSharedLibrary(delegate_path, kTfLiteStableDelegateSymbol); if (!symbol_pointer) { return nullptr; } return reinterpret_cast<const TfLiteStableDelegate*>(symbol_pointer); } void* LoadSymbolFromSharedLibrary(const std::string& delegate_path, const std::string& delegate_symbol) { void* delegate_lib_handle = nullptr; int dlopen_flags = RTLD_NOW | RTLD_LOCAL; int sdk_version; AndroidInfo android_info; if (RequestAndroidInfo(&android_info).ok() && absl::SimpleAtoi(android_info.android_sdk_version, &sdk_version) && sdk_version >= 23) { dlopen_flags |= RTLD_NODELETE; TFLITE_LOG(INFO) << "Android SDK level is " << sdk_version << ", using dlopen with RTLD_NODELETE."; } setLibraryPathEnvironmentVariable(delegate_path); delegate_lib_handle = dlopen(delegate_path.c_str(), dlopen_flags); if (!delegate_lib_handle) { TFLITE_LOG(ERROR) << "Failed to open library " << delegate_path << ": " << dlerror(); return nullptr; } void* symbol_pointer = dlsym(delegate_lib_handle, delegate_symbol.c_str()); if (!symbol_pointer) { TFLITE_LOG(ERROR) << "Failed to find " << delegate_symbol << " symbol: " << dlerror(); dlclose(delegate_lib_handle); return nullptr; } return symbol_pointer; } } } }
#include "tensorflow/lite/delegates/utils/experimental/stable_delegate/delegate_loader.h" #include <cstdlib> #include <gtest/gtest.h> #include "tensorflow/lite/acceleration/configuration/c/stable_delegate.h" #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/delegates/utils/experimental/sample_stable_delegate/sample_stable_delegate.h" namespace { using tflite::TFLiteSettings; using tflite::TFLiteSettingsBuilder; using tflite::delegates::utils::LoadDelegateFromSharedLibrary; using tflite::delegates::utils::LoadSymbolFromSharedLibrary; TEST(TfLiteDelegateLoaderUtilsTest, Simple) { const TfLiteStableDelegate* stable_delegate_handle = LoadDelegateFromSharedLibrary( "tensorflow/lite/delegates/utils/experimental/" "sample_stable_delegate/" "libtensorflowlite_sample_stable_delegate.so" ); ASSERT_NE(stable_delegate_handle, nullptr); EXPECT_STREQ(stable_delegate_handle->delegate_abi_version, TFL_STABLE_DELEGATE_ABI_VERSION); EXPECT_STREQ(stable_delegate_handle->delegate_name, tflite::example::kSampleStableDelegateName); EXPECT_STREQ(stable_delegate_handle->delegate_version, tflite::example::kSampleStableDelegateVersion); EXPECT_NE(stable_delegate_handle->delegate_plugin, nullptr); EXPECT_STREQ( getenv(tflite::delegates::utils::kTfLiteLibraryPathEnvironmentVariable), "tensorflow/lite/delegates/utils/experimental/" "sample_stable_delegate"); flatbuffers::FlatBufferBuilder flatbuffer_builder; TFLiteSettingsBuilder tflite_settings_builder(flatbuffer_builder); flatbuffers::Offset<TFLiteSettings> tflite_settings = tflite_settings_builder.Finish(); flatbuffer_builder.Finish(tflite_settings); const TFLiteSettings* settings = flatbuffers::GetRoot<TFLiteSettings>( flatbuffer_builder.GetBufferPointer()); auto delegate = stable_delegate_handle->delegate_plugin->create(settings); ASSERT_NE(delegate, nullptr); EXPECT_EQ( stable_delegate_handle->delegate_plugin->get_delegate_errno(delegate), 0); stable_delegate_handle->delegate_plugin->destroy(delegate); } TEST(TfLiteDelegateLoaderUtilsTest, WrongSymbolReturnsNullptr) { void* symbol_pointer = LoadSymbolFromSharedLibrary( "tensorflow/lite/delegates/utils/experimental/" "sample_stable_delegate/libtensorflowlite_sample_stable_delegate.so", "NOT_REAL_SYMBOL"); EXPECT_EQ(symbol_pointer, nullptr); } TEST(TfLiteDelegateLoaderUtilsTest, MissingLibReturnsNullptr) { const TfLiteStableDelegate* stable_delegate_handle = LoadDelegateFromSharedLibrary("not_real_delegate.so"); EXPECT_EQ(stable_delegate_handle, nullptr); } }
978
cpp
tensorflow/tensorflow
delegate
tensorflow/lite/delegates/gpu/delegate.cc
tensorflow/lite/delegates/flex/delegate_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_DELEGATE_H_ #define TENSORFLOW_LITE_DELEGATES_GPU_DELEGATE_H_ #include <stdint.h> #include <cstddef> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/delegates/gpu/delegate_options.h" #ifdef __cplusplus extern "C" { #endif TFL_CAPI_EXPORT TfLiteDelegate* TfLiteGpuDelegateV2Create( const TfLiteGpuDelegateOptionsV2* options); #if defined(__ANDROID__) TFL_CAPI_EXPORT TfLiteDelegate* TfLiteGpuDelegateV2CreateAsync( const TfLiteGpuDelegateOptionsV2* options); #endif TFL_CAPI_EXPORT void TfLiteGpuDelegateV2Delete(TfLiteDelegate* delegate); TFL_CAPI_EXPORT TfLiteDelegate* tflite_plugin_create_delegate( const char* const* options_keys, const char* const* options_values, size_t num_options, void (*report_error)(const char*)); TFL_CAPI_EXPORT void tflite_plugin_destroy_delegate(TfLiteDelegate* delegate); #ifdef __cplusplus } #endif #endif #include "tensorflow/lite/delegates/gpu/delegate.h" #include "tensorflow/lite/logger.h" #if defined(__ANDROID__) #include <android/hardware_buffer.h> #endif #include <algorithm> #include <cstdint> #include <cstring> #include <memory> #include <string> #include <thread> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/strings/numbers.h" #include "absl/types/span.h" #include "tensorflow/lite/builtin_ops.h" #if defined(__ANDROID__) #include "tensorflow/lite/async/backend_async_kernel_interface.h" #include "tensorflow/lite/core/async/c/task.h" #include "tensorflow/lite/core/async/interop/c/attribute_map.h" #include "tensorflow/lite/core/async/interop/c/constants.h" #include "tensorflow/lite/core/async/interop/c/types.h" #endif #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/delegates/gpu/android_hardware_buffer.h" #include "tensorflow/lite/delegates/gpu/api.h" #include "tensorflow/lite/delegates/gpu/cl/api.h" #include "tensorflow/lite/delegates/gpu/cl/util.h" #include "tensorflow/lite/delegates/gpu/common/model_builder.h" #include "tensorflow/lite/delegates/gpu/common/model_builder_helper.h" #include "tensorflow/lite/delegates/gpu/common/quantization_util.h" #include "tensorflow/lite/delegates/gpu/delegate_options.h" #include "tensorflow/lite/delegates/gpu/tflite_profile.h" #include "tensorflow/lite/delegates/serialization.h" #if defined(__ANDROID__) #include "tensorflow/lite/delegates/gpu/async_buffers.h" #include "tensorflow/lite/delegates/gpu/gl/android_sync.h" #include "tensorflow/lite/delegates/gpu/gl/egl_environment.h" #include "tensorflow/lite/delegates/utils/async_type_helpers.h" #include "tensorflow/lite/delegates/utils/ret_macros.h" #include "tensorflow/lite/delegates/utils/sync_fence.h" #include "tensorflow/lite/delegates/utils/utils.h" #endif #include "tensorflow/lite/kernels/kernel_util.h" #include "tensorflow/lite/minimal_logging.h" #include "tensorflow/lite/profiling/telemetry/c/telemetry_setting_internal.h" #include "tensorflow/lite/profiling/telemetry/telemetry.h" #include "tensorflow/lite/profiling/telemetry/telemetry_status.h" #ifndef CL_DELEGATE_NO_GL #include "tensorflow/lite/delegates/gpu/gl/api2.h" #endif #if defined(__ANDROID__) using tflite::delegates::utils::BufferAttributes; using tflite::delegates::utils::BufferType; using tflite::delegates::utils::ConvertToTfLiteStatus; using tflite::delegates::utils::IsPowerOfTwo; using tflite::delegates::utils::ReadBufferAttrs; using tflite::delegates::utils::ReadSyncAttrs; using tflite::delegates::utils::SyncAttributes; using tflite::delegates::utils::SyncType; using tflite::delegates::utils::WaitForAllFds; using tflite::delegates::utils::WriteBufferAttrs; using tflite::delegates::utils::WriteSyncAttrs; #endif #define TFLITE_RETURN_IF_ABSL_ERROR(expr) \ do { \ if (const absl::Status val = (expr); !val.ok()) { \ return ConvertToTfLiteStatus(val); \ } \ } while (false) #define TFLITE_RETURN_IF_ERROR(expr) \ do { \ if (const TfLiteStatus val = (expr); val != kTfLiteOk) { \ return val; \ } \ } while (false) #define TFLITE_AHWB_AVAILABLE() \ ::tflite::gpu::OptionalAndroidHardwareBuffer::Instance().Supported() namespace tflite { namespace gpu { namespace { using delegates::Serialization; using delegates::SerializationParams; using tflite::TFLITE_LOG_WARNING; constexpr char kSerializedDataPrefix[] = "gpuv2_data_"; #if defined(__ANDROID__) constexpr size_t kRequiredByteAlignment = 1; constexpr size_t kRequiredBytePadding = 1; #endif InferencePriority ToPriority(int32_t priority) { switch (priority) { case TFLITE_GPU_INFERENCE_PRIORITY_AUTO: return InferencePriority::AUTO; case TFLITE_GPU_INFERENCE_PRIORITY_MAX_PRECISION: return InferencePriority::MAX_PRECISION; case TFLITE_GPU_INFERENCE_PRIORITY_MIN_LATENCY: return InferencePriority::MIN_LATENCY; case TFLITE_GPU_INFERENCE_PRIORITY_MIN_MEMORY_USAGE: return InferencePriority::MIN_MEMORY_USAGE; } return InferencePriority::UNKNOWN; } InferenceUsage ToUsage(int32_t usage) { switch (usage) { case TFLITE_GPU_INFERENCE_PREFERENCE_FAST_SINGLE_ANSWER: return InferenceUsage::FAST_SINGLE_ANSWER; case TFLITE_GPU_INFERENCE_PREFERENCE_SUSTAINED_SPEED: return InferenceUsage::SUSTAINED_SPEED; case TFLITE_GPU_INFERENCE_PREFERENCE_BALANCED: return InferenceUsage::BALANCED; } return InferenceUsage::UNKNOWN; } bool ParseOptions(const char* const* options_keys, const char* const* options_values, size_t num_options, TfLiteGpuDelegateOptionsV2* options) { for (size_t i = 0; i < num_options; ++i) { if (strcmp(options_keys[i], "is_precision_loss_allowed")) { if (!absl::SimpleAtoi(options_values[i], &options->is_precision_loss_allowed)) { TFLITE_LOG(TFLITE_LOG_WARNING, "ParseOptions: malformed option %s.", options_keys[i]); return false; } } else if (strcmp(options_keys[i], "inference_preference")) { if (!absl::SimpleAtoi(options_values[i], &options->inference_preference)) { TFLITE_LOG(TFLITE_LOG_WARNING, "ParseOptions: malformed option %s.", options_keys[i]); return false; } } else if (strcmp(options_keys[i], "inference_priority1")) { if (!absl::SimpleAtoi(options_values[i], &options->inference_priority1)) { TFLITE_LOG(TFLITE_LOG_WARNING, "ParseOptions: malformed option %s.", options_keys[i]); return false; } } else if (strcmp(options_keys[i], "inference_priority2")) { if (!absl::SimpleAtoi(options_values[i], &options->inference_priority2)) { TFLITE_LOG(TFLITE_LOG_WARNING, "ParseOptions: malformed option %s.", options_keys[i]); return false; } } else if (strcmp(options_keys[i], "inference_priority3")) { if (!absl::SimpleAtoi(options_values[i], &options->inference_priority3)) { TFLITE_LOG(TFLITE_LOG_WARNING, "ParseOptions: malformed option %s.", options_keys[i]); return false; } } else if (strcmp(options_keys[i], "experimental_flags")) { if (!absl::SimpleAtoi(options_values[i], &options->experimental_flags)) { TFLITE_LOG(TFLITE_LOG_WARNING, "ParseOptions: malformed option %s.", options_keys[i]); return false; } } else if (strcmp(options_keys[i], "max_delegated_partitions")) { if (!absl::SimpleAtoi(options_values[i], &options->max_delegated_partitions)) { TFLITE_LOG(TFLITE_LOG_WARNING, "ParseOptions: malformed option %s.", options_keys[i]); return false; } } else if (strcmp(options_keys[i], "serialization_dir")) { options->serialization_dir = options_values[i]; } else if (strcmp(options_keys[i], "model_token")) { options->model_token = options_values[i]; } else { TFLITE_LOG(TFLITE_LOG_WARNING, "ParseOptions: unknown option %s.", options_keys[i]); return false; } } return true; } TfLiteStatus DelegatePrepare(TfLiteContext* context, TfLiteDelegate* delegate); #if defined(__ANDROID__) class DelegateAsyncKernel; #endif class Delegate { public: explicit Delegate(const TfLiteGpuDelegateOptionsV2* options, bool async) : async_(async) { telemetry_settings_ = std::make_unique<TfLiteTelemetryGpuDelegateSettings>(); delegate_.data_ = reinterpret_cast<void*>(this); delegate_.Prepare = DelegatePrepare; delegate_.CopyFromBufferHandle = nullptr; delegate_.CopyToBufferHandle = nullptr; delegate_.FreeBufferHandle = nullptr; delegate_.flags = kTfLiteDelegateFlagsPerOperatorProfiling; options_ = options ? *options : TfLiteGpuDelegateOptionsV2Default(); if (options_.max_delegated_partitions <= 0) { options_.max_delegated_partitions = 1; } if (options_.experimental_flags & TFLITE_GPU_EXPERIMENTAL_FLAGS_ENABLE_SERIALIZATION && options_.model_token && options_.serialization_dir) { SerializationParams params; params.model_token = options_.model_token; params.cache_dir = options_.serialization_dir; serialization_ = std::make_unique<Serialization>(params); telemetry_settings_ = std::make_unique<TfLiteTelemetryGpuDelegateSettings>(); } } TfLiteDelegate* tflite_delegate() { return &delegate_; } Serialization* serialization() { return serialization_.get(); } const TfLiteGpuDelegateOptionsV2& options() const { return options_; } bool async() const { return async_; } bool IsQuantOpsAllowed() const { return options_.experimental_flags & TFLITE_GPU_EXPERIMENTAL_FLAGS_ENABLE_QUANT; } int MaxDelegatedPartitions() const { return options_.max_delegated_partitions; } int num_delegate_kernels() const { return num_delegate_kernels_; } TfLiteTelemetryGpuDelegateSettings* telemetry_settings() { return telemetry_settings_.get(); } private: TfLiteDelegate delegate_; TfLiteGpuDelegateOptionsV2 options_; std::atomic<int> num_delegate_kernels_ = 0; std::unique_ptr<Serialization> serialization_; std::unique_ptr<TfLiteTelemetryGpuDelegateSettings> telemetry_settings_; bool async_; friend class DelegateKernelCore; #if defined(__ANDROID__) friend TfLiteRegistration CreateAsyncRegistration(); #endif }; class DelegateKernelCore { public: explicit DelegateKernelCore(Delegate* delegate) : delegate_(delegate) { ++delegate_->num_delegate_kernels_; telemetry_settings_ = std::make_unique<TfLiteTelemetryGpuDelegateSettings>(); } ~DelegateKernelCore() { --delegate_->num_delegate_kernels_; } bool enforce_same_thread() const { return enforce_same_thread_; } const std::vector<int64_t>& input_indices() const { return input_indices_; } const std::vector<int64_t>& output_indices() const { return output_indices_; } const absl::flat_hash_map<int, int>& quant_conversion_map() const { return quant_conversion_map_; } const std::unique_ptr<InferenceRunner>& runner() const { return runner_; } absl::Status Setup(TfLiteContext* context, const TfLiteDelegateParams* delegate_params); private: ObjectDef GetObjectDef(int index, DataType data_type = DataType::FLOAT32) const; absl::Status InitializeGraph(TfLiteContext* context, const TfLiteDelegateParams* delegate_params, GraphFloat32* graph, std::vector<uint32_t>* input_refs, std::vector<uint32_t>* output_refs); absl::Status InitializeOpenClApi(GraphFloat32* graph, std::unique_ptr<InferenceBuilder>* builder, bool* graph_is_destroyed, TfLiteContext* context, const TfLiteDelegateParams* delegate_params, Serialization* serialization); absl::Status InitializeOpenGlApi(GraphFloat32* graph, std::unique_ptr<InferenceBuilder>* builder); absl::Status MaybeInitializeSerializedOpenCL( TfLiteContext* context, const TfLiteDelegateParams* delegate_params, std::unique_ptr<InferenceBuilder>* builder, cl::InferenceOptions* options, cl::InferenceEnvironmentOptions* env_options, cl::InferenceEnvironmentProperties* properties, Serialization* serialization); absl::Status SaveSerializedOpenCL( TfLiteContext* context, const TfLiteDelegateParams* delegate_params, cl::InferenceOptions* options, Serialization* serialization, const std::vector<uint8_t>& serialized_model); Delegate* const delegate_; std::unique_ptr<cl::InferenceEnvironment> cl_environment_; #ifndef CL_DELEGATE_NO_GL std::unique_ptr<gl::InferenceEnvironment> gl_environment_; #endif std::unique_ptr<InferenceRunner> runner_; std::vector<int64_t> input_indices_; std::vector<int64_t> output_indices_; absl::flat_hash_map<int, int> quant_conversion_map_; bool enforce_same_thread_ = false; std::unique_ptr<TfLiteTelemetryGpuDelegateSettings> telemetry_settings_; }; ObjectDef DelegateKernelCore::GetObjectDef(int index, DataType data_type) const { ObjectDef default_object_def; default_object_def.data_type = data_type; default_object_def.data_layout = DataLayout::BHWC; default_object_def.object_type = delegate_->async() ? ObjectType::OPENGL_SSBO : ObjectType::CPU_MEMORY; default_object_def.user_provided = true; return default_object_def; } absl::Status DelegateKernelCore::InitializeGraph( TfLiteContext* context, const TfLiteDelegateParams* delegate_params, GraphFloat32* graph, std::vector<uint32_t>* input_refs, std::vector<uint32_t>* output_refs) { quant_conversion_map_.clear(); if (delegate_->IsQuantOpsAllowed()) { RETURN_IF_ERROR(BuildFinalModel(context, delegate_params, graph, &quant_conversion_map_)); } else { RETURN_IF_ERROR(BuildFinalModel(context, delegate_params, graph)); } const std::vector<Value*> inputs = graph->inputs(); input_refs->clear(); input_refs->reserve(delegate_params->input_tensors->size); for (int i = 0, j = 0; i < delegate_params->input_tensors->size; ++i) { const TfLiteTensor* tensor = context->tensors + delegate_params->input_tensors->data[i]; if (tflite::IsConstantTensor(tensor)) continue; input_refs->push_back(inputs[j]->tensor.ref); ++j; } const std::vector<Value*> outputs = graph->outputs(); output_refs->clear(); const int output_size = std::min(static_cast<int>(graph->outputs().size()), delegate_params->output_tensors->size); output_refs->reserve(output_size); for (int i = 0; i < output_size; ++i) { output_refs->push_back(outputs[i]->tensor.ref); } return absl::OkStatus(); } absl::Status DelegateKernelCore::Setup( TfLiteContext* context, const TfLiteDelegateParams* delegate_params) { GraphFloat32 graph; std::vector<uint32_t> input_refs; std::vector<uint32_t> output_refs; RETURN_IF_ERROR(InitializeGraph(context, delegate_params, &graph, &input_refs, &output_refs)); std::unique_ptr<InferenceBuilder> builder; bool graph_is_destroyed; bool backend_opencl = false; const int experimental_flags = delegate_->options().experimental_flags; if (experimental_flags & TFLITE_GPU_EXPERIMENTAL_FLAGS_CL_ONLY) { RETURN_IF_ERROR(InitializeOpenClApi(&graph, &builder, &graph_is_destroyed, context, delegate_params, delegate_->serialization())); backend_opencl = true; } else if (experimental_flags & TFLITE_GPU_EXPERIMENTAL_FLAGS_GL_ONLY) { RETURN_IF_ERROR(InitializeOpenGlApi(&graph, &builder)); } else { absl::Status status = InitializeOpenClApi(&graph, &builder, &graph_is_destroyed, context, delegate_params, delegate_->serialization()); if (!status.ok()) { TF_LITE_KERNEL_LOG(context, std::string(status.message()).c_str()); TF_LITE_KERNEL_LOG(context, "Falling back to OpenGL"); GraphFloat32 graph2; if (graph_is_destroyed) { RETURN_IF_ERROR(InitializeGraph(context, delegate_params, &graph2, &input_refs, &output_refs)); } RETURN_IF_ERROR( InitializeOpenGlApi(graph_is_destroyed ? &graph2 : &graph, &builder)); } else { backend_opencl = true; } } telemetry_settings_->backend = backend_opencl ? TfLiteTelemetryGpuDelegateSettings::OPENCL : TfLiteTelemetryGpuDelegateSettings::OPENGL; telemetry::TelemetryReportDelegateSettings( context, "GpuDelegateKernel::Prepare", telemetry::TelemetrySource::TFLITE_GPU, telemetry_settings_.get()); input_indices_.reserve(input_refs.size()); for (uint32_t tensor_index : input_refs) { const int64_t object_index = input_indices_.size(); input_indices_.push_back(tensor_index); const TfLiteTensor& tflite_tensor = context->tensors[tensor_index]; const DataType data_type = ToDataType(tflite_tensor.type); RETURN_IF_ERROR(builder->SetInputObjectDef( object_index, GetObjectDef(tensor_index, data_type))); } output_indices_.reserve(output_refs.size()); for (uint32_t tensor_index : output_refs) { const int64_t object_index = output_indices_.size(); output_indices_.push_back(tensor_index); const TfLiteTensor& tflite_tensor = context->tensors[tensor_index]; const DataType data_type = ToDataType(tflite_tensor.type); RETURN_IF_ERROR(builder->SetOutputObjectDef( object_index, GetObjectDef(tensor_index, data_type))); } return builder->Build(&runner_); } absl::Status DelegateKernelCore::InitializeOpenClApi( GraphFloat32* graph, std::unique_ptr<InferenceBuilder>* builder, bool* graph_is_destroyed, TfLiteContext* context, const TfLiteDelegateParams* delegate_params, Serialization* serialization = nullptr) { *graph_is_destroyed = false; cl::InferenceEnvironmentOptions env_options; cl::InferenceEnvironmentProperties properties; auto delegate_options = delegate_->options(); cl::InferenceOptions options; if (delegate_options.is_precision_loss_allowed == -1) { options.priority1 = ToPriority(delegate_options.inference_priority1); options.priority2 = ToPriority(delegate_options.inference_priority2); options.priority3 = ToPriority(delegate_options.inference_priority3); } else { if (delegate_options.is_precision_loss_allowed == 0) { options.priority1 = InferencePriority::MAX_PRECISION; } else { options.priority1 = InferencePriority::MIN_LATENCY; } } options.usage = ToUsage(delegate_options.inference_preference); #ifdef TFLITE_GPU_ENABLE_INVOKE_LOOP options.gpu_invoke_loop_times = delegate_options.gpu_invoke_loop_times; #endif if (!serialization) { RETURN_IF_ERROR(cl::NewInferenceEnvironment(env_options, &cl_environment_, &properties)); *graph_is_destroyed = true; RETURN_IF_ERROR(cl_environment_->NewInferenceBuilder( options, std::move(*graph), builder)); } else { if (MaybeInitializeSerializedOpenCL(context, delegate_params, builder, &options, &env_options, &properties, serialization) .ok()) { return absl::OkStatus(); } RETURN_IF_ERROR(cl::NewInferenceEnvironment(env_options, &cl_environment_, &properties)); *graph_is_destroyed = true; std::vector<uint8_t> serialized_model; RETURN_IF_ERROR(cl_environment_->BuildSerializedModel( options, std::move(*graph), &serialized_model)); RETURN_IF_ERROR( cl_environment_->NewInferenceBuilder(serialized_model, builder)); RETURN_IF_ERROR(SaveSerializedOpenCL(context, delegate_params, &options, serialization, serialized_model)); } TFLITE_LOG_PROD_ONCE(tflite::TFLITE_LOG_INFO, "Initialized OpenCL-based API."); return absl::OkStatus(); } absl::Status DelegateKernelCore::InitializeOpenGlApi( GraphFloat32* graph, std::unique_ptr<InferenceBuilder>* builder) { #ifndef CL_DELEGATE_NO_GL gl::InferenceEnvironmentOptions env_options; gl::InferenceEnvironmentProperties properties; RETURN_IF_ERROR( NewInferenceEnvironment(env_options, &gl_environment_, &properties)); auto delegate_options = delegate_->options(); gl::InferenceOptions options; options.usage = ToUsage(delegate_options.inference_preference); if (delegate_options.is_precision_loss_allowed == -1) { options.priority1 = ToPriority(delegate_options.inference_priority1); options.priority2 = ToPriority(delegate_options.inference_priority2); options.priority3 = ToPriority(delegate_options.inference_priority3); } else { if (delegate_options.is_precision_loss_allowed == 0) { options.priority1 = InferencePriority::MAX_PRECISION; } else { options.priority1 = InferencePriority::MIN_LATENCY; } } #ifdef TFLITE_GPU_ENABLE_INVOKE_LOOP options.gpu_invoke_loop_times = delegate_options.gpu_invoke_loop_times; #endif RETURN_IF_ERROR(gl_environment_->NewInferenceBuilder(std::move(*graph), options, builder)); enforce_same_thread_ = true; TFLITE_LOG_PROD_ONCE(tflite::TFLITE_LOG_INFO, "Initialized OpenGL-based API."); return absl::OkStatus(); #else return absl::UnavailableError("OpenGL-based API disabled"); #endif } absl::Status DelegateKernelCore::MaybeInitializeSerializedOpenCL( TfLiteContext* context, const TfLiteDelegateParams* delegate_params, std::unique_ptr<InferenceBuilder>* builder, cl::InferenceOptions* options, cl::InferenceEnvironmentOptions* env_options, cl::InferenceEnvironmentProperties* properties, Serialization* serialization) { if (!serialization) return absl::InvalidArgumentError("No serialization"); std::string options_fingerprint = delegates::StrFingerprint(options, sizeof(cl::InferenceOptions)); auto data_key = serialization->GetEntryForKernel( std::string(kSerializedDataPrefix) + options_fingerprint, context, delegate_params); std::string model_data; auto model_data_status = data_key.GetData(context, &model_data); if (model_data_status == kTfLiteOk) { absl::Span<const uint8_t> model_span = absl::Span<const uint8_t>{ reinterpret_cast<const uint8_t*>(model_data.data()), model_data.size()}; RETURN_IF_ERROR(cl::NewInferenceEnvironment(*env_options, &cl_environment_, properties)); RETURN_IF_ERROR(cl_environment_->NewInferenceBuilder(model_span, builder)); TFLITE_LOG_PROD_ONCE(tflite::TFLITE_LOG_INFO, "Initialized OpenCL-based API from serialized data."); return absl::OkStatus(); } return absl::NotFoundError("Serialization data not found"); } absl::Status DelegateKernelCore::SaveSerializedOpenCL( TfLiteContext* context, const TfLiteDelegateParams* delegate_params, cl::InferenceOptions* options, Serialization* serialization, const std::vector<uint8_t>& serialized_model) { if (!serialization) return absl::InvalidArgumentError("No serialization"); std::string options_fingerprint = delegates::StrFingerprint(options, sizeof(cl::InferenceOptions)); auto data_key = serialization->GetEntryForKernel( std::string(kSerializedDataPrefix) + options_fingerprint, context, delegate_params); auto save_status = data_key.SetData( context, reinterpret_cast<const char*>(serialized_model.data()), serialized_model.size()); if (save_status != kTfLiteOk) { return absl::InvalidArgumentError("Failed to save serialized data"); } return absl::OkStatus(); } class DelegateKernel { public: explicit DelegateKernel(Delegate* delegate) : core_(delegate) {} ~DelegateKernel() = default; absl::Status Prepare(TfLiteContext* context, const TfLiteDelegateParams* delegate_params) { thread_id_prepare_ = std::this_thread::get_id(); return core_.Setup(context, delegate_params); } absl::Status GetRequiredTemporaries(TfLiteContext* context, TfLiteNode* node, TfLiteIntArray** temporaries_array_ptr) { if (core_.quant_conversion_map().empty()) return absl::OkStatus(); std::vector<int> temporary_tensors; for (auto index : core_.input_indices()) { if (core_.quant_conversion_map().find(index) != core_.quant_conversion_map().end()) { temporary_tensors.push_back(index); } } for (auto index : core_.output_indices()) { if (core_.quant_conversion_map().find(index) != core_.quant_conversion_map().end()) { temporary_tensors.push_back(index); } } *temporaries_array_ptr = TfLiteIntArrayCreate(temporary_tensors.size()); for (int i = 0; i < temporary_tensors.size(); ++i) { (*temporaries_array_ptr)->data[i] = temporary_tensors[i]; } return absl::OkStatus(); } absl::Status Invoke(TfLiteContext* context) { if (thread_id_prepare_ != std::this_thread::get_id()) { TFLITE_LOG(tflite::TFLITE_LOG_WARNING, "GpuDelegate invoke thread != prepare thread"); if (core_.enforce_same_thread()) { return absl::FailedPreconditionError( "GpuDelegate must run on the same thread where it was " "initialized."); } } const bool is_dequant_required = !core_.qu
#include <cstdint> #include <functional> #include <memory> #include <random> #include <gtest/gtest.h> #include "pthreadpool.h" #include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h" namespace tflite { namespace xnnpack { TEST(Delegate, CreateWithoutParams) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); } TEST(Delegate, CreateWithDefaultParams) { TfLiteXNNPackDelegateOptions delegate_options = TfLiteXNNPackDelegateOptionsDefault(); std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options), TfLiteXNNPackDelegateDelete); } TEST(Delegate, CreateWithNumThreadsParam) { TfLiteXNNPackDelegateOptions delegate_options = TfLiteXNNPackDelegateOptionsDefault(); delegate_options.num_threads = 2; std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options), TfLiteXNNPackDelegateDelete); } TEST(Delegate, GetThreadPool) { TfLiteXNNPackDelegateOptions delegate_options = TfLiteXNNPackDelegateOptionsDefault(); delegate_options.num_threads = 2; std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options), TfLiteXNNPackDelegateDelete); pthreadpool_t threadpool = static_cast<pthreadpool_t>( TfLiteXNNPackDelegateGetThreadPool(xnnpack_delegate.get())); ASSERT_TRUE(threadpool); ASSERT_EQ(2, pthreadpool_get_threads_count(threadpool)); } } }
979
cpp
tensorflow/tensorflow
allowlisted_flex_ops
tensorflow/compiler/mlir/lite/delegates/flex/allowlisted_flex_ops.cc
tensorflow/lite/delegates/flex/allowlisted_flex_ops_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_FLEX_ALLOWLISTED_FLEX_OPS_H_ #define TENSORFLOW_LITE_DELEGATES_FLEX_ALLOWLISTED_FLEX_OPS_H_ #include <set> #include <string> namespace tflite { namespace flex { bool IsAllowlistedFlexOp(const std::string& tensorflow_op_name); const std::set<std::string>& GetFlexAllowlist(); const std::set<std::string>& GetTFTextFlexAllowlist(); const std::set<std::string>& GetSentencePieceFlexAllowlist(); } } #endif #include "tensorflow/lite/delegates/flex/allowlisted_flex_ops.h" #include <set> #include <string> #include "tensorflow/core/framework/op.h" #include "tensorflow/lite/delegates/flex/allowlisted_flex_ops_internal.h" namespace tflite { namespace flex { const std::set<std::string>& GetFlexAllowlist() { static const std::set<std::string>* allowlisted_flex_ops = new std::set<std::string>({ "Abort", "Abs", "Add", "AddN", "AddV2", "AdjustContrast", "AdjustContrastv2", "AdjustHue", "AdjustSaturation", "All", "Angle", "Any", "ApplyAdaMax", "ApplyAdadelta", "ApplyAdagrad", "ApplyAdagradDA", "ApplyAdagradV2", "ApplyAdam", "ApplyAddSign", "ApplyCenteredRMSProp", "ApplyFtrl", "ApplyFtrlV2", "ApplyGradientDescent", "ApplyMomentum", "ApplyPowerSign", "ApplyProximalAdagrad", "ApplyProximalGradientDescent", "ApplyRMSProp", "ApproximateEqual", "ArgMax", "ArgMin", "AsString", "Assert", "Assign", "AssignAdd", "AssignAddVariableOp", "AssignSub", "AssignSubVariableOp", "AssignVariableOp", "Atan", "Atan2", "AudioSpectrogram", "AvgPool", "AvgPool3D", "AvgPool3DGrad", "AvgPoolGrad", "BatchCholesky", "BatchDatasetV2", "BatchMatMul", "BatchMatMulV2", "BatchMatrixBandPart", "BatchMatrixDeterminant", "BatchMatrixDiag", "BatchMatrixDiagPart", "BatchMatrixInverse", "BatchMatrixSetDiag", "BatchMatrixTriangularSolve", "BatchNormWithGlobalNormalization", "BatchNormWithGlobalNormalizationGrad", "BatchToSpace", "BatchToSpaceND", "BiasAdd", "BiasAddGrad", "BiasAddV1", "Bincount", "Bitcast", "BitwiseAnd", "BitwiseOr", "BitwiseXor", "BroadcastArgs", "BroadcastGradientArgs", "BroadcastTo", "Bucketize", "CTCBeamSearchDecoder", "CTCGreedyDecoder", "Case", "Cast", "Ceil", "CheckNumerics", "CheckNumericsV2", "Cholesky", "ClipByValue", "CombinedNonMaxSuppression", "Complex", "ComplexAbs", "Concat", "ConcatOffset", "ConcatV2", "Conj", "ConjugateTranspose", "Const", "ControlTrigger", "Conv2D", "Conv2DBackpropFilter", "Conv2DBackpropInput", "Conv3D", "Conv3DBackpropFilter", "Conv3DBackpropFilterV2", "Conv3DBackpropInput", "Conv3DBackpropInputV2", "Cos", "Cosh", "CropAndResize", "CropAndResizeGradBoxes", "CropAndResizeGradImage", "Cumprod", "Cumsum", "CumulativeLogsumexp", "DataFormatDimMap", "DataFormatVecPermute", "DebugGradientIdentity", "DebugGradientRefIdentity", "DecodeAndCropJpeg", "DecodeBase64", "DecodeBmp", "DecodeGif", "DecodeImage", "DecodeJpeg", "DecodePaddedRaw", "DecodePng", "DecodeRaw", "DecodeWav", "DeepCopy", "DeleteSessionTensor", "DenseBincount", "DenseToDenseSetOperation", "DenseToSparseSetOperation", "DepthToSpace", "DepthwiseConv2dNative", "DepthwiseConv2dNativeBackpropFilter", "DepthwiseConv2dNativeBackpropInput", "Dequantize", "DestroyResourceOp", "DestroyTemporaryVariable", "Diag", "DiagPart", "Dilation2D", "Dilation2DBackpropFilter", "Dilation2DBackpropInput", "Div", "DivNoNan", "DynamicPartition", "DynamicStitch", "Einsum", "Elu", "EluGrad", "Empty", "EmptyTensorList", "EmptyTensorMap", "EncodeBase64", "EncodeJpeg", "EncodeJpegVariableQuality", "EncodePng", "EncodeWav", "EnsureShape", "Enter", "Equal", "Erf", "Exit", "Exp", "ExpandDims", "ExtractImagePatches", "FFT", "FFT2D", "FFT3D", "FIFOQueue", "FIFOQueueV2", "FakeQuantWithMinMaxArgs", "FakeQuantWithMinMaxArgsGradient", "FakeQuantWithMinMaxVars", "FakeQuantWithMinMaxVarsGradient", "FakeQuantWithMinMaxVarsPerChannel", "FakeQuantWithMinMaxVarsPerChannelGradient", "FakeQueue", "Fill", "FilterDataset", "FinalizeDataset", "Fingerprint", "FlatMapDataset", "Floor", "FloorDiv", "FloorMod", "FusedBatchNorm", "FusedBatchNormGrad", "FusedBatchNormGradV2", "FusedBatchNormGradV3", "FusedBatchNormV2", "FusedBatchNormV3", "FusedPadConv2D", "FusedResizeAndPadConv2D", "Gather", "GatherNd", "GatherV2", "GetSessionHandle", "GetSessionHandleV2", "GetSessionTensor", "Greater", "GreaterEqual", "HSVToRGB", "HashTable", "HashTableV2", "HistogramSummary", "IFFT", "IFFT2D", "IFFT3D", "IRFFT", "IRFFT2D", "IRFFT3D", "Identity", "IdentityN", "Imag", "ImageProjectiveTransformV2", "ImageProjectiveTransformV3", "ImmutableConst", "InTopK", "InTopKV2", "InitializeTable", "InitializeTableFromDataset", "InitializeTableFromTextFile", "InitializeTableFromTextFileV2", "InitializeTableV2", "InplaceAdd", "InplaceSub", "InplaceUpdate", "Inv", "InvGrad", "Invert", "InvertPermutation", "IsFinite", "IsNan", "IsVariableInitialized", "LRN", "LeakyRelu", "LeakyReluGrad", "LeftShift", "Less", "LessEqual", "LinSpace", "ListDiff", "Log", "LogMatrixDeterminant", "LogSoftmax", "LogicalAnd", "LogicalNot", "LogicalOr", "LookupTableExport", "LookupTableExportV2", "LookupTableFind", "LookupTableFindV2", "LookupTableImport", "LookupTableImportV2", "LookupTableInsert", "LookupTableInsertV2", "LookupTableRemoveV2", "LookupTableSize", "LookupTableSizeV2", "LoopCond", "MapDataset", "MatMul", "MatrixBandPart", "MatrixDeterminant", "MatrixDiag", "MatrixDiagPart", "MatrixDiagPartV2", "MatrixDiagPartV3", "MatrixDiagV2", "MatrixDiagV3", "MatrixInverse", "MatrixSetDiag", "MatrixSetDiagV2", "MatrixSetDiagV3", "MatrixTriangularSolve", "Max", "MaxPool", "MaxPool3D", "MaxPool3DGrad", "MaxPool3DGradGrad", "MaxPoolGrad", "MaxPoolGradGrad", "MaxPoolGradGradV2", "MaxPoolGradV2", "MaxPoolGradWithArgmax", "MaxPoolV2", "MaxPoolWithArgmax", "Maximum", "Mean", "Merge", "MergeSummary", "MergeV2Checkpoints", "Mfcc", "Min", "Minimum", "MirrorPad", "MirrorPadGrad", "ModelDataset", "Mul", "MulNoNan", "Multinomial", "MutableDenseHashTable", "MutableDenseHashTableV2", "MutableHashTable", "MutableHashTableOfTensors", "MutableHashTableOfTensorsV2", "MutableHashTableV2", "Neg", "NextIteration", "NoOp", "NonMaxSuppression", "NonMaxSuppressionV2", "NonMaxSuppressionV3", "NonMaxSuppressionV4", "NonMaxSuppressionV5", "NonMaxSuppressionWithOverlaps", "NotEqual", "OneHot", "OnesLike", "OptimizeDatasetV2", "OptionalFromValue", "OptionalGetValue", "OptionalHasValue", "OptionalNone", "Pack", "Pad", "PadV2", "PaddingFIFOQueue", "PaddingFIFOQueueV2", "ParallelConcat", "ParallelDynamicStitch", "ParseExample", "ParseExampleV2", "ParseSequenceExample", "ParseSequenceExampleV2", "ParseSingleExample", "ParseSingleSequenceExample", "Placeholder", "PlaceholderV2", "PlaceholderWithDefault", "PopulationCount", "Pow", "PreventGradient", "Print", "PrintV2", "Prod", "Qr", "QuantizeDownAndShrinkRange", "QuantizeV2", "QuantizedAdd", "QuantizedAvgPool", "QuantizedBatchNormWithGlobalNormalization", "QuantizedBiasAdd", "QuantizedConcat", "QuantizedConv2D", "QuantizedInstanceNorm", "QuantizedMatMul", "QuantizedMaxPool", "QuantizedMul", "QuantizedRelu", "QuantizedRelu6", "QuantizedReshape", "QuantizedResizeBilinear", "QueueClose", "QueueCloseV2", "QueueDequeue", "QueueDequeueMany", "QueueDequeueManyV2", "QueueDequeueUpTo", "QueueDequeueUpToV2", "QueueDequeueV2", "QueueEnqueue", "QueueEnqueueMany", "QueueEnqueueManyV2", "QueueEnqueueV2", "QueueIsClosed", "QueueIsClosedV2", "QueueSize", "QueueSizeV2", "RFFT", "RFFT2D", "RFFT3D", "RGBToHSV", "RaggedBincount", "RaggedGather", "RaggedRange", "RaggedTensorFromVariant", "RaggedTensorToSparse", "RaggedTensorToTensor", "RaggedTensorToVariant", "RaggedTensorToVariantGradient", "RandomGamma", "RandomPoisson", "RandomPoissonV2", "RandomShuffle", "RandomStandardNormal", "RandomUniform", "RandomUniformInt", "Range", "Rank", "ReadFile", "ReadVariableOp", "Real", "RealDiv", "Reciprocal", "ReciprocalGrad", "Recv", "ReduceDataset", "ReduceJoin", "RefEnter", "RefExit", "RefIdentity", "RefMerge", "RefNextIteration", "RefSelect", "RefSwitch", "RegexFullMatch", "RegexReplace", "Relu", "Relu6", "Relu6Grad", "ReluGrad", "RemoteCall", "RepeatDataset", "RequantizationRange", "Requantize", "Reshape", "ResizeBicubic", "ResizeBicubicGrad", "ResizeBilinear", "ResizeBilinearGrad", "ResizeNearestNeighbor", "ResizeNearestNeighborGrad", "ResourceApplyAdaMax", "ResourceApplyAdadelta", "ResourceApplyAdagrad", "ResourceApplyAdagradDA", "ResourceApplyAdagradV2", "ResourceApplyAdam", "ResourceApplyAdamWithAmsgrad", "ResourceApplyAddSign", "ResourceApplyCenteredRMSProp", "ResourceApplyFtrl", "ResourceApplyFtrlV2", "ResourceApplyGradientDescent", "ResourceApplyKerasMomentum", "ResourceApplyMomentum", "ResourceApplyPowerSign", "ResourceApplyProximalAdagrad", "ResourceApplyProximalGradientDescent", "ResourceApplyRMSProp", "ResourceGather", "ResourceGatherNd", "ResourceScatterAdd", "ResourceScatterDiv", "ResourceScatterMax", "ResourceScatterMin", "ResourceScatterMul", "ResourceScatterNdAdd", "ResourceScatterNdMax", "ResourceScatterNdMin", "ResourceScatterNdSub", "ResourceScatterNdUpdate", "ResourceScatterSub", "ResourceScatterUpdate", "ResourceSparseApplyAdadelta", "ResourceSparseApplyAdagrad", "ResourceSparseApplyAdagradDA", "ResourceSparseApplyAdagradV2", "ResourceSparseApplyCenteredRMSProp", "ResourceSparseApplyFtrl", "ResourceSparseApplyFtrlV2", "ResourceSparseApplyKerasMomentum", "ResourceSparseApplyMomentum", "ResourceSparseApplyProximalAdagrad", "ResourceSparseApplyProximalGradientDescent", "ResourceSparseApplyRMSProp", "ResourceStridedSliceAssign", "Restore", "RestoreSlice", "RestoreV2", "Reverse", "ReverseSequence", "ReverseV2", "RightShift", "Roll", "Round", "Rsqrt", "RsqrtGrad", "SampleDistortedBoundingBox", "SampleDistortedBoundingBoxV2", "Save", "SaveSlices", "SaveV2", "ScalarSummary", "ScatterNd", "ScatterNdAdd", "ScatterNdMax", "ScatterNdMin", "ScatterNdNonAliasingAdd", "ScatterNdSub", "ScatterNdUpdate", "SegmentMax", "SegmentMean", "SegmentMin", "SegmentProd", "SegmentSum", "Select", "SelectV2", "Selu", "SeluGrad", "Send", "SerializeTensor", "Shape", "ShapeN", "ShardedFilename", "ShardedFilespec", "Sigmoid", "SigmoidGrad", "Sign", "Sin", "Sinh", "Size", "Slice", "Softmax", "SoftmaxCrossEntropyWithLogits", "Softplus", "SoftplusGrad", "Softsign", "SoftsignGrad", "SpaceToBatch", "SpaceToBatchND", "SpaceToDepth", "SparseAdd", "SparseApplyAdadelta", "SparseApplyAdagrad", "SparseApplyAdagradDA", "SparseApplyAdagradV2", "SparseApplyCenteredRMSProp", "SparseApplyFtrl", "SparseApplyFtrlV2", "SparseApplyMomentum", "SparseApplyProximalAdagrad", "SparseApplyProximalGradientDescent", "SparseApplyRMSProp", "SparseBincount", "SparseCross", "SparseCrossHashed", "SparseCrossV2", "SparseFillEmptyRows", "SparseFillEmptyRowsGrad", "SparseReduceSum", "SparseReorder", "SparseReshape", "SparseSegmentMean", "SparseSegmentMeanGrad", "SparseSegmentMeanWithNumSegments", "SparseSegmentSqrtN", "SparseSegmentSqrtNGrad", "SparseSegmentSqrtNWithNumSegments", "SparseSegmentSum", "SparseSegmentSumGrad", "SparseSegmentSumWithNumSegments", "SparseSlice", "SparseSoftmaxCrossEntropyWithLogits", "SparseTensorDenseMatMul", "SparseToDense", "SparseToSparseSetOperation", "Split", "SplitV", "Sqrt", "SqrtGrad", "Square", "SquaredDifference", "Squeeze", "Stack", "StackClose", "StackCloseV2", "StackPop", "StackPopV2", "StackPush", "StackPushV2", "StackV2", "StatelessMultinomial", "StatelessRandomGammaV2", "StatelessRandomGammaV3", "StatelessRandomGetAlg", "StatelessRandomGetKeyCounter", "StatelessRandomGetKeyCounterAlg", "StatelessRandomNormal", "StatelessRandomNormalV2", "StatelessRandomPoisson", "StatelessRandomUniform", "StatelessRandomUniformFullInt", "StatelessRandomUniformFullIntV2", "StatelessRandomUniformInt", "StatelessRandomUniformIntV2", "StatelessRandomUniformV2", "StatelessSampleDistortedBoundingBox", "StatelessTruncatedNormal", "StatelessTruncatedNormalV2", "StaticRegexFullMatch", "StaticRegexReplace", "StopGradient", "StridedSlice", "StridedSliceAssign", "StridedSliceGrad", "StringFormat", "StringJoin", "StringLength", "StringLower", "StringSplit", "StringSplitV2", "StringStrip", "StringToHashBucket", "StringToHashBucketFast", "StringToHashBucketStrong", "StringToNumber", "Sub", "Substr", "Sum", "Switch", "SymbolicGradient", "TakeDataset", "TakeWhileDataset", "Tan", "Tanh", "TanhGrad", "TemporaryVariable", "TensorArray", "TensorArrayClose", "TensorArrayCloseV2", "TensorArrayCloseV3", "TensorArrayConcat", "TensorArrayConcatV2", "TensorArrayConcatV3", "TensorArrayGather", "TensorArrayGatherV2", "TensorArrayGatherV3", "TensorArrayGrad", "TensorArrayGradV2", "TensorArrayGradV3", "TensorArrayGradWithShape", "TensorArrayPack", "TensorArrayRead", "TensorArrayReadV2", "TensorArrayReadV3", "TensorArrayScatter", "TensorArrayScatterV2", "TensorArrayScatterV3", "TensorArraySize", "TensorArraySizeV2", "TensorArraySizeV3", "TensorArraySplit", "TensorArraySplitV2", "TensorArraySplitV3", "TensorArrayUnpack", "TensorArrayV2", "TensorArrayV3", "TensorArrayWrite", "TensorArrayWriteV2", "TensorArrayWriteV3", "TensorListConcat", "TensorListConcatLists", "TensorListConcatV2", "TensorListElementShape", "TensorListFromTensor", "TensorListGather", "TensorListGetItem", "TensorListLength", "TensorListPopBack", "TensorListPushBack", "TensorListPushBackBatch", "TensorListReserve", "TensorListResize", "TensorListScatter", "TensorListScatterIntoExistingList", "TensorListScatterV2", "TensorListSetItem", "TensorListSplit", "TensorListStack", "TensorMapErase", "TensorMapHasKey", "TensorMapInsert", "TensorMapLookup", "TensorMapSize", "TensorMapStackKeys", "TensorScatterAdd", "TensorScatterMax", "TensorScatterMin", "TensorScatterSub", "TensorScatterUpdate", "TensorSliceDataset", "TensorStridedSliceUpdate", "Tile", "TileGrad", "Timestamp", "TopK", "TopKV2", "Transpose", "TruncateDiv", "TruncatedNormal", "UnicodeDecode", "UnicodeDecodeWithOffsets", "UnicodeEncode", "UnicodeTranscode", "Unique", "UniqueV2", "UniqueWithCounts", "UniqueWithCountsV2", "Unpack", "UnsortedSegmentJoin", "UnsortedSegmentMax", "UnsortedSegmentMin", "UnsortedSegmentProd", "UnsortedSegmentSum", "UnwrapDatasetVariant", "UpperBound", "VarHandleOp", "VarIsInitializedOp", "Variable", "VariableShape", "VariableV2", "Where", "WrapDatasetVariant", "WriteFile", "Xdivy", "Xlog1py", "Xlogy", "ZerosLike", "_Arg", "_ArrayToList", "_DeviceArg", "_DeviceRetval", "_FusedConv2D", "_HostCast", "_HostRecv", "_HostSend", "_ListToArray", "_ParallelConcatStart", "_ParallelConcatUpdate", "_ReadVariablesOp", "_Recv", "_Retval", "_Send", "_SwitchN", "_VarHandlesOp", }); return *allowlisted_flex_ops; } const std::set<std::string>& GetTFTextFlexAllowlist() { static const std::set<std::string>* tftext_flex_ops = new std::set<std::string>({ "CaseFoldUTF8", "ConstrainedSequence", "MaxSpanningTree", "NormalizeUTF8", "NormalizeUTF8WithOffsetsMap", "RegexSplitWithOffsets", "RougeL", "SentenceFragments", "SentencepieceOp", "SentencepieceTokenizeOp", "SentencepieceTokenizeWithOffsetsOp", "SentencepieceDetokenizeOp", "SentencepieceVocabSizeOp", "SplitMergeTokenizeWithOffsets", "TFText>NgramsStringJoin", "TFText>WhitespaceTokenizeWithOffsetsV2", "TokenizerFromLogits", "UnicodeScriptTokenizeWithOffsets", "WhitespaceTokenizeWithOffsets", "WordpieceTokenizeWithOffsets", }); return *tftext_flex_ops; } bool IsAllowedTFTextOpForFlex(const std::string& op_name) { if (GetTFTextFlexAllowlist().count(op_name) == 0) return false; return tensorflow::OpRegistry::Global()->LookUp(op_name) != nullptr; } const std::set<std::string>& GetSentencePieceFlexAllowlist() { static const std::set<std::string>* sentencepiece_flex_ops = new std::set<std::string>({ "SentencepieceGetPieceSize", "SentencepiecePieceToId", "SentencepieceIdToPiece", "SentencepieceEncodeDense", "SentencepieceEncodeSparse", "SentencepieceDecode", }); return *sentencepiece_flex_ops; } bool IsAllowedSentencePieceOpForFlex(const std::string& op_name) { if (GetSentencePieceFlexAllowlist().count(op_name) == 0) return false; return tensorflow::OpRegistry::Global()->LookUp(op_name) != nullptr; } bool IsAllowlistedFlexOp(const std::string& tensorflow_op_name) { if (GetFlexAllowlist().count(tensorflow_op_name) != 0) return true; return IsAllowedTFTextOpForFlex(tensorflow_op_name) || IsAllowedSentencePieceOpForFlex(tensorflow_op_name); } } }
#include "tensorflow/lite/delegates/flex/allowlisted_flex_ops.h" #include <set> #include <string> #include <gtest/gtest.h> #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/lite/delegates/flex/allowlisted_flex_ops_internal.h" namespace tflite { namespace flex { std::set<std::string> GetAllCpuKernels() { auto is_cpu_kernel = [](const tensorflow::KernelDef& def) { return (def.device_type() == "CPU" || def.device_type() == "DEFAULT"); }; tensorflow::KernelList kernel_list = tensorflow::GetFilteredRegisteredKernels(is_cpu_kernel); std::set<std::string> result; for (int i = 0; i < kernel_list.kernel_size(); ++i) { tensorflow::KernelDef kernel_def = kernel_list.kernel(i); result.insert(kernel_def.op()); } return result; } TEST(AllowlistedFlexOpsTest, EveryOpHasKernel) { const std::set<std::string>& allowlist = GetFlexAllowlist(); std::set<std::string> all_kernels = GetAllCpuKernels(); for (const std::string& op_name : allowlist) { EXPECT_EQ(all_kernels.count(op_name), 1) << op_name << " op is added to flex allowlist " << "but its kernel is not found."; } } TEST(TfTextUtilsTest, TestFlexOpAllowed) { EXPECT_FALSE(IsAllowedTFTextOpForFlex("ConstrainedSequence")); } TEST(TfTextUtilsTest, TestFlexOpNotAllowed) { EXPECT_FALSE(IsAllowedTFTextOpForFlex("ngrams")); } } }
980
cpp
tensorflow/tensorflow
delegate_data
tensorflow/lite/delegates/flex/delegate_data.cc
tensorflow/lite/delegates/flex/delegate_data_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_FLEX_DELEGATE_DATA_H_ #define TENSORFLOW_LITE_DELEGATES_FLEX_DELEGATE_DATA_H_ #include <functional> #include <string> #include "tensorflow/core/common_runtime/eager/context.h" #include "tensorflow/core/framework/cancellation.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/lite/core/subgraph.h" #include "tensorflow/lite/delegates/flex/buffer_map.h" #include "tensorflow/lite/delegates/flex/subgraph_resource.h" namespace tflite { namespace flex { class DelegateData { public: DelegateData(); ~DelegateData(); tensorflow::Status Prepare(const tensorflow::SessionOptions& session_options, Subgraph* main_subgraph = nullptr, TfLiteDelegate* flex_delegate = nullptr); tensorflow::EagerContext* GetEagerContext() { return eager_context_; } tensorflow::CancellationManager* GetCancellationManager() { return cancellation_manager_; } void SetCancellationManager( tensorflow::CancellationManager* cancellation_manager) { cancellation_manager_ = cancellation_manager; } BufferMap* GetBufferMap(const TfLiteContext* context) { return &buffer_map_[context]; } std::map<int, int>* GetTensorReleaseMap(const TfLiteContext* context) { return &tensor_release_map_[context]; } private: tensorflow::EagerContext* eager_context_ = nullptr; tensorflow::CancellationManager* cancellation_manager_ = nullptr; std::unordered_map<const TfLiteContext*, BufferMap> buffer_map_; std::unordered_map<const TfLiteContext*, std::map<int, int>> tensor_release_map_; }; tensorflow::Status RegisterFunctionDefForSubgraphs( Subgraph& main_subgraph, const std::function<tensorflow::Status( const std::vector<std::unique_ptr<Subgraph>>&, std::set<std::string>* result)>& select_subgraphs_to_register, tensorflow::ResourceMgr* resource_mgr, tensorflow::EagerContext* eager_context, TfLiteDelegate* flex_delegate); } } #endif #include "tensorflow/lite/delegates/flex/delegate_data.h" #include <functional> #include <memory> #include <set> #include <string> #include <utility> #include <vector> #include "absl/memory/memory.h" #include "absl/strings/str_cat.h" #include "flatbuffers/flexbuffers.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/common_runtime/eager/context.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/resource_mgr.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/tstring.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/subgraph.h" #include "tensorflow/lite/delegates/flex/util.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/util.h" namespace tflite { namespace flex { namespace { void BuildFunctionDefProto(const std::string& function_name, const Subgraph& subgraph, tensorflow::FunctionDef& fdef) { std::vector<std::string> inputs, outputs; inputs.reserve(subgraph.inputs().size()); outputs.reserve(subgraph.outputs().size()); for (int i = 0; i < subgraph.inputs().size(); ++i) { inputs.push_back(absl::StrCat( "args_", i, ": ", TfLiteTypeToTfTypeName(subgraph.tensor(subgraph.inputs()[i])->type))); } for (int i = 0; i < subgraph.outputs().size(); ++i) { outputs.push_back(absl::StrCat( "res_", i, ": ", TfLiteTypeToTfTypeName(subgraph.tensor(subgraph.outputs()[i])->type))); } std::vector<tensorflow::FunctionDefHelper::Node> nodes; nodes.push_back(tensorflow::FunctionDefHelper::Const<tensorflow::tstring>( "SubgraphResourceKey", function_name)); tensorflow::FunctionDefHelper::Node execute_node; execute_node.ret.push_back("InvokeTfLite"); execute_node.op = "TfLiteSubgraphExecute"; execute_node.arg.push_back("SubgraphResourceKey:output:0"); for (int i = 0; i < subgraph.inputs().size(); ++i) { execute_node.arg.push_back(absl::StrCat("args_", i)); } nodes.push_back(execute_node); std::vector<std::pair<std::string, std::string>> ret_def; ret_def.reserve(subgraph.outputs().size()); for (int i = 0; i < subgraph.outputs().size(); ++i) { ret_def.emplace_back(absl::StrCat("res_", i), absl::StrCat("InvokeTfLite:output:", i)); } fdef = tensorflow::FunctionDefHelper::Create(function_name, inputs, outputs, {}, nodes, ret_def); tensorflow::AttrValue tin_attrs, tout_attrs; for (int i = 0; i < subgraph.inputs().size(); ++i) { TF_DataType dtype = tflite::flex::GetTensorFlowDataType( subgraph.tensor(subgraph.inputs()[i])->type); tin_attrs.mutable_list()->add_type(tensorflow::DataType(dtype)); } for (int i = 0; i < subgraph.outputs().size(); ++i) { TF_DataType dtype = tflite::flex::GetTensorFlowDataType( subgraph.tensor(subgraph.outputs()[i])->type); tout_attrs.mutable_list()->add_type(tensorflow::DataType(dtype)); } fdef.mutable_node_def(1)->mutable_attr()->insert({"Tin", tin_attrs}); fdef.mutable_node_def(1)->mutable_attr()->insert({"Tout", tout_attrs}); } tensorflow::Status GetSubgraphNamesForFunctionExecution( const std::vector<std::unique_ptr<Subgraph>>& subgraphs, std::set<std::string>* result) { tensorflow::NodeDef node_def; for (const auto& subgraph : subgraphs) { for (const auto& node_and_reg : subgraph->nodes_and_registration()) { if (node_and_reg.second.builtin_code != tflite::BuiltinOperator_CUSTOM) { continue; } const std::string custom_name = node_and_reg.second.custom_name; if (custom_name.substr(0, strlen(tflite::kFlexCustomCodePrefix)) != tflite::kFlexCustomCodePrefix) { continue; } const flexbuffers::Vector& v = flexbuffers::GetRoot(reinterpret_cast<const uint8_t*>( node_and_reg.first.custom_initial_data), node_and_reg.first.custom_initial_data_size) .AsVector(); if (!node_def.ParseFromString(v[1].AsString().str())) { return tensorflow::Status(absl::StatusCode::kInternal, "could not parse NodeDef"); } for (const auto& attr : node_def.attr()) { if (attr.second.has_func()) { result->insert(attr.second.func().name()); } } } } return absl::OkStatus(); } } tensorflow::Status RegisterFunctionDefForSubgraphs( Subgraph& main_subgraph, const std::function<tensorflow::Status( const std::vector<std::unique_ptr<Subgraph>>&, std::set<std::string>*)>& select_subgraphs_to_register, tensorflow::ResourceMgr* resource_mgr, tensorflow::EagerContext* eager_context, TfLiteDelegate* flex_delegate) { std::vector<std::unique_ptr<Subgraph>>* subgraphs = main_subgraph.GetSubgraphs(); if (!subgraphs) { return absl::OkStatus(); } std::set<std::string> function_subgraphs; TF_RETURN_IF_ERROR( select_subgraphs_to_register(*subgraphs, &function_subgraphs)); for (int i = 0; i < subgraphs->size(); ++i) { if (subgraphs->at(i)->GetName() == "main") { continue; } const std::string subgraph_name = subgraphs->at(i)->GetName(); if (!function_subgraphs.count(subgraph_name)) { continue; } auto* subgraph_resource = new TFLiteSubgraphResource(*(subgraphs->at(i)), flex_delegate); TF_RETURN_IF_ERROR(resource_mgr->Create<TFLiteSubgraphResource>( "flex", subgraph_name, subgraph_resource)); tensorflow::FunctionDef fdef; BuildFunctionDefProto(subgraph_name, *(subgraphs->at(i)), fdef); TF_RETURN_IF_ERROR(eager_context->AddFunctionDef(fdef)); } return absl::OkStatus(); } DelegateData::DelegateData() {} DelegateData::~DelegateData() { if (eager_context_) { eager_context_->HostCPU()->ClearResourceMgr(); eager_context_->Unref(); } } tensorflow::Status DelegateData::Prepare( const tensorflow::SessionOptions& session_options, Subgraph* main_subgraph, TfLiteDelegate* flex_delegate) { if (eager_context_) { return tensorflow::Status(); } if (flex_delegate == nullptr && main_subgraph != nullptr) { return tensorflow::Status( absl::StatusCode::kFailedPrecondition, "flex_delegate must be non-null when main_subgraph is provided."); } std::vector<std::unique_ptr<tensorflow::Device>> devices; TF_RETURN_IF_ERROR(tensorflow::DeviceFactory::AddDevices( session_options, "/job:localhost/replica:0/task:0", &devices)); auto device_mgr = std::make_unique<tensorflow::StaticDeviceMgr>(std::move(devices)); auto rendezvous = tsl::core::RefCountPtr<tensorflow::IntraProcessRendezvous>( new tensorflow::IntraProcessRendezvous(device_mgr.get())); eager_context_ = new tensorflow::EagerContext( session_options, tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, device_mgr.release(), true, std::move(rendezvous), nullptr); if (main_subgraph) { TF_RETURN_IF_ERROR(RegisterFunctionDefForSubgraphs( *main_subgraph, GetSubgraphNamesForFunctionExecution, eager_context_->HostCPU()->resource_manager(), eager_context_, flex_delegate)); } return tensorflow::Status(); } } }
#include "tensorflow/lite/delegates/flex/delegate_data.h" #include <memory> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/memory/memory.h" #include "absl/strings/string_view.h" #include "tensorflow/core/common_runtime/eager/context.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/lite/core/api/error_reporter.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/subgraph.h" #include "tensorflow/lite/kernels/subgraph_test_util.h" #include "tensorflow/lite/testing/util.h" namespace tflite { namespace flex { namespace { using ::tensorflow::protobuf::TextFormat; using ::tensorflow::protobuf::util::MessageDifferencer; TEST(DelegateDataTest, Basic) { DelegateData data; tensorflow::SessionOptions session_options; session_options.config.set_intra_op_parallelism_threads(2); EXPECT_TRUE(data.Prepare(session_options).ok()); TfLiteContext dummy_context1 = {}; TfLiteContext dummy_context2 = {}; ASSERT_NE(data.GetEagerContext(), nullptr); EXPECT_NE(data.GetBufferMap(&dummy_context1), nullptr); EXPECT_NE(data.GetBufferMap(&dummy_context1), data.GetBufferMap(&dummy_context2)); } TEST(DelegateDataTest, CheckFunctionDef) { tensorflow::StaticDeviceMgr device_mgr(tensorflow::DeviceFactory::NewDevice( "CPU", {}, "/job:localhost/replica:0/task:0/device:CPU:0")); tensorflow::EagerContext* eager_context = new tensorflow::EagerContext( tensorflow::SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, &device_mgr, false, nullptr, nullptr); auto select_subgraphs_to_register = [](const std::vector<std::unique_ptr<Subgraph>>& subgraphs, std::set<std::string>* result) { result->insert("add_subgraph"); result->insert("mul_subgraph"); return absl::OkStatus(); }; subgraph_test_util::SubgraphBuilder builder; std::unique_ptr<ErrorReporter> error_reporter = std::make_unique<TestErrorReporter>(); auto add_subgraph = std::make_unique<Subgraph>( error_reporter.get(), nullptr, nullptr, nullptr, nullptr, nullptr); add_subgraph->SetName("add_subgraph"); auto mul_subgraph = std::make_unique<Subgraph>( error_reporter.get(), nullptr, nullptr, nullptr, nullptr, nullptr); mul_subgraph->SetName("mul_subgraph"); builder.BuildAddSubgraph(add_subgraph.get()); builder.BuildMulSubgraph(mul_subgraph.get()); std::vector<std::unique_ptr<Subgraph>> subgraphs; subgraphs.push_back(std::move(add_subgraph)); subgraphs.push_back(std::move(mul_subgraph)); Subgraph main_subgraph(error_reporter.get(), nullptr, &subgraphs, nullptr, nullptr, nullptr); main_subgraph.SetName("main"); TF_ASSERT_OK(RegisterFunctionDefForSubgraphs( main_subgraph, select_subgraphs_to_register, eager_context->HostCPU()->resource_manager(), eager_context, nullptr)); const string add_fdef_txt = R"pb( signature { name: "add_subgraph" input_arg { name: "args_0" type: DT_INT32 } input_arg { name: "args_1" type: DT_INT32 } output_arg { name: "res_0" type: DT_INT32 } is_stateful: true } node_def { name: "SubgraphResourceKey" op: "Const" attr { key: "dtype" value { type: DT_STRING } } attr { key: "value" value { tensor { dtype: DT_STRING tensor_shape {} string_val: "add_subgraph" } } } } node_def { name: "InvokeTfLite" op: "TfLiteSubgraphExecute" input: "SubgraphResourceKey:output:0" input: "args_0" input: "args_1" attr { key: "Tin" value { list { type: DT_INT32 type: DT_INT32 } } } attr { key: "Tout" value { list { type: DT_INT32 } } } } ret { key: "res_0" value: "InvokeTfLite:output:0" })pb"; const string mul_fdef_txt = R"pb( signature { name: "mul_subgraph" input_arg { name: "args_0" type: DT_INT32 } input_arg { name: "args_1" type: DT_INT32 } output_arg { name: "res_0" type: DT_INT32 } is_stateful: true } node_def { name: "SubgraphResourceKey" op: "Const" attr { key: "dtype" value { type: DT_STRING } } attr { key: "value" value { tensor { dtype: DT_STRING tensor_shape {} string_val: "mul_subgraph" } } } } node_def { name: "InvokeTfLite" op: "TfLiteSubgraphExecute" input: "SubgraphResourceKey:output:0" input: "args_0" input: "args_1" attr { key: "Tin" value { list { type: DT_INT32 type: DT_INT32 } } } attr { key: "Tout" value { list { type: DT_INT32 } } } } ret { key: "res_0" value: "InvokeTfLite:output:0" })pb"; tensorflow::FunctionDef add_fdef, mul_fdef; ASSERT_TRUE(TextFormat::ParseFromString(add_fdef_txt, &add_fdef)); ASSERT_TRUE(TextFormat::ParseFromString(mul_fdef_txt, &mul_fdef)); EXPECT_EQ(eager_context->GetFunctionDef("main"), nullptr); ASSERT_NE(eager_context->GetFunctionDef("add_subgraph"), nullptr); ASSERT_NE(eager_context->GetFunctionDef("mul_subgraph"), nullptr); EXPECT_TRUE(MessageDifferencer::Equals( *(eager_context->GetFunctionDef("add_subgraph")), add_fdef)); EXPECT_TRUE(MessageDifferencer::Equals( *(eager_context->GetFunctionDef("mul_subgraph")), mul_fdef)); eager_context->Unref(); } TEST(DelegateDataTest, CheckFunctionDefWithOnlyMainGraph) { tensorflow::StaticDeviceMgr device_mgr(tensorflow::DeviceFactory::NewDevice( "CPU", {}, "/job:localhost/replica:0/task:0/device:CPU:0")); tensorflow::EagerContext* eager_context = new tensorflow::EagerContext( tensorflow::SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, &device_mgr, false, nullptr, nullptr); auto select_subgraphs_to_register = [](const std::vector<std::unique_ptr<Subgraph>>& subgraphs, std::set<std::string>* result) { result->insert("add_subgraph"); result->insert("mul_subgraph"); return absl::OkStatus(); }; subgraph_test_util::SubgraphBuilder builder; std::unique_ptr<ErrorReporter> error_reporter = std::make_unique<TestErrorReporter>(); Subgraph main_subgraph(error_reporter.get(), nullptr, nullptr, nullptr, nullptr, nullptr); main_subgraph.SetName("main"); TF_ASSERT_OK(RegisterFunctionDefForSubgraphs( main_subgraph, select_subgraphs_to_register, eager_context->HostCPU()->resource_manager(), eager_context, nullptr)); EXPECT_EQ(eager_context->GetFunctionDef("main"), nullptr); eager_context->Unref(); } } } }
981
cpp
tensorflow/tensorflow
buffer_map
tensorflow/lite/delegates/flex/buffer_map.cc
tensorflow/lite/delegates/flex/buffer_map_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_FLEX_BUFFER_MAP_H_ #define TENSORFLOW_LITE_DELEGATES_FLEX_BUFFER_MAP_H_ #include <map> #include "tensorflow/core/framework/tensor.h" #include "tensorflow/lite/core/c/common.h" namespace tflite { namespace flex { class BufferMap { public: BufferMap(); ~BufferMap(); bool HasTensor(int tensor_index) const; tensorflow::Tensor GetTensor(int tensor_index) const; const tensorflow::Tensor* GetTensorPtr(int tensor_index) const; void SetFromTensorFlow(int tensor_index, tensorflow::Tensor tensor); void SetFromTfLite(int tensor_index, const TfLiteTensor* tensor, bool allow_reusing = true); private: std::map<int, tensorflow::Tensor> id_to_tensor_; }; } } #endif #include "tensorflow/lite/delegates/flex/buffer_map.h" #include <utility> #include "tensorflow/c/c_api_internal.h" #include "tensorflow/lite/delegates/flex/buffer_map_util.h" #include "tensorflow/lite/delegates/flex/util.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/string_type.h" namespace tflite { namespace flex { BufferMap::BufferMap() {} BufferMap::~BufferMap() {} bool BufferMap::HasTensor(int tensor_index) const { return id_to_tensor_.count(tensor_index) != 0; } tensorflow::Tensor BufferMap::GetTensor(int tensor_index) const { return id_to_tensor_.at(tensor_index); } const tensorflow::Tensor* BufferMap::GetTensorPtr(int tensor_index) const { auto& tensor = id_to_tensor_.at(tensor_index); return &tensor; } void BufferMap::SetFromTfLite(int tensor_index, const TfLiteTensor* tensor, bool allow_reusing) { TFLITE_CHECK( SetTfTensorFromTfLite(tensor, &id_to_tensor_[tensor_index], allow_reusing) .ok()); } void BufferMap::SetFromTensorFlow(int tensor_index, tensorflow::Tensor tensor) { id_to_tensor_[tensor_index] = std::move(tensor); } } }
#include "tensorflow/lite/delegates/flex/buffer_map.h" #include <sys/types.h> #include <functional> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/delegates/flex/buffer_map_util.h" #include "tensorflow/lite/interpreter.h" #include "tensorflow/lite/string_util.h" #include "tensorflow/lite/testing/util.h" #include "tensorflow/lite/util.h" namespace tflite { namespace flex { namespace { using ::testing::ElementsAre; using UniqueTfLiteTensor = std::unique_ptr<TfLiteTensor, std::function<void(TfLiteTensor*)>>; template <typename T> UniqueTfLiteTensor MakeLiteTensor(const std::vector<int>& shape, const std::vector<T>& data) { auto tensor = UniqueTfLiteTensor(new TfLiteTensor(), [](TfLiteTensor* t) { TfLiteTensorDataFree(t); TfLiteIntArrayFree(t->dims); delete t; }); tensor->allocation_type = kTfLiteDynamic; tensor->type = typeToTfLiteType<T>(); tensor->dims = ConvertVectorToTfLiteIntArray(shape); TfLiteTensorRealloc(data.size() * sizeof(T), tensor.get()); memcpy(tensor->data.raw, data.data(), data.size() * sizeof(T)); return tensor; } template <> UniqueTfLiteTensor MakeLiteTensor<string>(const std::vector<int>& shape, const std::vector<string>& data) { auto tensor = UniqueTfLiteTensor(new TfLiteTensor(), [](TfLiteTensor* t) { TfLiteTensorDataFree(t); TfLiteIntArrayFree(t->dims); delete t; }); tensor->allocation_type = kTfLiteDynamic; tensor->type = typeToTfLiteType<string>(); tensor->dims = ConvertVectorToTfLiteIntArray(shape); TfLiteTensorRealloc(data.size() * sizeof(string), tensor.get()); DynamicBuffer b; for (const string& s : data) { b.AddString(s.data(), s.size()); } b.WriteToTensor(tensor.get(), ConvertVectorToTfLiteIntArray(shape)); return tensor; } template <typename T> tensorflow::Tensor MakeTensor(const std::vector<int64_t>& shape, const std::vector<T>& data, tensorflow::DataType dtype) { tensorflow::Tensor tensor(dtype, tensorflow::TensorShape(shape)); memcpy(tensor.data(), data.data(), data.size() * sizeof(T)); return tensor; } std::vector<int64_t> GetTensorShape(const tensorflow::Tensor& t) { std::vector<int64_t> shape(t.dims()); for (int i = 0; i < t.dims(); ++i) { shape[i] = t.dim_size(i); } return shape; } template <typename T> std::vector<T> GetTensorData(const tensorflow::Tensor& t) { const T* data = t.flat<T>().data(); return std::vector<T>(data, data + t.NumElements()); } TEST(BufferMapTest, EmptyBuffer) { BufferMap buffer_map; EXPECT_FALSE(buffer_map.HasTensor(0)); } TEST(BufferMapTest, SetFromTfLite) { BufferMap buffer_map; UniqueTfLiteTensor t = MakeLiteTensor<float>({1, 2, 1, 3}, {0, 0, 0, 0.123f, 0, 0}); buffer_map.SetFromTfLite(0, t.get()); ASSERT_TRUE(buffer_map.HasTensor(0)); EXPECT_THAT(GetTensorData<float>(buffer_map.GetTensor(0)), ElementsAre(0, 0, 0, 0.123f, 0, 0)); tensorflow::Tensor out_tensor = buffer_map.GetTensor(0); ASSERT_EQ(out_tensor.dtype(), tensorflow::DT_FLOAT); ASSERT_EQ(out_tensor.NumElements(), 6); ASSERT_THAT(GetTensorShape(out_tensor), ElementsAre(1, 2, 1, 3)); } TEST(BufferMapTest, SetFromTfLiteString) { BufferMap buffer_map; UniqueTfLiteTensor t = MakeLiteTensor<string>({1, 2, 1, 3}, {"", "", "", "str1", "", ""}); buffer_map.SetFromTfLite(0, t.get()); ASSERT_TRUE(buffer_map.HasTensor(0)); EXPECT_THAT(GetTensorData<tensorflow::tstring>(buffer_map.GetTensor(0)), ElementsAre("", "", "", "str1", "", "")); tensorflow::Tensor out_tensor = buffer_map.GetTensor(0); ASSERT_EQ(out_tensor.dtype(), tensorflow::DT_STRING); ASSERT_EQ(out_tensor.NumElements(), 6); ASSERT_THAT(GetTensorShape(out_tensor), ElementsAre(1, 2, 1, 3)); } TEST(BufferMapTest, SetFromTfLiteTwice) { UniqueTfLiteTensor t1 = MakeLiteTensor<float>({1, 2, 1, 3}, {0, 0, 0, 0.123f, 0, 0}); UniqueTfLiteTensor t2 = MakeLiteTensor<int>({1, 2, 4}, {0, 0, 0, 3, 0, 0, 1, 2}); BufferMap buffer_map; buffer_map.SetFromTfLite(0, t1.get()); buffer_map.SetFromTfLite(0, t2.get()); EXPECT_THAT(GetTensorData<int>(buffer_map.GetTensor(0)), ElementsAre(0, 0, 0, 3, 0, 0, 1, 2)); } TEST(BufferMapTest, SetFromTfLiteStringTwice) { UniqueTfLiteTensor t1 = MakeLiteTensor<float>({1, 2, 1, 3}, {0, 0, 0, 0.123f, 0, 0}); UniqueTfLiteTensor t2 = MakeLiteTensor<string>({1, 2, 4}, {"", "", "", "s3", "", "", "s1", "s2"}); BufferMap buffer_map; buffer_map.SetFromTfLite(0, t1.get()); buffer_map.SetFromTfLite(0, t2.get()); EXPECT_THAT(GetTensorData<tensorflow::tstring>(buffer_map.GetTensor(0)), ElementsAre("", "", "", "s3", "", "", "s1", "s2")); } TEST(BufferMapTest, SetFromTfLiteBuiltinResource) { BufferMap buffer_map; auto tensor = UniqueTfLiteTensor(new TfLiteTensor(), [](TfLiteTensor* t) { TfLiteTensorDataFree(t); TfLiteIntArrayFree(t->dims); delete t; }); tensor->allocation_type = kTfLiteDynamic; tensor->type = kTfLiteResource; tensor->dims = ConvertVectorToTfLiteIntArray({1}); TfLiteTensorRealloc(sizeof(int32_t), tensor.get()); tensor->delegate = nullptr; tensor->data.i32[0] = 1; buffer_map.SetFromTfLite(0, tensor.get()); tensorflow::Tensor out_tensor = buffer_map.GetTensor(0); ASSERT_EQ(out_tensor.dtype(), tensorflow::DT_RESOURCE); ASSERT_EQ(out_tensor.NumElements(), 1); tensorflow::ResourceHandle handle = out_tensor.flat<tensorflow::ResourceHandle>()(0); EXPECT_EQ(handle.name(), "tflite_resource_variable:1"); } TEST(BufferMapTest, SetFromTensorFlow) { tensorflow::Tensor t1 = MakeTensor<float>( {1, 2, 1, 3}, {0, 0, 0, 0.123f, 0, 0}, tensorflow::DT_FLOAT); BufferMap buffer_map; buffer_map.SetFromTensorFlow(0, t1); EXPECT_THAT(GetTensorData<float>(buffer_map.GetTensor(0)), ElementsAre(0, 0, 0, 0.123f, 0, 0)); tensorflow::Tensor out_tensor = buffer_map.GetTensor(0); ASSERT_EQ(out_tensor.dtype(), tensorflow::DT_FLOAT); ASSERT_EQ(out_tensor.NumElements(), 6); ASSERT_THAT(GetTensorShape(out_tensor), ElementsAre(1, 2, 1, 3)); } TEST(BufferMapTest, SetFromTensorFlowTwice) { tensorflow::Tensor t1 = MakeTensor<float>( {1, 2, 1, 3}, {0, 0, 0, 0.123f, 0, 0}, tensorflow::DT_FLOAT); tensorflow::Tensor t2 = MakeTensor<int>({1, 2, 4}, {0, 0, 0, 3, 0, 0, 1, 2}, tensorflow::DT_INT32); BufferMap buffer_map; buffer_map.SetFromTensorFlow(0, t1); buffer_map.SetFromTensorFlow(0, t2); EXPECT_THAT(GetTensorData<int>(buffer_map.GetTensor(0)), ElementsAre(0, 0, 0, 3, 0, 0, 1, 2)); } TEST(BufferMapTest, TfLiteOverwritesTensorFlow) { tensorflow::Tensor t1 = MakeTensor<float>( {1, 2, 1, 3}, {0, 0, 0, 0.123f, 0, 0}, tensorflow::DT_FLOAT); UniqueTfLiteTensor t2 = MakeLiteTensor<int>({1, 2, 4}, {0, 0, 0, 3, 0, 0, 1, 2}); BufferMap buffer_map; buffer_map.SetFromTensorFlow(0, t1); buffer_map.SetFromTfLite(0, t2.get()); EXPECT_THAT(GetTensorData<int>(buffer_map.GetTensor(0)), ElementsAre(0, 0, 0, 3, 0, 0, 1, 2)); } TEST(BufferMapTest, TensorFlowOverwritesTfLite) { tensorflow::Tensor t1 = MakeTensor<float>( {1, 2, 1, 3}, {0, 0, 0, 0.123f, 0, 0}, tensorflow::DT_FLOAT); UniqueTfLiteTensor t2 = MakeLiteTensor<int>({1, 2, 4}, {0, 0, 0, 3, 0, 0, 1, 2}); BufferMap buffer_map; buffer_map.SetFromTfLite(0, t2.get()); buffer_map.SetFromTensorFlow(0, t1); EXPECT_THAT(GetTensorData<float>(buffer_map.GetTensor(0)), ElementsAre(0, 0, 0, 0.123f, 0, 0)); } TEST(BufferMapTest, TensorflowBufferReuse) { TfLiteTensor tensor; tensor.allocation_type = kTfLiteDynamic; tensor.data.raw = nullptr; TfLiteTensorRealloc(10, &tensor); CHECK(tensor.data.raw); EXPECT_EQ(tensor.bytes, 10); TfLiteTensorBuffer* tensor_buffer_reused = new TfLiteTensorBuffer(&tensor); EXPECT_TRUE(tensor_buffer_reused->BufferReusedFromTfLiteTensor()); EXPECT_EQ(tensor_buffer_reused->data(), tensor.data.raw); tensor_buffer_reused->Unref(); TfLiteTensorDataFree(&tensor); } TEST(BufferMapTest, ExplicitlyDisableBufferReuse) { TfLiteTensor tensor; tensor.allocation_type = kTfLiteDynamic; tensor.data.raw = nullptr; TfLiteTensorRealloc(10, &tensor); CHECK(tensor.data.raw); EXPECT_EQ(tensor.bytes, 10); TfLiteTensorBuffer* tensor_buffer = new TfLiteTensorBuffer(&tensor, false); EXPECT_FALSE(tensor_buffer->BufferReusedFromTfLiteTensor()); EXPECT_NE(tensor_buffer->data(), tensor.data.raw); tensor_buffer->Unref(); TfLiteTensorDataFree(&tensor); } } } }
982
cpp
tensorflow/tensorflow
kernel
third_party/xla/xla/stream_executor/kernel.cc
third_party/xla/xla/stream_executor/kernel_test.cc
#include "absl/base/attributes.h" #ifndef XLA_STREAM_EXECUTOR_KERNEL_H_ #define XLA_STREAM_EXECUTOR_KERNEL_H_ #include <array> #include <cassert> #include <cstddef> #include <cstdint> #include <cstring> #include <functional> #include <memory> #include <optional> #include <string> #include <tuple> #include <type_traits> #include <utility> #include "absl/container/inlined_vector.h" #include "absl/meta/type_traits.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/kernel_spec.h" #include "xla/stream_executor/launch_dim.h" #include "tsl/platform/logging.h" namespace stream_executor { class Kernel; enum class KernelCacheConfig { kNoPreference, kPreferShared, kPreferL1, kPreferEqual, }; class KernelMetadata { public: KernelMetadata() = default; std::optional<int64_t> registers_per_thread() const; std::optional<int64_t> shared_memory_bytes() const; void set_registers_per_thread(int registers_per_thread); void set_shared_memory_bytes(int shared_memory_bytes); private: std::optional<int64_t> registers_per_thread_; std::optional<int64_t> shared_memory_bytes_; }; class KernelArgs { public: template <typename T> using IsKernelArgs = std::enable_if_t<std::is_base_of<KernelArgs, T>::value>; enum class Kind { kDeviceMemoryArray, kPackedArray }; virtual ~KernelArgs() = default; virtual size_t number_of_arguments() const = 0; virtual uint64_t number_of_shared_bytes() const = 0; virtual Kind kind() const = 0; }; class KernelArgsPackedArrayBase : public KernelArgs { public: virtual absl::Span<const void *const> argument_addresses() const = 0; static bool classof(const KernelArgs *args) { return args->kind() == Kind::kPackedArray; } Kind kind() const final { return Kind::kPackedArray; } }; class Kernel { public: using KernelArgsPacking = std::function<absl::StatusOr<std::unique_ptr<KernelArgsPackedArrayBase>>( const Kernel &kernel, const KernelArgs &args)>; Kernel() = default; virtual ~Kernel() = default; Kernel(const Kernel &) = delete; void operator=(const Kernel &) = delete; virtual unsigned Arity() const = 0; virtual absl::StatusOr<int32_t> GetMaxOccupiedBlocksPerCore( ThreadDim threads, size_t dynamic_shared_memory_bytes) const = 0; KernelCacheConfig cache_config() const { return cache_config_; } void set_cache_config(KernelCacheConfig cache_config) { cache_config_ = std::move(cache_config); } const KernelMetadata &metadata() const { return metadata_; } void set_metadata(KernelMetadata metadata) { metadata_ = std::move(metadata); } const KernelArgsPacking &args_packing() const { return args_packing_; } void set_args_packing(KernelArgsPacking args_packing) { args_packing_ = std::move(args_packing); } std::string_view name() const { return name_; } void set_name(absl::string_view name); std::string_view demangled_name() const { return demangled_name_; } private: std::string name_; std::string demangled_name_; KernelCacheConfig cache_config_ = KernelCacheConfig::kNoPreference; KernelMetadata metadata_; KernelArgsPacking args_packing_; }; template <typename... Params> class TypedKernelFactory; template <typename... Params> class TypedKernel { public: static constexpr size_t kNumberOfParameters = sizeof...(Params); TypedKernel() = default; Kernel &operator*() { return *kernel_; } const Kernel &operator*() const { return *kernel_; } Kernel *operator->() { return kernel_.get(); } const Kernel *operator->() const { return kernel_.get(); } operator bool() const { return static_cast<bool>(kernel_); } using FactoryType = TypedKernelFactory<Params...>; private: friend class TypedKernelFactory<Params...>; explicit TypedKernel(std::unique_ptr<Kernel> kernel) : kernel_(std::move(kernel)) {} std::unique_ptr<Kernel> kernel_; }; template <class T, KernelArgs::IsKernelArgs<T> * = nullptr> T *Cast(KernelArgs *args) { CHECK(T::classof(args)) << "Invalid arguments casting to a destination type: " << typeid(T).name(); CHECK(args != nullptr) << "Casted arguments must be not null"; return static_cast<const T *>(args); } template <class T, KernelArgs::IsKernelArgs<T> * = nullptr> const T *Cast(const KernelArgs *args) { CHECK(T::classof(args)) << "Invalid arguments casting to a destination type: " << typeid(T).name(); CHECK(args != nullptr) << "Casted arguments must be not null"; return static_cast<const T *>(args); } template <class T, KernelArgs::IsKernelArgs<T> * = nullptr> const T *DynCast(const KernelArgs *args) { CHECK(args != nullptr) << "Casted arguments must be not null"; return T::classof(args) ? static_cast<const T *>(args) : nullptr; } template <class T, KernelArgs::IsKernelArgs<T> * = nullptr> const T *DynCastOrNull(const KernelArgs *args) { return args && T::classof(args) ? static_cast<const T *>(args) : nullptr; } class KernelArgsDeviceMemoryArray : public KernelArgs { public: KernelArgsDeviceMemoryArray(absl::Span<const DeviceMemoryBase> args, size_t shared_memory_bytes) : device_memory_args_(args.begin(), args.end()), shared_memory_bytes_(shared_memory_bytes) {} static bool classof(const KernelArgs *args) { return args->kind() == Kind::kDeviceMemoryArray; } Kind kind() const final { return Kind::kDeviceMemoryArray; } size_t number_of_arguments() const final { return device_memory_args_.size() + (shared_memory_bytes_ > 0); } uint64_t number_of_shared_bytes() const final { return shared_memory_bytes_; } absl::Span<const DeviceMemoryBase> device_memory_args() const { return device_memory_args_; } const void *device_memory_ptr(size_t index) const { return device_memory_args_[index].opaque(); } size_t device_memory_size(size_t index) const { return device_memory_args_[index].size(); } private: absl::InlinedVector<DeviceMemoryBase, 4> device_memory_args_; size_t shared_memory_bytes_ = 0; }; namespace internal { class EmptyArgs {}; template <size_t capacity, size_t size = 8, size_t alignment = alignof(std::max_align_t)> class PodArgs { protected: template <typename T> const std::byte *add_pod_argument(const T &arg) { static_assert( std::is_pod_v<T> && sizeof(T) <= size & alignof(T) <= alignment, "Type is not compatible with POD arguments storage"); assert(num_args_ < capacity && "pod args overflow"); std::byte *arg_storage = args_storage_[num_args_++].storage; std::memcpy(arg_storage, &arg, sizeof(T)); return arg_storage; } private: struct Arg { alignas(alignment) std::byte storage[size]; }; size_t num_args_ = 0; std::array<Arg, capacity> args_storage_; }; template <typename ArgsStorage> static constexpr bool is_pod_args_v = false; template <size_t capacity, size_t size, size_t alignment> static constexpr bool is_pod_args_v<PodArgs<capacity, size, alignment>> = true; } template <size_t num_args, typename ArgsStorage = internal::PodArgs<num_args>> class KernelArgsPackedArray : public KernelArgsPackedArrayBase, ArgsStorage { public: KernelArgsPackedArray() = default; KernelArgsPackedArray(const KernelArgsPackedArray &) = delete; KernelArgsPackedArray &operator=(const KernelArgsPackedArray &) = delete; template <typename T> void add_argument(const T &arg) { if constexpr (internal::is_pod_args_v<ArgsStorage>) { argument_addresses_[number_of_argument_addresses_++] = ArgsStorage::add_pod_argument(arg); } else { static_assert(sizeof(T) == 0, "Arguments storage is not supported"); } } void add_device_memory_argument(const DeviceMemoryBase &arg) { const void **copy_ptr = &device_memory_opaque_pointers_[number_of_argument_addresses_]; *copy_ptr = arg.opaque(); argument_addresses_[number_of_argument_addresses_] = copy_ptr; ++number_of_argument_addresses_; } void add_shared_bytes(size_t number_of_bytes) { shared_memory_bytes_ += number_of_bytes; } size_t number_of_arguments() const final { return number_of_argument_addresses_ + (shared_memory_bytes_ > 0); } uint64_t number_of_shared_bytes() const final { return shared_memory_bytes_; } absl::Span<const void *const> argument_addresses() const final { return absl::Span<const void *const>(argument_addresses_.data(), number_of_argument_addresses_); } private: std::array<const void *, num_args> device_memory_opaque_pointers_; std::array<const void *, num_args> argument_addresses_; size_t shared_memory_bytes_ = 0; size_t number_of_argument_addresses_ = 0; }; namespace internal { template <int n> std::unique_ptr<KernelArgsPackedArrayBase> PackKernelArgs( absl::Span<const DeviceMemoryBase> args, uint32_t shared_mem_bytes) { auto packed = std::make_unique<KernelArgsPackedArray<n, EmptyArgs>>(); for (const DeviceMemoryBase &buf : args) { packed->add_device_memory_argument(buf); } if (shared_mem_bytes > 0) { packed->add_shared_bytes(shared_mem_bytes); } return packed; } } inline absl::StatusOr<std::unique_ptr<KernelArgsPackedArrayBase>> PackKernelArgs(absl::Span<const DeviceMemoryBase> args, uint32_t shared_mem_bytes) { static constexpr int kKernelArgsLimit = 1024; if (args.size() > kKernelArgsLimit) return absl::InvalidArgumentError(absl::StrCat( "Can't pack device memory arguments array of size ", args.size(), " which is larger than the maximum supported size of ", kKernelArgsLimit)); if (args.size() <= 4) { return internal::PackKernelArgs<4>(args, shared_mem_bytes); } else if (args.size() <= 8) { return internal::PackKernelArgs<8>(args, shared_mem_bytes); } else if (args.size() <= 16) { return internal::PackKernelArgs<16>(args, shared_mem_bytes); } else if (args.size() <= 32) { return internal::PackKernelArgs<32>(args, shared_mem_bytes); } else if (args.size() <= 64) { return internal::PackKernelArgs<64>(args, shared_mem_bytes); } else if (args.size() <= 256) { return internal::PackKernelArgs<256>(args, shared_mem_bytes); } else if (args.size() <= 512) { return internal::PackKernelArgs<512>(args, shared_mem_bytes); } return internal::PackKernelArgs<kKernelArgsLimit>(args, shared_mem_bytes); } inline absl::StatusOr<std::unique_ptr<KernelArgsPackedArrayBase>> PackKernelArgs(absl::Span<const DeviceMemoryBase> args, const KernelMetadata &metadata) { return PackKernelArgs(args, metadata.shared_memory_bytes().value_or(0)); } namespace internal { template <typename T> struct PackedArgType { static_assert(!std::is_pointer_v<T>, "cannot pass raw pointer to the device"); using Type = T; }; template <> struct PackedArgType<DeviceMemoryBase> { using Type = const void *; }; template <typename T> struct PackedArgType<DeviceMemory<T>> { using Type = typename PackedArgType<DeviceMemoryBase>::Type; }; template <> struct PackedArgType<DeviceMemoryBase *> { using Type = typename PackedArgType<DeviceMemoryBase>::Type; }; template <> struct PackedArgType<const DeviceMemoryBase *> { using Type = typename PackedArgType<DeviceMemoryBase>::Type; }; template <typename T> struct PackedArgType<DeviceMemory<T> *> { using Type = typename PackedArgType<DeviceMemoryBase>::Type; }; template <typename T> struct PackedArgType<const DeviceMemory<T> *> { using Type = typename PackedArgType<DeviceMemoryBase>::Type; }; template <typename T, std::enable_if_t<!std::is_pointer_v<T>> * = nullptr> T PackArg(const T &arg) { return arg; } inline const void *PackArg(const DeviceMemoryBase &arg) { return arg.opaque(); } inline const void *PackArg(const DeviceMemoryBase *arg) { return PackArg(*arg); } template <typename T> const void *PackArg(const DeviceMemory<T> &arg) { return arg.opaque(); } template <typename T> const void *PackArg(const DeviceMemory<T> *arg) { return PackArg(*arg); } } template <typename... Args> class KernelArgsPackedTuple : public KernelArgsPackedArrayBase { public: static constexpr size_t kSize = sizeof...(Args); using Storage = std::tuple< typename internal::PackedArgType<absl::remove_cvref_t<Args>>::Type...>; explicit KernelArgsPackedTuple(Args... args, size_t shared_memory_bytes) : storage_(internal::PackArg(std::forward<Args>(args))...), shared_memory_bytes_(shared_memory_bytes) { InitializeArgumentAddresses(std::make_index_sequence<kSize>{}); } KernelArgsPackedTuple(const KernelArgsPackedTuple &) = delete; KernelArgsPackedTuple &operator=(const KernelArgsPackedTuple &) = delete; size_t number_of_arguments() const final { return kSize + (shared_memory_bytes_ > 0); } uint64_t number_of_shared_bytes() const final { return shared_memory_bytes_; } absl::Span<const void *const> argument_addresses() const final { return absl::Span<const void *const>(argument_addresses_.data(), kSize); } template <typename... OtherArgs> static void CheckCompatibleStaticAssert() { static constexpr size_t kOtherSize = sizeof...(OtherArgs); static_assert(kSize == kOtherSize, "length of arguments packs must match"); using StrippedArgs = std::tuple<absl::remove_cvref_t<Args>...>; using StrippedOtherArgs = std::tuple<absl::remove_cvref_t<OtherArgs>...>; static_assert(std::is_same_v<StrippedArgs, StrippedOtherArgs>, "arguments types do not match"); } private: template <size_t... Is> void InitializeArgumentAddresses(std::index_sequence<Is...>) { ((argument_addresses_[Is] = &std::get<Is>(storage_)), ...); } Storage storage_; size_t shared_memory_bytes_ = 0; std::array<const void *, kSize> argument_addresses_; }; template <typename... Args> std::unique_ptr<KernelArgsPackedArrayBase> PackKernelArgs(int64_t shmem_bytes, Args... args) { using PackedArgs = KernelArgsPackedTuple<Args...>; return std::make_unique<PackedArgs>(std::forward<Args>(args)..., shmem_bytes); } template <typename... Params, typename... Args> std::unique_ptr<KernelArgsPackedArrayBase> PackKernelArgs( const TypedKernel<Params...> &kernel, Args... args) { using PackedParams = KernelArgsPackedTuple<Params...>; using PackedArgs = KernelArgsPackedTuple<Args...>; PackedParams::template CheckCompatibleStaticAssert<Args...>(); int64_t shmem_bytes = kernel->metadata().shared_memory_bytes().value_or(0); return std::make_unique<PackedArgs>(std::forward<Args>(args)..., shmem_bytes); } } #endif #include "xla/stream_executor/kernel.h" #include <cstdint> #include <optional> #include <string> #include "absl/strings/string_view.h" #include "absl/strings/strip.h" #include "tsl/platform/demangle.h" namespace stream_executor { std::optional<int64_t> KernelMetadata::registers_per_thread() const { return registers_per_thread_; } std::optional<int64_t> KernelMetadata::shared_memory_bytes() const { return shared_memory_bytes_; } void KernelMetadata::set_registers_per_thread(int registers_per_thread) { registers_per_thread_ = registers_per_thread; } void KernelMetadata::set_shared_memory_bytes(int shared_memory_bytes) { shared_memory_bytes_ = shared_memory_bytes; } void Kernel::set_name(absl::string_view name) { name_ = std::string(name); demangled_name_ = tsl::port::Demangle(absl::StripPrefix(name, "__device_stub_").data()); } }
#include "xla/stream_executor/kernel.h" #include <cstdint> #include <memory> #include <tuple> #include <type_traits> #include <vector> #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/kernel_spec.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/platform_manager.h" #include "xla/stream_executor/stream_executor.h" #include "xla/stream_executor/typed_kernel_factory.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" namespace stream_executor { struct Data {}; template <typename... Args> using ArgsStorage = typename KernelArgsPackedTuple<Args...>::Storage; static_assert( std::is_same_v<ArgsStorage<int32_t, const int32_t, int32_t&, const int32_t>, std::tuple<int32_t, int32_t, int32_t, int32_t>>); static_assert(std::is_same_v<ArgsStorage<Data, const Data, Data&, const Data>, std::tuple<Data, Data, Data, Data>>); static_assert(std::is_same_v< ArgsStorage<DeviceMemoryBase, const DeviceMemoryBase, DeviceMemoryBase&, const DeviceMemoryBase&>, std::tuple<const void*, const void*, const void*, const void*>>); static_assert(std::is_same_v< ArgsStorage<DeviceMemory<float>, const DeviceMemory<float>, DeviceMemory<float>&, const DeviceMemory<float>&>, std::tuple<const void*, const void*, const void*, const void*>>); static_assert( std::is_same_v<ArgsStorage<DeviceMemoryBase*, const DeviceMemoryBase*>, std::tuple<const void*, const void*>>); static std::unique_ptr<StreamExecutor> NewStreamExecutor() { Platform* platform = PlatformManager::PlatformWithName("Host").value(); StreamExecutorConfig config(0); return platform->GetUncachedExecutor(config).value(); } TEST(KernelTest, PackDeviceMemoryArguments) { auto executor = NewStreamExecutor(); DeviceMemoryBase a(reinterpret_cast<void*>(0x12345678)); DeviceMemoryBase b(reinterpret_cast<void*>(0x87654321)); auto args = PackKernelArgs({a, b}, 0).value(); ASSERT_EQ(args->number_of_arguments(), 2); auto packed = args->argument_addresses(); const void* ptr0 = *reinterpret_cast<const void* const*>(packed[0]); const void* ptr1 = *reinterpret_cast<const void* const*>(packed[1]); ASSERT_EQ(ptr0, a.opaque()); ASSERT_EQ(ptr1, b.opaque()); } TEST(KernelTest, PackPodArguments) { auto args = std::make_unique<KernelArgsPackedArray<4>>(); args->add_argument(1); args->add_argument(2.0f); args->add_argument(3.0); ASSERT_EQ(args->number_of_arguments(), 3); auto packed = args->argument_addresses(); int32_t i32 = *reinterpret_cast<const int32_t*>(packed[0]); float f32 = *reinterpret_cast<const float*>(packed[1]); double f64 = *reinterpret_cast<const double*>(packed[2]); ASSERT_EQ(i32, 1); ASSERT_EQ(f32, 2.0f); ASSERT_EQ(f64, 3.0); } TEST(KernelTest, PackTupleArguments) { auto args = PackKernelArgs(0, 1, 2.0f, 3.0); ASSERT_EQ(args->number_of_arguments(), 3); auto packed = args->argument_addresses(); int32_t i32 = *reinterpret_cast<const int32_t*>(packed[0]); float f32 = *reinterpret_cast<const float*>(packed[1]); double f64 = *reinterpret_cast<const double*>(packed[2]); ASSERT_EQ(i32, 1); ASSERT_EQ(f32, 2.0f); ASSERT_EQ(f64, 3.0); } TEST(KernelTest, FailToCreateTypedKernelFromEmptySpec) { MultiKernelLoaderSpec empty_spec(0); auto executor = NewStreamExecutor(); auto kernel = TypedKernelFactory<>::Create(executor.get(), empty_spec); EXPECT_FALSE(kernel.ok()); } static void BM_PackDeviceMemoryArgs(benchmark::State& state) { std::vector<DeviceMemoryBase> args(state.range(0)); for (int i = 0; i < state.range(0); ++i) { args[i] = DeviceMemoryBase(reinterpret_cast<void*>(0x12345678), 42); } for (auto s : state) { auto packed = PackKernelArgs(args, 0); benchmark::DoNotOptimize(packed); } } BENCHMARK(BM_PackDeviceMemoryArgs) ->Arg(4) ->Arg(8) ->Arg(32) ->Arg(64) ->Arg(128) ->Arg(256) ->Arg(512) ->Arg(1024); }
983
cpp
tensorflow/tensorflow
weight_cache
tensorflow/lite/delegates/xnnpack/weight_cache.cc
tensorflow/lite/delegates/xnnpack/weight_cache_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_XNNPACK_WEIGHT_CACHE_H_ #define TENSORFLOW_LITE_DELEGATES_XNNPACK_WEIGHT_CACHE_H_ #include <cstddef> #include <cstdint> #include <functional> #include <memory> #include <string> #include <unordered_map> #include <vector> #include "xnnpack.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/delegates/xnnpack/weight_cache_schema_generated.h" namespace tflite { namespace xnnpack { struct XNNPackCacheHeader { enum : uint64_t { kInvalidHeader = 0, kVersion = 1 }; uint64_t version; uint8_t xnnpack_build_identifier[32]; uint64_t buffer_list_offset; uint64_t buffer_list_size; }; struct PackIdentifier { enum { kNoId = SIZE_MAX }; uint64_t pack_algorithm_id = kNoId; uint64_t weights_id = kNoId; uint64_t bias_id = kNoId; friend bool operator==(const PackIdentifier& a, const PackIdentifier& b) { return a.pack_algorithm_id == b.pack_algorithm_id && a.weights_id == b.weights_id && a.bias_id == b.bias_id; } struct Hash { size_t operator()(const PackIdentifier& p) const { std::hash<uint64_t> hasher; return hasher(p.pack_algorithm_id) ^ hasher(p.weights_id) ^ hasher(p.bias_id); } }; }; struct BufferLocation { uint64_t offset; uint64_t size; }; class MMapHandle { public: using value_type = uint8_t; MMapHandle() = default; ~MMapHandle(); MMapHandle(const MMapHandle&) = delete; MMapHandle& operator=(const MMapHandle&) = delete; MMapHandle(MMapHandle&&); MMapHandle& operator=(MMapHandle&&); [[nodiscard ]] bool Map(const char* path); void UnMap(); bool IsMapped() const { return data_ != nullptr; } uint8_t* data() { return data_; } const uint8_t* data() const { return data_; } size_t size() const { return size_; } uint8_t* begin() { return data(); } const uint8_t* begin() const { return data(); } uint8_t* end() { return data() + size(); } const uint8_t* end() const { return data() + size(); } friend void swap(MMapHandle& a, MMapHandle& b); private: size_t size_ = 0; uint8_t* data_ = nullptr; }; class WeightCacheBuilder { public: WeightCacheBuilder() = default; ~WeightCacheBuilder(); WeightCacheBuilder(const WeightCacheBuilder&) = delete; WeightCacheBuilder& operator=(const WeightCacheBuilder&) = delete; WeightCacheBuilder(WeightCacheBuilder&&); WeightCacheBuilder& operator=(WeightCacheBuilder&&); [[nodiscard ]] bool Start(const char* path); [[nodiscard]] bool IsStarted() const { return fd_ != -1; } void Reset(); [[nodiscard ]] void* Reserve(size_t size); [[nodiscard ]] BufferLocation Append(PackIdentifier pack_id, const void* data, uint64_t size); bool ShouldFinalize() const; [[nodiscard ]] bool Finalize(); size_t capacity() const { return capacity_; } uint8_t* data() const { return data_.get(); } friend void swap(WeightCacheBuilder& a, WeightCacheBuilder& b); private: std::unique_ptr<uint8_t[]> data_ = nullptr; cache::schema::BufferListT schema_; size_t capacity_ = 0; int fd_ = -1; std::string file_path_; }; class MMapWeightCacheProvider { public: MMapWeightCacheProvider() = default; MMapWeightCacheProvider(const MMapWeightCacheProvider&) = delete; MMapWeightCacheProvider& operator=(const MMapWeightCacheProvider&) = delete; MMapWeightCacheProvider(MMapWeightCacheProvider&&); MMapWeightCacheProvider& operator=(MMapWeightCacheProvider&&); void SetFilePath(const char* file_path); const std::string& GetFilePath() const { return file_path_; } [[nodiscard ]] bool LoadOrStartBuild(const char* file_path); [[nodiscard ]] bool StartBuild(const char* file_path); [[nodiscard ]] bool Load(const std::string& path); [[nodiscard ]] bool Load(); void MapTensorIdentifiers( const TfLiteTensor* tensors, size_t size, const std::unordered_map<size_t, size_t>& tensor_index_to_identifier); [[nodiscard]] size_t LookUp(const xnn_weights_cache_look_up_key* cache_key); [[nodiscard]] void* ReserveSpace(size_t size); [[nodiscard]] size_t LookUpOrInsert(const xnn_weights_cache_look_up_key* cache_key, void* ptr, size_t size); void* OffsetToAddr(size_t offset); void Release(); [[nodiscard ]] bool Finalize(); bool IsFinalized() const; bool IsBuilding() const { return !IsFinalized() && !file_path_.empty(); }; bool IsActive() const { return IsFinalized() || !file_path_.empty(); }; xnn_weights_cache_provider& GetCacheProvider() { return cache_provider_; } static size_t look_up(void* context, const xnn_weights_cache_look_up_key* cache_key); static void* reserve_space(void* context, size_t n); static size_t look_up_or_insert( void* context, const xnn_weights_cache_look_up_key* cache_key, void* ptr, size_t size); static bool is_finalized(void* context); static void* offset_to_addr(void* context, size_t offset); static enum xnn_status delete_cache(void* context); private: PackIdentifier BuildPackIdentifier(const xnn_weights_cache_look_up_key& key); xnn_weights_cache_provider cache_provider_{ .context = this, .look_up = MMapWeightCacheProvider::look_up, .reserve_space = MMapWeightCacheProvider::reserve_space, .look_up_or_insert = MMapWeightCacheProvider::look_up_or_insert, .is_finalized = MMapWeightCacheProvider::is_finalized, .offset_to_addr = MMapWeightCacheProvider::offset_to_addr, .delete_cache = MMapWeightCacheProvider::delete_cache}; std::string file_path_; std::unordered_map<const void*, uint64_t> buffer_address_to_identifier_; std::unordered_multimap<PackIdentifier, BufferLocation, PackIdentifier::Hash> cache_key_to_offset_; MMapHandle mmap_handle_; size_t mmap_buffer_base_offset_; WeightCacheBuilder builder_; }; } } #endif #include "tensorflow/lite/delegates/xnnpack/weight_cache.h" #include <fcntl.h> #include <sys/stat.h> #if defined(_MSC_VER) #include <io.h> #define F_OK 0 #else #include <sys/mman.h> #include <unistd.h> #endif #include <algorithm> #include <cerrno> #include <cstddef> #include <cstdint> #include <cstdio> #include <cstdlib> #include <cstring> #include <memory> #include <string> #include <unordered_map> #include <utility> #include "xnnpack.h" #include "flatbuffers/flatbuffer_builder.h" #include "flatbuffers/verifier.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/delegates/xnnpack/weight_cache_schema_generated.h" #include "tensorflow/lite/logger.h" #include "tensorflow/lite/minimal_logging.h" #define XNNPACK_ABORT_CHECK(TEST, ...) \ if (!(TEST)) { \ TFLITE_LOG_PROD(tflite::TFLITE_LOG_ERROR, __VA_ARGS__); \ std::abort(); \ } namespace tflite::xnnpack { namespace { constexpr size_t kMinAlignment = 64; size_t Align(size_t offset, const size_t alignment) { const size_t misalign = offset % alignment; return offset + (misalign ? alignment - misalign : 0); } template <class F> class ScopeGuard { public: explicit ScopeGuard(F&& callback) : callback_(std::forward<F>(callback)) {} ScopeGuard(const ScopeGuard&) = delete; ScopeGuard& operator=(const ScopeGuard&) = delete; ScopeGuard(ScopeGuard&& other) : active_(other.active_), callback_(std::move(other.callback_)) { other.Deactivate(); } ScopeGuard& operator=(ScopeGuard&& other) { if (this != &other) { active_ = std::move(other.active_); callback_ = std::move(other.callback_); other.Deactivate(); } } ~ScopeGuard() { if (active_) { callback_(); } } void Deactivate() { active_ = false; } private: F callback_; bool active_ = true; }; template <class F> ScopeGuard(F&&) -> ScopeGuard<F>; [[nodiscard]] bool FileExists(const char* path) { return access(path, F_OK) != -1; } } void swap(MMapHandle& a, MMapHandle& b) { using std::swap; swap(a.size_, b.size_); swap(a.data_, b.data_); } MMapHandle::~MMapHandle() { UnMap(); } MMapHandle::MMapHandle(MMapHandle&& other) { swap(*this, other); } MMapHandle& MMapHandle::operator=(MMapHandle&& other) { swap(*this, other); return *this; } bool MMapHandle::Map(const char* path) { this->UnMap(); const int fd = open(path, O_RDONLY); if (fd == -1) { TFLITE_LOG_PROD( tflite::TFLITE_LOG_ERROR, "XNNPack weight cache: could not open file to mmap ('%s'): %s.", path, strerror(errno)) return false; } const ScopeGuard close_fd_on_return([&fd] { if (fd >= 0) { close(fd); } }); struct stat file_stats; if (fstat(fd, &file_stats)) { TFLITE_LOG_PROD(tflite::TFLITE_LOG_ERROR, "XNNPack weight cache: could not access file stats to get " "size ('%s'): %s.", path, strerror(errno)) return false; } size_ = file_stats.st_size; #if defined(_MSC_VER) data_ = new uint8_t[size_]; { uint8_t* data_reader = data_; size_t remaining_bytes = size_; while (remaining_bytes > 0) { const auto bytes = read(fd, data_reader, remaining_bytes); if (bytes == -1) { TFLITE_LOG_PROD(tflite::TFLITE_LOG_ERROR, "XNNPack weight cache: could not read file ('%s'): %s.", path, strerror(errno)) UnMap(); return false; } remaining_bytes -= bytes; data_reader += bytes; } } #else data_ = static_cast<uint8_t*>( mmap(nullptr, size_, PROT_READ, MAP_SHARED, fd, 0)); if (data_ == MAP_FAILED) { TFLITE_LOG_PROD(tflite::TFLITE_LOG_ERROR, "XNNPack weight cache: could not mmap file (%s): %s.", path, strerror(errno)); data_ = nullptr; size_ = 0; return false; } #endif return true; } void MMapHandle::UnMap() { if (data_) { #if defined(_MSC_VER) delete[] data_; #else munmap(data_, size_); #endif data_ = nullptr; size_ = 0; } } void swap(WeightCacheBuilder& a, WeightCacheBuilder& b) { using std::swap; swap(a.schema_, b.schema_); swap(a.data_, b.data_); swap(a.capacity_, b.capacity_); swap(a.fd_, b.fd_); swap(a.file_path_, b.file_path_); } WeightCacheBuilder::WeightCacheBuilder(WeightCacheBuilder&& other) { swap(*this, other); } WeightCacheBuilder& WeightCacheBuilder::operator=(WeightCacheBuilder&& other) { Reset(); swap(*this, other); return *this; } WeightCacheBuilder::~WeightCacheBuilder() { Reset(); } namespace { bool WriteData(const int fd, const uint8_t* data, size_t size, const char* const file_path, const char* step_description) { for (size_t bytes = 0; bytes < size;) { const auto written_bytes = write(fd, data + bytes, size - bytes); if (written_bytes == -1) { TFLITE_LOG_PROD( tflite::TFLITE_LOG_ERROR, "XNNPack weight cache: file write incomplete (%s). %s: %s.", file_path, step_description, strerror(errno)) } bytes += written_bytes; } return true; } } bool WeightCacheBuilder::Start(const char* path) { Reset(); ScopeGuard reset_on_error([this] { Reset(); }); file_path_ = path; fd_ = open(file_path_.c_str(), O_CREAT | O_TRUNC | O_WRONLY, 0644); if (fd_ == -1) { TFLITE_LOG_PROD(tflite::TFLITE_LOG_ERROR, "Could not open file ('%s'): %s.", file_path_.c_str(), strerror(errno)); return false; } const XNNPackCacheHeader header{ .version = XNNPackCacheHeader::kInvalidHeader, .buffer_list_offset = 0, .buffer_list_size = 0, }; if (!WriteData(fd_, (const uint8_t*)&header, sizeof(header), file_path_.c_str(), "padding for flatbuffer offset")) { return false; } schema_.base_offset = Align(sizeof(header), kMinAlignment); reset_on_error.Deactivate(); return true; } void WeightCacheBuilder::Reset() { if (fd_ != -1) { close(fd_); fd_ = -1; file_path_.clear(); } data_.reset(nullptr); capacity_ = 0; } void* WeightCacheBuilder::Reserve(size_t size) { if (size > capacity_) { data_.reset(nullptr); data_ = std::make_unique<uint8_t[]>(size); capacity_ = size; } return data_.get(); } BufferLocation WeightCacheBuilder::Append(PackIdentifier pack_id, const void* data, uint64_t size) { XNNPACK_ABORT_CHECK(IsStarted(), "Cannot append data to an unstarted builder."); const size_t offset = Align(lseek(fd_, 0, SEEK_CUR), kMinAlignment); if (lseek(fd_, offset, SEEK_SET) != offset) { return BufferLocation{}; } BufferLocation loc{.offset = offset - schema_.base_offset, .size = size}; schema_.buffers.push_back(std::make_unique<cache::schema::BufferT>( cache::schema::BufferT{.packing_algorithm_id = pack_id.pack_algorithm_id, .weights_id = pack_id.weights_id, .bias_id = pack_id.bias_id, .offset = loc.offset, .size = loc.size})); WriteData(fd_, reinterpret_cast<const uint8_t*>(data), size, file_path_.c_str(), "Append buffer to cache file"); return loc; } bool WeightCacheBuilder::ShouldFinalize() const { return fd_ != -1; } bool WeightCacheBuilder::Finalize() { if (fd_ == -1) { TFLITE_LOG_PROD( tflite::TFLITE_LOG_ERROR, "XNNPack weight cache: cache file ('%s') is not open for writing: %s.", file_path_.c_str(), strerror(errno)) return false; } flatbuffers::FlatBufferBuilder builder; cache::schema::FinishBufferListBuffer( builder, cache::schema::BufferList::Pack(builder, &schema_)); const size_t layout_offset = Align(lseek(fd_, 0, SEEK_CUR), kMinAlignment); if (lseek(fd_, layout_offset, SEEK_SET) != layout_offset) { return false; } if (sizeof(XNNPackCacheHeader::xnnpack_build_identifier) != xnn_experimental_get_build_identifier_size()) { TFLITE_LOG_PROD(tflite::TFLITE_LOG_ERROR, "XNNPack weight cache: cache file ('%s') header cannot " "hold XNNPack's build identifier: %s.", file_path_.c_str(), strerror(errno)) return false; } XNNPackCacheHeader header{XNNPackCacheHeader::kVersion}; memcpy(header.xnnpack_build_identifier, xnn_experimental_get_build_identifier_data(), xnn_experimental_get_build_identifier_size()); header.buffer_list_offset = lseek(fd_, 0, SEEK_CUR); header.buffer_list_size = builder.GetSize(); if (!WriteData(fd_, builder.GetBufferPointer(), builder.GetSize(), file_path_.c_str(), "Buffer list")) { return false; } lseek(fd_, 0, SEEK_SET); WriteData(fd_, (const uint8_t*)&header, sizeof(header), file_path_.c_str(), "Writing header"); TFLITE_LOG_PROD(tflite::TFLITE_LOG_VERBOSE, "XNNPack weight cache: written to '%s'.", file_path_.c_str()); Reset(); return true; } MMapWeightCacheProvider::MMapWeightCacheProvider( MMapWeightCacheProvider&& other) { *this = std::move(other); } MMapWeightCacheProvider& MMapWeightCacheProvider::operator=( MMapWeightCacheProvider&& other) { using std::swap; swap(cache_provider_, other.cache_provider_); cache_provider_.context = this; other.cache_provider_.context = &other; swap(file_path_, other.file_path_); swap(buffer_address_to_identifier_, other.buffer_address_to_identifier_); swap(cache_key_to_offset_, other.cache_key_to_offset_); swap(mmap_handle_, other.mmap_handle_); swap(mmap_buffer_base_offset_, other.mmap_buffer_base_offset_); swap(builder_, other.builder_); return *this; } void MMapWeightCacheProvider::SetFilePath(const char* path) { XNNPACK_ABORT_CHECK( !IsFinalized(), "Cannot change the path of a cache that has already been loaded."); if (file_path_ != path) { file_path_ = path; } } bool MMapWeightCacheProvider::LoadOrStartBuild(const char* path) { if (Load(path)) { TFLITE_LOG_PROD(tflite::TFLITE_LOG_VERBOSE, "XNNPack weight cache loaded from '%s'.", path); return true; } else if (StartBuild(path)) { TFLITE_LOG_PROD(tflite::TFLITE_LOG_VERBOSE, "XNNPack weight cache build for '%s' started.", path); return true; } return false; } bool MMapWeightCacheProvider::StartBuild(const char* path) { SetFilePath(path); return builder_.Start(path); } bool MMapWeightCacheProvider::Load(const std::string& path) { SetFilePath(path.c_str()); return Load(); } bool MMapWeightCacheProvider::Load() { XNNPACK_ABORT_CHECK(!file_path_.empty(), "Path wasn't provided to weight cache provider."); mmap_buffer_base_offset_ = 0; cache_key_to_offset_.clear(); if (!FileExists(file_path_.c_str())) { TFLITE_LOG(tflite::TFLITE_LOG_WARNING, "XNNPack weight cache: could not load '%s': %s.", file_path_.c_str(), strerror(errno)); return false; } if (!mmap_handle_.Map(file_path_.c_str())) { return false; } ScopeGuard unmap_on_fail([this] { mmap_handle_.UnMap(); }); if (mmap_handle_.size() < sizeof(XNNPackCacheHeader)) { TFLITE_LOG_PROD(tflite::TFLITE_LOG_ERROR, "XNNPack weight cache: invalid cache file size."); return false; } const XNNPackCacheHeader header = [this] { XNNPackCacheHeader header; memcpy(&header, mmap_handle_.data(), sizeof(header)); return header; }(); if (header.version != XNNPackCacheHeader::kVersion) { TFLITE_LOG(tflite::TFLITE_LOG_VERBOSE, "XNNPack weight cache: incompatible header version. Cache " "needs to be built again."); return false; } if (!xnn_experimental_check_build_identifier( header.xnnpack_build_identifier, sizeof(header.xnnpack_build_identifier))) { TFLITE_LOG(tflite::TFLITE_LOG_VERBOSE, "XNNPack weight cache: incompatible XNNPack version. Cache " "needs to be built again."); return false; } if (header.buffer_list_offset >= mmap_handle_.size()) { TFLITE_LOG_PROD( tflite::TFLITE_LOG_ERROR, "XNNPack weight cache: invalid offset for buffer list descriptor."); return false; } if (header.buffer_list_size != mmap_handle_.size() - header.buffer_list_offset) { TFLITE_LOG_PROD( tflite::TFLITE_LOG_ERROR, "XNNPack weight cache: invalid size for buffer list descriptor."); return false; } flatbuffers::Verifier verifier( mmap_handle_.data() + header.buffer_list_offset, header.buffer_list_size); if (!cache::schema::VerifyBufferListBuffer(verifier)) { TFLITE_LOG_PROD(tflite::TFLITE_LOG_ERROR, "XNNPack weight cache: buffer list validation failed."); return false; } const cache::schema::BufferList* buffer_list = cache::schema::GetBufferList( mmap_handle_.data() + header.buffer_list_offset); if (!buffer_list) { TFLITE_LOG_PROD( tflite::TFLITE_LOG_ERROR, "XNNPack weight cache: could not get packed weights from flatbuffer."); return false; } mmap_buffer_base_offset_ = buffer_list->base_offset(); if (const auto buffers = buffer_list->buffers(); buffers) { for (auto* buffer : *buffers) { if (!buffer) { TFLITE_LOG_PROD( tflite::TFLITE_LOG_ERROR, "XNNPack weight cache: Invalid buffer address in buffer list."); return false; } cache_key_to_offset_.emplace( PackIdentifier{.pack_algorithm_id = buffer->packing_algorithm_id(), .weights_id = buffer->weights_id(), .bias_id = buffer->bias_id()}, BufferLocation{.offset = buffer->offset(), .size = buffer->size()}); } } unmap_on_fail.Deactivate(); return true; } void MMapWeightCacheProvider::MapTensorIdentifiers( const TfLiteTensor* tensors, const size_t size, const std::unordered_map<size_t, size_t>& tensor_index_to_identifier) { for (const auto [index, identifier] : tensor_index_to_identifier) { XNNPACK_ABORT_CHECK(index < size, "Tensor index corresponds to a non existing tensor."); buffer_address_to_identifier_[tensors[index].data.data] = identifier; } } size_t MMapWeightCacheProvider::LookUp( const xnn_weights_cache_look_up_key* cache_key) { if (!cache_key) { TFLITE_LOG_PROD(tflite::TFLITE_LOG_ERROR, "XNNPack weight cache: a null cache key was provided."); return SIZE_MAX; } const PackIdentifier pack_id = BuildPackIdentifier(*cache_key); if (auto offset_it = cache_key_to_offset_.find(pack_id); offset_it != cache_key_to_offset_.end()) { return offset_it->second.offset; } return SIZE_MAX; } void* MMapWeightCacheProvider::ReserveSpace(size_t size) { XNNPACK_ABORT_CHECK(!IsFinalized(), "Cannot reserve space in a finalized cache."); return builder_.Reserve(size); } size_t MMapWeightCacheProvider::LookUpOrInsert( const xnn_weights_cache_look_up_key* cache_key, void* ptr, size_t size) { XNNPACK_ABORT_CHECK(cache_key, "A null cache key was provided."); const PackIdentifier pack_id = BuildPackIdentifier(*cache_key); if (auto offset_it = cache_key_to_offset_.find(pack_id); offset_it != cache_key_to_offset_.end()) { return offset_it->second.offset; } XNNPACK_ABORT_CHECK(!IsFinalized(), "Cannot insert a buffer in a finalized cache."); const BufferLocation location = builder_.Append(pack_id, ptr, size); cache_key_to_offset_.emplace(pack_id, location); return location.offset; } void* MMapWeightCacheProvider::OffsetToAddr(const size_t offset) { XNNPACK_ABORT_CHECK( IsFinalized(), "Cannot get the address of a buffer in a non finalized cache."); return mmap_handle_.data() + mmap_buffer_base_offset_ + offset; } void MMapWeightCacheProvider::Release() { buffer_address_to_identifier_.clear(); cache_key_to_offset_.clear(); mmap_handle_ = MMapHandle(); mmap_buffer_base_offset_ = 0; builder_ = WeightCacheBuilder(); } bool MMapWeightCacheProvider::Finalize() { if (IsFinalized()) { return true; } if (file_path_.empty()) { TFLITE_LOG_PROD(tflite::TFLITE_LOG_ERROR, "XNNPack weight cache: file path wasn't set. Cannot " "finalize the cache."); return false; } if (!builder_.Finalize()) { return false; } builder_ = WeightCacheBuilder(); return Load(); } bool MMapWeightCacheProvider::IsFinalized() const { return mmap_handle_.IsMapped(); } size_t MMapWeightCacheProvider::look_up( void* context, const xnn_weights_cache_look_up_key* cache_key) { return reinterpret_cast<MMapWeightCacheProvider*>(context)->LookUp(cache_key); } void* MMapWeightCacheProvider::reserve_space(void* context, size_t n) { return reinterpret_cast<MMapWeightCacheProvider*>(context)->ReserveSpace(n); } size_t MMapWeightCacheProvider::look_up_or_insert( void* context, const xnn_weights_cache_look_up_key* cache_key, void* ptr, size_t size) { return reinterpret_cast<MMapWeightCacheProvider*>(context)->LookUpOrInsert( cache_key, ptr, size); } bool MMapWeightCacheProvider::is_finalized(void* context) { return reinterpret_cast<MMapWeightCacheProvider*>(context)->IsFinalized(); } void* MMapWeightCacheProvider::offset_to_addr(void* context, size_t offset) { return reinterpret_cast<MMapWeightCacheProvider*>(context)->OffsetToAddr( offset); } enum xnn_status MMapWeightCacheProvider::delete_cache(void* context) { reinterpret_cast<MMapWeightCacheProvider*>(context)->Release(); return xnn_status_success; } PackIdentifier MMapWeightCacheProvider::BuildPackIdentifier( const xnn_weights_cache_look_up_key& key) { const auto get_buffer_id = [&](const void* buffer) -> size_t { if (buffer) { const auto identifier_it = buffer_address_to_identifier_.find(buffer); XNNPACK_ABORT_CHECK(identifier_it != buffer_address_to_identifier_.end(),
#include "tensorflow/lite/delegates/xnnpack/weight_cache.h" #include <fcntl.h> #include <algorithm> #include <cassert> #include <cstdint> #include <cstdio> #include <cstring> #include <iterator> #include <map> #include <ostream> #include <string> #include <tuple> #include <unordered_map> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xnnpack.h" #include "flatbuffers/verifier.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/delegates/xnnpack/weight_cache_schema_generated.h" namespace tflite::xnnpack { std::ostream& operator<<(std::ostream& os, const PackIdentifier& p) { return os << "PackIdentifier{pack_algo: " << p.pack_algorithm_id << ", weights_id: " << p.weights_id << ", bias_id: " << p.bias_id << "}"; } namespace { using testing::ElementsAreArray; using testing::Ge; class TempFileDesc { public: static constexpr struct AutoClose { } kAutoCLose{}; #if defined(_MSC_VER) TempFileDesc() : fd_() { char filename[L_tmpnam_s]; errno_t err = tmpnam_s(filename, L_tmpnam_s); if (err) { fprintf(stderr, "Could not create temporary filename.\n"); std::abort(); } path_ = filename; fd_ = open(path_.c_str(), O_CREAT | O_EXCL | O_RDWR, 0644); if (fd_ < 0) { fprintf(stderr, "Could not create temporary filename.\n"); std::abort(); } } #else TempFileDesc() : fd_(mkstemp(path_.data())) { if (GetFd() < 0) { perror("Could not create temporary file"); } } #endif explicit TempFileDesc(AutoClose) : TempFileDesc() { Close(); } TempFileDesc(const TempFileDesc&) = delete; TempFileDesc& operator=(const TempFileDesc&) = delete; friend void swap(TempFileDesc& a, TempFileDesc& b) { std::swap(a.path_, b.path_); std::swap(a.fd_, b.fd_); } TempFileDesc(TempFileDesc&& other) { swap(*this, other); } TempFileDesc& operator=(TempFileDesc&& other) { swap(*this, other); return *this; } ~TempFileDesc() { Close(); } void Close() { if (GetFd() >= 0) { close(fd_); fd_ = -1; } } const std::string& GetPath() const { return path_; } const char* GetCPath() const { return path_.c_str(); } int GetFd() const { return fd_; } bool IsOpen() const { return fd_ >= 0; } private: std::string path_ = testing::TempDir() + "/weight_cache_test_file.XXXXXX"; int fd_ = -1; }; TEST(MMapHandleTest, DefaultConstructs) { MMapHandle handle; EXPECT_FALSE(handle.IsMapped()); EXPECT_EQ(handle.data(), nullptr); EXPECT_EQ(handle.size(), 0); } TEST(MMapHandleTest, MapNonExitxingFileFails) { const char* file_path = "sdbgfd"; MMapHandle handle; EXPECT_FALSE(handle.Map(file_path)); } TEST(MMapHandleTest, MapExistingFileWorks) { using std::size; const std::string payload = "This is some data in the file."; TempFileDesc tmp_file; ASSERT_TRUE(tmp_file.IsOpen()); ASSERT_EQ(write(tmp_file.GetFd(), payload.c_str(), size(payload)), size(payload)); tmp_file.Close(); MMapHandle handle; ASSERT_TRUE(handle.Map(tmp_file.GetCPath())); EXPECT_TRUE(handle.IsMapped()); EXPECT_NE(handle.data(), nullptr); EXPECT_THAT(handle.size(), Ge(size(payload))); EXPECT_THAT(handle, ElementsAreArray(payload)); handle.UnMap(); EXPECT_FALSE(handle.IsMapped()); EXPECT_EQ(handle.data(), nullptr); EXPECT_EQ(handle.size(), 0); } TEST(MMapHandleTest, MoveConstructs) { const std::string payload = "This is some data in the file."; TempFileDesc tmp_file; ASSERT_TRUE(tmp_file.IsOpen()); ASSERT_EQ(write(tmp_file.GetFd(), payload.c_str(), size(payload)), size(payload)); tmp_file.Close(); MMapHandle handle; ASSERT_TRUE(handle.Map(tmp_file.GetCPath())); MMapHandle handle2(std::move(handle)); EXPECT_FALSE(handle.IsMapped()); EXPECT_EQ(handle.data(), nullptr); EXPECT_EQ(handle.size(), 0); EXPECT_TRUE(handle2.IsMapped()); EXPECT_NE(handle2.data(), nullptr); EXPECT_THAT(handle2.size(), Ge(size(payload))); EXPECT_THAT(handle2, ElementsAreArray(payload)); } TEST(WeightCacheBuilderTest, ReserveAppendWriteWorks) { using std::size; const std::string payload = "This is some data in the file."; const PackIdentifier dummy_id{1, 2, 3}; WeightCacheBuilder builder; const std::string cache_path = testing::TempDir() + "/cache"; ASSERT_TRUE(builder.Start(cache_path.c_str())); const size_t payload_size = size(payload); void* buffer = builder.Reserve(payload_size); std::memcpy(buffer, payload.c_str(), payload_size); auto loc = builder.Append(dummy_id, buffer, payload_size); EXPECT_EQ(loc.size, payload_size); EXPECT_GE(builder.capacity(), payload_size); EXPECT_TRUE(builder.ShouldFinalize()); ASSERT_TRUE(builder.Finalize()); MMapHandle handle; ASSERT_TRUE(handle.Map(cache_path.c_str())); const XNNPackCacheHeader& header = *reinterpret_cast<const XNNPackCacheHeader*>(handle.data()); ASSERT_EQ(header.version, XNNPackCacheHeader::kVersion); ASSERT_NE(header.buffer_list_offset, 0); ASSERT_NE(header.buffer_list_size, 0); ASSERT_LE(header.buffer_list_offset + header.buffer_list_size, handle.size()); const cache::schema::BufferList* const packed_weights = cache::schema::GetBufferList(handle.data() + header.buffer_list_offset); ASSERT_NE(packed_weights, nullptr); ASSERT_NE(packed_weights->buffers(), nullptr); ASSERT_EQ(packed_weights->buffers()->size(), 1); ASSERT_NE(packed_weights->buffers()->Get(0), nullptr); ASSERT_EQ(packed_weights->buffers()->Get(0)->size(), size(payload)); ASSERT_EQ(packed_weights->buffers()->Get(0)->packing_algorithm_id(), dummy_id.pack_algorithm_id); ASSERT_EQ(packed_weights->buffers()->Get(0)->weights_id(), dummy_id.weights_id); ASSERT_EQ(packed_weights->buffers()->Get(0)->bias_id(), dummy_id.bias_id); flatbuffers::Verifier verifier(handle.data() + header.buffer_list_offset, header.buffer_list_size); EXPECT_TRUE(cache::schema::VerifyBufferListBuffer(verifier)); ASSERT_LE(packed_weights->base_offset() + packed_weights->buffers()->Get(0)->offset(), size(handle)); ASSERT_LE(packed_weights->base_offset() + packed_weights->buffers()->Get(0)->offset() + packed_weights->buffers()->Get(0)->size(), size(handle)); std::tuple<const char*, size_t> cache_data( reinterpret_cast<const char*>( handle.data() + packed_weights->base_offset() + packed_weights->buffers()->Get(0)->offset()), packed_weights->buffers()->Get(0)->size()); EXPECT_THAT(cache_data, ElementsAreArray(payload)); } TEST(WeightCacheBuilderTest, AppendWithoutReserveWriteWorks) { using std::size; const std::string payload = "This is some data in the file."; const PackIdentifier dummy_id{1, 2, 3}; const std::string cache_path = testing::TempDir() + "/cache"; WeightCacheBuilder builder; ASSERT_TRUE(builder.Start(cache_path.c_str())); const size_t payload_size = size(payload); auto loc = builder.Append(dummy_id, payload.c_str(), payload_size); EXPECT_EQ(loc.size, payload_size); EXPECT_TRUE(builder.ShouldFinalize()); ASSERT_TRUE(builder.Finalize()); MMapHandle handle; ASSERT_TRUE(handle.Map(cache_path.c_str())); const XNNPackCacheHeader& header = *reinterpret_cast<const XNNPackCacheHeader*>(handle.data()); ASSERT_EQ(header.version, XNNPackCacheHeader::kVersion); ASSERT_NE(header.buffer_list_offset, 0); ASSERT_NE(header.buffer_list_size, 0); ASSERT_LE(header.buffer_list_offset + header.buffer_list_size, handle.size()); const cache::schema::BufferList* const packed_weights = cache::schema::GetBufferList(handle.data() + header.buffer_list_offset); ASSERT_NE(packed_weights, nullptr); ASSERT_NE(packed_weights->buffers(), nullptr); ASSERT_EQ(packed_weights->buffers()->size(), 1); ASSERT_NE(packed_weights->buffers()->Get(0), nullptr); ASSERT_EQ(packed_weights->buffers()->Get(0)->size(), size(payload)); ASSERT_EQ(packed_weights->buffers()->Get(0)->packing_algorithm_id(), dummy_id.pack_algorithm_id); ASSERT_EQ(packed_weights->buffers()->Get(0)->weights_id(), dummy_id.weights_id); ASSERT_EQ(packed_weights->buffers()->Get(0)->bias_id(), dummy_id.bias_id); flatbuffers::Verifier verifier(handle.data() + header.buffer_list_offset, header.buffer_list_size); EXPECT_TRUE(cache::schema::VerifyBufferListBuffer(verifier)); ASSERT_LE(packed_weights->base_offset() + packed_weights->buffers()->Get(0)->offset(), size(handle)); ASSERT_LE(packed_weights->base_offset() + packed_weights->buffers()->Get(0)->offset() + packed_weights->buffers()->Get(0)->size(), size(handle)); std::tuple<const char*, size_t> cache_data( reinterpret_cast<const char*>( handle.data() + packed_weights->base_offset() + packed_weights->buffers()->Get(0)->offset()), packed_weights->buffers()->Get(0)->size()); EXPECT_THAT(cache_data, ElementsAreArray(payload)); } TEST(WeightCacheBuilderTest, NonExistingPathFails) { using std::size; WeightCacheBuilder builder; EXPECT_FALSE(builder.Start("")); EXPECT_FALSE(builder.Start("/seldf/sedsft")); } struct FakeContext { void AddTensor(int buffer_identifier, size_t size) { buffers.emplace_back(size, buffer_identifier); tensors.push_back({}); tensors.back().allocation_type = kTfLiteMmapRo; tensor_buffer_identifiers[tensors.size() - 1] = buffer_identifier; } void FinalizeTensors() { for (size_t i = 0; i < tensors.size(); ++i) { tensors[i].data.data = buffers[i].data(); tensors[i].bytes = buffers[i].size(); } } xnn_weights_cache_look_up_key LookUpKey(const uint32_t algorithm_seed, const int weights_index) const { return {.seed = algorithm_seed, .kernel = buffers[weights_index].data(), .bias = nullptr}; } xnn_weights_cache_look_up_key LookUpKey(const uint32_t algorithm_seed, const int weights_index, const int bias_index) const { return {.seed = algorithm_seed, .kernel = buffers[weights_index].data(), .bias = buffers[bias_index].data()}; } void AddTensorToPack(std::vector<uint8_t>& pack_buffer, int index) { const std::vector<uint8_t>& buffer = buffers[index]; pack_buffer.resize(std::max(size(pack_buffer), size(buffer))); for (size_t i = 0; i < size(buffer); ++i) { pack_buffer[i] ^= buffer[i]; } } template <class... Ids> PackIdentifier PackTensors(xnn_weights_cache_t weight_cache, const uint32_t algorithm_seed, const Ids... tensor_indices) { PackIdentifier pack_id{algorithm_seed, tensor_buffer_identifiers[tensor_indices]...}; PackedBuffer& packed = packed_buffers.emplace(pack_id, PackedBuffer{})->second; (AddTensorToPack(packed.buffer, tensor_indices), ...); xnn_weights_cache_look_up_key look_up_key = LookUpKey(algorithm_seed, tensor_indices...); packed.offset = weight_cache->look_up_or_insert( weight_cache->context, &look_up_key, packed.buffer.data(), packed.buffer.size()); return pack_id; } struct PackedBuffer { size_t offset; std::vector<uint8_t> buffer; }; std::vector<TfLiteTensor> tensors; std::vector<std::vector<uint8_t>> buffers; std::unordered_multimap<PackIdentifier, PackedBuffer, PackIdentifier::Hash> packed_buffers; std::unordered_map<size_t, size_t> tensor_buffer_identifiers; }; struct BuildMMapWeightCacheProviderTest : testing::Test { enum { kAlgoSeed1, kAlgoSeed2, kAlgoSeed3 }; enum { kBufferId1, kBufferId2, kBufferId3, kBufferId4 }; void SetUp() override { AddTensors(); EndSetup(); } void AddTensors() { ctx.AddTensor(kBufferId1, 12); ctx.AddTensor(kBufferId2, 43); ctx.AddTensor(kBufferId3, 64); ctx.AddTensor(kBufferId4, 8); } void EndSetup() { ctx.FinalizeTensors(); cache_provider.MapTensorIdentifiers(ctx.tensors.data(), ctx.tensors.size(), ctx.tensor_buffer_identifiers); const std::string cache_path = testing::TempDir() + "/cache"; ASSERT_TRUE(cache_provider.StartBuild(cache_path.c_str())); } FakeContext ctx; MMapWeightCacheProvider cache_provider; }; TEST_F(BuildMMapWeightCacheProviderTest, LookUpFailsIfKeyDoesntMatch) { xnn_weights_cache_look_up_key look_up_key{}; EXPECT_EQ(cache_provider.LookUp(&look_up_key), SIZE_MAX); } TEST_F(BuildMMapWeightCacheProviderTest, LookUpSucceeds) { enum { kWeightIndex, kBiasIndex }; const auto pack_id = ctx.PackTensors(&cache_provider.GetCacheProvider(), kAlgoSeed1, kWeightIndex, kBiasIndex); const xnn_weights_cache_look_up_key look_up_key = ctx.LookUpKey(kAlgoSeed1, kWeightIndex, kBiasIndex); EXPECT_EQ(cache_provider.LookUp(&look_up_key), ctx.packed_buffers.find(pack_id)->second.offset); } TEST_F(BuildMMapWeightCacheProviderTest, DifferentAlgoSeedsSameTensorsDontConflict) { enum { kWeightIndex, kBiasIndex }; const auto pack_id_1 = ctx.PackTensors(&cache_provider.GetCacheProvider(), kAlgoSeed1, kWeightIndex, kBiasIndex); const auto pack_id_2 = ctx.PackTensors(&cache_provider.GetCacheProvider(), kAlgoSeed2, kWeightIndex, kBiasIndex); const xnn_weights_cache_look_up_key look_up_key_1 = ctx.LookUpKey(kAlgoSeed1, kWeightIndex, kBiasIndex); const xnn_weights_cache_look_up_key look_up_key_2 = ctx.LookUpKey(kAlgoSeed2, kWeightIndex, kBiasIndex); EXPECT_EQ(cache_provider.LookUp(&look_up_key_1), ctx.packed_buffers.find(pack_id_1)->second.offset); EXPECT_EQ(cache_provider.LookUp(&look_up_key_2), ctx.packed_buffers.find(pack_id_2)->second.offset); EXPECT_NE(cache_provider.LookUp(&look_up_key_1), cache_provider.LookUp(&look_up_key_2)); } TEST_F(BuildMMapWeightCacheProviderTest, SameAlgoSeedDifferentTensorsDontConflict) { enum { kWeightIndex1, kWeightIndex2, kBiasIndex1, kBiasIndex2 }; const auto pack_id_1 = ctx.PackTensors(&cache_provider.GetCacheProvider(), kAlgoSeed1, kWeightIndex1, kBiasIndex1); const auto pack_id_2 = ctx.PackTensors(&cache_provider.GetCacheProvider(), kAlgoSeed1, kWeightIndex2, kBiasIndex1); const auto pack_id_3 = ctx.PackTensors(&cache_provider.GetCacheProvider(), kAlgoSeed1, kWeightIndex1, kBiasIndex2); const auto pack_id_4 = ctx.PackTensors(&cache_provider.GetCacheProvider(), kAlgoSeed1, kWeightIndex2, kBiasIndex2); const xnn_weights_cache_look_up_key look_up_key_1 = ctx.LookUpKey(kAlgoSeed1, kWeightIndex1, kBiasIndex1); const xnn_weights_cache_look_up_key look_up_key_2 = ctx.LookUpKey(kAlgoSeed1, kWeightIndex2, kBiasIndex1); const xnn_weights_cache_look_up_key look_up_key_3 = ctx.LookUpKey(kAlgoSeed1, kWeightIndex1, kBiasIndex2); const xnn_weights_cache_look_up_key look_up_key_4 = ctx.LookUpKey(kAlgoSeed1, kWeightIndex2, kBiasIndex2); EXPECT_EQ(cache_provider.LookUp(&look_up_key_1), ctx.packed_buffers.find(pack_id_1)->second.offset); EXPECT_EQ(cache_provider.LookUp(&look_up_key_2), ctx.packed_buffers.find(pack_id_2)->second.offset); EXPECT_EQ(cache_provider.LookUp(&look_up_key_3), ctx.packed_buffers.find(pack_id_3)->second.offset); EXPECT_EQ(cache_provider.LookUp(&look_up_key_4), ctx.packed_buffers.find(pack_id_4)->second.offset); EXPECT_NE(cache_provider.LookUp(&look_up_key_1), cache_provider.LookUp(&look_up_key_2)); EXPECT_NE(cache_provider.LookUp(&look_up_key_1), cache_provider.LookUp(&look_up_key_3)); EXPECT_NE(cache_provider.LookUp(&look_up_key_1), cache_provider.LookUp(&look_up_key_4)) << pack_id_1 << " " << pack_id_4; EXPECT_NE(cache_provider.LookUp(&look_up_key_2), cache_provider.LookUp(&look_up_key_3)); EXPECT_NE(cache_provider.LookUp(&look_up_key_2), cache_provider.LookUp(&look_up_key_4)); EXPECT_NE(cache_provider.LookUp(&look_up_key_3), cache_provider.LookUp(&look_up_key_4)); } TEST_F(BuildMMapWeightCacheProviderTest, FinalizeWorks) { enum { kWeightIndex1, kBiasIndex, kWeightIndex2 }; TempFileDesc tmp_file(TempFileDesc::kAutoCLose); ASSERT_TRUE(cache_provider.StartBuild(tmp_file.GetCPath())); ctx.PackTensors(&cache_provider.GetCacheProvider(), kAlgoSeed1, kWeightIndex1, kBiasIndex); ctx.PackTensors(&cache_provider.GetCacheProvider(), kAlgoSeed2, kWeightIndex2); EXPECT_TRUE(cache_provider.IsActive()); EXPECT_TRUE(cache_provider.IsBuilding()); ASSERT_TRUE(cache_provider.Finalize()); ASSERT_TRUE(cache_provider.IsFinalized()); } struct LoadMMapWeightCacheProviderTest : BuildMMapWeightCacheProviderTest { enum { kWeightIndex1, kBiasIndex, kWeightIndex2 }; void SetUp() override { BuildMMapWeightCacheProviderTest::SetUp(); ASSERT_TRUE(cache_provider.StartBuild(tmp_file.GetCPath())); pack_id_1 = ctx.PackTensors(&cache_provider.GetCacheProvider(), kAlgoSeed1, kWeightIndex1, kBiasIndex); pack_id_2 = ctx.PackTensors(&cache_provider.GetCacheProvider(), kAlgoSeed2, kWeightIndex2); ASSERT_TRUE(cache_provider.Finalize()); ASSERT_TRUE(cache_provider.IsFinalized()); } xnn_weights_cache_look_up_key LookUpKey1() const { return ctx.LookUpKey(kAlgoSeed1, kWeightIndex1, kBiasIndex); } xnn_weights_cache_look_up_key LookUpKey2() const { return ctx.LookUpKey(kAlgoSeed2, kWeightIndex2); } TempFileDesc tmp_file; PackIdentifier pack_id_1; PackIdentifier pack_id_2; }; TEST_F(LoadMMapWeightCacheProviderTest, LookUpFailsIfKeyDoesntMatch) { xnn_weights_cache_look_up_key look_up_key{}; EXPECT_EQ(cache_provider.LookUp(&look_up_key), SIZE_MAX); } template <class T> class LightSpan { public: using value_type = T; LightSpan(const void* data, const size_t size) : ptr_(reinterpret_cast<T*>(data)), size_(size) {} size_t size() const { return size(); } const T* begin() const { return ptr_; } const T* end() const { return ptr_ + size_; } friend std::ostream& operator<<(std::ostream& os, const LightSpan<T>& s) { os << '['; auto it = s.begin(); if (it != s.end()) { os << +*it; } ++it; for (; it != s.end(); ++it) { os << ", " << +*it; } return os << ']'; } private: T* ptr_; size_t size_; }; TEST_F(LoadMMapWeightCacheProviderTest, LookUpSucceeds) { const auto& reference_1 = ctx.packed_buffers.find(pack_id_1)->second; const auto& reference_2 = ctx.packed_buffers.find(pack_id_2)->second; const xnn_weights_cache_look_up_key look_up_key_1 = LookUpKey1(); const xnn_weights_cache_look_up_key look_up_key_2 = LookUpKey2(); const uint64_t offset_1 = cache_provider.LookUp(&look_up_key_1); const uint64_t offset_2 = cache_provider.LookUp(&look_up_key_2); ASSERT_EQ(offset_1, reference_1.offset); ASSERT_EQ(offset_2, reference_2.offset); const void* const addr_1 = cache_provider.OffsetToAddr(offset_1); const void* const addr_2 = cache_provider.OffsetToAddr(offset_2); ASSERT_NE(addr_1, nullptr); ASSERT_NE(addr_2, nullptr); EXPECT_THAT(LightSpan<const uint8_t>(addr_1, reference_1.buffer.size()), ElementsAreArray(reference_1.buffer)); EXPECT_THAT(LightSpan<const uint8_t>(addr_2, reference_2.buffer.size()), ElementsAreArray(reference_2.buffer)); } TEST(MMapWeightCacheProviderTest, XnnpackCApiJourney) { using std::size; TempFileDesc temp_fd(TempFileDesc::kAutoCLose); const int32_t fake_packing_algo_seed = 0xBA0BAB; const char packed_data_ref_1[] = "abcdefghij"; const char packed_data_ref_2[] = "klmnopqr"; auto bytes = [](const auto& array) { return size(array) * sizeof(array[0]); }; constexpr int kBufferCount = 10; char fake_buffer_pointer[kBufferCount] = {0}; { TfLiteTensor tensors[kBufferCount]; std::unordered_map<size_t, size_t> tensor_buffer_identifiers; for (int i = 0; i < kBufferCount; ++i) { tensors[i].data.data = (void*)(fake_buffer_pointer + i); tensor_buffer_identifiers[i] = i; } MMapWeightCacheProvider cache_provider; ASSERT_TRUE(cache_provider.StartBuild(temp_fd.GetCPath())); xnn_weights_cache_t cache = &cache_provider.GetCacheProvider(); cache_provider.MapTensorIdentifiers(tensors, size(tensors), tensor_buffer_identifiers); const xnn_weights_cache_look_up_key look_up_key_1{ .seed = fake_packing_algo_seed, .kernel = tensors[0].data.data, .bias = tensors[1].data.data}; ASSERT_EQ(cache->look_up(cache, &look_up_key_1), SIZE_MAX); void* const reserved_ptr = cache->reserve_space(cache, bytes(packed_data_ref_1)); ASSERT_NE(reserved_ptr, nullptr); std::memcpy(reserved_ptr, packed_data_ref_1, bytes(packed_data_ref_1)); const size_t build_offset_1 = cache->look_up_or_insert( cache, &look_up_key_1, reserved_ptr, bytes(packed_data_ref_1)); const size_t build_offset_redundant = cache->look_up_or_insert( cache, &look_up_key_1, reserved_ptr, bytes(packed_data_ref_1)); EXPECT_EQ(build_offset_1, build_offset_redundant); ASSERT_EQ(cache->look_up(cache, &look_up_key_1), build_offset_1); const xnn_weights_cache_look_up_key look_up_key_2{ .seed = fake_packing_algo_seed, .kernel = tensors[2].data.data, .bias = tensors[3].data.data}; const size_t build_offset_2 = cache->look_up_or_insert( cache, &look_up_key_2, (void*)packed_data_ref_2, bytes(packed_data_ref_2)); ASSERT_TRUE(cache_provider.Finalize()); ASSERT_TRUE(cache->is_finalized(cache)); const size_t reload_offset_1 = cache->look_up(cache, &look_up_key_1); ASSERT_EQ(reload_offset_1, build_offset_1); const void* const loaded_packed_data_1 = cache->offset_to_addr(cache, reload_offset_1); ASSERT_NE(loaded_packed_data_1, nullptr); EXPECT_THAT( LightSpan<const char>(loaded_packed_data_1, size(packed_data_ref_1)), ElementsAreArray(packed_data_ref_1)); const size_t reload_offset_2 = cache->look_up(cache, &look_up_key_2); ASSERT_EQ(reload_offset_2, build_offset_2); const void* const loaded_packed_data_2 = cache->offset_to_addr(cache, reload_offset_2); ASSERT_NE(loaded_packed_data_2, nullptr); EXPECT_THAT( LightSpan<const char>(loaded_packed_data_2, size(packed_data_ref_2)), ElementsAreArray(packed_data_ref_2)); } { TfLiteTensor tensors[kBufferCount]; std::unordered_map<size_t, size_t> tensor_buffer_identifiers; for (int i = 0; i < kBufferCount; ++i) { tensors[i].data.data = (void*)(fake_buffer_pointer + i); tensor_buffer_identifiers[i] = i; } MMapWeightCacheProvider cache_provider; ASSERT_TRUE(cache_provider.Load(temp_fd.GetCPath())); xnn_weights_cache_t cache = &cache_provider.GetCacheProvider(); cache_provider.MapTensorIdentifiers(tensors, size(tensors), tensor_buffer_identifiers); const xnn_weights_cache_look_up_key look_up_key_1{ .seed = fake_packing_algo_seed, .kernel = tensors[0].data.data, .bias = tensors[1].data.data}; const xnn_weights_cache_look_up_key look_up_key_2{ .seed = fake_packing_algo_seed, .kernel = tensors[2].data.data, .bias = tensors[3].data.data}; ASSERT_TRUE(cache->is_finalized(cache)); const size_t offset_1 = cache->look_up(cache, &look_up_key_1); const void* const loaded_packed_data_1 = cache->offset_to_addr(cache, offset_1); ASSERT_NE(loaded_packed_data_1, nullptr); EXPECT_THAT( LightSpan<const char>(loaded_packed_data_1, size(packed_data_ref_1)), ElementsAreArray(packed_data_ref_1)); const size_t offset_2 = cache->look_up(cache, &look_up_key_2); ASSERT_NE(offset_2, SIZE_MAX); const void* const loaded_packed_data_2 = cache->offset_to_addr(cache, offset_2); ASSERT_NE(loaded_packed_data_2, nullptr); EXPECT_THAT( LightSpan<const char>(loaded_packed_data_2, size(packed_data_ref_2)), ElementsAreArray(packed_data_ref_2)); } } } }
984
cpp
tensorflow/tensorflow
nnapi_delegate
tensorflow/lite/delegates/nnapi/nnapi_delegate.cc
tensorflow/lite/delegates/nnapi/nnapi_delegate_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_NNAPI_NNAPI_DELEGATE_H_ #define TENSORFLOW_LITE_DELEGATES_NNAPI_NNAPI_DELEGATE_H_ #include <memory> #include <string> #include <unordered_map> #include <vector> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/delegates/serialization.h" #include "tensorflow/lite/nnapi/NeuralNetworksTypes.h" #include "tensorflow/lite/nnapi/nnapi_implementation.h" struct NnApiSLDriverImplFL5; struct NnapiDelegateVendorPlugin; typedef struct ANeuralNetworksMemory ANeuralNetworksMemory; namespace tflite { namespace delegate { namespace nnapi { class NNAPIDelegateKernel; } } using tflite::delegate::nnapi::NNAPIDelegateKernel; class StatefulNnApiDelegate : public TfLiteDelegate { public: struct Options { enum ExecutionPreference { kUndefined = -1, kLowPower = 0, kFastSingleAnswer = 1, kSustainedSpeed = 2, }; ExecutionPreference execution_preference = kUndefined; const char* accelerator_name = nullptr; const char* cache_dir = nullptr; const char* model_token = nullptr; bool disallow_nnapi_cpu = true; int max_number_delegated_partitions = 3; bool allow_fp16 = false; int execution_priority = ANEURALNETWORKS_PRIORITY_DEFAULT; uint64_t max_compilation_timeout_duration_ns = 0; uint64_t max_execution_timeout_duration_ns = 0; uint64_t max_execution_loop_timeout_duration_ns = 0; bool allow_dynamic_dimensions = false; bool use_burst_computation = false; uint32_t max_execution_cache_size = 4; std::map<int, size_t> tensor_max_size_hints; const char* vendor_compilation_hints = nullptr; const char* vendor_execution_hints = nullptr; NnapiDelegateVendorPlugin* vendor_plugin = nullptr; bool disable_debugging_diagnostics_callbacks = false; }; StatefulNnApiDelegate(); explicit StatefulNnApiDelegate(const NnApi* nnapi); explicit StatefulNnApiDelegate(Options options); StatefulNnApiDelegate(const NnApi* nnapi, Options options); StatefulNnApiDelegate( const NnApiSLDriverImplFL5* nnapi_support_library_driver, Options options); ~StatefulNnApiDelegate() = default; static const Options GetOptions(TfLiteDelegate* delegate); typedef TfLiteStatus (*CopyToHostTensorFnPtr)(TfLiteTensor* tensor, ANeuralNetworksMemory* memory, size_t memory_offset, size_t byte_size, void* callback_context); struct MemoryRegistration { ANeuralNetworksMemory* memory; CopyToHostTensorFnPtr callback; void* callback_context; uint64_t timestamp; }; TfLiteBufferHandle RegisterNnapiMemory(ANeuralNetworksMemory* memory, CopyToHostTensorFnPtr callback, void* callback_context); static const std::vector<MemoryRegistration>& GetTensorMemoryMap( TfLiteDelegate* delegate); static delegates::Serialization* GetCache(TfLiteDelegate* delegate); int GetNnApiErrno() const; private: struct Data { const NnApi* nnapi; Options::ExecutionPreference execution_preference; std::string accelerator_name; std::string cache_dir; std::string model_token; bool disallow_nnapi_cpu; std::vector<MemoryRegistration> tensor_memory_map; uint64_t next_buffer_handle_timestamp = 1; int nnapi_errno = ANEURALNETWORKS_NO_ERROR; std::unordered_map<int, NNAPIDelegateKernel*> delegate_state_cache; int max_number_delegated_partitions; bool allow_fp16; int execution_priority = ANEURALNETWORKS_PRIORITY_DEFAULT; uint64_t max_compilation_timeout_duration_ns = 0; uint64_t max_execution_timeout_duration_ns = 0; uint64_t max_execution_loop_timeout_duration_ns = 0; bool allow_dynamic_dimensions = false; bool use_burst_computation = false; uint32_t max_execution_cache_size = 4; std::map<int, size_t> tensor_max_size_hints; const char* vendor_compilation_hints = nullptr; const char* vendor_execution_hints = nullptr; NnapiDelegateVendorPlugin* vendor_plugin = nullptr; std::unique_ptr<const NnApi> owned_nnapi = nullptr; std::unique_ptr<delegates::Serialization> cache; bool disable_debugging_diagnostics_callbacks = false; explicit Data(const NnApi* nnapi); explicit Data(std::unique_ptr<const NnApi> nnapi); ~Data(); void CacheDelegateKernel(const TfLiteDelegateParams* delegate_params, NNAPIDelegateKernel* delegate_state); NNAPIDelegateKernel* MaybeGetCachedDelegateKernel( const TfLiteDelegateParams* delegate_params); }; static TfLiteStatus DoPrepare(TfLiteContext* context, TfLiteDelegate* delegate); static TfLiteStatus DoCopyFromBufferHandle(TfLiteContext* context, TfLiteDelegate* delegate, TfLiteBufferHandle buffer_handle, TfLiteTensor* tensor); static TfLiteStatus DoCopyToBufferHandle(TfLiteContext* context, TfLiteDelegate* delegate, TfLiteBufferHandle buffer_handle, TfLiteTensor* tensor); static void DoFreeBufferHandle(TfLiteContext* context, TfLiteDelegate* delegate, TfLiteBufferHandle* handle); static TfLiteStatus GetNodesSupportedByAccelerator( TfLiteContext* context, TfLiteDelegate* delegate, const NnApi* nnapi, const std::vector<int>& supported_nodes, std::vector<int>* device_supported_nodes, int* num_partitions, TfLiteDelegateParams** params_array, int* nnapi_errno); static TfLiteStatus LimitDelegatedPartitions( int max_partitions, std::vector<TfLiteDelegateParams> partition_params_array, std::vector<int>* nodes_to_delegate); void StatefulNnApiDelegateConstructorImpl(const Options& options); Data delegate_data_; }; TfLiteDelegate* NnApiDelegate(); } #endif #include "tensorflow/lite/delegates/nnapi/nnapi_delegate.h" #include <algorithm> #include <cinttypes> #include <cstdarg> #include <cstddef> #include <cstdint> #include <cstdio> #include <cstring> #include <functional> #include <initializer_list> #include <iostream> #include <iterator> #include <limits> #include <map> #include <memory> #include <string> #include <tuple> #include <utility> #include <vector> #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/delegates/serialization.h" #include "tensorflow/lite/logger.h" #include "tensorflow/lite/nnapi/NeuralNetworksTypes.h" #include "tensorflow/lite/nnapi/sl/public/NeuralNetworksSupportLibraryImpl.h" #ifdef __ANDROID__ #include <sys/system_properties.h> #endif #if defined __ANDROID__ || defined __unix__ #define TFLITE_NNAPI_ALLOW_MMAP_SHARING #include <sys/mman.h> #include <unistd.h> #endif #include "fp16.h" #include "tensorflow/lite/allocation.h" #include "tensorflow/lite/builtin_op_data.h" #include "tensorflow/lite/builtin_ops.h" #include "tensorflow/lite/context_util.h" #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/delegates/nnapi/nnapi_delegate_kernel.h" #include "tensorflow/lite/delegates/nnapi/quant_lstm_sup.h" #include "tensorflow/lite/delegates/utils.h" #include "tensorflow/lite/kernels/internal/utils/sparsity_format_converter.h" #include "tensorflow/lite/kernels/kernel_util.h" #include "tensorflow/lite/minimal_logging.h" #include "tensorflow/lite/nnapi/nnapi_implementation.h" #include "tensorflow/lite/nnapi/nnapi_util.h" #include "tensorflow/lite/util.h" #ifdef NNAPI_VERBOSE_VALIDATION #include "tensorflow/lite/schema/schema_generated.h" #endif #include <farmhash.h> namespace tflite { namespace { static const char kNnapiId[] = "nnapi_"; constexpr uint64_t kNoMemoryTimestamp = 0; std::string NnApiBackendId( const StatefulNnApiDelegate::Options& delegate_options) { std::string delegate_id = kNnapiId; if (delegate_options.accelerator_name) { delegate_id += delegate_options.accelerator_name; } return delegate_id; } std::string NnApiErrorDescription(int error_code) { switch (error_code) { case ANEURALNETWORKS_NO_ERROR: return "ANEURALNETWORKS_NO_ERROR"; case ANEURALNETWORKS_OUT_OF_MEMORY: return "ANEURALNETWORKS_OUT_OF_MEMORY"; case ANEURALNETWORKS_INCOMPLETE: return "ANEURALNETWORKS_INCOMPLETE"; case ANEURALNETWORKS_UNEXPECTED_NULL: return "ANEURALNETWORKS_UNEXPECTED_NULL"; case ANEURALNETWORKS_BAD_DATA: return "ANEURALNETWORKS_BAD_DATA"; case ANEURALNETWORKS_OP_FAILED: return "ANEURALNETWORKS_OP_FAILED"; case ANEURALNETWORKS_BAD_STATE: return "ANEURALNETWORKS_BAD_STATE"; case ANEURALNETWORKS_UNMAPPABLE: return "ANEURALNETWORKS_UNMAPPABLE"; case ANEURALNETWORKS_OUTPUT_INSUFFICIENT_SIZE: return "ANEURALNETWORKS_OUTPUT_INSUFFICIENT_SIZE"; case ANEURALNETWORKS_UNAVAILABLE_DEVICE: return "ANEURALNETWORKS_UNAVAILABLE_DEVICE"; case ANEURALNETWORKS_MISSED_DEADLINE_TRANSIENT: return "ANEURALNETWORKS_MISSED_DEADLINE_TRANSIENT"; case ANEURALNETWORKS_MISSED_DEADLINE_PERSISTENT: return "ANEURALNETWORKS_MISSED_DEADLINE_PERSISTENT"; case ANEURALNETWORKS_RESOURCE_EXHAUSTED_TRANSIENT: return "ANEURALNETWORKS_RESOURCE_EXHAUSTED_TRANSIENT"; case ANEURALNETWORKS_RESOURCE_EXHAUSTED_PERSISTENT: return "ANEURALNETWORKS_RESOURCE_EXHAUSTED_PERSISTENT"; case ANEURALNETWORKS_DEAD_OBJECT: return "ANEURALNETWORKS_DEAD_OBJECT"; default: return "Unknown NNAPI error code: " + std::to_string(error_code); } } #define RETURN_TFLITE_ERROR_IF_NN_ERROR(context, code, call_desc, p_errno) \ do { \ const auto _code = (code); \ const auto _call_desc = (call_desc); \ if (_code != ANEURALNETWORKS_NO_ERROR) { \ const auto error_desc = NnApiErrorDescription(_code); \ TF_LITE_KERNEL_LOG(context, \ "NN API returned error %s at line %d while %s.\n", \ error_desc.c_str(), __LINE__, _call_desc); \ *p_errno = _code; \ return kTfLiteError; \ } \ } while (0) #define RETURN_TFLITE_ERROR_IF_NN_ERROR_FOR_TENSOR(context, code, call_desc, \ p_tensor, p_errno) \ do { \ const auto _code = (code); \ const auto _call_desc = (call_desc); \ if (_code != ANEURALNETWORKS_NO_ERROR) { \ const auto error_desc = NnApiErrorDescription(_code); \ TF_LITE_KERNEL_LOG(context, \ "NN API returned error %s at line %d while %s " \ "for tensor '%s'.\n", \ error_desc.c_str(), __LINE__, _call_desc, \ (p_tensor)->name ? (p_tensor)->name : "no-name"); \ *p_errno = _code; \ return kTfLiteError; \ } \ } while (0) bool IsFloat(TfLiteType type) { switch (type) { case kTfLiteFloat32: return true; default: return false; } } bool IsFloatOrUInt8(TfLiteType type) { switch (type) { case kTfLiteFloat32: case kTfLiteUInt8: return true; default: return false; } } bool IsQuantized(TfLiteType type) { switch (type) { case kTfLiteUInt8: case kTfLiteInt8: return true; default: return false; } } bool IsInt32(TfLiteType type) { switch (type) { case kTfLiteInt32: return true; default: return false; } } bool IsFloatOrQuantized(TfLiteType type) { switch (type) { case kTfLiteFloat32: case kTfLiteUInt8: case kTfLiteInt8: return true; default: return false; } } bool IsFloatOrInt32(TfLiteType type) { switch (type) { case kTfLiteFloat32: case kTfLiteInt32: return true; default: return false; } } bool IsFloatQuantizedOrInt32(TfLiteType type) { switch (type) { case kTfLiteFloat32: case kTfLiteUInt8: case kTfLiteInt8: case kTfLiteInt32: return true; default: return false; } } bool IsScalarInputSupported(int builtin_code) { switch (builtin_code) { case kTfLiteBuiltinAdd: case kTfLiteBuiltinMul: case kTfLiteBuiltinSub: case kTfLiteBuiltinDiv: case kTfLiteBuiltinEqual: case kTfLiteBuiltinNotEqual: case kTfLiteBuiltinGreater: case kTfLiteBuiltinGreaterEqual: case kTfLiteBuiltinLess: case kTfLiteBuiltinLessEqual: case kTfLiteBuiltinPow: case kTfLiteBuiltinMaximum: case kTfLiteBuiltinMinimum: case kTfLiteBuiltinPrelu: case kTfLiteBuiltinLeakyRelu: return true; default: return false; } } bool NeedInt8Conversion(const TfLiteContext* context, int builtin_code, const TfLiteNode* node) { const int input_id = node->inputs->data[0]; const TfLiteType input_type = context->tensors[input_id].type; switch (builtin_code) { case kTfLiteBuiltinConv2d: case kTfLiteBuiltinDepthwiseConv2d: case kTfLiteBuiltinFullyConnected: { if (input_type == kTfLiteInt8) { const int weights_id = node->inputs->data[1]; const auto& weights_tensor = context->tensors[weights_id]; if ((weights_tensor.type == kTfLiteInt8 || weights_tensor.type == kTfLiteUInt8) && weights_tensor.quantization.type == kTfLiteAffineQuantization) { return true; } } return false; } case kTfLiteBuiltinTransposeConv: { const int input_id = 2; const TfLiteType input_type = context->tensors[input_id].type; if (in
#include "tensorflow/lite/delegates/nnapi/nnapi_delegate.h" #include <sys/mman.h> #include <algorithm> #include <functional> #include <initializer_list> #include <memory> #include <gtest/gtest.h> #include "tensorflow/lite/context_util.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/model.h" #include "tensorflow/lite/delegates/nnapi/nnapi_delegate_kernel.h" #include "tensorflow/lite/delegates/nnapi/nnapi_delegate_plugin.h" #include "tensorflow/lite/interpreter.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/nnapi/NeuralNetworksTypes.h" #include "tensorflow/lite/nnapi/nnapi_implementation.h" namespace tflite { namespace { using ::testing::ElementsAre; using ::testing::ElementsAreArray; MATCHER(QuantizedNear, "") { const int diff = abs(std::get<0>(arg) - std::get<1>(arg)); if (diff > 1) { *result_listener << "Quantized values can be at most off by one: " << diff; return false; } return true; } class SingleOpModelWithNNAPI : public SingleOpModel { public: SingleOpModelWithNNAPI() { options_.disallow_nnapi_cpu = false; } ~SingleOpModelWithNNAPI() { stateful_delegate_.reset(); } explicit SingleOpModelWithNNAPI( const StatefulNnApiDelegate::Options& options) { options_ = options; options_.disallow_nnapi_cpu = false; } TfLiteStatus ResizeInputTensor(int tensor_index, const std::vector<int>& dims) { return interpreter_->ResizeInputTensor(tensor_index, dims); } StatefulNnApiDelegate* GetDelegate() { return stateful_delegate_.get(); } void SetBufferHandle(int index, TfLiteBufferHandle handle) { interpreter_->SetBufferHandle(index, handle, stateful_delegate_.get()); } void MarkInputTensorDataStale(int index) { interpreter_->tensor(index)->data_is_stale = true; } TfLiteStatus AllocateTensors() { return interpreter_->AllocateTensors(); } void SetTensorMaxSize(uint32_t tensor_index, size_t max_size) { options_.tensor_max_size_hints.emplace(tensor_index, max_size); } void ApplyNNAPIDelegate() { stateful_delegate_ = std::make_unique<StatefulNnApiDelegate>(options_); SetDelegate(stateful_delegate_.get()); ApplyDelegate(); } protected: void SetData(int index, TensorType type, const std::vector<float>& data) { switch (type) { case TensorType_FLOAT32: PopulateTensor(index, data); break; case TensorType_INT32: QuantizeAndPopulate<int32_t>(index, data); break; case TensorType_UINT8: QuantizeAndPopulate<uint8_t>(index, data); break; case TensorType_INT8: QuantizeAndPopulate<int8_t>(index, data); break; default: FAIL() << "Type not supported: " << type; break; } } void GetData(int index, TensorType type, std::vector<float>* output) { switch (type) { case TensorType_FLOAT32: *output = ExtractVector<float>(index); break; case TensorType_UINT8: *output = Dequantize<uint8_t>(ExtractVector<uint8_t>(index), GetScale(index), GetZeroPoint(index)); break; default: FAIL() << "Type not supported: " << type; break; } } void BuildInterpreterWithNNAPI(std::vector<std::vector<int>> input_shapes, bool allow_fp32_relax_to_fp16 = false, bool apply_delegate = true) { BuildInterpreter(input_shapes, -1, allow_fp32_relax_to_fp16, false, true); if (apply_delegate) { ApplyNNAPIDelegate(); } } private: StatefulNnApiDelegate::Options options_; std::unique_ptr<StatefulNnApiDelegate> stateful_delegate_; }; class FloatAddOpModel : public SingleOpModelWithNNAPI { public: FloatAddOpModel(const TensorData& input1, const TensorData& input2, const TensorData& output, ActivationFunctionType activation_type, bool allow_fp32_relax_to_fp16 = false) { Init(input1, input2, output, activation_type, allow_fp32_relax_to_fp16); } FloatAddOpModel(const StatefulNnApiDelegate::Options& options, const TensorData& input1, const TensorData& input2, const TensorData& output, ActivationFunctionType activation_type, bool allow_fp32_relax_to_fp16 = false) : SingleOpModelWithNNAPI(options) { Init(input1, input2, output, activation_type, allow_fp32_relax_to_fp16); } int input1() { return input1_; } int input2() { return input2_; } std::vector<float> GetOutput() { return ExtractVector<float>(output_); } protected: int input1_; int input2_; int output_; private: void Init(const TensorData& input1, const TensorData& input2, const TensorData& output, ActivationFunctionType activation_type, bool allow_fp32_relax_to_fp16 = false) { input1_ = AddInput(input1); input2_ = AddInput(input2); output_ = AddOutput(output); SetBuiltinOp(BuiltinOperator_ADD, BuiltinOptions_AddOptions, CreateAddOptions(builder_, activation_type).Union()); BuildInterpreterWithNNAPI({GetShape(input1_), GetShape(input2_)}, allow_fp32_relax_to_fp16); } }; TEST(NNAPIDelegate, AddWithNoActivation) { FloatAddOpModel m({TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {}}, ActivationFunctionType_NONE); m.PopulateTensor<float>(m.input1(), {-2.0, 0.2, 0.7, 0.8}); m.PopulateTensor<float>(m.input2(), {0.1, 0.2, 0.3, 0.5}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray({-1.9, 0.4, 1.0, 1.3})); } TEST(NNAPIDelegate, AddScalarWithNoActivation) { FloatAddOpModel m({TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}}, ActivationFunctionType_NONE); m.PopulateTensor<float>(m.input1(), {-2.0, 0.2, 0.7, 0.7}); m.PopulateTensor<float>(m.input2(), {0.1}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray({-1.9, 0.3, 0.8, 0.8})); } TEST(NNAPIDelegate, AddWithNoActivationRelaxed) { FloatAddOpModel m( {TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {}}, ActivationFunctionType_NONE, true); m.PopulateTensor<float>(m.input1(), {-2.0, -1.0, 1.0, 2.0}); m.PopulateTensor<float>(m.input2(), {1.0, 2.0, 3.0, 4.0}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray({-1.0, 1.0, 4.0, 6.0})); } TEST(NNAPIDelegate, AddWithRelu) { FloatAddOpModel m({TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {}}, ActivationFunctionType_RELU); m.PopulateTensor<float>(m.input1(), {-2.0, 0.2, 0.7, 0.8}); m.PopulateTensor<float>(m.input2(), {0.1, 0.2, 0.3, 0.5}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray({0.0, 0.4, 1.0, 1.3})); } TEST(NNAPIDelegate, ResizeInputTensorsWorks) { FloatAddOpModel m({TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {}}, ActivationFunctionType_NONE); EXPECT_EQ(m.ResizeInputTensor(m.input1(), {1, 3, 2, 1}), kTfLiteOk); EXPECT_EQ(m.ResizeInputTensor(m.input2(), {1, 3, 2, 1}), kTfLiteOk); EXPECT_EQ(m.AllocateTensors(), kTfLiteOk); m.PopulateTensor<float>(m.input1(), {-2.0, 0.2, 0.7, 0.8, 0.9, 0.7}); m.PopulateTensor<float>(m.input2(), {0.1, 0.2, 0.3, 0.5, 0.2, 0.8}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray({-1.9, 0.4, 1.0, 1.3, 1.1, 1.5})); EXPECT_EQ(m.ResizeInputTensor(m.input1(), {1, 2, 2, 1}), kTfLiteOk); EXPECT_EQ(m.ResizeInputTensor(m.input2(), {1, 2, 2, 1}), kTfLiteOk); EXPECT_EQ(m.AllocateTensors(), kTfLiteOk); m.PopulateTensor<float>(m.input1(), {0.7, 0.8, 0.9, 0.7}); m.PopulateTensor<float>(m.input2(), {0.3, 0.5, 0.2, 0.8}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray({1.0, 1.3, 1.1, 1.5})); } TEST(NNAPIDelegate, ResizeDynamicBatchInputTensorsWorks) { StatefulNnApiDelegate::Options options; options.allow_dynamic_dimensions = true; options.max_execution_cache_size = 1; FloatAddOpModel m(options, {TensorType_FLOAT32, {1, 3, 2, 1}, 0.0f, 0.0f, 0.0f, 0, false, {}, {}, 0, {}, {}, {}, {}, {1, -1, 2, 1}}, {TensorType_FLOAT32, {1, 3, 2, 1}, 0.0f, 0.0f, 0.0f, 0, false, {}, {}, 0, {}, {}, {}, {}, {1, -1, 2, 1}}, {TensorType_FLOAT32, {}, 0.0f, 0.0f, 0.0f, 0, false, {}, {}, 0, {}, {}, {}, {}, {1, -1, 2, 1}}, ActivationFunctionType_NONE); auto RunTestCase1 = [&m]() { EXPECT_EQ(m.ResizeInputTensor(m.input1(), {1, 3, 2, 1}), kTfLiteOk); EXPECT_EQ(m.ResizeInputTensor(m.input2(), {1, 3, 2, 1}), kTfLiteOk); EXPECT_EQ(m.AllocateTensors(), kTfLiteOk); m.PopulateTensor<float>(m.input1(), {-2.0, 0.2, 0.7, 0.8, 0.9, 0.7}); m.PopulateTensor<float>(m.input2(), {0.1, 0.2, 0.3, 0.5, 0.2, 0.8}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray({-1.9, 0.4, 1.0, 1.3, 1.1, 1.5})); }; auto RunTestCase2 = [&m]() { EXPECT_EQ(m.ResizeInputTensor(m.input1(), {1, 2, 2, 1}), kTfLiteOk); EXPECT_EQ(m.ResizeInputTensor(m.input2(), {1, 2, 2, 1}), kTfLiteOk); EXPECT_EQ(m.AllocateTensors(), kTfLiteOk); m.PopulateTensor<float>(m.input1(), {0.7, 0.8, 0.9, 0.7}); m.PopulateTensor<float>(m.input2(), {0.3, 0.5, 0.2, 0.8}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray({1.0, 1.3, 1.1, 1.5})); }; RunTestCase1(); RunTestCase1(); RunTestCase2(); RunTestCase1(); } TEST(NNAPIDelegate, StatefulDelegate) { StatefulNnApiDelegate::Options options; options.execution_preference = StatefulNnApiDelegate::Options::ExecutionPreference::kLowPower; FloatAddOpModel m(options, {TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {}}, ActivationFunctionType_NONE); m.PopulateTensor<float>(m.input1(), {-2.0, 0.2, 0.7, 0.8}); m.PopulateTensor<float>(m.input2(), {0.1, 0.2, 0.3, 0.5}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray({-1.9, 0.4, 1.0, 1.3})); } TEST(NNAPIDelegate, StatefulDelegateWithAcceleratorName) { StatefulNnApiDelegate::Options options; options.execution_preference = StatefulNnApiDelegate::Options::ExecutionPreference::kLowPower; options.accelerator_name = "nnapi-reference"; FloatAddOpModel m(options, {TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {}}, ActivationFunctionType_NONE); m.PopulateTensor<float>(m.input1(), {-2.0, 0.2, 0.7, 0.8}); m.PopulateTensor<float>(m.input2(), {0.1, 0.2, 0.3, 0.5}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray({-1.9, 0.4, 1.0, 1.3})); } TEST(NNAPIDelegate, StatefulDelegateWithInvalidAcceleratorName) { if (!NnApiImplementation()->ANeuralNetworksDevice_getName) { GTEST_SKIP(); } testing::internal::CaptureStderr(); StatefulNnApiDelegate::Options options; options.execution_preference = StatefulNnApiDelegate::Options::ExecutionPreference::kLowPower; options.accelerator_name = "foo"; FloatAddOpModel m(options, {TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {}}, ActivationFunctionType_NONE); EXPECT_THAT(testing::internal::GetCapturedStderr(), testing::HasSubstr( "Could not find the specified NNAPI accelerator: foo")); m.PopulateTensor<float>(m.input1(), {-2.0, 0.2, 0.7, 0.8}); m.PopulateTensor<float>(m.input2(), {0.1, 0.2, 0.3, 0.5}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray({-1.9, 0.4, 1.0, 1.3})); } TEST(NNAPIDelegate, StatefulDelegateWithCompilationCaching) { StatefulNnApiDelegate::Options options; options.execution_preference = StatefulNnApiDelegate::Options::ExecutionPreference::kLowPower; options.cache_dir = "/data/local/tmp"; options.model_token = "NNAPIDelegate.StatefulDelegateWithCompilationCaching"; FloatAddOpModel m(options, {TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {}}, ActivationFunctionType_NONE); m.PopulateTensor<float>(m.input1(), {-2.0, 0.2, 0.7, 0.8}); m.PopulateTensor<float>(m.input2(), {0.1, 0.2, 0.3, 0.5}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray({-1.9, 0.4, 1.0, 1.3})); } TEST(NNAPIDelegate, StatefulDelegateWithQoS) { StatefulNnApiDelegate::Options options; options.accelerator_name = "nnapi-reference"; options.execution_priority = ANEURALNETWORKS_PRIORITY_HIGH; options.max_compilation_timeout_duration_ns = UINT64_MAX; options.max_execution_timeout_duration_ns = UINT64_MAX; options.max_execution_loop_timeout_duration_ns = UINT64_MAX; FloatAddOpModel m(options, {TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {}}, ActivationFunctionType_NONE); m.PopulateTensor<float>(m.input1(), {-2.0, 0.2, 0.7, 0.8}); m.PopulateTensor<float>(m.input2(), {0.1, 0.2, 0.3, 0.5}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray({-1.9, 0.4, 1.0, 1.3})); } TEST(NNAPIDelegate, DISABLED_StatefulDelegateWithBufferHandles) { if (!NnApiImplementation()->ASharedMemory_create || !NnApiImplementation()->ANeuralNetworksMemory_createFromFd) { GTEST_SKIP(); } StatefulNnApiDelegate::Options options; options.disallow_nnapi_cpu = false; options.max_execution_cache_size = 2; FloatAddOpModel m(options, {TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {}}, ActivationFunctionType_NONE); auto* delegate = m.GetDelegate(); constexpr auto kInput1ByteSize = 4 * sizeof(float); ANeuralNetworksMemory* input1_memory = nullptr; int fd = NnApiImplementation()->ASharedMemory_create("input1", kInput1ByteSize); EXPECT_GE(fd, 0); void* input1_memory_data = mmap(nullptr, kInput1ByteSize, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); EXPECT_TRUE(input1_memory_data != nullptr); float input1_data[] = {-2.0, 0.2, 0.7, 0.8}; memcpy(input1_memory_data, input1_data, kInput1ByteSize); int result = NnApiImplementation()->ANeuralNetworksMemory_createFromFd( kInput1ByteSize, PROT_READ, fd, 0, &input1_memory); EXPECT_EQ(result, ANEURALNETWORKS_NO_ERROR); ASSERT_NE(input1_memory, nullptr); struct DummyMemoryContext { ANeuralNetworksMemory* memory_handle; void* memory_data; size_t byte_size; }; DummyMemoryContext memory_context = {input1_memory, input1_memory_data, kInput1ByteSize}; static StatefulNnApiDelegate::CopyToHostTensorFnPtr memory_callback = [](TfLiteTensor* tensor, ANeuralNetworksMemory* memory, size_t memory_offset, size_t byte_size, void* callback_context) -> TfLiteStatus { auto memory_context = reinterpret_cast<DummyMemoryContext*>(callback_context); if (memory != memory_context->memory_handle || memory_offset + byte_size > memory_context->byte_size) { return kTfLiteError; } memcpy( tensor->data.raw, reinterpret_cast<uint8_t*>(memory_context->memory_data) + memory_offset, byte_size); return kTfLiteOk; }; auto input1_handle = delegate->RegisterNnapiMemory( input1_memory, memory_callback, &memory_context); m.SetBufferHandle(m.input1(), input1_handle); m.MarkInputTensorDataStale(m.input1()); m.PopulateTensor<float>(m.input2(), {0.1, 0.2, 0.3, 0.5}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray({-1.9, 0.4, 1.0, 1.3})); for (int i = 0; i < 10; i++) { input1_data[0] = -2.0 + i; memcpy(input1_memory_data, input1_data, kInput1ByteSize); m.MarkInputTensorDataStale(m.input1()); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray({-1.9 + i, 0.4, 1.0, 1.3})); } for (int i = 0; i < 10; i++) { input1_data[0] = -2.0 + i; memcpy(input1_memory_data, input1_data, kInput1ByteSize); auto input1_handle = delegate->RegisterNnapiMemory( input1_memory, memory_callback, &memory_context); m.SetBufferHandle(m.input1(), input1_handle); m.MarkInputTensorDataStale(m.input1()); m.PopulateTensor<float>(m.input2(), {0.1, 0.2, 0.3, 0.5}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray({-1.9 + i, 0.4, 1.0, 1.3})); } } class FloatMulOpModel : public SingleOpModelWithNNAPI { public: FloatMulOpModel(const TensorData& input1, const TensorData& input2, const TensorData& output, ActivationFunctionType activation_type) { input1_ = AddInput(input1); input2_ = AddInput(input2); output_ = AddOutput(output); SetBuiltinOp(BuiltinOperator_MUL, BuiltinOptions_MulOptions, CreateMulOptions(builder_, activation_type).Union()); BuildInterpreterWithNNAPI({GetShape(input1_), GetShape(input2_)}); } int input1() { return input1_; } int input2() { return input2_; } std::vector<float> GetOutput() { return ExtractVector<float>(output_); } protected: int input1_; int input2_; int output_; }; TEST(NNAPIDelegate, MulWithNoActivation) { FloatMulOpModel m({TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {}}, ActivationFunctionType_NONE); m.PopulateTensor<float>(m.input1(), {-2.0, 0.2, 0.7, 0.8}); m.PopulateTensor<float>(m.input2(), {0.1, 0.2, 0.3, 0.5}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray(ArrayFloatNear({-0.2, 0.04, 0.21, 0.4}))); } class FloatPoolingOpModel : public SingleOpModelWithNNAPI { public: FloatPoolingOpModel(BuiltinOperator type, const TensorData& input, int filter_width, int filter_height, const TensorData& output) { input_ = AddInput(input); output_ = AddOutput(output); SetBuiltinOp( type, BuiltinOptions_Pool2DOptions, CreatePool2DOptions(builder_, Padding_VALID, 2, 2, filter_width, filter_height, ActivationFunctionType_NONE) .Union()); BuildInterpreterWithNNAPI({GetShape(input_)}); } void SetInput(std::initializer_list<float> data) { PopulateTensor(input_, data); } std::vector<float> GetOutput() { return ExtractVector<float>(output_); } protected: int input_; int output_; }; TEST(NNAPIDelegate, AveragePoolWithNoActivation) { FloatPoolingOpModel m(BuiltinOperator_AVERAGE_POOL_2D, {TensorType_FLOAT32, {1, 2, 4, 1}}, 2, 2, {TensorType_FLOAT32, {}}); m.SetInput({ 0, 6, 2, 4, 3, 2, 10, 7, }); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray({2.75, 5.75})); } TEST(NNAPIDelegate, MaxPoolWithNoActivation) { FloatPoolingOpModel m(BuiltinOperator_MAX_POOL_2D, {TensorType_FLOAT32, {1, 2, 4, 1}}, 2, 2, {TensorType_FLOAT32, {}}); m.SetInput({ 0, 6, 2, 4, 3, 2, 10, 7, }); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray({6, 10})); } TEST(NNAPIDelegate, L2PoolWithNoActivation) { FloatPoolingOpModel m(BuiltinOperator_L2_POOL_2D, {TensorType_FLOAT32, {1, 2, 4, 1}}, 2, 2, {TensorType_FLOAT32, {}}); m.SetInput({ 0, 6, 2, 4, 3, 2, 10, 7, }); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray({3.5, 6.5})); } class ConvolutionOpModel : public SingleOpModelWithNNAPI { public: ConvolutionOpModel( const TensorData& input, const TensorData& filter, const TensorData& output, int stride_width = 2, int stride_height = 2, enum Padding padding = Padding_VALID, enum ActivationFunctionType activation = ActivationFunctionType_NONE, int dilation_width_factor = 1, int dilation_height_factor = 1) : input_type_(input.type), filter_type_(filter.type) { input_ = AddInput(input); filter_ = AddInput(filter); int bias_size = GetShape(filter_)[0]; if (input.type == TensorType_FLOAT32) { bias_ = AddInput({TensorType_FLOAT32, {bias_size}}); } else { auto bias_scale = GetScale(input_) * GetScale(filter_); TensorData bias{TensorType_INT32, {bias_size}, 0, 0, bias_scale}; bias_ = AddInput(bias); } output_ = AddOutput(output); SetBuiltinOp(BuiltinOperator_CONV_2D, BuiltinOptions_Conv2DOptions, CreateConv2DOptions( builder_, padding, stride_width, stride_height, activation, dilation_width_factor, dilation_height_factor) .Union()); BuildInterpreterWithNNAPI( {GetShape(input_), GetShape(filter_), GetShape(bias_)}); } void SetInput(std::initializer_list<float> data) { SetData(input_, input_type_, data); } void SetFilter(std::initializer_list<float> data) { SetData(filter_, filter_type_, data); } void SetBias(std::initializer_list<float> data) { const auto bias_type = (input_type_ == TensorType_FLOAT32) ? input_type_ : TensorType_INT32; SetData(bias_, bias_type, data); } std::vector<float> GetOutput() { if (input_type_ == TensorType_FLOAT32) { return ExtractVector<float>(output_); } else { return Dequantize<uint8_t>(ExtractVector<uint8_t>(output_), GetScale(output_), GetZeroPoint(output_)); } } std::vector<uint8_t> GetQuantizedOutput() { if (input_type_ == TensorType_FLOAT32) { return {}; } else { return ExtractVector<uint8_t>(output_); } } protected: int input_; int filter_; int bias_; int output_; const TensorType input_type_; const TensorType filter_type_; }; TEST(ConvolutionOpTest, SimpleTestQuantized) { ConvolutionOpModel m({TensorType_UINT8, {2, 2, 4, 1}, -63.5, 64}, {TensorType_UINT8, {3, 2, 2, 1}, -63.5, 64}, {TensorType_UINT8, {}, -127, 128}); m.SetInput({ 1, 1, 1, 1, 2, 2, 2, 2, 1, 2, 3, 4, 1, 2, 3, 4, }); m.SetFilter({ 1, 2, 3, 4, -1, 1, -1, 1, -1, -1, 1, 1, }); m.SetBias({1, 2, 3}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray(ArrayFloatNear( { 18, 2, 5, 18, 2, 5, 17, 4, 3, 37, 4, 3, }, 1e-5))); EXPECT_THAT(m.GetQuantizedOutput(), ElementsAreArray({ 145, 129, 132, 145, 129, 132, 144, 131, 130, 164, 131, 130, })); } TEST(ConvolutionOpTest, SimpleTestQuantizedGrouped) { ConvolutionOpModel m({TensorType_UINT8, {2, 2, 2, 2}, -63.5, 64}, {TensorType_UINT8, {2, 2, 2, 1}, -63.5, 64}, {TensorType_UINT8, {}, -127, 128}); m.SetInput({ 1, 1, 1, 1, 2, 2, 2, 2, 1, 2, 3, 4, 1, 2, 3, 4, }); m.SetFilter({ 1, 2, 3, 4, -1, 1, -1, 1, }); m.SetBias({1, 2}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray(ArrayFloatNear( { 18, 2, 23, 6 }, 1e-5))); EXPECT_THAT(m.GetQuantizedOutput(), ElementsAreArray({ 145, 129, 150, 133, })); } TEST(ConvolutionOpTest, FloatInputQuantizedWeights) { ConvolutionOpModel m({TensorType_FLOAT32, {2, 2, 4, 1}}, {TensorType_UINT8, {3, 2, 2, 1}, 0, 64}, {TensorType_FLOAT32, {}}); m.SetInput({ 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 3, 4, 1, 2, 3, 4, }); m.SetFilter({ 1, 2, 3, 4, 0, 1, 0, 1, 0, 0, 1, 1, }); m.SetBias({1, 2, 3}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray(ArrayFloatNear( { 18, 5, 7, 16, 5, 6, 17, 6, 6, 37, 10, 10, }, 0.2))); } TEST(ConvolutionOpTest, NoActivation) { ConvolutionOpModel m({TensorType_FLOAT32, {2, 2, 4, 1}}, {TensorType_FLOAT32, {3, 2, 2, 1}}, {TensorType_FLOAT32, {}}); m.SetInput({ 1, 1, 1, 1, 2, 2, 2, 2, 1, 2, 3, 4, 1, 2, 3, 4, }); m.SetFilter({ 1, 2, 3, 4, -1, 1, -1, 1, -1, -1, 1, 1, }); m.SetBias({1, 2, 3}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray({ 18, 2, 5, 18, 2, 5, 17, 4, 3, 37, 4, 3, })); } TEST(ConvolutionOpTest, SimpleTestQuantizedOutputMultiplierGreaterThan1) { ConvolutionOpModel quant_op({TensorType_UINT8, {2, 2, 4, 1}, -128.5, 128}, {TensorType_UINT8, {3, 2, 2, 1}, -128.5, 128}, {TensorType_UINT8, {}, -127, 128}); ConvolutionOpModel float_op({TensorType_FLOAT32, {2, 2, 4, 1}}, {TensorType_FLOAT32, {3, 2, 2, 1}}, {TensorType_FLOAT32, {}}); std:
985
cpp
tensorflow/tensorflow
nnapi_delegate_c_api
tensorflow/lite/delegates/nnapi/nnapi_delegate_c_api.cc
tensorflow/lite/delegates/nnapi/nnapi_delegate_c_api_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_NNAPI_NNAPI_DELEGATE_C_API_H_ #define TENSORFLOW_LITE_DELEGATES_NNAPI_NNAPI_DELEGATE_C_API_H_ #include "tensorflow/lite/core/c/common.h" #ifdef __cplusplus extern "C" { #endif typedef struct TFL_CAPI_EXPORT TfLiteNnapiDelegateOptions { enum ExecutionPreference { kUndefined = -1, kLowPower = 0, kFastSingleAnswer = 1, kSustainedSpeed = 2, } execution_preference; const char* accelerator_name; const char* cache_dir; const char* model_token; int disallow_nnapi_cpu; int allow_fp16; int max_number_delegated_partitions; void* nnapi_support_library_handle; } TfLiteNnapiDelegateOptions; TfLiteDelegate* TFL_CAPI_EXPORT TfLiteNnapiDelegateCreate(const TfLiteNnapiDelegateOptions* options); TFL_CAPI_EXPORT TfLiteNnapiDelegateOptions TfLiteNnapiDelegateOptionsDefault(); void TFL_CAPI_EXPORT TfLiteNnapiDelegateDelete(TfLiteDelegate* delegate); #ifdef __cplusplus } #endif #endif #include "tensorflow/lite/delegates/nnapi/nnapi_delegate_c_api.h" #include "tensorflow/lite/delegates/nnapi/nnapi_delegate.h" #include "tensorflow/lite/nnapi/sl/public/NeuralNetworksSupportLibraryImpl.h" TfLiteDelegate* TfLiteNnapiDelegateCreate( const TfLiteNnapiDelegateOptions* options) { tflite::StatefulNnApiDelegate::StatefulNnApiDelegate::Options internal_options; internal_options.execution_preference = static_cast<tflite::StatefulNnApiDelegate::StatefulNnApiDelegate:: Options::ExecutionPreference>( options->execution_preference); internal_options.accelerator_name = options->accelerator_name; internal_options.cache_dir = options->cache_dir; internal_options.model_token = options->model_token; internal_options.disallow_nnapi_cpu = options->disallow_nnapi_cpu; internal_options.max_number_delegated_partitions = options->max_number_delegated_partitions; internal_options.allow_fp16 = options->allow_fp16; tflite::StatefulNnApiDelegate* delegate = nullptr; if (options->nnapi_support_library_handle) { delegate = new tflite::StatefulNnApiDelegate( static_cast<NnApiSLDriverImplFL5*>( options->nnapi_support_library_handle), internal_options); } else { delegate = new tflite::StatefulNnApiDelegate(internal_options); } return delegate; } TfLiteNnapiDelegateOptions TfLiteNnapiDelegateOptionsDefault() { TfLiteNnapiDelegateOptions result = {}; tflite::StatefulNnApiDelegate::Options options; result.execution_preference = static_cast<TfLiteNnapiDelegateOptions::ExecutionPreference>( options.execution_preference); result.accelerator_name = options.accelerator_name; result.cache_dir = options.cache_dir; result.model_token = options.model_token; result.disallow_nnapi_cpu = options.disallow_nnapi_cpu; result.max_number_delegated_partitions = options.max_number_delegated_partitions; result.allow_fp16 = options.allow_fp16; result.nnapi_support_library_handle = nullptr; return result; } void TfLiteNnapiDelegateDelete(TfLiteDelegate* delegate) { if (delegate == nullptr) return; delete static_cast<tflite::StatefulNnApiDelegate*>(delegate); }
#include "tensorflow/lite/delegates/nnapi/nnapi_delegate_c_api.h" #include <sys/mman.h> #include <algorithm> #include <initializer_list> #include <gtest/gtest.h> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/test_util.h" namespace tflite { namespace { using ::testing::ElementsAreArray; class SingleOpModelWithNnapiDelegateCApi : public SingleOpModel { public: SingleOpModelWithNnapiDelegateCApi() { options_ = TfLiteNnapiDelegateOptionsDefault(); options_.disallow_nnapi_cpu = false; } explicit SingleOpModelWithNnapiDelegateCApi( const TfLiteNnapiDelegateOptions& options) { options_ = options; options_.disallow_nnapi_cpu = false; } ~SingleOpModelWithNnapiDelegateCApi() { if (nnapi_delegate_) { TfLiteNnapiDelegateDelete(nnapi_delegate_); } nnapi_delegate_ = nullptr; } protected: void BuildInterpreterWithNNAPI(std::vector<std::vector<int>> input_shapes) { if (nnapi_delegate_) { TfLiteNnapiDelegateDelete(nnapi_delegate_); } nnapi_delegate_ = TfLiteNnapiDelegateCreate(&options_); SetDelegate(nnapi_delegate_); BuildInterpreter(input_shapes, -1, options_.allow_fp16, true, true); } private: TfLiteNnapiDelegateOptions options_; TfLiteDelegate* nnapi_delegate_ = nullptr; }; class FloatAddOpModel : public SingleOpModelWithNnapiDelegateCApi { public: FloatAddOpModel(const TensorData& input1, const TensorData& input2, const TensorData& output, ActivationFunctionType activation_type) { Init(input1, input2, output, activation_type); } FloatAddOpModel(const TfLiteNnapiDelegateOptions& options, const TensorData& input1, const TensorData& input2, const TensorData& output, ActivationFunctionType activation_type) : SingleOpModelWithNnapiDelegateCApi(options) { Init(input1, input2, output, activation_type); } int input1() { return input1_; } int input2() { return input2_; } std::vector<float> GetOutput() { return ExtractVector<float>(output_); } protected: int input1_; int input2_; int output_; private: void Init(const TensorData& input1, const TensorData& input2, const TensorData& output, ActivationFunctionType activation_type) { input1_ = AddInput(input1); input2_ = AddInput(input2); output_ = AddOutput(output); SetBuiltinOp(BuiltinOperator_ADD, BuiltinOptions_AddOptions, CreateAddOptions(builder_, activation_type).Union()); BuildInterpreterWithNNAPI({GetShape(input1_), GetShape(input2_)}); } }; TEST(NNAPIDelegate, C_API) { TfLiteNnapiDelegateOptions options = TfLiteNnapiDelegateOptionsDefault(); options.execution_preference = TfLiteNnapiDelegateOptions::ExecutionPreference::kLowPower; FloatAddOpModel m(options, {TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {}}, ActivationFunctionType_NONE); m.PopulateTensor<float>(m.input1(), {-2.0, 0.2, 0.7, 0.8}); m.PopulateTensor<float>(m.input2(), {0.1, 0.2, 0.3, 0.5}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray({-1.9, 0.4, 1.0, 1.3})); } TEST(NNAPIDelegate, C_API_WithAcceleratorName) { TfLiteNnapiDelegateOptions options = TfLiteNnapiDelegateOptionsDefault(); options.execution_preference = TfLiteNnapiDelegateOptions::ExecutionPreference::kLowPower; options.accelerator_name = "nnapi-reference"; FloatAddOpModel m(options, {TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {}}, ActivationFunctionType_NONE); m.PopulateTensor<float>(m.input1(), {-2.0, 0.2, 0.7, 0.8}); m.PopulateTensor<float>(m.input2(), {0.1, 0.2, 0.3, 0.5}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray({-1.9, 0.4, 1.0, 1.3})); } TEST(NNAPIDelegate, C_API_WithCompilationCaching) { TfLiteNnapiDelegateOptions options = TfLiteNnapiDelegateOptionsDefault(); options.execution_preference = TfLiteNnapiDelegateOptions::ExecutionPreference::kLowPower; options.cache_dir = "/data/local/tmp"; options.model_token = "NNAPIDelegate.C_API_WithCompilationCaching"; { FloatAddOpModel m(options, {TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {}}, ActivationFunctionType_NONE); m.PopulateTensor<float>(m.input1(), {-2.0, 0.2, 0.7, 0.8}); m.PopulateTensor<float>(m.input2(), {0.1, 0.2, 0.3, 0.5}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray({-1.9, 0.4, 1.0, 1.3})); } { FloatAddOpModel m(options, {TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {}}, ActivationFunctionType_NONE); m.PopulateTensor<float>(m.input1(), {-1.0, 0.1, 0.7, 0.8}); m.PopulateTensor<float>(m.input2(), {0.2, 0.2, 0.4, 0.2}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray({-0.8, 0.3, 1.1, 1.0})); } } } }
986
cpp
tensorflow/tensorflow
quant_lstm_sup
tensorflow/lite/delegates/nnapi/quant_lstm_sup.cc
tensorflow/lite/delegates/nnapi/quant_lstm_sup_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_NNAPI_QUANT_LSTM_SUP_H_ #define TENSORFLOW_LITE_DELEGATES_NNAPI_QUANT_LSTM_SUP_H_ #include <vector> #include "tensorflow/lite/core/c/common.h" namespace tflite { namespace delegate { namespace nnapi { void ExtractQuantLstmWeightsSubmatrix(const TfLiteIntArray* submatrix_dims, const int32_t offset_row, const int32_t offset_column, const TfLiteIntArray* weight_dims, const uint8_t* weights, std::vector<uint8_t>* submatrix); void DecomposeQuantLstmWeightsTensor(const uint8_t* concat_weights, const TfLiteIntArray* weight_dims, std::vector<uint8_t>* recurrent_to_input, std::vector<uint8_t>* input_to_input, std::vector<uint8_t>* recurrent_to_cell, std::vector<uint8_t>* input_to_cell, std::vector<uint8_t>* recurrent_to_forget, std::vector<uint8_t>* input_to_forget, std::vector<uint8_t>* recurrent_to_output, std::vector<uint8_t>* input_to_output); void SetWeightSubmatrixDims(const TfLiteIntArray* weight_dims, TfLiteIntArray* recurrent_submatrix_dims, TfLiteIntArray* input_submatrix_dims); void DecomposeBiasTensor(const int32_t* biases, int bias_size, std::vector<int32_t>* input_bias, std::vector<int32_t>* cell_bias, std::vector<int32_t>* forget_bias, std::vector<int32_t>* output_bias); } } } #endif #include "tensorflow/lite/delegates/nnapi/quant_lstm_sup.h" #include <algorithm> #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace delegate { namespace nnapi { void ExtractQuantLstmWeightsSubmatrix(const TfLiteIntArray* submatrix_dims, const int32_t offset_row, const int32_t offset_column, const TfLiteIntArray* weight_dims, const uint8_t* weights, std::vector<uint8_t>* submatrix) { auto const& submatrix_rows = submatrix_dims->data[0]; auto const& submatrix_cols = submatrix_dims->data[1]; auto const& weight_cols = weight_dims->data[1]; submatrix->resize(NumElements(submatrix_dims)); for (uint32_t i = 0, end = submatrix_rows * submatrix_cols; i < end; ++i) { const uint32_t row = i / submatrix_cols; const uint32_t column = i % submatrix_cols; (*submatrix)[i] = weights[(row + offset_row) * weight_cols + column + offset_column]; } } inline int OutputDepth(const TfLiteIntArray* weight_dims) { return weight_dims->data[0] / 4; } inline int InputDepth(const TfLiteIntArray* weight_dims) { return weight_dims->data[1] - OutputDepth(weight_dims); } void SetWeightSubmatrixDims(const TfLiteIntArray* weight_dims, TfLiteIntArray* recurrent_submatrix_dims, TfLiteIntArray* input_submatrix_dims) { const auto input_depth = InputDepth(weight_dims); const auto output_depth = OutputDepth(weight_dims); recurrent_submatrix_dims->data[0] = output_depth; recurrent_submatrix_dims->data[1] = output_depth; input_submatrix_dims->data[0] = output_depth; input_submatrix_dims->data[1] = input_depth; } void DecomposeQuantLstmWeightsTensor(const uint8_t* concat_weights, const TfLiteIntArray* weight_dims, std::vector<uint8_t>* recurrent_to_input, std::vector<uint8_t>* input_to_input, std::vector<uint8_t>* recurrent_to_cell, std::vector<uint8_t>* input_to_cell, std::vector<uint8_t>* recurrent_to_forget, std::vector<uint8_t>* input_to_forget, std::vector<uint8_t>* recurrent_to_output, std::vector<uint8_t>* input_to_output) { const auto output_depth = OutputDepth(weight_dims); TfLiteIntArray* recurrent_submatrix_dims = TfLiteIntArrayCreate(2); TfLiteIntArray* input_submatrix_dims = TfLiteIntArrayCreate(2); SetWeightSubmatrixDims(weight_dims, recurrent_submatrix_dims, input_submatrix_dims); ExtractQuantLstmWeightsSubmatrix(recurrent_submatrix_dims, 0 * output_depth, 0, weight_dims, concat_weights, recurrent_to_input); ExtractQuantLstmWeightsSubmatrix(input_submatrix_dims, 0 * output_depth, output_depth, weight_dims, concat_weights, input_to_input); ExtractQuantLstmWeightsSubmatrix(recurrent_submatrix_dims, 1 * output_depth, 0, weight_dims, concat_weights, recurrent_to_cell); ExtractQuantLstmWeightsSubmatrix(input_submatrix_dims, 1 * output_depth, output_depth, weight_dims, concat_weights, input_to_cell); ExtractQuantLstmWeightsSubmatrix(recurrent_submatrix_dims, 2 * output_depth, 0, weight_dims, concat_weights, recurrent_to_forget); ExtractQuantLstmWeightsSubmatrix(input_submatrix_dims, 2 * output_depth, output_depth, weight_dims, concat_weights, input_to_forget); ExtractQuantLstmWeightsSubmatrix(recurrent_submatrix_dims, 3 * output_depth, 0, weight_dims, concat_weights, recurrent_to_output); ExtractQuantLstmWeightsSubmatrix(input_submatrix_dims, 3 * output_depth, output_depth, weight_dims, concat_weights, input_to_output); TfLiteIntArrayFree(recurrent_submatrix_dims); TfLiteIntArrayFree(input_submatrix_dims); } void DecomposeBiasTensor(const int32_t* biases, int bias_size, std::vector<int32_t>* input_bias, std::vector<int32_t>* cell_bias, std::vector<int32_t>* forget_bias, std::vector<int32_t>* output_bias) { input_bias->resize(bias_size); std::copy(biases, biases + bias_size, input_bias->begin()); cell_bias->resize(bias_size); std::copy(biases + bias_size, biases + 2 * bias_size, cell_bias->begin()); forget_bias->resize(bias_size); std::copy(biases + 2 * bias_size, biases + 3 * bias_size, forget_bias->begin()); output_bias->resize(bias_size); std::copy(biases + 3 * bias_size, biases + 4 * bias_size, output_bias->begin()); } } } }
#include "tensorflow/lite/delegates/nnapi/quant_lstm_sup.h" #include <cstdint> #include <initializer_list> #include <memory> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/testing/util.h" namespace { using ::testing::ElementsAreArray; using ::testing::Test; class DimsAllocatingTest : public Test { protected: DimsAllocatingTest() : allocated_dims_() {} ~DimsAllocatingTest() override { for (TfLiteIntArray* dim : allocated_dims_) { TfLiteIntArrayFree(dim); } } TfLiteIntArray* CreateDimArray(int size, std::initializer_list<int> dimensions) { TfLiteIntArray* dims = TfLiteIntArrayCreate(size); allocated_dims_.push_back(dims); int i = 0; for (const int dimension : dimensions) { dims->data[i++] = dimension; } return dims; } private: std::vector<TfLiteIntArray*> allocated_dims_; }; using tflite::delegate::nnapi::ExtractQuantLstmWeightsSubmatrix; class ExtractQuantLstmWeightsSubmatrixTest : public DimsAllocatingTest {}; TEST_F(ExtractQuantLstmWeightsSubmatrixTest, TopLeftSubmatrixIsExtracted) { std::vector<uint8_t> weights = {1, 2, 3, 4, 5, 11, 12, 13, 14, 15, 101, 102, 103, 104, 105, 111, 112, 113, 114, 115, 201, 202, 203, 204, 205, 211, 212, 213, 214, 215, 221, 222, 223, 224, 225, 231, 232, 233, 234, 235}; const TfLiteIntArray* weight_dims = CreateDimArray(2, {8, 5}); std::vector<uint8_t> submatrix; const TfLiteIntArray* submatrix_dims = CreateDimArray(2, {2, 3}); ExtractQuantLstmWeightsSubmatrix(submatrix_dims, 0 , 0 , weight_dims, weights.data(), &submatrix); EXPECT_THAT(submatrix, ElementsAreArray({1, 2, 3, 11, 12, 13})); } TEST_F(ExtractQuantLstmWeightsSubmatrixTest, TopRightSubmatrixIsExtracted) { std::vector<uint8_t> weights = {1, 2, 3, 4, 5, 11, 12, 13, 14, 15, 101, 102, 103, 104, 105, 111, 112, 113, 114, 115, 201, 202, 203, 204, 205, 211, 212, 213, 214, 215, 221, 222, 223, 224, 225, 231, 232, 233, 234, 235}; const TfLiteIntArray* weight_dims = CreateDimArray(2, {8, 5}); std::vector<uint8_t> submatrix; const TfLiteIntArray* submatrix_dims = CreateDimArray(2, {2, 2}); ExtractQuantLstmWeightsSubmatrix(submatrix_dims, 0 , 3 , weight_dims, weights.data(), &submatrix); EXPECT_THAT(submatrix, ElementsAreArray({4, 5, 14, 15})); } TEST_F(ExtractQuantLstmWeightsSubmatrixTest, RightCentralSubmatrixIsExtracted) { std::vector<uint8_t> weights = {1, 2, 3, 4, 5, 11, 12, 13, 14, 15, 101, 102, 103, 104, 105, 111, 112, 113, 114, 115, 201, 202, 203, 204, 205, 211, 212, 213, 214, 215, 221, 222, 223, 224, 225, 231, 232, 233, 234, 235}; const TfLiteIntArray* weight_dims = CreateDimArray(2, {8, 5}); std::vector<uint8_t> submatrix; const TfLiteIntArray* submatrix_dims = CreateDimArray(2, {2, 2}); ExtractQuantLstmWeightsSubmatrix( submatrix_dims, 1 * submatrix_dims->data[0] , 3 , weight_dims, weights.data(), &submatrix); EXPECT_THAT(submatrix, ElementsAreArray({104, 105, 114, 115})); } using tflite::delegate::nnapi::DecomposeQuantLstmWeightsTensor; class QuantLstmWeightDecompTest : public DimsAllocatingTest { protected: QuantLstmWeightDecompTest() : weights_({1, 2, 3, 4, 5, 11, 12, 13, 14, 15, 101, 102, 103, 104, 105, 111, 112, 113, 114, 115, 201, 202, 203, 204, 205, 211, 212, 213, 214, 215, 221, 222, 223, 224, 225, 231, 232, 233, 234, 235}), recurrent_to_input_(), input_to_input_(), recurrent_to_cell_(), input_to_cell_(), recurrent_to_forget_(), input_to_forget_(), recurrent_to_output_(), input_to_output_() { weight_dims_ = CreateDimArray(2, {8, 5}); } const std::vector<uint8_t> weights_; const TfLiteIntArray* weight_dims_; std::vector<uint8_t> recurrent_to_input_; std::vector<uint8_t> input_to_input_; std::vector<uint8_t> recurrent_to_cell_; std::vector<uint8_t> input_to_cell_; std::vector<uint8_t> recurrent_to_forget_; std::vector<uint8_t> input_to_forget_; std::vector<uint8_t> recurrent_to_output_; std::vector<uint8_t> input_to_output_; }; TEST_F(QuantLstmWeightDecompTest, ExtractRecurrentToInput) { DecomposeQuantLstmWeightsTensor( weights_.data(), weight_dims_, &recurrent_to_input_, &input_to_input_, &recurrent_to_cell_, &input_to_cell_, &recurrent_to_forget_, &input_to_forget_, &recurrent_to_output_, &input_to_output_); EXPECT_THAT(recurrent_to_input_, ElementsAreArray({1, 2, 11, 12})); } TEST_F(QuantLstmWeightDecompTest, ExtractInputToInput) { DecomposeQuantLstmWeightsTensor( weights_.data(), weight_dims_, &recurrent_to_input_, &input_to_input_, &recurrent_to_cell_, &input_to_cell_, &recurrent_to_forget_, &input_to_forget_, &recurrent_to_output_, &input_to_output_); EXPECT_THAT(input_to_input_, ElementsAreArray({3, 4, 5, 13, 14, 15})); } TEST_F(QuantLstmWeightDecompTest, ExtractRecurrentToCell) { DecomposeQuantLstmWeightsTensor( weights_.data(), weight_dims_, &recurrent_to_input_, &input_to_input_, &recurrent_to_cell_, &input_to_cell_, &recurrent_to_forget_, &input_to_forget_, &recurrent_to_output_, &input_to_output_); EXPECT_THAT(recurrent_to_cell_, ElementsAreArray({101, 102, 111, 112})); } TEST_F(QuantLstmWeightDecompTest, ExtractInputToCell) { DecomposeQuantLstmWeightsTensor( weights_.data(), weight_dims_, &recurrent_to_input_, &input_to_input_, &recurrent_to_cell_, &input_to_cell_, &recurrent_to_forget_, &input_to_forget_, &recurrent_to_output_, &input_to_output_); EXPECT_THAT(input_to_cell_, ElementsAreArray({103, 104, 105, 113, 114, 115})); } TEST_F(QuantLstmWeightDecompTest, ExtractRecurrentToForget) { DecomposeQuantLstmWeightsTensor( weights_.data(), weight_dims_, &recurrent_to_input_, &input_to_input_, &recurrent_to_cell_, &input_to_cell_, &recurrent_to_forget_, &input_to_forget_, &recurrent_to_output_, &input_to_output_); EXPECT_THAT(recurrent_to_forget_, ElementsAreArray({201, 202, 211, 212})); } TEST_F(QuantLstmWeightDecompTest, ExtractInputToForget) { DecomposeQuantLstmWeightsTensor( weights_.data(), weight_dims_, &recurrent_to_input_, &input_to_input_, &recurrent_to_cell_, &input_to_cell_, &recurrent_to_forget_, &input_to_forget_, &recurrent_to_output_, &input_to_output_); EXPECT_THAT(input_to_forget_, ElementsAreArray({203, 204, 205, 213, 214, 215})); } TEST_F(QuantLstmWeightDecompTest, ExtractRecurrentToOutput) { DecomposeQuantLstmWeightsTensor( weights_.data(), weight_dims_, &recurrent_to_input_, &input_to_input_, &recurrent_to_cell_, &input_to_cell_, &recurrent_to_forget_, &input_to_forget_, &recurrent_to_output_, &input_to_output_); EXPECT_THAT(recurrent_to_output_, ElementsAreArray({221, 222, 231, 232})); } TEST_F(QuantLstmWeightDecompTest, ExtractInputToOutput) { DecomposeQuantLstmWeightsTensor( weights_.data(), weight_dims_, &recurrent_to_input_, &input_to_input_, &recurrent_to_cell_, &input_to_cell_, &recurrent_to_forget_, &input_to_forget_, &recurrent_to_output_, &input_to_output_); EXPECT_THAT(input_to_output_, ElementsAreArray({223, 224, 225, 233, 234, 235})); } using tflite::delegate::nnapi::DecomposeBiasTensor; TEST(DecomposeBiasTensor, ExtractInputBias) { std::vector<int32_t> biases {-7876, 13488, -726, 32839, 39481, 48624, 48976, -21419, 9206, -46884, -11693, -38724, -58999, -17050, -41852, -40538}; std::vector<int32_t> input_bias; std::vector<int32_t> cell_bias; std::vector<int32_t> forget_bias; std::vector<int32_t> output_bias; DecomposeBiasTensor(biases.data(), 4, &input_bias, &cell_bias, &forget_bias, &output_bias); EXPECT_THAT(input_bias, ElementsAreArray({-7876, 13488, -726, 32839})); } TEST(DecomposeBiasTensor, ExtractCellBias) { std::vector<int32_t> biases {-7876, 13488, -726, 32839, 39481, 48624, 48976, -21419, 9206, -46884, -11693, -38724, -58999, -17050, -41852, -40538}; std::vector<int32_t> input_bias; std::vector<int32_t> cell_bias; std::vector<int32_t> forget_bias; std::vector<int32_t> output_bias; DecomposeBiasTensor(biases.data(), 4, &input_bias, &cell_bias, &forget_bias, &output_bias); EXPECT_THAT(cell_bias, ElementsAreArray({39481, 48624, 48976, -21419})); } TEST(DecomposeBiasTensor, ExtractForgetBias) { std::vector<int32_t> biases {-7876, 13488, -726, 32839, 39481, 48624, 48976, -21419, 9206, -46884, -11693, -38724, -58999, -17050, -41852, -40538}; std::vector<int32_t> input_bias; std::vector<int32_t> cell_bias; std::vector<int32_t> forget_bias; std::vector<int32_t> output_bias; DecomposeBiasTensor(biases.data(), 4, &input_bias, &cell_bias, &forget_bias, &output_bias); EXPECT_THAT(forget_bias, ElementsAreArray({9206, -46884, -11693, -38724})); } TEST(DecomposeBiasTensor, ExtractOutputBias) { std::vector<int32_t> biases {-7876, 13488, -726, 32839, 39481, 48624, 48976, -21419, 9206, -46884, -11693, -38724, -58999, -17050, -41852, -40538}; std::vector<int32_t> input_bias; std::vector<int32_t> cell_bias; std::vector<int32_t> forget_bias; std::vector<int32_t> output_bias; DecomposeBiasTensor(biases.data(), 4, &input_bias, &cell_bias, &forget_bias, &output_bias); EXPECT_THAT(output_bias, ElementsAreArray({-58999, -17050, -41852, -40538})); } }
987
cpp
tensorflow/tensorflow
min_max_builder
tensorflow/lite/delegates/hexagon/builders/min_max_builder.cc
tensorflow/lite/delegates/hexagon/builders/tests/min_max_builder_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_HEXAGON_BUILDERS_MIN_MAX_BUILDER_H_ #define TENSORFLOW_LITE_DELEGATES_HEXAGON_BUILDERS_MIN_MAX_BUILDER_H_ #include "tensorflow/lite/delegates/hexagon/builders/op_builder.h" namespace tflite { namespace delegates { namespace hexagon { class MinMaxOpBuilder : public OpBuilder { public: explicit MinMaxOpBuilder(GraphBuilder* graph_builder, int op_type) : OpBuilder(graph_builder, op_type) {} TfLiteStatus PopulateSubGraph(const TfLiteIntArray* inputs, const TfLiteIntArray* outputs, TfLiteContext* context) override; TfLiteStatus RegisterOutputs(const TfLiteIntArray* outputs, TfLiteContext* context) override; private: TensorID node_output_; }; } } } #endif #include "tensorflow/lite/delegates/hexagon/builders/min_max_builder.h" #include "tensorflow/lite/core/c/common.h" namespace tflite { namespace delegates { namespace hexagon { TfLiteStatus MinMaxOpBuilder::PopulateSubGraph(const TfLiteIntArray* inputs, const TfLiteIntArray* outputs, TfLiteContext* context) { int a_tensor_id = inputs->data[0]; int b_tensor_id = inputs->data[1]; const auto& a_tensor = context->tensors[a_tensor_id]; const auto& b_tensor = context->tensors[b_tensor_id]; AddInput(graph_builder_->GetHexagonTensorId(a_tensor_id)); AddInput(graph_builder_->GetHexagonTensorId(b_tensor_id)); TF_LITE_ENSURE_STATUS(ComputeAndAddMinAndMax(context, a_tensor)); TF_LITE_ENSURE_STATUS(ComputeAndAddMinAndMax(context, b_tensor)); const int output_tensor_id = outputs->data[0]; const auto& output_tensor = context->tensors[output_tensor_id]; TF_LITE_ENSURE_STATUS(ComputeAndAddMinAndMax(context, output_tensor)); int output_batch_size, output_height_size, output_width_size, output_depth_size; GetDims(&output_batch_size, &output_height_size, &output_width_size, &output_depth_size, context->tensors[outputs->data[0]].dims); node_output_ = AddOutput(sizeof(uint8_t), 4, {output_batch_size, output_height_size, output_width_size, output_depth_size}); AddOutput(sizeof(float), 4, kScalarShape); AddOutput(sizeof(float), 4, kScalarShape); return kTfLiteOk; } TfLiteStatus MinMaxOpBuilder::RegisterOutputs(const TfLiteIntArray* outputs, TfLiteContext* context) { graph_builder_->AddTensorWithID(outputs->data[0], node_output_.first, node_output_.second); return kTfLiteOk; } OpBuilder* CreateMinMaxBuilder(GraphBuilder* graph_builder, int op_type) { return new MinMaxOpBuilder(graph_builder, op_type); } } } }
#include <initializer_list> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/delegates/hexagon/builders/tests/hexagon_delegate_op_model.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { using testing::ElementsAreArray; template <typename data_type> class MinMaxOpModel : public SingleOpModelWithHexagon { public: MinMaxOpModel(tflite::BuiltinOperator op, const TensorData& input1, const TensorData& input2, const TensorData& output) { input1_ = AddInput(input1); input2_ = AddInput(input2); output_ = AddOutput(output); SetBuiltinOp(op, BuiltinOptions_MaximumMinimumOptions, CreateMaximumMinimumOptions(builder_).Union()); BuildInterpreter({GetShape(input1_), GetShape(input2_)}); } MinMaxOpModel(tflite::BuiltinOperator op, const TensorData& input1, std::initializer_list<data_type> input1_values, const TensorData& input2, std::initializer_list<data_type> input2_values, const TensorData& output, bool input1_const) { input1_ = AddInput(input1); input2_ = AddInput(input2); output_ = AddOutput(output); SetBuiltinOp(op, BuiltinOptions_MaximumMinimumOptions, CreateMaximumMinimumOptions(builder_).Union()); BuildInterpreter({GetShape(input1_), GetShape(input2_)}); if (input1_const) { auto* input1_tensor = interpreter_->tensor(input1_); input1_tensor->allocation_type = kTfLiteMmapRo; } else { auto* input2_tensor = interpreter_->tensor(input2_); input2_tensor->allocation_type = kTfLiteMmapRo; } } void SetInput1(std::vector<data_type> data) { PopulateTensor(input1_, data); } void SetInput2(std::vector<data_type> data) { PopulateTensor(input2_, data); } std::vector<data_type> GetOutput() { return ExtractVector<data_type>(output_); } template <typename T> std::vector<float> GetDequantizedOutput() { return Dequantize<T>(ExtractVector<T>(output_), GetScale(output_), GetZeroPoint(output_)); } std::vector<int> GetOutputShape() { return GetTensorShape(output_); } protected: int input1_; int input2_; int output_; }; template <typename data_type> void TestModel(tflite::BuiltinOperator op, const TensorData& input1, const TensorData& input2, const TensorData& output, std::initializer_list<data_type> input1_values, std::initializer_list<data_type> input2_values) { std::unique_ptr<MinMaxOpModel<data_type>> m; m = std::make_unique<MinMaxOpModel<data_type>>(op, input1, input2, output); m->SetInput1(input1_values); m->SetInput2(input2_values); ASSERT_EQ(m->Invoke(), kTfLiteOk); const auto reference_output = m->GetOutput(); const auto reference_output_shape = m->GetOutputShape(); m->ApplyDelegateAndInvoke(); EXPECT_THAT(m->GetOutputShape(), ElementsAreArray(reference_output_shape)); EXPECT_THAT(m->GetOutput(), ElementsAreArray(reference_output)); } template <typename data_type> void TestModelConstInput(tflite::BuiltinOperator op, const TensorData& input1, const TensorData& input2, const TensorData& output, std::initializer_list<data_type> input1_values, std::initializer_list<data_type> input2_values, bool input1_const) { std::unique_ptr<MinMaxOpModel<data_type>> m; m = std::make_unique<MinMaxOpModel<data_type>>( op, input1, input1_values, input2, input2_values, output, input1_const); m->SetInput1(input1_values); m->SetInput2(input2_values); ASSERT_EQ(m->Invoke(), kTfLiteOk); const auto reference_output = m->GetOutput(); const auto reference_output_shape = m->GetOutputShape(); m->ApplyDelegateAndInvoke(); EXPECT_THAT(m->GetOutputShape(), ElementsAreArray(reference_output_shape)); EXPECT_THAT(m->GetOutput(), ElementsAreArray(reference_output)); } TEST(MinMaxOpTest, Maximum_Uint8Test) { std::initializer_list<uint8_t> data1 = {1, 0, 2, 11, 2, 23}; std::initializer_list<uint8_t> data2 = {0, 0, 1, 12, 255, 1}; TestModel<uint8_t>(BuiltinOperator_MAXIMUM, {TensorType_UINT8, {1, 3, 1, 2}, -1, 255}, {TensorType_UINT8, {1, 3, 1, 2}, -1, 255}, {TensorType_UINT8, {1, 3, 1, 2}, -1, 255}, data1, data2); } TEST(MinMaxOpTest, Maximum_Uint8Test_Const) { std::initializer_list<uint8_t> data1 = {1, 0, 2, 11, 2, 23}; std::initializer_list<uint8_t> data2 = {0, 0, 1, 12, 255, 1}; TestModelConstInput<uint8_t>( BuiltinOperator_MAXIMUM, {TensorType_UINT8, {1, 3, 1, 2}, -1, 255}, {TensorType_UINT8, {1, 3, 1, 2}, -1, 255}, {TensorType_UINT8, {1, 3, 1, 2}, -1, 255}, data1, data2, false); } TEST(MinMaxOpTest, Minimum_Uint8Test) { std::initializer_list<uint8_t> data1 = {1, 0, 2, 11, 2, 23}; std::initializer_list<uint8_t> data2 = {0, 0, 1, 12, 255, 1}; TestModel<uint8_t>(BuiltinOperator_MINIMUM, {TensorType_UINT8, {1, 3, 1, 2}, -1, 255}, {TensorType_UINT8, {1, 3, 1, 2}, -1, 255}, {TensorType_UINT8, {1, 3, 1, 2}, -1, 255}, data1, data2); } TEST(MinMaxOpTest, Minimum_Uint8Test_Const) { std::initializer_list<uint8_t> data1 = {1, 0, 2, 11, 2, 23}; std::initializer_list<uint8_t> data2 = {0, 0, 1, 12, 20, 1}; TestModelConstInput<uint8_t>( BuiltinOperator_MINIMUM, {TensorType_UINT8, {1, 3, 1, 2}, -1, 25}, {TensorType_UINT8, {1, 3, 1, 2}, -1, 25}, {TensorType_UINT8, {1, 3, 1, 2}, -1, 25}, data1, data2, false); } TEST(MinMaxOpTest, Maximum_Int8Test) { std::initializer_list<int8_t> data1 = {1, 0, 2, 11, 2, 23}; std::initializer_list<int8_t> data2 = {0, 0, 1, 12, 123, 1}; TestModel<int8_t>(BuiltinOperator_MAXIMUM, {TensorType_INT8, {1, 3, 1, 2}, -1, 125}, {TensorType_INT8, {1, 3, 1, 2}, -1, 125}, {TensorType_INT8, {1, 3, 1, 2}, -1, 125}, data1, data2); } TEST(MinMaxOpTest, Minimum_Int8Test) { std::initializer_list<int8_t> data1 = {1, 0, 2, 11, 2, 23}; std::initializer_list<int8_t> data2 = {0, 0, 1, 12, 12, 1}; TestModel<int8_t>(BuiltinOperator_MINIMUM, {TensorType_INT8, {1, 3, 1, 2}, -1, 25}, {TensorType_INT8, {1, 3, 1, 2}, -1, 25}, {TensorType_INT8, {1, 3, 1, 2}, -1, 25}, data1, data2); } }
988
cpp
tensorflow/tensorflow
async_buffers
tensorflow/lite/delegates/gpu/async_buffers.cc
tensorflow/lite/delegates/gpu/async_buffers_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_ASYNC_BUFFERS_H_ #define TENSORFLOW_LITE_DELEGATES_GPU_ASYNC_BUFFERS_H_ #if defined(__ANDROID__) #include <android/hardware_buffer.h> #endif #include <GLES3/gl31.h> #include "absl/status/status.h" #include "tensorflow/lite/delegates/gpu/api.h" #include "tensorflow/lite/delegates/gpu/common/data_type.h" extern "C" typedef struct AHardwareBuffer AHardwareBuffer; namespace tflite { namespace gpu { class AsyncBuffer { private: int bytes_; bool valid_ = false; GLuint opengl_buffer_ = GL_INVALID_INDEX; AHardwareBuffer* ahwb_ = nullptr; absl::Status MapAHardwareBufferToGlBuffer(); absl::Status AllocateOpenGlBuffer(); public: explicit AsyncBuffer(TensorObjectDef tensor_def, AHardwareBuffer* ahwb) { bytes_ = NumElements(tensor_def) * SizeOf(tensor_def.object_def.data_type); ahwb_ = ahwb; } absl::Status GetOpenGlBuffer(GLuint& buffer_ref); }; } } #endif #include "tensorflow/lite/delegates/gpu/async_buffers.h" #include <EGL/egl.h> #include <EGL/eglext.h> #include <GLES2/gl2ext.h> #include <GLES3/gl31.h> #include "absl/status/status.h" #include "tensorflow/lite/delegates/gpu/android_hardware_buffer.h" #include "tensorflow/lite/delegates/gpu/gl/gl_errors.h" namespace { PFNGLBUFFERSTORAGEEXTERNALEXTPROC glBufferStorageExternalEXT; PFNEGLGETNATIVECLIENTBUFFERANDROIDPROC eglGetNativeClientBufferANDROID; bool IsGlSupported() { static const bool extensions_allowed = [] { eglGetNativeClientBufferANDROID = reinterpret_cast<PFNEGLGETNATIVECLIENTBUFFERANDROIDPROC>( eglGetProcAddress("eglGetNativeClientBufferANDROID")); glBufferStorageExternalEXT = reinterpret_cast<PFNGLBUFFERSTORAGEEXTERNALEXTPROC>( eglGetProcAddress("glBufferStorageExternalEXT")); return eglGetNativeClientBufferANDROID && glBufferStorageExternalEXT; }(); return extensions_allowed; } } namespace tflite { namespace gpu { absl::Status AsyncBuffer::MapAHardwareBufferToGlBuffer() { if (!IsGlSupported()) { return absl::UnknownError( "No GL extension functions found to bind AHardwareBuffer and " "OpenGL buffer"); } EGLClientBuffer native_buffer = eglGetNativeClientBufferANDROID(ahwb_); if (!native_buffer) { return absl::UnknownError("Can't get native buffer"); } glBufferStorageExternalEXT(GL_SHADER_STORAGE_BUFFER, 0, bytes_, native_buffer, GL_MAP_READ_BIT | GL_MAP_WRITE_BIT | GL_MAP_COHERENT_BIT_EXT | GL_MAP_PERSISTENT_BIT_EXT); return gl::GetOpenGlErrors(); } absl::Status AsyncBuffer::AllocateOpenGlBuffer() { if (opengl_buffer_ == GL_INVALID_INDEX) { glGenBuffers(1, &opengl_buffer_); glBindBuffer(GL_SHADER_STORAGE_BUFFER, opengl_buffer_); absl::Status status = MapAHardwareBufferToGlBuffer(); if (!status.ok()) { if (ahwb_ != nullptr) { if (OptionalAndroidHardwareBuffer::Instance().Supported()) { OptionalAndroidHardwareBuffer::Instance().Release(ahwb_); } ahwb_ = nullptr; } glBufferData(GL_SHADER_STORAGE_BUFFER, bytes_, nullptr, GL_STREAM_COPY); } glBindBuffer(GL_SHADER_STORAGE_BUFFER, 0); } return absl::OkStatus(); } absl::Status AsyncBuffer::GetOpenGlBuffer(GLuint& buffer_ref) { if (!valid_) { absl::Status status = AllocateOpenGlBuffer(); if (!status.ok()) { return status; } } valid_ = true; buffer_ref = opengl_buffer_; return absl::OkStatus(); } } }
#include "tensorflow/lite/delegates/gpu/async_buffers.h" #include <memory> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/gpu/android_hardware_buffer.h" #include "tensorflow/lite/delegates/gpu/api.h" #include "tensorflow/lite/delegates/gpu/common/data_type.h" #include "tensorflow/lite/delegates/gpu/gl/egl_environment.h" namespace tflite { namespace gpu { namespace { TEST(AsyncBufferTest, DuplicateTest) { if (__builtin_available(android 26, *)) { auto Instance = OptionalAndroidHardwareBuffer::Instance; TensorObjectDef* tie = new TensorObjectDef(); tie->object_def.data_type = DataType::FLOAT32; tie->object_def.data_layout = DataLayout::BHWC; tie->dimensions = Dimensions(2, 2, 2, 2); AHardwareBuffer_Desc buffDesc = {}; buffDesc.width = 1000; buffDesc.height = 1; buffDesc.layers = 1; buffDesc.format = AHARDWAREBUFFER_FORMAT_BLOB; buffDesc.usage = AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN | AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN | AHARDWAREBUFFER_USAGE_GPU_DATA_BUFFER; AHardwareBuffer* ahwb; EXPECT_TRUE(Instance().IsSupported(&buffDesc)); EXPECT_EQ(Instance().Allocate(&buffDesc, &ahwb), 0); std::unique_ptr<gl::EglEnvironment> env; EXPECT_OK(gl::EglEnvironment::NewEglEnvironment(&env)); AsyncBuffer async_buffer1 = AsyncBuffer(*tie, ahwb); GLuint buffer1, buffer2; EXPECT_OK(async_buffer1.GetOpenGlBuffer(buffer1)); EXPECT_GE(buffer1, 0); EXPECT_OK(async_buffer1.GetOpenGlBuffer(buffer2)); EXPECT_EQ(buffer1, buffer2); AsyncBuffer async_buffer2 = AsyncBuffer(*tie, ahwb); EXPECT_OK(async_buffer2.GetOpenGlBuffer(buffer2)); EXPECT_NE(buffer1, buffer2); } else { GTEST_SKIP(); } } } } }
989
cpp
tensorflow/tensorflow
api
tensorflow/lite/delegates/gpu/cl/api.cc
tensorflow/core/api_def/api_test.cc
#ifndef XLA_FFI_API_API_H_ #define XLA_FFI_API_API_H_ #include <algorithm> #include <array> #include <cassert> #include <complex> #include <cstddef> #include <cstdint> #include <functional> #include <iterator> #include <memory> #include <optional> #include <ostream> #include <sstream> #include <string> #include <string_view> #include <tuple> #include <type_traits> #include <utility> #include <variant> #include <vector> #include "xla/ffi/api/c_api.h" #ifdef __has_builtin #define XLA_FFI_HAS_BUILTIN(x) __has_builtin(x) #else #define XLA_FFI_HAS_BUILTIN(x) 0 #endif #if __has_attribute(always_inline) #define XLA_FFI_ATTRIBUTE_ALWAYS_INLINE inline __attribute__((always_inline)) #elif defined(_MSC_VER) #define XLA_FFI_ATTRIBUTE_ALWAYS_INLINE __forceinline #else #define XLA_FFI_ATTRIBUTE_ALWAYS_INLINE inline #endif #if __has_attribute(noinline) #define XLA_FFI_ATTRIBUTE_NEVER_INLINE __attribute__((noinline)) #elif defined(_MSC_VER) #define XLA_FFI_ATTRIBUTE_NEVER_INLINE __declspec(noinline) #else #define XLA_FFI_ATTRIBUTE_NEVER_INLINE #endif #if XLA_FFI_HAS_BUILTIN(__builtin_expect) #define XLA_FFI_PREDICT_FALSE(x) (__builtin_expect(false || (x), false)) #define XLA_FFI_PREDICT_TRUE(x) (__builtin_expect(false || (x), true)) #else #define XLA_FFI_PREDICT_FALSE(x) (x) #define XLA_FFI_PREDICT_TRUE(x) (x) #endif inline std::ostream& operator<<(std::ostream& os, const XLA_FFI_DataType dtype) { switch (dtype) { case XLA_FFI_DataType_INVALID: return os << "INVALID"; case XLA_FFI_DataType_PRED: return os << "PRED"; case XLA_FFI_DataType_S8: return os << "S8"; case XLA_FFI_DataType_S16: return os << "S16"; case XLA_FFI_DataType_S32: return os << "S32"; case XLA_FFI_DataType_S64: return os << "S64"; case XLA_FFI_DataType_U8: return os << "U8"; case XLA_FFI_DataType_U16: return os << "U16"; case XLA_FFI_DataType_U32: return os << "U32"; case XLA_FFI_DataType_U64: return os << "U64"; case XLA_FFI_DataType_F16: return os << "F16"; case XLA_FFI_DataType_F32: return os << "F32"; case XLA_FFI_DataType_F64: return os << "F64"; case XLA_FFI_DataType_BF16: return os << "BF16"; case XLA_FFI_DataType_C64: return os << "C64"; case XLA_FFI_DataType_C128: return os << "C128"; case XLA_FFI_DataType_TOKEN: return os << "TOKEN"; case XLA_FFI_DataType_F8E5M2: return os << "F8E5M2"; case XLA_FFI_DataType_F8E4M3FN: return os << "F8E4M3FN"; case XLA_FFI_DataType_F8E4M3B11FNUZ: return os << "F8E4M3B11FNUZ"; case XLA_FFI_DataType_F8E5M2FNUZ: return os << "F8E5M2FNUZ"; case XLA_FFI_DataType_F8E4M3FNUZ: return os << "F8E4M3FNUZ"; } } inline std::ostream& operator<<(std::ostream& os, const XLA_FFI_AttrType type) { switch (type) { case XLA_FFI_AttrType_ARRAY: return os << "array"; case XLA_FFI_AttrType_DICTIONARY: return os << "dictionary"; case XLA_FFI_AttrType_SCALAR: return os << "scalar"; case XLA_FFI_AttrType_STRING: return os << "string"; } } namespace xla::ffi { template <typename... Ts> class Binding; template <typename Fn, typename... Ts> class Handler; class Ffi { public: static Binding<> Bind(); template <typename Fn> static auto BindTo(Fn fn); virtual ~Ffi() = default; virtual XLA_FFI_Error* Call(const XLA_FFI_CallFrame* call_frame) const = 0; static inline XLA_FFI_Error* RegisterStaticHandler( const XLA_FFI_Api* api, std::string_view name, std::string_view platform, XLA_FFI_Handler_Bundle bundle, XLA_FFI_Handler_Traits traits = 0); static inline XLA_FFI_Error* RegisterStaticHandler( const XLA_FFI_Api* api, std::string_view name, std::string_view platform, XLA_FFI_Handler* execute, XLA_FFI_Handler_Traits traits = 0) { return RegisterStaticHandler( api, name, platform, XLA_FFI_Handler_Bundle{nullptr, nullptr, execute}, traits); } protected: template <typename... Args> static std::string StrCat(Args... args); static inline XLA_FFI_Error* MakeError(const XLA_FFI_Api* api, XLA_FFI_Error_Code errc, std::string message); static inline XLA_FFI_Error* InvalidArgument(const XLA_FFI_Api* api, std::string message); static inline XLA_FFI_Error* CheckStructSize(const XLA_FFI_Api* api, std::string_view struct_name, size_t expected, size_t actual); }; XLA_FFI_Error* Ffi::RegisterStaticHandler(const XLA_FFI_Api* api, std::string_view name, std::string_view platform, XLA_FFI_Handler_Bundle bundle, XLA_FFI_Handler_Traits traits) { XLA_FFI_Handler_Register_Args args; args.struct_size = XLA_FFI_Handler_Register_Args_STRUCT_SIZE; args.priv = nullptr; args.name = XLA_FFI_ByteSpan{name.data(), name.size()}; args.platform = XLA_FFI_ByteSpan{platform.data(), platform.size()}; args.bundle = bundle; args.traits = traits; return api->XLA_FFI_Handler_Register(&args); } template <typename... Args> std::string Ffi::StrCat(Args... args) { std::stringstream ss; (ss << ... << args); return ss.str(); } XLA_FFI_Error* Ffi::MakeError(const XLA_FFI_Api* api, XLA_FFI_Error_Code errc, std::string message) { XLA_FFI_Error_Create_Args args; args.struct_size = XLA_FFI_Error_Create_Args_STRUCT_SIZE; args.priv = nullptr; args.errc = errc; args.message = message.c_str(); return api->XLA_FFI_Error_Create(&args); } XLA_FFI_Error* Ffi::InvalidArgument(const XLA_FFI_Api* api, std::string message) { return MakeError(api, XLA_FFI_Error_Code_INVALID_ARGUMENT, std::move(message)); } XLA_FFI_Error* Ffi::CheckStructSize(const XLA_FFI_Api* api, std::string_view struct_name, size_t expected, size_t actual) { if (expected != actual) { return InvalidArgument( api, StrCat("Unexpected ", struct_name, " size: expected ", expected, " got ", actual, ". Check installed software versions.")); } return nullptr; } class Dictionary; namespace internal { struct RemainingArgsTag {}; struct RemainingRetsTag {}; template <typename T> struct RetTag {}; template <typename T> struct AttrTag {}; template <typename T = Dictionary> struct AttrsTag {}; template <typename T> struct CtxTag {}; template <template <typename> class Tag, typename... Ts> struct NumTagged; template <template <typename> class Tag> struct NumTagged<Tag> { static constexpr int64_t value = 0; }; template <template <typename> class Tag, typename T, typename... Ts> struct NumTagged<Tag, Tag<T>, Ts...> { static constexpr int64_t value = 1 + NumTagged<Tag, Ts...>::value; }; template <template <typename> class Tag, typename T, typename... Ts> struct NumTagged<Tag, T, Ts...> { static constexpr int64_t value = 0 + NumTagged<Tag, Ts...>::value; }; template <typename... Ts> using HasRemainingArgsTag = std::disjunction<std::is_same<RemainingArgsTag, Ts>...>; template <typename... Ts> using HasRemainingRetsTag = std::disjunction<std::is_same<RemainingRetsTag, Ts>...>; template <typename T> XLA_FFI_DataType NativeTypeToCApiDataType() { if constexpr (std::is_same_v<T, bool>) { return XLA_FFI_DataType_PRED; } else if constexpr (std::is_same_v<T, int8_t>) { return XLA_FFI_DataType_S8; } else if constexpr (std::is_same_v<T, int16_t>) { return XLA_FFI_DataType_S16; } else if constexpr (std::is_same_v<T, int32_t>) { return XLA_FFI_DataType_S32; } else if constexpr (std::is_same_v<T, int64_t>) { return XLA_FFI_DataType_S64; } else if constexpr (std::is_same_v<T, uint8_t>) { return XLA_FFI_DataType_U8; } else if constexpr (std::is_same_v<T, uint16_t>) { return XLA_FFI_DataType_U16; } else if constexpr (std::is_same_v<T, uint32_t>) { return XLA_FFI_DataType_U32; } else if constexpr (std::is_same_v<T, uint64_t>) { return XLA_FFI_DataType_U64; } else if constexpr (std::is_same_v<T, float>) { return XLA_FFI_DataType_F32; } else if constexpr (std::is_same_v<T, double>) { return XLA_FFI_DataType_F64; } else if constexpr (std::is_same_v<T, std::complex<float>>) { return XLA_FFI_DataType_C64; } else { static_assert(std::is_same_v<T, std::complex<double>>, "unsupported FFI data type"); return XLA_FFI_DataType_C128; } } } template <typename... Ts> class Binding { public: template <typename T> Binding<Ts..., T> Arg() && { return {std::move(*this)}; } template <typename T> Binding<Ts..., internal::RetTag<T>> Ret() && { return {std::move(*this)}; } Binding<Ts..., internal::RemainingArgsTag> RemainingArgs() && { static_assert(!internal::HasRemainingArgsTag<Ts...>::value, "remaining arguments can be passed just once"); return {std::move(*this)}; } Binding<Ts..., internal::RemainingRetsTag> RemainingResults() && { static_assert(!internal::HasRemainingRetsTag<Ts...>::value, "remaining results can be passed just once"); return {std::move(*this)}; } template <typename T> Binding<Ts..., internal::CtxTag<T>> Ctx() && { return {std::move(*this)}; } template <typename T> Binding<Ts..., internal::AttrTag<T>> Attr(std::string attr) && { static_assert(internal::NumTagged<internal::AttrsTag, Ts...>::value == 0, "dictionary attributes can't be mixed with regular ones"); attrs_.push_back(std::move(attr)); return {std::move(*this)}; } template <typename T = Dictionary> Binding<Ts..., internal::AttrsTag<T>> Attrs() && { static_assert(internal::NumTagged<internal::AttrTag, Ts...>::value == 0, "dictionary attributes can't be mixed with regular ones"); return {std::move(*this)}; } template <typename Fn> std::unique_ptr<Handler<Fn, Ts...>> To(Fn fn) { return std::unique_ptr<Handler<Fn, Ts...>>( new Handler<Fn, Ts...>(std::move(fn), std::move(attrs_))); } private: template <typename...> friend class Binding; friend class Ffi; explicit Binding() { static_assert(sizeof...(Ts) == 0, "arguments must be empty"); } template <typename... TTs> Binding(Binding<TTs...>&& other) : attrs_(std::move(other.attrs_)) {} Binding(Binding&) = delete; std::vector<std::string> attrs_; }; inline Binding<> Ffi::Bind() { return xla::ffi::Binding<>(); } template <typename T> struct ArgBinding { using Arg = void; }; template <typename T> struct RetBinding { using Ret = void; }; template <typename T> struct AttrBinding { using Attr = void; }; template <typename T> struct AttrsBinding { using Attrs = void; }; template <typename T> struct CtxBinding { using Ctx = void; }; namespace internal { template <typename Param> inline constexpr bool is_arg_binding_v = !std::is_void_v<typename ArgBinding<Param>::Arg>; template <typename Param> inline constexpr bool is_ret_binding_v = !std::is_void_v<typename RetBinding<Param>::Ret>; template <typename Param> inline constexpr bool is_attr_binding_v = !std::is_void_v<typename AttrBinding<Param>::Attr>; template <typename Param> inline constexpr bool is_attrs_binding_v = !std::is_void_v<typename AttrsBinding<Param>::Attrs>; template <typename Param> inline constexpr bool is_ctx_binding_v = !std::is_void_v<typename CtxBinding<Param>::Ctx>; template <typename Fn, typename... Params> struct BindOne; template <typename Fn, typename Param, typename... Params> struct BindOne<Fn, Param, Params...> { template <typename InFlightBinding> static auto To(Fn fn, InFlightBinding binding) { if constexpr (is_arg_binding_v<Param>) { return BindOne<Fn, Params...>::To( std::move(fn), std::move(binding).template Arg<typename ArgBinding<Param>::Arg>()); } else if constexpr (is_ret_binding_v<Param>) { return BindOne<Fn, Params...>::To( std::move(fn), std::move(binding).template Ret<typename RetBinding<Param>::Ret>()); } else if constexpr (is_attr_binding_v<Param>) { return BindOne<Fn, Params...>::To( std::move(fn), std::move(binding).template Attr<typename AttrBinding<Param>::Attr>( std::string(AttrBinding<Param>::name()))); } else if constexpr (is_attrs_binding_v<Param>) { return BindOne<Fn, Params...>::To( std::move(fn), std::move(binding) .template Attrs<typename AttrsBinding<Param>::Attrs>()); } else if constexpr (is_ctx_binding_v<Param>) { return BindOne<Fn, Params...>::To( std::move(fn), std::move(binding).template Ctx<typename CtxBinding<Param>::Ctx>()); } else { static_assert(sizeof(Param) == 0, "parameter is not supported for binding"); } } }; template <typename Fn> struct BindOne<Fn> { template <typename InFlightBinding> static auto To(Fn fn, InFlightBinding binding) { return binding.To(std::move(fn)); } }; template <typename Fn> struct Bind; template <typename ResultType, typename... Params> struct Bind<ResultType (*)(Params...)> { using Fn = ResultType (*)(Params...); static auto To(Fn fn) { return BindOne<Fn, Params...>::To(std::move(fn), Ffi::Bind()); } }; template <typename ResultType, typename Fn, typename... Params> struct Bind<ResultType (Fn::*)(Params...) const> { static auto To(Fn fn) { return BindOne<Fn, Params...>::To(std::move(fn), Ffi::Bind()); } }; } template <typename Fn> auto Ffi::BindTo(Fn fn) { if constexpr (std::is_pointer_v<Fn>) { return internal::Bind<Fn>::To(fn); } else { return internal::Bind<decltype(&Fn::operator())>::To(std::move(fn)); } } template <typename T> class Result { public: Result(T value) : value_(value) {} T& operator*() { return value_; } T* operator->() { return &value_; } private: T value_; }; template <typename T, char const* attr_name> class Attr { public: Attr(T value) : value_(value) {} T& operator*() { return value_; } T* operator->() { return &value_; } private: T value_; }; template <typename T, const char* attr_name> struct AttrBinding<Attr<T, attr_name>> { using Attr = T; static constexpr std::string_view name() { return attr_name; } }; template <> struct AttrsBinding<Dictionary> { using Attrs = Dictionary; }; template <typename T> struct ArgDecoding; template <typename T> struct RetDecoding; template <typename T> struct AttrDecoding; template <typename T> struct CtxDecoding; template <typename T> struct ResultEncoding; class DiagnosticEngine; class InFlightDiagnostic { public: explicit InFlightDiagnostic(DiagnosticEngine* engine, std::string s) : engine_(engine) { stream_ << s; } InFlightDiagnostic(const InFlightDiagnostic&) = delete; InFlightDiagnostic& operator=(const InFlightDiagnostic&) = delete; ~InFlightDiagnostic(); template <typename Arg> InFlightDiagnostic& operator<<(Arg&& arg) { stream_ << std::forward<Arg>(arg); return *this; } template <typename T> operator std::optional<T>() const { return std::nullopt; } private: DiagnosticEngine* engine_; std::stringstream stream_; }; class DiagnosticEngine { public: DiagnosticEngine() = default; DiagnosticEngine(const DiagnosticEngine&) = delete; DiagnosticEngine& operator=(const DiagnosticEngine&) = delete; InFlightDiagnostic Emit(std::string message) { return InFlightDiagnostic(this, std::move(message)); } std::string Result() const { return acc_; } private: friend class InFlightDiagnostic; void append(std::string s) { acc_.append(std::move(s)); } std::string acc_; }; inline InFlightDiagnostic::~InFlightDiagnostic() { engine_->append(stream_.str()); } namespace internal { struct DecodingOffsets { int64_t args = 0; int64_t rets = 0; int64_t attrs = 0; }; struct DecodingContext { const XLA_FFI_CallFrame* call_frame; const std::string* attrs_names; const std::size_t* attrs_idx; }; template <typename T> struct Decode { XLA_FFI_ATTRIBUTE_ALWAYS_INLINE static std::optional<T> call(DecodingOffsets& offsets, DecodingContext& ctx, DiagnosticEngine& diagnostic) { int64_t idx = offsets.args++; return ArgDecoding<T>::Decode(ctx.call_frame->args.types[idx], ctx.call_frame->args.args[idx], diagnostic); } }; } template <typename T> struct internal::Decode<internal::RetTag<T>> { static std::optional<Result<T>> call(DecodingOffsets& offsets, DecodingContext& ctx, DiagnosticEngine& diagnostic) { int64_t idx = offsets.rets++; return RetDecoding<T>::Decode(ctx.call_frame->rets.types[idx], ctx.call_frame->rets.rets[idx], diagnostic); } }; template <typename T> struct internal::Decode<internal::AttrTag<T>> { using R = typename AttrDecoding<T>::Type; static std::optional<R> call(DecodingOffsets& offsets, DecodingContext& ctx, DiagnosticEngine& diagnostic) { int64_t i = offsets.attrs++; size_t idx = ctx.attrs_idx[i]; XLA_FFI_AttrType attr_type = ctx.call_frame->attrs.types[idx]; XLA_FFI_ByteSpan* attr_name = ctx.call_frame->attrs.names[idx]; void* attr = ctx.call_frame->attrs.attrs[idx]; std::string_view attr_name_view = {attr_name->ptr, attr_name->len}; if (attr_name_view != ctx.attrs_names[i]) { return diagnostic.Emit("Attribute name mismatch: ") << attr_name_view << " vs " << ctx.attrs_names[i]; } return AttrDecoding<T>::Decode(attr_type, attr, diagnostic); } }; template <typename T> struct internal::Decode<internal::CtxTag<T>> { using R = typename CtxDecoding<T>::Type; static std::optional<R> call(DecodingOffsets& offsets, DecodingContext& ctx, DiagnosticEngine& diagnostic) { return CtxDecoding<T>::Decode(ctx.call_frame->api, ctx.call_frame->ctx, diagnostic); } }; template <typename E> class Unexpected; template <typename T, typename E> class Expected { public: constexpr Expected(T value) : data_(std::move(value)) {} constexpr Expected(Unexpected<E> u); constexpr operator bool() const { return has_value(); } constexpr T& operator*() & { return value(); } constexpr const T& operator*() const& { return value(); } constexpr T&& operator*() && { return std::move(value()); } constexpr const T& operator*() const&& { return std::move(value()); } constexpr T* operator->() { return &value(); } constexpr const T* operator->() const { return &value(); } constexpr bool has_value() const { return std::holds_alternative<T>(data_); } constexpr T& value() & { return std::get<T>(data_); } constexpr const T& value() const& { return std::get<T>(data_); } constexpr T&& value() && { return std::get<T>(std::move(data_)); } constexpr const T& value() const&& { return std::get<T>(std::move(data_)); } constexpr E& error() & { return std::get<E>(data_); } constexpr const E& error() const& { return std::get<E>(data_); } constexpr E&& error() && { return std::get<E>(std::move(data_)); } constexpr const E&& error() const&& { return std::get<E>(std::move(data_)); } private: std::variant<T, E> data_; }; template <typename E> class Unexpected { public: explicit constexpr Unexpected(E error) : error_(std::move(error)) {} private: template <typename, typename> friend class Expected; E error_; }; Unexpected(const char*) -> Unexpected<std::string>; template <typename T, typename E> constexpr Expected<T, E>::Expected(Unexpected<E> u) : data_(std::move(u.error_)) {} class RemainingArgs { public: RemainingArgs(const XLA_FFI_Args* args, size_t offset) : args_(args), offset_(offset) { assert(offset <= args_->size && "illegal remaining args offset"); } size_t size() const { return args_->size
#include <ctype.h> #include <algorithm> #include <string> #include <unordered_map> #include <vector> #include "tensorflow/core/api_def/excluded_ops.h" #include "tensorflow/core/framework/api_def.pb.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_def.pb.h" #include "tensorflow/core/framework/op_gen_lib.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/lib/strings/stringprintf.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/init_main.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace { constexpr char kApiDefFilePattern[] = "api_def_*.pbtxt"; string DefaultApiDefDir() { return GetDataDependencyFilepath( io::JoinPath("tensorflow", "core", "api_def", "base_api")); } string PythonApiDefDir() { return GetDataDependencyFilepath( io::JoinPath("tensorflow", "core", "api_def", "python_api")); } void GetGoldenApiDefs(Env* env, const string& api_files_dir, std::unordered_map<string, ApiDef>* name_to_api_def) { std::vector<string> matching_paths; TF_CHECK_OK(env->GetMatchingPaths( io::JoinPath(api_files_dir, kApiDefFilePattern), &matching_paths)); for (auto& file_path : matching_paths) { string file_contents; TF_CHECK_OK(ReadFileToString(env, file_path, &file_contents)); file_contents = PBTxtFromMultiline(file_contents); ApiDefs api_defs; QCHECK(tensorflow::protobuf::TextFormat::ParseFromString(file_contents, &api_defs)) << "Failed to load " << file_path; CHECK_EQ(api_defs.op_size(), 1); (*name_to_api_def)[api_defs.op(0).graph_op_name()] = api_defs.op(0); } } void TestAllApiDefsHaveCorrespondingOp( const OpList& ops, const std::unordered_map<string, ApiDef>& api_defs_map) { std::unordered_set<string> op_names; for (const auto& op : ops.op()) { op_names.insert(op.name()); } for (const auto& name_and_api_def : api_defs_map) { ASSERT_TRUE(op_names.find(name_and_api_def.first) != op_names.end()) << name_and_api_def.first << " op has ApiDef but missing from ops. " << "Does api_def_" << name_and_api_def.first << " need to be deleted?"; } } void TestAllApiDefInputArgsAreValid( const OpList& ops, const std::unordered_map<string, ApiDef>& api_defs_map) { for (const auto& op : ops.op()) { const auto api_def_iter = api_defs_map.find(op.name()); if (api_def_iter == api_defs_map.end()) { continue; } const auto& api_def = api_def_iter->second; for (const auto& api_def_arg : api_def.in_arg()) { bool found_arg = false; for (const auto& op_arg : op.input_arg()) { if (api_def_arg.name() == op_arg.name()) { found_arg = true; break; } } ASSERT_TRUE(found_arg) << "Input argument " << api_def_arg.name() << " (overwritten in api_def_" << op.name() << ".pbtxt) is not defined in OpDef for " << op.name(); } } } void TestAllApiDefOutputArgsAreValid( const OpList& ops, const std::unordered_map<string, ApiDef>& api_defs_map) { for (const auto& op : ops.op()) { const auto api_def_iter = api_defs_map.find(op.name()); if (api_def_iter == api_defs_map.end()) { continue; } const auto& api_def = api_def_iter->second; for (const auto& api_def_arg : api_def.out_arg()) { bool found_arg = false; for (const auto& op_arg : op.output_arg()) { if (api_def_arg.name() == op_arg.name()) { found_arg = true; break; } } ASSERT_TRUE(found_arg) << "Output argument " << api_def_arg.name() << " (overwritten in api_def_" << op.name() << ".pbtxt) is not defined in OpDef for " << op.name(); } } } void TestAllApiDefAttributeNamesAreValid( const OpList& ops, const std::unordered_map<string, ApiDef>& api_defs_map) { for (const auto& op : ops.op()) { const auto api_def_iter = api_defs_map.find(op.name()); if (api_def_iter == api_defs_map.end()) { continue; } const auto& api_def = api_def_iter->second; for (const auto& api_def_attr : api_def.attr()) { bool found_attr = false; for (const auto& op_attr : op.attr()) { if (api_def_attr.name() == op_attr.name()) { found_attr = true; } } ASSERT_TRUE(found_attr) << "Attribute " << api_def_attr.name() << " (overwritten in api_def_" << op.name() << ".pbtxt) is not defined in OpDef for " << op.name(); } } } void TestDeprecatedAttributesSetCorrectly( const std::unordered_map<string, ApiDef>& api_defs_map) { for (const auto& name_and_api_def : api_defs_map) { int num_deprecated_endpoints = 0; const auto& api_def = name_and_api_def.second; for (const auto& endpoint : api_def.endpoint()) { if (endpoint.deprecated()) { ++num_deprecated_endpoints; } } const auto& name = name_and_api_def.first; ASSERT_TRUE(api_def.deprecation_message().empty() || num_deprecated_endpoints == 0) << "Endpoints are set to 'deprecated' for deprecated op " << name << ". If an op is deprecated (i.e. deprecation_message is set), " << "all the endpoints are deprecated implicitly and 'deprecated' " << "field should not be set."; if (num_deprecated_endpoints > 0) { ASSERT_NE(num_deprecated_endpoints, api_def.endpoint_size()) << "All " << name << " endpoints are deprecated. Please, set " << "deprecation_message in api_def_" << name << ".pbtxt instead. " << "to indicate that the op is deprecated."; } } } void TestDeprecationVersionSetCorrectly( const std::unordered_map<string, ApiDef>& api_defs_map) { for (const auto& name_and_api_def : api_defs_map) { const auto& name = name_and_api_def.first; const auto& api_def = name_and_api_def.second; if (api_def.deprecation_version() != 0) { ASSERT_TRUE(api_def.deprecation_version() > 0) << "Found ApiDef with negative deprecation_version"; ASSERT_FALSE(api_def.deprecation_message().empty()) << "ApiDef that includes deprecation_version > 0 must also specify " << "a deprecation_message. Op " << name << " has deprecation_version > 0 but deprecation_message is not set."; } } } class BaseApiTest : public ::testing::Test { protected: BaseApiTest() { OpRegistry::Global()->Export(false, &ops_); const std::vector<string> multi_line_fields = {"description"}; Env* env = Env::Default(); GetGoldenApiDefs(env, DefaultApiDefDir(), &api_defs_map_); } OpList ops_; std::unordered_map<string, ApiDef> api_defs_map_; }; TEST_F(BaseApiTest, AllOpsAreInApiDef) { auto* excluded_ops = GetExcludedOps(); for (const auto& op : ops_.op()) { if (excluded_ops->find(op.name()) != excluded_ops->end()) { continue; } EXPECT_TRUE(api_defs_map_.find(op.name()) != api_defs_map_.end()) << op.name() << " op does not have api_def_*.pbtxt file. " << "Please add api_def_" << op.name() << ".pbtxt file " << "under tensorflow/core/api_def/base_api/ directory."; } } TEST_F(BaseApiTest, AllApiDefsHaveCorrespondingOp) { TestAllApiDefsHaveCorrespondingOp(ops_, api_defs_map_); } string GetOpDefHasDocStringError(const string& op_name) { return strings::Printf( "OpDef for %s has a doc string. " "Doc strings must be defined in ApiDef instead of OpDef. " "Please, add summary and descriptions in api_def_%s" ".pbtxt file instead", op_name.c_str(), op_name.c_str()); } TEST_F(BaseApiTest, OpDefsShouldNotHaveDocs) { auto* excluded_ops = GetExcludedOps(); for (const auto& op : ops_.op()) { if (excluded_ops->find(op.name()) != excluded_ops->end()) { continue; } ASSERT_TRUE(op.summary().empty()) << GetOpDefHasDocStringError(op.name()); ASSERT_TRUE(op.description().empty()) << GetOpDefHasDocStringError(op.name()); for (const auto& arg : op.input_arg()) { ASSERT_TRUE(arg.description().empty()) << GetOpDefHasDocStringError(op.name()); } for (const auto& arg : op.output_arg()) { ASSERT_TRUE(arg.description().empty()) << GetOpDefHasDocStringError(op.name()); } for (const auto& attr : op.attr()) { ASSERT_TRUE(attr.description().empty()) << GetOpDefHasDocStringError(op.name()); } } } TEST_F(BaseApiTest, AllApiDefInputArgsAreValid) { TestAllApiDefInputArgsAreValid(ops_, api_defs_map_); } TEST_F(BaseApiTest, AllApiDefOutputArgsAreValid) { TestAllApiDefOutputArgsAreValid(ops_, api_defs_map_); } TEST_F(BaseApiTest, AllApiDefAttributeNamesAreValid) { TestAllApiDefAttributeNamesAreValid(ops_, api_defs_map_); } TEST_F(BaseApiTest, DeprecationSetCorrectly) { TestDeprecatedAttributesSetCorrectly(api_defs_map_); } TEST_F(BaseApiTest, DeprecationVersionSetCorrectly) { TestDeprecationVersionSetCorrectly(api_defs_map_); } class PythonApiTest : public ::testing::Test { protected: PythonApiTest() { OpRegistry::Global()->Export(false, &ops_); const std::vector<string> multi_line_fields = {"description"}; Env* env = Env::Default(); GetGoldenApiDefs(env, PythonApiDefDir(), &api_defs_map_); } OpList ops_; std::unordered_map<string, ApiDef> api_defs_map_; }; TEST_F(PythonApiTest, AllApiDefsHaveCorrespondingOp) { TestAllApiDefsHaveCorrespondingOp(ops_, api_defs_map_); } TEST_F(PythonApiTest, AllApiDefInputArgsAreValid) { TestAllApiDefInputArgsAreValid(ops_, api_defs_map_); } TEST_F(PythonApiTest, AllApiDefOutputArgsAreValid) { TestAllApiDefOutputArgsAreValid(ops_, api_defs_map_); } TEST_F(PythonApiTest, AllApiDefAttributeNamesAreValid) { TestAllApiDefAttributeNamesAreValid(ops_, api_defs_map_); } TEST_F(PythonApiTest, DeprecationSetCorrectly) { TestDeprecatedAttributesSetCorrectly(api_defs_map_); } TEST_F(PythonApiTest, DeprecationVersionSetCorrectly) { TestDeprecationVersionSetCorrectly(api_defs_map_); } } }
990
cpp
tensorflow/tensorflow
android_hardware_buffer
tensorflow/lite/delegates/gpu/android_hardware_buffer.cc
tensorflow/lite/delegates/gpu/android_hardware_buffer_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_ANDROID_HARDWARE_BUFFER_H_ #define TENSORFLOW_LITE_DELEGATES_GPU_ANDROID_HARDWARE_BUFFER_H_ #include <stdint.h> #ifdef __ANDROID__ #include <android/hardware_buffer.h> #else extern "C" { typedef struct AHardwareBuffer AHardwareBuffer; typedef struct AHardwareBuffer_Desc AHardwareBuffer_Desc; struct AHardwareBuffer_Desc { uint32_t width; uint32_t height; uint32_t layers; uint32_t format; uint64_t usage; uint32_t stride; uint32_t rfu0; uint64_t rfu1; }; } #endif namespace tflite::gpu { class OptionalAndroidHardwareBuffer { public: static OptionalAndroidHardwareBuffer& Instance() { static OptionalAndroidHardwareBuffer instance; return instance; } bool Supported() { return supported_; } int IsSupported(const AHardwareBuffer_Desc* description) { return is_supported_(description); } int Allocate(const AHardwareBuffer_Desc* description, AHardwareBuffer** buffer) { return allocate_(description, buffer); } void Acquire(AHardwareBuffer* buffer) { return acquire_(buffer); } void Release(AHardwareBuffer* buffer) { return release_(buffer); } void Describe(AHardwareBuffer* buffer, AHardwareBuffer_Desc* desc) { return describe_(buffer, desc); } private: void* dlopen_handle_; int (*is_supported_)(const AHardwareBuffer_Desc* desc); int (*allocate_)(const AHardwareBuffer_Desc* desc, AHardwareBuffer** buffer); void (*acquire_)(AHardwareBuffer* buffer); void (*release_)(AHardwareBuffer* buffer); void (*describe_)(AHardwareBuffer* buffer, AHardwareBuffer_Desc* desc); bool supported_; OptionalAndroidHardwareBuffer(); OptionalAndroidHardwareBuffer(const OptionalAndroidHardwareBuffer&) = delete; ~OptionalAndroidHardwareBuffer() = default; }; } #endif #include "tensorflow/lite/delegates/gpu/android_hardware_buffer.h" #include <dlfcn.h> namespace tflite::gpu { OptionalAndroidHardwareBuffer::OptionalAndroidHardwareBuffer() { #ifdef __ANDROID__ dlopen_handle_ = dlopen("libnativewindow.so", RTLD_NOW); if (dlopen_handle_ == nullptr) { supported_ = false; return; } allocate_ = reinterpret_cast<decltype(allocate_)>( dlsym(dlopen_handle_, "AHardwareBuffer_allocate")); acquire_ = reinterpret_cast<decltype(acquire_)>( dlsym(dlopen_handle_, "AHardwareBuffer_acquire")); release_ = reinterpret_cast<decltype(release_)>( dlsym(dlopen_handle_, "AHardwareBuffer_release")); describe_ = reinterpret_cast<decltype(describe_)>( dlsym(dlopen_handle_, "AHardwareBuffer_describe")); is_supported_ = reinterpret_cast<decltype(is_supported_)>( dlsym(dlopen_handle_, "AHardwareBuffer_isSupported")); supported_ = (allocate_ != nullptr && acquire_ != nullptr && release_ != nullptr && describe_ != nullptr && is_supported_ != nullptr); #else dlopen_handle_ = nullptr; allocate_ = nullptr; acquire_ = nullptr; release_ = nullptr; describe_ = nullptr; is_supported_ = nullptr; supported_ = false; #endif } }
#include "tensorflow/lite/delegates/gpu/android_hardware_buffer.h" #include <gtest/gtest.h> using tflite::gpu::OptionalAndroidHardwareBuffer; auto Instance = OptionalAndroidHardwareBuffer::Instance; namespace { #ifndef __ANDROID__ TEST(OptionalAndroidHardwareBufferTest, NotSupportedOnNonAndroid) { EXPECT_EQ(Instance().Supported(), false); } #else TEST(OptionalAndroidHardwareBufferTest, SupportedOnAndroid) { EXPECT_EQ(Instance().Supported(), true); } TEST(OptionalAndroidHardwareBufferTest, CanAllocateAndReleaseOnAndroid) { EXPECT_EQ(Instance().Supported(), true); AHardwareBuffer* buffer; AHardwareBuffer_Desc description{}; description.width = 1600; description.height = 1; description.layers = 1; description.rfu0 = 0; description.rfu1 = 0; description.stride = 1; description.format = AHARDWAREBUFFER_FORMAT_BLOB; description.usage = AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN; EXPECT_TRUE(Instance().IsSupported(&description)); EXPECT_EQ(Instance().Allocate(&description, &buffer), 0); Instance().Release(buffer); } TEST(OptionalAndroidHardwareBufferTest, CanAcquireAndReleaseOnAndroid) { EXPECT_EQ(Instance().Supported(), true); AHardwareBuffer* buffer; AHardwareBuffer_Desc description{}; description.width = 1600; description.height = 1; description.layers = 1; description.rfu0 = 0; description.rfu1 = 0; description.stride = 1; description.format = AHARDWAREBUFFER_FORMAT_BLOB; description.usage = AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN; EXPECT_TRUE(Instance().IsSupported(&description)); EXPECT_EQ(Instance().Allocate(&description, &buffer), 0); Instance().Acquire(buffer); Instance().Release(buffer); Instance().Release(buffer); } #endif }
991
cpp
tensorflow/tensorflow
buffer
tensorflow/lite/delegates/gpu/cl/buffer.cc
tensorflow/lite/delegates/gpu/cl/buffer_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_METAL_BUFFER_H_ #define TENSORFLOW_LITE_DELEGATES_GPU_METAL_BUFFER_H_ #include <string> #include <vector> #import <Metal/Metal.h> #include "absl/types/span.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/task/buffer_desc.h" #include "tensorflow/lite/delegates/gpu/metal/gpu_object.h" namespace tflite { namespace gpu { namespace metal { class Buffer : public GPUObject { public: Buffer() {} Buffer(id<MTLBuffer> buffer, size_t size_in_bytes); Buffer(Buffer&& buffer); Buffer& operator=(Buffer&& buffer); Buffer(const Buffer&) = delete; Buffer& operator=(const Buffer&) = delete; ~Buffer(); uint64_t GetMemorySizeInBytes() const { return size_; } id<MTLBuffer> GetMemoryPtr() const { return buffer_; } template <typename T> absl::Status WriteData(const absl::Span<T> data); template <typename T> absl::Status ReadData(std::vector<T>* result) const; absl::Status GetGPUResources(const GPUObjectDescriptor* obj_ptr, GPUResourcesWithValue* resources) const override; absl::Status CreateFromBufferDescriptor(const BufferDescriptor& desc, id<MTLDevice> device); private: void Release(); id<MTLBuffer> buffer_ = nullptr; size_t size_; }; absl::Status CreateBuffer(size_t size_in_bytes, const void* data, id<MTLDevice> device, Buffer* result); template <typename T> absl::Status Buffer::WriteData(const absl::Span<T> data) { if (size_ != sizeof(T) * data.size()) { return absl::InvalidArgumentError( "absl::Span<T> data size is different from buffer allocated size."); } std::memcpy([buffer_ contents], data.data(), size_); return absl::OkStatus(); } template <typename T> absl::Status Buffer::ReadData(std::vector<T>* result) const { if (size_ % sizeof(T) != 0) { return absl::UnknownError("Wrong element size(typename T is not correct?"); } const int elements_count = size_ / sizeof(T); result->resize(elements_count); std::memcpy(result->data(), [buffer_ contents], size_); return absl::OkStatus(); } } } } #endif #include "tensorflow/lite/delegates/gpu/metal/buffer.h" #include <utility> namespace tflite { namespace gpu { namespace metal { Buffer::Buffer(id<MTLBuffer> buffer, size_t size_in_bytes) : buffer_(buffer), size_(size_in_bytes) {} Buffer::Buffer(Buffer&& buffer) : buffer_(buffer.buffer_), size_(buffer.size_) { buffer.buffer_ = nullptr; buffer.size_ = 0; } Buffer& Buffer::operator=(Buffer&& buffer) { if (this != &buffer) { Release(); std::swap(size_, buffer.size_); std::swap(buffer_, buffer.buffer_); } return *this; } Buffer::~Buffer() { Release(); } void Buffer::Release() { if (buffer_) { buffer_ = nullptr; size_ = 0; } } absl::Status Buffer::GetGPUResources(const GPUObjectDescriptor* obj_ptr, GPUResourcesWithValue* resources) const { const auto* buffer_desc = dynamic_cast<const BufferDescriptor*>(obj_ptr); if (!buffer_desc) { return absl::InvalidArgumentError("Expected BufferDescriptor on input."); } resources->buffers.push_back({"buffer", {buffer_, 0}}); return absl::OkStatus(); } absl::Status Buffer::CreateFromBufferDescriptor(const BufferDescriptor& desc, id<MTLDevice> device) { size_ = desc.size; if (desc.data.empty()) { buffer_ = [device newBufferWithLength:size_ options:MTLResourceStorageModeShared]; } else { buffer_ = [device newBufferWithBytes:desc.data.data() length:size_ options:MTLResourceStorageModeShared]; } return absl::OkStatus(); } absl::Status CreateBuffer(size_t size_in_bytes, const void* data, id<MTLDevice> device, Buffer* result) { id<MTLBuffer> buffer; if (data) { buffer = [device newBufferWithBytes:data length:size_in_bytes options:MTLResourceStorageModeShared]; } else { buffer = [device newBufferWithLength:size_in_bytes options:MTLResourceStorageModeShared]; } *result = Buffer(buffer, size_in_bytes); return absl::OkStatus(); } } } }
#include "tensorflow/lite/delegates/gpu/cl/buffer.h" #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/gpu/cl/cl_test.h" #include "tensorflow/lite/delegates/gpu/common/status.h" using ::testing::FloatNear; using ::testing::Pointwise; namespace tflite { namespace gpu { namespace cl { namespace { TEST_F(OpenCLTest, BufferTestFloat) { const std::vector<float> data = {1.0, 2.0, 3.0, -4.0, 5.1}; Buffer buffer; ASSERT_OK(CreateReadWriteBuffer(sizeof(float) * 5, &env_.context(), &buffer)); ASSERT_OK(buffer.WriteData(env_.queue(), absl::MakeConstSpan(data.data(), data.size()))); std::vector<float> gpu_data; ASSERT_OK(buffer.ReadData<float>(env_.queue(), &gpu_data)); EXPECT_THAT(gpu_data, Pointwise(FloatNear(0.0f), data)); } TEST_F(OpenCLTest, BufferTestHalf) { const std::vector<half> data = {half(1.4), half(2.1), half(2.2)}; Buffer buffer; ASSERT_OK(CreateReadWriteBuffer(sizeof(half) * 3, &env_.context(), &buffer)); ASSERT_OK(buffer.WriteData(env_.queue(), absl::MakeConstSpan(data.data(), data.size()))); std::vector<half> gpu_data; ASSERT_OK(buffer.ReadData<half>(env_.queue(), &gpu_data)); EXPECT_THAT(gpu_data, Pointwise(FloatNear(0.0f), data)); } } } } }
992
cpp
tensorflow/tensorflow
cl_arguments
tensorflow/lite/delegates/gpu/cl/cl_arguments.cc
tensorflow/lite/delegates/gpu/cl/cl_arguments_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_CL_CL_ARGUMENTS_H_ #define TENSORFLOW_LITE_DELEGATES_GPU_CL_CL_ARGUMENTS_H_ #include <map> #include <string> #include <vector> #include "tensorflow/lite/delegates/gpu/cl/cl_context.h" #include "tensorflow/lite/delegates/gpu/cl/gpu_object.h" #include "tensorflow/lite/delegates/gpu/common/gpu_info.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/task/arguments.h" namespace tflite { namespace gpu { namespace cl { class CLArguments : public ArgumentsBinder { public: CLArguments() = default; absl::Status Init(const GpuInfo& gpu_info, CLContext* context, Arguments* args, std::string* code); absl::Status Init(const GpuInfo& gpu_info, Arguments* args, CLContext* context); CLArguments(CLArguments&& args) = default; CLArguments& operator=(CLArguments&& args) = default; CLArguments(const CLArguments&) = delete; CLArguments& operator=(const CLArguments&) = delete; absl::Status SetInt(const std::string& name, int value) override; absl::Status SetFloat(const std::string& name, float value) override; absl::Status SetHalf(const std::string& name, half value) override; absl::Status SetObjectRef(const std::string& name, const GPUObject* object); absl::Status Bind(cl_kernel kernel, int offset = 0); bool HasEqualScalarArguments(const CLArguments& other) const; private: absl::Status AllocateObjects(const Arguments& args, CLContext* context); absl::Status AddObjectArgs(const GpuInfo& gpu_info, const Arguments& args); void CopyArguments(const Arguments& args, bool use_f32_for_halfs); void RenameArgumentsInCode(std::string* code); std::string GetListOfArgs(); void AddBuffer(const std::string& name, const GPUBufferDescriptor& desc); void AddImage2D(const std::string& name, const GPUImage2DDescriptor& desc); void AddImage2DArray(const std::string& name, const GPUImage2DArrayDescriptor& desc); void AddImage3D(const std::string& name, const GPUImage3DDescriptor& desc); void AddImageBuffer(const std::string& name, const GPUImageBufferDescriptor& desc); void AddCustomMemory(const std::string& name, const GPUCustomMemoryDescriptor& desc); void AddGPUResources(const std::string& name, const GPUResources& resources); absl::Status SetObjectsResources(const Arguments& args); absl::Status SetGPUResources(const std::string& name, const GPUResourcesWithValue& resources); absl::Status SetImage2D(const std::string& name, cl_mem memory); absl::Status SetBuffer(const std::string& name, cl_mem memory); absl::Status SetImage2DArray(const std::string& name, cl_mem memory); absl::Status SetImage3D(const std::string& name, cl_mem memory); absl::Status SetImageBuffer(const std::string& name, cl_mem memory); absl::Status SetCustomMemory(const std::string& name, cl_mem memory); static constexpr char kArgsPrefix[] = "args."; struct IntValue { int value; bool active = false; uint32_t offset = -1; bool operator==(const IntValue& other) const { return value == other.value && offset == other.offset && active == other.active; } }; std::map<std::string, IntValue> int_values_; std::vector<int32_t> shared_int4s_data_; struct FloatValue { float value; bool active = false; uint32_t offset = -1; bool operator==(const FloatValue& other) const { return value == other.value && offset == other.offset && active == other.active; } }; std::map<std::string, FloatValue> float_values_; std::vector<float> shared_float4s_data_; struct HalfValue { half value; bool active = false; bool store_as_f32 = false; uint32_t offset = -1; bool operator==(const HalfValue& other) const { return value == other.value && offset == other.offset && active == other.active; } }; std::map<std::string, HalfValue> half_values_; std::vector<half> shared_half4s_data_; struct CLBufferDescriptor { GPUBufferDescriptor desc; cl_mem memory; }; struct CLImage2DDescriptor { GPUImage2DDescriptor desc; cl_mem memory; }; struct CLImage2DArrayDescriptor { GPUImage2DArrayDescriptor desc; cl_mem memory; }; struct CLImage3DDescriptor { GPUImage3DDescriptor desc; cl_mem memory; }; struct CLImageBufferDescriptor { GPUImageBufferDescriptor desc; cl_mem memory; }; struct CLCustomMemoryDescriptor { GPUCustomMemoryDescriptor desc; cl_mem memory; }; std::map<std::string, CLBufferDescriptor> buffers_; std::map<std::string, CLImage2DDescriptor> images2d_; std::map<std::string, CLImage2DArrayDescriptor> image2d_arrays_; std::map<std::string, CLImage3DDescriptor> images3d_; std::map<std::string, CLImageBufferDescriptor> image_buffers_; std::map<std::string, CLCustomMemoryDescriptor> custom_memories_; std::map<std::string, GPUObjectDescriptorPtr> object_refs_; std::vector<GPUObjectPtr> objects_; }; } } } #endif #include "tensorflow/lite/delegates/gpu/cl/cl_arguments.h" #include <memory> #include <string> #include <utility> #include "absl/strings/ascii.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/substitute.h" #include "tensorflow/lite/delegates/gpu/cl/buffer.h" #include "tensorflow/lite/delegates/gpu/cl/gpu_object.h" #include "tensorflow/lite/delegates/gpu/cl/qcom_thin_filter.h" #include "tensorflow/lite/delegates/gpu/cl/tensor.h" #include "tensorflow/lite/delegates/gpu/common/task/util.h" #include "tensorflow/lite/delegates/gpu/common/util.h" namespace tflite { namespace gpu { namespace cl { namespace { bool IsWordSymbol(char symbol) { return absl::ascii_isalnum(symbol) || symbol == '_'; } void ReplaceAllWords(const std::string& old_word, const std::string& new_word, std::string* str) { size_t position = str->find(old_word); while (position != std::string::npos) { char prev = position == 0 ? '.' : (*str)[position - 1]; char next = position + old_word.size() < str->size() ? (*str)[position + old_word.size()] : '.'; if (IsWordSymbol(prev) || IsWordSymbol(next)) { position = str->find(old_word, position + 1); continue; } str->replace(position, old_word.size(), new_word); position = str->find(old_word, position + new_word.size()); } } void AppendArgument(const std::string& arg, std::string* args) { if (!args->empty()) { absl::StrAppend(args, ",\n "); } absl::StrAppend(args, arg); } std::string GetImageModifier(AccessType access) { switch (access) { case AccessType::READ: return "__read_only"; case AccessType::WRITE: return "__write_only"; case AccessType::READ_WRITE: return "__read_write"; } } std::string GetDefaultSamplers(const GpuInfo& gpu_info) { std::string result; result += "__constant sampler_t smp_none = CLK_NORMALIZED_COORDS_FALSE | " "CLK_ADDRESS_NONE | CLK_FILTER_NEAREST;\n"; if (gpu_info.IsAdreno() && gpu_info.adreno_info.IsAdreno3xx()) { result += "__constant sampler_t smp_zero = CLK_NORMALIZED_COORDS_FALSE | " "CLK_ADDRESS_NONE | CLK_FILTER_NEAREST;\n"; } else { result += "__constant sampler_t smp_zero = CLK_NORMALIZED_COORDS_FALSE | " "CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;\n"; } return result; } absl::Status CreateCLObject(GPUObjectDescriptor* desc, CLContext* context, GPUObjectPtr* result) { const auto* buffer_desc = dynamic_cast<const BufferDescriptor*>(desc); if (buffer_desc) { Buffer gpu_buffer; RETURN_IF_ERROR( gpu_buffer.CreateFromBufferDescriptor(*buffer_desc, context)); *result = std::make_unique<Buffer>(std::move(gpu_buffer)); return absl::OkStatus(); } const auto* tensor_desc = dynamic_cast<const TensorDescriptor*>(desc); if (tensor_desc) { Tensor gpu_tensor; RETURN_IF_ERROR(gpu_tensor.CreateFromDescriptor(*tensor_desc, context)); *result = std::make_unique<Tensor>(std::move(gpu_tensor)); return absl::OkStatus(); } const auto* qcom_thin_filter_desc = dynamic_cast<const QcomThinFilterDescriptor*>(desc); if (qcom_thin_filter_desc) { QcomThinFilter thin_filter; RETURN_IF_ERROR( thin_filter.CreateFromDescriptor(*qcom_thin_filter_desc, context)); *result = std::make_unique<QcomThinFilter>(std::move(thin_filter)); return absl::OkStatus(); } return absl::InvalidArgumentError("Unknown GPU descriptor."); } } constexpr char CLArguments::kArgsPrefix[]; absl::Status CLArguments::Init(const GpuInfo& gpu_info, CLContext* context, Arguments* args, std::string* code) { RETURN_IF_ERROR(AllocateObjects(*args, context)); RETURN_IF_ERROR(AddObjectArgs(gpu_info, *args)); args->MoveObjectRefs(&object_refs_); const bool use_f32_for_halfs = gpu_info.IsPowerVR(); CopyArguments(*args, use_f32_for_halfs); RETURN_IF_ERROR(SetObjectsResources(*args)); RenameArgumentsInCode(code); args->ResolveArgsPass(code); *code = absl::Substitute(*code, GetListOfArgs()); if (gpu_info.SupportsImages()) { *code = GetDefaultSamplers(gpu_info) + *code; } return absl::OkStatus(); } absl::Status CLArguments::Init(const GpuInfo& gpu_info, Arguments* args, CLContext* context) { RETURN_IF_ERROR(AllocateObjects(*args, context)); RETURN_IF_ERROR(AddObjectArgs(gpu_info, *args)); args->MoveObjectRefs(&object_refs_); const bool use_f32_for_halfs = gpu_info.IsPowerVR(); CopyArguments(*args, use_f32_for_halfs); RETURN_IF_ERROR(SetObjectsResources(*args)); return absl::OkStatus(); } absl::Status CLArguments::AllocateObjects(const Arguments& args, CLContext* context) { objects_.resize(args.GetObjects().size()); int i = 0; for (auto& t : args.GetObjects()) { RETURN_IF_ERROR(CreateCLObject(t.second.get(), context, &objects_[i])); i++; } return absl::OkStatus(); } absl::Status CLArguments::AddObjectArgs(const GpuInfo& gpu_info, const Arguments& args) { for (const auto& t : args.GetObjects()) { AddGPUResources(t.first, t.second->GetGPUResources(gpu_info)); } for (const auto& t : args.GetObjectRefs()) { AddGPUResources(t.first, t.second->GetGPUResources(gpu_info)); } return absl::OkStatus(); } absl::Status CLArguments::SetObjectsResources(const Arguments& args) { int i = 0; for (const auto& t : args.GetObjects()) { GPUResourcesWithValue resources; RETURN_IF_ERROR(objects_[i]->GetGPUResources(t.second.get(), &resources)); RETURN_IF_ERROR(SetGPUResources(t.first, resources)); i++; } return absl::OkStatus(); } void CLArguments::CopyArguments(const Arguments& args, bool use_f32_for_halfs) { for (const auto& fvalue : args.GetFloatValues()) { auto& new_val = float_values_[fvalue.first]; new_val.value = fvalue.second.value; new_val.active = fvalue.second.active; if (fvalue.second.active) { new_val.offset = shared_float4s_data_.size(); shared_float4s_data_.push_back(new_val.value); } } for (const auto& ivalue : args.GetIntValues()) { auto& new_val = int_values_[ivalue.first]; new_val.value = ivalue.second.value; new_val.active = ivalue.second.active; if (ivalue.second.active) { new_val.offset = shared_int4s_data_.size(); shared_int4s_data_.push_back(new_val.value); } } for (const auto& hfvalue : args.GetHalfValues()) { auto& new_val = half_values_[hfvalue.first]; new_val.value = hfvalue.second.value; new_val.active = hfvalue.second.active; if (hfvalue.second.active) { if (use_f32_for_halfs) { new_val.store_as_f32 = true; new_val.offset = shared_float4s_data_.size(); shared_float4s_data_.push_back(new_val.value); } else { new_val.store_as_f32 = false; new_val.offset = shared_half4s_data_.size(); shared_half4s_data_.push_back(new_val.value); } } } int shared_int4s_aligned_size = AlignByN(shared_int4s_data_.size(), 4); shared_int4s_data_.resize(shared_int4s_aligned_size); int shared_float4s_aligned_size = AlignByN(shared_float4s_data_.size(), 4); shared_float4s_data_.resize(shared_float4s_aligned_size); int shared_half4s_aligned_size = AlignByN(shared_half4s_data_.size(), 4); shared_half4s_data_.resize(shared_half4s_aligned_size); } void CLArguments::RenameArgumentsInCode(std::string* code) { const std::string postfixes[4] = {"x", "y", "z", "w"}; for (const auto& fvalue : float_values_) { if (fvalue.second.active) { std::string index = std::to_string(fvalue.second.offset / 4); std::string new_name = "shared_float4_" + index + "." + postfixes[fvalue.second.offset % 4]; ReplaceAllWords(kArgsPrefix + fvalue.first, new_name, code); } } for (const auto& ivalue : int_values_) { if (ivalue.second.active) { std::string index = std::to_string(ivalue.second.offset / 4); std::string new_name = "shared_int4_" + index + "." + postfixes[ivalue.second.offset % 4]; ReplaceAllWords(kArgsPrefix + ivalue.first, new_name, code); } } for (const auto& hfvalue : half_values_) { if (hfvalue.second.active) { std::string index = std::to_string(hfvalue.second.offset / 4); std::string new_name; if (hfvalue.second.store_as_f32) { new_name = "(half)(shared_float4_" + index + "." + postfixes[hfvalue.second.offset % 4] + ")"; } else { new_name = "shared_half4_" + index + "." + postfixes[hfvalue.second.offset % 4]; } ReplaceAllWords(kArgsPrefix + hfvalue.first, new_name, code); } } } void CLArguments::AddBuffer(const std::string& name, const GPUBufferDescriptor& desc) { buffers_[name].desc = desc; } void CLArguments::AddImage2D(const std::string& name, const GPUImage2DDescriptor& desc) { images2d_[name].desc = desc; } void CLArguments::AddImage2DArray(const std::string& name, const GPUImage2DArrayDescriptor& desc) { image2d_arrays_[name].desc = desc; } void CLArguments::AddImage3D(const std::string& name, const GPUImage3DDescriptor& desc) { images3d_[name].desc = desc; } void CLArguments::AddImageBuffer(const std::string& name, const GPUImageBufferDescriptor& desc) { image_buffers_[name].desc = desc; } void CLArguments::AddCustomMemory(const std::string& name, const GPUCustomMemoryDescriptor& desc) { custom_memories_[name].desc = desc; } void CLArguments::AddGPUResources(const std::string& name, const GPUResources& resources) { for (const auto& r : resources.buffers) { AddBuffer(absl::StrCat(name, "_", r.first), r.second); } for (const auto& r : resources.images2d) { AddImage2D(absl::StrCat(name, "_", r.first), r.second); } for (const auto& r : resources.image2d_arrays) { AddImage2DArray(absl::StrCat(name, "_", r.first), r.second); } for (const auto& r : resources.images3d) { AddImage3D(absl::StrCat(name, "_", r.first), r.second); } for (const auto& r : resources.image_buffers) { AddImageBuffer(absl::StrCat(name, "_", r.first), r.second); } for (const auto& r : resources.custom_memories) { AddCustomMemory(absl::StrCat(name, "_", r.first), r.second); } } absl::Status CLArguments::SetInt(const std::string& name, int value) { auto it = int_values_.find(name); if (it == int_values_.end()) { return absl::NotFoundError( absl::StrCat("No int argument with name - ", name)); } it->second.value = value; if (it->second.active) { shared_int4s_data_[it->second.offset] = value; } return absl::OkStatus(); } absl::Status CLArguments::SetFloat(const std::string& name, float value) { auto it = float_values_.find(name); if (it == float_values_.end()) { return absl::NotFoundError( absl::StrCat("No float argument with name - ", name)); } it->second.value = value; if (it->second.active) { shared_float4s_data_[it->second.offset] = value; } return absl::OkStatus(); } absl::Status CLArguments::SetHalf(const std::string& name, half value) { auto it = half_values_.find(name); if (it == half_values_.end()) { return absl::NotFoundError( absl::StrCat("No half argument with name - ", name)); } it->second.value = value; if (it->second.active) { if (it->second.store_as_f32) { shared_float4s_data_[it->second.offset] = value; } else { shared_half4s_data_[it->second.offset] = value; } } return absl::OkStatus(); } absl::Status CLArguments::SetImage2D(const std::string& name, cl_mem memory) { auto it = images2d_.find(name); if (it == images2d_.end()) { return absl::NotFoundError( absl::StrCat("No image2D argument with name - ", name)); } it->second.memory = memory; return absl::OkStatus(); } absl::Status CLArguments::SetBuffer(const std::string& name, cl_mem memory) { auto it = buffers_.find(name); if (it == buffers_.end()) { return absl::NotFoundError( absl::StrCat("No buffer argument with name - ", name)); } it->second.memory = memory; return absl::OkStatus(); } absl::Status CLArguments::SetImage2DArray(const std::string& name, cl_mem memory) { auto it = image2d_arrays_.find(name); if (it == image2d_arrays_.end()) { return absl::NotFoundError( absl::StrCat("No image2D array argument with name - ", name)); } it->second.memory = memory; return absl::OkStatus(); } absl::Status CLArguments::SetImage3D(const std::string& name, cl_mem memory) { auto it = images3d_.find(name); if (it == images3d_.end()) { return absl::NotFoundError( absl::StrCat("No image3D argument with name - ", name)); } it->second.memory = memory; return absl::OkStatus(); } absl::Status CLArguments::SetImageBuffer(const std::string& name, cl_mem memory) { auto it = image_buffers_.find(name); if (it == image_buffers_.end()) { return absl::NotFoundError( absl::StrCat("No image buffer argument with name - ", name)); } it->second.memory = memory; return absl::OkStatus(); } absl::Status CLArguments::SetCustomMemory(const std::string& name, cl_mem memory) { auto it = custom_memories_.find(name); if (it == custom_memories_.end()) { return absl::NotFoundError( absl::StrCat("No custom memory argument with name - ", name)); } it->second.memory = memory; return absl::OkStatus(); } absl::Status CLArguments::SetObjectRef(const std::string& name, const GPUObject* object) { auto it = object_refs_.find(name); if (it == object_refs_.end()) { return absl::NotFoundError( absl::StrCat("No object ref with name - ", name)); } GPUResourcesWithValue resources; RETURN_IF_ERROR(object->GetGPUResources(it->second.get(), &resources)); return SetGPUResources(name, resources); } absl::Status CLArguments::SetGPUResources( const std::string& name, const GPUResourcesWithValue& resources) { for (const auto& r : resources.generic.ints) { RETURN_IF_ERROR(SetInt(absl::StrCat(name, "_", r.first), r.second)); } for (const auto& r : resources.generic.floats) { RETURN_IF_ERROR(SetFloat(absl::StrCat(name, "_", r.first), r.second)); } for (const auto& r : resources.buffers) { RETURN_IF_ERROR(SetBuffer(absl::StrCat(name, "_", r.first), r.second)); } for (const auto& r : resources.images2d) { RETURN_IF_ERROR(SetImage2D(absl::StrCat(name, "_", r.first), r.second)); } for (const auto& r : resources.image2d_arrays) { RETURN_IF_ERROR( SetImage2DArray(absl::StrCat(name, "_", r.first), r.second)); } for (const auto& r : resources.images3d) { RETURN_IF_ERROR(SetImage3D(absl::StrCat(name, "_", r.first), r.second)); } for (const auto& r : resources.image_buffers) { RETURN_IF_ERROR(SetImageBuffer(absl::StrCat(name, "_", r.first), r.second)); } for (const auto& r : resources.custom_memories) { RETURN_IF_ERROR( SetCustomMemory(absl::StrCat(name, "_", r.first), r.second)); } return absl::OkStatus(); } std::string CLArguments::GetListOfArgs() { std::string result; for (auto& t : buffers_) { const std::string type_name = t.second.desc.data_type == DataType::FLOAT32 ? "float" : "half"; std::string attributes; for (const auto& attr : t.second.desc.attributes) { attributes += absl::StrCat(" __attribute__((", attr, "))"); } std::string cl_type; if (t.second.desc.data_type == DataType::BOOL) { cl_type = ToCLDataType(DataType::UINT8, t.second.desc.element_size); } else { cl_type = ToCLDataType(t.second.desc.data_type, t.second.desc.element_size); } AppendArgument(absl::StrCat(MemoryTypeToCLType(t.second.desc.memory_type), " ", cl_type, "* ", t.first, attributes), &result); } for (auto& t : image_buffers_) { AppendArgument(absl::StrCat(GetImageModifier(t.second.desc.access_type), " image1d_buffer_t ", t.first), &result); } for (auto& t : images2d_) { AppendArgument(absl::StrCat(GetImageModifier(t.second.desc.access_type), " image2d_t ", t.first), &result); } for (auto& t : image2d_arrays_) { AppendArgument(absl::StrCat(GetImageModifier(t.second.desc.access_type), " image2d_array_t ", t.first), &result); } for (auto& t : images3d_) { AppendArgument(absl::StrCat(GetImageModifier(t.second.desc.access_type), " image3d_t ", t.first), &result); } for (auto& t : custom_memories_) { AppendArgument(absl::StrCat(t.second.desc.type_name, " ", t.first), &result); } for (int i = 0; i < shared_int4s_data_.size() / 4; ++i) { AppendArgument(absl::StrCat("int4 shared_int4_", i), &result); } for (int i = 0; i < shared_float4s_data_.size() / 4; ++i) { AppendArgument(absl::StrCat("float4 shared_float4_", i), &result); } for (int i = 0; i < shared_half4s_data_.size() / 4; ++i) { AppendArgument(absl::StrCat("half4 shared_half4_", i), &result); } return result; } absl::Status CLArguments::Bind(cl_kernel kernel, int offset) { for (auto& t : buffers_) { const int error_code = clSetKernelArg(kernel, offset, sizeof(cl_mem), &t.second.memory); if (error_code != CL_SUCCESS) { return absl::UnknownError(absl::StrCat( "Failed to set kernel arguments - ", CLErrorCodeToString(error_code), "(at index - ", offset, ")")); } offset++; } for (auto& t : image_buffers_) { const int error_code = clSetKernelArg(kernel, offset, sizeof(cl_mem), &t.second.memory); if (error_code != CL_SUCCESS) { return absl::UnknownError(absl::StrCat( "Failed to set kernel arguments - ", CLErrorCodeToString(error_code), "(at index - ", offset, ")")); } offset++; } for (auto& t : images2d_) { const int error_code = clSetKernelArg(kernel, offset, sizeof(cl_mem), &t.second.memory); if (error_code != CL_SUCCESS) { return absl::UnknownError(absl::StrCat( "Failed to set kernel arguments - ", CLErrorCodeToString(error_code), "(at index - ", offset, ")")); } offset++; } for (auto& t : image2d_arrays_) { const int error_code = clSetKernelArg(kernel, offset, sizeof(cl_mem), &t.second.memory); if (error_code != CL_SUCCESS) { return absl::UnknownError(absl::StrCat( "Failed to set kernel arguments - ", CLErrorCodeToString(error_code), "(at index - ", offset, ")")); } offset++; } for (auto& t : images3d_) { const int error_code = clSetKernelArg(kernel, offset, sizeof(cl_mem), &t.second.memory); if (error_code != CL_SUCCESS) { return absl::UnknownError(absl::StrCat( "Failed to set kernel arguments - ", CLErrorCodeToString(error_code), "(at index - ", offset, ")")); } offset++; } for (auto& t : custom_memories_) { const int error_code = clSetKernelArg(kernel, offset, sizeof(cl_mem), &t.second.memory); if (error_code != CL_SUCCESS) { return absl::UnknownError(absl::StrCat( "Failed to set kernel arguments - ", CLErrorCodeToString(error_code), "(at index - ", offset, ")")); } offset++; } for (int i = 0; i < shared_int4s_data_.size() / 4; ++i) { const int error_code = clSetKernelArg(kernel, offset, sizeof(int32_t) * 4, &shared_int4s_data_[i * 4]); if (error_code != CL_SUCCESS) { return absl::UnknownError(absl::StrCat( "Failed to set kernel arguments - ", CLErrorCodeToString(error_code), "(at index - ", offset, ")")); } offset++; } for (int i = 0; i < shared_float4s_data_.size() / 4; ++i) { const int error_code = clSetKernelArg(kernel, offset, sizeof(int32_t) * 4, &shared_float4s_data_[i * 4]); if (error_code != CL_SUCCESS) { return absl::UnknownError(absl::StrCat( "Failed to set kernel arguments - ", CLErrorCodeToString(error_code), "(at index - ", offset, ")")); } offset++; } for (int i = 0; i < shared_half4s_data_.size() / 4; ++i) { const int error_code = clSetKernelArg(kernel, offset, sizeof(int16_t) * 4, &shared_half4s_data_[i * 4]); if (error_code != CL_SUCCESS) { return absl::UnknownError(absl::StrCat( "Failed to set kernel arguments - ", CLErrorCodeToString(error_code), "(at index - ", offset, ")")); } offset++; } return absl::OkStatus(); } bool CLArguments::HasEqualScalarArguments(const CLArguments& other) const { return (other.int_values_ == int_values_ && other.float_values_ == float_values_ && other.half_values_ == half_values_); } } } }
#include "tensorflow/lite/delegates/gpu/cl/cl_arguments.h" #include <cstdint> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/match.h" #include "tensorflow/lite/delegates/gpu/cl/buffer.h" #include "tensorflow/lite/delegates/gpu/cl/cl_test.h" #include "tensorflow/lite/delegates/gpu/cl/gpu_object.h" #include "tensorflow/lite/delegates/gpu/common/gpu_info.h" namespace tflite { namespace gpu { namespace cl { TEST(CLArgumentsTest, TestSelectorResolve) { BufferDescriptor desc; desc.element_type = DataType::FLOAT32; desc.element_size = 4; desc.memory_type = MemoryType::GLOBAL; Arguments args; args.AddObjectRef("weights", AccessType::READ, std::make_unique<BufferDescriptor>(std::move(desc))); std::string sample_code = R"( __kernel void main_function($0) { if (a < 3) { value = args.weights.Read(id); } })"; CLArguments cl_args; GpuInfo gpu_info; ASSERT_OK(cl_args.Init(gpu_info, nullptr, &args, &sample_code)); EXPECT_TRUE(absl::StrContains(sample_code, "value = weights_buffer[id];")); EXPECT_TRUE( absl::StrContains(sample_code, "__global float4* weights_buffer")); } TEST(CLArgumentsTest, TestNoSelector) { BufferDescriptor desc; desc.element_type = DataType::FLOAT32; desc.element_size = 4; desc.memory_type = MemoryType::GLOBAL; Arguments args; args.AddObjectRef("weights", AccessType::READ, std::make_unique<BufferDescriptor>(std::move(desc))); std::string sample_code = R"( if (a < 3) { value = args.weights.UnknownSelector(id); } )"; CLArguments cl_args; GpuInfo gpu_info; EXPECT_FALSE(cl_args.Init(gpu_info, nullptr, &args, &sample_code).ok()); } } } }
993
cpp
tensorflow/tensorflow
cl_device
tensorflow/lite/delegates/gpu/cl/cl_device.cc
tensorflow/lite/delegates/gpu/cl/cl_device_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_CL_CL_DEVICE_H_ #define TENSORFLOW_LITE_DELEGATES_GPU_CL_CL_DEVICE_H_ #include <string> #include <vector> #include "tensorflow/lite/delegates/gpu/cl/opencl_wrapper.h" #include "tensorflow/lite/delegates/gpu/cl/util.h" #include "tensorflow/lite/delegates/gpu/common/gpu_info.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/types.h" namespace tflite { namespace gpu { namespace cl { class CLDevice { public: CLDevice() = default; CLDevice(cl_device_id id, cl_platform_id platform_id); CLDevice(CLDevice&& device); CLDevice& operator=(CLDevice&& device); CLDevice(const CLDevice&); CLDevice& operator=(const CLDevice&); ~CLDevice() {} cl_device_id id() const { return id_; } cl_platform_id platform() const { return platform_id_; } std::string GetPlatformVersion() const; void DisableOneLayerTextureArray(); const GpuInfo& GetInfo() const { return info_; } mutable GpuInfo info_; private: cl_device_id id_ = nullptr; cl_platform_id platform_id_ = nullptr; }; absl::Status CreateDefaultGPUDevice(CLDevice* result); template <typename T> T GetDeviceInfo(cl_device_id id, cl_device_info info) { T result; cl_int error = clGetDeviceInfo(id, info, sizeof(T), &result, nullptr); if (error != CL_SUCCESS) { return -1; } return result; } template <typename T> absl::Status GetDeviceInfo(cl_device_id id, cl_device_info info, T* result) { cl_int error = clGetDeviceInfo(id, info, sizeof(T), result, nullptr); if (error != CL_SUCCESS) { return absl::InvalidArgumentError(CLErrorCodeToString(error)); } return absl::OkStatus(); } void ParseQualcommOpenClCompilerVersion( const std::string& cl_driver_version, AdrenoInfo::OpenClCompilerVersion* result); } } } #endif #include "tensorflow/lite/delegates/gpu/cl/cl_device.h" #include <algorithm> #include <string> #include <utility> #include <vector> #include "absl/strings/ascii.h" #include "absl/strings/numbers.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_split.h" #include "tensorflow/lite/delegates/gpu/cl/opencl_wrapper.h" #include "tensorflow/lite/delegates/gpu/cl/util.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/experimental/acceleration/compatibility/android_info.h" namespace tflite { namespace gpu { namespace cl { void ParseQualcommOpenClCompilerVersion( const std::string& cl_driver_version, AdrenoInfo::OpenClCompilerVersion* result) { const std::string start = "Compiler E031."; size_t position = cl_driver_version.find(start); if (position == std::string::npos) { return; } const size_t main_part_length = 8; if (position + start.length() + main_part_length > cl_driver_version.length()) { return; } const std::string main_part = cl_driver_version.substr(position + start.length(), main_part_length); if (!absl::ascii_isdigit(main_part[0]) || !absl::ascii_isdigit(main_part[1]) || main_part[2] != '.' || !absl::ascii_isdigit(main_part[3]) || !absl::ascii_isdigit(main_part[4]) || main_part[5] != '.' || !absl::ascii_isdigit(main_part[6]) || !absl::ascii_isdigit(main_part[7])) { return; } result->major = (main_part[0] - '0') * 10 + (main_part[1] - '0'); result->minor = (main_part[3] - '0') * 10 + (main_part[4] - '0'); result->patch = (main_part[6] - '0') * 10 + (main_part[7] - '0'); } static void ParsePowerVRDriverVersion(const std::string& cl_driver_version, PowerVRInfo::DriverVersion& result) { size_t position = cl_driver_version.find('@'); if (position == std::string::npos) { return; } int main = 0; size_t curpos = 0; while (curpos < position && absl::ascii_isdigit(cl_driver_version[curpos])) { main = main * 10 + cl_driver_version[curpos] - '0'; ++curpos; } ++curpos; int minor = 0; while (curpos < position) { minor = minor * 10 + cl_driver_version[curpos] - '0'; ++curpos; } curpos = position + 1; int id = 0; while (curpos < cl_driver_version.length()) { id = id * 10 + cl_driver_version[curpos] - '0'; ++curpos; } result.branch_main = main; result.branch_minor = minor; result.id = id; } template <> std::string GetDeviceInfo<std::string>(cl_device_id id, cl_device_info info) { size_t size; cl_int error = clGetDeviceInfo(id, info, 0, nullptr, &size); if (error != CL_SUCCESS) { return ""; } std::string result(size - 1, 0); error = clGetDeviceInfo(id, info, size, &result[0], nullptr); if (error != CL_SUCCESS) { return ""; } return result; } namespace { template <typename T> T GetPlatformInfo(cl_platform_id id, cl_platform_info info) { T result; cl_int error = clGetPlatformInfo(id, info, sizeof(T), &result, nullptr); if (error != CL_SUCCESS) { return -1; } return result; } std::string GetPlatformInfo(cl_platform_id id, cl_platform_info info) { size_t size; cl_int error = clGetPlatformInfo(id, info, 0, nullptr, &size); if (error != CL_SUCCESS) { return ""; } std::string result(size - 1, 0); error = clGetPlatformInfo(id, info, size, &result[0], nullptr); if (error != CL_SUCCESS) { return ""; } return result; } void GetDeviceWorkDimsSizes(cl_device_id id, int3* result) { int dims_count = GetDeviceInfo<cl_uint>(id, CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS); if (dims_count < 3) { return; } std::vector<size_t> limits(dims_count); cl_int error = clGetDeviceInfo(id, CL_DEVICE_MAX_WORK_ITEM_SIZES, sizeof(size_t) * dims_count, limits.data(), nullptr); if (error != CL_SUCCESS) { return; } result->x = limits[0]; result->y = limits[1]; result->z = limits[2]; } OpenClVersion ParseCLVersion(const std::string& version) { const auto first_dot_pos = version.find_first_of('.'); if (first_dot_pos == std::string::npos) { return OpenClVersion::kCl1_0; } const int major = version[first_dot_pos - 1] - '0'; const int minor = version[first_dot_pos + 1] - '0'; if (major == 1) { if (minor == 2) { return OpenClVersion::kCl1_2; } else if (minor == 1) { return OpenClVersion::kCl1_1; } else { return OpenClVersion::kCl1_0; } } else if (major == 2) { if (minor == 2) { return OpenClVersion::kCl2_2; } else if (minor == 1) { return OpenClVersion::kCl2_1; } else { return OpenClVersion::kCl2_0; } } else if (major == 3) { return OpenClVersion::kCl3_0; } else { return OpenClVersion::kCl1_0; } } bool IsGPUVersionInRange(int gpu_version, int min_version, int max_version) { return gpu_version >= min_version && gpu_version < max_version; } GpuInfo GpuInfoFromDeviceID(cl_device_id id, cl_platform_id platform_id) { GpuInfo info; info.opencl_info.platform_version = GetPlatformInfo(platform_id, CL_PLATFORM_VERSION); info.opencl_info.device_name = GetDeviceInfo<std::string>(id, CL_DEVICE_NAME); info.opencl_info.vendor_name = GetDeviceInfo<std::string>(id, CL_DEVICE_VENDOR); info.opencl_info.opencl_c_version = GetDeviceInfo<std::string>(id, CL_DEVICE_OPENCL_C_VERSION); info.opencl_info.driver_version = GetDeviceInfo<std::string>(id, CL_DRIVER_VERSION); const std::string gpu_description = absl::StrCat( info.opencl_info.device_name, " ", info.opencl_info.vendor_name, " ", info.opencl_info.opencl_c_version); GetGpuInfoFromDeviceDescription(gpu_description, GpuApi::kOpenCl, &info); info.opencl_info.cl_version = ParseCLVersion(info.opencl_info.opencl_c_version); info.opencl_info.extensions = absl::StrSplit(GetDeviceInfo<std::string>(id, CL_DEVICE_EXTENSIONS), ' '); const std::vector<std::string> unsupported_extensions = GetUnsupportedExtensions(); for (const auto& unsupported_extension : unsupported_extensions) { for (auto it = info.opencl_info.extensions.begin(); it != info.opencl_info.extensions.end();) { if (*it == unsupported_extension) { it = info.opencl_info.extensions.erase(it); } else { ++it; } } } info.opencl_info.supports_fp16 = false; info.opencl_info.supports_image3d_writes = false; for (const auto& ext : info.opencl_info.extensions) { if (ext == "cl_khr_fp16") { info.opencl_info.supports_fp16 = true; } if (ext == "cl_khr_3d_image_writes") { info.opencl_info.supports_image3d_writes = true; } } info.opencl_info.supports_images = GetDeviceInfo<cl_bool>(id, CL_DEVICE_IMAGE_SUPPORT); cl_device_fp_config f32_config = GetDeviceInfo<cl_device_fp_config>(id, CL_DEVICE_SINGLE_FP_CONFIG); info.opencl_info.supports_fp32_rtn = f32_config & CL_FP_ROUND_TO_NEAREST; if (info.opencl_info.supports_fp16) { cl_device_fp_config f16_config; auto status = GetDeviceInfo<cl_device_fp_config>( id, CL_DEVICE_HALF_FP_CONFIG, &f16_config); if (status.ok() && !info.IsAMD()) { info.opencl_info.supports_fp16_rtn = f16_config & CL_FP_ROUND_TO_NEAREST; } else { f16_config = f32_config; info.opencl_info.supports_fp16_rtn = info.opencl_info.supports_fp32_rtn; } } else { info.opencl_info.supports_fp16_rtn = false; } if (info.IsPowerVR()) { if (!info.powervr_info.IsBetterThan(PowerVRGpu::kRogueGm9xxx)) { info.opencl_info.supports_fp16 = false; } else if (!info.opencl_info.supports_fp16) { info.opencl_info.supports_fp16 = true; info.opencl_info.supports_fp16_rtn = info.opencl_info.supports_fp32_rtn; } } if (!info.opencl_info.supports_image3d_writes && ((info.IsAdreno() && info.adreno_info.IsAdreno4xx()) || info.IsNvidia())) { info.opencl_info.supports_image3d_writes = true; } info.opencl_info.compute_units_count = GetDeviceInfo<cl_uint>(id, CL_DEVICE_MAX_COMPUTE_UNITS); info.opencl_info.image2d_max_width = GetDeviceInfo<size_t>(id, CL_DEVICE_IMAGE2D_MAX_WIDTH); info.opencl_info.image2d_max_height = GetDeviceInfo<size_t>(id, CL_DEVICE_IMAGE2D_MAX_HEIGHT); info.opencl_info.buffer_max_size = GetDeviceInfo<cl_ulong>(id, CL_DEVICE_MAX_MEM_ALLOC_SIZE); info.opencl_info.max_allocation_size = GetDeviceInfo<cl_ulong>(id, CL_DEVICE_MAX_MEM_ALLOC_SIZE); if (info.opencl_info.cl_version >= OpenClVersion::kCl1_2) { info.opencl_info.image_buffer_max_size = GetDeviceInfo<size_t>(id, CL_DEVICE_IMAGE_MAX_BUFFER_SIZE); info.opencl_info.image_array_max_layers = GetDeviceInfo<size_t>(id, CL_DEVICE_IMAGE_MAX_ARRAY_SIZE); } info.opencl_info.image3d_max_width = GetDeviceInfo<size_t>(id, CL_DEVICE_IMAGE3D_MAX_WIDTH); info.opencl_info.image3d_max_height = GetDeviceInfo<size_t>(id, CL_DEVICE_IMAGE2D_MAX_HEIGHT); info.opencl_info.image3d_max_depth = GetDeviceInfo<size_t>(id, CL_DEVICE_IMAGE3D_MAX_DEPTH); int3 max_work_group_sizes; GetDeviceWorkDimsSizes(id, &max_work_group_sizes); info.opencl_info.max_work_group_size_x = max_work_group_sizes.x; info.opencl_info.max_work_group_size_y = max_work_group_sizes.y; info.opencl_info.max_work_group_size_z = max_work_group_sizes.z; info.opencl_info.max_work_group_total_size = GetDeviceInfo<size_t>(id, CL_DEVICE_MAX_WORK_GROUP_SIZE); info.opencl_info.dedicated_local_memory = (GetDeviceInfo<cl_device_local_mem_type>(id, CL_DEVICE_LOCAL_MEM_TYPE) == CL_LOCAL); if (info.IsCL30OrHigher()) { info.opencl_info.preferred_work_group_size_multiple = GetDeviceInfo<size_t>(id, CL_DEVICE_PREFERRED_WORK_GROUP_SIZE_MULTIPLE); } else { info.opencl_info.preferred_work_group_size_multiple = 0; } info.opencl_info.base_addr_align_in_bits = GetDeviceInfo<cl_uint>(id, CL_DEVICE_MEM_BASE_ADDR_ALIGN); info.opencl_info.image_pitch_alignment = 0; if (info.opencl_info.cl_version == OpenClVersion::kCl2_0 || info.opencl_info.cl_version == OpenClVersion::kCl2_1 || info.opencl_info.cl_version == OpenClVersion::kCl2_2) { info.opencl_info.image_pitch_alignment = GetDeviceInfo<cl_uint>(id, CL_DEVICE_IMAGE_PITCH_ALIGNMENT); info.opencl_info.image_base_address_alignment = GetDeviceInfo<cl_uint>(id, CL_DEVICE_IMAGE_BASE_ADDRESS_ALIGNMENT); } else if (info.SupportsExtension("cl_khr_image2d_from_buffer")) { cl_uint result = 0; auto status = GetDeviceInfo(id, CL_DEVICE_IMAGE_PITCH_ALIGNMENT_KHR, &result); if (status.ok()) { info.opencl_info.image_pitch_alignment = result; } result = 0; status = GetDeviceInfo(id, CL_DEVICE_IMAGE_BASE_ADDRESS_ALIGNMENT_KHR, &result); if (status.ok()) { info.opencl_info.image_base_address_alignment = result; } } if (info.SupportsExtension("cl_intel_required_subgroup_size")) { size_t sub_groups_ret_size; cl_int status = clGetDeviceInfo(id, 0x4108 , 0, nullptr, &sub_groups_ret_size); if (status == CL_SUCCESS) { size_t sub_groups_count = sub_groups_ret_size / sizeof(size_t); std::vector<size_t> sub_group_sizes(sub_groups_count); status = clGetDeviceInfo(id, 0x4108 , sub_groups_ret_size, sub_group_sizes.data(), nullptr); if (status == CL_SUCCESS) { for (int i = 0; i < sub_groups_count; ++i) { info.supported_subgroup_sizes.push_back(sub_group_sizes[i]); } } } } if (info.IsAdreno()) { ParseQualcommOpenClCompilerVersion(info.opencl_info.driver_version, &info.adreno_info.cl_compiler_version); } else if (info.IsPowerVR()) { ParsePowerVRDriverVersion(info.opencl_info.driver_version, info.powervr_info.driver_version); } return info; } } CLDevice::CLDevice(cl_device_id id, cl_platform_id platform_id) : info_(GpuInfoFromDeviceID(id, platform_id)), id_(id), platform_id_(platform_id) { if (info_.IsAdreno() && info_.adreno_info.adreno_gpu == AdrenoGpu::kAdreno630) { acceleration::AndroidInfo android_info; if (acceleration::RequestAndroidInfo(&android_info).ok()) { info_.adreno_info.compiler_bugs_in_a6xx = android_info.android_sdk_version == "26"; } } } CLDevice::CLDevice(const CLDevice& device) : info_(device.info_), id_(device.id_), platform_id_(device.platform_id_) {} CLDevice& CLDevice::operator=(const CLDevice& device) { if (this != &device) { info_ = device.info_; id_ = device.id_; platform_id_ = device.platform_id_; } return *this; } CLDevice::CLDevice(CLDevice&& device) : info_(std::move(device.info_)), id_(device.id_), platform_id_(device.platform_id_) { device.id_ = nullptr; device.platform_id_ = nullptr; } CLDevice& CLDevice::operator=(CLDevice&& device) { if (this != &device) { id_ = nullptr; platform_id_ = nullptr; info_ = std::move(device.info_); std::swap(id_, device.id_); std::swap(platform_id_, device.platform_id_); } return *this; } std::string CLDevice::GetPlatformVersion() const { return GetPlatformInfo(platform_id_, CL_PLATFORM_VERSION); } void CLDevice::DisableOneLayerTextureArray() { info_.adreno_info.support_one_layer_texture_array = false; } absl::Status CreateDefaultGPUDevice(CLDevice* result) { cl_uint num_platforms; cl_int status = clGetPlatformIDs(0, nullptr, &num_platforms); if (status != CL_SUCCESS) { return absl::UnknownError( absl::StrFormat("clGetPlatformIDs returned %d", status)); } if (num_platforms == 0) { return absl::UnknownError("No supported OpenCL platform."); } std::vector<cl_platform_id> platforms(num_platforms); status = clGetPlatformIDs(num_platforms, platforms.data(), nullptr); if (status != CL_SUCCESS) { return absl::UnknownError( absl::StrFormat("clGetPlatformIDs returned %d", status)); } cl_platform_id platform_id = platforms[0]; cl_uint num_devices; status = clGetDeviceIDs(platform_id, CL_DEVICE_TYPE_GPU, 0, nullptr, &num_devices); if (status != CL_SUCCESS) { return absl::UnknownError( absl::StrFormat("clGetDeviceIDs returned %d", status)); } if (num_devices == 0) { return absl::UnknownError("No GPU on current platform."); } std::vector<cl_device_id> devices(num_devices); status = clGetDeviceIDs(platform_id, CL_DEVICE_TYPE_GPU, num_devices, devices.data(), nullptr); if (status != CL_SUCCESS) { return absl::UnknownError( absl::StrFormat("clGetDeviceIDs returned %d", status)); } *result = CLDevice(devices[0], platform_id); LoadOpenCLFunctionExtensions(platform_id); return absl::OkStatus(); } } } }
#include "tensorflow/lite/delegates/gpu/cl/cl_device.h" #include <gmock/gmock.h> #include <gtest/gtest.h> namespace tflite { namespace gpu { namespace cl { TEST(QualcommOpenClCompilerVersionParsing, Base) { AdrenoInfo::OpenClCompilerVersion result; ParseQualcommOpenClCompilerVersion("random text Compiler E031.79.53.41", &result); EXPECT_EQ(result.major, 79); EXPECT_EQ(result.minor, 53); EXPECT_EQ(result.patch, 41); } TEST(QualcommOpenClCompilerVersionParsing, WrongFormat0) { AdrenoInfo::OpenClCompilerVersion result; ParseQualcommOpenClCompilerVersion("random text Assembler A337.79.53.41", &result); EXPECT_EQ(result.major, 0); EXPECT_EQ(result.minor, 0); EXPECT_EQ(result.patch, 0); } TEST(QualcommOpenClCompilerVersionParsing, WrongFormat1) { AdrenoInfo::OpenClCompilerVersion result; ParseQualcommOpenClCompilerVersion("random text Compiler E031.79.53.4", &result); EXPECT_EQ(result.major, 0); EXPECT_EQ(result.minor, 0); EXPECT_EQ(result.patch, 0); } TEST(QualcommOpenClCompilerVersionParsing, WrongFormat2) { AdrenoInfo::OpenClCompilerVersion result; ParseQualcommOpenClCompilerVersion("random text Compiler E031:79:53:41", &result); EXPECT_EQ(result.major, 0); EXPECT_EQ(result.minor, 0); EXPECT_EQ(result.patch, 0); } TEST(QualcommOpenClCompilerVersionParsing, WrongFormat3) { AdrenoInfo::OpenClCompilerVersion result; ParseQualcommOpenClCompilerVersion("random text Compiler E031.79.x53.41", &result); EXPECT_EQ(result.major, 0); EXPECT_EQ(result.minor, 0); EXPECT_EQ(result.patch, 0); } TEST(QualcommOpenClCompilerVersionParsing, WrongFormat4) { AdrenoInfo::OpenClCompilerVersion result; ParseQualcommOpenClCompilerVersion("random text Compiler E031.a9.53.41", &result); EXPECT_EQ(result.major, 0); EXPECT_EQ(result.minor, 0); EXPECT_EQ(result.patch, 0); } } } }
994
cpp
tensorflow/tensorflow
converter
tensorflow/lite/delegates/gpu/cl/kernels/converter.cc
tensorflow/lite/delegates/gpu/gl/kernels/converter_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_GL_KERNELS_CONVERTER_H_ #define TENSORFLOW_LITE_DELEGATES_GPU_GL_KERNELS_CONVERTER_H_ #include <memory> #include "tensorflow/lite/delegates/gpu/gl/command_queue.h" #include "tensorflow/lite/delegates/gpu/spi.h" namespace tflite { namespace gpu { namespace gl { std::unique_ptr<TensorObjectConverterBuilder> NewConverterBuilder( CommandQueue* command_queue ); } } } #endif #include "tensorflow/lite/delegates/gpu/gl/kernels/converter.h" #include <memory> #include <string> #include <utility> #include <variant> #include "absl/strings/str_cat.h" #include "absl/types/span.h" #include "tensorflow/lite/delegates/gpu/common/shape.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/types.h" #include "tensorflow/lite/delegates/gpu/common/util.h" #include "tensorflow/lite/delegates/gpu/gl/gl_buffer.h" #include "tensorflow/lite/delegates/gpu/gl/gl_program.h" #include "tensorflow/lite/delegates/gpu/gl/gl_shader.h" namespace tflite { namespace gpu { namespace gl { namespace { absl::Status WrapSSBO(OpenGlBuffer ssbo, GlBuffer* buffer) { int64_t size_bytes; RETURN_IF_ERROR(GetSSBOSize(ssbo.id, &size_bytes)); *buffer = GlBuffer(GL_SHADER_STORAGE_BUFFER, ssbo.id, size_bytes, 0, false); return absl::OkStatus(); } std::string GetShaderHeader(const uint3& localsize) { return absl::StrCat("#version 310 es\nlayout(local_size_x = ", localsize.x, ", local_size_y = ", localsize.y, ", local_size_z = ", localsize.z, ") in;\n"); } class OpenGlConverterImpl : public TensorObjectConverter { public: explicit OpenGlConverterImpl(CommandQueue* command_queue) : command_queue_(command_queue) {} virtual absl::Status Init(const TensorObjectDef& input_def, const TensorObjectDef& output_def) = 0; protected: absl::Status InitializeProgram(const uint3& workgroup_size, const std::string& shader_source) { workgroup_size_ = workgroup_size; GlShader shader; RETURN_IF_ERROR(GlShader::CompileShader( GL_COMPUTE_SHADER, GetShaderHeader(workgroup_size) + shader_source, &shader)); return GlProgram::CreateWithShader(shader, &program_); } absl::Status Dispatch(const uint3& workload) { uint3 num_workgroups = DivideRoundUp(workload, workgroup_size_); if (command_queue_) { return command_queue_->Dispatch(program_, num_workgroups); } return program_.Dispatch(num_workgroups); } GlProgram program_; uint3 workgroup_size_; CommandQueue* command_queue_; }; bool IsSupportedDataType(DataType type) { return type == DataType::FLOAT32; } uint32_t SizeInBytesDHWC4(const BHWC& shape) { return shape.b * shape.h * shape.w * AlignByN(shape.c, 4) * sizeof(float); } uint32_t SizeInBytesBHWC(const BHWC& shape) { return shape.DimensionsProduct() * sizeof(float); } class FromTensorConverter : public OpenGlConverterImpl { public: explicit FromTensorConverter(CommandQueue* command_queue) : OpenGlConverterImpl(command_queue) {} static bool IsSupported(const ObjectDef& input, const ObjectDef& output) { return IsSupportedDataType(input.data_type) && IsSupportedDataType(output.data_type) && output.object_type == ObjectType::OPENGL_SSBO && output.data_layout == DataLayout::BHWC && input.object_type == ObjectType::OPENGL_SSBO && input.data_layout == DataLayout::DHWC4; } absl::Status Init(const TensorObjectDef& input_def, const TensorObjectDef& output_def) final { shape_ = BHWC(output_def.dimensions.b, output_def.dimensions.h, output_def.dimensions.w, output_def.dimensions.c); if (shape_.b != 1) { return absl::UnimplementedError( "FromTensorConverter: Batch size != 1 is not supported."); } return InitializeProgram(uint3(8, 4, 2), R"( layout(std430) buffer; precision highp float; layout(binding = 0) readonly buffer B0 { vec4 elements[]; } input_data; layout(binding = 1) writeonly buffer B1 { float elements[]; } output_data; uniform ivec4 sizes; void main() { ivec3 gid = ivec3(gl_GlobalInvocationID.xyz); if (gid.x >= sizes.x || gid.y >= sizes.y || gid.z >= sizes.z) { return; } output_data.elements[(gid.y * sizes.x + gid.x) * sizes.z + gid.z] = input_data.elements[(gid.z / 4 * sizes.y + gid.y) * sizes.x + gid.x][gid.z % 4]; })"); } absl::Status Convert(const TensorObject& input_obj, const TensorObject& output_obj) override { auto output = std::get_if<OpenGlBuffer>(&output_obj); if (!output || !output->id) { return absl::InvalidArgumentError("Missing output in converter"); } auto input = std::get_if<OpenGlBuffer>(&input_obj); if (!input || !input->id) { return absl::InvalidArgumentError("Missing input in converter"); } if (input->id == output->id) { return absl::InvalidArgumentError("Can not execute inplace conversion"); } GlBuffer input_ssbo; RETURN_IF_ERROR(WrapSSBO(*input, &input_ssbo)); GlBuffer output_ssbo; RETURN_IF_ERROR(WrapSSBO(*output, &output_ssbo)); if (input_ssbo.bytes_size() != SizeInBytesDHWC4(shape_)) { return absl::InvalidArgumentError( "FromTensorConverter: input data size does not match expected size."); } if (output_ssbo.bytes_size() != SizeInBytesBHWC(shape_)) { return absl::InvalidArgumentError( "FromTensorConverter: output data size does not match expected " "size."); } RETURN_IF_ERROR(program_.SetParameter( {"sizes", int4(static_cast<int32_t>(shape_.w), static_cast<int32_t>(shape_.h), static_cast<int32_t>(shape_.c), 0)})); RETURN_IF_ERROR(input_ssbo.BindToIndex(0)); RETURN_IF_ERROR(output_ssbo.BindToIndex(1)); return Dispatch(uint3(shape_.w, shape_.h, shape_.c)); } BHWC shape_; }; class ToTensorConverter : public OpenGlConverterImpl { public: explicit ToTensorConverter(CommandQueue* command_queue) : OpenGlConverterImpl(command_queue) {} static bool IsSupported(const ObjectDef& input, const ObjectDef& output) { return IsSupportedDataType(input.data_type) && IsSupportedDataType(output.data_type) && input.object_type == ObjectType::OPENGL_SSBO && input.data_layout == DataLayout::BHWC && output.object_type == ObjectType::OPENGL_SSBO && output.data_layout == DataLayout::DHWC4; } absl::Status Init(const TensorObjectDef& input_def, const TensorObjectDef& output_def) final { shape_ = BHWC(output_def.dimensions.b, output_def.dimensions.h, output_def.dimensions.w, output_def.dimensions.c); if (shape_.b != 1) { return absl::UnimplementedError( "ToTensorConverter: Batch size != 1 is not supported."); } return InitializeProgram(uint3(8, 4, 2), R"( layout(std430) buffer; precision highp float; layout(binding = 0) readonly buffer B0 { float elements[]; } input_data; layout(binding = 1) writeonly buffer B1 { vec4 elements[]; } output_data; uniform ivec4 sizes; void main() { ivec3 gid = ivec3(gl_GlobalInvocationID.xyz); if (gid.x >= sizes.x || gid.y >= sizes.y || gid.z >= sizes.w) { return; } vec4 v = vec4(0); int dst_channel = gid.z * 4; int index = (gid.y * sizes.x + gid.x) * sizes.z + dst_channel; for (int i = 0; i < 4; ++i, ++index, ++dst_channel) { if (dst_channel >= sizes.z) break; v[i] = input_data.elements[index]; } output_data.elements[(gid.z * sizes.y + gid.y) * sizes.x + gid.x] = v; })"); } absl::Status Convert(const TensorObject& input_obj, const TensorObject& output_obj) override { auto output = std::get_if<OpenGlBuffer>(&output_obj); if (!output || !output->id) { return absl::InvalidArgumentError("Missing output in converter"); } auto input = std::get_if<OpenGlBuffer>(&input_obj); if (!input || !input->id) { return absl::InvalidArgumentError("Missing input in converter"); } if (input->id == output->id) { return absl::InvalidArgumentError("Can not execute inplace conversion"); } GlBuffer input_ssbo; RETURN_IF_ERROR(WrapSSBO(*input, &input_ssbo)); GlBuffer output_ssbo; RETURN_IF_ERROR(WrapSSBO(*output, &output_ssbo)); if (input_ssbo.bytes_size() != SizeInBytesBHWC(shape_)) { return absl::InvalidArgumentError( "ToTensorConverter: input data size does not match expected size."); } if (output_ssbo.bytes_size() != SizeInBytesDHWC4(shape_)) { return absl::InvalidArgumentError( "ToTensorConverter: output data size does not match expected size."); } auto d = DivideRoundUp(shape_.c, 4); RETURN_IF_ERROR(program_.SetParameter( {"sizes", int4(static_cast<int32_t>(shape_.w), static_cast<int32_t>(shape_.h), static_cast<int32_t>(shape_.c), static_cast<int32_t>(d))})); RETURN_IF_ERROR(input_ssbo.BindToIndex(0)); RETURN_IF_ERROR(output_ssbo.BindToIndex(1)); return Dispatch(uint3(shape_.w, shape_.h, d)); } BHWC shape_; }; class TrivialCopier : public TensorObjectConverter { public: static bool IsSupported(const ObjectDef& input, const ObjectDef& output) { return input.object_type == ObjectType::OPENGL_SSBO && input.data_type == output.data_type && input.object_type == output.object_type && input.data_layout == output.data_layout; } absl::Status Convert(const TensorObject& input_obj, const TensorObject& output_obj) override { auto ssbo_input = std::get_if<OpenGlBuffer>(&input_obj); auto ssbo_output = std::get_if<OpenGlBuffer>(&output_obj); if (ssbo_input && ssbo_output) { return Copy(*ssbo_input, *ssbo_output); } return absl::InternalError("Unexpected object"); } absl::Status Copy(OpenGlBuffer input, OpenGlBuffer output) { if (input.id == output.id) { return absl::OkStatus(); } GlBuffer input_obj; RETURN_IF_ERROR(WrapSSBO(input, &input_obj)); GlBuffer output_obj; RETURN_IF_ERROR(WrapSSBO(output, &output_obj)); return CopyBuffer(input_obj, output_obj); } }; class CpuCopier : public TensorObjectConverter { public: static bool IsSupported(const ObjectDef& input, const ObjectDef& output) { return input.data_type == output.data_type && input.data_layout == output.data_layout && ((input.object_type == ObjectType::CPU_MEMORY && output.object_type == ObjectType::OPENGL_SSBO) || (output.object_type == ObjectType::CPU_MEMORY && input.object_type == ObjectType::OPENGL_SSBO)); } absl::Status Convert(const TensorObject& input_obj, const TensorObject& output_obj) override { auto cpu_input = std::get_if<CpuMemory>(&input_obj); auto cpu_output = std::get_if<CpuMemory>(&output_obj); if (cpu_input) { auto ssbo_output = std::get_if<OpenGlBuffer>(&output_obj); if (ssbo_output) { GlBuffer gl_buffer; RETURN_IF_ERROR(WrapSSBO(*ssbo_output, &gl_buffer)); return gl_buffer.Write( absl::MakeConstSpan(static_cast<const uint8_t*>(cpu_input->data), cpu_input->size_bytes)); } } else if (cpu_output) { auto ssbo_input = std::get_if<OpenGlBuffer>(&input_obj); if (ssbo_input) { GlBuffer gl_buffer; RETURN_IF_ERROR(WrapSSBO(*ssbo_input, &gl_buffer)); return gl_buffer.Read(absl::MakeSpan( static_cast<uint8_t*>(cpu_output->data), cpu_output->size_bytes)); } } return absl::InternalError("Unexpected object"); } }; class TensorConverterBuilderImpl : public TensorObjectConverterBuilder { public: explicit TensorConverterBuilderImpl(CommandQueue* command_queue) : command_queue_(command_queue) {} bool IsSupported(const TensorObjectDef& input, const TensorObjectDef& output) const final { const auto& input_def = input.object_def; const auto& output_def = output.object_def; return input.dimensions == output.dimensions && (TrivialCopier::IsSupported(input_def, output_def) || CpuCopier::IsSupported(input_def, output_def) || FromTensorConverter::IsSupported(input_def, output_def) || ToTensorConverter::IsSupported(input_def, output_def)); } absl::Status MakeConverter( const TensorObjectDef& input, const TensorObjectDef& output, std::unique_ptr<TensorObjectConverter>* converter) final { std::unique_ptr<OpenGlConverterImpl> impl; const auto& input_def = input.object_def; const auto& output_def = output.object_def; if (TrivialCopier::IsSupported(input_def, output_def)) { *converter = std::make_unique<TrivialCopier>(); return absl::OkStatus(); } if (CpuCopier::IsSupported(input_def, output_def)) { *converter = std::make_unique<CpuCopier>(); return absl::OkStatus(); } if (FromTensorConverter::IsSupported(input_def, output_def)) { impl = std::make_unique<FromTensorConverter>(command_queue_); } else if (ToTensorConverter::IsSupported(input_def, output_def)) { impl = std::make_unique<ToTensorConverter>(command_queue_); } else { return absl::UnimplementedError("Unsupported conversion"); } RETURN_IF_ERROR(impl->Init(input, output)); *converter = std::move(impl); return absl::OkStatus(); } private: CommandQueue* command_queue_; }; } std::unique_ptr<TensorObjectConverterBuilder> NewConverterBuilder( CommandQueue* command_queue) { return std::make_unique<TensorConverterBuilderImpl>(command_queue); } } } }
#include "tensorflow/lite/delegates/gpu/gl/kernels/converter.h" #include <algorithm> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/types/span.h" #include "tensorflow/lite/delegates/gpu/common/convert.h" #include "tensorflow/lite/delegates/gpu/common/shape.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/gl/egl_environment.h" #include "tensorflow/lite/delegates/gpu/gl/gl_buffer.h" #include "tensorflow/lite/delegates/gpu/gl/portable_gl31.h" namespace tflite { namespace gpu { namespace gl { namespace { inline std::vector<float> GenerateFloats(float multiplier, int size) { std::vector<float> v(size); for (int i = 0; i < size; ++i) { v[i] = multiplier * i * (i % 2 == 0 ? -1 : 1); } return v; } Dimensions ToDimensions(const BHWC& shape) { return Dimensions(shape.b, shape.h, shape.w, shape.c); } absl::Status RunFromTensorTest(const BHWC& shape) { std::vector<float> input = GenerateFloats(0.01, GetElementsSizeForPHWC4(shape)); std::vector<float> output(shape.DimensionsProduct(), 0); RETURN_IF_ERROR( ConvertFromPHWC4(absl::MakeConstSpan(input.data(), input.size()), shape, absl::MakeSpan(output.data(), output.size()))); std::unique_ptr<EglEnvironment> env; RETURN_IF_ERROR(EglEnvironment::NewEglEnvironment(&env)); GlBuffer input_buffer; RETURN_IF_ERROR(CreateReadOnlyShaderStorageBuffer( absl::MakeConstSpan(input.data(), input.size()), &input_buffer)); GlBuffer output_buffer; RETURN_IF_ERROR(CreateReadWriteShaderStorageBuffer<float>( shape.DimensionsProduct(), &output_buffer)); auto builder = NewConverterBuilder(nullptr); TensorObjectDef input_def; input_def.object_def.data_type = DataType::FLOAT32; input_def.object_def.data_layout = DataLayout::DHWC4; input_def.object_def.object_type = ObjectType::OPENGL_SSBO; input_def.dimensions = ToDimensions(shape); TensorObjectDef output_def = input_def; output_def.object_def.data_layout = DataLayout::BHWC; std::unique_ptr<TensorObjectConverter> converter; RETURN_IF_ERROR(builder->MakeConverter(input_def, output_def, &converter)); RETURN_IF_ERROR(converter->Convert(OpenGlBuffer{input_buffer.id()}, OpenGlBuffer{output_buffer.id()})); std::vector<float> converted_output(output.size(), 0); RETURN_IF_ERROR(output_buffer.Read( absl::MakeSpan(converted_output.data(), converted_output.size()))); if (output != converted_output) { return absl::InternalError("Outputs don't match"); } return absl::OkStatus(); } TEST(FromTensor, Smoke) { for (int32_t h : {1, 2, 3, 7, 20}) { for (int32_t w : {1, 2, 4, 5, 11}) { for (int32_t c : {1, 2, 4, 5, 8, 9}) { BHWC shape(1, h, w, c); auto status = RunFromTensorTest(shape); EXPECT_TRUE(status.ok()) << status << ", shape = " << shape.h << " " << shape.w << " " << shape.c; } } } } absl::Status RunToTensorTest(const BHWC& shape) { std::vector<float> input = GenerateFloats(0.01, shape.DimensionsProduct()); std::vector<float> output(GetElementsSizeForPHWC4(shape), 0); RETURN_IF_ERROR( ConvertToPHWC4(absl::MakeConstSpan(input.data(), input.size()), shape, absl::MakeSpan(output.data(), output.size()))); std::unique_ptr<EglEnvironment> env; RETURN_IF_ERROR(EglEnvironment::NewEglEnvironment(&env)); GlBuffer input_buffer; RETURN_IF_ERROR(CreateReadOnlyShaderStorageBuffer( absl::MakeConstSpan(input.data(), input.size()), &input_buffer)); GlBuffer output_buffer; RETURN_IF_ERROR(CreateReadWriteShaderStorageBuffer<float>( GetElementsSizeForPHWC4(shape), &output_buffer)); auto builder = NewConverterBuilder(nullptr); TensorObjectDef input_def; input_def.object_def.data_type = DataType::FLOAT32; input_def.object_def.data_layout = DataLayout::BHWC; input_def.object_def.object_type = ObjectType::OPENGL_SSBO; input_def.dimensions = ToDimensions(shape); TensorObjectDef output_def = input_def; output_def.object_def.data_layout = DataLayout::DHWC4; std::unique_ptr<TensorObjectConverter> converter; RETURN_IF_ERROR(builder->MakeConverter(input_def, output_def, &converter)); RETURN_IF_ERROR(converter->Convert(OpenGlBuffer{input_buffer.id()}, OpenGlBuffer{output_buffer.id()})); std::vector<float> converted_output(output.size(), 0); RETURN_IF_ERROR(output_buffer.Read( absl::MakeSpan(converted_output.data(), converted_output.size()))); if (output != converted_output) { return absl::InternalError("Outputs don't match"); } return absl::OkStatus(); } TEST(ToTensor, Smoke) { for (int32_t h : {1, 2, 3, 7, 20}) { for (int32_t w : {1, 2, 4, 5, 11}) { for (int32_t c : {1, 2, 4, 5, 8, 9}) { BHWC shape(1, h, w, c); auto status = RunToTensorTest(shape); EXPECT_TRUE(status.ok()) << status << ", shape = " << shape.h << " " << shape.w << " " << shape.c; } } } } } } } }
995
cpp
tensorflow/tensorflow
model
tensorflow/lite/delegates/gpu/common/model.cc
tensorflow/lite/core/model_test.cc
#ifndef TENSORFLOW_CORE_FRAMEWORK_MODEL_H_ #define TENSORFLOW_CORE_FRAMEWORK_MODEL_H_ #include <algorithm> #include <cstdint> #include <deque> #include <functional> #include <limits> #include <list> #include <memory> #include <string> #include <optional> #include <thread> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/types/optional.h" #include "tensorflow/core/framework/cancellation.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/framework/model.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/lib/gtl/cleanup.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/lib/histogram/histogram.h" #include "tensorflow/core/lib/random/random.h" #include "tensorflow/core/platform/cpu_info.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/strcat.h" #include "tensorflow/core/platform/stringprintf.h" #include "tsl/platform/mutex.h" #include "tsl/platform/thread_annotations.h" namespace tensorflow { namespace data { namespace model { constexpr int64_t kAutotune = -1; constexpr char kParallelism[] = "parallelism"; constexpr char kBufferSize[] = "buffer_size"; constexpr char kCycleLength[] = "cycle_length"; constexpr char kDeterministic[] = "deterministic"; constexpr char kMaxBufferedElements[] = "max_buffered_elements"; constexpr char kModelInputTimeKey[] = "model_input_time"; constexpr double kRamBudgetShare = 0.5; constexpr double kProcessingTimeEmaWeight = 0.1; enum class TraversalOrder { BFS = 0, REVERSE_BFS = 1, }; struct SharedState { public: SharedState(int64_t value, std::shared_ptr<mutex> mu, std::shared_ptr<condition_variable> cond_var) : value(value), mu(std::move(mu)), cond_var(std::move(cond_var)), tunable(value == kAutotune) {} double value; const std::shared_ptr<mutex> mu; const std::shared_ptr<condition_variable> cond_var; const bool tunable; }; struct Parameter { Parameter(const string& name, std::shared_ptr<SharedState> state, double min, double max) : name(name), value(state == nullptr || state->value == kAutotune ? min : state->value), min(min), max(max), state(std::move(state)) {} explicit Parameter(const std::shared_ptr<Parameter> parameter) : name(parameter->name), value(parameter->value), min(parameter->min), max(parameter->max), state(parameter->state) {} const string name; double value; const double min; const double max; std::shared_ptr<SharedState> state; }; std::shared_ptr<Parameter> MakeParameter(const string& name, std::shared_ptr<SharedState> state, double min, double max); std::shared_ptr<Parameter> MakeParameter(const string& name, std::shared_ptr<SharedState> state, double min, double max, double value); std::shared_ptr<Parameter> MakeNonTunableParameter(const string& name, double value); class RamBudgetManager { public: explicit RamBudgetManager(int64_t budget) : budget_(budget) { if (budget <= 0) { LOG(WARNING) << "RAM budget is " << budget << " which could prevent autotuner from properly adjusting " "buffer sizes."; } } bool RequestModelAllocation(int64_t total_bytes) { mutex_lock l(mu_); if (total_bytes > budget_ - legacy_prefetch_allocated_) { return false; } model_allocated_ = total_bytes; return true; } int64_t RequestModelBytes(int64_t delta_elements, double element_size) { if (delta_elements == 0) { return 0; } int64_t allocated_delta_elements = delta_elements; mutex_lock l(mu_); if (delta_elements > 0) { int64_t max_delta_elements = static_cast<int64_t>( (budget_ - legacy_prefetch_allocated_ - model_allocated_) / element_size); if (max_delta_elements < 0) { return 0; } allocated_delta_elements = std::min(max_delta_elements, delta_elements); } model_allocated_ += static_cast<int64_t>(allocated_delta_elements * element_size); return allocated_delta_elements; } bool RequestLegacyPrefetchBytes(int64_t delta_bytes) { mutex_lock l(mu_); if (delta_bytes > budget_ - legacy_prefetch_allocated_ - model_allocated_) { return false; } legacy_prefetch_allocated_ += delta_bytes; return true; } int64_t AvailableModelRam() const { tf_shared_lock l(mu_); return budget_ - legacy_prefetch_allocated_; } void UpdateBudget(int64_t budget) { mutex_lock l(mu_); budget_ = budget; VLOG(2) << "Updated ram budget to " << budget; } std::string DebugString() { mutex_lock l(mu_); return absl::StrCat("RamBudgetManager: budget_: ", budget_, " prefetch allocated: ", legacy_prefetch_allocated_, " model allocated: ", model_allocated_); } private: mutable mutex mu_; int64_t budget_ TF_GUARDED_BY(mu_) = 0; int64_t legacy_prefetch_allocated_ TF_GUARDED_BY(mu_) = 0; int64_t model_allocated_ TF_GUARDED_BY(mu_) = 0; }; class Node { public: struct Args { int64_t id; string name; std::shared_ptr<Node> output; }; using Factory = std::function<std::shared_ptr<Node>(Args)>; using NodeVector = std::vector<std::shared_ptr<Node>>; using NodePairList = std::list<std::pair<std::shared_ptr<Node>, std::shared_ptr<Node>>>; using ModelParameters = std::vector<std::pair<string, std::shared_ptr<Parameter>>>; using NodeValues = absl::flat_hash_map<string, double>; using ParameterGradients = absl::flat_hash_map<std::pair<string, string>, double>; explicit Node(Args args) : id_(args.id), name_(std::move(args.name)), autotune_(true), buffered_bytes_(0), peak_buffered_bytes_(0), buffered_elements_(0), buffered_elements_low_(std::numeric_limits<int64_t>::max()), buffered_elements_high_(std::numeric_limits<int64_t>::min()), bytes_consumed_(0), bytes_produced_(0), num_elements_(0), processing_time_(0), record_metrics_(true), metrics_(name_), output_(args.output.get()), output_weak_ptr_(args.output) {} virtual ~Node() { std::deque<std::shared_ptr<Node>> queue; { mutex_lock l(mu_); while (!inputs_.empty()) { queue.push_back(inputs_.front()); inputs_.pop_front(); } } while (!queue.empty()) { auto node = queue.back(); queue.pop_back(); { mutex_lock l(node->mu_); while (!node->inputs_.empty()) { queue.push_back(node->inputs_.front()); node->inputs_.pop_front(); } } } FlushMetrics(); } void add_input(std::shared_ptr<Node> node) TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); inputs_.push_back(node); } void add_processing_time(int64_t delta) TF_LOCKS_EXCLUDED(mu_) { processing_time_ += delta; } bool autotune() const TF_LOCKS_EXCLUDED(mu_) { return autotune_; } int64_t buffered_bytes() const TF_LOCKS_EXCLUDED(mu_) { return buffered_bytes_; } int64_t peak_buffered_bytes() const TF_LOCKS_EXCLUDED(mu_) { return peak_buffered_bytes_; } int64_t buffered_elements() const TF_LOCKS_EXCLUDED(mu_) { return buffered_elements_; } int64_t buffered_elements_low() const TF_LOCKS_EXCLUDED(mu_) { return buffered_elements_low_; } int64_t buffered_elements_high() const TF_LOCKS_EXCLUDED(mu_) { return buffered_elements_high_; } int64_t bytes_consumed() const TF_LOCKS_EXCLUDED(mu_) { return bytes_consumed_; } int64_t bytes_produced() const TF_LOCKS_EXCLUDED(mu_) { return bytes_produced_; } bool has_tunable_parameters() const TF_LOCKS_EXCLUDED(mu_) { tf_shared_lock l(mu_); for (const auto& pair : parameters_) { if (pair.second->state->tunable) return true; } return false; } int64_t id() const TF_LOCKS_EXCLUDED(mu_) { return id_; } std::list<std::shared_ptr<Node>> inputs() const TF_LOCKS_EXCLUDED(mu_) { tf_shared_lock l(mu_); return inputs_; } string long_name() const { return strings::StrCat(name_, "(id:", id_, ")"); } const string& name() const { return name_; } int64_t num_elements() const TF_LOCKS_EXCLUDED(mu_) { return num_elements_; } Node* output() const { return output_; } std::shared_ptr<Node> output_shared() { return output_weak_ptr_.lock(); } double parameter_value(const string& name) const TF_LOCKS_EXCLUDED(mu_) { tf_shared_lock l(mu_); return parameters_.at(name)->state->value; } int64_t processing_time() const TF_LOCKS_EXCLUDED(mu_) { return processing_time_; } void record_bytes_consumed(int64_t num_bytes) { bytes_consumed_ += num_bytes; } void record_bytes_produced(int64_t num_bytes) { bytes_produced_ += num_bytes; } void record_buffer_event(int64_t bytes_delta, int64_t elements_delta) { buffered_bytes_ += bytes_delta; peak_buffered_bytes_.store(std::max(peak_buffered_bytes_, buffered_bytes_)); buffered_elements_ += elements_delta; if (IsAsync()) { int64_t low_watermark = std::min(buffered_elements_low_, buffered_elements_); buffered_elements_low_ = low_watermark; int64_t high_watermark = std::max(buffered_elements_high_, buffered_elements_); buffered_elements_high_ = high_watermark; } } void record_element() TF_LOCKS_EXCLUDED(mu_) { num_elements_++; { mutex_lock l(mu_); UpdateProcessingTimeEma(); } } void record_start(int64_t time_nanos) TF_LOCKS_EXCLUDED(mu_) { DCHECK_EQ(work_start_, 0); work_start_ = time_nanos; } void record_stop(int64_t time_nanos) TF_LOCKS_EXCLUDED(mu_) { if (work_start_ != 0) { processing_time_ += time_nanos - work_start_; work_start_ = 0; } else { VLOG(1) << "Encountered a stop event without a matching start event."; } } bool is_recording() TF_LOCKS_EXCLUDED(mu_) { return work_start_ > 0; } void remove_input(std::shared_ptr<Node> input) TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); inputs_.remove(input); } void set_autotune(bool autotune) TF_LOCKS_EXCLUDED(mu_) { autotune_.store(autotune); } void ResetBufferWatermarks() { if (!IsAsync()) { return; } int64_t current_buffer_size = buffered_elements_; buffered_elements_low_ = current_buffer_size; buffered_elements_high_ = current_buffer_size; } virtual bool IsAsync() const { return false; } virtual double Ratio() const { return 1.0; } virtual double ComputeSelfTime() const; absl::StatusOr<double> ParameterValue(const std::string& parameter_name) const TF_LOCKS_EXCLUDED(mu_) { tf_shared_lock l(mu_); if (parameters_.contains(parameter_name)) { return parameters_.at(parameter_name)->value; } return errors::NotFound("Parameter ", parameter_name, " was not found in model node ", long_name()); } static double ComputeWaitTime(double producer_time, double consumer_time, double buffer_size, double* producer_time_derivative, double* consumer_time_derivative, double* buffer_size_derivative); ModelParameters CollectTunableParameters() const TF_LOCKS_EXCLUDED(mu_); ModelParameters CollectNodeTunableParameters() const TF_LOCKS_EXCLUDED(mu_); string DebugString() const TF_LOCKS_EXCLUDED(mu_); void FlushMetrics() TF_LOCKS_EXCLUDED(mu_); double OutputTime(NodeValues* input_times, ParameterGradients* gradients) const TF_LOCKS_EXCLUDED(mu_); std::shared_ptr<Node> Snapshot() const TF_LOCKS_EXCLUDED(mu_); double SelfProcessingTime() const TF_LOCKS_EXCLUDED(mu_); double TotalBufferedBytes() const TF_LOCKS_EXCLUDED(mu_); double TotalMaximumBufferedBytes() const TF_LOCKS_EXCLUDED(mu_); double TotalProcessingTime(NodeValues* processing_times) TF_LOCKS_EXCLUDED(mu_); virtual Status ToProto(ModelProto::Node* node_proto) const; static Status FromProto(ModelProto::Node node_proto, std::shared_ptr<Node> output, std::shared_ptr<Node>* node); NodeVector CollectNodes(TraversalOrder order, bool collect_node(const std::shared_ptr<Node>)) const TF_LOCKS_EXCLUDED(mu_); bool TryDownsizeBuffer(); void CollectBufferParametersToUpsize( absl::flat_hash_map<Node*, Parameter*>& node_parameters); double AverageBufferedElementSize() const { tf_shared_lock l(mu_); return AverageBufferedElementSizeLocked(); } void SyncStateValuesToParameterValues(const std::string& parameter_name); void SetEstimatedElementSize(std::optional<int64_t> estimated_element_size) { mutex_lock l(mu_); estimated_element_size_ = estimated_element_size; } protected: class Metrics { public: explicit Metrics(const string& name) : bytes_consumed_counter_(metrics::GetTFDataBytesConsumedCounter(name)), bytes_produced_counter_(metrics::GetTFDataBytesProducedCounter(name)), num_elements_counter_(metrics::GetTFDataElementsCounter(name)), recorded_bytes_consumed_(0), recorded_bytes_produced_(0), recorded_num_elements_(0) {} void record_bytes_consumed(int64_t total_bytes) { int64_t delta = total_bytes - recorded_bytes_consumed_.exchange(total_bytes); bytes_consumed_counter_->IncrementBy(delta); } void record_bytes_produced(int64_t total_bytes) { int64_t delta = total_bytes - recorded_bytes_produced_.exchange(total_bytes); bytes_produced_counter_->IncrementBy(delta); } void record_num_elements(int64_t total_elements) { int64_t delta = total_elements - recorded_num_elements_.exchange(total_elements); num_elements_counter_->IncrementBy(delta); } private: monitoring::CounterCell* const bytes_consumed_counter_; monitoring::CounterCell* const bytes_produced_counter_; monitoring::CounterCell* const num_elements_counter_; std::atomic<int64_t> recorded_bytes_consumed_; std::atomic<int64_t> recorded_bytes_produced_; std::atomic<int64_t> recorded_num_elements_; }; void UpdateProcessingTimeEma() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (previous_processing_time_ == 0) { if (num_elements_ > 0) { processing_time_ema_ = static_cast<double>(processing_time_) / static_cast<double>(num_elements_ + buffered_elements_); } else { processing_time_ema_ = static_cast<double>(processing_time_); } } else { processing_time_ema_ = (1.0 - kProcessingTimeEmaWeight) * processing_time_ema_ + kProcessingTimeEmaWeight * static_cast<double>(processing_time_ - previous_processing_time_); } previous_processing_time_ = processing_time_; } int64_t num_inputs() const TF_SHARED_LOCKS_REQUIRED(mu_) { int64_t num_inputs = 0; for (auto& input : inputs_) { if (input->autotune()) { ++num_inputs; } } return num_inputs; } virtual std::shared_ptr<Node> Clone(std::shared_ptr<Node> output) const TF_SHARED_LOCKS_REQUIRED(mu_) = 0; double AverageBufferedElementSizeLocked() const TF_SHARED_LOCKS_REQUIRED(mu_); double OutputTimeForInputs(const NodeValues& output_times) const TF_SHARED_LOCKS_REQUIRED(mu_); double OutputTimeGradientsForInputs(const NodeValues& output_time_gradients) const TF_SHARED_LOCKS_REQUIRED(mu_); virtual void InputTimeLocked(NodeValues* input_times) const TF_SHARED_LOCKS_REQUIRED(mu_) = 0; virtual void OutputTimeLocked(const NodeValues& input_times, ParameterGradients* gradients, NodeValues* output_times, NodeValues* output_time_gradients) const TF_SHARED_LOCKS_REQUIRED(mu_) = 0; double TotalProcessingTimeForInputs(const NodeValues& total_processing_times) TF_SHARED_LOCKS_REQUIRED(mu_); double SelfProcessingTimeLocked() const TF_SHARED_LOCKS_REQUIRED(mu_); virtual void TotalProcessingTimeLocked(NodeValues* processing_times, NodeValues* total_processing_times) TF_SHARED_LOCKS_REQUIRED(mu_) = 0; NodeVector CollectNodesLocked(TraversalOrder order, bool collect_node(const std::shared_ptr<Node>)) const TF_SHARED_LOCKS_REQUIRED(mu_); ModelParameters CollectTunableParametersLocked() const TF_SHARED_LOCKS_REQUIRED(mu_); void CollectTunableParametersHelper(ModelParameters* parameters) const TF_SHARED_LOCKS_REQUIRED(mu_); void DebugStringHelper(absl::flat_hash_map<string, string>* debug_strings) const TF_SHARED_LOCKS_REQUIRED(mu_); std::shared_ptr<Node> SnapshotHelper(std::shared_ptr<Node> cloned_output, NodePairList* node_pairs) const; void TotalBufferedBytesHelper(NodeValues* total_bytes) const TF_SHARED_LOCKS_REQUIRED(mu_); void TotalMaximumBufferedBytesHelper(NodeValues* total_bytes) const TF_SHARED_LOCKS_REQUIRED(mu_); virtual double MaximumBufferedBytes() const TF_SHARED_LOCKS_REQUIRED(mu_); static Status FromProtoHelper(ModelProto::Node node_proto, std::shared_ptr<Node> node); static thread_local int64_t work_start_; mutable mutex mu_; const int64_t id_; const string name
#include "tensorflow/core/framework/model.h" #include <algorithm> #include <cstdint> #include <cstdlib> #include <functional> #include <memory> #include <optional> #include <string> #include <tuple> #include <utility> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorflow/core/framework/cancellation.h" #include "tensorflow/core/framework/model.pb.h" #include "tensorflow/core/framework/op_def.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/core/threadpool.h" #include "tensorflow/core/lib/gtl/cleanup.h" #include "tensorflow/core/lib/monitoring/cell_reader.h" #include "tensorflow/core/platform/stringprintf.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace data { namespace model { namespace { using ::tensorflow::monitoring::testing::CellReader; using ::testing::AllOf; using ::testing::HasSubstr; std::function<int64_t()> CpuBudgetFunc(int64_t budget) { return [budget]() { return budget; }; } std::function<int64_t(int64_t)> RamBudgetFunc(int64_t budget) { return [budget](int64_t) { return budget; }; } int64_t CountParametersOnNode(const string& node_name, const Model::ModelParameters& parameters) { int64_t cnt = 0; for (const auto& pair : parameters) { if (pair.first == node_name) { cnt++; } } return cnt; } class AsyncInterleaveManyTest : public ::testing::TestWithParam<std::tuple<int64_t, double>> {}; TEST_P(AsyncInterleaveManyTest, Model) { const int64_t parallelism = std::get<0>(GetParam()); const double input_time = std::get<1>(GetParam()); std::shared_ptr<Node> async_interleave_many = model::MakeAsyncInterleaveManyNode( {0, "async_interleave_many", nullptr}, {model::MakeParameter("parallelism", std::make_shared<SharedState>( parallelism, nullptr, nullptr), 1, 8), model::MakeParameter(kCycleLength, nullptr, 1, 1)}); std::shared_ptr<Node> meta_source = model::MakeSourceNode({1, "meta_source", async_interleave_many}); async_interleave_many->add_input(meta_source); auto cleanup_meta = gtl::MakeCleanup([async_interleave_many, meta_source]() { async_interleave_many->remove_input(meta_source); }); std::shared_ptr<Node> source1 = model::MakeSourceNode({2, "source1", async_interleave_many}); async_interleave_many->add_input(source1); auto cleanup1 = gtl::MakeCleanup([async_interleave_many, source1]() { async_interleave_many->remove_input(source1); }); std::shared_ptr<Node> source2 = model::MakeSourceNode({3, "source2", async_interleave_many}); async_interleave_many->add_input(source2); auto cleanup2 = gtl::MakeCleanup([async_interleave_many, source2]() { async_interleave_many->remove_input(source2); }); Model::NodeValues input_times; input_times[kModelInputTimeKey] = input_time; EXPECT_EQ(async_interleave_many->buffered_bytes(), 0); EXPECT_EQ(async_interleave_many->peak_buffered_bytes(), 0); EXPECT_EQ(async_interleave_many->TotalBufferedBytes(), 0); EXPECT_EQ(async_interleave_many->TotalMaximumBufferedBytes(), 0); async_interleave_many->record_buffer_event(110, 10); EXPECT_EQ(async_interleave_many->buffered_bytes(), 110); EXPECT_EQ(async_interleave_many->peak_buffered_bytes(), 110); EXPECT_EQ(async_interleave_many->TotalBufferedBytes(), 110); EXPECT_EQ(async_interleave_many->TotalMaximumBufferedBytes(), 110 * parallelism / 10); async_interleave_many->add_processing_time(100); EXPECT_EQ(async_interleave_many->processing_time(), 100); EXPECT_EQ( async_interleave_many->TotalProcessingTime(nullptr), 0); EXPECT_EQ(async_interleave_many->OutputTime(&input_times, nullptr), 0); async_interleave_many->record_element(); EXPECT_EQ(async_interleave_many->num_elements(), 1); EXPECT_EQ( async_interleave_many->TotalProcessingTime(nullptr), 100); EXPECT_LE(async_interleave_many->OutputTime(&input_times, nullptr), 100); EXPECT_GE(async_interleave_many->OutputTime(&input_times, nullptr), 0); source1->add_processing_time(200); source2->add_processing_time(300); EXPECT_EQ( async_interleave_many->TotalProcessingTime(nullptr), 100); EXPECT_LE(async_interleave_many->OutputTime(&input_times, nullptr), 100); EXPECT_GE(async_interleave_many->OutputTime(&input_times, nullptr), 0); source1->record_element(); source2->record_element(); EXPECT_EQ( async_interleave_many->TotalProcessingTime(nullptr), 100 + 250); EXPECT_LE(async_interleave_many->OutputTime(&input_times, nullptr), 100 + 250 / parallelism); EXPECT_GE(async_interleave_many->OutputTime(&input_times, nullptr), 0); async_interleave_many->record_element(); EXPECT_EQ( async_interleave_many->TotalProcessingTime(nullptr), 50 + 250); EXPECT_LE(async_interleave_many->OutputTime(&input_times, nullptr), 50 + 250 / parallelism); EXPECT_GE(async_interleave_many->OutputTime(&input_times, nullptr), 0); } INSTANTIATE_TEST_SUITE_P(Test, AsyncInterleaveManyTest, ::testing::Combine(::testing::Values(1, 2), ::testing::Values(0, 50, 100, 200))); class AsyncKnownRatioTest : public ::testing::TestWithParam<std::tuple<int64_t, double, int64_t>> {}; TEST_P(AsyncKnownRatioTest, Model) { const int64_t parallelism = std::get<0>(GetParam()); const double input_time = std::get<1>(GetParam()); const int64_t num_inputs_per_output = std::get<2>(GetParam()); std::shared_ptr<Node> async_known_many = model::MakeAsyncKnownRatioNode( {0, "async_known_many", nullptr}, num_inputs_per_output, {model::MakeParameter("parallelism", std::make_shared<SharedState>(parallelism, nullptr, nullptr), 1, 16)}); std::shared_ptr<Node> source1 = model::MakeSourceNode({1, "source1", async_known_many}); async_known_many->add_input(source1); std::shared_ptr<Node> source2 = model::MakeSourceNode({2, "source2", async_known_many}); async_known_many->add_input(source2); Model::NodeValues input_times; input_times[kModelInputTimeKey] = input_time; EXPECT_EQ(async_known_many->buffered_bytes(), 0); EXPECT_EQ(async_known_many->peak_buffered_bytes(), 0); EXPECT_EQ(async_known_many->TotalBufferedBytes(), 0); EXPECT_EQ(async_known_many->TotalMaximumBufferedBytes(), 0); async_known_many->record_buffer_event(110, 10); EXPECT_EQ(async_known_many->buffered_bytes(), 110); EXPECT_EQ(async_known_many->peak_buffered_bytes(), 110); EXPECT_EQ(async_known_many->TotalBufferedBytes(), 110); EXPECT_EQ(async_known_many->TotalMaximumBufferedBytes(), num_inputs_per_output == 0 ? 110.0 * parallelism / 10 : 110.0 * parallelism / 10 / num_inputs_per_output); source1->add_processing_time(100); EXPECT_EQ(async_known_many->TotalProcessingTime(nullptr), 0); EXPECT_EQ(async_known_many->OutputTime(&input_times, nullptr), 0); source2->add_processing_time(200); EXPECT_EQ(async_known_many->TotalProcessingTime(nullptr), 0); EXPECT_EQ(async_known_many->OutputTime(&input_times, nullptr), 0); source1->record_element(); EXPECT_EQ(async_known_many->TotalProcessingTime(nullptr), num_inputs_per_output * 100); EXPECT_LE(async_known_many->OutputTime(&input_times, nullptr), num_inputs_per_output * 100); EXPECT_GE(async_known_many->OutputTime(&input_times, nullptr), 0); source2->record_element(); EXPECT_EQ(async_known_many->TotalProcessingTime(nullptr), num_inputs_per_output * (100 + 200)); EXPECT_LE(async_known_many->OutputTime(&input_times, nullptr), num_inputs_per_output * (100 + 200)); EXPECT_GE(async_known_many->OutputTime(&input_times, nullptr), 0); source1->record_element(); EXPECT_EQ(async_known_many->TotalProcessingTime(nullptr), num_inputs_per_output * (50 + 200)); EXPECT_LE(async_known_many->OutputTime(&input_times, nullptr), num_inputs_per_output * (50 + 200)); EXPECT_GE(async_known_many->OutputTime(&input_times, nullptr), 0); source2->record_element(); EXPECT_EQ(async_known_many->TotalProcessingTime(nullptr), num_inputs_per_output * (50 + 100)); EXPECT_LE(async_known_many->OutputTime(&input_times, nullptr), num_inputs_per_output * (50 + 100)); EXPECT_GE(async_known_many->OutputTime(&input_times, nullptr), 0); async_known_many->add_processing_time(128); EXPECT_EQ(async_known_many->TotalProcessingTime(nullptr), num_inputs_per_output * (50 + 100)); EXPECT_LE(async_known_many->OutputTime(&input_times, nullptr), num_inputs_per_output * (50 + 100)); EXPECT_GE(async_known_many->OutputTime(&input_times, nullptr), 0); async_known_many->record_element(); EXPECT_EQ(async_known_many->TotalProcessingTime(nullptr), num_inputs_per_output * (50 + 100) + 128); EXPECT_LE(async_known_many->OutputTime(&input_times, nullptr), num_inputs_per_output * (50 + 100) + 128 / parallelism); EXPECT_GE(async_known_many->OutputTime(&input_times, nullptr), 0); async_known_many->record_element(); EXPECT_EQ(async_known_many->TotalProcessingTime(nullptr), num_inputs_per_output * (50 + 100) + 64); EXPECT_LE(async_known_many->OutputTime(&input_times, nullptr), num_inputs_per_output * (50 + 100) + 64 / parallelism); EXPECT_GE(async_known_many->OutputTime(&input_times, nullptr), 0); } INSTANTIATE_TEST_SUITE_P(Test, AsyncKnownRatioTest, ::testing::Combine(::testing::Values(1, 2, 4, 8), ::testing::Values(0, 50, 100, 200), ::testing::Values(0, 1, 2, 4))); TEST(AsyncKnownRatioTest, LegacyPrefetchAutotuneShouldBeExportedAsTunable) { static constexpr int IRRELEVANT_MIN = 1; constexpr int IRRELEVANT_MAX = 16; constexpr int IRRELEVANT_VALUE = 1; const Node::Args irrelevant_args = {0, "async_known_many", nullptr}; std::shared_ptr<Node> async_known_many = model::MakeAsyncKnownRatioNode( irrelevant_args, 100, {model::MakeParameter(kBufferSize, std::make_shared<SharedState>(IRRELEVANT_VALUE, nullptr, nullptr), IRRELEVANT_MIN, IRRELEVANT_MAX)}, true); std::shared_ptr<Node> cloned = async_known_many->Snapshot(); ModelProto::Node node; ASSERT_EQ(cloned->ToProto(&node), absl::OkStatus()); ASSERT_EQ(node.parameters().size(), 1); EXPECT_TRUE(node.parameters(0).tunable()); } TEST(InterleaveManyTest, Model) { auto parameter = model::MakeParameter("cycle_length", nullptr, 1, 1); std::shared_ptr<Node> interleave_many = model::MakeInterleaveManyNode( {0, "interleave_many", nullptr}, {model::MakeParameter("cycle_length", nullptr, 1, 1)}); std::shared_ptr<Node> meta_source = model::MakeSourceNode({1, "meta_source", interleave_many}); interleave_many->add_input(meta_source); std::shared_ptr<Node> source1 = model::MakeSourceNode({2, "source1", interleave_many}); interleave_many->add_input(source1); std::shared_ptr<Node> source2 = model::MakeSourceNode({3, "source2", interleave_many}); interleave_many->add_input(source2); Model::NodeValues input_times; input_times[kModelInputTimeKey] = 0.0; interleave_many->add_processing_time(100); EXPECT_EQ(interleave_many->processing_time(), 100); EXPECT_EQ(interleave_many->TotalProcessingTime(nullptr), 0); EXPECT_EQ(interleave_many->OutputTime(&input_times, nullptr), 0); interleave_many->record_element(); EXPECT_EQ(interleave_many->num_elements(), 1); EXPECT_EQ(interleave_many->TotalProcessingTime(nullptr), 100); EXPECT_EQ(interleave_many->OutputTime(&input_times, nullptr), 100); source1->add_processing_time(200); source2->add_processing_time(300); EXPECT_EQ(interleave_many->TotalProcessingTime(nullptr), 100); EXPECT_EQ(interleave_many->OutputTime(&input_times, nullptr), 100); source1->record_element(); source2->record_element(); EXPECT_EQ(interleave_many->TotalProcessingTime(nullptr), 350); EXPECT_EQ(interleave_many->OutputTime(&input_times, nullptr), 350); interleave_many->record_element(); EXPECT_EQ(interleave_many->TotalProcessingTime(nullptr), 300); EXPECT_EQ(interleave_many->OutputTime(&input_times, nullptr), 300); } class KnownRatioTest : public ::testing::TestWithParam<int64_t> {}; TEST_P(KnownRatioTest, Model) { const int64_t num_inputs_per_output = GetParam(); std::shared_ptr<Node> known_many = model::MakeKnownRatioNode( {0, "known_many", nullptr}, num_inputs_per_output); std::shared_ptr<Node> source1 = model::MakeSourceNode({1, "source1", known_many}); known_many->add_input(source1); std::shared_ptr<Node> source2 = model::MakeSourceNode({2, "source2", known_many}); known_many->add_input(source2); Model::NodeValues input_times; input_times[kModelInputTimeKey] = 0.0; source1->add_processing_time(100); EXPECT_EQ(known_many->TotalProcessingTime(nullptr), 0); EXPECT_EQ(known_many->OutputTime(&input_times, nullptr), 0); source2->add_processing_time(200); EXPECT_EQ(known_many->TotalProcessingTime(nullptr), 0); EXPECT_EQ(known_many->OutputTime(&input_times, nullptr), 0); source1->record_element(); EXPECT_EQ(known_many->TotalProcessingTime(nullptr), num_inputs_per_output * 100); EXPECT_EQ(known_many->OutputTime(&input_times, nullptr), num_inputs_per_output * 100); source2->record_element(); EXPECT_EQ(known_many->TotalProcessingTime(nullptr), num_inputs_per_output * (100 + 200)); EXPECT_EQ(known_many->OutputTime(&input_times, nullptr), num_inputs_per_output * (100 + 200)); source1->record_element(); EXPECT_EQ(known_many->TotalProcessingTime(nullptr), num_inputs_per_output * (50 + 200)); EXPECT_EQ(known_many->OutputTime(&input_times, nullptr), num_inputs_per_output * (50 + 200)); source2->record_element(); EXPECT_EQ(known_many->TotalProcessingTime(nullptr), num_inputs_per_output * (50 + 100)); EXPECT_EQ(known_many->OutputTime(&input_times, nullptr), num_inputs_per_output * (50 + 100)); known_many->add_processing_time(128); EXPECT_EQ(known_many->TotalProcessingTime(nullptr), num_inputs_per_output * (50 + 100)); EXPECT_EQ(known_many->OutputTime(&input_times, nullptr), num_inputs_per_output * (50 + 100)); known_many->record_element(); EXPECT_EQ(known_many->TotalProcessingTime(nullptr), num_inputs_per_output * (50 + 100) + 128); EXPECT_EQ(known_many->OutputTime(&input_times, nullptr), num_inputs_per_output * (50 + 100) + 128); known_many->record_element(); EXPECT_EQ(known_many->TotalProcessingTime(nullptr), num_inputs_per_output * (50 + 100) + 64); EXPECT_EQ(known_many->OutputTime(&input_times, nullptr), num_inputs_per_output * (50 + 100) + 64); } INSTANTIATE_TEST_SUITE_P(Test, KnownRatioTest, ::testing::Values(0, 1, 2, 4)); TEST(SourceTest, Model) { std::shared_ptr<Node> source = model::MakeSourceNode({0, "source", nullptr}); Model::NodeValues input_times; input_times[kModelInputTimeKey] = 0.0; source->add_processing_time(100); EXPECT_EQ(source->processing_time(), 100); EXPECT_EQ(source->TotalProcessingTime(nullptr), 0); EXPECT_EQ(source->OutputTime(&input_times, nullptr), 0); source->record_element(); EXPECT_EQ(source->num_elements(), 1); EXPECT_EQ(source->TotalProcessingTime(nullptr), 100); EXPECT_EQ(source->OutputTime(&input_times, nullptr), 100); source->record_element(); EXPECT_EQ(source->num_elements(), 2); EXPECT_EQ(source->TotalProcessingTime(nullptr), 50); EXPECT_EQ(source->OutputTime(&input_times, nullptr), 50); } TEST(UnknownRatioTest, Model) { std::shared_ptr<Node> unknown_many = model::MakeUnknownRatioNode({0, "unknown_many", nullptr}); std::shared_ptr<Node> source1 = model::MakeSourceNode({1, "source1", unknown_many}); unknown_many->add_input(source1); std::shared_ptr<Node> source2 = model::MakeSourceNode({2, "source2", unknown_many}); unknown_many->add_input(source2); Model::NodeValues input_times; input_times[kModelInputTimeKey] = 0.0; unknown_many->add_processing_time(100); EXPECT_EQ(unknown_many->processing_time(), 100); EXPECT_EQ(unknown_many->TotalProcessingTime(nullptr), 0); EXPECT_EQ(unknown_many->OutputTime(&input_times, nullptr), 0); unknown_many->record_element(); EXPECT_EQ(unknown_many->num_elements(), 1); EXPECT_EQ(unknown_many->TotalProcessingTime(nullptr), 100); EXPECT_EQ(unknown_many->OutputTime(&input_times, nullptr), 100); source1->add_processing_time(100); source2->add_processing_time(200); EXPECT_EQ(unknown_many->TotalProcessingTime(nullptr), 100); EXPECT_EQ(unknown_many->OutputTime(&input_times, nullptr), 100); source1->record_element(); source2->record_element(); EXPECT_EQ(unknown_many->TotalProcessingTime(nullptr), 400); EXPECT_EQ(unknown_many->OutputTime(&input_times, nullptr), 400); unknown_many->record_element(); EXPECT_EQ(unknown_many->TotalProcessingTime(nullptr), 200); EXPECT_EQ(unknown_many->OutputTime(&input_times, nullptr), 200); } class AsyncUnknownRatioTest : public ::testing::TestWithParam<std::tuple<int64_t, double>> {}; TEST_P(AsyncUnknownRatioTest, Model) { const int64_t parallelism = std::get<0>(GetParam()); const double input_time = std::get<1>(GetParam()); std::shared_ptr<Node> async_unknown_many = model::MakeAsyncUnknownRatioNode( {0, "async_unknown_many", nullptr}, {model::MakeParameter("parallelism", std::make_shared<SharedState>(parallelism, nullptr, nullptr), 1, 16)}); std::shared_ptr<Node> source1 = model::MakeSourceNode({1, "source1", async_unknown_many}); async_unknown_many->add_input(source1); std::shared_ptr<Node> source2 = model::MakeSourceNode({2, "source2", async_unknown_many}); async_unknown_many->add_input(source2); Model::NodeValues input_times; input_times[kModelInputTimeKey] = input_time; EXPECT_EQ(async_unknown_many->buffered_bytes(), 0); EXPECT_EQ(async_unknown_many->peak_buffered_bytes(), 0); EXPECT_EQ(async_unknown_many->TotalBufferedBytes(), 0); EXPECT_EQ(async_unknown_many->TotalMaximumBufferedBytes(), 0); async_unknown_many->record_buffer_event(110, 10); EXPECT_EQ(async_unknown_many->buffered_bytes(), 110); EXPECT_EQ(async_unknown_many->peak_buffered_bytes(), 110); EXPECT_EQ(async_unknown_many->TotalBufferedBytes(), 110); EXPECT_EQ(async_unknown_many->TotalMaximumBufferedBytes(), 110.0 * parallelism / 10); source1->add_processing_time(100); EXPECT_EQ( async_unknown_many->TotalProcessingTime(nullptr), 0); EXPECT_EQ(async_unknown_many->OutputTime(&input_times, nullptr), 0); source2->add_processing_time(200); EXPECT_EQ( async_unknown_many->TotalProcessingTime(nullptr), 0); EXPECT_EQ(async_unknown_many->OutputTime(&input_times, nullptr), 0); source1->record_element(); EXPECT_EQ( async_unknown_many->TotalProcessingTime(nullptr), 0); EXPECT_EQ(async_unknown_many->OutputTime(&input_times, nullptr), 0); async_unknown_many->record_element(); double ratio = 1.0; EXPECT_EQ( async_unknown_many->TotalProcessingTime(nullptr), ratio * 100); EXPECT_LE(async_unknown_many->OutputTime(&input_times, nullptr), 100); EXPECT_GE(async_unknown_many->OutputTime(&input_times, nullptr), 0); source2->record_element(); EXPECT_EQ( async_unknown_many->TotalProcessingTime(nullptr), ratio * (100 + 200)); EXPECT_LE(async_unknown_many->OutputTime(&input_times, nullptr), ratio * (100 + 200)); EXPECT_GE(async_unknown_many->OutputTime(&input_times, nullptr), 0); source2->record_element(); EXPECT_EQ( async_unknown_many->TotalProcessingTime(nullptr), ratio * (100 + 100)); EXPECT_LE(async_unknown_many->OutputTime(&input_times, nullptr), ratio * (100 + 100)); EXPECT_GE(async_unknown_many->OutputTime(&input_times, nullptr), 0); source1->record_element(); ratio = 2.0; EXPECT_EQ( async_unknown_many->TotalProcessingTime(nullptr), ratio * (50 + 100)); EXPECT_LE(async_unknown_many->OutputTime(&input_times, nullptr), ratio * (50 + 100)); EXPECT_GE(async_unknown_many->OutputTime(&input_times, nullptr), 0); source2->record_element(); source2->record_element(); EXPECT_EQ( async_unknown_many->TotalProcessingTime(nullptr), ratio * (50 + 50)); EXPECT_LE(async_unknown_many->OutputTime(&input_times, nullptr), ratio * (50 + 50)); EXPECT_GE(async_unknown_many->OutputTime(&input_times, nullptr), 0); async_unknown_many->add_processing_time(128); EXPECT_EQ( async_unknown_many->TotalProcessingTime(nullptr), ratio * (50 + 50) + 128); EXPECT_LE(async_unknown_many->OutputTime(&input_times, nullptr), ratio * (50 + 50) + 128 / parallelism); EXPECT_GE(async_unknown_many->OutputTime(&input_times, nullptr), 128 / parallelism); async_unknown_many->record_element(); ratio = 1.0; EXPECT_EQ( async_unknown_many->TotalProcessingTime(nullptr), ratio * (50 + 50) + 128 / 2); EXPECT_LE(async_unknown_many->OutputTime(&input_times, nullptr), ratio * (50 + 50) + 128 / 2 / parallelism); EXPECT_GE(async_unknown_many->OutputTime(&input_times, nullptr), 128 / 2 / parallelism); async_unknown_many->record_element(); ratio = 2.0 / 3.0; EXPECT_FLOAT_EQ( async_unknown_many->TotalProcessingTime(nullptr), ratio * (50 + 50) + 128 / 3.0); EXPECT_LE(async_unknown_many->OutputTime(&input_times, nullptr), ratio * (50 + 50) + 128 / 3.0 / parallelism); EXPECT_GE(async_unknown_many->OutputTime(&input_times, nullptr), 128 / 3.0 / parallelism); } INSTANTIATE_TEST_SUITE_P(Test, AsyncUnknownRatioTest, ::testing::Combine(::testing::Values(1, 2, 4, 8), ::testing::Values(0, 50, 100, 200))); TEST(UnknownTest, Model) { std::shared_ptr<Node> unknown = model::MakeUnknownNode({0, "unknown", nullptr}); std::shared_ptr<Node> source1 = model::MakeSourceNode({1, "source1", unknown}); unknown->add_input(source1); std::shared_ptr<Node> source2 = model::MakeSourceNode({2, "source2", unknown}); unknown->add_input(source2); Model::NodeValues input_times; input_times[kModelInputTimeKey] = 0.0; source1->add_processing_time(100); EXPECT_EQ(unknown->TotalProcessingTime(nullptr), 0); EXPECT_EQ(unknown->OutputTime(&input_times, nullptr), 0); source2->add_processing_time(100); EXPECT_EQ(unknown->TotalProcessingTime(nullptr), 0); EXPECT_EQ(unknown->OutputTime(&input_times, nullptr), 0); source1->record_element(); EXPECT_EQ(unknown->TotalProcessingTime(nullptr), 100); EXPECT_EQ(unknown->OutputTime(&input_times, nullptr), 100); source2->record_element(); EXPECT_EQ(unknown->TotalProcessingTime(nullptr), 200); EXPECT_EQ(unknown->OutputTime(&input_times, nullptr), 200); source1->record_element(); EXPECT_EQ(unknown->TotalProcessingTime(nullptr), 150); EXPECT_EQ(unknown->OutputTime(&input_times, nullptr), 150); source2->record_element(); EXPECT_EQ(unknown->TotalProcessingTime(nullptr), 100); EXPECT_EQ(unknown->OutputTime(&input_times, nullptr), 100); unknown->add_processing_time(100); EXPECT_EQ(unknown->processing_time(), 100); EXPECT_EQ(unknown->TotalProcessingTime(nullptr), 100); EXPECT_EQ(unknown->OutputTime(&input_times, nullptr), 100); unknown->record_element(); EXPECT_EQ(unknown->num_elements(), 1); EXPECT_EQ(unknown->TotalProcessingTime(nullptr), 100); EXPECT_EQ(unknown->OutputTime(&input_times, nullptr), 100); } TEST(BufferedBytesTest, Node) { std::shared_ptr<Node> node = model::MakeAsyncInterleaveManyNode( {-1, "TestNode", nullptr}, {model::MakeParameter( "parallelism", std::make_shared<SharedState>(3, nullptr, nullptr), 1, 7), model::MakeParameter(kCycleLength, nullptr, 1, 1)}); EXPECT_EQ(node->id(), -1); EXPECT_EQ(node->name(), "TestNode"); EXPECT_EQ(node->output(), nullptr); EXPECT_EQ(node->buffered_bytes(), 0); EXPECT_EQ(node->buffered_elements(), 0); EXPECT_EQ(node->peak_buffered_bytes(), 0); EXPECT_EQ(node->TotalBufferedBytes(), 0); EXPECT_EQ(node->TotalMaximumBufferedBytes(), 0); node->record_buffer_event(20, 1); EXPECT_EQ(node->buffered_bytes(), 20); EXPECT_EQ(node->peak_buffered_bytes(), 20); EXPECT_EQ(node->buffered_elements(), 1); EXPECT_EQ(node->TotalBufferedBytes(), 20); EXPECT_EQ(node->TotalMaximumBufferedBytes(), 60); node->record_buffer_event(10, 1); EXPECT_EQ(node->buffered_bytes(), 30); EXPECT_EQ(node->peak_buffered_bytes(), 30); EXPECT_EQ(node->buffered_elements(), 2); EXPECT_EQ(node->TotalBufferedBytes(), 30); EXPECT_EQ(node->TotalMaximumBufferedBytes(), 45); node->record_buffer_event(18, 1); EXPECT_EQ(node->buffered_bytes(), 48); EXPECT_EQ(node->peak_buffered_bytes(), 48); EXPECT_EQ(node->buffered_elements(), 3); EXPECT_EQ(node->bytes_produced(), 0); EXPECT_EQ(node->num_elements(), 0); EXPECT_EQ(node->TotalBufferedBytes(), 48); EXPECT_EQ(node->TotalMaximumBufferedBytes(), 48); node->record_buffer_event(-20, -1); node->record_element(); node->record_bytes_produced(20); EXPECT_EQ(node->buffered_bytes(), 28); EXPECT_EQ(node->peak_buffered_bytes(), 48); EXPECT_EQ(node->buffered_elements(), 2); EXPECT_EQ(node->bytes_produced(), 20); EXPECT_EQ(node->num_elements(), 1); EXPECT_EQ(node->TotalBufferedBytes(), 28); EXPECT_EQ(node->TotalMaximumBufferedBytes(), 51); node->record_buffer_event(-10, -1); node->record_element(); node->record_bytes_produced(10); EXPECT_EQ(node->buffered_bytes(), 18); EXPECT_EQ(node->peak_buffered_bytes(), 48); EXPECT_EQ(node->buffered_elements(), 1); EXPECT_EQ(node->bytes_produced(), 30); EXPECT_EQ(node->num_elements(), 2); EXPECT_EQ(node->TotalBufferedBytes(), 18); EXPECT_EQ(node->TotalMaximumBufferedBytes(), 49.5); EXPECT_EQ(node->processing_time(), 0); node->record_start(1); EXPECT_EQ(node->processing_time(), 0); node->record_stop(41); EXPECT_EQ(node->processing_time(), 40); node->add_processing_time(2); EXPECT_EQ(node->processing_time(), 42); std::shared_ptr<Node> input = model::MakeAsyncKnownRatioNode( {0, "TestInput", node}, 2, {model::MakeParameter("parallelism", std::make_shared<SharedState>(5, nullptr, nullptr), 0, 6)}); EXPECT_EQ(input->output(), node.get()); EXPECT_EQ(node->inputs().size(), 0); node->add_input(input); EXPECT_EQ(node->inputs().size(), 1); EXPECT_EQ(node->inputs().front(), input); input->record_buffer_event(28, 1); EXPECT_EQ(node->bytes_consumed(), 0); EXPECT_EQ(node->buffered_bytes(), 18); EXPECT_EQ(node->peak_buffered_bytes(), 48); EXPECT_EQ(node->TotalBufferedBytes(), 46); EXPECT_EQ(node->TotalMaximumBufferedBytes(), 119.5); input->record_buffer_event(-28, -1); input->record_element(); input->record_bytes_produced(28); node->record_bytes_consumed(28); EXPECT_EQ(node->bytes_consumed(), 28); EXPECT_EQ(node->buffered_bytes(), 18); EXPECT_EQ(node->peak_buffered_bytes(), 48); EXPECT_EQ(node->TotalBufferedBytes(), 18); EXPECT_EQ(node->TotalMaximumBufferedBytes(), 119.5); node->remove_input(input); EXPECT_EQ(node->inputs().size(), 0); } double weighted_processing_time(int64_t num_elements, double processing_time, double prior) { if (num_elements < 30) { double prior_weight = 1.0L / static_cast<double>(2 << num_elements); return prior_weight * prior + (1.0L - prior_weight) * processing_time; } else { return processing_time; } } TEST(TestManyElements, Model) { std::shared_ptr<Node> interleave_many = model::MakeInterleaveManyNode( {0, "interleave_many", nullptr}, {model::MakeParameter("cycle_length", nullptr, 1, 1)}); std::shared_ptr<Node> source1 = model::MakeSourceNode({1, "source1", interleave_many}); interleave_many->add_input(source1); interleave_many->add_processing_time(100); interleave_many->record_element(); source1->add_processing_time(200); for (int i = 0; i < 100; i++) { source1->record_element(); } EXPECT_LE(interleave_many->TotalProcessingTime(nullptr), (weighted_processing_time(100, 2, 0)) + 100); EXPECT_GE(interleave_many->TotalProcessingTime(nullptr), 0); } TEST(CollectAutotuneParametersWithElementsTest, Model) { std::shared_ptr<Node> unknown = model::MakeUnknownNode({0, "unknown", nullptr}); std::shared_ptr<Node> async_known_ratio = model::MakeAsyncKnownRatioNode( {1, "source", unknown}, 2, {model::MakeParameter("parallelism", std::make_shared<SharedState>( model::kAutotune, nullptr, nullptr), 1, 5)}); async_known_ratio->record_element(); unknown->add_input(async_known_ratio); Model::ModelParameters parameters = unknown->CollectTunableParameters(); EXPECT_EQ(CountParametersOnNod
996
cpp
tensorflow/tensorflow
gpu_model
tensorflow/lite/delegates/gpu/common/gpu_model.cc
tensorflow/lite/delegates/gpu/cl/testing/gpu_model_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_COMMON_GPU_MODEL_H_ #define TENSORFLOW_LITE_DELEGATES_GPU_COMMON_GPU_MODEL_H_ #include <string> #include <vector> #include "absl/container/flat_hash_map.h" #include "tensorflow/lite/delegates/gpu/common/gpu_model_generated.h" #include "tensorflow/lite/delegates/gpu/common/model.h" #include "tensorflow/lite/delegates/gpu/common/model_hints.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/task/gpu_operation.h" namespace tflite { namespace gpu { struct GpuNode { std::unique_ptr<GPUOperation> gpu_operation; std::vector<ValueId> inputs; std::vector<ValueId> outputs; std::string name; GpuNode() = default; GpuNode(GpuNode&& node) = default; GpuNode& operator=(GpuNode&& node) = default; GpuNode(const GpuNode&) = delete; GpuNode& operator=(const GpuNode&) = delete; }; struct CreateGpuModelInfo { CalculationsPrecision precision; TensorStorageType storage_type; ModelHints hints; absl::flat_hash_map<ValueId, TensorDescriptor> predefined; absl::flat_hash_map<ValueId, GpuSpatialTensor*> external_immutable_tensors; absl::flat_hash_map<ValueId, TensorDescriptor> external_mutable_tensors; }; struct GpuModel { std::vector<std::pair<ValueId, ValueId>> input_ids_and_refs; std::vector<std::pair<ValueId, ValueId>> variable_ids_and_refs; std::vector<std::pair<ValueId, ValueId>> output_ids_and_refs; std::vector<GpuNode> nodes; absl::flat_hash_map<ValueId, TensorDescriptor> tensors; absl::flat_hash_map<ValueId, TensorDescriptor> const_tensors; }; absl::Status GraphToGpuModel(const GraphFloat32& graph, const CreateGpuModelInfo& create_info, const GpuInfo& gpu_info, GpuModel* gpu_model); flatbuffers::Offset<data::GpuModel> Encode( const GpuModel& gpu_model, flatbuffers::FlatBufferBuilder* builder); absl::Status Decode(const data::GpuModel* fb_gpu_model, GpuModel* gpu_model); absl::Status RunGraphTransformsForGpuModel(GraphFloat32* graph); } } #endif #include "tensorflow/lite/delegates/gpu/common/gpu_model.h" #include <algorithm> #include <any> #include <map> #include <memory> #include <set> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/selectors/operation_selector.h" #include "tensorflow/lite/delegates/gpu/common/selectors/special_selector.h" #include "tensorflow/lite/delegates/gpu/common/selectors/subgraph.h" #include "tensorflow/lite/delegates/gpu/common/task/serialization_base.h" #include "tensorflow/lite/delegates/gpu/common/transformations/add_bias.h" #include "tensorflow/lite/delegates/gpu/common/transformations/global_pooling_to_reduce_op.h" #include "tensorflow/lite/delegates/gpu/common/transformations/merge_padding_with.h" namespace tflite { namespace gpu { namespace { bool IsReady(const absl::flat_hash_set<ValueId>& ready_tensors, const GpuNode& node) { for (const ValueId in_id : node.inputs) { if (ready_tensors.find(in_id) == ready_tensors.end()) { return false; } } return true; } absl::Status MergeGpuNodes(const GpuInfo& gpu_info, GpuNode* src, GpuNode* dst) { for (int j = 1; j < src->inputs.size(); ++j) { dst->inputs.push_back(src->inputs[j]); } dst->outputs[0] = src->outputs[0]; dst->name += " -> " + src->name; return dst->gpu_operation->AddOperation(gpu_info, src->gpu_operation.get()); } flatbuffers::Offset<data::TensorDescWithId> Encode( const TensorDescriptor& desc, const ValueId& id, flatbuffers::FlatBufferBuilder* builder) { auto desc_fb = Encode(desc, builder); data::TensorDescWithIdBuilder desc_builder(*builder); desc_builder.add_desc(desc_fb); desc_builder.add_id(id); return desc_builder.Finish(); } flatbuffers::Offset<data::GpuNode> Encode( const GpuNode& node, flatbuffers::FlatBufferBuilder* builder) { auto op_fb = Encode(*node.gpu_operation, builder); std::vector<int32_t> in_ids(node.inputs.size()); for (int i = 0; i < in_ids.size(); ++i) { in_ids[i] = node.inputs[i]; } std::vector<int32_t> out_ids(node.outputs.size()); for (int i = 0; i < out_ids.size(); ++i) { out_ids[i] = node.outputs[i]; } auto in_ids_fb = builder->CreateVector(in_ids); auto out_ids_fb = builder->CreateVector(out_ids); auto name_fb = builder->CreateString(node.name); data::GpuNodeBuilder node_builder(*builder); node_builder.add_gpu_op(op_fb); node_builder.add_input_ids(in_ids_fb); node_builder.add_output_ids(out_ids_fb); node_builder.add_name(name_fb); return node_builder.Finish(); } absl::Status Decode(const data::GpuNode* fb_node, GpuNode* node) { GPUOperation op; RETURN_IF_ERROR(Decode(fb_node->gpu_op(), &op)); node->gpu_operation = std::make_unique<GPUOperation>(std::move(op)); for (auto in_fb : *fb_node->input_ids()) { node->inputs.push_back(in_fb); } for (auto out_fb : *fb_node->output_ids()) { node->outputs.push_back(out_fb); } node->name = std::string(fb_node->name()->c_str(), fb_node->name()->size()); return absl::OkStatus(); } bool IsAssociativeLinkableOp(const Node& node, const std::vector<Value*>& inputs, const std::vector<Value*>& outputs) { if (inputs.size() == 1) { return false; } const OperationType op_type = OperationTypeFromString(node.operation.type); if (op_type != OperationType::ADD && op_type != OperationType::MUL) { return false; } const auto dst_shape = outputs[0]->tensor.shape; for (int i = 0; i < inputs.size(); ++i) { const auto src_shape = inputs[i]->tensor.shape; if (dst_shape.b != src_shape.b && src_shape.b == 1) { return false; } if (dst_shape.h != src_shape.h && src_shape.h == 1) { return false; } if (dst_shape.w != src_shape.w && src_shape.w == 1) { return false; } if (dst_shape.c != src_shape.c && src_shape.c == 1) { return false; } } return true; } absl::Status CheckExternalTensorDescription(const GpuInfo& gpu_info, const TensorDescriptor& tensor_desc, const BHWC& shape, DataType data_type) { if (tensor_desc.GetDataType() != data_type) { return absl::InvalidArgumentError( "Global precision and precision of predefined/external tensors must be " "synchronized."); } if (tensor_desc.HasAxis(Axis::DEPTH)) { return absl::InvalidArgumentError( "Currently no support of Depth dimension in predefined/external " "tensors."); } if (tensor_desc.HasAxis(Axis::BATCH) && shape.b == 1) { return absl::InvalidArgumentError("Wrong layout, batch mismatch."); } if (!tensor_desc.HasAxis(Axis::BATCH) && shape.b != 1) { return absl::InvalidArgumentError("Wrong layout, batch mismatch."); } if (!tensor_desc.CanCreateTensorWithShape(gpu_info, shape).ok()) { return absl::UnavailableError( "Current device can not allocate tensor with this shape for " "predefined/external descriptor."); } return absl::OkStatus(); } class TensorReserver { public: TensorReserver() : next_(0) {} ValueId Add(const TensorDescriptor& dummy) { reservations_[next_] = dummy; return next_++; } void Add(ValueId id, const TensorDescriptor& dummy) { reservations_[id] = dummy; } ValueId GetNewId() { return next_++; } void SetNext(ValueId id) { next_ = id; } TensorDescriptor Get(ValueId id) { return reservations_[id]; } public: absl::flat_hash_map<ValueId, TensorDescriptor> reservations_; ValueId next_; }; absl::Status ReserveGraphTensors(const CreateGpuModelInfo& create_info, const GpuInfo& gpu_info, const GraphFloat32& graph, TensorReserver* tensor_reserver) { ValueId max_id = 0; auto tensors = graph.values(); for (auto& t : tensors) { auto data_type = DeduceDataTypeFromPrecision(create_info.precision); if (t->tensor.type != DataType::FLOAT32 && t->tensor.type != DataType::FLOAT16) { data_type = t->tensor.type; } const auto shape = graph.GetValue(t->id)->tensor.shape; auto it_predefined = create_info.predefined.find(t->id); auto it_immutable_external = create_info.external_immutable_tensors.find(t->id); auto it_mutable_external = create_info.external_mutable_tensors.find(t->id); int external_categories_count = 0; TensorDescriptor tensor_desc; if (it_predefined != create_info.predefined.end()) { external_categories_count++; tensor_desc = it_predefined->second; } if (it_immutable_external != create_info.external_immutable_tensors.end()) { external_categories_count++; tensor_desc = it_immutable_external->second->GetDescriptor(); } if (it_mutable_external != create_info.external_mutable_tensors.end()) { external_categories_count++; tensor_desc = it_mutable_external->second; } if (external_categories_count > 1) { return absl::InvalidArgumentError( "Tensors ids from predefined / external_immutable_tensors / " "external_mutable_tensors should not intersect."); } if (external_categories_count == 1) { if (!(graph.IsGraphInput(t->id) || graph.IsGraphOutput(t->id))) { return absl::InvalidArgumentError( "Currently external can be used only for graph inputs/outputs"); } RETURN_IF_ERROR(CheckExternalTensorDescription(gpu_info, tensor_desc, shape, data_type)); } else { TensorStorageType storage_type = create_info.storage_type; Layout layout = shape.b == 1 ? Layout::HWC : Layout::BHWC; const bool can_use_single_texture = storage_type == TensorStorageType::TEXTURE_2D || storage_type == TensorStorageType::TEXTURE_3D || storage_type == TensorStorageType::TEXTURE_ARRAY; if (shape.c < 4 && can_use_single_texture && TensorDescriptor{data_type, TensorStorageType::SINGLE_TEXTURE_2D, layout} .CanCreateTensorWithShape(gpu_info, shape) .ok()) { storage_type = TensorStorageType::SINGLE_TEXTURE_2D; } tensor_desc = TensorDescriptor{data_type, storage_type, layout}; RETURN_IF_ERROR( tensor_desc.UpdateToSupportedStorageType(gpu_info, shape)); if (gpu_info.IsApiMetal() && storage_type == TensorStorageType::TEXTURE_2D) { if (!(gpu_info.IsApple() && gpu_info.apple_info.IsFamilyApple1())) { tensor_desc.SetUseBufferForWriteOnlyTexture2d(true); } } } tensor_desc.SetBHWCShape(shape); tensor_reserver->Add(t->id, tensor_desc); max_id = std::max(max_id, t->id); } tensor_reserver->SetNext(max_id + 1); return absl::OkStatus(); } absl::Status ConvertOperations(const GpuInfo& gpu_info, const GraphFloat32& graph, const CreateGpuModelInfo& create_info, TensorReserver* tensor_reserver, GpuModel* gpu_model) { std::map<ValueId, TensorDescriptor> tensor_descriptors; const auto values = graph.values(); for (auto value : values) { tensor_descriptors[value->id] = tensor_reserver->Get(value->id); } std::set<NodeId> consumed_nodes; std::vector<Node*> graph_nodes = graph.nodes(); std::map<ValueId, int> tensor_usages; for (const auto& input : gpu_model->input_ids_and_refs) { tensor_usages[input.first] = -1; } std::vector<SharedWeightsConvDesc> shared_conv_weights; std::vector<SharedWeightsConvDesc>* shared_conv_weights_ptr = create_info.hints.Check(ModelHints::kReuseConvWeights) ? &shared_conv_weights : nullptr; for (int i = 0; i < graph_nodes.size(); ++i) { const Node& node = *graph_nodes[i]; if (consumed_nodes.find(node.id) != consumed_nodes.end()) { continue; } auto op_type = OperationTypeFromString(node.operation.type); if (op_type == OperationType::CONSTANT) { auto attr = std::any_cast<ConstTensorAttributes>(node.operation.attributes); auto outputs = graph.FindOutputs(node.id); gpu_model->const_tensors[outputs[0]->id] = tensor_reserver->Get(outputs[0]->id); gpu_model->const_tensors[outputs[0]->id].UploadData(attr.tensor); continue; } GPUOperationsSubgraph gpu_subgraph; if (GPUSubgraphFromGraph(create_info.hints, gpu_info, create_info.precision, graph, node.id, tensor_descriptors, &consumed_nodes, &gpu_subgraph) .ok()) { } else { auto inputs = graph.FindInputs(node.id); auto outputs = graph.FindOutputs(node.id); if (IsAssociativeLinkableOp(node, inputs, outputs)) { int latest_written_tensor_index = 0; int last_usage = tensor_usages[inputs[0]->id]; for (int j = 1; j < inputs.size(); ++j) { if (tensor_usages[inputs[j]->id] > last_usage) { last_usage = tensor_usages[inputs[j]->id]; latest_written_tensor_index = j; } } std::swap(inputs[0], inputs[latest_written_tensor_index]); } consumed_nodes.insert(node.id); OperationDef op_def; op_def.precision = create_info.precision; for (int j = 0; j < inputs.size(); ++j) { op_def.src_tensors.push_back(tensor_reserver->Get(inputs[j]->id)); } for (int j = 0; j < outputs.size(); ++j) { op_def.dst_tensors.push_back(tensor_reserver->Get(outputs[j]->id)); } RETURN_IF_ERROR(GPUOperationFromNode( gpu_info, op_def, create_info.hints, inputs, outputs, node, shared_conv_weights_ptr, &gpu_subgraph)); } absl::flat_hash_map<int, ValueId> mapping_to_global_ids; for (int j = 0; j < gpu_subgraph.new_tensors.size(); ++j) { const auto& t = gpu_subgraph.new_tensors[j]; if (!t.GetData().empty()) { auto global_id = tensor_reserver->GetNewId(); gpu_model->const_tensors[global_id] = std::move(gpu_subgraph.new_tensors[j]); mapping_to_global_ids[j] = global_id; } else { auto global_id = tensor_reserver->Add(t); mapping_to_global_ids[j] = global_id; } } if (!shared_conv_weights.empty() && !mapping_to_global_ids.empty()) { shared_conv_weights.back().RemapIds(mapping_to_global_ids); } for (auto& gpu_op : gpu_subgraph.operations) { GpuNode gpu_node; gpu_node.gpu_operation = std::move(gpu_op.operation); gpu_node.inputs.resize(gpu_op.input_ids.size()); for (int j = 0; j < gpu_op.input_ids.size(); ++j) { int id = gpu_op.input_ids[j]; if (id >= 0) { gpu_node.inputs[j] = id; } else { gpu_node.inputs[j] = mapping_to_global_ids[-(id + 1)]; } } gpu_node.outputs.resize(gpu_op.output_ids.size()); for (int j = 0; j < gpu_op.output_ids.size(); ++j) { int id = gpu_op.output_ids[j]; if (id >= 0) { gpu_node.outputs[j] = id; tensor_usages[id] = i; } else { gpu_node.outputs[j] = mapping_to_global_ids[-(id + 1)]; } } gpu_node.name = gpu_op.name; gpu_model->nodes.push_back(std::move(gpu_node)); } } return absl::OkStatus(); } absl::Status MergeElementwiseNodes(const GpuInfo& gpu_info, GpuModel* gpu_model) { auto& nodes = gpu_model->nodes; for (int elem_root_index = 1; elem_root_index < nodes.size(); ++elem_root_index) { auto& elem_root = nodes[elem_root_index]; if (!(elem_root.inputs.size() == 1 || elem_root.inputs.size() == 2) || elem_root.outputs.size() != 1 || !elem_root.gpu_operation->IsLinkable()) { continue; } std::map<int, int> prev_nodes; for (int j = elem_root_index - 1; j >= 0; --j) { for (int k = 0; k < elem_root.inputs.size(); ++k) { if (elem_root.inputs[k] == nodes[j].outputs[0]) { prev_nodes[k] = j; break; } } } if (prev_nodes.size() == 1) { if (elem_root.inputs.size() != 1) { continue; } const int prev_first_node_index = prev_nodes[0]; auto& prev_node = nodes[prev_first_node_index]; if (prev_node.inputs.size() != 1 || prev_node.outputs.size() != 1 || !prev_node.gpu_operation->IsLinkable()) { continue; } int consumers_count = 0; for (const auto& node : nodes) { for (const auto& input : node.inputs) { if (input == elem_root.inputs[0]) { consumers_count++; } } } if (consumers_count != 1) { continue; } GPUOperation new_operation; RETURN_IF_ERROR(FuseSimpleElemWithSimpleElem( gpu_info, std::move(*prev_node.gpu_operation.get()), std::move(*elem_root.gpu_operation.get()), &new_operation)); GpuNode new_node; new_node.inputs.push_back(prev_node.inputs[0]); new_node.outputs.push_back(elem_root.outputs[0]); new_node.name = prev_node.name + " -> " + elem_root.name; new_node.gpu_operation = std::make_unique<GPUOperation>(std::move(new_operation)); nodes.erase(nodes.begin() + elem_root_index); nodes[prev_first_node_index] = std::move(new_node); elem_root_index = prev_first_node_index; continue; } if (prev_nodes.size() == 2) { if (elem_root.inputs.size() != 2 || elem_root.gpu_operation->GetElementwiseInputsCount() != 2) { continue; } const int prev_first_node_index = prev_nodes[0]; const int prev_second_node_index = prev_nodes[1]; auto& prev_first_node = nodes[prev_first_node_index]; auto& prev_second_node = nodes[prev_second_node_index]; if (prev_first_node.gpu_operation->IsLinkable() && !prev_second_node.gpu_operation->IsLinkable() && prev_second_node.outputs.size() == 1 && prev_first_node.inputs.size() == 1 && prev_first_node.outputs.size() == 1) { int first_node_parent_index = -1; for (int j = prev_first_node_index - 1; j >= 0; --j) { if (nodes[j].outputs[0] == prev_first_node.inputs[0]) { first_node_parent_index = j; break; } } if (first_node_parent_index == -1 || first_node_parent_index != prev_second_node_index) { continue; } int consumers_count = 0; for (const auto& node : nodes) { for (const auto& input : node.inputs) { if (input == elem_root.inputs[0]) { consumers_count++; } } } if (consumers_count != 1) { continue; } GPUOperation new_operation; RETURN_IF_ERROR(Fuse2InputElemWithSimpleElemAsFirstInput( gpu_info, std::move(*prev_first_node.gpu_operation.get()), std::move(*elem_root.gpu_operation.get()), &new_operation)); GpuNode new_node; new_node.inputs.push_back(prev_first_node.inputs[0]); new_node.outputs.push_back(elem_root.outputs[0]); new_node.name = prev_first_node.name + " -> " + elem_root.name; new_node.gpu_operation = std::make_unique<GPUOperation>(std::move(new_operation)); nodes.erase(nodes.begin() + elem_root_index); nodes[prev_first_node_index] = std::move(new_node); elem_root_index = prev_first_node_index; continue; } if (!prev_first_node.gpu_operation->IsLinkable() && prev_second_node.gpu_operation->IsLinkable() && prev_first_node.outputs.size() == 1 && prev_second_node.inputs.size() == 1 && prev_second_node.outputs.size() == 1) { int second_node_parent_index = -1; for (int j = prev_second_node_index - 1; j >= 0; --j) { if (nodes[j].outputs[0] == prev_second_node.inputs[0]) { second_node_parent_index = j; break; } } if (second_node_parent_index == -1 || second_node_parent_index != prev_first_node_index) { continue; } int consumers_count = 0; for (const auto& node : nodes) { for (const auto& input : node.inputs) { if (input == elem_root.inputs[1]) { consumers_count++; } } } if (consumers_count != 1) { continue; } GPUOperation new_operation; RETURN_IF_ERROR(Fuse2InputElemWithSimpleElemAsSecondInput( gpu_info, std::move(*prev_second_node.gpu_operation.get()), std::move(*elem_root.gpu_operation.get()), &new_operation)); GpuNode new_node; new_node.inputs.push_back(prev_second_node.inputs[0]); new_node.outputs.push_back(elem_root.outputs[0]); new_node.name = prev_second_node.name + " -> " + elem_root.name; new_node.gpu_operation = std::make_unique<GPUOperation>(std::move(new_operation)); nodes.erase(nodes.begin() + elem_root_index); nodes[prev_second_node_index] = std::move(new_node); elem_root_index = prev_second_node_index; continue; } if (prev_first_node.gpu_operation->IsLinkable() && prev_second_node.gpu_operation->IsLinkable() && prev_first_node.inputs.size() == 1 && prev_first_node.outputs.size() == 1 && prev_second_node.inputs.size() == 1 && prev_second_node.outputs.size() == 1) { int first_node_parent_index = -1; for (int j = prev_first_node_index - 1; j >= 0; --j) { if (nodes[j].outputs[0] == prev_first_node.inputs[0]) { first_node_parent_index = j; break; } } int second_node_parent_index = -1; for (int j = prev_second_node_index - 1; j >= 0; --j) { if (nodes[j].outputs[0] == prev_second_node.inputs[0]) { second_node_parent_index = j; break; } } if (first_node_parent_index == -1 || second_node_parent_index == -1 || first_node_parent_index != second_node_parent_index) { continue; } int consumers_count = 0; for (const auto& node : nodes) { for (const auto& input : node.inputs) { if (input == elem_root.inputs[1]) { consumers_count++; } } } if (consumers_count != 1) { continue; } consumers_count = 0; for (const auto& node : nodes) { for (const auto& input : node.inputs) { if (input == elem_root.inputs[0]) { consumers_count++; } } } if (consumers_count != 1) { continue; } GPUOperation new_operation; RETURN_IF_ERROR(Fuse2InputElemWith2SimpleElem( gpu_info, std::move(*prev_first_node.gpu_operation.get()), std::move(*prev_second_node.gpu_operation.get()), std::move(*elem_root.gpu_operation.get()), &new_operation)); GpuNode new_node; new_node.inputs.push_back(prev_first_node.inputs[0]); new_node.outputs.push_back(elem_root.outputs[0]); new_node.name = prev_first_node.name + " -> " + prev_second_node.name + " -> " + elem_root.name; new_node.gpu_operation = std::make_unique<GPUOperation>(std::move(new_operation)); int first_prev_node_index = std::min(prev_first_node_index, prev_second_node_index); int second_prev_node_index = std::max(prev_first_node_index, prev_second_node_index); nodes.erase(nodes.begin() + elem_root_index); nodes.erase(nodes.begin() + second_prev_node_index); nodes[first_prev_node_index] = std::move(new_node); elem_root_index = first_prev_node_index - 1; continue; } } } return absl::OkStatus(); } absl::Status MergeNodes(const GpuInfo& gpu_info, GpuModel* gpu_model) { absl::flat_hash_set<ValueId> ready_tensors; absl::flat_hash_set<ValueId> output_tensors; for (const auto& input : gpu_model->input_ids_and_refs) { ready_tensors.insert(input.first); } for (const auto& output : gpu_model->output_ids_and_refs) { output_tensors.insert(output.first); } auto& nodes = gpu_model->nodes; for (int i = 0; i < nodes.size(); ++i) { auto& node = nodes[i]; bool node_has_graph_output = false; for (const auto& out_id : node.outputs) { ready_tensors.insert(out_id); if (output_tensors.find(out_id) != output_tensors.end()) { node_has_graph_output = true; } } if (node_has_graph_output || node.outputs.size() != 1) { continue; } std::vector<int> next_nodes; int link_index = 0; for (int j = i + 1; j < nodes.size(); ++j) { for (int k = 0; k < nodes[j].inputs.size(); ++k) { if (nodes[j].inputs[k] == node.outputs[0]) { next_nodes.push_back(j); link_index = k; } } } if (next_nodes.size() != 1 || link_index != 0) { continue; } auto& linkable_node = nodes[next_nodes[0]]; if (!linkable_node.gpu_operation->IsLinkable() || linkable_node.outputs.size() != 1 || !IsReady(ready_tensors, linkable_node)) { continue; } RETURN_IF_ERROR(MergeGpuNodes(gpu_info, &linkable_node, &node)); nodes.erase(nodes.begin() + next_nodes[0]); i -= 1; } return absl::OkStatus(); } void CopyExternals(const GraphFloat32& graph, GpuModel* gpu_model) { const auto inputs = graph.inputs(); for (const auto& value : inputs) { gpu_model->input_ids_and_refs.push_back({value->id, value->tensor.ref}); } const auto variable_inputs = graph.variable_inputs(); for (const auto& value : variable_inputs) { gpu_model->variable_ids_and_refs.push_back({value->id, value->tensor.ref}); } const auto outputs = graph.outputs(); for (const auto& value : outputs) { gpu_model->output_ids_and
#include <gtest/gtest.h> #include "tensorflow/lite/delegates/gpu/cl/kernels/cl_test.h" #include "tensorflow/lite/delegates/gpu/common/gpu_model_test_util.h" #include "tensorflow/lite/delegates/gpu/common/status.h" namespace tflite { namespace gpu { namespace cl { namespace { TEST_F(OpenCLOperationTest, LinkingConvolutionAndCosOp) { auto status = TestLinkingConvolutionAndCosOp(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, LinkingConvolution2InputMul2InputMul) { auto status = TestLinkingConvolution2InputMul2InputMul(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, LinkingConvolution2InputBroadcastMul2InputMul) { auto status = TestLinkingConvolution2InputBroadcastMul2InputMul(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, LinkingConvolution2InputMul2InputBroadcastMul) { auto status = TestLinkingConvolution2InputMul2InputBroadcastMul(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, LinkingConvolution2InputMul2InputMulCos) { auto status = TestLinkingConvolution2InputMul2InputMulCos(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, LinkingConvolutionFirstTanh2InputDiff) { auto status = TestLinkingConvolutionFirstTanh2InputDiff(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, LinkingConvolutionSecondTanh2InputDiff) { auto status = TestLinkingConvolutionSecondTanh2InputDiff(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, LinkingConvolutionFirstTanhSecondCos2InputDiff) { auto status = TestLinkingConvolutionFirstTanhSecondCos2InputDiff(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, LinkingComplex0) { auto status = TestLinkingComplex0(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, LinkingConvElem2InputAddElemsOp) { auto status = TestLinkingConvElem2InputAddElemsOp(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, LinkingSliceCastOp) { auto status = TestLinkingSliceCastOp(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, LinkingAddAddMulOp) { auto status = TestLinkingAddAddMulOp(&exec_env_, true); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, LinkingAddMulOp) { auto status = TestLinkingAddAddMulOp(&exec_env_, false); ASSERT_TRUE(status.ok()) << status.message(); } } } } }
997
cpp
tensorflow/tensorflow
data_type
tensorflow/lite/delegates/gpu/common/data_type.cc
tensorflow/lite/delegates/gpu/common/data_type_test.cc
#ifndef XLA_STREAM_EXECUTOR_DATA_TYPE_H_ #define XLA_STREAM_EXECUTOR_DATA_TYPE_H_ #include <complex> #include <cstdint> #include "tsl/platform/ml_dtypes.h" #include "tsl/protobuf/dnn.pb.h" namespace Eigen { struct bfloat16; struct half; } namespace stream_executor { namespace dnn { template <typename T> struct ToDataType; template <> struct ToDataType<tsl::float8_e4m3fn> { static constexpr DataType value = DataType::kF8E4M3FN; }; template <> struct ToDataType<tsl::float8_e5m2> { static constexpr DataType value = DataType::kF8E5M2; }; template <> struct ToDataType<tsl::float8_e4m3fnuz> { static constexpr DataType value = DataType::kF8E4M3FNUZ; }; template <> struct ToDataType<tsl::float8_e5m2fnuz> { static constexpr DataType value = DataType::kF8E5M2FNUZ; }; template <> struct ToDataType<float> { static constexpr DataType value = DataType::kFloat; }; template <> struct ToDataType<double> { static constexpr DataType value = DataType::kDouble; }; template <> struct ToDataType<Eigen::half> { static constexpr DataType value = DataType::kHalf; }; template <> struct ToDataType<Eigen::bfloat16> { static constexpr DataType value = DataType::kBF16; }; template <> struct ToDataType<int8_t> { static constexpr DataType value = DataType::kInt8; }; template <> struct ToDataType<int32_t> { static constexpr DataType value = DataType::kInt32; }; template <> struct ToDataType<int64_t> { static constexpr DataType value = DataType::kInt64; }; template <> struct ToDataType<std::complex<float>> { static constexpr DataType value = DataType::kComplexFloat; }; template <> struct ToDataType<std::complex<double>> { static constexpr DataType value = DataType::kComplexDouble; }; } } #endif #include "tensorflow/lite/delegates/gpu/common/data_type.h" #include <stddef.h> #include <string> #include "absl/strings/str_cat.h" namespace tflite { namespace gpu { namespace { std::string ToGlslType(const std::string& scalar_type, const std::string& vec_type, int vec_size) { return vec_size == 1 ? scalar_type : absl::StrCat(vec_type, vec_size); } std::string GetGlslPrecisionModifier(DataType data_type) { switch (data_type) { case DataType::UINT8: case DataType::INT8: return "lowp "; case DataType::FLOAT16: case DataType::INT16: case DataType::UINT16: return "mediump "; case DataType::FLOAT32: case DataType::INT32: case DataType::UINT32: return "highp "; case DataType::BOOL: return ""; default: return ""; } } } size_t SizeOf(DataType data_type) { switch (data_type) { case DataType::UINT8: case DataType::INT8: case DataType::BOOL: return 1; case DataType::FLOAT16: case DataType::INT16: case DataType::UINT16: return 2; case DataType::FLOAT32: case DataType::INT32: case DataType::UINT32: return 4; case DataType::FLOAT64: case DataType::INT64: case DataType::UINT64: return 8; case DataType::UNKNOWN: return 0; } return 0; } std::string ToString(DataType data_type) { switch (data_type) { case DataType::FLOAT16: return "float16"; case DataType::FLOAT32: return "float32"; case DataType::FLOAT64: return "float64"; case DataType::INT16: return "int16"; case DataType::INT32: return "int32"; case DataType::INT64: return "int64"; case DataType::INT8: return "int8"; case DataType::UINT16: return "uint16"; case DataType::UINT32: return "uint32"; case DataType::UINT64: return "uint64"; case DataType::UINT8: return "uint8"; case DataType::BOOL: return "bool"; case DataType::UNKNOWN: return "unknown"; } return "undefined"; } std::string ToCLDataType(DataType data_type, int vec_size) { const std::string postfix = vec_size == 1 ? "" : std::to_string(vec_size); switch (data_type) { case DataType::FLOAT16: return "half" + postfix; case DataType::FLOAT32: return "float" + postfix; case DataType::FLOAT64: return "double" + postfix; case DataType::INT16: return "short" + postfix; case DataType::INT32: return "int" + postfix; case DataType::INT64: return "long" + postfix; case DataType::INT8: return "char" + postfix; case DataType::UINT16: return "ushort" + postfix; case DataType::UINT32: return "uint" + postfix; case DataType::UINT64: return "ulong" + postfix; case DataType::UINT8: return "uchar" + postfix; case DataType::BOOL: return "bool" + postfix; case DataType::UNKNOWN: return "unknown"; } return "undefined"; } std::string ToMetalDataType(DataType data_type, int vec_size) { const std::string postfix = vec_size == 1 ? "" : std::to_string(vec_size); switch (data_type) { case DataType::FLOAT16: return "half" + postfix; case DataType::FLOAT32: return "float" + postfix; case DataType::FLOAT64: return "double" + postfix; case DataType::INT16: return "short" + postfix; case DataType::INT32: return "int" + postfix; case DataType::INT64: return "long" + postfix; case DataType::INT8: return "char" + postfix; case DataType::UINT16: return "ushort" + postfix; case DataType::UINT32: return "uint" + postfix; case DataType::UINT64: return "ulong" + postfix; case DataType::UINT8: return "uchar" + postfix; case DataType::BOOL: return "bool" + postfix; case DataType::UNKNOWN: return "unknown"; } return "undefined"; } DataType ToMetalTextureType(DataType data_type) { switch (data_type) { case DataType::FLOAT32: case DataType::FLOAT16: case DataType::INT32: case DataType::INT16: case DataType::UINT32: case DataType::UINT16: return data_type; case DataType::INT8: return DataType::INT16; case DataType::UINT8: case DataType::BOOL: return DataType::UINT16; default: return DataType::UNKNOWN; } } std::string ToGlslShaderDataType(DataType data_type, int vec_size, bool add_precision, bool explicit_fp16) { const std::string precision_modifier = add_precision ? GetGlslPrecisionModifier(data_type) : ""; switch (data_type) { case DataType::FLOAT16: if (explicit_fp16) { return ToGlslType("float16_t", "f16vec", vec_size); } else { return precision_modifier + ToGlslType("float", "vec", vec_size); } case DataType::FLOAT32: return precision_modifier + ToGlslType("float", "vec", vec_size); case DataType::FLOAT64: return precision_modifier + ToGlslType("double", "dvec", vec_size); case DataType::INT8: case DataType::INT16: case DataType::INT32: case DataType::INT64: return precision_modifier + ToGlslType("int", "ivec", vec_size); case DataType::UINT8: case DataType::UINT16: case DataType::UINT32: case DataType::UINT64: return precision_modifier + ToGlslType("uint", "uvec", vec_size); case DataType::BOOL: return ToGlslType("bool", "bvec", vec_size); case DataType::UNKNOWN: return "unknown"; } return "unknown"; } } }
#include "tensorflow/lite/delegates/gpu/common/data_type.h" #include <gtest/gtest.h> namespace tflite { namespace gpu { namespace { TEST(DataTypeTest, GlslShaderDataTypes) { EXPECT_EQ("float", ToGlslShaderDataType(DataType::FLOAT16)); EXPECT_EQ("mediump float", ToGlslShaderDataType(DataType::FLOAT16, 1, true, false)); EXPECT_EQ("float16_t", ToGlslShaderDataType(DataType::FLOAT16, 1, false, true)); EXPECT_EQ("float16_t", ToGlslShaderDataType(DataType::FLOAT16, 1, true, true)); EXPECT_EQ("vec4", ToGlslShaderDataType(DataType::FLOAT16, 4)); EXPECT_EQ("mediump vec4", ToGlslShaderDataType(DataType::FLOAT16, 4, true, false)); EXPECT_EQ("f16vec4", ToGlslShaderDataType(DataType::FLOAT16, 4, false, true)); EXPECT_EQ("f16vec4", ToGlslShaderDataType(DataType::FLOAT16, 4, true, true)); EXPECT_EQ("float", ToGlslShaderDataType(DataType::FLOAT32)); EXPECT_EQ("highp float", ToGlslShaderDataType(DataType::FLOAT32, 1, true)); EXPECT_EQ("float", ToGlslShaderDataType(DataType::FLOAT32, 1, false)); EXPECT_EQ("vec2", ToGlslShaderDataType(DataType::FLOAT32, 2)); EXPECT_EQ("highp vec2", ToGlslShaderDataType(DataType::FLOAT32, 2, true)); EXPECT_EQ("vec2", ToGlslShaderDataType(DataType::FLOAT32, 2, false)); EXPECT_EQ("int", ToGlslShaderDataType(DataType::INT64, 1, false)); EXPECT_EQ("int", ToGlslShaderDataType(DataType::INT32, 1, false)); EXPECT_EQ("int", ToGlslShaderDataType(DataType::INT16, 1, false)); EXPECT_EQ("int", ToGlslShaderDataType(DataType::INT8, 1, false)); EXPECT_EQ("int", ToGlslShaderDataType(DataType::INT64, 1, true)); EXPECT_EQ("highp int", ToGlslShaderDataType(DataType::INT32, 1, true)); EXPECT_EQ("mediump int", ToGlslShaderDataType(DataType::INT16, 1, true)); EXPECT_EQ("lowp int", ToGlslShaderDataType(DataType::INT8, 1, true)); EXPECT_EQ("uint", ToGlslShaderDataType(DataType::UINT64, 1, false)); EXPECT_EQ("uint", ToGlslShaderDataType(DataType::UINT32, 1, false)); EXPECT_EQ("uint", ToGlslShaderDataType(DataType::UINT16, 1, false)); EXPECT_EQ("uint", ToGlslShaderDataType(DataType::UINT8, 1, false)); EXPECT_EQ("uint", ToGlslShaderDataType(DataType::UINT64, 1, true)); EXPECT_EQ("highp uint", ToGlslShaderDataType(DataType::UINT32, 1, true)); EXPECT_EQ("mediump uint", ToGlslShaderDataType(DataType::UINT16, 1, true)); EXPECT_EQ("lowp uint", ToGlslShaderDataType(DataType::UINT8, 1, true)); EXPECT_EQ("bool", ToGlslShaderDataType(DataType::BOOL)); EXPECT_EQ("bvec4", ToGlslShaderDataType(DataType::BOOL, 4)); EXPECT_EQ("bool", ToGlslShaderDataType(DataType::BOOL, 1, true)); EXPECT_EQ("bool", ToGlslShaderDataType(DataType::BOOL, 1, false)); } } } }
998
cpp
tensorflow/tensorflow
convert
tensorflow/lite/delegates/gpu/common/convert.cc
third_party/xla/xla/tests/convert_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_COMMON_CONVERT_H_ #define TENSORFLOW_LITE_DELEGATES_GPU_COMMON_CONVERT_H_ #include <stdint.h> #include <vector> #include "absl/types/span.h" #include "tensorflow/lite/delegates/gpu/common/data_type.h" #include "tensorflow/lite/delegates/gpu/common/shape.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/tensor.h" #include "tensorflow/lite/delegates/gpu/common/types.h" namespace tflite { namespace gpu { absl::Status ConvertToPHWC4(absl::Span<const float> in, const BHWC& shape, absl::Span<float> out); absl::Status ConvertToPHWC4Half(absl::Span<const float> in, const BHWC& shape, absl::Span<HalfBits> out); uint32_t GetElementsSizeForPHWC4(const BHWC& shape); absl::Status ConvertFromPHWC4(absl::Span<const float> in, const BHWC& shape, absl::Span<float> out); absl::Status ConvertFromPHWC4Half(absl::Span<const HalfBits> in, const BHWC& shape, absl::Span<float> out); std::vector<float> ConvertToPHWC4( const Tensor<BHWC, DataType::FLOAT32>& tensor); std::vector<float> ConvertToPHWC4(const Tensor<HWC, DataType::FLOAT32>& tensor); uint32_t GetElementsSizeForPIOHW4(const OHWI& shape); absl::Status ConvertToPIOHW4(absl::Span<const float> in, const OHWI& shape, absl::Span<float> out); std::vector<float> ConvertToPIOHW4( const Tensor<OHWI, DataType::FLOAT32>& tensor); uint32_t GetElementsSizeForPHWO4I4(const OHWI& shape); std::vector<float> ConvertToPHWO4I4( const Tensor<OHWI, DataType::FLOAT32>& tensor); std::vector<float> ConvertToPHWO4I4Transposed( const Tensor<OHWI, DataType::FLOAT32>& tensor); uint3 Get3DSizeForPHWO4I4(const OHWI& shape); uint32_t GetElementsSizeForPHWO4I4(const IHWO& shape); absl::Status ConvertToPHWO4I4(absl::Span<const float> in, const IHWO& shape, absl::Span<float> out); std::vector<float> ConvertToPHWO4I4( const Tensor<IHWO, DataType::FLOAT32>& tensor); } } #endif #include "tensorflow/lite/delegates/gpu/common/convert.h" #include <stdint.h> #include <string.h> #include <string> #include <vector> #include "fp16.h" #include "absl/strings/str_cat.h" #include "absl/types/span.h" #include "tensorflow/lite/delegates/gpu/common/data_type.h" #include "tensorflow/lite/delegates/gpu/common/shape.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/tensor.h" #include "tensorflow/lite/delegates/gpu/common/types.h" #include "tensorflow/lite/delegates/gpu/common/util.h" namespace tflite { namespace gpu { namespace { constexpr int kPhwc4ChannelsInPlane = 4; constexpr int kPhwo4i4ChannelsInPlane = 4; constexpr int kPiohw4ChannelsInPlane = 4; absl::Status ConvertToPHWO4I4(absl::Span<const float> in, const OHWI& shape, absl::Span<float> out, bool reverse_space) { if (in.size() != shape.DimensionsProduct()) { return absl::InvalidArgumentError(absl::StrCat( "ConvertToPHWO4I4: Input data size does not match expected size: ", in.size(), " != ", shape.DimensionsProduct())); } if (out.size() != GetElementsSizeForPHWO4I4(shape)) { return absl::InvalidArgumentError(absl::StrCat( "ConvertToPHWO4I4: Output data size does not match expected size: ", out.size(), " != ", GetElementsSizeForPHWO4I4(shape))); } float* output = out.data(); for (int p = 0; p < DivideRoundUp(shape.o, kPhwo4i4ChannelsInPlane); ++p) { for (int h = 0; h < shape.h; ++h) { for (int w = 0; w < shape.w; ++w) { for (int c = 0; c < DivideRoundUp(shape.i, kPhwo4i4ChannelsInPlane); ++c) { for (int co = 0; co < kPhwo4i4ChannelsInPlane; ++co) { for (int ci = 0; ci < kPhwo4i4ChannelsInPlane; ++ci) { float value = 0; if (c * kPhwo4i4ChannelsInPlane + ci < shape.i && p * kPhwo4i4ChannelsInPlane + co < shape.o) { int tensor_o = p * kPhwo4i4ChannelsInPlane + co; int tensor_i = c * kPhwo4i4ChannelsInPlane + ci; const int in_h = reverse_space ? shape.h - 1 - h : h; const int in_w = reverse_space ? shape.w - 1 - w : w; value = in[shape.LinearIndex({tensor_o, in_h, in_w, tensor_i})]; } (*output++) = value; } } } } } } return absl::OkStatus(); } } uint32_t GetElementsSizeForPHWO4I4(const OHWI& shape) { return AlignByN(shape.i, kPhwo4i4ChannelsInPlane) * AlignByN(shape.o, kPhwo4i4ChannelsInPlane) * shape.h * shape.w; } uint32_t GetElementsSizeForPHWO4I4(const IHWO& shape) { return AlignByN(shape.i, kPhwo4i4ChannelsInPlane) * AlignByN(shape.o, kPhwo4i4ChannelsInPlane) * shape.h * shape.w; } std::vector<float> ConvertToPHWO4I4( const Tensor<OHWI, DataType::FLOAT32>& tensor) { std::vector<float> transposed(GetElementsSizeForPHWO4I4(tensor.shape)); ConvertToPHWO4I4(tensor.data, tensor.shape, absl::MakeSpan(transposed.data(), transposed.size()), false) .IgnoreError(); return transposed; } std::vector<float> ConvertToPHWO4I4Transposed( const Tensor<OHWI, DataType::FLOAT32>& tensor) { std::vector<float> transposed(GetElementsSizeForPHWO4I4(tensor.shape)); ConvertToPHWO4I4(tensor.data, tensor.shape, absl::MakeSpan(transposed.data(), transposed.size()), true) .IgnoreError(); return transposed; } uint3 Get3DSizeForPHWO4I4(const OHWI& shape) { return uint3(AlignByN(shape.i, 4), shape.h * shape.w, DivideRoundUp(shape.o, 4)); } absl::Status ConvertToPHWO4I4(absl::Span<const float> in, const IHWO& shape, absl::Span<float> out) { if (in.size() != shape.DimensionsProduct()) { return absl::InvalidArgumentError(absl::StrCat( "ConvertToPHWO4I4: Input data size does not match expected size: ", in.size(), " != ", shape.DimensionsProduct())); } if (out.size() != GetElementsSizeForPHWO4I4(shape)) { return absl::InvalidArgumentError(absl::StrCat( "ConvertToPHWO4I4: Output data size does not match expected size: ", out.size(), " != ", GetElementsSizeForPHWO4I4(shape))); } const int dst_depth = DivideRoundUp(shape.o, 4); const int src_depth = DivideRoundUp(shape.i, 4); float* output = out.data(); for (int f = 0; f < dst_depth; ++f) { for (int y = 0; y < shape.h; ++y) { for (int x = 0; x < shape.w; ++x) { for (int ch = 0; ch < src_depth; ++ch) { for (int co = 0; co < 4; ++co) { for (int ci = 0; ci < 4; ++ci) { const int src_channel = ch * 4 + ci; const int dst_channel = f * 4 + co; float value = 0; if (src_channel < shape.i && dst_channel < shape.o) { value = in[shape.LinearIndex({src_channel, y, x, dst_channel})]; } (*output++) = value; } } } } } } return absl::OkStatus(); } std::vector<float> ConvertToPHWO4I4( const Tensor<IHWO, DataType::FLOAT32>& tensor) { std::vector<float> transposed(GetElementsSizeForPHWO4I4(tensor.shape)); ConvertToPHWO4I4(tensor.data, tensor.shape, absl::MakeSpan(transposed.data(), transposed.size())) .IgnoreError(); return transposed; } uint32_t GetElementsSizeForPIOHW4(const OHWI& shape) { return AlignByN(shape.o * shape.i, kPiohw4ChannelsInPlane) * shape.h * shape.w; } absl::Status ConvertToPIOHW4(absl::Span<const float> in, const OHWI& shape, absl::Span<float> out) { if (in.size() != shape.DimensionsProduct()) { return absl::InvalidArgumentError(absl::StrCat( "ConvertToPIOHW4: Input data size does not match expected size: ", in.size(), " != ", shape.DimensionsProduct())); } if (out.size() != GetElementsSizeForPIOHW4(shape)) { return absl::InvalidArgumentError(absl::StrCat( "ConvertToPIOHW4: Output data size does not match expected size: ", out.size(), " != ", GetElementsSizeForPIOHW4(shape))); } int32_t output_channels = shape.o * shape.i; int32_t num_planes = DivideRoundUp(output_channels, kPiohw4ChannelsInPlane); float* output = out.data(); for (int p = 0; p < num_planes; ++p) { for (int h = 0; h < shape.h; ++h) { for (int w = 0; w < shape.w; ++w) { for (int c = 0; c < kPiohw4ChannelsInPlane; ++c) { int output_c = p * kPiohw4ChannelsInPlane + c; (*output++) = output_c >= output_channels ? 0 : in[shape.LinearIndex({output_c % shape.o, h, w, output_c / shape.o})]; } } } } return absl::OkStatus(); } std::vector<float> ConvertToPIOHW4( const Tensor<OHWI, DataType::FLOAT32>& tensor) { std::vector<float> transposed(GetElementsSizeForPIOHW4(tensor.shape)); ConvertToPIOHW4(tensor.data, tensor.shape, absl::MakeSpan(transposed.data(), transposed.size())) .IgnoreError(); return transposed; } template <typename T> absl::Status ValidateConvertToPHWC4(absl::Span<const float> in, const BHWC& shape, absl::Span<T> out) { if (in.size() != shape.DimensionsProduct()) { return absl::InvalidArgumentError(absl::StrCat( "ConvertToPHWC4: Input data size does not match expected size: ", in.size(), " != ", shape.DimensionsProduct())); } if (out.size() != GetElementsSizeForPHWC4(shape)) { return absl::InvalidArgumentError(absl::StrCat( "ConvertToPHWC4: Output data size does not match expected size: ", out.size(), " != ", GetElementsSizeForPHWC4(shape))); } return absl::OkStatus(); } absl::Status ConvertToPHWC4(absl::Span<const float> in, const BHWC& shape, absl::Span<float> out) { RETURN_IF_ERROR(ValidateConvertToPHWC4(in, shape, out)); if (shape.c == 4) { std::memcpy(out.data(), in.data(), shape.DimensionsProduct() * sizeof(float)); return absl::OkStatus(); } int num_planes = DivideRoundUp(shape.c, kPhwc4ChannelsInPlane); const int num_pixels = shape.h * shape.w; const int num_full_planes = shape.c / kPhwc4ChannelsInPlane; for (int b = 0; b < shape.b; b++) { float* dest = out.data() + b * num_pixels * num_planes * kPhwc4ChannelsInPlane; for (int p = 0; p < num_full_planes; p++) { const float* src = in.data() + shape.LinearIndex({b, 0, 0, p * kPhwc4ChannelsInPlane}); for (int i = 0; i < num_pixels; i++) { std::memcpy(dest, src, kPhwc4ChannelsInPlane * sizeof(float)); src += shape.c; dest += kPhwc4ChannelsInPlane; } } } const int padded_size = num_pixels * num_planes * kPhwc4ChannelsInPlane; const int remaining_channels = shape.c - num_full_planes * kPhwc4ChannelsInPlane; if (remaining_channels == 0) { return absl::OkStatus(); } for (int b = 0; b < shape.b; b++) { const float* src = in.data() + shape.LinearIndex({b, 0, 0, num_full_planes * kPhwc4ChannelsInPlane}); float* dest = out.data() + b * padded_size + num_pixels * num_full_planes * kPhwc4ChannelsInPlane; for (int p = 0; p < num_pixels; p++) { std::memcpy(dest, src, remaining_channels * sizeof(float)); std::memset(dest + remaining_channels, 0, (4 - remaining_channels) * sizeof(float)); src += shape.c; dest += kPhwc4ChannelsInPlane; } } return absl::OkStatus(); } absl::Status ConvertToPHWC4Half(absl::Span<const float> in, const BHWC& shape, absl::Span<HalfBits> out) { RETURN_IF_ERROR(ValidateConvertToPHWC4(in, shape, out)); int num_planes = DivideRoundUp(shape.c, kPhwc4ChannelsInPlane); const int num_pixels = shape.h * shape.w; const int num_full_planes = shape.c / kPhwc4ChannelsInPlane; for (int b = 0; b < shape.b; b++) { HalfBits* dest = out.data() + b * num_pixels * num_planes * kPhwc4ChannelsInPlane; for (int p = 0; p < num_full_planes; p++) { const float* src = in.data() + shape.LinearIndex({b, 0, 0, p * kPhwc4ChannelsInPlane}); for (int i = 0; i < num_pixels; i++) { dest[0] = fp16_ieee_from_fp32_value(src[0]); dest[1] = fp16_ieee_from_fp32_value(src[1]); dest[2] = fp16_ieee_from_fp32_value(src[2]); dest[3] = fp16_ieee_from_fp32_value(src[3]); src += shape.c; dest += kPhwc4ChannelsInPlane; } } } const int padded_size = num_pixels * num_planes * kPhwc4ChannelsInPlane; const int remaining_channels = shape.c - num_full_planes * kPhwc4ChannelsInPlane; if (remaining_channels == 0) { return absl::OkStatus(); } for (int b = 0; b < shape.b; b++) { const float* src = in.data() + shape.LinearIndex({b, 0, 0, num_full_planes * kPhwc4ChannelsInPlane}); HalfBits* dest = out.data() + b * padded_size + num_pixels * num_full_planes * kPhwc4ChannelsInPlane; switch (remaining_channels) { case 1: for (int p = 0; p < num_pixels; p++) { dest[0] = fp16_ieee_from_fp32_value(src[0]); dest[1] = 0; dest[2] = 0; dest[3] = 0; src += shape.c; dest += kPhwc4ChannelsInPlane; } break; case 2: for (int p = 0; p < num_pixels; p++) { dest[0] = fp16_ieee_from_fp32_value(src[0]); dest[1] = fp16_ieee_from_fp32_value(src[1]); dest[2] = 0; dest[3] = 0; src += shape.c; dest += kPhwc4ChannelsInPlane; } break; case 3: for (int p = 0; p < num_pixels; p++) { dest[0] = fp16_ieee_from_fp32_value(src[0]); dest[1] = fp16_ieee_from_fp32_value(src[1]); dest[2] = fp16_ieee_from_fp32_value(src[2]); dest[3] = 0; src += shape.c; dest += kPhwc4ChannelsInPlane; } break; default: return absl::UnimplementedError( "ConvertToPHWC4Half: Unsupported channels per planes count."); } } return absl::OkStatus(); } std::vector<float> ConvertToPHWC4( const Tensor<BHWC, DataType::FLOAT32>& tensor) { std::vector<float> transposed(GetElementsSizeForPHWC4(tensor.shape)); ConvertToPHWC4(tensor.data, tensor.shape, absl::MakeSpan(transposed.data(), transposed.size())) .IgnoreError(); return transposed; } std::vector<float> ConvertToPHWC4( const Tensor<HWC, DataType::FLOAT32>& tensor) { const BHWC batched_shape = BHWC(1, tensor.shape.h, tensor.shape.w, tensor.shape.c); std::vector<float> transposed(GetElementsSizeForPHWC4(batched_shape)); ConvertToPHWC4(tensor.data, batched_shape, absl::MakeSpan(transposed.data(), transposed.size())) .IgnoreError(); return transposed; } uint32_t GetElementsSizeForPHWC4(const BHWC& shape) { return shape.b * shape.h * shape.w * AlignByN(shape.c, kPhwc4ChannelsInPlane); } template <typename T> absl::Status ValidateConvertFromPHWC4(absl::Span<const T> in, const BHWC& shape, absl::Span<float> out) { if (in.size() != GetElementsSizeForPHWC4(shape)) { return absl::InvalidArgumentError(absl::StrCat( "ConvertFromPHWC4: Input data size does not match expected size: ", in.size(), " != ", GetElementsSizeForPHWC4(shape))); } if (out.size() != shape.DimensionsProduct()) { return absl::InvalidArgumentError(absl::StrCat( "ConvertFromPHWC4: Output data size does not match expected size: ", out.size(), " != ", shape.DimensionsProduct())); } return absl::OkStatus(); } absl::Status ConvertFromPHWC4(absl::Span<const float> in, const BHWC& shape, absl::Span<float> out) { RETURN_IF_ERROR(ValidateConvertFromPHWC4(in, shape, out)); if (shape.c == 4) { std::memcpy(out.data(), in.data(), shape.DimensionsProduct() * sizeof(float)); return absl::OkStatus(); } int num_planes = DivideRoundUp(shape.c, kPhwc4ChannelsInPlane); const int num_pixels = shape.h * shape.w; const int padded_size = num_pixels * num_planes * kPhwc4ChannelsInPlane; const int num_full_planes = shape.c / kPhwc4ChannelsInPlane; for (int b = 0; b < shape.b; b++) { const float* src = in.data() + b * padded_size; for (int p = 0; p < num_full_planes; p++) { float* dest = out.data() + shape.LinearIndex({b, 0, 0, p * kPhwc4ChannelsInPlane}); for (int i = 0; i < num_pixels; i++) { std::memcpy(dest, src, kPhwc4ChannelsInPlane * sizeof(float)); src += kPhwc4ChannelsInPlane; dest += shape.c; } } } const int remaining_channels = shape.c - num_full_planes * kPhwc4ChannelsInPlane; if (remaining_channels == 0) { return absl::OkStatus(); } for (int b = 0; b < shape.b; b++) { const float* src = in.data() + b * padded_size + num_pixels * num_full_planes * kPhwc4ChannelsInPlane; float* dest = out.data() + shape.LinearIndex({b, 0, 0, num_full_planes * kPhwc4ChannelsInPlane}); for (int p = 0; p < num_pixels; p++) { std::memcpy(dest, src, remaining_channels * sizeof(float)); src += kPhwc4ChannelsInPlane; dest += shape.c; } } return absl::OkStatus(); } absl::Status ConvertFromPHWC4Half(absl::Span<const HalfBits> in, const BHWC& shape, absl::Span<float> out) { RETURN_IF_ERROR(ValidateConvertFromPHWC4(in, shape, out)); int num_planes = DivideRoundUp(shape.c, kPhwc4ChannelsInPlane); const int num_pixels = shape.h * shape.w; const int padded_size = num_pixels * num_planes * kPhwc4ChannelsInPlane; const int num_full_planes = shape.c / kPhwc4ChannelsInPlane; for (int b = 0; b < shape.b; b++) { const HalfBits* src = in.data() + b * padded_size; for (int p = 0; p < num_full_planes; p++) { float* dest = out.data() + shape.LinearIndex({b, 0, 0, p * kPhwc4ChannelsInPlane}); for (int i = 0; i < num_pixels; i++) { dest[0] = fp16_ieee_to_fp32_value(src[0]); dest[1] = fp16_ieee_to_fp32_value(src[1]); dest[2] = fp16_ieee_to_fp32_value(src[2]); dest[3] = fp16_ieee_to_fp32_value(src[3]); src += kPhwc4ChannelsInPlane; dest += shape.c; } } } const int remaining_channels = shape.c - num_full_planes * kPhwc4ChannelsInPlane; if (remaining_channels == 0) { return absl::OkStatus(); } for (int b = 0; b < shape.b; b++) { const HalfBits* src = in.data() + b * padded_size + num_pixels * num_full_planes * kPhwc4ChannelsInPlane; float* dest = out.data() + shape.LinearIndex({b, 0, 0, num_full_planes * kPhwc4ChannelsInPlane}); switch (remaining_channels) { case 1: for (int p = 0; p < num_pixels; p++) { dest[0] = fp16_ieee_to_fp32_value(src[0]); src += kPhwc4ChannelsInPlane; dest += shape.c; } break; case 2: for (int p = 0; p < num_pixels; p++) { dest[0] = fp16_ieee_to_fp32_value(src[0]); dest[1] = fp16_ieee_to_fp32_value(src[1]); src += kPhwc4ChannelsInPlane; dest += shape.c; } break; case 3: for (int p = 0; p < num_pixels; p++) { dest[0] = fp16_ieee_to_fp32_value(src[0]); dest[1] = fp16_ieee_to_fp32_value(src[1]); dest[2] = fp16_ieee_to_fp32_value(src[2]); src += kPhwc4ChannelsInPlane; dest += shape.c; } break; default: return absl::UnimplementedError( "ConvertToPHWC4Half: Unsupported channels per planes count."); } } return absl::OkStatus(); } } }
#include <array> #include <cstdint> #include <limits> #include <memory> #include <vector> #include "absl/algorithm/container.h" #include "absl/base/casts.h" #include "xla/client/local_client.h" #include "xla/client/xla_builder.h" #include "xla/primitive_util.h" #include "xla/shape_util.h" #include "xla/stream_executor/stream_executor.h" #include "xla/tests/client_library_test_base.h" #include "xla/tests/literal_test_util.h" #include "xla/tests/test_macros.h" #include "xla/types.h" #include "xla/xla_data.pb.h" #include "tsl/platform/ml_dtypes.h" #include "tsl/platform/test.h" namespace xla { namespace { class ConvertTest : public ClientLibraryTestBase { public: explicit ConvertTest(se::Platform* platform = nullptr) : ClientLibraryTestBase(platform) { mutable_debug_options()->add_xla_disable_hlo_passes("algsimp"); mutable_debug_options()->add_xla_disable_hlo_passes("inline"); mutable_debug_options()->add_xla_disable_hlo_passes( "simplify-fp-conversions"); mutable_debug_options()->set_xla_allow_excess_precision(false); } }; template <typename T> class ConvertTestT : public ConvertTest { public: using ConvertTest::ConvertTest; }; using FloatingPointTypeList = ::testing::Types<tsl::float8_e5m2, tsl::float8_e4m3fn, tsl::float8_e5m2fnuz, tsl::float8_e4m3fnuz, Eigen::half, bfloat16, float, double>; TYPED_TEST_SUITE(ConvertTestT, FloatingPointTypeList); TEST_F(ConvertTest, ConvertR1S32ToR1S32) { XlaBuilder builder(TestName()); auto a = ConstantR1<int32_t>(&builder, {42, 64}); ConvertElementType(a, S32); std::vector<int32_t> expected = {42, 64}; ComputeAndCompareR1<int32_t>(&builder, expected, {}); } TEST_F(ConvertTest, ConvertR1S32ToR1U32) { XlaBuilder builder(TestName()); auto a = ConstantR1<int32_t>(&builder, {42, 64}); ConvertElementType(a, U32); std::vector<uint32_t> expected = {42, 64}; ComputeAndCompareR1<uint32_t>(&builder, expected, {}); } TEST_F(ConvertTest, ConvertR1S32ToR1PRED) { XlaBuilder builder(TestName()); auto a = ConstantR1<int32_t>(&builder, {42, 0, -64}); ConvertElementType(a, PRED); std::array<bool, 3> expected = {true, false, true}; ComputeAndCompareR1<bool>(&builder, expected, {}); } TEST_F(ConvertTest, ConvertR1U32ToR1U32) { XlaBuilder builder(TestName()); auto a = ConstantR1<uint32_t>(&builder, {42, 64}); ConvertElementType(a, U32); std::vector<uint32_t> expected = {42, 64}; ComputeAndCompareR1<uint32_t>(&builder, expected, {}); } TEST_F(ConvertTest, ConvertR1U32ToR1S32) { XlaBuilder builder(TestName()); auto a = ConstantR1<uint32_t>(&builder, {42, 64}); ConvertElementType(a, S32); std::vector<int32_t> expected = {42, 64}; ComputeAndCompareR1<int32_t>(&builder, expected, {}); } TEST_F(ConvertTest, ConvertR1U32ToR1PRED) { XlaBuilder builder(TestName()); auto a = ConstantR1<uint32_t>(&builder, {42, 0, 64}); ConvertElementType(a, PRED); std::array<bool, 3> expected = {true, false, true}; ComputeAndCompareR1<bool>(&builder, expected, {}); } TEST_F(ConvertTest, ConvertR1F32ToR1F32) { XlaBuilder builder(TestName()); auto a = ConstantR1<float>(&builder, {42.0f, 64.0f}); ConvertElementType(a, F32); std::vector<float> expected = {42.0f, 64.0f}; ComputeAndCompareR1<float>(&builder, expected, {}); } TEST_F(ConvertTest, ConvertR1F32ToR1PRED) { XlaBuilder builder(TestName()); auto a = ConstantR1<float>(&builder, {42.0f, 0.0f, 64.0f}); ConvertElementType(a, PRED); std::array<bool, 3> expected = {true, false, true}; ComputeAndCompareR1<bool>(&builder, expected, {}); } TEST_F(ConvertTest, ConvertR1S32ToR1F32) { XlaBuilder builder(TestName()); auto a = ConstantR1<int32_t>(&builder, {42, 64}); ConvertElementType(a, F32); std::vector<float> expected = {42.0f, 64.0f}; ComputeAndCompareR1<float>(&builder, expected, {}); } TEST_F(ConvertTest, ConvertR1PREDToR1S32) { XlaBuilder builder(TestName()); auto a = ConstantR1<bool>(&builder, {true, false, true}); ConvertElementType(a, S32); std::vector<int32_t> expected = {1, 0, 1}; ComputeAndCompareR1<int32_t>(&builder, expected, {}); } TEST_F(ConvertTest, ConvertR1PREDToR1U32) { XlaBuilder builder(TestName()); auto a = ConstantR1<bool>(&builder, {true, false, true}); ConvertElementType(a, U32); std::vector<uint32_t> expected = {1, 0, 1}; ComputeAndCompareR1<uint32_t>(&builder, expected, {}); } TEST_F(ConvertTest, ConvertR1PREDToR1F32) { XlaBuilder builder(TestName()); auto a = ConstantR1<bool>(&builder, {true, false, true}); ConvertElementType(a, F32); std::vector<float> expected = {1., 0., 1.}; ComputeAndCompareR1<float>(&builder, expected, {}); } XLA_TEST_F(ConvertTest, ConvertR1S0S32ToR1S0F32) { XlaBuilder builder(TestName()); auto a = ConstantR1<int32_t>(&builder, {}); ConvertElementType(a, F32); std::vector<float> expected = {}; ComputeAndCompareR1<float>(&builder, expected, {}); } TEST_F(ConvertTest, ConvertR1F32ToR1S32) { XlaBuilder builder(TestName()); auto a = ConstantR1<float>(&builder, {42.6, 64.4}); ConvertElementType(a, S32); std::vector<int32_t> expected = {42, 64}; ComputeAndCompareR1<int32_t>(&builder, expected, {}); } XLA_TEST_F(ConvertTest, ConvertR1S64ToR1F32) { XlaBuilder builder(TestName()); std::vector<int64_t> arg{ -9223371216516022272, -2, -1, -0x7FFFFFFF, -0x80000000, 0, 1, 2, 1073742145, 1073742656, 0x7FFFFFFF, 0x80000000, 826720496944058148, 4296062029846194332, 0x0007FB72E4000000LL, 0x0007FB72E4000001LL, 0x0007FB72E6000000LL, 0x0007FB72E7000000LL, 0x0007FB72E7FFFFFFLL, 0x0007FB72E8000000LL, 0x0007FB72E8000001LL, 0x0007FB72EA000000LL, 0x0007FB72EB000000LL, 0x0007FB72EBFFFFFFLL, 0x0007FB72EC000000LL, 0x7FFFFF0000000000LL, 0x7FFFFF8000000000LL, 0x7FFFFFFFFFFFFF00, static_cast<int64_t>(0xFFFFFFFFFFFFFFFF), static_cast<int64_t>(0x0000f234e67e0001LL), static_cast<int64_t>(0x8000000000000000), static_cast<int64_t>(0x8000000000000000LL), static_cast<int64_t>(0x8000000000000001LL), static_cast<int64_t>(0x8000008000000000LL), static_cast<int64_t>(0x8000010000000000LL), }; Literal arg_literal = LiteralUtil::CreateR1<int64_t>({arg}); auto arg_param = Parameter(&builder, 0, arg_literal.shape(), "arg_param"); std::unique_ptr<GlobalData> arg_data = client_->TransferToServer(arg_literal).value(); ConvertElementType(arg_param, F32); std::vector<float> expected(arg.size()); for (int64_t i = 0; i < arg.size(); ++i) { expected[i] = static_cast<float>(arg[i]); } ComputeAndCompareR1<float>(&builder, expected, {arg_data.get()}); } XLA_TEST_F(ConvertTest, ConvertR1U32ToR1F32) { XlaBuilder builder(TestName()); std::vector<uint32_t> arg{0, 1, 0x1000, 0x7fffffff, 0x80000000, 0x80000001, 0x80000002, 0x80000003, 0x80000080, 0x80000081, 0x80000082, 0xFFFFFFFF}; Literal arg_literal = LiteralUtil::CreateR1<uint32_t>({arg}); auto arg_param = Parameter(&builder, 0, arg_literal.shape(), "arg_param"); std::unique_ptr<GlobalData> arg_data = client_->TransferToServer(arg_literal).value(); ConvertElementType(arg_param, F32); std::vector<float> expected(arg.size()); for (int64_t i = 0; i < arg.size(); ++i) { expected[i] = static_cast<float>(arg[i]); } ComputeAndCompareR1<float>(&builder, expected, {arg_data.get()}); } XLA_TEST_F(ConvertTest, ConvertR1F32ToR1U32) { XlaBuilder builder(TestName()); std::vector<float> arg{0.0f, 1.0f, 16777216.0f, 16777218.0f, 2147483647.0f, 4294967040.0f}; Literal arg_literal = LiteralUtil::CreateR1<float>({arg}); auto arg_param = Parameter(&builder, 0, arg_literal.shape(), "arg_param"); std::unique_ptr<GlobalData> arg_data = client_->TransferToServer(arg_literal).value(); ConvertElementType(arg_param, U32); std::vector<uint32_t> expected(arg.size()); for (int64_t i = 0; i < arg.size(); ++i) { expected[i] = static_cast<uint32_t>(arg[i]); } ComputeAndCompareR1<uint32_t>(&builder, expected, {arg_data.get()}); } XLA_TEST_F(ConvertTest, ConvertR1U32ToR1S64) { XlaBuilder builder(TestName()); std::vector<uint32_t> arg{0, 1, 0x1000, 0x7fffffff, 0x80000082, 0xFFFFFFFF}; Literal arg_literal = LiteralUtil::CreateR1<uint32_t>({arg}); auto arg_param = Parameter(&builder, 0, arg_literal.shape(), "arg_param"); std::unique_ptr<GlobalData> arg_data = client_->TransferToServer(arg_literal).value(); ConvertElementType(arg_param, S64); std::vector<int64_t> expected(arg.size()); for (int64_t i = 0; i < arg.size(); ++i) { expected[i] = static_cast<int64_t>(arg[i]); } ComputeAndCompareR1<int64_t>(&builder, expected, {arg_data.get()}); } XLA_TEST_F(ConvertTest, ConvertR1S32ToR1S64) { XlaBuilder builder(TestName()); std::vector<int32_t> arg{0, 1, 0x1000, -1, -0x1000}; Literal arg_literal = LiteralUtil::CreateR1<int32_t>({arg}); auto arg_param = Parameter(&builder, 0, arg_literal.shape(), "arg_param"); std::unique_ptr<GlobalData> arg_data = client_->TransferToServer(arg_literal).value(); ConvertElementType(arg_param, S64); std::vector<int64_t> expected(arg.size()); for (int64_t i = 0; i < arg.size(); ++i) { expected[i] = static_cast<int64_t>(arg[i]); } ComputeAndCompareR1<int64_t>(&builder, expected, {arg_data.get()}); } XLA_TEST_F(ConvertTest, ConvertR1F32ToR1S64) { XlaBuilder builder(TestName()); std::vector<float> arg{0.0f, 0.5f, 0.99f, 1.0f, 1.5f, 1.99f, 2.0f, 2.01f, 2147483648.f, -0.5f, -0.99f, -1.0f, -1.5f, -1.99f, -2.0f, -2.01f, 9223371487098961920.f, 9223370937343148032.f, -9223371487098961920.f, -9223370937343148032.f}; Literal arg_literal = LiteralUtil::CreateR1<float>({arg}); auto arg_param = Parameter(&builder, 0, arg_literal.shape(), "arg_param"); std::unique_ptr<GlobalData> arg_data = client_->TransferToServer(arg_literal).value(); ConvertElementType(arg_param, S64); std::vector<int64_t> expected(arg.size()); for (int64_t i = 0; i < arg.size(); ++i) { expected[i] = static_cast<int64_t>(arg[i]); } ComputeAndCompareR1<int64_t>(&builder, expected, {arg_data.get()}); } XLA_TEST_F(ConvertTest, ConvertR1U8ToR1F32) { XlaBuilder builder(TestName()); auto a = ConstantR1<uint8_t>(&builder, {32, 64}); ConvertElementType(a, F32); std::vector<float> expected = {32.0, 64.0}; ComputeAndCompareR1<float>(&builder, expected, {}); } XLA_TEST_F(ConvertTest, ConvertR1U8ToR1S32) { XlaBuilder builder(TestName()); auto a = ConstantR1<uint8_t>(&builder, {32, 64}); ConvertElementType(a, S32); std::vector<int32_t> expected = {32, 64}; ComputeAndCompareR1<int32_t>(&builder, expected, {}); } XLA_TEST_F(ConvertTest, ConvertR1U8ToR1U32) { XlaBuilder builder(TestName()); auto a = ConstantR1<uint8_t>(&builder, {32, 64}); ConvertElementType(a, U32); std::vector<uint32_t> expected = {32, 64}; ComputeAndCompareR1<uint32_t>(&builder, expected, {}); } XLA_TEST_F(ConvertTest, ConvertR1F32ToR1F64) { XlaBuilder builder(TestName()); auto a = ConstantR1<float>(&builder, {32.0f, 64.0f}); ConvertElementType(a, F64); std::vector<double> expected = {32.0, 64.0}; ComputeAndCompareR1<double>(&builder, expected, {}); } XLA_TEST_F(ConvertTest, ConvertR1F64ToR1F32) { XlaBuilder builder(TestName()); auto a = ConstantR1<double>(&builder, {32.0, 64.0}); ConvertElementType(a, F32); std::vector<float> expected = {32.0f, 64.0f}; ComputeAndCompareR1<float>(&builder, expected, {}); } TEST_F(ConvertTest, ConvertS32Extremes) { XlaBuilder builder(TestName()); auto a = ConstantR1<int32_t>(&builder, {std::numeric_limits<int32_t>::min(), std::numeric_limits<int32_t>::max()}); ConvertElementType(a, F32); std::vector<float> expected = { static_cast<float>(std::numeric_limits<int32_t>::min()), static_cast<float>(std::numeric_limits<int32_t>::max())}; ComputeAndCompareR1<float>(&builder, expected, {}, ErrorSpec(0.0001)); } TEST_F(ConvertTest, ConvertMapToS32) { XlaBuilder builder(TestName()); auto b = builder.CreateSubBuilder("convert"); auto param = Parameter(b.get(), 0, ShapeUtil::MakeShape(F32, {}), "in"); ConvertElementType(param, S32); auto a = ConstantR1<float>(&builder, {42.0f, 64.0f}); Map(&builder, {a}, b->BuildAndNoteError(), {0}); std::vector<int32_t> expected = {42, 64}; ComputeAndCompareR1<int32_t>(&builder, expected, {}); } TEST_F(ConvertTest, ConvertMapToF32) { XlaBuilder builder(TestName()); auto b = builder.CreateSubBuilder("convert"); auto param = Parameter(b.get(), 0, ShapeUtil::MakeShape(S32, {}), "in"); ConvertElementType(param, F32); auto a = ConstantR1<int32_t>(&builder, {42, 64}); Map(&builder, {a}, b->BuildAndNoteError(), {0}); std::vector<float> expected = {42.0f, 64.0f}; ComputeAndCompareR1<float>(&builder, expected, {}, ErrorSpec(0.0001)); } TEST_F(ConvertTest, ConvertReshape) { XlaBuilder builder(TestName()); auto input = ConstantR1<int32_t>(&builder, {42}); auto reshape = Reshape(input, {0}, {}); ConvertElementType(reshape, F32); ComputeAndCompareR0<float>(&builder, 42.0f, {}, ErrorSpec(0.0001)); } std::vector<float> GetInterestingF16ConversionTestCases() { float infinity = std::numeric_limits<float>::infinity(); float half_min_positive_normal = absl::bit_cast<float, uint32_t>(0x38800000); float half_max_subnormal = absl::bit_cast<float, uint32_t>(0x387fc000); float half_min_positive_subnormal = absl::bit_cast<float, uint32_t>(0x33800000); float half_max = 65504.0f; std::vector<float> test_cases( {-infinity, -(half_max * 2 + 1), -half_max, -42.0f, -1.0f, -half_min_positive_subnormal, -half_max_subnormal, -half_min_positive_normal, -0.0f, 0.0f, half_min_positive_subnormal, half_max_subnormal, half_min_positive_normal, 1.0f, 42.0f, half_max, (half_max * 2 + 1), infinity}); return test_cases; } XLA_TEST_F(ConvertTest, ConvertR1F16ToR1F32) { std::vector<float> test_cases = GetInterestingF16ConversionTestCases(); std::vector<half> input; absl::c_transform(test_cases, std::back_inserter(input), [](float f) { return Eigen::half(f); }); std::vector<float> expected_output; absl::c_transform(input, std::back_inserter(expected_output), [](Eigen::half h) { return static_cast<float>(h); }); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<GlobalData> dot_lhs_handle, client_->TransferToServer(LiteralUtil::CreateR1<half>(input))); XlaBuilder builder(TestName()); ConvertElementType( Parameter(&builder, 0, ShapeUtil::MakeShape(F16, {static_cast<int64_t>(input.size())}), "param"), F32); ComputeAndCompareR1<float>(&builder, expected_output, {dot_lhs_handle.get()}); } XLA_TEST_F(ConvertTest, ConvertR1F32ToR1F16) { std::vector<float> input = GetInterestingF16ConversionTestCases(); std::vector<half> expected_output; absl::c_transform(input, std::back_inserter(expected_output), [](float f) { return Eigen::half(f); }); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<GlobalData> dot_lhs_handle, client_->TransferToServer(LiteralUtil::CreateR1<float>(input))); XlaBuilder builder(TestName()); ConvertElementType( Parameter(&builder, 0, ShapeUtil::MakeShape(F32, {static_cast<int64_t>(input.size())}), "param"), F16); ComputeAndCompareR1<half>(&builder, expected_output, {dot_lhs_handle.get()}); } XLA_TEST_F(ConvertTest, ConvertC64ToC64) { XlaBuilder builder(TestName()); std::vector<complex64> x = {{42.0f, 64.0f}}; ConvertElementType(ConstantR1<complex64>(&builder, x), C64); ComputeAndCompareR1<complex64>(&builder, x, {}, ErrorSpec(0.0001)); } XLA_TEST_F(ConvertTest, ConvertS64S64) { XlaBuilder builder(TestName()); std::vector<int64_t> x = {{-42, 64}}; ConvertElementType(ConstantR1<int64_t>(&builder, x), S64); ComputeAndCompareR1<int64_t>(&builder, x, {}); } XLA_TEST_F(ConvertTest, ConvertU64U64) { XlaBuilder builder(TestName()); std::vector<uint64_t> x = {{42, 64}}; ConvertElementType(ConstantR1<uint64_t>(&builder, x), U64); ComputeAndCompareR1<uint64_t>(&builder, x, {}); } XLA_TEST_F(ConvertTest, ConvertU64S64) { XlaBuilder builder(TestName()); std::vector<uint64_t> unsigned_x = {{42, UINT64_MAX}}; ConvertElementType(ConstantR1<uint64_t>(&builder, unsigned_x), S64); std::vector<int64_t> signed_x = {{42, -1}}; ComputeAndCompareR1<int64_t>(&builder, signed_x, {}); } XLA_TEST_F(ConvertTest, ConvertS64U64) { XlaBuilder builder(TestName()); std::vector<int64_t> signed_x = {{42, -1, INT64_MIN}}; ConvertElementType(ConstantR1<int64_t>(&builder, signed_x), U64); std::vector<uint64_t> unsigned_x = {{42, UINT64_MAX, IPow<uint64_t>(2, 63)}}; ComputeAndCompareR1<uint64_t>(&builder, unsigned_x, {}); } TEST_F(ConvertTest, ConvertR1S4ToR1S8) { XlaBuilder builder(TestName()); auto a = ConstantR1<s4>(&builder, {s4(0), s4(1), s4(2), s4(-8)}); ConvertElementType(a, S8); std::vector<int8_t> expected = {0, 1, 2, -8}; ComputeAndCompareR1<int8_t>(&builder, expected, {}); } TEST_F(ConvertTest, ConvertR1S4ParameterToR1S8) { XlaBuilder builder(TestName()); Literal arg_literal = LiteralUtil::CreateR1<s4>({s4(0), s4(1), s4(2), s4(-8)}); auto arg_param = Parameter(&builder, 0, arg_literal.shape(), "arg_param"); std::unique_ptr<GlobalData> arg_data = client_->TransferToServer(arg_literal).value(); ConvertElementType(arg_param, S8); std::vector<int8_t> expected = {0, 1, 2, -8}; ComputeAndCompareR1<int8_t>(&builder, expected, {arg_data.get()}); } TEST_F(ConvertTest, ConvertR1U4ToR1U8) { XlaBuilder builder(TestName()); auto a = ConstantR1<u4>(&builder, {u4(0), u4(1), u4(2), u4(15)}); ConvertElementType(a, U8); std::vector<uint8_t> expected = {0, 1, 2, 15}; ComputeAndCompareR1<uint8_t>(&builder, expected, {}); } TEST_F(ConvertTest, ConvertR1U4ParameterToR1U8) { XlaBuilder builder(TestName()); Literal arg_literal = LiteralUtil::CreateR1<u4>({u4(0), u4(1), u4(2), u4(15)}); auto arg_param = Parameter(&builder, 0, arg_literal.shape(), "arg_param"); std::unique_ptr<GlobalData> arg_data = client_->TransferToServer(arg_literal).value(); ConvertElementType(arg_param, U8); std::vector<uint8_t> expected = {0, 1, 2, 15}; ComputeAndCompareR1<uint8_t>(&builder, expected, {arg_data.get()}); } TEST_F(ConvertTest, ConvertR1S8ToR1S4) { XlaBuilder builder(TestName()); auto a = ConstantR1<int8_t>(&builder, {0, 1, 2, -8}); ConvertElementType(a, S4); std::vector<s4> expected = {s4(0), s4(1), s4(2), s4(-8)}; ComputeAndCompareR1<s4>(&builder, expected, {}); } TEST_F(ConvertTest, ConvertR1U8ToR1U4) { XlaBuilder builder(TestName()); auto a = ConstantR1<uint8_t>(&builder, {0, 1, 2, 15}); ConvertElementType(a, U4); std::vector<u4> expected = {u4(0), u4(1), u4(2), u4(15)}; ComputeAndCompareR1<u4>(&builder, expected, {}); } TEST_F(ConvertTest, ConvertR1S8ToR1S4Roundtrip) { XlaBuilder builder(TestName()); auto a = ConstantR1<int8_t>(&builder, {0, 8, -8, -9, 127, -128}); auto b = ConvertElementType(a, S4); ConvertElementType(b, S8); std::vector<int8_t> expected = {0, -8, -8, 7, -1, 0}; ComputeAndCompareR1<int8_t>(&builder, expected, {}); } TEST_F(ConvertTest, ConvertR1F32ToR1S4) { XlaBuilder builder(TestName()); auto a = ConstantR1<float>(&builder, {0., 2.5, -2.5}); ConvertElementType(a, S4); std::vector<s4> expected = {s4(0), s4(2), s4(-2)}; ComputeAndCompareR1<s4>(&builder, expected, {}); } TEST_F(ConvertTest, ConvertR1S4ToR1F32) { XlaBuilder builder(TestName()); auto a = ConstantR1<s4>(&builder, {s4(0), s4(1), s4(2), s4(-8)}); ConvertElementType(a, F32); std::vector<float> expected = {0, 1, 2, -8}; ComputeAndCompareR1<float>(&builder, expected, {}); } XLA_TEST_F(ConvertTest, ConvertBF16F32) { XlaBuilder builder(TestName()); std::vector<bfloat16> all_bfloats(1 << 16); for (int i = 0; i < all_bfloats.size(); ++i) { all_bfloats[i] = Eigen::numext::bit_cast<bfloat16>(static_cast<uint16_t>(i)); } std::vector<uint32_t> expected(all_bfloats.size()); for (int i = 0; i < expected.size(); ++i) { expected[i] = (1U << 16) * i; } xla::XlaOp all_bfloats_bf16 = ConstantR1<bfloat16>(&builder, all_bfloats); xla::XlaOp all_bfloats_f32 = ConvertElementType(all_bfloats_bf16, F32); BitcastConvertType(all_bfloats_f32, U32); TF_ASSERT_OK_AND_ASSIGN(const auto results, ExecuteAndTransfer(&builder, {})); for (int i = 0; i < expected.size(); ++i) { const auto result = results.Get<uint32_t>({i}); const auto correct = expected[i]; if (all_bfloats[i] != 0.0f && all_bfloats[i] < std::numeric_limits<float>::min()) { const float same_signed_zero = Eigen::numext::signbit(all_bfloats[i]) ? -0.0f : 0.0f; if (result != correct) { EXPECT_EQ(result, absl::bit_cast<uint32_t>(same_signed_zero)); } } else if (Eigen::numext::isnan(all_bfloats[i])) { ASSERT_TRUE(std::isnan(absl::bit_cast<float>(correct))); EXPECT_TRUE(std::isnan(absl::bit_cast<float>(result))); } else { EXPECT_EQ(result, correct); } } } XLA_TEST_F(ConvertTest, ConvertF16F8e5m2Roundtrip) { XlaBuilder builder(TestName()); float nan = std::numeric_limits<float>::quiet_NaN(); float inf = std::numeric_limits<float>::infinity(); struct TestCase { float input; float expected_roundtrip; } test_cases[] = { {0.0, 0.0}, {1.0, 1.0}, {-1.0, -1.0}, {nan, nan}, {inf, inf}, {0x1.2p0, 0x1p0}, {0x1.6p0, 0x1.8p0}, {0x1.Cp15, 0x1.Cp15}, {0x1.DFCp15, 0x1.Cp15}, {0x1.Ep15, inf}, {0x1p16, inf}, {0x1p-14, 0x1p-14}, {0x1.8p-15, 0x1.8p-15}, }; std::vector<Eigen::half> inputs; std::vector<Eigen::half> expected_roundtrip; for (auto test_case : test_cases) { inputs.push_back(Eigen::half{test_case.input}); expected_roundtrip.push_back(Eigen::half{test_case.expected_roundtrip}); } auto f8 = ConvertElementType(ConstantR1<Eigen::half>(&builder, inputs), F8E5M2); ConvertElementType(f8, F16); const bool saved = execution_options_.debug_options().xla_allow_excess_precision(); execution_options_.mutable_debug_options()->set_xla_allow_excess_precision( false); ComputeAndCompareR1<Eigen::half>(&builder, expected_roundtrip, {}); execution_options_.mutable_debug_options()->set_xla_allow_excess_precision( saved); } XLA_TEST_F(ConvertTest, ConvertF8e5m2F16RoundtripExhaustive) { XlaBuilder builder(TestName()); std::vector<tsl::float8_e5m2> all_f8; for (int i = 0; i < 256; i++) { all_f8.push_back( Eigen::numext::bit_cast<tsl::float8_e5m2>(static_cast<uint8_t>(i))); } xla::XlaOp all_f8_as_f8 = ConstantR1<tsl::float8_e5m2>(&builder, all_f8); xla::XlaOp all_f8_as_f16 = ConvertElementType(all_f8_as_f8, F16); ConvertElementType(all_f8_as_f16, F8E5M2); ComputeAndCompareR1<tsl::float8_e5m2>(&builder, all_f8, {}, ErrorSpec(0.)); } XLA_TEST_F(ConvertTest, ConvertF8e5m2F16RoundtripExhaustive2) { XlaBuilder builder(this->TestName()); std::vector<Eigen::half> inputs; for (int i = 0; i < 65536; i++) { inputs.push_back( Eigen::numext::bit_cast<Eigen::half>(static_cast<uint16_t>(i))); } xla::XlaOp all_f16_to_f8 = ConstantR1<Eigen::half>(&builder, inputs); ConvertElementType(all_f16_to_f8, F8E5M2); this->ComputeAndCompare(&builder, {}, ErrorSpec(0.)); } XLA_TEST_F(ConvertTest, ConvertF8e5m2BF16RoundtripExhaustive3) { XlaBuilder builder(this->TestName()); std::vector<bfloat16> inputs; for (int i = 0; i < 65536; i++) { inputs.push_back( Eigen::numext::bit_cast<bfloat16>(static_cast<uint16_t>(i))); } xla::XlaOp all_bf16_to_f8 = ConstantR1<bfloat16>(&builder, inputs); ConvertElementType(all_bf16_to_f8, F8E5M2); this->ComputeAndCompare(&builder, {}, ErrorSpec(0.)); } XLA_TEST_F(ConvertTest, ConvertF16F8e4m3fnRoundtrip) { XlaBuilder builder(TestName()); float nan = std::numeric_limits<float>::quiet_NaN(); float inf = std::numeric_limits<float>::infinity(); struct TestCase { float input; float expected_roundtrip; } test_cases[] = { {0.0, 0.0}, {-0.0, -0.0}, {1.0, 1.0}, {-1.0, -1.0}, {inf, nan}, {0x1.1p0, 0x1p0}, {0x1.3p0, 0x1.4p0}, {0x1.Cp8, 0x1.Cp8}, {0x1.Dp8, 0x1.Cp8}, {0x1.D04p8, nan}, {0x1p9, nan}, {0x1p-6, 0x1p-6}, {0x1.Ep-7, 0x1p-6}, {0x1.0p-8, 0x1.0p-8}, {0x1.4p-8, 0x1.0p-8}, {0x1.Cp-8, 0x1.0p-7}, {0x1.5p-7, 0x1.4p-7}, {0x1.3p-7, 0x1.4p-7}, {0x1p-10, 0}, {0x1.004p-10, 0x1p-9}, {0x1.DFCp-7, 0x1.Cp-7}, }; std::vector<Eigen::half> inputs; std::vector<Eigen::half> expected_roundtrip; for (auto test_case : test_cases) { inputs.push_back(Eigen::half{test_case.input}); expected_roundtrip.push_back(Eigen::half{test_case.expected_roundtrip}); } auto f8 = ConvertElementType(ConstantR1<Eigen::half>(&builder, inputs), F8E4M3FN); ConvertElementType(f8, F16); const bool saved = execution_options_.debug_options().xla_allow_excess_precision(); execution_options_.mutable_debug_options()->set_xla_allow_excess_precision( false); ComputeAndCompareR1<Eigen::half>(&builder, expected_roundtrip, {}); execution_options_.mutable_debug_options()->set_xla_allow_excess_precision( saved); } XLA_TEST_F(ConvertTest, ConvertF8e4m3fnF16RoundtripExhaustive) { XlaBuilder builder(TestName()); std::vector<tsl::float8_e4m3fn> all_f8; for (int i = 0; i < 256; i++) { all_f8.push_back( Eigen::numext::bit_cast<tsl::float8_e4m3fn>(static_cast<uint8_t>(i))); } xla::XlaOp all_f8_as_f8 = ConstantR1<tsl::float8_e4m3fn>(&builder, all_f8); xla::XlaOp all_f8_as_f16 = ConvertElementType(all_f8_as_f8, F16); ConvertElementType(all_f8_as_f16, F8E4M3FN); ComputeAndCompare(&builder, {}, ErrorSpec(0.)); } XLA_TEST_F(ConvertTest, ConvertF8e4m3fnF16RoundtripExhaustive2) { XlaBuilder builder(TestName()); std::vector<float> all_f8; for (int i = 0; i < 256; i++) { all_f8.push_back(static_cast<float>( Eigen::numext::bit_cast<tsl::float8_e4m3fn>(static_cast<uint8_t>(i)))); } xla::XlaOp all_f8_as_f32 = ConstantR1<float>(&builder, all_f8); ConvertElementType(all_f8_as_f32, F8E4M3FN); ComputeAndCompare(&builder, {}, ErrorSpec(0.)); } XLA_TEST_F(ConvertTest, ConvertF8e4m3fnF16RoundtripExhaustive3) { XlaBuilder builder(TestName()); std::vector<tsl::float8_e4m3fn> all_f8; for (int i = 0; i < 256; i++) { all_f8.push_back( Eigen::numext::bit_cast<tsl::float8_e4m3fn>(static_cast<uint8_t>(i))); } xla::XlaOp all_f8_as_f8 = ConstantR1<tsl::float8_e4m3fn>(&builder, all_f8); ConvertElementType(all_f8_as_f8, F32); ComputeAndCompare(&builder, {}, ErrorSpec(0.)); } XLA_TEST_F(ConvertTest, ConvertF8e4m3fnF16RoundtripExhaustive4) { XlaBuilder builder(this->TestName()); std::vector<Eigen::half> inputs; for (int i = 0; i < 65536; i++) { inputs.push_back( Eigen::numext::bit_cast<Eigen::half>(static_cast<uint16_t>(i))); } xla::XlaOp all_f16_to_f8 = ConstantR1<Eigen::half>(&builder, inputs); ConvertElementType(all_f16_to_f8, F8E4M3FN); this->ComputeAndCompare(&builder, {}, ErrorSpec(0.)); } XLA_TEST_F(ConvertTest, ConvertF8e4m3fnBF16RoundtripExhaustive5) { XlaBuilder builder(this->TestName()); std::vector<bfloat16> inputs; for (int i = 0; i < 65536; i++) { inputs.push_back( Eigen::numext::bit_cast<bfloat16>(static_cast<uint16_t>(i))); } xla::XlaOp all_bf16_to_f8 = ConstantR1<bfloat16>(&builder, inputs); ConvertElementType(all_bf16_to_f8, F8E4M3FN); this->ComputeAndCompare(&builder, {}, ErrorSpec(0.)); } XLA_TEST_F(ConvertTest, ConvertF16F8e4m3b11fnuzRoundtrip) { XlaBuilder builder(TestName()); float nan = std::numeric_limits<float>::quiet_NaN(); float inf = std::numeric_limits<float>::infinity(); struct TestCase { float input; float expected_roundtrip; } test_cases[] = { {0.0, 0.0}, {-0.0, 0.0}, {1.0, 1.0}, {-1.0, -1.0}, {inf, nan}, {0x1.1p0, 0x1p0}, {0x1.3p0, 0x1.4p0}, {0x1.Ep4, 0x1.Ep4}, {0x1.EFCp4, 0x1.Ep4}, {0x1.Fp4, nan}, {0x1p5, nan}, {0x1p-10, 0x1p-10}, {0x1.Ep-11, 0x1p-10}, {0x1.0p-12, 0x1.0p-12}, {0x1.4p-12, 0x1.0p-12}, {0x1.Cp-12, 0x1.0p-11}, {0x1.5p-11, 0x1.4p-11}, {0x1.3p-11, 0x1.4p-11}, {0x1p-14, 0}, {0x1.004p-14, 0x1p-13}, {0x1.DFCp-11, 0x1.Cp-11}, }; std::vector<Eigen::half> inputs; std::vector<Eigen::half> expected_roundtrip; for (auto test_case : test_cases) { inputs.push_back(Eigen::half{test_case.input}); expected_roundtrip.push_back(Eigen::half{test_case.expected
999
cpp
tensorflow/tensorflow
winograd_util
tensorflow/lite/delegates/gpu/common/winograd_util.cc
tensorflow/lite/delegates/gpu/common/winograd_util_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_COMMON_WINOGRAD_UTIL_H_ #define TENSORFLOW_LITE_DELEGATES_GPU_COMMON_WINOGRAD_UTIL_H_ #include <vector> #include "tensorflow/lite/delegates/gpu/common/data_type.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/shape.h" #include "tensorflow/lite/delegates/gpu/common/tensor.h" namespace tflite { namespace gpu { std::vector<float> AtMatrixForWinograd4x4To6x6(); std::vector<float> BtMatrixForWinograd4x4To6x6(); void RearrangeWeightsToWinograd4x4To6x6Weights( const Tensor<OHWI, DataType::FLOAT32>& src_weights, Tensor<OHWI, DataType::FLOAT32>* dst_weights); bool IsSuitableForWinograd4x4To6x6(const Convolution2DAttributes& attr); } } #endif #include "tensorflow/lite/delegates/gpu/common/winograd_util.h" #include <cmath> #include <vector> #include "tensorflow/lite/delegates/gpu/common/data_type.h" #include "tensorflow/lite/delegates/gpu/common/shape.h" #include "tensorflow/lite/delegates/gpu/common/tensor.h" namespace tflite { namespace gpu { namespace { std::vector<float> GetTransposedMatrixForWinograd(int width, int height) { const float kDelta = std::sqrt(2.0f) / 2.0f; std::vector<float> px(width); px[0] = 0.0f; const int points_count = (width - 1) / 2; for (int i = 0; i < points_count; ++i) { px[i * 2 + 1] = kDelta * (i + 1.0f); px[i * 2 + 2] = -kDelta * (i + 1.0f); } px[width - 1] = 1.0f; std::vector<float> py(width, 1.0f); py[width - 1] = 0.0f; std::vector<float> result(height * width); for (int y = 0; y < width; ++y) { for (int x = 0; x < height; ++x) { result[x * width + y] = std::pow(px[y], 1.0f * x) * std::pow(py[y], (height - 1.0f) - x); } } return result; } std::vector<float> GetInversedMatrixForWinograd(int rank) { auto matrix = GetTransposedMatrixForWinograd(rank, rank); std::vector<float> inverted(rank * rank, 0.0f); for (int i = 0; i < rank; ++i) { inverted[i * rank + i] = 1.0f; } for (int i = 1; i < rank - 1; ++i) { float inv_t = 1.0f / matrix[i * rank + i]; for (int x = i; x < rank; ++x) { matrix[i * rank + x] *= inv_t; } for (int x = 0; x < rank; ++x) { inverted[i * rank + x] *= inv_t; } for (int y = 0; y < rank; ++y) { if (y == i) continue; float t = matrix[y * rank + i]; for (int x = i; x < rank; ++x) { matrix[y * rank + x] -= t * matrix[i * rank + x]; } for (int x = 0; x < rank; ++x) { inverted[y * rank + x] -= t * inverted[i * rank + x]; } } } return inverted; } std::vector<float> Multiply(const std::vector<float>& a_mat, const std::vector<float>& b_mat, int m, int n, int k) { std::vector<float> result(m * k); for (int y = 0; y < m; ++y) { for (int x = 0; x < k; ++x) { float sum = 0.0f; for (int i = 0; i < n; ++i) { sum += a_mat[y * n + i] * b_mat[i * k + x]; } result[y * k + x] = sum; } } return result; } } std::vector<float> AtMatrixForWinograd4x4To6x6() { return GetTransposedMatrixForWinograd(6, 4); } std::vector<float> BtMatrixForWinograd4x4To6x6() { return GetInversedMatrixForWinograd(6); } void RearrangeWeightsToWinograd4x4To6x6Weights( const Tensor<OHWI, DataType::FLOAT32>& src_weights, Tensor<OHWI, DataType::FLOAT32>* dst_weights) { OHWI dst_shape; dst_shape.o = src_weights.shape.o; dst_shape.h = 6; dst_shape.w = 6; dst_shape.i = src_weights.shape.i; dst_weights->shape = dst_shape; dst_weights->data.resize(dst_shape.DimensionsProduct()); auto gt_mat = GetTransposedMatrixForWinograd(6, 3); std::vector<float> g_mat(gt_mat.size()); for (int y = 0; y < 3; ++y) { for (int x = 0; x < 6; ++x) { g_mat[x * 3 + y] = gt_mat[y * 6 + x]; } } for (int d = 0; d < src_weights.shape.o; ++d) { for (int s = 0; s < src_weights.shape.i; ++s) { std::vector<float> in_vals(9); for (int y = 0; y < 3; ++y) { for (int x = 0; x < 3; ++x) { const int f_index = src_weights.shape.LinearIndex({d, y, x, s}); in_vals[y * 3 + x] = src_weights.data[f_index]; } } auto temp_vals = Multiply(g_mat, in_vals, 6, 3, 3); auto out_vals = Multiply(temp_vals, gt_mat, 6, 3, 6); for (int y = 0; y < 6; ++y) { for (int x = 0; x < 6; ++x) { const int f_index = dst_shape.LinearIndex({d, y, x, s}); dst_weights->data[f_index] = out_vals[y * 6 + x]; } } } } } bool IsSuitableForWinograd4x4To6x6(const Convolution2DAttributes& attr) { return attr.weights.shape.w == 3 && attr.weights.shape.h == 3 && attr.dilations == HW(1, 1) && attr.strides == HW(1, 1) && attr.groups == 1; } } }
#include "tensorflow/lite/delegates/gpu/common/winograd_util.h" #include <gmock/gmock.h> #include <gtest/gtest.h> namespace tflite { namespace gpu { TEST(Winograd, CorrectAttributesFor4x4To6x6) { Convolution2DAttributes attr; attr.padding.prepended = HW(1, 2); attr.padding.appended = HW(0, 1); attr.strides = HW(1, 1); attr.dilations = HW(1, 1); attr.weights.shape = OHWI(1, 3, 3, 1); EXPECT_TRUE(IsSuitableForWinograd4x4To6x6(attr)); } TEST(Winograd, IncorrectAttributesFor4x4To6x6) { Convolution2DAttributes attr; attr.padding.prepended = HW(1, 2); attr.padding.appended = HW(0, 1); attr.strides = HW(1, 1); attr.dilations = HW(1, 1); attr.weights.shape = OHWI(1, 2, 3, 1); EXPECT_FALSE(IsSuitableForWinograd4x4To6x6(attr)); } } }