ID
int64
0
2.65k
Language
stringclasses
1 value
Repository Name
stringclasses
21 values
File Name
stringlengths
2
48
File Path in Repository
stringlengths
10
111
File Path for Unit Test
stringlengths
16
116
Code
stringlengths
66
1.91M
Unit Test - (Ground Truth)
stringlengths
40
32.1k
800
cpp
tensorflow/tensorflow
model_cmdline_flags
tensorflow/lite/toco/model_cmdline_flags.cc
tensorflow/lite/toco/model_cmdline_flags_test.cc
#ifndef TENSORFLOW_LITE_TOCO_MODEL_CMDLINE_FLAGS_H_ #define TENSORFLOW_LITE_TOCO_MODEL_CMDLINE_FLAGS_H_ #include <string> #include <unordered_map> #include <vector> #include "tensorflow/lite/toco/args.h" #include "tensorflow/lite/toco/model_flags.pb.h" #include "tensorflow/lite/toco/types.pb.h" namespace toco { bool ParseModelFlagsFromCommandLineFlags( int* argc, char* argv[], std::string* msg, ParsedModelFlags* parsed_model_flags_ptr); void ReadModelFlagsFromCommandLineFlags( const ParsedModelFlags& parsed_model_flags, ModelFlags* model_flags); void ParseModelFlagsOrDie(int* argc, char* argv[]); ParsedModelFlags* GlobalParsedModelFlags(); } #endif #include "tensorflow/lite/toco/model_cmdline_flags.h" #include <string> #include <vector> #include "absl/strings/numbers.h" #include "absl/strings/str_join.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "absl/strings/strip.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/util/command_line_flags.h" #include "tensorflow/lite/toco/args.h" #include "tensorflow/lite/toco/toco_graphviz_dump_options.h" #include "tensorflow/lite/toco/toco_port.h" #ifdef PLATFORM_GOOGLE #include "base/commandlineflags.h" #endif namespace toco { bool ParseModelFlagsFromCommandLineFlags( int* argc, char* argv[], std::string* msg, ParsedModelFlags* parsed_model_flags_ptr) { ParsedModelFlags& parsed_flags = *parsed_model_flags_ptr; using tensorflow::Flag; std::vector<tensorflow::Flag> flags = { Flag("input_array", parsed_flags.input_array.bind(), parsed_flags.input_array.default_value(), "Deprecated: use --input_arrays instead. Name of the input array. " "If not specified, will try to read " "that information from the input file."), Flag("input_arrays", parsed_flags.input_arrays.bind(), parsed_flags.input_arrays.default_value(), "Names of the input arrays, comma-separated. If not specified, " "will try to read that information from the input file."), Flag("output_array", parsed_flags.output_array.bind(), parsed_flags.output_array.default_value(), "Deprecated: use --output_arrays instead. Name of the output array, " "when specifying a unique output array. " "If not specified, will try to read that information from the " "input file."), Flag("output_arrays", parsed_flags.output_arrays.bind(), parsed_flags.output_arrays.default_value(), "Names of the output arrays, comma-separated. " "If not specified, will try to read " "that information from the input file."), Flag("input_shape", parsed_flags.input_shape.bind(), parsed_flags.input_shape.default_value(), "Deprecated: use --input_shapes instead. Input array shape. For " "many models the shape takes the form " "batch size, input array height, input array width, input array " "depth."), Flag("input_shapes", parsed_flags.input_shapes.bind(), parsed_flags.input_shapes.default_value(), "Shapes corresponding to --input_arrays, colon-separated. For " "many models each shape takes the form batch size, input array " "height, input array width, input array depth."), Flag("batch_size", parsed_flags.batch_size.bind(), parsed_flags.batch_size.default_value(), "Deprecated. Batch size for the model. Replaces the first dimension " "of an input size array if undefined. Use only with SavedModels " "when --input_shapes flag is not specified. Always use " "--input_shapes flag with frozen graphs."), Flag("input_data_type", parsed_flags.input_data_type.bind(), parsed_flags.input_data_type.default_value(), "Deprecated: use --input_data_types instead. Input array type, if " "not already provided in the graph. " "Typically needs to be specified when passing arbitrary arrays " "to --input_arrays."), Flag("input_data_types", parsed_flags.input_data_types.bind(), parsed_flags.input_data_types.default_value(), "Input arrays types, comma-separated, if not already provided in " "the graph. " "Typically needs to be specified when passing arbitrary arrays " "to --input_arrays."), Flag("mean_value", parsed_flags.mean_value.bind(), parsed_flags.mean_value.default_value(), "Deprecated: use --mean_values instead. mean_value parameter for " "image models, used to compute input " "activations from input pixel data."), Flag("mean_values", parsed_flags.mean_values.bind(), parsed_flags.mean_values.default_value(), "mean_values parameter for image models, comma-separated list of " "doubles, used to compute input activations from input pixel " "data. Each entry in the list should match an entry in " "--input_arrays."), Flag("std_value", parsed_flags.std_value.bind(), parsed_flags.std_value.default_value(), "Deprecated: use --std_values instead. std_value parameter for " "image models, used to compute input " "activations from input pixel data."), Flag("std_values", parsed_flags.std_values.bind(), parsed_flags.std_values.default_value(), "std_value parameter for image models, comma-separated list of " "doubles, used to compute input activations from input pixel " "data. Each entry in the list should match an entry in " "--input_arrays."), Flag("variable_batch", parsed_flags.variable_batch.bind(), parsed_flags.variable_batch.default_value(), "If true, the model accepts an arbitrary batch size. Mutually " "exclusive " "with the 'batch' field: at most one of these two fields can be " "set."), Flag("rnn_states", parsed_flags.rnn_states.bind(), parsed_flags.rnn_states.default_value(), ""), Flag("model_checks", parsed_flags.model_checks.bind(), parsed_flags.model_checks.default_value(), "A list of model checks to be applied to verify the form of the " "model. Applied after the graph transformations after import."), Flag("dump_graphviz", parsed_flags.dump_graphviz.bind(), parsed_flags.dump_graphviz.default_value(), "Dump graphviz during LogDump call. If string is non-empty then " "it defines path to dump, otherwise will skip dumping."), Flag("dump_graphviz_video", parsed_flags.dump_graphviz_video.bind(), parsed_flags.dump_graphviz_video.default_value(), "If true, will dump graphviz at each " "graph transformation, which may be used to generate a video."), Flag("conversion_summary_dir", parsed_flags.conversion_summary_dir.bind(), parsed_flags.conversion_summary_dir.default_value(), "Local file directory to store the conversion logs."), Flag("allow_nonexistent_arrays", parsed_flags.allow_nonexistent_arrays.bind(), parsed_flags.allow_nonexistent_arrays.default_value(), "If true, will allow passing inexistent arrays in --input_arrays " "and --output_arrays. This makes little sense, is only useful to " "more easily get graph visualizations."), Flag("allow_nonascii_arrays", parsed_flags.allow_nonascii_arrays.bind(), parsed_flags.allow_nonascii_arrays.default_value(), "If true, will allow passing non-ascii-printable characters in " "--input_arrays and --output_arrays. By default (if false), only " "ascii printable characters are allowed, i.e. character codes " "ranging from 32 to 127. This is disallowed by default so as to " "catch common copy-and-paste issues where invisible unicode " "characters are unwittingly added to these strings."), Flag( "arrays_extra_info_file", parsed_flags.arrays_extra_info_file.bind(), parsed_flags.arrays_extra_info_file.default_value(), "Path to an optional file containing a serialized ArraysExtraInfo " "proto allowing to pass extra information about arrays not specified " "in the input model file, such as extra MinMax information."), Flag("model_flags_file", parsed_flags.model_flags_file.bind(), parsed_flags.model_flags_file.default_value(), "Path to an optional file containing a serialized ModelFlags proto. " "Options specified on the command line will override the values in " "the proto."), Flag("change_concat_input_ranges", parsed_flags.change_concat_input_ranges.bind(), parsed_flags.change_concat_input_ranges.default_value(), "Boolean to change the behavior of min/max ranges for inputs and" " output of the concat operators."), }; bool asked_for_help = *argc == 2 && (!strcmp(argv[1], "--help") || !strcmp(argv[1], "-help")); if (asked_for_help) { *msg += tensorflow::Flags::Usage(argv[0], flags); return false; } else { if (!tensorflow::Flags::Parse(argc, argv, flags)) return false; } auto& dump_options = *GraphVizDumpOptions::singleton(); dump_options.dump_graphviz_video = parsed_flags.dump_graphviz_video.value(); dump_options.dump_graphviz = parsed_flags.dump_graphviz.value(); return true; } void ReadModelFlagsFromCommandLineFlags( const ParsedModelFlags& parsed_model_flags, ModelFlags* model_flags) { toco::port::CheckInitGoogleIsDone("InitGoogle is not done yet"); if (parsed_model_flags.model_flags_file.specified()) { std::string model_flags_file_contents; QCHECK(port::file::GetContents(parsed_model_flags.model_flags_file.value(), &model_flags_file_contents, port::file::Defaults()) .ok()) << "Specified --model_flags_file=" << parsed_model_flags.model_flags_file.value() << " was not found or could not be read"; QCHECK(ParseFromStringEitherTextOrBinary(model_flags_file_contents, model_flags)) << "Specified --model_flags_file=" << parsed_model_flags.model_flags_file.value() << " could not be parsed"; } #ifdef PLATFORM_GOOGLE CHECK(!((base::WasPresentOnCommandLine("batch") && parsed_model_flags.variable_batch.specified()))) << "The --batch and --variable_batch flags are mutually exclusive."; #endif CHECK(!(parsed_model_flags.output_array.specified() && parsed_model_flags.output_arrays.specified())) << "The --output_array and --vs flags are mutually exclusive."; if (parsed_model_flags.output_array.specified()) { model_flags->add_output_arrays(parsed_model_flags.output_array.value()); } if (parsed_model_flags.output_arrays.specified()) { std::vector<std::string> output_arrays = absl::StrSplit(parsed_model_flags.output_arrays.value(), ','); for (const std::string& output_array : output_arrays) { model_flags->add_output_arrays(output_array); } } const bool uses_single_input_flags = parsed_model_flags.input_array.specified() || parsed_model_flags.mean_value.specified() || parsed_model_flags.std_value.specified() || parsed_model_flags.input_shape.specified(); const bool uses_multi_input_flags = parsed_model_flags.input_arrays.specified() || parsed_model_flags.mean_values.specified() || parsed_model_flags.std_values.specified() || parsed_model_flags.input_shapes.specified(); QCHECK(!(uses_single_input_flags && uses_multi_input_flags)) << "Use either the singular-form input flags (--input_array, " "--input_shape, --mean_value, --std_value) or the plural form input " "flags (--input_arrays, --input_shapes, --mean_values, --std_values), " "but not both forms within the same command line."; if (parsed_model_flags.input_array.specified()) { QCHECK(uses_single_input_flags); model_flags->add_input_arrays()->set_name( parsed_model_flags.input_array.value()); } if (parsed_model_flags.input_arrays.specified()) { QCHECK(uses_multi_input_flags); for (const auto& input_array : absl::StrSplit(parsed_model_flags.input_arrays.value(), ',')) { model_flags->add_input_arrays()->set_name(std::string(input_array)); } } if (parsed_model_flags.mean_value.specified()) { QCHECK(uses_single_input_flags); model_flags->mutable_input_arrays(0)->set_mean_value( parsed_model_flags.mean_value.value()); } if (parsed_model_flags.mean_values.specified()) { QCHECK(uses_multi_input_flags); std::vector<std::string> mean_values = absl::StrSplit(parsed_model_flags.mean_values.value(), ','); QCHECK(static_cast<int>(mean_values.size()) == model_flags->input_arrays_size()); for (size_t i = 0; i < mean_values.size(); ++i) { char* last = nullptr; model_flags->mutable_input_arrays(i)->set_mean_value( strtod(mean_values[i].data(), &last)); CHECK(last != mean_values[i].data()); } } if (parsed_model_flags.std_value.specified()) { QCHECK(uses_single_input_flags); model_flags->mutable_input_arrays(0)->set_std_value( parsed_model_flags.std_value.value()); } if (parsed_model_flags.std_values.specified()) { QCHECK(uses_multi_input_flags); std::vector<std::string> std_values = absl::StrSplit(parsed_model_flags.std_values.value(), ','); QCHECK(static_cast<int>(std_values.size()) == model_flags->input_arrays_size()); for (size_t i = 0; i < std_values.size(); ++i) { char* last = nullptr; model_flags->mutable_input_arrays(i)->set_std_value( strtod(std_values[i].data(), &last)); CHECK(last != std_values[i].data()); } } if (parsed_model_flags.input_data_type.specified()) { QCHECK(uses_single_input_flags); IODataType type; QCHECK(IODataType_Parse(parsed_model_flags.input_data_type.value(), &type)); model_flags->mutable_input_arrays(0)->set_data_type(type); } if (parsed_model_flags.input_data_types.specified()) { QCHECK(uses_multi_input_flags); std::vector<std::string> input_data_types = absl::StrSplit(parsed_model_flags.input_data_types.value(), ','); QCHECK(static_cast<int>(input_data_types.size()) == model_flags->input_arrays_size()); for (size_t i = 0; i < input_data_types.size(); ++i) { IODataType type; QCHECK(IODataType_Parse(input_data_types[i], &type)); model_flags->mutable_input_arrays(i)->set_data_type(type); } } if (parsed_model_flags.input_shape.specified()) { QCHECK(uses_single_input_flags); if (model_flags->input_arrays().empty()) { model_flags->add_input_arrays(); } auto* shape = model_flags->mutable_input_arrays(0)->mutable_shape(); shape->clear_dims(); const IntList& list = parsed_model_flags.input_shape.value(); for (auto& dim : list.elements) { shape->add_dims(dim); } } if (parsed_model_flags.input_shapes.specified()) { QCHECK(uses_multi_input_flags); std::vector<std::string> input_shapes = absl::StrSplit(parsed_model_flags.input_shapes.value(), ':'); QCHECK(static_cast<int>(input_shapes.size()) == model_flags->input_arrays_size()); for (size_t i = 0; i < input_shapes.size(); ++i) { auto* shape = model_flags->mutable_input_arrays(i)->mutable_shape(); shape->clear_dims(); if (input_shapes[i].empty()) { continue; } for (const auto& dim_str : absl::StrSplit(input_shapes[i], ',')) { int size; CHECK(absl::SimpleAtoi(dim_str, &size)) << "Failed to parse input_shape: " << input_shapes[i]; shape->add_dims(size); } } } #define READ_MODEL_FLAG(name) \ do { \ if (parsed_model_flags.name.specified()) { \ model_flags->set_##name(parsed_model_flags.name.value()); \ } \ } while (false) READ_MODEL_FLAG(variable_batch); #undef READ_MODEL_FLAG for (const auto& element : parsed_model_flags.rnn_states.value().elements) { auto* rnn_state_proto = model_flags->add_rnn_states(); for (const auto& kv_pair : element) { const std::string& key = kv_pair.first; const std::string& value = kv_pair.second; if (key == "state_array") { rnn_state_proto->set_state_array(value); } else if (key == "back_edge_source_array") { rnn_state_proto->set_back_edge_source_array(value); } else if (key == "size") { int32_t size = 0; CHECK(absl::SimpleAtoi(value, &size)); CHECK_GT(size, 0); rnn_state_proto->set_size(size); } else if (key == "num_dims") { int32_t size = 0; CHECK(absl::SimpleAtoi(value, &size)); CHECK_GT(size, 0); rnn_state_proto->set_num_dims(size); } else { LOG(FATAL) << "Unknown key '" << key << "' in --rnn_states"; } } CHECK(rnn_state_proto->has_state_array() && rnn_state_proto->has_back_edge_source_array() && rnn_state_proto->has_size()) << "--rnn_states must include state_array, back_edge_source_array and " "size."; } for (const auto& element : parsed_model_flags.model_checks.value().elements) { auto* model_check_proto = model_flags->add_model_checks(); for (const auto& kv_pair : element) { const std::string& key = kv_pair.first; const std::string& value = kv_pair.second; if (key == "count_type") { model_check_proto->set_count_type(value); } else if (key == "count_min") { int32_t count = 0; CHECK(absl::SimpleAtoi(value, &count)); CHECK_GE(count, -1); model_check_proto->set_count_min(count); } else if (key == "count_max") { int32_t count = 0; CHECK(absl::SimpleAtoi(value, &count)); CHECK_GE(count, -1); model_check_proto->set_count_max(count); } else { LOG(FATAL) << "Unknown key '" << key << "' in --model_checks"; } } } if (!model_flags->has_allow_nonascii_arrays()) { model_flags->set_allow_nonascii_arrays( parsed_model_flags.allow_nonascii_arrays.value()); } if (!model_flags->has_allow_nonexistent_arrays()) { model_flags->set_allow_nonexistent_arrays( parsed_model_flags.allow_nonexistent_arrays.value()); } if (!model_flags->has_change_concat_input_ranges()) { model_flags->set_change_concat_input_ranges( parsed_model_flags.change_concat_input_ranges.value()); } if (parsed_model_flags.arrays_extra_info_file.specified()) { std::string arrays_extra_info_file_contents; CHECK(port::file::GetContents( parsed_model_flags.arrays_extra_info_file.value(), &arrays_extra_info_file_contents, port::file::Defaults()) .ok()); ParseFromStringEitherTextOrBinary(arrays_extra_info_file_contents, model_flags->mutable_arrays_extra_info()); } } ParsedModelFlags* UncheckedGlobalParsedModelFlags(bool must_already_exist) { static auto* flags = [must_already_exist]() { if (must_already_exist) { fprintf(stderr, __FILE__ ":" "GlobalParsedModelFlags() used without initialization\n"); fflush(stderr); abort(); } return new toco::ParsedModelFlags; }(); return flags; } ParsedModelFlags* GlobalParsedModelFlags() { return UncheckedGlobalParsedModelFlags(true); } void ParseModelFlagsOrDie(int* argc, char* argv[]) { auto* flags = UncheckedGlobalParsedModelFlags(false); std::string msg; bool model_success = toco::ParseModelFlagsFromCommandLineFlags(argc, argv, &msg, flags); if (!model_success || !msg.empty()) { fprintf(stderr, "%s", msg.c_str()); fflush(stderr); abort(); } } }
#include <string> #include <unordered_map> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/testing/util.h" #include "tensorflow/lite/toco/args.h" #include "tensorflow/lite/toco/model_cmdline_flags.h" namespace toco { namespace { TEST(ModelCmdlineFlagsTest, ParseArgsStringMapList) { int args_count = 3; const char* args[] = { "toco", "--input_arrays=input_1", "--rnn_states={state_array:rnn/BasicLSTMCellZeroState/zeros," "back_edge_source_array:rnn/basic_lstm_cell/Add_1,size:4}," "{state_array:rnn/BasicLSTMCellZeroState/zeros_1," "back_edge_source_array:rnn/basic_lstm_cell/Mul_2,size:4}", nullptr}; std::string expected_input_arrays = "input_1"; std::vector<std::unordered_map<std::string, std::string>> expected_rnn_states; expected_rnn_states.push_back( {{"state_array", "rnn/BasicLSTMCellZeroState/zeros"}, {"back_edge_source_array", "rnn/basic_lstm_cell/Add_1"}, {"size", "4"}}); expected_rnn_states.push_back( {{"state_array", "rnn/BasicLSTMCellZeroState/zeros_1"}, {"back_edge_source_array", "rnn/basic_lstm_cell/Mul_2"}, {"size", "4"}}); std::string message; ParsedModelFlags result_flags; EXPECT_TRUE(ParseModelFlagsFromCommandLineFlags( &args_count, const_cast<char**>(args), &message, &result_flags)); EXPECT_EQ(result_flags.input_arrays.value(), expected_input_arrays); EXPECT_EQ(result_flags.rnn_states.value().elements, expected_rnn_states); } } } int main(int argc, char** argv) { ::tflite::LogToStderr(); ::testing::InitGoogleTest(&argc, argv); ::toco::port::InitGoogleWasDoneElsewhere(); return RUN_ALL_TESTS(); }
801
cpp
tensorflow/tensorflow
import_tensorflow
tensorflow/lite/toco/import_tensorflow.cc
tensorflow/lite/toco/import_tensorflow_test.cc
#ifndef TENSORFLOW_LITE_TOCO_IMPORT_TENSORFLOW_H_ #define TENSORFLOW_LITE_TOCO_IMPORT_TENSORFLOW_H_ #include <memory> #include <string> #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/lite/toco/model.h" #include "tensorflow/lite/toco/model_flags.pb.h" namespace toco { struct TensorFlowImportFlags { bool drop_control_dependency = false; bool import_all_ops_as_unsupported = false; }; std::unique_ptr<Model> ImportTensorFlowGraphDef( const ModelFlags& model_flags, const TensorFlowImportFlags& tf_import_flags, const tensorflow::GraphDef& tf_graph); std::unique_ptr<Model> ImportTensorFlowGraphDef( const ModelFlags& model_flags, const TensorFlowImportFlags& tf_import_flags, const std::string& input_file_contents); } #endif #include "tensorflow/lite/toco/import_tensorflow.h" #include <memory> #include <string> #include <utility> #include <vector> #include "google/protobuf/map.h" #include "google/protobuf/text_format.h" #include "absl/memory/memory.h" #include "absl/strings/match.h" #include "absl/strings/numbers.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_split.h" #include "absl/strings/strip.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/process_function_library_runtime.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/public/version.h" #include "tensorflow/lite/toco/model.h" #include "tensorflow/lite/toco/model_flags.pb.h" #include "tensorflow/lite/toco/tensorflow_graph_matching/resolve_cluster.h" #include "tensorflow/lite/toco/tensorflow_util.h" #include "tensorflow/lite/toco/tooling_util.h" using tensorflow::AttrValue; using tensorflow::DT_BOOL; using tensorflow::DT_COMPLEX64; using tensorflow::DT_FLOAT; using tensorflow::DT_INT16; using tensorflow::DT_INT32; using tensorflow::DT_INT64; using tensorflow::DT_QUINT8; using tensorflow::DT_STRING; using tensorflow::DT_UINT16; using tensorflow::DT_UINT32; using tensorflow::DT_UINT8; using tensorflow::GraphDef; using tensorflow::NodeDef; using tensorflow::TensorProto; using tensorflow::TensorShapeProto; namespace toco { namespace { bool HasAttr(const NodeDef& node, const std::string& attr_name) { return node.attr().count(attr_name) > 0; } bool HasWildcardDimension(const TensorShapeProto& shape) { for (const auto& dim : shape.dim()) { if (dim.size() == -1) return true; } return false; } const std::string& GetStringAttr(const NodeDef& node, const std::string& attr_name) { CHECK(HasAttr(node, attr_name)); const auto& attr = node.attr().at(attr_name); CHECK_EQ(attr.value_case(), AttrValue::kS); return attr.s(); } int64_t GetIntAttr(const NodeDef& node, const std::string& attr_name) { CHECK(HasAttr(node, attr_name)) << attr_name << " not found in:\n" << node.DebugString(); const auto& attr = node.attr().at(attr_name); CHECK_EQ(attr.value_case(), AttrValue::kI); return attr.i(); } float GetFloatAttr(const NodeDef& node, const std::string& attr_name) { CHECK(HasAttr(node, attr_name)); const auto& attr = node.attr().at(attr_name); CHECK_EQ(attr.value_case(), AttrValue::kF); return attr.f(); } bool GetBoolAttr(const NodeDef& node, const std::string& attr_name) { CHECK(HasAttr(node, attr_name)); const auto& attr = node.attr().at(attr_name); CHECK_EQ(attr.value_case(), AttrValue::kB); return attr.b(); } tensorflow::DataType GetDataTypeAttr(const NodeDef& node, const std::string& attr_name) { CHECK(HasAttr(node, attr_name)); const auto& attr = node.attr().at(attr_name); CHECK_EQ(attr.value_case(), AttrValue::kType); return attr.type(); } const TensorShapeProto& GetShapeAttr(const NodeDef& node, const std::string& attr_name) { CHECK(HasAttr(node, attr_name)); const auto& attr = node.attr().at(attr_name); CHECK_EQ(attr.value_case(), AttrValue::kShape); return attr.shape(); } const TensorProto& GetTensorAttr(const NodeDef& node, const std::string& attr_name) { CHECK(HasAttr(node, attr_name)) << "No attr named '" << attr_name << "'"; const auto& attr = node.attr().at(attr_name); CHECK_EQ(attr.value_case(), AttrValue::kTensor); return attr.tensor(); } const AttrValue::ListValue& GetListAttr(const NodeDef& node, const std::string& attr_name) { CHECK(HasAttr(node, attr_name)); const auto& attr = node.attr().at(attr_name); CHECK_EQ(attr.value_case(), AttrValue::kList); return attr.list(); } tensorflow::Status CheckOptionalAttr(const NodeDef& node, const std::string& attr_name, const std::string& expected_value) { if (HasAttr(node, attr_name)) { const std::string& value = GetStringAttr(node, attr_name); if (value != expected_value) { return tensorflow::errors::InvalidArgument( "Unexpected value for attribute '" + attr_name + "'. Expected '" + expected_value + "'"); } } return absl::OkStatus(); } tensorflow::Status CheckOptionalAttr( const NodeDef& node, const std::string& attr_name, const tensorflow::DataType& expected_value) { if (HasAttr(node, attr_name)) { const tensorflow::DataType& value = GetDataTypeAttr(node, attr_name); if (value != expected_value) { return tensorflow::errors::InvalidArgument( "Unexpected value for attribute '" + attr_name + "'. Expected '" + tensorflow::DataType_Name(expected_value) + "'"); } } return absl::OkStatus(); } template <typename T1, typename T2> tensorflow::Status ExpectValue(const T1& v1, const T2& v2, const std::string& description) { if (v1 == v2) return absl::OkStatus(); return tensorflow::errors::InvalidArgument(absl::StrCat( "Unexpected ", description, ": got ", v1, ", expected ", v2)); } ArrayDataType ConvertDataType(tensorflow::DataType dtype) { if (dtype == DT_UINT8) return ArrayDataType::kUint8; else if (dtype == DT_FLOAT) return ArrayDataType::kFloat; else if (dtype == DT_BOOL) return ArrayDataType::kBool; else if (dtype == DT_INT16) return ArrayDataType::kInt16; else if (dtype == DT_UINT16) return ArrayDataType::kUint16; else if (dtype == DT_INT32) return ArrayDataType::kInt32; else if (dtype == DT_UINT32) return ArrayDataType::kUint32; else if (dtype == DT_INT64) return ArrayDataType::kInt64; else if (dtype == DT_STRING) return ArrayDataType::kString; else if (dtype == DT_COMPLEX64) return ArrayDataType::kComplex64; else LOG(INFO) << "Unsupported data type in placeholder op: " << dtype; return ArrayDataType::kNone; } tensorflow::Status ImportShape( const TFLITE_PROTO_NS::RepeatedPtrField<tensorflow::TensorShapeProto_Dim>& input_dims, int* input_flat_size, Shape* shape) { std::vector<int> input_dims_only_sizes; bool zero_sized_shape = false; for (auto& d : input_dims) { if (d.size() > std::numeric_limits<int>::max()) { return tensorflow::errors::InvalidArgument("Shape element overflows"); } if (d.size() == 0) { zero_sized_shape = true; } input_dims_only_sizes.push_back(d.size()); } if (zero_sized_shape) { shape->mutable_dims()->clear(); if (input_flat_size != nullptr) *input_flat_size = 0; return absl::OkStatus(); } *shape->mutable_dims() = input_dims_only_sizes; if (input_flat_size == nullptr) return absl::OkStatus(); return NumElements(input_dims_only_sizes, input_flat_size); } template <typename T> struct TensorTraits; template <> struct TensorTraits<float> { static int size(const TensorProto& p) { return p.float_val_size(); } static float get(const TensorProto& p, int i) { return p.float_val(i); } static std::string accessor_name() { return "float_val"; } static std::string type_name() { return "float"; } static void CopyFromContent(const TensorProto& p, std::vector<float>* data) { toco::port::CopyToBuffer(p.tensor_content(), reinterpret_cast<char*>(data->data())); } }; template <> struct TensorTraits<uint8_t> { static int size(const TensorProto& p) { return p.int_val_size(); } static uint8_t get(const TensorProto& p, int i) { return p.int_val(i); } static std::string accessor_name() { return "int_val"; } static std::string type_name() { return "uint8"; } static void CopyFromContent(const TensorProto& p, std::vector<uint8_t>* data) { toco::port::CopyToBuffer(p.tensor_content(), reinterpret_cast<char*>(data->data())); } }; template <> struct TensorTraits<std::complex<float>> { static int size(const TensorProto& p) { return p.scomplex_val_size() / 2; } static std::complex<float> get(const TensorProto& p, int i) { return std::complex<float>(p.scomplex_val(2 * i), p.scomplex_val(2 * i + 1)); } static std::string accessor_name() { return "scomplex_val"; } static std::string type_name() { return "complex64"; } static void CopyFromContent(const TensorProto& p, std::vector<std::complex<float>>* data) { toco::port::CopyToBuffer(p.tensor_content(), reinterpret_cast<char*>(data->data())); } }; template <> struct TensorTraits<int32> { static int size(const TensorProto& p) { return p.int_val_size(); } static int32 get(const TensorProto& p, int i) { return p.int_val(i); } static std::string accessor_name() { return "int_val"; } static std::string type_name() { return "int32"; } static void CopyFromContent(const TensorProto& p, std::vector<int32>* data) { toco::port::CopyToBuffer(p.tensor_content(), reinterpret_cast<char*>(data->data())); } }; template <> struct TensorTraits<uint32> { static int size(const TensorProto& p) { return p.uint32_val_size(); } static int32 get(const TensorProto& p, int i) { return p.uint32_val(i); } static std::string accessor_name() { return "uint32_val"; } static std::string type_name() { return "uint32"; } static void CopyFromContent(const TensorProto& p, std::vector<uint32>* data) { toco::port::CopyToBuffer(p.tensor_content(), reinterpret_cast<char*>(data->data())); } }; template <> struct TensorTraits<int64_t> { static int size(const TensorProto& p) { return p.int64_val_size(); } static int64_t get(const TensorProto& p, int i) { return p.int64_val(i); } static std::string accessor_name() { return "int64_val"; } static std::string type_name() { return "int64"; } static void CopyFromContent(const TensorProto& p, std::vector<int64_t>* data) { toco::port::CopyToBuffer(p.tensor_content(), reinterpret_cast<char*>(data->data())); } }; template <> struct TensorTraits<bool> { static int size(const TensorProto& p) { return p.bool_val_size(); } static bool get(const TensorProto& p, int i) { return p.bool_val(i); } static std::string accessor_name() { return "bool_val"; } static std::string type_name() { return "bool"; } static void CopyFromContent(const TensorProto& p, std::vector<bool>* data) { std::vector<char> buf(p.tensor_content().size()); toco::port::CopyToBuffer(p.tensor_content(), buf.data()); for (int i = 0; i < p.tensor_content().size(); i++) { (*data)[i] = static_cast<bool>(buf[i]); } } }; template <typename T> tensorflow::Status ImportTensorData(const TensorProto& input_tensor, int input_flat_size, std::vector<T>* output_data) { CHECK_GE(output_data->size(), input_flat_size); int num_elements_in_tensor = TensorTraits<T>::size(input_tensor); if (num_elements_in_tensor == input_flat_size) { for (int i = 0; i < num_elements_in_tensor; i++) { (*output_data)[i] = TensorTraits<T>::get(input_tensor, i); } } else if (input_tensor.tensor_content().size() == input_flat_size * sizeof(T)) { TensorTraits<T>::CopyFromContent(input_tensor, output_data); } else if (num_elements_in_tensor >= 0 && num_elements_in_tensor < input_flat_size) { int i = 0; for (; i < num_elements_in_tensor; ++i) { (*output_data)[i] = TensorTraits<T>::get(input_tensor, i); } auto last = i == 0 ? T(0) : (*output_data)[i - 1]; for (; i < input_flat_size; ++i) { (*output_data)[i] = last; } } else { std::string accessor_name = TensorTraits<T>::accessor_name(); std::string type_name = TensorTraits<T>::type_name(); return tensorflow::errors::InvalidArgument( absl::StrCat("Neither input_content (", input_tensor.tensor_content().size() / sizeof(T), ") nor ", accessor_name, " (", num_elements_in_tensor, ") have the right dimensions (", input_flat_size, ") for this ", type_name, " tensor")); } return absl::OkStatus(); } tensorflow::Status ImportFloatArray(const TensorProto& input_tensor, Array* output_array) { CHECK_EQ(input_tensor.dtype(), DT_FLOAT); const auto& input_shape = input_tensor.tensor_shape(); CHECK_LE(input_shape.dim_size(), 6); int input_flat_size; auto status = ImportShape(input_shape.dim(), &input_flat_size, output_array->mutable_shape()); if (!status.ok()) return status; auto& output_float_data = output_array->GetMutableBuffer<ArrayDataType::kFloat>().data; output_float_data.resize(RequiredBufferSizeForShape(output_array->shape()), 0.f); return ImportTensorData<float>(input_tensor, input_flat_size, &output_float_data); } tensorflow::Status ImportComplex64Array(const TensorProto& input_tensor, Array* output_array) { CHECK_EQ(input_tensor.dtype(), DT_COMPLEX64); const auto& input_shape = input_tensor.tensor_shape(); CHECK_LE(input_shape.dim_size(), 4); int input_flat_size; auto status = ImportShape(input_shape.dim(), &input_flat_size, output_array->mutable_shape()); if (!status.ok()) return status; auto& output_complex_data = output_array->GetMutableBuffer<ArrayDataType::kComplex64>().data; output_complex_data.resize(RequiredBufferSizeForShape(output_array->shape()), std::complex<float>(0.f, 0.f)); return ImportTensorData<std::complex<float>>(input_tensor, input_flat_size, &output_complex_data); } tensorflow::Status ImportQuint8Array(const TensorProto& input_tensor, Array* output_array) { CHECK_EQ(input_tensor.dtype(), DT_QUINT8); const auto& input_shape = input_tensor.tensor_shape(); CHECK_LE(input_shape.dim_size(), 6); int input_flat_size; auto status = ImportShape(input_shape.dim(), &input_flat_size, output_array->mutable_shape()); if (!status.ok()) return status; auto& output_int_data = output_array->GetMutableBuffer<ArrayDataType::kUint8>().data; output_int_data.resize(RequiredBufferSizeForShape(output_array->shape()), 0); return ImportTensorData<uint8_t>(input_tensor, input_flat_size, &output_int_data); } tensorflow::Status ImportInt32Array(const TensorProto& input_tensor, Array* output_array) { CHECK_EQ(input_tensor.dtype(), DT_INT32); const auto& input_shape = input_tensor.tensor_shape(); CHECK_LE(input_shape.dim_size(), 6); int input_flat_size; auto status = ImportShape(input_shape.dim(), &input_flat_size, output_array->mutable_shape()); if (!status.ok()) return status; auto& output_int_data = output_array->GetMutableBuffer<ArrayDataType::kInt32>().data; output_int_data.resize(RequiredBufferSizeForShape(output_array->shape()), 0); return ImportTensorData<int32>(input_tensor, input_flat_size, &output_int_data); } tensorflow::Status ImportUint32Array(const TensorProto& input_tensor, Array* output_array) { CHECK_EQ(input_tensor.dtype(), DT_UINT32); const auto& input_shape = input_tensor.tensor_shape(); CHECK_LE(input_shape.dim_size(), 6); int input_flat_size; auto status = ImportShape(input_shape.dim(), &input_flat_size, output_array->mutable_shape()); if (!status.ok()) return status; auto& output_int_data = output_array->GetMutableBuffer<ArrayDataType::kUint32>().data; output_int_data.resize(RequiredBufferSizeForShape(output_array->shape()), 0); return ImportTensorData<uint32>(input_tensor, input_flat_size, &output_int_data); } tensorflow::Status ImportInt64Array(const TensorProto& input_tensor, Array* output_array) { CHECK_EQ(input_tensor.dtype(), DT_INT64); const auto& input_shape = input_tensor.tensor_shape(); CHECK_LE(input_shape.dim_size(), 6); int input_flat_size; auto status = ImportShape(input_shape.dim(), &input_flat_size, output_array->mutable_shape()); if (!status.ok()) return status; auto& output_int_data = output_array->GetMutableBuffer<ArrayDataType::kInt64>().data; output_int_data.resize(RequiredBufferSizeForShape(output_array->shape()), 0); return ImportTensorData<int64_t>(input_tensor, input_flat_size, &output_int_data); } tensorflow::Status ImportBoolArray(const TensorProto& input_tensor, Array* output_array) { CHECK_EQ(input_tensor.dtype(), DT_BOOL); const auto& input_shape = input_tensor.tensor_shape(); CHECK_LE(input_shape.dim_size(), 6); int input_flat_size; auto status = ImportShape(input_shape.dim(), &input_flat_size, output_array->mutable_shape()); if (!status.ok()) return status; auto& output_bool_data = output_array->GetMutableBuffer<ArrayDataType::kBool>().data; output_bool_data.resize(RequiredBufferSizeForShape(output_array->shape()), false); status = ImportTensorData<bool>(input_tensor, input_flat_size, &output_bool_data); if (!status.ok() && output_bool_data.size() == 1) { output_bool_data[0] = false; return absl::OkStatus(); } return status; } tensorflow::Status ImportStringArray(const TensorProto& input_tensor, Array* output_array) { CHECK_EQ(input_tensor.dtype(), DT_STRING); const auto& input_shape = input_tensor.tensor_shape(); CHECK_LE(input_shape.dim_size(), 6); int input_flat_size; auto status = ImportShape(input_shape.dim(), &input_flat_size, output_array->mutable_shape()); if (!status.ok()) return status; if (input_flat_size != input_tensor.string_val_size()) { return tensorflow::errors::InvalidArgument( "Input_content string_val doesn't have the right dimensions " "for this string tensor"); } auto& output_string_data = output_array->GetMutableBuffer<ArrayDataType::kString>().data; output_string_data.resize(RequiredBufferSizeForShape(output_array->shape())); CHECK_GE(output_string_data.size(), input_flat_size); for (int i = 0; i < input_flat_size; ++i) { output_string_data[i] = input_tensor.string_val(i); } return absl::OkStatus(); } int GetInputsCount(const NodeDef& node, const TensorFlowImportFlags& tf_import_flags) { if (tf_import_flags.drop_control_dependency) { for (size_t i = 0; i < node.input_size(); ++i) { if (node.input(i)[0] == '^') { return i; } } } return node.input_size(); } tensorflow::Status CheckInputsCount( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, int expected_input_count) { if (GetInputsCount(node, tf_import_flags) != expected_input_count) { return tensorflow::errors::FailedPrecondition( node.op(), " node expects ", expected_input_count, " input(s) other than control dependencies: ", node.DebugString()); } return absl::OkStatus(); } template <ArrayDataType T> std::string CreateConstArray( Model* model, std::string const& name, std::vector<typename toco::DataType<T>> const& data) { std::string array_name = toco::AvailableArrayName(*model, name); auto& array = model->GetOrCreateArray(array_name); array.data_type = T; array.mutable_shape()->mutable_dims()->emplace_back( static_cast<int>(data.size())); array.GetMutableBuffer<T>().data = data; return array_name; } void RetainTensorFlowNodeDef(const NodeDef& node, Operator* op) { node.SerializeToString(&op->tensorflow_node_def); } void GetOutputNamesFromNodeDef(const NodeDef& node, const tensorflow::OpDef& op_def, TensorFlowUnsupportedOperator* op) { int next_output = 0; auto add_output = [&node, &next_output, op]() { if (next_output == 0) { op->outputs.push_back(node.name()); } else { op->outputs.push_back(absl::StrCat(node.name(), ":", next_output)); } ++next_output; }; for (int i = 0; i < op_def.output_arg_size(); ++i) { std::string multiples = op_def.output_arg(i).number_attr(); if (!multiples.empty()) { CHECK(HasAttr(node, multiples)) << "No attr named " << multiples; int num_outputs = GetIntAttr(node, multiples); for (int j = 0; j < num_outputs; ++j) { add_output(); } } else { std::string list = op_def.output_arg(i).type_list_attr(); if (!list.empty()) { CHECK(HasAttr(node, list)) << "No attr named " << list; const AttrValue::ListValue& list_value = GetListAttr(node, list); for (int j = 0; j < list_value.type_size(); ++j) { add_output(); } } else { add_output(); } } } } void GetOutputTypesFromNodeDef(const NodeDef& node, const tensorflow::OpDef& op_def, TensorFlowUnsupportedOperator* op) { auto add_type = [&node, op](tensorflow::DataType type) { if (type == tensorflow::DT_INVALID) { LOG(WARNING) << "Op node missing output type attribute: " << node.name(); op->output_data_types.clear(); } else { op->output_data_types.push_back(ConvertDataType(type)); } }; auto get_type = [&node](const tensorflow::OpDef::ArgDef& a) { if (a.type() != tensorflow::DT_INVALID) { return a.type(); } else if (HasAttr(node, a.type_attr())) { return GetDataTypeAttr(node, a.type_attr()); } else { return tensorflow::DT_INVALID; } }; for (int i = 0; i < op_def.output_arg_size(); ++i) { std::string multiples = op_def.output_arg(i).number_attr(); if (!multiples.empty()) { CHECK(HasAttr(node, multiples)) << "No attr named " << multiples; int num_outputs = GetIntAttr(node, multiples); auto type = get_type(op_def.output_arg(i)); for (int j = 0; j < num_outputs; ++j) { add_type(type); } } else { std::string list = op_def.output_arg(i).type_list_attr(); if (!list.empty()) { CHECK(HasAttr(node, list)) << "No attr named " << list; const AttrValue::ListValue& list_value = GetListAttr(node, list); for (int j = 0; j < list_value.type_size(); ++j) { add_type(list_value.type(j)); } } else { add_type(get_type(op_def.output_arg(i))); } } } } tensorflow::Status ConvertUnsupportedOperator( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model) { static constexpr char kAttrOutputQuantized[] = "_output_quantized"; static constexpr char kAttrOutputTypes[] = "_output_types"; static constexpr char kAttrOutputShapes[] = "_output_shapes"; static constexpr char kAttrSupportOutputTypeFloatInQuantizedOp[] = "_support_output_type_float_in_quantized_op"; LOG(INFO) << "Converting unsupported operation: " << node.op(); auto* op = new TensorFlowUnsupportedOperator; op->tensorflow_op = node.op(); RetainTensorFlowNodeDef(node, op); model->operators.emplace_back(op); const int num_inputs = GetInputsCount(node, tf_import_flags); for (int i = 0; i < num_inputs; ++i) { op->inputs.push_back(node.input(i)); } const tensorflow::OpDef* op_def = nullptr; if (tensorflow::OpRegistry::Global()->LookUpOpDef(node.op(), &op_def).ok()) { GetOutputNamesFromNodeDef(node, *op_def, op); } else { op->outputs.push_back(node.name()); } if (HasAttr(node, kAttrOutputQuantized)) { op->quantized = GetBoolAttr(node, kAttrOutputQuantized); } if (HasAttr(node, kAttrSupportOutputTypeFloatInQuantizedOp)) { op->support_output_type_float_in_quantized_op = GetBoolAttr(node, kAttrSupportOutputTypeFloatInQuantizedOp); } if (HasAttr(node, kAttrOutputTypes)) { const auto& output_types = GetListAttr(node, kAttrOutputTypes); for (int i = 0; i < output_types.type_size(); ++i) { op->output_data_types.push_back(ConvertDataType(output_types.type(i))); } } else if (HasAttr(node, "Tout")) { const auto& output_type = GetDataTypeAttr(node, "Tout"); op->output_data_types.push_back(ConvertDataType(output_type)); } else if (op_def != nullptr) { GetOutputTypesFromNodeDef(node, *op_def, op); } else { LOG(INFO) << "Unable to determine output type for op: " << node.op(); } if (HasAttr(node, kAttrOutputShapes)) { const auto& output_shapes = GetListAttr(node, kAttrOutputShapes); Shape output_shape; for (int i = 0; i < output_shapes.shape_size(); ++i) { const auto& shape = output_shapes.shape(i); if (HasWildcardDimension(shape)) { LOG(INFO) << "Skipping wildcard output shape(s) for node: " << node.name(); op->output_shapes.clear(); break; } const auto status = ImportShape(shape.dim(), nullptr, &output_shape); if (!status.ok()) { return status; } op->output_shapes.push_back(output_shape); } } return absl::OkStatus(); } tensorflow::Status ConvertConstOperator( const N
#include "tensorflow/lite/toco/import_tensorflow.h" #include <memory> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/lite/testing/util.h" #include "tensorflow/lite/toco/toco_port.h" namespace toco { using tensorflow::AttrValue; using tensorflow::DT_BOOL; using tensorflow::DT_COMPLEX64; using tensorflow::DT_FLOAT; using tensorflow::DT_INT32; using tensorflow::DT_INT64; using tensorflow::DT_INVALID; using tensorflow::DT_QUINT8; using tensorflow::DT_STRING; using tensorflow::DT_UINT16; using tensorflow::DT_UINT32; using tensorflow::NodeDef; using tensorflow::Status; using ::testing::ElementsAre; namespace internal { using ConverterType = tensorflow::Status (*)( const NodeDef& node, const TensorFlowImportFlags& tf_import_flags, const ModelFlags& model_flags, Model* model); using ConverterMapType = std::unordered_map<std::string, ConverterType>; ConverterMapType GetTensorFlowNodeConverterMap(); ConverterMapType GetTensorFlowNodeConverterMapForFlex(); Status ImportTensorFlowNode(const NodeDef&, const TensorFlowImportFlags&, const ModelFlags& model_flags, Model*, const ConverterMapType&); } namespace { Status ImportNode(const NodeDef& node, Model* model) { const auto converter = internal::GetTensorFlowNodeConverterMap(); return internal::ImportTensorFlowNode(node, TensorFlowImportFlags(), ModelFlags(), model, converter); } Status ImportFlexNode(const NodeDef& node, Model* model) { const auto converter = internal::ConverterMapType(); return internal::ImportTensorFlowNode(node, TensorFlowImportFlags(), ModelFlags(), model, converter); } Status ImportNode(const NodeDef& node) { Model model; return ImportNode(node, &model); } NodeDef BuildNode( const std::string& op, const std::vector<std::initializer_list<int>>& output_shapes) { NodeDef node; node.set_op(op); node.set_name("Node1"); node.add_input(); node.set_input(0, "Node0"); AttrValue::ListValue* shapes = (*node.mutable_attr())["_output_shapes"].mutable_list(); for (const auto& output_shape : output_shapes) { tensorflow::TensorShapeProto* shape = shapes->add_shape(); for (int64_t output_shape_dim : output_shape) { auto shape_dim = shape->add_dim(); shape_dim->set_size(output_shape_dim); } } return node; } namespace { void BuildConstNode(std::initializer_list<int64_t> shape, tensorflow::DataType dtype, int64_t num_elements, NodeDef* node) { node->set_op("Const"); node->set_name("Node1"); AttrValue dtype_attr; SetAttrValue(dtype, &dtype_attr); (*node->mutable_attr())["dtype"] = dtype_attr; tensorflow::TensorProto t; t.set_dtype(dtype); auto* s = t.mutable_tensor_shape(); for (auto d : shape) { s->add_dim()->set_size(d); } switch (dtype) { case DT_FLOAT: for (int64_t i = 0; i < num_elements; ++i) { t.add_float_val(i / 10000.0 + 1); } break; case DT_INT32: for (int64_t i = 0; i < num_elements; ++i) { t.add_int_val(i % std::numeric_limits<int>::max() + 1); } break; case DT_UINT32: for (int64_t i = 0; i < num_elements; ++i) { t.add_int_val(i % std::numeric_limits<uint32_t>::max() + 1); } break; case DT_QUINT8: for (int64_t i = 0; i < num_elements; ++i) { t.add_int_val(i % std::numeric_limits<uint8_t>::max() + 1); } break; case DT_INT64: for (int64_t i = 0; i < num_elements; ++i) { t.add_int64_val(i + 1); } break; case DT_UINT16: for (int64_t i = 0; i < num_elements; ++i) { t.add_int_val(i % std::numeric_limits<uint16_t>::max() + 1); } break; case DT_STRING: break; case DT_BOOL: for (int64_t i = 0; i < num_elements; ++i) { t.add_bool_val((i % 2) == 0); } break; case DT_COMPLEX64: for (int64_t i = 0; i < num_elements; ++i) { t.add_scomplex_val(i / 10000.0 + 1); t.add_scomplex_val(-i / 10000.0 - 1); } break; default: break; } AttrValue value_attr; SetAttrValue(t, &value_attr); (*node->mutable_attr())["value"] = value_attr; } } TEST(FlexImportTest, ConditionalConst) { Model model; auto build_and_import_node = [&model](const std::string& name, std::initializer_list<int64_t> shape, tensorflow::DataType dtype, int64_t num_elements) { NodeDef node; BuildConstNode(shape, dtype, num_elements, &node); node.set_name(name); const auto converter = internal::GetTensorFlowNodeConverterMapForFlex(); return internal::ImportTensorFlowNode(node, TensorFlowImportFlags(), ModelFlags(), &model, converter); }; EXPECT_TRUE(build_and_import_node("Known", {1, 2, 3}, DT_INT32, 6).ok()); EXPECT_TRUE(build_and_import_node("BadType", {1, 2, 3}, DT_INVALID, 6).ok()); EXPECT_TRUE(build_and_import_node("Unknown", {1, -2, 3}, DT_INT32, 6).ok()); EXPECT_EQ(model.operators.size(), 2); EXPECT_TRUE(model.HasArray("Known")); EXPECT_FALSE(model.HasArray("Unknown")); EXPECT_FALSE(model.HasArray("BadType")); } TEST(FlexImportTest, SoftmaxWithBeta) { NodeDef node; node.set_op("Softmax"); node.set_name("softmax"); node.add_input(); node.set_input(0, "logits"); AttrValue dtype_attr; SetAttrValue(0.5, &dtype_attr); (*node.mutable_attr())["_softmax_beta"] = dtype_attr; Model model; EXPECT_TRUE(ImportNode(node, &model).ok()); ASSERT_THAT(model.operators.size(), ::testing::Ge(1)); ASSERT_EQ(model.operators[0]->type, OperatorType::kSoftmax); const SoftmaxOperator* op = static_cast<const SoftmaxOperator*>(model.operators[0].get()); EXPECT_EQ(op->beta, 0.5); } TEST(FlexImportTest, SoftmaxWithoutBeta) { NodeDef node; node.set_op("Softmax"); node.set_name("softmax"); node.add_input(); node.set_input(0, "logits"); Model model; EXPECT_TRUE(ImportNode(node, &model).ok()); ASSERT_THAT(model.operators.size(), ::testing::Ge(1)); ASSERT_EQ(model.operators[0]->type, OperatorType::kSoftmax); const SoftmaxOperator* op = static_cast<const SoftmaxOperator*>(model.operators[0].get()); EXPECT_EQ(op->beta, 1.0); } class ShapeImportTest : public ::testing::TestWithParam<tensorflow::DataType> { }; TEST_P(ShapeImportTest, ShapeElementIsNegative) { NodeDef node; BuildConstNode({1, -2, 10}, GetParam(), 0, &node); auto status = ImportNode(node); EXPECT_EQ( status.message(), "Tensor shape should not include negative values\n\t (while processing " "node 'Node1')"); } TEST_P(ShapeImportTest, ShapeElementIsZero) { NodeDef node; BuildConstNode({1, 0, 10}, GetParam(), 0, &node); Model model; EXPECT_TRUE(ImportNode(node, &model).ok()); const auto& array = model.GetArray("Node1"); EXPECT_THAT(array.shape().dims(), ::testing::ElementsAre()); } TEST_P(ShapeImportTest, ShapeIsOneDimZero) { NodeDef node; BuildConstNode({0}, GetParam(), 0, &node); Model model; EXPECT_TRUE(ImportNode(node, &model).ok()); const auto& array = model.GetArray("Node1"); EXPECT_THAT(array.shape().dims(), ::testing::ElementsAre()); } TEST_P(ShapeImportTest, ShapeElementTooLarge) { NodeDef node; BuildConstNode({3000000000}, GetParam(), 0, &node); auto status = ImportNode(node); EXPECT_EQ(status.message(), "Shape element overflows\n\t (while processing node 'Node1')"); } TEST_P(ShapeImportTest, ShapeTooLarge) { NodeDef node; BuildConstNode({1000000, 2000000, 2000000, 2000000}, GetParam(), 0, &node); auto status = ImportNode(node); EXPECT_EQ(status.message(), "Tensor shape is too large\n\t (while processing node 'Node1')"); } std::vector<tensorflow::DataType> TestTypes() { return {DT_FLOAT, DT_INT32, DT_INT64, DT_BOOL, DT_QUINT8, DT_COMPLEX64}; } INSTANTIATE_TEST_SUITE_P(ShapeImportTest, ShapeImportTest, ::testing::ValuesIn(TestTypes())); class ContentImportTest : public ::testing::Test { public: template <ArrayDataType T> std::vector<DataType<T>> ImportAndGetData(const NodeDef& node) { Model model; auto status = ImportNode(node, &model); CHECK(status.ok()) << status.message(); const auto& array = model.GetArray("Node1"); return array.GetBuffer<T>().data; } void RemoveTrailingElements(NodeDef* node, int num) { tensorflow::TensorProto* p = node->mutable_attr()->at("value").mutable_tensor(); for (int i = 0; i < num; ++i) { if (p->int_val_size() > 0) p->mutable_int_val()->RemoveLast(); if (p->int64_val_size() > 0) p->mutable_int64_val()->RemoveLast(); if (p->float_val_size() > 0) p->mutable_float_val()->RemoveLast(); if (p->bool_val_size() > 0) p->mutable_bool_val()->RemoveLast(); if (p->scomplex_val_size() > 0) p->mutable_scomplex_val()->RemoveLast(); if (p->scomplex_val_size() > 0) p->mutable_scomplex_val()->RemoveLast(); } } }; TEST_F(ContentImportTest, Int32) { constexpr ArrayDataType kType = ArrayDataType::kInt32; NodeDef node; BuildConstNode({1, 2, 3}, DT_INT32, 6, &node); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(1, 2, 3, 4, 5, 6)); RemoveTrailingElements(&node, 1); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(1, 2, 3, 4, 5, 5)); RemoveTrailingElements(&node, 4); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(1, 1, 1, 1, 1, 1)); RemoveTrailingElements(&node, 1); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(0, 0, 0, 0, 0, 0)); } TEST_F(ContentImportTest, Int64) { constexpr ArrayDataType kType = ArrayDataType::kInt64; NodeDef node; BuildConstNode({1, 2, 3}, DT_INT64, 6, &node); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(1, 2, 3, 4, 5, 6)); RemoveTrailingElements(&node, 1); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(1, 2, 3, 4, 5, 5)); RemoveTrailingElements(&node, 4); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(1, 1, 1, 1, 1, 1)); RemoveTrailingElements(&node, 1); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(0, 0, 0, 0, 0, 0)); } TEST_F(ContentImportTest, Quint8) { constexpr ArrayDataType kType = ArrayDataType::kUint8; NodeDef node; BuildConstNode({1, 2, 3}, DT_QUINT8, 6, &node); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(1, 2, 3, 4, 5, 6)); RemoveTrailingElements(&node, 1); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(1, 2, 3, 4, 5, 5)); RemoveTrailingElements(&node, 4); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(1, 1, 1, 1, 1, 1)); RemoveTrailingElements(&node, 1); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(0, 0, 0, 0, 0, 0)); } TEST_F(ContentImportTest, Bool) { constexpr ArrayDataType kType = ArrayDataType::kBool; NodeDef node; BuildConstNode({1, 2, 3}, DT_BOOL, 6, &node); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(1, 0, 1, 0, 1, 0)); RemoveTrailingElements(&node, 1); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(1, 0, 1, 0, 1, 1)); RemoveTrailingElements(&node, 4); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(1, 1, 1, 1, 1, 1)); RemoveTrailingElements(&node, 1); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(0, 0, 0, 0, 0, 0)); } TEST_F(ContentImportTest, Float) { constexpr ArrayDataType kType = ArrayDataType::kFloat; NodeDef node; BuildConstNode({1, 2, 3}, DT_FLOAT, 6, &node); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(1.0000, 1.0001, 1.0002, 1.0003, 1.0004, 1.0005)); RemoveTrailingElements(&node, 1); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(1.0000, 1.0001, 1.0002, 1.0003, 1.0004, 1.0004)); RemoveTrailingElements(&node, 4); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000)); RemoveTrailingElements(&node, 1); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)); } TEST_F(ContentImportTest, Complex64) { constexpr ArrayDataType kType = ArrayDataType::kComplex64; NodeDef node; BuildConstNode({1, 2, 3}, DT_COMPLEX64, 6, &node); using cplx = std::complex<float>; EXPECT_THAT( ImportAndGetData<kType>(node), ElementsAre(std::complex<float>(1.0000, -1.0000), cplx(1.0001, -1.0001), cplx(1.0002, -1.0002), cplx(1.0003, -1.0003), cplx(1.0004, -1.0004), cplx(1.0005, -1.0005))); RemoveTrailingElements(&node, 1); EXPECT_THAT( ImportAndGetData<kType>(node), ElementsAre(std::complex<float>(1.0000, -1.0000), cplx(1.0001, -1.0001), cplx(1.0002, -1.0002), cplx(1.0003, -1.0003), cplx(1.0004, -1.0004), cplx(1.0004, -1.0004))); RemoveTrailingElements(&node, 4); EXPECT_THAT( ImportAndGetData<kType>(node), ElementsAre(std::complex<float>(1.0000, -1.0000), cplx(1.0000, -1.0000), cplx(1.0000, -1.0000), cplx(1.0000, -1.0000), cplx(1.0000, -1.0000), cplx(1.0000, -1.0000))); RemoveTrailingElements(&node, 1); EXPECT_THAT( ImportAndGetData<kType>(node), ElementsAre(std::complex<float>(0.0000, 0.0000), cplx(0.0000, 0.0000), cplx(0.0000, 0.0000), cplx(0.0000, 0.0000), cplx(0.0000, 0.0000), cplx(0.0000, 0.0000))); } std::vector<std::pair<tensorflow::DataType, ArrayDataType>> UnaryTestTypes() { return {{DT_FLOAT, ArrayDataType::kFloat}, {DT_INT32, ArrayDataType::kInt32}, {DT_INT64, ArrayDataType::kInt64}}; } class TensorContentTest : public ::testing::Test { public: template <ArrayDataType T> std::vector<DataType<T>> ImportAndGetData(const NodeDef& node) { Model model; auto status = ImportNode(node, &model); CHECK(status.ok()) << status.message(); const auto& nodearray = model.GetArray("Node1"); return nodearray.GetBuffer<T>().data; } template <class T> void NodeWithTensorContent(std::initializer_list<int64_t> shape, tensorflow::DataType dtype, int64_t num_elements, NodeDef* node) { node->set_op("Const"); node->set_name("Node1"); AttrValue dtype_attr; SetAttrValue(dtype, &dtype_attr); (*node->mutable_attr())["dtype"] = dtype_attr; auto allocated_content = std::make_unique<T[]>(num_elements); tensorflow::TensorProto t; t.set_dtype(dtype); auto* s = t.mutable_tensor_shape(); for (const auto& d : shape) { s->add_dim()->set_size(d); } switch (dtype) { case DT_FLOAT: for (int64_t i = 0; i < num_elements; ++i) { allocated_content[i] = i / 10000.0 + 1; } break; case DT_INT32: for (int64_t i = 0; i < num_elements; ++i) { allocated_content[i] = i % std::numeric_limits<int>::max() + 1; } break; case DT_QUINT8: for (int64_t i = 0; i < num_elements; ++i) { allocated_content[i] = i % std::numeric_limits<uint8_t>::max() + 1; } break; case DT_INT64: for (int64_t i = 0; i < num_elements; ++i) { allocated_content[i] = i + 1; } break; case DT_STRING: break; case DT_BOOL: for (int64_t i = 0; i < num_elements; ++i) { allocated_content[i] = ((i % 2) == 0); } break; default: break; } t.set_tensor_content( std::string(reinterpret_cast<const char*>(allocated_content.get()), num_elements * sizeof(T))); AttrValue value_attr; SetAttrValue(t, &value_attr); (*node->mutable_attr())["value"] = value_attr; allocated_content.reset(); } }; TEST_F(TensorContentTest, Int64) { constexpr ArrayDataType kType = ArrayDataType::kInt64; NodeDef node; NodeWithTensorContent<int64_t>({1, 2, 3}, DT_INT64, 6, &node); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(1, 2, 3, 4, 5, 6)); } TEST_F(TensorContentTest, Int32) { constexpr ArrayDataType kType = ArrayDataType::kInt32; NodeDef node; NodeWithTensorContent<int>({1, 2, 3}, DT_INT32, 6, &node); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(1, 2, 3, 4, 5, 6)); } TEST_F(TensorContentTest, Float) { constexpr ArrayDataType kType = ArrayDataType::kFloat; NodeDef node; NodeWithTensorContent<float>({1, 2, 3}, DT_FLOAT, 6, &node); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(1.0000, 1.0001, 1.0002, 1.0003, 1.0004, 1.0005)); } TEST_F(TensorContentTest, Quint8) { constexpr ArrayDataType kType = ArrayDataType::kUint8; NodeDef node; NodeWithTensorContent<uint8_t>({1, 2, 3}, DT_QUINT8, 6, &node); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(1, 2, 3, 4, 5, 6)); } TEST_F(TensorContentTest, Bool) { constexpr ArrayDataType kType = ArrayDataType::kBool; NodeDef node; NodeWithTensorContent<bool>({1, 2, 3}, DT_BOOL, 6, &node); EXPECT_THAT(ImportAndGetData<kType>(node), ElementsAre(1, 0, 1, 0, 1, 0)); } class TypeImportTest : public ::testing::TestWithParam< std::pair<tensorflow::DataType, ArrayDataType>> { protected: TypeImportTest() {} void BuildUnaryNode(const std::string& op_name, tensorflow::DataType dtype, NodeDef* node) { node->set_op(op_name); node->set_name("Node1"); node->add_input(); node->set_input(0, "Node0"); AttrValue dtype_attr; SetAttrValue(dtype, &dtype_attr); (*node->mutable_attr())["T"] = dtype_attr; } }; TEST_P(TypeImportTest, BasicTypeInference) { NodeDef node; BuildUnaryNode("Atan", GetParam().first, &node); Model model; EXPECT_TRUE(ImportNode(node, &model).ok()); ASSERT_THAT(model.operators.size(), ::testing::Ge(1)); ASSERT_EQ(model.operators[0]->type, OperatorType::kUnsupported); const TensorFlowUnsupportedOperator* op = static_cast<const TensorFlowUnsupportedOperator*>( model.operators[0].get()); ASSERT_THAT(op->output_data_types, ::testing::ElementsAre(GetParam().second)); } INSTANTIATE_TEST_SUITE_P(BasicTypeInference, TypeImportTest, ::testing::ValuesIn(UnaryTestTypes())); TEST(ImportTest, TypeInferenceWithFixedOutputType) { Model model; EXPECT_TRUE(ImportNode(BuildNode("IsFinite", {{1, 2}, {2, 3}}), &model).ok()); ASSERT_THAT(model.operators.size(), ::testing::Ge(1)); ASSERT_EQ(model.operators[0]->type, OperatorType::kUnsupported); const TensorFlowUnsupportedOperator* op = static_cast<const TensorFlowUnsupportedOperator*>( model.operators[0].get()); ASSERT_THAT(op->output_data_types, ::testing::ElementsAre(ArrayDataType::kBool)); } TEST(ImportTest, FailedTypeInference) { NodeDef node; node.set_op("Atan"); node.set_name("Node1"); node.add_input(); node.set_input(0, "Node0"); Model model; EXPECT_TRUE(ImportNode(node, &model).ok()); ASSERT_THAT(model.operators.size(), ::testing::Ge(1)); ASSERT_EQ(model.operators[0]->type, OperatorType::kUnsupported); const TensorFlowUnsupportedOperator* op = static_cast<const TensorFlowUnsupportedOperator*>( model.operators[0].get()); ASSERT_TRUE(op->output_data_types.empty()); } TEST(ImportTest, UnsupportedOpWithOutputShapes) { Model model; EXPECT_TRUE(ImportNode(BuildNode("Atan", {{1, 2}, {2, 3}}), &model).ok()); ASSERT_THAT(model.operators.size(), ::testing::Ge(1)); ASSERT_EQ(model.operators[0]->type, OperatorType::kUnsupported); const TensorFlowUnsupportedOperator* op = static_cast<const TensorFlowUnsupportedOperator*>( model.operators[0].get()); ASSERT_EQ(op->output_shapes.size(), 2); ASSERT_THAT(op->output_shapes[0].dims(), ::testing::ElementsAre(1, 2)); ASSERT_THAT(op->output_shapes[1].dims(), ::testing::ElementsAre(2, 3)); } TEST(ImportTest, UnsupportedOpWithWildcardOutputShapes) { Model model; EXPECT_TRUE(ImportNode(BuildNode("Atan", {{-1, 2}}), &model).ok()); ASSERT_THAT(model.operators.size(), ::testing::Ge(1)); ASSERT_EQ(model.operators[0]->type, OperatorType::kUnsupported); const TensorFlowUnsupportedOperator* op = static_cast<const TensorFlowUnsupportedOperator*>( model.operators[0].get()); ASSERT_TRUE(op->output_shapes.empty()); } TEST(ImportTest, UnsupportedOpWithMultipleOutputs) { NodeDef node = BuildNode("ParseExample", {}); { AttrValue value_attr; SetAttrValue(2, &value_attr); (*node.mutable_attr())["Nsparse"] = value_attr; } { AttrValue value_attr; std::vector<tensorflow::DataType> types; types.push_back(tensorflow::DT_FLOAT); types.push_back(tensorflow::DT_STRING); SetAttrValue(types, &value_attr); (*node.mutable_attr())["sparse_types"] = value_attr; } { AttrValue value_attr; std::vector<tensorflow::DataType> types; types.push_back(tensorflow::DT_STRING); types.push_back(tensorflow::DT_FLOAT); types.push_back(tensorflow::DT_INT64); SetAttrValue(types, &value_attr); (*node.mutable_attr())["Tdense"] = value_attr; } Model model; EXPECT_TRUE(ImportFlexNode(node, &model).ok()); ASSERT_THAT(model.operators.size(), ::testing::Ge(1)); ASSERT_EQ(model.operators[0]->type, OperatorType::kUnsupported); const TensorFlowUnsupportedOperator* op = static_cast<const TensorFlowUnsupportedOperator*>( model.operators[0].get()); ASSERT_EQ(op->outputs.size(), 9); ASSERT_EQ(op->output_data_types.size(), 9); ASSERT_EQ(op->outputs[0], "Node1"); ASSERT_EQ(op->outputs[1], "Node1:1"); ASSERT_EQ(op->output_data_types[0], ArrayDataType::kInt64); ASSERT_EQ(op->output_data_types[1], ArrayDataType::kInt64); ASSERT_EQ(op->outputs[2], "Node1:2"); ASSERT_EQ(op->outputs[3], "Node1:3"); ASSERT_EQ(op->output_data_types[2], ArrayDataType::kFloat); ASSERT_EQ(op->output_data_types[3], ArrayDataType::kString); ASSERT_EQ(op->outputs[4], "Node1:4"); ASSERT_EQ(op->outputs[5], "Node1:5"); ASSERT_EQ(op->output_data_types[4], ArrayDataType::kInt64); ASSERT_EQ(op->output_data_types[5], ArrayDataType::kInt64); ASSERT_EQ(op->outputs[6], "Node1:6"); ASSERT_EQ(op->outputs[7], "Node1:7"); ASSERT_EQ(op->outputs[8], "Node1:8"); ASSERT_EQ(op->output_data_types[6], ArrayDataType::kString); ASSERT_EQ(op->output_data_types[7], ArrayDataType::kFloat); ASSERT_EQ(op->output_data_types[8], ArrayDataType::kInt64); } } } int main(int argc, char** argv) { ::tflite::LogToStderr(); ::testing::InitGoogleTest(&argc, argv); ::toco::port::InitGoogleWasDoneElsewhere(); return RUN_ALL_TESTS(); }
802
cpp
tensorflow/tensorflow
tooling_util
tensorflow/lite/toco/tooling_util.cc
tensorflow/lite/toco/tooling_util_test.cc
#ifndef TENSORFLOW_LITE_TOCO_TOOLING_UTIL_H_ #define TENSORFLOW_LITE_TOCO_TOOLING_UTIL_H_ #include <algorithm> #include <cmath> #include <functional> #include <iostream> #include <limits> #include <memory> #include <string> #include <vector> #include "absl/strings/string_view.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/lite/kernels/internal/types.h" #include "tensorflow/lite/toco/model.h" #include "tensorflow/lite/toco/model_flags.pb.h" #include "tensorflow/lite/toco/runtime/types.h" #include "tensorflow/lite/toco/toco_flags.pb.h" #include "tensorflow/lite/toco/types.pb.h" namespace std { template <> struct hash<toco::OperatorType> { size_t operator()(const toco::OperatorType& op) const { return std::hash<size_t>()(static_cast<size_t>(op)); } }; } namespace toco { constexpr int kLogLevelModelChanged = 1; constexpr int kLogLevelModelUnchanged = 2; absl::string_view FindLongestCommonPrefix(absl::string_view a, absl::string_view b); std::string LogName(const Operator& op); std::string ArrayDataTypeName(ArrayDataType data_type); bool IsInputArray(const Model& model, const std::string& array_name); bool IsOutputArray(const Model& model, const std::string& array_name); bool IsArrayConsumed(const Model& model, const std::string& name); int CountTrueOutputs(const Model& model, const Operator& op); int CountOpsWithInput(const Model& model, const std::string& array_name); bool DeleteArrayIfUnused(const std::string& array_name, Model* model); void DeleteOpAndArrays(Model* model, const Operator* op); std::vector<std::unique_ptr<Operator>>::const_iterator FindOpWithOutput( const Model& model, const std::string& array_name); Operator* GetOpWithOutput(const Model& model, const std::string& array_name); std::vector<std::unique_ptr<Operator>>::iterator FindOpWithOutput( Model& model, const std::string& array_name); std::vector<std::unique_ptr<Operator>>::const_iterator FindOpWithInput( const Model& model, const std::string& array_name); std::vector<std::unique_ptr<Operator>>::iterator FindOpWithInput( Model& model, const std::string& array_name); Operator* GetOpWithInput(const Model& model, const std::string& array_name); Operator* GetFirstOpWithInput(const Model& model, const std::string& array_name); void ReplaceArrayUsage(Model* model, const std::string& old_array_name, const std::string& new_array_name); std::vector<std::unique_ptr<Operator>>::const_iterator FindOp( const Model& model, const Operator* op); std::vector<std::unique_ptr<Operator>>::iterator FindOp(Model& model, const Operator* op); const char* OperatorTypeName(OperatorType type); std::string HelpfulOperatorTypeName(const Operator& op); bool OperatorSupportsFusedActivation(OperatorType type); void DumpGraphvizVideoFrame(const Model& model); void LogDump(int log_level, const std::string& message, const Model& model); void LogSummary(int log_level, const std::string& message, const Model& model); void ExtendShape(Shape* shape, int new_shape_size); void UnextendShape(Shape* shape, int new_shape_size); bool IsNonEmpty(const Shape& shape); bool ShapesAgreeUpToBroadcasting(const Shape& shape0, const Shape& shape1); bool ShapesAgreeUpToExtending(const Shape& shape0, const Shape& shape1); inline ::tflite::RuntimeShape ToRuntimeShape(const Shape& shape) { return ::tflite::RuntimeShape(shape.dimensions_count(), shape.dims().data()); } bool IsArrayFullyConnectedWeights(const Model& model, const std::string& name); int RequiredBufferSizeForShape(const Shape& shape); bool IsConstantParameterArray(const Model& model, const std::string& name); bool CompareConstantArrays(const Array& lhs_array, const Array& rhs_array); void CheckNoMissingArray(const Model& model); void CheckInvariants(const Model& model); void CheckModelCounts(const Model& model); void FixOperatorOrdering(Model* model); void FixNoMissingArray(Model* model); void FixNoOrphanedArray(Model* model); void FixEdgeArrays(Model* model); void DedupeConstantArrays(Model* model, size_t min_size); template <ArrayDataType A> void CopyArrayBuffer(const Array& source_array, Array* target_array) { int source_buffer_size = RequiredBufferSizeForShape(source_array.shape()); int target_buffer_size = RequiredBufferSizeForShape(target_array->shape()); CHECK_EQ(source_buffer_size, target_buffer_size) << "Buffer sizes must match in element count"; CHECK(source_array.data_type == target_array->data_type) << "Data types must match"; if (source_array.buffer) { const auto& source_buffer = source_array.GetBuffer<A>(); auto& target_buffer = target_array->GetMutableBuffer<A>(); target_buffer.data = source_buffer.data; } } void InsertCopyOperator(Model* model, const std::string& source_array_name, const std::string& target_array_name); void CloneArray(Model* model, const std::string& source_array_name, const std::string& target_array_name); void ResolveModelFlags(const ModelFlags& model_flags, Model* model); template <typename T> T ConvertOperator(Operator* o, OperatorType type) { if (o != nullptr && o->type == type) { return static_cast<T>(o); } return nullptr; } void CheckIsReadyForQuantization(const Model& model); bool ReshapeIsEquivalentToTranspose(const Model& model, const TensorFlowReshapeOperator* op, bool allow_extra_unary_dims); inline int Offset(const Shape& shape, const std::vector<int>& indices) { DCHECK_EQ(shape.dimensions_count(), indices.size()); const int dims_count = shape.dimensions_count(); int offset = 0; for (int i = 0; i < dims_count; i++) { const int index = indices[i]; DCHECK(index >= 0 && index < shape.dims(i)); offset *= shape.dims(i); offset += index; } return offset; } inline std::vector<int> ReverseOffset(const Shape& shape, int index) { DCHECK_GE(index, 0); DCHECK_LT(index, RequiredBufferSizeForShape(shape)); const int dims_count = shape.dimensions_count(); std::vector<int> indices(dims_count); int residual = index; for (int i = dims_count - 1; i >= 0; i--) { indices[i] = residual % shape.dims(i); residual /= shape.dims(i); } return indices; } int ElementSize(ArrayDataType data_type); void DropMinMax(Model* model, const std::string& array_name); bool IsAllocatableTransientArray(const Model& model, const std::string& array_name); void CreateOrCheckRnnStateArray(const std::string& name, int size, int state_num_dims, Model* model); std::string AvailableArrayName(const Model& model, const std::string& name); std::string ShapeToString(const Shape& shape); void PrintArrayShape(Model* model, const std::string& name); void MakeArrayDims(int num_dims, int batch, int height, int width, int depth, std::vector<int>* out_dims); std::string CreateInt32Array(Model* model, const std::string& param_name, const std::vector<int>& value); bool EstimateArithmeticOpsCount(const Model& model, const Operator& op, int64_t* result); bool EstimateArithmeticOpsCount(const Model& model, int64_t* result); std::string FormattedNumber(int64_t x); int AxesCount(AxesOrder axes_order); void GetShuffleShape(AxesOrder input_axes_order, AxesOrder output_axes_order, std::vector<int>* shuffle); void ExtendShuffle(const std::vector<int>& input_shuffle, int newdim, std::vector<int>* extended_shuffle); void ShuffleDims(const Shape& input_shape, AxesOrder input_axes_order, AxesOrder output_axes_order, Shape* output_shape); void ShuffleArray(const Shape& input_shape, AxesOrder input_axes_order, AxesOrder output_axes_order, const Shape& output_shape, const float* input_data, float* output_data); void ShuffleArray(const Shape& input_shape, AxesOrder input_axes_order, AxesOrder output_axes_order, const Shape& output_shape, const uint8* input_data, uint8* output_data); bool IsDiscardableArray(const Model& model, const std::string& array_name); void CheckFinalDataTypesSatisfied(const Model& model); ArrayDataType ConvertIODataTypeToArrayDataType(IODataType type); void FinishBuildingRNNStates(Model* model); void UseArraysExtraInfo(Model* model, bool quantize_output); template <typename T, typename U> tensorflow::Status NumElements(const std::vector<T>& shape, U* num_elements) { static_assert( std::numeric_limits<T>::max() <= std::numeric_limits<uint64_t>::max(), "vector type exceed capabilities of NumElements"); *num_elements = 1; for (const T& dim : shape) { if (dim < 0) { return tensorflow::errors::InvalidArgument( "Tensor shape should not include negative values"); } if (*num_elements != 0 && static_cast<uint64_t>(dim) > std::numeric_limits<U>::max() / *num_elements) { *num_elements = 0; return tensorflow::errors::InvalidArgument("Tensor shape is too large"); } *num_elements *= dim; } return absl::OkStatus(); } void UndoWeightsShuffling(Model* model); void CopyMinMaxAndQuantizationRelatedFields(const Array& src, Array* dst); bool DeleteArrayIfUnusedOutsideOfOp(const std::string& array_name, const Operator* op, Model* model); } #endif #include "tensorflow/lite/toco/tooling_util.h" #include <algorithm> #include <functional> #include <iterator> #include <set> #include <string> #include <unordered_map> #include <unordered_set> #include <utility> #include "absl/strings/ascii.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/str_replace.h" #include "absl/strings/str_split.h" #include "re2/re2.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/lite/toco/dump_graphviz.h" #include "tensorflow/lite/toco/model_flags.pb.h" #include "tensorflow/lite/toco/toco_graphviz_dump_options.h" namespace toco { absl::string_view FindLongestCommonPrefix(absl::string_view a, absl::string_view b) { if (a.empty() || b.empty()) return absl::string_view(); const char* pa = a.data(); const char* pb = b.data(); size_t count = 0; const size_t limit = std::min(a.size(), b.size()); while (count < limit && *pa == *pb) { ++pa; ++pb; ++count; } return absl::string_view(a.data(), count); } std::string LogName(const Operator& op) { const std::string& opname = HelpfulOperatorTypeName(op); if (op.outputs.empty()) { return toco::port::StringF("{%s operator}", opname); } else { return toco::port::StringF("{%s operator with output %s}", opname, op.outputs[0]); } } std::string ArrayDataTypeName(ArrayDataType data_type) { switch (data_type) { case ArrayDataType::kFloat: return "float"; case ArrayDataType::kInt8: return "int8"; case ArrayDataType::kUint8: return "uint8"; case ArrayDataType::kInt16: return "int16"; case ArrayDataType::kUint16: return "uint16"; case ArrayDataType::kInt32: return "int32"; case ArrayDataType::kUint32: return "uint32"; case ArrayDataType::kInt64: return "int64"; case ArrayDataType::kUint64: return "uint64"; case ArrayDataType::kString: return "string"; case ArrayDataType::kBool: return "bool"; case ArrayDataType::kComplex64: return "complex64"; case ArrayDataType::kNone: return "None"; default: LOG(FATAL) << "Unhandled array data type " << static_cast<int>(data_type); } } bool IsInputArray(const Model& model, const std::string& array_name) { for (const auto& input_array : model.flags.input_arrays()) { if (array_name == input_array.name()) { return true; } } return false; } bool IsOutputArray(const Model& model, const std::string& array_name) { for (const auto& output_array : model.flags.output_arrays()) { if (array_name == output_array) { return true; } } return false; } bool IsArrayConsumed(const Model& model, const std::string& name) { if (GetOpWithInput(model, name)) { return true; } if (IsOutputArray(model, name)) { return true; } for (const auto& rnn_state : model.flags.rnn_states()) { if (rnn_state.back_edge_source_array() == name) { return true; } } return false; } int CountTrueOutputs(const Model& model, const Operator& op) { int count = 0; for (const std::string& output : op.outputs) { if (IsArrayConsumed(model, output)) { ++count; } } return count; } int CountOpsWithInput(const Model& model, const std::string& array_name) { int count = 0; for (const auto& op : model.operators) { for (auto& input : op->inputs) { if (input == array_name) { count++; break; } } } return count; } bool DeleteArrayIfUnused(const std::string& array_name, Model* model) { if (IsDiscardableArray(*model, array_name) && CountOpsWithInput(*model, array_name) == 0 && GetOpWithOutput(*model, array_name) == nullptr) { model->EraseArray(array_name); return true; } return false; } bool DeleteArrayIfUnusedOutsideOfOp(const std::string& array_name, const Operator* op, Model* model) { if (!IsDiscardableArray(*model, array_name)) { return false; } if (CountOpsWithInput(*model, array_name) > 1) { return false; } const Operator* op_having_this_as_input = GetOpWithInput(*model, array_name); if (op_having_this_as_input && op_having_this_as_input != op) { return false; } const Operator* op_having_this_as_output = GetOpWithOutput(*model, array_name); if (op_having_this_as_output && op_having_this_as_output != op) { return false; } model->EraseArray(array_name); return true; } void DeleteOpAndArrays(Model* model, const Operator* op) { for (const std::string& array_name : op->inputs) { DeleteArrayIfUnusedOutsideOfOp(array_name, op, model); } for (const std::string& array_name : op->outputs) { DeleteArrayIfUnusedOutsideOfOp(array_name, op, model); } auto op_it = FindOp(*model, op); CHECK(op_it != model->operators.end()); model->operators.erase(op_it); } std::vector<std::unique_ptr<Operator>>::const_iterator FindOpWithOutput( const Model& model, const std::string& array_name) { for (auto it = model.operators.begin(); it != model.operators.end(); ++it) { for (auto& output : it->get()->outputs) { if (output == array_name) { return it; } } } return model.operators.end(); } std::vector<std::unique_ptr<Operator>>::iterator FindOpWithOutput( Model& model, const std::string& array_name) { for (auto it = model.operators.begin(); it != model.operators.end(); ++it) { for (auto& output : it->get()->outputs) { if (output == array_name) { return it; } } } return model.operators.end(); } Operator* GetOpWithOutput(const Model& model, const std::string& array_name) { auto it = FindOpWithOutput(model, array_name); return it == model.operators.end() ? nullptr : it->get(); } std::vector<std::unique_ptr<Operator>>::const_iterator FindOpWithInput( const Model& model, const std::string& array_name) { for (auto it = model.operators.begin(); it != model.operators.end(); ++it) { for (auto& input : it->get()->inputs) { if (input == array_name) { return it; } } } return model.operators.end(); } std::vector<std::unique_ptr<Operator>>::iterator FindOpWithInput( Model& model, const std::string& array_name) { for (auto it = model.operators.begin(); it != model.operators.end(); ++it) { for (auto& input : it->get()->inputs) { if (input == array_name) { return it; } } } return model.operators.end(); } std::vector<std::unique_ptr<Operator>>::const_iterator FindOp( const Model& model, const Operator* op) { for (auto it = model.operators.begin(); it != model.operators.end(); ++it) { if (it->get() == op) { return it; } } return model.operators.end(); } std::vector<std::unique_ptr<Operator>>::iterator FindOp(Model& model, const Operator* op) { for (auto it = model.operators.begin(); it != model.operators.end(); ++it) { if (it->get() == op) { return it; } } return model.operators.end(); } Operator* GetOpWithInput(const Model& model, const std::string& array_name) { auto it = FindOpWithInput(model, array_name); return it == model.operators.end() ? nullptr : it->get(); } Operator* GetFirstOpWithInput(const Model& model, const std::string& array_name) { auto it = FindOpWithInput(model, array_name); return it == model.operators.end() ? nullptr : it->get(); } void ReplaceArrayUsage(Model* model, const std::string& old_array_name, const std::string& new_array_name) { for (auto& op_it : model->operators) { Operator* op = op_it.get(); for (size_t i = 0; i < op->inputs.size(); ++i) { if (op->inputs[i] == old_array_name) { op->inputs[i] = new_array_name; } } for (size_t i = 0; i < op->outputs.size(); ++i) { if (op->outputs[i] == old_array_name) { op->outputs[i] = new_array_name; } } } } std::string FormatArraysList(const Model& model, const std::vector<std::string>& list) { if (list.empty()) { return "[]"; } std::string result = ""; if (list.size() > 1) { result += "[ "; } for (std::size_t i = 0; i < list.size(); i++) { if (i > 0) { result += ", "; } result += list[i]; } if (list.size() > 1) { result += " ]"; } return result; } const char* OperatorTypeName(OperatorType type) { switch (type) { #define HANDLE_OPERATORTYPENAME_CASE(c) \ case OperatorType::k##c: \ return #c; HANDLE_OPERATORTYPENAME_CASE(Abs) HANDLE_OPERATORTYPENAME_CASE(Add) HANDLE_OPERATORTYPENAME_CASE(AddN) HANDLE_OPERATORTYPENAME_CASE(AveragePool) HANDLE_OPERATORTYPENAME_CASE(BatchMatMul) HANDLE_OPERATORTYPENAME_CASE(BatchNormalization) HANDLE_OPERATORTYPENAME_CASE(Conv) HANDLE_OPERATORTYPENAME_CASE(Concatenation) HANDLE_OPERATORTYPENAME_CASE(DepthwiseConv) HANDLE_OPERATORTYPENAME_CASE(DepthToSpace) HANDLE_OPERATORTYPENAME_CASE(SpaceToDepth) HANDLE_OPERATORTYPENAME_CASE(FullyConnected) HANDLE_OPERATORTYPENAME_CASE(HardSwish) HANDLE_OPERATORTYPENAME_CASE(Dequantize) HANDLE_OPERATORTYPENAME_CASE(L2Normalization) HANDLE_OPERATORTYPENAME_CASE(LocalResponseNormalization) HANDLE_OPERATORTYPENAME_CASE(Log) HANDLE_OPERATORTYPENAME_CASE(Logistic) HANDLE_OPERATORTYPENAME_CASE(LstmCell) HANDLE_OPERATORTYPENAME_CASE(MaxPool) HANDLE_OPERATORTYPENAME_CASE(L2Pool) HANDLE_OPERATORTYPENAME_CASE(FakeQuant) HANDLE_OPERATORTYPENAME_CASE(Mul) HANDLE_OPERATORTYPENAME_CASE(RandomUniform) HANDLE_OPERATORTYPENAME_CASE(Elu) HANDLE_OPERATORTYPENAME_CASE(Relu) HANDLE_OPERATORTYPENAME_CASE(Relu1) HANDLE_OPERATORTYPENAME_CASE(Relu6) HANDLE_OPERATORTYPENAME_CASE(PRelu) HANDLE_OPERATORTYPENAME_CASE(ReorderAxes) HANDLE_OPERATORTYPENAME_CASE(Softmax) HANDLE_OPERATORTYPENAME_CASE(LogSoftmax) HANDLE_OPERATORTYPENAME_CASE(Div) HANDLE_OPERATORTYPENAME_CASE(Tanh) HANDLE_OPERATORTYPENAME_CASE(Sin) HANDLE_OPERATORTYPENAME_CASE(All) HANDLE_OPERATORTYPENAME_CASE(Assert) HANDLE_OPERATORTYPENAME_CASE(ExpandDims) HANDLE_OPERATORTYPENAME_CASE(Fill) HANDLE_OPERATORTYPENAME_CASE(FloorMod) HANDLE_OPERATORTYPENAME_CASE(FloorDiv) HANDLE_OPERATORTYPENAME_CASE(Greater) HANDLE_OPERATORTYPENAME_CASE(GreaterEqual) HANDLE_OPERATORTYPENAME_CASE(Identity) HANDLE_OPERATORTYPENAME_CASE(Less) HANDLE_OPERATORTYPENAME_CASE(LessEqual) HANDLE_OPERATORTYPENAME_CASE(MatMul) HANDLE_OPERATORTYPENAME_CASE(ReduceMax) HANDLE_OPERATORTYPENAME_CASE(Maximum) HANDLE_OPERATORTYPENAME_CASE(Merge) HANDLE_OPERATORTYPENAME_CASE(ReduceMin) HANDLE_OPERATORTYPENAME_CASE(Minimum) HANDLE_OPERATORTYPENAME_CASE(Neg) HANDLE_OPERATORTYPENAME_CASE(OneHot) HANDLE_OPERATORTYPENAME_CASE(Pack) HANDLE_OPERATORTYPENAME_CASE(Pad) HANDLE_OPERATORTYPENAME_CASE(PadV2) HANDLE_OPERATORTYPENAME_CASE(StridedSlice) HANDLE_OPERATORTYPENAME_CASE(Range) HANDLE_OPERATORTYPENAME_CASE(Rank) HANDLE_OPERATORTYPENAME_CASE(Reshape) HANDLE_OPERATORTYPENAME_CASE(Squeeze) HANDLE_OPERATORTYPENAME_CASE(Rsqrt) HANDLE_OPERATORTYPENAME_CASE(SegmentSum) HANDLE_OPERATORTYPENAME_CASE(Shape) HANDLE_OPERATORTYPENAME_CASE(Slice) HANDLE_OPERATORTYPENAME_CASE(Split) HANDLE_OPERATORTYPENAME_CASE(SplitV) HANDLE_OPERATORTYPENAME_CASE(Sqrt) HANDLE_OPERATORTYPENAME_CASE(Square) HANDLE_OPERATORTYPENAME_CASE(Switch) HANDLE_OPERATORTYPENAME_CASE(Sub) HANDLE_OPERATORTYPENAME_CASE(Sum) HANDLE_OPERATORTYPENAME_CASE(Tile) HANDLE_OPERATORTYPENAME_CASE(Transpose) HANDLE_OPERATORTYPENAME_CASE(TransposeConv) HANDLE_OPERATORTYPENAME_CASE(Concat) HANDLE_OPERATORTYPENAME_CASE(ConcatV2) HANDLE_OPERATORTYPENAME_CASE(Cast) HANDLE_OPERATORTYPENAME_CASE(Floor) HANDLE_OPERATORTYPENAME_CASE(Ceil) HANDLE_OPERATORTYPENAME_CASE(Round) HANDLE_OPERATORTYPENAME_CASE(Gather) HANDLE_OPERATORTYPENAME_CASE(GatherNd) HANDLE_OPERATORTYPENAME_CASE(ResizeBilinear) HANDLE_OPERATORTYPENAME_CASE(SpaceToBatchND) HANDLE_OPERATORTYPENAME_CASE(BatchToSpaceND) HANDLE_OPERATORTYPENAME_CASE(Mean) HANDLE_OPERATORTYPENAME_CASE(ReduceProd) HANDLE_OPERATORTYPENAME_CASE(Svdf) HANDLE_OPERATORTYPENAME_CASE(ArgMax) HANDLE_OPERATORTYPENAME_CASE(ArgMin) HANDLE_OPERATORTYPENAME_CASE(TopK_V2) HANDLE_OPERATORTYPENAME_CASE(Unsupported) HANDLE_OPERATORTYPENAME_CASE(Exp) HANDLE_OPERATORTYPENAME_CASE(DynamicPartition) HANDLE_OPERATORTYPENAME_CASE(DynamicStitch) HANDLE_OPERATORTYPENAME_CASE(Select) HANDLE_OPERATORTYPENAME_CASE(SparseToDense) HANDLE_OPERATORTYPENAME_CASE(Equal) HANDLE_OPERATORTYPENAME_CASE(NotEqual) HANDLE_OPERATORTYPENAME_CASE(Pow) HANDLE_OPERATORTYPENAME_CASE(Any) HANDLE_OPERATORTYPENAME_CASE(LogicalAnd) HANDLE_OPERATORTYPENAME_CASE(LogicalNot) HANDLE_OPERATORTYPENAME_CASE(LogicalOr) HANDLE_OPERATORTYPENAME_CASE(CTCBeamSearchDecoder) HANDLE_OPERATORTYPENAME_CASE(Unpack) HANDLE_OPERATORTYPENAME_CASE(ZerosLike) HANDLE_OPERATORTYPENAME_CASE(UnidirectionalSequenceLstm) HANDLE_OPERATORTYPENAME_CASE(BidirectionalSequenceLstm) HANDLE_OPERATORTYPENAME_CASE(BidirectionalSequenceRnn) HANDLE_OPERATORTYPENAME_CASE(ResizeNearestNeighbor) HANDLE_OPERATORTYPENAME_CASE(LeakyRelu) HANDLE_OPERATORTYPENAME_CASE(SquaredDifference) HANDLE_OPERATORTYPENAME_CASE(MirrorPad) HANDLE_OPERATORTYPENAME_CASE(Unique) HANDLE_OPERATORTYPENAME_CASE(UnidirectionalSequenceRnn) HANDLE_OPERATORTYPENAME_CASE(ReverseV2) HANDLE_OPERATORTYPENAME_CASE(Cos) HANDLE_OPERATORTYPENAME_CASE(Where) HANDLE_OPERATORTYPENAME_CASE(ReverseSequence) HANDLE_OPERATORTYPENAME_CASE(MatrixDiag) HANDLE_OPERATORTYPENAME_CASE(MatrixSetDiag) HANDLE_OPERATORTYPENAME_CASE(MatrixDiagV2) HANDLE_OPERATORTYPENAME_CASE(MatrixSetDiagV2) HANDLE_OPERATORTYPENAME_CASE(MatrixDiagV3) HANDLE_OPERATORTYPENAME_CASE(MatrixSetDiagV3) HANDLE_OPERATORTYPENAME_CASE(ScatterNd) default: LOG(FATAL) << "Unhandled op type"; #undef HANDLE_OPERATORTYPENAME_CASE } } std::string HelpfulOperatorTypeName(const Operator& op) { if (op.type == OperatorType::kUnsupported) { return toco::port::StringF( "(Unsupported TensorFlow op: %s)", static_cast<const TensorFlowUnsupportedOperator&>(op).tensorflow_op); } return OperatorTypeName(op.type); } bool OperatorSupportsFusedActivation(OperatorType type) { switch (type) { case OperatorType::kAdd: case OperatorType::kAveragePool: case OperatorType::kBatchNormalization: case OperatorType::kConv: case OperatorType::kDepthwiseConv: case OperatorType::kDiv: case OperatorType::kFullyConnected: case OperatorType::kL2Pool: case OperatorType::kMaxPool: case OperatorType::kMul: case OperatorType::kSub: case OperatorType::kSquaredDifference: return true; default: return false; } } void LogSummary(int log_level, const Model& model) { VLOG(log_level) << "Operators summary (" << model.operators.size() << " operators):"; std::unordered_multiset<OperatorType> ops_by_type; for (const auto& op : model.operators) { ops_by_type.insert(op->type); } auto it = ops_by_type.begin(); while (it != ops_by_type.end()) { int count = ops_by_type.count(*it); VLOG(log_level) << " " << OperatorTypeName(*it) << ": " << count; std::advance(it, count); } } void LogArray(int log_level, const Model& model, const std::string& name) { VLOG(log_level) << "Array: " << name; if (!model.HasArray(name)) { VLOG(log_level) << " DOES NOT EXIST"; return; } const auto& array = model.GetArray(
#include <tuple> #include <vector> #include <gtest/gtest.h> #include "tensorflow/core/lib/core/status.h" #include "tensorflow/lite/testing/util.h" #include "tensorflow/lite/toco/model.h" #include "tensorflow/lite/toco/toco_port.h" #include "tensorflow/lite/toco/tooling_util.h" namespace toco { enum class Agreement { kBroadcast, kExtend, kBroadcastNotExtend, kNeither }; struct ShapePair { Shape left; Shape right; Agreement agreement; }; std::vector<ShapePair> CreateShapePairs() { return std::vector<ShapePair>( { {Shape({3}), Shape({3}), Agreement::kBroadcast}, {Shape({256, 256, 3}), Shape({256, 256, 3}), Agreement::kBroadcast}, {Shape({256, 256, 3}), Shape({3}), Agreement::kBroadcast}, {Shape({8, 1, 6, 1}), Shape({7, 1, 5}), Agreement::kBroadcast}, {Shape({}), Shape({3}), Agreement::kBroadcast}, {Shape({}), Shape({3, 1}), Agreement::kBroadcast}, {Shape({3}), Shape({3}), Agreement::kExtend}, {Shape({256, 256, 3}), Shape({256, 256, 3}), Agreement::kExtend}, {Shape({1, 1, 3}), Shape({1, 1, 3}), Agreement::kExtend}, {Shape({1, 1, 3}), Shape({3}), Agreement::kExtend}, {Shape({1, 1, 3}), Shape({1, 3}), Agreement::kExtend}, {Shape({256, 256, 3}), Shape({3}), Agreement::kBroadcastNotExtend}, {Shape({5, 4}), Shape({1}), Agreement::kBroadcastNotExtend}, {Shape({5, 4}), Shape({4}), Agreement::kBroadcastNotExtend}, {Shape({15, 3, 5}), Shape({15, 1, 5}), Agreement::kBroadcastNotExtend}, {Shape({15, 3, 5}), Shape({3, 5}), Agreement::kBroadcastNotExtend}, {Shape({15, 3, 5}), Shape({3, 1}), Agreement::kBroadcastNotExtend}, {Shape({3, 1}), Shape({}), Agreement::kBroadcastNotExtend}, {Shape({3}), Shape({4}), Agreement::kNeither}, {Shape({2, 1}), Shape({8, 4, 3}), Agreement::kNeither}}); } class ShapeTest : public ::testing::TestWithParam<ShapePair> {}; TEST_P(ShapeTest, Agrees) { const ShapePair& param = GetParam(); switch (param.agreement) { case Agreement::kBroadcast: { EXPECT_TRUE(ShapesAgreeUpToBroadcasting(param.left, param.right)); break; } case Agreement::kExtend: { EXPECT_TRUE(ShapesAgreeUpToExtending(param.left, param.right)); EXPECT_TRUE(ShapesAgreeUpToBroadcasting(param.left, param.right)); break; } case Agreement::kBroadcastNotExtend: { EXPECT_TRUE(ShapesAgreeUpToBroadcasting(param.left, param.right)); EXPECT_FALSE(ShapesAgreeUpToExtending(param.left, param.right)); break; } case Agreement::kNeither: { EXPECT_FALSE(ShapesAgreeUpToExtending(param.left, param.right)); EXPECT_FALSE(ShapesAgreeUpToBroadcasting(param.left, param.right)); break; } } } INSTANTIATE_TEST_SUITE_P(AgreeBroadcast, ShapeTest, ::testing::ValuesIn(CreateShapePairs())); static const char kNegativeValuesMessage[] = "Tensor shape should not include negative values"; static const char kLargeTensorMessage[] = "Tensor shape is too large"; TEST(NumElementsTest, Int) { int count; tensorflow::Status status = absl::OkStatus(); status = NumElements(std::vector<int>{1024, 1024, 2047}, &count); EXPECT_TRUE(status.ok()); EXPECT_EQ(count, 2146435072); status = NumElements(std::vector<int>{1024, 0, 2048}, &count); EXPECT_TRUE(status.ok()); EXPECT_EQ(count, 0); status = NumElements(std::vector<int>{1, 2, -3}, &count); EXPECT_EQ(status.message(), kNegativeValuesMessage); status = NumElements(std::vector<int>{1024, 1024, 2048}, &count); EXPECT_EQ(status.message(), kLargeTensorMessage); } TEST(NumElementsTest, Int32) { int32_t count; tensorflow::Status status = absl::OkStatus(); status = NumElements(std::vector<int32_t>{1024, 1024, 2047}, &count); EXPECT_TRUE(status.ok()); EXPECT_EQ(count, 2146435072); status = NumElements(std::vector<int32_t>{1, 2, -3}, &count); EXPECT_EQ(status.message(), kNegativeValuesMessage); status = NumElements(std::vector<int32_t>{1024, 1024, 2048}, &count); EXPECT_EQ(status.message(), kLargeTensorMessage); } TEST(NumElementsTest, Int64) { int64_t count; tensorflow::Status status = absl::OkStatus(); status = NumElements(std::vector<int64_t>{16777216, 16777216, 32767}, &count); EXPECT_TRUE(status.ok()); EXPECT_EQ(count, 9223090561878065152LL); status = NumElements(std::vector<int64_t>{1, 2, -3}, &count); EXPECT_EQ(status.message(), kNegativeValuesMessage); status = NumElements(std::vector<int64_t>{16777216, 16777216, 32768}, &count); EXPECT_EQ(status.message(), kLargeTensorMessage); } TEST(NumElementsTest, UnsignedInt32) { uint32_t count; tensorflow::Status status = absl::OkStatus(); status = NumElements(std::vector<uint32_t>{1024, 2048, 2047}, &count); EXPECT_TRUE(status.ok()); EXPECT_EQ(count, 4292870144); status = NumElements(std::vector<int>{1, 2, -3}, &count); EXPECT_EQ(status.message(), kNegativeValuesMessage); status = NumElements(std::vector<uint32_t>{1024, 2048, 2048}, &count); EXPECT_EQ(status.message(), kLargeTensorMessage); } TEST(NumElementsTest, UnsignedInt64) { uint64_t count; tensorflow::Status status = absl::OkStatus(); status = NumElements(std::vector<uint64_t>{16777216, 16777216, 65535}, &count); EXPECT_TRUE(status.ok()); EXPECT_EQ(count, 18446462598732840960ULL); status = NumElements(std::vector<int>{1, 2, -3}, &count); EXPECT_EQ(status.message(), kNegativeValuesMessage); status = NumElements(std::vector<uint64_t>{16777216, 16777216, 65536}, &count); EXPECT_EQ(status.message(), kLargeTensorMessage); } TEST(NumElementsTest, Scalar) { tensorflow::Status status = absl::OkStatus(); int32_t count; status = NumElements(std::vector<int32_t>{}, &count); EXPECT_TRUE(status.ok()); EXPECT_EQ(count, 1); uint64_t countu64; status = NumElements(std::vector<uint64_t>{}, &countu64); EXPECT_TRUE(status.ok()); EXPECT_EQ(countu64, 1ULL); } TEST(FusedActivationTest, DefaultsToUnfused) { EXPECT_TRUE(OperatorSupportsFusedActivation(OperatorType::kAdd)); EXPECT_FALSE(OperatorSupportsFusedActivation(OperatorType::kNone)); EXPECT_FALSE(OperatorSupportsFusedActivation(static_cast<OperatorType>(255))); } } int main(int argc, char** argv) { ::tflite::LogToStderr(); ::testing::InitGoogleTest(&argc, argv); ::toco::port::InitGoogleWasDoneElsewhere(); return RUN_ALL_TESTS(); }
803
cpp
tensorflow/tensorflow
conversion_log_util
tensorflow/lite/toco/logging/conversion_log_util.cc
tensorflow/lite/toco/logging/conversion_log_util_test.cc
#ifndef TENSORFLOW_LITE_TOCO_LOGGING_CONVERSION_LOG_UTIL_H_ #define TENSORFLOW_LITE_TOCO_LOGGING_CONVERSION_LOG_UTIL_H_ #include <map> #include <string> #include <vector> #include "absl/strings/string_view.h" #include "tensorflow/lite/toco/logging/toco_conversion_log.pb.h" #include "tensorflow/lite/toco/model.h" namespace toco { std::string SanitizeErrorMessage(absl::string_view error_message); void PopulateConversionLog(const Model& model, TocoConversionLog* log); std::vector<std::string> GetOperatorNames(const Model& model); void CountOperatorsByType(const Model& model, std::map<std::string, int>* built_in_ops, std::map<std::string, int>* custom_ops, std::map<std::string, int>* select_ops); void GetInputAndOutputTypes( const Model& model, TFLITE_PROTO_NS::RepeatedPtrField<std::string>* input_types, TFLITE_PROTO_NS::RepeatedPtrField<std::string>* output_types); void GetOpSignatures( const Model& model, TFLITE_PROTO_NS::RepeatedPtrField<std::string>* op_signatures); std::string GetModelHash(const Model& model); } #endif #include "tensorflow/lite/toco/logging/conversion_log_util.h" #include <string> #ifdef __linux__ #include <sys/utsname.h> #endif #include <vector> #include "absl/strings/str_cat.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/lite/toco/model.h" #include "tensorflow/lite/toco/tflite/export.h" #include "tensorflow/lite/toco/tflite/operator.h" #include "tensorflow/lite/toco/tooling_util.h" #include "tensorflow/lite/version.h" namespace toco { namespace { std::string TryGetOperatorName(const Operator& op) { std::string op_name; if (!op.tensorflow_node_def.empty()) { tensorflow::NodeDef node_def; if (!node_def.ParseFromString(op.tensorflow_node_def)) { LOG(ERROR) << "Failed to parse Tensorflow NodeDef"; } else { op_name = node_def.op(); if (!op_name.empty()) return op_name; } } if (op.type == OperatorType::kUnsupported) { const TensorFlowUnsupportedOperator& unsupported_op = static_cast<const TensorFlowUnsupportedOperator&>(op); if (!unsupported_op.tensorflow_op.empty()) { op_name = unsupported_op.tensorflow_op; return op_name; } } op_name = OperatorTypeName(op.type); return op_name; } std::string GetOSVersion() { std::string os_info; #ifdef __linux__ utsname info; if (uname(&info)) { LOG(ERROR) << "Cannot get OS info."; return ""; } os_info = std::string(info.sysname) + ";OSVer=" + std::string(info.release) + ";"; #endif return os_info; } std::string ShapeToStringNoSpace(const Shape& shape) { if (shape.dimensions_count() == 0) { return "[]"; } return absl::StrCat("[", absl::StrJoin(shape.dims(), ","), "]"); } std::string GetOperatorSignature( const Model& model, const Operator& op, const std::map<OperatorType, std::unique_ptr<tflite::BaseOperator>>& op_types_map) { std::string op_signature; constexpr char delimiter[] = "::"; op_signature.append("INPUT:"); for (const auto& input : op.inputs) { const auto& array = model.GetArray(input); if (array.has_shape()) { op_signature.append(ShapeToStringNoSpace(array.shape())); } else { op_signature.append("None"); } op_signature.append(delimiter); op_signature.append(ArrayDataTypeName(array.data_type) + delimiter); } op_signature.append("OUTPUT:"); for (const auto& output : op.outputs) { const auto& array = model.GetArray(output); if (array.has_shape()) { op_signature.append(ShapeToStringNoSpace(array.shape())); } else { op_signature.append("None"); } op_signature.append(delimiter); op_signature.append(ArrayDataTypeName(array.data_type) + delimiter); } op_signature.append("NAME:"); op_signature.append(TryGetOperatorName(op) + delimiter); op_signature.append("VERSION:"); OperatorSignature toco_op_signature; toco_op_signature.op = &op; toco_op_signature.model = &model; if (op_types_map.find(op.type) != op_types_map.end()) { const int version = op_types_map.at(op.type)->GetVersion(toco_op_signature); op_signature.append(std::to_string(version)); } else { op_signature.append("None"); } return op_signature; } } std::vector<std::string> GetOperatorNames(const Model& model) { std::vector<std::string> op_names; op_names.reserve(model.operators.size()); for (const auto& op : model.operators) { op_names.push_back(TryGetOperatorName(*op)); } return op_names; } void CountOperatorsByType(const Model& model, std::map<std::string, int>* built_in_ops, std::map<std::string, int>* custom_ops, std::map<std::string, int>* select_ops) { for (const auto& op : model.operators) { OperatorSignature op_signature = {op.get(), &model}; const auto ops_by_type = tflite::BuildOperatorByTypeMap(true ); tflite::details::OperatorKey op_key(op_signature, ops_by_type, true ); const std::string op_name = TryGetOperatorName(*op); if (op_key.is_custom_op()) { (*custom_ops)[op_name]++; } else if (op_key.is_flex_op()) { (*select_ops)[op_name]++; } else { (*built_in_ops)[op_name]++; } } } void GetInputAndOutputTypes( const Model& model, TFLITE_PROTO_NS::RepeatedPtrField<std::string>* input_types, TFLITE_PROTO_NS::RepeatedPtrField<std::string>* output_types) { for (const auto& input_array : model.flags.input_arrays()) { const Array& array = model.GetArray(input_array.name()); input_types->Add(ArrayDataTypeName(array.data_type)); } for (const auto& output_array : model.flags.output_arrays()) { const Array& array = model.GetArray(output_array); output_types->Add(ArrayDataTypeName(array.data_type)); } } std::string GetTfLiteVersion() { return TFLITE_VERSION_STRING; } std::string GetCachedOSVersion() { static std::string* version = new std::string(GetOSVersion()); return *version; } void GetOpSignatures( const Model& model, TFLITE_PROTO_NS::RepeatedPtrField<std::string>* op_signatures) { const auto& op_types_map = tflite::BuildOperatorByTypeMap(true ); for (const auto& op : model.operators) { op_signatures->Add(GetOperatorSignature(model, *op, op_types_map)); } } std::string GetModelHash(const Model& model) { return ""; } std::string SanitizeErrorMessage(absl::string_view error_message) { const std::string s1 = "Ops that can be supported by the flex runtime"; const std::string s2 = "Ops that need custom implementation"; std::string pruned_message; size_t pos = error_message.find(s1); if (pos != std::string::npos) { auto end = error_message.find('.', pos); pruned_message.append(error_message.substr(pos, end - pos + 1)); } pos = error_message.find(s2); if (pos != std::string::npos) { auto end = error_message.find('.', pos); pruned_message.append(error_message.substr(pos, end - pos + 1)); } return pruned_message; } void PopulateConversionLog(const Model& model, TocoConversionLog* log) { const std::vector<std::string> op_names = GetOperatorNames(model); for (const auto& op_name : op_names) { log->add_op_list(op_name); } TFLITE_PROTO_NS::RepeatedPtrField<std::string> op_signatures; GetOpSignatures(model, &op_signatures); log->mutable_op_signatures()->CopyFrom(op_signatures); std::map<std::string, int> custom_ops, select_ops, built_in_ops; CountOperatorsByType(model, &built_in_ops, &custom_ops, &select_ops); log->mutable_custom_ops()->insert(custom_ops.cbegin(), custom_ops.cend()); log->mutable_built_in_ops()->insert(built_in_ops.cbegin(), built_in_ops.cend()); log->mutable_select_ops()->insert(select_ops.cbegin(), select_ops.cend()); TFLITE_PROTO_NS::RepeatedPtrField<std::string> input_types, output_types; GetInputAndOutputTypes(model, &input_types, &output_types); log->mutable_input_tensor_types()->CopyFrom(input_types); log->mutable_output_tensor_types()->CopyFrom(output_types); log->set_log_generation_ts(absl::ToUnixMicros(absl::Now())); log->set_model_size(model.operators.size()); log->set_tf_lite_version(GetTfLiteVersion()); log->set_os_version(GetCachedOSVersion()); log->set_model_hash(GetModelHash(model)); } }
#include "tensorflow/lite/toco/logging/conversion_log_util.h" #include <memory> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/memory/memory.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/lite/toco/model.h" #include "tensorflow/lite/toco/model_flags.pb.h" namespace toco { namespace { using ::testing::ElementsAre; using ::testing::UnorderedElementsAre; TEST(ConversionLogUtilTest, TestGetOperatorNames) { Model model; model.operators.push_back(std::make_unique<ConvOperator>()); model.operators.push_back(std::make_unique<MeanOperator>()); model.operators.push_back(std::make_unique<NegOperator>()); auto avg_pool_3d = std::make_unique<TensorFlowUnsupportedOperator>(); avg_pool_3d->tensorflow_op = "AvgPool3D"; tensorflow::NodeDef node_def; node_def.set_op("AvgPool3D"); node_def.SerializeToString(&avg_pool_3d->tensorflow_node_def); model.operators.push_back(std::move(avg_pool_3d)); auto my_custom_op = std::make_unique<TensorFlowUnsupportedOperator>(); my_custom_op->tensorflow_op = "MyAwesomeCustomOp"; model.operators.push_back(std::move(my_custom_op)); const auto& output = GetOperatorNames(model); EXPECT_THAT(output, ElementsAre("Conv", "Mean", "Neg", "AvgPool3D", "MyAwesomeCustomOp")); } TEST(ConversionLogUtilTest, TestCountOperatorsByType) { Model model; std::unique_ptr<ConvOperator> conv1(new ConvOperator()); const std::string conv1_input_name = "conv_input1"; const std::string conv1_filter_name = "conv_filter1"; const std::string conv1_output_name = "conv_output1"; conv1->inputs.push_back(conv1_input_name); conv1->inputs.push_back(conv1_filter_name); conv1->outputs.push_back(conv1_output_name); auto& array_map = model.GetMutableArrayMap(); array_map[conv1_input_name] = std::make_unique<Array>(); array_map[conv1_filter_name] = std::make_unique<Array>(); array_map[conv1_output_name] = std::make_unique<Array>(); std::unique_ptr<ConvOperator> conv2(new ConvOperator()); const std::string conv2_input_name = "conv_input2"; const std::string conv2_filter_name = "conv_filter2"; const std::string conv2_output_name = "conv_output2"; conv2->inputs.push_back(conv2_input_name); conv2->inputs.push_back(conv2_filter_name); conv2->outputs.push_back(conv2_output_name); array_map[conv2_input_name] = std::make_unique<Array>(); array_map[conv2_filter_name] = std::make_unique<Array>(); array_map[conv2_output_name] = std::make_unique<Array>(); std::unique_ptr<MeanOperator> mean(new MeanOperator()); const std::string mean_input_name = "mean_input"; mean->inputs.push_back(mean_input_name); array_map[mean_input_name] = std::make_unique<Array>(); auto avg_pool_3d = std::make_unique<TensorFlowUnsupportedOperator>(); avg_pool_3d->tensorflow_op = "AvgPool3D"; tensorflow::NodeDef node_def; node_def.set_op("AvgPool3D"); node_def.SerializeToString(&avg_pool_3d->tensorflow_node_def); auto elu_grad = std::make_unique<TensorFlowUnsupportedOperator>(); elu_grad->tensorflow_op = "EluGrad"; node_def.set_op("EluGrad"); node_def.SerializeToString(&elu_grad->tensorflow_node_def); auto my_custom_op = std::make_unique<TensorFlowUnsupportedOperator>(); my_custom_op->tensorflow_op = "MyAwesomeCustomOp"; model.operators.push_back(std::move(conv1)); model.operators.push_back(std::move(conv2)); model.operators.push_back(std::move(mean)); model.operators.push_back(std::move(avg_pool_3d)); model.operators.push_back(std::move(elu_grad)); model.operators.push_back(std::move(my_custom_op)); std::map<std::string, int> built_in_ops, select_ops, custom_ops; CountOperatorsByType(model, &built_in_ops, &custom_ops, &select_ops); EXPECT_THAT(built_in_ops, UnorderedElementsAre(std::pair<std::string, int>("Conv", 2), std::pair<std::string, int>("Mean", 1))); EXPECT_THAT(select_ops, UnorderedElementsAre(std::pair<std::string, int>("AvgPool3D", 1), std::pair<std::string, int>("EluGrad", 1))); EXPECT_THAT(custom_ops, UnorderedElementsAre(std::pair<std::string, int>( "MyAwesomeCustomOp", 1))); } TEST(ConversionLogUtilTest, TestGetInputAndOutputTypes) { Model model; auto& array_map = model.GetMutableArrayMap(); const std::string input1 = "conv_input"; const std::string input2 = "conv_filter"; const std::string input3 = "feature"; const std::string output = "softmax"; array_map[input1] = std::make_unique<Array>(); array_map[input1]->data_type = ArrayDataType::kFloat; array_map[input2] = std::make_unique<Array>(); array_map[input2]->data_type = ArrayDataType::kFloat; array_map[input3] = std::make_unique<Array>(); array_map[input3]->data_type = ArrayDataType::kInt16; array_map[output] = std::make_unique<Array>(); array_map[output]->data_type = ArrayDataType::kFloat; InputArray input_arrays[3]; input_arrays[0].set_name(input1); input_arrays[1].set_name(input2); input_arrays[2].set_name(input3); *model.flags.add_input_arrays() = input_arrays[0]; *model.flags.add_input_arrays() = input_arrays[1]; *model.flags.add_input_arrays() = input_arrays[2]; model.flags.add_output_arrays(output); TFLITE_PROTO_NS::RepeatedPtrField<std::string> input_types, output_types; GetInputAndOutputTypes(model, &input_types, &output_types); EXPECT_THAT(input_types, ElementsAre("float", "float", "int16")); EXPECT_THAT(output_types, ElementsAre("float")); } TEST(ConversionLogUtilTest, TestGetOpSignatures) { Model model; auto& array_map = model.GetMutableArrayMap(); std::unique_ptr<ConvOperator> conv(new ConvOperator()); const std::string conv_input_name = "conv_input"; const std::string conv_filter_name = "conv_filter"; const std::string conv_output_name = "conv_output"; conv->inputs.push_back(conv_input_name); conv->inputs.push_back(conv_filter_name); conv->outputs.push_back(conv_output_name); array_map[conv_input_name] = std::make_unique<Array>(); array_map[conv_input_name]->data_type = ArrayDataType::kFloat; array_map[conv_input_name]->copy_shape({4, 4, 3}); array_map[conv_filter_name] = std::make_unique<Array>(); array_map[conv_filter_name]->data_type = ArrayDataType::kFloat; array_map[conv_filter_name]->copy_shape({2, 2}); array_map[conv_output_name] = std::make_unique<Array>(); array_map[conv_output_name]->data_type = ArrayDataType::kFloat; array_map[conv_output_name]->copy_shape({4, 4, 2}); const std::string mean_input_name = "mean_input"; const std::string mean_output_name = "mean_output"; std::unique_ptr<MeanOperator> mean(new MeanOperator()); mean->inputs.push_back(mean_input_name); mean->outputs.push_back(mean_output_name); array_map[mean_input_name] = std::make_unique<Array>(); array_map[mean_output_name] = std::make_unique<Array>(); const std::string avg_pool_3d_output_name = "avg_pool_output"; auto avg_pool_3d = std::make_unique<TensorFlowUnsupportedOperator>(); avg_pool_3d->tensorflow_op = "AvgPool3D"; tensorflow::NodeDef node_def; node_def.set_op("AvgPool3D"); node_def.SerializeToString(&avg_pool_3d->tensorflow_node_def); avg_pool_3d->inputs.push_back(conv_output_name); avg_pool_3d->outputs.push_back(avg_pool_3d_output_name); array_map[avg_pool_3d_output_name] = std::make_unique<Array>(); array_map[avg_pool_3d_output_name]->data_type = ArrayDataType::kInt32; array_map[avg_pool_3d_output_name]->copy_shape({2, 2}); const std::string custom_op_output_name = "custom_op_output"; auto my_custom_op = std::make_unique<TensorFlowUnsupportedOperator>(); my_custom_op->tensorflow_op = "MyAwesomeCustomOp"; my_custom_op->inputs.push_back(avg_pool_3d_output_name); my_custom_op->outputs.push_back(custom_op_output_name); array_map[custom_op_output_name] = std::make_unique<Array>(); array_map[custom_op_output_name]->data_type = ArrayDataType::kFloat; array_map[custom_op_output_name]->copy_shape({3}); model.operators.push_back(std::move(conv)); model.operators.push_back(std::move(mean)); model.operators.push_back(std::move(avg_pool_3d)); model.operators.push_back(std::move(my_custom_op)); TFLITE_PROTO_NS::RepeatedPtrField<std::string> op_signatures; GetOpSignatures(model, &op_signatures); EXPECT_THAT(op_signatures, UnorderedElementsAre( "INPUT:[4,4,3]::float::[2,2]::float::OUTPUT:[4,4,2]::float::" "NAME:Conv::VERSION:1", "INPUT:None::None::OUTPUT:None::None::NAME:Mean::VERSION:1", "INPUT:[4,4,2]::float::OUTPUT:[2,2]::int32::NAME:AvgPool3D::" "VERSION:1", "INPUT:[2,2]::int32::OUTPUT:[3]::float::NAME:" "MyAwesomeCustomOp::VERSION:1")); } TEST(ConversionLogUtilTest, TestSanitizeErrorMessage) { const std::string error = "error: failed while converting: 'main': Ops that can be supported by " "the flex runtime (enabled via setting the -emit-select-tf-ops flag): " "ResizeNearestNeighbor,ResizeNearestNeighbor. Ops that need custom " "implementation (enabled via setting the -emit-custom-ops flag): " "CombinedNonMaxSuppression.\nTraceback (most recent call last): File " "/usr/local/bin/toco_from_protos, line 8, in <module>"; const std::string pruned_error = "Ops that can be supported by " "the flex runtime (enabled via setting the -emit-select-tf-ops flag): " "ResizeNearestNeighbor,ResizeNearestNeighbor.Ops that need custom " "implementation (enabled via setting the -emit-custom-ops flag): " "CombinedNonMaxSuppression."; EXPECT_EQ(SanitizeErrorMessage(error), pruned_error); } TEST(ConversionLogUtilTest, TestSanitizeErrorMessageNoMatching) { const std::string error = "error: failed while converting: 'main': Traceback (most recent call " "last): File " "/usr/local/bin/toco_from_protos, line 8, in <module>"; EXPECT_EQ(SanitizeErrorMessage(error), ""); } } }
804
cpp
tensorflow/tensorflow
resolve_svdf
tensorflow/lite/toco/tensorflow_graph_matching/resolve_svdf.cc
tensorflow/lite/toco/tensorflow_graph_matching/resolve_svdf_test.cc
#ifndef TENSORFLOW_LITE_TOCO_TENSORFLOW_GRAPH_MATCHING_RESOLVE_SVDF_H_ #define TENSORFLOW_LITE_TOCO_TENSORFLOW_GRAPH_MATCHING_RESOLVE_SVDF_H_ #include <string> #include <vector> #include "tensorflow/lite/toco/model.h" #include "tensorflow/lite/toco/tensorflow_graph_matching/cluster.h" #include "tensorflow/lite/toco/tensorflow_graph_matching/cluster_utils.h" #include "tensorflow/lite/toco/tooling_util.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" namespace toco { class SvdfCluster : public Cluster { public: void CreateNodes() override; void AddConstNodePattern(const std::string& const_pattern) { const_node_patterns_.push_back(const_pattern); } ~SvdfCluster() override {} private: void CreateConstNode(const std::string& const_pattern); void MaybeMergeConstNodes( const std::vector<const tensorflow::NodeDef*>& const_node_parts, bool transpose_tensor_value, const std::unique_ptr<tensorflow::NodeDef>& merged_node); int InferFilterRank(); std::vector<std::string> const_node_patterns_; }; class SvdfClusterFactory : public ClusterFactoryInterface { public: std::unique_ptr<Cluster> CreateCluster( const tensorflow::NodeDef& node, const tensorflow::GraphDef& graph_def) const override; }; } #endif #include "tensorflow/lite/toco/tensorflow_graph_matching/resolve_svdf.h" #include <ctype.h> #include <stddef.h> #include <algorithm> #include <memory> #include <string> #include <utility> #include <vector> #include "google/protobuf/map.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/lite/toco/model.h" #include "tensorflow/lite/toco/tensorflow_graph_matching/cluster.h" #include "tensorflow/lite/toco/tensorflow_graph_matching/cluster_utils.h" #include "tensorflow/lite/toco/toco_port.h" #include "tensorflow/lite/toco/tooling_util.h" using tensorflow::GraphDef; using tensorflow::NodeDef; namespace toco { namespace { void FilterPartitionedConstNodes( const std::string& const_pattern, const std::vector<const NodeDef*>& cluster_nodes, std::vector<const NodeDef*>* const_node_parts) { for (const NodeDef* node : cluster_nodes) { std::string node_name_to_upper = node->name(); std::transform(node_name_to_upper.begin(), node_name_to_upper.end(), node_name_to_upper.begin(), ::toupper); if (StrContains(node->name(), const_pattern) && node->op() == "Const") { if (StrContains(node_name_to_upper, "/PART_")) { const_node_parts->push_back(node); } else if (StrContains(node->name(), "AXIS") && StrContains(node->name(), "CONCAT")) { const auto& value_attr = node->attr().at("value"); const tensorflow::TensorProto& tensor = value_attr.tensor(); CHECK_EQ(tensor.int_val(0), 0); } } } std::sort(const_node_parts->begin(), const_node_parts->end(), [](const NodeDef* a, const NodeDef* b) { return (a->name().compare(b->name()) < 0 && (a->name().size() < b->name().size())); }); } } int SvdfCluster::InferFilterRank() { for (const NodeDef* node : nodes_) { if (StrContains(node->name(), "Reshape/shape")) { const auto& value_attr = node->attr().at("value"); const tensorflow::TensorProto& tensor = value_attr.tensor(); std::vector<int32> shape_values( tensor.tensor_content().size() / sizeof(int), 0); port::CopyToBuffer(tensor.tensor_content(), reinterpret_cast<char*>(shape_values.data())); CHECK_EQ(shape_values.size(), 3); CHECK_EQ(shape_values[2], -1); return shape_values[1]; } } return -1; } void SvdfCluster::CreateNodes() { for (const std::string& const_pattern : const_node_patterns_) { CreateConstNode(const_pattern); } std::unique_ptr<tensorflow::NodeDef> svdf_node(new NodeDef); svdf_node->set_op("Svdf"); svdf_node->set_name(name_); svdf_node->set_device(device_); svdf_node->add_input(inputs_[0]); CHECK(new_nodes_.size() == 3 || new_nodes_.size() == 2); std::string* weights_feature_input = svdf_node->add_input(); std::string* weights_time_input = svdf_node->add_input(); std::string* bias_input; if (new_nodes_.size() == 3) { bias_input = svdf_node->add_input(); } for (const std::unique_ptr<tensorflow::NodeDef>& node : new_nodes_) { const std::string node_name = node->name(); if (StrContains(node_name, "SVDF_weights_feature")) { *weights_feature_input = node_name; } else if (StrContains(node_name, "SVDF_weights_time")) { *weights_time_input = node_name; } else if (StrContains(node_name, "SVDF_bias")) { CHECK(bias_input) << "Bias input cannot be provided when there are only " "two Const input nodes!"; *bias_input = node_name; } else { LOG(FATAL) << "Unexpected input node for SVDF op! Accepted inputs are: " "weights_feature, weights_time and bias."; } } const int rank = InferFilterRank(); CHECK_GT(rank, 0); std::string activation_function = StrContains(outputs_[0], "Relu") ? "Relu" : "None"; (*svdf_node->mutable_attr())["ActivationFunction"].set_s(activation_function); (*svdf_node->mutable_attr())["Rank"].set_i(rank); new_nodes_.push_back(std::move(svdf_node)); } void SvdfCluster::CreateConstNode(const std::string& const_pattern) { std::vector<const NodeDef*> const_node_parts; FilterPartitionedConstNodes(const_pattern, nodes_, &const_node_parts); if (const_node_parts.empty()) return; bool transpose_tensor_value = StrContains(const_pattern, "SVDF_weights_feature"); std::unique_ptr<tensorflow::NodeDef> merged_node(new NodeDef); MaybeMergeConstNodes(const_node_parts, transpose_tensor_value, merged_node); new_nodes_.push_back(std::move(merged_node)); } void SvdfCluster::MaybeMergeConstNodes( const std::vector<const NodeDef*>& const_node_parts, bool transpose_tensor_value, const std::unique_ptr<tensorflow::NodeDef>& merged_node) { merged_node->set_name(const_node_parts[0]->name()); merged_node->set_op("Const"); merged_node->set_device(const_node_parts[0]->device()); (*merged_node->mutable_attr())["dtype"].set_type( const_node_parts[0]->attr().at("dtype").type()); int dim0_size = 0; int dim1_size = 1; tensorflow::TensorProto* allocated_tensor = (*merged_node->mutable_attr())["value"].mutable_tensor(); tensorflow::TensorShapeProto* allocated_tensor_shape = allocated_tensor->mutable_tensor_shape(); auto tensor_shape_dim0 = allocated_tensor_shape->add_dim(); int allocated_content_flat_size = 0; for (size_t i = 0; i < const_node_parts.size(); i++) { const auto& value_attr = const_node_parts[i]->attr().at("value"); const tensorflow::TensorProto& tensor = value_attr.tensor(); if (i == 0) { allocated_tensor->set_dtype(tensor.dtype()); } else { CHECK_EQ(allocated_tensor->dtype(), tensor.dtype()); } allocated_content_flat_size += tensor.tensor_content().size(); CHECK(tensor.has_tensor_shape()); const tensorflow::TensorShapeProto shape = tensor.tensor_shape(); dim0_size += shape.dim(0).size(); for (int d = 1; d < shape.dim_size(); d++) { if (i == 0) { allocated_tensor_shape->add_dim()->set_size(shape.dim(d).size()); allocated_tensor_shape->set_unknown_rank(shape.unknown_rank()); dim1_size *= shape.dim(d).size(); } else { CHECK_EQ(shape.dim(d).size(), allocated_tensor_shape->dim(d).size()); CHECK_EQ(allocated_tensor_shape->unknown_rank(), shape.unknown_rank()); } } } std::unique_ptr<char[]> allocated_content( new char[allocated_content_flat_size]); char* content_ptr = allocated_content.get(); for (size_t i = 0; i < const_node_parts.size(); i++) { const auto& value_attr = const_node_parts[i]->attr().at("value"); const tensorflow::TensorProto& tensor = value_attr.tensor(); port::CopyToBuffer(tensor.tensor_content(), content_ptr); content_ptr += tensor.tensor_content().size(); } if (transpose_tensor_value) { std::unique_ptr<float[]> transposed_tensor( new float[dim0_size * dim1_size]); Transpose2DTensor(reinterpret_cast<float*>(allocated_content.get()), dim0_size, dim1_size, transposed_tensor.get()); allocated_tensor_shape->clear_dim(); allocated_tensor_shape->add_dim()->set_size(dim1_size); allocated_tensor_shape->add_dim()->set_size(dim0_size); allocated_tensor->set_tensor_content( std::string(reinterpret_cast<const char*>(transposed_tensor.get()), allocated_content_flat_size)); } else { tensor_shape_dim0->set_size(dim0_size); allocated_tensor->set_tensor_content( std::string(reinterpret_cast<const char*>(allocated_content.get()), allocated_content_flat_size)); } } std::unique_ptr<Cluster> SvdfClusterFactory::CreateCluster( const NodeDef& node, const GraphDef& graph_def) const { std::vector<std::string> node_patterns = {"SVDF_weights_feature", "SVDF_weights_time", "SVDF_bias"}; std::string node_name_to_upper = node.name(); std::transform(node_name_to_upper.begin(), node_name_to_upper.end(), node_name_to_upper.begin(), ::toupper); std::unique_ptr<SvdfCluster> cluster = nullptr; if (node_name_to_upper.find("SVDF", 0) != std::string::npos) { size_t weights_pos = node.name().find(node_patterns[0]); if (weights_pos != std::string::npos) { size_t cell_pos = node.name().rfind('/', weights_pos - 2) + 1; std::string cell_name = node.name().substr(cell_pos, weights_pos - cell_pos - 1); cluster = std::make_unique<SvdfCluster>(); cluster->SetName(cell_name); cluster->SetDevice(node.device()); cluster->SetGraphDefInfo(&graph_def); CHECK(cluster->FindClusterInputsAndOutputs()); for (const std::string& const_pattern : node_patterns) { cluster->AddConstNodePattern(const_pattern); } } } return std::move(cluster); } }
#include "tensorflow/lite/toco/tensorflow_graph_matching/resolve_svdf.h" #include <string> #include <unordered_map> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/toco/tensorflow_graph_matching/cluster.h" #include "tensorflow/lite/toco/tensorflow_graph_matching/cluster_utils.h" #include "tensorflow/lite/toco/tensorflow_graph_matching/resolve_cluster.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/logging.h" using tensorflow::GraphDef; using tensorflow::NodeDef; namespace toco { class ResolveSvdfTest : public ::testing::Test { public: ResolveSvdfTest() { AddNewNode("Input1", "Const", {}); AddNewNode("Svdf1/SVDF_weights_feature/part_0", "Const", {}, {0.1, 0.2, 0.3}); AddNewNode("Svdf1/SVDF_weights_feature/part_0/read", "Identity", {"Svdf1/SVDF_weights_feature/part_0"}); AddNewNode("Svdf1/SVDF_weights_time/part_0", "Const", {}, {0.1, 0.2, 0.3}); AddNewNode("Svdf1/SVDF_weights_time/part_0/read", "Identity", {"Svdf1/SVDF_weights_time/part_0"}); AddNewNode("Svdf1/f1", "SVDF_F1", {"Input1", "Svdf1/SVDF_weights_feature/part_0/read"}); AddNewNode("Svdf1/f2", "SVDF_F2", {"Svdf1/SVDF_weights_time/part_0/read", "Svdf1/f1"}); AddNewNode("Svdf1/Relu", "Relu", {"Svdf1/f2"}); AddShapeNode("Svdf1/Reshape/shape", {10, 1, -1}); AddNewNode("Output1", "Const", {"Svdf1/Relu"}); AddNewNode("Input2", "Const", {}); AddNewNode("Svdf2/SVDF_weights_feature/part_0", "Const", {}, {0.1, 0.2, 0.3}); AddNewNode("Svdf2/SVDF_weights_feature/part_0/read", "Identity", {"Svdf2/SVDF_weights_feature/part_0"}); AddNewNode("Svdf2/SVDF_weights_time/part_0", "Const", {}, {0.1, 0.2, 0.3}); AddNewNode("Svdf2/SVDF_weights_time/part_0/read", "Identity", {"Svdf2/SVDF_weights_time/part_0"}); AddNewNode("Svdf2/f1", "SVDF_F1", {"Input1", "Svdf2/SVDF_weights_feature/part_0/read"}); AddNewNode("Svdf2/f2", "SVDF_F2", {"Svdf2/SVDF_weights_time/part_0/read", "Svdf2/f1"}); AddNewNode("Svdf2/Relu", "Relu", {"Svdf2/f2"}); AddShapeNode("Svdf2/Reshape/shape", {10, 2, -1}); AddNewNode("Output2", "Const", {"Svdf2/Relu"}); } ~ResolveSvdfTest() override {} protected: void AddNewNode(const std::string& name, const std::string& op, const std::vector<std::string>& inputs) { NodeDef* node = graph_.add_node(); node->set_name(name); node->set_op(op); node->set_device(""); for (int i = 0; i < inputs.size(); i++) { node->add_input(); node->set_input(i, inputs[i]); } } void AddNewNode(const std::string& name, const std::string& op, const std::vector<std::string>& inputs, const std::vector<float>& values) { NodeDef* node = graph_.add_node(); node->set_name(name); node->set_op(op); node->set_device(""); for (int i = 0; i < inputs.size(); i++) { node->add_input(); node->set_input(i, inputs[i]); } (*node->mutable_attr())["dtype"].set_type(tensorflow::DT_FLOAT); tensorflow::TensorProto* allocated_tensor = new tensorflow::TensorProto; tensorflow::TensorShapeProto* allocated_tensor_shape = new tensorflow::TensorShapeProto; auto tensor_shape_dim0 = allocated_tensor_shape->add_dim(); tensor_shape_dim0->set_size(values.size()); allocated_tensor->set_allocated_tensor_shape(allocated_tensor_shape); allocated_tensor->set_tensor_content( std::string(reinterpret_cast<const char*>(values.data()), values.size() * sizeof(float))); (*node->mutable_attr())["value"].set_allocated_tensor(allocated_tensor); } void AddShapeNode(const std::string& name, const std::vector<int>& values) { NodeDef* node = graph_.add_node(); node->set_name(name); node->set_op("Const"); node->set_device(""); (*node->mutable_attr())["dtype"].set_type(tensorflow::DT_INT32); tensorflow::TensorProto* allocated_tensor = new tensorflow::TensorProto; tensorflow::TensorShapeProto* allocated_tensor_shape = new tensorflow::TensorShapeProto; auto tensor_shape_dim0 = allocated_tensor_shape->add_dim(); tensor_shape_dim0->set_size(values.size()); allocated_tensor->set_allocated_tensor_shape(allocated_tensor_shape); allocated_tensor->set_tensor_content( std::string(reinterpret_cast<const char*>(values.data()), values.size() * sizeof(int))); (*node->mutable_attr())["value"].set_allocated_tensor(allocated_tensor); } GraphDef graph_; SvdfClusterFactory svdf_cluster_factory_; std::vector<std::unique_ptr<Cluster>> clusters_; }; TEST_F(ResolveSvdfTest, TestTranspose2DTensor) { static float matrix[] = {1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12.}; static float expected_transposed_matrix[] = {1., 5., 9., 2., 6., 10., 3., 7., 11., 4., 8., 12.}; float* transposed_matrix = new float[12]; Transpose2DTensor(matrix, 3, 4, transposed_matrix); std::vector<float> actual; actual.insert( actual.end(), transposed_matrix, transposed_matrix + sizeof(expected_transposed_matrix) / sizeof(float)); std::vector<float> expected; expected.insert(expected.end(), expected_transposed_matrix, expected_transposed_matrix + sizeof(expected_transposed_matrix) / sizeof(float)); delete[] transposed_matrix; } TEST_F(ResolveSvdfTest, TestResolveSvdfFlow) { std::unordered_map<std::string, bool> is_node_in_cluster; for (const NodeDef& node : graph_.node()) { is_node_in_cluster[node.name()] = false; } std::vector<std::string> cluster_names; CHECK(FindCluster(svdf_cluster_factory_, graph_, &is_node_in_cluster, &clusters_)); for (const std::unique_ptr<Cluster>& cluster : clusters_) { cluster_names.push_back(cluster->GetName()); cluster->CreateNodes(); } EXPECT_THAT(cluster_names, testing::UnorderedElementsAreArray({"Svdf1", "Svdf2"})); std::vector<std::string> new_node_names; std::vector<float> content_array(3); for (const std::unique_ptr<Cluster>& cluster : clusters_) { CHECK_EQ(cluster->GetNewNodes().size(), 3); for (const std::unique_ptr<tensorflow::NodeDef>& node : cluster->GetNewNodes()) { new_node_names.push_back(node->name()); if (node->op() == "Const") { CHECK_EQ(node->attr().at("dtype").type(), tensorflow::DT_FLOAT); toco::port::CopyToBuffer( node->attr().at("value").tensor().tensor_content(), reinterpret_cast<char*>(content_array.data())); EXPECT_THAT(content_array, testing::UnorderedElementsAreArray({0.1, 0.2, 0.3})); } else { if (node->name() == "Svdf1") { CHECK_EQ(node->attr().at("Rank").i(), 1); } else if (node->name() == "Svdf2") { CHECK_EQ(node->attr().at("Rank").i(), 2); } CHECK_EQ(node->attr().at("ActivationFunction").s(), "Relu"); } } } EXPECT_THAT(new_node_names, testing::UnorderedElementsAreArray( {"Svdf2/SVDF_weights_feature/part_0", "Svdf2/SVDF_weights_time/part_0", "Svdf2", "Svdf1/SVDF_weights_feature/part_0", "Svdf1/SVDF_weights_time/part_0", "Svdf1"})); } }
805
cpp
tensorflow/tensorflow
types
third_party/xla/xla/python/ifrt_proxy/common/types.cc
third_party/xla/xla/python/ifrt_proxy/common/types_test.cc
#ifndef TENSORFLOW_TSL_LIB_MONITORING_TYPES_H_ #define TENSORFLOW_TSL_LIB_MONITORING_TYPES_H_ #include <cmath> #include <vector> #include "tsl/platform/types.h" namespace tsl { namespace monitoring { enum class UnitOfMeasure { kNumber, kTime, kBytes, }; struct PercentilePoint { double percentile = 0.0; double value = 0.0; }; struct Percentiles { UnitOfMeasure unit_of_measure = UnitOfMeasure::kNumber; uint64 start_nstime = 0; uint64 end_nstime = 0; double min_value = NAN; double max_value = NAN; double mean = NAN; double stddev = NAN; size_t num_samples = 0; size_t total_samples = 0; long double accumulator = NAN; std::vector<PercentilePoint> points; }; } } #endif #include "xla/python/ifrt_proxy/common/types.h" #include <cstdint> #include <string> #include <variant> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/pjrt/pjrt_common.h" #include "xla/python/ifrt/array.h" #include "xla/python/ifrt_proxy/common/types.pb.h" namespace xla { namespace ifrt { namespace proxy { absl::StatusOr<xla::PjRtValueType> FromVariantProto( const proto::Variant& variant_proto) { switch (variant_proto.value_case()) { case proto::Variant::kStringValue: return variant_proto.string_value(); case proto::Variant::kInt64Value: return variant_proto.int64_value(); case proto::Variant::kInt64List: { const auto& values = variant_proto.int64_list().values(); return std::vector<int64_t>(values.begin(), values.end()); } case proto::Variant::kFloatValue: return variant_proto.float_value(); default: return absl::UnimplementedError(absl::StrCat( "Unknown xla.ifrt.proto.Variant case: ", variant_proto.value_case())); } } absl::StatusOr<proto::Variant> ToVariantProto(const xla::PjRtValueType& value) { proto::Variant variant; if (auto* s = std::get_if<std::string>(&value)) { variant.set_string_value(*s); } else if (auto* i = std::get_if<int64_t>(&value)) { variant.set_int64_value(*i); } else if (auto* is = std::get_if<std::vector<int64_t>>(&value)) { for (const int64_t i : *is) { variant.mutable_int64_list()->add_values(i); } } else if (auto* f = std::get_if<float>(&value)) { variant.set_float_value(*f); } else { return absl::UnimplementedError("Unknown xla::PjRtValueType type"); } return variant; } proto::ArrayCopySemantics ToArrayCopySemanticsProto(ArrayCopySemantics s) { switch (s) { case ArrayCopySemantics::kAlwaysCopy: return proto::ARRAY_COPY_SEMANTICS_ALWAYS_COPY; case ArrayCopySemantics::kDonateInput: return proto::ARRAY_COPY_SEMANTICS_DONATE_INPUT; case ArrayCopySemantics::kReuseInput: return proto::ARRAY_COPY_SEMANTICS_REUSE_INPUT; } } absl::StatusOr<ArrayCopySemantics> FromArrayCopySemanticsProto( proto::ArrayCopySemantics s) { MakeArrayFromHostBufferRequest req; switch (s) { case proto::ARRAY_COPY_SEMANTICS_ALWAYS_COPY: return ArrayCopySemantics::kAlwaysCopy; case proto::ARRAY_COPY_SEMANTICS_DONATE_INPUT: return ArrayCopySemantics::kDonateInput; case proto::ARRAY_COPY_SEMANTICS_REUSE_INPUT: return ArrayCopySemantics::kReuseInput; default: return absl::InvalidArgumentError( absl::StrCat("Unhandled proto-enum value ", s, ":", proto::ArrayCopySemantics_Name(s))); } } std::vector<int64_t> FromByteStridesProto(const proto::ByteStrides& strides) { std::vector<int64_t> result; result.reserve(strides.strides_size()); for (auto x : strides.strides()) { result.push_back(x); } return result; } proto::ByteStrides ToByteStridesProto(const absl::Span<const int64_t> strides) { proto::ByteStrides result; for (auto x : strides) { result.add_strides(x); } return result; } } } }
#include "xla/python/ifrt_proxy/common/types.h" #include <cstdint> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/pjrt/pjrt_common.h" #include "xla/python/ifrt_proxy/common/types.pb.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace ifrt { namespace proxy { namespace { using ::tsl::testing::IsOkAndHolds; class VariantTest : public testing::TestWithParam<xla::PjRtValueType> {}; TEST_P(VariantTest, ToFromVariantProto) { const auto& variant = GetParam(); TF_ASSERT_OK_AND_ASSIGN(proto::Variant variant_proto, ToVariantProto(variant)); EXPECT_THAT(FromVariantProto(variant_proto), IsOkAndHolds(variant)); } INSTANTIATE_TEST_SUITE_P( Variant, VariantTest, testing::Values(xla::PjRtValueType(std::string("foo")), xla::PjRtValueType(static_cast<int64_t>(1234)), xla::PjRtValueType(std::vector<int64_t>{1, 2}), xla::PjRtValueType(3.14f))); class ByteStridesTest : public testing::TestWithParam<std::vector<int64_t>> {}; TEST_P(ByteStridesTest, ToFromProto) { std::vector<int64_t> strides = GetParam(); EXPECT_EQ(FromByteStridesProto(ToByteStridesProto(strides)), strides); } INSTANTIATE_TEST_SUITE_P( ByteStrides, ByteStridesTest, testing::ValuesIn(std::vector<std::vector<int64_t>>{ {}, {1}, {0}, {4, 8}, {8, 4}, {1, 2, 3, 4}, {0, 4}, {4, 0}})); TEST(ArrayCopySemanticsTest, FromToFromProto) { for (int i = 0; i < proto::ArrayCopySemantics_descriptor()->value_count(); ++i) { const auto proto_enum = static_cast<proto::ArrayCopySemantics>( proto::ArrayCopySemantics_descriptor()->value(i)->number()); if (proto_enum == proto::ARRAY_COPY_SEMANTICS_UNSPECIFIED) { continue; } TF_ASSERT_OK_AND_ASSIGN(const auto cpp_enum, FromArrayCopySemanticsProto(proto_enum)); TF_ASSERT_OK_AND_ASSIGN( const auto cpp_enum_copy, FromArrayCopySemanticsProto(ToArrayCopySemanticsProto(cpp_enum))); EXPECT_EQ(cpp_enum_copy, cpp_enum); } } } } } }
806
cpp
tensorflow/tensorflow
export
tensorflow/lite/toco/tflite/export.cc
tensorflow/lite/toco/tflite/export_test.cc
#ifndef TENSORFLOW_COMPILER_MLIR_TFRT_UTILS_EXPORT_H_ #define TENSORFLOW_COMPILER_MLIR_TFRT_UTILS_EXPORT_H_ #include "absl/functional/any_invocable.h" #include "absl/status/status.h" #include "mlir/IR/BuiltinOps.h" #include "tensorflow/core/framework/function.pb.h" namespace tensorflow { absl::Status ExportFunctionDefs( mlir::ModuleOp module, absl::AnyInvocable<absl::Status(tensorflow::FunctionDef)> callback, bool export_tf_original_func_name = true); } #endif #include "tensorflow/compiler/mlir/tfrt/utils/export.h" #include <memory> #include <utility> #include "absl/functional/any_invocable.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/Pass/PassManager.h" #include "mlir/Support/LogicalResult.h" #include "tensorflow/compiler/mlir/tensorflow/transforms/passes.h" #include "tensorflow/compiler/mlir/tensorflow/translate/mlir_roundtrip_flags.h" #include "tensorflow/compiler/mlir/tensorflow/utils/error_util.h" #include "tensorflow/compiler/mlir/tf2xla/api/v1/tf_dialect_to_executor.h" #include "tensorflow/compiler/mlir/tf2xla/api/v2/tf_executor_to_graph.h" #include "tensorflow/core/framework/function.pb.h" #include "tsl/platform/errors.h" #include "tsl/profiler/lib/traceme.h" namespace tensorflow { absl::Status ExportFunctionDefs( mlir::ModuleOp module, absl::AnyInvocable<absl::Status(tensorflow::FunctionDef)> callback, bool export_tf_original_func_name) { tsl::profiler::TraceMe traceme([&]() { return tsl::profiler::TraceMeEncode( "ExportFunctionDefs", {{"module_name", absl::string_view(module.getName().value_or("?"))}}); }); TF_RETURN_IF_ERROR( tensorflow::tf2xla::v1::ExportFromTensorflowDialectToExecutor(module)); { mlir::StatusScopedDiagnosticHandler diag_handler(module.getContext()); mlir::PassManager pm(module.getContext()); pm.addPass(mlir::CreateBreakUpIslandsPass()); if (mlir::failed(pm.run(module))) { return diag_handler.ConsumeStatus(); } } tensorflow::GraphExportConfig configs; configs.export_original_tf_func_name = export_tf_original_func_name; for (auto func : module.getOps<mlir::func::FuncOp>()) { tensorflow::FunctionDef function_def; TF_RETURN_IF_ERROR( tensorflow::tf2xla::v2::ConvertMlirFunctionToFunctionLibraryDef( func, configs, &function_def)); TF_RETURN_IF_ERROR(callback(std::move(function_def))); } return absl::OkStatus(); } }
#include "tensorflow/lite/toco/tflite/export.h" #include <algorithm> #include <initializer_list> #include <memory> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/log/log.h" #include "flatbuffers/buffer.h" #include "flatbuffers/flatbuffer_builder.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/schema/schema_utils.h" #include "tensorflow/lite/toco/model.h" #include "tensorflow/lite/toco/tflite/builtin_operator.h" #include "tensorflow/lite/toco/tflite/operator.h" #include "tensorflow/lite/toco/tflite/types.h" #include "tsl/protobuf/error_codes.pb.h" namespace toco { namespace tflite { namespace { using ::testing::ElementsAre; using ::testing::HasSubstr; class ExportTest : public ::testing::Test { protected: void ResetOperators() { input_model_.operators.clear(); } void AddTensorsByName(std::initializer_list<std::string> names) { for (const std::string& name : names) { input_model_.GetOrCreateArray(name); } } void AddOperatorsByName(std::initializer_list<std::string> names) { for (const std::string& name : names) { if (name == "Conv") { auto* op = new ConvOperator; op->padding.type = PaddingType::kSame; op->inputs = {"input", "filter"}; op->outputs = {"output"}; Array& input_array = input_model_.GetOrCreateArray(op->inputs[0]); Array& filter_array = input_model_.GetOrCreateArray(op->inputs[1]); Array& output_array = input_model_.GetOrCreateArray(op->outputs[0]); input_array.data_type = ArrayDataType::kFloat; filter_array.data_type = ArrayDataType::kFloat; output_array.data_type = ArrayDataType::kFloat; input_model_.operators.emplace_back(op); } else if (name == "Add") { auto* op = new AddOperator; op->inputs = {"input1", "input2"}; op->outputs = {"output"}; Array& input1_array = input_model_.GetOrCreateArray(op->inputs[0]); Array& input2_array = input_model_.GetOrCreateArray(op->inputs[1]); Array& output_array = input_model_.GetOrCreateArray(op->outputs[0]); input1_array.data_type = ArrayDataType::kFloat; input2_array.data_type = ArrayDataType::kFloat; output_array.data_type = ArrayDataType::kFloat; input_model_.operators.emplace_back(op); } else if (name == "Sub") { auto* op = new SubOperator; op->inputs = {"input1", "input2"}; op->outputs = {"output"}; Array& input1_array = input_model_.GetOrCreateArray(op->inputs[0]); Array& input2_array = input_model_.GetOrCreateArray(op->inputs[1]); Array& output_array = input_model_.GetOrCreateArray(op->outputs[0]); input1_array.data_type = ArrayDataType::kFloat; input2_array.data_type = ArrayDataType::kFloat; output_array.data_type = ArrayDataType::kFloat; input1_array.copy_shape({1, 2, 2, 2}); input2_array.copy_shape({1, 2, 2, 2}); output_array.copy_shape({1, 2, 2, 2}); input_model_.operators.emplace_back(op); } else if (name == "Assert") { auto* op = new TensorFlowAssertOperator; ::tensorflow::NodeDef node_def; node_def.set_name("Assert"); node_def.set_op("Assert"); node_def.SerializeToString(&op->tensorflow_node_def); input_model_.operators.emplace_back(op); } else { auto* op = new TensorFlowUnsupportedOperator; op->tensorflow_op = name; input_model_.operators.emplace_back(op); } } } void BuildQuantizableTestModel() { input_model_.GetOrCreateArray("inputs"); Array& weight_array = input_model_.GetOrCreateArray("weights"); int buf_size = 1296; auto weight_buf = std::make_unique<float[]>(buf_size); for (int i = 0; i < buf_size; i++) { weight_buf[i] = static_cast<float>(i % 128); } weight_array.data_type = ArrayDataType::kFloat; Shape* weight_array_shape = weight_array.mutable_shape(); std::vector<int>* weight_array_shape_dim = weight_array_shape->mutable_dims(); weight_array_shape_dim->resize(4, 6); auto& weight_array_buffer = weight_array.GetMutableBuffer<ArrayDataType::kFloat>(); weight_array_buffer.data.resize(buf_size); float* buf_ptr = weight_array.GetMutableBuffer<ArrayDataType::kFloat>().data.data(); std::copy(weight_buf.get(), weight_buf.get() + buf_size, buf_ptr); { auto* op = new ConvOperator; op->padding.type = PaddingType::kSame; op->inputs = {"inputs", "weights"}; op->outputs = {"output"}; Array& input_array = input_model_.GetArray(op->inputs[0]); Array& filter_array = input_model_.GetArray(op->inputs[1]); Array& output_array = input_model_.GetOrCreateArray(op->outputs[0]); input_array.data_type = ArrayDataType::kFloat; filter_array.data_type = ArrayDataType::kFloat; output_array.data_type = ArrayDataType::kFloat; input_model_.operators.emplace_back(op); } { auto* op = new AddOperator; op->inputs = {"input1", "input2"}; op->outputs = {"output"}; Array& input1_array = input_model_.GetOrCreateArray(op->inputs[0]); Array& input2_array = input_model_.GetOrCreateArray(op->inputs[1]); Array& output_array = input_model_.GetOrCreateArray(op->outputs[0]); input1_array.data_type = ArrayDataType::kFloat; input2_array.data_type = ArrayDataType::kFloat; output_array.data_type = ArrayDataType::kFloat; input_model_.operators.emplace_back(op); } } tensorflow::Status ExportAndReturnStatus(const ExportParams& params) { std::string result; return Export(input_model_, &result, params); } std::vector<std::string> ExportAndSummarizeOperators( const ExportParams& params) { std::vector<std::string> names; std::string result; auto status = Export(input_model_, &result, params); if (!status.ok()) { LOG(INFO) << status.message(); return names; } auto* model = ::tflite::GetModel(result.data()); for (const ::tflite::OperatorCode* opcode : *model->operator_codes()) { auto builtin_code = GetBuiltinCode(opcode); if (builtin_code != ::tflite::BuiltinOperator_CUSTOM) { names.push_back(std::string("builtin:") + ::tflite::EnumNameBuiltinOperator(builtin_code)); } else { names.push_back(std::string("custom:") + opcode->custom_code()->c_str()); } } return names; } std::vector<uint32_t> ExportAndGetOperatorIndices( const ExportParams& params) { std::vector<uint32_t> indices; std::string result; if (!Export(input_model_, &result, params).ok()) return indices; auto* model = ::tflite::GetModel(result.data()); auto operators = (*model->subgraphs())[0]->operators(); for (const auto* op : *operators) { indices.push_back(op->opcode_index()); } return indices; } Model input_model_; }; TEST_F(ExportTest, LoadTensorsMap) { AddTensorsByName({"tensor_one", "tensor_two"}); details::TensorsMap tensors; details::LoadTensorsMap(input_model_, &tensors); EXPECT_EQ(0, tensors["tensor_one"]); EXPECT_EQ(1, tensors["tensor_two"]); } TEST_F(ExportTest, LoadOperatorsMap) { AddOperatorsByName({"Conv", "Add", "MyCrazyOp", "Sub"}); details::OperatorsMap operators; const auto ops_by_type = BuildOperatorByTypeMap(); details::LoadOperatorsMap(input_model_, &operators, ops_by_type, false); EXPECT_EQ( 0, operators[details::OperatorKey(::tflite::BuiltinOperator_ADD, "", 1)]); EXPECT_EQ(1, operators[details::OperatorKey(::tflite::BuiltinOperator_CONV_2D, "", 1)]); EXPECT_EQ(2, operators[details::OperatorKey(::tflite::BuiltinOperator_CUSTOM, "MyCrazyOp", 1)]); EXPECT_EQ( 3, operators[details::OperatorKey(::tflite::BuiltinOperator_SUB, "", 1)]); } TEST_F(ExportTest, UnsupportedFunctionality) { AddOperatorsByName({"Conv"}); ExportParams params; params.allow_dynamic_tensors = false; auto status = ExportAndReturnStatus(params); EXPECT_EQ(status.code(), ::tensorflow::error::UNIMPLEMENTED); EXPECT_THAT(status.message(), HasSubstr("Unsupported flag: allow_dynamic_tensors.")); } TEST_F(ExportTest, Export) { AddOperatorsByName({"Conv", "Add", "MyCrazyOp", "Sub"}); ExportParams params; params.allow_custom_ops = true; params.enable_select_tf_ops = false; params.quantize_weights = QuantizedBufferType::NONE; EXPECT_THAT(ExportAndSummarizeOperators(params), ElementsAre("builtin:ADD", "builtin:CONV_2D", "custom:MyCrazyOp", "builtin:SUB")); EXPECT_THAT(ExportAndGetOperatorIndices(params), ElementsAre(1, 0, 2, 3)); } TEST_F(ExportTest, ExportMinRuntime) { AddOperatorsByName({"Conv", "Add", "Sub"}); ExportParams params; params.allow_custom_ops = true; params.enable_select_tf_ops = false; params.quantize_weights = QuantizedBufferType::NONE; std::string output; auto status = Export(input_model_, &output, params); auto* model = ::tflite::GetModel(output.data()); EXPECT_EQ(model->metadata()->size(), 1); EXPECT_EQ(model->metadata()->Get(0)->name()->str(), "min_runtime_version"); auto buf = model->metadata()->Get(0)->buffer(); auto* buffer = (*model->buffers())[buf]; auto* array = buffer->data(); EXPECT_EQ(reinterpret_cast<const char*>(array->data()), std::string("1.6.0")); } TEST_F(ExportTest, ExportEmptyMinRuntime) { AddOperatorsByName({"Switch", "MyCustomOp", "Assert"}); ExportParams params; params.allow_custom_ops = true; std::string output; auto status = Export(input_model_, &output, params); auto* model = ::tflite::GetModel(output.data()); EXPECT_EQ(model->metadata()->size(), 1); EXPECT_EQ(model->metadata()->Get(0)->name()->str(), "min_runtime_version"); auto buf = model->metadata()->Get(0)->buffer(); auto* buffer = (*model->buffers())[buf]; auto* array = buffer->data(); EXPECT_EQ(reinterpret_cast<const char*>(array->data()), std::string("")); } TEST_F(ExportTest, UnsupportedControlFlowErrors) { AddOperatorsByName({"Conv", "Add", "Switch", "Merge"}); ExportParams params; params.allow_custom_ops = false; std::string output; const auto ops_by_type = BuildOperatorByTypeMap(); auto status = Export(input_model_, &output, params, ops_by_type); EXPECT_EQ(status.message(), "We are continually in the process of adding support to TensorFlow " "Lite for more ops. It would be helpful if you could inform us of " "how this conversion went by opening a github issue at " "https: "new?template=40-tflite-op-request.md\n and pasting the " "following:\n\nTensorFlow Lite currently doesn't support control " "flow ops: Merge, Switch. We are working on supporting control " "flow ops, please see github issue at " "https: } TEST_F(ExportTest, UnsupportedOpsAndNeedEnableFlex) { AddOperatorsByName({"Conv", "Add", "BatchNormWithGlobalNormalization"}); ExportParams params; params.allow_custom_ops = false; params.enable_select_tf_ops = false; std::string output; const auto ops_by_type = BuildOperatorByTypeMap(); auto status = Export(input_model_, &output, params, ops_by_type); EXPECT_EQ( status.message(), "We are continually in the process of adding support to TensorFlow Lite " "for more ops. It would be helpful if you could inform us of how this " "conversion went by opening a github issue at " "https: "new?template=40-tflite-op-request.md\n and pasting the " "following:\n\nSome of the operators in the model are not supported by " "the standard TensorFlow Lite runtime. If those are native TensorFlow " "operators, you might be able to use the extended runtime by passing " "--enable_select_tf_ops, or by setting " "target_ops=TFLITE_BUILTINS,SELECT_TF_OPS when calling " "tf.lite.TFLiteConverter(). Otherwise, if you have a custom " "implementation for them you can disable this error with " "--allow_custom_ops, or by setting allow_custom_ops=True when calling " "tf.lite.TFLiteConverter(). Here is a list of builtin operators you are " "using: ADD, CONV_2D. Here is a list of operators for which you will " "need custom implementations: BatchNormWithGlobalNormalization."); } TEST_F(ExportTest, UnsupportedOpsNeedCustomImplementation) { AddOperatorsByName({"Conv", "Add", "MyCustomOp1", "MyCustomOp2"}); ExportParams params; params.allow_custom_ops = false; params.enable_select_tf_ops = true; std::string output; const auto ops_by_type = BuildOperatorByTypeMap(); auto status = Export(input_model_, &output, params, ops_by_type); EXPECT_EQ( status.message(), "We are continually in the process of adding support to TensorFlow Lite " "for more ops. It would be helpful if you could inform us of how this " "conversion went by opening a github issue at " "https: "new?template=40-tflite-op-request.md\n and pasting the " "following:\n\nSome of the operators in the model are not supported by " "the standard TensorFlow Lite runtime and are not recognized by " "TensorFlow. If you have a custom implementation for them you can " "disable this error with --allow_custom_ops, or by setting " "allow_custom_ops=True when calling tf.lite.TFLiteConverter(). Here is a " "list of builtin operators you are using: ADD, CONV_2D. Here is a list " "of operators for which you will need custom implementations: " "MyCustomOp1, MyCustomOp2."); } TEST_F(ExportTest, UnsupportedControlFlowAndCustomOpsErrors) { AddOperatorsByName( {"Conv", "Add", "Switch", "Merge", "MyCustomOp1", "MyCustomOp2"}); ExportParams params; params.allow_custom_ops = false; std::string output; const auto ops_by_type = BuildOperatorByTypeMap(); auto status = Export(input_model_, &output, params, ops_by_type); EXPECT_EQ( status.message(), "We are continually in the process of adding support to TensorFlow Lite " "for more ops. It would be helpful if you could inform us of how this " "conversion went by opening a github issue at " "https: "new?template=40-tflite-op-request.md\n and pasting the " "following:\n\nTensorFlow Lite currently doesn't support control flow " "ops: Merge, Switch. We are working on supporting control flow ops, " "please see github issue at " "https: "operators in the model are not supported by the standard TensorFlow " "Lite runtime. If those are native TensorFlow operators, you might be " "able to use the extended runtime by passing --enable_select_tf_ops, or " "by setting target_ops=TFLITE_BUILTINS,SELECT_TF_OPS when calling " "tf.lite.TFLiteConverter(). Otherwise, if you have a custom " "implementation for them you can disable this error with " "--allow_custom_ops, or by setting allow_custom_ops=True when calling " "tf.lite.TFLiteConverter(). Here is a list of builtin operators you are " "using: ADD, CONV_2D. Here is a list of operators for which you will " "need custom implementations: MyCustomOp1, MyCustomOp2."); } TEST_F(ExportTest, QuantizeWeights) { BuildQuantizableTestModel(); std::string unquantized_result; Export(input_model_, true, false, &unquantized_result); BuildQuantizableTestModel(); std::string quantized_result; Export(input_model_, true, true, &quantized_result); EXPECT_LT(quantized_result.size(), unquantized_result.size()); } class OpSetsTest : public ExportTest { public: enum OpSet { kTfLiteBuiltins, kSelectTfOps, kCustomOps }; void SetAllowedOpSets(std::initializer_list<OpSet> sets) { import_all_ops_as_unsupported_ = true; params_.allow_custom_ops = false; params_.enable_select_tf_ops = false; params_.quantize_weights = QuantizedBufferType::NONE; for (const OpSet& i : sets) { switch (i) { case kTfLiteBuiltins: import_all_ops_as_unsupported_ = false; break; case kSelectTfOps: params_.enable_select_tf_ops = true; break; case kCustomOps: params_.allow_custom_ops = true; break; } } } std::vector<std::string> ImportExport( std::initializer_list<std::string> op_names) { ResetOperators(); if (!import_all_ops_as_unsupported_) { AddOperatorsByName(op_names); } else { for (const std::string& name : op_names) { auto* op = new TensorFlowUnsupportedOperator; op->tensorflow_op = name; input_model_.operators.emplace_back(op); } } return ExportAndSummarizeOperators(params_); } private: bool import_all_ops_as_unsupported_; ExportParams params_; }; TEST_F(OpSetsTest, BuiltinsOnly) { SetAllowedOpSets({kTfLiteBuiltins}); EXPECT_THAT(ImportExport({"Add", "AdjustHue", "UnrollAndFold", "Assert"}), ElementsAre()); EXPECT_THAT(ImportExport({"Add"}), ElementsAre("builtin:ADD")); SetAllowedOpSets({kTfLiteBuiltins, kCustomOps}); EXPECT_THAT(ImportExport({"Add", "AdjustHue", "UnrollAndFold", "Assert"}), ElementsAre("builtin:ADD", "custom:AdjustHue", "custom:Assert", "custom:UnrollAndFold")); } TEST_F(OpSetsTest, TfSelectOnly) { SetAllowedOpSets({kSelectTfOps}); EXPECT_THAT(ImportExport({"Add", "AdjustHue", "RandomUniform", "UnrollAndFold", "Assert"}), ElementsAre()); EXPECT_THAT(ImportExport({"Add"}), ElementsAre("custom:FlexAdd")); SetAllowedOpSets({kSelectTfOps, kCustomOps}); EXPECT_THAT( ImportExport( {"Add", "AdjustHue", "RandomUniform", "UnrollAndFold", "Assert"}), ElementsAre("custom:FlexAdd", "custom:FlexAdjustHue", "custom:FlexAssert", "custom:FlexRandomUniform", "custom:UnrollAndFold")); } TEST_F(OpSetsTest, BuiltinsAndTfSelect) { SetAllowedOpSets({kTfLiteBuiltins, kSelectTfOps}); EXPECT_THAT(ImportExport({"Add", "AdjustHue", "UnrollAndFold", "Assert"}), ElementsAre()); EXPECT_THAT(ImportExport({"Add", "RandomUniform"}), ElementsAre("builtin:ADD", "custom:FlexRandomUniform")); SetAllowedOpSets({kTfLiteBuiltins, kSelectTfOps, kCustomOps}); EXPECT_THAT( ImportExport( {"Add", "AdjustHue", "RandomUniform", "UnrollAndFold", "Assert"}), ElementsAre("builtin:ADD", "custom:FlexAdjustHue", "custom:FlexAssert", "custom:FlexRandomUniform", "custom:UnrollAndFold")); } class FakeConvolutionOperator : public BuiltinOperator<ConvOperator, ::tflite::Conv2DOptions, ::tflite::BuiltinOptions_Conv2DOptions> { public: FakeConvolutionOperator() : BuiltinOperator(::tflite::BuiltinOperator_CONV_2D, OperatorType::kConv) {} int GetVersion(const OperatorSignature& op_signature) const override { const TocoOperator& conv_op = static_cast<const TocoOperator&>(*op_signature.op); if (conv_op.dilation_width_factor != 1 || conv_op.dilation_height_factor != 1) { return 2; } return 1; } flatbuffers::Offset<TfLiteOptions> WriteOptions( const TocoOperator& op, flatbuffers::FlatBufferBuilder* builder) const override { auto padding = Padding::Serialize(op.padding.type); auto activation_function = ActivationFunction::Serialize(op.fused_activation_function); return ::tflite::CreateConv2DOptions(*builder, padding, op.stride_width, op.stride_height, activation_function, op.dilation_width_factor, op.dilation_height_factor); } void ReadOptions(const TfLiteOptions& options, TocoOperator* op) const override { op->padding.type = Padding::Deserialize(options.padding()); op->stride_width = options.stride_w(); op->stride_height = options.stride_h(); op->dilation_width_factor = options.dilation_w_factor(); op->dilation_height_factor = options.dilation_h_factor(); op->fused_activation_function = ActivationFunction::Deserialize(options.fused_activation_function()); } }; class VersionedOpExportTest : public ::testing::Test { protected: void SetUp() override { input_model_.GetOrCreateArray("input"); input_model_.GetOrCreateArray("filter"); input_model_.GetOrCreateArray("output"); } void AddConvOp(bool use_dilation) { { auto* op = new ConvOperator; op->inputs.push_back("input"); op->inputs.push_back("filter"); op->outputs.push_back("output"); op->padding.type = PaddingType::kSame; op->stride_width = 1; op->stride_height = 1; if (use_dilation) { op->dilation_width_factor = 2; op->dilation_height_factor = 2; } else { op->dilation_width_factor = 1; op->dilation_height_factor = 1; } input_model_.operators.emplace_back(op); } } std::map<OperatorType, std::unique_ptr<BaseOperator>> BuildFakeOperatorByTypeMap() { std::map<OperatorType, std::unique_ptr<BaseOperator>> result; result[OperatorType::kConv] = std::unique_ptr<BaseOperator>(new FakeConvolutionOperator); return result; } Model input_model_; }; TEST_F(VersionedOpExportTest, LoadOperatorsMapWithOpV1) { AddConvOp(false); details::OperatorsMap operators; const auto ops_by_type = BuildFakeOperatorByTypeMap(); details::LoadOperatorsMap(input_model_, &operators, ops_by_type, false); EXPECT_EQ(1, operators.size()); EXPECT_EQ(0, operators.at(details::OperatorKey( ::tflite::BuiltinOperator_CONV_2D, "", 1))); } TEST_F(VersionedOpExportTest, LoadOperatorsMapWithOpV2) { AddConvOp(true); details::OperatorsMap operators; const auto ops_by_type = BuildFakeOperatorByTypeMap(); details::LoadOperatorsMap(input_model_, &operators, ops_by_type, false); EXPECT_EQ(1, operators.size()); EXPECT_EQ(0, operators.at(details::OperatorKey( ::tflite::BuiltinOperator_CONV_2D, "", 2))); } TEST_F(VersionedOpExportTest, LoadOperatorsMapWithBothVersions) { AddConvOp(false); AddConvOp(true); details::OperatorsMap operators; const auto ops_by_type = BuildFakeOperatorByTypeMap(); details::LoadOperatorsMap(input_model_, &operators, ops_by_type, false); EXPECT_EQ(2, operators.size()); EXPECT_EQ(0, operators.at(details::OperatorKey( ::tflite::BuiltinOperator_CONV_2D, "", 1))); EXPECT_EQ(1, operators.at(details::OperatorKey( ::tflite::BuiltinOperator_CONV_2D, "", 2))); } TEST_F(VersionedOpExportTest, Export) { AddConvOp(false); AddConvOp(true); std::string result; const auto ops_by_type = BuildFakeOperatorByTypeMap(); Export(input_model_, true, false, &result, ops_by_type); auto* model = ::tflite::GetModel(result.data()); auto operator_codes = model->operator_codes(); EXPECT_EQ(2, operator_codes->size()); EXPECT_EQ(::tflite::BuiltinOperator_CONV_2D, GetBuiltinCode((*operator_codes)[0])); EXPECT_EQ(1, (*operator_codes)[0]->version()); EXPECT_EQ(::tflite::BuiltinOperator_CONV_2D, GetBuiltinCode((*operator_codes)[1])); EXPECT_EQ(2, (*operator_codes)[1]->version()); auto operators = (*model->subgraphs())[0]->operators(); EXPECT_EQ(2, operators->size()); EXPECT_EQ(0, (*operators)[0]->opcode_index()); EXPECT_EQ(1, (*operators)[1]->opcode_index()); } TEST(OperatorKeyTest, TestBuiltinOp) { Model model; auto op = std::make_unique<ConvOperator>(); op->inputs = {"input", "filter"}; op->outputs = {"output"}; Array& input_array = model.GetOrCreateArray(op->inputs[0]); Array& filter_array = model.GetOrCreateArray(op->inputs[1]); Array& output_array = model.GetOrCreateArray(op->outputs[0]); input_array.data_type = ArrayDataType::kFloat; filter_array.data_type = ArrayDataType::kFloat; output_array.data_type = ArrayDataType::kFloat; const auto ops_by_type = BuildOperatorByTypeMap(); const toco::OperatorSignature op_signature = {op.get(), &model}; const auto key = details::OperatorKey(op_signature, ops_by_type, false); EXPECT_EQ(key.type(), ::tflite::BuiltinOperator_CONV_2D); EXPECT_EQ(key.custom_code(), ""); EXPECT_EQ(key.version(), 1); } TEST(OperatorKeyTest, TestBuiltinOpWithVersionedInputTypes) { Model model; auto op = std::make_unique<DequantizeOperator>(); op->inputs = {"input"}; op->outputs = {"output"}; Array& input_array = model.GetOrCreateArray(op->inputs[0]); Array& output_array = model.GetOrCreateArray(op->outputs[0]); input_array.data_type = ArrayDataType::kInt8; output_array.data_type = ArrayDataType::kFloat; const auto ops_by_type = BuildOperatorByTypeMap(); const toco::OperatorSignature op_signature = {op.get(), &model}; const auto key = details::OperatorKey(op_signature, ops_by_type, false); EXPECT_EQ(key.type(), ::tflite::BuiltinOperator_DEQUANTIZE); EXPECT_EQ(key.custom_code(), ""); EXPECT_EQ(key.version(), 2); } TEST(OperatorKeyTest, TestCustomOp) { Model model; auto op = std::make_unique<TensorFlowUnsupportedOperator>(); op->tensorflow_op = "MyCrazyCustomOp"; const auto ops_by_type = BuildOperatorByTypeMap(); const toco::OperatorSignature op_signature = {op.get(), &model}; const auto key = details::OperatorKey(op_signature, ops_by_type, false); EXPECT_EQ(key.type(), ::tflite::BuiltinOperator_CUSTOM); EXPECT_EQ(key.custom_code(), "MyCrazyCustomOp"); EXPECT_EQ(key.version(), 1); } TEST(OperatorKeyTest, TestFlexOp) { Model model; auto op = std::make_unique<TensorFlowUnsupportedOperator>(); op->tensorflow_op = "BatchMatMul"; const auto ops_by_type = BuildOperatorByTypeMap(); { const toco::OperatorSignature op_signature = {op.get(), &model}; const auto key = details::OperatorKey(op_signature, ops_by_type, false); EXPECT_EQ(key.type(), ::tflite::BuiltinOperator_CUSTOM); EXPECT_EQ(key.custom_code(), "BatchMatMul"); EXPECT_EQ(key.version(), 1); EXPECT_TRUE(key.is_custom_op()); EXPECT_FALSE(key.is_flex_op()); } { const toco::OperatorSignature op_signature = {op.get(), &model}; const auto key = details::OperatorKey(op_signature, ops_by_type, true); EXPECT_EQ(key.type(), ::tflite::BuiltinOperator_CUSTOM); EXPECT_EQ(key.custom_code(), "FlexBatchMatMul"); EXPECT_EQ(key.version(), 1); EXPECT_FALSE(key.is_custom_op()); EXPECT_TRUE(key.is_flex_op()); } } TEST(OperatorKeyTest, TestFlexWithControlFlowOp) { Model model; auto op = std::make_unique<TensorFlowUnsupportedOperator>(); op->tensorflow_op = "Merge"; const auto ops_by_type = BuildOperatorByTypeMap(); const toco::OperatorSignature op_signature = {op.get(), &model}; const auto key = details::OperatorKey(op_signature, ops_by_type, true); EXPECT_EQ(key.type(), ::tflite::BuiltinOperator_CUSTOM); EXPECT_EQ(key.custom_code(), "FlexMerge"); EXPECT_EQ(key.version(), 1); EXPECT_FALSE(key.is_custom_op()); EXPECT_TRUE(key.is_flex_op()); EXPECT_TRUE(key.is_unsupported_flex_op()); } TEST(OperatorKeyTest, TestFlexWithUnsupportedOp) { Model model; auto op = std::make_unique<TensorFlowUnsupportedOperator>(); op->tensorflow_op = "UnsupportedOp"; const auto ops_by_type = BuildOperatorByTypeMap(); const toco::OperatorSignature op_signature = {op.get(), &model}; const auto key = details::OperatorKey(op_signature, ops_by_type, true); EXPECT_EQ(key.type(), ::tflite::BuiltinOperator_CUSTOM); EXPECT_EQ(key.custom_code(), "UnsupportedOp"); EXPECT_EQ(key.version(), 1); EXPECT_FALSE(key.is_flex_op()); EXPECT_FALSE(key.is_unsupported_flex_op()); } TEST(OperatorKeyTest, TestFlexWithPartiallySupportedOps) { Model model; auto op = std::make_unique<TensorFlowAssertOperator>(); const auto ops_by_type = BuildOperatorByTypeMap(); { const toco::OperatorSignature op_signature = {op.get(), &model}; const auto key = details::OperatorKey(op_signature, ops_by_type, true); EXPECT_EQ(key.type(), ::tflite::BuiltinOperator_CUSTOM); EXPECT_EQ(key.custom_code(), "Assert"); EXPECT_EQ(key.version(), 1); EXPECT_TRUE(key.is_custom_op()); EXPECT_FALSE(key.is_flex_op()); } ::tensorflow::NodeDef node_def; node_def.set_name("TensorFlowAssert"); node_def.set_op("TensorFlowAssert"); node_def.SerializeToString(&op->tensorflow_node_def); { const toco::OperatorSignature op_signature = {op.get(), &model}; const auto key = details::OperatorKey(op_signature, ops_by_type, true); EXPECT_EQ(key.type(), ::tflite::BuiltinOperator_CUSTOM); EXPECT_EQ(key.custom_code(), "FlexAssert"); EXPECT_EQ(key.version(), 1); EXPECT_FALSE(key.is_custom_op()); EXPECT_TRUE(key.is_flex_op()); } } } } }
807
cpp
tensorflow/tensorflow
import
tensorflow/lite/toco/tflite/import.cc
tensorflow/lite/toco/tflite/import_test.cc
#ifndef TENSORFLOW_LITE_TOCO_TFLITE_IMPORT_H_ #define TENSORFLOW_LITE_TOCO_TFLITE_IMPORT_H_ #include <string> #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/toco/model.h" #include "tensorflow/lite/toco/model_flags.pb.h" namespace toco { namespace tflite { std::unique_ptr<Model> Import(const ModelFlags &model_flags, const std::string &input_file_contents); namespace details { using TensorsTable = std::vector<std::string>; using OperatorsTable = std::vector<std::string>; void LoadTensorsTable(const ::tflite::Model &input_model, TensorsTable *tensors_table); void LoadOperatorsTable(const ::tflite::Model &input_model, OperatorsTable *operators_table); } } } #endif #include "tensorflow/lite/toco/tflite/import.h" #include <memory> #include <string> #include "absl/log/check.h" #include "absl/log/log.h" #include "flatbuffers/verifier.h" #include "tensorflow/lite/core/tools/verifier.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/schema/schema_utils.h" #include "tensorflow/lite/stderr_reporter.h" #include "tensorflow/lite/toco/model.h" #include "tensorflow/lite/toco/model_flags.pb.h" #include "tensorflow/lite/toco/tflite/operator.h" #include "tensorflow/lite/toco/tflite/types.h" #include "tensorflow/lite/toco/tooling_util.h" namespace toco { namespace tflite { namespace details { void LoadTensorsTable(const ::tflite::Model& input_model, TensorsTable* tensors_table) { auto tensors = (*input_model.subgraphs())[0]->tensors(); if (!tensors) return; for (const auto* tensor : *tensors) { tensors_table->push_back(tensor->name()->c_str()); } } void LoadOperatorsTable(const ::tflite::Model& input_model, OperatorsTable* operators_table) { auto opcodes = input_model.operator_codes(); if (!opcodes) return; for (const auto* opcode : *opcodes) { auto builtin_code = GetBuiltinCode(opcode); if (builtin_code != ::tflite::BuiltinOperator_CUSTOM) { operators_table->push_back(EnumNameBuiltinOperator(builtin_code)); } else { operators_table->push_back(opcode->custom_code()->c_str()); } } } } void ImportTensors(const ::tflite::Model& input_model, Model* model) { auto tensors = (*input_model.subgraphs())[0]->tensors(); auto* buffers = input_model.buffers(); if (!tensors) return; for (const auto* input_tensor : *tensors) { Array& array = model->GetOrCreateArray(input_tensor->name()->c_str()); array.data_type = DataType::Deserialize(input_tensor->type()); int buffer_index = input_tensor->buffer(); auto* buffer = buffers->Get(buffer_index); DataBuffer::Deserialize(*input_tensor, *buffer, &array); auto shape = input_tensor->shape(); if (shape) { array.mutable_shape()->mutable_dims()->clear(); for (uint32_t i = 0; i < shape->Length(); ++i) { auto d = shape->Get(i); array.mutable_shape()->mutable_dims()->push_back(d); } } auto quantization = input_tensor->quantization(); if (quantization) { if (quantization->min() && quantization->max()) { CHECK_EQ(1, quantization->min()->Length()); CHECK_EQ(1, quantization->max()->Length()); MinMax& minmax = array.GetOrCreateMinMax(); minmax.min = quantization->min()->Get(0); minmax.max = quantization->max()->Get(0); } if (quantization->scale() && quantization->zero_point()) { CHECK_EQ(1, quantization->scale()->Length()); CHECK_EQ(1, quantization->zero_point()->Length()); QuantizationParams& q = array.GetOrCreateQuantizationParams(); q.scale = quantization->scale()->Get(0); q.zero_point = quantization->zero_point()->Get(0); } } } } void ImportOperators( const ::tflite::Model& input_model, const std::map<std::string, std::unique_ptr<BaseOperator>>& ops_by_name, const details::TensorsTable& tensors_table, const details::OperatorsTable& operators_table, Model* model) { auto ops = (*input_model.subgraphs())[0]->operators(); if (!ops) return; for (const auto* input_op : *ops) { uint32_t index = input_op->opcode_index(); if (index > operators_table.size()) { LOG(FATAL) << "Index " << index << " must be between zero and " << operators_table.size(); } std::string opname = operators_table.at(index); std::unique_ptr<Operator> new_op = nullptr; if (ops_by_name.count(opname) == 0) { std::string effective_opname = "TENSORFLOW_UNSUPPORTED"; if (ops_by_name.count(effective_opname) == 0) { LOG(FATAL) << "Internal logic error: TENSORFLOW_UNSUPPORTED not found."; } new_op = ops_by_name.at(effective_opname) ->Deserialize(input_op->builtin_options(), input_op->custom_options()); if (new_op->type == OperatorType::kUnsupported) { auto* unsupported_op = static_cast<TensorFlowUnsupportedOperator*>(new_op.get()); unsupported_op->tensorflow_op = opname; unsupported_op->quantized = true; } else { LOG(FATAL) << "Expected a TensorFlowUnsupportedOperator"; } } else { new_op = ops_by_name.at(opname)->Deserialize(input_op->builtin_options(), input_op->custom_options()); } model->operators.emplace_back(new_op.release()); auto* op = model->operators.back().get(); auto inputs = input_op->inputs(); for (uint32_t i = 0; i < inputs->Length(); i++) { auto input_index = inputs->Get(i); if (input_index != -1) { const std::string& input_name = tensors_table.at(input_index); op->inputs.push_back(input_name); } else { const std::string& tensor_name = toco::AvailableArrayName(*model, "OptionalTensor"); model->CreateOptionalArray(tensor_name); op->inputs.push_back(tensor_name); } } auto outputs = input_op->outputs(); for (int i = 0, end = outputs->Length(); i < end; i++) { auto output_index = outputs->Get(i); const std::string& output_name = tensors_table.at(output_index); op->outputs.push_back(output_name); } } } void ImportIOTensors(const ModelFlags& model_flags, const ::tflite::Model& input_model, const details::TensorsTable& tensors_table, Model* model) { if (model_flags.input_arrays().empty()) { auto inputs = (*input_model.subgraphs())[0]->inputs(); if (inputs) { for (int input : *inputs) { const std::string& input_name = tensors_table.at(input); model->flags.add_input_arrays()->set_name(input_name); } } } if (model_flags.output_arrays().empty()) { auto outputs = (*input_model.subgraphs())[0]->outputs(); if (outputs) { for (int output : *outputs) { const std::string& output_name = tensors_table.at(output); model->flags.add_output_arrays(output_name); } } } } namespace { bool Verify(const void* buf, size_t len) { ::flatbuffers::Verifier verifier(static_cast<const uint8_t*>(buf), len); return ::tflite::VerifyModelBuffer(verifier); } } std::unique_ptr<Model> Import(const ModelFlags& model_flags, const std::string& input_file_contents) { ::tflite::AlwaysTrueResolver r; if (!::tflite::Verify(input_file_contents.data(), input_file_contents.size(), r, ::tflite::DefaultErrorReporter())) { LOG(FATAL) << "Invalid flatbuffer."; } const ::tflite::Model* input_model = ::tflite::GetModel(input_file_contents.data()); const auto ops_by_name = BuildOperatorByNameMap(); if (!input_model->subgraphs() || input_model->subgraphs()->size() != 1) { LOG(FATAL) << "Number of subgraphs in tflite should be exactly 1."; } std::unique_ptr<Model> model; model = std::make_unique<Model>(); details::TensorsTable tensors_table; details::LoadTensorsTable(*input_model, &tensors_table); details::OperatorsTable operators_table; details::LoadOperatorsTable(*input_model, &operators_table); ImportTensors(*input_model, model.get()); ImportOperators(*input_model, ops_by_name, tensors_table, operators_table, model.get()); ImportIOTensors(model_flags, *input_model, tensors_table, model.get()); UndoWeightsShuffling(model.get()); return model; } } }
#include "tensorflow/lite/toco/tflite/import.h" #include <initializer_list> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "flatbuffers/flatbuffer_builder.h" #include "tensorflow/lite/schema/schema_conversion_utils.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/toco/model.h" #include "tensorflow/lite/toco/model_flags.pb.h" #include "tensorflow/lite/toco/toco_types.h" #include "tensorflow/lite/version.h" namespace toco { namespace tflite { namespace { using ::testing::ElementsAre; using flatbuffers::Offset; using flatbuffers::Vector; class ImportTest : public ::testing::Test { protected: template <typename T> Offset<Vector<unsigned char>> CreateDataVector(const std::vector<T>& data) { return builder_.CreateVector(reinterpret_cast<const uint8_t*>(data.data()), sizeof(T) * data.size()); } Offset<Vector<Offset<::tflite::Buffer>>> BuildBuffers() { auto buf0 = ::tflite::CreateBuffer(builder_, CreateDataVector<float>({})); auto buf1 = ::tflite::CreateBuffer( builder_, CreateDataVector<float>({1.0f, 2.0f, 3.0f, 4.0f})); auto buf2 = ::tflite::CreateBuffer(builder_, CreateDataVector<float>({3.0f, 4.0f})); return builder_.CreateVector( std::vector<Offset<::tflite::Buffer>>({buf0, buf1, buf2})); } Offset<Vector<Offset<::tflite::Tensor>>> BuildTensors() { auto q = ::tflite::CreateQuantizationParameters( builder_, builder_.CreateVector<float>({0.1f}), builder_.CreateVector<float>({0.2f}), builder_.CreateVector<float>({0.3f}), builder_.CreateVector<int64_t>({100LL})); auto t1 = ::tflite::CreateTensor(builder_, builder_.CreateVector<int>({1, 2, 2}), ::tflite::TensorType_FLOAT32, 1, builder_.CreateString("tensor_one"), q); auto t2 = ::tflite::CreateTensor(builder_, builder_.CreateVector<int>({2, 1}), ::tflite::TensorType_FLOAT32, 0, builder_.CreateString("tensor_two"), q); return builder_.CreateVector( std::vector<Offset<::tflite::Tensor>>({t1, t2})); } Offset<Vector<Offset<::tflite::OperatorCode>>> BuildOpCodes( std::initializer_list<::tflite::BuiltinOperator> op_codes) { std::vector<Offset<::tflite::OperatorCode>> op_codes_vector; for (auto op : op_codes) { op_codes_vector.push_back(::tflite::CreateOperatorCode(builder_, op, 0)); } return builder_.CreateVector(op_codes_vector); } Offset<Vector<Offset<::tflite::OperatorCode>>> BuildOpCodes() { return BuildOpCodes({::tflite::BuiltinOperator_MAX_POOL_2D, ::tflite::BuiltinOperator_CONV_2D}); } Offset<Vector<Offset<::tflite::Operator>>> BuildOperators( std::initializer_list<int> inputs, std::initializer_list<int> outputs) { auto is = builder_.CreateVector<int>(inputs); if (inputs.size() == 0) is = 0; auto os = builder_.CreateVector<int>(outputs); if (outputs.size() == 0) os = 0; auto op = ::tflite::CreateOperator( builder_, 0, is, os, ::tflite::BuiltinOptions_Conv2DOptions, ::tflite::CreateConv2DOptions(builder_, ::tflite::Padding_VALID, 1, 1, ::tflite::ActivationFunctionType_NONE) .Union(), 0, ::tflite::CustomOptionsFormat_FLEXBUFFERS); return builder_.CreateVector(std::vector<Offset<::tflite::Operator>>({op})); } Offset<Vector<Offset<::tflite::Operator>>> BuildOperators() { return BuildOperators({0}, {1}); } Offset<Vector<Offset<::tflite::SubGraph>>> BuildSubGraphs( Offset<Vector<Offset<::tflite::Tensor>>> tensors, Offset<Vector<Offset<::tflite::Operator>>> operators, int num_sub_graphs = 1) { std::vector<int32_t> inputs = {0}; std::vector<int32_t> outputs = {1}; std::vector<Offset<::tflite::SubGraph>> v; for (int i = 0; i < num_sub_graphs; ++i) { v.push_back(::tflite::CreateSubGraph( builder_, tensors, builder_.CreateVector(inputs), builder_.CreateVector(outputs), operators, builder_.CreateString("subgraph"))); } return builder_.CreateVector(v); } void BuildTestModel() { auto buffers = BuildBuffers(); auto tensors = BuildTensors(); auto opcodes = BuildOpCodes(); auto operators = BuildOperators(); auto subgraphs = BuildSubGraphs(tensors, operators); auto s = builder_.CreateString(""); ::tflite::FinishModelBuffer( builder_, ::tflite::CreateModel(builder_, TFLITE_SCHEMA_VERSION, opcodes, subgraphs, s, buffers)); input_model_ = ::tflite::GetModel(builder_.GetBufferPointer()); } std::string InputModelAsString() { return std::string(reinterpret_cast<char*>(builder_.GetBufferPointer()), builder_.GetSize()); } flatbuffers::FlatBufferBuilder builder_; const ::tflite::Model* input_model_ = nullptr; }; TEST_F(ImportTest, LoadTensorsTable) { BuildTestModel(); details::TensorsTable tensors; details::LoadTensorsTable(*input_model_, &tensors); EXPECT_THAT(tensors, ElementsAre("tensor_one", "tensor_two")); } TEST_F(ImportTest, LoadOperatorsTable) { BuildTestModel(); details::OperatorsTable operators; details::LoadOperatorsTable(*input_model_, &operators); EXPECT_THAT(operators, ElementsAre("MAX_POOL_2D", "CONV_2D")); } TEST_F(ImportTest, Tensors) { BuildTestModel(); auto model = Import(ModelFlags(), InputModelAsString()); ASSERT_GT(model->HasArray("tensor_one"), 0); Array& a1 = model->GetArray("tensor_one"); EXPECT_EQ(ArrayDataType::kFloat, a1.data_type); EXPECT_THAT(a1.GetBuffer<ArrayDataType::kFloat>().data, ElementsAre(1.0f, 2.0f, 3.0f, 4.0f)); ASSERT_TRUE(a1.has_shape()); EXPECT_THAT(a1.shape().dims(), ElementsAre(1, 2, 2)); const auto& mm = a1.minmax; ASSERT_TRUE(mm.get()); EXPECT_FLOAT_EQ(0.1, mm->min); EXPECT_FLOAT_EQ(0.2, mm->max); const auto& q = a1.quantization_params; ASSERT_TRUE(q.get()); EXPECT_FLOAT_EQ(0.3, q->scale); EXPECT_EQ(100, q->zero_point); } TEST_F(ImportTest, NoBuffers) { auto buffers = 0; auto tensors = BuildTensors(); auto opcodes = BuildOpCodes(); auto operators = BuildOperators(); auto subgraphs = BuildSubGraphs(tensors, operators); auto comment = builder_.CreateString(""); ::tflite::FinishModelBuffer( builder_, ::tflite::CreateModel(builder_, TFLITE_SCHEMA_VERSION, opcodes, subgraphs, comment, buffers)); EXPECT_DEATH(Import(ModelFlags(), InputModelAsString()), "Missing 'buffers' section."); } TEST_F(ImportTest, NoInputs) { auto buffers = BuildBuffers(); auto tensors = BuildTensors(); auto opcodes = BuildOpCodes(); auto operators = BuildOperators({}, {1}); auto subgraphs = BuildSubGraphs(tensors, operators); auto comment = builder_.CreateString(""); ::tflite::FinishModelBuffer( builder_, ::tflite::CreateModel(builder_, TFLITE_SCHEMA_VERSION, opcodes, subgraphs, comment, buffers)); EXPECT_DEATH(Import(ModelFlags(), InputModelAsString()), "Missing 'inputs' for operator."); } TEST_F(ImportTest, NoOutputs) { auto buffers = BuildBuffers(); auto tensors = BuildTensors(); auto opcodes = BuildOpCodes(); auto operators = BuildOperators({0}, {}); auto subgraphs = BuildSubGraphs(tensors, operators); auto comment = builder_.CreateString(""); ::tflite::FinishModelBuffer( builder_, ::tflite::CreateModel(builder_, TFLITE_SCHEMA_VERSION, opcodes, subgraphs, comment, buffers)); EXPECT_DEATH(Import(ModelFlags(), InputModelAsString()), "Missing 'outputs' for operator."); } TEST_F(ImportTest, InvalidOpCode) { auto buffers = BuildBuffers(); auto tensors = BuildTensors(); auto opcodes = BuildOpCodes({static_cast<::tflite::BuiltinOperator>(-1), ::tflite::BuiltinOperator_CONV_2D}); auto operators = BuildOperators(); auto subgraphs = BuildSubGraphs(tensors, operators); auto comment = builder_.CreateString(""); ::tflite::FinishModelBuffer( builder_, ::tflite::CreateModel(builder_, TFLITE_SCHEMA_VERSION, opcodes, subgraphs, comment, buffers)); EXPECT_DEATH(Import(ModelFlags(), InputModelAsString()), "Operator id '-1' is out of range."); } TEST_F(ImportTest, MultipleSubGraphs) { auto buffers = BuildBuffers(); auto tensors = BuildTensors(); auto opcodes = BuildOpCodes(); auto operators = BuildOperators(); auto subgraphs = BuildSubGraphs(tensors, operators, 2); auto comment = builder_.CreateString(""); ::tflite::FinishModelBuffer( builder_, ::tflite::CreateModel(builder_, TFLITE_SCHEMA_VERSION, opcodes, subgraphs, comment, buffers)); input_model_ = ::tflite::GetModel(builder_.GetBufferPointer()); EXPECT_DEATH(Import(ModelFlags(), InputModelAsString()), "Number of subgraphs in tflite should be exactly 1."); } } } }
808
cpp
tensorflow/tensorflow
operator
tensorflow/lite/toco/tflite/operator.cc
tensorflow/lite/toco/tflite/operator_test.cc
#ifndef TENSORFLOW_LITE_CORE_C_OPERATOR_H_ #define TENSORFLOW_LITE_CORE_C_OPERATOR_H_ #include <stdint.h> #include <stdlib.h> #include "tensorflow/lite/builtin_ops.h" #include "tensorflow/lite/core/async/c/types.h" #include "tensorflow/lite/core/c/c_api_types.h" #ifdef __cplusplus extern "C" { #endif typedef struct TfLiteOperator TfLiteOperator; TFL_CAPI_EXPORT extern TfLiteOperator* TfLiteOperatorCreate( TfLiteBuiltinOperator builtin_code, const char* custom_name, int version); TFL_CAPI_EXPORT extern TfLiteOperator* TfLiteOperatorCreateWithData( TfLiteBuiltinOperator builtin_code, const char* custom_name, int version, void* user_data); TFL_CAPI_EXPORT extern void TfLiteOperatorDelete(TfLiteOperator* registration); TFL_CAPI_EXPORT extern TfLiteBuiltinOperator TfLiteOperatorGetBuiltInCode( const TfLiteOperator* registration); TFL_CAPI_EXPORT extern const char* TfLiteOperatorGetCustomName( const TfLiteOperator* registration); TFL_CAPI_EXPORT extern int TfLiteOperatorGetVersion( const TfLiteOperator* registration); TFL_CAPI_EXPORT extern void* TfLiteOperatorGetUserData( const TfLiteOperator* registration); TFL_CAPI_EXPORT extern void TfLiteOperatorSetInit( TfLiteOperator* registration, void* (*init)(TfLiteOpaqueContext* context, const char* buffer, size_t length)); TFL_CAPI_EXPORT extern TfLiteStatus TfLiteOperatorSetInitWithData( TfLiteOperator* registration, void* (*init)(void* user_data, TfLiteOpaqueContext* context, const char* buffer, size_t length)); TFL_CAPI_EXPORT extern void TfLiteOperatorSetFree( TfLiteOperator* registration, void (*free)(TfLiteOpaqueContext* context, void* data)); TFL_CAPI_EXPORT extern TfLiteStatus TfLiteOperatorSetFreeWithData( TfLiteOperator* registration, void (*free)(void* user_data, TfLiteOpaqueContext* context, void* data)); TFL_CAPI_EXPORT extern void TfLiteOperatorSetPrepare( TfLiteOperator* registration, TfLiteStatus (*prepare)(TfLiteOpaqueContext* context, TfLiteOpaqueNode* node)); TFL_CAPI_EXPORT extern TfLiteStatus TfLiteOperatorSetPrepareWithData( TfLiteOperator* registration, TfLiteStatus (*prepare)(void* user_data, TfLiteOpaqueContext* context, TfLiteOpaqueNode* node)); TFL_CAPI_EXPORT extern void TfLiteOperatorSetInvoke( TfLiteOperator* registration, TfLiteStatus (*invoke)(TfLiteOpaqueContext* context, TfLiteOpaqueNode* node)); TFL_CAPI_EXPORT extern TfLiteStatus TfLiteOperatorSetInvokeWithData( TfLiteOperator* registration, TfLiteStatus (*invoke)(void* user_data, TfLiteOpaqueContext* context, TfLiteOpaqueNode* node)); TFL_CAPI_EXPORT extern void TfLiteOperatorSetAsyncKernel( TfLiteOperator* registration, struct TfLiteAsyncKernel* (*async_kernel)(TfLiteOpaqueContext* context, TfLiteOpaqueNode* node)); TFL_CAPI_EXPORT extern TfLiteStatus TfLiteOperatorSetAsyncKernelWithData( TfLiteOperator* registration, struct TfLiteAsyncKernel* (*async_kernel)(void* user_data, TfLiteOpaqueContext* context, TfLiteOpaqueNode* node)); TFL_CAPI_EXPORT extern void TfLiteOperatorSetInplaceOperator( TfLiteOperator* registration, uint64_t inplace_operator); #ifdef __cplusplus } #endif #endif #include "tensorflow/lite/core/c/operator.h" #include <stddef.h> #include <stdint.h> #include "tensorflow/lite/builtin_ops.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/c/common_internal.h" #include "tensorflow/lite/core/async/c/types.h" #include "tensorflow/lite/core/c/c_api_types.h" TfLiteOperator* TfLiteOperatorCreate(TfLiteBuiltinOperator builtin_code, const char* custom_name, int version) { return TfLiteOperatorCreateWithData(builtin_code, custom_name, version, nullptr); } TfLiteOperator* TfLiteOperatorCreateWithData(TfLiteBuiltinOperator builtin_code, const char* custom_name, int version, void* user_data) { return new TfLiteOperator{.custom_name = custom_name, .version = version, .init = nullptr, .free = nullptr, .prepare = nullptr, .invoke = nullptr, .async_kernel = nullptr, .builtin_code = builtin_code, .node_index = -1, .inplace_operator = kTfLiteInplaceOpNone, .user_data = user_data}; } void TfLiteOperatorDelete(TfLiteOperator* reg) { delete reg; } void TfLiteOperatorSetInit(TfLiteOperator* registration, void* (*init)(TfLiteOpaqueContext* context, const char* buffer, size_t length)) { registration->init = init; } TfLiteStatus TfLiteOperatorSetInitWithData( TfLiteOperator* registration, void* (*init)(void* user_data, TfLiteOpaqueContext* context, const char* buffer, size_t length)) { registration->init_with_data = init; return kTfLiteOk; } void TfLiteOperatorSetFree(TfLiteOperator* registration, void (*free)(TfLiteOpaqueContext* context, void* data)) { registration->free = free; } TfLiteStatus TfLiteOperatorSetFreeWithData( TfLiteOperator* registration, void (*free)(void* user_data, TfLiteOpaqueContext* context, void* data)) { registration->free_with_data = free; return kTfLiteOk; } void TfLiteOperatorSetPrepare( TfLiteOperator* registration, TfLiteStatus (*prepare)(TfLiteOpaqueContext* context, TfLiteOpaqueNode* node)) { registration->prepare = prepare; } TfLiteStatus TfLiteOperatorSetPrepareWithData( TfLiteOperator* registration, TfLiteStatus (*prepare)(void* user_data, TfLiteOpaqueContext* context, TfLiteOpaqueNode* node)) { registration->prepare_with_data = prepare; return kTfLiteOk; } void TfLiteOperatorSetInvoke( TfLiteOperator* registration, TfLiteStatus (*invoke)(TfLiteOpaqueContext* context, TfLiteOpaqueNode* node)) { registration->invoke = invoke; } TfLiteStatus TfLiteOperatorSetInvokeWithData( TfLiteOperator* registration, TfLiteStatus (*invoke)(void* user_data, TfLiteOpaqueContext* context, TfLiteOpaqueNode* node)) { registration->invoke_with_data = invoke; return kTfLiteOk; } void TfLiteOperatorSetAsyncKernel( TfLiteOperator* registration, TfLiteAsyncKernel* (*async_kernel)(TfLiteOpaqueContext* context, TfLiteOpaqueNode* node)) { registration->async_kernel = async_kernel; } TfLiteStatus TfLiteOperatorSetAsyncKernelWithData( TfLiteOperator* registration, TfLiteAsyncKernel* (*async_kernel)(void* user_data, TfLiteOpaqueContext* context, TfLiteOpaqueNode* node)) { registration->async_kernel_with_data = async_kernel; return kTfLiteOk; } void TfLiteOperatorSetInplaceOperator(TfLiteOperator* registration, uint64_t inplace_operator) { registration->inplace_operator = inplace_operator; } TfLiteBuiltinOperator TfLiteOperatorGetBuiltInCode( const TfLiteOperator* registration) { return static_cast<TfLiteBuiltinOperator>(registration->builtin_code); } const char* TfLiteOperatorGetCustomName(const TfLiteOperator* registration) { return registration->custom_name; } int TfLiteOperatorGetVersion(const TfLiteOperator* registration) { if (!registration) { return -1; } return registration->version; } void* TfLiteOperatorGetUserData(const TfLiteOperator* registration) { if (!registration) { return nullptr; } return registration->user_data; }
#include "tensorflow/lite/toco/tflite/operator.h" #include <string> #include <gtest/gtest.h> #include "absl/log/check.h" #include "flatbuffers/buffer.h" #include "flatbuffers/flatbuffer_builder.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/toco/model.h" #include "tensorflow/lite/toco/runtime/types.h" #include "tensorflow/lite/toco/tooling_util.h" namespace toco { namespace tflite { namespace { class OperatorTest : public ::testing::Test { protected: const BaseOperator& GetOperator(const std::string& name, OperatorType type) { using OpsByName = std::map<std::string, std::unique_ptr<BaseOperator>>; using OpsByType = std::map<OperatorType, std::unique_ptr<BaseOperator>>; static auto* by_name = new OpsByName(BuildOperatorByNameMap()); static auto* by_type = new OpsByType(BuildOperatorByTypeMap()); CHECK(by_name->count(name)) << "No operator for '" << name << "'."; BaseOperator* op1 = by_name->at(name).get(); CHECK(op1->type() == type) << "while verifying '" << name << "'."; CHECK(by_type->count(type)) << "No operator for '" << OperatorTypeName(type) << "'."; BaseOperator* op2 = by_type->at(type).get(); CHECK(op2->name() == name) << "while verifying '" << OperatorTypeName(type) << "'."; return *op1; } template <typename T> std::unique_ptr<T> SerializeAndDeserialize(const BaseOperator& op, const T& toco_op, Options* options = nullptr) { flatbuffers::FlatBufferBuilder builder; Options input_options = op.Serialize(toco_op, &builder); if (options) { *options = input_options; } builder.Finish(CreateOperator(builder, 0, 0, 0, input_options.type, input_options.builtin, input_options.custom, ::tflite::CustomOptionsFormat_FLEXBUFFERS)); auto* output_options = flatbuffers::GetRoot<::tflite::Operator>(builder.GetBufferPointer()); auto new_toco_op = op.Deserialize(output_options->builtin_options(), output_options->custom_options()); CHECK(new_toco_op->type == toco_op.type) << "The type of the serialized and deserialized" << HelpfulOperatorTypeName(*new_toco_op) << " does not match the type of the original " << HelpfulOperatorTypeName(toco_op); return std::unique_ptr<T>(dynamic_cast<T*>(new_toco_op.release())); } template <typename T> void CheckSimpleOperator(const std::string& name, OperatorType type) { Options options; auto output_toco_op = SerializeAndDeserialize(GetOperator(name, type), T(), &options); ASSERT_EQ(0, options.builtin.o); ASSERT_EQ(0, options.custom.o); ASSERT_EQ(::tflite::BuiltinOptions_NONE, options.type); ASSERT_NE(nullptr, output_toco_op.get()); } template <typename T> void CheckReducerOperator(const std::string& name, OperatorType type) { T op; op.keep_dims = false; auto output_toco_op = SerializeAndDeserialize(GetOperator(name, type), op); EXPECT_EQ(op.keep_dims, output_toco_op->keep_dims); } }; TEST_F(OperatorTest, SimpleOperators) { CheckSimpleOperator<FloorOperator>("FLOOR", OperatorType::kFloor); CheckSimpleOperator<CeilOperator>("CEIL", OperatorType::kCeil); CheckSimpleOperator<EluOperator>("ELU", OperatorType::kElu); CheckSimpleOperator<RoundOperator>("ROUND", OperatorType::kRound); CheckSimpleOperator<ReluOperator>("RELU", OperatorType::kRelu); CheckSimpleOperator<Relu1Operator>("RELU_N1_TO_1", OperatorType::kRelu1); CheckSimpleOperator<Relu6Operator>("RELU6", OperatorType::kRelu6); CheckSimpleOperator<LogisticOperator>("LOGISTIC", OperatorType::kLogistic); CheckSimpleOperator<TanhOperator>("TANH", OperatorType::kTanh); CheckSimpleOperator<ExpOperator>("EXP", OperatorType::kExp); CheckSimpleOperator<CosOperator>("COS", OperatorType::kCos); CheckSimpleOperator<LogSoftmaxOperator>("LOG_SOFTMAX", OperatorType::kLogSoftmax); CheckSimpleOperator<TensorFlowMaximumOperator>( "MAXIMUM", OperatorType::kMaximum); CheckSimpleOperator<TensorFlowMinimumOperator>( "MINIMUM", OperatorType::kMinimum); CheckSimpleOperator<TensorFlowLessOperator>("LESS", OperatorType::kLess); CheckSimpleOperator<NegOperator>("NEG", OperatorType::kNeg); CheckSimpleOperator<SelectOperator>("SELECT", OperatorType::kSelect); CheckSimpleOperator<SliceOperator>("SLICE", OperatorType::kSlice); CheckSimpleOperator<SinOperator>("SIN", OperatorType::kSin); CheckSimpleOperator<TensorFlowEqualOperator>("EQUAL", OperatorType::kEqual); CheckSimpleOperator<TensorFlowNotEqualOperator>("NOT_EQUAL", OperatorType::kNotEqual); CheckSimpleOperator<LogOperator>("LOG", OperatorType::kLog); CheckSimpleOperator<TensorFlowSqrtOperator>("SQRT", OperatorType::kSqrt); CheckSimpleOperator<TensorFlowRsqrtOperator>("RSQRT", OperatorType::kRsqrt); CheckSimpleOperator<PowOperator>("POW", OperatorType::kPow); CheckSimpleOperator<LogicalOrOperator>("LOGICAL_OR", OperatorType::kLogicalOr); CheckSimpleOperator<LogicalAndOperator>("LOGICAL_AND", OperatorType::kLogicalAnd); CheckSimpleOperator<LogicalNotOperator>("LOGICAL_NOT", OperatorType::kLogicalNot); CheckSimpleOperator<FloorDivOperator>("FLOOR_DIV", OperatorType::kFloorDiv); CheckSimpleOperator<TensorFlowSquareOperator>("SQUARE", OperatorType::kSquare); CheckSimpleOperator<TensorFlowZerosLikeOperator>("ZEROS_LIKE", OperatorType::kZerosLike); CheckSimpleOperator<FloorModOperator>("FLOOR_MOD", OperatorType::kFloorMod); CheckSimpleOperator<RangeOperator>("RANGE", OperatorType::kRange); CheckSimpleOperator<FillOperator>("FILL", OperatorType::kFill); CheckSimpleOperator<ReverseV2Operator>("REVERSE_V2", OperatorType::kReverseV2); CheckSimpleOperator<TensorFlowRankOperator>("RANK", OperatorType::kRank); } TEST_F(OperatorTest, BuiltinAdd) { AddOperator op; op.fused_activation_function = FusedActivationFunctionType::kRelu6; auto output_toco_op = SerializeAndDeserialize(GetOperator("ADD", OperatorType::kAdd), op); EXPECT_EQ(op.fused_activation_function, output_toco_op->fused_activation_function); } TEST_F(OperatorTest, BuiltinAddN) { AddNOperator op; auto output_toco_op = SerializeAndDeserialize(GetOperator("ADD_N", OperatorType::kAddN), op); ASSERT_NE(output_toco_op.get(), nullptr); } TEST_F(OperatorTest, BuiltinReducerOps) { CheckReducerOperator<MeanOperator>("MEAN", OperatorType::kMean); CheckReducerOperator<TensorFlowSumOperator>("SUM", OperatorType::kSum); CheckReducerOperator<TensorFlowProdOperator>("REDUCE_PROD", OperatorType::kReduceProd); CheckReducerOperator<TensorFlowMaxOperator>("REDUCE_MAX", OperatorType::kReduceMax); CheckReducerOperator<TensorFlowMinOperator>("REDUCE_MIN", OperatorType::kReduceMin); CheckReducerOperator<TensorFlowAnyOperator>("REDUCE_ANY", OperatorType::kAny); } TEST_F(OperatorTest, BuiltinCast) { CastOperator op; op.src_data_type = ArrayDataType::kFloat; op.dst_data_type = ArrayDataType::kUint8; auto output_toco_op = SerializeAndDeserialize(GetOperator("CAST", OperatorType::kCast), op); EXPECT_EQ(op.src_data_type, output_toco_op->src_data_type); EXPECT_EQ(op.dst_data_type, output_toco_op->dst_data_type); } TEST_F(OperatorTest, CustomConcatenation) { ConcatenationOperator op; op.axis = 123; auto output_toco_op = SerializeAndDeserialize( GetOperator("CONCATENATION", OperatorType::kConcatenation), op); EXPECT_EQ(op.axis, output_toco_op->axis); } TEST_F(OperatorTest, CustomDepthToSpace) { DepthToSpaceOperator op; op.block_size = 123; auto output_toco_op = SerializeAndDeserialize( GetOperator("DEPTH_TO_SPACE", OperatorType::kDepthToSpace), op); EXPECT_EQ(op.block_size, output_toco_op->block_size); } TEST_F(OperatorTest, CustomFakeQuant) { FakeQuantOperator op; auto* minmax = new MinMax; minmax->min = -10; minmax->max = 200; op.minmax.reset(minmax); op.num_bits = 16; auto output_toco_op = SerializeAndDeserialize( GetOperator("FAKE_QUANT", OperatorType::kFakeQuant), op); EXPECT_EQ(op.minmax->min, output_toco_op->minmax->min); EXPECT_EQ(op.minmax->max, output_toco_op->minmax->max); EXPECT_EQ(op.num_bits, output_toco_op->num_bits); } TEST_F(OperatorTest, CustomFullyConnected) { FullyConnectedOperator op; op.fused_activation_function = FusedActivationFunctionType::kRelu6; auto output_toco_op = SerializeAndDeserialize( GetOperator("FULLY_CONNECTED", OperatorType::kFullyConnected), op); EXPECT_EQ(op.fused_activation_function, output_toco_op->fused_activation_function); } TEST_F(OperatorTest, BuiltinGather) { GatherOperator op; auto output_toco_op = SerializeAndDeserialize(GetOperator("GATHER", OperatorType::kGather), op); ASSERT_NE(nullptr, output_toco_op.get()); } TEST_F(OperatorTest, BuiltinGatherNd) { GatherNdOperator op; auto output_toco_op = SerializeAndDeserialize( GetOperator("GATHER_ND", OperatorType::kGatherNd), op); ASSERT_NE(output_toco_op.get(), nullptr); } TEST_F(OperatorTest, BuiltinWhere) { WhereOperator op; auto output_toco_op = SerializeAndDeserialize(GetOperator("WHERE", OperatorType::kWhere), op); ASSERT_NE(output_toco_op.get(), nullptr); } TEST_F(OperatorTest, BuiltinL2Pool) { L2PoolOperator op; op.stride_width = 123; op.stride_height = 124; op.padding.type = PaddingType::kValid; op.kwidth = 480; op.kheight = 1080; auto output_toco_op = SerializeAndDeserialize( GetOperator("L2_POOL_2D", OperatorType::kL2Pool), op); EXPECT_EQ(op.stride_width, output_toco_op->stride_width); EXPECT_EQ(op.stride_height, output_toco_op->stride_height); EXPECT_EQ(op.padding.type, output_toco_op->padding.type); EXPECT_EQ(op.kwidth, output_toco_op->kwidth); EXPECT_EQ(op.kheight, output_toco_op->kheight); } TEST_F(OperatorTest, BuiltinLocalResponseNormalization) { LocalResponseNormalizationOperator op; op.range = 123; op.bias = 1.23; op.alpha = 12.3; op.beta = .123; auto output_toco_op = SerializeAndDeserialize( GetOperator("LOCAL_RESPONSE_NORMALIZATION", OperatorType::kLocalResponseNormalization), op); EXPECT_EQ(op.range, output_toco_op->range); EXPECT_EQ(op.bias, output_toco_op->bias); EXPECT_EQ(op.alpha, output_toco_op->alpha); EXPECT_EQ(op.beta, output_toco_op->beta); } TEST_F(OperatorTest, BuiltinMaxPool) { MaxPoolOperator op; op.stride_width = 123; op.stride_height = 124; op.padding.type = PaddingType::kValid; op.kwidth = 480; op.kheight = 1080; auto output_toco_op = SerializeAndDeserialize( GetOperator("MAX_POOL_2D", OperatorType::kMaxPool), op); EXPECT_EQ(op.stride_width, output_toco_op->stride_width); EXPECT_EQ(op.stride_height, output_toco_op->stride_height); EXPECT_EQ(op.padding.type, output_toco_op->padding.type); EXPECT_EQ(op.kwidth, output_toco_op->kwidth); EXPECT_EQ(op.kheight, output_toco_op->kheight); } TEST_F(OperatorTest, BuiltinReshape) { TensorFlowReshapeOperator op; op.shape = {1, 2, 4, 5, 8}; auto output_toco_op = SerializeAndDeserialize( GetOperator("RESHAPE", OperatorType::kReshape), op); EXPECT_EQ(op.shape, output_toco_op->shape); } TEST_F(OperatorTest, CustomSoftmax) { SoftmaxOperator op; op.beta = 123.1; auto output_toco_op = SerializeAndDeserialize( GetOperator("SOFTMAX", OperatorType::kSoftmax), op); EXPECT_EQ(op.beta, output_toco_op->beta); } TEST_F(OperatorTest, BuiltinSpaceToDepth) { SpaceToDepthOperator op; op.block_size = 123; auto output_toco_op = SerializeAndDeserialize( GetOperator("SPACE_TO_DEPTH", OperatorType::kSpaceToDepth), op); EXPECT_EQ(op.block_size, output_toco_op->block_size); } TEST_F(OperatorTest, CustomSplit) { TensorFlowSplitOperator op; op.num_split = 123; auto output_toco_op = SerializeAndDeserialize(GetOperator("SPLIT", OperatorType::kSplit), op); EXPECT_EQ(op.num_split, output_toco_op->num_split); } TEST_F(OperatorTest, CustomSplitV) { TensorFlowSplitVOperator op; op.num_split = 123; auto output_toco_op = SerializeAndDeserialize( GetOperator("SPLIT_V", OperatorType::kSplitV), op); EXPECT_EQ(op.num_split, output_toco_op->num_split); } TEST_F(OperatorTest, BuiltinAveragePool) { AveragePoolOperator op; op.fused_activation_function = FusedActivationFunctionType::kRelu6; op.stride_width = 123; op.stride_height = 124; op.padding.type = PaddingType::kValid; op.kwidth = 480; op.kheight = 1080; auto output_toco_op = SerializeAndDeserialize( GetOperator("AVERAGE_POOL_2D", OperatorType::kAveragePool), op); EXPECT_EQ(op.fused_activation_function, output_toco_op->fused_activation_function); EXPECT_EQ(op.stride_width, output_toco_op->stride_width); EXPECT_EQ(op.stride_height, output_toco_op->stride_height); EXPECT_EQ(op.padding.type, output_toco_op->padding.type); EXPECT_EQ(op.kwidth, output_toco_op->kwidth); EXPECT_EQ(op.kheight, output_toco_op->kheight); } TEST_F(OperatorTest, BuiltinConvolution) { ConvOperator op; op.stride_width = 123; op.stride_height = 124; op.padding.type = PaddingType::kValid; op.fused_activation_function = FusedActivationFunctionType::kRelu6; auto output_toco_op = SerializeAndDeserialize(GetOperator("CONV_2D", OperatorType::kConv), op); EXPECT_EQ(op.stride_width, output_toco_op->stride_width); EXPECT_EQ(op.stride_height, output_toco_op->stride_height); EXPECT_EQ(op.padding.type, output_toco_op->padding.type); EXPECT_EQ(op.fused_activation_function, output_toco_op->fused_activation_function); } TEST_F(OperatorTest, BuiltinDepthwiseConvolution) { DepthwiseConvOperator op; op.stride_width = 123; op.stride_height = 124; op.padding.type = PaddingType::kValid; op.depth_multiplier = 6; op.fused_activation_function = FusedActivationFunctionType::kRelu6; auto output_toco_op = SerializeAndDeserialize( GetOperator("DEPTHWISE_CONV_2D", OperatorType::kDepthwiseConv), op); EXPECT_EQ(op.stride_width, output_toco_op->stride_width); EXPECT_EQ(op.stride_height, output_toco_op->stride_height); EXPECT_EQ(op.padding.type, output_toco_op->padding.type); EXPECT_EQ(op.depth_multiplier, output_toco_op->depth_multiplier); EXPECT_EQ(op.fused_activation_function, output_toco_op->fused_activation_function); } TEST_F(OperatorTest, BuiltinL2Norm) { L2NormalizationOperator op; op.fused_activation_function = FusedActivationFunctionType::kRelu6; auto output_toco_op = SerializeAndDeserialize( GetOperator("L2_NORMALIZATION", OperatorType::kL2Normalization), op); EXPECT_EQ(op.fused_activation_function, output_toco_op->fused_activation_function); } TEST_F(OperatorTest, BuiltinMul) { MulOperator op; op.fused_activation_function = FusedActivationFunctionType::kRelu6; auto output_toco_op = SerializeAndDeserialize(GetOperator("MUL", OperatorType::kMul), op); EXPECT_EQ(op.fused_activation_function, output_toco_op->fused_activation_function); } TEST_F(OperatorTest, ResizeBilinear) { ResizeBilinearOperator op; op.align_corners = true; op.half_pixel_centers = false; auto output_toco_op = SerializeAndDeserialize( GetOperator("RESIZE_BILINEAR", OperatorType::kResizeBilinear), op); EXPECT_EQ(op.align_corners, output_toco_op->align_corners); EXPECT_EQ(op.half_pixel_centers, output_toco_op->half_pixel_centers); } TEST_F(OperatorTest, ResizeBilinear_HalfPixelCenters) { ResizeBilinearOperator op; op.align_corners = true; op.half_pixel_centers = true; auto output_toco_op = SerializeAndDeserialize( GetOperator("RESIZE_BILINEAR", OperatorType::kResizeBilinear), op); EXPECT_EQ(op.align_corners, output_toco_op->align_corners); EXPECT_EQ(op.half_pixel_centers, output_toco_op->half_pixel_centers); } TEST_F(OperatorTest, ResizeNearestNeighbor) { ResizeNearestNeighborOperator op; op.align_corners = true; op.half_pixel_centers = false; auto output_toco_op = SerializeAndDeserialize(GetOperator("RESIZE_NEAREST_NEIGHBOR", OperatorType::kResizeNearestNeighbor), op); EXPECT_EQ(op.align_corners, output_toco_op->align_corners); EXPECT_EQ(op.half_pixel_centers, output_toco_op->half_pixel_centers); } TEST_F(OperatorTest, ResizeNearestNeighbor_HalfPixelCenters) { ResizeNearestNeighborOperator op; op.align_corners = true; op.half_pixel_centers = true; auto output_toco_op = SerializeAndDeserialize(GetOperator("RESIZE_NEAREST_NEIGHBOR", OperatorType::kResizeNearestNeighbor), op); EXPECT_EQ(op.align_corners, output_toco_op->align_corners); EXPECT_EQ(op.half_pixel_centers, output_toco_op->half_pixel_centers); } TEST_F(OperatorTest, Svdf) { SvdfOperator op; op.fused_activation_function = FusedActivationFunctionType::kRelu; op.rank = 1; auto output_toco_op = SerializeAndDeserialize(GetOperator("SVDF", OperatorType::kSvdf), op); EXPECT_EQ(op.fused_activation_function, output_toco_op->fused_activation_function); EXPECT_EQ(op.rank, output_toco_op->rank); } TEST_F(OperatorTest, Squeeze) { SqueezeOperator op; op.squeeze_dims = {-2, -3, 4, 1, 4}; auto output_toco_op = SerializeAndDeserialize( GetOperator("SQUEEZE", OperatorType::kSqueeze), op); EXPECT_EQ(op.squeeze_dims, output_toco_op->squeeze_dims); } TEST_F(OperatorTest, StridedSlice) { StridedSliceOperator op; op.begin_mask = 1; op.end_mask = 2; op.ellipsis_mask = 1; op.new_axis_mask = 1; op.shrink_axis_mask = 2; auto output_toco_op = SerializeAndDeserialize( GetOperator("STRIDED_SLICE", OperatorType::kStridedSlice), op); EXPECT_EQ(op.start_indices, output_toco_op->start_indices); EXPECT_EQ(op.stop_indices, output_toco_op->stop_indices); EXPECT_EQ(op.strides, output_toco_op->strides); EXPECT_EQ(op.begin_mask, output_toco_op->begin_mask); EXPECT_EQ(op.end_mask, output_toco_op->end_mask); EXPECT_EQ(op.end_mask, output_toco_op->end_mask); EXPECT_EQ(op.ellipsis_mask, output_toco_op->ellipsis_mask); EXPECT_EQ(op.new_axis_mask, output_toco_op->new_axis_mask); EXPECT_EQ(op.shrink_axis_mask, output_toco_op->shrink_axis_mask); } TEST_F(OperatorTest, BuiltinTopKV2) { TopKV2Operator op; auto output_toco_op = SerializeAndDeserialize( GetOperator("TOPK_V2", OperatorType::kTopK_V2), op); ASSERT_NE(nullptr, output_toco_op.get()); } TEST_F(OperatorTest, BuiltinArgMax) { ArgMaxOperator op; auto output_toco_op = SerializeAndDeserialize( GetOperator("ARG_MAX", OperatorType::kArgMax), op); EXPECT_EQ(op.output_data_type, output_toco_op->output_data_type); } TEST_F(OperatorTest, BuiltinArgMin) { ArgMinOperator op; auto output_toco_op = SerializeAndDeserialize( GetOperator("ARG_MIN", OperatorType::kArgMin), op); EXPECT_EQ(op.output_data_type, output_toco_op->output_data_type); } TEST_F(OperatorTest, BuiltinDequantize) { DequantizeOperator op; auto output_toco_op = SerializeAndDeserialize( GetOperator("DEQUANTIZE", OperatorType::kDequantize), op); } TEST_F(OperatorTest, BuiltinTransposeConv) { TransposeConvOperator op; op.stride_width = 123; op.stride_height = 124; op.padding.type = PaddingType::kValid; auto output_toco_op = SerializeAndDeserialize( GetOperator("TRANSPOSE_CONV", OperatorType::kTransposeConv), op); EXPECT_EQ(op.stride_width, output_toco_op->stride_width); EXPECT_EQ(op.stride_height, output_toco_op->stride_height); EXPECT_EQ(op.padding.type, output_toco_op->padding.type); } TEST_F(OperatorTest, BuiltinShape) { TensorFlowShapeOperator op; op.output_data_type = ArrayDataType::kInt64; auto output_toco_op = SerializeAndDeserialize(GetOperator("SHAPE", OperatorType::kShape), op); EXPECT_EQ(op.output_data_type, output_toco_op->output_data_type); } TEST_F(OperatorTest, BuiltinSparseToDense) { SparseToDenseOperator op; op.validate_indices = false; std::unique_ptr<toco::SparseToDenseOperator> output_toco_op = SerializeAndDeserialize( GetOperator("SPARSE_TO_DENSE", OperatorType::kSparseToDense), op); EXPECT_EQ(op.validate_indices, output_toco_op->validate_indices); } TEST_F(OperatorTest, VersioningSpareToDense) { SparseToDenseOperator op; op.inputs = {"indices", "output_shape", "input_values", "default_value"}; auto operator_by_type_map = BuildOperatorByTypeMap(false ); const BaseOperator* base_op = operator_by_type_map.at(op.type).get(); Model int32_model; Array& int32_array = int32_model.GetOrCreateArray(op.inputs[2]); int32_array.data_type = ArrayDataType::kInt32; OperatorSignature int32_signature = {.op = &op, .model = &int32_model}; EXPECT_EQ(base_op->GetVersion(int32_signature), 1); Model int64_model; Array& int64_array = int64_model.GetOrCreateArray(op.inputs[2]); int64_array.data_type = ArrayDataType::kInt64; OperatorSignature int64_signature = {.op = &op, .model = &int64_model}; EXPECT_EQ(base_op->GetVersion(int64_signature), 2); Model int8_model; Array& int8_array = int8_model.GetOrCreateArray(op.inputs[2]); int8_array.data_type = ArrayDataType::kInt8; OperatorSignature int8_signature = {.op = &op, .model = &int8_model}; EXPECT_EQ(base_op->GetVersion(int8_signature), 3); Model uint8_model; Array& uint8_array = uint8_model.GetOrCreateArray(op.inputs[2]); uint8_array.data_type = ArrayDataType::kUint8; OperatorSignature uint8_signature = {.op = &op, .model = &uint8_model}; EXPECT_EQ(base_op->GetVersion(uint8_signature), 3); } TEST_F(OperatorTest, BuiltinPack) { PackOperator op; op.values_count = 3; op.axis = 1; std::unique_ptr<toco::PackOperator> output_toco_op = SerializeAndDeserialize(GetOperator("PACK", OperatorType::kPack), op); EXPECT_EQ(op.values_count, output_toco_op->values_count); EXPECT_EQ(op.axis, output_toco_op->axis); } TEST_F(OperatorTest, BuiltinOneHot) { OneHotOperator op; op.axis = 2; auto output_toco_op = SerializeAndDeserialize( GetOperator("ONE_HOT", OperatorType::kOneHot), op); EXPECT_EQ(op.axis, output_toco_op->axis); } TEST_F(OperatorTest, BuiltinUnpack) { UnpackOperator op; op.num = 5; op.axis = 2; auto output_toco_op = SerializeAndDeserialize(GetOperator("UNPACK", OperatorType::kUnpack), op); EXPECT_EQ(op.num, output_toco_op->num); EXPECT_EQ(op.axis, output_toco_op->axis); } TEST_F(OperatorTest, BuiltinLeakyRelu) { LeakyReluOperator op; op.alpha = 3; auto output_toco_op = SerializeAndDeserialize( GetOperator("LEAKY_RELU", OperatorType::kLeakyRelu), op); EXPECT_EQ(op.alpha, output_toco_op->alpha); } TEST_F(OperatorTest, BuiltinSquaredDifference) { SquaredDifferenceOperator op; auto output_toco_op = SerializeAndDeserialize( GetOperator("SQUARED_DIFFERENCE", OperatorType::kSquaredDifference), op); ASSERT_NE(nullptr, output_toco_op.get()); } TEST_F(OperatorTest, BuiltinScatterNd) { ScatterNdOperator op; auto output_toco_op = SerializeAndDeserialize( GetOperator("SCATTER_ND", OperatorType::kScatterNd), op); ASSERT_NE(nullptr, output_toco_op.get()); } TEST_F(OperatorTest, CustomCTCBeamSearchDecoder) { CTCBeamSearchDecoderOperator op; op.beam_width = 3; op.top_paths = 2; op.merge_repeated = false; std::unique_ptr<toco::CTCBeamSearchDecoderOperator> output_toco_op = SerializeAndDeserialize(GetOperator("CTC_BEAM_SEARCH_DECODER", OperatorType::kCTCBeamSearchDecoder), op); EXPECT_EQ(op.beam_width, output_toco_op->beam_width); EXPECT_EQ(op.top_paths, output_toco_op->top_paths); EXPECT_EQ(op.merge_repeated, output_toco_op->merge_repeated); } TEST_F(OperatorTest, TensorFlowUnsupported) { TensorFlowUnsupportedOperator op; op.tensorflow_op = "MyCustomUnsupportedOp"; ::tensorflow::NodeDef node_def; auto attr = node_def.mutable_attr(); (*attr)["float_attr"].set_f(2.0); (*attr)["str_attr"].set_s("Hello World"); (*attr)["int_attr"].set_i(17); (*attr)["bool_attr"].set_b(true); { auto* list = (*attr)["list_string_attr"].mutable_list(); list->add_s("abcde"); list->add_s("1234"); list->add_s(""); list->add_s("zyxwv"); list->add_s("!-."); } { auto* list = (*attr)["list_float_attr"].mutable_list(); list->add_f(std::numeric_limits<float>::min()); list->add_f(2.0); list->add_f(-std::numeric_limits<float>::max()); } { auto* list = (*attr)["list_int_attr"].mutable_list(); list->add_i(1); list->add_i(20); list->add_i(1LL << 40); list->add_i(-(1LL << 40)); } node_def.SerializeToString(&op.tensorflow_node_def); auto output_toco_op = SerializeAndDeserialize( GetOperator("TENSORFLOW_UNSUPPORTED", OperatorType::kUnsupported), op); ::tensorflow::NodeDef output_node_def; output_node_def.ParseFromString(output_toco_op->tensorflow_node_def); const auto& output_attr = output_node_def.attr(); EXPECT_EQ(2.0, output_attr.at("float_attr").f()); EXPECT_EQ("Hello World", output_attr.at("str_attr").s()); EXPECT_EQ(17, output_attr.at("int_attr").i()); EXPECT_EQ(true, output_attr.at("bool_attr").b()); { const auto& list = output_attr.at("list_string_attr").list(); ASSERT_EQ(5, list.s_size()); EXPECT_EQ("abcde", list.s(0)); EXPECT_EQ("1234", list.s(1)); EXPECT_EQ("", list.s(2)); EXPECT_EQ("zyxwv", list.s(3)); EXPECT_EQ("!-.", list.s(4)); } { const auto& list = output_attr.at("list_float_attr").list(); ASSERT_EQ(3, list.f_size()); EXPECT_EQ(std::numeric_limits<float>::min(), list.f(0)); EXPECT_EQ(2.0, list.f(1)); EXPECT_EQ(-std::numeric_limits<float>::max(), list.f(2)); } { const auto& list = output_attr.at("list_int_attr").list(); ASSERT_EQ(4, list.i_size()); EXPECT_EQ(1, list.i(0)); EXPECT_EQ(20, list.i(1)); EXPECT_EQ(1LL << 40, list.i(2)); EXPECT_EQ(-(1LL << 40), list.i(3)); } } TEST_F(OperatorTest, TensorFlowUnsupportedWithoutAttr) { TensorFlowUnsupportedOperator op; op.tensorflow_op = "MyCustomUnsupportedOp"; auto output_toco_op = SerializeAndDeserialize( GetOperator("TENSORFLOW_UNSUPPORTED", OperatorType::kUnsupported), op); ::tensorflow::NodeDef output_node_def; output_node_def.ParseFromString(output_toco_op->tensorflow_node_def); EXPECT_TRUE(output_node_def.attr().empty()); } TEST_F(OperatorTest, TestShouldExportAsFlexOp) { EXPECT_FALSE(ShouldExportAsFlexOp(false, "Conv2D")); EXPECT_TRUE(ShouldExportAsFlexOp(true, "Conv2D")); EXPECT_TRUE(ShouldExportAsFlexOp(true, "EluGrad")); EXPECT_TRUE(ShouldExportAsFlexOp(true, "RFFT")); EXPECT_FALSE(ShouldExportAsFlexOp(true, "MyAwesomeCustomOp")); EXPECT_TRUE(ShouldExportAsFlexOp(true, "RandomShuffle")); } TEST_F(OperatorTest, BuiltinMirrorPad) { MirrorPadOperator op; op.mode = MirrorPadMode::kReflect; auto output_toco_op = SerializeAndDeserialize( GetOperator("MIRROR_PAD", OperatorType::kMirrorPad), op); EXPECT_EQ(op.mode, output_toco_op->mode); } TEST_F(OperatorTest, BuiltinUnique) { UniqueOperator op; op.idx_out_type = ArrayDataType::kInt64; auto output_toco_op = SerializeAndDeserialize(GetOperator("UNIQUE", OperatorType::kUnique), op); ASSERT_NE(nullptr, output_toco_op.get()); EXPECT_EQ(output_toco_op->idx_out_type, op.idx_out_type); } TEST_F(OperatorTest, BuiltinSegmentSum) { SegmentSumOperator op; auto output_toco_op = SerializeAndDeserialize( GetOperator("SEGMENT_SUM", OperatorType::kSegmentSum), op); ASSERT_NE(nullptr, output_toco_op.get()); } TEST_F(OperatorTest, BuiltinReverseSequence) { ReverseSequenceOperator op; op.seq_dim = 3; op.batch_dim = 1; std::unique_ptr<toco::ReverseSequenceOperator> output_toco_op = SerializeAndDeserialize( GetOperator("REVERSE_SEQUENCE", OperatorType::kReverseSequence), op); EXPECT_EQ(op.seq_dim, output_toco_op->seq_dim); EXPECT_EQ(op.batch_dim, output_toco_op->batch_dim); } TEST_F(OperatorTest, BuiltinMatrixDiag) { MatrixDiagOperator op; std::unique_ptr<toco::MatrixDiagOperator> output_toco_op = SerializeAndDeserialize( GetOperator("MATRIX_DIAG", OperatorType::kMatrixDiag), op); } TEST_F(OperatorTest, BuiltinMatrixSetDiag) { MatrixSetDiagOperator op; std::unique_ptr<toco::MatrixSetDiagOperator> output_toco_op = SerializeAndDeserialize( GetOperator("MATRIX_SET_DIAG", OperatorType::kMatrixSetDiag), op); } template <typename Op> void SimpleVersioningTest() { Op op; op.inputs = {"input1"}; auto operator_by_type_map = BuildOperatorByTypeMap(false ); const BaseOperator* base_op = operator_by_type_map.at(op.type).get(); Model uint8_model; Array& uint8_array = uint8_model.GetOrCreateArray(op.inputs[0]); uint8_array.data_type = ArrayDataType::kUint8; OperatorSignature uint8_signature = {.op = &op, .model = &uint8_model}; EXPECT_EQ(base_op->GetVersion(uint8_signature), 1); Model int8_model; Array& int8_array = int8_model.GetOrCreateArray(op.inputs[0]); int8_array.data_type = ArrayDataType::kInt8; OperatorSignature int8_signature = {.op = &op, .model = &int8_model}; EXPECT_EQ(base_op->GetVersion(int8_signature), 2); } template <typename Op> void SimpleOutputVersioningTest() { Op op; op.outputs = {"output1"}; auto operator_by_type_map = BuildOperatorByTypeMap(false ); const BaseOperator* base_op = operator_by_type_map.at(op.type).get(); Model uint8_model; Array& uint8_array = uint8_model.GetOrCreateArray(op.outputs[0]); uint8_array.data_type = ArrayDataType::kUint8; OperatorSignature uint8_signature = {.op = &op, .model = &uint8_model}; EXPECT_EQ(base_op->GetVersion(uint8_signature), 1); Model int8_model; Array& int8_array = int8_model.GetOrCreateArray(op.outputs[0]); int8_array.data_type = ArrayDataType::kInt8; OperatorSignature int8_signature = {.op = &op, .model = &int8_model}; EXPECT_EQ(base_op->GetVersion(int8_signature), 2); } TEST_F(OperatorTest, VersioningEqualTest) { SimpleVersioningTest<TensorFlowEqualOperator>(); } TEST_F(OperatorTest, VersioningNotEqualTest) { SimpleVersioningTest<TensorFlowNotEqualOperator>(); } TEST_F(OperatorTest, VersioningLessTest) { SimpleVersioningTest<TensorFlowLessOperator>(); } TEST_F(OperatorTest, VersioningLessEqualTest) { SimpleVersioningTest<TensorFlowLessEqualOperator>(); } TEST_F(OperatorTe
809
cpp
tensorflow/tensorflow
quantization_util
tensorflow/lite/toco/graph_transformations/quantization_util.cc
tensorflow/lite/kernels/internal/quantization_util_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_COMMON_QUANTIZATION_UTIL_H_ #define TENSORFLOW_LITE_DELEGATES_GPU_COMMON_QUANTIZATION_UTIL_H_ #include <stdint.h> #include <vector> #include "absl/container/flat_hash_map.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/delegates/gpu/common/status.h" namespace tflite { namespace gpu { absl::Status DequantizeInputs( TfLiteContext* context, const std::vector<uint32_t>& input_indices, const absl::flat_hash_map<int, int>& quant_conversion_map); absl::Status DequantizeInputs( TfLiteContext* context, const std::vector<int64_t>& input_indices, const absl::flat_hash_map<int, int>& quant_conversion_map); absl::Status QuantizeOutputs( TfLiteContext* context, const std::vector<uint32_t>& output_indices, const absl::flat_hash_map<int, int>& quant_conversion_map); absl::Status QuantizeOutputs( TfLiteContext* context, const std::vector<int64_t>& output_indices, const absl::flat_hash_map<int, int>& quant_conversion_map); } } #endif #include "tensorflow/lite/delegates/gpu/common/quantization_util.h" #include <stdint.h> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/internal/types.h" namespace tflite { namespace gpu { namespace { void DequantizeInput( TfLiteContext* context, int input_index, const absl::flat_hash_map<int, int>& quant_conversion_map) { if (quant_conversion_map.find(input_index) == quant_conversion_map.end()) { return; } int original_tensor_idx = quant_conversion_map.at(input_index); const TfLiteTensor& dequantized_tflite_tensor = context->tensors[input_index]; const TfLiteTensor& original_tflite_tensor = context->tensors[original_tensor_idx]; DequantizationParams op_params; op_params.zero_point = original_tflite_tensor.params.zero_point; op_params.scale = original_tflite_tensor.params.scale; if (original_tflite_tensor.type == kTfLiteInt8) { optimized_ops::Dequantize(op_params, GetTensorShape(&original_tflite_tensor), original_tflite_tensor.data.int8, GetTensorShape(&original_tflite_tensor), dequantized_tflite_tensor.data.f); } else if (original_tflite_tensor.type == kTfLiteUInt8) { optimized_ops::Dequantize(op_params, GetTensorShape(&original_tflite_tensor), original_tflite_tensor.data.uint8, GetTensorShape(&original_tflite_tensor), dequantized_tflite_tensor.data.f); } } void QuantizeOutput(TfLiteContext* context, int output_index, const absl::flat_hash_map<int, int>& quant_conversion_map) { if (quant_conversion_map.find(output_index) == quant_conversion_map.end()) { return; } int original_tensor_idx = quant_conversion_map.at(output_index); const TfLiteTensor& dequantized_tflite_tensor = context->tensors[output_index]; const TfLiteTensor& original_tflite_tensor = context->tensors[original_tensor_idx]; tflite::QuantizationParams op_params; op_params.zero_point = original_tflite_tensor.params.zero_point; op_params.scale = original_tflite_tensor.params.scale; if (original_tflite_tensor.type == kTfLiteInt8) { optimized_ops::AffineQuantize(op_params, GetTensorShape(&original_tflite_tensor), dequantized_tflite_tensor.data.f, GetTensorShape(&original_tflite_tensor), original_tflite_tensor.data.int8); } else if (original_tflite_tensor.type == kTfLiteUInt8) { optimized_ops::AffineQuantize(op_params, GetTensorShape(&original_tflite_tensor), dequantized_tflite_tensor.data.f, GetTensorShape(&original_tflite_tensor), original_tflite_tensor.data.uint8); } } } absl::Status DequantizeInputs( TfLiteContext* context, const std::vector<uint32_t>& input_indices, const absl::flat_hash_map<int, int>& quant_conversion_map) { for (auto index : input_indices) { DequantizeInput(context, static_cast<int>(index), quant_conversion_map); } return absl::OkStatus(); } absl::Status DequantizeInputs( TfLiteContext* context, const std::vector<int64_t>& input_indices, const absl::flat_hash_map<int, int>& quant_conversion_map) { for (auto index : input_indices) { DequantizeInput(context, static_cast<int>(index), quant_conversion_map); } return absl::OkStatus(); } absl::Status QuantizeOutputs( TfLiteContext* context, const std::vector<uint32_t>& output_indices, const absl::flat_hash_map<int, int>& quant_conversion_map) { for (auto index : output_indices) { QuantizeOutput(context, static_cast<int>(index), quant_conversion_map); } return absl::OkStatus(); } absl::Status QuantizeOutputs( TfLiteContext* context, const std::vector<int64_t>& output_indices, const absl::flat_hash_map<int, int>& quant_conversion_map) { for (auto index : output_indices) { QuantizeOutput(context, static_cast<int>(index), quant_conversion_map); } return absl::OkStatus(); } } }
#include "tensorflow/lite/delegates/gpu/common/quantization_util.h" #include <stdint.h> #include <algorithm> #include <limits> #include <memory> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "tensorflow/lite/array.h" #include "tensorflow/lite/core/c/common.h" using ::testing::Eq; using ::testing::FloatNear; using ::testing::Pointwise; namespace tflite { namespace gpu { namespace { void PopulateContext(std::vector<TfLiteTensor>& tensors, TfLiteContext& context) { context.tensors_size = tensors.size(); context.tensors = tensors.data(); context.recommended_num_threads = 1; } int ElementCount(const TfLiteIntArray& dims) { int result = 1; for (int i = 0; i < dims.size; ++i) { result *= dims.data[i]; } return result; } template <typename T> inline float ScaleFromMinMax(const float min, const float max) { return (max - min) / ((std::numeric_limits<T>::max() * 1.0) - std::numeric_limits<T>::min()); } template <typename T> inline int ZeroPointFromMinMax(const float min, const float max) { return static_cast<int>(std::numeric_limits<T>::min()) + static_cast<int>(-min / ScaleFromMinMax<T>(min, max) + 0.5f); } TfLiteTensor CreateQuantizedTensor(const int8_t* data, TfLiteIntArray* dims, const char* name, float min, float max, bool is_variable) { TfLiteTensor result; result.type = kTfLiteInt8; result.data.int8 = const_cast<int8_t*>(data); result.dims = dims; result.params = {ScaleFromMinMax<int8_t>(min, max), ZeroPointFromMinMax<int8_t>(min, max)}; result.allocation_type = kTfLiteMemNone; result.bytes = ElementCount(*dims) * sizeof(int8_t); result.allocation = nullptr; result.name = name; result.is_variable = is_variable; return result; } TfLiteTensor CreateQuantizedTensor(const uint8_t* data, TfLiteIntArray* dims, const char* name, float min, float max, bool is_variable) { TfLiteTensor result; result.type = kTfLiteUInt8; result.data.uint8 = const_cast<uint8_t*>(data); result.dims = dims; result.params = {ScaleFromMinMax<uint8_t>(min, max), ZeroPointFromMinMax<uint8_t>(min, max)}; result.allocation_type = kTfLiteMemNone; result.bytes = ElementCount(*dims) * sizeof(uint8_t); result.allocation = nullptr; result.name = name; result.is_variable = false; return result; } TfLiteTensor CreateTensor(TfLiteIntArray* dims, const char* name, bool is_variable) { TfLiteTensor result; result.dims = dims; result.name = name; result.params = {}; result.quantization = {kTfLiteNoQuantization, nullptr}; result.is_variable = is_variable; result.allocation_type = kTfLiteMemNone; result.allocation = nullptr; return result; } TfLiteTensor CreateFloatTensor(const float* data, TfLiteIntArray* dims, const char* name, bool is_variable) { TfLiteTensor result = CreateTensor(dims, name, is_variable); result.type = kTfLiteFloat32; result.data.f = const_cast<float*>(data); result.bytes = ElementCount(*dims) * sizeof(float); return result; } TEST(DequantizeInputs, Int8) { TfLiteContext context; auto input_dims = BuildTfLiteArray({1, 3, 2, 1}); std::vector<int8_t> data = {-3, -2, -1, 1, 2, 3}; std::vector<float> dequantized_data(data.size()); TfLiteTensor input = CreateQuantizedTensor( data.data(), input_dims.get(), "input", -12.8f, 12.7f, false); TfLiteTensor dequantized_input = CreateFloatTensor( dequantized_data.data(), input_dims.get(), "input_dequant", true); std::vector<TfLiteTensor> tensors{input, dequantized_input}; PopulateContext(tensors, context); std::vector<uint32_t> input_indices = {1}; absl::flat_hash_map<int, int> quant_conversion_map = {{1, 0}}; auto status = DequantizeInputs(&context, input_indices, quant_conversion_map); EXPECT_TRUE(status.ok()); EXPECT_THAT(dequantized_data, Pointwise(FloatNear(1e-6), {-0.3, -0.2, -0.1, 0.1, 0.2, 0.3})); } TEST(DequantizeInputs, UInt8) { TfLiteContext context; auto input_dims = BuildTfLiteArray({1, 3, 2, 1}); std::vector<uint8_t> data = {0, 1, 2, 3, 4, 5}; std::vector<float> dequantized_data(data.size()); TfLiteTensor input = CreateQuantizedTensor(data.data(), input_dims.get(), "input", 0.0f, 25.5f, false); TfLiteTensor dequantized_input = CreateFloatTensor( dequantized_data.data(), input_dims.get(), "input_dequant", true); std::vector<TfLiteTensor> tensors{input, dequantized_input}; PopulateContext(tensors, context); std::vector<int64_t> input_indices = {1}; absl::flat_hash_map<int, int> quant_conversion_map = {{1, 0}}; auto status = DequantizeInputs(&context, input_indices, quant_conversion_map); EXPECT_TRUE(status.ok()); EXPECT_THAT(dequantized_data, Pointwise(FloatNear(1e-6), {0.0, 0.1, 0.2, 0.3, 0.4, 0.5})); } TEST(QuantizeOutputs, Int8) { TfLiteContext context; auto input_dims = BuildTfLiteArray({1, 3, 2, 1}); std::vector<float> data = {-0.3, -0.2, -0.1, 0.1, 0.2, 0.3}; std::vector<int8_t> quantized_data(data.size()); TfLiteTensor output = CreateFloatTensor(data.data(), input_dims.get(), "output", false); TfLiteTensor quantized_output = CreateQuantizedTensor( quantized_data.data(), input_dims.get(), "output_quant", -12.8f, 12.7f, true); std::vector<TfLiteTensor> tensors{output, quantized_output}; PopulateContext(tensors, context); std::vector<uint32_t> output_indices = {0}; absl::flat_hash_map<int, int> quant_conversion_map = {{0, 1}}; auto status = QuantizeOutputs(&context, output_indices, quant_conversion_map); EXPECT_TRUE(status.ok()); EXPECT_THAT(quantized_data, Pointwise(Eq(), {-3, -2, -1, 1, 2, 3})); } TEST(QuantizeOutputs, UInt8) { TfLiteContext context; auto input_dims = BuildTfLiteArray({1, 3, 2, 1}); std::vector<float> data = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}; std::vector<uint8_t> quantized_data(data.size()); TfLiteTensor output = CreateFloatTensor(data.data(), input_dims.get(), "output", false); TfLiteTensor quantized_output = CreateQuantizedTensor( quantized_data.data(), input_dims.get(), "output_quant", 0.0f, 25.5f, true); std::vector<TfLiteTensor> tensors{output, quantized_output}; PopulateContext(tensors, context); std::vector<int64_t> output_indices = {0}; absl::flat_hash_map<int, int> quant_conversion_map = {{0, 1}}; auto status = QuantizeOutputs(&context, output_indices, quant_conversion_map); EXPECT_TRUE(status.ok()); EXPECT_THAT(quantized_data, Pointwise(Eq(), {0, 1, 2, 3, 4, 5})); } } } }
810
cpp
tensorflow/tensorflow
quantize
tensorflow/lite/toco/graph_transformations/quantize.cc
third_party/xla/xla/client/lib/quantize_test.cc
#ifndef XLA_CLIENT_LIB_QUANTIZE_H_ #define XLA_CLIENT_LIB_QUANTIZE_H_ #include <algorithm> #include <limits> #include <numeric> #include <vector> #include "xla/client/lib/constants.h" #include "xla/client/xla_builder.h" #include "xla/types.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/bfloat16.h" namespace xla { struct QuantizedRange { QuantizedRange() = default; QuantizedRange(float min_in, float max_in) : min(min_in), max(max_in) {} bool operator==(const QuantizedRange& rhs) const { return this->min == rhs.min && this->max == rhs.max; } bool operator!=(const QuantizedRange& rhs) const { return !(*this == rhs); } tsl::bfloat16 min = tsl::bfloat16(0.0f); tsl::bfloat16 max = tsl::bfloat16(0.0f); }; template <typename T> inline std::vector<uint32_t> PackToUint32(absl::Span<const T> input) { const int64_t kElementsPerPack = sizeof(uint32_t) / sizeof(T); const int64_t input_size = input.size(); const int64_t output_size = CeilOfRatio(input_size, kElementsPerPack); std::vector<uint32_t> output_vec; constexpr int64_t kShiftBits = sizeof(T) / sizeof(uint8_t) * CHAR_BIT; for (int64_t i = 0; i < output_size; i++) { uint32_t result = 0; for (int64_t p = 0; p < kElementsPerPack; p++) { int64_t index = i * kElementsPerPack + p; if (index < input_size) { int64_t total_shift_bits = kShiftBits * (kElementsPerPack - p - 1); result |= (input[index] << total_shift_bits); } } output_vec.push_back(result); } return output_vec; } template <typename T> inline XlaOp Dequantize(XlaOp input, const QuantizedRange& range, absl::string_view mode_string = "MIN_COMBINED", bool transpose_output = false) { XlaBuilder* const builder = input.builder(); return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { float half_range = !std::is_signed<T>::value ? 0.0f : (static_cast<float>(std::numeric_limits<T>::max()) - std::numeric_limits<T>::min() + 1) / 2.0f; const int64_t unpack_size = sizeof(uint32_t) / sizeof(T); TF_ASSIGN_OR_RETURN(Shape shape, builder->GetShape(input)); auto element_type = shape.element_type(); if (element_type != U32) { return InvalidArgument( "Only U32 is supported for input type of xla::Dequantize Op."); } auto broadcast_input = Broadcast(input, {unpack_size}); XlaOp iota_r1 = Iota(builder, U32, unpack_size); XlaOp shift_bytes = xla::ConstantR0<uint32_t>(builder, unpack_size - 1) - iota_r1; const int bytes_of_type = sizeof(T) / sizeof(uint8_t); std::vector<uint32_t> shift_vec(unpack_size, CHAR_BIT * bytes_of_type); XlaOp shift_bits = shift_bytes * xla::ConstantR1<uint32_t>(builder, shift_vec); uint32_t bit_mask = 0x00000000; for (int i = 0; i < bytes_of_type; i++) { bit_mask <<= CHAR_BIT; bit_mask |= 0x000000ff; } std::vector<int64_t> shift_transpose_dimensions(shape.dimensions_size()); std::iota(shift_transpose_dimensions.begin(), shift_transpose_dimensions.end(), 0); shift_transpose_dimensions.insert(shift_transpose_dimensions.begin(), 1, shape.dimensions_size()); XlaOp shifted_input = ShiftRightLogical( broadcast_input, Transpose(Broadcast(shift_bits, shape.dimensions()), shift_transpose_dimensions)); XlaOp unpack_input = And(shifted_input, xla::ConstantR0<uint32_t>(builder, bit_mask)); XlaOp result; if (mode_string == "MIN_COMBINED") { const tsl::bfloat16 scale_factor = (range.max - range.min) / (static_cast<tsl::bfloat16>(std::numeric_limits<T>::max() - std::numeric_limits<T>::min())); XlaOp unpack_input_bf16 = ConvertElementType(unpack_input, BF16); XlaOp half_range_bf16 = xla::ConstantR0<tsl::bfloat16>( builder, static_cast<bfloat16>(half_range)); XlaOp sum = unpack_input_bf16 + half_range_bf16; result = sum * xla::ConstantR0<tsl::bfloat16>(builder, scale_factor) + xla::ConstantR0<tsl::bfloat16>(builder, range.min); } else { return InvalidArgument( "Only MIN_COMBINED mode is supported in xla::Dequantize Op."); } std::vector<int64_t> transpose_dimensions(shape.dimensions_size()); std::iota(transpose_dimensions.begin(), transpose_dimensions.end(), 1); std::reverse(transpose_dimensions.begin(), transpose_dimensions.end()); transpose_dimensions.insert(transpose_dimensions.begin() + 1, 1, 0); XlaOp transposed_result = Transpose(result, transpose_dimensions); XlaOp reshaped_result = Collapse(transposed_result, {0, 1}); if (transpose_output) { return reshaped_result; } std::vector<int64_t> result_dimensions(shape.dimensions_size()); std::iota(result_dimensions.begin(), result_dimensions.end(), 0); std::reverse(result_dimensions.begin(), result_dimensions.end()); return Transpose(reshaped_result, result_dimensions); }); } } #endif #include <memory> #include <string> #include <utility> #include "absl/container/flat_hash_set.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/Quant/QuantTypes.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OpDefinition.h" #include "mlir/IR/Operation.h" #include "mlir/IR/OperationSupport.h" #include "mlir/IR/PatternMatch.h" #include "mlir/IR/Types.h" #include "mlir/Pass/Pass.h" #include "mlir/Pass/PassRegistry.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/LogicalResult.h" #include "mlir/Support/TypeID.h" #include "mlir/Transforms/GreedyPatternRewriteDriver.h" #include "tensorflow/compiler/mlir/lite/quantization/ir/QuantOps.h" #include "tensorflow/compiler/mlir/lite/transforms/passes.h" #include "tensorflow/compiler/mlir/quantization/common/quantization_lib/quantization_config.h" #include "tensorflow/compiler/mlir/quantization/common/quantization_lib/quantization_utils.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/ops/tf_op_quant_spec.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/quantization_options.pb.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_ops.h" #include "tensorflow/core/framework/types.pb.h" namespace mlir { namespace quant { namespace { using ::tensorflow::quantization::OpSet; enum QuantizationTrait { kFullQuantization, kDynamicRangeQuantization }; template <QuantizationTrait quantization_trait, typename ConcreteT, typename RootOpT = quantfork::DequantizeCastOp> struct TFQuantizationBase : public QuantizationPattern<ConcreteT, quantfork::QuantizeCastOp, quantfork::DequantizeCastOp, void, RootOpT> { explicit TFQuantizationBase(MLIRContext* ctx, const QuantPassSpec& quant_params) : QuantizationPattern<ConcreteT, quantfork::QuantizeCastOp, quantfork::DequantizeCastOp, void, RootOpT>(ctx, quant_params) {} static bool IsQuantizableCustomOp(Operation* op, const CustomMap& custom_op_map) { return false; } static bool AllowDynamicRangeQuantizedOperand( Operation* quantized_op, const CustomMap& custom_op_map) { auto call_op = cast<TF::PartitionedCallOp>(quantized_op); StringRef function_name = call_op.getFAttr().cast<FlatSymbolRefAttr>().getValue(); const bool is_gather = function_name.contains("gather"); return quantization_trait != kFullQuantization || is_gather; } static bool AllowDynamicRangeQuantizedResult(Operation* quantized_op, const CustomMap& custom_op_map) { auto call_op = cast<TF::PartitionedCallOp>(quantized_op); StringRef function_name = call_op.getFAttr().cast<FlatSymbolRefAttr>().getValue(); bool is_gather = false; if (function_name.contains("gather")) is_gather = true; return quantization_trait != kFullQuantization || (quantization_trait == kFullQuantization && is_gather); } static bool IsWeightOnlyOp(Operation* quantized_op, absl::flat_hash_set<std::string>& ops_blocklist, bool weight_only_quantization, const CustomMap& custom_op_map) { return weight_only_quantization; } }; struct TFFullQuantization : public TFQuantizationBase<kFullQuantization, TFFullQuantization> { explicit TFFullQuantization(MLIRContext* ctx, const QuantPassSpec& quant_params) : TFQuantizationBase<kFullQuantization, TFFullQuantization>( ctx, quant_params) {} }; struct TFFullQuantizationReverse : public TFQuantizationBase<kFullQuantization, TFFullQuantizationReverse, quantfork::QuantizeCastOp> { explicit TFFullQuantizationReverse(MLIRContext* ctx, const QuantPassSpec& quant_params) : TFQuantizationBase<kFullQuantization, TFFullQuantizationReverse, quantfork::QuantizeCastOp>(ctx, quant_params) {} }; struct TFDynamicRangeQuantization : public TFQuantizationBase<kDynamicRangeQuantization, TFDynamicRangeQuantization> { explicit TFDynamicRangeQuantization(MLIRContext* ctx, const quant::QuantPassSpec& quant_params) : TFQuantizationBase<kDynamicRangeQuantization, TFDynamicRangeQuantization>(ctx, quant_params) {} }; class RemoveUnusedQdqPattern : public OpRewritePattern<quantfork::DequantizeCastOp> { public: explicit RemoveUnusedQdqPattern(MLIRContext* context) : OpRewritePattern<quantfork::DequantizeCastOp>(context) {} LogicalResult matchAndRewrite(quantfork::DequantizeCastOp dq_op, PatternRewriter& rewriter) const override { auto q_op = dq_op.getArg().getDefiningOp<quantfork::QuantizeCastOp>(); if (!q_op) return failure(); dq_op.replaceAllUsesWith(q_op.getArg()); return success(); } }; class QuantizeSameScaleOpsPattern : public OpRewritePattern<quantfork::DequantizeCastOp> { public: explicit QuantizeSameScaleOpsPattern( MLIRContext* context, OpQuantScaleSpecGetter op_quant_scale_spec_getter, OpSet target_opset) : OpRewritePattern<quantfork::DequantizeCastOp>(context, 200), op_quant_scale_spec_getter_(op_quant_scale_spec_getter), target_opset_(target_opset) {} LogicalResult matchAndRewrite(quantfork::DequantizeCastOp op, PatternRewriter& rewriter) const override { SmallVector<Operation*, 4> quantizing_ops; auto users = op.getResult().getUsers(); quantizing_ops.append(users.begin(), users.end()); bool changed = false; for (Operation* quantizing_op : quantizing_ops) { if (llvm::isa<quantfork::QuantizeCastOp, quantfork::DequantizeCastOp>( quantizing_op)) { return failure(); } if (quantizing_op->hasTrait<OpTrait::IsTerminator>()) { return failure(); } if (!op_quant_scale_spec_getter_(quantizing_op) ->has_same_scale_requirement) { continue; } if (target_opset_ == OpSet::XLA && !IsConnectedWithCompsiteFunction(quantizing_op)) { continue; } if (target_opset_ == OpSet::UNIFORM_QUANTIZED) { continue; } SmallVector<Value, 4> inputs; inputs.reserve(quantizing_op->getNumOperands()); for (const auto& operand : quantizing_op->getOperands()) { Type operand_type = operand.getType(); if (operand_type.isa<NoneType>()) { inputs.push_back(operand); continue; } Type elem_type = operand_type.cast<TensorType>().getElementType(); if (auto dq_op = dyn_cast_or_null<quantfork::DequantizeCastOp>( operand.getDefiningOp())) { auto dq_arg_type = dq_op.getArg().getType().cast<TensorType>(); auto qtype = dq_arg_type.getElementType().cast<QuantizedType>(); auto scast_op = rewriter.create<quantfork::StorageCastOp>( dq_op->getLoc(), dq_arg_type.clone(qtype.getStorageType()), dq_op.getArg()); inputs.push_back(scast_op.getResult()); } else if (!elem_type.isF32()) { inputs.push_back(operand); } else { return failure(); } } llvm::SmallDenseMap<Value, int> outputs_replaced; SmallVector<Type, 4> output_types; output_types.reserve(quantizing_op->getNumResults()); for (const auto& enumerated_result : llvm::enumerate(quantizing_op->getResults())) { Value result = enumerated_result.value(); Type result_type = result.getType(); if (result_type.isa<NoneType>()) { outputs_replaced.insert({result, enumerated_result.index()}); output_types.push_back(result_type); continue; } auto result_tensor_type = result_type.cast<TensorType>(); if (result.hasOneUse() && llvm::isa<quantfork::QuantizeCastOp>(*result.user_begin())) { auto user = llvm::cast<quantfork::QuantizeCastOp>(*result.user_begin()); outputs_replaced.insert( {user.getResult(), enumerated_result.index()}); auto qtype = user.getType() .cast<TensorType>() .getElementType() .cast<QuantizedType>(); output_types.push_back( result_tensor_type.clone(qtype.getStorageType())); } else if (!result_tensor_type.getElementType().isF32()) { outputs_replaced.insert({result, enumerated_result.index()}); output_types.push_back(result.getType()); } else { return failure(); } } rewriter.setInsertionPointAfter(quantizing_op); OperationState new_state(quantizing_op->getLoc(), quantizing_op->getName().getStringRef(), inputs, output_types, quantizing_op->getAttrs()); for (int i = 0; i < quantizing_op->getNumRegions(); ++i) { new_state.addRegion(); } Operation* quantized_op = rewriter.create(new_state); if (quantizing_op->getNumRegions() != 0) { for (const auto& indexed_regions : llvm::enumerate(quantizing_op->getRegions())) { IRMapping mapping; indexed_regions.value().cloneInto( &quantized_op->getRegion(indexed_regions.index()), mapping); } } for (const auto& output_index_pair : outputs_replaced) { Value output = output_index_pair.getFirst(); int output_index = output_index_pair.getSecond(); auto scast_op = rewriter.create<quantfork::StorageCastOp>( output.getLoc(), output.getType(), quantized_op->getResult(output_index)); output.replaceAllUsesWith(scast_op); } changed = true; } return success(changed); } private: bool IsConnectedWithCompsiteFunction(Operation* same_scale_op) const { for (const auto& operand : same_scale_op->getOperands()) { auto dq_op = dyn_cast_or_null<quantfork::DequantizeCastOp>( operand.getDefiningOp()); if (!dq_op) continue; Operation* preceding_op = dq_op.getArg().getDefiningOp(); if (!preceding_op) continue; if (llvm::isa<TF::PartitionedCallOp>(preceding_op)) { auto call_op = llvm::cast<TF::PartitionedCallOp>(preceding_op); if (!IsCompositeFunction(call_op)) continue; return true; } if (llvm::isa<quantfork::StorageCastOp>(preceding_op)) { auto sc_op = llvm::cast<quantfork::StorageCastOp>(preceding_op); auto sc_arg_type = sc_op.getArg().getType().dyn_cast<TensorType>(); if (sc_arg_type.getElementType().isInteger(8)) { return true; } } } for (const auto& result : same_scale_op->getResults()) { if (!result.hasOneUse() || !llvm::isa<quantfork::QuantizeCastOp>(*result.user_begin())) { continue; } auto q_op = llvm::cast<quantfork::QuantizeCastOp>(*result.user_begin()); for (auto following_op : q_op->getUsers()) { if (llvm::isa<TF::PartitionedCallOp>(following_op)) { auto call_op = llvm::cast<TF::PartitionedCallOp>(following_op); if (!IsCompositeFunction(call_op)) continue; return true; } if (llvm::isa<quantfork::StorageCastOp>(following_op)) { auto sc_op = llvm::cast<quantfork::StorageCastOp>(following_op); auto sc_arg_type = sc_op.getResult().getType().dyn_cast<TensorType>(); if (sc_arg_type.getElementType().isInteger(8)) { return true; } } } } return false; } bool IsCompositeFunction(TF::PartitionedCallOp call_op) const { if (!call_op->hasAttr(kQuantTraitAttrName)) { return false; } const auto f_attr = call_op.getFAttr().dyn_cast<FlatSymbolRefAttr>(); if (!f_attr || !f_attr.getValue().starts_with("composite_")) { return false; } bool has_quantized_types = false; for (Value input : call_op.getArgs()) { if (auto type = input.getType().dyn_cast<TensorType>()) { if (type.getElementType().isa<FloatType>()) { return false; } if (type.getElementType().isa<QuantizedType>()) { has_quantized_types = true; } } } for (Value output : call_op.getOutput()) { if (auto type = output.getType().dyn_cast<TensorType>()) { if (type.getElementType().isa<FloatType>()) { return false; } if (type.getElementType().isa<QuantizedType>()) { has_quantized_types = true; } } } return has_quantized_types; } OpQuantScaleSpecGetter op_quant_scale_spec_getter_; OpSet target_opset_; }; struct QuantizeAvgPoolOpPattern : public OpRewritePattern<quantfork::StorageCastOp> { explicit QuantizeAvgPoolOpPattern(MLIRContext* context) : OpRewritePattern<quantfork::StorageCastOp>(context, 100) {} LogicalResult matchAndRewrite(quantfork::StorageCastOp sc_op, PatternRewriter& rewriter) const override { auto avg_pool_op = sc_op.getArg().getDefiningOp<TF::AvgPoolOp>(); if (!avg_pool_op) return failure(); auto preceding_sc_op = dyn_cast_or_null<quantfork::StorageCastOp>( avg_pool_op.getValue().getDefiningOp()); if (!preceding_sc_op) return failure(); auto dq_arg_type = preceding_sc_op.getArg().getType().cast<TensorType>(); auto qtype = dq_arg_type.getElementType().cast<QuantizedType>(); auto q_result_type = sc_op.getType().cast<TensorType>(); auto out_qtype = q_result_type.getElementType().cast<QuantizedType>(); if (qtype != out_qtype) { avg_pool_op.emitError( "The preceding StorageCastOp and the following " "StorageCastOp must have the same quantized type"); return failure(); } OpBuilder::InsertionGuard g(rewriter); rewriter.setInsertionPointAfter(preceding_sc_op); auto fcast_op = rewriter.create<TF::CastOp>( preceding_sc_op->getLoc(), dq_arg_type.clone(rewriter.getF32Type()), preceding_sc_op.getResult()); TF::AvgPoolOp float_avg_pool_op = rewriter.create<TF::AvgPoolOp>( avg_pool_op->getLoc(), avg_pool_op.getType().clone(rewriter.getF32Type()), fcast_op.getResult(), avg_pool_op->getAttrs()); auto round_val = rewriter.create<TF::RoundOp>( sc_op.getLoc(), float_avg_pool_op.getOutput()); auto icast_op = rewriter.create<TF::CastOp>( sc_op.getLoc(), q_result_type.clone(qtype.getStorageType()), round_val); avg_pool_op.getResult().replaceAllUsesWith(icast_op.getResult()); return success(); } }; class QuantizePass : public PassWrapper<QuantizePass, OperationPass<func::FuncOp>> { public: MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(QuantizePass) explicit QuantizePass() { quant_specs_.inference_type = tensorflow::DT_QINT8; } explicit QuantizePass(const QuantizationSpecs& quant_specs, OpSet target_opset) : quant_specs_(quant_specs) { weight_quantization_ = quant_specs.weight_quantization; target_opset_ = target_opset; } QuantizePass(const QuantizePass& other) : quant_specs_(other.quant_specs_) { weight_quantization_ = other.weight_quantization_; target_opset_ = other.target_opset_; } StringRef getArgument() const final { return "quant-quantize"; } StringRef getDescription() const final { return "Apply quantization on models in TensorFlow dialect"; } bool shouldKeepUnusedQdqPattern(); void runOnOperation() override; private: QuantizationSpecs quant_specs_; Option<bool> weight_quantization_{ *this, "weight-quantization", llvm::cl::init(false), llvm::cl::desc("Whether to enable weight quantization.")}; Option<OpSet> target_opset_{ *this, "target-opset", llvm::cl::init(OpSet::TF), llvm::cl::desc("Choose target opset."), llvm::cl::values( clEnumValN(OpSet::TF, "TF", "Uses TF ops that mimic quantization behavior"), clEnumValN(OpSet::XLA, "XLA", "Uses TF XLA ops"), clEnumValN(OpSet::UNIFORM_QUANTIZED, "UNIFORM_QUANTIZED", "Uses TF Uniform Quantized ops"))}; }; bool QuantizePass::shouldKeepUnusedQdqPattern() { return target_opset_ == OpSet::XLA && (quant_specs_.weight_only_quantization || quant_specs_.weight_quantization); } void QuantizePass::runOnOperation() { RewritePatternSet patterns(&getContext()); auto func = getOperation(); auto* ctx = func.getContext(); quant_specs_.weight_quantization = weight_quantization_; const QuantPassSpec quant_params = { {quant_specs_.verify_numeric, 5.0f, quant_specs_.whole_model_verify, false}, quant_specs_}; if (quant_specs_.weight_quantization) { patterns.add<TFDynamicRangeQuantization>(ctx, quant_params); } else { patterns.add<TFFullQuantization, TFFullQuantizationReverse>(ctx, quant_params); patterns.add<QuantizeSameScaleOpsPattern>(ctx, GetTfQuantScaleSpec, target_opset_); patterns.add<QuantizeAvgPoolOpPattern>(ctx); } if (failed(applyPatternsAndFoldGreedily(func, std::move(patterns)))) { func.emitWarning("Failed to converge pattern at QuantizePass."); } if (!shouldKeepUnusedQdqPattern()) { RewritePatternSet patterns_2(&getContext()); patterns_2.add<RemoveUnusedQdqPattern>(ctx); if (failed(applyPatternsAndFoldGreedily(func, std::move(patterns_2)))) { signalPassFailure(); } } } } std::unique_ptr<OperationPass<func::FuncOp>> CreateQuantizePass() { QuantizationSpecs quant_specs; return std::make_unique<QuantizePass>(quant_specs, OpSet::TF); } std::unique_ptr<OperationPass<func::FuncOp>> CreateQuantizePass( QuantizationSpecs quant_specs, OpSet target_opset) { return std::make_unique<QuantizePass>(quant_specs, target_opset); } static PassRegistration<QuantizePass> pass; } }
#include "xla/client/lib/quantize.h" #include <limits> #include <vector> #include "xla/client/xla_builder.h" #include "xla/test.h" #include "xla/tests/client_library_test_base.h" #include "xla/tests/test_macros.h" #include "xla/types.h" #include "xla/util.h" namespace xla { namespace { using bfloat16 = tsl::bfloat16; template <typename NativeT> std::vector<NativeT> GenerateInput() { std::vector<NativeT> input; const auto n = std::numeric_limits<NativeT>::max(); input.reserve(n); for (int64_t i = std::numeric_limits<NativeT>::min(); i < n; ++i) { input.push_back(static_cast<NativeT>(i)); } return input; } template <typename NativeT> Array2D<NativeT> GenerateLargeSizeInput(int num_columns, int num_rows) { Array2D<NativeT> input(num_columns, num_rows); input.FillRandom(6, 128); return input; } template <typename NativeT> Array2D<uint32_t> PackLargeInput(Array2D<NativeT> &input) { const int64_t size_per_pack = sizeof(uint32_t) / sizeof(NativeT); int64_t width = input.width(); int64_t padded_output_width = CeilOfRatio(width, size_per_pack); Array2D<uint32_t> pack_input(input.height(), padded_output_width); for (int h = 0; h < input.height(); h++) { std::vector<NativeT> input_row; input_row.reserve(width); for (int w = 0; w < width; w++) { input_row.push_back(input({h, w})); } auto pack_input_vec = PackToUint32<uint8_t>(input_row); for (int w = 0; w < padded_output_width; w++) { pack_input(h, w) = pack_input_vec[w]; } } return pack_input; } template <typename NativeT> Array2D<bfloat16> GenerateLargeSizeMinCombinedOutput( Array2D<NativeT> &input, const QuantizedRange &range, bool transpose_output = false) { const int64_t size_per_pack = sizeof(uint32_t) / sizeof(NativeT); int64_t width = input.width(); int64_t padded_output_width = CeilOfRatio(width, size_per_pack) * size_per_pack; int64_t output_height; int64_t output_width; if (transpose_output) { output_height = padded_output_width; output_width = input.height(); } else { output_height = input.height(); output_width = padded_output_width; } Array2D<bfloat16> output(output_height, output_width, bfloat16(0.0)); float half_range = !std::is_signed<NativeT>::value ? 0.0f : (static_cast<float>(std::numeric_limits<NativeT>::max() - std::numeric_limits<NativeT>::min() + 1)) / 2.0f; const bfloat16 scale_factor = (range.max - range.min) / (static_cast<bfloat16>(std::numeric_limits<NativeT>::max() - std::numeric_limits<NativeT>::min())); for (int h = 0; h < input.height(); h++) { std::vector<NativeT> input_row; input_row.reserve(width); for (int w = 0; w < width; w++) { bfloat16 result = static_cast<bfloat16>(input(h, w) + half_range) * scale_factor + range.min; if (transpose_output) { output(w, h) = result; } else { output(h, w) = result; } } } return output; } template <typename NativeT> std::vector<bfloat16> GenerateMinCombinedOutput(const QuantizedRange &range) { float half_range = !std::is_signed<NativeT>::value ? 0.0f : (static_cast<float>(std::numeric_limits<NativeT>::max() - std::numeric_limits<NativeT>::min() + 1)) / 2.0f; const bfloat16 scale_factor = (range.max - range.min) / (static_cast<bfloat16>(std::numeric_limits<NativeT>::max() - std::numeric_limits<NativeT>::min())); std::vector<bfloat16> output; const auto n = std::numeric_limits<NativeT>::max(); output.reserve(n); for (int64_t i = std::numeric_limits<NativeT>::min(); i < n; ++i) { bfloat16 result = static_cast<bfloat16>(i + half_range) * scale_factor + range.min; output.push_back(result); } const int64_t pack_size = sizeof(uint32_t) / sizeof(NativeT); const int64_t output_size = output.size(); int64_t num_tailing_zeros = CeilOfRatio(output_size, pack_size) * pack_size - output_size; output.insert(output.end(), num_tailing_zeros, bfloat16(0.0)); return output; } using DequantizeTest = ClientLibraryTestBase; TEST(PackTest, PackUint8ToUint32) { std::vector<uint8_t> input = {0xAB, 0x0B, 0x00, 0xF0, 0x01}; auto output = PackToUint32<uint8_t>(input); EXPECT_THAT(output, ::testing::ElementsAre(0xAB0B00F0, 0x01000000)); } TEST(PackTest, PackInt8ToUint32) { std::vector<int8_t> input = {static_cast<signed char>(0x81), 0x0B, 0x00, 0x20, 0x01}; auto output = PackToUint32<int8_t>(input); EXPECT_THAT(output, ::testing::ElementsAre(0x810B0020, 0x01000000)); } TEST(PackTest, PackUint8ToUint32PerfectSize) { std::vector<uint8_t> input = {3, 2, 1, 0}; auto output = PackToUint32<uint8_t>(input); EXPECT_THAT(output, ::testing::ElementsAre(0x03020100)); } XLA_TEST_F(DequantizeTest, MinCombinedUint16R1) { XlaBuilder builder(TestName()); auto input = GenerateInput<uint16_t>(); auto x = ConstantR1<uint32_t>(&builder, PackToUint32<uint16_t>(input)); QuantizedRange range(0, 255.0f); xla::Dequantize<uint16_t>(x, range, "MIN_COMBINED"); auto expected = GenerateMinCombinedOutput<uint16_t>(range); ComputeAndCompareR1<bfloat16>(&builder, expected, {}); } XLA_TEST_F(DequantizeTest, MinCombinedUint8R1) { XlaBuilder builder(TestName()); auto input = GenerateInput<uint8_t>(); auto x = ConstantR1<uint32_t>(&builder, PackToUint32<uint8_t>(input)); QuantizedRange range(0, 127.0f); xla::Dequantize<uint8_t>(x, range, "MIN_COMBINED"); auto expected = GenerateMinCombinedOutput<uint8_t>(range); ComputeAndCompareR1<bfloat16>(&builder, expected, {}); } XLA_TEST_F(DequantizeTest, MinCombinedUint8R2) { XlaBuilder builder(TestName()); std::vector<std::vector<uint8_t>> input = { {0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}, {12, 13, 16, 15}, }; auto x = ConstantR2<uint32_t>(&builder, {{PackToUint32<uint8_t>(input[0])[0]}, {PackToUint32<uint8_t>(input[1])[0]}, {PackToUint32<uint8_t>(input[2])[0]}, {PackToUint32<uint8_t>(input[3])[0]}}); QuantizedRange range(0, 255.0f); xla::Dequantize<uint8_t>(x, range, "MIN_COMBINED"); const Array2D<bfloat16> expected = { {bfloat16(0.0), bfloat16(1.0), bfloat16(2.0), bfloat16(3.0)}, {bfloat16(4.0), bfloat16(5.0), bfloat16(6.0), bfloat16(7.0)}, {bfloat16(8.0), bfloat16(9.0), bfloat16(10.0), bfloat16(11.0)}, {bfloat16(12.0), bfloat16(13.0), bfloat16(16.0), bfloat16(15.0)}, }; ComputeAndCompareR2<bfloat16>(&builder, expected, {}); } XLA_TEST_F(DequantizeTest, MinCombinedUint8R2TransposeOutput) { XlaBuilder builder(TestName()); std::vector<std::vector<uint8_t>> input = { {0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}, {12, 13, 16, 15}, }; auto x = ConstantR2<uint32_t>(&builder, {{PackToUint32<uint8_t>(input[0])[0]}, {PackToUint32<uint8_t>(input[1])[0]}, {PackToUint32<uint8_t>(input[2])[0]}, {PackToUint32<uint8_t>(input[3])[0]}}); QuantizedRange range(0, 255.0f); xla::Dequantize<uint8_t>(x, range, "MIN_COMBINED", true); const Array2D<bfloat16> expected = { {bfloat16(0.0), bfloat16(4.0), bfloat16(8.0), bfloat16(12.0)}, {bfloat16(1.0), bfloat16(5.0), bfloat16(9.0), bfloat16(13.0)}, {bfloat16(2.0), bfloat16(6.0), bfloat16(10.0), bfloat16(16.0)}, {bfloat16(3.0), bfloat16(7.0), bfloat16(11.0), bfloat16(15.0)}, }; ComputeAndCompareR2<bfloat16>(&builder, expected, {}); } XLA_TEST_F(DequantizeTest, MinCombinedUint8R2TailingZero) { XlaBuilder builder(TestName()); std::vector<std::vector<uint8_t>> input = { {0, 1, 2, 3, 16}, {4, 5, 6, 7, 17}, {8, 9, 10, 11, 18}, {12, 13, 16, 15, 19}, }; auto x = ConstantR2<uint32_t>( &builder, {{PackToUint32<uint8_t>(input[0])[0], PackToUint32<uint8_t>(input[0])[1]}, {PackToUint32<uint8_t>(input[1])[0], PackToUint32<uint8_t>(input[1])[1]}, {PackToUint32<uint8_t>(input[2])[0], PackToUint32<uint8_t>(input[2])[1]}, {PackToUint32<uint8_t>(input[3])[0], PackToUint32<uint8_t>(input[3])[1]}}); QuantizedRange range(0, 255.0f); xla::Dequantize<uint8_t>(x, range, "MIN_COMBINED"); const Array2D<bfloat16> expected = { {bfloat16(0.0), bfloat16(1.0), bfloat16(2.0), bfloat16(3.0), bfloat16(16.0), bfloat16(0.0), bfloat16(0.0), bfloat16(0.0)}, {bfloat16(4.0), bfloat16(5.0), bfloat16(6.0), bfloat16(7.0), bfloat16(17.0), bfloat16(0.0), bfloat16(0.0), bfloat16(0.0)}, {bfloat16(8.0), bfloat16(9.0), bfloat16(10.0), bfloat16(11.0), bfloat16(18.0), bfloat16(0.0), bfloat16(0.0), bfloat16(0.0)}, {bfloat16(12.0), bfloat16(13.0), bfloat16(16.0), bfloat16(15.0), bfloat16(19.0), bfloat16(0.0), bfloat16(0.0), bfloat16(0.0)}, }; ComputeAndCompareR2<bfloat16>(&builder, expected, {}); } XLA_TEST_F(DequantizeTest, MinCombinedUint8R2TailingZeroTransposeOutput) { XlaBuilder builder(TestName()); std::vector<std::vector<uint8_t>> input = { {0, 1, 2, 3, 16}, {4, 5, 6, 7, 17}, {8, 9, 10, 11, 18}, {12, 13, 16, 15, 19}, }; auto x = ConstantR2<uint32_t>( &builder, {{PackToUint32<uint8_t>(input[0])[0], PackToUint32<uint8_t>(input[0])[1]}, {PackToUint32<uint8_t>(input[1])[0], PackToUint32<uint8_t>(input[1])[1]}, {PackToUint32<uint8_t>(input[2])[0], PackToUint32<uint8_t>(input[2])[1]}, {PackToUint32<uint8_t>(input[3])[0], PackToUint32<uint8_t>(input[3])[1]}}); QuantizedRange range(0, 255.0f); xla::Dequantize<uint8_t>(x, range, "MIN_COMBINED", true); const Array2D<bfloat16> expected = { {bfloat16(0.0), bfloat16(4.0), bfloat16(8.0), bfloat16(12.0)}, {bfloat16(1.0), bfloat16(5.0), bfloat16(9.0), bfloat16(13.0)}, {bfloat16(2.0), bfloat16(6.0), bfloat16(10.0), bfloat16(16.0)}, {bfloat16(3.0), bfloat16(7.0), bfloat16(11.0), bfloat16(15.0)}, {bfloat16(16.0), bfloat16(17.0), bfloat16(18.0), bfloat16(19.0)}, {bfloat16(0.0), bfloat16(0.0), bfloat16(0.0), bfloat16(0.0)}, {bfloat16(0.0), bfloat16(0.0), bfloat16(0.0), bfloat16(0.0)}, {bfloat16(0.0), bfloat16(0.0), bfloat16(0.0), bfloat16(0.0)}, }; ComputeAndCompareR2<bfloat16>(&builder, expected, {}); } XLA_TEST_F(DequantizeTest, MinCombinedUint8LargeSizeTest) { XlaBuilder builder(TestName()); Array2D<uint8_t> input = GenerateLargeSizeInput<uint8_t>(500, 3547); Array2D<uint32_t> input_packed = PackLargeInput<uint8_t>(input); auto x = ConstantR2FromArray2D<uint32_t>(&builder, input_packed); QuantizedRange range(0, 255.0f); xla::Dequantize<uint8_t>(x, range, "MIN_COMBINED"); const Array2D<bfloat16> expected = GenerateLargeSizeMinCombinedOutput<uint8_t>(input, range); ComputeAndCompareR2<bfloat16>(&builder, expected, {}); } XLA_TEST_F(DequantizeTest, MinCombinedUint8LargeSizeTestTransposeOutput) { XlaBuilder builder(TestName()); Array2D<uint8_t> input = GenerateLargeSizeInput<uint8_t>(500, 3547); Array2D<uint32_t> input_packed = PackLargeInput<uint8_t>(input); auto x = ConstantR2FromArray2D<uint32_t>(&builder, input_packed); QuantizedRange range(0, 255.0f); xla::Dequantize<uint8_t>(x, range, "MIN_COMBINED", true); const Array2D<bfloat16> expected = GenerateLargeSizeMinCombinedOutput<uint8_t>(input, range, true); ComputeAndCompareR2<bfloat16>(&builder, expected, {}); } } }
811
cpp
tensorflow/tensorflow
lstm_utils
tensorflow/lite/toco/graph_transformations/lstm_utils.cc
tensorflow/lite/toco/graph_transformations/tests/lstm_utils_test.cc
#ifndef TENSORFLOW_COMPILER_MLIR_LITE_UTILS_LSTM_UTILS_H_ #define TENSORFLOW_COMPILER_MLIR_LITE_UTILS_LSTM_UTILS_H_ #include "llvm/ADT/StringRef.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/Location.h" #include "mlir/IR/Value.h" #include "mlir/Support/LogicalResult.h" #include "tensorflow/compiler/mlir/lite/ir/tfl_ops.h" namespace mlir { namespace TFL { constexpr char kTFImplements[] = "tf._implements"; constexpr char kLstmCellSimple[] = "LSTMCellSimple"; constexpr char kLayerNormalizedLstmCellSimple[] = "LayerNormalizedLstmCellSimple"; constexpr char kCoupleInputForgetGates[] = "CoupleInputForgetGates"; class ConvertLSTMCellSimpleToFusedLSTM { public: explicit ConvertLSTMCellSimpleToFusedLSTM(mlir::func::FuncOp fused_func_op) : fused_func_op_(fused_func_op), couple_input_forget_gates_(false), builder_(fused_func_op.getBody()) {} ConvertLSTMCellSimpleToFusedLSTM(const ConvertLSTMCellSimpleToFusedLSTM&) = delete; ConvertLSTMCellSimpleToFusedLSTM& operator=( const ConvertLSTMCellSimpleToFusedLSTM&) = delete; virtual ~ConvertLSTMCellSimpleToFusedLSTM() = default; virtual llvm::StringRef GetCompositeOpName() { return kLstmCellSimple; } LogicalResult RewriteFunc(); int GetNumInputs() { return n_input_; } protected: virtual LogicalResult InitializeFromFuncAttributes(); virtual LogicalResult Initialize(); void UpdateFuncSignature(); void GenerateFusedOpOperands(); void SetWeightForInputToCellGate(); void SetWeightForInputToInputGate(); void SetWeightForInputToForgetGate(); void SetWeightForInputToOutputGate(); void SetWeightForRecurrentToCellGate(); void SetWeightForRecurrentToInputGate(); void SetWeightForRecurrentToForgetGate(); void SetWeightForRecurrentToOutputGate(); void SetBiasToCellGate(); void SetBiasToInputGate(); void SetBiasToForgetGate(); void SetBiasToOutputGate(); void SetProjection(); void SetProjectionBias(); void SetInputActivationState(); void SetInputCellState(); virtual void SetCellLayerNormCoefficients(); virtual void SetInputLayerNormCoefficients(); virtual void SetForgetLayerNormCoefficients(); virtual void SetOutputLayerNormCoefficients(); func::FuncOp fused_func_op_; Value input_; Value weight_; Value bias_; Value projection_; bool couple_input_forget_gates_; Value weight_transposed_; Value projection_transposed_; RankedTensorType weight_type_; RankedTensorType projection_type_; int num_gates_; int n_cell_; int n_output_; int n_input_; int num_cols_weight_transposed_; int num_cols_projection_transposed_; Value input2input_; Value input2forget_; Value input2cell_; Value input2output_; Value rec2input_; Value rec2forget_; Value rec2cell_; Value rec2output_; Value bias2input_; Value bias2forget_; Value bias2cell_; Value bias2output_; Value proj_weight_; Value proj_bias_; Value input_activation_state_; Value input_cell_state_; Value input_layer_norm_coefficients_; Value forget_layer_norm_coefficients_; Value cell_layer_norm_coefficients_; Value output_layer_norm_coefficients_; mlir::TFL::LSTMOp lstm_; Value none_; SmallVector<int64_t, 1> bias_slice_shape_; SmallVector<int64_t, 1> bias_size_values_; SmallVector<int64_t, 2> weight_slice_shape_; SmallVector<int64_t, 2> weight_slice_size_input_values_; SmallVector<int64_t, 2> weight_slice_size_recurrent_values_; OpBuilder builder_; }; class ConvertLayerNormalizedLSTMCellSimpleToFusedLSTM : public ConvertLSTMCellSimpleToFusedLSTM { public: explicit ConvertLayerNormalizedLSTMCellSimpleToFusedLSTM( mlir::func::FuncOp fused_func_op) : ConvertLSTMCellSimpleToFusedLSTM(fused_func_op) {} ConvertLayerNormalizedLSTMCellSimpleToFusedLSTM( const ConvertLayerNormalizedLSTMCellSimpleToFusedLSTM&) = delete; ConvertLayerNormalizedLSTMCellSimpleToFusedLSTM& operator=( const ConvertLayerNormalizedLSTMCellSimpleToFusedLSTM&) = delete; ~ConvertLayerNormalizedLSTMCellSimpleToFusedLSTM() override = default; llvm::StringRef GetCompositeOpName() override { return kLayerNormalizedLstmCellSimple; } protected: LogicalResult Initialize() override; void SetCellLayerNormCoefficients() override; void SetInputLayerNormCoefficients() override; void SetForgetLayerNormCoefficients() override; void SetOutputLayerNormCoefficients() override; private: Value layer_norm_scale_; RankedTensorType layer_norm_scale_type_; SmallVector<int64_t, 1> layer_norm_slice_shape_; SmallVector<int64_t, 1> layer_norm_size_values_; }; LogicalResult ConvertKerasLSTMLayer(mlir::func::FuncOp func_op, OpBuilder* builder); LogicalResult ConvertKerasLSTMLayer(mlir::func::FuncOp func_op, OpBuilder* builder, bool indy); } } #endif #include "tensorflow/compiler/mlir/lite/utils/lstm_utils.h" #include <algorithm> #include <optional> #include <vector> #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/Casting.h" #include "llvm/Support/raw_ostream.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/Location.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OpDefinition.h" #include "mlir/IR/Operation.h" #include "mlir/IR/Types.h" #include "mlir/IR/Value.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/LogicalResult.h" #include "tensorflow/compiler/mlir/lite/ir/tfl_ops.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_ops.h" #include "tensorflow/compiler/mlir/tensorflow/utils/dynamic_shape_utils.h" namespace mlir { namespace TFL { namespace { Value CreateI32SplatConst(OpBuilder* builder, ArrayRef<int64_t> shape, int32_t val, mlir::Location location) { auto type = RankedTensorType::get(shape, builder->getIntegerType(32)); auto attr = DenseElementsAttr::get(type, val); return builder->create<arith::ConstantOp>(location, type, attr); } Value CreateF32SplatConst(OpBuilder* builder, ArrayRef<int64_t> shape, float val, mlir::Location location) { auto type = RankedTensorType::get(shape, builder->getF32Type()); auto attr = DenseElementsAttr::get(type, val); return builder->create<arith::ConstantOp>(location, type, attr); } Value CreatTfF32ConstOp(OpBuilder* builder, ArrayRef<int64_t> shape, float val, mlir::Location location) { auto type = RankedTensorType::get(shape, builder->getF32Type()); auto ele_type = RankedTensorType::get({1}, builder->getF32Type()); auto attr = DenseElementsAttr::get(ele_type, val); return builder->create<TF::ConstOp>(location, type, attr); } Value CreateI64DenseConst(OpBuilder* builder, ArrayRef<int64_t> shape, ArrayRef<int64_t> values, mlir::Location location) { auto type = RankedTensorType::get(static_cast<int>(shape.size()), builder->getIntegerType(64)); auto attr = DenseElementsAttr::get(type, values); return builder->create<arith::ConstantOp>(location, type, attr); } Value CreateI32DenseConst(OpBuilder* builder, ArrayRef<int32_t> values, mlir::Location location) { auto type = RankedTensorType::get(static_cast<int>(values.size()), builder->getIntegerType(32)); auto attr = DenseElementsAttr::get(type, values); return builder->create<arith::ConstantOp>(location, type, attr); } Value CreateNoneValue(OpBuilder* builder, mlir::Location location) { return builder->create<TFL::NoValueOp>(location, builder->getNoneType(), builder->getUnitAttr()); } Value Transpose(OpBuilder* builder, Value value_to_transpose, SmallVector<int32_t, 4> perm, RankedTensorType original_type, mlir::Location location) { auto perm_op = CreateI32DenseConst(builder, perm, location); auto transpose_type = original_type; auto transpose_shape = llvm::to_vector<8>(llvm::map_range(perm, [transpose_type](int32_t dim) { return transpose_type.getDimSize(dim); })); auto elem_type = transpose_type.getElementType(); auto result_type = RankedTensorType::get(transpose_shape, elem_type); return builder->create<TF::TransposeOp>(location, result_type, value_to_transpose, perm_op); } Value Transpose2D(OpBuilder* builder, Value value_to_transpose, RankedTensorType type, mlir::Location location) { SmallVector<int32_t, 4> perm = {1, 0}; return Transpose(builder, value_to_transpose, perm, type, location); } Value Reverse(OpBuilder* builder, Value value_to_reverse, int axis, RankedTensorType type, mlir::Location location) { auto axis_op = CreateI32SplatConst(builder, {1}, axis, location); return builder->create<TF::ReverseV2Op>(location, type, value_to_reverse, axis_op); } ArrayRef<int64_t> GetRankedTensorShape(Value value) { return mlir::cast<RankedTensorType>(value.getType()).getShape(); } Value SliceRankedTensor(OpBuilder* builder, Value input, ArrayRef<int64_t> begin_shape, ArrayRef<int64_t> begin_values, ArrayRef<int64_t> size_shape, ArrayRef<int64_t> size_values, mlir::Location location) { ArrayRef<int64_t> input_shape = GetRankedTensorShape(input); for (int i = 0, end = input_shape.size(); i < end; i++) { if (begin_values[i] < 0 || (begin_values[i] + size_values[i] > input_shape[i])) { return CreateF32SplatConst(builder, size_shape, 0, location); } } auto slice_i2c_begin = CreateI64DenseConst(builder, begin_shape, begin_values, location); auto slice_i2c_size = CreateI64DenseConst(builder, size_shape, size_values, location); return builder->create<TF::SliceOp>( location, RankedTensorType::get( size_values, mlir::cast<RankedTensorType>(input.getType()).getElementType()), input, slice_i2c_begin, slice_i2c_size); } Value CreateStridedSliceOp(mlir::Location loc, ArrayRef<int64_t> output_shape, Value input, ArrayRef<int32_t> begin, ArrayRef<int32_t> end, ArrayRef<int32_t> strides, int64_t begin_mask, int64_t end_mask, int64_t ellipsis_mask, int64_t new_axis_mask, int64_t shrink_axis_mask, OpBuilder* builder) { auto output_type = RankedTensorType::get( output_shape, mlir::cast<RankedTensorType>(input.getType()).getElementType()); auto begin_tensor = CreateI32DenseConst(builder, begin, loc); auto end_tensor = CreateI32DenseConst(builder, end, loc); auto strides_tensor = CreateI32DenseConst(builder, strides, loc); return builder->create<TF::StridedSliceOp>( loc, output_type, input, begin_tensor, end_tensor, strides_tensor, builder->getI64IntegerAttr(begin_mask), builder->getI64IntegerAttr(end_mask), builder->getI64IntegerAttr(ellipsis_mask), builder->getI64IntegerAttr(new_axis_mask), builder->getI64IntegerAttr(shrink_axis_mask)); } } void ConvertLSTMCellSimpleToFusedLSTM::SetWeightForInputToCellGate() { SmallVector<int64_t, 2> begin_i2c_values = {0, 0}; input2cell_ = SliceRankedTensor( &builder_, weight_transposed_, weight_slice_shape_, begin_i2c_values, weight_slice_shape_, weight_slice_size_input_values_, fused_func_op_.getLoc()); } void ConvertLSTMCellSimpleToFusedLSTM::SetWeightForInputToInputGate() { SmallVector<int64_t, 2> begin_i2i_values = {n_cell_, 0}; input2input_ = couple_input_forget_gates_ ? none_ : SliceRankedTensor(&builder_, weight_transposed_, weight_slice_shape_, begin_i2i_values, weight_slice_shape_, weight_slice_size_input_values_, fused_func_op_.getLoc()); } void ConvertLSTMCellSimpleToFusedLSTM::SetWeightForInputToForgetGate() { int input_forget_start = couple_input_forget_gates_ ? n_cell_ : 2 * n_cell_; SmallVector<int64_t, 2> begin_i2f_values = {input_forget_start, 0}; input2forget_ = SliceRankedTensor( &builder_, weight_transposed_, weight_slice_shape_, begin_i2f_values, weight_slice_shape_, weight_slice_size_input_values_, fused_func_op_.getLoc()); } void ConvertLSTMCellSimpleToFusedLSTM::SetWeightForInputToOutputGate() { int input_output_start = couple_input_forget_gates_ ? 2 * n_cell_ : 3 * n_cell_; SmallVector<int64_t, 2> begin_i2o_values = {input_output_start, 0}; input2output_ = SliceRankedTensor( &builder_, weight_transposed_, weight_slice_shape_, begin_i2o_values, weight_slice_shape_, weight_slice_size_input_values_, fused_func_op_.getLoc()); } void ConvertLSTMCellSimpleToFusedLSTM::SetWeightForRecurrentToCellGate() { SmallVector<int64_t, 2> begin_rec2c_values = {0, n_input_}; rec2cell_ = SliceRankedTensor( &builder_, weight_transposed_, weight_slice_shape_, begin_rec2c_values, weight_slice_shape_, weight_slice_size_recurrent_values_, fused_func_op_.getLoc()); } void ConvertLSTMCellSimpleToFusedLSTM::SetWeightForRecurrentToInputGate() { SmallVector<int64_t, 2> begin_rec2i_values = {n_cell_, n_input_}; rec2input_ = couple_input_forget_gates_ ? none_ : SliceRankedTensor(&builder_, weight_transposed_, weight_slice_shape_, begin_rec2i_values, weight_slice_shape_, weight_slice_size_recurrent_values_, fused_func_op_.getLoc()); } void ConvertLSTMCellSimpleToFusedLSTM::SetWeightForRecurrentToForgetGate() { int rec_forget_start = couple_input_forget_gates_ ? n_cell_ : 2 * n_cell_; SmallVector<int64_t, 2> begin_rec2f_values = {rec_forget_start, n_input_}; rec2forget_ = SliceRankedTensor( &builder_, weight_transposed_, weight_slice_shape_, begin_rec2f_values, weight_slice_shape_, weight_slice_size_recurrent_values_, fused_func_op_.getLoc()); } void ConvertLSTMCellSimpleToFusedLSTM::SetWeightForRecurrentToOutputGate() { int rec_output_start = couple_input_forget_gates_ ? 2 * n_cell_ : 3 * n_cell_; SmallVector<int64_t, 2> begin_rec2o_values = {rec_output_start, n_input_}; rec2output_ = SliceRankedTensor( &builder_, weight_transposed_, weight_slice_shape_, begin_rec2o_values, weight_slice_shape_, weight_slice_size_recurrent_values_, fused_func_op_.getLoc()); } void ConvertLSTMCellSimpleToFusedLSTM::SetBiasToCellGate() { SmallVector<int64_t, 1> begin_bias2c_values = {0}; bias2cell_ = SliceRankedTensor(&builder_, bias_, bias_slice_shape_, begin_bias2c_values, bias_slice_shape_, bias_size_values_, fused_func_op_.getLoc()); } void ConvertLSTMCellSimpleToFusedLSTM::SetBiasToInputGate() { SmallVector<int64_t, 1> begin_bias2i_values = {n_cell_}; bias2input_ = couple_input_forget_gates_ ? none_ : SliceRankedTensor(&builder_, bias_, bias_slice_shape_, begin_bias2i_values, bias_slice_shape_, bias_size_values_, fused_func_op_.getLoc()); } void ConvertLSTMCellSimpleToFusedLSTM::SetBiasToForgetGate() { int bias_forget_start = couple_input_forget_gates_ ? n_cell_ : 2 * n_cell_; SmallVector<int64_t, 1> begin_bias2f_values = {bias_forget_start}; bias2forget_ = SliceRankedTensor(&builder_, bias_, bias_slice_shape_, begin_bias2f_values, bias_slice_shape_, bias_size_values_, fused_func_op_.getLoc()); } void ConvertLSTMCellSimpleToFusedLSTM::SetBiasToOutputGate() { int bias_output_start = couple_input_forget_gates_ ? 2 * n_cell_ : 3 * n_cell_; SmallVector<int64_t, 1> begin_bias2o_values = {bias_output_start}; bias2output_ = SliceRankedTensor(&builder_, bias_, bias_slice_shape_, begin_bias2o_values, bias_slice_shape_, bias_size_values_, fused_func_op_.getLoc()); } void ConvertLSTMCellSimpleToFusedLSTM::SetProjection() { SmallVector<int64_t, 2> projection_slice_shape = { 1, num_cols_projection_transposed_}; SmallVector<int64_t, 2> projection_slice_size_values = {n_output_, n_cell_}; SmallVector<int64_t, 2> projection_slice_begin_values = {0, 0}; proj_weight_ = !projection_ ? none_ : SliceRankedTensor( &builder_, projection_transposed_, projection_slice_shape, projection_slice_begin_values, projection_slice_shape, projection_slice_size_values, fused_func_op_.getLoc()); } void ConvertLSTMCellSimpleToFusedLSTM::SetProjectionBias() { proj_bias_ = !projection_type_ ? none_ : CreateF32SplatConst(&builder_, {n_output_}, 0, fused_func_op_.getLoc()); } void ConvertLSTMCellSimpleToFusedLSTM::SetInputActivationState() { input_activation_state_ = CreateF32SplatConst(&builder_, {1, n_output_}, 0, fused_func_op_.getLoc()); } void ConvertLSTMCellSimpleToFusedLSTM::SetInputCellState() { input_cell_state_ = CreateF32SplatConst(&builder_, {1, n_cell_}, 0, fused_func_op_.getLoc()); } void ConvertLSTMCellSimpleToFusedLSTM::SetCellLayerNormCoefficients() { cell_layer_norm_coefficients_ = none_; } void ConvertLSTMCellSimpleToFusedLSTM::SetInputLayerNormCoefficients() { input_layer_norm_coefficients_ = none_; } void ConvertLSTMCellSimpleToFusedLSTM::SetForgetLayerNormCoefficients() { forget_layer_norm_coefficients_ = none_; } void ConvertLSTMCellSimpleToFusedLSTM::SetOutputLayerNormCoefficients() { output_layer_norm_coefficients_ = none_; } void ConvertLSTMCellSimpleToFusedLSTM::GenerateFusedOpOperands() { weight_transposed_ = Transpose2D(&builder_, weight_, weight_type_, fused_func_op_.getLoc()); projection_transposed_ = Transpose2D(&builder_, projection_, projection_type_, fused_func_op_.getLoc()); none_ = CreateNoneValue(&builder_, fused_func_op_.getLoc()); SetWeightForInputToCellGate(); SetWeightForInputToInputGate(); SetWeightForInputToForgetGate(); SetWeightForInputToOutputGate(); SetWeightForRecurrentToCellGate(); SetWeightForRecurrentToInputGate(); SetWeightForRecurrentToForgetGate(); SetWeightForRecurrentToOutputGate(); SetBiasToCellGate(); SetBiasToInputGate(); SetBiasToForgetGate(); SetBiasToOutputGate(); SetProjection(); SetProjectionBias(); SetInputActivationState(); SetInputCellState(); SetCellLayerNormCoefficients(); SetInputLayerNormCoefficients(); SetForgetLayerNormCoefficients(); SetOutputLayerNormCoefficients(); } void ConvertLSTMCellSimpleToFusedLSTM::UpdateFuncSignature() { SmallVector<int64_t, 2> output_shape{1, tensorflow::kTFDynamicSize}; auto input_types = fused_func_op_.getFunctionType().getInputs(); auto output_type = tensorflow::GetTypeFromTFTensorShape( output_shape, mlir::cast<RankedTensorType>(input_.getType()).getElementType()); fused_func_op_.setType(mlir::FunctionType::get(fused_func_op_.getContext(), input_types, output_type)); } LogicalResult ConvertLSTMCellSimpleToFusedLSTM::RewriteFunc() { LogicalResult result = Initialize(); if (failed(result)) { return result; } UpdateFuncSignature(); GenerateFusedOpOperands(); SmallVector<int64_t, 2> output_shape = {1, n_output_}; auto result_type = mlir::RankedTensorType::get( output_shape, mlir::cast<RankedTensorType>(input_.getType()).getElementType()); lstm_ = builder_.create<mlir::TFL::LSTMOp>( fused_func_op_.getLoc(), result_type, input_, input2input_, input2forget_, input2cell_, input2output_, rec2input_, rec2forget_, rec2cell_, rec2output_, none_, none_, none_, bias2input_, bias2forget_, bias2cell_, bias2output_, proj_weight_, proj_bias_, input_activation_state_, input_cell_state_, input_layer_norm_coefficients_, forget_layer_norm_coefficients_, cell_layer_norm_coefficients_, output_layer_norm_coefficients_, builder_.getStringAttr("TANH"), builder_.getF32FloatAttr(10.0), builder_.getF32FloatAttr(0.0), mlir::TFL::LSTMKernelTypeAttr::get(builder_.getContext(), mlir::TFL::LSTMKernelType::FULL), mlir::BoolAttr(), mlir::TypeAttr(), mlir::TypeAttr(), mlir::TypeAttr(), mlir::TypeAttr(), mlir::TypeAttr()); SmallVector<int64_t, 2> func_output_shape = {1, tensorflow::kTFDynamicSize}; auto func_result_type = tensorflow::GetTypeFromTFTensorShape( func_output_shape, mlir::cast<RankedTensorType>(input_.getType()).getElementType()); auto tensor_cast = builder_.create<mlir::tensor::CastOp>( fused_func_op_.getLoc(), func_result_type, lstm_.getResult()); builder_.create<mlir::func::ReturnOp>(fused_func_op_.getLoc(), tensor_cast.getResult()); return success(); } LogicalResult ConvertLSTMCellSimpleToFusedLSTM::InitializeFromFuncAttributes() { auto attr = fused_func_op_->getAttrOfType<StringAttr>(kTFImplements); if (!attr) { return fused_func_op_.emitError() << "Invalid function attribute, expected " << kTFImplements << " attribute " "not found"; } llvm::SmallVector<llvm::StringRef, 4> attr_tokens; attr.getValue().split(attr_tokens, ","); if (attr_tokens.empty()) { return fused_func_op_.emitError() << kTFImplements << " attribute should be set"; } if (GetCompositeOpName().str() != attr_tokens[0]) { return fused_func_op_.emitError() << "Unexpected interface for the composite op. Expected: " << GetCompositeOpName() << " Actual: " << attr_tokens[0]; } couple_input_forget_gates_ = std::find(attr_tokens.begin() + 1, attr_tokens.end(), kCoupleInputForgetGates) != attr_tokens.end(); return success(); } LogicalResult ConvertLSTMCellSimpleToFusedLSTM::Initialize() { if (failed(InitializeFromFuncAttributes())) { return fused_func_op_.emitError() << "Expected function attributes were not set on the function " "encapsulating the composite op"; } num_gates_ = couple_input_forget_gates_ ? 3 : 4; input_ = fused_func_op_.getArgument(0); bias_ = fused_func_op_.getArgument(2); weight_ = fused_func_op_.getArgument(1); weight_type_ = mlir::cast<RankedTensorType>(weight_.getType()); if (weight_type_.getRank() != 2) { return fused_func_op_.emitError() << "The weight tensor was not of rank 2"; } if (weight_type_.getDimSize(1) % num_gates_ != 0) { return fused_func_op_.emitError() << "Invalid dimension 1 of weight tensor, " "should be divisible by the number of gates"; } n_cell_ = weight_type_.getDimSize(1) / num_gates_; projection_ = fused_func_op_.getArgument(3); projection_type_ = mlir::cast<RankedTensorType>(projection_.getType()); if (projection_type_.getRank() != 2) { n_output_ = n_cell_; } else { n_output_ = projection_type_.getDimSize(1); } n_input_ = weight_type_.getDimSize(0) - n_output_; num_cols_weight_transposed_ = weight_type_.getDimSize(0); num_cols_projection_transposed_ = projection_type_.getDimSize(0); bias_slice_shape_ = {n_cell_}; bias_size_values_ = {n_cell_}; weight_slice_shape_ = {1, num_cols_weight_transposed_}; weight_slice_size_input_values_ = {n_cell_, n_input_}; weight_slice_size_recurrent_values_ = {n_cell_, n_output_}; return success(); } LogicalResult ConvertLayerNormalizedLSTMCellSimpleToFusedLSTM::Initialize() { if (failed(ConvertLSTMCellSimpleToFusedLSTM::Initialize())) { return fused_func_op_.emitError() << "Specified LayerNormalizedLSTMCellSimple was not of the expected " "interface and cannot not be converted to the fused LSTM op"; } layer_norm_scale_ = fused_func_op_.getArgument(4); layer_norm_scale_type_ = mlir::cast<RankedTensorType>(layer_norm_scale_.getType()); if (layer_norm_scale_type_.getRank() != 1) { return fused_func_op_.emitError() << "The layer_norm_scale tensor was not of rank 1"; } layer_norm_slice_shape_ = {n_cell_}; layer_norm_size_values_ = {n_cell_}; return success(); } void ConvertLayerNormalizedLSTMCellSimpleToFusedLSTM:: SetCellLayerNormCoefficients() { SmallVector<int64_t, 1> begin_cell_layer_norm_values = {0}; cell_layer_norm_coefficients_ = SliceRankedTensor(&builder_, layer_norm_scale_, layer_norm_slice_shape_, begin_cell_layer_norm_values, layer_norm_slice_shape_, layer_norm_size_values_, fused_func_op_.getLoc()); } void ConvertLayerNormalizedLSTMCellSimpleToFusedLSTM:: SetInputLayerNormCoefficients() { SmallVector<int64_t, 1> begin_input_layer_norm_values = {n_cell_}; input_layer_norm_coefficients_ = couple_input_forget_gates_ ? none_ : SliceRankedTensor( &builder_, layer_norm_scale_, layer_norm_slice_shape_, begin_input_layer_norm_values, layer_norm_slice_shape_, layer_norm_size_values_, fused_func_op_.getLoc()); } void ConvertLayerNormalizedLSTMCellSimpleToFusedLSTM:: SetForgetLayerNormCoefficients() { SmallVector<int64_t, 1> begin_forget_layer_norm_values = {2 * n_cell_}; forget_layer_norm_coefficients_ = SliceRankedTensor(&builder_, layer_norm_scale_, layer_norm_slice_shape_, begin_forget_layer_norm_values, layer_norm_slice_shape_, layer_norm_size_values_, fused_func_op_.getLoc()); } void ConvertLayerNormalizedLSTMCellSimpleToFusedLSTM:: SetOutputLayerNormCoefficients() { SmallVector<int64_t, 1> begin_output_layer_norm_values = {3 * n_cell_}; output_layer_norm_coefficients_ = SliceRankedTensor(&builder_, layer_norm_scale_, layer_norm_slice_shape_, begin_output_layer_norm_values, layer_norm_slice_shape_, layer_norm_size_values_, fused_func_op_.getLoc()); } TF::ConstOp Create1DConstantOp(const std::vector<int>& value, Location loc, OpBuilder* builder) { auto type = mlir::RankedTensorType::get(value.size(), builder->getIntegerType(32)); auto dense_values = mlir::DenseIntElementsAttr::get(type, value); return builder->create<TF::ConstOp>(loc, den
#include "tensorflow/compiler/mlir/lite/utils/lstm_utils.h" #include <memory> #include <ostream> #include <string> #include <vector> #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/Casting.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/BuiltinTypeInterfaces.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/Location.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/Types.h" #include "mlir/IR/Value.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/LogicalResult.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_ops.h" #include "tensorflow/core/platform/test.h" namespace mlir { namespace TFL { func::FuncOp createLstmCompositeFunc(mlir::Builder* builder, bool ln, bool cifg) { SmallVector<int64_t, 2> input_shape{1, 2}; SmallVector<int64_t, 2> weight_shape{3, 12}; SmallVector<int64_t, 1> bias_shape{2}; SmallVector<int64_t, 2> projection_shape{1, 2}; SmallVector<int64_t, 1> layer_norm_scale{4}; SmallVector<int64_t, 2> output_shape{1, 2}; auto input_type = RankedTensorType::get(input_shape, builder->getF32Type()); auto weight_type = RankedTensorType::get(weight_shape, builder->getF32Type()); auto bias_type = RankedTensorType::get(bias_shape, builder->getF32Type()); auto projection_type = RankedTensorType::get(projection_shape, builder->getF32Type()); auto layer_norm_scale_type = RankedTensorType::get(layer_norm_scale, builder->getF32Type()); auto output_type = RankedTensorType::get(output_shape, builder->getF32Type()); SmallVector<mlir::Type, 4> input_types{input_type, weight_type, bias_type, projection_type, layer_norm_scale_type}; auto func_type = builder->getFunctionType(input_types, output_type); auto func = func::FuncOp::create( mlir::NameLoc::get(builder->getStringAttr("fused_func")), "fused_func", func_type, {}); func.addEntryBlock(); std::vector<std::string> attributes; if (ln) { attributes.push_back(kLayerNormalizedLstmCellSimple); } else { attributes.push_back(kLstmCellSimple); } if (cifg) { attributes.push_back(kCoupleInputForgetGates); } mlir::StringAttr attr_values = builder->getStringAttr(llvm::join(attributes, ",")); func->setAttr(kTFImplements, attr_values); return func; } class LstmUtilsTest : public ::testing::Test { protected: LstmUtilsTest() {} void SetUp() override { context_ = std::make_unique<mlir::MLIRContext>(); context_->loadDialect<arith::ArithDialect, mlir::func::FuncDialect, tensor::TensorDialect, mlir::TF::TensorFlowDialect, TensorFlowLiteDialect>(); builder_ = std::make_unique<mlir::Builder>(context_.get()); fused_lstm_func_ = createLstmCompositeFunc(builder_.get(), false, false); fused_lstm_func_cifg_ = createLstmCompositeFunc(builder_.get(), false, true); fused_ln_lstm_func_ = createLstmCompositeFunc(builder_.get(), true, false); } void TearDown() override { fused_lstm_func_.erase(); fused_lstm_func_cifg_.erase(); fused_ln_lstm_func_.erase(); builder_.reset(); } func::FuncOp fused_lstm_func_; func::FuncOp fused_lstm_func_cifg_; func::FuncOp fused_ln_lstm_func_; std::unique_ptr<mlir::MLIRContext> context_; std::unique_ptr<mlir::Builder> builder_; }; TEST_F(LstmUtilsTest, ConvertLSTMCellSimple) { mlir::TFL::ConvertLSTMCellSimpleToFusedLSTM convert(fused_lstm_func_); auto result = convert.RewriteFunc(); EXPECT_FALSE(failed(result)); fused_lstm_func_.dump(); EXPECT_EQ( fused_lstm_func_->getAttrOfType<StringAttr>(kTFImplements).getValue(), convert.GetCompositeOpName()); EXPECT_EQ(fused_lstm_func_.getNumArguments(), 5); EXPECT_EQ(fused_lstm_func_.getFunctionType().getNumResults(), 1); auto transpose_op = fused_lstm_func_.getBody().front().begin(); transpose_op++; EXPECT_EQ(mlir::cast<RankedTensorType>(transpose_op->getOperand(0).getType()) .getDimSize(0), 3); EXPECT_EQ(mlir::cast<RankedTensorType>(transpose_op->getOperand(0).getType()) .getDimSize(1), 12); EXPECT_EQ(mlir::cast<RankedTensorType>(transpose_op->getResult(0).getType()) .getDimSize(0), 12); EXPECT_EQ(mlir::cast<RankedTensorType>(transpose_op->getResult(0).getType()) .getDimSize(1), 3); auto it = fused_lstm_func_.getBody().back().rbegin(); EXPECT_EQ(it->getName().getStringRef(), mlir::func::ReturnOp::getOperationName()); it++; it++; EXPECT_EQ(it->getName().getStringRef(), mlir::TFL::LSTMOp::getOperationName()); EXPECT_EQ(it->getNumOperands(), 24); EXPECT_EQ(it->getNumResults(), 1); EXPECT_FALSE(mlir::isa<NoneType>(it->getOperand(1).getType())); EXPECT_TRUE(mlir::isa<NoneType>(it->getOperand(20).getType())); EXPECT_TRUE(mlir::cast<RankedTensorType>(it->getOperand(17).getType()) .getElementType() .isF32()); EXPECT_TRUE( mlir::cast<ElementsAttr>(mlir::cast<mlir::arith::ConstantOp>( it->getOpOperand(15).get().getDefiningOp()) .getValue()) .getValues<FloatAttr>()[0] .getValue() .isExactlyValue(0.0f)); EXPECT_EQ(fused_lstm_func_.getFunctionType().getNumResults(), 1); auto output_types = fused_lstm_func_.getFunctionType().getResults(); SmallVector<int64_t, 2> output_shape{1, mlir::ShapedType::kDynamic}; EXPECT_EQ(mlir::cast<RankedTensorType>(output_types[0]).getShape().size(), output_shape.size()); for (int i = 0; i < output_shape.size(); i++) { EXPECT_EQ(mlir::cast<RankedTensorType>(output_types[0]).getDimSize(i), output_shape[i]); } } TEST_F(LstmUtilsTest, ConvertLSTMCellSimpleToFusedLSTMCoupleInputForget) { mlir::TFL::ConvertLSTMCellSimpleToFusedLSTM convert(fused_lstm_func_cifg_); auto result = convert.RewriteFunc(); EXPECT_FALSE(failed(result)); fused_lstm_func_cifg_.dump(); llvm::SmallVector<std::string, 2> attributes{kLstmCellSimple, kCoupleInputForgetGates}; EXPECT_EQ(fused_lstm_func_cifg_->getAttrOfType<StringAttr>(kTFImplements) .getValue(), llvm::join(attributes, ",")); auto it = fused_lstm_func_cifg_.getBody().back().rbegin(); EXPECT_EQ(it->getName().getStringRef(), mlir::func::ReturnOp::getOperationName()); it++; it++; EXPECT_EQ(it->getName().getStringRef(), mlir::TFL::LSTMOp::getOperationName()); EXPECT_EQ(it->getNumOperands(), 24); EXPECT_EQ(it->getNumResults(), 1); EXPECT_TRUE(mlir::isa<NoneType>(it->getOperand(1).getType())); } TEST_F(LstmUtilsTest, ConvertLayerNormLSTMCellSimpleToFusedLSTM) { mlir::TFL::ConvertLayerNormalizedLSTMCellSimpleToFusedLSTM convert( fused_ln_lstm_func_); auto result = convert.RewriteFunc(); EXPECT_FALSE(failed(result)); fused_ln_lstm_func_.dump(); EXPECT_EQ( fused_ln_lstm_func_->getAttrOfType<StringAttr>(kTFImplements).getValue(), convert.GetCompositeOpName()); EXPECT_EQ(fused_ln_lstm_func_.getNumArguments(), 5); EXPECT_EQ(fused_ln_lstm_func_.getFunctionType().getNumResults(), 1); auto it = fused_ln_lstm_func_.getBody().back().rbegin(); EXPECT_EQ(it->getName().getStringRef(), mlir::func::ReturnOp::getOperationName()); it++; it++; EXPECT_EQ(it->getName().getStringRef(), mlir::TFL::LSTMOp::getOperationName()); EXPECT_EQ(it->getNumOperands(), 24); EXPECT_EQ(it->getNumResults(), 1); EXPECT_FALSE(mlir::isa<NoneType>(it->getOperand(1).getType())); EXPECT_FALSE(mlir::isa<NoneType>(it->getOperand(20).getType())); EXPECT_EQ(mlir::cast<RankedTensorType>(it->getOperand(20).getType()) .getShape() .size(), 1); EXPECT_EQ( mlir::cast<RankedTensorType>(it->getOperand(20).getType()).getDimSize(0), 3); EXPECT_EQ(fused_ln_lstm_func_.getFunctionType().getNumResults(), 1); auto output_types = fused_ln_lstm_func_.getFunctionType().getResults(); SmallVector<int64_t, 2> output_shape{1, mlir::ShapedType::kDynamic}; EXPECT_EQ(mlir::cast<RankedTensorType>(output_types[0]).getShape().size(), output_shape.size()); for (int i = 0; i < output_shape.size(); i++) { EXPECT_EQ(mlir::cast<RankedTensorType>(output_types[0]).getDimSize(i), output_shape[i]); } } } }
812
cpp
tensorflow/tensorflow
dequantize
tensorflow/lite/toco/graph_transformations/dequantize.cc
tensorflow/lite/kernels/dequantize_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_DEQUANTIZE_H_ #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_DEQUANTIZE_H_ #include "tensorflow/lite/kernels/internal/common.h" #include "tensorflow/lite/kernels/internal/types.h" namespace tflite { namespace reference_integer_ops { template <typename T> inline void Dequantize(const tflite::DequantizationParams& op_params, const RuntimeShape& input_shape, const T* input_data, const RuntimeShape& output_shape, float* output_data) { const int32 zero_point = op_params.zero_point; const double scale = op_params.scale; const int flat_size = MatchingFlatSize(input_shape, output_shape); for (int i = 0; i < flat_size; i++) { const int32 val = static_cast<int32>(input_data[i]); const float result = static_cast<float>(scale * (val - zero_point)); output_data[i] = result; } } } } #endif #include "tensorflow/lite/kernels/dequantize.h" #include <stddef.h> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/optimized/neon_check.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace builtin { namespace dequantize { struct OpContext { OpContext(TfLiteContext* context, TfLiteNode* node) { input = GetInput(context, node, 0); output = GetOutput(context, node, 0); } const TfLiteTensor* input; TfLiteTensor* output; }; struct OpData { bool float_dequantized_weights_initialized; }; void* Init(TfLiteContext* context, const char* buffer, size_t length) { auto* op_data = new OpData(); op_data->float_dequantized_weights_initialized = false; return op_data; } void Free(TfLiteContext* context, void* buffer) { delete reinterpret_cast<OpData*>(buffer); } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); OpContext op_context(context, node); TF_LITE_ENSURE(context, op_context.input->type == kTfLiteInt4 || op_context.input->type == kTfLiteUInt8 || op_context.input->type == kTfLiteInt8 || op_context.input->type == kTfLiteInt16 || op_context.input->type == kTfLiteFloat16); if (op_context.input->type == kTfLiteInt16) { TF_LITE_ENSURE_EQ(context, op_context.input->params.zero_point, 0); } op_context.output->type = kTfLiteFloat32; if (IsConstantTensor(op_context.input)) { op_context.output->allocation_type = kTfLiteArenaRwPersistent; } return context->ResizeTensor(context, op_context.output, TfLiteIntArrayCopy(op_context.input->dims)); } template <KernelType kernel_type> TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { OpData* op_data = reinterpret_cast<OpData*>(node->user_data); OpContext op_context(context, node); if (IsConstantTensor(op_context.input) && op_data->float_dequantized_weights_initialized) { return kTfLiteOk; } auto status = DequantizeImpl<kernel_type>(context, node, op_context.input, op_context.output); if (status != kTfLiteOk) { return status; } if (IsConstantTensor(op_context.input)) { op_data->float_dequantized_weights_initialized = true; } return kTfLiteOk; } } TfLiteRegistration* Register_DEQUANTIZE_OPT() { static TfLiteRegistration r = { dequantize::Init, dequantize::Free, dequantize::Prepare, dequantize::Eval<dequantize::kGenericOptimized>}; return &r; } TfLiteRegistration* Register_DEQUANTIZE_REF() { static TfLiteRegistration r = {dequantize::Init, dequantize::Free, dequantize::Prepare, dequantize::Eval<dequantize::kReference>}; return &r; } TfLiteRegistration* Register_DEQUANTIZE() { #ifdef USE_NEON return Register_DEQUANTIZE_OPT(); #else return Register_DEQUANTIZE_REF(); #endif } } } }
#include <cstdint> #include <initializer_list> #include <memory> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/memory/memory.h" #include "Eigen/Core" #include "flatbuffers/flatbuffers.h" #include "tensorflow/lite/core/api/op_resolver.h" #include "tensorflow/lite/core/interpreter.h" #include "tensorflow/lite/kernels/internal/types.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace ops { namespace builtin { TfLiteRegistration* Register_DEQUANTIZE(); } } namespace { using ::testing::ElementsAreArray; class DequantizeOpModel : public SingleOpModel { public: explicit DequantizeOpModel() {} DequantizeOpModel(TensorType type, std::initializer_list<int> shape, float scale, int32_t zero_point, int version) { const TensorData input_tensor_data = {type, shape, 0, 0, scale, zero_point}; input_ = AddInput(input_tensor_data); output_ = AddOutput({TensorType_FLOAT32, shape}); SetBuiltinOp(BuiltinOperator_DEQUANTIZE, BuiltinOptions_DequantizeOptions, CreateDequantizeOptions(builder_).Union()); resolver_ = std::make_unique<SingleOpResolver>( BuiltinOperator_DEQUANTIZE, ops::builtin::Register_DEQUANTIZE(), version); BuildInterpreter({GetShape(input_)}); } template <typename T> void SetInput(std::initializer_list<T> data) { PopulateTensor(input_, data); } template <typename T> void SetInputInt4(int input, const std::vector<T> data) { auto non_const = *const_cast<std::vector<T>*>(&data); std::vector<int8_t> data_int8(non_const.size()); std::copy(non_const.begin(), non_const.end(), data_int8.begin()); PopulateTensor4bit(input, 0, data_int8.data(), data_int8.data() + data_int8.size()); } std::vector<float> GetOutput() { return ExtractVector<float>(output_); } protected: int input_; int output_; }; TEST(DequantizeOpTest, Int4) { DequantizeOpModel m(TensorType_INT4, {2, 2}, 0.5, -1, 6); m.SetInputInt4<int8_t>(0, {7, 6, -7, -8}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray(ArrayFloatNear({4, 3.5, -3, -3.5}))); } TEST(DequantizeOpTest, Uint8) { DequantizeOpModel m(TensorType_UINT8, {2, 5}, 0.5, 127, 1); m.SetInput<uint8_t>({0, 1, 2, 3, 4, 251, 252, 253, 254, 255}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray(ArrayFloatNear( {-63.5, -63, -62.5, -62, -61.5, 62, 62.5, 63, 63.5, 64}))); } TEST(DequantizeOpTest, Int8) { DequantizeOpModel m(TensorType_INT8, {2, 5}, 0.5, -1, 2); m.SetInput<int8_t>({-128, -127, -126, -125, -124, 123, 124, 125, 126, 127}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray(ArrayFloatNear( {-63.5, -63, -62.5, -62, -61.5, 62, 62.5, 63, 63.5, 64}))); } TEST(DequantizeOpTest, Float16) { DequantizeOpModel m(TensorType_FLOAT16, {2, 3}, 1.0f, 0, 3); std::vector<Eigen::half> half{Eigen::half{-535.54f}, Eigen::half{-100.0f}, Eigen::half{-1.0f}, Eigen::half{0.f}, Eigen::half{1.0f}, Eigen::half{100.32f}}; m.PopulateTensor(0, 0, reinterpret_cast<TfLiteFloat16*>(half.data()), reinterpret_cast<TfLiteFloat16*>(half.data()) + half.size()); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray(ArrayFloatNear( {-535.54f, -100.0f, -1.0f, 0.f, 1.0f, 100.32f}, 0.1f))); } TEST(DequantizeOpTest, Int16) { DequantizeOpModel m(TensorType_INT16, {2, 5}, 0.5, 0, 4); m.SetInput<int16_t>({-129, -126, -125, -124, -123, 124, 125, 126, 127, 131}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray(ArrayFloatNear( {-64.5, -63, -62.5, -62, -61.5, 62, 62.5, 63, 63.5, 65.5}))); } class DequantizePerChannelOpModel : public DequantizeOpModel { public: DequantizePerChannelOpModel(TensorType type, std::initializer_list<int> shape, std::initializer_list<float> scales, std::initializer_list<int64_t> zero_points, int channel_dim, int version) { std::vector<float> per_channel_scales(scales); std::vector<int64_t> input_offsets(zero_points); const TensorData input_tensor_data = { type, shape, 0, 0, 0.0f, 0, true, per_channel_scales, input_offsets, channel_dim}; input_ = AddInput(input_tensor_data); output_ = AddOutput({TensorType_FLOAT32, shape}); SetBuiltinOp(BuiltinOperator_DEQUANTIZE, BuiltinOptions_DequantizeOptions, CreateDequantizeOptions(builder_).Union()); resolver_ = std::make_unique<SingleOpResolver>( BuiltinOperator_DEQUANTIZE, ops::builtin::Register_DEQUANTIZE(), version); BuildInterpreter({GetShape(input_)}); } }; TEST(DequantizePerChannelOpTest, Uint8) { DequantizePerChannelOpModel m(TensorType_UINT8, {2, 5}, {0.5, 0.5}, {127, 127}, 0, 5); m.SetInput<uint8_t>({0, 1, 2, 3, 4, 251, 252, 253, 254, 255}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray(ArrayFloatNear( {-63.5, -63, -62.5, -62, -61.5, 62, 62.5, 63, 63.5, 64}))); } TEST(DequantizePerChannelOpTest, Int8) { DequantizePerChannelOpModel m(TensorType_INT8, {2, 5}, {0.5, 0.5}, {-1, -1}, 0, 5); m.SetInput<int8_t>({-128, -127, -126, -125, -124, 123, 124, 125, 126, 127}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray(ArrayFloatNear( {-63.5, -63, -62.5, -62, -61.5, 62, 62.5, 63, 63.5, 64}))); } } }
813
cpp
tensorflow/tensorflow
profile_summary_formatter
tensorflow/lite/profiling/profile_summary_formatter.cc
tensorflow/lite/profiling/profile_summary_formatter_test.cc
#ifndef TENSORFLOW_LITE_PROFILING_PROFILE_SUMMARY_FORMATTER_H_ #define TENSORFLOW_LITE_PROFILING_PROFILE_SUMMARY_FORMATTER_H_ #include <cstddef> #include <cstdint> #include <fstream> #include <functional> #include <map> #include <memory> #include <sstream> #include <string> #include <utility> #include <vector> #include "tensorflow/core/util/stat_summarizer_options.h" #include "tensorflow/core/util/stats_calculator.h" #include "tensorflow/lite/profiling/proto/profiling_info.pb.h" namespace tflite { namespace profiling { class ProfileSummaryFormatter { public: ProfileSummaryFormatter() = default; virtual ~ProfileSummaryFormatter() {} virtual std::string GetOutputString( const std::map<uint32_t, std::unique_ptr<tensorflow::StatsCalculator>>& stats_calculator_map, const tensorflow::StatsCalculator& delegate_stats_calculator, const std::map<uint32_t, std::string>& subgraph_name_map) const = 0; virtual std::string GetShortSummary( const std::map<uint32_t, std::unique_ptr<tensorflow::StatsCalculator>>& stats_calculator_map, const tensorflow::StatsCalculator& delegate_stats_calculator, const std::map<uint32_t, std::string>& subgraph_name_map) const = 0; virtual tensorflow::StatSummarizerOptions GetStatSummarizerOptions() const = 0; virtual void HandleOutput(const std::string& init_output, const std::string& run_output, std::string output_file_path) const = 0; }; class ProfileSummaryDefaultFormatter : public ProfileSummaryFormatter { public: ProfileSummaryDefaultFormatter() = default; ~ProfileSummaryDefaultFormatter() override {} std::string GetOutputString( const std::map<uint32_t, std::unique_ptr<tensorflow::StatsCalculator>>& stats_calculator_map, const tensorflow::StatsCalculator& delegate_stats_calculator, const std::map<uint32_t, std::string>& subgraph_name_map) const override; std::string GetShortSummary( const std::map<uint32_t, std::unique_ptr<tensorflow::StatsCalculator>>& stats_calculator_map, const tensorflow::StatsCalculator& delegate_stats_calculator, const std::map<uint32_t, std::string>& subgraph_name_map) const override; tensorflow::StatSummarizerOptions GetStatSummarizerOptions() const override; void HandleOutput(const std::string& init_output, const std::string& run_output, std::string output_file_path) const override; private: std::string GenerateReport( const std::string& tag, bool include_output_string, const std::map<uint32_t, std::unique_ptr<tensorflow::StatsCalculator>>& stats_calculator_map, const tensorflow::StatsCalculator& delegate_stats_calculator, const std::map<uint32_t, std::string>& subgraph_name_map) const; void WriteOutput(const std::string& header, const std::string& data, std::ostream* stream) const { (*stream) << header << std::endl; (*stream) << data << std::endl; } }; class ProfileSummaryCSVFormatter : public ProfileSummaryDefaultFormatter { public: ProfileSummaryCSVFormatter() = default; tensorflow::StatSummarizerOptions GetStatSummarizerOptions() const override; }; class ProfileSummaryProtoFormatter : public ProfileSummaryFormatter { public: std::string GetOutputString( const std::map<uint32_t, std::unique_ptr<tensorflow::StatsCalculator>>& stats_calculator_map, const tensorflow::StatsCalculator& delegate_stats_calculator, const std::map<uint32_t, std::string>& subgraph_name_map) const override; std::string GetShortSummary( const std::map<uint32_t, std::unique_ptr<tensorflow::StatsCalculator>>& stats_calculator_map, const tensorflow::StatsCalculator& delegate_stats_calculator, const std::map<uint32_t, std::string>& subgraph_name_map) const override; tensorflow::StatSummarizerOptions GetStatSummarizerOptions() const override; void HandleOutput(const std::string& init_output, const std::string& run_output, std::string output_file_path) const override; private: std::string GenerateReport( const std::string& tag, bool include_output_string, const std::map<uint32_t, std::unique_ptr<tensorflow::StatsCalculator>>& stats_calculator_map, const tensorflow::StatsCalculator& delegate_stats_calculator, const std::map<uint32_t, std::string>& subgraph_name_map) const; void GenerateSubGraphProfilingData( const tensorflow::StatsCalculator* stats_calculator, int subgraph_index, const std::map<uint32_t, std::string>& subgraph_name_map, SubGraphProfilingData* sub_graph_profiling_data) const; void GenerateDelegateProfilingData( const tensorflow::StatsCalculator* stats_calculator, DelegateProfilingData* delegate_profiling_data) const; void GenerateOpProfileDataFromDetail( const tensorflow::StatsCalculator::Detail* detail, const tensorflow::StatsCalculator* stats_calculator, OpProfileData* op_profile_data) const; std::vector<tensorflow::StatsCalculator::Detail> GetDetailsSortedByRunOrder( const tensorflow::StatsCalculator* stats_calculator) const; }; } } #endif #include "tensorflow/lite/profiling/profile_summary_formatter.h" #include <fstream> #include <iomanip> #include <ios> #include <map> #include <memory> #include <ostream> #include <queue> #include <sstream> #include <string> #include <utility> #include <vector> #include "tensorflow/lite/profiling/proto/profiling_info.pb.h" #include "tensorflow/lite/tools/logging.h" namespace tflite { namespace profiling { std::string ProfileSummaryDefaultFormatter::GetOutputString( const std::map<uint32_t, std::unique_ptr<tensorflow::StatsCalculator>>& stats_calculator_map, const tensorflow::StatsCalculator& delegate_stats_calculator, const std::map<uint32_t, std::string>& subgraph_name_map) const { return GenerateReport("profile", true, stats_calculator_map, delegate_stats_calculator, subgraph_name_map); } std::string ProfileSummaryDefaultFormatter::GetShortSummary( const std::map<uint32_t, std::unique_ptr<tensorflow::StatsCalculator>>& stats_calculator_map, const tensorflow::StatsCalculator& delegate_stats_calculator, const std::map<uint32_t, std::string>& subgraph_name_map) const { return GenerateReport("summary", false, stats_calculator_map, delegate_stats_calculator, subgraph_name_map); } std::string ProfileSummaryDefaultFormatter::GenerateReport( const std::string& tag, bool include_output_string, const std::map<uint32_t, std::unique_ptr<tensorflow::StatsCalculator>>& stats_calculator_map, const tensorflow::StatsCalculator& delegate_stats_calculator, const std::map<uint32_t, std::string>& subgraph_name_map) const { std::stringstream stream; bool has_non_primary_graph = (stats_calculator_map.size() - stats_calculator_map.count(0)) > 0; for (const auto& stats_calc : stats_calculator_map) { auto subgraph_index = stats_calc.first; auto subgraph_stats = stats_calc.second.get(); std::string subgraph_name = ""; if (subgraph_name_map.find(subgraph_index) != subgraph_name_map.end()) { subgraph_name = subgraph_name_map.at(subgraph_index); } if (has_non_primary_graph) { if (subgraph_index == 0) { stream << "Primary graph (name: " << subgraph_name << ") " << tag << ":" << std::endl; } else { stream << "Subgraph (index: " << subgraph_index << ", name: " << subgraph_name << ") " << tag << ":" << std::endl; } } if (include_output_string) { stream << subgraph_stats->GetOutputString(); } if (subgraph_index != 0) { stream << "Subgraph (index: " << subgraph_index << ", name: " << subgraph_name << ") "; } stream << subgraph_stats->GetShortSummary() << std::endl; } if (delegate_stats_calculator.num_runs() > 0) { stream << "Delegate internal: " << std::endl; if (include_output_string) { stream << delegate_stats_calculator.GetOutputString(); } stream << delegate_stats_calculator.GetShortSummary() << std::endl; } return stream.str(); } void ProfileSummaryDefaultFormatter::HandleOutput( const std::string& init_output, const std::string& run_output, std::string output_file_path) const { std::ofstream output_file(output_file_path); std::ostream* output_stream = nullptr; if (output_file.good()) { output_stream = &output_file; } if (!init_output.empty()) { WriteOutput("Profiling Info for Benchmark Initialization:", init_output, output_stream == nullptr ? &TFLITE_LOG(INFO) : output_stream); } if (!run_output.empty()) { WriteOutput( "Operator-wise Profiling Info for Regular Benchmark Runs:", run_output, output_stream == nullptr ? &TFLITE_LOG(INFO) : output_stream); } } tensorflow::StatSummarizerOptions ProfileSummaryDefaultFormatter::GetStatSummarizerOptions() const { auto options = tensorflow::StatSummarizerOptions(); options.show_summary = false; options.show_memory = false; return options; } tensorflow::StatSummarizerOptions ProfileSummaryCSVFormatter::GetStatSummarizerOptions() const { auto options = ProfileSummaryDefaultFormatter::GetStatSummarizerOptions(); options.format_as_csv = true; return options; } std::vector<tensorflow::StatsCalculator::Detail> ProfileSummaryProtoFormatter::GetDetailsSortedByRunOrder( const tensorflow::StatsCalculator* stats_calculator) const { std::vector<tensorflow::StatsCalculator::Detail> details; std::map<std::string, tensorflow::StatsCalculator::Detail> unsorted_details = stats_calculator->GetDetails(); std::priority_queue< std::pair<std::string, const tensorflow::StatsCalculator::Detail*>> sorted_list; const int num_nodes = unsorted_details.size(); for (const auto& det : unsorted_details) { const tensorflow::StatsCalculator::Detail* detail = &(det.second); std::stringstream stream_for_sort; stream_for_sort << std::setw(20) << std::right << std::setprecision(10) << std::fixed; stream_for_sort << num_nodes - detail->run_order; sorted_list.emplace(stream_for_sort.str(), detail); } while (!sorted_list.empty()) { auto entry = sorted_list.top(); sorted_list.pop(); details.push_back(*entry.second); } return details; } void ProfileSummaryProtoFormatter::GenerateOpProfileDataFromDetail( const tensorflow::StatsCalculator::Detail* detail, const tensorflow::StatsCalculator* stats_calculator, OpProfileData* const op_profile_data) const { if (detail == nullptr) { return; } op_profile_data->set_node_type(detail->type); OpProfilingStat* inference_stat = op_profile_data->mutable_inference_microseconds(); inference_stat->set_first(detail->elapsed_time.first()); inference_stat->set_last(detail->elapsed_time.newest()); inference_stat->set_avg(detail->elapsed_time.avg()); inference_stat->set_stddev(detail->elapsed_time.std_deviation()); inference_stat->set_variance(detail->elapsed_time.variance()); inference_stat->set_min(detail->elapsed_time.min()); inference_stat->set_max(detail->elapsed_time.max()); inference_stat->set_sum(detail->elapsed_time.sum()); inference_stat->set_count(detail->elapsed_time.count()); OpProfilingStat* memory_stat = op_profile_data->mutable_mem_kb(); memory_stat->set_first(detail->mem_used.first() / 1000.0); memory_stat->set_last(detail->mem_used.newest() / 1000.0); memory_stat->set_avg(detail->mem_used.avg() / 1000.0); memory_stat->set_stddev(detail->mem_used.std_deviation() / 1000.0); memory_stat->set_variance(detail->mem_used.variance() / 1000000.0); memory_stat->set_min(detail->mem_used.min() / 1000.0); memory_stat->set_max(detail->mem_used.max() / 1000.0); memory_stat->set_sum(detail->mem_used.sum() / 1000.0); memory_stat->set_count(detail->mem_used.count()); op_profile_data->set_times_called(detail->times_called / stats_calculator->num_runs()); op_profile_data->set_name(detail->name); op_profile_data->set_run_order(detail->run_order); } void ProfileSummaryProtoFormatter::GenerateSubGraphProfilingData( const tensorflow::StatsCalculator* stats_calculator, int subgraph_index, const std::map<uint32_t, std::string>& subgraph_name_map, SubGraphProfilingData* const sub_graph_profiling_data) const { sub_graph_profiling_data->set_subgraph_index(subgraph_index); std::string subgraph_name = ""; if (subgraph_name_map.find(subgraph_index) != subgraph_name_map.end()) { subgraph_name = subgraph_name_map.at(subgraph_index); } sub_graph_profiling_data->set_subgraph_name(subgraph_name); for (tensorflow::StatsCalculator::Detail& detail : GetDetailsSortedByRunOrder(stats_calculator)) { OpProfileData* const op_profile_data = sub_graph_profiling_data->add_per_op_profiles(); GenerateOpProfileDataFromDetail(&detail, stats_calculator, op_profile_data); } } void ProfileSummaryProtoFormatter::GenerateDelegateProfilingData( const tensorflow::StatsCalculator* stats_calculator, DelegateProfilingData* const delegate_profiling_data) const { for (const tensorflow::StatsCalculator::Detail& detail : GetDetailsSortedByRunOrder(stats_calculator)) { OpProfileData* const op_profile_data = delegate_profiling_data->add_per_op_profiles(); GenerateOpProfileDataFromDetail(&detail, stats_calculator, op_profile_data); } } std::string ProfileSummaryProtoFormatter::GetShortSummary( const std::map<uint32_t, std::unique_ptr<tensorflow::StatsCalculator>>& stats_calculator_map, const tensorflow::StatsCalculator& delegate_stats_calculator, const std::map<uint32_t, std::string>& subgraph_name_map) const { TFLITE_LOG(ERROR) << "GetShortSummary is not supported for proto formatter."; return ""; } std::string ProfileSummaryProtoFormatter::GetOutputString( const std::map<uint32_t, std::unique_ptr<tensorflow::StatsCalculator>>& stats_calculator_map, const tensorflow::StatsCalculator& delegate_stats_calculator, const std::map<uint32_t, std::string>& subgraph_name_map) const { ModelProfilingData model_profiling_data; for (const auto& stats_calc : stats_calculator_map) { auto subgraph_index = stats_calc.first; tensorflow::StatsCalculator* subgraph_stats = stats_calc.second.get(); SubGraphProfilingData* const sub_graph_profiling_data = model_profiling_data.add_subgraph_profiles(); GenerateSubGraphProfilingData(subgraph_stats, subgraph_index, subgraph_name_map, sub_graph_profiling_data); } if (delegate_stats_calculator.num_runs() > 0) { DelegateProfilingData* const delegate_profiling_data = model_profiling_data.add_delegate_profiles(); GenerateDelegateProfilingData(&delegate_stats_calculator, delegate_profiling_data); } return model_profiling_data.SerializeAsString(); } tensorflow::StatSummarizerOptions ProfileSummaryProtoFormatter::GetStatSummarizerOptions() const { auto options = tensorflow::StatSummarizerOptions(); options.show_summary = false; options.show_memory = false; return options; } void ProfileSummaryProtoFormatter::HandleOutput( const std::string& init_output, const std::string& run_output, std::string output_file_path) const { std::ofstream output_file(output_file_path, std::ios_base::binary); std::ostream* output_stream = nullptr; if (output_file.good()) { output_stream = &output_file; } BenchmarkProfilingData benchmark_profiling_data; if (!init_output.empty()) { benchmark_profiling_data.mutable_init_profile()->ParseFromString( init_output); } if (!run_output.empty()) { benchmark_profiling_data.mutable_runtime_profile()->ParseFromString( run_output); } if (output_stream == nullptr) { TFLITE_LOG(INFO) << benchmark_profiling_data.DebugString(); } else { benchmark_profiling_data.SerializeToOstream(output_stream); } } } }
#include "tensorflow/lite/profiling/profile_summary_formatter.h" #include <fstream> #include <ios> #include <map> #include <memory> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/match.h" #include "tensorflow/lite/profiling/proto/profiling_info.pb.h" namespace tflite { namespace profiling { namespace { TEST(SummaryWriterTest, SummaryOptionStdOut) { ProfileSummaryDefaultFormatter writer; tensorflow::StatSummarizerOptions options = writer.GetStatSummarizerOptions(); EXPECT_EQ(options.show_summary, false); EXPECT_EQ(options.show_memory, false); EXPECT_EQ(options.format_as_csv, false); } TEST(SummaryWriterTest, SummaryOptionCSV) { ProfileSummaryCSVFormatter writer; tensorflow::StatSummarizerOptions options = writer.GetStatSummarizerOptions(); EXPECT_EQ(options.show_summary, false); EXPECT_EQ(options.show_memory, false); EXPECT_EQ(options.format_as_csv, true); } TEST(SummaryWriterTest, EmptyOutputString) { ProfileSummaryDefaultFormatter writer; std::string output = writer.GetOutputString( std::map<uint32_t, std::unique_ptr<tensorflow::StatsCalculator>>(), tensorflow::StatsCalculator(writer.GetStatSummarizerOptions()), {}); EXPECT_EQ(output.size(), 0); } TEST(SummaryWriterTest, EmptyShortSummary) { ProfileSummaryDefaultFormatter writer; std::string output = writer.GetShortSummary( std::map<uint32_t, std::unique_ptr<tensorflow::StatsCalculator>>(), tensorflow::StatsCalculator(writer.GetStatSummarizerOptions()), {}); EXPECT_EQ(output.size(), 0); } TEST(SummaryWriterTest, SingleSubgraphOutputString) { ProfileSummaryDefaultFormatter writer; std::map<uint32_t, std::unique_ptr<tensorflow::StatsCalculator>> stats_calculator_map; stats_calculator_map[0] = std::make_unique<tensorflow::StatsCalculator>( writer.GetStatSummarizerOptions()); std::string output = writer.GetOutputString( stats_calculator_map, tensorflow::StatsCalculator(writer.GetStatSummarizerOptions()), {}); ASSERT_TRUE(absl::StrContains(output, "Run Order")); ASSERT_TRUE(absl::StrContains(output, "Top by Computation Time")); ASSERT_TRUE(!absl::StrContains(output, "Top by Memory Use")); ASSERT_TRUE(absl::StrContains(output, "Summary by node type")); ASSERT_TRUE(absl::StrContains(output, "nodes observed")); ASSERT_TRUE(!absl::StrContains(output, "Primary graph")); ASSERT_TRUE(!absl::StrContains(output, "Subgraph")); ASSERT_TRUE(!absl::StrContains(output, "Delegate internal")); } TEST(SummaryWriterTest, SingleSubgraphShortSummary) { ProfileSummaryDefaultFormatter writer; std::map<uint32_t, std::unique_ptr<tensorflow::StatsCalculator>> stats_calculator_map; stats_calculator_map[0] = std::make_unique<tensorflow::StatsCalculator>( writer.GetStatSummarizerOptions()); std::string output = writer.GetShortSummary( stats_calculator_map, tensorflow::StatsCalculator(writer.GetStatSummarizerOptions()), {{0, "Primary graph"}}); ASSERT_TRUE(!absl::StrContains(output, "Run Order")); ASSERT_TRUE(!absl::StrContains(output, "Top by Computation Time")); ASSERT_TRUE(!absl::StrContains(output, "Top by Memory Use")); ASSERT_TRUE(!absl::StrContains(output, "Summary by node type")); ASSERT_TRUE(absl::StrContains(output, "nodes observed")); ASSERT_TRUE(!absl::StrContains(output, "Primary graph")); ASSERT_TRUE(!absl::StrContains(output, "Subgraph")); ASSERT_TRUE(!absl::StrContains(output, "Delegate internal")); } TEST(SummaryWriterTest, MultiSubgraphOutputString) { ProfileSummaryDefaultFormatter writer; std::map<uint32_t, std::unique_ptr<tensorflow::StatsCalculator>> stats_calculator_map; stats_calculator_map[0] = std::make_unique<tensorflow::StatsCalculator>( writer.GetStatSummarizerOptions()); stats_calculator_map[1] = std::make_unique<tensorflow::StatsCalculator>( writer.GetStatSummarizerOptions()); std::string output = writer.GetOutputString( stats_calculator_map, tensorflow::StatsCalculator(writer.GetStatSummarizerOptions()), {{0, "Primary graph"}, {1, "Subgraph 1"}}); ASSERT_TRUE(absl::StrContains(output, "Primary graph")); ASSERT_TRUE(absl::StrContains(output, "Subgraph")); ASSERT_TRUE(!absl::StrContains(output, "Delegate internal")); } TEST(SummaryWriterTest, MultiSubgraphOutputStringForProto) { ProfileSummaryProtoFormatter writer; std::map<uint32_t, std::unique_ptr<tensorflow::StatsCalculator>> stats_calculator_map; stats_calculator_map[0] = std::make_unique<tensorflow::StatsCalculator>( writer.GetStatSummarizerOptions()); std::string kernel_name_1 = "Kernel 1"; std::string kernel_name_2 = "Kernel 2"; std::string kernel_name_3 = "Kernel 3"; std::string op_name_1 = "Convolution"; std::string op_name_2 = "Reshape"; std::string op_name_3 = "Convolution"; stats_calculator_map[0]->AddNodeStats(kernel_name_1, op_name_1, 1, 10, 10000); stats_calculator_map[0]->AddNodeStats(kernel_name_1, op_name_1, 1, 20, 20000); stats_calculator_map[0]->AddNodeStats(kernel_name_2, op_name_2, 2, 15, 10000); stats_calculator_map[0]->UpdateRunTotalUs(25); stats_calculator_map[1] = std::make_unique<tensorflow::StatsCalculator>( writer.GetStatSummarizerOptions()); stats_calculator_map[1]->AddNodeStats(kernel_name_3, op_name_3, 3, 10, 10000); stats_calculator_map[1]->UpdateRunTotalUs(10); std::string output = writer.GetOutputString( stats_calculator_map, tensorflow::StatsCalculator(writer.GetStatSummarizerOptions()), {{0, "Primary graph"}, {1, "Subgraph 1"}}); ModelProfilingData model_profiling_data; model_profiling_data.ParseFromString(output); ASSERT_TRUE(absl::StrContains(output, "Primary graph")); ASSERT_TRUE(absl::StrContains(output, "Subgraph")); ASSERT_TRUE(!absl::StrContains(output, "Delegate internal")); ASSERT_EQ(model_profiling_data.subgraph_profiles().size(), 2); ASSERT_EQ(model_profiling_data.subgraph_profiles(0).subgraph_name(), "Primary graph"); ASSERT_EQ(model_profiling_data.subgraph_profiles(0).per_op_profiles().size(), 2); OpProfileData op_profile_data_1; op_profile_data_1.set_node_type(op_name_1); OpProfilingStat* inference_microseconds_stat_1 = op_profile_data_1.mutable_inference_microseconds(); inference_microseconds_stat_1->set_first(10); inference_microseconds_stat_1->set_last(20); inference_microseconds_stat_1->set_max(20); inference_microseconds_stat_1->set_min(10); inference_microseconds_stat_1->set_avg(15); inference_microseconds_stat_1->set_stddev(5); inference_microseconds_stat_1->set_variance(25); inference_microseconds_stat_1->set_sum(30); inference_microseconds_stat_1->set_count(2); OpProfilingStat* memory_stat_1 = op_profile_data_1.mutable_mem_kb(); memory_stat_1->set_first(10); memory_stat_1->set_last(20); memory_stat_1->set_max(20); memory_stat_1->set_min(10); memory_stat_1->set_avg(15); memory_stat_1->set_stddev(5); memory_stat_1->set_variance(25); memory_stat_1->set_sum(30); memory_stat_1->set_count(2); op_profile_data_1.set_name(kernel_name_1); op_profile_data_1.set_run_order(1); op_profile_data_1.set_times_called(2); EXPECT_THAT(model_profiling_data.subgraph_profiles(0).per_op_profiles(0), testing::EqualsProto(op_profile_data_1)); OpProfileData op_profile_data_2; op_profile_data_2.set_node_type(op_name_2); OpProfilingStat* inference_microseconds_stat_2 = op_profile_data_2.mutable_inference_microseconds(); inference_microseconds_stat_2->set_first(15); inference_microseconds_stat_2->set_last(15); inference_microseconds_stat_2->set_max(15); inference_microseconds_stat_2->set_min(15); inference_microseconds_stat_2->set_avg(15); inference_microseconds_stat_2->set_stddev(0); inference_microseconds_stat_2->set_variance(0); inference_microseconds_stat_2->set_sum(15); inference_microseconds_stat_2->set_count(1); OpProfilingStat* memory_stat_2 = op_profile_data_2.mutable_mem_kb(); memory_stat_2->set_first(10); memory_stat_2->set_last(10); memory_stat_2->set_max(10); memory_stat_2->set_min(10); memory_stat_2->set_avg(10); memory_stat_2->set_stddev(0); memory_stat_2->set_variance(0); memory_stat_2->set_sum(10); memory_stat_2->set_count(1); op_profile_data_2.set_times_called(1); op_profile_data_2.set_name(kernel_name_2); op_profile_data_2.set_run_order(2); EXPECT_THAT(model_profiling_data.subgraph_profiles(0).per_op_profiles(1), testing::EqualsProto(op_profile_data_2)); ASSERT_EQ(model_profiling_data.subgraph_profiles(1).subgraph_name(), "Subgraph 1"); ASSERT_EQ(model_profiling_data.subgraph_profiles(1).per_op_profiles().size(), 1); OpProfileData op_profile_data_3; op_profile_data_3.set_node_type(op_name_3); OpProfilingStat* inference_microseconds_stat_3 = op_profile_data_3.mutable_inference_microseconds(); inference_microseconds_stat_3->set_first(10); inference_microseconds_stat_3->set_last(10); inference_microseconds_stat_3->set_max(10); inference_microseconds_stat_3->set_min(10); inference_microseconds_stat_3->set_avg(10); inference_microseconds_stat_3->set_stddev(0); inference_microseconds_stat_3->set_variance(0); inference_microseconds_stat_3->set_sum(10); inference_microseconds_stat_3->set_count(1); OpProfilingStat* memory_stat_3 = op_profile_data_3.mutable_mem_kb(); memory_stat_3->set_first(10); memory_stat_3->set_last(10); memory_stat_3->set_max(10); memory_stat_3->set_min(10); memory_stat_3->set_avg(10); memory_stat_3->set_stddev(0); memory_stat_3->set_variance(0); memory_stat_3->set_sum(10); memory_stat_3->set_count(1); op_profile_data_3.set_times_called(1); op_profile_data_3.set_name(kernel_name_3); op_profile_data_3.set_run_order(3); EXPECT_THAT(model_profiling_data.subgraph_profiles(1).per_op_profiles(0), testing::EqualsProto(op_profile_data_3)); } TEST(SummaryWriterTest, MultiSubgraphHandleOutputForProto) { ProfileSummaryProtoFormatter writer; ModelProfilingData model_profiling_data_run; SubGraphProfilingData* subgraph_profiling_data = model_profiling_data_run.add_subgraph_profiles(); subgraph_profiling_data->set_subgraph_name("Primary graph"); OpProfileData* op_profile_data_1 = subgraph_profiling_data->add_per_op_profiles(); op_profile_data_1->set_node_type("Convolution"); OpProfilingStat* inference_stat_1 = op_profile_data_1->mutable_inference_microseconds(); inference_stat_1->set_first(10); inference_stat_1->set_avg(10); OpProfilingStat* mem_stat_1 = op_profile_data_1->mutable_mem_kb(); mem_stat_1->set_first(10); mem_stat_1->set_avg(10); op_profile_data_1->set_times_called(1); op_profile_data_1->set_name("Kernel 1"); op_profile_data_1->set_run_order(1); OpProfileData* op_profile_data_2 = subgraph_profiling_data->add_per_op_profiles(); op_profile_data_2->set_node_type("Reshape"); OpProfilingStat* inference_stat_2 = op_profile_data_2->mutable_inference_microseconds(); inference_stat_2->set_first(15); inference_stat_2->set_avg(15); OpProfilingStat* mem_stat_2 = op_profile_data_2->mutable_mem_kb(); mem_stat_2->set_first(10); mem_stat_2->set_avg(10); op_profile_data_2->set_times_called(1); op_profile_data_2->set_name("Kernel 2"); op_profile_data_2->set_run_order(2); SubGraphProfilingData* subgraph_profiling_data_1 = model_profiling_data_run.add_subgraph_profiles(); subgraph_profiling_data_1->set_subgraph_name("Subgraph 1"); OpProfileData* op_profile_data_3 = subgraph_profiling_data_1->add_per_op_profiles(); op_profile_data_3->set_node_type("Convolution"); OpProfilingStat* inference_stat_3 = op_profile_data_3->mutable_inference_microseconds(); inference_stat_3->set_first(10); inference_stat_3->set_avg(10); OpProfilingStat* mem_stat_3 = op_profile_data_3->mutable_mem_kb(); mem_stat_3->set_first(10); mem_stat_3->set_avg(10); op_profile_data_3->set_times_called(1); op_profile_data_3->set_name("Kernel 3"); op_profile_data_3->set_run_order(3); DelegateProfilingData* delegate_profiling_data = model_profiling_data_run.add_delegate_profiles(); OpProfileData* op_profile_data_4 = delegate_profiling_data->add_per_op_profiles(); op_profile_data_4->set_node_type("Convolution"); OpProfilingStat* inference_stat_4 = op_profile_data_4->mutable_inference_microseconds(); inference_stat_4->set_first(10); inference_stat_4->set_avg(10); OpProfilingStat* mem_stat_4 = op_profile_data_4->mutable_mem_kb(); mem_stat_4->set_first(10); mem_stat_4->set_avg(10); op_profile_data_4->set_times_called(1); op_profile_data_4->set_name("Kernel 4"); op_profile_data_4->set_run_order(4); ModelProfilingData model_profiling_data_init; SubGraphProfilingData* subgraph_profiling_data_init = model_profiling_data_init.add_subgraph_profiles(); subgraph_profiling_data_init->set_subgraph_name("Primary graph"); OpProfileData* op_profile_data_init_1 = subgraph_profiling_data_init->add_per_op_profiles(); op_profile_data_init_1->set_node_type("Convolution"); OpProfilingStat* inference_stat_init_1 = op_profile_data_init_1->mutable_inference_microseconds(); inference_stat_init_1->set_first(10); inference_stat_init_1->set_avg(10); op_profile_data_init_1->set_times_called(1); OpProfilingStat* mem_stat_init_1 = op_profile_data_init_1->mutable_mem_kb(); mem_stat_init_1->set_first(10); mem_stat_init_1->set_avg(10); op_profile_data_init_1->set_name("ModifyGraphWithDelegate"); op_profile_data_init_1->set_run_order(1); #ifdef __ANDROID__ std::string file_name = "/data/local/tmp/test_file.proto"; #else std::string file_name = "/tmp/test_file.proto"; #endif writer.HandleOutput(model_profiling_data_init.SerializeAsString(), model_profiling_data_run.SerializeAsString(), file_name); std::ifstream file(file_name, std::ios::binary); ASSERT_TRUE(file.good()); BenchmarkProfilingData benchmark_profiling_data; benchmark_profiling_data.ParseFromIstream(&file); file.close(); ASSERT_TRUE(benchmark_profiling_data.model_name().empty()); EXPECT_THAT(benchmark_profiling_data.init_profile(), testing::EqualsProto(model_profiling_data_init)); EXPECT_THAT(benchmark_profiling_data.runtime_profile(), testing::EqualsProto(model_profiling_data_run)); } TEST(SummaryWriterTest, MultiSubgraphShortSummary) { ProfileSummaryDefaultFormatter writer; std::map<uint32_t, std::unique_ptr<tensorflow::StatsCalculator>> stats_calculator_map; stats_calculator_map[0] = std::make_unique<tensorflow::StatsCalculator>( writer.GetStatSummarizerOptions()); stats_calculator_map[1] = std::make_unique<tensorflow::StatsCalculator>( writer.GetStatSummarizerOptions()); std::string output = writer.GetShortSummary( stats_calculator_map, tensorflow::StatsCalculator(writer.GetStatSummarizerOptions()), {{0, "Primary graph"}, {1, "Subgraph 1"}}); ASSERT_TRUE(absl::StrContains(output, "Primary graph")); ASSERT_TRUE(absl::StrContains(output, "Subgraph")); ASSERT_TRUE(!absl::StrContains(output, "Delegate internal")); } TEST(SummaryWriterTest, DelegationOutputString) { ProfileSummaryDefaultFormatter writer; auto delegate_stats_calculator = tensorflow::StatsCalculator(writer.GetStatSummarizerOptions()); delegate_stats_calculator.UpdateRunTotalUs(1); std::string output = writer.GetOutputString( std::map<uint32_t, std::unique_ptr<tensorflow::StatsCalculator>>(), delegate_stats_calculator, {}); ASSERT_TRUE(!absl::StrContains(output, "Primary graph")); ASSERT_TRUE(!absl::StrContains(output, "Subgraph")); ASSERT_TRUE(absl::StrContains(output, "Delegate internal")); } TEST(SummaryWriterTest, DelegationShortSummary) { ProfileSummaryDefaultFormatter writer; auto delegate_stats_calculator = tensorflow::StatsCalculator(writer.GetStatSummarizerOptions()); delegate_stats_calculator.UpdateRunTotalUs(1); std::string output = writer.GetShortSummary( std::map<uint32_t, std::unique_ptr<tensorflow::StatsCalculator>>(), delegate_stats_calculator, {}); ASSERT_TRUE(!absl::StrContains(output, "Primary graph")); ASSERT_TRUE(!absl::StrContains(output, "Subgraph")); ASSERT_TRUE(absl::StrContains(output, "Delegate internal")); } } } }
814
cpp
tensorflow/tensorflow
atrace_profiler
tensorflow/lite/profiling/atrace_profiler.cc
tensorflow/lite/profiling/atrace_profiler_test.cc
#ifndef TENSORFLOW_LITE_PROFILING_ATRACE_PROFILER_H_ #define TENSORFLOW_LITE_PROFILING_ATRACE_PROFILER_H_ #include <memory> #include "tensorflow/lite/core/api/profiler.h" namespace tflite { namespace profiling { std::unique_ptr<tflite::Profiler> MaybeCreateATraceProfiler(); } } #endif #include "tensorflow/lite/profiling/atrace_profiler.h" #include <dlfcn.h> #if defined(__ANDROID__) #include <sys/system_properties.h> #endif #include <string> #include <type_traits> namespace tflite { namespace profiling { class ATraceProfiler : public tflite::Profiler { public: using FpIsEnabled = std::add_pointer<bool()>::type; using FpBeginSection = std::add_pointer<void(const char*)>::type; using FpEndSection = std::add_pointer<void()>::type; ATraceProfiler() { handle_ = dlopen("libandroid.so", RTLD_NOW | RTLD_LOCAL); if (handle_) { atrace_is_enabled_ = reinterpret_cast<FpIsEnabled>(dlsym(handle_, "ATrace_isEnabled")); atrace_begin_section_ = reinterpret_cast<FpBeginSection>( dlsym(handle_, "ATrace_beginSection")); atrace_end_section_ = reinterpret_cast<FpEndSection>(dlsym(handle_, "ATrace_endSection")); if (!atrace_is_enabled_ || !atrace_begin_section_ || !atrace_end_section_) { dlclose(handle_); handle_ = nullptr; } } } ~ATraceProfiler() override { if (handle_) { dlclose(handle_); } } uint32_t BeginEvent(const char* tag, EventType event_type, int64_t event_metadata1, int64_t event_metadata2) override { if (handle_ && atrace_is_enabled_()) { std::string trace_event_tag = tag; trace_event_tag += "@"; trace_event_tag += std::to_string(event_metadata1) + "/" + std::to_string(event_metadata2); atrace_begin_section_(trace_event_tag.c_str()); } return 0; } void EndEvent(uint32_t event_handle) override { if (handle_) { atrace_end_section_(); } } private: void* handle_; FpIsEnabled atrace_is_enabled_; FpBeginSection atrace_begin_section_; FpEndSection atrace_end_section_; }; std::unique_ptr<tflite::Profiler> MaybeCreateATraceProfiler() { #if defined(TFLITE_ENABLE_DEFAULT_PROFILER) return std::unique_ptr<tflite::Profiler>(new ATraceProfiler()); #else #if defined(__ANDROID__) constexpr char kTraceProp[] = "debug.tflite.trace"; char trace_enabled[PROP_VALUE_MAX] = ""; int length = __system_property_get(kTraceProp, trace_enabled); if (length == 1 && trace_enabled[0] == '1') { return std::unique_ptr<tflite::Profiler>(new ATraceProfiler()); } #endif return nullptr; #endif } } }
#include "tensorflow/lite/profiling/atrace_profiler.h" #if defined(__ANDROID__) #include <sys/system_properties.h> #endif #include <gmock/gmock.h> #include <gtest/gtest.h> namespace tflite { namespace profiling { namespace { TEST(ATraceProfilerTest, MaybeCreateATraceProfiler) { auto initial_state_profiler = MaybeCreateATraceProfiler(); #if !defined(TFLITE_ENABLE_DEFAULT_PROFILER) EXPECT_EQ(nullptr, initial_state_profiler.get()); #else EXPECT_NE(nullptr, initial_state_profiler.get()); #endif #if defined(__ANDROID__) if (__system_property_set("debug.tflite.trace", "1") == 0) { auto on_state_profiler = MaybeCreateATraceProfiler(); EXPECT_NE(nullptr, on_state_profiler.get()); } if (__system_property_set("debug.tflite.trace", "0") == 0) { auto off_state_profiler = MaybeCreateATraceProfiler(); #if !defined(TFLITE_ENABLE_DEFAULT_PROFILER) EXPECT_EQ(nullptr, off_state_profiler.get()); #else EXPECT_NE(nullptr, off_state_profiler.get()); #endif } #endif } } } }
815
cpp
tensorflow/tensorflow
memory_info
tensorflow/lite/profiling/memory_info.cc
tensorflow/lite/profiling/memory_info_test.cc
#ifndef TENSORFLOW_LITE_PROFILING_MEMORY_INFO_H_ #define TENSORFLOW_LITE_PROFILING_MEMORY_INFO_H_ #include <cstdint> #include <sstream> namespace tflite { namespace profiling { namespace memory { struct MemoryUsage { static const size_t kValueNotSet; static bool IsSupported(); MemoryUsage() : mem_footprint_kb(kValueNotSet), total_allocated_bytes(kValueNotSet), in_use_allocated_bytes(kValueNotSet) {} int64_t mem_footprint_kb; size_t total_allocated_bytes; size_t in_use_allocated_bytes; MemoryUsage operator+(MemoryUsage const& obj) const { MemoryUsage res; res.mem_footprint_kb = mem_footprint_kb + obj.mem_footprint_kb; res.total_allocated_bytes = total_allocated_bytes + obj.total_allocated_bytes; res.in_use_allocated_bytes = in_use_allocated_bytes + obj.in_use_allocated_bytes; return res; } MemoryUsage operator-(MemoryUsage const& obj) const { MemoryUsage res; res.mem_footprint_kb = mem_footprint_kb - obj.mem_footprint_kb; res.total_allocated_bytes = total_allocated_bytes - obj.total_allocated_bytes; res.in_use_allocated_bytes = in_use_allocated_bytes - obj.in_use_allocated_bytes; return res; } void AllStatsToStream(std::ostream* stream) const; friend std::ostream& operator<<(std::ostream& stream, const MemoryUsage& obj) { obj.AllStatsToStream(&stream); return stream; } }; MemoryUsage GetMemoryUsage(); } } } #endif #include "tensorflow/lite/profiling/memory_info.h" #ifdef __linux__ #include <malloc.h> #include <sys/resource.h> #include <sys/time.h> #elif defined(__APPLE__) #include <mach/mach.h> #include <malloc/malloc.h> #endif namespace tflite { namespace profiling { namespace memory { const size_t MemoryUsage::kValueNotSet = 0; bool MemoryUsage::IsSupported() { #if defined(__linux__) || defined(__APPLE__) return true; #endif return false; } MemoryUsage GetMemoryUsage() { MemoryUsage result; #ifdef __linux__ rusage res; if (getrusage(RUSAGE_SELF, &res) == 0) { result.mem_footprint_kb = res.ru_maxrss; } #if defined(__NO_MALLINFO__) result.total_allocated_bytes = -1; result.in_use_allocated_bytes = -1; #elif defined(__GLIBC__) && __GLIBC_MINOR__ >= 33 const auto mem = mallinfo2(); result.total_allocated_bytes = mem.arena; result.in_use_allocated_bytes = mem.uordblks; #else const auto mem = mallinfo(); result.total_allocated_bytes = mem.arena; result.in_use_allocated_bytes = mem.uordblks; #endif #elif defined(__APPLE__) struct task_vm_info vm_info; mach_msg_type_number_t count = TASK_VM_INFO_COUNT; auto status = task_info(mach_task_self(), TASK_VM_INFO, reinterpret_cast<task_info_t>(&vm_info), &count); if (status == KERN_SUCCESS) { result.mem_footprint_kb = static_cast<int64_t>(vm_info.phys_footprint / 1024.0); } struct mstats stats = mstats(); result.total_allocated_bytes = stats.bytes_total; result.in_use_allocated_bytes = stats.bytes_used; #endif return result; } void MemoryUsage::AllStatsToStream(std::ostream* stream) const { *stream << "max resident set size/physical footprint = " << mem_footprint_kb / 1024.0 << " MB, total malloc-ed size = " << total_allocated_bytes / 1024.0 / 1024.0 << " MB, in-use allocated/mmapped size = " << in_use_allocated_bytes / 1024.0 / 1024.0 << " MB"; } } } }
#include "tensorflow/lite/profiling/memory_info.h" #include <gtest/gtest.h> namespace tflite { namespace profiling { namespace memory { TEST(MemoryUsage, AddAndSub) { MemoryUsage mem1, mem2; mem1.mem_footprint_kb = 5; mem1.total_allocated_bytes = 7000; mem1.in_use_allocated_bytes = 2000; mem2.mem_footprint_kb = 3; mem2.total_allocated_bytes = 7000; mem2.in_use_allocated_bytes = 4000; const auto add_mem = mem1 + mem2; EXPECT_EQ(8, add_mem.mem_footprint_kb); EXPECT_EQ(14000, add_mem.total_allocated_bytes); EXPECT_EQ(6000, add_mem.in_use_allocated_bytes); const auto sub_mem = mem1 - mem2; EXPECT_EQ(2, sub_mem.mem_footprint_kb); EXPECT_EQ(0, sub_mem.total_allocated_bytes); EXPECT_EQ(-2000, sub_mem.in_use_allocated_bytes); } TEST(MemoryUsage, GetMemoryUsage) { MemoryUsage result; EXPECT_EQ(MemoryUsage::kValueNotSet, result.mem_footprint_kb); EXPECT_EQ(MemoryUsage::kValueNotSet, result.total_allocated_bytes); EXPECT_EQ(MemoryUsage::kValueNotSet, result.in_use_allocated_bytes); #if defined(__linux__) || defined(__APPLE__) std::unique_ptr<int[]> int_array(new int[1204]); for (int i = 0; i < 1024; ++i) int_array[i] = i; result = GetMemoryUsage(); EXPECT_NE(MemoryUsage::kValueNotSet, result.total_allocated_bytes); #endif } TEST(MemoryUsage, IsSupported) { #if defined(__linux__) || defined(__APPLE__) EXPECT_TRUE(MemoryUsage::IsSupported()); #else EXPECT_FALSE(MemoryUsage::IsSupported()); #endif } } } }
816
cpp
tensorflow/tensorflow
memory_usage_monitor
tensorflow/lite/profiling/memory_usage_monitor.cc
tensorflow/lite/profiling/memory_usage_monitor_test.cc
#ifndef TENSORFLOW_LITE_PROFILING_MEMORY_USAGE_MONITOR_H_ #define TENSORFLOW_LITE_PROFILING_MEMORY_USAGE_MONITOR_H_ #include <memory> #include <thread> #include "absl/synchronization/notification.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "tensorflow/lite/profiling/memory_info.h" namespace tflite { namespace profiling { namespace memory { class MemoryUsageMonitor { public: class Sampler { public: virtual ~Sampler() {} virtual bool IsSupported() { return MemoryUsage::IsSupported(); } virtual MemoryUsage GetMemoryUsage() { return tflite::profiling::memory::GetMemoryUsage(); } virtual void SleepFor(const absl::Duration& duration) { absl::SleepFor(duration); } }; static constexpr float kInvalidMemUsageMB = -1.0f; explicit MemoryUsageMonitor(int sampling_interval_ms = 50) : MemoryUsageMonitor(sampling_interval_ms, std::make_unique<Sampler>()) {} MemoryUsageMonitor(int sampling_interval_ms, std::unique_ptr<Sampler> sampler); ~MemoryUsageMonitor() { StopInternal(); } void Start(); void Stop(); float GetPeakMemUsageInMB() const { if (!is_supported_ || check_memory_thd_ != nullptr) { return kInvalidMemUsageMB; } return peak_mem_footprint_kb_ / 1024.0; } MemoryUsageMonitor(MemoryUsageMonitor&) = delete; MemoryUsageMonitor& operator=(const MemoryUsageMonitor&) = delete; MemoryUsageMonitor(MemoryUsageMonitor&&) = delete; MemoryUsageMonitor& operator=(const MemoryUsageMonitor&&) = delete; private: void StopInternal(); std::unique_ptr<Sampler> sampler_ = nullptr; bool is_supported_ = false; std::unique_ptr<absl::Notification> stop_signal_ = nullptr; absl::Duration sampling_interval_; std::unique_ptr<std::thread> check_memory_thd_ = nullptr; int64_t peak_mem_footprint_kb_ = static_cast<int64_t>(kInvalidMemUsageMB * 1024); }; } } } #endif #include "tensorflow/lite/profiling/memory_usage_monitor.h" #include <memory> #include <utility> #include "absl/synchronization/notification.h" #include "tensorflow/lite/minimal_logging.h" #include "tensorflow/lite/profiling/memory_info.h" namespace tflite { namespace profiling { namespace memory { constexpr float MemoryUsageMonitor::kInvalidMemUsageMB; MemoryUsageMonitor::MemoryUsageMonitor(int sampling_interval_ms, std::unique_ptr<Sampler> sampler) : sampler_(std::move(sampler)), is_supported_(false), sampling_interval_(absl::Milliseconds(sampling_interval_ms)) { is_supported_ = (sampler_ != nullptr && sampler_->IsSupported()); if (!is_supported_) { TFLITE_LOG(TFLITE_LOG_INFO, "Getting memory usage isn't supported on this platform!\n"); return; } } void MemoryUsageMonitor::Start() { if (!is_supported_) return; if (check_memory_thd_ != nullptr) { TFLITE_LOG(TFLITE_LOG_INFO, "Memory monitoring has already started!\n"); return; } stop_signal_ = std::make_unique<absl::Notification>(); check_memory_thd_ = std::make_unique<std::thread>(([this]() { while (true) { const auto mem_info = sampler_->GetMemoryUsage(); if (mem_info.mem_footprint_kb > peak_mem_footprint_kb_) { peak_mem_footprint_kb_ = mem_info.mem_footprint_kb; } if (stop_signal_->HasBeenNotified()) break; sampler_->SleepFor(sampling_interval_); } })); } void MemoryUsageMonitor::Stop() { if (!is_supported_) return; if (check_memory_thd_ == nullptr) { TFLITE_LOG(TFLITE_LOG_INFO, "Memory monitoring hasn't started yet or has stopped!\n"); return; } StopInternal(); } void MemoryUsageMonitor::StopInternal() { if (check_memory_thd_ == nullptr) return; stop_signal_->Notify(); if (check_memory_thd_ != nullptr) { check_memory_thd_->join(); } stop_signal_.reset(nullptr); check_memory_thd_.reset(nullptr); } } } }
#include "tensorflow/lite/profiling/memory_usage_monitor.h" #include <memory> #include <gtest/gtest.h> #include "absl/time/clock.h" #include "absl/time/time.h" #include "tensorflow/lite/profiling/memory_info.h" namespace tflite { namespace profiling { namespace memory { class MemoryUsageNotSupportedSampler : public MemoryUsageMonitor::Sampler { public: bool IsSupported() override { return false; } }; TEST(MemoryUsageMonitor, NotSupported) { MemoryUsageMonitor monitor1(50, std::unique_ptr<MemoryUsageMonitor::Sampler>( new MemoryUsageNotSupportedSampler())); EXPECT_FLOAT_EQ(MemoryUsageMonitor::kInvalidMemUsageMB, monitor1.GetPeakMemUsageInMB()); MemoryUsageMonitor monitor2(50, nullptr); EXPECT_FLOAT_EQ(MemoryUsageMonitor::kInvalidMemUsageMB, monitor2.GetPeakMemUsageInMB()); } class MemoryUsageMonitorTest : public ::testing::Test { protected: class FakeMemoryUsageSampler : public MemoryUsageMonitor::Sampler { public: explicit FakeMemoryUsageSampler(int64_t* num_sleeps) : sleep_cnt_(num_sleeps) {} bool IsSupported() override { return true; } MemoryUsage GetMemoryUsage() override { MemoryUsage result; result.mem_footprint_kb = 5 * ((*sleep_cnt_) + 1) * 1024; return result; } void SleepFor(const absl::Duration& duration) override { (*sleep_cnt_)++; absl::SleepFor(duration); } private: int64_t* const sleep_cnt_ = nullptr; }; void SetUp() override { monitor_ = std::make_unique<MemoryUsageMonitor>( 50, std::unique_ptr<MemoryUsageMonitor::Sampler>( new FakeMemoryUsageSampler(&num_sleeps_))); } int64_t num_sleeps_ = 0; std::unique_ptr<MemoryUsageMonitor> monitor_ = nullptr; }; TEST_F(MemoryUsageMonitorTest, StartAndStop) { monitor_->Start(); monitor_->Stop(); EXPECT_FLOAT_EQ(5.0 * (num_sleeps_ + 1), monitor_->GetPeakMemUsageInMB()); } TEST_F(MemoryUsageMonitorTest, NoStartAndStop) { monitor_->Stop(); EXPECT_FLOAT_EQ(MemoryUsageMonitor::kInvalidMemUsageMB, monitor_->GetPeakMemUsageInMB()); } TEST_F(MemoryUsageMonitorTest, StartAndNoStop) { monitor_->Start(); EXPECT_FLOAT_EQ(MemoryUsageMonitor::kInvalidMemUsageMB, monitor_->GetPeakMemUsageInMB()); } TEST_F(MemoryUsageMonitorTest, StopFirst) { monitor_->Stop(); EXPECT_FLOAT_EQ(MemoryUsageMonitor::kInvalidMemUsageMB, monitor_->GetPeakMemUsageInMB()); monitor_->Start(); EXPECT_FLOAT_EQ(MemoryUsageMonitor::kInvalidMemUsageMB, monitor_->GetPeakMemUsageInMB()); } TEST_F(MemoryUsageMonitorTest, MultiStartAndStops) { monitor_->Start(); monitor_->Start(); monitor_->Stop(); monitor_->Stop(); EXPECT_FLOAT_EQ(5.0 * (num_sleeps_ + 1), monitor_->GetPeakMemUsageInMB()); } TEST_F(MemoryUsageMonitorTest, StartStopPairs) { monitor_->Start(); monitor_->Stop(); EXPECT_FLOAT_EQ(5.0 * (num_sleeps_ + 1), monitor_->GetPeakMemUsageInMB()); monitor_->Start(); absl::SleepFor(absl::Milliseconds(100)); monitor_->Stop(); EXPECT_GE(num_sleeps_, 1); EXPECT_FLOAT_EQ(5.0 * (num_sleeps_ + 1), monitor_->GetPeakMemUsageInMB()); } } } }
817
cpp
tensorflow/tensorflow
time
tensorflow/lite/profiling/time.cc
tensorflow/lite/profiling/time_test.cc
#ifndef TENSORFLOW_LITE_PROFILING_TIME_H_ #define TENSORFLOW_LITE_PROFILING_TIME_H_ #include <cstdint> namespace tflite { namespace profiling { namespace time { uint64_t NowMicros(); void SleepForMicros(uint64_t micros); } } } #endif #include "tensorflow/lite/profiling/time.h" #if defined(_MSC_VER) #include <chrono> #include <thread> #else #include <sys/time.h> #include <time.h> #endif namespace tflite { namespace profiling { namespace time { #if defined(_MSC_VER) uint64_t NowMicros() { return static_cast<uint64_t>( std::chrono::duration_cast<std::chrono::microseconds>( std::chrono::steady_clock::now().time_since_epoch()) .count()); } void SleepForMicros(uint64_t micros) { std::this_thread::sleep_for(std::chrono::microseconds(micros)); } #else uint64_t NowMicros() { #if defined(__APPLE__) return clock_gettime_nsec_np(CLOCK_MONOTONIC_RAW) / 1e3; #else struct timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); return static_cast<uint64_t>(ts.tv_sec) * 1e6 + static_cast<uint64_t>(ts.tv_nsec) / 1e3; #endif } void SleepForMicros(uint64_t micros) { timespec sleep_time; sleep_time.tv_sec = micros / 1e6; micros -= sleep_time.tv_sec * 1e6; sleep_time.tv_nsec = micros * 1e3; nanosleep(&sleep_time, nullptr); } #endif } } }
#include "tensorflow/lite/profiling/time.h" #include <gtest/gtest.h> namespace tflite { namespace profiling { namespace time { TEST(TimeTest, NowMicros) { auto now0 = NowMicros(); EXPECT_GT(now0, 0); auto now1 = NowMicros(); EXPECT_GE(now1, now0); } TEST(TimeTest, SleepForMicros) { SleepForMicros(0); auto now0 = NowMicros(); SleepForMicros(50); auto now1 = NowMicros(); EXPECT_GE(now1, now0 + 50); now0 = NowMicros(); SleepForMicros(1e6 + 50); now1 = NowMicros(); EXPECT_GE(now1, now0 + 1e6 + 50); } } } }
818
cpp
tensorflow/tensorflow
root_profiler
tensorflow/lite/profiling/root_profiler.cc
tensorflow/lite/profiling/root_profiler_test.cc
#ifndef TENSORFLOW_LITE_PROFILING_ROOT_PROFILER_H_ #define TENSORFLOW_LITE_PROFILING_ROOT_PROFILER_H_ #include <cstdint> #include <map> #include <memory> #include <vector> #include "tensorflow/lite/core/api/profiler.h" namespace tflite { namespace profiling { class RootProfiler : public Profiler { public: RootProfiler() = default; ~RootProfiler() override = default; RootProfiler(const RootProfiler&) = delete; RootProfiler& operator=(const RootProfiler&) = delete; RootProfiler(RootProfiler&&) = default; RootProfiler& operator=(RootProfiler&&) = default; void AddProfiler(Profiler* profiler); void AddProfiler(std::unique_ptr<Profiler>&& profiler); uint32_t BeginEvent(const char* tag, EventType event_type, int64_t event_metadata1, int64_t event_metadata2) override; void EndEvent(uint32_t event_handle, int64_t event_metadata1, int64_t event_metadata2) override; void EndEvent(uint32_t event_handle) override; void AddEvent(const char* tag, EventType event_type, uint64_t metric, int64_t event_metadata1, int64_t event_metadata2) override; void AddEventWithData(const char* tag, EventType event_type, const void* data) override; void RemoveChildProfilers(); private: uint32_t next_event_id_ = 1; std::vector<std::unique_ptr<Profiler>> owned_profilers_; std::vector<Profiler*> profilers_; std::map<uint32_t, std::vector<uint32_t>> events_; }; } } #endif #include "tensorflow/lite/profiling/root_profiler.h" #include <memory> #include <utility> #include <vector> namespace tflite { namespace profiling { void RootProfiler::AddProfiler(Profiler* profiler) { if (profiler == nullptr) return; profilers_.push_back(profiler); } void RootProfiler::AddProfiler(std::unique_ptr<Profiler>&& profiler) { if (profiler == nullptr) return; owned_profilers_.emplace_back(std::move(profiler)); profilers_.push_back(owned_profilers_.back().get()); } uint32_t RootProfiler::BeginEvent(const char* tag, EventType event_type, int64_t event_metadata1, int64_t event_metadata2) { if (profilers_.size() == 1) { return profilers_[0]->BeginEvent(tag, event_type, event_metadata1, event_metadata2); } auto id = next_event_id_++; std::vector<uint32_t> event_ids; event_ids.reserve(profilers_.size()); for (auto* profiler : profilers_) { event_ids.push_back(profiler->BeginEvent(tag, event_type, event_metadata1, event_metadata2)); } events_.emplace(id, std::move(event_ids)); return id; } void RootProfiler::EndEvent(uint32_t event_handle, int64_t event_metadata1, int64_t event_metadata2) { if (profilers_.size() == 1) { return profilers_[0]->EndEvent(event_handle, event_metadata1, event_metadata2); } if (const auto it = events_.find(event_handle); it != events_.end()) { const auto& event_ids = it->second; for (auto idx = 0; idx < event_ids.size(); idx++) { profilers_[idx]->EndEvent(event_ids[idx], event_metadata1, event_metadata2); } events_.erase(it); } } void RootProfiler::EndEvent(uint32_t event_handle) { if (profilers_.size() == 1) { return profilers_[0]->EndEvent(event_handle); } if (const auto it = events_.find(event_handle); it != events_.end()) { const auto& event_ids = it->second; for (auto idx = 0; idx < event_ids.size(); idx++) { profilers_[idx]->EndEvent(event_ids[idx]); } events_.erase(it); } } void RootProfiler::AddEvent(const char* tag, EventType event_type, uint64_t metric, int64_t event_metadata1, int64_t event_metadata2) { for (auto* profiler : profilers_) { profiler->AddEvent(tag, event_type, metric, event_metadata1, event_metadata2); } } void RootProfiler::AddEventWithData(const char* tag, EventType event_type, const void* data) { for (auto* profiler : profilers_) { profiler->AddEventWithData(tag, event_type, data); } } void RootProfiler::RemoveChildProfilers() { owned_profilers_.clear(); profilers_.clear(); events_.clear(); } } }
#include "tensorflow/lite/profiling/root_profiler.h" #include <memory> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/core/api/profiler.h" using ::testing::_; using ::testing::StrictMock; namespace tflite { namespace profiling { namespace { constexpr char kTag[] = "tag"; class MockProfiler : public Profiler { public: MOCK_METHOD(uint32_t, BeginEvent, (const char* tag, EventType event_type, int64_t event_metadata1, int64_t event_metadata2), (override)); MOCK_METHOD(void, EndEvent, (uint32_t event_handle), (override)); MOCK_METHOD(void, EndEvent, (uint32_t event_handle, int64_t event_metadata1, int64_t event_metadata2), (override)); MOCK_METHOD(void, AddEvent, (const char* tag, EventType event_type, uint64_t metric, int64_t event_metadata1, int64_t event_metadata2), (override)); MOCK_METHOD(void, AddEventWithData, (const char* tag, EventType event_type, const void* data), (override)); }; using MockProfilerT = StrictMock<MockProfiler>; TEST(RootProfilerTest, ChildProfilerTest) { auto mock_profiler = std::make_unique<MockProfilerT>(); auto* mock = mock_profiler.get(); RootProfiler root; root.AddProfiler(mock_profiler.get()); ON_CALL(*mock, BeginEvent(_, _, _, _)).WillByDefault(testing::Return(42)); EXPECT_CALL(*mock, BeginEvent(kTag, Profiler::EventType::DEFAULT, 1, 2)); EXPECT_CALL(*mock, EndEvent(42, 3, 4)); EXPECT_CALL(*mock, AddEvent(kTag, Profiler::EventType::OPERATOR_INVOKE_EVENT, 5, 6, 7)); EXPECT_CALL(*mock, AddEventWithData(kTag, Profiler::EventType::DEFAULT, _)); auto begin = root.BeginEvent(kTag, Profiler::EventType::DEFAULT, 1, 2); root.EndEvent(begin, 3, 4); root.AddEvent(kTag, Profiler::EventType::OPERATOR_INVOKE_EVENT, 5, 6, 7); root.AddEventWithData(kTag, Profiler::EventType::DEFAULT, nullptr); } TEST(RootProfilerTest, OwnedProfilerTest) { auto mock_profiler = std::make_unique<MockProfilerT>(); auto* mock = mock_profiler.get(); RootProfiler root; root.AddProfiler(std::move(mock_profiler)); ON_CALL(*mock, BeginEvent(_, _, _, _)).WillByDefault(testing::Return(42)); EXPECT_CALL(*mock, BeginEvent(kTag, Profiler::EventType::DEFAULT, 1, 2)); EXPECT_CALL(*mock, EndEvent(42)); EXPECT_CALL(*mock, AddEvent(kTag, Profiler::EventType::OPERATOR_INVOKE_EVENT, 3, 4, 5)); auto begin = root.BeginEvent(kTag, Profiler::EventType::DEFAULT, 1, 2); root.EndEvent(begin); root.AddEvent(kTag, Profiler::EventType::OPERATOR_INVOKE_EVENT, 3, 4, 5); } TEST(RootProfilerTest, MultipleProfilerTest) { auto mock_profiler0 = std::make_unique<MockProfilerT>(); auto* mock0 = mock_profiler0.get(); auto mock_profiler1 = std::make_unique<MockProfilerT>(); auto* mock1 = mock_profiler1.get(); RootProfiler root; root.AddProfiler(std::move(mock_profiler0)); root.AddProfiler(std::move(mock_profiler1)); ON_CALL(*mock0, BeginEvent(_, _, _, _)).WillByDefault(testing::Return(42)); ON_CALL(*mock1, BeginEvent(_, _, _, _)).WillByDefault(testing::Return(24)); EXPECT_CALL(*mock0, BeginEvent(kTag, Profiler::EventType::DEFAULT, 1, 2)); EXPECT_CALL(*mock0, EndEvent(42)); EXPECT_CALL(*mock1, BeginEvent(kTag, Profiler::EventType::DEFAULT, 1, 2)); EXPECT_CALL(*mock1, EndEvent(24)); auto begin = root.BeginEvent(kTag, Profiler::EventType::DEFAULT, 1, 2); root.EndEvent(begin); } } } }
819
cpp
tensorflow/tensorflow
profile_summarizer
tensorflow/lite/profiling/profile_summarizer.cc
tensorflow/lite/profiling/profile_summarizer_test.cc
#ifndef TENSORFLOW_LITE_PROFILING_PROFILE_SUMMARIZER_H_ #define TENSORFLOW_LITE_PROFILING_PROFILE_SUMMARIZER_H_ #include <functional> #include <map> #include <memory> #include <string> #include <vector> #include "tensorflow/core/util/stats_calculator.h" #include "tensorflow/lite/core/interpreter.h" #include "tensorflow/lite/profiling/profile_buffer.h" #include "tensorflow/lite/profiling/profile_summary_formatter.h" namespace tflite { namespace profiling { class ProfileSummarizer { public: explicit ProfileSummarizer( std::shared_ptr<ProfileSummaryFormatter> summary_formatter = std::make_shared<ProfileSummaryDefaultFormatter>()); virtual ~ProfileSummarizer() {} void ProcessProfiles(const std::vector<const ProfileEvent*>& profile_stats, const tflite::Interpreter& interpreter); std::string GetOutputString() { return summary_formatter_->GetOutputString( stats_calculator_map_, *delegate_stats_calculator_, subgraph_name_map_); } std::string GetShortSummary() { return summary_formatter_->GetShortSummary( stats_calculator_map_, *delegate_stats_calculator_, subgraph_name_map_); } tensorflow::StatsCalculator* GetStatsCalculator(uint32_t subgraph_index); bool HasProfiles() { for (auto& stats_calc : stats_calculator_map_) { auto subgraph_stats = stats_calc.second.get(); if (subgraph_stats->num_runs() >= 1) return true; } return false; } private: std::map<uint32_t, std::unique_ptr<tensorflow::StatsCalculator>> stats_calculator_map_; std::unique_ptr<tensorflow::StatsCalculator> delegate_stats_calculator_; std::shared_ptr<ProfileSummaryFormatter> summary_formatter_; std::map<uint32_t, std::string> subgraph_name_map_; void SetSubgraphNameMap(const tflite::Interpreter& interpreter) { subgraph_name_map_.clear(); for (int subgraph_index = 0; subgraph_index < interpreter.subgraphs_size(); ++subgraph_index) { subgraph_name_map_[subgraph_index] = interpreter.subgraph(subgraph_index)->GetName(); } } }; } } #endif #include "tensorflow/lite/profiling/profile_summarizer.h" #include <memory> #include <sstream> #include <string> #include "tensorflow/lite/profiling/memory_info.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace profiling { namespace { struct OperatorDetails { uint32_t subgraph_index; uint32_t node_index; std::string op_description; std::vector<std::string> inputs; std::vector<std::string> outputs; }; std::string GetTensorName(const tflite::Interpreter& interpreter, int tensor_index) { const auto tensor = interpreter.tensor(tensor_index); if (tensor == nullptr || tensor->name == nullptr) { return "Unknown"; } return tensor->name; } std::vector<std::string> GetTensorNames(const tflite::Interpreter& interpreter, const TfLiteIntArray* tensor_indices) { std::vector<std::string> tensors; tensors.reserve(tensor_indices->size); for (int i = 0; i < tensor_indices->size; i++) { tensors.push_back(GetTensorName(interpreter, tensor_indices->data[i])); } return tensors; } std::string ToString(const std::vector<std::string>& str_vector) { std::stringstream stream; stream << "["; bool first = true; for (const auto& s : str_vector) { if (!first) { stream << ", "; } else { first = false; } stream << s; } stream << "]"; return stream.str(); } OperatorDetails GetOperatorDetails(const tflite::Interpreter& interpreter, uint32_t subgraph_index, uint32_t node_index) { auto subgraph = const_cast<tflite::Interpreter&>(interpreter).subgraph(subgraph_index); auto node_reg = subgraph->node_and_registration(node_index); auto inputs = node_reg->first.inputs; auto outputs = node_reg->first.outputs; const char* profiling_string = interpreter.OpProfilingString(node_reg->second, &node_reg->first); OperatorDetails details; if (profiling_string) { details.op_description = std::string(profiling_string); } details.inputs = GetTensorNames(interpreter, inputs); details.outputs = GetTensorNames(interpreter, outputs); return details; } } ProfileSummarizer::ProfileSummarizer( std::shared_ptr<ProfileSummaryFormatter> summary_formatter) : summary_formatter_(summary_formatter) { stats_calculator_map_[0] = std::make_unique<tensorflow::StatsCalculator>( summary_formatter_->GetStatSummarizerOptions()); delegate_stats_calculator_ = std::make_unique<tensorflow::StatsCalculator>( summary_formatter_->GetStatSummarizerOptions()); } void ProfileSummarizer::ProcessProfiles( const std::vector<const ProfileEvent*>& profile_stats, const tflite::Interpreter& interpreter) { if (profile_stats.empty()) return; int node_num = 0; std::map<uint32_t, int64_t> total_us_per_subgraph_map; int64_t delegate_internal_total_us = 0; for (auto event : profile_stats) { const auto subgraph_index = event->extra_event_metadata; auto stats_calculator = GetStatsCalculator(subgraph_index); int64_t node_exec_time = event->elapsed_time; if (event->event_type == Profiler::EventType::OPERATOR_INVOKE_EVENT) { const auto node_index = event->event_metadata; const auto op_details = GetOperatorDetails(interpreter, subgraph_index, node_index); std::string type_in_stats(event->tag); if (!op_details.op_description.empty()) { type_in_stats += "/" + op_details.op_description; } const auto node_name = ToString(op_details.outputs); const auto node_name_in_stats = node_name + ":" + std::to_string(node_index); stats_calculator->AddNodeStats(node_name_in_stats, type_in_stats, node_num, node_exec_time, 0 ); } else if (event->event_type == Profiler::EventType::DELEGATE_OPERATOR_INVOKE_EVENT) { const std::string node_name(event->tag); const auto node_name_in_stats = "Delegate/" + node_name + ":" + std::to_string(event->event_metadata); delegate_stats_calculator_->AddNodeStats(node_name_in_stats, "DelegateOpInvoke", node_num, node_exec_time, 0 ); } else if (event->event_type == Profiler::EventType::DELEGATE_PROFILED_OPERATOR_INVOKE_EVENT) { const std::string node_name(event->tag); const std::string type_in_stats(node_name); const auto node_name_in_stats = "Delegate/" + node_name + ":" + std::to_string(event->event_metadata); stats_calculator->AddNodeStats(node_name_in_stats, type_in_stats, node_num, node_exec_time, 0 ); } else { const memory::MemoryUsage node_mem_usage = event->end_mem_usage - event->begin_mem_usage; std::string node_name(event->tag); if (node_name == "Invoke") { continue; } node_name += "/" + std::to_string(event->extra_event_metadata); stats_calculator->AddNodeStats(node_name, event->tag, node_num, node_exec_time, node_mem_usage.mem_footprint_kb * 1000.0); } if (event->event_type != Profiler::EventType::DELEGATE_OPERATOR_INVOKE_EVENT) { total_us_per_subgraph_map[subgraph_index] += node_exec_time; } else { delegate_internal_total_us += node_exec_time; } ++node_num; } for (auto& total_us_per_subgraph_pair : total_us_per_subgraph_map) { auto stats_calculator = GetStatsCalculator(total_us_per_subgraph_pair.first); stats_calculator->UpdateRunTotalUs(total_us_per_subgraph_pair.second); } if (delegate_internal_total_us > 0) { delegate_stats_calculator_->UpdateRunTotalUs(delegate_internal_total_us); } SetSubgraphNameMap(interpreter); } tensorflow::StatsCalculator* ProfileSummarizer::GetStatsCalculator( uint32_t subgraph_index) { if (stats_calculator_map_.count(subgraph_index) == 0) { stats_calculator_map_[subgraph_index] = std::make_unique<tensorflow::StatsCalculator>( summary_formatter_->GetStatSummarizerOptions()); } return stats_calculator_map_[subgraph_index].get(); } } }
#include "tensorflow/lite/profiling/profile_summarizer.h" #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/context.h" #include "tensorflow/lite/core/model.h" #include "tensorflow/lite/kernels/kernel_util.h" #include "tensorflow/lite/kernels/subgraph_test_util.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/profiling/buffered_profiler.h" #include "tensorflow/lite/version.h" namespace tflite { namespace profiling { namespace { const char* kOpName = "SimpleOpEval"; TfLiteStatus SimpleOpEval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input1; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input1)); const TfLiteTensor* input2; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 1, &input2)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output)); int32_t* output_data = output->data.i32; *output_data = *(input1->data.i32) + *(input2->data.i32); return kTfLiteOk; } const char* SimpleOpProfilingString(const TfLiteContext* context, const TfLiteNode* node) { return "Profile"; } TfLiteRegistration* RegisterSimpleOp() { static TfLiteRegistration registration = { nullptr, nullptr, nullptr, SimpleOpEval, nullptr, tflite::BuiltinOperator_CUSTOM, "SimpleOpEval", 1}; return &registration; } TfLiteRegistration* RegisterSimpleOpWithProfilingDetails() { static TfLiteRegistration registration = {nullptr, nullptr, nullptr, SimpleOpEval, SimpleOpProfilingString, tflite::BuiltinOperator_CUSTOM, kOpName, 1}; return &registration; } class SimpleOpModel : public SingleOpModel { public: void Init(const std::function<TfLiteRegistration*()>& registration); tflite::Interpreter* GetInterpreter() { return interpreter_.get(); } void SetInputs(int32_t x, int32_t y) { PopulateTensor(inputs_[0], {x}); PopulateTensor(inputs_[1], {y}); } int32_t GetOutput() { return ExtractVector<int32_t>(output_)[0]; } private: int inputs_[2]; int output_; }; void SimpleOpModel::Init( const std::function<TfLiteRegistration*()>& registration) { inputs_[0] = AddInput({TensorType_INT32, {1}}); inputs_[1] = AddInput({TensorType_INT32, {1}}); output_ = AddOutput({TensorType_INT32, {}}); SetCustomOp(kOpName, {}, registration); BuildInterpreter({GetShape(inputs_[0]), GetShape(inputs_[1])}); } TEST(ProfileSummarizerTest, Empty) { ProfileSummarizer summarizer; std::string output = summarizer.GetOutputString(); EXPECT_GT(output.size(), 0); } TEST(ProfileSummarizerTest, Interpreter) { BufferedProfiler profiler(1024); SimpleOpModel m; m.Init(RegisterSimpleOp); auto interpreter = m.GetInterpreter(); interpreter->SetProfiler(&profiler); profiler.StartProfiling(); m.SetInputs(1, 2); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_EQ(m.GetOutput(), 3); profiler.StopProfiling(); ProfileSummarizer summarizer; auto events = profiler.GetProfileEvents(); EXPECT_EQ(2, events.size()); summarizer.ProcessProfiles(profiler.GetProfileEvents(), *interpreter); auto output = summarizer.GetOutputString(); ASSERT_TRUE(output.find("SimpleOpEval") != std::string::npos) << output; ASSERT_TRUE(output.find("Invoke") == std::string::npos) << output; } TEST(ProfileSummarizerTest, InterpreterPlusProfilingDetails) { BufferedProfiler profiler(1024); SimpleOpModel m; m.Init(RegisterSimpleOpWithProfilingDetails); auto interpreter = m.GetInterpreter(); interpreter->SetProfiler(&profiler); profiler.StartProfiling(); m.SetInputs(1, 2); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_EQ(m.GetOutput(), 3); profiler.StopProfiling(); ProfileSummarizer summarizer; auto events = profiler.GetProfileEvents(); EXPECT_EQ(2, events.size()); summarizer.ProcessProfiles(profiler.GetProfileEvents(), *interpreter); auto output = summarizer.GetOutputString(); ASSERT_TRUE(output.find("SimpleOpEval/Profile") != std::string::npos) << output; } class ProfileSummarizerIfOpTest : public subgraph_test_util::ControlFlowOpTest { protected: void SetUp() override { AddSubgraphs(2); builder_->BuildAddSubgraph(interpreter_->subgraph(1)); builder_->BuildMulSubgraph(interpreter_->subgraph(2)); builder_->BuildIfSubgraph(&interpreter_->primary_subgraph()); interpreter_->ResizeInputTensor(interpreter_->inputs()[0], {1}); interpreter_->ResizeInputTensor(interpreter_->inputs()[1], {2}); interpreter_->ResizeInputTensor(interpreter_->inputs()[2], {1, 2}); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); subgraph_test_util::FillIntTensor( interpreter_->tensor(interpreter_->inputs()[1]), {5, 7}); subgraph_test_util::FillIntTensor( interpreter_->tensor(interpreter_->inputs()[2]), {1, 2}); } }; TEST_F(ProfileSummarizerIfOpTest, TestIfTrue) { BufferedProfiler profiler(1024); interpreter_->SetProfiler(&profiler); interpreter_->typed_input_tensor<bool>(0)[0] = true; profiler.StartProfiling(); ASSERT_EQ(interpreter_->Invoke(), kTfLiteOk); profiler.StopProfiling(); TfLiteTensor* output = interpreter_->tensor(interpreter_->outputs()[0]); subgraph_test_util::CheckIntTensor(output, {1, 2}, {6, 9}); auto events = profiler.GetProfileEvents(); EXPECT_EQ(5, events.size()); int event_count_of_subgraph_zero = std::count_if( events.begin(), events.end(), [](auto event) { return event->extra_event_metadata == 0; }); int event_count_of_subgraph_one = std::count_if( events.begin(), events.end(), [](auto event) { return event->extra_event_metadata == 1; }); int event_count_of_subgraph_two = std::count_if( events.begin(), events.end(), [](auto event) { return event->extra_event_metadata == 2; }); EXPECT_EQ(2, event_count_of_subgraph_zero); EXPECT_EQ(3, event_count_of_subgraph_one); EXPECT_EQ(0, event_count_of_subgraph_two); } TEST_F(ProfileSummarizerIfOpTest, TestIfFalse) { BufferedProfiler profiler(1024); interpreter_->SetProfiler(&profiler); interpreter_->typed_input_tensor<bool>(0)[0] = false; profiler.StartProfiling(); ASSERT_EQ(interpreter_->Invoke(), kTfLiteOk); profiler.StopProfiling(); TfLiteTensor* output = interpreter_->tensor(interpreter_->outputs()[0]); subgraph_test_util::CheckIntTensor(output, {1, 2}, {5, 14}); auto events = profiler.GetProfileEvents(); EXPECT_EQ(5, events.size()); int event_count_of_subgraph_zero = std::count_if( events.begin(), events.end(), [](auto event) { return event->extra_event_metadata == 0; }); int event_count_of_subgraph_one = std::count_if( events.begin(), events.end(), [](auto event) { return event->extra_event_metadata == 1; }); int event_count_of_subgraph_two = std::count_if( events.begin(), events.end(), [](auto event) { return event->extra_event_metadata == 2; }); EXPECT_EQ(2, event_count_of_subgraph_zero); EXPECT_EQ(0, event_count_of_subgraph_one); EXPECT_EQ(3, event_count_of_subgraph_two); } } } }
820
cpp
tensorflow/tensorflow
subgraph_tensor_profiler
tensorflow/lite/profiling/subgraph_tensor_profiler.cc
tensorflow/lite/profiling/subgraph_tensor_profiler_test.cc
#ifndef TENSORFLOW_LITE_PROFILING_SUBGRAPH_TENSOR_PROFILER_H_ #define TENSORFLOW_LITE_PROFILING_SUBGRAPH_TENSOR_PROFILER_H_ #include <functional> #include <vector> #include "tensorflow/lite/core/api/profiler.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/interpreter.h" namespace tflite::profiling { class SubgraphTensorProfiler : public tflite::Profiler { public: using CallbackT = std::function<void(const TfLiteTensor*)>; SubgraphTensorProfiler(const Interpreter& interpreter, CallbackT callback); uint32_t BeginEvent(const char* tag, EventType event_type, int64_t event_metadata1, int64_t event_metadata2) override; void EndEvent(uint32_t event_handle) override; private: std::vector<int64_t> events_; const Interpreter& interpreter_; CallbackT callback_; }; } #endif #include "tensorflow/lite/profiling/subgraph_tensor_profiler.h" #include <cstring> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/subgraph.h" namespace tflite::profiling { SubgraphTensorProfiler::SubgraphTensorProfiler(const Interpreter& interpreter, CallbackT callback) : interpreter_(interpreter), callback_(callback) { events_.reserve(interpreter.subgraphs_size()); } uint32_t SubgraphTensorProfiler::BeginEvent(const char* tag, EventType event_type, int64_t event_metadata1, int64_t event_metadata2) { if (strcmp(tag, "Invoke")) { return 0; } events_.push_back(event_metadata2); return events_.size(); } void SubgraphTensorProfiler::EndEvent(uint32_t event_handle) { if (!event_handle || events_.size() < event_handle) { return; } const Subgraph* subgraph = interpreter_.subgraph(events_[event_handle - 1]); for (int i = 0; i < subgraph->tensors_size(); ++i) { callback_(subgraph->tensor(i)); } } }
#include "tensorflow/lite/profiling/subgraph_tensor_profiler.h" #include <functional> #include <string> #include <unordered_set> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/subgraph_test_util.h" namespace tflite::profiling { namespace { using ::testing::IsSupersetOf; using ::testing::Not; constexpr const char* kIfSubgraphTensorNames[] = { "if_cond", "if_input2", "if_input3", "if_output1", }; constexpr const char* kAddSubgraphTensorNames[] = { "add_input1", "add_input2", "add_output1", }; constexpr const char* kMulSubgraphTensorNames[] = { "mul_input1", "mul_input2", "mul_output1", }; struct TensorGatherer { void operator()(const TfLiteTensor* tensor) { tensors.insert(tensor->name); } std::unordered_set<std::string> tensors; }; class SubgraphTensorProfilerTest : public subgraph_test_util::ControlFlowOpTest { protected: void SetUp() override { AddSubgraphs(2); builder_->BuildAddSubgraph(interpreter_->subgraph(1)); builder_->BuildMulSubgraph(interpreter_->subgraph(2)); builder_->BuildIfSubgraph(&interpreter_->primary_subgraph()); interpreter_->ResizeInputTensor(interpreter_->inputs()[0], {1}); interpreter_->ResizeInputTensor(interpreter_->inputs()[1], {2}); interpreter_->ResizeInputTensor(interpreter_->inputs()[2], {1, 2}); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); subgraph_test_util::FillIntTensor( interpreter_->tensor(interpreter_->inputs()[1]), {5, 7}); subgraph_test_util::FillIntTensor( interpreter_->tensor(interpreter_->inputs()[2]), {1, 2}); NameTensors(); } private: void NameTensors() { auto set_names = [](Subgraph* subgraph, auto names) { for (int j = 0; j < subgraph->tensors_size(); ++j) { subgraph->tensor(j)->name = names[j]; } }; set_names(interpreter_->subgraph(0), kIfSubgraphTensorNames); set_names(interpreter_->subgraph(1), kAddSubgraphTensorNames); set_names(interpreter_->subgraph(2), kMulSubgraphTensorNames); } }; TEST_F(SubgraphTensorProfilerTest, TestMulSubgraph) { TensorGatherer tensor_gatherer; tflite::profiling::SubgraphTensorProfiler profiler(*interpreter_, std::ref(tensor_gatherer)); interpreter_->AddProfiler(&profiler); interpreter_->typed_input_tensor<bool>(0)[0] = false; ASSERT_EQ(interpreter_->Invoke(), kTfLiteOk); EXPECT_THAT(tensor_gatherer.tensors, IsSupersetOf(kIfSubgraphTensorNames)); EXPECT_THAT(tensor_gatherer.tensors, IsSupersetOf(kMulSubgraphTensorNames)); EXPECT_THAT(tensor_gatherer.tensors, Not(IsSupersetOf(kAddSubgraphTensorNames))); } TEST_F(SubgraphTensorProfilerTest, TestAddSubgraph) { TensorGatherer tensor_gatherer; tflite::profiling::SubgraphTensorProfiler profiler(*interpreter_, std::ref(tensor_gatherer)); interpreter_->AddProfiler(&profiler); interpreter_->typed_input_tensor<bool>(0)[0] = true; ASSERT_EQ(interpreter_->Invoke(), kTfLiteOk); EXPECT_THAT(tensor_gatherer.tensors, IsSupersetOf(kIfSubgraphTensorNames)); EXPECT_THAT(tensor_gatherer.tensors, IsSupersetOf(kAddSubgraphTensorNames)); EXPECT_THAT(tensor_gatherer.tensors, Not(IsSupersetOf(kMulSubgraphTensorNames))); } TEST_F(SubgraphTensorProfilerTest, TestBeginEvent) { TensorGatherer tensor_gatherer; tflite::profiling::SubgraphTensorProfiler profiler(*interpreter_, std::ref(tensor_gatherer)); const int subgraph_id = 1; uint32_t valid_event = profiler.BeginEvent( "Invoke", Profiler::EventType::DEFAULT, 0, subgraph_id); EXPECT_EQ(valid_event, 1); uint32_t invalid_event = profiler.BeginEvent( "NotInvoke", Profiler::EventType::DEFAULT, 0, subgraph_id); EXPECT_EQ(invalid_event, 0); } } }
821
cpp
tensorflow/tensorflow
profile_buffer
tensorflow/lite/profiling/profile_buffer.cc
tensorflow/lite/profiling/profile_buffer_test.cc
#ifndef TENSORFLOW_LITE_PROFILING_PROFILE_BUFFER_H_ #define TENSORFLOW_LITE_PROFILING_PROFILE_BUFFER_H_ #include <cstddef> #include <cstdint> #include <cstdio> #include <string> #include <utility> #include <vector> #include "tensorflow/lite/core/api/profiler.h" #include "tensorflow/lite/profiling/memory_info.h" #include "tensorflow/lite/profiling/time.h" namespace tflite { namespace profiling { constexpr uint32_t kInvalidEventHandle = static_cast<uint32_t>(~0) - 1; struct ProfileEvent { using EventType = tflite::Profiler::EventType; std::string tag; uint64_t begin_timestamp_us; uint64_t elapsed_time; memory::MemoryUsage begin_mem_usage; memory::MemoryUsage end_mem_usage; EventType event_type; int64_t event_metadata; int64_t extra_event_metadata; }; class ProfileBuffer { public: ProfileBuffer(uint32_t max_num_entries, bool enabled, bool allow_dynamic_expansion = false) : enabled_(enabled), current_index_(0), event_buffer_(max_num_entries), allow_dynamic_expansion_(allow_dynamic_expansion) {} uint32_t BeginEvent(const char* tag, ProfileEvent::EventType event_type, int64_t event_metadata1, int64_t event_metadata2); void SetEnabled(bool enabled) { enabled_ = enabled; } void EndEvent(uint32_t event_handle, const int64_t* event_metadata1 = nullptr, const int64_t* event_metadata2 = nullptr); void AddEvent(const char* tag, ProfileEvent::EventType event_type, uint64_t elapsed_time, int64_t event_metadata1, int64_t event_metadata2); size_t Size() const { return (current_index_ >= event_buffer_.size()) ? event_buffer_.size() : current_index_; } void Reset() { enabled_ = false; current_index_ = 0; } const struct ProfileEvent* At(size_t index) const; private: std::pair<int, bool> GetNextEntryIndex(); bool enabled_; uint32_t current_index_; std::vector<ProfileEvent> event_buffer_; const bool allow_dynamic_expansion_; }; } } #endif #include "tensorflow/lite/profiling/profile_buffer.h" #include <utility> #include "tensorflow/lite/minimal_logging.h" namespace tflite { namespace profiling { uint32_t ProfileBuffer::BeginEvent(const char* tag, ProfileEvent::EventType event_type, int64_t event_metadata1, int64_t event_metadata2) { if (!enabled_) { return kInvalidEventHandle; } uint64_t timestamp = time::NowMicros(); const auto next_index = GetNextEntryIndex(); if (next_index.second) { return next_index.first; } const int index = next_index.first; event_buffer_[index].tag = tag; event_buffer_[index].event_type = event_type; event_buffer_[index].event_metadata = event_metadata1; event_buffer_[index].extra_event_metadata = event_metadata2; event_buffer_[index].begin_timestamp_us = timestamp; event_buffer_[index].elapsed_time = 0; if (event_type != Profiler::EventType::OPERATOR_INVOKE_EVENT) { event_buffer_[index].begin_mem_usage = memory::GetMemoryUsage(); } current_index_++; return index; } void ProfileBuffer::EndEvent(uint32_t event_handle, const int64_t* event_metadata1, const int64_t* event_metadata2) { if (!enabled_ || event_handle == kInvalidEventHandle || event_handle > current_index_) { return; } const uint32_t max_size = event_buffer_.size(); if (current_index_ > (max_size + event_handle)) { return; } int event_index = event_handle % max_size; event_buffer_[event_index].elapsed_time = time::NowMicros() - event_buffer_[event_index].begin_timestamp_us; if (event_buffer_[event_index].event_type != Profiler::EventType::OPERATOR_INVOKE_EVENT) { event_buffer_[event_index].end_mem_usage = memory::GetMemoryUsage(); } if (event_metadata1) { event_buffer_[event_index].event_metadata = *event_metadata1; } if (event_metadata2) { event_buffer_[event_index].extra_event_metadata = *event_metadata2; } } const struct ProfileEvent* ProfileBuffer::At(size_t index) const { size_t size = Size(); if (index >= size) { return nullptr; } const uint32_t max_size = event_buffer_.size(); uint32_t start = (current_index_ > max_size) ? current_index_ % max_size : max_size; index = (index + start) % max_size; return &event_buffer_[index]; } void ProfileBuffer::AddEvent(const char* tag, ProfileEvent::EventType event_type, uint64_t elapsed_time, int64_t event_metadata1, int64_t event_metadata2) { if (!enabled_) { return; } const auto next_index = GetNextEntryIndex(); if (next_index.second) { return; } const int index = next_index.first; event_buffer_[index].tag = tag; event_buffer_[index].event_type = event_type; event_buffer_[index].event_metadata = event_metadata1; event_buffer_[index].extra_event_metadata = event_metadata2; event_buffer_[index].begin_timestamp_us = 0; event_buffer_[index].elapsed_time = elapsed_time; current_index_++; } std::pair<int, bool> ProfileBuffer::GetNextEntryIndex() { int index = current_index_ % event_buffer_.size(); if (current_index_ == 0 || index != 0) { return std::make_pair(index, false); } if (!allow_dynamic_expansion_) { TFLITE_LOG_PROD_ONCE(TFLITE_LOG_INFO, "Warning: Dropping ProfileBuffer event."); return std::make_pair(current_index_, true); } else { TFLITE_LOG_PROD_ONCE(TFLITE_LOG_INFO, "Warning: Doubling internal profiling buffer."); event_buffer_.resize(current_index_ * 2); return std::make_pair(current_index_, false); } } } }
#include "tensorflow/lite/profiling/profile_buffer.h" #include <algorithm> #include <cstdint> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> namespace tflite { namespace profiling { namespace { std::vector<const ProfileEvent*> GetProfileEvents(const ProfileBuffer& buffer) { std::vector<const ProfileEvent*> events; for (size_t i = 0; i < buffer.Size(); i++) { events.push_back(buffer.At(i)); } return events; } TEST(ProfileBufferTest, Empty) { ProfileBuffer buffer( 0, true); EXPECT_EQ(0, buffer.Size()); } TEST(ProfileBufferTest, AddEvent) { ProfileBuffer buffer( 10, true); EXPECT_EQ(0, buffer.Size()); auto event_handle = buffer.BeginEvent("hello", ProfileEvent::EventType::DEFAULT, 42, 0); EXPECT_GE(event_handle, 0); EXPECT_EQ(1, buffer.Size()); auto event = GetProfileEvents(buffer)[0]; EXPECT_EQ(event->tag, "hello"); EXPECT_GT(event->begin_timestamp_us, 0); EXPECT_EQ(event->event_type, ProfileEvent::EventType::DEFAULT); EXPECT_EQ(event->event_metadata, 42); buffer.EndEvent(event_handle); EXPECT_EQ(1, buffer.Size()); EXPECT_GE(event->elapsed_time, 0); } TEST(ProfileBufferTest, EndEventWithMetadata) { ProfileBuffer buffer( 10, true); EXPECT_EQ(0, buffer.Size()); auto event_handle = buffer.BeginEvent("hello", ProfileEvent::EventType::DEFAULT, 42, 0); const int64_t kEventMetadata1 = 18; const int64_t kEventMetadata2 = 36; buffer.EndEvent(event_handle, &kEventMetadata1, &kEventMetadata2); EXPECT_GE(event_handle, 0); EXPECT_EQ(1, buffer.Size()); auto event = GetProfileEvents(buffer)[0]; EXPECT_EQ(event->tag, "hello"); EXPECT_GT(event->begin_timestamp_us, 0); EXPECT_EQ(event->event_type, ProfileEvent::EventType::DEFAULT); EXPECT_EQ(event->event_metadata, kEventMetadata1); EXPECT_EQ(event->extra_event_metadata, kEventMetadata2); EXPECT_EQ(1, buffer.Size()); EXPECT_GE(event->elapsed_time, 0); } TEST(ProfileBufferTest, OverFlow) { const int max_size = 4; ProfileBuffer buffer{max_size, true}; std::vector<std::string> eventNames = {"first", "second", "third", "fourth"}; for (int i = 0; i < 2 * max_size; i++) { buffer.BeginEvent(eventNames[i % 4].c_str(), ProfileEvent::EventType::DEFAULT, i, 0); size_t expected_size = std::min(i + 1, max_size); EXPECT_EQ(expected_size, buffer.Size()); } EXPECT_EQ(max_size, buffer.Size()); for (size_t j = 0; j < buffer.Size(); ++j) { auto event = buffer.At(j); EXPECT_EQ(eventNames[j % 4], event->tag); EXPECT_EQ(ProfileEvent::EventType::DEFAULT, event->event_type); EXPECT_EQ(j, event->event_metadata); } } TEST(ProfileBufferTest, DynamicIncrease) { const int max_initial_size = 4; ProfileBuffer buffer{max_initial_size, true, true }; std::vector<std::string> eventNames = {"first", "second", "third", "fourth"}; for (int i = 0; i < 2 * max_initial_size; i++) { buffer.BeginEvent(eventNames[i % 4].c_str(), ProfileEvent::EventType::DEFAULT, i, 0); const size_t expected_size = i + 1; EXPECT_EQ(expected_size, buffer.Size()); } EXPECT_EQ(2 * max_initial_size, buffer.Size()); for (size_t j = 0; j < buffer.Size(); ++j) { auto event = buffer.At(j); EXPECT_EQ(eventNames[j % 4], event->tag); EXPECT_EQ(ProfileEvent::EventType::DEFAULT, event->event_type); EXPECT_EQ(j, event->event_metadata); } } TEST(ProfileBufferTest, Enable) { ProfileBuffer buffer( 10, false); EXPECT_EQ(0, buffer.Size()); auto event_handle = buffer.BeginEvent("hello", ProfileEvent::EventType::DEFAULT, 42, 0); EXPECT_EQ(kInvalidEventHandle, event_handle); EXPECT_EQ(0, buffer.Size()); buffer.SetEnabled(true); event_handle = buffer.BeginEvent("hello", ProfileEvent::EventType::DEFAULT, 42, 0); EXPECT_GE(event_handle, 0); EXPECT_EQ(1, buffer.Size()); } } } }
822
cpp
tensorflow/tensorflow
profiler
third_party/xla/xla/python/profiler.cc
tensorflow/lite/profiling/telemetry/profiler_test.cc
#ifndef XLA_PYTHON_PROFILER_H_ #define XLA_PYTHON_PROFILER_H_ #include "third_party/nanobind/include/nanobind/nanobind.h" namespace xla { void BuildProfilerSubmodule(nanobind::module_& m); } #endif #include "xla/python/profiler.h" #include <functional> #include <memory> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/strings/str_cat.h" #include "absl/types/span.h" #include "third_party/nanobind/include/nanobind/nanobind.h" #include "third_party/nanobind/include/nanobind/stl/string.h" #include "third_party/nanobind/include/nanobind/stl/string_view.h" #include "third_party/nanobind/include/nanobind/stl/unique_ptr.h" #include "third_party/nanobind/include/nanobind/stl/vector.h" #include "xla/backends/profiler/plugin/plugin_tracer.h" #include "xla/backends/profiler/plugin/profiler_c_api.h" #include "xla/pjrt/c/pjrt_c_api.h" #include "xla/pjrt/c/pjrt_c_api_profiler_extension.h" #include "xla/pjrt/exceptions.h" #include "xla/pjrt/status_casters.h" #include "xla/python/aggregate_profile.h" #include "xla/python/profiler_utils.h" #include "xla/python/xplane_to_profile_instructions.h" #include "tsl/platform/macros.h" #include "tsl/platform/protobuf.h" #include "tsl/profiler/lib/profiler_factory.h" #include "tsl/profiler/lib/profiler_interface.h" #include "tsl/profiler/lib/profiler_session.h" #include "tsl/profiler/lib/traceme.h" #include "tsl/profiler/rpc/client/capture_profile.h" #include "tsl/profiler/rpc/profiler_server.h" namespace xla { namespace nb = nanobind; namespace { class TraceMeWrapper { public: TraceMeWrapper(const nb::str& name, const nb::kwargs& kwargs) : traceme_( [&]() { std::string name_and_metadata = nb::cast<std::string>(name); if (kwargs.size() > 0) { AppendMetadata(&name_and_metadata, kwargs); } return name_and_metadata; }, 1) {} void SetMetadata(const nb::kwargs& kwargs) { if (TF_PREDICT_FALSE(kwargs.size() > 0)) { traceme_.AppendMetadata([&]() { std::string metadata; AppendMetadata(&metadata, kwargs); return metadata; }); } } void Stop() { traceme_.Stop(); } static bool IsEnabled() { return tsl::profiler::TraceMe::Active(); } private: static void AppendMetadata(std::string* name, const nb::kwargs& kwargs) { name->push_back('#'); for (const auto& kv : kwargs) { absl::StrAppend(name, nb::cast<std::string_view>(kv.first), "=", EncodePyObject(kv.second), ","); } name->back() = '#'; } static std::string EncodePyObject(nb::handle handle) { if (nb::isinstance<nb::bool_>(handle)) { return nb::cast<bool>(handle) ? "1" : "0"; } return nb::cast<std::string>(nb::str(handle)); } tsl::profiler::TraceMe traceme_; }; tensorflow::ProfileOptions DefaultPythonProfileOptions() { tensorflow::ProfileOptions options = tsl::ProfilerSession::DefaultOptions(); options.set_python_tracer_level(1); options.set_enable_hlo_proto(true); return options; } } struct ProfilerSessionWrapper { explicit ProfilerSessionWrapper(std::unique_ptr<tsl::ProfilerSession> session) : session(std::move(session)) {} std::unique_ptr<tsl::ProfilerSession> session; }; static std::string GetFdoProfile(const std::string& xspace, bool as_textproto = false) { tensorflow::profiler::XSpace xspace_proto; xspace_proto.ParseFromString(std::string(xspace.c_str(), xspace.size())); tensorflow::profiler::ProfiledInstructionsProto fdo_profile; xla::ThrowIfError(xla::ConvertXplaneToProfiledInstructionsProto( {xspace_proto}, &fdo_profile)); if (as_textproto) { std::string textproto; if (tsl::protobuf::TextFormat::PrintToString(fdo_profile, &textproto)) { return textproto; } throw xla::XlaRuntimeError("Unable to serialize format to textproto"); } return fdo_profile.SerializeAsString(); } void BuildProfilerSubmodule(nb::module_& m) { nb::module_ profiler = m.def_submodule("profiler", "TensorFlow profiler integration"); nb::class_<tsl::profiler::ProfilerServer> profiler_server_class( profiler, "ProfilerServer"); profiler.def( "start_server", [](int port) -> std::unique_ptr<tsl::profiler::ProfilerServer> { auto server = std::make_unique<tsl::profiler::ProfilerServer>(); server->StartProfilerServer(port); return server; }, nb::arg("port")); profiler.def("register_plugin_profiler", [](nb::capsule c_api) -> void { if (std::string_view(c_api.name()) != "pjrt_c_api") { throw xla::XlaRuntimeError( "Argument to register_plugin_profiler was not a pjrt_c_api capsule."); } RegisterProfiler(static_cast<const PJRT_Api*>(c_api.data())); }); nb::class_<ProfilerSessionWrapper> profiler_session_class(profiler, "ProfilerSession"); profiler_session_class .def("__init__", [](ProfilerSessionWrapper* wrapper) { new (wrapper) ProfilerSessionWrapper( tsl::ProfilerSession::Create(DefaultPythonProfileOptions())); }) .def("__init__", [](ProfilerSessionWrapper* wrapper, const tensorflow::ProfileOptions& options) { new (wrapper) ProfilerSessionWrapper(tsl::ProfilerSession::Create(options)); }) .def("stop_and_export", [](ProfilerSessionWrapper* sess, const std::string& tensorboard_dir) -> void { tensorflow::profiler::XSpace xspace; xla::ThrowIfError(sess->session->CollectData(&xspace)); xla::ThrowIfError(tsl::profiler::ExportToTensorBoard( xspace, tensorboard_dir, true)); }) .def("stop", [](ProfilerSessionWrapper* sess) -> nb::bytes { tensorflow::profiler::XSpace xspace; xla::ThrowIfError(sess->session->CollectData(&xspace)); std::string xspace_str = xspace.SerializeAsString(); return nb::bytes(xspace_str.data(), xspace_str.size()); }) .def("export", [](ProfilerSessionWrapper* sess, nb::bytes xspace, const std::string& tensorboard_dir) -> void { tensorflow::profiler::XSpace xspace_proto; xspace_proto.ParseFromString( std::string(xspace.c_str(), xspace.size())); xla::ThrowIfError(tsl::profiler::ExportToTensorBoard( xspace_proto, tensorboard_dir, true)); }); nb::class_<tensorflow::ProfileOptions> profile_options_class( profiler, "ProfileOptions"); profile_options_class .def("__init__", [](tensorflow::ProfileOptions* options) { new (options) tensorflow::ProfileOptions(DefaultPythonProfileOptions()); }) .def_prop_rw("include_dataset_ops", &tensorflow::ProfileOptions::include_dataset_ops, &tensorflow::ProfileOptions::set_include_dataset_ops) .def_prop_rw("host_tracer_level", &tensorflow::ProfileOptions::host_tracer_level, &tensorflow::ProfileOptions::set_host_tracer_level) .def_prop_rw("python_tracer_level", &tensorflow::ProfileOptions::python_tracer_level, &tensorflow::ProfileOptions::set_python_tracer_level) .def_prop_rw("enable_hlo_proto", &tensorflow::ProfileOptions::enable_hlo_proto, &tensorflow::ProfileOptions::set_enable_hlo_proto) .def_prop_rw("start_timestamp_ns", &tensorflow::ProfileOptions::start_timestamp_ns, &tensorflow::ProfileOptions::set_start_timestamp_ns) .def_prop_rw("duration_ms", &tensorflow::ProfileOptions::duration_ms, &tensorflow::ProfileOptions::set_duration_ms) .def_prop_rw( "repository_path", &tensorflow::ProfileOptions::repository_path, [](tensorflow::ProfileOptions* options, const std::string& path) { options->set_repository_path(path); }); nb::class_<TraceMeWrapper> traceme_class(profiler, "TraceMe"); traceme_class.def(nb::init<nb::str, nb::kwargs>()) .def("__enter__", [](nb::object self) -> nb::object { return self; }) .def( "__exit__", [](nb::object self, const nb::object& ex_type, const nb::object& ex_value, const nb::object& traceback) -> nb::object { nb::cast<TraceMeWrapper*>(self)->Stop(); return nb::none(); }, nb::arg("ex_type").none(), nb::arg("ex_value").none(), nb::arg("traceback").none()) .def("set_metadata", &TraceMeWrapper::SetMetadata) .def_static("is_enabled", &TraceMeWrapper::IsEnabled); profiler.def( "get_profiled_instructions_proto", [](std::string tensorboard_dir) -> nb::bytes { tensorflow::profiler::ProfiledInstructionsProto profile_proto; xla::ThrowIfError( xla::ConvertXplaneUnderLogdirToProfiledInstructionsProto( tensorboard_dir, &profile_proto)); std::string profile_proto_str = profile_proto.SerializeAsString(); return nb::bytes(profile_proto_str.data(), profile_proto_str.size()); }, nb::arg("tensorboard_dir")); profiler.def("get_fdo_profile", [](nb::bytes xspace, bool as_textproto = false) -> nb::object { std::string out = GetFdoProfile( std::string(xspace.c_str(), xspace.size()), as_textproto); return nb::bytes(out.data(), out.size()); }); profiler.def("get_fdo_profile", [](nb::bytes xspace) -> nb::object { std::string out = GetFdoProfile(std::string(xspace.c_str(), xspace.size())); return nb::bytes(out.data(), out.size()); }); profiler.def( "aggregate_profiled_instructions", [](const std::vector<nb::bytes>& profiles, int percentile) -> nb::object { std::vector<tensorflow::profiler::ProfiledInstructionsProto> fdo_profiles; for (const nb::bytes& profile : profiles) { tensorflow::profiler::ProfiledInstructionsProto profile_proto; profile_proto.ParseFromString( std::string(profile.c_str(), profile.size())); fdo_profiles.push_back(std::move(profile_proto)); } tensorflow::profiler::ProfiledInstructionsProto result_proto; xla::AggregateProfiledInstructionsProto(fdo_profiles, percentile, &result_proto); auto result = result_proto.SerializeAsString(); return nb::bytes(result.data(), result.size()); }, nb::arg("profiles") = nb::list(), nb::arg("percentile")); } }
#include "tensorflow/lite/profiling/telemetry/profiler.h" #include <cstdint> #include <iostream> #include <memory> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/profiling/telemetry/c/telemetry_setting.h" #include "tensorflow/lite/profiling/telemetry/telemetry_status.h" namespace tflite::telemetry { namespace { constexpr char kEventName[] = "event_name"; constexpr char kSettingName[] = "setting_name"; class MockTelemtryProfiler : public TelemetryProfiler { public: MOCK_METHOD(void, ReportTelemetryEvent, (const char* event_name, TelemetryStatusCode status), (override)); MOCK_METHOD(void, ReportTelemetryOpEvent, (const char* event_name, int64_t op_idx, int64_t subgraph_idx, TelemetryStatusCode status), (override)); MOCK_METHOD(void, ReportSettings, (const char* setting_name, const TfLiteTelemetrySettings* settings), (override)); MOCK_METHOD(uint32_t, ReportBeginOpInvokeEvent, (const char* op_name, int64_t op_idx, int64_t subgraph_idx), (override)); MOCK_METHOD(void, ReportEndOpInvokeEvent, (uint32_t event_handle), (override)); MOCK_METHOD(void, ReportOpInvokeEvent, (const char* op_name, uint64_t elapsed_time, int64_t op_idx, int64_t subgraph_idx), (override)); }; class TelemetryStructTest : public ::testing::Test { protected: TelemetryStructTest() { context_.profiler = &profiler_; profiler_struct_.data = &mock_profiler_; profiler_struct_.ReportTelemetryEvent = [](struct TfLiteTelemetryProfilerStruct* profiler, const char* event_name, uint64_t status) { static_cast<MockTelemtryProfiler*>(profiler->data) ->ReportTelemetryEvent( event_name, tflite::telemetry::TelemetryStatusCode(status)); }; profiler_struct_.ReportTelemetryOpEvent = [](struct TfLiteTelemetryProfilerStruct* profiler, const char* event_name, int64_t op_idx, int64_t subgraph_idx, uint64_t status) { static_cast<MockTelemtryProfiler*>(profiler->data) ->ReportTelemetryOpEvent( event_name, op_idx, subgraph_idx, tflite::telemetry::TelemetryStatusCode(status)); }; profiler_struct_.ReportSettings = [](struct TfLiteTelemetryProfilerStruct* profiler, const char* setting_name, const TfLiteTelemetrySettings* settings) { static_cast<MockTelemtryProfiler*>(profiler->data) ->ReportSettings(setting_name, settings); }; profiler_struct_.ReportBeginOpInvokeEvent = [](struct TfLiteTelemetryProfilerStruct* profiler, const char* op_name, int64_t op_idx, int64_t subgraph_idx) -> uint32_t { return static_cast<MockTelemtryProfiler*>(profiler->data) ->ReportBeginOpInvokeEvent(op_name, op_idx, subgraph_idx); }; profiler_struct_.ReportEndOpInvokeEvent = [](struct TfLiteTelemetryProfilerStruct* profiler, uint32_t event_handle) { return static_cast<MockTelemtryProfiler*>(profiler->data) ->ReportEndOpInvokeEvent(event_handle); }; profiler_struct_.ReportOpInvokeEvent = [](struct TfLiteTelemetryProfilerStruct* profiler, const char* op_name, uint64_t elapsed_time, int64_t op_idx, int64_t subgraph_idx) { return static_cast<MockTelemtryProfiler*>(profiler->data) ->ReportOpInvokeEvent(op_name, elapsed_time, op_idx, subgraph_idx); }; profiler_.reset(telemetry::MakeTfLiteTelemetryProfiler(&profiler_struct_)); } MockTelemtryProfiler mock_profiler_; std::unique_ptr<TelemetryProfiler> profiler_; TfLiteContext context_; TfLiteTelemetryProfilerStruct profiler_struct_; }; TEST_F(TelemetryStructTest, TelemetryReportEvent) { EXPECT_CALL(mock_profiler_, ReportTelemetryEvent(kEventName, TelemetryStatusCode(kTfLiteOk))); profiler_->ReportTelemetryEvent(kEventName, TelemetryStatusCode(kTfLiteOk)); } TEST_F(TelemetryStructTest, TelemetryReportOpEvent) { EXPECT_CALL( mock_profiler_, ReportTelemetryOpEvent(kEventName, 1, 2, TelemetryStatusCode(kTfLiteOk))); profiler_->ReportTelemetryOpEvent(kEventName, 1, 2, TelemetryStatusCode(kTfLiteOk)); } TEST_F(TelemetryStructTest, TelemetryReportSettings) { EXPECT_CALL(mock_profiler_, ReportSettings(kSettingName, testing::_)); TfLiteTelemetrySettings settings{}; profiler_->ReportSettings(kSettingName, &settings); } TEST_F(TelemetryStructTest, TelemetryReportBeginOpInvokeEvent) { EXPECT_CALL(mock_profiler_, ReportBeginOpInvokeEvent(kSettingName, 1, 2)); profiler_->ReportBeginOpInvokeEvent(kSettingName, 1, 2); } TEST_F(TelemetryStructTest, TelemetryReportEndOpInvokeEvent) { EXPECT_CALL(mock_profiler_, ReportEndOpInvokeEvent(1)); profiler_->ReportEndOpInvokeEvent(1); } TEST_F(TelemetryStructTest, TelemetryReportOpInvokeEvent) { EXPECT_CALL(mock_profiler_, ReportOpInvokeEvent(kSettingName, 1, 2, 3)); profiler_->ReportOpInvokeEvent(kSettingName, 1, 2, 3); } } }
823
cpp
tensorflow/tensorflow
telemetry
tensorflow/lite/delegates/telemetry.cc
tensorflow/lite/delegates/telemetry_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_TELEMETRY_H_ #define TENSORFLOW_LITE_DELEGATES_TELEMETRY_H_ #include <cstdint> #include <limits> #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/core/c/common.h" namespace tflite { namespace delegates { constexpr char kDelegateSettingsTag[] = "delegate_settings"; constexpr char kDelegateStatusTag[] = "delegate_status"; enum class DelegateStatusSource { NONE = 0, TFLITE_GPU = 1, TFLITE_NNAPI = 2, TFLITE_HEXAGON = 3, TFLITE_XNNPACK = 4, TFLITE_COREML = 5, MAX_NUM_SOURCES = std::numeric_limits<int32_t>::max(), }; class DelegateStatus { public: DelegateStatus() : DelegateStatus(DelegateStatusSource::NONE, 0) {} explicit DelegateStatus(int32_t code) : DelegateStatus(DelegateStatusSource::NONE, code) {} explicit DelegateStatus(int64_t full_status) : DelegateStatus( static_cast<DelegateStatusSource>( full_status >> 32 & static_cast<int32_t>(DelegateStatusSource::MAX_NUM_SOURCES)), static_cast<int32_t>(full_status & std::numeric_limits<int32_t>::max())) {} DelegateStatus(DelegateStatusSource source, int32_t code) : source_(static_cast<int32_t>(source)), code_(code) {} int64_t full_status() const { return static_cast<int64_t>(source_) << 32 | code_; } DelegateStatusSource source() const { return static_cast<DelegateStatusSource>(source_); } int32_t code() const { return code_; } private: int32_t source_; int32_t code_; }; TfLiteStatus ReportDelegateSettings(TfLiteContext* context, TfLiteDelegate* delegate, const TFLiteSettings& settings); TfLiteStatus ReportDelegateStatus(TfLiteContext* context, TfLiteDelegate* delegate, const DelegateStatus& status); } } #endif #include "tensorflow/lite/delegates/telemetry.h" #include "tensorflow/lite/core/api/profiler.h" #include "tensorflow/lite/core/c/common.h" namespace tflite { namespace delegates { TfLiteStatus ReportDelegateSettings(TfLiteContext* context, TfLiteDelegate* delegate, const TFLiteSettings& settings) { auto* profiler = reinterpret_cast<Profiler*>(context->profiler); const int64_t event_metadata1 = reinterpret_cast<int64_t>(delegate); const int64_t event_metadata2 = reinterpret_cast<int64_t>(&settings); TFLITE_ADD_RUNTIME_INSTRUMENTATION_EVENT(profiler, kDelegateSettingsTag, event_metadata1, event_metadata2); return kTfLiteOk; } TfLiteStatus ReportDelegateStatus(TfLiteContext* context, TfLiteDelegate* delegate, const DelegateStatus& status) { auto* profiler = reinterpret_cast<Profiler*>(context->profiler); TFLITE_ADD_RUNTIME_INSTRUMENTATION_EVENT(profiler, kDelegateStatusTag, status.full_status(), static_cast<int64_t>(kTfLiteOk)); return kTfLiteOk; } } }
#include "tensorflow/lite/delegates/telemetry.h" #include <cstdint> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "flatbuffers/flatbuffers.h" #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/core/api/profiler.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/profiling/profile_buffer.h" namespace tflite { namespace delegates { namespace { constexpr int32_t kDummyCode = 2; constexpr bool kDummyGpuPrecisionLossAllowed = true; constexpr tflite::Delegate kDummyDelegate = tflite::Delegate_GPU; constexpr DelegateStatusSource kDummySource = DelegateStatusSource::TFLITE_NNAPI; TEST(TelemetryTest, StatusConversion) { DelegateStatus status(kDummySource, kDummyCode); int64_t serialized_int = status.full_status(); DelegateStatus deserialized_status(serialized_int); EXPECT_EQ(kDummyCode, deserialized_status.code()); EXPECT_EQ(kDummySource, deserialized_status.source()); EXPECT_EQ(serialized_int, deserialized_status.full_status()); } class DelegateProfiler : public Profiler { public: DelegateProfiler() {} ~DelegateProfiler() override = default; uint32_t BeginEvent(const char* tag, EventType event_type, int64_t event_metadata1, int64_t event_metadata2) override { int event_handle = -1; if (event_type == Profiler::EventType::GENERAL_RUNTIME_INSTRUMENTATION_EVENT && std::string(tag) == kDelegateSettingsTag) { event_buffer_.emplace_back(); event_handle = event_buffer_.size(); EXPECT_NE(event_metadata1, 0); auto* delegate = reinterpret_cast<TfLiteDelegate*>(event_metadata1); EXPECT_EQ(delegate->flags, kTfLiteDelegateFlagsNone); EXPECT_NE(event_metadata2, 0); auto* settings = reinterpret_cast<TFLiteSettings*>(event_metadata2); EXPECT_EQ(settings->delegate(), kDummyDelegate); EXPECT_EQ(settings->gpu_settings()->is_precision_loss_allowed(), kDummyGpuPrecisionLossAllowed); } else if (event_type == Profiler::EventType::GENERAL_RUNTIME_INSTRUMENTATION_EVENT && std::string(tag) == kDelegateStatusTag) { event_buffer_.emplace_back(); event_handle = event_buffer_.size(); EXPECT_EQ(event_metadata2, static_cast<int64_t>(kTfLiteOk)); DelegateStatus reported_status(event_metadata1); EXPECT_EQ(reported_status.source(), kDummySource); EXPECT_EQ(reported_status.code(), kDummyCode); } EXPECT_NE(-1, event_handle); return event_handle; } void EndEvent(uint32_t event_handle) override { EXPECT_EQ(event_handle, event_buffer_.size()); } int NumRecordedEvents() { return event_buffer_.size(); } private: std::vector<profiling::ProfileEvent> event_buffer_; }; TEST(TelemetryTest, DelegateStatusReport) { DelegateProfiler profiler; TfLiteDelegate delegate = TfLiteDelegateCreate(); TfLiteContext context; context.profiler = &profiler; DelegateStatus status(kDummySource, kDummyCode); EXPECT_EQ(ReportDelegateStatus(&context, &delegate, status), kTfLiteOk); EXPECT_EQ(ReportDelegateStatus(&context, &delegate, status), kTfLiteOk); EXPECT_EQ(profiler.NumRecordedEvents(), 2); } TEST(TelemetryTest, DelegateSettingsReport) { DelegateProfiler profiler; TfLiteDelegate delegate = TfLiteDelegateCreate(); TfLiteContext context; context.profiler = &profiler; flatbuffers::FlatBufferBuilder flatbuffer_builder; flatbuffers::Offset<tflite::GPUSettings> gpu_settings = tflite::CreateGPUSettings( flatbuffer_builder, kDummyGpuPrecisionLossAllowed); auto* tflite_settings_ptr = flatbuffers::GetTemporaryPointer( flatbuffer_builder, CreateTFLiteSettings(flatbuffer_builder, kDummyDelegate, 0, gpu_settings)); EXPECT_EQ(ReportDelegateSettings(&context, &delegate, *tflite_settings_ptr), kTfLiteOk); EXPECT_EQ(profiler.NumRecordedEvents(), 1); DelegateStatus status(kDummySource, kDummyCode); EXPECT_EQ(ReportDelegateStatus(&context, &delegate, status), kTfLiteOk); EXPECT_EQ(ReportDelegateStatus(&context, &delegate, status), kTfLiteOk); EXPECT_EQ(profiler.NumRecordedEvents(), 3); } } } }
824
cpp
tensorflow/tensorflow
nnapi_implementation
tensorflow/lite/nnapi/nnapi_implementation.cc
tensorflow/lite/nnapi/nnapi_implementation_test.cc
#ifndef TENSORFLOW_LITE_NNAPI_NNAPI_IMPLEMENTATION_H_ #define TENSORFLOW_LITE_NNAPI_NNAPI_IMPLEMENTATION_H_ #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <memory> #include "tensorflow/lite/nnapi/NeuralNetworksTypes.h" struct NnApi { bool nnapi_exists; int32_t android_sdk_version; int64_t nnapi_runtime_feature_level; int (*ANeuralNetworksMemory_createFromFd)(size_t size, int protect, int fd, size_t offset, ANeuralNetworksMemory** memory); void (*ANeuralNetworksMemory_free)(ANeuralNetworksMemory* memory); int (*ANeuralNetworksModel_create)(ANeuralNetworksModel** model); void (*ANeuralNetworksModel_free)(ANeuralNetworksModel* model); int (*ANeuralNetworksModel_finish)(ANeuralNetworksModel* model); int (*ANeuralNetworksModel_addOperand)( ANeuralNetworksModel* model, const ANeuralNetworksOperandType* type); int (*ANeuralNetworksModel_setOperandValue)(ANeuralNetworksModel* model, int32_t index, const void* buffer, size_t length); int (*ANeuralNetworksModel_setOperandSymmPerChannelQuantParams)( ANeuralNetworksModel* model, int32_t index, const ANeuralNetworksSymmPerChannelQuantParams* channelQuant); int (*ANeuralNetworksModel_setOperandValueFromMemory)( ANeuralNetworksModel* model, int32_t index, const ANeuralNetworksMemory* memory, size_t offset, size_t length); int (*ANeuralNetworksModel_addOperation)(ANeuralNetworksModel* model, ANeuralNetworksOperationType type, uint32_t inputCount, const uint32_t* inputs, uint32_t outputCount, const uint32_t* outputs); int (*ANeuralNetworksModel_identifyInputsAndOutputs)( ANeuralNetworksModel* model, uint32_t inputCount, const uint32_t* inputs, uint32_t outputCount, const uint32_t* outputs); int (*ANeuralNetworksModel_relaxComputationFloat32toFloat16)( ANeuralNetworksModel* model, bool allow); int (*ANeuralNetworksCompilation_create)( ANeuralNetworksModel* model, ANeuralNetworksCompilation** compilation); void (*ANeuralNetworksCompilation_free)( ANeuralNetworksCompilation* compilation); int (*ANeuralNetworksCompilation_setPreference)( ANeuralNetworksCompilation* compilation, int32_t preference); int (*ANeuralNetworksCompilation_finish)( ANeuralNetworksCompilation* compilation); int (*ANeuralNetworksExecution_create)( ANeuralNetworksCompilation* compilation, ANeuralNetworksExecution** execution); void (*ANeuralNetworksExecution_free)(ANeuralNetworksExecution* execution); int (*ANeuralNetworksExecution_setInput)( ANeuralNetworksExecution* execution, int32_t index, const ANeuralNetworksOperandType* type, const void* buffer, size_t length); int (*ANeuralNetworksExecution_setInputFromMemory)( ANeuralNetworksExecution* execution, int32_t index, const ANeuralNetworksOperandType* type, const ANeuralNetworksMemory* memory, size_t offset, size_t length); int (*ANeuralNetworksExecution_setOutput)( ANeuralNetworksExecution* execution, int32_t index, const ANeuralNetworksOperandType* type, void* buffer, size_t length); int (*ANeuralNetworksExecution_setOutputFromMemory)( ANeuralNetworksExecution* execution, int32_t index, const ANeuralNetworksOperandType* type, const ANeuralNetworksMemory* memory, size_t offset, size_t length); int (*ANeuralNetworksExecution_startCompute)( ANeuralNetworksExecution* execution, ANeuralNetworksEvent** event); int (*ANeuralNetworksEvent_wait)(ANeuralNetworksEvent* event); void (*ANeuralNetworksEvent_free)(ANeuralNetworksEvent* event); int (*ASharedMemory_create)(const char* name, size_t size); int (*ANeuralNetworks_getDeviceCount)(uint32_t* numDevices); int (*ANeuralNetworks_getDevice)(uint32_t devIndex, ANeuralNetworksDevice** device); int (*ANeuralNetworksDevice_getName)(const ANeuralNetworksDevice* device, const char** name); int (*ANeuralNetworksDevice_getVersion)(const ANeuralNetworksDevice* device, const char** version); int (*ANeuralNetworksDevice_getFeatureLevel)( const ANeuralNetworksDevice* device, int64_t* featureLevel); int (*ANeuralNetworksDevice_getType)(const ANeuralNetworksDevice* device, int32_t* type); int (*ANeuralNetworksModel_getSupportedOperationsForDevices)( const ANeuralNetworksModel* model, const ANeuralNetworksDevice* const* devices, uint32_t numDevices, bool* supportedOps); int (*ANeuralNetworksCompilation_createForDevices)( ANeuralNetworksModel* model, const ANeuralNetworksDevice* const* devices, uint32_t numDevices, ANeuralNetworksCompilat
#include "tensorflow/lite/nnapi/nnapi_implementation.h" #include <gtest/gtest.h> namespace { TEST(NnapiLibTest, NnApiImplementation) { const NnApi* nnapi = NnApiImplementation(); EXPECT_NE(nnapi, nullptr); #ifdef __ANDROID__ EXPECT_GT(nnapi->android_sdk_version, 0); if (nnapi.android_sdk_version < 27) { EXPECT_FALSE(nnapi->nnapi_exists); EXPECT_EQ(nnapi->ANeuralNetworksMemory_createFromFd, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksMemory_free, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksModel_create, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksModel_free, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksModel_finish, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksModel_addOperand, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksModel_setOperandValue, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksModel_setOperandValueFromMemory, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksModel_addOperation, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksModel_identifyInputsAndOutputs, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksModel_relaxComputationFloat32toFloat16, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksCompilation_create, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksCompilation_free, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksCompilation_setPreference, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksCompilation_finish, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksExecution_create, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksExecution_free, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksExecution_setInput, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksExecution_setInputFromMemory, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksExecution_setOutput, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksExecution_setOutputFromMemory, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksExecution_startCompute, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksEvent_wait, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksEvent_free, nullptr); EXPECT_EQ(nnapi->ASharedMemory_create, nullptr); } else { EXPECT_TRUE(nnapi->nnapi_exists); EXPECT_NE(nnapi->ANeuralNetworksMemory_createFromFd, nullptr); EXPECT_NE(nnapi->ANeuralNetworksMemory_free, nullptr); EXPECT_NE(nnapi->ANeuralNetworksModel_create, nullptr); EXPECT_NE(nnapi->ANeuralNetworksModel_free, nullptr); EXPECT_NE(nnapi->ANeuralNetworksModel_finish, nullptr); EXPECT_NE(nnapi->ANeuralNetworksModel_addOperand, nullptr); EXPECT_NE(nnapi->ANeuralNetworksModel_setOperandValue, nullptr); EXPECT_NE(nnapi->ANeuralNetworksModel_setOperandValueFromMemory, nullptr); EXPECT_NE(nnapi->ANeuralNetworksModel_addOperation, nullptr); EXPECT_NE(nnapi->ANeuralNetworksModel_identifyInputsAndOutputs, nullptr); if (nnapi->android_sdk_version >= 28) { EXPECT_NE(nnapi->ANeuralNetworksModel_relaxComputationFloat32toFloat16, nullptr); } else { EXPECT_EQ(nnapi->ANeuralNetworksModel_relaxComputationFloat32toFloat16, nullptr); } EXPECT_NE(nnapi->ANeuralNetworksCompilation_create, nullptr); EXPECT_NE(nnapi->ANeuralNetworksCompilation_free, nullptr); EXPECT_NE(nnapi->ANeuralNetworksCompilation_setPreference, nullptr); EXPECT_NE(nnapi->ANeuralNetworksCompilation_finish, nullptr); EXPECT_NE(nnapi->ANeuralNetworksExecution_create, nullptr); EXPECT_NE(nnapi->ANeuralNetworksExecution_free, nullptr); EXPECT_NE(nnapi->ANeuralNetworksExecution_setInput, nullptr); EXPECT_NE(nnapi->ANeuralNetworksExecution_setInputFromMemory, nullptr); EXPECT_NE(nnapi->ANeuralNetworksExecution_setOutput, nullptr); EXPECT_NE(nnapi->ANeuralNetworksExecution_setOutputFromMemory, nullptr); EXPECT_NE(nnapi->ANeuralNetworksExecution_startCompute, nullptr); EXPECT_NE(nnapi->ANeuralNetworksEvent_wait, nullptr); EXPECT_NE(nnapi->ANeuralNetworksEvent_free, nullptr); EXPECT_NE(nnapi->ASharedMemory_create, nullptr); } #else EXPECT_FALSE(nnapi->nnapi_exists); EXPECT_EQ(nnapi->android_sdk_version, 0); EXPECT_EQ(nnapi->ANeuralNetworksMemory_createFromFd, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksMemory_free, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksModel_create, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksModel_free, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksModel_finish, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksModel_addOperand, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksModel_setOperandValue, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksModel_setOperandSymmPerChannelQuantParams, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksModel_setOperandValueFromMemory, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksModel_addOperation, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksModel_identifyInputsAndOutputs, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksModel_relaxComputationFloat32toFloat16, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksCompilation_create, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksCompilation_free, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksCompilation_setPreference, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksCompilation_finish, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksExecution_create, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksExecution_free, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksExecution_setInput, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksExecution_setInputFromMemory, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksExecution_setOutput, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksExecution_setOutputFromMemory, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksExecution_startCompute, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksEvent_wait, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksEvent_free, nullptr); EXPECT_EQ(nnapi->ASharedMemory_create, nullptr); EXPECT_EQ(nnapi->ANeuralNetworks_getDeviceCount, nullptr); EXPECT_EQ(nnapi->ANeuralNetworks_getDevice, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksDevice_getName, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksDevice_getVersion, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksDevice_getFeatureLevel, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksModel_getSupportedOperationsForDevices, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksCompilation_createForDevices, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksCompilation_setCaching, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksExecution_compute, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksExecution_getOutputOperandRank, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksExecution_getOutputOperandDimensions, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksBurst_create, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksBurst_free, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksExecution_burstCompute, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksMemory_createFromAHardwareBuffer, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksExecution_setMeasureTiming, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksExecution_getDuration, nullptr); #endif } }
825
cpp
tensorflow/tensorflow
nnapi_handler
tensorflow/lite/nnapi/nnapi_handler.cc
tensorflow/lite/nnapi/nnapi_handler_test.cc
#ifndef TENSORFLOW_LITE_NNAPI_NNAPI_HANDLER_H_ #define TENSORFLOW_LITE_NNAPI_NNAPI_HANDLER_H_ #include <string> #include "tensorflow/core/platform/logging.h" #include "tensorflow/lite/nnapi/NeuralNetworksTypes.h" #include "tensorflow/lite/nnapi/nnapi_implementation.h" namespace tflite { namespace nnapi { class NnApiHandler { public: static NnApiHandler* Instance(); void Reset(); template <int Value> void GetDeviceCountReturns() { nnapi_->ANeuralNetworks_getDeviceCount = [](uint32_t* numDevices) -> int { *numDevices = 1; return Value; }; } template <int DeviceCount> void GetDeviceCountReturnsCount() { nnapi_->ANeuralNetworks_getDeviceCount = [](uint32_t* numDevices) -> int { *numDevices = DeviceCount; return ANEURALNETWORKS_NO_ERROR; }; } void StubGetDeviceCountWith(int(stub)(uint32_t*)) { nnapi_->ANeuralNetworks_getDeviceCount = stub; } template <int Value> void GetDeviceReturns() { nnapi_->ANeuralNetworks_getDevice = [](uint32_t devIndex, ANeuralNetworksDevice** device) -> int { *device = reinterpret_cast<ANeuralNetworksDevice*>(NnApiHandler::kNnapiDevice); return Value; }; } void StubGetDeviceWith(int(stub)(uint32_t, ANeuralNetworksDevice**)) { nnapi_->ANeuralNetworks_getDevice = stub; } template <int Value> void GetDeviceNameReturns() { nnapi_->ANeuralNetworksDevice_getName = [](const ANeuralNetworksDevice* device, const char** name) -> int { *name = NnApiHandler::nnapi_device_name_; return Value; }; } void GetDeviceNameReturnsName(const std::string& name); void StubGetDeviceNameWith(int(stub)(const ANeuralNetworksDevice*, const char**)) { nnapi_->ANeuralNetworksDevice_getName = stub; } void SetNnapiSupportedDevice(const std::string& name, int feature_level = 29); template <int Value> void ModelCreateReturns() { nnapi_->ANeuralNetworksModel_create = [](ANeuralNetworksModel** model) { *model = reinterpret_cast<ANeuralNetworksModel*>(1); return Value; }; } void StubModelCreateWith(int(stub)(ANeuralNetworksModel** model)) { nnapi_->ANeuralNetworksModel_create = stub; } template <int Value> void AddOperandReturns() { nnapi_->ANeuralNetworksModel_addOperand = [](ANeuralNetworksModel* model, const ANeuralNetworksOperandType* type) { return Value; }; } void StubAddOperandWith(int(stub)(ANeuralNetworksModel* model, const ANeuralNetworksOperandType* type)) { nnapi_->ANeuralNetworksModel_addOperand = stub; } template <int Value> void SetOperandValueReturns() { nnapi_->ANeuralNetworksModel_setOperandValue = [](ANeuralNetworksModel* model, int32_t index, const void* buffer, size_t length) { return Value; }; } template <int Value> void AddOperationReturns() { nnapi_->ANeuralNetworksModel_addOperation = [](ANeuralNetworksModel* model, ANeuralNetworksOperationType type, uint32_t inputCount, const uint32_t* inputs, uint32_t outputCount, const uint32_t* outputs) { return Value; }; } void StubAddOperationWith( int(stub)(ANeuralNetworksModel* model, ANeuralNetworksOperationType type, uint32_t inputCount, const uint32_t* inputs, uint32_t outputCount, const uint32_t* outputs)) { nnapi_->ANeuralNetworksModel_addOperation = stub; } template <int Value> void IdentifyInputAndOutputsReturns() { nnapi_->ANeuralNetworksModel_identifyInputsAndOutputs = [](ANeuralNetworksModel* model, uint32_t inputCount, const uint32_t* inputs, uint32_t outputCount, const uint32_t* outputs) { return Value; }; } template <int Value> void RelaxComputationFloatReturns() { nnapi_->ANeuralNetworksModel_relaxComputationFloat32toFloat16 = [](ANeuralNetworksModel* model, bool allow) { return Value; }; } template <int Value> void ModelFinishReturns() { nnapi_->ANeuralNetworksModel_finish = [](ANeuralNetworksModel* model) { return Value; }; } template <int Value> void MemoryCreateFromFdReturns() { nnapi_->ANeuralNetworksMemory_createFromFd = [](size_t size, int protect, int fd, size_t offset, ANeuralNetworksMemory** memory) { *memory = reinterpret_cast<ANeuralNetworksMemory*>(2); return Value; }; } template <int Value> void CompilationCreateReturns() { nnapi_->ANeuralNetworksCompilation_create = [](ANeuralNetworksModel* model, ANeuralNetworksCompilation** compilation) { *compilation = reinterpret_cast<ANeuralNetworksCompilation*>(3); return Value; }; } template <int Value> void CompilationCreateForDevicesReturns() { nnapi_->ANeuralNetworksCompilation_createForDevices = [](ANeuralNetworksModel* model, const ANeuralNetworksDevice* const* devices, uint32_t numDevices, ANeuralNetworksCompilation** compilation) { *compilation = reinterpret_cast<ANeuralNetworksCompilation*>(3); return Value; }; } void StubCompilationCreateForDevicesWith(int(stub)( ANeuralNetworksModel* model, const ANeuralNetworksDevice* const* devices, uint32_t numDevices, ANeuralNetworksCompilation** compilation)) { nnapi_->ANeuralNetworksCompilation_createForDevices = stub; } template <int Value> void CompilationFinishReturns() { nnapi_->ANeuralNetworksCompilation_finish = [](ANeuralNetworksCompilation* compilation) { return Value; }; } template <int Value> void ExecutionCreateReturns() { nnapi_->ANeuralNetworksExecution_create = [](ANeuralNetworksCompilation* compilation, ANeuralNetworksExecution** execution) { if (compilation == nullptr) return 1; *execution = reinterpret_cast<ANeuralNetworksExecution*>(4); return Value; }; } template <int Value> void ExecutionSetInputFromMemoryReturns() { nnapi_->ANeuralNetworksExecution_setInputFromMemory = [](ANeuralNetworksExecution* execution, int32_t index, const ANeuralNetworksOperandType* type, const ANeuralNetworksMemory* memory, size_t offset, size_t length) { return Value; }; } template <int Value> void ExecutionSetOutputFromMemoryReturns() { nnapi_->ANeuralNetworksExecution_setOutputFromMemory = [](ANeuralNetworksExecution* execution, int32_t index, const ANeuralNetworksOperandType* type, const ANeuralNetworksMemory* memory, size_t offset, size_t length) { return Value; }; } template <int Value> void ExecutionComputeReturns() { nnapi_->ANeuralNetworksExecution_compute = [](ANeuralNetworksExecution* execution) { return Value; }; } template <int Value> void GetSupportedOperationsForDevicesReturns() { nnapi_->ANeuralNetworksModel_getSupportedOperationsForDevices = [](const ANeuralNetworksModel* model, const ANeuralNetworksDevice* const* devices, uint32_t numDevices, bool* supportedOps) { return Value; }; } void StubGetSupportedOperationsForDevicesWith( int(stub)(const ANeuralNetworksModel* model, const ANeuralNetworksDevice* const* devices, uint32_t numDevices, bool* supportedOps)) { nnapi_->ANeuralNetworksModel_getSupportedOperationsForDevices = stub; } template <int Value> void ExecutionStartComputeReturns() { nnapi_->ANeuralNetworksExecution_startCompute = [](ANeuralNetworksExecution* execution, ANeuralNetworksEvent** event) { *event = reinterpret_cast<ANeuralNetworksEvent*>(1); return Value; }; } template <int Value> void EventWaitReturns() { nnapi_->ANeuralNetworksEvent_wait = [](ANeuralNetworksEvent* event) { return Value; }; } template <int Value> void SetPriorityReturns() { nnapi_->ANeuralNetworksCompilation_setPriority = [](ANeuralNetworksCompilation* compilation, int priority) -> int { return Value; }; } template <int Value> void SetOperandSymmPerChannelQuantParamsReturns() { nnapi_->ANeuralNetworksModel_setOperandSymmPerChannelQuantParams = [](ANeuralNetworksModel* model, int32_t index, const ANeuralNetworksSymmPerChannelQuantParams* channelQuant) { return Value; }; } void SetAndroidSdkVersion(int version, bool set_unsupported_ops_to_null = false); const NnApi* GetNnApi() { return nnapi_; } protected: explicit NnApiHandler(NnApi* nnapi) : nnapi_(nnapi) { DCHECK(nnapi); } NnApi* nnapi_; static const char kNnapiReferenceDeviceName[]; static const int kNnapiReferenceDevice; static const int kNnapiDevice; static void SetDeviceName(const std::string& name); private: static char* nnapi_device_name_; static int nnapi_device_feature_level_; }; const NnApi* NnApiPassthroughInstance(); NnApiHandler* NnApiProxyInstance(); } } #endif #include "tensorflow/lite/nnapi/nnapi_handler.h" #include <cstdio> #include <string> #include "tensorflow/lite/nnapi/nnapi_implementation.h" namespace tflite { namespace nnapi { const char NnApiHandler::kNnapiReferenceDeviceName[] = "nnapi-reference"; const int NnApiHandler::kNnapiReferenceDevice = 1; const int NnApiHandler::kNnapiDevice = 2; char* NnApiHandler::nnapi_device_name_ = nullptr; int NnApiHandler::nnapi_device_feature_level_; const NnApi* NnApiPassthroughInstance() { static const NnApi orig_nnapi_copy = *NnApiImplementation(); return &orig_nnapi_copy; } NnApiHandler* NnApiHandler::Instance() { NnApiPassthroughInstance(); static NnApiHandler handler{const_cast<NnApi*>(NnApiImplementation())}; return &handler; } void NnApiHandler::Reset() { *nnapi_ = *NnApiPassthroughInstance(); } void NnApiHandler::SetAndroidSdkVersion(int version, bool set_unsupported_ops_to_null) { nnapi_->android_sdk_version = version; nnapi_->nnapi_runtime_feature_level = version; if (!set_unsupported_ops_to_null) { return; } if (version < 29) { nnapi_->ANeuralNetworks_getDeviceCount = nullptr; nnapi_->ANeuralNetworks_getDevice = nullptr; nnapi_->ANeuralNetworksDevice_getName = nullptr; nnapi_->ANeuralNetworksDevice_getVersion = nullptr; nnapi_->ANeuralNetworksDevice_getFeatureLevel = nullptr; nnapi_->ANeuralNetworksDevice_getType = nullptr; nnapi_->ANeuralNetworksModel_getSupportedOperationsForDevices = nullptr; nnapi_->ANeuralNetworksCompilation_createForDevices = nullptr; nnapi_->ANeuralNetworksCompilation_setCaching = nullptr; nnapi_->ANeuralNetworksExecution_compute = nullptr; nnapi_->ANeuralNetworksExecution_getOutputOperandRank = nullptr; nnapi_->ANeuralNetworksExecution_getOutputOperandDimensions = nullptr; nnapi_->ANeuralNetworksBurst_create = nullptr; nnapi_->ANeuralNetworksBurst_free = nullptr; nnapi_->ANeuralNetworksExecution_burstCompute = nullptr; nnapi_->ANeuralNetworksMemory_createFromAHardwareBuffer = nullptr; nnapi_->ANeuralNetworksExecution_setMeasureTiming = nullptr; nnapi_->ANeuralNetworksExecution_getDuration = nullptr; nnapi_->ANeuralNetworksDevice_getExtensionSupport = nullptr; nnapi_->ANeuralNetworksModel_getExtensionOperandType = nullptr; nnapi_->ANeuralNetworksModel_getExtensionOperationType = nullptr; nnapi_->ANeuralNetworksModel_setOperandExtensionData = nullptr; } if (version < 28) { nnapi_->ANeuralNetworksModel_relaxComputationFloat32toFloat16 = nullptr; } } void NnApiHandler::SetDeviceName(const std::string& name) { delete[] nnapi_device_name_; nnapi_device_name_ = new char[name.size() + 1]; std::strcpy(nnapi_device_name_, name.c_str()); } void NnApiHandler::GetDeviceNameReturnsName(const std::string& name) { NnApiHandler::SetDeviceName(name); GetDeviceNameReturns<0>(); } void NnApiHandler::SetNnapiSupportedDevice(const std::string& name, int feature_level) { NnApiHandler::SetDeviceName(name); nnapi_device_feature_level_ = feature_level; GetDeviceCountReturnsCount<2>(); nnapi_->ANeuralNetworks_getDevice = [](uint32_t devIndex, ANeuralNetworksDevice** device) -> int { if (devIndex > 1) { return ANEURALNETWORKS_BAD_DATA; } if (devIndex == 1) { *device = reinterpret_cast<ANeuralNetworksDevice*>(NnApiHandler::kNnapiDevice); } else { *device = reinterpret_cast<ANeuralNetworksDevice*>( NnApiHandler::kNnapiReferenceDevice); } return ANEURALNETWORKS_NO_ERROR; }; nnapi_->ANeuralNetworksDevice_getName = [](const ANeuralNetworksDevice* device, const char** name) -> int { if (device == reinterpret_cast<ANeuralNetworksDevice*>(NnApiHandler::kNnapiDevice)) { *name = NnApiHandler::nnapi_device_name_; return ANEURALNETWORKS_NO_ERROR; } if (device == reinterpret_cast<ANeuralNetworksDevice*>( NnApiHandler::kNnapiReferenceDevice)) { *name = NnApiHandler::kNnapiReferenceDeviceName; return ANEURALNETWORKS_NO_ERROR; } return ANEURALNETWORKS_BAD_DATA; }; nnapi_->ANeuralNetworksDevice_getFeatureLevel = [](const ANeuralNetworksDevice* device, int64_t* featureLevel) -> int { if (device == reinterpret_cast<ANeuralNetworksDevice*>(NnApiHandler::kNnapiDevice)) { *featureLevel = NnApiHandler::nnapi_device_feature_level_; return ANEURALNETWORKS_NO_ERROR; } if (device == reinterpret_cast<ANeuralNetworksDevice*>( NnApiHandler::kNnapiReferenceDevice)) { *featureLevel = 1000; return ANEURALNETWORKS_NO_ERROR; } return ANEURALNETWORKS_BAD_DATA; }; } } }
#include "tensorflow/lite/nnapi/nnapi_handler.h" #include <cstdint> #include <cstdio> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/nnapi/nnapi_implementation.h" namespace tflite { namespace nnapi { using testing::Eq; using testing::Ne; using testing::NotNull; void ExpectEquals(const NnApi& left, const NnApi& right); class NnApiHandlerTest : public ::testing::Test { protected: ~NnApiHandlerTest() override { NnApiHandler::Instance()->Reset(); } }; TEST_F(NnApiHandlerTest, ShouldAlterNnApiInstanceBehaviour) { const NnApi* nnapi = NnApiImplementation(); const auto device_count_stub = [](uint32_t* device_count) -> int { *device_count = 999; return ANEURALNETWORKS_NO_ERROR; }; NnApiHandler::Instance()->StubGetDeviceCountWith(device_count_stub); ASSERT_THAT(nnapi->ANeuralNetworks_getDeviceCount, NotNull()); uint32_t device_count = 0; nnapi->ANeuralNetworks_getDeviceCount(&device_count); EXPECT_THAT(device_count, Eq(999)); } TEST_F(NnApiHandlerTest, ShouldRestoreNnApiToItsOriginalValueWithReset) { NnApi nnapi_orig_copy = *NnApiImplementation(); auto device_count_override = [](uint32_t* device_count) -> int { *device_count = 777; return ANEURALNETWORKS_NO_ERROR; }; NnApiHandler::Instance()->StubGetDeviceCountWith(device_count_override); EXPECT_THAT(nnapi_orig_copy.ANeuralNetworks_getDeviceCount, Ne(NnApiImplementation()->ANeuralNetworks_getDeviceCount)); NnApiHandler::Instance()->Reset(); ExpectEquals(nnapi_orig_copy, *NnApiImplementation()); } int (*device_count_ptr)(uint32_t*); TEST_F(NnApiHandlerTest, ShouldSupportPassthroughCalls) { const NnApi* nnapi = NnApiImplementation(); device_count_ptr = nnapi->ANeuralNetworks_getDeviceCount; NnApiHandler::Instance()->StubGetDeviceCountWith( [](uint32_t* device_count) -> int { return NnApiPassthroughInstance()->ANeuralNetworks_getDeviceCount == device_count_ptr; }); uint32_t device_count = 0; EXPECT_THAT(nnapi->ANeuralNetworks_getDeviceCount(&device_count), Eq(1)); } TEST_F(NnApiHandlerTest, ShouldSetNnApiMembersToNullAsPerSdkVersion_NNAPI11) { auto* handler = NnApiHandler::Instance(); handler->SetNnapiSupportedDevice("devvice", 1000); handler->GetSupportedOperationsForDevicesReturns<1>(); handler->CompilationCreateForDevicesReturns<1>(); handler->ExecutionComputeReturns<1>(); handler->MemoryCreateFromFdReturns<1>(); handler->SetAndroidSdkVersion(28, true); const NnApi* nnapi = NnApiImplementation(); using ::testing::IsNull; EXPECT_THAT(nnapi->ANeuralNetworks_getDeviceCount, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworks_getDevice, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksDevice_getName, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksDevice_getVersion, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksDevice_getFeatureLevel, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksDevice_getType, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksModel_getSupportedOperationsForDevices, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksCompilation_createForDevices, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksCompilation_setCaching, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksExecution_compute, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksExecution_getOutputOperandRank, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksExecution_getOutputOperandDimensions, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksBurst_create, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksBurst_free, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksExecution_burstCompute, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksMemory_createFromAHardwareBuffer, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksExecution_setMeasureTiming, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksExecution_getDuration, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksDevice_getExtensionSupport, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksModel_getExtensionOperandType, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksModel_getExtensionOperationType, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksModel_setOperandExtensionData, IsNull()); } TEST_F(NnApiHandlerTest, ShouldSetNnApiMembersToNullAsPerSdkVersion_NNAPI10) { auto* handler = NnApiHandler::Instance(); handler->SetNnapiSupportedDevice("devvice", 1000); handler->GetSupportedOperationsForDevicesReturns<1>(); handler->CompilationCreateForDevicesReturns<1>(); handler->ExecutionComputeReturns<1>(); handler->MemoryCreateFromFdReturns<1>(); handler->SetAndroidSdkVersion(27, true); const NnApi* nnapi = NnApiImplementation(); using ::testing::IsNull; EXPECT_THAT(nnapi->ANeuralNetworks_getDeviceCount, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworks_getDevice, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksDevice_getName, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksDevice_getVersion, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksDevice_getFeatureLevel, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksDevice_getType, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksModel_getSupportedOperationsForDevices, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksCompilation_createForDevices, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksCompilation_setCaching, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksExecution_compute, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksExecution_getOutputOperandRank, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksExecution_getOutputOperandDimensions, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksBurst_create, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksBurst_free, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksExecution_burstCompute, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksMemory_createFromAHardwareBuffer, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksExecution_setMeasureTiming, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksExecution_getDuration, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksDevice_getExtensionSupport, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksModel_getExtensionOperandType, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksModel_getExtensionOperationType, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksModel_setOperandExtensionData, IsNull()); EXPECT_THAT(nnapi->ANeuralNetworksModel_relaxComputationFloat32toFloat16, IsNull()); } void ExpectEquals(const NnApi& left, const NnApi& right) { #define EXPECT_NNAPI_MEMBER_EQ(name) EXPECT_EQ(left.name, right.name) EXPECT_NNAPI_MEMBER_EQ(nnapi_exists); EXPECT_NNAPI_MEMBER_EQ(android_sdk_version); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworksMemory_createFromFd); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworksMemory_free); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworksModel_create); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworksModel_free); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworksModel_finish); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworksModel_addOperand); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworksModel_setOperandValue); EXPECT_NNAPI_MEMBER_EQ( ANeuralNetworksModel_setOperandSymmPerChannelQuantParams); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworksModel_setOperandValueFromMemory); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworksModel_addOperation); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworksModel_identifyInputsAndOutputs); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworksModel_relaxComputationFloat32toFloat16); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworksCompilation_create); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworksCompilation_free); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworksCompilation_setPreference); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworksCompilation_finish); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworksExecution_create); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworksExecution_free); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworksExecution_setInput); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworksExecution_setInputFromMemory); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworksExecution_setOutput); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworksExecution_setOutputFromMemory); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworksExecution_startCompute); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworksEvent_wait); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworksEvent_free); EXPECT_NNAPI_MEMBER_EQ(ASharedMemory_create); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworks_getDeviceCount); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworks_getDevice); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworksDevice_getName); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworksDevice_getVersion); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworksDevice_getFeatureLevel); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworksDevice_getType); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworksModel_getSupportedOperationsForDevices); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworksCompilation_createForDevices); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworksCompilation_setCaching); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworksExecution_compute); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworksExecution_getOutputOperandRank); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworksExecution_getOutputOperandDimensions); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworksBurst_create); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworksBurst_free); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworksExecution_burstCompute); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworksMemory_createFromAHardwareBuffer); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworksExecution_setMeasureTiming); EXPECT_NNAPI_MEMBER_EQ(ANeuralNetworksExecution_getDuration); #undef EXPECT_NNAPI_MEMBER_EQ } } }
826
cpp
tensorflow/tensorflow
c_api_opaque_internal
tensorflow/lite/c/c_api_opaque_internal.cc
tensorflow/lite/c/c_api_opaque_internal_test.cc
#ifndef TENSORFLOW_LITE_C_C_API_OPAQUE_INTERNAL_H_ #define TENSORFLOW_LITE_C_C_API_OPAQUE_INTERNAL_H_ #include "tensorflow/lite/core/api/op_resolver.h" #include "tensorflow/lite/core/c/common.h" namespace tflite { namespace internal { class CommonOpaqueConversionUtil { public: CommonOpaqueConversionUtil() = delete; static TfLiteOperator* ObtainOperator(TfLiteContext* context, const TfLiteRegistration* registration, int node_index); private: static TfLiteOperator* CachedObtainOperator( ::tflite::internal::OperatorsCache* registration_externals_cache, const TfLiteRegistration* registration, int node_index); }; } } #endif #include "tensorflow/lite/c/c_api_opaque_internal.h" #include <memory> #include <unordered_map> #include <utility> #include "tensorflow/lite/core/api/op_resolver.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/c/operator.h" #include "tensorflow/lite/core/subgraph.h" namespace tflite { namespace internal { namespace { TfLiteOperator* MakeOperator(const TfLiteRegistration* registration, int node_index) { auto* registration_external = TfLiteOperatorCreateWithData( static_cast<TfLiteBuiltinOperator>(registration->builtin_code), registration->custom_name, registration->version, nullptr); registration_external->node_index = node_index; return registration_external; } } TfLiteOperator* CommonOpaqueConversionUtil::CachedObtainOperator( OperatorsCache* registration_externals_cache, const TfLiteRegistration* registration, int node_index) { OpResolver::OpId op_id{registration->builtin_code, registration->custom_name, registration->version}; auto it = registration_externals_cache->find(op_id); if (it != registration_externals_cache->end()) { return it->second.get(); } auto* registration_external = MakeOperator(registration, node_index); registration_externals_cache->insert( it, std::make_pair(op_id, registration_external)); return registration_external; } TfLiteOperator* CommonOpaqueConversionUtil::ObtainOperator( TfLiteContext* context, const TfLiteRegistration* registration, int node_index) { auto* subgraph = static_cast<tflite::Subgraph*>(context->impl_); if (!subgraph->registration_externals_) { subgraph->registration_externals_ = std::make_shared<OperatorsCache>(); } return CachedObtainOperator(subgraph->registration_externals_.get(), registration, node_index); } } }
#include "tensorflow/lite/c/c_api_opaque_internal.h" #include <memory> #include <gtest/gtest.h> #include "tensorflow/lite/builtin_ops.h" #include "tensorflow/lite/core/subgraph.h" #include "tensorflow/lite/interpreter.h" #include "tensorflow/lite/interpreter_builder.h" #include "tensorflow/lite/kernels/builtin_op_kernels.h" #include "tensorflow/lite/kernels/register.h" #include "tensorflow/lite/model_builder.h" using tflite::FlatBufferModel; using tflite::Interpreter; using tflite::InterpreterBuilder; using tflite::internal::CommonOpaqueConversionUtil; using tflite::ops::builtin::BuiltinOpResolver; TEST(ObtainRegistrationFromContext, ProducesValidResult) { BuiltinOpResolver op_resolver; std::unique_ptr<Interpreter> interpreter; std::unique_ptr<FlatBufferModel> model = FlatBufferModel::BuildFromFile( "tensorflow/lite/testdata/add.bin"); ASSERT_NE(model, nullptr); InterpreterBuilder builder(*model, op_resolver); ASSERT_EQ(builder(&interpreter), kTfLiteOk); ASSERT_NE(interpreter, nullptr); TfLiteContext* context = interpreter->primary_subgraph().context(); const TfLiteRegistration* registration = tflite::ops::builtin::Register_ADD(); TfLiteOperator* registration_external = CommonOpaqueConversionUtil::ObtainOperator(context, registration, 42); ASSERT_EQ(registration_external->builtin_code, kTfLiteBuiltinAdd); ASSERT_EQ(registration_external->version, registration->version); ASSERT_EQ(registration_external->custom_name, registration->custom_name); ASSERT_EQ(registration_external->node_index, 42); } TEST(ObtainRegistrationFromContext, CachingWorks) { BuiltinOpResolver op_resolver; std::unique_ptr<Interpreter> interpreter; std::unique_ptr<FlatBufferModel> model = FlatBufferModel::BuildFromFile( "tensorflow/lite/testdata/add.bin"); ASSERT_NE(model, nullptr); InterpreterBuilder builder(*model, op_resolver); ASSERT_EQ(builder(&interpreter), kTfLiteOk); ASSERT_NE(interpreter, nullptr); TfLiteContext* context = interpreter->primary_subgraph().context(); const TfLiteRegistration* registration = tflite::ops::builtin::Register_ADD(); TfLiteOperator* registration_external1 = CommonOpaqueConversionUtil::ObtainOperator(context, registration, 0); TfLiteOperator* registration_external2 = CommonOpaqueConversionUtil::ObtainOperator(context, registration, 1); ASSERT_EQ(registration_external1, registration_external2); }
827
cpp
tensorflow/tensorflow
test_util
third_party/xla/xla/python/ifrt/test_util.cc
tensorflow/lite/kernels/shim/test_util_test.cc
#include "tsl/lib/core/status_test_util.h" #ifndef XLA_PYTHON_IFRT_TEST_UTIL_H_ #define XLA_PYTHON_IFRT_TEST_UTIL_H_ #include <functional> #include <memory> #include <vector> #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/python/ifrt/array.h" #include "xla/python/ifrt/client.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/dtype.h" #include "xla/python/ifrt/shape.h" #include "xla/tsl/concurrency/ref_count.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace ifrt { namespace test_util { void RegisterClientFactory( std::function<absl::StatusOr<std::shared_ptr<Client>>()> factory); bool IsClientFactoryRegistered(); absl::StatusOr<std::shared_ptr<Client>> GetClient(); void SetTestFilterIfNotUserSpecified(absl::string_view custom_filter); template <typename ElementT> void AssertPerShardData( tsl::RCReference<Array> actual, DType expected_dtype, Shape expected_per_shard_shape, absl::Span<const absl::Span<const ElementT>> expected_per_shard_data, DeviceList expected_device_list) { ASSERT_EQ(actual->dtype(), expected_dtype); EXPECT_THAT(GetDeviceIds(actual->sharding().devices()), testing::ElementsAreArray(GetDeviceIds(expected_device_list))); TF_ASSERT_OK_AND_ASSIGN(auto actual_per_shard_arrays, actual->DisassembleIntoSingleDeviceArrays( ArrayCopySemantics::kAlwaysCopy)); ASSERT_EQ(actual_per_shard_arrays.size(), expected_per_shard_data.size()); for (int i = 0; i < actual_per_shard_arrays.size(); ++i) { SCOPED_TRACE(absl::StrCat("Shard ", i)); tsl::RCReference<Array> array = actual_per_shard_arrays[i]; ASSERT_EQ(array->shape(), expected_per_shard_shape); std::vector<ElementT> actual_data(expected_per_shard_shape.num_elements()); TF_ASSERT_OK(array ->CopyToHostBuffer(actual_data.data(), std::nullopt, ArrayCopySemantics::kAlwaysCopy) .Await()); EXPECT_THAT(actual_data, testing::ElementsAreArray(expected_per_shard_data[i])); } } absl::StatusOr<DeviceList> GetDevices(Client* client, absl::Span<const int> device_indices); } } } #endif #include "xla/python/ifrt/test_util.h" #include <functional> #include <memory> #include <utility> #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/python/ifrt/client.h" #include "xla/python/ifrt/device.h" namespace xla { namespace ifrt { namespace test_util { namespace { class ClientFactory { public: void Register( std::function<absl::StatusOr<std::shared_ptr<Client>>()> factory) { absl::MutexLock lock(&mu_); CHECK(!factory_) << "Client factory has been already registered."; factory_ = std::move(factory); } std::function<absl::StatusOr<std::shared_ptr<Client>>()> Get() const { absl::MutexLock lock(&mu_); return factory_; } private: mutable absl::Mutex mu_; std::function<absl::StatusOr<std::shared_ptr<Client>>()> factory_ ABSL_GUARDED_BY(mu_); }; ClientFactory& GetGlobalClientFactory() { static auto* const factory = new ClientFactory; return *factory; } } void RegisterClientFactory( std::function<absl::StatusOr<std::shared_ptr<Client>>()> factory) { GetGlobalClientFactory().Register(std::move(factory)); } absl::StatusOr<std::shared_ptr<Client>> GetClient() { auto factory = GetGlobalClientFactory().Get(); CHECK(factory) << "Client factory has not been registered."; return factory(); } void SetTestFilterIfNotUserSpecified(absl::string_view custom_filter) { static constexpr absl::string_view kDefaultTestFilter = "*"; #ifdef GTEST_FLAG_SET if (GTEST_FLAG_GET(filter) == kDefaultTestFilter) { GTEST_FLAG_SET(filter, custom_filter); } #else if (testing::GTEST_FLAG(filter) == kDefaultTestFilter) { testing::GTEST_FLAG(filter) = custom_filter; } #endif } absl::StatusOr<DeviceList> GetDevices(Client* client, absl::Span<const int> device_indices) { DeviceList::Devices devices; devices.reserve(device_indices.size()); for (int device_index : device_indices) { if (device_index < 0 || device_index >= client->devices().size()) { return absl::InvalidArgumentError( absl::StrCat("Out of range device index: ", device_index)); } devices.push_back(client->devices()[device_index]); } return DeviceList(std::move(devices)); } } } }
#include "tensorflow/core/data/service/test_util.h" #include <cstdint> #include <memory> #include <string> #include <tuple> #include <vector> #include "absl/strings/str_cat.h" #include "tensorflow/core/data/dataset_test_base.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/standalone.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/tstring.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace data { namespace testing { namespace { using ::tensorflow::testing::IsOkAndHolds; using ::testing::ElementsAre; using ::testing::IsEmpty; template <class T> StatusOr<std::vector<T>> GetIteratorOutput(standalone::Iterator& iterator) { std::vector<T> result; for (bool end_of_sequence = false; !end_of_sequence;) { std::vector<tensorflow::Tensor> tensors; TF_RETURN_IF_ERROR(iterator.GetNext(&tensors, &end_of_sequence)); if (end_of_sequence) { break; } if (tensors.size() != 1) { return errors::Internal("GetNext Tensor size is not 1."); } result.push_back(tensors[0].unaligned_flat<T>().data()[0]); } return result; } TEST(TestUtilTest, RangeDataset) { const auto dataset_def = RangeDataset(10); standalone::Dataset::Params params; std::unique_ptr<standalone::Dataset> dataset; TF_ASSERT_OK( standalone::Dataset::FromGraph(params, dataset_def.graph(), &dataset)); std::unique_ptr<standalone::Iterator> iterator; TF_ASSERT_OK(dataset->MakeIterator(&iterator)); EXPECT_THAT(GetIteratorOutput<int64_t>(*iterator), IsOkAndHolds(ElementsAre(0, 1, 2, 3, 4, 5, 6, 7, 8, 9))); } TEST(TestUtilTest, RangeSquareDataset) { const auto dataset_def = RangeSquareDataset(10); standalone::Dataset::Params params; std::unique_ptr<standalone::Dataset> dataset; TF_ASSERT_OK( standalone::Dataset::FromGraph(params, dataset_def.graph(), &dataset)); std::unique_ptr<standalone::Iterator> iterator; TF_ASSERT_OK(dataset->MakeIterator(&iterator)); EXPECT_THAT(GetIteratorOutput<int64_t>(*iterator), IsOkAndHolds(ElementsAre(0, 1, 4, 9, 16, 25, 36, 49, 64, 81))); } TEST(TestUtilTest, InfiniteDataset) { const auto dataset_def = InfiniteDataset(); standalone::Dataset::Params params; std::unique_ptr<standalone::Dataset> dataset; TF_ASSERT_OK( standalone::Dataset::FromGraph(params, dataset_def.graph(), &dataset)); std::unique_ptr<standalone::Iterator> iterator; TF_ASSERT_OK(dataset->MakeIterator(&iterator)); for (int64_t i = 0; i < 10; ++i) { std::vector<tensorflow::Tensor> outputs; bool end_of_sequence; TF_ASSERT_OK(iterator->GetNext(&outputs, &end_of_sequence)); test::ExpectEqual(outputs[0], Tensor(i)); } } TEST(TestUtilTest, EmptyDataset) { const auto dataset_def = RangeSquareDataset(0); standalone::Dataset::Params params; std::unique_ptr<standalone::Dataset> dataset; TF_ASSERT_OK( standalone::Dataset::FromGraph(params, dataset_def.graph(), &dataset)); std::unique_ptr<standalone::Iterator> iterator; TF_ASSERT_OK(dataset->MakeIterator(&iterator)); EXPECT_THAT(GetIteratorOutput<int64_t>(*iterator), IsOkAndHolds(IsEmpty())); } TEST(TestUtilTest, InterleaveTextline) { std::vector<tstring> filenames = {LocalTempFilename(), LocalTempFilename()}; TF_ASSERT_OK_AND_ASSIGN(const DatasetDef dataset_def, InterleaveTextlineDataset(filenames, {"0", "1"})); standalone::Dataset::Params params; std::unique_ptr<standalone::Dataset> dataset; TF_ASSERT_OK( standalone::Dataset::FromGraph(params, dataset_def.graph(), &dataset)); std::unique_ptr<standalone::Iterator> iterator; TF_ASSERT_OK(dataset->MakeIterator(&iterator)); EXPECT_THAT(GetIteratorOutput<tstring>(*iterator), IsOkAndHolds(ElementsAre("0", "1"))); } TEST(TestUtilTest, InterleaveTextlineWithNewLines) { std::vector<tstring> filenames = {LocalTempFilename(), LocalTempFilename()}; TF_ASSERT_OK_AND_ASSIGN( const DatasetDef dataset_def, InterleaveTextlineDataset(filenames, {"0\n2\n4\n6\n8", "1\n3\n5\n7\n9"})); standalone::Dataset::Params params; std::unique_ptr<standalone::Dataset> dataset; TF_ASSERT_OK( standalone::Dataset::FromGraph(params, dataset_def.graph(), &dataset)); std::unique_ptr<standalone::Iterator> iterator; TF_ASSERT_OK(dataset->MakeIterator(&iterator)); EXPECT_THAT(GetIteratorOutput<tstring>(*iterator), IsOkAndHolds(ElementsAre("0", "1", "2", "3", "4", "5", "6", "7", "8", "9"))); } TEST(TestUtilTest, InterleaveTextlineEmptyFiles) { std::vector<tstring> filenames = {LocalTempFilename(), LocalTempFilename()}; TF_ASSERT_OK_AND_ASSIGN(const DatasetDef dataset_def, InterleaveTextlineDataset(filenames, {"", ""})); standalone::Dataset::Params params; std::unique_ptr<standalone::Dataset> dataset; TF_ASSERT_OK( standalone::Dataset::FromGraph(params, dataset_def.graph(), &dataset)); std::unique_ptr<standalone::Iterator> iterator; TF_ASSERT_OK(dataset->MakeIterator(&iterator)); EXPECT_THAT(GetIteratorOutput<tstring>(*iterator), IsOkAndHolds(IsEmpty())); } TEST(TestUtilTest, GetTestDataset) { TF_ASSERT_OK_AND_ASSIGN(const DatasetDef dataset_def, GetTestDataset("choose_from_datasets")); standalone::Dataset::Params params; std::unique_ptr<standalone::Dataset> dataset; TF_ASSERT_OK( standalone::Dataset::FromGraph(params, dataset_def.graph(), &dataset)); std::unique_ptr<standalone::Iterator> iterator; TF_ASSERT_OK(dataset->MakeIterator(&iterator)); EXPECT_THAT(GetIteratorOutput<tstring>(*iterator), IsOkAndHolds(ElementsAre("a", "b", "c", "a", "b", "c", "a", "b", "c", "a", "b", "c", "a", "b", "c"))); } } } } }
828
cpp
tensorflow/tensorflow
generator
tensorflow/lite/schema/builtin_ops_list/generator.cc
tensorflow/lite/schema/builtin_ops_list/generator_test.cc
#ifndef TENSORFLOW_LITE_SCHEMA_BUILTIN_OPS_HEADER_GENERATOR_H_ #define TENSORFLOW_LITE_SCHEMA_BUILTIN_OPS_HEADER_GENERATOR_H_ #include <iostream> #include <string> namespace tflite { namespace builtin_ops_header { bool IsValidInputEnumName(const std::string& name); std::string ConstantizeVariableName(const std::string& name); bool GenerateHeader(std::ostream& os); } } #endif #include "tensorflow/lite/schema/builtin_ops_header/generator.h" #include <string> #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace builtin_ops_header { namespace { const char* kFileHeader = R"( #ifndef TENSORFLOW_LITE_BUILTIN_OPS_H_ #define TENSORFLOW_LITE_BUILTIN_OPS_H_ #ifdef __cplusplus extern "C" { #endif typedef enum { )"; const char* kFileFooter = R"(} TfLiteBuiltinOperator; #ifdef __cplusplus } #endif #endif )"; } bool IsValidInputEnumName(const std::string& name) { const char* begin = name.c_str(); const char* ch = begin; while (*ch != '\0') { if (ch != begin) { if (*ch != '_') { return false; } ++ch; } bool empty = true; while (isupper(*ch) || isdigit(*ch)) { empty = false; ++ch; } if (empty) { return false; } } return true; } std::string ConstantizeVariableName(const std::string& name) { std::string result = "kTfLiteBuiltin"; bool uppercase = true; for (char input_char : name) { if (input_char == '_') { uppercase = true; } else if (uppercase) { result += toupper(input_char); uppercase = false; } else { result += tolower(input_char); } } return result; } bool GenerateHeader(std::ostream& os) { auto enum_names = tflite::EnumNamesBuiltinOperator(); for (auto enum_value : EnumValuesBuiltinOperator()) { auto enum_name = enum_names[enum_value]; if (!IsValidInputEnumName(enum_name)) { std::cerr << "Invalid input enum name: " << enum_name << std::endl; return false; } } os << kFileHeader; for (auto enum_value : EnumValuesBuiltinOperator()) { auto enum_name = enum_names[enum_value]; os << " "; os << ConstantizeVariableName(enum_name); os << " = "; os << enum_value; os << ",\n"; } os << kFileFooter; return true; } } }
#include "tensorflow/lite/schema/builtin_ops_header/generator.h" #include <fstream> #include <gtest/gtest.h> namespace { using tflite::builtin_ops_header::ConstantizeVariableName; using tflite::builtin_ops_header::IsValidInputEnumName; TEST(TestIsValidInputEnumName, TestWithValidInputNames) { EXPECT_TRUE(IsValidInputEnumName("ADD")); EXPECT_TRUE(IsValidInputEnumName("CONV_2D")); EXPECT_TRUE(IsValidInputEnumName("L2_POOL_2D")); } TEST(TestIsValidInputEnumName, TestWithLeadingUnderscore) { EXPECT_FALSE(IsValidInputEnumName("_ADD")); EXPECT_FALSE(IsValidInputEnumName("_CONV_2D")); } TEST(TestIsValidInputEnumName, TestWithLowerCase) { EXPECT_FALSE(IsValidInputEnumName("_AdD")); EXPECT_FALSE(IsValidInputEnumName("_COnV_2D")); } TEST(TestIsValidInputEnumName, TestWithOtherCharacters) { EXPECT_FALSE(IsValidInputEnumName("_AdD!2D")); EXPECT_FALSE(IsValidInputEnumName("_COnV?2D")); } TEST(TestIsValidInputEnumName, TestWithDoubleUnderscores) { EXPECT_FALSE(IsValidInputEnumName("ADD__2D")); EXPECT_FALSE(IsValidInputEnumName("CONV__2D")); } TEST(TestConstantizeVariableName, TestWithValidInputNames) { EXPECT_EQ(ConstantizeVariableName("ADD"), "kTfLiteBuiltinAdd"); EXPECT_EQ(ConstantizeVariableName("CONV_2D"), "kTfLiteBuiltinConv2d"); EXPECT_EQ(ConstantizeVariableName("L2_POOL_2D"), "kTfLiteBuiltinL2Pool2d"); } }
829
cpp
tensorflow/tensorflow
backend_async_kernel_interface
tensorflow/lite/async/backend_async_kernel_interface.cc
tensorflow/lite/async/backend_async_kernel_interface_test.cc
#ifndef TENSORFLOW_LITE_CORE_ASYNC_BACKEND_ASYNC_KERNEL_INTERFACE_H_ #define TENSORFLOW_LITE_CORE_ASYNC_BACKEND_ASYNC_KERNEL_INTERFACE_H_ #include "tensorflow/lite/async/backend_async_kernel_interface.h" #endif #include "tensorflow/lite/async/backend_async_kernel_interface.h" #include <vector> #include "tensorflow/lite/async/c/async_kernel.h" #include "tensorflow/lite/async/c/types.h" namespace tflite { namespace delegates { namespace internal { TfLiteStatus RegisterBuffer(TfLiteAsyncKernel* async_kernel, TfLiteOpaqueContext* context, TfLiteIoType io_type, const TfLiteBackendBuffer* buffer, const TfLiteAttributeMap* attrs, TfLiteBufferHandle handle) { return reinterpret_cast<BackendAsyncKernelInterface*>( TfLiteAsyncKernelGetKernelData(async_kernel)) ->RegisterBuffer(context, io_type, buffer, attrs, handle); } TfLiteStatus RegisterBufferSlice(TfLiteAsyncKernel* async_kernel, TfLiteOpaqueContext* context, TfLiteBufferHandle buffer, const TfLiteAttributeMap* attrs, TfLiteBufferHandle handle) { return reinterpret_cast<BackendAsyncKernelInterface*>( TfLiteAsyncKernelGetKernelData(async_kernel)) ->RegisterBufferSlice(context, buffer, attrs, handle); } TfLiteStatus UnregisterBuffer(TfLiteAsyncKernel* async_kernel, TfLiteOpaqueContext* context, const TfLiteBufferHandle handle) { return reinterpret_cast<BackendAsyncKernelInterface*>( TfLiteAsyncKernelGetKernelData(async_kernel)) ->UnregisterBuffer(context, handle); } void SupportedBufferTypes(const TfLiteAsyncKernel* async_kernel, TfLiteIoType io_type, const char* const** types, size_t* n_types) { if (types == nullptr || n_types == nullptr) return; const auto& buf_types = reinterpret_cast<const BackendAsyncKernelInterface*>( TfLiteAsyncKernelGetKernelData(async_kernel)) ->SupportedBufferTypes(io_type); *types = buf_types.data(); *n_types = buf_types.size(); } void SupportedSynchronizations(const TfLiteAsyncKernel* async_kernel, TfLiteIoType io_type, const char* const** types, size_t* n_types) { if (types == nullptr || n_types == nullptr) return; const auto& sync_types = reinterpret_cast<const BackendAsyncKernelInterface*>( TfLiteAsyncKernelGetKernelData(async_kernel)) ->SupportedSynchronizations(io_type); *types = sync_types.data(); *n_types = sync_types.size(); } bool ReconcileRestrictions(const TfLiteAsyncKernel* async_kernel, const TfLiteOpaqueContext* context, const TfLiteOpaqueNode* node, int tensor_index, const TfLiteAttributeMap* user_provided_attributes, TfLiteAttributeMap* merged, TfLiteAttributeMap* conflict) { return reinterpret_cast<const BackendAsyncKernelInterface*>( TfLiteAsyncKernelGetKernelData(async_kernel)) ->ReconcileRestrictions(context, node, tensor_index, user_provided_attributes, merged, conflict); } TfLiteStatus SetAttributes(TfLiteAsyncKernel* async_kernel, TfLiteOpaqueContext* context, TfLiteOpaqueNode* node, int tensor_index, const TfLiteAttributeMap* attrs) { return reinterpret_cast<BackendAsyncKernelInterface*>( TfLiteAsyncKernelGetKernelData(async_kernel)) ->SetAttributes(context, node, tensor_index, attrs); } TfLiteStatus Prepare(TfLiteAsyncKernel* async_kernel, TfLiteOpaqueContext* context, TfLiteOpaqueNode* node) { return reinterpret_cast<BackendAsyncKernelInterface*>( TfLiteAsyncKernelGetKernelData(async_kernel)) ->Prepare(context, node); } TfLiteStatus Eval(TfLiteAsyncKernel* async_kernel, TfLiteOpaqueContext* context, TfLiteOpaqueNode* node, TfLiteExecutionTask* task) { return reinterpret_cast<BackendAsyncKernelInterface*>( TfLiteAsyncKernelGetKernelData(async_kernel)) ->Eval(context, node, task); } TfLiteStatus Wait(TfLiteAsyncKernel* async_kernel, TfLiteOpaqueContext* context, TfLiteExecutionTask* task) { return reinterpret_cast<BackendAsyncKernelInterface*>( TfLiteAsyncKernelGetKernelData(async_kernel)) ->Wait(context, task); } TfLiteStatus Finish(TfLiteAsyncKernel* async_kernel, TfLiteOpaqueContext* context, TfLiteExecutionTask* task) { return reinterpret_cast<BackendAsyncKernelInterface*>( TfLiteAsyncKernelGetKernelData(async_kernel)) ->Finish(context, task); } TfLiteStatus SetBufferAttributes(TfLiteAsyncKernel* async_kernel, const TfLiteBackendBuffer* buffer, const TfLiteAttributeMap* attrs) { return reinterpret_cast<BackendAsyncKernelInterface*>( TfLiteAsyncKernelGetKernelData(async_kernel)) ->SetBufferAttributes(buffer, attrs); } TfLiteStatus GetBufferAttributes(TfLiteAsyncKernel* async_kernel, const TfLiteBackendBuffer* buffer, TfLiteAttributeMap* attrs) { return reinterpret_cast<BackendAsyncKernelInterface*>( TfLiteAsyncKernelGetKernelData(async_kernel)) ->GetBufferAttributes(buffer, attrs); } } BackendAsyncKernelInterface::BackendAsyncKernelInterface() { kernel_ = TfLiteAsyncKernelCreate(this); TfLiteAsyncKernelSetRegisterBuffer(kernel_, internal::RegisterBuffer); TfLiteAsyncKernelSetRegisterBufferSlice(kernel_, internal::RegisterBufferSlice); TfLiteAsyncKernelSetUnregisterBuffer(kernel_, internal::UnregisterBuffer); TfLiteAsyncKernelSetSupportedBufferTypes(kernel_, internal::SupportedBufferTypes); TfLiteAsyncKernelSetSupportedSynchronizations( kernel_, internal::SupportedSynchronizations); TfLiteAsyncKernelSetReconcileRestrictions(kernel_, internal::ReconcileRestrictions); TfLiteAsyncKernelSetSetAttributes(kernel_, internal::SetAttributes); TfLiteAsyncKernelSetSetBufferAttributes(kernel_, internal::SetBufferAttributes); TfLiteAsyncKernelSetGetBufferAttributes(kernel_, internal::GetBufferAttributes); TfLiteAsyncKernelSetPrepare(kernel_, internal::Prepare); TfLiteAsyncKernelSetEval(kernel_, internal::Eval); TfLiteAsyncKernelSetWait(kernel_, internal::Wait); TfLiteAsyncKernelSetFinish(kernel_, internal::Finish); } } }
#include "tensorflow/lite/async/backend_async_kernel_interface.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/async/c/types.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/core/async/async_kernel_internal.h" #include "tensorflow/lite/core/async/testing/mock_async_kernel.h" using ::testing::_; namespace tflite::delegates { namespace { TEST(BackendAsyncKernelInterfaceTest, BasicTest) { testing::StrictMock<async::testing::MockAsyncKernel> kernel; EXPECT_CALL(kernel, RegisterBuffer(_, _, _, _, _)); EXPECT_CALL(kernel, RegisterBufferSlice(_, _, _, _)); EXPECT_CALL(kernel, UnregisterBuffer(_, _)); EXPECT_CALL(kernel, ReconcileRestrictions(_, _, _, _, _, _)); EXPECT_CALL(kernel, SetAttributes(_, _, _, _)); EXPECT_CALL(kernel, SetBufferAttributes(_, _)); EXPECT_CALL(kernel, GetBufferAttributes(_, _)); EXPECT_CALL(kernel, Prepare(_, _)); EXPECT_CALL(kernel, Eval(_, _, _)); EXPECT_CALL(kernel, Wait(_, _)); EXPECT_CALL(kernel, Finish(_, _)); auto* tflite_kernel = kernel.kernel(); tflite_kernel->register_buffer(tflite_kernel, nullptr, kTfLiteIoTypeInput, nullptr, nullptr, 0); tflite_kernel->register_buffer_slice(tflite_kernel, nullptr, 0, nullptr, 0); tflite_kernel->unregister_buffer(tflite_kernel, nullptr, 0); tflite_kernel->reconcile_restrictions(tflite_kernel, nullptr, nullptr, 0, nullptr, nullptr, nullptr); tflite_kernel->set_attributes(tflite_kernel, nullptr, nullptr, 0, nullptr); tflite_kernel->set_buffer_attributes(tflite_kernel, nullptr, nullptr); tflite_kernel->get_buffer_attributes(tflite_kernel, nullptr, nullptr); tflite_kernel->prepare(tflite_kernel, nullptr, nullptr); tflite_kernel->eval(tflite_kernel, nullptr, nullptr, nullptr); tflite_kernel->wait(tflite_kernel, nullptr, nullptr); tflite_kernel->finish(tflite_kernel, nullptr, nullptr); } } }
830
cpp
tensorflow/tensorflow
command_line_flags
third_party/xla/xla/tsl/util/command_line_flags.cc
tensorflow/lite/tools/command_line_flags_test.cc
#ifndef XLA_TSL_UTIL_COMMAND_LINE_FLAGS_H_ #define XLA_TSL_UTIL_COMMAND_LINE_FLAGS_H_ #include <functional> #include <string> #include <vector> #include "tsl/platform/types.h" namespace tsl { class Flag { public: Flag(const char* name, int32* dst, const string& usage_text, bool* dst_updated = nullptr); Flag(const char* name, int64_t* dst, const string& usage_text, bool* dst_updated = nullptr); Flag(const char* name, bool* dst, const string& usage_text, bool* dst_updated = nullptr); Flag(const char* name, string* dst, const string& usage_text, bool* dst_updated = nullptr); Flag(const char* name, float* dst, const string& usage_text, bool* dst_updated = nullptr); Flag(const char* name, std::function<bool(int32_t)> int32_hook, int32_t default_value_for_display, const string& usage_text); Flag(const char* name, std::function<bool(int64_t)> int64_hook, int64_t default_value_for_display, const string& usage_text); Flag(const char* name, std::function<bool(float)> float_hook, float default_value_for_display, const string& usage_text); Flag(const char* name, std::function<bool(bool)> bool_hook, bool default_value_for_display, const string& usage_text); Flag(const char* name, std::function<bool(string)> string_hook, string default_value_for_display, const string& usage_text); private: friend class Flags; bool Parse(string arg, bool* value_parsing_ok) const; string name_; enum { TYPE_INT32, TYPE_INT64, TYPE_BOOL, TYPE_STRING, TYPE_FLOAT, } type_; std::function<bool(int32_t)> int32_hook_; int32 int32_default_for_display_; std::function<bool(int64_t)> int64_hook_; int64_t int64_default_for_display_; std::function<bool(float)> float_hook_; float float_default_for_display_; std::function<bool(bool)> bool_hook_; bool bool_default_for_display_; std::function<bool(string)> string_hook_; string string_default_for_display_; string usage_text_; }; class Flags { public: static bool Parse(int* argc, char** argv, const std::vector<Flag>& flag_list); static bool Parse(std::vector<std::string>& flags, const std::vector<Flag>& flag_list); static string Usage(const string& cmdline, const std::vector<Flag>& flag_list); }; } #endif #include "xla/tsl/util/command_line_flags.h" #include <algorithm> #include <cinttypes> #include <cstring> #include <string> #include <vector> #include "absl/strings/match.h" #include "tsl/platform/logging.h" #include "tsl/platform/str_util.h" #include "tsl/platform/stringpiece.h" #include "tsl/platform/stringprintf.h" namespace tsl { namespace { bool ParseStringFlag(StringPiece arg, StringPiece flag, const std::function<bool(string)>& hook, bool* value_parsing_ok) { *value_parsing_ok = true; if (absl::ConsumePrefix(&arg, "--") && absl::ConsumePrefix(&arg, flag) && absl::ConsumePrefix(&arg, "=")) { *value_parsing_ok = hook(string(arg)); return true; } return false; } bool ParseInt32Flag(StringPiece arg, StringPiece flag, const std::function<bool(int32_t)>& hook, bool* value_parsing_ok) { *value_parsing_ok = true; if (absl::ConsumePrefix(&arg, "--") && absl::ConsumePrefix(&arg, flag) && absl::ConsumePrefix(&arg, "=")) { char extra; int32_t parsed_int32; if (sscanf(arg.data(), "%d%c", &parsed_int32, &extra) != 1) { LOG(ERROR) << "Couldn't interpret value " << arg << " for flag " << flag << "."; *value_parsing_ok = false; } else { *value_parsing_ok = hook(parsed_int32); } return true; } return false; } bool ParseInt64Flag(StringPiece arg, StringPiece flag, const std::function<bool(int64_t)>& hook, bool* value_parsing_ok) { *value_parsing_ok = true; if (absl::ConsumePrefix(&arg, "--") && absl::ConsumePrefix(&arg, flag) && absl::ConsumePrefix(&arg, "=")) { char extra; int64_t parsed_int64; if (sscanf(arg.data(), "%" SCNd64 "%c", &parsed_int64, &extra) != 1) { LOG(ERROR) << "Couldn't interpret value " << arg << " for flag " << flag << "."; *value_parsing_ok = false; } else { *value_parsing_ok = hook(parsed_int64); } return true; } return false; } bool ParseBoolFlag(StringPiece arg, StringPiece flag, const std::function<bool(bool)>& hook, bool* value_parsing_ok) { *value_parsing_ok = true; if (absl::ConsumePrefix(&arg, "--") && absl::ConsumePrefix(&arg, flag)) { if (arg.empty()) { *value_parsing_ok = hook(true); return true; } if (!absl::ConsumePrefix(&arg, "=")) { return false; } if (absl::EqualsIgnoreCase(arg, "true") || arg == "1") { *value_parsing_ok = hook(true); return true; } else if (absl::EqualsIgnoreCase(arg, "false") || arg == "0") { *value_parsing_ok = hook(false); return true; } else { LOG(ERROR) << "Couldn't interpret value " << arg << " for flag " << flag << "."; *value_parsing_ok = false; return true; } } return false; } bool ParseFloatFlag(StringPiece arg, StringPiece flag, const std::function<bool(float)>& hook, bool* value_parsing_ok) { *value_parsing_ok = true; if (absl::ConsumePrefix(&arg, "--") && absl::ConsumePrefix(&arg, flag) && absl::ConsumePrefix(&arg, "=")) { char extra; float parsed_float; if (sscanf(arg.data(), "%f%c", &parsed_float, &extra) != 1) { LOG(ERROR) << "Couldn't interpret value " << arg << " for flag " << flag << "."; *value_parsing_ok = false; } else { *value_parsing_ok = hook(parsed_float); } return true; } return false; } } Flag::Flag(const char* name, int32_t* dst, const string& usage_text, bool* dst_updated) : name_(name), type_(TYPE_INT32), int32_hook_([dst, dst_updated](int32_t value) { *dst = value; if (dst_updated) *dst_updated = true; return true; }), int32_default_for_display_(*dst), usage_text_(usage_text) {} Flag::Flag(const char* name, int64_t* dst, const string& usage_text, bool* dst_updated) : name_(name), type_(TYPE_INT64), int64_hook_([dst, dst_updated](int64_t value) { *dst = value; if (dst_updated) *dst_updated = true; return true; }), int64_default_for_display_(*dst), usage_text_(usage_text) {} Flag::Flag(const char* name, float* dst, const string& usage_text, bool* dst_updated) : name_(name), type_(TYPE_FLOAT), float_hook_([dst, dst_updated](float value) { *dst = value; if (dst_updated) *dst_updated = true; return true; }), float_default_for_display_(*dst), usage_text_(usage_text) {} Flag::Flag(const char* name, bool* dst, const string& usage_text, bool* dst_updated) : name_(name), type_(TYPE_BOOL), bool_hook_([dst, dst_updated](bool value) { *dst = value; if (dst_updated) *dst_updated = true; return true; }), bool_default_for_display_(*dst), usage_text_(usage_text) {} Flag::Flag(const char* name, string* dst, const string& usage_text, bool* dst_updated) : name_(name), type_(TYPE_STRING), string_hook_([dst, dst_updated](string value) { *dst = std::move(value); if (dst_updated) *dst_updated = true; return true; }), string_default_for_display_(*dst), usage_text_(usage_text) {} Flag::Flag(const char* name, std::function<bool(int32_t)> int32_hook, int32_t default_value_for_display, const string& usage_text) : name_(name), type_(TYPE_INT32), int32_hook_(std::move(int32_hook)), int32_default_for_display_(default_value_for_display), usage_text_(usage_text) {} Flag::Flag(const char* name, std::function<bool(int64_t)> int64_hook, int64_t default_value_for_display, const string& usage_text) : name_(name), type_(TYPE_INT64), int64_hook_(std::move(int64_hook)), int64_default_for_display_(default_value_for_display), usage_text_(usage_text) {} Flag::Flag(const char* name, std::function<bool(float)> float_hook, float default_value_for_display, const string& usage_text) : name_(name), type_(TYPE_FLOAT), float_hook_(std::move(float_hook)), float_default_for_display_(default_value_for_display), usage_text_(usage_text) {} Flag::Flag(const char* name, std::function<bool(bool)> bool_hook, bool default_value_for_display, const string& usage_text) : name_(name), type_(TYPE_BOOL), bool_hook_(std::move(bool_hook)), bool_default_for_display_(default_value_for_display), usage_text_(usage_text) {} Flag::Flag(const char* name, std::function<bool(string)> string_hook, string default_value_for_display, const string& usage_text) : name_(name), type_(TYPE_STRING), string_hook_(std::move(string_hook)), string_default_for_display_(std::move(default_value_for_display)), usage_text_(usage_text) {} bool Flag::Parse(string arg, bool* value_parsing_ok) const { bool result = false; if (type_ == TYPE_INT32) { result = ParseInt32Flag(arg, name_, int32_hook_, value_parsing_ok); } else if (type_ == TYPE_INT64) { result = ParseInt64Flag(arg, name_, int64_hook_, value_parsing_ok); } else if (type_ == TYPE_BOOL) { result = ParseBoolFlag(arg, name_, bool_hook_, value_parsing_ok); } else if (type_ == TYPE_STRING) { result = ParseStringFlag(arg, name_, string_hook_, value_parsing_ok); } else if (type_ == TYPE_FLOAT) { result = ParseFloatFlag(arg, name_, float_hook_, value_parsing_ok); } return result; } bool Flags::Parse(int* argc, char** argv, const std::vector<Flag>& flag_list) { bool result = true; std::vector<char*> unknown_flags; for (int i = 1; i < *argc; ++i) { if (string(argv[i]) == "--") { while (i < *argc) { unknown_flags.push_back(argv[i]); ++i; } break; } bool was_found = false; for (const Flag& flag : flag_list) { bool value_parsing_ok; was_found = flag.Parse(argv[i], &value_parsing_ok); if (!value_parsing_ok) { result = false; } if (was_found) { break; } } if (!was_found) { unknown_flags.push_back(argv[i]); } } int dst = 1; for (char* f : unknown_flags) { argv[dst++] = f; } argv[dst++] = nullptr; *argc = unknown_flags.size() + 1; return result && (*argc < 2 || strcmp(argv[1], "--help") != 0); } bool Flags::Parse(std::vector<std::string>& flags, const std::vector<Flag>& flag_list) { bool result = true; std::vector<std::string> unknown_flags; for (auto& flag : flags) { for (const Flag& flag_object : flag_list) { bool value_parsing_ok; bool was_found = flag_object.Parse(flag, &value_parsing_ok); if (!value_parsing_ok) { result = false; } if (was_found) { flag.clear(); break; } } } auto IsEmpty = [](const std::string& flag) { return flag.empty(); }; flags.erase(std::remove_if(flags.begin(), flags.end(), IsEmpty), flags.end()); return result; } string Flags::Usage(const string& cmdline, const std::vector<Flag>& flag_list) { string usage_text; if (!flag_list.empty()) { strings::Appendf(&usage_text, "usage: %s\nFlags:\n", cmdline.c_str()); } else { strings::Appendf(&usage_text, "usage: %s\n", cmdline.c_str()); } for (const Flag& flag : flag_list) { const char* type_name = ""; string flag_string; if (flag.type_ == Flag::TYPE_INT32) { type_name = "int32"; flag_string = strings::Printf("--%s=%d", flag.name_.c_str(), flag.int32_default_for_display_); } else if (flag.type_ == Flag::TYPE_INT64) { type_name = "int64"; flag_string = strings::Printf( "--%s=%lld", flag.name_.c_str(), static_cast<long long>(flag.int64_default_for_display_)); } else if (flag.type_ == Flag::TYPE_BOOL) { type_name = "bool"; flag_string = strings::Printf("--%s=%s", flag.name_.c_str(), flag.bool_default_for_display_ ? "true" : "false"); } else if (flag.type_ == Flag::TYPE_STRING) { type_name = "string"; flag_string = strings::Printf("--%s=\"%s\"", flag.name_.c_str(), flag.string_default_for_display_.c_str()); } else if (flag.type_ == Flag::TYPE_FLOAT) { type_name = "float"; flag_string = strings::Printf("--%s=%f", flag.name_.c_str(), flag.float_default_for_display_); } strings::Appendf(&usage_text, "\t%-33s\t%s\t%s\n", flag_string.c_str(), type_name, flag.usage_text_.c_str()); } return usage_text; } }
#include <ctype.h> #include <vector> #include "tensorflow/core/platform/test.h" #include "tensorflow/core/util/command_line_flags.h" namespace tensorflow { namespace { std::vector<char *> CharPointerVectorFromStrings( const std::vector<string> &strings) { std::vector<char *> result; result.reserve(strings.size()); for (const string &string : strings) { result.push_back(const_cast<char *>(string.c_str())); } return result; } } TEST(CommandLineFlagsTest, BasicUsage) { int some_int32_set_directly = 10; int some_int32_set_via_hook = 20; int64_t some_int64_set_directly = 21474836470; int64_t some_int64_set_via_hook = 21474836479; bool some_switch_set_directly = false; bool some_switch_set_via_hook = true; bool some_switch_set_capitalized = false; bool some_switch_set_by_number = false; string some_name_set_directly = "something_a"; string some_name_set_via_hook = "something_b"; float some_float_set_directly = -23.23f; float some_float_set_via_hook = -25.23f; std::vector<string> argv_strings = {"program_name", "--some_int32_set_directly=20", "--some_int32_set_via_hook=50", "--some_int64_set_directly=214748364700", "--some_int64_set_via_hook=214748364710", "--some_switch_set_directly", "--some_switch_set_via_hook=false", "--some_switch_set_capitalized=True", "--some_switch_set_by_number=1", "--some_name_set_directly=somethingelse", "--some_name_set_via_hook=anythingelse", "--some_float_set_directly=42.0", "--some_float_set_via_hook=43.0"}; int argc = argv_strings.size(); std::vector<char *> argv_array = CharPointerVectorFromStrings(argv_strings); bool parsed_ok = Flags::Parse( &argc, argv_array.data(), { Flag("some_int32_set_directly", &some_int32_set_directly, "some int32 set directly"), Flag( "some_int32_set_via_hook", [&](int32_t value) { some_int32_set_via_hook = value; return true; }, some_int32_set_via_hook, "some int32 set via hook"), Flag("some_int64_set_directly", &some_int64_set_directly, "some int64 set directly"), Flag( "some_int64_set_via_hook", [&](int64_t value) { some_int64_set_via_hook = value; return true; }, some_int64_set_via_hook, "some int64 set via hook"), Flag("some_switch_set_directly", &some_switch_set_directly, "some switch set directly"), Flag( "some_switch_set_via_hook", [&](bool value) { some_switch_set_via_hook = value; return true; }, some_switch_set_via_hook, "some switch set via hook"), Flag("some_switch_set_capitalized", &some_switch_set_capitalized, "some switch set capitalized"), Flag("some_switch_set_by_number", &some_switch_set_by_number, "some switch set by number"), Flag("some_name_set_directly", &some_name_set_directly, "some name set directly"), Flag( "some_name_set_via_hook", [&](string value) { some_name_set_via_hook = std::move(value); return true; }, some_name_set_via_hook, "some name set via hook"), Flag("some_float_set_directly", &some_float_set_directly, "some float set directly"), Flag( "some_float_set_via_hook", [&](float value) { some_float_set_via_hook = value; return true; }, some_float_set_via_hook, "some float set via hook"), }); EXPECT_EQ(true, parsed_ok); EXPECT_EQ(20, some_int32_set_directly); EXPECT_EQ(50, some_int32_set_via_hook); EXPECT_EQ(214748364700, some_int64_set_directly); EXPECT_EQ(214748364710, some_int64_set_via_hook); EXPECT_EQ(true, some_switch_set_directly); EXPECT_EQ(false, some_switch_set_via_hook); EXPECT_EQ(true, some_switch_set_capitalized); EXPECT_EQ(true, some_switch_set_by_number); EXPECT_EQ("somethingelse", some_name_set_directly); EXPECT_EQ("anythingelse", some_name_set_via_hook); EXPECT_NEAR(42.0f, some_float_set_directly, 1e-5f); EXPECT_NEAR(43.0f, some_float_set_via_hook, 1e-5f); EXPECT_EQ(argc, 1); } TEST(CommandLineFlagsTest, BadIntValue) { int some_int = 10; int argc = 2; std::vector<string> argv_strings = {"program_name", "--some_int=notanumber"}; std::vector<char *> argv_array = CharPointerVectorFromStrings(argv_strings); bool parsed_ok = Flags::Parse(&argc, argv_array.data(), {Flag("some_int", &some_int, "some int")}); EXPECT_EQ(false, parsed_ok); EXPECT_EQ(10, some_int); EXPECT_EQ(argc, 1); } TEST(CommandLineFlagsTest, BadBoolValue) { bool some_switch = false; int argc = 2; std::vector<string> argv_strings = {"program_name", "--some_switch=notabool"}; std::vector<char *> argv_array = CharPointerVectorFromStrings(argv_strings); bool parsed_ok = Flags::Parse(&argc, argv_array.data(), {Flag("some_switch", &some_switch, "some switch")}); EXPECT_EQ(false, parsed_ok); EXPECT_EQ(false, some_switch); EXPECT_EQ(argc, 1); } TEST(CommandLineFlagsTest, BadFloatValue) { float some_float = -23.23f; int argc = 2; std::vector<string> argv_strings = {"program_name", "--some_float=notanumber"}; std::vector<char *> argv_array = CharPointerVectorFromStrings(argv_strings); bool parsed_ok = Flags::Parse(&argc, argv_array.data(), {Flag("some_float", &some_float, "some float")}); EXPECT_EQ(false, parsed_ok); EXPECT_NEAR(-23.23f, some_float, 1e-5f); EXPECT_EQ(argc, 1); } TEST(CommandLineFlagsTest, FailedInt32Hook) { int argc = 2; std::vector<string> argv_strings = {"program_name", "--some_int32=200"}; std::vector<char *> argv_array = CharPointerVectorFromStrings(argv_strings); bool parsed_ok = Flags::Parse(&argc, argv_array.data(), {Flag( "some_int32", [](int32_t value) { return false; }, 30, "some int32")}); EXPECT_EQ(false, parsed_ok); EXPECT_EQ(argc, 1); } TEST(CommandLineFlagsTest, FailedInt64Hook) { int argc = 2; std::vector<string> argv_strings = {"program_name", "--some_int64=200"}; std::vector<char *> argv_array = CharPointerVectorFromStrings(argv_strings); bool parsed_ok = Flags::Parse(&argc, argv_array.data(), {Flag( "some_int64", [](int64_t value) { return false; }, 30, "some int64")}); EXPECT_EQ(false, parsed_ok); EXPECT_EQ(argc, 1); } TEST(CommandLineFlagsTest, FailedFloatHook) { int argc = 2; std::vector<string> argv_strings = {"program_name", "--some_float=200.0"}; std::vector<char *> argv_array = CharPointerVectorFromStrings(argv_strings); bool parsed_ok = Flags::Parse(&argc, argv_array.data(), {Flag("some_float", [](float value) { return false; }, 30.0f, "some float")}); EXPECT_EQ(false, parsed_ok); EXPECT_EQ(argc, 1); } TEST(CommandLineFlagsTest, FailedBoolHook) { int argc = 2; std::vector<string> argv_strings = {"program_name", "--some_switch=true"}; std::vector<char *> argv_array = CharPointerVectorFromStrings(argv_strings); bool parsed_ok = Flags::Parse(&argc, argv_array.data(), {Flag("some_switch", [](bool value) { return false; }, false, "some switch")}); EXPECT_EQ(false, parsed_ok); EXPECT_EQ(argc, 1); } TEST(CommandLineFlagsTest, FailedStringHook) { int argc = 2; std::vector<string> argv_strings = {"program_name", "--some_name=true"}; std::vector<char *> argv_array = CharPointerVectorFromStrings(argv_strings); bool parsed_ok = Flags::Parse( &argc, argv_array.data(), {Flag("some_name", [](string value) { return false; }, "", "some name")}); EXPECT_EQ(false, parsed_ok); EXPECT_EQ(argc, 1); } TEST(CommandLineFlagsTest, RepeatedStringHook) { int argc = 3; std::vector<string> argv_strings = {"program_name", "--some_name=this", "--some_name=that"}; std::vector<char *> argv_array = CharPointerVectorFromStrings(argv_strings); int call_count = 0; bool parsed_ok = Flags::Parse(&argc, argv_array.data(), {Flag("some_name", [&call_count](string value) { call_count++; return true; }, "", "some name")}); EXPECT_EQ(true, parsed_ok); EXPECT_EQ(argc, 1); EXPECT_EQ(call_count, 2); } static bool MatchWithAnyWhitespace(const string &str, const string &pat) { bool matching = true; int pat_i = 0; for (int str_i = 0; str_i != str.size() && matching; str_i++) { if (isspace(str[str_i])) { matching = (pat_i != pat.size() && isspace(pat[pat_i])); } else { while (pat_i != pat.size() && isspace(pat[pat_i])) { pat_i++; } matching = (pat_i != pat.size() && str[str_i] == pat[pat_i++]); } } while (pat_i != pat.size() && isspace(pat[pat_i])) { pat_i++; } return (matching && pat_i == pat.size()); } TEST(CommandLineFlagsTest, UsageString) { int some_int = 10; int64_t some_int64 = 21474836470; bool some_switch = false; string some_name = "something"; const string tool_name = "some_tool_name"; string usage = Flags::Usage(tool_name + "<flags>", {Flag("some_int", &some_int, "some int"), Flag("some_int64", &some_int64, "some int64"), Flag("some_switch", &some_switch, "some switch"), Flag("some_name", &some_name, "some name")}); const char *expected_usage = " usage: some_tool_name <flags>\n" "Flags:\n" "--some_int=10 int32 some int\n" "--some_int64=21474836470 int64 some int64\n" "--some_switch=false bool some switch\n" "--some_name=\"something\" string some name\n"; ASSERT_EQ(MatchWithAnyWhitespace(usage, expected_usage), true); usage = Flags::Usage(tool_name, {}); ASSERT_EQ(MatchWithAnyWhitespace(usage, " usage: some_tool_name\n"), true); } namespace { template <typename T, typename ExpectationFun> void PrefixTestTempl(ExpectationFun expectation_fun, const T &value0, const T &value1, string str0, string str1) { int argc = 3; std::vector<string> argv_strings = { "program_name", "--hello" + str0, "--hello_world" + str1, }; std::vector<char *> argv_array = CharPointerVectorFromStrings(argv_strings); T hello{}; T hello_world{}; bool parsed_ok = Flags::Parse( &argc, argv_array.data(), { Flag("hello", &hello, "usage of hello"), Flag("hello_world", &hello_world, "usage of hello world"), }); EXPECT_EQ(true, parsed_ok); expectation_fun(value0, hello); expectation_fun(value1, hello_world); EXPECT_EQ(argc, 1); } } TEST(CommandLineFlagsTest, OneArgumentIsAPrefixOfAnother) { auto expect_eq = [](auto a, auto b) { EXPECT_EQ(a, b); }; auto expect_near = [](auto a, auto b) { EXPECT_NEAR(a, b, 1e-5f); }; PrefixTestTempl<int32_t>(expect_eq, 1, 2, "=1", "=2"); PrefixTestTempl<int64_t>(expect_eq, 1, 2, "=1", "=2"); PrefixTestTempl<bool>(expect_eq, false, true, "=false", "=true"); PrefixTestTempl<bool>(expect_eq, false, true, "=false", ""); PrefixTestTempl<bool>(expect_eq, true, false, "=true", "=false"); PrefixTestTempl<bool>(expect_eq, true, false, "", "=false"); PrefixTestTempl<string>(expect_eq, "a", "b", "=a", "=b"); PrefixTestTempl<float>(expect_near, 0.1f, 0.2f, "=0.1", "=0.2"); } }
831
cpp
tensorflow/tensorflow
list_flex_ops
tensorflow/lite/tools/list_flex_ops.cc
tensorflow/lite/tools/list_flex_ops_test.cc
#ifndef TENSORFLOW_LITE_TOOLS_LIST_FLEX_OPS_H_ #define TENSORFLOW_LITE_TOOLS_LIST_FLEX_OPS_H_ #include <set> #include <string> #include "tensorflow/lite/core/model.h" namespace tflite { namespace flex { struct OpKernel { std::string op_name; std::string kernel_name; }; struct OpKernelCompare { bool operator()(const OpKernel& lhs, const OpKernel& rhs) const { if (lhs.op_name == rhs.op_name) { return lhs.kernel_name < rhs.kernel_name; } return lhs.op_name < rhs.op_name; } }; using OpKernelSet = std::set<OpKernel, OpKernelCompare>; void AddFlexOpsFromModel(const tflite::Model* model, OpKernelSet* flex_ops); std::string OpListToJSONString(const OpKernelSet& flex_ops); } } #endif #include "tensorflow/lite/tools/list_flex_ops.h" #include <fstream> #include <sstream> #include <string> #include <vector> #include "flatbuffers/flexbuffers.h" #include "json/json.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/util/device_name_utils.h" #include "tensorflow/lite/schema/schema_utils.h" #include "tensorflow/lite/util.h" namespace tflite { namespace flex { std::string OpListToJSONString(const OpKernelSet& flex_ops) { Json::Value result(Json::arrayValue); for (const OpKernel& op : flex_ops) { Json::Value op_kernel(Json::arrayValue); op_kernel.append(Json::Value(op.op_name)); op_kernel.append(Json::Value(op.kernel_name)); result.append(op_kernel); } return Json::FastWriter().write(result); } string FindTensorflowKernelClass(tensorflow::NodeDef* node_def) { if (!node_def || node_def->op().empty()) { LOG(FATAL) << "Invalid NodeDef"; } const tensorflow::OpRegistrationData* op_reg_data; auto status = tensorflow::OpRegistry::Global()->LookUp(node_def->op(), &op_reg_data); if (!status.ok()) { LOG(FATAL) << "Op " << node_def->op() << " not found: " << status; } AddDefaultsToNodeDef(op_reg_data->op_def, node_def); tensorflow::DeviceNameUtils::ParsedName parsed_name; if (!tensorflow::DeviceNameUtils::ParseFullName(node_def->device(), &parsed_name)) { LOG(FATAL) << "Failed to parse device from node_def: " << node_def->ShortDebugString(); } string class_name; if (!tensorflow::FindKernelDef( tensorflow::DeviceType(parsed_name.type.c_str()), *node_def, nullptr , &class_name) .ok()) { LOG(FATAL) << "Failed to find kernel class for op: " << node_def->op(); } return class_name; } void AddFlexOpsFromModel(const tflite::Model* model, OpKernelSet* flex_ops) { auto* subgraphs = model->subgraphs(); if (!subgraphs) return; for (int subgraph_index = 0; subgraph_index < subgraphs->size(); ++subgraph_index) { const tflite::SubGraph* subgraph = subgraphs->Get(subgraph_index); auto* operators = subgraph->operators(); auto* opcodes = model->operator_codes(); if (!operators || !opcodes) continue; for (int i = 0; i < operators->size(); ++i) { const tflite::Operator* op = operators->Get(i); const tflite::OperatorCode* opcode = opcodes->Get(op->opcode_index()); if (tflite::GetBuiltinCode(opcode) != tflite::BuiltinOperator_CUSTOM || !tflite::IsFlexOp(opcode->custom_code()->c_str())) { continue; } std::string flex_op_name(opcode->custom_code()->c_str()); std::string tf_op_name = flex_op_name.substr(strlen(tflite::kFlexCustomCodePrefix)); if (op->custom_options_format() != tflite::CustomOptionsFormat_FLEXBUFFERS) { LOG(FATAL) << "Invalid CustomOptionsFormat"; } const flatbuffers::Vector<uint8_t>* custom_opt_bytes = op->custom_options(); if (custom_opt_bytes && custom_opt_bytes->size()) { const flexbuffers::Vector& v = flexbuffers::GetRoot(custom_opt_bytes->data(), custom_opt_bytes->size()) .AsVector(); std::string nodedef_str = v[1].AsString().str(); tensorflow::NodeDef nodedef; if (nodedef_str.empty() || !nodedef.ParseFromString(nodedef_str)) { LOG(FATAL) << "Failed to parse data into a valid NodeDef"; } *nodedef.mutable_device() = "/CPU:0"; std::string kernel_class = FindTensorflowKernelClass(&nodedef); flex_ops->insert({tf_op_name, kernel_class}); } } } } } }
#include "tensorflow/lite/tools/list_flex_ops.h" #include <cstdint> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "flatbuffers/flexbuffers.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/lite/kernels/test_util.h" namespace tflite { namespace flex { class FlexOpsListTest : public ::testing::Test { protected: FlexOpsListTest() {} void ReadOps(const string& path) { std::string full_path = tensorflow::GetDataDependencyFilepath(path); auto model = FlatBufferModel::BuildFromFile(full_path.data()); AddFlexOpsFromModel(model->GetModel(), &flex_ops_); output_text_ = OpListToJSONString(flex_ops_); } void ReadOps(const tflite::Model* model) { AddFlexOpsFromModel(model, &flex_ops_); output_text_ = OpListToJSONString(flex_ops_); } std::string output_text_; OpKernelSet flex_ops_; }; TfLiteRegistration* Register_TEST() { static TfLiteRegistration r = {nullptr, nullptr, nullptr, nullptr}; return &r; } std::vector<uint8_t> CreateFlexCustomOptions(std::string nodedef_raw_string) { tensorflow::NodeDef node_def; tensorflow::protobuf::TextFormat::ParseFromString(nodedef_raw_string, &node_def); std::string node_def_str = node_def.SerializeAsString(); auto flex_builder = std::make_unique<flexbuffers::Builder>(); flex_builder->Vector([&]() { flex_builder->String(node_def.op()); flex_builder->String(node_def_str); }); flex_builder->Finish(); return flex_builder->GetBuffer(); } class FlexOpModel : public SingleOpModel { public: FlexOpModel(const std::string& op_name, const TensorData& input1, const TensorData& input2, const TensorType& output, const std::vector<uint8_t>& custom_options) { input1_ = AddInput(input1); input2_ = AddInput(input2); output_ = AddOutput(output); SetCustomOp(op_name, custom_options, Register_TEST); BuildInterpreter({GetShape(input1_), GetShape(input2_)}); } protected: int input1_; int input2_; int output_; }; TEST_F(FlexOpsListTest, TestModelsNoFlex) { ReadOps("tensorflow/lite/testdata/test_model.bin"); EXPECT_EQ(output_text_, "[]\n"); } TEST_F(FlexOpsListTest, TestBrokenModel) { EXPECT_DEATH_IF_SUPPORTED( ReadOps("tensorflow/lite/testdata/test_model_broken.bin"), ""); } TEST_F(FlexOpsListTest, TestZeroSubgraphs) { ReadOps("tensorflow/lite/testdata/0_subgraphs.bin"); EXPECT_EQ(output_text_, "[]\n"); } TEST_F(FlexOpsListTest, TestFlexAdd) { ReadOps("tensorflow/lite/testdata/multi_add_flex.bin"); EXPECT_EQ(output_text_, "[[\"AddV2\",\"BinaryOp<CPUDevice, functor::add<float>>\"]]\n"); } TEST_F(FlexOpsListTest, TestTwoModel) { ReadOps("tensorflow/lite/testdata/multi_add_flex.bin"); ReadOps("tensorflow/lite/testdata/softplus_flex.bin"); EXPECT_EQ(output_text_, "[[\"AddV2\",\"BinaryOp<CPUDevice, " "functor::add<float>>\"],[\"Softplus\",\"SoftplusOp<CPUDevice, " "float>\"]]\n"); } TEST_F(FlexOpsListTest, TestDuplicatedOp) { ReadOps("tensorflow/lite/testdata/multi_add_flex.bin"); ReadOps("tensorflow/lite/testdata/multi_add_flex.bin"); EXPECT_EQ(output_text_, "[[\"AddV2\",\"BinaryOp<CPUDevice, functor::add<float>>\"]]\n"); } TEST_F(FlexOpsListTest, TestInvalidCustomOptions) { std::vector<uint8_t> random_custom_options(20); FlexOpModel max_model("FlexAdd", {TensorType_FLOAT32, {3, 1, 2, 2}}, {TensorType_FLOAT32, {3, 1, 2, 1}}, TensorType_FLOAT32, random_custom_options); EXPECT_DEATH_IF_SUPPORTED( ReadOps(tflite::GetModel(max_model.GetModelBuffer())), "Failed to parse data into a valid NodeDef"); } TEST_F(FlexOpsListTest, TestOpNameEmpty) { std::string nodedef_raw_str = "name: \"node_1\"" "op: \"\"" "input: [ \"b\", \"c\" ]" "attr: { key: \"T\" value: { type: DT_FLOAT } }"; std::string random_fieldname = "random string"; FlexOpModel max_model("FlexAdd", {TensorType_FLOAT32, {3, 1, 2, 2}}, {TensorType_FLOAT32, {3, 1, 2, 1}}, TensorType_FLOAT32, CreateFlexCustomOptions(nodedef_raw_str)); EXPECT_DEATH_IF_SUPPORTED( ReadOps(tflite::GetModel(max_model.GetModelBuffer())), "Invalid NodeDef"); } TEST_F(FlexOpsListTest, TestOpNotFound) { std::string nodedef_raw_str = "name: \"node_1\"" "op: \"FlexInvalidOp\"" "input: [ \"b\", \"c\" ]" "attr: { key: \"T\" value: { type: DT_FLOAT } }"; FlexOpModel max_model("FlexAdd", {TensorType_FLOAT32, {3, 1, 2, 2}}, {TensorType_FLOAT32, {3, 1, 2, 1}}, TensorType_FLOAT32, CreateFlexCustomOptions(nodedef_raw_str)); EXPECT_DEATH_IF_SUPPORTED( ReadOps(tflite::GetModel(max_model.GetModelBuffer())), "Op FlexInvalidOp not found"); } TEST_F(FlexOpsListTest, TestKernelNotFound) { std::string nodedef_raw_str = "name: \"node_1\"" "op: \"Add\"" "input: [ \"b\", \"c\" ]" "attr: { key: \"T\" value: { type: DT_BOOL } }"; FlexOpModel max_model("FlexAdd", {TensorType_FLOAT32, {3, 1, 2, 2}}, {TensorType_FLOAT32, {3, 1, 2, 1}}, TensorType_FLOAT32, CreateFlexCustomOptions(nodedef_raw_str)); EXPECT_DEATH_IF_SUPPORTED( ReadOps(tflite::GetModel(max_model.GetModelBuffer())), "Failed to find kernel class for op: Add"); } TEST_F(FlexOpsListTest, TestFlexAddWithSingleOpModel) { std::string nodedef_raw_str = "name: \"node_1\"" "op: \"Add\"" "input: [ \"b\", \"c\" ]" "attr: { key: \"T\" value: { type: DT_FLOAT } }"; FlexOpModel max_model("FlexAdd", {TensorType_FLOAT32, {3, 1, 2, 2}}, {TensorType_FLOAT32, {3, 1, 2, 1}}, TensorType_FLOAT32, CreateFlexCustomOptions(nodedef_raw_str)); ReadOps(tflite::GetModel(max_model.GetModelBuffer())); EXPECT_EQ(output_text_, "[[\"Add\",\"BinaryOp<CPUDevice, functor::add<float>>\"]]\n"); } } }
832
cpp
tensorflow/tensorflow
model_loader
tensorflow/lite/tools/model_loader.cc
tensorflow/lite/tools/model_loader_test.cc
#ifndef TENSORFLOW_LITE_TOOLS_MODEL_LOADER_H_ #define TENSORFLOW_LITE_TOOLS_MODEL_LOADER_H_ #ifndef _WIN32 #include <unistd.h> #endif #include <cstddef> #include <cstdlib> #include <memory> #include <string> #include <vector> #include "absl/strings/string_view.h" #include "tensorflow/lite/core/model_builder.h" namespace tflite { namespace tools { class ModelLoader { public: enum class Type : int { kPathModelLoader = 0, kBufferModelLoader = 1, kMmapModelLoader = 2, kPipeModelLoader = 3, }; virtual ~ModelLoader() = default; virtual bool Init(); virtual Type type() const = 0; const FlatBufferModel* GetModel() const { return model_.get(); } protected: virtual bool InitInternal() = 0; std::unique_ptr<FlatBufferModel> model_; }; class PathModelLoader : public ModelLoader { public: explicit PathModelLoader(absl::string_view model_path) : ModelLoader(), model_path_(model_path) {} Type type() const override { return Type::kPathModelLoader; } protected: bool InitInternal() override; private: const std::string model_path_; }; class BufferModelLoader : public ModelLoader { public: BufferModelLoader(const char* caller_owned_buffer, size_t model_size) : caller_owned_buffer_(caller_owned_buffer), model_size_(model_size) {} BufferModelLoader(BufferModelLoader&&) = default; BufferModelLoader& operator=(BufferModelLoader&&) = default; ~BufferModelLoader() override = default; Type type() const override { return Type::kBufferModelLoader; } protected: bool InitInternal() override; private: const char* caller_owned_buffer_ = nullptr; size_t model_size_ = 0; }; #ifndef _WIN32 class MmapModelLoader : public ModelLoader { public: MmapModelLoader(int model_fd, size_t model_offset, size_t model_size) : ModelLoader(), model_fd_(dup(model_fd)), model_offset_(model_offset), model_size_(model_size) {} ~MmapModelLoader() override { if (model_fd_ >= 0) { close(model_fd_); } } Type type() const override { return Type::kMmapModelLoader; } protected: bool InitInternal() override; private: const int model_fd_ = -1; const size_t model_offset_ = 0; const size_t model_size_ = 0; }; class PipeModelLoader : public ModelLoader { public: PipeModelLoader(int pipe_fd, size_t model_size) : ModelLoader(), pipe_fd_(pipe_fd), model_size_(model_size) {} PipeModelLoader(PipeModelLoader&&) = default; PipeModelLoader& operator=(PipeModelLoader&&) = default; ~PipeModelLoader() override { std::free(model_buffer_); } Type type() const override { return Type::kPipeModelLoader; } protected: bool InitInternal() override; private: const int pipe_fd_ = -1; const size_t model_size_ = 0; uint8_t* model_buffer_ = nullptr; }; #endif std::unique_ptr<ModelLoader> CreateModelLoaderFromPath(const std::string& path); } } #endif #include "tensorflow/lite/tools/model_loader.h" #include <cstdlib> #include <iostream> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/strings/numbers.h" #include "absl/strings/str_split.h" #include "tensorflow/lite/core/model_builder.h" #include "tensorflow/lite/minimal_logging.h" namespace tflite { namespace tools { bool ModelLoader::Init() { if (model_ && model_->initialized()) { return true; } if (!InitInternal()) { return false; } if (!model_ || !model_->initialized()) { return false; } return true; } bool PathModelLoader::InitInternal() { if (model_path_.empty()) { TFLITE_LOG_PROD(TFLITE_LOG_ERROR, "model_path is empty."); return false; } model_ = FlatBufferModel::VerifyAndBuildFromFile(model_path_.c_str()); return true; } bool BufferModelLoader::InitInternal() { if (!caller_owned_buffer_ || model_size_ <= 0) { TFLITE_LOG_PROD(TFLITE_LOG_ERROR, "Failed to create BufferModelLoader: caller_owned_buffer " "is %s; model_size: %zu", caller_owned_buffer_ ? "not null" : "null", model_size_); return false; } model_ = FlatBufferModel::VerifyAndBuildFromBuffer(caller_owned_buffer_, model_size_); return true; } #ifndef _WIN32 bool MmapModelLoader::InitInternal() { if (model_fd_ < 0 || model_offset_ < 0 || model_size_ < 0) { TFLITE_LOG_PROD( TFLITE_LOG_ERROR, "Invalid model file descriptor. file descriptor: %d model_offset: " "%zu model_size: %zu", model_fd_, model_offset_, model_size_); return false; } if (!MMAPAllocation::IsSupported()) { TFLITE_LOG_PROD(TFLITE_LOG_ERROR, "MMAPAllocation is not supported."); return false; } auto allocation = std::make_unique<MMAPAllocation>( model_fd_, model_offset_, model_size_, tflite::DefaultErrorReporter()); if (!allocation->valid()) { TFLITE_LOG_PROD(TFLITE_LOG_ERROR, "MMAPAllocation is not valid."); return false; } model_ = FlatBufferModel::VerifyAndBuildFromAllocation(std::move(allocation)); #if FLATBUFFERS_LITTLEENDIAN == 0 model_ = FlatBufferModel::ByteConvertModel(std::move(model_)); #endif return true; } bool PipeModelLoader::InitInternal() { if (pipe_fd_ < 0) { TFLITE_LOG_PROD(TFLITE_LOG_ERROR, "Invalid pipe file descriptor %d", pipe_fd_); return false; } std::free(model_buffer_); model_buffer_ = reinterpret_cast<uint8_t*>(std::malloc(model_size_)); int read_bytes = 0; int remaining_bytes = model_size_; uint8_t* buffer = model_buffer_; while (remaining_bytes > 0 && (read_bytes = read(pipe_fd_, buffer, remaining_bytes)) > 0) { remaining_bytes -= read_bytes; buffer += read_bytes; } close(pipe_fd_); if (read_bytes < 0 || remaining_bytes != 0) { TFLITE_LOG_PROD( TFLITE_LOG_ERROR, "Read Model from pipe failed: %s. Expect to read %zu bytes, " "%d bytes missing.", std::strerror(errno), model_size_, remaining_bytes); return false; } model_ = FlatBufferModel::VerifyAndBuildFromBuffer( reinterpret_cast<const char*>(model_buffer_), model_size_); return true; } #endif std::unique_ptr<ModelLoader> CreateModelLoaderFromPath( const std::string& path) { std::vector<absl::string_view> parts = absl::StrSplit(path, ':'); if (parts.empty()) { return nullptr; } #ifndef _WIN32 if (parts[0] == "fd") { int model_fd; size_t model_offset, model_size; if (parts.size() != 4 || !absl::SimpleAtoi(parts[1], &model_fd) || !absl::SimpleAtoi(parts[2], &model_offset) || !absl::SimpleAtoi(parts[3], &model_size)) { TFLITE_LOG_PROD(TFLITE_LOG_ERROR, "Failed to parse model path: %s", path.c_str()); return nullptr; } return std::make_unique<MmapModelLoader>(model_fd, model_offset, model_size); } if (parts[0] == "pipe") { int read_fd, write_fd; size_t model_size; if (parts.size() != 4 || !absl::SimpleAtoi(parts[1], &read_fd) || !absl::SimpleAtoi(parts[2], &write_fd) || !absl::SimpleAtoi(parts[3], &model_size)) { TFLITE_LOG_PROD(TFLITE_LOG_ERROR, "Failed to parse model path: %s", path.c_str()); return nullptr; } if (write_fd >= 0) { close(write_fd); } return std::make_unique<PipeModelLoader>(read_fd, model_size); } #endif if (parts[0] == "buffer") { int64_t buffer_handle; size_t model_size; if (parts.size() != 3 || !absl::SimpleAtoi(parts[1], &buffer_handle) || !absl::SimpleAtoi(parts[2], &model_size)) { TFLITE_LOG_PROD(TFLITE_LOG_ERROR, "Failed to parse model path: %s", path.c_str()); return nullptr; } return std::make_unique<BufferModelLoader>( reinterpret_cast<const char*>(buffer_handle), model_size); } return std::make_unique<PathModelLoader>(path); } } }
#include "tensorflow/lite/tools/model_loader.h" #include <fcntl.h> #include <sys/stat.h> #include <unistd.h> #include <memory> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/str_format.h" #include "flatbuffers/flatbuffers.h" #include "tensorflow/lite/model_builder.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace tools { namespace { static constexpr char kModelPath[] = "../tflite_mobilenet_float/" "mobilenet_v1_1.0_224.tflite"; using ::testing::IsNull; using ::testing::Not; using ::testing::WhenDynamicCastTo; class ModelLoaderTest : public ::testing::Test {}; TEST_F(ModelLoaderTest, CreateFromModelPath) { auto model_loader = std::make_unique<PathModelLoader>(kModelPath); ASSERT_NE(model_loader, nullptr); EXPECT_TRUE(model_loader->Init()); } TEST_F(ModelLoaderTest, CreateFromFdPath) { int fd = open(kModelPath, O_RDONLY); ASSERT_GE(fd, 0); struct stat stat_buf = {0}; ASSERT_EQ(fstat(fd, &stat_buf), 0); auto model_loader = std::make_unique<MmapModelLoader>(fd, 0, stat_buf.st_size); close(fd); ASSERT_NE(model_loader, nullptr); EXPECT_TRUE(model_loader->Init()); } TEST_F(ModelLoaderTest, CreateFromPipePath) { auto model = FlatBufferModel::BuildFromFile(kModelPath); flatbuffers::FlatBufferBuilder fbb; ModelT model_obj; model->GetModel()->UnPackTo(&model_obj); std::string model_description = model_obj.description; FinishModelBuffer(fbb, CreateModel(fbb, &model_obj)); int pipe_fds[2]; ASSERT_EQ(pipe(pipe_fds), 0); pid_t r = fork(); if (r == 0) { close(pipe_fds[0]); int written_bytes = 0; int remaining_bytes = fbb.GetSize(); uint8_t* buffer = fbb.GetBufferPointer(); while (remaining_bytes > 0 && (written_bytes = write(pipe_fds[1], buffer, remaining_bytes)) > 0) { remaining_bytes -= written_bytes; buffer += written_bytes; } close(pipe_fds[1]); ASSERT_TRUE(written_bytes > 0 && remaining_bytes == 0); _exit(0); } close(pipe_fds[1]); auto model_loader = std::make_unique<PipeModelLoader>(pipe_fds[0], fbb.GetSize()); ASSERT_NE(model_loader, nullptr); EXPECT_TRUE(model_loader->Init()); EXPECT_EQ(model_loader->GetModel()->GetModel()->description()->string_view(), model_description); } TEST_F(ModelLoaderTest, CreateBufferModelLoader) { auto model = FlatBufferModel::BuildFromFile(kModelPath); flatbuffers::FlatBufferBuilder fbb; ModelT model_obj; model->GetModel()->UnPackTo(&model_obj); std::string model_description = model_obj.description; FinishModelBuffer(fbb, CreateModel(fbb, &model_obj)); ASSERT_NE(model->allocation(), nullptr); auto model_loader = std::make_unique<BufferModelLoader>( reinterpret_cast<const char*>(fbb.GetBufferPointer()), fbb.GetSize()); ASSERT_NE(model_loader, nullptr); EXPECT_TRUE(model_loader->Init()); EXPECT_EQ(model_loader->GetModel()->GetModel()->description()->string_view(), model_description); } TEST_F(ModelLoaderTest, InvalidModelPath) { auto model_loader = std::make_unique<PathModelLoader>("invalid/path"); ASSERT_NE(model_loader, nullptr); EXPECT_FALSE(model_loader->Init()); } TEST_F(ModelLoaderTest, InvalidFd) { auto model_loader = std::make_unique<MmapModelLoader>(0, 5, 10); ASSERT_NE(model_loader, nullptr); EXPECT_FALSE(model_loader->Init()); } TEST_F(ModelLoaderTest, InvalidPipe) { auto model_loader = std::make_unique<PipeModelLoader>(-1, 10); ASSERT_NE(model_loader, nullptr); EXPECT_FALSE(model_loader->Init()); } TEST_F(ModelLoaderTest, CreateModelLoaderFromValidPath) { EXPECT_THAT(CreateModelLoaderFromPath("a/b/c").get(), WhenDynamicCastTo<PathModelLoader*>(Not(IsNull()))); EXPECT_THAT(CreateModelLoaderFromPath("fd:1:2:3").get(), WhenDynamicCastTo<MmapModelLoader*>(Not(IsNull()))); EXPECT_THAT(CreateModelLoaderFromPath("pipe:1:2:3").get(), WhenDynamicCastTo<PipeModelLoader*>(Not(IsNull()))); EXPECT_THAT(CreateModelLoaderFromPath("buffer:1:2").get(), WhenDynamicCastTo<BufferModelLoader*>(Not(IsNull()))); } TEST_F(ModelLoaderTest, CreateModelLoaderFromInvalidPath) { EXPECT_EQ(CreateModelLoaderFromPath("fd:1"), nullptr); EXPECT_EQ(CreateModelLoaderFromPath("fd:1:2:3:4"), nullptr); EXPECT_EQ(CreateModelLoaderFromPath("pipe:1"), nullptr); EXPECT_EQ(CreateModelLoaderFromPath("pipe:1:2:3:4"), nullptr); EXPECT_EQ(CreateModelLoaderFromPath("buffer:1:2:3"), nullptr); } } } }
833
cpp
tensorflow/tensorflow
utils
third_party/xla/xla/pjrt/utils.cc
third_party/xla/xla/service/gpu/llvm_gpu_backend/utils_test.cc
#ifndef XLA_PJRT_UTILS_H_ #define XLA_PJRT_UTILS_H_ #include <cstdint> #include <functional> #include <memory> #include <optional> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "mlir/IR/BuiltinOps.h" #include "xla/client/executable_build_options.h" #include "xla/client/xla_computation.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/pjrt/layout_mode.h" #include "xla/service/computation_placer.h" #include "xla/shape.h" #include "xla/xla_data.pb.h" namespace xla { using MemorySpaceColor = int; absl::Status ParseDeviceAssignmentCompileOptions( bool compile_portable_executable, ExecutableBuildOptions* build_options, std::function<absl::StatusOr<DeviceAssignment>(int, int)> GetDefaultDeviceAssignmentFunction, int* num_replicas, int* num_partitions, std::shared_ptr<DeviceAssignment>* device_assignment); absl::StatusOr<std::vector<LayoutMode>> GetArgLayoutModes( mlir::ModuleOp module); absl::StatusOr<std::vector<LayoutMode>> GetOutputLayoutModes( mlir::ModuleOp module); absl::StatusOr<std::vector<MemorySpaceColor>> GetArgMemoryKinds( mlir::ModuleOp module); absl::StatusOr<std::vector<MemorySpaceColor>> GetOutputMemoryKinds( mlir::ModuleOp module); absl::Status AddLayoutModesToFrontendAttrs(mlir::ModuleOp module, XlaComputation& xla_computation); absl::Status AddMemoryKindsToFrontendAttrs(mlir::ModuleOp module, XlaComputation& xla_computation); absl::StatusOr<std::vector<LayoutMode>> GetArgLayoutModes( const XlaComputation& computation); absl::StatusOr<std::vector<LayoutMode>> GetOutputLayoutModes( const XlaComputation& computation); absl::StatusOr<std::vector<MemorySpaceColor>> GetArgMemoryKinds( const XlaComputation& computation); absl::StatusOr<std::vector<MemorySpaceColor>> GetOutputMemoryKinds( const XlaComputation& computation); absl::StatusOr<std::pair<std::vector<Shape>, Shape>> LayoutModesToXlaShapes( const XlaComputation& computation, std::vector<LayoutMode> arg_layout_modes, std::vector<LayoutMode> out_layout_modes, const std::vector<MemorySpaceColor>& arg_memory_spaces, const std::vector<MemorySpaceColor>& out_memory_spaces, std::function<absl::StatusOr<Shape>(Shape)> choose_compact_layout_for_shape_function); absl::StatusOr<std::pair<std::vector<Shape>, std::vector<const Shape*>>> LayoutModesToXla(const XlaComputation& computation, std::vector<LayoutMode> arg_layout_modes, std::vector<LayoutMode> out_layout_modes, const std::vector<MemorySpaceColor>& arg_memory_spaces, const std::vector<MemorySpaceColor>& out_memory_spaces, std::function<absl::StatusOr<Shape>(Shape)> choose_compact_layout_for_shape_function, ExecutableBuildOptions& build_options); absl::Status DetermineArgumentLayoutsFromCompileOptions( const XlaComputation& computation, std::function<absl::StatusOr<Shape>(Shape)> choose_compact_layout_for_shape_function, std::optional<std::vector<Shape>>& argument_layouts, ExecutableBuildOptions* build_options, std::vector<const Shape*>* argument_layout_pointers); absl::StatusOr<std::vector<int>> ComputeParametersThatMustBeDonated( const HloModule& hlo_module, bool tuple_inputs); int DefaultThreadPoolSize(); bool HasMajorToMinorLayout(PrimitiveType type, absl::Span<int64_t const> dims, absl::Span<int64_t const> byte_strides); absl::StatusOr<Shape> MakeShapeWithTrivialByteStrides( PrimitiveType element_type, absl::Span<const int64_t> dimensions, absl::Span<const int64_t> byte_strides); absl::Status TestBufferDonationClashes( void* opaque_key, absl::flat_hash_map<const void*, std::pair<bool, int>>& donation_clashes, bool is_donated, int arg_idx, int replica, int partition); } #endif #include "xla/pjrt/utils.h" #include <algorithm> #include <cstdint> #include <cstdlib> #include <functional> #include <memory> #include <numeric> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/numbers.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/str_split.h" #include "absl/types/span.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/Support/LLVM.h" #include "xla/client/executable_build_options.h" #include "xla/client/xla_computation.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_input_output_alias_config.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/pjrt/layout_mode.h" #include "xla/primitive_util.h" #include "xla/service/computation_placer.h" #include "xla/service/hlo.pb.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/cpu_info.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla { namespace { absl::StatusOr<Shape> GetShardedShape(const Shape& shape, const OpSharding& sharding) { TF_ASSIGN_OR_RETURN(HloSharding hlo_sharding, HloSharding::FromProto(sharding)); if (shape.IsTuple()) { Shape sharded_shape = shape; ShapeUtil::ForEachMutableSubshape( &sharded_shape, [&](Shape* subshape, const ShapeIndex& index) { if (!subshape->IsTuple()) { HloSharding subsharding = hlo_sharding.GetSubSharding(shape, index); *subshape = subsharding.TileShape(*subshape); } }); return sharded_shape; } else { return hlo_sharding.TileShape(shape); } } absl::StatusOr<Shape> GetShardedShape(const HloInstructionProto& instr) { const Shape unsharded_shape(instr.shape()); Shape sharded_shape; if (instr.has_sharding()) { TF_ASSIGN_OR_RETURN(sharded_shape, GetShardedShape(unsharded_shape, instr.sharding())); } else { sharded_shape = unsharded_shape; } LayoutUtil::ClearLayout(&sharded_shape); return sharded_shape; } absl::StatusOr<std::pair<std::vector<Shape>, Shape>> GetShardedProgramShapes( const XlaComputation& computation, const ProgramShape& program_shape) { std::vector<Shape> arg_shapes; arg_shapes.resize(program_shape.parameters_size()); Shape result_shape; for (const HloComputationProto& comp : computation.proto().computations()) { if (comp.id() != computation.proto().entry_computation_id()) { continue; } for (const HloInstructionProto& instr : comp.instructions()) { if (instr.opcode() == HloOpcodeString(HloOpcode::kParameter)) { if (instr.parameter_number() >= program_shape.parameters_size()) { return InvalidArgument( "Got invalid parameter number %d, expected %d parameters", instr.parameter_number(), program_shape.parameters_size()); } TF_ASSIGN_OR_RETURN(arg_shapes[instr.parameter_number()], GetShardedShape(instr)); } if (instr.id() == comp.root_id()) { if (result_shape.element_type() != PRIMITIVE_TYPE_INVALID) { return InvalidArgument("Found multiple root instructions"); } TF_ASSIGN_OR_RETURN(result_shape, GetShardedShape(instr)); } } } for (int i = 0; i < arg_shapes.size(); ++i) { if (arg_shapes[i].element_type() == PRIMITIVE_TYPE_INVALID) { return InvalidArgument("Couldn't find parameter %d", i); } } if (result_shape.element_type() == PRIMITIVE_TYPE_INVALID) { return InvalidArgument("Couldn't find root instruction"); } return std::make_pair(arg_shapes, result_shape); } } absl::Status ParseDeviceAssignmentCompileOptions( bool compile_portable_executable, ExecutableBuildOptions* build_options, std::function<absl::StatusOr<DeviceAssignment>(int, int)> GetDefaultDeviceAssignmentFunction, int* num_replicas, int* num_partitions, std::shared_ptr<DeviceAssignment>* device_assignment) { if (compile_portable_executable) { if (build_options->has_device_assignment()) { return InvalidArgument( "CompileOptions requests portable executable but " "ExecutableBuildOptions includes a device assignment"); } if (build_options->num_replicas() != 1 || build_options->num_partitions() != 1) { return InvalidArgument( "CompileOptions requests portable executable but " "ExecutableBuildOptions includes num_replicas %d and num_partitions " "%d.", build_options->num_replicas(), build_options->num_partitions()); } *num_replicas = 1; *num_partitions = 1; } else { if (!build_options->has_device_assignment()) { VLOG(2) << "Compile using default device_assignment."; TF_ASSIGN_OR_RETURN( DeviceAssignment device_assignment, GetDefaultDeviceAssignmentFunction(build_options->num_replicas(), build_options->num_partitions())); build_options->set_device_assignment(device_assignment); } VLOG(2) << "Compile device_assignment:\n" << build_options->device_assignment().ToString(); *num_replicas = build_options->device_assignment().replica_count(); *num_partitions = build_options->device_assignment().computation_count(); *device_assignment = std::make_shared<DeviceAssignment>(build_options->device_assignment()); } return absl::OkStatus(); } static absl::StatusOr<std::vector<LayoutMode>> MlirAttrsToLayoutModes( mlir::ArrayAttr all_attrs, size_t num_values) { if (all_attrs == nullptr) { return std::vector<LayoutMode>(num_values); } if (all_attrs.size() != num_values) { return InvalidArgument( "MlirAttrsToLayoutModes got unexpected number of attributes: %d, " "expected: %d", all_attrs.size(), num_values); } std::vector<LayoutMode> result; result.reserve(all_attrs.size()); for (const mlir::Attribute& dict_attr : all_attrs) { mlir::StringAttr attr = mlir::cast<mlir::DictionaryAttr>(dict_attr).getAs<mlir::StringAttr>( "mhlo.layout_mode"); if (attr != nullptr) { TF_ASSIGN_OR_RETURN(LayoutMode mode, LayoutMode::FromString(attr.getValue().str())); result.emplace_back(std::move(mode)); } else { result.emplace_back(); } } return result; } absl::StatusOr<MemorySpaceColor> GetMemorySpaceColor( const std::string& memory_kind) { if (memory_kind == "unpinned_host" || memory_kind == "pinned_host") { return xla::Layout::kHostMemorySpace; } else if (memory_kind == "device") { return xla::Layout::kDefaultMemorySpace; } else { return InvalidArgument("Unknown memory kind %s", memory_kind); } } static absl::StatusOr<std::vector<MemorySpaceColor>> MlirAttrsToMemoryKinds( mlir::ArrayAttr all_attrs, size_t num_values) { if (all_attrs == nullptr) { return std::vector<MemorySpaceColor>(num_values, xla::Layout::kDefaultMemorySpace); } if (all_attrs.size() != num_values) { return InvalidArgument( "MlirAttrsToMemoryKinds got unexpected number of attributes: %d, " "expected: %d", all_attrs.size(), num_values); } std::vector<MemorySpaceColor> result; result.reserve(all_attrs.size()); for (const mlir::Attribute& dict_attr : all_attrs) { mlir::StringAttr attr = mlir::cast<mlir::DictionaryAttr>(dict_attr).getAs<mlir::StringAttr>( "mhlo.memory_kind"); if (attr != nullptr) { TF_ASSIGN_OR_RETURN(MemorySpaceColor memory_space, GetMemorySpaceColor(attr.getValue().str())); result.emplace_back(memory_space); } else { result.emplace_back(xla::Layout::kDefaultMemorySpace); } } return result; } static absl::StatusOr<std::optional<std::vector<LayoutMode>>> GetTupleLayoutModes(mlir::ArrayRef<mlir::Type> types, mlir::ArrayAttr all_attrs) { if (types.size() != 1 || !llvm::isa<mlir::TupleType>(types[0])) { return std::nullopt; } if (all_attrs != nullptr) { if (all_attrs.size() != 1) { return InvalidArgument( "GetTupleLayoutModes expected single tuple attr, got %d attrs", all_attrs.size()); } mlir::StringAttr attr = mlir::cast<mlir::DictionaryAttr>(*all_attrs.begin()) .getAs<mlir::StringAttr>("mhlo.layout_mode"); if (attr != nullptr) { return Unimplemented("mhlo.layout_mode not supported with tupled values"); } } return std::vector<LayoutMode>(mlir::cast<mlir::TupleType>(types[0]).size()); } static absl::StatusOr<std::optional<std::vector<MemorySpaceColor>>> GetTupleMemoryKinds(mlir::ArrayRef<mlir::Type> types, mlir::ArrayAttr all_attrs) { if (types.size() != 1 || !llvm::isa<mlir::TupleType>(types[0])) { return std::nullopt; } if (all_attrs != nullptr) { if (all_attrs.size() != 1) { return InvalidArgument( "GetTupleMemoryKinds expected single tuple attr, got %d attrs", all_attrs.size()); } mlir::StringAttr attr = mlir::cast<mlir::DictionaryAttr>(*all_attrs.begin()) .getAs<mlir::StringAttr>("mhlo.memory_kind"); if (attr != nullptr) { return Unimplemented("mhlo.memory_kind not supported with tupled values"); } } return std::vector<MemorySpaceColor>( mlir::cast<mlir::TupleType>(types[0]).size(), xla::Layout::kDefaultMemorySpace); } absl::StatusOr<std::vector<LayoutMode>> GetArgLayoutModes( mlir::ModuleOp module) { mlir::func::FuncOp main = module.lookupSymbol<mlir::func::FuncOp>("main"); if (main == nullptr) { return InvalidArgument( "GetArgLayoutModes passed module without main function"); } TF_ASSIGN_OR_RETURN(std::optional<std::vector<LayoutMode>> maybe_result, GetTupleLayoutModes(main.getFunctionType().getInputs(), main.getAllArgAttrs())); if (maybe_result) return *maybe_result; return MlirAttrsToLayoutModes(main.getAllArgAttrs(), main.getNumArguments()); } absl::StatusOr<std::vector<LayoutMode>> GetOutputLayoutModes( mlir::ModuleOp module) { mlir::func::FuncOp main = module.lookupSymbol<mlir::func::FuncOp>("main"); if (main == nullptr) { return InvalidArgument( "GetOutputLayoutModes passed module without main function"); } TF_ASSIGN_OR_RETURN(std::optional<std::vector<LayoutMode>> maybe_tuple_result, GetTupleLayoutModes(main.getFunctionType().getResults(), main.getAllResultAttrs())); if (maybe_tuple_result) return *maybe_tuple_result; return MlirAttrsToLayoutModes(main.getAllResultAttrs(), main.getNumResults()); } absl::StatusOr<std::vector<MemorySpaceColor>> GetArgMemoryKinds( mlir::ModuleOp module) { mlir::func::FuncOp main = module.lookupSymbol<mlir::func::FuncOp>("main"); if (main == nullptr) { return InvalidArgument( "GetArgMemoryKinds passed module without main function"); } TF_ASSIGN_OR_RETURN( std::optional<std::vector<MemorySpaceColor>> maybe_tuple_result, GetTupleMemoryKinds(main.getFunctionType().getInputs(), main.getAllArgAttrs())); if (maybe_tuple_result) return *maybe_tuple_result; return MlirAttrsToMemoryKinds(main.getAllArgAttrs(), main.getNumArguments()); } absl::StatusOr<std::vector<MemorySpaceColor>> GetOutputMemoryKinds( mlir::ModuleOp module) { mlir::func::FuncOp main = module.lookupSymbol<mlir::func::FuncOp>("main"); if (main == nullptr) { return InvalidArgument( "GetOutputMemoryKinds passed module without main function"); } TF_ASSIGN_OR_RETURN( std::optional<std::vector<MemorySpaceColor>> maybe_tuple_result, GetTupleMemoryKinds(main.getFunctionType().getResults(), main.getAllResultAttrs())); if (maybe_tuple_result) return *maybe_tuple_result; return MlirAttrsToMemoryKinds(main.getAllResultAttrs(), main.getNumResults()); } static const char* kDelimiter = ";"; static std::string GetFrontendAttr(absl::Span<const LayoutMode> layout_modes) { return absl::StrJoin(layout_modes, kDelimiter, [](std::string* out, const LayoutMode& mode) { absl::StrAppend(out, mode.ToString()); }); } absl::Status AddLayoutModesToFrontendAttrs(mlir::ModuleOp module, XlaComputation& xla_computation) { TF_ASSIGN_OR_RETURN(std::vector<LayoutMode> arg_layout_modes, GetArgLayoutModes(module)); TF_ASSIGN_OR_RETURN(std::vector<LayoutMode> out_layout_modes, GetOutputLayoutModes(module)); auto& frontend_attrs = *xla_computation.mutable_proto() ->mutable_frontend_attributes() ->mutable_map(); frontend_attrs["arg_layout_modes"] = GetFrontendAttr(arg_layout_modes); frontend_attrs["out_layout_modes"] = GetFrontendAttr(out_layout_modes); return absl::OkStatus(); } static std::string GetFrontendAttrForMemorySpace( const std::vector<MemorySpaceColor>& memory_spaces) { return absl::StrJoin( memory_spaces, kDelimiter, [](std::string* out, const MemorySpaceColor memory_kind) { absl::StrAppend(out, memory_kind); }); } absl::Status AddMemoryKindsToFrontendAttrs(mlir::ModuleOp module, XlaComputation& xla_computation) { TF_ASSIGN_OR_RETURN(std::vector<MemorySpaceColor> arg_memory_spaces, GetArgMemoryKinds(module)); TF_ASSIGN_OR_RETURN(std::vector<MemorySpaceColor> out_memory_spaces, GetOutputMemoryKinds(module)); auto& frontend_attrs = *xla_computation.mutable_proto() ->mutable_frontend_attributes() ->mutable_map(); frontend_attrs["arg_memory_spaces"] = GetFrontendAttrForMemorySpace(arg_memory_spaces); frontend_attrs["out_memory_spaces"] = GetFrontendAttrForMemorySpace(out_memory_spaces); return absl::OkStatus(); } static absl::StatusOr<std::vector<LayoutMode>> GetLayoutModesFromFrontendAttr( absl::string_view attr) { std::vector<std::string> str_modes = absl::StrSplit(attr, kDelimiter, absl::SkipEmpty()); std::vector<LayoutMode> result; for (const std::string& str_mode : str_modes) { TF_ASSIGN_OR_RETURN(LayoutMode mode, LayoutMode::FromString(str_mode)); result.emplace_back(std::move(mode)); } return result; } static absl::StatusOr<std::vector<LayoutMode>> GetLayoutModes( const XlaComputation& computation, absl::string_view frontend_attr_name, size_t num_values) { const auto& frontend_attrs = computation.proto().frontend_attributes().map(); auto iter = frontend_attrs.find(frontend_attr_name); if (iter == frontend_attrs.end()) { return std::vector<LayoutMode>(num_values); } return GetLayoutModesFromFrontendAttr(iter->second); } static absl::StatusOr<std::vector<MemorySpaceColor>> GetMemoryKindsFromFrontendAttr(absl::string_view attr) { std::vector<std::string> str_memory_spaces = absl::StrSplit(attr, kDelimiter, absl::SkipEmpty()); std::vector<MemorySpaceColor> result; result.reserve(str_memory_spaces.size()); for (const std::string& str_mem_space : str_memory_spaces) { MemorySpaceColor memory_space; CHECK(absl::SimpleAtoi(str_mem_space, &memory_space)); result.emplace_back(memory_space); } return result; } static absl::StatusOr<std::vector<MemorySpaceColor>> GetMemoryKinds( const XlaComputation& computation, absl::string_view frontend_attr_name, size_t num_values) { const auto& frontend_attrs = computation.proto().frontend_attributes().map(); auto iter = frontend_attrs.find(frontend_attr_name); if (iter == frontend_attrs.end()) { return std::vector<MemorySpaceColor>(num_values, xla::Layout::kDefaultMemorySpace); } return GetMemoryKindsFromFrontendAttr(iter->second); } absl::StatusOr<std::vector<LayoutMode>> GetArgLayoutModes( const XlaComputation& computation) { TF_ASSIGN_OR_RETURN(ProgramShape program_shape, computation.GetProgramShape()); size_t num_args = program_shape.parameters_size() == 1 && program_shape.parameters(0).IsTuple() ? program_shape.parameters(0).tuple_shapes_size() : program_shape.parameters_size(); return GetLayoutModes(computation, "arg_layout_modes", num_args); } absl::StatusOr<std::vector<MemorySpaceColor>> GetArgMemoryKinds( const XlaComputation& computation) { TF_ASSIGN_OR_RETURN(ProgramShape program_shape, computation.GetProgramShape()); size_t num_args = program_shape.parameters_size() == 1 && program_shape.parameters(0).IsTuple() ? program_shape.parameters(0).tuple_shapes_size() : program_shape.parameters_size(); return GetMemoryKinds(computation, "arg_memory_spaces", num_args); } absl::StatusOr<std::vector<LayoutMode>> GetOutputLayoutModes( const XlaComputation& computation) { TF_ASSIGN_OR_RETURN(ProgramShape program_shape, computation.GetProgramShape()); size_t num_outputs = program_shape.result().IsTuple() ? program_shape.result().tuple_shapes_size() : 1; return GetLayoutModes(computation, "out_layout_modes", num_outputs); } absl::StatusOr<std::vector<MemorySpaceColor>> GetOutputMemoryKinds( const XlaComputation& computation) { TF_ASSIGN_OR_RETURN(ProgramShape program_shape, computation.GetProgramShape()); size_t num_outputs = program_shape.result().IsTuple() ? program_shape.result().tuple_shapes_size() : 1; return GetMemoryKinds(computation, "out_memory_spaces", num_outputs); } static absl::StatusOr<Shape> LayoutModeToXlaShape( const LayoutMode& layout_mode, const Shape& unsharded_shape, const Shape& sharded_shape, std::function<absl::StatusOr<Shape>(Shape)> choose_compact_layout_for_shape_function) { if (unsharded_shape.IsToken() || unsharded_shape.IsOpaque()) { return unsharded_shape; } if (!unsharded_shape.IsArray() || !sharded_shape.IsArray()) { return InvalidArgument( "LayoutModeToXlaShape must be passed array shapes, got " "unsharded_shape: %s, sharded_shape: %s", unsharded_shape.ToString(), sharded_shape.ToString()); } Shape result = unsharded_shape; LayoutUtil::ClearLayout(&result); switch (layout_mode.mode) { case LayoutMode::Mode::kDefault: { TF_ASSIGN_OR_RETURN( Shape layout, choose_compact_layout_for_shape_function(sharded_shape)); *result.mutable_layout() = layout.layout(); break; } case LayoutMode::Mode::kUserSpecified: { CHECK(layout_mode.user_layout); *result.mutable_layout() = *layout_mode.user_layout; break; } case LayoutMode::Mode::kAuto: { break; } } return result; } absl::StatusOr<std::pair<std::vector<Shape>, Shape>> LayoutModesToXlaShapes( const XlaComputation& computation, std::vector<LayoutMode> arg_layout_modes, std::vector<LayoutMode> out_layout_modes, const std::vector<MemorySpaceColor>& arg_memory_spaces, const std::vector<MemorySpaceColor>& out_memory_spaces, std::function<absl::StatusOr<Shape>(Shape)> choose_compact_layout_for_shape_function) { TF_ASSIGN_OR_RETURN(ProgramShape program_shape, computation.GetProgramShape()); TF_ASSIGN_OR_RETURN(auto sharded_shapes, GetShardedProgramShapes(computation, program_shape)); bool args_tupled = program_shape.parameters_size() == 1 && program_shape.parameters(0).IsTuple(); const std::vector<Shape>& unsharded_arg_shapes = args_tupled ? program_shape.parameters(0).tuple_shapes() : program_shape.parameters(); const std::vector<Shape>& sharded_arg_shapes = args_tupled ? sharded_shapes.first[0].tuple_shapes() : sharded_shapes.first; bool out_tupled = program_shape.result().IsTuple(); const std::vector<Shape>& unsharded_out_shapes = out_tupled ? program_shape.result().tuple_shapes() : std::vector<Shape>{program_shape.result()}; const std::vector<Shape>& sharded_out_shapes = out_tupled ? sharded_shapes.second.tuple_shapes() : std::vector<Shape>{sharded_shapes.second}; if (unsharded_arg_shapes.size() != arg_layout_modes.size()) { return InvalidArgument( "LayoutModesToXlaShapes got mismatched number of arguments and layout " "modes (%d vs %d)", unsharded_arg_shapes.size(), arg_layout_modes.size()); } if (sharded_arg_shapes.size() != arg_layout_modes.s
#include "xla/service/gpu/llvm_gpu_backend/utils.h" #include <memory> #include <string> #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "tsl/platform/path.h" #include "tsl/platform/test.h" namespace xla { namespace gpu { namespace { std::string SaxpyIRFile() { return tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "service", "gpu", "llvm_gpu_backend", "tests_data", "saxpy.ll"); } TEST(UtilsTest, TestLoadIRModule) { llvm::LLVMContext llvm_context; std::string test_srcdir = tsl::testing::TensorFlowSrcRoot(); std::unique_ptr<llvm::Module> module = LoadIRModule(SaxpyIRFile(), &llvm_context); ASSERT_NE(nullptr, module); ASSERT_NE(std::string::npos, module->getModuleIdentifier().find("saxpy.ll")); ASSERT_NE(nullptr, module->getFunction("cuda_saxpy")); } TEST(UtilsTest, TestReplaceFilenameExtension) { ASSERT_EQ(ReplaceFilenameExtension("baz.tx", "cc"), "baz.cc"); ASSERT_EQ(ReplaceFilenameExtension("/foo/baz.txt", "cc"), "/foo/baz.cc"); ASSERT_EQ(ReplaceFilenameExtension("/foo/baz.", "-nvptx.dummy"), "/foo/baz.-nvptx.dummy"); ASSERT_EQ(ReplaceFilenameExtension("/foo/baz", "cc"), "/foo/baz.cc"); } } } }
834
cpp
tensorflow/tensorflow
tool_params
tensorflow/lite/tools/tool_params.cc
tensorflow/lite/tools/tool_params_test.cc
#ifndef TENSORFLOW_LITE_TOOLS_TOOL_PARAMS_H_ #define TENSORFLOW_LITE_TOOLS_TOOL_PARAMS_H_ #include <memory> #include <string> #include <unordered_map> #include <utility> #include <vector> namespace tflite { namespace tools { template <typename T> class TypedToolParam; class ToolParam { protected: enum class ParamType { TYPE_INT32, TYPE_FLOAT, TYPE_BOOL, TYPE_STRING }; template <typename T> static ParamType GetValueType(); public: template <typename T> static std::unique_ptr<ToolParam> Create(const T& default_value, int position = 0) { auto* param = new TypedToolParam<T>(default_value); param->SetPosition(position); return std::unique_ptr<ToolParam>(param); } template <typename T> TypedToolParam<T>* AsTyped() { AssertHasSameType(GetValueType<T>(), type_); return static_cast<TypedToolParam<T>*>(this); } template <typename T> const TypedToolParam<T>* AsConstTyped() const { AssertHasSameType(GetValueType<T>(), type_); return static_cast<const TypedToolParam<T>*>(this); } virtual ~ToolParam() {} explicit ToolParam(ParamType type) : has_value_set_(false), position_(0), type_(type) {} bool HasValueSet() const { return has_value_set_; } int GetPosition() const { return position_; } void SetPosition(int position) { position_ = position; } virtual void Set(const ToolParam&) {} virtual std::unique_ptr<ToolParam> Clone() const = 0; protected: bool has_value_set_; int position_; private: static void AssertHasSameType(ParamType a, ParamType b); const ParamType type_; }; template <typename T> class TypedToolParam : public ToolParam { public: explicit TypedToolParam(const T& value) : ToolParam(GetValueType<T>()), value_(value) {} void Set(const T& value) { value_ = value; has_value_set_ = true; } const T& Get() const { return value_; } void Set(const ToolParam& other) override { Set(other.AsConstTyped<T>()->Get()); SetPosition(other.AsConstTyped<T>()->GetPosition()); } std::unique_ptr<ToolParam> Clone() const override { return ToolParam::Create<T>(value_, position_); } private: T value_; }; class ToolParams { public: void AddParam(const std::string& name, std::unique_ptr<ToolParam> value) { params_[name] = std::move(value); } void RemoveParam(const std::string& name) { params_.erase(name); } bool HasParam(const std::string& name) const { return params_.find(name) != params_.end(); } bool Empty() const { return params_.empty(); } const ToolParam* GetParam(const std::string& name) const { const auto& entry = params_.find(name); if (entry == params_.end()) return nullptr; return entry->second.get(); } template <typename T> void Set(const std::string& name, const T& value, int position = 0) { AssertParamExists(name); params_.at(name)->AsTyped<T>()->Set(value); params_.at(name)->AsTyped<T>()->SetPosition(position); } template <typename T> bool HasValueSet(const std::string& name) const { AssertParamExists(name); return params_.at(name)->AsConstTyped<T>()->HasValueSet(); } template <typename T> int GetPosition(const std::string& name) const { AssertParamExists(name); return params_.at(name)->AsConstTyped<T>()->GetPosition(); } template <typename T> T Get(const std::string& name) const { AssertParamExists(name); return params_.at(name)->AsConstTyped<T>()->Get(); } void Set(const ToolParams& other); void Merge(const ToolParams& other, bool overwrite = false); private: void AssertParamExists(const std::string& name) const; std::unordered_map<std::string, std::unique_ptr<ToolParam>> params_; }; #define LOG_TOOL_PARAM(params, type, name, description, verbose) \ do { \ TFLITE_MAY_LOG(INFO, (verbose) || params.HasValueSet<type>(name)) \ << description << ": [" << params.Get<type>(name) << "]"; \ } while (0) } } #endif #include "tensorflow/lite/tools/tool_params.h" #include <string> #include <unordered_map> #include <vector> #include "tensorflow/lite/tools/logging.h" namespace tflite { namespace tools { void ToolParam::AssertHasSameType(ToolParam::ParamType a, ToolParam::ParamType b) { TFLITE_TOOLS_CHECK(a == b) << "Type mismatch while accessing parameter."; } template <> ToolParam::ParamType ToolParam::GetValueType<int32_t>() { return ToolParam::ParamType::TYPE_INT32; } template <> ToolParam::ParamType ToolParam::GetValueType<bool>() { return ToolParam::ParamType::TYPE_BOOL; } template <> ToolParam::ParamType ToolParam::GetValueType<float>() { return ToolParam::ParamType::TYPE_FLOAT; } template <> ToolParam::ParamType ToolParam::GetValueType<std::string>() { return ToolParam::ParamType::TYPE_STRING; } void ToolParams::AssertParamExists(const std::string& name) const { TFLITE_TOOLS_CHECK(HasParam(name)) << name << " was not found."; } void ToolParams::Set(const ToolParams& other) { for (const auto& param : params_) { const ToolParam* other_param = other.GetParam(param.first); if (other_param == nullptr) continue; param.second->Set(*other_param); } } void ToolParams::Merge(const ToolParams& other, bool overwrite) { for (const auto& one : other.params_) { auto it = params_.find(one.first); if (it == params_.end()) { AddParam(one.first, one.second->Clone()); } else if (overwrite) { it->second->Set(*one.second); } } } } }
#include "tensorflow/lite/tools/tool_params.h" #include <gtest/gtest.h> namespace tflite { namespace tools { namespace { TEST(ToolParams, SetTest) { ToolParams params; params.AddParam("some-int1", ToolParam::Create<int>(13 )); params.AddParam("some-int2", ToolParam::Create<int>(17 )); ToolParams others; others.AddParam("some-int1", ToolParam::Create<int>(19, 5)); others.AddParam("some-bool", ToolParam::Create<bool>(true, 1)); params.Set(others); EXPECT_EQ(19, params.Get<int>("some-int1")); EXPECT_EQ(5, params.GetPosition<int>("some-int1")); EXPECT_TRUE(params.HasValueSet<int>("some-int1")); EXPECT_EQ(17, params.Get<int>("some-int2")); EXPECT_EQ(0, params.GetPosition<int>("some-int2")); EXPECT_FALSE(params.HasValueSet<int>("some-int2")); EXPECT_FALSE(params.HasParam("some-bool")); } TEST(ToolParams, MergeTestOverwriteTrue) { ToolParams params; params.AddParam("some-int1", ToolParam::Create<int>(13 )); params.AddParam("some-int2", ToolParam::Create<int>(17 )); ToolParams others; others.AddParam("some-int1", ToolParam::Create<int>(19, 5)); others.AddParam("some-bool", ToolParam::Create<bool>(true )); params.Merge(others, true ); EXPECT_EQ(19, params.Get<int>("some-int1")); EXPECT_EQ(5, params.GetPosition<int>("some-int1")); EXPECT_EQ(17, params.Get<int>("some-int2")); EXPECT_TRUE(params.Get<bool>("some-bool")); } TEST(ToolParams, MergeTestOverwriteFalse) { ToolParams params; params.AddParam("some-int1", ToolParam::Create<int>(13 )); params.AddParam("some-int2", ToolParam::Create<int>(17 )); ToolParams others; others.AddParam("some-int1", ToolParam::Create<int>(19, 5)); others.AddParam("some-bool", ToolParam::Create<bool>(true )); params.Merge(others); EXPECT_EQ(13, params.Get<int>("some-int1")); EXPECT_EQ(0, params.GetPosition<int>("some-int1")); EXPECT_EQ(17, params.Get<int>("some-int2")); EXPECT_TRUE(params.Get<bool>("some-bool")); } } } }
835
cpp
tensorflow/tensorflow
gen_op_registration
tensorflow/lite/tools/gen_op_registration.cc
tensorflow/lite/tools/gen_op_registration_test.cc
#ifndef TENSORFLOW_LITE_TOOLS_GEN_OP_REGISTRATION_H_ #define TENSORFLOW_LITE_TOOLS_GEN_OP_REGISTRATION_H_ #include "tensorflow/lite/core/model.h" #include "tensorflow/lite/string_type.h" namespace tflite { string NormalizeCustomOpName(const string& op); typedef std::map<string, std::pair<int, int>> RegisteredOpMap; void ReadOpsFromModel(const ::tflite::Model* model, RegisteredOpMap* builtin_ops, RegisteredOpMap* custom_ops); } #endif #include "tensorflow/lite/tools/gen_op_registration.h" #include <algorithm> #include <string> #include <vector> #include "re2/re2.h" #include "tensorflow/lite/core/model.h" #include "tensorflow/lite/schema/schema_utils.h" namespace tflite { string NormalizeCustomOpName(const string& op) { string method(op); RE2::GlobalReplace(&method, "([a-z])([A-Z])", "\\1_\\2"); std::transform(method.begin(), method.end(), method.begin(), ::toupper); return method; } void ReadOpsFromModel(const ::tflite::Model* model, tflite::RegisteredOpMap* builtin_ops, tflite::RegisteredOpMap* custom_ops) { if (!model) return; auto opcodes = model->operator_codes(); if (!opcodes) return; for (const auto* opcode : *opcodes) { const int version = opcode->version(); auto builtin_code = GetBuiltinCode(opcode); if (builtin_code != ::tflite::BuiltinOperator_CUSTOM) { auto iter_and_bool = builtin_ops->insert( std::make_pair(tflite::EnumNameBuiltinOperator(builtin_code), std::make_pair(version, version))); auto& versions = iter_and_bool.first->second; versions.first = std::min(versions.first, version); versions.second = std::max(versions.second, version); } else { auto iter_and_bool = custom_ops->insert(std::make_pair( opcode->custom_code()->c_str(), std::make_pair(version, version))); auto& versions = iter_and_bool.first->second; versions.first = std::min(versions.first, version); versions.second = std::max(versions.second, version); } } } }
#include "tensorflow/lite/tools/gen_op_registration.h" #include <gmock/gmock.h> #include <gtest/gtest.h> using ::testing::ElementsAreArray; namespace tflite { class GenOpRegistrationTest : public ::testing::Test { protected: GenOpRegistrationTest() {} void ReadOps(const string& model_path) { auto model = FlatBufferModel::BuildFromFile(model_path.data()); if (model) { ReadOpsFromModel(model->GetModel(), &builtin_ops_, &custom_ops_); } } std::map<string, std::pair<int, int>> builtin_ops_; std::map<string, std::pair<int, int>> custom_ops_; }; TEST_F(GenOpRegistrationTest, TestNonExistentFiles) { ReadOps("/tmp/tflite_model_1234"); EXPECT_EQ(builtin_ops_.size(), 0); EXPECT_EQ(custom_ops_.size(), 0); } TEST_F(GenOpRegistrationTest, TestModels) { ReadOps("tensorflow/lite/testdata/test_model.bin"); RegisteredOpMap builtin_expected{{"CONV_2D", {1, 1}}}; RegisteredOpMap custom_expected{{"testing_op", {1, 1}}}; EXPECT_THAT(builtin_ops_, ElementsAreArray(builtin_expected)); EXPECT_THAT(custom_ops_, ElementsAreArray(custom_expected)); } TEST_F(GenOpRegistrationTest, TestVersionedModels) { ReadOps("tensorflow/lite/testdata/test_model_versioned_ops.bin"); RegisteredOpMap builtin_expected{{"CONV_2D", {3, 3}}}; RegisteredOpMap custom_expected{{"testing_op", {2, 2}}}; EXPECT_THAT(builtin_ops_, ElementsAreArray(builtin_expected)); EXPECT_THAT(custom_ops_, ElementsAreArray(custom_expected)); } TEST_F(GenOpRegistrationTest, TestBothModels) { ReadOps("tensorflow/lite/testdata/test_model.bin"); ReadOps("tensorflow/lite/testdata/test_model_versioned_ops.bin"); RegisteredOpMap builtin_expected{{"CONV_2D", {1, 3}}}; RegisteredOpMap custom_expected{{"testing_op", {1, 2}}}; EXPECT_THAT(builtin_ops_, ElementsAreArray(builtin_expected)); EXPECT_THAT(custom_ops_, ElementsAreArray(custom_expected)); } TEST_F(GenOpRegistrationTest, TestEmptyModels) { ReadOps("tensorflow/lite/testdata/empty_model.bin"); EXPECT_EQ(builtin_ops_.size(), 0); EXPECT_EQ(custom_ops_.size(), 0); } TEST_F(GenOpRegistrationTest, TestZeroSubgraphs) { ReadOps("tensorflow/lite/testdata/0_subgraphs.bin"); EXPECT_EQ(builtin_ops_.size(), 0); EXPECT_EQ(custom_ops_.size(), 0); } TEST_F(GenOpRegistrationTest, TestBrokenMmap) { ReadOps("tensorflow/lite/testdata/test_model_broken.bin"); EXPECT_EQ(builtin_ops_.size(), 0); EXPECT_EQ(custom_ops_.size(), 0); } TEST_F(GenOpRegistrationTest, TestNormalizeCustomOpName) { std::vector<std::pair<string, string>> testcase = { {"CustomOp", "CUSTOM_OP"}, {"a", "A"}, {"custom_op", "CUSTOM_OP"}, {"customop", "CUSTOMOP"}, }; for (const auto& test : testcase) { EXPECT_EQ(NormalizeCustomOpName(test.first), test.second); } } }
836
cpp
tensorflow/tensorflow
op_version
tensorflow/lite/tools/versioning/op_version.cc
tensorflow/lite/tools/versioning/op_version_test.cc
#ifndef TENSORFLOW_LITE_TOOLS_VERSIONING_OP_VERSION_H_ #define TENSORFLOW_LITE_TOOLS_VERSIONING_OP_VERSION_H_ #include <vector> #include "tensorflow/compiler/mlir/lite/schema/mutable/schema_generated.h" #include "tensorflow/lite/tools/versioning/op_signature.h" namespace tflite { int GetBuiltinOperatorVersion(const OpSignature& op_sig); void UpdateOpVersion(uint8_t* model_buffer_pointer); } #endif #include "tensorflow/lite/tools/versioning/op_version.h" #include <algorithm> #include <string> #include <utility> #include <vector> #include "absl/memory/memory.h" #include "absl/strings/numbers.h" #include "absl/strings/str_split.h" #include "tensorflow/compiler/mlir/lite/schema/mutable/schema_generated.h" #include "tensorflow/compiler/mlir/lite/schema/schema_generated.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/lite/builtin_op_data.h" #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/schema/schema_utils.h" namespace tflite { namespace { bool NeedBroadcastForBinaryInputs(const OpSignature& op_sig) { if (op_sig.inputs.size() < 2) { return false; } return (op_sig.inputs.at(0).dims != op_sig.inputs.at(1).dims); } int GetInputMaxDims(const OpSignature& op_sig) { int max_dims = 0; for (auto& input : op_sig.inputs) { if (input.dims.size() > max_dims) { max_dims = input.dims.size(); } } return max_dims; } } int GetBuiltinOperatorVersion(const OpSignature& op_sig) { switch (op_sig.op) { case BuiltinOperator_CONV_2D: { if (op_sig.inputs.at(0).type == kTfLiteInt16 && op_sig.inputs.at(1).type == kTfLiteInt8 && op_sig.outputs.at(0).type == kTfLiteInt16) { auto conv_params = reinterpret_cast<TfLiteConvParams*>(op_sig.builtin_data); TFLITE_DCHECK(conv_params != nullptr); if (conv_params->quantized_bias_type) { return 8; } } if (op_sig.ext_options.conv_2d.is_grouped_convolution) { return 6; } if (op_sig.inputs.at(0).type == kTfLiteInt16 && op_sig.inputs.at(1).type == kTfLiteInt16 && op_sig.outputs.at(1).type == kTfLiteInt16) { return 4; } if (op_sig.inputs.at(0).type == kTfLiteInt8 && op_sig.inputs.at(1).type == kTfLiteInt8 && op_sig.outputs.at(0).type == kTfLiteInt8) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8 && op_sig.inputs.at(1).type == kTfLiteInt4 && op_sig.outputs.at(0).type == kTfLiteInt8) { return 7; } if (op_sig.inputs.at(0).type == kTfLiteFloat32 && op_sig.inputs.at(1).type == kTfLiteInt8 && op_sig.outputs.at(0).type == kTfLiteFloat32) { if (op_sig.ext_options.conv_2d.is_per_channel_quantized) { return 5; } return 2; } return 1; } case BuiltinOperator_DEPTHWISE_CONV_2D: { if (op_sig.inputs.at(0).type == kTfLiteInt16 && op_sig.inputs.at(1).type == kTfLiteInt16 && op_sig.outputs.at(1).type == kTfLiteInt16) { return 5; } if (op_sig.inputs.at(0).type == kTfLiteFloat32 && op_sig.inputs.at(1).type == kTfLiteInt8 && op_sig.outputs.at(0).type == kTfLiteFloat32) { if (op_sig.ext_options.depthwise_conv_2d.is_per_channel_quantized) { return 6; } return 4; } if (op_sig.inputs.at(0).type == kTfLiteInt8 && op_sig.inputs.at(1).type == kTfLiteInt8 && op_sig.outputs.at(0).type == kTfLiteInt8) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8 && op_sig.inputs.at(1).type == kTfLiteInt4 && op_sig.outputs.at(0).type == kTfLiteInt8) { return 7; } auto depthwise_conv_params = reinterpret_cast<TfLiteDepthwiseConvParams*>(op_sig.builtin_data); TFLITE_DCHECK(depthwise_conv_params != nullptr); if (depthwise_conv_params->dilation_width_factor != 1 || depthwise_conv_params->dilation_height_factor != 1) { return 2; } return 1; } case BuiltinOperator_FAKE_QUANT: { auto fake_quant_params = reinterpret_cast<TfLiteFakeQuantParams*>(op_sig.builtin_data); TFLITE_DCHECK(fake_quant_params != nullptr); if (fake_quant_params->narrow_range) { return 2; } return 1; } case BuiltinOperator_FULLY_CONNECTED: { auto fully_connected_params = reinterpret_cast<TfLiteFullyConnectedParams*>(op_sig.builtin_data); TFLITE_DCHECK(fully_connected_params != nullptr); if (op_sig.inputs.at(0).type == kTfLiteFloat32 && op_sig.inputs.at(1).type == kTfLiteInt8 && op_sig.outputs.at(0).type == kTfLiteFloat32 && op_sig.ext_options.fully_connected.is_per_channel_quantized) { return 12; } if (op_sig.inputs.at(0).type == kTfLiteInt16 && op_sig.inputs.at(1).type == kTfLiteInt8 && op_sig.outputs.at(0).type == kTfLiteInt16) { if (fully_connected_params->quantized_bias_type) { return 11; } } if (op_sig.ext_options.fully_connected.sparse_weight) { return 8; } if (op_sig.inputs.at(0).type == kTfLiteInt16 && op_sig.inputs.at(1).type == kTfLiteInt16 && op_sig.outputs.at(0).type == kTfLiteInt16) { return 7; } if (op_sig.inputs.size() == 2) { return 6; } if (fully_connected_params->keep_num_dims) { return 5; } if (op_sig.inputs.at(0).type == kTfLiteInt8 && op_sig.inputs.at(1).type == kTfLiteInt8 && op_sig.outputs.at(0).type == kTfLiteInt8) { return 4; } if (op_sig.inputs.at(0).type == kTfLiteInt8 && op_sig.inputs.at(1).type == kTfLiteInt4 && op_sig.outputs.at(0).type == kTfLiteInt8) { return 10; } if (op_sig.inputs.at(0).type == kTfLiteFloat32 && op_sig.inputs.at(1).type == kTfLiteInt8 && op_sig.outputs.at(0).type == kTfLiteFloat32) { if (fully_connected_params->asymmetric_quantize_inputs) { return 9; } return 3; } if (fully_connected_params->weights_format == kTfLiteFullyConnectedWeightsFormatShuffled4x16Int8) { return 2; } return 1; } case BuiltinOperator_GATHER: { if (op_sig.inputs.at(0).type == kTfLiteInt4) { return 7; } if (op_sig.inputs.at(1).type == kTfLiteInt16) { return 6; } auto gather_params = reinterpret_cast<TfLiteGatherParams*>(op_sig.builtin_data); if (gather_params && gather_params->batch_dims != 0) { return 5; } if (op_sig.inputs.at(0).type == kTfLiteInt16) { return 4; } if (op_sig.inputs.at(0).type == kTfLiteBool) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } return 1; } case BuiltinOperator_SVDF: { if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteFloat32 && op_sig.inputs.at(1).type == kTfLiteInt8 && op_sig.outputs.at(0).type == kTfLiteFloat32) { auto svdf_params = reinterpret_cast<TfLiteSVDFParams*>(op_sig.builtin_data); if (svdf_params && svdf_params->asymmetric_quantize_inputs) { return 4; } return 2; } return 1; } case BuiltinOperator_SIGN: if (op_sig.inputs.at(0).type == kTfLiteInt32) { return 2; } return 1; case BuiltinOperator_MUL: if ((op_sig.inputs.at(0).type == kTfLiteInt16 && !op_sig.ext_options.mul.input_quantized) || op_sig.inputs.at(0).type == kTfLiteUInt32) { return 7; } if (op_sig.inputs.at(0).type == kTfLiteComplex64) { return 6; } if (op_sig.inputs.at(0).type == kTfLiteInt64) { return 5; } if (op_sig.inputs.at(0).type == kTfLiteInt16) { return 4; } if (op_sig.ext_options.mul.input1_scale != 0 && op_sig.ext_options.mul.input2_scale != 0 && op_sig.ext_options.mul.output_scale != 0 && (op_sig.ext_options.mul.input1_scale * op_sig.ext_options.mul.input2_scale / op_sig.ext_options.mul.output_scale) >= 1.0) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } return 1; case BuiltinOperator_MAX_POOL_2D: case BuiltinOperator_AVERAGE_POOL_2D: if (op_sig.inputs.at(0).type == kTfLiteInt16 && op_sig.outputs.at(0).type == kTfLiteInt16) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } return 1; case BuiltinOperator_TRANSPOSE: if (op_sig.inputs.at(0).dims.size() > 5) { return 6; } if (op_sig.inputs.at(0).type == kTfLiteInt16) { return 5; } if (op_sig.inputs.at(0).dims.size() > 4) { return 4; } if (op_sig.inputs.at(0).type == kTfLiteBool) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } return 1; case BuiltinOperator_TRANSPOSE_CONV: { auto transpose_conv_params = reinterpret_cast<TfLiteTransposeConvParams*>(op_sig.builtin_data); if (op_sig.inputs.at(0).type == kTfLiteInt16 && op_sig.inputs.at(1).type == kTfLiteInt8 && op_sig.outputs.at(0).type == kTfLiteInt16) { TFLITE_DCHECK(transpose_conv_params != nullptr); if (transpose_conv_params->quantized_bias_type) { return 5; } } if (transpose_conv_params != nullptr && transpose_conv_params->activation) { return 4; } if (op_sig.inputs.size() == 4 && op_sig.inputs.at(3).type != kTfLiteNoType) { return 3; } if (op_sig.inputs.at(1).type == kTfLiteInt8) { return 2; } return 1; } case BuiltinOperator_LSTM: { auto lstm_params = reinterpret_cast<TfLiteLSTMParams*>(op_sig.builtin_data); if (lstm_params->kernel_type == kTfLiteLSTMFullKernel && op_sig.inputs.at(0).type == kTfLiteInt16 && op_sig.inputs.at(2).type == kTfLiteInt8 && op_sig.outputs.at(0).type == kTfLiteInt16) { return 5; } TFLITE_DCHECK(lstm_params != nullptr); if (lstm_params->kernel_type == kTfLiteLSTMFullKernel && op_sig.inputs.at(0).type == kTfLiteFloat32 && op_sig.inputs.at(2).type == kTfLiteInt8 && op_sig.outputs.at(0).type == kTfLiteFloat32) { if (lstm_params->asymmetric_quantize_inputs) { return 4; } return 3; } if (lstm_params->kernel_type == kTfLiteLSTMBasicKernel) { return 2; } return 1; } case BuiltinOperator_SPLIT: if (op_sig.inputs.at(1).type == kTfLiteInt16) { return 4; } if (op_sig.inputs.at(1).type == kTfLiteInt32) { return 3; } if (op_sig.inputs.at(1).type == kTfLiteInt8) { return 2; } return 1; case BuiltinOperator_SPARSE_TO_DENSE: if (op_sig.inputs.at(2).type == kTfLiteInt8 || op_sig.inputs.at(2).type == kTfLiteUInt8) { return 3; } if (op_sig.inputs.at(2).type == kTfLiteInt64) { return 2; } return 1; case BuiltinOperator_SLICE: if (op_sig.inputs.at(0).type == kTfLiteUInt32) { return 6; } if (op_sig.inputs.at(0).dims.size() > 4) { return 5; } if (op_sig.inputs.at(0).type == kTfLiteInt16) { return 4; } if (op_sig.inputs.at(0).type == kTfLiteString) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } return 1; case BuiltinOperator_UNPACK: if (op_sig.inputs.at(0).type == kTfLiteInt8 || op_sig.inputs.at(0).type == kTfLiteUInt8) { return 2; } if (op_sig.inputs.at(0).type == kTfLiteBool) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt16 && op_sig.outputs.at(0).type == kTfLiteInt16) { return 4; } return 1; case BuiltinOperator_DEQUANTIZE: if (op_sig.inputs.at(0).type == kTfLiteInt4) { return 6; } if (op_sig.inputs.at(0).type == kTfLiteInt16 || op_sig.inputs.at(0).type == kTfLiteFloat16) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8) { if (op_sig.ext_options.dequantize.is_per_channel_quantized) { return 5; } return 2; } return 1; case BuiltinOperator_QUANTIZE: if (op_sig.inputs.at(0).type == kTfLiteInt4 || op_sig.outputs.at(0).type == kTfLiteInt4) { return 4; } if (op_sig.ext_options.quantize.is_per_channel_quantized) { return 3; } if (op_sig.outputs.at(0).type == kTfLiteInt16) { return 2; } return 1; case BuiltinOperator_FLOOR_DIV: if (op_sig.inputs.at(0).type == kTfLiteInt16 || op_sig.inputs.at(0).type == kTfLiteInt8) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteFloat32) { return 2; } return 1; case BuiltinOperator_FLOOR_MOD: if (op_sig.inputs.at(0).type == kTfLiteInt16 || op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } return 1; case BuiltinOperator_L2_NORMALIZATION: if (op_sig.outputs.at(0).type == kTfLiteInt8) { return 2; } return 1; case BuiltinOperator_ABS: if (op_sig.inputs.at(0).type == kTfLiteInt32) { return 5; } if (op_sig.inputs.at(0).type == kTfLiteInt16) { return op_sig.ext_options.abs.input_quantized ? 3 : 4; } if (op_sig.inputs.at(0).type == kTfLiteInt8 || op_sig.inputs.at(0).type == kTfLiteUInt8) { return 2; } return 1; case BuiltinOperator_RELU: if (op_sig.inputs.at(0).type == kTfLiteInt16) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8 || op_sig.inputs.at(0).type == kTfLiteUInt8) { return 2; } return 1; case BuiltinOperator_STRIDED_SLICE: { auto strided_slice_params = reinterpret_cast<TfLiteStridedSliceParams*>(op_sig.builtin_data); TFLITE_DCHECK(strided_slice_params != nullptr); if (strided_slice_params->offset == true) { return 8; } if (op_sig.inputs.at(0).type == kTfLiteUInt32) { return 7; } if (strided_slice_params->ellipsis_mask != 0 || strided_slice_params->new_axis_mask != 0) { return 6; } if (op_sig.inputs.at(0).type == kTfLiteString) { return 5; } if (op_sig.ext_options.strided_slice.num_dims > 4) { return 4; } if (op_sig.inputs.at(0).type == kTfLiteBool) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } return 1; } case BuiltinOperator_REVERSE_V2: if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteBool) { return 2; } return 1; case BuiltinOperator_RESIZE_BILINEAR: { if (op_sig.inputs.at(0).type == kTfLiteInt16) { return 4; } auto resize_bilinear_params = reinterpret_cast<TfLiteResizeBilinearParams*>(op_sig.builtin_data); TFLITE_DCHECK(resize_bilinear_params != nullptr); if (resize_bilinear_params->half_pixel_centers) { return 3; } else if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } return 1; } case BuiltinOperator_RESIZE_NEAREST_NEIGHBOR: { if (op_sig.inputs.at(0).type == kTfLiteInt16) { return 4; } auto resize_nearest_neighbor_params = reinterpret_cast<TfLiteResizeNearestNeighborParams*>( op_sig.builtin_data); TFLITE_DCHECK(resize_nearest_neighbor_params != nullptr); if (resize_nearest_neighbor_params->half_pixel_centers || resize_nearest_neighbor_params->align_corners) { return 3; } else if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } return 1; } case BuiltinOperator_MAXIMUM: case BuiltinOperator_MINIMUM: if (op_sig.inputs.at(0).type == kTfLiteInt16 && op_sig.outputs.at(0).type == kTfLiteInt16) { return 4; } if (NeedBroadcastForBinaryInputs(op_sig) && GetInputMaxDims(op_sig) > 4) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } return 1; case BuiltinOperator_PACK: if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } if (op_sig.inputs.at(0).type == kTfLiteInt16 && op_sig.outputs.at(0).type == kTfLiteInt16) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteUInt32) { return 4; } return 1; case BuiltinOperator_TILE: if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteString) { return 2; } return 1; case BuiltinOperator_SQUEEZE: if (op_sig.inputs.at(0).type == kTfLiteString) { return 2; } return 1; case BuiltinOperator_SPACE_TO_BATCH_ND: case BuiltinOperator_BATCH_TO_SPACE_ND: if (op_sig.inputs.at(0).type == kTfLiteInt16) { return 4; } if (op_sig.inputs.at(0).dims.size() != 4) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } return 1; case BuiltinOperator_ADD: { if (!op_sig.inputs.empty() && op_sig.inputs.at(0).type == kTfLiteInt16 && !op_sig.ext_options.add.input_quantized) { return 5; } if (!op_sig.inputs.empty() && op_sig.inputs.at(0).type == kTfLiteInt64) { return 4; } if (op_sig.inputs.at(0).type == kTfLiteInt16 && op_sig.outputs.at(0).type == kTfLiteInt16) { auto add_params = reinterpret_cast<TfLiteAddParams*>(op_sig.builtin_data); if (add_params && !add_params->pot_scale_int16) { return 3; } } if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } return 1; } case BuiltinOperator_SUB: { if (op_sig.inputs.at(0).type == kTfLiteInt16 && op_sig.outputs.at(0).type == kTfLiteInt16) { auto sub_params = reinterpret_cast<TfLiteSubParams*>(op_sig.builtin_data); if (sub_params && !sub_params->pot_scale_int16) { return 5; } } if (!op_sig.inputs.empty() && op_sig.inputs.at(0).type == kTfLiteInt64) { return 4; } if (NeedBroadcastForBinaryInputs(op_sig) && GetInputMaxDims(op_sig) > 4) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } return 1; } case BuiltinOperator_GATHER_ND: if (op_sig.inputs.at(0).type == kTfLiteBool) { return 5; } if (op_sig.inputs.at(1).type == kTfLiteInt16) { return 4; } if (!op_sig.inputs.empty() && (op_sig.inputs.at(0).type == kTfLiteInt16)) { return 3; } if (!op_sig.inputs.empty() && op_sig.inputs.at(0).type == kTfLiteString) { return 2; } return 1; case BuiltinOperator_DIV: if (NeedBroadcastForBinaryInputs(op_sig) && GetInputMaxDims(op_sig) > 4) { return 2; } return 1; case BuiltinOperator_TANH: case BuiltinOperator_LOGISTIC: if (op_sig.inputs.at(0).type == kTfLiteInt16 && op_sig.outputs.at(0).type == kTfLiteInt16) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } return 1; case BuiltinOperator_FILL: if (op_sig.inputs.size() >= 2) { if (op_sig.inputs.at(1).type == kTfLiteFloat16) return 4; if (op_sig.inputs.at(1).type == kTfLiteInt8 || op_sig.inputs.at(1).type == kTfLiteInt16) { return 3; } else if ((op_sig.inputs.at(1).type == kTfLiteBool || op_sig.inputs.at(1).type == kTfLiteString)) { return 2; } } return 1; case BuiltinOperator_EQUAL: if (!op_sig.inputs.empty()) { if (op_sig.inputs.at(0).type == kTfLiteInt16) { return 4; } if (op_sig.inputs.at(0).type == kTfLiteString) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } } return 1; case BuiltinOperator_NOT_EQUAL: if (!op_sig.inputs.empty()) { if (op_sig.inputs.at(0).type == kTfLiteString) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } } return 1; case BuiltinOperator_LEAKY_RELU: if (op_sig.inputs.at(0).type == kTfLiteInt16) { return 2; } return 1; case BuiltinOperator_RANGE: if (op_sig.inputs.at(0).type == kTfLiteInt64) { return 2; } return 1; case BuiltinOperator_BATCH_MATMUL: { if (op_sig.inputs.at(0).type == kTfLiteInt16) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } if (op_sig.inputs.at(0).type == kTfLiteFloat32 && op_sig.inputs.at(1).type == kTfLiteInt8 && op_sig.outputs.at(0).type == kTfLiteFloat32) { auto batch_mat_mul_params = reinterpret_cast<TfLiteBatchMatMulParams*>(op_sig.builtin_data); if (batch_mat_mul_params && batch_mat_mul_params->asymmetric_quantize_inputs) { return 4; } } return 1; } case BuiltinOperator_PAD: case BuiltinOperator_PADV2: if (op_sig.inputs.at(0).dims.size() > 4) { return 4; } if (op_sig.inputs.at(0).type == kTfLiteInt16) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } return 1; case BuiltinOperator_CONCATENATION: if (op_sig.inputs.at(0).type == kTfLiteUInt32) { return 4; } if (op_sig.inputs.at(0).type == kTfLiteInt16) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } return 1; case BuiltinOperator_SOFTMAX: case BuiltinOperator_MEAN: case BuiltinOperator_MIRROR_PAD: case BuiltinOperator_REDUCE_MAX: case BuiltinOperator_REDUCE_MIN: case BuiltinOperator_RELU6: case BuiltinOperator_RSQRT: if (op_sig.inputs.at(0).type == kTfLiteInt16) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } return 1; case BuiltinOperator_RNN: { if (op_sig.inputs.at(1).type == kTfLiteInt8 && op_sig.outputs.at(0).type == kTfLiteFloat32) { auto rnn_params = reinterpret_cast<TfLiteRNNParams*>(op_sig.builtin_data); if (rnn_params && rnn_params->asymmetric_quantize_inputs) { return 3; } else { return 2; } } return 1; } case BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_RNN: { if (op_sig.inputs.at(1).type == kTfLiteInt8 && op_sig.outputs.at(0).type == kTfLiteFloat32) { auto sequence_rnn_params = reinterpret_cast<TfLiteSequenceRNNParams*>(op_sig.builtin_data); if (sequence_rnn_params && sequence_rnn_params->asymmetric_quantize_inputs) { return 3; } else { return 2; } } return 1; } case BuiltinOperator_BIDIRECTIONAL_SEQUENCE_RNN: { if (op_sig.inputs.at(1).type == kTfLiteInt8 && op_sig.outputs.at(0).type == kTfLiteFloat32) { auto bidirectional_sequence_rnn_params = reinterpret_cast<TfLiteBidirectionalSequenceRNNParams*>( op_sig.builtin_data); if (bidirectional_sequence_rnn_params && bidirectional_sequence_rnn_params->asymmetric_quantize_inputs) { return 3; } else { return 2; } } return 1; } case BuiltinOperator_BIDIRECTIONAL_SEQUENCE_LSTM: { if (op_sig.inputs.at(1).type == kTfLiteInt8 && op_sig.outputs.at(0).type == kTfLiteFloat32) { auto bidirectional_sequence_lstm_params = reinterpret_cast<TfLiteBidirectionalSequenceLSTMParams*>( op_sig.builtin_data); if (bidirectional_sequence_lstm_params && bidirectional_sequence_lstm_params->asymmetric_quantize_inputs) { return 3; } else { return 2; } } return 1; } case BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_LSTM: { auto unidirectional_sequence_lstm_params = reinterpret_cast<TfLiteUnidirectionalSequenceLSTMParams*>( op_sig.builtin_data); if (op_sig.inputs.at(0).type == kTfLiteInt16 && op_sig.inputs.at(2).type == kTfLiteInt8 && op_sig.outputs.at(0).type == kTfLiteInt16) { return 5; } if (unidirectional_sequence_lstm_params && unidirectional_sequence_lstm_params->diagonal_recurrent_tensors) { return 4; } if (op_sig.inputs.at(0).type == kTfLiteFloat32 && op_sig.inputs.at(2).type == kTfLiteInt8 && op_sig.outputs.at(0).type == kTfLiteFloat32) { if (unidirectional_sequence_lstm_params && unidirectional_sequence_lstm_params->asymmetric_quantize_inputs) { return 3; } return 2; } return 1; } case BuiltinOperator_ARG_MAX: case BuiltinOperator_ARG_MIN: if (op_sig.inputs.at(0).type == kTfLiteBool) { return 3; } if (op_sig.inputs.at(0).type == kTfLiteInt8) { return 2; } return 1; case BuiltinOperator_SELECT: { if (op_sig.inputs.at(0).type == kTfLiteUInt32) { return 4; } if (op_sig.inputs.at(0).dims.size() == 5 || op_sig.inputs.at(1).dims.size() == 5 || op_sig.inputs.at(2).dims.size() == 5) return 3; if (op_sig.inputs.at(0).type == kTfLiteInt8
#include "tensorflow/lite/tools/versioning/op_version.h" #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/builtin_op_data.h" #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { std::vector<OpSignatureTensorSpec> CreateOpSignatureTensorSpecs( const std::vector<TfLiteType>& types) { std::vector<OpSignatureTensorSpec> tensor_specs; for (auto type : types) { OpSignatureTensorSpec tensor_spec = {}; tensor_spec.type = type; tensor_specs.push_back(tensor_spec); } return tensor_specs; } std::vector<OpSignatureTensorSpec> CreateOpSignatureTensorSpecs( const std::vector<TfLiteType>& types, int rank) { std::vector<OpSignatureTensorSpec> tensor_specs; for (auto type : types) { OpSignatureTensorSpec tensor_spec = {}; tensor_spec.type = type; for (int i = 0; i < rank; i++) { tensor_spec.dims.push_back(4); } tensor_specs.push_back(tensor_spec); } return tensor_specs; } std::vector<OpSignatureTensorSpec> CreateOpSignatureTensorSpecs( const TfLiteType type) { std::vector<OpSignatureTensorSpec> tensor_specs; OpSignatureTensorSpec tensor_spec = {}; tensor_spec.type = type; tensor_specs.push_back(tensor_spec); return tensor_specs; } std::vector<OpSignatureTensorSpec> CreateOpSignatureTensorSpecs( const TfLiteType type, const int dim) { std::vector<OpSignatureTensorSpec> tensor_specs; OpSignatureTensorSpec tensor_spec = {}; tensor_spec.type = type; for (int i = 0; i < dim; i++) { tensor_spec.dims.push_back(4); } tensor_specs.push_back(tensor_spec); return tensor_specs; } std::vector<OpSignatureTensorSpec> CreateOpSignatureTensorSpecs( const TfLiteType type, const int dim1, const int dim2) { std::vector<OpSignatureTensorSpec> tensor_specs; OpSignatureTensorSpec tensor_spec1 = {}; tensor_spec1.type = type; for (int i = 0; i < dim1; i++) { tensor_spec1.dims.push_back(4); } tensor_specs.push_back(tensor_spec1); OpSignatureTensorSpec tensor_spec2 = {}; tensor_spec2.type = type; for (int i = 0; i < dim2; i++) { tensor_spec2.dims.push_back(4); } tensor_specs.push_back(tensor_spec2); return tensor_specs; } } TEST(OpVersionTest, VersioningSpareToDense) { OpSignature fake_op_sig = { .op = BuiltinOperator_SPARSE_TO_DENSE, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt8, kTfLiteInt8, kTfLiteInt8}), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig = { .op = BuiltinOperator_SPARSE_TO_DENSE, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteUInt8, kTfLiteUInt8, kTfLiteUInt8}), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig = { .op = BuiltinOperator_SPARSE_TO_DENSE, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt64, kTfLiteInt64, kTfLiteInt64}), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig = { .op = BuiltinOperator_SPARSE_TO_DENSE, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt32, kTfLiteInt32, kTfLiteInt32}), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); } void SimpleVersioningTest(BuiltinOperator op) { OpSignature fake_op_sig = { .op = op, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig = { .op = op, .inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); } void SimpleVersioningTestExtended(BuiltinOperator op) { OpSignature fake_op_sig = { .op = op, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); SimpleVersioningTest(op); } void SimpleOutputVersioningTest(BuiltinOperator op) { OpSignature fake_op_sig = { .op = op, .inputs = std::vector<OpSignatureTensorSpec>{}, .outputs = CreateOpSignatureTensorSpecs(kTfLiteInt8), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig = { .op = op, .inputs = std::vector<OpSignatureTensorSpec>{}, .outputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); } TEST(OpVersionTest, VersioningEqualTest) { SimpleVersioningTest(BuiltinOperator_EQUAL); OpSignature fake_op_sig = { .op = BuiltinOperator_EQUAL, .inputs = CreateOpSignatureTensorSpecs(kTfLiteString), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); } TEST(OpVersionTest, VersioningNotEqualTest) { SimpleVersioningTest(BuiltinOperator_NOT_EQUAL); OpSignature fake_op_sig = { .op = BuiltinOperator_NOT_EQUAL, .inputs = CreateOpSignatureTensorSpecs(kTfLiteString), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); } TEST(OpVersionTest, VersioningLessTest) { SimpleVersioningTest(BuiltinOperator_LESS); } TEST(OpVersionTest, VersioningLessEqualTest) { SimpleVersioningTest(BuiltinOperator_LESS_EQUAL); } TEST(OpVersionTest, VersioningGreaterTest) { SimpleVersioningTest(BuiltinOperator_GREATER); } TEST(OpVersionTest, VersioningGreaterEqualTest) { SimpleVersioningTest(BuiltinOperator_GREATER_EQUAL); } TEST(OpVersionTest, VersioningSpaceToBatchNDTest) { OpSignature fake_op_sig = { .op = BuiltinOperator_SPACE_TO_BATCH_ND, }; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16, 3); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 4); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16, 4); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 4); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8, 3); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8, 4); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8, 3); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8, 4); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); } TEST(OpVersionTest, VersioningLogSoftmaxTest) { SimpleVersioningTest(BuiltinOperator_LOG_SOFTMAX); } TEST(OpVersionTest, VersioningPackTest) { OpSignature fake_op_sig = {}; fake_op_sig.op = BuiltinOperator_PACK; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig = {}; fake_op_sig.op = BuiltinOperator_PACK; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16); fake_op_sig.outputs = CreateOpSignatureTensorSpecs(kTfLiteInt16); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig = {}; fake_op_sig.op = BuiltinOperator_PACK; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt32); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 4); fake_op_sig = {}; fake_op_sig.op = BuiltinOperator_PACK; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt32); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); } TEST(OpVersionTest, VersioningUnpackTest) { OpSignature fake_op_sig = { .op = BuiltinOperator_UNPACK, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig = { .op = BuiltinOperator_UNPACK, .inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig = { .op = BuiltinOperator_UNPACK, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt32), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); } TEST(OpVersionTest, VersioningRangeTest) { OpSignature fake_op_sig = {}; fake_op_sig.op = BuiltinOperator_RANGE; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt64); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt32); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); } TEST(OpVersionTest, VersioningReluTest) { OpSignature fake_op_sig = { .op = BuiltinOperator_RELU, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig = { .op = BuiltinOperator_RELU, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig = { .op = BuiltinOperator_RELU, .inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig = { .op = BuiltinOperator_RELU, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt32), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); } TEST(OpVersionTest, VersioningBatchToSpaceNDTest) { OpSignature fake_op_sig = { .op = BuiltinOperator_BATCH_TO_SPACE_ND, }; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16, 3); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 4); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16, 4); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 4); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8, 3); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8, 4); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8, 3); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8, 4); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); } TEST(OpVersionTest, VersioningTanhTest) { SimpleVersioningTest(BuiltinOperator_TANH); } TEST(OpVersionTest, VersioningStridedSliceTest) { TfLiteStridedSliceParams strided_slice_params = {}; OpSignature fake_op_sig = {}; fake_op_sig.op = BuiltinOperator_STRIDED_SLICE; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8); fake_op_sig.outputs = CreateOpSignatureTensorSpecs(kTfLiteInt8); fake_op_sig.builtin_data = reinterpret_cast<void*>(&strided_slice_params); strided_slice_params.ellipsis_mask = 0; strided_slice_params.new_axis_mask = 2; fake_op_sig.ext_options.strided_slice.num_dims = 5; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 6); strided_slice_params.new_axis_mask = 0; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 4); fake_op_sig.ext_options.strided_slice.num_dims = 4; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt32); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 7); strided_slice_params.offset = true; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 8); } TEST(OpVersionTest, VersioningSpaceToDepthTest) { SimpleVersioningTest(BuiltinOperator_SPACE_TO_DEPTH); } TEST(OpVersionTest, VersioningSliceTest) { OpSignature fake_op_sig = { .op = BuiltinOperator_SLICE, }; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16, 5); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 5); fake_op_sig = { .op = BuiltinOperator_SLICE, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16), }; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16, 4); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 4); fake_op_sig = { .op = BuiltinOperator_SLICE, }; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteString, 4); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig = { .op = BuiltinOperator_SLICE, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8), }; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8, 4); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig = { .op = BuiltinOperator_SLICE, }; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8, 4); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); fake_op_sig = {}; fake_op_sig.op = BuiltinOperator_SLICE; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt32, 4); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 6); } TEST(OpVersionTest, VersioningLogisticTest) { SimpleVersioningTest(BuiltinOperator_SPACE_TO_DEPTH); } TEST(OpVersionTest, VersioningL2NormTest) { SimpleOutputVersioningTest(BuiltinOperator_L2_NORMALIZATION); } TEST(OpVersionTest, VersioningMaxTest) { OpSignature fake_op_sig = { .op = BuiltinOperator_MAXIMUM, }; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8, 4, 5); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8, 5, 5); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8, 4, 4); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig = { .op = BuiltinOperator_MAXIMUM, }; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8, 4, 5); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8, 4, 4); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); } TEST(OpVersionTest, VersioningMinTest) { OpSignature fake_op_sig = { .op = BuiltinOperator_MINIMUM, }; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8, 4, 5); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8, 5, 5); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8, 4, 4); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig = { .op = BuiltinOperator_MINIMUM, }; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8, 4, 5); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8, 4, 4); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); } TEST(OpVersionTest, VersioningMeanTest) { SimpleVersioningTestExtended(BuiltinOperator_MEAN); } TEST(OpVersionTest, VersioningSumTest) { SimpleVersioningTest(BuiltinOperator_SUM); } TEST(OpVersionTest, VersioningReduceMinTest) { SimpleVersioningTestExtended(BuiltinOperator_REDUCE_MIN); } TEST(OpVersionTest, VersioningReduceMaxTest) { SimpleVersioningTestExtended(BuiltinOperator_REDUCE_MAX); } TEST(OpVersionTest, VersioningMirrorPadTest) { SimpleVersioningTestExtended(BuiltinOperator_MIRROR_PAD); } TEST(OpVersionTest, VersioningReduceProdTest) { OpSignature fake_op_sig; fake_op_sig.op = BuiltinOperator_REDUCE_PROD; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); } TEST(OpVersionTest, VersioningAddTest) { TfLiteAddParams add_params = {}; OpSignature fake_op_sig = { .op = BuiltinOperator_ADD, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16), .outputs = CreateOpSignatureTensorSpecs(kTfLiteInt16), .builtin_data = reinterpret_cast<void*>(&add_params)}; add_params.pot_scale_int16 = false; fake_op_sig.ext_options.add.input_quantized = true; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig.ext_options.add.input_quantized = false; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 5); SimpleVersioningTest(BuiltinOperator_ADD); } TEST(OpVersionTest, VersioningSubTest) { TfLiteSubParams sub_params = {}; OpSignature fake_op_sig = { .op = BuiltinOperator_SUB, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16), .outputs = CreateOpSignatureTensorSpecs(kTfLiteInt16), .builtin_data = reinterpret_cast<void*>(&sub_params)}; sub_params.pot_scale_int16 = false; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 5); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt64); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 4); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8, 4, 5); fake_op_sig.outputs = CreateOpSignatureTensorSpecs(kTfLiteInt8); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); SimpleVersioningTest(BuiltinOperator_SUB); } TEST(OpVersionTest, VersioningMUL7TestInt16) { OpSignature fake_op_sig; fake_op_sig.op = BuiltinOperator_MUL; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16); fake_op_sig.ext_options.mul.input_quantized = false; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 7); } TEST(OpVersionTest, VersioningMUL7TestUInt32) { OpSignature fake_op_sig; fake_op_sig.op = BuiltinOperator_MUL; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt32); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 7); } TEST(OpVersionTest, VersioningMUL6Test) { OpSignature fake_op_sig; fake_op_sig.op = BuiltinOperator_MUL; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteComplex64); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 6); } TEST(OpVersionTest, VersioningMUL5Test) { OpSignature fake_op_sig; fake_op_sig.op = BuiltinOperator_MUL; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt64); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 5); } TEST(OpVersionTest, VersioningSub4Test) { OpSignature fake_op_sig = { .op = BuiltinOperator_SUB, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt64), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 4); } void SimpleMulVersioningTest(TfLiteType data_type, float multiplier, int version) { OpSignature fake_op_sig = { .op = BuiltinOperator_MUL, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{data_type, data_type}), .outputs = CreateOpSignatureTensorSpecs(data_type), }; fake_op_sig.ext_options.mul = {1.0f, 1.0f, 1.0f / multiplier}; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), version); } TEST(OpVersionTest, VersioningMulTest) { SimpleMulVersioningTest(kTfLiteUInt8, 0.5f, 1); SimpleMulVersioningTest(kTfLiteInt8, 0.5f, 2); SimpleMulVersioningTest(kTfLiteInt8, 2.0f, 3); } TEST(OpVersionTest, VersioningPadTest) { SimpleVersioningTest(BuiltinOperator_PAD); } TEST(OpVersionTest, VersioningPadV2Test) { SimpleVersioningTest(BuiltinOperator_PADV2); } TEST(OpVersionTest, VersioningConcatenationTest) { OpSignature fake_op_sig = {}; fake_op_sig.op = BuiltinOperator_CONCATENATION; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteUInt32); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 4); } TEST(OpVersionTest, VersioningSelectTest) { OpSignature fake_op_sig = {}; fake_op_sig.op = BuiltinOperator_SELECT; fake_op_sig.inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteUInt32, kTfLiteUInt32, kTfLiteUInt32}, 5); fake_op_sig.outputs = CreateOpSignatureTensorSpecs(kTfLiteUInt32); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 4); fake_op_sig = {}; fake_op_sig.op = BuiltinOperator_SELECT; fake_op_sig.inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteUInt8, kTfLiteUInt8, kTfLiteUInt8}, 5); fake_op_sig.outputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig = {}; fake_op_sig.op = BuiltinOperator_SELECT; fake_op_sig.inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt8, kTfLiteInt8, kTfLiteInt8}, 4); fake_op_sig.outputs = CreateOpSignatureTensorSpecs(kTfLiteInt8); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig = {}; fake_op_sig.op = BuiltinOperator_SELECT; fake_op_sig.inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteFloat32, kTfLiteFloat32, kTfLiteFloat32}, 4); fake_op_sig.outputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); } TEST(OpVersionTest, VersioningSelectV2Test) { OpSignature fake_op_sig = {}; fake_op_sig.op = BuiltinOperator_SELECT_V2; fake_op_sig.inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteUInt32, kTfLiteUInt32, kTfLiteUInt32}, 5); fake_op_sig.outputs = CreateOpSignatureTensorSpecs(kTfLiteUInt32); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig = {}; fake_op_sig.op = BuiltinOperator_SELECT_V2; fake_op_sig.inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt32, kTfLiteInt32, kTfLiteInt32}, 5); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); } TEST(OpVersionTest, VersioningRelu6Test) { SimpleVersioningTestExtended(BuiltinOperator_RELU6); } TEST(OpVersionTest, VersioningFullyConnectedTest) { TfLiteFullyConnectedParams fully_connected_params = {}; OpSignature fake_op_sig = { .op = BuiltinOperator_FULLY_CONNECTED, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteUInt8, kTfLiteUInt8}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8), .builtin_data = reinterpret_cast<void*>(&fully_connected_params), }; fully_connected_params.weights_format = kTfLiteFullyConnectedWeightsFormatShuffled4x16Int8; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 6); fake_op_sig = { .op = BuiltinOperator_FULLY_CONNECTED, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt8, kTfLiteInt8}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteInt8), .builtin_data = reinterpret_cast<void*>(&fully_connected_params), }; fully_connected_params.weights_format = kTfLiteFullyConnectedWeightsFormatShuffled4x16Int8; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 6); fake_op_sig = { .op = BuiltinOperator_FULLY_CONNECTED, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt8, kTfLiteInt8}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteInt8), .builtin_data = reinterpret_cast<void*>(&fully_connected_params), }; fully_connected_params.weights_format = kTfLiteFullyConnectedWeightsFormatDefault; fake_op_sig.ext_options.fully_connected.sparse_weight = true; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 8); fake_op_sig = { .op = BuiltinOperator_FULLY_CONNECTED, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteFloat32, kTfLiteInt8, kTfLiteFloat32}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32), .builtin_data = reinterpret_cast<void*>(&fully_connected_params), }; fully_connected_params.asymmetric_quantize_inputs = false; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fully_connected_params.asymmetric_quantize_inputs = true; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 9); fake_op_sig = { .op = BuiltinOperator_FULLY_CONNECTED, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt16, kTfLiteInt8}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteInt16), .builtin_data = reinterpret_cast<void*>(&fully_connected_params), }; fully_connected_params.quantized_bias_type = kTfLiteInt32; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 11); fake_op_sig = { .op = BuiltinOperator_FULLY_CONNECTED, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteFloat32, kTfLiteInt8}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32), .builtin_data = reinterpret_cast<void*>(&fully_connected_params), }; fake_op_sig.ext_options.fully_connected.is_per_channel_quantized = true; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 12); } TEST(OpVersionTest, VersioningDequantizeTest) { OpSignature fake_op_sig = { .op = BuiltinOperator_DEQUANTIZE, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig = { .op = BuiltinOperator_DEQUANTIZE, .inputs = CreateOpSignatureTensorSpecs(kTfLiteFloat16), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig = { .op = BuiltinOperator_DEQUANTIZE, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt8), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig.ext_options.dequantize.is_per_channel_quantized = true; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 5); fake_op_sig = { .op = BuiltinOperator_DEQUANTIZE, .inputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); } TEST(OpVersionTest, VersioningQuantizeTest) { OpSignature fake_op_sig; fake_op_sig.op = BuiltinOperator_QUANTIZE; fake_op_sig.inputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32); fake_op_sig.ext_options.quantize.is_per_channel_quantized = false; fake_op_sig.outputs = CreateOpSignatureTensorSpecs(kTfLiteInt8); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); fake_op_sig.outputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); fake_op_sig.outputs = CreateOpSignatureTensorSpecs(kTfLiteInt16); EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig.ext_options.quantize.is_per_channel_quantized = true; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); } TEST(OpVersionTest, VersioningConv2DTest) { OpSignature fake_op_sig = { .op = BuiltinOperator_CONV_2D, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteUInt8, kTfLiteUInt8}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteUInt8), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); fake_op_sig = { .op = BuiltinOperator_CONV_2D, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt8, kTfLiteInt8}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteInt8), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); fake_op_sig = { .op = BuiltinOperator_CONV_2D, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteFloat32, kTfLiteInt8}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig = { .op = BuiltinOperator_CONV_2D, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteFloat32, kTfLiteInt8}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32), }; fake_op_sig.ext_options.conv_2d.is_per_channel_quantized = true; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 5); fake_op_sig.op = BuiltinOperator_CONV_2D; fake_op_sig.inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteFloat32, kTfLiteInt8}); fake_op_sig.outputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32); fake_op_sig.ext_options.conv_2d.is_grouped_convolution = true; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 6); TfLiteConvParams conv_params = {}; fake_op_sig = { .op = BuiltinOperator_CONV_2D, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt16, kTfLiteInt8}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteInt16), .builtin_data = reinterpret_cast<void*>(&conv_params), }; conv_params.quantized_bias_type = kTfLiteInt32; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 8); } TEST(OpVersionTest, VersioningFloorDivOperatorTest) { OpSignature fake_op_sig = { .op = BuiltinOperator_FLOOR_DIV, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt32), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); fake_op_sig = { .op = BuiltinOperator_FLOOR_DIV, .inputs = CreateOpSignatureTensorSpecs(kTfLiteFloat32), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig = { .op = BuiltinOperator_FLOOR_DIV, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); } TEST(OpVersionTest, VersioningFloorModOperatorTest) { OpSignature fake_op_sig = { .op = BuiltinOperator_FLOOR_MOD, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt32), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); fake_op_sig = { .op = BuiltinOperator_FLOOR_MOD, .inputs = CreateOpSignatureTensorSpecs(kTfLiteInt16), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); } TEST(OpVersionTest, VersioningTransposeConvOperatorTest) { OpSignature fake_op_sig = { .op = BuiltinOperator_TRANSPOSE_CONV, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteFloat32, kTfLiteUInt8}), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 1); fake_op_sig = { .op = BuiltinOperator_TRANSPOSE_CONV, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt32, kTfLiteInt8, kTfLiteInt8}), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); fake_op_sig = { .op = BuiltinOperator_TRANSPOSE_CONV, .inputs = CreateOpSignatureTensorSpecs(std::vector<TfLiteType>{ kTfLiteInt32, kTfLiteInt8, kTfLiteInt8, kTfLiteInt32}), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 3); const auto none_type = kTfLiteNoType; fake_op_sig = { .op = BuiltinOperator_TRANSPOSE_CONV, .inputs = CreateOpSignatureTensorSpecs(std::vector<TfLiteType>{ kTfLiteInt32, kTfLiteInt8, kTfLiteInt8, none_type}), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 2); TfLiteTransposeConvParams transpose_conv_params = {}; transpose_conv_params.activation = kTfLiteActRelu; fake_op_sig = { .op = BuiltinOperator_TRANSPOSE_CONV, .inputs = CreateOpSignatureTensorSpecs(std::vector<TfLiteType>{ kTfLiteInt32, kTfLiteInt8, kTfLiteInt8, none_type}), .builtin_data = reinterpret_cast<void*>(&transpose_conv_params), }; EXPECT_EQ(GetBuiltinOperatorVersion(fake_op_sig), 4); transpose_conv_params = {}; fake_op_sig = { .op = BuiltinOperator_TRANSPOSE_CONV, .inputs = CreateOpSignatureTensorSpecs( std::vector<TfLiteType>{kTfLiteInt16, kTfLiteInt8}), .outputs = CreateOpSignatureTensorSpecs(kTfLiteInt16), .builtin_data = reinterpret_cast<void*>(&transpose_conv_params), }; transpose_conv_params.qu
837
cpp
tensorflow/tensorflow
op_signature
tensorflow/lite/tools/versioning/op_signature.cc
tensorflow/lite/tools/versioning/op_signature_test.cc
#ifndef TENSORFLOW_LITE_TOOLS_VERSIONING_OP_SIGNATURE_H_ #define TENSORFLOW_LITE_TOOLS_VERSIONING_OP_SIGNATURE_H_ #include <string> #include <vector> #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { typedef struct { TfLiteType type; std::vector<int32_t> dims; bool is_const; bool is_shape_dynamic; } OpSignatureTensorSpec; typedef struct { BuiltinOperator op; std::vector<OpSignatureTensorSpec> inputs; std::vector<OpSignatureTensorSpec> outputs; void* builtin_data; int version; const void* custom_initial_data; std::string custom_name; union { struct { bool is_per_channel_quantized; bool is_grouped_convolution; } conv_2d; struct { bool is_per_channel_quantized; } depthwise_conv_2d; struct { bool sparse_weight; bool is_per_channel_quantized; } fully_connected; struct { float input1_scale; float input2_scale; float output_scale; bool input_quantized; } mul; struct { int32_t num_dims; } strided_slice; struct { bool input_quantized; } abs; struct { bool is_per_channel_quantized; } dequantize; struct { bool is_per_channel_quantized; } quantize; struct { bool input_quantized; } add; } ext_options; } OpSignature; OpSignature GetOpSignature(const OperatorCode* op_code, const Operator* op, const SubGraph* subgraph, const Model* model); OpSignature GetOpSignature(const TfLiteContext* context, const TfLiteNode* node, const TfLiteRegistration* registration); } #endif #include "tensorflow/lite/tools/versioning/op_signature.h" #include <cstdlib> #include "tensorflow/lite/core/api/flatbuffer_conversions.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/kernels/kernel_util.h" #include "tensorflow/lite/schema/schema_utils.h" #include "tensorflow/lite/stderr_reporter.h" namespace tflite { namespace { class MallocDataAllocator : public BuiltinDataAllocator { public: void* Allocate(size_t size, size_t alignment_hint) override { return malloc(size); } void Deallocate(void* data) override { free(data); } }; inline int GetNumDims(const SubGraph* subgraph, const Operator* op, int idx) { const flatbuffers::Vector<int32_t>* ret = subgraph->tensors()->Get(op->inputs()->Get(idx))->shape(); if (ret) { return ret->size(); } else { return 0; } } std::vector<OpSignatureTensorSpec> GetOpSignatureTensorSpecs( const flatbuffers::Vector<int32_t>* tensors, const SubGraph* subgraph, const Model* model) { std::vector<OpSignatureTensorSpec> tensor_specs; if (!tensors) { return tensor_specs; } StderrReporter error_reporter; for (int32_t i = 0; i < tensors->Length(); ++i) { int32_t tensor_no = tensors->Get(i); OpSignatureTensorSpec tensor_spec = {kTfLiteNoType}; if (tensor_no >= 0) { if (subgraph->tensors() && tensor_no < subgraph->tensors()->Length()) { auto* fb_tensor = subgraph->tensors()->Get(tensor_no); ConvertTensorType(fb_tensor->type(), &tensor_spec.type, &error_reporter); auto buffer_idx = fb_tensor->buffer(); if (buffer_idx != 0 && buffer_idx < model->buffers()->Length()) { auto* buffer = model->buffers()->Get(buffer_idx); if (buffer->data() && buffer->data()->size() != 0) { tensor_spec.is_const = true; } } const flatbuffers::Vector<int32_t>* shape_vec = fb_tensor->shape(); if (shape_vec) { for (int32_t j = 0; j < shape_vec->Length(); ++j) { tensor_spec.dims.push_back(shape_vec->Get(j)); } } const flatbuffers::Vector<int32_t>* shape_signature_vec = fb_tensor->shape_signature(); tensor_spec.is_shape_dynamic = false; if (shape_signature_vec) { for (int32_t j = 0; j < shape_signature_vec->Length(); ++j) { if (shape_signature_vec->Get(j) == -1) { tensor_spec.is_shape_dynamic = true; break; } } } } } tensor_specs.push_back(tensor_spec); } return tensor_specs; } std::vector<OpSignatureTensorSpec> GetOpSignatureTensorSpecs( TfLiteIntArray* tensors, const TfLiteContext* context, const TfLiteNode* tflite_node) { std::vector<OpSignatureTensorSpec> tensor_specs; for (int32_t i = 0; i < tensors->size; ++i) { int32_t tensor_no = tensors->data[i]; OpSignatureTensorSpec tensor_spec = {kTfLiteNoType}; if (tensor_no >= 0) { const TfLiteTensor* tfl_tensor; if (context->tensors != nullptr) { tfl_tensor = &context->tensors[tensor_no]; } else { tfl_tensor = context->GetTensor(context, tensor_no); } if (tfl_tensor != nullptr) { tensor_spec.type = tfl_tensor->type; tensor_spec.is_const = (tfl_tensor->allocation_type == kTfLiteMmapRo); if (tfl_tensor->dims) { for (int32_t j = 0; j < tfl_tensor->dims->size; ++j) { tensor_spec.dims.push_back(tfl_tensor->dims->data[j]); } } tensor_spec.is_shape_dynamic = HasUnspecifiedDimension(tfl_tensor); } } tensor_specs.push_back(tensor_spec); } return tensor_specs; } } OpSignature GetOpSignature(const OperatorCode* op_code, const Operator* op, const SubGraph* subgraph, const Model* model) { auto builtin_code = GetBuiltinCode(op_code); OpSignature op_sig = {builtin_code}; std::memset(&op_sig.ext_options, 0, sizeof(op_sig.ext_options)); if (builtin_code != BuiltinOperator_CUSTOM) { StderrReporter error_reporter; MallocDataAllocator allocator; ParseOpData(op, builtin_code, &error_reporter, &allocator, &op_sig.builtin_data); } else { op_sig.custom_name = op_code->custom_code()->str(); } switch (builtin_code) { case BuiltinOperator_DEPTHWISE_CONV_2D: { const Tensor* filter_tensor = subgraph->tensors()->Get(op->inputs()->Get(1)); const QuantizationParameters* filter_quant = filter_tensor->quantization(); int num_channels = filter_tensor->shape()->Get(3); if (filter_quant && filter_quant->scale() && filter_quant->scale()->Length() && filter_quant->scale()->Length() == num_channels) { op_sig.ext_options.depthwise_conv_2d.is_per_channel_quantized = true; } } break; case BuiltinOperator_FULLY_CONNECTED: { const Tensor* weight_tensor = subgraph->tensors()->Get(op->inputs()->Get(1)); op_sig.ext_options.fully_connected.sparse_weight = (weight_tensor->sparsity() != nullptr); const QuantizationParameters* weight_quant = weight_tensor->quantization(); if (weight_quant && weight_quant->scale() && weight_quant->scale()->size() && weight_tensor->shape() && weight_tensor->shape()->size()) { op_sig.ext_options.fully_connected.is_per_channel_quantized = weight_quant->scale()->size() > 1 && weight_quant->scale()->size() == weight_tensor->shape()->Get(0); } } break; case BuiltinOperator_MUL: { if (op->inputs()->Length() < 2 || op->outputs()->Length() < 1) { break; } const Tensor* input1_tensor = subgraph->tensors()->Get(op->inputs()->Get(0)); const Tensor* input2_tensor = subgraph->tensors()->Get(op->inputs()->Get(1)); const Tensor* output_tensor = subgraph->tensors()->Get(op->outputs()->Get(0)); const QuantizationParameters* input1_quant = input1_tensor->quantization(); const QuantizationParameters* input2_qunt = input2_tensor->quantization(); const QuantizationParameters* output_quant = output_tensor->quantization(); if (input1_quant && input1_quant->scale() && input1_quant->scale()->Length() && input2_qunt && input2_qunt->scale() && input2_qunt->scale()->Length() && output_quant && output_quant->scale() && output_quant->scale()->Length()) { op_sig.ext_options.mul.input1_scale = input1_quant->scale()->Get(0); op_sig.ext_options.mul.input2_scale = input2_qunt->scale()->Get(0); op_sig.ext_options.mul.output_scale = output_quant->scale()->Get(0); } if (input1_quant || input2_qunt) { op_sig.ext_options.mul.input_quantized = true; } } break; case BuiltinOperator_CONV_2D: { const Tensor* input_tensor = subgraph->tensors()->Get(op->inputs()->Get(0)); const Tensor* filter_tensor = subgraph->tensors()->Get(op->inputs()->Get(1)); const QuantizationParameters* filter_quant = filter_tensor->quantization(); int num_filters = filter_tensor->shape()->Get(0); if (filter_quant && filter_quant->scale() && filter_quant->scale()->Length() && filter_quant->scale()->Length() == num_filters) { op_sig.ext_options.conv_2d.is_per_channel_quantized = true; } if (input_tensor->shape() && input_tensor->shape()->size()) { int num_input_channels = input_tensor->shape()->Get(3); int num_filter_input_channels = filter_tensor->shape()->Get(3); op_sig.ext_options.conv_2d.is_grouped_convolution = num_input_channels != num_filter_input_channels; } else { op_sig.ext_options.conv_2d.is_grouped_convolution = false; } } break; case BuiltinOperator_STRIDED_SLICE: { op_sig.ext_options.strided_slice.num_dims = GetNumDims(subgraph, op, 0); } break; case BuiltinOperator_ABS: { if (subgraph->tensors()->Get(op->inputs()->Get(0))->quantization()) { op_sig.ext_options.abs.input_quantized = true; } } break; case BuiltinOperator_DEQUANTIZE: { const Tensor* input_tensor = subgraph->tensors()->Get(op->inputs()->Get(0)); const QuantizationParameters* input_quant = input_tensor->quantization(); if (input_quant && input_quant->scale() && input_quant->scale()->Length() > 1 && input_quant->scale()->Length() == input_tensor->shape()->Get(input_quant->quantized_dimension())) { op_sig.ext_options.dequantize.is_per_channel_quantized = true; } } break; case BuiltinOperator_QUANTIZE: { const Tensor* output_tensor = subgraph->tensors()->Get(op->outputs()->Get(0)); const QuantizationParameters* output_quant = output_tensor->quantization(); if (output_quant && output_quant->scale() && output_quant->scale()->Length() > 1 && output_quant->scale()->Length() == output_tensor->shape()->Get( output_quant->quantized_dimension())) { op_sig.ext_options.quantize.is_per_channel_quantized = true; } } break; case BuiltinOperator_ADD: { if (subgraph->tensors()->Get(op->inputs()->Get(0))->quantization()) { op_sig.ext_options.add.input_quantized = true; } } break; default: break; } op_sig.inputs = GetOpSignatureTensorSpecs(op->inputs(), subgraph, model); op_sig.outputs = GetOpSignatureTensorSpecs(op->outputs(), subgraph, model); op_sig.version = op_code->version(); return op_sig; } OpSignature GetOpSignature(const TfLiteContext* context, const TfLiteNode* node, const TfLiteRegistration* registration) { OpSignature op_sig = { static_cast<BuiltinOperator>(registration->builtin_code)}; op_sig.builtin_data = node->builtin_data; if (op_sig.op == BuiltinOperator_CUSTOM) { op_sig.custom_name = registration->custom_name; op_sig.custom_initial_data = node->custom_initial_data; } std::memset(&op_sig.ext_options, 0, sizeof(op_sig.ext_options)); op_sig.inputs = GetOpSignatureTensorSpecs(node->inputs, context, node); op_sig.outputs = GetOpSignatureTensorSpecs(node->outputs, context, node); op_sig.version = registration->version; return op_sig; } }
#include "tensorflow/lite/tools/versioning/op_signature.h" #include <cstring> #include <memory> #include <string> #include <vector> #include <gtest/gtest.h> #include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/lite/builtin_ops.h" #include "tensorflow/lite/core/model_builder.h" namespace tflite { class StubTfLiteContext : public TfLiteContext { public: StubTfLiteContext(const int builtin_code, const int op_version, const int num_inputs) : TfLiteContext({0}) { exec_plan_ = TfLiteIntArrayCreate(3); for (int i = 0; i < 3; ++i) exec_plan_->data[i] = i; int tensor_no = 0; std::memset(nodes_, 0, sizeof(nodes_)); std::memset(registrations_, 0, sizeof(registrations_)); nodes_[0].inputs = TfLiteIntArrayCreate(1); nodes_[0].inputs->data[0] = tensor_no++; nodes_[0].outputs = TfLiteIntArrayCreate(1); nodes_[0].outputs->data[0] = tensor_no; nodes_[0].builtin_data = nullptr; nodes_[1].inputs = TfLiteIntArrayCreate(num_inputs); for (int i = 0; i < num_inputs; i++) { nodes_[1].inputs->data[i] = tensor_no++; } nodes_[1].outputs = TfLiteIntArrayCreate(1); nodes_[1].outputs->data[0] = tensor_no; nodes_[1].builtin_data = malloc(1024); std::memset(nodes_[1].builtin_data, 0, 1024); nodes_[2].inputs = TfLiteIntArrayCreate(1); nodes_[2].inputs->data[0] = tensor_no++; nodes_[2].outputs = TfLiteIntArrayCreate(1); nodes_[2].outputs->data[0] = tensor_no++; nodes_[2].builtin_data = nullptr; tensors_.resize(tensor_no); for (size_t i = 0; i < tensors_.size(); i++) { std::memset(&tensors_[i], 0, sizeof(tensors_[i])); tensors_[i].buffer_handle = kTfLiteNullBufferHandle; tensors_[i].type = kTfLiteFloat32; tensors_[i].dims = TfLiteIntArrayCreate(4); for (int d = 0; d < 4; d++) { tensors_[i].dims->data[d] = 1; } } tensors = tensors_.data(); tensors_size = tensors_.size(); registrations_[0].builtin_code = kTfLiteBuiltinAdd; registrations_[1].builtin_code = builtin_code; registrations_[1].version = op_version; registrations_[2].builtin_code = kTfLiteBuiltinAdd; this->GetExecutionPlan = StubGetExecutionPlan; this->GetNodeAndRegistration = StubGetNodeAndRegistration; } ~StubTfLiteContext() { for (auto& node : nodes_) { TfLiteIntArrayFree(node.inputs); TfLiteIntArrayFree(node.outputs); if (node.builtin_data) { free(node.builtin_data); } } for (auto& tensor : tensors_) { TfLiteIntArrayFree(tensor.dims); } TfLiteIntArrayFree(exec_plan_); } TfLiteIntArray* exec_plan() const { return exec_plan_; } TfLiteNode* node() { return &nodes_[1]; } TfLiteRegistration* registration() { return &registrations_[1]; } TfLiteNode* node(int node_index) { return &nodes_[node_index]; } TfLiteRegistration* registration(int reg_index) { return &registrations_[reg_index]; } TfLiteTensor* tensor(int tensor_index) { return &tensors_[tensor_index]; } private: static TfLiteStatus StubGetExecutionPlan(TfLiteContext* context, TfLiteIntArray** execution_plan) { StubTfLiteContext* stub = reinterpret_cast<StubTfLiteContext*>(context); *execution_plan = stub->exec_plan(); return kTfLiteOk; } static TfLiteStatus StubGetNodeAndRegistration( TfLiteContext* context, int node_index, TfLiteNode** node, TfLiteRegistration** registration) { StubTfLiteContext* stub = reinterpret_cast<StubTfLiteContext*>(context); *node = stub->node(node_index); *registration = stub->registration(node_index); return kTfLiteOk; } TfLiteIntArray* exec_plan_; TfLiteNode nodes_[3]; TfLiteRegistration registrations_[3]; std::vector<TfLiteTensor> tensors_; }; TEST(GetOpSignature, FlatBufferModel) { const std::string& full_path = tensorflow::GetDataDependencyFilepath("tensorflow/lite/testdata/add.bin"); auto fb_model = FlatBufferModel::BuildFromFile(full_path.data()); ASSERT_TRUE(fb_model); auto model = fb_model->GetModel(); auto subgraphs = model->subgraphs(); const SubGraph* subgraph = subgraphs->Get(0); const Operator* op1 = subgraph->operators()->Get(0); const OperatorCode* op_code1 = model->operator_codes()->Get(op1->opcode_index()); OpSignature op_sig = GetOpSignature(op_code1, op1, subgraph, model); EXPECT_EQ(op_sig.op, BuiltinOperator_ADD); EXPECT_EQ(op_sig.inputs[0].type, kTfLiteFloat32); EXPECT_EQ(op_sig.inputs[0].dims.size(), 4); EXPECT_FALSE(op_sig.inputs[0].is_const); EXPECT_FALSE(op_sig.inputs[0].is_shape_dynamic); EXPECT_EQ(op_sig.outputs[0].type, kTfLiteFloat32); EXPECT_FALSE(op_sig.outputs[0].is_const); EXPECT_EQ(op_sig.outputs[0].dims.size(), 4); EXPECT_FALSE(op_sig.outputs[0].is_shape_dynamic); EXPECT_NE(op_sig.builtin_data, nullptr); EXPECT_EQ(op_sig.version, 1); free(op_sig.builtin_data); const Operator* op2 = subgraph->operators()->Get(1); const OperatorCode* op_code2 = model->operator_codes()->Get(op2->opcode_index()); op_sig = GetOpSignature(op_code2, op2, subgraph, model); EXPECT_EQ(op_sig.op, BuiltinOperator_ADD); EXPECT_EQ(op_sig.inputs[0].type, kTfLiteFloat32); EXPECT_EQ(op_sig.inputs[0].dims.size(), 4); EXPECT_FALSE(op_sig.inputs[0].is_const); EXPECT_FALSE(op_sig.inputs[0].is_shape_dynamic); EXPECT_EQ(op_sig.outputs[0].type, kTfLiteFloat32); EXPECT_FALSE(op_sig.outputs[0].is_const); EXPECT_EQ(op_sig.outputs[0].dims.size(), 4); EXPECT_FALSE(op_sig.outputs[0].is_shape_dynamic); EXPECT_NE(op_sig.builtin_data, nullptr); EXPECT_EQ(op_sig.version, 1); free(op_sig.builtin_data); const std::string& full_path3 = tensorflow::GetDataDependencyFilepath( "tensorflow/lite/testdata/multi_signatures.bin"); auto fb_model3 = FlatBufferModel::BuildFromFile(full_path3.data()); ASSERT_TRUE(fb_model3); auto model3 = fb_model3->GetModel(); auto subgraphs3 = model3->subgraphs(); const SubGraph* subgraph3 = subgraphs3->Get(0); const Operator* op3 = subgraph3->operators()->Get(0); const OperatorCode* op_code3 = model3->operator_codes()->Get(op3->opcode_index()); op_sig = GetOpSignature(op_code3, op3, subgraph3, model3); EXPECT_EQ(op_sig.op, BuiltinOperator_ADD); EXPECT_EQ(op_sig.inputs[0].type, kTfLiteFloat32); EXPECT_EQ(op_sig.inputs[0].dims.size(), 1); EXPECT_FALSE(op_sig.inputs[0].is_const); EXPECT_TRUE(op_sig.inputs[0].is_shape_dynamic); EXPECT_EQ(op_sig.outputs[0].type, kTfLiteFloat32); EXPECT_FALSE(op_sig.outputs[0].is_const); EXPECT_EQ(op_sig.outputs[0].dims.size(), 1); EXPECT_TRUE(op_sig.outputs[0].is_shape_dynamic); EXPECT_NE(op_sig.builtin_data, nullptr); EXPECT_EQ(op_sig.version, 1); free(op_sig.builtin_data); } TEST(GetOpSignature, TfLiteContext) { auto context = std::make_unique<StubTfLiteContext>(kTfLiteBuiltinAdd, 1, 4); OpSignature op_sig = GetOpSignature(context.get(), context->node(), context->registration()); EXPECT_EQ(op_sig.op, BuiltinOperator_ADD); EXPECT_EQ(op_sig.inputs[0].type, kTfLiteFloat32); EXPECT_EQ(op_sig.inputs[0].dims.size(), 4); EXPECT_FALSE(op_sig.inputs[0].is_const); EXPECT_FALSE(op_sig.inputs[0].is_shape_dynamic); EXPECT_EQ(op_sig.outputs[0].type, kTfLiteFloat32); EXPECT_FALSE(op_sig.outputs[0].is_const); EXPECT_EQ(op_sig.outputs[0].dims.size(), 4); EXPECT_FALSE(op_sig.outputs[0].is_shape_dynamic); EXPECT_NE(op_sig.builtin_data, nullptr); EXPECT_EQ(op_sig.version, 1); } }
838
cpp
tensorflow/tensorflow
runtime_version
tensorflow/lite/tools/versioning/runtime_version.cc
tensorflow/lite/tools/versioning/runtime_version_test.cc
#ifndef TENSORFLOW_LITE_TOOLS_VERSIONING_RUNTIME_VERSION_H_ #define TENSORFLOW_LITE_TOOLS_VERSIONING_RUNTIME_VERSION_H_ #include <string> #include "flatbuffers/flatbuffers.h" #include "tensorflow/compiler/mlir/lite/schema/mutable/schema_generated.h" namespace tflite { void UpdateMinimumRuntimeVersionForModel(uint8_t* model_buffer_pointer); std::string FindMinimumRuntimeVersionForOp(tflite::BuiltinOperator op_code, int op_version); bool CompareRuntimeVersion(const std::string&, const std::string&); } #endif #include "tensorflow/lite/tools/versioning/runtime_version.h" #include <cstring> #include <map> #include <string> #include <utility> #include "absl/strings/numbers.h" #include "absl/strings/str_split.h" #include "tensorflow/compiler/mlir/lite/schema/mutable/schema_generated.h" #include "tensorflow/lite/minimal_logging.h" #include "tensorflow/lite/schema/schema_utils.h" namespace tflite { bool CompareRuntimeVersion(const std::string& v1, const std::string& v2) { const std::vector<std::string> vec1 = absl::StrSplit(v1, '.'); const std::vector<std::string> vec2 = absl::StrSplit(v2, '.'); int i = 0; while (i < vec1.size() && i < vec2.size()) { int v1_val, v2_val; if (absl::SimpleAtoi(vec1[i], &v1_val) && absl::SimpleAtoi(vec2[i], &v2_val)) { if (v1_val != v2_val) return v1_val < v2_val; } ++i; } return i < vec2.size(); } std::string FindMinimumRuntimeVersionForOp(tflite::BuiltinOperator op_code, int op_version) { static const std::map<std::pair<BuiltinOperator, int>, std::string>* op_version_map = new std::map<std::pair<BuiltinOperator, int>, std::string>( {{{BuiltinOperator_AVERAGE_POOL_2D, 1}, "1.5.0"}, {{BuiltinOperator_AVERAGE_POOL_2D, 2}, "1.14.0"}, {{BuiltinOperator_AVERAGE_POOL_2D, 3}, "2.3.0"}, {{BuiltinOperator_BATCH_MATMUL, 1}, "2.3.0"}, {{BuiltinOperator_BATCH_MATMUL, 2}, "2.3.0"}, {{BuiltinOperator_BATCH_MATMUL, 3}, "2.4.0"}, {{BuiltinOperator_BATCH_MATMUL, 4}, "2.5.0"}, {{BuiltinOperator_BROADCAST_TO, 2}, "2.5.0"}, {{BuiltinOperator_BROADCAST_TO, 3}, "2.5.0"}, {{BuiltinOperator_CONV_2D, 1}, "1.5.0"}, {{BuiltinOperator_CONV_2D, 2}, "1.14.0"}, {{BuiltinOperator_CONV_2D, 3}, "1.14.0"}, {{BuiltinOperator_CONV_2D, 4}, "2.3.0"}, {{BuiltinOperator_CONV_2D, 5}, "2.4.0"}, {{BuiltinOperator_CONV_2D, 6}, "2.9.0"}, {{BuiltinOperator_CONV_2D, 7}, "2.11.0"}, {{BuiltinOperator_CONV_2D, 8}, "2.15.0"}, {{BuiltinOperator_DEPTHWISE_CONV_2D, 1}, "1.5.0"}, {{BuiltinOperator_DEPTHWISE_CONV_2D, 2}, "1.12.0"}, {{BuiltinOperator_DEPTHWISE_CONV_2D, 3}, "1.14.0"}, {{BuiltinOperator_DEPTHWISE_CONV_2D, 4}, "2.2.0"}, {{BuiltinOperator_DEPTHWISE_CONV_2D, 5}, "2.3.0"}, {{BuiltinOperator_DEPTHWISE_CONV_2D, 6}, "2.3.0"}, {{BuiltinOperator_DEPTHWISE_CONV_2D, 7}, "2.11.0"}, {{BuiltinOperator_ADD, 1}, "1.5.0"}, {{BuiltinOperator_ADD, 2}, "1.14.0"}, {{BuiltinOperator_ADD, 3}, "2.4.0"}, {{BuiltinOperator_ADD, 4}, "2.6.0"}, {{BuiltinOperator_ADD, 5}, "2.13.0"}, {{BuiltinOperator_ADD_N, 1}, "1.14.0"}, {{BuiltinOperator_SPACE_TO_BATCH_ND, 1}, "1.6.0"}, {{BuiltinOperator_SPACE_TO_BATCH_ND, 2}, "1.14.0"}, {{BuiltinOperator_SPACE_TO_BATCH_ND, 3}, "2.3.0"}, {{BuiltinOperator_SPACE_TO_BATCH_ND, 4}, "2.12.0"}, {{BuiltinOperator_SUB, 1}, "1.6.0"}, {{BuiltinOperator_SUB, 2}, "1.14.0"}, {{BuiltinOperator_SUB, 3}, "2.3.0"}, {{BuiltinOperator_SUB, 4}, "2.4.0"}, {{BuiltinOperator_SUB, 5}, "2.4.0"}, {{BuiltinOperator_DENSIFY, 1}, "2.2.0"}, {{BuiltinOperator_DIV, 1}, "1.6.0"}, {{BuiltinOperator_DIV, 2}, "2.3.0"}, {{BuiltinOperator_BATCH_TO_SPACE_ND, 1}, "1.6.0"}, {{BuiltinOperator_BATCH_TO_SPACE_ND, 2}, "1.14.0"}, {{BuiltinOperator_BATCH_TO_SPACE_ND, 3}, "2.3.0"}, {{BuiltinOperator_BATCH_TO_SPACE_ND, 4}, "2.12.0"}, {{BuiltinOperator_CAST, 1}, "1.5.0"}, {{BuiltinOperator_CAST, 2}, "2.7.0"}, {{BuiltinOperator_CAST, 3}, "2.8.0"}, {{BuiltinOperator_CAST, 4}, "2.9.0"}, {{BuiltinOperator_CAST, 5}, "2.12.0"}, {{BuiltinOperator_CAST, 6}, "2.15.0"}, {{BuiltinOperator_CONCATENATION, 1}, "1.5.0"}, {{BuiltinOperator_CONCATENATION, 2}, "1.14.0"}, {{BuiltinOperator_CONCATENATION, 3}, "2.3.0"}, {{BuiltinOperator_CONCATENATION, 4}, "2.14.0"}, {{BuiltinOperator_DEPTH_TO_SPACE, 1}, "2.1.0"}, {{BuiltinOperator_DEPTH_TO_SPACE, 2}, "2.5.0"}, {{BuiltinOperator_EMBEDDING_LOOKUP, 1}, "1.13.0"}, {{BuiltinOperator_EMBEDDING_LOOKUP, 2}, "1.14.0"}, {{BuiltinOperator_EMBEDDING_LOOKUP, 3}, "1.14.0"}, {{BuiltinOperator_EMBEDDING_LOOKUP_SPARSE, 1}, "1.5.0"}, {{BuiltinOperator_FAKE_QUANT, 1}, "1.5.0"}, {{BuiltinOperator_FAKE_QUANT, 2}, "1.10.0"}, {{BuiltinOperator_FULLY_CONNECTED, 1}, "1.5.0"}, {{BuiltinOperator_FULLY_CONNECTED, 2}, "1.10.0"}, {{BuiltinOperator_FULLY_CONNECTED, 3}, "1.14.0"}, {{BuiltinOperator_FULLY_CONNECTED, 4}, "1.14.0"}, {{BuiltinOperator_FULLY_CONNECTED, 5}, "2.0.0"}, {{BuiltinOperator_FULLY_CONNECTED, 6}, "2.1.0"}, {{BuiltinOperator_FULLY_CONNECTED, 7}, "2.3.0"}, {{BuiltinOperator_FULLY_CONNECTED, 8}, "2.3.0"}, {{BuiltinOperator_FULLY_CONNECTED, 9}, "2.3.0"}, {{BuiltinOperator_FULLY_CONNECTED, 10}, "2.11.0"}, {{BuiltinOperator_FULLY_CONNECTED, 11}, "2.15.0"}, {{BuiltinOperator_FULLY_CONNECTED, 12}, "2.17.0"}, {{BuiltinOperator_GATHER, 1}, "1.6.0"}, {{BuiltinOperator_GATHER, 2}, "1.14.0"}, {{BuiltinOperator_GATHER, 3}, "1.15.0"}, {{BuiltinOperator_GATHER, 4}, "2.4.0"}, {{BuiltinOperator_GATHER, 5}, "2.5.0"}, {{BuiltinOperator_GATHER, 6}, "2.13.0"}, {{BuiltinOperator_GATHER, 7}, "2.15.0"}, {{BuiltinOperator_GATHER_ND, 1}, "1.14.0"}, {{BuiltinOperator_GATHER_ND, 2}, "2.3.0"}, {{BuiltinOperator_GATHER_ND, 3}, "2.5.0"}, {{BuiltinOperator_GATHER_ND, 4}, "2.13.0"}, {{BuiltinOperator_GATHER_ND, 5}, "2.16.0"}, {{BuiltinOperator_HASHTABLE_LOOKUP, 1}, "1.5.0"}, {{BuiltinOperator_SVDF, 1}, "1.5.0"}, {{BuiltinOperator_SVDF, 2}, "1.14.0"}, {{BuiltinOperator_SVDF, 3}, "2.2.0"}, {{BuiltinOperator_SVDF, 4}, "2.3.0"}, {{BuiltinOperator_L2_NORMALIZATION, 1}, "1.5.0"}, {{BuiltinOperator_L2_NORMALIZATION, 2}, "1.14.0"}, {{BuiltinOperator_L2_POOL_2D, 1}, "1.5.0"}, {{BuiltinOperator_LOCAL_RESPONSE_NORMALIZATION, 1}, "1.5.0"}, {{BuiltinOperator_MAX_POOL_2D, 1}, "1.5.0"}, {{BuiltinOperator_MAX_POOL_2D, 2}, "1.14.0"}, {{BuiltinOperator_MAX_POOL_2D, 3}, "2.3.0"}, {{BuiltinOperator_MAXIMUM, 1}, "1.14.0"}, {{BuiltinOperator_MAXIMUM, 2}, "1.14.0"}, {{BuiltinOperator_MAXIMUM, 3}, "2.3.0"}, {{BuiltinOperator_MAXIMUM, 4}, "2.3.0"}, {{BuiltinOperator_MINIMUM, 1}, "1.14.0"}, {{BuiltinOperator_MINIMUM, 2}, "1.14.0"}, {{BuiltinOperator_MINIMUM, 3}, "2.3.0"}, {{BuiltinOperator_MINIMUM, 4}, "2.3.0"}, {{BuiltinOperator_MUL, 1}, "1.5.0"}, {{BuiltinOperator_MUL, 2}, "1.14.0"}, {{BuiltinOperator_MUL, 3}, "1.15.0"}, {{BuiltinOperator_MUL, 4}, "2.3.0"}, {{BuiltinOperator_MUL, 5}, "2.6.0"}, {{BuiltinOperator_MUL, 6}, "2.11.0"}, {{BuiltinOperator_MUL, 7}, "2.13.0"}, {{BuiltinOperator_NON_MAX_SUPPRESSION_V4, 1}, "2.1.0"}, {{BuiltinOperator_NON_MAX_SUPPRESSION_V5, 1}, "2.1.0"}, {{BuiltinOperator_PAD, 1}, "1.5.0"}, {{BuiltinOperator_PAD, 2}, "1.14.0"}, {{BuiltinOperator_PAD, 3}, "2.4.0"}, {{BuiltinOperator_PAD, 4}, "2.6.0"}, {{BuiltinOperator_TILE, 1}, "1.10.1"}, {{BuiltinOperator_TILE, 2}, "2.2.0"}, {{BuiltinOperator_TILE, 3}, "2.8.0"}, {{BuiltinOperator_PADV2, 1}, "1.9.0"}, {{BuiltinOperator_PADV2, 2}, "1.14.0"}, {{BuiltinOperator_PADV2, 3}, "2.4.0"}, {{BuiltinOperator_PADV2, 4}, "2.6.0"}, {{BuiltinOperator_RESHAPE, 1}, "1.5.0"}, {{BuiltinOperator_SOFTMAX, 1}, "1.5.0"}, {{BuiltinOperator_SOFTMAX, 2}, "1.14.0"}, {{BuiltinOperator_SOFTMAX, 3}, "2.3.0"}, {{BuiltinOperator_SPACE_TO_DEPTH, 1}, "1.5.0"}, {{BuiltinOperator_SPACE_TO_DEPTH, 2}, "1.14.0"}, {{BuiltinOperator_TRANSPOSE, 1}, "1.6.0"}, {{BuiltinOperator_TRANSPOSE, 2}, "1.14.0"}, {{BuiltinOperator_TRANSPOSE, 3}, "1.15.0"}, {{BuiltinOperator_TRANSPOSE, 4}, "2.3.0"}, {{BuiltinOperator_TRANSPOSE, 5}, "2.4.0"}, {{BuiltinOperator_TRANSPOSE, 6}, "2.12.0"}, {{BuiltinOperator_LSTM, 1}, "1.7.0"}, {{BuiltinOperator_LSTM, 2}, "1.10.0"}, {{BuiltinOperator_LSTM, 3}, "1.14.0"}, {{BuiltinOperator_LSTM, 4}, "2.3.0"}, {{BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_LSTM, 1}, "1.13.1"}, {{BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_LSTM, 2}, "1.14.0"}, {{BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_LSTM, 3}, "2.3.0"}, {{BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_LSTM, 4}, "2.12.0"}, {{BuiltinOperator_BIDIRECTIONAL_SEQUENCE_LSTM, 1}, "1.14.0"}, {{BuiltinOperator_BIDIRECTIONAL_SEQUENCE_LSTM, 2}, "1.14.0"}, {{BuiltinOperator_BIDIRECTIONAL_SEQUENCE_LSTM, 3}, "1.14.0"}, {{BuiltinOperator_BIDIRECTIONAL_SEQUENCE_RNN, 1}, "1.14.0"}, {{BuiltinOperator_BIDIRECTIONAL_SEQUENCE_RNN, 2}, "1.14.0"}, {{BuiltinOperator_BIDIRECTIONAL_SEQUENCE_RNN, 3}, "2.3.0"}, {{BuiltinOperator_MEAN, 1}, "1.6.0"}, {{BuiltinOperator_MEAN, 2}, "1.14.0"}, {{BuiltinOperator_MEAN, 3}, "2.4.0"}, {{BuiltinOperator_SUM, 1}, "1.10.0"}, {{BuiltinOperator_SUM, 2}, "1.15.0"}, {{BuiltinOperator_REDUCE_MAX, 1}, "1.11.0"}, {{BuiltinOperator_REDUCE_MAX, 2}, "1.14.0"}, {{BuiltinOperator_REDUCE_MAX, 3}, "2.5.0"}, {{BuiltinOperator_REDUCE_MIN, 1}, "1.11.0"}, {{BuiltinOperator_REDUCE_MIN, 2}, "1.14.0"}, {{BuiltinOperator_REDUCE_MIN, 3}, "2.5.0"}, {{BuiltinOperator_REDUCE_PROD, 1}, "1.11.0"}, {{BuiltinOperator_REDUCE_PROD, 2}, "2.6.0"}, {{BuiltinOperator_REDUCE_ANY, 1}, "1.11.0"}, {{BuiltinOperator_RELU6, 1}, "1.5.0"}, {{BuiltinOperator_RELU6, 2}, "1.14.0"}, {{BuiltinOperator_RELU6, 3}, "2.5.0"}, {{BuiltinOperator_RESIZE_BILINEAR, 1}, "1.7.0"}, {{BuiltinOperator_RESIZE_BILINEAR, 2}, "1.14.0"}, {{BuiltinOperator_RESIZE_BILINEAR, 3}, "2.2.0"}, {{BuiltinOperator_RESIZE_BILINEAR, 4}, "2.5.0"}, {{BuiltinOperator_RESIZE_NEAREST_NEIGHBOR, 1}, "1.13.1"}, {{BuiltinOperator_RESIZE_NEAREST_NEIGHBOR, 2}, "1.14.0"}, {{BuiltinOperator_RESIZE_NEAREST_NEIGHBOR, 3}, "2.3.0"}, {{BuiltinOperator_RESIZE_NEAREST_NEIGHBOR, 4}, "2.4.0"}, {{BuiltinOperator_RNN, 1}, "1.5.0"}, {{BuiltinOperator_RNN, 2}, "1.14.0"}, {{BuiltinOperator_RNN, 3}, "2.3.0"}, {{BuiltinOperator_SKIP_GRAM, 1}, "1.5.0"}, {{BuiltinOperator_SQUEEZE, 1}, "1.6.0"}, {{BuiltinOperator_SQUEEZE, 2}, "2.5.0"}, {{BuiltinOperator_SPLIT, 1}, "1.5.0"}, {{BuiltinOperator_SPLIT, 2}, "1.14.0"}, {{BuiltinOperator_SPLIT, 3}, "1.14.0"}, {{BuiltinOperator_SPLIT, 4}, "2.3.0"}, {{BuiltinOperator_SPLIT_V, 1}, "1.13.1"}, {{BuiltinOperator_SPLIT_V, 2}, "2.3.0"}, {{BuiltinOperator_STRIDED_SLICE, 1}, "1.6.0"}, {{BuiltinOperator_STRIDED_SLICE, 2}, "1.14.0"}, {{BuiltinOperator_STRIDED_SLICE, 3}, "2.1.0"}, {{BuiltinOperator_STRIDED_SLICE, 4}, "2.2.0"}, {{BuiltinOperator_STRIDED_SLICE, 5}, "2.5.0"}, {{BuiltinOperator_STRIDED_SLICE, 6}, "2.6.0"}, {{BuiltinOperator_STRIDED_SLICE, 7}, "2.14.0"}, {{BuiltinOperator_STRIDED_SLICE, 8}, "2.14.0"}, {{BuiltinOperator_TOPK_V2, 1}, "1.7.0"}, {{BuiltinOperator_TOPK_V2, 2}, "1.14.0"}, {{BuiltinOperator_TOPK_V2, 3}, "2.13.0"}, {{BuiltinOperator_ARG_MAX, 1}, "1.9.0"}, {{BuiltinOperator_ARG_MAX, 2}, "1.14.0"}, {{BuiltinOperator_ARG_MAX, 3}, "2.9.0"}, {{BuiltinOperator_ARG_MIN, 1}, "1.9.0"}, {{BuiltinOperator_ARG_MIN, 2}, "1.14.0"}, {{BuiltinOperator_ARG_MIN, 3}, "2.9.0"}, {{BuiltinOperator_TRANSPOSE_CONV, 1}, "1.9.0"}, {{BuiltinOperator_TRANSPOSE_CONV, 2}, "2.2.0"}, {{BuiltinOperator_TRANSPOSE_CONV, 3}, "2.3.0"}, {{BuiltinOperator_TRANSPOSE_CONV, 4}, "2.13.0"}, {{BuiltinOperator_TRANSPOSE_CONV, 5}, "2.15.0"}, {{BuiltinOperator_SPARSE_TO_DENSE, 1}, "1.9.0"}, {{BuiltinOperator_SPARSE_TO_DENSE, 2}, "1.14.0"}, {{BuiltinOperator_SPARSE_TO_DENSE, 3}, "1.15.0"}, {{BuiltinOperator_EXPAND_DIMS, 1}, "1.10.0"}, {{BuiltinOperator_PACK, 1}, "1.11.0"}, {{BuiltinOperator_PACK, 2}, "1.14.0"}, {{BuiltinOperator_PACK, 3}, "2.3.0"}, {{BuiltinOperator_PACK, 4}, "2.13.0"}, {{BuiltinOperator_SHAPE, 1}, "1.10.0"}, {{BuiltinOperator_SLICE, 1}, "1.14.0"}, {{BuiltinOperator_SLICE, 2}, "1.14.0"}, {{BuiltinOperator_SLICE, 3}, "1.14.0"}, {{BuiltinOperator_SLICE, 4}, "2.4.0"}, {{BuiltinOperator_SLICE, 5}, "2.5.0"}, {{BuiltinOperator_SLICE, 6}, "2.14.0"}, {{BuiltinOperator_TANH, 1}, "1.14.0"}, {{BuiltinOperator_TANH, 2}, "1.14.0"}, {{BuiltinOperator_TANH, 3}, "2.3.0"}, {{BuiltinOperator_ONE_HOT, 1}, "1.11.0"}, {{BuiltinOperator_UNPACK, 1}, "1.11.0"}, {{BuiltinOperator_UNPACK, 2}, "1.14.0"}, {{BuiltinOperator_UNPACK, 3}, "2.2.0"}, {{BuiltinOperator_UNPACK, 4}, "2.3.0"}, {{BuiltinOperator_LEAKY_RELU, 1}, "1.13.1"}, {{BuiltinOperator_LEAKY_RELU, 2}, "2.3.0"}, {{BuiltinOperator_LOGISTIC, 1}, "1.14.0"}, {{BuiltinOperator_LOGISTIC, 2}, "1.14.0"}, {{BuiltinOperator_LOGISTIC, 3}, "2.3.0"}, {{BuiltinOperator_LOG_SOFTMAX, 1}, "1.14.0"}, {{BuiltinOperator_LOG_SOFTMAX, 2}, "1.14.0"}, {{BuiltinOperator_LSH_PROJECTION, 1}, "1.5.0"}, {{BuiltinOperator_SQUARED_DIFFERENCE, 1}, "1.13.1"}, {{BuiltinOperator_SQUARED_DIFFERENCE, 2}, "2.5.0"}, {{BuiltinOperator_MIRROR_PAD, 1}, "1.13.1"}, {{BuiltinOperator_MIRROR_PAD, 2}, "2.3.0"}, {{BuiltinOperator_MIRROR_PAD, 3}, "2.12.0"}, {{BuiltinOperator_UNIQUE, 1}, "1.14.0"}, {{BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_RNN, 1}, "1.14.0"}, {{BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_RNN, 2}, "1.14.0"}, {{BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_RNN, 3}, "2.3.0"}, {{BuiltinOperator_WHERE, 1}, "1.14.0"}, {{BuiltinOperator_DEQUANTIZE, 1}, "1.13.1"}, {{BuiltinOperator_DEQUANTIZE, 2}, "1.14.0"}, {{BuiltinOperator_DEQUANTIZE, 3}, "1.15.0"}, {{BuiltinOperator_DEQUANTIZE, 4}, "2.2.0"}, {{BuiltinOperator_DEQUANTIZE, 5}, "2.7.0"}, {{BuiltinOperator_DEQUANTIZE, 6}, "2.18.0"}, {{BuiltinOperator_REVERSE_SEQUENCE, 1}, "1.14.0"}, {{BuiltinOperator_EQUAL, 1}, "1.14.0"}, {{BuiltinOperator_EQUAL, 2}, "1.14.0"}, {{BuiltinOperator_EQUAL, 3}, "2.3.0"}, {{BuiltinOperator_EQUAL, 4}, "2.13.0"}, {{BuiltinOperator_NOT_EQUAL, 1}, "1.14.0"}, {{BuiltinOperator_NOT_EQUAL, 2}, "1.14.0"}, {{BuiltinOperator_NOT_EQUAL, 3}, "2.3.0"}, {{BuiltinOperator_GREATER, 1}, "1.14.0"}, {{BuiltinOperator_GREATER, 2}, "1.14.0"}, {{BuiltinOperator_GREATER_EQUAL, 1}, "1.14.0"}, {{BuiltinOperator_GREATER_EQUAL, 2}, "1.14.0"}, {{BuiltinOperator_GREATER_EQUAL, 3}, "2.13.0"}, {{BuiltinOperator_LESS, 1}, "1.14.0"}, {{BuiltinOperator_LESS, 2}, "1.14.0"}, {{BuiltinOperator_LESS, 3}, "2.13.0"}, {{BuiltinOperator_LESS_EQUAL, 1}, "1.14.0"}, {{BuiltinOperator_LESS_EQUAL, 2}, "1.14.0"}, {{BuiltinOperator_SCATTER_ND, 1}, "2.1.0"}, {{BuiltinOperator_SEGMENT_SUM, 1}, "2.2.0"}, {{BuiltinOperator_SELECT, 1}, "1.14.0"}, {{BuiltinOperator_SELECT, 2}, "1.14.0"}, {{BuiltinOperator_SELECT, 3}, "2.12.0"}, {{BuiltinOperator_SELECT, 4}, "2.12.0"}, {{BuiltinOperator_SELECT_V2, 1}, "2.2.0"}, {{BuiltinOperator_SELECT_V2, 2}, "2.12.0"}, {{BuiltinOperator_IF, 1}, "1.15.0"}, {{BuiltinOperator_FLOOR_DIV, 1}, "1.14.0"}, {{BuiltinOperator_FLOOR_DIV, 2}, "1.14.0"}, {{BuiltinOperator_FLOOR_DIV, 3}, "2.13.0"}, {{BuiltinOperator_FLOOR, 1}, "1.9.0"}, {{BuiltinOperator_CEIL, 1}, "1.14.0"}, {{BuiltinOperator_MATRIX_DIAG, 1}, "1.14.0"}, {{BuiltinOperator_MATRIX_SET_DIAG, 1}, "1.14.0"}, {{BuiltinOperator_ELU, 1}, "1.14.0"}, {{BuiltinOperator_QUANTIZE, 1}, "1.14.0"}, {{BuiltinOperator_QUANTIZE, 2}, "1.15.0"}, {{BuiltinOperator_QUANTIZE, 3}, "2.7.0"}, {{BuiltinOperator_ROUND, 1}, "1.14.0"}, {{BuiltinOperator_RELU, 1}, "1.5.0"}, {{BuiltinOperator_RELU, 2}, "2.1.0"}, {{BuiltinOperator_RELU, 3}, "2.5.0"}, {{BuiltinOperator_RELU_N1_TO_1, 1}, "1.5.0"}, {{BuiltinOperator_RELU_0_TO_1, 1}, "2.10.0"}, {{BuiltinOperator_PRELU, 1}, "1.8.0"}, {{BuiltinOperator_EXP, 1}, "1.7.0"}, {{BuiltinOperator_EXP, 2}, "2.12.0"}, {{BuiltinOperator_COS, 1}, "1.14.0"}, {{BuiltinOperator_NEG, 1}, "1.9.0"}, {{BuiltinOperator_POW, 1}, "1.10.0"}, {{BuiltinOperator_LOGICAL_OR, 1}, "1.11.0"}, {{BuiltinOperator_LOGICAL_AND, 1}, "1.11.0"}, {{BuiltinOperator_LOGICAL_NOT, 1}, "1.11.0"}, {{BuiltinOperator_FLOOR_MOD, 1}, "1.13.0"}, {{BuiltinOperator_FLOOR_MOD, 2}, "2.13.0"}, {{BuiltinOperator_RANGE, 1}, "1.13.0"}, {{BuiltinOperator_RANGE, 2}, "2.14.0"}, {{BuiltinOperator_SIN, 1}, "1.9.0"}, {{BuiltinOperator_LOG, 1}, "1.14.0"}, {{BuiltinOperator_LOG, 2}, "2.15.0"}, {{BuiltinOperator_SQRT, 1}, "1.10.0"}, {{BuiltinOperator_RSQRT, 1}, "1.10.0"}, {{BuiltinOperator_RSQRT, 2}, "2.5.0"}, {{BuiltinOperator_RSQRT, 3}, "2.15.0"}, {{BuiltinOperator_SQUARE, 1}, "1.12.0"}, {{BuiltinOperator_ZEROS_LIKE, 1}, "1.12.0"}, {{BuiltinOperator_ABS, 1}, "1.13.0"}, {{BuiltinOperator_ABS, 2}, "2.4.0"}, {{BuiltinOperator_ABS, 3}, "2.5.0"}, {{BuiltinOperator_ABS, 4}, "2.6.0"}, {{BuiltinOperator_ABS, 5}, "2.12.0"}, {{BuiltinOperator_HARD_SWISH, 1}, "1.15.0"}, {{BuiltinOperator_FILL, 1}, "1.13.0"}, {{BuiltinOperator_FILL, 2}, "2.3.0"}, {{BuiltinOperator_FILL, 3}, "2.5.0"}, {{BuiltinOperator_FILL, 4}, "2.12.0"}, {{BuiltinOperator_REVERSE_V2, 1}, "1.14.0"}, {{BuiltinOperator_REVERSE_V2, 2}, "2.2.0"}, {{BuiltinOperator_REVERSE_V2, 3}, "2.5.0"}, {{BuiltinOperator_RANK, 1}, "1.14.0"}, {{BuiltinOperator_WHILE, 1}, "1.15.0"}, {{BuiltinOperator_CUMSUM, 1}, "2.4.0"}, {{BuiltinOperator_CALL_ONCE, 1}, "2.5.0"}, {{BuiltinOperator_RFFT2D, 1}, "2.5.0"}, {{BuiltinOperator_CONV_3D, 1}, "2.5.0"}, {{BuiltinOperator_IMAG, 1}, "2.5.0"}, {{BuiltinOperator_REAL, 1}, "2.5.0"}, {{BuiltinOperator_COMPLEX_ABS, 1}, "2.5.0"}, {{BuiltinOperator_HASHTABLE, 1}, "2.5.0"}, {{BuiltinOperator_HASHTABLE_FIND, 1}, "2.5.0"}, {{BuiltinOperator_HASHTABLE_IMPORT, 1}, "2.5.0"}, {{BuiltinOperator_HASHTABLE_SIZE, 1}, "2.5.0"}, {{BuiltinOperator_REDUCE_ALL, 1}, "2.6.0"}, {{BuiltinOperator_CONV_3D_TRANSPOSE, 1}, "2.6.0"}, {{BuiltinOperator_VAR_HANDLE, 1}, "2.6.0"}, {{BuiltinOperator_READ_VARIABLE, 1}, "2.6.0"}, {{BuiltinOperator_ASSIGN_VARIABLE, 1}, "2.6.0"}, {{BuiltinOperator_BROADCAST_ARGS, 1}, "2.6.0"}, {{BuiltinOperator_RANDOM_STANDARD_NORMAL, 1}, "2.8.0"}, {{BuiltinOperator_BUCKETIZE, 1}, "2.8.0"}, {{BuiltinOperator_WHERE, 2}, "2.8.0"}, {{BuiltinOperator_RANDOM_UNIFORM, 1}, "2.8.0"}, {{BuiltinOperator_MULTINOMIAL, 1}, "2.8.0"}, {{BuiltinOperator_GELU, 1}, "2.9.0"}, {{BuiltinOperator_GELU, 2}, "2.9.0"}, {{BuiltinOperator_DYNAMIC_UPDATE_SLICE, 1}, "2.9.0"}, {{BuiltinOperator_DYNAMIC_UPDATE_SLICE, 2}, "2.17.0"}, {{BuiltinOperator_UNSORTED_SEGMENT_PROD, 1}, "2.10.0"}, {{BuiltinOperator_UNSORTED_SEGMENT_MAX, 1}, "2.10.0"}, {{BuiltinOperator_UNSORTED_SEGMENT_MIN, 1}, "2.11.0"}, {{BuiltinOperator_UNSORTED_SEGMENT_SUM, 1}, "2.10.0"}, {{BuiltinOperator_ATAN2, 1}, "2.10.0"}, {{BuiltinOperator_SIGN, 1}, "2.11.0"}, {{BuiltinOperator_SIGN, 2}, "2.12.0"}, {{BuiltinOperator_BITCAST, 1}, "2.13.0"}, {{BuiltinOperator_BITWISE_XOR, 1}, "2.13.0"}, {{BuiltinOperator_RIGHT_SHIFT, 1}, "2.13.0"}, {{BuiltinOperator_STABLEHLO_SCATTER, 1}, "2.15.0"}, {{BuiltinOperator_DILATE, 1}, "2.15.0"}, {{BuiltinOperator_STABLEHLO_RNG_BIT_GENERATOR, 1}, "2.15.0"}, {{BuiltinOperator_REDUCE_WINDOW, 1}, "2.15.0"}, {{BuiltinOperator_STABLEHLO_GATHER, 1}, "2.16.0"}, {{BuiltinOperator_STABLEHLO_ADD, 1}, "2.16.0"}, {{BuiltinOperator_STABLEHLO_MULTIPLY, 1}, "2.16.0"}, {{BuiltinOperator_STABLEHLO_REDUCE_WINDOW, 1}, "2.16.0"}, {{BuiltinOperator_STABLEHLO_MAXIMUM, 1}, "2.16.0"}, {{BuiltinOperator_STABLEHLO_MINIMUM, 1}, "2.16.0"}, {{BuiltinOperator_STABLEHLO_PAD, 1}, "2.16.0"}, {{BuiltinOperator_STABLEHLO_COMPOSITE, 1}, "2.17.0"}}); std::pair<BuiltinOperator, int> version_key = {op_code, op_version}; auto it = op_version_map->find(version_key); if (it == op_version_map->end()) { return std::string(); } return it->second; } void UpdateMinimumRuntimeVersionForModel(uint8_t* model_buffer_pointer) { auto model = GetMutableModel(model_buffer_pointer); std::string model_min_version; auto subgraphs = model->subgraphs(); for (int i = 0; i < subgraphs->Length(); ++i) { const SubGraph* subgraph = subgraphs->Get(i); for (int j = 0; j < subgraph->operators()->Length(); ++j) { const Operator* op = subgraph->operators()->Get(j); const OperatorCode* op_code = model->operator_codes()->Get(op->opcode_index()); std::string runtime_version = FindMinimumRuntimeVersionForOp( GetBuiltinCode(op_code), op_code->version()); if (runtime_version.empty()) { continue; } if (CompareRuntimeVersion(model_min_version, runtime_version)) { model_min_version = runtime_version; } } } if (model_min_version.size() >= 16) { TFLITE_LOG(TFLITE_LOG_WARNING, "Skip writing minimum runtime version string since it's " "longer than 16 bytes."); return; } for (int i = 0; i < model->metadata()->size(); ++i) { if (model->metadata()->Get(i)->name()->str() == "min_runtime_version") { auto buffer = model->metadata()->Get(i)->buffer(); auto buffer_data = model->mutable_buffers()->GetMutableObject(buffer)->mutable_data(); memset(buffer_data->data(), 0, buffer_data->size()); memcpy(buffer_data->data(), model_min_version.data(), model_min_version.size()); break; } } } }
#include "tensorflow/lite/tools/versioning/runtime_version.h" #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/core/kernels/register.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { TEST(OpVersionTest, CompareRuntimeVersion) { EXPECT_TRUE(CompareRuntimeVersion("1.9", "1.13")); EXPECT_FALSE(CompareRuntimeVersion("1.13", "1.13")); EXPECT_TRUE(CompareRuntimeVersion("1.14", "1.14.1")); EXPECT_FALSE(CompareRuntimeVersion("1.14.1", "1.14")); EXPECT_FALSE(CompareRuntimeVersion("1.14.1", "1.9")); EXPECT_FALSE(CompareRuntimeVersion("1.0.9", "1.0.8")); EXPECT_FALSE(CompareRuntimeVersion("2.1.0", "1.2.0")); EXPECT_TRUE(CompareRuntimeVersion("", "1.13")); EXPECT_FALSE(CompareRuntimeVersion("", "")); } TEST(OpVersionTest, OpversionMissing) { tflite::ops::builtin::BuiltinOpResolver resolver; for (int id = BuiltinOperator_MIN; id <= BuiltinOperator_MAX; ++id) { for (int version = 1;; ++version) { auto op_code = static_cast<tflite::BuiltinOperator>(id); if (resolver.FindOp(op_code, version) == nullptr) break; std::string runtime_version = FindMinimumRuntimeVersionForOp(op_code, version); EXPECT_NE(runtime_version, "") << "Please add the version " << version << " of " << tflite::EnumNamesBuiltinOperator()[op_code] << " to runtime_version.cc"; } } } }
839
cpp
tensorflow/tensorflow
signature_def_util
tensorflow/lite/tools/signature/signature_def_util.cc
tensorflow/lite/tools/signature/signature_def_util_test.cc
#ifndef TENSORFLOW_LITE_TOOLS_SIGNATURE_SIGNATURE_DEF_UTIL_H_ #define TENSORFLOW_LITE_TOOLS_SIGNATURE_SIGNATURE_DEF_UTIL_H_ #include <string> #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { constexpr char kSignatureDefsMetadataName[] = "signature_defs_metadata"; tensorflow::Status SetSignatureDefMap( const Model* model, const std::map<std::string, tensorflow::SignatureDef>& signature_def_map, std::string* model_data_with_signature_defs); bool HasSignatureDef(const Model* model, const std::string& signature_key); tensorflow::Status GetSignatureDefMap( const Model* model, std::map<std::string, tensorflow::SignatureDef>* signature_def_map); tensorflow::Status ClearSignatureDefMap(const Model* model, std::string* model_data); } #endif #include "tensorflow/lite/tools/signature/signature_def_util.h" #include <map> #include <memory> #include <string> #include <utility> #include "absl/memory/memory.h" #include "flatbuffers/flatbuffers.h" #include "flatbuffers/flexbuffers.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" #include "tensorflow/lite/core/model_builder.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { using tensorflow::Status; using SerializedSignatureDefMap = std::map<std::string, std::string>; using SignatureDefMap = std::map<std::string, tensorflow::SignatureDef>; const Metadata* GetSignatureDefMetadata(const Model* model) { if (!model || !model->metadata()) { return nullptr; } for (int i = 0; i < model->metadata()->size(); ++i) { const Metadata* metadata = model->metadata()->Get(i); if (metadata->name()->str() == kSignatureDefsMetadataName) { return metadata; } } return nullptr; } Status ReadSignatureDefMap(const Model* model, const Metadata* metadata, SerializedSignatureDefMap* map) { if (!model || !metadata || !map) { return tensorflow::errors::InvalidArgument("Arguments must not be nullptr"); } const flatbuffers::Vector<uint8_t>* flatbuffer_data = model->buffers()->Get(metadata->buffer())->data(); const auto signature_defs = flexbuffers::GetRoot(flatbuffer_data->data(), flatbuffer_data->size()) .AsMap(); for (int i = 0; i < signature_defs.Keys().size(); ++i) { const std::string key = signature_defs.Keys()[i].AsString().c_str(); (*map)[key] = signature_defs[key].AsString().c_str(); } return absl::OkStatus(); } } Status SetSignatureDefMap(const Model* model, const SignatureDefMap& signature_def_map, std::string* model_data_with_signature_def) { if (!model || !model_data_with_signature_def) { return tensorflow::errors::InvalidArgument("Arguments must not be nullptr"); } if (signature_def_map.empty()) { return tensorflow::errors::InvalidArgument( "signature_def_map should not be empty"); } flexbuffers::Builder fbb; const size_t start_map = fbb.StartMap(); auto mutable_model = std::make_unique<ModelT>(); model->UnPackTo(mutable_model.get(), nullptr); int buffer_id = mutable_model->buffers.size(); const Metadata* metadata = GetSignatureDefMetadata(model); if (metadata) { buffer_id = metadata->buffer(); } else { auto buffer = std::make_unique<BufferT>(); mutable_model->buffers.emplace_back(std::move(buffer)); auto sigdef_metadata = std::make_unique<MetadataT>(); sigdef_metadata->buffer = buffer_id; sigdef_metadata->name = kSignatureDefsMetadataName; mutable_model->metadata.emplace_back(std::move(sigdef_metadata)); } for (const auto& entry : signature_def_map) { fbb.String(entry.first.c_str(), entry.second.SerializeAsString()); } fbb.EndMap(start_map); fbb.Finish(); mutable_model->buffers[buffer_id]->data = fbb.GetBuffer(); flatbuffers::FlatBufferBuilder builder; auto packed_model = Model::Pack(builder, mutable_model.get()); FinishModelBuffer(builder, packed_model); *model_data_with_signature_def = std::string(reinterpret_cast<const char*>(builder.GetBufferPointer()), builder.GetSize()); return absl::OkStatus(); } bool HasSignatureDef(const Model* model, const std::string& signature_key) { if (!model) { return false; } const Metadata* metadata = GetSignatureDefMetadata(model); if (!metadata) { return false; } SerializedSignatureDefMap signature_defs; if (ReadSignatureDefMap(model, metadata, &signature_defs) != absl::OkStatus()) { return false; } return (signature_defs.find(signature_key) != signature_defs.end()); } Status GetSignatureDefMap(const Model* model, SignatureDefMap* signature_def_map) { if (!model || !signature_def_map) { return tensorflow::errors::InvalidArgument("Arguments must not be nullptr"); } SignatureDefMap retrieved_signature_def_map; const Metadata* metadata = GetSignatureDefMetadata(model); if (metadata) { SerializedSignatureDefMap signature_defs; auto status = ReadSignatureDefMap(model, metadata, &signature_defs); if (status != absl::OkStatus()) { return tensorflow::errors::Internal("Error reading signature def map: ", status.message()); } for (const auto& entry : signature_defs) { tensorflow::SignatureDef signature_def; if (!signature_def.ParseFromString(entry.second)) { return tensorflow::errors::Internal( "Cannot parse signature def found in flatbuffer."); } retrieved_signature_def_map[entry.first] = signature_def; } *signature_def_map = retrieved_signature_def_map; } return absl::OkStatus(); } Status ClearSignatureDefMap(const Model* model, std::string* model_data) { if (!model || !model_data) { return tensorflow::errors::InvalidArgument("Arguments must not be nullptr"); } auto mutable_model = std::make_unique<ModelT>(); model->UnPackTo(mutable_model.get(), nullptr); for (int id = 0; id < model->metadata()->size(); ++id) { const Metadata* metadata = model->metadata()->Get(id); if (metadata->name()->str() == kSignatureDefsMetadataName) { auto* buffers = &(mutable_model->buffers); buffers->erase(buffers->begin() + metadata->buffer()); mutable_model->metadata.erase(mutable_model->metadata.begin() + id); break; } } flatbuffers::FlatBufferBuilder builder; auto packed_model = Model::Pack(builder, mutable_model.get()); FinishModelBuffer(builder, packed_model); *model_data = std::string(reinterpret_cast<const char*>(builder.GetBufferPointer()), builder.GetSize()); return absl::OkStatus(); } }
#include "tensorflow/lite/tools/signature/signature_def_util.h" #include <string> #include <gtest/gtest.h> #include "tensorflow/cc/saved_model/signature_constants.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/lite/core/c/c_api.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/model_builder.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/testing/util.h" namespace tflite { namespace { using tensorflow::kClassifyMethodName; using tensorflow::kDefaultServingSignatureDefKey; using tensorflow::kPredictMethodName; using tensorflow::SignatureDef; using tensorflow::Status; constexpr char kSignatureInput[] = "input"; constexpr char kSignatureOutput[] = "output"; constexpr char kTestFilePath[] = "tensorflow/lite/testdata/add.bin"; class SimpleSignatureDefUtilTest : public testing::Test { protected: void SetUp() override { flatbuffer_model_ = FlatBufferModel::BuildFromFile(kTestFilePath); ASSERT_NE(flatbuffer_model_, nullptr); model_ = flatbuffer_model_->GetModel(); ASSERT_NE(model_, nullptr); } SignatureDef GetTestSignatureDef() { auto signature_def = SignatureDef(); tensorflow::TensorInfo input_tensor; tensorflow::TensorInfo output_tensor; *input_tensor.mutable_name() = kSignatureInput; *output_tensor.mutable_name() = kSignatureOutput; *signature_def.mutable_method_name() = kClassifyMethodName; (*signature_def.mutable_inputs())[kSignatureInput] = input_tensor; (*signature_def.mutable_outputs())[kSignatureOutput] = output_tensor; return signature_def; } std::unique_ptr<FlatBufferModel> flatbuffer_model_; const Model* model_; }; TEST_F(SimpleSignatureDefUtilTest, SetSignatureDefTest) { SignatureDef expected_signature_def = GetTestSignatureDef(); std::string model_output; const std::map<string, SignatureDef> expected_signature_def_map = { {kDefaultServingSignatureDefKey, expected_signature_def}}; EXPECT_EQ( absl::OkStatus(), SetSignatureDefMap(model_, expected_signature_def_map, &model_output)); const Model* add_model = flatbuffers::GetRoot<Model>(model_output.data()); EXPECT_TRUE(HasSignatureDef(add_model, kDefaultServingSignatureDefKey)); std::map<string, SignatureDef> test_signature_def_map; EXPECT_EQ(absl::OkStatus(), GetSignatureDefMap(add_model, &test_signature_def_map)); SignatureDef test_signature_def = test_signature_def_map[kDefaultServingSignatureDefKey]; EXPECT_EQ(expected_signature_def.SerializeAsString(), test_signature_def.SerializeAsString()); } TEST_F(SimpleSignatureDefUtilTest, OverwriteSignatureDefTest) { auto expected_signature_def = GetTestSignatureDef(); std::string model_output; std::map<string, SignatureDef> expected_signature_def_map = { {kDefaultServingSignatureDefKey, expected_signature_def}}; EXPECT_EQ( absl::OkStatus(), SetSignatureDefMap(model_, expected_signature_def_map, &model_output)); const Model* add_model = flatbuffers::GetRoot<Model>(model_output.data()); EXPECT_TRUE(HasSignatureDef(add_model, kDefaultServingSignatureDefKey)); std::map<string, SignatureDef> test_signature_def_map; EXPECT_EQ(absl::OkStatus(), GetSignatureDefMap(add_model, &test_signature_def_map)); SignatureDef test_signature_def = test_signature_def_map[kDefaultServingSignatureDefKey]; EXPECT_EQ(expected_signature_def.SerializeAsString(), test_signature_def.SerializeAsString()); *expected_signature_def.mutable_method_name() = kPredictMethodName; expected_signature_def_map.erase( expected_signature_def_map.find(kDefaultServingSignatureDefKey)); constexpr char kTestSignatureDefKey[] = "ServingTest"; expected_signature_def_map[kTestSignatureDefKey] = expected_signature_def; EXPECT_EQ( absl::OkStatus(), SetSignatureDefMap(add_model, expected_signature_def_map, &model_output)); const Model* final_model = flatbuffers::GetRoot<Model>(model_output.data()); EXPECT_FALSE(HasSignatureDef(final_model, kDefaultServingSignatureDefKey)); EXPECT_EQ(absl::OkStatus(), GetSignatureDefMap(final_model, &test_signature_def_map)); EXPECT_NE(expected_signature_def.SerializeAsString(), test_signature_def.SerializeAsString()); EXPECT_TRUE(HasSignatureDef(final_model, kTestSignatureDefKey)); EXPECT_EQ(absl::OkStatus(), GetSignatureDefMap(final_model, &test_signature_def_map)); test_signature_def = test_signature_def_map[kTestSignatureDefKey]; EXPECT_EQ(expected_signature_def.SerializeAsString(), test_signature_def.SerializeAsString()); } TEST_F(SimpleSignatureDefUtilTest, GetSignatureDefTest) { std::map<string, SignatureDef> test_signature_def_map; EXPECT_EQ(absl::OkStatus(), GetSignatureDefMap(model_, &test_signature_def_map)); EXPECT_FALSE(HasSignatureDef(model_, kDefaultServingSignatureDefKey)); } TEST_F(SimpleSignatureDefUtilTest, ClearSignatureDefTest) { const int expected_num_buffers = model_->buffers()->size(); auto expected_signature_def = GetTestSignatureDef(); std::string model_output; std::map<string, SignatureDef> expected_signature_def_map = { {kDefaultServingSignatureDefKey, expected_signature_def}}; EXPECT_EQ( absl::OkStatus(), SetSignatureDefMap(model_, expected_signature_def_map, &model_output)); const Model* add_model = flatbuffers::GetRoot<Model>(model_output.data()); EXPECT_TRUE(HasSignatureDef(add_model, kDefaultServingSignatureDefKey)); SignatureDef test_signature_def; std::map<string, SignatureDef> test_signature_def_map; EXPECT_EQ(absl::OkStatus(), GetSignatureDefMap(add_model, &test_signature_def_map)); test_signature_def = test_signature_def_map[kDefaultServingSignatureDefKey]; EXPECT_EQ(expected_signature_def.SerializeAsString(), test_signature_def.SerializeAsString()); EXPECT_EQ(absl::OkStatus(), ClearSignatureDefMap(add_model, &model_output)); const Model* clear_model = flatbuffers::GetRoot<Model>(model_output.data()); EXPECT_FALSE(HasSignatureDef(clear_model, kDefaultServingSignatureDefKey)); EXPECT_EQ(expected_num_buffers, clear_model->buffers()->size()); } TEST_F(SimpleSignatureDefUtilTest, SetSignatureDefErrorsTest) { std::map<string, SignatureDef> test_signature_def_map; std::string model_output; EXPECT_TRUE(tensorflow::errors::IsInvalidArgument( SetSignatureDefMap(model_, test_signature_def_map, &model_output))); SignatureDef test_signature_def; test_signature_def_map[kDefaultServingSignatureDefKey] = test_signature_def; EXPECT_TRUE(tensorflow::errors::IsInvalidArgument( SetSignatureDefMap(model_, test_signature_def_map, nullptr))); } } }
840
cpp
tensorflow/tensorflow
benchmark_model
tensorflow/lite/tools/benchmark/benchmark_model.cc
tensorflow/tools/benchmark/benchmark_model_test.cc
#ifndef TENSORFLOW_TOOLS_BENCHMARK_BENCHMARK_MODEL_H_ #define TENSORFLOW_TOOLS_BENCHMARK_BENCHMARK_MODEL_H_ #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/public/session.h" #include "tensorflow/core/util/stat_summarizer.h" namespace tensorflow { namespace benchmark_model { struct InputLayerInfo { string name; DataType data_type; TensorShape shape; std::vector<float> initialization_values; }; Status InitializeSession(int num_threads, const string& graph, std::unique_ptr<Session>* session, std::unique_ptr<GraphDef>* graph_def); Status RunBenchmark(const std::vector<InputLayerInfo>& inputs, const std::vector<string>& outputs, const std::vector<string>& targets, Session* session, StatSummarizer* stats, int64_t* inference_time_us); Status TimeMultipleRuns(double sleep_seconds, int num_runs, double max_time_s, const std::vector<InputLayerInfo>& inputs, const std::vector<string>& outputs, const std::vector<string>& targets, Session* session, StatSummarizer* stats, int64_t* total_time_us, int64_t* actual_num_runs); int Main(int argc, char** argv); } } #endif #include "tensorflow/tools/benchmark/benchmark_model.h" #include <cstdlib> #include <memory> #include <string> #include <unordered_set> #include <vector> #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/numeric_types.h" #include "tensorflow/core/framework/step_stats.pb.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/init_main.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/numbers.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/tstring.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/public/session.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/util/command_line_flags.h" #include "tensorflow/core/util/reporter.h" #include "tensorflow/core/util/stat_summarizer.h" #include "tensorflow/core/util/stat_summarizer_options.h" #include "tensorflow/core/util/stats_calculator.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" namespace tensorflow { namespace benchmark_model { namespace { Status InitializeVariables(Session* session, const std::vector<string>& init_ops) { LOG(INFO) << "Initializing graph variables"; for (const string& init_op : init_ops) { TF_RETURN_IF_ERROR(session->Run({}, {}, {init_op}, nullptr)); } return absl::OkStatus(); } template <class T> void InitializeTensor(const std::vector<float>& initialization_values, Tensor* input_tensor) { auto type_tensor = input_tensor->flat<T>(); type_tensor = type_tensor.constant(0); if (!initialization_values.empty()) { for (int i = 0; i < initialization_values.size(); ++i) { type_tensor(i) = static_cast<T>(initialization_values[i]); } } } void CreateTensorsFromInputInfo( const std::vector<InputLayerInfo>& inputs, std::vector<std::pair<string, tensorflow::Tensor> >* input_tensors) { for (const InputLayerInfo& input : inputs) { Tensor input_tensor(input.data_type, input.shape); switch (input.data_type) { case DT_INT32: { InitializeTensor<int32>(input.initialization_values, &input_tensor); break; } case DT_INT64: { InitializeTensor<int64>(input.initialization_values, &input_tensor); break; } case DT_FLOAT: { InitializeTensor<float>(input.initialization_values, &input_tensor); break; } case DT_QUINT8: { InitializeTensor<quint8>(input.initialization_values, &input_tensor); break; } case DT_UINT8: { InitializeTensor<uint8>(input.initialization_values, &input_tensor); break; } case DT_BOOL: { InitializeTensor<bool>(input.initialization_values, &input_tensor); break; } case DT_STRING: { if (!input.initialization_values.empty()) { LOG(FATAL) << "Initialization values are not supported for strings"; } auto type_tensor = input_tensor.flat<tstring>(); type_tensor = type_tensor.constant(""); break; } default: LOG(FATAL) << "Unsupported input type: " << DataTypeString(input.data_type); } input_tensors->push_back({input.name, input_tensor}); } } Status GetOutputShapes(const std::vector<InputLayerInfo>& inputs, const std::set<string>& wanted_shapes, Session* session, std::unordered_map<string, TensorShape>* node_shapes) { std::vector<std::pair<string, tensorflow::Tensor> > input_tensors; CreateTensorsFromInputInfo(inputs, &input_tensors); std::vector<tensorflow::Tensor> output_tensors; std::vector<string> output_tensor_names; for (const string& wanted_shape : wanted_shapes) { bool is_input = false; for (const std::pair<string, tensorflow::Tensor>& input_tensor : input_tensors) { if (input_tensor.first == wanted_shape) { (*node_shapes)[wanted_shape] = input_tensor.second.shape(); is_input = true; break; } } if (!is_input) { output_tensor_names.push_back(wanted_shape); } } TF_RETURN_IF_ERROR( session->Run(input_tensors, output_tensor_names, {}, &output_tensors)); CHECK_EQ(output_tensors.size(), output_tensor_names.size()); for (int i = 0; i < output_tensor_names.size(); ++i) { const string& wanted_shape_name = output_tensor_names[i]; const TensorShape& found_shape = output_tensors[i].shape(); (*node_shapes)[wanted_shape_name] = found_shape; } return absl::OkStatus(); } Status CalculateFlops(const GraphDef& graph, const std::vector<InputLayerInfo>& inputs, Session* session, int64_t* total_flops, std::unordered_map<string, int64_t>* flops_by_op) { std::unordered_set<string> floppable_ops = { "Conv2D", "MatMul", "QuantizedConv2D", "QuantizedMatMul", "DepthwiseConv2dNative"}; std::set<string> wanted_shapes; for (const NodeDef& node : graph.node()) { if (floppable_ops.count(node.op())) { for (const string& input : node.input()) { wanted_shapes.insert(input); } wanted_shapes.insert(node.name()); } } std::unordered_map<string, TensorShape> found_shapes; TF_RETURN_IF_ERROR( GetOutputShapes(inputs, wanted_shapes, session, &found_shapes)); *total_flops = 0; for (const NodeDef& node : graph.node()) { if (floppable_ops.count(node.op())) { int64_t current_flops = 0; if ((node.op() == "Conv2D") || (node.op() == "QuantizedConv2D")) { const TensorShape& filter_shape = found_shapes[node.input(1)]; const TensorShape& output_shape = found_shapes[node.name()]; int64_t filter_height = filter_shape.dim_size(0); int64_t filter_width = filter_shape.dim_size(1); int64_t filter_in_depth = filter_shape.dim_size(2); int64_t output_count = output_shape.num_elements(); current_flops = output_count * filter_in_depth * filter_height * filter_width * 2; } else if ((node.op() == "MatMul") || (node.op() == "QuantizedMatMul")) { const bool transpose_a = node.attr().at("transpose_a").b(); const TensorShape& a_shape = found_shapes[node.input(0)]; const TensorShape& output_shape = found_shapes[node.name()]; int64_t k; if (transpose_a) { k = a_shape.dim_size(0); } else { k = a_shape.dim_size(1); } int64_t output_count = output_shape.num_elements(); current_flops = k * output_count * 2; } else if (node.op() == "DepthwiseConv2dNative") { const TensorShape& filter_shape = found_shapes[node.input(1)]; const TensorShape& output_shape = found_shapes[node.name()]; int64_t filter_height = filter_shape.dim_size(0); int64_t filter_width = filter_shape.dim_size(1); int64_t output_count = output_shape.num_elements(); current_flops = output_count * filter_height * filter_width * 2; } (*flops_by_op)[node.op()] += current_flops; *total_flops += current_flops; } } return absl::OkStatus(); } void RecordBenchmarkEntry(const string& output_prefix, const string& benchmark_name, const string& postfix, int num_runs, double total_time_s, double throughput = -1.0) { std::stringstream stream; stream << benchmark_name; if (!postfix.empty()) { stream << "_" << postfix; } TestReporter node_reporter(output_prefix, stream.str()); TF_QCHECK_OK(node_reporter.Initialize()); TF_QCHECK_OK( node_reporter.Benchmark(num_runs, -1.0, total_time_s, throughput)); TF_QCHECK_OK(node_reporter.Close()); } void SleepSeconds(double sleep_seconds) { if (sleep_seconds <= 0.0) { return; } #ifdef PLATFORM_WINDOWS Env::Default()->SleepForMicroseconds(sleep_seconds * 1000 * 1000); #else timespec req; req.tv_sec = static_cast<time_t>(sleep_seconds); req.tv_nsec = (sleep_seconds - req.tv_sec) * 1000000000; nanosleep(&req, nullptr); #endif } } Status InitializeSession(int num_threads, const string& graph, std::unique_ptr<Session>* session, std::unique_ptr<GraphDef>* graph_def) { LOG(INFO) << "Loading TensorFlow."; tensorflow::SessionOptions options; tensorflow::ConfigProto& config = options.config; if (num_threads > 0) { config.set_intra_op_parallelism_threads(num_threads); config.set_inter_op_parallelism_threads(num_threads); } LOG(INFO) << "Got config, " << config.device_count_size() << " devices"; session->reset(tensorflow::NewSession(options)); graph_def->reset(new GraphDef()); tensorflow::GraphDef tensorflow_graph; Status s = ReadBinaryProto(Env::Default(), graph, graph_def->get()); if (!s.ok()) { s = ReadTextProto(Env::Default(), graph, graph_def->get()); } if (!s.ok()) { LOG(ERROR) << "Could not create TensorFlow Graph: " << s; return s; } s = (*session)->Create(*(graph_def->get())); if (!s.ok()) { LOG(ERROR) << "Could not create TensorFlow Session: " << s; return s; } return absl::OkStatus(); } Status RunBenchmark(const std::vector<InputLayerInfo>& inputs, const std::vector<string>& outputs, const std::vector<string>& targets, Session* session, StatSummarizer* stats, int64_t* inference_time_us) { std::vector<std::pair<string, tensorflow::Tensor> > input_tensors; CreateTensorsFromInputInfo(inputs, &input_tensors); std::vector<tensorflow::Tensor> output_tensors; tensorflow::Status s; RunOptions run_options; if (stats != nullptr) { run_options.set_trace_level(RunOptions::FULL_TRACE); } RunMetadata run_metadata; const int64_t start_time = Env::Default()->NowMicros(); s = session->Run(run_options, input_tensors, outputs, targets, &output_tensors, &run_metadata); const int64_t end_time = Env::Default()->NowMicros(); *inference_time_us = end_time - start_time; if (!s.ok()) { LOG(ERROR) << "Error during inference: " << s; return s; } if (stats != nullptr) { assert(run_metadata.has_step_stats()); const StepStats& step_stats = run_metadata.step_stats(); stats->ProcessStepStats(step_stats); } return s; } Status TimeMultipleRuns(double sleep_seconds, int num_runs, double max_time_s, const std::vector<InputLayerInfo>& inputs, const std::vector<string>& outputs, const std::vector<string>& targets, Session* session, StatSummarizer* stats, int64_t* total_time_us, int64_t* actual_num_runs) { *total_time_us = 0; LOG(INFO) << "Running benchmark for max " << num_runs << " iterations, max " << max_time_s << " seconds " << (stats != nullptr ? "with" : "without") << " detailed stat logging, with " << sleep_seconds << "s sleep between inferences"; Stat<int64_t> stat; const bool until_max_time = num_runs <= 0; for (int i = 0; until_max_time || i < num_runs; ++i) { int64_t time; Status run_status = RunBenchmark(inputs, outputs, targets, session, stats, &time); stat.UpdateStat(time); (*total_time_us) += time; ++(*actual_num_runs); if (max_time_s > 0.0 && (*total_time_us / 1000000.0) > max_time_s) { break; } if (!run_status.ok()) { LOG(INFO) << "Failed on run " << i; return run_status; } if (sleep_seconds > 0.0) { SleepSeconds(sleep_seconds); } } std::stringstream stream; stat.OutputToStream(&stream); LOG(INFO) << stream.str() << std::endl; return absl::OkStatus(); } int Main(int argc, char** argv) { string graph = "/data/local/tmp/tensorflow_inception_graph.pb"; string init_ops_string = ""; string input_layer_string = "input:0"; string input_layer_shape_string = "1,224,224,3"; string input_layer_type_string = "float"; string input_layer_values_string = ""; string output_layer_string = "output:0"; string target_layer_string = ""; int max_num_runs = 1000; string max_time = "10.0"; string inference_delay = "-1.0"; string inter_benchmark_delay = "-1.0"; int num_threads = -1; string benchmark_name = ""; string output_prefix = ""; bool show_sizes = false; bool show_run_order = true; int run_order_limit = 0; bool show_time = true; int time_limit = 10; bool show_memory = true; int memory_limit = 10; bool show_type = true; bool show_summary = true; bool show_flops = false; int warmup_runs = 1; std::vector<Flag> flag_list = { Flag("graph", &graph, "graph file name"), Flag("init_ops", &init_ops_string, "init ops"), Flag("input_layer", &input_layer_string, "input layer names"), Flag("input_layer_shape", &input_layer_shape_string, "input layer shape"), Flag("input_layer_type", &input_layer_type_string, "input layer type"), Flag("input_layer_values", &input_layer_values_string, "values to initialize the inputs with"), Flag("output_layer", &output_layer_string, "output layer name"), Flag("target_layer", &target_layer_string, "target layer name"), Flag("max_num_runs", &max_num_runs, "number of runs max"), Flag("max_time", &max_time, "length to run max"), Flag("inference_delay", &inference_delay, "delay between runs in seconds"), Flag("inter_benchmark_delay", &inter_benchmark_delay, "delay between benchmarks in seconds"), Flag("num_threads", &num_threads, "number of threads"), Flag("benchmark_name", &benchmark_name, "benchmark name"), Flag("output_prefix", &output_prefix, "benchmark output prefix"), Flag("show_sizes", &show_sizes, "whether to show sizes"), Flag("show_run_order", &show_run_order, "whether to list stats by run order"), Flag("run_order_limit", &run_order_limit, "how many items to show by run order"), Flag("show_time", &show_time, "whether to list stats by time taken"), Flag("time_limit", &time_limit, "how many items to show by time taken"), Flag("show_memory", &show_memory, "whether to list stats by memory used"), Flag("memory_limit", &memory_limit, "how many items to show by memory used"), Flag("show_type", &show_type, "whether to list stats by op type"), Flag("show_summary", &show_summary, "whether to show a summary of the stats"), Flag("show_flops", &show_flops, "whether to estimate the model's FLOPs"), Flag("warmup_runs", &warmup_runs, "how many runs to initialize model"), }; string usage = Flags::Usage(argv[0], flag_list); const bool parse_result = Flags::Parse(&argc, argv, flag_list); if (!parse_result) { LOG(ERROR) << usage; return -1; } std::vector<string> init_ops = str_util::Split(init_ops_string, ','); std::vector<string> input_layers = str_util::Split(input_layer_string, ','); std::vector<string> input_layer_shapes = str_util::Split(input_layer_shape_string, ':'); std::vector<string> input_layer_types = str_util::Split(input_layer_type_string, ','); std::vector<string> input_layer_values = str_util::Split(input_layer_values_string, ':'); std::vector<string> output_layers = str_util::Split(output_layer_string, ','); std::vector<string> target_layers = str_util::Split(target_layer_string, ','); if ((input_layers.size() != input_layer_shapes.size()) || (input_layers.size() != input_layer_types.size())) { LOG(ERROR) << "There must be the same number of items in --input_layer," << " --input_layer_shape, and --input_layer_type, for example" << " --input_layer=input1,input2 --input_layer_type=float,float " << " --input_layer_shape=1,224,224,4:1,20"; LOG(ERROR) << "--input_layer=" << input_layer_string << " (" << input_layers.size() << " items)"; LOG(ERROR) << "--input_layer_type=" << input_layer_type_string << " (" << input_layer_types.size() << " items)"; LOG(ERROR) << "--input_layer_shape=" << input_layer_shape_string << " (" << input_layer_shapes.size() << " items)"; return -1; } const size_t inputs_count = input_layers.size(); ::tensorflow::port::InitMain(argv[0], &argc, &argv); if (argc > 1) { LOG(ERROR) << "Unknown argument " << argv[1] << "\n" << usage; return -1; } LOG(INFO) << "Graph: [" << graph << "]"; LOG(INFO) << "Init ops:" << init_ops_string; LOG(INFO) << "Input layers: [" << input_layer_string << "]"; LOG(INFO) << "Input shapes: [" << input_layer_shape_string << "]"; LOG(INFO) << "Input types: [" << input_layer_type_string << "]"; LOG(INFO) << "Output layers: [" << output_layer_string << "]"; LOG(INFO) << "Target layers: [" << target_layer_string << "]"; LOG(INFO) << "Num runs: [" << max_num_runs << "]"; LOG(INFO) << "Inter-inference delay (seconds): [" << inference_delay << "]"; LOG(INFO) << "Inter-benchmark delay (seconds): [" << inter_benchmark_delay << "]"; LOG(INFO) << "Num threads: [" << num_threads << "]"; LOG(INFO) << "Benchmark name: [" << benchmark_name << "]"; LOG(INFO) << "Output prefix: [" << output_prefix << "]"; LOG(INFO) << "Show sizes: [" << show_sizes << "]"; LOG(INFO) << "Warmup runs: [" << warmup_runs << "]"; std::unique_ptr<Session> session; std::unique_ptr<StatSummarizer> stats; std::unique_ptr<GraphDef> graph_def; int64_t initialization_start_us = Env::Default()->NowMicros(); Status initialize_status = InitializeSession(num_threads, graph, &session, &graph_def); int64_t initialization_end_us = Env::Default()->NowMicros(); double initialization_time_s = (initialization_end_us - initialization_start_us) / 1000000.0; LOG(INFO) << "Initialized session in " << initialization_time_s << "s"; if (!initialize_status.ok()) { return -1; } if (!init_ops.empty()) { Status initialize_variables_status = InitializeVariables(session.get(), init_ops); if (!initialize_variables_status.ok()) { LOG(ERROR) << "Graph variables initialization failed with " << initialize_variables_status; return -1; } } StatSummarizerOptions stats_options; stats_options.show_run_order = show_run_order; stats_options.run_order_limit = run_order_limit; stats_options.show_time = show_time; stats_options.time_limit = time_limit; stats_options.show_memory = show_memory; stats_options.memory_limit = memory_limit; stats_options.show_type = show_type; stats_options.show_summary = show_summary; stats.reset(new tensorflow::StatSummarizer(stats_options)); const double inter_inference_sleep_seconds = std::strtod(inference_delay.c_str(), nullptr); const double inter_benchmark_sleep_seconds = std::strtod(inter_benchmark_delay.c_str(), nullptr); const double max_benchmark_time_seconds = std::strtod(max_time.c_str(), nullptr); std::vector<InputLayerInfo> inputs; for (int n = 0; n < inputs_count; ++n) { InputLayerInfo input; CHECK(DataTypeFromString(input_layer_types[n], &input.data_type)) << input_layer_types[n] << " was an invalid type"; std::vector<string> split_layer_shapes = str_util::Split(input_layer_shapes[n], ','); for (const string& layer_shape : split_layer_shapes) { int32_t tmp; CHECK(strings::safe_strto32(layer_shape, &tmp)) << "Incorrect size string specified: " << input_layer_shapes[n]; if (tmp == -1) { LOG(ERROR) << "Any unknown sizes in the shapes (-1's) must be replaced" << " with the size you want to benchmark with."; return -1; } else { input.shape.AddDim(tmp); } } input.name = input_layers[n]; if (n < input_layer_values.size()) { std::vector<string> string_tokens = str_util::Split(input_layer_values[n], ','); input.initialization_values.clear(); input.initialization_values.reserve(string_tokens.size()); for (const string& str_val : string_tokens) { float val; CHECK(strings::safe_strtof(str_val, &val)) << "Incorrect initialization values string specified: " << input_layer_values[n]; input.initialization_values.push_back(val); } } inputs.push_back(input); } int64_t warmup_time_us = 0; int64_t num_warmup_runs = 0; if (warmup_runs > 0) { Status warmup_time_status = TimeMultipleRuns(inter_inference_sleep_seconds, warmup_runs, -1.0, inputs, output_layers, target_layers, session.get(), nullptr, &warmup_time_us, &num_warmup_runs); if (!warmup_time_status.ok()) { LOG(ERROR) << "Timing failed with " << warmup_time_status; return -1; } } SleepSeconds(inter_benchmark_sleep_seconds); int64_t no_stat_time_us = 0; int64_t no_stat_num_runs = 0; Status no_stat_time_status = TimeMultipleRuns( inter_inference_sleep_seconds, max_num_runs, max_benchmark_time_seconds, inputs, output_layers, target_layers, session.get(), nullptr, &no_stat_time_us, &no_stat_num_runs); const double no_stat_wall_time = no_stat_time_us / 1000000.0; if (!no_stat_time_status.ok()) { LOG(ERROR) << "Timing failed with " << no_stat_time_status; return -1; } SleepSeconds(inter_benchmark_sleep_seconds); int64_t stat_time_us = 0; int64_t stat_num_runs = 0; Status stat_time_status = TimeMultipleRuns( inter_inference_sleep_seconds, max_num_runs, max_benchmark_time_seconds, inputs, output_layers, target_layers, session.get(), stats.get(), &stat_time_us, &stat_num_runs); if (!stat_time_status.ok()) { LOG(ERROR) << "Timing failed with " << stat_time_status; return -1; } LOG(INFO) << "Average inference timings in us: " << "Warmup: " << (warmup_runs > 0 ? warmup_time_us / warmup_runs : 0) << ", " << "no stats: " << no_stat_time_us / no_stat_num_runs << ", " << "with stats: " << stat_time_us / stat_num_runs; stats->PrintStepStats(); if (show_sizes) { stats->PrintOutputs(); } if (show_flops) { int64_t total_flops; std::unordered_map<string, int64_t> flops_by_op; Status flop_status = CalculateFlops(*graph_def, inputs, session.get(), &total_flops, &flops_by_op); if (!flop_status.ok()) { LOG(ERROR) << "FLOPs calculation failed with " << flop_status; return -1; } string pretty_flops; if (total_flops < 1000) { pretty_flops = strings::StrCat(total_flops, " FLOPs"); } else if (total_flops < (1000 * 1000)) { const float rounded_flops = (total_flops / 1000.0f); pretty_flops = strings::StrCat(rounded_flops, "k FLOPs"); } else if (total_flops < (1000 * 1000 * 1000)) { const float rounded_flops = round(total_flops / 1000.0f) / 1000.0f; pretty_flops = strings::StrCat(rounded_flops, " million FLOPs"); } else { const float rounded_flops = round(total_flops / (1000.0f * 1000.0f)) / 1000.0f; pretty_flops = strings::StrCat(rounded_flops, " billion FLOPs"); } LOG(INFO) << "FLOPs estimate: " << strings::HumanReadableNum(total_flops); const double mean_run_time = no_stat_wall_time / no_stat_num_runs; LOG(INFO) << "FLOPs/second: " << strings::HumanReadableNum( static_cast<int64_t>(total_flops / mean_run_time)); } if (!benchmark_name.empty() && !output_prefix.empty()) { int64_t total_size = inputs[0].shape.num_elements(); const double throughput = DataTypeSize(inputs[0].data_type) * total_size * no_stat_num_runs / static_cast<double>(no_stat_wall_time) / (1024 * 1024); RecordBenchmarkEntry(output_prefix, benchmark_name, "", no_stat_num_runs, no_stat_wall_time, throughput); RecordBenchmarkEntry(output_prefix, benchmark_name, "meta-init", 1, initialization_time_s); RecordBenchmarkEntry(output_prefix, benchmark_name, "meta-first-inference", warmup_runs, warmup_time_us / 1000000.0); RecordBenchmarkEntry( output_prefix, benchmark_name, "meta-init-plus-first-inference", 1, initialization_time_s + (warmup_time_us / 1000000.0) / warmup_runs); std::map<std::string, int64_t> node_type_map_count; std::map<std::string, int64_t> node_type_map_time; std::map<std::string, int64_t> node_type_map_memory; std::map<std::string, int64_t> node_type_map_times_called; int64_t accumulated_us; stats->ComputeStatsByType(&node_type_map_count, &node_type_map_time, &node_type_map_memory, &node_type_map_times_called, &accumulated_us); for (const auto& time : node_type_map_time) { LOG(INFO) << "Outputting: [" << time.first << "]"; RecordBenchmarkEntry(output_prefix, benchmark_name, time.first, stat_num_runs, (time.second * stat_num_runs) / 1000000.0f); } } return 0; } } }
#include "tensorflow/tools/benchmark/benchmark_model.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/math_ops.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/public/session.h" #include "tensorflow/core/util/stat_summarizer.h" #include "tsl/lib/core/status_test_util.h" namespace tensorflow { namespace { void CreateTestGraph(const ::tensorflow::Scope& root, benchmark_model::InputLayerInfo* input, string* output_name, GraphDef* graph_def) { const int input_width = 400; const int input_height = 10; input->shape = TensorShape({input_width, input_height}); input->data_type = DT_FLOAT; const TensorShape constant_shape({input_height, input_width}); Tensor constant_tensor(DT_FLOAT, constant_shape); test::FillFn<float>(&constant_tensor, [](int) -> float { return 3.0; }); auto placeholder = ops::Placeholder(root, DT_FLOAT, ops::Placeholder::Shape(input->shape)); input->name = placeholder.node()->name(); auto m = ops::MatMul(root, placeholder, constant_tensor); *output_name = m.node()->name(); TF_ASSERT_OK(root.ToGraphDef(graph_def)); } TEST(BenchmarkModelTest, InitializeAndRun) { const string dir = testing::TmpDir(); const string filename_pb = io::JoinPath(dir, "graphdef.pb"); auto root = Scope::NewRootScope().ExitOnError(); benchmark_model::InputLayerInfo input; string output_name; GraphDef graph_def; CreateTestGraph(root, &input, &output_name, &graph_def); string graph_def_serialized; graph_def.SerializeToString(&graph_def_serialized); TF_ASSERT_OK( WriteStringToFile(Env::Default(), filename_pb, graph_def_serialized)); std::unique_ptr<Session> session; std::unique_ptr<GraphDef> loaded_graph_def; TF_ASSERT_OK(benchmark_model::InitializeSession(1, filename_pb, &session, &loaded_graph_def)); std::unique_ptr<StatSummarizer> stats; stats.reset(new tensorflow::StatSummarizer(*(loaded_graph_def.get()))); int64_t time; int64_t num_runs = 0; TF_ASSERT_OK(benchmark_model::TimeMultipleRuns( 0.0, 10, 0.0, {input}, {output_name}, {}, session.get(), stats.get(), &time, &num_runs)); ASSERT_EQ(num_runs, 10); } TEST(BenchmarkModeTest, TextProto) { const string dir = testing::TmpDir(); const string filename_txt = io::JoinPath(dir, "graphdef.pb.txt"); auto root = Scope::NewRootScope().ExitOnError(); benchmark_model::InputLayerInfo input; string output_name; GraphDef graph_def; CreateTestGraph(root, &input, &output_name, &graph_def); TF_ASSERT_OK(WriteTextProto(Env::Default(), filename_txt, graph_def)); std::unique_ptr<Session> session; std::unique_ptr<GraphDef> loaded_graph_def; TF_ASSERT_OK(benchmark_model::InitializeSession(1, filename_txt, &session, &loaded_graph_def)); std::unique_ptr<StatSummarizer> stats; stats.reset(new tensorflow::StatSummarizer(*(loaded_graph_def.get()))); int64_t time; int64_t num_runs = 0; TF_ASSERT_OK(benchmark_model::TimeMultipleRuns( 0.0, 10, 0.0, {input}, {output_name}, {}, session.get(), stats.get(), &time, &num_runs)); ASSERT_EQ(num_runs, 10); } } }
841
cpp
tensorflow/tensorflow
benchmark_tflite_model
tensorflow/lite/tools/benchmark/benchmark_tflite_model.cc
tensorflow/lite/tools/benchmark/benchmark_tflite_model_test.cc
#ifndef TENSORFLOW_LITE_TOOLS_BENCHMARK_BENCHMARK_TFLITE_MODEL_H_ #define TENSORFLOW_LITE_TOOLS_BENCHMARK_BENCHMARK_TFLITE_MODEL_H_ #include <algorithm> #include <map> #include <memory> #include <random> #include <string> #include <utility> #include <vector> #include "tensorflow/lite/core/model.h" #include "tensorflow/lite/core/subgraph.h" #include "tensorflow/lite/profiling/profiler.h" #include "tensorflow/lite/signature_runner.h" #include "tensorflow/lite/tools/benchmark/benchmark_model.h" #include "tensorflow/lite/tools/model_loader.h" #include "tensorflow/lite/tools/utils.h" namespace tflite { namespace benchmark { TfLiteStatus SplitInputLayerNameAndValueFile( const std::string& name_and_value_file, std::pair<std::string, std::string>& name_file_pair); class BenchmarkInterpreterRunner { public: BenchmarkInterpreterRunner(tflite::Interpreter* const interpreter, tflite::SignatureRunner* const signature_runner, tflite::Subgraph* const subgraph) : interpreter_(interpreter), subgraph_(subgraph) { if (signature_runner != nullptr) { signature_runner_.reset(signature_runner); } } ~BenchmarkInterpreterRunner() { if (signature_runner_ != nullptr) { signature_runner_.release(); } } static std::pair<TfLiteStatus, std::unique_ptr<BenchmarkInterpreterRunner>> Create(tflite::Interpreter* interpreter, std::string signature_key); TfLiteStatus AllocateTensors(); TfLiteStatus Invoke(); const std::vector<int>& execution_plan() const; const std::vector<int>& inputs() const; const std::vector<int>& outputs() const; TfLiteTensor* tensor(int tensor_index); const std::pair<TfLiteNode, TfLiteRegistration>* node_and_registration( int node_index) const; TfLiteStatus ResizeInputTensor(int tensor_index, const std::vector<int>& new_size); private: BenchmarkInterpreterRunner() = delete; tflite::Interpreter* const interpreter_ = nullptr; std::unique_ptr<tflite::SignatureRunner> signature_runner_; tflite::Subgraph* const subgraph_ = nullptr; }; class BenchmarkTfLiteModel : public BenchmarkModel { public: struct InputLayerInfo { InputLayerInfo() : has_value_range(false), low(0), high(0) {} std::string name; std::vector<int> shape; bool has_value_range; int low; int high; std::string input_file_path; }; explicit BenchmarkTfLiteModel(BenchmarkParams params = DefaultParams()); ~BenchmarkTfLiteModel() override; std::vector<Flag> GetFlags() override; void LogParams() override; TfLiteStatus ValidateParams() override; uint64_t ComputeInputBytes() override; TfLiteStatus Init() override; TfLiteStatus RunImpl() override; static BenchmarkParams DefaultParams(); protected: TfLiteStatus PrepareInputData() override; TfLiteStatus ResetInputsAndOutputs() override; int64_t MayGetModelFileSize() override; virtual TfLiteStatus LoadModel(); virtual std::unique_ptr<tflite::OpResolver> GetOpResolver() const; virtual TfLiteStatus InitInterpreter(); virtual std::unique_ptr<BenchmarkListener> MayCreateProfilingListener() const; void CleanUp(); utils::InputTensorData LoadInputTensorData( const TfLiteTensor& t, const std::string& input_file_path); std::vector<InputLayerInfo> inputs_; std::vector<utils::InputTensorData> inputs_data_; std::unique_ptr<tflite::FlatBufferModel> model_; std::unique_ptr<tflite::Interpreter> interpreter_; std::unique_ptr<BenchmarkInterpreterRunner> interpreter_runner_; std::unique_ptr<tflite::ExternalCpuBackendContext> external_context_; private: utils::InputTensorData CreateRandomTensorData( const TfLiteTensor& t, const InputLayerInfo* layer_info); void AddOwnedListener(std::unique_ptr<BenchmarkListener> listener) { if (listener == nullptr) return; owned_listeners_.emplace_back(std::move(listener)); AddListener(owned_listeners_.back().get()); } std::vector<std::unique_ptr<BenchmarkListener>> owned_listeners_; std::mt19937 random_engine_; std::vector<Interpreter::TfLiteDelegatePtr> owned_delegates_; BenchmarkLoggingListener log_output_; std::unique_ptr<tools::ModelLoader> model_loader_; }; } } #endif #include "tensorflow/lite/tools/benchmark/benchmark_tflite_model.h" #include <algorithm> #include <cstdarg> #include <cstdint> #include <cstdlib> #include <cstring> #include <fstream> #include <functional> #include <iostream> #include <memory> #include <random> #include <sstream> #include <string> #include <unordered_set> #include <utility> #include <vector> #include "absl/base/attributes.h" #include "absl/strings/numbers.h" #include "absl/strings/str_replace.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "ruy/profiler/profiler.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/kernels/register.h" #include "tensorflow/lite/core/model.h" #include "tensorflow/lite/core/model_builder.h" #include "tensorflow/lite/core/signature_runner.h" #include "tensorflow/lite/core/subgraph.h" #include "tensorflow/lite/interpreter.h" #include "tensorflow/lite/kernels/cpu_backend_context.h" #include "tensorflow/lite/op_resolver.h" #include "tensorflow/lite/optional_debug_tools.h" #include "tensorflow/lite/profiling/profile_summary_formatter.h" #include "tensorflow/lite/string_util.h" #include "tensorflow/lite/tools/benchmark/benchmark_utils.h" #include "tensorflow/lite/tools/benchmark/profiling_listener.h" #include "tensorflow/lite/tools/delegates/delegate_provider.h" #include "tensorflow/lite/tools/logging.h" #include "tensorflow/lite/tools/model_loader.h" #include "tensorflow/lite/tools/utils.h" void RegisterSelectedOps(::tflite::MutableOpResolver* resolver); void ABSL_ATTRIBUTE_WEAK RegisterSelectedOps(::tflite::MutableOpResolver* resolver) {} namespace tflite { namespace benchmark { namespace { using utils::InputTensorData; using utils::VoidUniquePtr; #if defined(TFLITE_PROFILING_ENABLED) constexpr bool kOpProfilingEnabledDefault = true; #else constexpr bool kOpProfilingEnabledDefault = false; #endif constexpr char kOpProfilingOutputModeStdout[] = "stdout"; constexpr char kOpProfilingOutputModeCsv[] = "csv"; constexpr char kOpProfilingOutputModeProto[] = "proto"; const char* kOpProfilingOutputModes[] = {kOpProfilingOutputModeStdout, kOpProfilingOutputModeCsv, kOpProfilingOutputModeProto}; class RuyProfileListener : public BenchmarkListener { public: void OnBenchmarkStart(const BenchmarkParams& params) override; void OnBenchmarkEnd(const BenchmarkResults& results) override; private: std::unique_ptr<ruy::profiler::ScopeProfile> ruy_profile_; }; void RuyProfileListener::OnBenchmarkStart(const BenchmarkParams& params) { ruy_profile_ = std::make_unique<ruy::profiler::ScopeProfile>(); } void RuyProfileListener::OnBenchmarkEnd(const BenchmarkResults& results) { ruy_profile_ = nullptr; } class InterpreterStatePrinter : public BenchmarkListener { public: explicit InterpreterStatePrinter(Interpreter* interpreter) : interpreter_(interpreter) {} void OnBenchmarkStart(const BenchmarkParams& params) override { params_ = &params; if (params_->Get<bool>("print_preinvoke_state")) { TFLITE_LOG(INFO) << "\n====Printing out TfLite interpreter pre-invoke " "state begins===="; tflite::PrintInterpreterState( interpreter_, params_->Get<int32_t>("tensor_name_display_length"), params_->Get<int32_t>("tensor_type_display_length"), params_->Get<int32_t>("alloc_type_display_length")); TFLITE_LOG(INFO) << "====Printing out TfLite interpreter pre-invoke " "state ends====\n"; } } void OnBenchmarkEnd(const BenchmarkResults& results) override { if (params_->Get<bool>("print_postinvoke_state")) { TFLITE_LOG(INFO) << "\n====Printing out TfLite interpreter post-invoke " "state begins===="; tflite::PrintInterpreterState( interpreter_, params_->Get<int32_t>("tensor_name_display_length"), params_->Get<int32_t>("tensor_type_display_length"), params_->Get<int32_t>("alloc_type_display_length")); TFLITE_LOG(INFO) << "====Printing out TfLite interpreter post-invoke " "state ends====\n"; } } private: Interpreter* const interpreter_ = nullptr; const BenchmarkParams* params_ = nullptr; }; class OutputSaver : public BenchmarkListener { public: explicit OutputSaver(BenchmarkInterpreterRunner* runner) : interpreter_runner_(runner) {} void OnBenchmarkStart(const BenchmarkParams& params) override { params_ = &params; } void OnBenchmarkEnd(const BenchmarkResults& results) override { std::string path = params_->Get<std::string>("output_filepath"); if (path.empty()) return; std::ofstream ofs(path, std::ofstream::out); if (ofs.good()) { for (int i = 0; i < interpreter_runner_->outputs().size(); i++) { int tensor_index = interpreter_runner_->outputs()[i]; ofs.write(interpreter_runner_->tensor(tensor_index)->data.raw, interpreter_runner_->tensor(tensor_index)->bytes); } ofs.close(); } } private: BenchmarkInterpreterRunner* const interpreter_runner_; const BenchmarkParams* params_ = nullptr; }; std::vector<std::string> Split(const std::string& str, const char delim) { if (str.empty()) { return {}; } return absl::StrSplit(str, delim); } int GetNumElements(const TfLiteIntArray* dim_array) { int num_elements = 1; for (size_t i = 0; i < dim_array->size; i++) { num_elements *= dim_array->data[i]; } return num_elements; } void FillRandomString(tflite::DynamicBuffer* buffer, const TfLiteIntArray* dim_array, const std::function<std::string()>& random_func) { int num_elements = GetNumElements(dim_array); for (int i = 0; i < num_elements; ++i) { auto str = random_func(); buffer->AddString(str.data(), str.length()); } } int FindLayerInfoIndex(std::vector<BenchmarkTfLiteModel::InputLayerInfo>* info, const std::string& input_name, const string& names_string) { for (int i = 0; i < info->size(); ++i) { if (info->at(i).name == input_name) { return i; } } TFLITE_LOG(FATAL) << "Cannot find the corresponding input_layer name(" << input_name << ") in --input_layer as " << names_string; return -1; } TfLiteStatus PopulateInputValueRanges( const std::string& names_string, const std::string& value_ranges_string, std::vector<BenchmarkTfLiteModel::InputLayerInfo>* info) { std::vector<std::string> value_ranges = Split(value_ranges_string, ':'); for (const auto& val : value_ranges) { std::vector<std::string> name_range = Split(val, ','); if (name_range.size() != 3) { TFLITE_LOG(ERROR) << "Wrong input value range item specified: " << val; return kTfLiteError; } int layer_info_idx = FindLayerInfoIndex(info, name_range[0], names_string); int low, high; bool has_low = absl::SimpleAtoi(name_range[1], &low); bool has_high = absl::SimpleAtoi(name_range[2], &high); if (!has_low || !has_high || low > high) { TFLITE_LOG(ERROR) << "Wrong low and high value of the input value range specified: " << val; return kTfLiteError; } info->at(layer_info_idx).has_value_range = true; info->at(layer_info_idx).low = low; info->at(layer_info_idx).high = high; } return kTfLiteOk; } TfLiteStatus PopulateInputValueFiles( const std::string& names_string, const std::string& value_files_string, std::vector<BenchmarkTfLiteModel::InputLayerInfo>* info) { std::vector<std::string> value_files = Split(value_files_string, ','); for (const auto& val : value_files) { std::pair<std::string, std::string> name_file_pair; TfLiteStatus status = SplitInputLayerNameAndValueFile(val, name_file_pair); if (status != kTfLiteOk) { TFLITE_LOG(ERROR) << "Wrong input value file item specified: " << val; TFLITE_LOG(ERROR) << status; return status; } int layer_info_idx = FindLayerInfoIndex(info, name_file_pair.first, names_string); if (info->at(layer_info_idx).has_value_range) { TFLITE_LOG(WARN) << "The input_name:" << info->at(layer_info_idx).name << " appears both in input_layer_value_files and " "input_layer_value_range. The input_layer_value_range of the " "input_name will be ignored."; } info->at(layer_info_idx).input_file_path = name_file_pair.second; } return kTfLiteOk; } TfLiteStatus PopulateInputLayerInfo( const std::string& names_string, const std::string& shapes_string, const std::string& value_ranges_string, const std::string& value_files_string, std::vector<BenchmarkTfLiteModel::InputLayerInfo>* info) { info->clear(); std::vector<std::string> names = Split(names_string, ','); std::vector<std::string> shapes = Split(shapes_string, ':'); if (names.size() != shapes.size()) { TFLITE_LOG(ERROR) << "The number of items in --input_layer_shape (" << shapes_string << ", with " << shapes.size() << " items) must match the number of items in --input_layer (" << names_string << ", with " << names.size() << " items). For example --input_layer=input1,input2 " "--input_layer_shape=1,224,224,4:1,20"; return kTfLiteError; } for (int i = 0; i < names.size(); ++i) { info->push_back(BenchmarkTfLiteModel::InputLayerInfo()); BenchmarkTfLiteModel::InputLayerInfo& input = info->back(); input.name = names[i]; TFLITE_TOOLS_CHECK(util::SplitAndParse(shapes[i], ',', &input.shape)) << "Incorrect size string specified: " << shapes[i]; for (int dim : input.shape) { if (dim == -1) { TFLITE_LOG(ERROR) << "Any unknown sizes in the shapes (-1's) must be replaced" << " with the size you want to benchmark with."; return kTfLiteError; } } } TF_LITE_ENSURE_STATUS( PopulateInputValueRanges(names_string, value_ranges_string, info)); TF_LITE_ENSURE_STATUS( PopulateInputValueFiles(names_string, value_files_string, info)); return kTfLiteOk; } std::shared_ptr<profiling::ProfileSummaryFormatter> CreateProfileSummaryFormatter(const std::string& output_mode) { if (output_mode == kOpProfilingOutputModeCsv) { return std::make_shared<profiling::ProfileSummaryCSVFormatter>(); } else if (output_mode == kOpProfilingOutputModeProto) { return std::make_shared<profiling::ProfileSummaryProtoFormatter>(); } else { return std::make_shared<profiling::ProfileSummaryDefaultFormatter>(); } } } TfLiteStatus SplitInputLayerNameAndValueFile( const std::string& name_and_value_file, std::pair<std::string, std::string>& name_file_pair) { int delim_index = -1; for (int i = 0; i < name_and_value_file.length() - 1; ++i) { if (name_and_value_file[i] == ':') { if (name_and_value_file[i + 1] == ':') { ++i; } else { if (delim_index == -1) { delim_index = i; } else { TFLITE_LOG(ERROR) << name_and_value_file << " contains more than one delimiter."; return kTfLiteError; } } } } if (delim_index == -1) { TFLITE_LOG(ERROR) << name_and_value_file << " doesn't contain any delimiter."; return kTfLiteError; } name_file_pair.first = absl::StrReplaceAll( name_and_value_file.substr(0, delim_index), {{"::", ":"}}); name_file_pair.second = absl::StrReplaceAll( name_and_value_file.substr(delim_index + 1), {{"::", ":"}}); return kTfLiteOk; } std::pair<TfLiteStatus, std::unique_ptr<BenchmarkInterpreterRunner>> BenchmarkInterpreterRunner::Create(tflite::Interpreter* const interpreter, std::string signature_key) { if (!signature_key.empty()) { const std::vector<const std::string*>& keys = interpreter->signature_keys(); bool found = std::any_of( keys.begin(), keys.end(), [&signature_key](const auto& k) { return *k == signature_key; }); if (keys.size() > 1 && (signature_key.empty() || !found)) { TFLITE_LOG(ERROR) << "Signature not specified or incorrect for graph with multiple " "signatures. Pass one of the following to the flag " "\"--signature_to_run_for\""; for (const std::string* k : keys) { TFLITE_LOG(ERROR) << " #> Signature key: " << *k; } return {kTfLiteError, nullptr}; } else if (keys.size() == 1 && signature_key.empty()) { signature_key = *keys[0]; } if (!signature_key.empty() && !keys.empty()) { TFLITE_LOG(INFO) << "Using signature: " << signature_key; auto signature_runner = interpreter->GetSignatureRunner(signature_key.c_str()); if (signature_runner == nullptr) { return {kTfLiteError, nullptr}; } else { int subgraph_index = interpreter->GetSubgraphIndexFromSignature(signature_key.c_str()); return {kTfLiteOk, std::make_unique<BenchmarkInterpreterRunner>( interpreter, signature_runner, interpreter->subgraph(subgraph_index))}; } } } return {kTfLiteOk, std::make_unique<BenchmarkInterpreterRunner>( interpreter, nullptr, nullptr)}; } TfLiteStatus BenchmarkInterpreterRunner::AllocateTensors() { if (signature_runner_ != nullptr) { return signature_runner_->AllocateTensors(); } else { return interpreter_->AllocateTensors(); } } TfLiteStatus BenchmarkInterpreterRunner::Invoke() { if (signature_runner_ != nullptr) { return signature_runner_->Invoke(); } else { return interpreter_->Invoke(); } } const std::vector<int>& BenchmarkInterpreterRunner::execution_plan() const { if (signature_runner_ != nullptr) { return subgraph_->execution_plan(); } else { return interpreter_->execution_plan(); } } const std::vector<int>& BenchmarkInterpreterRunner::inputs() const { if (signature_runner_ != nullptr) { return subgraph_->inputs(); } else { return interpreter_->inputs(); } } const std::vector<int>& BenchmarkInterpreterRunner::outputs() const { if (signature_runner_ != nullptr) { return subgraph_->outputs(); } else { return interpreter_->outputs(); } } TfLiteTensor* BenchmarkInterpreterRunner::tensor(int tensor_index) { if (signature_runner_ != nullptr) { return subgraph_->tensor(tensor_index); } else { return interpreter_->tensor(tensor_index); } } const std::pair<TfLiteNode, TfLiteRegistration>* BenchmarkInterpreterRunner::node_and_registration(int node_index) const { if (signature_runner_ != nullptr) { return subgraph_->node_and_registration(node_index); } else { return interpreter_->node_and_registration(node_index); } } TfLiteStatus BenchmarkInterpreterRunner::ResizeInputTensor( int tensor_index, const std::vector<int>& new_size) { if (signature_runner_ != nullptr) { return subgraph_->ResizeInputTensor(tensor_index, new_size); } else { return interpreter_->ResizeInputTensor(tensor_index, new_size); } } BenchmarkParams BenchmarkTfLiteModel::DefaultParams() { BenchmarkParams default_params = BenchmarkModel::DefaultParams(); default_params.AddParam("graph", BenchmarkParam::Create<std::string>("")); default_params.AddParam("signature_to_run_for", BenchmarkParam::Create<std::string>("")); default_params.AddParam("list_signatures", BenchmarkParam::Create<bool>(false)); default_params.AddParam("input_layer", BenchmarkParam::Create<std::string>("")); default_params.AddParam("input_layer_shape", BenchmarkParam::Create<std::string>("")); default_params.AddParam("input_layer_value_range", BenchmarkParam::Create<std::string>("")); default_params.AddParam("input_layer_value_files", BenchmarkParam::Create<std::string>("")); default_params.AddParam("allow_fp16", BenchmarkParam::Create<bool>(false)); default_params.AddParam("require_full_delegation", BenchmarkParam::Create<bool>(false)); default_params.AddParam( "enable_op_profiling", BenchmarkParam::Create<bool>(kOpProfilingEnabledDefault)); default_params.AddParam( "op_profiling_output_mode", BenchmarkParam::Create<std::string>(kOpProfilingOutputModeStdout)); default_params.AddParam("op_profiling_output_file", BenchmarkParam::Create<std::string>("")); default_params.AddParam("max_profiling_buffer_entries", BenchmarkParam::Create<int32_t>(1024)); default_params.AddParam("allow_dynamic_profiling_buffer_increase", BenchmarkParam::Create<bool>(false)); default_params.AddParam("profiling_output_csv_file", BenchmarkParam::Create<std::string>("")); default_params.AddParam("print_preinvoke_state", BenchmarkParam::Create<bool>(false)); default_params.AddParam("print_postinvoke_state", BenchmarkParam::Create<bool>(false)); default_params.AddParam("release_dynamic_tensors", BenchmarkParam::Create<bool>(false)); default_params.AddParam("optimize_memory_for_large_tensors", BenchmarkParam::Create<int32_t>(0)); default_params.AddParam("disable_delegate_clustering", BenchmarkParam::Create<bool>(false)); default_params.AddParam("enable_builtin_cast_constant_cache", BenchmarkParam::Create<bool>(false)); default_params.AddParam("output_filepath", BenchmarkParam::Create<std::string>("")); default_params.AddParam("tensor_name_display_length", BenchmarkParam::Create<int32_t>(25)); default_params.AddParam("tensor_type_display_length", BenchmarkParam::Create<int32_t>(15)); default_params.AddParam("alloc_type_display_length", BenchmarkParam::Create<int32_t>(18)); tools::ProvidedDelegateList delegate_providers(&default_params); delegate_providers.AddAllDelegateParams(); return default_params; } BenchmarkTfLiteModel::BenchmarkTfLiteModel(BenchmarkParams params) : BenchmarkModel(std::move(params)), random_engine_(std::random_device()()) { AddListener(&log_output_); } void BenchmarkTfLiteModel::CleanUp() { inputs_data_.clear(); } BenchmarkTfLiteModel::~BenchmarkTfLiteModel() { CleanUp(); interpreter_runner_.reset(); interpreter_.reset(); } std::vector<Flag> BenchmarkTfLiteModel::GetFlags() { std::vector<Flag> flags = BenchmarkModel::GetFlags(); std::vector<Flag> specific_flags = { CreateFlag<std::string>("graph", &params_, "graph file name"), CreateFlag<std::string>("input_layer", &params_, "input layer names"), CreateFlag<std::string>("input_layer_shape", &params_, "input layer shape"), CreateFlag<std::string>( "input_layer_value_range", &params_, "A map-like string representing value range for *integer* input " "layers. Each item is separated by ':', and the item value consists " "of input layer name and integer-only range values (both low and " "high are inclusive) separated by ',', e.g. input1,1,2:input2,0,254"), CreateFlag<std::string>( "input_layer_value_files", &params_, "A map-like string representing value file. Each item is separated " "by ',', and the item value consists " "of input layer name and value file path separated by ':', e.g. " "input1:file_path1,input2:file_path2. In case the input layer name " "contains ':' e.g. \"input:0\", escape it with \"\\:\". If the " "input_name appears both in input_layer_value_range and " "input_layer_value_files, input_layer_value_range of the input_name " "will be ignored. The file format is binary and it should be array " "format or null separated strings format."), CreateFlag<bool>("allow_fp16", &params_, "allow fp16"), CreateFlag<bool>("require_full_delegation", &params_, "require delegate to run the entire graph"), CreateFlag<bool>("enable_op_profiling", &params_, "enable op profiling"), CreateFlag<std::string>( "op_profiling_output_mode", &params_, "Output mode for op profiling results. Supported values are: " "'stdout', 'csv' and 'proto'."), CreateFlag<std::string>("op_profiling_output_file", &params_, "Output file for op profiling results."), CreateFlag<int32_t>("max_profiling_buffer_entries", &params_, "max initial profiling buffer entries"), CreateFlag<bool>("allow_dynamic_profiling_buffer_increase", &params_, "allow dynamic increase on profiling buffer entries"), CreateFlag<std::string>("profiling_output_csv_file", &params_, "[DEPRECATED: Use op_profiling_output_file and " "op_profiling_output_mode instead] File path to " "export profile data as CSV, if not set " "prints to stdout."), CreateFlag<bool>( "print_preinvoke_state", &params_, "print out the interpreter internals just before calling Invoke. The " "internals will include allocated memory size of each tensor etc."), CreateFlag<bool>( "print_postinvoke_state", &params_, "print out the interpreter internals just before benchmark completes " "(i.e. after all repeated Invoke calls complete). The internals will " "include allocated memory size of each tensor etc."), CreateFlag<bool>("release_dynamic_tensors", &params_, "Ensure dynamic tensor's memory is released when they " "are not used."), CreateFlag<int32_t>( "optimize_memory_for_large_tensors", &params_,
#include "tensorflow/lite/tools/benchmark/benchmark_tflite_model.h" #include <fcntl.h> #include <sys/stat.h> #include <string> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/str_cat.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/tools/benchmark/benchmark_model.h" #include "tensorflow/lite/tools/benchmark/benchmark_params.h" #include "tensorflow/lite/tools/tool_params.h" namespace tflite { namespace benchmark { namespace { static constexpr char kModelPath[] = "../tflite_mobilenet_float/" "mobilenet_v1_1.0_224.tflite"; class TestBenchmarkListener : public BenchmarkListener { public: void OnBenchmarkEnd(const BenchmarkResults& results) override { results_ = results; } BenchmarkResults results_; }; TEST(BenchmarkTfLiteModelTest, GetModelSizeFromPathSucceeded) { BenchmarkParams params = BenchmarkTfLiteModel::DefaultParams(); params.Set<std::string>("graph", kModelPath); params.Set<int>("num_runs", 1); params.Set<int>("warmup_runs", 0); BenchmarkTfLiteModel benchmark = BenchmarkTfLiteModel(std::move(params)); TestBenchmarkListener listener; benchmark.AddListener(&listener); benchmark.Run(); EXPECT_GE(listener.results_.model_size_mb(), 0); } TEST(BenchmarkTfLiteModelTest, GetModelSizeFromFileDescriptorSucceeded) { BenchmarkParams params = BenchmarkTfLiteModel::DefaultParams(); int fd = open(kModelPath, O_RDONLY); ASSERT_GE(fd, 0); int model_offset = 0; struct stat stat_buf = {0}; ASSERT_EQ(fstat(fd, &stat_buf), 0); params.Set<std::string>("graph", absl::StrCat("fd:", fd, ":", model_offset, ":", stat_buf.st_size)); params.Set<int>("num_runs", 1); params.Set<int>("warmup_runs", 0); BenchmarkTfLiteModel benchmark = BenchmarkTfLiteModel(std::move(params)); TestBenchmarkListener listener; benchmark.AddListener(&listener); benchmark.Run(); EXPECT_EQ(listener.results_.model_size_mb(), stat_buf.st_size / 1e6); } TEST(BenchmarkTfLiteModelTest, ResizeInputWithDelegate) { BenchmarkParams params = BenchmarkTfLiteModel::DefaultParams(); params.Set<std::string>("graph", kModelPath); params.Set<bool>("use_xnnpack", true); params.Set<std::string>("input_layer", "input_87"); params.Set<std::string>("input_layer_shape", "2,224,224,3"); BenchmarkTfLiteModel benchmark = BenchmarkTfLiteModel(std::move(params)); EXPECT_EQ(benchmark.Run(), kTfLiteOk); } } } }
842
cpp
tensorflow/tensorflow
benchmark_utils
tensorflow/lite/tools/benchmark/benchmark_utils.cc
tensorflow/lite/tools/benchmark/benchmark_utils_test.cc
#ifndef TENSORFLOW_LITE_TOOLS_BENCHMARK_BENCHMARK_UTILS_H_ #define TENSORFLOW_LITE_TOOLS_BENCHMARK_BENCHMARK_UTILS_H_ #include <sstream> #include <string> #include <vector> namespace tflite { namespace benchmark { namespace util { void SleepForSeconds(double sleep_seconds); template <typename T> bool SplitAndParse(const std::string& str, char delim, std::vector<T>* values) { std::istringstream input(str); for (std::string line; std::getline(input, line, delim);) { std::istringstream to_parse(line); T val; to_parse >> val; if (!to_parse.eof() && !to_parse.good()) { return false; } values->emplace_back(val); } return true; } } } } #endif #include "tensorflow/lite/tools/benchmark/benchmark_utils.h" #include "tensorflow/lite/profiling/time.h" namespace tflite { namespace benchmark { namespace util { void SleepForSeconds(double sleep_seconds) { if (sleep_seconds <= 0.0) { return; } tflite::profiling::time::SleepForMicros( static_cast<uint64_t>(sleep_seconds * 1e6)); } } } }
#include "tensorflow/lite/tools/benchmark/benchmark_utils.h" #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/profiling/time.h" namespace tflite { namespace benchmark { namespace { TEST(BenchmarkHelpersTest, SleepForNegativeSeconds) { const auto start_ts = tflite::profiling::time::NowMicros(); util::SleepForSeconds(-5.0); const auto end_ts = tflite::profiling::time::NowMicros(); EXPECT_LT(end_ts - start_ts, 1000000); } TEST(BenchmarkHelpersTest, SleepForSomeSeconds) { const auto start_ts = tflite::profiling::time::NowMicros(); util::SleepForSeconds(2.0); const auto end_ts = tflite::profiling::time::NowMicros(); EXPECT_GT(end_ts - start_ts, 1900000); } TEST(BenchmarkHelpersTest, SplitAndParseFailed) { std::vector<int> results; const bool splitted = util::SplitAndParse("hello;world", ';', &results); EXPECT_FALSE(splitted); } TEST(BenchmarkHelpersTest, SplitAndParseString) { std::vector<std::string> results; const bool splitted = util::SplitAndParse("hello,world", ',', &results); EXPECT_TRUE(splitted); EXPECT_EQ(2, results.size()); EXPECT_EQ("hello", results[0]); EXPECT_EQ("world", results[1]); } TEST(BenchmarkHelpersTest, SplitAndParseInts) { std::vector<int> results; const bool splitted = util::SplitAndParse("1,2", ',', &results); EXPECT_TRUE(splitted); EXPECT_EQ(2, results.size()); EXPECT_EQ(1, results[0]); EXPECT_EQ(2, results[1]); } } } }
843
cpp
tensorflow/tensorflow
latency_benchmark
tensorflow/lite/tools/benchmark/experimental/delegate_performance/android/src/main/native/latency_benchmark.cc
tensorflow/lite/tools/benchmark/experimental/delegate_performance/android/src/test/native/latency_benchmark_test.cc
#ifndef TENSORFLOW_LITE_TOOLS_BENCHMARK_EXPERIMENTAL_DELEGATE_PERFORMANCE_ANDROID_SRC_MAIN_NATIVE_LATENCY_BENCHMARK_H_ #define TENSORFLOW_LITE_TOOLS_BENCHMARK_EXPERIMENTAL_DELEGATE_PERFORMANCE_ANDROID_SRC_MAIN_NATIVE_LATENCY_BENCHMARK_H_ #include <string> #include <vector> #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/tools/benchmark/experimental/delegate_performance/android/proto/delegate_performance.pb.h" namespace tflite { namespace benchmark { namespace latency { proto::benchmark::LatencyResults Benchmark( const TFLiteSettings& tflite_settings, const std::string& tflite_settings_path, int model_fd, size_t model_offset, size_t model_size, const std::vector<std::string>& args); } } } #endif #include "tensorflow/lite/tools/benchmark/experimental/delegate_performance/android/src/main/native/latency_benchmark.h" #include <errno.h> #include <sys/stat.h> #include <fstream> #include <iterator> #include <sstream> #include <string> #include <utility> #include <vector> #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "tensorflow/core/util/stats_calculator.h" #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/logger.h" #include "tensorflow/lite/minimal_logging.h" #include "tensorflow/lite/profiling/memory_info.h" #include "tensorflow/lite/tools/benchmark/benchmark_tflite_model.h" #include "tensorflow/lite/tools/benchmark/experimental/delegate_performance/android/proto/delegate_performance.pb.h" namespace tflite { namespace benchmark { namespace latency { namespace { static constexpr char kBenchmarkToolName[] = "(BenchmarkModelAndroid)"; class DelegatePerformanceReportingListener : public BenchmarkListener { public: void OnBenchmarkStart(const BenchmarkParams& unused) override { results_proto_.set_event_type(proto::benchmark::BENCHMARK_EVENT_TYPE_START); } void OnBenchmarkEnd(const BenchmarkResults& results) override { ReportResult(results); } void ReportFailure(TfLiteStatus status) { std::string status_msg = status == kTfLiteError ? "TFLite error" : (status == kTfLiteDelegateError ? "TFLite delegate error" : "unexpected TFLite status"); TFLITE_LOG_PROD(TFLITE_LOG_ERROR, "Benchmark failed due to %s with status code %d.", status_msg.c_str(), status); results_proto_.set_event_type(proto::benchmark::BENCHMARK_EVENT_TYPE_ERROR); results_proto_.mutable_error()->mutable_error_code()->set_tflite_error( status); results_proto_.mutable_error()->set_error_message(status_msg); } const proto::benchmark::LatencyResults& GetResults() { return results_proto_; } private: void ReportResult(const BenchmarkResults& results) { tensorflow::Stat<int64_t> warmup_us = results.warmup_time_us(); tensorflow::Stat<int64_t> inference_us = results.inference_time_us(); profiling::memory::MemoryUsage init_mem_usage = results.init_mem_usage(); profiling::memory::MemoryUsage overall_mem_usage = results.overall_mem_usage(); if (results.model_size_mb() > 0) { AddMetric("model_size_megabyte", results.model_size_mb()); } AddMetric("initialization_latency_us", results.startup_latency_us()); AddMetric("warmup_latency_average_us", warmup_us.avg()); AddMetric("warmup_latency_min_us", warmup_us.min()); AddMetric("warmup_latency_max_us", warmup_us.max()); AddMetric("warmup_latency_standard_deviation_us", warmup_us.std_deviation()); AddMetric("inference_latency_average_us", inference_us.avg()); AddMetric("inference_latency_min_us", inference_us.min()); AddMetric("inference_latency_max_us", inference_us.max()); AddMetric("inference_latency_standard_deviation_us", inference_us.std_deviation()); AddMetric("initialization_memory_max_rss_mebibyte", init_mem_usage.mem_footprint_kb / 1024.0); AddMetric("initialization_memory_total_allocated_mebibyte", init_mem_usage.total_allocated_bytes / 1024.0 / 1024.0); AddMetric( "initialization_memory_in_use_mebibyte", init_mem_usage.in_use_allocated_bytes / 1024.0 / 1024.0); AddMetric("overall_memory_max_rss_mebibyte", overall_mem_usage.mem_footprint_kb / 1024.0); AddMetric( "overall_memory_total_allocated_mebibyte", overall_mem_usage.total_allocated_bytes / 1024.0 / 1024.0); AddMetric( "overall_memory_in_use_mebibyte", overall_mem_usage.in_use_allocated_bytes / 1024.0 / 1024.0); results_proto_.set_event_type(proto::benchmark::BENCHMARK_EVENT_TYPE_END); TFLITE_LOG_PROD(TFLITE_LOG_INFO, "Benchmark finished."); } void AddMetric(std::string name, float value) { proto::benchmark::BenchmarkMetric* metric = results_proto_.add_metrics(); metric->set_name(name); metric->set_value(value); } proto::benchmark::LatencyResults results_proto_; }; std::vector<std::string> ParseArgumentsFromTfLiteSettings( const TFLiteSettings& tflite_settings, const std::string& tflite_settings_path) { std::vector<std::string> args; if (tflite_settings_path.empty()) { return args; } if (tflite_settings.stable_delegate_loader_settings()) { args.push_back(absl::StrFormat("--stable_delegate_settings_file=%s", tflite_settings_path)); return args; } switch (tflite_settings.delegate()) { case Delegate_XNNPACK: { args.push_back("--use_xnnpack=true"); if (tflite_settings.xnnpack_settings()) { if (tflite_settings.xnnpack_settings()->num_threads()) { args.push_back(absl::StrFormat( "--num_threads=%d", tflite_settings.xnnpack_settings()->num_threads())); } if (tflite_settings.xnnpack_settings()->flags() == XNNPackFlags_TFLITE_XNNPACK_DELEGATE_FLAG_FORCE_FP16) { args.push_back("--xnnpack_force_fp16=true"); } } return args; } case Delegate_GPU: { args.push_back("--use_gpu=true"); const tflite::GPUSettings* gpu_settings = tflite_settings.gpu_settings(); if (gpu_settings) { if (gpu_settings->is_precision_loss_allowed()) { args.push_back("--gpu_precision_loss_allowed=true"); } if (gpu_settings->enable_quantized_inference()) { args.push_back("--gpu_experimental_enable_quant=true"); } if (gpu_settings->inference_preference() == GPUInferenceUsage_GPU_INFERENCE_PREFERENCE_SUSTAINED_SPEED) { args.push_back("--gpu_inference_for_sustained_speed=true"); } if (gpu_settings->force_backend() == GPUBackend_OPENCL) { args.push_back("--gpu_backend=cl"); } else if (gpu_settings->force_backend() == GPUBackend_OPENGL) { args.push_back("--gpu_backend=gl"); } if (gpu_settings->cache_directory()) { args.push_back( absl::StrFormat("--delegate_serialize_dir=%s", gpu_settings->cache_directory()->c_str())); } if (gpu_settings->model_token()) { args.push_back(absl::StrFormat("--delegate_serialize_token=%s", gpu_settings->model_token()->c_str())); } } break; } case Delegate_EDGETPU: { args.push_back("--use_edgetpu=true"); break; } default: TFLITE_LOG_PROD(TFLITE_LOG_WARNING, "Delegate type %s is not enabled by the latency module.", EnumNameDelegate(tflite_settings.delegate())); break; } if (tflite_settings.disable_default_delegates()) { args.push_back("--use_xnnpack=false"); } return args; } } proto::benchmark::LatencyResults Benchmark( const TFLiteSettings& tflite_settings, const std::string& tflite_settings_path, int model_fd, size_t model_offset, size_t model_size, const std::vector<std::string>& args) { std::vector<char*> argv; argv.push_back(const_cast<char*>(kBenchmarkToolName)); std::string arg_graph = absl::StrCat("--graph=fd:", model_fd, ":", model_offset, ":", model_size); argv.push_back(const_cast<char*>(arg_graph.data())); std::vector<std::string> args_from_tflite_settings = ParseArgumentsFromTfLiteSettings(tflite_settings, tflite_settings_path); for (const std::string& arg : args_from_tflite_settings) { argv.push_back(const_cast<char*>(arg.data())); } for (const std::string& arg : args) { argv.push_back(const_cast<char*>(arg.data())); } BenchmarkTfLiteModel benchmark; DelegatePerformanceReportingListener delegatePerformanceReporting; benchmark.AddListener(&delegatePerformanceReporting); TfLiteStatus status = benchmark.Run(argv.size(), argv.data()); if (status != kTfLiteOk) { delegatePerformanceReporting.ReportFailure(status); } return delegatePerformanceReporting.GetResults(); } } } }
#include "tensorflow/lite/tools/benchmark/experimental/delegate_performance/android/src/main/native/latency_benchmark.h" #include <fcntl.h> #include <string> #include <vector> #include <gtest/gtest.h> #include "flatbuffers/buffer.h" #include "flatbuffers/flatbuffer_builder.h" #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/delegates/utils/experimental/stable_delegate/tflite_settings_json_parser.h" #include "tensorflow/lite/tools/benchmark/experimental/delegate_performance/android/proto/delegate_performance.pb.h" namespace tflite { namespace benchmark { namespace latency { namespace { static constexpr char kModelPath[] = "../tflite_mobilenet_float/" "mobilenet_v1_1.0_224.tflite"; static constexpr char kSettingsFilePath[] = "tensorflow/lite/tools/delegates/experimental/stable_delegate/" "test_sample_stable_delegate_settings.json"; class LatencyBenchmarkTest : public ::testing::Test { protected: void SetUp() override { model_fp_ = fopen(kModelPath, "rb"); ASSERT_TRUE(model_fp_ != nullptr); ASSERT_EQ(fseek(model_fp_, 0, SEEK_END), 0); model_size_ = ftell(model_fp_); ASSERT_NE(model_size_, -1); ASSERT_EQ(fseek(model_fp_, 0, SEEK_SET), 0); settings_ = parser_.Parse(kSettingsFilePath); } delegates::utils::TfLiteSettingsJsonParser parser_; const TFLiteSettings* settings_; size_t model_size_; FILE* model_fp_; std::vector<std::string> args_; }; TEST_F(LatencyBenchmarkTest, FailedWithNullFileDescriptor) { EXPECT_TRUE(Benchmark(*settings_, kSettingsFilePath, 0, 0, 0, args_) .has_error()); } TEST_F(LatencyBenchmarkTest, FailedWithInvalidNumThreadsSettings) { flatbuffers::FlatBufferBuilder fbb; flatbuffers::Offset<tflite::XNNPackSettings> xnnpack_settings = CreateXNNPackSettings(fbb, -3); TFLiteSettingsBuilder tflite_settings_builder(fbb); tflite_settings_builder.add_delegate(Delegate_XNNPACK); tflite_settings_builder.add_xnnpack_settings(xnnpack_settings); fbb.Finish(tflite_settings_builder.Finish()); const TFLiteSettings* settings = flatbuffers::GetRoot<TFLiteSettings>(fbb.GetBufferPointer()); EXPECT_TRUE(Benchmark(*settings, "example_path", fileno(model_fp_), 0, model_size_, args_) .has_error()); } TEST_F(LatencyBenchmarkTest, SucceedWithEmptyTfLiteSettings) { flatbuffers::FlatBufferBuilder fbb; TFLiteSettingsBuilder tflite_settings_builder(fbb); fbb.Finish(tflite_settings_builder.Finish()); const TFLiteSettings* settings = flatbuffers::GetRoot<TFLiteSettings>(fbb.GetBufferPointer()); EXPECT_EQ(Benchmark(*settings, "example_path", fileno(model_fp_), 0, model_size_, args_) .event_type(), proto::benchmark::BENCHMARK_EVENT_TYPE_END); } TEST_F(LatencyBenchmarkTest, SucceedWithCpuTfLiteSettings) { flatbuffers::FlatBufferBuilder fbb; TFLiteSettingsBuilder tflite_settings_builder(fbb); tflite_settings_builder.add_disable_default_delegates(true); fbb.Finish(tflite_settings_builder.Finish()); const TFLiteSettings* settings = flatbuffers::GetRoot<TFLiteSettings>(fbb.GetBufferPointer()); EXPECT_EQ(Benchmark(*settings, "example_path", fileno(model_fp_), 0, model_size_, args_) .event_type(), proto::benchmark::BENCHMARK_EVENT_TYPE_END); } #ifdef __ANDROID__ TEST_F(LatencyBenchmarkTest, SucceedWithGpuTfLiteSettings) { flatbuffers::FlatBufferBuilder fbb; TFLiteSettingsBuilder tflite_settings_builder(fbb); tflite_settings_builder.add_delegate(Delegate_GPU); fbb.Finish(tflite_settings_builder.Finish()); const TFLiteSettings* settings = flatbuffers::GetRoot<TFLiteSettings>(fbb.GetBufferPointer()); EXPECT_EQ(Benchmark(*settings, "example_path", fileno(model_fp_), 0, model_size_, args_) .event_type(), proto::benchmark::BENCHMARK_EVENT_TYPE_END); } #endif TEST_F(LatencyBenchmarkTest, SucceedWithSampleStableDelegate) { EXPECT_EQ(Benchmark(*settings_, kSettingsFilePath, fileno(model_fp_), 0, model_size_, args_) .event_type(), proto::benchmark::BENCHMARK_EVENT_TYPE_END); } TEST_F(LatencyBenchmarkTest, SucceedWithSampleStableDelegateAndBenchmarkToolArguments) { std::vector<std::string> args = {"--warmup_runs=10"}; EXPECT_EQ(Benchmark(*settings_, kSettingsFilePath, fileno(model_fp_), 0, model_size_, args) .event_type(), proto::benchmark::BENCHMARK_EVENT_TYPE_END); } } } } }
844
cpp
tensorflow/tensorflow
accuracy_benchmark
tensorflow/lite/tools/benchmark/experimental/delegate_performance/android/src/main/native/accuracy_benchmark.cc
tensorflow/lite/tools/benchmark/experimental/delegate_performance/android/src/test/native/accuracy_benchmark_test.cc
#ifndef TENSORFLOW_LITE_TOOLS_BENCHMARK_EXPERIMENTAL_DELEGATE_PERFORMANCE_ANDROID_SRC_MAIN_NATIVE_ACCURACY_BENCHMARK_H_ #define TENSORFLOW_LITE_TOOLS_BENCHMARK_EXPERIMENTAL_DELEGATE_PERFORMANCE_ANDROID_SRC_MAIN_NATIVE_ACCURACY_BENCHMARK_H_ #include <cstddef> #include <string> #include <vector> #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" namespace tflite { namespace benchmark { namespace accuracy { flatbuffers::Offset<BenchmarkEvent> Benchmark( flatbuffers::FlatBufferBuilder& fbb, const TFLiteSettings& tflite_settings, int model_fd, size_t model_offset, size_t model_size, const char* result_path_chars); } } } #endif #include "tensorflow/lite/tools/benchmark/experimental/delegate_performance/android/src/main/native/accuracy_benchmark.h" #include <errno.h> #include <stdio.h> #include <sys/stat.h> #include <cstddef> #include <string> #include <vector> #include "flatbuffers/buffer.h" #include "flatbuffers/flatbuffer_builder.h" #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/experimental/acceleration/mini_benchmark/c/c_api.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/logger.h" #include "tensorflow/lite/minimal_logging.h" #include "tensorflow/lite/tools/benchmark/experimental/delegate_performance/android/src/main/native/status_codes.h" namespace tflite { namespace benchmark { namespace accuracy { namespace { std::vector<const tflite::BenchmarkEvent*> ToBenchmarkEvents(uint8_t* data, size_t size) { std::vector<const tflite::BenchmarkEvent*> results; uint8_t* current_root = data; while (current_root < data + size) { flatbuffers::uoffset_t current_size = flatbuffers::GetPrefixedSize(current_root); results.push_back( flatbuffers::GetSizePrefixedRoot<tflite::BenchmarkEvent>(current_root)); current_root += current_size + sizeof(flatbuffers::uoffset_t); } TFLITE_CHECK_EQ(current_root, data + size); return results; } } flatbuffers::Offset<BenchmarkEvent> Benchmark( flatbuffers::FlatBufferBuilder& fbb, const TFLiteSettings& tflite_settings, int model_fd, size_t model_offset, size_t model_size, const char* result_path_chars) { std::string result_path(result_path_chars); std::string storage_path = result_path + "/storage_path.fb"; int return_code = std::remove(storage_path.c_str()); if (return_code) { TFLITE_LOG_PROD(TFLITE_LOG_WARNING, "Failed to remove storage file (%s): %s.", storage_path.c_str(), strerror(errno)); } flatbuffers::FlatBufferBuilder mini_benchmark_fbb; TFLiteSettingsT tflite_settings_t; tflite_settings.UnPackTo(&tflite_settings_t); flatbuffers::Offset<TFLiteSettings> tflite_settings_offset = CreateTFLiteSettings(mini_benchmark_fbb, &tflite_settings_t); flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<TFLiteSettings>>> tflite_settings_vector_offset = mini_benchmark_fbb.CreateVector({tflite_settings_offset}); ModelFileBuilder model_file_builder(mini_benchmark_fbb); model_file_builder.add_fd(model_fd); model_file_builder.add_offset(model_offset); model_file_builder.add_length(model_size); flatbuffers::Offset<ModelFile> model_file_offset = model_file_builder.Finish(); flatbuffers::Offset<BenchmarkStoragePaths> storage_paths_offset = CreateBenchmarkStoragePaths(mini_benchmark_fbb, mini_benchmark_fbb.CreateString(storage_path), mini_benchmark_fbb.CreateString(result_path)); flatbuffers::Offset<ValidationSettings> validation_settings_offset = CreateValidationSettings(mini_benchmark_fbb, 5000); mini_benchmark_fbb.Finish(CreateMinibenchmarkSettings( mini_benchmark_fbb, tflite_settings_vector_offset, model_file_offset, storage_paths_offset, validation_settings_offset)); TfLiteMiniBenchmarkSettings* settings = TfLiteMiniBenchmarkSettingsCreate(); TfLiteMiniBenchmarkSettingsSetFlatBufferData( settings, mini_benchmark_fbb.GetBufferPointer(), mini_benchmark_fbb.GetSize()); TfLiteMiniBenchmarkResult* result = TfLiteBlockingValidatorRunnerTriggerValidation(settings); std::vector<const BenchmarkEvent*> events = ToBenchmarkEvents(TfLiteMiniBenchmarkResultFlatBufferData(result), TfLiteMiniBenchmarkResultFlatBufferDataSize(result)); TfLiteMiniBenchmarkSettingsFree(settings); if (events.size() != 1) { TfLiteMiniBenchmarkResultFree(result); TFLITE_LOG_PROD( TFLITE_LOG_ERROR, "Number of result events (%zu) doesn't match the expectation (%zu).", events.size(), 1); flatbuffers::Offset<BenchmarkError> error = CreateBenchmarkError(fbb, BenchmarkStage_INFERENCE, kBenchmarkResultCountMismatch); BenchmarkEventBuilder builder(fbb); builder.add_event_type(BenchmarkEventType_ERROR); builder.add_error(error); return builder.Finish(); } BenchmarkEventT benchmark_event; events[0]->UnPackTo(&benchmark_event); TfLiteMiniBenchmarkResultFree(result); return CreateBenchmarkEvent(fbb, &benchmark_event); } } } }
#include "tensorflow/lite/tools/benchmark/experimental/delegate_performance/android/src/main/native/accuracy_benchmark.h" #include <fcntl.h> #include <stdio.h> #include <iostream> #include <string> #include <vector> #include <gtest/gtest.h> #include "flatbuffers/buffer.h" #include "flatbuffers/flatbuffer_builder.h" #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/delegates/utils/experimental/stable_delegate/tflite_settings_json_parser.h" #include "tensorflow/lite/experimental/acceleration/mini_benchmark/embedded_mobilenet_validation_model.h" #include "tensorflow/lite/experimental/acceleration/mini_benchmark/mini_benchmark_test_helper.h" #include "tensorflow/lite/tools/benchmark/experimental/delegate_performance/android/src/main/native/status_codes.h" namespace tflite { namespace benchmark { namespace accuracy { namespace { class AccuracyBenchmarkTest : public ::testing::Test { protected: void SetUp() override { acceleration::MiniBenchmarkTestHelper helper; should_perform_test_ = helper.should_perform_test(); if (!should_perform_test_) { return; } std::string embedded_model_path = helper.DumpToTempFile( "mobilenet_quant_with_validation.tflite", g_tflite_acceleration_embedded_mobilenet_validation_model, g_tflite_acceleration_embedded_mobilenet_validation_model_len); ASSERT_FALSE(embedded_model_path.empty()); model_fp_ = fopen(embedded_model_path.c_str(), "rb"); ASSERT_NE(model_fp_, nullptr); ASSERT_EQ(fseek(model_fp_, 0, SEEK_END), 0); model_size_ = ftell(model_fp_); ASSERT_NE(model_size_, -1); ASSERT_EQ(fseek(model_fp_, 0, SEEK_SET), 0); result_path_ = ::testing::TempDir(); } void TearDown() override { fclose(model_fp_); } std::string result_path_; size_t model_size_; FILE* model_fp_; bool should_perform_test_ = true; }; TEST_F(AccuracyBenchmarkTest, FailedWithInvalidModelFileDescriptor) { if (!should_perform_test_) { std::cerr << "Skipping test"; return; } delegates::utils::TfLiteSettingsJsonParser parser; flatbuffers::FlatBufferBuilder builder; std::vector<std::string> args; const TFLiteSettings* tflite_settings = parser.Parse( "tensorflow/lite/tools/delegates/experimental/" "stable_delegate/test_sample_stable_delegate_settings.json"); flatbuffers::Offset<BenchmarkEvent> offset = Benchmark(builder, *tflite_settings, 0, 0, 0, result_path_.c_str()); builder.Finish(offset); const BenchmarkEvent* event = flatbuffers::GetRoot<BenchmarkEvent>(builder.GetBufferPointer()); ASSERT_NE(event, nullptr); EXPECT_EQ(event->event_type(), BenchmarkEventType_ERROR); ASSERT_NE(event->error(), nullptr); EXPECT_EQ(event->error()->stage(), BenchmarkStage_INFERENCE); EXPECT_EQ(event->error()->exit_code(), DelegatePerformanceBenchmarkStatus::kBenchmarkResultCountMismatch); } TEST_F(AccuracyBenchmarkTest, SucceedWithSampleStableDelegate) { if (!should_perform_test_) { std::cerr << "Skipping test"; return; } delegates::utils::TfLiteSettingsJsonParser parser; flatbuffers::FlatBufferBuilder builder; const TFLiteSettings* tflite_settings = parser.Parse( "tensorflow/lite/tools/delegates/experimental/" "stable_delegate/test_sample_stable_delegate_settings.json"); flatbuffers::Offset<BenchmarkEvent> offset = Benchmark( builder, *tflite_settings, fileno(model_fp_), 0, model_size_, result_path_.c_str()); builder.Finish(offset); const BenchmarkEvent* event = flatbuffers::GetRoot<BenchmarkEvent>(builder.GetBufferPointer()); ASSERT_NE(event, nullptr); EXPECT_EQ(event->event_type(), BenchmarkEventType_END); EXPECT_EQ(event->error(), nullptr); } TEST_F(AccuracyBenchmarkTest, SucceedWithEmbeddedValidationAndXNNPack) { if (!should_perform_test_) { std::cerr << "Skipping test"; return; } delegates::utils::TfLiteSettingsJsonParser parser; flatbuffers::FlatBufferBuilder builder; const TFLiteSettings* tflite_settings = parser.Parse( "tensorflow/lite/delegates/utils/experimental/" "stable_delegate/test_xnnpack_settings.json"); flatbuffers::Offset<BenchmarkEvent> offset = Benchmark( builder, *tflite_settings, fileno(model_fp_), 0, model_size_, result_path_.c_str()); builder.Finish(offset); const BenchmarkEvent* event = flatbuffers::GetRoot<BenchmarkEvent>(builder.GetBufferPointer()); ASSERT_NE(event, nullptr); EXPECT_EQ(event->event_type(), BenchmarkEventType_END); EXPECT_EQ(event->error(), nullptr); } } } } }
845
cpp
tensorflow/tensorflow
quantize_model
tensorflow/lite/tools/optimize/quantize_model.cc
tensorflow/lite/tools/optimize/quantize_model_test.cc
#ifndef TENSORFLOW_COMPILER_MLIR_QUANTIZATION_TENSORFLOW_PYTHON_QUANTIZE_MODEL_H_ #define TENSORFLOW_COMPILER_MLIR_QUANTIZATION_TENSORFLOW_PYTHON_QUANTIZE_MODEL_H_ #include <string> #include <unordered_set> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/exported_model.pb.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/python/py_function_lib.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/quantization_options.pb.h" namespace tensorflow { namespace quantization { inline constexpr absl::string_view kTfQuantPtqPreCalibrationStepName = "tf_quant_ptq_pre_calibration"; inline constexpr absl::string_view kTfQuantPtqPostCalibrationStepName = "tf_quant_ptq_post_calibration"; inline constexpr absl::string_view kTfQuantQatStepName = "tf_quant_qat"; inline constexpr absl::string_view kTfQuantPtqDynamicRangeStepName = "tf_quant_ptq_dynamic_range"; inline constexpr absl::string_view kTfQuantWeightOnlyStepName = "tf_quant_weight_only"; absl::StatusOr<ExportedModel> QuantizeQatModel( absl::string_view saved_model_path, const std::vector<std::string>& signature_keys, const std::unordered_set<std::string>& tags, const QuantizationOptions& quantization_options); absl::StatusOr<ExportedModel> QuantizeDynamicRangePtq( absl::string_view saved_model_path, const std::vector<std::string>& signature_keys, const std::unordered_set<std::string>& tags, const QuantizationOptions& quantization_options); absl::StatusOr<ExportedModel> QuantizeWeightOnly( absl::string_view saved_model_path, const QuantizationOptions& quantization_options); absl::StatusOr<ExportedModel> QuantizeStaticRangePtq( absl::string_view saved_model_path, const std::vector<std::string>& signature_keys, const std::unordered_set<std::string>& tags, const QuantizationOptions& quantization_options, const absl::flat_hash_map<std::string, SignatureDef>& signature_def_map, const PyFunctionLibrary& py_function_library, const absl::flat_hash_map<std::string, RepresentativeDatasetFile>& representative_dataset_file_map_serialized); } } #endif #include "tensorflow/compiler/mlir/quantization/tensorflow/python/quantize_model.h" #include <memory> #include <optional> #include <string> #include <unordered_set> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "llvm/ADT/SmallVector.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/Pass/PassManager.h" #include "mlir/Support/LLVM.h" #include "tensorflow/cc/saved_model/loader.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/cc/calibration/component.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/cc/calibration/statistics.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/cc/config.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/cc/context.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/cc/debugger.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/cc/io.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/cc/post_calibration.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/cc/pre_calibration.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/cc/saved_model_export.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/cc/saved_model_import.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/cc/types.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/cc/weight_only_ptq.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/quantization_config.pb.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/cc/convert_asset_args.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/cc/run_passes.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/exported_model.pb.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/python/py_function_lib.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/python/unfreeze_constants.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/quantization_options.pb.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/quantize_passes.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/quantize_preprocess.h" #include "tensorflow/compiler/mlir/tensorflow/translate/mlir_import_options.h" #include "tensorflow/compiler/mlir/tensorflow/translate/tf_mlir_translate.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" #include "tensorflow/core/protobuf/saver.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace quantization { namespace { using ::mlir::quant::stablehlo::ConvertMlirModuleToExportedModel; using ::mlir::quant::stablehlo::CreateMlirContextForQuantization; using ::mlir::quant::stablehlo::ExportOptions; using ::mlir::quant::stablehlo::FunctionAlias; using ::mlir::quant::stablehlo::FunctionName; using ::mlir::quant::stablehlo::GetFunctionAliases; using ::mlir::quant::stablehlo::kExportStepSuffix; using ::mlir::quant::stablehlo::PostCalibrationComponent; using ::mlir::quant::stablehlo::PreCalibrationComponent; using ::mlir::quant::stablehlo::RunCalibrationPasses; using ::mlir::quant::stablehlo::UpdateFunctionAliases; using ::mlir::quant::stablehlo::WeightOnlyPtqComponent; using ::stablehlo::quantization::AddCalibrationStatistics; using ::stablehlo::quantization::ChangeToQuantizedFilename; using ::stablehlo::quantization::DebuggerConfig; using ::stablehlo::quantization::ExpandPresets; using ::stablehlo::quantization::IsCalibrationRequired; using ::stablehlo::quantization::PopulateDefaults; using ::stablehlo::quantization::QuantizationConfig; using ::stablehlo::quantization::io::CreateTmpDir; using ::stablehlo::quantization::io::GetLocalTmpFileName; using ::tensorflow::quantization::PyFunctionLibrary; absl::StatusOr<mlir::OwningOpRef<mlir::ModuleOp>> ImportAndPreprocessSavedModel( absl::string_view saved_model_path, const std::vector<std::string> &signature_keys, const std::unordered_set<std::string> &tags, mlir::MLIRContext *context, const bool is_inliner_run, const bool run_tf_to_stablehlo, const bool deserialize_xla_call_module, absl::flat_hash_map<std::string, std::string> &function_aliases) { MLIRImportOptions import_options; import_options.upgrade_legacy = true; import_options.lift_variables = false; import_options.include_variables_in_initializers = true; auto bundle = std::make_unique<SavedModelBundle>(); std::vector<std::string> exported_names = signature_keys; absl::StatusOr<mlir::OwningOpRef<mlir::ModuleOp>> module = SavedModelSignatureDefsToMlirImport(saved_model_path, tags, absl::MakeSpan(exported_names), context, import_options, &bundle); if (!module.status().ok()) { return absl::InternalError(absl::StrCat("Failed to import SavedModel: ", module.status().message())); } mlir::OwningOpRef<mlir::ModuleOp> module_ref = std::move(module).value(); UpdateFunctionAliases(function_aliases, *module_ref); absl::flat_hash_set<std::string> aliased_function_names; absl::c_for_each(function_aliases, [&](const auto &aliases) { return aliased_function_names.insert(aliases.first); }); TF_RETURN_IF_ERROR(PreprocessAndFreezeGraph( kDefaultTfQuantMlirDumpFilePrefix, is_inliner_run, aliased_function_names, module_ref.get(), context, bundle ? bundle->GetSession() : nullptr, run_tf_to_stablehlo, deserialize_xla_call_module)); return module_ref; } absl::StatusOr<ExportedModel> ModuleOpToExportedModel( mlir::ModuleOp module_op, mlir::MLIRContext *ctx, absl::string_view step_name, const bool unfreeze_constants, const absl::flat_hash_map<std::string, std::string> &function_aliases) { TF_ASSIGN_OR_RETURN(const std::string checkpoint_dir, GetLocalTmpFileName()); const auto export_opts = ExportOptions{true, unfreeze_constants, checkpoint_dir, absl::StrCat(step_name, kExportStepSuffix)}; TF_ASSIGN_OR_RETURN(const llvm::SmallVector<AssetFileDef> asset_file_defs, RunExportPasses(export_opts, *ctx, module_op)); return ConvertMlirModuleToExportedModel( module_op, checkpoint_dir, function_aliases, {asset_file_defs.begin(), asset_file_defs.end()}); } absl::StatusOr<ExportedModel> ExportCalibrationModel( mlir::ModuleOp module_op, mlir::MLIRContext *context, const QuantizationOptions &quantization_options, const absl::flat_hash_map<std::string, std::string> &function_aliases, absl::string_view calibration_data_dir) { mlir::OwningOpRef<mlir::ModuleOp> cloned_module_ref(module_op.clone()); TF_RETURN_IF_ERROR( RunCalibrationPasses(*cloned_module_ref, *context, calibration_data_dir, quantization_options.calibration_options() .force_regenerate_calibration_data())); if (!IsCalibrationRequired(*cloned_module_ref)) return ExportedModel(); absl::StatusOr<ExportedModel> exported_model = ModuleOpToExportedModel( *cloned_module_ref, context, kTfQuantPtqPreCalibrationStepName, !quantization_options.freeze_all_variables(), function_aliases); if (!exported_model.status().ok()) { return absl::InternalError( absl::StrCat("Failed to export calibration model: ", exported_model.status().message())); } return *exported_model; } absl::StatusOr<ExportedModel> ExportDebuggingModel( mlir::ModuleOp module_op, mlir::MLIRContext *context, const QuantizationOptions &quantization_options, const absl::flat_hash_map<std::string, std::string> &function_aliases) { mlir::OwningOpRef<mlir::ModuleOp> cloned_module_ref(module_op.clone()); absl::StatusOr<ExportedModel> exported_model = ModuleOpToExportedModel( *cloned_module_ref, context, kTfQuantPtqPreCalibrationStepName, !quantization_options.freeze_all_variables(), function_aliases); if (!exported_model.status().ok()) { return absl::InternalError( absl::StrCat("Failed to export debugging model: ", exported_model.status().message())); } return *exported_model; } QuantizationConfig GetQuantizationConfigForStaticRangePtq( const QuantizationOptions &quantization_options) { QuantizationConfig quantization_config{}; quantization_config.mutable_static_range_ptq_preset() ->set_enable_per_channel_quantized_weight( quantization_options.enable_per_channel_quantization()); quantization_config.mutable_pipeline_config()->set_unpack_quantized_types( true); *quantization_config.mutable_debugger_config() = quantization_options.debugger_config(); quantization_config.mutable_static_range_ptq_preset(); *quantization_config.mutable_calibration_options() = quantization_options.calibration_options(); return ExpandPresets(PopulateDefaults(quantization_config)); } QuantizationConfig GetQuantizationConfigForWeightOnlyPtq( const QuantizationOptions &quantization_options) { QuantizationConfig quantization_config{}; quantization_config.mutable_weight_only_ptq_preset(); quantization_config.mutable_pipeline_config()->set_unpack_quantized_types( true); *quantization_config.mutable_debugger_config() = quantization_options.debugger_config(); return ExpandPresets(PopulateDefaults(quantization_config)); } absl::StatusOr<ExportedModel> QuantizePtqModelPreCalibrationImpl( mlir::ModuleOp module_op, mlir::MLIRContext *context, const QuantizationOptions &quantization_options, const absl::flat_hash_map<std::string, std::string> &function_aliases, absl::string_view calibration_data_dir) { const bool is_stablehlo = quantization_options.op_set() == OpSet::STABLEHLO; if (is_stablehlo) { const QuantizationConfig quantization_config = GetQuantizationConfigForStaticRangePtq(quantization_options); PreCalibrationComponent pre_calibration_component(context); TF_ASSIGN_OR_RETURN(module_op, pre_calibration_component.Run( module_op, quantization_config)); } else { TF_RETURN_IF_ERROR(RunPasses( kTfQuantPtqPreCalibrationStepName, [&quantization_options](mlir::PassManager &pm) { AddQuantizePtqPreCalibrationPasses(pm, quantization_options); }, *context, module_op)); } return ExportCalibrationModel(module_op, context, quantization_options, function_aliases, calibration_data_dir); } absl::StatusOr<ExportedModel> QuantizePtqModelPostCalibrationImpl( mlir::ModuleOp module_op, mlir::MLIRContext *context, const QuantizationOptions &quantization_options, const absl::flat_hash_map<std::string, std::string> &function_aliases) { const bool is_stablehlo = quantization_options.op_set() == OpSet::STABLEHLO; if (is_stablehlo) { const QuantizationConfig quantization_config = GetQuantizationConfigForStaticRangePtq(quantization_options); PostCalibrationComponent post_calibration_component(context); TF_ASSIGN_OR_RETURN(module_op, post_calibration_component.Run( module_op, quantization_config)); } else { TF_RETURN_IF_ERROR(RunPasses( kTfQuantPtqPostCalibrationStepName, [&quantization_options](mlir::PassManager &pm) { AddQuantizePtqPostCalibrationPasses( pm, quantization_options, kTfQuantPtqPostCalibrationStepName); }, *context, module_op)); } return ModuleOpToExportedModel( module_op, context, kTfQuantPtqPostCalibrationStepName, !quantization_options.freeze_all_variables(), function_aliases); } } absl::StatusOr<ExportedModel> QuantizeQatModel( absl::string_view saved_model_path, const std::vector<std::string> &signature_keys, const std::unordered_set<std::string> &tags, const QuantizationOptions &quantization_options) { std::unique_ptr<mlir::MLIRContext> context = CreateMlirContextForQuantization(); absl::StatusOr<absl::flat_hash_map<FunctionName, FunctionAlias>> function_aliases = GetFunctionAliases(saved_model_path, tags); if (!function_aliases.ok()) { return absl::InternalError(absl::StrCat( "Failed to get function alias: ", function_aliases.status().message())); } absl::StatusOr<mlir::OwningOpRef<mlir::ModuleOp>> module = ImportAndPreprocessSavedModel( saved_model_path, signature_keys, tags, context.get(), true, false, false, *function_aliases); if (!module.status().ok()) { return absl::InternalError( absl::StrCat("Failed to import and preprocess SavedModel: ", module.status().message())); } mlir::OwningOpRef<mlir::ModuleOp> module_ref = std::move(module).value(); TF_RETURN_IF_ERROR(RunPasses( kTfQuantQatStepName, [&quantization_options](mlir::PassManager &pm) { AddQuantizeQatPasses(pm, quantization_options, kTfQuantQatStepName); }, *context, *module_ref)); return ModuleOpToExportedModel( *module_ref, context.get(), kTfQuantQatStepName, !quantization_options.freeze_all_variables(), *function_aliases); } absl::StatusOr<ExportedModel> QuantizeDynamicRangePtq( absl::string_view saved_model_path, const std::vector<std::string> &signature_keys, const std::unordered_set<std::string> &tags, const QuantizationOptions &quantization_options) { std::unique_ptr<mlir::MLIRContext> context = CreateMlirContextForQuantization(); absl::StatusOr<absl::flat_hash_map<FunctionName, FunctionAlias>> function_aliases = GetFunctionAliases(saved_model_path, tags); if (!function_aliases.ok()) { return absl::InternalError(absl::StrCat( "Failed to get function alias: ", function_aliases.status().message())); } absl::StatusOr<mlir::OwningOpRef<mlir::ModuleOp>> module = ImportAndPreprocessSavedModel( saved_model_path, signature_keys, tags, context.get(), true, false, false, *function_aliases); if (!module.status().ok()) { return absl::InternalError( absl::StrCat("Failed to import and preprocess SavedModel: ", module.status().message())); } mlir::OwningOpRef<mlir::ModuleOp> module_ref = std::move(module).value(); TF_RETURN_IF_ERROR(RunPasses( kTfQuantPtqDynamicRangeStepName, [&quantization_options](mlir::PassManager &pm) { AddQuantizePtqDynamicRangePasses(pm, quantization_options, kTfQuantPtqDynamicRangeStepName); }, *context, *module_ref)); return ModuleOpToExportedModel( *module_ref, context.get(), kTfQuantPtqDynamicRangeStepName, !quantization_options.freeze_all_variables(), *function_aliases); } absl::StatusOr<ExportedModel> QuantizeWeightOnly( absl::string_view saved_model_path, const QuantizationOptions &quantization_options) { std::unique_ptr<mlir::MLIRContext> context = CreateMlirContextForQuantization(); absl::StatusOr<absl::flat_hash_map<FunctionName, FunctionAlias>> function_aliases = GetFunctionAliases( saved_model_path, {quantization_options.tags().begin(), quantization_options.tags().end()}); if (!function_aliases.ok()) { return absl::InternalError(absl::StrCat( "Failed to get function alias: ", function_aliases.status().message())); } const bool is_stablehlo = quantization_options.op_set() == OpSet::STABLEHLO; absl::StatusOr<mlir::OwningOpRef<mlir::ModuleOp>> module = ImportAndPreprocessSavedModel( saved_model_path, {quantization_options.signature_keys().begin(), quantization_options.signature_keys().end()}, {quantization_options.tags().begin(), quantization_options.tags().end()}, context.get(), true, is_stablehlo, false, *function_aliases); if (!module.status().ok()) { return absl::InternalError( absl::StrCat("Failed to import and preprocess SavedModel: ", module.status().message())); } mlir::OwningOpRef<mlir::ModuleOp> module_ref = std::move(module).value(); if (is_stablehlo) { const QuantizationConfig quantization_config = GetQuantizationConfigForWeightOnlyPtq(quantization_options); WeightOnlyPtqComponent weight_only_ptq_component(context.get()); TF_ASSIGN_OR_RETURN(*module_ref, weight_only_ptq_component.Run( *module_ref, quantization_config)); } else { TF_RETURN_IF_ERROR(RunPasses( kTfQuantWeightOnlyStepName, [&quantization_options](mlir::PassManager &pm) { AddQuantizeWeightOnlyPasses(pm, quantization_options, kTfQuantWeightOnlyStepName); }, *context, *module_ref)); } return ModuleOpToExportedModel( *module_ref, context.get(), kTfQuantWeightOnlyStepName, !quantization_options.freeze_all_variables(), *function_aliases); } absl::StatusOr<ExportedModel> QuantizeStaticRangePtq( absl::string_view saved_model_path, const std::vector<std::string> &signature_keys, const std::unordered_set<std::string> &tags, const QuantizationOptions &quantization_options, const absl::flat_hash_map<std::string, SignatureDef> &signature_def_map, const PyFunctionLibrary &py_function_library, const absl::flat_hash_map<std::string, RepresentativeDatasetFile> &representative_dataset_file_map_serialized) { std::unique_ptr<mlir::MLIRContext> context = CreateMlirContextForQuantization(); absl::StatusOr<absl::flat_hash_map<FunctionName, FunctionAlias>> function_aliases = GetFunctionAliases(saved_model_path, tags); if (!function_aliases.ok()) { return absl::InternalError(absl::StrCat( "Failed to get function alias: ", function_aliases.status().message())); } const bool is_stablehlo = quantization_options.op_set() == OpSet::STABLEHLO; absl::StatusOr<mlir::OwningOpRef<mlir::ModuleOp>> module = ImportAndPreprocessSavedModel( saved_model_path, signature_keys, tags, context.get(), true, is_stablehlo, false, *function_aliases); if (!module.status().ok()) { return absl::InternalError( absl::StrCat("Failed to import and preprocess SavedModel: ", module.status().message())); } mlir::OwningOpRef<mlir::ModuleOp> module_ref = std::move(module).value(); std::string calibration_data_dir = quantization_options.calibration_options().calibration_data_dir(); if (calibration_data_dir.empty()) { TF_ASSIGN_OR_RETURN(calibration_data_dir, CreateTmpDir()); } TF_ASSIGN_OR_RETURN(ExportedModel calibration_exported_model, QuantizePtqModelPreCalibrationImpl( *module_ref, context.get(), quantization_options, *function_aliases, calibration_data_dir)); if (calibration_exported_model.has_graph_def()) { TF_ASSIGN_OR_RETURN(std::string calibration_saved_model_dir, CreateTmpDir()); py_function_library.SaveExportedModel( calibration_saved_model_dir, calibration_exported_model, saved_model_path, tags, signature_def_map); py_function_library.RunCalibration( calibration_saved_model_dir, signature_keys, tags, quantization_options.force_graph_mode_calibration(), representative_dataset_file_map_serialized); } if (absl::Status status = AddCalibrationStatistics( *module_ref, calibration_data_dir, quantization_options.calibration_options(), py_function_library); !status.ok()) { LOG(WARNING) << "Some CustomAggregator ops do not have min or max " "values. Parts of the graph are not quantized. " << status; } if (quantization_options.has_debugger_config() && quantization_options.debugger_config().debugger_type() == DebuggerConfig::DEBUGGER_TYPE_WHOLE_MODEL) { TF_ASSIGN_OR_RETURN( ExportedModel debugging_exported_model, ExportDebuggingModel(*module_ref, context.get(), quantization_options, *function_aliases)); ChangeToQuantizedFilename(*module_ref); absl::string_view unquantized_dump_model_path = quantization_options.debugger_config().unquantized_dump_model_path(); py_function_library.SaveExportedModel( unquantized_dump_model_path, debugging_exported_model, saved_model_path, tags, signature_def_map); } return QuantizePtqModelPostCalibrationImpl( *module_ref, context.get(), quantization_options, *function_aliases); } } }
#include "tensorflow/compiler/mlir/lite/quantization/lite/quantize_model.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <cstdlib> #include <iostream> #include <memory> #include <string> #include <unordered_set> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "flatbuffers/flatbuffer_builder.h" #include "flatbuffers/vector.h" #include "tensorflow/compiler/mlir/lite/quantization/lite/test_util.h" #include "tensorflow/compiler/mlir/lite/schema/schema_generated.h" #include "tensorflow/compiler/mlir/lite/schema/schema_utils.h" #include "tensorflow/core/platform/init_main.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/util/command_line_flags.h" #include "tensorflow/lite/model_builder.h" #include "tsl/lib/core/status_test_util.h" namespace { tensorflow::string* g_test_model_dir = nullptr; } namespace tflite { namespace optimize { namespace { using testing::Eq; using testing::FloatEq; using testing::FloatNear; using testing::IsEmpty; using testing::NotNull; using testing::SizeIs; ModelT UnPackFlatBufferModel(const Model& flatbuffer_model) { ModelT model; flatbuffer_model.UnPackTo(&model); return model; } absl::Status QuantizeModel( ModelT* model, const TensorType& input_type, const TensorType& output_type, const bool allow_float, const std::unordered_set<std::string>& operator_names, const TensorType& activations_type, std::string& output_buffer, const bool disable_per_channel = false, const absl::flat_hash_set<std::string>& blocked_ops = {}, const absl::flat_hash_set<std::string>& blocked_nodes = {}, const bool disable_per_channel_for_dense_layers = false) { TensorType inference_tensor_type = activations_type; const bool fully_quantize = !allow_float; flatbuffers::FlatBufferBuilder input_builder; tflite::FinishModelBuffer(input_builder, tflite::Model::Pack(input_builder, model)); const std::string input_buffer( reinterpret_cast<const char*>(input_builder.GetBufferPointer()), input_builder.GetSize()); auto status = mlir::lite::QuantizeModel( input_buffer, input_type, output_type, inference_tensor_type, {}, disable_per_channel, fully_quantize, output_buffer, false, false, true, blocked_ops, blocked_nodes, false, disable_per_channel_for_dense_layers); if (!status.ok()) { return status; } auto flatbuffer_model = FlatBufferModel::BuildFromBuffer( output_buffer.data(), output_buffer.size()); *model = UnPackFlatBufferModel(*flatbuffer_model->GetModel()); return absl::OkStatus(); } absl::Status QuantizeModel(ModelT* model, const TensorType& input_type, const TensorType& output_type, bool allow_float, std::string& output_buffer) { return QuantizeModel(model, input_type, output_type, allow_float, {}, TensorType_INT8, output_buffer); } absl::Status QuantizeModel(ModelT* model, const TensorType& input_type, const TensorType& output_type, std::string& output_buffer) { return QuantizeModel(model, input_type, output_type, false, output_buffer); } absl::Status QuantizeModel(ModelT* model, std::string& output_buffer) { return QuantizeModel(model, TensorType_FLOAT32, TensorType_FLOAT32, true, output_buffer); } absl::Status QuantizeModelAllOperators( ModelT* model, const TensorType& input_type, const TensorType& output_type, bool allow_float, const TensorType& activations_type, bool disable_per_channel, std::string& output_buffer) { return QuantizeModel(model, input_type, output_type, allow_float, {}, activations_type, output_buffer, disable_per_channel); } absl::Status QuantizeModelAllOperators(ModelT* model, const TensorType& input_type, const TensorType& output_type, bool allow_float, const TensorType& activations_type, std::string& output_buffer) { return QuantizeModel(model, input_type, output_type, allow_float, {}, activations_type, output_buffer); } absl::Status QuantizeModelAllOperators( ModelT* model, const TensorType& input_type, const TensorType& output_type, bool allow_float, const TensorType& activations_type, std::string& output_buffer, bool disable_per_channel_for_dense_layers) { return QuantizeModel(model, input_type, output_type, allow_float, {}, activations_type, output_buffer, false, {}, {}, disable_per_channel_for_dense_layers); } std::unique_ptr<FlatBufferModel> ReadModel(const std::string& model_name) { auto model_path = tensorflow::io::JoinPath(*g_test_model_dir, model_name); return FlatBufferModel::BuildFromFile(model_path.c_str()); } template <typename T> std::vector<T> GetAsVector(const flatbuffers::Vector<T>* vec) { return std::vector<T>(vec->begin(), vec->end()); } void VerifyQuantizationScale( const QuantizationParameters& float_quant_params, const QuantizationParametersT& quantized_quant_params, const int bit_num, const bool symmetric) { const float eps = 1e-7; ASSERT_THAT(*float_quant_params.min(), SizeIs(1)); ASSERT_THAT(*float_quant_params.max(), SizeIs(1)); float float_min = std::min(0.f, float_quant_params.min()->Get(0)); float float_max = std::max(0.f, float_quant_params.max()->Get(0)); if (symmetric) { float_max = std::max(std::abs(float_min), std::abs(float_max)); float_min = -float_max; } ASSERT_THAT(quantized_quant_params.scale, SizeIs(1)); ASSERT_THAT(quantized_quant_params.zero_point, SizeIs(1)); float scale = (float_max - float_min) / ((1 << bit_num) - 1); EXPECT_THAT(scale, FloatNear(quantized_quant_params.scale[0], eps)); } class QuantizeModelTest : public testing::Test { protected: QuantizeModelTest() { input_model_ = ReadModel(::mlir::lite::internal::kConvModelWith0Plus10Weights); readonly_model_ = input_model_->GetModel(); model_ = UnPackFlatBufferModel(*readonly_model_); } std::unique_ptr<FlatBufferModel> input_model_; const Model* readonly_model_; tflite::ModelT model_; std::string output_buffer_; }; void ExpectEqualTensor(TensorT* tensor, TensorT* expected_tensor) { const float eps = 1e-7; EXPECT_THAT(expected_tensor, NotNull()); EXPECT_THAT(tensor->is_variable, Eq(expected_tensor->is_variable)); EXPECT_THAT(tensor->shape, Eq(expected_tensor->shape)); EXPECT_THAT(tensor->type, Eq(expected_tensor->type)); const auto quantization_params = tensor->quantization.get(); const auto expected_quantization_params = expected_tensor->quantization.get(); if (quantization_params != nullptr && expected_quantization_params != nullptr) { for (int i = 0; i < quantization_params->scale.size(); ++i) { if (quantization_params->scale[i] > 3e-5) { EXPECT_THAT(quantization_params->scale[i], FloatNear(expected_quantization_params->scale[i], eps)); } } EXPECT_THAT(quantization_params->zero_point, Eq(expected_quantization_params->zero_point)); } } TensorT* FindMatchingExpectedTensor(const SubGraphT& expected_graph, const ModelT& expected_model, const ModelT& quant_model, const OperatorT& quant_op, int idx) { const auto& builtin_code = GetBuiltinCode(quant_model.operator_codes[quant_op.opcode_index].get()); for (const auto& expected_op : expected_graph.operators) { const auto& op_code = expected_model.operator_codes[expected_op->opcode_index].get(); const auto& expected_code = GetBuiltinCode(op_code); if (expected_code == builtin_code) { return expected_graph.tensors[expected_op->inputs[idx]].get(); } } return nullptr; } void ExpectSameModels(const ModelT& model, const ModelT& expected_model) { ASSERT_THAT(model.subgraphs, SizeIs(expected_model.subgraphs.size())); for (size_t subgraph_idx = 0; subgraph_idx < model.subgraphs.size(); subgraph_idx++) { const auto graph = model.subgraphs[subgraph_idx].get(); const auto expected_graph = expected_model.subgraphs[subgraph_idx].get(); for (auto& op : graph->operators) { for (int idx = 0; idx < op->inputs.size(); idx++) { if (op->inputs[idx] < 0) { continue; } const auto& tensor = graph->tensors[op->inputs[idx]]; auto* expected_tensor = FindMatchingExpectedTensor( *expected_graph, expected_model, model, *op, idx); if (!expected_tensor) { continue; } ExpectEqualTensor(tensor.get(), expected_tensor); if (expected_tensor->buffer > 0) { const int buffer_idx = tensor->buffer; const int expected_buffer_idx = expected_tensor->buffer; const auto buffer = model.buffers[buffer_idx].get()->data; const auto expected_buffer = expected_model.buffers[expected_buffer_idx].get()->data; EXPECT_THAT(buffer, Eq(expected_buffer)); } } } } } class QuantizeConvModelTest : public QuantizeModelTest, public testing::WithParamInterface<TensorType> { protected: QuantizeConvModelTest() { tensor_type_ = GetParam(); input_model_ = ReadModel(::mlir::lite::internal::kConvModelWith0Plus10Weights); readonly_model_ = input_model_->GetModel(); model_ = UnPackFlatBufferModel(*readonly_model_); auto& subgraph = model_.subgraphs[0]; auto* input = subgraph->tensors[subgraph->inputs[0]].get(); auto* output = subgraph->tensors[subgraph->outputs[0]].get(); input->quantization = std::make_unique<QuantizationParametersT>(); output->quantization = std::make_unique<QuantizationParametersT>(); input->quantization->min.push_back(0.0); output->quantization->min.push_back(0.0); input->quantization->max.push_back(6.0); output->quantization->max.push_back(6.0); } TensorType tensor_type_; }; INSTANTIATE_TEST_SUITE_P(QuantizeConvModelTestInst, QuantizeConvModelTest, testing::ValuesIn({TensorType_INT8})); TEST_P(QuantizeConvModelTest, QuantizationSucceeds) { TF_EXPECT_OK(QuantizeModelAllOperators(&model_, tensor_type_, tensor_type_, false, tensor_type_, output_buffer_)); const Model* output_model = GetModel(output_buffer_.data()); ASSERT_TRUE(output_model); } TEST_P(QuantizeConvModelTest, SkipUnspecifiedLayer) { TF_EXPECT_OK(QuantizeModel(&model_, TensorType_FLOAT32, TensorType_FLOAT32, true, {}, TensorType_FLOAT32, output_buffer_, false, {"CONV_2D"})); ModelT expected_model; readonly_model_->UnPackTo(&expected_model); ExpectSameModels(model_, expected_model); } TEST_P(QuantizeConvModelTest, SkipUnspecifiedLayerByName) { TF_EXPECT_OK(QuantizeModel(&model_, TensorType_FLOAT32, TensorType_FLOAT32, true, {}, TensorType_FLOAT32, output_buffer_, false, {}, {"output"})); ModelT expected_model; readonly_model_->UnPackTo(&expected_model); ExpectSameModels(model_, expected_model); } TEST_P(QuantizeConvModelTest, GraphIsFullyQuantized) { TF_EXPECT_OK(QuantizeModelAllOperators(&model_, tensor_type_, tensor_type_, false, tensor_type_, output_buffer_)); for (const auto& subgraph : model_.subgraphs) { for (const auto& tensor : subgraph->tensors) { EXPECT_TRUE(tensor->type == TensorType_INT32 || tensor->type == TensorType_INT8); } } } class QuantizeConvNoBiasModelTest : public QuantizeModelTest { protected: QuantizeConvNoBiasModelTest() { input_model_ = ReadModel(::mlir::lite::internal::kConvModelWithNoBias); readonly_model_ = input_model_->GetModel(); model_ = UnPackFlatBufferModel(*readonly_model_); } }; class QuantizeSplitModelTest : public QuantizeModelTest { protected: QuantizeSplitModelTest() { input_model_ = ReadModel(::mlir::lite::internal::kModelSplit); readonly_model_ = input_model_->GetModel(); model_ = UnPackFlatBufferModel(*readonly_model_); } }; TEST_F(QuantizeSplitModelTest, QuantizeSplit) { TF_EXPECT_OK(QuantizeModelAllOperators( &model_, TensorType_INT8, TensorType_INT8, false, TensorType_INT8, output_buffer_)); const int32_t subgraph_idx = 0; const auto& subgraph = model_.subgraphs[subgraph_idx]; const auto& readonly_subgraph = readonly_model_->subgraphs()->Get(subgraph_idx); EXPECT_THAT(*readonly_subgraph->operators(), SizeIs(2)); EXPECT_THAT(subgraph->operators, SizeIs(2)); const auto& split = subgraph->operators[0]; const auto& add = subgraph->operators[1]; EXPECT_THAT(GetBuiltinCode(model_.operator_codes[split->opcode_index].get()), Eq(BuiltinOperator_SPLIT)); EXPECT_THAT(GetBuiltinCode(model_.operator_codes[add->opcode_index].get()), Eq(BuiltinOperator_ADD)); EXPECT_THAT(subgraph->tensors, SizeIs(5)); const int input_idx = 0; EXPECT_THAT(subgraph->tensors[input_idx]->type, Eq(TensorType_INT8)); EXPECT_THAT(subgraph->tensors[input_idx]->name, Eq("input")); EXPECT_THAT(subgraph->tensors[input_idx]->quantization->scale, SizeIs(1)); EXPECT_THAT(subgraph->tensors[input_idx]->quantization->zero_point, SizeIs(1)); EXPECT_THAT(subgraph->tensors[input_idx]->quantization->scale[0], FloatEq(1.0)); EXPECT_THAT(subgraph->tensors[input_idx]->quantization->zero_point[0], Eq(-128)); const int output_idx = 4; EXPECT_THAT(subgraph->tensors[output_idx]->type, Eq(TensorType_INT8)); EXPECT_THAT(subgraph->tensors[output_idx]->name, Eq("output")); EXPECT_THAT(subgraph->tensors[output_idx]->quantization->scale, SizeIs(1)); EXPECT_THAT(subgraph->tensors[output_idx]->quantization->zero_point, SizeIs(1)); EXPECT_THAT(subgraph->tensors[output_idx]->quantization->scale[0], FloatEq(1.0)); EXPECT_THAT(subgraph->tensors[output_idx]->quantization->zero_point[0], Eq(-128)); const int split0_idx = 2; EXPECT_THAT(subgraph->tensors[split0_idx]->type, Eq(TensorType_INT8)); EXPECT_THAT(subgraph->tensors[split0_idx]->name, Eq("split;split:1")); EXPECT_THAT(subgraph->tensors[split0_idx]->quantization->scale, SizeIs(1)); EXPECT_THAT(subgraph->tensors[split0_idx]->quantization->zero_point, SizeIs(1)); EXPECT_THAT(subgraph->tensors[split0_idx]->quantization->scale[0], FloatEq(1.0)); EXPECT_THAT(subgraph->tensors[split0_idx]->quantization->zero_point[0], Eq(-128)); const int split1_idx = 3; EXPECT_THAT(subgraph->tensors[split1_idx]->type, Eq(TensorType_INT8)); EXPECT_THAT(subgraph->tensors[split1_idx]->name, Eq("split;split:11")); EXPECT_THAT(subgraph->tensors[split1_idx]->quantization->scale, SizeIs(1)); EXPECT_THAT(subgraph->tensors[split1_idx]->quantization->zero_point, SizeIs(1)); EXPECT_THAT(subgraph->tensors[split1_idx]->quantization->scale[0], FloatEq(1.0)); EXPECT_THAT(subgraph->tensors[split1_idx]->quantization->zero_point[0], Eq(-128)); EXPECT_THAT(model_.operator_codes, SizeIs(2)); EXPECT_THAT(GetBuiltinCode(model_.operator_codes[0].get()), Eq(BuiltinOperator_SPLIT)); ASSERT_THAT(model_.operator_codes[0]->version, Eq(2)); } class QuantizeConvModel2Test : public QuantizeModelTest, public testing::WithParamInterface<TensorType> { protected: QuantizeConvModel2Test() { tensor_type_ = GetParam(); input_model_ = ReadModel(::mlir::lite::internal::kConvModelWith0Plus10Weights); readonly_model_ = input_model_->GetModel(); model_ = UnPackFlatBufferModel(*readonly_model_); auto& subgraph = model_.subgraphs[0]; auto* input = subgraph->tensors[subgraph->inputs[0]].get(); auto* output = subgraph->tensors[subgraph->outputs[0]].get(); input->quantization = std::make_unique<QuantizationParametersT>(); output->quantization = std::make_unique<QuantizationParametersT>(); input->quantization->min.push_back(0.0); output->quantization->min.push_back(0.0); input->quantization->max.push_back(6.0); output->quantization->max.push_back(6.0); } TensorType tensor_type_; }; INSTANTIATE_TEST_SUITE_P(QuantizeConvModel2TestInst, QuantizeConvModel2Test, testing::ValuesIn({TensorType_INT8})); TEST_P(QuantizeConvModel2Test, VerifyConvQuantization) { TF_ASSERT_OK(QuantizeModelAllOperators(&model_, tensor_type_, tensor_type_, false, tensor_type_, output_buffer_)); const auto& subgraph = model_.subgraphs[0]; auto conv_op = subgraph->operators[0].get(); const int input_tensor_idx = 0; const int weights_tensor_idx = 1; const int bias_tensor_index = 2; const int output_tensor_idx = 0; const auto bias_tensor = subgraph->tensors[conv_op->inputs[bias_tensor_index]].get(); const auto input_tensor = subgraph->tensors[conv_op->inputs[input_tensor_idx]].get(); const auto weights_tensor = subgraph->tensors[conv_op->inputs[weights_tensor_idx]].get(); const auto output_tensor = subgraph->tensors[conv_op->outputs[output_tensor_idx]].get(); EXPECT_THAT(bias_tensor->type, Eq(tensor_type_ == TensorType_INT8 ? TensorType_INT32 : TensorType_INT64)); EXPECT_THAT(input_tensor->type, Eq(tensor_type_)); EXPECT_THAT(weights_tensor->type, Eq(TensorType_INT8)); ASSERT_TRUE(weights_tensor->quantization); ASSERT_TRUE(bias_tensor->quantization); ASSERT_TRUE(weights_tensor->quantization); const std::vector<float>& bias_scales = bias_tensor->quantization->scale; const std::vector<float>& weights_scales = weights_tensor->quantization->scale; const std::vector<int64_t>& weights_zero_points = weights_tensor->quantization->zero_point; const int out_channel_size = weights_tensor->shape[0]; ASSERT_THAT(bias_scales, SizeIs(out_channel_size)); ASSERT_THAT(weights_scales, SizeIs(out_channel_size)); ASSERT_THAT(weights_zero_points, SizeIs(out_channel_size)); ASSERT_THAT(input_tensor->quantization->scale, SizeIs(1)); ASSERT_THAT(output_tensor->quantization->scale, SizeIs(1)); const float eps = 1e-7; for (size_t i = 0; i < out_channel_size; i++) { EXPECT_THAT(bias_scales[i], FloatNear(input_tensor->quantization->scale[0] * weights_scales[i], eps)); } const auto bias_buffer = model_.buffers[bias_tensor->buffer].get(); auto control_size = tensor_type_ == TensorType_INT8 ? sizeof(int32_t) * bias_tensor->shape[0] : sizeof(int64_t) * bias_tensor->shape[0]; const auto float_op = readonly_model_->subgraphs()->Get(0)->operators()->Get(0); const auto original_bias_tensor = readonly_model_->subgraphs()->Get(0)->tensors()->Get( float_op->inputs()->Get(2)); ASSERT_THAT(bias_buffer->data, SizeIs(control_size)); const auto original_bias_buffer = readonly_model_->buffers()->Get(original_bias_tensor->buffer()); const float* bias_float_buffer = reinterpret_cast<const float*>(original_bias_buffer->data()->data()); if (tensor_type_ == TensorType_INT8) { int32_t* bias_values = reinterpret_cast<int32_t*>(bias_buffer->data.data()); for (size_t i = 0; i < out_channel_size; i++) { auto dequantized_value = bias_values[i] * bias_scales[i]; EXPECT_THAT(dequantized_value, FloatNear(bias_float_buffer[i], bias_scales[i] / 2)); } } const auto weights_buffer = model_.buffers[weights_tensor->buffer].get(); const auto original_weights_tensor = readonly_model_->subgraphs()->Get(0)->tensors()->Get( float_op->inputs()->Get(1)); const auto original_weights_buffer = readonly_model_->buffers()->Get(original_weights_tensor->buffer()); const int8_t* weight_values = reinterpret_cast<int8_t*>(weights_buffer->data.data()); const float* weights_float_buffer = reinterpret_cast<const float*>(original_weights_buffer->data()->data()); ASSERT_THAT(sizeof(float) * weights_buffer->data.size(), Eq(original_weights_buffer->data()->size())); int num_values_in_channel = weights_buffer->data.size() / out_channel_size; for (size_t channel_idx = 0; channel_idx < out_channel_size; channel_idx++) { for (size_t j = 0; j < num_values_in_channel; j++) { size_t element_idx = channel_idx * out_channel_size + j; auto scale = weights_scales[channel_idx]; auto zero_point = weights_zero_points[channel_idx]; auto dequantized_value = weight_values[element_idx] * scale; EXPECT_THAT(dequantized_value, FloatNear(weights_float_buffer[element_idx], scale / 2)); EXPECT_THAT(zero_point, Eq(0)); } } EXPECT_THAT(model_.operator_codes, SizeIs(1)); EXPECT_THAT(GetBuiltinCode(model_.operator_codes[0].get()), Eq(BuiltinOperator_CONV_2D)); ASSERT_THAT(model_.operator_codes[0]->version, Eq(3)); } TEST_P(QuantizeConvModel2Test, VerifyConvDisablePerChannelQuantization) { TF_ASSERT_OK(QuantizeModelAllOperators(&model_, tensor_type_, tensor_type_, false, tensor_type_, true, output_buffer_)); const auto& subgraph = model_.subgraphs[0]; auto conv_op = subgraph->operators[0].get(); const int input_tensor_idx = 0; const int weights_tensor_idx = 1; const int bias_tensor_index = 2; const int output_tensor_idx = 0; const auto bias_tensor = subgraph->tensors[conv_op->inputs[bias_tensor_index]].get(); const auto input_tensor = subgraph->tensors[conv_op->inputs[input_tensor_idx]].get(); const auto weights_tensor = subgraph->tensors[conv_op->inputs[weights_tensor_idx]].get(); const auto output_tensor = subgraph->tensors[conv_op->outputs[output_tensor_idx]].get(); EXPECT_THAT(bias_tensor->type, Eq(tensor_type_ == TensorType_INT8 ? TensorType_INT32 : TensorType_INT64)); EXPECT_THAT(input_tensor->type, Eq(tensor_type_)); EXPECT_THAT(weights_tensor->type, Eq(TensorType_INT8)); ASSERT_TRUE(weights_tensor->quantization); ASSERT_TRUE(bias_tensor->quantization); ASSERT_TRUE(weights_tensor->quantization); const std::vector<float>& bias_scales = bias_tensor->quantization->scale; const std::vector<float>& weights_scales = weights_tensor->quantization->scale; const std::vector<int64_t>& weights_zero_points = weights_tensor->quantization->zero_point; const int out_channel_size = 1; ASSERT_THAT(bias_scales, SizeIs(out_channel_size)); ASSERT_THAT(weights_scales, SizeIs(out_channel_size)); ASSERT_THAT(weights_zero_points, SizeIs(out_channel_size)); ASSERT_THAT(input_tensor->quantization->scale, SizeIs(1)); ASSERT_THAT(output_tensor->quantization->scale, SizeIs(1)); const float eps = 1e-7; for (size_t i = 0; i < out_channel_size; i++) { EXPECT_THAT(bias_scales[i], FloatNear(input_tensor->quantization->scale[0] * weights_scales[i], eps)); } const auto bias_buffer = model_.buffers[bias_tensor->buffer].get(); auto control_size = tensor_type_ == TensorType_INT8 ? sizeof(int32_t) * bias_tensor->shape[0] : sizeof(int64_t) * bias_tensor->shape[0]; ASSERT_THAT(bias_buffer->data, SizeIs(control_size)); const auto float_op = readonly_model_->subgraphs()->Get(0)->operators()->Get(0); const auto original_bias_tensor = readonly_model_->subgraphs()->Get(0)->tensors()->Get( float_op->inputs()->Get(2)); ASSERT_THAT(bias_buffer->data, SizeIs(control_size)); const auto original_bias_buffer = readonly_model_->buffers()->Get(original_bias_tensor->buffer()); const float* bias_float_buffer = reinterpret_cast<const float*>(original_bias_buffer->data()->data()); if (tensor_type_ == TensorType_INT8) { int32_t* bias_values = reinterpret_cast<int32_t*>(bias_buffer->data.data()); for (size_t i = 0; i < out_channel_size; i++) { auto dequantized_value = bias_values[i] * bias_scales[i]; EXPECT_THAT(dequantized_value, FloatNear(bias_float_buffer[i], bias_scales[i] / 2)); } } const auto weights_buffer = model_.buffers[weights_tensor->buffer].get(); const auto original_weights_tensor = readonly_model_->subgraphs()->Get(0)->tensors()->Get( float_op->inputs()->Get(1)); const auto original_weights_buffer = readonly_model_->buffers()->Get(original_weights_tensor->buffer()); const int8_t* weight_values = reinterpret_cast<int8_t*>(weights_buffer->data.data()); const float* weights_float_buffer = reinterpret_cast<const float*>(original_weights_buffer->data()->data()); ASSERT_THAT(sizeof(float) * weights_buffer->data.size(), Eq(original_weights_buffer->data()->size())); int num_values_in_channel = weights_buffer->data.size() / out_channel_size; for (size_t channel_idx = 0; channel_idx < out_channel_size; channel_idx++) { for (size_t j = 0; j < num_values_in_channel; j++) { size_t element_idx = channel_idx * out_channel_size + j; auto scale = weights_scales[channel_idx]; auto zero_point = weights_zero_points[channel_idx]; auto dequantized_value = weight_values[element_idx] * scale; EXPECT_THAT(dequantized_value, FloatNear(weights_float_buffer[element_idx], scale / 2)); EXPECT_THAT(zero_point, Eq(0)); } } EXPECT_THAT(model_.operator_codes, SizeIs(1)); EXPECT_THAT(GetBuiltinCode(model_.operator_codes[0].get()), Eq(BuiltinOperator_CONV_2D)); ASSERT_THAT(model_.operator_codes[0]->version, Eq(3)); } class QuantizeSoftmaxTest : public QuantizeModelTest { protected: QuantizeSoftmaxTest() { input_model_ = ReadModel(::mlir::lite::internal::kSingleSoftmaxModelMinMinus5MaxPlus5); readonly_model_ = input_model_->GetModel(); model_ = UnPackFlatBufferModel(*readonly_model_); } }; TEST_F(QuantizeSoftmaxTest, VerifySoftmaxQuantization) { TF_ASSERT_OK(QuantizeModelAllOperators( &model_, TensorType_INT8, TensorType_INT8, false, TensorType_INT8, output_buffer_)); const auto& subgraph = model_.subgraphs[0]; auto op = subgraph->operators[0].get(); ASSERT_THAT(op->opcode_index, Eq(0)); ASSERT_THAT(GetBuiltinCode(model_.operator_codes[0].get()), Eq(BuiltinOperator_SOFTMAX)); ASSERT_THAT(op->inputs, SizeIs(1)); ASSERT_THAT(op->outputs, SizeIs(1)); auto float_graph = readonly_model_->subgraphs()->Get(0); ASSERT_THAT(float_graph->tensors()->Get(op->inputs[0])->type(), Eq(TensorType_FLOAT32)); ASSERT_THAT(float_graph->tensors()->Get(op->outputs[0])->type(), Eq(TensorType_FLOAT32)); EXPECT_THAT(subgraph->tensors[op->inputs[0]].get()->type, Eq(TensorType_INT8)); EXPECT_THAT(subgraph->tensors[op->outputs[0]].get()->type, Eq(TensorType_INT8)); auto float_input_quant_params = float_graph->tensors()->Get(op->inputs[0])->quantization(); auto input_quant_params = subgraph->tensors[op->inputs[0]]->quantization.get(); VerifyQuantizationScale(*float_input_quant_params, *input_quant_params, 8, false); auto float_output_quant_params = float_graph->tensors()->Get(op->outputs[0])->quantization(); auto output_quant_params = subgraph->tensors[op->outputs[0]]->quantization.get(); ASSERT_THAT(*float_output_quant_params->min(), SizeIs(1)); ASSERT_THAT(*float_output_quant_params->max(), SizeIs(1)); ASSERT_THAT(output_quant_params->scale, SizeIs(1)); ASSERT_THAT(output_quant_params->zero_point, SizeIs(1)); ASSERT_THAT(1.0f / 256.0f, Eq(output_quant_params->scale[0])); ASSERT_THAT(-128, Eq(output_quant_params->zero_point[0])); EXPECT_THAT(model_.operator_codes, SizeIs(1)); EXPECT_THAT(GetBuiltinCode(model_.operator_codes[0].get()), Eq(BuiltinOperator_SOFTMAX)); ASSERT_THAT(model_.operator_codes[0]->version, Eq(2)); } class QuantizeAvgPoolTest : public QuantizeModelTest { protected: QuantizeAvgPoolTest() { input_model_ = ReadModel(::mlir::lite::internal::kSingleAvgPoolModelMinMinus5MaxPlus5); readonly_model_ =
846
cpp
tensorflow/tensorflow
model_utils
tensorflow/lite/tools/optimize/model_utils.cc
tensorflow/lite/tools/optimize/model_utils_test.cc
#ifndef TENSORFLOW_LITE_TOOLS_OPTIMIZE_MODEL_UTILS_H_ #define TENSORFLOW_LITE_TOOLS_OPTIMIZE_MODEL_UTILS_H_ #include <string> #include "absl/memory/memory.h" #include "tensorflow/lite/core/model.h" #include "tensorflow/lite/kernels/internal/types.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace optimize { namespace utils { void MakeDequantizeOperator(ModelT* model, std::unique_ptr<OperatorT>* op, int32_t input, int32_t output); void MakeQuantizeOperator(ModelT* model, std::unique_ptr<OperatorT>* op, int32_t input, int32_t output); void MakeTensor(const string& name, const std::vector<int32_t>& shape, const std::vector<int32_t>& shape_signature, const TensorType& type, std::unique_ptr<TensorT>* tensor); void MakeTensorWithQuantParam(const string& name, const std::vector<int32_t>& shape, const std::vector<int32_t>& shape_signature, const TensorType& type, float scale, int64_t zero_point, std::unique_ptr<TensorT>* tensor); bool QuantizationParametersExist(const TensorT* tensor); bool HasBuffer(const ModelT* model, const SubGraphT* subgraph, int tensor_index); bool HasMinMax(const TensorT* tensor); void SetOperatorCodeVersion(ModelT* model); void WriteFile(const std::string& out_file, const uint8_t* bytes, size_t num_bytes); std::unique_ptr<flatbuffers::FlatBufferBuilder> FinishModel( const tflite::ModelT* model); std::unique_ptr<tflite::ModelT> CreateMutableModelFromFile( const string& model_filepath); } } } #endif #include "tensorflow/lite/tools/optimize/model_utils.h" #include <fstream> #include <memory> #include <string> #include "absl/memory/memory.h" #include "tensorflow/lite/core/model.h" #include "tensorflow/lite/kernels/internal/tensor_utils.h" #include "tensorflow/lite/kernels/internal/types.h" #include "tensorflow/lite/schema/schema_conversion_utils.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/schema/schema_utils.h" #include "tensorflow/lite/tools/optimize/operator_property.h" namespace tflite { namespace optimize { namespace utils { namespace { int32_t GetOrInsertOpCodeIndex(ModelT* model, const BuiltinOperator& op_code, int32_t version) { for (size_t i = 0; i < model->operator_codes.size(); ++i) { if (GetBuiltinCode(model->operator_codes[i].get()) == op_code) { return i; } } model->operator_codes.push_back(std::make_unique<OperatorCodeT>()); int op_code_idx = model->operator_codes.size() - 1; model->operator_codes[op_code_idx]->builtin_code = op_code; model->operator_codes[op_code_idx]->deprecated_builtin_code = ConvertBuiltinCodeToDeprecatedBuiltinCode(op_code); model->operator_codes[op_code_idx]->version = version; return op_code_idx; } } void MakeDequantizeOperator(ModelT* model, std::unique_ptr<OperatorT>* op, int32_t input, int32_t output) { OperatorT* op_raw = new OperatorT; op_raw->opcode_index = GetOrInsertOpCodeIndex(model, BuiltinOperator_DEQUANTIZE, 2); op_raw->inputs = {input}; op_raw->outputs = {output}; op->reset(op_raw); } void MakeQuantizeOperator(ModelT* model, std::unique_ptr<OperatorT>* op, int32_t input, int32_t output) { OperatorT* op_raw = new OperatorT; op_raw->opcode_index = GetOrInsertOpCodeIndex(model, BuiltinOperator_QUANTIZE, 1); op_raw->inputs = {input}; op_raw->outputs = {output}; op->reset(op_raw); } void MakeTensor(const string& name, const std::vector<int32_t>& shape, const std::vector<int32_t>& shape_signature, const TensorType& type, std::unique_ptr<TensorT>* tensor) { TensorT* tensor_raw = new TensorT; tensor_raw->name = name; tensor_raw->shape = shape; if (!shape_signature.empty()) { tensor_raw->shape_signature = shape_signature; } tensor_raw->type = type; tensor->reset(tensor_raw); } void MakeTensorWithQuantParam(const string& name, const std::vector<int32_t>& shape, const std::vector<int32_t>& shape_signature, const TensorType& type, float scale, int64_t zero_point, std::unique_ptr<TensorT>* tensor) { MakeTensor(name, shape, shape_signature, type, tensor); (*tensor)->quantization = std::make_unique<QuantizationParametersT>(); (*tensor)->quantization->scale.push_back(scale); (*tensor)->quantization->zero_point.push_back(zero_point); } bool QuantizationParametersExist(const TensorT* tensor) { return tensor->quantization != nullptr && !tensor->quantization->scale.empty() && !tensor->quantization->zero_point.empty(); } bool HasBuffer(const ModelT* model, const SubGraphT* subgraph, int tensor_index) { const int buffer_index = subgraph->tensors[tensor_index]->buffer; BufferT* buffer = model->buffers[buffer_index].get(); if (buffer == nullptr || buffer->data.empty()) { return false; } return true; } bool HasMinMax(const TensorT* tensor) { return tensor->quantization && !tensor->quantization->min.empty() && !tensor->quantization->max.empty(); } void SetOperatorCodeVersion(ModelT* model) { for (int subgraph_idx = 0, end = model->subgraphs.size(); subgraph_idx < end; subgraph_idx++) { SubGraphT* subgraph = model->subgraphs.at(subgraph_idx).get(); for (int op_idx = subgraph->operators.size() - 1; op_idx >= 0; op_idx--) { OperatorT* op = subgraph->operators[op_idx].get(); OperatorCodeT* op_code = model->operator_codes[op->opcode_index].get(); operator_property::OperatorProperty property = operator_property::GetOperatorProperty(model, subgraph_idx, op_idx); if (property.quantizable && op_code->version < property.version) { op_code->version = property.version; } } } } void WriteFile(const std::string& out_file, const uint8_t* bytes, size_t num_bytes) { std::fstream stream(out_file, std::ios::binary | std::ios::out); for (size_t i = 0; i < num_bytes; i++) { stream << bytes[i]; } TFLITE_DCHECK(!stream.bad() && !stream.fail()); } std::unique_ptr<flatbuffers::FlatBufferBuilder> FinishModel( const tflite::ModelT* model) { std::unique_ptr<flatbuffers::FlatBufferBuilder> builder( new flatbuffers::FlatBufferBuilder()); auto packed_model = tflite::Model::Pack(*builder, model); tflite::FinishModelBuffer(*builder, packed_model); return builder; } std::unique_ptr<tflite::ModelT> CreateMutableModelFromFile( const string& model_filepath) { auto fb_model = tflite::FlatBufferModel::BuildFromFile(model_filepath.c_str()); auto tflite_model = fb_model->GetModel(); auto copied_model = std::make_unique<tflite::ModelT>(); tflite_model->UnPackTo(copied_model.get(), nullptr); return copied_model; } } } }
#include "tensorflow/lite/tools/optimize/model_utils.h" #include <memory> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/core/model.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace optimize { namespace utils { namespace { TEST(ModelUtilsTest, QuantizationParametersExist) { TensorT tensor; tensor.quantization = std::make_unique<QuantizationParametersT>(); tensor.quantization->scale.push_back(0.5); tensor.quantization->scale.push_back(1.5); EXPECT_FALSE(QuantizationParametersExist(&tensor)); tensor.quantization->zero_point.push_back(1); tensor.quantization->zero_point.push_back(-1); EXPECT_TRUE(QuantizationParametersExist(&tensor)); } TEST(ModelUtilsTest, HasBuffer) { tflite::ModelT model; auto subgraph = std::make_unique<tflite::SubGraphT>(); auto tensor = std::make_unique<tflite::TensorT>(); tensor->buffer = 0; subgraph->tensors.push_back(std::move(tensor)); model.subgraphs.push_back(std::move(subgraph)); auto buffer = std::make_unique<tflite::BufferT>(); model.buffers.push_back(std::move(buffer)); EXPECT_FALSE(HasBuffer(&model, model.subgraphs[0].get(), 0)); model.buffers[0]->data = {0, 1, 2, 3}; EXPECT_TRUE(HasBuffer(&model, model.subgraphs[0].get(), 0)); } TEST(ModelUtilsTest, HasMinMax) { TensorT tensor; tensor.quantization = std::make_unique<QuantizationParametersT>(); tensor.quantization->min.push_back(0.5); EXPECT_FALSE(HasMinMax(&tensor)); tensor.quantization->max.push_back(1.5); EXPECT_TRUE(HasMinMax(&tensor)); } } } } }
847
cpp
tensorflow/tensorflow
quantize_weights
tensorflow/lite/tools/optimize/quantize_weights.cc
tensorflow/lite/tools/optimize/quantize_weights_test.cc
#ifndef TENSORFLOW_COMPILER_MLIR_LITE_QUANTIZATION_LITE_QUANTIZE_WEIGHTS_H_ #define TENSORFLOW_COMPILER_MLIR_LITE_QUANTIZATION_LITE_QUANTIZE_WEIGHTS_H_ #include <memory> #include <string> #include <unordered_map> #include <unordered_set> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "flatbuffers/flatbuffer_builder.h" #include "tensorflow/compiler/mlir/lite/schema/schema_generated.h" namespace mlir { namespace lite { enum class BufferType { QUANTIZED_INT8, QUANTIZED_FLOAT16 }; struct CustomOpInfo { std::vector<std::int32_t> quantizable_input_indices; bool is_weight_only = false; bool no_side_effect = true; }; using BuiltinOperatorSet = absl::flat_hash_set<tflite::BuiltinOperator>; using CustomOpMap = std::unordered_map<std::string, CustomOpInfo>; absl::Status QuantizeWeights( flatbuffers::FlatBufferBuilder* builder, const tflite::Model* input_model, const tflite::TensorType& inference_type, const absl::flat_hash_set<std::string>& denylisted_ops, const CustomOpMap& custom_op_map, int64_t minimum_elements_for_weights = 1024, bool disable_per_channel = false, bool weight_only_quantization = false, bool legacy_float_scale = false); absl::Status QuantizeWeights(flatbuffers::FlatBufferBuilder* builder, const tflite::Model* input_model, int64_t weights_min_num_elements, bool use_hybrid_evaluation = true); absl::Status QuantizeWeights(flatbuffers::FlatBufferBuilder* builder, const tflite::Model* input_model, BufferType quant_type = BufferType::QUANTIZED_INT8, bool use_updated_hybrid_scheme = true); absl::Status QuantizeWeights(flatbuffers::FlatBufferBuilder* builder, const tflite::Model* input_model, int64_t weights_min_num_elements, const CustomOpMap& custom_op_map, bool use_updated_hybrid_scheme = true, const BuiltinOperatorSet& op_denylist = {}); } } #endif #define EIGEN_USE_THREADS #include "tensorflow/core/common_runtime/constant_folding.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/threadpool_device.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/graph/subgraph.h" #include "tensorflow/core/kernels/quantization_utils.h" #include "tensorflow/core/platform/init_main.h" #include "tensorflow/core/public/session.h" #include "tensorflow/tools/graph_transforms/transform_utils.h" namespace tensorflow { namespace graph_transforms { Status QuantizeWeights(const GraphDef& input_graph_def, const TransformFuncContext& context, GraphDef* output_graph_def) { int32_t minimum_size; TF_RETURN_IF_ERROR( context.GetOneInt32Parameter("minimum_size", 1024, &minimum_size)); TF_RETURN_IF_ERROR(ReplaceMatchingOpTypes( input_graph_def, {"Const"}, [minimum_size](const NodeMatch& match, const std::set<string>& input_nodes, const std::set<string>& output_nodes, std::vector<NodeDef>* new_nodes) { const NodeDef& old_const_node = match.node; if (!old_const_node.attr().count("dtype")) { return errors::InvalidArgument("No 'dtype' attribute for Const node ", old_const_node.name()); } if (!old_const_node.attr().count("value")) { return errors::InvalidArgument("No 'value' attribute for Const node ", old_const_node.name()); } const DataType old_dtype = old_const_node.attr().at("dtype").type(); Tensor old_tensor; if (!old_tensor.FromProto(old_const_node.attr().at("value").tensor())) { return errors::InvalidArgument("Decoding Tensor failed for node", old_const_node.name()); } const size_t num_elements = old_tensor.NumElements(); if ((old_dtype != DT_FLOAT) || (num_elements < minimum_size)) { new_nodes->push_back(old_const_node); return OkStatus(); } const float* old_values = old_tensor.flat<float>().data(); float min = std::numeric_limits<float>::max(); float max = std::numeric_limits<float>::min(); for (int i = 0; i < num_elements; ++i) { const float value = old_values[i]; min = std::min(min, value); max = std::max(max, value); } min = std::min(min, 0.0f); max = std::max(0.0f, max); if (min == max) { if (std::abs(min) < 0.000001f) { max = min + 1.0f; } else if (min > 0) { max = 2.0f * min; } else { max = min / 2.0f; } } Tensor quantized_tensor(DT_QUINT8, old_tensor.shape()); FloatTensorToQuantizedInPlace<quint8>(old_tensor, min, max, &quantized_tensor); NodeDef quantized_const_node; quantized_const_node.set_op("Const"); quantized_const_node.set_name(old_const_node.name() + "_quantized_const"); SetNodeAttr("dtype", DT_QUINT8, &quantized_const_node); SetNodeTensorAttr<float>("value", quantized_tensor, &quantized_const_node); new_nodes->push_back(quantized_const_node); NodeDef min_node; min_node.set_op("Const"); min_node.set_name(old_const_node.name() + "_quantized_min"); SetNodeAttr("dtype", DT_FLOAT, &min_node); Tensor min_tensor(DT_FLOAT, {}); min_tensor.scalar<float>()() = min; SetNodeTensorAttr<float>("value", min_tensor, &min_node); new_nodes->push_back(min_node); NodeDef max_node; max_node.set_op("Const"); max_node.set_name(old_const_node.name() + "_quantized_max"); SetNodeAttr("dtype", DT_FLOAT, &max_node); Tensor max_tensor(DT_FLOAT, {}); max_tensor.scalar<float>()() = max; SetNodeTensorAttr<float>("value", max_tensor, &max_node); new_nodes->push_back(max_node); NodeDef dequantize_node; dequantize_node.set_op("Dequantize"); dequantize_node.set_name(old_const_node.name()); SetNodeAttr("T", DT_QUINT8, &dequantize_node); SetNodeAttr("mode", "MIN_FIRST", &dequantize_node); AddNodeInput(quantized_const_node.name(), &dequantize_node); AddNodeInput(min_node.name(), &dequantize_node); AddNodeInput(max_node.name(), &dequantize_node); new_nodes->push_back(dequantize_node); return OkStatus(); }, {}, output_graph_def)); return OkStatus(); } REGISTER_GRAPH_TRANSFORM("quantize_weights", QuantizeWeights); } }
#include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/image_ops.h" #include "tensorflow/cc/ops/nn_ops.h" #include "tensorflow/cc/ops/sendrecv_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/public/session.h" #include "tensorflow/tools/graph_transforms/transform_utils.h" namespace tensorflow { namespace graph_transforms { Status QuantizeWeights(const GraphDef& input_graph_def, const TransformFuncContext& context, GraphDef* output_graph_def); class QuantizeWeightsTest : public ::testing::Test { protected: void BuildGraphDef(const TensorShape& input_shape, std::initializer_list<float> input_values, const TensorShape& weight_shape, std::initializer_list<float> weight_values, GraphDef* original_graph_def) { auto root = tensorflow::Scope::DisabledShapeInferenceScope(); Tensor input_data(DT_FLOAT, input_shape); test::FillValues<float>(&input_data, input_values); Output input_op = ops::Const(root.WithOpName("input_op"), Input::Initializer(input_data)); Tensor weights_data(DT_FLOAT, weight_shape); test::FillValues<float>(&weights_data, weight_values); Output weights_op = ops::Const(root.WithOpName("weights_op"), Input::Initializer(weights_data)); Output conv_op = ops::Conv2D(root.WithOpName("output"), input_op, weights_op, {1, 1, 1, 1}, "VALID"); TF_ASSERT_OK(root.ToGraphDef(original_graph_def)); } void TestQuantizeWeights() { GraphDef original_graph_def; BuildGraphDef({1, 1, 6, 2}, {1.0f, 4.0f, 2.0f, 5.0f, 3.0f, 6.0f, -1.0f, -4.0f, -2.0f, -5.0f, -3.0f, -6.0f}, {1, 2, 2, 10}, {1.0f, 2.0f, 3.0f, 4.0f, 0.1f, 0.2f, 0.3f, 0.4f, 1.0f, 2.0f, 3.0f, 4.0f, 0.1f, 0.2f, 0.3f, 0.4f, 1.0f, 2.0f, 3.0f, 4.0f, 0.1f, 0.2f, 0.3f, 0.4f, 1.0f, 2.0f, 3.0f, 4.0f, 0.1f, 0.2f, 0.3f, 0.4f, 1.0f, 2.0f, 3.0f, 4.0f, 0.1f, 0.2f, 0.3f, 0.4f}, &original_graph_def); TransformFuncContext context; context.output_names = {"output"}; context.params["minimum_size"] = {"16"}; GraphDef quantized_graph_def; TF_ASSERT_OK( QuantizeWeights(original_graph_def, context, &quantized_graph_def)); std::map<string, const NodeDef*> node_lookup; MapNamesToNodes(quantized_graph_def, &node_lookup); EXPECT_EQ(1, node_lookup.count("input_op")); const NodeDef* q_input_op = node_lookup.at("input_op"); EXPECT_EQ(DT_FLOAT, q_input_op->attr().at("dtype").type()); EXPECT_EQ(1, node_lookup.count("weights_op")); const NodeDef* q_weights_op = node_lookup.at("weights_op"); EXPECT_EQ("Dequantize", q_weights_op->op()); const string& weights_const_name = NodeNameFromInput(q_weights_op->input(0)); EXPECT_EQ(1, node_lookup.count(weights_const_name)); const NodeDef* q_weights_const = node_lookup.at(weights_const_name); EXPECT_EQ("Const", q_weights_const->op()); EXPECT_EQ(DT_QUINT8, q_weights_const->attr().at("dtype").type()); std::unique_ptr<Session> original_session(NewSession(SessionOptions())); TF_ASSERT_OK(original_session->Create(original_graph_def)); std::vector<Tensor> original_outputs; TF_ASSERT_OK(original_session->Run({}, {"output"}, {}, &original_outputs)); std::unique_ptr<Session> quantized_session(NewSession(SessionOptions())); TF_ASSERT_OK(quantized_session->Create(quantized_graph_def)); std::vector<Tensor> quantized_outputs; TF_ASSERT_OK( quantized_session->Run({}, {"output"}, {}, &quantized_outputs)); test::ExpectTensorNear<float>(original_outputs[0], quantized_outputs[0], 0.5); } }; TEST_F(QuantizeWeightsTest, TestQuantizeWeights) { TestQuantizeWeights(); } TEST_F(QuantizeWeightsTest, RangesAlwaysIncludeZero) { GraphDef original_graph_def; BuildGraphDef({1, 1, 4, 4}, {-1.0f, -4.0f, -2.0f, -5.0f, -1.0f, -4.0f, -2.0f, -5.0f, -1.0f, -4.0f, -2.0f, -5.0f, -1.0f, -4.0f, -2.0f, -5.0f}, {1, 2, 2, 10}, {1.0f, 2.0f, 3.0f, 4.0f, 0.1f, 0.2f, 0.3f, 0.4f, 1.0f, 2.0f, 3.0f, 4.0f, 0.1f, 0.2f, 0.3f, 0.4f, 1.0f, 2.0f, 3.0f, 4.0f, 0.1f, 0.2f, 0.3f, 0.4f, 1.0f, 2.0f, 3.0f, 4.0f, 0.1f, 0.2f, 0.3f, 0.4f, 1.0f, 2.0f, 3.0f, 4.0f, 0.1f, 0.2f, 0.3f, 0.4f}, &original_graph_def); TransformFuncContext context; context.output_names = {"output"}; context.params["minimum_size"] = {"16"}; GraphDef quantized_graph_def; TF_ASSERT_OK( QuantizeWeights(original_graph_def, context, &quantized_graph_def)); std::map<string, const NodeDef*> node_lookup; MapNamesToNodes(quantized_graph_def, &node_lookup); auto expected_tensor = [](float value) { Tensor tensor(DT_FLOAT, TensorShape({})); test::FillValues<float>(&tensor, {value}); return tensor; }; auto existing_tensor = [&node_lookup](string op) { const NodeDef* node_def = node_lookup.at(op); CHECK(node_def); return GetNodeTensorAttr(*node_def, "value"); }; test::ExpectTensorNear<float>( expected_tensor(-5.0), existing_tensor("input_op_quantized_min"), 1e-5); test::ExpectTensorNear<float>( expected_tensor(0.0), existing_tensor("input_op_quantized_max"), 1e-5); test::ExpectTensorNear<float>( expected_tensor(0.0), existing_tensor("weights_op_quantized_min"), 1e-5); test::ExpectTensorNear<float>( expected_tensor(4.0), existing_tensor("weights_op_quantized_max"), 1e-5); } } }
848
cpp
tensorflow/tensorflow
quantization_utils
tensorflow/lite/tools/optimize/quantization_utils.cc
tensorflow/lite/tools/optimize/quantization_utils_test.cc
#ifndef TENSORFLOW_CORE_KERNELS_QUANTIZATION_UTILS_H_ #define TENSORFLOW_CORE_KERNELS_QUANTIZATION_UTILS_H_ #include <cmath> #define EIGEN_USE_THREADS #if defined(__ARM_NEON__) || defined(__ARM_NEON) #define QUANTIZATION_UTILS_USE_NEON #include <arm_neon.h> #endif #include <array> #include "unsupported/Eigen/CXX11/Tensor" #define GEMMLOWP_ALLOW_SLOW_SCALAR_FALLBACK #include "public/gemmlowp.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/lib/core/threadpool.h" namespace tensorflow { template <class T> inline int64_t FloatToQuantizedUnclamped(float input, float range_min, float range_max) { const int64_t lowest_quantized = static_cast<double>(Eigen::NumTraits<T>::lowest()); if (range_min == range_max) { return lowest_quantized; } const int number_of_bits = sizeof(T) * 8; const int64_t number_of_steps = static_cast<int64_t>(1) << number_of_bits; const double range_adjust = (number_of_steps / (number_of_steps - 1.0)); const double range = ((range_max - range_min) * range_adjust); const double range_scale = (number_of_steps / range); int64_t quantized = (round(input * range_scale) - round(range_min * range_scale)); quantized += lowest_quantized; return quantized; } template <> inline int64_t FloatToQuantizedUnclamped<float>(float input, float range_min, float range_max) { return -1; } template <class T> T FloatToQuantized(float input, float range_min, float range_max) { if (std::is_same<T, float>::value) { return input; } int64_t quantized = FloatToQuantizedUnclamped<T>(input, range_min, range_max); const int64_t lowest_quantized = static_cast<int64_t>(Eigen::NumTraits<T>::lowest()); const int64_t highest_quantized = static_cast<int64_t>(Eigen::NumTraits<T>::highest()); quantized = std::max(quantized, lowest_quantized); quantized = std::min(quantized, highest_quantized); return static_cast<T>(static_cast<int32>(quantized)); } template <class T> float QuantizedToFloat(T input, float range_min, float range_max) { if (std::is_same<T, float>::value) { return input; } if (range_min == range_max) { return range_min; } const int number_of_bits = sizeof(T) * 8; const int64_t number_of_steps = static_cast<int64_t>(1) << number_of_bits; const double range_adjust = (number_of_steps / (number_of_steps - 1.0)); const double range = ((range_max - range_min) * range_adjust); const double range_scale = (range / number_of_steps); const int64_t lowest_quantized = static_cast<int64_t>(Eigen::NumTraits<T>::lowest()); const double offset_input = static_cast<double>(input) - lowest_quantized; const double range_min_rounded = std::round(range_min / static_cast<float>(range_scale)) * static_cast<float>(range_scale); const double result = range_min_rounded + (offset_input * range_scale); return static_cast<float>(result); } template <class T> float FloatForOneQuantizedLevel(float range_min, float range_max) { const int64_t highest = static_cast<int64_t>(Eigen::NumTraits<T>::highest()); const int64_t lowest = static_cast<int64_t>(Eigen::NumTraits<T>::lowest()); const float float_for_one_quantized_level = (range_max - range_min) / (highest - lowest); return float_for_one_quantized_level; } template <class T1, class T2, class T3> void QuantizationRangeForMultiplication(float min_a, float max_a, float min_b, float max_b, float* min_c, float* max_c) { const float a_float_for_one_quant_level = FloatForOneQuantizedLevel<T1>(min_a, max_a); const float b_float_for_one_quant_level = FloatForOneQuantizedLevel<T2>(min_b, max_b); const int64_t c_highest = static_cast<int64_t>(Eigen::NumTraits<T3>::highest()); const int64_t c_lowest = static_cast<int64_t>(Eigen::NumTraits<T3>::lowest()); const float c_float_for_one_quant_level = a_float_for_one_quant_level * b_float_for_one_quant_level; *min_c = c_float_for_one_quant_level * c_lowest; *max_c = c_float_for_one_quant_level * c_highest; } #define DEQUANTIZE_WITH_EIGEN(input_array, q2f) \ ((q2f.range_min_rounded - q2f.lowest_quantized() * q2f.range_scale) + \ input_array.template cast<float>() * q2f.range_scale) #define QUANTIZE_WITH_EIGEN(input_array, f2q, OutputType) \ ((input_array * f2q.range_scale).round() - \ (f2q.range_min_scaled - f2q.lowest_quantized())) \ .cwiseMax(f2q.lower_bound_float()) \ .cwiseMin(f2q.upper_bound_float()) \ .template cast<int32>() \ .template cast<OutputType>() template <typename T> struct QuantizedToFloatStruct { static constexpr int number_of_bits = sizeof(T) * 8; static constexpr int64_t number_of_steps = static_cast<int64_t>(1) << number_of_bits; static float lowest_quantized() { return static_cast<float>(Eigen::NumTraits<T>::lowest()); } QuantizedToFloatStruct(float range_min, float range_max) : range_min(range_min), range_scale((range_max - range_min) / (number_of_steps - 1.0)), range_min_rounded(range_max == range_min ? range_min : std::round(range_min / range_scale) * range_scale) {} const float range_min; const float range_scale; const float range_min_rounded; }; template <typename T> struct FloatToQuantizedStruct { static constexpr int number_of_bits = sizeof(T) * 8; static constexpr int64_t number_of_steps = static_cast<int64_t>(1) << number_of_bits; static constexpr double range_adjust = (number_of_steps / (number_of_steps - 1.0)); static float lower_bound_float() { return Eigen::numext::maxi( static_cast<float>(Eigen::NumTraits<T>::lowest()), -2.147483648e+09f); } static float upper_bound_float() { return Eigen::numext::mini( static_cast<float>(Eigen::NumTraits<T>::highest()), +2.147483520e+09f); } static float lowest_quantized() { return static_cast<float>(Eigen::NumTraits<T>::lowest()); } FloatToQuantizedStruct(float range_min, float range_max) : range_min(range_min), range_scale(range_max == range_min ? 0.0 : (number_of_steps - 1.0) / (range_max - range_min)), range_min_scaled(std::round(range_min * range_scale)) {} const float range_min; const float range_scale; const float range_min_scaled; }; template <class T1, class T2> inline T2 RequantizeInNewRange(T1 input, float min_input, float max_input, float min_new, float max_new) { const float input_float = QuantizedToFloat<T1>(input, min_input, max_input); return FloatToQuantized<T2>(input_float, min_new, max_new); } template <class T1, class T2> inline void RequantizeManyInNewRange(const T1* input, int64_t count, float min_input, float max_input, float min_output, float max_output, T2* output) { for (size_t index = 0; index < count; ++index) { const float input_float = QuantizedToFloat<T1>(input[index], min_input, max_input); output[index] = FloatToQuantized<T2>(input_float, min_output, max_output); } } inline void RequantizeManyInNewRangeReference(const qint32* input, int64_t count, float min_input, float max_input, float min_output, float max_output, quint8* output) { const int fp_shift = 16; const float input_range = max_input - min_input; const float output_range = max_output - min_output; const float recip_output_range = output_range == 0.0 ? 0.0 : (255.0 / output_range); const float input_rezero = (min_input + max_input) / 2.0; const int64_t range_scale_fp = output_range == 0.0 ? 0.0 : static_cast<int64_t>(255.0 * (1 << fp_shift) * input_range / output_range); const int64_t input_offset_fp = static_cast<int64_t>(input_rezero * recip_output_range * (1 << fp_shift)); const int64_t output_offset_fp = output_range == 0.0 ? 0 : std::lround((1 << fp_shift) * (min_output * 255.0) / output_range); const int64_t rounding_delta = 1 << (fp_shift - 1); for (int64_t index = 0; index < count; ++index) { const int64_t input_value = static_cast<int64_t>(input[index]); const int64_t fp_value = ((input_value * range_scale_fp) >> 32) + input_offset_fp; const int64_t offset_intermediate = fp_value - output_offset_fp; const int64_t round_intermediate = offset_intermediate + rounding_delta; int64_t quantized_int64 = round_intermediate >> fp_shift; quantized_int64 = std::max(quantized_int64, int64_t{0}); quantized_int64 = std::min(quantized_int64, int64_t{255}); output[index] = static_cast<quint8>(static_cast<int32>(quantized_int64)); } } inline void RequantizeManyInNewRange8To32BitReference( const quint8* input, int64_t count, float min_input, float max_input, float min_output, float max_output, qint32* output) { const float code_0_float = QuantizedToFloat<quint8>(0, min_input, max_input); const float code_1_float = QuantizedToFloat<quint8>(1, min_input, max_input); const int64_t code_0_int64 = FloatToQuantizedUnclamped<qint32>(code_0_float, min_output, max_output); const int64_t code_1_int64 = FloatToQuantizedUnclamped<qint32>(code_1_float, min_output, max_output); const int32_t mult_int32 = code_1_int64 - code_0_int64; const int64_t lowest_quantized = static_cast<int64_t>(Eigen::NumTraits<qint32>::lowest()); const int64_t highest_quantized = static_cast<int64_t>(Eigen::NumTraits<qint32>::highest()); for (int64_t i = 0; i < count; ++i) { const int64_t input_value = static_cast<int64_t>(input[i]); int64_t output_value = code_0_int64 + (input_value * mult_int32); output_value = std::max(output_value, lowest_quantized); output_value = std::min(output_value, highest_quantized); output[i] = static_cast<int32>(output_value); } } #ifdef QUANTIZATION_UTILS_USE_NEON inline void RequantizeManyInNewRangeNeon(const qint32* input, int64 count, float min_input, float max_input, float min_output, float max_output, quint8* output) { const int fp_shift = 16; const float input_range = max_input - min_input; const float output_range = max_output - min_output; const float recip_output_range = output_range == 0.0 ? 0.0 : (255.0 / output_range); const float input_rezero = (min_input + max_input) / 2.0; const int32 range_scale_fp = output_range == 0.0 ? 0.0 : static_cast<int32>(255.0 * (1 << (fp_shift - 16)) * input_range / output_range); const int32 input_offset_fp = static_cast<int32>(input_rezero * recip_output_range * (1 << fp_shift)); const int32 output_offset_fp = output_range == 0.0 ? 0 : static_cast<int32>((1 << fp_shift) * (min_output * 255.0) / output_range); const int32 rounding_delta = 1 << (fp_shift - 1); const int32x4_t range_scale_fp_32x4 = vmovq_n_s32(range_scale_fp); const int32x4_t input_offset_fp_32x4 = vmovq_n_s32(input_offset_fp); const int32x4_t output_offset_fp_32x4 = vmovq_n_s32(output_offset_fp); const int32x4_t rounding_delta_32x4 = vmovq_n_s32(rounding_delta); int64 index = 0; for (; index < (count - 7); index += 8) { const int32* input_ptr = &(input->value) + index; const int32x4_t input_value_low_32x4 = vld1q_s32(input_ptr); const int32x4_t input_value_high_32x4 = vld1q_s32(input_ptr + 4); const int32x4_t fp_value_low_32x4 = vaddq_s32( input_offset_fp_32x4, vmulq_s32(vshrq_n_s32(input_value_low_32x4, 16), range_scale_fp_32x4)); const int32x4_t fp_value_high_32x4 = vaddq_s32( input_offset_fp_32x4, vmulq_s32(vshrq_n_s32(input_value_high_32x4, 16), range_scale_fp_32x4)); const int32x4_t offset_intermediate_low_32x4 = vsubq_s32(fp_value_low_32x4, output_offset_fp_32x4); const int32x4_t offset_intermediate_high_32x4 = vsubq_s32(fp_value_high_32x4, output_offset_fp_32x4); const int32x4_t round_intermediate_low_32x4 = vaddq_s32(offset_intermediate_low_32x4, rounding_delta_32x4); const int32x4_t round_intermediate_high_32x4 = vaddq_s32(offset_intermediate_high_32x4, rounding_delta_32x4); const int16x4_t quantized_low_16x4 = vqmovn_s32(vshrq_n_s32(round_intermediate_low_32x4, fp_shift)); const int16x4_t quantized_high_16x4 = vqmovn_s32(vshrq_n_s32(round_intermediate_high_32x4, fp_shift)); const uint8x8_t quantized_8x8 = vqmovun_s16(vcombine_s16(quantized_low_16x4, quantized_high_16x4)); uint8* output_ptr = &(output->value) + index; vst1_u8(output_ptr, quantized_8x8); } for (; index < count; ++index) { const int32 input_value = static_cast<int32>(input[index]); const int32 fp_value = static_cast<int32>( (static_cast<int32>(input_value >> 16) * (range_scale_fp))) + input_offset_fp; const int32 offset_intermediate = fp_value - output_offset_fp; const int32 round_intermediate = offset_intermediate + rounding_delta; int32 quantized_int32 = round_intermediate >> fp_shift; quantized_int32 = std::max(quantized_int32, 0); quantized_int32 = std::min(quantized_int32, 255); output[index] = static_cast<quint8>(static_cast<int32>(quantized_int32)); } } template <> inline void RequantizeManyInNewRange<qint32, quint8>( const qint32* input, int64 count, float min_input, float max_input, float min_output, float max_output, quint8* output) { const float input_range = max_input - min_input; const float output_range = max_output - min_output; if ((input_range / output_range) > 16384.0f) { RequantizeManyInNewRangeReference(input, count, min_input, max_input, min_output, max_output, output); } else { RequantizeManyInNewRangeNeon(input, count, min_input, max_input, min_output, max_output, output); } } template <int POW> inline int16x8_t Divide16x8PowRound(const int16x8_t val) { const int16x8_t val_sign = vshrq_n_s16(val, 15); const int16x8_t val_xor = veorq_s16(val, val_sign); const int16x8_t val_pos = vsubq_s16(val_xor, val_sign); const int16x8_t shifted_val_pos = vrshrq_n_s16(val_pos, POW); const int16x8_t shifted_val_pos_xor = veorq_s16(shifted_val_pos, val_sign); const int16x8_t shifted_val = vsubq_s16(shifted_val_pos_xor, val_sign); return shifted_val; } template <int POW> inline int64x2_t Divide64x2PowRound(const int64x2_t val) { const int64x2_t val_sign = vshrq_n_s64(val, 63); const int64x2_t val_xor = veorq_s64(val, val_sign); const int64x2_t val_pos = vsubq_s64(val_xor, val_sign); const int64x2_t shifted_val_pos = vrshrq_n_s64(val_pos, POW); const int64x2_t shifted_val_pos_xor = veorq_s64(shifted_val_pos, val_sign); const int64x2_t shifted_val = vsubq_s64(shifted_val_pos_xor, val_sign); return shifted_val; } template <int POW> inline int16x8_t Divide16x8Pow(const int16x8_t val) { static constexpr int16 FIRST_BIT_VAL = 0x0000000000000001; static const int16x8_t FIRST_BIT = vmovq_n_s16(FIRST_BIT_VAL); const int16x8_t val_sign = vshrq_n_s16(val, 15); const int16x8_t neg_offset = vandq_s16(val_sign, FIRST_BIT); const int16x8_t val_with_offset = vsubq_s16(val, neg_offset); const int16x8_t shifted_wo_offset = vsraq_n_s16(neg_offset, val_with_offset, POW); return shifted_wo_offset; } template <int POW> inline int64x2_t Divide64x2Pow(const int64x2_t val) { static constexpr int64 FIRST_BIT_VAL = 0x0000000000000001; static const int64x2_t FIRST_BIT = vmovq_n_s64(FIRST_BIT_VAL); const int64x2_t val_sign = vshrq_n_s64(val, 63); const int64x2_t neg_offset = vandq_s64(val_sign, FIRST_BIT); const int64x2_t val_with_offset = vsubq_s64(val, neg_offset); const int64x2_t shifted_wo_offset = vsraq_n_s64(neg_offset, val_with_offset, POW); return shifted_wo_offset; } template <int RESOLUTION> inline int32x2_t ComputeLerp32x2(const int32x2_t top_left, const int32x2_t top_right, const int32x2_t bottom_left, const int32x2_t bottom_right, const int32x2_t x_lerp, const int32x2_t y_lerp) { static_assert(RESOLUTION < 31, "RESOLUTION must be less than 31"); constexpr int32 RESOLUTION_MULT32 = (1 << RESOLUTION); static const int32x2_t RESOLUTION_MULT32x2 = vmov_n_s32(RESOLUTION_MULT32); const int64x2_t top_left_x_res = vmull_s32(top_left, RESOLUTION_MULT32x2); const int64x2_t bottom_left_x_res = vmull_s32(bottom_left, RESOLUTION_MULT32x2); const int32x2_t top_right_sub_top_left = vsub_s32(top_right, top_left); const int64x2_t top_x_res = vmlal_s32(top_left_x_res, top_right_sub_top_left, x_lerp); const int32x2_t bottom_right_sub_bottom_left = vsub_s32(bottom_right, bottom_left); const int64x2_t bottom_x_res = vmlal_s32(bottom_left_x_res, bottom_right_sub_bottom_left, x_lerp); const int64x2_t bottom_sub_top_x_res = vsubq_s64(bottom_x_res, top_x_res); const int64x2_t bottom_sub_top = Divide64x2Pow<RESOLUTION>(bottom_sub_top_x_res); const int32x2_t bottom_sub_top_32 = vqmovn_s64(bottom_sub_top); const int64x2_t top_add_bottom_sub_top_mul_ylerp_x_res = vmlal_s32(top_x_res, bottom_sub_top_32, y_lerp); const int64x2_t retval = Divide64x2PowRound<RESOLUTION>(top_add_bottom_sub_top_mul_ylerp_x_res); const int32x2_t retval32 = vqmovn_s64(retval); return retval32; } template <int RESOLUTION> inline uint8x8_t ComputeLerp8x8(const uint8x8_t top_left8x8, const uint8x8_t top_right8x8, const uint8x8_t bottom_left8x8, const uint8x8_t bottom_right8x8, const int16x8_t x_lerp, const int16x8_t y_lerp) { static_assert(RESOLUTION < 8, "RESOLUTION must be less than 8"); constexpr uint8 RESOLUTION_MULT_VAL = (1 << RESOLUTION); static const uint8x8_t RESOLUTION_MULT = vdup_n_u8(RESOLUTION_MULT_VAL); const int16x8_t top_left_x_res = vreinterpretq_s16_u16(vmull_u8(top_left8x8, RESOLUTION_MULT)); const int16x8_t bottom_left_x_res = vreinterpretq_s16_u16(vmull_u8(bottom_left8x8, RESOLUTION_MULT)); const int16x8_t top_right_sub_top_left = vreinterpretq_s16_u16(vsubl_u8(top_right8x8, top_left8x8)); const int16x8_t top_x_res = vmlaq_s16(top_left_x_res, top_right_sub_top_left, x_lerp); const int16x8_t bottom_right_sub_bottom_left = vreinterpretq_s16_u16(vsubl_u8(bottom_right8x8, bottom_left8x8)); const int16x8_t bottom_x_res = vmlaq_s16(bottom_left_x_res, bottom_right_sub_bottom_left, x_lerp); const int16x8_t bottom_sub_top_x_res = vsubq_s16(bottom_x_res, top_x_res); const int16x8_t bottom_sub_top = Divide16x8Pow<RESOLUTION>(bottom_sub_top_x_res); const int16x8_t top_add_bottom_sub_top_mul_ylerp_x_res = vmlaq_s16(top_x_res, bottom_sub_top, y_lerp); const int16x8_t retval16 = Divide16x8PowRound<RESOLUTION>(top_add_bottom_sub_top_mul_ylerp_x_res); const uint8x8_t retval = vmovn_u16(vreinterpretq_u16_s16(retval16)); return retval; } inline std::array<int32x4_t, 2> Requantize8x8To32Neon( const uint8* input_ptr, const int64x2_t input_0_64x2, const int32x2_t input_mult_32x2) { const uint8x8_t input_value_8x8 = vld1_u8(input_ptr); const int16x8_t input_value_16x8 = vreinterpretq_s16_u16(vmovl_u8(input_value_8x8)); const int16x4_t input_value_low_16x4 = vget_low_s16(input_value_16x8); const int16x4_t input_value_high_16x4 = vget_high_s16(input_value_16x8); const int32x4_t input_value_low_32x4 = vmovl_s16(input_value_low_16x4); const int32x4_t input_value_high_32x4 = vmovl_s16(input_value_high_16x4); const int32x2_t input_value_low_low_32x2 = vget_low_s32(input_value_low_32x4); const int32x2_t input_value_low_high_32x2 = vget_high_s32(input_value_low_32x4); const int32x2_t input_value_high_low_32x2 = vget_low_s32(input_value_high_32x4); const int32x2_t input_value_high_high_32x2 = vget_high_s32(input_value_high_32x4); const int64x2_t mult_result_low_low_64x2 = vmlal_s32(input_0_64x2, input_value_low_low_32x2, input_mult_32x2); const int64x2_t mult_result_low_high_64x2 = vmlal_s32(input_0_64x2, input_value_low_high_32x2, input_mult_32x2); const int64x2_t mult_result_high_low_64x2 = vmlal_s32(input_0_64x2, input_value_high_low_32x2, input_mult_32x2); const int64x2_t mult_result_high_high_64x2 = vmlal_s32(input_0_64x2, input_value_high_high_32x2, input_mult_32x2); const int32x2_t output_value_low_low_32x2 = vqmovn_s64(mult_result_low_low_64x2); const int32x2_t output_value_low_high_32x2 = vqmovn_s64(mult_result_low_high_64x2); const int32x2_t output_value_high_low_32x2 = vqmovn_s64(mult_result_high_low_64x2); const int32x2_t output_value_high_high_32x2 = vqmovn_s64(mult_result_high_high_64x2); const int32x4_t output_value_low_32x4 = vcombine_s32(output_value_low_low_32x2, output_value_low_high_32x2); const int32x4_t output_value_high_32x4 = vcombine_s32(output_value_high_low_32x2, output_value_high_high_32x2); return std::array<int32x4_t, 2>{ {output_value_low_32x4, output_value_high_32x4}}; } template <> inline void RequantizeManyInNewRange<quint8, qint32>( const quint8* input, int64 count, float min_input, float max_input, float min_output, float max_output, qint32* output) { const float code_0_float = QuantizedToFloat<quint8>(0, min_input, max_input); const float code_1_float = QuantizedToFloat<quint8>(1, min_input, max_input); const int64 code_0_int64 = FloatToQuantizedUnclamped<qint32>(code_0_float, min_output, max_output); const int64 code_1_int64 = FloatToQuantizedUnclamped<qint32>(code_1_float, min_output, max_output); const int32 mult_int32 = static_cast<int32>(code_1_int64 - code_0_int64); const int64x2_t code_0_64x2 = vmovq_n_s64(code_0_int64); const int32x2_t mult_32x2 = vmov_n_s32(mult_int32); int64 i = 0; for (; i < (count - 7); i += 8) { const uint8* input_ptr = &(input->value) + i; int32* output_ptr = &(output->value) + i; const std::array<int32x4_t, 2> output_value = Requantize8x8To32Neon(input_ptr, code_0_64x2, mult_32x2); vst1q_s32(output_ptr + 0, output_value[0]); vst1q_s32(output_ptr + 4, output_value[1]); } const int64 lowest_quantized = static_cast<int64_t>(Eigen::NumTraits<qint32>::lowest()); const int64 highest_quantized = static_cast<int64_t>(Eigen::NumTraits<qint32>::highest()); for (; i < count; ++i) { const int64 input_value = static_cast<int64_t>(input[i]); int64 output_value = code_0_int64 + (input_value * mult_int32); output_value = std::max(output_value, lowest_quantized); output_value = std::min(output_value, highest_quantized); output[i] = static_cast<int32>(output_value); } } #else template <> inline void RequantizeManyInNewRange<qint32, quint8>( const qint32* input, int64_t count, float min_input, float max_input, float min_output, float max_output, quint8* output) { RequantizeManyInNewRangeReference(input, count, min_input, max_input, min_output, max_output, output); } template <> inline void RequantizeManyInNewRange<quint8, qint32>( const quint8* input, int64_t count, float min_input, float max_input, float min_output, float max_output, qint32* output) { RequantizeManyInNewRange8To32BitReference(input, count, min_input, max_input, min_output, max_output, output); } #endif template <int shift> struct int64_right_shift_op { EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const int64_t operator()(const int64_t a) const { return a >> shift; } }; template <class T1, class T2> inline void RequantizeManyInNewRangeUsingEigen( const Eigen::ThreadPoolDevice& device, const Tensor& input, float min_input, float max_input, float min_output, float max_output, Tensor* output) { auto input_array = input.flat<T1>(); QuantizedToFloatStruct<T1> q2f(min_input, max_input); auto input_float = DEQUANTIZE_WITH_EIGEN(input_array, q2f); FloatToQuantizedStruct<T2> f2q(min_output, max_output); auto input_requantized = QUANTIZE_WITH_EIGEN(input_float, f2q, T2); output->flat<T2>().device(device) = input_requantized; } template <> inline void RequantizeManyInNewRangeUsingEigen<qint32, quint8>( const Eigen::ThreadPoolDevice& device, const Tensor& input, float min_input, float max_input, float min_output, float max_output, Tensor* output) { const int fp_shift = 16; const float input_range = max_input - min_input; const float output_range = max_output - min_output; const float recip_output_range = output_range == 0.0 ? 0.0 : (255.0 / output_range); const float input_rezero = (min_input + max_input) / 2.0; const int64_t range_scale_fp = output_range == 0.0 ? 0.0 : static_cast<int64_t>(255.0 * (1 << fp_shift) * input_range / output_range); const int64_t input_offset_fp = static_cast<int64_t>(input_rezero * recip_output_range * (1 << fp_shift)); const int64_t output_offset_fp = output_range == 0.0 ? 0 : std::lround((1 << fp_shift) * (min_output * 255.0) / output_range); const int64_t rounding_delta = 1 << (fp_shift - 1); auto input_array = input.flat<qint32>(); auto fp_value = ((input_array.template cast<int64_t>() * range_scale_fp) .unaryExpr(int64_right_shift_op<32>())) + (input_offset_fp - output_offset_fp + rounding_delta); auto intermediate = fp_
#include <cmath> #define EIGEN_USE_THREADS #include <limits> #include "unsupported/Eigen/CXX11/Tensor" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/kernels/quantization_utils.h" #include "tensorflow/core/lib/core/threadpool.h" #include "tensorflow/core/lib/random/simple_philox.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { void TestRequantizeMany(Eigen::ThreadPoolDevice* eigen_device, float input_min, float input_max, float output_min, float output_max, const std::vector<qint32>& values_quantized, int tolerance = 1) { const int values_count = values_quantized.size(); std::vector<quint8> expected_values; expected_values.reserve(values_count); for (int value_index = 0; value_index < values_count; ++value_index) { expected_values.push_back(FloatToQuantized<quint8>( QuantizedToFloat(values_quantized[value_index], input_min, input_max), output_min, output_max)); } Tensor i_tensor = tensorflow::test::AsTensor(absl::Span<const qint32>(values_quantized)); Tensor o_tensor(DT_QUINT8, TensorShape{values_count}); auto output_values = o_tensor.flat<quint8>(); if (eigen_device == nullptr) { auto input_array = i_tensor.flat<qint32>(); RequantizeManyInNewRange(input_array.data(), input_array.size(), input_min, input_max, output_min, output_max, output_values.data()); } else { RequantizeManyInNewRangeUsingEigen<qint32, quint8>( *eigen_device, i_tensor, input_min, input_max, output_min, output_max, &o_tensor); } const string tolerance_str = strings::StrCat("+-", tolerance); for (size_t value_index = 0; value_index < values_count; ++value_index) { int e = expected_values[value_index]; int v = output_values(value_index); ASSERT_TRUE(std::abs(e - v) <= tolerance) << "actual=" << v << ", expected=" << e << tolerance_str << ", values_quantized[" << value_index << "]=" << values_quantized[value_index] << ", input_min=" << input_min << ", input_max=" << input_max << ", output_min=" << output_min << ", output_max=" << output_max << ", value_index=" << value_index; } } void TestRequantizeMany8To32Bit(float input_min, float input_max, float output_min, float output_max, const std::vector<quint8>& values_quantized, int tolerance = 256) { const int values_count = values_quantized.size(); std::vector<qint32> expected_values; expected_values.reserve(values_count); for (int value_index = 0; value_index < values_count; ++value_index) { expected_values.push_back(FloatToQuantized<qint32>( QuantizedToFloat(values_quantized[value_index], input_min, input_max), output_min, output_max)); } const Tensor i_tensor = tensorflow::test::AsTensor(absl::Span<const quint8>(values_quantized)); Tensor o_tensor(DT_QINT32, TensorShape{values_count}); auto output_values = o_tensor.flat<qint32>(); const auto input_array = i_tensor.flat<quint8>(); RequantizeManyInNewRange(input_array.data(), input_array.size(), input_min, input_max, output_min, output_max, output_values.data()); const string tolerance_str = strings::StrCat("+-", tolerance); for (int value_index = 0; value_index < values_count; ++value_index) { const qint32 e = expected_values[value_index]; const qint32 v = output_values(value_index); ASSERT_TRUE(std::abs(e - v) <= tolerance) << "actual=" << v << ", expected=" << e << tolerance_str << ", values_quantized[" << value_index << "]=" << values_quantized[value_index] << ", input_min=" << input_min << ", input_max=" << input_max << ", output_min=" << output_min << ", output_max=" << output_max << ", value_index=" << value_index; } } void TestRequantizeManyInNewRange32To8Bit( Eigen::ThreadPoolDevice* eigen_device) { if (true) { const size_t values_count = 6; const float values[values_count] = {0.0f, 0.45f, 1.0f, -1.0f, 127.0f, 255.0f}; const size_t ranges_count = 6; const float ranges[ranges_count][4] = { {0.0f, 255.0f, 0.0f, 255.0f}, {0.0f, 1.0f, 0.0f, 1.0f}, {-1.0f, 1.0f, -1.0f, 1.0f}, {-1.0f, 1.0f, -255.0f, 255.0f}, {3.0f, 3.0f, 0.0f, 255.0f}, {0.0f, 255.0f, 5.0f, 5.0f}, }; for (int i = 0; i < ranges_count; ++i) { const auto& r = ranges[i]; std::vector<qint32> values_quantized; for (int value_index = 0; value_index < values_count; ++value_index) { const float v = values[value_index]; values_quantized.push_back(FloatToQuantized<qint32>(v, r[0], r[1])); } TestRequantizeMany(eigen_device, r[0], r[1], r[2], r[3], values_quantized); } qint32 low = Eigen::NumTraits<qint32>::lowest(); qint32 high = Eigen::NumTraits<qint32>::highest(); std::vector<qint32> vals{low, high}; int num_steps = 14419; qint32 step = static_cast<int32>((1LL << 32) / num_steps); qint32 v = low + static_cast<qint32>(1); for (int i = 0; i < num_steps; ++i) { vals.push_back(v); v += step; } TestRequantizeMany(eigen_device, -1.0f, 1.0f, -1.0f, 1.0f, vals); TestRequantizeMany(eigen_device, -255.0f, 255.0f, -255.0f, 255.0f, vals); TestRequantizeMany(eigen_device, -1.0f, 1.0f, -12345678.0f, 12345678.0f, vals); TestRequantizeMany(eigen_device, -1.0f, 12345678.0f, -12345678.0f, 12345678.0f, vals); } const float out_min = -29.1234; const float out_max = 23.1234; const float in_min = -1e6; const float in_max = 1e6; qint32 low = FloatToQuantized<qint32>(out_min, in_min, in_max); qint32 high = FloatToQuantized<qint32>(out_max, in_min, in_max); std::vector<qint32> vals; vals.clear(); for (int32_t i = low; i <= high; ++i) vals.push_back(i); TestRequantizeMany(eigen_device, in_min, in_max, out_min, out_max, vals); } void TestRequantizeManyInNewRange8To32Bit() { const size_t values_count = 6; const float values[values_count] = {0.0f, 0.45f, 1.0f, -1.0f, 127.0f, 255.0f}; const size_t ranges_count = 6; const float ranges[ranges_count][4] = { {0.0f, 255.0f, 0.0f, 255.0f}, {0.0f, 1.0f, 0.0f, 1.0f}, {-1.0f, 1.0f, -1.0f, 1.0f}, {-1.0f, 1.0f, -255.0f, 255.0f}, {3.0f, 3.0f, 0.0f, 255.0f}, {0.0f, 255.0f, 5.0f, 5.0f}, }; for (int i = 0; i < ranges_count; ++i) { const auto& r = ranges[i]; std::vector<quint8> values_quantized; for (int value_index = 0; value_index < values_count; ++value_index) { const float v = values[value_index]; values_quantized.push_back(FloatToQuantized<quint8>(v, r[0], r[1])); } TestRequantizeMany8To32Bit(r[0], r[1], r[2], r[3], values_quantized); } int low = Eigen::NumTraits<quint8>::lowest(); int high = Eigen::NumTraits<quint8>::highest(); std::vector<quint8> vals; for (int val = low; val <= high; ++val) { vals.push_back(val); } TestRequantizeMany8To32Bit(-1.0f, 1.0f, -1.0f, 1.0f, vals); TestRequantizeMany8To32Bit(-255.0f, 255.0f, -255.0f, 255.0f, vals); TestRequantizeMany8To32Bit(-1.0f, 1.0f, -12345678.0f, 12345678.0f, vals); TestRequantizeMany8To32Bit(-1.0f, 12345678.0f, -12345678.0f, 12345678.0f, vals); } template <typename InputType, typename OutputType> void TestRequantizeManyInNewRangeEigenVsNonEigen() { thread::ThreadPool threadpool(Env::Default(), "test", 2 ); Eigen::ThreadPoolDevice eigen_device(threadpool.AsEigenThreadPool(), 2 ); const size_t ranges_count = 6; const float ranges[ranges_count][4] = { {0.0f, 255.0f, 0.0f, 255.0f}, {0.0f, 1.0f, 0.0f, 1.0f}, {-1.0f, 1.0f, -1.0f, 1.0f}, {-1.0f, 1.0f, -255.0f, 255.0f}, {3.0f, 3.0f, 0.0f, 255.0f}, {0.0f, 255.0f, 5.0f, 5.0f}, }; for (size_t range_index = 0; range_index < ranges_count; ++range_index) { const float input_min = ranges[range_index][0]; const float input_max = ranges[range_index][1]; const float output_min = ranges[range_index][2]; const float output_max = ranges[range_index][3]; const int values_count = 10000; random::PhiloxRandom philox(testing::RandomSeed(), 17); random::SimplePhilox rnd(&philox); std::vector<InputType> values_quantized; for (int i = 0; i < values_count; ++i) { float v = (rnd.RandFloat() * (input_max - input_min)) + input_min; values_quantized.push_back( FloatToQuantized<InputType>(v, input_min, input_max)); } Tensor i_tensor = tensorflow::test::AsTensor( gtl::ArraySlice<InputType>(values_quantized)); const auto i_array = i_tensor.flat<InputType>(); Tensor o_tensor_eigen(DataTypeToEnum<OutputType>::v(), TensorShape{values_count}); auto output_values_eigen = o_tensor_eigen.flat<OutputType>(); Tensor o_tensor_ref(DataTypeToEnum<OutputType>::v(), TensorShape{values_count}); auto output_values_ref = o_tensor_ref.flat<OutputType>(); RequantizeManyInNewRange(i_array.data(), i_array.size(), input_min, input_max, output_min, output_max, output_values_ref.data()); RequantizeManyInNewRangeUsingEigen<InputType, OutputType>( eigen_device, i_tensor, input_min, input_max, output_min, output_max, &o_tensor_eigen); const int tolerance = 1; for (int i = 0; i < values_quantized.size(); ++i) { auto expected = output_values_ref(i); auto actual = output_values_eigen(i); ASSERT_TRUE(std::abs(expected - actual) <= tolerance) << "expected=" << expected << " actual=" << actual << " tolerance=" << tolerance << " v=" << values_quantized[i] << " i=" << i << " input_min=" << input_min << " input_max=" << input_max << " input_type=" << DataTypeString(DataTypeToEnum<InputType>::v()) << " output_type=" << DataTypeString(DataTypeToEnum<OutputType>::v()); } } } template <typename InputType, typename OutputType> void TimeRequantizeManyInNewRange(int64_t num_elements, int64_t iterations, bool use_eigen) { const float input_min = -100.0f; const float input_max = 100.0f; const float output_min = -1000000.0f; const float output_max = 1000000.0f; random::PhiloxRandom philox(testing::RandomSeed(), 17); random::SimplePhilox rnd(&philox); std::vector<InputType> values_quantized; for (int i = 0; i < num_elements; ++i) { float v = (rnd.RandFloat() * (input_max - input_min)) + input_min; values_quantized.push_back( FloatToQuantized<InputType>(v, input_min, input_max)); } thread::ThreadPool threadpool(Env::Default(), "test", 4 ); Eigen::ThreadPoolDevice eigen_device(threadpool.AsEigenThreadPool(), 4 ); Tensor i_tensor = tensorflow::test::AsTensor(gtl::ArraySlice<InputType>(values_quantized)); const auto i_array = i_tensor.flat<InputType>(); Tensor o_tensor_eigen(DataTypeToEnum<OutputType>::v(), TensorShape{num_elements}); Tensor o_tensor_ref(DataTypeToEnum<OutputType>::v(), TensorShape{num_elements}); auto output_values_ref = o_tensor_ref.flat<OutputType>(); int64_t total_duration = 0; for (int i = 0; i < iterations; ++i) { const int64_t start_time = Env::Default()->NowMicros(); if (use_eigen) { RequantizeManyInNewRangeUsingEigen<InputType, OutputType>( eigen_device, i_tensor, input_min, input_max, output_min, output_max, &o_tensor_eigen); } else { RequantizeManyInNewRange<InputType, OutputType>( i_array.data(), i_array.size(), input_min, input_max, output_min, output_max, output_values_ref.data()); } const int64_t end_time = Env::Default()->NowMicros(); total_duration += end_time - start_time; } const int64_t one_run_duration = total_duration / iterations; const int64_t num_ops = num_elements; const double million_ops_per_second = (iterations * num_ops) / static_cast<double>(total_duration); LOG(INFO) << "TimeRequantizeManyInNewRange: " << num_elements << (use_eigen ? " eigen" : " ref") << ": iterations=" << iterations << ", MOps/s=" << million_ops_per_second << ", one_run_duration=" << one_run_duration << ", total_duration=" << total_duration; } template <typename T> void TestFloatToQuantizedInPlaceUsingEigen( Eigen::ThreadPoolDevice* eigen_device) { typedef std::pair<float, float> FPair; for (FPair min_and_max : std::vector<FPair>{FPair(-255.0f, 255.0f), FPair(-1.0f, 1.0f), FPair(-1.0f, 255.0f), FPair(0.0f, 1e6), FPair(0.0f, 1.0f), FPair(-31.0f, 13.0f)}) { const float f_min = min_and_max.first; const float f_max = min_and_max.second; const float f_range = f_max - f_min; const int values_count = 50000; Tensor input(DT_FLOAT, TensorShape{values_count}); auto input_array = input.flat<float>(); for (int i = 0; i < values_count; ++i) { input_array(i) = f_min + f_range * i / (values_count - 1); } Tensor output(DataTypeToEnum<T>::v(), TensorShape{values_count}); FloatTensorToQuantizedInPlaceUsingEigen<T>(*eigen_device, input, f_min, f_max, &output); auto output_array = output.flat<T>(); const int tolerance = 1; for (int i = 0; i < values_count; ++i) { int32_t expected = FloatToQuantized<T>(input_array(i), f_min, f_max); int32_t actual = output_array(i); ASSERT_TRUE(std::abs(expected - actual) <= tolerance) << "expected=" << expected << " actual=" << actual << " tolerance=" << tolerance << " v=" << input_array(i) << " i=" << i << " f_min=" << f_min << " f_max=" << f_max << " type=" << DataTypeString(DataTypeToEnum<T>::v()); } } } template <typename T> void TestQuantizedToFloatInPlaceUsingEigen( Eigen::ThreadPoolDevice* eigen_device) { typedef std::pair<float, float> FPair; for (FPair min_and_max : std::vector<FPair>{ FPair(-255.0f, 255.0f), FPair(-1.0f, 1.0f), FPair(-1.0f, 255.0f), FPair(0.0f, 1e6), FPair(0.0f, 1.0f), FPair(-31.0f, 13.0f), FPair(-5.89505e+08, 5.89505e+08), }) { const float f_min = min_and_max.first; const float f_max = min_and_max.second; const int values_count = sizeof(T) == 1 ? 256 : 50000; Tensor input(DataTypeToEnum<T>::v(), TensorShape{values_count}); auto input_array = input.flat<T>(); const double q_range = static_cast<double>(Eigen::NumTraits<T>::highest()) - Eigen::NumTraits<T>::lowest(); for (int i = 0; i < values_count; ++i) { if (sizeof(T) == 1) { input_array(i) = Eigen::NumTraits<T>::lowest() + i; } else { int64_t offset = static_cast<int64_t>(q_range / values_count * i); input_array(i) = static_cast<int32>( std::min<int64_t>(Eigen::NumTraits<T>::lowest() + offset, Eigen::NumTraits<T>::highest())); } } Tensor output(DT_FLOAT, TensorShape{values_count}); QuantizedTensorToFloatInPlaceUsingEigen<T>(*eigen_device, input, f_min, f_max, &output); auto output_array = output.flat<float>(); const double range = static_cast<double>(f_max) - f_min; for (int i = 0; i < values_count; ++i) { float expected = QuantizedToFloat<T>(input_array(i), f_min, f_max); float actual = output_array(i); ASSERT_NEAR(expected, actual, range * 1.1e-7) << "expected=" << expected << " actual=" << actual << " v=" << input_array(i) << " i=" << i << " f_min=" << f_min << " f_max=" << f_max << " type=" << DataTypeString(DataTypeToEnum<T>::v()); } } } } void TestFloatToQuantized() { EXPECT_EQ(quint8(0), FloatToQuantized<quint8>(0.0f, 0.0f, 1.0f)); EXPECT_EQ(quint8(0), FloatToQuantized<quint8>(0.0f, 0.0f, 2.0f)); EXPECT_EQ(quint8(128), FloatToQuantized<quint8>(0.5f, 0.0f, 1.0f)); EXPECT_EQ(quint8(128), FloatToQuantized<quint8>(1.0f, 0.0f, 2.0f)); EXPECT_EQ(quint8(255), FloatToQuantized<quint8>(1.0f, 0.0f, 1.0f)); EXPECT_EQ(quint8(255), FloatToQuantized<quint8>(2.0f, 0.0f, 2.0f)); EXPECT_EQ(quint8(0), FloatToQuantized<quint8>(-128.0f, -128.0f, 127.0f)); EXPECT_EQ(quint8(128), FloatToQuantized<quint8>(0.0f, -128.0f, 127.0f)); EXPECT_EQ(quint8(255), FloatToQuantized<quint8>(127.0f, -128.0f, 127.0f)); EXPECT_EQ(quint8(0), FloatToQuantized<quint8>(1.0f, 1.0f, 256.0f)); EXPECT_EQ(quint8(127), FloatToQuantized<quint8>(128.0f, 1.0f, 256.0f)); EXPECT_EQ(quint8(255), FloatToQuantized<quint8>(256.0f, 1.0f, 256.0f)); const int int32_min = std::numeric_limits<int>::min(); const int int32_max = std::numeric_limits<int>::max(); EXPECT_EQ(qint32(int32_min), FloatToQuantized<qint32>(-128.0f, -128.0f, 128.0f)); EXPECT_EQ(qint32(0), FloatToQuantized<qint32>(0.0f, -128.0f, 128.0f)); EXPECT_EQ(qint32(int32_max), FloatToQuantized<qint32>(128.0f, -128.0f, 128.0f)); } void TestQuantizedToFloat() { EXPECT_LT(fabsf(0.0f - QuantizedToFloat<quint8>(0, 0.0f, 1.0f)), 1 / 255.0f); EXPECT_LT(fabsf(0.0f - QuantizedToFloat<quint8>(0, 0.0f, 2.0f)), 1 / 255.0f); EXPECT_LT(fabsf(0.5f - QuantizedToFloat<quint8>(127, 0.0f, 1.0f)), 1 / 255.0f); EXPECT_LT(fabsf(1.0f - QuantizedToFloat<quint8>(127, 0.0f, 2.0f)), 1 / 255.0f); EXPECT_LT(fabsf(1.0f - QuantizedToFloat<quint8>(255, 0.0f, 1.0f)), 1 / 255.0f); EXPECT_LT(fabsf(2.0f - QuantizedToFloat<quint8>(255, 0.0f, 2.0f)), 1 / 255.0f); EXPECT_LT(fabsf(1.0f - QuantizedToFloat<quint8>(0, 1.0f, 256.0f)), 1 / 255.0f); EXPECT_LT(fabsf(128.0f - QuantizedToFloat<quint8>(127, 1.0f, 256.0f)), 1 / 255.0f); EXPECT_LT(fabsf(256.0f - QuantizedToFloat<quint8>(255, 1.0f, 256.0f)), 1 / 255.0f); const int int32_min = std::numeric_limits<int>::min(); const int int32_max = std::numeric_limits<int>::max(); EXPECT_NEAR(-1.0f, QuantizedToFloat<qint32>(qint32(int32_min), -1.0f, 1.0f), 1e-5f); EXPECT_NEAR(0.0f, QuantizedToFloat<qint32>(qint32(0), -1.0f, 1.0f), 1e-5f); EXPECT_NEAR(1.0f, QuantizedToFloat<qint32>(qint32(int32_max), -1.0f, 1.0f), 1e-5f); EXPECT_NEAR(32.0f, QuantizedToFloat<qint32>(qint32(32), int32_min, int32_max), 1.0); } void TestAvoidBias() { for (int i = 0; i < 256; ++i) { const float as_float = QuantizedToFloat<quint8>(i, 0.0f, 2.0f); const int back_to_int = FloatToQuantized<quint8>(as_float, 0.0f, 2.0f); EXPECT_EQ(i, back_to_int); } const float min = -0.1375f; const float max = 1.1385f; const float step_size = (max - min) / 255.0f; const float tolerance = step_size / 1000.0f; float first_float = std::ceil(min / step_size) * step_size; for (float f = first_float; f <= max; f += step_size) { const int as_int = FloatToQuantized<quint8>(f, min, max); const float back_to_float = QuantizedToFloat<quint8>(as_int, min, max); EXPECT_NEAR(f, back_to_float, tolerance); } } void TestRequantizeInNewRange() { const size_t values_count = 6; const float values[values_count] = {0.0f, 0.5f, 1.0f, -1.0f, 127.0f, 255.0f}; const size_t ranges_count = 4; const float ranges[ranges_count][4] = { {0.0f, 255.0f, 0.0f, 255.0f}, {0.0f, 1.0f, 0.0f, 1.0f}, {-1.0f, 1.0f, -1.0f, 1.0f}, {-1.0f, 1.0f, -255.0f, 255.0f}, }; for (size_t value_index = 0; value_index < values_count; ++value_index) { const float value_float = values[value_index]; for (size_t range_index = 0; range_index < ranges_count; ++range_index) { const float input_min = ranges[range_index][0]; const float input_max = ranges[range_index][1]; const float output_min = ranges[range_index][2]; const float output_max = ranges[range_index][3]; const quint8 input_value = FloatToQuantized<quint8>(value_float, input_min, input_max); const qint32 expected_value = FloatToQuantized<qint32>( QuantizedToFloat(input_value, input_min, input_max), output_min, output_max); EXPECT_EQ(expected_value, (RequantizeInNewRange<quint8, qint32>( input_value, input_min, input_max, output_min, output_max))) << "value_float=" << value_float << ", input_min=" << input_min << ", input_max=" << input_max << ", output_min=" << output_min << ", output_max=" << output_max; } } } void TestRequantizeInNewRangeRealData() { const float input_min = -0.739539f; const float input_max = 0.641057f; const float output_min = -2381.49f; const float output_max = 2207.6f; const float value_as_float = QuantizedToFloat<quint8>(83, input_min, input_max); const quint8 value_as_quint8 = FloatToQuantized<quint8>(value_as_float, input_min, input_max); EXPECT_EQ(quint8(83), value_as_quint8); const qint32 actual_output = RequantizeInNewRange<quint8, qint32>( value_as_quint8, input_min, input_max, output_min, output_max); const qint32 value_as_qint32 = FloatToQuantized<qint32>(value_as_float, output_min, output_max); EXPECT_LT(std::abs(value_as_qint32 - actual_output), 10); } void TestRequantizeInNewRange32To8Bit() { const size_t values_count = 6; const float values[values_count] = {0.0f, 0.45f, 1.0f, -1.0f, 127.0f, 255.0f}; const size_t ranges_count = 4; const float ranges[ranges_count][4] = { {0.0f, 255.0f, 0.0f, 255.0f}, {0.0f, 1.0f, 0.0f, 1.0f}, {-1.0f, 1.0f, -1.0f, 1.0f}, {-1.0f, 1.0f, -255.0f, 255.0f}, }; for (size_t value_index = 0; value_index < values_count; ++value_index) { const float value_float = values[value_index]; for (size_t range_index = 0; range_index < ranges_count; ++range_index) { const float input_min = ranges[range_index][0]; const float input_max = ranges[range_index][1]; const float output_min = ranges[range_index][2]; const float output_max = ranges[range_index][3]; const qint32 input_value = FloatToQuantized<qint32>(value_float, input_min, input_max); const quint8 expected_value = FloatToQuantized<quint8>( QuantizedToFloat(input_value, input_min, input_max), output_min, output_max); EXPECT_EQ(expected_value, (RequantizeInNewRange<qint32, quint8>( input_value, input_min, input_max, output_min, output_max))) << "input_value=" << input_value << ", value_float=" << value_float << ", input_min=" << input_min << ", input_max=" << input_max << ", output_min=" << output_min << ", output_max=" << output_max; } } } void TestRequantizeManyInNewRange32To8Bit() { TestRequantizeManyInNewRange32To8Bit(nullptr ); } void TestRequantizeManyInNewRange32To8BitUsingEigen() { thread::ThreadPool threadpool(Env::Default(), "test", 2 ); Eigen::ThreadPoolDevice eigen_device(threadpool.AsEigenThreadPool(), 2 ); TestRequantizeManyInNewRange32To8Bit(&eigen_device); } void TestRequantizeManyInNewRange32To8BitEigenVsNonEigen() { TestRequantizeManyInNewRangeEigenVsNonEigen<qint32, quint8>(); } void TestRequantizeManyInNewRange32To8BitSignedEigenVsNonEigen() { TestRequantizeManyInNewRangeEigenVsNonEigen<qint32, qint8>(); } void TestFloatTensorToQuantized() { const int input_width = 3; const int input_height = 3; const float input_min = 0.0f; const float input_max = 255.0f; Tensor input(DT_FLOAT, TensorShape({input_height, input_width})); test::FillValues<float>(&input, {1.0f, -1.0f, 10.0f, 10.25f, 127.0f, 255.0f, 512.0f, 0.0f, 23.0f}); Tensor expected(DT_QUINT8, TensorShape({input_height, input_width})); test::FillValues<quint8>(&expected, {1, 0, 10, 10, 127, 255, 255, 0, 23}); Tensor output = FloatTensorToQuantized<quint8>(input, input_min, input_max); test::ExpectTensorEqual<quint8>(expected, output); } void TestFloatToQuantizedInPlaceUsingEigen() { thread::ThreadPool threadpool(Env::Default(), "test", 2 ); Eigen::ThreadPoolDevice eigen_device(threadpool.AsEigenThreadPool(), 2 ); TestFloatToQuantizedInPlaceUsingEigen<quint8>(&eigen_device); TestFloatToQuantizedInPlaceUsingEigen<qint8>(&eigen_device); TestFloatToQuantizedInPlaceUsingEigen<quint16>(&eigen_device); TestFloatToQuantizedInPlaceUsingEigen<qint16>(&eigen_device); } void TestOverflowWithEigen() { thread::ThreadPool threadpool(Env::Default(), "test", 2 ); Eigen::ThreadPoolDevice eigen_device(threadpool.AsEigenThreadPool(), 2 ); const int num_vals = 4; const float input_min = 0.0f; const float input_max = 2400.0f; TensorShape shape({num_vals}); Tensor input(DT_FLOAT, shape); test::FillValues<float>(&input, {-100.f, 0.f, 2400.0f, 2400.0f}); Tensor expected(DT_QINT32, shape); test::FillValues<qint32>( &expected, {static_cast<int32>(-2147483648), static_cast<int32>(-2147483648), static_cast<int32>(2147483520), static_cast<int32>(2147483520)}); FloatToQuantizedStruct<qint32> f2q(input_min, input_max); Tensor output(DT_QINT32, shape); auto input_array = input.flat<float>(); output.flat<qint32>() = QUANTIZE_WITH_EIGEN(input_array, f2q, qint32); test::ExpectTensorEqual<qint32>(expected, output); } void TestQuantizedTensorToFloat() { const int input_width = 3; const int input_height = 3; const float input_min = -128.0f; const float input_max = 127.0f; Tensor input(DT_QUINT8, TensorShape({input_height, input_width})); test::FillValues<quint8>(&input, {0, 128, 255, 23, 24, 25, 243, 244, 245}); Tensor expected(DT_FLOAT, TensorShape({input_height, input_width})); test::FillValues<float>(&expected, {-128.0f, 0.0f, 127.0f, -105.0f, -104.0f, -103.0f, 115.0f, 116.0f, 117.0f}); Tensor output = QuantizedTensorToFloat<quint8>(input, input_min, input_max); test::ExpectTensorEqual<float>(expected, output); Tensor input32(DT_QINT32, TensorShape({input_height, input_width})); float input_range = 1LL << 25; int64_t num_levels = (1LL << 32) - 1; float step_size = static_cast<float>(static_cast<double>(input_range) / num_levels); float q_compatible_min_value = roundf(-(input_range / 2.0) / step_size) * step_size; float q_compatible_max_value = q_compatible_min_value + input_range; test::FillValues<qint32>(&input32, {-16384, 0, 16256, -13440, -13312, -13184, 14720, 14848, 14976}); Tensor output32 = QuantizedTensorToFloat<qint32>( input32, q_compatible_min_value, q_compatible_max_value); test::FillValues<float>(&expected, {-128.0f, 0.0f, 127.0f, -105.0f, -104.0f, -103.0f, 115.0f, 116.0f, 117.0f}); const double kTolerance = .5 / 128.0; test::ExpectTensorNear<float>(expected, output32, kTolerance); } void TestQuantizedToFloatInPlaceUsingEigen() { thread::ThreadPool threadpool(Env::Default(), "test", 2 ); Eigen::ThreadPoolDevice eigen_device(threadpool.AsEigenThreadPool(), 2 ); TestQuantizedToFloatInPlaceUsingEigen<quint8>(&eigen_device); TestQuantizedToFloatInPlaceUsingEigen<qint8>(&eigen_device); TestQuantizedToFloatInPlaceUsingEigen<quint16>(&eigen_device); TestQuantizedToFloatInPlaceUsingEigen<qint16>(&eigen_device); TestQuantizedToFloatInPlaceUsingEigen<qint32>(&eigen_device); } void BenchmarkRequantizeManyInNewRange() { TimeRequantizeManyInNewRange<qint32, quint8>(1000, 1000, false); TimeRequantizeManyInNewRange<qint32, quint8>(1000, 1000, true); TimeRequantizeManyInNewRange<qint32, quint8>(100000, 100, false); TimeRequantizeManyInNewRange<qint32, qu
849
cpp
tensorflow/tensorflow
modify_model_interface
tensorflow/lite/tools/optimize/python/modify_model_interface.cc
tensorflow/lite/tools/optimize/modify_model_interface_test.cc
#ifndef TENSORFLOW_LITE_TOOLS_OPTIMIZE_MODIFY_MODEL_INTERFACE_H_ #define TENSORFLOW_LITE_TOOLS_OPTIMIZE_MODIFY_MODEL_INTERFACE_H_ #include "tensorflow/lite/core/model.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace optimize { TfLiteStatus ModifyModelInterface(flatbuffers::FlatBufferBuilder* builder, ModelT* model, const TensorType& input_type, const TensorType& output_type); TfLiteStatus ModifyModelInterface(const string& input_file, const string& output_file, const TensorType& input_type, const TensorType& output_type); TfLiteStatus Uint8QuantizeModelInputsOutputs( flatbuffers::FlatBufferBuilder* builder, const Model* input_model, const std::unordered_map<string, std::pair<float, int32_t>>& input_quant_params, const std::unordered_map<string, std::pair<float, int32_t>>& output_quant_params); } } #endif #include "tensorflow/lite/tools/optimize/modify_model_interface.h" #include <string> #include "pybind11/pybind11.h" #include "tensorflow/lite/schema/schema_generated.h" namespace pybind11 { PYBIND11_MODULE(_pywrap_modify_model_interface, m) { m.def("modify_model_interface", [](const std::string& input_file, const std::string& output_file, const int input_type, const int output_type) -> int { return tflite::optimize::ModifyModelInterface( input_file, output_file, static_cast<tflite::TensorType>(input_type), static_cast<tflite::TensorType>(output_type)); }); } }
#include "tensorflow/lite/tools/optimize/modify_model_interface.h" #include <memory> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/memory/memory.h" #include "tensorflow/lite/core/model.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/schema/schema_utils.h" namespace tflite { namespace optimize { namespace { std::unique_ptr<ModelT> CreateQuantizedModelSingleInputOutput( const TensorType& quantization_type) { auto model = std::make_unique<ModelT>(); auto subgraph = std::make_unique<tflite::SubGraphT>(); auto buffer = std::make_unique<tflite::BufferT>(); auto quant_op_code = std::make_unique<OperatorCodeT>(); auto quant_op = std::make_unique<OperatorT>(); auto fc_op_code = std::make_unique<OperatorCodeT>(); auto fc_op = std::make_unique<OperatorT>(); auto dequant_op_code = std::make_unique<OperatorCodeT>(); auto dequant_op = std::make_unique<OperatorT>(); model->subgraphs.push_back(std::move(subgraph)); quant_op_code->builtin_code = BuiltinOperator_QUANTIZE; quant_op_code->deprecated_builtin_code = static_cast<int8_t>(BuiltinOperator_QUANTIZE); quant_op_code->version = 2; fc_op_code->builtin_code = BuiltinOperator_FULLY_CONNECTED; fc_op_code->deprecated_builtin_code = static_cast<int8_t>(BuiltinOperator_FULLY_CONNECTED); fc_op_code->version = 2; dequant_op_code->builtin_code = BuiltinOperator_DEQUANTIZE; dequant_op_code->deprecated_builtin_code = static_cast<int8_t>(BuiltinOperator_DEQUANTIZE); dequant_op_code->version = 2; quant_op->opcode_index = 0; quant_op->inputs = {0}; quant_op->outputs = {1}; fc_op->opcode_index = 1; fc_op->inputs = {1}; fc_op->outputs = {2}; dequant_op->opcode_index = 2; dequant_op->inputs = {2}; dequant_op->outputs = {3}; model->subgraphs[0]->operators.push_back(std::move(quant_op)); model->subgraphs[0]->operators.push_back(std::move(fc_op)); model->subgraphs[0]->operators.push_back(std::move(dequant_op)); model->operator_codes.push_back(std::move(quant_op_code)); model->operator_codes.push_back(std::move(fc_op_code)); model->operator_codes.push_back(std::move(dequant_op_code)); model->subgraphs[0]->inputs = {0}; model->subgraphs[0]->outputs = {3}; auto tensor_0 = std::make_unique<TensorT>(); tensor_0->name = "tensor_0"; tensor_0->shape = {}; tensor_0->type = TensorType_FLOAT32; auto tensor_1 = std::make_unique<TensorT>(); tensor_1->quantization = std::make_unique<QuantizationParametersT>(); tensor_1->quantization->scale.push_back(0.35); tensor_1->quantization->zero_point.push_back(28); tensor_1->name = "tensor_1"; tensor_1->shape = {}; tensor_1->type = quantization_type; auto tensor_2 = std::make_unique<TensorT>(); tensor_2->quantization = std::make_unique<QuantizationParametersT>(); tensor_2->quantization->scale.push_back(0.12); tensor_2->quantization->zero_point.push_back(50); tensor_2->name = "tensor_2"; tensor_2->shape = {}; tensor_2->type = quantization_type; auto tensor_3 = std::make_unique<TensorT>(); tensor_3->name = "tensor_3"; tensor_3->shape = {}; tensor_3->type = TensorType_FLOAT32; model->subgraphs[0]->tensors.push_back(std::move(tensor_0)); model->subgraphs[0]->tensors.push_back(std::move(tensor_1)); model->subgraphs[0]->tensors.push_back(std::move(tensor_2)); model->subgraphs[0]->tensors.push_back(std::move(tensor_3)); model->buffers.push_back(std::move(buffer)); return model; } std::unique_ptr<ModelT> CreateQuantizedModelMultipleInputOutput( const TensorType& quantization_type) { auto model = std::make_unique<ModelT>(); auto subgraph = std::make_unique<tflite::SubGraphT>(); auto buffer = std::make_unique<tflite::BufferT>(); auto quant_op_code = std::make_unique<OperatorCodeT>(); auto quant_op_1 = std::make_unique<OperatorT>(); auto quant_op_2 = std::make_unique<OperatorT>(); auto fc_op_code = std::make_unique<OperatorCodeT>(); auto fc_op = std::make_unique<OperatorT>(); auto dequant_op_code = std::make_unique<OperatorCodeT>(); auto dequant_op_1 = std::make_unique<OperatorT>(); auto dequant_op_2 = std::make_unique<OperatorT>(); model->subgraphs.push_back(std::move(subgraph)); quant_op_code->builtin_code = BuiltinOperator_QUANTIZE; quant_op_code->deprecated_builtin_code = static_cast<int8_t>(BuiltinOperator_QUANTIZE); quant_op_code->version = 2; fc_op_code->builtin_code = BuiltinOperator_FULLY_CONNECTED; fc_op_code->deprecated_builtin_code = static_cast<int8_t>(BuiltinOperator_FULLY_CONNECTED); fc_op_code->version = 2; dequant_op_code->builtin_code = BuiltinOperator_DEQUANTIZE; dequant_op_code->deprecated_builtin_code = static_cast<int8_t>(BuiltinOperator_DEQUANTIZE); dequant_op_code->version = 2; quant_op_1->opcode_index = 0; quant_op_1->inputs = {0}; quant_op_1->outputs = {2}; quant_op_2->opcode_index = 0; quant_op_2->inputs = {1}; quant_op_2->outputs = {3}; fc_op->opcode_index = 1; fc_op->inputs = {2, 3}; fc_op->outputs = {4, 5}; dequant_op_1->opcode_index = 2; dequant_op_1->inputs = {4}; dequant_op_1->outputs = {6}; dequant_op_2->opcode_index = 2; dequant_op_2->inputs = {5}; dequant_op_2->outputs = {7}; model->subgraphs[0]->operators.push_back(std::move(quant_op_1)); model->subgraphs[0]->operators.push_back(std::move(quant_op_2)); model->subgraphs[0]->operators.push_back(std::move(fc_op)); model->subgraphs[0]->operators.push_back(std::move(dequant_op_1)); model->subgraphs[0]->operators.push_back(std::move(dequant_op_2)); model->operator_codes.push_back(std::move(quant_op_code)); model->operator_codes.push_back(std::move(fc_op_code)); model->operator_codes.push_back(std::move(dequant_op_code)); model->subgraphs[0]->inputs = {0, 1}; model->subgraphs[0]->outputs = {6, 7}; auto tensor_0 = std::make_unique<TensorT>(); tensor_0->name = "tensor_0"; tensor_0->shape = {}; tensor_0->type = TensorType_FLOAT32; auto tensor_1 = std::make_unique<TensorT>(); tensor_1->name = "tensor_1"; tensor_1->shape = {}; tensor_1->type = TensorType_FLOAT32; auto tensor_2 = std::make_unique<TensorT>(); tensor_2->quantization = std::make_unique<QuantizationParametersT>(); tensor_2->quantization->scale.push_back(0.35); tensor_2->quantization->zero_point.push_back(28); tensor_2->name = "tensor_2"; tensor_2->shape = {}; tensor_2->type = quantization_type; auto tensor_3 = std::make_unique<TensorT>(); tensor_3->quantization = std::make_unique<QuantizationParametersT>(); tensor_3->quantization->scale.push_back(0.12); tensor_3->quantization->zero_point.push_back(50); tensor_3->name = "tensor_3"; tensor_3->shape = {}; tensor_3->type = quantization_type; auto tensor_4 = std::make_unique<TensorT>(); tensor_4->quantization = std::make_unique<QuantizationParametersT>(); tensor_4->quantization->scale.push_back(0.45); tensor_4->quantization->zero_point.push_back(28); tensor_4->name = "tensor_4"; tensor_4->shape = {}; tensor_4->type = quantization_type; auto tensor_5 = std::make_unique<TensorT>(); tensor_5->quantization = std::make_unique<QuantizationParametersT>(); tensor_5->quantization->scale.push_back(0.22); tensor_5->quantization->zero_point.push_back(50); tensor_5->name = "tensor_5"; tensor_5->shape = {}; tensor_5->type = quantization_type; auto tensor_6 = std::make_unique<TensorT>(); tensor_6->name = "tensor_6"; tensor_6->shape = {}; tensor_6->type = TensorType_FLOAT32; auto tensor_7 = std::make_unique<TensorT>(); tensor_7->name = "tensor_7"; tensor_7->shape = {}; tensor_7->type = TensorType_FLOAT32; model->subgraphs[0]->tensors.push_back(std::move(tensor_0)); model->subgraphs[0]->tensors.push_back(std::move(tensor_1)); model->subgraphs[0]->tensors.push_back(std::move(tensor_2)); model->subgraphs[0]->tensors.push_back(std::move(tensor_3)); model->subgraphs[0]->tensors.push_back(std::move(tensor_4)); model->subgraphs[0]->tensors.push_back(std::move(tensor_5)); model->subgraphs[0]->tensors.push_back(std::move(tensor_6)); model->subgraphs[0]->tensors.push_back(std::move(tensor_7)); model->buffers.push_back(std::move(buffer)); return model; } std::unique_ptr<ModelT> CreateFloatModel() { auto model = std::make_unique<ModelT>(); auto subgraph = std::make_unique<tflite::SubGraphT>(); auto buffer = std::make_unique<tflite::BufferT>(); auto fc_op_code = std::make_unique<OperatorCodeT>(); auto fc_op = std::make_unique<OperatorT>(); model->subgraphs.push_back(std::move(subgraph)); fc_op_code->builtin_code = BuiltinOperator_FULLY_CONNECTED; fc_op_code->deprecated_builtin_code = static_cast<int8_t>(BuiltinOperator_FULLY_CONNECTED); fc_op_code->version = 2; fc_op->opcode_index = 0; fc_op->inputs = {0}; fc_op->outputs = {1}; model->subgraphs[0]->operators.push_back(std::move(fc_op)); model->operator_codes.push_back(std::move(fc_op_code)); model->subgraphs[0]->inputs = {0}; model->subgraphs[0]->outputs = {1}; auto tensor_0 = std::make_unique<TensorT>(); tensor_0->name = "tensor_0"; tensor_0->shape = {}; tensor_0->type = TensorType_FLOAT32; auto tensor_1 = std::make_unique<TensorT>(); tensor_1->name = "tensor_1"; tensor_1->shape = {}; tensor_1->type = TensorType_FLOAT32; model->subgraphs[0]->tensors.push_back(std::move(tensor_0)); model->subgraphs[0]->tensors.push_back(std::move(tensor_1)); model->buffers.push_back(std::move(buffer)); return model; } struct ModelInterface : ::testing::TestWithParam<tflite::TensorType> {}; TEST_P(ModelInterface, SingleInputOutput) { TensorType quantization_type = GetParam(); auto model = CreateQuantizedModelSingleInputOutput(quantization_type); flatbuffers::FlatBufferBuilder builder; EXPECT_EQ(ModifyModelInterface(&builder, model.get(), quantization_type, quantization_type), kTfLiteOk); EXPECT_EQ(model->subgraphs.size(), 1); EXPECT_EQ(model->subgraphs[0]->tensors.size(), 3); EXPECT_EQ(model->subgraphs[0]->inputs.size(), 1); EXPECT_EQ(model->subgraphs[0]->inputs[0], 1); EXPECT_EQ(model->subgraphs[0]->outputs.size(), 1); EXPECT_EQ(model->subgraphs[0]->outputs[0], 2); EXPECT_EQ(model->operator_codes.size(), 3); EXPECT_EQ(model->subgraphs[0]->operators.size(), 1); EXPECT_EQ(model->subgraphs[0]->operators[0]->opcode_index, 1); auto fc_op = model->subgraphs[0]->operators[0].get(); auto input = model->subgraphs[0]->tensors[fc_op->inputs[0]].get(); EXPECT_EQ(input->name, "tensor_1"); EXPECT_EQ(input->type, quantization_type); EXPECT_FLOAT_EQ(input->quantization->scale[0], 0.35); EXPECT_EQ(input->quantization->zero_point[0], 28); auto output = model->subgraphs[0]->tensors[fc_op->outputs[0]].get(); EXPECT_EQ(output->name, "tensor_2"); EXPECT_EQ(output->type, quantization_type); EXPECT_FLOAT_EQ(output->quantization->scale[0], 0.12); EXPECT_EQ(output->quantization->zero_point[0], 50); } TEST_P(ModelInterface, MutipleInputOutput) { TensorType quantization_type = GetParam(); auto model = CreateQuantizedModelMultipleInputOutput(quantization_type); flatbuffers::FlatBufferBuilder builder; EXPECT_EQ(ModifyModelInterface(&builder, model.get(), quantization_type, quantization_type), kTfLiteOk); EXPECT_EQ(model->subgraphs.size(), 1); EXPECT_EQ(model->subgraphs[0]->tensors.size(), 6); EXPECT_EQ(model->subgraphs[0]->inputs.size(), 2); EXPECT_EQ(model->subgraphs[0]->inputs[0], 2); EXPECT_EQ(model->subgraphs[0]->inputs[1], 3); EXPECT_EQ(model->subgraphs[0]->outputs.size(), 2); EXPECT_EQ(model->subgraphs[0]->outputs[0], 4); EXPECT_EQ(model->subgraphs[0]->outputs[1], 5); EXPECT_EQ(model->operator_codes.size(), 3); EXPECT_EQ(model->subgraphs[0]->operators.size(), 1); EXPECT_EQ(model->subgraphs[0]->operators[0]->opcode_index, 1); auto fc_op = model->subgraphs[0]->operators[0].get(); auto input_1 = model->subgraphs[0]->tensors[fc_op->inputs[0]].get(); EXPECT_EQ(input_1->name, "tensor_2"); EXPECT_EQ(input_1->type, quantization_type); EXPECT_FLOAT_EQ(input_1->quantization->scale[0], 0.35); EXPECT_EQ(input_1->quantization->zero_point[0], 28); auto input_2 = model->subgraphs[0]->tensors[fc_op->inputs[1]].get(); EXPECT_EQ(input_2->name, "tensor_3"); EXPECT_EQ(input_2->type, quantization_type); EXPECT_FLOAT_EQ(input_2->quantization->scale[0], 0.12); EXPECT_EQ(input_2->quantization->zero_point[0], 50); auto output_1 = model->subgraphs[0]->tensors[fc_op->outputs[0]].get(); EXPECT_EQ(output_1->name, "tensor_4"); EXPECT_EQ(output_1->type, quantization_type); EXPECT_FLOAT_EQ(output_1->quantization->scale[0], 0.45); EXPECT_EQ(output_1->quantization->zero_point[0], 28); auto output_2 = model->subgraphs[0]->tensors[fc_op->outputs[1]].get(); EXPECT_EQ(output_2->name, "tensor_5"); EXPECT_EQ(output_2->type, quantization_type); EXPECT_FLOAT_EQ(output_2->quantization->scale[0], 0.22); EXPECT_EQ(output_2->quantization->zero_point[0], 50); } INSTANTIATE_TEST_SUITE_P(MultipleInputOutputTests, ModelInterface, ::testing::Values(TensorType_INT8, TensorType_INT16)); TEST(ModelInterface, MixedTypeSingleInputOutput) { auto model = CreateQuantizedModelSingleInputOutput(TensorType_INT8); flatbuffers::FlatBufferBuilder builder; EXPECT_EQ(ModifyModelInterface(&builder, model.get(), TensorType_UINT8, TensorType_INT8), kTfLiteOk); EXPECT_EQ(model->subgraphs.size(), 1); EXPECT_EQ(model->subgraphs[0]->tensors.size(), 3); EXPECT_EQ(model->subgraphs[0]->inputs.size(), 1); EXPECT_EQ(model->subgraphs[0]->inputs[0], 0); EXPECT_EQ(model->subgraphs[0]->outputs.size(), 1); EXPECT_EQ(model->subgraphs[0]->outputs[0], 2); EXPECT_EQ(model->operator_codes.size(), 3); EXPECT_EQ(model->subgraphs[0]->operators.size(), 2); EXPECT_EQ(model->subgraphs[0]->operators[0]->opcode_index, 0); EXPECT_EQ(model->subgraphs[0]->operators[1]->opcode_index, 1); auto quant_op = model->subgraphs[0]->operators[0].get(); auto input = model->subgraphs[0]->tensors[quant_op->inputs[0]].get(); EXPECT_EQ(input->name, "tensor_0"); EXPECT_EQ(input->type, TensorType_UINT8); EXPECT_FLOAT_EQ(input->quantization->scale[0], 0.35); EXPECT_EQ(input->quantization->zero_point[0], 156); auto fc_op = model->subgraphs[0]->operators[1].get(); auto output = model->subgraphs[0]->tensors[fc_op->outputs[0]].get(); EXPECT_EQ(output->name, "tensor_2"); EXPECT_EQ(output->type, TensorType_INT8); EXPECT_FLOAT_EQ(output->quantization->scale[0], 0.12); EXPECT_EQ(output->quantization->zero_point[0], 50); } TEST(ModelInterface, Uint8SingleInputOutput) { auto model = CreateQuantizedModelSingleInputOutput(TensorType_INT8); flatbuffers::FlatBufferBuilder builder; EXPECT_EQ(ModifyModelInterface(&builder, model.get(), TensorType_UINT8, TensorType_UINT8), kTfLiteOk); EXPECT_EQ(model->subgraphs.size(), 1); EXPECT_EQ(model->subgraphs[0]->tensors.size(), 4); EXPECT_EQ(model->subgraphs[0]->inputs.size(), 1); EXPECT_EQ(model->subgraphs[0]->inputs[0], 0); EXPECT_EQ(model->subgraphs[0]->outputs.size(), 1); EXPECT_EQ(model->subgraphs[0]->outputs[0], 3); EXPECT_EQ(model->operator_codes.size(), 3); EXPECT_EQ(model->subgraphs[0]->operators.size(), 3); EXPECT_EQ(model->subgraphs[0]->operators[0]->opcode_index, 0); EXPECT_EQ(model->subgraphs[0]->operators[1]->opcode_index, 1); EXPECT_EQ(model->subgraphs[0]->operators[2]->opcode_index, 0); auto input_quant_op = model->subgraphs[0]->operators[0].get(); auto input = model->subgraphs[0]->tensors[input_quant_op->inputs[0]].get(); EXPECT_EQ(input->name, "tensor_0"); EXPECT_EQ(input->type, TensorType_UINT8); EXPECT_FLOAT_EQ(input->quantization->scale[0], 0.35); EXPECT_EQ(input->quantization->zero_point[0], 156); auto output_quant_op = model->subgraphs[0]->operators[2].get(); auto output = model->subgraphs[0]->tensors[output_quant_op->outputs[0]].get(); EXPECT_EQ(output->name, "tensor_3"); EXPECT_EQ(output->type, TensorType_UINT8); EXPECT_FLOAT_EQ(output->quantization->scale[0], 0.12); EXPECT_EQ(output->quantization->zero_point[0], 178); } TEST(ModelInterface, Uint8MutipleInputOutput) { auto model = CreateQuantizedModelMultipleInputOutput(TensorType_INT8); flatbuffers::FlatBufferBuilder builder; EXPECT_EQ(ModifyModelInterface(&builder, model.get(), TensorType_UINT8, TensorType_UINT8), kTfLiteOk); EXPECT_EQ(model->subgraphs.size(), 1); EXPECT_EQ(model->subgraphs[0]->tensors.size(), 8); EXPECT_EQ(model->subgraphs[0]->inputs.size(), 2); EXPECT_EQ(model->subgraphs[0]->inputs[0], 0); EXPECT_EQ(model->subgraphs[0]->inputs[1], 1); EXPECT_EQ(model->subgraphs[0]->outputs.size(), 2); EXPECT_EQ(model->subgraphs[0]->outputs[0], 6); EXPECT_EQ(model->subgraphs[0]->outputs[1], 7); EXPECT_EQ(model->operator_codes.size(), 3); EXPECT_EQ(model->subgraphs[0]->operators.size(), 5); EXPECT_EQ(model->subgraphs[0]->operators[0]->opcode_index, 0); EXPECT_EQ(model->subgraphs[0]->operators[1]->opcode_index, 0); EXPECT_EQ(model->subgraphs[0]->operators[2]->opcode_index, 1); EXPECT_EQ(model->subgraphs[0]->operators[3]->opcode_index, 0); EXPECT_EQ(model->subgraphs[0]->operators[4]->opcode_index, 0); auto input_quant_1 = model->subgraphs[0]->operators[0].get(); auto input_1 = model->subgraphs[0]->tensors[input_quant_1->inputs[0]].get(); EXPECT_EQ(input_1->name, "tensor_0"); EXPECT_EQ(input_1->type, TensorType_UINT8); EXPECT_FLOAT_EQ(input_1->quantization->scale[0], 0.35); EXPECT_EQ(input_1->quantization->zero_point[0], 156); auto input_quant_2 = model->subgraphs[0]->operators[1].get(); auto input_2 = model->subgraphs[0]->tensors[input_quant_2->inputs[0]].get(); EXPECT_EQ(input_2->name, "tensor_1"); EXPECT_EQ(input_2->type, TensorType_UINT8); EXPECT_FLOAT_EQ(input_2->quantization->scale[0], 0.12); EXPECT_EQ(input_2->quantization->zero_point[0], 178); auto output_quant_1 = model->subgraphs[0]->operators[3].get(); auto output_1 = model->subgraphs[0]->tensors[output_quant_1->outputs[0]].get(); EXPECT_EQ(output_1->name, "tensor_6"); EXPECT_EQ(output_1->type, TensorType_UINT8); EXPECT_FLOAT_EQ(output_1->quantization->scale[0], 0.45); EXPECT_EQ(output_1->quantization->zero_point[0], 156); auto output_quant_2 = model->subgraphs[0]->operators[4].get(); auto output_2 = model->subgraphs[0]->tensors[output_quant_2->outputs[0]].get(); EXPECT_EQ(output_2->name, "tensor_7"); EXPECT_EQ(output_2->type, TensorType_UINT8); EXPECT_FLOAT_EQ(output_2->quantization->scale[0], 0.22); EXPECT_EQ(output_2->quantization->zero_point[0], 178); } TEST(ModelInterface, Int8MutipleInputOutput) { auto model = CreateQuantizedModelMultipleInputOutput(TensorType_INT8); flatbuffers::FlatBufferBuilder builder; EXPECT_EQ(ModifyModelInterface(&builder, model.get(), TensorType_INT8, TensorType_INT8), kTfLiteOk); EXPECT_EQ(model->subgraphs.size(), 1); EXPECT_EQ(model->subgraphs[0]->tensors.size(), 6); EXPECT_EQ(model->subgraphs[0]->inputs.size(), 2); EXPECT_EQ(model->subgraphs[0]->inputs[0], 2); EXPECT_EQ(model->subgraphs[0]->inputs[1], 3); EXPECT_EQ(model->subgraphs[0]->outputs.size(), 2); EXPECT_EQ(model->subgraphs[0]->outputs[0], 4); EXPECT_EQ(model->subgraphs[0]->outputs[1], 5); EXPECT_EQ(model->operator_codes.size(), 3); EXPECT_EQ(model->subgraphs[0]->operators.size(), 1); EXPECT_EQ(model->subgraphs[0]->operators[0]->opcode_index, 1); auto fc_op = model->subgraphs[0]->operators[0].get(); auto input_1 = model->subgraphs[0]->tensors[fc_op->inputs[0]].get(); EXPECT_EQ(input_1->name, "tensor_2"); EXPECT_EQ(input_1->type, TensorType_INT8); EXPECT_FLOAT_EQ(input_1->quantization->scale[0], 0.35); EXPECT_EQ(input_1->quantization->zero_point[0], 28); auto input_2 = model->subgraphs[0]->tensors[fc_op->inputs[1]].get(); EXPECT_EQ(input_2->name, "tensor_3"); EXPECT_EQ(input_2->type, TensorType_INT8); EXPECT_FLOAT_EQ(input_2->quantization->scale[0], 0.12); EXPECT_EQ(input_2->quantization->zero_point[0], 50); auto output_1 = model->subgraphs[0]->tensors[fc_op->outputs[0]].get(); EXPECT_EQ(output_1->name, "tensor_4"); EXPECT_EQ(output_1->type, TensorType_INT8); EXPECT_FLOAT_EQ(output_1->quantization->scale[0], 0.45); EXPECT_EQ(output_1->quantization->zero_point[0], 28); auto output_2 = model->subgraphs[0]->tensors[fc_op->outputs[1]].get(); EXPECT_EQ(output_2->name, "tensor_5"); EXPECT_EQ(output_2->type, TensorType_INT8); EXPECT_FLOAT_EQ(output_2->quantization->scale[0], 0.22); EXPECT_EQ(output_2->quantization->zero_point[0], 50); } TEST(ModelInterface, Float) { std::unique_ptr<ModelT> input_model_t = CreateFloatModel(); flatbuffers::FlatBufferBuilder builder_temp; flatbuffers::Offset<Model> output_model_location = Model::Pack(builder_temp, input_model_t.get()); FinishModelBuffer(builder_temp, output_model_location); const uint8_t* buffer_temp = builder_temp.GetBufferPointer(); const Model* input_model = GetModel(buffer_temp); flatbuffers::FlatBufferBuilder builder; EXPECT_EQ(Uint8QuantizeModelInputsOutputs(&builder, input_model, {{"tensor_0", {0.4, 2}}}, {{"tensor_1", {0.5, -5}}}), kTfLiteOk); const uint8_t* buffer = builder.GetBufferPointer(); const Model* output_model = GetModel(buffer); std::unique_ptr<ModelT> model; model.reset(output_model->UnPack()); EXPECT_EQ(model->subgraphs.size(), 1); EXPECT_EQ(model->subgraphs[0]->tensors.size(), 4); EXPECT_EQ(model->subgraphs[0]->inputs.size(), 1); EXPECT_EQ(model->subgraphs[0]->inputs[0], 0); EXPECT_EQ(model->subgraphs[0]->outputs.size(), 1); EXPECT_EQ(model->subgraphs[0]->outputs[0], 1); EXPECT_EQ(model->operator_codes.size(), 3); EXPECT_EQ(GetBuiltinCode(model->operator_codes[0].get()), BuiltinOperator_FULLY_CONNECTED); EXPECT_EQ(GetBuiltinCode(model->operator_codes[1].get()), BuiltinOperator_DEQUANTIZE); EXPECT_EQ(GetBuiltinCode(model->operator_codes[2].get()), BuiltinOperator_QUANTIZE); EXPECT_EQ(model->subgraphs[0]->operators.size(), 3); auto dequantize_op = model->subgraphs[0]->operators[0].get(); auto input = model->subgraphs[0]->tensors[dequantize_op->inputs[0]].get(); EXPECT_EQ(input->name, "tensor_0_uint8"); EXPECT_EQ(input->type, TensorType_UINT8); EXPECT_FLOAT_EQ(input->quantization->scale[0], 0.4); EXPECT_EQ(input->quantization->zero_point[0], 2); auto quantize_op = model->subgraphs[0]->operators[2].get(); auto output = model->subgraphs[0]->tensors[quantize_op->outputs[0]].get(); EXPECT_EQ(output->name, "tensor_1_uint8"); EXPECT_EQ(output->type, TensorType_UINT8); EXPECT_FLOAT_EQ(output->quantization->scale[0], 0.5); EXPECT_EQ(output->quantization->zero_point[0], -5); } } } }
850
cpp
tensorflow/tensorflow
quantization_wrapper_utils
tensorflow/lite/tools/optimize/quantization_wrapper_utils.cc
tensorflow/lite/tools/optimize/quantization_wrapper_utils_test.cc
#ifndef TENSORFLOW_LITE_TOOLS_OPTIMIZE_QUANTIZATION_WRAPPER_UTILS_H_ #define TENSORFLOW_LITE_TOOLS_OPTIMIZE_QUANTIZATION_WRAPPER_UTILS_H_ #include <string> #include "tensorflow/lite/core/api/error_reporter.h" #include "tensorflow/lite/core/model.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace optimize { TfLiteStatus LoadModel(const string& path, ModelT* model); TfLiteStatus AddIntermediateTensorsToFusedOp( flatbuffers::FlatBufferBuilder* builder, ModelT* model); bool WriteFile(const std::string& out_file, const uint8_t* bytes, size_t num_bytes); } } #endif #include "tensorflow/lite/tools/optimize/quantization_wrapper_utils.h" #include <fstream> #include <memory> #include <string> #include <utility> #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/tools/optimize/operator_property.h" namespace tflite { namespace impl { class FlatBufferModel; } namespace optimize { namespace { #ifdef TFLITE_CUSTOM_LSTM constexpr bool kUseCustomLSTM = true; #else constexpr bool kUseCustomLSTM = false; #endif void MakeTensor(const string& name, std::unique_ptr<TensorT>* tensor) { TensorT* tensor_raw = new TensorT; tensor_raw->name = name; tensor_raw->shape = {0}; tensor_raw->type = TensorType_FLOAT32; tensor->reset(tensor_raw); } string CreateTensorName(int op_index, int tensor_index) { return "intermediate_" + std::to_string(op_index) + "_" + std::to_string(tensor_index); } bool IntermediateTensorExists(ModelT* model) { for (int subgraph_idx = 0; subgraph_idx < model->subgraphs.size(); ++subgraph_idx) { SubGraphT* subgraph = model->subgraphs.at(subgraph_idx).get(); for (size_t op_idx = 0; op_idx < subgraph->operators.size(); op_idx++) { OperatorT* op = subgraph->operators[op_idx].get(); if (!op->intermediates.empty()) { return true; } } } return false; } } TfLiteStatus LoadModel(const string& path, ModelT* model) { auto input_model = impl::FlatBufferModel::BuildFromFile(path.c_str()); if (!input_model) { return kTfLiteError; } auto readonly_model = input_model->GetModel(); if (!readonly_model) { return kTfLiteError; } readonly_model->UnPackTo(model); return kTfLiteOk; } TfLiteStatus AddIntermediateTensorsToFusedOp( flatbuffers::FlatBufferBuilder* builder, ModelT* model) { if (model->subgraphs.size() == 1 && model->subgraphs[0]->operators.empty()) { return kTfLiteOk; } if (IntermediateTensorExists(model)) { return kTfLiteOk; } for (int subgraph_idx = 0; subgraph_idx < model->subgraphs.size(); ++subgraph_idx) { SubGraphT* subgraph = model->subgraphs.at(subgraph_idx).get(); for (size_t op_idx = 0; op_idx < subgraph->operators.size(); op_idx++) { OperatorT* op = subgraph->operators[op_idx].get(); operator_property::OperatorProperty property = operator_property::GetOperatorProperty(model, subgraph_idx, op_idx); if (property.intermediates.empty()) { continue; } const int next_tensor_index = subgraph->tensors.size(); int num_intermediates = property.intermediates.size(); if (kUseCustomLSTM) { num_intermediates = 12; } for (int i = 0; i < num_intermediates; ++i) { std::unique_ptr<TensorT> intermediate_tensor; auto name = CreateTensorName(op_idx, i); MakeTensor(name, &intermediate_tensor); subgraph->tensors.push_back(std::move(intermediate_tensor)); op->intermediates.push_back(next_tensor_index + i); } } } flatbuffers::Offset<Model> output_model_location = Model::Pack(*builder, model); FinishModelBuffer(*builder, output_model_location); return kTfLiteOk; } bool WriteFile(const std::string& out_file, const uint8_t* bytes, size_t num_bytes) { std::fstream stream(out_file, std::ios::binary | std::ios::out); for (size_t i = 0; i < num_bytes; i++) { stream << bytes[i]; } return (!stream.bad() && !stream.fail()); } } }
#include "tensorflow/lite/tools/optimize/quantization_wrapper_utils.h" #include <memory> #include <string> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/memory/memory.h" #include "tensorflow/lite/core/model.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/schema/schema_utils.h" namespace tflite { namespace optimize { namespace { using ::testing::ElementsAreArray; TEST(LstmPreprocess, Add2Tensors) { auto model = std::make_unique<ModelT>(); auto subgraph = std::make_unique<tflite::SubGraphT>(); auto buffer = std::make_unique<tflite::BufferT>(); auto lstm_op_code = std::make_unique<OperatorCodeT>(); auto lstm_op = std::make_unique<OperatorT>(); lstm_op_code->builtin_code = BuiltinOperator_LSTM; lstm_op_code->deprecated_builtin_code = static_cast<int8_t>(BuiltinOperator_LSTM); lstm_op_code->version = 2; lstm_op->opcode_index = 0; lstm_op->inputs = {0, 1, 2, 3, 4, 5, 6, 7, 8, -1, -1, -1, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}; lstm_op->outputs = {24}; model->subgraphs.push_back(std::move(subgraph)); for (int i = 0; i < lstm_op->inputs.size(); ++i) { const int index = lstm_op->inputs[i]; if (index == -1) { continue; } auto tensor = std::make_unique<TensorT>(); tensor->name = "lstm_tensor" + std::to_string(index); tensor->shape = {2, 3, 4}; tensor->type = TensorType_FLOAT32; model->subgraphs[0]->tensors.push_back(std::move(tensor)); } model->subgraphs[0]->operators.push_back(std::move(lstm_op)); model->operator_codes.push_back(std::move(lstm_op_code)); model->buffers.push_back(std::move(buffer)); flatbuffers::FlatBufferBuilder builder; tflite::optimize::AddIntermediateTensorsToFusedOp(&builder, model.get()); EXPECT_EQ(model->operator_codes.size(), 1); EXPECT_EQ(model->subgraphs.size(), 1); EXPECT_EQ(model->subgraphs[0]->operators.size(), 1); EXPECT_EQ(model->subgraphs[0]->tensors.size(), 26); EXPECT_EQ(model->buffers.size(), 1); EXPECT_EQ(GetBuiltinCode(model->operator_codes[0].get()), BuiltinOperator_LSTM); EXPECT_EQ(model->subgraphs[0]->tensors[0]->name, "lstm_tensor0"); EXPECT_EQ(model->subgraphs[0]->tensors[21]->name, "intermediate_0_0"); EXPECT_EQ(model->subgraphs[0]->tensors[22]->name, "intermediate_0_1"); EXPECT_EQ(model->subgraphs[0]->tensors[23]->name, "intermediate_0_2"); EXPECT_EQ(model->subgraphs[0]->tensors[24]->name, "intermediate_0_3"); EXPECT_EQ(model->subgraphs[0]->tensors[25]->name, "intermediate_0_4"); EXPECT_THAT( model->subgraphs[0]->operators[0]->inputs, ElementsAreArray({0, 1, 2, 3, 4, 5, 6, 7, 8, -1, -1, -1, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20})); EXPECT_THAT(model->subgraphs[0]->operators[0]->outputs, ElementsAreArray({24})); EXPECT_THAT(model->subgraphs[0]->operators[0]->intermediates, ElementsAreArray({21, 22, 23, 24, 25})); tflite::optimize::AddIntermediateTensorsToFusedOp(&builder, model.get()); EXPECT_EQ(model->operator_codes.size(), 1); EXPECT_EQ(model->subgraphs.size(), 1); EXPECT_EQ(model->subgraphs[0]->operators.size(), 1); EXPECT_EQ(model->subgraphs[0]->tensors.size(), 26); EXPECT_EQ(model->buffers.size(), 1); EXPECT_EQ(GetBuiltinCode(model->operator_codes[0].get()), BuiltinOperator_LSTM); EXPECT_EQ(model->subgraphs[0]->tensors[0]->name, "lstm_tensor0"); EXPECT_EQ(model->subgraphs[0]->tensors[21]->name, "intermediate_0_0"); EXPECT_EQ(model->subgraphs[0]->tensors[22]->name, "intermediate_0_1"); EXPECT_EQ(model->subgraphs[0]->tensors[23]->name, "intermediate_0_2"); EXPECT_EQ(model->subgraphs[0]->tensors[24]->name, "intermediate_0_3"); EXPECT_EQ(model->subgraphs[0]->tensors[25]->name, "intermediate_0_4"); EXPECT_THAT( model->subgraphs[0]->operators[0]->inputs, ElementsAreArray({0, 1, 2, 3, 4, 5, 6, 7, 8, -1, -1, -1, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20})); EXPECT_THAT(model->subgraphs[0]->operators[0]->outputs, ElementsAreArray({24})); EXPECT_THAT(model->subgraphs[0]->operators[0]->intermediates, ElementsAreArray({21, 22, 23, 24, 25})); } } } } int main(int argc, char** argv) { return RUN_ALL_TESTS(); }
851
cpp
tensorflow/tensorflow
calibrator
tensorflow/lite/tools/optimize/calibration/calibrator.cc
tensorflow/lite/tools/optimize/calibration/calibrator_test.cc
#ifndef TENSORFLOW_LITE_TOOLS_OPTIMIZE_CALIBRATION_CALIBRATOR_H_ #define TENSORFLOW_LITE_TOOLS_OPTIMIZE_CALIBRATION_CALIBRATOR_H_ #include <memory> #include "tensorflow/lite/allocation.h" #include "tensorflow/lite/core/api/error_reporter.h" #include "tensorflow/lite/core/api/op_resolver.h" #include "tensorflow/lite/core/interpreter.h" #include "tensorflow/lite/core/model.h" #include "tensorflow/lite/model_builder.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/tools/optimize/calibration/calibration_reader.h" namespace tflite { namespace optimize { namespace calibration { TfLiteStatus BuildLoggingInterpreter( const FlatBufferModel& model, const OpResolver& op_resolver, std::unique_ptr<Interpreter>* interpreter, std::unique_ptr<CalibrationReader>* calibration_reader); TfLiteStatus BuildLoggingInterpreter( const tflite::Model* model, ErrorReporter* error_reporter, const OpResolver& op_resolver, std::unique_ptr<Interpreter>* interpreter, std::unique_ptr<CalibrationReader>* calibration_reader, const Allocation* allocation = nullptr); } } } #endif #include "tensorflow/lite/tools/optimize/calibration/calibrator.h" #include <fstream> #include <memory> #include <string> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "flatbuffers/buffer.h" #include "flatbuffers/vector.h" #include "tensorflow/lite/allocation.h" #include "tensorflow/lite/core/api/error_reporter.h" #include "tensorflow/lite/core/api/op_resolver.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/interpreter.h" #include "tensorflow/lite/core/interpreter_builder.h" #include "tensorflow/lite/logger.h" #include "tensorflow/lite/minimal_logging.h" #include "tensorflow/lite/model_builder.h" #include "tensorflow/lite/op_resolver.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/schema/schema_utils.h" #include "tensorflow/lite/stderr_reporter.h" #include "tensorflow/lite/string_type.h" #include "tensorflow/lite/tools/optimize/calibration/builtin_logging_ops/lstm.h" #include "tensorflow/lite/tools/optimize/calibration/calibration_common.h" #include "tensorflow/lite/tools/optimize/calibration/calibration_logger.h" #include "tensorflow/lite/tools/optimize/calibration/calibration_reader.h" #include "tensorflow/lite/tools/optimize/calibration/custom_logging_ops/lstm.h" #include "tensorflow/lite/tools/optimize/calibration/logging_op.h" #include "tensorflow/lite/tools/optimize/calibration/logging_op_resolver.h" namespace tflite { namespace optimize { namespace calibration { namespace { class Calibrator { public: Calibrator(const std::unordered_map<const TfLiteNode*, OperatorInfo>& node_ptr_opinfo_map, std::unique_ptr<LoggingOpResolver> logging_op_resolver, ErrorReporter* error_reporter) : node_ptr_opinfo_map_(node_ptr_opinfo_map), logging_op_resolver_(std::move(logging_op_resolver)), error_reporter_(error_reporter) { logger_ = std::make_unique<Logger>(); } KernelEvalFuncPtr GetKernelInvoke(const TfLiteNode* node) const; Logger* GetLogger() const { return logger_.get(); } ErrorReporter* GetErrorReporter() const { return error_reporter_; } const OperatorInfo& GetOpInfo(const TfLiteNode* node) const { return node_ptr_opinfo_map_.at(node); } std::vector<const TfLiteNode*> GetNodesUnderCalibration() { std::vector<const TfLiteNode*> nodes; nodes.reserve(node_ptr_opinfo_map_.size()); for (const auto& entry : node_ptr_opinfo_map_) { nodes.push_back(entry.first); } return nodes; } private: std::unordered_map<const TfLiteNode*, OperatorInfo> node_ptr_opinfo_map_; std::unique_ptr<LoggingOpResolver> logging_op_resolver_; const std::unordered_map<int, OperatorInfo> index_opinfo_; std::unique_ptr<Logger> logger_; ErrorReporter* error_reporter_; }; KernelEvalFuncPtr Calibrator::GetKernelInvoke(const TfLiteNode* node) const { auto op_info = node_ptr_opinfo_map_.at(node); if (op_info.is_custom_op) { return logging_op_resolver_->GetWrappedKernelInvoke(op_info.name.c_str(), op_info.version); } return logging_op_resolver_->GetWrappedKernelInvoke(op_info.builtin_op_code, op_info.version); } class GlobalCalibratorRegistry { public: Calibrator* GetCalibrator(const TfLiteNode* node) const { if (node_to_calibrator_.find(node) == node_to_calibrator_.cend()) { return nullptr; } return node_to_calibrator_.at(node); } void RemoveCalibrator(const TfLiteContext* context) { Calibrator* calibrator = calibrator_registry_.at(context).get(); auto nodes = calibrator->GetNodesUnderCalibration(); for (auto node : nodes) { node_to_calibrator_.erase(node); } calibrator_registry_.erase(context); } TfLiteStatus CreateCalibrator( const TfLiteContext* context, const std::unordered_map<const TfLiteNode*, OperatorInfo>& node_to_opinfo, std::unique_ptr<LoggingOpResolver> logging_op_resolver, Calibrator** calibrator_ptr, ErrorReporter* reporter) { if (calibrator_registry_.find(context) != calibrator_registry_.cend()) { reporter->Report( "Failed to create calibrator, context already registered."); return kTfLiteError; } auto calibrator = std::make_unique<Calibrator>( node_to_opinfo, std::move(logging_op_resolver), reporter); calibrator_registry_[context] = std::move(calibrator); *calibrator_ptr = calibrator_registry_.at(context).get(); for (const auto& entry : node_to_opinfo) { node_to_calibrator_[entry.first] = *calibrator_ptr; } return kTfLiteOk; } private: absl::flat_hash_map<const TfLiteContext*, std::unique_ptr<Calibrator>> calibrator_registry_; absl::flat_hash_map<const TfLiteNode*, Calibrator*> node_to_calibrator_; }; GlobalCalibratorRegistry* GetCalibratorRegistry() { static GlobalCalibratorRegistry* registry = new GlobalCalibratorRegistry(); return registry; } logging_kernel_func_ptr GetLoggingEvalFunc(TfLiteContext* context, TfLiteNode* node, int builtin_op_code) { switch (builtin_op_code) { case BuiltinOperator_LSTM: { if (node->intermediates->size == 12) { return tflite::optimize::calibration::custom::lstm_logging_kernel; } return tflite::optimize::calibration::builtin::lstm_logging_kernel; } case BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_LSTM: return tflite::optimize::calibration::builtin:: unidirectional_sequence_lstm_logging_kernel; default: return nullptr; } } TfLiteStatus LoggingEval(TfLiteContext* context, TfLiteNode* node) { Calibrator* calibrator = GetCalibratorRegistry()->GetCalibrator(node); if (!calibrator) { TF_LITE_KERNEL_LOG(context, "No calibrator found for context."); return kTfLiteError; } auto kernel_invoke = calibrator->GetKernelInvoke(node); auto logger = calibrator->GetLogger(); auto op_info = calibrator->GetOpInfo(node); auto error_reporter = calibrator->GetErrorReporter(); for (int i : op_info.loggable_inputs) { auto tensor = context->tensors[i]; TF_LITE_ENSURE_STATUS( logger->LogTensorValue(op_info.subgraph_index, i, tensor.data.f, tensor.bytes / sizeof(float), error_reporter)); } auto builtin_op_code = calibrator->GetOpInfo(node).builtin_op_code; auto kernel_invoke_intermediate = GetLoggingEvalFunc(context, node, builtin_op_code); if (kernel_invoke_intermediate == nullptr) { TF_LITE_ENSURE_STATUS(kernel_invoke(context, node)); } else { TF_LITE_ENSURE_STATUS( kernel_invoke_intermediate(context, op_info.subgraph_index, node, calibrator->GetLogger(), error_reporter)); } for (int i : op_info.loggable_inputs) { auto tensor = context->tensors[i]; TF_LITE_ENSURE_STATUS( logger->LogTensorValue(op_info.subgraph_index, i, tensor.data.f, tensor.bytes / sizeof(float), error_reporter)); } for (int i : op_info.loggable_outputs) { auto tensor = context->tensors[i]; TF_LITE_ENSURE_STATUS( logger->LogTensorValue(op_info.subgraph_index, i, tensor.data.f, tensor.bytes / sizeof(float), error_reporter)); } return kTfLiteOk; } std::vector<int> GetLoggableTensorIndices( const std::vector<int>& tensor_indices, const flatbuffers::Vector<flatbuffers::Offset<Tensor>>* tensors, const flatbuffers::Vector<flatbuffers::Offset<Buffer>>* tensor_buffers) { std::vector<int> loggable; for (auto tensor_index : tensor_indices) { if (tensor_index == kTfLiteOptionalTensor) { continue; } auto tensor = tensors->Get(tensor_index); auto buffer_index = tensor->buffer(); const bool has_no_buffer = (tensor_buffers->Get(buffer_index) == nullptr) || (tensor_buffers->Get(buffer_index)->data() == nullptr) || (tensor_buffers->Get(buffer_index)->data()->size() == 0); if (has_no_buffer && tensor->type() == tflite::TensorType_FLOAT32) { loggable.push_back(tensor_index); } } return loggable; } TfLiteStatus GetNodeOpInfoMapAndContext( const absl::flat_hash_map<std::tuple<int, int>, OperatorInfo>& node_to_opinfo, tflite::Interpreter* const interpreter, std::unordered_map<const TfLiteNode*, OperatorInfo>* node_ptr_opinfo_map, TfLiteContext** context) { *context = interpreter->primary_subgraph().context(); TF_LITE_ENSURE(*context, interpreter->execution_plan().size() <= node_to_opinfo.size()); for (const auto& entry : node_to_opinfo) { auto op_info = entry.second; int subgraph_index, op_index; std::tie(subgraph_index, op_index) = entry.first; const auto* node_and_reg = interpreter->node_and_registration(subgraph_index, op_index); op_info.registration = &node_and_reg->second; node_ptr_opinfo_map->insert({&node_and_reg->first, op_info}); } return kTfLiteOk; } string GetOpName(const tflite::OperatorCode& opcode) { if (opcode.custom_code() != nullptr) { return opcode.custom_code()->str(); } return tflite::EnumNamesBuiltinOperator()[GetBuiltinCode(&opcode)]; } class Reader : public CalibrationReader { public: Reader(const TfLiteContext* context, const Logger* logger) : CalibrationReader(logger), context_(context) {} ~Reader() override { GetCalibratorRegistry()->RemoveCalibrator(context_); } private: const TfLiteContext* context_; }; bool HasInputs(BuiltinOperator code) { switch (code) { case BuiltinOperator_CALL_ONCE: case BuiltinOperator_VAR_HANDLE: case BuiltinOperator_CUSTOM: return false; default: return true; } } bool HasOutputs(BuiltinOperator code) { switch (code) { case BuiltinOperator_ASSIGN_VARIABLE: case BuiltinOperator_CALL_ONCE: case BuiltinOperator_CUSTOM: return false; default: return true; } } } TfLiteStatus BuildLoggingInterpreter( const FlatBufferModel& model, const OpResolver& op_resolver, std::unique_ptr<Interpreter>* interpreter, std::unique_ptr<CalibrationReader>* calibration_reader) { return BuildLoggingInterpreter(model.GetModel(), model.error_reporter(), op_resolver, interpreter, calibration_reader, model.allocation()); } TfLiteStatus BuildLoggingInterpreter( const tflite::Model* tflite_model, ErrorReporter* error_reporter, const OpResolver& op_resolver, std::unique_ptr<Interpreter>* interpreter, std::unique_ptr<CalibrationReader>* calibration_reader, const Allocation* allocation) { if (error_reporter == nullptr) { error_reporter = DefaultErrorReporter(); } auto subgraphs = tflite_model->subgraphs(); auto tensor_buffers = tflite_model->buffers(); absl::flat_hash_map<std::tuple<int, int>, OperatorInfo> node_to_opinfo; BuiltinOpsSet builtin_op_and_versions; CustomOpsSet custom_op_and_versions; for (size_t subgraph_index = 0; subgraph_index < subgraphs->size(); subgraph_index++) { auto subgraph = subgraphs->Get(subgraph_index); auto operator_codes = tflite_model->operator_codes(); auto operators = subgraph->operators(); auto tensors = subgraph->tensors(); if (!operators) { continue; } for (size_t i = 0; i < operators->size(); i++) { OperatorInfo op_info; op_info.subgraph_index = subgraph_index; op_info.node_index = i; auto op = operators->Get(i); auto operator_code = operator_codes->Get(op->opcode_index()); op_info.builtin_op_code = GetBuiltinCode(operator_code); op_info.name = GetOpName(*operator_code); op_info.is_custom_op = operator_code->custom_code() != nullptr; op_info.version = operator_code->version(); auto op_inputs = op->inputs(); auto op_outputs = op->outputs(); if (op_inputs) { op_info.inputs = std::vector<int>(op_inputs->begin(), op_inputs->end()); } else if (HasInputs(op_info.builtin_op_code)) { TFLITE_LOG(TFLITE_LOG_WARNING, "Op %s missing inputs", op_info.name.c_str()); } if (op_outputs) { op_info.outputs = std::vector<int>(op_outputs->begin(), op_outputs->end()); } else if (HasOutputs(op_info.builtin_op_code)) { TFLITE_LOG(TFLITE_LOG_WARNING, "Op %s missing outputs", op_info.name.c_str()); } op_info.loggable_inputs = GetLoggableTensorIndices(op_info.inputs, tensors, tensor_buffers); op_info.loggable_outputs = GetLoggableTensorIndices(op_info.outputs, tensors, tensor_buffers); if (op_info.is_custom_op) { op_info.registration = op_resolver.FindOp(op_info.name.c_str(), operator_code->version()); custom_op_and_versions.insert( {op_info.name.c_str(), operator_code->version()}); } else { op_info.registration = op_resolver.FindOp(GetBuiltinCode(operator_code), operator_code->version()); builtin_op_and_versions.insert( {op_info.builtin_op_code, operator_code->version()}); } std::tuple<int, int> key{subgraph_index, i}; node_to_opinfo[key] = op_info; } } auto logging_op_resolver = std::make_unique<LoggingOpResolver>( builtin_op_and_versions, custom_op_and_versions, op_resolver, LoggingEval, error_reporter); tflite::InterpreterBuilder(tflite_model, *logging_op_resolver, error_reporter, nullptr, allocation)(interpreter); if (!(*interpreter)) { error_reporter->Report("Failed to construct interpreter"); return kTfLiteError; } std::unordered_map<const TfLiteNode*, OperatorInfo> node_ptr_opinfo_map; TfLiteContext* context = nullptr; TF_LITE_ENSURE_STATUS(GetNodeOpInfoMapAndContext( node_to_opinfo, interpreter->get(), &node_ptr_opinfo_map, &context)); Calibrator* calibrator = nullptr; TF_LITE_ENSURE_STATUS(GetCalibratorRegistry()->CreateCalibrator( context, node_ptr_opinfo_map, std::move(logging_op_resolver), &calibrator, error_reporter)); *calibration_reader = std::unique_ptr<CalibrationReader>( new Reader(context, calibrator->GetLogger())); return kTfLiteOk; } } } }
#include "tensorflow/lite/tools/optimize/calibration/calibrator.h" #include <cstring> #include <memory> #include <utility> #include <gtest/gtest.h> #include "absl/container/flat_hash_map.h" #include "tensorflow/core/platform/init_main.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/util/command_line_flags.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/core/kernels/register.h" #include "tensorflow/lite/interpreter.h" #include "tensorflow/lite/model_builder.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/string_type.h" #include "tensorflow/lite/tools/optimize/calibration/calibration_reader.h" namespace { tensorflow::string* g_test_model_dir = nullptr; } namespace tflite { namespace optimize { namespace calibration { namespace { std::unique_ptr<FlatBufferModel> ReadModel(const string& model_name) { auto model_path = tensorflow::io::JoinPath(*g_test_model_dir, model_name); return FlatBufferModel::BuildFromFile(model_path.c_str()); } TEST(CalibratorTest, CalibrationStatsAreCollected) { auto model = ReadModel("multi_add.bin"); ASSERT_TRUE(model); std::unique_ptr<Interpreter> interpreter; std::unique_ptr<CalibrationReader> reader; auto status = BuildLoggingInterpreter( *model, ops::builtin::BuiltinOpResolver{}, &interpreter, &reader); EXPECT_EQ(kTfLiteOk, status); ASSERT_TRUE(interpreter); ASSERT_TRUE(reader); absl::flat_hash_map<std::tuple<int, int>, CalibrationReader::CalibrationStats> stats; status = reader->GetTensorStatsAsMap(&stats); EXPECT_EQ(kTfLiteOk, status); EXPECT_TRUE(stats.empty()); status = interpreter->AllocateTensors(); ASSERT_EQ(kTfLiteOk, status); const size_t tensor_size = 1 * 8 * 8 * 3; std::vector<float> ones(tensor_size, 1.0f); for (size_t i = 0; i < interpreter->inputs().size(); i++) { int input_tensor_idx = interpreter->inputs()[i]; TfLiteTensor* tensor = interpreter->tensor(input_tensor_idx); ASSERT_EQ(tensor->bytes, tensor_size * sizeof(float)); for (size_t j = 0; j < tensor_size; j++) { tensor->data.f[j] = i + 1; } } status = interpreter->Invoke(); ASSERT_EQ(kTfLiteOk, status); const float eps = 1e-6f; TfLiteTensor* tensor = interpreter->tensor(interpreter->outputs()[0]); for (size_t i = 0; i < tensor_size; i++) { EXPECT_NEAR(tensor->data.f[i], 6.0f, eps); } tensor = interpreter->tensor(interpreter->outputs()[1]); for (size_t i = 0; i < tensor_size; i++) { EXPECT_NEAR(tensor->data.f[i], 9.0f, eps); } status = reader->GetTensorStatsAsMap(&stats); EXPECT_EQ(kTfLiteOk, status); EXPECT_EQ(7, stats.size()); for (int tensor_idx = 0; tensor_idx < 4; tensor_idx++) { EXPECT_NEAR(stats.find({0, tensor_idx})->second.min, tensor_idx + 1, eps); EXPECT_NEAR(stats.find({0, tensor_idx})->second.max, tensor_idx + 1, eps); } EXPECT_NEAR(stats.find({0, 4})->second.min, 5, eps); EXPECT_NEAR(stats.find({0, 4})->second.max, 5, eps); EXPECT_NEAR(stats.find({0, 5})->second.min, 6, eps); EXPECT_NEAR(stats.find({0, 5})->second.max, 6, eps); EXPECT_NEAR(stats.find({0, 6})->second.min, 9, eps); EXPECT_NEAR(stats.find({0, 6})->second.max, 9, eps); } TEST(CalibratorTest, MultipleInvokes) { auto model = ReadModel("multi_add.bin"); ASSERT_TRUE(model); std::unique_ptr<Interpreter> interpreter; std::unique_ptr<CalibrationReader> reader; auto status = BuildLoggingInterpreter( *model, ops::builtin::BuiltinOpResolver{}, &interpreter, &reader); EXPECT_EQ(kTfLiteOk, status); ASSERT_TRUE(interpreter); ASSERT_TRUE(reader); status = interpreter->AllocateTensors(); EXPECT_EQ(kTfLiteOk, status); const size_t tensor_size = 1 * 8 * 8 * 3; for (size_t i = 0; i < interpreter->inputs().size(); i++) { int input_tensor_idx = interpreter->inputs()[i]; TfLiteTensor* tensor = interpreter->tensor(input_tensor_idx); ASSERT_EQ(tensor->bytes, tensor_size * sizeof(float)); for (size_t j = 0; j < tensor_size; j++) { tensor->data.f[j] = i + 1; } } status = interpreter->Invoke(); ASSERT_EQ(kTfLiteOk, status); const float eps = 1e-6f; absl::flat_hash_map<std::tuple<int, int>, CalibrationReader::CalibrationStats> stats; status = reader->GetTensorStatsAsMap(&stats); EXPECT_EQ(kTfLiteOk, status); EXPECT_EQ(7, stats.size()); const float expected_values[7] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 9.0f, }; for (int tensor_idx = 0; tensor_idx < 7; tensor_idx++) { EXPECT_NEAR(stats.find({0, tensor_idx})->second.min, expected_values[tensor_idx], eps); EXPECT_NEAR(stats.find({0, tensor_idx})->second.max, expected_values[tensor_idx], eps); } TfLiteTensor* input0 = interpreter->tensor(0); input0->data.f[0] = 1.5f; input0->data.f[1] = 0.5f; status = interpreter->Invoke(); ASSERT_EQ(kTfLiteOk, status); status = reader->GetTensorStatsAsMap(&stats); EXPECT_EQ(kTfLiteOk, status); EXPECT_EQ(7, stats.size()); EXPECT_NEAR(stats.find({0, 0})->second.min, 0.5f, eps); EXPECT_NEAR(stats.find({0, 0})->second.max, 1.5f, eps); for (int tensor_idx = 1; tensor_idx < 5; tensor_idx++) { EXPECT_NEAR(stats.find({0, tensor_idx})->second.min, expected_values[tensor_idx], eps); EXPECT_NEAR(stats.find({0, tensor_idx})->second.max, expected_values[tensor_idx], eps); } EXPECT_NEAR(stats.find({0, 5})->second.min, 5.5f, eps); EXPECT_NEAR(stats.find({0, 5})->second.max, 6.5f, eps); EXPECT_NEAR(stats.find({0, 6})->second.min, 9.0f, eps); EXPECT_NEAR(stats.find({0, 6})->second.max, 9.0f, eps); } TEST(CalibratorTest, UpdateMinMax) { auto flatbuffer_model = ReadModel("multi_add.bin"); ASSERT_TRUE(flatbuffer_model); std::unique_ptr<Interpreter> interpreter; std::unique_ptr<CalibrationReader> reader; auto status = BuildLoggingInterpreter(*flatbuffer_model, ops::builtin::BuiltinOpResolver{}, &interpreter, &reader); EXPECT_EQ(kTfLiteOk, status); auto readonly_model = flatbuffer_model->GetModel(); tflite::ModelT model; readonly_model->UnPackTo(&model); ASSERT_TRUE(interpreter); ASSERT_TRUE(reader); status = interpreter->AllocateTensors(); EXPECT_EQ(kTfLiteOk, status); const size_t tensor_size = 1 * 8 * 8 * 3; for (size_t i = 0; i < interpreter->inputs().size(); i++) { int input_tensor_idx = interpreter->inputs()[i]; TfLiteTensor* tensor = interpreter->tensor(input_tensor_idx); ASSERT_EQ(tensor->bytes, tensor_size * sizeof(float)); for (size_t j = 0; j < tensor_size; j++) { tensor->data.f[j] = i + 1; } } auto input_0_quant_params = std::make_unique<tflite::QuantizationParametersT>(); input_0_quant_params->min.push_back(0.5); input_0_quant_params->max.push_back(1.5); model.subgraphs[0]->tensors[0]->quantization = std::move(input_0_quant_params); status = interpreter->Invoke(); ASSERT_EQ(kTfLiteOk, status); const float eps = 1e-6f; const float expected_min[7] = { 0.5f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 9.0f, }; const float expected_max[7] = { 1.5f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 9.0f, }; status = reader->AddCalibrationToModel(&model, true); for (int tensor_idx = 0; tensor_idx < 7; tensor_idx++) { EXPECT_NEAR(model.subgraphs[0]->tensors[tensor_idx]->quantization->min[0], expected_min[tensor_idx], eps); EXPECT_NEAR(model.subgraphs[0]->tensors[tensor_idx]->quantization->max[0], expected_max[tensor_idx], eps); } const float expected_value[7] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 9.0f, }; status = reader->AddCalibrationToModel(&model, false); for (int tensor_idx = 0; tensor_idx < 7; tensor_idx++) { EXPECT_NEAR(model.subgraphs[0]->tensors[tensor_idx]->quantization->min[0], expected_value[tensor_idx], eps); EXPECT_NEAR(model.subgraphs[0]->tensors[tensor_idx]->quantization->max[0], expected_value[tensor_idx], eps); } } TEST(CalibratorTest, HandleNanValues) { auto flatbuffer_model = ReadModel("multi_add.bin"); ASSERT_TRUE(flatbuffer_model); std::unique_ptr<Interpreter> interpreter; std::unique_ptr<CalibrationReader> reader; auto status = BuildLoggingInterpreter(*flatbuffer_model, ops::builtin::BuiltinOpResolver{}, &interpreter, &reader); EXPECT_EQ(kTfLiteOk, status); auto readonly_model = flatbuffer_model->GetModel(); tflite::ModelT model; readonly_model->UnPackTo(&model); ASSERT_TRUE(interpreter); ASSERT_TRUE(reader); status = interpreter->AllocateTensors(); EXPECT_EQ(kTfLiteOk, status); const size_t tensor_size = 1 * 8 * 8 * 3; for (size_t i = 0; i < interpreter->inputs().size(); i++) { int input_tensor_idx = interpreter->inputs()[i]; TfLiteTensor* tensor = interpreter->tensor(input_tensor_idx); ASSERT_EQ(tensor->bytes, tensor_size * sizeof(float)); for (size_t j = 0; j < tensor_size; j++) { if (j % 2 == 0) { tensor->data.f[j] = NAN; } else { tensor->data.f[j] = i + 1; } } } auto input_0_quant_params = std::make_unique<tflite::QuantizationParametersT>(); input_0_quant_params->min.push_back(0.5); input_0_quant_params->max.push_back(1.5); model.subgraphs[0]->tensors[0]->quantization = std::move(input_0_quant_params); status = interpreter->Invoke(); ASSERT_EQ(kTfLiteOk, status); const float eps = 1e-6f; const float expected_min[7] = { 0.5f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 9.0f, }; const float expected_max[7] = { 1.5f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 9.0f, }; status = reader->AddCalibrationToModel(&model, true); for (int tensor_idx = 0; tensor_idx < 7; tensor_idx++) { EXPECT_NEAR(model.subgraphs[0]->tensors[tensor_idx]->quantization->min[0], expected_min[tensor_idx], eps); EXPECT_NEAR(model.subgraphs[0]->tensors[tensor_idx]->quantization->max[0], expected_max[tensor_idx], eps); } const float expected_value[7] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 9.0f, }; status = reader->AddCalibrationToModel(&model, false); for (int tensor_idx = 0; tensor_idx < 7; tensor_idx++) { EXPECT_NEAR(model.subgraphs[0]->tensors[tensor_idx]->quantization->min[0], expected_value[tensor_idx], eps); EXPECT_NEAR(model.subgraphs[0]->tensors[tensor_idx]->quantization->max[0], expected_value[tensor_idx], eps); } } TEST(CalibratorTest, LSTM) { auto flatbuffer_model = ReadModel("lstm.bin"); ASSERT_TRUE(flatbuffer_model); std::unique_ptr<Interpreter> interpreter; std::unique_ptr<CalibrationReader> reader; auto status = BuildLoggingInterpreter(*flatbuffer_model, ops::builtin::BuiltinOpResolver{}, &interpreter, &reader); EXPECT_EQ(status, kTfLiteOk); auto readonly_model = flatbuffer_model->GetModel(); tflite::ModelT model; readonly_model->UnPackTo(&model); ASSERT_TRUE(interpreter); ASSERT_TRUE(reader); status = interpreter->AllocateTensors(); EXPECT_EQ(kTfLiteOk, status); const std::vector<float> lstm_input = {0.3, 0.2}; int input_tensor_idx = interpreter->inputs()[0]; TfLiteTensor* tensor = interpreter->tensor(input_tensor_idx); for (size_t j = 0; j < lstm_input.size(); j++) { tensor->data.f[j] = lstm_input[j]; } ASSERT_EQ(interpreter->Invoke(), kTfLiteOk); absl::flat_hash_map<std::tuple<int, int>, CalibrationReader::CalibrationStats> stats; EXPECT_EQ(reader->GetTensorStatsAsMap(&stats), kTfLiteOk); const float eps = 1e-6f; const absl::flat_hash_map<std::tuple<int, int>, CalibrationReader::CalibrationStats> expected_calibration_result = { {{0, 0}, {0.200000, 0.300000}}, {{0, 18}, {0.000000, 0.468415}}, {{0, 19}, {0.000000, 0.424350}}, {{0, 24}, {0.265968, 0.468415}}, {{0, 25}, {0.080045, 0.170588}}, {{0, 26}, {0.080045, 0.170588}}, {{0, 27}, {0.080045, 0.170588}}, {{0, 28}, {0.080045, 0.170588}}, {{0, 29}, {0.000000, 0.270944}}, }; EXPECT_EQ(expected_calibration_result.size(), stats.size()); for (const auto& e : stats) { auto expected_result = expected_calibration_result.find(e.first)->second; EXPECT_NEAR(e.second.min, expected_result.min, eps); EXPECT_NEAR(e.second.max, expected_result.max, eps); } } TEST(CalibratorTest, UnidirectionalSequenceLSTM) { auto flatbuffer_model = ReadModel("unidirectional_sequence_lstm.bin"); ASSERT_TRUE(flatbuffer_model); std::unique_ptr<Interpreter> interpreter; std::unique_ptr<CalibrationReader> reader; auto status = BuildLoggingInterpreter(*flatbuffer_model, ops::builtin::BuiltinOpResolver{}, &interpreter, &reader); EXPECT_EQ(kTfLiteOk, status); auto readonly_model = flatbuffer_model->GetModel(); tflite::ModelT model; readonly_model->UnPackTo(&model); ASSERT_TRUE(interpreter); ASSERT_TRUE(reader); EXPECT_EQ(interpreter->AllocateTensors(), kTfLiteOk); const std::vector<float> lstm_input = {0.3, 0.2, 0.9, 0.8}; int input_tensor_idx = interpreter->inputs()[0]; TfLiteTensor* tensor = interpreter->tensor(input_tensor_idx); for (size_t j = 0; j < lstm_input.size(); j++) { tensor->data.f[j] = lstm_input[j]; } ASSERT_EQ(interpreter->Invoke(), kTfLiteOk); absl::flat_hash_map<std::tuple<int, int>, CalibrationReader::CalibrationStats> stats; EXPECT_EQ(reader->GetTensorStatsAsMap(&stats), kTfLiteOk); const float eps = 1e-6f; const absl::flat_hash_map<std::tuple<int, int>, CalibrationReader::CalibrationStats> expected_calibration_result = { {{0, 0}, {0.200000, 0.900000}}, {{0, 18}, {0.000000, 0.520999}}, {{0, 19}, {0.000000, 0.711364}}, {{0, 24}, {0.247992, 0.520999}}, {{0, 25}, {0.080045, 0.824241}}, {{0, 26}, {0.080045, 0.824241}}, {{0, 27}, {0.080045, 0.824241}}, {{0, 28}, {0.080045, 0.824241}}, {{0, 29}, {0.000000, 0.413618}}, }; EXPECT_EQ(expected_calibration_result.size(), stats.size()); for (const auto& e : stats) { auto expected_result = expected_calibration_result.find(e.first)->second; EXPECT_NEAR(e.second.min, expected_result.min, eps); EXPECT_NEAR(e.second.max, expected_result.max, eps); } } TEST(CalibratorTest, CustomLSTM) { auto flatbuffer_model = ReadModel("custom_lstm.bin"); ASSERT_TRUE(flatbuffer_model); std::unique_ptr<Interpreter> interpreter; std::unique_ptr<CalibrationReader> reader; auto status = BuildLoggingInterpreter(*flatbuffer_model, ops::builtin::BuiltinOpResolver{}, &interpreter, &reader); EXPECT_EQ(kTfLiteOk, status); auto readonly_model = flatbuffer_model->GetModel(); tflite::ModelT model; readonly_model->UnPackTo(&model); ASSERT_TRUE(interpreter); ASSERT_TRUE(reader); EXPECT_EQ(interpreter->AllocateTensors(), kTfLiteOk); const std::vector<float> lstm_input = {0.3, 0.2, 0.9, 0.8}; int input_tensor_idx = interpreter->inputs()[0]; TfLiteTensor* tensor = interpreter->tensor(input_tensor_idx); for (size_t j = 0; j < lstm_input.size(); j++) { tensor->data.f[j] = lstm_input[j]; } ASSERT_EQ(interpreter->Invoke(), kTfLiteOk); absl::flat_hash_map<std::tuple<int, int>, CalibrationReader::CalibrationStats> stats; EXPECT_EQ(reader->GetTensorStatsAsMap(&stats), kTfLiteOk); const float eps = 1e-6f; const absl::flat_hash_map<std::tuple<int, int>, CalibrationReader::CalibrationStats> expected_calibration_result = { {{0, 0}, {0.200000, 0.300000}}, {{0, 18}, {0.000000, 0.468415}}, {{0, 19}, {0.000000, 0.424349}}, {{0, 24}, {0.265968, 0.468415}}, {{0, 25}, {0.080045, 0.170588}}, {{0, 26}, {0.080045, 0.170588}}, {{0, 27}, {0.000000, 0.000000}}, {{0, 28}, {0.080045, 0.170588}}, {{0, 29}, {0.080045, 0.170588}}, {{0, 30}, {0.000000, 0.000000}}, {{0, 31}, {0.080045, 0.170588}}, {{0, 32}, {0.080045, 0.170588}}, {{0, 33}, {0.000000, 0.000000}}, {{0, 34}, {0.080045, 0.170588}}, {{0, 35}, {0.080045, 0.170588}}, {{0, 36}, {0.000000, 0.000000}}, }; EXPECT_EQ(expected_calibration_result.size(), stats.size()); for (const auto& e : stats) { auto expected_result = expected_calibration_result.find(e.first)->second; EXPECT_NEAR(e.second.min, expected_result.min, eps); EXPECT_NEAR(e.second.max, expected_result.max, eps); } } TEST(CalibratorTest, CalibrationWithMultipleSubgraphs) { auto model = ReadModel("multi_subgraphs_while.bin"); ASSERT_TRUE(model); std::unique_ptr<Interpreter> interpreter; std::unique_ptr<CalibrationReader> reader; auto status = BuildLoggingInterpreter( *model, ops::builtin::BuiltinOpResolver{}, &interpreter, &reader); EXPECT_EQ(kTfLiteOk, status); ASSERT_TRUE(interpreter); ASSERT_TRUE(reader); absl::flat_hash_map<std::tuple<int, int>, CalibrationReader::CalibrationStats> stats; status = reader->GetTensorStatsAsMap(&stats); EXPECT_EQ(kTfLiteOk, status); EXPECT_TRUE(stats.empty()); status = interpreter->AllocateTensors(); ASSERT_EQ(kTfLiteOk, status); const size_t tensor_size = 1; for (size_t i = 0; i < interpreter->inputs().size(); i++) { int input_tensor_idx = interpreter->inputs()[i]; TfLiteTensor* tensor = interpreter->tensor(input_tensor_idx); ASSERT_EQ(tensor->bytes, tensor_size * sizeof(int)); for (size_t j = 0; j < tensor_size; j++) { tensor->data.f[j] = i + 1; } } status = interpreter->Invoke(); ASSERT_EQ(kTfLiteOk, status); status = reader->GetTensorStatsAsMap(&stats); EXPECT_EQ(kTfLiteOk, status); EXPECT_EQ(4, stats.size()); const float eps = 1e-6f; const absl::flat_hash_map<std::tuple<int, int>, CalibrationReader::CalibrationStats> expected_calibration_result = { {{0, 0}, {1.0, 1.0}}, {{0, 4}, {4.0, 4.0}}, {{2, 2}, {1.0, 2.0}}, {{2, 6}, {2.0, 4.0}}, }; EXPECT_EQ(expected_calibration_result.size(), stats.size()); for (const auto& e : stats) { auto expected_result = expected_calibration_result.find(e.first)->second; EXPECT_NEAR(e.second.min, expected_result.min, eps); EXPECT_NEAR(e.second.max, expected_result.max, eps); } } TEST(CalibratorTest, CalibrationWithCallOnce) { auto model = ReadModel("call_once_mul.bin"); ASSERT_TRUE(model); std::unique_ptr<Interpreter> interpreter; std::unique_ptr<CalibrationReader> reader; auto status = BuildLoggingInterpreter( *model, ops::builtin::BuiltinOpResolver{}, &interpreter, &reader); EXPECT_EQ(kTfLiteOk, status); ASSERT_TRUE(interpreter); ASSERT_TRUE(reader); absl::flat_hash_map<std::tuple<int, int>, CalibrationReader::CalibrationStats> stats; status = reader->GetTensorStatsAsMap(&stats); EXPECT_EQ(kTfLiteOk, status); EXPECT_TRUE(stats.empty()); status = interpreter->AllocateTensors(); ASSERT_EQ(kTfLiteOk, status); const size_t tensor_size = 1; for (size_t i = 0; i < interpreter->inputs().size(); i++) { int input_tensor_idx = interpreter->inputs()[i]; TfLiteTensor* tensor = interpreter->tensor(input_tensor_idx); ASSERT_EQ(tensor->bytes, tensor_size * sizeof(int)); for (size_t j = 0; j < tensor_size; j++) { tensor->data.f[j] = i + 1; } } status = interpreter->Invoke(); ASSERT_EQ(kTfLiteOk, status); status = reader->GetTensorStatsAsMap(&stats); EXPECT_EQ(kTfLiteOk, status); EXPECT_EQ(3, stats.size()); const float eps = 1e-6f; const absl::flat_hash_map<std::tuple<int, int>, CalibrationReader::CalibrationStats> expected_calibration_result = { {{0, 0}, {1.0, 1.0}}, {{0, 2}, {2.0, 2.0}}, {{0, 3}, {2.0, 2.0}}}; EXPECT_EQ(expected_calibration_result.size(), stats.size()); for (const auto& e : stats) { auto expected_result = expected_calibration_result.find(e.first)->second; EXPECT_NEAR(e.second.min, expected_result.min, eps); EXPECT_NEAR(e.second.max, expected_result.max, eps); } } } } } } int main(int argc, char** argv) { tensorflow::string model_file; const std::vector<tensorflow::Flag> flag_list = { tensorflow::Flag("test_model_file", &model_file, "Path to test tflite model file."), }; const bool parse_result = tensorflow::Flags::Parse(&argc, argv, flag_list); if (!parse_result) { std::cerr << "Required test_model_file\n"; std::abort(); } g_test_model_dir = new tensorflow::string(tensorflow::io::Dirname(model_file)); ::tensorflow::port::InitMain(argv[0], &argc, &argv); return RUN_ALL_TESTS(); }
852
cpp
tensorflow/tensorflow
logging_op_resolver
tensorflow/lite/tools/optimize/calibration/logging_op_resolver.cc
tensorflow/lite/tools/optimize/calibration/logging_op_resolver_test.cc
#ifndef TENSORFLOW_LITE_TOOLS_OPTIMIZE_CALIBRATION_LOGGING_OP_RESOLVER_H_ #define TENSORFLOW_LITE_TOOLS_OPTIMIZE_CALIBRATION_LOGGING_OP_RESOLVER_H_ #include <set> #include <unordered_map> #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/core/api/error_reporter.h" #include "tensorflow/lite/core/api/op_resolver.h" #include "tensorflow/lite/mutable_op_resolver.h" #include "tensorflow/lite/op_resolver.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/tools/optimize/calibration/calibration_common.h" namespace tflite { namespace optimize { namespace calibration { class LoggingOpResolver : public OpResolver { public: LoggingOpResolver(const BuiltinOpsSet& builtin_ops_to_replace, const CustomOpsSet& custom_ops_to_replace, const OpResolver& base_resolver, KernelEvalFuncPtr logging_eval_fn, ErrorReporter* error_reporter); const TfLiteRegistration* FindOp(BuiltinOperator op, int version) const override; KernelEvalFuncPtr GetWrappedKernelInvoke(BuiltinOperator op, int version) const; const TfLiteRegistration* FindOp(const char* op, int version) const override; KernelEvalFuncPtr GetWrappedKernelInvoke(const char* op, int version) const; private: BuiltinOpsMap<std::unique_ptr<TfLiteRegistration>> builtin_op_registration_map_; BuiltinOpsMap<KernelEvalFuncPtr> builtin_op_evalfn_map_; CustomOpsMap<std::unique_ptr<TfLiteRegistration>> custom_op_registration_map_; CustomOpsMap<KernelEvalFuncPtr> custom_op_evalfn_map_; }; } } } #endif #include "tensorflow/lite/tools/optimize/calibration/logging_op_resolver.h" #include <memory> #include <string> #include <utility> #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/core/api/error_reporter.h" #include "tensorflow/lite/core/api/op_resolver.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/tools/optimize/calibration/calibration_common.h" #include "tensorflow/lite/util.h" namespace tflite { namespace optimize { namespace calibration { LoggingOpResolver::LoggingOpResolver( const BuiltinOpsSet& builtin_ops_to_replace, const CustomOpsSet& custom_ops_to_replace, const OpResolver& base_resolver, KernelEvalFuncPtr logging_eval_fn, ErrorReporter* error_reporter) { std::vector<std::string> unresolved_builtin_ops; std::vector<std::string> unresolved_custom_ops; for (const auto& op_and_version : builtin_ops_to_replace) { const TfLiteRegistration* base_registration = base_resolver.FindOp(op_and_version.first, op_and_version.second); if (!base_registration) { unresolved_builtin_ops.push_back( EnumNameBuiltinOperator(op_and_version.first)); continue; } BuiltinOperatorKey key = op_and_version; builtin_op_evalfn_map_[key] = base_registration->invoke; auto logging_registration = std::make_unique<TfLiteRegistration>(*base_registration); logging_registration->invoke = logging_eval_fn; builtin_op_registration_map_[key] = std::move(logging_registration); } for (const auto& op_and_version : custom_ops_to_replace) { const TfLiteRegistration* base_registration = base_resolver.FindOp( op_and_version.first.c_str(), op_and_version.second); if (!base_registration) { if (!IsFlexOp(op_and_version.first.c_str())) unresolved_custom_ops.push_back(op_and_version.first.c_str()); continue; } CustomOperatorKey key = op_and_version; custom_op_evalfn_map_[key] = base_registration->invoke; auto logging_registration = std::make_unique<TfLiteRegistration>(*base_registration); logging_registration->invoke = logging_eval_fn; custom_op_registration_map_[key] = std::move(logging_registration); } if (!unresolved_builtin_ops.empty() || !unresolved_custom_ops.empty()) { if (!error_reporter) return; std::string error_message = "Failed to initialize op resolver for calibration:"; if (!unresolved_builtin_ops.empty()) absl::StrAppend(&error_message, "\nThere are unresolved builtin ops: [", absl::StrJoin(unresolved_builtin_ops, ", "), "]"); if (!unresolved_custom_ops.empty()) { absl::StrAppend(&error_message, "\nThere are unresolved custom ops: [", absl::StrJoin(unresolved_custom_ops, ", "), "]"); } TF_LITE_REPORT_ERROR(error_reporter, error_message.c_str()); } } const TfLiteRegistration* LoggingOpResolver::FindOp(BuiltinOperator op, int version) const { BuiltinOperatorKey key = {op, version}; if (builtin_op_registration_map_.find(key) != builtin_op_registration_map_.end()) { return builtin_op_registration_map_.at(key).get(); } return nullptr; } KernelEvalFuncPtr LoggingOpResolver::GetWrappedKernelInvoke(BuiltinOperator op, int version) const { return builtin_op_evalfn_map_.at({op, version}); } const TfLiteRegistration* LoggingOpResolver::FindOp(const char* op, int version) const { CustomOperatorKey key = {op, version}; if (custom_op_registration_map_.find(key) != custom_op_registration_map_.end()) { return custom_op_registration_map_.at(key).get(); } return nullptr; } KernelEvalFuncPtr LoggingOpResolver::GetWrappedKernelInvoke(const char* op, int version) const { return custom_op_evalfn_map_.at({op, version}); } } } }
#include "tensorflow/lite/tools/optimize/calibration/logging_op_resolver.h" #include <string> #include <gtest/gtest.h> #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/mutable_op_resolver.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/tools/optimize/calibration/calibration_common.h" namespace tflite { namespace optimize { namespace calibration { namespace { TfLiteStatus ConvPrepare(TfLiteContext* context, TfLiteNode* node) { return kTfLiteOk; } TfLiteStatus ConvEval(TfLiteContext* context, TfLiteNode* node) { return kTfLiteOk; } TfLiteStatus AddPrepare(TfLiteContext* context, TfLiteNode* node) { return kTfLiteOk; } TfLiteStatus AddEval(TfLiteContext* context, TfLiteNode* node) { return kTfLiteOk; } TfLiteStatus CustomPrepare(TfLiteContext* context, TfLiteNode* node) { return kTfLiteOk; } TfLiteStatus CustomEval(TfLiteContext* context, TfLiteNode* node) { return kTfLiteOk; } TfLiteStatus WrappingInvoke(TfLiteContext* context, TfLiteNode* node) { return kTfLiteOk; } TEST(LoggingOpResolverTest, KernelInvokesAreReplaced) { MutableOpResolver base_resolver; TfLiteRegistration conv_registration = {}; conv_registration.prepare = ConvPrepare; conv_registration.invoke = ConvEval; base_resolver.AddBuiltin(BuiltinOperator_CONV_2D, &conv_registration); TfLiteRegistration add_registration = {}; add_registration.prepare = AddPrepare; add_registration.invoke = AddEval; base_resolver.AddBuiltin(BuiltinOperator_ADD, &add_registration); BuiltinOpsSet ops_to_replace = { {BuiltinOperator_CONV_2D, 1}, {BuiltinOperator_ADD, 1}, }; LoggingOpResolver resolver(ops_to_replace, CustomOpsSet(), base_resolver, WrappingInvoke, nullptr); auto reg = resolver.FindOp(BuiltinOperator_CONV_2D, 1); EXPECT_EQ(reg->builtin_code, BuiltinOperator_CONV_2D); EXPECT_TRUE(reg->prepare == ConvPrepare); EXPECT_TRUE(reg->invoke == WrappingInvoke); reg = resolver.FindOp(BuiltinOperator_ADD, 1); EXPECT_EQ(reg->builtin_code, BuiltinOperator_ADD); EXPECT_TRUE(reg->prepare == AddPrepare); EXPECT_TRUE(reg->invoke == WrappingInvoke); } TEST(LoggingOpResolverTest, OriginalKernelInvokesAreRetained) { MutableOpResolver base_resolver; TfLiteRegistration conv_registration = {}; conv_registration.prepare = ConvPrepare; conv_registration.invoke = ConvEval; base_resolver.AddBuiltin(BuiltinOperator_CONV_2D, &conv_registration); TfLiteRegistration add_registration = {}; add_registration.prepare = AddPrepare; add_registration.invoke = AddEval; base_resolver.AddBuiltin(BuiltinOperator_ADD, &add_registration); BuiltinOpsSet ops_to_replace = { {BuiltinOperator_CONV_2D, 1}, {BuiltinOperator_ADD, 1}, }; LoggingOpResolver resolver(ops_to_replace, CustomOpsSet(), base_resolver, WrappingInvoke, nullptr); auto kernel_invoke = resolver.GetWrappedKernelInvoke(BuiltinOperator_CONV_2D, 1); EXPECT_TRUE(kernel_invoke == ConvEval); kernel_invoke = resolver.GetWrappedKernelInvoke(BuiltinOperator_ADD, 1); EXPECT_TRUE(kernel_invoke == AddEval); } TEST(LoggingOpResolverTest, OnlyOpsInReplacementSetAreReplaces) { MutableOpResolver base_resolver; TfLiteRegistration conv_registration = {}; conv_registration.prepare = ConvPrepare; conv_registration.invoke = ConvEval; base_resolver.AddBuiltin(BuiltinOperator_CONV_2D, &conv_registration); TfLiteRegistration add_registration = {}; add_registration.prepare = AddPrepare; add_registration.invoke = AddEval; base_resolver.AddBuiltin(BuiltinOperator_ADD, &add_registration); BuiltinOpsSet ops_to_replace = { {BuiltinOperator_CONV_2D, 1}, }; LoggingOpResolver resolver(ops_to_replace, CustomOpsSet(), base_resolver, WrappingInvoke, nullptr); auto reg = resolver.FindOp(BuiltinOperator_CONV_2D, 1); EXPECT_EQ(reg->builtin_code, BuiltinOperator_CONV_2D); EXPECT_TRUE(reg->prepare == ConvPrepare); EXPECT_TRUE(reg->invoke == WrappingInvoke); reg = resolver.FindOp(BuiltinOperator_ADD, 1); EXPECT_EQ(nullptr, reg); } TEST(LoggingOpResolverTest, CustomOps) { MutableOpResolver base_resolver; TfLiteRegistration custom_registration = {}; custom_registration.prepare = CustomPrepare; custom_registration.invoke = CustomEval; std::string custom_op_name = "custom"; base_resolver.AddCustom(custom_op_name.c_str(), &custom_registration); CustomOpsSet ops_to_replace = { {custom_op_name, 1}, }; LoggingOpResolver resolver(BuiltinOpsSet(), ops_to_replace, base_resolver, WrappingInvoke, nullptr); auto reg = resolver.FindOp(custom_op_name.c_str(), 1); EXPECT_EQ(reg->builtin_code, BuiltinOperator_CUSTOM); EXPECT_EQ(reg->custom_name, custom_op_name.c_str()); EXPECT_TRUE(reg->prepare == CustomPrepare); EXPECT_TRUE(reg->invoke == WrappingInvoke); } TEST(LoggingOpResolverTest, UnresolvedCustomOps) { MutableOpResolver base_resolver; std::string custom_op_name = "unresolved_custom_op"; CustomOpsSet ops_to_replace = { {custom_op_name, 1}, }; LoggingOpResolver(BuiltinOpsSet(), ops_to_replace, base_resolver, WrappingInvoke, nullptr); } TEST(LoggingOpResolverTest, UnresolvedBuiltinOps) { MutableOpResolver base_resolver; BuiltinOpsSet ops_to_replace = { {BuiltinOperator_CONV_2D, 1}, {BuiltinOperator_ADD, 1}, }; LoggingOpResolver resolver(ops_to_replace, CustomOpsSet(), base_resolver, WrappingInvoke, nullptr); } TEST(LoggingOpResolverTest, FlexOps) { MutableOpResolver base_resolver; std::string custom_op_name = "FlexAdd"; CustomOpsSet ops_to_replace = { {custom_op_name, 1}, }; LoggingOpResolver resolver(BuiltinOpsSet(), ops_to_replace, base_resolver, WrappingInvoke, nullptr); auto reg = resolver.FindOp(custom_op_name.c_str(), 1); EXPECT_TRUE(!reg); } } } } }
853
cpp
tensorflow/tensorflow
lstm
tensorflow/lite/kernels/lstm.cc
tensorflow/lite/kernels/lstm_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_GL_KERNELS_LSTM_H_ #define TENSORFLOW_LITE_DELEGATES_GPU_GL_KERNELS_LSTM_H_ #include <memory> #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/gl/node_shader.h" namespace tflite { namespace gpu { namespace gl { std::unique_ptr<NodeShader> NewLstmNodeShader(); } } } #endif #include "tensorflow/lite/delegates/gpu/gl/kernels/lstm.h" #include <memory> #include <string> #include <utility> #include "absl/memory/memory.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/types.h" #include "tensorflow/lite/delegates/gpu/gl/node_shader.h" namespace tflite { namespace gpu { namespace gl { namespace { class LstmNodeShader : public NodeShader { public: absl::Status GenerateCode(const GenerationContext& ctx, GeneratedCode* generated_code) const final { std::string code = R"( vec4 prev_state = $input_data_1[gid.x, gid.y, gid.z]$; int c0 = 0 * $workload_z$; int c1 = 1 * $workload_z$; int c2 = 2 * $workload_z$; int c3 = 3 * $workload_z$; vec4 gate_0 = $input_data_0[gid.x, gid.y, gid.z + c0]$; vec4 gate_1 = $input_data_0[gid.x, gid.y, gid.z + c1]$; vec4 gate_2 = $input_data_0[gid.x, gid.y, gid.z + c2]$; vec4 gate_3 = $input_data_0[gid.x, gid.y, gid.z + c3]$; vec4 input_gate = 1.0f / (1.0f + exp(-1.0 * gate_0)); vec4 new_input = tanh(gate_1); vec4 forget_gate = 1.0f / (1.0f + exp(-1.0 * gate_2)); vec4 output_gate = 1.0f / (1.0f + exp(-1.0 * gate_3)); vec4 new_state = input_gate * new_input + forget_gate * prev_state; vec4 activation = output_gate * tanh(new_state); value_0 = new_state; value_1 = activation; )"; *generated_code = { {}, {}, {}, uint3(), uint3(), std::move(code), IOStructure::ONLY_DEFINITIONS, IOStructure::AUTO, }; return absl::OkStatus(); } }; } std::unique_ptr<NodeShader> NewLstmNodeShader() { return std::make_unique<LstmNodeShader>(); } } } }
#include "tensorflow/lite/delegates/gpu/gl/kernels/lstm.h" #include <cmath> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/gl/kernels/test_util.h" using ::testing::FloatNear; using ::testing::Pointwise; namespace tflite { namespace gpu { namespace gl { namespace { TEST(LstmTest, BaseTest) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 1, 1, 16); TensorRef<BHWC> prev_state; prev_state.type = DataType::FLOAT32; prev_state.ref = 1; prev_state.shape = BHWC(1, 1, 1, 4); TensorRef<BHWC> output_state; output_state.type = DataType::FLOAT32; output_state.ref = 2; output_state.shape = BHWC(1, 1, 1, 4); TensorRef<BHWC> output_activation; output_activation.type = DataType::FLOAT32; output_activation.ref = 3; output_activation.shape = BHWC(1, 1, 1, 4); LstmAttributes attr; attr.kernel_type = LstmKernelType::BASIC; SingleOpModel model({ToString(OperationType::LSTM), attr}, {input, prev_state}, {output_state, output_activation}); std::vector input_data = { -std::log(2.0f), -std::log(2.0f), -std::log(2.0f), -std::log(2.0f), std::log(3.0f), std::log(3.0f), std::log(3.0f), std::log(3.0f), -std::log(4.0f), -std::log(4.0f), -std::log(4.0f), -std::log(4.0f), -std::log(5.0f), -std::log(5.0f), -std::log(5.0f), -std::log(5.0f)}; ASSERT_TRUE(model.PopulateTensor(0, std::move(input_data))); ASSERT_TRUE(model.PopulateTensor(1, {1, 2, 3, 4})); ASSERT_OK(model.Invoke(*NewLstmNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {7.0 / 15.0, 10.0 / 15.0, 13.0 / 15.0, 16.0 / 15.0})); EXPECT_THAT( model.GetOutput(1), Pointwise(FloatNear(1e-6), {(1.f / 6.f) * std::tanh(7.f / 15.f), (1.f / 6.f) * std::tanh(10.f / 15.f), (1.f / 6.f) * std::tanh(13.f / 15.f), (1.f / 6.f) * std::tanh(16.f / 15.f)})); } } } } }
854
cpp
tensorflow/tensorflow
evaluation_delegate_provider
tensorflow/lite/tools/evaluation/evaluation_delegate_provider.cc
tensorflow/lite/tools/evaluation/evaluation_delegate_provider_test.cc
#ifndef TENSORFLOW_LITE_TOOLS_EVALUATION_EVALUATION_DELEGATE_PROVIDER_H_ #define TENSORFLOW_LITE_TOOLS_EVALUATION_EVALUATION_DELEGATE_PROVIDER_H_ #include <string> #include <unordered_map> #include <vector> #include "tensorflow/lite/tools/command_line_flags.h" #include "tensorflow/lite/tools/delegates/delegate_provider.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_stages.pb.h" #include "tensorflow/lite/tools/evaluation/utils.h" #include "tensorflow/lite/tools/tool_params.h" namespace tflite { namespace evaluation { using ProvidedDelegateList = tflite::tools::ProvidedDelegateList; class DelegateProviders { public: DelegateProviders(); std::vector<Flag> GetFlags(); bool InitFromCmdlineArgs(int* argc, const char** argv); const tools::ToolParams& GetAllParams() const { return params_; } tools::ToolParams GetAllParams(const TfliteInferenceParams& params) const; TfLiteDelegatePtr CreateDelegate(const std::string& name) const; std::vector<ProvidedDelegateList::ProvidedDelegate> CreateAllDelegates() const { return delegate_list_util_.CreateAllRankedDelegates(); } std::vector<ProvidedDelegateList::ProvidedDelegate> CreateAllDelegates( const TfliteInferenceParams& params) const { auto converted = GetAllParams(params); ProvidedDelegateList util(&converted); return util.CreateAllRankedDelegates(); } private: tools::ToolParams params_; ProvidedDelegateList delegate_list_util_; const std::unordered_map<std::string, int> delegates_map_; }; TfliteInferenceParams::Delegate ParseStringToDelegateType( const std::string& val); TfLiteDelegatePtr CreateTfLiteDelegate(const TfliteInferenceParams& params, std::string* error_msg = nullptr); } } #endif #include "tensorflow/lite/tools/evaluation/evaluation_delegate_provider.h" #include <string> #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/tools/command_line_flags.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_stages.pb.h" #include "tensorflow/lite/tools/evaluation/utils.h" #include "tensorflow/lite/tools/logging.h" #include "tensorflow/lite/tools/tool_params.h" namespace tflite { namespace evaluation { namespace { constexpr char kNnapiDelegate[] = "nnapi"; constexpr char kGpuDelegate[] = "gpu"; constexpr char kHexagonDelegate[] = "hexagon"; constexpr char kXnnpackDelegate[] = "xnnpack"; constexpr char kCoremlDelegate[] = "coreml"; } TfliteInferenceParams::Delegate ParseStringToDelegateType( const std::string& val) { if (val == kNnapiDelegate) return TfliteInferenceParams::NNAPI; if (val == kGpuDelegate) return TfliteInferenceParams::GPU; if (val == kHexagonDelegate) return TfliteInferenceParams::HEXAGON; if (val == kXnnpackDelegate) return TfliteInferenceParams::XNNPACK; if (val == kCoremlDelegate) return TfliteInferenceParams::COREML; return TfliteInferenceParams::NONE; } TfLiteDelegatePtr CreateTfLiteDelegate(const TfliteInferenceParams& params, std::string* error_msg) { const auto type = params.delegate(); switch (type) { case TfliteInferenceParams::NNAPI: { auto p = CreateNNAPIDelegate(); if (!p && error_msg) *error_msg = "NNAPI not supported"; return p; } case TfliteInferenceParams::GPU: { auto p = CreateGPUDelegate(); if (!p && error_msg) *error_msg = "GPU delegate not supported."; return p; } case TfliteInferenceParams::HEXAGON: { auto p = CreateHexagonDelegate("", false); if (!p && error_msg) { *error_msg = "Hexagon delegate is not supported on the platform or required " "libraries are missing."; } return p; } case TfliteInferenceParams::XNNPACK: { auto p = CreateXNNPACKDelegate(params.num_threads(), false); if (!p && error_msg) *error_msg = "XNNPACK delegate not supported."; return p; } case TfliteInferenceParams::COREML: { auto p = CreateCoreMlDelegate(); if (!p && error_msg) *error_msg = "CoreML delegate not supported."; return p; } case TfliteInferenceParams::NONE: return TfLiteDelegatePtr(nullptr, [](TfLiteDelegate*) {}); default: if (error_msg) { *error_msg = "Creation of delegate type: " + TfliteInferenceParams::Delegate_Name(type) + " not supported yet."; } return TfLiteDelegatePtr(nullptr, [](TfLiteDelegate*) {}); } } DelegateProviders::DelegateProviders() : delegate_list_util_(&params_), delegates_map_([=]() -> std::unordered_map<std::string, int> { std::unordered_map<std::string, int> delegates_map; const auto& providers = delegate_list_util_.providers(); for (int i = 0; i < providers.size(); ++i) { delegates_map[providers[i]->GetName()] = i; } return delegates_map; }()) { delegate_list_util_.AddAllDelegateParams(); } std::vector<Flag> DelegateProviders::GetFlags() { std::vector<Flag> flags; delegate_list_util_.AppendCmdlineFlags(flags); return flags; } bool DelegateProviders::InitFromCmdlineArgs(int* argc, const char** argv) { std::vector<Flag> flags = GetFlags(); bool parse_result = Flags::Parse(argc, argv, flags); if (!parse_result || params_.Get<bool>("help")) { std::string usage = Flags::Usage(argv[0], flags); TFLITE_LOG(ERROR) << usage; parse_result = false; } return parse_result; } TfLiteDelegatePtr DelegateProviders::CreateDelegate( const std::string& name) const { const auto it = delegates_map_.find(name); if (it == delegates_map_.end()) { return TfLiteDelegatePtr(nullptr, [](TfLiteDelegate*) {}); } const auto& providers = delegate_list_util_.providers(); return providers[it->second]->CreateTfLiteDelegate(params_); } tools::ToolParams DelegateProviders::GetAllParams( const TfliteInferenceParams& params) const { tools::ToolParams tool_params; tool_params.Merge(params_, false); if (params.has_num_threads()) { tool_params.Set<int32_t>("num_threads", params.num_threads()); } const auto type = params.delegate(); switch (type) { case TfliteInferenceParams::NNAPI: if (tool_params.HasParam("use_nnapi")) { tool_params.Set<bool>("use_nnapi", true); } break; case TfliteInferenceParams::GPU: if (tool_params.HasParam("use_gpu")) { tool_params.Set<bool>("use_gpu", true); } break; case TfliteInferenceParams::HEXAGON: if (tool_params.HasParam("use_hexagon")) { tool_params.Set<bool>("use_hexagon", true); } break; case TfliteInferenceParams::XNNPACK: if (tool_params.HasParam("use_xnnpack")) { tool_params.Set<bool>("use_xnnpack", true); } if (tool_params.HasParam("xnnpack_force_fp16")) { tool_params.Set<bool>("xnnpack_force_fp16", true); } break; case TfliteInferenceParams::COREML: if (tool_params.HasParam("use_coreml")) { tool_params.Set<bool>("use_coreml", true); } break; default: break; } return tool_params; } } }
#include "tensorflow/lite/tools/evaluation/evaluation_delegate_provider.h" #include <gtest/gtest.h> #include "tensorflow/lite/tools/evaluation/proto/evaluation_stages.pb.h" #include "tensorflow/lite/tools/tool_params.h" namespace tflite { namespace evaluation { namespace { TEST(EvaluationDelegateProviderTest, ParseStringToDelegateType) { EXPECT_EQ(TfliteInferenceParams::NNAPI, ParseStringToDelegateType("nnapi")); EXPECT_EQ(TfliteInferenceParams::GPU, ParseStringToDelegateType("gpu")); EXPECT_EQ(TfliteInferenceParams::HEXAGON, ParseStringToDelegateType("hexagon")); EXPECT_EQ(TfliteInferenceParams::XNNPACK, ParseStringToDelegateType("xnnpack")); EXPECT_EQ(TfliteInferenceParams::NONE, ParseStringToDelegateType("Gpu")); EXPECT_EQ(TfliteInferenceParams::NONE, ParseStringToDelegateType("Testing")); } TEST(EvaluationDelegateProviderTest, CreateTfLiteDelegate) { TfliteInferenceParams params; params.set_delegate(TfliteInferenceParams::NONE); EXPECT_TRUE(!CreateTfLiteDelegate(params)); } TEST(EvaluationDelegateProviderTest, DelegateProvidersParams) { DelegateProviders providers; const auto& params = providers.GetAllParams(); EXPECT_TRUE(params.HasParam("use_nnapi")); EXPECT_TRUE(params.HasParam("use_gpu")); int argc = 3; const char* argv[] = {"program_name", "--use_gpu=true", "--other_undefined_flag=1"}; EXPECT_TRUE(providers.InitFromCmdlineArgs(&argc, argv)); EXPECT_TRUE(params.Get<bool>("use_gpu")); EXPECT_EQ(2, argc); EXPECT_EQ("--other_undefined_flag=1", argv[1]); } TEST(EvaluationDelegateProviderTest, GetAllParamsWithTfliteInferenceParams) { DelegateProviders providers; int argc = 2; const char* argv[] = {"program_name", "--num_threads=1"}; EXPECT_TRUE(providers.InitFromCmdlineArgs(&argc, argv)); const auto& default_params = providers.GetAllParams(); EXPECT_EQ(1, default_params.Get<int>("num_threads")); TfliteInferenceParams params; params.set_delegate(TfliteInferenceParams::NONE); params.set_num_threads(4); tools::ToolParams tool_params = providers.GetAllParams(params); EXPECT_EQ(4, tool_params.Get<int>("num_threads")); EXPECT_EQ(1, argc); } } } }
855
cpp
tensorflow/tensorflow
topk_accuracy_eval_stage
tensorflow/lite/tools/evaluation/stages/topk_accuracy_eval_stage.cc
tensorflow/lite/tools/evaluation/stages/topk_accuracy_eval_stage_test.cc
#ifndef TENSORFLOW_LITE_TOOLS_EVALUATION_STAGES_TOPK_ACCURACY_EVAL_STAGE_H_ #define TENSORFLOW_LITE_TOOLS_EVALUATION_STAGES_TOPK_ACCURACY_EVAL_STAGE_H_ #include <string> #include <vector> #include "tensorflow/lite/tools/evaluation/evaluation_stage.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_config.pb.h" namespace tflite { namespace evaluation { class TopkAccuracyEvalStage : public EvaluationStage { public: explicit TopkAccuracyEvalStage(const EvaluationStageConfig& config) : EvaluationStage(config) {} TfLiteStatus Init() override; TfLiteStatus Run() override; EvaluationStageMetrics LatestMetrics() override; ~TopkAccuracyEvalStage() override {} void SetTaskInfo(const std::vector<std::string>& all_labels, TfLiteType model_output_type, TfLiteIntArray* model_output_shape) { ground_truth_labels_ = all_labels; model_output_type_ = model_output_type; model_output_shape_ = model_output_shape; } void SetEvalInputs(void* model_raw_output, std::string* ground_truth_label) { model_output_ = model_raw_output; ground_truth_label_ = ground_truth_label; } private: void UpdateCounts(const std::vector<int>& topk_indices); std::vector<std::string> ground_truth_labels_; TfLiteType model_output_type_ = kTfLiteNoType; TfLiteIntArray* model_output_shape_ = nullptr; int num_total_labels_; void* model_output_ = nullptr; std::string* ground_truth_label_ = nullptr; int num_runs_; std::vector<int> accuracy_counts_; }; } } #endif #include "tensorflow/lite/tools/evaluation/stages/topk_accuracy_eval_stage.h" #include <stdint.h> #include <algorithm> #include <numeric> #include "tensorflow/core/platform/logging.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_stages.pb.h" namespace tflite { namespace evaluation { namespace { std::vector<int> GetTopKIndices(const std::vector<float>& values, int k) { std::vector<int> indices(values.size()); std::iota(indices.begin(), indices.end(), 0); std::stable_sort(indices.begin(), indices.end(), [&values](int a, int b) { return values[a] > values[b]; }); indices.resize(k); return indices; } } TfLiteStatus TopkAccuracyEvalStage::Init() { num_runs_ = 0; auto& params = config_.specification().topk_accuracy_eval_params(); if (!params.has_k()) { LOG(ERROR) << "Value of k not provided for TopkAccuracyEvalStage"; return kTfLiteError; } accuracy_counts_ = std::vector<int>(params.k(), 0); if (ground_truth_labels_.empty()) { LOG(ERROR) << "Ground-truth labels are empty"; return kTfLiteError; } num_total_labels_ = ground_truth_labels_.size(); if (params.k() > num_total_labels_) { LOG(ERROR) << "k is too large"; return kTfLiteError; } if (!model_output_shape_) { LOG(ERROR) << "Model output details not correctly set"; return kTfLiteError; } if (!(model_output_shape_->size == 2) || !(model_output_shape_->data[0] == 1) || !(model_output_shape_->data[1] == num_total_labels_)) { LOG(ERROR) << "Invalid model_output_shape_"; return kTfLiteError; } if (model_output_type_ != kTfLiteFloat32 && model_output_type_ != kTfLiteUInt8 && model_output_type_ != kTfLiteInt8) { LOG(ERROR) << "model_output_type_ not supported"; return kTfLiteError; } return kTfLiteOk; } TfLiteStatus TopkAccuracyEvalStage::Run() { if (!model_output_) { LOG(ERROR) << "model_output_ not set correctly"; return kTfLiteError; } if (!ground_truth_label_) { LOG(ERROR) << "ground_truth_label_ not provided"; return kTfLiteError; } auto& params = config_.specification().topk_accuracy_eval_params(); std::vector<float> probabilities; probabilities.reserve(num_total_labels_); if (model_output_type_ == kTfLiteFloat32) { auto probs = static_cast<float*>(model_output_); for (size_t i = 0; i < num_total_labels_; i++) { probabilities.push_back(probs[i]); } } else if (model_output_type_ == kTfLiteUInt8) { auto probs = static_cast<uint8_t*>(model_output_); for (size_t i = 0; i < num_total_labels_; i++) { probabilities.push_back(probs[i]); } } else if (model_output_type_ == kTfLiteInt8) { auto probs = static_cast<int8_t*>(model_output_); for (size_t i = 0; i < num_total_labels_; i++) { probabilities.push_back(probs[i]); } } std::vector<int> top_k = GetTopKIndices(probabilities, params.k()); UpdateCounts(top_k); return kTfLiteOk; } EvaluationStageMetrics TopkAccuracyEvalStage::LatestMetrics() { EvaluationStageMetrics metrics; if (num_runs_ == 0) return metrics; metrics.set_num_runs(num_runs_); auto* topk_metrics = metrics.mutable_process_metrics()->mutable_topk_accuracy_metrics(); for (const auto& count : accuracy_counts_) { topk_metrics->add_topk_accuracies(static_cast<float>(count) / num_runs_); } return metrics; } void TopkAccuracyEvalStage::UpdateCounts(const std::vector<int>& topk_indices) { for (size_t i = 0; i < topk_indices.size(); ++i) { if (*ground_truth_label_ == ground_truth_labels_[topk_indices[i]]) { for (size_t j = i; j < topk_indices.size(); j++) { accuracy_counts_[j] += 1; } break; } } num_runs_++; } } }
#include "tensorflow/lite/tools/evaluation/stages/topk_accuracy_eval_stage.h" #include <stdint.h> #include <string> #include <gtest/gtest.h> #include "tensorflow/lite/tools/evaluation/proto/evaluation_config.pb.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_stages.pb.h" namespace tflite { namespace evaluation { namespace { constexpr char kTopkAccuracyEvalStageName[] = "topk_accuracy_eval_stage"; constexpr int kNumCategories = 1001; EvaluationStageConfig GetTopkAccuracyEvalStageConfig() { EvaluationStageConfig config; config.set_name(kTopkAccuracyEvalStageName); auto* params = config.mutable_specification()->mutable_topk_accuracy_eval_params(); params->set_k(5); return config; } template <typename T> T* ResetOutputArray(T array[]) { for (int i = 0; i < kNumCategories; i++) { array[i] = 0; } return array; } std::vector<std::string> CreateGroundTruthLabels() { std::vector<std::string> ground_truth_labels; ground_truth_labels.reserve(kNumCategories); for (int i = 0; i < kNumCategories; i++) { ground_truth_labels.push_back(std::to_string(i)); } return ground_truth_labels; } TEST(TopkAccuracyEvalStage, NoInitializers) { EvaluationStageConfig config = GetTopkAccuracyEvalStageConfig(); TopkAccuracyEvalStage stage = TopkAccuracyEvalStage(config); EXPECT_EQ(stage.Init(), kTfLiteError); } TEST(TopkAccuracyEvalStage, NoK) { EvaluationStageConfig config = GetTopkAccuracyEvalStageConfig(); config.mutable_specification() ->mutable_topk_accuracy_eval_params() ->clear_k(); TopkAccuracyEvalStage stage = TopkAccuracyEvalStage(config); std::vector<std::string> ground_truth_labels = CreateGroundTruthLabels(); TfLiteIntArray* model_output_shape = TfLiteIntArrayCreate(2); model_output_shape->data[0] = 1; model_output_shape->data[1] = kNumCategories; TfLiteType model_output_type = kTfLiteFloat32; stage.SetTaskInfo(ground_truth_labels, model_output_type, model_output_shape); EXPECT_EQ(stage.Init(), kTfLiteError); TfLiteIntArrayFree(model_output_shape); } TEST(TopkAccuracyEvalStage, NoGroundTruthLabels) { EvaluationStageConfig config = GetTopkAccuracyEvalStageConfig(); TopkAccuracyEvalStage stage = TopkAccuracyEvalStage(config); std::vector<std::string> ground_truth_labels = {}; TfLiteIntArray* model_output_shape = TfLiteIntArrayCreate(2); model_output_shape->data[0] = 1; model_output_shape->data[1] = kNumCategories; TfLiteType model_output_type = kTfLiteFloat32; stage.SetTaskInfo(ground_truth_labels, model_output_type, model_output_shape); EXPECT_EQ(stage.Init(), kTfLiteError); TfLiteIntArrayFree(model_output_shape); } TEST(TopkAccuracyEvalStage, KTooLarge) { EvaluationStageConfig config = GetTopkAccuracyEvalStageConfig(); config.mutable_specification()->mutable_topk_accuracy_eval_params()->set_k( 10000); TopkAccuracyEvalStage stage = TopkAccuracyEvalStage(config); std::vector<std::string> ground_truth_labels = CreateGroundTruthLabels(); TfLiteIntArray* model_output_shape = TfLiteIntArrayCreate(2); model_output_shape->data[0] = 1; model_output_shape->data[1] = kNumCategories; TfLiteType model_output_type = kTfLiteFloat32; stage.SetTaskInfo(ground_truth_labels, model_output_type, model_output_shape); EXPECT_EQ(stage.Init(), kTfLiteError); TfLiteIntArrayFree(model_output_shape); } TEST(TopkAccuracyEvalStage, WeirdModelOutputShape) { EvaluationStageConfig config = GetTopkAccuracyEvalStageConfig(); TopkAccuracyEvalStage stage = TopkAccuracyEvalStage(config); std::vector<std::string> ground_truth_labels = CreateGroundTruthLabels(); TfLiteIntArray* model_output_shape = TfLiteIntArrayCreate(2); model_output_shape->data[0] = 1; model_output_shape->data[1] = kNumCategories + 1; TfLiteType model_output_type = kTfLiteFloat32; stage.SetTaskInfo(ground_truth_labels, model_output_type, model_output_shape); EXPECT_EQ(stage.Init(), kTfLiteError); TfLiteIntArrayFree(model_output_shape); } TEST(TopkAccuracyEvalStage, UnsupportedModelOutputType) { EvaluationStageConfig config = GetTopkAccuracyEvalStageConfig(); TopkAccuracyEvalStage stage = TopkAccuracyEvalStage(config); std::vector<std::string> ground_truth_labels = CreateGroundTruthLabels(); TfLiteIntArray* model_output_shape = TfLiteIntArrayCreate(2); model_output_shape->data[0] = 1; model_output_shape->data[1] = kNumCategories + 1; TfLiteType model_output_type = kTfLiteComplex64; stage.SetTaskInfo(ground_truth_labels, model_output_type, model_output_shape); EXPECT_EQ(stage.Init(), kTfLiteError); TfLiteIntArrayFree(model_output_shape); } TEST(TopkAccuracyEvalStage, NoInputs) { EvaluationStageConfig config = GetTopkAccuracyEvalStageConfig(); TopkAccuracyEvalStage stage = TopkAccuracyEvalStage(config); std::vector<std::string> ground_truth_labels = CreateGroundTruthLabels(); TfLiteIntArray* model_output_shape = TfLiteIntArrayCreate(2); model_output_shape->data[0] = 1; model_output_shape->data[1] = kNumCategories; TfLiteType model_output_type = kTfLiteFloat32; stage.SetTaskInfo(ground_truth_labels, model_output_type, model_output_shape); EXPECT_EQ(stage.Init(), kTfLiteOk); TfLiteIntArrayFree(model_output_shape); EXPECT_EQ(stage.Run(), kTfLiteError); } TEST(TopkAccuracyEvalStage, InvalidGroundTruth) { EvaluationStageConfig config = GetTopkAccuracyEvalStageConfig(); TopkAccuracyEvalStage stage = TopkAccuracyEvalStage(config); std::vector<std::string> ground_truth_labels = CreateGroundTruthLabels(); TfLiteIntArray* model_output_shape = TfLiteIntArrayCreate(2); model_output_shape->data[0] = 1; model_output_shape->data[1] = kNumCategories; TfLiteType model_output_type = kTfLiteFloat32; stage.SetTaskInfo(ground_truth_labels, model_output_type, model_output_shape); EXPECT_EQ(stage.Init(), kTfLiteOk); TfLiteIntArrayFree(model_output_shape); float array[kNumCategories]; float* tensor = ResetOutputArray(array); tensor[0] = 0.8; stage.SetEvalInputs(tensor, nullptr); EXPECT_EQ(stage.Run(), kTfLiteError); } TEST(TopkAccuracyEvalStage, FloatTest_CorrectLabelsAtLastIndices) { EvaluationStageConfig config = GetTopkAccuracyEvalStageConfig(); TopkAccuracyEvalStage stage = TopkAccuracyEvalStage(config); std::vector<std::string> ground_truth_labels = CreateGroundTruthLabels(); TfLiteIntArray* model_output_shape = TfLiteIntArrayCreate(2); model_output_shape->data[0] = 1; model_output_shape->data[1] = kNumCategories; TfLiteType model_output_type = kTfLiteFloat32; stage.SetTaskInfo(ground_truth_labels, model_output_type, model_output_shape); EXPECT_EQ(stage.Init(), kTfLiteOk); TfLiteIntArrayFree(model_output_shape); float array[kNumCategories]; float* tensor = ResetOutputArray(array); tensor[4] = 0.9; tensor[3] = 0.8; tensor[2] = 0.7; tensor[1] = 0.6; tensor[0] = 0.5; std::string ground_truth = "0"; stage.SetEvalInputs(tensor, &ground_truth); EXPECT_EQ(stage.Run(), kTfLiteOk); EvaluationStageMetrics metrics = stage.LatestMetrics(); EXPECT_EQ(1, metrics.num_runs()); auto accuracy_metrics = metrics.process_metrics().topk_accuracy_metrics(); EXPECT_FLOAT_EQ(1.0, accuracy_metrics.topk_accuracies(4)); for (int i = 0; i < 4; ++i) { EXPECT_FLOAT_EQ(0.0, accuracy_metrics.topk_accuracies(i)); } ground_truth = "1"; stage.SetEvalInputs(tensor, &ground_truth); EXPECT_EQ(stage.Run(), kTfLiteOk); metrics = stage.LatestMetrics(); EXPECT_EQ(2, metrics.num_runs()); accuracy_metrics = metrics.process_metrics().topk_accuracy_metrics(); EXPECT_FLOAT_EQ(1.0, accuracy_metrics.topk_accuracies(4)); EXPECT_FLOAT_EQ(0.5, accuracy_metrics.topk_accuracies(3)); for (int i = 0; i < 3; ++i) { EXPECT_FLOAT_EQ(0.0, accuracy_metrics.topk_accuracies(i)); } } class CorrectTopkAccuracyEvalTest : public ::testing::Test { protected: template <typename T> void VerifyCorrectBehaviorForType(T ground_truth_0_value, T ground_truth_1_value, TfLiteType model_output_type) { EvaluationStageConfig config = GetTopkAccuracyEvalStageConfig(); TopkAccuracyEvalStage stage = TopkAccuracyEvalStage(config); std::vector<std::string> ground_truth_labels = CreateGroundTruthLabels(); TfLiteIntArray* model_output_shape = TfLiteIntArrayCreate(2); model_output_shape->data[0] = 1; model_output_shape->data[1] = kNumCategories; stage.SetTaskInfo(ground_truth_labels, model_output_type, model_output_shape); EXPECT_EQ(stage.Init(), kTfLiteOk); TfLiteIntArrayFree(model_output_shape); EvaluationStageMetrics metrics = stage.LatestMetrics(); EXPECT_EQ(0, metrics.num_runs()); auto accuracy_metrics = metrics.process_metrics().topk_accuracy_metrics(); EXPECT_EQ(0, accuracy_metrics.topk_accuracies_size()); T array[kNumCategories]; T* tensor = ResetOutputArray(array); tensor[0] = ground_truth_0_value; std::string ground_truth = "0"; stage.SetEvalInputs(tensor, &ground_truth); EXPECT_EQ(stage.Run(), kTfLiteOk); metrics = stage.LatestMetrics(); EXPECT_EQ(1, metrics.num_runs()); accuracy_metrics = metrics.process_metrics().topk_accuracy_metrics(); for (int i = 0; i < accuracy_metrics.topk_accuracies_size(); ++i) { EXPECT_FLOAT_EQ(1.0, accuracy_metrics.topk_accuracies(i)); } tensor[1] = ground_truth_1_value; ground_truth = "1"; stage.SetEvalInputs(tensor, &ground_truth); EXPECT_EQ(stage.Run(), kTfLiteOk); metrics = stage.LatestMetrics(); EXPECT_EQ(2, metrics.num_runs()); accuracy_metrics = metrics.process_metrics().topk_accuracy_metrics(); for (int i = 0; i < accuracy_metrics.topk_accuracies_size(); ++i) { EXPECT_FLOAT_EQ(1.0, accuracy_metrics.topk_accuracies(i)); } } }; TEST_F(CorrectTopkAccuracyEvalTest, FloatTest) { VerifyCorrectBehaviorForType(static_cast<float>(0.8), static_cast<float>(0.9), kTfLiteFloat32); } TEST_F(CorrectTopkAccuracyEvalTest, Int8Test) { VerifyCorrectBehaviorForType(static_cast<int8_t>(1), static_cast<int8_t>(2), kTfLiteInt8); } TEST_F(CorrectTopkAccuracyEvalTest, UInt8Test) { VerifyCorrectBehaviorForType(static_cast<uint8_t>(1), static_cast<uint8_t>(2), kTfLiteUInt8); } } } }
856
cpp
tensorflow/tensorflow
inference_profiler_stage
tensorflow/lite/tools/evaluation/stages/inference_profiler_stage.cc
tensorflow/lite/tools/evaluation/stages/inference_profiler_stage_test.cc
#ifndef TENSORFLOW_LITE_TOOLS_EVALUATION_STAGES_INFERENCE_PROFILER_STAGE_H_ #define TENSORFLOW_LITE_TOOLS_EVALUATION_STAGES_INFERENCE_PROFILER_STAGE_H_ #include <stdint.h> #include <memory> #include <string> #include <vector> #include "xla/tsl/util/stats_calculator.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/tools/evaluation/evaluation_delegate_provider.h" #include "tensorflow/lite/tools/evaluation/evaluation_stage.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_config.pb.h" #include "tensorflow/lite/tools/evaluation/stages/tflite_inference_stage.h" namespace tflite { namespace evaluation { class InferenceProfilerStage : public EvaluationStage { public: explicit InferenceProfilerStage(const EvaluationStageConfig& config) : EvaluationStage(config) {} TfLiteStatus Init() override { return Init(nullptr); } TfLiteStatus Init(const DelegateProviders* delegate_providers); TfLiteStatus Run() override; EvaluationStageMetrics LatestMetrics() override; private: std::unique_ptr<TfliteInferenceStage> reference_stage_; std::unique_ptr<TfliteInferenceStage> test_stage_; const TfLiteModelInfo* model_info_; std::vector<int64_t> input_num_elements_; std::vector<int64_t> output_num_elements_; std::vector<tsl::Stat<float>> error_stats_; std::vector<std::vector<float>> float_tensors_; std::vector<std::vector<int8_t>> int8_tensors_; std::vector<std::vector<uint8_t>> uint8_tensors_; std::vector<std::vector<uint16_t>> float16_tensors_; std::vector<std::vector<int64_t>> int64_tensors_; }; } } #endif #include "tensorflow/lite/tools/evaluation/stages/inference_profiler_stage.h" #include <cmath> #include <limits> #include <memory> #include <random> #include "fp16.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/tools/evaluation/evaluation_delegate_provider.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_config.pb.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_stages.pb.h" #include "tensorflow/lite/tools/evaluation/stages/tflite_inference_stage.h" namespace tflite { namespace evaluation { namespace { constexpr float kGaussianFloatMean = 0.5; constexpr float kGaussianStdDev = 1.0 / 3; template <typename T> void GenerateRandomGaussianData(int64_t num_elements, float min, float max, std::vector<T>* data) { data->clear(); data->reserve(num_elements); static std::normal_distribution<double> distribution(kGaussianFloatMean, kGaussianStdDev); static std::default_random_engine generator; for (int i = 0; i < num_elements; ++i) { auto rand_n = distribution(generator); while (rand_n < 0 || rand_n >= 1) { rand_n = distribution(generator); } auto rand_float = min + (max - min) * static_cast<float>(rand_n); data->push_back(static_cast<T>(rand_float)); } } template <typename T> float CalculateAverageError(T* reference, T* test, int64_t num_elements) { float error = 0; for (int i = 0; i < num_elements; i++) { float test_value = static_cast<float>(test[i]); float reference_value = static_cast<float>(reference[i]); error += std::abs(test_value - reference_value); } error /= num_elements; return error; } } TfLiteStatus InferenceProfilerStage::Init( const DelegateProviders* delegate_providers) { test_stage_ = std::make_unique<TfliteInferenceStage>(config_); if (test_stage_->Init(delegate_providers) != kTfLiteOk) return kTfLiteError; LOG(INFO) << "Test interpreter has been initialized."; EvaluationStageConfig reference_config; reference_config.set_name("reference_inference"); auto* params = reference_config.mutable_specification() ->mutable_tflite_inference_params(); params->set_model_file_path( config_.specification().tflite_inference_params().model_file_path()); params->set_invocations_per_run( config_.specification().tflite_inference_params().invocations_per_run()); reference_stage_ = std::make_unique<TfliteInferenceStage>(reference_config); if (reference_stage_->Init() != kTfLiteOk) return kTfLiteError; LOG(INFO) << "Reference interpreter (1 thread on CPU) has been initialized."; model_info_ = reference_stage_->GetModelInfo(); for (int i = 0; i < model_info_->inputs.size(); ++i) { const TfLiteType model_input_type = model_info_->inputs[i]->type; if (model_input_type == kTfLiteUInt8 || model_input_type == kTfLiteInt8 || model_input_type == kTfLiteInt64 || model_input_type == kTfLiteFloat32 || model_input_type == kTfLiteFloat16) { } else { LOG(ERROR) << "InferenceProfilerStage only supports " "float16/float32/int8/uint8/int64 " "input types"; return kTfLiteError; } auto* input_shape = model_info_->inputs[i]->dims; int64_t total_num_elements = 1; for (int i = 0; i < input_shape->size; i++) { total_num_elements *= input_shape->data[i]; } input_num_elements_.push_back(total_num_elements); float_tensors_.emplace_back(); uint8_tensors_.emplace_back(); int8_tensors_.emplace_back(); float16_tensors_.emplace_back(); int64_tensors_.emplace_back(); } for (int i = 0; i < model_info_->outputs.size(); ++i) { const TfLiteType model_output_type = model_info_->outputs[i]->type; if (model_output_type == kTfLiteUInt8 || model_output_type == kTfLiteInt8 || model_output_type == kTfLiteFloat32) { } else { LOG(ERROR) << "InferenceProfilerStage only supports float32/int8/uint8 " "output types"; return kTfLiteError; } auto* output_shape = model_info_->outputs[i]->dims; int64_t total_num_elements = 1; for (int i = 0; i < output_shape->size; i++) { total_num_elements *= output_shape->data[i]; } output_num_elements_.push_back(total_num_elements); error_stats_.emplace_back(); } return kTfLiteOk; } TfLiteStatus InferenceProfilerStage::Run() { std::vector<void*> input_ptrs; for (int i = 0; i < model_info_->inputs.size(); ++i) { const TfLiteType model_input_type = model_info_->inputs[i]->type; if (model_input_type == kTfLiteUInt8) { GenerateRandomGaussianData( input_num_elements_[i], std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max(), &uint8_tensors_[i]); input_ptrs.push_back(uint8_tensors_[i].data()); } else if (model_input_type == kTfLiteInt8) { GenerateRandomGaussianData( input_num_elements_[i], std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max(), &int8_tensors_[i]); input_ptrs.push_back(int8_tensors_[i].data()); } else if (model_input_type == kTfLiteInt64) { GenerateRandomGaussianData( input_num_elements_[i], std::numeric_limits<int64_t>::min(), std::numeric_limits<int64_t>::max(), &int64_tensors_[i]); input_ptrs.push_back(int64_tensors_[i].data()); } else if (model_input_type == kTfLiteFloat32) { GenerateRandomGaussianData(input_num_elements_[i], -1, 1, &(float_tensors_[i])); input_ptrs.push_back(float_tensors_[i].data()); } else if (model_input_type == kTfLiteFloat16) { GenerateRandomGaussianData(input_num_elements_[i], -1, 1, &(float_tensors_[i])); for (size_t j = 0; j < float_tensors_[i].size(); j++) { float16_tensors_[i][j] = fp16_ieee_from_fp32_value(float_tensors_[i][j]); } input_ptrs.push_back(float16_tensors_[i].data()); } else { LOG(ERROR) << "InferenceProfilerStage only supports " "float16/float32/int8/uint8/int64 " "input types"; return kTfLiteError; } } test_stage_->SetInputs(input_ptrs); reference_stage_->SetInputs(input_ptrs); if (test_stage_->Run() != kTfLiteOk) return kTfLiteError; if (reference_stage_->Run() != kTfLiteOk) return kTfLiteError; for (int i = 0; i < model_info_->outputs.size(); ++i) { const TfLiteType model_output_type = model_info_->outputs[i]->type; void* reference_ptr = reference_stage_->GetOutputs()->at(i); void* test_ptr = test_stage_->GetOutputs()->at(i); float output_diff = 0; if (model_output_type == kTfLiteUInt8) { output_diff = CalculateAverageError(static_cast<uint8_t*>(reference_ptr), static_cast<uint8_t*>(test_ptr), output_num_elements_[i]); } else if (model_output_type == kTfLiteInt8) { output_diff = CalculateAverageError(static_cast<int8_t*>(reference_ptr), static_cast<int8_t*>(test_ptr), output_num_elements_[i]); } else if (model_output_type == kTfLiteFloat32) { output_diff = CalculateAverageError(static_cast<float*>(reference_ptr), static_cast<float*>(test_ptr), output_num_elements_[i]); } error_stats_[i].UpdateStat(output_diff); } return kTfLiteOk; } EvaluationStageMetrics InferenceProfilerStage::LatestMetrics() { EvaluationStageMetrics metrics; const auto& reference_metrics = reference_stage_->LatestMetrics(); metrics.set_num_runs(reference_metrics.num_runs()); auto* inference_profiler_metrics = metrics.mutable_process_metrics()->mutable_inference_profiler_metrics(); *inference_profiler_metrics->mutable_reference_latency() = reference_metrics.process_metrics().total_latency(); *inference_profiler_metrics->mutable_test_latency() = test_stage_->LatestMetrics().process_metrics().total_latency(); for (int i = 0; i < error_stats_.size(); ++i) { AccuracyMetrics* diff = inference_profiler_metrics->add_output_errors(); diff->set_avg_value(error_stats_[i].avg()); diff->set_std_deviation(error_stats_[i].std_deviation()); diff->set_min_value(error_stats_[i].min()); if (error_stats_[i].avg() != 0) { diff->set_max_value(error_stats_[i].max()); } else { diff->set_max_value(0); } } return metrics; } } }
#include "tensorflow/lite/tools/evaluation/stages/inference_profiler_stage.h" #include <stdint.h> #include <string> #include <gtest/gtest.h> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_config.pb.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_stages.pb.h" namespace tflite { namespace evaluation { namespace { constexpr char kInferenceProfilerStageName[] = "inference_profiler_stage"; constexpr char kModelPath[] = "tensorflow/lite/testdata/add_quantized.bin"; EvaluationStageConfig GetInferenceProfilerStageConfig(int num_threads = 1) { EvaluationStageConfig config; config.set_name(kInferenceProfilerStageName); auto* params = config.mutable_specification()->mutable_tflite_inference_params(); params->set_model_file_path(kModelPath); params->set_invocations_per_run(2); params->set_num_threads(num_threads); return config; } TEST(InferenceProfilerStage, NoParams) { EvaluationStageConfig config = GetInferenceProfilerStageConfig(); config.mutable_specification()->clear_tflite_inference_params(); InferenceProfilerStage stage(config); EXPECT_EQ(stage.Init(), kTfLiteError); } TEST(InferenceProfilerStage, NoModelPath) { EvaluationStageConfig config = GetInferenceProfilerStageConfig(); config.mutable_specification() ->mutable_tflite_inference_params() ->clear_model_file_path(); InferenceProfilerStage stage(config); EXPECT_EQ(stage.Init(), kTfLiteError); } TEST(InferenceProfilerStage, NoOutputDiffForDefaultConfig) { EvaluationStageConfig config = GetInferenceProfilerStageConfig(); InferenceProfilerStage stage(config); EXPECT_EQ(stage.Init(), kTfLiteOk); for (int i = 0; i < 5; ++i) { EXPECT_EQ(stage.Run(), kTfLiteOk); } EvaluationStageMetrics metrics = stage.LatestMetrics(); EXPECT_TRUE(metrics.process_metrics().has_inference_profiler_metrics()); auto profiler_metrics = metrics.process_metrics().inference_profiler_metrics(); EXPECT_TRUE(profiler_metrics.has_reference_latency()); EXPECT_TRUE(profiler_metrics.has_test_latency()); EXPECT_EQ(profiler_metrics.output_errors_size(), 1); EXPECT_EQ(profiler_metrics.output_errors(0).avg_value(), 0); } } } }
857
cpp
tensorflow/tensorflow
tflite_inference_stage
tensorflow/lite/tools/evaluation/stages/tflite_inference_stage.cc
tensorflow/lite/tools/evaluation/stages/tflite_inference_stage_test.cc
#ifndef TENSORFLOW_LITE_TOOLS_EVALUATION_STAGES_TFLITE_INFERENCE_STAGE_H_ #define TENSORFLOW_LITE_TOOLS_EVALUATION_STAGES_TFLITE_INFERENCE_STAGE_H_ #include <stdint.h> #include <vector> #include "xla/tsl/util/stats_calculator.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/interpreter.h" #include "tensorflow/lite/core/kernels/register.h" #include "tensorflow/lite/core/model.h" #include "tensorflow/lite/tools/evaluation/evaluation_delegate_provider.h" #include "tensorflow/lite/tools/evaluation/evaluation_stage.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_config.pb.h" namespace tflite { namespace evaluation { struct TfLiteModelInfo { std::vector<const TfLiteTensor*> inputs; std::vector<const TfLiteTensor*> outputs; }; class TfliteInferenceStage : public EvaluationStage { public: explicit TfliteInferenceStage(const EvaluationStageConfig& config) : EvaluationStage(config) {} TfLiteStatus Init() override { return Init(nullptr); } TfLiteStatus Init(const DelegateProviders* delegate_providers); TfLiteStatus Run() override; EvaluationStageMetrics LatestMetrics() override; ~TfliteInferenceStage() override {} void SetInputs(const std::vector<void*>& raw_input_ptrs) { inputs_ = &raw_input_ptrs; } TfLiteStatus ResizeInputs(const std::vector<std::vector<int>>& shapes); TfLiteStatus ApplyCustomDelegate(Interpreter::TfLiteDelegatePtr delegate); const TfLiteModelInfo* GetModelInfo() const { return &model_info_; } const std::vector<void*>* GetOutputs() const { return &outputs_; } private: void UpdateModelInfo(); std::unique_ptr<FlatBufferModel> model_; std::unique_ptr<ops::builtin::BuiltinOpResolver> resolver_; std::unique_ptr<Interpreter> interpreter_; std::vector<Interpreter::TfLiteDelegatePtr> delegates_; TfLiteModelInfo model_info_; const std::vector<void*>* inputs_ = nullptr; std::vector<void*> outputs_; tsl::Stat<int64_t> latency_stats_; }; } } #endif #include "tensorflow/lite/tools/evaluation/stages/tflite_inference_stage.h" #include <cstring> #include <fstream> #include <memory> #include <string> #include <utility> #include "absl/base/attributes.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/profiling/time.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_stages.pb.h" #include "tensorflow/lite/tools/evaluation/utils.h" void RegisterSelectedOps(::tflite::MutableOpResolver* resolver); void ABSL_ATTRIBUTE_WEAK RegisterSelectedOps(::tflite::MutableOpResolver* resolver) {} namespace tflite { namespace evaluation { namespace { TfLiteModelInfo GetTfliteModelInfo(const Interpreter& interpreter) { TfLiteModelInfo model_info; for (int i : interpreter.inputs()) { model_info.inputs.push_back(interpreter.tensor(i)); } for (int i : interpreter.outputs()) { model_info.outputs.push_back(interpreter.tensor(i)); } return model_info; } } void TfliteInferenceStage::UpdateModelInfo() { model_info_ = GetTfliteModelInfo(*interpreter_); outputs_.clear(); outputs_.reserve(interpreter_->outputs().size()); for (int i : interpreter_->outputs()) { TfLiteTensor* tensor = interpreter_->tensor(i); outputs_.push_back(tensor->data.raw); } } TfLiteStatus TfliteInferenceStage::ResizeInputs( const std::vector<std::vector<int>>& shapes) { const std::vector<int>& interpreter_inputs = interpreter_->inputs(); if (interpreter_inputs.size() != shapes.size()) { LOG(ERROR) << "New shape is not compatible"; return kTfLiteError; } for (int j = 0; j < shapes.size(); ++j) { int i = interpreter_inputs[j]; TfLiteTensor* t = interpreter_->tensor(i); if (t->type != kTfLiteString) { TF_LITE_ENSURE_STATUS(interpreter_->ResizeInputTensor(i, shapes[j])); } } TF_LITE_ENSURE_STATUS(interpreter_->AllocateTensors()); UpdateModelInfo(); return kTfLiteOk; } TfLiteStatus TfliteInferenceStage::ApplyCustomDelegate( Interpreter::TfLiteDelegatePtr delegate) { if (!interpreter_) { LOG(ERROR) << "Stage not initialized before calling ApplyCustomDelegate"; return kTfLiteError; } if (!delegate) { LOG(WARNING) << "Tried to apply null TfLiteDelegatePtr to TfliteInferenceStage"; return kTfLiteOk; } delegates_.push_back(std::move(delegate)); TF_LITE_ENSURE_STATUS( interpreter_->ModifyGraphWithDelegate(delegates_.back().get())); UpdateModelInfo(); return kTfLiteOk; } TfLiteStatus TfliteInferenceStage::Init( const DelegateProviders* delegate_providers) { if (!config_.specification().has_tflite_inference_params()) { LOG(ERROR) << "TfliteInferenceParams not provided"; return kTfLiteError; } auto& params = config_.specification().tflite_inference_params(); if (!params.has_model_file_path()) { LOG(ERROR) << "Model path not provided"; return kTfLiteError; } std::ifstream model_check(params.model_file_path()); if (!model_check.good()) { LOG(ERROR) << "Model file not found"; return kTfLiteError; } model_ = FlatBufferModel::BuildFromFile(params.model_file_path().c_str()); bool apply_default_delegates = true; if (delegate_providers != nullptr) { const auto& provider_params = delegate_providers->GetAllParams(); if (provider_params.HasParam("use_xnnpack") && provider_params.HasValueSet<bool>("use_xnnpack") && !provider_params.Get<bool>("use_xnnpack")) { apply_default_delegates = false; } } if (apply_default_delegates) { resolver_ = std::make_unique<ops::builtin::BuiltinOpResolver>(); } else { resolver_ = std::make_unique< ops::builtin::BuiltinOpResolverWithoutDefaultDelegates>(); } RegisterSelectedOps(resolver_.get()); InterpreterBuilder(*model_, *resolver_)(&interpreter_); if (!interpreter_) { LOG(ERROR) << "Could not build interpreter"; return kTfLiteError; } interpreter_->SetNumThreads(params.num_threads()); if (!delegate_providers) { std::string error_message; auto delegate = CreateTfLiteDelegate(params, &error_message); if (delegate) { delegates_.push_back(std::move(delegate)); LOG(INFO) << "Successfully created " << params.Delegate_Name(params.delegate()) << " delegate."; } else { LOG(WARNING) << error_message; } } else { auto delegates = delegate_providers->CreateAllDelegates(params); for (auto& one : delegates) delegates_.push_back(std::move(one.delegate)); } for (int i = 0; i < delegates_.size(); ++i) { if (interpreter_->ModifyGraphWithDelegate(delegates_[i].get()) != kTfLiteOk) { LOG(FATAL) << "Failed to apply delegate " << i; } } interpreter_->AllocateTensors(); UpdateModelInfo(); return kTfLiteOk; } TfLiteStatus TfliteInferenceStage::Run() { if (!inputs_) { LOG(ERROR) << "Input data not set"; return kTfLiteError; } for (int i = 0; i < interpreter_->inputs().size(); ++i) { TfLiteTensor* tensor = interpreter_->tensor(interpreter_->inputs()[i]); tensor->data.raw = static_cast<char*>(inputs_->at(i)); } auto& params = config_.specification().tflite_inference_params(); for (int i = 0; i < params.invocations_per_run(); ++i) { int64_t start_us = profiling::time::NowMicros(); if (interpreter_->Invoke() != kTfLiteOk) { LOG(ERROR) << "TFLite interpreter failed to invoke at run " << i; return kTfLiteError; } latency_stats_.UpdateStat(profiling::time::NowMicros() - start_us); } return kTfLiteOk; } EvaluationStageMetrics TfliteInferenceStage::LatestMetrics() { auto& params = config_.specification().tflite_inference_params(); EvaluationStageMetrics metrics; auto* latency_metrics = metrics.mutable_process_metrics()->mutable_total_latency(); latency_metrics->set_last_us(latency_stats_.newest()); latency_metrics->set_max_us(latency_stats_.max()); latency_metrics->set_min_us(latency_stats_.min()); latency_metrics->set_sum_us(latency_stats_.sum()); latency_metrics->set_avg_us(latency_stats_.avg()); latency_metrics->set_std_deviation_us(latency_stats_.std_deviation()); metrics.set_num_runs( static_cast<int>(latency_stats_.count() / params.invocations_per_run())); auto* inference_metrics = metrics.mutable_process_metrics()->mutable_tflite_inference_metrics(); inference_metrics->set_num_inferences(latency_stats_.count()); return metrics; } } }
#include "tensorflow/lite/tools/evaluation/stages/tflite_inference_stage.h" #include <stdint.h> #include <string> #include <gtest/gtest.h> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/model.h" #include "tensorflow/lite/delegates/nnapi/nnapi_delegate.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_config.pb.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_stages.pb.h" #include "tensorflow/lite/tools/evaluation/utils.h" namespace tflite { namespace evaluation { namespace { constexpr char kTfliteInferenceStageName[] = "tflite_inference_stage"; constexpr char kModelPath[] = "tensorflow/lite/testdata/add_quantized.bin"; constexpr int kTotalElements = 1 * 8 * 8 * 3; template <typename T> T* SetValues(T array[], T value) { for (int i = 0; i < kTotalElements; i++) { array[i] = value; } return array; } EvaluationStageConfig GetTfliteInferenceStageConfig() { EvaluationStageConfig config; config.set_name(kTfliteInferenceStageName); auto* params = config.mutable_specification()->mutable_tflite_inference_params(); params->set_model_file_path(kModelPath); params->set_invocations_per_run(2); return config; } TEST(TfliteInferenceStage, NoParams) { EvaluationStageConfig config = GetTfliteInferenceStageConfig(); config.mutable_specification()->clear_tflite_inference_params(); TfliteInferenceStage stage(config); EXPECT_EQ(stage.Init(), kTfLiteError); } TEST(TfliteInferenceStage, NoModelPath) { EvaluationStageConfig config = GetTfliteInferenceStageConfig(); config.mutable_specification() ->mutable_tflite_inference_params() ->clear_model_file_path(); TfliteInferenceStage stage(config); EXPECT_EQ(stage.Init(), kTfLiteError); } TEST(TfliteInferenceStage, IncorrectModelPath) { EvaluationStageConfig config = GetTfliteInferenceStageConfig(); config.mutable_specification() ->mutable_tflite_inference_params() ->set_model_file_path("xyz.tflite"); TfliteInferenceStage stage(config); EXPECT_EQ(stage.Init(), kTfLiteError); } TEST(TfliteInferenceStage, NoInputData) { EvaluationStageConfig config = GetTfliteInferenceStageConfig(); TfliteInferenceStage stage(config); EXPECT_EQ(stage.Init(), kTfLiteOk); EXPECT_EQ(stage.Run(), kTfLiteError); } TEST(TfliteInferenceStage, CorrectModelInfo) { EvaluationStageConfig config = GetTfliteInferenceStageConfig(); TfliteInferenceStage stage(config); EXPECT_EQ(stage.Init(), kTfLiteOk); const TfLiteModelInfo* model_info = stage.GetModelInfo(); EXPECT_EQ(model_info->inputs.size(), 1); const TfLiteTensor* tensor = model_info->inputs[0]; EXPECT_EQ(tensor->type, kTfLiteUInt8); EXPECT_EQ(tensor->bytes, kTotalElements); const TfLiteIntArray* input_shape = tensor->dims; EXPECT_EQ(input_shape->data[0], 1); EXPECT_EQ(input_shape->data[1], 8); EXPECT_EQ(input_shape->data[2], 8); EXPECT_EQ(input_shape->data[3], 3); EXPECT_EQ(model_info->outputs.size(), 1); tensor = model_info->outputs[0]; EXPECT_EQ(tensor->type, kTfLiteUInt8); EXPECT_EQ(tensor->bytes, kTotalElements); const TfLiteIntArray* output_shape = tensor->dims; EXPECT_EQ(output_shape->data[0], 1); EXPECT_EQ(output_shape->data[1], 8); EXPECT_EQ(output_shape->data[2], 8); EXPECT_EQ(output_shape->data[3], 3); } TEST(TfliteInferenceStage, TestResizeModel) { EvaluationStageConfig config = GetTfliteInferenceStageConfig(); TfliteInferenceStage stage(config); EXPECT_EQ(stage.Init(), kTfLiteOk); EXPECT_EQ(stage.ResizeInputs({{3, 8, 8, 3}}), kTfLiteOk); const TfLiteModelInfo* model_info = stage.GetModelInfo(); EXPECT_EQ(model_info->inputs.size(), 1); const TfLiteTensor* tensor = model_info->inputs[0]; EXPECT_EQ(tensor->type, kTfLiteUInt8); EXPECT_EQ(tensor->bytes, 3 * kTotalElements); const TfLiteIntArray* input_shape = tensor->dims; EXPECT_EQ(input_shape->data[0], 3); EXPECT_EQ(input_shape->data[1], 8); EXPECT_EQ(input_shape->data[2], 8); EXPECT_EQ(input_shape->data[3], 3); EXPECT_EQ(model_info->outputs.size(), 1); tensor = model_info->outputs[0]; EXPECT_EQ(tensor->type, kTfLiteUInt8); EXPECT_EQ(tensor->bytes, 3 * kTotalElements); const TfLiteIntArray* output_shape = tensor->dims; EXPECT_EQ(output_shape->data[0], 3); EXPECT_EQ(output_shape->data[1], 8); EXPECT_EQ(output_shape->data[2], 8); EXPECT_EQ(output_shape->data[3], 3); } TEST(TfliteInferenceStage, CorrectOutput) { EvaluationStageConfig config = GetTfliteInferenceStageConfig(); TfliteInferenceStage stage(config); EXPECT_EQ(stage.Init(), kTfLiteOk); uint8_t input_tensor[kTotalElements]; SetValues(input_tensor, static_cast<uint8_t>(2)); std::vector<void*> inputs; inputs.push_back(input_tensor); stage.SetInputs(inputs); EXPECT_EQ(stage.Run(), kTfLiteOk); uint8_t* output_tensor = static_cast<uint8_t*>(stage.GetOutputs()->at(0)); for (int i = 0; i < kTotalElements; i++) { EXPECT_EQ(output_tensor[i], static_cast<uint8_t>(6)); } EvaluationStageMetrics metrics = stage.LatestMetrics(); EXPECT_EQ(metrics.num_runs(), 1); const auto& latency = metrics.process_metrics().total_latency(); const auto max_latency = latency.max_us(); EXPECT_GT(max_latency, 0); EXPECT_LT(max_latency, 1e7); EXPECT_LE(latency.last_us(), max_latency); EXPECT_LE(latency.min_us(), max_latency); EXPECT_GE(latency.sum_us(), max_latency); EXPECT_LE(latency.avg_us(), max_latency); EXPECT_TRUE(latency.has_std_deviation_us()); EXPECT_EQ( metrics.process_metrics().tflite_inference_metrics().num_inferences(), 2); } TEST(TfliteInferenceStage, CustomDelegate) { EvaluationStageConfig config = GetTfliteInferenceStageConfig(); TfliteInferenceStage stage(config); Interpreter::TfLiteDelegatePtr test_delegate = CreateNNAPIDelegate(); EXPECT_NE(stage.ApplyCustomDelegate(std::move(test_delegate)), kTfLiteOk); EXPECT_EQ(stage.Init(), kTfLiteOk); EXPECT_EQ(stage.ApplyCustomDelegate(std::move(test_delegate)), kTfLiteOk); } } } }
858
cpp
tensorflow/tensorflow
object_detection_average_precision_stage
tensorflow/lite/tools/evaluation/stages/object_detection_average_precision_stage.cc
tensorflow/lite/tools/evaluation/stages/object_detection_average_precision_stage_test.cc
#ifndef TENSORFLOW_LITE_TOOLS_EVALUATION_STAGES_OBJECT_DETECTION_AVERAGE_PRECISION_STAGE_H_ #define TENSORFLOW_LITE_TOOLS_EVALUATION_STAGES_OBJECT_DETECTION_AVERAGE_PRECISION_STAGE_H_ #include <vector> #include "tensorflow/lite/tools/evaluation/evaluation_stage.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_config.pb.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_stages.pb.h" #include "tensorflow/lite/tools/evaluation/stages/utils/image_metrics.h" namespace tflite { namespace evaluation { class ObjectDetectionAveragePrecisionStage : public EvaluationStage { public: explicit ObjectDetectionAveragePrecisionStage( const EvaluationStageConfig& config) : EvaluationStage(config) {} TfLiteStatus Init() override; TfLiteStatus Run() override; EvaluationStageMetrics LatestMetrics() override; void SetEvalInputs(const ObjectDetectionResult& predicted_objects, const ObjectDetectionResult& ground_truth_objects) { predicted_objects_ = predicted_objects; ground_truth_objects_ = ground_truth_objects; } private: int num_classes_ = -1; ObjectDetectionResult predicted_objects_; ObjectDetectionResult ground_truth_objects_; int current_image_index_ = 0; std::vector<std::vector<image::Detection>> ground_truth_object_vectors_; std::vector<std::vector<image::Detection>> predicted_object_vectors_; }; } } #endif #include "tensorflow/lite/tools/evaluation/stages/object_detection_average_precision_stage.h" #include <stdint.h> #include <numeric> #include "tensorflow/core/platform/logging.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_stages.pb.h" namespace tflite { namespace evaluation { namespace { image::Detection ConvertProtoToDetection( const ObjectDetectionResult::ObjectInstance& input, int image_id) { image::Detection detection; detection.box.x.min = input.bounding_box().normalized_left(); detection.box.x.max = input.bounding_box().normalized_right(); detection.box.y.min = input.bounding_box().normalized_top(); detection.box.y.max = input.bounding_box().normalized_bottom(); detection.imgid = image_id; detection.score = input.score(); return detection; } } TfLiteStatus ObjectDetectionAveragePrecisionStage::Init() { num_classes_ = config_.specification() .object_detection_average_precision_params() .num_classes(); if (num_classes_ <= 0) { LOG(ERROR) << "num_classes cannot be <= 0"; return kTfLiteError; } for (int i = 0; i < num_classes_; ++i) { ground_truth_object_vectors_.emplace_back(); predicted_object_vectors_.emplace_back(); } return kTfLiteOk; } TfLiteStatus ObjectDetectionAveragePrecisionStage::Run() { for (int i = 0; i < ground_truth_objects_.objects_size(); ++i) { const int class_id = ground_truth_objects_.objects(i).class_id(); if (class_id >= num_classes_) { LOG(ERROR) << "Encountered invalid class ID: " << class_id; return kTfLiteError; } ground_truth_object_vectors_[class_id].push_back(ConvertProtoToDetection( ground_truth_objects_.objects(i), current_image_index_)); } for (int i = 0; i < predicted_objects_.objects_size(); ++i) { const int class_id = predicted_objects_.objects(i).class_id(); if (class_id >= num_classes_) { LOG(ERROR) << "Encountered invalid class ID: " << class_id; return kTfLiteError; } predicted_object_vectors_[class_id].push_back(ConvertProtoToDetection( predicted_objects_.objects(i), current_image_index_)); } current_image_index_++; return kTfLiteOk; } EvaluationStageMetrics ObjectDetectionAveragePrecisionStage::LatestMetrics() { EvaluationStageMetrics metrics; if (current_image_index_ == 0) return metrics; metrics.set_num_runs(current_image_index_); auto* ap_metrics = metrics.mutable_process_metrics() ->mutable_object_detection_average_precision_metrics(); auto& ap_params = config_.specification().object_detection_average_precision_params(); std::vector<float> iou_thresholds; if (ap_params.iou_thresholds_size() == 0) { float threshold = 0.5; for (int i = 0; i < 10; ++i) { iou_thresholds.push_back(threshold + i * 0.05); } } else { for (auto& threshold : ap_params.iou_thresholds()) { iou_thresholds.push_back(threshold); } } image::AveragePrecision::Options opts; opts.num_recall_points = ap_params.num_recall_points(); float ap_sum = 0; int num_total_aps = 0; for (float threshold : iou_thresholds) { float threshold_ap_sum = 0; int num_counted_classes = 0; for (int i = 0; i < num_classes_; ++i) { if (ground_truth_object_vectors_[i].empty() && predicted_object_vectors_[i].empty()) continue; float ap_value = 0.0; if (!ground_truth_object_vectors_[i].empty()) { opts.iou_threshold = threshold; ap_value = image::AveragePrecision(opts).FromBoxes( ground_truth_object_vectors_[i], predicted_object_vectors_[i]); } ap_sum += ap_value; num_total_aps += 1; threshold_ap_sum += ap_value; num_counted_classes += 1; } if (num_counted_classes == 0) continue; auto* threshold_ap = ap_metrics->add_individual_average_precisions(); threshold_ap->set_average_precision(threshold_ap_sum / num_counted_classes); threshold_ap->set_iou_threshold(threshold); } if (num_total_aps == 0) return metrics; ap_metrics->set_overall_mean_average_precision(ap_sum / num_total_aps); return metrics; } } }
#include "tensorflow/lite/tools/evaluation/stages/object_detection_average_precision_stage.h" #include <stdint.h> #include <string> #include <gtest/gtest.h> #include "tensorflow/lite/tools/evaluation/proto/evaluation_config.pb.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_stages.pb.h" namespace tflite { namespace evaluation { namespace { constexpr char kAveragePrecisionStageName[] = "object_detection_average_precision"; EvaluationStageConfig GetAveragePrecisionStageConfig(int num_classes) { EvaluationStageConfig config; config.set_name(kAveragePrecisionStageName); auto* params = config.mutable_specification() ->mutable_object_detection_average_precision_params(); params->add_iou_thresholds(0.5); params->add_iou_thresholds(0.999); params->set_num_classes(num_classes); return config; } ObjectDetectionResult GetGroundTruthDetectionResult() { ObjectDetectionResult ground_truth; ground_truth.set_image_name("some_image.jpg"); auto* object_1 = ground_truth.add_objects(); object_1->set_class_id(1); auto* object_1_bbox = object_1->mutable_bounding_box(); object_1_bbox->set_normalized_top(0.5); object_1_bbox->set_normalized_bottom(1.0); object_1_bbox->set_normalized_left(0.5); object_1_bbox->set_normalized_right(1.0); auto* object_2 = ground_truth.add_objects(); object_2->set_class_id(1); auto* object_2_bbox = object_2->mutable_bounding_box(); object_2_bbox->set_normalized_top(0); object_2_bbox->set_normalized_bottom(1.0); object_2_bbox->set_normalized_left(0); object_2_bbox->set_normalized_right(1.0); auto* object_3 = ground_truth.add_objects(); object_3->set_class_id(2); auto* object_3_bbox = object_3->mutable_bounding_box(); object_3_bbox->set_normalized_top(0.5); object_3_bbox->set_normalized_bottom(1.0); object_3_bbox->set_normalized_left(0.5); object_3_bbox->set_normalized_right(1.0); return ground_truth; } ObjectDetectionResult GetPredictedDetectionResult() { ObjectDetectionResult predicted; auto* object_1 = predicted.add_objects(); object_1->set_class_id(1); object_1->set_score(0.8); auto* object_1_bbox = object_1->mutable_bounding_box(); object_1_bbox->set_normalized_top(0.091); object_1_bbox->set_normalized_bottom(1.0); object_1_bbox->set_normalized_left(0.091); object_1_bbox->set_normalized_right(1.0); auto* object_2 = predicted.add_objects(); object_2->set_class_id(1); object_2->set_score(0.9); auto* object_2_bbox = object_2->mutable_bounding_box(); object_2_bbox->set_normalized_top(0.474); object_2_bbox->set_normalized_bottom(1.0); object_2_bbox->set_normalized_left(0.474); object_2_bbox->set_normalized_right(1.0); auto* object_3 = predicted.add_objects(); object_3->set_class_id(1); object_3->set_score(0.95); auto* object_3_bbox = object_3->mutable_bounding_box(); object_3_bbox->set_normalized_top(0.474); object_3_bbox->set_normalized_bottom(1.0); object_3_bbox->set_normalized_left(0.474); object_3_bbox->set_normalized_right(1.0); return predicted; } TEST(ObjectDetectionAveragePrecisionStage, ZeroClasses) { EvaluationStageConfig config = GetAveragePrecisionStageConfig(0); ObjectDetectionAveragePrecisionStage stage = ObjectDetectionAveragePrecisionStage(config); EXPECT_EQ(stage.Init(), kTfLiteError); } TEST(ObjectDetectionAveragePrecisionStage, SampleInputs) { EvaluationStageConfig config = GetAveragePrecisionStageConfig(3); ObjectDetectionAveragePrecisionStage stage = ObjectDetectionAveragePrecisionStage(config); EXPECT_EQ(stage.Init(), kTfLiteOk); const ObjectDetectionResult ground_truth = GetGroundTruthDetectionResult(); const ObjectDetectionResult predicted = GetPredictedDetectionResult(); stage.SetEvalInputs(ObjectDetectionResult(), ground_truth); EXPECT_EQ(stage.Run(), kTfLiteOk); EvaluationStageMetrics metrics = stage.LatestMetrics(); ObjectDetectionAveragePrecisionMetrics detection_metrics = metrics.process_metrics().object_detection_average_precision_metrics(); EXPECT_FLOAT_EQ(detection_metrics.overall_mean_average_precision(), 0.0); EXPECT_EQ(detection_metrics.individual_average_precisions_size(), 2); stage.SetEvalInputs(ground_truth, ground_truth); EXPECT_EQ(stage.Run(), kTfLiteOk); metrics = stage.LatestMetrics(); detection_metrics = metrics.process_metrics().object_detection_average_precision_metrics(); EXPECT_FLOAT_EQ(detection_metrics.overall_mean_average_precision(), 0.50495052); EXPECT_EQ(metrics.num_runs(), 2); stage.SetEvalInputs(predicted, ground_truth); EXPECT_EQ(stage.Run(), kTfLiteOk); metrics = stage.LatestMetrics(); detection_metrics = metrics.process_metrics().object_detection_average_precision_metrics(); EXPECT_FLOAT_EQ( detection_metrics.individual_average_precisions(0).iou_threshold(), 0.5); EXPECT_FLOAT_EQ( detection_metrics.individual_average_precisions(0).average_precision(), 0.4841584); EXPECT_FLOAT_EQ( detection_metrics.individual_average_precisions(1).iou_threshold(), 0.999); EXPECT_FLOAT_EQ( detection_metrics.individual_average_precisions(1).average_precision(), 0.33663365); EXPECT_FLOAT_EQ(detection_metrics.overall_mean_average_precision(), 0.41039604); } TEST(ObjectDetectionAveragePrecisionStage, DefaultIoUThresholds) { EvaluationStageConfig config = GetAveragePrecisionStageConfig(3); auto* params = config.mutable_specification() ->mutable_object_detection_average_precision_params(); params->clear_iou_thresholds(); ObjectDetectionAveragePrecisionStage stage = ObjectDetectionAveragePrecisionStage(config); EXPECT_EQ(stage.Init(), kTfLiteOk); const ObjectDetectionResult ground_truth = GetGroundTruthDetectionResult(); const ObjectDetectionResult predicted = GetPredictedDetectionResult(); stage.SetEvalInputs(ground_truth, ground_truth); EXPECT_EQ(stage.Run(), kTfLiteOk); EvaluationStageMetrics metrics = stage.LatestMetrics(); ObjectDetectionAveragePrecisionMetrics detection_metrics = metrics.process_metrics().object_detection_average_precision_metrics(); EXPECT_FLOAT_EQ(detection_metrics.overall_mean_average_precision(), 1.0); EXPECT_EQ(detection_metrics.individual_average_precisions_size(), 10); EXPECT_FLOAT_EQ( detection_metrics.individual_average_precisions(0).iou_threshold(), 0.5); EXPECT_FLOAT_EQ( detection_metrics.individual_average_precisions(9).iou_threshold(), 0.95); } } } }
859
cpp
tensorflow/tensorflow
image_preprocessing_stage
tensorflow/lite/tools/evaluation/stages/image_preprocessing_stage.cc
tensorflow/lite/tools/evaluation/stages/image_preprocessing_stage_test.cc
#ifndef TENSORFLOW_LITE_TOOLS_EVALUATION_STAGES_IMAGE_PREPROCESSING_STAGE_H_ #define TENSORFLOW_LITE_TOOLS_EVALUATION_STAGES_IMAGE_PREPROCESSING_STAGE_H_ #include <stdint.h> #include <string> #include <utility> #include <vector> #include "xla/tsl/util/stats_calculator.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/tools/evaluation/evaluation_stage.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_config.pb.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_stages.pb.h" #include "tensorflow/lite/tools/evaluation/proto/preprocessing_steps.pb.h" namespace tflite { namespace evaluation { class ImagePreprocessingStage : public EvaluationStage { public: explicit ImagePreprocessingStage(const EvaluationStageConfig& config) : EvaluationStage(config) {} TfLiteStatus Init() override; TfLiteStatus Run() override; EvaluationStageMetrics LatestMetrics() override; ~ImagePreprocessingStage() override {} void SetImagePath(std::string* image_path) { image_path_ = image_path; } void* GetPreprocessedImageData(); private: std::string* image_path_ = nullptr; TfLiteType output_type_; tsl::Stat<int64_t> latency_stats_; std::vector<float> float_preprocessed_image_; std::vector<int8_t> int8_preprocessed_image_; std::vector<uint8_t> uint8_preprocessed_image_; }; class ImagePreprocessingConfigBuilder { public: ImagePreprocessingConfigBuilder(const std::string& name, TfLiteType output_type) { config_.set_name(name); config_.mutable_specification() ->mutable_image_preprocessing_params() ->set_output_type(static_cast<int>(output_type)); } void AddCroppingStep(float cropping_fraction, bool use_square_cropping = false) { ImagePreprocessingStepParams params; params.mutable_cropping_params()->set_cropping_fraction(cropping_fraction); params.mutable_cropping_params()->set_square_cropping(use_square_cropping); config_.mutable_specification() ->mutable_image_preprocessing_params() ->mutable_steps() ->Add(std::move(params)); } void AddCroppingStep(uint32_t width, uint32_t height, bool use_square_cropping = false) { ImagePreprocessingStepParams params; params.mutable_cropping_params()->mutable_target_size()->set_height(height); params.mutable_cropping_params()->mutable_target_size()->set_width(width); params.mutable_cropping_params()->set_square_cropping(use_square_cropping); config_.mutable_specification() ->mutable_image_preprocessing_params() ->mutable_steps() ->Add(std::move(params)); } void AddResizingStep(uint32_t width, uint32_t height, bool aspect_preserving) { ImagePreprocessingStepParams params; params.mutable_resizing_params()->set_aspect_preserving(aspect_preserving); params.mutable_resizing_params()->mutable_target_size()->set_height(height); params.mutable_resizing_params()->mutable_target_size()->set_width(width); config_.mutable_specification() ->mutable_image_preprocessing_params() ->mutable_steps() ->Add(std::move(params)); } void AddPaddingStep(uint32_t width, uint32_t height, int value) { ImagePreprocessingStepParams params; params.mutable_padding_params()->mutable_target_size()->set_height(height); params.mutable_padding_params()->mutable_target_size()->set_width(width); params.mutable_padding_params()->set_padding_value(value); config_.mutable_specification() ->mutable_image_preprocessing_params() ->mutable_steps() ->Add(std::move(params)); } void AddSquarePaddingStep(int value) { ImagePreprocessingStepParams params; params.mutable_padding_params()->set_square_padding(true); params.mutable_padding_params()->set_padding_value(value); config_.mutable_specification() ->mutable_image_preprocessing_params() ->mutable_steps() ->Add(std::move(params)); } void AddPerChannelNormalizationStep(float r_mean, float g_mean, float b_mean, float scale) { ImagePreprocessingStepParams params; params.mutable_normalization_params()->mutable_means()->set_r_mean(r_mean); params.mutable_normalization_params()->mutable_means()->set_g_mean(g_mean); params.mutable_normalization_params()->mutable_means()->set_b_mean(b_mean); params.mutable_normalization_params()->set_scale(scale); config_.mutable_specification() ->mutable_image_preprocessing_params() ->mutable_steps() ->Add(std::move(params)); } void AddNormalizationStep(float mean, float scale) { ImagePreprocessingStepParams params; params.mutable_normalization_params()->set_channelwise_mean(mean); params.mutable_normalization_params()->set_scale(scale); config_.mutable_specification() ->mutable_image_preprocessing_params() ->mutable_steps() ->Add(std::move(params)); } void AddDefaultNormalizationStep() { switch ( config_.specification().image_preprocessing_params().output_type()) { case kTfLiteFloat32: AddNormalizationStep(127.5, 1.0 / 127.5); break; case kTfLiteUInt8: break; case kTfLiteInt8: AddNormalizationStep(128.0, 1.0); break; default: LOG(ERROR) << "Type not supported"; break; } } EvaluationStageConfig build() { return std::move(config_); } private: EvaluationStageConfig config_; }; } } #endif #include "tensorflow/lite/tools/evaluation/stages/image_preprocessing_stage.h" #include <algorithm> #include <cmath> #include <cstdint> #include <fstream> #include <ios> #include <iterator> #include <memory> #include <streambuf> #include <string> #include <vector> #include "absl/base/casts.h" #include "absl/strings/ascii.h" #include "jpeglib.h" #include "tensorflow/core/lib/jpeg/jpeg_mem.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/kernels/internal/reference/pad.h" #include "tensorflow/lite/kernels/internal/reference/resize_bilinear.h" #include "tensorflow/lite/kernels/internal/runtime_shape.h" #include "tensorflow/lite/kernels/internal/types.h" #include "tensorflow/lite/profiling/time.h" #include "tensorflow/lite/string_type.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_config.pb.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_stages.pb.h" #include "tensorflow/lite/tools/evaluation/proto/preprocessing_steps.pb.h" namespace tflite { namespace evaluation { namespace { const int kNumChannels = 3; inline int ImageArrayOffset(int height, int width, int h, int w, int c) { return (h * width + w) * kNumChannels + c; } struct ImageData { uint32_t width; uint32_t height; std::unique_ptr<std::vector<float>> data; float GetData(int h, int w, int c) { return data->at(ImageArrayOffset(height, width, h, w, c)); } }; inline void LoadImageRaw(std::string* filename, ImageData* image_data) { std::ifstream stream(filename->c_str(), std::ios::in | std::ios::binary); std::vector<uint8_t> raw_data((std::istreambuf_iterator<char>(stream)), std::istreambuf_iterator<char>()); std::vector<float>* orig_image = new std::vector<float>(); orig_image->reserve(raw_data.size()); for (int i = 0; i < raw_data.size(); ++i) { orig_image->push_back(static_cast<float>(raw_data[i])); } image_data->data.reset(orig_image); } inline void LoadImageJpeg(std::string* filename, ImageData* image_data) { std::ifstream t(*filename); std::string image_str((std::istreambuf_iterator<char>(t)), std::istreambuf_iterator<char>()); const int fsize = image_str.size(); auto temp = absl::bit_cast<const uint8_t*>(image_str.data()); std::unique_ptr<uint8_t[]> original_image; int original_width, original_height, original_channels; tensorflow::jpeg::UncompressFlags flags; flags.dct_method = JDCT_ISLOW; flags.components = kNumChannels; original_image.reset(Uncompress(temp, fsize, flags, &original_width, &original_height, &original_channels, nullptr)); image_data->width = original_width; image_data->height = original_height; int original_size = original_height * original_width * original_channels; std::vector<float>* float_image = new std::vector<float>(); float_image->reserve(original_size); for (int i = 0; i < original_size; ++i) { float_image->push_back(static_cast<float>(original_image[i])); } image_data->data.reset(float_image); } inline void Crop(ImageData* image_data, const CroppingParams& crop_params) { int crop_height, crop_width; int input_width = image_data->width; int input_height = image_data->height; if (crop_params.has_cropping_fraction()) { crop_height = static_cast<int>(round(crop_params.cropping_fraction() * input_height)); crop_width = static_cast<int>(round(crop_params.cropping_fraction() * input_width)); } else if (crop_params.has_target_size()) { crop_height = crop_params.target_size().height(); crop_width = crop_params.target_size().width(); } if (crop_params.has_cropping_fraction() && crop_params.square_cropping()) { crop_height = std::min(crop_height, crop_width); crop_width = crop_height; } int start_w = static_cast<int>(round((input_width - crop_width) / 2.0)); int start_h = static_cast<int>(round((input_height - crop_height) / 2.0)); std::vector<float>* cropped_image = new std::vector<float>(); cropped_image->reserve(crop_height * crop_width * kNumChannels); for (int in_h = start_h; in_h < start_h + crop_height; ++in_h) { for (int in_w = start_w; in_w < start_w + crop_width; ++in_w) { for (int c = 0; c < kNumChannels; ++c) { cropped_image->push_back(image_data->GetData(in_h, in_w, c)); } } } image_data->height = crop_height; image_data->width = crop_width; image_data->data.reset(cropped_image); } inline void ResizeBilinear(ImageData* image_data, const ResizingParams& params) { tflite::ResizeBilinearParams resize_params; resize_params.align_corners = false; resize_params.half_pixel_centers = false; tflite::RuntimeShape input_shape({1, static_cast<int>(image_data->height), static_cast<int>(image_data->width), kNumChannels}); int output_height, output_width; if (params.aspect_preserving()) { float ratio_w = params.target_size().width() / static_cast<float>(image_data->width); float ratio_h = params.target_size().height() / static_cast<float>(image_data->height); if (ratio_w >= ratio_h) { output_width = params.target_size().width(); output_height = static_cast<int>(round(image_data->height * ratio_w)); } else { output_width = static_cast<int>(round(image_data->width * ratio_h)); output_height = params.target_size().height(); } } else { output_height = params.target_size().height(); output_width = params.target_size().width(); } tflite::RuntimeShape output_size_dims({1, 1, 1, 2}); std::vector<int32_t> output_size_data = {output_height, output_width}; tflite::RuntimeShape output_shape( {1, output_height, output_width, kNumChannels}); int output_size = output_width * output_height * kNumChannels; std::vector<float>* output_data = new std::vector<float>(output_size, 0); tflite::reference_ops::ResizeBilinear( resize_params, input_shape, image_data->data->data(), output_size_dims, output_size_data.data(), output_shape, output_data->data()); image_data->height = output_height; image_data->width = output_width; image_data->data.reset(output_data); } inline void Pad(ImageData* image_data, const PaddingParams& params) { int output_width = params.target_size().width(); int output_height = params.target_size().height(); int pad_value = params.padding_value(); tflite::PadParams pad_params; pad_params.left_padding_count = 4; std::uninitialized_fill_n(pad_params.left_padding, 4, 0); pad_params.left_padding[1] = static_cast<int>(round((output_height - image_data->height) / 2.0)); pad_params.left_padding[2] = static_cast<int>(round((output_width - image_data->width) / 2.0)); pad_params.right_padding_count = 4; std::uninitialized_fill_n(pad_params.right_padding, 4, 0); pad_params.right_padding[1] = output_height - pad_params.left_padding[1] - image_data->height; pad_params.right_padding[2] = output_width - pad_params.left_padding[2] - image_data->width; tflite::RuntimeShape input_shape({1, static_cast<int>(image_data->height), static_cast<int>(image_data->width), kNumChannels}); tflite::RuntimeShape output_shape( {1, output_height, output_width, kNumChannels}); int output_size = output_width * output_height * kNumChannels; std::vector<float>* output_data = new std::vector<float>(output_size, 0); tflite::reference_ops::Pad(pad_params, input_shape, image_data->data->data(), &pad_value, output_shape, output_data->data()); image_data->height = output_height; image_data->width = output_width; image_data->data.reset(output_data); } inline void Normalize(ImageData* image_data, const NormalizationParams& params) { float scale = params.scale(); float* data_end = image_data->data->data() + image_data->data->size(); if (params.has_channelwise_mean()) { float mean = params.channelwise_mean(); for (float* data = image_data->data->data(); data < data_end; ++data) { *data = (*data - mean) * scale; } } else { float r_mean = params.means().r_mean(); float g_mean = params.means().g_mean(); float b_mean = params.means().b_mean(); for (float* data = image_data->data->data(); data < data_end;) { *data = (*data - r_mean) * scale; ++data; *data = (*data - g_mean) * scale; ++data; *data = (*data - b_mean) * scale; ++data; } } } } TfLiteStatus ImagePreprocessingStage::Init() { if (!config_.has_specification() || !config_.specification().has_image_preprocessing_params()) { LOG(ERROR) << "No preprocessing params"; return kTfLiteError; } const ImagePreprocessingParams& params = config_.specification().image_preprocessing_params(); for (const ImagePreprocessingStepParams& param : params.steps()) { if (param.has_cropping_params()) { const CroppingParams& crop_params = param.cropping_params(); if (crop_params.has_cropping_fraction() && (crop_params.cropping_fraction() <= 0 || crop_params.cropping_fraction() > 1.0)) { LOG(ERROR) << "Invalid cropping fraction"; return kTfLiteError; } } } output_type_ = static_cast<TfLiteType>(params.output_type()); return kTfLiteOk; } TfLiteStatus ImagePreprocessingStage::Run() { if (!image_path_) { LOG(ERROR) << "Image path not set"; return kTfLiteError; } ImageData image_data; const ImagePreprocessingParams& params = config_.specification().image_preprocessing_params(); int64_t start_us = profiling::time::NowMicros(); string image_ext = image_path_->substr(image_path_->find_last_of(".")); absl::AsciiStrToLower(&image_ext); bool is_raw_image = (image_ext == ".rgb8"); if (image_ext == ".rgb8") { LoadImageRaw(image_path_, &image_data); } else if (image_ext == ".jpg" || image_ext == ".jpeg") { LoadImageJpeg(image_path_, &image_data); } else { LOG(ERROR) << "Extension " << image_ext << " is not supported"; return kTfLiteError; } for (const ImagePreprocessingStepParams& param : params.steps()) { if (param.has_cropping_params()) { if (is_raw_image) { LOG(WARNING) << "Image cropping will not be performed on raw images"; continue; } Crop(&image_data, param.cropping_params()); } else if (param.has_resizing_params()) { if (is_raw_image) { LOG(WARNING) << "Image resizing will not be performed on raw images"; continue; } ResizeBilinear(&image_data, param.resizing_params()); } else if (param.has_padding_params()) { if (is_raw_image) { LOG(WARNING) << "Image padding will not be performed on raw images"; continue; } Pad(&image_data, param.padding_params()); } else if (param.has_normalization_params()) { Normalize(&image_data, param.normalization_params()); } } if (output_type_ == kTfLiteUInt8) { uint8_preprocessed_image_.clear(); uint8_preprocessed_image_.resize(image_data.data->size() + 16); for (int i = 0; i < image_data.data->size(); ++i) { uint8_preprocessed_image_[i] = static_cast<uint8_t>(image_data.data->at(i)); } } else if (output_type_ == kTfLiteInt8) { int8_preprocessed_image_.clear(); int8_preprocessed_image_.resize(image_data.data->size() + 16); for (int i = 0; i < image_data.data->size(); ++i) { int8_preprocessed_image_[i] = static_cast<int8_t>(image_data.data->at(i)); } } else if (output_type_ == kTfLiteFloat32) { float_preprocessed_image_ = *image_data.data; } latency_stats_.UpdateStat(profiling::time::NowMicros() - start_us); return kTfLiteOk; } void* ImagePreprocessingStage::GetPreprocessedImageData() { if (latency_stats_.count() == 0) return nullptr; if (output_type_ == kTfLiteUInt8) { return uint8_preprocessed_image_.data(); } else if (output_type_ == kTfLiteInt8) { return int8_preprocessed_image_.data(); } else if (output_type_ == kTfLiteFloat32) { return float_preprocessed_image_.data(); } return nullptr; } EvaluationStageMetrics ImagePreprocessingStage::LatestMetrics() { EvaluationStageMetrics metrics; auto* latency_metrics = metrics.mutable_process_metrics()->mutable_total_latency(); latency_metrics->set_last_us(latency_stats_.newest()); latency_metrics->set_max_us(latency_stats_.max()); latency_metrics->set_min_us(latency_stats_.min()); latency_metrics->set_sum_us(latency_stats_.sum()); latency_metrics->set_avg_us(latency_stats_.avg()); metrics.set_num_runs(static_cast<int>(latency_stats_.count())); return metrics; } } }
#include "tensorflow/lite/tools/evaluation/stages/image_preprocessing_stage.h" #include <memory> #include <string> #include <gtest/gtest.h> #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_config.pb.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_stages.pb.h" namespace tflite { namespace evaluation { namespace { constexpr char kImagePreprocessingStageName[] = "inception_preprocessing_stage"; constexpr char kTestImage[] = "tensorflow/lite/tools/evaluation/stages/testdata/" "grace_hopper.jpg"; constexpr int kImageDim = 224; TEST(ImagePreprocessingStage, NoParams) { ImagePreprocessingConfigBuilder builder(kImagePreprocessingStageName, kTfLiteFloat32); EvaluationStageConfig config = builder.build(); config.mutable_specification()->clear_image_preprocessing_params(); ImagePreprocessingStage stage = ImagePreprocessingStage(config); EXPECT_EQ(stage.Init(), kTfLiteError); } TEST(ImagePreprocessingStage, InvalidCroppingFraction) { ImagePreprocessingConfigBuilder builder(kImagePreprocessingStageName, kTfLiteFloat32); builder.AddCroppingStep(-0.8); ImagePreprocessingStage stage = ImagePreprocessingStage(builder.build()); EXPECT_EQ(stage.Init(), kTfLiteError); } TEST(ImagePreprocessingStage, ImagePathNotSet) { ImagePreprocessingConfigBuilder builder(kImagePreprocessingStageName, kTfLiteFloat32); ImagePreprocessingStage stage = ImagePreprocessingStage(builder.build()); EXPECT_EQ(stage.Init(), kTfLiteOk); EXPECT_EQ(stage.Run(), kTfLiteError); EXPECT_EQ(stage.GetPreprocessedImageData(), nullptr); } TEST(ImagePreprocessingStage, TestImagePreprocessingFloat) { std::string image_path = kTestImage; ImagePreprocessingConfigBuilder builder(kImagePreprocessingStageName, kTfLiteFloat32); builder.AddCroppingStep(0.875); builder.AddResizingStep(224, 224, false); builder.AddNormalizationStep(127.5, 1.0 / 127.5); ImagePreprocessingStage stage = ImagePreprocessingStage(builder.build()); EXPECT_EQ(stage.Init(), kTfLiteOk); EXPECT_EQ(stage.GetPreprocessedImageData(), nullptr); stage.SetImagePath(&image_path); EXPECT_EQ(stage.Run(), kTfLiteOk); EvaluationStageMetrics metrics = stage.LatestMetrics(); float* preprocessed_image_ptr = static_cast<float*>(stage.GetPreprocessedImageData()); EXPECT_NE(preprocessed_image_ptr, nullptr); EXPECT_FLOAT_EQ(preprocessed_image_ptr[0], -0.74901962); EXPECT_FLOAT_EQ(preprocessed_image_ptr[1], -0.74901962); EXPECT_FLOAT_EQ(preprocessed_image_ptr[2], -0.68627453); EXPECT_EQ(metrics.num_runs(), 1); const auto& last_latency = metrics.process_metrics().total_latency().last_us(); EXPECT_GT(last_latency, 0); EXPECT_LT(last_latency, 1e7); EXPECT_EQ(metrics.process_metrics().total_latency().max_us(), last_latency); EXPECT_EQ(metrics.process_metrics().total_latency().min_us(), last_latency); EXPECT_EQ(metrics.process_metrics().total_latency().sum_us(), last_latency); EXPECT_EQ(metrics.process_metrics().total_latency().avg_us(), last_latency); } TEST(ImagePreprocessingStage, TestImagePreprocessingFloat_NoCrop) { std::string image_path = kTestImage; ImagePreprocessingConfigBuilder builder(kImagePreprocessingStageName, kTfLiteFloat32); builder.AddResizingStep(224, 224, false); builder.AddNormalizationStep(127.5, 1.0 / 127.5); ImagePreprocessingStage stage = ImagePreprocessingStage(builder.build()); EXPECT_EQ(stage.Init(), kTfLiteOk); EXPECT_EQ(stage.GetPreprocessedImageData(), nullptr); stage.SetImagePath(&image_path); EXPECT_EQ(stage.Run(), kTfLiteOk); EvaluationStageMetrics metrics = stage.LatestMetrics(); float* preprocessed_image_ptr = static_cast<float*>(stage.GetPreprocessedImageData()); EXPECT_NE(preprocessed_image_ptr, nullptr); EXPECT_FLOAT_EQ(preprocessed_image_ptr[0], -0.83529419); EXPECT_FLOAT_EQ(preprocessed_image_ptr[1], -0.7960785); EXPECT_FLOAT_EQ(preprocessed_image_ptr[2], -0.35686275); EXPECT_EQ(metrics.num_runs(), 1); const auto& last_latency = metrics.process_metrics().total_latency().last_us(); EXPECT_GT(last_latency, 0); EXPECT_LT(last_latency, 1e7); EXPECT_EQ(metrics.process_metrics().total_latency().max_us(), last_latency); EXPECT_EQ(metrics.process_metrics().total_latency().min_us(), last_latency); EXPECT_EQ(metrics.process_metrics().total_latency().sum_us(), last_latency); EXPECT_EQ(metrics.process_metrics().total_latency().avg_us(), last_latency); } TEST(ImagePreprocessingStage, TestImagePreprocessingUInt8Quantized) { std::string image_path = kTestImage; ImagePreprocessingConfigBuilder builder(kImagePreprocessingStageName, kTfLiteUInt8); builder.AddCroppingStep(0.875); builder.AddResizingStep(224, 224, false); ImagePreprocessingStage stage = ImagePreprocessingStage(builder.build()); EXPECT_EQ(stage.Init(), kTfLiteOk); EXPECT_EQ(stage.GetPreprocessedImageData(), nullptr); stage.SetImagePath(&image_path); EXPECT_EQ(stage.Run(), kTfLiteOk); EvaluationStageMetrics metrics = stage.LatestMetrics(); uint8_t* preprocessed_image_ptr = static_cast<uint8_t*>(stage.GetPreprocessedImageData()); EXPECT_NE(preprocessed_image_ptr, nullptr); EXPECT_EQ(preprocessed_image_ptr[0], 32); EXPECT_EQ(preprocessed_image_ptr[1], 32); EXPECT_EQ(preprocessed_image_ptr[2], 40); EXPECT_EQ(metrics.num_runs(), 1); const auto& last_latency = metrics.process_metrics().total_latency().last_us(); EXPECT_GT(last_latency, 0); EXPECT_LT(last_latency, 1e7); EXPECT_EQ(metrics.process_metrics().total_latency().max_us(), last_latency); EXPECT_EQ(metrics.process_metrics().total_latency().min_us(), last_latency); EXPECT_EQ(metrics.process_metrics().total_latency().sum_us(), last_latency); EXPECT_EQ(metrics.process_metrics().total_latency().avg_us(), last_latency); } TEST(ImagePreprocessingStage, TestImagePreprocessingInt8Quantized) { std::string image_path = kTestImage; ImagePreprocessingConfigBuilder builder(kImagePreprocessingStageName, kTfLiteInt8); builder.AddCroppingStep(0.875); builder.AddResizingStep(224, 224, false); builder.AddNormalizationStep(128.0, 1.0); ImagePreprocessingStage stage = ImagePreprocessingStage(builder.build()); EXPECT_EQ(stage.Init(), kTfLiteOk); EXPECT_EQ(stage.GetPreprocessedImageData(), nullptr); stage.SetImagePath(&image_path); EXPECT_EQ(stage.Run(), kTfLiteOk); EvaluationStageMetrics metrics = stage.LatestMetrics(); int8_t* preprocessed_image_ptr = static_cast<int8_t*>(stage.GetPreprocessedImageData()); EXPECT_NE(preprocessed_image_ptr, nullptr); EXPECT_EQ(preprocessed_image_ptr[0], -96); EXPECT_EQ(preprocessed_image_ptr[1], -96); EXPECT_EQ(preprocessed_image_ptr[2], -88); EXPECT_EQ(metrics.num_runs(), 1); const auto& last_latency = metrics.process_metrics().total_latency().last_us(); EXPECT_GT(last_latency, 0); EXPECT_LT(last_latency, 1e7); EXPECT_EQ(metrics.process_metrics().total_latency().max_us(), last_latency); EXPECT_EQ(metrics.process_metrics().total_latency().min_us(), last_latency); EXPECT_EQ(metrics.process_metrics().total_latency().sum_us(), last_latency); EXPECT_EQ(metrics.process_metrics().total_latency().avg_us(), last_latency); } TEST(ImagePreprocessingStage, TestImagePreprocessingPadding) { std::string image_path = kTestImage; ImagePreprocessingConfigBuilder builder(kImagePreprocessingStageName, kTfLiteInt8); builder.AddCroppingStep(0.875); builder.AddResizingStep(224, 224, false); builder.AddPaddingStep(225, 225, 0); builder.AddNormalizationStep(128.0, 1.0); ImagePreprocessingStage stage = ImagePreprocessingStage(builder.build()); EXPECT_EQ(stage.Init(), kTfLiteOk); EXPECT_EQ(stage.GetPreprocessedImageData(), nullptr); stage.SetImagePath(&image_path); EXPECT_EQ(stage.Run(), kTfLiteOk); EvaluationStageMetrics metrics = stage.LatestMetrics(); int8_t* preprocessed_image_ptr = static_cast<int8_t*>(stage.GetPreprocessedImageData()); EXPECT_NE(preprocessed_image_ptr, nullptr); EXPECT_EQ(preprocessed_image_ptr[0], -128); EXPECT_EQ(preprocessed_image_ptr[224], -128); EXPECT_EQ(preprocessed_image_ptr[225 * 3], -128); EXPECT_EQ(preprocessed_image_ptr[225 * 3 + 3], -96); EXPECT_EQ(preprocessed_image_ptr[225 * 3 + 4], -96); EXPECT_EQ(preprocessed_image_ptr[225 * 3 + 5], -88); EXPECT_EQ(metrics.num_runs(), 1); const auto& last_latency = metrics.process_metrics().total_latency().last_us(); EXPECT_GT(last_latency, 0); EXPECT_LT(last_latency, 1e7); EXPECT_EQ(metrics.process_metrics().total_latency().max_us(), last_latency); EXPECT_EQ(metrics.process_metrics().total_latency().min_us(), last_latency); EXPECT_EQ(metrics.process_metrics().total_latency().sum_us(), last_latency); EXPECT_EQ(metrics.process_metrics().total_latency().avg_us(), last_latency); } TEST(ImagePreprocessingStage, TestImagePreprocessingSubtractMean) { std::string image_path = kTestImage; ImagePreprocessingConfigBuilder builder(kImagePreprocessingStageName, kTfLiteFloat32); builder.AddCroppingStep(0.875); builder.AddResizingStep(224, 224, false); builder.AddPerChannelNormalizationStep(110.0, 120.0, 123.0, 1.0); ImagePreprocessingStage stage = ImagePreprocessingStage(builder.build()); EXPECT_EQ(stage.Init(), kTfLiteOk); EXPECT_EQ(stage.GetPreprocessedImageData(), nullptr); stage.SetImagePath(&image_path); EXPECT_EQ(stage.Run(), kTfLiteOk); EvaluationStageMetrics metrics = stage.LatestMetrics(); float* preprocessed_image_ptr = static_cast<float*>(stage.GetPreprocessedImageData()); EXPECT_NE(preprocessed_image_ptr, nullptr); EXPECT_EQ(preprocessed_image_ptr[0], -78); EXPECT_EQ(preprocessed_image_ptr[1], -88); EXPECT_EQ(preprocessed_image_ptr[2], -83); EXPECT_EQ(metrics.num_runs(), 1); const auto& last_latency = metrics.process_metrics().total_latency().last_us(); EXPECT_GT(last_latency, 0); EXPECT_LT(last_latency, 1e7); EXPECT_EQ(metrics.process_metrics().total_latency().max_us(), last_latency); EXPECT_EQ(metrics.process_metrics().total_latency().min_us(), last_latency); EXPECT_EQ(metrics.process_metrics().total_latency().sum_us(), last_latency); EXPECT_EQ(metrics.process_metrics().total_latency().avg_us(), last_latency); } } } }
860
cpp
tensorflow/tensorflow
image_metrics
tensorflow/lite/tools/evaluation/stages/utils/image_metrics.cc
tensorflow/lite/tools/evaluation/stages/utils/image_metrics_test.cc
#ifndef TENSORFLOW_LITE_TOOLS_EVALUATION_STAGES_UTILS_IMAGE_METRICS_H_ #define TENSORFLOW_LITE_TOOLS_EVALUATION_STAGES_UTILS_IMAGE_METRICS_H_ #include <stdint.h> #include <vector> namespace tflite { namespace evaluation { namespace image { struct Box2D { struct Interval { float min = 0; float max = 0; Interval(float x, float y) { min = x; max = y; } Interval() {} }; Interval x; Interval y; static float Length(const Interval& a); static float Intersection(const Interval& a, const Interval& b); float Area() const; float Intersection(const Box2D& other) const; float Union(const Box2D& other) const; float IoU(const Box2D& other) const; float Overlap(const Box2D& other) const; }; enum IgnoreType { kDontIgnore = 0, kIgnoreOneMatch = 1, kIgnoreAllMatches = 2, }; struct Detection { public: bool difficult = false; int64_t imgid = 0; float score = 0; Box2D box; IgnoreType ignore = IgnoreType::kDontIgnore; Detection() {} Detection(bool d, int64_t id, float s, Box2D b) : difficult(d), imgid(id), score(s), box(b) {} Detection(bool d, int64_t id, float s, Box2D b, IgnoreType i) : difficult(d), imgid(id), score(s), box(b), ignore(i) {} }; struct PR { float p = 0; float r = 0; PR(const float p_, const float r_) : p(p_), r(r_) {} }; class AveragePrecision { public: struct Options { float iou_threshold = 0.5; int num_recall_points = 100; }; AveragePrecision() : AveragePrecision(Options()) {} explicit AveragePrecision(const Options& opts) : opts_(opts) {} float FromPRCurve(const std::vector<PR>& pr, std::vector<PR>* pr_out = nullptr); float FromBoxes(const std::vector<Detection>& groundtruth, const std::vector<Detection>& prediction, std::vector<PR>* pr_out = nullptr); private: Options opts_; }; } } } #endif #include "tensorflow/lite/tools/evaluation/stages/utils/image_metrics.h" #include <algorithm> #include <cmath> #include "absl/container/flat_hash_map.h" #include "tensorflow/core/platform/logging.h" namespace tflite { namespace evaluation { namespace image { float Box2D::Length(const Box2D::Interval& a) { return std::max(0.f, a.max - a.min); } float Box2D::Intersection(const Box2D::Interval& a, const Box2D::Interval& b) { return Length(Interval{std::max(a.min, b.min), std::min(a.max, b.max)}); } float Box2D::Area() const { return Length(x) * Length(y); } float Box2D::Intersection(const Box2D& other) const { return Intersection(x, other.x) * Intersection(y, other.y); } float Box2D::Union(const Box2D& other) const { return Area() + other.Area() - Intersection(other); } float Box2D::IoU(const Box2D& other) const { const float total = Union(other); if (total > 0) { return Intersection(other) / total; } else { return 0.0; } } float Box2D::Overlap(const Box2D& other) const { const float intersection = Intersection(other); return intersection > 0 ? intersection / Area() : 0.0; } float AveragePrecision::FromPRCurve(const std::vector<PR>& pr, std::vector<PR>* pr_out) { float p = 0; float sum = 0; int r_level = opts_.num_recall_points; for (int i = pr.size() - 1; i >= 0; --i) { const PR& item = pr[i]; if (i > 0) { if (item.r < pr[i - 1].r) { LOG(ERROR) << "recall points are not in order: " << pr[i - 1].r << ", " << item.r; return 0; } } while (item.r * opts_.num_recall_points < r_level) { const float recall = static_cast<float>(r_level) / opts_.num_recall_points; if (r_level < 0) { LOG(ERROR) << "Number of recall points should be > 0"; return 0; } sum += p; r_level -= 1; if (pr_out != nullptr) { pr_out->emplace_back(p, recall); } } p = std::max(p, item.p); } for (; r_level >= 0; --r_level) { const float recall = static_cast<float>(r_level) / opts_.num_recall_points; sum += p; if (pr_out != nullptr) { pr_out->emplace_back(p, recall); } } return sum / (1 + opts_.num_recall_points); } float AveragePrecision::FromBoxes(const std::vector<Detection>& groundtruth, const std::vector<Detection>& prediction, std::vector<PR>* pr_out) { absl::flat_hash_map<int64_t, std::list<Detection>> gt; int num_gt = 0; for (auto& box : groundtruth) { gt[box.imgid].push_back(box); if (!box.difficult && box.ignore == kDontIgnore) { ++num_gt; } } if (num_gt == 0) { return NAN; } std::vector<Detection> pd = prediction; std::sort(pd.begin(), pd.end(), [](const Detection& a, const Detection& b) { return a.score > b.score; }); std::vector<PR> pr; int correct = 0; int num_pd = 0; for (int i = 0; i < pd.size(); ++i) { const Detection& b = pd[i]; auto* g = &gt[b.imgid]; auto best = g->end(); float best_iou = -INFINITY; for (auto it = g->begin(); it != g->end(); ++it) { const auto iou = b.box.IoU(it->box); if (iou > best_iou) { best = it; best_iou = iou; } } if ((best != g->end()) && (best_iou >= opts_.iou_threshold)) { if (best->difficult) { continue; } switch (best->ignore) { case kDontIgnore: { ++correct; ++num_pd; g->erase(best); pr.push_back({static_cast<float>(correct) / num_pd, static_cast<float>(correct) / num_gt}); break; } case kIgnoreOneMatch: { g->erase(best); break; } case kIgnoreAllMatches: { break; } } } else { ++num_pd; pr.push_back({static_cast<float>(correct) / num_pd, static_cast<float>(correct) / num_gt}); } } return FromPRCurve(pr, pr_out); } } } }
#include "tensorflow/lite/tools/evaluation/stages/utils/image_metrics.h" #include <stdint.h> #include <algorithm> #include <cmath> #include <cstdlib> #include <gtest/gtest.h> namespace tflite { namespace evaluation { namespace image { float MaxP(float minr, const std::vector<PR>& prs) { float p = 0; for (auto& pr : prs) { if (pr.r >= minr) p = std::max(p, pr.p); } return p; } float ExpectedAP(const std::vector<PR>& prs) { float sum = 0; for (float r = 0; r <= 1.0; r += 0.01) { sum += MaxP(r, prs); } return sum / 101; } float GenerateRandomFraction() { return static_cast<float>(std::rand()) / RAND_MAX; } TEST(ImageMetricsTest, APBasic) { std::vector<PR> prs; prs = {{1., 1.}, {0.5, 1.0}, {1 / 3, 1.0}}; EXPECT_NEAR(ExpectedAP(prs), AveragePrecision().FromPRCurve(prs), 1e-6); prs = {{1.0, 0.01}}; EXPECT_NEAR(ExpectedAP(prs), AveragePrecision().FromPRCurve(prs), 1e-6); prs = {{1.0, 0.2}, {1.0, 0.4}, {0.67, 0.4}, {0.5, 0.4}, {0.4, 0.4}, {0.5, 0.6}, {0.57, 0.8}, {0.5, 0.8}, {0.44, 0.8}, {0.5, 1.0}}; EXPECT_NEAR(ExpectedAP(prs), AveragePrecision().FromPRCurve(prs), 1e-6); } TEST(ImageMetricsTest, APRandom) { std::vector<PR> prs; for (int i = 0; i < 5000; ++i) { float p = GenerateRandomFraction(); float r = GenerateRandomFraction(); prs.push_back({p, r}); } const float expected = ExpectedAP(prs); std::sort(std::begin(prs), std::end(prs), [](const PR& a, const PR& b) { return a.r < b.r; }); const float actual = AveragePrecision().FromPRCurve(prs); EXPECT_NEAR(expected, actual, 1e-5); } TEST(ImageMetricsTest, BBoxAPBasic) { std::vector<Detection> gt; gt.push_back(Detection({false, 100, 1, {{0, 1}, {0, 1}}})); gt.push_back(Detection({false, 200, 1, {{1, 2}, {1, 2}}})); std::vector<Detection> pd; pd.push_back(Detection({false, 100, 0.8, {{0.1, 1.1}, {0.1, 1.1}}})); pd.push_back(Detection({false, 200, 0.8, {{0.9, 1.9}, {0.9, 1.9}}})); EXPECT_NEAR(1.0, AveragePrecision().FromBoxes(gt, pd), 1e-6); AveragePrecision::Options opts; opts.iou_threshold = 0.85; EXPECT_NEAR(0.0, AveragePrecision(opts).FromBoxes(gt, pd), 1e-6); } TEST(ImageMetricsTest, Box2DOverlap) { Box2D a({{0, 1}, {0, 1}}); Box2D b({{0.5, 2.5}, {0.5, 2.5}}); EXPECT_NEAR(0.25, a.Overlap(b), 1e-6); EXPECT_NEAR(0.0625, b.Overlap(a), 1e-6); } TEST(ImageMetricsTest, BBoxAPwithIgnoredGroundTruth) { std::vector<Detection> gt; std::vector<Detection> pd; gt.push_back(Detection({false, 100, 1, {{1, 2}, {1, 2}}, kIgnoreOneMatch})); pd.push_back(Detection({false, 100, 0.8, {{0.1, 1.1}, {0.1, 1.1}}})); EXPECT_TRUE(std::isnan(AveragePrecision().FromBoxes(gt, pd))); gt.push_back({false, 100, 1, {{0, 1}, {0, 1}}}); EXPECT_NEAR(1.0, AveragePrecision().FromBoxes(gt, pd), 1e-6); pd.push_back({false, 100, 0.9, {{0.9, 1.9}, {0.9, 1.9}}}); EXPECT_NEAR(1.0, AveragePrecision().FromBoxes(gt, pd), 1e-6); pd.push_back({false, 100, 0.95, {{0.9, 1.9}, {0.9, 1.9}}}); EXPECT_NEAR(0.5, AveragePrecision().FromBoxes(gt, pd), 1e-6); gt[0].ignore = kIgnoreAllMatches; EXPECT_NEAR(1.0, AveragePrecision().FromBoxes(gt, pd), 1e-6); } TEST(ImageMetricsTest, BBoxAPRandom) { auto rand = [](int64_t id) { auto xmin = GenerateRandomFraction(); auto xmax = xmin + GenerateRandomFraction(); auto ymin = GenerateRandomFraction(); auto ymax = ymin + GenerateRandomFraction(); return Detection( {false, id, GenerateRandomFraction(), {{xmin, xmax}, {ymin, ymax}}}); }; std::vector<Detection> gt; for (int i = 0; i < 100; ++i) { gt.push_back(rand(i % 10)); } std::vector<Detection> pd = gt; for (int i = 0; i < 10000; ++i) { pd.push_back(rand(i % 10)); } std::vector<PR> pr; AveragePrecision().FromBoxes(gt, pd, &pr); EXPECT_EQ(101, pr.size()); } } } }
861
cpp
tensorflow/tensorflow
writer_lib
tensorflow/lite/tools/serialization/writer_lib.cc
tensorflow/lite/tools/serialization/writer_lib_test.cc
#ifndef TENSORFLOW_LITE_TOOLS_SERIALIZATION_WRITER_LIB_H_ #define TENSORFLOW_LITE_TOOLS_SERIALIZATION_WRITER_LIB_H_ #include <iostream> #include <memory> #include <set> #include <string> #include <unordered_map> #include <utility> #include <vector> #if 1 #include "tensorflow/compiler/mlir/lite/schema/mutable/schema_generated.h" #endif #include "absl/container/flat_hash_map.h" #include "tensorflow/lite/builtin_op_data.h" #include "tensorflow/lite/context_util.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/interpreter.h" #include "tensorflow/lite/core/subgraph.h" #include "tensorflow/lite/tools/serialization/enum_mapping.h" #include "tensorflow/lite/version.h" namespace tflite { struct OpCode { int builtin; std::string custom; }; class SubgraphWriter; class ModelWriter { public: typedef flatbuffers::Offset<Operator> (*CustomWriter)( flatbuffers::FlatBufferBuilder* fbb, Subgraph* subgraph, int node_index, flatbuffers::Offset<flatbuffers::Vector<uint8_t>>* output_options, CustomOptionsFormat* custom_options_format); explicit ModelWriter(Interpreter* interpreter, bool serialize_dims_signature = true); explicit ModelWriter(const std::vector<Subgraph*>& subgraphs, bool serialize_dims_signature = true); TfLiteStatus GetBuffer(std::unique_ptr<uint8_t[]>* out, size_t* size); TfLiteStatus Write(const std::string& filename); void SetUnusedTensors(int subgraph_index, const std::set<int>& unused_tensors); TfLiteStatus SetCustomInputOutput(int subgraph_index, const std::vector<int>& inputs, const std::vector<int>& outputs, const std::vector<int>& execution_plan); TfLiteStatus RegisterCustomWriter(const std::string& custom_name, CustomWriter custom_writer); private: void Init(const std::vector<Subgraph*>& subgraphs, bool serialize_dims_signature); template <class T> using Offset = flatbuffers::Offset<T>; Offset<flatbuffers::Vector<Offset<OperatorCode>>> CreateOpCodeTable( flatbuffers::FlatBufferBuilder* fbb); Offset<flatbuffers::Vector<Offset<Buffer>>> ExportBuffers( flatbuffers::FlatBufferBuilder* fbb); TfLiteStatus UpdateSubgraphReferences(flatbuffers::FlatBufferBuilder* fbb); std::vector<SubgraphWriter> subgraph_writers_; std::vector<std::pair<const uint8_t*, size_t>> buffers_; std::vector<OpCode> opcodes_; absl::flat_hash_map<int, int> builtin_op_to_opcode_; absl::flat_hash_map<int, int> subgraph_index_mapper_; }; class SubgraphWriter { public: friend class ModelWriter; typedef flatbuffers::Offset<Operator> (*CustomWriter)( flatbuffers::FlatBufferBuilder* fbb, Subgraph* subgraph, int node_index, flatbuffers::Offset<flatbuffers::Vector<uint8_t>>* output_options, CustomOptionsFormat* custom_options_format); explicit SubgraphWriter(Subgraph* subgraph, bool serialize_dims_signature = true) : subgraph_(subgraph), inputs_(subgraph->inputs()), outputs_(subgraph->outputs()), execution_plan_(subgraph->execution_plan()), serialize_dims_signature_(serialize_dims_signature) { buffers_ = &buffers_data_; opcodes_ = &opcodes_data_; builtin_op_to_opcode_ = &builtin_op_to_opcode_data_; buffers_->push_back(std::make_pair(nullptr, 0)); } TfLiteStatus GetBuffer(std::unique_ptr<uint8_t[]>* out, size_t* size); TfLiteStatus Write(const std::string& filename); TfLiteStatus RegisterCustomWriter(const std::string& custom_name, CustomWriter custom_writer); void SetUnusedTensors(const std::set<int>& unused_tensors) { unused_tensors_ = unused_tensors; } TfLiteStatus SetCustomInputOutput(const std::vector<int>& inputs, const std::vector<int>& outputs, const std::vector<int>& execution_plan); private: explicit SubgraphWriter( Subgraph* subgraph, std::vector<std::pair<const uint8_t*, size_t>>* external_buffers, std::vector<OpCode>* external_opcodes, absl::flat_hash_map<int, int>* external_builtin_op_to_opcode, bool serialize_dims_signature) : subgraph_(subgraph), inputs_(subgraph->inputs()), outputs_(subgraph->outputs()), execution_plan_(subgraph->execution_plan()), serialize_dims_signature_(serialize_dims_signature) { buffers_ = external_buffers; opcodes_ = external_opcodes; builtin_op_to_opcode_ = external_builtin_op_to_opcode; buffers_->push_back(std::make_pair(nullptr, 0)); } flatbuffers::Offset<SubGraph> PopulateAndGetOffset( flatbuffers::FlatBufferBuilder* builder, const std::string& subgraph_name); template <class T> using Offset = flatbuffers::Offset<T>; template <class T_OUTPUT, class T_INPUT> Offset<flatbuffers::Vector<T_OUTPUT>> ExportVector( flatbuffers::FlatBufferBuilder* fbb, const T_INPUT& v); Offset<flatbuffers::Vector<Offset<Tensor>>> ExportTensors( flatbuffers::FlatBufferBuilder* fbb); Offset<flatbuffers::Vector<Offset<Operator>>> ExportOperators( flatbuffers::FlatBufferBuilder* fbb); Offset<flatbuffers::Vector<Offset<OperatorCode>>> CreateOpCodeTable( flatbuffers::FlatBufferBuilder* fbb); Offset<flatbuffers::Vector<Offset<Buffer>>> ExportBuffers( flatbuffers::FlatBufferBuilder* fbb); template <class T> std::vector<int> RemapTensorIndicesToWritten(const T& input); TfLiteStatus CheckInputOutput(const std::vector<int>& inputs, const std::vector<int>& outputs, const std::vector<int>& execution_plan); int GetOpCodeForBuiltin(int builtin_op_index) { std::pair<decltype(builtin_op_to_opcode_data_)::iterator, bool> result = builtin_op_to_opcode_->insert( std::make_pair(builtin_op_index, opcodes_->size())); if (result.second) { opcodes_->push_back({builtin_op_index, ""}); } return result.first->second; } int GetOpCodeForCustom(const std::string& custom_name) { std::pair<decltype(custom_op_to_opcode_)::iterator, bool> result = custom_op_to_opcode_.insert( std::make_pair(custom_name, opcodes_->size())); if (result.second) { opcodes_->push_back({BuiltinOperator_CUSTOM, custom_name}); } return result.first->second; } Subgraph* subgraph_; std::vector<int> inputs_; std::vector<int> outputs_; std::vector<int> execution_plan_; std::set<int> unused_tensors_; std::vector<int> tensor_to_written_tensor_; std::unordered_map<std::string, int> custom_op_to_opcode_; std::unordered_map<std::string, CustomWriter> custom_op_to_writer_; std::vector<std::pair<const uint8_t*, size_t>>* buffers_; std::vector<OpCode>* opcodes_; absl::flat_hash_map<int, int>* builtin_op_to_opcode_; std::vector<std::pair<const uint8_t*, size_t>> buffers_data_; std::vector<OpCode> opcodes_data_; absl::flat_hash_map<int, int> builtin_op_to_opcode_data_; bool serialize_dims_signature_; }; } #endif #include "tensorflow/lite/tools/serialization/writer_lib.h" #include <cstdlib> #include <cstring> #include <memory> #include <set> #include <string> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "tensorflow/lite/builtin_op_data.h" #include "tensorflow/lite/context_util.h" #include "tensorflow/lite/core/c/common.h" #if FLATBUFFERS_LITTLEENDIAN == 0 #include "tensorflow/lite/core/model_builder.h" #endif #include "tensorflow/compiler/mlir/lite/schema/mutable/schema_generated.h" #include "tensorflow/lite/core/subgraph.h" #include "tensorflow/lite/schema/schema_conversion_utils.h" #include "tensorflow/lite/tools/serialization/enum_mapping.h" #include "tensorflow/lite/tools/versioning/op_version.h" #include "tensorflow/lite/version.h" namespace tflite { namespace { flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<OperatorCode>>> CreateOpCodeTableImpl(flatbuffers::FlatBufferBuilder* fbb, std::vector<OpCode>* opcodes) { std::vector<flatbuffers::Offset<OperatorCode>> codes; for (const auto& it : *opcodes) { const char* custom_name = it.custom.empty() ? nullptr : it.custom.c_str(); int32_t op_version = it.builtin != tflite::BuiltinOperator_CUSTOM ? 0 : 1; codes.push_back( CreateOperatorCodeDirect(*fbb, static_cast<BuiltinOperator>(it.builtin), custom_name, op_version)); } return fbb->template CreateVector<flatbuffers::Offset<OperatorCode>>(codes); } flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<Buffer>>> ExportBuffersImpl(flatbuffers::FlatBufferBuilder* fbb, std::vector<std::pair<const uint8_t*, size_t>>* buffers) { std::vector<flatbuffers::Offset<Buffer>> buffer_vector; for (auto buffer : *buffers) { auto data_offset = fbb->CreateVector(buffer.first, buffer.second); buffer_vector.push_back(CreateBuffer(*fbb, data_offset)); } return fbb->template CreateVector<flatbuffers::Offset<Buffer>>(buffer_vector); } TfLiteStatus WriteImpl(const std::string& filename, void* data, size_t size) { FILE* fp = fopen(filename.c_str(), "wb"); if (!fp) return kTfLiteError; #if FLATBUFFERS_LITTLEENDIAN == 0 const tflite::Model* input_model = tflite::GetModel(data); tflite::FlatBufferModel::ByteSwapTFLiteModel(input_model); #endif const int result_size = fwrite(data, 1, size, fp); fclose(fp); if (result_size != size) return kTfLiteError; return kTfLiteOk; } std::pair<BuiltinOptions, flatbuffers::Offset<void>> CreateBuiltinUnion( flatbuffers::FlatBufferBuilder* fbb, enum BuiltinOperator op, void* builtin_op_data, int node_inputs_size) { switch (op) { #include "tensorflow/lite/tools/serialization/option_writer_generated.h" } return std::make_pair(BuiltinOptions_NONE, flatbuffers::Offset<void>()); } } template <class T_OUTPUT, class T_INPUT> flatbuffers::Offset<flatbuffers::Vector<T_OUTPUT>> SubgraphWriter::ExportVector( flatbuffers::FlatBufferBuilder* fbb, const T_INPUT& v) { std::vector<T_OUTPUT> inputs(v.begin(), v.end()); return fbb->template CreateVector<T_OUTPUT>(inputs); } flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<Operator>>> SubgraphWriter::ExportOperators(flatbuffers::FlatBufferBuilder* fbb) { std::vector<flatbuffers::Offset<Operator>> operators; std::vector<int> operator_to_opcode; operator_to_opcode.resize(subgraph_->nodes_size(), -1); for (int op_index : execution_plan_) { const auto* node_and_registration = subgraph_->node_and_registration(op_index); const TfLiteRegistration* registration = &node_and_registration->second; if (!registration->custom_name) { operator_to_opcode[op_index] = GetOpCodeForBuiltin(registration->builtin_code); } else { operator_to_opcode[op_index] = GetOpCodeForCustom(registration->custom_name); } } for (int op_index : execution_plan_) { const auto* node_and_registration = subgraph_->node_and_registration(op_index); const TfLiteNode& node = node_and_registration->first; const TfLiteRegistration& registration = node_and_registration->second; flatbuffers::Offset<void> builtin_options; BuiltinOptions builtin_options_type = BuiltinOptions_NONE; auto custom_options_format = CustomOptionsFormat_FLEXBUFFERS; flatbuffers::Offset<flatbuffers::Vector<uint8_t>> custom_options = 0; if (!registration.custom_name) { auto builtin_options_and_type = CreateBuiltinUnion( fbb, static_cast<enum BuiltinOperator>(registration.builtin_code), node.builtin_data, node.inputs->size); builtin_options = builtin_options_and_type.second; builtin_options_type = builtin_options_and_type.first; } else { auto custom_writer = custom_op_to_writer_.find(registration.custom_name); if (custom_writer != custom_op_to_writer_.end() && custom_writer->second) { custom_writer->second(fbb, subgraph_, op_index, &custom_options, &custom_options_format); } else { custom_options = fbb->CreateVector( reinterpret_cast<const uint8_t*>(node.custom_initial_data), node.custom_initial_data_size); } } int opcode_index = operator_to_opcode[op_index]; std::vector<int> written_inputs = RemapTensorIndicesToWritten(TfLiteIntArrayView(node.inputs)); std::vector<int> written_outputs = RemapTensorIndicesToWritten(TfLiteIntArrayView(node.outputs)); auto inputs = ExportVector<int32_t>(fbb, written_inputs); auto outputs = ExportVector<int32_t>(fbb, written_outputs); operators.push_back(CreateOperator(*fbb, opcode_index, inputs, outputs, builtin_options_type, builtin_options, custom_options, custom_options_format)); } return fbb->template CreateVector<flatbuffers::Offset<Operator>>(operators); } flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<Tensor>>> SubgraphWriter::ExportTensors(flatbuffers::FlatBufferBuilder* fbb) { tensor_to_written_tensor_.resize(subgraph_->tensors_size(), -1); std::vector<flatbuffers::Offset<Tensor>> tensors; std::vector<bool> tensor_is_temporary(subgraph_->tensors_size(), false); for (int op_index = 0; op_index < subgraph_->nodes_size(); ++op_index) { const auto* node_and_registration = subgraph_->node_and_registration(op_index); for (auto tensor_index : TfLiteIntArrayView(node_and_registration->first.temporaries)) tensor_is_temporary[tensor_index] = true; } int curr_output_index = 0; for (int tensor_index = 0; tensor_index < subgraph_->tensors_size(); tensor_index++) { if (!tensor_is_temporary[tensor_index] && unused_tensors_.find(tensor_index) == unused_tensors_.end()) { tensor_to_written_tensor_[tensor_index] = curr_output_index++; } } for (int tensor_index = 0; tensor_index < subgraph_->tensors_size(); ++tensor_index) { if (tensor_to_written_tensor_[tensor_index] == -1) continue; if (TfLiteTensor* tensor = subgraph_->tensor(tensor_index)) { int buffer_index = 0; if (tensor->allocation_type == kTfLiteMmapRo) { buffer_index = buffers_->size(); buffers_->push_back(std::make_pair( reinterpret_cast<const uint8_t*>(tensor->data.raw), tensor->bytes)); } TensorType type = TfLiteTypeToSchemaType(tensor->type); flatbuffers::Offset<QuantizationParameters> quantization_params; const flatbuffers::Offset<flatbuffers::Vector<float>> null_array; flatbuffers::Offset<flatbuffers::Vector<float>> scale_array; flatbuffers::Offset<flatbuffers::Vector<int64_t>> zero_point_array; if (tensor->quantization.type == kTfLiteAffineQuantization) { if (tensor->params.scale != 0.f) { scale_array = fbb->CreateVector<float>({tensor->params.scale}); zero_point_array = fbb->CreateVector<int64_t>({tensor->params.zero_point}); quantization_params = CreateQuantizationParameters( *fbb, null_array, null_array, scale_array, zero_point_array); } else { const TfLiteAffineQuantization* params = reinterpret_cast<TfLiteAffineQuantization*>( tensor->quantization.params); const size_t num_scales = params->scale->size; std::vector<float> scale_vector(params->scale->data, params->scale->data + num_scales); std::vector<int64_t> zero_point_vector( params->zero_point->data, params->zero_point->data + num_scales); scale_array = fbb->CreateVector<float>(scale_vector); zero_point_array = fbb->CreateVector<int64_t>(zero_point_vector); quantization_params = CreateQuantizationParameters( *fbb, null_array, null_array, scale_array, zero_point_array, QuantizationDetails_NONE, 0, params->quantized_dimension); } } if (tensor->dims) { TfLiteIntArrayView shape_view(tensor->dims); std::vector<int> shape = std::vector<int>(shape_view.begin(), shape_view.end()); Offset<flatbuffers::String> tensor_name_offset = 0; if (tensor->name != nullptr) { tensor_name_offset = fbb->CreateString(tensor->name); } flatbuffers::Offset<flatbuffers::Vector<int32_t>> shape_signature_offset = 0; if (serialize_dims_signature_ && tensor->dims_signature != nullptr) { TfLiteIntArrayView shape_signature_view(tensor->dims_signature); std::vector<int32_t> shape_signature(shape_signature_view.begin(), shape_signature_view.end()); shape_signature_offset = ExportVector<int32_t>(fbb, shape_signature); } bool has_rank = true; tensors.push_back(CreateTensor( *fbb, ExportVector<int32_t>(fbb, shape), type, buffer_index, tensor_name_offset, quantization_params, tensor->is_variable, 0, shape_signature_offset, has_rank)); } } } return fbb->template CreateVector<flatbuffers::Offset<Tensor>>(tensors); } flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<Buffer>>> SubgraphWriter::ExportBuffers(flatbuffers::FlatBufferBuilder* fbb) { return ExportBuffersImpl(fbb, buffers_); } flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<OperatorCode>>> SubgraphWriter::CreateOpCodeTable(flatbuffers::FlatBufferBuilder* fbb) { return CreateOpCodeTableImpl(fbb, opcodes_); } template <class T> std::vector<int> SubgraphWriter::RemapTensorIndicesToWritten(const T& input) { std::vector<int> output; output.reserve(input.size()); for (int x : input) { if (x == -1) { output.push_back(x); continue; } if (tensor_to_written_tensor_[x] != -1) { output.push_back(tensor_to_written_tensor_[x]); } } return output; } TfLiteStatus SubgraphWriter::GetBuffer(std::unique_ptr<uint8_t[]>* out, size_t* size) { if (!out || !size) return kTfLiteError; flatbuffers::FlatBufferBuilder builder(10240); std::vector<flatbuffers::Offset<SubGraph>> subgraphs_as_vector; subgraphs_as_vector.push_back( PopulateAndGetOffset(&builder, subgraph_->GetName())); flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<Buffer>>> buffers = ExportBuffers(&builder); auto description = builder.CreateString("Exported from Subgraph."); auto op_codes = CreateOpCodeTable(&builder); auto model = CreateModel(builder, TFLITE_SCHEMA_VERSION, op_codes, builder.CreateVector(subgraphs_as_vector), description, buffers); ::tflite::FinishModelBuffer(builder, model); ::tflite::UpdateOpVersion(builder.GetBufferPointer()); const uint8_t* buffer = builder.GetBufferPointer(); *size = builder.GetSize(); (*out).reset(new uint8_t[*size]); memcpy(out->get(), buffer, *size); return kTfLiteOk; } flatbuffers::Offset<SubGraph> SubgraphWriter::PopulateAndGetOffset( flatbuffers::FlatBufferBuilder* builder, const std::string& subgraph_name) { auto tensors = ExportTensors(builder); std::vector<int> written_inputs = RemapTensorIndicesToWritten(inputs_); std::vector<int> written_outputs = RemapTensorIndicesToWritten(outputs_); auto inputs = ExportVector<int32_t>(builder, written_inputs); auto outputs = ExportVector<int32_t>(builder, written_outputs); auto ops = ExportOperators(builder); auto name = builder->CreateString(subgraph_name); return CreateSubGraph(*builder, tensors, inputs, outputs, ops, name); } TfLiteStatus SubgraphWriter::Write(const std::string& filename) { std::unique_ptr<uint8_t[]> buffer; size_t size; TF_LITE_ENSURE_STATUS(GetBuffer(&buffer, &size)); return WriteImpl(filename, buffer.get(), size); } TfLiteStatus SubgraphWriter::RegisterCustomWriter( const std::string& custom_name, CustomWriter custom_writer) { if (custom_op_to_writer_.find(custom_name) != custom_op_to_writer_.end()) { return kTfLiteError; } custom_op_to_writer_.insert(std::make_pair(custom_name, custom_writer)); return kTfLiteOk; } TfLiteStatus SubgraphWriter::CheckInputOutput( const std::vector<int>& inputs, const std::vector<int>& outputs, const std::vector<int>& execution_plan) { absl::flat_hash_set<int> known_tensors(inputs.begin(), inputs.end()); known_tensors.insert(subgraph_->variables().begin(), subgraph_->variables().end()); for (int op_index : execution_plan) { const auto* node_and_registration = subgraph_->node_and_registration(op_index); const TfLiteNode& node = node_and_registration->first; for (int tensor_index : TfLiteIntArrayView(node.inputs)) { if (tensor_index < 0) { if (tensor_index == kTfLiteOptionalTensor) { continue; } else { return kTfLiteError; } } if (TfLiteTensor* tensor = subgraph_->tensor(tensor_index)) { if (tensor->allocation_type == kTfLiteMmapRo) { continue; } } if (known_tensors.find(tensor_index) == known_tensors.end()) { subgraph_->context()->ReportError( subgraph_->context(), "Node (%d) uses an input (%d) that is not provided.", op_index, tensor_index); return kTfLiteError; } } TfLiteIntArrayView outputs(node.outputs); known_tensors.insert(outputs.begin(), outputs.end()); } for (int tensor_index : outputs) { if (TfLiteTensor* tensor = subgraph_->tensor(tensor_index)) { if (tensor->allocation_type == kTfLiteMmapRo) { continue; } } if (known_tensors.find(tensor_index) == known_tensors.end()) { subgraph_->context()->ReportError( subgraph_->context(), "Output (%d) is not produced by the execution plan.", tensor_index); return kTfLiteError; } } return kTfLiteOk; } TfLiteStatus SubgraphWriter::SetCustomInputOutput( const std::vector<int>& inputs, const std::vector<int>& outputs, const std::vector<int>& execution_plan) { TF_LITE_ENSURE_STATUS(CheckInputOutput(inputs, outputs, execution_plan)); inputs_ = inputs; outputs_ = outputs; execution_plan_ = execution_plan; return kTfLiteOk; } ModelWriter::ModelWriter(Interpreter* interpreter, bool serialize_dims_signature) { std::vector<Subgraph*> subgraphs; subgraphs.reserve(interpreter->subgraphs_size()); for (int i = 0; i < interpreter->subgraphs_size(); ++i) { subgraphs.push_back(interpreter->subgraph(i)); } Init(subgraphs, serialize_dims_signature); } ModelWriter::ModelWriter(const std::vector<Subgraph*>& subgraphs, bool serialize_dims_signature) { Init(subgraphs, serialize_dims_signature); } void ModelWriter::Init(const std::vector<Subgraph*>& subgraphs, bool serialize_dims_signature) { buffers_.push_back(std::make_pair(nullptr, 0)); subgraph_writers_.reserve(subgraphs.size()); for (auto* subgraph : subgraphs) { SubgraphWriter writer(subgraph, &buffers_, &opcodes_, &builtin_op_to_opcode_, serialize_dims_signature); subgraph_writers_.push_back(writer); } if (!subgraphs.empty()) { absl::flat_hash_map<Subgraph*, int> subgraph_to_new_subgraph_index; for (int i = 0; i < subgraphs.size(); ++i) { subgraph_to_new_subgraph_index[subgraphs[i]] = i; } auto* all_subgraphs = subgraphs[0]->GetSubgraphs(); for (int i = 0; i < all_subgraphs->size(); ++i) { auto it = subgraph_to_new_subgraph_index.find(all_subgraphs->at(i)); if (it != subgraph_to_new_subgraph_index.end()) { subgraph_index_mapper_[i] = it->second; } } } } flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<Buffer>>> ModelWriter::ExportBuffers(flatbuffers::FlatBufferBuilder* fbb) { return ExportBuffersImpl(fbb, &buffers_); } flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<OperatorCode>>> ModelWriter::CreateOpCodeTable(flatbuffers::FlatBufferBuilder* fbb) { return CreateOpCodeTableImpl(fbb, &opcodes_); } TfLiteStatus ModelWriter::GetBuffer(std::unique_ptr<uint8_t[]>* out, size_t* size) { if (!out || !size) return kTfLiteError; flatbuffers::FlatBufferBuilder builder(10240); std::vector<flatbuffers::Offset<SubGraph>> subgraphs_as_vector; subgraphs_as_vector.reserve(subgraph_writers_.size()); for (auto& subgraph_writer : subgraph_writers_)
#include "tensorflow/lite/tools/serialization/writer_lib.h" #include <cstdlib> #include <fstream> #include <memory> #include <numeric> #include <sstream> #include <string> #include <tuple> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/builtin_ops.h" #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/interpreter.h" #include "tensorflow/lite/core/kernels/builtin_op_kernels.h" #include "tensorflow/lite/core/kernels/register.h" #include "tensorflow/lite/core/model.h" #include "tensorflow/lite/kernels/subgraph_test_util.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/testing/util.h" namespace tflite { using subgraph_test_util::CheckIntTensor; using subgraph_test_util::FillIntTensor; std::string CreateFilePath(const std::string& file_name) { const char* tmp_dir = getenv("TEST_TMPDIR"); return std::string(tmp_dir ? tmp_dir : "./") + file_name; } class SingleSubgraphTest : public ::testing::TestWithParam<bool> { protected: void WriteToFile(Interpreter* interpreter, const std::string& filename, bool use_subgraph_writer) { if (use_subgraph_writer) { SubgraphWriter writer(&interpreter->primary_subgraph()); CHECK_EQ(writer.Write(filename), kTfLiteOk); } else { ModelWriter writer(interpreter); CHECK_EQ(writer.Write(filename), kTfLiteOk); } } }; TEST_P(SingleSubgraphTest, InvalidDestinations) { Interpreter interpreter; interpreter.AddTensors(3); float foo[] = {1, 2, 3}; interpreter.SetTensorParametersReadWrite(0, kTfLiteFloat32, "a", {3}, TfLiteQuantization()); interpreter.SetTensorParametersReadOnly( 1, kTfLiteFloat32, "b", {3}, TfLiteQuantization(), reinterpret_cast<char*>(foo), sizeof(foo)); interpreter.SetTensorParametersReadWrite(2, kTfLiteFloat32, "c", {3}, TfLiteQuantization()); interpreter.SetInputs({0, 1}); interpreter.SetOutputs({2}); const char* initial_data = ""; tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; TfLiteAddParams* builtin_data = reinterpret_cast<TfLiteAddParams*>(malloc(sizeof(TfLiteAddParams))); builtin_data->activation = kTfLiteActNone; builtin_data->pot_scale_int16 = false; const TfLiteRegistration* reg = resolver.FindOp(BuiltinOperator_ADD, 1); interpreter.AddNodeWithParameters({0, 1}, {2}, initial_data, 0, reinterpret_cast<void*>(builtin_data), reg); if (GetParam()) { SubgraphWriter writer(&interpreter.primary_subgraph()); CHECK_EQ(writer.Write(""), kTfLiteError); } else { ModelWriter writer(&interpreter); CHECK_EQ(writer.Write(""), kTfLiteError); } size_t size; if (GetParam()) { SubgraphWriter writer(&interpreter.primary_subgraph()); CHECK_EQ(writer.GetBuffer(nullptr, &size), kTfLiteError); } else { ModelWriter writer(&interpreter); CHECK_EQ(writer.GetBuffer(nullptr, &size), kTfLiteError); } } TEST_P(SingleSubgraphTest, FloatModelTest) { Interpreter interpreter; interpreter.AddTensors(3); float foo[] = {1, 2, 3}; interpreter.SetTensorParametersReadWrite(0, kTfLiteFloat32, "a", {3}, TfLiteQuantization()); interpreter.SetTensorParametersReadOnly( 1, kTfLiteFloat32, "b", {3}, TfLiteQuantization(), reinterpret_cast<char*>(foo), sizeof(foo)); interpreter.SetTensorParametersReadWrite(2, kTfLiteFloat32, "c", {3}, TfLiteQuantization()); interpreter.SetInputs({0, 1}); interpreter.SetOutputs({2}); const char* initial_data = ""; tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; TfLiteAddParams* builtin_data = reinterpret_cast<TfLiteAddParams*>(malloc(sizeof(TfLiteAddParams))); builtin_data->activation = kTfLiteActNone; builtin_data->pot_scale_int16 = false; const TfLiteRegistration* reg = resolver.FindOp(BuiltinOperator_ADD, 1); interpreter.AddNodeWithParameters({0, 1}, {2}, initial_data, 0, reinterpret_cast<void*>(builtin_data), reg); const std::string test_file = CreateFilePath("test_float.tflite"); WriteToFile(&interpreter, test_file, GetParam()); std::unique_ptr<FlatBufferModel> model = FlatBufferModel::BuildFromFile(test_file.c_str()); InterpreterBuilder builder(*model, resolver); std::unique_ptr<Interpreter> new_interpreter; builder(&new_interpreter); CHECK_EQ(new_interpreter->AllocateTensors(), kTfLiteOk); } TEST_P(SingleSubgraphTest, CustomInputOutputTest) { Interpreter interpreter; interpreter.AddTensors(4); constexpr float kFoo[] = {1, 2, 3}; interpreter.SetTensorParametersReadWrite(0, kTfLiteFloat32, "a", {3}, TfLiteQuantization()); interpreter.SetTensorParametersReadOnly( 1, kTfLiteFloat32, "b", {3}, TfLiteQuantization(), reinterpret_cast<const char*>(kFoo), sizeof(kFoo)); interpreter.SetTensorParametersReadWrite(2, kTfLiteFloat32, "c", {3}, TfLiteQuantization()); interpreter.SetTensorParametersReadWrite(3, kTfLiteFloat32, "d", {3}, TfLiteQuantization()); interpreter.SetInputs({0, 1}); interpreter.SetOutputs({3}); const char* initial_data = ""; tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; TfLiteAddParams* builtin_data = reinterpret_cast<TfLiteAddParams*>(malloc(sizeof(TfLiteAddParams))); builtin_data->activation = kTfLiteActNone; builtin_data->pot_scale_int16 = false; const TfLiteRegistration* reg = resolver.FindOp(BuiltinOperator_ADD, 1); interpreter.AddNodeWithParameters({0, 1}, {2}, initial_data, 0, reinterpret_cast<void*>(builtin_data), reg); const TfLiteRegistration* reg2 = resolver.FindOp(BuiltinOperator_RELU, 1); interpreter.AddNodeWithParameters({2}, {3}, nullptr, 0, nullptr, reg2); const std::string test_file = CreateFilePath("test_custom.tflite"); SubgraphWriter writer(&interpreter.primary_subgraph()); EXPECT_EQ(writer.SetCustomInputOutput({2}, {3}, {1}), kTfLiteOk); writer.SetUnusedTensors({0, 1}); writer.Write(test_file); std::unique_ptr<FlatBufferModel> model = FlatBufferModel::BuildFromFile(test_file.c_str()); InterpreterBuilder builder(*model, resolver); std::unique_ptr<Interpreter> new_interpreter; builder(&new_interpreter); ASSERT_EQ(new_interpreter->AllocateTensors(), kTfLiteOk); } TEST_P(SingleSubgraphTest, CustomInputOutputErrorCasesTest) { Interpreter interpreter; interpreter.AddTensors(5); constexpr float kFoo[] = {1, 2, 3}; interpreter.SetTensorParametersReadWrite(0, kTfLiteFloat32, "a", {3}, TfLiteQuantization()); interpreter.SetTensorParametersReadOnly( 1, kTfLiteFloat32, "b", {3}, TfLiteQuantization(), reinterpret_cast<const char*>(kFoo), sizeof(kFoo)); interpreter.SetTensorParametersReadWrite(2, kTfLiteFloat32, "c", {3}, TfLiteQuantization()); interpreter.SetTensorParametersReadWrite(3, kTfLiteFloat32, "d", {3}, TfLiteQuantization()); interpreter.SetTensorParametersReadWrite(4, kTfLiteFloat32, "e", {3}, TfLiteQuantization()); interpreter.SetInputs({0, 1}); interpreter.SetOutputs({4}); const char* initial_data = ""; tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; TfLiteAddParams* builtin_data = reinterpret_cast<TfLiteAddParams*>(malloc(sizeof(TfLiteAddParams))); builtin_data->activation = kTfLiteActNone; builtin_data->pot_scale_int16 = false; const TfLiteRegistration* reg = resolver.FindOp(BuiltinOperator_ADD, 1); interpreter.AddNodeWithParameters({0, 1}, {2}, initial_data, 0, reinterpret_cast<void*>(builtin_data), reg); const TfLiteRegistration* reg2 = resolver.FindOp(BuiltinOperator_RELU, 1); interpreter.AddNodeWithParameters({2}, {3}, nullptr, 0, nullptr, reg2); const TfLiteRegistration* reg3 = resolver.FindOp(BuiltinOperator_RELU6, 1); interpreter.AddNodeWithParameters({3}, {4}, nullptr, 0, nullptr, reg3); SubgraphWriter writer(&interpreter.primary_subgraph()); EXPECT_EQ(writer.SetCustomInputOutput({2}, {3}, {0, 1}), kTfLiteError); EXPECT_EQ(writer.SetCustomInputOutput({0, 1}, {4}, {0, 1}), kTfLiteError); EXPECT_EQ(writer.SetCustomInputOutput({0, 1}, {3}, {0, 1}), kTfLiteOk); } TEST_P(SingleSubgraphTest, CustomInputOutputVariableTensorTest) { Interpreter interpreter; tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; interpreter.AddTensors(3); interpreter.SetTensorParametersReadWrite(0, kTfLiteFloat32, "a", {3}, TfLiteQuantization()); interpreter.SetTensorParametersReadWrite(1, kTfLiteFloat32, "b", {3}, TfLiteQuantization(), true); interpreter.SetTensorParametersReadWrite(2, kTfLiteFloat32, "c", {3}, TfLiteQuantization()); interpreter.SetInputs({0}); interpreter.SetOutputs({2}); interpreter.SetVariables({1}); TfLiteAddParams* builtin_data = reinterpret_cast<TfLiteAddParams*>(malloc(sizeof(TfLiteAddParams))); builtin_data->activation = kTfLiteActNone; builtin_data->pot_scale_int16 = false; interpreter.AddNodeWithParameters({0, 1}, {2}, nullptr, 0, reinterpret_cast<void*>(builtin_data), resolver.FindOp(BuiltinOperator_ADD, 1)); const std::string test_file = CreateFilePath("test_variables.tflite"); SubgraphWriter writer(&interpreter.primary_subgraph()); EXPECT_EQ(writer.SetCustomInputOutput({0}, {2}, {0}), kTfLiteOk); writer.Write(test_file); std::unique_ptr<FlatBufferModel> model = FlatBufferModel::BuildFromFile(test_file.c_str()); InterpreterBuilder builder(*model, resolver); std::unique_ptr<Interpreter> new_interpreter; builder(&new_interpreter); CHECK_EQ(new_interpreter->AllocateTensors(), kTfLiteOk); } TEST_P(SingleSubgraphTest, PerTensorQuantizedModelTest) { Interpreter interpreter; interpreter.AddTensors(3); interpreter.SetTensorParametersReadWrite( 0, kTfLiteUInt8, "a", {3}, TfLiteQuantizationParams({1 / 256., 128})); interpreter.SetTensorParametersReadWrite( 1, kTfLiteUInt8, "b", {3}, TfLiteQuantizationParams({1 / 256., 128})); interpreter.SetTensorParametersReadWrite( 2, kTfLiteUInt8, "c", {3}, TfLiteQuantizationParams({1 / 256., 128})); interpreter.SetInputs({0, 1}); interpreter.SetOutputs({2}); const char* initial_data = ""; tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; TfLiteAddParams* builtin_data = reinterpret_cast<TfLiteAddParams*>(malloc(sizeof(TfLiteAddParams))); builtin_data->activation = kTfLiteActNone; builtin_data->pot_scale_int16 = false; const TfLiteRegistration* reg = resolver.FindOp(BuiltinOperator_ADD, 1); interpreter.AddNodeWithParameters({0, 1}, {2}, initial_data, 0, reinterpret_cast<void*>(builtin_data), reg); const std::string test_file = CreateFilePath("test_uint8.tflite"); WriteToFile(&interpreter, test_file, GetParam()); std::unique_ptr<FlatBufferModel> model = FlatBufferModel::BuildFromFile(test_file.c_str()); InterpreterBuilder builder(*model, resolver); std::unique_ptr<Interpreter> new_interpreter; builder(&new_interpreter); CHECK_EQ(new_interpreter->AllocateTensors(), kTfLiteOk); } TEST_P(SingleSubgraphTest, OpVersioningTest) { Interpreter interpreter; interpreter.AddTensors(3); interpreter.SetTensorParametersReadWrite(0, kTfLiteFloat32, "a", {1, 4}, TfLiteQuantization()); interpreter.SetTensorParametersReadWrite(1, kTfLiteInt32, "b", {2}, TfLiteQuantization()); interpreter.SetTensorParametersReadWrite(2, kTfLiteFloat32, "c", {4, 4}, TfLiteQuantization()); interpreter.SetInputs({0, 1}); interpreter.SetOutputs({2}); tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; const TfLiteRegistration* reg = resolver.FindOp(BuiltinOperator_BROADCAST_TO, 2); interpreter.AddNodeWithParameters({0, 1}, {2}, nullptr, 0, nullptr, reg); const std::string test_file = CreateFilePath("test_float.tflite"); WriteToFile(&interpreter, test_file, GetParam()); std::unique_ptr<FlatBufferModel> model = FlatBufferModel::BuildFromFile(test_file.c_str()); InterpreterBuilder builder(*model, resolver); std::unique_ptr<Interpreter> new_interpreter; builder(&new_interpreter); CHECK_EQ(new_interpreter->AllocateTensors(), kTfLiteOk); ASSERT_EQ(new_interpreter->nodes_size(), 1); TfLiteRegistration output_reg = new_interpreter->node_and_registration(0)->second; ASSERT_EQ(output_reg.builtin_code, BuiltinOperator_BROADCAST_TO); CHECK_EQ(output_reg.version, 2); } TEST_P(SingleSubgraphTest, DynamicShapeTest) { Interpreter interpreter; interpreter.AddTensors(3); std::vector<int> dims = {1, 3}; std::vector<int> dims_signature = {-1, 3}; interpreter.SetTensorParametersReadWrite( 0, kTfLiteFloat32, "a", dims, TfLiteQuantizationParams{1.0, 0}, false, &dims_signature); interpreter.SetTensorParametersReadWrite( 1, kTfLiteFloat32, "b", dims, TfLiteQuantizationParams{1.0, 0}, false, &dims_signature); interpreter.SetTensorParametersReadWrite( 2, kTfLiteFloat32, "c", dims, TfLiteQuantizationParams{1.0, 0}, false, &dims_signature); interpreter.SetInputs({0, 1}); interpreter.SetOutputs({2}); const char* initial_data = ""; tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; TfLiteAddParams* builtin_data = reinterpret_cast<TfLiteAddParams*>(malloc(sizeof(TfLiteAddParams))); builtin_data->activation = kTfLiteActNone; builtin_data->pot_scale_int16 = false; const TfLiteRegistration* reg = resolver.FindOp(BuiltinOperator_ADD, 1); interpreter.AddNodeWithParameters({0, 1}, {2}, initial_data, 0, reinterpret_cast<void*>(builtin_data), reg); const std::string test_file = CreateFilePath("test_dynamic_shape.tflite"); WriteToFile(&interpreter, test_file, GetParam()); std::unique_ptr<FlatBufferModel> model = FlatBufferModel::BuildFromFile(test_file.c_str()); InterpreterBuilder builder(*model, resolver); std::unique_ptr<Interpreter> new_interpreter; builder(&new_interpreter); CHECK_EQ(new_interpreter->AllocateTensors(), kTfLiteOk); TfLiteTensor* tensor0 = new_interpreter->tensor(0); CHECK_NOTNULL(tensor0->dims_signature); TfLiteIntArrayView shape_view(tensor0->dims_signature); CHECK_EQ(shape_view.size(), 2); CHECK_EQ(shape_view[0], -1); } INSTANTIATE_TEST_SUITE_P(Writer, SingleSubgraphTest, ::testing::Bool()); struct ReshapeTestPattern { int num_inputs; bool is_param_valid; bool has_buggy_non_flatten_shape; }; class ReshapeLayerTest : public ::testing::TestWithParam<ReshapeTestPattern> {}; TEST_P(ReshapeLayerTest, ReshapeLayerTest) { const auto param = GetParam(); Interpreter interpreter; const int total_tensors = param.num_inputs + 1; interpreter.AddTensors(total_tensors); int output_shape[] = {1, 2, 3}; interpreter.SetTensorParametersReadWrite(0, kTfLiteFloat32, "a", {6}, TfLiteQuantization()); ASSERT_LE(param.num_inputs, 2); if (param.num_inputs == 2) { if (param.has_buggy_non_flatten_shape) { interpreter.SetTensorParametersReadOnly( 1, kTfLiteInt32, "b", {3, 1}, TfLiteQuantization(), reinterpret_cast<char*>(output_shape), sizeof(output_shape)); } else { interpreter.SetTensorParametersReadOnly( 1, kTfLiteInt32, "b", {3}, TfLiteQuantization(), reinterpret_cast<char*>(output_shape), sizeof(output_shape)); } } interpreter.SetTensorParametersReadWrite(total_tensors - 1, kTfLiteFloat32, "c", {3}, TfLiteQuantization()); std::vector<int> input_tensors(param.num_inputs); std::iota(input_tensors.begin(), input_tensors.end(), 0); interpreter.SetInputs(input_tensors); interpreter.SetOutputs({total_tensors - 1}); const char* initial_data = ""; tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; TfLiteReshapeParams* builtin_data = reinterpret_cast<TfLiteReshapeParams*>( malloc(sizeof(TfLiteReshapeParams))); memset(builtin_data, 0, sizeof(TfLiteReshapeParams)); if (param.is_param_valid) { builtin_data->num_dimensions = 3; for (int dim = 0; dim < builtin_data->num_dimensions; ++dim) { builtin_data->shape[dim] = output_shape[dim]; } } const TfLiteRegistration* reg = resolver.FindOp(BuiltinOperator_RESHAPE, 1); interpreter.AddNodeWithParameters(input_tensors, {total_tensors - 1}, initial_data, 0, reinterpret_cast<void*>(builtin_data), reg); SubgraphWriter writer(&interpreter.primary_subgraph()); std::stringstream ss; ss << CreateFilePath("test_reshape_") << param.num_inputs << param.is_param_valid << ".tflite"; std::string filename = ss.str(); writer.Write(filename); std::unique_ptr<FlatBufferModel> model = FlatBufferModel::BuildFromFile(filename.c_str()); InterpreterBuilder builder(*model, resolver); std::unique_ptr<Interpreter> new_interpreter; builder(&new_interpreter); ASSERT_EQ(new_interpreter->AllocateTensors(), kTfLiteOk); } INSTANTIATE_TEST_SUITE_P( Writer, ReshapeLayerTest, ::testing::Values(ReshapeTestPattern{2, true, false}, ReshapeTestPattern{2, false, false}, ReshapeTestPattern{1, true, false}, ReshapeTestPattern{2, true, true}), [](const ::testing::TestParamInfo<ReshapeLayerTest::ParamType>& info) { std::stringstream ss; ss << "num_inputs_" << info.param.num_inputs << "_valid_param_" << info.param.is_param_valid << "_buggy_shape_" << info.param.has_buggy_non_flatten_shape; std::string name = ss.str(); return name; }); class WhileTest : public subgraph_test_util::ControlFlowOpTest { protected: TfLiteCustomAllocation NewCustomAlloc(size_t num_bytes, int required_alignment) { char* new_alloc = new char[num_bytes + required_alignment]; char* new_underlying_buffer_aligned_ptr = reinterpret_cast<char*>( AlignTo(required_alignment, reinterpret_cast<intptr_t>(new_alloc))); custom_alloc_buffers_.emplace_back(new_alloc); return TfLiteCustomAllocation( {new_underlying_buffer_aligned_ptr, num_bytes}); } intptr_t AlignTo(size_t alignment, intptr_t offset) { return offset % alignment == 0 ? offset : offset + (alignment - offset % alignment); } std::vector<std::unique_ptr<char[]>> custom_alloc_buffers_; }; TEST_F(WhileTest, TestTriangularNumberSequence) { const int kSeqNumber = 4; const int kExpectedValue = 15; interpreter_ = std::make_unique<Interpreter>(); AddSubgraphs(2); builder_->BuildLessEqualCondSubgraph(interpreter_->subgraph(1), kSeqNumber); builder_->BuildAccumulateLoopBodySubgraph(interpreter_->subgraph(2)); builder_->BuildWhileSubgraph(&interpreter_->primary_subgraph()); interpreter_->ResizeInputTensor(interpreter_->inputs()[0], {1}); interpreter_->ResizeInputTensor(interpreter_->inputs()[1], {1}); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); FillIntTensor(interpreter_->tensor(interpreter_->inputs()[0]), {1}); auto alloc = NewCustomAlloc(interpreter_->tensor(interpreter_->inputs()[1])->bytes, kDefaultTensorAlignment); auto* input_data = reinterpret_cast<int*>(alloc.data); input_data[0] = 1; interpreter_->SetCustomAllocationForTensor(interpreter_->inputs()[1], alloc); ASSERT_EQ(interpreter_->Invoke(), kTfLiteOk); TfLiteTensor* output1 = interpreter_->tensor(interpreter_->outputs()[0]); CheckIntTensor(output1, {1}, {kSeqNumber + 1}); TfLiteTensor* output2 = interpreter_->tensor(interpreter_->outputs()[1]); CheckIntTensor(output2, {1}, {kExpectedValue}); ModelWriter writer(interpreter_.get()); const std::string test_file = CreateFilePath("test_while.tflite"); writer.Write(test_file); std::unique_ptr<FlatBufferModel> model = FlatBufferModel::BuildFromFile(test_file.c_str()); tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; InterpreterBuilder builder(*model, resolver); std::unique_ptr<Interpreter> new_interpreter; builder(&new_interpreter); new_interpreter->ResizeInputTensor(new_interpreter->inputs()[0], {1}); new_interpreter->ResizeInputTensor(new_interpreter->inputs()[1], {1}); ASSERT_EQ(new_interpreter->AllocateTensors(), kTfLiteOk); FillIntTensor(new_interpreter->tensor(new_interpreter->inputs()[0]), {1}); FillIntTensor(new_interpreter->tensor(new_interpreter->inputs()[1]), {1}); ASSERT_EQ(new_interpreter->Invoke(), kTfLiteOk); output1 = new_interpreter->tensor(new_interpreter->outputs()[0]); CheckIntTensor(output1, {1}, {kSeqNumber + 1}); output2 = new_interpreter->tensor(new_interpreter->outputs()[1]); CheckIntTensor(output2, {1}, {kExpectedValue}); } TEST_F(WhileTest, TestModelWriterFromSubgraphs) { const int kSeqNumber = 4; const int kExpectedValue = 15; interpreter_ = std::make_unique<Interpreter>(); AddSubgraphs(2); builder_->BuildLessEqualCondSubgraph(interpreter_->subgraph(1), kSeqNumber); builder_->BuildAccumulateLoopBodySubgraph(interpreter_->subgraph(2)); builder_->BuildWhileSubgraph(&interpreter_->primary_subgraph()); interpreter_->ResizeInputTensor(interpreter_->inputs()[0], {1}); interpreter_->ResizeInputTensor(interpreter_->inputs()[1], {1}); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); FillIntTensor(interpreter_->tensor(interpreter_->inputs()[0]), {1}); auto alloc = NewCustomAlloc(interpreter_->tensor(interpreter_->inputs()[1])->bytes, kDefaultTensorAlignment); auto* input_data = reinterpret_cast<int*>(alloc.data); input_data[0] = 1; interpreter_->SetCustomAllocationForTensor(interpreter_->inputs()[1], alloc); ASSERT_EQ(interpreter_->Invoke(), kTfLiteOk); TfLiteTensor* output1 = interpreter_->tensor(interpreter_->outputs()[0]); CheckIntTensor(output1, {1}, {kSeqNumber + 1}); TfLiteTensor* output2 = interpreter_->tensor(interpreter_->outputs()[1]); CheckIntTensor(output2, {1}, {kExpectedValue}); ModelWriter writer_1(interpreter_.get()); const std::string test_file_1 = CreateFilePath("test_while_1.tflite"); writer_1.Write(test_file_1); std::vector<Subgraph*> subgraphs; for (int i = 0; i < interpreter_->subgraphs_size(); ++i) { subgraphs.push_back(interpreter_->subgraph(i)); } ModelWriter writer_2(subgraphs); const std::string test_file_2 = CreateFilePath("test_while_2.tflite"); writer_2.Write(test_file_2); std::ifstream file_ifs_1(test_file_1, std::ios::in); std::ostringstream model_content_1; model_content_1 << file_ifs_1.rdbuf(); std::ifstream file_ifs_2(test_file_2, std::ios::in); std::ostringstream model_content_2; model_content_2 << file_ifs_2.rdbuf(); EXPECT_FALSE(model_content_1.str().empty()); EXPECT_EQ(model_content_1.str(), model_content_2.str()); } TEST_F(WhileTest, TestUpdateSubgraphIndices) { const int kSeqNumber1 = 4; const int kSeqNumber2 = 5; const int kExpectedValue1 = 15; const int kExpectedValue2 = 21; interpreter_ = std::make_unique<Interpreter>(); AddSubgraphs(4); builder_->BuildLessEqualCondSubgraph(interpreter_->subgraph(1), kSeqNumber1); builder_->BuildAccumulateLoopBodySubgraph(interpreter_->subgraph(2)); builder_->BuildLessEqualCondSubgraph(interpreter_->subgraph(3), kSeqNumber2); builder_->BuildAccumulateLoopBodySubgraph(interpreter_->subgraph(4)); Subgraph* primary_subgraph = &interpreter_->primary_subgraph(); const int kInput1 = 0; const int kInput2 = 1; const int kUnused1 = 2; const int kUnused2 = 3; const int kOutput1 = 4; const int kOutput2 = 5; const int kTensorCount = 6; int first_new_tensor_index; ASSERT_EQ(primary_subgraph->AddTensors(kTensorCount, &first_new_tensor_index), kTfLiteOk); ASSERT_EQ(first_new_tensor_index, 0); ASSERT_EQ(primary_subgraph->SetInputs({kInput1, kInput2}), kTfLiteOk); ASSERT_EQ(primary_subgraph->SetOutputs({kOutput1, kOutput2}), kTfLiteOk); for (int i = 0; i < kTensorCount; ++i) { ASSERT_EQ(primary_subgraph->SetTensorParametersReadWrite( i, kTfLiteInt32, "", 0, nullptr, {}, false), kTfLiteOk); } auto* while_reg = ops::builtin::Register_WHILE(); while_reg->builtin_code = kTfLiteBuiltinWhile; TfLiteWhileParams* params1 = reinterpret_cast<TfLiteWhileParams*>(malloc(sizeof(TfLiteWhileParams))); params1->cond_subgraph_index = 1; params1->body_subgraph_index = 2; TfLiteWhileParams* params2 = reinterpret_cast<TfLiteWhileParams*>(malloc(sizeof(TfLiteWhileParams))); params2->cond_subgraph_index = 3; params2->body_subgraph_index = 4; int while1_index, while2_index; primary_subgraph->AddNodeWithParameters({kInput1, kInput2}, {kUnused1, kOutput1}, {}, nullptr, 0, params1, while_reg, &while1_index); primary_subgraph->AddNodeWithParameters({kInput1, kInput2}, {kUnused2, kOutput2}, {}, nullptr, 0, params2, while_reg, &while2_index); interpreter_->ResizeInputTensor(interpreter_->inputs()[0], {1}); interpreter_->ResizeInputTensor(interpreter_->inputs()[1], {1}); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); FillIntTensor(interpreter_->tensor(interpreter_->inputs()[0]), {1}); auto alloc = NewCustomAlloc(interpreter_->tensor(interpreter_->inputs()[1])->bytes, kDefaultTensorAlignment); auto* input_data = reinterpret_cast<int*>(alloc.data); input_data[0] = 1; interpreter_->SetCustomAllocationForTensor(interpreter_->inputs()[1], alloc); ASSERT_EQ(interpreter_->Invoke(), kTfLiteOk); TfLiteTensor* output1 = interpreter_->tensor(interpreter_->outputs()[0]); CheckIntTensor(output1, {1}, {kExpectedValue1}); TfLiteTensor* output2 = interpreter_->tensor(interpreter_->outputs()[1]); CheckIntTensor(output2, {1}, {kExpectedValue2}); ModelWriter writer({interpreter_->subgraph(0), interpreter_->subgraph(3), interpreter_->subgraph(4)}); writer.SetCustomInputOutput(0, {kInput1, kInput2}, {kOutput2}, {while2_index}); const std::string test_file = CreateFilePath("test_while.tflite"); writer.Write(test_file); std::unique_ptr<FlatBufferModel> model = FlatBufferModel::BuildFromFile(test_file.c_str()); tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; InterpreterBuilder builder(*model, resolver); std::unique_ptr<Interpreter> new_interpreter; builder(&new_interpreter); new_interpreter->ResizeInputTensor(new_interpreter->inputs()[0], {1}); new_interpreter->ResizeInputTensor(new_interpreter->inputs()[1], {1}); ASSERT_EQ(new_interpreter->AllocateTensors(), kTfLiteOk); FillIntTensor(new_interpreter->tensor(new_interpreter->inputs()[0]), {1}); FillIntTensor(new_interpreter->tensor(new_interpreter->inputs()[1]), {1}); ASSERT_EQ(new_interpreter->Invoke(), kTfLiteOk); ASSERT_EQ(new_interpreter->outputs().size(), 1); TfLiteTensor* output
862
cpp
tensorflow/tensorflow
delegate_provider
tensorflow/lite/tools/delegates/delegate_provider.cc
tensorflow/lite/tools/delegates/delegate_provider_test.cc
#ifndef TENSORFLOW_LITE_TOOLS_DELEGATES_DELEGATE_PROVIDER_H_ #define TENSORFLOW_LITE_TOOLS_DELEGATES_DELEGATE_PROVIDER_H_ #include <memory> #include <string> #include <utility> #include <vector> #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/tools/command_line_flags.h" #include "tensorflow/lite/tools/logging.h" #include "tensorflow/lite/tools/tool_params.h" namespace tflite { namespace tools { using TfLiteDelegatePtr = std::unique_ptr<TfLiteOpaqueDelegate, void (*)(TfLiteOpaqueDelegate*)>; class DelegateProvider { public: virtual ~DelegateProvider() {} virtual std::vector<Flag> CreateFlags(ToolParams* params) const = 0; virtual void LogParams(const ToolParams& params, bool verbose) const = 0; virtual TfLiteDelegatePtr CreateTfLiteDelegate( const ToolParams& params) const = 0; virtual std::pair<TfLiteDelegatePtr, int> CreateRankedTfLiteDelegate( const ToolParams& params) const = 0; virtual std::string GetName() const = 0; const ToolParams& DefaultParams() const { return default_params_; } protected: template <typename T> Flag CreateFlag(const char* name, ToolParams* params, const std::string& usage) const { return Flag( name, [params, name](const T& val, int argv_position) { params->Set<T>(name, val, argv_position); }, default_params_.Get<T>(name), usage, Flag::kOptional); } ToolParams default_params_; }; using DelegateProviderPtr = std::unique_ptr<DelegateProvider>; using DelegateProviderList = std::vector<DelegateProviderPtr>; class DelegateProviderRegistrar { public: template <typename T> struct Register { Register() { auto* const instance = DelegateProviderRegistrar::GetSingleton(); instance->providers_.emplace_back(DelegateProviderPtr(new T())); } }; static const DelegateProviderList& GetProviders() { return GetSingleton()->providers_; } private: DelegateProviderRegistrar() {} DelegateProviderRegistrar(const DelegateProviderRegistrar&) = delete; DelegateProviderRegistrar& operator=(const DelegateProviderRegistrar&) = delete; static DelegateProviderRegistrar* GetSingleton() { static auto* instance = new DelegateProviderRegistrar(); return instance; } DelegateProviderList providers_; }; #define REGISTER_DELEGATE_PROVIDER_VNAME(T) gDelegateProvider_##T##_ #define REGISTER_DELEGATE_PROVIDER(T) \ static tflite::tools::DelegateProviderRegistrar::Register<T> \ REGISTER_DELEGATE_PROVIDER_VNAME(T); TfLiteDelegatePtr CreateNullDelegate(); inline const DelegateProviderList& GetRegisteredDelegateProviders() { return DelegateProviderRegistrar::GetProviders(); } class ProvidedDelegateList { public: struct ProvidedDelegate { ProvidedDelegate() : provider(nullptr), delegate(CreateNullDelegate()), rank(0) {} const DelegateProvider* provider; TfLiteDelegatePtr delegate; int rank; }; ProvidedDelegateList() : ProvidedDelegateList( nullptr) {} explicit ProvidedDelegateList(ToolParams* params) : providers_(GetRegisteredDelegateProviders()), params_(params) {} const DelegateProviderList& providers() const { return providers_; } void AddAllDelegateParams() const; void AppendCmdlineFlags(std::vector<Flag>& flags) const; void RemoveCmdlineFlag(std::vector<Flag>& flags, const std::string& name) const; std::vector<ProvidedDelegate> CreateAllRankedDelegates( const ToolParams& params) const; std::vector<ProvidedDelegate> CreateAllRankedDelegates() const { return CreateAllRankedDelegates(*params_); } private: const DelegateProviderList& providers_; ToolParams* const params_; }; } } #endif #include "tensorflow/lite/tools/delegates/delegate_provider.h" #include <algorithm> #include <string> #include <utility> #include <vector> namespace tflite { namespace tools { TfLiteDelegatePtr CreateNullDelegate() { return TfLiteDelegatePtr(nullptr, [](TfLiteOpaqueDelegate*) {}); } void ProvidedDelegateList::AddAllDelegateParams() const { for (const auto& provider : providers_) { params_->Merge(provider->DefaultParams()); } } void ProvidedDelegateList::AppendCmdlineFlags(std::vector<Flag>& flags) const { for (const auto& provider : providers_) { auto delegate_flags = provider->CreateFlags(params_); flags.insert(flags.end(), delegate_flags.begin(), delegate_flags.end()); } } void ProvidedDelegateList::RemoveCmdlineFlag(std::vector<Flag>& flags, const std::string& name) const { decltype(flags.begin()) it; for (it = flags.begin(); it < flags.end();) { if (it->GetFlagName() == name) { it = flags.erase(it); } else { ++it; } } } std::vector<ProvidedDelegateList::ProvidedDelegate> ProvidedDelegateList::CreateAllRankedDelegates(const ToolParams& params) const { std::vector<ProvidedDelegateList::ProvidedDelegate> delegates; for (const auto& provider : providers_) { auto ptr_rank = provider->CreateRankedTfLiteDelegate(params); if (ptr_rank.first == nullptr) continue; static bool already_logged = false; if (!already_logged) { TFLITE_LOG(INFO) << provider->GetName() << " delegate created."; #ifndef NDEBUG provider->LogParams(params, false); #endif already_logged = true; } ProvidedDelegateList::ProvidedDelegate info; info.provider = provider.get(); info.delegate = std::move(ptr_rank.first); info.rank = ptr_rank.second; delegates.emplace_back(std::move(info)); } std::sort(delegates.begin(), delegates.end(), [](const ProvidedDelegateList::ProvidedDelegate& a, const ProvidedDelegateList::ProvidedDelegate& b) { return a.rank < b.rank; }); return delegates; } } }
#include "tensorflow/lite/tools/delegates/delegate_provider.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/c/test_util.h" #include "tensorflow/lite/tools/tool_params.h" namespace tflite { namespace tools { namespace { TEST(ProvidedDelegateListTest, AddAllDelegateParams) { ToolParams params; ProvidedDelegateList providers(&params); providers.AddAllDelegateParams(); EXPECT_TRUE(params.HasParam("use_xnnpack")); #if !TFLITE_WITH_STABLE_ABI EXPECT_TRUE(params.HasParam("use_nnapi")); #endif } TEST(ProvidedDelegateListTest, AppendCmdlineFlags) { std::vector<Flag> flags; ToolParams params; ProvidedDelegateList providers(&params); providers.AddAllDelegateParams(); providers.AppendCmdlineFlags(flags); EXPECT_FALSE(flags.empty()); } TEST(KernelTestDelegateProvidersTest, CreateAllRankedDelegates) { #if !defined(__Fuchsia__) && !defined(__s390x__) && \ !defined(TFLITE_WITHOUT_XNNPACK) ToolParams params; ProvidedDelegateList providers(&params); providers.AddAllDelegateParams(); #if TFLITE_WITH_STABLE_ABI ASSERT_EQ(TfLiteInitializeShimsForTest(), 0); params.Set<bool>("use_xnnpack", true, 1); auto delegates = providers.CreateAllRankedDelegates(); EXPECT_EQ(1, delegates.size()); EXPECT_EQ("XNNPACK", delegates.front().provider->GetName()); EXPECT_NE(nullptr, delegates.front().delegate.get()); EXPECT_EQ(1, delegates.front().rank); #else params.Set<bool>("use_xnnpack", true, 2); params.Set<bool>("use_dummy_delegate", true, 1); auto delegates = providers.CreateAllRankedDelegates(); EXPECT_EQ(2, delegates.size()); EXPECT_EQ("DummyDelegate", delegates.front().provider->GetName()); EXPECT_EQ(1, delegates.front().rank); EXPECT_NE(nullptr, delegates.front().delegate.get()); EXPECT_EQ("XNNPACK", delegates.back().provider->GetName()); EXPECT_NE(nullptr, delegates.back().delegate.get()); EXPECT_EQ(2, delegates.back().rank); #endif #endif } } } }
863
cpp
tensorflow/tensorflow
nnapi_compatibility_lib
tensorflow/lite/tools/delegates/compatibility/nnapi/nnapi_compatibility_lib.cc
tensorflow/lite/tools/delegates/compatibility/nnapi/nnapi_compatibility_lib_test.cc
#ifndef TENSORFLOW_LITE_TOOLS_DELEGATES_COMPATIBILITY_NNAPI_NNAPI_COMPATIBILITY_LIB_H_ #define TENSORFLOW_LITE_TOOLS_DELEGATES_COMPATIBILITY_NNAPI_NNAPI_COMPATIBILITY_LIB_H_ #include <map> #include <vector> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/delegates/nnapi/nnapi_delegate_kernel.h" namespace tflite { namespace tools { TfLiteStatus CheckCompatibility( TfLiteContext* context, int32_t runtime_feature_level, std::vector<int>* supported_nodes, std::map<int, std::vector<tflite::delegate::nnapi::NNAPIValidationFailure>>* failures_by_node); class CompatibilityCheckerDelegate : public TfLiteDelegate { public: explicit CompatibilityCheckerDelegate(int32_t runtime_feature_level) : TfLiteDelegate(TfLiteDelegateCreate()), runtime_feature_level_(runtime_feature_level), supported_nodes_(), failures_by_node_() { Prepare = DoPrepare; CopyFromBufferHandle = DoCopyFromBufferHandle; CopyToBufferHandle = DoCopyToBufferHandle; FreeBufferHandle = DoFreeBufferHandle; data_ = &delegate_data_; } std::vector<int> GetSupportedNodes() { return supported_nodes_; } std::map<int, std::vector<tflite::delegate::nnapi::NNAPIValidationFailure>> GetFailuresByNode() { return failures_by_node_; } protected: static TfLiteStatus DoPrepare(TfLiteContext* context, TfLiteDelegate* delegate) { auto self = reinterpret_cast<CompatibilityCheckerDelegate*>(delegate); TF_LITE_ENSURE_OK(context, CheckCompatibility(context, self->runtime_feature_level_, &(self->supported_nodes_), &(self->failures_by_node_))); return kTfLiteOk; } static TfLiteStatus DoCopyFromBufferHandle(TfLiteContext* context, TfLiteDelegate* delegate, TfLiteBufferHandle buffer_handle, TfLiteTensor* tensor) { return kTfLiteError; } static TfLiteStatus DoCopyToBufferHandle(TfLiteContext* context, TfLiteDelegate* delegate, TfLiteBufferHandle buffer_handle, TfLiteTensor* tensor) { return kTfLiteError; } static void DoFreeBufferHandle(TfLiteContext* context, TfLiteDelegate* delegate, TfLiteBufferHandle* handle) {} private: int delegate_data_; int runtime_feature_level_; std::vector<int> supported_nodes_; std::map<int, std::vector<tflite::delegate::nnapi::NNAPIValidationFailure>> failures_by_node_; }; } } #endif #include "tensorflow/lite/tools/delegates/compatibility/nnapi/nnapi_compatibility_lib.h" #include <map> #include <utility> #include <vector> #include "tensorflow/lite/context_util.h" #include "tensorflow/lite/interpreter.h" #include "tensorflow/lite/minimal_logging.h" namespace tflite { namespace tools { using ::tflite::delegate::nnapi::NNAPIValidationFailure; TfLiteStatus CheckCompatibility( TfLiteContext* context, int32_t runtime_feature_level, std::vector<int>* supported_nodes, std::map<int, std::vector<NNAPIValidationFailure>>* failures_by_node) { if (!context) { TFLITE_LOG_PROD_ONCE(TFLITE_LOG_ERROR, "Context is nullptr."); return kTfLiteError; } TfLiteIntArray* execution_plan; TF_LITE_ENSURE_STATUS(context->GetExecutionPlan(context, &execution_plan)); for (int node_index : TfLiteIntArrayView(execution_plan)) { TFLITE_LOG_PROD(TFLITE_LOG_INFO, "Node index: %d", node_index); TfLiteNode* node; TfLiteRegistration* registration; TF_LITE_ENSURE_STATUS(context->GetNodeAndRegistration( context, node_index, &node, &registration)); std::vector<delegate::nnapi::NNAPIValidationFailure> map_failures; if (NNAPIDelegateKernel::Validate( context, registration, runtime_feature_level, node, true, nullptr, &map_failures)) { TFLITE_LOG_PROD(TFLITE_LOG_INFO, "Built-in Code: %d", registration->builtin_code); if (supported_nodes) { supported_nodes->push_back(node_index); } } else { if (failures_by_node) { (*failures_by_node)[node_index] = std::move(map_failures); } } } return kTfLiteOk; } } }
#include "tensorflow/lite/tools/delegates/compatibility/nnapi/nnapi_compatibility_lib.h" #include <map> #include <memory> #include <utility> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace tools { namespace { class AddOpModel : public SingleOpModel { public: AddOpModel(const TensorData& input1, const TensorData& input2, const TensorData& output, ActivationFunctionType activation_type, CompatibilityCheckerDelegate* checker_delegate) { input1_ = AddInput(input1); input2_ = AddInput(input2); output_ = AddOutput(output); SetBuiltinOp(BuiltinOperator_ADD, BuiltinOptions_AddOptions, CreateAddOptions(builder_, activation_type).Union()); SetDelegate(checker_delegate); BuildInterpreter({GetShape(input1_), GetShape(input2_)}); } protected: int input1_; int input2_; int output_; }; } TEST(NnapiDelegateCompabilityTest, InvalidInput) { EXPECT_EQ(CheckCompatibility(nullptr, 0, nullptr, nullptr), kTfLiteError); } TEST(NnapiDelegateCompabilityTest, CompatibleModel) { CompatibilityCheckerDelegate checker_delegate( tflite::delegate::nnapi::kMinSdkVersionForNNAPI13); AddOpModel add_op_model( {TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {}}, ActivationFunctionType_NONE, &checker_delegate); EXPECT_EQ(checker_delegate.GetSupportedNodes().size(), 1); EXPECT_EQ(checker_delegate.GetFailuresByNode().size(), 0); } TEST(NnapiDelegateCompabilityTest, IncompatibleModel) { CompatibilityCheckerDelegate checker_delegate( tflite::delegate::nnapi::kMinSdkVersionForNNAPI13); AddOpModel add_op_model( {TensorType_INT32, {1, 2, 2, 1}}, {TensorType_INT32, {1, 2, 2, 1}}, {TensorType_INT32, {}}, ActivationFunctionType_RELU_N1_TO_1, &checker_delegate); EXPECT_EQ(checker_delegate.GetSupportedNodes().size(), 0); EXPECT_EQ(checker_delegate.GetFailuresByNode().size(), 1); } } }
864
cpp
tensorflow/tensorflow
nnapi_delegate_compatibility_checker
tensorflow/lite/tools/delegates/compatibility/nnapi/nnapi_delegate_compatibility_checker.cc
tensorflow/lite/tools/delegates/compatibility/nnapi/nnapi_delegate_compatibility_checker_test.cc
#ifndef TENSORFLOW_LITE_TOOLS_DELEGATES_COMPATIBILITY_NNAPI_NNAPI_DELEGATE_COMPATIBILITY_CHECKER_H_ #define TENSORFLOW_LITE_TOOLS_DELEGATES_COMPATIBILITY_NNAPI_NNAPI_DELEGATE_COMPATIBILITY_CHECKER_H_ #include <string> #include <unordered_map> #include "absl/status/status.h" #include "tensorflow/lite/tools/delegates/compatibility/common/delegate_compatibility_checker_base.h" #include "tensorflow/lite/tools/delegates/compatibility/protos/compatibility_result.pb.h" #include "tensorflow/lite/tools/versioning/op_signature.h" namespace tflite { namespace tools { inline constexpr int kDefaultRuntimeFeatureLevel = 8; class NnapiDelegateCompatibilityChecker : public DelegateCompatibilityCheckerBase { public: NnapiDelegateCompatibilityChecker() { runtime_feature_level_ = kDefaultRuntimeFeatureLevel; } absl::Status checkModelCompatibilityOnline( tflite::FlatBufferModel* model_buffer, tflite::proto::CompatibilityResult* result) override; static absl::Status checkOpCompatibilityOnline( TfLiteContext* context, const TfLiteNode* node, const TfLiteRegistration* registration, std::unordered_map<std::string, std::string> dcc_configs, tflite::proto::OpCompatibilityResult* op_result); std::unordered_map<std::string, std::string> getDccConfigurations() override; absl::Status setDccConfigurations( const std::unordered_map<std::string, std::string>& dcc_configs) override; private: absl::Status checkOpSigCompatibility( const OpSignature& op_sig, tflite::proto::OpCompatibilityResult* op_result) override; int runtime_feature_level_; }; } } #endif #include "tensorflow/lite/tools/delegates/compatibility/nnapi/nnapi_delegate_compatibility_checker.h" #include <cctype> #include <cstdlib> #include <functional> #include <limits> #include <memory> #include <sstream> #include <string> #include <unordered_map> #include <vector> #include "absl/status/status.h" #include "absl/strings/match.h" #include "tensorflow/lite/core/kernels/register.h" #include "tensorflow/lite/delegates/nnapi/nnapi_delegate_kernel.h" #include "tensorflow/lite/interpreter.h" #include "tensorflow/lite/nnapi/NeuralNetworksTypes.h" #include "tensorflow/lite/tools/delegates/compatibility/common/delegate_compatibility_checker_util.h" #include "tensorflow/lite/tools/delegates/compatibility/common/online_helper_delegate.h" #include "tensorflow/lite/tools/delegates/compatibility/protos/compatibility_result.pb.h" #include "tensorflow/lite/util.h" namespace tflite { namespace tools { namespace { void getCanonicalFeatureLevel(int runtime_feature_level, int& canonical_feature_level) { switch (runtime_feature_level) { case 1: canonical_feature_level = ANEURALNETWORKS_FEATURE_LEVEL_1; break; case 2: canonical_feature_level = ANEURALNETWORKS_FEATURE_LEVEL_2; break; case 3: canonical_feature_level = ANEURALNETWORKS_FEATURE_LEVEL_3; break; case 4: canonical_feature_level = ANEURALNETWORKS_FEATURE_LEVEL_4; break; case 5: canonical_feature_level = ANEURALNETWORKS_FEATURE_LEVEL_5; break; case 6: canonical_feature_level = ANEURALNETWORKS_FEATURE_LEVEL_6; break; case 7: canonical_feature_level = ANEURALNETWORKS_FEATURE_LEVEL_7; break; case 8: canonical_feature_level = ANEURALNETWORKS_FEATURE_LEVEL_8; break; default: canonical_feature_level = ANEURALNETWORKS_FEATURE_LEVEL_8; } } absl::Status IsValidFeatureLevelInt(const std::string& s) { if (s.size() == 1 && std::isdigit(s[0]) && s[0] > '0' && s[0] < '9') { return absl::OkStatus(); } return absl::InvalidArgumentError("Invalid runtime feature level."); } absl::Status extractRuntimeFeatureLevel( const std::unordered_map<std::string, std::string>& dcc_configs, int& runtime_feature_level) { std::string str_runtime_feature_level; if (dcc_configs.find("nnapi-runtime_feature_level") == dcc_configs.end()) { for (const auto& dcc_config : dcc_configs) { if (absl::StrContains(dcc_config.first, "nnapi")) { return absl::InvalidArgumentError( "The correct flag name is 'nnapi-runtime_feature_level"); } } str_runtime_feature_level = std::to_string(tools::kDefaultRuntimeFeatureLevel); } else { str_runtime_feature_level = dcc_configs.at("nnapi-runtime_feature_level"); RETURN_IF_ERROR(IsValidFeatureLevelInt(str_runtime_feature_level)); } runtime_feature_level = std::stoi(str_runtime_feature_level); return absl::OkStatus(); } absl::Status convertToCompatibilityFailureType( std::vector<delegate::nnapi::NNAPIValidationFailure> map_failures, proto::OpCompatibilityResult* op_result) { for (const auto& status : map_failures) { auto compatibility_failure = op_result->add_compatibility_failures(); compatibility_failure->set_description(status.message); switch (status.type) { case delegate::nnapi::NNAPIValidationFailureType::kUnsupportedOperator: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_UNSUPPORTED_OPERATOR); break; case delegate::nnapi::NNAPIValidationFailureType:: kUnsupportedAndroidVersion: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_UNSUPPORTED_VERSION); break; case delegate::nnapi::NNAPIValidationFailureType:: kUnsupportedOperatorVersion: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_UNSUPPORTED_OPERATOR_VERSION); break; case delegate::nnapi::NNAPIValidationFailureType::kUnsupportedInputType: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_UNSUPPORTED_INPUT_TYPE); break; case delegate::nnapi::NNAPIValidationFailureType:: kNotRestrictedScaleCompliant: compatibility_failure->set_failure_type( proto::CompatibilityFailureType:: DCC_NOT_RESTRICTED_SCALE_COMPLIANT); break; case delegate::nnapi::NNAPIValidationFailureType::kUnsupportedOutputType: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_UNSUPPORTED_OUTPUT_TYPE); break; case delegate::nnapi::NNAPIValidationFailureType::kUnsupportedOperandSize: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_UNSUPPORTED_OPERAND_SIZE); break; case delegate::nnapi::NNAPIValidationFailureType:: kUnsupportedOperandValue: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_UNSUPPORTED_OPERAND_VALUE); break; case delegate::nnapi::NNAPIValidationFailureType:: kUnsupportedHybridOperator: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_UNSUPPORTED_HYBRID_OPERATOR); break; case delegate::nnapi::NNAPIValidationFailureType:: kUnsupportedQuantizationType: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_UNSUPPORTED_QUANTIZATION_TYPE); break; case delegate::nnapi::NNAPIValidationFailureType::kMissingRequiredOperand: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_MISSING_REQUIRED_OPERAND); break; case delegate::nnapi::NNAPIValidationFailureType::kUnsupportedOperandRank: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_UNSUPPORTED_OPERAND_RANK); break; case delegate::nnapi::NNAPIValidationFailureType:: kInputTensorShouldHaveConstantShape: compatibility_failure->set_failure_type( proto::CompatibilityFailureType:: DCC_INPUT_TENSOR_SHOULD_HAVE_CONSTANT_SHAPE); break; case delegate::nnapi::NNAPIValidationFailureType:: kUnsupportedOperatorVariant: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_UNSUPPORTED_OPERATOR_VARIANT); break; case delegate::nnapi::NNAPIValidationFailureType::kNoActivationExpected: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_NO_ACTIVATION_EXPECTED); break; case delegate::nnapi::NNAPIValidationFailureType:: kUnsupportedQuantizationParameters: compatibility_failure->set_failure_type( proto::CompatibilityFailureType:: DCC_UNSUPPORTED_QUANTIZATION_PARAMETERS); break; default: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_INTERNAL_ERROR); compatibility_failure->set_description( "Unknown validation failure type."); } } return absl::OkStatus(); } } absl::Status tools::NnapiDelegateCompatibilityChecker::checkOpCompatibilityOnline( TfLiteContext* context, const TfLiteNode* node, const TfLiteRegistration* registration, std::unordered_map<std::string, std::string> dcc_configs, tflite::proto::OpCompatibilityResult* op_result) { std::vector<delegate::nnapi::NNAPIValidationFailure> map_failures; int runtime_feature_level; RETURN_IF_ERROR( extractRuntimeFeatureLevel(dcc_configs, runtime_feature_level)); getCanonicalFeatureLevel(runtime_feature_level, runtime_feature_level); if (NNAPIDelegateKernel::Validate( context, registration, runtime_feature_level, node, true, nullptr, &map_failures)) { op_result->set_is_supported(true); } else { RETURN_IF_ERROR(convertToCompatibilityFailureType(map_failures, op_result)); op_result->set_is_supported(false); } return absl::OkStatus(); } std::unordered_map<std::string, std::string> tools::NnapiDelegateCompatibilityChecker::getDccConfigurations() { std::unordered_map<std::string, std::string> dcc_configs; dcc_configs["nnapi-runtime_feature_level"] = std::to_string(runtime_feature_level_); return dcc_configs; } absl::Status tools::NnapiDelegateCompatibilityChecker::setDccConfigurations( const std::unordered_map<std::string, std::string>& dcc_configs) { RETURN_IF_ERROR( extractRuntimeFeatureLevel(dcc_configs, runtime_feature_level_)); return absl::OkStatus(); } absl::Status tools::NnapiDelegateCompatibilityChecker::checkModelCompatibilityOnline( tflite::FlatBufferModel* model_buffer, tflite::proto::CompatibilityResult* result) { std::unique_ptr<tflite::Interpreter> interpreter; tflite::ops::builtin::BuiltinOpResolver resolver; tflite::InterpreterBuilder interpreter_builder(*model_buffer, resolver); auto dcc_configs = getDccConfigurations(); std::function<absl::Status(TfLiteContext*, const TfLiteNode*, const TfLiteRegistration*, std::unordered_map<std::string, std::string>, proto::OpCompatibilityResult*)> check_op_func_ptr = &checkOpCompatibilityOnline; OnlineHelperDelegate delegate(dcc_configs, check_op_func_ptr, result); interpreter_builder.AddDelegate(&delegate); interpreter_builder(&interpreter); return absl::OkStatus(); } absl::Status tools::NnapiDelegateCompatibilityChecker::checkOpSigCompatibility( const OpSignature& op_sig, tflite::proto::OpCompatibilityResult* op_result) { return absl::UnimplementedError( "Offline mode is not yet supported on NNAPI delegate compatibility " "checker."); } } }
#include "tensorflow/lite/tools/delegates/compatibility/nnapi/nnapi_delegate_compatibility_checker.h" #include <cstdint> #include <limits> #include <string> #include <unordered_map> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/lite/kernels/test_util.h" namespace tflite { namespace tools { #ifndef EXPECT_OK #define EXPECT_OK(x) EXPECT_TRUE(x.ok()); #endif namespace { class AddOpModel : public SingleOpModel { public: AddOpModel(const TensorData& input1, const TensorData& input2, const TensorData& output, ActivationFunctionType activation_type) { input1_ = AddInput(input1); input2_ = AddInput(input2); output_ = AddOutput(output); SetBuiltinOp(BuiltinOperator_ADD, BuiltinOptions_AddOptions, CreateAddOptions(builder_, activation_type).Union()); BuildInterpreter({GetShape(input1_), GetShape(input2_)}); } protected: int input1_; int input2_; int output_; }; class NnapiDccTest : public ::testing::Test { protected: void SetUp() override {} void TearDown() override { compatibility_result_.Clear(); } NnapiDelegateCompatibilityChecker nnapi_dcc_; proto::CompatibilityResult compatibility_result_; }; } TEST_F(NnapiDccTest, ValidRuntimeFeatureLevel) { std::unordered_map dcc_configs = nnapi_dcc_.getDccConfigurations(); EXPECT_EQ(dcc_configs["nnapi-runtime_feature_level"], "8"); EXPECT_OK(nnapi_dcc_.setDccConfigurations(dcc_configs)); dcc_configs["nnapi-runtime_feature_level"] = "1"; EXPECT_OK(nnapi_dcc_.setDccConfigurations(dcc_configs)); dcc_configs["nnapi-runtime_feature_level"] = "8"; EXPECT_OK(nnapi_dcc_.setDccConfigurations(dcc_configs)); dcc_configs.clear(); EXPECT_OK(nnapi_dcc_.setDccConfigurations(dcc_configs)); EXPECT_EQ(nnapi_dcc_.getDccConfigurations()["nnapi-runtime_feature_level"], "8"); } TEST_F(NnapiDccTest, InvalidRuntimeFeatureLevel) { std::unordered_map dcc_configs = nnapi_dcc_.getDccConfigurations(); dcc_configs["nnapi-runtime_feature_level"] = "03"; EXPECT_EQ(nnapi_dcc_.setDccConfigurations(dcc_configs).code(), absl::StatusCode::kInvalidArgument); dcc_configs["nnapi-runtime_feature_level"] = "a"; EXPECT_EQ(nnapi_dcc_.setDccConfigurations(dcc_configs).code(), absl::StatusCode::kInvalidArgument); dcc_configs["nnapi-runtime_feature_level"] = "28123497123489123841212344516"; EXPECT_EQ(nnapi_dcc_.setDccConfigurations(dcc_configs).code(), absl::StatusCode::kInvalidArgument); dcc_configs["nnapi-runtime_feature_level"] = "30.0"; EXPECT_EQ(nnapi_dcc_.setDccConfigurations(dcc_configs).code(), absl::StatusCode::kInvalidArgument); dcc_configs["nnapi-runtime_feature_level"] = "-30"; EXPECT_EQ(nnapi_dcc_.setDccConfigurations(dcc_configs).code(), absl::StatusCode::kInvalidArgument); dcc_configs["nnapi-runtime_feature_level"] = "9"; EXPECT_EQ(nnapi_dcc_.setDccConfigurations(dcc_configs).code(), absl::StatusCode::kInvalidArgument); dcc_configs.clear(); dcc_configs["nnapi-runtim_feature_level"] = "8"; EXPECT_EQ(nnapi_dcc_.setDccConfigurations(dcc_configs).code(), absl::StatusCode::kInvalidArgument); } TEST_F(NnapiDccTest, CompatibleModelOnlineMode) { const std::string& full_path = tensorflow::GetDataDependencyFilepath("tensorflow/lite/testdata/add.bin"); auto fb_model = FlatBufferModel::BuildFromFile(full_path.data()); ASSERT_TRUE(fb_model); auto model = fb_model->GetModel(); EXPECT_EQ(model->subgraphs()->size(), 1); EXPECT_EQ(model->subgraphs()->Get(0)->operators()->size(), 2); EXPECT_OK(nnapi_dcc_.checkModelCompatibilityOnline(fb_model.get(), &compatibility_result_)); for (auto op_compatibility_result : compatibility_result_.compatibility_results()) { EXPECT_TRUE(op_compatibility_result.is_supported()); } EXPECT_EQ(compatibility_result_.compatibility_results_size(), 2); } TEST_F(NnapiDccTest, IncompatibleModelOperation) { AddOpModel add_op_model( {TensorType_INT32, {1, 2, 2, 1}}, {TensorType_INT32, {1, 2, 2, 1}}, {TensorType_INT32, {}}, ActivationFunctionType_RELU_N1_TO_1); auto fb_model = tflite::FlatBufferModel::BuildFromModel( tflite::GetModel(add_op_model.GetModelBuffer())); ASSERT_TRUE(fb_model); EXPECT_OK(nnapi_dcc_.checkModelCompatibilityOnline(fb_model.get(), &compatibility_result_)); for (auto op_compatibility_result : compatibility_result_.compatibility_results()) { EXPECT_FALSE(op_compatibility_result.is_supported()); } EXPECT_EQ(compatibility_result_.compatibility_results_size(), 1); } TEST_F(NnapiDccTest, IncompatibleModelFeatureLevel) { AddOpModel add_op_model({TensorType_INT32, {1, 2, 2, 1}}, {TensorType_INT32, {1, 2, 2, 1}}, {TensorType_INT32, {}}, ActivationFunctionType_NONE); auto fb_model = tflite::FlatBufferModel::BuildFromModel( tflite::GetModel(add_op_model.GetModelBuffer())); ASSERT_TRUE(fb_model); auto nnapi_configs = nnapi_dcc_.getDccConfigurations(); nnapi_configs["nnapi-runtime_feature_level"] = "2"; EXPECT_OK(nnapi_dcc_.setDccConfigurations(nnapi_configs)); EXPECT_OK(nnapi_dcc_.checkModelCompatibilityOnline(fb_model.get(), &compatibility_result_)); for (auto op_compatibility_result : compatibility_result_.compatibility_results()) { EXPECT_FALSE(op_compatibility_result.is_supported()); } EXPECT_EQ(compatibility_result_.compatibility_results_size(), 1); } } }
865
cpp
tensorflow/tensorflow
gpu_delegate_compatibility_checker
tensorflow/lite/tools/delegates/compatibility/gpu/gpu_delegate_compatibility_checker.cc
tensorflow/lite/tools/delegates/compatibility/gpu/gpu_delegate_compatibility_checker_test.cc
#ifndef TENSORFLOW_LITE_TOOLS_DELEGATES_COMPATIBILITY_GPU_GPU_DELEGATE_COMPATIBILITY_CHECKER_H_ #define TENSORFLOW_LITE_TOOLS_DELEGATES_COMPATIBILITY_GPU_GPU_DELEGATE_COMPATIBILITY_CHECKER_H_ #include <string> #include <unordered_map> #include "absl/status/status.h" #include "tensorflow/lite/model_builder.h" #include "tensorflow/lite/tools/delegates/compatibility/common/delegate_compatibility_checker_base.h" #include "tensorflow/lite/tools/delegates/compatibility/protos/compatibility_result.pb.h" #include "tensorflow/lite/tools/versioning/op_signature.h" namespace tflite { namespace tools { class GpuDelegateCompatibilityChecker : public DelegateCompatibilityCheckerBase { public: GpuDelegateCompatibilityChecker() {} absl::Status checkModelCompatibilityOnline( tflite::FlatBufferModel* model_buffer, tflite::proto::CompatibilityResult* result) override; std::unordered_map<std::string, std::string> getDccConfigurations() override; absl::Status setDccConfigurations( const std::unordered_map<std::string, std::string>& dcc_configs) override; private: absl::Status checkOpSigCompatibility( const OpSignature& op_sig, tflite::proto::OpCompatibilityResult* op_result) override; }; } } #endif #include "tensorflow/lite/tools/delegates/compatibility/gpu/gpu_delegate_compatibility_checker.h" #include <functional> #include <memory> #include <string> #include <unordered_map> #include "absl/status/status.h" #include "tensorflow/lite/model_builder.h" #include "tensorflow/lite/tools/delegates/compatibility/protos/compatibility_result.pb.h" #include "tensorflow/lite/tools/versioning/gpu_compatibility.h" #include "tensorflow/lite/tools/versioning/op_signature.h" namespace tflite { namespace tools { namespace { void convertToValidationFailureType(absl::Status status, proto::OpCompatibilityResult* op_result) { auto compatibility_failure = op_result->add_compatibility_failures(); compatibility_failure->set_description(std::string(status.message())); switch (status.code()) { case absl::StatusCode::kInvalidArgument: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_INVALID_ARGUMENT); break; case absl::StatusCode::kUnimplemented: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_UNIMPLEMENTED_ERROR); break; case absl::StatusCode::kInternal: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_INTERNAL_ERROR); break; case absl::StatusCode::kOutOfRange: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_OUT_OF_RANGE); break; default: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_INTERNAL_ERROR); compatibility_failure->set_description( "Unknown validation failure type."); } } } std::unordered_map<std::string, std::string> tools::GpuDelegateCompatibilityChecker::getDccConfigurations() { return {}; } absl::Status tools::GpuDelegateCompatibilityChecker::setDccConfigurations( const std::unordered_map<std::string, std::string>& dcc_configs) { return absl::OkStatus(); } absl::Status tools::GpuDelegateCompatibilityChecker::checkModelCompatibilityOnline( tflite::FlatBufferModel* model_buffer, tflite::proto::CompatibilityResult* result) { return absl::UnimplementedError( "Online mode is not supported on GPU delegate compatibility checker."); } absl::Status tools::GpuDelegateCompatibilityChecker::checkOpSigCompatibility( const OpSignature& op_sig, tflite::proto::OpCompatibilityResult* op_result) { auto status = CheckGpuDelegateCompatibility(op_sig); if (!status.ok()) { convertToValidationFailureType(status, op_result); op_result->set_is_supported(false); } else { op_result->set_is_supported(true); } return absl::OkStatus(); } } }
#include "tensorflow/lite/tools/delegates/compatibility/gpu/gpu_delegate_compatibility_checker.h" #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/model_builder.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/tools/delegates/compatibility/protos/compatibility_result.pb.h" namespace tflite { namespace tools { #ifndef EXPECT_OK #define EXPECT_OK(x) EXPECT_TRUE(x.ok()); #endif namespace { class AddOpModel : public SingleOpModel { public: AddOpModel(const TensorData& input1, const TensorData& input2, const TensorData& output, ActivationFunctionType activation_type) { input1_ = AddInput(input1); input2_ = AddInput(input2); output_ = AddOutput(output); SetBuiltinOp(BuiltinOperator_ADD, BuiltinOptions_AddOptions, CreateAddOptions(builder_, activation_type).Union()); BuildInterpreter({GetShape(input1_), GetShape(input2_)}); } protected: int input1_; int input2_; int output_; }; } TEST(GpuDelegateCompatibilityCheckerTest, CheckOnlineMode) { const std::string& full_path = tensorflow::GetDataDependencyFilepath("tensorflow/lite/testdata/add.bin"); auto fb_model = FlatBufferModel::BuildFromFile(full_path.data()); ASSERT_TRUE(fb_model); proto::CompatibilityResult compatibility_result; GpuDelegateCompatibilityChecker gpu_dcc; EXPECT_EQ( gpu_dcc .checkModelCompatibilityOnline(fb_model.get(), &compatibility_result) .code(), absl::StatusCode::kUnimplemented); } TEST(GpuDelegateCompatibilityCheckerTest, CompatibleModelOfflineMode) { const std::string& full_path = tensorflow::GetDataDependencyFilepath("tensorflow/lite/testdata/add.bin"); auto fb_model = FlatBufferModel::BuildFromFile(full_path.data()); ASSERT_TRUE(fb_model); proto::CompatibilityResult compatibility_result; GpuDelegateCompatibilityChecker gpu_dcc; EXPECT_OK(gpu_dcc.checkModelCompatibilityOffline(fb_model.get(), &compatibility_result)); for (auto op_compatibility_result : compatibility_result.compatibility_results()) { EXPECT_TRUE(op_compatibility_result.is_supported()); } EXPECT_EQ(compatibility_result.compatibility_results_size(), 2); } TEST(GpuDelegateCompatibilityCheckerTest, IncompatibleModelOfflineMode) { const std::string& full_path = tensorflow::GetDataDependencyFilepath( "tensorflow/lite/testdata/conv3d_huge_im2col.bin"); auto fb_model = FlatBufferModel::BuildFromFile(full_path.data()); ASSERT_TRUE(fb_model); proto::CompatibilityResult compatibility_result; GpuDelegateCompatibilityChecker gpu_dcc; EXPECT_OK(gpu_dcc.checkModelCompatibilityOffline(fb_model.get(), &compatibility_result)); for (auto op_compatibility_result : compatibility_result.compatibility_results()) { EXPECT_FALSE(op_compatibility_result.is_supported()); } EXPECT_EQ(compatibility_result.compatibility_results_size(), 1); } } }
866
cpp
tensorflow/tensorflow
flatbuffer_to_proto
tensorflow/lite/acceleration/configuration/flatbuffer_to_proto.cc
tensorflow/lite/acceleration/configuration/flatbuffer_to_proto_test.cc
#ifndef TENSORFLOW_LITE_ACCELERATION_CONFIGURATION_FLATBUFFER_TO_PROTO_H_ #define TENSORFLOW_LITE_ACCELERATION_CONFIGURATION_FLATBUFFER_TO_PROTO_H_ #include "flatbuffers/flatbuffers.h" #include "tensorflow/lite/acceleration/configuration/configuration.pb.h" #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" namespace tflite { proto::ComputeSettings ConvertFromFlatbuffer( const ComputeSettings& settings, bool skip_mini_benchmark_settings = false); proto::ComputeSettings ConvertFromFlatbuffer( const ComputeSettingsT& settings, bool skip_mini_benchmark_settings = false); proto::MiniBenchmarkEvent ConvertFromFlatbuffer( const MiniBenchmarkEvent& event); proto::MiniBenchmarkEvent ConvertFromFlatbuffer( const MiniBenchmarkEventT& event); } #endif #include "tensorflow/lite/acceleration/configuration/flatbuffer_to_proto.h" #include "tensorflow/lite/acceleration/configuration/configuration.pb.h" #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/minimal_logging.h" namespace tflite { namespace { proto::ExecutionPreference ConvertExecutionPreference( ExecutionPreference preference) { switch (preference) { case ExecutionPreference_ANY: return proto::ExecutionPreference::ANY; case ExecutionPreference_LOW_LATENCY: return proto::ExecutionPreference::LOW_LATENCY; case ExecutionPreference_LOW_POWER: return proto::ExecutionPreference::LOW_POWER; case ExecutionPreference_FORCE_CPU: return proto::ExecutionPreference::FORCE_CPU; } TFLITE_LOG_PROD(TFLITE_LOG_ERROR, "Unexpected value for ExecutionPreference: %d", preference); return proto::ExecutionPreference::ANY; } proto::Delegate ConvertDelegate(Delegate delegate) { switch (delegate) { case Delegate_NONE: return proto::Delegate::NONE; case Delegate_NNAPI: return proto::Delegate::NNAPI; case Delegate_GPU: return proto::Delegate::GPU; case Delegate_HEXAGON: return proto::Delegate::HEXAGON; case Delegate_XNNPACK: return proto::Delegate::XNNPACK; case Delegate_EDGETPU: return proto::Delegate::EDGETPU; case Delegate_EDGETPU_CORAL: return proto::Delegate::EDGETPU_CORAL; case Delegate_CORE_ML: return proto::Delegate::CORE_ML; case Delegate_ARMNN: return proto::Delegate::ARMNN; case Delegate_MTK_NEURON: return proto::Delegate::MTK_NEURON; } TFLITE_LOG_PROD(TFLITE_LOG_ERROR, "Unexpected value for Delegate: %d", delegate); return proto::Delegate::NONE; } proto::NNAPIExecutionPreference ConvertNNAPIExecutionPreference( NNAPIExecutionPreference preference) { switch (preference) { case NNAPIExecutionPreference_UNDEFINED: return proto::NNAPIExecutionPreference::UNDEFINED; case NNAPIExecutionPreference_NNAPI_LOW_POWER: return proto::NNAPIExecutionPreference::NNAPI_LOW_POWER; case NNAPIExecutionPreference_NNAPI_FAST_SINGLE_ANSWER: return proto::NNAPIExecutionPreference::NNAPI_FAST_SINGLE_ANSWER; case NNAPIExecutionPreference_NNAPI_SUSTAINED_SPEED: return proto::NNAPIExecutionPreference::NNAPI_SUSTAINED_SPEED; } TFLITE_LOG_PROD(TFLITE_LOG_ERROR, "Unexpected value for NNAPIExecutionPreference: %d", preference); return proto::NNAPIExecutionPreference::UNDEFINED; } proto::NNAPIExecutionPriority ConvertNNAPIExecutionPriority( NNAPIExecutionPriority priority) { switch (priority) { case NNAPIExecutionPriority_NNAPI_PRIORITY_UNDEFINED: return proto::NNAPIExecutionPriority::NNAPI_PRIORITY_UNDEFINED; case NNAPIExecutionPriority_NNAPI_PRIORITY_LOW: return proto::NNAPIExecutionPriority::NNAPI_PRIORITY_LOW; case NNAPIExecutionPriority_NNAPI_PRIORITY_MEDIUM: return proto::NNAPIExecutionPriority::NNAPI_PRIORITY_MEDIUM; case NNAPIExecutionPriority_NNAPI_PRIORITY_HIGH: return proto::NNAPIExecutionPriority::NNAPI_PRIORITY_HIGH; } TFLITE_LOG_PROD(TFLITE_LOG_ERROR, "Unexpected value for NNAPIExecutionPriority: %d", priority); return proto::NNAPIExecutionPriority::NNAPI_PRIORITY_UNDEFINED; } proto::GPUBackend ConvertGPUBackend(GPUBackend backend) { switch (backend) { case GPUBackend_UNSET: return proto::GPUBackend::UNSET; case GPUBackend_OPENCL: return proto::GPUBackend::OPENCL; case GPUBackend_OPENGL: return proto::GPUBackend::OPENGL; } TFLITE_LOG_PROD(TFLITE_LOG_ERROR, "Unexpected value for GPUBackend: %d", backend); return proto::GPUBackend::UNSET; } proto::GPUInferenceUsage ConvertGPUInferenceUsage( GPUInferenceUsage preference) { switch (preference) { case GPUInferenceUsage_GPU_INFERENCE_PREFERENCE_FAST_SINGLE_ANSWER: return proto::GPUInferenceUsage:: GPU_INFERENCE_PREFERENCE_FAST_SINGLE_ANSWER; case GPUInferenceUsage_GPU_INFERENCE_PREFERENCE_SUSTAINED_SPEED: return proto::GPUInferenceUsage::GPU_INFERENCE_PREFERENCE_SUSTAINED_SPEED; } TFLITE_LOG_PROD(TFLITE_LOG_ERROR, "Unexpected value for GPUInferenceUsage: %d", preference); return proto::GPUInferenceUsage::GPU_INFERENCE_PREFERENCE_FAST_SINGLE_ANSWER; } proto::GPUInferencePriority ConvertGPUInferencePriority( GPUInferencePriority priority) { switch (priority) { case GPUInferencePriority_GPU_PRIORITY_AUTO: return proto::GPUInferencePriority::GPU_PRIORITY_AUTO; case GPUInferencePriority_GPU_PRIORITY_MAX_PRECISION: return proto::GPUInferencePriority::GPU_PRIORITY_MAX_PRECISION; case GPUInferencePriority_GPU_PRIORITY_MIN_LATENCY: return proto::GPUInferencePriority::GPU_PRIORITY_MIN_LATENCY; case GPUInferencePriority_GPU_PRIORITY_MIN_MEMORY_USAGE: return proto::GPUInferencePriority::GPU_PRIORITY_MIN_MEMORY_USAGE; } TFLITE_LOG_PROD(TFLITE_LOG_ERROR, "Unexpected value for GPUInferencePriority: %d", priority); return proto::GPUInferencePriority::GPU_PRIORITY_AUTO; } proto::EdgeTpuPowerState ConvertEdgeTpuPowerState(EdgeTpuPowerState state) { switch (state) { case EdgeTpuPowerState_UNDEFINED_POWERSTATE: return proto::EdgeTpuPowerState::UNDEFINED_POWERSTATE; case EdgeTpuPowerState_TPU_CORE_OFF: return proto::EdgeTpuPowerState::TPU_CORE_OFF; case EdgeTpuPowerState_READY: return proto::EdgeTpuPowerState::READY; case EdgeTpuPowerState_ACTIVE_MIN_POWER: return proto::EdgeTpuPowerState::ACTIVE_MIN_POWER; case EdgeTpuPowerState_ACTIVE_VERY_LOW_POWER: return proto::EdgeTpuPowerState::ACTIVE_VERY_LOW_POWER; case EdgeTpuPowerState_ACTIVE_LOW_POWER: return proto::EdgeTpuPowerState::ACTIVE_LOW_POWER; case EdgeTpuPowerState_ACTIVE: return proto::EdgeTpuPowerState::ACTIVE; case EdgeTpuPowerState_OVER_DRIVE: return proto::EdgeTpuPowerState::OVER_DRIVE; } TFLITE_LOG_PROD(TFLITE_LOG_ERROR, "Unexpected value for EdgeTpuSettings::PowerState: %d", state); return proto::EdgeTpuPowerState::UNDEFINED_POWERSTATE; } proto::FallbackSettings ConvertFallbackSettings( const FallbackSettings& settings) { proto::FallbackSettings proto_settings; proto_settings.set_allow_automatic_fallback_on_compilation_error( settings.allow_automatic_fallback_on_compilation_error()); proto_settings.set_allow_automatic_fallback_on_execution_error( settings.allow_automatic_fallback_on_execution_error()); return proto_settings; } proto::NNAPISettings ConvertNNAPISettings(const NNAPISettings& settings) { proto::NNAPISettings proto_settings; if (settings.accelerator_name() != nullptr) { proto_settings.set_accelerator_name(settings.accelerator_name()->str()); } if (settings.cache_directory() != nullptr) { proto_settings.set_cache_directory(settings.cache_directory()->str()); } if (settings.model_token() != nullptr) { proto_settings.set_model_token(settings.model_token()->str()); } proto_settings.set_execution_preference( ConvertNNAPIExecutionPreference(settings.execution_preference())); proto_settings.set_no_of_nnapi_instances_to_cache( settings.no_of_nnapi_instances_to_cache()); if (settings.fallback_settings() != nullptr) { *(proto_settings.mutable_fallback_settings()) = ConvertFallbackSettings(*settings.fallback_settings()); } proto_settings.set_allow_nnapi_cpu_on_android_10_plus( settings.allow_nnapi_cpu_on_android_10_plus()); proto_settings.set_execution_priority( ConvertNNAPIExecutionPriority(settings.execution_priority())); proto_settings.set_allow_dynamic_dimensions( settings.allow_dynamic_dimensions()); proto_settings.set_allow_fp16_precision_for_fp32( settings.allow_fp16_precision_for_fp32()); proto_settings.set_use_burst_computation(settings.use_burst_computation()); proto_settings.set_support_library_handle(settings.support_library_handle()); return proto_settings; } proto::GPUSettings ConvertGPUSettings(const GPUSettings& settings) { proto::GPUSettings proto_settings; proto_settings.set_is_precision_loss_allowed( settings.is_precision_loss_allowed()); proto_settings.set_enable_quantized_inference( settings.enable_quantized_inference()); proto_settings.set_force_backend(ConvertGPUBackend(settings.force_backend())); proto_settings.set_inference_priority1( ConvertGPUInferencePriority(settings.inference_priority1())); proto_settings.set_inference_priority2( ConvertGPUInferencePriority(settings.inference_priority2())); proto_settings.set_inference_priority3( ConvertGPUInferencePriority(settings.inference_priority3())); proto_settings.set_inference_preference( ConvertGPUInferenceUsage(settings.inference_preference())); if (settings.cache_directory() != nullptr) { proto_settings.set_cache_directory(settings.cache_directory()->str()); } if (settings.model_token() != nullptr) { proto_settings.set_model_token(settings.model_token()->str()); } return proto_settings; } proto::HexagonSettings ConvertHexagonSettings(const HexagonSettings& settings) { proto::HexagonSettings proto_settings; proto_settings.set_debug_level(settings.debug_level()); proto_settings.set_powersave_level(settings.powersave_level()); proto_settings.set_print_graph_profile(settings.print_graph_profile()); proto_settings.set_print_graph_debug(settings.print_graph_debug()); return proto_settings; } proto::XNNPackSettings ConvertXNNPackSettings(const XNNPackSettings& settings) { proto::XNNPackSettings proto_settings; proto_settings.set_num_threads(settings.num_threads()); proto_settings.set_flags(::tflite::proto::XNNPackFlags(settings.flags())); return proto_settings; } proto::CoreMLSettings ConvertCoreMLSettings(const CoreMLSettings& settings) { proto::CoreMLSettings proto_settings; switch (settings.enabled_devices()) { case CoreMLSettings_::EnabledDevices_DEVICES_ALL: proto_settings.set_enabled_devices(proto::CoreMLSettings::DEVICES_ALL); break; case CoreMLSettings_::EnabledDevices_DEVICES_WITH_NEURAL_ENGINE: proto_settings.set_enabled_devices( proto::CoreMLSettings::DEVICES_WITH_NEURAL_ENGINE); break; default: TFLITE_LOG_PROD(TFLITE_LOG_ERROR, "Invalid devices enum: %d", settings.enabled_devices()); } proto_settings.set_coreml_version(settings.coreml_version()); proto_settings.set_max_delegated_partitions( settings.max_delegated_partitions()); proto_settings.set_min_nodes_per_partition( settings.min_nodes_per_partition()); return proto_settings; } proto::CPUSettings ConvertCPUSettings(const CPUSettings& settings) { proto::CPUSettings proto_settings; proto_settings.set_num_threads(settings.num_threads()); return proto_settings; } proto::EdgeTpuDeviceSpec ConvertEdgeTpuDeviceSpec( const EdgeTpuDeviceSpec& device_spec) { proto::EdgeTpuDeviceSpec proto_settings; if (device_spec.device_paths() != nullptr) { for (int i = 0; i < device_spec.device_paths()->size(); ++i) { auto device_path = device_spec.device_paths()->Get(i); proto_settings.add_device_paths(device_path->str()); } } proto_settings.set_platform_type( static_cast<proto::EdgeTpuDeviceSpec::PlatformType>( device_spec.platform_type())); proto_settings.set_num_chips(device_spec.num_chips()); proto_settings.set_chip_family(device_spec.chip_family()); return proto_settings; } proto::EdgeTpuSettings ConvertEdgeTpuSettings(const EdgeTpuSettings& settings) { proto::EdgeTpuSettings proto_settings; proto_settings.set_inference_power_state( ConvertEdgeTpuPowerState(settings.inference_power_state())); proto_settings.set_inference_priority(settings.inference_priority()); if (settings.model_token() != nullptr) { proto_settings.set_model_token(settings.model_token()->str()); } if (settings.edgetpu_device_spec() != nullptr) { *(proto_settings.mutable_edgetpu_device_spec()) = ConvertEdgeTpuDeviceSpec(*settings.edgetpu_device_spec()); } proto_settings.set_float_truncation_type( static_cast<proto::EdgeTpuSettings::FloatTruncationType>( settings.float_truncation_type())); auto inactive_powre_configs = settings.inactive_power_configs(); if (inactive_powre_configs != nullptr) { for (int i = 0; i < inactive_powre_configs->size(); ++i) { auto config = inactive_powre_configs->Get(i); auto proto_config = proto_settings.add_inactive_power_configs(); proto_config->set_inactive_power_state( ConvertEdgeTpuPowerState(config->inactive_power_state())); proto_config->set_inactive_timeout_us(config->inactive_timeout_us()); } } return proto_settings; } proto::StableDelegateLoaderSettings ConvertStableDelegateLoaderSettings( const StableDelegateLoaderSettings& settings) { proto::StableDelegateLoaderSettings proto_settings; if (settings.delegate_path() != nullptr) { proto_settings.set_delegate_path(settings.delegate_path()->str()); } if (settings.delegate_name() != nullptr) { proto_settings.set_delegate_name(settings.delegate_name()->str()); } return proto_settings; } proto::CoralSettings ConvertCoralSettings(const CoralSettings& settings) { proto::CoralSettings proto_settings; if (settings.device() != nullptr) { proto_settings.set_device(settings.device()->str()); } proto_settings.set_performance( static_cast<proto::CoralSettings::Performance>(settings.performance())); proto_settings.set_usb_always_dfu(settings.usb_always_dfu()); proto_settings.set_usb_max_bulk_in_queue_length( settings.usb_max_bulk_in_queue_length()); return proto_settings; } proto::GoogleEdgeTpuSettings::Priority ConvertGoogleEdgeTpuPriority( GoogleEdgeTpuSettings_::Priority priority) { switch (priority) { case GoogleEdgeTpuSettings_::Priority_PRIORITY_UNDEFINED: return proto::GoogleEdgeTpuSettings::PRIORITY_UNDEFINED; case GoogleEdgeTpuSettings_::Priority_PRIORITY_LOW: return proto::GoogleEdgeTpuSettings::PRIORITY_LOW; case GoogleEdgeTpuSettings_::Priority_PRIORITY_MEDIUM: return proto::GoogleEdgeTpuSettings::PRIORITY_MEDIUM; case GoogleEdgeTpuSettings_::Priority_PRIORITY_HIGH: return proto::GoogleEdgeTpuSettings::PRIORITY_HIGH; } } proto::GoogleEdgeTpuSettings::TriState ConvertGoogleEdgeTpuTriState( GoogleEdgeTpuSettings_::TriState tri_state) { switch (tri_state) { case GoogleEdgeTpuSettings_::TriState_TRISTATE_UNDEFINED: return proto::GoogleEdgeTpuSettings::TRISTATE_UNDEFINED; case GoogleEdgeTpuSettings_::TriState_TRISTATE_FALSE: return proto::GoogleEdgeTpuSettings::TRISTATE_FALSE; case GoogleEdgeTpuSettings_::TriState_TRISTATE_TRUE: return proto::GoogleEdgeTpuSettings::TRISTATE_TRUE; } } proto::GoogleEdgeTpuSettings ConvertGoogleEdgetpuSettings( const GoogleEdgeTpuSettings& settings) { proto::GoogleEdgeTpuSettings proto_settings; proto_settings.set_log_verbosity(settings.log_verbosity()); proto_settings.set_enable_tracing(settings.enable_tracing()); proto_settings.set_priority( ConvertGoogleEdgeTpuPriority(settings.priority())); if (settings.extension_data()) { proto_settings.set_extension_data(settings.extension_data()->data(), settings.extension_data()->size()); } if (settings.model_identifier()) { proto_settings.set_model_identifier(settings.model_identifier()->str()); } proto_settings.set_use_async_api(settings.use_async_api()); proto_settings.set_delegate_should_manage_cache_for_inputs( settings.delegate_should_manage_cache_for_inputs()); proto_settings.set_delegate_should_manage_cache_for_outputs( settings.delegate_should_manage_cache_for_outputs()); proto_settings.set_prefer_cache_coherency_for_inputs( ConvertGoogleEdgeTpuTriState( settings.prefer_cache_coherency_for_inputs())); proto_settings.set_prefer_cache_coherency_for_outputs( ConvertGoogleEdgeTpuTriState( settings.prefer_cache_coherency_for_outputs())); proto_settings.set_allow_fp16_precision_for_fp32( settings.allow_fp16_precision_for_fp32()); return proto_settings; } proto::CompilationCachingSettings ConvertCompilationCachingSettings( const CompilationCachingSettings& settings) { proto::CompilationCachingSettings proto_settings; if (settings.cache_dir() != nullptr) { proto_settings.set_cache_dir(settings.cache_dir()->str()); } if (settings.model_token() != nullptr) { proto_settings.set_model_token(settings.model_token()->str()); } return proto_settings; } proto::MtkNeuronSettings ConvertMtkNeuronSettings( const MtkNeuronSettings& settings) { proto::MtkNeuronSettings proto_settings; proto_settings.set_execution_preference( static_cast<proto::MtkNeuronSettings_ExecutionPreference>( settings.execution_preference())); proto_settings.set_execution_priority( static_cast<proto::MtkNeuronSettings_ExecutionPriority>( settings.execution_priority())); auto optimization_hints = settings.optimization_hints(); if (optimization_hints != nullptr) { for (auto hint : *optimization_hints) { proto_settings.add_optimization_hints( static_cast<proto::MtkNeuronSettings_OptimizationHint>(hint)); } } proto_settings.set_operation_check_mode( static_cast<proto::MtkNeuronSettings_OperationCheckMode>( settings.operation_check_mode())); proto_settings.set_allow_fp16_precision_for_fp32( settings.allow_fp16_precision_for_fp32()); proto_settings.set_use_ahwb(settings.use_ahwb()); proto_settings.set_use_cacheable_buffer(settings.use_cacheable_buffer()); auto compile_options = settings.compile_options(); if (compile_options != nullptr) { for (auto option : *compile_options) { proto_settings.add_compile_options(option->str()); } } auto accelerator_names = settings.accelerator_names(); if (accelerator_names != nullptr) { for (auto name : *accelerator_names) { proto_settings.add_accelerator_names(name->str()); } } if (settings.neuron_config_path()) { proto_settings.set_neuron_config_path(settings.neuron_config_path()->str()); } return proto_settings; } proto::TFLiteSettings ConvertTfliteSettings(const TFLiteSettings& settings) { proto::TFLiteSettings proto_settings; proto_settings.set_delegate(ConvertDelegate(settings.delegate())); if (settings.nnapi_settings() != nullptr) { *proto_settings.mutable_nnapi_settings() = ConvertNNAPISettings(*settings.nnapi_settings()); } if (settings.gpu_settings() != nullptr) { *proto_settings.mutable_gpu_settings() = ConvertGPUSettings(*settings.gpu_settings()); } if (settings.hexagon_settings() != nullptr) { *proto_settings.mutable_hexagon_settings() = ConvertHexagonSettings(*settings.hexagon_settings()); } if (settings.xnnpack_settings() != nullptr) { *proto_settings.mutable_xnnpack_settings() = ConvertXNNPackSettings(*settings.xnnpack_settings()); } if (settings.coreml_settings() != nullptr) { *proto_settings.mutable_coreml_settings() = ConvertCoreMLSettings(*settings.coreml_settings()); } if (settings.cpu_settings() != nullptr) { *proto_settings.mutable_cpu_settings() = ConvertCPUSettings(*settings.cpu_settings()); } proto_settings.set_max_delegated_partitions( settings.max_delegated_partitions()); if (settings.edgetpu_settings() != nullptr) { *proto_settings.mutable_edgetpu_settings() = ConvertEdgeTpuSettings(*settings.edgetpu_settings()); } if (settings.coral_settings() != nullptr) { *proto_settings.mutable_coral_settings() = ConvertCoralSettings(*settings.coral_settings()); } if (settings.fallback_settings() != nullptr) { *proto_settings.mutable_fallback_settings() = ConvertFallbackSettings(*settings.fallback_settings()); } proto_settings.set_disable_default_delegates( settings.disable_default_delegates()); if (settings.stable_delegate_loader_settings() != nullptr) { *proto_settings.mutable_stable_delegate_loader_settings() = ConvertStableDelegateLoaderSettings( *settings.stable_delegate_loader_settings()); } if (settings.google_edgetpu_settings() != nullptr) { *proto_settings.mutable_google_edgetpu_settings() = ConvertGoogleEdgetpuSettings(*settings.google_edgetpu_settings()); } if (settings.compilation_caching_settings() != nullptr) { *proto_settings.mutable_compilation_caching_settings() = ConvertCompilationCachingSettings( *settings.compilation_caching_settings()); } if (settings.mtk_neuron_settings() != nullptr) { *proto_settings.mutable_mtk_neuron_settings() = ConvertMtkNeuronSettings(*settings.mtk_neuron_settings()); } return proto_settings; } proto::ModelFile ConvertModelFile(const ModelFile& model_file) { proto::ModelFile proto_settings; if (model_file.filename() != nullptr) { proto_settings.set_filename(model_file.filename()->str()); } proto_settings.set_fd(model_file.fd()); proto_settings.set_offset(model_file.offset()); proto_settings.set_length(model_file.length()); return proto_settings; } proto::BenchmarkStoragePaths ConvertBenchmarkStoragePaths( const BenchmarkStoragePaths& storage_paths) { proto::BenchmarkStoragePaths proto_settings; if (storage_paths.storage_file_path() != nullptr) { proto_settings.set_storage_file_path( storage_paths.storage_file_path()->str()); } if (storage_paths.data_directory_path() != nullptr) { proto_settings.set_data_directory_path( storage_paths.data_directory_path()->str()); } return proto_settings; } proto::MinibenchmarkSettings ConvertMinibenchmarkSettings( const MinibenchmarkSettings& settings) { proto::MinibenchmarkSettings proto_settings; if (settings.settings_to_test() != nullptr && settings.settings_to_test()->size() > 0) { for (int i = 0; i < settings.settings_to_test()->size(); ++i) { auto tflite_setting = settings.settings_to_test()->Get(i); auto proto_tflite_setting = proto_settings.add_settings_to_test(); *proto_tflite_setting = ConvertTfliteSettings(*tflite_setting); } } if (settings.model_file() != nullptr) { *(proto_settings.mutable_model_file()) = ConvertModelFile(*settings.model_file()); } if (settings.storage_paths() != nullptr) { *(proto_settings.mutable_storage_paths()) = ConvertBenchmarkStoragePaths(*settings.storage_paths()); } return proto_settings; } proto::BenchmarkEventType ConvertBenchmarkEventType(BenchmarkEventType type) { switch (type) { case BenchmarkEventType_UNDEFINED_BENCHMARK_EVENT_TYPE: return proto::BenchmarkEventType::UNDEFINED_BENCHMARK_EVENT_TYPE; case BenchmarkEventType_START: return proto::BenchmarkEventType::START; case BenchmarkEventType_END: return proto::BenchmarkEventType::END; case BenchmarkEventType_ERROR: return proto::BenchmarkEventType::ERROR; case BenchmarkEventType_LOGGED: return proto::BenchmarkEventType::LOGGED; case BenchmarkEventType_RECOVERED_ERROR: return proto::BenchmarkEventType::RECOVERED_ERROR; } TFLITE_LOG_PROD(TFLITE_LOG_ERROR, "Unexpected value for BenchmarkEventType: %d", type); return proto::BenchmarkEventType::UNDEFINED_BENCHMARK_EVENT_TYPE; } proto::BenchmarkMetric ConvertBenchmarkMetric(const BenchmarkMetric& metric) { proto::BenchmarkMetric proto_metric; if (metric.name() != nullptr) { proto_metric.set_name(metric.name()->str()); } auto values = metric.values(); if (values != nullptr) { for (int i = 0; i < values->size(); ++i) { proto_metric.add_values(values->Get(i)); } } return proto_metric; } proto::BenchmarkResult ConvertBenchmarkResult(const BenchmarkResult& result) { proto::BenchmarkResult proto_result; auto initialization_time_us = result.initialization_time_us(); if (initialization_time_us != nullptr) { for (int i = 0; i < initialization_time_us->size(); ++i) { proto_result.add_initialization_time_us(initialization_time_us->Get(i)); } } auto inference_time_us = result.inference_time_us(); if (inference_time_us != nullptr) { for (int i = 0; i < inference_time_us->size(); ++i) { proto_result.add_inference_time_us(inference_time_us->Get(i)); } } proto_result.set_max_memory_kb(result.max_memory_kb()); proto_result.set_ok(result.ok()); auto metrics = result.metrics(); if (metrics != nullptr) { for (int i = 0; i < metrics->size(); ++i) { *proto_result.add_metrics() = ConvertBenchmarkMetric(*metrics->Get(i)); } } return proto_result; } proto::BenchmarkStage ConvertBenchmarkStage(BenchmarkStage stage) { switch (stage) { case BenchmarkStage_UNKNOWN: return proto::BenchmarkStage::UNKNOWN; case BenchmarkStage_INITIALIZATION: return proto::BenchmarkStage::INITIALIZATION; case BenchmarkStage_INFERENCE: return proto::BenchmarkStage::INFERENCE; } TFLITE_LOG_PROD(TFLITE_LOG_ERROR, "Unexpected value for BenchmarkStage: %d", stage); return proto::BenchmarkStage::UNKNOWN; } proto::ErrorCode ConvertBenchmarkErrorCode(const ErrorCode& code) { proto::ErrorCode proto_code; proto_code.set_source(ConvertDelegate(code.source())); proto_code.set_tflite_error(code.tflite_error()); proto_code.set_underlying_api_error(code.underlying_api_error()); return proto_code; } proto::BenchmarkError ConvertBenchmarkError(const BenchmarkError& error) { proto::BenchmarkError proto_error; proto_error.set_stage(ConvertBenchmarkStage(error.stage())); proto_error.set_exit_code(error.exit_code()); proto_error.set_signal(error.signal()); auto error_codes = error.error_code(); if (error_codes != nullptr) { for (int i = 0; i < error_codes->size(); ++i) { *proto_error.add_error_code() = ConvertBenchmarkErrorCode(*error_codes->Get(i)); } } proto_error.set_mini_benchmark_error_code(error.mini_benchmark_error_code()); return proto_error; } proto::BenchmarkEvent ConvertBenchmarkEvent(const BenchmarkEvent& event) { proto::BenchmarkEvent proto_event; if (event.tflite_settings() != nullptr) { *proto_event.mutable_tflite_settings() = ConvertTfliteSettings(*event.tflite_settings()); } proto_event.set_event_type(ConvertBenchmarkEventType(event.event_type())); if (event.result() != nullptr) { *proto_event.mutable_result() = ConvertBenchmarkResult(*event.result()); } if (event.error() != nullptr) { *proto_event.mutable_error() = ConvertBenchmarkError(*event.error()); } proto_event.set_boottime_us(event.boottime_us()); proto_event.set_wallclock_us(event.wallclock_us()); return proto_event; } proto::BestAccelerationDecision ConvertBestAccelerationDecision( const BestAccelerationDecision& decision) { proto::BestAccelerationDecision proto_decision; proto_decision.set_number_of_source_events( decision.number_of_source_events()); if (decision.min_latency_event() != nullptr) { *proto_decision.mutable_min_latency_event() = ConvertBenchmarkEvent(*decision.min_latency_event()); } proto_decision.set_min_inference_time_us(decision.min_inference_time_us()); return proto_decision; } proto::BenchmarkInitializationFailure ConvertBenchmarkInitializationFailure( const BenchmarkInitializationFailure& init_failure) { proto::BenchmarkInitializationFailure proto_init_failure; proto_init_failure.set_initialization_status( init_failure.initialization_status()); return proto_init_failure; } } proto::ComputeSettings ConvertFromFlatbuffer( const ComputeSettings& settings, bool skip_mini_benchmark_settings) { proto::ComputeSettings proto_settings; proto_settings.set_preference( ConvertExecutionPreference(settings.preference())); if (settings.tflite_settings() != nullptr) { *(proto_settings.mutable_tflite_settings()) = ConvertTfliteSettings(*settings.tflite_settings()); } if (settings.model_namespace_for_statistics() != nullptr) { proto_settings.set_model_namespace_for_statistics( settings.model_namespace_for_statistics()->str()); } if (settings.model_identifier_for_statistics() != nullptr) { proto_settings.set_model_identifier_for_statistics( settings.model_identifier_for_statistics()->str()); } if (!skip_mini_benchmark_settings && settings.settings_to_test_locally() != nullptr) { *(proto_settings.mutable_settings_to_test_locally()) = ConvertMinibenchmarkSettings(*settings.settings_to_test_locally()); } return proto_settings; } proto::ComputeSettings ConvertFromFlatbuffer( const ComputeSettingsT& settings, bool skip_mini_benchmark_settings) { flatbuffers::FlatBufferBuilder fbb; fbb.Finish(ComputeSettings::Pack(fbb, &settings)); auto settings_fbb = flatbuffers::GetRoot<ComputeSettings>(fbb.GetBufferPointer()); return ConvertFromFlatbuffer(*settings_fbb, skip_mini_benchmark_settings); } proto::MiniBenchmarkEvent ConvertFromFlatbuffer( const MiniBenchmarkEvent& event) { proto::MiniBenchmarkEvent proto_event; proto_event.set_is_log_flushing_event(event.is_log_flushing_event()); if (event.best_acceleration_decision() != nullptr) { *proto_event.mutable_best_acceleration_decision() = ConvertBestAccelerationDecision(*event.best_acceleration_decision()); } if (event.initialization_failure() != nullptr) { *proto_event.mutable_initialization_failure() = ConvertBenchmarkInitializationFailure(*event.initialization_failure()); } if (event.benchmark_event() != nullptr) { *proto_event.mutable_benchmark_event() = ConvertBenchmarkEvent(*event.benchmark_event()); } return proto_event; } proto::MiniBenchmarkEvent ConvertFromFlatbuffer( const MiniBenchm
#include "tensorflow/lite/acceleration/configuration/flatbuffer_to_proto.h" #include <memory> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/acceleration/configuration/configuration.pb.h" #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" namespace tflite { namespace acceleration { namespace { class ConversionTest : public ::testing::Test { protected: void CheckDelegateEnum(Delegate input, proto::Delegate output) { settings_.tflite_settings = std::make_unique<TFLiteSettingsT>(); settings_.tflite_settings->delegate = input; const proto::ComputeSettings compute = ConvertFromFlatbuffer(settings_); EXPECT_EQ(output, compute.tflite_settings().delegate()); } void CheckExecutionPreference(ExecutionPreference input, proto::ExecutionPreference output) { settings_.preference = input; const proto::ComputeSettings compute = ConvertFromFlatbuffer(settings_); EXPECT_EQ(output, compute.preference()); } void CheckNNAPIExecutionPreference(NNAPIExecutionPreference input, proto::NNAPIExecutionPreference output) { settings_.tflite_settings = std::make_unique<TFLiteSettingsT>(); settings_.tflite_settings->nnapi_settings = std::make_unique<NNAPISettingsT>(); settings_.tflite_settings->nnapi_settings->execution_preference = input; const proto::ComputeSettings compute = ConvertFromFlatbuffer(settings_); EXPECT_EQ( output, compute.tflite_settings().nnapi_settings().execution_preference()); } void CheckNNAPIExecutionPriority(NNAPIExecutionPriority input, proto::NNAPIExecutionPriority output) { settings_.tflite_settings = std::make_unique<TFLiteSettingsT>(); settings_.tflite_settings->nnapi_settings = std::make_unique<NNAPISettingsT>(); settings_.tflite_settings->nnapi_settings->execution_priority = input; const proto::ComputeSettings compute = ConvertFromFlatbuffer(settings_); EXPECT_EQ(output, compute.tflite_settings().nnapi_settings().execution_priority()); } void CheckGPUBackend(GPUBackend input, proto::GPUBackend output) { settings_.tflite_settings = std::make_unique<TFLiteSettingsT>(); settings_.tflite_settings->gpu_settings = std::make_unique<GPUSettingsT>(); settings_.tflite_settings->gpu_settings->force_backend = input; const proto::ComputeSettings compute = ConvertFromFlatbuffer(settings_); EXPECT_EQ(output, compute.tflite_settings().gpu_settings().force_backend()); } ComputeSettingsT settings_; MiniBenchmarkEventT event_; }; TEST_F(ConversionTest, Delegate) { CheckDelegateEnum(Delegate_NONE, proto::Delegate::NONE); CheckDelegateEnum(Delegate_NNAPI, proto::Delegate::NNAPI); CheckDelegateEnum(Delegate_GPU, proto::Delegate::GPU); CheckDelegateEnum(Delegate_HEXAGON, proto::Delegate::HEXAGON); CheckDelegateEnum(Delegate_EDGETPU, proto::Delegate::EDGETPU); CheckDelegateEnum(Delegate_EDGETPU_CORAL, proto::Delegate::EDGETPU_CORAL); CheckDelegateEnum(Delegate_XNNPACK, proto::Delegate::XNNPACK); CheckDelegateEnum(Delegate_CORE_ML, proto::Delegate::CORE_ML); } TEST_F(ConversionTest, ExecutionPreference) { CheckExecutionPreference(ExecutionPreference_ANY, proto::ExecutionPreference::ANY); CheckExecutionPreference(ExecutionPreference_LOW_LATENCY, proto::ExecutionPreference::LOW_LATENCY); CheckExecutionPreference(ExecutionPreference_LOW_POWER, proto::ExecutionPreference::LOW_POWER); CheckExecutionPreference(ExecutionPreference_FORCE_CPU, proto::ExecutionPreference::FORCE_CPU); } TEST_F(ConversionTest, ModelIdentifier) { settings_.model_identifier_for_statistics = "id"; settings_.model_namespace_for_statistics = "ns"; const proto::ComputeSettings compute = ConvertFromFlatbuffer(settings_); EXPECT_EQ(compute.model_namespace_for_statistics(), "ns"); EXPECT_EQ(compute.model_identifier_for_statistics(), "id"); } TEST_F(ConversionTest, NNAPISettings) { settings_.tflite_settings = std::make_unique<TFLiteSettingsT>(); settings_.tflite_settings->nnapi_settings = std::make_unique<NNAPISettingsT>(); NNAPISettingsT* input_settings = settings_.tflite_settings->nnapi_settings.get(); input_settings->accelerator_name = "a"; input_settings->cache_directory = "d"; input_settings->model_token = "t"; input_settings->allow_fp16_precision_for_fp32 = true; proto::ComputeSettings compute = ConvertFromFlatbuffer(settings_); proto::NNAPISettings output_settings = compute.tflite_settings().nnapi_settings(); EXPECT_EQ(output_settings.accelerator_name(), "a"); EXPECT_EQ(output_settings.cache_directory(), "d"); EXPECT_EQ(output_settings.model_token(), "t"); EXPECT_TRUE(output_settings.allow_fp16_precision_for_fp32()); EXPECT_FALSE(output_settings.allow_nnapi_cpu_on_android_10_plus()); EXPECT_FALSE(output_settings.fallback_settings() .allow_automatic_fallback_on_compilation_error()); EXPECT_FALSE(output_settings.fallback_settings() .allow_automatic_fallback_on_execution_error()); input_settings->fallback_settings = std::make_unique<FallbackSettingsT>(); input_settings->fallback_settings ->allow_automatic_fallback_on_compilation_error = true; compute = ConvertFromFlatbuffer(settings_); output_settings = compute.tflite_settings().nnapi_settings(); EXPECT_TRUE(output_settings.fallback_settings() .allow_automatic_fallback_on_compilation_error()); EXPECT_FALSE(output_settings.fallback_settings() .allow_automatic_fallback_on_execution_error()); input_settings->fallback_settings ->allow_automatic_fallback_on_compilation_error = false; input_settings->fallback_settings ->allow_automatic_fallback_on_execution_error = true; compute = ConvertFromFlatbuffer(settings_); output_settings = compute.tflite_settings().nnapi_settings(); EXPECT_FALSE(output_settings.fallback_settings() .allow_automatic_fallback_on_compilation_error()); EXPECT_TRUE(output_settings.fallback_settings() .allow_automatic_fallback_on_execution_error()); input_settings->allow_fp16_precision_for_fp32 = false; compute = ConvertFromFlatbuffer(settings_); output_settings = compute.tflite_settings().nnapi_settings(); EXPECT_FALSE(output_settings.allow_fp16_precision_for_fp32()); } TEST_F(ConversionTest, NNAPIAllowDynamicDimensions) { settings_.tflite_settings = std::make_unique<TFLiteSettingsT>(); settings_.tflite_settings->nnapi_settings = std::make_unique<NNAPISettingsT>(); NNAPISettingsT* input_settings = settings_.tflite_settings->nnapi_settings.get(); proto::ComputeSettings compute = ConvertFromFlatbuffer(settings_); proto::NNAPISettings output_settings = compute.tflite_settings().nnapi_settings(); EXPECT_FALSE(output_settings.allow_dynamic_dimensions()); input_settings->allow_dynamic_dimensions = true; compute = ConvertFromFlatbuffer(settings_); output_settings = compute.tflite_settings().nnapi_settings(); EXPECT_TRUE(output_settings.allow_dynamic_dimensions()); } TEST_F(ConversionTest, NNAPIBurstComputation) { settings_.tflite_settings = std::make_unique<TFLiteSettingsT>(); settings_.tflite_settings->nnapi_settings = std::make_unique<NNAPISettingsT>(); NNAPISettingsT* input_settings = settings_.tflite_settings->nnapi_settings.get(); proto::ComputeSettings compute = ConvertFromFlatbuffer(settings_); proto::NNAPISettings output_settings = compute.tflite_settings().nnapi_settings(); EXPECT_FALSE(output_settings.use_burst_computation()); input_settings->use_burst_computation = true; compute = ConvertFromFlatbuffer(settings_); output_settings = compute.tflite_settings().nnapi_settings(); EXPECT_TRUE(output_settings.use_burst_computation()); } TEST_F(ConversionTest, NNAPIExecutionPreference) { CheckNNAPIExecutionPreference( NNAPIExecutionPreference_NNAPI_FAST_SINGLE_ANSWER, proto::NNAPIExecutionPreference::NNAPI_FAST_SINGLE_ANSWER); CheckNNAPIExecutionPreference( NNAPIExecutionPreference_NNAPI_LOW_POWER, proto::NNAPIExecutionPreference::NNAPI_LOW_POWER); CheckNNAPIExecutionPreference( NNAPIExecutionPreference_NNAPI_SUSTAINED_SPEED, proto::NNAPIExecutionPreference::NNAPI_SUSTAINED_SPEED); CheckNNAPIExecutionPreference(NNAPIExecutionPreference_UNDEFINED, proto::NNAPIExecutionPreference::UNDEFINED); } TEST_F(ConversionTest, NNAPIExecutionPriority) { CheckNNAPIExecutionPriority( NNAPIExecutionPriority_NNAPI_PRIORITY_LOW, proto::NNAPIExecutionPriority::NNAPI_PRIORITY_LOW); CheckNNAPIExecutionPriority( NNAPIExecutionPriority_NNAPI_PRIORITY_MEDIUM, proto::NNAPIExecutionPriority::NNAPI_PRIORITY_MEDIUM); CheckNNAPIExecutionPriority( NNAPIExecutionPriority_NNAPI_PRIORITY_HIGH, proto::NNAPIExecutionPriority::NNAPI_PRIORITY_HIGH); CheckNNAPIExecutionPriority( NNAPIExecutionPriority_NNAPI_PRIORITY_UNDEFINED, proto::NNAPIExecutionPriority::NNAPI_PRIORITY_UNDEFINED); } TEST_F(ConversionTest, NNAPISupportLibraryHandle) { settings_.tflite_settings = std::make_unique<TFLiteSettingsT>(); settings_.tflite_settings->nnapi_settings = std::make_unique<NNAPISettingsT>(); NNAPISettingsT* input_settings = settings_.tflite_settings->nnapi_settings.get(); proto::ComputeSettings compute = ConvertFromFlatbuffer(settings_); proto::NNAPISettings output_settings = compute.tflite_settings().nnapi_settings(); EXPECT_EQ(output_settings.support_library_handle(), 0); input_settings->support_library_handle = std::numeric_limits<int64_t>::max(); compute = ConvertFromFlatbuffer(settings_); output_settings = compute.tflite_settings().nnapi_settings(); EXPECT_EQ(output_settings.support_library_handle(), std::numeric_limits<int64_t>::max()); } TEST_F(ConversionTest, GPUSettings) { settings_.tflite_settings = std::make_unique<TFLiteSettingsT>(); settings_.tflite_settings->gpu_settings = std::make_unique<GPUSettingsT>(); GPUSettingsT* input_settings = settings_.tflite_settings->gpu_settings.get(); input_settings->is_precision_loss_allowed = true; proto::ComputeSettings compute = ConvertFromFlatbuffer(settings_); proto::GPUSettings output_settings = compute.tflite_settings().gpu_settings(); EXPECT_TRUE(output_settings.is_precision_loss_allowed()); input_settings->is_precision_loss_allowed = false; compute = ConvertFromFlatbuffer(settings_); output_settings = compute.tflite_settings().gpu_settings(); EXPECT_FALSE(output_settings.is_precision_loss_allowed()); EXPECT_TRUE(output_settings.enable_quantized_inference()); input_settings->enable_quantized_inference = false; compute = ConvertFromFlatbuffer(settings_); output_settings = compute.tflite_settings().gpu_settings(); EXPECT_FALSE(output_settings.enable_quantized_inference()); } TEST_F(ConversionTest, GPUBacked) { CheckGPUBackend(GPUBackend_UNSET, proto::GPUBackend::UNSET); CheckGPUBackend(GPUBackend_OPENCL, proto::GPUBackend::OPENCL); CheckGPUBackend(GPUBackend_OPENGL, proto::GPUBackend::OPENGL); } TEST_F(ConversionTest, GPUInferencePriority) { settings_.tflite_settings = std::make_unique<TFLiteSettingsT>(); settings_.tflite_settings->gpu_settings = std::make_unique<GPUSettingsT>(); GPUSettingsT* input_settings = settings_.tflite_settings->gpu_settings.get(); input_settings->inference_priority1 = GPUInferencePriority_GPU_PRIORITY_MIN_MEMORY_USAGE; input_settings->inference_priority2 = GPUInferencePriority_GPU_PRIORITY_MIN_LATENCY; proto::ComputeSettings compute = ConvertFromFlatbuffer(settings_); proto::GPUSettings output_settings = compute.tflite_settings().gpu_settings(); EXPECT_EQ(proto::GPUInferencePriority::GPU_PRIORITY_MIN_MEMORY_USAGE, output_settings.inference_priority1()); EXPECT_EQ(proto::GPUInferencePriority::GPU_PRIORITY_MIN_LATENCY, output_settings.inference_priority2()); EXPECT_EQ(proto::GPUInferencePriority::GPU_PRIORITY_AUTO, output_settings.inference_priority3()); } TEST_F(ConversionTest, GPUInferencePreference) { settings_.tflite_settings = std::make_unique<TFLiteSettingsT>(); settings_.tflite_settings->gpu_settings = std::make_unique<GPUSettingsT>(); GPUSettingsT* input_settings = settings_.tflite_settings->gpu_settings.get(); input_settings->inference_preference = GPUInferenceUsage_GPU_INFERENCE_PREFERENCE_FAST_SINGLE_ANSWER; proto::ComputeSettings compute = ConvertFromFlatbuffer(settings_); proto::GPUSettings output_settings = compute.tflite_settings().gpu_settings(); EXPECT_EQ( proto::GPUInferenceUsage::GPU_INFERENCE_PREFERENCE_FAST_SINGLE_ANSWER, output_settings.inference_preference()); input_settings->inference_preference = GPUInferenceUsage_GPU_INFERENCE_PREFERENCE_SUSTAINED_SPEED; compute = ConvertFromFlatbuffer(settings_); output_settings = compute.tflite_settings().gpu_settings(); EXPECT_EQ(proto::GPUInferenceUsage::GPU_INFERENCE_PREFERENCE_SUSTAINED_SPEED, output_settings.inference_preference()); } TEST_F(ConversionTest, HexagonSettings) { settings_.tflite_settings = std::make_unique<TFLiteSettingsT>(); settings_.tflite_settings->hexagon_settings = std::make_unique<HexagonSettingsT>(); HexagonSettingsT* input_settings = settings_.tflite_settings->hexagon_settings.get(); input_settings->debug_level = 1; input_settings->powersave_level = 2; input_settings->print_graph_profile = true; const proto::ComputeSettings compute = ConvertFromFlatbuffer(settings_); const proto::HexagonSettings& output_settings = compute.tflite_settings().hexagon_settings(); EXPECT_EQ(1, output_settings.debug_level()); EXPECT_EQ(2, output_settings.powersave_level()); EXPECT_TRUE(output_settings.print_graph_profile()); EXPECT_FALSE(output_settings.print_graph_debug()); } TEST_F(ConversionTest, EdgeTpuSettings) { settings_.tflite_settings = std::make_unique<TFLiteSettingsT>(); settings_.tflite_settings->edgetpu_settings = std::make_unique<EdgeTpuSettingsT>(); EdgeTpuSettingsT* input_settings = settings_.tflite_settings->edgetpu_settings.get(); constexpr EdgeTpuPowerState kInferencePowerState = EdgeTpuPowerState_ACTIVE; constexpr EdgeTpuPowerState kInactivePowerState = EdgeTpuPowerState_ACTIVE_MIN_POWER; constexpr int64_t kInactiveTimeoutUs = 300000; constexpr int kInferencePriority = 2; const std::string kModelToken = "model_token"; constexpr EdgeTpuSettings_::FloatTruncationType kFloatTruncationType = EdgeTpuSettings_::FloatTruncationType_HALF; input_settings->inference_power_state = kInferencePowerState; input_settings->inference_priority = kInferencePriority; input_settings->model_token = kModelToken; input_settings->float_truncation_type = kFloatTruncationType; std::unique_ptr<EdgeTpuInactivePowerConfigT> inactive_power_config( new EdgeTpuInactivePowerConfigT()); inactive_power_config->inactive_power_state = kInactivePowerState; inactive_power_config->inactive_timeout_us = kInactiveTimeoutUs; input_settings->inactive_power_configs.emplace_back( std::move(inactive_power_config)); constexpr EdgeTpuDeviceSpec_::PlatformType kPlatformType = EdgeTpuDeviceSpec_::PlatformType_MMIO; constexpr int kNumChips = 1; const std::string kDevicePath = "/dev/abrolhos"; constexpr int kChipFamily = 1; input_settings->edgetpu_device_spec = std::make_unique<EdgeTpuDeviceSpecT>(); EdgeTpuDeviceSpecT* input_spec = input_settings->edgetpu_device_spec.get(); input_spec->platform_type = kPlatformType; input_spec->num_chips = kNumChips; input_spec->chip_family = kChipFamily; proto::ComputeSettings compute = ConvertFromFlatbuffer(settings_); proto::EdgeTpuSettings output_settings = compute.tflite_settings().edgetpu_settings(); EXPECT_EQ( static_cast<EdgeTpuPowerState>(output_settings.inference_power_state()), kInferencePowerState); EXPECT_EQ(output_settings.inactive_power_configs().size(), 1); EXPECT_EQ( static_cast<EdgeTpuPowerState>(output_settings.inactive_power_configs() .at(0) .inactive_power_state()), kInactivePowerState); EXPECT_EQ( output_settings.inactive_power_configs().at(0).inactive_timeout_us(), kInactiveTimeoutUs); EXPECT_EQ(output_settings.inference_priority(), kInferencePriority); EXPECT_EQ(output_settings.model_token(), kModelToken); EXPECT_EQ(static_cast<EdgeTpuSettings_::FloatTruncationType>( output_settings.float_truncation_type()), kFloatTruncationType); EXPECT_EQ(static_cast<EdgeTpuDeviceSpec_::PlatformType>( output_settings.edgetpu_device_spec().platform_type()), kPlatformType); EXPECT_EQ(output_settings.edgetpu_device_spec().num_chips(), kNumChips); EXPECT_EQ(output_settings.edgetpu_device_spec().device_paths_size(), 0); EXPECT_EQ(output_settings.edgetpu_device_spec().chip_family(), kChipFamily); input_spec->device_paths.push_back(kDevicePath); compute = ConvertFromFlatbuffer(settings_); output_settings = compute.tflite_settings().edgetpu_settings(); EXPECT_EQ(output_settings.edgetpu_device_spec().device_paths().size(), 1); EXPECT_EQ(output_settings.edgetpu_device_spec().device_paths()[0], kDevicePath); } TEST_F(ConversionTest, XNNPackSettings) { settings_.tflite_settings = std::make_unique<TFLiteSettingsT>(); settings_.tflite_settings->xnnpack_settings = std::make_unique<XNNPackSettingsT>(); XNNPackSettingsT* input_settings = settings_.tflite_settings->xnnpack_settings.get(); input_settings->num_threads = 2; input_settings->flags = tflite::XNNPackFlags::XNNPackFlags_TFLITE_XNNPACK_DELEGATE_FLAG_QS8_QU8; const proto::ComputeSettings compute = ConvertFromFlatbuffer(settings_); EXPECT_EQ(compute.tflite_settings().xnnpack_settings().num_threads(), 2); EXPECT_EQ(compute.tflite_settings().xnnpack_settings().flags(), 3); } TEST_F(ConversionTest, CoreMLSettings) { settings_.tflite_settings = std::make_unique<TFLiteSettingsT>(); settings_.tflite_settings->coreml_settings = std::make_unique<CoreMLSettingsT>(); CoreMLSettingsT* input_settings = settings_.tflite_settings->coreml_settings.get(); input_settings->enabled_devices = CoreMLSettings_::EnabledDevices_DEVICES_WITH_NEURAL_ENGINE; input_settings->coreml_version = 3; input_settings->max_delegated_partitions = 10; input_settings->min_nodes_per_partition = 4; const proto::ComputeSettings compute = ConvertFromFlatbuffer(settings_); EXPECT_EQ(compute.tflite_settings().coreml_settings().enabled_devices(), proto::CoreMLSettings::DEVICES_WITH_NEURAL_ENGINE); EXPECT_EQ(compute.tflite_settings().coreml_settings().coreml_version(), 3); EXPECT_EQ( compute.tflite_settings().coreml_settings().max_delegated_partitions(), 10); EXPECT_EQ( compute.tflite_settings().coreml_settings().min_nodes_per_partition(), 4); } TEST_F(ConversionTest, CoralSettings) { settings_.tflite_settings = std::make_unique<TFLiteSettingsT>(); settings_.tflite_settings->coral_settings = std::make_unique<CoralSettingsT>(); CoralSettingsT* input_settings = settings_.tflite_settings->coral_settings.get(); input_settings->device = "test"; input_settings->performance = CoralSettings_::Performance_HIGH; input_settings->usb_always_dfu = true; input_settings->usb_max_bulk_in_queue_length = 768; const proto::ComputeSettings compute = ConvertFromFlatbuffer(settings_); const proto::CoralSettings& output_settings = compute.tflite_settings().coral_settings(); EXPECT_EQ("test", output_settings.device()); EXPECT_TRUE(output_settings.usb_always_dfu()); EXPECT_EQ(proto::CoralSettings::HIGH, output_settings.performance()); EXPECT_EQ(768, output_settings.usb_max_bulk_in_queue_length()); } TEST_F(ConversionTest, StableDelegateLoaderSettings) { const std::string kDelegatePath = "TEST_DELEGATE_PATH"; const std::string kDelegateName = "TEST_DELEGATE_NAME"; settings_.tflite_settings = std::make_unique<TFLiteSettingsT>(); settings_.tflite_settings->stable_delegate_loader_settings = std::make_unique<StableDelegateLoaderSettingsT>(); settings_.tflite_settings->stable_delegate_loader_settings->delegate_path = kDelegatePath; settings_.tflite_settings->stable_delegate_loader_settings->delegate_name = kDelegateName; const proto::StableDelegateLoaderSettings output_settings = ConvertFromFlatbuffer(settings_) .tflite_settings() .stable_delegate_loader_settings(); EXPECT_EQ(output_settings.delegate_path(), kDelegatePath); EXPECT_EQ(output_settings.delegate_name(), kDelegateName); } TEST_F(ConversionTest, CPUSettings) { settings_.tflite_settings = std::make_unique<TFLiteSettingsT>(); settings_.tflite_settings->cpu_settings = std::make_unique<CPUSettingsT>(); settings_.tflite_settings->cpu_settings->num_threads = 2; const proto::ComputeSettings compute = ConvertFromFlatbuffer(settings_); EXPECT_EQ(compute.tflite_settings().cpu_settings().num_threads(), 2); } TEST_F(ConversionTest, MaxDelegatedPartitions) { settings_.tflite_settings = std::make_unique<TFLiteSettingsT>(); settings_.tflite_settings->max_delegated_partitions = 2; const proto::ComputeSettings compute = ConvertFromFlatbuffer(settings_); EXPECT_EQ(compute.tflite_settings().max_delegated_partitions(), 2); } TEST_F(ConversionTest, GoogleEdgeTpuSettings) { settings_.tflite_settings = std::make_unique<TFLiteSettingsT>(); settings_.tflite_settings->google_edgetpu_settings = std::make_unique<GoogleEdgeTpuSettingsT>(); GoogleEdgeTpuSettingsT* input_settings = settings_.tflite_settings->google_edgetpu_settings.get(); input_settings->priority = GoogleEdgeTpuSettings_::Priority_PRIORITY_HIGH; input_settings->allow_fp16_precision_for_fp32 = true; std::vector<uint8_t> extension_data{1, 2, 3}; input_settings->extension_data = extension_data; input_settings->model_identifier = "model"; input_settings->prefer_cache_coherency_for_inputs = GoogleEdgeTpuSettings_::TriState_TRISTATE_TRUE; proto::ComputeSettings compute = ConvertFromFlatbuffer(settings_); proto::GoogleEdgeTpuSettings output_settings = compute.tflite_settings().google_edgetpu_settings(); EXPECT_EQ(output_settings.priority(), proto::GoogleEdgeTpuSettings::PRIORITY_HIGH); EXPECT_TRUE(output_settings.allow_fp16_precision_for_fp32()); EXPECT_EQ(output_settings.extension_data().size(), 3); EXPECT_EQ(output_settings.model_identifier(), "model"); EXPECT_EQ(output_settings.prefer_cache_coherency_for_inputs(), proto::GoogleEdgeTpuSettings::TRISTATE_TRUE); } TEST_F(ConversionTest, CompilationCachingSettings) { settings_.tflite_settings = std::make_unique<TFLiteSettingsT>(); settings_.tflite_settings->compilation_caching_settings = std::make_unique<CompilationCachingSettingsT>(); CompilationCachingSettingsT* input_settings = settings_.tflite_settings->compilation_caching_settings.get(); input_settings->cache_dir = "/tmp"; input_settings->model_token = "model"; proto::ComputeSettings compute = ConvertFromFlatbuffer(settings_); proto::CompilationCachingSettings output_settings = compute.tflite_settings().compilation_caching_settings(); EXPECT_EQ(output_settings.cache_dir(), "/tmp"); EXPECT_EQ(output_settings.model_token(), "model"); } TEST_F(ConversionTest, MtkNeuronSettings) { settings_.tflite_settings = std::make_unique<TFLiteSettingsT>(); settings_.tflite_settings->mtk_neuron_settings = std::make_unique<MtkNeuronSettingsT>(); MtkNeuronSettingsT* input_settings = settings_.tflite_settings->mtk_neuron_settings.get(); input_settings->execution_preference = MtkNeuronSettings_::ExecutionPreference_PREFERENCE_UNDEFINED; input_settings->execution_priority = MtkNeuronSettings_::ExecutionPriority_PRIORITY_MEDIUM; input_settings->optimization_hints = { MtkNeuronSettings_::OptimizationHint_OPTIMIZATION_LOW_LATENCY, MtkNeuronSettings_::OptimizationHint_OPTIMIZATION_BATCH_PROCESSING}; input_settings->operation_check_mode = MtkNeuronSettings_::OperationCheckMode_PER_NODE_OPERATION_CHECK; input_settings->allow_fp16_precision_for_fp32 = true; input_settings->use_ahwb = false; input_settings->use_cacheable_buffer = true; input_settings->compile_options = {"TEST_COMPILE_OPTIONS"}; input_settings->accelerator_names = {"TEST_ACCELERATOR_NAME"}; input_settings->neuron_config_path = "TEST_NEURON_CONFIG_PATH"; const proto::ComputeSettings compute = ConvertFromFlatbuffer(settings_); const proto::MtkNeuronSettings& output_settings = compute.tflite_settings().mtk_neuron_settings(); EXPECT_EQ(output_settings.execution_preference(), proto::MtkNeuronSettings::PREFERENCE_UNDEFINED); EXPECT_EQ(output_settings.execution_priority(), proto::MtkNeuronSettings::PRIORITY_MEDIUM); EXPECT_EQ(output_settings.optimization_hints().size(), 2); EXPECT_EQ(output_settings.optimization_hints().at(0), proto::MtkNeuronSettings::OPTIMIZATION_LOW_LATENCY); EXPECT_EQ(output_settings.optimization_hints().at(1), proto::MtkNeuronSettings::OPTIMIZATION_BATCH_PROCESSING); EXPECT_EQ(output_settings.operation_check_mode(), proto::MtkNeuronSettings::PER_NODE_OPERATION_CHECK); EXPECT_TRUE(output_settings.allow_fp16_precision_for_fp32()); EXPECT_FALSE(output_settings.use_ahwb()); EXPECT_TRUE(output_settings.use_cacheable_buffer()); EXPECT_EQ(output_settings.compile_options().size(), 1); EXPECT_EQ(output_settings.compile_options().at(0), "TEST_COMPILE_OPTIONS"); EXPECT_EQ(output_settings.accelerator_names().size(), 1); EXPECT_EQ(output_settings.accelerator_names().at(0), "TEST_ACCELERATOR_NAME"); EXPECT_EQ(output_settings.neuron_config_path(), "TEST_NEURON_CONFIG_PATH"); } TEST_F(ConversionTest, MiniBenchmarkSettings) { settings_.tflite_settings = std::make_unique<TFLiteSettingsT>(); settings_.tflite_settings->cpu_settings = std::make_unique<CPUSettingsT>(); settings_.tflite_settings->cpu_settings->num_threads = 2; settings_.model_identifier_for_statistics = "id"; settings_.model_namespace_for_statistics = "ns"; settings_.settings_to_test_locally = std::make_unique<MinibenchmarkSettingsT>(); MinibenchmarkSettingsT* mini_settings = settings_.settings_to_test_locally.get(); mini_settings->model_file = std::make_unique<ModelFileT>(); mini_settings->model_file->filename = "test_model"; mini_settings->storage_paths = std::make_unique<BenchmarkStoragePathsT>(); mini_settings->storage_paths->storage_file_path = "/data/local/tmp"; std::unique_ptr<TFLiteSettingsT> xnnpack(new TFLiteSettingsT()); xnnpack->xnnpack_settings = std::make_unique<XNNPackSettingsT>(); xnnpack->xnnpack_settings->num_threads = 2; std::unique_ptr<TFLiteSettingsT> hexagon(new TFLiteSettingsT()); hexagon->hexagon_settings = std::make_unique<HexagonSettingsT>(); hexagon->hexagon_settings->powersave_level = 3; std::unique_ptr<TFLiteSettingsT> coreml(new TFLiteSettingsT()); coreml->coreml_settings = std::make_unique<CoreMLSettingsT>(); coreml->coreml_settings->enabled_devices = CoreMLSettings_::EnabledDevices_DEVICES_WITH_NEURAL_ENGINE; coreml->coreml_settings->coreml_version = 3; coreml->coreml_settings->max_delegated_partitions = 10; coreml->coreml_settings->min_nodes_per_partition = 4; mini_settings->settings_to_test.emplace_back(std::move(xnnpack)); mini_settings->settings_to_test.emplace_back(std::move(hexagon)); mini_settings->settings_to_test.emplace_back(std::move(coreml)); proto::ComputeSettings compute = ConvertFromFlatbuffer(settings_); EXPECT_EQ(2, compute.tflite_settings().cpu_settings().num_threads()); EXPECT_EQ("id", compute.model_identifier_for_statistics()); EXPECT_EQ("ns", compute.model_namespace_for_statistics()); EXPECT_TRUE(compute.has_settings_to_test_locally()); const proto::MinibenchmarkSettings& mini_output = compute.settings_to_test_locally(); EXPECT_EQ("test_model", mini_output.model_file().filename()); EXPECT_EQ("/data/local/tmp", mini_output.storage_paths().storage_file_path()); EXPECT_EQ(3, mini_output.settings_to_test_size()); EXPECT_EQ( 2, mini_output.settings_to_test().at(0).xnnpack_settings().num_threads()); EXPECT_EQ(3, mini_output.settings_to_test() .at(1) .hexagon_settings() .powersave_level()); EXPECT_EQ( proto::CoreMLSettings::DEVICES_WITH_NEURAL_ENGINE, mini_output.settings_to_test().at(2).coreml_settings().enabled_devices()); EXPECT_EQ( 3, mini_output.settings_to_test().at(2).coreml_settings().coreml_version()); EXPECT_EQ(10, mini_output.settings_to_test() .at(2) .coreml_settings() .max_delegated_partitions()); EXPECT_EQ(4, mini_output.settings_to_test() .at(2) .coreml_settings() .min_nodes_per_partition()); compute = ConvertFromFlatbuffer(settings_, true); EXPECT_EQ(2, compute.tflite_settings().cpu_settings().num_threads()); EXPECT_EQ("id", compute.model_identifier_for_statistics()); EXPECT_EQ("ns", compute.model_namespace_for_statistics()); EXPECT_FALSE(compute.has_settings_to_test_locally()); } TEST_F(ConversionTest, BestAccelerationDecisionEvent) { event_.is_log_flushing_event = true; event_.best_acceleration_decision = std::make_unique<BestAccelerationDecisionT>(); event_.best_acceleration_decision->number_of_source_events = 4; event_.best_acceleration_decision->min_inference_time_us = 3000; proto::MiniBenchmarkEvent proto_event = ConvertFromFlatbuffer(event_); EXPECT_TRUE(proto_event.is_log_flushing_event()); const auto& best_decision = proto_event.best_acceleration_decision(); EXPECT_EQ(4, best_decision.number_of_source_events()); EXPECT_EQ(3000, best_decision.min_inference_time_us()); EXPECT_FALSE(best_decision.has_min_latency_event()); event_.best_acceleration_decision->min_latency_event = std::make_unique<BenchmarkEventT>(); auto* min_event = event_.best_acceleration_decision->min_latency_event.get(); min_event->event_type = BenchmarkEventType_END; min_event->tflite_settings = std::make_unique<TFLiteSettingsT>(); min_event->tflite_settings->delegate = Delegate_XNNPACK; min_event->tflite_settings->xnnpack_settings = std::make_unique<XNNPackSettingsT>(); min_event->tflite_settings->xnnpack_settings->num_threads = 2; min_event->result = std::make_unique<BenchmarkResultT>(); min_event->result->initialization_time_us.push_back(100); min_event->result->initialization_time_us.push_back(110); min_event->result->inference_time_us.push_back(3000); min_event->result->inference_time_us.push_back(3500); min_event->result->max_memory_kb = 1234; min_event->result->ok = true; min_event->boottime_us = 1111; min_event->wallclock_us = 2222; proto_event = ConvertFromFlatbuffer(event_); EXPECT_TRUE(proto_event.best_acceleration_decision().has_min_latency_event()); const auto& proto_min_event = proto_event.best_acceleration_decision().min_latency_event(); EXPECT_EQ(proto::BenchmarkEventType::END, proto_min_event.event_type()); EXPECT_EQ(proto::Delegate::XNNPACK, proto_min_event.tflite_settings().delegate()); EXPECT_EQ(2,
867
cpp
tensorflow/tensorflow
stable_delegate_plugin
tensorflow/lite/acceleration/configuration/stable_delegate_plugin.cc
tensorflow/lite/acceleration/configuration/stable_delegate_plugin_test.cc
#ifndef TENSORFLOW_LITE_ACCELERATION_CONFIGURATION_STABLE_DELEGATE_PLUGIN_H_ #define TENSORFLOW_LITE_ACCELERATION_CONFIGURATION_STABLE_DELEGATE_PLUGIN_H_ #include <memory> #include <string> #include "tensorflow/lite/acceleration/configuration/c/delegate_plugin.h" #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/core/acceleration/configuration/delegate_registry.h" #include "tensorflow/lite/delegates/utils/experimental/stable_delegate/delegate_loader.h" #include "tensorflow/lite/tools/logging.h" namespace tflite { namespace delegates { class StableDelegatePlugin : public DelegatePluginInterface { public: static std::unique_ptr<StableDelegatePlugin> New( const TFLiteSettings& tflite_settings) { return std::make_unique<StableDelegatePlugin>(tflite_settings); } explicit StableDelegatePlugin(const TFLiteSettings& tflite_settings) { TFLiteSettingsT tflite_settings_t; tflite_settings.UnPackTo(&tflite_settings_t); tflite_settings_builder_.Finish( CreateTFLiteSettings(tflite_settings_builder_, &tflite_settings_t)); const StableDelegateLoaderSettings* stable_delegate_loader_settings = GetTFLiteSettings()->stable_delegate_loader_settings(); if (!stable_delegate_loader_settings || !stable_delegate_loader_settings->delegate_path() || stable_delegate_loader_settings->delegate_path()->Length() == 0) { TFLITE_LOG(ERROR) << "The delegate path field is not available from the " "provided stable delegate loader settings."; return; } const auto* stable_delegate_ = utils::LoadDelegateFromSharedLibrary( stable_delegate_loader_settings->delegate_path()->str()); if (!stable_delegate_) { TFLITE_LOG(ERROR) << "Failed to load stable delegate plugin symbol from " << stable_delegate_loader_settings->delegate_path(); return; } stable_delegate_plugin_ = stable_delegate_->delegate_plugin; TFLITE_LOG(INFO) << "The stable delegate plugin has loaded delegate plugin for " << stable_delegate_->delegate_name; } TfLiteDelegatePtr Create() override { return TfLiteDelegatePtr( stable_delegate_plugin_->create(GetTFLiteSettings()), stable_delegate_plugin_->destroy); } int GetDelegateErrno(TfLiteOpaqueDelegate* from_delegate) override { return stable_delegate_plugin_->get_delegate_errno(from_delegate); } private: const TFLiteSettings* GetTFLiteSettings() { return flatbuffers::GetRoot<TFLiteSettings>( tflite_settings_builder_.GetBufferPointer()); } const TfLiteOpaqueDelegatePlugin* stable_delegate_plugin_; flatbuffers::FlatBufferBuilder tflite_settings_builder_; }; } } #endif #include "tensorflow/lite/acceleration/configuration/stable_delegate_plugin.h" namespace tflite { namespace delegates { TFLITE_REGISTER_DELEGATE_FACTORY_FUNCTION(StableDelegatePlugin, StableDelegatePlugin::New); } }
#include <memory> #include <gtest/gtest.h> #include "pthreadpool.h" #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/core/acceleration/configuration/delegate_registry.h" #include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h" namespace tflite { class StableDelegatePluginTest : public testing::Test { public: static constexpr int kNumThreadsForTest = 7; static constexpr tflite::XNNPackFlags kFlagsForTest = tflite::XNNPackFlags::XNNPackFlags_TFLITE_XNNPACK_DELEGATE_FLAG_QS8_QU8; static constexpr char kDelegateBinaryPath[] = "tensorflow/lite/delegates/utils/experimental/" "stable_delegate/libtensorflowlite_stable_xnnpack_delegate.so"; void SetUp() override { flatbuffers::Offset<flatbuffers::String> stable_delegate_path_offset = flatbuffer_builder_.CreateString(kDelegateBinaryPath); StableDelegateLoaderSettingsBuilder stable_delegate_loader_settings_builder( flatbuffer_builder_); stable_delegate_loader_settings_builder.add_delegate_path( stable_delegate_path_offset); flatbuffers::Offset<StableDelegateLoaderSettings> stable_delegate_loader_settings = stable_delegate_loader_settings_builder.Finish(); XNNPackSettingsBuilder xnnpack_settings_builder(flatbuffer_builder_); xnnpack_settings_builder.add_num_threads(kNumThreadsForTest); xnnpack_settings_builder.add_flags(kFlagsForTest); flatbuffers::Offset<XNNPackSettings> xnnpack_settings = xnnpack_settings_builder.Finish(); TFLiteSettingsBuilder tflite_settings_builder(flatbuffer_builder_); tflite_settings_builder.add_stable_delegate_loader_settings( stable_delegate_loader_settings); tflite_settings_builder.add_xnnpack_settings(xnnpack_settings); tflite_settings_builder.add_delegate(Delegate_XNNPACK); flatbuffers::Offset<TFLiteSettings> tflite_settings = tflite_settings_builder.Finish(); flatbuffer_builder_.Finish(tflite_settings); tflite_settings_ = flatbuffers::GetRoot<TFLiteSettings>( flatbuffer_builder_.GetBufferPointer()); delegate_plugin_ = delegates::DelegatePluginRegistry::CreateByName( "StableDelegatePlugin", *tflite_settings_); ASSERT_NE(delegate_plugin_, nullptr); } void TearDown() override { delegate_plugin_.reset(); } protected: flatbuffers::FlatBufferBuilder flatbuffer_builder_; const TFLiteSettings *tflite_settings_; std::unique_ptr<delegates::DelegatePluginInterface> delegate_plugin_; }; TEST_F(StableDelegatePluginTest, CanCreateAndDestroyDelegate) { delegates::TfLiteDelegatePtr delegate = delegate_plugin_->Create(); EXPECT_NE(delegate, nullptr); } TEST_F(StableDelegatePluginTest, CanGetDelegateErrno) { delegates::TfLiteDelegatePtr delegate = delegate_plugin_->Create(); EXPECT_EQ(delegate_plugin_->GetDelegateErrno(delegate.get()), 0); } TEST_F(StableDelegatePluginTest, SetsCorrectThreadCount) { delegates::TfLiteDelegatePtr delegate = delegate_plugin_->Create(); pthreadpool_t threadpool = static_cast<pthreadpool_t>( TfLiteXNNPackDelegateGetThreadPool(delegate.get())); EXPECT_EQ(pthreadpool_get_threads_count(threadpool), kNumThreadsForTest); } }
868
cpp
tensorflow/tensorflow
proto_to_flatbuffer
tensorflow/lite/acceleration/configuration/proto_to_flatbuffer.cc
tensorflow/lite/acceleration/configuration/proto_to_flatbuffer_test.cc
#ifndef TENSORFLOW_LITE_ACCELERATION_CONFIGURATION_PROTO_TO_FLATBUFFER_H_ #define TENSORFLOW_LITE_ACCELERATION_CONFIGURATION_PROTO_TO_FLATBUFFER_H_ #include "flatbuffers/flatbuffers.h" #include "tensorflow/lite/acceleration/configuration/configuration.pb.h" #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" namespace tflite { const TFLiteSettings* ConvertFromProto( const proto::TFLiteSettings& proto_settings, flatbuffers::FlatBufferBuilder* builder); const ComputeSettings* ConvertFromProto( const proto::ComputeSettings& proto_settings, flatbuffers::FlatBufferBuilder* builder); const MinibenchmarkSettings* ConvertFromProto( const proto::MinibenchmarkSettings& proto_settings, flatbuffers::FlatBufferBuilder* builder); } #endif #include "tensorflow/lite/acceleration/configuration/proto_to_flatbuffer.h" #include <cstdint> #include "flatbuffers/buffer.h" #include "flatbuffers/flatbuffers.h" #include "tensorflow/lite/acceleration/configuration/configuration.pb.h" #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/minimal_logging.h" namespace tflite { using ::flatbuffers::FlatBufferBuilder; using ::flatbuffers::Offset; using ::flatbuffers::String; using ::flatbuffers::Vector; ExecutionPreference ConvertExecutionPreference( proto::ExecutionPreference preference) { switch (preference) { case proto::ExecutionPreference::ANY: return ExecutionPreference_ANY; case proto::ExecutionPreference::LOW_LATENCY: return ExecutionPreference_LOW_LATENCY; case proto::ExecutionPreference::LOW_POWER: return ExecutionPreference_LOW_POWER; case proto::ExecutionPreference::FORCE_CPU: return ExecutionPreference_FORCE_CPU; } TFLITE_LOG_PROD(TFLITE_LOG_ERROR, "Unexpected value for ExecutionPreference: %d", preference); return ExecutionPreference_ANY; } Delegate ConvertDelegate(proto::Delegate delegate) { switch (delegate) { case proto::Delegate::NONE: return Delegate_NONE; case proto::Delegate::NNAPI: return Delegate_NNAPI; case proto::Delegate::GPU: return Delegate_GPU; case proto::Delegate::HEXAGON: return Delegate_HEXAGON; case proto::Delegate::XNNPACK: return Delegate_XNNPACK; case proto::Delegate::EDGETPU: return Delegate_EDGETPU; case proto::Delegate::EDGETPU_CORAL: return Delegate_EDGETPU_CORAL; case proto::Delegate::CORE_ML: return Delegate_CORE_ML; case proto::Delegate::ARMNN: return Delegate_ARMNN; case proto::Delegate::MTK_NEURON: return Delegate_MTK_NEURON; } TFLITE_LOG_PROD(TFLITE_LOG_ERROR, "Unexpected value for Delegate: %d", delegate); return Delegate_NONE; } NNAPIExecutionPreference ConvertNNAPIExecutionPreference( proto::NNAPIExecutionPreference preference) { switch (preference) { case proto::NNAPIExecutionPreference::UNDEFINED: return NNAPIExecutionPreference_UNDEFINED; case proto::NNAPIExecutionPreference::NNAPI_LOW_POWER: return NNAPIExecutionPreference_NNAPI_LOW_POWER; case proto::NNAPIExecutionPreference::NNAPI_FAST_SINGLE_ANSWER: return NNAPIExecutionPreference_NNAPI_FAST_SINGLE_ANSWER; case proto::NNAPIExecutionPreference::NNAPI_SUSTAINED_SPEED: return NNAPIExecutionPreference_NNAPI_SUSTAINED_SPEED; } TFLITE_LOG_PROD(TFLITE_LOG_ERROR, "Unexpected value for NNAPIExecutionPreference: %d", preference); return NNAPIExecutionPreference_UNDEFINED; } NNAPIExecutionPriority ConvertNNAPIExecutionPriority( proto::NNAPIExecutionPriority priority) { switch (priority) { case proto::NNAPIExecutionPriority::NNAPI_PRIORITY_UNDEFINED: return NNAPIExecutionPriority_NNAPI_PRIORITY_UNDEFINED; case proto::NNAPIExecutionPriority::NNAPI_PRIORITY_LOW: return NNAPIExecutionPriority_NNAPI_PRIORITY_LOW; case proto::NNAPIExecutionPriority::NNAPI_PRIORITY_MEDIUM: return NNAPIExecutionPriority_NNAPI_PRIORITY_MEDIUM; case proto::NNAPIExecutionPriority::NNAPI_PRIORITY_HIGH: return NNAPIExecutionPriority_NNAPI_PRIORITY_HIGH; } TFLITE_LOG_PROD(TFLITE_LOG_ERROR, "Unexpected value for NNAPIExecutionPriority: %d", priority); return NNAPIExecutionPriority_NNAPI_PRIORITY_UNDEFINED; } GPUBackend ConvertGPUBackend(proto::GPUBackend backend) { switch (backend) { case proto::GPUBackend::UNSET: return GPUBackend_UNSET; case proto::GPUBackend::OPENCL: return GPUBackend_OPENCL; case proto::GPUBackend::OPENGL: return GPUBackend_OPENGL; } TFLITE_LOG_PROD(TFLITE_LOG_ERROR, "Unexpected value for GPUBackend: %d", backend); return GPUBackend_UNSET; } GPUInferenceUsage ConvertGPUInferenceUsage( proto::GPUInferenceUsage preference) { switch (preference) { case proto::GPUInferenceUsage::GPU_INFERENCE_PREFERENCE_FAST_SINGLE_ANSWER: return GPUInferenceUsage_GPU_INFERENCE_PREFERENCE_FAST_SINGLE_ANSWER; case proto::GPUInferenceUsage::GPU_INFERENCE_PREFERENCE_SUSTAINED_SPEED: return GPUInferenceUsage_GPU_INFERENCE_PREFERENCE_SUSTAINED_SPEED; } TFLITE_LOG_PROD(TFLITE_LOG_ERROR, "Unexpected value for GPUInferenceUsage: %d", preference); return GPUInferenceUsage_GPU_INFERENCE_PREFERENCE_FAST_SINGLE_ANSWER; } GPUInferencePriority ConvertGPUInferencePriority( proto::GPUInferencePriority priority) { switch (priority) { case proto::GPUInferencePriority::GPU_PRIORITY_AUTO: return GPUInferencePriority_GPU_PRIORITY_AUTO; case proto::GPUInferencePriority::GPU_PRIORITY_MAX_PRECISION: return GPUInferencePriority_GPU_PRIORITY_MAX_PRECISION; case proto::GPUInferencePriority::GPU_PRIORITY_MIN_LATENCY: return GPUInferencePriority_GPU_PRIORITY_MIN_LATENCY; case proto::GPUInferencePriority::GPU_PRIORITY_MIN_MEMORY_USAGE: return GPUInferencePriority_GPU_PRIORITY_MIN_MEMORY_USAGE; } TFLITE_LOG_PROD(TFLITE_LOG_ERROR, "Unexpected value for GPUInferencePriority: %d", priority); return GPUInferencePriority_GPU_PRIORITY_AUTO; } EdgeTpuPowerState ConvertEdgeTpuPowerState(proto::EdgeTpuPowerState state) { switch (state) { case proto::EdgeTpuPowerState::UNDEFINED_POWERSTATE: return EdgeTpuPowerState_UNDEFINED_POWERSTATE; case proto::EdgeTpuPowerState::TPU_CORE_OFF: return EdgeTpuPowerState_TPU_CORE_OFF; case proto::EdgeTpuPowerState::READY: return EdgeTpuPowerState_READY; case proto::EdgeTpuPowerState::ACTIVE_MIN_POWER: return EdgeTpuPowerState_ACTIVE_MIN_POWER; case proto::EdgeTpuPowerState::ACTIVE_VERY_LOW_POWER: return EdgeTpuPowerState_ACTIVE_VERY_LOW_POWER; case proto::EdgeTpuPowerState::ACTIVE_LOW_POWER: return EdgeTpuPowerState_ACTIVE_LOW_POWER; case proto::EdgeTpuPowerState::ACTIVE: return EdgeTpuPowerState_ACTIVE; case proto::EdgeTpuPowerState::OVER_DRIVE: return EdgeTpuPowerState_OVER_DRIVE; } TFLITE_LOG_PROD(TFLITE_LOG_ERROR, "Unexpected value for EdgeTpuSettings::PowerState: %d", state); return EdgeTpuPowerState_UNDEFINED_POWERSTATE; } Offset<FallbackSettings> ConvertFallbackSettings( const proto::FallbackSettings& settings, FlatBufferBuilder& builder) { return CreateFallbackSettings( builder, settings.allow_automatic_fallback_on_compilation_error(), settings.allow_automatic_fallback_on_execution_error()); } Offset<NNAPISettings> ConvertNNAPISettings(const proto::NNAPISettings& settings, FlatBufferBuilder& builder) { return CreateNNAPISettings( builder, builder.CreateString(settings.accelerator_name()), builder.CreateString(settings.cache_directory()), builder.CreateString(settings.model_token()), ConvertNNAPIExecutionPreference(settings.execution_preference()), settings.no_of_nnapi_instances_to_cache(), ConvertFallbackSettings(settings.fallback_settings(), builder), settings.allow_nnapi_cpu_on_android_10_plus(), ConvertNNAPIExecutionPriority(settings.execution_priority()), settings.allow_dynamic_dimensions(), settings.allow_fp16_precision_for_fp32(), settings.use_burst_computation(), settings.support_library_handle()); } Offset<GPUSettings> ConvertGPUSettings(const proto::GPUSettings& settings, FlatBufferBuilder& builder) { return CreateGPUSettings( builder, settings.is_precision_loss_allowed(), settings.enable_quantized_inference(), ConvertGPUBackend(settings.force_backend()), ConvertGPUInferencePriority(settings.inference_priority1()), ConvertGPUInferencePriority(settings.inference_priority2()), ConvertGPUInferencePriority(settings.inference_priority3()), ConvertGPUInferenceUsage(settings.inference_preference()), builder.CreateString(settings.cache_directory()), builder.CreateString(settings.model_token())); } Offset<HexagonSettings> ConvertHexagonSettings( const proto::HexagonSettings& settings, FlatBufferBuilder& builder) { return CreateHexagonSettings( builder, settings.debug_level(), settings.powersave_level(), settings.print_graph_profile(), settings.print_graph_debug()); } Offset<XNNPackSettings> ConvertXNNPackSettings( const proto::XNNPackSettings& settings, FlatBufferBuilder& builder) { return CreateXNNPackSettings( builder, settings.num_threads(), tflite::XNNPackFlags(settings.flags())); } Offset<CoreMLSettings> ConvertCoreMLSettings( const proto::CoreMLSettings& settings, FlatBufferBuilder& builder) { tflite::CoreMLSettings_::EnabledDevices enabled_devices = tflite::CoreMLSettings_::EnabledDevices_DEVICES_ALL; switch (settings.enabled_devices()) { case proto::CoreMLSettings::DEVICES_ALL: enabled_devices = tflite::CoreMLSettings_::EnabledDevices_DEVICES_ALL; break; case proto::CoreMLSettings::DEVICES_WITH_NEURAL_ENGINE: enabled_devices = tflite::CoreMLSettings_::EnabledDevices_DEVICES_WITH_NEURAL_ENGINE; break; default: TFLITE_LOG_PROD(TFLITE_LOG_ERROR, "Invalid devices enum: %d", settings.enabled_devices()); } return CreateCoreMLSettings( builder, enabled_devices, settings.coreml_version(), settings.max_delegated_partitions(), settings.min_nodes_per_partition()); } Offset<StableDelegateLoaderSettings> ConvertStableDelegateLoaderSettings( const proto::StableDelegateLoaderSettings& settings, FlatBufferBuilder& builder) { return CreateStableDelegateLoaderSettings( builder, builder.CreateString(settings.delegate_path()), builder.CreateString(settings.delegate_name())); } Offset<CPUSettings> ConvertCPUSettings(const proto::CPUSettings& settings, FlatBufferBuilder& builder) { return CreateCPUSettings(builder, settings.num_threads()); } Offset<tflite::EdgeTpuDeviceSpec> ConvertEdgeTpuDeviceSpec( FlatBufferBuilder& builder, const proto::EdgeTpuDeviceSpec& device_spec) { Offset<Vector<Offset<String>>> device_paths_fb = 0; if (device_spec.device_paths_size() > 0) { std::vector<Offset<String>> device_paths; for (const auto& device_path : device_spec.device_paths()) { auto device_path_fb = builder.CreateString(device_path); device_paths.push_back(device_path_fb); } device_paths_fb = builder.CreateVector(device_paths); } return tflite::CreateEdgeTpuDeviceSpec( builder, static_cast<tflite::EdgeTpuDeviceSpec_::PlatformType>( device_spec.platform_type()), device_spec.num_chips(), device_paths_fb, device_spec.chip_family()); } Offset<GoogleEdgeTpuSettings> ConvertGoogleEdgeTpuSettings( const proto::GoogleEdgeTpuSettings& settings, FlatBufferBuilder& builder) { Offset<String> model_identifier = 0; if (settings.has_model_identifier()) { model_identifier = builder.CreateString(settings.model_identifier()); } Offset<Vector<uint8_t>> extension_data = 0; if (settings.has_extension_data()) { extension_data = builder.CreateVector( reinterpret_cast<const uint8_t*>(settings.extension_data().data()), settings.extension_data().size()); } GoogleEdgeTpuSettingsBuilder builder_(builder); builder_.add_log_verbosity(settings.log_verbosity()); builder_.add_enable_tracing(settings.enable_tracing()); builder_.add_priority(static_cast<tflite::GoogleEdgeTpuSettings_::Priority>( settings.priority())); builder_.add_model_identifier(model_identifier); builder_.add_use_async_api(settings.use_async_api()); builder_.add_delegate_should_manage_cache_for_inputs( settings.delegate_should_manage_cache_for_inputs()); builder_.add_delegate_should_manage_cache_for_outputs( settings.delegate_should_manage_cache_for_outputs()); builder_.add_prefer_cache_coherency_for_inputs( static_cast<tflite::GoogleEdgeTpuSettings_::TriState>( settings.prefer_cache_coherency_for_inputs())); builder_.add_prefer_cache_coherency_for_outputs( static_cast<tflite::GoogleEdgeTpuSettings_::TriState>( settings.prefer_cache_coherency_for_outputs())); builder_.add_allow_fp16_precision_for_fp32( settings.allow_fp16_precision_for_fp32()); builder_.add_extension_data(extension_data); return builder_.Finish(); } Offset<EdgeTpuSettings> ConvertEdgeTpuSettings( const proto::EdgeTpuSettings& settings, FlatBufferBuilder& builder) { Offset<Vector<Offset<tflite::EdgeTpuInactivePowerConfig>>> inactive_power_configs = 0; std::vector<Offset<tflite::EdgeTpuInactivePowerConfig>> inactive_power_configs_std; if (settings.inactive_power_configs_size() > 0) { for (const auto& config : settings.inactive_power_configs()) { inactive_power_configs_std.push_back( tflite::CreateEdgeTpuInactivePowerConfig( builder, static_cast<tflite::EdgeTpuPowerState>( config.inactive_power_state()), config.inactive_timeout_us())); } inactive_power_configs = builder.CreateVector<Offset<tflite::EdgeTpuInactivePowerConfig>>( inactive_power_configs_std); } Offset<tflite::EdgeTpuDeviceSpec> edgetpu_device_spec = 0; if (settings.has_edgetpu_device_spec()) { edgetpu_device_spec = ConvertEdgeTpuDeviceSpec(builder, settings.edgetpu_device_spec()); } Offset<String> model_token = 0; if (settings.has_model_token()) { model_token = builder.CreateString(settings.model_token()); } std::vector<int32_t> hardware_cluster_ids_std{ settings.hardware_cluster_ids().begin(), settings.hardware_cluster_ids().end()}; auto hardware_cluster_ids_fb = builder.CreateVector<int32_t>(hardware_cluster_ids_std); Offset<String> public_model_id = 0; if (settings.has_public_model_id()) { public_model_id = builder.CreateString(settings.public_model_id()); } return CreateEdgeTpuSettings( builder, ConvertEdgeTpuPowerState(settings.inference_power_state()), inactive_power_configs, settings.inference_priority(), edgetpu_device_spec, model_token, static_cast<tflite::EdgeTpuSettings_::FloatTruncationType>( settings.float_truncation_type()), static_cast<tflite::EdgeTpuSettings_::QosClass>(settings.qos_class()), hardware_cluster_ids_fb, public_model_id, static_cast<tflite::EdgeTpuSettings_::UseLayerIrTgcBackend>( settings.use_layer_ir_tgc_backend())); } Offset<CompilationCachingSettings> ConvertCompilationCachingSettings( const proto::CompilationCachingSettings& settings, FlatBufferBuilder& builder) { return CreateCompilationCachingSettings( builder, builder.CreateString(settings.cache_dir()), builder.CreateString(settings.model_token())); } Offset<ArmNNSettings> ConvertArmNNSettings(const proto::ArmNNSettings& settings, FlatBufferBuilder& builder) { return CreateArmNNSettings( builder, builder.CreateString(settings.backends()), settings.fastmath(), builder.CreateString(settings.additional_parameters())); } Offset<MtkNeuronSettings> ConvertMtkNeuronSettings( const proto::MtkNeuronSettings& settings, FlatBufferBuilder& builder) { return CreateMtkNeuronSettings( builder, static_cast<MtkNeuronSettings_::ExecutionPreference>( settings.execution_preference()), static_cast<MtkNeuronSettings_::ExecutionPriority>( settings.execution_priority()), builder.CreateVector(settings.optimization_hints().data(), settings.optimization_hints().size()), static_cast<MtkNeuronSettings_::OperationCheckMode>( settings.operation_check_mode()), settings.allow_fp16_precision_for_fp32(), settings.use_ahwb(), settings.use_cacheable_buffer(), builder.CreateVectorOfStrings(settings.compile_options().begin(), settings.compile_options().end()), builder.CreateVectorOfStrings(settings.accelerator_names().begin(), settings.accelerator_names().end()), builder.CreateString(settings.neuron_config_path())); } Offset<CoralSettings> ConvertCoralSettings(const proto::CoralSettings& settings, FlatBufferBuilder& builder) { return CreateCoralSettings( builder, builder.CreateString(settings.device()), static_cast<tflite::CoralSettings_::Performance>(settings.performance()), settings.usb_always_dfu(), settings.usb_max_bulk_in_queue_length()); } Offset<TFLiteSettings> ConvertTfliteSettings( const proto::TFLiteSettings& settings, FlatBufferBuilder& builder) { return CreateTFLiteSettings( builder, ConvertDelegate(settings.delegate()), ConvertNNAPISettings(settings.nnapi_settings(), builder), ConvertGPUSettings(settings.gpu_settings(), builder), ConvertHexagonSettings(settings.hexagon_settings(), builder), ConvertXNNPackSettings(settings.xnnpack_settings(), builder), ConvertCoreMLSettings(settings.coreml_settings(), builder), ConvertCPUSettings(settings.cpu_settings(), builder), settings.max_delegated_partitions(), ConvertEdgeTpuSettings(settings.edgetpu_settings(), builder), ConvertCoralSettings(settings.coral_settings(), builder), ConvertFallbackSettings(settings.fallback_settings(), builder), settings.disable_default_delegates(), ConvertStableDelegateLoaderSettings( settings.stable_delegate_loader_settings(), builder), ConvertGoogleEdgeTpuSettings(settings.google_edgetpu_settings(), builder), ConvertCompilationCachingSettings(settings.compilation_caching_settings(), builder), ConvertArmNNSettings(settings.armnn_settings(), builder), ConvertMtkNeuronSettings(settings.mtk_neuron_settings(), builder)); } Offset<ModelFile> ConvertModelFile(const proto::ModelFile& model_file, FlatBufferBuilder& builder) { return CreateModelFile(builder, builder.CreateString(model_file.filename()), model_file.fd(), model_file.offset(), model_file.length()); } Offset<BenchmarkStoragePaths> ConvertBenchmarkStoragePaths( const proto::BenchmarkStoragePaths& storage_paths, FlatBufferBuilder& builder) { return CreateBenchmarkStoragePaths( builder, builder.CreateString(storage_paths.storage_file_path()), builder.CreateString(storage_paths.data_directory_path())); } Offset<MinibenchmarkSettings> ConvertMinibenchmarkSettings( const proto::MinibenchmarkSettings& settings, FlatBufferBuilder& builder) { Offset<Vector<Offset<TFLiteSettings>>> settings_to_test = 0; std::vector<Offset<TFLiteSettings>> settings_to_test_vec; if (settings.settings_to_test_size() > 0) { for (const auto& one : settings.settings_to_test()) { settings_to_test_vec.push_back(ConvertTfliteSettings(one, builder)); } settings_to_test = builder.CreateVector<Offset<TFLiteSettings>>(settings_to_test_vec); } return CreateMinibenchmarkSettings( builder, settings_to_test, ConvertModelFile(settings.model_file(), builder), ConvertBenchmarkStoragePaths(settings.storage_paths(), builder)); } const TFLiteSettings* ConvertFromProto( const proto::TFLiteSettings& proto_settings, FlatBufferBuilder* builder) { Offset<TFLiteSettings> settings = ConvertTfliteSettings(proto_settings, *builder); return flatbuffers::GetTemporaryPointer(*builder, settings); } const ComputeSettings* ConvertFromProto( const proto::ComputeSettings& proto_settings, FlatBufferBuilder* builder) { auto settings = CreateComputeSettings( *builder, ConvertExecutionPreference(proto_settings.preference()), ConvertTfliteSettings(proto_settings.tflite_settings(), *builder), builder->CreateString(proto_settings.model_namespace_for_statistics()), builder->CreateString(proto_settings.model_identifier_for_statistics()), ConvertMinibenchmarkSettings(proto_settings.settings_to_test_locally(), *builder)); return flatbuffers::GetTemporaryPointer(*builder, settings); } const MinibenchmarkSettings* ConvertFromProto( const proto::MinibenchmarkSettings& proto_settings, flatbuffers::FlatBufferBuilder* builder) { auto settings = ConvertMinibenchmarkSettings(proto_settings, *builder); return flatbuffers::GetTemporaryPointer(*builder, settings); } }
#include "tensorflow/lite/acceleration/configuration/proto_to_flatbuffer.h" #include <cstdint> #include <string> #include <vector> #include <gtest/gtest.h> namespace tflite { namespace { TEST(ConversionTest, EdgeTpuSettings) { const std::vector<int32_t> kHardwareClusterIds{1}; const std::string kPublicModelId = "public_model_id"; const tflite::proto::EdgeTpuSettings_UseLayerIrTgcBackend kUseLayerIrTgcBackend = tflite::proto::EdgeTpuSettings::USE_LAYER_IR_TGC_BACKEND_YES; proto::ComputeSettings input_settings; auto* edgetpu_settings = input_settings.mutable_tflite_settings()->mutable_edgetpu_settings(); edgetpu_settings->set_public_model_id(kPublicModelId); edgetpu_settings->set_use_layer_ir_tgc_backend(kUseLayerIrTgcBackend); flatbuffers::FlatBufferBuilder flatbuffers_builder; *edgetpu_settings->mutable_hardware_cluster_ids() = { kHardwareClusterIds.begin(), kHardwareClusterIds.end()}; auto output_settings = ConvertFromProto(input_settings, &flatbuffers_builder) ->tflite_settings() ->edgetpu_settings(); EXPECT_EQ(output_settings->hardware_cluster_ids()->size(), 1); EXPECT_EQ(output_settings->hardware_cluster_ids()->Get(0), kHardwareClusterIds[0]); EXPECT_EQ(output_settings->public_model_id()->str(), kPublicModelId); EXPECT_EQ(output_settings->use_layer_ir_tgc_backend(), tflite::EdgeTpuSettings_:: UseLayerIrTgcBackend_USE_LAYER_IR_TGC_BACKEND_YES); } TEST(ConversionTest, TFLiteSettings) { const std::vector<int32_t> kHardwareClusterIds{1}; const std::string kPublicModelId = "public_model_id"; const tflite::proto::EdgeTpuSettings_UseLayerIrTgcBackend kUseLayerIrTgcBackend = tflite::proto::EdgeTpuSettings::USE_LAYER_IR_TGC_BACKEND_YES; proto::TFLiteSettings input_settings; input_settings.set_delegate(::tflite::proto::EDGETPU); auto* edgetpu_settings = input_settings.mutable_edgetpu_settings(); edgetpu_settings->set_public_model_id(kPublicModelId); edgetpu_settings->set_use_layer_ir_tgc_backend(kUseLayerIrTgcBackend); flatbuffers::FlatBufferBuilder flatbuffers_builder; *edgetpu_settings->mutable_hardware_cluster_ids() = { kHardwareClusterIds.begin(), kHardwareClusterIds.end()}; auto output_settings = ConvertFromProto(input_settings, &flatbuffers_builder); EXPECT_EQ(output_settings->delegate(), ::tflite::Delegate_EDGETPU); const auto* output_edgetpu_settings = output_settings->edgetpu_settings(); EXPECT_EQ(output_edgetpu_settings->hardware_cluster_ids()->size(), 1); EXPECT_EQ(output_edgetpu_settings->hardware_cluster_ids()->Get(0), kHardwareClusterIds[0]); EXPECT_EQ(output_edgetpu_settings->public_model_id()->str(), kPublicModelId); EXPECT_EQ(output_edgetpu_settings->use_layer_ir_tgc_backend(), tflite::EdgeTpuSettings_:: UseLayerIrTgcBackend_USE_LAYER_IR_TGC_BACKEND_YES); } TEST(ConversionTest, StableDelegateLoaderSettings) { const std::string kDelegatePath = "TEST_DELEGATE_PATH"; const std::string kDelegateName = "TEST_DELEGATE_NAME"; proto::TFLiteSettings input_settings; auto* stable_delegate_loader_settings = input_settings.mutable_stable_delegate_loader_settings(); stable_delegate_loader_settings->set_delegate_path(kDelegatePath); stable_delegate_loader_settings->set_delegate_name(kDelegateName); flatbuffers::FlatBufferBuilder flatbuffers_builder; auto output_settings = ConvertFromProto(input_settings, &flatbuffers_builder); const auto* output_stable_delegate_loader_settings = output_settings->stable_delegate_loader_settings(); ASSERT_NE(output_stable_delegate_loader_settings, nullptr); EXPECT_EQ(output_stable_delegate_loader_settings->delegate_path()->str(), kDelegatePath); EXPECT_EQ(output_stable_delegate_loader_settings->delegate_name()->str(), kDelegateName); } TEST(ConversionTest, CompilationCachingSettings) { const std::string kCacheDir = "TEST_CACHE_DIR"; const std::string kModelToken = "TEST_MODEL_TOKEN"; proto::TFLiteSettings input_settings; auto* compilation_caching_settings = input_settings.mutable_compilation_caching_settings(); compilation_caching_settings->set_cache_dir(kCacheDir); compilation_caching_settings->set_model_token(kModelToken); flatbuffers::FlatBufferBuilder flatbuffers_builder; auto output_settings = ConvertFromProto(input_settings, &flatbuffers_builder); const auto* output_compilation_caching_settings = output_settings->compilation_caching_settings(); ASSERT_NE(output_compilation_caching_settings, nullptr); EXPECT_EQ(output_compilation_caching_settings->cache_dir()->str(), kCacheDir); EXPECT_EQ(output_compilation_caching_settings->model_token()->str(), kModelToken); } TEST(ConversionTest, ArmNNSettings) { const std::string kBackends = "TEST_BACKENDS"; const bool kFastmath = true; const std::string kAdditionalParameters = "TEST_ADDITIONAL_PARAMETERS"; proto::TFLiteSettings input_settings; auto* armnn_settings = input_settings.mutable_armnn_settings(); armnn_settings->set_backends(kBackends); armnn_settings->set_fastmath(kFastmath); armnn_settings->set_additional_parameters(kAdditionalParameters); flatbuffers::FlatBufferBuilder flatbuffers_builder; auto output_settings = ConvertFromProto(input_settings, &flatbuffers_builder); const auto* output_armnn_settings = output_settings->armnn_settings(); ASSERT_NE(output_armnn_settings, nullptr); EXPECT_EQ(output_armnn_settings->backends()->str(), kBackends); EXPECT_EQ(output_armnn_settings->fastmath(), kFastmath); EXPECT_EQ(output_armnn_settings->additional_parameters()->str(), kAdditionalParameters); } TEST(ConversionTest, MtkNeuronSettings) { const proto::MtkNeuronSettings_ExecutionPreference kExecutionPreference = proto::MtkNeuronSettings::PREFERENCE_FAST_SINGLE_ANSWER; const proto::MtkNeuronSettings_ExecutionPriority kExecutionPriority = proto::MtkNeuronSettings::PRIORITY_MEDIUM; const proto::MtkNeuronSettings_OptimizationHint kOptimizationHint = proto::MtkNeuronSettings::OPTIMIZATION_LOW_LATENCY; const proto::MtkNeuronSettings_OperationCheckMode kOperationCheckMode = proto::MtkNeuronSettings::PER_NODE_OPERATION_CHECK; const bool kAllowFp16 = true; const bool kUseAhwb = false; const bool kUseCacheableBuffer = true; const std::string kCompileOptions = "TEST_COMPILE_OPTIONS"; const std::string kAcceleratorName = "TEST_ACCELERATOR_NAME"; const std::string kNeuronConfigPath = "TEST_NEURON_CONFIG_PATH"; proto::TFLiteSettings input_settings; auto* mtk_neuron_settings = input_settings.mutable_mtk_neuron_settings(); mtk_neuron_settings->set_execution_preference(kExecutionPreference); mtk_neuron_settings->set_execution_priority(kExecutionPriority); mtk_neuron_settings->add_optimization_hints(kOptimizationHint); mtk_neuron_settings->set_operation_check_mode(kOperationCheckMode); mtk_neuron_settings->set_allow_fp16_precision_for_fp32(kAllowFp16); mtk_neuron_settings->set_use_ahwb(kUseAhwb); mtk_neuron_settings->set_use_cacheable_buffer(kUseCacheableBuffer); mtk_neuron_settings->add_compile_options(kCompileOptions); mtk_neuron_settings->add_accelerator_names(kAcceleratorName); mtk_neuron_settings->set_neuron_config_path(kNeuronConfigPath); flatbuffers::FlatBufferBuilder flatbuffers_builder; auto output_settings = ConvertFromProto(input_settings, &flatbuffers_builder); const auto* output_mtk_neuron_settings = output_settings->mtk_neuron_settings(); ASSERT_NE(output_mtk_neuron_settings, nullptr); EXPECT_EQ( output_mtk_neuron_settings->execution_preference(), MtkNeuronSettings_::ExecutionPreference_PREFERENCE_FAST_SINGLE_ANSWER); EXPECT_EQ(output_mtk_neuron_settings->execution_priority(), MtkNeuronSettings_::ExecutionPriority_PRIORITY_MEDIUM); EXPECT_EQ(output_mtk_neuron_settings->optimization_hints()->size(), 1); EXPECT_EQ(output_mtk_neuron_settings->optimization_hints()->Get(0), kOptimizationHint); EXPECT_EQ(output_mtk_neuron_settings->operation_check_mode(), MtkNeuronSettings_::OperationCheckMode_PER_NODE_OPERATION_CHECK); EXPECT_EQ(output_mtk_neuron_settings->allow_fp16_precision_for_fp32(), kAllowFp16); EXPECT_EQ(output_mtk_neuron_settings->use_ahwb(), kUseAhwb); EXPECT_EQ(output_mtk_neuron_settings->use_cacheable_buffer(), kUseCacheableBuffer); EXPECT_EQ(output_mtk_neuron_settings->compile_options()->size(), 1); EXPECT_EQ(output_mtk_neuron_settings->compile_options()->Get(0)->str(), kCompileOptions); EXPECT_EQ(output_mtk_neuron_settings->accelerator_names()->size(), 1); EXPECT_EQ(output_mtk_neuron_settings->accelerator_names()->Get(0)->str(), kAcceleratorName); EXPECT_EQ(output_mtk_neuron_settings->neuron_config_path()->str(), kNeuronConfigPath); } } }
869
cpp
tensorflow/tensorflow
gpu_plugin
tensorflow/lite/core/acceleration/configuration/c/gpu_plugin.cc
tensorflow/lite/core/acceleration/configuration/c/gpu_plugin_test.cc
#ifndef TENSORFLOW_LITE_CORE_ACCELERATION_CONFIGURATION_C_GPU_PLUGIN_H_ #define TENSORFLOW_LITE_CORE_ACCELERATION_CONFIGURATION_C_GPU_PLUGIN_H_ #include "tensorflow/lite/core/acceleration/configuration/c/delegate_plugin.h" #ifdef __cplusplus extern "C" { #endif const TfLiteDelegatePlugin* TfLiteGpuDelegatePluginCApi(); #ifdef __cplusplus } #endif #endif #include "tensorflow/lite/core/acceleration/configuration/c/gpu_plugin.h" #include <memory> #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/acceleration/configuration/gpu_plugin.h" #include "tensorflow/lite/core/c/common.h" #if TFLITE_SUPPORTS_GPU_DELEGATE #include "tensorflow/lite/delegates/gpu/delegate.h" #elif defined(REAL_IPHONE_DEVICE) #include "tensorflow/lite/delegates/gpu/metal_delegate.h" #endif extern "C" { static TfLiteDelegate* CreateDelegate(const void* settings) { const ::tflite::TFLiteSettings* tflite_settings = static_cast<const ::tflite::TFLiteSettings*>(settings); tflite::delegates::GpuPlugin gpu_plugin(*tflite_settings); #if TFLITE_SUPPORTS_GPU_DELEGATE return TfLiteGpuDelegateV2Create(&gpu_plugin.Options()); #elif defined(REAL_IPHONE_DEVICE) return TFLGpuDelegateCreate(&gpu_plugin.Options()); #else return nullptr; #endif } static void DestroyDelegate(TfLiteDelegate* delegate) { #if TFLITE_SUPPORTS_GPU_DELEGATE TfLiteGpuDelegateV2Delete(delegate); #elif defined(REAL_IPHONE_DEVICE) TFLGpuDelegateDelete(delegate); #endif } static int DelegateErrno(TfLiteDelegate* from_delegate) { return 0; } static constexpr TfLiteDelegatePlugin kPluginCApi{ CreateDelegate, DestroyDelegate, DelegateErrno, }; const TfLiteDelegatePlugin* TfLiteGpuDelegatePluginCApi() { return &kPluginCApi; } }
#include "tensorflow/lite/core/acceleration/configuration/c/gpu_plugin.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/core/c/common.h" namespace tflite { class GpuTest : public testing::Test { public: void SetUp() override { GPUSettingsBuilder gpu_settings_builder(flatbuffer_builder_); flatbuffers::Offset<GPUSettings> gpu_settings = gpu_settings_builder.Finish(); TFLiteSettingsBuilder tflite_settings_builder(flatbuffer_builder_); tflite_settings_builder.add_gpu_settings(gpu_settings); flatbuffers::Offset<TFLiteSettings> tflite_settings = tflite_settings_builder.Finish(); flatbuffer_builder_.Finish(tflite_settings); settings_ = flatbuffers::GetRoot<TFLiteSettings>( flatbuffer_builder_.GetBufferPointer()); } ~GpuTest() override {} protected: flatbuffers::FlatBufferBuilder flatbuffer_builder_; const TFLiteSettings *settings_; }; TEST_F(GpuTest, CanCreateAndDestroyDelegate) { TfLiteDelegate *delegate = TfLiteGpuDelegatePluginCApi()->create(settings_); EXPECT_NE(delegate, nullptr); TfLiteGpuDelegatePluginCApi()->destroy(delegate); } TEST_F(GpuTest, CanGetDelegateErrno) { TfLiteDelegate *delegate = TfLiteGpuDelegatePluginCApi()->create(settings_); int error_number = TfLiteGpuDelegatePluginCApi()->get_delegate_errno(delegate); EXPECT_EQ(error_number, 0); TfLiteGpuDelegatePluginCApi()->destroy(delegate); } }
870
cpp
tensorflow/tensorflow
neg
tensorflow/lite/kernels/neg.cc
tensorflow/lite/kernels/neg_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_NEG_H_ #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_NEG_H_ #include "tensorflow/lite/kernels/internal/types.h" namespace tflite { namespace reference_ops { template <typename T> inline void Negate(const RuntimeShape& input_shape, const T* input_data, const RuntimeShape& output_shape, T* output_data) { const int flat_size = MatchingFlatSize(input_shape, output_shape); for (int i = 0; i < flat_size; ++i) { output_data[i] = -input_data[i]; } } } } #endif #include "tensorflow/lite/kernels/internal/reference/neg.h" #include <stdint.h> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace builtin { namespace neg { constexpr int kInputTensor = 0; constexpr int kOutputTensor = 0; TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); output->type = input->type; return context->ResizeTensor(context, output, TfLiteIntArrayCopy(input->dims)); } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); switch (input->type) { case kTfLiteInt64: reference_ops::Negate( GetTensorShape(input), GetTensorData<int64_t>(input), GetTensorShape(output), GetTensorData<int64_t>(output)); break; case kTfLiteInt32: reference_ops::Negate( GetTensorShape(input), GetTensorData<int32_t>(input), GetTensorShape(output), GetTensorData<int32_t>(output)); break; case kTfLiteFloat32: reference_ops::Negate(GetTensorShape(input), GetTensorData<float>(input), GetTensorShape(output), GetTensorData<float>(output)); break; default: TF_LITE_KERNEL_LOG( context, "Neg only currently supports int64, int32, and float32, got %d.", input->type); return kTfLiteError; } return kTfLiteOk; } } TfLiteRegistration* Register_NEG() { static TfLiteRegistration r = {nullptr, nullptr, neg::Prepare, neg::Eval}; return &r; } } } }
#include <initializer_list> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/hexagon/builders/tests/hexagon_delegate_op_model.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { using testing::ElementsAreArray; class NegOpModel : public SingleOpModelWithHexagon { public: NegOpModel(const TensorData& input, const TensorData& output) { input_ = AddInput(input); output_ = AddOutput(output); SetBuiltinOp(BuiltinOperator_NEG, BuiltinOptions_NegOptions, CreateNegOptions(builder_).Union()); BuildInterpreter({GetShape(input_)}); } template <typename integer_type> void SetQuantizedInput(std::initializer_list<float> data) { QuantizeAndPopulate<integer_type>(input_, data); } template <typename integer_type> std::vector<float> GetDequantizedOutput() { return Dequantize<integer_type>(ExtractVector<integer_type>(output_), GetScale(output_), GetZeroPoint(output_)); } protected: int input_; int output_; }; TEST(NegOpModel, NegTest_UInt8) { NegOpModel m({TensorType_UINT8, {2, 3}, -4, 4}, {TensorType_UINT8, {2, 3}, -4, 4}); m.SetQuantizedInput<uint8_t>({-2.0f, -1.0f, 0.f, 1.0f, 2.0f, 3.0f}); m.ApplyDelegateAndInvoke(); EXPECT_THAT( m.GetDequantizedOutput<uint8_t>(), ElementsAreArray(ArrayFloatNear({2.0f, 1.0f, 0.f, -1.0f, -2.0f, -3.0f}, 0.05))); } TEST(NegOpModel, NegTest_Int8) { NegOpModel m({TensorType_INT8, {2, 3}, -4, 4}, {TensorType_INT8, {2, 3}, -4, 4}); m.SetQuantizedInput<int8_t>({-2.0f, -1.0f, 0.f, 1.0f, 2.0f, 3.0f}); m.ApplyDelegateAndInvoke(); EXPECT_THAT( m.GetDequantizedOutput<int8_t>(), ElementsAreArray(ArrayFloatNear({2.0f, 1.0f, 0.f, -1.0f, -2.0f, -3.0f}, 0.05))); } }
871
cpp
tensorflow/tensorflow
space_to_batch_nd
tensorflow/lite/kernels/space_to_batch_nd.cc
tensorflow/lite/kernels/space_to_batch_nd_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_SPACE_TO_BATCH_ND_H_ #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_SPACE_TO_BATCH_ND_H_ #include <cmath> #include "ruy/profiler/instrumentation.h" #include "tensorflow/lite/kernels/internal/common.h" #include "tensorflow/lite/kernels/internal/types.h" namespace tflite { namespace reference_ops { inline RuntimeShape ExtendShapeSpaceToBatch(const RuntimeShape& shape) { if (shape.DimensionsCount() == 4) { return shape; } RuntimeShape new_shape(4, 1); new_shape.SetDim(0, shape.Dims(0)); new_shape.SetDim(1, shape.Dims(1)); new_shape.SetDim(3, shape.Dims(2)); return new_shape; } template <typename T> inline void SpaceToBatchND(const SpaceToBatchParams& params, const RuntimeShape& unextended_input1_shape, const T* input1_data, const RuntimeShape& unextended_input2_shape, const int32_t* block_shape_data, const RuntimeShape& unextended_input3_shape, const int32_t* paddings_data, const RuntimeShape& unextended_output_shape, T* output_data) { ruy::profiler::ScopeLabel label("SpaceToBatchND"); TFLITE_DCHECK_GE(unextended_input1_shape.DimensionsCount(), 3); TFLITE_DCHECK_LE(unextended_input1_shape.DimensionsCount(), 4); TFLITE_DCHECK_EQ(unextended_input1_shape.DimensionsCount(), unextended_output_shape.DimensionsCount()); const RuntimeShape input1_shape = ExtendShapeSpaceToBatch(unextended_input1_shape); const RuntimeShape output_shape = ExtendShapeSpaceToBatch(unextended_output_shape); const int depth = input1_shape.Dims(3); const int input_width = input1_shape.Dims(2); const int input_height = input1_shape.Dims(1); const int input_batch_size = input1_shape.Dims(0); const int output_width = output_shape.Dims(2); const int output_height = output_shape.Dims(1); const int output_batch_size = output_shape.Dims(0); const int block_shape_height = block_shape_data[0]; const int block_shape_width = unextended_input1_shape.DimensionsCount() == 4 ? block_shape_data[1] : 1; const int padding_top = paddings_data[0]; const int padding_left = unextended_input1_shape.DimensionsCount() == 4 ? paddings_data[2] : 0; const int32_t pad_value = params.output_offset; for (int out_b = 0; out_b < output_batch_size; ++out_b) { int input_batch = out_b % input_batch_size; int shift_w = (out_b / input_batch_size) % block_shape_width; int shift_h = (out_b / input_batch_size) / block_shape_width; for (int out_h = 0; out_h < output_height; ++out_h) { for (int out_w = 0; out_w < output_width; ++out_w) { T* out = output_data + Offset(output_shape, out_b, out_h, out_w, 0); if (out_h * block_shape_height + shift_h < padding_top || out_h * block_shape_height + shift_h >= padding_top + input_height || out_w * block_shape_width + shift_w < padding_left || out_w * block_shape_width + shift_w >= padding_left + input_width) { memset(out, pad_value, depth * sizeof(T)); } else { const T* in = input1_data + Offset(input1_shape, input_batch, (out_h * block_shape_height + shift_h) - padding_top, (out_w * block_shape_width + shift_w) - padding_left, 0); memcpy(out, in, depth * sizeof(T)); } } } } } } } #endif #include <stdint.h> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h" #include "tensorflow/lite/kernels/internal/reference/reference_ops.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/internal/types.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace builtin { namespace space_to_batch_nd { enum KernelType { kReference, kGenericOptimized, }; struct SpaceToBatchNDContext { SpaceToBatchNDContext(TfLiteContext* context, TfLiteNode* node) { input = GetInput(context, node, 0); block_shape = GetInput(context, node, 1); paddings = GetInput(context, node, 2); output = GetOutput(context, node, 0); } const TfLiteTensor* input; const TfLiteTensor* block_shape; const TfLiteTensor* paddings; TfLiteTensor* output; }; const int kInputMinDimensionNum = 3; const int kInputMaxDimensionNum = 4; TfLiteStatus ResizeOutputTensor(TfLiteContext* context, SpaceToBatchNDContext* op_context) { TfLiteIntArray* input_size = op_context->input->dims; const int32* block_shape = GetTensorData<int32>(op_context->block_shape); const int32* paddings_data = GetTensorData<int32>(op_context->paddings); int spatial_dims_num = input_size->size - 2; TF_LITE_ENSURE_EQ(context, NumDimensions(op_context->block_shape), 1); TF_LITE_ENSURE_EQ(context, op_context->block_shape->dims->data[0], spatial_dims_num); TF_LITE_ENSURE_EQ(context, NumDimensions(op_context->paddings), 2); TF_LITE_ENSURE_EQ(context, op_context->paddings->dims->data[0], spatial_dims_num); TF_LITE_ENSURE_EQ(context, op_context->paddings->dims->data[1], 2); TfLiteIntArray* output_size = TfLiteIntArrayCopy(input_size); int output_batch_size = input_size->data[0]; for (int dim = 0; dim < spatial_dims_num; ++dim) { int final_dim_size = (input_size->data[dim + 1] + paddings_data[dim * 2] + paddings_data[dim * 2 + 1]); TF_LITE_ENSURE(context, block_shape[dim] != 0); TF_LITE_ENSURE_EQ(context, final_dim_size % block_shape[dim], 0); output_size->data[dim + 1] = final_dim_size / block_shape[dim]; output_batch_size *= block_shape[dim]; } output_size->data[0] = output_batch_size; output_size->data[input_size->size - 1] = input_size->data[input_size->size - 1]; return context->ResizeTensor(context, op_context->output, output_size); } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 3); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); SpaceToBatchNDContext op_context(context, node); TF_LITE_ENSURE(context, NumDimensions(op_context.input) >= kInputMinDimensionNum); TF_LITE_ENSURE(context, NumDimensions(op_context.input) <= kInputMaxDimensionNum); TF_LITE_ENSURE_TYPES_EQ(context, op_context.input->type, op_context.output->type); if (op_context.input->type == kTfLiteUInt8 || op_context.input->type == kTfLiteInt8 || op_context.input->type == kTfLiteInt16) { TF_LITE_ENSURE_EQ(context, op_context.input->params.scale, op_context.output->params.scale); TF_LITE_ENSURE_EQ(context, op_context.input->params.zero_point, op_context.output->params.zero_point); } if (op_context.input->type == kTfLiteInt16) { TF_LITE_ENSURE_EQ(context, op_context.input->params.zero_point, 0); TF_LITE_ENSURE_EQ(context, op_context.output->params.zero_point, 0); } if (!IsConstantOrPersistentTensor(op_context.block_shape) || !IsConstantOrPersistentTensor(op_context.paddings)) { SetTensorToDynamic(op_context.output); return kTfLiteOk; } return ResizeOutputTensor(context, &op_context); } template <KernelType kernel_type> TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { SpaceToBatchNDContext op_context(context, node); if (IsDynamicTensor(op_context.output)) { TF_LITE_ENSURE_OK(context, ResizeOutputTensor(context, &op_context)); } #define TF_LITE_SPACE_TO_BATCH_ND(type, scalar, pad_value) \ tflite::SpaceToBatchParams op_params; \ op_params.output_offset = pad_value; \ type::SpaceToBatchND(op_params, GetTensorShape(op_context.input), \ GetTensorData<scalar>(op_context.input), \ GetTensorShape(op_context.block_shape), \ GetTensorData<int32_t>(op_context.block_shape), \ GetTensorShape(op_context.paddings), \ GetTensorData<int32_t>(op_context.paddings), \ GetTensorShape(op_context.output), \ GetTensorData<scalar>(op_context.output)) switch (op_context.input->type) { case kTfLiteFloat32: if (kernel_type == kReference) { TF_LITE_SPACE_TO_BATCH_ND(reference_ops, float, 0); } else { TF_LITE_SPACE_TO_BATCH_ND(optimized_ops, float, 0); } break; case kTfLiteUInt8: if (kernel_type == kReference) { TF_LITE_SPACE_TO_BATCH_ND(reference_ops, uint8_t, op_context.output->params.zero_point); } else { TF_LITE_SPACE_TO_BATCH_ND(optimized_ops, uint8_t, op_context.output->params.zero_point); } break; case kTfLiteInt8: if (kernel_type == kReference) { TF_LITE_SPACE_TO_BATCH_ND(reference_ops, int8_t, op_context.output->params.zero_point); } else { TF_LITE_SPACE_TO_BATCH_ND(optimized_ops, int8_t, op_context.output->params.zero_point); } break; case kTfLiteInt16: if (kernel_type == kReference) { TF_LITE_SPACE_TO_BATCH_ND(reference_ops, int16_t, op_context.output->params.zero_point); } else { TF_LITE_SPACE_TO_BATCH_ND(optimized_ops, int16_t, op_context.output->params.zero_point); } break; case kTfLiteInt32: if (kernel_type == kReference) { TF_LITE_SPACE_TO_BATCH_ND(reference_ops, int32_t, 0); } else { TF_LITE_SPACE_TO_BATCH_ND(optimized_ops, int32_t, 0); } break; case kTfLiteInt64: if (kernel_type == kReference) { TF_LITE_SPACE_TO_BATCH_ND(reference_ops, int64_t, 0); } else { TF_LITE_SPACE_TO_BATCH_ND(optimized_ops, int64_t, 0); } break; default: TF_LITE_KERNEL_LOG(context, "Type %d is currently not supported by SpaceToBatch.", op_context.input->type); return kTfLiteError; } #undef TF_LITE_SPACE_TO_BATCH_ND return kTfLiteOk; } } TfLiteRegistration* Register_SPACE_TO_BATCH_ND_REF() { static TfLiteRegistration r = { nullptr, nullptr, space_to_batch_nd::Prepare, space_to_batch_nd::Eval<space_to_batch_nd::kReference>}; return &r; } TfLiteRegistration* Register_SPACE_TO_BATCH_ND_GENERIC_OPT() { static TfLiteRegistration r = { nullptr, nullptr, space_to_batch_nd::Prepare, space_to_batch_nd::Eval<space_to_batch_nd::kGenericOptimized>}; return &r; } TfLiteRegistration* Register_SPACE_TO_BATCH_ND() { return Register_SPACE_TO_BATCH_ND_GENERIC_OPT(); } } } }
#include <stdint.h> #include <initializer_list> #include <vector> #include <gtest/gtest.h> #include "flatbuffers/flatbuffers.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { using ::testing::ElementsAreArray; using ::testing::Matcher; class SpaceToBatchNDOpModel : public SingleOpModel { public: void SetInput(std::initializer_list<float> data) { PopulateTensor<float>(input_, data); } template <typename T> void SetQuantizedInput(std::initializer_list<float> data) { QuantizeAndPopulate<T>(input_, data); } void SetBlockShape(std::initializer_list<int> data) { PopulateTensor<int>(block_shape_, data); } void SetPaddings(std::initializer_list<int> data) { PopulateTensor<int>(paddings_, data); } std::vector<float> GetOutput() { return ExtractVector<float>(output_); } std::vector<int> GetOutputShape() { return GetTensorShape(output_); } template <typename T> std::vector<float> GetDequantizedOutput() { return Dequantize<T>(ExtractVector<T>(output_), GetScale(output_), GetZeroPoint(output_)); } protected: int input_; int block_shape_; int paddings_; int output_; }; class SpaceToBatchNDOpConstModel : public SpaceToBatchNDOpModel { public: SpaceToBatchNDOpConstModel( const TensorData& input, std::initializer_list<int> block_shape, std::initializer_list<int> paddings, const TensorData& output, std::initializer_list<int> paddings_dims = {2, 2}) { input_ = AddInput(input); block_shape_ = AddConstInput(TensorType_INT32, block_shape, {static_cast<int>(block_shape.size())}); paddings_ = AddConstInput(TensorType_INT32, paddings, paddings_dims); output_ = AddOutput(output); SetBuiltinOp(BuiltinOperator_SPACE_TO_BATCH_ND, BuiltinOptions_SpaceToBatchNDOptions, CreateSpaceToBatchNDOptions(builder_).Union()); BuildInterpreter({input.shape}); } }; class SpaceToBatchNDOpDynamicModel : public SpaceToBatchNDOpModel { public: SpaceToBatchNDOpDynamicModel( const TensorData& input, const TensorData& output, std::initializer_list<int> block_shape_dims = {2}, std::initializer_list<int> paddings_dims = {2, 2}) { input_ = AddInput(input); block_shape_ = AddInput(TensorType_INT32); paddings_ = AddInput(TensorType_INT32); output_ = AddOutput(output); SetBuiltinOp(BuiltinOperator_SPACE_TO_BATCH_ND, BuiltinOptions_SpaceToBatchNDOptions, CreateSpaceToBatchNDOptions(builder_).Union()); BuildInterpreter({input.shape, block_shape_dims, paddings_dims}); } }; #if GTEST_HAS_DEATH_TEST TEST(SpaceToBatchNDOpTest, InvalidShapeTest) { EXPECT_DEATH( SpaceToBatchNDOpConstModel({TensorType_FLOAT32, {1, 3, 3, 1}}, {2, 2}, {0, 0, 0, 0}, {TensorType_FLOAT32}), "Cannot allocate tensors"); } #endif TEST(SpaceToBatchNDOpTest, SimpleConstTest) { SpaceToBatchNDOpConstModel m({TensorType_FLOAT32, {1, 4, 4, 1}}, {2, 2}, {0, 0, 0, 0}, {TensorType_FLOAT32}); m.SetInput({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({4, 2, 2, 1})); EXPECT_THAT(m.GetOutput(), ElementsAreArray({1, 3, 9, 11, 2, 4, 10, 12, 5, 7, 13, 15, 6, 8, 14, 16})); } TEST(SpaceToBatchNDOpTest, SimpleDynamicTest) { SpaceToBatchNDOpDynamicModel m({TensorType_FLOAT32, {1, 4, 4, 1}}, {TensorType_FLOAT32}); m.SetInput({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}); m.SetBlockShape({2, 2}); m.SetPaddings({0, 0, 0, 0}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({4, 2, 2, 1})); EXPECT_THAT(m.GetOutput(), ElementsAreArray({1, 3, 9, 11, 2, 4, 10, 12, 5, 7, 13, 15, 6, 8, 14, 16})); } TEST(SpaceToBatchNDOpTest, MultipleInputBatchesConstTest) { SpaceToBatchNDOpConstModel m({TensorType_FLOAT32, {2, 2, 4, 1}}, {2, 2}, {0, 0, 0, 0}, {TensorType_FLOAT32}); m.SetInput({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({8, 1, 2, 1})); EXPECT_THAT(m.GetOutput(), ElementsAreArray({1, 3, 9, 11, 2, 4, 10, 12, 5, 7, 13, 15, 6, 8, 14, 16})); } TEST(SpaceToBatchNDOpTest, MultipleInputBatchesDynamicTest) { SpaceToBatchNDOpDynamicModel m({TensorType_FLOAT32, {2, 2, 4, 1}}, {TensorType_FLOAT32}); m.SetInput({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}); m.SetBlockShape({2, 2}); m.SetPaddings({0, 0, 0, 0}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({8, 1, 2, 1})); EXPECT_THAT(m.GetOutput(), ElementsAreArray({1, 3, 9, 11, 2, 4, 10, 12, 5, 7, 13, 15, 6, 8, 14, 16})); } TEST(SpaceToBatchNDOpTest, SimplePaddingConstTest) { SpaceToBatchNDOpConstModel m({TensorType_FLOAT32, {1, 5, 2, 1}}, {3, 2}, {1, 0, 2, 0}, {TensorType_FLOAT32}); m.SetInput({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({6, 2, 2, 1})); EXPECT_THAT(m.GetOutput(), ElementsAreArray({ 0, 0, 0, 5, 0, 0, 0, 6, 0, 1, 0, 7, 0, 2, 0, 8, 0, 3, 0, 9, 0, 4, 0, 10, })); } TEST(SpaceToBatchNDOpTest, SimplePaddingDynamicTest) { SpaceToBatchNDOpDynamicModel m({TensorType_FLOAT32, {1, 5, 2, 1}}, {TensorType_FLOAT32}); m.SetInput({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); m.SetBlockShape({3, 2}); m.SetPaddings({1, 0, 2, 0}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({6, 2, 2, 1})); EXPECT_THAT(m.GetOutput(), ElementsAreArray({ 0, 0, 0, 5, 0, 0, 0, 6, 0, 1, 0, 7, 0, 2, 0, 8, 0, 3, 0, 9, 0, 4, 0, 10, })); } TEST(SpaceToBatchNDOpTest, ComplexPaddingConstTest) { SpaceToBatchNDOpConstModel m({TensorType_FLOAT32, {1, 4, 2, 1}}, {3, 2}, {1, 1, 2, 4}, {TensorType_FLOAT32}); m.SetInput({1, 2, 3, 4, 5, 6, 7, 8}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({6, 2, 4, 1})); EXPECT_THAT(m.GetOutput(), ElementsAreArray({ 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 1, 0, 0, 0, 7, 0, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, })); } TEST(SpaceToBatchNDOpTest, ComplexPaddingDynamicTest) { SpaceToBatchNDOpDynamicModel m({TensorType_FLOAT32, {1, 4, 2, 1}}, {TensorType_FLOAT32}); m.SetInput({1, 2, 3, 4, 5, 6, 7, 8}); m.SetBlockShape({3, 2}); m.SetPaddings({1, 1, 2, 4}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({6, 2, 4, 1})); EXPECT_THAT(m.GetOutput(), ElementsAreArray({ 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 1, 0, 0, 0, 7, 0, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, })); } template <typename integer_dtype = int8_t> std::vector<Matcher<float>> DequantizedArrayNear( const std::vector<float>& values, const float min, const float max) { const float quantization_tolerance = (max - min) / (std::numeric_limits<integer_dtype>::max() - std::numeric_limits<integer_dtype>::min()); return ArrayFloatNear(values, quantization_tolerance); } #if GTEST_HAS_DEATH_TEST TEST(QuantizedSpaceToBatchNDOpTest, ZeroNotInQuantizationRange) { EXPECT_DEATH(SpaceToBatchNDOpConstModel m( {TensorType_UINT8, {1, 2, 2, 1}, 1.0, 2.0}, {4, 2}, {0, 0, 1, 1, 1, 1, 0, 0}, {TensorType_UINT8, {}, 1.0, 2.0}), ".*Check failed: f_min <= 0.*"); } #endif template <typename integer_dtype> void SimplePaddingConstTestQuant() { const float kMin = -1; const float kMax = std::numeric_limits<integer_dtype>::max() / static_cast<float>(std::numeric_limits<integer_dtype>::max() + 1); SpaceToBatchNDOpConstModel m( {GetTensorType<integer_dtype>(), {1, 5, 2, 1}, 1.0f * kMin, 1.0f * kMax}, {3, 2}, {1, 0, 2, 0}, {GetTensorType<integer_dtype>(), {}, 1.0f * kMin, 1.0f * kMax}); m.SetQuantizedInput<integer_dtype>( {-0.1, 0.2, -0.3, 0.4, -0.5, 0.6, -0.7, 0.8, -0.9, 0.1}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({6, 2, 2, 1})); EXPECT_THAT(m.GetDequantizedOutput<integer_dtype>(), ElementsAreArray(DequantizedArrayNear<integer_dtype>( {0, 0, 0, -0.5, 0, 0, 0, 0.6, 0, -0.1, 0, -0.7, 0, 0.2, 0, 0.8, 0, -0.3, 0, -0.9, 0, 0.4, 0, 0.1}, -1.0, 1.0))); } TEST(QuantizedSpaceToBatchNDOpTest, SimplePaddingConstTestUint8) { SimplePaddingConstTestQuant<uint8_t>(); } TEST(QuantizedSpaceToBatchNDOpTest, SimplePaddingConstTestInt8) { SimplePaddingConstTestQuant<int8_t>(); } TEST(QuantizedSpaceToBatchNDOpTest, SimplePaddingConstTestInt16) { SimplePaddingConstTestQuant<int16_t>(); } template <typename integer_dtype> void SimplePaddingDynamicTestQuant() { const float kMin = -1; const float kMax = std::numeric_limits<integer_dtype>::max() / static_cast<float>(std::numeric_limits<integer_dtype>::max() + 1); SpaceToBatchNDOpDynamicModel m( {GetTensorType<integer_dtype>(), {1, 5, 2, 1}, 1.0f * kMin, 1.0f * kMax}, {GetTensorType<integer_dtype>(), {}, 1.0f * kMin, 1.0f * kMax}); m.SetQuantizedInput<integer_dtype>( {-0.1, 0.2, -0.3, 0.4, -0.5, 0.6, -0.7, 0.8, -0.9, 0.1}); m.SetBlockShape({3, 2}); m.SetPaddings({1, 0, 2, 0}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({6, 2, 2, 1})); EXPECT_THAT(m.GetDequantizedOutput<integer_dtype>(), ElementsAreArray(DequantizedArrayNear<integer_dtype>( {0, 0, 0, -0.5, 0, 0, 0, 0.6, 0, -0.1, 0, -0.7, 0, 0.2, 0, 0.8, 0, -0.3, 0, -0.9, 0, 0.4, 0, 0.1}, -1.0, 1.0))); } TEST(QuantizedSpaceToBatchNDOpTest, SimplePaddingDynamicTestUint8) { SimplePaddingDynamicTestQuant<uint8_t>(); } TEST(QuantizedSpaceToBatchNDOpTest, SimplePaddingDynamicTestInt8) { SimplePaddingDynamicTestQuant<int8_t>(); } TEST(QuantizedSpaceToBatchNDOpTest, SimplePaddingDynamicTestInt16) { SimplePaddingDynamicTestQuant<int16_t>(); } TEST(QuantizedSpaceToBatchNDOpTest, ComplexPaddingConstTest) { SpaceToBatchNDOpConstModel m({TensorType_UINT8, {1, 4, 2, 1}, -1.0, 1.0}, {3, 2}, {1, 1, 2, 4}, {TensorType_UINT8, {}, -1.0, 1.0}); m.SetQuantizedInput<uint8_t>({-0.1, 0.2, -0.3, 0.4, -0.5, 0.6, -0.7, 0.8}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({6, 2, 4, 1})); EXPECT_THAT(m.GetDequantizedOutput<uint8_t>(), ElementsAreArray(DequantizedArrayNear( { 0, 0, 0, 0, 0, -0.5, 0, 0, 0, 0, 0, 0, 0, 0.6, 0, 0, 0, -0.1, 0, 0, 0, -0.7, 0, 0, 0, 0.2, 0, 0, 0, 0.8, 0, 0, 0, -0.3, 0, 0, 0, 0, 0, 0, 0, 0.4, 0, 0, 0, 0, 0, 0, }, -1.0, 1.0))); } TEST(QuantizedSpaceToBatchNDOpTest, ComplexPaddingDynamicTest) { SpaceToBatchNDOpDynamicModel m({TensorType_UINT8, {1, 4, 2, 1}, -1.0, 1.0}, {TensorType_UINT8, {}, -1.0, 1.0}); m.SetQuantizedInput<uint8_t>({-0.1, 0.2, -0.3, 0.4, -0.5, 0.6, -0.7, 0.8}); m.SetBlockShape({3, 2}); m.SetPaddings({1, 1, 2, 4}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({6, 2, 4, 1})); EXPECT_THAT(m.GetDequantizedOutput<uint8_t>(), ElementsAreArray(DequantizedArrayNear( { 0, 0, 0, 0, 0, -0.5, 0, 0, 0, 0, 0, 0, 0, 0.6, 0, 0, 0, -0.1, 0, 0, 0, -0.7, 0, 0, 0, 0.2, 0, 0, 0, 0.8, 0, 0, 0, -0.3, 0, 0, 0, 0, 0, 0, 0, 0.4, 0, 0, 0, 0, 0, 0, }, -1.0, 1.0))); } TEST(SpaceToBatchNDOpTest, Simple3DConstTest) { SpaceToBatchNDOpConstModel m({TensorType_FLOAT32, {1, 4, 4}}, {2}, {0, 0}, {TensorType_FLOAT32}, {1, 2}); m.SetInput({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 2, 4})); EXPECT_THAT(m.GetOutput(), ElementsAreArray({1, 2, 3, 4, 9, 10, 11, 12, 5, 6, 7, 8, 13, 14, 15, 16})); } TEST(SpaceToBatchNDOpTest, Simple3DPaddingConstTest) { SpaceToBatchNDOpConstModel m({TensorType_FLOAT32, {1, 4, 4}}, {2}, {2, 2}, {TensorType_FLOAT32}, {1, 2}); m.SetInput({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 4, 4})); EXPECT_THAT( m.GetOutput(), ElementsAreArray({0, 0, 0, 0, 1, 2, 3, 4, 9, 10, 11, 12, 0, 0, 0, 0, 0, 0, 0, 0, 5, 6, 7, 8, 13, 14, 15, 16, 0, 0, 0, 0})); } TEST(SpaceToBatchNDOpTest, Simple3DDynamicTest) { SpaceToBatchNDOpDynamicModel m({TensorType_FLOAT32, {1, 4, 4}}, {TensorType_FLOAT32}, {1}, {1, 2}); m.SetInput({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}); m.SetBlockShape({2}); m.SetPaddings({0, 0}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 2, 4})); EXPECT_THAT(m.GetOutput(), ElementsAreArray({1, 2, 3, 4, 9, 10, 11, 12, 5, 6, 7, 8, 13, 14, 15, 16})); } TEST(SpaceToBatchNDOpTest, Simple3DPaddingDynamicTest) { SpaceToBatchNDOpDynamicModel m({TensorType_FLOAT32, {1, 4, 4}}, {TensorType_FLOAT32}, {1}, {1, 2}); m.SetInput({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}); m.SetBlockShape({2}); m.SetPaddings({2, 2}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 4, 4})); EXPECT_THAT( m.GetOutput(), ElementsAreArray({0, 0, 0, 0, 1, 2, 3, 4, 9, 10, 11, 12, 0, 0, 0, 0, 0, 0, 0, 0, 5, 6, 7, 8, 13, 14, 15, 16, 0, 0, 0, 0})); } } }
872
cpp
tensorflow/tensorflow
depth_to_space
tensorflow/lite/kernels/depth_to_space.cc
tensorflow/lite/kernels/depth_to_space_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DEPTH_TO_SPACE_H_ #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DEPTH_TO_SPACE_H_ #include "tensorflow/lite/kernels/internal/types.h" namespace tflite { namespace reference_ops { template <typename T> inline void DepthToSpace(const tflite::DepthToSpaceParams& op_params, const RuntimeShape& unextended_input_shape, const T* input_data, const RuntimeShape& unextended_output_shape, T* output_data) { TFLITE_DCHECK_LE(unextended_input_shape.DimensionsCount(), 4); TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), 4); const RuntimeShape input_shape = RuntimeShape::ExtendedShape(4, unextended_input_shape); const RuntimeShape output_shape = RuntimeShape::ExtendedShape(4, unextended_output_shape); const int input_depth = input_shape.Dims(3); const int input_width = input_shape.Dims(2); const int input_height = input_shape.Dims(1); const int input_batch = input_shape.Dims(0); const int output_depth = output_shape.Dims(3); const int output_width = output_shape.Dims(2); const int output_height = output_shape.Dims(1); const int output_batch = output_shape.Dims(0); const int32_t block_size = op_params.block_size; TFLITE_DCHECK_EQ(input_width * block_size, output_width); TFLITE_DCHECK_EQ(input_height * block_size, output_height); TFLITE_DCHECK_EQ(input_depth, output_depth * block_size * block_size); TFLITE_DCHECK_EQ(input_batch, output_batch); for (int out_b = 0; out_b < output_batch; ++out_b) { for (int out_h = 0; out_h < output_height; ++out_h) { for (int out_w = 0; out_w < output_width; ++out_w) { for (int out_d = 0; out_d < output_depth; ++out_d) { const int in_d = out_d + ((out_h % block_size) * block_size + out_w % block_size) * output_depth; const int in_w = out_w / block_size; const int in_h = out_h / block_size; const int in_b = out_b; const int input_index = Offset(input_shape, in_b, in_h, in_w, in_d); const int output_index = Offset(output_shape, out_b, out_h, out_w, out_d); output_data[output_index] = input_data[input_index]; } } } } } } } #endif #include <stdint.h> #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h" #include "tensorflow/lite/kernels/internal/reference/reference_ops.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/internal/types.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace builtin { namespace depth_to_space { enum KernelType { kReference, kGenericOptimized, }; constexpr int kInputTensor = 0; constexpr int kOutputTensor = 0; TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { auto* params = reinterpret_cast<TfLiteDepthToSpaceParams*>(node->builtin_data); TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); TF_LITE_ENSURE_EQ(context, NumDimensions(input), 4); auto data_type = output->type; TF_LITE_ENSURE(context, data_type == kTfLiteFloat32 || data_type == kTfLiteUInt8 || data_type == kTfLiteInt8 || data_type == kTfLiteInt32 || data_type == kTfLiteInt64); TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type); const int block_size = params->block_size; TF_LITE_ENSURE(context, block_size > 0); const int input_height = input->dims->data[1]; const int input_width = input->dims->data[2]; const int input_channels = input->dims->data[3]; int output_height = input_height * block_size; int output_width = input_width * block_size; int output_channels = input_channels / block_size / block_size; TF_LITE_ENSURE_EQ(context, input_height, output_height / block_size); TF_LITE_ENSURE_EQ(context, input_width, output_width / block_size); TF_LITE_ENSURE_EQ(context, input_channels, output_channels * block_size * block_size); TfLiteIntArray* output_size = TfLiteIntArrayCreate(4); output_size->data[0] = input->dims->data[0]; output_size->data[1] = output_height; output_size->data[2] = output_width; output_size->data[3] = output_channels; return context->ResizeTensor(context, output, output_size); } template <KernelType kernel_type> TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { auto* params = reinterpret_cast<TfLiteDepthToSpaceParams*>(node->builtin_data); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); #define TF_LITE_DEPTH_TO_SPACE(type, scalar) \ tflite::DepthToSpaceParams op_params; \ op_params.block_size = params->block_size; \ type::DepthToSpace(op_params, GetTensorShape(input), \ GetTensorData<scalar>(input), GetTensorShape(output), \ GetTensorData<scalar>(output)) switch (input->type) { case kTfLiteFloat32: if (kernel_type == kReference) { TF_LITE_DEPTH_TO_SPACE(reference_ops, float); } else { TF_LITE_DEPTH_TO_SPACE(optimized_ops, float); } break; case kTfLiteUInt8: if (kernel_type == kReference) { TF_LITE_DEPTH_TO_SPACE(reference_ops, uint8_t); } else { TF_LITE_DEPTH_TO_SPACE(optimized_ops, uint8_t); } break; case kTfLiteInt8: if (kernel_type == kReference) { TF_LITE_DEPTH_TO_SPACE(reference_ops, int8_t); } else { TF_LITE_DEPTH_TO_SPACE(optimized_ops, int8_t); } break; case kTfLiteInt32: if (kernel_type == kReference) { TF_LITE_DEPTH_TO_SPACE(reference_ops, int32_t); } else { TF_LITE_DEPTH_TO_SPACE(optimized_ops, int32_t); } break; case kTfLiteInt64: if (kernel_type == kReference) { TF_LITE_DEPTH_TO_SPACE(reference_ops, int64_t); } else { TF_LITE_DEPTH_TO_SPACE(optimized_ops, int64_t); } break; default: TF_LITE_KERNEL_LOG(context, "Type '%s' not currently supported.", TfLiteTypeGetName(input->type)); return kTfLiteError; } #undef TF_LITE_DEPTH_TO_SPACE return kTfLiteOk; } } TfLiteRegistration* Register_DEPTH_TO_SPACE_REF() { static TfLiteRegistration r = { nullptr, nullptr, depth_to_space::Prepare, depth_to_space::Eval<depth_to_space::kReference>}; return &r; } TfLiteRegistration* Register_DEPTH_TO_SPACE_GENERIC_OPT() { static TfLiteRegistration r = { nullptr, nullptr, depth_to_space::Prepare, depth_to_space::Eval<depth_to_space::kGenericOptimized>}; return &r; } TfLiteRegistration* Register_DEPTH_TO_SPACE() { return Register_DEPTH_TO_SPACE_GENERIC_OPT(); } } } }
#include <algorithm> #include <cstdint> #include <functional> #include <memory> #include <random> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/xnnpack/depth_to_space_tester.h" #include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h" namespace tflite { namespace xnnpack { TEST(DepthToSpace, SinglePixel) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto block_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); DepthToSpaceTester() .BatchSize(batch_rng()) .InputHeight(1) .InputWidth(1) .OutputChannels(channel_rng()) .BlockSize(block_rng()) .Test(TensorType_FLOAT32, xnnpack_delegate.get()); } TEST(DepthToSpace, SingleRow) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto width_rng = std::bind(std::uniform_int_distribution<int32_t>(5, 25), std::ref(rng)); auto block_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); DepthToSpaceTester() .BatchSize(batch_rng()) .InputHeight(1) .InputWidth(width_rng()) .OutputChannels(channel_rng()) .BlockSize(block_rng()) .Test(TensorType_FLOAT32, xnnpack_delegate.get()); } TEST(DepthToSpace, SingleColumn) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto height_rng = std::bind(std::uniform_int_distribution<int32_t>(5, 25), std::ref(rng)); auto block_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); DepthToSpaceTester() .BatchSize(batch_rng()) .InputHeight(height_rng()) .InputWidth(1) .OutputChannels(channel_rng()) .BlockSize(block_rng()) .Test(TensorType_FLOAT32, xnnpack_delegate.get()); } TEST(DepthToSpace, FullImage) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto size_rng = std::bind(std::uniform_int_distribution<int32_t>(5, 25), std::ref(rng)); auto block_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); DepthToSpaceTester() .BatchSize(batch_rng()) .InputHeight(size_rng()) .InputWidth(size_rng()) .OutputChannels(channel_rng()) .BlockSize(block_rng()) .Test(TensorType_FLOAT32, xnnpack_delegate.get()); } TEST(DepthToSpace, MultiThreading) { TfLiteXNNPackDelegateOptions delegate_options = TfLiteXNNPackDelegateOptionsDefault(); delegate_options.num_threads = 2; std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto size_rng = std::bind(std::uniform_int_distribution<int32_t>(5, 25), std::ref(rng)); auto block_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); DepthToSpaceTester() .BatchSize(batch_rng()) .InputHeight(size_rng()) .InputWidth(size_rng()) .OutputChannels(channel_rng()) .BlockSize(block_rng()) .Test(TensorType_FLOAT32, xnnpack_delegate.get()); } } }
873
cpp
tensorflow/tensorflow
acceleration_test_util_internal
tensorflow/lite/kernels/acceleration_test_util_internal.cc
tensorflow/lite/kernels/acceleration_test_util_internal_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_ACCELERATION_TEST_UTIL_INTERNAL_H_ #define TENSORFLOW_LITE_KERNELS_ACCELERATION_TEST_UTIL_INTERNAL_H_ #include <algorithm> #include <atomic> #include <functional> #include <iterator> #include <optional> #include <string> #include <vector> #include "absl/types/optional.h" #include "re2/re2.h" namespace tflite { void ReadAccelerationConfig( const char* config, const std::function<void(std::string, std::string, bool)>& consumer); template <typename T> class ConfigurationEntry { public: ConfigurationEntry(const std::string& test_id_rex, T test_config, bool is_denylist) : test_id_rex_(test_id_rex), test_config_(test_config), is_denylist_(is_denylist) {} bool Matches(const std::string& test_id) { return RE2::FullMatch(test_id, test_id_rex_); } bool IsDenylistEntry() const { return is_denylist_; } const T& TestConfig() const { return test_config_; } const std::string& TestIdRex() const { return test_id_rex_; } private: std::string test_id_rex_; T test_config_; bool is_denylist_; }; template <typename T> std::optional<T> GetAccelerationTestParam(std::string test_id) { static std::atomic<std::vector<ConfigurationEntry<T>>*> test_config_ptr; if (test_config_ptr.load() == nullptr) { auto config = new std::vector<ConfigurationEntry<T>>(); auto consumer = [&config](std::string key, std::string value_str, bool is_denylist) mutable { T value = T::ParseConfigurationLine(value_str); config->push_back(ConfigurationEntry<T>(key, value, is_denylist)); }; ReadAccelerationConfig(T::AccelerationTestConfig(), consumer); auto* prev_val = test_config_ptr.exchange(config); delete prev_val; } const std::vector<ConfigurationEntry<T>>* test_config = test_config_ptr.load(); const auto test_config_iter = std::find_if( test_config->begin(), test_config->end(), [&test_id](ConfigurationEntry<T> elem) { return elem.Matches(test_id); }); if (test_config_iter != test_config->end() && !test_config_iter->IsDenylistEntry()) { return std::optional<T>(test_config_iter->TestConfig()); } else { return std::optional<T>(); } } } #endif #include "tensorflow/lite/kernels/acceleration_test_util_internal.h" #include <ctype.h> #include <algorithm> #include <functional> #include <iterator> #include <sstream> #include <string> namespace tflite { void ReadAccelerationConfig( const char* config, const std::function<void(std::string, std::string, bool)>& consumer) { if (config) { std::istringstream istream{config}; std::string curr_config_line; while (std::getline(istream, curr_config_line)) { curr_config_line.erase( curr_config_line.begin(), std::find_if_not(curr_config_line.begin(), curr_config_line.end(), [](int ch) { return std::isspace(ch); })); if (curr_config_line.empty() || curr_config_line.at(0) == '#') { continue; } auto first_sep_pos = std::find(curr_config_line.begin(), curr_config_line.end(), ','); bool is_denylist = false; std::string key = curr_config_line; std::string value{}; if (first_sep_pos != curr_config_line.end()) { key = std::string(curr_config_line.begin(), first_sep_pos); value = std::string(first_sep_pos + 1, curr_config_line.end()); } if (key[0] == '-') { key = key.substr(1); is_denylist = true; } consumer(key, value, is_denylist); } } } }
#include "tensorflow/lite/kernels/acceleration_test_util_internal.h" #include <functional> #include <optional> #include <string> #include <unordered_map> #include <gmock/gmock.h> #include <gtest/gtest.h> namespace tflite { using ::testing::Eq; using ::testing::Not; using ::testing::Test; struct SimpleConfig { public: static constexpr char kAccelerationTestConfig[] = R"( #test-id,some-other-data test-1,data-1 test-2, test-3,data-3 test-4.*,data-4 -test-5 test-6 test-7,data-7 )"; static const char* AccelerationTestConfig() { return kAccelerationTestConfig; } static SimpleConfig ParseConfigurationLine(const std::string& conf_line) { return {conf_line}; } std::string value; }; class ReadAccelerationConfigTest : public ::testing::Test { public: std::unordered_map<std::string, SimpleConfig> allowlist_; std::unordered_map<std::string, SimpleConfig> denylist_; std::function<void(std::string, std::string, bool)> consumer_ = [this](std::string key, std::string value, bool is_denylist) { if (is_denylist) { denylist_[key] = {value}; } else { allowlist_[key] = {value}; } }; }; TEST_F(ReadAccelerationConfigTest, ReadsAKeyOnlyLine) { ReadAccelerationConfig("key", consumer_); EXPECT_THAT(allowlist_.find("key"), Not(Eq(allowlist_.end()))); EXPECT_TRUE(denylist_.empty()); } TEST_F(ReadAccelerationConfigTest, ReadsADenylistKeyOnlyLine) { ReadAccelerationConfig("-key", consumer_); EXPECT_THAT(denylist_.find("key"), Not(Eq(allowlist_.end()))); EXPECT_TRUE(allowlist_.empty()); } TEST_F(ReadAccelerationConfigTest, ReadsAKeyValueLine) { ReadAccelerationConfig("key,value", consumer_); EXPECT_THAT(allowlist_["key"].value, Eq("value")); EXPECT_TRUE(denylist_.empty()); } TEST_F(ReadAccelerationConfigTest, ReadsADenyListKeyValueLine) { ReadAccelerationConfig("-key,value", consumer_); EXPECT_THAT(denylist_["key"].value, Eq("value")); EXPECT_TRUE(allowlist_.empty()); } TEST_F(ReadAccelerationConfigTest, KeysAreLeftTrimmed) { ReadAccelerationConfig(" key,value", consumer_); EXPECT_THAT(allowlist_["key"].value, Eq("value")); EXPECT_TRUE(denylist_.empty()); } TEST_F(ReadAccelerationConfigTest, BlKeysAreLeftTrimmed) { ReadAccelerationConfig(" -key,value", consumer_); EXPECT_THAT(denylist_["key"].value, Eq("value")); EXPECT_TRUE(allowlist_.empty()); } TEST_F(ReadAccelerationConfigTest, IgnoresCommentedLines) { ReadAccelerationConfig("#key,value", consumer_); EXPECT_TRUE(allowlist_.empty()); EXPECT_TRUE(denylist_.empty()); } TEST_F(ReadAccelerationConfigTest, CommentCanHaveTrailingBlanks) { ReadAccelerationConfig(" #key,value", consumer_); EXPECT_TRUE(allowlist_.empty()); EXPECT_TRUE(denylist_.empty()); } TEST_F(ReadAccelerationConfigTest, CommentsAreOnlyForTheFullLine) { ReadAccelerationConfig("key,value #comment", consumer_); EXPECT_THAT(allowlist_["key"].value, Eq("value #comment")); } TEST_F(ReadAccelerationConfigTest, IgnoresEmptyLines) { ReadAccelerationConfig("", consumer_); EXPECT_TRUE(allowlist_.empty()); EXPECT_TRUE(denylist_.empty()); } TEST_F(ReadAccelerationConfigTest, ParsesMultipleLines) { ReadAccelerationConfig("key1,value1\nkey2,value2\n-key3,value3", consumer_); EXPECT_THAT(allowlist_["key1"].value, Eq("value1")); EXPECT_THAT(allowlist_["key2"].value, Eq("value2")); EXPECT_THAT(denylist_["key3"].value, Eq("value3")); } TEST_F(ReadAccelerationConfigTest, ParsesMultipleLinesWithCommentsAndSpaces) { ReadAccelerationConfig("key1,value1\n#comment\n\nkey2,value2", consumer_); EXPECT_THAT(allowlist_["key1"].value, Eq("value1")); EXPECT_THAT(allowlist_["key2"].value, Eq("value2")); } TEST_F(ReadAccelerationConfigTest, ParsesMultipleLinesWithMissingConfigValues) { ReadAccelerationConfig("key1\nkey2,value2\nkey3\nkey4,value4", consumer_); EXPECT_THAT(allowlist_["key1"].value, Eq("")); EXPECT_THAT(allowlist_["key2"].value, Eq("value2")); EXPECT_THAT(allowlist_["key3"].value, Eq("")); EXPECT_THAT(allowlist_["key4"].value, Eq("value4")); } TEST(GetAccelerationTestParam, LoadsTestConfig) { const auto config_value_maybe = GetAccelerationTestParam<SimpleConfig>("test-3"); ASSERT_TRUE(config_value_maybe.has_value()); ASSERT_THAT(config_value_maybe.value().value, Eq("data-3")); } TEST(GetAccelerationTestParam, LoadsTestConfigWithEmptyValue) { const auto config_value_maybe = GetAccelerationTestParam<SimpleConfig>("test-2"); ASSERT_TRUE(config_value_maybe.has_value()); ASSERT_THAT(config_value_maybe.value().value, Eq("")); } TEST(GetAccelerationTestParam, SupportsWildcards) { const auto config_value_maybe = GetAccelerationTestParam<SimpleConfig>("test-41"); ASSERT_TRUE(config_value_maybe.has_value()); ASSERT_THAT(config_value_maybe.value().value, Eq("data-4")); } TEST(GetAccelerationTestParam, SupportDenylist) { const auto config_value_maybe = GetAccelerationTestParam<SimpleConfig>("test-5"); ASSERT_FALSE(config_value_maybe.has_value()); } struct UnmatchedSimpleConfig { public: static constexpr const char* kAccelerationTestConfig = nullptr; static const char* AccelerationTestConfig() { return kAccelerationTestConfig; } static UnmatchedSimpleConfig ParseConfigurationLine( const std::string& conf_line) { return {conf_line}; } std::string value; }; TEST(GetAccelerationTestParam, ReturnEmptyOptionalForNullConfig) { ASSERT_FALSE( GetAccelerationTestParam<UnmatchedSimpleConfig>("test-3").has_value()); } }
874
cpp
tensorflow/tensorflow
pooling
third_party/xla/xla/client/lib/pooling.cc
third_party/xla/xla/client/lib/pooling_test.cc
#ifndef XLA_CLIENT_LIB_POOLING_H_ #define XLA_CLIENT_LIB_POOLING_H_ #include <utility> #include <vector> #include "absl/container/inlined_vector.h" #include "xla/client/xla_builder.h" namespace xla { class TensorFormat { public: TensorFormat(int batch_dimension, int feature_dimension, absl::Span<const int64_t> spatial_dimensions) : batch_dimension_(batch_dimension), feature_dimension_(feature_dimension), spatial_dimensions_(spatial_dimensions.begin(), spatial_dimensions.end()) {} int batch_dimension() const { return batch_dimension_; } int feature_dimension() const { return feature_dimension_; } int spatial_dimension(int dim) const { return spatial_dimensions_[dim]; } int num_spatial_dims() const { return spatial_dimensions_.size(); } private: int batch_dimension_; int feature_dimension_; absl::InlinedVector<int, 4> spatial_dimensions_; }; XlaOp MaxPool(XlaOp operand, absl::Span<const int64_t> kernel_size, absl::Span<const int64_t> stride, Padding padding, const TensorFormat& data_format); XlaOp AvgPool(XlaOp operand, absl::Span<const int64_t> kernel_size, absl::Span<const int64_t> stride, absl::Span<const std::pair<int64_t, int64_t>> padding, const TensorFormat& data_format, bool counts_include_padding); std::vector<std::pair<int64_t, int64_t>> MakeSpatialPadding( absl::Span<const int64_t> input_size, absl::Span<const int64_t> kernel_size, absl::Span<const int64_t> stride, Padding padding, const TensorFormat& data_format); XlaOp AvgPoolGrad(XlaOp out_backprop, absl::Span<const int64_t> gradients_size, absl::Span<const int64_t> kernel_size, absl::Span<const int64_t> stride, absl::Span<const std::pair<int64_t, int64_t>> spatial_padding, const TensorFormat& data_format, bool counts_include_padding); } #endif #include "xla/client/lib/pooling.h" #include <numeric> #include <utility> #include <vector> #include "xla/client/lib/arithmetic.h" #include "xla/client/lib/constants.h" #include "xla/client/lib/conv_grad_size_util.h" namespace xla { namespace { XlaOp AvgPoolDivideByCountWithGeneralPadding( XlaOp sums, PrimitiveType dtype, absl::Span<const int64_t> input_shape, absl::Span<const std::pair<int64_t, int64_t>> spatial_padding, absl::Span<const int64_t> ksize, absl::Span<const int64_t> stride, const TensorFormat& data_format) { const int num_spatial_dims = spatial_padding.size(); std::vector<int64_t> input_dim_sizes(num_spatial_dims); std::vector<int64_t> window_dims(num_spatial_dims); std::vector<int64_t> window_ksize(num_spatial_dims); std::vector<int64_t> window_stride(num_spatial_dims); CHECK_EQ(data_format.num_spatial_dims(), num_spatial_dims) << "Invalid number of spatial dimensions in data format specification"; for (int i = 0; i < num_spatial_dims; ++i) { int dim = data_format.spatial_dimension(i); input_dim_sizes[i] = input_shape[dim]; window_dims[i] = dim; window_ksize[i] = ksize[dim]; window_stride[i] = stride[dim]; } XlaBuilder* b = sums.builder(); auto ones = Broadcast(One(b, dtype), input_dim_sizes); PaddingConfig padding_config; for (int i = 0; i < num_spatial_dims; ++i) { auto dims = padding_config.add_dimensions(); dims->set_edge_padding_low(spatial_padding[i].first); dims->set_edge_padding_high(spatial_padding[i].second); } auto zero = Zero(b, dtype); auto padded_ones = Pad(ones, zero, padding_config); auto counts = ReduceWindow(padded_ones, zero, CreateScalarAddComputation(dtype, b), window_ksize, window_stride, Padding::kValid); return Div(sums, counts, window_dims); } XlaOp ComputeSums(XlaOp operand, XlaOp init_value, absl::Span<const int64_t> kernel_size, absl::Span<const int64_t> stride, const TensorFormat& data_format) { XlaBuilder* b = operand.builder(); return b->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape operand_shape, b->GetShape(operand)); TF_ASSIGN_OR_RETURN(Shape init_shape, b->GetShape(init_value)); PrimitiveType accumulation_type = init_shape.element_type(); auto add_computation = CreateScalarAddComputation(accumulation_type, b); return ReduceWindow(operand, init_value, add_computation, kernel_size, stride, Padding::kValid); }); } PaddingConfig MakeSpatialPaddingConfig( absl::Span<const std::pair<int64_t, int64_t>> spatial_padding, int num_spatial_dims, absl::Span<const int64_t> stride, const TensorFormat& data_format) { PaddingConfig padding_config; padding_config.mutable_dimensions()->Reserve(2 + num_spatial_dims); for (int i = 0; i < 2 + num_spatial_dims; ++i) { padding_config.add_dimensions(); } CHECK_EQ(data_format.num_spatial_dims(), num_spatial_dims) << "Invalid number of spatial dimensions in data format specification"; for (int i = 0; i < num_spatial_dims; ++i) { int dim = data_format.spatial_dimension(i); auto padding_dimension = padding_config.mutable_dimensions(dim); padding_dimension->set_edge_padding_low(spatial_padding[i].first); padding_dimension->set_edge_padding_high(spatial_padding[i].second); } return padding_config; } XlaOp AvgPoolDivideByCount( XlaOp pooled, absl::Span<const int64_t> input_size, absl::Span<const int64_t> window_dimensions, absl::Span<const int64_t> window_strides, absl::Span<const std::pair<int64_t, int64_t>> padding, PrimitiveType dtype, const TensorFormat& data_format, bool counts_include_padding) { if (counts_include_padding) { int64_t window_size = std::accumulate(window_dimensions.begin(), window_dimensions.end(), 1, [](int64_t a, int64_t b) { return a * b; }); auto divisor = ConstantR0WithType(pooled.builder(), dtype, window_size); return pooled / divisor; } else { return AvgPoolDivideByCountWithGeneralPadding(pooled, dtype, input_size, padding, window_dimensions, window_strides, data_format); } } } XlaOp MaxPool(XlaOp operand, absl::Span<const int64_t> kernel_size, absl::Span<const int64_t> stride, Padding padding, const TensorFormat& data_format) { XlaBuilder* b = operand.builder(); return b->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape operand_shape, b->GetShape(operand)); PrimitiveType dtype = operand_shape.element_type(); auto max_computation = CreateScalarMaxComputation(dtype, b); auto init_value = MinValue(b, dtype); return ReduceWindow(operand, init_value, max_computation, kernel_size, stride, padding); }); } XlaOp AvgPool(XlaOp operand, absl::Span<const int64_t> kernel_size, absl::Span<const int64_t> stride, absl::Span<const std::pair<int64_t, int64_t>> padding, const TensorFormat& data_format, const bool counts_include_padding) { XlaBuilder* b = operand.builder(); return b->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { TF_ASSIGN_OR_RETURN(Shape operand_shape, b->GetShape(operand)); PrimitiveType dtype = operand_shape.element_type(); auto init_value = Zero(b, dtype); std::vector<int64_t> input_size(operand_shape.dimensions().begin(), operand_shape.dimensions().end()); const int num_dims = kernel_size.size(); const int num_spatial_dims = num_dims - 2; auto padding_config = MakeSpatialPaddingConfig(padding, num_spatial_dims, stride, data_format); auto padded_operand = Pad(operand, Zero(b, dtype), padding_config); auto pooled = ComputeSums(padded_operand, init_value, kernel_size, stride, data_format); return AvgPoolDivideByCount(pooled, input_size, kernel_size, stride, padding, dtype, data_format, counts_include_padding); }); } std::vector<std::pair<int64_t, int64_t>> MakeSpatialPadding( absl::Span<const int64_t> input_size, absl::Span<const int64_t> kernel_size, absl::Span<const int64_t> stride, Padding padding, const TensorFormat& data_format) { const int num_spatial_dims = kernel_size.size() - 2; std::vector<int64_t> input_spatial_dimensions; std::vector<int64_t> kernel_size_spatial_dimensions; std::vector<int64_t> stride_spatial_dimensions; CHECK_EQ(data_format.num_spatial_dims(), num_spatial_dims) << "Invalid number of spatial dimensions in data format specification"; for (int i = 0; i < num_spatial_dims; ++i) { int dim = data_format.spatial_dimension(i); input_spatial_dimensions.push_back(input_size[dim]); kernel_size_spatial_dimensions.push_back(kernel_size[dim]); stride_spatial_dimensions.push_back(stride[dim]); } return MakePadding(input_spatial_dimensions, kernel_size_spatial_dimensions, stride_spatial_dimensions, padding); } XlaOp AvgPoolGrad(XlaOp out_backprop, absl::Span<const int64_t> gradients_size, absl::Span<const int64_t> kernel_size, absl::Span<const int64_t> stride, absl::Span<const std::pair<int64_t, int64_t>> spatial_padding, const TensorFormat& data_format, const bool counts_include_padding) { XlaBuilder* b = out_backprop.builder(); return b->ReportErrorOrReturn([&]() -> absl::StatusOr<XlaOp> { const int num_dims = kernel_size.size(); const int num_gradients = gradients_size.size(); if (num_gradients != num_dims) { return tsl::errors::InvalidArgument("gradients must be ", num_dims, "-dimensional"); } TF_ASSIGN_OR_RETURN(Shape out_backprop_xla_shape, b->GetShape(out_backprop)); const int backprop_xla_num_dims = out_backprop_xla_shape.dimensions().size(); if (backprop_xla_num_dims != num_dims) { return tsl::errors::InvalidArgument("out_backprop must be ", num_dims, "-dimensional"); } PrimitiveType dtype = out_backprop_xla_shape.element_type(); auto out_backprop_div = AvgPoolDivideByCount( out_backprop, gradients_size, kernel_size, stride, spatial_padding, dtype, data_format, counts_include_padding); PaddingConfig padding_config = MakeNoPaddingConfig(num_dims); std::vector<int64_t> padded_gradients_size(gradients_size.begin(), gradients_size.end()); const int num_spatial_dims = num_dims - 2; for (int i = 0; i < num_spatial_dims; ++i) { int dim = data_format.spatial_dimension(i); padded_gradients_size[dim] += (spatial_padding[i].first + spatial_padding[i].second); } for (int i = 0; i < num_spatial_dims; ++i) { int dim = data_format.spatial_dimension(i); TF_ASSIGN_OR_RETURN( SpatialDimensionOutputSizeAndPadding conv_backprop_spatial_dim, ConvGradExtractAndVerifyDimension( padded_gradients_size[dim], kernel_size[dim], out_backprop_xla_shape.dimensions(dim), 1, stride[dim], Padding::kValid)); auto* padding = padding_config.mutable_dimensions(dim); padding->set_edge_padding_low(conv_backprop_spatial_dim.pad_before); padding->set_edge_padding_high(conv_backprop_spatial_dim.pad_after); padding->set_interior_padding(stride[dim] - 1); } auto zero = Zero(b, dtype); auto padded_gradients = Pad(out_backprop_div, zero, padding_config); std::vector<int64_t> ones(num_dims, 1LL); auto in_backprop = ReduceWindow(padded_gradients, Zero(b, dtype), CreateScalarAddComputation(dtype, b), kernel_size, ones, Padding::kValid); std::vector<std::pair<int64_t, int64_t>> neg_spatial_padding; neg_spatial_padding.reserve(spatial_padding.size()); for (const std::pair<int64_t, int64_t>& spatial_padding_dim : spatial_padding) { neg_spatial_padding.emplace_back(-spatial_padding_dim.first, -spatial_padding_dim.second); } auto remove_padding_config = MakeSpatialPaddingConfig( neg_spatial_padding, num_spatial_dims, stride, data_format); return Pad(in_backprop, zero, remove_padding_config); }); } }
#include "xla/client/lib/pooling.h" #include <utility> #include <vector> #include "absl/container/inlined_vector.h" #include "xla/test.h" #include "xla/tests/client_library_test_base.h" #include "xla/tests/test_macros.h" namespace xla { namespace { TensorFormat MakeNCHWFormat(int num_spatial_dims) { absl::InlinedVector<int64_t, 4> spatial_dimensions; for (int i = 0; i < num_spatial_dims; ++i) { spatial_dimensions.push_back(i + 2); } return TensorFormat(0, 1, spatial_dimensions); } std::vector<std::pair<int64_t, int64_t>> MakeGeneralPadding( XlaOp input, absl::Span<const int64_t> kernel_size, absl::Span<const int64_t> stride, Padding padding, const xla::TensorFormat& data_format) { XlaBuilder* b = input.builder(); Shape operand_shape = b->GetShape(input).value(); std::vector<int64_t> input_size(operand_shape.dimensions().begin(), operand_shape.dimensions().end()); return MakeSpatialPadding(input_size, kernel_size, stride, padding, data_format); } std::vector<int64_t> ExpandWithBatchAndFeatureDimensions( absl::Span<const int64_t> spatial_dim_sizes, const xla::TensorFormat& data_format) { const int num_spatial_dims = spatial_dim_sizes.size(); std::vector<int64_t> tensor_sizes(num_spatial_dims + 2, 1); for (int i = 0; i < num_spatial_dims; ++i) { int dim = data_format.spatial_dimension(i); tensor_sizes[dim] = spatial_dim_sizes[i]; } return tensor_sizes; } class PoolingTest : public ClientLibraryTestBase { public: ErrorSpec error_spec_{0.0001}; }; XLA_TEST_F(PoolingTest, MaxPool2D) { XlaBuilder builder(TestName()); XlaOp input = ConstantR4FromArray4D<float>( &builder, {{{{1, 2, 3, 4, 5}, {5, 4, 3, 2, 1}}}}); auto data_format = MakeNCHWFormat(2); auto kernel_size = ExpandWithBatchAndFeatureDimensions({2, 2}, data_format); auto stride = kernel_size; MaxPool(input, kernel_size, stride, Padding::kValid, data_format); ComputeAndCompareR4<float>(&builder, {{{{5, 4}}}}, {}, error_spec_); } XLA_TEST_F(PoolingTest, MaxPool2DWithPadding) { XlaBuilder builder(TestName()); XlaOp input = ConstantR4FromArray4D<float>( &builder, {{{{1, 2, 3, 4, 5}, {5, 4, 3, 2, 1}}}}); auto data_format = MakeNCHWFormat(2); auto kernel_size = ExpandWithBatchAndFeatureDimensions({2, 2}, data_format); auto stride = kernel_size; MaxPool(input, kernel_size, stride, Padding::kSame, data_format); ComputeAndCompareR4<float>(&builder, {{{{5, 4, 5}}}}, {}, error_spec_); } XLA_TEST_F(PoolingTest, MaxPool2DWithPaddingAndStride) { XlaBuilder builder(TestName()); XlaOp input = ConstantR4FromArray4D<float>( &builder, {{{{1, 2, 3, 4, 5}, {5, 4, 3, 2, 1}}}}); auto data_format = MakeNCHWFormat(2); auto kernel_size = ExpandWithBatchAndFeatureDimensions({2, 2}, data_format); auto stride = ExpandWithBatchAndFeatureDimensions({1, 1}, data_format); MaxPool(input, kernel_size, stride, Padding::kSame, data_format); ComputeAndCompareR4<float>(&builder, {{{{5, 4, 4, 5, 5}, {5, 4, 3, 2, 1}}}}, {}, error_spec_); } XLA_TEST_F(PoolingTest, AvgPool2D) { XlaBuilder builder(TestName()); XlaOp input = ConstantR4FromArray4D<float>( &builder, {{{{1, 2, 3, 4, 5}, {5, 4, 3, 2, 1}}}}); auto data_format = MakeNCHWFormat(2); auto kernel_size = ExpandWithBatchAndFeatureDimensions({2, 2}, data_format); auto stride = kernel_size; auto padding = MakeGeneralPadding(input, kernel_size, stride, Padding::kValid, data_format); AvgPool(input, kernel_size, stride, padding, data_format, true); ComputeAndCompareR4<float>(&builder, {{{{3, 3}}}}, {}, error_spec_); } XLA_TEST_F(PoolingTest, AvgPool2DWithPadding) { XlaBuilder builder(TestName()); XlaOp input = ConstantR4FromArray4D<float>( &builder, {{{{1, 2, 3, 4, 5}, {5, 4, 3, 2, 1}}}}); auto data_format = MakeNCHWFormat(2); auto kernel_size = ExpandWithBatchAndFeatureDimensions({2, 2}, data_format); auto stride = kernel_size; auto padding = MakeGeneralPadding(input, kernel_size, stride, Padding::kSame, data_format); AvgPool(input, kernel_size, stride, padding, data_format, false); ComputeAndCompareR4<float>(&builder, {{{{3, 3, 3}}}}, {}, error_spec_); } XLA_TEST_F(PoolingTest, AvgPool2DWithPaddingAndStride) { XlaBuilder builder(TestName()); XlaOp input = ConstantR4FromArray4D<float>( &builder, {{{{1, 2, 3, 4, 5}, {5, 4, 3, 2, 1}}}}); auto data_format = MakeNCHWFormat(2); auto kernel_size = ExpandWithBatchAndFeatureDimensions({2, 2}, data_format); auto stride = ExpandWithBatchAndFeatureDimensions({1, 1}, data_format); auto padding = MakeGeneralPadding(input, kernel_size, stride, Padding::kSame, data_format); AvgPool(input, kernel_size, stride, padding, data_format, false); ComputeAndCompareR4<float>(&builder, {{{{3, 3, 3, 3, 3}, {4.5, 3.5, 2.5, 1.5, 1}}}}, {}, error_spec_); } XLA_TEST_F(PoolingTest, AvgPool2DWithGeneralPaddingCountNotIncludePadding) { XlaBuilder builder(TestName()); XlaOp input = ConstantR4FromArray4D<float>( &builder, {{{{1, 2, 3, 4, 5}, {5, 4, 3, 2, 1}}}}); auto data_format = MakeNCHWFormat(2); auto kernel_size = ExpandWithBatchAndFeatureDimensions({3, 3}, data_format); auto stride = kernel_size; AvgPool(input, kernel_size, stride, {{1, 1}, {2, 1}}, data_format, false); ComputeAndCompareR4<float>(&builder, {{{{3, 3}}}}, {}, error_spec_); } XLA_TEST_F(PoolingTest, AvgPool2DWithGeneralPaddingCountNotIncludePaddingAndStride) { XlaBuilder builder(TestName()); XlaOp input = ConstantR4FromArray4D<float>( &builder, {{{{1, 2, 3, 4, 5}, {5, 4, 3, 2, 1}}}}); auto data_format = MakeNCHWFormat(2); auto kernel_size = ExpandWithBatchAndFeatureDimensions({3, 3}, data_format); auto stride = ExpandWithBatchAndFeatureDimensions({2, 2}, data_format); AvgPool(input, kernel_size, stride, {{2, 1}, {1, 1}}, data_format, false); ComputeAndCompareR4<float>(&builder, {{{{1.5, 3, 4.5}, {3, 3, 3}}}}, {}, error_spec_); } XLA_TEST_F(PoolingTest, AvgPool2DGradNoPadding) { XlaBuilder builder(TestName()); for (bool counts_include_padding : {false, true}) { XlaOp out_backprop = ConstantR4FromArray4D<float>(&builder, {{{{1.}}}}); auto data_format = MakeNCHWFormat(2); auto kernel_size = ExpandWithBatchAndFeatureDimensions({2, 2}, data_format); auto stride = ExpandWithBatchAndFeatureDimensions({2, 2}, data_format); AvgPoolGrad(out_backprop, {1, 1, 3, 3}, kernel_size, stride, {{0, 0}, {0, 0}}, MakeNCHWFormat(2), counts_include_padding); ComputeAndCompareR4<float>( &builder, {{{{0.25, 0.25, 0.}, {0.25, 0.25, 0.}, {0., 0., 0.}}}}, {}, error_spec_); } } XLA_TEST_F(PoolingTest, AvgPool2DGradNoPaddingWithStride) { XlaBuilder builder(TestName()); for (bool counts_include_padding : {false, true}) { XlaOp out_backprop = ConstantR4FromArray4D<float>(&builder, {{{{1., 1.}, {1., 1.}}}}); auto data_format = MakeNCHWFormat(2); auto kernel_size = ExpandWithBatchAndFeatureDimensions({2, 2}, data_format); auto stride = ExpandWithBatchAndFeatureDimensions({1, 1}, data_format); AvgPoolGrad(out_backprop, {1, 1, 3, 3}, kernel_size, stride, {{0, 0}, {0, 0}}, MakeNCHWFormat(2), counts_include_padding); ComputeAndCompareR4<float>( &builder, {{{{0.25, 0.5, 0.25}, {0.5, 1., 0.5}, {0.25, 0.5, 0.25}}}}, {}, error_spec_); } } XLA_TEST_F(PoolingTest, AvgPool2DGradWithPadding) { XlaBuilder builder(TestName()); XlaOp out_backprop = ConstantR4FromArray4D<float>(&builder, {{{{1., 1.}, {1., 1.}}}}); auto data_format = MakeNCHWFormat(2); auto kernel_size = ExpandWithBatchAndFeatureDimensions({2, 2}, data_format); auto stride = ExpandWithBatchAndFeatureDimensions({2, 2}, data_format); AvgPoolGrad(out_backprop, {1, 1, 3, 3}, kernel_size, stride, {{1, 1}, {1, 1}}, MakeNCHWFormat(2), true); ComputeAndCompareR4<float>( &builder, {{{{0.25, 0.25, 0.25}, {0.25, 0.25, 0.25}, {0.25, 0.25, 0.25}}}}, {}, error_spec_); } XLA_TEST_F(PoolingTest, AvgPool2DGradWithPaddingCountNotIncludePadding) { XlaBuilder builder(TestName()); XlaOp out_backprop = ConstantR4FromArray4D<float>(&builder, {{{{1., 1.}, {1., 1.}}}}); auto data_format = MakeNCHWFormat(2); auto kernel_size = ExpandWithBatchAndFeatureDimensions({2, 2}, data_format); auto stride = ExpandWithBatchAndFeatureDimensions({2, 2}, data_format); AvgPoolGrad(out_backprop, {1, 1, 3, 3}, kernel_size, stride, {{1, 1}, {1, 1}}, MakeNCHWFormat(2), false); ComputeAndCompareR4<float>( &builder, {{{{1., 0.5, 0.5}, {0.5, 0.25, 0.25}, {0.5, 0.25, 0.25}}}}, {}, error_spec_); } XLA_TEST_F(PoolingTest, AvgPool2DGradWithPaddingCountWithStride) { XlaBuilder builder(TestName()); XlaOp out_backprop = ConstantR4FromArray4D<float>(&builder, {{{{1., 1., 1., 1.}, {1., 1., 1., 1.}, {1., 1., 1., 1.}, {1., 1., 1., 1.}}}}); auto data_format = MakeNCHWFormat(2); auto kernel_size = ExpandWithBatchAndFeatureDimensions({2, 2}, data_format); auto stride = ExpandWithBatchAndFeatureDimensions({1, 1}, data_format); AvgPoolGrad(out_backprop, {1, 1, 3, 3}, kernel_size, stride, {{1, 1}, {1, 1}}, MakeNCHWFormat(2), true); ComputeAndCompareR4<float>(&builder, {{{{1., 1., 1.}, {1., 1., 1.}, {1., 1., 1.}}}}, {}, error_spec_); } XLA_TEST_F(PoolingTest, AvgPool2DGradWithPaddingCountWithStrideNotIncludePadding) { XlaBuilder builder(TestName()); XlaOp out_backprop = ConstantR4FromArray4D<float>(&builder, {{{{1., 1., 1., 1.}, {1., 1., 1., 1.}, {1., 1., 1., 1.}, {1., 1., 1., 1.}}}}); auto data_format = MakeNCHWFormat(2); auto kernel_size = ExpandWithBatchAndFeatureDimensions({2, 2}, data_format); auto stride = ExpandWithBatchAndFeatureDimensions({1, 1}, data_format); AvgPoolGrad(out_backprop, {1, 1, 3, 3}, kernel_size, stride, {{1, 1}, {1, 1}}, MakeNCHWFormat(2), false); ComputeAndCompareR4<float>( &builder, {{{{2.25, 1.5, 2.25}, {1.5, 1., 1.5}, {2.25, 1.5, 2.25}}}}, {}, error_spec_); } } }
875
cpp
tensorflow/tensorflow
reduce
tensorflow/lite/kernels/reduce.cc
third_party/xla/xla/tests/reduce_test.cc
#ifndef TENSORFLOW_COMPILER_MLIR_LITE_STABLEHLO_TRANSFORMS_LEGALIZE_HLO_CONVERSIONS_REDUCE_H_ #define TENSORFLOW_COMPILER_MLIR_LITE_STABLEHLO_TRANSFORMS_LEGALIZE_HLO_CONVERSIONS_REDUCE_H_ #include <cstdint> #include <optional> #include "llvm/ADT/APInt.h" #include "llvm/ADT/StringRef.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinTypeInterfaces.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/Matchers.h" #include "mlir/IR/Operation.h" #include "mlir/IR/Value.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/LogicalResult.h" #include "mlir/Transforms/DialectConversion.h" #include "tensorflow/compiler/mlir/lite/stablehlo/transforms/hlo_matchers.h" #include "xla/mlir_hlo/mhlo/IR/hlo_ops.h" namespace mlir { namespace odml { LogicalResult MatchReduceToArgMinMaxType1(mhlo::ReduceOp reduce_op, bool is_float, bool is_argmax); LogicalResult MatchReduceToArgMinMaxType2(mhlo::ReduceOp reduce_op, bool is_argmax); template <typename Reduce, typename ArgReduce, typename BooleanReduce, bool is_argmax> class ConvertReduceOpToArgMinMax : public OpConversionPattern<mhlo::ReduceOp> { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite( mhlo::ReduceOp reduce_op, OpAdaptor adaptor, ConversionPatternRewriter& rewriter) const final { if (reduce_op.getInputs().size() != 2) return failure(); if (reduce_op.getDimensions().getNumElements() != 1) return failure(); DenseElementsAttr operand_init; if (!matchPattern(reduce_op.getInitValues().front(), m_Constant(&operand_init))) return failure(); if (!IsValueInitValue(operand_init)) return failure(); DenseElementsAttr iota_init; if (!matchPattern(reduce_op.getInitValues().back(), m_Constant(&iota_init))) return failure(); if (iota_init.getValues<APInt>()[0] != 0) return failure(); Value iota = reduce_op.getInputs().back(); if (!MatchIota(reduce_op.getDimensions(), iota)) return failure(); const bool is_float = mlir::isa<FloatType>(operand_init.getElementType()); if (failed(MatchReduceToArgMinMaxType1(reduce_op, is_float, is_argmax)) && failed(MatchReduceToArgMinMaxType2(reduce_op, is_argmax))) return rewriter.notifyMatchFailure( reduce_op, "Unsupported Reduce -> ArgMax/ArgMin pattern"); Value operand = reduce_op.getInputs().front(); int64_t axis = reduce_op.getDimensions().getValues<int64_t>()[0]; auto dim_type = RankedTensorType::get({1}, rewriter.getI32Type()); auto reduction_indices = rewriter.create<arith::ConstantOp>( reduce_op.getLoc(), dim_type, rewriter.getI32TensorAttr({static_cast<int32_t>(axis)})); if (!mlir::isa<ShapedType>(operand.getType())) return failure(); auto operand_type = mlir::cast<ShapedType>(operand.getType()); if (operand_type.getElementType().isInteger(1)) { auto tf_reduce_op = rewriter.create<BooleanReduce>( reduce_op.getLoc(), reduce_op->getResult(0).getType(), operand, reduction_indices, rewriter.getBoolAttr(false)); auto tf_argreduce_op = rewriter.create<ArgReduce>( reduce_op.getLoc(), reduce_op->getResult(1).getType(), operand, reduction_indices); rewriter.replaceOp(reduce_op, {tf_reduce_op, tf_argreduce_op}); } else { auto tf_reduce_op = rewriter.create<Reduce>( reduce_op.getLoc(), reduce_op->getResult(0).getType(), operand, reduction_indices, rewriter.getBoolAttr(false)); auto tf_argreduce_op = rewriter.create<ArgReduce>( reduce_op.getLoc(), reduce_op->getResult(1).getType(), operand, reduction_indices); rewriter.replaceOp(reduce_op, {tf_reduce_op, tf_argreduce_op}); } return success(); } virtual bool IsValueInitValue(const DenseElementsAttr& attr) const = 0; }; std::optional<bool> IsReduceOpLegal(mhlo::ReduceOp reduce_op); } } #endif #include "tensorflow/compiler/mlir/lite/stablehlo/transforms/legalize_hlo_conversions/reduce.h" #include <optional> #include "llvm/Support/Casting.h" #include "mlir/IR/Block.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/LogicalResult.h" #include "xla/mlir_hlo/mhlo/IR/hlo_ops.h" namespace mlir { namespace odml { LogicalResult MatchReduceToArgMinMaxType2(mhlo::ReduceOp reduce_op, bool is_argmax) { Block& body = reduce_op.getBody().front(); if (body.getNumArguments() != 4) return failure(); mhlo::ReturnOp return_op = dyn_cast<mhlo::ReturnOp>(body.back()); if (!return_op || return_op.getNumOperands() != 2) return failure(); mhlo::SelectOp value_select = llvm::dyn_cast_or_null<mhlo::SelectOp>( return_op.getOperand(0).getDefiningOp()); if (!value_select || value_select.getOnTrue() != body.getArgument(0) || value_select.getOnFalse() != body.getArgument(2)) return failure(); auto compare_direction_included = is_argmax ? mhlo::ComparisonDirection::GE : mhlo::ComparisonDirection::LE; mhlo::CompareOp value_gt = llvm::dyn_cast_or_null<mhlo::CompareOp>( value_select.getOperand(0).getDefiningOp()); if (!value_gt || value_gt.getComparisonDirection() != compare_direction_included || value_gt.getLhs() != body.getArgument(0) || value_gt.getRhs() != body.getArgument(2)) return failure(); mhlo::SelectOp index_select = llvm::dyn_cast_or_null<mhlo::SelectOp>( return_op.getOperand(1).getDefiningOp()); if (!index_select) return failure(); mhlo::MinOp index_select_min = llvm::dyn_cast_or_null<mhlo::MinOp>( index_select.getOnTrue().getDefiningOp()); if (!index_select_min || index_select_min.getLhs() != body.getArgument(1) || index_select_min.getRhs() != body.getArgument(3)) return failure(); mhlo::SelectOp index_select_select = llvm::dyn_cast_or_null<mhlo::SelectOp>( index_select.getOnFalse().getDefiningOp()); if (!index_select_select || index_select_select.getOnTrue() != body.getArgument(1) || index_select_select.getOnFalse() != body.getArgument(3) || index_select_select.getOperand(0).getDefiningOp() != value_gt) return failure(); mhlo::CompareOp value_eq = llvm::dyn_cast_or_null<mhlo::CompareOp>( index_select.getOperand(0).getDefiningOp()); if (!value_eq || value_eq.getComparisonDirection() != mhlo::ComparisonDirection::EQ || value_eq.getLhs() != body.getArgument(0) || value_eq.getRhs() != body.getArgument(2)) return failure(); return success(); } LogicalResult MatchReduceToArgMinMaxType1(mhlo::ReduceOp reduce_op, bool is_float, bool is_argmax) { Block& body = reduce_op.getBody().front(); if (body.getNumArguments() != 4) return failure(); mhlo::ReturnOp return_op = dyn_cast<mhlo::ReturnOp>(body.back()); if (!return_op || return_op.getNumOperands() != 2) return failure(); mhlo::SelectOp value_select = llvm::dyn_cast_or_null<mhlo::SelectOp>( return_op.getOperand(0).getDefiningOp()); if (!value_select || value_select.getOnTrue() != body.getArgument(0) || value_select.getOnFalse() != body.getArgument(2)) return failure(); auto compare_direction = is_argmax ? mhlo::ComparisonDirection::GT : mhlo::ComparisonDirection::LT; if (is_float) { mhlo::OrOp value_or = llvm::dyn_cast_or_null<mhlo::OrOp>( value_select.getOperand(0).getDefiningOp()); if (!value_or) return failure(); mhlo::CompareOp value_gt = llvm::dyn_cast_or_null<mhlo::CompareOp>( value_or.getLhs().getDefiningOp()); if (!value_gt || value_gt.getComparisonDirection() != compare_direction || value_gt.getLhs() != body.getArgument(0) || value_gt.getRhs() != body.getArgument(2)) return failure(); mhlo::CompareOp value_ne = llvm::dyn_cast_or_null<mhlo::CompareOp>( value_or.getRhs().getDefiningOp()); if (!value_ne || value_ne.getComparisonDirection() != mhlo::ComparisonDirection::NE || value_ne.getLhs() != body.getArgument(0) || value_ne.getRhs() != body.getArgument(0)) return failure(); } else { mhlo::CompareOp value_gt = llvm::dyn_cast_or_null<mhlo::CompareOp>( value_select.getOperand(0).getDefiningOp()); if (!value_gt || value_gt.getComparisonDirection() != compare_direction || value_gt.getLhs() != body.getArgument(0) || value_gt.getRhs() != body.getArgument(2)) return failure(); } mhlo::SelectOp index_select = llvm::dyn_cast_or_null<mhlo::SelectOp>( return_op.getOperand(1).getDefiningOp()); if (!index_select || index_select.getOnTrue() != body.getArgument(1) || index_select.getOnFalse() != body.getArgument(3)) return failure(); mhlo::OrOp index_or = llvm::dyn_cast_or_null<mhlo::OrOp>( index_select.getPred().getDefiningOp()); if (!index_or || index_or.getLhs() != value_select.getPred()) return failure(); mhlo::AndOp index_and = llvm::dyn_cast_or_null<mhlo::AndOp>(index_or.getRhs().getDefiningOp()); if (!index_and) return failure(); mhlo::CompareOp value_eq = llvm::dyn_cast_or_null<mhlo::CompareOp>( index_and.getLhs().getDefiningOp()); if (!value_eq || value_eq.getComparisonDirection() != mhlo::ComparisonDirection::EQ || value_eq.getLhs() != body.getArgument(0) || value_eq.getRhs() != body.getArgument(2)) return failure(); mhlo::CompareOp index_lt = llvm::dyn_cast_or_null<mhlo::CompareOp>( index_and.getRhs().getDefiningOp()); if (!index_lt || index_lt.getComparisonDirection() != mhlo::ComparisonDirection::LT || index_lt.getLhs() != body.getArgument(1) || index_lt.getRhs() != body.getArgument(3)) return failure(); return success(); } std::optional<bool> IsReduceOpLegal(mhlo::ReduceOp reduce_op) { if (succeeded(MatchReduceToArgMinMaxType1(reduce_op, true, true)) || succeeded(MatchReduceToArgMinMaxType1(reduce_op, false, true)) || succeeded(MatchReduceToArgMinMaxType1(reduce_op, true, false)) || succeeded(MatchReduceToArgMinMaxType1(reduce_op, false, false)) || succeeded(MatchReduceToArgMinMaxType2(reduce_op, false)) || succeeded(MatchReduceToArgMinMaxType2(reduce_op, true))) { return false; } return true; } } }
#include <stdlib.h> #include <algorithm> #include <cmath> #include <functional> #include <memory> #include <random> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/types/span.h" #include "xla/array2d.h" #include "xla/array4d.h" #include "xla/client/global_data.h" #include "xla/client/lib/arithmetic.h" #include "xla/client/local_client.h" #include "xla/client/xla_builder.h" #include "xla/client/xla_computation.h" #include "xla/layout_util.h" #include "xla/literal_util.h" #include "xla/reference_util.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/tests/client_library_test_base.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/literal_test_util.h" #include "xla/tests/test_macros.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/test.h" namespace xla { namespace { using FuncGeneratorForType = XlaComputation (*)(PrimitiveType, XlaBuilder*); using FuncGenerator = XlaComputation (*)(XlaBuilder*); class ReduceTest : public ClientLibraryTestBase { protected: ReduceTest() { literal_2d_ = LiteralUtil::CreateR2<float>({ { 1.f, 2.f, 3.f}, { 4.f, 5.f, 6.f}, }); literal_3d_ = LiteralUtil::CreateR3Projected<float>({ { 1.f, 2.f, 3.f}, { 4.f, 5.f, 6.f}, }, 4); CHECK(ShapeUtil::Equal( literal_3d_.shape(), ShapeUtil::MakeShape(F32, {4, 2, 3}))) << literal_3d_.shape().ShortDebugString(); } void RunR1ToR0Test(int64_t element_count) { XlaBuilder builder(TestName()); XlaComputation add_f32 = CreateScalarAddComputation(F32, &builder); const Shape input_shape = ShapeUtil::MakeShape(F32, {element_count}); auto input = Parameter(&builder, 0, input_shape, "input"); auto zero = ConstantR0<float>(&builder, 0.0); Reduce(input, zero, add_f32, {0}); std::minstd_rand rng(seed_); std::vector<float> input_data(element_count); for (int64_t i = 0; i < element_count; ++i) { input_data[i] = rng() % 3; if (rng() % 2 == 0) { input_data[i] *= -1; } } Literal input_literal = LiteralUtil::CreateR1(absl::MakeConstSpan(input_data)); std::unique_ptr<GlobalData> input_global_data = client_->TransferToServer(input_literal).value(); float expected = absl::c_accumulate(input_data, 0.0f); ComputeAndCompareR0<float>(&builder, expected, {input_global_data.get()}, ErrorSpec(0.001)); } void RunR1ToR0PredTest(bool and_reduce, absl::Span<const int> input_data) { const int element_count = input_data.size(); XlaBuilder builder(TestName()); const Shape input_shape = ShapeUtil::MakeShape(S32, {element_count}); auto input_par = Parameter(&builder, 0, input_shape, "input"); auto pred_values = Eq(input_par, ConstantR1<int>(&builder, element_count, 1)); XlaOp init_value; XlaComputation reduce; if (and_reduce) { init_value = ConstantR0<bool>(&builder, true); reduce = CreateScalarAndComputation(PRED, &builder); } else { init_value = ConstantR0<bool>(&builder, false); reduce = CreateScalarOrComputation(PRED, &builder); } Reduce(pred_values, init_value, reduce, {0}); Literal input_literal = LiteralUtil::CreateR1(input_data); std::unique_ptr<GlobalData> input_global_data = client_->TransferToServer(input_literal).value(); bool expected = and_reduce; for (bool item : input_data) { if (and_reduce) { expected = expected && item; } else { expected = expected || item; } } ComputeAndCompareR0<bool>(&builder, expected, {input_global_data.get()}); } template <int64_t cols> void RunR2ToR1PredTest(bool and_reduce, int64_t rows, int64_t minor = 1, int64_t major = 0) { XlaBuilder builder(TestName()); const Shape input_shape = ShapeUtil::MakeShape(U8, {rows, cols}); auto input = Parameter(&builder, 0, input_shape, "input"); auto input_pred = Eq(input, ConstantR0<uint8_t>(&builder, 1)); XlaOp init_value; XlaComputation reduce_op; if (and_reduce) { init_value = ConstantR0<bool>(&builder, true); reduce_op = CreateScalarAndComputation(PRED, &builder); } else { init_value = ConstantR0<bool>(&builder, false); reduce_op = CreateScalarOrComputation(PRED, &builder); } Reduce(input_pred, init_value, reduce_op, {0}); Array2D<uint8_t> input_data(rows, cols); input_data.FillRandom(0, 1); Literal input_literal = LiteralUtil::CreateR2FromArray2D(input_data); input_literal = input_literal.Relayout(LayoutUtil::MakeLayout({minor, major})); std::unique_ptr<GlobalData> input_global_data = client_->TransferToServer(input_literal).value(); std::array<bool, cols> expected; for (int64_t colno = 0; colno < cols; ++colno) { bool column_sum = and_reduce ? true : false; for (int64_t rowno = 0; rowno < rows; ++rowno) { if (and_reduce) { column_sum = column_sum && input_data(rowno, colno); } else { column_sum = column_sum || input_data(rowno, colno); } } expected[colno] = column_sum; } ComputeAndCompareR1<bool>(&builder, expected, {input_global_data.get()}); } void RunR2ToR0Test(int64_t rows, int64_t cols, int64_t minor = 1, int64_t major = 0) { XlaBuilder builder(TestName()); XlaComputation add_f32 = CreateScalarAddComputation(F32, &builder); const Shape input_shape = ShapeUtil::MakeShape(F32, {rows, cols}); auto input = Parameter(&builder, 0, input_shape, "input"); auto zero = ConstantR0<float>(&builder, 0.0); Reduce(input, zero, add_f32, {0, 1}); Array2D<float> input_data(rows, cols); input_data.FillRandom(3.14f, 0.04); Literal input_literal = LiteralUtil::CreateR2FromArray2D(input_data); input_literal = input_literal.Relayout(LayoutUtil::MakeLayout({minor, major})); std::unique_ptr<GlobalData> input_global_data = client_->TransferToServer(input_literal).value(); float expected = 0.0; for (int64_t rowno = 0; rowno < rows; ++rowno) { for (int64_t colno = 0; colno < cols; ++colno) { expected += input_data(rowno, colno); } } ComputeAndCompareR0<float>(&builder, expected, {input_global_data.get()}, ErrorSpec(0.01, 1e-4)); } void RunR2ToR1Test(int64_t rows, int64_t cols, int64_t minor = 1, int64_t major = 0) { XlaBuilder builder(TestName()); XlaComputation add_f32 = CreateScalarAddComputation(F32, &builder); const Shape input_shape = ShapeUtil::MakeShape(F32, {rows, cols}); auto input = Parameter(&builder, 0, input_shape, "input"); auto zero = ConstantR0<float>(&builder, 0.0); Reduce(input, zero, add_f32, {0}); Array2D<float> input_data(rows, cols); input_data.FillRandom(3.14f, 0.04); Literal input_literal = LiteralUtil::CreateR2FromArray2D(input_data); input_literal = input_literal.Relayout(LayoutUtil::MakeLayout({minor, major})); std::unique_ptr<GlobalData> input_global_data = client_->TransferToServer(input_literal).value(); std::vector<float> expected; expected.reserve(cols); for (int64_t colno = 0; colno < cols; ++colno) { float column_sum = 0; for (int64_t rowno = 0; rowno < rows; ++rowno) { column_sum += input_data(rowno, colno); } expected.push_back(column_sum); } ComputeAndCompareR1<float>(&builder, expected, {input_global_data.get()}, ErrorSpec(0.01, 1e-4)); } template <typename NativeT> void ComputeAndCompareGeneric( typename std::enable_if<std::is_floating_point<NativeT>::value, XlaBuilder>::type* builder, absl::Span<const NativeT> expected, absl::Span<GlobalData* const> arguments) { ComputeAndCompareR1<NativeT>(builder, expected, arguments, ErrorSpec(0.01, 1e-4)); } template <typename NativeT> void ComputeAndCompareGeneric( typename std::enable_if<std::is_integral<NativeT>::value, XlaBuilder>::type* builder, absl::Span<const NativeT> expected, absl::Span<GlobalData* const> arguments) { ComputeAndCompareR1<NativeT>(builder, expected, arguments); } template <typename NativeT> void RunVectorizedReduceTestForType( const std::function<XlaComputation(XlaBuilder*)>& reduction_function_generator, const std::function<NativeT(NativeT, NativeT)>& reference_reduction_function, const NativeT& initial_value) { const int rows = 64, cols = 128; const int minor = 1, major = 0; XlaBuilder builder(TestName()); XlaComputation reduction_function = reduction_function_generator(&builder); const Shape input_shape = ShapeUtil::MakeShape( xla::primitive_util::NativeToPrimitiveType<NativeT>(), {rows, cols}); auto input = Parameter(&builder, 0, input_shape, "input"); auto zero = ConstantR0<NativeT>(&builder, initial_value); Reduce(input, zero, reduction_function, {0}); Array2D<NativeT> input_data(rows, cols); input_data.FillUnique(initial_value); Literal input_literal = LiteralUtil::CreateR2FromArray2D(input_data); input_literal = input_literal.Relayout(LayoutUtil::MakeLayout({minor, major})); std::unique_ptr<GlobalData> input_global_data = client_->TransferToServer(input_literal).value(); std::unique_ptr<NativeT[]> expected(new NativeT[cols]); for (int64_t colno = 0; colno < cols; ++colno) { NativeT column_result = initial_value; for (int64_t rowno = 0; rowno < rows; ++rowno) { column_result = reference_reduction_function(column_result, input_data(rowno, colno)); } expected[colno] = column_result; } ComputeAndCompareGeneric<NativeT>( &builder, absl::Span<const NativeT>(expected.get(), cols), {input_global_data.get()}); } void RunVectorizedReduceTest( const std::function<XlaComputation(PrimitiveType, XlaBuilder*)>& reduction_function_generator_for_type, const std::function<float(float, float)>& reference_reduction_function_for_floats, const std::function<int32_t(int32_t, int32_t)>& reference_reduction_function_for_ints, const std::function<uint32_t(uint32_t, uint32_t)>& reference_reduction_function_for_uints, float floating_point_identity, int32_t signed_int_identity, uint32_t unsigned_int_identity) { RunVectorizedReduceTestForType<float>( [&](XlaBuilder* builder) { return reduction_function_generator_for_type(F32, builder); }, reference_reduction_function_for_floats, floating_point_identity); RunVectorizedReduceTestForType<int32_t>( [&](XlaBuilder* builder) { return reduction_function_generator_for_type(S32, builder); }, reference_reduction_function_for_ints, signed_int_identity); RunVectorizedReduceTestForType<uint32_t>( [&](XlaBuilder* builder) { return reduction_function_generator_for_type(U32, builder); }, reference_reduction_function_for_uints, unsigned_int_identity); } Literal literal_2d_; Literal literal_3d_; uint32_t seed_ = 0xdeadbeef; }; XLA_TEST_F(ReduceTest, ReduceR1_0_F32_To_R0) { RunR1ToR0Test(0); } XLA_TEST_F(ReduceTest, ReduceR1_1_F32_To_R0) { RunR1ToR0Test(1); } XLA_TEST_F(ReduceTest, ReduceR1_2_F32_To_R0) { RunR1ToR0Test(2); } XLA_TEST_F(ReduceTest, ReduceR1_16_F32_To_R0) { RunR1ToR0Test(16); } XLA_TEST_F(ReduceTest, ReduceR1_128_F32_To_R0) { RunR1ToR0Test(128); } XLA_TEST_F(ReduceTest, ReduceR1_129_F32_To_R0) { RunR1ToR0Test(129); } XLA_TEST_F(ReduceTest, ReduceR1_240_F32_To_R0) { RunR1ToR0Test(240); } XLA_TEST_F(ReduceTest, ReduceR1_256_F32_To_R0) { RunR1ToR0Test(256); } XLA_TEST_F(ReduceTest, ReduceR1_1024_F32_To_R0) { RunR1ToR0Test(1024); } XLA_TEST_F(ReduceTest, ReduceR1_2048_F32_To_R0) { RunR1ToR0Test(2048); } XLA_TEST_F(ReduceTest, ReduceR1_16K_F32_To_R0) { RunR1ToR0Test(16 * 1024); } XLA_TEST_F(ReduceTest, ReduceR1_16KP1_F32_To_R0) { RunR1ToR0Test(16 * 1024 + 1); } XLA_TEST_F(ReduceTest, ReduceR1_64K_F32_To_R0) { RunR1ToR0Test(64 * 1024); } XLA_TEST_F(ReduceTest, ReduceR1_1M_F32_To_R0) { RunR1ToR0Test(1024 * 1024); } XLA_TEST_F(ReduceTest, ReduceR1_16M_F32_To_R0) { RunR1ToR0Test(4096 * 4096); } XLA_TEST_F(ReduceTest, ReduceR2_0x0_To_R0) { RunR2ToR0Test(0, 0); } XLA_TEST_F(ReduceTest, ReduceR2_0x2_To_R0) { RunR2ToR0Test(0, 2); } XLA_TEST_F(ReduceTest, ReduceR2_1x1_To_R0) { RunR2ToR0Test(1, 1); } XLA_TEST_F(ReduceTest, ReduceR2_2x0_To_R0) { RunR2ToR0Test(2, 0); } XLA_TEST_F(ReduceTest, ReduceR2_2x2_To_R0) { RunR2ToR0Test(2, 2); } XLA_TEST_F(ReduceTest, ReduceR2_8x8_To_R0) { RunR2ToR0Test(8, 8); } XLA_TEST_F(ReduceTest, ReduceR2_9x9_To_R0) { RunR2ToR0Test(9, 9); } XLA_TEST_F(ReduceTest, ReduceR2_50x111_To_R0) { RunR2ToR0Test(50, 111); } XLA_TEST_F(ReduceTest, ReduceR2_111x50_To_R0) { RunR2ToR0Test(111, 50); } XLA_TEST_F(ReduceTest, ReduceR2_111x50_01_To_R0) { RunR2ToR0Test(111, 50, 0, 1); } XLA_TEST_F(ReduceTest, ReduceR2_1024x1024_To_R0) { RunR2ToR0Test(1024, 1024); } XLA_TEST_F(ReduceTest, ReduceR2_1000x1500_To_R0) { RunR2ToR0Test(1000, 1500); } XLA_TEST_F(ReduceTest, ReduceR2_0x2_To_R1) { RunR2ToR1Test(0, 2); } XLA_TEST_F(ReduceTest, ReduceR2_1x1_To_R1) { RunR2ToR1Test(1, 1); } XLA_TEST_F(ReduceTest, ReduceR2_2x2_To_R1) { RunR2ToR1Test(2, 2); } XLA_TEST_F(ReduceTest, ReduceR2_8x8_To_R1) { RunR2ToR1Test(8, 8); } XLA_TEST_F(ReduceTest, ReduceR2_9x9_To_R1) { RunR2ToR1Test(9, 9); } XLA_TEST_F(ReduceTest, ReduceR2_50x111_To_R1) { RunR2ToR1Test(50, 111); } XLA_TEST_F(ReduceTest, ReduceR2_111x50_To_R1) { RunR2ToR1Test(111, 50); } XLA_TEST_F(ReduceTest, ReduceR2_111x50_01_To_R1) { RunR2ToR1Test(111, 50, 0, 1); } XLA_TEST_F(ReduceTest, ReduceR2_1024x1024_To_R1) { RunR2ToR1Test(1024, 1024); } XLA_TEST_F(ReduceTest, ReduceR2_1000x1500_To_R1) { RunR2ToR1Test(1000, 1500); } XLA_TEST_F(ReduceTest, AndReduceAllOnesR1_10_Pred) { constexpr int element_count = 10; std::vector<int> input(element_count, 1); RunR1ToR0PredTest(true, input); } XLA_TEST_F(ReduceTest, AndReduceOnesAndZerosR1_10_Pred) { constexpr int element_count = 10; std::vector<int> input(element_count); for (int i = 0; i < element_count; ++i) { input[i] = i % 2; } RunR1ToR0PredTest(true, input); } XLA_TEST_F(ReduceTest, OrReduceAllOnesR1_10_Pred) { constexpr int element_count = 10; std::vector<int> input(element_count, 1); RunR1ToR0PredTest(false, input); } XLA_TEST_F(ReduceTest, OrReduceOnesAndZerosR1_10_Pred) { constexpr int element_count = 10; std::vector<int> input(element_count); for (int i = 0; i < element_count; ++i) { input[i] = i % 2; } RunR1ToR0PredTest(false, input); } XLA_TEST_F(ReduceTest, ReduceElementwiseR2_111x50_To_R1) { const int64_t rows = 111, cols = 50; XlaBuilder builder(TestName()); XlaComputation add_f32 = CreateScalarAddComputation(F32, &builder); const Shape input_shape = ShapeUtil::MakeShape(F32, {rows, cols}); auto input = Parameter(&builder, 0, input_shape, "input"); auto zero = ConstantR0<float>(&builder, 0.0); auto log_ = Log(input); Reduce(log_, zero, add_f32, {0}); Array2D<float> input_data(rows, cols); input_data.FillRandom(3.14f, 0.04); Literal input_literal = LiteralUtil::CreateR2FromArray2D(input_data); input_literal = input_literal.Relayout(LayoutUtil::MakeLayout({0, 1})); std::unique_ptr<GlobalData> input_global_data = client_->TransferToServer(input_literal).value(); std::vector<float> expected; expected.reserve(cols); for (int64_t colno = 0; colno < cols; ++colno) { float column_sum = 0; for (int64_t rowno = 0; rowno < rows; ++rowno) { column_sum += std::log(input_data(rowno, colno)); } expected.push_back(column_sum); } ComputeAndCompareR1<float>(&builder, expected, {input_global_data.get()}, ErrorSpec(0.01, 1e-4)); } XLA_TEST_F(ReduceTest, TransposeAndReduceElementwiseR2_111x50_To_R1) { const int64_t rows = 111, cols = 50; XlaBuilder builder(TestName()); XlaComputation add_f32 = CreateScalarAddComputation(F32, &builder); const Shape input_shape = ShapeUtil::MakeShape(F32, {rows, cols}); auto input = Parameter(&builder, 0, input_shape, "input"); auto zero = ConstantR0<float>(&builder, 0.0); auto log_ = Log(input); auto transpose = Transpose(log_, {1, 0}); Reduce(transpose, zero, add_f32, {1}); Array2D<float> input_data(rows, cols); input_data.FillRandom(3.14f, 0.04); Literal input_literal = LiteralUtil::CreateR2FromArray2D(input_data); input_literal = input_literal.Relayout(LayoutUtil::MakeLayout({0, 1})); std::unique_ptr<GlobalData> input_global_data = client_->TransferToServer(input_literal).value(); std::vector<float> expected; expected.reserve(cols); for (int64_t colno = 0; colno < cols; ++colno) { float column_sum = 0; for (int64_t rowno = 0; rowno < rows; ++rowno) { column_sum += std::log(input_data(rowno, colno)); } expected.push_back(column_sum); } ComputeAndCompareR1<float>(&builder, expected, {input_global_data.get()}, ErrorSpec(0.01, 1e-4)); } XLA_TEST_F(ReduceTest, TransposeAndReduceR3_12x111x50_To_R2) { XlaBuilder builder(TestName()); XlaComputation add_f32 = CreateScalarAddComputation(F32, &builder); const Shape input_shape = ShapeUtil::MakeShape(F32, {12, 111, 50}); XlaOp input = Parameter(&builder, 0, input_shape, "input"); XlaOp zero = ConstantR0<float>(&builder, 0.0); XlaOp transpose = Transpose(input, {1, 0, 2}); Reduce(transpose, zero, add_f32, {0}); TF_ASSERT_OK_AND_ASSIGN(Literal input_data, MakeFakeLiteral(input_shape)); ComputeAndCompare(&builder, {std::move(input_data)}, ErrorSpec(0.01, 1e-4)); } XLA_TEST_F(ReduceTest, Reshape_111x2x25Reduce_111x50_To_R1) { const int64_t rows = 111, cols = 50; XlaBuilder builder(TestName()); XlaComputation add_f32 = CreateScalarAddComputation(F32, &builder); const Shape input_shape = ShapeUtil::MakeShape(F32, {rows, 2, cols / 2}); auto input = Parameter(&builder, 0, input_shape, "input"); auto zero = ConstantR0<float>(&builder, 0.0); auto log_ = Tanh(input); auto reshape = Reshape(log_, {rows, cols}); Reduce(reshape, zero, add_f32, {0}); Array3D<float> input_data(rows, 2, cols / 2); input_data.FillRandom(3.14f, 0.04); Literal input_literal = LiteralUtil::CreateR3FromArray3D(input_data); std::unique_ptr<GlobalData> input_global_data = client_->TransferToServer(input_literal).value(); std::vector<float> expected; expected.reserve(cols); for (int64_t major = 0; major < 2; ++major) { for (int64_t colno = 0; colno < cols / 2; ++colno) { float column_sum = 0; for (int64_t rowno = 0; rowno < rows; ++rowno) { column_sum += std::tanh(input_data(rowno, major, colno)); } expected.push_back(column_sum); } } ComputeAndCompareR1<float>(&builder, expected, {input_global_data.get()}, ErrorSpec(0.01, 1e-4)); } struct BoundsLayout { std::vector<int64_t> bounds; std::vector<int64_t> layout; std::vector<int64_t> reduce_dims; }; void PrintTo(const BoundsLayout& spec, std::ostream* os) { *os << absl::StrFormat("R%uToR%u%s_%s_Reduce%s", spec.bounds.size(), spec.bounds.size() - spec.reduce_dims.size(), absl::StrJoin(spec.bounds, "x"), absl::StrJoin(spec.layout, ""), absl::StrJoin(spec.reduce_dims, "")); } XLA_TEST_F(ReduceTest, AddReduce2DScalarToR0) { XlaBuilder builder(TestName()); auto add = CreateScalarAddComputation(F32, &builder); auto scalar = ConstantR0<float>(&builder, 42.0); auto broadcasted = Broadcast(scalar, {500, 500}); Reduce(broadcasted, ConstantR0<float>(&builder, 0.0f), add, {0, 1}); float expected = 42.0f * static_cast<float>(500 * 500); ComputeAndCompareR0<float>(&builder, expected, {}, ErrorSpec(0.0001)); } XLA_TEST_F(ReduceTest, MaxReduce2DScalarToR0) { XlaBuilder builder(TestName()); auto max = CreateScalarMaxComputation(F32, &builder); auto scalar = ConstantR0<float>(&builder, 42.0); auto broadcasted = Broadcast(scalar, {500, 500}); Reduce(broadcasted, ConstantR0<float>(&builder, 0.0f), max, {0, 1}); float expected = 42.0f; ComputeAndCompareR0<float>(&builder, expected, {}, ErrorSpec(0.0001)); } XLA_TEST_F(ReduceTest, MaxReduce2DToR0) { XlaBuilder builder(TestName()); auto max = CreateScalarMaxComputation(F32, &builder); Array2D<float> input(300, 250); input.FillRandom(214.0f); auto input_literal = LiteralUtil::CreateR2FromArray2D(input); Reduce(ConstantLiteral(&builder, input_literal), ConstantR0<float>(&builder, FLT_MIN), max, {0, 1}); auto input_max = FLT_MIN; input.Each( [&](int64_t, int64_t, float* v) { input_max = std::max(input_max, *v); }); ComputeAndCompareR0<float>(&builder, input_max, {}, ErrorSpec(0.0001)); } XLA_TEST_F(ReduceTest, MinReduce2DToR0) { XlaBuilder builder(TestName()); auto min = CreateScalarMinComputation(F32, &builder); Array2D<float> input(150, 130); input.FillRandom(214.0f); auto input_literal = LiteralUtil::CreateR2FromArray2D(input); Reduce(ConstantLiteral(&builder, input_literal), ConstantR0<float>(&builder, FLT_MAX), min, {0, 1}); auto input_min = FLT_MAX; input.Each( [&](int64_t, int64_t, float* v) { input_min = std::min(input_min, *v); }); ComputeAndCompareR0<float>(&builder, input_min, {}, ErrorSpec(0.0001)); } XLA_TEST_F(ReduceTest, UnsignedInt_MinReduce) { XlaBuilder builder(TestName()); Array2D<uint32_t> input({{1}, {2}}); auto min = CreateScalarMinComputation(U32, &builder); auto input_literal = LiteralUtil::CreateR2FromArray2D(input); auto initial_value = ConstantR0<uint32_t>(&builder, std::numeric_limits<uint32_t>::max()); Reduce(ConstantLiteral(&builder, input_literal), initial_value, min, {0, 1}); ComputeAndCompareR0<uint32_t>(&builder, 1, {}); } XLA_TEST_F(ReduceTest, UnsignedInt_MaxReduce) { XlaBuilder builder(TestName()); Array2D<uint32_t> input({{1}, {2}}); auto max = CreateScalarMaxComputation(U32, &builder); auto input_literal = LiteralUtil::CreateR2FromArray2D(input); auto initial_value = ConstantR0<uint32_t>(&builder, std::numeric_limits<uint32_t>::min()); Reduce(ConstantLiteral(&builder, input_literal), initial_value, max, {0, 1}); ComputeAndCompareR0<uint32_t>(&builder, 2, {}); } XLA_TEST_F(ReduceTest, Reduce2DAmong1) { XlaBuilder builder(TestName()); auto m = ConstantLiteral(&builder, literal_2d_); auto add = CreateScalarAddComputation(F32, &builder); Reduce(m, ConstantR0<float>(&builder, 0.0f), add, {1}); std::vector<float> expected = {6.f, 15.f}; ComputeAndCompareR1<float>(&builder, expected, {}, ErrorSpec(0.0001)); } XLA_TEST_F(ReduceTest, Reduce2DAmong0and1) { XlaBuilder builder(TestName()); auto m = ConstantLiteral(&builder, literal_2d_); auto add = CreateScalarAddComputation(F32, &builder); Reduce(m, ConstantR0<float>(&builder, 0.0f), add, {0, 1}); ComputeAndCompareR0<float>(&builder, 21.0f, {}, ErrorSpec(0.0001, 1e-4)); } XLA_TEST_F(ReduceTest, Reduce2DAmongY) { XlaBuilder builder("reduce_among_y"); auto m = ConstantLiteral(&builder, literal_2d_); auto add = CreateScalarAddComputation(F32, &builder); Reduce(m, ConstantR0<float>(&builder, 0.0f), add, {0}); std::vector<float> expected = {5.f, 7.f, 9.f}; ComputeAndCompareR1<float>(&builder, expected, {}, ErrorSpec(0.0001)); } XLA_TEST_F(ReduceTest, ReduceR3AmongDims_1_2) { XlaBuilder builder(TestName()); auto m = ConstantLiteral(&builder, literal_3d_); auto add = CreateScalarAddComputation(F32, &builder); Reduce(m, ConstantR0<float>(&builder, 0.0f), add, {1, 2}); std::vector<float> expected = {21.f, 21.f, 21.f, 21.f}; ComputeAndCompareR1<float>(&builder, expected, {}, ErrorSpec(0.0001)); } XLA_TEST_F(ReduceTest, ReduceR3AmongDims_0_1) { XlaBuilder builder(TestName()); auto m = ConstantLiteral(&builder, literal_3d_); auto add = CreateScalarAddComputation(F32, &builder); Reduce(m, ConstantR0<float>(&builder, 0.0f), add, {0, 1}); std::vector<float> expected = {20.f, 28.f, 36.f}; ComputeAndCompareR1<float>(&builder, expected, {}, ErrorSpec(0.0001)); } XLA_TEST_F(ReduceTest, ReduceR3ToR0) { XlaBuilder builder(TestName()); auto m = ConstantLiteral(&builder, literal_3d_); auto add = CreateScalarAddComputation(F32, &builder); Reduce(m, ConstantR0<float>(&builder, 0.0f), add, {0, 1, 2}); float expected = 21.0f * 4.0; ComputeAndCompareR0<float>(&builder, expected, {}, ErrorSpec(0.0001)); } XLA_TEST_F(ReduceTest, ReduceR3AmongDim0) { XlaBuilder builder(TestName()); auto m = ConstantLiteral(&builder, literal_3d_); auto add = CreateScalarAddComputation(F32, &builder); Reduce(m, ConstantR0<float>(&builder, 0.0f), add, {0}); Array2D<float> expected({ {4.f, 8.f, 12.f}, {16.f, 20.f, 24.f}, }); ComputeAndCompareR2<float>(&builder, expected, {}, ErrorSpec(0.0001)); } XLA_TEST_F(ReduceTest, ReduceR3AmongDim1) { XlaBuilder builder(TestName()); auto m = ConstantLiteral(&builder, literal_3d_); auto add = CreateScalarAddComputation(F32, &builder); Reduce(m, ConstantR0<float>(&builder, 0.0f), add, {1}); Array2D<float> expected({ {5.f, 7.f, 9.f}, {5.f, 7.f, 9.f}, {5.f, 7.f, 9.f}, {5.f, 7.f, 9.f}, }); ComputeAndCompareR2<float>(&builder, expected, {}, ErrorSpec(0.0001)); } XLA_TEST_F(ReduceTest, ReduceR3AmongDim2) { XlaBuilder builder(TestName()); auto m = ConstantLiteral(&builder, literal_3d_); auto add = CreateScalarAddComputation(F32, &builder); Reduce(m, ConstantR0<float>(&builder, 0.0f), add, {2}); Array2D<float> expected({ {6.f, 15.f}, {6.f, 15.f}, {6.f, 15.f}, {6.f, 15.f}, }); ComputeAndCompareR2<float>(&builder, expected, {}, ErrorSpec(0.0001)); } XLA_TEST_F(ReduceTest, VectorizedReduce_Add) { RunVectorizedReduceTest( static_cast<FuncGeneratorForType>(CreateScalarAddComputation), [](float a, float b) { return a + b; }, [](int32_t a, int32_t b) { return static_cast<int32_t>(static_cast<uint32_t>(a) + static_cast<uint32_t>(b)); }, [](uint32_t a, uint32_t b) { return a + b; }, 0.0, 0, 0); } XLA_TEST_F(ReduceTest, VectorizedReduce_Multiply) { RunVectorizedReduceTest( static_cast<FuncGeneratorForType>(CreateScalarMultiplyComputation), [](float a, float b) { return a * b; }, [](int32_t a, int32_t b) { return static_cast<int32_t>(static_cast<uint32_t>(a) * static_cast<uint32_t>(b)); }, [](uint32_t a, uint32_t b) { return a * b; }, 1.0, 1, 1); } XLA_TEST_F(ReduceTest, VectorizedReduce_Max) { RunVectorizedReduceTest( static_cast<FuncGeneratorForType>(CreateScalarMaxComputation), [](float a, float b) { return std::max(a, b); }, [](int32_t a, int32_t b) { return std::max(a, b); }, [](uint32_t a, uint32_t b) { return std::max(a, b); }, std::numeric_limits<float>::min(), std::numeric_limits<int32_t>::min(), std::numeric_limits<uint32_t>::min()); } XLA_TEST_F(ReduceTest, VectorizedReduce_Min) { RunVectorizedReduceTest( static_cast<FuncGeneratorForType>(CreateScalarMinComputation), [](float a, float b) { return std::min(a, b); }, [](int32_t a, int32_t b) { return std::min(a, b); }, [](uint32_t a, uint32_t b) { return std::min(a, b); }, std::numeric_limits<float>::max(), std::numeric_limits<int32_t>::max(), std::numeric_limits<uint32_t>::max()); } XLA_TEST_F(ReduceTest, VectorizedReduce_BooleanAnd) { RunVectorizedReduceTestForType<bool>( static_cast<FuncGenerator>([](XlaBuilder* builder) { return CreateScalarAndComputation(PRED, builder); }), [](bool a, bool b) { return a && b; }, true); } XLA_TEST_F(ReduceTest, VectorizedReduce_BooleanOr) { RunVectorizedReduceTestForType<bool>( static_cast<FuncGenerator>([](XlaBuilder* builder) { return CreateScalarOrComputation(PRED, builder); }), [](bool a, bool b) { return a || b; }, false); } class ReduceR3ToR2Test : public ReduceTest, public ::testing::WithParamInterface<BoundsLayout> {}; XLA_TEST_P(ReduceR3ToR2Test, ReduceR3ToR2) { XlaBuilder builder(TestName()); const auto& bounds = GetParam().bounds; Array3D<float> input_array(bounds[0], bounds[1], bounds[2]); input_array.Fill(1.0f); auto input_literal = LiteralUtil::CreateR3FromArray3D(input_array); input_literal = input_literal.Relayout(LayoutUtil::MakeLayout(GetParam().layout)); std::unique_ptr<GlobalData> input_data = client_->TransferToServer(input_literal).value(); auto input_activations = Parameter(&builder, 0, input_literal.shape(), "input"); XlaComputation add = CreateScalarAddComputation(F32, &builder); Reduce(input_activations, ConstantR0<float>(&builder, 0.0f), add, GetParam().reduce_dims); auto expected = ReferenceUtil::Reduce3DTo2D(input_array, 0.0f, GetParam().reduce_dims,
876
cpp
tensorflow/tensorflow
subgraph_test_util
tensorflow/lite/kernels/subgraph_test_util.cc
tensorflow/lite/kernels/subgraph_test_util_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_SUBGRAPH_TEST_UTIL_H_ #define TENSORFLOW_LITE_KERNELS_SUBGRAPH_TEST_UTIL_H_ #include <stdint.h> #include <memory> #include <string> #include <vector> #include <gtest/gtest.h> #include "absl/algorithm/container.h" #include "tensorflow/lite/builtin_ops.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/core/interpreter.h" #include "tensorflow/lite/core/subgraph.h" #include "tensorflow/lite/interpreter_test_util.h" namespace tflite { namespace subgraph_test_util { class SubgraphBuilder { public: ~SubgraphBuilder(); void BuildInplaceOpSubgraph(Subgraph* subgraph); void BuildBroadcastingSubgraph(Subgraph* subgraph); void BuildOffsetAddSharing(Subgraph* subgraph); void BuildInputDynamicUpdateSliceSubgraph(Subgraph& subgraph); void BuildInplaceDynamicUpdateSliceSubgraph(Subgraph& subgraph, bool multiple_consumers); void BuildOutputNotConsumedSubgraph(Subgraph& subgraph); void BuildFloatIfSubgraph(Subgraph* subgraph, int num_inputs); void BuildFloatWhileSubgraph(Subgraph* subgraph, int num_inputs); void BuildXNNPACKSubgraph(Subgraph* subgraph); void BuildFloatLessCondSubgraph(Subgraph* subgraph, float rhs); void BuildInputIsOutputSubgraph(Subgraph* subgraph); void BuildInputIsDifferentOutputSubgraph(Subgraph* subgraph); void BuildFlexOutputSubgraph(Subgraph* subgraph); void BuildCounterOnlySubgraph(Subgraph* subgraph); void BuildBinaryOpSubgraph(Subgraph* subgraph, TfLiteRegistration* (*Register_OP)(), TfLiteBuiltinOperator builtin_code, void* params, TfLiteType input1_type, TfLiteType input2_type, TfLiteType output_type); void BuildAddSubgraph(Subgraph* subgraph, TfLiteType operand_type = kTfLiteInt32); void BuildStablehloAddSubgraph(Subgraph* subgraph, TfLiteType operand_type = kTfLiteInt32); void BuildMaximumSubgraph(Subgraph* subgraph, TfLiteType operand_type = kTfLiteInt32); void BuildStablehloMaximumSubgraph(Subgraph* subgraph, TfLiteType operand_type = kTfLiteInt32); void BuildMinimumSubgraph(Subgraph* subgraph, TfLiteType operand_type = kTfLiteInt32); void BuildStablehloMinimumSubgraph(Subgraph* subgraph, TfLiteType operand_type = kTfLiteInt32); void BuildLogicalOrSubgraph(Subgraph* subgraph); void BuildLogicalAndSubgraph(Subgraph* subgraph); void BuildOutputIsSecondInputSubgraph(Subgraph* subgraph); void BuildMulSubgraph(Subgraph* subgraph, TfLiteType operand_type = kTfLiteInt32); void BuildStablehloMulSubgraph(Subgraph* subgraph, TfLiteType operand_type = kTfLiteInt32); void BuildPadSubgraph(Subgraph* subgraph); void BuildIfSubgraph(Subgraph* subgraph); void BuildCompositeSubgraph(Subgraph* subgraph, const Subgraph* decomposition); void BuildDynamicOpTriggersAllocationOfUnsedInputSubgraph(Subgraph* subgraph); void BuildAllInplaceScenariosSubgraph(Subgraph* subgraph); void BuildLessEqualCondSubgraph(Subgraph* subgraph, int rhs); void BuildOutputNotConsumedIfSubgraph(Subgraph* subgraph); void BuildOutputNotConsumedWhileSubgraph(Subgraph* subgraph); void BuildMultiInputIfSubgraph(Subgraph* subgraph, int num_inputs); void BuildMultiInputWhileSubgraph(Subgraph* subgraph, int num_inputs); void BuildMultiInputIfSubgraphWithUnconsumedOutput(Subgraph* subgraph, int num_inputs); void BuildMultiInputWhileSubgraphWithUnconsumedOutput(Subgraph* subgraph, int num_inputs); void BuildDynamicBodySubgraphWithAliases(Subgraph* subgraph); void BuildLargeLessEqualCondSubgraph(Subgraph* subgraph, int rhs, int num_inputs); void BuildAccumulateLoopBodySubgraph(Subgraph* subgraph); void BuildDeepBodySubgraph(Subgraph* subgraph); void BuildLargeBodySubgraph(Subgraph* subgraph); void BuildDynamicIncreasingSizeSubgraph(Subgraph* subgraph); void BuildLargePadSubgraph(Subgraph* subgraph, std::vector<int> padding); void BuildPadLoopBodySubgraph(Subgraph* subgraph, const std::vector<int>& padding); void BuildWhileSubgraph(Subgraph* subgraph); void BuildAssignRandomValueToVariableSubgraph(Subgraph* graph); void BuildCallOnceAndReadVariableSubgraph(Subgraph* graph); void BuildCallOnceAndReadVariablePlusOneSubgraph(Subgraph* graph); void BuildLessEqualCondSubgraphWithDynamicTensor(Subgraph* subgraph, int rhs); void BuildBodySubgraphWithDynamicTensor(Subgraph* subgraph); void BuildIfSubgraphWithDynamicTensor(Subgraph* subgraph); void BuildWhileSubgraphWithDynamicTensor(Subgraph* subgraph); private: template <typename T = int32_t> void CreateConstantTensor(Subgraph* subgraph, int tensor_index, const std::vector<int>& shape, const std::vector<T>& data) { ASSERT_GT(shape.size(), 0); const int num_elements = absl::c_accumulate(shape, 1, std::multiplies<>()); ASSERT_EQ(data.size(), num_elements); const size_t size_in_bytes = sizeof(T) * num_elements; T* buffer = reinterpret_cast<T*>(malloc(size_in_bytes)); memcpy(buffer, data.data(), size_in_bytes); buffers_.push_back(buffer); ASSERT_EQ(subgraph->SetTensorParametersReadOnly( tensor_index, typeToTfLiteType<T>(), "", shape, {}, reinterpret_cast<const char*>(buffer), size_in_bytes), kTfLiteOk); } std::vector<void*> buffers_; }; class ControlFlowOpTest : public InterpreterTest { public: ControlFlowOpTest() : builder_(new SubgraphBuilder) {} ~ControlFlowOpTest() override { builder_.reset(); } protected: std::unique_ptr<SubgraphBuilder> builder_; }; void FillIntTensor(TfLiteTensor* tensor, const std::vector<int32_t>& data); void FillScalarStringTensor(TfLiteTensor* tensor, const std::string& data); void CheckScalarStringTensor(const TfLiteTensor* tensor, const std::string& data); void CheckStringTensor(const TfLiteTensor* tensor, const std::vector<int>& shape, const std::vector<std::string>& data); void CheckIntTensor(const TfLiteTensor* tensor, const std::vector<int>& shape, const std::vector<int32_t>& data); void CheckBoolTensor(const TfLiteTensor* tensor, const std::vector<int>& shape, const std::vector<bool>& data); void SetupTensor(Subgraph* subgraph, int tensor_index, TfLiteType type); } } #endif #include "tensorflow/lite/kernels/subgraph_test_util.h" #include <stddef.h> #include <stdint.h> #include <stdlib.h> #include <random> #include <string> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/builtin_ops.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/kernels/builtin_op_kernels.h" #include "tensorflow/lite/core/subgraph.h" #include "tensorflow/lite/kernels/kernel_util.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/string_util.h" namespace tflite { namespace ops { namespace custom { namespace random_int { TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 0); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); TfLiteTensor* output = GetOutput(context, node, 0); TfLiteIntArray* outputSize = TfLiteIntArrayCreate(1); outputSize->data[0] = 1; return context->ResizeTensor(context, output, outputSize); } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { TfLiteTensor& output = context->tensors[node->outputs->data[0]]; std::random_device rd; std::uniform_int_distribution<int> dist(1, 32768); output.data.i32[0] = dist(rd); return kTfLiteOk; } } TfLiteRegistration* Register_RANDOM_INT() { static TfLiteRegistration r = {nullptr, nullptr, random_int::Prepare, random_int::Eval}; return &r; } } } namespace subgraph_test_util { namespace { void AddTileNode(Subgraph* subgraph, int input0, int input1, int output) { int node_index; auto* tile_reg = ops::builtin::Register_TILE(); tile_reg->builtin_code = kTfLiteBuiltinTile; subgraph->AddNodeWithParameters({input0, input1}, {output}, {}, nullptr, 0, nullptr, tile_reg, &node_index); } void AddFlexNode(Subgraph* subgraph, int input_tensor, int output_tensor) { auto prepare = [](TfLiteContext* context, TfLiteNode* node) { TfLiteTensor& input = context->tensors[node->inputs->data[0]]; TfLiteTensor& output = context->tensors[node->outputs->data[0]]; TfLiteArrayUniquePtr<int> shape = BuildTfLiteArray(input.dims->size, input.dims->data); return context->ResizeTensor(context, &output, shape.release()); }; auto eval = [](TfLiteContext* context, TfLiteNode* node) { TfLiteTensor& input = context->tensors[node->inputs->data[0]]; TfLiteTensor& output = context->tensors[node->outputs->data[0]]; memcpy(output.data.data, input.data.data, input.bytes); return kTfLiteOk; }; TfLiteRegistration reg = {nullptr, nullptr, prepare, eval}; reg.builtin_code = BuiltinOperator_CUSTOM; reg.custom_name = "Flex"; int node_index; ASSERT_EQ( subgraph->AddNodeWithParameters({input_tensor}, {output_tensor}, {}, nullptr, 0, nullptr, &reg, &node_index), kTfLiteOk); } void AddReshapeNode(Subgraph* subgraph, int input0, int input1, int output) { int node_index; TfLiteReshapeParams* reshape_params = reinterpret_cast<TfLiteReshapeParams*>( calloc(1, sizeof(TfLiteReshapeParams))); auto* reshape_reg = ops::builtin::Register_RESHAPE(); reshape_reg->builtin_code = kTfLiteBuiltinReshape; ASSERT_EQ(subgraph->AddNodeWithParameters({input0, input1}, {output}, {}, nullptr, 0, reshape_params, reshape_reg, &node_index), kTfLiteOk); } void AddOffsetAddNode(Subgraph* subgraph, int input0, int input1, int output) { auto prepare = [](TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor& input0 = context->tensors[node->inputs->data[0]]; TfLiteTensor& output = context->tensors[node->outputs->data[0]]; TfLiteIntArray* shape = TfLiteIntArrayCopy(input0.dims); return context->ResizeTensor(context, &output, shape); }; auto invoke = [](TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor& input0 = context->tensors[node->inputs->data[0]]; const TfLiteTensor& input1 = context->tensors[node->inputs->data[1]]; TfLiteTensor& output = context->tensors[node->outputs->data[0]]; int num_elements = input0.dims->data[0]; const int kOffset = 1; const int* i0 = static_cast<int*>(input0.data.data); const int* i1 = static_cast<int*>(input1.data.data); int* o = static_cast<int*>(output.data.data); for (int i = 0; i < num_elements; ++i) { int input0_pos = (i + kOffset) % num_elements; o[i] = i0[input0_pos] + i1[i]; } return kTfLiteOk; }; int node_index; TfLiteRegistration offset_add_reg = {nullptr, nullptr, prepare, invoke}; offset_add_reg.builtin_code = BuiltinOperator_CUSTOM; offset_add_reg.custom_name = "OffsetAdd"; offset_add_reg.inplace_operator = kTfLiteInplaceOpInput1Shared; subgraph->AddNodeWithParameters({input0, input1}, {output}, {}, nullptr, 0, nullptr, &offset_add_reg, &node_index); } void AddAddNode(Subgraph* subgraph, int input0, int input1, int output) { int node_index; TfLiteAddParams* add_params = reinterpret_cast<TfLiteAddParams*>(calloc(1, sizeof(TfLiteAddParams))); auto* add_reg = ops::builtin::Register_ADD(); add_reg->builtin_code = kTfLiteBuiltinAdd; subgraph->AddNodeWithParameters({input0, input1}, {output}, {}, nullptr, 0, add_params, add_reg, &node_index); } void AddDynamicUpdateSliceNode(Subgraph* subgraph, int input0, int input1, int input2, int output) { int node_index; auto* reg = ops::builtin::Register_DYNAMIC_UPDATE_SLICE(); reg->builtin_code = kTfLiteBuiltinDynamicUpdateSlice; subgraph->AddNodeWithParameters({input0, input1, input2}, {output}, {}, nullptr, 0, nullptr, reg, &node_index); } } void Setup1DTensor(Subgraph* subgraph, int tensor_index, TfLiteType type) { int dim = 1; ASSERT_EQ(subgraph->SetTensorParametersReadWrite(tensor_index, type, "", 1, &dim, {}, false), kTfLiteOk); } void SetupTensor(Subgraph* subgraph, int tensor_index, TfLiteType type) { ASSERT_EQ(subgraph->SetTensorParametersReadWrite(tensor_index, type, "", 0, nullptr, {}, false), kTfLiteOk); } SubgraphBuilder::~SubgraphBuilder() { for (auto buffer : buffers_) { free(buffer); } } void SubgraphBuilder::BuildInplaceDynamicUpdateSliceSubgraph( Subgraph& subgraph, bool multiple_consumers) { enum { kInput0, kInput1, kInput2, kConstRhs, kOutput, kIntermediate0, kIntermediate1, kTensorCount }; int first_new_tensor_index; ASSERT_EQ(subgraph.AddTensors(kTensorCount, &first_new_tensor_index), kTfLiteOk); ASSERT_EQ(first_new_tensor_index, 0); ASSERT_EQ(subgraph.SetInputs({kInput0, kInput1, kInput2}), kTfLiteOk); ASSERT_EQ(subgraph.SetOutputs({kOutput}), kTfLiteOk); for (int i = 0; i < kTensorCount; ++i) { SetupTensor(&subgraph, i, kTfLiteInt32); } CreateConstantTensor(&subgraph, kConstRhs, {1}, {1}); AddAddNode(&subgraph, kInput0, kConstRhs, kIntermediate0); AddDynamicUpdateSliceNode(&subgraph, kIntermediate0, kInput1, kInput2, kIntermediate1); AddAddNode(&subgraph, kIntermediate1, multiple_consumers ? kIntermediate0 : kConstRhs, kOutput); } void SubgraphBuilder::BuildInputDynamicUpdateSliceSubgraph(Subgraph& subgraph) { enum { kInput0, kInput1, kInput2, kConstRhs, kOutput, kIntermediate0, kTensorCount }; int first_new_tensor_index; ASSERT_EQ(subgraph.AddTensors(kTensorCount, &first_new_tensor_index), kTfLiteOk); ASSERT_EQ(first_new_tensor_index, 0); ASSERT_EQ(subgraph.SetInputs({kInput0, kInput1, kInput2}), kTfLiteOk); ASSERT_EQ(subgraph.SetOutputs({kOutput}), kTfLiteOk); for (int i = 0; i < kTensorCount; ++i) { SetupTensor(&subgraph, i, kTfLiteInt32); } CreateConstantTensor(&subgraph, kConstRhs, {1}, {1}); AddDynamicUpdateSliceNode(&subgraph, kInput0, kInput1, kInput2, kIntermediate0); AddAddNode(&subgraph, kIntermediate0, kConstRhs, kOutput); } void SubgraphBuilder::BuildOutputNotConsumedSubgraph(Subgraph& subgraph) { enum { kInput0, kInput1, kInput2, kOutput0, kOutput1, kConstRhs, kTensorCount }; int first_new_tensor_index; ASSERT_EQ(subgraph.AddTensors(kTensorCount, &first_new_tensor_index), kTfLiteOk); ASSERT_EQ(first_new_tensor_index, 0); ASSERT_EQ(subgraph.SetInputs({kInput0, kInput1, kInput2}), kTfLiteOk); ASSERT_EQ(subgraph.SetOutputs({kOutput0, kOutput1, kConstRhs}), kTfLiteOk); for (int i = 0; i < kTensorCount; ++i) { Setup1DTensor(&subgraph, i, kTfLiteInt32); } CreateConstantTensor(&subgraph, kConstRhs, {1}, {1}); AddAddNode(&subgraph, kInput0, kInput1, kOutput0); AddTileNode(&subgraph, kInput0, kInput2, kOutput1); } void SubgraphBuilder::BuildXNNPACKSubgraph(Subgraph* subgraph) { enum { kInputCounter, kInputValue, kOutputCounter, kOutputValue, kIntermediateTensor0, kIntermediateTensor1, kTensorCount }; int first_new_tensor_index; ASSERT_EQ(subgraph->AddTensors(kTensorCount, &first_new_tensor_index), kTfLiteOk); ASSERT_EQ(first_new_tensor_index, 0); ASSERT_EQ(subgraph->SetInputs({kInputCounter, kInputValue}), kTfLiteOk); ASSERT_EQ(subgraph->SetOutputs({kOutputCounter, kOutputValue}), kTfLiteOk); for (int i = 0; i < kTensorCount; ++i) { SetupTensor(subgraph, i, kTfLiteFloat32); } AddAddNode(subgraph, kInputCounter, kInputValue, kIntermediateTensor0); AddAddNode(subgraph, kInputCounter, kInputValue, kIntermediateTensor1); AddAddNode(subgraph, kIntermediateTensor0, kIntermediateTensor1, kOutputCounter); AddAddNode(subgraph, kIntermediateTensor0, kIntermediateTensor1, kOutputValue); } void SubgraphBuilder::BuildInputIsOutputSubgraph(Subgraph* subgraph) { enum { kInputCounter, kInputValue0, kInputOutput, kOutputCounter, kOutputValue0, kConstRhs, kTensorCount }; int first_new_tensor_index; ASSERT_EQ(subgraph->AddTensors(kTensorCount, &first_new_tensor_index), kTfLiteOk); ASSERT_EQ(first_new_tensor_index, 0); ASSERT_EQ(subgraph->SetInputs({kInputCounter, kInputValue0, kInputOutput}), kTfLiteOk); ASSERT_EQ(subgraph->SetOutputs({kOutputCounter, kOutputValue0, kInputOutput}), kTfLiteOk); for (int i = 0; i < kTensorCount; ++i) { SetupTensor(subgraph, i, kTfLiteInt32); } CreateConstantTensor(subgraph, kConstRhs, {1}, {1}); AddAddNode(subgraph, kInputCounter, kConstRhs, kOutputCounter); AddAddNode(subgraph, kInputValue0, kInputOutput, kOutputValue0); } void SubgraphBuilder::BuildInputIsDifferentOutputSubgraph(Subgraph* subgraph) { enum { kInputCounter, kInputValue, kOutputCounter, kOutputValue, kTensorCount }; int first_new_tensor_index; ASSERT_EQ(subgraph->AddTensors(kTensorCount, &first_new_tensor_index), kTfLiteOk); ASSERT_EQ(first_new_tensor_index, 0); ASSERT_EQ(subgraph->SetInputs({kInputCounter, kInputValue}), kTfLiteOk); ASSERT_EQ(subgraph->SetOutputs({kInputValue, kOutputValue}), kTfLiteOk); for (int i = 0; i < kTensorCount; ++i) { SetupTensor(subgraph, i, kTfLiteInt32); } AddAddNode(subgraph, kInputCounter, kInputValue, kOutputValue); } void SubgraphBuilder::BuildFlexOutputSubgraph(Subgraph* subgraph) { enum { kInputCounter, kInputValue, kOutputCounter, kOutputValue, kConstRhs, kIntermediateTensor, kTensorCount }; int first_new_tensor_index; ASSERT_EQ(subgraph->AddTensors(kTensorCount, &first_new_tensor_index), kTfLiteOk); ASSERT_EQ(first_new_tensor_index, 0); ASSERT_EQ(subgraph->SetInputs({kInputCounter, kInputValue}), kTfLiteOk); ASSERT_EQ(subgraph->SetOutputs({kOutputCounter, kOutputValue}), kTfLiteOk); for (int i = 0; i < kTensorCount; ++i) { SetupTensor(subgraph, i, kTfLiteInt32); } CreateConstantTensor(subgraph, kConstRhs, {1}, {1}); AddAddNode(subgraph, kInputCounter, kConstRhs, kOutputCounter); AddAddNode(subgraph, kConstRhs, kInputValue, kIntermediateTensor); AddFlexNode(subgraph, kIntermediateTensor, kOutputValue); } void SubgraphBuilder::BuildCounterOnlySubgraph(Subgraph* subgraph) { enum { kInputCounter, kOutputCounter, kConstRhs, kTensorCount }; int first_new_tensor_index; ASSERT_EQ(subgraph->AddTensors(kTensorCount, &first_new_tensor_index), kTfLiteOk); ASSERT_EQ(first_new_tensor_index, 0); ASSERT_EQ(subgraph->SetInputs({kInputCounter}), kTfLiteOk); ASSERT_EQ(subgraph->SetOutputs({kOutputCounter}), kTfLiteOk); for (int i = 0; i < kTensorCount; ++i) { SetupTensor(subgraph, i, kTfLiteInt32); } CreateConstantTensor(subgraph, kConstRhs, {1}, {1}); AddAddNode(subgraph, kInputCounter, kConstRhs, kOutputCounter); } void SubgraphBuilder::BuildAddSubgraph(Subgraph* subgraph, const TfLiteType operand_type) { TfLiteAddParams* params = reinterpret_cast<TfLiteAddParams*>(malloc(sizeof(TfLiteAddParams))); params->activation = kTfLiteActNone; BuildBinaryOpSubgraph(subgraph, ops::builtin::Register_ADD, kTfLiteBuiltinAdd, params, operand_type, operand_type, operand_type); } void SubgraphBuilder::BuildStablehloAddSubgraph(Subgraph* subgraph, const TfLiteType operand_type) { BuildBinaryOpSubgraph(subgraph, ops::builtin::Register_STABLEHLO_ADD, kTfLiteBuiltinStablehloAdd, nullptr, operand_type, operand_type, operand_type); } void SubgraphBuilder::BuildAllInplaceScenariosSubgraph(Subgraph* subgraph) { enum { kInputCounter, kInputValue0, kInputValue1, kInputValue2, kOutputCounter, kOutputValue0, kOutputValue1, kOutputValue2, kIntermediateTensor0, kIntermediateTensor1, kInputOutputTensor, kTensorCount }; int first_new_tensor_index; ASSERT_EQ(subgraph->AddTensors(kTensorCount, &first_new_tensor_index), kTfLiteOk); ASSERT_EQ(first_new_tensor_index, 0); ASSERT_EQ(subgraph->SetInputs({kInputCounter, kInputValue0, kInputValue1, kInputValue2, kInputOutputTensor}), kTfLiteOk); ASSERT_EQ(subgraph->SetOutputs({kOutputCounter, kOutputValue0, kOutputValue1, kOutputValue2, kInputOutputTensor}), kTfLiteOk); for (int i = 0; i < kTensorCount; ++i) { SetupTensor(subgraph, i, kTfLiteInt32); } CreateConstantTensor(subgraph, kInputOutputTensor, {1}, {1}); AddAddNode(subgraph, kInputCounter, kInputOutputTensor, kOutputCounter); AddAddNode(subgraph, kInputValue0, kInputOutputTensor, kIntermediateTensor0); AddAddNode(subgraph, kIntermediateTensor0, kInputOutputTensor, kOutputValue0); AddTileNode(subgraph, kInputValue1, kInputCounter, kOutputValue1); AddTileNode(subgraph, kInputValue2, kInputCounter, kIntermediateTensor1); AddAddNode(subgraph, kIntermediateTensor1, kInputOutputTensor, kOutputValue2); } void SubgraphBuilder::BuildDynamicOpTriggersAllocationOfUnsedInputSubgraph( Subgraph* subgraph) { enum { kInputCounter, kInputValue0, kInputValue1, kOutputCounter, kOutputValue0, kOutputValue1, kInter
#include "tensorflow/lite/kernels/subgraph_test_util.h" #include <stdint.h> #include <memory> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/core/interpreter.h" #include "tensorflow/lite/kernels/kernel_util.h" #include "tensorflow/lite/testing/util.h" namespace tflite { namespace subgraph_test_util { namespace { class SubgraphBuilderTest : public ::testing::Test { public: SubgraphBuilderTest() : interpreter_(new Interpreter), builder_(new SubgraphBuilder) {} ~SubgraphBuilderTest() override { interpreter_.reset(); builder_.reset(); } protected: void TestAccumulateLoopBody(int input1, int input2, int output1, int output2) { interpreter_ = std::make_unique<Interpreter>(); builder_->BuildAccumulateLoopBodySubgraph( &interpreter_->primary_subgraph()); interpreter_->ResizeInputTensor(interpreter_->inputs()[0], {1}); interpreter_->ResizeInputTensor(interpreter_->inputs()[1], {1}); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); FillIntTensor(interpreter_->tensor(interpreter_->inputs()[0]), {input1}); FillIntTensor(interpreter_->tensor(interpreter_->inputs()[1]), {input2}); ASSERT_EQ(interpreter_->Invoke(), kTfLiteOk); TfLiteTensor* output_tensor1 = interpreter_->tensor(interpreter_->outputs()[0]); CheckIntTensor(output_tensor1, {1}, {output1}); TfLiteTensor* output_tensor2 = interpreter_->tensor(interpreter_->outputs()[1]); CheckIntTensor(output_tensor2, {1}, {output2}); } std::unique_ptr<Interpreter> interpreter_; std::unique_ptr<SubgraphBuilder> builder_; }; TEST_F(SubgraphBuilderTest, TestBuildAddSubgraph) { builder_->BuildAddSubgraph(&interpreter_->primary_subgraph()); interpreter_->ResizeInputTensor(interpreter_->inputs()[0], {2}); interpreter_->ResizeInputTensor(interpreter_->inputs()[1], {1, 2}); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); FillIntTensor(interpreter_->tensor(interpreter_->inputs()[0]), {5, 7}); FillIntTensor(interpreter_->tensor(interpreter_->inputs()[1]), {1, 2}); ASSERT_EQ(interpreter_->Invoke(), kTfLiteOk); TfLiteTensor* output = interpreter_->tensor(interpreter_->outputs()[0]); CheckIntTensor(output, {1, 2}, {6, 9}); } TEST_F(SubgraphBuilderTest, TestBuildMulSubgraph) { builder_->BuildMulSubgraph(&interpreter_->primary_subgraph()); interpreter_->ResizeInputTensor(interpreter_->inputs()[0], {2}); interpreter_->ResizeInputTensor(interpreter_->inputs()[1], {1, 2}); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); FillIntTensor(interpreter_->tensor(interpreter_->inputs()[0]), {5, 7}); FillIntTensor(interpreter_->tensor(interpreter_->inputs()[1]), {1, 2}); ASSERT_EQ(interpreter_->Invoke(), kTfLiteOk); TfLiteTensor* output = interpreter_->tensor(interpreter_->outputs()[0]); CheckIntTensor(output, {1, 2}, {5, 14}); } TEST_F(SubgraphBuilderTest, TestBuildPadSubgraph) { builder_->BuildPadSubgraph(&interpreter_->primary_subgraph()); interpreter_->ResizeInputTensor(interpreter_->inputs()[0], {2}); interpreter_->ResizeInputTensor(interpreter_->inputs()[1], {1, 2}); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); FillIntTensor(interpreter_->tensor(interpreter_->inputs()[0]), {5, 7}); FillIntTensor(interpreter_->tensor(interpreter_->inputs()[1]), {1, 2}); ASSERT_EQ(interpreter_->Invoke(), kTfLiteOk); TfLiteTensor* output = interpreter_->tensor(interpreter_->outputs()[0]); CheckIntTensor(output, {5}, {0, 5, 7, 0, 0}); } TEST_F(SubgraphBuilderTest, TestBuildDynamicPadSubgraph) { builder_->BuildPadSubgraph(&interpreter_->primary_subgraph()); interpreter_->ResizeInputTensor(interpreter_->inputs()[0], {2}); interpreter_->ResizeInputTensor(interpreter_->inputs()[1], {1, 2}); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); FillIntTensor(interpreter_->tensor(interpreter_->inputs()[0]), {5, 7}); FillIntTensor(interpreter_->tensor(interpreter_->inputs()[1]), {1, 2}); ASSERT_EQ(interpreter_->Invoke(), kTfLiteOk); TfLiteTensor* output = interpreter_->tensor(interpreter_->outputs()[0]); EXPECT_TRUE(IsDynamicTensor(output)); CheckIntTensor(output, {5}, {0, 5, 7, 0, 0}); } TEST_F(SubgraphBuilderTest, TestBuildLessEqualCondSubgraph) { builder_->BuildLessEqualCondSubgraph(&interpreter_->primary_subgraph(), 3); interpreter_->ResizeInputTensor(interpreter_->inputs()[0], {5}); interpreter_->ResizeInputTensor(interpreter_->inputs()[1], {10, 10}); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); FillIntTensor(interpreter_->tensor(interpreter_->inputs()[0]), {1, 2, 3, 4, 5}); ASSERT_EQ(interpreter_->Invoke(), kTfLiteOk); TfLiteTensor* output = interpreter_->tensor(interpreter_->outputs()[0]); CheckBoolTensor(output, {5}, {true, true, true, false, false}); } TEST_F(SubgraphBuilderTest, TestBuildAccumulateLoopBodySubgraph) { TestAccumulateLoopBody(1, 1, 2, 3); TestAccumulateLoopBody(2, 3, 3, 6); TestAccumulateLoopBody(3, 6, 4, 10); } TEST_F(SubgraphBuilderTest, TestBuildPadLoopBodySubgraph) { builder_->BuildPadLoopBodySubgraph(&interpreter_->primary_subgraph(), {1, 2}); interpreter_->ResizeInputTensor(interpreter_->inputs()[0], {1}); interpreter_->ResizeInputTensor(interpreter_->inputs()[1], {5}); ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk); FillIntTensor(interpreter_->tensor(interpreter_->inputs()[0]), {1}); FillIntTensor(interpreter_->tensor(interpreter_->inputs()[1]), {0, 5, 7, 0, 0}); ASSERT_EQ(interpreter_->Invoke(), kTfLiteOk); TfLiteTensor* output1 = interpreter_->tensor(interpreter_->outputs()[0]); CheckIntTensor(output1, {1}, {2}); TfLiteTensor* output2 = interpreter_->tensor(interpreter_->outputs()[1]); CheckIntTensor(output2, {8}, {0, 0, 5, 7, 0, 0, 0, 0}); } } } }
877
cpp
tensorflow/tensorflow
transpose
third_party/xla/xla/pjrt/transpose.cc
third_party/xla/xla/pjrt/transpose_test.cc
#ifndef XLA_PJRT_TRANSPOSE_H_ #define XLA_PJRT_TRANSPOSE_H_ #include <cstddef> #include <cstdint> #include <functional> #include <memory> #include <string> #include <variant> #include <vector> #include "absl/container/inlined_vector.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "absl/types/variant.h" #include "xla/pjrt/lru_cache.h" namespace xla { class TransposePlan { public: struct Tiling { absl::Span<int64_t const> tiling; }; struct Striding { absl::Span<int64_t const> strides_in_bytes; }; enum class Transformation { kNone = 0, kF64ToEf57 = 1, }; struct Options { size_t elem_size_in_bytes; absl::Span<int64_t const> dims; absl::Span<int64_t const> permutation; std::variant<Tiling, Striding> input_layout = Tiling{}; Tiling output_tiling; Transformation transformation = Transformation::kNone; int num_threads = 1; }; static absl::StatusOr<std::unique_ptr<TransposePlan>> Create( const Options& options); TransposePlan(); ~TransposePlan(); void Execute(const void* a, void* b, const std::function<void(std::function<void(void)>)>& schedule_work = {}) const; std::string ToString() const; size_t ElemSizeInBytes() const { return elem_size_in_bytes_; } int64_t InputNumElems() const; int64_t OutputNumElems() const; absl::Span<int64_t const> InputDims() const { return original_a_dims_; } absl::Span<int64_t const> OutputDims() const { return original_b_dims_; } absl::Span<int64_t const> InputStrides() const { return original_a_strides_; } int Parallelism() const { return nodes_.size(); } struct Node; protected: static void RemoveTrivialDimensions( absl::InlinedVector<int64_t, 4>& a_dims, absl::InlinedVector<int64_t, 4>& permutation, absl::InlinedVector<int64_t, 4>& lda, absl::InlinedVector<int64_t, 4>& lda_tile, absl::InlinedVector<int64_t, 4>& a_tiling, absl::InlinedVector<int64_t, 4>& b_tiling); static void CoalesceDimensions(absl::InlinedVector<int64_t, 4>& a_dims, absl::InlinedVector<int64_t, 4>& permutation, absl::InlinedVector<int64_t, 4>& lda, absl::InlinedVector<int64_t, 4>& lda_tile, absl::InlinedVector<int64_t, 4>& a_tiling, absl::InlinedVector<int64_t, 4>& b_tiling); private: void Initialize(); void BuildPlanNodes(absl::Span<int64_t const> inverse_permutation, int thread_id, std::vector<Node>& output_nodes); std::vector<int> ChooseParallelizationStrategy( absl::Span<int64_t const> inverse_permutation); template <typename T, Transformation transformation> void ExecuteTyped(const char* a, char* b, absl::Span<Node const> nodes) const; int num_threads_requested_ = 1; int64_t elem_size_in_bytes_; int64_t num_elems_; absl::InlinedVector<int64_t, 4> original_a_dims_; absl::InlinedVector<int64_t, 4> original_a_strides_; std::vector<int64_t> original_b_dims_; absl::InlinedVector<int64_t, 4> a_dims_; absl::InlinedVector<int64_t, 4> a_strides_; std::vector<int64_t> b_dims_; absl::InlinedVector<int64_t, 4> permutation_; absl::InlinedVector<int64_t, 4> lda_; absl::InlinedVector<int64_t, 4> lda_tile_; absl::InlinedVector<int64_t, 4> ldb_; absl::InlinedVector<int64_t, 4> ldb_tile_; absl::InlinedVector<int64_t, 4> a_tiling_; absl::InlinedVector<int64_t, 4> b_tiling_; bool a_is_tiled_; bool b_is_tiled_; struct Loop { int dim_in_a; bool tile_interior; }; std::vector<Loop> loop_order_; std::vector<int> loop_parallelism_; absl::InlinedVector<std::vector<Node>, 1> nodes_; bool inner_kernel_is_memcpy_; int inner_block_elems_ = 1; int outer_block_elems_a_ = 4; int outer_block_elems_b_ = 4; Transformation transformation_; int64_t scratch_size_ = 0; }; struct TransposePlanCacheKey { template <typename H> friend H AbslHashValue(H h, const TransposePlanCacheKey& key); size_t elem_size_in_bytes; absl::InlinedVector<int64_t, 4> dims; absl::InlinedVector<int64_t, 4> permutation; bool input_layout_is_tiling; absl::InlinedVector<int64_t, 4> input_layout; absl::InlinedVector<int64_t, 4> output_tiling; TransposePlan::Transformation transformation; int num_threads; bool operator==(const TransposePlanCacheKey& other) const; }; template <typename H> H AbslHashValue(H h, const TransposePlanCacheKey& key); class TransposePlanCache { public: explicit TransposePlanCache(int capacity); ~TransposePlanCache(); TransposePlanCache(const TransposePlanCache&) = delete; TransposePlanCache(TransposePlanCache&&) = delete; TransposePlanCache& operator=(const TransposePlanCache&) = delete; TransposePlanCache& operator=(TransposePlanCache&&) = delete; absl::StatusOr<std::shared_ptr<TransposePlan>> GetOrCreate( const TransposePlan::Options& options); private: LRUCache<TransposePlanCacheKey, absl::StatusOr<std::shared_ptr<TransposePlan>>>::LRUList lru_list_; LRUCache<TransposePlanCacheKey, absl::StatusOr<std::shared_ptr<TransposePlan>>> cache_; }; } #endif #include "xla/pjrt/transpose.h" #include <algorithm> #include <cstdint> #include <cstdlib> #include <cstring> #include <functional> #include <memory> #include <numeric> #include <stack> #include <string> #include <tuple> #include <type_traits> #include <utility> #include <variant> #include <vector> #include "absl/algorithm/container.h" #include "absl/base/optimization.h" #include "absl/container/inlined_vector.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/synchronization/blocking_counter.h" #include "absl/types/span.h" #include "absl/types/variant.h" #include "xla/ef57.h" #include "xla/permutation_util.h" #include "xla/pjrt/transpose_kernels.h" #include "xla/util.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" #include "tsl/profiler/lib/traceme.h" namespace xla { namespace { #ifdef __AVX__ static constexpr int kMaxInnerBlockSizeBytes = sizeof(__m256i); #elif defined(XLA_HAS_VEC128) static constexpr int kMaxInnerBlockSizeBytes = sizeof(Vec128); #else static constexpr int kMaxInnerBlockSizeBytes = 16; #endif } struct TransposePlan::Node { int64_t start; int64_t end; int64_t inc; int64_t lda; int64_t ldb; int trailing_tile_next_node_inc = 0; bool is_inner_dim_in_a = false; bool is_inner_dim_in_b = false; }; template <typename T, int inner_bs, TransposePlan::Transformation transformation> void MacroKernel(const char* __restrict a, int64_t lda, int outer_bs_a, char* __restrict b, int64_t ldb, int outer_bs_b, void* __restrict scratch) { DVLOG(10) << "MacroKernel lda=" << lda << " ldb=" << ldb << " outer_bs_a=" << outer_bs_a << " outer_bs_b=" << outer_bs_b << " inner_bs=" << inner_bs; if constexpr (transformation == TransposePlan::Transformation::kF64ToEf57) { DCHECK_EQ(outer_bs_a * inner_bs % 2, 0); float* p = reinterpret_cast<float*>(scratch); if (ABSL_PREDICT_TRUE(lda == sizeof(double) && outer_bs_a * inner_bs == 2)) { absl::Span<const double> input = absl::MakeConstSpan( reinterpret_cast<const double*>(a), outer_bs_b * inner_bs); absl::Span<float> output = absl::MakeSpan(reinterpret_cast<float*>(p), input.size() * 2); ConvertF64ToEf57(input, output); } else { for (int i = 0; i < outer_bs_b * inner_bs; ++i) { absl::Span<const double> input = absl::MakeConstSpan(reinterpret_cast<const double*>(a + lda * i), outer_bs_a * inner_bs / 2); absl::Span<float> output = absl::MakeSpan( reinterpret_cast<float*>(p + outer_bs_a * inner_bs * i), input.size() * 2); ConvertF64ToEf57(input, output); } } a = reinterpret_cast<const char*>(scratch); lda = outer_bs_a * inner_bs * sizeof(float); } for (int i = 0; i < outer_bs_a; ++i) { for (int j = 0; j < outer_bs_b; ++j) { TransposeMicroKernel<T, inner_bs>::Apply( a + inner_bs * j * lda + i * inner_bs * sizeof(T), lda, b + inner_bs * i * ldb + j * inner_bs * sizeof(T), ldb); } } } template <typename T, int inner_bs, TransposePlan::Transformation transformation> void Transpose(const char* __restrict a, int outer_bs_a, char* __restrict b, int outer_bs_b, TransposePlan::Node const* __restrict node, void* __restrict scratch) { tsl::profiler::TraceMe traceme([&]() { return tsl::profiler::TraceMeEncode("Transpose", {{"inner_bs", inner_bs}, {"outer_bs_a", outer_bs_a}, {"outer_bs_b", outer_bs_b}}); }); DVLOG(10) << "Transpose " << outer_bs_a << " " << outer_bs_b; DCHECK_GT(outer_bs_a, 0); DCHECK_GT(outer_bs_b, 0); const int64_t start = node->start; const int64_t end = node->end; const int64_t stop = node->end - (node->inc - 1); const int64_t lda = node->lda; const int64_t ldb = node->ldb; const int64_t inc = node->inc; TransposePlan::Node const* next_node = node + 1; if (next_node->inc < 0) { const int64_t lda_block = next_node->lda; const int64_t ldb_block = next_node->ldb; int64_t i; for (i = start; i < stop; i += inc) { MacroKernel<T, inner_bs, transformation>(a + i * lda, lda_block, outer_bs_a, b + i * ldb, ldb_block, outer_bs_b, scratch); } if (i < end) { DCHECK_EQ(node->trailing_tile_next_node_inc, 0); DCHECK(node->is_inner_dim_in_a || node->is_inner_dim_in_b); if (node->is_inner_dim_in_a) { outer_bs_a = (end - i) / inner_bs; if (outer_bs_a > 0) { MacroKernel<T, inner_bs, transformation>( a + i * lda, lda_block, outer_bs_a, b + i * ldb, ldb_block, outer_bs_b, scratch); i += outer_bs_a * inner_bs; } if (i < end) { MacroKernel<T, 1, transformation>(a + i * lda, lda_block, end - i, b + i * ldb, ldb_block, outer_bs_b * inner_bs, scratch); } } else if (node->is_inner_dim_in_b) { outer_bs_b = (end - i) / inner_bs; if (outer_bs_b > 0) { MacroKernel<T, inner_bs, transformation>( a + i * lda, lda_block, outer_bs_a, b + i * ldb, ldb_block, outer_bs_b, scratch); i += outer_bs_b * inner_bs; } if (i < end) { MacroKernel<T, 1, transformation>(a + i * lda, lda_block, outer_bs_a * inner_bs, b + i * ldb, ldb_block, end - i, scratch); } } } else if (node->trailing_tile_next_node_inc) { DCHECK_EQ(inc, 1); TransposePlan::Node const* trailing_next_node = node + node->trailing_tile_next_node_inc; if (trailing_next_node->inc < 0) { const int64_t lda_block = trailing_next_node->lda; const int64_t ldb_block = trailing_next_node->ldb; MacroKernel<T, inner_bs, transformation>( a + i * lda, lda_block, outer_bs_a, b + i * ldb, ldb_block, outer_bs_b, scratch); } else { Transpose<T, inner_bs, transformation>(a + i * lda, outer_bs_a, b + i * ldb, outer_bs_b, trailing_next_node, scratch); } } } else { int64_t i; for (i = start; i < stop; i += inc) { Transpose<T, inner_bs, transformation>( a + i * lda, outer_bs_a, b + i * ldb, outer_bs_b, next_node, scratch); } if (i < end) { DCHECK_EQ(node->trailing_tile_next_node_inc, 0); DCHECK(node->is_inner_dim_in_a || node->is_inner_dim_in_b); if (node->is_inner_dim_in_a) { outer_bs_a = (end - i) / inner_bs; if (outer_bs_a > 0) { Transpose<T, inner_bs, transformation>(a + i * lda, outer_bs_a, b + i * ldb, outer_bs_b, next_node, scratch); i += outer_bs_a * inner_bs; } if (i < end) { Transpose<T, 1, transformation>(a + i * lda, end - i, b + i * ldb, outer_bs_b * inner_bs, next_node, scratch); } } else if (node->is_inner_dim_in_b) { outer_bs_b = (end - i) / inner_bs; if (outer_bs_b > 0) { Transpose<T, inner_bs, transformation>(a + i * lda, outer_bs_a, b + i * ldb, outer_bs_b, next_node, scratch); i += outer_bs_b * inner_bs; } if (i < end) { Transpose<T, 1, transformation>(a + i * lda, outer_bs_a * inner_bs, b + i * ldb, end - i, next_node, scratch); } } } else if (node->trailing_tile_next_node_inc) { TransposePlan::Node const* trailing_next_node = node + node->trailing_tile_next_node_inc; if (trailing_next_node->inc < 0) { const int64_t lda_block = trailing_next_node->lda; const int64_t ldb_block = trailing_next_node->ldb; MacroKernel<T, inner_bs, transformation>( a + i * lda, lda_block, outer_bs_a, b + i * ldb, ldb_block, outer_bs_b, scratch); } else { Transpose<T, inner_bs, transformation>(a + i * lda, outer_bs_a, b + i * ldb, outer_bs_b, trailing_next_node, scratch); } } } } template <typename T> void TransposeConstStride1(const char* __restrict a, char* __restrict b, TransposePlan::Node const* __restrict node) { a += node[0].start * node[0].lda; b += node[0].start * node[0].ldb; if (node[0].is_inner_dim_in_a) { int64_t num_bytes = (node->end - node->start) * sizeof(T); std::memcpy(b, a, num_bytes); } else if (node[1].is_inner_dim_in_a) { int64_t offset_a = node[1].start * node[1].lda; int64_t offset_b = node[1].start * node[1].ldb; int64_t num_bytes = (node[1].end - node[1].start) * sizeof(T); a += offset_a; b += offset_b; for (int64_t i = node[0].start; i < node[0].end; ++i) { std::memcpy(b, a, num_bytes); a += node[0].lda; b += node[0].ldb; } if (node[0].trailing_tile_next_node_inc) { TransposeConstStride1<T>(a - offset_a, b - offset_b, node + node[0].trailing_tile_next_node_inc); } } else if (node[2].is_inner_dim_in_a) { int64_t num_bytes = (node[2].end - node[2].start) * sizeof(T); int64_t offset_a1 = node[1].start * node[1].lda; int64_t offset_b1 = node[1].start * node[1].ldb; int64_t offset_a2 = node[2].start * node[2].lda; int64_t offset_b2 = node[2].start * node[2].ldb; a += offset_a1 + offset_a2; b += offset_b1 + offset_b2; for (int64_t i = node[0].start; i < node[0].end; ++i) { const char* a1 = a; char* b1 = b; for (int64_t j = node[1].start; j < node[1].end; ++j) { std::memcpy(b1, a1, num_bytes); a1 += node[1].lda; b1 += node[1].ldb; } if (node[1].trailing_tile_next_node_inc) { TransposeConstStride1<T>( a1 - offset_a2, b1 - offset_b2, &node[1] + node[1].trailing_tile_next_node_inc); } a += node[0].lda; b += node[0].ldb; } if (node[0].trailing_tile_next_node_inc) { TransposeConstStride1<T>(a - offset_a1 - offset_a2, b - offset_b1 - offset_b2, node + node[0].trailing_tile_next_node_inc); } } else { for (int64_t i = node[0].start; i < node[0].end; ++i) { const char* a1 = a + node[1].start * node[1].lda; char* b1 = b + node[1].start * node[1].ldb; for (int64_t j = node[1].start; j < node[1].end; ++j) { TransposeConstStride1<T>(a1, b1, node + 2); a1 += node[1].lda; b1 += node[1].ldb; } if (node[1].trailing_tile_next_node_inc) { TransposeConstStride1<T>( a1, b1, &node[1] + node[1].trailing_tile_next_node_inc); } a += node[0].lda; b += node[0].ldb; } if (node[0].trailing_tile_next_node_inc) { TransposeConstStride1<T>(a, b, node + node[0].trailing_tile_next_node_inc); } } } template <typename T, TransposePlan::Transformation transformation> void TransposePlan::ExecuteTyped(const char* a, char* b, absl::Span<Node const> nodes) const { tsl::profiler::TraceMe traceme([&]() { return tsl::profiler::TraceMeEncode( "TransposePlan::ExecuteTyped", {{"inner_kernel_is_memcpy", inner_kernel_is_memcpy_}, {"inner_block_elems", inner_block_elems_}}); }); if (inner_kernel_is_memcpy_) { DCHECK(transformation_ == Transformation::kNone); TransposeConstStride1<T>(a, b, nodes.data()); } else { std::unique_ptr<char[]> scratch; if (scratch_size_ > 0) { scratch.reset(new char[scratch_size_]); } DCHECK_LE(sizeof(T) * inner_block_elems_, kMaxInnerBlockSizeBytes); auto handle_inner_block_elems = [&](auto const_inner_block_elems) { if (nodes.size() > 1) { Transpose<T, const_inner_block_elems, transformation>( a, outer_block_elems_a_, b, outer_block_elems_b_, nodes.data(), scratch.get()); } else { MacroKernel<T, const_inner_block_elems, transformation>( a, nodes.back().lda, outer_block_elems_a_, b, nodes.back().ldb, outer_block_elems_b_, scratch.get()); } }; switch (inner_block_elems_) { case 1: handle_inner_block_elems(std::integral_constant<int, 1>{}); break; case 2: handle_inner_block_elems(std::integral_constant<int, 2>{}); break; case 4: handle_inner_block_elems(std::integral_constant<int, 4>{}); break; case 8: handle_inner_block_elems(std::integral_constant<int, 8>{}); break; case 16: handle_inner_block_elems(std::integral_constant<int, 16>{}); break; default: LOG(FATAL) << "Invalid inner_block_elems_ " << inner_block_elems_; } } } struct uint128 { uint64_t lo; uint64_t hi; }; static_assert(sizeof(uint128) == 16, "uint128 should be 16 bytes in size"); void TransposePlan::Execute( const void* a, void* b, const std::function<void(std::function<void(void)>)>& schedule_work) const { if (num_elems_ == 0) { return; } tsl::profiler::TraceMe traceme("Transpose::Execute", 2); const char* ac = static_cast<const char*>(a); char* bc = static_cast<char*>(b); auto execute_by_type = [&](absl::Span<Node const> nodes) { switch (elem_size_in_bytes_) { case 1: ExecuteTyped<uint8_t, Transformation::kNone>(ac, bc, nodes); break; case 2: ExecuteTyped<uint16_t, Transformation::kNone>(ac, bc, nodes); break; case 4: if (transformation_ == Transformation::kNone) { ExecuteTyped<uint32_t, Transformation::kNone>(ac, bc, nodes); } else { DCHECK(transformation_ == Transformation::kF64ToEf57); ExecuteTyped<uint32_t, Transformation::kF64ToEf57>(ac, bc, nodes); } break; case 8: ExecuteTyped<uint64_t, Transformation::kNone>(ac, bc, nodes); break; case 16: ExecuteTyped<uint128, Transformation::kNone>(ac, bc, nodes); break; default: LOG(FATAL) << "Unimplemented element size " << elem_size_in_bytes_; } }; if (!schedule_work || nodes_.size() <= 1) { for (const auto& nodes : nodes_) { execute_by_type(nodes); } } else { absl::BlockingCounter counter(nodes_.size() - 1); for (size_t i = 1; i < nodes_.size(); ++i) { absl::Span<Node const> nodes = nodes_[i]; schedule_work([&, nodes]() { execute_by_type(nodes); counter.DecrementCount(); }); } execute_by_type(nodes_[0]); counter.Wait(); } } TransposePlan::TransposePlan() = default; TransposePlan::~TransposePlan() = default; static void ComputeStrides( int64_t elem_size_in_bytes, absl::Span<const int64_t> dims, absl::Span<const int64_t> tiling, absl::InlinedVector<int64_t, 4>& outer_tile_strides, absl::InlinedVector<int64_t, 4>& inner_tile_strides) { inner_tile_strides.resize(dims.size()); int64_t acc = elem_size_in_bytes; for (int d = static_cast<int>(dims.size()) - 1; d >= 0; --d) { inner_tile_strides[d] = acc; acc *= tiling[d]; } outer_tile_strides.resize(dims.size()); for (int d = static_cast<int>(dims.size()) - 1; d >= 0; --d) { outer_tile_str
#include "xla/pjrt/transpose.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <functional> #include <numeric> #include <ostream> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/container/inlined_vector.h" #include "absl/numeric/int128.h" #include "unsupported/Eigen/CXX11/Tensor" #include "xla/array.h" #include "xla/permutation_util.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/util.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test_benchmark.h" #include "tsl/platform/threadpool.h" #include "tsl/protobuf/error_codes.pb.h" namespace xla { class TestTransposePlan : public TransposePlan { public: using TransposePlan::CoalesceDimensions; using TransposePlan::RemoveTrivialDimensions; }; TEST(TransposeTest, RemoveTrivialDimensions) { absl::InlinedVector<int64_t, 4> dims = {4, 5, 1, 3, 1, 2, 5}; absl::InlinedVector<int64_t, 4> perm = {0, 2, 1, 4, 3, 6, 5}; absl::InlinedVector<int64_t, 4> lda = {2, 5, 7, 100, 3, 0, 1}; absl::InlinedVector<int64_t, 4> lda_tile = {1, 1, 1, 1, 1, 1, 1}; absl::InlinedVector<int64_t, 4> input_tiling = {1, 1, 1, 1, 1, 1, 1}; absl::InlinedVector<int64_t, 4> output_tiling = {1, 1, 1, 1, 1, 1, 1}; TestTransposePlan::RemoveTrivialDimensions(dims, perm, lda, lda_tile, input_tiling, output_tiling); EXPECT_THAT(dims, testing::ElementsAre(4, 5, 3, 2, 5)); EXPECT_THAT(perm, testing::ElementsAre(0, 1, 2, 4, 3)); dims = {4, 5, 3, 2, 5}; perm = {4, 3, 2, 1, 0}; lda = {2, 5, 100, 0, 1}; lda_tile = {1, 1, 1, 1, 1}; input_tiling = {1, 1, 1, 1, 1}; output_tiling = {1, 1, 1, 1, 1}; TestTransposePlan::RemoveTrivialDimensions(dims, perm, lda, lda_tile, input_tiling, output_tiling); EXPECT_THAT(dims, testing::ElementsAre(4, 5, 3, 2, 5)); EXPECT_THAT(perm, testing::ElementsAre(4, 3, 2, 1, 0)); } TEST(TransposeTest, CoalesceDimensions) { absl::InlinedVector<int64_t, 4> dims = {4, 5, 1, 3, 1, 2, 5}; absl::InlinedVector<int64_t, 4> perm = {0, 2, 1, 4, 3, 6, 5}; absl::InlinedVector<int64_t, 4> lda = {50, 30, 30, 10, 10, 5, 1}; absl::InlinedVector<int64_t, 4> lda_tile = {1, 1, 1, 1, 1, 1, 1}; absl::InlinedVector<int64_t, 4> input_tiling = {1, 1, 1, 1, 1, 1, 1}; absl::InlinedVector<int64_t, 4> output_tiling = {1, 1, 1, 1, 1, 1, 1}; TestTransposePlan::CoalesceDimensions(dims, perm, lda, lda_tile, input_tiling, output_tiling); EXPECT_THAT(dims, testing::ElementsAre(4, 5, 1, 3, 1, 2, 5)); EXPECT_THAT(perm, testing::ElementsAre(0, 2, 1, 4, 3, 6, 5)); EXPECT_THAT(lda, testing::ElementsAre(50, 30, 30, 10, 10, 5, 1)); dims = {4, 5, 3, 2, 5}; perm = {4, 1, 2, 3, 0}; lda = {150, 30, 10, 5, 1}; lda_tile = {1, 1, 1, 1, 1}; input_tiling = {1, 1, 1, 1, 1}; output_tiling = {1, 1, 1, 1, 1}; TestTransposePlan::CoalesceDimensions(dims, perm, lda, lda_tile, input_tiling, output_tiling); EXPECT_THAT(dims, testing::ElementsAre(4, 30, 5)); EXPECT_THAT(perm, testing::ElementsAre(2, 1, 0)); EXPECT_THAT(lda, testing::ElementsAre(150, 5, 1)); dims = {4, 5, 3, 2, 5}; perm = {0, 1, 2, 3, 4}; lda = {150, 30, 10, 5, 1}; lda_tile = {1, 1, 1, 1, 1}; input_tiling = {1, 1, 1, 1, 1}; output_tiling = {1, 1, 1, 1, 1}; TestTransposePlan::CoalesceDimensions(dims, perm, lda, lda_tile, input_tiling, output_tiling); EXPECT_THAT(dims, testing::ElementsAre(600)); EXPECT_THAT(perm, testing::ElementsAre(0)); EXPECT_THAT(lda, testing::ElementsAre(1)); dims = {4, 5, 3, 2, 5}; perm = {4, 1, 2, 3, 0}; lda = {150, 30, 10, 7, 1}; lda_tile = {1, 1, 1, 1, 1}; input_tiling = {1, 1, 1, 1, 1}; output_tiling = {1, 1, 1, 1, 1}; TestTransposePlan::CoalesceDimensions(dims, perm, lda, lda_tile, input_tiling, output_tiling); EXPECT_THAT(dims, testing::ElementsAre(4, 15, 2, 5)); EXPECT_THAT(perm, testing::ElementsAre(3, 1, 2, 0)); EXPECT_THAT(lda, testing::ElementsAre(150, 10, 7, 1)); } TEST(TransposeTest, InvalidTilings) { TransposePlan::Options options; std::vector<int64_t> dims = {3, 4, 5}; std::vector<int64_t> perm = {0, 1, 2}; options.elem_size_in_bytes = sizeof(float); options.dims = dims; options.permutation = perm; std::vector<int64_t> input_tiling = {8, 128}; std::vector<int64_t> output_tiling = {4}; options.input_layout = TransposePlan::Tiling{input_tiling}; options.output_tiling = TransposePlan::Tiling{output_tiling}; auto plan = TransposePlan::Create(options); EXPECT_EQ(plan.status().code(), tsl::error::UNIMPLEMENTED); EXPECT_THAT( plan.status().message(), testing::HasSubstr( "Only one of the input and output may have a non-trivial tiling")); } int64_t SizeOfTiledArray(absl::Span<int64_t const> shape, absl::Span<int64_t const> tiling) { int64_t size = 1; for (size_t i = 0; i < shape.size(); ++i) { if (i >= shape.size() - tiling.size()) { size *= RoundUpTo(shape[i], tiling[i - (shape.size() - tiling.size())]); } else { size *= shape[i]; } } return size; } bool BumpIndices(absl::Span<int64_t const> shape, absl::Span<int64_t> indices) { CHECK_EQ(shape.size(), indices.size()); for (int dimno = indices.size() - 1; dimno >= 0; --dimno) { if (indices[dimno] + 1 < shape[dimno]) { indices[dimno]++; std::fill(indices.begin() + dimno + 1, indices.end(), 0); return true; } } return false; } int64_t IndexToLinearIndex(absl::Span<int64_t const> shape, absl::Span<int64_t const> tiling, absl::Span<int64_t const> indices) { CHECK_LE(tiling.size(), shape.size()); CHECK_EQ(shape.size(), indices.size()); int64_t stride = 1; int64_t offset = 0; auto index_it = indices.rbegin(); auto tile_it = tiling.rbegin(); for (; tile_it != tiling.rend(); ++index_it, ++tile_it) { offset += (*index_it % *tile_it) * stride; stride *= *tile_it; } index_it = indices.rbegin(); tile_it = tiling.rbegin(); auto shape_it = shape.rbegin(); for (; tile_it != tiling.rend(); ++index_it, ++shape_it, ++tile_it) { offset += (*index_it / *tile_it) * stride; stride *= CeilOfRatio(*shape_it, *tile_it); } for (; shape_it != shape.rend(); ++index_it, ++shape_it) { offset += *index_it * stride; stride *= *shape_it; } return offset; } template <typename T> std::vector<T> TileArray(const Array<T>& in, absl::Span<int64_t const> tiling) { std::vector<T> out(SizeOfTiledArray(in.dimensions(), tiling), -1); if (in.num_elements() == 0) { return out; } std::vector<int64_t> indices(in.num_dimensions(), 0); do { int64_t i = IndexToLinearIndex(in.dimensions(), tiling, indices); out.at(i) = in(indices); } while (BumpIndices(in.dimensions(), absl::MakeSpan(indices))); return out; } template <typename T, int NDIMS> void TransposeUsingEigenNd(const T* input, T* output, absl::Span<int64_t const> dims, absl::Span<int64_t const> dims_out, absl::Span<int64_t const> permutation) { typedef Eigen::TensorMap< Eigen::Tensor<T, NDIMS, Eigen::RowMajor, Eigen::DenseIndex>, Eigen::Aligned> Tensor; typedef Eigen::TensorMap< Eigen::Tensor<const T, NDIMS, Eigen::RowMajor, Eigen::DenseIndex>, Eigen::Aligned> ConstTensor; Eigen::array<int, NDIMS> p; Eigen::DSizes<Eigen::DenseIndex, NDIMS> dims_eigen; Eigen::DSizes<Eigen::DenseIndex, NDIMS> dims_out_eigen; for (int i = 0; i < NDIMS; ++i) { p[i] = permutation[i]; dims_eigen[i] = dims[i]; dims_out_eigen[i] = dims_out[i]; } auto x = ConstTensor(input, dims_eigen); auto y = Tensor(output, dims_out_eigen); y = x.shuffle(p); } template <typename T> void TransposeUsingEigen(const T* input, T* output, absl::Span<int64_t const> dims, absl::Span<int64_t const> dims_out, absl::Span<int64_t const> permutation) { switch (dims.size()) { case 0: return; case 1: TransposeUsingEigenNd<T, 1>(input, output, dims, dims_out, permutation); return; case 2: TransposeUsingEigenNd<T, 2>(input, output, dims, dims_out, permutation); return; case 3: TransposeUsingEigenNd<T, 3>(input, output, dims, dims_out, permutation); return; case 4: TransposeUsingEigenNd<T, 4>(input, output, dims, dims_out, permutation); return; default: LOG(FATAL) << "Unimplemented Eigen transpose rank"; } } struct TransposeTestCase { TransposeTestCase(std::vector<int64_t> dims, std::vector<int64_t> permutation, std::vector<int64_t> input_tiling = {}, std::vector<int64_t> output_tiling = {}) : dims(std::move(dims)), permutation(std::move(permutation)), input_tiling(std::move(input_tiling)), output_tiling(std::move(output_tiling)) {} std::vector<int64_t> dims; std::vector<int64_t> permutation; std::vector<int64_t> input_tiling; std::vector<int64_t> output_tiling; std::string ToString() const { return absl::StrFormat( "[%s],perm=[%s],tiling=[%s]/[%s]", absl::StrJoin(dims, ","), absl::StrJoin(permutation, ","), absl::StrJoin(input_tiling, ","), absl::StrJoin(output_tiling, ",")); } }; std::ostream& operator<<(std::ostream& os, const TransposeTestCase& test) { os << test.ToString(); return os; } std::vector<TransposeTestCase> GetTransposeTestCases() { std::vector<TransposeTestCase> cases = { TransposeTestCase({1}, {0}), TransposeTestCase({4}, {0}), TransposeTestCase({27}, {0}), TransposeTestCase({1, 1}, {0, 1}), TransposeTestCase({1, 1}, {1, 0}), TransposeTestCase({2, 2}, {0, 1}), TransposeTestCase({4, 4}, {1, 0}), TransposeTestCase({4, 4}, {0, 1}), TransposeTestCase({4, 4}, {1, 0}), TransposeTestCase({8, 8}, {0, 1}), TransposeTestCase({8, 8}, {1, 0}), TransposeTestCase({16, 16}, {0, 1}), TransposeTestCase({16, 16}, {1, 0}), TransposeTestCase({11, 15}, {0, 1}), TransposeTestCase({11, 15}, {1, 0}), TransposeTestCase({11, 15, 13}, {0, 1, 2}), TransposeTestCase({11, 15, 13}, {0, 2, 1}), TransposeTestCase({11, 15, 13}, {1, 2, 0}), TransposeTestCase({11, 15, 13}, {1, 0, 2}), TransposeTestCase({11, 15, 13}, {2, 0, 1}), TransposeTestCase({64, 64, 64}, {2, 1, 0}), TransposeTestCase({256, 256, 256}, {2, 1, 0}), TransposeTestCase({4, 8, 16, 32}, {3, 1, 0, 2}), TransposeTestCase({64, 224, 224, 3}, {3, 1, 2, 0}), TransposeTestCase({3}, {0}, {3}), TransposeTestCase({3}, {0}, {}, {3}), TransposeTestCase({2, 4, 6}, {0, 1, 2}, {}, {2, 3}), TransposeTestCase({4}, {0}, {3}), TransposeTestCase({5}, {0}, {}, {3}), TransposeTestCase({8}, {0}, {}, {3}), TransposeTestCase({8}, {0}, {3}, {}), TransposeTestCase({29}, {0}, {}, {3}), TransposeTestCase({12, 7}, {1, 0}, {4}), TransposeTestCase({12, 7}, {1, 0}, {}, {5}), TransposeTestCase({12, 7}, {1, 0}, {2, 4}), TransposeTestCase({12, 7}, {1, 0}, {}, {5, 2}), TransposeTestCase({128, 224, 224, 3}, {3, 1, 2, 0}, {}, {8, 128}), }; return cases; } class TransposeTest : public ::testing::TestWithParam<TransposeTestCase> { protected: template <typename T> void TestTranspose(int parallelism) { const TransposeTestCase test = GetParam(); tsl::thread::ThreadPool threadpool(tsl::Env::Default(), "Transpose", parallelism); std::vector<int64_t> output_dims = Permute(test.dims, test.permutation); TransposePlan::Options options; options.elem_size_in_bytes = sizeof(T); options.dims = test.dims; options.permutation = test.permutation; options.input_layout = TransposePlan::Tiling{test.input_tiling}; options.output_tiling = TransposePlan::Tiling{test.output_tiling}; options.transformation = TransposePlan::Transformation::kNone; options.num_threads = parallelism; TF_ASSERT_OK_AND_ASSIGN(auto plan, TransposePlan::Create(options)); VLOG(1) << plan->ToString(); xla::Array<T> untiled_input(test.dims); untiled_input.FillIota(0); xla::Array<T> expected_untiled_output(output_dims); TransposeUsingEigen(untiled_input.data(), expected_untiled_output.data(), test.dims, output_dims, test.permutation); auto tiled_input = TileArray(untiled_input, test.input_tiling); auto expected_tiled_output = TileArray(expected_untiled_output, test.output_tiling); std::vector<T> output( SizeOfTiledArray(plan->OutputDims(), test.output_tiling), -1); plan->Execute( tiled_input.data(), output.data(), [&](std::function<void()> fn) { threadpool.Schedule(std::move(fn)); }); EXPECT_EQ(expected_tiled_output, output); } }; TEST_P(TransposeTest, TransposeInt8) { TestTranspose<int8_t>(1); } TEST_P(TransposeTest, TransposeInt16) { TestTranspose<int16_t>(1); } TEST_P(TransposeTest, TransposeInt32) { TestTranspose<int32_t>(1); } TEST_P(TransposeTest, TransposeInt64) { TestTranspose<int64_t>(1); } TEST_P(TransposeTest, TransposeInt128) { TestTranspose<absl::int128>(1); } TEST_P(TransposeTest, ParallelTransposeInt8) { TestTranspose<int8_t>(16); } TEST_P(TransposeTest, ParallelTransposeInt32) { TestTranspose<int32_t>(16); } INSTANTIATE_TEST_SUITE_P(TransposeTestInstance, TransposeTest, ::testing::ValuesIn(GetTransposeTestCases())); TEST(TransposeTest, NegativeStrides1D) { int64_t n = 10; std::vector<int32_t> input(n); std::vector<int32_t> output(n); std::vector<int32_t> expected(n); absl::c_iota(input, int32_t{7}); std::iota(expected.rbegin(), expected.rend(), 7); std::vector<int64_t> dims = {n}; std::vector<int64_t> permutation = {0}; TransposePlan::Options options; options.elem_size_in_bytes = sizeof(int32_t); options.dims = dims; options.permutation = permutation; std::vector<int64_t> strides = {-int64_t{sizeof(int32_t)}}; options.input_layout = TransposePlan::Striding{strides}; TF_ASSERT_OK_AND_ASSIGN(auto plan, TransposePlan::Create(options)); plan->Execute(input.data() + (n - 1), output.data()); EXPECT_EQ(expected, output); } TEST(TransposeTest, NegativeStrides2D) { xla::Array<int16_t> input = { {1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, }; xla::Array<int16_t> expected = { {4, 8, 12}, {3, 7, 11}, {2, 6, 10}, {1, 5, 9}, }; xla::Array<int16_t> output({4, 3}); std::vector<int64_t> dims = {3, 4}; std::vector<int64_t> permutation = {1, 0}; TransposePlan::Options options; options.elem_size_in_bytes = sizeof(int16_t); options.dims = dims; options.permutation = permutation; std::vector<int64_t> strides = {4 * sizeof(int16_t), -int64_t{sizeof(int16_t)}}; options.input_layout = TransposePlan::Striding{strides}; TF_ASSERT_OK_AND_ASSIGN(auto plan, TransposePlan::Create(options)); plan->Execute(input.data() + 3, output.data()); EXPECT_EQ(expected, output); } static std::vector<TransposeTestCase> BenchmarkCases() { return std::vector<TransposeTestCase>{ TransposeTestCase({256, 256}, {1, 0}), TransposeTestCase({512, 512}, {1, 0}), TransposeTestCase({1024, 1024}, {1, 0}), TransposeTestCase({256, 256, 256}, {0, 2, 1}), TransposeTestCase({256, 256, 256}, {1, 0, 2}), TransposeTestCase({256, 256, 256}, {1, 2, 0}), TransposeTestCase({256, 256, 256}, {2, 0, 1}), TransposeTestCase({256, 256, 256}, {2, 1, 0}), TransposeTestCase({512, 512, 512}, {0, 2, 1}), TransposeTestCase({512, 512, 512}, {1, 0, 2}), TransposeTestCase({512, 512, 512}, {1, 2, 0}), TransposeTestCase({512, 512, 512}, {2, 0, 1}), TransposeTestCase({512, 512, 512}, {2, 1, 0}), TransposeTestCase({64, 224, 224, 3}, {1, 2, 3, 0}), TransposeTestCase({256, 64, 64, 3}, {1, 3, 2, 0}), }; } template <typename T> void BM_Eigen(const TransposeTestCase& bm, int parallelism, ::testing::benchmark::State& state) { CHECK_EQ(parallelism, 1); Array<T> input(bm.dims); input.FillIota(0); std::vector<int64_t> output_dims = Permute(bm.dims, bm.permutation); Array<T> output(output_dims); for (auto s : state) { TransposeUsingEigen(input.data(), output.data(), bm.dims, output_dims, bm.permutation); tsl::testing::DoNotOptimize(output); } } static void BM_Eigen_uint8(const TransposeTestCase& bm, int parallelism, ::testing::benchmark::State& state) { BM_Eigen<uint8_t>(std::move(bm), parallelism, state); } static void BM_Eigen_float(const TransposeTestCase& bm, int parallelism, ::testing::benchmark::State& state) { BM_Eigen<float>(bm, parallelism, state); } template <typename T> void BM_Transpose(const TransposeTestCase& bm, int parallelism, ::testing::benchmark::State& state) { TransposePlan::Options options; options.elem_size_in_bytes = sizeof(T); options.dims = bm.dims; options.permutation = bm.permutation; options.input_layout = TransposePlan::Tiling{}; options.output_tiling = TransposePlan::Tiling{}; options.transformation = TransposePlan::Transformation::kNone; options.num_threads = parallelism; TF_ASSERT_OK_AND_ASSIGN(auto plan, TransposePlan::Create(options)); Array<T> input(bm.dims); input.FillIota(0); std::vector<int64_t> output_dims = Permute(bm.dims, bm.permutation); Array<T> output(output_dims); tsl::thread::ThreadPool threadpool(tsl::Env::Default(), "Transpose", parallelism); for (auto s : state) { plan->Execute(input.data(), output.data(), [&](std::function<void()> fn) { threadpool.Schedule(std::move(fn)); }); tsl::testing::DoNotOptimize(output); } } static void BM_Transpose_uint8(const TransposeTestCase& bm, int parallelism, ::testing::benchmark::State& state) { BM_Transpose<uint8_t>(bm, parallelism, state); } static void BM_Transpose_float(const TransposeTestCase& bm, int parallelism, ::testing::benchmark::State& state) { BM_Transpose<float>(bm, parallelism, state); } static void* benchmarks = []() { using BenchmarkFn = void (*)(const TransposeTestCase&, int, testing::benchmark::State&); std::vector<std::tuple<std::string, BenchmarkFn, std::vector<int>>> variants = { {"BM_Eigen_uint8", BM_Eigen_uint8, {1}}, {"BM_Transpose_uint8", BM_Transpose_uint8, {1, 4, 8}}, {"BM_Eigen_float", BM_Eigen_float, {1}}, {"BM_Transpose_float", BM_Transpose_float, {1, 4, 8}}, }; auto benchmark_cases = BenchmarkCases(); for (const auto& benchmark_case : benchmark_cases) { for (const auto& variant : variants) { for (int num_threads : std::get<2>(variant)) { std::string name = absl::StrCat(std::get<0>(variant), "_threads_", num_threads, "_", absl::StrJoin(benchmark_case.dims, "_"), "_perm_", absl::StrJoin(benchmark_case.permutation, "_")); TransposeTestCase testcase = benchmark_case; BenchmarkFn fn = std::get<1>(variant); benchmark::RegisterBenchmark( name.c_str(), [fn, num_threads, testcase](benchmark::State& state) { fn(testcase, num_threads, state); }); } } } return nullptr; }(); TEST(TransposePlanCache, Basics) { std::vector<int64_t> dims = {1, 2, 3}; std::vector<int64_t> permutation_210 = {2, 1, 0}; std::vector<int64_t> permutation_120 = {1, 2, 0}; std::vector<int64_t> permutation_012 = {0, 1, 2}; TransposePlanCache cache(2); TransposePlan::Options o; o.elem_size_in_bytes = 4; o.dims = dims; o.permutation = permutation_210; TF_ASSERT_OK_AND_ASSIGN(auto p1, cache.GetOrCreate(o)); TF_ASSERT_OK_AND_ASSIGN(auto p1a, cache.GetOrCreate(o)); EXPECT_TRUE(p1.get() == p1a.get()); TransposePlan::Options o2; o2.elem_size_in_bytes = 4; o2.dims = dims; o2.permutation = permutation_120; TF_ASSERT_OK_AND_ASSIGN(auto p2, cache.GetOrCreate(o2)); EXPECT_TRUE(p1.get() != p2.get()); TransposePlan::Options o3; o3.elem_size_in_bytes = 4; o3.dims = dims; o3.permutation = permutation_012; TF_ASSERT_OK_AND_ASSIGN(auto p3, cache.GetOrCreate(o3)); EXPECT_TRUE(p3.get() != p1.get()); TF_ASSERT_OK_AND_ASSIGN(auto p1b, cache.GetOrCreate(o)); EXPECT_TRUE(p1.get() != p1b.get()); } }
878
cpp
tensorflow/tensorflow
svdf
tensorflow/lite/kernels/svdf.cc
tensorflow/lite/kernels/svdf_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_SVDF_H_ #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_SVDF_H_ #include <stdint.h> #include <algorithm> #include <limits> #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/common.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/internal/tensor_utils.h" #include "tensorflow/lite/kernels/internal/types.h" namespace tflite { namespace reference_ops { static inline void ApplyTimeWeightsBiasAndActivation( int batch_size, int memory_size, int num_filters, int num_units, int rank, const float* const __restrict__ weights_time_data, const float* const __restrict__ bias_ptr, TfLiteFusedActivation activation, float* const __restrict__ state_ptr, float* const __restrict__ scratch_ptr, float* const __restrict__ output_ptr) { for (int b = 0; b < batch_size; ++b) { float* state_ptr_batch = state_ptr + b * memory_size * num_filters; float* scratch_ptr_batch = scratch_ptr + b * num_filters; tensor_utils::BatchVectorBatchVectorDotProduct( weights_time_data, state_ptr_batch, memory_size, num_filters, scratch_ptr_batch); } tensor_utils::ReductionSumVector(scratch_ptr, output_ptr, batch_size * num_units, rank); if (bias_ptr) { tensor_utils::VectorBatchVectorAdd(bias_ptr, num_units, batch_size, output_ptr); } tensor_utils::ApplyActivationToVector(output_ptr, batch_size * num_units, activation, output_ptr); } inline void EvalIntegerSVDF( const TfLiteSVDFParams* params, const RuntimeShape& input_shape, const int8_t* input_data, const RuntimeShape& weights_feature_shape, const int8_t* weights_feature_data, const RuntimeShape& weights_time_shape, const int16_t* weights_time_data, const RuntimeShape& bias_shape, const int32_t* bias_data, int16_t* state_data, const RuntimeShape& output_shape, int8_t* output_data, int32_t* scratch_data, int32_t* output_temp_data, int32_t scale_1_a, int scale_1_b, int32_t scale_2_a, int scale_2_b, int32_t input_zp, int32_t output_zp) { const int n_rank = params->rank; const int n_batch = input_shape.Dims(0); const int n_input = input_shape.Dims(1); const int n_filter = weights_feature_shape.Dims(0); const int n_unit = n_filter / n_rank; const int n_memory = weights_time_shape.Dims(1); std::copy(state_data + 1, state_data + n_batch * n_memory * n_filter, state_data); { const int32_t output_max = std::numeric_limits<int16_t>::max(); const int32_t output_min = std::numeric_limits<int16_t>::min(); int16_t* result_in_batch = state_data + (n_memory - 1); for (int b = 0; b < n_batch; b++) { const int8_t* matrix_data = weights_feature_data; for (int r = 0; r < n_filter; r++) { int32_t dot_prod = 0; const int8_t* vector_in_batch = input_data + b * n_input; for (int c = 0; c < n_input; c++) { dot_prod += *matrix_data++ * (*vector_in_batch++ - input_zp); } dot_prod = MultiplyByQuantizedMultiplier(dot_prod, scale_1_a, scale_1_b); dot_prod = std::min(std::max(output_min, dot_prod), output_max); *result_in_batch = dot_prod; result_in_batch += n_memory; } } } { for (int b = 0; b < n_batch; ++b) { const int16_t* state_data_batch = state_data + b * n_memory * n_filter; int32_t* scratch_data_batch = scratch_data + b * n_filter; tensor_utils::BatchVectorBatchVectorDotProduct( weights_time_data, state_data_batch, n_memory, n_filter, scratch_data_batch); } } { tensor_utils::ReductionSumVector(scratch_data, output_temp_data, n_batch * n_unit, n_rank); if (bias_data) { tensor_utils::VectorBatchVectorAdd(bias_data, n_unit, n_batch, output_temp_data); } const int32_t output_max = std::numeric_limits<int8_t>::max(); const int32_t output_min = std::numeric_limits<int8_t>::min(); for (int i = 0; i < n_batch * n_unit; ++i) { int32_t x1 = output_temp_data[i]; int32_t x2 = MultiplyByQuantizedMultiplier(x1, scale_2_a, scale_2_b); int32_t x3 = x2 + output_zp; int32_t x4 = std::min(std::max(output_min, x3), output_max); output_data[i] = static_cast<int8_t>(x4); } } } inline void EvalFloatSVDF( const TfLiteSVDFParams* params, const RuntimeShape& input_shape, const float* input_data, const RuntimeShape& weights_feature_shape, const float* weights_feature_data, const RuntimeShape& weights_time_shape, const float* weights_time_data, const RuntimeShape& bias_shape, const float* bias_data, float* scratch_data, float* state_data, const RuntimeShape& output_shape, float* output_data) { const int rank = params->rank; const int batch_size = input_shape.Dims(0); const int input_size = input_shape.Dims(1); const int num_filters = weights_feature_shape.Dims(0); const int num_units = num_filters / rank; const int memory_size = weights_time_shape.Dims(1); std::copy(state_data + 1, state_data + batch_size * memory_size * num_filters, state_data); std::fill_n(scratch_data, batch_size * num_filters, 0.0f); tensor_utils::MatrixBatchVectorMultiplyAccumulate( weights_feature_data, num_filters, input_size, input_data, batch_size, scratch_data); for (int i = 0; i < batch_size * num_filters; ++i) { state_data[i * memory_size + memory_size - 1] = scratch_data[i]; } ApplyTimeWeightsBiasAndActivation( batch_size, memory_size, num_filters, num_units, rank, weights_time_data, bias_data, params->activation, state_data, scratch_data, output_data); } inline void EvalHybridSVDF( const TfLiteSVDFParams* params, const RuntimeShape& input_shape, const float* input_data, const RuntimeShape& weights_feature_shape, const int8_t* weights_feature_data, const float weights_feature_scale, const RuntimeShape& weights_time_shape, const float* weights_time_data, const RuntimeShape& bias_shape, const float* bias_data, float* scratch, float* scaling_factors, int8_t* quantized_input, float* state, const RuntimeShape& output_shape, float* output_data, int32_t* zero_points, int32_t* row_sums, bool* compute_row_sums) { const int rank = params->rank; const int batch_size = input_shape.Dims(0); const int input_size = input_shape.Dims(1); const int num_filters = weights_feature_shape.Dims(0); const int num_units = num_filters / rank; const int memory_size = weights_time_shape.Dims(1); std::copy(state + 1, state + batch_size * memory_size * num_filters, state); std::fill_n(scratch, batch_size * num_filters, 0.0f); if (!tensor_utils::IsZeroVector(input_data, batch_size * input_size)) { tensor_utils::BatchQuantizeFloats( input_data, batch_size, input_size, quantized_input, scaling_factors, zero_points, params->asymmetric_quantize_inputs); for (int b = 0; b < batch_size; ++b) { scaling_factors[b] *= weights_feature_scale; } tensor_utils::MatrixBatchVectorMultiplyAccumulate( weights_feature_data, num_filters, input_size, quantized_input, scaling_factors, batch_size, scratch, nullptr, zero_points, reinterpret_cast<int32_t*>(scratch), row_sums, compute_row_sums, nullptr); } for (int i = 0; i < batch_size * num_filters; ++i) { state[i * memory_size + memory_size - 1] = scratch[i]; } ApplyTimeWeightsBiasAndActivation( batch_size, memory_size, num_filters, num_units, rank, weights_time_data, bias_data, params->activation, state, scratch, output_data); } } } #endif #include "tensorflow/lite/kernels/internal/reference/svdf.h" #include <cstddef> #include <cstdint> #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/kernels/internal/quantization_util.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/internal/tensor_utils.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace builtin { namespace svdf { namespace { struct OpData { int scratch_tensor_index; bool float_weights_time_initialized; int32 effective_scale_1_a; int effective_scale_1_b; int32 effective_scale_2_a; int effective_scale_2_b; bool compute_row_sums = false; }; } constexpr int kInputTensor = 0; constexpr int kWeightsFeatureTensor = 1; constexpr int kWeightsTimeTensor = 2; constexpr int kBiasTensor = 3; constexpr int kStateTensor = 4; constexpr int kOutputTensor = 0; void* Init(TfLiteContext* context, const char* buffer, size_t length) { auto* op_data = new OpData(); op_data->float_weights_time_initialized = false; context->AddTensors(context, 6, &op_data->scratch_tensor_index); return op_data; } void Free(TfLiteContext* context, void* buffer) { delete reinterpret_cast<OpData*>(buffer); } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { const auto* params = reinterpret_cast<TfLiteSVDFParams*>(node->builtin_data); OpData* op_data = reinterpret_cast<OpData*>(node->user_data); int scratch_tensor_index = op_data->scratch_tensor_index; TF_LITE_ENSURE_EQ(context, node->outputs->size, 1); TF_LITE_ENSURE_EQ(context, node->inputs->size, 5); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input)); const TfLiteTensor* weights_feature; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kWeightsFeatureTensor, &weights_feature)); const TfLiteTensor* weights_time; TF_LITE_ENSURE_OK( context, GetInputSafe(context, node, kWeightsTimeTensor, &weights_time)); TF_LITE_ENSURE(context, input->type == kTfLiteFloat32 || input->type == kTfLiteInt8); const int rank = params->rank; const int batch_size = input->dims->data[0]; const int num_filters = weights_feature->dims->data[0]; TF_LITE_ENSURE(context, rank != 0); TF_LITE_ENSURE_EQ(context, num_filters % rank, 0); const int num_units = num_filters / rank; const int memory_size = weights_time->dims->data[1]; TF_LITE_ENSURE_EQ(context, input->dims->data[1], weights_feature->dims->data[1]); TF_LITE_ENSURE_EQ(context, weights_time->dims->data[0], num_filters); const TfLiteTensor* bias = GetOptionalInputTensor(context, node, kBiasTensor); if (bias) { TF_LITE_ENSURE_EQ(context, bias->dims->data[0], num_units); } const TfLiteTensor* state; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kStateTensor, &state)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); TF_LITE_ENSURE_EQ(context, NumDimensions(state), 2); TF_LITE_ENSURE_EQ(context, SizeOfDimension(state, 0), batch_size); TF_LITE_ENSURE_EQ(context, SizeOfDimension(state, 1), memory_size * num_filters); TfLiteIntArray* output_size_array = TfLiteIntArrayCreate(2); output_size_array->data[0] = batch_size; output_size_array->data[1] = num_units; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, output, output_size_array)); const bool is_hybrid_op = IsHybridOp(input, weights_feature); const bool is_full_integer = input->type == kTfLiteInt8; TfLiteIntArrayFree(node->temporaries); if (is_hybrid_op) { node->temporaries = TfLiteIntArrayCreate(6); } else if (is_full_integer) { node->temporaries = TfLiteIntArrayCreate(2); } else { node->temporaries = TfLiteIntArrayCreate(1); } node->temporaries->data[0] = scratch_tensor_index; TfLiteIntArray* scratch_size_array = TfLiteIntArrayCreate(2); scratch_size_array->data[0] = batch_size; scratch_size_array->data[1] = num_filters; TfLiteTensor* scratch_tensor; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, 0, &scratch_tensor)); if (is_full_integer) { scratch_tensor->type = kTfLiteInt32; } else { scratch_tensor->type = kTfLiteFloat32; } scratch_tensor->allocation_type = kTfLiteArenaRw; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, scratch_tensor, scratch_size_array)); if (is_hybrid_op) { op_data->compute_row_sums = true; node->temporaries->data[1] = scratch_tensor_index + 1; TfLiteTensor* input_quantized; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, 1, &input_quantized)); input_quantized->type = weights_feature->type; input_quantized->allocation_type = kTfLiteArenaRw; if (!TfLiteIntArrayEqual(input_quantized->dims, input->dims)) { TfLiteIntArray* input_quantized_size = TfLiteIntArrayCopy(input->dims); TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, input_quantized, input_quantized_size)); } node->temporaries->data[2] = scratch_tensor_index + 2; TfLiteTensor* scaling_factors; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, 2, &scaling_factors)); scaling_factors->type = kTfLiteFloat32; scaling_factors->allocation_type = kTfLiteArenaRw; int scaling_dims[1] = {batch_size}; if (!TfLiteIntArrayEqualsArray(scaling_factors->dims, 1, scaling_dims)) { TfLiteIntArray* scaling_factors_size = TfLiteIntArrayCreate(1); scaling_factors_size->data[0] = batch_size; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, scaling_factors, scaling_factors_size)); } node->temporaries->data[3] = scratch_tensor_index + 3; TfLiteTensor* float_weights_time; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, 3, &float_weights_time)); float_weights_time->type = kTfLiteFloat32; float_weights_time->name = "Svdf_float_weights_time"; float_weights_time->allocation_type = kTfLiteArenaRwPersistent; if (!TfLiteIntArrayEqual(float_weights_time->dims, weights_time->dims)) { TfLiteIntArray* float_weights_time_size = TfLiteIntArrayCopy(weights_time->dims); TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, float_weights_time, float_weights_time_size)); } node->temporaries->data[4] = scratch_tensor_index + 4; TfLiteTensor* zero_points; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, 4, &zero_points)); zero_points->type = kTfLiteFloat32; zero_points->allocation_type = kTfLiteArenaRw; int zero_points_dims[1] = {batch_size}; if (!TfLiteIntArrayEqualsArray(zero_points->dims, 1, zero_points_dims)) { TfLiteIntArray* zero_points_size = TfLiteIntArrayCreate(1); zero_points_size->data[0] = zero_points_dims[0]; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, zero_points, zero_points_size)); } node->temporaries->data[5] = scratch_tensor_index + 5; TfLiteTensor* row_sums; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, 5, &row_sums)); row_sums->type = kTfLiteFloat32; float_weights_time->name = "Svdf_row_sums"; row_sums->allocation_type = kTfLiteArenaRwPersistent; int row_sums_dims[1] = {num_filters}; if (!TfLiteIntArrayEqualsArray(row_sums->dims, 1, row_sums_dims)) { TfLiteIntArray* row_sums_size = TfLiteIntArrayCreate(1); row_sums_size->data[0] = row_sums_dims[0]; TF_LITE_ENSURE_OK( context, context->ResizeTensor(context, row_sums, row_sums_size)); } } if (is_full_integer) { TfLiteIntArray* output_temp_size_array = TfLiteIntArrayCreate(2); output_temp_size_array->data[0] = num_units; output_temp_size_array->data[1] = batch_size; node->temporaries->data[1] = scratch_tensor_index + 1; TfLiteTensor* output_temp; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, 1, &output_temp)); output_temp->type = kTfLiteInt32; output_temp->allocation_type = kTfLiteArenaRw; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, output_temp, output_temp_size_array)); TF_LITE_ENSURE(context, input->quantization.type != kTfLiteNoQuantization); auto* input_params = reinterpret_cast<TfLiteAffineQuantization*>(input->quantization.params); TF_LITE_ENSURE(context, weights_feature->quantization.type != kTfLiteNoQuantization); auto* weights_feature_params = reinterpret_cast<TfLiteAffineQuantization*>( weights_feature->quantization.params); TF_LITE_ENSURE(context, state->quantization.type != kTfLiteNoQuantization); auto* state_params = reinterpret_cast<TfLiteAffineQuantization*>(state->quantization.params); TF_LITE_ENSURE(context, weights_time->quantization.type != kTfLiteNoQuantization); auto* weight_time_params = reinterpret_cast<TfLiteAffineQuantization*>( weights_time->quantization.params); TF_LITE_ENSURE(context, output->quantization.type != kTfLiteNoQuantization); auto* output_params = reinterpret_cast<TfLiteAffineQuantization*>( output->quantization.params); const double effective_scale_1 = input_params->scale->data[0] * weights_feature_params->scale->data[0] / state_params->scale->data[0]; const double effective_scale_2 = state_params->scale->data[0] * weight_time_params->scale->data[0] / output_params->scale->data[0]; QuantizeMultiplier(effective_scale_1, &op_data->effective_scale_1_a, &op_data->effective_scale_1_b); QuantizeMultiplier(effective_scale_2, &op_data->effective_scale_2_a, &op_data->effective_scale_2_b); } return kTfLiteOk; } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { auto* params = reinterpret_cast<TfLiteSVDFParams*>(node->builtin_data); OpData* op_data = reinterpret_cast<OpData*>(node->user_data); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input)); const TfLiteTensor* weights_feature; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kWeightsFeatureTensor, &weights_feature)); const TfLiteTensor* weights_time; TF_LITE_ENSURE_OK( context, GetInputSafe(context, node, kWeightsTimeTensor, &weights_time)); const TfLiteTensor* bias = GetOptionalInputTensor(context, node, kBiasTensor); TfLiteTensor* scratch; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, 0, &scratch)); TfLiteTensor* state = GetVariableInput(context, node, kStateTensor); TF_LITE_ENSURE(context, state != nullptr); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); switch (weights_feature->type) { case kTfLiteFloat32: { reference_ops::EvalFloatSVDF( params, GetTensorShape(input), GetTensorData<float>(input), GetTensorShape(weights_feature), GetTensorData<float>(weights_feature), GetTensorShape(weights_time), GetTensorData<float>(weights_time), GetTensorShape(bias), GetTensorData<float>(bias), GetTensorData<float>(scratch), GetTensorData<float>(state), GetTensorShape(output), GetTensorData<float>(output)); return kTfLiteOk; } case kTfLiteUInt8: case kTfLiteInt8: { if (input->type == kTfLiteFloat32) { TfLiteTensor* input_quantized; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, 1, &input_quantized)); TfLiteTensor* scaling_factors; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, 2, &scaling_factors)); TfLiteTensor* float_weights_time; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, 3, &float_weights_time)); TfLiteTensor* zero_points; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, 4, &zero_points)); TfLiteTensor* row_sums; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, 5, &row_sums)); if (!op_data->float_weights_time_initialized) { const float dequantization_scale = weights_time->params.scale; const int8_t* weights_time_ptr = GetTensorData<int8_t>(weights_time); float* float_weights_time_ptr = GetTensorData<float>(float_weights_time); for (int i = 0; i < NumElements(float_weights_time); ++i) { float_weights_time_ptr[i] = weights_time_ptr[i] * dequantization_scale; } op_data->float_weights_time_initialized = true; } int32_t* zero_points_ptr = nullptr; int32_t* row_sums_ptr = nullptr; if (params->asymmetric_quantize_inputs && row_sums != nullptr) { zero_points_ptr = GetTensorData<int32_t>(zero_points); row_sums_ptr = GetTensorData<int32_t>(row_sums); } reference_ops::EvalHybridSVDF( params, GetTensorShape(input), GetTensorData<float>(input), GetTensorShape(weights_feature), GetTensorData<int8_t>(weights_feature), weights_feature->params.scale, GetTensorShape(float_weights_time), GetTensorData<float>(float_weights_time), GetTensorShape(bias), GetTensorData<float>(bias), GetTensorData<float>(scratch), GetTensorData<float>(scaling_factors), GetTensorData<int8_t>(input_quantized), GetTensorData<float>(state), GetTensorShape(output), GetTensorData<float>(output), zero_points_ptr, row_sums_ptr, &op_data->compute_row_sums); return kTfLiteOk; } auto* input_params = reinterpret_cast<TfLiteAffineQuantization*>( input->quantization.params); auto* output_params = reinterpret_cast<TfLiteAffineQuantization*>( output->quantization.params); TfLiteTensor* output_temp; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, 1, &output_temp)); TF_LITE_ENSURE_EQ(context, params->activation, kTfLiteActRelu); reference_ops::EvalIntegerSVDF( params, GetTensorShape(input), GetTensorData<int8_t>(input), GetTensorShape(weights_feature), GetTensorData<int8_t>(weights_feature), GetTensorShape(weights_time), GetTensorData<int16_t>(weights_time), GetTensorShape(bias), GetTensorData<int32_t>(bias), GetTensorData<int16_t>(state), GetTensorShape(output), GetTensorData<int8_t>(output), GetTensorData<int32_t>(scratch), GetTensorData<int32_t>(output_temp), op_data->effective_scale_1_a, op_data->effective_scale_1_b, op_data->effective_scale_2_a, op_data->effective_scale_2_b, input_params->zero_point->data[0], output_params->zero_point->data[0]); return kTfLiteOk; } default: TF_LITE_KERNEL_LOG(context, "Type %s not currently supported.", TfLiteTypeGetName(weights_feature->type)); return kTfLiteError; } } } TfLiteRegistration* Register_SVDF() { static TfLiteRegistration r = {svdf::Init, svdf::Free, svdf::Prepare, svdf::Eval}; return &r; } } } }
#include <stdint.h> #include <initializer_list> #include <vector> #include <gtest/gtest.h> #include "flatbuffers/flatbuffers.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { using ::testing::ElementsAreArray; static float svdf_input[] = { 0.12609188, -0.46347019, -0.89598465, 0.35867718, 0.36897406, 0.73463392, 0.14278367, -1.64410412, -0.75222826, -0.57290924, 0.12729003, 0.7567004, 0.49837467, 0.19278903, 0.26584083, 0.17660543, 0.52949083, -0.77931279, -0.11186574, 0.13164264, -0.05349274, -0.72674477, -0.5683046, 0.55900657, -0.68892461, 0.37783599, 0.18263303, -0.63690937, 0.44483393, -0.71817774, -0.81299269, -0.86831826, 1.43940818, -0.95760226, 1.82078898, 0.71135032, -1.45006323, -0.82251364, -1.69082689, -1.65087092, -1.89238167, 1.54172635, 0.03966608, -0.24936394, -0.77526885, 2.06740379, -1.51439476, 1.43768692, 0.11771342, -0.23761693, -0.65898693, 0.31088525, -1.55601168, -0.87661445, -0.89477462, 1.67204106, -0.53235275, -0.6230064, 0.29819036, 1.06939757, }; static float svdf_golden_output_rank_1[] = { 0.014899, -0.0517661, -0.143725, -0.00271883, -0.03004015, 0.09565311, 0.1587342, 0.00784263, 0.068281, -0.162217, -0.152268, 0.00323521, 0.01582633, 0.03858774, -0.03001583, -0.02671271, -0.0317821, -0.0333089, 0.0609602, 0.0333759, -0.01432795, 0.05524484, 0.1101355, -0.02382665, -0.00623099, -0.077701, -0.391193, -0.0136691, -0.02333033, 0.02293761, 0.12338032, 0.04326871, 0.201551, -0.164607, -0.179462, -0.0592739, 0.01064911, -0.17503069, 0.07821996, -0.00224009, 0.0886511, -0.0875401, -0.269283, 0.0281379, -0.02282338, 0.09741908, 0.32973239, 0.12281385, -0.201174, -0.586145, -0.628624, -0.0330412, 0.24780814, -0.39304617, -0.22473189, 0.02589256, -0.0839096, -0.299329, 0.108746, 0.109808, 0.10084175, -0.06416984, 0.28936723, 0.0026358, 0.419114, -0.237824, -0.422627, 0.175115, -0.2314795, -0.18584411, -0.4228974, -0.12928449, 0.36726, -0.522303, -0.456502, -0.175475, 0.17012937, -0.34447709, 0.38505614, -0.28158101, }; static float svdf_golden_output_rank_2[] = { -0.09623547, -0.10193135, 0.11083051, -0.0347917, 0.1141196, 0.12965347, -0.12652366, 0.01007236, -0.16396809, -0.21247184, 0.11259045, -0.04156673, 0.10132131, -0.06143532, -0.00924693, 0.10084561, 0.01257364, 0.0506071, -0.19287863, -0.07162561, -0.02033747, 0.22673416, 0.15487903, 0.02525555, -0.1411963, -0.37054959, 0.01774767, 0.05867489, 0.09607603, -0.0141301, -0.08995658, 0.12867066, -0.27142537, -0.16955489, 0.18521598, -0.12528358, 0.00331409, 0.11167502, 0.02218599, -0.07309391, 0.09593632, -0.28361851, -0.0773851, 0.17199151, -0.00075242, 0.33691186, -0.1536046, 0.16572715, -0.27916506, -0.27626723, 0.42615682, 0.3225764, -0.37472126, -0.55655634, -0.05013514, 0.289112, -0.24418658, 0.07540751, -0.1940318, -0.08911639, 0.00732617, 0.46737891, 0.26449674, 0.24888524, -0.17225097, -0.54660404, -0.38795233, 0.08389944, 0.07736043, -0.28260678, 0.15666828, 1.14949894, -0.57454878, -0.64704704, 0.73235172, -0.34616736, 0.21120001, -0.22927976, 0.02455296, -0.35906726, }; class BaseSVDFOpModel : public SingleOpModel { public: BaseSVDFOpModel(int batches, int units, int input_size, int memory_size, int rank, TensorType weights_feature_type = TensorType_FLOAT32, TensorType weights_time_type = TensorType_FLOAT32, bool asymmetric_quantize_inputs = false) : batches_(batches), units_(units), input_size_(input_size), memory_size_(memory_size), rank_(rank) { input_ = AddInput(TensorType_FLOAT32); weights_feature_ = AddInput(weights_feature_type); weights_time_ = AddInput(weights_time_type); bias_ = AddNullInput(); const int num_filters = units * rank; activation_state_ = AddVariableInput( TensorData{TensorType_FLOAT32, {batches, memory_size * num_filters}}); output_ = AddOutput(TensorType_FLOAT32); SetBuiltinOp(BuiltinOperator_SVDF, BuiltinOptions_SVDFOptions, CreateSVDFOptions(builder_, rank, ActivationFunctionType_NONE, asymmetric_quantize_inputs) .Union()); BuildInterpreter({ {batches_, input_size_}, {units_ * rank, input_size_}, {units_ * rank, memory_size_}, {units_}, {batches, memory_size * num_filters} }); } void SetWeightsFeature(std::initializer_list<float> f) { PopulateTensor(weights_feature_, f); } void SetWeightsTime(std::initializer_list<float> f) { PopulateTensor(weights_time_, f); } void SetInput(int offset, float* begin, float* end) { PopulateTensor(input_, offset, begin, end); } std::vector<float> GetOutput() { return ExtractVector<float>(output_); } int input_size() { return input_size_; } int num_units() { return units_; } int num_batches() { return batches_; } protected: int input_; int weights_feature_; int weights_time_; int bias_; int activation_state_; int output_; int batches_; int units_; int input_size_; int memory_size_; int rank_; }; class SVDFOpModel : public BaseSVDFOpModel { public: using BaseSVDFOpModel::BaseSVDFOpModel; }; class HybridSVDFOpModel : public BaseSVDFOpModel { public: HybridSVDFOpModel(int batches, int units, int input_size, int memory_size, int rank, TensorType tensor_type, bool asymmetric_quantize_inputs) : BaseSVDFOpModel(batches, units, input_size, memory_size, rank, tensor_type, tensor_type, asymmetric_quantize_inputs) { tensor_type_ = tensor_type; } void SetWeights(int weights_idx, const std::vector<float>& f) { if (tensor_type_ == TensorType_UINT8) { SymmetricQuantizeAndPopulate(weights_idx, f); } else { SignedSymmetricQuantizeAndPopulate(weights_idx, f); } } void SetWeightsFeature(std::initializer_list<float> f) { SetWeights(weights_feature_, f); } void SetWeightsTime(std::initializer_list<float> f) { SetWeights(weights_time_, f); } protected: TensorType tensor_type_; }; class SVDFOpTest : public ::testing::TestWithParam<bool> { protected: void VerifyGoldens(float golden_input[], float golden_output[], int golden_size, BaseSVDFOpModel* svdf, float tolerance = 1e-5) { const int svdf_num_batches = svdf->num_batches(); const int svdf_input_size = svdf->input_size(); const int svdf_num_units = svdf->num_units(); const int input_sequence_size = golden_size / sizeof(float) / (svdf_input_size * svdf_num_batches); for (int i = 0; i < input_sequence_size; i++) { float* batch_start = golden_input + i * svdf_input_size * svdf_num_batches; float* batch_end = batch_start + svdf_input_size * svdf_num_batches; svdf->SetInput(0, batch_start, batch_end); ASSERT_EQ(svdf->Invoke(), kTfLiteOk); const float* golden_start = golden_output + i * svdf_num_units * svdf_num_batches; const float* golden_end = golden_start + svdf_num_units * svdf_num_batches; std::vector<float> expected; expected.insert(expected.end(), golden_start, golden_end); EXPECT_THAT(svdf->GetOutput(), ElementsAreArray(ArrayFloatNear(expected, tolerance))); } } }; INSTANTIATE_TEST_SUITE_P(SVDFOpTest, SVDFOpTest, ::testing::ValuesIn({false, true})); TEST_F(SVDFOpTest, BlackBoxTestRank1) { SVDFOpModel svdf(2, 4, 3, 10, 1); svdf.SetWeightsFeature({-0.31930989, -0.36118156, 0.0079667, 0.37613347, 0.22197971, 0.12416199, 0.27901134, 0.27557442, 0.3905206, -0.36137494, -0.06634006, -0.10640851}); svdf.SetWeightsTime( {-0.31930989, 0.37613347, 0.27901134, -0.36137494, -0.36118156, 0.22197971, 0.27557442, -0.06634006, 0.0079667, 0.12416199, 0.3905206, -0.10640851, -0.0976817, 0.15294972, 0.39635518, -0.02702999, 0.39296314, 0.15785322, 0.21931258, 0.31053296, -0.36916667, 0.38031587, -0.21580373, 0.27072677, 0.23622236, 0.34936687, 0.18174365, 0.35907319, -0.17493086, 0.324846, -0.10781813, 0.27201805, 0.14324132, -0.23681851, -0.27115166, -0.01580888, -0.14943552, 0.15465137, 0.09784451, -0.0337657}); VerifyGoldens(svdf_input, svdf_golden_output_rank_1, sizeof(svdf_input), &svdf); } TEST_F(SVDFOpTest, BlackBoxTestRank2) { SVDFOpModel svdf(2, 4, 3, 10, 2); svdf.SetWeightsFeature({-0.31930989, 0.0079667, 0.39296314, 0.37613347, 0.12416199, 0.15785322, 0.27901134, 0.3905206, 0.21931258, -0.36137494, -0.10640851, 0.31053296, -0.36118156, -0.0976817, -0.36916667, 0.22197971, 0.15294972, 0.38031587, 0.27557442, 0.39635518, -0.21580373, -0.06634006, -0.02702999, 0.27072677}); svdf.SetWeightsTime( {-0.31930989, 0.37613347, 0.27901134, -0.36137494, -0.36118156, 0.22197971, 0.27557442, -0.06634006, 0.0079667, 0.12416199, 0.3905206, -0.10640851, -0.0976817, 0.15294972, 0.39635518, -0.02702999, 0.39296314, 0.15785322, 0.21931258, 0.31053296, -0.36916667, 0.38031587, -0.21580373, 0.27072677, 0.23622236, 0.34936687, 0.18174365, 0.35907319, -0.17493086, 0.324846, -0.10781813, 0.27201805, 0.14324132, -0.23681851, -0.27115166, -0.01580888, -0.14943552, 0.15465137, 0.09784451, -0.0337657, -0.14884081, 0.19931212, -0.36002168, 0.34663299, -0.11405486, 0.12672701, 0.39463779, -0.07886535, -0.06384811, 0.08249187, -0.26816407, -0.19905911, 0.29211238, 0.31264046, -0.28664589, 0.05698794, 0.11613581, 0.14078894, 0.02187902, -0.21781836, -0.15567942, 0.08693647, -0.38256618, 0.36580828, -0.22922277, -0.0226903, 0.12878349, -0.28122205, -0.10850525, -0.11955214, 0.27179423, -0.04710215, 0.31069002, 0.22672787, 0.09580326, 0.08682203, 0.1258215, 0.1851041, 0.29228821, 0.12366763}); VerifyGoldens(svdf_input, svdf_golden_output_rank_2, sizeof(svdf_input), &svdf); } TEST_P(SVDFOpTest, BlackBoxTestHybridRank1Uint8) { HybridSVDFOpModel svdf(2, 4, 3, 10, 1, TensorType_UINT8, GetParam()); svdf.SetWeightsFeature({-0.31930989, -0.36118156, 0.0079667, 0.37613347, 0.22197971, 0.12416199, 0.27901134, 0.27557442, 0.3905206, -0.36137494, -0.06634006, -0.10640851}); svdf.SetWeightsTime( {-0.31930989, 0.37613347, 0.27901134, -0.36137494, -0.36118156, 0.22197971, 0.27557442, -0.06634006, 0.0079667, 0.12416199, 0.3905206, -0.10640851, -0.0976817, 0.15294972, 0.39635518, -0.02702999, 0.39296314, 0.15785322, 0.21931258, 0.31053296, -0.36916667, 0.38031587, -0.21580373, 0.27072677, 0.23622236, 0.34936687, 0.18174365, 0.35907319, -0.17493086, 0.324846, -0.10781813, 0.27201805, 0.14324132, -0.23681851, -0.27115166, -0.01580888, -0.14943552, 0.15465137, 0.09784451, -0.0337657}); VerifyGoldens(svdf_input, svdf_golden_output_rank_1, sizeof(svdf_input), &svdf, 0.004285); } TEST_P(SVDFOpTest, BlackBoxTestHybridRank2Uint8) { HybridSVDFOpModel svdf(2, 4, 3, 10, 2, TensorType_UINT8, GetParam()); svdf.SetWeightsFeature({-0.31930989, 0.0079667, 0.39296314, 0.37613347, 0.12416199, 0.15785322, 0.27901134, 0.3905206, 0.21931258, -0.36137494, -0.10640851, 0.31053296, -0.36118156, -0.0976817, -0.36916667, 0.22197971, 0.15294972, 0.38031587, 0.27557442, 0.39635518, -0.21580373, -0.06634006, -0.02702999, 0.27072677}); svdf.SetWeightsTime( {-0.31930989, 0.37613347, 0.27901134, -0.36137494, -0.36118156, 0.22197971, 0.27557442, -0.06634006, 0.0079667, 0.12416199, 0.3905206, -0.10640851, -0.0976817, 0.15294972, 0.39635518, -0.02702999, 0.39296314, 0.15785322, 0.21931258, 0.31053296, -0.36916667, 0.38031587, -0.21580373, 0.27072677, 0.23622236, 0.34936687, 0.18174365, 0.35907319, -0.17493086, 0.324846, -0.10781813, 0.27201805, 0.14324132, -0.23681851, -0.27115166, -0.01580888, -0.14943552, 0.15465137, 0.09784451, -0.0337657, -0.14884081, 0.19931212, -0.36002168, 0.34663299, -0.11405486, 0.12672701, 0.39463779, -0.07886535, -0.06384811, 0.08249187, -0.26816407, -0.19905911, 0.29211238, 0.31264046, -0.28664589, 0.05698794, 0.11613581, 0.14078894, 0.02187902, -0.21781836, -0.15567942, 0.08693647, -0.38256618, 0.36580828, -0.22922277, -0.0226903, 0.12878349, -0.28122205, -0.10850525, -0.11955214, 0.27179423, -0.04710215, 0.31069002, 0.22672787, 0.09580326, 0.08682203, 0.1258215, 0.1851041, 0.29228821, 0.12366763}); VerifyGoldens(svdf_input, svdf_golden_output_rank_2, sizeof(svdf_input), &svdf, 0.007175); } TEST_P(SVDFOpTest, BlackBoxTestHybridRank1Int8) { HybridSVDFOpModel svdf(2, 4, 3, 10, 1, TensorType_INT8, GetParam()); svdf.SetWeightsFeature({-0.31930989, -0.36118156, 0.0079667, 0.37613347, 0.22197971, 0.12416199, 0.27901134, 0.27557442, 0.3905206, -0.36137494, -0.06634006, -0.10640851}); svdf.SetWeightsTime( {-0.31930989, 0.37613347, 0.27901134, -0.36137494, -0.36118156, 0.22197971, 0.27557442, -0.06634006, 0.0079667, 0.12416199, 0.3905206, -0.10640851, -0.0976817, 0.15294972, 0.39635518, -0.02702999, 0.39296314, 0.15785322, 0.21931258, 0.31053296, -0.36916667, 0.38031587, -0.21580373, 0.27072677, 0.23622236, 0.34936687, 0.18174365, 0.35907319, -0.17493086, 0.324846, -0.10781813, 0.27201805, 0.14324132, -0.23681851, -0.27115166, -0.01580888, -0.14943552, 0.15465137, 0.09784451, -0.0337657}); VerifyGoldens(svdf_input, svdf_golden_output_rank_1, sizeof(svdf_input), &svdf, 0.004285); } TEST_P(SVDFOpTest, BlackBoxTestHybridRank2Int8) { HybridSVDFOpModel svdf(2, 4, 3, 10, 2, TensorType_INT8, GetParam()); svdf.SetWeightsFeature({-0.31930989, 0.0079667, 0.39296314, 0.37613347, 0.12416199, 0.15785322, 0.27901134, 0.3905206, 0.21931258, -0.36137494, -0.10640851, 0.31053296, -0.36118156, -0.0976817, -0.36916667, 0.22197971, 0.15294972, 0.38031587, 0.27557442, 0.39635518, -0.21580373, -0.06634006, -0.02702999, 0.27072677}); svdf.SetWeightsTime( {-0.31930989, 0.37613347, 0.27901134, -0.36137494, -0.36118156, 0.22197971, 0.27557442, -0.06634006, 0.0079667, 0.12416199, 0.3905206, -0.10640851, -0.0976817, 0.15294972, 0.39635518, -0.02702999, 0.39296314, 0.15785322, 0.21931258, 0.31053296, -0.36916667, 0.38031587, -0.21580373, 0.27072677, 0.23622236, 0.34936687, 0.18174365, 0.35907319, -0.17493086, 0.324846, -0.10781813, 0.27201805, 0.14324132, -0.23681851, -0.27115166, -0.01580888, -0.14943552, 0.15465137, 0.09784451, -0.0337657, -0.14884081, 0.19931212, -0.36002168, 0.34663299, -0.11405486, 0.12672701, 0.39463779, -0.07886535, -0.06384811, 0.08249187, -0.26816407, -0.19905911, 0.29211238, 0.31264046, -0.28664589, 0.05698794, 0.11613581, 0.14078894, 0.02187902, -0.21781836, -0.15567942, 0.08693647, -0.38256618, 0.36580828, -0.22922277, -0.0226903, 0.12878349, -0.28122205, -0.10850525, -0.11955214, 0.27179423, -0.04710215, 0.31069002, 0.22672787, 0.09580326, 0.08682203, 0.1258215, 0.1851041, 0.29228821, 0.12366763}); VerifyGoldens(svdf_input, svdf_golden_output_rank_2, sizeof(svdf_input), &svdf, 0.007175); } class IntegerSVDFOpModel : public SingleOpModel { public: IntegerSVDFOpModel(int batches, int units, int input_size, int memory_size, int rank) : batches_(batches), units_(units), input_size_(input_size), memory_size_(memory_size), rank_(rank) { const int num_filters = units * rank; input_ = AddInput({TensorType_INT8, {batches, input_size}, -1, 1}); weights_feature_ = AddInput({TensorType_INT8, {num_filters, input_size}, -0.5, 0.5}); weights_time_ = AddInput({TensorType_INT16, {num_filters, memory_size}, -1, 1}); bias_ = AddInput({TensorType_INT32, {units}, -512, 512}); activation_state_ = AddVariableInput( {TensorType_INT16, {batches, memory_size * num_filters}, -16, 16}); output_ = AddOutput({TensorType_INT8, {batches, units}, -0.5, 0.5}); SetBuiltinOp( BuiltinOperator_SVDF, BuiltinOptions_SVDFOptions, CreateSVDFOptions(builder_, rank, ActivationFunctionType_RELU).Union()); BuildInterpreter({ {batches, input_size}, {num_filters, input_size}, {num_filters, memory_size}, {units}, {batches, memory_size * num_filters} }); } void SetWeightsFeature(const std::vector<float>& f) { QuantizeAndPopulate<int8_t>(weights_feature_, f); } void SetWeightsTime(const std::vector<float>& f) { QuantizeAndPopulate<int16_t>(weights_time_, f); } void SetBias(const std::vector<float>& f) { QuantizeAndPopulate<int32_t>(bias_, f); } void SetInput(const std::vector<float>& f) { QuantizeAndPopulate<int8_t>(input_, f); } std::vector<int8_t> GetOutput() { return ExtractVector<int8_t>(output_); } protected: int input_; int weights_feature_; int weights_time_; int bias_; int activation_state_; int output_; int batches_; int units_; int input_size_; int memory_size_; int rank_; }; TEST_F(SVDFOpTest, BlackBoxTestInteger) { IntegerSVDFOpModel svdf(2, 4, 3, 10, 1); svdf.SetWeightsFeature({-0.31930989, -0.36118156, 0.0079667, 0.37613347, 0.22197971, 0.12416199, 0.27901134, 0.27557442, 0.3905206, -0.36137494, -0.06634006, -0.10640851}); svdf.SetWeightsTime( {-0.31930989, 0.37613347, 0.27901134, -0.36137494, -0.36118156, 0.22197971, 0.27557442, -0.06634006, 0.0079667, 0.12416199, 0.3905206, -0.10640851, -0.0976817, 0.15294972, 0.39635518, -0.02702999, 0.39296314, 0.15785322, 0.21931258, 0.31053296, -0.36916667, 0.38031587, -0.21580373, 0.27072677, 0.23622236, 0.34936687, 0.18174365, 0.35907319, -0.17493086, 0.324846, -0.10781813, 0.27201805, 0.14324132, -0.23681851, -0.27115166, -0.01580888, -0.14943552, 0.15465137, 0.09784451, -0.0337657}); svdf.SetBias({-0.0976817, 0.15294972, 0.39635518, -0.02702999}); const std::vector<std::vector<float>> input_sequences = { {0.49837467, 0.19278903, 0.26584083, 0.17660543, 0.52949083, -0.77931279}, {0.12609188, -0.46347019, -0.89598465, 0.35867718, 0.36897406, 0.73463392}, {0.14278367, -1.64410412, -0.75222826, -0.57290924, 0.12729003, 0.7567004}, {0.49837467, 0.19278903, 0.26584083, 0.17660543, 0.52949083, -0.77931279}, {0.12609188, -0.46347019, -0.89598465, 0.35867718, 0.36897406, 0.73463392}, {0.14278367, -1.64410412, -0.75222826, -0.57290924, 0.12729003, 0.7567004}, {0.49837467, 0.19278903, 0.26584083, 0.17660543, 0.52949083, -0.77931279}, {0.12609188, -0.46347019, -0.89598465, 0.35867718, 0.36897406, 0.73463392}, {0.14278367, -1.64410412, -0.75222826, -0.57290924, 0.12729003, 0.7567004}, {0.49837467, 0.19278903, 0.26584083, 0.17660543, 0.52949083, -0.77931279}, {0.12609188, -0.46347019, -0.89598465, 0.35867718, 0.36897406, 0.73463392}, {0.14278367, -1.64410412, -0.75222826, -0.57290924, 0.12729003, 0.7567004}}; const std::vector<std::vector<int8_t>> expected_output = { {-9, 24, 31, 1, -10, 10, -3, 0}, {2, 4, -44, -7, -10, 32, 52, 1}, {12, -17, 9, -8, 7, 16, -11, -8}, {-26, 29, 28, 16, -23, 26, 30, -6}, {-8, -25, -86, -5, -44, 59, 81, 15}, {62, -16, -37, 3, 27, 14, 34, -10}, {1, 24, -25, 23, 31, 61, 67, 11}, {-64, -65, -128, -25, -53, 59, 127, 20}, {20, -29, -20, -15, -28, 0, 8, -27}, {54, 61, -67, 38, 38, 64, 115, 0}, {-44, -75, -128, -20, -19, 93, 101, 35}, {-5, -56, 30, -18, -40, -9, -8, -31}, }; for (int sequence_index = 0; sequence_index < 12; ++sequence_index) { svdf.SetInput(input_sequences[sequence_index]); ASSERT_EQ(svdf.Invoke(), kTfLiteOk); const std::vector<int8_t> res = svdf.GetOutput(); EXPECT_THAT(res, ElementsAreArray(expected_output[sequence_index])); } } } }
879
cpp
tensorflow/tensorflow
table
third_party/xla/third_party/tsl/tsl/lib/io/table.cc
third_party/xla/third_party/tsl/tsl/lib/io/table_test.cc
#ifndef TENSORFLOW_TSL_LIB_IO_TABLE_H_ #define TENSORFLOW_TSL_LIB_IO_TABLE_H_ #include <stdint.h> #include "tsl/lib/io/iterator.h" namespace tsl { class RandomAccessFile; namespace table { struct Options; class Table { public: static absl::Status Open(const Options& options, tsl::RandomAccessFile* file, uint64 file_size, Table** table); ~Table(); Iterator* NewIterator() const; uint64 ApproximateOffsetOf(const StringPiece& key) const; private: struct Rep; Rep* rep_; explicit Table(Rep* rep) { rep_ = rep; } static Iterator* BlockReader(void*, const StringPiece&); absl::Status InternalGet(const StringPiece& key, void* arg, void (*handle_result)(void* arg, const StringPiece& k, const StringPiece& v)); Table(const Table&); void operator=(const Table&); }; } } #endif #include "tsl/lib/io/table.h" #include "tsl/lib/io/block.h" #include "tsl/lib/io/cache.h" #include "tsl/lib/io/format.h" #include "tsl/lib/io/table_options.h" #include "tsl/lib/io/two_level_iterator.h" #include "tsl/platform/coding.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" namespace tsl { namespace table { struct Table::Rep { ~Rep() { delete index_block; } Options options; absl::Status status; RandomAccessFile* file; uint64 cache_id; BlockHandle metaindex_handle; Block* index_block; }; absl::Status Table::Open(const Options& options, RandomAccessFile* file, uint64 size, Table** table) { *table = nullptr; if (size < Footer::kEncodedLength) { return errors::DataLoss("file is too short to be an sstable"); } char footer_space[Footer::kEncodedLength]; StringPiece footer_input; absl::Status s = file->Read(size - Footer::kEncodedLength, Footer::kEncodedLength, &footer_input, footer_space); if (!s.ok()) return s; Footer footer; s = footer.DecodeFrom(&footer_input); if (!s.ok()) return s; BlockContents contents; Block* index_block = nullptr; if (s.ok()) { s = ReadBlock(file, footer.index_handle(), &contents); } if (s.ok()) { index_block = new Block(contents); Rep* rep = new Table::Rep; rep->options = options; rep->file = file; rep->metaindex_handle = footer.metaindex_handle(); rep->index_block = index_block; rep->cache_id = (options.block_cache ? options.block_cache->NewId() : 0); *table = new Table(rep); } else { if (index_block) delete index_block; } return s; } Table::~Table() { delete rep_; } static void DeleteBlock(void* arg, void* ignored) { delete reinterpret_cast<Block*>(arg); } static void DeleteCachedBlock(const absl::string_view&, void* value) { Block* block = reinterpret_cast<Block*>(value); delete block; } static void ReleaseBlock(void* arg, void* h) { Cache* cache = reinterpret_cast<Cache*>(arg); Cache::Handle* handle = reinterpret_cast<Cache::Handle*>(h); cache->Release(handle); } Iterator* Table::BlockReader(void* arg, const StringPiece& index_value) { Table* table = reinterpret_cast<Table*>(arg); Cache* block_cache = table->rep_->options.block_cache; Block* block = nullptr; Cache::Handle* cache_handle = nullptr; BlockHandle handle; StringPiece input = index_value; absl::Status s = handle.DecodeFrom(&input); if (s.ok()) { BlockContents contents; if (block_cache != nullptr) { char cache_key_buffer[16]; core::EncodeFixed64(cache_key_buffer, table->rep_->cache_id); core::EncodeFixed64(cache_key_buffer + 8, handle.offset()); absl::string_view key(cache_key_buffer, sizeof(cache_key_buffer)); cache_handle = block_cache->Lookup(key); if (cache_handle != nullptr) { block = reinterpret_cast<Block*>(block_cache->Value(cache_handle)); } else { s = ReadBlock(table->rep_->file, handle, &contents); if (s.ok()) { block = new Block(contents); cache_handle = block_cache->Insert(key, block, block->size(), &DeleteCachedBlock); } } } else { s = ReadBlock(table->rep_->file, handle, &contents); if (s.ok()) { block = new Block(contents); } } } Iterator* iter; if (block != nullptr) { iter = block->NewIterator(); if (cache_handle == nullptr) { iter->RegisterCleanup(&DeleteBlock, block, nullptr); } else { iter->RegisterCleanup(&ReleaseBlock, block_cache, cache_handle); } } else { iter = NewErrorIterator(s); } return iter; } Iterator* Table::NewIterator() const { return NewTwoLevelIterator(rep_->index_block->NewIterator(), &Table::BlockReader, const_cast<Table*>(this)); } absl::Status Table::InternalGet(const StringPiece& k, void* arg, void (*saver)(void*, const StringPiece&, const StringPiece&)) { absl::Status s; Iterator* iiter = rep_->index_block->NewIterator(); iiter->Seek(k); if (iiter->Valid()) { Iterator* block_iter = BlockReader(this, iiter->value()); block_iter->Seek(k); if (block_iter->Valid()) { (*saver)(arg, block_iter->key(), block_iter->value()); } s = block_iter->status(); delete block_iter; } if (s.ok()) { s = iiter->status(); } delete iiter; return s; } uint64 Table::ApproximateOffsetOf(const StringPiece& key) const { Iterator* index_iter = rep_->index_block->NewIterator(); index_iter->Seek(key); uint64 result; if (index_iter->Valid()) { BlockHandle handle; StringPiece input = index_iter->value(); absl::Status s = handle.DecodeFrom(&input); if (s.ok()) { result = handle.offset(); } else { result = rep_->metaindex_handle.offset(); } } else { result = rep_->metaindex_handle.offset(); } delete index_iter; return result; } } }
#include "tsl/lib/io/table.h" #include <algorithm> #include <map> #include <string> #include <vector> #include "absl/strings/escaping.h" #include "tsl/lib/io/block.h" #include "tsl/lib/io/block_builder.h" #include "tsl/lib/io/format.h" #include "tsl/lib/io/iterator.h" #include "tsl/lib/io/table_builder.h" #include "tsl/lib/random/simple_philox.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/snappy.h" #include "tsl/platform/test.h" namespace tsl { namespace table { namespace { typedef std::pair<StringPiece, StringPiece> StringPiecePair; } namespace test { static StringPiece RandomString(random::SimplePhilox* rnd, int len, string* dst) { dst->resize(len); for (int i = 0; i < len; i++) { (*dst)[i] = static_cast<char>(' ' + rnd->Uniform(95)); } return StringPiece(*dst); } static string RandomKey(random::SimplePhilox* rnd, int len) { static const char kTestChars[] = {'\0', '\1', 'a', 'b', 'c', 'd', 'e', '\xfd', '\xfe', '\xff'}; string result; for (int i = 0; i < len; i++) { result += kTestChars[rnd->Uniform(sizeof(kTestChars))]; } return result; } static StringPiece CompressibleString(random::SimplePhilox* rnd, double compressed_fraction, size_t len, string* dst) { int raw = static_cast<int>(len * compressed_fraction); if (raw < 1) raw = 1; string raw_data; RandomString(rnd, raw, &raw_data); dst->clear(); while (dst->size() < len) { dst->append(raw_data); } dst->resize(len); return StringPiece(*dst); } } static void Increment(string* key) { key->push_back('\0'); } namespace { struct STLLessThan { STLLessThan() {} bool operator()(const string& a, const string& b) const { return StringPiece(a).compare(StringPiece(b)) < 0; } }; } class StringSink : public WritableFile { public: ~StringSink() override {} const string& contents() const { return contents_; } absl::Status Close() override { return absl::OkStatus(); } absl::Status Flush() override { return absl::OkStatus(); } absl::Status Name(StringPiece* result) const override { return errors::Unimplemented("StringSink does not support Name()"); } absl::Status Sync() override { return absl::OkStatus(); } absl::Status Tell(int64_t* pos) override { *pos = contents_.size(); return absl::OkStatus(); } absl::Status Append(StringPiece data) override { contents_.append(data.data(), data.size()); return absl::OkStatus(); } private: string contents_; }; class StringSource : public RandomAccessFile { public: explicit StringSource(const StringPiece& contents) : contents_(contents.data(), contents.size()), bytes_read_(0) {} ~StringSource() override {} uint64 Size() const { return contents_.size(); } absl::Status Name(StringPiece* result) const override { return errors::Unimplemented("StringSource does not support Name()"); } absl::Status Read(uint64 offset, size_t n, StringPiece* result, char* scratch) const override { if (offset > contents_.size()) { return errors::InvalidArgument("invalid Read offset"); } if (offset + n > contents_.size()) { n = contents_.size() - offset; } memcpy(scratch, &contents_[offset], n); *result = StringPiece(scratch, n); bytes_read_ += n; return absl::OkStatus(); } uint64 BytesRead() const { return bytes_read_; } private: string contents_; mutable uint64 bytes_read_; }; typedef std::map<string, string, STLLessThan> KVMap; class Constructor { public: explicit Constructor() : data_(STLLessThan()) {} virtual ~Constructor() {} void Add(const string& key, const StringPiece& value) { data_[key] = string(value); } void Finish(const Options& options, std::vector<string>* keys, KVMap* kvmap) { *kvmap = data_; keys->clear(); for (KVMap::const_iterator it = data_.begin(); it != data_.end(); ++it) { keys->push_back(it->first); } data_.clear(); absl::Status s = FinishImpl(options, *kvmap); ASSERT_TRUE(s.ok()) << s.ToString(); } virtual absl::Status FinishImpl(const Options& options, const KVMap& data) = 0; virtual Iterator* NewIterator() const = 0; virtual const KVMap& data() { return data_; } private: KVMap data_; }; class BlockConstructor : public Constructor { public: BlockConstructor() : block_(nullptr) {} ~BlockConstructor() override { delete block_; } absl::Status FinishImpl(const Options& options, const KVMap& data) override { delete block_; block_ = nullptr; BlockBuilder builder(&options); for (KVMap::const_iterator it = data.begin(); it != data.end(); ++it) { builder.Add(it->first, it->second); } data_ = string(builder.Finish()); BlockContents contents; contents.data = data_; contents.cacheable = false; contents.heap_allocated = false; block_ = new Block(contents); return absl::OkStatus(); } Iterator* NewIterator() const override { return block_->NewIterator(); } private: string data_; Block* block_; }; class TableConstructor : public Constructor { public: TableConstructor() : source_(nullptr), table_(nullptr) {} ~TableConstructor() override { Reset(); } absl::Status FinishImpl(const Options& options, const KVMap& data) override { Reset(); StringSink sink; TableBuilder builder(options, &sink); for (KVMap::const_iterator it = data.begin(); it != data.end(); ++it) { builder.Add(it->first, it->second); TF_CHECK_OK(builder.status()); } absl::Status s = builder.Finish(); TF_CHECK_OK(s) << s.ToString(); CHECK_EQ(sink.contents().size(), builder.FileSize()); source_ = new StringSource(sink.contents()); Options table_options; return Table::Open(table_options, source_, sink.contents().size(), &table_); } Iterator* NewIterator() const override { return table_->NewIterator(); } uint64 ApproximateOffsetOf(const StringPiece& key) const { return table_->ApproximateOffsetOf(key); } uint64 BytesRead() const { return source_->BytesRead(); } private: void Reset() { delete table_; delete source_; table_ = nullptr; source_ = nullptr; } StringSource* source_; Table* table_; }; enum TestType { TABLE_TEST, BLOCK_TEST }; struct TestArgs { TestType type; int restart_interval; }; static const TestArgs kTestArgList[] = { {TABLE_TEST, 16}, {TABLE_TEST, 1}, {TABLE_TEST, 1024}, {BLOCK_TEST, 16}, {BLOCK_TEST, 1}, {BLOCK_TEST, 1024}, }; static const int kNumTestArgs = sizeof(kTestArgList) / sizeof(kTestArgList[0]); class Harness : public ::testing::Test { public: Harness() : constructor_(nullptr) {} void Init(const TestArgs& args) { delete constructor_; constructor_ = nullptr; options_ = Options(); options_.block_restart_interval = args.restart_interval; options_.block_size = 256; switch (args.type) { case TABLE_TEST: constructor_ = new TableConstructor(); break; case BLOCK_TEST: constructor_ = new BlockConstructor(); break; } } ~Harness() override { delete constructor_; } void Add(const string& key, const string& value) { constructor_->Add(key, value); } void Test(random::SimplePhilox* rnd, int num_random_access_iters = 200) { std::vector<string> keys; KVMap data; constructor_->Finish(options_, &keys, &data); TestForwardScan(keys, data); TestRandomAccess(rnd, keys, data, num_random_access_iters); } void TestForwardScan(const std::vector<string>& keys, const KVMap& data) { Iterator* iter = constructor_->NewIterator(); ASSERT_TRUE(!iter->Valid()); iter->SeekToFirst(); for (KVMap::const_iterator model_iter = data.begin(); model_iter != data.end(); ++model_iter) { ASSERT_EQ(ToStringPiecePair(data, model_iter), ToStringPiecePair(iter)); iter->Next(); } ASSERT_TRUE(!iter->Valid()); delete iter; } void TestRandomAccess(random::SimplePhilox* rnd, const std::vector<string>& keys, const KVMap& data, int num_random_access_iters) { static const bool kVerbose = false; Iterator* iter = constructor_->NewIterator(); ASSERT_TRUE(!iter->Valid()); KVMap::const_iterator model_iter = data.begin(); if (kVerbose) fprintf(stderr, "---\n"); for (int i = 0; i < num_random_access_iters; i++) { const int toss = rnd->Uniform(3); switch (toss) { case 0: { if (iter->Valid()) { if (kVerbose) fprintf(stderr, "Next\n"); iter->Next(); ++model_iter; ASSERT_EQ(ToStringPiecePair(data, model_iter), ToStringPiecePair(iter)); } break; } case 1: { if (kVerbose) fprintf(stderr, "SeekToFirst\n"); iter->SeekToFirst(); model_iter = data.begin(); ASSERT_EQ(ToStringPiecePair(data, model_iter), ToStringPiecePair(iter)); break; } case 2: { string key = PickRandomKey(rnd, keys); model_iter = data.lower_bound(key); if (kVerbose) fprintf(stderr, "Seek '%s'\n", absl::CEscape(key).c_str()); iter->Seek(StringPiece(key)); ASSERT_EQ(ToStringPiecePair(data, model_iter), ToStringPiecePair(iter)); break; } } } delete iter; } StringPiecePair ToStringPiecePair(const KVMap& data, const KVMap::const_iterator& it) { if (it == data.end()) { return StringPiecePair("END", ""); } else { return StringPiecePair(it->first, it->second); } } StringPiecePair ToStringPiecePair(const KVMap& data, const KVMap::const_reverse_iterator& it) { if (it == data.rend()) { return StringPiecePair("END", ""); } else { return StringPiecePair(it->first, it->second); } } StringPiecePair ToStringPiecePair(const Iterator* it) { if (!it->Valid()) { return StringPiecePair("END", ""); } else { return StringPiecePair(it->key(), it->value()); } } string PickRandomKey(random::SimplePhilox* rnd, const std::vector<string>& keys) { if (keys.empty()) { return "foo"; } else { const int index = rnd->Uniform(keys.size()); string result = keys[index]; switch (rnd->Uniform(3)) { case 0: break; case 1: { if (!result.empty() && result[result.size() - 1] > '\0') { result[result.size() - 1]--; } break; } case 2: { Increment(&result); break; } } return result; } } private: Options options_; Constructor* constructor_; }; TEST_F(Harness, Empty) { for (int i = 0; i < kNumTestArgs; i++) { Init(kTestArgList[i]); random::PhiloxRandom philox(testing::RandomSeed() + 1, 17); random::SimplePhilox rnd(&philox); Test(&rnd); } } TEST_F(Harness, ZeroRestartPointsInBlock) { char data[sizeof(uint32)]; memset(data, 0, sizeof(data)); BlockContents contents; contents.data = StringPiece(data, sizeof(data)); contents.cacheable = false; contents.heap_allocated = false; Block block(contents); Iterator* iter = block.NewIterator(); iter->SeekToFirst(); ASSERT_TRUE(!iter->Valid()); iter->Seek("foo"); ASSERT_TRUE(!iter->Valid()); delete iter; } TEST_F(Harness, SimpleEmptyKey) { for (int i = 0; i < kNumTestArgs; i++) { Init(kTestArgList[i]); random::PhiloxRandom philox(testing::RandomSeed() + 1, 17); random::SimplePhilox rnd(&philox); Add("", "v"); Test(&rnd); } } TEST_F(Harness, SimpleSingle) { for (int i = 0; i < kNumTestArgs; i++) { Init(kTestArgList[i]); random::PhiloxRandom philox(testing::RandomSeed() + 2, 17); random::SimplePhilox rnd(&philox); Add("abc", "v"); Test(&rnd); } } TEST_F(Harness, SimpleMulti) { for (int i = 0; i < kNumTestArgs; i++) { Init(kTestArgList[i]); random::PhiloxRandom philox(testing::RandomSeed() + 3, 17); random::SimplePhilox rnd(&philox); Add("abc", "v"); Add("abcd", "v"); Add("ac", "v2"); Test(&rnd); } } TEST_F(Harness, SimpleMultiBigValues) { for (int i = 0; i < kNumTestArgs; i++) { Init(kTestArgList[i]); random::PhiloxRandom philox(testing::RandomSeed() + 3, 17); random::SimplePhilox rnd(&philox); Add("ainitial", "tiny"); Add("anext", string(10000000, 'a')); Add("anext2", string(10000000, 'b')); Add("azz", "tiny"); Test(&rnd, 100 ); } } TEST_F(Harness, SimpleSpecialKey) { for (int i = 0; i < kNumTestArgs; i++) { Init(kTestArgList[i]); random::PhiloxRandom philox(testing::RandomSeed() + 4, 17); random::SimplePhilox rnd(&philox); Add("\xff\xff", "v3"); Test(&rnd); } } TEST_F(Harness, Randomized) { for (int i = 0; i < kNumTestArgs; i++) { Init(kTestArgList[i]); random::PhiloxRandom philox(testing::RandomSeed() + 5, 17); random::SimplePhilox rnd(&philox); for (int num_entries = 0; num_entries < 2000; num_entries += (num_entries < 50 ? 1 : 200)) { if ((num_entries % 10) == 0) { fprintf(stderr, "case %d of %d: num_entries = %d\n", (i + 1), int(kNumTestArgs), num_entries); } for (int e = 0; e < num_entries; e++) { string v; Add(test::RandomKey(&rnd, rnd.Skewed(4)), string(test::RandomString(&rnd, rnd.Skewed(5), &v))); } Test(&rnd); } } } static bool Between(uint64 val, uint64 low, uint64 high) { bool result = (val >= low) && (val <= high); if (!result) { fprintf(stderr, "Value %llu is not in range [%llu, %llu]\n", static_cast<unsigned long long>(val), static_cast<unsigned long long>(low), static_cast<unsigned long long>(high)); } return result; } class TableTest {}; TEST(TableTest, ApproximateOffsetOfPlain) { TableConstructor c; c.Add("k01", "hello"); c.Add("k02", "hello2"); c.Add("k03", string(10000, 'x')); c.Add("k04", string(200000, 'x')); c.Add("k05", string(300000, 'x')); c.Add("k06", "hello3"); c.Add("k07", string(100000, 'x')); std::vector<string> keys; KVMap kvmap; Options options; options.block_size = 1024; options.compression = kNoCompression; c.Finish(options, &keys, &kvmap); ASSERT_TRUE(Between(c.ApproximateOffsetOf("abc"), 0, 0)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k01"), 0, 0)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k01a"), 0, 0)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k02"), 0, 0)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k03"), 10, 500)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k04"), 10000, 11000)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k04a"), 210000, 211000)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k05"), 210000, 211000)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k06"), 510000, 511000)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k07"), 510000, 511000)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("xyz"), 610000, 612000)); } static bool SnappyCompressionSupported() { string out; StringPiece in = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"; return port::Snappy_Compress(in.data(), in.size(), &out); } TEST(TableTest, ApproximateOffsetOfCompressed) { if (!SnappyCompressionSupported()) { fprintf(stderr, "skipping compression tests\n"); return; } random::PhiloxRandom philox(301, 17); random::SimplePhilox rnd(&philox); TableConstructor c; string tmp; c.Add("k01", "hello"); c.Add("k02", test::CompressibleString(&rnd, 0.25, 10000, &tmp)); c.Add("k03", "hello3"); c.Add("k04", test::CompressibleString(&rnd, 0.25, 10000, &tmp)); std::vector<string> keys; KVMap kvmap; Options options; options.block_size = 1024; options.compression = kSnappyCompression; c.Finish(options, &keys, &kvmap); ASSERT_TRUE(Between(c.ApproximateOffsetOf("abc"), 0, 0)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k01"), 0, 0)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k02"), 10, 100)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k03"), 2000, 4000)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("k04"), 2000, 4000)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("xyz"), 4000, 7000)); } TEST(TableTest, SeekToFirstKeyDoesNotReadTooMuch) { random::PhiloxRandom philox(301, 17); random::SimplePhilox rnd(&philox); string tmp; TableConstructor c; c.Add("k01", "firstvalue"); c.Add("k03", test::CompressibleString(&rnd, 0.25, 1000000, &tmp)); c.Add("k04", "abc"); std::vector<string> keys; KVMap kvmap; Options options; options.block_size = 1024; options.compression = kNoCompression; c.Finish(options, &keys, &kvmap); Iterator* iter = c.NewIterator(); iter->Seek("k01"); delete iter; EXPECT_LT(c.BytesRead(), 200); } } }
880
cpp
tensorflow/tensorflow
sub
tensorflow/lite/kernels/sub.cc
tensorflow/lite/kernels/sub_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_SUB_H_ #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_SUB_H_ #include <stdint.h> #include <algorithm> #include <cstddef> #include <limits> #include "ruy/profiler/instrumentation.h" #include "tensorflow/lite/kernels/internal/common.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/kernels/internal/types.h" namespace tflite { namespace reference_ops { template <class T> struct SubImpl { template <class F> static void BroadcastInput1(const ArithmeticParams& params, const T* input1_data, const T* input2_data, T* output_data, size_t size, F binary_func) { for (size_t c = 0; c < size; ++c) { output_data[c] = binary_func(input1_data[0], input2_data[c], params); } } template <class F> static void BroadcastInput2(const ArithmeticParams& params, const T* input1_data, const T* input2_data, T* output_data, size_t size, F binary_func) { for (size_t c = 0; c < size; ++c) { output_data[c] = binary_func(input1_data[c], input2_data[0], params); } } template <class F> static void ElementWise(const ArithmeticParams& params, const T* input1_data, const T* input2_data, T* output_data, size_t size, F binary_func) { for (size_t c = 0; c < size; ++c) { output_data[c] = binary_func(input1_data[c], input2_data[c], params); } } }; template <> struct SubImpl<int32_t> { template <class F> static void BroadcastInput1(const ArithmeticParams& params, const int32_t* input1_data, const int32_t* input2_data, int32_t* output_data, size_t size, F binary_func) { size_t c = 0; int32_t activation_min, activation_max; GetActivationParams(params, &activation_min, &activation_max); #ifdef USE_NEON const int32x4_t vmax = vdupq_n_s32(activation_max); const int32x4_t vmin = vdupq_n_s32(activation_min); const int32x4_t va = vdupq_n_s32(input1_data[0]); for (; c + 4 <= size; c += 4) { const int32x4_t vb = vld1q_s32(&input2_data[c]); int32x4_t vres = vsubq_s32(va, vb); vres = vmaxq_s32(vmin, vres); vres = vminq_s32(vmax, vres); vst1q_s32(&output_data[c], vres); } #endif for (; c < size; ++c) { output_data[c] = binary_func(input1_data[0], input2_data[c], params); } } template <class F> static void BroadcastInput2(const ArithmeticParams& params, const int32_t* input1_data, const int32_t* input2_data, int32_t* output_data, size_t size, F binary_func) { size_t c = 0; int32_t activation_min, activation_max; GetActivationParams(params, &activation_min, &activation_max); #ifdef USE_NEON const int32x4_t vmax = vdupq_n_s32(activation_max); const int32x4_t vmin = vdupq_n_s32(activation_min); const int32x4_t vb = vdupq_n_s32(input2_data[0]); for (; c + 4 <= size; c += 4) { const int32x4_t va = vld1q_s32(&input1_data[c]); int32x4_t vres = vsubq_s32(va, vb); vres = vmaxq_s32(vmin, vres); vres = vminq_s32(vmax, vres); vst1q_s32(&output_data[c], vres); } #endif for (; c < size; ++c) { output_data[c] = binary_func(input1_data[c], input2_data[0], params); } } template <class F> static void ElementWise(const ArithmeticParams& params, const int32_t* input1_data, const int32_t* input2_data, int32_t* output_data, size_t size, F binary_func) { size_t c = 0; int32_t activation_min, activation_max; GetActivationParams(params, &activation_min, &activation_max); #ifdef USE_NEON int32x4_t vmax = vdupq_n_s32(activation_max); int32x4_t vmin = vdupq_n_s32(activation_min); for (; c + 4 <= size; c += 4) { const int32x4_t va = vld1q_s32(&input1_data[c]); const int32x4_t vb = vld1q_s32(&input2_data[c]); int32x4_t vres = vsubq_s32(va, vb); vres = vmaxq_s32(vmin, vres); vres = vminq_s32(vmax, vres); vst1q_s32(&output_data[c], vres); } #endif for (; c < size; ++c) { output_data[c] = binary_func(input1_data[c], input2_data[c], params); } } }; template <typename T, typename F> inline void BroadcastSubRecursiveDimensions( int dimension, const ArithmeticParams& params, const T* input1_data, const T* input2_data, T* output_data, size_t* input1_offset_p, size_t* input2_offset_p, size_t* output_offset, size_t* compressed_input1_stride, size_t* compressed_input2_stride, size_t* compressed_output_shape, F binary_func) { if (dimension > 0) { for (size_t c = 0; c < compressed_output_shape[dimension]; ++c) { size_t input1_offset_c = *input1_offset_p; size_t input2_offset_c = *input2_offset_p; BroadcastSubRecursiveDimensions( dimension - 1, params, input1_data, input2_data, output_data, &input1_offset_c, &input2_offset_c, output_offset, compressed_input1_stride, compressed_input2_stride, compressed_output_shape, binary_func); *input1_offset_p += compressed_input1_stride[dimension]; *input2_offset_p += compressed_input2_stride[dimension]; } } else { TFLITE_DCHECK(dimension == 0); bool input1_is_broadcast = compressed_input1_stride[dimension] == 0; bool input2_is_broadcast = compressed_input2_stride[dimension] == 0; TFLITE_DCHECK(!(input1_is_broadcast && input2_is_broadcast)); const T* input1_data_ptr = input1_data + *input1_offset_p; const T* input2_data_ptr = input2_data + *input2_offset_p; T* output_data_ptr = output_data + *output_offset; if (input1_is_broadcast) { SubImpl<T>::BroadcastInput1( params, input1_data_ptr, input2_data_ptr, output_data_ptr, compressed_output_shape[dimension], binary_func); *input2_offset_p += compressed_output_shape[dimension]; } else if (input2_is_broadcast) { SubImpl<T>::BroadcastInput2( params, input1_data_ptr, input2_data_ptr, output_data_ptr, compressed_output_shape[dimension], binary_func); *input1_offset_p += compressed_output_shape[dimension]; } else { SubImpl<T>::ElementWise(params, input1_data_ptr, input2_data_ptr, output_data_ptr, compressed_output_shape[dimension], binary_func); *input1_offset_p += compressed_output_shape[dimension]; *input2_offset_p += compressed_output_shape[dimension]; } *output_offset += compressed_output_shape[dimension]; } } template <typename T, typename F> inline void BroadcastSubCommon(const ArithmeticParams& params, const RuntimeShape& input1_shape, const T* input1_data, const RuntimeShape& input2_shape, const T* input2_data, const RuntimeShape& output_shape, T* output_data, F binary_func) { constexpr int kMaxBroadcastDim = 6; TFLITE_DCHECK_LE(input1_shape.DimensionsCount(), kMaxBroadcastDim); TFLITE_DCHECK_LE(input2_shape.DimensionsCount(), kMaxBroadcastDim); TFLITE_DCHECK_LE(output_shape.DimensionsCount(), kMaxBroadcastDim); size_t compressed_input1_stride[kMaxBroadcastDim]; size_t compressed_input2_stride[kMaxBroadcastDim]; size_t compressed_output_shape[kMaxBroadcastDim]; bool broadcastable_shape = ReduceDimensionsForBroadcast<kMaxBroadcastDim>( input1_shape, input2_shape, compressed_input1_stride, compressed_input2_stride, compressed_output_shape); if (!broadcastable_shape) { return; } size_t input1_offset = 0; size_t input2_offset = 0; size_t output_offset = 0; BroadcastSubRecursiveDimensions( kMaxBroadcastDim - 1, params, input1_data, input2_data, output_data, &input1_offset, &input2_offset, &output_offset, compressed_input1_stride, compressed_input2_stride, compressed_output_shape, binary_func); } template <typename T> void BroadcastSubSlow(const ArithmeticParams& params, const RuntimeShape& input1_shape, const T* input1_data, const RuntimeShape& input2_shape, const T* input2_data, const RuntimeShape& output_shape, T* output_data) { ruy::profiler::ScopeLabel label("BroadcastSubSlow/T"); BroadcastSubCommon<T>( params, input1_shape, input1_data, input2_shape, input2_data, output_shape, output_data, [](T input1_val, T input2_val, const ArithmeticParams& params) { T activation_min, activation_max; GetActivationParams(params, &activation_min, &activation_max); return ActivationFunctionWithMinMax(input1_val - input2_val, activation_min, activation_max); }); } inline void BroadcastSub16POTSlow(const ArithmeticParams& params, const RuntimeShape& input1_shape, const int16_t* input1_data, const RuntimeShape& input2_shape, const int16_t* input2_data, const RuntimeShape& output_shape, int16_t* output_data) { ruy::profiler::ScopeLabel label("BroadcastSub16POTSlow/int16_t"); BroadcastSubCommon<int16_t>( params, input1_shape, input1_data, input2_shape, input2_data, output_shape, output_data, [](int16_t input1_val, int16_t input2_val, const ArithmeticParams& params) { const int32_t scaled_input1_val = gemmlowp::RoundingDivideByPOT(input1_val, -params.input1_shift); const int32_t scaled_input2_val = gemmlowp::RoundingDivideByPOT(input2_val, -params.input2_shift); const int32_t raw_output = scaled_input1_val - scaled_input2_val; const int32_t clamped_output = std::min(params.quantized_activation_max, std::max(params.quantized_activation_min, raw_output)); return static_cast<int16_t>(clamped_output); }); } template <typename T> void BroadcastQuantSubSlow(const ArithmeticParams& params, const RuntimeShape& input1_shape, const T* input1_data, const RuntimeShape& input2_shape, const T* input2_data, const RuntimeShape& output_shape, T* output_data) { ruy::profiler::ScopeLabel label("BroadcastQuantSubSlow/T"); BroadcastSubCommon<T>( params, input1_shape, input1_data, input2_shape, input2_data, output_shape, output_data, [](T input1_val, T input2_val, const ArithmeticParams& params) { const int32_t shifted_input1_val = (params.input1_offset + input1_val) * (1 << params.left_shift); const int32_t shifted_input2_val = (params.input2_offset + input2_val) * (1 << params.left_shift); const int32_t scaled_input1_val = MultiplyByQuantizedMultiplierSmallerThanOneExp( shifted_input1_val, params.input1_multiplier, params.input1_shift); const int32_t scaled_input2_val = MultiplyByQuantizedMultiplierSmallerThanOneExp( shifted_input2_val, params.input2_multiplier, params.input2_shift); const int32_t raw_sub = scaled_input1_val - scaled_input2_val; const int32_t raw_output = MultiplyByQuantizedMultiplierSmallerThanOneExp( raw_sub, params.output_multiplier, params.output_shift) + params.output_offset; const int32_t clamped_output = std::min(params.quantized_activation_max, std::max(params.quantized_activation_min, raw_output)); return static_cast<T>(clamped_output); }); } template <typename T> inline void SubElementwise(int size, const ArithmeticParams& params, const T* input1_data, const T* input2_data, T* output_data) { for (int i = 0; i < size; ++i) { const int32_t input1_val = params.input1_offset + input1_data[i]; const int32_t input2_val = params.input2_offset + input2_data[i]; const int32_t shifted_input1_val = input1_val * (1 << params.left_shift); const int32_t shifted_input2_val = input2_val * (1 << params.left_shift); const int32_t scaled_input1_val = MultiplyByQuantizedMultiplierSmallerThanOneExp( shifted_input1_val, params.input1_multiplier, params.input1_shift); const int32_t scaled_input2_val = MultiplyByQuantizedMultiplierSmallerThanOneExp( shifted_input2_val, params.input2_multiplier, params.input2_shift); const int32_t raw_sub = scaled_input1_val - scaled_input2_val; const int32_t raw_output = MultiplyByQuantizedMultiplierSmallerThanOneExp( raw_sub, params.output_multiplier, params.output_shift) + params.output_offset; const int32_t clamped_output = std::min(params.quantized_activation_max, std::max(params.quantized_activation_min, raw_output)); output_data[i] = static_cast<T>(clamped_output); } } inline void Sub(const ArithmeticParams& params, const RuntimeShape& input1_shape, const uint8_t* input1_data, const RuntimeShape& input2_shape, const uint8_t* input2_data, const RuntimeShape& output_shape, uint8_t* output_data) { TFLITE_DCHECK_LE(params.quantized_activation_min, params.quantized_activation_max); const int flat_size = MatchingElementsSize(input1_shape, input2_shape, output_shape); TFLITE_DCHECK_GT(params.input1_offset, -256); TFLITE_DCHECK_GT(params.input2_offset, -256); TFLITE_DCHECK_LT(params.input1_offset, 256); TFLITE_DCHECK_LT(params.input2_offset, 256); SubElementwise(flat_size, params, input1_data, input2_data, output_data); } inline void Sub(const ArithmeticParams& params, const RuntimeShape& input1_shape, const int8_t* input1_data, const RuntimeShape& input2_shape, const int8_t* input2_data, const RuntimeShape& output_shape, int8_t* output_data) { TFLITE_DCHECK_LE(params.quantized_activation_min, params.quantized_activation_max); const int flat_size = MatchingElementsSize(input1_shape, input2_shape, output_shape); TFLITE_DCHECK_GE(params.input1_offset, -128); TFLITE_DCHECK_GE(params.input2_offset, -128); TFLITE_DCHECK_LE(params.input1_offset, 128); TFLITE_DCHECK_LE(params.input2_offset, 128); SubElementwise(flat_size, params, input1_data, input2_data, output_data); } inline void Sub(const ArithmeticParams& params, const RuntimeShape& input1_shape, const int16_t* input1_data, const RuntimeShape& input2_shape, const int16_t* input2_data, const RuntimeShape& output_shape, int16_t* output_data) { TFLITE_DCHECK_LE(params.quantized_activation_min, params.quantized_activation_max); const int flat_size = MatchingElementsSize(input1_shape, input2_shape, output_shape); TFLITE_DCHECK_EQ(params.input1_offset, 0); TFLITE_DCHECK_EQ(params.input2_offset, 0); SubElementwise(flat_size, params, input1_data, input2_data, output_data); } template <typename T> void Sub(const ArithmeticParams& params, const RuntimeShape& input1_shape, const T* input1_data, const RuntimeShape& input2_shape, const T* input2_data, const RuntimeShape& output_shape, T* output_data) { BroadcastSubCommon<T>( params, input1_shape, input1_data, input2_shape, input2_data, output_shape, output_data, [](T input1_val, T input2_val, const ArithmeticParams& params) { return input1_val - input2_val; }); } inline void SetActivationMinMax(const ArithmeticParams& params, int32_t* activation_min, int32_t* activation_max) { *activation_min = params.quantized_activation_min; *activation_max = params.quantized_activation_max; } inline void SetActivationMinMax(const ArithmeticParams& params, float* activation_min, float* activation_max) { *activation_min = params.float_activation_min; *activation_max = params.float_activation_max; } inline void SetActivationMinMax(const ArithmeticParams& params, int64_t* activation_min, int64_t* activation_max) { *activation_min = params.int64_activation_min; *activation_max = params.int64_activation_max; } template <typename T> inline void SubWithActivation( const ArithmeticParams& params, const RuntimeShape& input1_shape, const T* input1_data, const RuntimeShape& input2_shape, const T* input2_data, const RuntimeShape& output_shape, T* output_data) { ruy::profiler::ScopeLabel label("SubWithActivation"); const int flat_size = MatchingElementsSize(input1_shape, input2_shape, output_shape); T activation_min, activation_max; SetActivationMinMax(params, &activation_min, &activation_max); for (int i = 0; i < flat_size; ++i) { output_data[i] = ActivationFunctionWithMinMax( input1_data[i] - input2_data[i], activation_min, activation_max); } } } } #endif #include "tensorflow/lite/kernels/internal/reference/sub.h" #include <stddef.h> #include <stdint.h> #include <algorithm> #include <limits> #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/kernels/internal/optimized/cpu_check.h" #include "tensorflow/lite/kernels/internal/optimized/integer_ops/sub.h" #include "tensorflow/lite/kernels/internal/optimized/neon_check.h" #include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h" #include "tensorflow/lite/kernels/internal/quantization_util.h" #include "tensorflow/lite/kernels/internal/reference/add.h" #include "tensorflow/lite/kernels/internal/reference/integer_ops/add.h" #include "tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h" #include "tensorflow/lite/kernels/internal/reference/reference_ops.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/internal/types.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace builtin { namespace sub { enum KernelType { kReference, kGenericOptimized, kNeonOptimized, }; constexpr int kInputTensor1 = 0; constexpr int kInputTensor2 = 1; constexpr int kOutputTensor = 0; struct OpData { bool requires_broadcast; int input1_shift; int input2_shift; int32 output_activation_min; int32 output_activation_max; int32 input1_multiplier; int32 input2_multiplier; int32 output_multiplier; int output_shift; int left_shift; int32 input1_offset; int32 input2_offset; int32 output_offset; bool pot_scale_int16; }; void* Init(TfLiteContext* context, const char* buffer, size_t length) { auto* data = new OpData; data->requires_broadcast = false; return data; } void Free(TfLiteContext* context, void* buffer) { delete reinterpret_cast<OpData*>(buffer); } TfLiteStatus PrepareGeneralSubOp(TfLiteContext* context, const TfLiteTensor* input_1, const TfLiteTensor* input_2, TfLiteTensor* output, TfLiteSubParams* params, OpData* op_params) { TF_LITE_ENSURE(context, output->type == kTfLiteUInt8 || output->type == kTfLiteInt8 || output->type == kTfLiteInt16); const auto& input1_quantization_params = input_1->params; const auto& input2_quantization_params = input_2->params; const auto& output_quantization_params = output->params; int32_t integer_type_min = 0; int32_t integer_type_max = 0; if (output->type == kTfLiteUInt8) { integer_type_min = std::numeric_limits<uint8_t>::min(); integer_type_max = std::numeric_limits<uint8_t>::max(); } else if (output->type == kTfLiteInt16) { integer_type_min = std::numeric_limits<int16_t>::min(); integer_type_max = std::numeric_limits<int16_t>::max(); } else { integer_type_min = std::numeric_limits<int8_t>::min(); integer_type_max = std::numeric_limits<int8_t>::max(); } TF_LITE_ENSURE(context, input1_quantization_params.zero_point >= integer_type_min); TF_LITE_ENSURE(context, input1_quantization_params.zero_point <= integer_type_max); TF_LITE_ENSURE(context, input2_quantization_params.zero_point >= integer_type_min); TF_LITE_ENSURE(context, input2_quantization_params.zero_point <= integer_type_max); TF_LITE_ENSURE(context, output_quantization_params.zero_point >= integer_type_min); TF_LITE_ENSURE(context, output_quantization_params.zero_point <= integer_type_max); op_params->input1_offset = -input1_quantization_params.zero_point; op_params->input2_offset = -input2_quantization_params.zero_point; op_params->output_offset = output_quantization_params.zero_point; op_params->left_shift = output->type == kTfLiteInt16 ? 15 : 20; const double twice_max_input_scale = 2 * std::max(input1_quantization_params.scale, input2_quantization_params.scale); const double real_input1_multiplier = input1_quantization_params.scale / twice_max_input_scale; const double real_input2_multiplier = input2_quantization_params.scale / twice_max_input_scale; const double real_output_multiplier = twice_max_input_scale / ((1 << op_params->left_shift) * output_quantization_params.scale); tflite::QuantizeMultiplierSmallerThanOneExp(real_input1_multiplier, &op_params->input1_multiplier, &op_params->input1_shift); tflite::QuantizeMultiplierSmallerThanOneExp(real_input2_multiplier, &op_params->input2_multiplier, &op_params->input2_shift); if (real_output_multiplier > 1) { tflite::QuantizeMultiplierGreaterThanOne(real_output_multiplier, &op_params->output_multiplier, &op_params->output_shift); } else { tflite::QuantizeMultiplierSmallerThanOneExp(real_output_multiplier, &op_params->output_multiplier, &op_params->output_shift); } TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized( context, params->activation, output, &op_params->output_activation_min, &op_params->output_activation_max)); return kTfLiteOk; } TfLiteStatus PrepareInt16SubOpPOT(TfLiteContext* context, const TfLiteTensor* input1, const TfLiteTensor* input2, TfLiteTensor* output, TfLiteSubParams* params, OpData* data) { TF_LITE_ENSURE_EQ(context, input1->params.zero_point, 0); TF_LITE_ENSURE_EQ(context, input2->params.zero_point, 0); TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0); int input1_scale_log2_rounded; bool input1_scale_is_pot = CheckedLog2(input1->params.scale, &input1_scale_log2_rounded); TF_LITE_ENSURE(context, input1_scale_is_pot); int input2_scale_log2_rounded; bool input2_scale_is_pot = CheckedLog2(input2->params.scale, &input2_scale_log2_rounded); TF_LITE_ENSURE(context, input2_scale_is_pot); int output_scale_log2_rounded; bool output_scale_is_pot = CheckedLog2(output->params.scale, &output_scale_log2_rounded); TF_LITE_ENSURE(context, output_scale_is_pot); data->input1_shift = input1_scale_log2_rounded - output_scale_log2_rounded; data->input2_shift = input2_scale_log2_rounded - output_scale_log2_rounded; TF_LITE_ENSURE(context, data->input1_shift == 0 || data->input2_shift == 0); TF_LITE_ENSURE(context, data->input1_shift <= 0); TF_LITE_ENSURE(context, data->input2_shift <= 0); TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized( context, params->activation, output, &data->output_activation_min, &data->output_activation_max)); return kTfLiteOk; } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { OpData* data = reinterpret_cast<OpData*>(node->user_data); auto* params = reinterpret_cast<TfLiteSubParams*>(node->builtin_data); TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input1; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor1, &input1)); const TfLiteTensor* input2; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor2, &input2)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); TF_LITE_ENSURE_TYPES_EQ(context, input1->type, input2->type); output->type = input2->type; data->requires_broadcast = !HaveSameShapes(input1, input2); TfLiteIntArray* output_size = nullptr; if (data->requires_broadcast) { TF_LITE_ENSURE_OK(context, CalculateShapeForBroadcast( context, input1, input2, &output_size)); } else { output_size = TfLiteIntArrayCopy(input1->dims); } bool general_scale_int16 = false; bool input1_scale_is_pot = false; bool input2_scale_is_pot = false; bool output_scale_is_pot = false; int input1_scale_log2_rounded{0}; int input2_scale_log2_rounded{0}; int output_scale_log2_rounded{0}; if (input1->type == kTfLiteInt16 && input2->type == kTfLiteInt16 && output->type == kTfLiteInt16) { TF_LITE_ENSURE_EQ(context, input1->params.zero_point, 0); TF_LITE_ENSURE_EQ(context, input2->params.zero_point, 0); TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0); general_scale_int16 = !params || !params->pot_scale_int16; if (!general_scale_int16) { input1_scale_is_pot = CheckedLog2(input1->params.scale, &input1_scale_log2_rounded); input2_scale_is_pot = CheckedLog2(input2->params.scale, &input2_scale_log2_rounded); output_scale_is_pot = CheckedLog2(output->params.scale, &output_scale_log2_rounded); general_scale_int16 = !input1_scale_
#include <cstdint> #include <functional> #include <memory> #include <random> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/xnnpack/binary_elementwise_tester.h" #include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h" namespace tflite { namespace xnnpack { TEST(Sub, 4DBy4D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); } TEST(Sub, 4DBy4DBroadcastChannels) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, 1, 1, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, 1, 1, channels}) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); } TEST(Sub, 4DBy4DBroadcastWidth) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, 1, width, 1}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, 1, width, 1}) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); } TEST(Sub, 4DBy4DBroadcastHeight) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, height, 1, 1}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, height, 1, 1}) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); } TEST(Sub, 4DBy4DBroadcastBatch) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, 1, 1, 1}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, 1, 1, 1}) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); } TEST(Sub, 4DBy4DBroadcastHeightWidthChannels) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, height, width, channels}) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); } TEST(Sub, 4DBy3D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({height, width, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({height, width, channels}) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); } TEST(Sub, 4DBy2D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({width, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({width, channels}) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); } TEST(Sub, 4DBy1D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({channels}) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); } TEST(Sub, 4DBy0D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({}) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); } TEST(Sub, 2DBy2D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({batch, channels}) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); } TEST(Sub, 2DBy1D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({channels}) .Input2Shape({batch, channels}) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({channels}) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); } TEST(Sub, 2DBy0D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({}) .Input2Shape({batch, channels}) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({}) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); } TEST(Sub, 4DByStatic4D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input2Static(true) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); } TEST(Sub, 4DByStatic4DBroadcastChannels) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, 1, 1, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, 1, 1, channels}) .Input2Static(true) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); } TEST(Sub, 4DByStatic4DBroadcastWidth) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, 1, width, 1}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, 1, width, 1}) .Input2Static(true) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); } TEST(Sub, 4DByStatic4DBroadcastHeight) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, height, 1, 1}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, height, 1, 1}) .Input2Static(true) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); } TEST(Sub, 4DByStatic4DBroadcastBatch) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, 1, 1, 1}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, 1, 1, 1}) .Input2Static(true) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); } TEST(Sub, 4DByStatic4DBroadcastHeightWidthChannels) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, height, width, channels}) .Input2Static(true) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); } TEST(Sub, 4DByStatic3D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({height, width, channels}) .Input2Static(true) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); } TEST(Sub, 4DByStatic2D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({width, channels}) .Input2Static(true) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); } TEST(Sub, 4DByStatic1D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({channels}) .Input2Static(true) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); } TEST(Sub, 4DByStatic0D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({}) .Input2Static(true) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); } TEST(Sub, 2DByStatic2D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({batch, channels}) .Input1Static(true) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({batch, channels}) .Input2Static(true) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); } TEST(Sub, 2DByStatic1D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({channels}) .Input2Shape({batch, channels}) .Input1Static(true) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({channels}) .Input2Static(true) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); } TEST(Sub, 2DByStatic0D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({}) .Input2Shape({batch, channels}) .Input1Static(true) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({}) .Input2Static(true) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); } TEST(Sub, FP16Weights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .FP16Weights() .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input2Static(true) .FP16Weights() .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); } TEST(Sub, INT8Weights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .INT8Weights() .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input2Static(true) .INT8Weights() .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); } TEST(Sub, INT8ChannelWiseWeights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .INT8ChannelWiseWeights() .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input2Static(true) .INT8ChannelWiseWeights() .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); } TEST(Sub, SparseWeights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .SparseWeights() .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input2Static(true) .SparseWeights() .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); } TEST(Sub, ReluActivation) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .ReluActivation() .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); } TEST(Sub, Relu6Activation) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Relu6Activation() .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); } TEST(Sub, ReluMinus1To1Activation) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .ReluMinus1To1Activation() .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); } TEST(Sub, DISABLED_TanhActivation) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .TanhActivation() .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); } TEST(Sub, DISABLED_SignBitActivation) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .SignBitActivation() .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); } TEST(Sub, MultiThreading) { TfLiteXNNPackDelegateOptions delegate_options = TfLiteXNNPackDelegateOptionsDefault(); delegate_options.num_threads = 2; std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_SUB, xnnpack_delegate.get()); } } }
881
cpp
tensorflow/tensorflow
space_to_depth
tensorflow/lite/kernels/space_to_depth.cc
tensorflow/lite/kernels/space_to_depth_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_GL_KERNELS_SPACE_TO_DEPTH_H_ #define TENSORFLOW_LITE_DELEGATES_GPU_GL_KERNELS_SPACE_TO_DEPTH_H_ #include <memory> #include "tensorflow/lite/delegates/gpu/gl/node_shader.h" namespace tflite { namespace gpu { namespace gl { std::unique_ptr<NodeShader> NewSpaceToDepthNodeShader(); std::unique_ptr<NodeShader> NewDepthToSpaceNodeShader(); } } } #endif #include "tensorflow/lite/delegates/gpu/gl/kernels/space_to_depth.h" #include <any> #include <memory> #include <string> #include <utility> #include "absl/memory/memory.h" #include "absl/types/any.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/gl/node_shader.h" namespace tflite { namespace gpu { namespace gl { namespace { class SpaceToDepth : public NodeShader { public: absl::Status GenerateCode(const GenerationContext& ctx, GeneratedCode* generated_code) const final { const auto& attr = std::any_cast<const SpaceToDepthAttributes&>(ctx.op_attr); std::string code = R"( for (int i = 0; i < 4; ++i) { int dst_c = 4 * gid.z + i; int block_id = dst_c / $input_data_0_c$; int src_x = gid.x * $block_size$ + block_id % $block_size$; int src_y = gid.y * $block_size$ + block_id / $block_size$; int src_c = dst_c % $input_data_0_c$; value_0[i] = $input_data_0[src_x, src_y, src_c / 4]$[src_c % 4]; } )"; *generated_code = { { {"block_size", attr.block_size}, {"input_data_0_c", static_cast<int>(ctx.input_shapes[0][3])}, }, {}, {}, uint3(), uint3(), std::move(code), IOStructure::ONLY_DEFINITIONS, IOStructure::AUTO, }; return absl::OkStatus(); } }; class DepthToSpace : public NodeShader { public: absl::Status GenerateCode(const GenerationContext& ctx, GeneratedCode* generated_code) const final { const auto& attr = std::any_cast<const SpaceToDepthAttributes&>(ctx.op_attr); std::string code = R"( for (int i = 0; i < 4; ++i) { int dst_c = 4 * gid.z + i; int block_x = gid.x % $block_size$; int src_x = gid.x / $block_size$; int block_y = gid.y % $block_size$; int src_y = gid.y / $block_size$; int block_id = block_y * $block_size$ + block_x; int src_c = block_id * $output_channels$ + dst_c; value_0[i] = $input_data_0[src_x, src_y, src_c / 4]$[src_c % 4]; } )"; *generated_code = { { {"block_size", attr.block_size}, {"output_channels", static_cast<int>(ctx.output_shapes[0][3])}, }, {}, {}, uint3(), uint3(), std::move(code), IOStructure::ONLY_DEFINITIONS, IOStructure::AUTO, }; return absl::OkStatus(); } }; } std::unique_ptr<NodeShader> NewSpaceToDepthNodeShader() { return std::make_unique<SpaceToDepth>(); } std::unique_ptr<NodeShader> NewDepthToSpaceNodeShader() { return std::make_unique<DepthToSpace>(); } } } }
#include "tensorflow/lite/delegates/gpu/gl/kernels/space_to_depth.h" #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/gl/kernels/test_util.h" using ::testing::FloatNear; using ::testing::Pointwise; namespace tflite { namespace gpu { namespace gl { namespace { TEST(SpaceToDepthTest, TensorShape1x2x2x1BlockSize2) { const TensorRef<BHWC> input = { .type = DataType::FLOAT32, .shape = BHWC(1, 2, 2, 1), .ref = 0}; const TensorRef<BHWC> output = { .type = DataType::FLOAT32, .shape = BHWC(1, 1, 1, 4), .ref = 1}; const SpaceToDepthAttributes attr = {.block_size = 2}; SingleOpModel model({ToString(OperationType::SPACE_TO_DEPTH), attr}, {input}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {1.0f, 2.0f, 3.0f, 4.0f})); ASSERT_OK(model.Invoke(*NewSpaceToDepthNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {1.0f, 2.0f, 3.0f, 4.0f})); } TEST(SpaceToDepthTest, TensorShape1x2x2x2BlockSize2) { const TensorRef<BHWC> input = { .type = DataType::FLOAT32, .shape = BHWC(1, 2, 2, 2), .ref = 0}; const TensorRef<BHWC> output = { .type = DataType::FLOAT32, .shape = BHWC(1, 1, 1, 8), .ref = 1}; const SpaceToDepthAttributes attr = {.block_size = 2}; SingleOpModel model({ToString(OperationType::SPACE_TO_DEPTH), attr}, {input}, {output}); ASSERT_TRUE(model.PopulateTensor( 0, {1.4f, 2.3f, 3.2f, 4.1f, 5.4f, 6.3f, 7.2f, 8.1f})); ASSERT_OK(model.Invoke(*NewSpaceToDepthNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {1.4f, 2.3f, 3.2f, 4.1f, 5.4f, 6.3f, 7.2f, 8.1f})); } TEST(SpaceToDepthTest, TensorShape1x2x2x3BlockSize2) { const TensorRef<BHWC> input = { .type = DataType::FLOAT32, .shape = BHWC(1, 2, 2, 3), .ref = 0}; const TensorRef<BHWC> output = { .type = DataType::FLOAT32, .shape = BHWC(1, 1, 1, 12), .ref = 1}; const SpaceToDepthAttributes attr = {.block_size = 2}; SingleOpModel model({ToString(OperationType::SPACE_TO_DEPTH), attr}, {input}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 12.0f})); ASSERT_OK(model.Invoke(*NewSpaceToDepthNodeShader())); EXPECT_THAT( model.GetOutput(0), Pointwise(FloatNear(1e-6), {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 12.0f})); } TEST(SpaceToDepthTest, TensorShape1x4x4x1BlockSize2) { const TensorRef<BHWC> input = { .type = DataType::FLOAT32, .shape = BHWC(1, 4, 4, 1), .ref = 0}; const TensorRef<BHWC> output = { .type = DataType::FLOAT32, .shape = BHWC(1, 2, 2, 4), .ref = 1}; const SpaceToDepthAttributes attr = {.block_size = 2}; SingleOpModel model({ToString(OperationType::SPACE_TO_DEPTH), attr}, {input}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {1.0, 2.0, 5.0, 6.0, 3.0, 4.0, 7.0, 8.0, 9.0, 10.0, 13.0, 14.0, 11.0, 12.0, 15.0, 16.0})); ASSERT_OK(model.Invoke(*NewSpaceToDepthNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0})); } } } } }
882
cpp
tensorflow/tensorflow
resize_bilinear
tensorflow/lite/kernels/resize_bilinear.cc
tensorflow/lite/kernels/internal/resize_bilinear_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_RESIZE_BILINEAR_H_ #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_RESIZE_BILINEAR_H_ #include <algorithm> #include <cmath> #include <cstdint> #include <limits> #include "tensorflow/lite/kernels/internal/cppmath.h" #include "tensorflow/lite/kernels/internal/types.h" namespace tflite { namespace reference_ops { inline void ComputeInterpolationValues(const float value, const float scale, const bool half_pixel_centers, int32_t input_size, float* scaled_value, int32_t* lower_bound, int32_t* upper_bound) { if (half_pixel_centers) { *scaled_value = (value + 0.5f) * scale - 0.5f; } else { *scaled_value = value * scale; } float scaled_value_floor = std::floor(*scaled_value); *lower_bound = std::max(static_cast<int32_t>(scaled_value_floor), static_cast<int32_t>(0)); *upper_bound = std::min(static_cast<int32_t>(std::ceil(*scaled_value)), input_size - 1); } template <typename T> inline void ResizeBilinear(const tflite::ResizeBilinearParams& op_params, const RuntimeShape& unextended_input_shape, const T* input_data, const RuntimeShape& unextended_output_size_shape, const int32_t* output_size_data, const RuntimeShape& unextended_output_shape, T* output_data) { TFLITE_DCHECK(!op_params.half_pixel_centers || !op_params.align_corners); TFLITE_DCHECK_LE(unextended_input_shape.DimensionsCount(), 4); TFLITE_DCHECK_LE(unextended_output_size_shape.DimensionsCount(), 4); TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), 4); const RuntimeShape input_shape = RuntimeShape::ExtendedShape(4, unextended_input_shape); const RuntimeShape output_size_shape = RuntimeShape::ExtendedShape(4, unextended_output_size_shape); const RuntimeShape output_shape = RuntimeShape::ExtendedShape(4, unextended_output_shape); int32_t batches = MatchingDim(input_shape, 0, output_shape, 0); int32_t input_height = input_shape.Dims(1); int32_t input_width = input_shape.Dims(2); int32_t depth = MatchingDim(input_shape, 3, output_shape, 3); TFLITE_DCHECK_EQ(output_size_shape.Dims(0), 1); TFLITE_DCHECK_EQ(output_size_shape.Dims(1), 1); TFLITE_DCHECK_EQ(output_size_shape.Dims(2), 1); TFLITE_DCHECK_EQ(output_size_shape.Dims(3), 2); int32_t output_height = output_size_data[Offset(output_size_shape, 0, 0, 0, 0)]; int32_t output_width = output_size_data[Offset(output_size_shape, 0, 0, 0, 1)]; float height_scale = static_cast<float>(input_height) / output_height; float width_scale = static_cast<float>(input_width) / output_width; if (op_params.align_corners && output_height > 1) { height_scale = static_cast<float>(input_height - 1) / (output_height - 1); } if (op_params.align_corners && output_width > 1) { width_scale = static_cast<float>(input_width - 1) / (output_width - 1); } const float rounding_offset = std::numeric_limits<T>::is_integer ? .5f : .0f; for (int b = 0; b < batches; ++b) { for (int y = 0; y < output_height; ++y) { float input_y; int32_t y0, y1; ComputeInterpolationValues(y, height_scale, op_params.half_pixel_centers, input_height, &input_y, &y0, &y1); for (int x = 0; x < output_width; ++x) { float input_x; int32_t x0, x1; ComputeInterpolationValues(x, width_scale, op_params.half_pixel_centers, input_width, &input_x, &x0, &x1); for (int c = 0; c < depth; ++c) { T interpolation = static_cast<T>(input_data[Offset(input_shape, b, y0, x0, c)] * (1 - (input_y - y0)) * (1 - (input_x - x0)) + input_data[Offset(input_shape, b, y1, x0, c)] * (input_y - y0) * (1 - (input_x - x0)) + input_data[Offset(input_shape, b, y0, x1, c)] * (1 - (input_y - y0)) * (input_x - x0) + input_data[Offset(input_shape, b, y1, x1, c)] * (input_y - y0) * (input_x - x0) + rounding_offset); output_data[Offset(output_shape, b, y, x, c)] = interpolation; } } } } } inline void ComputeInterpolationValuesInteger( const int32_t value, const int32_t scale_10, const bool half_pixel_centers, int32_t input_size, int32_t* scaled_value, int32_t* lower_bound, int32_t* upper_bound) { if (half_pixel_centers) { *scaled_value = value * scale_10 + scale_10 / 2 - (1 << 9); } else { *scaled_value = value * scale_10; } constexpr int32_t zero = 0; *lower_bound = std::max(*scaled_value / (1 << 10), zero); *upper_bound = std::min((*scaled_value + (1 << 10) - 1) / (1 << 10), input_size - 1); } template <typename T> inline void ResizeBilinearInteger( const tflite::ResizeBilinearParams& op_params, const RuntimeShape& unextended_input_shape, const T* input_data, const RuntimeShape& unextended_output_size_shape, const int32_t* output_size_data, const RuntimeShape& unextended_output_shape, T* output_data) { TFLITE_DCHECK(!op_params.half_pixel_centers || !op_params.align_corners); TFLITE_DCHECK_LE(unextended_input_shape.DimensionsCount(), 4); TFLITE_DCHECK_LE(unextended_output_size_shape.DimensionsCount(), 4); TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), 4); const RuntimeShape input_shape = RuntimeShape::ExtendedShape(4, unextended_input_shape); const RuntimeShape output_size_shape = RuntimeShape::ExtendedShape(4, unextended_output_size_shape); const RuntimeShape output_shape = RuntimeShape::ExtendedShape(4, unextended_output_shape); const int32_t batches = MatchingDim(input_shape, 0, output_shape, 0); const int32_t input_height = input_shape.Dims(1); const int32_t input_width = input_shape.Dims(2); const int32_t depth = MatchingDim(input_shape, 3, output_shape, 3); TFLITE_DCHECK_EQ(output_size_shape.Dims(0), 1); TFLITE_DCHECK_EQ(output_size_shape.Dims(1), 1); TFLITE_DCHECK_EQ(output_size_shape.Dims(2), 1); TFLITE_DCHECK_EQ(output_size_shape.Dims(3), 2); const int32_t output_height = output_size_data[Offset(output_size_shape, 0, 0, 0, 0)]; const int32_t output_width = output_size_data[Offset(output_size_shape, 0, 0, 0, 1)]; int32_t height_scale_10 = ((1 << 10) * input_height + output_height / 2) / output_height; int32_t width_scale_10 = ((1 << 10) * input_width + output_width / 2) / output_width; if (op_params.align_corners && output_height > 1) { height_scale_10 = ((1 << 10) * (input_height - 1) + (output_height - 1) / 2) / (output_height - 1); } if (op_params.align_corners && output_width > 1) { width_scale_10 = ((1 << 10) * (input_width - 1) + (output_width - 1) / 2) / (output_width - 1); } for (int b = 0; b < batches; ++b) { for (int y = 0; y < output_height; ++y) { int32_t input_y, y0, y1; ComputeInterpolationValuesInteger(y, height_scale_10, op_params.half_pixel_centers, input_height, &input_y, &y0, &y1); for (int x = 0; x < output_width; ++x) { int32_t input_x, x0, x1; ComputeInterpolationValuesInteger(x, width_scale_10, op_params.half_pixel_centers, input_width, &input_x, &x0, &x1); for (int c = 0; c < depth; ++c) { const int64_t output_20_ll = static_cast<int64_t>( input_data[Offset(input_shape, b, y0, x0, c)]) * ((1 << 10) - (input_y - (1 << 10) * y0)) * ((1 << 10) - (input_x - (1 << 10) * x0)); const int64_t output_20_lu = static_cast<int64_t>( input_data[Offset(input_shape, b, y1, x0, c)]) * (input_y - (1 << 10) * y0) * ((1 << 10) - (input_x - (1 << 10) * x0)); const int64_t output_20_rl = static_cast<int64_t>( input_data[Offset(input_shape, b, y0, x1, c)]) * ((1 << 10) - (input_y - (1 << 10) * y0)) * (input_x - (1 << 10) * x0); const int64_t output_20_ru = static_cast<int64_t>( input_data[Offset(input_shape, b, y1, x1, c)]) * (input_y - (1 << 10) * y0) * (input_x - (1 << 10) * x0); const int64_t output_20 = output_20_ll + output_20_lu + output_20_rl + output_20_ru; #if TFLITE_SINGLE_ROUNDING const int64_t round = 1 << 19; const T interpolation = static_cast<T>((output_20 + round) >> 20); #else const int64_t round = (output_20 > 0) ? (1 << 19) : -(1 << 19); const T interpolation = static_cast<T>((output_20 + round) / (1 << 20)); #endif output_data[Offset(output_shape, b, y, x, c)] = interpolation; } } } } } } } #endif #include <stdint.h> #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/kernels/internal/optimized/neon_check.h" #include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h" #include "tensorflow/lite/kernels/internal/optimized/resize_bilinear.h" #include "tensorflow/lite/kernels/internal/reference/reference_ops.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/internal/types.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace builtin { namespace resize_bilinear { enum KernelType { kReference, kOptimized, }; constexpr int kInputTensor = 0; constexpr int kSizeTensor = 1; constexpr int kOutputTensor = 0; TfLiteStatus ResizeOutputTensor(TfLiteContext* context, const TfLiteTensor* input, const TfLiteTensor* size, TfLiteTensor* output) { const int32* size_data = GetTensorData<int32>(size); TF_LITE_ENSURE(context, size_data[0] > 0); TF_LITE_ENSURE(context, size_data[1] > 0); TfLiteIntArray* output_size = TfLiteIntArrayCreate(4); output_size->data[0] = input->dims->data[0]; output_size->data[1] = size_data[0]; output_size->data[2] = size_data[1]; output_size->data[3] = input->dims->data[3]; return context->ResizeTensor(context, output, output_size); } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input)); const TfLiteTensor* size; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kSizeTensor, &size)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); TF_LITE_ENSURE_EQ(context, NumDimensions(input), 4); TF_LITE_ENSURE_EQ(context, NumDimensions(size), 1); TF_LITE_ENSURE_EQ(context, size->type, kTfLiteInt32); output->type = input->type; if (!IsConstantOrPersistentTensor(size)) { SetTensorToDynamic(output); return kTfLiteOk; } auto* params = reinterpret_cast<TfLiteResizeBilinearParams*>(node->builtin_data); if (params->half_pixel_centers && params->align_corners) { TF_LITE_KERNEL_LOG( context, "If half_pixel_centers is True, align_corners must be False."); return kTfLiteError; } return ResizeOutputTensor(context, input, size, output); } template <KernelType kernel_type> TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { auto* params = reinterpret_cast<TfLiteResizeBilinearParams*>(node->builtin_data); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); const TfLiteTensor* size; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kSizeTensor, &size)); if (IsDynamicTensor(output)) { TF_LITE_ENSURE_OK(context, ResizeOutputTensor(context, input, size, output)); } if (output->type == kTfLiteFloat32) { #define TF_LITE_RESIZE_BILINEAR(type, opname, datatype) \ tflite::ResizeBilinearParams op_params; \ op_params.align_corners = params->align_corners; \ op_params.half_pixel_centers = params->half_pixel_centers; \ type::opname(op_params, GetTensorShape(input), \ GetTensorData<datatype>(input), GetTensorShape(size), \ GetTensorData<int32>(size), GetTensorShape(output), \ GetTensorData<datatype>(output)) if (kernel_type == kReference) { TF_LITE_RESIZE_BILINEAR(reference_ops, ResizeBilinear, float); } else if (kernel_type == kOptimized) { TF_LITE_RESIZE_BILINEAR(optimized_ops, ResizeBilinear, float); } } else if (output->type == kTfLiteUInt8) { if (kernel_type == kReference) { TF_LITE_RESIZE_BILINEAR(reference_ops, ResizeBilinear, uint8_t); } else if (kernel_type == kOptimized) { TF_LITE_RESIZE_BILINEAR(optimized_ops, ResizeBilinear, uint8_t); } } else if (output->type == kTfLiteInt8) { if (kernel_type == kReference) { TF_LITE_RESIZE_BILINEAR(reference_ops, ResizeBilinearInteger, int8_t); } else if (kernel_type == kOptimized) { TF_LITE_RESIZE_BILINEAR(optimized_ops, ResizeBilinear, int8_t); } } else if (output->type == kTfLiteInt16) { TF_LITE_RESIZE_BILINEAR(reference_ops, ResizeBilinearInteger, int16_t); #undef TF_LITE_RESIZE_BILINEAR } else { TF_LITE_KERNEL_LOG(context, "Output type is %d, requires float.", output->type); return kTfLiteError; } return kTfLiteOk; } } TfLiteRegistration* Register_RESIZE_BILINEAR_REF() { static TfLiteRegistration r = { nullptr, nullptr, resize_bilinear::Prepare, resize_bilinear::Eval<resize_bilinear::kReference>}; return &r; } TfLiteRegistration* Register_RESIZE_BILINEAR() { static TfLiteRegistration r = { nullptr, nullptr, resize_bilinear::Prepare, resize_bilinear::Eval<resize_bilinear::kOptimized>}; return &r; } } } }
#include <algorithm> #include <cstdint> #include <functional> #include <memory> #include <random> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/xnnpack/resize_bilinear_tester.h" #include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h" namespace tflite { namespace xnnpack { TEST(ResizeBilinear, AlignCenters) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto size_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 10), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); ResizeBilinearTester() .HalfPixelCenters(true) .InputHeight(size_rng()) .InputWidth(size_rng()) .OutputHeight(size_rng()) .OutputWidth(size_rng()) .Channels(channel_rng()) .Test(xnnpack_delegate.get()); } TEST(ResizeBilinear, AlignCentersTF1X) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto size_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 10), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); ResizeBilinearTester() .InputHeight(size_rng()) .InputWidth(size_rng()) .OutputHeight(size_rng()) .OutputWidth(size_rng()) .Channels(channel_rng()) .Test(xnnpack_delegate.get()); } TEST(ResizeBilinear, AlignCorners) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto size_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 10), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); ResizeBilinearTester() .AlignCorners(true) .InputHeight(size_rng()) .InputWidth(size_rng()) .OutputHeight(size_rng()) .OutputWidth(size_rng()) .Channels(channel_rng()) .Test(xnnpack_delegate.get()); } TEST(ResizeBilinear, MultiThreading) { TfLiteXNNPackDelegateOptions delegate_options = TfLiteXNNPackDelegateOptionsDefault(); delegate_options.num_threads = 2; std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto size_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 10), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); ResizeBilinearTester() .InputHeight(size_rng()) .InputWidth(size_rng()) .OutputHeight(size_rng()) .OutputWidth(size_rng()) .Channels(channel_rng()) .Test(xnnpack_delegate.get()); } TEST(ResizeBilinear, TransientIndirectionBuffer) { TfLiteXNNPackDelegateOptions delegate_options = TfLiteXNNPackDelegateOptionsDefault(); delegate_options.num_threads = 2; delegate_options.flags |= TFLITE_XNNPACK_DELEGATE_FLAG_TRANSIENT_INDIRECTION_BUFFER; std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto size_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 10), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); ResizeBilinearTester() .InputHeight(size_rng()) .InputWidth(size_rng()) .OutputHeight(size_rng()) .OutputWidth(size_rng()) .Channels(channel_rng()) .Test(xnnpack_delegate.get()); } } }
883
cpp
tensorflow/tensorflow
elementwise
tensorflow/lite/kernels/elementwise.cc
tensorflow/lite/kernels/elementwise_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_GL_KERNELS_ELEMENTWISE_H_ #define TENSORFLOW_LITE_DELEGATES_GPU_GL_KERNELS_ELEMENTWISE_H_ #include <memory> #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/gl/node_shader.h" namespace tflite { namespace gpu { namespace gl { std::unique_ptr<NodeShader> NewElementwiseNodeShader( OperationType operation_type); } } } #endif #include "tensorflow/lite/delegates/gpu/gl/kernels/elementwise.h" #include <any> #include <memory> #include <string> #include <utility> #include <variant> #include <vector> #include "absl/strings/substitute.h" #include "tensorflow/lite/delegates/gpu/common/data_type.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/shape.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/tensor.h" #include "tensorflow/lite/delegates/gpu/common/types.h" #include "tensorflow/lite/delegates/gpu/gl/node_shader.h" #include "tensorflow/lite/delegates/gpu/gl/object.h" #include "tensorflow/lite/delegates/gpu/gl/variable.h" namespace tflite { namespace gpu { namespace gl { namespace { class ElementwiseOneArgument : public NodeShader { public: explicit ElementwiseOneArgument(OperationType operation_type) : operation_type_(operation_type) {} absl::Status GenerateCode(const GenerationContext& ctx, GeneratedCode* generated_code) const final { std::string source; switch (operation_type_) { case OperationType::ABS: source = "value_0 = abs(value_0);"; break; case OperationType::COS: source = "value_0 = cos(value_0);"; break; case OperationType::COPY: source = "value_0 = value_0;"; break; case OperationType::ELU: source = R"( value_0.x = value_0.x < 0.0 ? exp(value_0.x) - 1.0 : value_0.x; value_0.y = value_0.y < 0.0 ? exp(value_0.y) - 1.0 : value_0.y; value_0.z = value_0.z < 0.0 ? exp(value_0.z) - 1.0 : value_0.z; value_0.w = value_0.w < 0.0 ? exp(value_0.w) - 1.0 : value_0.w; )"; break; case OperationType::EXP: source = "value_0 = exp(value_0);"; break; case tflite::gpu::OperationType::FLOOR: source = "value_0 = floor(value_0);"; break; case tflite::gpu::OperationType::GELU: source = "value_0 = 0.5 * value_0 * (1.0 + tanh(0.7978845608 * (value_0 + " "0.044715 * value_0 * value_0 * value_0)));"; break; case OperationType::HARD_SWISH: source = "value_0 *= clamp(value_0 / 6.0 + vec4(0.5), vec4(0.0), " "vec4(1.0));"; break; case OperationType::LOG: source = R"( const float nan = normalize(vec4(0, 0, 0, 0)).x; value_0.x = value_0.x > 0.0 ? log(value_0.x) : nan; value_0.y = value_0.y > 0.0 ? log(value_0.y) : nan; value_0.z = value_0.z > 0.0 ? log(value_0.z) : nan; value_0.w = value_0.w > 0.0 ? log(value_0.w) : nan; )"; break; case OperationType::NEG: source = "value_0 = -(value_0);"; break; case OperationType::RSQRT: source = R"( const float nan = normalize(vec4(0, 0, 0, 0)).x; value_0.x = value_0.x > 0.0 ? 1.0 / sqrt(value_0.x) : nan; value_0.y = value_0.y > 0.0 ? 1.0 / sqrt(value_0.y) : nan; value_0.z = value_0.z > 0.0 ? 1.0 / sqrt(value_0.z) : nan; value_0.w = value_0.w > 0.0 ? 1.0 / sqrt(value_0.w) : nan; )"; break; case OperationType::SIGMOID: source = "value_0 = 1.0 / (1.0 + exp(-1.0 * value_0));"; break; case OperationType::SIN: source = "value_0 = sin(value_0);"; break; case OperationType::SQRT: source = R"( const float nan = normalize(vec4(0, 0, 0, 0)).x; value_0.x = value_0.x >= 0.0 ? sqrt(value_0.x) : nan; value_0.y = value_0.y >= 0.0 ? sqrt(value_0.y) : nan; value_0.z = value_0.z >= 0.0 ? sqrt(value_0.z) : nan; value_0.w = value_0.w >= 0.0 ? sqrt(value_0.w) : nan; )"; break; case OperationType::SQUARE: source = "value_0 = value_0 * value_0;"; break; case OperationType::TANH: source = "value_0 = tanh(value_0);"; break; default: return absl::InvalidArgumentError( "Incorrect elementwise operation type."); } *generated_code = { {}, {}, {}, uint3(), uint3(), source, IOStructure::AUTO, IOStructure::AUTO, }; return absl::OkStatus(); } private: OperationType operation_type_; }; class ElementwiseTwoArguments : public NodeShader { public: explicit ElementwiseTwoArguments(OperationType operation_type) : operation_type_(operation_type) {} inline bool IsElementwiseSupported(const GenerationContext& ctx) const { return ctx.input_shapes.size() == 2 && ctx.input_shapes[0] == ctx.input_shapes[1]; } inline bool IsBroadcastSupported(const GenerationContext& ctx) const { return ctx.input_shapes.size() == 2 && ctx.input_shapes[1][1] == 1 && ctx.input_shapes[1][2] == 1 && ctx.input_shapes[0][3] == ctx.input_shapes[1][3]; } absl::Status GenerateCode(const GenerationContext& ctx, GeneratedCode* generated_code) const final { std::vector<Variable> parameters; std::vector<std::pair<std::string, Object>> objects; std::string argument0, argument1; if (IsElementwiseSupported(ctx)) { argument0 = "value_0"; argument1 = "value_1"; } else if (IsBroadcastSupported(ctx)) { argument0 = "$input_data_0[gid.x, gid.y, gid.z]$"; argument1 = "$input_data_1[0, 0, gid.z]$"; } else { const auto& attr = std::any_cast<const ElementwiseAttributes&>(ctx.op_attr); const auto* tensor = std::get_if<Tensor<Linear, DataType::FLOAT32>>(&attr.param); const auto* scalar = std::get_if<float>(&attr.param); if (!tensor && !scalar) { return absl::InvalidArgumentError( "Couldn't read scalar of const vector data from the attributes."); } argument0 = "value_0"; if (tensor) { argument1 = "$const_data[gid.z]$"; objects.push_back({"const_data", MakeReadonlyObject(tensor->data)}); } else { argument1 = "vec4($const_data$)"; parameters.push_back({"const_data", *scalar}); } if (attr.runtime_tensor_is_second) { argument0 = argument1; argument1 = "value_0"; } } std::string source; switch (operation_type_) { case OperationType::DIV: { source = "value_0 = $0/$1;"; break; } case tflite::gpu::OperationType::FLOOR_DIV: source = "value_0 = floor($0 / $1);"; break; case tflite::gpu::OperationType::FLOOR_MOD: source = "value_0 = $0 - floor($0 / $1) * $1;"; break; case OperationType::MAXIMUM: { source = "value_0 = max($0, $1);"; break; } case OperationType::MINIMUM: { source = "value_0 = min($0, $1);"; break; } case OperationType::SQUARED_DIFF: { source = "value_0 = ($0 - $1) * ($0 - $1);"; break; } case OperationType::SUB: { source = "value_0 = $0 - $1;"; break; } case OperationType::POW: { source = "value_0 = pow($0, $1);"; break; } default: return absl::InvalidArgumentError( "Incorrect elementwise with scalar operation type."); } source = absl::Substitute(source, argument0, argument1); *generated_code = { std::move(parameters), std::move(objects), {}, uint3(), uint3(), source, IOStructure::AUTO, IOStructure::AUTO, }; return absl::OkStatus(); } private: OperationType operation_type_; }; } std::unique_ptr<NodeShader> NewElementwiseNodeShader( OperationType operation_type) { switch (operation_type) { case OperationType::ABS: case OperationType::COS: case OperationType::COPY: case OperationType::ELU: case OperationType::EXP: case OperationType::FLOOR: case OperationType::GELU: case OperationType::HARD_SWISH: case OperationType::LOG: case OperationType::NEG: case OperationType::RSQRT: case OperationType::SIGMOID: case OperationType::SIN: case OperationType::SQRT: case OperationType::SQUARE: case OperationType::TANH: return std::make_unique<ElementwiseOneArgument>(operation_type); case OperationType::DIV: case OperationType::FLOOR_DIV: case OperationType::FLOOR_MOD: case OperationType::MAXIMUM: case OperationType::MINIMUM: case OperationType::POW: case OperationType::SQUARED_DIFF: case OperationType::SUB: return std::make_unique<ElementwiseTwoArguments>(operation_type); default: return nullptr; } } } } }
#include "tensorflow/lite/delegates/gpu/gl/kernels/elementwise.h" #include <cmath> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/gpu/common/data_type.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/shape.h" #include "tensorflow/lite/delegates/gpu/common/tensor.h" #include "tensorflow/lite/delegates/gpu/gl/kernels/test_util.h" using ::testing::FloatEq; using ::testing::FloatNear; using ::testing::Pointwise; namespace tflite { namespace gpu { namespace gl { namespace { TensorRef<BHWC> GetTensorRef(int ref, const BHWC& shape) { TensorRef<BHWC> tensor_ref; tensor_ref.type = DataType::FLOAT32; tensor_ref.ref = ref; tensor_ref.shape = shape; return tensor_ref; } TEST(ElementwiseOneArgumentTest, Abs) { OperationType op_type = OperationType::ABS; const BHWC shape(1, 2, 2, 1); SingleOpModel model({ToString(op_type), {}}, {GetTensorRef(0, shape)}, {GetTensorRef(1, shape)}); ASSERT_TRUE(model.PopulateTensor(0, {0.0, -6.2, 2.0, 4.0})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {0.0, 6.2, 2.0, 4.0})); } TEST(ElementwiseOneArgumentTest, Cos) { OperationType op_type = OperationType::COS; const BHWC shape(1, 2, 2, 1); SingleOpModel model({ToString(op_type), {}}, {GetTensorRef(0, shape)}, {GetTensorRef(1, shape)}); ASSERT_TRUE(model.PopulateTensor(0, {0.0, 3.1415926, -3.1415926, 1})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {1.0, -1.0, -1.0, 0.540302})); } TEST(ElementwiseOneArgumentTest, Copy) { OperationType op_type = OperationType::COPY; const BHWC shape(1, 2, 2, 1); SingleOpModel model({ToString(op_type), {}}, {GetTensorRef(0, shape)}, {GetTensorRef(1, shape)}); ASSERT_TRUE(model.PopulateTensor(0, {0.0, -6.2, 2.0, 4.0})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatEq(), {0.0, -6.2, 2.0, 4.0})); } TEST(ElementwiseOneArgumentTest, Elu) { OperationType op_type = OperationType::ELU; const BHWC shape(1, 1, 1, 7); SingleOpModel model({ToString(op_type), {}}, {GetTensorRef(0, shape)}, {GetTensorRef(1, shape)}); ASSERT_TRUE(model.PopulateTensor( 0, {0.0f, 1.0f, -1.0f, 100.0f, -100.0f, 0.01f, -0.01f})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {0.0f, 1.0f, std::exp(-1.0f) - 1.0f, 100.0f, std::exp(-100.0f) - 1.0f, 0.01f, std::exp(-0.01f) - 1.0f})); } TEST(ElementwiseOneArgumentTest, Exp) { OperationType op_type = OperationType::EXP; const BHWC shape(1, 1, 1, 7); SingleOpModel model({ToString(op_type), {}}, {GetTensorRef(0, shape)}, {GetTensorRef(1, shape)}); ASSERT_TRUE(model.PopulateTensor( 0, {0.0f, 1.0f, -1.0f, 100.0f, -100.0f, 0.01f, -0.01f})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {std::exp(0.0f), std::exp(1.0f), std::exp(-1.0f), std::exp(100.0f), std::exp(-100.0f), std::exp(0.01f), std::exp(-0.01f)})); } TEST(ElementwiseOneArgumentTest, Floor) { OperationType op_type = OperationType::FLOOR; const BHWC shape(1, 1, 1, 7); SingleOpModel model({ToString(op_type), {}}, {GetTensorRef(0, shape)}, {GetTensorRef(1, shape)}); ASSERT_TRUE( model.PopulateTensor(0, {-4.5f, -3.0f, -1.5f, 0.0f, 1.5f, 3.0f, 4.5f})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {-5.0f, -3.0f, -2.0f, 0.0f, 1.0f, 3.0f, 4.0f})); } TEST(ElementwiseOneArgumentTest, Gelu) { OperationType op_type = OperationType::GELU; const BHWC shape(1, 1, 1, 6); SingleOpModel model({ToString(op_type), {}}, {GetTensorRef(0, shape)}, {GetTensorRef(1, shape)}); ASSERT_TRUE(model.PopulateTensor(0, {0.0f, 1.0f, 3.0f, 1.0f, -1.0f, -2.0f})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-5), {0.0f, 0.841192f, 2.99636f, 0.841192f, -0.158808f, -0.0454023f})); } TEST(ElementwiseOneArgumentTest, HardSwish) { OperationType op_type = OperationType::HARD_SWISH; const BHWC shape(1, 1, 1, 7); SingleOpModel model({ToString(op_type), {}}, {GetTensorRef(0, shape)}, {GetTensorRef(1, shape)}); ASSERT_TRUE( model.PopulateTensor(0, {-4.5f, -3.0f, -1.5f, 0.0f, 1.5f, 3.0f, 4.5f})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6f), {0.0f, 0.0f, -0.375f, 0.0f, 1.125f, 3.f, 4.5f})); } TEST(ElementwiseOneArgumentTest, Log) { OperationType op_type = OperationType::LOG; const BHWC shape(1, 2, 2, 1); SingleOpModel model({ToString(op_type), {}}, {GetTensorRef(0, shape)}, {GetTensorRef(1, shape)}); ASSERT_TRUE(model.PopulateTensor(0, {1.0, 3.1415926, 1.0, 1.0})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {0.0, 1.14473, 0.0, 0.0})); } TEST(ElementwiseOneArgumentTest, Neg) { OperationType op_type = OperationType::NEG; const BHWC shape(1, 2, 2, 1); SingleOpModel model({ToString(op_type), {}}, {GetTensorRef(0, shape)}, {GetTensorRef(1, shape)}); ASSERT_TRUE(model.PopulateTensor(0, {1.0, -3.1415926, 0.0, 1.0})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {-1.0, 3.1415926, 0.0, -1.0})); } TEST(ElementwiseOneArgumentTest, Rsqrt) { OperationType op_type = OperationType::RSQRT; const BHWC shape(1, 2, 2, 1); SingleOpModel model({ToString(op_type), {}}, {GetTensorRef(0, shape)}, {GetTensorRef(1, shape)}); ASSERT_TRUE(model.PopulateTensor(0, {1.0, 2.0, 4.0, 9.0})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {1.0, 0.707106, 0.5, 0.333333})); } TEST(ElementwiseOneArgumentTest, Sigmoid) { OperationType op_type = OperationType::SIGMOID; const BHWC shape(1, 2, 2, 1); SingleOpModel model({ToString(op_type), {}}, {GetTensorRef(0, shape)}, {GetTensorRef(1, shape)}); ASSERT_TRUE(model.PopulateTensor(0, {0.0, -6.0, 2.0, 4.0})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {0.5, 0.002473, 0.880797, 0.982014})); } TEST(ElementwiseOneArgumentTest, Sin) { OperationType op_type = OperationType::SIN; const BHWC shape(1, 2, 2, 1); SingleOpModel model({ToString(op_type), {}}, {GetTensorRef(0, shape)}, {GetTensorRef(1, shape)}); ASSERT_TRUE(model.PopulateTensor(0, {0.0, 3.1415926, -3.1415926, 1.0})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {0.0, 0.0, 0.0, 0.841471})); } TEST(ElementwiseOneArgumentTest, Sqrt) { OperationType op_type = OperationType::SQRT; const BHWC shape(1, 2, 2, 1); SingleOpModel model({ToString(op_type), {}}, {GetTensorRef(0, shape)}, {GetTensorRef(1, shape)}); ASSERT_TRUE(model.PopulateTensor(0, {0.0, 1.0, 2.0, 4.0})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {0.0, 1.0, 1.414213, 2.0})); } TEST(ElementwiseOneArgumentTest, Square) { OperationType op_type = OperationType::SQUARE; const BHWC shape(1, 2, 2, 1); SingleOpModel model({ToString(op_type), {}}, {GetTensorRef(0, shape)}, {GetTensorRef(1, shape)}); ASSERT_TRUE(model.PopulateTensor(0, {1.0, 2.0, 0.5, -3.0})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {1.0, 4.0, 0.25, 9.0})); } TEST(ElementwiseOneArgumentTest, Tanh) { OperationType op_type = OperationType::TANH; const BHWC shape(1, 2, 2, 1); SingleOpModel model({ToString(op_type), {}}, {GetTensorRef(0, shape)}, {GetTensorRef(1, shape)}); ASSERT_TRUE(model.PopulateTensor(0, {0.0, -6.0, 2.0, 4.0})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {0.0, -0.999987, 0.964027, 0.999329})); } TEST(ElementwiseTwoArgumentsTest, DivElementwise) { OperationType op_type = OperationType::DIV; const BHWC shape(1, 2, 2, 1); SingleOpModel model( {ToString(op_type), {}}, {GetTensorRef(0, shape), GetTensorRef(1, shape)}, {GetTensorRef(2, shape)}); ASSERT_TRUE(model.PopulateTensor(0, {0.0, -6.2, 2.0, 4.0})); ASSERT_TRUE(model.PopulateTensor(1, {1.0, 2.0, -0.5, 4.0})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {0.0, -3.1, -4.0, 1.0})); } TEST(ElementwiseTwoArgumentsTest, DivBroadcast) { OperationType op_type = OperationType::DIV; const BHWC shape0(1, 2, 1, 2); const BHWC shape1(1, 1, 1, 2); SingleOpModel model( {ToString(op_type), {}}, {GetTensorRef(0, shape0), GetTensorRef(1, shape1)}, {GetTensorRef(2, shape0)}); ASSERT_TRUE(model.PopulateTensor(0, {0.0, 1.0, 2.0, 3.0})); ASSERT_TRUE(model.PopulateTensor(1, {0.5, 0.2})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {0.0, 5.0, 4.0, 15.0})); } TEST(ElementwiseTwoArgumentsTest, DivScalar) { OperationType op_type = OperationType::DIV; const BHWC shape0(1, 2, 1, 2); ElementwiseAttributes attr; attr.param = static_cast<float>(0.5); SingleOpModel model({ToString(op_type), attr}, {GetTensorRef(0, shape0)}, {GetTensorRef(2, shape0)}); ASSERT_TRUE(model.PopulateTensor(0, {0.0, 1.0, 2.0, 3.0})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {0.0, 2.0, 4.0, 6.0})); } TEST(ElementwiseTwoArgumentsTest, DivConstVector) { OperationType op_type = OperationType::DIV; const BHWC shape0(1, 2, 1, 2); ElementwiseAttributes attr; Tensor<Linear, DataType::FLOAT32> param; param.shape = Linear(2); param.id = 1; param.data = {0.4, 0.5}; attr.param = std::move(param); SingleOpModel model({ToString(op_type), attr}, {GetTensorRef(0, shape0)}, {GetTensorRef(2, shape0)}); ASSERT_TRUE(model.PopulateTensor(0, {0.0, 1.0, 2.0, 3.0})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {0.0, 2.0, 5.0, 6.0})); } TEST(ElementwiseTwoArgumentsTest, FloorDiv) { OperationType op_type = OperationType::FLOOR_DIV; const BHWC shape0(1, 1, 1, 7); float scalar = 2.7f; ElementwiseAttributes attr; attr.param = scalar; SingleOpModel model({ToString(op_type), attr}, {GetTensorRef(0, shape0)}, {GetTensorRef(2, shape0)}); ASSERT_TRUE( model.PopulateTensor(0, {-4.5f, -3.0f, -1.5f, 0.0f, 1.5f, 3.0f, 4.5f})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {std::floor(-4.5f / scalar), std::floor(-3.0f / scalar), std::floor(-1.5f / scalar), std::floor(0.0f / scalar), std::floor(1.5f / scalar), std::floor(3.0f / scalar), std::floor(4.5f / scalar)})); } TEST(ElementwiseTwoArgumentsTest, FloorMod) { OperationType op_type = OperationType::FLOOR_MOD; const BHWC shape0(1, 1, 1, 7); float scalar = 2.7f; ElementwiseAttributes attr; attr.param = scalar; SingleOpModel model({ToString(op_type), attr}, {GetTensorRef(0, shape0)}, {GetTensorRef(2, shape0)}); ASSERT_TRUE( model.PopulateTensor(0, {-4.5f, -3.0f, -1.5f, 0.0f, 1.5f, 3.0f, 4.5f})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT( model.GetOutput(0), Pointwise(FloatNear(1e-6), {-4.5f - std::floor(-4.5f / scalar) * scalar, -3.0f - std::floor(-3.0f / scalar) * scalar, -1.5f - std::floor(-1.5f / scalar) * scalar, 0.0f - std::floor(0.0f / scalar) * scalar, 1.5f - std::floor(1.5f / scalar) * scalar, 3.0f - std::floor(3.0f / scalar) * scalar, 4.5f - std::floor(4.5f / scalar) * scalar})); } TEST(ElementwiseTwoArgumentsTest, MaximumElementwise) { OperationType op_type = OperationType::MAXIMUM; const BHWC shape(1, 2, 2, 1); SingleOpModel model( {ToString(op_type), {}}, {GetTensorRef(0, shape), GetTensorRef(1, shape)}, {GetTensorRef(2, shape)}); ASSERT_TRUE(model.PopulateTensor(0, {0.0, -6.2, 2.0, -3.0})); ASSERT_TRUE(model.PopulateTensor(1, {1.0, 2.0, 3.0, -2.0})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {1.0, 2.0, 3.0, -2.0})); } TEST(ElementwiseTwoArgumentsTest, MaximumBroadcast) { OperationType op_type = OperationType::MAXIMUM; const BHWC shape0(1, 2, 1, 2); const BHWC shape1(1, 1, 1, 2); SingleOpModel model( {ToString(op_type), {}}, {GetTensorRef(0, shape0), GetTensorRef(1, shape1)}, {GetTensorRef(2, shape0)}); ASSERT_TRUE(model.PopulateTensor(0, {0.0, 1.0, 2.0, 3.0})); ASSERT_TRUE(model.PopulateTensor(1, {0.5, 0.2})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {0.5, 1.0, 2.0, 3.0})); } TEST(ElementwiseTwoArgumentsTest, MaximumScalar) { OperationType op_type = OperationType::MAXIMUM; const BHWC shape(1, 2, 2, 1); ElementwiseAttributes attr; attr.param = -1.0f; SingleOpModel model( {ToString(op_type), std::move(attr)}, {GetTensorRef(0, shape)}, {GetTensorRef(2, shape)}); ASSERT_TRUE(model.PopulateTensor(0, {0.0, -6.2, 2.0, -3.0})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {0.0, -1.0, 2.0, -1.0})); } TEST(ElementwiseTwoArgumentsTest, MaximumConstVector) { OperationType op_type = OperationType::MAXIMUM; const BHWC shape0(1, 2, 1, 2); ElementwiseAttributes attr; Tensor<Linear, DataType::FLOAT32> param; param.shape = Linear(2); param.id = 1; param.data = {0.4, 0.5}; attr.param = std::move(param); SingleOpModel model({ToString(op_type), attr}, {GetTensorRef(0, shape0)}, {GetTensorRef(2, shape0)}); ASSERT_TRUE(model.PopulateTensor(0, {0.0, 1.0, 2.0, 3.0})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {0.4, 1.0, 2.0, 3.0})); } TEST(ElementwiseTwoArgumentsTest, MinimumElementwise) { OperationType op_type = OperationType::MINIMUM; const BHWC shape(1, 2, 2, 1); SingleOpModel model( {ToString(op_type), {}}, {GetTensorRef(0, shape), GetTensorRef(1, shape)}, {GetTensorRef(2, shape)}); ASSERT_TRUE(model.PopulateTensor(0, {0.0, -6.2, 2.0, -3.0})); ASSERT_TRUE(model.PopulateTensor(1, {1.0, 2.0, 3.0, -2.0})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {0.0, -6.2, 2.0, -3.0})); } TEST(ElementwiseTwoArgumentsTest, MinimumBroadcast) { OperationType op_type = OperationType::MINIMUM; const BHWC shape0(1, 2, 1, 2); const BHWC shape1(1, 1, 1, 2); SingleOpModel model( {ToString(op_type), {}}, {GetTensorRef(0, shape0), GetTensorRef(1, shape1)}, {GetTensorRef(2, shape0)}); ASSERT_TRUE(model.PopulateTensor(0, {0.0, 1.0, 2.0, 3.0})); ASSERT_TRUE(model.PopulateTensor(1, {0.5, 0.2})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {0.0, 0.2, 0.5, 0.2})); } TEST(ElementwiseTwoArgumentsTest, MinimumScalar) { OperationType op_type = OperationType::MINIMUM; const BHWC shape(1, 2, 2, 1); ElementwiseAttributes attr; attr.param = -1.0f; SingleOpModel model( {ToString(op_type), std::move(attr)}, {GetTensorRef(0, shape)}, {GetTensorRef(2, shape)}); ASSERT_TRUE(model.PopulateTensor(0, {0.0, -6.2, 2.0, -3.0})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {-1.0, -6.2, -1.0, -3.0})); } TEST(ElementwiseTwoArgumentsTest, MinimumConstVector) { OperationType op_type = OperationType::MINIMUM; const BHWC shape0(1, 2, 1, 2); ElementwiseAttributes attr; Tensor<Linear, DataType::FLOAT32> param; param.shape = Linear(2); param.id = 1; param.data = {0.5, 0.2}; attr.param = std::move(param); SingleOpModel model({ToString(op_type), attr}, {GetTensorRef(0, shape0)}, {GetTensorRef(2, shape0)}); ASSERT_TRUE(model.PopulateTensor(0, {0.0, 1.0, 2.0, 3.0})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {0.0, 0.2, 0.5, 0.2})); } TEST(ElementwiseTwoArgumentsTest, PowElementwise) { OperationType op_type = OperationType::POW; const BHWC shape(1, 2, 2, 1); SingleOpModel model( {ToString(op_type), {}}, {GetTensorRef(0, shape), GetTensorRef(1, shape)}, {GetTensorRef(2, shape)}); ASSERT_TRUE(model.PopulateTensor(0, {0.0, 1.0, 2.0, 4.0})); ASSERT_TRUE(model.PopulateTensor(1, {1.0, 2.0, 3.0, 4.0})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {0.0, 1.0, 8.0, 256.0})); } TEST(ElementwiseTwoArgumentsTest, PowBroadcast) { OperationType op_type = OperationType::POW; const BHWC shape0(1, 2, 1, 2); const BHWC shape1(1, 1, 1, 2); SingleOpModel model( {ToString(op_type), {}}, {GetTensorRef(0, shape0), GetTensorRef(1, shape1)}, {GetTensorRef(2, shape0)}); ASSERT_TRUE(model.PopulateTensor(0, {0.0, 1.0, 2.0, 4.0})); ASSERT_TRUE(model.PopulateTensor(1, {2.0, 0.5})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {0.0, 1.0, 4.0, 2.0})); } TEST(ElementwiseTwoArgumentsTest, PowScalar) { OperationType op_type = OperationType::POW; const BHWC shape(1, 2, 2, 1); ElementwiseAttributes attr; attr.param = 2.0f; SingleOpModel model( {ToString(op_type), std::move(attr)}, {GetTensorRef(0, shape)}, {GetTensorRef(2, shape)}); ASSERT_TRUE(model.PopulateTensor(0, {0.0, 1.0, 2.0, 4.0})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {0.0, 1.0, 4.0, 16.0})); } TEST(ElementwiseTwoArgumentsTest, PowConstVector) { OperationType op_type = OperationType::POW; const BHWC shape0(1, 2, 1, 2); ElementwiseAttributes attr; Tensor<Linear, DataType::FLOAT32> param; param.shape = Linear(2); param.id = 1; param.data = {2.0, 0.5}; attr.param = std::move(param); SingleOpModel model({ToString(op_type), attr}, {GetTensorRef(0, shape0)}, {GetTensorRef(2, shape0)}); ASSERT_TRUE(model.PopulateTensor(0, {0.0, 1.0, 2.0, 4.0})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {0.0, 1.0, 4.0, 2.0})); } TEST(ElementwiseTwoArgumentsTest, SquaredDiffElementwise) { OperationType op_type = OperationType::SQUARED_DIFF; const BHWC shape(1, 2, 2, 1); SingleOpModel model( {ToString(op_type), {}}, {GetTensorRef(0, shape), GetTensorRef(1, shape)}, {GetTensorRef(2, shape)}); ASSERT_TRUE(model.PopulateTensor(0, {0.0, 2.0, 2.0, 4.0})); ASSERT_TRUE(model.PopulateTensor(1, {1.0, 1.0, 5.0, 4.0})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {1.0, 1.0, 9.0, 0.0})); } TEST(ElementwiseTwoArgumentsTest, SquaredDiffBroadcast) { OperationType op_type = OperationType::SQUARED_DIFF; const BHWC shape0(1, 2, 1, 2); const BHWC shape1(1, 1, 1, 2); SingleOpModel model( {ToString(op_type), {}}, {GetTensorRef(0, shape0), GetTensorRef(1, shape1)}, {GetTensorRef(2, shape0)}); ASSERT_TRUE(model.PopulateTensor(0, {0.0, 1.0, 2.0, 3.0})); ASSERT_TRUE(model.PopulateTensor(1, {-1.0, 5.0})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {1.0, 16.0, 9.0, 4.0})); } TEST(ElementwiseTwoArgumentsTest, SquaredDiffScalar) { OperationType op_type = OperationType::SQUARED_DIFF; const BHWC shape0(1, 2, 1, 2); ElementwiseAttributes attr; attr.param = static_cast<float>(5.0); SingleOpModel model({ToString(op_type), attr}, {GetTensorRef(0, shape0)}, {GetTensorRef(2, shape0)}); ASSERT_TRUE(model.PopulateTensor(0, {0.0, 1.0, 2.0, 3.0})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {25.0, 16.0, 9.0, 4.0})); } TEST(ElementwiseTwoArgumentsTest, SquaredDiffConstVector) { OperationType op_type = OperationType::SQUARED_DIFF; const BHWC shape0(1, 2, 1, 2); ElementwiseAttributes attr; Tensor<Linear, DataType::FLOAT32> param; param.shape = Linear(2); param.id = 1; param.data = {-1.0, 5.0}; attr.param = std::move(param); SingleOpModel model({ToString(op_type), attr}, {GetTensorRef(0, shape0)}, {GetTensorRef(2, shape0)}); ASSERT_TRUE(model.PopulateTensor(0, {0.0, 1.0, 2.0, 3.0})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {1.0, 16.0, 9.0, 4.0})); } TEST(ElementwiseTwoArgumentsTest, SubElementwise) { OperationType op_type = OperationType::SUB; const BHWC shape(1, 2, 2, 1); SingleOpModel model( {ToString(op_type), {}}, {GetTensorRef(0, shape), GetTensorRef(1, shape)}, {GetTensorRef(2, shape)}); ASSERT_TRUE(model.PopulateTensor(0, {0.0, -6.2, 2.0, 4.0})); ASSERT_TRUE(model.PopulateTensor(1, {1.0, 2.0, 3.0, 4.0})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {-1.0, -8.2, -1.0, 0.0})); } TEST(ElementwiseTwoArgumentsTest, SubBroadcast) { OperationType op_type = OperationType::SUB; const BHWC shape0(1, 2, 1, 2); const BHWC shape1(1, 1, 1, 2); SingleOpModel model( {ToString(op_type), {}}, {GetTensorRef(0, shape0), GetTensorRef(1, shape1)}, {GetTensorRef(2, shape0)}); ASSERT_TRUE(model.PopulateTensor(0, {0.0, 1.0, 2.0, 3.0})); ASSERT_TRUE(model.PopulateTensor(1, {0.3, 0.2})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {-0.3, 0.8, 1.7, 2.8})); } TEST(ElementwiseTwoArgumentsTest, SubScalar) { OperationType op_type = OperationType::SUB; const BHWC shape0(1, 2, 1, 2); ElementwiseAttributes attr; attr.param = static_cast<float>(0.5); SingleOpModel model({ToString(op_type), attr}, {GetTensorRef(0, shape0)}, {GetTensorRef(2, shape0)}); ASSERT_TRUE(model.PopulateTensor(0, {0.0, 1.0, 2.0, 3.0})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {-0.5, 0.5, 1.5, 2.5})); } TEST(ElementwiseTwoArgumentsTest, SubScalarRuntimeTensorSecond) { OperationType op_type = OperationType::SUB; const BHWC shape0(1, 2, 1, 2); ElementwiseAttributes attr; attr.param = static_cast<float>(0.5); attr.runtime_tensor_is_second = true; SingleOpModel model({ToString(op_type), attr}, {GetTensorRef(0, shape0)}, {GetTensorRef(2, shape0)}); ASSERT_TRUE(model.PopulateTensor(0, {0.0, 1.0, 2.0, 3.0})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {0.5, -0.5, -1.5, -2.5})); } TEST(ElementwiseTwoArgumentsTest, SubConstVector) { OperationType op_type = OperationType::SUB; const BHWC shape0(1, 2, 1, 2); ElementwiseAttributes attr; Tensor<Linear, DataType::FLOAT32> param; param.shape = Linear(2); param.id = 1; param.data = {0.3, 0.2}; attr.param = std::move(param); SingleOpModel model({ToString(op_type), attr}, {GetTensorRef(0, shape0)}, {GetTensorRef(2, shape0)}); ASSERT_TRUE(model.PopulateTensor(0, {0.0, 1.0, 2.0, 3.0})); ASSERT_OK(model.Invoke(*NewElementwiseNodeShader(op_type))); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {-0.3, 0.8, 1.7, 2.8})); } } } } }
884
cpp
tensorflow/tensorflow
one_hot
tensorflow/lite/kernels/one_hot.cc
tensorflow/lite/kernels/one_hot_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_COMMON_TASKS_ONE_HOT_H_ #define TENSORFLOW_LITE_DELEGATES_GPU_COMMON_TASKS_ONE_HOT_H_ #include <string> #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/task/gpu_operation.h" #include "tensorflow/lite/delegates/gpu/common/types.h" namespace tflite { namespace gpu { GPUOperation CreateOneHot(const OperationDef& definition, const OneHotAttributes& attr); } } #endif #include "tensorflow/lite/delegates/gpu/common/tasks/one_hot.h" #include <string> #include <utility> #include "tensorflow/lite/delegates/gpu/common/operations.h" namespace tflite { namespace gpu { std::string GetOneHotCode(const OperationDef& op_def, const OneHotAttributes& attr, GPUOperation* op) { op->AddSrcTensor("src_tensor", op_def.src_tensors[0]); op->AddDstTensor("dst_tensor", op_def.dst_tensors[0]); std::string c; c += "MAIN_FUNCTION($0) {\n"; if (op_def.dst_tensors[0].HasAxis(Axis::BATCH)) { c += " int linear_id = GLOBAL_ID_0;\n"; c += " int X = linear_id / args.dst_tensor.Batch();\n"; c += " int B = linear_id % args.dst_tensor.Batch();\n"; c += " args.dst_tensor.SetBatchRef(B);\n"; c += " args.src_tensor.SetBatchRef(B);\n"; } else { c += " int X = GLOBAL_ID_0;\n"; } c += " int Y = GLOBAL_ID_1;\n"; c += " int Z = GLOBAL_ID_2;\n"; c += " if (X >= args.dst_tensor.Width() || Y >= args.dst_tensor.Height() || " "Z >= args.dst_tensor.Slices()) { \n"; c += " return; \n"; c += " } \n"; c += " int idx = Z * 4;\n"; c += " int hot_idx = args.src_tensor.Read(0, 0, 0).x;\n"; c += " FLT4 res = INIT_FLT4(args.off_value);\n"; c += " if ((hot_idx >= idx) && (hot_idx < (idx + 4))) {\n"; c += " res.x = (idx + 0) == hot_idx ? args.on_value : args.off_value;\n"; c += " res.y = (idx + 1) == hot_idx ? args.on_value : args.off_value;\n"; c += " res.z = (idx + 2) == hot_idx ? args.on_value : args.off_value;\n"; c += " res.w = (idx + 3) == hot_idx ? args.on_value : args.off_value;\n"; c += " }\n"; c += " args.dst_tensor.Write(res, X, Y, Z);\n"; c += "}\n"; return c; } GPUOperation CreateOneHot(const OperationDef& definition, const OneHotAttributes& attr) { GPUOperation op(definition); op.code_ = GetOneHotCode(definition, attr, &op); op.tensor_to_grid_ = TensorToGrid::kWBToX_HDToY_SToZ; if (definition.precision == CalculationsPrecision::F32) { op.args_.AddFloat("on_value", attr.on_value); op.args_.AddFloat("off_value", attr.off_value); } else { op.args_.AddHalf("on_value", half(attr.on_value)); op.args_.AddHalf("off_value", half(attr.off_value)); } return op; } } }
#include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/gpu/cl/kernels/cl_test.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/tasks/one_hot_test_util.h" namespace tflite { namespace gpu { namespace cl { namespace { TEST_F(OpenCLOperationTest, OneHot) { auto status = OneHotTest(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, OneHotBatch) { auto status = OneHotBatchTest(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } } } } }
885
cpp
tensorflow/tensorflow
pad
tensorflow/lite/kernels/pad.cc
third_party/xla/xla/tests/pad_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_GL_KERNELS_PAD_H_ #define TENSORFLOW_LITE_DELEGATES_GPU_GL_KERNELS_PAD_H_ #include <memory> #include "tensorflow/lite/delegates/gpu/gl/node_shader.h" namespace tflite { namespace gpu { namespace gl { std::unique_ptr<NodeShader> NewPadNodeShader(); } } } #endif #include "tensorflow/lite/delegates/gpu/gl/kernels/pad.h" #include <algorithm> #include <any> #include <cstdint> #include <cstring> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/memory/memory.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/types.h" #include "tensorflow/lite/delegates/gpu/gl/variable.h" namespace tflite { namespace gpu { namespace gl { namespace { class Pad : public NodeShader { public: absl::Status GenerateCode(const GenerationContext& ctx, GeneratedCode* generated_code) const final { const auto& attr = std::any_cast<const PadAttributes&>(ctx.op_attr); if (attr.type != PaddingContentType::ZEROS && attr.type != PaddingContentType::REFLECT) { return absl::UnimplementedError( "Only ZERO and REFLECT padding types are supported."); } if (attr.appended.h < 0 || attr.appended.w < 0 || attr.appended.c < 0 || attr.prepended.h < 0 || attr.prepended.w < 0 || attr.prepended.c < 0) { return absl::UnimplementedError("Negative padding is not supported."); } if (attr.appended.b != 0 || attr.prepended.b != 0) { return absl::UnimplementedError("Padding for BATCH is not supported."); } std::vector<Variable> parameters = { {"input_data_0_h", static_cast<int>(ctx.input_shapes[0][1])}, {"input_data_0_w", static_cast<int>(ctx.input_shapes[0][2])}, {"input_data_0_c", static_cast<int>(ctx.input_shapes[0][3])}, {"prepended", int4(attr.prepended.w, attr.prepended.h, attr.prepended.c, 0)}, }; std::string source; if (attr.type == PaddingContentType::REFLECT) { source = R"( int src_x = gid.x - $prepended.x$; src_x = abs(src_x); src_x = $input_data_0_w$ - 1 - abs(src_x - $input_data_0_w$ + 1); int src_y = gid.y - $prepended.y$; src_y = abs(src_y); src_y = $input_data_0_h$ - 1 - abs(src_y - $input_data_0_h$ + 1); )"; if (attr.prepended.c == 0 && attr.appended.c == 0) { source += " value_0 = $input_data_0[src_x, src_y, gid.z]$;\n"; } else { source += R"( int start_channel = gid.z * 4; for (int i = 0; i < 4; ++i) { int channel = start_channel + i; int src_z = channel - $prepended.z$; src_z = abs(src_z); src_z = $input_data_0_c$ - 1 - abs(src_z - $input_data_0_c$ + 1); src_z = clamp(src_z, 0, $input_data_0_c$ - 1); value_0[i] = $input_data_0[src_x, src_y, src_z / 4]$[src_z % 4]; } )"; } } else { source = R"( int src_x = gid.x - $prepended.x$; int src_y = gid.y - $prepended.y$; if (src_x >= 0 && src_x < $input_data_0_w$ && src_y >= 0 && src_y < $input_data_0_h$) { )"; if (attr.prepended.c == 0 && attr.appended.c == 0) { source += " value_0 = $input_data_0[src_x, src_y, gid.z]$;\n"; } else if (attr.prepended.c % 4 == 0) { parameters.push_back( {"src_slices", DivideRoundUp(static_cast<int>(ctx.input_shapes[0][3]), 4)}); source += R"( int src_z = gid.z - $prepended.z$ / 4; if (src_z >= 0 && src_z < $src_slices$) { value_0 = $input_data_0[src_x, src_y, src_z]$; } )"; } else { source += R"( int start_channel = gid.z * 4; for (int i = 0; i < 4; ++i) { int channel = start_channel + i; int src_z = channel - $prepended.z$; if (src_z >= 0 && src_z < $input_data_0_c$) { value_0[i] = $input_data_0[src_x, src_y, src_z / 4]$[src_z % 4]; } } )"; } source += " }\n"; } *generated_code = { std::move(parameters), {}, {}, uint3(), uint3(), std::move(source), IOStructure::ONLY_DEFINITIONS, IOStructure::AUTO, }; return absl::OkStatus(); } }; } std::unique_ptr<NodeShader> NewPadNodeShader() { return std::make_unique<Pad>(); } } } }
#include <memory> #include <vector> #include "xla/array2d.h" #include "xla/array4d.h" #include "xla/client/lib/arithmetic.h" #include "xla/client/local_client.h" #include "xla/client/xla_builder.h" #include "xla/reference_util.h" #include "xla/tests/client_library_test_base.h" #include "xla/tests/literal_test_util.h" #include "xla/tests/test_macros.h" #include "xla/xla_data.pb.h" #include "tsl/platform/test.h" namespace xla { namespace { #ifdef XLA_BACKEND_SUPPORTS_BFLOAT16 static std::array<bool, 2> use_bfloat16_params{false, true}; #else static std::array<bool, 1> use_bfloat16_params{false}; #endif class PadTest : public ClientLibraryTestBase { protected: PadTest() { auto dimension0 = r4_padding_on_dim0_dim1_.add_dimensions(); dimension0->set_edge_padding_low(1); dimension0->set_edge_padding_high(0); dimension0->set_interior_padding(2); auto dimension1 = r4_padding_on_dim0_dim1_.add_dimensions(); dimension1->set_edge_padding_low(0); dimension1->set_edge_padding_high(2); dimension1->set_interior_padding(1); auto dimension2 = r4_padding_on_dim0_dim1_.add_dimensions(); dimension2->set_edge_padding_low(0); dimension2->set_edge_padding_high(0); dimension2->set_interior_padding(0); auto dimension3 = r4_padding_on_dim0_dim1_.add_dimensions(); dimension3->set_edge_padding_low(0); dimension3->set_edge_padding_high(0); dimension3->set_interior_padding(0); } PaddingConfig r4_padding_on_dim0_dim1_; }; class PadTestFloat : public PadTest, public ::testing::WithParamInterface<bool> { protected: PadTestFloat() { set_use_bfloat16(GetParam()); } ErrorSpec DefaultErrorSpec() const { if (use_bfloat16()) { return ErrorSpec(1e-3, 1e-3); } else { return ErrorSpec(1e-5, 1e-5); } } }; XLA_TEST_P(PadTestFloat, Pad1DS0ToS0Array) { XlaBuilder b(TestName()); PaddingConfig padding_config; auto dimension = padding_config.add_dimensions(); dimension->set_edge_padding_low(0); dimension->set_edge_padding_high(0); dimension->set_interior_padding(0); Pad(AddParam(LiteralUtil::CreateR1<float>({}), &b), AddParam(LiteralUtil::CreateR0<float>(0.1), &b), padding_config); ComputeAndCompareR1<float>(&b, {}, {}, DefaultErrorSpec()); } XLA_TEST_P(PadTestFloat, Pad1DS0ToS5Array) { XlaBuilder b(TestName()); PaddingConfig padding_config; auto dimension = padding_config.add_dimensions(); dimension->set_edge_padding_low(1); dimension->set_edge_padding_high(4); dimension->set_interior_padding(7); Pad(AddParam(LiteralUtil::CreateR1<float>({}), &b), AddParam(LiteralUtil::CreateR0<float>(0.1), &b), padding_config); ComputeAndCompareR1<float>(&b, std::vector<float>(5, 0.1), {}, DefaultErrorSpec()); } XLA_TEST_P(PadTestFloat, Pad1DS3Array) { XlaBuilder b(TestName()); PaddingConfig padding_config; auto dimension = padding_config.add_dimensions(); dimension->set_edge_padding_low(3); dimension->set_edge_padding_high(0); dimension->set_interior_padding(1); Pad(AddParam(LiteralUtil::CreateR1<float>({1, 2, 3}), &b), AddParam(LiteralUtil::CreateR0<float>(0.1), &b), padding_config); std::vector<float> expected({0.1, 0.1, 0.1, 1, 0.1, 2, 0.1, 3}); ComputeAndCompareR1<float>(&b, expected, {}, DefaultErrorSpec()); } XLA_TEST_P(PadTestFloat, Pad4D_2x0x3x2_FloatArray) { XlaBuilder b(TestName()); Pad(AddParam(Array4D<float>(2, 0, 3, 2), &b), AddParam(LiteralUtil::CreateR0<float>(1.5), &b), r4_padding_on_dim0_dim1_); ComputeAndCompareR4<float>(&b, Array4D<float>(5, 2, 3, 2, 1.5f), {}, DefaultErrorSpec()); } TEST_P(PadTestFloat, Pad4DFloat_1x1x3x2_Array) { XlaBuilder b(TestName()); auto input = std::make_unique<Array4D<float>>(1, 1, 3, 2); Array2D<float> input_xy({ {1.0f, 2.0f}, {3.0f, 4.0f}, {5.0f, 6.0f}, }); input->FillWithYX(input_xy); Pad(AddParam(*input, &b), AddParam(LiteralUtil::CreateR0<float>(1.5), &b), r4_padding_on_dim0_dim1_); auto expected = std::make_unique<Array4D<float>>(2, 3, 3, 2); expected->Fill(1.5); (*expected)(1, 0, 0, 0) = 1.0f; (*expected)(1, 0, 0, 1) = 2.0f; (*expected)(1, 0, 1, 0) = 3.0f; (*expected)(1, 0, 1, 1) = 4.0f; (*expected)(1, 0, 2, 0) = 5.0f; (*expected)(1, 0, 2, 1) = 6.0f; ComputeAndCompareR4<float>(&b, *expected, {}, DefaultErrorSpec()); } TEST_P(PadTestFloat, Pad4DFloatArrayWithInteriorPadding) { XlaBuilder b(TestName()); const float pad_value = 1.5f; Array4D<float> input(3, 2, 1, 1, {1, 2, 3, 4, 5, 6}); Pad(AddParam(input, &b), AddParam(LiteralUtil::CreateR0<float>(pad_value), &b), r4_padding_on_dim0_dim1_); auto expected = std::make_unique<Array4D<float>>(8, 5, 1, 1); expected->Fill(pad_value); (*expected)(1, 0, 0, 0) = 1.0f; (*expected)(1, 2, 0, 0) = 2.0f; (*expected)(4, 0, 0, 0) = 3.0f; (*expected)(4, 2, 0, 0) = 4.0f; (*expected)(7, 0, 0, 0) = 5.0f; (*expected)(7, 2, 0, 0) = 6.0f; ComputeAndCompareR4<float>(&b, *expected, {}, ErrorSpec(0.0001)); } TEST_P(PadTestFloat, Pad4DFloatArrayMinorFirstSmall) { XlaBuilder b(TestName()); PaddingConfig padding_config; auto dimension0 = padding_config.add_dimensions(); dimension0->set_edge_padding_low(0); dimension0->set_edge_padding_high(0); dimension0->set_interior_padding(0); auto dimension1 = padding_config.add_dimensions(); dimension1->set_edge_padding_low(0); dimension1->set_edge_padding_high(0); dimension1->set_interior_padding(0); auto dimension2 = padding_config.add_dimensions(); dimension2->set_edge_padding_low(2); dimension2->set_edge_padding_high(1); dimension2->set_interior_padding(0); auto dimension3 = padding_config.add_dimensions(); dimension3->set_edge_padding_low(2); dimension3->set_edge_padding_high(3); dimension3->set_interior_padding(0); const Layout layout = LayoutUtil::MakeLayout({0, 1, 2, 3}); const float pad_value = -5.123f; Array4D<float> input_array(1, 1, 2, 3, {1, 2, 3, 4, 5, 6}); auto input = LiteralUtil::CreateR4FromArray4D<float>(input_array); input = input.Relayout(layout); Pad(AddParam(input, &b), AddParam(LiteralUtil::CreateR0<float>(pad_value), &b), padding_config); Array4D<float> expected_array(1, 1, 5, 8); expected_array.Fill(pad_value); expected_array(0, 0, 2, 2) = 1.0f; expected_array(0, 0, 2, 3) = 2.0f; expected_array(0, 0, 2, 4) = 3.0f; expected_array(0, 0, 3, 2) = 4.0f; expected_array(0, 0, 3, 3) = 5.0f; expected_array(0, 0, 3, 4) = 6.0f; ComputeAndCompareR4<float>(&b, expected_array, {}, ErrorSpec(0.0001)); } XLA_TEST_P(PadTestFloat, Pad4DFloatArrayMinorFirstNonTrivialMinorDimensions) { XlaBuilder b(TestName()); PaddingConfig padding_config; auto dimension0 = padding_config.add_dimensions(); dimension0->set_edge_padding_low(0); dimension0->set_edge_padding_high(0); dimension0->set_interior_padding(0); auto dimension1 = padding_config.add_dimensions(); dimension1->set_edge_padding_low(0); dimension1->set_edge_padding_high(0); dimension1->set_interior_padding(0); auto dimension2 = padding_config.add_dimensions(); dimension2->set_edge_padding_low(2); dimension2->set_edge_padding_high(2); dimension2->set_interior_padding(1); auto dimension3 = padding_config.add_dimensions(); dimension3->set_edge_padding_low(2); dimension3->set_edge_padding_high(2); dimension3->set_interior_padding(0); const Layout layout = LayoutUtil::MakeLayout({0, 1, 2, 3}); const float pad_value = -5.123f; Array4D<float> input_array(1, 25, 7, 7); input_array.Fill(pad_value); input_array(0, 0, 0, 0) = 1.0f; input_array(0, 24, 6, 6) = 2.0f; input_array(0, 17, 2, 5) = 3.0f; auto input = LiteralUtil::CreateR4FromArray4D<float>(input_array); input = input.Relayout(layout); Pad(AddParam(input, &b), AddParam(LiteralUtil::CreateR0<float>(pad_value), &b), padding_config); Array4D<float> expected_array(1, 25, 17, 11); expected_array.Fill(pad_value); expected_array(0, 0, 2, 2) = 1.0f; expected_array(0, 24, 14, 8) = 2.0f; expected_array(0, 17, 6, 7) = 3.0f; ComputeAndCompareR4<float>(&b, expected_array, {}, ErrorSpec(0.0001)); } XLA_TEST_F(PadTest, Pad4DU8Array) { XlaBuilder b(TestName()); auto input = std::make_unique<Array4D<uint8_t>>(1, 1, 3, 2); Array2D<uint8_t> input_xy({ {1, 2}, {3, 4}, {5, 6}, }); input->FillWithYX(input_xy); Pad(AddParam(*input, &b), ConstantR0<uint8_t>(&b, 35), r4_padding_on_dim0_dim1_); auto expected = std::make_unique<Array4D<uint8_t>>(2, 3, 3, 2); expected->Fill(35); (*expected)(1, 0, 0, 0) = 1; (*expected)(1, 0, 0, 1) = 2; (*expected)(1, 0, 1, 0) = 3; (*expected)(1, 0, 1, 1) = 4; (*expected)(1, 0, 2, 0) = 5; (*expected)(1, 0, 2, 1) = 6; ComputeAndCompareR4<uint8_t>(&b, *expected, {}); } XLA_TEST_F(PadTest, Pad4DPredArray) { XlaBuilder b(TestName()); auto input = Broadcast(ConstantR0<bool>(&b, true), {1, 1, 3, 2}); auto padded = Pad(input, ConstantR0<bool>(&b, false), r4_padding_on_dim0_dim1_); auto zeros = std::make_unique<Array4D<int32_t>>(2, 3, 3, 2); auto ones = std::make_unique<Array4D<int32_t>>(2, 3, 3, 2); zeros->Fill(0); ones->Fill(1); Select(padded, AddParam(*ones, &b), AddParam(*zeros, &b)); auto expected = std::make_unique<Array4D<int32_t>>(2, 3, 3, 2); expected->Fill(0); (*expected)(1, 0, 0, 0) = 1; (*expected)(1, 0, 0, 1) = 1; (*expected)(1, 0, 1, 0) = 1; (*expected)(1, 0, 1, 1) = 1; (*expected)(1, 0, 2, 0) = 1; (*expected)(1, 0, 2, 1) = 1; ComputeAndCompareR4<int32_t>(&b, *expected, {}); } XLA_TEST_P(PadTestFloat, Large2DPad) { XlaBuilder b(TestName()); auto ones = std::make_unique<Array2D<float>>(4, 4); ones->Fill(1.0f); auto input = AddParam(*ones, &b); PaddingConfig padding_config = MakeNoPaddingConfig(2); for (int dim : {0, 1}) { padding_config.mutable_dimensions(dim)->set_edge_padding_low( 98 + 100 * (1 - dim)); padding_config.mutable_dimensions(dim)->set_edge_padding_high(58 + 100 * dim); } Pad(input, AddParam(LiteralUtil::CreateR0<float>(0.0f), &b), padding_config); auto expected = ReferenceUtil::PadArray2D(*ones, padding_config, 0.0f); ComputeAndCompareR2<float>(&b, *expected, {}, DefaultErrorSpec()); } XLA_TEST_P(PadTestFloat, AllTypes2DPad) { XlaBuilder b(TestName()); constexpr int64_t in_rows = 35; constexpr int64_t in_cols = 35; auto operand = std::make_unique<Array2D<float>>(in_rows, in_cols); operand->FillUnique(0.0f); auto input = AddParam(*operand, &b); PaddingConfig padding_config = MakeNoPaddingConfig(2); padding_config.mutable_dimensions(0)->set_edge_padding_low(7); padding_config.mutable_dimensions(0)->set_edge_padding_high(5); padding_config.mutable_dimensions(0)->set_interior_padding(3); padding_config.mutable_dimensions(1)->set_edge_padding_low(6); padding_config.mutable_dimensions(1)->set_edge_padding_high(4); padding_config.mutable_dimensions(1)->set_interior_padding(2); Pad(input, AddParam(LiteralUtil::CreateR0<float>(3.14f), &b), padding_config); auto expected = ReferenceUtil::PadArray2D(*operand, padding_config, 3.14f); ComputeAndCompareR2<float>(&b, *expected, {}, DefaultErrorSpec()); } XLA_TEST_P(PadTestFloat, High2DPad) { XlaBuilder b(TestName()); constexpr int64_t in_rows = 129; constexpr int64_t in_cols = 129; constexpr int64_t low_padding = 0; int64_t high_padding[2] = {5, 7}; constexpr int64_t interior_padding = 0; auto operand = std::make_unique<Array2D<float>>(in_rows, in_cols); operand->FillUnique(1.0f); auto input = AddParam(*operand, &b); PaddingConfig padding_config = MakeNoPaddingConfig(2); for (int dim : {0, 1}) { padding_config.mutable_dimensions(dim)->set_edge_padding_low(low_padding); padding_config.mutable_dimensions(dim)->set_edge_padding_high( high_padding[dim]); padding_config.mutable_dimensions(dim)->set_interior_padding( interior_padding); } Pad(input, AddParam(LiteralUtil::CreateR0<float>(2.718f), &b), padding_config); auto expected = ReferenceUtil::PadArray2D(*operand, padding_config, 2.718f); ComputeAndCompareR2<float>(&b, *expected, {}, DefaultErrorSpec()); } XLA_TEST_P(PadTestFloat, NegativePadding2D) { XlaBuilder b(TestName()); constexpr int64_t in_rows = 129; constexpr int64_t in_cols = 129; int64_t low_padding[2] = {-1, -2}; int64_t high_padding[2] = {-3, 4}; constexpr int64_t interior_padding = 0; auto operand = std::make_unique<Array2D<float>>(in_rows, in_cols); operand->FillUnique(1.0f); auto input = AddParam(*operand, &b); PaddingConfig padding_config = MakeNoPaddingConfig(2); for (int dim : {0, 1}) { padding_config.mutable_dimensions(dim)->set_edge_padding_low( low_padding[dim]); padding_config.mutable_dimensions(dim)->set_edge_padding_high( high_padding[dim]); padding_config.mutable_dimensions(dim)->set_interior_padding( interior_padding); } Pad(input, AddParam(LiteralUtil::CreateR0<float>(2.718f), &b), padding_config); auto expected = ReferenceUtil::PadArray2D(*operand, padding_config, 2.718f); ComputeAndCompareR2<float>(&b, *expected, {}, DefaultErrorSpec()); } XLA_TEST_P(PadTestFloat, NegativeAndInteriorPadding2D) { XlaBuilder b(TestName()); constexpr int64_t in_rows = 8; constexpr int64_t in_cols = 11; int64_t low_padding[2] = {4, -1}; int64_t high_padding[2] = {-2, -4}; int64_t interior_padding[2] = {1, 2}; auto operand = std::make_unique<Array2D<float>>(in_rows, in_cols); operand->FillUnique(1.0f); auto input = AddParam(*operand, &b); PaddingConfig padding_config = MakeNoPaddingConfig(2); for (int dim : {0, 1}) { padding_config.mutable_dimensions(dim)->set_edge_padding_low( low_padding[dim]); padding_config.mutable_dimensions(dim)->set_edge_padding_high( high_padding[dim]); padding_config.mutable_dimensions(dim)->set_interior_padding( interior_padding[dim]); } Pad(input, AddParam(LiteralUtil::CreateR0<float>(2.718f), &b), padding_config); auto expected = ReferenceUtil::PadArray2D(*operand, padding_config, 2.718f); ComputeAndCompareR2<float>(&b, *expected, {}, DefaultErrorSpec()); } XLA_TEST_P(PadTestFloat, ReducePad) { XlaBuilder b(TestName()); auto ones = std::make_unique<Array4D<float>>(2, 2, 2, 2); ones->Fill(1.0); auto input = AddParam(*ones, &b); XlaComputation add = CreateScalarAddComputation(FloatType(), &b); auto reduce = Reduce(input, AddParam(LiteralUtil::CreateR0<float>(0.0), &b), add, {0}); PaddingConfig padding_config = MakeNoPaddingConfig(3); padding_config.mutable_dimensions(0)->set_edge_padding_low(1); padding_config.mutable_dimensions(0)->set_edge_padding_high(1); Pad(reduce, AddParam(LiteralUtil::CreateR0<float>(0.0f), &b), padding_config); Array3D<float> expected({{{0.0, 0.0}, {0.0, 0.0}}, {{2.0, 2.0}, {2.0, 2.0}}, {{2.0, 2.0}, {2.0, 2.0}}, {{0.0, 0.0}, {0.0, 0.0}}}); ComputeAndCompareR3<float>(&b, expected, {}, DefaultErrorSpec()); } INSTANTIATE_TEST_CASE_P(PadTestFloatInstantiation, PadTestFloat, ::testing::ValuesIn(use_bfloat16_params)); } }
886
cpp
tensorflow/tensorflow
eigen_support
tensorflow/lite/kernels/eigen_support.cc
tensorflow/lite/kernels/eigen_support_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_EIGEN_SUPPORT_H_ #define TENSORFLOW_LITE_KERNELS_EIGEN_SUPPORT_H_ #include "tensorflow/lite/core/c/common.h" namespace EigenForTFLite { struct ThreadPoolDevice; } namespace tflite { namespace eigen_support { void IncrementUsageCounter(TfLiteContext* context); void DecrementUsageCounter(TfLiteContext* context); const EigenForTFLite::ThreadPoolDevice* GetThreadPoolDevice( TfLiteContext* context); } } #endif #include "tensorflow/lite/kernels/eigen_support.h" #include <functional> #include <memory> #include <utility> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/optimized/eigen_spatial_convolutions.h" #include "tensorflow/lite/kernels/op_macros.h" #ifndef EIGEN_DONT_ALIGN #include "tensorflow/lite/util.h" #endif namespace tflite { namespace eigen_support { namespace { const int kDefaultNumThreadpoolThreads = 4; bool IsValidNumThreads(int num_threads) { return num_threads >= -1; } int GetNumThreads(int num_threads) { return num_threads > -1 ? num_threads : kDefaultNumThreadpoolThreads; } #ifndef EIGEN_DONT_ALIGN static_assert( kDefaultTensorAlignment % EIGEN_MAX_ALIGN_BYTES == 0, "kDefaultTensorAlignment doesn't comply with Eigen alignment requirement."); #endif void SetEigenNbThreads(int threads) { #if defined(EIGEN_HAS_OPENMP) Eigen::setNbThreads(threads); #endif } class EigenThreadPoolWrapper : public Eigen::ThreadPoolInterface { public: explicit EigenThreadPoolWrapper(int num_threads) { if (num_threads > 1) { pool_ = std::make_unique<Eigen::ThreadPool>(num_threads); } } ~EigenThreadPoolWrapper() override {} void Schedule(std::function<void()> fn) override { if (pool_) { pool_->Schedule(std::move(fn)); } else { fn(); } } int NumThreads() const override { return pool_ ? pool_->NumThreads() : 1; } int CurrentThreadId() const override { return pool_ ? pool_->CurrentThreadId() : 0; } private: std::unique_ptr<Eigen::ThreadPool> pool_; }; class LazyEigenThreadPoolHolder { public: explicit LazyEigenThreadPoolHolder(int num_threads) { SetNumThreads(num_threads); } const Eigen::ThreadPoolDevice* GetThreadPoolDevice() { if (!device_) { thread_pool_wrapper_ = std::make_unique<EigenThreadPoolWrapper>(target_num_threads_); device_ = std::make_unique<Eigen::ThreadPoolDevice>( thread_pool_wrapper_.get(), target_num_threads_); } return device_.get(); } void SetNumThreads(int num_threads) { const int target_num_threads = GetNumThreads(num_threads); if (target_num_threads_ != target_num_threads) { target_num_threads_ = target_num_threads; device_.reset(); thread_pool_wrapper_.reset(); } } private: int target_num_threads_ = kDefaultNumThreadpoolThreads; std::unique_ptr<Eigen::ThreadPoolDevice> device_; std::unique_ptr<Eigen::ThreadPoolInterface> thread_pool_wrapper_; }; struct RefCountedEigenContext : public TfLiteExternalContext { std::unique_ptr<LazyEigenThreadPoolHolder> thread_pool_holder; int num_references = 0; }; RefCountedEigenContext* GetEigenContext(TfLiteContext* context) { return reinterpret_cast<RefCountedEigenContext*>( context->GetExternalContext(context, kTfLiteEigenContext)); } TfLiteStatus Refresh(TfLiteContext* context) { if (IsValidNumThreads(context->recommended_num_threads)) { SetEigenNbThreads(GetNumThreads(context->recommended_num_threads)); } auto* ptr = GetEigenContext(context); if (ptr != nullptr) { ptr->thread_pool_holder->SetNumThreads(context->recommended_num_threads); } return kTfLiteOk; } } void IncrementUsageCounter(TfLiteContext* context) { auto* ptr = GetEigenContext(context); if (ptr == nullptr) { if (IsValidNumThreads(context->recommended_num_threads)) { SetEigenNbThreads(context->recommended_num_threads); } ptr = new RefCountedEigenContext; ptr->type = kTfLiteEigenContext; ptr->Refresh = Refresh; ptr->thread_pool_holder = std::make_unique<LazyEigenThreadPoolHolder>( context->recommended_num_threads); ptr->num_references = 0; context->SetExternalContext(context, kTfLiteEigenContext, ptr); } ptr->num_references++; } void DecrementUsageCounter(TfLiteContext* context) { auto* ptr = GetEigenContext(context); if (ptr == nullptr) { TF_LITE_FATAL( "Call to DecrementUsageCounter() not preceded by " "IncrementUsageCounter()"); } if (--ptr->num_references == 0) { delete ptr; context->SetExternalContext(context, kTfLiteEigenContext, nullptr); } } const Eigen::ThreadPoolDevice* GetThreadPoolDevice(TfLiteContext* context) { auto* ptr = GetEigenContext(context); if (ptr == nullptr) { TF_LITE_FATAL( "Call to GetFromContext() not preceded by IncrementUsageCounter()"); } return ptr->thread_pool_holder->GetThreadPoolDevice(); } } }
#include "tensorflow/lite/kernels/eigen_support.h" #include <utility> #include <gtest/gtest.h> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/optimized/eigen_spatial_convolutions.h" namespace tflite { namespace eigen_support { struct TestTfLiteContext : public TfLiteContext { TestTfLiteContext() { recommended_num_threads = -1; external_context = nullptr; GetExternalContext = GetExternalContextImpl; SetExternalContext = SetExternalContextImpl; } static void SetExternalContextImpl(TfLiteContext* context, TfLiteExternalContextType type, TfLiteExternalContext* external_context) { static_cast<TestTfLiteContext*>(context)->external_context = external_context; } static TfLiteExternalContext* GetExternalContextImpl( TfLiteContext* context, TfLiteExternalContextType type) { return static_cast<TestTfLiteContext*>(context)->external_context; } TfLiteExternalContext* external_context; }; TEST(EigenSupport, Default) { TestTfLiteContext context; IncrementUsageCounter(&context); ASSERT_NE(context.external_context, nullptr); EXPECT_EQ(context.external_context->type, kTfLiteEigenContext); auto thread_pool_device = GetThreadPoolDevice(&context); ASSERT_NE(thread_pool_device, nullptr); EXPECT_EQ(thread_pool_device->numThreads(), 4); DecrementUsageCounter(&context); } TEST(EigenSupport, SingleThreaded) { TestTfLiteContext context; context.recommended_num_threads = 1; IncrementUsageCounter(&context); auto thread_pool_device = GetThreadPoolDevice(&context); ASSERT_NE(thread_pool_device, nullptr); EXPECT_EQ(thread_pool_device->numThreads(), 1); EXPECT_EQ(thread_pool_device->numThreadsInPool(), 1); bool executed = false; auto notification = thread_pool_device->enqueue([&executed]() { executed = true; }); ASSERT_NE(notification, nullptr); notification->Wait(); delete notification; EXPECT_TRUE(executed); DecrementUsageCounter(&context); } TEST(EigenSupport, MultiThreaded) { TestTfLiteContext context; context.recommended_num_threads = 2; IncrementUsageCounter(&context); auto thread_pool_device = GetThreadPoolDevice(&context); ASSERT_NE(thread_pool_device, nullptr); EXPECT_EQ(thread_pool_device->numThreads(), 2); bool executed = false; auto notification = thread_pool_device->enqueue([&executed]() { executed = true; }); ASSERT_NE(notification, nullptr); notification->Wait(); delete notification; EXPECT_TRUE(executed); DecrementUsageCounter(&context); } TEST(EigenSupport, NumThreadsChanged) { TestTfLiteContext context; context.recommended_num_threads = 1; IncrementUsageCounter(&context); auto thread_pool_device = GetThreadPoolDevice(&context); ASSERT_NE(thread_pool_device, nullptr); EXPECT_EQ(thread_pool_device->numThreads(), 1); context.recommended_num_threads = 3; ASSERT_NE(context.external_context, nullptr); context.external_context->Refresh(&context); thread_pool_device = GetThreadPoolDevice(&context); ASSERT_NE(thread_pool_device, nullptr); EXPECT_EQ(thread_pool_device->numThreads(), 3); context.recommended_num_threads = -1; ASSERT_NE(context.external_context, nullptr); context.external_context->Refresh(&context); thread_pool_device = GetThreadPoolDevice(&context); ASSERT_NE(thread_pool_device, nullptr); EXPECT_EQ(thread_pool_device->numThreads(), 4); context.recommended_num_threads = 0; ASSERT_NE(context.external_context, nullptr); context.external_context->Refresh(&context); thread_pool_device = GetThreadPoolDevice(&context); ASSERT_NE(thread_pool_device, nullptr); EXPECT_EQ(thread_pool_device->numThreads(), 0); context.recommended_num_threads = 3; ASSERT_NE(context.external_context, nullptr); context.external_context->Refresh(&context); thread_pool_device = GetThreadPoolDevice(&context); ASSERT_NE(thread_pool_device, nullptr); EXPECT_EQ(thread_pool_device->numThreads(), 3); context.recommended_num_threads = -5; ASSERT_NE(context.external_context, nullptr); context.external_context->Refresh(&context); thread_pool_device = GetThreadPoolDevice(&context); ASSERT_NE(thread_pool_device, nullptr); EXPECT_EQ(thread_pool_device->numThreads(), 4); DecrementUsageCounter(&context); } TEST(EigenSupport, RefCounting) { TestTfLiteContext context; EXPECT_EQ(context.external_context, nullptr); IncrementUsageCounter(&context); EXPECT_NE(context.external_context, nullptr); IncrementUsageCounter(&context); EXPECT_NE(context.external_context, nullptr); DecrementUsageCounter(&context); EXPECT_NE(context.external_context, nullptr); DecrementUsageCounter(&context); EXPECT_EQ(context.external_context, nullptr); } } }
887
cpp
tensorflow/tensorflow
densify
tensorflow/lite/kernels/densify.cc
tensorflow/lite/kernels/densify_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DENSIFY_H_ #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DENSIFY_H_ #include <vector> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/common.h" #include "tensorflow/lite/kernels/internal/types.h" #include "tensorflow/lite/kernels/internal/utils/sparsity_format_converter.h" namespace tflite { namespace reference_ops { template <typename T> inline void Densify(const TfLiteSparsity* sparsity, const RuntimeShape& input_shape, const T* input_data, const RuntimeShape& output_shape, T* output_data, TfLiteContext* context) { const int dims_count = output_shape.DimensionsCount(); std::vector<int> vector_shape(dims_count); for (int i = 0; i < dims_count; i++) { vector_shape[i] = output_shape.Dims(i); } tflite::internal::sparsity::FormatConverter<T> converter(vector_shape, *sparsity); converter.SparseToDense(input_data, output_shape.FlatSize(), output_data, context); } } } #endif #include "tensorflow/lite/kernels/internal/reference/densify.h" #include <stddef.h> #include <cstdint> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace builtin { namespace densify { struct OpContext { OpContext(TfLiteContext* context, TfLiteNode* node) { input = GetInput(context, node, 0); output = GetOutput(context, node, 0); } const TfLiteTensor* input; TfLiteTensor* output; }; struct OpData { bool dense_weights_initialized; }; void* Init(TfLiteContext* context, const char* buffer, size_t length) { auto* op_data = new OpData(); op_data->dense_weights_initialized = false; return op_data; } void Free(TfLiteContext* context, void* buffer) { delete reinterpret_cast<OpData*>(buffer); } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); OpContext op_context(context, node); TF_LITE_ENSURE(context, op_context.input->type != kTfLiteString); TF_LITE_ENSURE(context, IsConstantTensor(op_context.input)); TF_LITE_ENSURE(context, op_context.input->sparsity != nullptr); op_context.output->type = op_context.input->type; op_context.output->name = "Densify_output"; op_context.output->allocation_type = kTfLiteArenaRwPersistent; return context->ResizeTensor(context, op_context.output, TfLiteIntArrayCopy(op_context.input->dims)); } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { OpData* op_data = reinterpret_cast<OpData*>(node->user_data); OpContext op_context(context, node); if (op_data->dense_weights_initialized) { return kTfLiteOk; } switch (op_context.input->type) { case kTfLiteFloat32: reference_ops::Densify(op_context.input->sparsity, GetTensorShape(op_context.input), GetTensorData<float>(op_context.input), GetTensorShape(op_context.output), GetTensorData<float>(op_context.output), context); break; case kTfLiteFloat16: reference_ops::Densify( op_context.input->sparsity, GetTensorShape(op_context.input), GetTensorData<Eigen::half>(op_context.input), GetTensorShape(op_context.output), GetTensorData<Eigen::half>(op_context.output), context); break; case kTfLiteInt8: reference_ops::Densify(op_context.input->sparsity, GetTensorShape(op_context.input), GetTensorData<int8_t>(op_context.input), GetTensorShape(op_context.output), GetTensorData<int8_t>(op_context.output), context); break; default: TF_LITE_KERNEL_LOG(context, "Type %d not supported.", op_context.input->type); return kTfLiteError; } op_data->dense_weights_initialized = true; return kTfLiteOk; } } TfLiteRegistration* Register_DENSIFY() { static TfLiteRegistration r = {densify::Init, densify::Free, densify::Prepare, densify::Eval}; return &r; } } } }
#include <cstdint> #include <memory> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/memory/memory.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/types.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace ops { namespace builtin { TfLiteRegistration* Register_DENSIFY(); } } namespace { using ::testing::ElementsAreArray; template <typename T> class DensifyOpModel : public SingleOpModel { public: DensifyOpModel(const TensorData& input, const std::vector<T>& input_data, int version = 1) { input_ = AddConstSparseInput(input, input_data); output_ = AddOutput({input.type, input.shape}); SetBuiltinOp(BuiltinOperator_DENSIFY, BuiltinOptions_DensifyOptions, CreateDensifyOptions(builder_).Union()); resolver_ = std::make_unique<SingleOpResolver>( BuiltinOperator_DENSIFY, ops::builtin::Register_DENSIFY(), version); BuildInterpreter({input.shape}, -1, false, false, true); } std::vector<T> GetInput() { return ExtractVector<T>(input_); } std::vector<T> GetOutput() { return ExtractVector<T>(output_); } private: int input_; int output_; }; TEST(DensifyOpTest, Float) { std::vector<float> dense_values = {6, 0, 9, 8, 0, 0, 0, 0, 5, 0, 0, 7}; std::vector<float> sparse_values = {6, 9, 8, 5, 7}; TensorData input = {}; input.type = TensorType_FLOAT32; input.shape = {3, 4}; input.traversal_order = {0, 1}; input.format = {kTfLiteDimDense, kTfLiteDimSparseCSR}; DensifyOpModel<float> m(input, dense_values); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetInput(), ElementsAreArray(sparse_values)); EXPECT_THAT(m.GetOutput(), ElementsAreArray(dense_values)); } TEST(DensifyOpTest, Float3D) { std::vector<float> dense_values = {6, 0, 9, 8, 0, 0, 0, 0, 5, 0, 0, 7}; std::vector<float> sparse_values = {6, 9, 8, 5, 7}; TensorData input = {}; input.type = TensorType_FLOAT32; input.shape = {3, 2, 2}; input.traversal_order = {0, 1, 2}; input.format = {kTfLiteDimDense, kTfLiteDimDense, kTfLiteDimSparseCSR}; DensifyOpModel<float> m(input, dense_values); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetInput(), ElementsAreArray(sparse_values)); EXPECT_THAT(m.GetOutput(), ElementsAreArray(dense_values)); } TEST(DensifyOpTest, Int8) { std::vector<int8_t> dense_values = {6, 0, 9, 8, 0, 0, 0, 0, 5, 0, 0, 7}; std::vector<int8_t> sparse_values = {6, 9, 8, 5, 7}; TensorData input = {}; input.type = TensorType_INT8; input.shape = {3, 4}; input.traversal_order = {0, 1}; input.format = {kTfLiteDimDense, kTfLiteDimSparseCSR}; DensifyOpModel<int8_t> m(input, dense_values); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetInput(), ElementsAreArray(sparse_values)); EXPECT_THAT(m.GetOutput(), ElementsAreArray(dense_values)); } } }
888
cpp
tensorflow/tensorflow
add_n
tensorflow/lite/kernels/add_n.cc
tensorflow/lite/kernels/add_n_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ADD_N_H_ #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ADD_N_H_ #include <algorithm> #include <limits> #include "tensorflow/lite/kernels/internal/common.h" namespace tflite { namespace reference_ops { template <typename T> inline void AddN(const RuntimeShape& input_shape, const size_t num_inputs, const T* const* input_data, T* output_data) { const size_t size = input_shape.FlatSize(); for (size_t i = 0; i < size; ++i) { T x = 0; for (size_t j = 0; j < num_inputs; ++j) { x += input_data[j][i]; } output_data[i] = x; } } inline void AddN(const ArithmeticParams& params, const RuntimeShape& input_shape, const size_t num_inputs, const int8_t* const* input_data, int8_t* output_data) { TFLITE_DCHECK_LE(params.quantized_activation_min, params.quantized_activation_max); TFLITE_DCHECK_GE(-params.input1_offset, std::numeric_limits<int8_t>::min()); TFLITE_DCHECK_LE(-params.input1_offset, std::numeric_limits<int8_t>::max()); const size_t size = input_shape.FlatSize(); for (size_t i = 0; i < size; ++i) { const int32_t x = params.input1_offset; const int32_t shifted_x = x * (1 << params.left_shift); int32_t scaled_x = MultiplyByQuantizedMultiplierSmallerThanOneExp( shifted_x, params.input1_multiplier, params.input1_shift); for (size_t j = 0; j < num_inputs; ++j) { const int32_t y = params.input1_offset + input_data[j][i]; const int32_t shifted_y = y * (1 << params.left_shift); int32_t scaled_y = MultiplyByQuantizedMultiplierSmallerThanOneExp( shifted_y, params.input1_multiplier, params.input1_shift); scaled_x += scaled_y; } const int32_t raw_output = MultiplyByQuantizedMultiplierSmallerThanOneExp( scaled_x, params.output_multiplier, params.output_shift) + params.output_offset; const int32_t clamped_output = std::min(params.quantized_activation_max, std::max(params.quantized_activation_min, raw_output)); output_data[i] = static_cast<int8_t>(clamped_output); } } } } #endif #include <stdint.h> #include <algorithm> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/cpu_backend_threadpool.h" #include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace builtin { namespace add_n { constexpr int kInputTensor1 = 0; constexpr int kOutputTensor = 0; struct OpData { int scratch_tensor_index; }; void* Init(TfLiteContext* context, const char* buffer, size_t length) { auto* op_data = new OpData(); context->AddTensors(context, 1, &op_data->scratch_tensor_index); return op_data; } void Free(TfLiteContext* context, void* buffer) { delete reinterpret_cast<OpData*>(buffer); } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { int num_inputs = NumInputs(node); TF_LITE_ENSURE(context, num_inputs >= 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input1; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor1, &input1)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); output->type = input1->type; OpData* op_data = reinterpret_cast<OpData*>(node->user_data); TfLiteIntArrayFree(node->temporaries); node->temporaries = TfLiteIntArrayCreate(1); node->temporaries->data[0] = op_data->scratch_tensor_index; TfLiteTensor* scratch_tensor; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, 0, &scratch_tensor)); scratch_tensor->type = input1->type; scratch_tensor->allocation_type = kTfLiteArenaRw; CpuBackendContext* cpu_backend_context = CpuBackendContext::GetFromContext(context); const int thread_count = std::min(std::max(1, static_cast<int>(num_inputs) / 2), cpu_backend_context->max_num_threads()); TfLiteIntArray* scratch_shape = TfLiteIntArrayCreate(1); scratch_shape->data[0] = thread_count * NumElements(input1); TF_LITE_ENSURE_OK( context, context->ResizeTensor(context, scratch_tensor, scratch_shape)); for (int i = kInputTensor1 + 1; i < num_inputs; ++i) { const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, i, &input)); TF_LITE_ENSURE(context, HaveSameShapes(input1, input)); TF_LITE_ENSURE_TYPES_EQ(context, input1->type, input->type); } TfLiteIntArray* input1_dims = input1->dims; TfLiteIntArray* output_dims = TfLiteIntArrayCopy(input1_dims); return context->ResizeTensor(context, output, output_dims); } template <typename T> TfLiteStatus EvalAddN(TfLiteContext* context, TfLiteNode* node) { VectorOfTensors<T> all_inputs(*context, *node->inputs); TfLiteTensor* output = GetOutput(context, node, kOutputTensor); int num_inputs = NumInputs(node); const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1); CpuBackendContext* cpu_backend_context = CpuBackendContext::GetFromContext(context); TfLiteTensor* scratch_tensor; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, 0, &scratch_tensor)); optimized_ops::AddN<T>(GetTensorShape(input1), num_inputs, all_inputs.data(), GetTensorData<T>(output), GetTensorData<T>(scratch_tensor), cpu_backend_context); return kTfLiteOk; } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input1; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor1, &input1)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); if (output->type == kTfLiteFloat32) { TF_LITE_ENSURE_OK(context, EvalAddN<float>(context, node)); } else if (output->type == kTfLiteInt32) { TF_LITE_ENSURE_OK(context, EvalAddN<int32_t>(context, node)); } else { TF_LITE_KERNEL_LOG(context, "AddN only supports FLOAT32|INT32 now, got %s.", TfLiteTypeGetName(output->type)); return kTfLiteError; } return kTfLiteOk; } } TfLiteRegistration* Register_ADD_N() { static TfLiteRegistration r = {add_n::Init, add_n::Free, add_n::Prepare, add_n::Eval}; return &r; } } } }
#include <stdint.h> #include <vector> #include <gtest/gtest.h> #include "flatbuffers/flatbuffers.h" #include "tensorflow/lite/kernels/add_n_test_common.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { using ::testing::ElementsAreArray; TEST(FloatAddNOpModel, AddMultipleTensors) { FloatAddNOpModel m({{TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {1, 2, 2, 1}}}, {TensorType_FLOAT32, {}}); m.PopulateTensor<float>(m.input(0), {-2.0, 0.2, 0.7, 0.8}); m.PopulateTensor<float>(m.input(1), {0.1, 0.2, 0.3, 0.5}); m.PopulateTensor<float>(m.input(2), {0.5, 0.1, 0.1, 0.2}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray({-1.4, 0.5, 1.1, 1.5})); } TEST(FloatAddNOpModel, Add2Tensors) { FloatAddNOpModel m( {{TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {1, 2, 2, 1}}}, {TensorType_FLOAT32, {}}); m.PopulateTensor<float>(m.input(0), {-2.0, 0.2, 0.7, 0.8}); m.PopulateTensor<float>(m.input(1), {0.1, 0.2, 0.3, 0.5}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray({-1.9, 0.4, 1.0, 1.3})); } TEST(IntegerAddNOpModel, AddMultipleTensors) { IntegerAddNOpModel m({{TensorType_INT32, {1, 2, 2, 1}}, {TensorType_INT32, {1, 2, 2, 1}}, {TensorType_INT32, {1, 2, 2, 1}}}, {TensorType_INT32, {}}); m.PopulateTensor<int32_t>(m.input(0), {-20, 2, 7, 8}); m.PopulateTensor<int32_t>(m.input(1), {1, 2, 3, 5}); m.PopulateTensor<int32_t>(m.input(2), {10, -5, 1, -2}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray({-9, -1, 11, 11})); } } }
889
cpp
tensorflow/tensorflow
arg_min_max
tensorflow/lite/kernels/arg_min_max.cc
tensorflow/lite/kernels/arg_min_max_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ARG_MIN_MAX_H_ #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ARG_MIN_MAX_H_ #include <functional> #include "tensorflow/lite/kernels/internal/types.h" namespace tflite { namespace reference_ops { template <typename T> std::function<bool(T, T)> GetComparefunction(bool is_arg_max) { if (is_arg_max) { return std::greater<T>(); } else { return std::less<T>(); } } template <typename T1, typename T2, typename T3, typename Cmp> void ArgMinMax(const RuntimeShape& input1_shape, const T1* input1_data, const T3* input2_data, const RuntimeShape& output_shape, T2* output_data, const Cmp& cmp) { TFLITE_DCHECK_GT(input1_shape.DimensionsCount(), 0); TFLITE_DCHECK_EQ(input1_shape.DimensionsCount() - 1, output_shape.DimensionsCount()); int axis = input2_data[0]; if (axis < 0) { axis += input1_shape.DimensionsCount(); } const int axis_size = input1_shape.Dims(axis); int outer_size = 1; for (int i = 0; i < axis; ++i) { TFLITE_DCHECK_EQ(input1_shape.Dims(i), output_shape.Dims(i)); outer_size *= input1_shape.Dims(i); } int inner_size = 1; const int dims_count = input1_shape.DimensionsCount(); for (int i = axis + 1; i < dims_count; ++i) { TFLITE_DCHECK_EQ(input1_shape.Dims(i), output_shape.Dims(i - 1)); inner_size *= input1_shape.Dims(i); } for (int outer = 0; outer < outer_size; ++outer) { for (int inner = 0; inner < inner_size; ++inner) { auto min_max_value = input1_data[outer * axis_size * inner_size + inner]; T2 min_max_index = 0; for (int i = 1; i < axis_size; ++i) { const auto& curr_value = input1_data[(outer * axis_size + i) * inner_size + inner]; if (cmp(curr_value, min_max_value)) { min_max_value = curr_value; min_max_index = static_cast<T2>(i); } } output_data[outer * inner_size + inner] = min_max_index; } } } template <typename T1, typename T2, typename T3> void ArgMinMax(const RuntimeShape& input1_shape, const T1* input1_data, const T3* input2_data, const RuntimeShape& output_shape, T2* output_data, const bool is_arg_max) { ArgMinMax(input1_shape, input1_data, input2_data, output_shape, output_data, GetComparefunction<T1>(is_arg_max)); } } } #endif #include "tensorflow/lite/kernels/internal/reference/arg_min_max.h" #include <stdint.h> #include <functional> #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h" #include "tensorflow/lite/kernels/internal/quantization_util.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace builtin { namespace arg_min_max { constexpr int kInputTensor = 0; constexpr int kAxis = 1; constexpr int kOutputTensor = 0; TfLiteStatus ResizeOutput(TfLiteContext* context, const TfLiteTensor* input, const TfLiteTensor* axis, TfLiteTensor* output) { int axis_value; if (axis->type == kTfLiteInt64) { axis_value = static_cast<int>(*GetTensorData<int64_t>(axis)); } else { axis_value = *GetTensorData<int>(axis); } if (axis_value < 0) { axis_value += NumDimensions(input); } TF_LITE_ENSURE(context, axis_value >= 0); TF_LITE_ENSURE(context, axis_value < NumDimensions(input)); TfLiteIntArray* output_dims = TfLiteIntArrayCreate(NumDimensions(input) - 1); int j = 0; for (int i = 0; i < NumDimensions(input); ++i) { if (i != axis_value) { output_dims->data[j] = SizeOfDimension(input, i); ++j; } } return context->ResizeTensor(context, output, output_dims); } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input)); const TfLiteTensor* axis; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kAxis, &axis)); TF_LITE_ENSURE_EQ(context, NumElements(axis), 1); TF_LITE_ENSURE(context, axis->type == kTfLiteInt32 || axis->type == kTfLiteInt64); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); auto* params = reinterpret_cast<TfLiteArgMaxParams*>(node->builtin_data); switch (params->output_type) { case kTfLiteInt32: output->type = kTfLiteInt32; break; case kTfLiteInt64: output->type = kTfLiteInt64; break; default: TF_LITE_KERNEL_LOG(context, "Unknown index output data type: %d", params->output_type); return kTfLiteError; } switch (input->type) { case kTfLiteFloat32: case kTfLiteUInt8: case kTfLiteInt8: case kTfLiteInt32: case kTfLiteBool: break; default: TF_LITE_KERNEL_LOG(context, "Unknown input type: %d, only float32, int types " "and bool are supported", input->type); return kTfLiteError; } TF_LITE_ENSURE(context, NumDimensions(input) >= 1); if (IsConstantOrPersistentTensor(axis)) { TF_LITE_ENSURE_STATUS(ResizeOutput(context, input, axis, output)); } else { SetTensorToDynamic(output); } return kTfLiteOk; } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node, bool is_arg_max) { const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input)); const TfLiteTensor* axis; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kAxis, &axis)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); if (IsDynamicTensor(output)) { TF_LITE_ENSURE_STATUS(ResizeOutput(context, input, axis, output)); } #define TF_LITE_ARG_MIN_MAX(data_type, axis_type, output_type) \ optimized_ops::ArgMinMax( \ GetTensorShape(input), GetTensorData<data_type>(input), \ GetTensorData<axis_type>(axis), GetTensorShape(output), \ GetTensorData<output_type>(output), is_arg_max) if (axis->type == kTfLiteInt32) { switch (output->type) { case kTfLiteInt32: { switch (input->type) { case kTfLiteFloat32: TF_LITE_ARG_MIN_MAX(float, int32_t, int32_t); break; case kTfLiteUInt8: TF_LITE_ARG_MIN_MAX(uint8_t, int32_t, int32_t); break; case kTfLiteInt8: TF_LITE_ARG_MIN_MAX(int8_t, int32_t, int32_t); break; case kTfLiteInt32: TF_LITE_ARG_MIN_MAX(int32_t, int32_t, int32_t); break; case kTfLiteBool: TF_LITE_ARG_MIN_MAX(bool, int32_t, int32_t); break; default: TF_LITE_KERNEL_LOG(context, "Only float32, uint8, int8, int32 and bool are " "supported currently, got %s.", TfLiteTypeGetName(input->type)); return kTfLiteError; } } break; case kTfLiteInt64: { switch (input->type) { case kTfLiteFloat32: TF_LITE_ARG_MIN_MAX(float, int32_t, int64_t); break; case kTfLiteUInt8: TF_LITE_ARG_MIN_MAX(uint8_t, int32_t, int64_t); break; case kTfLiteInt8: TF_LITE_ARG_MIN_MAX(int8_t, int32_t, int64_t); break; case kTfLiteInt32: TF_LITE_ARG_MIN_MAX(int32_t, int32_t, int64_t); break; case kTfLiteBool: TF_LITE_ARG_MIN_MAX(bool, int32_t, int64_t); break; default: TF_LITE_KERNEL_LOG(context, "Only float32, uint8, int8, int32 and bool are " "supported currently, got %s.", TfLiteTypeGetName(input->type)); return kTfLiteError; } } break; default: TF_LITE_KERNEL_LOG( context, "Only int32 and int64 are supported currently, got %s.", TfLiteTypeGetName(output->type)); return kTfLiteError; } } else { switch (output->type) { case kTfLiteInt32: { switch (input->type) { case kTfLiteFloat32: TF_LITE_ARG_MIN_MAX(float, int64_t, int32_t); break; case kTfLiteUInt8: TF_LITE_ARG_MIN_MAX(uint8_t, int64_t, int32_t); break; case kTfLiteInt8: TF_LITE_ARG_MIN_MAX(int8_t, int64_t, int32_t); break; case kTfLiteInt32: TF_LITE_ARG_MIN_MAX(int32_t, int64_t, int32_t); break; case kTfLiteBool: TF_LITE_ARG_MIN_MAX(bool, int64_t, int32_t); break; default: TF_LITE_KERNEL_LOG(context, "Only float32, uint8, int8, int32 and bool are " "supported currently, got %s.", TfLiteTypeGetName(input->type)); return kTfLiteError; } } break; case kTfLiteInt64: { switch (input->type) { case kTfLiteFloat32: TF_LITE_ARG_MIN_MAX(float, int64_t, int64_t); break; case kTfLiteUInt8: TF_LITE_ARG_MIN_MAX(uint8_t, int64_t, int64_t); break; case kTfLiteInt8: TF_LITE_ARG_MIN_MAX(int8_t, int64_t, int64_t); break; case kTfLiteInt32: TF_LITE_ARG_MIN_MAX(int32_t, int64_t, int64_t); break; case kTfLiteBool: TF_LITE_ARG_MIN_MAX(bool, int64_t, int64_t); break; default: TF_LITE_KERNEL_LOG(context, "Only float32, uint8, int8, int32 and bool are " "supported currently, got %s.", TfLiteTypeGetName(input->type)); return kTfLiteError; } } break; default: TF_LITE_KERNEL_LOG( context, "Only int32 and int64 are supported currently, got %s.", TfLiteTypeGetName(output->type)); return kTfLiteError; } } #undef TF_LITE_ARG_MIN_MAX return kTfLiteOk; } TfLiteStatus ArgMinEval(TfLiteContext* context, TfLiteNode* node) { return Eval(context, node, false); } TfLiteStatus ArgMaxEval(TfLiteContext* context, TfLiteNode* node) { return Eval(context, node, true); } } TfLiteRegistration* Register_ARG_MAX() { static TfLiteRegistration r = {nullptr, nullptr, arg_min_max::Prepare, arg_min_max::ArgMaxEval}; return &r; } TfLiteRegistration* Register_ARG_MIN() { static TfLiteRegistration r = {nullptr, nullptr, arg_min_max::Prepare, arg_min_max::ArgMinEval}; return &r; } } } }
#include <initializer_list> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/hexagon/builders/tests/hexagon_delegate_op_model.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { using testing::ElementsAreArray; class ArgBaseOpModel : public SingleOpModelWithHexagon { public: explicit ArgBaseOpModel(TensorType input_type) { input_ = AddInput(input_type); output_ = AddOutput(TensorType_INT32); } int input() const { return input_; } std::vector<int> GetInt32Output() const { return ExtractVector<int>(output_); } std::vector<int> GetOutputShape() { return GetTensorShape(output_); } protected: using SingleOpModelWithHexagon::builder_; int input_; int output_; }; class ArgMinOpModel : public ArgBaseOpModel { public: ArgMinOpModel(std::initializer_list<int> input_shape, TensorType input_type) : ArgBaseOpModel(input_type ), input_shape_(input_shape) {} void Build() { SetBuiltinOp(BuiltinOperator_ARG_MIN, BuiltinOptions_ArgMinOptions, CreateArgMinOptions(builder_, TensorType_INT32 ) .Union()); BuildInterpreter({input_shape_, {1}}); } private: std::vector<int> input_shape_; }; class ArgMaxOpModel : public ArgBaseOpModel { public: ArgMaxOpModel(std::initializer_list<int> input_shape, TensorType input_type) : ArgBaseOpModel(input_type ), input_shape_(input_shape) {} void Build() { SetBuiltinOp(BuiltinOperator_ARG_MAX, BuiltinOptions_ArgMaxOptions, CreateArgMaxOptions(builder_, TensorType_INT32 ) .Union()); BuildInterpreter({input_shape_, {1}}); } private: std::vector<int> input_shape_; }; template <typename integer_type, TensorType tensor_dtype> void ArgMinTestImpl() { ArgMinOpModel model({1, 1, 1, 4}, tensor_dtype); model.AddConstInput(TensorType_INT32, {3}, {1}); model.Build(); if (tensor_dtype == TensorType_UINT8) { model.SymmetricQuantizeAndPopulate(model.input(), {1, 5, 0, 7}); } else { model.SignedSymmetricQuantizeAndPopulate(model.input(), {1, 5, 0, 7}); } model.ApplyDelegateAndInvoke(); EXPECT_THAT(model.GetInt32Output(), ElementsAreArray({2})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 1, 1})); } template <typename integer_type, TensorType tensor_dtype> void ArgMinNegativeTestImpl() { ArgMinOpModel model({1, 1, 2, 4}, tensor_dtype); model.AddConstInput(TensorType_INT32, {-2}, {1}); model.Build(); if (tensor_dtype == TensorType_UINT8) { model.SymmetricQuantizeAndPopulate(model.input(), {1, 2, 7, 8, 1, 9, 7, 3}); } else { model.SignedSymmetricQuantizeAndPopulate(model.input(), {1, 2, 7, 8, 1, 9, 7, 3}); } model.ApplyDelegateAndInvoke(); EXPECT_THAT(model.GetInt32Output(), ElementsAreArray({0, 0, 0, 1})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 1, 4})); } template <typename integer_type, TensorType tensor_dtype> void ArgMaxTestImpl() { ArgMaxOpModel model({1, 1, 1, 4}, tensor_dtype); model.AddConstInput(TensorType_INT32, {3}, {1}); model.Build(); if (tensor_dtype == TensorType_UINT8) { model.SymmetricQuantizeAndPopulate(model.input(), {1, 5, 0, 7}); } else { model.SignedSymmetricQuantizeAndPopulate(model.input(), {1, 5, 0, 7}); } model.ApplyDelegateAndInvoke(); EXPECT_THAT(model.GetInt32Output(), ElementsAreArray({3})); } TEST(ArgMinTest, GetArgMin_UInt8) { ArgMinTestImpl<uint8_t, TensorType_UINT8>(); } TEST(ArgMinTest, GetArgMin_Int8) { ArgMinTestImpl<int8_t, TensorType_INT8>(); } TEST(ArgMinTest, GetArgMinNegative_UInt8) { ArgMinNegativeTestImpl<uint8_t, TensorType_UINT8>(); } TEST(ArgMinTest, GetArgMinNegative_Int8) { ArgMinNegativeTestImpl<int8_t, TensorType_INT8>(); } TEST(ArgMaxTest, GetArgMax_UInt8) { ArgMaxTestImpl<uint8_t, TensorType_UINT8>(); } TEST(ArgMaxTest, GetArgMax_Int8) { ArgMaxTestImpl<int8_t, TensorType_INT8>(); } }
890
cpp
tensorflow/tensorflow
tensor_slice_util
tensorflow/lite/kernels/tensor_slice_util.cc
tensorflow/lite/kernels/tensor_slice_util_test.cc
#ifndef TENSORFLOW_CORE_UTIL_TENSOR_SLICE_UTIL_H_ #define TENSORFLOW_CORE_UTIL_TENSOR_SLICE_UTIL_H_ #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_slice.h" #include "tensorflow/core/platform/logging.h" namespace tensorflow { namespace { static const int kTensorSliceMaxRank = 8; template <typename T> Eigen::TensorMap<Eigen::Tensor<T, kTensorSliceMaxRank, Eigen::RowMajor>> GetEigenTensorMapFromTensorShape(const TensorShape& shape, T* data) { Eigen::DSizes<Eigen::DenseIndex, kTensorSliceMaxRank> dsizes = shape.AsEigenDSizesWithPadding<kTensorSliceMaxRank>(); Eigen::TensorMap<Eigen::Tensor<T, kTensorSliceMaxRank, Eigen::RowMajor>> eig( data, dsizes); return eig; } template <typename DstT> struct CopyThatWorksWithStringPointer { template <typename SrcTensor, typename DstTensor, typename Shape> static void Copy(const SrcTensor& s, Shape s_start, Shape len, DstTensor& d, Shape d_start) { d.slice(d_start, len) = s.slice(s_start, len).template cast<DstT>(); } }; template <> struct CopyThatWorksWithStringPointer<tstring> { template <typename SrcTensor, typename DstTensor, typename Shape> static void Copy(const SrcTensor& s, Shape s_start, Shape len, DstTensor& d, Shape d_start) { typedef typename SrcTensor::Index Index; static_assert(kTensorSliceMaxRank == 8, "If kTensorSliceMaxRank changes, modify the loop below."); for (Index i0 = 0; i0 < len[0]; i0++) { for (Index i1 = 0; i1 < len[1]; i1++) { for (Index i2 = 0; i2 < len[2]; i2++) { for (Index i3 = 0; i3 < len[3]; i3++) { for (Index i4 = 0; i4 < len[4]; i4++) { for (Index i5 = 0; i5 < len[5]; i5++) { for (Index i6 = 0; i6 < len[6]; i6++) { for (Index i7 = 0; i7 < len[7]; i7++) { d(d_start[0] + i0, d_start[1] + i1, d_start[2] + i2, d_start[3] + i3, d_start[4] + i4, d_start[5] + i5, d_start[6] + i6, d_start[7] + i7) = *s(s_start[0] + i0, s_start[1] + i1, s_start[2] + i2, s_start[3] + i3, s_start[4] + i4, s_start[5] + i5, s_start[6] + i6, s_start[7] + i7); } } } } } } } } } }; template <> struct CopyThatWorksWithStringPointer<Eigen::half> { template <typename SrcTensor, typename DstTensor, typename Shape> static void Copy(const SrcTensor& s, Shape s_start, Shape len, DstTensor& d, Shape d_start) { typedef typename SrcTensor::Index Index; static_assert(kTensorSliceMaxRank == 8, "If kTensorSliceMaxRank changes, modify the loop below."); for (Index i0 = 0; i0 < len[0]; i0++) { for (Index i1 = 0; i1 < len[1]; i1++) { for (Index i2 = 0; i2 < len[2]; i2++) { for (Index i3 = 0; i3 < len[3]; i3++) { for (Index i4 = 0; i4 < len[4]; i4++) { for (Index i5 = 0; i5 < len[5]; i5++) { for (Index i6 = 0; i6 < len[6]; i6++) { for (Index i7 = 0; i7 < len[7]; i7++) { d(d_start[0] + i0, d_start[1] + i1, d_start[2] + i2, d_start[3] + i3, d_start[4] + i4, d_start[5] + i5, d_start[6] + i6, d_start[7] + i7) = Eigen::numext::bit_cast<Eigen::half, uint16_t>( s(s_start[0] + i0, s_start[1] + i1, s_start[2] + i2, s_start[3] + i3, s_start[4] + i4, s_start[5] + i5, s_start[6] + i6, s_start[7] + i7)); } } } } } } } } } }; template <typename SrcT, typename DstT> static bool CopyDataFromTensorSliceToTensorSlice(const TensorShape& shape, const TensorSlice& slice_s, const TensorSlice& slice_d, const SrcT* ptr_s, DstT* ptr_d) { CHECK_LE(shape.dims(), kTensorSliceMaxRank) << "Only tensors of size up to " << kTensorSliceMaxRank << " are supported"; TensorSlice inter; if (!slice_s.Intersect(slice_d, &inter)) { return false; } else { TensorShape shp_s, shp_d; Status s; s = slice_s.SliceTensorShape(shape, &shp_s); if (!s.ok()) { LOG(WARNING) << s; return false; } s = slice_d.SliceTensorShape(shape, &shp_d); if (!s.ok()) { LOG(WARNING) << s; return false; } TensorSlice rel_s, rel_d; slice_s.ComputeRelative(inter, &rel_s); slice_d.ComputeRelative(inter, &rel_d); auto t_s = GetEigenTensorMapFromTensorShape(shp_s, ptr_s); auto t_d = GetEigenTensorMapFromTensorShape(shp_d, ptr_d); Eigen::DSizes<Eigen::DenseIndex, kTensorSliceMaxRank> s_start, s_len, d_start, d_len; rel_s.FillIndicesAndSizes<kTensorSliceMaxRank>(shp_s, &s_start, &s_len); rel_d.FillIndicesAndSizes<kTensorSliceMaxRank>(shp_d, &d_start, &d_len); CopyThatWorksWithStringPointer<DstT>::Copy(t_s, s_start, s_len, t_d, d_start); return true; } } } } #endif #include "tensorflow/lite/kernels/tensor_slice_util.h" #include <cstdint> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/runtime_shape.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" namespace tflite { namespace ops { namespace builtin { template <typename IndexType> Index<IndexType> ReadIndexVector(const TfLiteTensor* indices_tensor, const RuntimeShape& tensor_shape, const Index<IndexType>& other_indices, int64_t dim_to_read) { Index<IndexType> index; index.reserve(tensor_shape.DimensionsCount()); int shift = 0; for (int64_t dim = 0; dim < tensor_shape.DimensionsCount(); ++dim) { if (dim == dim_to_read) { index.push_back(0); shift = 1; } else { index.push_back(other_indices[dim - shift]); } } int64_t index_vector_size = tensor_shape.Dims(dim_to_read); Index<IndexType> result; result.reserve(index_vector_size); for (IndexType index_vector_idx = 0; index_vector_idx < index_vector_size; ++index_vector_idx) { index[dim_to_read] = index_vector_idx; IndexType flat_index = TensorIndexToFlat( index.data(), tensor_shape.DimensionsCount(), tensor_shape); const IndexType* tensor_data = GetTensorData<IndexType>(indices_tensor); result.push_back(tensor_data[flat_index]); } return result; } template Index<int32_t> ReadIndexVector(const TfLiteTensor* indices_tensor, const RuntimeShape& tensor_shape, const Index<int32_t>& other_indices, int64_t dim_to_read); template Index<int64_t> ReadIndexVector(const TfLiteTensor* indices_tensor, const RuntimeShape& tensor_shape, const Index<int64_t>& other_indices, int64_t dim_to_read); } } }
#include "tensorflow/core/util/tensor_slice_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { TEST(TensorSliceUtilTest, CopyTensorSliceToTensorSlice) { TensorShape shape({4, 5}); { TensorSlice slice_s = TensorSlice::ParseOrDie("1,2:1,3"); TensorSlice slice_d = TensorSlice::ParseOrDie("1,2:1,3"); const float ptr_s[] = {6, 7, 8, 11, 12, 13}; float ptr_d[6]; for (int i = 0; i < 6; ++i) { ptr_d[i] = 0; } EXPECT_TRUE(CopyDataFromTensorSliceToTensorSlice(shape, slice_s, slice_d, ptr_s, ptr_d)); for (int i = 0; i < 6; ++i) { EXPECT_EQ(ptr_s[i], ptr_d[i]); } } { TensorSlice slice_s = TensorSlice::ParseOrDie("1,2:1,3"); TensorSlice slice_d = TensorSlice::ParseOrDie("3,1:2,3"); const float ptr_s[] = {6, 7, 8, 11, 12, 13}; float ptr_d[6]; EXPECT_FALSE(CopyDataFromTensorSliceToTensorSlice(shape, slice_s, slice_d, ptr_s, ptr_d)); } { TensorSlice slice_s = TensorSlice::ParseOrDie("0,3:0,3"); TensorSlice slice_d = TensorSlice::ParseOrDie("1,2:1,4"); const float ptr_s[] = {0, 1, 2, 5, 6, 7, 10, 11, 12}; float ptr_d[8]; for (int i = 0; i < 8; ++i) { ptr_d[i] = 0; } EXPECT_TRUE(CopyDataFromTensorSliceToTensorSlice(shape, slice_s, slice_d, ptr_s, ptr_d)); const float expected[] = {6, 7, 0, 0, 11, 12, 0, 0}; for (int i = 0; i < 8; ++i) { EXPECT_EQ(expected[i], ptr_d[i]); } } } } }
891
cpp
tensorflow/tensorflow
exp
tensorflow/lite/kernels/exp.cc
tensorflow/lite/kernels/exp_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_EXP_H_ #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_EXP_H_ #include <cmath> #include "ruy/profiler/instrumentation.h" #include "tensorflow/lite/kernels/internal/types.h" namespace tflite { namespace reference_ops { template <typename T> inline void Exp(const T* input_data, const size_t num_elements, T* output_data) { ruy::profiler::ScopeLabel label("Exp"); for (size_t idx = 0; idx < num_elements; ++idx) { output_data[idx] = std::exp(input_data[idx]); } } } } #endif #include <cmath> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/common.h" #include "tensorflow/lite/kernels/internal/reference/integer_ops/lut.h" #include "tensorflow/lite/kernels/internal/reference/reference_ops.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace builtin { namespace exp { enum KernelType { kReference, }; struct ExpContext { ExpContext(TfLiteContext* context, TfLiteNode* node) { input = GetInput(context, node, 0); output = GetOutput(context, node, 0); } const TfLiteTensor* input; TfLiteTensor* output; }; struct OpData { union { int8_t lut_int8[LUTSize<int8_t>()]; int16_t lut_int16[LUTSize<int16_t>()]; }; }; void* Init(TfLiteContext* context, const char* buffer, size_t length) { return new OpData; } void Free(TfLiteContext* context, void* buffer) { delete reinterpret_cast<OpData*>(buffer); } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { OpData* data = static_cast<OpData*>(node->user_data); TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); ExpContext op_context(context, node); const TfLiteTensor* input = op_context.input; TfLiteTensor* output = op_context.output; TfLiteIntArray* output_dims = TfLiteIntArrayCopy(input->dims); output->type = input->type; if (input->type == kTfLiteInt8) { LUTPopulate<int8_t>( input->params.scale, input->params.zero_point, output->params.scale, output->params.zero_point, [](float value) { return std::exp(value); }, data->lut_int8); } else if (input->type == kTfLiteInt16) { TF_LITE_ENSURE_EQ(context, input->params.zero_point, 0); TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0); LUTPopulate<int16_t>( input->params.scale, input->params.zero_point, output->params.scale, output->params.zero_point, [](float value) { return std::exp(value); }, data->lut_int16); } return context->ResizeTensor(context, op_context.output, output_dims); } template <KernelType kernel_type> TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { OpData* data = reinterpret_cast<OpData*>(node->user_data); ExpContext op_context(context, node); if (kernel_type == kReference) { switch (op_context.input->type) { case kTfLiteFloat32: reference_ops::Exp(GetTensorData<float>(op_context.input), NumElements(op_context.input), GetTensorData<float>(op_context.output)); break; case kTfLiteInt8: reference_integer_ops::LookupTable( GetTensorData<int8_t>(op_context.input), NumElements(op_context.input), data->lut_int8, GetTensorData<int8_t>(op_context.output)); break; case kTfLiteInt16: reference_integer_ops::LookupTable( GetTensorData<int16_t>(op_context.input), NumElements(op_context.input), data->lut_int16, GetTensorData<int16_t>(op_context.output)); break; default: TF_LITE_KERNEL_LOG(context, "Type %d is currently not supported by Exp.", op_context.input->type); return kTfLiteError; } } return kTfLiteOk; } } TfLiteRegistration* Register_EXP_REF() { static TfLiteRegistration r = {exp::Init, exp::Free, exp::Prepare, exp::Eval<exp::kReference>}; return &r; } TfLiteRegistration* Register_EXP() { return Register_EXP_REF(); } } } }
#include <math.h> #include <initializer_list> #include <limits> #include <type_traits> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "flatbuffers/flatbuffers.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { using ::testing::ElementsAreArray; class BaseExpOpModel : public SingleOpModel { public: BaseExpOpModel(const TensorData& input, const TensorData& output) { input_ = AddInput(input); output_ = AddOutput(output); SetBuiltinOp(BuiltinOperator_EXP, BuiltinOptions_ExpOptions, CreateExpOptions(builder_).Union()); BuildInterpreter({GetShape(input_)}); } std::vector<int> GetOutputShape() { return GetTensorShape(output_); } protected: int input_; int output_; }; class FloatExpOpModel : public BaseExpOpModel { public: using BaseExpOpModel::BaseExpOpModel; void SetInput(std::initializer_list<float> data) { PopulateTensor(input_, data); } std::vector<float> GetOutput() { return ExtractVector<float>(output_); } }; class QuantizedExpOpModel : public BaseExpOpModel { public: using BaseExpOpModel::BaseExpOpModel; template <class T> void SetInput(std::initializer_list<float> data) { QuantizeAndPopulate<T>(input_, data); } template <typename integer_dtype> std::vector<float> GetDequantizedOutput() { return Dequantize<integer_dtype>(ExtractVector<integer_dtype>(output_), GetScale(output_), GetZeroPoint(output_)); } }; template <typename T> inline float GetTolerance(float min, float max) { float kQuantizedTolerance = (max - min) / (std::numeric_limits<T>::max() - std::numeric_limits<T>::min()); if (std::is_same<T, int8_t>::value) { kQuantizedTolerance += (max - min) / 256.0f; } else if (std::is_same<T, int16_t>::value) { kQuantizedTolerance += (max - min) / 512.0f; } return kQuantizedTolerance; } TEST(ExpOpTest, ExpFloat) { std::initializer_list<float> data = {0.0f, 1.0f, -1.0f, 100.0f, -100.0f, 0.01f, -0.01f}; FloatExpOpModel m({TensorType_FLOAT32, {1, 1, 7}}, {TensorType_FLOAT32, {}}); m.SetInput(data); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({1, 1, 7})); EXPECT_THAT( m.GetOutput(), ElementsAreArray(ArrayFloatNear( {std::exp(0.0f), std::exp(1.0f), std::exp(-1.0f), std::exp(100.0f), std::exp(-100.0f), std::exp(0.01f), std::exp(-0.01f)}))); } template <TensorType tensor_type, typename integer_dtype> void QuantizedExpSymmetricTest() { const float kMin = -1; const float kMax = std::numeric_limits<integer_dtype>::max() / static_cast<float>(std::numeric_limits<integer_dtype>::max() + 1); const float kQuantizedTolerance = GetTolerance<integer_dtype>(-3.1, 3.1); QuantizedExpOpModel m({tensor_type, {1, 2, 2, 2}, 1.3f * kMin, 1.3f * kMax}, {tensor_type, {}, 3.01f * kMin, 3.01f * kMax}); m.SetInput<integer_dtype>({-1.3, -1.0, -0.3, 0, 0.1, 0.5, 1.0, 1.1}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({1, 2, 2, 2})); EXPECT_THAT(m.GetDequantizedOutput<integer_dtype>(), ElementsAreArray(ArrayFloatNear( {0.2725, 0.3679, 0.7408, 1.0, 1.1052, 1.6487, 2.7183, 3.0042}, kQuantizedTolerance))); } TEST(ExpOpTest, ExpSymmetricInt8) { QuantizedExpSymmetricTest<TensorType_INT8, int8_t>(); } TEST(ExpOpTest, ExpSymmetricInt16) { QuantizedExpSymmetricTest<TensorType_INT16, int16_t>(); } template <TensorType tensor_type, typename integer_dtype> void QuantizedExpAsymmetricTest() { const float kQuantizedTolerance = GetTolerance<integer_dtype>(-1.3, 3.01); QuantizedExpOpModel m({tensor_type, {1, 2, 2, 2}, -1.3, 1.1}, {tensor_type, {}, 0.0, 3.01}); m.SetInput<integer_dtype>({-1.3, -1.0, -0.3, 0, 0.1, 0.5, 1.0, 1.1}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({1, 2, 2, 2})); EXPECT_THAT(m.GetDequantizedOutput<integer_dtype>(), ElementsAreArray(ArrayFloatNear( {0.2725, 0.3679, 0.7408, 1.0, 1.1052, 1.6487, 2.7183, 3.0042}, kQuantizedTolerance))); } TEST(ExpOpTest, ExpAsymmetricInt8) { QuantizedExpAsymmetricTest<TensorType_INT8, int8_t>(); } } }
892
cpp
tensorflow/tensorflow
depthwise_conv
tensorflow/lite/kernels/depthwise_conv.cc
tensorflow/lite/kernels/depthwise_conv_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_GL_KERNELS_DEPTHWISE_CONV_H_ #define TENSORFLOW_LITE_DELEGATES_GPU_GL_KERNELS_DEPTHWISE_CONV_H_ #include <memory> #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/gl/node_shader.h" namespace tflite { namespace gpu { namespace gl { std::unique_ptr<NodeShader> NewDepthwiseConvolutionNodeShader(); } } } #endif #include "tensorflow/lite/delegates/gpu/gl/kernels/depthwise_conv.h" #include <any> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/memory/memory.h" #include "tensorflow/lite/delegates/gpu/common/convert.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/shape.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/types.h" #include "tensorflow/lite/delegates/gpu/common/util.h" #include "tensorflow/lite/delegates/gpu/gl/node_shader.h" #include "tensorflow/lite/delegates/gpu/gl/variable.h" #include "tensorflow/lite/delegates/gpu/gl/workgroups/ideal_workgroup_picker.h" namespace tflite { namespace gpu { namespace gl { namespace { class DepthwiseConvolution : public NodeShader { public: absl::Status GenerateCode(const GenerationContext& ctx, GeneratedCode* generated_code) const final { if (ctx.input_shapes.size() != 1) { return absl::UnimplementedError( "DepthWise Convolution does not support more than 1 runtime tensor"); } const auto& attr = std::any_cast<const DepthwiseConvolution2DAttributes&>(ctx.op_attr); auto weights = attr.weights.shape; const int offsets_count = weights.h * weights.w; const bool offsets_count_too_large = offsets_count > kMaxConstArraySize; std::vector<Variable> parameters; if (offsets_count_too_large) { parameters = { {"input_data_0_h", static_cast<int>(ctx.input_shapes[0][1])}, {"input_data_0_w", static_cast<int>(ctx.input_shapes[0][2])}, {"padding_w", attr.padding.prepended.w}, {"padding_h", attr.padding.prepended.h}, {"dilation_w", attr.dilations.w}, {"dilation_h", attr.dilations.h}, {"kernel_w", weights.w}, {"kernel_h", weights.h}, {"src_depth", DivideRoundUp(weights.i, 4)}, {"channel_multiplier", weights.o}, {"stride", int2(attr.strides.w, attr.strides.h)}, }; } else { std::vector<int2> offsets; for (int h = 0; h < weights.h; ++h) { for (int w = 0; w < weights.w; ++w) { offsets.emplace_back(w * attr.dilations.w - attr.padding.prepended.w, h * attr.dilations.h - attr.padding.prepended.h); } } parameters = { {"input_data_0_h", static_cast<int>(ctx.input_shapes[0][1])}, {"input_data_0_w", static_cast<int>(ctx.input_shapes[0][2])}, {"offsets_count", offsets_count}, {"offsets", offsets}, {"src_depth", DivideRoundUp(weights.i, 4)}, {"channel_multiplier", weights.o}, {"stride", int2(attr.strides.w, attr.strides.h)}, }; } bool non_empty_padding = attr.padding.appended.h != 0 || attr.padding.appended.w != 0 || attr.padding.prepended.h != 0 || attr.padding.prepended.w != 0; std::vector<std::pair<std::string, Object>> objects = { {"weights", MakeReadonlyObject(ConvertToPIOHW4(attr.weights))}}; std::string source; if (offsets_count_too_large) { source = R"( int offsets_count = $kernel_w$ * $kernel_h$; int src_layer_offset = (gid.z % $channel_multiplier$) * 4; int i = 0; for (int ky = 0; ky < $kernel_h$; ky++) { for (int kx = 0; kx < $kernel_w$; kx++, i++) { ivec2 coord = gid.xy * $stride$ + ivec2(kx * $dilation_w$ - $padding_w$, ky * $dilation_h$ - $padding_h$);)"; } else { source = R"( int offsets_count = $offsets_count$; int src_layer_offset = (gid.z % $channel_multiplier$) * 4; for (int i = 0; i < offsets_count; ++i) { ivec2 coord = gid.xy * $stride$ + $offsets[i]$;)"; } if (non_empty_padding) { source += R"( if (coord.x < 0 || coord.y < 0 || coord.x >= $input_data_0_w$ || coord.y >= $input_data_0_h$) { continue; })"; } source += R"( int src_layer = gid.z / $channel_multiplier$; vec4 input_ = $input_data_0[coord.x, coord.y, src_layer]$; vec4 input_shifted = vec4( input_[(src_layer_offset + 0) / $channel_multiplier$], input_[(src_layer_offset + 1) / $channel_multiplier$], input_[(src_layer_offset + 2) / $channel_multiplier$], input_[(src_layer_offset + 3) / $channel_multiplier$] ); value_0 += input_shifted * $weights[gid.z * offsets_count + i]$; } )"; if (offsets_count_too_large) { source += R"( } )"; } if (!attr.bias.data.empty()) { source += "value_0 += $bias[gid.z]$;\n"; objects.push_back({"bias", MakeReadonlyObject(attr.bias.data)}); } *generated_code = { std::move(parameters), std::move(objects), {}, uint3(), GetIdealWorkgroupIfPossible( *ctx.gpu_info, OperationType::DEPTHWISE_CONVOLUTION, HW(attr.weights.shape.h, attr.weights.shape.w), attr.strides, OHWI(attr.weights.shape.o, ctx.input_shapes[0][1], ctx.input_shapes[0][2], ctx.input_shapes[0][3])), std::move(source), IOStructure::ONLY_DEFINITIONS, IOStructure::AUTO, }; return absl::OkStatus(); } }; } std::unique_ptr<NodeShader> NewDepthwiseConvolutionNodeShader() { return std::make_unique<DepthwiseConvolution>(); } } } }
#include "tensorflow/lite/delegates/gpu/gl/kernels/depthwise_conv.h" #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/gl/kernels/test_util.h" using ::testing::FloatNear; using ::testing::Pointwise; namespace tflite { namespace gpu { namespace gl { namespace { TEST(DepthwiseConvTest, O4H1W1I2Strides1x1Dilation1x1) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 1, 1, 2); DepthwiseConvolution2DAttributes attr; Tensor<Linear, DataType::FLOAT32> bias; bias.shape.v = 4; bias.id = 1; bias.data = {1, 2, 3, 4}; attr.bias = std::move(bias); Tensor<OHWI, DataType::FLOAT32> weights; weights.shape = OHWI(2, 1, 1, 2); weights.id = 2; weights.data = {1, 3, 2, 4}; attr.weights = std::move(weights); attr.dilations = HW(1, 1); attr.padding.prepended = HW(0, 0); attr.padding.appended = HW(0, 0); attr.strides = HW(1, 1); TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 3; output.shape = BHWC(1, 1, 1, 4); SingleOpModel model( {ToString(OperationType::DEPTHWISE_CONVOLUTION), std::move(attr)}, {input}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {1, 3})); ASSERT_OK(model.Invoke(*NewDepthwiseConvolutionNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {2, 4, 12, 16})); } TEST(DepthwiseConvTest, O2H1W1I1Strides2x2Dilation1x1) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 3, 3, 1); DepthwiseConvolution2DAttributes attr; Tensor<Linear, DataType::FLOAT32> bias; bias.shape.v = 4; bias.id = 1; bias.data = {0, 0}; attr.bias = std::move(bias); Tensor<OHWI, DataType::FLOAT32> weights; weights.shape = OHWI(2, 1, 1, 1); weights.id = 1; weights.data = {1, 3}; attr.weights = std::move(weights); attr.dilations = HW(1, 1); attr.padding.prepended = HW(0, 0); attr.padding.appended = HW(0, 0); attr.strides = HW(2, 2); TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 3; output.shape = BHWC(1, 2, 2, 2); SingleOpModel model( {ToString(OperationType::DEPTHWISE_CONVOLUTION), std::move(attr)}, {input}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {1, 0, 1, 1, 0, 1, 1, 0, 1})); ASSERT_OK(model.Invoke(*NewDepthwiseConvolutionNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {1, 3, 1, 3, 1, 3, 1, 3})); } TEST(DepthwiseConvTest, O2H2W2I1Strides1x1Dilation2x2) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 3, 3, 1); DepthwiseConvolution2DAttributes attr; Tensor<Linear, DataType::FLOAT32> bias; bias.shape.v = 4; bias.id = 1; bias.data = {0, 0}; attr.bias = std::move(bias); Tensor<OHWI, DataType::FLOAT32> weights; weights.shape = OHWI(2, 2, 2, 1); weights.id = 1; weights.data = {1, 2, 3, 4, 5, 6, 7, 8}; attr.weights = std::move(weights); attr.dilations = HW(2, 2); attr.padding.prepended = HW(0, 0); attr.padding.appended = HW(0, 0); attr.strides = HW(1, 1); TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 3; output.shape = BHWC(1, 1, 1, 2); SingleOpModel model( {ToString(OperationType::DEPTHWISE_CONVOLUTION), std::move(attr)}, {input}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {1, 0, 1, 1, 0, 1, 1, 0, 1})); ASSERT_OK(model.Invoke(*NewDepthwiseConvolutionNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {10, 26})); } } } } }
893
cpp
tensorflow/tensorflow
fully_connected
tensorflow/lite/kernels/fully_connected.cc
tensorflow/lite/kernels/fully_connected_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_GL_KERNELS_FULLY_CONNECTED_H_ #define TENSORFLOW_LITE_DELEGATES_GPU_GL_KERNELS_FULLY_CONNECTED_H_ #include <memory> #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/gl/node_shader.h" namespace tflite { namespace gpu { namespace gl { std::unique_ptr<NodeShader> NewFullyConnectedNodeShader(); } } } #endif #include "tensorflow/lite/delegates/gpu/gl/kernels/fully_connected.h" #include <algorithm> #include <any> #include <cstdint> #include <cstring> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/memory/memory.h" #include "tensorflow/lite/delegates/gpu/common/convert.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/types.h" #include "tensorflow/lite/delegates/gpu/gl/variable.h" namespace tflite { namespace gpu { namespace gl { namespace { class FullyConnectedBuffers : public NodeShader { public: absl::Status GenerateCode(const GenerationContext& ctx, GeneratedCode* generated_code) const final { const auto& attr = std::any_cast<const FullyConnectedAttributes&>(ctx.op_attr); const int src_depth = DivideRoundUp(attr.weights.shape.i, 4); const int dst_depth = DivideRoundUp(attr.weights.shape.o, 4); constexpr int kWorkgroupHintX = 4; constexpr int kWorkgroupHintY = 4; std::vector<Variable> parameters = { {"src_depth", src_depth}, {"dst_depth", dst_depth}, }; std::vector<std::pair<std::string, Object>> objects = { {"weights", MakeReadonlyObject(ConvertToPHWO4I4(attr.weights))}}; std::string source = R"( const int threads = int(gl_WorkGroupSize.y); const int workers = int(gl_WorkGroupSize.x); ivec3 tid = ivec3(gl_LocalInvocationID); if (gid.x < $dst_depth$) { int offset = 4 * gid.x * $src_depth$ + 4 * tid.y; for (int d = tid.y; d < $src_depth$; d += threads, offset += 4 * threads) { vec4 src = $input_data_0[0, 0, d]$; value_0.x += dot(src, $weights[offset + 0]$); value_0.y += dot(src, $weights[offset + 1]$); value_0.z += dot(src, $weights[offset + 2]$); value_0.w += dot(src, $weights[offset + 3]$); } sh_mem[workers * tid.y + tid.x] = value_0; } memoryBarrierShared(); barrier(); if (tid.y > 0 || gid.x >= $dst_depth$) { return; } for (int t = 1; t < threads; t++) { value_0 += sh_mem[workers * t + tid.x]; } )"; if (!attr.bias.data.empty()) { source += " value_0 += $bias[gid.x]$;\n"; objects.push_back({"bias", MakeReadonlyObject(attr.bias.data)}); } source += " $output_data_0[0, 0, gid.x] = value_0$;"; std::vector<Variable> shared_variables = { #ifdef __APPLE__ {"sh_mem", std::vector<float4>(32)}, #else {"sh_mem", std::vector<float4>(0)}, #endif }; *generated_code = { std::move(parameters), std::move(objects), std::move(shared_variables), uint3(dst_depth, kWorkgroupHintY, 1), uint3(kWorkgroupHintX, kWorkgroupHintY, 1), std::move(source), IOStructure::ONLY_DEFINITIONS, IOStructure::ONLY_DEFINITIONS, }; return absl::OkStatus(); } }; } std::unique_ptr<NodeShader> NewFullyConnectedNodeShader() { return std::make_unique<FullyConnectedBuffers>(); } } } }
#include "tensorflow/lite/delegates/gpu/gl/kernels/fully_connected.h" #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/gl/kernels/test_util.h" using ::testing::FloatNear; using ::testing::Pointwise; namespace tflite { namespace gpu { namespace gl { namespace { TEST(FullyConnectedTest, MatrixByVectorMultiplication) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 1, 1, 2); FullyConnectedAttributes attr; Tensor<Linear, DataType::FLOAT32> bias; bias.shape.v = 4; bias.id = 1; bias.data = {1, 2, 3, 4}; attr.bias = std::move(bias); Tensor<OHWI, DataType::FLOAT32> weights; weights.shape = OHWI(4, 1, 1, 2); weights.id = 2; weights.data = {1, 2, 3, 4, 5, 6, 7, 8}; attr.weights = std::move(weights); TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 2; output.shape = BHWC(1, 1, 1, 4); SingleOpModel model({ToString(OperationType::FULLY_CONNECTED), attr}, {input}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {1, 2})); ASSERT_OK(model.Invoke(*NewFullyConnectedNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {6, 13, 20, 27})); } } } } }
894
cpp
tensorflow/tensorflow
conv
tensorflow/lite/kernels/conv.cc
tensorflow/lite/kernels/conv_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_GL_KERNELS_CONV_H_ #define TENSORFLOW_LITE_DELEGATES_GPU_GL_KERNELS_CONV_H_ #include <memory> #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/gl/node_shader.h" namespace tflite { namespace gpu { namespace gl { std::unique_ptr<NodeShader> NewConvolutionNodeShader(); std::unique_ptr<NodeShader> NewConvolution1x1NodeShader(); } } } #endif #include "tensorflow/lite/delegates/gpu/gl/kernels/conv.h" #include <any> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/memory/memory.h" #include "absl/strings/str_cat.h" #include "tensorflow/lite/delegates/gpu/common/convert.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/shape.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/types.h" #include "tensorflow/lite/delegates/gpu/common/util.h" #include "tensorflow/lite/delegates/gpu/gl/node_shader.h" #include "tensorflow/lite/delegates/gpu/gl/variable.h" #include "tensorflow/lite/delegates/gpu/gl/workgroups/ideal_workgroup_picker.h" namespace tflite { namespace gpu { namespace gl { namespace { class Convolution : public NodeShader { public: absl::Status GenerateCode(const GenerationContext& ctx, GeneratedCode* generated_code) const final { if (ctx.input_shapes.size() != 1) { return absl::UnimplementedError( "Convolution does not support more than 1 runtime tensor"); } const auto& attr = std::any_cast<const Convolution2DAttributes&>(ctx.op_attr); if (attr.groups != 1) { return absl::UnimplementedError( "Convolution does not support more than 1 group"); } auto weights = attr.weights.shape; const int offsets_count = weights.h * weights.w; const bool offsets_count_too_large = offsets_count > kMaxConstArraySize; std::vector<Variable> parameters; if (offsets_count_too_large) { parameters = { {"input_data_0_h", static_cast<int>(ctx.input_shapes[0][1])}, {"input_data_0_w", static_cast<int>(ctx.input_shapes[0][2])}, {"padding_w", attr.padding.prepended.w}, {"padding_h", attr.padding.prepended.h}, {"dilation_w", attr.dilations.w}, {"dilation_h", attr.dilations.h}, {"kernel_w", weights.w}, {"kernel_h", weights.h}, {"src_depth", DivideRoundUp(weights.i, 4)}, {"stride", int2(attr.strides.w, attr.strides.h)}, }; } else { std::vector<int2> offsets; for (int h = 0; h < weights.h; ++h) { for (int w = 0; w < weights.w; ++w) { offsets.emplace_back(w * attr.dilations.w - attr.padding.prepended.w, h * attr.dilations.h - attr.padding.prepended.h); } } parameters = { {"input_data_0_h", static_cast<int>(ctx.input_shapes[0][1])}, {"input_data_0_w", static_cast<int>(ctx.input_shapes[0][2])}, {"offsets_count", offsets_count}, {"offsets", offsets}, {"src_depth", DivideRoundUp(weights.i, 4)}, {"stride", int2(attr.strides.w, attr.strides.h)}, }; } bool non_empty_padding = attr.padding.appended.h != 0 || attr.padding.appended.w != 0 || attr.padding.prepended.h != 0 || attr.padding.prepended.w != 0; std::vector<std::pair<std::string, Object>> objects = { {"weights", MakeReadonlyObject(Get3DSizeForPHWO4I4(attr.weights.shape), ConvertToPHWO4I4(attr.weights))}}; std::string source; if (offsets_count_too_large) { source = R"( int i = 0; for (int ky = 0; ky < $kernel_h$; ky++) { for (int kx = 0; kx < $kernel_w$; kx++, i++) { ivec2 coord = gid.xy * $stride$ + ivec2(kx * $dilation_w$ - $padding_w$, ky * $dilation_h$ - $padding_h$);)"; } else { source = R"( for (int i = 0; i < $offsets_count$; ++i) { ivec2 coord = gid.xy * $stride$ + $offsets[i]$;)"; } if (non_empty_padding) { source += R"( if (coord.x < 0 || coord.y < 0 || coord.x >= $input_data_0_w$ || coord.y >= $input_data_0_h$) { continue; })"; } source += R"( for (int l = 0; l < $src_depth$; ++l) { vec4 input_ = $input_data_0[coord.x, coord.y, l]$; value_0.x += dot(input_, $weights[l * 4 + 0, i, gid.z]$); value_0.y += dot(input_, $weights[l * 4 + 1, i, gid.z]$); value_0.z += dot(input_, $weights[l * 4 + 2, i, gid.z]$); value_0.w += dot(input_, $weights[l * 4 + 3, i, gid.z]$); } } )"; if (offsets_count_too_large) { source += R"( } )"; } if (!attr.bias.data.empty()) { source += "value_0 += $bias[gid.z]$;\n"; objects.push_back({"bias", MakeReadonlyObject(attr.bias.data)}); } *generated_code = { std::move(parameters), std::move(objects), {}, uint3(), GetIdealWorkgroupIfPossible( *ctx.gpu_info, OperationType::CONVOLUTION_2D, HW(weights.h, weights.w), attr.strides, uint3(0, 0, 0), OHWI(weights.o, ctx.input_shapes[0][1], ctx.input_shapes[0][2], ctx.input_shapes[0][3])), std::move(source), IOStructure::ONLY_DEFINITIONS, IOStructure::AUTO, }; return absl::OkStatus(); } }; int SelectMultiplier(int32_t input_width, const NodeShader::GenerationContext& ctx) { std::vector<int> multipliers = {4, 2}; if (ctx.gpu_info->IsAMD()) { return 1; } if (!ctx.compiler_options.allow_precision_loss && ctx.gpu_info->IsMali()) { multipliers = {2}; } for (int i : multipliers) { if (input_width % i == 0) { return i; } } return 1; } class Convolution1x1 : public NodeShader { public: absl::Status GenerateCode(const GenerationContext& ctx, GeneratedCode* generated_code) const final { if (ctx.input_shapes.size() != 1) { return absl::UnimplementedError( "Convolution does not support more than 1 runtime tensor"); } const auto& attr = std::any_cast<const Convolution2DAttributes&>(ctx.op_attr); if (attr.weights.shape.h != 1 || attr.weights.shape.w != 1) { return absl::UnimplementedError("Height and width should be 1."); } if (attr.dilations.h != 1 || attr.dilations.w != 1) { return absl::UnimplementedError("Dilations are not supported."); } if (attr.strides.h != 1 || attr.strides.w != 1) { return absl::UnimplementedError("Strides are not supported."); } if (attr.padding.appended.h != 0 || attr.padding.appended.w != 0 || attr.padding.prepended.h != 0 || attr.padding.prepended.w != 0) { return absl::UnimplementedError("Padding is not supported."); } int multiplier = SelectMultiplier(ctx.input_shapes[0][2], ctx); std::vector<Variable> parameters = { {"src_depth", DivideRoundUp(static_cast<int>(ctx.input_shapes[0][3]), 4)}, }; std::vector<std::pair<std::string, Object>> objects = { {"weights", MakeReadonlyObject(uint3(4, DivideRoundUp(attr.weights.shape.i, 4), DivideRoundUp(attr.weights.shape.o, 4)), ConvertToPHWO4I4(attr.weights))}}; std::string source; for (int i = 0; i < multiplier; i++) { absl::StrAppend(&source, "highp vec4 result", i, " = vec4(0);\n"); } absl::StrAppend(&source, "vec4 f;\n"); absl::StrAppend(&source, "for (int l = 0; l < $src_depth$; ++l) {\n"); for (int i = 0; i < multiplier; i++) { absl::StrAppend(&source, " vec4 input", i, " = $input_data_0[gid.x * ", multiplier, " + ", i, ",gid.y,l]$;\n"); } for (int k = 0; k < 4; k++) { absl::StrAppend(&source, " f = $weights[", k, ", l, gid.z]$;\n"); for (int i = 0; i < multiplier; i++) { absl::StrAppend(&source, " result", i, "[", k, "] += dot(input", i, ", f);\n"); } } absl::StrAppend(&source, "}\n"); if (!attr.bias.data.empty()) { objects.push_back({"bias", MakeReadonlyObject(attr.bias.data)}); absl::StrAppend(&source, "vec4 b = $bias[gid.z]$;\n"); for (int i = 0; i < multiplier; i++) { absl::StrAppend(&source, "result", i, " += b;\n"); } } if (multiplier != 1) { for (int i = 0; i < multiplier; i++) { absl::StrAppend(&source, "$inplace_update:result", i, "$\n"); absl::StrAppend(&source, "$output_data_0[gid.x * ", multiplier, " + ", i, ",gid.y,gid.z] = result", i, "$;\n"); } } else { absl::StrAppend(&source, "value_0 = result0;\n"); } auto dst_depth = DivideRoundUp(ctx.output_shapes[0][3], 4); uint3 workgroup = uint3(16, 16, 1); if (ctx.gpu_info->IsAdreno()) { if (dst_depth >= 2) { workgroup = uint3(8, 8, 2); } if (dst_depth >= 4) { workgroup = uint3(4, 8, 4); } if (dst_depth >= 8) { workgroup = uint3(4, 4, 8); } if (dst_depth >= 32) { workgroup = uint3(4, 4, 16); } if (dst_depth >= 64) { workgroup = uint3(2, 8, 16); } } else { if (dst_depth >= 2) { workgroup = uint3(16, 8, 2); } if (dst_depth >= 4) { workgroup = uint3(16, 4, 4); } if (dst_depth >= 8) { workgroup = uint3(8, 4, 8); } if (dst_depth >= 32) { workgroup = uint3(8, 4, 8); } if (dst_depth >= 64) { workgroup = uint3(8, 4, 8); } } *generated_code = { std::move(parameters), std::move(objects), {}, uint3(ctx.output_shapes[0][2] / multiplier, ctx.output_shapes[0][1], DivideRoundUp(ctx.output_shapes[0][3], 4)), GetIdealWorkgroupIfPossible( *ctx.gpu_info, OperationType::CONVOLUTION_2D, HW(attr.weights.shape.h, attr.weights.shape.w), attr.strides, workgroup, OHWI(attr.weights.shape.o, ctx.input_shapes[0][1], ctx.input_shapes[0][2], ctx.input_shapes[0][3])), std::move(source), IOStructure::ONLY_DEFINITIONS, multiplier == 1 ? IOStructure::AUTO : IOStructure::ONLY_DEFINITIONS, }; return absl::OkStatus(); } }; } std::unique_ptr<NodeShader> NewConvolutionNodeShader() { return std::make_unique<Convolution>(); } std::unique_ptr<NodeShader> NewConvolution1x1NodeShader() { return std::make_unique<Convolution1x1>(); } } } }
#include "tensorflow/lite/delegates/gpu/gl/kernels/conv.h" #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/gl/kernels/test_util.h" using ::testing::FloatNear; using ::testing::Pointwise; namespace tflite { namespace gpu { namespace gl { namespace { TEST(ConvTest, O2H2W1I1Stride1x1Dilation1x1) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 2, 2, 1); Convolution2DAttributes attr; Tensor<Linear, DataType::FLOAT32> bias; bias.shape.v = 2; bias.id = 1; bias.data = {1, 1}; attr.bias = std::move(bias); Tensor<OHWI, DataType::FLOAT32> weights; weights.shape = OHWI(2, 2, 1, 1); weights.id = 2; weights.data = {1, 2, 3, 4}; attr.weights = std::move(weights); attr.dilations = HW(1, 1); attr.padding.prepended = HW(0, 0); attr.padding.appended = HW(1, 0); attr.strides = HW(1, 1); TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 3; output.shape = BHWC(1, 2, 2, 2); SingleOpModel model( {ToString(OperationType::CONVOLUTION_2D), std::move(attr)}, {input}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {1, 1, 1, 1})); ASSERT_OK(model.Invoke(*NewConvolutionNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {4, 8, 4, 8, 2, 4, 2, 4})); } TEST(ConvTest, O1H2W2I1Stride1x1Dilation2x2) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 3, 3, 1); Convolution2DAttributes attr; Tensor<Linear, DataType::FLOAT32> bias; bias.shape.v = 2; bias.id = 1; bias.data.push_back(0.0); attr.bias = std::move(bias); Tensor<OHWI, DataType::FLOAT32> weights; weights.shape = OHWI(1, 2, 2, 1); weights.id = 2; weights.data = {1, 2, 3, 4}; attr.weights = std::move(weights); attr.dilations = HW(2, 2); attr.padding.prepended = HW(0, 0); attr.padding.appended = HW(0, 0); attr.strides = HW(1, 1); TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 3; output.shape = BHWC(1, 1, 1, 1); SingleOpModel model( {ToString(OperationType::CONVOLUTION_2D), std::move(attr)}, {input}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {1, 1, 1, 1, 1, 1, 1, 1, 1})); ASSERT_OK(model.Invoke(*NewConvolutionNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {10})); } TEST(ConvTest, O1H3W3I1Stride1x1Dilation1x1) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 2, 2, 1); Convolution2DAttributes attr; Tensor<Linear, DataType::FLOAT32> bias; bias.shape.v = 1; bias.id = 1; bias.data.push_back(1.0); attr.bias = std::move(bias); Tensor<OHWI, DataType::FLOAT32> weights; weights.shape = OHWI(1, 3, 3, 1); weights.id = 2; weights.data = {1, 2, 3, 1, 2, 3, 1, 2, 3}; attr.weights = std::move(weights); attr.dilations = HW(1, 1); attr.padding.prepended = HW(1, 1); attr.padding.appended = HW(0, 0); attr.strides = HW(1, 1); TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 3; output.shape = BHWC(1, 1, 1, 1); SingleOpModel model( {ToString(OperationType::CONVOLUTION_2D), std::move(attr)}, {input}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {1, 1, 1, 1})); ASSERT_OK(model.Invoke(*NewConvolutionNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {11})); } TEST(ConvTest, O2H1W1I2Stride1x1Dilation1x1) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 2, 1, 2); Convolution2DAttributes attr; Tensor<Linear, DataType::FLOAT32> bias; bias.shape.v = 2; bias.id = 1; bias.data = {1, 1}; attr.bias = std::move(bias); Tensor<OHWI, DataType::FLOAT32> weights; weights.shape = OHWI(2, 1, 1, 2); weights.id = 2; weights.data = {1, 2, 3, 4}; attr.weights = std::move(weights); attr.dilations = HW(1, 1); attr.padding.prepended = HW(0, 0); attr.padding.appended = HW(0, 0); attr.strides = HW(1, 1); TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 3; output.shape = BHWC(1, 2, 1, 2); SingleOpModel model( {ToString(OperationType::CONVOLUTION_2D), std::move(attr)}, {input}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {1, 1, 1, 1})); ASSERT_OK(model.Invoke(*NewConvolution1x1NodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {4, 8, 4, 8})); } TEST(ConvTest, O1H1W1I1Stride2x2Dilation1x1) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 3, 3, 1); Convolution2DAttributes attr; Tensor<Linear, DataType::FLOAT32> bias; bias.shape.v = 2; bias.id = 1; bias.data.push_back(0.0); attr.bias = std::move(bias); Tensor<OHWI, DataType::FLOAT32> weights; weights.shape = OHWI(1, 1, 1, 1); weights.id = 2; weights.data.push_back(2.0); attr.weights = std::move(weights); attr.dilations = HW(1, 1); attr.padding.prepended = HW(0, 0); attr.padding.appended = HW(0, 0); attr.strides = HW(2, 2); TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 3; output.shape = BHWC(1, 2, 2, 1); SingleOpModel model( {ToString(OperationType::CONVOLUTION_2D), std::move(attr)}, {input}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {1, 0, 2, 0, 0, 0, 4, 0, 8})); ASSERT_OK(model.Invoke(*NewConvolutionNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {2, 4, 8, 16})); } } } } }
895
cpp
tensorflow/tensorflow
transpose_conv
tensorflow/lite/kernels/transpose_conv.cc
tensorflow/lite/kernels/transpose_conv_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_GL_KERNELS_TRANSPOSE_CONV_H_ #define TENSORFLOW_LITE_DELEGATES_GPU_GL_KERNELS_TRANSPOSE_CONV_H_ #include <memory> #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/gl/node_shader.h" namespace tflite { namespace gpu { namespace gl { std::unique_ptr<NodeShader> NewConvolutionTransposedNodeShader(); } } } #endif #include "tensorflow/lite/delegates/gpu/gl/kernels/transpose_conv.h" #include <any> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/memory/memory.h" #include "tensorflow/lite/delegates/gpu/common/convert.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/shape.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/types.h" #include "tensorflow/lite/delegates/gpu/common/util.h" #include "tensorflow/lite/delegates/gpu/gl/node_shader.h" #include "tensorflow/lite/delegates/gpu/gl/variable.h" namespace tflite { namespace gpu { namespace gl { namespace { class ConvolutionTransposedBuffers : public NodeShader { public: absl::Status GenerateCode(const GenerationContext& ctx, GeneratedCode* generated_code) const final { if (ctx.input_shapes.size() != 1) { return absl::UnimplementedError( "Convolution Transposed does not support more than 1 runtime tensor"); } const auto& attr = std::any_cast<const ConvolutionTransposedAttributes&>(ctx.op_attr); auto weights = attr.weights.shape; std::vector<Variable> parameters = { {"input_data_0_h", static_cast<int>(ctx.input_shapes[0][1])}, {"input_data_0_w", static_cast<int>(ctx.input_shapes[0][2])}, {"src_depth", DivideRoundUp(weights.i, 4)}, {"kernel_size", int2(weights.w, weights.h)}, {"stride", int2(attr.stride.w, attr.stride.h)}, {"padding", int2(weights.w - 1 - attr.padding.prepended.w, weights.h - 1 - attr.padding.prepended.h)}, }; std::vector<std::pair<std::string, Object>> objects = { {"weights", MakeReadonlyObject(Get3DSizeForPHWO4I4(attr.weights.shape), ConvertToPHWO4I4Transposed(attr.weights))}}; std::string source = R"( #define IN_BOUNDS(p, p0, p1) (all(greaterThanEqual(p, p0)) && all(lessThan(p, p1))) ivec2 p0 = ($padding$ + $stride$ - gid.xy % $stride$) % $stride$; for (int y = p0.y; y < $kernel_size.y$; y += $stride.y$) { for (int x = p0.x; x < $kernel_size.x$; x += $stride.x$) { int i = int(float(y * $kernel_size.x$) + float(x)); ivec2 idx = ivec2(vec2(gid.xy + ivec2(x, y)) - vec2($padding$)); if (IN_BOUNDS(idx, ivec2(0), ivec2($input_data_0_w$, $input_data_0_h$) * $stride$)) { ivec2 coord = idx / $stride$; for (int l = 0; l < $src_depth$; ++l) { vec4 src_color = $input_data_0[coord.x, coord.y, l]$; value_0.x += dot(src_color, $weights[l * 4 + 0, i, gid.z]$); value_0.y += dot(src_color, $weights[l * 4 + 1, i, gid.z]$); value_0.z += dot(src_color, $weights[l * 4 + 2, i, gid.z]$); value_0.w += dot(src_color, $weights[l * 4 + 3, i, gid.z]$); } } } } )"; if (!attr.bias.data.empty()) { source += "value_0 += $bias[gid.z]$;\n"; objects.push_back({"bias", MakeReadonlyObject(attr.bias.data)}); } *generated_code = { std::move(parameters), std::move(objects), {}, uint3(), uint3(), source, IOStructure::ONLY_DEFINITIONS, IOStructure::AUTO, }; return absl::OkStatus(); } }; } std::unique_ptr<NodeShader> NewConvolutionTransposedNodeShader() { return std::make_unique<ConvolutionTransposedBuffers>(); } } } }
#include "tensorflow/lite/delegates/gpu/gl/kernels/transpose_conv.h" #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/gl/kernels/test_util.h" using ::testing::FloatNear; using ::testing::Pointwise; namespace tflite { namespace gpu { namespace gl { namespace { TEST(TransposeConvTest, O2H2W1I1Stride1x1DAdjacent1x1) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 2, 2, 1); ConvolutionTransposedAttributes attr; Tensor<Linear, DataType::FLOAT32> bias; bias.shape.v = 2; bias.id = 1; bias.data = {1, 1}; attr.bias = std::move(bias); Tensor<OHWI, DataType::FLOAT32> weights; weights.shape = OHWI(2, 2, 1, 1); weights.id = 2; weights.data = {1, 2, 3, 4}; attr.weights = std::move(weights); attr.padding.prepended = HW(0, 0); attr.padding.appended = HW(1, 0); attr.adjacent = HW(1, 1); attr.stride = HW(1, 1); TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 3; output.shape = BHWC(1, 3, 3, 2); SingleOpModel model( {ToString(OperationType::CONVOLUTION_TRANSPOSED), std::move(attr)}, {input}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {1, 1, 1, 1})); ASSERT_OK(model.Invoke(*NewConvolutionTransposedNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {2, 4, 2, 4, 1, 1, 4, 8, 4, 8, 1, 1, 3, 5, 3, 5, 1, 1})); } TEST(TransposeConvTest, O1H2W2I1Stride1x1Adjacent2x2) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 3, 3, 1); ConvolutionTransposedAttributes attr; Tensor<Linear, DataType::FLOAT32> bias; bias.shape.v = 2; bias.id = 1; bias.data.push_back(0.0); attr.bias = std::move(bias); Tensor<OHWI, DataType::FLOAT32> weights; weights.shape = OHWI(1, 2, 2, 1); weights.id = 2; weights.data = {1, 2, 3, 4}; attr.weights = std::move(weights); attr.adjacent = HW(2, 2); attr.padding.prepended = HW(0, 0); attr.padding.appended = HW(0, 0); attr.stride = HW(1, 1); TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 3; output.shape = BHWC(1, 6, 6, 1); SingleOpModel model( {ToString(OperationType::CONVOLUTION_TRANSPOSED), std::move(attr)}, {input}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {1, 1, 1, 1, 1, 1, 1, 1, 1})); ASSERT_OK(model.Invoke(*NewConvolutionTransposedNodeShader())); EXPECT_THAT( model.GetOutput(0), Pointwise(FloatNear(1e-6), {1, 3, 3, 2, 0, 0, 4, 10, 10, 6, 0, 0, 4, 10, 10, 6, 0, 0, 3, 7, 7, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0})); } TEST(TransposeConvTest, O1H3W3I1Stride1x1Adjacent1x1) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 2, 2, 1); ConvolutionTransposedAttributes attr; Tensor<Linear, DataType::FLOAT32> bias; bias.shape.v = 1; bias.id = 1; bias.data.push_back(1.0); attr.bias = std::move(bias); Tensor<OHWI, DataType::FLOAT32> weights; weights.shape = OHWI(1, 3, 3, 1); weights.id = 2; weights.data = {1, 2, 3, 1, 2, 3, 1, 2, 3}; attr.weights = std::move(weights); attr.adjacent = HW(1, 1); attr.padding.prepended = HW(1, 1); attr.padding.appended = HW(0, 0); attr.stride = HW(1, 1); TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 3; output.shape = BHWC(1, 4, 4, 1); SingleOpModel model( {ToString(OperationType::CONVOLUTION_TRANSPOSED), std::move(attr)}, {input}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {1, 1, 1, 1})); ASSERT_OK(model.Invoke(*NewConvolutionTransposedNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {7, 11, 7, 1, 7, 11, 7, 1, 4, 6, 4, 1, 1, 1, 1, 1})); } TEST(TransposeConvTest, O2H1W1I2Stride1x1Dilation1x1) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 2, 1, 2); ConvolutionTransposedAttributes attr; Tensor<Linear, DataType::FLOAT32> bias; bias.shape.v = 2; bias.id = 1; bias.data = {1, 1}; attr.bias = std::move(bias); Tensor<OHWI, DataType::FLOAT32> weights; weights.shape = OHWI(2, 1, 1, 2); weights.id = 2; weights.data = {1, 2, 3, 4}; attr.weights = std::move(weights); attr.adjacent = HW(1, 1); attr.padding.prepended = HW(0, 0); attr.padding.appended = HW(0, 0); attr.stride = HW(1, 1); TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 3; output.shape = BHWC(1, 3, 2, 2); SingleOpModel model( {ToString(OperationType::CONVOLUTION_TRANSPOSED), std::move(attr)}, {input}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {1, 1, 1, 1})); ASSERT_OK(model.Invoke(*NewConvolutionTransposedNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {4, 8, 1, 1, 4, 8, 1, 1, 1, 1, 1, 1})); } TEST(TransposeConvTest, O1H1W1I1Stride2x2Dilation1x1) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 3, 3, 1); ConvolutionTransposedAttributes attr; Tensor<Linear, DataType::FLOAT32> bias; bias.shape.v = 2; bias.id = 1; bias.data.push_back(0.0); attr.bias = std::move(bias); Tensor<OHWI, DataType::FLOAT32> weights; weights.shape = OHWI(1, 1, 1, 1); weights.id = 2; weights.data.push_back(2.0); attr.weights = std::move(weights); attr.adjacent = HW(1, 1); attr.padding.prepended = HW(0, 0); attr.padding.appended = HW(0, 0); attr.stride = HW(2, 2); TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 3; output.shape = BHWC(1, 6, 6, 1); SingleOpModel model( {ToString(OperationType::CONVOLUTION_TRANSPOSED), std::move(attr)}, {input}, {output}); ASSERT_TRUE(model.PopulateTensor(0, {1, 0, 2, 0, 0, 0, 4, 0, 8})); ASSERT_OK(model.Invoke(*NewConvolutionTransposedNodeShader())); EXPECT_THAT( model.GetOutput(0), Pointwise(FloatNear(1e-6), {2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0})); } } } } }
896
cpp
tensorflow/tensorflow
non_max_suppression
tensorflow/lite/kernels/non_max_suppression.cc
tensorflow/lite/kernels/internal/non_max_suppression_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_NON_MAX_SUPPRESSION_H_ #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_NON_MAX_SUPPRESSION_H_ #include <algorithm> #include <cmath> #include <deque> #include <queue> namespace tflite { namespace reference_ops { struct BoxCornerEncoding { float y1; float x1; float y2; float x2; }; inline float ComputeIntersectionOverUnion(const float* boxes, const int i, const int j) { auto& box_i = reinterpret_cast<const BoxCornerEncoding*>(boxes)[i]; auto& box_j = reinterpret_cast<const BoxCornerEncoding*>(boxes)[j]; const float box_i_y_min = std::min<float>(box_i.y1, box_i.y2); const float box_i_y_max = std::max<float>(box_i.y1, box_i.y2); const float box_i_x_min = std::min<float>(box_i.x1, box_i.x2); const float box_i_x_max = std::max<float>(box_i.x1, box_i.x2); const float box_j_y_min = std::min<float>(box_j.y1, box_j.y2); const float box_j_y_max = std::max<float>(box_j.y1, box_j.y2); const float box_j_x_min = std::min<float>(box_j.x1, box_j.x2); const float box_j_x_max = std::max<float>(box_j.x1, box_j.x2); const float area_i = (box_i_y_max - box_i_y_min) * (box_i_x_max - box_i_x_min); const float area_j = (box_j_y_max - box_j_y_min) * (box_j_x_max - box_j_x_min); if (area_i <= 0 || area_j <= 0) return 0.0; const float intersection_ymax = std::min<float>(box_i_y_max, box_j_y_max); const float intersection_xmax = std::min<float>(box_i_x_max, box_j_x_max); const float intersection_ymin = std::max<float>(box_i_y_min, box_j_y_min); const float intersection_xmin = std::max<float>(box_i_x_min, box_j_x_min); const float intersection_area = std::max<float>(intersection_ymax - intersection_ymin, 0.0) * std::max<float>(intersection_xmax - intersection_xmin, 0.0); return intersection_area / (area_i + area_j - intersection_area); } inline void NonMaxSuppression(const float* boxes, const int num_boxes, const float* scores, const int max_output_size, const float iou_threshold, const float score_threshold, const float soft_nms_sigma, int* selected_indices, float* selected_scores, int* num_selected_indices) { struct Candidate { int index; float score; int suppress_begin_index; }; auto cmp = [](const Candidate bs_i, const Candidate bs_j) { return bs_i.score < bs_j.score; }; std::priority_queue<Candidate, std::deque<Candidate>, decltype(cmp)> candidate_priority_queue(cmp); for (int i = 0; i < num_boxes; ++i) { if (scores[i] > score_threshold) { candidate_priority_queue.emplace(Candidate({i, scores[i], 0})); } } *num_selected_indices = 0; int num_outputs = std::min(static_cast<int>(candidate_priority_queue.size()), max_output_size); if (num_outputs == 0) return; float scale = 0; if (soft_nms_sigma > 0.0) { scale = -0.5 / soft_nms_sigma; } while (*num_selected_indices < num_outputs && !candidate_priority_queue.empty()) { Candidate next_candidate = candidate_priority_queue.top(); const float original_score = next_candidate.score; candidate_priority_queue.pop(); bool should_hard_suppress = false; for (int j = *num_selected_indices - 1; j >= next_candidate.suppress_begin_index; --j) { const float iou = ComputeIntersectionOverUnion( boxes, next_candidate.index, selected_indices[j]); if (iou >= iou_threshold) { should_hard_suppress = true; break; } if (soft_nms_sigma > 0.0) { next_candidate.score = next_candidate.score * std::exp(scale * iou * iou); } if (next_candidate.score <= score_threshold) break; } next_candidate.suppress_begin_index = *num_selected_indices; if (!should_hard_suppress) { if (next_candidate.score == original_score) { selected_indices[*num_selected_indices] = next_candidate.index; if (selected_scores) { selected_scores[*num_selected_indices] = next_candidate.score; } ++*num_selected_indices; } if (next_candidate.score > score_threshold) { candidate_priority_queue.push(next_candidate); } } } } } } #endif #include "tensorflow/lite/kernels/internal/reference/non_max_suppression.h" #include <initializer_list> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace builtin { namespace non_max_suppression { constexpr int kInputTensorBoxes = 0; constexpr int kInputTensorScores = 1; constexpr int kInputTensorMaxOutputSize = 2; constexpr int kInputTensorIouThreshold = 3; constexpr int kInputTensorScoreThreshold = 4; constexpr int kInputTensorSigma = 5; constexpr int kNMSOutputTensorSelectedIndices = 0; constexpr int kNMSOutputTensorNumSelectedIndices = 1; constexpr int kSoftNMSOutputTensorSelectedIndices = 0; constexpr int kSoftNMSOutputTensorSelectedScores = 1; constexpr int kSoftNMSOutputTensorNumSelectedIndices = 2; TfLiteStatus SetTensorSizes(TfLiteContext* context, TfLiteTensor* tensor, std::initializer_list<int> values) { TfLiteIntArray* size = TfLiteIntArrayCreate(values.size()); int index = 0; for (const auto& v : values) { size->data[index++] = v; } return context->ResizeTensor(context, tensor, size); } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { const int num_inputs = NumInputs(node); const bool is_soft_nms = num_inputs == 6; if (num_inputs != 5 && num_inputs != 6) { TF_LITE_KERNEL_LOG(context, "Found NMS op with invalid num inputs: %d", NumInputs(node)); return kTfLiteError; } const TfLiteTensor* input_boxes; TF_LITE_ENSURE_OK( context, GetInputSafe(context, node, kInputTensorBoxes, &input_boxes)); TF_LITE_ENSURE_EQ(context, input_boxes->type, kTfLiteFloat32); TF_LITE_ENSURE_EQ(context, NumDimensions(input_boxes), 2); TF_LITE_ENSURE_EQ(context, SizeOfDimension(input_boxes, 1), 4); const int num_boxes = SizeOfDimension(input_boxes, 0); const TfLiteTensor* input_scores; TF_LITE_ENSURE_OK( context, GetInputSafe(context, node, kInputTensorScores, &input_scores)); TF_LITE_ENSURE_EQ(context, input_scores->type, kTfLiteFloat32); TF_LITE_ENSURE_EQ(context, NumDimensions(input_scores), 1); TF_LITE_ENSURE_EQ(context, num_boxes, SizeOfDimension(input_scores, 0)); const TfLiteTensor* input_max_output_size; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensorMaxOutputSize, &input_max_output_size)); TF_LITE_ENSURE_EQ(context, input_max_output_size->type, kTfLiteInt32); TF_LITE_ENSURE_EQ(context, NumDimensions(input_max_output_size), 0); const bool is_max_output_size_const = IsConstantOrPersistentTensor(input_max_output_size); int max_output_size_value = 0; if (is_max_output_size_const) { max_output_size_value = *GetTensorData<int>(input_max_output_size); TF_LITE_ENSURE(context, (max_output_size_value >= 0)); } const TfLiteTensor* input_iou_threshold; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensorIouThreshold, &input_iou_threshold)); TF_LITE_ENSURE_EQ(context, input_iou_threshold->type, kTfLiteFloat32); TF_LITE_ENSURE_EQ(context, NumDimensions(input_iou_threshold), 0); const TfLiteTensor* input_score_threshold; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensorScoreThreshold, &input_score_threshold)); TF_LITE_ENSURE_EQ(context, input_iou_threshold->type, kTfLiteFloat32); TF_LITE_ENSURE_EQ(context, NumDimensions(input_score_threshold), 0); if (is_soft_nms) { const TfLiteTensor* input_sigma; TF_LITE_ENSURE_OK( context, GetInputSafe(context, node, kInputTensorSigma, &input_sigma)); TF_LITE_ENSURE_EQ(context, input_sigma->type, kTfLiteFloat32); TF_LITE_ENSURE_EQ(context, NumDimensions(input_sigma), 0); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 3); TfLiteTensor* output_selected_indices; TF_LITE_ENSURE_OK( context, GetOutputSafe(context, node, kSoftNMSOutputTensorSelectedIndices, &output_selected_indices)); output_selected_indices->type = kTfLiteInt32; TfLiteTensor* output_selected_scores; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kSoftNMSOutputTensorSelectedScores, &output_selected_scores)); output_selected_scores->type = kTfLiteFloat32; TfLiteTensor* output_num_selected_indices; TF_LITE_ENSURE_OK( context, GetOutputSafe(context, node, kSoftNMSOutputTensorNumSelectedIndices, &output_num_selected_indices)); output_num_selected_indices->type = kTfLiteInt32; SetTensorSizes(context, output_num_selected_indices, {}); if (is_max_output_size_const) { SetTensorSizes(context, output_selected_indices, {max_output_size_value}); SetTensorSizes(context, output_selected_scores, {max_output_size_value}); } else { SetTensorToDynamic(output_selected_indices); SetTensorToDynamic(output_selected_scores); } } else { TF_LITE_ENSURE_EQ(context, NumOutputs(node), 2); TfLiteTensor* output_selected_indices; TF_LITE_ENSURE_OK( context, GetOutputSafe(context, node, kNMSOutputTensorSelectedIndices, &output_selected_indices)); output_selected_indices->type = kTfLiteInt32; TfLiteTensor* output_num_selected_indices; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kNMSOutputTensorNumSelectedIndices, &output_num_selected_indices)); output_num_selected_indices->type = kTfLiteInt32; SetTensorSizes(context, output_num_selected_indices, {}); if (is_max_output_size_const) { SetTensorSizes(context, output_selected_indices, {max_output_size_value}); } else { SetTensorToDynamic(output_selected_indices); } } return kTfLiteOk; } void ResetUnusedElementsToZeroes(const int max_output_size, const int num_selected_indices, int* selected_indices, float* selected_scores) { for (int i = num_selected_indices; i < max_output_size; ++i) { selected_indices[i] = 0; if (selected_scores) { selected_scores[i] = 0.0; } } } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { const bool is_soft_nms = NumInputs(node) == 6; const TfLiteTensor* input_boxes; TF_LITE_ENSURE_OK( context, GetInputSafe(context, node, kInputTensorBoxes, &input_boxes)); const int num_boxes = SizeOfDimension(input_boxes, 0); const TfLiteTensor* input_scores; TF_LITE_ENSURE_OK( context, GetInputSafe(context, node, kInputTensorScores, &input_scores)); const TfLiteTensor* input_max_output_size; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensorMaxOutputSize, &input_max_output_size)); const int max_output_size_value = *GetTensorData<int>(input_max_output_size); TF_LITE_ENSURE(context, (max_output_size_value >= 0)); const bool is_max_output_size_const = IsConstantOrPersistentTensor(input_max_output_size); const TfLiteTensor* input_iou_threshold; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensorIouThreshold, &input_iou_threshold)); const float iou_threshold = *GetTensorData<float>(input_iou_threshold); const TfLiteTensor* input_score_threshold; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensorScoreThreshold, &input_score_threshold)); const float score_threshold = *GetTensorData<float>(input_score_threshold); TfLiteTensor* output_selected_indices = nullptr; TfLiteTensor* output_selected_scores = nullptr; TfLiteTensor* output_num_selected_indices = nullptr; if (is_soft_nms) { const TfLiteTensor* input_sigma; TF_LITE_ENSURE_OK( context, GetInputSafe(context, node, kInputTensorSigma, &input_sigma)); const float soft_nms_sigma = *GetTensorData<float>(input_sigma); if (soft_nms_sigma < 0) { TF_LITE_KERNEL_LOG(context, "Invalid sigma value for soft NMS: %f", soft_nms_sigma); return kTfLiteError; } TF_LITE_ENSURE_OK( context, GetOutputSafe(context, node, kSoftNMSOutputTensorSelectedIndices, &output_selected_indices)); TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kSoftNMSOutputTensorSelectedScores, &output_selected_scores)); TF_LITE_ENSURE_OK( context, GetOutputSafe(context, node, kSoftNMSOutputTensorNumSelectedIndices, &output_num_selected_indices)); if (!is_max_output_size_const) { SetTensorSizes(context, output_selected_indices, {max_output_size_value}); SetTensorSizes(context, output_selected_scores, {max_output_size_value}); } reference_ops::NonMaxSuppression( input_boxes->data.f, num_boxes, input_scores->data.f, max_output_size_value, iou_threshold, score_threshold, soft_nms_sigma, output_selected_indices->data.i32, output_selected_scores->data.f, output_num_selected_indices->data.i32); ResetUnusedElementsToZeroes( max_output_size_value, *output_num_selected_indices->data.i32, output_selected_indices->data.i32, output_selected_scores->data.f); } else { TF_LITE_ENSURE_OK( context, GetOutputSafe(context, node, kNMSOutputTensorSelectedIndices, &output_selected_indices)); TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kNMSOutputTensorNumSelectedIndices, &output_num_selected_indices)); if (!is_max_output_size_const) { SetTensorSizes(context, output_selected_indices, {max_output_size_value}); } reference_ops::NonMaxSuppression( input_boxes->data.f, num_boxes, input_scores->data.f, max_output_size_value, iou_threshold, score_threshold, 0.0, output_selected_indices->data.i32, nullptr, output_num_selected_indices->data.i32); ResetUnusedElementsToZeroes(max_output_size_value, *output_num_selected_indices->data.i32, output_selected_indices->data.i32, nullptr); } return kTfLiteOk; } } TfLiteRegistration* Register_NON_MAX_SUPPRESSION_V4() { static TfLiteRegistration r = {nullptr, nullptr, non_max_suppression::Prepare, non_max_suppression::Eval}; return &r; } TfLiteRegistration* Register_NON_MAX_SUPPRESSION_V5() { static TfLiteRegistration r = {nullptr, nullptr, non_max_suppression::Prepare, non_max_suppression::Eval}; return &r; } } } }
#include "tensorflow/lite/kernels/internal/reference/non_max_suppression.h" #include <algorithm> #include <cmath> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/kernels/test_util.h" namespace tflite { namespace { using ::testing::ElementsAreArray; constexpr int kNumBoxes = 6; void InitializeCandidates(std::vector<float>* boxes, std::vector<float>* scores, bool flip_coordinates = false) { if (!flip_coordinates) { *boxes = { 0, 0, 1, 1, 0, 0.1, 1, 1.1, 0, -0.1, 1, 0.9, 0, 10, 1, 11, 0, 10.1, 1, 11.1, 0, 100, 1, 101 }; } else { *boxes = { 1, 1, 0, 0, 0, 0.1, 1, 1.1, 0, .9f, 1, -0.1, 0, 10, 1, 11, 1, 10.1f, 0, 11.1, 1, 101, 0, 100 }; } *scores = {0.9, 0.75, 0.6, 0.95, 0.5, 0.3}; } template <typename T> void MatchFirstNElements(int num_elements, const std::vector<T>& test_values, const std::vector<T>& reference_values) { EXPECT_LT(num_elements, test_values.size()); EXPECT_EQ(num_elements, reference_values.size()); for (int i = 0; i < num_elements; ++i) { EXPECT_EQ(test_values[i], reference_values[i]); } } TEST(NonMaxSuppression, TestZeroBoxes) { std::vector<float> boxes(1); std::vector<float> scores(1); const float iou_threshold = 0.5; const float score_threshold = 0.4; const int max_output_size = 4; std::vector<int> selected_indices(6); std::vector<float> selected_scores(6); int num_selected_indices = -1; reference_ops::NonMaxSuppression( boxes.data(), 0, scores.data(), max_output_size, iou_threshold, score_threshold, 0.0, selected_indices.data(), selected_scores.data(), &num_selected_indices); EXPECT_EQ(num_selected_indices, 0); } TEST(NonMaxSuppression, TestSelectFromIdenticalBoxes) { std::vector<float> boxes(kNumBoxes * 4); std::vector<float> scores(kNumBoxes); for (int i = 0; i < kNumBoxes; ++i) { boxes[i * 4 + 0] = 0; boxes[i * 4 + 1] = 0; boxes[i * 4 + 2] = 1; boxes[i * 4 + 3] = 1; scores[i] = 0.75; } const float iou_threshold = 0.5; float score_threshold = 0.5; const int max_output_size = kNumBoxes; std::vector<int> selected_indices(6); std::vector<float> selected_scores(6); int num_selected_indices = -1; reference_ops::NonMaxSuppression( boxes.data(), kNumBoxes, scores.data(), max_output_size, iou_threshold, score_threshold, 0.0, selected_indices.data(), selected_scores.data(), &num_selected_indices); EXPECT_EQ(num_selected_indices, 1); MatchFirstNElements(1, selected_scores, {.75}); score_threshold = 0.95; reference_ops::NonMaxSuppression( boxes.data(), kNumBoxes, scores.data(), max_output_size, iou_threshold, score_threshold, 0.0, selected_indices.data(), selected_scores.data(), &num_selected_indices); EXPECT_EQ(num_selected_indices, 0); } TEST(NonMaxSuppression, TestSelectFromThreeClustersWithZeroScoreThreshold) { std::vector<float> boxes; std::vector<float> scores; InitializeCandidates(&boxes, &scores); const float iou_threshold = 0.5; int max_output_size; std::vector<int> selected_indices(6); std::vector<float> selected_scores(6); int num_selected_indices = -1; max_output_size = 100; reference_ops::NonMaxSuppression( boxes.data(), kNumBoxes, scores.data(), max_output_size, iou_threshold, 0.0, 0.0, selected_indices.data(), selected_scores.data(), &num_selected_indices); EXPECT_EQ(num_selected_indices, 3); MatchFirstNElements(3, selected_indices, {3, 0, 5}); MatchFirstNElements(3, selected_scores, {0.95, 0.9, 0.3}); max_output_size = 2; reference_ops::NonMaxSuppression( boxes.data(), kNumBoxes, scores.data(), max_output_size, iou_threshold, 0.0, 0.0, selected_indices.data(), selected_scores.data(), &num_selected_indices); EXPECT_EQ(num_selected_indices, max_output_size); MatchFirstNElements(max_output_size, selected_indices, {3, 0}); MatchFirstNElements(max_output_size, selected_scores, {0.95, 0.9}); max_output_size = 0; reference_ops::NonMaxSuppression( boxes.data(), kNumBoxes, scores.data(), max_output_size, iou_threshold, 0.0, 0.0, selected_indices.data(), selected_scores.data(), &num_selected_indices); EXPECT_EQ(num_selected_indices, 0); } TEST(NonMaxSuppression, TestSelectFromThreeClustersWithScoreThreshold) { std::vector<float> boxes; std::vector<float> scores; InitializeCandidates(&boxes, &scores); const float iou_threshold = 0.5; const float score_threshold = 0.4; int max_output_size; std::vector<int> selected_indices(6); std::vector<float> selected_scores(6); int num_selected_indices = -1; max_output_size = 100; reference_ops::NonMaxSuppression( boxes.data(), kNumBoxes, scores.data(), max_output_size, iou_threshold, score_threshold, 0.0, selected_indices.data(), selected_scores.data(), &num_selected_indices); EXPECT_EQ(num_selected_indices, 2); MatchFirstNElements(2, selected_indices, {3, 0}); MatchFirstNElements(2, selected_scores, {0.95, 0.9}); max_output_size = 1; reference_ops::NonMaxSuppression( boxes.data(), kNumBoxes, scores.data(), max_output_size, iou_threshold, score_threshold, 0.0, selected_indices.data(), selected_scores.data(), &num_selected_indices); EXPECT_EQ(num_selected_indices, 1); MatchFirstNElements(1, selected_indices, {3}); MatchFirstNElements(1, selected_scores, {0.95}); } TEST(NonMaxSuppression, TestSelectFromThreeClustersWithFlippedCoordinates) { std::vector<float> boxes; std::vector<float> scores; InitializeCandidates(&boxes, &scores, true); const float iou_threshold = 0.5; const float score_threshold = 0.4; const int max_output_size = 3; std::vector<int> selected_indices(6); std::vector<float> selected_scores(6); int num_selected_indices = -1; reference_ops::NonMaxSuppression( boxes.data(), kNumBoxes, scores.data(), max_output_size, iou_threshold, score_threshold, 0.0, selected_indices.data(), selected_scores.data(), &num_selected_indices); EXPECT_EQ(num_selected_indices, 2); MatchFirstNElements(2, selected_indices, {3, 0}); MatchFirstNElements(2, selected_scores, {0.95, 0.9}); reference_ops::NonMaxSuppression( boxes.data(), kNumBoxes, scores.data(), max_output_size, iou_threshold, 0.0, 0.0, selected_indices.data(), selected_scores.data(), &num_selected_indices); EXPECT_EQ(num_selected_indices, 3); MatchFirstNElements(3, selected_indices, {3, 0, 5}); MatchFirstNElements(3, selected_scores, {0.95, 0.9, 0.3}); } TEST(NonMaxSuppression, TestIoUThresholdBoundaryCases) { std::vector<float> boxes; std::vector<float> scores; InitializeCandidates(&boxes, &scores); const float score_threshold = 0.4; const int max_output_size = 4; std::vector<int> selected_indices(6); std::vector<float> selected_scores(6); int num_selected_indices = -1; reference_ops::NonMaxSuppression( boxes.data(), kNumBoxes, scores.data(), max_output_size, 0.0, score_threshold, 0.0, selected_indices.data(), selected_scores.data(), &num_selected_indices); EXPECT_EQ(num_selected_indices, 1); MatchFirstNElements(1, selected_indices, {3}); MatchFirstNElements(1, selected_scores, {0.95}); reference_ops::NonMaxSuppression( boxes.data(), kNumBoxes, scores.data(), max_output_size, 0.9999, 0.0, 0.0, selected_indices.data(), selected_scores.data(), &num_selected_indices); EXPECT_EQ(num_selected_indices, max_output_size); MatchFirstNElements(max_output_size, selected_indices, {3, 0, 1, 2}); MatchFirstNElements(max_output_size, selected_scores, {0.95, 0.9, 0.75, 0.6}); } TEST(NonMaxSuppression, TestSelectFromThreeClustersWithSoftNMS) { std::vector<float> boxes; std::vector<float> scores; InitializeCandidates(&boxes, &scores); const float iou_threshold = 1.0; float score_threshold = 0.0; const float soft_nms_sigma = 0.5; int max_output_size = 6; std::vector<int> selected_indices(6); std::vector<float> selected_scores(6); int num_selected_indices = -1; reference_ops::NonMaxSuppression( boxes.data(), kNumBoxes, scores.data(), max_output_size, iou_threshold, score_threshold, soft_nms_sigma, selected_indices.data(), selected_scores.data(), &num_selected_indices); EXPECT_EQ(num_selected_indices, 6); EXPECT_THAT(selected_indices, ElementsAreArray({3, 0, 1, 5, 4, 2})); EXPECT_THAT(selected_scores, ElementsAreArray( ArrayFloatNear({0.95, 0.9, 0.384, 0.3, 0.256, 0.197}, 1e-3))); score_threshold = 0.299; reference_ops::NonMaxSuppression( boxes.data(), kNumBoxes, scores.data(), max_output_size, iou_threshold, score_threshold, soft_nms_sigma, selected_indices.data(), selected_scores.data(), &num_selected_indices); EXPECT_EQ(num_selected_indices, 4); MatchFirstNElements(4, selected_indices, {3, 0, 1, 5}); } TEST(NonMaxSuppression, TestNullSelectedScoresOutput) { std::vector<float> boxes; std::vector<float> scores; InitializeCandidates(&boxes, &scores); const float iou_threshold = 0.5; const float score_threshold = 0.4; int max_output_size; std::vector<int> selected_indices(6); int num_selected_indices = -1; max_output_size = 100; reference_ops::NonMaxSuppression( boxes.data(), kNumBoxes, scores.data(), max_output_size, iou_threshold, score_threshold, 0.0, selected_indices.data(), nullptr, &num_selected_indices); EXPECT_EQ(num_selected_indices, 2); } } }
897
cpp
tensorflow/tensorflow
rng_util
tensorflow/lite/kernels/rng_util.cc
tensorflow/lite/kernels/rng_util_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_RNG_UTIL_H_ #define TENSORFLOW_LITE_KERNELS_RNG_UTIL_H_ #include <array> #include <cstdint> namespace tflite { namespace rng { std::array<uint32_t, 2> Threefry2x32(uint32_t key_0, uint32_t key_1, std::array<uint32_t, 2> ctr); std::array<uint32_t, 4> Philox4x32(uint32_t key_0, uint32_t key_1, std::array<uint32_t, 4> ctr); } } #endif #include "tensorflow/lite/kernels/rng_util.h" #include <array> #include <cstdint> namespace tflite { namespace rng { static constexpr uint32_t kThreefryParity = 0x1BD11BDA; static constexpr uint64_t kPhiloxM4x32A = 0xD2511F53; static constexpr uint64_t kPhiloxM4x32B = 0xCD9E8D57; static constexpr uint32_t kPhiloxW32A = 0x9E3779B9; static constexpr uint32_t kPhiloxW32B = 0xBB67AE85; std::array<uint32_t, 2> Threefry2x32(uint32_t key_0, uint32_t key_1, std::array<uint32_t, 2> ctr) { constexpr std::array<std::array<int, 4>, 2> rotations{ std::array<int, 4>{13, 15, 26, 6}, std::array<int, 4>{17, 29, 16, 24}}; uint32_t key_2 = key_0 ^ key_1 ^ kThreefryParity; ctr[0] += key_0; ctr[1] += key_1; auto apply_round = [&](int r, uint32_t ks0, uint32_t ks1, int b) { for (int rot : rotations[r]) { ctr[0] += ctr[1]; ctr[1] = (ctr[1] << rot) | (ctr[1] >> (32 - rot)); ctr[1] ^= ctr[0]; } ctr[0] += ks0; ctr[1] += ks1 + b; }; apply_round(0, key_1, key_2, 1); apply_round(1, key_2, key_0, 2); apply_round(0, key_0, key_1, 3); apply_round(1, key_1, key_2, 4); apply_round(0, key_2, key_0, 5); return ctr; } std::array<uint32_t, 4> Philox4x32(uint32_t key_0, uint32_t key_1, std::array<uint32_t, 4> ctr) { struct u32pair { uint32_t low; uint32_t high; }; union prod { u32pair hilo; uint64_t prod; }; for (int i = 0; i < 10; ++i) { prod p0, p1; p0.prod = kPhiloxM4x32A * static_cast<uint64_t>(ctr[0]); p1.prod = kPhiloxM4x32B * static_cast<uint64_t>(ctr[2]); ctr = {{p1.hilo.high ^ ctr[1] ^ key_0, p1.hilo.low, p0.hilo.high ^ ctr[3] ^ key_1, p0.hilo.low}}; key_0 += kPhiloxW32A; key_1 += kPhiloxW32B; } return ctr; } } }
#include "tensorflow/lite/kernels/rng_util.h" #include <array> #include <cstdint> #include <limits> #include <gtest/gtest.h> namespace tflite { namespace { using tflite::rng::Philox4x32; using tflite::rng::Threefry2x32; TEST(RngUtilTest, Threefry2x32Test) { std::array<uint32_t, 2> results = Threefry2x32(0, 0, {0, 0}); std::array<uint32_t, 2> expected = {0x6B200159u, 0x99BA4EFEu}; ASSERT_EQ(results, expected); uint32_t u32_max = std::numeric_limits<uint32_t>::max(); results = Threefry2x32(u32_max, u32_max, {u32_max, u32_max}); expected = {0x1CB996FCu, 0xBB002BE7u}; ASSERT_EQ(results, expected); results = Threefry2x32(0x13198A2Eu, 0x03707344u, {0x243F6A88u, 0x85A308D3u}); expected = {0xC4923A9Cu, 0x483DF7A0u}; ASSERT_EQ(results, expected); } TEST(RngUtilTest, Philox4x32Test) { std::array<uint32_t, 4> results = Philox4x32(0, 0, {0, 0, 0, 0}); std::array<uint32_t, 4> expected = {0x6627E8D5u, 0xE169C58Du, 0xBC57AC4Cu, 0x9B00DBD8u}; ASSERT_EQ(results, expected); uint32_t u32_max = std::numeric_limits<uint32_t>::max(); results = Philox4x32(u32_max, u32_max, {u32_max, u32_max, u32_max, u32_max}); expected = {0x408F276Du, 0x41C83B0Eu, 0xA20BC7C6u, 0x6D5451FDu}; ASSERT_EQ(results, expected); results = Philox4x32(0xA4093822u, 0x299F31D0u, {0x243F6A88u, 0x85A308D3u, 0x13198A2Eu, 0x03707344u}); expected = {0xD16CFE09u, 0x94FDCCEBu, 0x5001E420u, 0x24126EA1u}; ASSERT_EQ(results, expected); } } }
898
cpp
tensorflow/tensorflow
fill
tensorflow/lite/kernels/fill.cc
tensorflow/lite/kernels/fill_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_FILL_H_ #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_FILL_H_ #include <cmath> #include "tensorflow/lite/kernels/internal/types.h" namespace tflite { namespace reference_ops { template <typename T> void Fill(const RuntimeShape& value_shape, const T* value_data, const RuntimeShape& output_shape, T* output_data) { TFLITE_DCHECK_EQ(value_shape.DimensionsCount(), 0); const int flat_size = output_shape.FlatSize(); for (int i = 0; i < flat_size; ++i) { output_data[i] = *value_data; } } } } #endif #include <stdint.h> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/reference/reference_ops.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/kernel_util.h" #include "tensorflow/lite/string_util.h" namespace tflite { namespace ops { namespace builtin { namespace fill { namespace { constexpr int kDimsTensor = 0; constexpr int kValueTensor = 1; constexpr int kOutputTensor = 0; template <typename T> TfLiteStatus ResizeOutputImpl(TfLiteContext* context, const TfLiteTensor* dims, TfLiteTensor* output) { TfLiteIntArray* output_shape = TfLiteIntArrayCreate(dims->dims->data[0]); for (int i = 0; i < output_shape->size; ++i) { T data = GetTensorData<T>(dims)[i]; if (data < 0) { TfLiteIntArrayFree(output_shape); TF_LITE_KERNEL_LOG(context, "Fill dimensions must be >= 0 got %d", dims->type); return kTfLiteError; } output_shape->data[i] = data; } return context->ResizeTensor(context, output, output_shape); } TfLiteStatus ResizeOutput(TfLiteContext* context, const TfLiteTensor* dims, TfLiteTensor* output) { switch (dims->type) { case kTfLiteInt32: return ResizeOutputImpl<int32_t>(context, dims, output); case kTfLiteInt64: return ResizeOutputImpl<int64_t>(context, dims, output); default: TF_LITE_KERNEL_LOG( context, "Fill only currently supports int32, int64 for input 0, " "got %d.", dims->type); return kTfLiteError; } } } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* dims; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kDimsTensor, &dims)); const TfLiteTensor* value; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kValueTensor, &value)); TF_LITE_ENSURE_EQ(context, NumDimensions(dims), 1); const auto dtype = dims->type; TF_LITE_ENSURE(context, dtype == kTfLiteInt32 || dtype == kTfLiteInt64); TF_LITE_ENSURE_EQ(context, NumDimensions(value), 0); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); output->type = value->type; TF_LITE_ENSURE_EQ(context, output->params.scale, value->params.scale); TF_LITE_ENSURE_EQ(context, output->params.zero_point, value->params.zero_point); if (value->type == kTfLiteInt16) { TF_LITE_ENSURE_EQ(context, value->params.zero_point, 0); } if (IsConstantOrPersistentTensor(dims)) { TF_LITE_ENSURE_OK(context, ResizeOutput(context, dims, output)); } else { SetTensorToDynamic(output); } return kTfLiteOk; } TfLiteStatus FillString(const TfLiteTensor* value, TfLiteTensor* output) { DynamicBuffer buffer; const auto string_ref = GetString(value, 0); int n = 1; for (int i = 0; i < output->dims->size; ++i) { n *= output->dims->data[i]; } for (int i = 0; i < n; ++i) { buffer.AddString(string_ref.str, string_ref.len); } buffer.WriteToTensor(output, nullptr); return kTfLiteOk; } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* value; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kValueTensor, &value)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); if (IsDynamicTensor(output)) { const TfLiteTensor* dims; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kDimsTensor, &dims)); TF_LITE_ENSURE_OK(context, ResizeOutput(context, dims, output)); } #define TF_LITE_FILL(data_type) \ reference_ops::Fill(GetTensorShape(value), GetTensorData<data_type>(value), \ GetTensorShape(output), \ GetTensorData<data_type>(output)) switch (output->type) { case kTfLiteInt8: TF_LITE_FILL(int8_t); break; case kTfLiteInt16: TF_LITE_FILL(int16_t); break; case kTfLiteInt32: TF_LITE_FILL(int32_t); break; case kTfLiteInt64: TF_LITE_FILL(int64_t); break; case kTfLiteFloat16: TF_LITE_FILL(Eigen::half); break; case kTfLiteFloat32: TF_LITE_FILL(float); break; case kTfLiteBool: TF_LITE_FILL(bool); break; case kTfLiteString: FillString(value, output); break; default: TF_LITE_KERNEL_LOG( context, "Fill only currently supports int8, int16, int32, int64, float32, " "bool, string for input 1, got %d.", value->type); return kTfLiteError; } #undef TF_LITE_FILL return kTfLiteOk; } } TfLiteRegistration* Register_FILL() { static TfLiteRegistration r = {nullptr, nullptr, fill::Prepare, fill::Eval}; return &r; } } } }
#include <stdint.h> #include <initializer_list> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "Eigen/Core" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/string_type.h" namespace tflite { namespace { using ::testing::ElementsAreArray; using ::testing::IsEmpty; enum class TestType { kConst = 0, kDynamic = 1, }; template <typename dims_type, typename value_type> class FillOpModel : public SingleOpModel { public: explicit FillOpModel(TensorType dims_tensor_type, std::initializer_list<int> dims_shape, std::initializer_list<dims_type> dims_data, value_type value, TestType input_tensor_types) { if (input_tensor_types == TestType::kDynamic) { dims_ = AddInput(dims_tensor_type); } else { dims_ = AddConstInput(dims_tensor_type, dims_data, dims_shape); } value_ = AddInput(GetTensorType<value_type>()); output_ = AddOutput(GetTensorType<value_type>()); SetBuiltinOp(BuiltinOperator_FILL, BuiltinOptions_FillOptions, CreateFillOptions(builder_).Union()); BuildInterpreter({dims_shape, {}}); if (input_tensor_types == TestType::kDynamic) { if (dims_data.size() > 0) { PopulateTensor<dims_type>(dims_, dims_data); } } PopulateTensor<value_type>(value_, {value}); } std::vector<value_type> GetOutput() { return ExtractVector<value_type>(output_); } std::vector<int> GetOutputShape() { return GetTensorShape(output_); } protected: int dims_; int value_; int output_; }; template <typename dims_type, typename quant_type> class QuantizedFillOpModel : public SingleOpModel { public: explicit QuantizedFillOpModel(TensorType dims_tensor_type, std::initializer_list<int> dims_shape, std::initializer_list<dims_type> dims_data, const TensorData& tensor_data, float value) { dims_ = AddInput(dims_tensor_type); value_ = AddInput(tensor_data); output_ = AddOutput(tensor_data); SetBuiltinOp(BuiltinOperator_FILL, BuiltinOptions_FillOptions, CreateFillOptions(builder_).Union()); BuildInterpreter({dims_shape, {}}); if (dims_data.size() > 0) { PopulateTensor<dims_type>(dims_, dims_data); } QuantizeAndPopulate<quant_type>(value_, {value}); } std::vector<quant_type> GetOutput() { return ExtractVector<quant_type>(output_); } std::vector<float> GetDequantizedOutput() { TfLiteTensor* t = interpreter_->tensor(output_); return Dequantize(GetOutput(), t->params.scale, t->params.zero_point); } std::vector<int> GetOutputShape() { return GetTensorShape(output_); } protected: int dims_; int value_; int output_; }; class FillOpTest : public ::testing::TestWithParam<TestType> {}; TEST_P(FillOpTest, FillInt32) { FillOpModel<int32_t, int32_t> m(TensorType_INT32, {2}, {2, 3}, -11, GetParam()); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray({-11, -11, -11, -11, -11, -11})); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 3})); } TEST_P(FillOpTest, FillInt64) { FillOpModel<int64_t, int64_t> m(TensorType_INT64, {2}, {2, 4}, 1LL << 45, GetParam()); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray({1LL << 45, 1LL << 45, 1LL << 45, 1LL << 45, 1LL << 45, 1LL << 45, 1LL << 45, 1LL << 45})); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 4})); } TEST_P(FillOpTest, FillFloat) { FillOpModel<int64_t, float> m(TensorType_INT64, {3}, {2, 2, 2}, 4.0, GetParam()); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray({4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0})); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 2, 2})); } TEST_P(FillOpTest, FillFloat16) { FillOpModel<int64_t, Eigen::half> m(TensorType_INT64, {3}, {2, 2, 2}, Eigen::half(4.0f), GetParam()); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray({4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0})); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 2, 2})); } TEST_P(FillOpTest, FillFloatInt32Dims) { FillOpModel<int32_t, float> m(TensorType_INT32, {3}, {2, 2, 2}, 4.0, GetParam()); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray({4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0})); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 2, 2})); } TEST_P(FillOpTest, FillOutputScalar) { FillOpModel<int64_t, float> m(TensorType_INT64, {0}, {}, 4.0, GetParam()); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray({4.0})); EXPECT_THAT(m.GetOutputShape(), IsEmpty()); } TEST_P(FillOpTest, FillBool) { FillOpModel<int64_t, bool> m(TensorType_INT64, {3}, {2, 2, 2}, true, GetParam()); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray({true, true, true, true, true, true, true, true})); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 2, 2})); } TEST(FillOpTest, FillString) { FillOpModel<int64_t, std::string> m(TensorType_INT64, {3}, {2, 2, 2}, "AB", TestType::kDynamic); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray({"AB", "AB", "AB", "AB", "AB", "AB", "AB", "AB"})); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 2, 2})); } TEST_P(FillOpTest, FillInt8) { FillOpModel<int64_t, int8_t> m(TensorType_INT64, {3}, {2, 2, 2}, 5, GetParam()); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray({5, 5, 5, 5, 5, 5, 5, 5})); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 2, 2})); } template <typename quant_type> void QuantizedFill(float value) { const float kMin = -1; const float kMax = std::numeric_limits<quant_type>::max() / static_cast<float>(std::numeric_limits<quant_type>::max() + 1); const TensorData tensor_data(GetTensorType<quant_type>(), {}, std::abs(value) * kMin, std::abs(value) * kMax); QuantizedFillOpModel<int32_t, quant_type> m(TensorType_INT32, {2}, {2, 3}, tensor_data, value); ASSERT_EQ(m.Invoke(), kTfLiteOk); constexpr float epsilon = 0.01f; const float min_value = tensor_data.min - epsilon; const float max_value = tensor_data.max + epsilon; const float kQuantizedTolerance = (max_value - min_value) / (std::numeric_limits<quant_type>::max() - std::numeric_limits<quant_type>::min()); EXPECT_THAT( m.GetDequantizedOutput(), ElementsAreArray(ArrayFloatNear( {value, value, value, value, value, value}, kQuantizedTolerance))); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 3})); } TEST(FillOpTest, QuantizedFillInt8) { QuantizedFill<int8_t>(3.14f); } TEST(FillOpTest, QuantizedFillInt16) { QuantizedFill<int16_t>(3.14f); } INSTANTIATE_TEST_SUITE_P(FillOpTest, FillOpTest, ::testing::Values(TestType::kConst, TestType::kDynamic)); } }
899
cpp
tensorflow/tensorflow
lstm_eval
tensorflow/lite/kernels/lstm_eval.cc
tensorflow/lite/kernels/lstm_eval_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_LSTM_EVAL_H_ #define TENSORFLOW_LITE_KERNELS_LSTM_EVAL_H_ #include <cstdint> #include <memory> #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/cpu_backend_context.h" namespace tflite { namespace ops { namespace builtin { namespace lstm_eval { struct IntegerLstmParameter { int32_t effective_input_to_input_scale_a; int32_t effective_input_to_input_scale_b; int32_t effective_recurrent_to_input_scale_a; int32_t effective_recurrent_to_input_scale_b; int32_t effective_cell_to_input_scale_a; int32_t effective_cell_to_input_scale_b; int32_t effective_input_to_forget_scale_a; int32_t effective_input_to_forget_scale_b; int32_t effective_recurrent_to_forget_scale_a; int32_t effective_recurrent_to_forget_scale_b; int32_t effective_cell_to_forget_scale_a; int32_t effective_cell_to_forget_scale_b; int32_t effective_input_to_cell_scale_a; int32_t effective_input_to_cell_scale_b; int32_t effective_recurrent_to_cell_scale_a; int32_t effective_recurrent_to_cell_scale_b; int32_t effective_input_to_output_scale_a; int32_t effective_input_to_output_scale_b; int32_t effective_recurrent_to_output_scale_a; int32_t effective_recurrent_to_output_scale_b; int32_t effective_cell_to_output_scale_a; int32_t effective_cell_to_output_scale_b; int32_t effective_proj_scale_a; int32_t effective_proj_scale_b; int32_t effective_hidden_scale_a; int32_t effective_hidden_scale_b; int32_t layer_norm_input_scale_a; int32_t layer_norm_input_scale_b; int32_t layer_norm_forget_scale_a; int32_t layer_norm_forget_scale_b; int32_t layer_norm_cell_scale_a; int32_t layer_norm_cell_scale_b; int32_t layer_norm_output_scale_a; int32_t layer_norm_output_scale_b; int16_t quantized_cell_clip; int8_t quantized_proj_clip; int32_t hidden_zp; int32_t cell_scale; int32_t input_variance_guard; int32_t forget_variance_guard; int32_t cell_variance_guard; int32_t output_variance_guard; std::unique_ptr<int32_t[]> input_to_forget_effective_bias; std::unique_ptr<int32_t[]> recurrent_to_forget_effective_bias; std::unique_ptr<int32_t[]> input_to_cell_effective_bias; std::unique_ptr<int32_t[]> recurrent_to_cell_effective_bias; std::unique_ptr<int32_t[]> input_to_output_effective_bias; std::unique_ptr<int32_t[]> recurrent_to_output_effective_bias; std::unique_ptr<int32_t[]> input_to_input_effective_bias; std::unique_ptr<int32_t[]> recurrent_to_input_effective_bias; std::unique_ptr<int32_t[]> projection_effective_bias; int32_t intermediate_scale_a[8]; int32_t intermediate_scale_b[8]; int32_t intermediate_zp[12]; }; TfLiteStatus EvalFloat( const TfLiteTensor* input, const TfLiteTensor* input_to_input_weights, const TfLiteTensor* input_to_forget_weights, const TfLiteTensor* input_to_cell_weights, const TfLiteTensor* input_to_output_weights, const TfLiteTensor* recurrent_to_input_weights, const TfLiteTensor* recurrent_to_forget_weights, const TfLiteTensor* recurrent_to_cell_weights, const TfLiteTensor* recurrent_to_output_weights, const TfLiteTensor* cell_to_input_weights, const TfLiteTensor* cell_to_forget_weights, const TfLiteTensor* cell_to_output_weights, const TfLiteTensor* input_layer_norm_coefficients, const TfLiteTensor* forget_layer_norm_coefficients, const TfLiteTensor* cell_layer_norm_coefficients, const TfLiteTensor* output_layer_norm_coefficients, const TfLiteTensor* aux_input, const TfLiteTensor* aux_input_to_input_weights, const TfLiteTensor* aux_input_to_forget_weights, const TfLiteTensor* aux_input_to_cell_weights, const TfLiteTensor* aux_input_to_output_weights, const TfLiteTensor* input_gate_bias, const TfLiteTensor* forget_gate_bias, const TfLiteTensor* cell_gate_bias, const TfLiteTensor* output_gate_bias, const TfLiteTensor* projection_weights, const TfLiteTensor* projection_bias, const TfLiteLSTMParams* params, bool forward_sequence, bool time_major, int output_offset, TfLiteTensor* scratch_buffer, TfLiteTensor* output_state, TfLiteTensor* cell_state, TfLiteTensor* output, bool recurrent_to_input_is_diag, bool recurrent_to_forget_is_diag, bool recurrent_to_cell_is_diag, bool recurrent_to_output_is_diag, CpuBackendContext* context); TfLiteStatus EvalHybrid( const TfLiteTensor* input, const TfLiteTensor* input_to_input_weights, const TfLiteTensor* input_to_input_weights_ledger, const TfLiteTensor* input_to_forget_weights, const TfLiteTensor* input_to_forget_weights_ledger, const TfLiteTensor* input_to_cell_weights, const TfLiteTensor* input_to_cell_weights_ledger, const TfLiteTensor* input_to_output_weights, const TfLiteTensor* input_to_output_weights_ledger, const TfLiteTensor* recurrent_to_input_weights, const TfLiteTensor* recurrent_to_input_weights_ledger, const TfLiteTensor* recurrent_to_forget_weights, const TfLiteTensor* recurrent_to_forget_weights_ledger, const TfLiteTensor* recurrent_to_cell_weights, const TfLiteTensor* recurrent_to_cell_weights_ledger, const TfLiteTensor* recurrent_to_output_weights, const TfLiteTensor* recurrent_to_output_weights_ledger, const TfLiteTensor* cell_to_input_weights, const TfLiteTensor* cell_to_forget_weights, const TfLiteTensor* cell_to_output_weights, const TfLiteTensor* input_layer_norm_coefficients, const TfLiteTensor* forget_layer_norm_coefficients, const TfLiteTensor* cell_layer_norm_coefficients, const TfLiteTensor* output_layer_norm_coefficients, const TfLiteTensor* aux_input, const TfLiteTensor* aux_input_to_input_weights, const TfLiteTensor* aux_input_to_forget_weights, const TfLiteTensor* aux_input_to_cell_weights, const TfLiteTensor* aux_input_to_output_weights, const TfLiteTensor* input_gate_bias, const TfLiteTensor* forget_gate_bias, const TfLiteTensor* cell_gate_bias, const TfLiteTensor* output_gate_bias, const TfLiteTensor* projection_weights, const TfLiteTensor* projection_weights_ledger, const TfLiteTensor* projection_bias, const TfLiteLSTMParams* params, bool forward_sequence, bool time_major, int output_offset, TfLiteTensor* scratch_buffer, TfLiteTensor* input_sf, TfLiteTensor* aux_input_sf, TfLiteTensor* output_state_sf, TfLiteTensor* prod_scaling_factors, TfLiteTensor* recovered_cell_weights, TfLiteTensor* input_quantized, TfLiteTensor* aux_input_quantized, TfLiteTensor* output_state_quantized, TfLiteTensor* cell_state_quantized, TfLiteTensor* output_state, TfLiteTensor* cell_state, TfLiteTensor* output_scratch_buffer, TfLiteTensor* output, TfLiteTensor* input_zp, TfLiteTensor* aux_input_zp, TfLiteTensor* output_state_zp, TfLiteTensor* row_sums, int row_sums_size, bool* compute_row_sums, bool recurrent_to_input_is_diag, bool recurrent_to_forget_is_diag, bool recurrent_to_cell_is_diag, bool recurrent_to_output_is_diag, CpuBackendContext* context); TfLiteStatus EvalInteger8x8_16( const TfLiteTensor* input, const TfLiteTensor* input_to_input_weights, const TfLiteTensor* input_to_forget_weights, const TfLiteTensor* input_to_cell_weights, const TfLiteTensor* input_to_output_weights, const TfLiteTensor* recurrent_to_input_weights, const TfLiteTensor* recurrent_to_forget_weights, const TfLiteTensor* recurrent_to_cell_weights, const TfLiteTensor* recurrent_to_output_weights, const TfLiteTensor* cell_to_input_weights, const TfLiteTensor* cell_to_forget_weights, const TfLiteTensor* cell_to_output_weights, const TfLiteTensor* input_layer_norm_coefficients, const TfLiteTensor* forget_layer_norm_coefficients, const TfLiteTensor* cell_layer_norm_coefficients, const TfLiteTensor* output_layer_norm_coefficients, const TfLiteTensor* input_gate_bias, const TfLiteTensor* forget_gate_bias, const TfLiteTensor* cell_gate_bias, const TfLiteTensor* output_gate_bias, const TfLiteTensor* projection_weights, const TfLiteTensor* projection_bias, const TfLiteLSTMParams* params, bool forward_sequence, bool time_major, const lstm_eval::IntegerLstmParameter* integer_lstm_param, TfLiteTensor* output_state, TfLiteTensor* cell_state, TfLiteTensor* output, TfLiteTensor* scratch0, TfLiteTensor* scratch1, TfLiteTensor* scratch2, TfLiteTensor* scratch3, TfLiteTensor* scratch4, TfLiteTensor* scratch5, CpuBackendContext* context); TfLiteStatus EvalInteger8x8_8( const TfLiteTensor* input, const TfLiteTensor* input_to_input_weights, const TfLiteTensor* input_to_forget_weights, const TfLiteTensor* input_to_cell_weights, const TfLiteTensor* input_to_output_weights, const TfLiteTensor* recurrent_to_input_weights, const TfLiteTensor* recurrent_to_forget_weights, const TfLiteTensor* recurrent_to_cell_weights, const TfLiteTensor* recurrent_to_output_weights, const TfLiteTensor* cell_to_input_weights, const TfLiteTensor* cell_to_forget_weights, const TfLiteTensor* cell_to_output_weights, const TfLiteTensor* input_layer_norm_coefficients, const TfLiteTensor* forget_layer_norm_coefficients, const TfLiteTensor* cell_layer_norm_coefficients, const TfLiteTensor* output_layer_norm_coefficients, const TfLiteTensor* input_gate_bias, const TfLiteTensor* forget_gate_bias, const TfLiteTensor* cell_gate_bias, const TfLiteTensor* output_gate_bias, const TfLiteTensor* projection_weights, const TfLiteTensor* projection_bias, const TfLiteLSTMParams* params, TfLiteTensor* output_state, TfLiteTensor* cell_state, TfLiteTensor* output, const lstm_eval::IntegerLstmParameter* integer_lstm_param, TfLiteTensor* scratch0, TfLiteTensor* scratch1, TfLiteTensor* scratch2, TfLiteTensor* scratch3, TfLiteTensor* scratch4, TfLiteTensor* scratch5, TfLiteTensor* scratch6, TfLiteTensor* scratch7); } } } } #endif #include "tensorflow/lite/kernels/lstm_eval.h" #include <math.h> #include <string.h> #include <algorithm> #include <cstdint> #include <memory> #include <vector> #include "ruy/matrix.h" #include "ruy/mul_params.h" #include "ruy/profiler/instrumentation.h" #include "ruy/ruy.h" #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/cpu_backend_context.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/kernels/internal/kernel_utils.h" #include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/internal/tensor_utils.h" #include "tensorflow/lite/kernels/op_macros.h" namespace tflite { namespace ops { namespace builtin { namespace lstm_eval { namespace { void MatrixBatchVectorMultiplyAccumulate( const float* matrix, const float* vector, const float* result, float* output, int m_rows, int m_cols, int n_batch, CpuBackendContext* cpu_backend_context) { tflite::FullyConnectedParams float_fc_params; float_fc_params.float_activation_min = std::numeric_limits<float>::lowest(); float_fc_params.float_activation_max = std::numeric_limits<float>::max(); float_fc_params.lhs_cacheable = true; float_fc_params.rhs_cacheable = false; tflite::RuntimeShape weight_shape({m_rows, m_cols}); tflite::RuntimeShape input_shape({n_batch, m_cols}); tflite::RuntimeShape output_shape({n_batch, m_rows}); if (n_batch == 1) { tflite::optimized_ops::FullyConnected( float_fc_params, input_shape, vector, weight_shape, matrix, output_shape, result, output_shape, output, cpu_backend_context); } else { tflite::optimized_ops::FullyConnected( float_fc_params, input_shape, vector, weight_shape, matrix, output_shape, nullptr, output_shape, output, cpu_backend_context); for (int i = 0; i < m_rows * n_batch; ++i) { output[i] += result[i]; } } } void ComputeRowSums( int32_t* input_to_input_row_sums, int32_t* input_to_forget_row_sums, int32_t* input_to_cell_row_sums, int32_t* input_to_output_row_sums, int32_t* aux_input_to_input_row_sums, int32_t* aux_input_to_forget_row_sums, int32_t* aux_input_to_cell_row_sums, int32_t* aux_input_to_output_row_sums, int32_t* recurrent_to_input_row_sums, int32_t* recurrent_to_forget_row_sums, int32_t* recurrent_to_cell_row_sums, int32_t* recurrent_to_output_row_sums, int32_t* projection_weights_row_sums, int32_t* row_sums, int n_cell, int n_input, int n_aux_input, int n_output, const int8_t* input_to_input_weights_ptr, const int8_t* input_to_forget_weights_ptr, const int8_t* input_to_cell_weights_ptr, const int8_t* input_to_output_weights_ptr, const int8_t* aux_input_to_input_weights_ptr, const int8_t* aux_input_to_forget_weights_ptr, const int8_t* aux_input_to_cell_weights_ptr, const int8_t* aux_input_to_output_weights_ptr, const int8_t* recurrent_to_input_weights_ptr, const int8_t* recurrent_to_forget_weights_ptr, const int8_t* recurrent_to_cell_weights_ptr, const int8_t* recurrent_to_output_weights_ptr, const int8_t* projection_weights_ptr, bool use_cifg, const float* aux_input_ptr, bool recurrent_to_input_is_diag = false, bool recurrent_to_forget_is_diag = false, bool recurrent_to_cell_is_diag = false, bool recurrent_to_output_is_diag = false) { if (!use_cifg) { tensor_utils::ReductionSumVector(input_to_input_weights_ptr, input_to_input_row_sums, n_cell, n_input); } tensor_utils::ReductionSumVector(input_to_forget_weights_ptr, input_to_forget_row_sums, n_cell, n_input); tensor_utils::ReductionSumVector(input_to_cell_weights_ptr, input_to_cell_row_sums, n_cell, n_input); tensor_utils::ReductionSumVector(input_to_output_weights_ptr, input_to_output_row_sums, n_cell, n_input); if (aux_input_ptr) { if (!use_cifg) { tensor_utils::ReductionSumVector(aux_input_to_input_weights_ptr, aux_input_to_input_row_sums, n_cell, n_aux_input); } tensor_utils::ReductionSumVector(aux_input_to_forget_weights_ptr, aux_input_to_forget_row_sums, n_cell, n_aux_input); tensor_utils::ReductionSumVector(aux_input_to_cell_weights_ptr, aux_input_to_cell_row_sums, n_cell, n_aux_input); tensor_utils::ReductionSumVector(aux_input_to_output_weights_ptr, aux_input_to_output_row_sums, n_cell, n_aux_input); } if (!use_cifg) { if (!recurrent_to_input_is_diag) { tensor_utils::ReductionSumVector(recurrent_to_input_weights_ptr, recurrent_to_input_row_sums, n_cell, n_output); } } if (!recurrent_to_forget_is_diag) { tensor_utils::ReductionSumVector(recurrent_to_forget_weights_ptr, recurrent_to_forget_row_sums, n_cell, n_output); } if (!recurrent_to_cell_is_diag) { tensor_utils::ReductionSumVector(recurrent_to_cell_weights_ptr, recurrent_to_cell_row_sums, n_cell, n_output); } if (!recurrent_to_output_is_diag) { tensor_utils::ReductionSumVector(recurrent_to_output_weights_ptr, recurrent_to_output_row_sums, n_cell, n_output); } if (projection_weights_ptr != nullptr) { tensor_utils::ReductionSumVector( projection_weights_ptr, projection_weights_row_sums, n_output, n_cell); } } inline float GetTensorScale(const TfLiteTensor* tensor) { return tensor == nullptr ? 1.0f : tensor->params.scale; } inline void CalculateLstmGateFloat( const float* input, const float* input_to_gate_weights, const float* aux_input, const float* aux_input_to_gate_weights, const float* output_state, const float* recurrent_to_gate_weights, const float* cell_state, const float* cell_to_gate_weights, const float* layer_norm_coefficients, const float* gate_bias, const int n_batch, const int n_input, const int n_aux_input, const int n_output, const int n_cell, const TfLiteFusedActivation activation, float* gate, const bool is_input_all_zeros, const bool is_aux_input_all_zeros, float* output, bool recurrent_is_diag, CpuBackendContext* context) { const bool use_peephole = (cell_to_gate_weights != nullptr); const bool use_layer_norm = (layer_norm_coefficients != nullptr); if (use_layer_norm) { std::fill_n(gate, n_cell * n_batch, 0.0f); } else { tensor_utils::VectorBatchVectorAssign(gate_bias, n_cell, n_batch, gate); } float* accumulation_buffer = gate; if (!is_input_all_zeros) { MatrixBatchVectorMultiplyAccumulate(input_to_gate_weights, input, accumulation_buffer, output, n_cell, n_input, n_batch, context); std::swap(accumulation_buffer, output); } if (!is_aux_input_all_zeros) { MatrixBatchVectorMultiplyAccumulate(aux_input_to_gate_weights, aux_input, accumulation_buffer, output, n_cell, n_aux_input, n_batch, context); std::swap(accumulation_buffer, output); } if (recurrent_is_diag) { tflite::tensor_utils::VectorBatchVectorCwiseProductAccumulate( recurrent_to_gate_weights, n_cell, output_state, n_batch, accumulation_buffer); std::swap(accumulation_buffer, output); } else { MatrixBatchVectorMultiplyAccumulate(recurrent_to_gate_weights, output_state, accumulation_buffer, output, n_cell, n_output, n_batch, context); } if (use_peephole) { tensor_utils::VectorBatchVectorCwiseProductAccumulate( cell_to_gate_weights, n_cell, cell_state, n_batch, output); } if (use_layer_norm) { tensor_utils::MeanStddevNormalization(output, output, n_cell, n_batch); tensor_utils::VectorBatchVectorCwiseProduct(layer_norm_coefficients, n_cell, output, n_batch, output); tensor_utils::VectorBatchVectorAdd(gate_bias, n_cell, n_batch, output); } tensor_utils::ApplyActivationToVector(output, n_batch * n_cell, activation, gate); } void UpdateLstmCellFloat(int n_batch, int n_cell, float* cell_state, const float* input_gate, float* forget_gate, const float* cell_gate, bool use_cifg, float clip) { tensor_utils::VectorVectorCwiseProduct(forget_gate, cell_state, n_batch * n_cell, cell_state); if (use_cifg) { float* scratch = forget_gate; tensor_utils::Sub1Vector(forget_gate, n_batch * n_cell, scratch); tensor_utils::VectorVectorCwiseProductAccumulate( cell_gate, scratch, n_batch * n_cell, cell_state); } else { tensor_utils::VectorVectorCwiseProductAccumulate( cell_gate, input_gate, n_batch * n_cell, cell_state); } if (clip > 0.0f) { tensor_utils::CwiseClipping(cell_state, n_batch * n_cell, clip); } } void CalculateLstmOutputFloat(int n_batch, int n_cell, int n_output, const float* cell_state, const float* output_gate, TfLiteFusedActivation activation, const float* projection_weights, const float* projection_bias, const float proj_clip, float* output_state, float* scratch, float* projection_bias_scratch, CpuBackendContext* context) { tensor_utils::ApplyActivationToVector(cell_state, n_batch * n_cell, activation, scratch); tensor_utils::VectorVectorCwiseProduct(output_gate, scratch, n_batch * n_cell, scratch); const bool use_projection = (projection_weights != nullptr); const bool use_projection_bias = (projection_bias != nullptr); if (use_projection) { if (use_projection_bias) { tensor_utils::VectorBatchVectorAssign(projection_bias, n_output, n_batch, projection_bias_scratch); } else { std::fill_n(projection_bias_scratch, n_batch * n_output, 0.0f); } MatrixBatchVectorMultiplyAccumulate(projection_weights, scratch, projection_bias_scratch, output_state, n_output, n_cell, n_batch, context); if (proj_clip > 0.0f) { tensor_utils::CwiseClipping(output_state, n_batch * n_output, proj_clip); } } else { std::copy_n(scratch, n_batch * n_output, output_state); } } void CalculateLstmGateHybrid( const int8_t* input, const float* input_sf, const int32_t* input_zp, const int8_t* input_to_gate_weights, const uint8_t* input_to_gate_weights_ledger, const float input_to_gate_weights_scale, int32_t* input_to_gate_row_sums, const int8_t* aux_input, const float* aux_input_sf, const int32_t* aux_input_zp, const int8_t* aux_input_to_gate_weights, const float aux_input_to_gate_weights_scale, int32_t* aux_input_to_gate_row_sums, const int8_t* output_state, const float* output_state_float, const float* output_state_sf, const int32_t* output_state_zp, const int8_t* recurrent_to_gate_weights, const float* recurrent_to_gate_diag, const uint8_t* recurrent_to_gate_weights_ledger, const float recurrent_to_gate_weights_scale, int32_t* recurrent_to_gate_row_sums, const float* cell_state, const int8_t* cell_to_gate_weights, const float cell_to_gate_weights_scale, const float* layer_norm_coefficients, const float* gate_bias, const int n_batch, const int n_input, const int n_aux_input, const int n_output, const int n_cell, const TfLiteFusedActivation activation, float* gate, const bool is_input_all_zeros, const bool is_aux_input_all_zeros, const bool is_output_state_all_zeros, bool* compute_row_sums, CpuBackendContext* context, float* scratch0, float* scratch1, int32_t* accum_scratch, bool recurrent_is_diag) { const bool use_peephole = (cell_to_gate_weights != nullptr); const bool use_layer_norm = (layer_norm_coefficients != nullptr); if (use_layer_norm) { std::fill_n(gate, n_cell * n_batch, 0.0f); } else { tensor_utils::VectorBatchVectorAssign(gate_bias, n_cell, n_batch, gate); } if (!is_input_all_zeros) { if (input_to_gate_weights_ledger != nullptr) { std::vector<float> scales(n_batch); for (int i = 0; i < n_batch; i++) { scales[i] = input_to_gate_weights_scale * input_sf[i]; } tensor_utils::SparseMatrixBatchVectorMultiplyAccumulate( input_to_gate_weights, input_to_gate_weights_ledger, n_cell, n_input, input, scales.data(), n_batch, gate); } else { tensor_utils::MatrixBatchVectorMultiplyAccumulate( input_to_gate_weights, n_cell, n_input, input, input_to_gate_weights_scale, input_sf, n_batch, gate, nullptr, input_zp, accum_scratch, input_to_gate_row_sums, compute_row_sums, scratch0, context); } } if (!is_aux_input_all_zeros) { tensor_utils::MatrixBatchVectorMultiplyAccumulate( aux_input_to_gate_weights, n_cell, n_aux_input, aux_input, aux_input_to_gate_weights_scale, aux_input_sf, n_batch, gate, nullptr, aux_input_zp, accum_scratch, aux_input_to_gate_row_sums, compute_row_sums, scratch0, context); } if (!is_output_state_all_zeros) { if (recurrent_to_gate_weights_ledger != nullptr) { std::vector<float> scales(n_batch); for (int i = 0; i < n_batch; i++) { scales[i] = recurrent_to_gate_weights_scale * input_sf[i]; } tensor_utils::SparseMatrixBatchVectorMultiplyAccumulate( recurrent_to_gate_weights, recurrent_to_gate_weights_ledger, n_cell, n_output, output_state, scales.data(), n_batch, gate); } else { if (recurrent_is_diag) { tflite::tensor_utils::VectorBatchVectorCwiseProductAccumulate( recurrent_to_gate_diag, n_cell, output_state_float, n_batch, gate); } else { tensor_utils::MatrixBatchVectorMultiplyAccumulate( recurrent_to_gate_weights, n_cell, n_output, output_state, recurrent_to_gate_weights_scale, output_state_sf, n_batch, gate, nullptr, output_state_zp, accum_scratch, recurrent_to_gate_row_sums, compute_row_sums, scratch0, context); }
#include "tensorflow/lite/kernels/lstm_eval.h" #include <stdint.h> #include <stdlib.h> #include <algorithm> #include <memory> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/cpu_backend_context.h" namespace tflite { namespace { template <typename T> bool ArrayEq(const T* result, const T* expected_result, int size) { for (int i = 0; i < size; ++i) { if (result[i] != expected_result[i]) { return false; } } return true; } template <typename T> bool ArrayFloatNear(const T* result, const T* expected_result, int size, double threshold) { for (int i = 0; i < size; ++i) { if (std::abs(result[i] - expected_result[i]) > threshold) { return false; } } return true; } class BaseLstmParam { public: TfLiteTensor* Geti2i() { PackWeightToTensor(&i2i_tensor_, i2i_, i2i_size_); i2i_tensor_.data.int8 = i2i_.data(); return &i2i_tensor_; } TfLiteTensor* Geti2f() { PackWeightToTensor(&i2f_tensor_, i2f_, i2f_size_); i2f_tensor_.data.int8 = i2f_.data(); return &i2f_tensor_; } TfLiteTensor* Geti2c() { PackWeightToTensor(&i2c_tensor_, i2c_, i2c_size_); i2c_tensor_.data.int8 = i2c_.data(); return &i2c_tensor_; } TfLiteTensor* Geti2o() { PackWeightToTensor(&i2o_tensor_, i2o_, i2o_size_); i2o_tensor_.data.int8 = i2o_.data(); return &i2o_tensor_; } TfLiteTensor* Getr2i() { PackWeightToTensor(&r2i_tensor_, r2i_, r2i_size_); r2i_tensor_.data.int8 = r2i_.data(); return &r2i_tensor_; } TfLiteTensor* Getr2f() { PackWeightToTensor(&r2f_tensor_, r2f_, r2f_size_); r2f_tensor_.data.int8 = r2f_.data(); return &r2f_tensor_; } TfLiteTensor* Getr2c() { PackWeightToTensor(&r2c_tensor_, r2c_, r2c_size_); r2c_tensor_.data.int8 = r2c_.data(); return &r2c_tensor_; } TfLiteTensor* Getr2o() { PackWeightToTensor(&r2o_tensor_, r2o_, r2o_size_); r2o_tensor_.data.int8 = r2o_.data(); return &r2o_tensor_; } TfLiteTensor* GetProjection() { PackWeightToTensor(&projection_tensor_, projection_, projection_size_); projection_tensor_.data.int8 = projection_.data(); return &projection_tensor_; } ~BaseLstmParam() { TfLiteIntArrayFree(input_tensor_.dims); TfLiteIntArrayFree(i2i_tensor_.dims); TfLiteIntArrayFree(i2f_tensor_.dims); TfLiteIntArrayFree(i2c_tensor_.dims); TfLiteIntArrayFree(i2o_tensor_.dims); TfLiteIntArrayFree(r2i_tensor_.dims); TfLiteIntArrayFree(r2f_tensor_.dims); TfLiteIntArrayFree(r2c_tensor_.dims); TfLiteIntArrayFree(r2o_tensor_.dims); TfLiteIntArrayFree(layer_norm_input_tensor_.dims); TfLiteIntArrayFree(layer_norm_forget_tensor_.dims); TfLiteIntArrayFree(layer_norm_cell_tensor_.dims); TfLiteIntArrayFree(layer_norm_output_tensor_.dims); TfLiteIntArrayFree(input_gate_bias_tensor_.dims); TfLiteIntArrayFree(forget_gate_bias_tensor_.dims); TfLiteIntArrayFree(cell_gate_bias_tensor_.dims); TfLiteIntArrayFree(output_gate_bias_tensor_.dims); TfLiteIntArrayFree(projection_tensor_.dims); TfLiteIntArrayFree(projection_bias_tensor_.dims); TfLiteIntArrayFree(activation_tensor_.dims); TfLiteIntArrayFree(cell_tensor_.dims); TfLiteIntArrayFree(output_tensor_.dims); } protected: template <typename T> void PackWeightToTensor(TfLiteTensor* tensor, std::vector<T>& data, std::vector<int32_t> dims) { if (data.empty()) { int total = 1; for (int i = 0; i < dims.size(); ++i) { total *= dims[i]; } for (int i = 0; i < total; ++i) { data.push_back(0); } } tensor->dims = TfLiteIntArrayCreate(dims.size()); for (int i = 0; i < dims.size(); ++i) { tensor->dims->data[i] = dims[i]; } } const int n_batch_ = 2; const int n_input_ = 18; const int n_cell_ = 10; const int n_output_ = 6; std::vector<int32_t> input_size_ = {n_batch_, n_input_}; TfLiteTensor input_tensor_; std::vector<int8_t> i2i_ = { 18, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 5, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 0, 8, 2, 3, 4, 3, 6, 1, -2, 3, 4, 5, 6, 1, 2, 3, -4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, -5, 6, 1, 7, 3, 4, -5, 6, 8, 2, 3, 4, 5, 6, 3, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, -2, 2, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 8, 5, -6, 8, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 3, 6, 1, 2, 6, 4, 5, 6, 1, 2, 3, 4, -5, 6, 8, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 1, 2, 3, 14, 5, 6, 1, 2, 3, -4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, }; std::vector<int32_t> i2i_size_ = {n_cell_, n_input_}; TfLiteTensor i2i_tensor_; std::vector<int8_t> i2f_ = { 1, 2, 3, 4, 5, 6, 5, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 0, 8, 2, 3, 4, 3, 6, 1, -2, 3, 4, 5, 6, 1, 2, 3, -4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, -5, 6, 1, 7, 3, 4, -5, 6, 8, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 3, 6, 1, 2, 6, 4, 5, 6, 11, 2, 3, 4, -5, 6, 8, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, -6, 1, 2, 3, 14, 5, 6, 1, 2, 3, -4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 18, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 8, 2, 3, 4, 5, 6, 3, 2, 3, 4, 5, 6, 13, 2, 3, 4, 5, 6, 1, -2, 2, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 8, 5, -6, }; std::vector<int32_t> i2f_size_ = {n_cell_, n_input_}; TfLiteTensor i2f_tensor_; std::vector<int8_t> i2c_ = { 1, 2, 3, 4, 5, 6, 5, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 3, 6, 1, 2, 6, 4, 5, 6, 1, 2, 3, 4, -5, 6, 8, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 16, 1, 2, 3, 14, 5, 6, 1, 2, 3, -4, 5, 6, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 18, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 8, 2, 3, 4, 5, 6, 3, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, -2, 2, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 8, 5, -6, 8, 2, 3, 4, 3, 6, 1, -2, 3, 4, 5, 6, 1, 2, 3, -4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, -5, 6, 1, 7, 3, 4, -5, 6, 8, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, }; std::vector<int32_t> i2c_size_ = {n_cell_, n_input_}; TfLiteTensor i2c_tensor_; std::vector<int8_t> i2o_ = { 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, -5, 6, 1, 7, 3, 4, -5, 6, 8, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, -1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 3, 6, 1, 2, 6, 4, 5, 6, 1, 2, 3, 4, -5, 6, 8, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 1, 2, 3, 14, 5, 6, 18, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, -6, 1, 2, 3, 4, 5, 6, 8, 2, 3, 4, 5, 6, 3, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 5, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 0, 8, 2, 3, 4, 3, 6, 1, -2, 3, 4, 5, 6, 1, 2, 3, -4, 5, 6, 1, 2, 3, -4, 5, 6, 1, 2, 3, 4, 5, 6, -1, 2, 3, 4, 5, 6, 1, -2, 2, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 8, 5, -6, }; std::vector<int32_t> i2o_size_ = {n_cell_, n_input_}; TfLiteTensor i2o_tensor_; std::vector<int8_t> r2i_ = { 1, 2, 3, 4, 7, 3, 4, -5, 6, 3, 8, 2, 3, 4, 5, 6, 1, 2, 3, 4, 1, 2, 3, 4, 7, 3, 4, -5, 6, 3, 8, 2, 3, 4, 5, 6, 1, 2, 3, 4, 6, 4, 5, 6, 1, 2, 3, 4, -5, 6, 6, 4, 5, 6, 1, 2, 3, 4, -5, 6, }; std::vector<int32_t> r2i_size_ = {n_cell_, n_output_}; TfLiteTensor r2i_tensor_; std::vector<int8_t> r2f_ = { 1, 2, 3, 4, 7, 3, 4, -5, 6, 3, 8, 2, 3, 4, 5, 6, 1, 2, 3, 4, 1, 2, 3, 4, 7, 3, 4, -5, 6, 3, 8, 2, 3, 4, 5, 6, 1, 2, 3, 4, 6, 4, 5, 6, 1, 2, 3, 4, -5, 6, 6, 4, 5, 6, 1, 2, 3, 4, -5, 6, }; std::vector<int32_t> r2f_size_ = {n_cell_, n_output_}; TfLiteTensor r2f_tensor_; std::vector<int8_t> r2c_ = { 1, 2, 3, 4, 7, 3, 4, -5, 6, 3, 8, 2, 3, 4, 5, 6, 1, 2, 3, 4, 1, 2, 3, 4, 7, 3, 4, -5, 6, 3, 8, 2, 3, 4, 5, 6, 1, 2, 3, 4, 6, 4, 5, 6, 1, 2, 3, 4, -5, 6, 6, 4, 5, 6, 1, 2, 3, 4, -5, 6, }; std::vector<int32_t> r2c_size_ = {n_cell_, n_output_}; TfLiteTensor r2c_tensor_; std::vector<int8_t> r2o_ = { 1, 2, 3, 4, 7, 3, 4, -5, 6, 3, 8, 2, 3, 4, 5, 6, 1, 2, 3, 4, 6, 4, 5, 6, 1, 2, 3, 4, -5, 6, 1, 2, 3, 4, 7, 3, 4, -5, 6, 3, 8, 2, 3, 4, 5, 6, 1, 2, 3, 4, 6, 4, 5, 6, 1, 2, 3, 4, -5, 6, }; std::vector<int32_t> r2o_size_ = {n_cell_, n_output_}; TfLiteTensor r2o_tensor_; std::vector<int32_t> layer_norm_input_size_ = {n_cell_}; TfLiteTensor layer_norm_input_tensor_; TfLiteTensor layer_norm_forget_tensor_; std::vector<int32_t> layer_norm_forget_size_ = {n_cell_}; std::vector<int32_t> layer_norm_cell_size_ = {n_cell_}; TfLiteTensor layer_norm_cell_tensor_; std::vector<int32_t> layer_norm_output_size_ = {n_cell_}; TfLiteTensor layer_norm_output_tensor_; std::vector<int32_t> input_gate_bias_size_ = {n_cell_}; TfLiteTensor input_gate_bias_tensor_; std::vector<int32_t> forget_gate_bias_size_ = {n_cell_}; TfLiteTensor forget_gate_bias_tensor_; std::vector<int32_t> cell_gate_bias_size_ = {n_cell_}; TfLiteTensor cell_gate_bias_tensor_; std::vector<int32_t> output_gate_bias_size_ = {n_cell_}; TfLiteTensor output_gate_bias_tensor_; std::vector<int8_t> projection_ = { 8, 2, 3, 4, 5, 6, 1, 2, 3, 4, 6, 4, 5, 6, 1, 2, 3, 4, -5, 6, 1, 2, 3, 4, 7, 3, 4, -5, 6, 3, 8, 2, 3, 4, 5, 6, 1, 2, 3, 4, 6, 4, 5, 6, 1, 2, 3, 4, -5, 6, 1, 2, 3, 4, 7, 3, 4, -5, 6, 3, }; std::vector<int32_t> projection_size_ = {n_cell_, n_output_}; TfLiteTensor projection_tensor_; std::vector<int32_t> projection_bias_ = { 16, 4, 5, 6, 1, 1 }; std::vector<int32_t> projection_bias_size_ = {n_output_}; TfLiteTensor projection_bias_tensor_; std::vector<int32_t> activation_size_ = {n_batch_, n_output_}; TfLiteTensor activation_tensor_; std::vector<int32_t> cell_size_ = {n_batch_, n_cell_}; TfLiteTensor cell_tensor_; std::vector<int32_t> output_size_ = {n_batch_, n_output_}; TfLiteTensor output_tensor_; }; class QuantizedLstmParam : public BaseLstmParam { public: TfLiteTensor* GetInput() { PackWeightToTensor(&input_tensor_, input_, input_size_); input_tensor_.data.int8 = input_.data(); return &input_tensor_; } TfLiteTensor* GetInputLayerNorm() { PackWeightToTensor(&layer_norm_input_tensor_, layer_norm_input_, layer_norm_input_size_); layer_norm_input_tensor_.data.i16 = layer_norm_input_.data(); return &layer_norm_input_tensor_; } TfLiteTensor* GetForgetLayerNorm() { PackWeightToTensor(&layer_norm_forget_tensor_, layer_norm_forget_, layer_norm_forget_size_); layer_norm_forget_tensor_.data.i16 = layer_norm_forget_.data(); return &layer_norm_forget_tensor_; } TfLiteTensor* GetCellLayerNorm() { PackWeightToTensor(&layer_norm_cell_tensor_, layer_norm_cell_, layer_norm_cell_size_); layer_norm_cell_tensor_.data.i16 = layer_norm_cell_.data(); return &layer_norm_cell_tensor_; } TfLiteTensor* GetOutputLayerNorm() { PackWeightToTensor(&layer_norm_output_tensor_, layer_norm_output_, layer_norm_output_size_); layer_norm_output_tensor_.data.i16 = layer_norm_output_.data(); return &layer_norm_output_tensor_; } TfLiteTensor* GetInputBias() { PackWeightToTensor(&input_gate_bias_tensor_, input_gate_bias_, input_gate_bias_size_); input_gate_bias_tensor_.data.i32 = input_gate_bias_.data(); return &input_gate_bias_tensor_; } TfLiteTensor* GetForgetBias() { PackWeightToTensor(&forget_gate_bias_tensor_, forget_gate_bias_, forget_gate_bias_size_); forget_gate_bias_tensor_.data.i32 = forget_gate_bias_.data(); return &forget_gate_bias_tensor_; } TfLiteTensor* GetCellBias() { PackWeightToTensor(&cell_gate_bias_tensor_, cell_gate_bias_, cell_gate_bias_size_); cell_gate_bias_tensor_.data.i32 = cell_gate_bias_.data(); return &cell_gate_bias_tensor_; } TfLiteTensor* GetOutputBias() { PackWeightToTensor(&output_gate_bias_tensor_, output_gate_bias_, output_gate_bias_size_); output_gate_bias_tensor_.data.i32 = output_gate_bias_.data(); return &output_gate_bias_tensor_; } TfLiteTensor* GetProjectionBias() { PackWeightToTensor(&projection_bias_tensor_, projection_bias_, projection_bias_size_); projection_bias_tensor_.data.i32 = projection_bias_.data(); return &projection_bias_tensor_; } ops::builtin::lstm_eval::IntegerLstmParameter* GetQuantParam() { integer_lstm_param_.effective_input_to_input_scale_a = 1808677632; integer_lstm_param_.effective_input_to_input_scale_b = -1; integer_lstm_param_.effective_recurrent_to_input_scale_a = 1078887680; integer_lstm_param_.effective_recurrent_to_input_scale_b = -1; integer_lstm_param_.effective_cell_to_input_scale_a = 1073741824; integer_lstm_param_.effective_cell_to_input_scale_b = 1; integer_lstm_param_.effective_input_to_forget_scale_a = 1845996800; integer_lstm_param_.effective_input_to_forget_scale_b = -3; integer_lstm_param_.effective_recurrent_to_forget_scale_a = 1477412736; integer_lstm_param_.effective_recurrent_to_forget_scale_b = -2; integer_lstm_param_.effective_cell_to_forget_scale_a = 1073741824; integer_lstm_param_.effective_cell_to_forget_scale_b = 1; integer_lstm_param_.effective_input_to_cell_scale_a = 1648385408; integer_lstm_param_.effective_input_to_cell_scale_b = -2; integer_lstm_param_.effective_recurrent_to_cell_scale_a = 1185544192, integer_lstm_param_.effective_recurrent_to_cell_scale_b = -1; integer_lstm_param_.effective_input_to_output_scale_a = 1328153600; integer_lstm_param_.effective_input_to_output_scale_b = -1; integer_lstm_param_.effective_recurrent_to_output_scale_a = 1479582592; integer_lstm_param_.effective_recurrent_to_output_scale_b = -1; integer_lstm_param_.effective_cell_to_output_scale_a = 1073741824, integer_lstm_param_.effective_cell_to_output_scale_b = 1; integer_lstm_param_.effective_proj_scale_a = 1105682560; integer_lstm_param_.effective_proj_scale_b = -8; integer_lstm_param_.effective_hidden_scale_a = 0; integer_lstm_param_.effective_hidden_scale_b = 0; integer_lstm_param_.layer_norm_input_scale_a = 2011617664; integer_lstm_param_.layer_norm_input_scale_b = -11; integer_lstm_param_.layer_norm_forget_scale_a = 1968024960; integer_lstm_param_.layer_norm_forget_scale_b = -13; integer_lstm_param_.layer_norm_cell_scale_a = 1097334528, integer_lstm_param_.layer_norm_cell_scale_b = -12; integer_lstm_param_.layer_norm_output_scale_a = 1837163008; integer_lstm_param_.layer_norm_output_scale_b = -12; integer_lstm_param_.quantized_cell_clip = 20480; integer_lstm_param_.quantized_proj_clip = 0; integer_lstm_param_.cell_scale = -11; integer_lstm_param_.input_variance_guard = 1; integer_lstm_param_.forget_variance_guard = 2; integer_lstm_param_.cell_variance_guard = 2; integer_lstm_param_.output_variance_guard = 1; integer_lstm_param_.hidden_zp = 0; integer_lstm_param_.input_to_forget_effective_bias.reset( new int32_t[n_cell_]); integer_lstm_param_.recurrent_to_forget_effective_bias.reset( new int32_t[n_cell_]); integer_lstm_param_.input_to_cell_effective_bias.reset( new int32_t[n_cell_]); integer_lstm_param_.recurrent_to_cell_effective_bias.reset( new int32_t[n_cell_]); integer_lstm_param_.input_to_output_effective_bias.reset( new int32_t[n_cell_]); integer_lstm_param_.recurrent_to_output_effective_bias.reset( new int32_t[n_cell_]); integer_lstm_param_.input_to_input_effective_bias.reset( new int32_t[n_cell_]); integer_lstm_param_.recurrent_to_input_effective_bias.reset( new int32_t[n_cell_]); integer_lstm_param_.projection_effective_bias.reset(new int32_t[n_output_]); std::fill_n(integer_lstm_param_.input_to_forget_effective_bias.get(), n_cell_, 152); std::fill_n(integer_lstm_param_.recurrent_to_forget_effective_bias.get(), n_cell_, 315); std::fill_n(integer_lstm_param_.input_to_cell_effective_bias.get(), n_cell_, 165); std::fill_n(integer_lstm_param_.recurrent_to_cell_effective_bias.get(), n_cell_, 1165); std::fill_n(integer_lstm_param_.input_to_output_effective_bias.get(), n_cell_, 159); std::fill_n(integer_lstm_param_.recurrent_to_output_effective_bias.get(), n_cell_, 915); std::fill_n(integer_lstm_param_.input_to_input_effective_bias.get(), n_cell_, -15); std::fill_n(integer_lstm_param_.recurrent_to_input_effective_bias.get(), n_cell_, 315); std::fill_n(integer_lstm_param_.projection_effective_bias.get(), n_output_, 115); return &integer_lstm_param_; } TfLiteTensor* GetScratch0() { PackWeightToTensor(&scratch0_tensor_, scratch0_, scratch0_size_); scratch0_tensor_.data.i16 = scratch0_.data(); return &scratch0_tensor_; } TfLiteTensor* GetScratch1() { PackWeightToTensor(&scratch1_tensor_, scratch1_, scratch1_size_); scratch1_tensor_.data.i16 = scratch1_.data(); return &scratch1_tensor_; } TfLiteTensor* GetScratch2() { PackWeightToTensor(&scratch2_tensor_, scratch2_, scratch2_size_); scratch2_tensor_.data.i16 = scratch2_.data(); return &scratch2_tensor_; } TfLiteTensor* GetScratch3() { PackWeightToTensor(&scratch3_tensor_, scratch3_, scratch3_size_); scratch3_tensor_.data.i16 = scratch3_.data(); return &scratch3_tensor_; } TfLiteTensor* GetScratch4() { PackWeightToTensor(&scratch4_tensor_, scratch4_, scratch4_size_); scratch4_tensor_.data.int8 = scratch4_.data(); return &scratch4_tensor_; } TfLiteTensor* GetScratch5() { PackWeightToTensor(&scratch5_tensor_, scratch5_, scratch5_size_); scratch5_tensor_.data.i32 = scratch5_.data(); return &scratch5_tensor_; } TfLiteTensor* GetActivation() { PackWeightToTensor(&activation_tensor_, activation_, activation_size_); activation_tensor_.data.int8 = activation_.data(); activation_tensor_.params.zero_point = 50; return &activation_tensor_; } TfLiteTensor* GetOutput() { PackWeightToTensor(&output_tensor_, output_, output_size_); output_tensor_.data.int8 = output_.data(); return &output_tensor_; } TfLiteTensor* GetCell() { PackWeightToTensor(&cell_tensor_, cell_, cell_size_); cell_tensor_.data.i16 = cell_.data(); return &cell_tensor_; } ~QuantizedLstmParam() { TfLiteIntArrayFree(scratch0_tensor_.dims); TfLiteIntArrayFree(scratch1_tensor_.dims); TfLiteIntArrayFree(scratch2_tensor_.dims); TfLiteIntArrayFree(scratch3_tensor_.dims); TfLiteIntArrayFree(scratch4_tensor_.dims); TfLiteIntArrayFree(scratch5_tensor_.dims); } private: std::vector<int8_t> input_ = { 8, 2, 3, 4, 5, 6, 1, -2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, -3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, }; std::vector<int16_t> layer_norm_input_ = {8, 2, 3, 4, 5, 6, 1, 2, 3, 4}; std::vector<int16_t> layer_norm_forget_ = { 1, 2, 3, 4, 7, 3, 4, -5, 6, 3, }; std::vector<int16_t> layer_norm_cell_ = { 6, 4, 5, 6, 1, 2, 3, 4, -5, 6, }; std::vector<int16_t> layer_norm_output_ = { 16, 4, 5, 6, 1, 1, 3, 4, -5, 6, }; std::vector<int32_t> input_gate_bias_ = { 16, 4, 5, 6, 1, 1, 3, 4, -5, 6, }; std::vector<int32_t> forget_gate_bias_ = { 16, 4, 5, 6, 1, 1, 3, 4, -5, 6, }; std::vector<int32_t> cell_gate_bias_ = { 16, 4, 5, 6, 1, 1, 3, 4, -5, 6, }; std::vector<int32_t> output_gate_bias_ = { 16, 4, 5, 6, 1, 1, 3, 4, -5, 6, }; std::vector<int8_t> activation_; std::vector<int16_t> cell_ = { 16, 4, 5, 6, 1, 1, 3, 4, -5, 6, 1, 14, 5, 6, 1, 1, 3, 4, -5, 6, }; std::vector<int8_t> output_ = { 1, 1, 3, 4, -5, 6, 1, 4, 3, 4, -5, 6, }; ops::builtin::lstm_eval::IntegerLstmParameter integer_lstm_param_; std::vector<int16_t> scratch0_; std::vector<int32_t> scratch0_size_ = {n_batch_, n_cell_}; TfLiteTensor scratch0_tensor_; std::vector<int16_t> scratch1_; std::vector<int32_t> scratch1_size_ = {n_batch_, n_cell_}; TfLiteTensor scratch1_tensor_; std::vector<int16_t> scratch2_; std::vector<int32_t> scratch2_size_ = {n_batch_, n_cell_}; TfLiteTensor scratch2_tensor_; std::vector<int16_t> scratch3_; std::vector<int32_t> scratch3_size_ = {n_batch_, n_cell_}; TfLiteTensor scratch3_tensor_; std::vector<int8_t> scratch4_; std::vector<int32_t> scratch4_size_ = {n_batch_, n_cell_}; TfLiteTensor scratch4_tensor_; std::vector<int32_t> scratch5_; std::vector<int32_t> scratch5_size_ = {n_batch_, n_cell_}; TfLiteTensor scratch5_tensor_; }; void TestOneFullyQuantizedLSTM() { CpuBackendContext context; QuantizedLstmParam one_parameter; auto activation = one_parameter.GetActivation(); auto output = one_parameter.GetOutput(); auto cell = one_parameter.GetCell(); auto param = one_parameter.GetQuantParam(); ops::builtin::lstm_eval::EvalInteger8x8_16( one_parameter.GetInput(), one_parameter.Geti2i(), one_parameter.Geti2f(), one_parameter.Geti2c(), one_parameter.Geti2o(), one_parameter.Getr2i(), one_parameter.Getr2f(), one_parameter.Getr2c(), one_parameter.Getr2o(), nullptr, nullptr, nullptr, one_parameter.GetInputLayerNorm(), one_parameter.GetForgetLayerNorm(), one_parameter.GetCellLayerNorm(), one_parameter.GetOutputLayerNorm(), one_parameter.GetInputBias(), one_parameter.GetForgetBias(), one_parameter.GetCellBias(), one_parameter.GetOutputBias(), one_parameter.GetProjection(), one_parameter.GetProjectionBias(), nullptr, true, true, param, activation, cell, output, one_parameter.GetScratch0(), one_parameter.GetScratch1(), one_parameter.GetScratch2(), one_parameter.GetScratch3(), one_parameter.GetScratch4(), one_parameter.GetScratch5(), &context); const std::vector<int16_t> expected_cell = { 7, 1, 3, 2, 0, 1, 0, 2, -2, 4, 1, 6, 4, 3, 0, 1, 0, 2, -2, 4, }; const std::vector<int8_t> expected_activation = { 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, }; EXPECT_TRUE(ArrayEq(cell->data.i16, expected_cell.data(), 20)); EXPECT_TRUE(ArrayEq(activation->data.int8, expected_activation.data(), 12)); EXPECT_TRUE(ArrayEq(output->data.int8, expected_activation.data(), 12)); } TEST(TestOneFullyQuantizedLSTM, TestOneFullyQuantizedLSTM) { TestOneFullyQuantizedLSTM(); } class HybridLstmParam : public BaseLstmParam { public: TfLiteTensor* GetFloatOutput() { PackWeightToTensor(&output_tensor_, output_float_, output_size_); output_tensor_.data.f = output_float_.data(); return &output_tensor_; } const TfLiteLSTMParams GetLSTMParam() { return {kTfLiteActRelu, 0, 0, kTfLiteLSTMFullKernel, true}; } TfLiteTensor* GetScratchBuffer() { PackWeightToTensor(&scratch_buffer_tensor_, scratch_buffer_, scratch_buffer_size_); scratch_buffer_tensor_.data.f = scratch_buffer_.data(); return &scratch_buffer_tensor_; } TfLiteTensor* GetInputScalingFactors() { PackWeightToTensor(&input_sf_tensor_, input_sf_, quantization_extra_scratch_buffer_sizes_); input_sf_tensor_.data.f = input_sf_.data(); return &input_sf_tensor_; } TfLiteTensor* GetAuxInputScalingFactors() { PackWeightToTensor(&aux_input_sf_tensor_, aux_input_sf_, quantization_extra_scratch_buffer_sizes_); aux_input_sf_tensor_.data.f = aux_input_sf_.data(); return &aux_input_sf_tensor_; } TfLiteTensor* GetOutputStateScalingFactors() { PackWeightToTensor(&output_state_sf_tensor_, output_state_sf_, quantization_extra_scratch_buffer_sizes_); output_state_sf_tensor_.data.f = output_state_sf_.data(); return &output_state_sf_tensor_; } TfLiteTensor* GetProdScalingFactors() { PackWeightToTensor(&prod_scaling_factors_tensor_, prod_scaling_factors_, quantization_extra_scratch_buffer_sizes_); prod_scaling_factors_tensor_.data.f = prod_scaling_factors_.data(); return &prod_scaling_factors_tensor_; } TfLiteTensor* GetInputQuantized() { PackWeightToTensor(&input_quantized_tensor_, input_quantized_, input_size_); input_quantized_tensor_.data.int8 = input_quantized_.data(); return &input_quantized_tensor_; } TfLiteTensor* GetActivationStateQuantized() { PackWeightToTensor(&activation_quantized_tensor_, activation_quantized_, activation_size_); activation_quantized_tensor_.data.int8 = activation_quantized_.data(); return &activation_quantized_tensor_; } TfLiteTensor* GetCellStateQuantized() { PackWeightToTensor(&cell_quantized_tensor_, cell_quantized_, cell_size_); cell_quantized_tensor_.data.int8 = cell_quantized_.data(); return &cell_quantized_tensor_; } TfLiteTensor* GetInputZeroPoints() { PackWeightToTensor(&input_zp_tensor_, input_zp_, quantization_extra_scratch_buffer_sizes_); input_zp_tensor_.data.i32 = input_zp_.data(); return &input_zp_tensor_; } TfLiteTensor* GetAuxInputZeroPoints() { PackWeightToTensor(&aux_input_zp_tensor_, aux_input_zp_, quantization_extra_scratch_buffer_sizes_); aux_input_zp_tensor_.data.i32 = aux_input_zp_.data(); return &aux_input_zp_tensor_; } TfLiteTensor* GetOutputStateZeroPoints() { PackWeightToTensor(&output_state_zp_tensor_, output_state_zp_, quantization_extra_scratch_buffer_sizes_); output_state_zp_tensor_.data.i32 = output_state_zp_.data(); return &output_state_zp_tensor_; } TfLiteTensor* GetRowSums() { PackWeightToTensor(&row_sums_tensor_, row_sums_, row_sums_size_); row_sums_tensor_.data.i32 = row_sums_.data(); return &row_sums_tensor_; } TfLiteTensor* GetFloatInput() { PackWeightToTensor(&input_tensor_, input_float_, input_size_); input_tensor_.data.f = input_float_.data(); return &input_tensor_; } TfLiteTensor* GetActivation() { PackWeightToTensor(&activation_tensor_, activation_state_, activation_size_); activation_tensor_.data.f = activation_state_.data(); return &activation_tensor_; } TfLiteTensor* GetCell() { PackWeightToTensor(&cell_tensor_, cell_state_, cell_size_); cell_tensor_.data.f = cell_state_.data(); return &cell_tensor_; } TfLiteTensor* GetAccumScratchBuffer() { PackWeightToTensor(&accum_scratch_tensor_, accum_scratch_, accum_scratch_size_); accum_scratch_tensor_.data.i32 = accum_scratch_.data(); return &accum_scratch_tensor_; } TfLiteTensor* GetInputBias() { PackWeightToTensor(&input_gate_bias_tensor_, input_float_bias_, input_gate_bias_size_); input_gate_bias_tensor_.data.f = input_float_bias_.data(); return &input_gate_bias_tensor_; } TfLiteTensor* GetForgetBias() { PackWeightToTensor(&forget_gate_bias_tensor_, forget_float_bias_, forget_gate_bias_size_); forget_gate_bias_tensor_.data.f = forget_float_bias_.data(); return &forget_gate_bias_tensor_; } TfLiteTensor* GetCellBias() { PackWeightToTensor(&cell_gate_bias_tensor_, cell_float_bias_, cell_gate_bias_size_); cell_gate_bias_tensor_.data.f = cell_float_bias_.data(); return &cell_gate_bias_tensor_; } TfLiteTensor* GetOutputBias() { PackWeightToTensor(&output_gate_bias_tensor_, output_float_bias_, output_gate_bias_size_); output_gate_bias_tensor_.data.f = output_float_bias_.data(); return &output_gate_bias_tensor_; } TfLiteTensor* GetProjectionBias() { PackWeightToTensor(&projection_bias_tensor_, projection_float_bias_, projection_bias_size_); projection_bias_tensor_.data.f = projection_float_bias_.data(); return &projection_bias_tensor_; } int GetNumRowSums() { return n_row_sums_; } TfLiteTensor* GetInputLayerNorm() { PackWeightToTensor(&layer_norm_input_tensor_, layer_norm_float_input_, layer_norm_input_size_); layer_norm_input_tensor_.data.f = layer_norm_float_input_.data(); return &layer_norm_input_tensor_; } TfLiteTensor* GetForgetLayerNorm() { PackWeightToTensor(&layer_norm_forget_tensor_, layer_norm_float_forget_, layer_norm_forget_size_); layer_norm_forget_tensor_.data.f = layer_norm_float_forget_.data(); return &layer_norm_forget_tensor_; } TfLiteTensor* GetCellLayerNorm() { PackWeightToTensor(&layer_norm_cell_tensor_, layer_norm_float_cell_, layer_norm_cell_size_); layer_norm_cell_tensor_.data.f = layer_norm_float_cell_.data(); return &layer_norm_cell_tensor_; } TfLiteTensor* GetOutputLayerNorm() { PackWeightToTensor(&layer_norm_output_tensor_, layer_norm_float_output_, layer_norm_output_size_); layer_norm_output_tensor_.data.f = layer_norm_float_output_.data(); return &layer_norm_output_tensor_; } static TfLiteTensor* addScale(TfLiteTensor* t, float scale) { t->params.scale = scale; return t; } ~HybridLstmParam() { TfLiteIntArrayFree(scratch_buffer_tensor_.dims); TfLiteIntArrayFree(accum_scratch_tensor_.dims); TfLiteIntArrayFree(input_sf_tensor_.dims); TfLiteIntArrayFree(aux_input_sf_tensor_.dims); TfLiteIntArrayFree(output_state_sf_tensor_.dims); TfLiteIntArrayFree(prod_scaling_factors_tensor_.dims); TfLiteIntArrayFree(input_quantized_tensor_.dims); TfLiteIntArrayFree(activation_quantized_tensor_.dims); TfLiteIntArrayFree(cell_quantized_tensor_.dims); TfLiteIntArrayFree(input_zp_tensor_.dims); TfLiteIntArrayFree(aux_input_zp_tensor_.dims); TfLiteIntArrayFree(output_state_zp_tensor_.dims); TfLiteIntArrayFree(row_sums_tensor_.dims); } private: const int n_row_sums_ = 9; std::vector<float> scratch_buffer_; std::vector<int32_t> scratch_buffer_size_ = {n_batch_, n_cell_ * 4}; TfLiteTensor scratch_buffer_tens