repo_name
stringlengths
7
94
repo_path
stringlengths
4
237
repo_head_hexsha
stringlengths
40
40
content
stringlengths
10
680k
apis
stringlengths
2
680k
aloa04/practice
python/modules_packages_libraries/models/animal_kigdom/animals.py
0f11874a597450a70f3c6f01fe64b6aa9e9d5b9f
class Animal(): edad:int patas:int ruido:str nombre: str kgComida: float = 0 def __init__(self, edad, patas, ruido, nombre): self.edad =edad self.patas = patas self.ruido = ruido self.nombre = nombre def comer(self, alimento): self.kgComida += alimento print('Hola,', self.nombre, 'comes', self.kgComida) def hacerRuido(self): print('Hola', self.nombre, 'haces' , self.ruido)
[]
klmcguir/tensortools
tensortools/optimize/mncp_hals.py
38262f5bad9d3171286e34e5f15d196752dda939
""" Nonnegative CP decomposition by Hierarchical alternating least squares (HALS). With support for missing data. """ import numpy as np import scipy as sci from scipy import linalg from tensortools.operations import unfold, khatri_rao from tensortools.tensors import KTensor from tensortools.optimize import FitResult, optim_utils from .._hals_update import _hals_update def mncp_hals(X, rank, mask, random_state=None, init='rand', **options): """ Fits nonnegtaive CP Decomposition using the Hierarcial Alternating Least Squares (HALS) Method. Supports missing data. Parameters ---------- X : (I_1, ..., I_N) array_like A real array with nonnegative entries and ``X.ndim >= 3``. rank : integer The `rank` sets the number of components to be computed. mask : (I_1, ..., I_N) array_like A binary tensor with the same shape as ``X``. All entries equal to zero correspond to held out or missing data in ``X``. All entries equal to one correspond to observed entries in ``X`` and the decomposition is fit to these datapoints. random_state : integer, RandomState instance or None, optional (default ``None``) If integer, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random. init : str, or KTensor, optional (default ``'rand'``). Specifies initial guess for KTensor factor matrices. If ``'randn'``, Gaussian random numbers are used to initialize. If ``'rand'``, uniform random numbers are used to initialize. If KTensor instance, a copy is made to initialize the optimization. options : dict, specifying fitting options. tol : float, optional (default ``tol=1E-5``) Stopping tolerance for reconstruction error. max_iter : integer, optional (default ``max_iter = 500``) Maximum number of iterations to perform before exiting. min_iter : integer, optional (default ``min_iter = 1``) Minimum number of iterations to perform before exiting. max_time : integer, optional (default ``max_time = np.inf``) Maximum computational time before exiting. verbose : bool ``{'True', 'False'}``, optional (default ``verbose=True``) Display progress. Returns ------- result : FitResult instance Object which holds the fitted results. It provides the factor matrices in form of a KTensor, ``result.factors``. Notes ----- This implemenation is using the Hierarcial Alternating Least Squares Method. References ---------- Cichocki, Andrzej, and P. H. A. N. Anh-Huy. "Fast local algorithms for large scale nonnegative matrix and tensor factorizations." IEICE transactions on fundamentals of electronics, communications and computer sciences 92.3: 708-721, 2009. Examples -------- """ # Mask missing elements. X = np.copy(X) X[~mask] = np.linalg.norm(X[mask]) # Check inputs. optim_utils._check_cpd_inputs(X, rank) # Initialize problem. U, normX = optim_utils._get_initial_ktensor(init, X, rank, random_state) result = FitResult(U, 'NCP_HALS', **options) # Store problem dimensions. normX = linalg.norm(X[mask].ravel()) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Iterate the HALS algorithm until convergence or maxiter is reached # i) compute the N gram matrices and multiply # ii) Compute Khatri-Rao product # iii) Update component U_1, U_2, ... U_N # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ while result.still_optimizing: # First, HALS update. for n in range(X.ndim): # Select all components, but U_n components = [U[j] for j in range(X.ndim) if j != n] # i) compute the N-1 gram matrices grams = sci.multiply.reduce([arr.T.dot(arr) for arr in components]) # ii) Compute Khatri-Rao product kr = khatri_rao(components) p = unfold(X, n).dot(kr) # iii) Update component U_n _hals_update(U[n], grams, p) # Then, update masked elements. pred = U.full() X[~mask] = pred[~mask] # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Update the optimization result, checks for convergence. # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Compute objective function # grams *= U[X.ndim - 1].T.dot(U[X.ndim - 1]) # obj = np.sqrt( (sci.sum(grams) - 2 * sci.sum(U[X.ndim - 1] * p) + normX**2)) / normX resid = X - pred result.update(linalg.norm(resid.ravel()) / normX) # end optimization loop, return result. return result.finalize()
[((3086, 3096), 'numpy.copy', 'np.copy', (['X'], {}), '(X)\n', (3093, 3096), True, 'import numpy as np\n'), ((3112, 3135), 'numpy.linalg.norm', 'np.linalg.norm', (['X[mask]'], {}), '(X[mask])\n', (3126, 3135), True, 'import numpy as np\n'), ((3161, 3199), 'tensortools.optimize.optim_utils._check_cpd_inputs', 'optim_utils._check_cpd_inputs', (['X', 'rank'], {}), '(X, rank)\n', (3190, 3199), False, 'from tensortools.optimize import FitResult, optim_utils\n'), ((3242, 3303), 'tensortools.optimize.optim_utils._get_initial_ktensor', 'optim_utils._get_initial_ktensor', (['init', 'X', 'rank', 'random_state'], {}), '(init, X, rank, random_state)\n', (3274, 3303), False, 'from tensortools.optimize import FitResult, optim_utils\n'), ((3317, 3352), 'tensortools.optimize.FitResult', 'FitResult', (['U', '"""NCP_HALS"""'], {}), "(U, 'NCP_HALS', **options)\n", (3326, 3352), False, 'from tensortools.optimize import FitResult, optim_utils\n'), ((4201, 4223), 'tensortools.operations.khatri_rao', 'khatri_rao', (['components'], {}), '(components)\n', (4211, 4223), False, 'from tensortools.operations import unfold, khatri_rao\n'), ((4240, 4252), 'tensortools.operations.unfold', 'unfold', (['X', 'n'], {}), '(X, n)\n', (4246, 4252), False, 'from tensortools.operations import unfold, khatri_rao\n')]
jonas-eschle/raredecay
raredecay/tools/data_tools.py
6285f91e0819d01c80125f50b24e60ee5353ae2e
""" @author: Jonas Eschle "Mayou36" DEPRECEATED! USE OTHER MODULES LIKE rd.data, rd.ml, rd.reweight, rd.score and rd.stat DEPRECEATED!DEPRECEATED!DEPRECEATED!DEPRECEATED!DEPRECEATED! Contains several tools to convert, load, save and plot data """ import warnings import os import copy import pandas as pd import numpy as np import uproot import pickle from . import dev_tool # both produce error (27.07.2016) when importing them if run from main.py. # No problem when run as main... # from raredecay.tools import dev_tool from .. import meta_config as meta_cfg def apply_cuts(signal_data, bkg_data, percent_sig_to_keep=100, bkg_length=None): """Search for best cut on value to still keep percent_sig_to_keep of signal Parameters ---------- signal_data : 1-D numpy array The signal bkg_data : 1-D numpy array The background data percent_sig_to_keep : 0 < float <= 100 What percentage of the data to keep in order to apply the cuts. """ # if percent_sig_to_keep < 100: # raise NotImplementedError("percentage of < 100 not yet imlemented") percentile = [0, percent_sig_to_keep] # TODO: modify for percent_sig_to_keep bkg_length_before = len(bkg_data) bkg_length = len(bkg_data) if bkg_length in (None, 0) else bkg_length lower_cut, upper_cut = np.percentile(signal_data, percentile) cut_bkg = np.count_nonzero( np.logical_or(bkg_data < lower_cut, bkg_data > upper_cut) ) rejected_bkg = (bkg_length_before - cut_bkg) / bkg_length return [lower_cut, upper_cut], rejected_bkg def make_root_dict(path_to_rootfile, tree_name, branches): """Returns a root_numpy compatible "root-dict" of a root-tree. Parameters ---------- path_to_rootfile : str The exact path to the root-tree including the filename. Example: /home/user1/data/myRootTree1.root tree_name : str The name of the tree branches : str or list[str, str, str,... ] The branches of the tree to use """ output = dict(filenames=path_to_rootfile, treename=tree_name, branches=branches) output = dev_tool.entries_to_str(output) return output def add_to_rootfile(rootfile, new_branch, branch_name=None, overwrite=True): """Adds a new branch to a given root file. .. warning:: Overwrite not working currently! Parameters ---------- rootfile : root-dict The ROOT-file where the data should be added new_branch : numpy.array 1-D, list, root-dict A one-dimensional numpy array that contains the data. branch_name : str The name of the branche resp. the name in the dtype of the array. """ from root_numpy import array2root from rootpy.io import root_open rootfile = dev_tool.entries_to_str(rootfile) new_branch = dev_tool.entries_to_str(new_branch) branch_name = dev_tool.entries_to_str(branch_name) # get the right parameters # TODO: what does that if there? an assertion maybe? write_mode = "update" branch_name = "new_branch1" if branch_name is None else branch_name if isinstance(rootfile, dict): filename = rootfile.get("filenames") treename = rootfile.get("treename") new_branch = to_ndarray(new_branch) # new_branch.dtype = [(branch_name, 'f8')] # write to ROOT-file write_to_root = False if os.path.isfile(filename): with root_open(filename, mode="a") as root_file: tree = getattr(root_file, treename) # test if not tree.has_branch(branch_name): write_to_root = True # array2tree(new_branch, tree=tree) # f.write("", TObject.kOverwrite) # overwrite, does not create friends else: write_mode = "recreate" write_to_root = True if write_to_root: arr = np.core.records.fromarrays([new_branch], names=branch_name) array2root(arr=arr, filename=filename, treename=treename, mode=write_mode) return 0 else: return 1 # TODO: remove? outdated def format_data_weights(data_to_shape, weights): """Format the data and the weights perfectly. Same length and more. Change the data to pandas.DataFrame and fill the weights with ones where nothing or None is specified. Returns both in lists. Very useful to loop over several data and weights. Parameters ---------- data_to_shape : (root_dict, numpy.array, pandas.DataFrame) The data for which we apply the weights. Usual 2-D shape. weights : (list, numpy.array, pandas.DataFrame, None) The weights to be reshaped *Best format* : [array(weights),array(weights), None, array(weights),...] *None* can be used if no special weights are specified. If weights contains less "weight-containing array-like objects" then data_to_shape does, the difference will be filled with *1* Return ------ out : list(pandas.DataFrame(data), pandas.DataFrame(data),...) Return a list containing data out : list(numpy.array(weight), numpy.array(weight),...) Return a list with the weights, converted and filled. """ # conver the data if not isinstance(data_to_shape, list): data_to_shape = [data_to_shape] data_to_shape = list(map(to_pandas, data_to_shape)) # convert the weights if not isinstance(weights, list): weights = [weights] if weights[0] is not None: if len(weights[0]) == 1: weights = [weights] # convert to pandas assert isinstance(weights, list), "weights could not be converted to list" for data_id, data in enumerate(data_to_shape): if data_id >= len(weights): weights.append(None) if weights[data_id] is None: weights[data_id] = np.array([1] * len(data)) weights[data_id] = to_pandas(weights[data_id]).squeeze().values return data_to_shape, weights def obj_to_string(objects, separator=None): """Return a string containing all objects as strings, separated by the separator. Useful for automatic conversion for different types. The following objects will automatically be converted: - None will be omitted Parameters ---------- objects : any object or list(obj, obj, ...) with a string representation The objects will be converted to a string and concatenated, separated by the separator. separator : str The separator between the objects. Default is " - ". """ objects = dev_tool.entries_to_str(objects) if isinstance(objects, str): # no need to change things return objects separator = " - " if separator is None else separator assert isinstance(separator, str), "Separator not a str" objects = to_list(objects) objects = [str(obj) for obj in objects if obj not in (None, "")] # remove Nones string_out = "" for word in objects: string_out += word + separator if word != objects[-1] else word return string_out def is_root(data_to_check): """Check whether a given data is a root file. Needs dicts to be True.""" flag = False data_to_check = dev_tool.entries_to_str(data_to_check) if isinstance(data_to_check, dict): path_name = data_to_check.get("filenames") # assert isinstance(path_name, str), ("'filenames' of the dictionary " + # str(data_to_check) + "is not a string") if path_name.endswith(meta_cfg.ROOT_DATATYPE): flag = True return flag def is_list(data_to_check): """Check whether the given data is a list.""" flag = False if isinstance(data_to_check, list): flag = True return flag def is_ndarray(data_to_check): """Check whether a given data is an ndarray.""" flag = False if isinstance(data_to_check, np.ndarray): flag = True return flag def is_pickle(data_to_check): """Check if the file is a pickled file (checks the ending).""" flag = False data_to_check = dev_tool.entries_to_str(data_to_check) if isinstance(data_to_check, str): if data_to_check.endswith(meta_cfg.PICKLE_DATATYPE): flag = True return flag def to_list(data_in): """Convert the data into a list. Does not pack lists into a new one. If your input is, for example, a string or a list of strings, or a tuple filled with strings, you have, in general, a problem: - just iterate through the object will fail because it iterates through the characters of the string. - using list(obj) converts the tuple, leaves the list but splits the strings characters into single elements of a new list. - using [obj] creates a list containing a string, but also a list containing a list or a tuple, which you did not want to. Solution: use to_list(obj), which creates a new list in case the object is a single object (a string is a single object in this sence) or converts to a list if the object is already a container for several objects. Parameters ---------- data_in : any obj So far, any object can be entered. Returns ------- out : list Return a list containing the object or the object converted to a list. """ if isinstance(data_in, (str, int, float)): data_in = [data_in] data_in = list(data_in) return data_in def to_ndarray(data_in, float_array=False): """Convert data to numpy array (containing only floats). Parameters ---------- data_in : any reasonable data The data to be converted """ import uproot if is_root(data_in): with uproot.open(data_in["filenames"]) as file: tree = file[data_in["treename"]] branches = to_list(data_in["branches"]) loaded = tree.arrays(branches, library="np") loaded = np.stack([loaded[branch] for branch in branches]) if len(branches) == 1: loaded = loaded[0] data_in = loaded # change numpy.void to normal floats if isinstance(data_in, (pd.Series, pd.DataFrame)): test_sample = data_in.iloc[0] else: test_sample = data_in[0] if isinstance(test_sample, np.void): data_in = np.array([val[0] for val in data_in]) if isinstance(data_in, (np.recarray, np.ndarray)): data_in = data_in.tolist() if is_list(data_in) or isinstance(data_in, pd.Series): data_in = np.array(data_in) if not isinstance(data_in[0], (int, float, str, bool)): if float_array: iter_data = copy.deepcopy(data_in) # HACK data_in = np.ndarray(shape=len(data_in), dtype=data_in.dtype) # HACK END for i, element in enumerate(iter_data): if not isinstance(element, (int, float, str, bool)): # does that work or should we iterate over copy? try: element_len = len(element) except TypeError: element_len = 1 if element_len > 1: data_in[i] = to_ndarray(element) float_array = False elif element_len == 1: data_in[i] = float(element) warnings.warn("Could not force float array") if float_array: data_in = np.asfarray(data_in) assert is_ndarray(data_in), "Error, could not convert data to numpy array" return data_in def to_pandas_old(data_in, index=None, columns=None): """Convert data from numpy or root to pandas dataframe. Convert data safely to pandas, whatever the format is. Parameters ---------- data_in : any reasonable data The data to be converted """ # TODO: generalize root_index_name = "__index__" data_in = dev_tool.entries_to_str(data_in) if is_root(data_in): root_index = None import root_numpy if root_index_name in root_numpy.list_branches( filename=data_in["filenames"], treename=data_in.get("treename") ): root_index = root_numpy.root2array( filenames=data_in["filenames"], treename=data_in.get("treename"), selection=data_in.get("selection"), branches=root_index_name, ) data_in = root_numpy.root2array(**data_in) # why **? it's a root dict if is_list(data_in): data_in = np.array(data_in) if is_ndarray(data_in): if (isinstance(columns, (list, tuple)) and len(columns) == 1) or isinstance( columns, str ): data_in = to_ndarray(data_in) data_in = pd.DataFrame(data_in, columns=columns, index=root_index) if index is not None: data_in = data_in.loc[index] elif isinstance(data_in, pd.DataFrame): pass else: raise TypeError("Could not convert data to pandas. Data: " + data_in) return data_in def to_pandas(data_in, index=None, columns=None): """Convert data from numpy or root to pandas dataframe. Convert data safely to pandas, whatever the format is. Parameters ---------- data_in : any reasonable data The data to be converted """ data_in = dev_tool.entries_to_str(data_in) if is_root(data_in): if columns is None: columns = data_in["branches"] with uproot.open(data_in["filenames"]) as file: tree = file[data_in["treename"]] if "__index__" in tree.keys(): # legacy, we can also convert this return to_pandas_old(data_in=data_in, index=index, columns=columns) branches = to_list(columns) loaded = tree.arrays(branches, library="pd") if index is not None: loaded = loaded.loc[index] return loaded else: # HACK START return to_pandas_old(data_in=data_in, index=index, columns=columns) # HACK END # from root_pandas import read_root # # root_pandas_numpy_map = dict(filenames='paths', treename='key', branches='columns', # selection='where') # # if is_root(data_in): # is_root2array = False # for key, val in copy.deepcopy(list(data_in.items())): # if key in root_pandas_numpy_map: # is_root2array = True # del data_in[key] # data_in[root_pandas_numpy_map[key]] = val # data_in['columns'] = to_list(data_in['columns']) # if is_root2array: # data_in['columns'] = ['noexpand:'+col for col in data_in['columns'] if not col.startswith('noexpand:')] # remove the noexpand: # data_in = read_root(**data_in) # why **? it's a root dict # if is_list(data_in): # data_in = np.array(data_in) # if is_ndarray(data_in): # if ((isinstance(columns, (list, tuple)) and len(columns) == 1) or # isinstance(columns, string)): # # data_in = to_ndarray(data_in) # data_in = pd.DataFrame(data_in, columns=columns) # if index is not None: # data_in = data_in.loc[index] # elif isinstance(data_in, pd.DataFrame): # pass # else: # raise TypeError("Could not convert data to pandas. Data: " + data_in) # return data_in def adv_return(return_value, save_name=None): """Save the value if save_name specified, otherwise just return input. Can be wrapped around the return value. Without any arguments, the return of your function will be exactly the same. With arguments, the value can be saved (**pickled**) before it is returned. Parameters ---------- return_value : any python object The python object which should be pickled. save_name : str, None | The (file-)name for the pickled file. File-extension will be added \ automatically if specified in *raredecay.meta_config*. | If *None* is passed, the object won't be pickled. Return ------ out : python object Return return_value without changes. **Usage**: Instead of a simple return statement >>> return my_variable/my_object one can use the **completely equivalent** statement >>> return adv_return(my_variable/my_object) If the return value should be saved in addition to be returned, use >>> return adv_return(my_variable/my_object, save_name='my_object.pickle') (*the .pickle ending is not required but added automatically if omitted*) which returns the value and saves it. """ save_name = dev_tool.entries_to_str(save_name) if save_name not in (None, False): if isinstance(save_name, str): save_name = meta_cfg.PICKLE_PATH + save_name if not is_pickle(save_name): save_name += "." + meta_cfg.PICKLE_DATATYPE with open(str(save_name), "wb") as f: pickle.dump(return_value, f, meta_cfg.PICKLE_PROTOCOL) print(str(return_value) + " pickled to " + save_name) else: pass # HACK how to solve logger problem? # logger.error("Could not pickle data, name for file (" + # str(save_name) + ") is not a string!" + # "\n Therefore, the following data was only returned" + # " but not saved! \n Data:" + str(return_value)) return return_value def try_unpickle(file_to_unpickle, use_metapath_bkwcomp=False): """Try to unpickle a file and return, otherwise just return input.""" file_to_unpickle = dev_tool.entries_to_str(file_to_unpickle) if is_pickle(file_to_unpickle): extra_path = meta_cfg.PICKLE_PATH if use_metapath_bkwcomp else "" with open(extra_path + file_to_unpickle, "rb") as f: file_to_unpickle = pickle.load(f) return file_to_unpickle
[((1346, 1384), 'numpy.percentile', 'np.percentile', (['signal_data', 'percentile'], {}), '(signal_data, percentile)\n', (1359, 1384), True, 'import numpy as np\n'), ((3388, 3412), 'os.path.isfile', 'os.path.isfile', (['filename'], {}), '(filename)\n', (3402, 3412), False, 'import os\n'), ((1425, 1482), 'numpy.logical_or', 'np.logical_or', (['(bkg_data < lower_cut)', '(bkg_data > upper_cut)'], {}), '(bkg_data < lower_cut, bkg_data > upper_cut)\n', (1438, 1482), True, 'import numpy as np\n'), ((3847, 3906), 'numpy.core.records.fromarrays', 'np.core.records.fromarrays', (['[new_branch]'], {'names': 'branch_name'}), '([new_branch], names=branch_name)\n', (3873, 3906), True, 'import numpy as np\n'), ((3915, 3989), 'root_numpy.array2root', 'array2root', ([], {'arr': 'arr', 'filename': 'filename', 'treename': 'treename', 'mode': 'write_mode'}), '(arr=arr, filename=filename, treename=treename, mode=write_mode)\n', (3925, 3989), False, 'from root_numpy import array2root\n'), ((9935, 9984), 'numpy.stack', 'np.stack', (['[loaded[branch] for branch in branches]'], {}), '([loaded[branch] for branch in branches])\n', (9943, 9984), True, 'import numpy as np\n'), ((10308, 10345), 'numpy.array', 'np.array', (['[val[0] for val in data_in]'], {}), '([val[0] for val in data_in])\n', (10316, 10345), True, 'import numpy as np\n'), ((10513, 10530), 'numpy.array', 'np.array', (['data_in'], {}), '(data_in)\n', (10521, 10530), True, 'import numpy as np\n'), ((11455, 11475), 'numpy.asfarray', 'np.asfarray', (['data_in'], {}), '(data_in)\n', (11466, 11475), True, 'import numpy as np\n'), ((12453, 12485), 'root_numpy.root2array', 'root_numpy.root2array', ([], {}), '(**data_in)\n', (12474, 12485), False, 'import root_numpy\n'), ((12558, 12575), 'numpy.array', 'np.array', (['data_in'], {}), '(data_in)\n', (12566, 12575), True, 'import numpy as np\n'), ((12785, 12841), 'pandas.DataFrame', 'pd.DataFrame', (['data_in'], {'columns': 'columns', 'index': 'root_index'}), '(data_in, columns=columns, index=root_index)\n', (12797, 12841), True, 'import pandas as pd\n'), ((3427, 3456), 'rootpy.io.root_open', 'root_open', (['filename'], {'mode': '"""a"""'}), "(filename, mode='a')\n", (3436, 3456), False, 'from rootpy.io import root_open\n'), ((9721, 9754), 'uproot.open', 'uproot.open', (["data_in['filenames']"], {}), "(data_in['filenames'])\n", (9732, 9754), False, 'import uproot\n'), ((10639, 10661), 'copy.deepcopy', 'copy.deepcopy', (['data_in'], {}), '(data_in)\n', (10652, 10661), False, 'import copy\n'), ((11371, 11415), 'warnings.warn', 'warnings.warn', (['"""Could not force float array"""'], {}), "('Could not force float array')\n", (11384, 11415), False, 'import warnings\n'), ((13509, 13542), 'uproot.open', 'uproot.open', (["data_in['filenames']"], {}), "(data_in['filenames'])\n", (13520, 13542), False, 'import uproot\n'), ((18036, 18050), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (18047, 18050), False, 'import pickle\n'), ((17063, 17117), 'pickle.dump', 'pickle.dump', (['return_value', 'f', 'meta_cfg.PICKLE_PROTOCOL'], {}), '(return_value, f, meta_cfg.PICKLE_PROTOCOL)\n', (17074, 17117), False, 'import pickle\n')]
LittleNed/toontown-stride
toontown/coghq/boardbothq/BoardOfficeManagerAI.py
1252a8f9a8816c1810106006d09c8bdfe6ad1e57
from direct.directnotify import DirectNotifyGlobal import DistributedBoardOfficeAI from toontown.toonbase import ToontownGlobals from toontown.coghq.boardbothq import BoardOfficeLayout from direct.showbase import DirectObject import random class BoardOfficeManagerAI(DirectObject.DirectObject): notify = DirectNotifyGlobal.directNotify.newCategory('BoardOfficeManagerAI') boardofficeId = None def __init__(self, air): DirectObject.DirectObject.__init__(self) self.air = air def getDoId(self): return 0 def createBoardOffice(self, boardofficeId, players): for avId in players: if bboard.has('boardofficeId-%s' % avId): boardofficeId = bboard.get('boardofficeId-%s' % avId) break numFloors = ToontownGlobals.BoardOfficeNumFloors[boardofficeId] floor = random.randrange(numFloors) for avId in players: if bboard.has('mintFloor-%s' % avId): floor = bboard.get('mintFloor-%s' % avId) floor = max(0, floor) floor = min(floor, numFloors - 1) break for avId in players: if bboard.has('mintRoom-%s' % avId): roomId = bboard.get('mintRoom-%s' % avId) for i in xrange(numFloors): layout = BoardOfficeLayout.BoardOfficeLayout(boardofficeId, i) if roomId in layout.getRoomIds(): floor = i else: from toontown.coghq.boardbothq import BoardOfficeRoomSpecs roomName = BoardOfficeRoomSpecs.BoardOfficeRoomId2RoomName[roomId] BoardOfficeManagerAI.notify.warning('room %s (%s) not found in any floor of mint %s' % (roomId, roomName, boardofficeId)) mintZone = self.air.allocateZone() mint = DistributedBoardOfficeAI.DistributedBoardOfficeAI(self.air, boardofficeId, mintZone, floor, players) mint.generateWithRequired(mintZone) return mintZone
[((309, 376), 'direct.directnotify.DirectNotifyGlobal.directNotify.newCategory', 'DirectNotifyGlobal.directNotify.newCategory', (['"""BoardOfficeManagerAI"""'], {}), "('BoardOfficeManagerAI')\n", (352, 376), False, 'from direct.directnotify import DirectNotifyGlobal\n'), ((440, 480), 'direct.showbase.DirectObject.DirectObject.__init__', 'DirectObject.DirectObject.__init__', (['self'], {}), '(self)\n', (474, 480), False, 'from direct.showbase import DirectObject\n'), ((867, 894), 'random.randrange', 'random.randrange', (['numFloors'], {}), '(numFloors)\n', (883, 894), False, 'import random\n'), ((1883, 1987), 'DistributedBoardOfficeAI.DistributedBoardOfficeAI', 'DistributedBoardOfficeAI.DistributedBoardOfficeAI', (['self.air', 'boardofficeId', 'mintZone', 'floor', 'players'], {}), '(self.air, boardofficeId,\n mintZone, floor, players)\n', (1932, 1987), False, 'import DistributedBoardOfficeAI\n'), ((1352, 1405), 'toontown.coghq.boardbothq.BoardOfficeLayout.BoardOfficeLayout', 'BoardOfficeLayout.BoardOfficeLayout', (['boardofficeId', 'i'], {}), '(boardofficeId, i)\n', (1387, 1405), False, 'from toontown.coghq.boardbothq import BoardOfficeLayout\n')]
radon-h2020/AnsibleMetrics
ansiblemetrics/utils.py
8a8e27d9b54fc1578d00526c8663184a2e686cb2
from typing import Union def key_value_list(d: Union[dict, list], key=None) -> list: """ This function iterates over all the key-value pairs of a dictionary and returns a list of tuple (key, value) where the key contain only primitive value (i.e., no list or dict), e.g., string, number etc. d -- a dictionary to iterate through """ if not d: return [] if not isinstance(d, dict) and not isinstance(d, list): return [] key_values = [] if isinstance(d, list): for entry in d: if isinstance(entry, dict): key_values.extend(key_value_list(entry)) else: key_values.append((key, entry)) else: for k, v in d.items(): if k is None or v is None: continue if not isinstance(v, dict) and type(v) != list: key_values.append((k, v)) elif isinstance(v, list): key_values.extend(key_value_list(v, k)) else: key_values.extend(key_value_list(v)) return key_values def all_keys(d: Union[dict, list]) -> list: """ Returns a list of all the keys of a dictionary (duplicates included) d -- a dictionary to iterate through """ if not d: return [] if d is None or not isinstance(d, dict) and not isinstance(d, list): return [] keys = [] if isinstance(d, list): for entry in d: keys.extend(all_keys(entry)) else: for k, v in d.items(): keys.append(k) keys.extend(all_keys(v)) return keys def all_values(d: Union[dict, list]) -> list: """ Returns a list of all the primitive values of a dictionary (duplicates included) d -- a dictionary to iterate through """ if not d: return [] if not isinstance(d, dict) and not isinstance(d, list): return [d] values = [] if isinstance(d, list): for entry in d: values.extend(all_values(entry)) else: for k, v in d.items(): values.extend(all_values(v)) return values
[]
Kunal-Shah-Bose/yam-python
yampy/apis/groups.py
1d24b4b5c4bfb512804183efe741a2f7a75889e5
from yampy.apis.utils import ArgumentConverter, none_filter, stringify_booleans from yampy.models import extract_id class GroupsAPI(object): """ Provides an interface for accessing the groups related endpoints of the Yammer API. You should not instantiate this class directly; use the :meth:`yampy.Yammer.groups` method instead. """ def __init__(self, client): """ Initializes a new GroupsAPI that will use the given client object to make HTTP requests. """ self._client = client self._argument_converter = ArgumentConverter( none_filter, stringify_booleans, ) def all(self, mine=None, reverse=None): """ Returns all the groups in the current user's network. Customize the response using the keyword arguments: * mine -- Only return group of current user. * reverse -- return group in descending order by name. """ return self._client.get("/groups", **self._argument_converter( mine=mine, reverse=reverse, )) def find(self, group_id): """ Returns the group identified by the given group_id. """ return self._client.get(self._group_path(group_id)) def members(self, group_id, page=None, reverse=None): """ Returns the group identified by the given group_id. Customize the response using the keyword arguments: * page -- Enable pagination, and return the nth page of 50 users. """ path = "/group_memberships" return self._client.get(path, **self._argument_converter( page=page, reverse=reverse, )) def join(self, group_id): """ Join the group identified by the given group_id. Return True """ path = "/group_memberships" group_id = extract_id(group_id) return self._client.post(path, **self._argument_converter( group_id=group_id, )) def leave(self, group_id): """ Leave the group identified by the given group_id. Return True """ path = "/group_memberships" group_id = extract_id(group_id) return self._client.delete(path, **self._argument_converter( group_id=group_id, )) def create(self, name, private=False): """ Create a group. Return Group info """ path = "/groups" return self._client.post(path, **self._argument_converter( name=name, private=private, )) def delete(self, group_id): """ Delete a group. Return True if success """ return self._client.delete(self._group_path(group_id), delete="true") def _group_path(self, group_id): return "/groups/%d" % extract_id(group_id)
[((583, 633), 'yampy.apis.utils.ArgumentConverter', 'ArgumentConverter', (['none_filter', 'stringify_booleans'], {}), '(none_filter, stringify_booleans)\n', (600, 633), False, 'from yampy.apis.utils import ArgumentConverter, none_filter, stringify_booleans\n'), ((1907, 1927), 'yampy.models.extract_id', 'extract_id', (['group_id'], {}), '(group_id)\n', (1917, 1927), False, 'from yampy.models import extract_id\n'), ((2227, 2247), 'yampy.models.extract_id', 'extract_id', (['group_id'], {}), '(group_id)\n', (2237, 2247), False, 'from yampy.models import extract_id\n'), ((2892, 2912), 'yampy.models.extract_id', 'extract_id', (['group_id'], {}), '(group_id)\n', (2902, 2912), False, 'from yampy.models import extract_id\n')]
ycanerol/phy
phy/gui/actions.py
7a247f926dd5bf5d8ab95fe138e8f4a0db11b068
# -*- coding: utf-8 -*- """Actions and snippets.""" # ----------------------------------------------------------------------------- # Imports # ----------------------------------------------------------------------------- import inspect from functools import partial, wraps import logging import re import sys import traceback from .qt import QKeySequence, QAction, require_qt, input_dialog, busy_cursor, _get_icon from phylib.utils import Bunch logger = logging.getLogger(__name__) # ----------------------------------------------------------------------------- # Snippet parsing utilities # ----------------------------------------------------------------------------- def _parse_arg(s): """Parse a number or string.""" try: return int(s) except ValueError: pass try: return float(s) except ValueError: pass return s def _parse_list(s): """Parse a comma-separated list of values (strings or numbers).""" # Range: 'x-y' if '-' in s: m, M = map(_parse_arg, s.split('-')) return list(range(m, M + 1)) # List of ids: 'x,y,z' elif ',' in s: return list(map(_parse_arg, s.split(','))) else: return _parse_arg(s) def _parse_snippet(s): """Parse an entire snippet command.""" return tuple(map(_parse_list, s.split(' '))) def _prompt_args(title, docstring, default=None): """Display a prompt dialog requesting function arguments. 'default' is a function returning the default value for the proposed input dialog. """ # There are args, need to display the dialog. # Extract Example: `...` in the docstring to put a predefined text # in the input dialog. logger.debug("Prompting arguments for %s", title) r = re.search('Example: `([^`]+)`', docstring) docstring_ = docstring[:r.start()].strip() if r else docstring try: text = str(default()) if default else (r.group(1) if r else None) except Exception as e: # pragma: no cover logger.error("Error while handling user input: %s", str(e)) return s, ok = input_dialog(title, docstring_, text) if not ok or not s: return # Parse user-supplied arguments and call the function. args = _parse_snippet(s) return args # ----------------------------------------------------------------------------- # Show shortcut utility functions # ----------------------------------------------------------------------------- def _get_shortcut_string(shortcut): """Return a string representation of a shortcut.""" if not shortcut: return '' if isinstance(shortcut, (tuple, list)): return ', '.join([_get_shortcut_string(s) for s in shortcut]) if isinstance(shortcut, str): if hasattr(QKeySequence, shortcut): shortcut = QKeySequence(getattr(QKeySequence, shortcut)) else: return shortcut.lower() assert isinstance(shortcut, QKeySequence) s = shortcut.toString() or '' return str(s).lower() def _get_qkeysequence(shortcut): """Return a QKeySequence or list of QKeySequence from a shortcut string.""" if shortcut is None: return [] if isinstance(shortcut, (tuple, list)): return [_get_qkeysequence(s) for s in shortcut] assert isinstance(shortcut, str) if hasattr(QKeySequence, shortcut): return QKeySequence(getattr(QKeySequence, shortcut)) sequence = QKeySequence.fromString(shortcut) assert not sequence.isEmpty() return sequence def _show_shortcuts(shortcuts): """Display shortcuts.""" out = [] for n in sorted(shortcuts): shortcut = _get_shortcut_string(shortcuts[n]) if not n.startswith('_') and not shortcut.startswith('-'): out.append('- {0:<40} {1:s}'.format(n, shortcut)) if out: print('Keyboard shortcuts') print('\n'.join(out)) print('') def _show_snippets(snippets): """Display snippets.""" out = [] for n in sorted(snippets): snippet = snippets[n] if not n.startswith('_'): out.append('- {0:<40} :{1:s}'.format(n, snippet)) if out: print('Snippets') print('\n'.join(out)) print('') def show_shortcuts_snippets(actions): """Show the shortcuts and snippets of an Actions instance.""" print(actions.name) print('-' * len(actions.name)) print() _show_shortcuts(actions.shortcuts) _show_snippets(actions._default_snippets) # ----------------------------------------------------------------------------- # Actions # ----------------------------------------------------------------------------- def _alias(name): # Get the alias from the character after & if it exists. alias = name[name.index('&') + 1] if '&' in name else name alias = alias.replace(' ', '_').lower() return alias def _expected_args(f): if isinstance(f, partial): argspec = inspect.getfullargspec(f.func) else: argspec = inspect.getfullargspec(f) f_args = argspec.args if 'self' in f_args: f_args.remove('self') # Remove arguments with defaults from the list. if len(argspec.defaults or ()): f_args = f_args[:-len(argspec.defaults)] # Remove arguments supplied in a partial. if isinstance(f, partial): f_args = f_args[len(f.args):] f_args = [arg for arg in f_args if arg not in f.keywords] return tuple(f_args) @require_qt def _create_qaction(gui, **kwargs): # Create the QAction instance. name = kwargs.get('name', '') name = name[0].upper() + name[1:].replace('_', ' ') action = QAction(name, gui) # Show an input dialog if there are args. callback = kwargs.get('callback', None) title = getattr(callback, '__name__', 'action') # Number of expected arguments. n_args = kwargs.get('n_args', None) or len(_expected_args(callback)) @wraps(callback) def wrapped(is_checked, *args): if kwargs.get('checkable', None): args = (is_checked,) + args if kwargs.get('prompt', None): args += _prompt_args( title, docstring, default=kwargs.get('prompt_default', None)) or () if not args: # pragma: no cover logger.debug("User cancelled input prompt, aborting.") return if len(args) < n_args: logger.warning( "Invalid function arguments: expecting %d but got %d", n_args, len(args)) return try: # Set a busy cursor if set_busy is True. with busy_cursor(kwargs.get('set_busy', None)): return callback(*args) except Exception: # pragma: no cover logger.warning("Error when executing action %s.", name) logger.debug(''.join(traceback.format_exception(*sys.exc_info()))) action.triggered.connect(wrapped) sequence = _get_qkeysequence(kwargs.get('shortcut', None)) if not isinstance(sequence, (tuple, list)): sequence = [sequence] action.setShortcuts(sequence) assert kwargs.get('docstring', None) docstring = re.sub(r'\s+', ' ', kwargs.get('docstring', None)) docstring += ' (alias: {})'.format(kwargs.get('alias', None)) action.setStatusTip(docstring) action.setWhatsThis(docstring) action.setCheckable(kwargs.get('checkable', None)) action.setChecked(kwargs.get('checked', None)) if kwargs.get('icon', None): action.setIcon(_get_icon(kwargs['icon'])) return action class Actions(object): """Group of actions bound to a GUI. This class attaches to a GUI and implements the following features: * Add and remove actions * Keyboard shortcuts for the actions * Display all shortcuts Constructor ----------- gui : GUI instance name : str Name of this group of actions. menu : str Name of the GUI menu that will contain the actions. submenu : str Name of the GUI submenu that will contain the actions. default_shortcuts : dict Map action names to keyboard shortcuts (regular strings). default_snippets : dict Map action names to snippets (regular strings). """ def __init__( self, gui, name=None, menu=None, submenu=None, view=None, insert_menu_before=None, default_shortcuts=None, default_snippets=None): self._actions_dict = {} self._aliases = {} self._default_shortcuts = default_shortcuts or {} self._default_snippets = default_snippets or {} assert name self.name = name self.menu = menu self.submenu = submenu self.view = view self.view_submenu = None self.insert_menu_before = insert_menu_before self._view_submenus = {} self.gui = gui gui.actions.append(self) # Create the menu when creating the Actions instance. if menu: gui.get_menu(menu, insert_menu_before) def _get_menu(self, menu=None, submenu=None, view=None, view_submenu=None): """Return the QMenu depending on a combination of keyword arguments.""" # Defaults. menu = menu or self.menu submenu = submenu or self.submenu view = view or self.view view_submenu = view_submenu or self.view_submenu # If the action is a view action, it should be added to the view's menu in the dock widget. if view: if view_submenu and view_submenu not in self._view_submenus: self._view_submenus[view_submenu] = view.dock._menu.addMenu(view_submenu) if view_submenu: return self._view_submenus[view_submenu] else: return view.dock._menu # Create the submenu if there is one. if submenu: # Create the submenu. self.gui.get_submenu(menu, submenu) # Make sure the action gets added to the submenu. menu = submenu if menu: return self.gui.get_menu(menu) def add(self, callback=None, name=None, shortcut=None, alias=None, prompt=False, n_args=None, docstring=None, menu=None, submenu=None, view=None, view_submenu=None, verbose=True, checkable=False, checked=False, set_busy=False, prompt_default=None, show_shortcut=True, icon=None, toolbar=False): """Add an action with a keyboard shortcut. Parameters ---------- callback : function Take no argument if checkable is False, or a boolean (checked) if it is True name : str Action name, the callback's name by default. shortcut : str The keyboard shortcut for this action. alias : str Snippet, the name by default. prompt : boolean Whether this action should display a dialog with an input box where the user can write arguments to the callback function. n_args : int If prompt is True, specify the number of expected arguments. set_busy : boolean Whether to use a busy cursor while performing the action. prompt_default : str The default text in the input text box, if prompt is True. docstring : str The action docstring, to be displayed in the status bar when hovering over the action item in the menu. By default, the function's docstring. menu : str The name of the menu where the action should be added. It is automatically created if it doesn't exist. submenu : str The name of the submenu where the action should be added. It is automatically created if it doesn't exist. view : QWidget A view that belongs to the GUI, if the actions are to be added to the view's menu bar. view_submenu : str The name of a submenu in the view menu. checkable : boolean Whether the action is checkable (toggle on/off). checked : boolean Whether the checkable action is initially checked or not. show_shortcut : boolean Whether to show the shortcut in the Help action that displays all GUI shortcuts. icon : str Hexadecimal code of the font-awesome icon. toolbar : boolean Whether to add the action to the toolbar. """ param_names = sorted(inspect.signature(Actions.add).parameters) l = locals() kwargs = {param_name: l[param_name] for param_name in param_names if param_name != 'self'} if callback is None: # Allow to use either add(func) or @add or @add(...). kwargs.pop('callback', None) return partial(self.add, **kwargs) assert callback # Get the name from the callback function if needed. name = name or callback.__name__ alias = alias or self._default_snippets.get(name, _alias(name)).split(' ')[0] name = name.replace('&', '') shortcut = shortcut or self._default_shortcuts.get(name, None) # Skip existing action. if name in self._actions_dict: return # Set the status tip from the function's docstring. docstring = docstring or callback.__doc__ or name docstring = re.sub(r'[ \t\r\f\v]{2,}', ' ', docstring.strip()) # Create and register the action. kwargs.update(name=name, alias=alias, shortcut=shortcut, docstring=docstring) action = _create_qaction(self.gui, **kwargs) action_obj = Bunch(qaction=action, **kwargs) if verbose and not name.startswith('_'): logger.log(5, "Add action `%s` (%s).", name, _get_shortcut_string(action.shortcut())) self.gui.addAction(action) # Do not show private actions in the menu. if not name.startswith('_'): # Find the menu in which the action should be added. qmenu = self._get_menu( menu=menu, submenu=submenu, view=view, view_submenu=view_submenu) if qmenu: qmenu.addAction(action) # Add the action to the toolbar. if toolbar: self.gui._toolbar.show() self.gui._toolbar.addAction(action) self._actions_dict[name] = action_obj # Register the alias -> name mapping. self._aliases[alias] = name # Set the callback method. if callback: setattr(self, name.lower().replace(' ', '_').replace(':', ''), callback) def separator(self, **kwargs): """Add a separator. Parameters ---------- menu : str The name of the menu where the separator should be added. It is automatically created if it doesn't exist. submenu : str The name of the submenu where the separator should be added. It is automatically created if it doesn't exist. view : QWidget A view that belongs to the GUI, if the separator is to be added to the view's menu bar. view_submenu : str The name of a submenu in the view menu. """ self._get_menu(**kwargs).addSeparator() def disable(self, name=None): """Disable all actions, or only one if a name is passed.""" if name is None: for name in self._actions_dict: self.disable(name) return self._actions_dict[name].qaction.setEnabled(False) def enable(self, name=None): """Enable all actions, or only one if a name is passed..""" if name is None: for name in self._actions_dict: self.enable(name) return self._actions_dict[name].qaction.setEnabled(True) def get(self, name): """Get a QAction instance from its name.""" return self._actions_dict[name].qaction if name in self._actions_dict else None def run(self, name, *args): """Run an action as specified by its name.""" assert isinstance(name, str) # Resolve the alias if it is an alias. name = self._aliases.get(name, name) # Get the action. action = self._actions_dict.get(name, None) if not action: raise ValueError("Action `{}` doesn't exist.".format(name)) if not name.startswith('_'): logger.debug("Execute action `%s`.", name) try: return action.callback(*args) except TypeError as e: logger.warning("Invalid action arguments: " + str(e)) return def remove(self, name): """Remove an action.""" self.gui.removeAction(self._actions_dict[name].qaction) del self._actions_dict[name] delattr(self, name) def remove_all(self): """Remove all actions.""" names = sorted(self._actions_dict.keys()) for name in names: self.remove(name) @property def shortcuts(self): """A dictionary mapping action names to keyboard shortcuts.""" out = {} for name in sorted(self._actions_dict): action = self._actions_dict[name] if not action.show_shortcut: continue # Discard actions without shortcut and without an alias. if not action.shortcut and not action.alias: continue # Only show alias for actions with no shortcut. alias_str = ' (:%s)' % action.alias if action.alias != name else '' shortcut = action.shortcut or '-' shortcut = shortcut if isinstance(action.shortcut, str) else ', '.join(shortcut) out[name] = '%s%s' % (shortcut, alias_str) return out def show_shortcuts(self): """Display all shortcuts in the console.""" show_shortcuts_snippets(self) def __contains__(self, name): """Whether the Actions group contains a specified action.""" return name in self._actions_dict def __repr__(self): return '<Actions {}>'.format(sorted(self._actions_dict)) # ----------------------------------------------------------------------------- # Snippets # ----------------------------------------------------------------------------- class Snippets(object): """Provide keyboard snippets to quickly execute actions from a GUI. This class attaches to a GUI and an `Actions` instance. To every command is associated a snippet with the same name, or with an alias as indicated in the action. The arguments of the action's callback functions can be provided in the snippet's command with a simple syntax. For example, the following command: ``` :my_action string 3-6 ``` corresponds to: ```python my_action('string', (3, 4, 5, 6)) ``` The snippet mode is activated with the `:` keyboard shortcut. A snippet command is activated with `Enter`, and one can leave the snippet mode with `Escape`. When the snippet mode is enabled (with `:`), this object adds a hidden Qt action for every keystroke. These actions are removed when the snippet mode is disabled. Constructor ----------- gui : GUI instance """ # HACK: Unicode characters do not seem to work on Python 2 cursor = '\u200A\u258C' # Allowed characters in snippet mode. # A Qt shortcut will be created for every character. _snippet_chars = r"abcdefghijklmnopqrstuvwxyz0123456789 ,.;?!_-+~=*/\(){}[]<>&|" def __init__(self, gui): self.gui = gui self._status_message = gui.status_message self.actions = Actions(gui, name='Snippets', menu='&File') # Register snippet mode shortcut. @self.actions.add(shortcut=':') def enable_snippet_mode(): """Enable the snippet mode (type action alias in the status bar).""" self.mode_on() self._create_snippet_actions() self.mode_off() @property def command(self): """This is used to write a snippet message in the status bar. A cursor is appended at the end.""" msg = self.gui.status_message n = len(msg) n_cur = len(self.cursor) return msg[:n - n_cur] @command.setter def command(self, value): value += self.cursor self.gui.unlock_status() self.gui.status_message = value self.gui.lock_status() def _backspace(self): """Erase the last character in the snippet command.""" if self.command == ':': return logger.log(5, "Snippet keystroke `Backspace`.") self.command = self.command[:-1] def _enter(self): """Disable the snippet mode and execute the command.""" command = self.command logger.log(5, "Snippet keystroke `Enter`.") # NOTE: we need to set back the actions (mode_off) before running # the command. self.mode_off() self.run(command) def _create_snippet_actions(self): """Add mock Qt actions for snippet keystrokes. Used to enable snippet mode. """ # One action per allowed character. for i, char in enumerate(self._snippet_chars): def _make_func(char): def callback(): logger.log(5, "Snippet keystroke `%s`.", char) self.command += char return callback # Lowercase letters. self.actions.add( name='_snippet_{}'.format(i), shortcut=char, callback=_make_func(char)) # Uppercase letters. if char in self._snippet_chars[:26]: self.actions.add( name='_snippet_{}_upper'.format(i), shortcut='shift+' + char, callback=_make_func(char.upper())) self.actions.add( name='_snippet_backspace', shortcut='backspace', callback=self._backspace) self.actions.add( name='_snippet_activate', shortcut=('enter', 'return'), callback=self._enter) self.actions.add( name='_snippet_disable', shortcut='escape', callback=self.mode_off) def run(self, snippet): """Execute a snippet command. May be overridden. """ assert snippet[0] == ':' snippet = snippet[1:] snippet_args = _parse_snippet(snippet) name = snippet_args[0] logger.debug("Processing snippet `%s`.", snippet) try: # Try to run the snippet on all attached Actions instances. for actions in self.gui.actions: try: actions.run(name, *snippet_args[1:]) return except ValueError: # This Actions instance doesn't contain the requested # snippet, trying the next attached Actions instance. pass logger.warning("Couldn't find action `%s`.", name) except Exception as e: logger.warning("Error when executing snippet: \"%s\".", str(e)) logger.debug(''.join(traceback.format_exception(*sys.exc_info()))) def is_mode_on(self): """Whether the snippet mode is enabled.""" return self.command.startswith(':') def mode_on(self): """Enable the snippet mode.""" logger.debug("Snippet mode enabled, press `escape` to leave this mode.") # Save the current status message. self._status_message = self.gui.status_message self.gui.lock_status() # Silent all actions except the Snippets actions. for actions in self.gui.actions: if actions != self.actions: actions.disable() self.actions.enable() self.command = ':' def mode_off(self): """Disable the snippet mode.""" self.gui.unlock_status() # Reset the GUI status message that was set before the mode was # activated. self.gui.status_message = self._status_message # Re-enable all actions except the Snippets actions. self.actions.disable() for actions in self.gui.actions: if actions != self.actions: actions.enable() # The `:` shortcut should always be enabled. self.actions.enable('enable_snippet_mode')
[((461, 488), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (478, 488), False, 'import logging\n'), ((1769, 1811), 're.search', 're.search', (['"""Example: `([^`]+)`"""', 'docstring'], {}), "('Example: `([^`]+)`', docstring)\n", (1778, 1811), False, 'import re\n'), ((5918, 5933), 'functools.wraps', 'wraps', (['callback'], {}), '(callback)\n', (5923, 5933), False, 'from functools import partial, wraps\n'), ((4944, 4974), 'inspect.getfullargspec', 'inspect.getfullargspec', (['f.func'], {}), '(f.func)\n', (4966, 4974), False, 'import inspect\n'), ((5003, 5028), 'inspect.getfullargspec', 'inspect.getfullargspec', (['f'], {}), '(f)\n', (5025, 5028), False, 'import inspect\n'), ((13643, 13674), 'phylib.utils.Bunch', 'Bunch', ([], {'qaction': 'action'}), '(qaction=action, **kwargs)\n', (13648, 13674), False, 'from phylib.utils import Bunch\n'), ((12810, 12837), 'functools.partial', 'partial', (['self.add'], {}), '(self.add, **kwargs)\n', (12817, 12837), False, 'from functools import partial, wraps\n'), ((12492, 12522), 'inspect.signature', 'inspect.signature', (['Actions.add'], {}), '(Actions.add)\n', (12509, 12522), False, 'import inspect\n'), ((6856, 6870), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (6868, 6870), False, 'import sys\n'), ((23300, 23314), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (23312, 23314), False, 'import sys\n')]
AngelLiang/PP4E
PP4E-Examples-1.4/Examples/PP4E/Tools/cleanpyc.py
3a7f63b366e1e4700b4d2524884696999a87ba9d
""" delete all .pyc bytecode files in a directory tree: use the command line arg as root if given, else current working dir """ import os, sys findonly = False rootdir = os.getcwd() if len(sys.argv) == 1 else sys.argv[1] found = removed = 0 for (thisDirLevel, subsHere, filesHere) in os.walk(rootdir): for filename in filesHere: if filename.endswith('.pyc'): fullname = os.path.join(thisDirLevel, filename) print('=>', fullname) if not findonly: try: os.remove(fullname) removed += 1 except: type, inst = sys.exc_info()[:2] print('*'*4, 'Failed:', filename, type, inst) found += 1 print('Found', found, 'files, removed', removed)
[((286, 302), 'os.walk', 'os.walk', (['rootdir'], {}), '(rootdir)\n', (293, 302), False, 'import os, sys\n'), ((171, 182), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (180, 182), False, 'import os, sys\n'), ((396, 432), 'os.path.join', 'os.path.join', (['thisDirLevel', 'filename'], {}), '(thisDirLevel, filename)\n', (408, 432), False, 'import os, sys\n'), ((539, 558), 'os.remove', 'os.remove', (['fullname'], {}), '(fullname)\n', (548, 558), False, 'import os, sys\n'), ((649, 663), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (661, 663), False, 'import os, sys\n')]
louxfaure/sudoc_recouv
apps.py
da3f094a0a9554c0b3911a365d1feea6d2758fec
from django.apps import AppConfig class SudocRecouvConfig(AppConfig): default_auto_field = 'django.db.models.BigAutoField' name = 'sudoc_recouv' verbose_name = 'Analyses de recouvrement SUDOC'
[]
amancevice/terraform-aws-slack-interactive-components
src/states.py
819a9b6a408b36cd1a0100859801bc47c437fdc8
import boto3 from logger import logger class States: def __init__(self, boto3_session=None): self.boto3_session = boto3_session or boto3.Session() self.client = self.boto3_session.client('stepfunctions') def fail(self, task_token, error, cause): params = dict(taskToken=task_token, error=error, cause=cause) logger.info('SEND TASK FAILURE %s', logger.json(params)) return self.client.send_task_failure(**params) def heartbeat(self, task_token): params = dict(taskToken=task_token) logger.info('SEND TASK HEARTBEAT %s', logger.json(params)) return self.client.send_task_heartbeat(**params) def succeed(self, task_token, output): params = dict(taskToken=task_token, output=output) logger.info('SEND TASK SUCCESS %s', logger.json(params)) return self.client.send_task_success(**params)
[((146, 161), 'boto3.Session', 'boto3.Session', ([], {}), '()\n', (159, 161), False, 'import boto3\n'), ((388, 407), 'logger.logger.json', 'logger.json', (['params'], {}), '(params)\n', (399, 407), False, 'from logger import logger\n'), ((592, 611), 'logger.logger.json', 'logger.json', (['params'], {}), '(params)\n', (603, 611), False, 'from logger import logger\n'), ((817, 836), 'logger.logger.json', 'logger.json', (['params'], {}), '(params)\n', (828, 836), False, 'from logger import logger\n')]
clach04/controllerx
apps/controllerx/cx_core/type/light_controller.py
b5cd92d3371c352c50f7d5ba7dae4538d7c15dfe
from typing import Any, Dict, Optional, Type, Union from cx_const import Light, PredefinedActionsMapping from cx_core.color_helper import get_color_wheel from cx_core.controller import action from cx_core.feature_support.light import LightSupport from cx_core.integration import EventData from cx_core.integration.deconz import DeCONZIntegration from cx_core.integration.z2m import Z2MIntegration from cx_core.release_hold_controller import ReleaseHoldController from cx_core.stepper import Stepper from cx_core.stepper.circular_stepper import CircularStepper from cx_core.stepper.minmax_stepper import MinMaxStepper from cx_core.type_controller import Entity, TypeController DEFAULT_MANUAL_STEPS = 10 DEFAULT_AUTOMATIC_STEPS = 10 DEFAULT_MIN_BRIGHTNESS = 1 DEFAULT_MAX_BRIGHTNESS = 255 DEFAULT_MIN_WHITE_VALUE = 1 DEFAULT_MAX_WHITE_VALUE = 255 DEFAULT_MIN_COLOR_TEMP = 153 DEFAULT_MAX_COLOR_TEMP = 500 DEFAULT_TRANSITION = 300 DEFAULT_ADD_TRANSITION = True DEFAULT_TRANSITION_TURN_TOGGLE = False ColorMode = str # Once the minimum supported version of Python is 3.8, # we can declare the ColorMode as a Literal # ColorMode = Literal["auto", "xy_color", "color_temp"] class LightEntity(Entity): color_mode: ColorMode def __init__(self, name: str, color_mode: ColorMode = "auto") -> None: super().__init__(name) self.color_mode = color_mode class LightController(TypeController[LightEntity], ReleaseHoldController): """ This is the main class that controls the lights for different devices. Type of actions: - On/Off/Toggle - Brightness click and hold - Color temperature click and hold - xy color click and hold If a light supports xy_color and color_temperature, then xy_color will be the default functionality. Parameters taken: - controller (required): Inherited from Controller - light (required): This is either the light entity name or a dictionary as {name: string, color_mode: auto | xy_color | color_temp} - delay (optional): Inherited from ReleaseHoldController - manual_steps (optional): Number of steps to go from min to max when clicking. - automatic_steps (optional): Number of steps to go from min to max when smoothing. """ ATTRIBUTE_BRIGHTNESS = "brightness" ATTRIBUTE_WHITE_VALUE = "white_value" # With the following attribute, it will select color_temp or xy_color, depending on the light. ATTRIBUTE_COLOR = "color" ATTRIBUTE_COLOR_TEMP = "color_temp" ATTRIBUTE_XY_COLOR = "xy_color" index_color = 0 value_attribute = None # These are intermediate variables to store the checked value smooth_power_on_check: bool remove_transition_check: bool domains = ["light"] entity_arg = "light" async def init(self) -> None: manual_steps = self.args.get("manual_steps", DEFAULT_MANUAL_STEPS) automatic_steps = self.args.get("automatic_steps", DEFAULT_AUTOMATIC_STEPS) self.min_brightness = self.args.get("min_brightness", DEFAULT_MIN_BRIGHTNESS) self.max_brightness = self.args.get("max_brightness", DEFAULT_MAX_BRIGHTNESS) self.min_white_value = self.args.get("min_white_value", DEFAULT_MIN_WHITE_VALUE) self.max_white_value = self.args.get("max_white_value", DEFAULT_MAX_WHITE_VALUE) self.min_color_temp = self.args.get("min_color_temp", DEFAULT_MIN_COLOR_TEMP) self.max_color_temp = self.args.get("max_color_temp", DEFAULT_MAX_COLOR_TEMP) self.transition = self.args.get("transition", DEFAULT_TRANSITION) self.color_wheel = get_color_wheel( self.args.get("color_wheel", "default_color_wheel") ) color_stepper = CircularStepper( 0, len(self.color_wheel) - 1, len(self.color_wheel) ) self.manual_steppers: Dict[str, Stepper] = { LightController.ATTRIBUTE_BRIGHTNESS: MinMaxStepper( self.min_brightness, self.max_brightness, manual_steps ), LightController.ATTRIBUTE_WHITE_VALUE: MinMaxStepper( self.min_white_value, self.max_white_value, manual_steps ), LightController.ATTRIBUTE_COLOR_TEMP: MinMaxStepper( self.min_color_temp, self.max_color_temp, manual_steps ), LightController.ATTRIBUTE_XY_COLOR: color_stepper, } self.automatic_steppers: Dict[str, Stepper] = { LightController.ATTRIBUTE_BRIGHTNESS: MinMaxStepper( self.min_brightness, self.max_brightness, automatic_steps ), LightController.ATTRIBUTE_WHITE_VALUE: MinMaxStepper( self.min_white_value, self.max_white_value, automatic_steps ), LightController.ATTRIBUTE_COLOR_TEMP: MinMaxStepper( self.min_color_temp, self.max_color_temp, automatic_steps ), LightController.ATTRIBUTE_XY_COLOR: color_stepper, } self.smooth_power_on = self.args.get( "smooth_power_on", self.supports_smooth_power_on() ) self.add_transition = self.args.get("add_transition", DEFAULT_ADD_TRANSITION) self.add_transition_turn_toggle = self.args.get( "add_transition_turn_toggle", DEFAULT_TRANSITION_TURN_TOGGLE ) await super().init() def _get_entity_type(self) -> Type[LightEntity]: return LightEntity def get_predefined_actions_mapping(self) -> PredefinedActionsMapping: return { Light.ON: self.on, Light.OFF: self.off, Light.TOGGLE: self.toggle, Light.TOGGLE_FULL_BRIGHTNESS: ( self.toggle_full, (LightController.ATTRIBUTE_BRIGHTNESS,), ), Light.TOGGLE_FULL_WHITE_VALUE: ( self.toggle_full, (LightController.ATTRIBUTE_WHITE_VALUE,), ), Light.TOGGLE_FULL_COLOR_TEMP: ( self.toggle_full, (LightController.ATTRIBUTE_COLOR_TEMP,), ), Light.TOGGLE_MIN_BRIGHTNESS: ( self.toggle_min, (LightController.ATTRIBUTE_BRIGHTNESS,), ), Light.TOGGLE_MIN_WHITE_VALUE: ( self.toggle_min, (LightController.ATTRIBUTE_WHITE_VALUE,), ), Light.TOGGLE_MIN_COLOR_TEMP: ( self.toggle_min, (LightController.ATTRIBUTE_COLOR_TEMP,), ), Light.RELEASE: self.release, Light.ON_FULL_BRIGHTNESS: ( self.on_full, (LightController.ATTRIBUTE_BRIGHTNESS,), ), Light.ON_FULL_WHITE_VALUE: ( self.on_full, (LightController.ATTRIBUTE_WHITE_VALUE,), ), Light.ON_FULL_COLOR_TEMP: ( self.on_full, (LightController.ATTRIBUTE_COLOR_TEMP,), ), Light.ON_MIN_BRIGHTNESS: ( self.on_min, (LightController.ATTRIBUTE_BRIGHTNESS,), ), Light.ON_MIN_WHITE_VALUE: ( self.on_min, (LightController.ATTRIBUTE_WHITE_VALUE,), ), Light.ON_MIN_COLOR_TEMP: ( self.on_min, (LightController.ATTRIBUTE_COLOR_TEMP,), ), Light.SET_HALF_BRIGHTNESS: ( self.set_value, ( LightController.ATTRIBUTE_BRIGHTNESS, 0.5, ), ), Light.SET_HALF_WHITE_VALUE: ( self.set_value, ( LightController.ATTRIBUTE_WHITE_VALUE, 0.5, ), ), Light.SET_HALF_COLOR_TEMP: ( self.set_value, ( LightController.ATTRIBUTE_COLOR_TEMP, 0.5, ), ), Light.SYNC: self.sync, Light.CLICK_BRIGHTNESS_UP: ( self.click, ( LightController.ATTRIBUTE_BRIGHTNESS, Stepper.UP, ), ), Light.CLICK_BRIGHTNESS_DOWN: ( self.click, ( LightController.ATTRIBUTE_BRIGHTNESS, Stepper.DOWN, ), ), Light.CLICK_WHITE_VALUE_UP: ( self.click, ( LightController.ATTRIBUTE_WHITE_VALUE, Stepper.UP, ), ), Light.CLICK_WHITE_VALUE_DOWN: ( self.click, ( LightController.ATTRIBUTE_WHITE_VALUE, Stepper.DOWN, ), ), Light.CLICK_COLOR_UP: ( self.click, ( LightController.ATTRIBUTE_COLOR, Stepper.UP, ), ), Light.CLICK_COLOR_DOWN: ( self.click, ( LightController.ATTRIBUTE_COLOR, Stepper.DOWN, ), ), Light.CLICK_COLOR_TEMP_UP: ( self.click, ( LightController.ATTRIBUTE_COLOR_TEMP, Stepper.UP, ), ), Light.CLICK_COLOR_TEMP_DOWN: ( self.click, ( LightController.ATTRIBUTE_COLOR_TEMP, Stepper.DOWN, ), ), Light.CLICK_XY_COLOR_UP: ( self.click, ( LightController.ATTRIBUTE_XY_COLOR, Stepper.UP, ), ), Light.CLICK_XY_COLOR_DOWN: ( self.click, ( LightController.ATTRIBUTE_XY_COLOR, Stepper.DOWN, ), ), Light.HOLD_BRIGHTNESS_UP: ( self.hold, ( LightController.ATTRIBUTE_BRIGHTNESS, Stepper.UP, ), ), Light.HOLD_BRIGHTNESS_DOWN: ( self.hold, ( LightController.ATTRIBUTE_BRIGHTNESS, Stepper.DOWN, ), ), Light.HOLD_BRIGHTNESS_TOGGLE: ( self.hold, ( LightController.ATTRIBUTE_BRIGHTNESS, Stepper.TOGGLE, ), ), Light.HOLD_WHITE_VALUE_UP: ( self.hold, ( LightController.ATTRIBUTE_WHITE_VALUE, Stepper.UP, ), ), Light.HOLD_WHITE_VALUE_DOWN: ( self.hold, ( LightController.ATTRIBUTE_WHITE_VALUE, Stepper.DOWN, ), ), Light.HOLD_WHITE_VALUE_TOGGLE: ( self.hold, ( LightController.ATTRIBUTE_WHITE_VALUE, Stepper.TOGGLE, ), ), Light.HOLD_COLOR_UP: ( self.hold, ( LightController.ATTRIBUTE_COLOR, Stepper.UP, ), ), Light.HOLD_COLOR_DOWN: ( self.hold, ( LightController.ATTRIBUTE_COLOR, Stepper.DOWN, ), ), Light.HOLD_COLOR_TOGGLE: ( self.hold, ( LightController.ATTRIBUTE_COLOR, Stepper.TOGGLE, ), ), Light.HOLD_COLOR_TEMP_UP: ( self.hold, ( LightController.ATTRIBUTE_COLOR_TEMP, Stepper.UP, ), ), Light.HOLD_COLOR_TEMP_DOWN: ( self.hold, ( LightController.ATTRIBUTE_COLOR_TEMP, Stepper.DOWN, ), ), Light.HOLD_COLOR_TEMP_TOGGLE: ( self.hold, ( LightController.ATTRIBUTE_COLOR_TEMP, Stepper.TOGGLE, ), ), Light.HOLD_XY_COLOR_UP: ( self.hold, ( LightController.ATTRIBUTE_XY_COLOR, Stepper.UP, ), ), Light.HOLD_XY_COLOR_DOWN: ( self.hold, ( LightController.ATTRIBUTE_XY_COLOR, Stepper.DOWN, ), ), Light.HOLD_XY_COLOR_TOGGLE: ( self.hold, ( LightController.ATTRIBUTE_XY_COLOR, Stepper.TOGGLE, ), ), Light.XYCOLOR_FROM_CONTROLLER: self.xycolor_from_controller, Light.COLORTEMP_FROM_CONTROLLER: self.colortemp_from_controller, } async def check_remove_transition(self, on_from_user: bool) -> bool: return ( not self.add_transition or (on_from_user and not self.add_transition_turn_toggle) or await self.feature_support.not_supported(LightSupport.TRANSITION) ) async def call_light_service(self, service: str, **attributes) -> None: if "transition" not in attributes: attributes["transition"] = self.transition / 1000 if self.remove_transition_check: del attributes["transition"] await self.call_service(service, entity_id=self.entity.name, **attributes) async def _on(self, **attributes) -> None: await self.call_light_service("light/turn_on", **attributes) @action async def on(self, **attributes) -> None: await self._on(**attributes) async def _off(self, **attributes) -> None: await self.call_light_service("light/turn_off", **attributes) @action async def off(self, **attributes) -> None: await self._off(**attributes) async def _toggle(self, **attributes) -> None: await self.call_light_service("light/toggle", **attributes) @action async def toggle(self, **attributes) -> None: await self._toggle(**attributes) async def _set_value(self, attribute: str, fraction: float) -> None: fraction = max(0, min(fraction, 1)) stepper = self.automatic_steppers[attribute] if isinstance(stepper, MinMaxStepper): min_ = stepper.minmax.min max_ = stepper.minmax.max value = (max_ - min_) * fraction + min_ await self._on(**{attribute: value}) @action async def set_value(self, attribute: str, fraction: float) -> None: await self._set_value(attribute, fraction) @action async def toggle_full(self, attribute: str) -> None: stepper = self.automatic_steppers[attribute] if isinstance(stepper, MinMaxStepper): await self._toggle(**{attribute: stepper.minmax.max}) @action async def toggle_min(self, attribute: str) -> None: stepper = self.automatic_steppers[attribute] if isinstance(stepper, MinMaxStepper): await self._toggle(**{attribute: stepper.minmax.min}) async def _on_full(self, attribute: str) -> None: await self._set_value(attribute, 1) @action async def on_full(self, attribute: str) -> None: await self._on_full(attribute) async def _on_min(self, attribute: str) -> None: await self._set_value(attribute, 0) @action async def on_min(self, attribute: str) -> None: await self._on_min(attribute) @action async def sync(self) -> None: attributes: Dict[Any, Any] = {} try: color_attribute = await self.get_attribute(LightController.ATTRIBUTE_COLOR) if color_attribute == LightController.ATTRIBUTE_COLOR_TEMP: attributes[color_attribute] = 370 # 2700K light else: attributes[color_attribute] = (0.323, 0.329) # white colour except ValueError: self.log( "⚠️ `sync` action will only change brightness", level="WARNING", ascii_encode=False, ) await self._on(**attributes, brightness=self.max_brightness) @action async def xycolor_from_controller(self, extra: Optional[EventData]) -> None: if extra is None: self.log("No event data present", level="WARNING") return if isinstance(self.integration, Z2MIntegration): if "action_color" not in extra: self.log( "`action_color` is not present in the MQTT payload", level="WARNING" ) return xy_color = extra["action_color"] await self._on(xy_color=(xy_color["x"], xy_color["y"])) elif isinstance(self.integration, DeCONZIntegration): if "xy" not in extra: self.log("`xy` is not present in the deCONZ event", level="WARNING") return await self._on(xy_color=extra["xy"]) @action async def colortemp_from_controller(self, extra: Optional[EventData]) -> None: if extra is None: self.log("No event data present", level="WARNING") return if isinstance(self.integration, Z2MIntegration): if "action_color_temperature" not in extra: self.log( "`action_color_temperature` is not present in the MQTT payload", level="WARNING", ) return await self._on(color_temp=extra["action_color_temperature"]) async def get_attribute(self, attribute: str) -> str: if attribute == LightController.ATTRIBUTE_COLOR: if self.entity.color_mode == "auto": if await self.feature_support.is_supported(LightSupport.COLOR): return LightController.ATTRIBUTE_XY_COLOR elif await self.feature_support.is_supported(LightSupport.COLOR_TEMP): return LightController.ATTRIBUTE_COLOR_TEMP else: raise ValueError( "This light does not support xy_color or color_temp" ) else: return self.entity.color_mode else: return attribute async def get_value_attribute(self, attribute: str) -> Union[float, int]: if self.smooth_power_on_check: return 0 if attribute == LightController.ATTRIBUTE_XY_COLOR: return 0 elif ( attribute == LightController.ATTRIBUTE_BRIGHTNESS or attribute == LightController.ATTRIBUTE_WHITE_VALUE or attribute == LightController.ATTRIBUTE_COLOR_TEMP ): value = await self.get_entity_state(self.entity.name, attribute) if value is None: raise ValueError( f"Value for `{attribute}` attribute could not be retrieved " f"from `{self.entity.name}`. " "Check the FAQ to know more about this error: " "https://xaviml.github.io/controllerx/faq" ) else: try: return float(value) except ValueError: raise ValueError( f"Attribute `{attribute}` with `{value}` as a value " "could not be converted to float" ) else: raise ValueError(f"Attribute `{attribute}` not expected") def check_smooth_power_on( self, attribute: str, direction: str, light_state: str ) -> bool: return ( direction != Stepper.DOWN and attribute == self.ATTRIBUTE_BRIGHTNESS and self.smooth_power_on and light_state == "off" ) async def before_action(self, action: str, *args, **kwargs) -> bool: to_return = True if action in ("click", "hold"): attribute, direction = args light_state: str = await self.get_entity_state(self.entity.name) self.smooth_power_on_check = self.check_smooth_power_on( attribute, direction, light_state ) self.remove_transition_check = await self.check_remove_transition( on_from_user=False ) to_return = (light_state == "on") or self.smooth_power_on_check else: self.remove_transition_check = await self.check_remove_transition( on_from_user=True ) self.smooth_power_on_check = False return await super().before_action(action, *args, **kwargs) and to_return @action async def click(self, attribute: str, direction: str) -> None: attribute = await self.get_attribute(attribute) self.value_attribute = await self.get_value_attribute(attribute) await self.change_light_state( self.value_attribute, attribute, direction, self.manual_steppers[attribute], "click", ) @action async def hold(self, attribute: str, direction: str) -> None: # type: ignore attribute = await self.get_attribute(attribute) self.value_attribute = await self.get_value_attribute(attribute) self.log( f"Attribute value before running the hold action: {self.value_attribute}", level="DEBUG", ) if direction == Stepper.TOGGLE: self.log( f"Previous direction: {self.automatic_steppers[attribute].previous_direction}", level="DEBUG", ) direction = self.automatic_steppers[attribute].get_direction( self.value_attribute, direction ) self.log(f"Going direction: {direction}", level="DEBUG") await super().hold(attribute, direction) async def hold_loop(self, attribute: str, direction: str) -> bool: # type: ignore if self.value_attribute is None: return True return await self.change_light_state( self.value_attribute, attribute, direction, self.automatic_steppers[attribute], "hold", ) async def change_light_state( self, old: float, attribute: str, direction: str, stepper: Stepper, action_type: str, ) -> bool: """ This functions changes the state of the light depending on the previous value and attribute. It returns True when no more changes will need to be done. Otherwise, it returns False. """ attributes: Dict[str, Any] if attribute == LightController.ATTRIBUTE_XY_COLOR: index_color, _ = stepper.step(self.index_color, direction) self.index_color = int(index_color) xy_color = self.color_wheel[self.index_color] attributes = {attribute: xy_color} if action_type == "hold": attributes["transition"] = self.delay / 1000 await self._on(**attributes) # In case of xy_color mode it never finishes the loop, the hold loop # will only stop if the hold action is called when releasing the button. # I haven't experimented any problems with it, but a future implementation # would be to force the loop to stop after 4 or 5 loops as a safety measure. return False if self.smooth_power_on_check: await self._on_min(attribute) # # After smooth power on, the light should not brighten up. return True new_state_attribute, exceeded = stepper.step(old, direction) new_state_attribute = round(new_state_attribute, 3) attributes = {attribute: new_state_attribute} if action_type == "hold": attributes["transition"] = self.delay / 1000 await self._on(**attributes) self.value_attribute = new_state_attribute return exceeded def supports_smooth_power_on(self) -> bool: """ This function can be overrided for each device to indicate the default behaviour of the controller when the associated light is off and an event for incrementing brightness is received. Returns True if the associated light should be turned on with minimum brightness if an event for incrementing brightness is received, while the lamp is off. The behaviour can be overridden by the user with the 'smooth_power_on' option in app configuration. """ return False
[((3924, 3993), 'cx_core.stepper.minmax_stepper.MinMaxStepper', 'MinMaxStepper', (['self.min_brightness', 'self.max_brightness', 'manual_steps'], {}), '(self.min_brightness, self.max_brightness, manual_steps)\n', (3937, 3993), False, 'from cx_core.stepper.minmax_stepper import MinMaxStepper\n'), ((4076, 4147), 'cx_core.stepper.minmax_stepper.MinMaxStepper', 'MinMaxStepper', (['self.min_white_value', 'self.max_white_value', 'manual_steps'], {}), '(self.min_white_value, self.max_white_value, manual_steps)\n', (4089, 4147), False, 'from cx_core.stepper.minmax_stepper import MinMaxStepper\n'), ((4229, 4298), 'cx_core.stepper.minmax_stepper.MinMaxStepper', 'MinMaxStepper', (['self.min_color_temp', 'self.max_color_temp', 'manual_steps'], {}), '(self.min_color_temp, self.max_color_temp, manual_steps)\n', (4242, 4298), False, 'from cx_core.stepper.minmax_stepper import MinMaxStepper\n'), ((4509, 4581), 'cx_core.stepper.minmax_stepper.MinMaxStepper', 'MinMaxStepper', (['self.min_brightness', 'self.max_brightness', 'automatic_steps'], {}), '(self.min_brightness, self.max_brightness, automatic_steps)\n', (4522, 4581), False, 'from cx_core.stepper.minmax_stepper import MinMaxStepper\n'), ((4664, 4738), 'cx_core.stepper.minmax_stepper.MinMaxStepper', 'MinMaxStepper', (['self.min_white_value', 'self.max_white_value', 'automatic_steps'], {}), '(self.min_white_value, self.max_white_value, automatic_steps)\n', (4677, 4738), False, 'from cx_core.stepper.minmax_stepper import MinMaxStepper\n'), ((4820, 4892), 'cx_core.stepper.minmax_stepper.MinMaxStepper', 'MinMaxStepper', (['self.min_color_temp', 'self.max_color_temp', 'automatic_steps'], {}), '(self.min_color_temp, self.max_color_temp, automatic_steps)\n', (4833, 4892), False, 'from cx_core.stepper.minmax_stepper import MinMaxStepper\n')]
konodyuk/kts
kts/core/types.py
3af5ccbf1d2089cb41d171626fcde4b0ba5aa8a7
from typing import Union import pandas as pd from kts.core.frame import KTSFrame AnyFrame = Union[pd.DataFrame, KTSFrame]
[]
jlaura/krispy
krispy/mod_user/models.py
b1b2bf8a3e315608152c7dad15d384d0669f5e27
from app import db from flask.ext.login import UserMixin class User(UserMixin, db.Model): __tablename__ = 'oauth2users' id = db.Column(db.Integer, primary_key=True) social_id = db.Column(db.String(64), nullable=False, unique=True) nickname = db.Column(db.String(64), nullable=False) email = db.Column(db.String(64), nullable=True)
[((134, 173), 'app.db.Column', 'db.Column', (['db.Integer'], {'primary_key': '(True)'}), '(db.Integer, primary_key=True)\n', (143, 173), False, 'from app import db\n'), ((200, 213), 'app.db.String', 'db.String', (['(64)'], {}), '(64)\n', (209, 213), False, 'from app import db\n'), ((269, 282), 'app.db.String', 'db.String', (['(64)'], {}), '(64)\n', (278, 282), False, 'from app import db\n'), ((322, 335), 'app.db.String', 'db.String', (['(64)'], {}), '(64)\n', (331, 335), False, 'from app import db\n')]
flxj/Django_blog
blog_app/blog/views.py
01eb12553335115fee5faecafe8cacf2f0615135
import markdown from comments.forms import CommentForm,BookCommentForm,MovieCommentForm from django.shortcuts import render, get_object_or_404 from.models import Post,Category,Tag, Book,Movie #from django.http import HttpResponse from django.views.generic import ListView, DetailView from django.utils.text import slugify from markdown.extensions.toc import TocExtension from django.db.models import Q """ def index(request): #post_list = Post.objects.all().order_by('-created_time') post_list = Post.objects.all() return render(request, 'blog/index.html', context={'post_list': post_list}) """ class IndexView(ListView): model = Post template_name = 'blog/index.html' context_object_name = 'post_list' paginate_by = 10 def get_context_data(self, **kwargs): """ 在视图函数中将模板变量传递给模板是通过给 render 函数的 context 参数传递一个字典实现的, 例如 render(request, 'blog/index.html', context={'post_list': post_list}), 这里传递了一个 {'post_list': post_list} 字典给模板。 在类视图中,这个需要传递的模板变量字典是通过 get_context_data 获得的, 所以我们复写该方法,以便我们能够自己再插入一些我们自定义的模板变量进去。 """ # 首先获得父类生成的传递给模板的字典。 context = super().get_context_data(**kwargs) # 父类生成的字典中已有 paginator、page_obj、is_paginated 这三个模板变量, # paginator 是 Paginator 的一个实例, # page_obj 是 Page 的一个实例, # is_paginated 是一个布尔变量,用于指示是否已分页。 # 例如如果规定每页 10 个数据,而本身只有 5 个数据,其实就用不着分页,此时 is_paginated=False。 # 关于什么是 Paginator,Page 类在 Django Pagination 简单分页:http://zmrenwu.com/post/34/ 中已有详细说明。 # 由于 context 是一个字典,所以调用 get 方法从中取出某个键对应的值。 paginator = context.get('paginator') page = context.get('page_obj') is_paginated = context.get('is_paginated') # 调用自己写的 pagination_data 方法获得显示分页导航条需要的数据,见下方。 pagination_data = self.pagination_data(paginator, page, is_paginated) # 将分页导航条的模板变量更新到 context 中,注意 pagination_data 方法返回的也是一个字典。 context.update(pagination_data) # 将更新后的 context 返回,以便 ListView 使用这个字典中的模板变量去渲染模板。 # 注意此时 context 字典中已有了显示分页导航条所需的数据。 return context def pagination_data(self, paginator, page, is_paginated): if not is_paginated: # 如果没有分页,则无需显示分页导航条,不用任何分页导航条的数据,因此返回一个空的字典 return {} # 当前页左边连续的页码号,初始值为空 left = [] # 当前页右边连续的页码号,初始值为空 right = [] # 标示第 1 页页码后是否需要显示省略号 left_has_more = False # 标示最后一页页码前是否需要显示省略号 right_has_more = False # 标示是否需要显示第 1 页的页码号。 # 因为如果当前页左边的连续页码号中已经含有第 1 页的页码号,此时就无需再显示第 1 页的页码号, # 其它情况下第一页的页码是始终需要显示的。 # 初始值为 False first = False # 标示是否需要显示最后一页的页码号。 # 需要此指示变量的理由和上面相同。 last = False # 获得用户当前请求的页码号 page_number = page.number # 获得分页后的总页数 total_pages = paginator.num_pages # 获得整个分页页码列表,比如分了四页,那么就是 [1, 2, 3, 4] page_range = paginator.page_range if page_number == 1: # 如果用户请求的是第一页的数据,那么当前页左边的不需要数据,因此 left=[](已默认为空)。 # 此时只要获取当前页右边的连续页码号, # 比如分页页码列表是 [1, 2, 3, 4],那么获取的就是 right = [2, 3]。 # 注意这里只获取了当前页码后连续两个页码,你可以更改这个数字以获取更多页码。 right = page_range[page_number:page_number + 2] # 如果最右边的页码号比最后一页的页码号减去 1 还要小, # 说明最右边的页码号和最后一页的页码号之间还有其它页码,因此需要显示省略号,通过 right_has_more 来指示。 if right[-1] < total_pages - 1: right_has_more = True # 如果最右边的页码号比最后一页的页码号小,说明当前页右边的连续页码号中不包含最后一页的页码 # 所以需要显示最后一页的页码号,通过 last 来指示 if right[-1] < total_pages: last = True elif page_number == total_pages: # 如果用户请求的是最后一页的数据,那么当前页右边就不需要数据,因此 right=[](已默认为空), # 此时只要获取当前页左边的连续页码号。 # 比如分页页码列表是 [1, 2, 3, 4],那么获取的就是 left = [2, 3] # 这里只获取了当前页码后连续两个页码,你可以更改这个数字以获取更多页码。 left = page_range[(page_number - 3) if (page_number - 3) > 0 else 0:page_number - 1] # 如果最左边的页码号比第 2 页页码号还大, # 说明最左边的页码号和第 1 页的页码号之间还有其它页码,因此需要显示省略号,通过 left_has_more 来指示。 if left[0] > 2: left_has_more = True # 如果最左边的页码号比第 1 页的页码号大,说明当前页左边的连续页码号中不包含第一页的页码, # 所以需要显示第一页的页码号,通过 first 来指示 if left[0] > 1: first = True else: # 用户请求的既不是最后一页,也不是第 1 页,则需要获取当前页左右两边的连续页码号, # 这里只获取了当前页码前后连续两个页码,你可以更改这个数字以获取更多页码。 left = page_range[(page_number - 3) if (page_number - 3) > 0 else 0:page_number - 1] right = page_range[page_number:page_number + 2] # 是否需要显示最后一页和最后一页前的省略号 if right[-1] < total_pages - 1: right_has_more = True if right[-1] < total_pages: last = True # 是否需要显示第 1 页和第 1 页后的省略号 if left[0] > 2: left_has_more = True if left[0] > 1: first = True data = { 'left': left, 'right': right, 'left_has_more': left_has_more, 'right_has_more': right_has_more, 'first': first, 'last': last, } return data #显示全文 """ def detail(request, pk): post = get_object_or_404(Post, pk=pk) # 阅读量 +1 post.increase_views() post.body = markdown.markdown(post.body, extensions=[ 'markdown.extensions.extra', 'markdown.extensions.codehilite', 'markdown.extensions.toc', 'markdown.extensions.tables', ]) form = CommentForm() # 获取这篇 post 下的全部评论 comment_list = post.comment_set.all() # 将文章、表单、以及文章下的评论列表作为模板变量传给 detail.html 模板,以便渲染相应数据。 context = {'post': post, 'form': form, 'comment_list': comment_list } return render(request, 'blog/detail.html', context=context) """ class PostDetailView(DetailView): model = Post template_name = 'blog/detail.html' context_object_name = 'post' def get(self, request, *args, **kwargs): # 覆写 get 方法的目的是因为每当文章被访问一次,就得将文章阅读量 +1 # get 方法返回的是一个 HttpResponse 实例 # 之所以需要先调用父类的 get 方法,是因为只有当 get 方法被调用后, # 才有 self.object 属性,其值为 Post 模型实例,即被访问的文章 post response = super(PostDetailView, self).get(request, *args, **kwargs) # 将文章阅读量 +1 # 注意 self.object 的值就是被访问的文章 post self.object.increase_views() # 视图必须返回一个 HttpResponse 对象 return response def get_object(self, queryset=None): # 覆写 get_object 方法的目的是因为需要对 post 的 body 值进行渲染 post = super(PostDetailView, self).get_object(queryset=None) #此处先将markdown禁掉,因为显然经过markdown渲染的文本,再经过MathJax渲染就不能看了 #但是不经markdown渲染,代码段又不能正常显示,淦 #所以以后写带公式的博文,公式格式参考MathJax附带的样例,防止自己写的经过markdown渲染后抽风 md = markdown.Markdown(extensions=[ 'markdown.extensions.extra', 'markdown.extensions.codehilite', 'markdown.extensions.toc', TocExtension(slugify=slugify), ]) post.body = md.convert(post.body) post.toc = md.toc return post def get_context_data(self, **kwargs): # 覆写 get_context_data 的目的是因为除了将 post 传递给模板外(DetailView 已经帮我们完成), # 还要把评论表单、post 下的评论列表传递给模板。 context = super(PostDetailView, self).get_context_data(**kwargs) form = CommentForm() comment_list = self.object.comment_set.all() context.update({ 'form': form, 'comment_list': comment_list }) return context #查看归档 """ def archives(request, year, month): post_list = Post.objects.filter(created_time__year=year, created_time__month=month ).order_by('-created_time') return render(request, 'blog/index.html', context={'post_list': post_list}) """ class ArchivesView(ListView): model = Post template_name = 'blog/index.html' context_object_name = 'post_list' def get_queryset(self): year = self.kwargs.get('year') month = self.kwargs.get('month') return super(ArchivesView, self).get_queryset().filter(created_time__year=year, created_time__month=month ) #查看分类文章 """ def category(request, pk): cate = get_object_or_404(Category, pk=pk) post_list = Post.objects.filter(category=cate).order_by('-created_time') return render(request, 'blog/index.html', context={'post_list': post_list}) """ class CategoryView(ListView): model = Post template_name = 'blog/index.html' context_object_name = 'post_list' def get_queryset(self): cate = get_object_or_404(Category, pk=self.kwargs.get('pk')) return super(CategoryView, self).get_queryset().filter(category=cate) #查看标签文章 class TagView(ListView): model = Post template_name = 'blog/index.html' context_object_name = 'post_list' def get_queryset(self): tag = get_object_or_404(Tag, pk=self.kwargs.get('pk')) return super(TagView, self).get_queryset().filter(tags=tag) #文章搜索 def search(request): q = request.GET.get('q') error_msg = '' if not q: error_msg = "请输入关键词" return render(request, 'blog/index.html', {'error_msg': error_msg}) post_list = Post.objects.filter(Q(title__icontains=q) | Q(body__icontains=q)) return render(request, 'blog/index.html', {'error_msg': error_msg, 'post_list': post_list}) #查看书评 class BookView(ListView): model = Book template_name = 'blog/book.html' context_object_name = 'book_list' paginate_by = 20 def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) paginator = context.get('paginator') page = context.get('page_obj') is_paginated = context.get('is_paginated') pagination_data = self.pagination_data(paginator, page, is_paginated) context.update(pagination_data) return context def pagination_data(self, paginator, page, is_paginated): if not is_paginated: return {} left = [] right = [] left_has_more = False right_has_more = False first = False last = False page_number = page.number total_pages = paginator.num_pages page_range = paginator.page_range if page_number == 1: right = page_range[page_number:page_number + 2] if right[-1] < total_pages - 1: right_has_more = True if right[-1] < total_pages: last = True elif page_number == total_pages: left = page_range[(page_number - 3) if (page_number - 3) > 0 else 0:page_number - 1] if left[0] > 2: left_has_more = True if left[0] > 1: first = True else: left = page_range[(page_number - 3) if (page_number - 3) > 0 else 0:page_number - 1] right = page_range[page_number:page_number + 2] if right[-1] < total_pages - 1: right_has_more = True if right[-1] < total_pages: last = True if left[0] > 2: left_has_more = True if left[0] > 1: first = True data = { 'left': left, 'right': right, 'left_has_more': left_has_more, 'right_has_more': right_has_more, 'first': first, 'last': last, } return data class BookDetailView(DetailView): model = Book template_name = 'blog/bookdetail.html' context_object_name = 'book' def get_object(self, queryset=None): # 覆写 get_object 方法的目的是因为需要对 book 的 review 值进行渲染 book = super(BookDetailView, self).get_object(queryset=None) md = markdown.Markdown(extensions=[ 'markdown.extensions.extra', 'markdown.extensions.codehilite', #'markdown.extensions.toc', #TocExtension(slugify=slugify), ]) book.review = md.convert(book.review) #book.toc = md.toc return book def get_context_data(self, **kwargs): context = super(BookDetailView, self).get_context_data(**kwargs) form = BookCommentForm() comment_list = self.object.bookcomment_set.all() context.update({ 'form': form, 'comment_list': comment_list }) return context #书评归档 class BookArchivesView(ListView): model = Book template_name = 'blog/book.html' context_object_name = 'book_list' def get_queryset(self): year = self.kwargs.get('year') month = self.kwargs.get('month') return super(BookArchivesView, self).get_queryset().filter(created_time__year=year, created_time__month=month ) ###影评相关 class FilmView(ListView): model = Movie template_name = 'blog/film.html' context_object_name = 'film_list' paginate_by = 36 def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) paginator = context.get('paginator') page = context.get('page_obj') is_paginated = context.get('is_paginated') pagination_data = self.pagination_data(paginator, page, is_paginated) context.update(pagination_data) return context def pagination_data(self, paginator, page, is_paginated): if not is_paginated: return {} left = [] right = [] left_has_more = False right_has_more = False first = False last = False page_number = page.number total_pages = paginator.num_pages page_range = paginator.page_range if page_number == 1: right = page_range[page_number:page_number + 2] if right[-1] < total_pages - 1: right_has_more = True if right[-1] < total_pages: last = True elif page_number == total_pages: left = page_range[(page_number - 3) if (page_number - 3) > 0 else 0:page_number - 1] if left[0] > 2: left_has_more = True if left[0] > 1: first = True else: left = page_range[(page_number - 3) if (page_number - 3) > 0 else 0:page_number - 1] right = page_range[page_number:page_number + 2] if right[-1] < total_pages - 1: right_has_more = True if right[-1] < total_pages: last = True if left[0] > 2: left_has_more = True if left[0] > 1: first = True data = { 'left': left, 'right': right, 'left_has_more': left_has_more, 'right_has_more': right_has_more, 'first': first, 'last': last, } return data class FilmDetailView(DetailView): model = Movie template_name = 'blog/filmdetail.html' context_object_name = 'film' def get_object(self, queryset=None): film = super(FilmDetailView, self).get_object(queryset=None) md = markdown.Markdown(extensions=[ 'markdown.extensions.extra', 'markdown.extensions.codehilite', #'markdown.extensions.toc', #TocExtension(slugify=slugify), ]) film.review = md.convert(film.review) #film.toc = md.toc return film def get_context_data(self, **kwargs): context = super(FilmDetailView, self).get_context_data(**kwargs) form = MovieCommentForm() comment_list = self.object.moviecomment_set.all() context.update({ 'form': form, 'comment_list': comment_list }) return context #影评归档 class FilmArchivesView(ListView): model = Movie template_name = 'blog/film.html' context_object_name = 'film_list' def get_queryset(self): year = self.kwargs.get('year') month = self.kwargs.get('month') return super(FilmArchivesView, self).get_queryset().filter(created_time__year=year, created_time__month=month ) def about(request): return render(request, 'blog/about.html')
[((9568, 9656), 'django.shortcuts.render', 'render', (['request', '"""blog/index.html"""', "{'error_msg': error_msg, 'post_list': post_list}"], {}), "(request, 'blog/index.html', {'error_msg': error_msg, 'post_list':\n post_list})\n", (9574, 9656), False, 'from django.shortcuts import render, get_object_or_404\n'), ((16712, 16746), 'django.shortcuts.render', 'render', (['request', '"""blog/about.html"""'], {}), "(request, 'blog/about.html')\n", (16718, 16746), False, 'from django.shortcuts import render, get_object_or_404\n'), ((7461, 7474), 'comments.forms.CommentForm', 'CommentForm', ([], {}), '()\n', (7472, 7474), False, 'from comments.forms import CommentForm, BookCommentForm, MovieCommentForm\n'), ((9413, 9473), 'django.shortcuts.render', 'render', (['request', '"""blog/index.html"""', "{'error_msg': error_msg}"], {}), "(request, 'blog/index.html', {'error_msg': error_msg})\n", (9419, 9473), False, 'from django.shortcuts import render, get_object_or_404\n'), ((12089, 12186), 'markdown.Markdown', 'markdown.Markdown', ([], {'extensions': "['markdown.extensions.extra', 'markdown.extensions.codehilite']"}), "(extensions=['markdown.extensions.extra',\n 'markdown.extensions.codehilite'])\n", (12106, 12186), False, 'import markdown\n'), ((12525, 12542), 'comments.forms.BookCommentForm', 'BookCommentForm', ([], {}), '()\n', (12540, 12542), False, 'from comments.forms import CommentForm, BookCommentForm, MovieCommentForm\n'), ((15552, 15649), 'markdown.Markdown', 'markdown.Markdown', ([], {'extensions': "['markdown.extensions.extra', 'markdown.extensions.codehilite']"}), "(extensions=['markdown.extensions.extra',\n 'markdown.extensions.codehilite'])\n", (15569, 15649), False, 'import markdown\n'), ((15988, 16006), 'comments.forms.MovieCommentForm', 'MovieCommentForm', ([], {}), '()\n', (16004, 16006), False, 'from comments.forms import CommentForm, BookCommentForm, MovieCommentForm\n'), ((9511, 9532), 'django.db.models.Q', 'Q', ([], {'title__icontains': 'q'}), '(title__icontains=q)\n', (9512, 9532), False, 'from django.db.models import Q\n'), ((9535, 9555), 'django.db.models.Q', 'Q', ([], {'body__icontains': 'q'}), '(body__icontains=q)\n', (9536, 9555), False, 'from django.db.models import Q\n'), ((7090, 7119), 'markdown.extensions.toc.TocExtension', 'TocExtension', ([], {'slugify': 'slugify'}), '(slugify=slugify)\n', (7102, 7119), False, 'from markdown.extensions.toc import TocExtension\n')]
jfcoz/azure-cli
src/command_modules/azure-cli-security/azure/cli/command_modules/security/_params.py
8459ef3fd3c76d9f99defd95d4c980923891fa6d
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # pylint: disable=line-too-long from azure.cli.core.commands.parameters import resource_group_name_type from knack.arguments import CLIArgumentType from ._validators import (validate_alert_status, validate_auto_provisioning_toggle, validate_pricing_tier) name_arg_type = CLIArgumentType(options_list=('--name', '-n'), metavar='NAME', help='name of the resource to be fetched') home_region_arg_type = CLIArgumentType(options_list=('--home-region', '-hr'), metavar='HOMEREGION', help='home region that was selected for the subscription') location_arg_type = CLIArgumentType(options_list=('--location', '-l'), metavar='LOCATION', help='location of the resource') # Alerts alert_status_arg_type = CLIArgumentType(options_list=('--status'), metavar='STATUS', help='target status of the alert. possible values are "dismiss" and "activate"') # Auto Provisioning auto_provisioning_auto_provision_arg_type = CLIArgumentType(options_list=('--auto-provision'), metavar='AUTOPROVISION', help='Automatic provisioning toggle. possible values are "on" or "off"') # Contacts contact_email_arg_type = CLIArgumentType(options_list=('--email'), metavar='EMAIL', help='E-mail of the security contact') contact_phone_arg_type = CLIArgumentType(options_list=('--phone'), metavar='PHONE', help='Phone of the security contact') contact_alert_notifications_arg_type = CLIArgumentType(options_list=('--alert-notifications'), metavar='ALERTNOTIFICATIONS', help='Whether to send mail notifications to the security contacts') contact_alerts_admins_arg_type = CLIArgumentType(options_list=('--alerts-admins'), metavar='ALERTADMINS', help='Whether to send mail notifications to the subscription administrators') # Pricing pricing_tier_arg_type = CLIArgumentType(options_list=('--tier'), metavar='TIER', help='pricing tier type') # Workspace settings workspace_setting_target_workspace_arg_type = CLIArgumentType(options_list=('--target-workspace'), metavar='TARGETWORKSPACE', help='An ID of the workspace resource that will hold the security data') def load_arguments(self, _): for scope in ['alert', 'task', 'setting', 'contact', 'auto-provisioning-setting', 'discovered-security-solution', 'external-security-solution', 'jit-policy', 'location', 'pricing', 'topology', 'workspace-setting']: with self.argument_context('security {}'.format(scope)) as c: c.argument( 'resource_group_name', options_list=['--resource-group', '-g'], arg_type=resource_group_name_type) c.argument( 'resource_name', arg_type=name_arg_type) c.argument( 'location', arg_type=location_arg_type) for scope in ['alert update']: with self.argument_context('security {}'.format(scope)) as c: c.argument( 'status', validator=validate_alert_status, arg_type=alert_status_arg_type) for scope in ['auto-provisioning-setting update']: with self.argument_context('security {}'.format(scope)) as c: c.argument( 'auto_provision', validator=validate_auto_provisioning_toggle, arg_type=auto_provisioning_auto_provision_arg_type) for scope in ['contact create']: with self.argument_context('security {}'.format(scope)) as c: c.argument( 'email', arg_type=contact_email_arg_type) c.argument( 'phone', arg_type=contact_phone_arg_type) c.argument( 'alert_notifications', arg_type=contact_alert_notifications_arg_type) c.argument( 'alerts_admins', arg_type=contact_alerts_admins_arg_type) for scope in ['pricing create']: with self.argument_context('security {}'.format(scope)) as c: c.argument( 'tier', validator=validate_pricing_tier, arg_type=pricing_tier_arg_type) for scope in ['workspace-setting create']: with self.argument_context('security {}'.format(scope)) as c: c.argument( 'target_workspace', arg_type=workspace_setting_target_workspace_arg_type)
[((671, 781), 'knack.arguments.CLIArgumentType', 'CLIArgumentType', ([], {'options_list': "('--name', '-n')", 'metavar': '"""NAME"""', 'help': '"""name of the resource to be fetched"""'}), "(options_list=('--name', '-n'), metavar='NAME', help=\n 'name of the resource to be fetched')\n", (686, 781), False, 'from knack.arguments import CLIArgumentType\n'), ((800, 939), 'knack.arguments.CLIArgumentType', 'CLIArgumentType', ([], {'options_list': "('--home-region', '-hr')", 'metavar': '"""HOMEREGION"""', 'help': '"""home region that was selected for the subscription"""'}), "(options_list=('--home-region', '-hr'), metavar='HOMEREGION',\n help='home region that was selected for the subscription')\n", (815, 939), False, 'from knack.arguments import CLIArgumentType\n'), ((956, 1064), 'knack.arguments.CLIArgumentType', 'CLIArgumentType', ([], {'options_list': "('--location', '-l')", 'metavar': '"""LOCATION"""', 'help': '"""location of the resource"""'}), "(options_list=('--location', '-l'), metavar='LOCATION', help\n ='location of the resource')\n", (971, 1064), False, 'from knack.arguments import CLIArgumentType\n'), ((1094, 1238), 'knack.arguments.CLIArgumentType', 'CLIArgumentType', ([], {'options_list': '"""--status"""', 'metavar': '"""STATUS"""', 'help': '"""target status of the alert. possible values are "dismiss" and "activate\\""""'}), '(options_list=\'--status\', metavar=\'STATUS\', help=\n \'target status of the alert. possible values are "dismiss" and "activate"\')\n', (1109, 1238), False, 'from knack.arguments import CLIArgumentType\n'), ((1301, 1451), 'knack.arguments.CLIArgumentType', 'CLIArgumentType', ([], {'options_list': '"""--auto-provision"""', 'metavar': '"""AUTOPROVISION"""', 'help': '"""Automatic provisioning toggle. possible values are "on" or "off\\""""'}), '(options_list=\'--auto-provision\', metavar=\'AUTOPROVISION\',\n help=\'Automatic provisioning toggle. possible values are "on" or "off"\')\n', (1316, 1451), False, 'from knack.arguments import CLIArgumentType\n'), ((1487, 1587), 'knack.arguments.CLIArgumentType', 'CLIArgumentType', ([], {'options_list': '"""--email"""', 'metavar': '"""EMAIL"""', 'help': '"""E-mail of the security contact"""'}), "(options_list='--email', metavar='EMAIL', help=\n 'E-mail of the security contact')\n", (1502, 1587), False, 'from knack.arguments import CLIArgumentType\n'), ((1610, 1709), 'knack.arguments.CLIArgumentType', 'CLIArgumentType', ([], {'options_list': '"""--phone"""', 'metavar': '"""PHONE"""', 'help': '"""Phone of the security contact"""'}), "(options_list='--phone', metavar='PHONE', help=\n 'Phone of the security contact')\n", (1625, 1709), False, 'from knack.arguments import CLIArgumentType\n'), ((1746, 1907), 'knack.arguments.CLIArgumentType', 'CLIArgumentType', ([], {'options_list': '"""--alert-notifications"""', 'metavar': '"""ALERTNOTIFICATIONS"""', 'help': '"""Whether to send mail notifications to the security contacts"""'}), "(options_list='--alert-notifications', metavar=\n 'ALERTNOTIFICATIONS', help=\n 'Whether to send mail notifications to the security contacts')\n", (1761, 1907), False, 'from knack.arguments import CLIArgumentType\n'), ((1933, 2086), 'knack.arguments.CLIArgumentType', 'CLIArgumentType', ([], {'options_list': '"""--alerts-admins"""', 'metavar': '"""ALERTADMINS"""', 'help': '"""Whether to send mail notifications to the subscription administrators"""'}), "(options_list='--alerts-admins', metavar='ALERTADMINS', help\n ='Whether to send mail notifications to the subscription administrators')\n", (1948, 2086), False, 'from knack.arguments import CLIArgumentType\n'), ((2119, 2204), 'knack.arguments.CLIArgumentType', 'CLIArgumentType', ([], {'options_list': '"""--tier"""', 'metavar': '"""TIER"""', 'help': '"""pricing tier type"""'}), "(options_list='--tier', metavar='TIER', help='pricing tier type'\n )\n", (2134, 2204), False, 'from knack.arguments import CLIArgumentType\n'), ((2270, 2430), 'knack.arguments.CLIArgumentType', 'CLIArgumentType', ([], {'options_list': '"""--target-workspace"""', 'metavar': '"""TARGETWORKSPACE"""', 'help': '"""An ID of the workspace resource that will hold the security data"""'}), "(options_list='--target-workspace', metavar=\n 'TARGETWORKSPACE', help=\n 'An ID of the workspace resource that will hold the security data')\n", (2285, 2430), False, 'from knack.arguments import CLIArgumentType\n')]
kuyu12/pygame_fight_game
utils/path_utils.py
3bbc286b9f33c6d6d9db9bea21f9b7af15247df5
import sys IMAGES_PATH = sys.path[1] + "/Images" BACKGROUND_IMAGES_PATH = IMAGES_PATH + '/background' USER_INFO_BACKGROUND_PATH = BACKGROUND_IMAGES_PATH+"/blue_background.jpg" SPRINT_IMAGE_PATH = IMAGES_PATH + '/sprite' PROFILE_IMAGES_PATH = IMAGES_PATH + '/profile' CONFIGURATION_FILES_PATH = sys.path[1] + "/configuration_files"
[]
Alicegaz/torchok
tests/models/test_transformers.py
7b8f95df466a25b1ad8ee93bed1a3c7516440cf4
import unittest import torch from parameterized import parameterized from src.constructor import create_backbone from src.models.backbones.utils import list_models from .test_segmentation import example_backbones def inp(bsize, in_ch, w, h): return torch.ones(bsize, in_ch, w, h) class TestBackboneCorrectness(unittest.TestCase): def setUp(self) -> None: self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') @parameterized.expand(list_models(module='vision_transformer', exclude_filters='')) def test_vit_torchscript_conversion(self, backbone_name): model = create_backbone(backbone_name, img_size=self.input.shape[2]).to(self.device).eval() with torch.no_grad(): torch.jit.trace(model, self.input) torch.cuda.empty_cache() @parameterized.expand(list_models(module='coat', exclude_filters='')) def test_coat_torchscript_conversion(self, backbone_name): model = create_backbone(backbone_name, img_size=self.input.shape[2]).to(self.device).eval() with torch.no_grad(): torch.jit.trace(model, self.input) torch.cuda.empty_cache() @parameterized.expand(list_models(module='swin_transformer', exclude_filters='')) def test_swin_torchscript_conversion(self, backbone_name): model = create_backbone(backbone_name).to(self.device).eval() input = torch.rand(2, 3, *model.img_size, device=self.device) with torch.no_grad(): torch.jit.trace(model, input) torch.cuda.empty_cache()
[((257, 287), 'torch.ones', 'torch.ones', (['bsize', 'in_ch', 'w', 'h'], {}), '(bsize, in_ch, w, h)\n', (267, 287), False, 'import torch\n'), ((790, 814), 'torch.cuda.empty_cache', 'torch.cuda.empty_cache', ([], {}), '()\n', (812, 814), False, 'import torch\n'), ((481, 541), 'src.models.backbones.utils.list_models', 'list_models', ([], {'module': '"""vision_transformer"""', 'exclude_filters': '""""""'}), "(module='vision_transformer', exclude_filters='')\n", (492, 541), False, 'from src.models.backbones.utils import list_models\n'), ((1138, 1162), 'torch.cuda.empty_cache', 'torch.cuda.empty_cache', ([], {}), '()\n', (1160, 1162), False, 'import torch\n'), ((842, 888), 'src.models.backbones.utils.list_models', 'list_models', ([], {'module': '"""coat"""', 'exclude_filters': '""""""'}), "(module='coat', exclude_filters='')\n", (853, 888), False, 'from src.models.backbones.utils import list_models\n'), ((1399, 1452), 'torch.rand', 'torch.rand', (['(2)', '(3)', '*model.img_size'], {'device': 'self.device'}), '(2, 3, *model.img_size, device=self.device)\n', (1409, 1452), False, 'import torch\n'), ((1533, 1557), 'torch.cuda.empty_cache', 'torch.cuda.empty_cache', ([], {}), '()\n', (1555, 1557), False, 'import torch\n'), ((1190, 1248), 'src.models.backbones.utils.list_models', 'list_models', ([], {'module': '"""swin_transformer"""', 'exclude_filters': '""""""'}), "(module='swin_transformer', exclude_filters='')\n", (1201, 1248), False, 'from src.models.backbones.utils import list_models\n'), ((718, 733), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (731, 733), False, 'import torch\n'), ((747, 781), 'torch.jit.trace', 'torch.jit.trace', (['model', 'self.input'], {}), '(model, self.input)\n', (762, 781), False, 'import torch\n'), ((1066, 1081), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (1079, 1081), False, 'import torch\n'), ((1095, 1129), 'torch.jit.trace', 'torch.jit.trace', (['model', 'self.input'], {}), '(model, self.input)\n', (1110, 1129), False, 'import torch\n'), ((1466, 1481), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (1479, 1481), False, 'import torch\n'), ((1495, 1524), 'torch.jit.trace', 'torch.jit.trace', (['model', 'input'], {}), '(model, input)\n', (1510, 1524), False, 'import torch\n'), ((416, 441), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (439, 441), False, 'import torch\n'), ((621, 681), 'src.constructor.create_backbone', 'create_backbone', (['backbone_name'], {'img_size': 'self.input.shape[2]'}), '(backbone_name, img_size=self.input.shape[2])\n', (636, 681), False, 'from src.constructor import create_backbone\n'), ((969, 1029), 'src.constructor.create_backbone', 'create_backbone', (['backbone_name'], {'img_size': 'self.input.shape[2]'}), '(backbone_name, img_size=self.input.shape[2])\n', (984, 1029), False, 'from src.constructor import create_backbone\n'), ((1329, 1359), 'src.constructor.create_backbone', 'create_backbone', (['backbone_name'], {}), '(backbone_name)\n', (1344, 1359), False, 'from src.constructor import create_backbone\n')]
SvineruS/aiogram
aiogram/types/inline_query.py
7892edf45302fa195544430ac5db11dcbcbf7ae6
import typing from . import base from . import fields from .inline_query_result import InlineQueryResult from .location import Location from .user import User class InlineQuery(base.TelegramObject): """ This object represents an incoming inline query. When the user sends an empty query, your bot could return some default or trending results. https://core.telegram.org/bots/api#inlinequery """ id: base.String = fields.Field() from_user: User = fields.Field(alias='from', base=User) location: Location = fields.Field(base=Location) query: base.String = fields.Field() offset: base.String = fields.Field() async def answer(self, results: typing.List[InlineQueryResult], cache_time: typing.Optional[base.Integer] = None, is_personal: typing.Optional[base.Boolean] = None, next_offset: typing.Optional[base.String] = None, switch_pm_text: typing.Optional[base.String] = None, switch_pm_parameter: typing.Optional[base.String] = None): """ Use this method to send answers to an inline query. No more than 50 results per query are allowed. Source: https://core.telegram.org/bots/api#answerinlinequery :param results: A JSON-serialized array of results for the inline query :type results: :obj:`typing.List[types.InlineQueryResult]` :param cache_time: The maximum amount of time in seconds that the result of the inline query may be cached on the server. Defaults to 300. :type cache_time: :obj:`typing.Optional[base.Integer]` :param is_personal: Pass True, if results may be cached on the server side only for the user that sent the query. By default, results may be returned to any user who sends the same query :type is_personal: :obj:`typing.Optional[base.Boolean]` :param next_offset: Pass the offset that a client should send in the next query with the same text to receive more results. Pass an empty string if there are no more results or if you don‘t support pagination. Offset length can’t exceed 64 bytes. :type next_offset: :obj:`typing.Optional[base.String]` :param switch_pm_text: If passed, clients will display a button with specified text that switches the user to a private chat with the bot and sends the bot a start message with the parameter switch_pm_parameter :type switch_pm_text: :obj:`typing.Optional[base.String]` :param switch_pm_parameter: Deep-linking parameter for the /start message sent to the bot when user presses the switch button. 1-64 characters, only A-Z, a-z, 0-9, _ and - are allowed. :type switch_pm_parameter: :obj:`typing.Optional[base.String]` :return: On success, True is returned :rtype: :obj:`base.Boolean` """ return await self.bot.answer_inline_query(self.id, results=results, cache_time=cache_time, is_personal=is_personal, next_offset=next_offset, switch_pm_text=switch_pm_text, switch_pm_parameter=switch_pm_parameter)
[]
shaswat01/Disaster_Response_ETL
app/app.py
c441514fb5231d193cd4b29afad00fe0f3513562
import nltk import json import plotly import pandas as pd import plotly.graph_objects as go from nltk.stem import WordNetLemmatizer from nltk.tokenize import word_tokenize nltk.download(['punkt','wordnet']) from flask import Flask from flask import render_template, request, jsonify from plotly.graph_objs import Bar, Histogram import joblib from sqlalchemy import create_engine app = Flask(__name__) def tokenize(text): tokens = word_tokenize(text) lemmatizer = WordNetLemmatizer() clean_tokens = [] for tok in tokens: clean_tok = lemmatizer.lemmatize(tok).lower().strip() clean_tokens.append(clean_tok) return clean_tokens # load data engine = create_engine('sqlite:///data/DisasterResponse.db') df = pd.read_sql_table('messages', engine) # load model model = joblib.load("models/model.pkl") # index webpage displays cool visuals and receives user input text for model @app.route('/') @app.route('/index') def index(): # extract data needed for visuals # Viz 1 genre = df.groupby('genre').count()['id'].sort_values() # Viz 2 df['text length'] = df['message'].apply(lambda x: len(x.split())) histogram = df[df['text length'] < 100].groupby('text length').count()['id'] # Viz 3 total_category = df.drop(columns=['id','message','original','genre', 'text length']).sum().sort_values(ascending=False).head(5) # create visuals graphs = [ { 'data': [ Bar( x=genre.values, y=genre.index, orientation='h' ) ], 'layout': { 'title': 'Distribution of Message Genres', 'yaxis': { 'title': "Genre" }, 'xaxis': { 'title': "Counts" } } }, { 'data': [ Bar( x=histogram.index, y=histogram.values ) ], 'layout': { 'title': 'Distribution of Messages Length', 'yaxis': { 'title': "Total Messages" }, 'xaxis': { 'title': "Total Words" } } }, { 'data': [ Bar( x=total_category.index, y=total_category.values ) ], 'layout': { 'title': 'Total Messages per Category (Top 5)', 'yaxis': { 'title': "Total" }, 'xaxis': { 'title': "Category" } } } ] # encode plotly graphs in JSON ids = ["graph-{}".format(i) for i, _ in enumerate(graphs)] graphJSON = json.dumps(graphs, cls=plotly.utils.PlotlyJSONEncoder) # render web page with plotly graphs return render_template('master.html', ids=ids, graphJSON=graphJSON) # web page that handles user query and displays model results @app.route('/go') def go(): # save user input in query query = request.args.get('query', '') # use model to predict classification for query classification_labels = model.predict([query])[0] classification_results = dict(zip(df.columns[4:], classification_labels)) # This will render the go.html Please see that file. return render_template( 'go.html', query=query, classification_result=classification_results ) def main(): app.run() #app.run(host='0.0.0.0', port=3001, debug=True) if __name__ == '__main__': main()
[((172, 207), 'nltk.download', 'nltk.download', (["['punkt', 'wordnet']"], {}), "(['punkt', 'wordnet'])\n", (185, 207), False, 'import nltk\n'), ((388, 403), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (393, 403), False, 'from flask import Flask\n'), ((689, 740), 'sqlalchemy.create_engine', 'create_engine', (['"""sqlite:///data/DisasterResponse.db"""'], {}), "('sqlite:///data/DisasterResponse.db')\n", (702, 740), False, 'from sqlalchemy import create_engine\n'), ((746, 783), 'pandas.read_sql_table', 'pd.read_sql_table', (['"""messages"""', 'engine'], {}), "('messages', engine)\n", (763, 783), True, 'import pandas as pd\n'), ((806, 837), 'joblib.load', 'joblib.load', (['"""models/model.pkl"""'], {}), "('models/model.pkl')\n", (817, 837), False, 'import joblib\n'), ((438, 457), 'nltk.tokenize.word_tokenize', 'word_tokenize', (['text'], {}), '(text)\n', (451, 457), False, 'from nltk.tokenize import word_tokenize\n'), ((475, 494), 'nltk.stem.WordNetLemmatizer', 'WordNetLemmatizer', ([], {}), '()\n', (492, 494), False, 'from nltk.stem import WordNetLemmatizer\n'), ((2936, 2990), 'json.dumps', 'json.dumps', (['graphs'], {'cls': 'plotly.utils.PlotlyJSONEncoder'}), '(graphs, cls=plotly.utils.PlotlyJSONEncoder)\n', (2946, 2990), False, 'import json\n'), ((3048, 3108), 'flask.render_template', 'render_template', (['"""master.html"""'], {'ids': 'ids', 'graphJSON': 'graphJSON'}), "('master.html', ids=ids, graphJSON=graphJSON)\n", (3063, 3108), False, 'from flask import render_template, request, jsonify\n'), ((3244, 3273), 'flask.request.args.get', 'request.args.get', (['"""query"""', '""""""'], {}), "('query', '')\n", (3260, 3273), False, 'from flask import render_template, request, jsonify\n'), ((3530, 3620), 'flask.render_template', 'render_template', (['"""go.html"""'], {'query': 'query', 'classification_result': 'classification_results'}), "('go.html', query=query, classification_result=\n classification_results)\n", (3545, 3620), False, 'from flask import render_template, request, jsonify\n'), ((1480, 1531), 'plotly.graph_objs.Bar', 'Bar', ([], {'x': 'genre.values', 'y': 'genre.index', 'orientation': '"""h"""'}), "(x=genre.values, y=genre.index, orientation='h')\n", (1483, 1531), False, 'from plotly.graph_objs import Bar, Histogram\n'), ((1949, 1991), 'plotly.graph_objs.Bar', 'Bar', ([], {'x': 'histogram.index', 'y': 'histogram.values'}), '(x=histogram.index, y=histogram.values)\n', (1952, 1991), False, 'from plotly.graph_objs import Bar, Histogram\n'), ((2404, 2456), 'plotly.graph_objs.Bar', 'Bar', ([], {'x': 'total_category.index', 'y': 'total_category.values'}), '(x=total_category.index, y=total_category.values)\n', (2407, 2456), False, 'from plotly.graph_objs import Bar, Histogram\n')]
pazamelin/openvino
tools/mo/openvino/tools/mo/front/mxnet/mx_reshape_reverse.py
b7e8ef910d7ed8e52326d14dc6fd53b71d16ed48
# Copyright (C) 2018-2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import numpy as np from openvino.tools.mo.front.mxnet.mx_reshape_to_reshape import MXReshapeToReshape from openvino.tools.mo.ops.Reverse import Reverse from openvino.tools.mo.ops.mxreshape import MXReshape from openvino.tools.mo.front.common.partial_infer.utils import int64_array from openvino.tools.mo.front.common.replacement import FrontReplacementOp from openvino.tools.mo.front.tf.graph_utils import create_op_node_with_second_input from openvino.tools.mo.graph.graph import Graph from openvino.tools.mo.ops.reshape import Reshape from openvino.tools.mo.ops.shape import Shape from openvino.tools.mo.ops.squeeze import Squeeze from openvino.tools.mo.ops.unsqueeze import Unsqueeze class MXReshapeReverse(FrontReplacementOp): """ If reshape layer with reverse True, special values will inferred from right to left. The Replacer simulate the behavior. The replaced subgraph reverse input data and special dims, and after reshape reverse output result to backward. Resulting subgraph: reshape(reverse=True) -> reverse - reshape(reverse=False) -reverse subgraph. """ op = 'MXReshape' enabled = True def run_before(self): return [MXReshapeToReshape] def replace_sub_graph(self, graph: Graph, match: dict): mxreshape = match['op'] if not mxreshape.reverse: return shape_node = Shape(graph, dict(name=mxreshape.id + '/Shape')).create_node() forward_reverse_unsqueeze_node = create_op_node_with_second_input(graph, Unsqueeze, int64_array([0]), dict(name=str(mxreshape.id) + '/ForwardUnsqueeze')) forward_reverse_node = Reverse(graph, dict(name=mxreshape.id + '/ForwardReverse', axis=1)).create_node() forward_reverse_squeeze_node = create_op_node_with_second_input(graph, Squeeze, int64_array([0]), dict(name=str(mxreshape.id) + '/ForwardSqueeze')) reshape_node = Reshape(graph, dict(name=mxreshape.id + '/Reshape')).create_node() shape_node.in_port(0).connect(mxreshape.in_port(0).get_source()) mxreshape.in_port(0).get_connection().set_destination(reshape_node.in_port(0)) forward_reverse_unsqueeze_node.in_port(0).connect(shape_node.out_port(0)) forward_reverse_node.in_port(0).connect(forward_reverse_unsqueeze_node.out_port(0)) forward_reverse_squeeze_node.in_port(0).connect(forward_reverse_node.out_port(0)) reshape_node.in_port(1).connect(forward_reverse_squeeze_node.out_port(0)) reshape_shape_node = create_op_node_with_second_input(graph, Reshape, int64_array(np.flip(mxreshape.dim, 0)), dict(name=str(mxreshape.id) + '/ReshapeShape')) if np.sum(np.in1d([-2, -3, -4], mxreshape.dim), axis=0): reshape_shape_node = MXReshape(graph, dict(name=mxreshape.id + '/Reshape', dim=int64_array(np.flip(mxreshape.dim, 0)))).create_node() reshape_shape_node.in_port(0).connect(reshape_node.out_port(0)) backward_shape_node = Shape(graph, dict(name=mxreshape.id + '/BackwardShape')).create_node() backward_reverse_unsqueeze_node = create_op_node_with_second_input(graph, Unsqueeze, int64_array([0]), dict(name=str(mxreshape.id) + '/BackwardUnsqueeze')) backward_reverse_node = Reverse(graph, dict(name=mxreshape.id + '/BackwardReverse', axis=1)).create_node() backward_reverse_squeeze_node = create_op_node_with_second_input(graph, Squeeze, int64_array([0]), dict(name=str(mxreshape.id) + '/BackwardSqueeze')) backward_reshape_node = Reshape(graph, dict(name=mxreshape.id + '/BackwardReshape')).create_node() backward_shape_node.in_port(0).connect(reshape_shape_node.out_port(0)) backward_reverse_unsqueeze_node.in_port(0).connect(backward_shape_node.out_port(0)) backward_reverse_node.in_port(0).connect(backward_reverse_unsqueeze_node.out_port(0)) backward_reverse_squeeze_node.in_port(0).connect(backward_reverse_node.out_port(0)) backward_reshape_node.in_port(0).connect(reshape_shape_node.out_port(0)) backward_reshape_node.in_port(1).connect(backward_reverse_squeeze_node.out_port(0)) mxreshape.out_port(0).get_connection().set_source(backward_reshape_node.out_port(0))
[((1606, 1622), 'openvino.tools.mo.front.common.partial_infer.utils.int64_array', 'int64_array', (['[0]'], {}), '([0])\n', (1617, 1622), False, 'from openvino.tools.mo.front.common.partial_infer.utils import int64_array\n'), ((1952, 1968), 'openvino.tools.mo.front.common.partial_infer.utils.int64_array', 'int64_array', (['[0]'], {}), '([0])\n', (1963, 1968), False, 'from openvino.tools.mo.front.common.partial_infer.utils import int64_array\n'), ((2936, 2972), 'numpy.in1d', 'np.in1d', (['[-2, -3, -4]', 'mxreshape.dim'], {}), '([-2, -3, -4], mxreshape.dim)\n', (2943, 2972), True, 'import numpy as np\n'), ((3434, 3450), 'openvino.tools.mo.front.common.partial_infer.utils.int64_array', 'int64_array', (['[0]'], {}), '([0])\n', (3445, 3450), False, 'from openvino.tools.mo.front.common.partial_infer.utils import int64_array\n'), ((3784, 3800), 'openvino.tools.mo.front.common.partial_infer.utils.int64_array', 'int64_array', (['[0]'], {}), '([0])\n', (3795, 3800), False, 'from openvino.tools.mo.front.common.partial_infer.utils import int64_array\n'), ((2780, 2805), 'numpy.flip', 'np.flip', (['mxreshape.dim', '(0)'], {}), '(mxreshape.dim, 0)\n', (2787, 2805), True, 'import numpy as np\n'), ((3123, 3148), 'numpy.flip', 'np.flip', (['mxreshape.dim', '(0)'], {}), '(mxreshape.dim, 0)\n', (3130, 3148), True, 'import numpy as np\n')]
MattMarti/Lambda-Trajectory-Sim
Python/Simulation/Numerical_Methods/test_cubic_spline_solve.py
4155f103120bd49221776cc3b825b104f36817f2
import unittest; import numpy as np; import scipy as sp; from cubic_spline_solve import cubic_spline_solve; from cubic_spline_fun import cubic_spline_fun; class Test_cubic_spline_solve(unittest.TestCase): ''' Test_cubicsplineSolve Test case for the cubic spline solver function. This function just solves for the spline data, so that the spline can be precomputed before code is run. This improves code performance by removing the need to invert a matrix every time the spline function is called. @author: Matt Marti @date: 2019-06-16 ''' def test_nominal_01(self): '''Test the spline solve for nominal test case''' # Function handles for function and derivatives f = lambda x : sp.sin(x); df = lambda x : sp.cos(x); # x from 0 to 30 in the correct format xrange = np.linspace(0, 10, 20); xkvec = np.zeros((1, xrange.shape[0])); for i in range(0, xrange.shape[0]): xkvec[0,i] = xrange[i]; # # Generate function values dataset fkvec = f(xkvec); xinter = np.linspace(0, 10, 1000); # Generate parameters for clamped boundary conditions fslope = np.ndarray((1,2)); fslope[0,0] = sp.cos(xkvec[0,0]); fslope[0,1] = sp.cos(xkvec[0,-1]); # Compute already tested spline _, _, akvec, bkvec, ckvec, dkvec \ = cubic_spline_fun(xkvec, fkvec, xinter, fslope); splineDataTrue = np.zeros((1, xkvec.shape[1], 5)); splineDataTrue[0,:,0] = akvec.squeeze(); splineDataTrue[0,:,1] = bkvec.squeeze(); splineDataTrue[0,:,2] = ckvec.squeeze(); splineDataTrue[0,:,3] = dkvec.squeeze(); splineDataTrue[0,:,4] = xkvec.squeeze(); # Run spline solve splineDataMat = cubic_spline_solve( xkvec, fkvec, fslope ); # Test Function truth values error = splineDataMat - splineDataTrue; maxerr = np.max(np.abs(error)); self.assertLess(maxerr, 1e-12, 'Spline error too high'); # def test_multiple_01(self): '''Test the spline works for a two dimensional case''' # Definition for two dimensional function output def func(x): if type(x) is not np.ndarray: f = np.zeros((2,1)); else: f = np.zeros((2,x.shape[0])); # f[0,:] = np.sin(x); f[1,:] = -10*x**2 + 50*x + 1000; return f; # # Definition for derivative function def dfunc(x): if type(x) is not np.ndarray: df = np.zeros((2,1)); else: df = np.zeros((2,x.shape[0])); # df[0,:] = np.cos(x); df[1,:] = -20*x + 50; return df; # # Given f = lambda x : func(x); df = lambda x : dfunc(x); xkvec = np.linspace(0, 10, 20); fkvec = f(xkvec); xinter = np.linspace(0, 10, 1000); fslope = np.ndarray((2,2)); # Clambed B.C.s fslope[:,0] = df(xkvec[0]).squeeze(); fslope[:,1] = df(xkvec[-1]).squeeze(); # Preallocate truth spline data m = 2; n = xkvec.shape[0]; splineDataTrue = np.zeros((m, n, 5)); splineDataTrue[0,:,4] = xkvec; # Run true spline for first dataset _, _, akvec, bkvec, ckvec, dkvec \ = cubic_spline_fun(xkvec, fkvec[0,:], xinter, fslope[0,:]); splineDataTrue[0,:,0] = akvec.squeeze(); splineDataTrue[0,:,1] = bkvec.squeeze(); splineDataTrue[0,:,2] = ckvec.squeeze(); splineDataTrue[0,:,3] = dkvec.squeeze(); # Run true spline for second dataset _, _, akvec, bkvec, ckvec, dkvec \ = cubic_spline_fun(xkvec, fkvec[1,:], xinter, fslope[1,:]); splineDataTrue[1,:,0] = akvec.squeeze(); splineDataTrue[1,:,1] = bkvec.squeeze(); splineDataTrue[1,:,2] = ckvec.squeeze(); splineDataTrue[1,:,3] = dkvec.squeeze(); # Run new spline splineDataMat = cubic_spline_solve( xkvec, fkvec, fslope ); # Test Function truth values error = splineDataMat - splineDataTrue; maxerr = np.max(np.abs(error)); self.assertLess(maxerr, 1e-12, 'Spline error too high'); # def test_types(self): '''Test that the function raises type errors on bad input''' # Function handles for function and derivatives f = lambda x : sp.sin(x); df = lambda x : sp.cos(x); # x from 0 to 30 in the correct format xrange = np.linspace(0, 10, 20); xkvec = np.zeros((1, xrange.shape[0])); for i in range(0, xrange.shape[0]): xkvec[0,i] = xrange[i]; # # Generate function values dataset fkvec = f(xkvec); xinter = np.linspace(0, 10, 1000); # Generate parameters for clamped boundary conditions fslope = np.ndarray((1,2)); fslope[0,0] = sp.cos(xkvec[0,0]); fslope[0,1] = sp.cos(xkvec[0,-1]); # Run function without errors splineDataMat = cubic_spline_solve( xkvec, fkvec, fslope ); # Test with various inputs for xkvec self.assertRaises(TypeError, cubic_spline_solve, True, fkvec, fslope); self.assertRaises(TypeError, cubic_spline_solve, 0.1, fkvec, fslope); self.assertRaises(TypeError, cubic_spline_solve, "AA", fkvec, fslope); self.assertRaises(TypeError, cubic_spline_solve, 'A', fkvec, fslope); # Test with various inputs for xkvec self.assertRaises(TypeError, cubic_spline_solve, xkvec, True, fslope); self.assertRaises(TypeError, cubic_spline_solve, xkvec, 0.1, fslope); self.assertRaises(TypeError, cubic_spline_solve, xkvec, "AA", fslope); self.assertRaises(TypeError, cubic_spline_solve, xkvec, 'A', fslope); # Test with various inputs for fslope self.assertRaises(TypeError, cubic_spline_solve, xkvec, fkvec, True); self.assertRaises(TypeError, cubic_spline_solve, xkvec, fkvec, 0.1); self.assertRaises(TypeError, cubic_spline_solve, xkvec, fkvec, "AA"); self.assertRaises(TypeError, cubic_spline_solve, xkvec, fkvec, 'A'); # #
[((887, 909), 'numpy.linspace', 'np.linspace', (['(0)', '(10)', '(20)'], {}), '(0, 10, 20)\n', (898, 909), True, 'import numpy as np\n'), ((927, 957), 'numpy.zeros', 'np.zeros', (['(1, xrange.shape[0])'], {}), '((1, xrange.shape[0]))\n', (935, 957), True, 'import numpy as np\n'), ((1144, 1168), 'numpy.linspace', 'np.linspace', (['(0)', '(10)', '(1000)'], {}), '(0, 10, 1000)\n', (1155, 1168), True, 'import numpy as np\n'), ((1258, 1276), 'numpy.ndarray', 'np.ndarray', (['(1, 2)'], {}), '((1, 2))\n', (1268, 1276), True, 'import numpy as np\n'), ((1299, 1318), 'scipy.cos', 'sp.cos', (['xkvec[0, 0]'], {}), '(xkvec[0, 0])\n', (1305, 1318), True, 'import scipy as sp\n'), ((1341, 1361), 'scipy.cos', 'sp.cos', (['xkvec[0, -1]'], {}), '(xkvec[0, -1])\n', (1347, 1361), True, 'import scipy as sp\n'), ((1468, 1514), 'cubic_spline_fun.cubic_spline_fun', 'cubic_spline_fun', (['xkvec', 'fkvec', 'xinter', 'fslope'], {}), '(xkvec, fkvec, xinter, fslope)\n', (1484, 1514), False, 'from cubic_spline_fun import cubic_spline_fun\n'), ((1541, 1573), 'numpy.zeros', 'np.zeros', (['(1, xkvec.shape[1], 5)'], {}), '((1, xkvec.shape[1], 5))\n', (1549, 1573), True, 'import numpy as np\n'), ((1880, 1920), 'cubic_spline_solve.cubic_spline_solve', 'cubic_spline_solve', (['xkvec', 'fkvec', 'fslope'], {}), '(xkvec, fkvec, fslope)\n', (1898, 1920), False, 'from cubic_spline_solve import cubic_spline_solve\n'), ((3024, 3046), 'numpy.linspace', 'np.linspace', (['(0)', '(10)', '(20)'], {}), '(0, 10, 20)\n', (3035, 3046), True, 'import numpy as np\n'), ((3091, 3115), 'numpy.linspace', 'np.linspace', (['(0)', '(10)', '(1000)'], {}), '(0, 10, 1000)\n', (3102, 3115), True, 'import numpy as np\n'), ((3134, 3152), 'numpy.ndarray', 'np.ndarray', (['(2, 2)'], {}), '((2, 2))\n', (3144, 3152), True, 'import numpy as np\n'), ((3379, 3398), 'numpy.zeros', 'np.zeros', (['(m, n, 5)'], {}), '((m, n, 5))\n', (3387, 3398), True, 'import numpy as np\n'), ((3549, 3611), 'cubic_spline_fun.cubic_spline_fun', 'cubic_spline_fun', (['xkvec', 'fkvec[(0), :]', 'xinter', 'fslope[(0), :]'], {}), '(xkvec, fkvec[(0), :], xinter, fslope[(0), :])\n', (3565, 3611), False, 'from cubic_spline_fun import cubic_spline_fun\n'), ((3914, 3976), 'cubic_spline_fun.cubic_spline_fun', 'cubic_spline_fun', (['xkvec', 'fkvec[(1), :]', 'xinter', 'fslope[(1), :]'], {}), '(xkvec, fkvec[(1), :], xinter, fslope[(1), :])\n', (3930, 3976), False, 'from cubic_spline_fun import cubic_spline_fun\n'), ((4226, 4266), 'cubic_spline_solve.cubic_spline_solve', 'cubic_spline_solve', (['xkvec', 'fkvec', 'fslope'], {}), '(xkvec, fkvec, fslope)\n', (4244, 4266), False, 'from cubic_spline_solve import cubic_spline_solve\n'), ((4782, 4804), 'numpy.linspace', 'np.linspace', (['(0)', '(10)', '(20)'], {}), '(0, 10, 20)\n', (4793, 4804), True, 'import numpy as np\n'), ((4822, 4852), 'numpy.zeros', 'np.zeros', (['(1, xrange.shape[0])'], {}), '((1, xrange.shape[0]))\n', (4830, 4852), True, 'import numpy as np\n'), ((5039, 5063), 'numpy.linspace', 'np.linspace', (['(0)', '(10)', '(1000)'], {}), '(0, 10, 1000)\n', (5050, 5063), True, 'import numpy as np\n'), ((5153, 5171), 'numpy.ndarray', 'np.ndarray', (['(1, 2)'], {}), '((1, 2))\n', (5163, 5171), True, 'import numpy as np\n'), ((5194, 5213), 'scipy.cos', 'sp.cos', (['xkvec[0, 0]'], {}), '(xkvec[0, 0])\n', (5200, 5213), True, 'import scipy as sp\n'), ((5236, 5256), 'scipy.cos', 'sp.cos', (['xkvec[0, -1]'], {}), '(xkvec[0, -1])\n', (5242, 5256), True, 'import scipy as sp\n'), ((5328, 5368), 'cubic_spline_solve.cubic_spline_solve', 'cubic_spline_solve', (['xkvec', 'fkvec', 'fslope'], {}), '(xkvec, fkvec, fslope)\n', (5346, 5368), False, 'from cubic_spline_solve import cubic_spline_solve\n'), ((768, 777), 'scipy.sin', 'sp.sin', (['x'], {}), '(x)\n', (774, 777), True, 'import scipy as sp\n'), ((803, 812), 'scipy.cos', 'sp.cos', (['x'], {}), '(x)\n', (809, 812), True, 'import scipy as sp\n'), ((2042, 2055), 'numpy.abs', 'np.abs', (['error'], {}), '(error)\n', (2048, 2055), True, 'import numpy as np\n'), ((2494, 2503), 'numpy.sin', 'np.sin', (['x'], {}), '(x)\n', (2500, 2503), True, 'import numpy as np\n'), ((2839, 2848), 'numpy.cos', 'np.cos', (['x'], {}), '(x)\n', (2845, 2848), True, 'import numpy as np\n'), ((4388, 4401), 'numpy.abs', 'np.abs', (['error'], {}), '(error)\n', (4394, 4401), True, 'import numpy as np\n'), ((4663, 4672), 'scipy.sin', 'sp.sin', (['x'], {}), '(x)\n', (4669, 4672), True, 'import scipy as sp\n'), ((4698, 4707), 'scipy.cos', 'sp.cos', (['x'], {}), '(x)\n', (4704, 4707), True, 'import scipy as sp\n'), ((2378, 2394), 'numpy.zeros', 'np.zeros', (['(2, 1)'], {}), '((2, 1))\n', (2386, 2394), True, 'import numpy as np\n'), ((2433, 2458), 'numpy.zeros', 'np.zeros', (['(2, x.shape[0])'], {}), '((2, x.shape[0]))\n', (2441, 2458), True, 'import numpy as np\n'), ((2721, 2737), 'numpy.zeros', 'np.zeros', (['(2, 1)'], {}), '((2, 1))\n', (2729, 2737), True, 'import numpy as np\n'), ((2777, 2802), 'numpy.zeros', 'np.zeros', (['(2, x.shape[0])'], {}), '((2, x.shape[0]))\n', (2785, 2802), True, 'import numpy as np\n')]
IQUBE-X/passGenerator
PassWord.py
a56a5928c1e8ee503d2757ecf0ab4108a52ec677
# PassWord - The Safe Password Generator App! # importing the tkinter module for GUI from tkinter import * # importing the message box widget from tkinter from tkinter import messagebox # importing sqlite3 for database import sqlite3 # importing random for password generation import random # creating fonts font = ('Fixedsys', 10) font2 = ('Comic Sans MS', 9) font3 = ('System', 9) font4 = ('Two Cen MT', 9) # creating a database and establishing a connection conn = sqlite3.connect('password.db') # creating a cursor to navigate through database c = conn.cursor() # creating the table ''' c.execute("""CREATE TABLE passwords ( password text )""") ''' # defining the root variable root = Tk() # Naming the app root.title('PassWord') # creating a label frame to organize content label_frame = LabelFrame(root, padx=10, pady=10, text='Password Generator', font=font) # printing the label frame onto the screen or window label_frame.grid(row=0, column=0, columnspan=1, padx=10, pady=10, sticky=E + W) # creating a separate label frame to perform delete functions delete_labelframe = LabelFrame(root, text='Delete Password', padx=10, pady=10, font=font4) # printing delete labelframe onto the screen delete_labelframe.grid(row=5, column=0, columnspan=1, padx=10, pady=10, sticky=E + W) # making the text box where password is going to be displayed e = Entry(label_frame, fg='black', bg='white') # printing the text box to the screen e.grid(row=0, column=0, padx=10, pady=10, columnspan=1) # (for the delete function) to give information on input for delete function # (for the delete function) to give information on input for delete function info = Label(delete_labelframe, text='Password ID', fg='black', font=font2) # printing the label onto the screen info.grid(row=6, column=0, pady=10) # making the entry for user to input which password e2 = Entry(delete_labelframe, fg='black', bg='white') # printing the entry onto the screen e2.grid(row=6, column=1, pady=10) # making the password generate function def generate(): # creating lists lowercase_letters = ['a', 'b', 'c', 'd', 'e' 'f' 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u' 'v', 'w', 'x', 'y', 'z'] # creating lists uppercase_letters = ['A', 'B', 'C', 'D', 'E' 'F' 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U' 'V', 'W', 'X', 'Y', 'Z'] # creating lists symbols_list = ['-', '@', '!' '$', '%' '&' '?', '#', '^'] # creating lists numbers_list = ['1', '2', '3', '4', '5', '6', '7' '8', '9' '0'] # generating a random value from the lists lowercase_letter = random.choice(lowercase_letters) # generating a random value from the lists lowercase_letter2 = random.choice(lowercase_letters) # generating a random value from the lists uppercase_letter = random.choice(uppercase_letters) # generating a random value from the lists uppercase2_letter = random.choice(uppercase_letters) # generating a random value from the lists symbol = random.choice(symbols_list) # generating a random value from the lists symbol2 = random.choice(symbols_list) # generating a random value from the lists number = random.choice(numbers_list) # generating a random value from the lists number2 = random.choice(numbers_list) # creating a password list made of random values from previous lists password = [lowercase_letter, uppercase_letter, uppercase2_letter, lowercase_letter2, symbol, symbol2, number, number2] # shuffling password list password1 = random.sample(password, 8) # concatenating and making final list final_password = password1[0] + password1[1] + password1[2] + password1[3] + password1[4] + password1[5] + \ password1[6] + password1[7] # deleting previous item from entry e.delete(0, END) # inserting the final password e.insert(0, final_password) # making a function to save the password into the database def save_password(): conn = sqlite3.connect('password.db') c = conn.cursor() c.execute("INSERT INTO passwords VALUES (?)", (e.get(),)) e.delete(0, END) conn.commit() conn.close() # making a function to show all the saved passwords def show_password(): global passcode_label conn = sqlite3.connect('password.db') c = conn.cursor() c.execute("SELECT rowid, * FROM passwords") passcodes = c.fetchall() print_code = '' for passcode in passcodes: print_code += str(passcode[0]) + '.' + ' ' + str(passcode[1]) + '\n' passcode_label = Text(label_frame, height=15, width=25) passcode_label.configure(state='normal') passcode_label.insert(1.0, print_code) passcode_label.grid(row=5, column=0, padx=10, pady=10) passcode_label.configure(state='disabled') conn.commit() conn.close() # making a function to hide the saved passwords def hide_password(): passcode_label.destroy() # making a function to delete passwords from database def delete(): conn = sqlite3.connect('password.db') c = conn.cursor() c.execute("DELETE from passwords WHERE oid = (?)", (e2.get(),)) e2.delete(0, END) passcode_label.destroy() conn.commit() conn.close() # making a function to delete all the passwords in the database def delete_all(): global number_of_passwords conn = sqlite3.connect('password.db') c = conn.cursor() c.execute("SELECT rowid FROM passwords") number_of_passwords = c.fetchall() num_of_passwords = len(number_of_passwords) confirmation = messagebox.askyesno('Delete All Passwords?', 'You have chosen to delete ' + str( num_of_passwords) + ' passwords. This action cannot be reversed. Do you wish to proceed?') if confirmation == 1: c.execute("DELETE FROM passwords") conn.commit() conn.close() # button for generating password generate_password = Button(label_frame, text='Generate Strong Password', command=generate, font=font2) # printing the button onto the screen generate_password.grid(row=1, padx=10, pady=10, column=0) # button to save password save = Button(label_frame, text='Save Password', command=save_password, font=font2) # printing the button onto the screen save.grid(row=2, padx=10, pady=10, column=0) # making a button to show all the passwords show = Button(label_frame, text='Show Passwords', command=show_password, font=font2) # printing the button onto the screen show.grid(row=4, padx=10, pady=10, column=0) # making a button to hide the shown passwords hide = Button(label_frame, text='Hide Passwords', command=hide_password, font=font2) # printing the button onto the screen hide.grid(row=6, column=0, padx=10, pady=10) # making a button to delete a password delete = Button(delete_labelframe, text='Delete Password', command=delete, font=font2) # printing the button onto the screen delete.grid(row=8, padx=10, pady=10, column=1) # making a button to delete all the passwords delete_all = Button(delete_labelframe, text='Delete All', command=delete_all, fg='dark red', width=20, anchor=CENTER, font=font3) # printing the button onto the screen delete_all.grid(row=9, column=1, padx=10, pady=10, ipadx=15) # committing the changes to the database conn.commit() # closing the connection with database conn.close() # making the final loop root.mainloop()
[((496, 526), 'sqlite3.connect', 'sqlite3.connect', (['"""password.db"""'], {}), "('password.db')\n", (511, 526), False, 'import sqlite3\n'), ((2799, 2831), 'random.choice', 'random.choice', (['lowercase_letters'], {}), '(lowercase_letters)\n', (2812, 2831), False, 'import random\n'), ((2907, 2939), 'random.choice', 'random.choice', (['lowercase_letters'], {}), '(lowercase_letters)\n', (2920, 2939), False, 'import random\n'), ((3014, 3046), 'random.choice', 'random.choice', (['uppercase_letters'], {}), '(uppercase_letters)\n', (3027, 3046), False, 'import random\n'), ((3122, 3154), 'random.choice', 'random.choice', (['uppercase_letters'], {}), '(uppercase_letters)\n', (3135, 3154), False, 'import random\n'), ((3219, 3246), 'random.choice', 'random.choice', (['symbols_list'], {}), '(symbols_list)\n', (3232, 3246), False, 'import random\n'), ((3312, 3339), 'random.choice', 'random.choice', (['symbols_list'], {}), '(symbols_list)\n', (3325, 3339), False, 'import random\n'), ((3404, 3431), 'random.choice', 'random.choice', (['numbers_list'], {}), '(numbers_list)\n', (3417, 3431), False, 'import random\n'), ((3497, 3524), 'random.choice', 'random.choice', (['numbers_list'], {}), '(numbers_list)\n', (3510, 3524), False, 'import random\n'), ((3793, 3819), 'random.sample', 'random.sample', (['password', '(8)'], {}), '(password, 8)\n', (3806, 3819), False, 'import random\n'), ((4263, 4293), 'sqlite3.connect', 'sqlite3.connect', (['"""password.db"""'], {}), "('password.db')\n", (4278, 4293), False, 'import sqlite3\n'), ((4557, 4587), 'sqlite3.connect', 'sqlite3.connect', (['"""password.db"""'], {}), "('password.db')\n", (4572, 4587), False, 'import sqlite3\n'), ((5309, 5339), 'sqlite3.connect', 'sqlite3.connect', (['"""password.db"""'], {}), "('password.db')\n", (5324, 5339), False, 'import sqlite3\n'), ((5660, 5690), 'sqlite3.connect', 'sqlite3.connect', (['"""password.db"""'], {}), "('password.db')\n", (5675, 5690), False, 'import sqlite3\n')]
hotternative/leetcode
1805_number_of_different_integers_in_a_string.py
d0ec225abc2ada1398666641c7872f3eb889e7ed
from string import ascii_lowercase ts = 'a123bc34d8ef34' cur = [] res = set() for c in ts: if c in ascii_lowercase: if cur: s = ''.join(cur) res.add(int(s)) cur = [] else: cur.append(c) else: if cur: s = ''.join(cur) res.add(int(s)) print(res)
[]
ahmedriaz9908/memeapiiz
app.py
eef98f837f2ec83edc3dd004f19dcefda9b582a5
from flask import Flask, render_template, jsonify from reddit_handler import * app = Flask(__name__) meme_subreddits = ['izlam'] @app.route('/') def index(): return render_template('index.html') @app.route('/meme') def one_post(): sub = random.choice(meme_subreddits) re = get_posts(sub, 100) r = random.choice(re) while not is_img_link(r[1]): r = random.choice(re) return jsonify({ 'title': r[0], 'url': r[1], 'postLink': r[2], 'subreddit': sub }) @app.route('/sample') def sample(): re = get_posts(random.choice(meme_subreddits), 100) r = random.choice(re) while not is_img_link(r[1]): r = random.choice(re) return render_template('sample.html', title=r[0], img_url=r[1], shortlink=r[2]) @app.route('/test') def test(): re = get_posts(random.choice(meme_subreddits), 100) return render_template('test.html', re=re) @app.route('/<something>') def not_found(something): return render_template('not_found.html')
[((89, 104), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (94, 104), False, 'from flask import Flask, render_template, jsonify\n'), ((183, 212), 'flask.render_template', 'render_template', (['"""index.html"""'], {}), "('index.html')\n", (198, 212), False, 'from flask import Flask, render_template, jsonify\n'), ((437, 510), 'flask.jsonify', 'jsonify', (["{'title': r[0], 'url': r[1], 'postLink': r[2], 'subreddit': sub}"], {}), "({'title': r[0], 'url': r[1], 'postLink': r[2], 'subreddit': sub})\n", (444, 510), False, 'from flask import Flask, render_template, jsonify\n'), ((763, 835), 'flask.render_template', 'render_template', (['"""sample.html"""'], {'title': 'r[0]', 'img_url': 'r[1]', 'shortlink': 'r[2]'}), "('sample.html', title=r[0], img_url=r[1], shortlink=r[2])\n", (778, 835), False, 'from flask import Flask, render_template, jsonify\n'), ((945, 980), 'flask.render_template', 'render_template', (['"""test.html"""'], {'re': 're'}), "('test.html', re=re)\n", (960, 980), False, 'from flask import Flask, render_template, jsonify\n'), ((1052, 1085), 'flask.render_template', 'render_template', (['"""not_found.html"""'], {}), "('not_found.html')\n", (1067, 1085), False, 'from flask import Flask, render_template, jsonify\n')]
e-davydenkova/SeleniumWebDriver_Training
10_compare_between_main_product_pages.py
e03cfbe4ea74ddc8f0c575d8fcaa3a6c7ccb7d0a
import pytest from selenium import webdriver import re @pytest.fixture def driver(request): wd = webdriver.Chrome() wd.get("http://localhost/litecart/en/") request.addfinalizer(wd.quit) return wd # check that product names are identical on the main page and on product page def test_product_names(driver): # get a product name on the main page main_name = driver.find_element_by_css_selector("#box-campaigns div li.product.column.shadow.hover-light .name").text # get a product name on a product page driver.find_element_by_css_selector("#box-campaigns div li.product.column.shadow.hover-light").click() product_name = driver.find_element_by_css_selector("#box-product .title").text assert main_name == product_name, "Product names on the main page and on product page are NOT identical" # check that prices (regular and campaign) are identical on the main page and on product page def test_prices(driver): prices = driver.find_element_by_css_selector("#box-campaigns div li.product.column.shadow.hover-light div.price-wrapper") # get a regular price on the main page main_regular_price = prices.find_element_by_css_selector(".regular-price").text # get a campaign price on the main page main_campaign_price = prices.find_element_by_css_selector(".campaign-price").text # open the product page driver.find_element_by_css_selector("#box-campaigns div li.product.column.shadow.hover-light").click() # get a regular price on a product page product_regular_price = driver.find_element_by_css_selector("#box-product .price-wrapper .regular-price").text # get a campaign price on a product page product_campaign_price = driver.find_element_by_css_selector("#box-product .price-wrapper .campaign-price").text assert main_regular_price == product_regular_price, "Regular prices on the main page and on the product page " \ "are NOT identical" assert main_campaign_price == product_campaign_price, "Campaign prices on the main page and on the product page " \ "are NOT identical" # check color of regular and campaign prices and their attributes on the main page def test_colors_main_page(driver): prices = driver.find_element_by_css_selector("#box-campaigns div li.product.column.shadow.hover-light div.price-wrapper") # get a color of the regular price on the main page regular_color = prices.find_element_by_css_selector(".regular-price").value_of_css_property("color") # verify that the regular price is grey (values of R,G,B are identical) color_list = re.findall('\d+',regular_color) assert(color_list[0] == color_list[1] == color_list[2]), "The regular price on the main page is NOT grey" # get a color of the campaign price on the main page campaign_color = prices.find_element_by_css_selector(".campaign-price").value_of_css_property("color") # verify that the campaign price is red (values of G and B are 0) color_list = re.findall('\d+',campaign_color) assert (color_list[1] == '0') and (color_list[2] == '0'), "The campaign price on the main page is NOT red" regular_attr = prices.find_element_by_css_selector(".regular-price").value_of_css_property("text-decoration-line") assert regular_attr == 'line-through', "Regular price is NOT line-through on the main page" campaign_attr = prices.find_element_by_css_selector(".campaign-price").value_of_css_property("font-weight") assert (campaign_attr == 'bold') or (campaign_attr >= '700'), "Campaign price is NOT bold on the main page" # check color of regular and campaign prices and their attributes on the product page def test_colors_product_page(driver): # open the product page driver.find_element_by_css_selector("#box-campaigns div li.product.column.shadow.hover-light").click() prices = driver.find_element_by_css_selector("#box-product .price-wrapper") # get a color of the regular price on the main page regular_color = prices.find_element_by_css_selector(".regular-price").value_of_css_property("color") # verify that the regular price is grey (values of R,G,B are identical) color_list = re.findall('\d+', regular_color) assert (color_list[0] == color_list[1] == color_list[2]), "The regular price on the product page is NOT grey" # get a color of the campaign price on the main page campaign_color = prices.find_element_by_css_selector(".campaign-price").value_of_css_property("color") # verify that the campaign price is red (values of G and B are 0) color_list = re.findall('\d+', campaign_color) assert (color_list[1] == '0') and (color_list[2] == '0'), "The campaign price on the product page is NOT red" # verify that the regular price is line-through regular_attr = prices.find_element_by_css_selector(".regular-price").value_of_css_property( "text-decoration-line") assert regular_attr == 'line-through', "Regular price is NOT line-through on the product page" # verify that the campaign price is bold campaign_attr = prices.find_element_by_css_selector(".campaign-price").value_of_css_property( "font-weight") assert (campaign_attr == 'bold') or (campaign_attr >= '700'), "Campaign price is NOT bold on the product page" # check that campaign price is bigger than regular prise on the main and product pages def test_size_comparison(driver): prices = driver.find_element_by_css_selector("#box-campaigns div li.product.column.shadow.hover-light div.price-wrapper") regular_size = prices.find_element_by_css_selector(".regular-price").size campaign_size = prices.find_element_by_css_selector(".campaign-price").size assert (campaign_size['height'] > regular_size['height']) and \ (campaign_size['width'] > regular_size['width']), \ "Size of campaign price is NOT bigger than size of regular price on the main page" # open the product page driver.find_element_by_css_selector("#box-campaigns div li.product.column.shadow.hover-light").click() prices = driver.find_element_by_css_selector("#box-product .price-wrapper") regular_size = prices.find_element_by_css_selector(".regular-price").size campaign_size = prices.find_element_by_css_selector(".campaign-price").size assert (campaign_size['height'] > regular_size['height']) and \ (campaign_size['width'] > regular_size['width']), \ "Size of campaign price is NOT bigger than size of regular price on the product page"
[((102, 120), 'selenium.webdriver.Chrome', 'webdriver.Chrome', ([], {}), '()\n', (118, 120), False, 'from selenium import webdriver\n'), ((2691, 2724), 're.findall', 're.findall', (['"""\\\\d+"""', 'regular_color'], {}), "('\\\\d+', regular_color)\n", (2701, 2724), False, 'import re\n'), ((3086, 3120), 're.findall', 're.findall', (['"""\\\\d+"""', 'campaign_color'], {}), "('\\\\d+', campaign_color)\n", (3096, 3120), False, 'import re\n'), ((4269, 4302), 're.findall', 're.findall', (['"""\\\\d+"""', 'regular_color'], {}), "('\\\\d+', regular_color)\n", (4279, 4302), False, 'import re\n'), ((4669, 4703), 're.findall', 're.findall', (['"""\\\\d+"""', 'campaign_color'], {}), "('\\\\d+', campaign_color)\n", (4679, 4703), False, 'import re\n')]
iahuang/pyrite
pyrite/llvm.py
0db83aad6aa8f245edf13d393f65d408eb956c4d
import shutil from pyrite import fs from pyrite.command_line import run_command from pyrite.errors import UserError from pyrite.globals import Globals from os.path import join class LLVMInterface: _clang_path: str def __init__(self): self._clang_path = self._get_clang_path() def _get_clang_path(self) -> str: clang_path = shutil.which(Globals.get_compiler_options().clang_command) if not clang_path: raise UserError( "Pyrite requires clang to be installed, but no such installation was found." ) return clang_path def compile_ll(self, source: str, output_path: str) -> None: """ Compile the contents of [source] as LLVM IR code, outputting a binary specified by [output_path]. If any errors arise in compilation, raise an error. """ ir_path = join(self.get_build_directory(), "build.ll") fs.write_file( path=ir_path, data=source ) result = run_command([self._clang_path, ir_path, "-o", output_path]) if result.stderr: fs.write_file( path=join(self.get_build_directory(), "llvm_error.txt"), data=result.stderr ) raise UserError( "An unexpected error occurred during the compilation process. A detailed report has been written to {}".format( self.get_build_directory() ) ) def get_build_directory(self) -> str: """ Pyrite uses a temporary working "build" directory to store files needed for LLVM/Clang """ cwd = Globals.get_compiler_options().cwd return join(cwd, "_build")
[((953, 993), 'pyrite.fs.write_file', 'fs.write_file', ([], {'path': 'ir_path', 'data': 'source'}), '(path=ir_path, data=source)\n', (966, 993), False, 'from pyrite import fs\n'), ((1046, 1105), 'pyrite.command_line.run_command', 'run_command', (["[self._clang_path, ir_path, '-o', output_path]"], {}), "([self._clang_path, ir_path, '-o', output_path])\n", (1057, 1105), False, 'from pyrite.command_line import run_command\n'), ((1755, 1774), 'os.path.join', 'join', (['cwd', '"""_build"""'], {}), "(cwd, '_build')\n", (1759, 1774), False, 'from os.path import join\n'), ((459, 556), 'pyrite.errors.UserError', 'UserError', (['"""Pyrite requires clang to be installed, but no such installation was found."""'], {}), "(\n 'Pyrite requires clang to be installed, but no such installation was found.'\n )\n", (468, 556), False, 'from pyrite.errors import UserError\n'), ((1704, 1734), 'pyrite.globals.Globals.get_compiler_options', 'Globals.get_compiler_options', ([], {}), '()\n', (1732, 1734), False, 'from pyrite.globals import Globals\n'), ((367, 397), 'pyrite.globals.Globals.get_compiler_options', 'Globals.get_compiler_options', ([], {}), '()\n', (395, 397), False, 'from pyrite.globals import Globals\n')]
eduardogerentklein/Algoritmos-Geneticos
bag_recursive.py
499836ac4867240ee3777dcdd554081a480cb8c9
maxWeight = 30 value = [15, 7, 10, 5, 8, 17] weight = [15, 3, 2, 5, 9, 20] def bag(pos, selected): # calcula o total totalValue = 0 pesoTotal = 0 for i in selected: totalValue += value[i] pesoTotal += weight[i] if pesoTotal > maxWeight: return (0,0) if pos >= len(weight): return (totalValue, pesoTotal) answer1 = bag(pos + 1, selected + [pos]) answer2 = bag(pos + 1, list(selected)) if answer1[0] > answer2[0]: return answer1 else: return answer2 bestAnswer = bag(0, []) print(bestAnswer)
[]
MEfeTiryaki/trpo
train.py
e1c7bc25165730afa60d9733555398e078a13e67
import argparse from itertools import count import signal import sys import os import time import numpy as np import gym import torch import torch.autograd as autograd from torch.autograd import Variable import scipy.optimize import matplotlib.pyplot as plt from value import Value from policy import Policy from utils import * from trpo import trpo_step parser = argparse.ArgumentParser(description='PyTorch actor-critic example') # Algorithm Parameters parser.add_argument('--gamma', type=float, default=0.995, metavar='G', help='discount factor (default: 0.995)') parser.add_argument('--lambda-', type=float, default=0.97, metavar='G', help='gae (default: 0.97)') # Value Function Learning Parameters parser.add_argument('--l2-reg', type=float, default=1e-3, metavar='G', help='(NOT USED)l2 regularization regression (default: 1e-3)') parser.add_argument('--val-opt-iter', type=int, default=200, metavar='G', help='iteration number for value function learning(default: 200)') parser.add_argument('--lr', type=float, default=1e-3, metavar='G', help='learning rate for value function (default: 1e-3)') parser.add_argument('--value-memory', type=int, default=1, metavar='G', help='ratio of past value to be used to batch size (default: 1)') parser.add_argument('--value-memory-shuffle', action='store_true',help='if not shuffled latest memory stay') # TODO: implement # Policy Optimization parameters parser.add_argument('--max-kl', type=float, default=1e-2, metavar='G', help='max kl value (default: 1e-2)') parser.add_argument('--damping', type=float, default=1e-1, metavar='G', help='damping (default: 1e-1)') parser.add_argument('--fisher-ratio', type=float, default=1, metavar='G', help='ratio of data to calcualte fisher vector product (default: 1)') # Environment parameters parser.add_argument('--env-name', default="Pendulum-v0", metavar='G', help='name of the environment to run') parser.add_argument('--seed', type=int, default=543, metavar='N', help='random seed (default: 1)') # Training length parser.add_argument('--batch-size', type=int, default=5000, metavar='N', help='number of steps per iteration') parser.add_argument('--episode-length', type=int, default=1000, metavar='N', help='max step size for one episode') parser.add_argument('--max-iteration-number', type=int, default=200, metavar='N', help='max policy iteration number') # Rendering parser.add_argument('--render', action='store_true', help='render the environment') # Logging parser.add_argument('--log-interval', type=int, default=1, metavar='N', help='interval between training status logs (default: 10)') parser.add_argument('--log', action='store_true', help='log the results at the end') parser.add_argument('--log-dir', type=str, default=".", metavar='N', help='log directory') parser.add_argument('--log-prefix', type=str, default="log", metavar='N', help='log file prefix') # Load parser.add_argument('--load', action='store_true', help='load models') parser.add_argument('--save', action='store_true', help='load models') parser.add_argument('--load-dir', type=str, default=".", metavar='N', help='') args = parser.parse_args() env = gym.make(args.env_name) env.seed(args.seed) num_inputs = env.observation_space.shape[0] num_actions = env.action_space.shape[0] torch.set_printoptions(profile="full") if args.load: policy_net = Policy(num_inputs, num_actions,30) value_net = Value(num_inputs,30) set_flat_params_to(value_net, loadParameterCsv(args.load_dir+"/ValueNet")) set_flat_params_to(policy_net, loadParameterCsv(args.load_dir+"/PolicyNet")) print("Networks are loaded from "+args.load_dir+"/") else: policy_net = Policy(num_inputs, num_actions,30) value_net = Value(num_inputs,30) def signal_handler(sig, frame): """ Signal Handler to save the networks when shutting down via ctrl+C Parameters: Returns: """ if(args.save): valueParam = get_flat_params_from(value_net) policyParam = get_flat_params_from(policy_net) saveParameterCsv(valueParam,args.load_dir+"/ValueNet") saveParameterCsv(policyParam,args.load_dir+"/PolicyNet") print("Networks are saved in "+args.load_dir+"/") print('Closing!!') env.close() sys.exit(0) def prepare_data(batch,valueBatch,previousBatch): """ Get the batch data and calculate value,return and generalized advantage Detail: TODO Parameters: batch (dict of arrays of numpy) : TODO valueBatch (dict of arrays of numpy) : TODO previousBatch (dict of arrays of numpy) : TODO Returns: """ # TODO : more description above stateList = [ torch.from_numpy(np.concatenate(x,axis=0)) for x in batch["states"]] actionsList = [torch.from_numpy(np.concatenate(x,axis=0)) for x in batch["actions"]] for states in stateList: value = value_net.forward(states) batch["values"].append(value) advantagesList = [] returnsList = [] rewardsList = [] for rewards,values,masks in zip(batch["rewards"],batch["values"],batch["mask"]): returns = torch.Tensor(len(rewards),1) advantages = torch.Tensor(len(rewards),1) deltas = torch.Tensor(len(rewards),1) prev_return = 0 prev_value = 0 prev_advantage = 0 for i in reversed(range(len(rewards))): returns[i] = rewards[i] + args.gamma * prev_value * masks[i] # TD # returns[i] = rewards[i] + args.gamma * prev_return * masks[i] # Monte Carlo deltas[i] = rewards[i] + args.gamma * prev_value * masks[i]- values.data[i] advantages[i] = deltas[i] + args.gamma * args.lambda_* prev_advantage* masks[i] prev_return = returns[i, 0] prev_value = values.data[i, 0] prev_advantage = advantages[i, 0] returnsList.append(returns) advantagesList.append(advantages) rewardsList.append(torch.Tensor(rewards)) batch["states"] = torch.cat(stateList,0) batch["actions"] = torch.cat(actionsList,0) batch["rewards"] = torch.cat(rewardsList,0) batch["returns"] = torch.cat(returnsList,0) advantagesList = torch.cat(advantagesList,0) batch["advantages"] = (advantagesList- advantagesList.mean()) / advantagesList.std() valueBatch["states"] = torch.cat(( previousBatch["states"],batch["states"]),0) valueBatch["targets"] = torch.cat((previousBatch["returns"],batch["returns"]),0) def update_policy(batch): """ Get advantage , states and action and calls trpo step Parameters: batch (dict of arrays of numpy) : TODO (batch is different than prepare_data by structure) Returns: """ advantages = batch["advantages"] states = batch["states"] actions = batch["actions"] trpo_step(policy_net, states,actions,advantages , args.max_kl, args.damping) def update_value(valueBatch): """ Get valueBatch and run adam optimizer to learn value function Parameters: valueBatch (dict of arrays of numpy) : TODO Returns: """ # shuffle the data dataSize = valueBatch["targets"].size()[0] permutation = torch.randperm(dataSize) input = valueBatch["states"][permutation] target = valueBatch["targets"][permutation] iter = args.val_opt_iter batchSize = int(dataSize/ iter) loss_fn = torch.nn.MSELoss(reduction='sum') optimizer = torch.optim.Adam(value_net.parameters(), lr=args.lr) for t in range(iter): prediction = value_net(input[t*batchSize:t*batchSize+batchSize]) loss = loss_fn(prediction, target[t*batchSize:t*batchSize+batchSize]) # XXX : Comment out for debug # if t%100==0: # print("\t%f"%loss.data) optimizer.zero_grad() loss.backward() optimizer.step() def save_to_previousBatch(previousBatch,batch): """ Save previous batch to use in future value optimization Details: TODO Parameters: Returns: """ if args.value_memory<0: print("Value memory should be equal or greater than zero") elif args.value_memory>0: if previousBatch["returns"].size() == 0: previousBatch= {"states":batch["states"], "returns":batch["returns"]} else: previous_size = previousBatch["returns"].size()[0] size = batch["returns"].size()[0] if previous_size/size == args.value_memory: previousBatch["states"] = torch.cat([previousBatch["states"][size:],batch["states"]],0) previousBatch["returns"] = torch.cat([previousBatch["returns"][size:],batch["returns"]],0) else: previousBatch["states"] = torch.cat([previousBatch["states"],batch["states"]],0) previousBatch["returns"] = torch.cat([previousBatch["returns"],batch["returns"]],0) if args.value_memory_shuffle: permutation = torch.randperm(previousBatch["returns"].size()[0]) previousBatch["states"] = previousBatch["states"][permutation] previousBatch["returns"] = previousBatch["returns"][permutation] def calculate_loss(reward_sum_mean,reward_sum_std,test_number = 10): """ Calculate mean cummulative reward for test_nubmer of trials Parameters: reward_sum_mean (list): holds the history of the means. reward_sum_std (list): holds the history of the std. Returns: list: new value appended means list: new value appended stds """ rewardSum = [] for i in range(test_number): state = env.reset() rewardSum.append(0) for t in range(args.episode_length): state, reward, done, _ = env.step(policy_net.get_action(state)[0] ) state = np.transpose(state) rewardSum[-1] += reward if done: break reward_sum_mean.append(np.array(rewardSum).mean()) reward_sum_std.append(np.array(rewardSum).std()) return reward_sum_mean, reward_sum_std def log(rewards): """ Saves mean and std over episodes in log file Parameters: Returns: """ # TODO : add duration to log filename = args.log_dir+"/"+ args.log_prefix \ + "_env_" + args.env_name \ + "_maxIter_" + str(args.max_iteration_number) \ + "_batchSize_" + str(args.batch_size) \ + "_gamma_" + str(args.gamma) \ + "_lambda_" + str(args.lambda_) \ + "_lr_" + str(args.lr) \ + "_valOptIter_" + str(args.val_opt_iter) if os.path.exists(filename + "_index_0.csv"): id = 0 file = filename + "_index_" + str(id) while os.path.exists(file + ".csv"): id = id +1 file = filename + "_index_" + str(id) filename = file else: filename = filename + "_index_0" import csv filename = filename+ ".csv" pythonVersion = sys.version_info[0] if pythonVersion == 3: with open(filename, 'w', newline='') as csvfile: spamwriter = csv.writer(csvfile, delimiter=' ', quotechar='|', quoting=csv.QUOTE_MINIMAL) spamwriter.writerow(rewards) elif pythonVersion == 2: with open(filename, 'w', ) as csvfile: spamwriter = csv.writer(csvfile, delimiter=' ', quotechar='|', quoting=csv.QUOTE_MINIMAL) spamwriter.writerow(rewards) def main(): """ Parameters: Returns: """ signal.signal(signal.SIGINT, signal_handler) time_start = time.time() reward_sum_mean,reward_sum_std = [], [] previousBatch= {"states":torch.Tensor(0) , "returns":torch.Tensor(0)} reward_sum_mean,reward_sum_std = calculate_loss(reward_sum_mean,reward_sum_std) print("Initial loss \n\tloss | mean : %6.4f / std : %6.4f"%(reward_sum_mean[-1],reward_sum_std[-1]) ) for i_episode in range(args.max_iteration_number): time_episode_start = time.time() # reset batches batch = {"states":[] , "actions":[], "next_states":[] , "rewards":[], "returns":[], "values":[], "advantages":[], "mask":[]} valueBatch = {"states" :[], "targets" : []} num_steps = 0 while num_steps < args.batch_size: state = env.reset() reward_sum = 0 states,actions,rewards,next_states,masks = [],[],[],[],[] steps = 0 for t in range(args.episode_length): action = policy_net.get_action(state)[0] # agent next_state, reward, done, info = env.step(action) next_state = np.transpose(next_state) mask = 0 if done else 1 masks.append(mask) states.append(state) actions.append(action) next_states.append(next_state) rewards.append(reward) state = next_state reward_sum += reward steps+=1 if args.render: env.render() if done: break batch["states"].append(np.expand_dims(states, axis=1) ) batch["actions"].append(actions) batch["next_states"].append(np.expand_dims(next_states, axis=1)) batch["rewards"].append(rewards) batch["mask"].append(masks) num_steps += steps prepare_data(batch,valueBatch,previousBatch) update_policy(batch) # First policy update to avoid overfitting update_value(valueBatch) save_to_previousBatch(previousBatch,batch) print("episode %d | total: %.4f "%( i_episode, time.time()-time_episode_start)) reward_sum_mean,reward_sum_std = calculate_loss(reward_sum_mean,reward_sum_std) print("\tloss | mean : %6.4f / std : %6.4f"%(reward_sum_mean[-1],reward_sum_std[-1]) ) if args.log: print("Data is logged in "+args.log_dir+"/") log(reward_sum_mean) print("Total training duration: %.4f "%(time.time()-time_start)) env.close() if __name__ == '__main__': main()
[((371, 438), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""PyTorch actor-critic example"""'}), "(description='PyTorch actor-critic example')\n", (394, 438), False, 'import argparse\n'), ((3141, 3164), 'gym.make', 'gym.make', (['args.env_name'], {}), '(args.env_name)\n', (3149, 3164), False, 'import gym\n'), ((3270, 3308), 'torch.set_printoptions', 'torch.set_printoptions', ([], {'profile': '"""full"""'}), "(profile='full')\n", (3292, 3308), False, 'import torch\n'), ((3341, 3376), 'policy.Policy', 'Policy', (['num_inputs', 'num_actions', '(30)'], {}), '(num_inputs, num_actions, 30)\n', (3347, 3376), False, 'from policy import Policy\n'), ((3392, 3413), 'value.Value', 'Value', (['num_inputs', '(30)'], {}), '(num_inputs, 30)\n', (3397, 3413), False, 'from value import Value\n'), ((3653, 3688), 'policy.Policy', 'Policy', (['num_inputs', 'num_actions', '(30)'], {}), '(num_inputs, num_actions, 30)\n', (3659, 3688), False, 'from policy import Policy\n'), ((3704, 3725), 'value.Value', 'Value', (['num_inputs', '(30)'], {}), '(num_inputs, 30)\n', (3709, 3725), False, 'from value import Value\n'), ((4226, 4237), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (4234, 4237), False, 'import sys\n'), ((5937, 5960), 'torch.cat', 'torch.cat', (['stateList', '(0)'], {}), '(stateList, 0)\n', (5946, 5960), False, 'import torch\n'), ((5983, 6008), 'torch.cat', 'torch.cat', (['actionsList', '(0)'], {}), '(actionsList, 0)\n', (5992, 6008), False, 'import torch\n'), ((6031, 6056), 'torch.cat', 'torch.cat', (['rewardsList', '(0)'], {}), '(rewardsList, 0)\n', (6040, 6056), False, 'import torch\n'), ((6079, 6104), 'torch.cat', 'torch.cat', (['returnsList', '(0)'], {}), '(returnsList, 0)\n', (6088, 6104), False, 'import torch\n'), ((6126, 6154), 'torch.cat', 'torch.cat', (['advantagesList', '(0)'], {}), '(advantagesList, 0)\n', (6135, 6154), False, 'import torch\n'), ((6271, 6327), 'torch.cat', 'torch.cat', (["(previousBatch['states'], batch['states'])", '(0)'], {}), "((previousBatch['states'], batch['states']), 0)\n", (6280, 6327), False, 'import torch\n'), ((6356, 6414), 'torch.cat', 'torch.cat', (["(previousBatch['returns'], batch['returns'])", '(0)'], {}), "((previousBatch['returns'], batch['returns']), 0)\n", (6365, 6414), False, 'import torch\n'), ((6735, 6812), 'trpo.trpo_step', 'trpo_step', (['policy_net', 'states', 'actions', 'advantages', 'args.max_kl', 'args.damping'], {}), '(policy_net, states, actions, advantages, args.max_kl, args.damping)\n', (6744, 6812), False, 'from trpo import trpo_step\n'), ((7087, 7111), 'torch.randperm', 'torch.randperm', (['dataSize'], {}), '(dataSize)\n', (7101, 7111), False, 'import torch\n'), ((7287, 7320), 'torch.nn.MSELoss', 'torch.nn.MSELoss', ([], {'reduction': '"""sum"""'}), "(reduction='sum')\n", (7303, 7320), False, 'import torch\n'), ((10475, 10516), 'os.path.exists', 'os.path.exists', (["(filename + '_index_0.csv')"], {}), "(filename + '_index_0.csv')\n", (10489, 10516), False, 'import os\n'), ((11439, 11483), 'signal.signal', 'signal.signal', (['signal.SIGINT', 'signal_handler'], {}), '(signal.SIGINT, signal_handler)\n', (11452, 11483), False, 'import signal\n'), ((11501, 11512), 'time.time', 'time.time', ([], {}), '()\n', (11510, 11512), False, 'import time\n'), ((10593, 10622), 'os.path.exists', 'os.path.exists', (["(file + '.csv')"], {}), "(file + '.csv')\n", (10607, 10622), False, 'import os\n'), ((11588, 11603), 'torch.Tensor', 'torch.Tensor', (['(0)'], {}), '(0)\n', (11600, 11603), False, 'import torch\n'), ((11636, 11651), 'torch.Tensor', 'torch.Tensor', (['(0)'], {}), '(0)\n', (11648, 11651), False, 'import torch\n'), ((11930, 11941), 'time.time', 'time.time', ([], {}), '()\n', (11939, 11941), False, 'import time\n'), ((4638, 4663), 'numpy.concatenate', 'np.concatenate', (['x'], {'axis': '(0)'}), '(x, axis=0)\n', (4652, 4663), True, 'import numpy as np\n'), ((4726, 4751), 'numpy.concatenate', 'np.concatenate', (['x'], {'axis': '(0)'}), '(x, axis=0)\n', (4740, 4751), True, 'import numpy as np\n'), ((5890, 5911), 'torch.Tensor', 'torch.Tensor', (['rewards'], {}), '(rewards)\n', (5902, 5911), False, 'import torch\n'), ((9670, 9689), 'numpy.transpose', 'np.transpose', (['state'], {}), '(state)\n', (9682, 9689), True, 'import numpy as np\n'), ((10969, 11045), 'csv.writer', 'csv.writer', (['csvfile'], {'delimiter': '""" """', 'quotechar': '"""|"""', 'quoting': 'csv.QUOTE_MINIMAL'}), "(csvfile, delimiter=' ', quotechar='|', quoting=csv.QUOTE_MINIMAL)\n", (10979, 11045), False, 'import csv\n'), ((9796, 9815), 'numpy.array', 'np.array', (['rewardSum'], {}), '(rewardSum)\n', (9804, 9815), True, 'import numpy as np\n'), ((9850, 9869), 'numpy.array', 'np.array', (['rewardSum'], {}), '(rewardSum)\n', (9858, 9869), True, 'import numpy as np\n'), ((11224, 11300), 'csv.writer', 'csv.writer', (['csvfile'], {'delimiter': '""" """', 'quotechar': '"""|"""', 'quoting': 'csv.QUOTE_MINIMAL'}), "(csvfile, delimiter=' ', quotechar='|', quoting=csv.QUOTE_MINIMAL)\n", (11234, 11300), False, 'import csv\n'), ((12717, 12741), 'numpy.transpose', 'np.transpose', (['next_state'], {}), '(next_state)\n', (12729, 12741), True, 'import numpy as np\n'), ((13230, 13260), 'numpy.expand_dims', 'np.expand_dims', (['states'], {'axis': '(1)'}), '(states, axis=1)\n', (13244, 13260), True, 'import numpy as np\n'), ((13348, 13383), 'numpy.expand_dims', 'np.expand_dims', (['next_states'], {'axis': '(1)'}), '(next_states, axis=1)\n', (13362, 13383), True, 'import numpy as np\n'), ((14131, 14142), 'time.time', 'time.time', ([], {}), '()\n', (14140, 14142), False, 'import time\n'), ((8419, 8482), 'torch.cat', 'torch.cat', (["[previousBatch['states'][size:], batch['states']]", '(0)'], {}), "([previousBatch['states'][size:], batch['states']], 0)\n", (8428, 8482), False, 'import torch\n'), ((8524, 8589), 'torch.cat', 'torch.cat', (["[previousBatch['returns'][size:], batch['returns']]", '(0)'], {}), "([previousBatch['returns'][size:], batch['returns']], 0)\n", (8533, 8589), False, 'import torch\n'), ((8648, 8704), 'torch.cat', 'torch.cat', (["[previousBatch['states'], batch['states']]", '(0)'], {}), "([previousBatch['states'], batch['states']], 0)\n", (8657, 8704), False, 'import torch\n'), ((8746, 8804), 'torch.cat', 'torch.cat', (["[previousBatch['returns'], batch['returns']]", '(0)'], {}), "([previousBatch['returns'], batch['returns']], 0)\n", (8755, 8804), False, 'import torch\n'), ((13769, 13780), 'time.time', 'time.time', ([], {}), '()\n', (13778, 13780), False, 'import time\n')]
meck93/intro_ml
task3/task3_xgb_cv.py
903710b13e9eed8b45fdbd9957c2fb49b2981f62
from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.feature_selection import f_classif, SelectKBest import numpy as np import pandas as pd import os mingw_path = 'C:\\Program Files\\mingw-w64\\x86_64-7.2.0-posix-sjlj-rt_v5-rev1\\mingw64\\bin' os.environ['PATH'] = mingw_path + ';' + os.environ['PATH'] import xgboost as xgb # Constants FILE_PATH_TRAIN = "./input/train.h5" FILE_PATH_TEST = "./input/test.h5" TEST_SIZE = 0.25 # read training file # test_data = pd.read_hdf(FILE_PATH_TRAIN, "test") training_data = pd.read_hdf(FILE_PATH_TRAIN, "train") # training data # extracting the x-values x_values_training = training_data.copy() x_values_training = x_values_training.drop(labels=['y'], axis=1) x_component_training = x_values_training.values # extracting the y-values y_component_training = training_data['y'].values # training the scaler scaler = StandardScaler(with_mean=True, with_std=True) scaler = scaler.fit(x_component_training) # scaling the training and test data x_train_scaled = scaler.transform(x_component_training) # feature selection selector = SelectKBest(f_classif, k=25) selector = selector.fit(x_train_scaled, y_component_training) x_train_scaled_new = selector.transform(x_train_scaled) # splitting the training set into a training & validation set x_train, x_val, y_train, y_val = train_test_split(x_train_scaled_new, y_component_training, test_size=TEST_SIZE, random_state=42) # training, evaluation and test data in xgboost DMatrix xg_train = xgb.DMatrix(x_train, label=y_train) xg_val = xgb.DMatrix(x_val, label=y_val) # setup parameters for xgboost params = {} # use softmax multi-class classification params['objective'] = 'multi:softmax' # scale weight of positive examples params['silent'] = 0 params['num_class'] = 5 params['tree_method'] = 'auto' params['seed'] = 42 # number of boosting rounds rounds = 300 # gridsearch_params = [ # (max_depth, min_child_weight) # for max_depth in range(6,13,2) # for min_child_weight in range(4,9,2) # ] # print(gridsearch_params) # best_params = None # min_error = float("Inf") # for max_depth, min_child_weight in gridsearch_params: # print("CV with max_depth={}, min_child_weight={}".format(max_depth, min_child_weight)) # # Update our parameters # params['max_depth'] = max_depth # params['min_child_weight'] = min_child_weight # # Run CV # cv_results = xgb.cv(params, xg_train, num_boost_round=rounds, seed=42, nfold=5, metrics={'merror'}, early_stopping_rounds=10, verbose_eval=True) # # Update best error # mean_error = cv_results['test-merror-mean'].min() # boost_rounds = cv_results['test-merror-mean'].argmin() # print("\t Multiclass Error {} for {} rounds".format(mean_error, boost_rounds)) # print() # if mean_error < min_error: # min_error = mean_error # best_params = (max_depth, min_child_weight) # print("Best params: {}, {}, MAE: {}".format(best_params[0], best_params[1], min_error)) # # grid search parameters # gridsearch_params = [] # # tree depth, gamma, learning rate, regularization lambda # for max_tree_depth in range(6, 11, 1): # for gamma in range(0, 13, 2): # for learn_rate in [0.3, 0.1, 0.05]: # for reg_lambda in [10.0, 1.0, 0.0, 0.1, 0.01]: # gridsearch_params.append((max_tree_depth, gamma, learn_rate, reg_lambda)) # print(gridsearch_params) gridsearch_params = [ (max_depth, gamma) for max_depth in range(6,13,2) for gamma in range(0,13,2) ] print(gridsearch_params) best_params = None min_test_error = float("Inf") min_train_error = float("Inf") file = open("output.txt", mode="w+", encoding='utf-8', newline='\n') for max_depth, gamma in gridsearch_params: print("CV with max_depth={}, gamma={}".format(max_depth, gamma)) file.write("CV with max_depth={}, gamma={}\n".format(max_depth, gamma)) # Update our parameters params['max_depth'] = max_depth params['gamma'] = gamma # Run CV cv_results = xgb.cv(params, xg_train, num_boost_round=rounds, seed=42, nfold=5, metrics={'merror'}, early_stopping_rounds=10, verbose_eval=True) # Update best error test_error = cv_results['test-merror-mean'].min() train_error = cv_results['train-merror-mean'].min() boost_rounds = cv_results['test-merror-mean'].argmin() print("Multiclass Error {} for {} rounds".format(test_error, boost_rounds)) print() file.write("Multiclass Error - Test: {} - Train: {} for {} rounds\n".format(test_error, train_error, boost_rounds)) file.write("\n") if test_error < min_test_error: min_test_error = test_error min_train_error = train_error best_params = (max_depth, gamma) print("Best params: {}, {}, Test Error: {}, Train Error: {}".format(best_params[0], best_params[1], min_test_error, min_train_error)) file.write("Best params: {}, {}, Test Error: {}, Train Error: {}\n".format(best_params[0], best_params[1], min_test_error, min_train_error)) file.close()
[((625, 662), 'pandas.read_hdf', 'pd.read_hdf', (['FILE_PATH_TRAIN', '"""train"""'], {}), "(FILE_PATH_TRAIN, 'train')\n", (636, 662), True, 'import pandas as pd\n'), ((969, 1014), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {'with_mean': '(True)', 'with_std': '(True)'}), '(with_mean=True, with_std=True)\n', (983, 1014), False, 'from sklearn.preprocessing import StandardScaler\n'), ((1184, 1212), 'sklearn.feature_selection.SelectKBest', 'SelectKBest', (['f_classif'], {'k': '(25)'}), '(f_classif, k=25)\n', (1195, 1212), False, 'from sklearn.feature_selection import f_classif, SelectKBest\n'), ((1427, 1528), 'sklearn.model_selection.train_test_split', 'train_test_split', (['x_train_scaled_new', 'y_component_training'], {'test_size': 'TEST_SIZE', 'random_state': '(42)'}), '(x_train_scaled_new, y_component_training, test_size=\n TEST_SIZE, random_state=42)\n', (1443, 1528), False, 'from sklearn.model_selection import train_test_split\n'), ((1592, 1627), 'xgboost.DMatrix', 'xgb.DMatrix', (['x_train'], {'label': 'y_train'}), '(x_train, label=y_train)\n', (1603, 1627), True, 'import xgboost as xgb\n'), ((1637, 1668), 'xgboost.DMatrix', 'xgb.DMatrix', (['x_val'], {'label': 'y_val'}), '(x_val, label=y_val)\n', (1648, 1668), True, 'import xgboost as xgb\n'), ((4106, 4242), 'xgboost.cv', 'xgb.cv', (['params', 'xg_train'], {'num_boost_round': 'rounds', 'seed': '(42)', 'nfold': '(5)', 'metrics': "{'merror'}", 'early_stopping_rounds': '(10)', 'verbose_eval': '(True)'}), "(params, xg_train, num_boost_round=rounds, seed=42, nfold=5, metrics=\n {'merror'}, early_stopping_rounds=10, verbose_eval=True)\n", (4112, 4242), True, 'import xgboost as xgb\n')]
atticwip/audius-protocol
discovery-provider/src/queries/get_plays_metrics.py
9758e849fae01508fa1d27675741228b11533e6e
import logging import time from sqlalchemy import func, desc from src.models import Play from src.utils import db_session logger = logging.getLogger(__name__) def get_plays_metrics(args): """ Returns metrics for play counts Args: args: dict The parsed args from the request args.start_time: date The start of the query args.limit: number The max number of responses to return args.bucket_size: string A date_trunc operation to aggregate timestamps by Returns: Array of dictionaries with the play counts and timestamp """ db = db_session.get_db_read_replica() with db.scoped_session() as session: return _get_plays_metrics(session, args) def _get_plays_metrics(session, args): metrics_query = ( session.query( func.date_trunc(args.get("bucket_size"), Play.created_at).label( "timestamp" ), func.count(Play.id).label("count"), ) .filter(Play.created_at > args.get("start_time")) .group_by(func.date_trunc(args.get("bucket_size"), Play.created_at)) .order_by(desc("timestamp")) .limit(args.get("limit")) ) metrics = metrics_query.all() metrics = [ {"timestamp": int(time.mktime(m[0].timetuple())), "count": m[1]} for m in metrics ] return metrics
[((132, 159), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (149, 159), False, 'import logging\n'), ((595, 627), 'src.utils.db_session.get_db_read_replica', 'db_session.get_db_read_replica', ([], {}), '()\n', (625, 627), False, 'from src.utils import db_session\n'), ((1135, 1152), 'sqlalchemy.desc', 'desc', (['"""timestamp"""'], {}), "('timestamp')\n", (1139, 1152), False, 'from sqlalchemy import func, desc\n'), ((936, 955), 'sqlalchemy.func.count', 'func.count', (['Play.id'], {}), '(Play.id)\n', (946, 955), False, 'from sqlalchemy import func, desc\n')]
Rich9rd/CAutomation
CAutomation/settings.py
d1c1b963e806a216d4c825243c1c405336414413
""" Django settings for CAutomation project. Generated by 'django-admin startproject' using Django 3.2.4. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path import os import dj_database_url # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent PROJECT_ROOT = os.path.dirname(os.path.abspath(__file__)) STATIC_ROOT = os.path.join(PROJECT_ROOT, 'staticfiles') STATICFILES_DIRS = ( os.path.join(PROJECT_ROOT, 'static'), ) ACCOUNT_AUTHENTICATION_METHOD = 'username_email' ACCOUNT_LOGOUT_ON_GET = False ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_EMAIL_VERIFICATION = "none" AUTH_USER_MODEL = 'cleaning.User' AUTHENTICATION_BACKENDS = ( # Needed to login by username in Django admin, regardless of `allauth` 'django.contrib.auth.backends.ModelBackend', # `allauth` specific authentication methods, such as login by e-mail 'allauth.account.auth_backends.AuthenticationBackend', ) ACCOUNT_CONFIRM_EMAIL_ON_GET = False SWAGGER_SETTINGS = { 'SECURITY_DEFINITIONS': { 'api_key': { 'type': 'apiKey', 'in': 'header', 'name': 'Authorization' } }, 'USE_SESSION_AUTH': False, 'JSON_EDITOR': True, } SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https') # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-=(#vt!5x^l3-j(e*%@p0)d_p&qd2x_#&n*^i=j38@b(26zz^mr' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['*'] REST_FRAMEWORK = { 'DEFAULT_SCHEMA_CLASS': 'rest_framework.schemas.coreapi.AutoSchema', 'DEFAULT_PERMISSION_CLASSES': [ 'rest_framework.permissions.DjangoModelPermissionsOrAnonReadOnly' ], 'DEFAULT_AUTHENTICATION_CLASSES': [ 'rest_framework.authentication.TokenAuthentication', ], } # Application definition SITE_ID = 1 INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.sites', 'corsheaders', 'allauth', 'allauth.account', 'allauth.socialaccount', 'drf_yasg', 'rest_framework', 'rest_framework.authtoken', 'rest_auth.registration', 'rest_auth', 'common.apps.CommonConfig', 'cleaning.apps.CleaningConfig', ] #'corsheaders', MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.common.CommonMiddleware', 'corsheaders.middleware.CorsMiddleware', ] #'django.middleware.common.CommonMiddleware', EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' #'corsheaders.middleware.CommonMiddleware', ROOT_URLCONF = 'CAutomation.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'CAutomation.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': dj_database_url.config( default='postgres://mzqgdpoeqiolgg:270514539442574d87e9f9c742314e58d57ff59139679e5c6e46eff5482b5b6e@ec2-52-208-221-89.eu-west-1.compute.amazonaws.com:5432/d96ohaomhouuat' ), } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True CORS_ALLOW_ALL_ORIGINS = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
[((560, 601), 'os.path.join', 'os.path.join', (['PROJECT_ROOT', '"""staticfiles"""'], {}), "(PROJECT_ROOT, 'staticfiles')\n", (572, 601), False, 'import os\n'), ((518, 543), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (533, 543), False, 'import os\n'), ((627, 663), 'os.path.join', 'os.path.join', (['PROJECT_ROOT', '"""static"""'], {}), "(PROJECT_ROOT, 'static')\n", (639, 663), False, 'import os\n'), ((4045, 4249), 'dj_database_url.config', 'dj_database_url.config', ([], {'default': '"""postgres://mzqgdpoeqiolgg:270514539442574d87e9f9c742314e58d57ff59139679e5c6e46eff5482b5b6e@ec2-52-208-221-89.eu-west-1.compute.amazonaws.com:5432/d96ohaomhouuat"""'}), "(default=\n 'postgres://mzqgdpoeqiolgg:270514539442574d87e9f9c742314e58d57ff59139679e5c6e46eff5482b5b6e@ec2-52-208-221-89.eu-west-1.compute.amazonaws.com:5432/d96ohaomhouuat'\n )\n", (4067, 4249), False, 'import dj_database_url\n'), ((447, 461), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (451, 461), False, 'from pathlib import Path\n')]
wanderindev/financial-calculator-backend
calculators/credit_card_calculator.py
ad7e736c858298c240eb9af52fbadcb02c693968
from .calculator import Calculator # noinspection PyTypeChecker class CreditCardCalculator(Calculator): def __init__(self, **kwargs): super(CreditCardCalculator, self).__init__(**kwargs) self.cc_debt = self.get_float(kwargs.get("cc_debt", 0)) self.add_c = self.get_float(kwargs.get("add_c", 0)) self.min_p_perc = self.get_float(kwargs.get("min_p_perc", 0)) self.min_p = self.get_float(kwargs.get("min_p", 0)) self.fix_p = self.get_float(kwargs.get("fix_p", 0)) self.payments = [] self.payments_p = [] def get_payment_cc(self) -> float: _rate = self.rate / (100 * self.freq) _min_p_perc = self.min_p_perc / 100 _min_p = self.min_p _fix_p = self.fix_p b = self.cc_debt per = 0 while b > 0: i = b * _rate p = max(b * _min_p_perc, _min_p, _fix_p) if b + i < p: p = b + i b += i - p per += 1 self.periods.append(per) self.payments.append(p) self.payments_p.append(p - i) self.interests.append(i) self.balances.append(b) return self.payments[0] def get_rate_cc(self) -> float: return self.rate + self.add_c * 1200 / self.cc_debt
[]
phaustin/MyST-Parser
setup.py
181e921cea2794f10ca612df6bf2a2057b66c372
"""myst-parser package setup.""" from importlib import import_module from setuptools import find_packages, setup setup( name="myst-parser", version=import_module("myst_parser").__version__, description=( "An extended commonmark compliant parser, " "with bridges to docutils & sphinx." ), long_description=open("README.md").read(), long_description_content_type="text/markdown", url="https://github.com/executablebooks/MyST-Parser", project_urls={"Documentation": "https://myst-parser.readthedocs.io"}, author="Chris Sewell", author_email="[email protected]", license="MIT", packages=find_packages(), entry_points={ "console_scripts": ["myst-benchmark = myst_parser.cli.benchmark:main"] }, classifiers=[ "Development Status :: 3 - Alpha", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.3", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: Implementation :: CPython", "Programming Language :: Python :: Implementation :: PyPy", "Topic :: Software Development :: Libraries :: Python Modules", "Topic :: Text Processing :: Markup", "Framework :: Sphinx :: Extension", ], keywords="markdown lexer parser development docutils sphinx", python_requires=">=3.6", install_requires=["markdown-it-py~=0.4.5"], extras_require={ "sphinx": ["pyyaml", "docutils>=0.15", "sphinx>=2,<3"], "code_style": ["flake8<3.8.0,>=3.7.0", "black", "pre-commit==1.17.0"], "testing": [ "coverage", "pytest>=3.6,<4", "pytest-cov", "pytest-regressions", "beautifulsoup4", ], "rtd": ["sphinxcontrib-bibtex", "ipython", "sphinx-book-theme", "sphinx_tabs"], }, zip_safe=True, )
[((649, 664), 'setuptools.find_packages', 'find_packages', ([], {}), '()\n', (662, 664), False, 'from setuptools import find_packages, setup\n'), ((158, 186), 'importlib.import_module', 'import_module', (['"""myst_parser"""'], {}), "('myst_parser')\n", (171, 186), False, 'from importlib import import_module\n')]
kho/cdec
python/tests/extractor/refmt.py
d88186af251ecae60974b20395ce75807bfdda35
#!/usr/bin/env python import collections, sys lines = [] f = collections.defaultdict(int) fe = collections.defaultdict(lambda: collections.defaultdict(int)) for line in sys.stdin: tok = [x.strip() for x in line.split('|||')] count = int(tok[4]) f[tok[1]] += count fe[tok[1]][tok[2]] += count lines.append(tok) for tok in lines: feat = 'IsSingletonF={0}.0 IsSingletonFE={1}.0'.format( 0 if f[tok[1]] > 1 else 1, 0 if fe[tok[1]][tok[2]] > 1 else 1) print ' ||| '.join((tok[0], tok[1], tok[2], feat, tok[3]))
[]
tomitokko/django-blog-with-astradb
blog/models.py
236aaf625ceb854345b6d6bbdd6d17b81e0e3c4f
from django.db import models import uuid from datetime import datetime from cassandra.cqlengine import columns from django_cassandra_engine.models import DjangoCassandraModel # Create your models here. class PostModel(DjangoCassandraModel): id = columns.UUID(primary_key=True, default=uuid.uuid4) title = columns.Text(required=True) body = columns.Text(required=True) created_at = columns.DateTime(default=datetime.now)
[((251, 301), 'cassandra.cqlengine.columns.UUID', 'columns.UUID', ([], {'primary_key': '(True)', 'default': 'uuid.uuid4'}), '(primary_key=True, default=uuid.uuid4)\n', (263, 301), False, 'from cassandra.cqlengine import columns\n'), ((314, 341), 'cassandra.cqlengine.columns.Text', 'columns.Text', ([], {'required': '(True)'}), '(required=True)\n', (326, 341), False, 'from cassandra.cqlengine import columns\n'), ((353, 380), 'cassandra.cqlengine.columns.Text', 'columns.Text', ([], {'required': '(True)'}), '(required=True)\n', (365, 380), False, 'from cassandra.cqlengine import columns\n'), ((398, 436), 'cassandra.cqlengine.columns.DateTime', 'columns.DateTime', ([], {'default': 'datetime.now'}), '(default=datetime.now)\n', (414, 436), False, 'from cassandra.cqlengine import columns\n')]
miczone/python-fedex
fedex/services/availability_commitment_service.py
1a17b45753b16b2551b0b8ba2c6aa65be8e73931
""" Service Availability and Commitment Module This package contains the shipping methods defined by Fedex's ValidationAvailabilityAndCommitmentService WSDL file. Each is encapsulated in a class for easy access. For more details on each, refer to the respective class's documentation. """ import datetime from ..base_service import FedexBaseService class FedexAvailabilityCommitmentRequest(FedexBaseService): """ This class allows you validate service availability """ def __init__(self, config_obj, *args, **kwargs): """ @type config_obj: L{FedexConfig} @param config_obj: A valid FedexConfig object. """ self._config_obj = config_obj # Holds version info for the VersionId SOAP object. self._version_info = { 'service_id': 'vacs', 'major': '14', 'intermediate': '0', 'minor': '0' } self.CarrierCode = None """@ivar: Carrier Code Default to Fedex (FDXE), or can bbe FDXG.""" self.Origin = None """@ivar: Holds Origin Address WSDL object.""" self.Destination = None """@ivar: Holds Destination Address WSDL object.""" self.ShipDate = None """@ivar: Ship Date date WSDL object.""" self.Service = None """@ivar: Service type, if set to None will get all available service information.""" self.Packaging = None """@ivar: Type of packaging to narrow down available shipping options or defaults to YOUR_PACKAGING.""" # Call the parent FedexBaseService class for basic setup work. # Shortened the name of the wsdl, otherwise suds did not load it properly. # Suds throws the following error when using the long file name from FedEx: # # File "/Library/Python/2.7/site-packages/suds/wsdl.py", line 878, in resolve # raise Exception("binding '%s', not-found" % p.binding) # Exception: binding 'ns:ValidationAvailabilityAndCommitmentServiceSoapBinding', not-found super(FedexAvailabilityCommitmentRequest, self).__init__( self._config_obj, 'ValidationAvailabilityAndCommitmentService_v14.wsdl', *args, **kwargs) def _prepare_wsdl_objects(self): """ Create the data structure and get it ready for the WSDL request. """ self.CarrierCode = 'FDXE' self.Origin = self.client.factory.create('Address') self.Destination = self.client.factory.create('Address') self.ShipDate = datetime.date.today().isoformat() self.Service = None self.Packaging = 'YOUR_PACKAGING' def _assemble_and_send_request(self): """ Fires off the Fedex request. @warning: NEVER CALL THIS METHOD DIRECTLY. CALL send_request(), WHICH RESIDES ON FedexBaseService AND IS INHERITED. """ # We get an exception like this when specifying an IntegratorId: # suds.TypeNotFound: Type not found: 'IntegratorId' # Setting it to None does not seem to appease it. del self.ClientDetail.IntegratorId self.logger.debug(self.WebAuthenticationDetail) self.logger.debug(self.ClientDetail) self.logger.debug(self.TransactionDetail) self.logger.debug(self.VersionId) # Fire off the query. return self.client.service.serviceAvailability( WebAuthenticationDetail=self.WebAuthenticationDetail, ClientDetail=self.ClientDetail, TransactionDetail=self.TransactionDetail, Version=self.VersionId, Origin=self.Origin, Destination=self.Destination, ShipDate=self.ShipDate, CarrierCode=self.CarrierCode, Service=self.Service, Packaging=self.Packaging)
[((2548, 2569), 'datetime.date.today', 'datetime.date.today', ([], {}), '()\n', (2567, 2569), False, 'import datetime\n')]
gb-andreygsouza/XuniVerse
xverse/transformer/_woe.py
74f4b9112c32a8f1411ae0c5a6de906f8d2e895a
import pandas as pd import numpy as np from sklearn.base import BaseEstimator, TransformerMixin import scipy.stats.stats as stats import pandas.core.algorithms as algos #from sklearn.utils.validation import check_is_fitted from sklearn.utils import check_array from ..transformer import MonotonicBinning pd.options.mode.chained_assignment = None class WOE(BaseEstimator, TransformerMixin): """Weight of evidence transformation for categorical variables. For numeric variables, monotonic operation is provided as default with this package. Parameters ---------- feature_names: 'all' or list (default='all') list of features to perform WOE transformation. - 'all' (default): All categorical features in the dataset will be used - list of features: ['age', 'income',......] exclude_features: list (default=None) list of features to be excluded from WOE transformation. - Example - ['age', 'income', .......] woe_prefix: string (default=None) Variable prefix to be used for the column created by WOE transformer. The default value is set 'None'. treat_missing: {'separate', 'mode', 'least_frequent'} (default='separate') This parameter setting is used to handle missing values in the dataset. 'separate' - Missing values are treated as a own group (category) 'mode' - Missing values are combined with the highest frequent item in the dataset 'least_frequent' - Missing values are combined with the least frequent item in the dataset woe_bins: dict of dicts(default=None) This feature is added as part of future WOE transformations or scoring. If this value is set, then WOE values provided for each of the features here will be used for transformation. Applicable only in the transform method. Dictionary structure - {'feature_name': float list} Example - {'education': {'primary' : 0.1, 'tertiary' : 0.5, 'secondary', 0.7}} monotonic_binning: bool (default=True) This parameter is used to perform monotonic binning on numeric variables. If set to False, numeric variables would be ignored. mono_feature_names: 'all' or list (default='all') list of features to perform monotonic binning operation. - 'all' (default): All features in the dataset will be used - list of features: ['age', 'income',......] mono_max_bins: int (default=20) Maximum number of bins that can be created for any given variable. The final number of bins created will be less than or equal to this number. mono_force_bins: int (default=3) It forces the module to create bins for a variable, when it cannot find monotonic relationship using "max_bins" option. The final number of bins created will be equal to the number specified. mono_cardinality_cutoff: int (default=5) Cutoff to determine if a variable is eligible for monotonic binning operation. Any variable which has unique levels less than this number will be treated as character variables. At this point no binning operation will be performed on the variable and it will return the unique levels as bins for these variable. mono_prefix: string (default=None) Variable prefix to be used for the column created by monotonic binning. mono_custom_binning: dict (default=None) Using this parameter, the user can perform custom binning on variables. This parameter is also used to apply previously computed bins for each feature (Score new data). Dictionary structure - {'feature_name': float list} Example - {'age': [0., 1., 2., 3.]} """ # Initialize the parameters for the function def __init__(self, feature_names='all', exclude_features=None, woe_prefix=None, treat_missing='separate', woe_bins=None, monotonic_binning=True, mono_feature_names='all', mono_max_bins=20, mono_force_bins=3, mono_cardinality_cutoff=5, mono_prefix=None, mono_custom_binning=None): self.feature_names = feature_names self.exclude_features = exclude_features self.woe_prefix = woe_prefix self.treat_missing = treat_missing self.woe_bins = woe_bins #only used for future transformations #these features below are for monotonic operations on numeric variables. #It uses MonotonicBinning class from binning package. self.monotonic_binning = monotonic_binning self.mono_feature_names = mono_feature_names self.mono_max_bins = mono_max_bins self.mono_force_bins = mono_force_bins self.mono_cardinality_cutoff = mono_cardinality_cutoff self.mono_prefix = mono_prefix self.mono_custom_binning = mono_custom_binning #only used for monotonic transformations # check input data type - Only Pandas Dataframe allowed def check_datatype(self, X): if not isinstance(X, pd.DataFrame): raise ValueError("The input data must be pandas dataframe. But the input provided is " + str(type(X))) return self # the fit function for WOE transformer def fit(self, X, y): #if the function is used as part of pipeline, then try to unpack tuple values #produced in the previous step. Added as a part of pipeline feature. try: X, y = X except: pass #check datatype of X self.check_datatype(X) #The length of X and Y should be equal if X.shape[0] != y.shape[0]: raise ValueError("Mismatch in input lengths. Length of X is " + str(X.shape[0]) + " \ but length of y is " + str(y.shape[0]) + ".") # The label must be binary with values {0,1} unique = np.unique(y) if len(unique) != 2: raise ValueError("The target column y must be binary. But the target contains " + str(len(unique)) + \ " unique value(s).") #apply monotonic binning operation if self.monotonic_binning: self.mono_bin_clf = MonotonicBinning(feature_names=self.mono_feature_names, max_bins=self.mono_max_bins, force_bins=self.mono_force_bins, cardinality_cutoff=self.mono_cardinality_cutoff, prefix=self.mono_prefix, custom_binning=self.mono_custom_binning) if self.mono_custom_binning: X = self.mono_bin_clf.transform(X) self.mono_custom_binning = self.mono_bin_clf.bins else: X = self.mono_bin_clf.fit_transform(X, y) self.mono_custom_binning = self.mono_bin_clf.bins #identify the variables to tranform and assign the bin mapping dictionary self.woe_bins = {} #bin mapping if not self.mono_custom_binning: self.mono_custom_binning= {} else: for i in self.mono_custom_binning: X[i] = X[i].astype('object') numerical_features = list(X._get_numeric_data().columns) categorical_features = list(X.columns.difference(numerical_features)) #Identifying the features to perform fit if self.feature_names == 'all': self.transform_features = categorical_features else: self.transform_features = list(set(self.feature_names)) #Exclude variables provided in the exclusion list if self.exclude_features: self.transform_features = list(set(self.transform_features) - set(self.exclude_features)) temp_X = X[self.transform_features] #subset data only on features to fit temp_X = temp_X.astype('object') #convert categorical columns to object columns temp_X = self.treat_missing_values(temp_X) #treat missing values function #apply the WOE train function on dataset temp_X.apply(lambda x: self.train(x, y), axis=0) #provide Information value for each variable as a separate dataset self.iv_df = pd.DataFrame({'Information_Value':self.woe_df.groupby('Variable_Name').Information_Value.max()}) self.iv_df = self.iv_df.reset_index() self.iv_df = self.iv_df.sort_values('Information_Value', ascending=False) return self #treat missing values based on the 'treat_missing' option provided by user def treat_missing_values(self, X): """ treat_missing: {'separate', 'mode', 'least_frequent'} (default='separate') This parameter setting is used to handle missing values in the dataset. 'separate' - Missing values are treated as a own group (category) 'mode' - Missing values are combined with the highest frequent item in the dataset 'least_frequent' - Missing values are combined with the least frequent item in the dataset """ if self.treat_missing == 'separate': X = X.fillna('NA') elif self.treat_missing == 'mode': X = X.fillna(X.mode().iloc[0]) elif self.treat_missing == 'least_frequent': for i in X: X[i] = X[i].fillna(X[i].value_counts().index[-1]) else: raise ValueError("Missing values could be treated with one of these three options - \ 'separate', 'mode', 'least_frequent'. \ The provided option is - " + str(self.treat_missing)) return X #WOE binning - The function is applied on each columns identified in the fit function. #Here, the input X is a Pandas Series type. def train(self, X, y): # Assign values woe_mapping = {} #dictionary mapping for the current feature temp_woe = pd.DataFrame({},index=[]) temp_df = pd.DataFrame({'X': X, "Y":y}) grouped_df = temp_df.groupby('X', as_index=True) #calculate stats for variable and store it in temp_woe target_sum = grouped_df.Y.sum() temp_woe['Count'] = grouped_df.Y.count() temp_woe['Category'] = target_sum.index temp_woe['Event'] = target_sum temp_woe['Non_Event'] = temp_woe['Count'] - temp_woe['Event'] temp_woe['Event_Rate'] = temp_woe['Event']/temp_woe['Count'] temp_woe['Non_Event_Rate'] = temp_woe['Non_Event']/temp_woe['Count'] #calculate distributions and woe total_event = temp_woe['Event'].sum() total_non_event = temp_woe['Non_Event'].sum() temp_woe['Event_Distribution'] = temp_woe['Event']/total_event temp_woe['Non_Event_Distribution'] = temp_woe['Non_Event']/total_non_event temp_woe['WOE'] = np.log(temp_woe['Event_Distribution']/temp_woe['Non_Event_Distribution']) temp_woe['Information_Value'] = (temp_woe['Event_Distribution']- \ temp_woe['Non_Event_Distribution'])*temp_woe['WOE'] temp_woe['Variable_Name'] = X.name temp_woe = temp_woe[['Variable_Name', 'Category', 'Count', 'Event', 'Non_Event', \ 'Event_Rate', 'Non_Event_Rate', 'Event_Distribution', 'Non_Event_Distribution', \ 'WOE', 'Information_Value']] temp_woe = temp_woe.replace([np.inf, -np.inf], 0) temp_woe['Information_Value'] = temp_woe['Information_Value'].sum() temp_woe = temp_woe.reset_index(drop=True) woe_mapping[str(X.name)] = dict(zip(temp_woe['Category'], temp_woe['WOE'])) #assign computed values to class variables try: self.woe_df = self.woe_df.append(temp_woe, ignore_index=True) self.woe_bins.update(woe_mapping) except: self.woe_df = temp_woe self.woe_bins = woe_mapping return self #Transform new data or existing data based on the fit identified or custom transformation provided by user def transform(self, X, y=None): #if the function is used as part of pipeline, then try to unpack tuple values #produced in the previous step. Added as a part of pipeline feature. try: X, y = X except: pass self.check_datatype(X) #check input datatype. outX = X.copy(deep=True) #identify the features on which the transformation should be performed try: if self.transform_features: transform_features = self.transform_features except: if self.woe_bins: transform_features = list(self.woe_bins.keys()) else: raise ValueError("Estimator has to be fitted to make WOE transformations") #final list of features to be transformed transform_features = list(set(transform_features) & set(outX.columns)) #raise error if the list is empty if not transform_features: raise ValueError("Empty list for WOE transformation. \ Estimator has to be fitted to make WOE transformations") #use the custom bins provided by user for numeric variables if self.mono_custom_binning: try: if self.mono_bin_clf: pass except: self.mono_bin_clf = MonotonicBinning(feature_names=self.mono_feature_names, max_bins=self.mono_max_bins, force_bins=self.mono_force_bins, cardinality_cutoff=self.mono_cardinality_cutoff, prefix=self.mono_prefix, custom_binning=self.mono_custom_binning) outX = self.mono_bin_clf.transform(outX) outX = outX.astype('object') #convert categorical columns to object columns outX = self.treat_missing_values(outX) #treat missing values function #iterate through the dataframe and apply the bins for i in transform_features: tempX = outX[i] #pandas Series original_column_name = str(i) #create the column name based on user provided prefix if self.woe_prefix: new_column_name = str(self.woe_prefix) + '_' + str(i) else: new_column_name = original_column_name #check if the bin mapping is present #check_is_fitted(self, 'woe_bins') if not self.woe_bins: raise ValueError("woe_bins variable is not present. \ Estimator has to be fitted to apply transformations.") outX[new_column_name] = tempX.replace(self.woe_bins[original_column_name]) #transformed dataframe return outX #Method that describes what we need this transformer to do def fit_transform(self, X, y): return self.fit(X, y).transform(X)
[]
okapies/cupy
cupy/linalg/product.py
4e8394e5e0c4e420295cbc36819e8e0f7de90e9d
import numpy import six import cupy from cupy import core from cupy import internal from cupy.linalg.solve import inv from cupy.util import collections_abc matmul = core.matmul def dot(a, b, out=None): """Returns a dot product of two arrays. For arrays with more than one axis, it computes the dot product along the last axis of ``a`` and the second-to-last axis of ``b``. This is just a matrix product if the both arrays are 2-D. For 1-D arrays, it uses their unique axis as an axis to take dot product over. Args: a (cupy.ndarray): The left argument. b (cupy.ndarray): The right argument. out (cupy.ndarray): Output array. Returns: cupy.ndarray: The dot product of ``a`` and ``b``. .. seealso:: :func:`numpy.dot` """ # TODO(okuta): check type return a.dot(b, out) def vdot(a, b): """Returns the dot product of two vectors. The input arrays are flattened into 1-D vectors and then it performs inner product of these vectors. Args: a (cupy.ndarray): The first argument. b (cupy.ndarray): The second argument. Returns: cupy.ndarray: Zero-dimensional array of the dot product result. .. seealso:: :func:`numpy.vdot` """ if a.size != b.size: raise ValueError('Axis dimension mismatch') if a.dtype.kind == 'c': a = a.conj() return core.tensordot_core(a, b, None, 1, 1, a.size, ()) def inner(a, b): """Returns the inner product of two arrays. It uses the last axis of each argument to take sum product. Args: a (cupy.ndarray): The first argument. b (cupy.ndarray): The second argument. Returns: cupy.ndarray: The inner product of ``a`` and ``b``. .. seealso:: :func:`numpy.inner` """ a_ndim = a.ndim b_ndim = b.ndim if a_ndim == 0 or b_ndim == 0: return cupy.multiply(a, b) a_axis = a_ndim - 1 b_axis = b_ndim - 1 if a.shape[-1] != b.shape[-1]: raise ValueError('Axis dimension mismatch') if a_axis: a = cupy.rollaxis(a, a_axis, 0) if b_axis: b = cupy.rollaxis(b, b_axis, 0) ret_shape = a.shape[1:] + b.shape[1:] k = a.shape[0] n = a.size // k m = b.size // k return core.tensordot_core(a, b, None, n, m, k, ret_shape) def outer(a, b, out=None): """Returns the outer product of two vectors. The input arrays are flattened into 1-D vectors and then it performs outer product of these vectors. Args: a (cupy.ndarray): The first argument. b (cupy.ndarray): The second argument. out (cupy.ndarray): Output array. Returns: cupy.ndarray: 2-D array of the outer product of ``a`` and ``b``. .. seealso:: :func:`numpy.outer` """ n = a.size m = b.size ret_shape = (n, m) if out is None: return core.tensordot_core(a, b, None, n, m, 1, ret_shape) if out.size != n * m: raise ValueError('Output array has an invalid size') if out.flags.c_contiguous: return core.tensordot_core(a, b, out, n, m, 1, ret_shape) else: out[:] = core.tensordot_core(a, b, None, n, m, 1, ret_shape) return out def tensordot(a, b, axes=2): """Returns the tensor dot product of two arrays along specified axes. This is equivalent to compute dot product along the specified axes which are treated as one axis by reshaping. Args: a (cupy.ndarray): The first argument. b (cupy.ndarray): The second argument. axes: - If it is an integer, then ``axes`` axes at the last of ``a`` and the first of ``b`` are used. - If it is a pair of sequences of integers, then these two sequences specify the list of axes for ``a`` and ``b``. The corresponding axes are paired for sum-product. Returns: cupy.ndarray: The tensor dot product of ``a`` and ``b`` along the axes specified by ``axes``. .. seealso:: :func:`numpy.tensordot` """ a_ndim = a.ndim b_ndim = b.ndim if a_ndim == 0 or b_ndim == 0: if axes != 0 and axes != ((), ()): raise ValueError('An input is zero-dim while axes has dimensions') return cupy.multiply(a, b) if isinstance(axes, collections_abc.Sequence): if len(axes) != 2: raise ValueError('Axes must consist of two arrays.') a_axes, b_axes = axes if numpy.isscalar(a_axes): a_axes = a_axes, if numpy.isscalar(b_axes): b_axes = b_axes, else: a_axes = tuple(six.moves.range(a_ndim - axes, a_ndim)) b_axes = tuple(six.moves.range(axes)) sum_ndim = len(a_axes) if sum_ndim != len(b_axes): raise ValueError('Axes length mismatch') for a_axis, b_axis in zip(a_axes, b_axes): if a.shape[a_axis] != b.shape[b_axis]: raise ValueError('Axis dimension mismatch') # Make the axes non-negative a = _move_axes_to_head(a, [axis % a_ndim for axis in a_axes]) b = _move_axes_to_head(b, [axis % b_ndim for axis in b_axes]) ret_shape = a.shape[sum_ndim:] + b.shape[sum_ndim:] k = internal.prod(a.shape[:sum_ndim]) # Avoid division by zero: core.tensordot_core returns zeros without # checking n, m consistency, thus allowing 0-length dimensions to work n = a.size // k if k != 0 else 0 m = b.size // k if k != 0 else 0 return core.tensordot_core(a, b, None, n, m, k, ret_shape) def matrix_power(M, n): """Raise a square matrix to the (integer) power `n`. Args: M (~cupy.ndarray): Matrix to raise by power n. n (~int): Power to raise matrix to. Returns: ~cupy.ndarray: Output array. .. note:: M must be of dtype `float32` or `float64`. ..seealso:: :func:`numpy.linalg.matrix_power` """ if M.ndim != 2 or M.shape[0] != M.shape[1]: raise ValueError('input must be a square array') if not isinstance(n, six.integer_types): raise TypeError('exponent must be an integer') if n == 0: return cupy.identity(M.shape[0], dtype=M.dtype) elif n < 0: M = inv(M) n *= -1 # short-cuts if n <= 3: if n == 1: return M elif n == 2: return cupy.matmul(M, M) else: return cupy.matmul(cupy.matmul(M, M), M) # binary decomposition to reduce the number of Matrix # multiplications for n > 3. result, Z = None, None for b in cupy.binary_repr(n)[::-1]: Z = M if Z is None else cupy.matmul(Z, Z) if b == '1': result = Z if result is None else cupy.matmul(result, Z) return result def kron(a, b): """Returns the kronecker product of two arrays. Args: a (~cupy.ndarray): The first argument. b (~cupy.ndarray): The second argument. Returns: ~cupy.ndarray: Output array. .. seealso:: :func:`numpy.kron` """ a_ndim = a.ndim b_ndim = b.ndim if a_ndim == 0 or b_ndim == 0: return cupy.multiply(a, b) ndim = b_ndim a_shape = a.shape b_shape = b.shape if a_ndim != b_ndim: if b_ndim > a_ndim: a_shape = (1,) * (b_ndim - a_ndim) + a_shape else: b_shape = (1,) * (a_ndim - b_ndim) + b_shape ndim = a_ndim axis = ndim - 1 out = core.tensordot_core(a, b, None, a.size, b.size, 1, a_shape + b_shape) for _ in six.moves.range(ndim): out = core.concatenate_method(out, axis=axis) return out def _move_axes_to_head(a, axes): # This function moves the axes of ``s`` to the head of the shape. for idx, axis in enumerate(axes): if idx != axis: break else: return a return a.transpose( axes + [i for i in six.moves.range(a.ndim) if i not in axes])
[((1402, 1451), 'cupy.core.tensordot_core', 'core.tensordot_core', (['a', 'b', 'None', '(1)', '(1)', 'a.size', '()'], {}), '(a, b, None, 1, 1, a.size, ())\n', (1421, 1451), False, 'from cupy import core\n'), ((2282, 2333), 'cupy.core.tensordot_core', 'core.tensordot_core', (['a', 'b', 'None', 'n', 'm', 'k', 'ret_shape'], {}), '(a, b, None, n, m, k, ret_shape)\n', (2301, 2333), False, 'from cupy import core\n'), ((5217, 5250), 'cupy.internal.prod', 'internal.prod', (['a.shape[:sum_ndim]'], {}), '(a.shape[:sum_ndim])\n', (5230, 5250), False, 'from cupy import internal\n'), ((5484, 5535), 'cupy.core.tensordot_core', 'core.tensordot_core', (['a', 'b', 'None', 'n', 'm', 'k', 'ret_shape'], {}), '(a, b, None, n, m, k, ret_shape)\n', (5503, 5535), False, 'from cupy import core\n'), ((7425, 7494), 'cupy.core.tensordot_core', 'core.tensordot_core', (['a', 'b', 'None', 'a.size', 'b.size', '(1)', '(a_shape + b_shape)'], {}), '(a, b, None, a.size, b.size, 1, a_shape + b_shape)\n', (7444, 7494), False, 'from cupy import core\n'), ((7508, 7529), 'six.moves.range', 'six.moves.range', (['ndim'], {}), '(ndim)\n', (7523, 7529), False, 'import six\n'), ((1899, 1918), 'cupy.multiply', 'cupy.multiply', (['a', 'b'], {}), '(a, b)\n', (1912, 1918), False, 'import cupy\n'), ((2084, 2111), 'cupy.rollaxis', 'cupy.rollaxis', (['a', 'a_axis', '(0)'], {}), '(a, a_axis, 0)\n', (2097, 2111), False, 'import cupy\n'), ((2139, 2166), 'cupy.rollaxis', 'cupy.rollaxis', (['b', 'b_axis', '(0)'], {}), '(b, b_axis, 0)\n', (2152, 2166), False, 'import cupy\n'), ((2891, 2942), 'cupy.core.tensordot_core', 'core.tensordot_core', (['a', 'b', 'None', 'n', 'm', '(1)', 'ret_shape'], {}), '(a, b, None, n, m, 1, ret_shape)\n', (2910, 2942), False, 'from cupy import core\n'), ((3077, 3127), 'cupy.core.tensordot_core', 'core.tensordot_core', (['a', 'b', 'out', 'n', 'm', '(1)', 'ret_shape'], {}), '(a, b, out, n, m, 1, ret_shape)\n', (3096, 3127), False, 'from cupy import core\n'), ((3155, 3206), 'cupy.core.tensordot_core', 'core.tensordot_core', (['a', 'b', 'None', 'n', 'm', '(1)', 'ret_shape'], {}), '(a, b, None, n, m, 1, ret_shape)\n', (3174, 3206), False, 'from cupy import core\n'), ((4284, 4303), 'cupy.multiply', 'cupy.multiply', (['a', 'b'], {}), '(a, b)\n', (4297, 4303), False, 'import cupy\n'), ((4489, 4511), 'numpy.isscalar', 'numpy.isscalar', (['a_axes'], {}), '(a_axes)\n', (4503, 4511), False, 'import numpy\n'), ((4553, 4575), 'numpy.isscalar', 'numpy.isscalar', (['b_axes'], {}), '(b_axes)\n', (4567, 4575), False, 'import numpy\n'), ((6133, 6173), 'cupy.identity', 'cupy.identity', (['M.shape[0]'], {'dtype': 'M.dtype'}), '(M.shape[0], dtype=M.dtype)\n', (6146, 6173), False, 'import cupy\n'), ((6555, 6574), 'cupy.binary_repr', 'cupy.binary_repr', (['n'], {}), '(n)\n', (6571, 6574), False, 'import cupy\n'), ((7104, 7123), 'cupy.multiply', 'cupy.multiply', (['a', 'b'], {}), '(a, b)\n', (7117, 7123), False, 'import cupy\n'), ((7545, 7584), 'cupy.core.concatenate_method', 'core.concatenate_method', (['out'], {'axis': 'axis'}), '(out, axis=axis)\n', (7568, 7584), False, 'from cupy import core\n'), ((4639, 4677), 'six.moves.range', 'six.moves.range', (['(a_ndim - axes)', 'a_ndim'], {}), '(a_ndim - axes, a_ndim)\n', (4654, 4677), False, 'import six\n'), ((4702, 4723), 'six.moves.range', 'six.moves.range', (['axes'], {}), '(axes)\n', (4717, 4723), False, 'import six\n'), ((6202, 6208), 'cupy.linalg.solve.inv', 'inv', (['M'], {}), '(M)\n', (6205, 6208), False, 'from cupy.linalg.solve import inv\n'), ((6614, 6631), 'cupy.matmul', 'cupy.matmul', (['Z', 'Z'], {}), '(Z, Z)\n', (6625, 6631), False, 'import cupy\n'), ((6338, 6355), 'cupy.matmul', 'cupy.matmul', (['M', 'M'], {}), '(M, M)\n', (6349, 6355), False, 'import cupy\n'), ((6699, 6721), 'cupy.matmul', 'cupy.matmul', (['result', 'Z'], {}), '(result, Z)\n', (6710, 6721), False, 'import cupy\n'), ((6401, 6418), 'cupy.matmul', 'cupy.matmul', (['M', 'M'], {}), '(M, M)\n', (6412, 6418), False, 'import cupy\n'), ((7865, 7888), 'six.moves.range', 'six.moves.range', (['a.ndim'], {}), '(a.ndim)\n', (7880, 7888), False, 'import six\n')]
aligoren/pyalgo
fibo.py
8aa58143d3301f70ed7189ca86ce0c7886f92e8c
def fibo(n): return n <= 1 or fibo(n-1) + fibo(n-2) def fibo_main(): for n in range(1,47): res = fibo(n) print("%s\t%s" % (n, res)) fibo_main() # profiling result for 47 numbers # profile: python -m profile fibo.py """ -1273940835 function calls (275 primitive calls) in 18966.707 seconds Ordered by: standard name ncalls tottime percall cumtime percall filename:lineno(function) 90 0.000 0.000 0.001 0.000 cp857.py:18(encode) 1 0.000 0.000 18966.707 18966.707 fibo.py:1(<module>) -1273941064/46 18966.697 -0.000 18966.697 412.319 fibo.py:1(fibo) 1 0.001 0.001 18966.707 18966.707 fibo.py:4(main) 90 0.000 0.000 0.000 0.000 {built-in method charmap_encode} 1 0.000 0.000 18966.707 18966.707 {built-in method exec} 45 0.009 0.000 0.010 0.000 {built-in method print} 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Prof iler' objects} """
[]
yihui8776/TensorRT-DETR
trt_util/common.py
1f32e9a2f98e26ec5b2376f9a2695193887430fb
# # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ~~~Medcare AI Lab~~~ # 该部分代码参考了TensorRT官方示例完成,对相关方法进行修改 # import pycuda.driver as cuda #https://documen.tician.de/pycuda/driver.html import pycuda.autoinit import numpy as np import tensorrt as trt from .calibrator import Calibrator import sys, os import time # TRT_LOGGER = trt.Logger(trt.Logger.VERBOSE) # TRT_LOGGER = trt.Logger(trt.Logger.INFO) TRT_LOGGER = trt.Logger() # Allocate host and device buffers, and create a stream. class HostDeviceMem(object): def __init__(self, host_mem, device_mem): self.host = host_mem self.device = device_mem def __str__(self): return "Host:\n" + str(self.host) + "\nDevice:\n" + str(self.device) def __repr__(self): return self.__str__() def allocate_buffers(engine): inputs = [] outputs = [] bindings = [] stream = cuda.Stream() for binding in engine: size = trt.volume(engine.get_binding_shape(binding)) # <--------- the main diff to v2 dtype = trt.nptype(engine.get_binding_dtype(binding)) # Allocate host and device buffers host_mem = cuda.pagelocked_empty(size, dtype) device_mem = cuda.mem_alloc(host_mem.nbytes) # Append the device buffer to device bindings. bindings.append(int(device_mem)) # Append to the appropriate list. if engine.binding_is_input(binding): inputs.append(HostDeviceMem(host_mem, device_mem)) else: outputs.append(HostDeviceMem(host_mem, device_mem)) return inputs, outputs, bindings, stream def allocate_buffers_v2(engine): inputs = [] outputs = [] bindings = [] stream = cuda.Stream() for binding in engine: size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size dtype = trt.nptype(engine.get_binding_dtype(binding)) # Allocate host and device buffers host_mem = cuda.pagelocked_empty(size, dtype) device_mem = cuda.mem_alloc(host_mem.nbytes) # Append the device buffer to device bindings. bindings.append(int(device_mem)) # Append to the appropriate list. if engine.binding_is_input(binding): inputs.append(HostDeviceMem(host_mem, device_mem)) else: outputs.append(HostDeviceMem(host_mem, device_mem)) return inputs, outputs, bindings, stream # do inference multi outputs def do_inference_v2(context, bindings, inputs, outputs, stream, input_tensor): # Transfer input data to the GPU. [cuda.memcpy_htod_async(inp.device, inp.host, stream) for inp in inputs] # Run inference. context.execute_async_v2(bindings=bindings, stream_handle=stream.handle) # Transfer predictions back from the GPU. [cuda.memcpy_dtoh_async(out.host, out.device, stream) for out in outputs] # Synchronize the stream stream.synchronize() # Return only the host outputs. return [out.host for out in outputs] # The onnx path is used for Pytorch models. def build_engine_onnx(model_file,engine_file,FP16=False,verbose=False,dynamic_input=False,batch_size=1): def get_engine(): EXPLICIT_BATCH = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) # with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network,builder.create_builder_config() as config, trt.OnnxParser(network,TRT_LOGGER) as parser: with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, builder.create_builder_config() as config,\ trt.OnnxParser(network,TRT_LOGGER) as parser: # Workspace size is the maximum amount of memory available to the builder while building an engine. #builder.max_workspace_size = 6 << 30 # 6G config.max_workspace_size = (1 << 30) #for trt8 config.max_batch_size = batch_size #for trt8 #builder.max_batch_size = batch_size if FP16: print("[INFO] Open FP16 Mode!") config.set_flag(tensorrt.BuilderFlag.FP16) # for trt8 #builder.fp16_mode = True #trt7 with open(model_file, 'rb') as model: parser.parse(model.read()) if verbose: print(">"*50) for error in range(parser.num_errors): print(parser.get_error(error)) network.get_input(0).shape = [ batch_size, 3, 800, 800 ] if dynamic_input: profile = builder.create_optimization_profile(); profile.set_shape("inputs", (1,3,800,800), (8,3,800,800), (64,3,800,800)) config.add_optimization_profile(profile) # builder engine #engine = builder.build_cuda_engine(network) #trt 7 engine = builder.build_engine(network, config) #trt8 print("[INFO] Completed creating Engine!") with open(engine_file, "wb") as f: f.write(engine.serialize()) return engine if os.path.exists(engine_file): # If a serialized engine exists, use it instead of building an engine. print("[INFO] Reading engine from file {}".format(engine_file)) with open(engine_file, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime: return runtime.deserialize_cuda_engine(f.read()) else: return get_engine() # int8 quant def build_engine_onnx_v2(onnx_file_path="", engine_file_path="",fp16_mode=False, int8_mode=False, \ max_batch_size=1,calibration_stream=None, calibration_table_path="", save_engine=False): """Attempts to load a serialized engine if available, otherwise builds a new TensorRT engine and saves it.""" def build_engine(max_batch_size, save_engine): """Takes an ONNX file and creates a TensorRT engine to run inference with""" with trt.Builder(TRT_LOGGER) as builder, builder.create_network(1) as network,\ builder.create_builder_config() as config,trt.OnnxParser(network, TRT_LOGGER) as parser: # parse onnx model file if not os.path.exists(onnx_file_path): quit(f'[Error]ONNX file {onnx_file_path} not found') print(f'[INFO] Loading ONNX file from path {onnx_file_path}...') with open(onnx_file_path, 'rb') as model: print('[INFO] Beginning ONNX file parsing') parser.parse(model.read()) assert network.num_layers > 0, '[Error] Failed to parse ONNX model. \ Please check if the ONNX model is compatible ' print('[INFO] Completed parsing of ONNX file') print(f'[INFO] Building an engine from file {onnx_file_path}; this may take a while...') # build trt engine # config.max_workspace_size = 2 << 30 # 2GB builder.max_batch_size = max_batch_size config.max_workspace_size = 2 << 30 # 2GB if fp16_mode: config.set_flag(trt.BuilderFlag.FP16) if int8_mode: #builder.int8_mode = int8_mode config.set_flag(trt.BuilderFlag.INT8) assert calibration_stream, '[Error] a calibration_stream should be provided for int8 mode' config.int8_calibrator = Calibrator(calibration_stream, calibration_table_path) # builder.int8_calibrator = Calibrator(calibration_stream, calibration_table_path) print('[INFO] Int8 mode enabled') #engine = builder.build_cuda_engine(network) engine = builder.build_engine(network, config) if engine is None: print('[INFO] Failed to create the engine') return None print("[INFO] Completed creating the engine") if save_engine: with open(engine_file_path, "wb") as f: f.write(engine.serialize()) return engine if os.path.exists(engine_file_path): # If a serialized engine exists, load it instead of building a new one. print(f"[INFO] Reading engine from file {engine_file_path}") with open(engine_file_path, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime: return runtime.deserialize_cuda_engine(f.read()) else: return build_engine(max_batch_size, save_engine)
[((1002, 1014), 'tensorrt.Logger', 'trt.Logger', ([], {}), '()\n', (1012, 1014), True, 'import tensorrt as trt\n'), ((1462, 1475), 'pycuda.driver.Stream', 'cuda.Stream', ([], {}), '()\n', (1473, 1475), True, 'import pycuda.driver as cuda\n'), ((2280, 2293), 'pycuda.driver.Stream', 'cuda.Stream', ([], {}), '()\n', (2291, 2293), True, 'import pycuda.driver as cuda\n'), ((5661, 5688), 'os.path.exists', 'os.path.exists', (['engine_file'], {}), '(engine_file)\n', (5675, 5688), False, 'import sys, os\n'), ((8653, 8685), 'os.path.exists', 'os.path.exists', (['engine_file_path'], {}), '(engine_file_path)\n', (8667, 8685), False, 'import sys, os\n'), ((1723, 1757), 'pycuda.driver.pagelocked_empty', 'cuda.pagelocked_empty', (['size', 'dtype'], {}), '(size, dtype)\n', (1744, 1757), True, 'import pycuda.driver as cuda\n'), ((1779, 1810), 'pycuda.driver.mem_alloc', 'cuda.mem_alloc', (['host_mem.nbytes'], {}), '(host_mem.nbytes)\n', (1793, 1810), True, 'import pycuda.driver as cuda\n'), ((2530, 2564), 'pycuda.driver.pagelocked_empty', 'cuda.pagelocked_empty', (['size', 'dtype'], {}), '(size, dtype)\n', (2551, 2564), True, 'import pycuda.driver as cuda\n'), ((2586, 2617), 'pycuda.driver.mem_alloc', 'cuda.mem_alloc', (['host_mem.nbytes'], {}), '(host_mem.nbytes)\n', (2600, 2617), True, 'import pycuda.driver as cuda\n'), ((3141, 3193), 'pycuda.driver.memcpy_htod_async', 'cuda.memcpy_htod_async', (['inp.device', 'inp.host', 'stream'], {}), '(inp.device, inp.host, stream)\n', (3163, 3193), True, 'import pycuda.driver as cuda\n'), ((3363, 3415), 'pycuda.driver.memcpy_dtoh_async', 'cuda.memcpy_dtoh_async', (['out.host', 'out.device', 'stream'], {}), '(out.host, out.device, stream)\n', (3385, 3415), True, 'import pycuda.driver as cuda\n'), ((4030, 4053), 'tensorrt.Builder', 'trt.Builder', (['TRT_LOGGER'], {}), '(TRT_LOGGER)\n', (4041, 4053), True, 'import tensorrt as trt\n'), ((4173, 4208), 'tensorrt.OnnxParser', 'trt.OnnxParser', (['network', 'TRT_LOGGER'], {}), '(network, TRT_LOGGER)\n', (4187, 4208), True, 'import tensorrt as trt\n'), ((5884, 5907), 'tensorrt.Runtime', 'trt.Runtime', (['TRT_LOGGER'], {}), '(TRT_LOGGER)\n', (5895, 5907), True, 'import tensorrt as trt\n'), ((6501, 6524), 'tensorrt.Builder', 'trt.Builder', (['TRT_LOGGER'], {}), '(TRT_LOGGER)\n', (6512, 6524), True, 'import tensorrt as trt\n'), ((6634, 6669), 'tensorrt.OnnxParser', 'trt.OnnxParser', (['network', 'TRT_LOGGER'], {}), '(network, TRT_LOGGER)\n', (6648, 6669), True, 'import tensorrt as trt\n'), ((8884, 8907), 'tensorrt.Runtime', 'trt.Runtime', (['TRT_LOGGER'], {}), '(TRT_LOGGER)\n', (8895, 8907), True, 'import tensorrt as trt\n'), ((6749, 6779), 'os.path.exists', 'os.path.exists', (['onnx_file_path'], {}), '(onnx_file_path)\n', (6763, 6779), False, 'import sys, os\n')]
inpanel/inpanel-desktop
src/init.py
bff4a6accdf8a2976c722adc65f3fa2fe6650448
#!/usr/bin/env python3 # -*- coding:utf-8-*- import tkinter.messagebox from tkinter import Button, Label, Tk from utils.functions import set_window_center from utils.sqlite_helper import DBHelper from inpanel import App class InitWindow(Tk): """初始化窗口""" def __init__(self): Tk.__init__(self) self.title("初始化数据") set_window_center(self, 300, 180) self.resizable(False, False) self.win_success = None # 初始化成功的提示窗口 self.init_page() def init_page(self): """加载控件""" btn_1 = Button(self, text="初始化数据库", command=self.do_init_db) btn_1.pack(expand="yes", padx=10, pady=10, ipadx=5, ipady=5) def do_init_db(self): """初始化""" db_helper = DBHelper() db_helper.reset_database() db_helper.create_database() try: tmp = db_helper.insert_user("admin", "admin") # 默认用户 tmp2 = db_helper.insert_content_by_username( "admin", "Hello World !", "源码仓库地址:https://github.com/doudoudzj/tkinter-app", "github", ) tmp3 = db_helper.get_content_by_username("admin") print("添加用户admin:", tmp) print("添加内容:", tmp2) print("查询内容:", tmp3) self.do_success() self.destroy() except KeyError: print(KeyError) self.do_failed() def do_failed(self): """是否重试""" res = tkinter.messagebox.askretrycancel('提示', '初始化失败,是否重试?', parent=self) if res is True: self.do_init_db() elif res is False: self.destroy() def do_success(self): """初始化成功弹窗""" self.win_success = Tk() self.win_success.title("初始化成功") set_window_center(self.win_success, 250, 150) self.win_success.resizable(False, False) msg = Label(self.win_success, text="初始化成功") msg.pack(expand="yes", fill="both") btn = Button(self.win_success, text="确定", command=self.quit) btn.pack(side="right", padx=10, pady=10, ipadx=5, ipady=5) btn_open_app = Button(self.win_success, text="启动程序", command=self.open_app) btn_open_app.pack(side="right", padx=10, pady=10, ipadx=5, ipady=5) def open_app(self): """打开应用程序""" self.quit() self.win_success.destroy() self.win_success.quit() App() if __name__ == "__main__": APP_INIT = InitWindow() APP_INIT.mainloop()
[((295, 312), 'tkinter.Tk.__init__', 'Tk.__init__', (['self'], {}), '(self)\n', (306, 312), False, 'from tkinter import Button, Label, Tk\n'), ((349, 382), 'utils.functions.set_window_center', 'set_window_center', (['self', '(300)', '(180)'], {}), '(self, 300, 180)\n', (366, 382), False, 'from utils.functions import set_window_center\n'), ((551, 603), 'tkinter.Button', 'Button', (['self'], {'text': '"""初始化数据库"""', 'command': 'self.do_init_db'}), "(self, text='初始化数据库', command=self.do_init_db)\n", (557, 603), False, 'from tkinter import Button, Label, Tk\n'), ((738, 748), 'utils.sqlite_helper.DBHelper', 'DBHelper', ([], {}), '()\n', (746, 748), False, 'from utils.sqlite_helper import DBHelper\n'), ((1736, 1740), 'tkinter.Tk', 'Tk', ([], {}), '()\n', (1738, 1740), False, 'from tkinter import Button, Label, Tk\n'), ((1789, 1834), 'utils.functions.set_window_center', 'set_window_center', (['self.win_success', '(250)', '(150)'], {}), '(self.win_success, 250, 150)\n', (1806, 1834), False, 'from utils.functions import set_window_center\n'), ((1898, 1935), 'tkinter.Label', 'Label', (['self.win_success'], {'text': '"""初始化成功"""'}), "(self.win_success, text='初始化成功')\n", (1903, 1935), False, 'from tkinter import Button, Label, Tk\n'), ((1995, 2049), 'tkinter.Button', 'Button', (['self.win_success'], {'text': '"""确定"""', 'command': 'self.quit'}), "(self.win_success, text='确定', command=self.quit)\n", (2001, 2049), False, 'from tkinter import Button, Label, Tk\n'), ((2140, 2200), 'tkinter.Button', 'Button', (['self.win_success'], {'text': '"""启动程序"""', 'command': 'self.open_app'}), "(self.win_success, text='启动程序', command=self.open_app)\n", (2146, 2200), False, 'from tkinter import Button, Label, Tk\n'), ((2419, 2424), 'inpanel.App', 'App', ([], {}), '()\n', (2422, 2424), False, 'from inpanel import App\n')]
roscopecoltran/SniperKit-Core
Toolkits/CMake/hunter/packages/sugar/python/sugar/sugar_warnings_wiki_table_generator.py
4600dffe1cddff438b948b6c22f586d052971e04
#!/usr/bin/env python3 # Copyright (c) 2014, Ruslan Baratov # All rights reserved. """ * Wiki table for `leathers` C++ project Expected format: ### Main table Name | Clang | GCC | MSVC | -----------------------------|----------|----------|------| static-ctor-not-thread-safe | *no* | *no* | 4640 | switch | **same** | **same** | 4062 | switch-enum | **same** | **same** | 4061 | ### Xcode/Clang table Clang | Xcode | Objective-C | -----------------------|--------------------------------|-------------| bool-conversion | CLANG_WARN_BOOL_CONVERSION | no | c++11-extensions | CLANG_WARN_CXX0X_EXTENSIONS | no | strict-selector-match | GCC_WARN_STRICT_SELECTOR_MATCH | yes | undeclared-selector | GCC_WARN_UNDECLARED_SELECTOR | yes | """ def generate(main_warnings_table): groups = set() for i in main_warnings_table: if i.group != "": groups.add(i.group) wiki_file = open("wiki-table.txt", "w") generate_main_table(main_warnings_table, wiki_file) for group in groups: generate_group_table(main_warnings_table, wiki_file, group) generate_xcode_table(main_warnings_table, wiki_file) def generate_main_table(main_warnings_table, wiki_file): head_name = "Name" head_clang = "Clang" head_gcc = "GCC" head_msvc = "MSVC" def calc_max(head, visitor): max_len = len(head) for x in main_warnings_table: cur_len = visitor(x) if cur_len > max_len: max_len = cur_len return max_len + 2 def name_visitor(table_entry): if table_entry.group != "": return 0 return len(table_entry.warning_name) def clang_visitor(table_entry): if table_entry.group != "": return 0 return len(table_entry.clang.wiki_entry(table_entry.warning_name)) def gcc_visitor(table_entry): if table_entry.group != "": return 0 return len(table_entry.gcc.wiki_entry(table_entry.warning_name)) def msvc_visitor(table_entry): if table_entry.group != "": return 0 return len(table_entry.msvc.wiki_entry(table_entry.warning_name)) max_name = calc_max(head_name, name_visitor) max_clang = calc_max(head_clang, clang_visitor) max_gcc = calc_max(head_gcc, gcc_visitor) max_msvc = calc_max(head_msvc, msvc_visitor) def fill_string(name, max_name): result = " " + name + " "; assert(max_name >= len(result)) left = max_name - len(result) return result + " " * left wiki_file.write("### Main table\n\n") s = "{}|{}|{}|{}|\n".format( fill_string(head_name, max_name), fill_string(head_clang, max_clang), fill_string(head_gcc, max_gcc), fill_string(head_msvc, max_msvc), ) wiki_file.write(s) s = "{}|{}|{}|{}|\n".format( '-' * max_name, '-' * max_clang, '-' * max_gcc, '-' * max_msvc, ) wiki_file.write(s) for entry in main_warnings_table: if entry.group != "": continue s = "{}|{}|{}|{}|\n".format( fill_string(entry.warning_name, max_name), fill_string(entry.clang.wiki_entry(entry.warning_name), max_clang), fill_string(entry.gcc.wiki_entry(entry.warning_name), max_gcc), fill_string(entry.msvc.wiki_entry(entry.warning_name), max_msvc), ) wiki_file.write(s) def generate_group_table(main_warnings_table, wiki_file, group): head_name = "Name" head_clang = "Clang" head_gcc = "GCC" head_msvc = "MSVC" def calc_max(head, visitor): max_len = len(head) for x in main_warnings_table: cur_len = visitor(x) if cur_len > max_len: max_len = cur_len return max_len + 2 def name_visitor(table_entry): if table_entry.group != group: return 0 return len(table_entry.warning_name) def clang_visitor(table_entry): if table_entry.group != group: return 0 return len(table_entry.clang.wiki_entry(table_entry.warning_name)) def gcc_visitor(table_entry): if table_entry.group != group: return 0 return len(table_entry.gcc.wiki_entry(table_entry.warning_name)) def msvc_visitor(table_entry): if table_entry.group != group: return 0 return len(table_entry.msvc.wiki_entry(table_entry.warning_name)) max_name = calc_max(head_name, name_visitor) max_clang = calc_max(head_clang, clang_visitor) max_gcc = calc_max(head_gcc, gcc_visitor) max_msvc = calc_max(head_msvc, msvc_visitor) def fill_string(name, max_name): result = " " + name + " "; assert(max_name >= len(result)) left = max_name - len(result) return result + " " * left wiki_file.write("\n### Table for group: `{}`\n\n".format(group)) s = "{}|{}|{}|{}|\n".format( fill_string(head_name, max_name), fill_string(head_clang, max_clang), fill_string(head_gcc, max_gcc), fill_string(head_msvc, max_msvc), ) wiki_file.write(s) s = "{}|{}|{}|{}|\n".format( '-' * max_name, '-' * max_clang, '-' * max_gcc, '-' * max_msvc, ) wiki_file.write(s) for entry in main_warnings_table: if entry.group != group: continue s = "{}|{}|{}|{}|\n".format( fill_string(entry.warning_name, max_name), fill_string(entry.clang.wiki_entry(entry.warning_name), max_clang), fill_string(entry.gcc.wiki_entry(entry.warning_name), max_gcc), fill_string(entry.msvc.wiki_entry(entry.warning_name), max_msvc), ) wiki_file.write(s) def generate_xcode_table(main_warnings_table, wiki_file): head_clang = "Clang" head_xcode = "Xcode" head_objc = "Objective-C" def calc_max(head, visitor): max_len = len(head) for x in main_warnings_table: cur_len = visitor(x) if cur_len > max_len: max_len = cur_len return max_len + 2 def clang_visitor(table_entry): if table_entry.xcode.option == "": return 0 return len(table_entry.clang.option) def xcode_visitor(table_entry): if table_entry.xcode.option == "": return 0 return len(table_entry.xcode.option) def objc_visitor(table_entry): if table_entry.xcode.option == "": return 0 if table_entry.objc: return 3 # "yes" else: return 2 # "no" max_clang = calc_max(head_clang, clang_visitor) max_xcode = calc_max(head_xcode, xcode_visitor) max_objc = calc_max(head_objc, objc_visitor) def fill_string(name, max_name): result = " " + name + " "; assert(max_name >= len(result)) left = max_name - len(result) return result + " " * left wiki_file.write("\n\n### Xcode/Clang table\n\n") s = "{}|{}|{}|\n".format( fill_string(head_clang, max_clang), fill_string(head_xcode, max_xcode), fill_string(head_objc, max_objc), ) wiki_file.write(s) s = "{}|{}|{}|\n".format( '-' * max_clang, '-' * max_xcode, '-' * max_objc, ) wiki_file.write(s) done_list = [] for entry in main_warnings_table: if entry.xcode.option == "": continue if entry.clang.option in done_list: continue done_list.append(entry.clang.option) if entry.objc: objc = "yes" else: objc = "no" s = "{}|{}|{}|\n".format( fill_string(entry.clang.option, max_clang), fill_string(entry.xcode.option, max_xcode), fill_string(objc, max_objc), ) wiki_file.write(s)
[]
armando-migliaccio/neutron-1
neutron/plugins/ofagent/agent/ports.py
e31861c15bc73e65a7c22212df2a56f9e45aa0e4
# Copyright (C) 2014 VA Linux Systems Japan K.K. # Copyright (C) 2014 YAMAMOTO Takashi <yamamoto at valinux co jp> # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. class OFPort(object): def __init__(self, port_name, ofport): self.port_name = port_name self.ofport = ofport @classmethod def from_ofp_port(cls, ofp_port): """Convert from ryu OFPPort.""" return cls(port_name=ofp_port.name, ofport=ofp_port.port_no) PORT_NAME_LEN = 14 PORT_NAME_PREFIXES = [ "tap", # common cases, including ovs_use_veth=True "qvo", # nova hybrid interface driver "qr-", # l3-agent INTERNAL_DEV_PREFIX (ovs_use_veth=False) "qg-", # l3-agent EXTERNAL_DEV_PREFIX (ovs_use_veth=False) ] def _is_neutron_port(name): """Return True if the port name looks like a neutron port.""" if len(name) != PORT_NAME_LEN: return False for pref in PORT_NAME_PREFIXES: if name.startswith(pref): return True return False def get_normalized_port_name(interface_id): """Convert from neutron device id (uuid) to "normalized" port name. This needs to be synced with ML2 plugin's _device_to_port_id(). An assumption: The switch uses an OS's interface name as the corresponding OpenFlow port name. NOTE(yamamoto): While it's true for Open vSwitch, it isn't necessarily true everywhere. For example, LINC uses something like "LogicalSwitch0-Port2". NOTE(yamamoto): The actual prefix might be different. For example, with the hybrid interface driver, it's "qvo". However, we always use "tap" prefix throughout the agent and plugin for simplicity. Some care should be taken when talking to the switch. """ return ("tap" + interface_id)[0:PORT_NAME_LEN] def _normalize_port_name(name): """Normalize port name. See comments in _get_ofport_name. """ for pref in PORT_NAME_PREFIXES: if name.startswith(pref): return "tap" + name[len(pref):] return name class Port(OFPort): def __init__(self, *args, **kwargs): super(Port, self).__init__(*args, **kwargs) self.vif_mac = None def is_neutron_port(self): """Return True if the port looks like a neutron port.""" return _is_neutron_port(self.port_name) def normalized_port_name(self): return _normalize_port_name(self.port_name)
[]
damaainan/html2md
pdf/wechat/step.py
0d241381e716d64bbcacad013c108857e815bb15
# -*- coding=utf-8 -*- from zwechathihu.mypdf import GenPdf from db.mysqlite import simpleToolSql data=[{"url": "http://mp.weixin.qq.com/s?__biz=MzAxODQxMDM0Mw==&mid=2247484852&idx=1&sn=85b50b8b0470bb4897e517955f4e5002&chksm=9bd7fbbcaca072aa75e2a241064a403fde1e579d57ab846cd8537a54253ceb2c8b93cc3bf38e&scene=21#wechat_redirect", "name": "001学习算法和刷题的框架思维"} ] # path = '***/' || '' # for val in data: # # print(val["url"]) # # print(val["name"]) # pdf = GenPdf() # title = val["name"].replace("/", "-") # print(title) # pdf.deal(val["url"], title, '') # sql = simpleToolSql("url") # # sql.execute("insert into wx_article (id,name,age) values (?,?,?);",[(1,'abc',15),(2,'bca',16)]) # res = sql.query("select * from wx_article;") # print(res) # res = sql.query("select * from wx_article where id=?;",(3,)) # print(res) # sql.close() # 从 db 获取需要生成的url def getListByTitle(title:str): sql = simpleToolSql("url") res = sql.query("select * from wx_article where title="+title+";") print(res) sql.close() return res # 从 db 获取需要生成的url def getListFromSql(): sql = simpleToolSql("url") # res = sql.query("select * from wx_article where state=0;") res = sql.query("select * from wx_article;") print(res) sql.close() return res # 更新 db def updateUrl(id:int): sql = simpleToolSql("url") res = sql.execute("update wx_article set state=1 where id = ?;",(id,)) # 需要加逗号 https://blog.csdn.net/yimaoyingbi/article/details/104323701 print(res) sql.close() return def addUrl(): sql = simpleToolSql("url") sql.execute( "insert into wx_article (url,folder,title,state,turn,create_at,update_at) values (?,?,?,?,?,?);", [("http",'test',"01",0,1,"2020-12-03 09:38:25","2020-12-03 09:38:25")] ) res = sql.query("select * from wx_article;") print(res) sql.close() return # addUrl() updateUrl(1) res = getListFromSql() print(res)
[((918, 938), 'db.mysqlite.simpleToolSql', 'simpleToolSql', (['"""url"""'], {}), "('url')\n", (931, 938), False, 'from db.mysqlite import simpleToolSql\n'), ((1107, 1127), 'db.mysqlite.simpleToolSql', 'simpleToolSql', (['"""url"""'], {}), "('url')\n", (1120, 1127), False, 'from db.mysqlite import simpleToolSql\n'), ((1330, 1350), 'db.mysqlite.simpleToolSql', 'simpleToolSql', (['"""url"""'], {}), "('url')\n", (1343, 1350), False, 'from db.mysqlite import simpleToolSql\n'), ((1567, 1587), 'db.mysqlite.simpleToolSql', 'simpleToolSql', (['"""url"""'], {}), "('url')\n", (1580, 1587), False, 'from db.mysqlite import simpleToolSql\n')]
ZhuoZhuoCrayon/bk-nodeman
pipeline/validators/handlers.py
76cb71fcc971c2a0c2be161fcbd6b019d4a7a8ab
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2019 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from django.dispatch import receiver from pipeline.core.flow.event import EndEvent from pipeline.core.flow.signals import post_new_end_event_register from pipeline.validators import rules @receiver(post_new_end_event_register, sender=EndEvent) def post_new_end_event_register_handler(sender, node_type, node_cls, **kwargs): rules.NODE_RULES[node_type] = rules.SINK_RULE rules.FLOW_NODES_WITHOUT_STARTEVENT.append(node_type)
[((925, 979), 'django.dispatch.receiver', 'receiver', (['post_new_end_event_register'], {'sender': 'EndEvent'}), '(post_new_end_event_register, sender=EndEvent)\n', (933, 979), False, 'from django.dispatch import receiver\n'), ((1114, 1167), 'pipeline.validators.rules.FLOW_NODES_WITHOUT_STARTEVENT.append', 'rules.FLOW_NODES_WITHOUT_STARTEVENT.append', (['node_type'], {}), '(node_type)\n', (1156, 1167), False, 'from pipeline.validators import rules\n')]
jetbrains-academy/Python-Libraries-NumPy
NumPy/Array Basics/Random Shuffle/tests/test_task.py
7ce0f2d08f87502d5d97bbc6921f0566184d4ebb
import unittest import numpy as np from task import arr, permuted_2d, fully_random class TestCase(unittest.TestCase): def test_shape(self): self.assertEqual((5, 20), arr.shape, msg="Wrong shape of the array 'arr'.") self.assertEqual((5, 20), permuted_2d.shape, msg="Wrong shape of the array 'permuted_2d'.") self.assertEqual((5, 20), fully_random.shape, msg="Wrong shape of the array 'fully_random'.") def test_arr(self): for i in arr: # This test checks if in each row the minimum element goes first and maximum - last. self.assertTrue(i[0] == min(i) and i[-1] == max(i), msg="'arr' should be shuffled along the 0th axis.") def test_two_d(self): for i in permuted_2d: # This test checks that differences between all neighboring elements in rows of the array # are not equal to 1 (in non-shuffled rows they would be). self.assertFalse(all([(x - i[i.tolist().index(x) - 1]) == 1 for x in i if i.tolist().index(x) > 0]), msg="'permuted_2d' should be shuffled along the 1st axis.") def test_random(self): # This test checks if elements were also randomized between the rows. for i in fully_random: self.assertTrue(max(i) - min(i) > 19, "'fully_random' needs to be fully shuffled.")
[]
lausitzer/plugin.video.mediathekview
resources/lib/channelui.py
7f2086240625b9b4f8d50af114f8f47654346ed1
# -*- coding: utf-8 -*- """ The channel model UI module Copyright 2017-2018, Leo Moll and Dominik Schlösser SPDX-License-Identifier: MIT """ # pylint: disable=import-error import os import xbmcgui import xbmcplugin import resources.lib.mvutils as mvutils from resources.lib.channel import Channel class ChannelUI(Channel): """ The channel model view class Args: plugin(MediathekView): the plugin object sortmethods(array, optional): an array of sort methods for the directory representation. Default is `[ xbmcplugin.SORT_METHOD_TITLE ]` nextdir(str, optional): """ def __init__(self, plugin, sortmethods=None, nextdir='initial'): super(ChannelUI, self).__init__() self.plugin = plugin self.handle = plugin.addon_handle self.nextdir = nextdir self.sortmethods = sortmethods if sortmethods is not None else [ xbmcplugin.SORT_METHOD_TITLE] self.count = 0 def begin(self): """ Begin a directory containing channels """ for method in self.sortmethods: xbmcplugin.addSortMethod(self.handle, method) def add(self, altname=None): """ Add the current entry to the directory Args: altname(str, optional): alternative name for the entry """ resultingname = self.channel if self.count == 0 else '%s (%d)' % ( self.channel, self.count, ) list_item = xbmcgui.ListItem( label=resultingname if altname is None else altname) icon = os.path.join( self.plugin.path, 'resources', 'icons', self.channel.lower() + '-m.png' ) list_item.setArt({ 'thumb': icon, 'icon': icon }) info_labels = { 'title': resultingname, 'sorttitle': resultingname.lower() } list_item.setInfo(type='video', infoLabels=info_labels) xbmcplugin.addDirectoryItem( handle=self.handle, url=mvutils.build_url({ 'mode': self.nextdir, 'channel': self.channelid }), listitem=list_item, isFolder=True ) def end(self): """ Finish a directory containing channels """ xbmcplugin.endOfDirectory(self.handle)
[((1503, 1572), 'xbmcgui.ListItem', 'xbmcgui.ListItem', ([], {'label': '(resultingname if altname is None else altname)'}), '(label=resultingname if altname is None else altname)\n', (1519, 1572), False, 'import xbmcgui\n'), ((2370, 2408), 'xbmcplugin.endOfDirectory', 'xbmcplugin.endOfDirectory', (['self.handle'], {}), '(self.handle)\n', (2395, 2408), False, 'import xbmcplugin\n'), ((1135, 1180), 'xbmcplugin.addSortMethod', 'xbmcplugin.addSortMethod', (['self.handle', 'method'], {}), '(self.handle, method)\n', (1159, 1180), False, 'import xbmcplugin\n'), ((2103, 2171), 'resources.lib.mvutils.build_url', 'mvutils.build_url', (["{'mode': self.nextdir, 'channel': self.channelid}"], {}), "({'mode': self.nextdir, 'channel': self.channelid})\n", (2120, 2171), True, 'import resources.lib.mvutils as mvutils\n')]
smk762/Dragonhound
getconf.py
7cbaed2779afec47fcbf2481d0dae61daa4c11da
#!/usr/bin/env python3 #Credit to @Alright for the RPCs import re import os import requests import json import platform # define function that fetchs rpc creds from .conf def def_credentials(chain): operating_system = platform.system() if operating_system == 'Darwin': ac_dir = os.environ['HOME'] + '/Library/Application Support/Komodo' elif operating_system == 'Linux': ac_dir = os.environ['HOME'] + '/.komodo' elif operating_system == 'Win64': ac_dir = "dont have windows machine now to test" # define config file path if chain == 'KMD': coin_config_file = str(ac_dir + '/komodo.conf') else: coin_config_file = str(ac_dir + '/' + chain + '/' + chain + '.conf') #define rpc creds with open(coin_config_file, 'r') as f: #print("Reading config file for credentials:", coin_config_file) for line in f: l = line.rstrip() if re.search('rpcuser', l): rpcuser = l.replace('rpcuser=', '') elif re.search('rpcpassword', l): rpcpassword = l.replace('rpcpassword=', '') elif re.search('rpcport', l): rpcport = l.replace('rpcport=', '') return('http://' + rpcuser + ':' + rpcpassword + '@127.0.0.1:' + rpcport) # define function that posts json data def post_rpc(url, payload, auth=None): try: r = requests.post(url, data=json.dumps(payload), auth=auth) return(json.loads(r.text)) except Exception as e: raise Exception("Couldn't connect to " + url + ": ", e) # Return current -pubkey= def getpubkey_rpc(chain): getinfo_payload = { "jsonrpc": "1.0", "id": "python", "method": "getinfo", "params": []} getinfo_result = post_rpc(def_credentials(chain), getinfo_payload) return(getinfo_result['result']['pubkey']) # return latest batontxid from all publishers def get_latest_batontxids(chain, oracletxid): oraclesinfo_result = oraclesinfo_rpc(chain, oracletxid) latest_batontxids = {} # fill "latest_batontxids" dictionary with publisher:batontxid data for i in oraclesinfo_result['registered']: latest_batontxids[i['publisher']] = i['batontxid'] return(latest_batontxids) #VANILLA RPC def sendrawtx_rpc(chain, rawtx): sendrawtx_payload = { "jsonrpc": "1.0", "id": "python", "method": "sendrawtransaction", "params": [rawtx]} #rpcurl = def_credentials(chain) return(post_rpc(def_credentials(chain), sendrawtx_payload)) def signmessage_rpc(chain, address, message): signmessage_payload = { "jsonrpc": "1.0", "id": "python", "method": "signmessage", "params": [ address, message ] } signmessage_result = post_rpc(def_credentials(chain), signmessage_payload) return(signmessage_result['result']) def verifymessage_rpc(chain, address, signature, message): verifymessage_payload = { "jsonrpc": "1.0", "id": "python", "method": "verifymessage", "params": [ address, signature, message ] } verifymessage_result = post_rpc(def_credentials(chain), verifymessage_payload) return(verifymessage_result['result']) def kvsearch_rpc(chain, key): kvsearch_payload = { "jsonrpc": "1.0", "id": "python", "method": "kvsearch", "params": [ key ] } kvsearch_result = post_rpc(def_credentials(chain), kvsearch_payload) return(kvsearch_result['result']) def kvupdate_rpc(chain, key, value, days, password): # create dynamic oraclessamples payload kvupdate_payload = { "jsonrpc": "1.0", "id": "python", "method": "kvupdate", "params": [ key, value, str(days), password]} # make kvupdate rpc call kvupdate_result = post_rpc(def_credentials(chain), kvupdate_payload) return(kvupdate_result) def oraclesdata_rpc(chain, oracletxid, hexstr): oraclesdata_payload = { "jsonrpc": "1.0", "id": "python", "method": "oraclesdata", "params": [ oracletxid, hexstr]} oraclesdata_result = post_rpc(def_credentials(chain), oraclesdata_payload) return(oraclesdata_result['result']) def oraclescreate_rpc(chain, name, description, oracle_type): oraclescreate_payload = { "jsonrpc": "1.0", "id": "python", "method": "oraclescreate", "params": [ name, description, oracle_type]} oraclescreate_result = post_rpc(def_credentials(chain), oraclescreate_payload) return(oraclescreate_result['result']) def oraclesinfo_rpc(chain, oracletxid): oraclesinfo_payload = { "jsonrpc": "1.0", "id": "python", "method": "oraclesinfo", "params": [oracletxid]} oraclesinfo_result = post_rpc(def_credentials(chain), oraclesinfo_payload) return(oraclesinfo_result['result']) def oracleslist_rpc(chain): oracleslist_payload = { "jsonrpc": "1.0", "id": "python", "method": "oracleslist", "params": []} oracleslist_result = post_rpc(def_credentials(chain), oracleslist_payload) return(oracleslist_result['result']) def oraclessubscribe_rpc(chain, oracletxid, publisher, amount): oraclessubscribe_payload = { "jsonrpc": "1.0", "id": "python", "method": "oraclessubscribe", "params": [oracletxid, publisher, amount]} oraclessubscribe_result = post_rpc(def_credentials(chain), oraclessubscribe_payload) return(oraclessubscribe_result['result']) def oraclesregister_rpc(chain, oracletxid, datafee): oraclesregister_payload = { "jsonrpc": "1.0", "id": "python", "method": "oraclesregister", "params": [ oracletxid, str(datafee)]} oraclesregister_result = post_rpc(def_credentials(chain), oraclesregister_payload) return(oraclesregister_result['result']) def oraclessamples_rpc(chain, oracletxid, batonutxo, num): oraclessamples_payload = { "jsonrpc": "1.0", "id": "python", "method": "oraclessamples", "params": [ oracletxid, batonutxo, str(num)]} oraclessamples_result = post_rpc(def_credentials(chain), oraclessamples_payload) return(oraclessamples_result['result']) def getlastsegidstakes_rpc(chain, depth): oraclessubscribe_payload = { "jsonrpc": "1.0", "id": "python", "method": "oraclessubscribe", "params": [depth]} getlastsegidstakes_result = post_rpc(def_credentials(chain), oraclessubscribe_payload) return(getlastsegidstakes_result['result'])
[((225, 242), 'platform.system', 'platform.system', ([], {}), '()\n', (240, 242), False, 'import platform\n'), ((1466, 1484), 'json.loads', 'json.loads', (['r.text'], {}), '(r.text)\n', (1476, 1484), False, 'import json\n'), ((940, 963), 're.search', 're.search', (['"""rpcuser"""', 'l'], {}), "('rpcuser', l)\n", (949, 963), False, 'import re\n'), ((1034, 1061), 're.search', 're.search', (['"""rpcpassword"""', 'l'], {}), "('rpcpassword', l)\n", (1043, 1061), False, 'import re\n'), ((1419, 1438), 'json.dumps', 'json.dumps', (['payload'], {}), '(payload)\n', (1429, 1438), False, 'import json\n'), ((1140, 1163), 're.search', 're.search', (['"""rpcport"""', 'l'], {}), "('rpcport', l)\n", (1149, 1163), False, 'import re\n')]
orenyodfat/CWR-DataApi
cwr/parser/decoder/dictionary.py
f3b6ba8308c901b6ab87073c155c08e30692333c
# -*- coding: utf-8 -*- from cwr.acknowledgement import AcknowledgementRecord, MessageRecord from cwr.agreement import AgreementRecord, AgreementTerritoryRecord, \ InterestedPartyForAgreementRecord from cwr.group import Group, GroupHeader, GroupTrailer from cwr.info import AdditionalRelatedInfoRecord from cwr.parser.decoder.common import Decoder from cwr.interested_party import IPTerritoryOfControlRecord, Publisher, \ PublisherRecord, Writer, PublisherForWriterRecord, WriterRecord from cwr.non_roman_alphabet import NonRomanAlphabetAgreementPartyRecord, \ NonRomanAlphabetOtherWriterRecord, NonRomanAlphabetPerformanceDataRecord, \ NonRomanAlphabetPublisherNameRecord, NonRomanAlphabetTitleRecord, \ NonRomanAlphabetWorkRecord, NonRomanAlphabetWriterNameRecord from cwr.transmission import Transmission, TransmissionTrailer, \ TransmissionHeader from cwr.work import RecordingDetailRecord, ComponentRecord, \ AlternateTitleRecord, AuthoredWorkRecord, InstrumentationDetailRecord, \ InstrumentationSummaryRecord, PerformingArtistRecord, WorkOriginRecord, \ WorkRecord from cwr.file import CWRFile, FileTag from cwr.other import AVIKey, VISAN from cwr.table_value import MediaTypeValue, TableValue, InstrumentValue """ Classes for transforming dictionaries into instances of the CWR model. There is a decoder for each of the model classes, and all of them expect a dictionary having at least one key for each field, having the same name as the field, which will refer to a valid value. As said, the values on the dictionary should be valid values, for example if an integer is expected, then the dictionary contains an integer. The values contained in the dictionary entries should not need to be parsed. These decoders are useful for handling JSON transmissions or Mongo databases. """ __author__ = 'Bernardo Martínez Garrido' __license__ = 'MIT' __status__ = 'Development' class TransactionRecordDictionaryDecoder(Decoder): def __init__(self): super(TransactionRecordDictionaryDecoder, self).__init__() self._decoders = {} self._decoders['ACK'] = AcknowledgementDictionaryDecoder() self._decoders['AGR'] = AgreementDictionaryDecoder() self._decoders['TER'] = AgreementTerritoryDictionaryDecoder() self._decoders['ARI'] = AdditionalRelatedInformationDictionaryDecoder() self._decoders['ALT'] = AlternateTitleDictionaryDecoder() self._decoders['EWT'] = AuthoredWorkDictionaryDecoder() self._decoders['VER'] = AuthoredWorkDictionaryDecoder() self._decoders['COM'] = ComponentDictionaryDecoder() self._decoders['IPA'] = InterestedPartyForAgreementDictionaryDecoder() self._decoders['SPT'] = IPTerritoryOfControlDictionaryDecoder() self._decoders['SWT'] = IPTerritoryOfControlDictionaryDecoder() self._decoders['IND'] = InstrumentationDetailDictionaryDecoder() self._decoders['INS'] = InstrumentationSummaryDictionaryDecoder() self._decoders['MSG'] = MessageDictionaryDecoder() self._decoders['PER'] = PerformingArtistDictionaryDecoder() self._decoders['PWR'] = PublisherForWriterDictionaryDecoder() self._decoders['REC'] = RecordingDetailDictionaryDecoder() self._decoders['EXC'] = WorkDictionaryDecoder() self._decoders['ISW'] = WorkDictionaryDecoder() self._decoders['NWR'] = WorkDictionaryDecoder() self._decoders['REV'] = WorkDictionaryDecoder() self._decoders['ORN'] = WorkOriginDictionaryDecoder() self._decoders['SWR'] = WriterRecordDictionaryDecoder() self._decoders['OWR'] = WriterRecordDictionaryDecoder() self._decoders['OWR'] = WriterRecordDictionaryDecoder() self._decoders[ 'NPA'] = NonRomanAlphabetAgreementPartyDictionaryDecoder() self._decoders['NOW'] = NonRomanAlphabetOtherWriterDictionaryDecoder() self._decoders[ 'NPR'] = NonRomanAlphabetPerformanceDataDictionaryDecoder() self._decoders['NPN'] = NonRomanAlphabetPublisherNameDictionaryDecoder() self._decoders['NAT'] = NonRomanAlphabetTitleDictionaryDecoder() self._decoders['NET'] = NonRomanAlphabetWorkDictionaryDecoder() self._decoders['NCT'] = NonRomanAlphabetWorkDictionaryDecoder() self._decoders['NVT'] = NonRomanAlphabetWorkDictionaryDecoder() self._decoders['NWN'] = NonRomanAlphabetWriterNameDictionaryDecoder() self._decoders['SPU'] = PublisherRecordDictionaryDecoder() self._decoders['OPU'] = PublisherRecordDictionaryDecoder() def decode(self, data): return self._decoders[data['record_type']].decode(data) class AcknowledgementDictionaryDecoder(Decoder): def __init__(self): super(AcknowledgementDictionaryDecoder, self).__init__() def decode(self, data): return AcknowledgementRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data[ 'record_sequence_n'], original_group_id=data[ 'original_group_id'], original_transaction_sequence_n=data[ 'original_transaction_sequence_n'], original_transaction_type=data[ 'original_transaction_type'], transaction_status=data[ 'transaction_status'], creation_date_time=data[ 'creation_date_time'], processing_date=data['processing_date'], creation_title=data['creation_title'], submitter_creation_n=data[ 'submitter_creation_n'], recipient_creation_n=data[ 'recipient_creation_n']) class AgreementDictionaryDecoder(Decoder): def __init__(self): super(AgreementDictionaryDecoder, self).__init__() def decode(self, data): return AgreementRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], submitter_agreement_n=data[ 'submitter_agreement_n'], agreement_type=data['agreement_type'], agreement_start_date=data[ 'agreement_start_date'], prior_royalty_status=data[ 'prior_royalty_status'], post_term_collection_status=data[ 'post_term_collection_status'], number_of_works=data['number_of_works'], society_assigned_agreement_n=data[ 'society_assigned_agreement_n'], international_standard_code=data[ 'international_standard_code'], sales_manufacture_clause=data[ 'sales_manufacture_clause'], agreement_end_date=data['agreement_end_date'], date_of_signature=data['date_of_signature'], retention_end_date=data['retention_end_date'], prior_royalty_start_date=data[ 'prior_royalty_start_date'], post_term_collection_end_date=data[ 'post_term_collection_end_date'], shares_change=data['shares_change'], advance_given=data['advance_given']) class AgreementTerritoryDictionaryDecoder(Decoder): def __init__(self): super(AgreementTerritoryDictionaryDecoder, self).__init__() def decode(self, data): return AgreementTerritoryRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data[ 'record_sequence_n'], tis_numeric_code=data[ 'tis_numeric_code'], inclusion_exclusion_indicator=data[ 'inclusion_exclusion_indicator']) class AdditionalRelatedInformationDictionaryDecoder(Decoder): def __init__(self): super(AdditionalRelatedInformationDictionaryDecoder, self).__init__() def decode(self, data): return AdditionalRelatedInfoRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data[ 'record_sequence_n'], society_n=data['society_n'], type_of_right=data['type_of_right'], work_n=data['work_n'], subject_code=data['subject_code'], note=data['note']) class AlternateTitleDictionaryDecoder(Decoder): def __init__(self): super(AlternateTitleDictionaryDecoder, self).__init__() def decode(self, data): return AlternateTitleRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], alternate_title=data['alternate_title'], title_type=data['title_type'], language_code=data['language_code']) class AuthoredWorkDictionaryDecoder(Decoder): def __init__(self, ipi_base_decoder=None): super(AuthoredWorkDictionaryDecoder, self).__init__() if ipi_base_decoder: self._ipi_base_decoder = ipi_base_decoder else: self._ipi_base_decoder = IPIBaseDictionaryDecoder() def decode(self, data): ipi_base_1 = self._ipi_base_decoder.decode(data[ 'writer_1_ipi_base_n']) ipi_base_2 = self._ipi_base_decoder.decode(data[ 'writer_2_ipi_base_n']) return AuthoredWorkRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], title=data['title'], submitter_work_n=data['submitter_work_n'], writer_1_first_name=data[ 'writer_1_first_name'], writer_1_last_name=data['writer_1_last_name'], writer_2_first_name=data[ 'writer_2_first_name'], writer_2_last_name=data['writer_2_last_name'], writer_1_ipi_base_n=ipi_base_1, writer_1_ipi_name_n=data[ 'writer_1_ipi_name_n'], writer_2_ipi_base_n=ipi_base_2, writer_2_ipi_name_n=data[ 'writer_2_ipi_name_n'], source=data['source'], language_code=data['language_code'], iswc=data['iswc']) class ComponentDictionaryDecoder(Decoder): def __init__(self, ipi_base_decoder=None): super(ComponentDictionaryDecoder, self).__init__() if ipi_base_decoder: self._ipi_base_decoder = ipi_base_decoder else: self._ipi_base_decoder = IPIBaseDictionaryDecoder() def decode(self, data): ipi_base_1 = self._ipi_base_decoder.decode(data['writer_1_ipi_base_n']) ipi_base_2 = self._ipi_base_decoder.decode(data['writer_2_ipi_base_n']) return ComponentRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], title=data['title'], submitter_work_n=data['submitter_work_n'], writer_1_last_name=data['writer_1_last_name'], writer_1_first_name=data['writer_1_first_name'], writer_2_last_name=data['writer_2_last_name'], writer_2_first_name=data['writer_2_first_name'], writer_1_ipi_base_n=ipi_base_1, writer_1_ipi_name_n=data['writer_1_ipi_name_n'], writer_2_ipi_base_n=ipi_base_2, writer_2_ipi_name_n=data['writer_2_ipi_name_n'], iswc=data['iswc'], duration=data['duration']) class GroupHeaderDictionaryDecoder(Decoder): def __init__(self): super(GroupHeaderDictionaryDecoder, self).__init__() def decode(self, data): return GroupHeader(record_type=data['record_type'], group_id=data['group_id'], transaction_type=data['transaction_type'], version_number=data['version_number'], batch_request_id=data['batch_request_id']) class GroupTrailerDictionaryDecoder(Decoder): def __init__(self): super(GroupTrailerDictionaryDecoder, self).__init__() def decode(self, data): total_monetary_value = None if 'total_monetary_value' in data: total_monetary_value = data['total_monetary_value'] currency_indicator = None if 'currency_indicator' in data: currency_indicator = data['currency_indicator'] return GroupTrailer(record_type=data['record_type'], group_id=data['group_id'], transaction_count=data['transaction_count'], record_count=data['record_count'], currency_indicator=currency_indicator, total_monetary_value=total_monetary_value, ) class InterestedPartyForAgreementDictionaryDecoder(Decoder): def __init__(self, ipi_base_decoder=None): super(InterestedPartyForAgreementDictionaryDecoder, self).__init__() if ipi_base_decoder: self._ipi_base_decoder = ipi_base_decoder else: self._ipi_base_decoder = IPIBaseDictionaryDecoder() def decode(self, data): ipi_base = self._ipi_base_decoder.decode(data['ipi_base_n']) return InterestedPartyForAgreementRecord( record_type=data['record_type'], transaction_sequence_n=data['transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], ip_n=data['ip_n'], ip_last_name=data['ip_last_name'], agreement_role_code=data['agreement_role_code'], ip_writer_first_name=data['ip_writer_first_name'], ipi_name_n=data['ipi_name_n'], ipi_base_n=ipi_base, pr_society=data['pr_society'], pr_share=data['pr_share'], mr_society=data['mr_society'], mr_share=data['mr_share'], sr_society=data['sr_society'], sr_share=data['sr_share']) class IPTerritoryOfControlDictionaryDecoder(Decoder): def __init__(self): super(IPTerritoryOfControlDictionaryDecoder, self).__init__() def decode(self, data): record = IPTerritoryOfControlRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data[ 'record_sequence_n'], ip_n=data['ip_n'], inclusion_exclusion_indicator=data[ 'inclusion_exclusion_indicator'], tis_numeric_code=data[ 'tis_numeric_code'], sequence_n=data['sequence_n'], pr_collection_share=data[ 'pr_collection_share'], mr_collection_share=data[ 'mr_collection_share'], shares_change=data['shares_change']) if 'sr_collection_share' in data: record.sr_collection_share = data['sr_collection_share'] return record class InstrumentationDetailDictionaryDecoder(Decoder): def __init__(self): super(InstrumentationDetailDictionaryDecoder, self).__init__() def decode(self, data): return InstrumentationDetailRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data[ 'record_sequence_n'], instrument_code=data[ 'instrument_code'], number_players=data[ 'number_players']) class InstrumentationSummaryDictionaryDecoder(Decoder): def __init__(self): super(InstrumentationSummaryDictionaryDecoder, self).__init__() def decode(self, data): return InstrumentationSummaryRecord( record_type=data['record_type'], transaction_sequence_n=data['transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], number_voices=data['number_voices'], standard_instrumentation_type=data['standard_instrumentation_type'], instrumentation_description=data['instrumentation_description']) class MessageDictionaryDecoder(Decoder): def __init__(self): super(MessageDictionaryDecoder, self).__init__() def decode(self, data): return MessageRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], message_type=data['message_type'], message_text=data['message_text'], original_record_sequence_n=data[ 'original_record_sequence_n'], message_record_type=data['message_record_type'], message_level=data['message_level'], validation_n=data['validation_n']) class PerformingArtistDictionaryDecoder(Decoder): def __init__(self, ipi_base_decoder=None): super(PerformingArtistDictionaryDecoder, self).__init__() if ipi_base_decoder: self._ipi_base_decoder = ipi_base_decoder else: self._ipi_base_decoder = IPIBaseDictionaryDecoder() def decode(self, data): ipi_base = None if 'performing_artist_ipi_base_n' in data: ipi_base = self._ipi_base_decoder.decode(data['performing_artist_ipi_base_n']) performing_artist_first_name = None if 'performing_artist_first_name' in data: performing_artist_first_name = data['performing_artist_first_name'] performing_artist_ipi_name_n = None if 'performing_artist_ipi_name_n' in data: performing_artist_ipi_name_n = data['performing_artist_ipi_name_n'] return PerformingArtistRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data[ 'record_sequence_n'], performing_artist_last_name=data[ 'performing_artist_last_name'], performing_artist_first_name=performing_artist_first_name, performing_artist_ipi_name_n=performing_artist_ipi_name_n, performing_artist_ipi_base_n=ipi_base) class PublisherForWriterDictionaryDecoder(Decoder): def __init__(self): super(PublisherForWriterDictionaryDecoder, self).__init__() def decode(self, data): publisher_name = None if 'publisher_name' in data: publisher_name = data['publisher_name'] return PublisherForWriterRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data[ 'record_sequence_n'], publisher_ip_n=data['publisher_ip_n'], publisher_name=publisher_name, writer_ip_n=data['writer_ip_n'], submitter_agreement_n=data[ 'submitter_agreement_n'], society_assigned_agreement_n=data[ 'society_assigned_agreement_n']) class RecordingDetailDictionaryDecoder(Decoder): def __init__(self): super(RecordingDetailDictionaryDecoder, self).__init__() def decode(self, data): media_type = None if 'media_type' in data: media_type = data['media_type'] return RecordingDetailRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data[ 'record_sequence_n'], first_release_date=data[ 'first_release_date'], first_release_duration=data[ 'first_release_duration'], first_album_title=data[ 'first_album_title'], first_album_label=data[ 'first_album_label'], first_release_catalog_n=data[ 'first_release_catalog_n'], ean=data['ean'], isrc=data['isrc'], recording_format=data['recording_format'], recording_technique=data[ 'recording_technique'], media_type=media_type) class FileDictionaryDecoder(Decoder): def __init__(self): super(FileDictionaryDecoder, self).__init__() self._tag_decoder = FileTagDictionaryDecoder() self._transmission_decoder = TransmissionDictionaryDecoder() def decode(self, data): tag = data['tag'] if isinstance(tag, dict): tag = self._tag_decoder.decode(tag) transmission = data['transmission'] if isinstance(transmission, dict): transmission = self._transmission_decoder.decode(transmission) return CWRFile(tag, transmission) class TransmissionDictionaryDecoder(Decoder): def __init__(self): super(TransmissionDictionaryDecoder, self).__init__() self._header_decoder = TransmissionHeaderDictionaryDecoder() self._trailer_decoder = TransmissionTrailerDictionaryDecoder() self._group_decoder = GroupDictionaryDecoder() def decode(self, data): header = data['header'] if isinstance(header, dict): header = self._header_decoder.decode(header) trailer = data['trailer'] if isinstance(trailer, dict): trailer = self._trailer_decoder.decode(trailer) groups = [] if len(data['groups']) > 0: if isinstance(data['groups'][0], dict): for group in data['groups']: groups.append(self._group_decoder.decode(group)) else: groups = data['groups'] return Transmission(header, trailer, groups) class GroupDictionaryDecoder(Decoder): def __init__(self): super(GroupDictionaryDecoder, self).__init__() self._header_decoder = GroupHeaderDictionaryDecoder() self._trailer_decoder = GroupTrailerDictionaryDecoder() self._transaction_decoder = TransactionRecordDictionaryDecoder() def decode(self, data): header = data['group_header'] if isinstance(header, dict): header = self._header_decoder.decode(header) trailer = data['group_trailer'] if isinstance(trailer, dict): trailer = self._trailer_decoder.decode(trailer) transactions = [] if len(data['transactions']) > 0: if isinstance(data['transactions'][0][0], dict): for transaction in data['transactions']: transaction_records = [] for record in transaction: transaction_records.append( self._transaction_decoder.decode(record)) transactions.append(transaction_records) else: transactions = data['transactions'] return Group(header, trailer, transactions) class TransmissionHeaderDictionaryDecoder(Decoder): def __init__(self): super(TransmissionHeaderDictionaryDecoder, self).__init__() def decode(self, data): header = TransmissionHeader(record_type=data['record_type'], sender_id=data['sender_id'], sender_name=data['sender_name'], sender_type=data['sender_type'], creation_date_time=data[ 'creation_date_time'], transmission_date=data['transmission_date'], edi_standard=data['edi_standard']) if 'character_set' in data: header.character_set = data['character_set'] return header class TransmissionTrailerDictionaryDecoder(Decoder): def __init__(self): super(TransmissionTrailerDictionaryDecoder, self).__init__() def decode(self, data): return TransmissionTrailer(record_type=data['record_type'], group_count=data['group_count'], transaction_count=data['transaction_count'], record_count=data['record_count']) class WorkDictionaryDecoder(Decoder): def __init__(self): super(WorkDictionaryDecoder, self).__init__() def decode(self, data): catalogue_number = None if 'catalogue_number' in data: catalogue_number = data['catalogue_number'] exceptional_clause = None if 'exceptional_clause' in data: exceptional_clause = data['exceptional_clause'] opus_number = None if 'opus_number' in data: opus_number = data['opus_number'] priority_flag = None if 'priority_flag' in data: priority_flag = data['priority_flag'] return WorkRecord(record_type=data['record_type'], transaction_sequence_n=data['transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], submitter_work_n=data['submitter_work_n'], title=data['title'], version_type=data['version_type'], musical_work_distribution_category=data[ 'musical_work_distribution_category'], date_publication_printed_edition=data[ 'date_publication_printed_edition'], text_music_relationship=data[ 'text_music_relationship'], language_code=data['language_code'], copyright_number=data['copyright_number'], copyright_date=data['copyright_date'], music_arrangement=data['music_arrangement'], lyric_adaptation=data['lyric_adaptation'], excerpt_type=data['excerpt_type'], composite_type=data['composite_type'], composite_component_count=data[ 'composite_component_count'], iswc=data['iswc'], work_type=data['work_type'], duration=data['duration'], catalogue_number=catalogue_number, opus_number=opus_number, contact_id=data['contact_id'], contact_name=data['contact_name'], recorded_indicator=data['recorded_indicator'], priority_flag=priority_flag, exceptional_clause=exceptional_clause, grand_rights_indicator=data['grand_rights_indicator']) class WorkOriginDictionaryDecoder(Decoder): def __init__(self): super(WorkOriginDictionaryDecoder, self).__init__() def decode(self, data): return WorkOriginRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], intended_purpose=data['intended_purpose'], production_title=data['production_title'], cd_identifier=data['cd_identifier'], cut_number=data['cut_number'], library=data['library'], bltvr=data['bltvr'], visan=data['visan'], production_n=data['production_n'], episode_title=data['episode_title'], episode_n=data['episode_n'], year_production=data['year_production'], audio_visual_key=data['audio_visual_key']) class WriterDictionaryDecoder(Decoder): def __init__(self, ipi_base_decoder=None): super(WriterDictionaryDecoder, self).__init__() if ipi_base_decoder: self._ipi_base_decoder = ipi_base_decoder else: self._ipi_base_decoder = IPIBaseDictionaryDecoder() def decode(self, data): ipi_base_n = self._ipi_base_decoder.decode(data['ipi_base_n']) return Writer(ip_n=data['ip_n'], personal_number=data['personal_number'], ipi_base_n=ipi_base_n, writer_first_name=data['writer_first_name'], writer_last_name=data['writer_last_name'], tax_id=data['tax_id'], ipi_name_n=data['ipi_name_n']) class WriterRecordDictionaryDecoder(Decoder): def __init__(self): super(WriterRecordDictionaryDecoder, self).__init__() self._writer_decoder = WriterDictionaryDecoder() def decode(self, data): writer = self._writer_decoder.decode(data['writer']) usa_license = None if 'usa_license' in data: usa_license = data['usa_license'] return WriterRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], writer=writer, writer_designation=data['writer_designation'], work_for_hire=data['work_for_hire'], writer_unknown=data['writer_unknown'], reversionary=data['reversionary'], first_recording_refusal=data[ 'first_recording_refusal'], usa_license=usa_license, pr_society=data['pr_society'], pr_ownership_share=data['pr_ownership_share'], mr_society=data['mr_society'], mr_ownership_share=data['mr_ownership_share'], sr_society=data['sr_society'], sr_ownership_share=data['sr_ownership_share']) class NonRomanAlphabetAgreementPartyDictionaryDecoder(Decoder): def __init__(self): super(NonRomanAlphabetAgreementPartyDictionaryDecoder, self).__init__() def decode(self, data): return NonRomanAlphabetAgreementPartyRecord( record_type=data['record_type'], transaction_sequence_n=data['transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], ip_name=data['ip_name'], ip_writer_name=data['ip_writer_name'], ip_n=data['ip_n'], language_code=data['language_code']) class NonRomanAlphabetOtherWriterDictionaryDecoder(Decoder): def __init__(self): super(NonRomanAlphabetOtherWriterDictionaryDecoder, self).__init__() def decode(self, data): return NonRomanAlphabetOtherWriterRecord( record_type=data['record_type'], transaction_sequence_n=data['transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], writer_first_name=data['writer_first_name'], writer_name=data['writer_name'], position=data['position'], language_code=data['language_code']) class NonRomanAlphabetPerformanceDataDictionaryDecoder(Decoder): def __init__(self, ipi_base_decoder=None): super(NonRomanAlphabetPerformanceDataDictionaryDecoder, self).__init__() if ipi_base_decoder: self._ipi_base_decoder = ipi_base_decoder else: self._ipi_base_decoder = IPIBaseDictionaryDecoder() def decode(self, data): ipi_base = self._ipi_base_decoder.decode( data['performing_artist_ipi_base_n']) return NonRomanAlphabetPerformanceDataRecord( record_type=data['record_type'], transaction_sequence_n=data['transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], performing_artist_first_name=data['performing_artist_first_name'], performing_artist_name=data['performing_artist_name'], performing_artist_ipi_name_n=data['performing_artist_ipi_name_n'], performing_artist_ipi_base_n=ipi_base, language_code=data['language_code'], performance_language=data['performance_language'], performance_dialect=data['performance_dialect']) class NonRomanAlphabetPublisherNameDictionaryDecoder(Decoder): def __init__(self): super(NonRomanAlphabetPublisherNameDictionaryDecoder, self).__init__() def decode(self, data): return NonRomanAlphabetPublisherNameRecord( record_type=data['record_type'], transaction_sequence_n=data['transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], publisher_sequence_n=data['publisher_sequence_n'], ip_n=data['ip_n'], publisher_name=data['publisher_name'], language_code=data['language_code']) class NonRomanAlphabetTitleDictionaryDecoder(Decoder): def __init__(self): super(NonRomanAlphabetTitleDictionaryDecoder, self).__init__() def decode(self, data): return NonRomanAlphabetTitleRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data[ 'record_sequence_n'], title=data['title'], title_type=data['title_type'], language_code=data['language_code']) class NonRomanAlphabetWorkDictionaryDecoder(Decoder): def __init__(self): super(NonRomanAlphabetWorkDictionaryDecoder, self).__init__() def decode(self, data): return NonRomanAlphabetWorkRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data[ 'record_sequence_n'], title=data['title'], language_code=data['language_code']) class NonRomanAlphabetWriterNameDictionaryDecoder(Decoder): def __init__(self): super(NonRomanAlphabetWriterNameDictionaryDecoder, self).__init__() def decode(self, data): return NonRomanAlphabetWriterNameRecord(record_type=data['record_type'], transaction_sequence_n=data[ 'transaction_sequence_n'], record_sequence_n=data[ 'record_sequence_n'], writer_first_name=data[ 'writer_first_name'], writer_last_name=data[ 'writer_last_name'], ip_n=data['ip_n'], language_code=data[ 'language_code']) class PublisherDictionaryDecoder(Decoder): def __init__(self, ipi_base_decoder=None): super(PublisherDictionaryDecoder, self).__init__() if ipi_base_decoder: self._ipi_base_decoder = ipi_base_decoder else: self._ipi_base_decoder = IPIBaseDictionaryDecoder() def decode(self, data): if 'ipi_base_n' in data: ipi_base = self._ipi_base_decoder.decode(data['ipi_base_n']) else: ipi_base = None return Publisher(ip_n=data['ip_n'], publisher_name=data['publisher_name'], ipi_name_n=data['ipi_name_n'], ipi_base_n=ipi_base, tax_id=data['tax_id']) class PublisherRecordDictionaryDecoder(Decoder): def __init__(self): super(PublisherRecordDictionaryDecoder, self).__init__() self._publisher_decoder = PublisherDictionaryDecoder() def decode(self, data): publisher = self._publisher_decoder.decode(data['publisher']) special_agreements = None if 'special_agreements' in data: special_agreements = data['special_agreements'] first_recording_refusal = None if 'first_recording_refusal' in data: first_recording_refusal = data['first_recording_refusal'] agreement_type = None if 'agreement_type' in data: agreement_type = data['agreement_type'] usa_license = None if 'usa_license' in data: usa_license = data['usa_license'] international_standard_code = None if 'international_standard_code' in data: international_standard_code = data['international_standard_code'] society_assigned_agreement_n = None if 'society_assigned_agreement_n' in data: society_assigned_agreement_n = data['society_assigned_agreement_n'] return PublisherRecord( record_type=data['record_type'], transaction_sequence_n=data['transaction_sequence_n'], record_sequence_n=data['record_sequence_n'], publisher=publisher, publisher_sequence_n=data['publisher_sequence_n'], submitter_agreement_n=data['submitter_agreement_n'], publisher_type=data['publisher_type'], publisher_unknown=data['publisher_unknown'], pr_society=data['pr_society'], pr_ownership_share=data['pr_ownership_share'], mr_society=data['mr_society'], mr_ownership_share=data['mr_ownership_share'], sr_society=data['sr_society'], sr_ownership_share=data['sr_ownership_share'], special_agreements=special_agreements, first_recording_refusal=first_recording_refusal, international_standard_code=international_standard_code, society_assigned_agreement_n=society_assigned_agreement_n, agreement_type=agreement_type, usa_license=usa_license) class TableValueDictionaryDecoder(Decoder): def __init__(self): super(TableValueDictionaryDecoder, self).__init__() def decode(self, data): return TableValue(code=data['code'], name=data['name'], description=data['description']) class MediaTypeValueDictionaryDecoder(Decoder): def __init__(self): super(MediaTypeValueDictionaryDecoder, self).__init__() def decode(self, data): return MediaTypeValue(code=data['code'], name=data['name'], media_type=data['media_type'], duration_max=data['duration_max'], works_max=data['works_max'], fragments_max=data['fragments_max']) class InstrumentValueDictionaryDecoder(Decoder): def __init__(self): super(InstrumentValueDictionaryDecoder, self).__init__() def decode(self, data): return InstrumentValue(code=data['code'], name=data['name'], family=data['family'], description=data['description']) class FileTagDictionaryDecoder(Decoder): def __init__(self): super(FileTagDictionaryDecoder, self).__init__() def decode(self, data): return FileTag(data['year'], data['sequence_n'], data['sender'], data['receiver'], data['version']) class AVIKeyDictionaryDecoder(Decoder): def __init__(self): super(AVIKeyDictionaryDecoder, self).__init__() def decode(self, data): return AVIKey(data['society_code'], data['av_number']) class IPIBaseDictionaryDecoder(Decoder): def __init__(self): super(IPIBaseDictionaryDecoder, self).__init__() def decode(self, data): if data: result = data else: result = None return result class ISWCDictionaryDecoder(Decoder): def __init__(self): super(ISWCDictionaryDecoder, self).__init__() def decode(self, data): if data: result = data else: result = None return result class VISANDictionaryDecoder(Decoder): def __init__(self): super(VISANDictionaryDecoder, self).__init__() def decode(self, data): return data
[((4867, 5517), 'cwr.acknowledgement.AcknowledgementRecord', 'AcknowledgementRecord', ([], {'record_type': "data['record_type']", 'transaction_sequence_n': "data['transaction_sequence_n']", 'record_sequence_n': "data['record_sequence_n']", 'original_group_id': "data['original_group_id']", 'original_transaction_sequence_n': "data['original_transaction_sequence_n']", 'original_transaction_type': "data['original_transaction_type']", 'transaction_status': "data['transaction_status']", 'creation_date_time': "data['creation_date_time']", 'processing_date': "data['processing_date']", 'creation_title': "data['creation_title']", 'submitter_creation_n': "data['submitter_creation_n']", 'recipient_creation_n': "data['recipient_creation_n']"}), "(record_type=data['record_type'],\n transaction_sequence_n=data['transaction_sequence_n'],\n record_sequence_n=data['record_sequence_n'], original_group_id=data[\n 'original_group_id'], original_transaction_sequence_n=data[\n 'original_transaction_sequence_n'], original_transaction_type=data[\n 'original_transaction_type'], transaction_status=data[\n 'transaction_status'], creation_date_time=data['creation_date_time'],\n processing_date=data['processing_date'], creation_title=data[\n 'creation_title'], submitter_creation_n=data['submitter_creation_n'],\n recipient_creation_n=data['recipient_creation_n'])\n", (4888, 5517), False, 'from cwr.acknowledgement import AcknowledgementRecord, MessageRecord\n'), ((6434, 7476), 'cwr.agreement.AgreementRecord', 'AgreementRecord', ([], {'record_type': "data['record_type']", 'transaction_sequence_n': "data['transaction_sequence_n']", 'record_sequence_n': "data['record_sequence_n']", 'submitter_agreement_n': "data['submitter_agreement_n']", 'agreement_type': "data['agreement_type']", 'agreement_start_date': "data['agreement_start_date']", 'prior_royalty_status': "data['prior_royalty_status']", 'post_term_collection_status': "data['post_term_collection_status']", 'number_of_works': "data['number_of_works']", 'society_assigned_agreement_n': "data['society_assigned_agreement_n']", 'international_standard_code': "data['international_standard_code']", 'sales_manufacture_clause': "data['sales_manufacture_clause']", 'agreement_end_date': "data['agreement_end_date']", 'date_of_signature': "data['date_of_signature']", 'retention_end_date': "data['retention_end_date']", 'prior_royalty_start_date': "data['prior_royalty_start_date']", 'post_term_collection_end_date': "data['post_term_collection_end_date']", 'shares_change': "data['shares_change']", 'advance_given': "data['advance_given']"}), "(record_type=data['record_type'], transaction_sequence_n=\n data['transaction_sequence_n'], record_sequence_n=data[\n 'record_sequence_n'], submitter_agreement_n=data[\n 'submitter_agreement_n'], agreement_type=data['agreement_type'],\n agreement_start_date=data['agreement_start_date'], prior_royalty_status\n =data['prior_royalty_status'], post_term_collection_status=data[\n 'post_term_collection_status'], number_of_works=data['number_of_works'],\n society_assigned_agreement_n=data['society_assigned_agreement_n'],\n international_standard_code=data['international_standard_code'],\n sales_manufacture_clause=data['sales_manufacture_clause'],\n agreement_end_date=data['agreement_end_date'], date_of_signature=data[\n 'date_of_signature'], retention_end_date=data['retention_end_date'],\n prior_royalty_start_date=data['prior_royalty_start_date'],\n post_term_collection_end_date=data['post_term_collection_end_date'],\n shares_change=data['shares_change'], advance_given=data['advance_given'])\n", (6449, 7476), False, 'from cwr.agreement import AgreementRecord, AgreementTerritoryRecord, InterestedPartyForAgreementRecord\n'), ((8523, 8810), 'cwr.agreement.AgreementTerritoryRecord', 'AgreementTerritoryRecord', ([], {'record_type': "data['record_type']", 'transaction_sequence_n': "data['transaction_sequence_n']", 'record_sequence_n': "data['record_sequence_n']", 'tis_numeric_code': "data['tis_numeric_code']", 'inclusion_exclusion_indicator': "data['inclusion_exclusion_indicator']"}), "(record_type=data['record_type'],\n transaction_sequence_n=data['transaction_sequence_n'],\n record_sequence_n=data['record_sequence_n'], tis_numeric_code=data[\n 'tis_numeric_code'], inclusion_exclusion_indicator=data[\n 'inclusion_exclusion_indicator'])\n", (8547, 8810), False, 'from cwr.agreement import AgreementRecord, AgreementTerritoryRecord, InterestedPartyForAgreementRecord\n'), ((9343, 9663), 'cwr.info.AdditionalRelatedInfoRecord', 'AdditionalRelatedInfoRecord', ([], {'record_type': "data['record_type']", 'transaction_sequence_n': "data['transaction_sequence_n']", 'record_sequence_n': "data['record_sequence_n']", 'society_n': "data['society_n']", 'type_of_right': "data['type_of_right']", 'work_n': "data['work_n']", 'subject_code': "data['subject_code']", 'note': "data['note']"}), "(record_type=data['record_type'],\n transaction_sequence_n=data['transaction_sequence_n'],\n record_sequence_n=data['record_sequence_n'], society_n=data['society_n'\n ], type_of_right=data['type_of_right'], work_n=data['work_n'],\n subject_code=data['subject_code'], note=data['note'])\n", (9370, 9663), False, 'from cwr.info import AdditionalRelatedInfoRecord\n'), ((10226, 10506), 'cwr.work.AlternateTitleRecord', 'AlternateTitleRecord', ([], {'record_type': "data['record_type']", 'transaction_sequence_n': "data['transaction_sequence_n']", 'record_sequence_n': "data['record_sequence_n']", 'alternate_title': "data['alternate_title']", 'title_type': "data['title_type']", 'language_code': "data['language_code']"}), "(record_type=data['record_type'],\n transaction_sequence_n=data['transaction_sequence_n'],\n record_sequence_n=data['record_sequence_n'], alternate_title=data[\n 'alternate_title'], title_type=data['title_type'], language_code=data[\n 'language_code'])\n", (10246, 10506), False, 'from cwr.work import RecordingDetailRecord, ComponentRecord, AlternateTitleRecord, AuthoredWorkRecord, InstrumentationDetailRecord, InstrumentationSummaryRecord, PerformingArtistRecord, WorkOriginRecord, WorkRecord\n'), ((11346, 12035), 'cwr.work.AuthoredWorkRecord', 'AuthoredWorkRecord', ([], {'record_type': "data['record_type']", 'transaction_sequence_n': "data['transaction_sequence_n']", 'record_sequence_n': "data['record_sequence_n']", 'title': "data['title']", 'submitter_work_n': "data['submitter_work_n']", 'writer_1_first_name': "data['writer_1_first_name']", 'writer_1_last_name': "data['writer_1_last_name']", 'writer_2_first_name': "data['writer_2_first_name']", 'writer_2_last_name': "data['writer_2_last_name']", 'writer_1_ipi_base_n': 'ipi_base_1', 'writer_1_ipi_name_n': "data['writer_1_ipi_name_n']", 'writer_2_ipi_base_n': 'ipi_base_2', 'writer_2_ipi_name_n': "data['writer_2_ipi_name_n']", 'source': "data['source']", 'language_code': "data['language_code']", 'iswc': "data['iswc']"}), "(record_type=data['record_type'], transaction_sequence_n=\n data['transaction_sequence_n'], record_sequence_n=data[\n 'record_sequence_n'], title=data['title'], submitter_work_n=data[\n 'submitter_work_n'], writer_1_first_name=data['writer_1_first_name'],\n writer_1_last_name=data['writer_1_last_name'], writer_2_first_name=data\n ['writer_2_first_name'], writer_2_last_name=data['writer_2_last_name'],\n writer_1_ipi_base_n=ipi_base_1, writer_1_ipi_name_n=data[\n 'writer_1_ipi_name_n'], writer_2_ipi_base_n=ipi_base_2,\n writer_2_ipi_name_n=data['writer_2_ipi_name_n'], source=data['source'],\n language_code=data['language_code'], iswc=data['iswc'])\n", (11364, 12035), False, 'from cwr.work import RecordingDetailRecord, ComponentRecord, AlternateTitleRecord, AuthoredWorkRecord, InstrumentationDetailRecord, InstrumentationSummaryRecord, PerformingArtistRecord, WorkOriginRecord, WorkRecord\n'), ((13218, 13873), 'cwr.work.ComponentRecord', 'ComponentRecord', ([], {'record_type': "data['record_type']", 'transaction_sequence_n': "data['transaction_sequence_n']", 'record_sequence_n': "data['record_sequence_n']", 'title': "data['title']", 'submitter_work_n': "data['submitter_work_n']", 'writer_1_last_name': "data['writer_1_last_name']", 'writer_1_first_name': "data['writer_1_first_name']", 'writer_2_last_name': "data['writer_2_last_name']", 'writer_2_first_name': "data['writer_2_first_name']", 'writer_1_ipi_base_n': 'ipi_base_1', 'writer_1_ipi_name_n': "data['writer_1_ipi_name_n']", 'writer_2_ipi_base_n': 'ipi_base_2', 'writer_2_ipi_name_n': "data['writer_2_ipi_name_n']", 'iswc': "data['iswc']", 'duration': "data['duration']"}), "(record_type=data['record_type'], transaction_sequence_n=\n data['transaction_sequence_n'], record_sequence_n=data[\n 'record_sequence_n'], title=data['title'], submitter_work_n=data[\n 'submitter_work_n'], writer_1_last_name=data['writer_1_last_name'],\n writer_1_first_name=data['writer_1_first_name'], writer_2_last_name=\n data['writer_2_last_name'], writer_2_first_name=data[\n 'writer_2_first_name'], writer_1_ipi_base_n=ipi_base_1,\n writer_1_ipi_name_n=data['writer_1_ipi_name_n'], writer_2_ipi_base_n=\n ipi_base_2, writer_2_ipi_name_n=data['writer_2_ipi_name_n'], iswc=data[\n 'iswc'], duration=data['duration'])\n", (13233, 13873), False, 'from cwr.work import RecordingDetailRecord, ComponentRecord, AlternateTitleRecord, AuthoredWorkRecord, InstrumentationDetailRecord, InstrumentationSummaryRecord, PerformingArtistRecord, WorkOriginRecord, WorkRecord\n'), ((14477, 14682), 'cwr.group.GroupHeader', 'GroupHeader', ([], {'record_type': "data['record_type']", 'group_id': "data['group_id']", 'transaction_type': "data['transaction_type']", 'version_number': "data['version_number']", 'batch_request_id': "data['batch_request_id']"}), "(record_type=data['record_type'], group_id=data['group_id'],\n transaction_type=data['transaction_type'], version_number=data[\n 'version_number'], batch_request_id=data['batch_request_id'])\n", (14488, 14682), False, 'from cwr.group import Group, GroupHeader, GroupTrailer\n'), ((15240, 15487), 'cwr.group.GroupTrailer', 'GroupTrailer', ([], {'record_type': "data['record_type']", 'group_id': "data['group_id']", 'transaction_count': "data['transaction_count']", 'record_count': "data['record_count']", 'currency_indicator': 'currency_indicator', 'total_monetary_value': 'total_monetary_value'}), "(record_type=data['record_type'], group_id=data['group_id'],\n transaction_count=data['transaction_count'], record_count=data[\n 'record_count'], currency_indicator=currency_indicator,\n total_monetary_value=total_monetary_value)\n", (15252, 15487), False, 'from cwr.group import Group, GroupHeader, GroupTrailer\n'), ((16108, 16690), 'cwr.agreement.InterestedPartyForAgreementRecord', 'InterestedPartyForAgreementRecord', ([], {'record_type': "data['record_type']", 'transaction_sequence_n': "data['transaction_sequence_n']", 'record_sequence_n': "data['record_sequence_n']", 'ip_n': "data['ip_n']", 'ip_last_name': "data['ip_last_name']", 'agreement_role_code': "data['agreement_role_code']", 'ip_writer_first_name': "data['ip_writer_first_name']", 'ipi_name_n': "data['ipi_name_n']", 'ipi_base_n': 'ipi_base', 'pr_society': "data['pr_society']", 'pr_share': "data['pr_share']", 'mr_society': "data['mr_society']", 'mr_share': "data['mr_share']", 'sr_society': "data['sr_society']", 'sr_share': "data['sr_share']"}), "(record_type=data['record_type'],\n transaction_sequence_n=data['transaction_sequence_n'],\n record_sequence_n=data['record_sequence_n'], ip_n=data['ip_n'],\n ip_last_name=data['ip_last_name'], agreement_role_code=data[\n 'agreement_role_code'], ip_writer_first_name=data[\n 'ip_writer_first_name'], ipi_name_n=data['ipi_name_n'], ipi_base_n=\n ipi_base, pr_society=data['pr_society'], pr_share=data['pr_share'],\n mr_society=data['mr_society'], mr_share=data['mr_share'], sr_society=\n data['sr_society'], sr_share=data['sr_share'])\n", (16141, 16690), False, 'from cwr.agreement import AgreementRecord, AgreementTerritoryRecord, InterestedPartyForAgreementRecord\n'), ((16984, 17466), 'cwr.interested_party.IPTerritoryOfControlRecord', 'IPTerritoryOfControlRecord', ([], {'record_type': "data['record_type']", 'transaction_sequence_n': "data['transaction_sequence_n']", 'record_sequence_n': "data['record_sequence_n']", 'ip_n': "data['ip_n']", 'inclusion_exclusion_indicator': "data['inclusion_exclusion_indicator']", 'tis_numeric_code': "data['tis_numeric_code']", 'sequence_n': "data['sequence_n']", 'pr_collection_share': "data['pr_collection_share']", 'mr_collection_share': "data['mr_collection_share']", 'shares_change': "data['shares_change']"}), "(record_type=data['record_type'],\n transaction_sequence_n=data['transaction_sequence_n'],\n record_sequence_n=data['record_sequence_n'], ip_n=data['ip_n'],\n inclusion_exclusion_indicator=data['inclusion_exclusion_indicator'],\n tis_numeric_code=data['tis_numeric_code'], sequence_n=data['sequence_n'\n ], pr_collection_share=data['pr_collection_share'], mr_collection_share\n =data['mr_collection_share'], shares_change=data['shares_change'])\n", (17010, 17466), False, 'from cwr.interested_party import IPTerritoryOfControlRecord, Publisher, PublisherRecord, Writer, PublisherForWriterRecord, WriterRecord\n'), ((18462, 18715), 'cwr.work.InstrumentationDetailRecord', 'InstrumentationDetailRecord', ([], {'record_type': "data['record_type']", 'transaction_sequence_n': "data['transaction_sequence_n']", 'record_sequence_n': "data['record_sequence_n']", 'instrument_code': "data['instrument_code']", 'number_players': "data['number_players']"}), "(record_type=data['record_type'],\n transaction_sequence_n=data['transaction_sequence_n'],\n record_sequence_n=data['record_sequence_n'], instrument_code=data[\n 'instrument_code'], number_players=data['number_players'])\n", (18489, 18715), False, 'from cwr.work import RecordingDetailRecord, ComponentRecord, AlternateTitleRecord, AuthoredWorkRecord, InstrumentationDetailRecord, InstrumentationSummaryRecord, PerformingArtistRecord, WorkOriginRecord, WorkRecord\n'), ((19265, 19620), 'cwr.work.InstrumentationSummaryRecord', 'InstrumentationSummaryRecord', ([], {'record_type': "data['record_type']", 'transaction_sequence_n': "data['transaction_sequence_n']", 'record_sequence_n': "data['record_sequence_n']", 'number_voices': "data['number_voices']", 'standard_instrumentation_type': "data['standard_instrumentation_type']", 'instrumentation_description': "data['instrumentation_description']"}), "(record_type=data['record_type'],\n transaction_sequence_n=data['transaction_sequence_n'],\n record_sequence_n=data['record_sequence_n'], number_voices=data[\n 'number_voices'], standard_instrumentation_type=data[\n 'standard_instrumentation_type'], instrumentation_description=data[\n 'instrumentation_description'])\n", (19293, 19620), False, 'from cwr.work import RecordingDetailRecord, ComponentRecord, AlternateTitleRecord, AuthoredWorkRecord, InstrumentationDetailRecord, InstrumentationSummaryRecord, PerformingArtistRecord, WorkOriginRecord, WorkRecord\n'), ((19839, 20261), 'cwr.acknowledgement.MessageRecord', 'MessageRecord', ([], {'record_type': "data['record_type']", 'transaction_sequence_n': "data['transaction_sequence_n']", 'record_sequence_n': "data['record_sequence_n']", 'message_type': "data['message_type']", 'message_text': "data['message_text']", 'original_record_sequence_n': "data['original_record_sequence_n']", 'message_record_type': "data['message_record_type']", 'message_level': "data['message_level']", 'validation_n': "data['validation_n']"}), "(record_type=data['record_type'], transaction_sequence_n=data[\n 'transaction_sequence_n'], record_sequence_n=data['record_sequence_n'],\n message_type=data['message_type'], message_text=data['message_text'],\n original_record_sequence_n=data['original_record_sequence_n'],\n message_record_type=data['message_record_type'], message_level=data[\n 'message_level'], validation_n=data['validation_n'])\n", (19852, 20261), False, 'from cwr.acknowledgement import AcknowledgementRecord, MessageRecord\n'), ((21430, 21831), 'cwr.work.PerformingArtistRecord', 'PerformingArtistRecord', ([], {'record_type': "data['record_type']", 'transaction_sequence_n': "data['transaction_sequence_n']", 'record_sequence_n': "data['record_sequence_n']", 'performing_artist_last_name': "data['performing_artist_last_name']", 'performing_artist_first_name': 'performing_artist_first_name', 'performing_artist_ipi_name_n': 'performing_artist_ipi_name_n', 'performing_artist_ipi_base_n': 'ipi_base'}), "(record_type=data['record_type'],\n transaction_sequence_n=data['transaction_sequence_n'],\n record_sequence_n=data['record_sequence_n'],\n performing_artist_last_name=data['performing_artist_last_name'],\n performing_artist_first_name=performing_artist_first_name,\n performing_artist_ipi_name_n=performing_artist_ipi_name_n,\n performing_artist_ipi_base_n=ipi_base)\n", (21452, 21831), False, 'from cwr.work import RecordingDetailRecord, ComponentRecord, AlternateTitleRecord, AuthoredWorkRecord, InstrumentationDetailRecord, InstrumentationSummaryRecord, PerformingArtistRecord, WorkOriginRecord, WorkRecord\n'), ((22474, 22876), 'cwr.interested_party.PublisherForWriterRecord', 'PublisherForWriterRecord', ([], {'record_type': "data['record_type']", 'transaction_sequence_n': "data['transaction_sequence_n']", 'record_sequence_n': "data['record_sequence_n']", 'publisher_ip_n': "data['publisher_ip_n']", 'publisher_name': 'publisher_name', 'writer_ip_n': "data['writer_ip_n']", 'submitter_agreement_n': "data['submitter_agreement_n']", 'society_assigned_agreement_n': "data['society_assigned_agreement_n']"}), "(record_type=data['record_type'],\n transaction_sequence_n=data['transaction_sequence_n'],\n record_sequence_n=data['record_sequence_n'], publisher_ip_n=data[\n 'publisher_ip_n'], publisher_name=publisher_name, writer_ip_n=data[\n 'writer_ip_n'], submitter_agreement_n=data['submitter_agreement_n'],\n society_assigned_agreement_n=data['society_assigned_agreement_n'])\n", (22498, 22876), False, 'from cwr.interested_party import IPTerritoryOfControlRecord, Publisher, PublisherRecord, Writer, PublisherForWriterRecord, WriterRecord\n'), ((23603, 24193), 'cwr.work.RecordingDetailRecord', 'RecordingDetailRecord', ([], {'record_type': "data['record_type']", 'transaction_sequence_n': "data['transaction_sequence_n']", 'record_sequence_n': "data['record_sequence_n']", 'first_release_date': "data['first_release_date']", 'first_release_duration': "data['first_release_duration']", 'first_album_title': "data['first_album_title']", 'first_album_label': "data['first_album_label']", 'first_release_catalog_n': "data['first_release_catalog_n']", 'ean': "data['ean']", 'isrc': "data['isrc']", 'recording_format': "data['recording_format']", 'recording_technique': "data['recording_technique']", 'media_type': 'media_type'}), "(record_type=data['record_type'],\n transaction_sequence_n=data['transaction_sequence_n'],\n record_sequence_n=data['record_sequence_n'], first_release_date=data[\n 'first_release_date'], first_release_duration=data[\n 'first_release_duration'], first_album_title=data['first_album_title'],\n first_album_label=data['first_album_label'], first_release_catalog_n=\n data['first_release_catalog_n'], ean=data['ean'], isrc=data['isrc'],\n recording_format=data['recording_format'], recording_technique=data[\n 'recording_technique'], media_type=media_type)\n", (23624, 24193), False, 'from cwr.work import RecordingDetailRecord, ComponentRecord, AlternateTitleRecord, AuthoredWorkRecord, InstrumentationDetailRecord, InstrumentationSummaryRecord, PerformingArtistRecord, WorkOriginRecord, WorkRecord\n'), ((25497, 25523), 'cwr.file.CWRFile', 'CWRFile', (['tag', 'transmission'], {}), '(tag, transmission)\n', (25504, 25523), False, 'from cwr.file import CWRFile, FileTag\n'), ((26439, 26476), 'cwr.transmission.Transmission', 'Transmission', (['header', 'trailer', 'groups'], {}), '(header, trailer, groups)\n', (26451, 26476), False, 'from cwr.transmission import Transmission, TransmissionTrailer, TransmissionHeader\n'), ((27645, 27681), 'cwr.group.Group', 'Group', (['header', 'trailer', 'transactions'], {}), '(header, trailer, transactions)\n', (27650, 27681), False, 'from cwr.group import Group, GroupHeader, GroupTrailer\n'), ((27874, 28166), 'cwr.transmission.TransmissionHeader', 'TransmissionHeader', ([], {'record_type': "data['record_type']", 'sender_id': "data['sender_id']", 'sender_name': "data['sender_name']", 'sender_type': "data['sender_type']", 'creation_date_time': "data['creation_date_time']", 'transmission_date': "data['transmission_date']", 'edi_standard': "data['edi_standard']"}), "(record_type=data['record_type'], sender_id=data[\n 'sender_id'], sender_name=data['sender_name'], sender_type=data[\n 'sender_type'], creation_date_time=data['creation_date_time'],\n transmission_date=data['transmission_date'], edi_standard=data[\n 'edi_standard'])\n", (27892, 28166), False, 'from cwr.transmission import Transmission, TransmissionTrailer, TransmissionHeader\n'), ((28713, 28887), 'cwr.transmission.TransmissionTrailer', 'TransmissionTrailer', ([], {'record_type': "data['record_type']", 'group_count': "data['group_count']", 'transaction_count': "data['transaction_count']", 'record_count': "data['record_count']"}), "(record_type=data['record_type'], group_count=data[\n 'group_count'], transaction_count=data['transaction_count'],\n record_count=data['record_count'])\n", (28732, 28887), False, 'from cwr.transmission import Transmission, TransmissionTrailer, TransmissionHeader\n'), ((29635, 30882), 'cwr.work.WorkRecord', 'WorkRecord', ([], {'record_type': "data['record_type']", 'transaction_sequence_n': "data['transaction_sequence_n']", 'record_sequence_n': "data['record_sequence_n']", 'submitter_work_n': "data['submitter_work_n']", 'title': "data['title']", 'version_type': "data['version_type']", 'musical_work_distribution_category': "data['musical_work_distribution_category']", 'date_publication_printed_edition': "data['date_publication_printed_edition']", 'text_music_relationship': "data['text_music_relationship']", 'language_code': "data['language_code']", 'copyright_number': "data['copyright_number']", 'copyright_date': "data['copyright_date']", 'music_arrangement': "data['music_arrangement']", 'lyric_adaptation': "data['lyric_adaptation']", 'excerpt_type': "data['excerpt_type']", 'composite_type': "data['composite_type']", 'composite_component_count': "data['composite_component_count']", 'iswc': "data['iswc']", 'work_type': "data['work_type']", 'duration': "data['duration']", 'catalogue_number': 'catalogue_number', 'opus_number': 'opus_number', 'contact_id': "data['contact_id']", 'contact_name': "data['contact_name']", 'recorded_indicator': "data['recorded_indicator']", 'priority_flag': 'priority_flag', 'exceptional_clause': 'exceptional_clause', 'grand_rights_indicator': "data['grand_rights_indicator']"}), "(record_type=data['record_type'], transaction_sequence_n=data[\n 'transaction_sequence_n'], record_sequence_n=data['record_sequence_n'],\n submitter_work_n=data['submitter_work_n'], title=data['title'],\n version_type=data['version_type'], musical_work_distribution_category=\n data['musical_work_distribution_category'],\n date_publication_printed_edition=data[\n 'date_publication_printed_edition'], text_music_relationship=data[\n 'text_music_relationship'], language_code=data['language_code'],\n copyright_number=data['copyright_number'], copyright_date=data[\n 'copyright_date'], music_arrangement=data['music_arrangement'],\n lyric_adaptation=data['lyric_adaptation'], excerpt_type=data[\n 'excerpt_type'], composite_type=data['composite_type'],\n composite_component_count=data['composite_component_count'], iswc=data[\n 'iswc'], work_type=data['work_type'], duration=data['duration'],\n catalogue_number=catalogue_number, opus_number=opus_number, contact_id=\n data['contact_id'], contact_name=data['contact_name'],\n recorded_indicator=data['recorded_indicator'], priority_flag=\n priority_flag, exceptional_clause=exceptional_clause,\n grand_rights_indicator=data['grand_rights_indicator'])\n", (29645, 30882), False, 'from cwr.work import RecordingDetailRecord, ComponentRecord, AlternateTitleRecord, AuthoredWorkRecord, InstrumentationDetailRecord, InstrumentationSummaryRecord, PerformingArtistRecord, WorkOriginRecord, WorkRecord\n'), ((31802, 32396), 'cwr.work.WorkOriginRecord', 'WorkOriginRecord', ([], {'record_type': "data['record_type']", 'transaction_sequence_n': "data['transaction_sequence_n']", 'record_sequence_n': "data['record_sequence_n']", 'intended_purpose': "data['intended_purpose']", 'production_title': "data['production_title']", 'cd_identifier': "data['cd_identifier']", 'cut_number': "data['cut_number']", 'library': "data['library']", 'bltvr': "data['bltvr']", 'visan': "data['visan']", 'production_n': "data['production_n']", 'episode_title': "data['episode_title']", 'episode_n': "data['episode_n']", 'year_production': "data['year_production']", 'audio_visual_key': "data['audio_visual_key']"}), "(record_type=data['record_type'], transaction_sequence_n=\n data['transaction_sequence_n'], record_sequence_n=data[\n 'record_sequence_n'], intended_purpose=data['intended_purpose'],\n production_title=data['production_title'], cd_identifier=data[\n 'cd_identifier'], cut_number=data['cut_number'], library=data['library'\n ], bltvr=data['bltvr'], visan=data['visan'], production_n=data[\n 'production_n'], episode_title=data['episode_title'], episode_n=data[\n 'episode_n'], year_production=data['year_production'], audio_visual_key\n =data['audio_visual_key'])\n", (31818, 32396), False, 'from cwr.work import RecordingDetailRecord, ComponentRecord, AlternateTitleRecord, AuthoredWorkRecord, InstrumentationDetailRecord, InstrumentationSummaryRecord, PerformingArtistRecord, WorkOriginRecord, WorkRecord\n'), ((33266, 33509), 'cwr.interested_party.Writer', 'Writer', ([], {'ip_n': "data['ip_n']", 'personal_number': "data['personal_number']", 'ipi_base_n': 'ipi_base_n', 'writer_first_name': "data['writer_first_name']", 'writer_last_name': "data['writer_last_name']", 'tax_id': "data['tax_id']", 'ipi_name_n': "data['ipi_name_n']"}), "(ip_n=data['ip_n'], personal_number=data['personal_number'],\n ipi_base_n=ipi_base_n, writer_first_name=data['writer_first_name'],\n writer_last_name=data['writer_last_name'], tax_id=data['tax_id'],\n ipi_name_n=data['ipi_name_n'])\n", (33272, 33509), False, 'from cwr.interested_party import IPTerritoryOfControlRecord, Publisher, PublisherRecord, Writer, PublisherForWriterRecord, WriterRecord\n'), ((34035, 34710), 'cwr.interested_party.WriterRecord', 'WriterRecord', ([], {'record_type': "data['record_type']", 'transaction_sequence_n': "data['transaction_sequence_n']", 'record_sequence_n': "data['record_sequence_n']", 'writer': 'writer', 'writer_designation': "data['writer_designation']", 'work_for_hire': "data['work_for_hire']", 'writer_unknown': "data['writer_unknown']", 'reversionary': "data['reversionary']", 'first_recording_refusal': "data['first_recording_refusal']", 'usa_license': 'usa_license', 'pr_society': "data['pr_society']", 'pr_ownership_share': "data['pr_ownership_share']", 'mr_society': "data['mr_society']", 'mr_ownership_share': "data['mr_ownership_share']", 'sr_society': "data['sr_society']", 'sr_ownership_share': "data['sr_ownership_share']"}), "(record_type=data['record_type'], transaction_sequence_n=data[\n 'transaction_sequence_n'], record_sequence_n=data['record_sequence_n'],\n writer=writer, writer_designation=data['writer_designation'],\n work_for_hire=data['work_for_hire'], writer_unknown=data[\n 'writer_unknown'], reversionary=data['reversionary'],\n first_recording_refusal=data['first_recording_refusal'], usa_license=\n usa_license, pr_society=data['pr_society'], pr_ownership_share=data[\n 'pr_ownership_share'], mr_society=data['mr_society'],\n mr_ownership_share=data['mr_ownership_share'], sr_society=data[\n 'sr_society'], sr_ownership_share=data['sr_ownership_share'])\n", (34047, 34710), False, 'from cwr.interested_party import IPTerritoryOfControlRecord, Publisher, PublisherRecord, Writer, PublisherForWriterRecord, WriterRecord\n'), ((35370, 35676), 'cwr.non_roman_alphabet.NonRomanAlphabetAgreementPartyRecord', 'NonRomanAlphabetAgreementPartyRecord', ([], {'record_type': "data['record_type']", 'transaction_sequence_n': "data['transaction_sequence_n']", 'record_sequence_n': "data['record_sequence_n']", 'ip_name': "data['ip_name']", 'ip_writer_name': "data['ip_writer_name']", 'ip_n': "data['ip_n']", 'language_code': "data['language_code']"}), "(record_type=data['record_type'],\n transaction_sequence_n=data['transaction_sequence_n'],\n record_sequence_n=data['record_sequence_n'], ip_name=data['ip_name'],\n ip_writer_name=data['ip_writer_name'], ip_n=data['ip_n'], language_code\n =data['language_code'])\n", (35406, 35676), False, 'from cwr.non_roman_alphabet import NonRomanAlphabetAgreementPartyRecord, NonRomanAlphabetOtherWriterRecord, NonRomanAlphabetPerformanceDataRecord, NonRomanAlphabetPublisherNameRecord, NonRomanAlphabetTitleRecord, NonRomanAlphabetWorkRecord, NonRomanAlphabetWriterNameRecord\n'), ((35953, 36279), 'cwr.non_roman_alphabet.NonRomanAlphabetOtherWriterRecord', 'NonRomanAlphabetOtherWriterRecord', ([], {'record_type': "data['record_type']", 'transaction_sequence_n': "data['transaction_sequence_n']", 'record_sequence_n': "data['record_sequence_n']", 'writer_first_name': "data['writer_first_name']", 'writer_name': "data['writer_name']", 'position': "data['position']", 'language_code': "data['language_code']"}), "(record_type=data['record_type'],\n transaction_sequence_n=data['transaction_sequence_n'],\n record_sequence_n=data['record_sequence_n'], writer_first_name=data[\n 'writer_first_name'], writer_name=data['writer_name'], position=data[\n 'position'], language_code=data['language_code'])\n", (35986, 36279), False, 'from cwr.non_roman_alphabet import NonRomanAlphabetAgreementPartyRecord, NonRomanAlphabetOtherWriterRecord, NonRomanAlphabetPerformanceDataRecord, NonRomanAlphabetPublisherNameRecord, NonRomanAlphabetTitleRecord, NonRomanAlphabetWorkRecord, NonRomanAlphabetWriterNameRecord\n'), ((36849, 37417), 'cwr.non_roman_alphabet.NonRomanAlphabetPerformanceDataRecord', 'NonRomanAlphabetPerformanceDataRecord', ([], {'record_type': "data['record_type']", 'transaction_sequence_n': "data['transaction_sequence_n']", 'record_sequence_n': "data['record_sequence_n']", 'performing_artist_first_name': "data['performing_artist_first_name']", 'performing_artist_name': "data['performing_artist_name']", 'performing_artist_ipi_name_n': "data['performing_artist_ipi_name_n']", 'performing_artist_ipi_base_n': 'ipi_base', 'language_code': "data['language_code']", 'performance_language': "data['performance_language']", 'performance_dialect': "data['performance_dialect']"}), "(record_type=data['record_type'],\n transaction_sequence_n=data['transaction_sequence_n'],\n record_sequence_n=data['record_sequence_n'],\n performing_artist_first_name=data['performing_artist_first_name'],\n performing_artist_name=data['performing_artist_name'],\n performing_artist_ipi_name_n=data['performing_artist_ipi_name_n'],\n performing_artist_ipi_base_n=ipi_base, language_code=data[\n 'language_code'], performance_language=data['performance_language'],\n performance_dialect=data['performance_dialect'])\n", (36886, 37417), False, 'from cwr.non_roman_alphabet import NonRomanAlphabetAgreementPartyRecord, NonRomanAlphabetOtherWriterRecord, NonRomanAlphabetPerformanceDataRecord, NonRomanAlphabetPublisherNameRecord, NonRomanAlphabetTitleRecord, NonRomanAlphabetWorkRecord, NonRomanAlphabetWriterNameRecord\n'), ((37718, 38050), 'cwr.non_roman_alphabet.NonRomanAlphabetPublisherNameRecord', 'NonRomanAlphabetPublisherNameRecord', ([], {'record_type': "data['record_type']", 'transaction_sequence_n': "data['transaction_sequence_n']", 'record_sequence_n': "data['record_sequence_n']", 'publisher_sequence_n': "data['publisher_sequence_n']", 'ip_n': "data['ip_n']", 'publisher_name': "data['publisher_name']", 'language_code': "data['language_code']"}), "(record_type=data['record_type'],\n transaction_sequence_n=data['transaction_sequence_n'],\n record_sequence_n=data['record_sequence_n'], publisher_sequence_n=data[\n 'publisher_sequence_n'], ip_n=data['ip_n'], publisher_name=data[\n 'publisher_name'], language_code=data['language_code'])\n", (37753, 38050), False, 'from cwr.non_roman_alphabet import NonRomanAlphabetAgreementPartyRecord, NonRomanAlphabetOtherWriterRecord, NonRomanAlphabetPerformanceDataRecord, NonRomanAlphabetPublisherNameRecord, NonRomanAlphabetTitleRecord, NonRomanAlphabetWorkRecord, NonRomanAlphabetWriterNameRecord\n'), ((38314, 38575), 'cwr.non_roman_alphabet.NonRomanAlphabetTitleRecord', 'NonRomanAlphabetTitleRecord', ([], {'record_type': "data['record_type']", 'transaction_sequence_n': "data['transaction_sequence_n']", 'record_sequence_n': "data['record_sequence_n']", 'title': "data['title']", 'title_type': "data['title_type']", 'language_code': "data['language_code']"}), "(record_type=data['record_type'],\n transaction_sequence_n=data['transaction_sequence_n'],\n record_sequence_n=data['record_sequence_n'], title=data['title'],\n title_type=data['title_type'], language_code=data['language_code'])\n", (38341, 38575), False, 'from cwr.non_roman_alphabet import NonRomanAlphabetAgreementPartyRecord, NonRomanAlphabetOtherWriterRecord, NonRomanAlphabetPerformanceDataRecord, NonRomanAlphabetPublisherNameRecord, NonRomanAlphabetTitleRecord, NonRomanAlphabetWorkRecord, NonRomanAlphabetWriterNameRecord\n'), ((39069, 39298), 'cwr.non_roman_alphabet.NonRomanAlphabetWorkRecord', 'NonRomanAlphabetWorkRecord', ([], {'record_type': "data['record_type']", 'transaction_sequence_n': "data['transaction_sequence_n']", 'record_sequence_n': "data['record_sequence_n']", 'title': "data['title']", 'language_code': "data['language_code']"}), "(record_type=data['record_type'],\n transaction_sequence_n=data['transaction_sequence_n'],\n record_sequence_n=data['record_sequence_n'], title=data['title'],\n language_code=data['language_code'])\n", (39095, 39298), False, 'from cwr.non_roman_alphabet import NonRomanAlphabetAgreementPartyRecord, NonRomanAlphabetOtherWriterRecord, NonRomanAlphabetPerformanceDataRecord, NonRomanAlphabetPublisherNameRecord, NonRomanAlphabetTitleRecord, NonRomanAlphabetWorkRecord, NonRomanAlphabetWriterNameRecord\n'), ((39755, 40082), 'cwr.non_roman_alphabet.NonRomanAlphabetWriterNameRecord', 'NonRomanAlphabetWriterNameRecord', ([], {'record_type': "data['record_type']", 'transaction_sequence_n': "data['transaction_sequence_n']", 'record_sequence_n': "data['record_sequence_n']", 'writer_first_name': "data['writer_first_name']", 'writer_last_name': "data['writer_last_name']", 'ip_n': "data['ip_n']", 'language_code': "data['language_code']"}), "(record_type=data['record_type'],\n transaction_sequence_n=data['transaction_sequence_n'],\n record_sequence_n=data['record_sequence_n'], writer_first_name=data[\n 'writer_first_name'], writer_last_name=data['writer_last_name'], ip_n=\n data['ip_n'], language_code=data['language_code'])\n", (39787, 40082), False, 'from cwr.non_roman_alphabet import NonRomanAlphabetAgreementPartyRecord, NonRomanAlphabetOtherWriterRecord, NonRomanAlphabetPerformanceDataRecord, NonRomanAlphabetPublisherNameRecord, NonRomanAlphabetTitleRecord, NonRomanAlphabetWorkRecord, NonRomanAlphabetWriterNameRecord\n'), ((41124, 41270), 'cwr.interested_party.Publisher', 'Publisher', ([], {'ip_n': "data['ip_n']", 'publisher_name': "data['publisher_name']", 'ipi_name_n': "data['ipi_name_n']", 'ipi_base_n': 'ipi_base', 'tax_id': "data['tax_id']"}), "(ip_n=data['ip_n'], publisher_name=data['publisher_name'],\n ipi_name_n=data['ipi_name_n'], ipi_base_n=ipi_base, tax_id=data['tax_id'])\n", (41133, 41270), False, 'from cwr.interested_party import IPTerritoryOfControlRecord, Publisher, PublisherRecord, Writer, PublisherForWriterRecord, WriterRecord\n'), ((42553, 43463), 'cwr.interested_party.PublisherRecord', 'PublisherRecord', ([], {'record_type': "data['record_type']", 'transaction_sequence_n': "data['transaction_sequence_n']", 'record_sequence_n': "data['record_sequence_n']", 'publisher': 'publisher', 'publisher_sequence_n': "data['publisher_sequence_n']", 'submitter_agreement_n': "data['submitter_agreement_n']", 'publisher_type': "data['publisher_type']", 'publisher_unknown': "data['publisher_unknown']", 'pr_society': "data['pr_society']", 'pr_ownership_share': "data['pr_ownership_share']", 'mr_society': "data['mr_society']", 'mr_ownership_share': "data['mr_ownership_share']", 'sr_society': "data['sr_society']", 'sr_ownership_share': "data['sr_ownership_share']", 'special_agreements': 'special_agreements', 'first_recording_refusal': 'first_recording_refusal', 'international_standard_code': 'international_standard_code', 'society_assigned_agreement_n': 'society_assigned_agreement_n', 'agreement_type': 'agreement_type', 'usa_license': 'usa_license'}), "(record_type=data['record_type'], transaction_sequence_n=\n data['transaction_sequence_n'], record_sequence_n=data[\n 'record_sequence_n'], publisher=publisher, publisher_sequence_n=data[\n 'publisher_sequence_n'], submitter_agreement_n=data[\n 'submitter_agreement_n'], publisher_type=data['publisher_type'],\n publisher_unknown=data['publisher_unknown'], pr_society=data[\n 'pr_society'], pr_ownership_share=data['pr_ownership_share'],\n mr_society=data['mr_society'], mr_ownership_share=data[\n 'mr_ownership_share'], sr_society=data['sr_society'],\n sr_ownership_share=data['sr_ownership_share'], special_agreements=\n special_agreements, first_recording_refusal=first_recording_refusal,\n international_standard_code=international_standard_code,\n society_assigned_agreement_n=society_assigned_agreement_n,\n agreement_type=agreement_type, usa_license=usa_license)\n", (42568, 43463), False, 'from cwr.interested_party import IPTerritoryOfControlRecord, Publisher, PublisherRecord, Writer, PublisherForWriterRecord, WriterRecord\n'), ((43820, 43906), 'cwr.table_value.TableValue', 'TableValue', ([], {'code': "data['code']", 'name': "data['name']", 'description': "data['description']"}), "(code=data['code'], name=data['name'], description=data[\n 'description'])\n", (43830, 43906), False, 'from cwr.table_value import MediaTypeValue, TableValue, InstrumentValue\n'), ((44136, 44330), 'cwr.table_value.MediaTypeValue', 'MediaTypeValue', ([], {'code': "data['code']", 'name': "data['name']", 'media_type': "data['media_type']", 'duration_max': "data['duration_max']", 'works_max': "data['works_max']", 'fragments_max': "data['fragments_max']"}), "(code=data['code'], name=data['name'], media_type=data[\n 'media_type'], duration_max=data['duration_max'], works_max=data[\n 'works_max'], fragments_max=data['fragments_max'])\n", (44150, 44330), False, 'from cwr.table_value import MediaTypeValue, TableValue, InstrumentValue\n'), ((44655, 44768), 'cwr.table_value.InstrumentValue', 'InstrumentValue', ([], {'code': "data['code']", 'name': "data['name']", 'family': "data['family']", 'description': "data['description']"}), "(code=data['code'], name=data['name'], family=data['family'],\n description=data['description'])\n", (44670, 44768), False, 'from cwr.table_value import MediaTypeValue, TableValue, InstrumentValue\n'), ((45026, 45122), 'cwr.file.FileTag', 'FileTag', (["data['year']", "data['sequence_n']", "data['sender']", "data['receiver']", "data['version']"], {}), "(data['year'], data['sequence_n'], data['sender'], data['receiver'],\n data['version'])\n", (45033, 45122), False, 'from cwr.file import CWRFile, FileTag\n'), ((45377, 45424), 'cwr.other.AVIKey', 'AVIKey', (["data['society_code']", "data['av_number']"], {}), "(data['society_code'], data['av_number'])\n", (45383, 45424), False, 'from cwr.other import AVIKey, VISAN\n')]
imranpopz/android_bootable_recovery-1
prebuilt/twrp_fonts.py
ec4512ad1e20f640b3dcd6faf8c04cae711e4f30
#!/usr/bin/env python # -*- coding: utf8 -*- import codecs,os,gzip,ctypes,ctypes.util,sys from struct import * from PIL import Image, ImageDraw, ImageFont # ====== Python script to convert TrueTypeFonts to TWRP's .dat format ====== # This script was originally made by https://github.com/suky for his chinese version of TWRP # and then translated to English by feilplane at #twrp of irc.freenode.net. # However, it was not compatible with vanilla TWRP, so https://github.com/Tasssadar rewrote # most of it and it now has very little in common with the original script. class Reference(): def __init__(self, val): self.__value = val def get(self): return self.__value def set(self, val): self.__value = val quiet = Reference(False) def log(text): if not quiet.get(): sys.stdout.write(text) def write_data(f, width, height, offsets, data): f.write(pack("<I", width)) f.write(pack("<I", height)) for off in offsets: f.write(pack("<I", off)) f.write(data) if __name__ == "__main__": fontsize = Reference(20) out_fname = Reference("font.dat") voffset = Reference(None) padding = Reference(0) font_fname = Reference(None) preview = Reference(None) arg_parser = [ ["-s", "--size=", fontsize, int], ["-o", "--output=", out_fname, str], ["-p", "--preview=", preview, str], [None, "--padding=", padding, int], ["-q", "--quiet", quiet, None], [None, "--voffset=", voffset, int] ] argv = sys.argv argc = len(argv) i = 1 while i < argc: arg = argv[i] arg_next = argv[i+1] if i+1 < argc else None if arg == "--help" or arg == "-h": print ("This script converts TrueTypeFonts to .dat file for TWRP recovery.\n\n" "Usage: %s [SWITCHES] [TRUETYPE FILE]\n\n" " -h, --help - print help\n" " -o, --output=[FILE] - output file or '-' for stdout (default: font.dat)\n" " -p, --preview=[FILE] - generate font preview to png file\n" " --padding=[PIXELS] - horizontal padding around each character (default: 0)\n" " -q, --quiet - Do not print any output\n" " -s, --size=[SIZE IN PIXELS] - specify font size in points (default: 20)\n" " --voffset=[PIXELS] - vertical offset (default: font size*0.25)\n\n" "Example:\n" " %s -s 40 -o ComicSans_40.dat -p preview.png ComicSans.ttf\n") % ( sys.argv[0], sys.argv[0] ) exit(0) found = False for p in arg_parser: if p[0] and arg == p[0] and (arg_next or not p[3]): if p[3]: p[2].set(p[3](arg_next)) else: p[2].set(True) i += 1 found = True break elif p[1] and arg.startswith(p[1]): if p[3]: p[2].set(p[3](arg[len(p[1]):])) else: p[2].set(True) found = True break if not found: font_fname.set(arg) i += 1 if not voffset.get(): voffset.set(int(fontsize.get()*0.25)) if out_fname.get() == "-": quiet.set(True) log("Loading font %s...\n" % font_fname.get()) font = ImageFont.truetype(font_fname.get(), fontsize.get(), 0, "utf-32be") cwidth = 0 cheight = font.getsize('A')[1] offsets = [] renders = [] data = bytes() # temp Image and ImageDraw to get access to textsize res = Image.new('L', (1, 1), 0) res_draw = ImageDraw.Draw(res) # Measure each character and render it to separate Image log("Rendering characters...\n") for i in range(32, 128): w, h = res_draw.textsize(chr(i), font) w += padding.get()*2 offsets.append(cwidth) cwidth += w if h > cheight: cheight = h ichr = Image.new('L', (w, cheight*2)) ichr_draw = ImageDraw.Draw(ichr) ichr_draw.text((padding.get(), 0), chr(i), 255, font) renders.append(ichr) # Twice the height to account for under-the-baseline characters cheight *= 2 # Create the result bitmap log("Creating result bitmap...\n") res = Image.new('L', (cwidth, cheight), 0) res_draw = ImageDraw.Draw(res) # Paste all characters into result bitmap for i in range(len(renders)): res.paste(renders[i], (offsets[i], 0)) # uncomment to draw lines separating each character (for debug) #res_draw.rectangle([offsets[i], 0, offsets[i], cheight], outline="blue") # crop the blank areas on top and bottom (_, start_y, _, end_y) = res.getbbox() res = res.crop((0, start_y, cwidth, end_y)) cheight = (end_y - start_y) + voffset.get() new_res = Image.new('L', (cwidth, cheight)) new_res.paste(res, (0, voffset.get())) res = new_res # save the preview if preview.get(): log("Saving preview to %s...\n" % preview.get()) res.save(preview.get()) # Pack the data. # The "data" is a B/W bitmap with all 96 characters next to each other # on one line. It is as wide as all the characters combined and as # high as the tallest character, plus padding. # Each byte contains info about eight pixels, starting from # highest to lowest bit: # bits: | 7 6 5 4 3 2 1 0 | 15 14 13 12 11 10 9 8 | ... # pixels: | 0 1 2 3 4 5 6 7 | 8 9 10 11 12 13 14 15 | ... log("Packing data...\n") bit = 0 bit_itr = 0 for c in res.tostring(): # FIXME: How to handle antialiasing? # if c != '\x00': # In Python3, c is int, in Python2, c is string. Because of reasons. try: fill = (ord(c) >= 127) except TypeError: fill = (c >= 127) if fill: bit |= (1 << (7-bit_itr)) bit_itr += 1 if bit_itr >= 8: data += pack("<B", bit) bit_itr = 0 bit = 0 # Write them to the file. # Format: # 000: width # 004: height # 008: offsets of each characters (96*uint32) # 392: data as described above log("Writing to %s...\n" % out_fname.get()) if out_fname.get() == "-": write_data(sys.stdout, cwidth, cheight, offsets, data) else: with open(out_fname.get(), 'wb') as f: write_data(f, cwidth, cheight, offsets, data) exit(0)
[((3751, 3776), 'PIL.Image.new', 'Image.new', (['"""L"""', '(1, 1)', '(0)'], {}), "('L', (1, 1), 0)\n", (3760, 3776), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((3792, 3811), 'PIL.ImageDraw.Draw', 'ImageDraw.Draw', (['res'], {}), '(res)\n', (3806, 3811), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((4460, 4496), 'PIL.Image.new', 'Image.new', (['"""L"""', '(cwidth, cheight)', '(0)'], {}), "('L', (cwidth, cheight), 0)\n", (4469, 4496), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((4512, 4531), 'PIL.ImageDraw.Draw', 'ImageDraw.Draw', (['res'], {}), '(res)\n', (4526, 4531), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((5013, 5046), 'PIL.Image.new', 'Image.new', (['"""L"""', '(cwidth, cheight)'], {}), "('L', (cwidth, cheight))\n", (5022, 5046), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((820, 842), 'sys.stdout.write', 'sys.stdout.write', (['text'], {}), '(text)\n', (836, 842), False, 'import codecs, os, gzip, ctypes, ctypes.util, sys\n'), ((4130, 4162), 'PIL.Image.new', 'Image.new', (['"""L"""', '(w, cheight * 2)'], {}), "('L', (w, cheight * 2))\n", (4139, 4162), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((4181, 4201), 'PIL.ImageDraw.Draw', 'ImageDraw.Draw', (['ichr'], {}), '(ichr)\n', (4195, 4201), False, 'from PIL import Image, ImageDraw, ImageFont\n')]
lawrendran/open
open/users/serializers.py
d136f694bafab647722c78be6f39ec79d589f774
import pytz from rest_auth.serializers import TokenSerializer from rest_framework.authtoken.models import Token from rest_framework.exceptions import ValidationError from rest_framework.fields import ( CharField, CurrentUserDefault, HiddenField, UUIDField, ChoiceField, ) from rest_framework.serializers import ModelSerializer, Serializer from rest_framework.validators import UniqueValidator from django.contrib.auth.hashers import check_password from open.users.models import User class SimpleUserReadSerializer(ModelSerializer): class Meta: model = User fields = ( "name", "uuid", ) class UserReadSerializer(ModelSerializer): class Meta: model = User fields = ( "name", "uuid", "signed_up_from", "date_joined", "username", "email", "created", "modified", ) class UserTokenSerializer(TokenSerializer): user = UserReadSerializer() class Meta: model = Token fields = ["key", "user"] # TODO - this view and serializer is on hold as you figure out registration (later) class UserCreateSerializer(ModelSerializer): username = CharField(validators=[UniqueValidator(queryset=User.objects.all())]) # need to make email optional ... prob should think through signup form a little email = CharField( validators=[UniqueValidator(queryset=User.objects.all())], required=False ) password = CharField(write_only=True, min_length=8) signed_up_from = CharField( write_only=True, min_length=8, required=False, default="", trim_whitespace=True ) timezone_string = ChoiceField( choices=pytz.all_timezones, required=False, default="US/Eastern" ) class Meta: model = User fields = ["username", "email", "password", "signed_up_from", "timezone_string"] # TODO test - does this work with just username / no email, etc. def create(self, validated_data): username = validated_data.pop("username") password = validated_data.pop("password") is_betterself_user = False if validated_data["signed_up_from"] == "betterself": is_betterself_user = True validated_data["is_betterself_user"] = is_betterself_user user = User.objects.create(username=username, **validated_data) user.set_password(password) user.save() return user class UserDeleteSerializer(Serializer): # most of this is actually redundant, i don't need to have a validation step, but i do this # out of paranoia reasons that someone may delete their account by mistake password = CharField() user = HiddenField(default=CurrentUserDefault()) uuid = UUIDField() def validate(self, data): user = data["user"] validated_password = check_password(data["password"], user.password) if not validated_password: raise ValidationError("Invalid Password Entered") validated_uuid = str(user.uuid) == str(data["uuid"]) if not validated_uuid: raise ValidationError("Invalid UUID", str(user.uuid)) validate_user = user.username != "[email protected]" if not validate_user: raise ValidationError( f"This is a protected user and cannot be deleted. {user.username}" ) return data
[((1538, 1578), 'rest_framework.fields.CharField', 'CharField', ([], {'write_only': '(True)', 'min_length': '(8)'}), '(write_only=True, min_length=8)\n', (1547, 1578), False, 'from rest_framework.fields import CharField, CurrentUserDefault, HiddenField, UUIDField, ChoiceField\n'), ((1600, 1694), 'rest_framework.fields.CharField', 'CharField', ([], {'write_only': '(True)', 'min_length': '(8)', 'required': '(False)', 'default': '""""""', 'trim_whitespace': '(True)'}), "(write_only=True, min_length=8, required=False, default='',\n trim_whitespace=True)\n", (1609, 1694), False, 'from rest_framework.fields import CharField, CurrentUserDefault, HiddenField, UUIDField, ChoiceField\n'), ((1727, 1804), 'rest_framework.fields.ChoiceField', 'ChoiceField', ([], {'choices': 'pytz.all_timezones', 'required': '(False)', 'default': '"""US/Eastern"""'}), "(choices=pytz.all_timezones, required=False, default='US/Eastern')\n", (1738, 1804), False, 'from rest_framework.fields import CharField, CurrentUserDefault, HiddenField, UUIDField, ChoiceField\n'), ((2738, 2749), 'rest_framework.fields.CharField', 'CharField', ([], {}), '()\n', (2747, 2749), False, 'from rest_framework.fields import CharField, CurrentUserDefault, HiddenField, UUIDField, ChoiceField\n'), ((2814, 2825), 'rest_framework.fields.UUIDField', 'UUIDField', ([], {}), '()\n', (2823, 2825), False, 'from rest_framework.fields import CharField, CurrentUserDefault, HiddenField, UUIDField, ChoiceField\n'), ((2372, 2428), 'open.users.models.User.objects.create', 'User.objects.create', ([], {'username': 'username'}), '(username=username, **validated_data)\n', (2391, 2428), False, 'from open.users.models import User\n'), ((2914, 2961), 'django.contrib.auth.hashers.check_password', 'check_password', (["data['password']", 'user.password'], {}), "(data['password'], user.password)\n", (2928, 2961), False, 'from django.contrib.auth.hashers import check_password\n'), ((2781, 2801), 'rest_framework.fields.CurrentUserDefault', 'CurrentUserDefault', ([], {}), '()\n', (2799, 2801), False, 'from rest_framework.fields import CharField, CurrentUserDefault, HiddenField, UUIDField, ChoiceField\n'), ((3016, 3059), 'rest_framework.exceptions.ValidationError', 'ValidationError', (['"""Invalid Password Entered"""'], {}), "('Invalid Password Entered')\n", (3031, 3059), False, 'from rest_framework.exceptions import ValidationError\n'), ((3336, 3424), 'rest_framework.exceptions.ValidationError', 'ValidationError', (['f"""This is a protected user and cannot be deleted. {user.username}"""'], {}), "(\n f'This is a protected user and cannot be deleted. {user.username}')\n", (3351, 3424), False, 'from rest_framework.exceptions import ValidationError\n'), ((1305, 1323), 'open.users.models.User.objects.all', 'User.objects.all', ([], {}), '()\n', (1321, 1323), False, 'from open.users.models import User\n'), ((1480, 1498), 'open.users.models.User.objects.all', 'User.objects.all', ([], {}), '()\n', (1496, 1498), False, 'from open.users.models import User\n')]
rhasspy/rhasspy-test
tests/en/test_asr.py
0c180bfdd370f18ad2f8b9ee483ea5520161ab74
"""Automated speech recognition tests.""" import os import sys import unittest from pathlib import Path import requests from rhasspyhermes.asr import AsrTextCaptured from rhasspyhermes.nlu import NluIntent class AsrEnglishTests(unittest.TestCase): """Test automated speech recognition (English)""" def setUp(self): self.http_host = os.environ.get("RHASSPY_HTTP_HOST", "localhost") self.http_port = os.environ.get("RHASSPY_HTTP_PORT", 12101) self.wav_bytes = Path("wav/en/turn_on_the_living_room_lamp.wav").read_bytes() def api_url(self, fragment): return f"http://{self.http_host}:{self.http_port}/api/{fragment}" def check_status(self, response): if response.status_code != 200: print(response.text, file=sys.stderr) response.raise_for_status() def test_http_speech_to_text(self): """Test speech-to-text HTTP endpoint""" response = requests.post(self.api_url("speech-to-text"), data=self.wav_bytes) self.check_status(response) text = response.content.decode() self.assertEqual(text, "turn on the living room lamp") def test_http_speech_to_text_json(self): """Text speech-to-text HTTP endpoint (Rhasspy JSON format)""" response = requests.post( self.api_url("speech-to-text"), data=self.wav_bytes, headers={"Accept": "application/json"}, ) self.check_status(response) result = response.json() self.assertEqual(result["text"], "turn on the living room lamp") def test_http_speech_to_text_hermes(self): """Text speech-to-text HTTP endpoint (Hermes format)""" response = requests.post( self.api_url("speech-to-text"), data=self.wav_bytes, params={"outputFormat": "hermes"}, ) self.check_status(response) result = response.json() self.assertEqual(result["type"], "textCaptured") text_captured = AsrTextCaptured.from_dict(result["value"]) self.assertEqual(text_captured.text, "turn on the living room lamp") def test_http_speech_to_intent(self): response = requests.post(self.api_url("speech-to-intent"), data=self.wav_bytes) self.check_status(response) result = response.json() self.assertEqual(result["intent"]["name"], "ChangeLightState") self.assertEqual(result["text"], "turn on the living room lamp") self.assertEqual(result["slots"]["name"], "living room lamp") self.assertEqual(result["slots"]["state"], "on") def test_http_speech_to_intent_hermes(self): response = requests.post( self.api_url("speech-to-intent"), data=self.wav_bytes, params={"outputFormat": "hermes"}, ) self.check_status(response) result = response.json() self.assertEqual(result["type"], "intent") nlu_intent = NluIntent.from_dict(result["value"]) self.assertEqual(nlu_intent.raw_input, "turn on the living room lamp") self.assertEqual(nlu_intent.input, "turn on the living room lamp") # Intent name and slots self.assertEqual(nlu_intent.intent.intent_name, "ChangeLightState") slots_by_name = {slot.slot_name: slot for slot in nlu_intent.slots} self.assertIn("name", slots_by_name) self.assertEqual(slots_by_name["name"].value["value"], "living room lamp") self.assertIn("state", slots_by_name) self.assertEqual(slots_by_name["state"].value["value"], "on")
[((353, 401), 'os.environ.get', 'os.environ.get', (['"""RHASSPY_HTTP_HOST"""', '"""localhost"""'], {}), "('RHASSPY_HTTP_HOST', 'localhost')\n", (367, 401), False, 'import os\n'), ((427, 469), 'os.environ.get', 'os.environ.get', (['"""RHASSPY_HTTP_PORT"""', '(12101)'], {}), "('RHASSPY_HTTP_PORT', 12101)\n", (441, 469), False, 'import os\n'), ((2010, 2052), 'rhasspyhermes.asr.AsrTextCaptured.from_dict', 'AsrTextCaptured.from_dict', (["result['value']"], {}), "(result['value'])\n", (2035, 2052), False, 'from rhasspyhermes.asr import AsrTextCaptured\n'), ((2966, 3002), 'rhasspyhermes.nlu.NluIntent.from_dict', 'NluIntent.from_dict', (["result['value']"], {}), "(result['value'])\n", (2985, 3002), False, 'from rhasspyhermes.nlu import NluIntent\n'), ((495, 542), 'pathlib.Path', 'Path', (['"""wav/en/turn_on_the_living_room_lamp.wav"""'], {}), "('wav/en/turn_on_the_living_room_lamp.wav')\n", (499, 542), False, 'from pathlib import Path\n')]
OthmaneJ/deep-tts
speech/melgan/model/multiscale.py
93059d568c5b458d3f0d80eb294d397ecace8731
import torch import torch.nn as nn import torch.nn.functional as F from .discriminator import Discriminator from .identity import Identity class MultiScaleDiscriminator(nn.Module): def __init__(self): super(MultiScaleDiscriminator, self).__init__() self.discriminators = nn.ModuleList( [Discriminator() for _ in range(3)] ) self.pooling = nn.ModuleList( [Identity()] + [nn.AvgPool1d(kernel_size=4, stride=2, padding=2) for _ in range(1, 3)] ) def forward(self, x): ret = list() for pool, disc in zip(self.pooling, self.discriminators): x = pool(x) ret.append(disc(x)) return ret # [(feat, score), (feat, score), (feat, score)]
[((455, 503), 'torch.nn.AvgPool1d', 'nn.AvgPool1d', ([], {'kernel_size': '(4)', 'stride': '(2)', 'padding': '(2)'}), '(kernel_size=4, stride=2, padding=2)\n', (467, 503), True, 'import torch.nn as nn\n')]
AntonioLourencos/jogo-da-velha
main.py
3b3e46e2d2f8c064f0df6a383bc5a0fe6bb01f63
from game import about_button, start_button, play_sound, center_pos import pygame WHITE = (255,255,255) BLACK = (0,0,0) GREEN = (0, 255, 0) pygame.init() pygame.font.init() pygame.mixer.init() FONT = pygame.font.Font("assets/font.ttf", 70) FONT_MIN = pygame.font.Font("assets/font.ttf", 30) window = pygame.display.set_mode([600,600]) running = True clock = pygame.time.Clock() nickname = " " me = "X" ia = "O" while running: for event in pygame.event.get(): if event.type == pygame.QUIT: running = False play_sound("minimize_001") if event.type == pygame.KEYDOWN: if event.key == pygame.K_BACKSPACE and len(nickname) > 2: nickname = list(nickname) nickname.pop(-2) nickname = "".join(nickname) play_sound("error_001") elif len(nickname.strip()) <= 10: play_sound("bong_001") if len(nickname) > 1: nickname = list(nickname) nickname.pop(-1) nickname = "".join(nickname) nickname += event.unicode nickname += " " if event.key == pygame.K_UP or event.key == pygame.K_DOWN: if me == "X": me = "O" ia = "X" else: me = "X" ia = "O" window.fill(BLACK) title = FONT.render("JOGO DA VELHA", True, WHITE) title_pos = center_pos(title.get_rect(), 10) window.blit(title, title_pos) nickname_label = FONT.render("SEU NOME", True, WHITE) nickname_label_pos = center_pos(nickname_label.get_rect(), 100) window.blit(nickname_label, nickname_label_pos) nickname_render = FONT.render(nickname, True, BLACK) nickname_rect = nickname_render.get_rect() nickname_pos = center_pos(nickname_rect, 180) pygame.draw.rect(window, WHITE, (nickname_pos[0], 180, nickname_rect[2], nickname_rect[3])) window.blit(nickname_render, nickname_pos) choice_render = FONT.render(f"JOGUE COM {me}", True, WHITE) window.blit(choice_render, center_pos(choice_render.get_rect(), 280)) my_name = FONT_MIN.render(f"DESENVOLVIDO POR MARIA EDUARDA DE AZEVEDO", True, WHITE) window.blit(my_name, center_pos(my_name.get_rect(), 560)) start_button(window, "JOGAR", 380, me, ia, nickname.strip(), 10) about_button(window, 450, 10) pygame.display.flip() clock.tick(60)
[((142, 155), 'pygame.init', 'pygame.init', ([], {}), '()\n', (153, 155), False, 'import pygame\n'), ((156, 174), 'pygame.font.init', 'pygame.font.init', ([], {}), '()\n', (172, 174), False, 'import pygame\n'), ((175, 194), 'pygame.mixer.init', 'pygame.mixer.init', ([], {}), '()\n', (192, 194), False, 'import pygame\n'), ((203, 242), 'pygame.font.Font', 'pygame.font.Font', (['"""assets/font.ttf"""', '(70)'], {}), "('assets/font.ttf', 70)\n", (219, 242), False, 'import pygame\n'), ((254, 293), 'pygame.font.Font', 'pygame.font.Font', (['"""assets/font.ttf"""', '(30)'], {}), "('assets/font.ttf', 30)\n", (270, 293), False, 'import pygame\n'), ((304, 339), 'pygame.display.set_mode', 'pygame.display.set_mode', (['[600, 600]'], {}), '([600, 600])\n', (327, 339), False, 'import pygame\n'), ((363, 382), 'pygame.time.Clock', 'pygame.time.Clock', ([], {}), '()\n', (380, 382), False, 'import pygame\n'), ((451, 469), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (467, 469), False, 'import pygame\n'), ((1902, 1932), 'game.center_pos', 'center_pos', (['nickname_rect', '(180)'], {}), '(nickname_rect, 180)\n', (1912, 1932), False, 'from game import about_button, start_button, play_sound, center_pos\n'), ((1937, 2032), 'pygame.draw.rect', 'pygame.draw.rect', (['window', 'WHITE', '(nickname_pos[0], 180, nickname_rect[2], nickname_rect[3])'], {}), '(window, WHITE, (nickname_pos[0], 180, nickname_rect[2],\n nickname_rect[3]))\n', (1953, 2032), False, 'import pygame\n'), ((2441, 2470), 'game.about_button', 'about_button', (['window', '(450)', '(10)'], {}), '(window, 450, 10)\n', (2453, 2470), False, 'from game import about_button, start_button, play_sound, center_pos\n'), ((2476, 2497), 'pygame.display.flip', 'pygame.display.flip', ([], {}), '()\n', (2495, 2497), False, 'import pygame\n'), ((549, 575), 'game.play_sound', 'play_sound', (['"""minimize_001"""'], {}), "('minimize_001')\n", (559, 575), False, 'from game import about_button, start_button, play_sound, center_pos\n'), ((832, 855), 'game.play_sound', 'play_sound', (['"""error_001"""'], {}), "('error_001')\n", (842, 855), False, 'from game import about_button, start_button, play_sound, center_pos\n'), ((918, 940), 'game.play_sound', 'play_sound', (['"""bong_001"""'], {}), "('bong_001')\n", (928, 940), False, 'from game import about_button, start_button, play_sound, center_pos\n')]
1donggri/teamProject
schedule/views.py
9b4f37c2a93b065529ce9dd245f9717a783dd456
from django.shortcuts import render, redirect from .models import Post from .forms import ScheduleForm from django.core.paginator import Paginator # Create your views here. def view_schedule(request): all_posts = Post.objects.all().order_by('pub_date') page = int(request.GET.get('p', 1)) pagenator = Paginator(all_posts, 5) posts = pagenator.get_page(page) return render(request, 'schedule/view_schedule.html', {'posts': posts}) def write_schedule(request): if request.method == "POST": form = ScheduleForm(request.POST) if form.is_valid(): # form의 모든 validators 호출 유효성 검증 수행 # user_id = request.session.get('user') # user = User.objects.get(pk=user_id) schedule = Post() schedule.title = form.cleaned_data['title'] # # 검증에 성공한 값들은 사전타입으로 제공 (form.cleaned_data) # # 검증에 실패시 form.error 에 오류 정보를 저장 schedule.username = form.cleaned_data['username'] schedule.pub_date = form.cleaned_data['pub_date'] schedule.save() return redirect('schedule:view_schedule') else: form = ScheduleForm() return render(request, 'schedule/write_schedule.html', {'form': form}) def delete(request, posts_id): post = Post.objects.get(id=posts_id) post.delete() posts = Post.objects.all().order_by('-id') return render(request, 'schedule/view_schedule.html', {'posts': posts})
[((314, 337), 'django.core.paginator.Paginator', 'Paginator', (['all_posts', '(5)'], {}), '(all_posts, 5)\n', (323, 337), False, 'from django.core.paginator import Paginator\n'), ((386, 450), 'django.shortcuts.render', 'render', (['request', '"""schedule/view_schedule.html"""', "{'posts': posts}"], {}), "(request, 'schedule/view_schedule.html', {'posts': posts})\n", (392, 450), False, 'from django.shortcuts import render, redirect\n'), ((1186, 1249), 'django.shortcuts.render', 'render', (['request', '"""schedule/write_schedule.html"""', "{'form': form}"], {}), "(request, 'schedule/write_schedule.html', {'form': form})\n", (1192, 1249), False, 'from django.shortcuts import render, redirect\n'), ((1399, 1463), 'django.shortcuts.render', 'render', (['request', '"""schedule/view_schedule.html"""', "{'posts': posts}"], {}), "(request, 'schedule/view_schedule.html', {'posts': posts})\n", (1405, 1463), False, 'from django.shortcuts import render, redirect\n'), ((1098, 1132), 'django.shortcuts.redirect', 'redirect', (['"""schedule:view_schedule"""'], {}), "('schedule:view_schedule')\n", (1106, 1132), False, 'from django.shortcuts import render, redirect\n')]
kingsdigitallab/archetype-django
archetype/settings/local_stg.py
6315c8f38e873e2d3b2d99fcfd47d01ce0ae35bc
from .base import * # noqa CACHE_REDIS_DATABASE = '1' CACHES['default']['LOCATION'] = '127.0.0.1:6379:' + CACHE_REDIS_DATABASE INTERNAL_IPS = INTERNAL_IPS + ('', ) ALLOWED_HOSTS = [''] DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': 'app_archetype_stg', 'USER': 'app_archetype', 'PASSWORD': '', 'HOST': '' }, }
[]
vnaskos/Website
website/sites/admin.py
1c2adb0985f3932ddeca12025a2d216d2470cb63
from django.contrib import admin # Register your models here.] from website.sites.models import Post @admin.register(Post) class TestAdmin2(admin.ModelAdmin): pass
[((108, 128), 'django.contrib.admin.register', 'admin.register', (['Post'], {}), '(Post)\n', (122, 128), False, 'from django.contrib import admin\n')]
korbi98/TicTacToeGo_Zero
mcts.py
b8ea4562f3ddf914a53fc380f2266f13ab887e04
# Monte Carlo tree search for TicTacToe import numpy as np from tictactoe import Tictactoe import copy from random import choice from tree import Node import time class MCTS: ''' Class defining a simple monte carlo tree search algorithm. Attributes: - game: instance of TicTacToe game - current_player: player to perform next move - number_of_rollouts: number of simulations for generating one move - tree: list containing all possible and impossible (taken) leaf nodes ''' def __init__(self, game, number_of_rollouts): self.game = game self.current_player = game.move_number%2 + 1 print(self.current_player) self.tree = Node(None, -1, 3 - self.current_player) # Root node of tree self.number_of_rollouts = number_of_rollouts print("Initial game state:\n",self.game.board) def perform_search(self): '''Perfoming the mcts by performing the specified number of simulations and updating the corresponding leaf node. leaf node is choosen by traverse_tree function ''' start_time = time.clock() for i in range(self.number_of_rollouts): simulated_game = copy.deepcopy(self.game) # Traverse to leaf leaf = self.traverse_tree(simulated_game) # Random simulation for leaf result = self.rollout(simulated_game) # Update all visited nodes self.update_tree(result, leaf) end_time = time.clock() print("\nFirst layer:") for child in self.tree.children: child.print(self.tree) second_layer = max(self.tree.children, key= lambda x: x.visits) print("\nSecond layer:") for child in second_layer.children: child.print(self.tree) print("\nSearch took:", round(end_time-start_time, 4), "seconds") result = [0 for i in range(self.game.size**2)] for child in self.tree.children: result[child.boardposition] = child.visits return result def traverse_tree(self, simulated_game): '''Choose next leaf for performing rollout. When node is fully expanded, child with highest UCT is choosen. If not a random unexplored node is choosen. ''' current_node = self.tree #root while current_node.isExpanded(): current_node = current_node.UTC_traverse(self.tree) x,y = simulated_game.get_coords(current_node.boardposition) simulated_game.setField(x,y) # create children if empty if not current_node.children: current_node.getPossibleChildren(simulated_game.board) # terminate if board is full if not simulated_game.move_number < simulated_game.size**2 or simulated_game.checkboard(): return current_node x,y = simulated_game.get_coords(current_node.boardposition) simulated_game.setField(x,y) # Choose random unexplored leaf unexplored_leafs = list(filter(lambda x: x.visits == 0, current_node.children)) return choice(unexplored_leafs) def rollout(self, simulated_game): '''perform random play for choosen leaf node till terminal state is reached''' while (not simulated_game.checkboard()) and simulated_game.move_number < simulated_game.size**2: simulated_game.perform_random_move() res = simulated_game.checkboard() print("Finished simulation player", res, "won. Terminal state is:") simulated_game.printBoard() return res def update_tree(self, result, leaf): '''update all visited nodes in tree''' self.tree.visits += 1 current_node = leaf while current_node.parent: #current_node.print(self.tree) current_node.update(result) current_node = current_node.parent
[((708, 747), 'tree.Node', 'Node', (['None', '(-1)', '(3 - self.current_player)'], {}), '(None, -1, 3 - self.current_player)\n', (712, 747), False, 'from tree import Node\n'), ((1135, 1147), 'time.clock', 'time.clock', ([], {}), '()\n', (1145, 1147), False, 'import time\n'), ((1543, 1555), 'time.clock', 'time.clock', ([], {}), '()\n', (1553, 1555), False, 'import time\n'), ((3183, 3207), 'random.choice', 'choice', (['unexplored_leafs'], {}), '(unexplored_leafs)\n', (3189, 3207), False, 'from random import choice\n'), ((1226, 1250), 'copy.deepcopy', 'copy.deepcopy', (['self.game'], {}), '(self.game)\n', (1239, 1250), False, 'import copy\n')]
pirovc/grimer
grimer/metadata.py
169f8d3009004d6d2f4ca4d3e7dfec819078cb34
import pandas as pd from pandas.api.types import is_numeric_dtype from grimer.utils import print_log class Metadata: valid_types = ["categorical", "numeric"] default_type = "categorical" def __init__(self, metadata_file, samples: list=[]): # Read metadata and let pandas guess dtypes, index as str self.data = pd.read_table(metadata_file, sep='\t', header=0, skiprows=0, index_col=0, dtype={0:str}) # Enforce string index self.data.index = self.data.index.astype('str') # Define all COLUMN TYPES as default self.types = pd.Series(self.default_type, index=self.data.columns) # Set types if str(self.data.index[0]).startswith("#"): # types defined on file self.set_hard_types() else: # guessed types from read_table self.types[self.data.dtypes.map(is_numeric_dtype)] = "numeric" # Convert datatypes to adequate numeric values (int, float) self.data = self.data.convert_dtypes(infer_objects=False, convert_string=False) # Re-convert everython to object to standardize (int64 NA is not seriazable on bokeh) self.data = self.data.astype("object") # Remove empty fields null_cols = self.data.isna().all(axis=0) if any(null_cols): self.data = self.data.loc[:, ~null_cols] self.types = self.types[~null_cols] print_log(str(sum(null_cols)) + " fields removed without valid values") # Convert NaN on categorical to "" self.data[self.types[self.types == "categorical"].index] = self.data[self.types[self.types == "categorical"].index].fillna('') # Remove names self.data.index.names = [None] self.types.name = None # sort and filter by given samples if samples: self.data = self.data.reindex(samples) # Check if matched metadata and samples null_rows = self.data.isna().all(axis=1) if any(null_rows): #self.data = self.data.loc[~null_rows, :] print_log(str(sum(null_rows)) + " samples without valid metadata") def __repr__(self): args = ['{}={}'.format(k, repr(v)) for (k, v) in vars(self).items()] return 'Metadata({})'.format(', '.join(args)) def set_hard_types(self): # Get values defined on the first row self.types = self.data.iloc[0] # Drop row with types from main data self.data.drop(self.types.name, inplace=True) # Validate declared types idx_valid = self.types.isin(self.valid_types) if not idx_valid.all(): print_log("Invalid metadata types replaced by: " + self.default_type) self.types[~idx_valid] = self.default_type # Enforce column type on dataframe self.data[self.types[self.types == "categorical"].index] = self.data[self.types[self.types == "categorical"].index].astype(str) self.data[self.types[self.types == "numeric"].index] = self.data[self.types[self.types == "numeric"].index].apply(pd.to_numeric) def get_col_headers(self): return self.data.columns def get_data(self, metadata_type: str=None): if metadata_type is not None: return self.data[self.types[self.types == metadata_type].index] else: return self.data def get_col(self, col): return self.data[col] def get_unique_values(self, col): return sorted(self.get_col(col).dropna().unique()) def get_formatted_unique_values(self, col): if self.types[col] == "categorical": return self.get_unique_values(col) else: return list(map('{:.16g}'.format, self.get_unique_values(col))) def get_type(self, col): return self.types[col] def get_subset(self, column, value): return self.data[self.data[column] == value]
[((341, 436), 'pandas.read_table', 'pd.read_table', (['metadata_file'], {'sep': '"""\t"""', 'header': '(0)', 'skiprows': '(0)', 'index_col': '(0)', 'dtype': '{(0): str}'}), "(metadata_file, sep='\\t', header=0, skiprows=0, index_col=0,\n dtype={(0): str})\n", (354, 436), True, 'import pandas as pd\n'), ((585, 638), 'pandas.Series', 'pd.Series', (['self.default_type'], {'index': 'self.data.columns'}), '(self.default_type, index=self.data.columns)\n', (594, 638), True, 'import pandas as pd\n'), ((2654, 2723), 'grimer.utils.print_log', 'print_log', (["('Invalid metadata types replaced by: ' + self.default_type)"], {}), "('Invalid metadata types replaced by: ' + self.default_type)\n", (2663, 2723), False, 'from grimer.utils import print_log\n')]
MSLars/allennlp
allennlp/training/metric_tracker.py
2cdb8742c8c8c3c38ace4bdfadbdc750a1aa2475
from typing import Optional, Dict, Any, List, Union from allennlp.common.checks import ConfigurationError class MetricTracker: """ This class tracks a metric during training for the dual purposes of early stopping and for knowing whether the current value is the best so far. It mimics the PyTorch `state_dict` / `load_state_dict` interface, so that it can be checkpointed along with your model and optimizer. Some metrics improve by increasing; others by decreasing. You can provide a `metric_name` that starts with "+" to indicate an increasing metric, or "-" to indicate a decreasing metric. # Parameters metric_name : `Union[str, List[str]]` Specifies the metric or metrics to track. Metric names have to start with "+" for increasing metrics or "-" for decreasing ones. If you specify more than one, it tracks the sum of the increasing metrics metrics minus the sum of the decreasing metrics. patience : `int`, optional (default = `None`) If provided, then `should_stop_early()` returns True if we go this many epochs without seeing a new best value. """ def __init__( self, metric_name: Union[str, List[str]], patience: Optional[int] = None, ) -> None: self._patience = patience self._best_so_far: Optional[float] = None self._epochs_with_no_improvement = 0 self._is_best_so_far = True self._epoch_number = 0 self.best_epoch: Optional[int] = None self.best_epoch_metrics: Dict[str, float] = {} if isinstance(metric_name, str): metric_name = [metric_name] self.tracked_metrics = [] for name in metric_name: if name.startswith("+"): self.tracked_metrics.append((1.0, name[1:])) elif name.startswith("-"): self.tracked_metrics.append((-1.0, name[1:])) else: raise ConfigurationError("metric_name must start with + or -") def clear(self) -> None: """ Clears out the tracked metrics, but keeps the patience """ self._best_so_far = None self._epochs_with_no_improvement = 0 self._is_best_so_far = True self._epoch_number = 0 self.best_epoch = None self.best_epoch_metrics.clear() def state_dict(self) -> Dict[str, Any]: """ A `Trainer` can use this to serialize the state of the metric tracker. """ return { "best_so_far": self._best_so_far, "epochs_with_no_improvement": self._epochs_with_no_improvement, "is_best_so_far": self._is_best_so_far, "epoch_number": self._epoch_number, "best_epoch": self.best_epoch, "best_epoch_metrics": self.best_epoch_metrics, } def load_state_dict(self, state_dict: Dict[str, Any]) -> None: """ A `Trainer` can use this to hydrate a metric tracker from a serialized state. """ self._best_so_far = state_dict["best_so_far"] self._epochs_with_no_improvement = state_dict["epochs_with_no_improvement"] self._is_best_so_far = state_dict["is_best_so_far"] self._epoch_number = state_dict["epoch_number"] self.best_epoch = state_dict["best_epoch"] # Even though we don't promise backwards compatibility for the --recover flag, # it's particularly easy and harmless to provide it here, so we do it. self.best_epoch_metrics = state_dict.get("best_epoch_metrics", {}) def add_metrics(self, metrics: Dict[str, float]) -> None: """ Record a new value of the metric and update the various things that depend on it. """ combined_score = self.combined_score(metrics) new_best = (self._best_so_far is None) or (combined_score > self._best_so_far) if new_best: self._best_so_far = combined_score self._epochs_with_no_improvement = 0 self._is_best_so_far = True self.best_epoch = self._epoch_number else: self._epochs_with_no_improvement += 1 self._is_best_so_far = False self._epoch_number += 1 def is_best_so_far(self) -> bool: """ Returns true if the most recent value of the metric is the best so far. """ return self._is_best_so_far def should_stop_early(self) -> bool: """ Returns true if improvement has stopped for long enough. """ if self._patience is None: return False else: return self._epochs_with_no_improvement >= self._patience def combined_score(self, metrics: Dict[str, float]) -> float: try: return sum( factor * metrics[metric_name] for factor, metric_name in self.tracked_metrics ) except KeyError as e: raise ConfigurationError( f"You configured the trainer to use the {e.args[0]} " "metric for early stopping, but the model did not produce that metric." )
[((4970, 5122), 'allennlp.common.checks.ConfigurationError', 'ConfigurationError', (['f"""You configured the trainer to use the {e.args[0]} metric for early stopping, but the model did not produce that metric."""'], {}), "(\n f'You configured the trainer to use the {e.args[0]} metric for early stopping, but the model did not produce that metric.'\n )\n", (4988, 5122), False, 'from allennlp.common.checks import ConfigurationError\n'), ((1979, 2035), 'allennlp.common.checks.ConfigurationError', 'ConfigurationError', (['"""metric_name must start with + or -"""'], {}), "('metric_name must start with + or -')\n", (1997, 2035), False, 'from allennlp.common.checks import ConfigurationError\n')]
MuhweziDeo/Ah-backend-xmen
authors/apps/profiles/renderers.py
60c830977fa39a7eea9ab978a9ba0c3beb0c4d88
from authors.apps.utils.renderers import AppJSONRenderer import json from rest_framework.renderers import JSONRenderer class UserProfileJSONRenderer(AppJSONRenderer): name = 'profile' class UserProfileListRenderer(JSONRenderer): """ Returns profiles of existing users """ charset = 'utf-8' def render(self, data, media_type=None, renderer_context=None): """ present a list of user profiles in json format """ return json.dumps({ 'profiles':data }) class ReadStatsJsonRenderer(AppJSONRenderer): name = 'read_stats'
[((482, 512), 'json.dumps', 'json.dumps', (["{'profiles': data}"], {}), "({'profiles': data})\n", (492, 512), False, 'import json\n')]
bantenz/NetworkConfigParser
json_analyzer.py
e1aa8385540823340e8278c7d7af0201399efd8f
import json from deepdiff import DeepDiff import pprint def get_json(file_name): with open(file_name) as json_file: json_data = json.load(json_file) return json_data def compare_json(Hostname, Command, Data1, Data2): if (Data1 == Data2): print ("%s - %s output is same" % (Hostname, Command)) else: print ("%s - %s output is different" % (Hostname, Command)) pprint.pprint(DeepDiff(Data1, Data2)) def main(): Hostname = raw_input('Input Hostname of the device : ').lower() Command = raw_input('Input Command : ').lower() Filename1 = raw_input('Input First JSON File : ').lower() Filename2 = raw_input('Input Second JSON File : ').lower() Data1 = get_json(Filename1) Data2 = get_json(Filename2) compare_json(Hostname, Command, Data1, Data2) if __name__ == "__main__": # If this Python file runs by itself, run below command. If imported, this section is not run main()
[((141, 161), 'json.load', 'json.load', (['json_file'], {}), '(json_file)\n', (150, 161), False, 'import json\n'), ((427, 449), 'deepdiff.DeepDiff', 'DeepDiff', (['Data1', 'Data2'], {}), '(Data1, Data2)\n', (435, 449), False, 'from deepdiff import DeepDiff\n')]
telefonicaid/fiware-glancesync
fiwareglancesync/sync.py
5ad0c80e12b9384473f31bf336015c75cf02a2a2
#!/usr/bin/env python # -- encoding: utf-8 -- # # Copyright 2015-2016 Telefónica Investigación y Desarrollo, S.A.U # # This file is part of FI-WARE project. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # # You may obtain a copy of the License at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. # # For those usages not covered by the Apache version 2.0 License please # contact with [email protected] # import sys import StringIO import os import os.path import datetime import argparse import logging from fiwareglancesync.glancesync import GlanceSync class Sync(object): def __init__(self, regions, override_d=None): """init object""" GlanceSync.init_logs() self.glancesync = GlanceSync(options_dict=override_d) regions_expanded = list() already_sorted = True for region in regions: if region.endswith(':'): regions_expanded.extend(self.glancesync.get_regions( target=region[:-1])) already_sorted = False else: regions_expanded.append(region) regions = regions_expanded if not regions: regions = self.glancesync.get_regions() already_sorted = False if not already_sorted: regions_unsorted = regions regions = list() for region in self.glancesync.preferable_order: if region in regions_unsorted: regions.append(region) regions_unsorted.remove(region) regions.extend(regions_unsorted) self.regions = regions def report_status(self): """Report the synchronisation status of the regions""" for region in self.regions: try: stream = StringIO.StringIO() self.glancesync.export_sync_region_status(region, stream) print(stream.getvalue()) except Exception: # Don't do anything. Message has been already printed # try next region continue def parallel_sync(self): """Run the synchronisation in several regions in parallel. The synchronisation inside the region is sequential (i.e. several regions are synchronised simultaneously, but only one image at time is uploaded for each region)""" max_children = self.glancesync.max_children now = datetime.datetime.now() datestr = str(now.year) + str(now.month).zfill(2) + \ str(now.day).zfill(2) + '_' + str(now.hour).zfill(2) +\ str(now.minute).zfill(2) msg = '======Master is ' + self.glancesync.master_region print(msg) sys.stdout.flush() os.mkdir('sync_' + datestr) children = dict() for region in self.regions: try: if len(children) >= max_children: self._wait_child(children) pid = os.fork() if pid > 0: children[pid] = region continue else: path = os.path.join('sync_' + datestr, region + '.txt') handler = logging.FileHandler(path) handler.setFormatter(logging.Formatter('%(message)s')) logger = self.glancesync.log # Remove old handlers for h in logger.handlers: logger.removeHandler(h) logger.addHandler(handler) logger.setLevel(logging.INFO) logger.propagate = 0 self.glancesync.sync_region(region) # After a fork, os_exit() and not sys.exit() must be used. os._exit(0) except Exception: raise sys.stderr.flush() sys.exit(-1) while len(children) > 0: self._wait_child(children) print('All is done.') def sequential_sync(self, dry_run=False): """Run the synchronisation sequentially (that is, do not start the synchronisation to a region before the previous one was completed or failed :param dry_run: if true, do not synchronise images actually """ msg = '======Master is ' + self.glancesync.master_region print(msg) for region in self.regions: try: msg = "======" + region print(msg) sys.stdout.flush() self.glancesync.sync_region(region, dry_run=dry_run) except Exception: # Don't do anything. Message has been already printed # try next region continue def _wait_child(self, children): """ Wait until one of the regions ends its synchronisation and then print the result :param children: :return: a dictionary or regions, indexed by the pid of the process """ finish_direct_child = False while not finish_direct_child: (pid, status) = os.wait() if pid not in children: continue else: finish_direct_child = True if status == 0: msg = 'Region {0} has finished'.format(children[pid]) print(msg) else: msg = 'Region {0} has finished with errors' print(msg.format(children[pid])) del children[pid] sys.stdout.flush() def show_regions(self): """print a full list of the regions available (excluding the master region) in all the targets defined in the configuration file""" regions = self.glancesync.get_regions() for target in self.glancesync.targets.keys(): if target == 'facade' or target == 'master': continue regions.extend(self.glancesync.get_regions(target=target)) print(' '.join(regions)) def make_backup(self): """make a backup of the metadata in the regions specified at the constructor (in addition to the master region). The backup is created in a directory named 'backup_glance_' with the date and time as suffix There is a file for each region (the name is backup_<region>.csv) and inside the file a line for each image. Only the information about public images/ the images owned by the tenant, can be obtained, regardless if the user is an admin. This is a limitation of the glance API""" now = datetime.datetime.now().isoformat() directory = 'backup_glance_' + now os.mkdir(directory) regions = set(self.regions) regions.add(self.glancesync.master_region) for region in regions: try: self.glancesync.backup_glancemetadata_region(region, directory) except Exception: # do nothing. Already logged. continue if __name__ == '__main__': # Parse cmdline description = 'A tool to sync images from a master region to other '\ 'regions' parser = argparse.ArgumentParser(description=description) parser.add_argument('regions', metavar='region', type=str, nargs='*', help='region where the images are uploaded to') parser.add_argument('--parallel', action='store_true', help='sync several regions in parallel') parser.add_argument( '--config', nargs='+', help='override configuration options. (e.g. ' + "main.master_region=Valladolid metadata_condition='image.name=name1')") group = parser.add_mutually_exclusive_group() group.add_argument('--dry-run', action='store_true', help='do not upload actually the images') group.add_argument('--show-status', action='store_true', help='do not sync, but show the synchronisation status') group.add_argument('--show-regions', action='store_true', help='don not sync, only show the available regions') group.add_argument( '--make-backup', action='store_true', help="do no sync, make a backup of the regions' metadata") meta = parser.parse_args() options = dict() if meta.config: for option in meta.config: pair = option.split('=') if len(pair) != 2: parser.error('config options must have the format key=value') sys.exit(-1) options[pair[0].strip()] = pair[1] # Run cmd sync = Sync(meta.regions, options) if meta.show_status: sync.report_status() elif meta.parallel: sync.parallel_sync() elif meta.show_regions: sync.show_regions() elif meta.make_backup: sync.make_backup() else: sync.sequential_sync(meta.dry_run)
[((7681, 7729), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': 'description'}), '(description=description)\n', (7704, 7729), False, 'import argparse\n'), ((1071, 1093), 'fiwareglancesync.glancesync.GlanceSync.init_logs', 'GlanceSync.init_logs', ([], {}), '()\n', (1091, 1093), False, 'from fiwareglancesync.glancesync import GlanceSync\n'), ((1120, 1155), 'fiwareglancesync.glancesync.GlanceSync', 'GlanceSync', ([], {'options_dict': 'override_d'}), '(options_dict=override_d)\n', (1130, 1155), False, 'from fiwareglancesync.glancesync import GlanceSync\n'), ((2848, 2871), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (2869, 2871), False, 'import datetime\n'), ((3132, 3150), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (3148, 3150), False, 'import sys\n'), ((3159, 3186), 'os.mkdir', 'os.mkdir', (["('sync_' + datestr)"], {}), "('sync_' + datestr)\n", (3167, 3186), False, 'import os\n'), ((7180, 7199), 'os.mkdir', 'os.mkdir', (['directory'], {}), '(directory)\n', (7188, 7199), False, 'import os\n'), ((5556, 5565), 'os.wait', 'os.wait', ([], {}), '()\n', (5563, 5565), False, 'import os\n'), ((2201, 2220), 'StringIO.StringIO', 'StringIO.StringIO', ([], {}), '()\n', (2218, 2220), False, 'import StringIO\n'), ((3387, 3396), 'os.fork', 'os.fork', ([], {}), '()\n', (3394, 3396), False, 'import os\n'), ((4953, 4971), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (4969, 4971), False, 'import sys\n'), ((6014, 6032), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (6030, 6032), False, 'import sys\n'), ((7093, 7116), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (7114, 7116), False, 'import datetime\n'), ((9052, 9064), 'sys.exit', 'sys.exit', (['(-1)'], {}), '(-1)\n', (9060, 9064), False, 'import sys\n'), ((3546, 3594), 'os.path.join', 'os.path.join', (["('sync_' + datestr)", "(region + '.txt')"], {}), "('sync_' + datestr, region + '.txt')\n", (3558, 3594), False, 'import os\n'), ((3625, 3650), 'logging.FileHandler', 'logging.FileHandler', (['path'], {}), '(path)\n', (3644, 3650), False, 'import logging\n'), ((4207, 4218), 'os._exit', 'os._exit', (['(0)'], {}), '(0)\n', (4215, 4218), False, 'import os\n'), ((4287, 4305), 'sys.stderr.flush', 'sys.stderr.flush', ([], {}), '()\n', (4303, 4305), False, 'import sys\n'), ((4322, 4334), 'sys.exit', 'sys.exit', (['(-1)'], {}), '(-1)\n', (4330, 4334), False, 'import sys\n'), ((3692, 3724), 'logging.Formatter', 'logging.Formatter', (['"""%(message)s"""'], {}), "('%(message)s')\n", (3709, 3724), False, 'import logging\n')]
Pandinosaurus/models-intelai
models/object_detection/pytorch/ssd-resnet34/training/cpu/mlperf_logger.py
60f5712d79a363bdb7624e3116a66a4f1a7fe208
### This file is originally from: [mlcommons repo](https://github.com/mlcommons/training/tree/9947bdf21ee3f2488fa4b362eec2ce7deb2ec4dd/single_stage_detector/ssd/mlperf_logger.py) # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import numpy as np import os from mlperf_logging import mllog from mlperf_logging.mllog import constants as mllog_const mllogger = mllog.get_mllogger() mllog.config( filename=(os.getenv("COMPLIANCE_FILE") or "mlperf_compliance.log"), root_dir=os.path.normpath(os.path.dirname(os.path.realpath(__file__)))) def ssd_print(*args, sync=True, **kwargs): use_cuda = os.getenv('USE_CUDA') if sync and use_cuda=='True': barrier() if get_rank() == 0: kwargs['stack_offset'] = 2 mllogger.event(*args, **kwargs) def barrier(): """ Works as a temporary distributed barrier, currently pytorch doesn't implement barrier for NCCL backend. Calls all_reduce on dummy tensor and synchronizes with GPU. """ if torch.distributed.is_initialized(): torch.distributed.all_reduce(torch.cuda.FloatTensor(1)) torch.cuda.synchronize() def get_rank(): """ Gets distributed rank or returns zero if distributed is not initialized. """ if torch.distributed.is_initialized(): rank = torch.distributed.get_rank() else: rank = os.getenv('RANK', os.getenv('LOCAL_RANK', 0)) return rank def broadcast_seeds(seed, device): if torch.distributed.is_initialized(): seeds_tensor = torch.LongTensor([seed]).to(device) torch.distributed.broadcast(seeds_tensor, 0) seed = seeds_tensor.item() return seed
[((933, 953), 'mlperf_logging.mllog.get_mllogger', 'mllog.get_mllogger', ([], {}), '()\n', (951, 953), False, 'from mlperf_logging import mllog\n'), ((1175, 1196), 'os.getenv', 'os.getenv', (['"""USE_CUDA"""'], {}), "('USE_CUDA')\n", (1184, 1196), False, 'import os\n'), ((1564, 1598), 'torch.distributed.is_initialized', 'torch.distributed.is_initialized', ([], {}), '()\n', (1596, 1598), False, 'import torch\n'), ((1815, 1849), 'torch.distributed.is_initialized', 'torch.distributed.is_initialized', ([], {}), '()\n', (1847, 1849), False, 'import torch\n'), ((2025, 2059), 'torch.distributed.is_initialized', 'torch.distributed.is_initialized', ([], {}), '()\n', (2057, 2059), False, 'import torch\n'), ((1672, 1696), 'torch.cuda.synchronize', 'torch.cuda.synchronize', ([], {}), '()\n', (1694, 1696), False, 'import torch\n'), ((1866, 1894), 'torch.distributed.get_rank', 'torch.distributed.get_rank', ([], {}), '()\n', (1892, 1894), False, 'import torch\n'), ((2128, 2172), 'torch.distributed.broadcast', 'torch.distributed.broadcast', (['seeds_tensor', '(0)'], {}), '(seeds_tensor, 0)\n', (2155, 2172), False, 'import torch\n'), ((982, 1010), 'os.getenv', 'os.getenv', (['"""COMPLIANCE_FILE"""'], {}), "('COMPLIANCE_FILE')\n", (991, 1010), False, 'import os\n'), ((1637, 1662), 'torch.cuda.FloatTensor', 'torch.cuda.FloatTensor', (['(1)'], {}), '(1)\n', (1659, 1662), False, 'import torch\n'), ((1938, 1964), 'os.getenv', 'os.getenv', (['"""LOCAL_RANK"""', '(0)'], {}), "('LOCAL_RANK', 0)\n", (1947, 1964), False, 'import os\n'), ((1086, 1112), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (1102, 1112), False, 'import os\n'), ((2084, 2108), 'torch.LongTensor', 'torch.LongTensor', (['[seed]'], {}), '([seed])\n', (2100, 2108), False, 'import torch\n')]
CDufour909/omtk_unreal
omtk/models/model_avar_surface_lips.py
64ae76a7b0a3f73a4b32d3b330f3174d02c54234
import math import pymel.core as pymel from omtk.core.classNode import Node from omtk.libs import libAttr from omtk.libs import libRigging from . import model_avar_surface class SplitterNode(Node): """ A splitter is a node network that take the parameterV that is normally sent through the follicles and split it between two destination: the follicles and the jaw ref constraint. The more the jaw is opened, the more we'll transfer to the jaw ref before sending to the follicle. This is mainly used to ensure that any lip movement created by the jaw is canceled when the animator try to correct the lips and the jaw is open. Otherwise since the jaw space and the surface space To compute the displacement caused by the was, we'll usethe circumference around the jaw pivot. This create an 'approximation' that might be wrong if some translation also occur in the jaw. todo: test with corrective jaw translation """ def __init__(self): super(SplitterNode, self).__init__() # useless self.attr_inn_jaw_pt = None self.attr_inn_jaw_radius = None self.attr_inn_surface_v = None self.attr_inn_surface_range_v = None self.attr_inn_jaw_default_ratio = None self.attr_out_surface_v = None self.attr_out_jaw_ratio = None def build(self, nomenclature_rig, **kwargs): super(SplitterNode, self).build(**kwargs) # # Create inn and out attributes. # grp_splitter_inn = pymel.createNode( 'network', name=nomenclature_rig.resolve('udSplitterInn') ) # The jaw opening amount in degree. self.attr_inn_jaw_pt = libAttr.addAttr(grp_splitter_inn, 'innJawOpen') # The relative uv coordinates normally sent to the follicles. # Note that this value is expected to change at the output of the SplitterNode (see outSurfaceU and outSurfaceV) self.attr_inn_surface_u = libAttr.addAttr(grp_splitter_inn, 'innSurfaceU') self.attr_inn_surface_v = libAttr.addAttr(grp_splitter_inn, 'innSurfaceV') # Use this switch to disable completely the splitter. self.attr_inn_bypass = libAttr.addAttr(grp_splitter_inn, 'innBypassAmount') # The arc length in world space of the surface controlling the follicles. self.attr_inn_surface_range_v = libAttr.addAttr(grp_splitter_inn, 'innSurfaceRangeV') # How many degree does take the jaw to create 1 unit of surface deformation? (ex: 20) # How much inn percent is the lips following the jaw by default. # Note that this value is expected to change at the output of the SplitterNode (see attr_out_jaw_ratio) self.attr_inn_jaw_default_ratio = libAttr.addAttr(grp_splitter_inn, 'jawDefaultRatio') # The radius of the influence circle normally resolved by using the distance between the jaw and the avar as radius. self.attr_inn_jaw_radius = libAttr.addAttr(grp_splitter_inn, 'jawRadius') grp_splitter_out = pymel.createNode( 'network', name=nomenclature_rig.resolve('udSplitterOut') ) self.attr_out_surface_u = libAttr.addAttr(grp_splitter_out, 'outSurfaceU') self.attr_out_surface_v = libAttr.addAttr(grp_splitter_out, 'outSurfaceV') self.attr_out_jaw_ratio = libAttr.addAttr(grp_splitter_out, 'outJawRatio') # How much percent this influence follow the jaw after cancellation. # # Connect inn and out network nodes so they can easily be found from the SplitterNode. # attr_inn = libAttr.addAttr(grp_splitter_inn, longName='inn', attributeType='message') attr_out = libAttr.addAttr(grp_splitter_out, longName='out', attributeType='message') pymel.connectAttr(self.node.message, attr_inn) pymel.connectAttr(self.node.message, attr_out) # # Create node networks # Step 1: Get the jaw displacement in uv space (parameterV only). # attr_jaw_circumference = libRigging.create_utility_node( 'multiplyDivide', name=nomenclature_rig.resolve('getJawCircumference'), input1X=self.attr_inn_jaw_radius, input2X=(math.pi * 2.0) ).outputX attr_jaw_open_circle_ratio = libRigging.create_utility_node( 'multiplyDivide', name=nomenclature_rig.resolve('getJawOpenCircleRatio'), operation=2, # divide input1X=self.attr_inn_jaw_pt, input2X=360.0 ).outputX attr_jaw_active_circumference = libRigging.create_utility_node( 'multiplyDivide', name=nomenclature_rig.resolve('getJawActiveCircumference'), input1X=attr_jaw_circumference, input2X=attr_jaw_open_circle_ratio ).outputX attr_jaw_v_range = libRigging.create_utility_node( 'multiplyDivide', name=nomenclature_rig.resolve('getActiveJawRangeInSurfaceSpace'), operation=2, # divide input1X=attr_jaw_active_circumference, input2X=self.attr_inn_surface_range_v ).outputX # # Step 2: Resolve the output jaw_ratio # # Note that this can throw a zero division warning in Maya. # To prevent that we'll use some black-magic-ugly-ass-trick. attr_jaw_ratio_cancelation = libRigging.create_safe_division( self.attr_inn_surface_v, attr_jaw_v_range, nomenclature_rig, 'getJawRatioCancellation' ) attr_jaw_ratio_out_raw = libRigging.create_utility_node( 'plusMinusAverage', name=nomenclature_rig.resolve('getJawRatioOutUnlimited'), operation=2, # substraction, input1D=( self.attr_inn_jaw_default_ratio, attr_jaw_ratio_cancelation ) ).output1D attr_jaw_ratio_out_limited = libRigging.create_utility_node( 'clamp', name=nomenclature_rig.resolve('getJawRatioOutLimited'), inputR=attr_jaw_ratio_out_raw, minR=0.0, maxR=1.0 ).outputR # # Step 3: Resolve attr_out_surface_u & attr_out_surface_v # attr_inn_jaw_default_ratio_inv = libRigging.create_utility_node( 'reverse', name=nomenclature_rig.resolve('getJawDefaultRatioInv'), inputX=self.attr_inn_jaw_default_ratio ).outputX util_jaw_uv_default_ratio = libRigging.create_utility_node( 'multiplyDivide', name=nomenclature_rig.resolve('getJawDefaultRatioUvSpace'), input1X=self.attr_inn_jaw_default_ratio, input1Y=attr_inn_jaw_default_ratio_inv, input2X=attr_jaw_v_range, input2Y=attr_jaw_v_range ) attr_jaw_uv_default_ratio = util_jaw_uv_default_ratio.outputX attr_jaw_uv_default_ratio_inv = util_jaw_uv_default_ratio.outputY attr_jaw_uv_limit_max = libRigging.create_utility_node( 'plusMinusAverage', name=nomenclature_rig.resolve('getJawSurfaceLimitMax'), operation=2, # substract input1D=(attr_jaw_v_range, attr_jaw_uv_default_ratio_inv) ).output1D attr_jaw_uv_limit_min = libRigging.create_utility_node( 'plusMinusAverage', name=nomenclature_rig.resolve('getJawSurfaceLimitMin'), operation=2, # substract input1D=(attr_jaw_uv_default_ratio, attr_jaw_v_range) ).output1D attr_jaw_cancel_range = libRigging.create_utility_node( 'clamp', name=nomenclature_rig.resolve('getJawCancelRange'), inputR=self.attr_inn_surface_v, minR=attr_jaw_uv_limit_min, maxR=attr_jaw_uv_limit_max ).outputR attr_out_surface_v_cancelled = libRigging.create_utility_node( 'plusMinusAverage', name=nomenclature_rig.resolve('getCanceledUv'), operation=2, # substraction input1D=(self.attr_inn_surface_v, attr_jaw_cancel_range) ).output1D # # Connect output attributes # attr_inn_bypass_inv = libRigging.create_utility_node( 'reverse', name=nomenclature_rig.resolve('getBypassInv'), inputX=self.attr_inn_bypass ).outputX # Connect output jaw_ratio attr_output_jaw_ratio = libRigging.create_utility_node( 'blendWeighted', input=(attr_jaw_ratio_out_limited, self.attr_inn_jaw_default_ratio), weight=(attr_inn_bypass_inv, self.attr_inn_bypass) ).output pymel.connectAttr(attr_output_jaw_ratio, self.attr_out_jaw_ratio) # Connect output surface u pymel.connectAttr(self.attr_inn_surface_u, self.attr_out_surface_u) # Connect output surface_v attr_output_surface_v = libRigging.create_utility_node( 'blendWeighted', input=(attr_out_surface_v_cancelled, self.attr_inn_surface_v), weight=(attr_inn_bypass_inv, self.attr_inn_bypass) ).output pymel.connectAttr(attr_output_surface_v, self.attr_out_surface_v) class AvarSurfaceLipModel(model_avar_surface.AvarSurfaceModel): """ Custom avar model for the complex situation that is the lips. This ensure that we are moving according to the jaw before sliding on the surface. """ def __init__(self, *args, **kwargs): super(AvarSurfaceLipModel, self).__init__(*args, **kwargs) self._attr_inn_jaw_bindpose = None self._attr_inn_jaw_pitch = None self._attr_inn_jaw_ratio_default = None self._attr_inn_bypass_splitter = None self._attr_out_jaw_ratio = None def _create_interface(self): super(AvarSurfaceLipModel, self)._create_interface() self._attr_inn_jaw_bindpose = libAttr.addAttr(self.grp_rig, 'innJawBindPose', dataType='matrix') self._attr_inn_jaw_pitch = libAttr.addAttr(self.grp_rig, 'innJawPitch', defaultValue=0) self._attr_inn_jaw_ratio_default = libAttr.addAttr(self.grp_rig, 'innJawRatioDefault', defaultValue=0) self._attr_inn_bypass_splitter = libAttr.addAttr(self.grp_rig, 'innBypassSplitter') self._attr_inn_ud_bypass = libAttr.addAttr(self.grp_rig, 'innBypassUD') # self._attr_inn_surface_length_u = libAttr.addAttr(self.grp_rig, 'innSurfaceLengthU', defaultValue=0) # self._attr_inn_surface_length_v = libAttr.addAttr(self.grp_rig, 'innSurfaceLengthV', defaultValue=0) self._attr_out_jaw_ratio = libAttr.addAttr(self.grp_rig, 'outJawRatio') def connect_avar(self, avar): super(AvarSurfaceLipModel, self).connect_avar(avar) # Note: We expect a FaceLipAvar pymel.connectAttr(avar._attr_jaw_bind_tm, self._attr_inn_jaw_bindpose) pymel.connectAttr(avar._attr_jaw_pitch, self._attr_inn_jaw_pitch) pymel.connectAttr(avar._attr_inn_jaw_ratio_default, self._attr_inn_jaw_ratio_default) pymel.connectAttr(avar._attr_bypass_splitter, self._attr_inn_bypass_splitter) pymel.connectAttr(avar.attr_ud_bypass, self._attr_inn_ud_bypass) def _get_follicle_relative_uv_attr(self, **kwargs): nomenclature_rig = self.get_nomenclature_rig() attr_u, attr_v = super(AvarSurfaceLipModel, self)._get_follicle_relative_uv_attr(**kwargs) util_decompose_jaw_bind_tm = libRigging.create_utility_node( 'decomposeMatrix', inputMatrix=self._attr_inn_jaw_bindpose, ) # # Create and connect Splitter Node # splitter = SplitterNode() splitter.build( nomenclature_rig, name=nomenclature_rig.resolve('splitter') ) splitter.setParent(self.grp_rig) # Resolve the radius of the jaw influence. Used by the splitter. attr_jaw_radius = libRigging.create_utility_node( 'distanceBetween', name=nomenclature_rig.resolve('getJawRadius'), point1=self.grp_offset.translate, point2=util_decompose_jaw_bind_tm.outputTranslate ).distance # Resolve the jaw pitch. Used by the splitter. attr_jaw_pitch = self._attr_inn_jaw_pitch # Connect the splitter inputs pymel.connectAttr(attr_u, splitter.attr_inn_surface_u) pymel.connectAttr(attr_v, splitter.attr_inn_surface_v) pymel.connectAttr(self._attr_inn_jaw_ratio_default, splitter.attr_inn_jaw_default_ratio) pymel.connectAttr(self._attr_length_v, splitter.attr_inn_surface_range_v) pymel.connectAttr(attr_jaw_radius, splitter.attr_inn_jaw_radius) pymel.connectAttr(attr_jaw_pitch, splitter.attr_inn_jaw_pt) pymel.connectAttr(self._attr_inn_bypass_splitter, splitter.attr_inn_bypass) attr_u = splitter.attr_out_surface_u attr_v = splitter.attr_out_surface_v # Create constraint to controller the jaw reference pymel.connectAttr(splitter.attr_out_jaw_ratio, self._attr_out_jaw_ratio) # # Implement the 'bypass' avars. # Thoses avars bypass the splitter, used in corner cases only. # attr_attr_ud_bypass_adjusted = libRigging.create_utility_node( 'multiplyDivide', name=nomenclature_rig.resolve('getAdjustedUdBypass'), input1X=self._attr_inn_ud_bypass, input2X=self.multiplier_ud ).outputX attr_v = libRigging.create_utility_node( 'addDoubleLinear', name=nomenclature_rig.resolve('addBypassAvar'), input1=attr_v, input2=attr_attr_ud_bypass_adjusted ).output return attr_u, attr_v
[((1698, 1745), 'omtk.libs.libAttr.addAttr', 'libAttr.addAttr', (['grp_splitter_inn', '"""innJawOpen"""'], {}), "(grp_splitter_inn, 'innJawOpen')\n", (1713, 1745), False, 'from omtk.libs import libAttr\n'), ((1972, 2020), 'omtk.libs.libAttr.addAttr', 'libAttr.addAttr', (['grp_splitter_inn', '"""innSurfaceU"""'], {}), "(grp_splitter_inn, 'innSurfaceU')\n", (1987, 2020), False, 'from omtk.libs import libAttr\n'), ((2055, 2103), 'omtk.libs.libAttr.addAttr', 'libAttr.addAttr', (['grp_splitter_inn', '"""innSurfaceV"""'], {}), "(grp_splitter_inn, 'innSurfaceV')\n", (2070, 2103), False, 'from omtk.libs import libAttr\n'), ((2198, 2250), 'omtk.libs.libAttr.addAttr', 'libAttr.addAttr', (['grp_splitter_inn', '"""innBypassAmount"""'], {}), "(grp_splitter_inn, 'innBypassAmount')\n", (2213, 2250), False, 'from omtk.libs import libAttr\n'), ((2374, 2427), 'omtk.libs.libAttr.addAttr', 'libAttr.addAttr', (['grp_splitter_inn', '"""innSurfaceRangeV"""'], {}), "(grp_splitter_inn, 'innSurfaceRangeV')\n", (2389, 2427), False, 'from omtk.libs import libAttr\n'), ((2799, 2851), 'omtk.libs.libAttr.addAttr', 'libAttr.addAttr', (['grp_splitter_inn', '"""jawDefaultRatio"""'], {}), "(grp_splitter_inn, 'jawDefaultRatio')\n", (2814, 2851), False, 'from omtk.libs import libAttr\n'), ((3013, 3059), 'omtk.libs.libAttr.addAttr', 'libAttr.addAttr', (['grp_splitter_inn', '"""jawRadius"""'], {}), "(grp_splitter_inn, 'jawRadius')\n", (3028, 3059), False, 'from omtk.libs import libAttr\n'), ((3233, 3281), 'omtk.libs.libAttr.addAttr', 'libAttr.addAttr', (['grp_splitter_out', '"""outSurfaceU"""'], {}), "(grp_splitter_out, 'outSurfaceU')\n", (3248, 3281), False, 'from omtk.libs import libAttr\n'), ((3316, 3364), 'omtk.libs.libAttr.addAttr', 'libAttr.addAttr', (['grp_splitter_out', '"""outSurfaceV"""'], {}), "(grp_splitter_out, 'outSurfaceV')\n", (3331, 3364), False, 'from omtk.libs import libAttr\n'), ((3399, 3447), 'omtk.libs.libAttr.addAttr', 'libAttr.addAttr', (['grp_splitter_out', '"""outJawRatio"""'], {}), "(grp_splitter_out, 'outJawRatio')\n", (3414, 3447), False, 'from omtk.libs import libAttr\n'), ((3703, 3777), 'omtk.libs.libAttr.addAttr', 'libAttr.addAttr', (['grp_splitter_inn'], {'longName': '"""inn"""', 'attributeType': '"""message"""'}), "(grp_splitter_inn, longName='inn', attributeType='message')\n", (3718, 3777), False, 'from omtk.libs import libAttr\n'), ((3797, 3871), 'omtk.libs.libAttr.addAttr', 'libAttr.addAttr', (['grp_splitter_out'], {'longName': '"""out"""', 'attributeType': '"""message"""'}), "(grp_splitter_out, longName='out', attributeType='message')\n", (3812, 3871), False, 'from omtk.libs import libAttr\n'), ((3880, 3926), 'pymel.core.connectAttr', 'pymel.connectAttr', (['self.node.message', 'attr_inn'], {}), '(self.node.message, attr_inn)\n', (3897, 3926), True, 'import pymel.core as pymel\n'), ((3935, 3981), 'pymel.core.connectAttr', 'pymel.connectAttr', (['self.node.message', 'attr_out'], {}), '(self.node.message, attr_out)\n', (3952, 3981), True, 'import pymel.core as pymel\n'), ((5508, 5631), 'omtk.libs.libRigging.create_safe_division', 'libRigging.create_safe_division', (['self.attr_inn_surface_v', 'attr_jaw_v_range', 'nomenclature_rig', '"""getJawRatioCancellation"""'], {}), "(self.attr_inn_surface_v, attr_jaw_v_range,\n nomenclature_rig, 'getJawRatioCancellation')\n", (5539, 5631), False, 'from omtk.libs import libRigging\n'), ((8853, 8918), 'pymel.core.connectAttr', 'pymel.connectAttr', (['attr_output_jaw_ratio', 'self.attr_out_jaw_ratio'], {}), '(attr_output_jaw_ratio, self.attr_out_jaw_ratio)\n', (8870, 8918), True, 'import pymel.core as pymel\n'), ((8963, 9030), 'pymel.core.connectAttr', 'pymel.connectAttr', (['self.attr_inn_surface_u', 'self.attr_out_surface_u'], {}), '(self.attr_inn_surface_u, self.attr_out_surface_u)\n', (8980, 9030), True, 'import pymel.core as pymel\n'), ((9323, 9388), 'pymel.core.connectAttr', 'pymel.connectAttr', (['attr_output_surface_v', 'self.attr_out_surface_v'], {}), '(attr_output_surface_v, self.attr_out_surface_v)\n', (9340, 9388), True, 'import pymel.core as pymel\n'), ((10086, 10152), 'omtk.libs.libAttr.addAttr', 'libAttr.addAttr', (['self.grp_rig', '"""innJawBindPose"""'], {'dataType': '"""matrix"""'}), "(self.grp_rig, 'innJawBindPose', dataType='matrix')\n", (10101, 10152), False, 'from omtk.libs import libAttr\n'), ((10188, 10248), 'omtk.libs.libAttr.addAttr', 'libAttr.addAttr', (['self.grp_rig', '"""innJawPitch"""'], {'defaultValue': '(0)'}), "(self.grp_rig, 'innJawPitch', defaultValue=0)\n", (10203, 10248), False, 'from omtk.libs import libAttr\n'), ((10292, 10359), 'omtk.libs.libAttr.addAttr', 'libAttr.addAttr', (['self.grp_rig', '"""innJawRatioDefault"""'], {'defaultValue': '(0)'}), "(self.grp_rig, 'innJawRatioDefault', defaultValue=0)\n", (10307, 10359), False, 'from omtk.libs import libAttr\n'), ((10401, 10451), 'omtk.libs.libAttr.addAttr', 'libAttr.addAttr', (['self.grp_rig', '"""innBypassSplitter"""'], {}), "(self.grp_rig, 'innBypassSplitter')\n", (10416, 10451), False, 'from omtk.libs import libAttr\n'), ((10487, 10531), 'omtk.libs.libAttr.addAttr', 'libAttr.addAttr', (['self.grp_rig', '"""innBypassUD"""'], {}), "(self.grp_rig, 'innBypassUD')\n", (10502, 10531), False, 'from omtk.libs import libAttr\n'), ((10790, 10834), 'omtk.libs.libAttr.addAttr', 'libAttr.addAttr', (['self.grp_rig', '"""outJawRatio"""'], {}), "(self.grp_rig, 'outJawRatio')\n", (10805, 10834), False, 'from omtk.libs import libAttr\n'), ((10979, 11049), 'pymel.core.connectAttr', 'pymel.connectAttr', (['avar._attr_jaw_bind_tm', 'self._attr_inn_jaw_bindpose'], {}), '(avar._attr_jaw_bind_tm, self._attr_inn_jaw_bindpose)\n', (10996, 11049), True, 'import pymel.core as pymel\n'), ((11058, 11123), 'pymel.core.connectAttr', 'pymel.connectAttr', (['avar._attr_jaw_pitch', 'self._attr_inn_jaw_pitch'], {}), '(avar._attr_jaw_pitch, self._attr_inn_jaw_pitch)\n', (11075, 11123), True, 'import pymel.core as pymel\n'), ((11132, 11222), 'pymel.core.connectAttr', 'pymel.connectAttr', (['avar._attr_inn_jaw_ratio_default', 'self._attr_inn_jaw_ratio_default'], {}), '(avar._attr_inn_jaw_ratio_default, self.\n _attr_inn_jaw_ratio_default)\n', (11149, 11222), True, 'import pymel.core as pymel\n'), ((11226, 11303), 'pymel.core.connectAttr', 'pymel.connectAttr', (['avar._attr_bypass_splitter', 'self._attr_inn_bypass_splitter'], {}), '(avar._attr_bypass_splitter, self._attr_inn_bypass_splitter)\n', (11243, 11303), True, 'import pymel.core as pymel\n'), ((11312, 11376), 'pymel.core.connectAttr', 'pymel.connectAttr', (['avar.attr_ud_bypass', 'self._attr_inn_ud_bypass'], {}), '(avar.attr_ud_bypass, self._attr_inn_ud_bypass)\n', (11329, 11376), True, 'import pymel.core as pymel\n'), ((11627, 11722), 'omtk.libs.libRigging.create_utility_node', 'libRigging.create_utility_node', (['"""decomposeMatrix"""'], {'inputMatrix': 'self._attr_inn_jaw_bindpose'}), "('decomposeMatrix', inputMatrix=self.\n _attr_inn_jaw_bindpose)\n", (11657, 11722), False, 'from omtk.libs import libRigging\n'), ((12512, 12566), 'pymel.core.connectAttr', 'pymel.connectAttr', (['attr_u', 'splitter.attr_inn_surface_u'], {}), '(attr_u, splitter.attr_inn_surface_u)\n', (12529, 12566), True, 'import pymel.core as pymel\n'), ((12575, 12629), 'pymel.core.connectAttr', 'pymel.connectAttr', (['attr_v', 'splitter.attr_inn_surface_v'], {}), '(attr_v, splitter.attr_inn_surface_v)\n', (12592, 12629), True, 'import pymel.core as pymel\n'), ((12638, 12731), 'pymel.core.connectAttr', 'pymel.connectAttr', (['self._attr_inn_jaw_ratio_default', 'splitter.attr_inn_jaw_default_ratio'], {}), '(self._attr_inn_jaw_ratio_default, splitter.\n attr_inn_jaw_default_ratio)\n', (12655, 12731), True, 'import pymel.core as pymel\n'), ((12735, 12808), 'pymel.core.connectAttr', 'pymel.connectAttr', (['self._attr_length_v', 'splitter.attr_inn_surface_range_v'], {}), '(self._attr_length_v, splitter.attr_inn_surface_range_v)\n', (12752, 12808), True, 'import pymel.core as pymel\n'), ((12817, 12881), 'pymel.core.connectAttr', 'pymel.connectAttr', (['attr_jaw_radius', 'splitter.attr_inn_jaw_radius'], {}), '(attr_jaw_radius, splitter.attr_inn_jaw_radius)\n', (12834, 12881), True, 'import pymel.core as pymel\n'), ((12890, 12949), 'pymel.core.connectAttr', 'pymel.connectAttr', (['attr_jaw_pitch', 'splitter.attr_inn_jaw_pt'], {}), '(attr_jaw_pitch, splitter.attr_inn_jaw_pt)\n', (12907, 12949), True, 'import pymel.core as pymel\n'), ((12958, 13033), 'pymel.core.connectAttr', 'pymel.connectAttr', (['self._attr_inn_bypass_splitter', 'splitter.attr_inn_bypass'], {}), '(self._attr_inn_bypass_splitter, splitter.attr_inn_bypass)\n', (12975, 13033), True, 'import pymel.core as pymel\n'), ((13194, 13266), 'pymel.core.connectAttr', 'pymel.connectAttr', (['splitter.attr_out_jaw_ratio', 'self._attr_out_jaw_ratio'], {}), '(splitter.attr_out_jaw_ratio, self._attr_out_jaw_ratio)\n', (13211, 13266), True, 'import pymel.core as pymel\n'), ((8623, 8801), 'omtk.libs.libRigging.create_utility_node', 'libRigging.create_utility_node', (['"""blendWeighted"""'], {'input': '(attr_jaw_ratio_out_limited, self.attr_inn_jaw_default_ratio)', 'weight': '(attr_inn_bypass_inv, self.attr_inn_bypass)'}), "('blendWeighted', input=(\n attr_jaw_ratio_out_limited, self.attr_inn_jaw_default_ratio), weight=(\n attr_inn_bypass_inv, self.attr_inn_bypass))\n", (8653, 8801), False, 'from omtk.libs import libRigging\n'), ((9099, 9271), 'omtk.libs.libRigging.create_utility_node', 'libRigging.create_utility_node', (['"""blendWeighted"""'], {'input': '(attr_out_surface_v_cancelled, self.attr_inn_surface_v)', 'weight': '(attr_inn_bypass_inv, self.attr_inn_bypass)'}), "('blendWeighted', input=(\n attr_out_surface_v_cancelled, self.attr_inn_surface_v), weight=(\n attr_inn_bypass_inv, self.attr_inn_bypass))\n", (9129, 9271), False, 'from omtk.libs import libRigging\n')]
dataesr/harvest-theses
project/server/main/feed.py
1725b3ec3a944526fe62941d554bc3de6209cd28
import datetime import os import pymongo import requests from urllib import parse from urllib.parse import quote_plus import json from retry import retry from bs4 import BeautifulSoup import math from project.server.main.logger import get_logger from project.server.main.utils_swift import upload_object from project.server.main.parse import parse_theses, get_idref_from_OS from project.server.main.referentiel import harvest_and_save_idref logger = get_logger(__name__) def get_num_these(soup): num_theses = [] for d in soup.find_all('doc'): num_theses.append(d.find('str', {'name': 'num'}).text) return num_theses @retry(delay=60, tries=5) def get_num_these_between_dates(start_date, end_date): start_date_str = start_date.strftime("%d/%m/%Y") end_date_str = end_date.strftime("%d/%m/%Y") start_date_str_iso = start_date.strftime("%Y%m%d") end_date_str_iso = end_date.strftime("%Y%m%d") start = 0 url = "http://theses.fr/?q=&zone1=titreRAs&val1=&op1=AND&zone2=auteurs&val2=&op2=AND&zone3=etabSoutenances&val3=&op3=AND&zone4=dateSoutenance&val4a={}&val4b={}&start={}&format=xml" logger.debug(url.format(start_date_str, end_date_str, start)) r = requests.get(url.format(start_date_str, end_date_str, start)) soup = BeautifulSoup(r.text, 'lxml') nb_res = soup.find('result', {'name': 'response'}).attrs['numfound'] logger.debug("{} resultats entre {} et {}".format(nb_res, start_date_str_iso, end_date_str_iso )) num_theses = get_num_these(soup) nb_pages_remaining = math.ceil(int(nb_res)/1000) for p in range(1, nb_pages_remaining): logger.debug("page {} for entre {} et {}".format(p, start_date_str_iso, end_date_str_iso)) r = requests.get(url.format(start_date_str, end_date_str, p * 1000)) soup = BeautifulSoup(r.text, 'lxml') num_theses += get_num_these(soup) return num_theses def save_data(data, collection_name, year_start, year_end, chunk_index, referentiel): logger.debug(f'save_data theses {collection_name} {chunk_index}') year_start_end = 'all_years' if year_start and year_end: year_start_end = f'{year_start}_{year_end}' # 1. save raw data to OS current_file = f'theses_{year_start_end}_{chunk_index}.json' json.dump(data, open(current_file, 'w')) os.system(f'gzip {current_file}') upload_object('theses', f'{current_file}.gz', f'{collection_name}/raw/{current_file}.gz') os.system(f'rm -rf {current_file}.gz') # 2.transform data and save in mongo current_file_parsed = f'theses_parsed_{year_start_end}_{chunk_index}.json' data_parsed = [parse_theses(e, referentiel, collection_name) for e in data] json.dump(data_parsed, open(current_file_parsed, 'w')) # insert_data(collection_name, current_file_parsed) os.system(f'gzip {current_file_parsed}') upload_object('theses', f'{current_file_parsed}.gz', f'{collection_name}/parsed/{current_file_parsed}.gz') os.system(f'rm -rf {current_file_parsed}.gz') def harvest_and_insert(collection_name): # 1. save aurehal structures harvest_and_save_idref(collection_name) referentiel = get_idref_from_OS(collection_name) # 2. drop mongo #logger.debug(f'dropping {collection_name} collection before insertion') #myclient = pymongo.MongoClient('mongodb://mongo:27017/') #myclient['theses'][collection_name].drop() # 3. save publications year_start = None year_end = None if year_start is None: year_start = 1990 if year_end is None: year_end = datetime.date.today().year harvest_and_insert_one_year(collection_name, year_start, year_end, referentiel) @retry(delay=60, tries=5) def download_these_notice(these_id): res = {'id': these_id} r_tefudoc = requests.get("http://www.theses.fr/{}.tefudoc".format(these_id)) r_xml = requests.get("http://www.theses.fr/{}.xml".format(these_id)) if r_tefudoc.text[0:5] == "<?xml": res['tefudoc'] = r_tefudoc.text if r_xml.text[0:5] == "<?xml": res['xml'] = r_xml.text return res def harvest_and_insert_one_year(collection_name, year_start, year_end, referentiel): year_start_end = 'all_years' if year_start and year_end: year_start_end = f'{year_start}_{year_end}' start_date = datetime.datetime(year_start,1,1) end_date = datetime.datetime(year_end + 1,1,1) + datetime.timedelta(days = -1) all_num_theses = get_num_these_between_dates(start_date, end_date) # todo save by chunk chunk_index = 0 data = [] MAX_DATA_SIZE = 25000 nb_theses = len(all_num_theses) logger.debug(f'{nb_theses} theses to download and parse') for ix, nnt in enumerate(all_num_theses): if ix % 100 == 0: logger.debug(f'theses {year_start_end} {ix}') res = download_these_notice(nnt) data.append(res) if (len(data) > MAX_DATA_SIZE) or (ix == nb_theses - 1): if data: save_data(data, collection_name, year_start, year_end, chunk_index, referentiel) data = [] chunk_index += 1 def insert_data(collection_name, output_file): myclient = pymongo.MongoClient('mongodb://mongo:27017/') mydb = myclient['theses'] ## mongo start start = datetime.datetime.now() mongoimport = f"mongoimport --numInsertionWorkers 2 --uri mongodb://mongo:27017/theses --file {output_file}" \ f" --collection {collection_name} --jsonArray" logger.debug(f'Mongoimport {output_file} start at {start}') logger.debug(f'{mongoimport}') os.system(mongoimport) logger.debug(f'Checking indexes on collection {collection_name}') mycol = mydb[collection_name] #mycol.create_index('docid') end = datetime.datetime.now() delta = end - start logger.debug(f'Mongoimport done in {delta}') ## mongo done
[((453, 473), 'project.server.main.logger.get_logger', 'get_logger', (['__name__'], {}), '(__name__)\n', (463, 473), False, 'from project.server.main.logger import get_logger\n'), ((642, 666), 'retry.retry', 'retry', ([], {'delay': '(60)', 'tries': '(5)'}), '(delay=60, tries=5)\n', (647, 666), False, 'from retry import retry\n'), ((3688, 3712), 'retry.retry', 'retry', ([], {'delay': '(60)', 'tries': '(5)'}), '(delay=60, tries=5)\n', (3693, 3712), False, 'from retry import retry\n'), ((1282, 1311), 'bs4.BeautifulSoup', 'BeautifulSoup', (['r.text', '"""lxml"""'], {}), "(r.text, 'lxml')\n", (1295, 1311), False, 'from bs4 import BeautifulSoup\n'), ((2334, 2367), 'os.system', 'os.system', (['f"""gzip {current_file}"""'], {}), "(f'gzip {current_file}')\n", (2343, 2367), False, 'import os\n'), ((2372, 2465), 'project.server.main.utils_swift.upload_object', 'upload_object', (['"""theses"""', 'f"""{current_file}.gz"""', 'f"""{collection_name}/raw/{current_file}.gz"""'], {}), "('theses', f'{current_file}.gz',\n f'{collection_name}/raw/{current_file}.gz')\n", (2385, 2465), False, 'from project.server.main.utils_swift import upload_object\n'), ((2466, 2504), 'os.system', 'os.system', (['f"""rm -rf {current_file}.gz"""'], {}), "(f'rm -rf {current_file}.gz')\n", (2475, 2504), False, 'import os\n'), ((2825, 2865), 'os.system', 'os.system', (['f"""gzip {current_file_parsed}"""'], {}), "(f'gzip {current_file_parsed}')\n", (2834, 2865), False, 'import os\n'), ((2870, 2980), 'project.server.main.utils_swift.upload_object', 'upload_object', (['"""theses"""', 'f"""{current_file_parsed}.gz"""', 'f"""{collection_name}/parsed/{current_file_parsed}.gz"""'], {}), "('theses', f'{current_file_parsed}.gz',\n f'{collection_name}/parsed/{current_file_parsed}.gz')\n", (2883, 2980), False, 'from project.server.main.utils_swift import upload_object\n'), ((2981, 3026), 'os.system', 'os.system', (['f"""rm -rf {current_file_parsed}.gz"""'], {}), "(f'rm -rf {current_file_parsed}.gz')\n", (2990, 3026), False, 'import os\n'), ((3106, 3145), 'project.server.main.referentiel.harvest_and_save_idref', 'harvest_and_save_idref', (['collection_name'], {}), '(collection_name)\n', (3128, 3145), False, 'from project.server.main.referentiel import harvest_and_save_idref\n'), ((3164, 3198), 'project.server.main.parse.get_idref_from_OS', 'get_idref_from_OS', (['collection_name'], {}), '(collection_name)\n', (3181, 3198), False, 'from project.server.main.parse import parse_theses, get_idref_from_OS\n'), ((4322, 4357), 'datetime.datetime', 'datetime.datetime', (['year_start', '(1)', '(1)'], {}), '(year_start, 1, 1)\n', (4339, 4357), False, 'import datetime\n'), ((5206, 5251), 'pymongo.MongoClient', 'pymongo.MongoClient', (['"""mongodb://mongo:27017/"""'], {}), "('mongodb://mongo:27017/')\n", (5225, 5251), False, 'import pymongo\n'), ((5318, 5341), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (5339, 5341), False, 'import datetime\n'), ((5625, 5647), 'os.system', 'os.system', (['mongoimport'], {}), '(mongoimport)\n', (5634, 5647), False, 'import os\n'), ((5795, 5818), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (5816, 5818), False, 'import datetime\n'), ((1813, 1842), 'bs4.BeautifulSoup', 'BeautifulSoup', (['r.text', '"""lxml"""'], {}), "(r.text, 'lxml')\n", (1826, 1842), False, 'from bs4 import BeautifulSoup\n'), ((2645, 2690), 'project.server.main.parse.parse_theses', 'parse_theses', (['e', 'referentiel', 'collection_name'], {}), '(e, referentiel, collection_name)\n', (2657, 2690), False, 'from project.server.main.parse import parse_theses, get_idref_from_OS\n'), ((4371, 4408), 'datetime.datetime', 'datetime.datetime', (['(year_end + 1)', '(1)', '(1)'], {}), '(year_end + 1, 1, 1)\n', (4388, 4408), False, 'import datetime\n'), ((4409, 4436), 'datetime.timedelta', 'datetime.timedelta', ([], {'days': '(-1)'}), '(days=-1)\n', (4427, 4436), False, 'import datetime\n'), ((3575, 3596), 'datetime.date.today', 'datetime.date.today', ([], {}), '()\n', (3594, 3596), False, 'import datetime\n')]
ckamtsikis/cmssw
DQM/L1TMonitor/python/L1TGCT_cfi.py
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
import FWCore.ParameterSet.Config as cms from DQMServices.Core.DQMEDAnalyzer import DQMEDAnalyzer l1tGct = DQMEDAnalyzer('L1TGCT', gctCentralJetsSource = cms.InputTag("gctDigis","cenJets"), gctForwardJetsSource = cms.InputTag("gctDigis","forJets"), gctTauJetsSource = cms.InputTag("gctDigis","tauJets"), gctIsoTauJetsSource = cms.InputTag("gctDigis","fake"), gctEnergySumsSource = cms.InputTag("gctDigis"), gctIsoEmSource = cms.InputTag("gctDigis","isoEm"), gctNonIsoEmSource = cms.InputTag("gctDigis","nonIsoEm"), monitorDir = cms.untracked.string("L1T/L1TGCT"), verbose = cms.untracked.bool(False), stage1_layer2_ = cms.bool(False), DQMStore = cms.untracked.bool(True), disableROOToutput = cms.untracked.bool(True), filterTriggerType = cms.int32(1) )
[((159, 194), 'FWCore.ParameterSet.Config.InputTag', 'cms.InputTag', (['"""gctDigis"""', '"""cenJets"""'], {}), "('gctDigis', 'cenJets')\n", (171, 194), True, 'import FWCore.ParameterSet.Config as cms\n'), ((222, 257), 'FWCore.ParameterSet.Config.InputTag', 'cms.InputTag', (['"""gctDigis"""', '"""forJets"""'], {}), "('gctDigis', 'forJets')\n", (234, 257), True, 'import FWCore.ParameterSet.Config as cms\n'), ((281, 316), 'FWCore.ParameterSet.Config.InputTag', 'cms.InputTag', (['"""gctDigis"""', '"""tauJets"""'], {}), "('gctDigis', 'tauJets')\n", (293, 316), True, 'import FWCore.ParameterSet.Config as cms\n'), ((343, 375), 'FWCore.ParameterSet.Config.InputTag', 'cms.InputTag', (['"""gctDigis"""', '"""fake"""'], {}), "('gctDigis', 'fake')\n", (355, 375), True, 'import FWCore.ParameterSet.Config as cms\n'), ((402, 426), 'FWCore.ParameterSet.Config.InputTag', 'cms.InputTag', (['"""gctDigis"""'], {}), "('gctDigis')\n", (414, 426), True, 'import FWCore.ParameterSet.Config as cms\n'), ((449, 482), 'FWCore.ParameterSet.Config.InputTag', 'cms.InputTag', (['"""gctDigis"""', '"""isoEm"""'], {}), "('gctDigis', 'isoEm')\n", (461, 482), True, 'import FWCore.ParameterSet.Config as cms\n'), ((507, 543), 'FWCore.ParameterSet.Config.InputTag', 'cms.InputTag', (['"""gctDigis"""', '"""nonIsoEm"""'], {}), "('gctDigis', 'nonIsoEm')\n", (519, 543), True, 'import FWCore.ParameterSet.Config as cms\n'), ((561, 595), 'FWCore.ParameterSet.Config.untracked.string', 'cms.untracked.string', (['"""L1T/L1TGCT"""'], {}), "('L1T/L1TGCT')\n", (581, 595), True, 'import FWCore.ParameterSet.Config as cms\n'), ((611, 636), 'FWCore.ParameterSet.Config.untracked.bool', 'cms.untracked.bool', (['(False)'], {}), '(False)\n', (629, 636), True, 'import FWCore.ParameterSet.Config as cms\n'), ((659, 674), 'FWCore.ParameterSet.Config.bool', 'cms.bool', (['(False)'], {}), '(False)\n', (667, 674), True, 'import FWCore.ParameterSet.Config as cms\n'), ((691, 715), 'FWCore.ParameterSet.Config.untracked.bool', 'cms.untracked.bool', (['(True)'], {}), '(True)\n', (709, 715), True, 'import FWCore.ParameterSet.Config as cms\n'), ((741, 765), 'FWCore.ParameterSet.Config.untracked.bool', 'cms.untracked.bool', (['(True)'], {}), '(True)\n', (759, 765), True, 'import FWCore.ParameterSet.Config as cms\n'), ((791, 803), 'FWCore.ParameterSet.Config.int32', 'cms.int32', (['(1)'], {}), '(1)\n', (800, 803), True, 'import FWCore.ParameterSet.Config as cms\n')]
gandhiy/lipMIP
utilities.py
11843e6bf2223acca44f57d29791521aac15caf3
""" General all-purpose utilities """ import sys import torch import torch.nn.functional as F import numpy as np import gurobipy as gb import matplotlib.pyplot as plt import io import contextlib import tempfile import time import re import pickle import inspect import glob import os COMPLETED_JOB_DIR = os.path.join(os.path.dirname(__file__), 'jobs', 'completed') # =============================================================================== # = Helpful all-purpose functions = # =============================================================================== class ParameterObject: def __init__(self, **kwargs): self.attr_list = [] assert 'attr_list' not in kwargs for k,v in kwargs.items(): setattr(self, k, v) self.attr_list.append(k) def change_attrs(self, **kwargs): new_kwargs = {} for attr in self.attr_list: if attr in kwargs: new_kwargs[attr] = kwargs[attr] else: new_kwargs[attr] = getattr(self, attr) return self.__class__(**new_kwargs) class Factory(ParameterObject): def __init__(self, constructor, **kwargs): self.constructor = constructor super(Factory, self).__init__(**kwargs) def __call__(self, **kwargs): cons_args = inspect.getfullargspec(self.constructor).args # Make default args from attributes args = {k: getattr(self, k) for k in self.attr_list if k in cons_args} # Update the default args for k,v in kwargs.items(): if k in cons_args: args[k] = v # Build object return self.constructor(**args) def __repr__(self): return '<Factory: %s>' % self.constructor.__self__.__name__ class DoEvery: @classmethod def dummy(cls, *args, **kwargs): pass def __init__(self, func, freq): """ Simple class that holds onto a function and it returns this function every freq iterations ARGS: func: function object to be returned every freq iterations freq: int - how often to return the function """ self.func = func self.freq = freq self.i = 0 def __call__(self, *args, **kwargs): if self.i % self.freq == 0: returner = self.func else: returner = self.dummy self.i += 1 return returner(*args, **kwargs) class Timer: def __init__(self, start_on_init=True): if start_on_init: self.start() def start(self): self.start_time = time.time() def stop(self): self.stop_time = time.time() return self.stop_time - self.start_time def reset(self): self.start_time = self.stop_time = None def cpufy(tensor_iter): """ Takes a list of tensors and safely pushes them back onto the cpu""" return [_.cpu() for _ in tensor_iter] def cudafy(tensor_iter): """ Takes a list of tensors and safely converts all of them to cuda""" def safe_cuda(el): try: return el.cuda() except AssertionError: return el return [safe_cuda(_) for _ in tensor_iter] def prod(num_iter): """ returns product of all elements in this iterator *'ed together""" cumprod = 1 for el in num_iter: cumprod *= el return cumprod def partition(n, m): """ Given ints n > m, partitions n into an iterable where all elements are m, except for the last one which is (n % m) """ count = 0 while count < n: yield min([m, n - count]) count += m def flatten_list(lol): """ Given list of lists, flattens it into a single list. """ output = [] for el in lol: if not isinstance(el, list): output.append(el) continue output.extend(flatten_list(el)) return output def partition_by_suffix(iterable, func): """ Given an iterable and a boolean-valued function which takes in elements of that iterable, outputs a list of lists, where each list ends in an element for which the func returns true, (except for the last one) e.g. iterable := [1, 2, 3, 4, 5,5, 5] func := lambda x: (x % 2) == 0 returns [[1,2], [3,4], [5, 5, 5]] """ output = [] sublist = [] for el in iterable: sublist.append(el) if func(el): output.append(sublist) sublist = [] if len(sublist) > 0: output.append(sublist) return output def arraylike(obj): return isinstance(obj, (torch.Tensor, np.ndarray)) def as_numpy(tensor_or_array): """ If given a tensor or numpy array returns that object cast numpy array """ if isinstance(tensor_or_array, torch.Tensor): tensor_or_array = tensor_or_array.cpu().detach().numpy() return tensor_or_array def two_col(l, r): """ Takes two numpy arrays of size N and makes a numpy array of size Nx2 """ return np.vstack([l, r]).T def split_pos_neg(x): if isinstance(x, torch.Tensor): return split_tensor_pos_neg(x) else: return split_ndarray_pos_neg(x) def split_tensor_pos_neg(x): """ Splits a tensor into positive and negative components """ pos = F.relu(x) neg = -F.relu(-x) return pos, neg def split_ndarray_pos_neg(x): """ Splits a numpy ndarray into positive and negative components """ pos = x * (x >= 0) neg = x * (x <= 0) return pos, neg def swap_axes(x, source, dest): """ Swaps the dimensions of source <-> dest for torch/numpy ARGS: x : numpy array or tensor source : int index dest : int index RETURNS x' - object with same data as x, but with axes swapped """ if isinstance(x, torch.Tensor): return x.transpose(source, dest) else: return np.moveaxis(x, source, dest) def build_var_namer(k): return lambda d: '%s[%s]' % (k, d) @contextlib.contextmanager def silent(): save_stdout = sys.stdout temp = tempfile.TemporaryFile(mode='w') sys.stdout = temp yield sys.stdout = save_stdout temp.close() def ia_mm(matrix, intervals, lohi_dim, matrix_or_vec='matrix'): """ Interval analysis matrix(-vec) multiplication for torch/np intervals ARGS: matrix : tensor or numpy array of shape (m,n) - intervals : tensor or numpy array with shape (n1, ..., 2, n_i, ...) - "vector" of intervals to be multiplied by a matrix one such n_i must be equal to n (from matrix shape) lohi_dim : int - which dimension (index) of intervals corresponds to the lo/hi split matrix_or_vec : string - must be matrix or vec, corresponds to whether intervals is to be treated as a matrix or a vector. If a v RETURNS: object of same type as intervals, but with the shape slightly different: len(output[-1/-2]) == m """ # asserts for shapes and things assert isinstance(matrix, torch.Tensor) # TENSOR ONLY FOR NOW assert isinstance(intervals, torch.Tensor) m, n = matrix.shape assert intervals.shape[lohi_dim] == 2 assert matrix_or_vec in ['matrix', 'vec'] if matrix_or_vec == 'vec': intervals = intervals.unsqueeze(-1) assert lohi_dim != intervals.dim() - 2 assert intervals[dim][-2] == n # define operators based on tensor/numpy case matmul = lambda m, x: m.matmul(x) stack = lambda a, b: torch.stack([a, b]) # now do IA stuff intervals = swap_axes(intervals, 0, lohi_dim) matrix_pos, matrix_neg = split_pos_neg(matrix) los, his = intervals new_los = matmul(matrix_pos, los) + matmul(matrix_neg, his) new_his = matmul(matrix_pos, his) + matmul(matrix_neg, los) intervals = swap_axes(stack(new_los, new_his), 0, lohi_dim) if matrix_or_vec == 'vec': intervals = interval.squeeze(-1) return intervals # ============================================================================= # = Image display functions = # ============================================================================= def display_images(image_rows, figsize=(8, 8)): """ Given either a tensor/np.array (or list of same), will display each element in the row or tensor ARGS: image_rows: tensor or np.array or tensor[], np.array[] - image or list of images to display RETURNS: None, but displays images """ if not isinstance(image_rows, list): image_rows = [image_rows] np_rows = [as_numpy(row) for row in image_rows] # Transpose channel to last dimension and stack to make rows np_rows = [np.concatenate(_.transpose([0, 2, 3, 1]), axis=1) for _ in np_rows] # Now stack rows full_image = np.concatenate(np_rows, axis=0) # And then show image imshow_kwargs = {} if full_image.shape[-1] == 1: full_image = full_image.squeeze() imshow_kwargs['cmap'] = 'gray' fig = plt.figure(figsize=figsize) ax = fig.add_subplot() ax.axis('off') ax.imshow(full_image, **imshow_kwargs) plt.show() # ====================================================== # = Pytorch helpers = # ====================================================== def seq_append(seq, module): """ Takes a nn.sequential and a nn.module and creates a nn.sequential with the module appended to it ARGS: seq: nn.Sequntial object module: <inherits nn.Module> RETURNS: nn.Sequential object """ seq_modules = [seq[_] for _ in range(len(seq))] + [module] return nn.Sequential(*seq_modules) def cpufy(tensor_iter): """ Takes a list of tensors and safely pushes them back onto the cpu""" output = [] for el in tensor_iter: if isinstance(el, tuple): output.append(tuple(_.cpu() for _ in el)) else: output.append(el.cpu()) return output def cudafy(tensor_iter): """ Takes a list of tensors and safely converts all of them to cuda""" def safe_cuda(el): try: if isinstance(el, tuple): return tuple(_.cuda() for _ in el) else: return el.cuda() except AssertionError: return el return [safe_cuda(_) for _ in tensor_iter] # ======================================= # = Polytope class = # ======================================= class Polytope: INPUT_KEY = 'input' SLACK_KEY = 'slack' def __init__(self, A, b): """ Represents a polytope of the form {x | AX <= b} (where everything is a numpy array) """ self.A = A self.b = b def _input_from_model(self, model): var_namer = build_var_namer(self.INPUT_KEY) return np.array([model.getVarByName(var_namer(i)).X for i in range(self.A.shape[1])]) def _build_model(self, slack=False): """ Builds a gurobi model of this object """ with silent(): model = gb.Model() input_namer = build_var_namer(self.INPUT_KEY) input_vars = [model.addVar(lb=-gb.GRB.INFINITY, ub=gb.GRB.INFINITY, name=input_namer(i)) for i in range(self.A.shape[1])] if slack == True: slack_var = model.addVar(lb=0, ub=1.0, name=self.SLACK_KEY) else: slack_var = 0 for i, row in enumerate(self.A): model.addConstr(gb.LinExpr(row, input_vars) + slack_var <= self.b[i]) model.update() return model def contains(self, x, tolerance=1e-6): return all(self.A @ x <= self.b + tolerance) def interior_point(self): model = self._build_model(slack=True) slack_var = model.getVarByName(self.SLACK_KEY) model.setObjective(slack_var, gb.GRB.MAXIMIZE) model.update() model.optimize() assert model.Status == 2 return self._input_from_model(model) def intersects_hbox(self, hbox): """ If this intersects a given hyperbox, returns a point contained in both """ model = self._build_model(slack=True) input_namer = build_var_namer(self.INPUT_KEY) for i, (lb, ub) in enumerate(hbox): var = model.getVarByName(input_namer(i)) model.addConstr(lb <= var <= ub) slack_var = model.getVarByName(self.SLACK_KEY) model.setObjective(slack_var, gb.GRB.MAXIMIZE) model.update() model.optimize() assert model.Status == 2 return self._input_from_model(model) # ========================================================= # = experiment.Result object helpers = # ========================================================= def filename_to_epoch(filename): return int(re.search(r'_EPOCH\d{4}_', filename).group()[-5:-1]) def read_result_files(result_files): output = [] for result_file in result_files: try: with open(result_file, 'rb') as f: output.append((result_file, pickle.load(f))) except Exception as err: print("Failed on file: ", result_file, err) return output def job_out_series(job_outs, eval_style, method, value_or_time='value', avg_stdev='avg'): """ Takes in some result or resultList objects and a 'method', and desired object, and returns these objects in a list ARGS: results: Result[] or ResultList[], results to consider eval_style: str - which method of Experiment we look at method: str - which Lipschitz-estimation technique to consider value_or_time: 'value' or 'time' - which number to return avg_stdev: 'avg' or 'stdev' - for ResultList[], we can get average or stdev values RETURNS: list of floats """ # check everything is the same type assert value_or_time in ['value', 'time'] assert avg_stdev in ['avg', 'stdev'] assert eval_style in ['do_random_evals', 'do_unit_hypercube_eval', 'do_data_evals', 'do_large_radius_evals'] results = [job_out[eval_style] for job_out in job_outs] output = [] for result in results: try: #Result object case if value_or_time == 'value': output.append(result.values(method)) else: output.append(result.compute_times(method)) except: triple = result.average_stdevs(value_or_time)[method] if avg_stdev == 'avg': output.append(triple[0]) else: output.append(triple[1]) return output def collect_result_outs(filematch): """ Uses glob to collect and load result objects matching a series ARGS: filematch: string with *'s associated with it e.g. 'NAME*SUBNAME*GLOBAL.result' RESULTS: list of (filename, experiment.Result) objects """ search_str = os.path.join(COMPLETED_JOB_DIR, filematch) sorted_filenames = sorted(glob.glob(search_str)) return read_result_files(sorted_filenames) def collect_epochs(filename_list): """ Given a list of (filename) objects, converts the filenames into integers, pulling the EPOCH attribute from the filename str[] -> int[] """ def epoch_gleamer(filename): basename = os.path.basename(filename) return int(re.search('_EPOCH\d+_', filename).group()[6:-1]) return [epoch_gleamer(_) for _ in filename_list] def data_from_results(result_iter, method, lip_estimator, time_or_value='value', avg_or_stdev='avg'): """ Given a list of experiment.Result or experiment.ResultList objects will return the time/value for the lip_estimator of the method for result (or avg/stdev if resultList objects) e.g., data_from_results('do_unit_hypercube_eval', 'LipMIP', 'value') gets a list of values of the LipMIP over the unitHypercube domain ARGS: method: str - name of one of the experimental methods lip_estimator : str - name of the class of lipschitz estimator to use time_or_value : 'time' or 'value' - returning the time or value here avg_or_stdev : 'avg' or 'stdev' - returning either avg or stdev of results from ResultListObjects """ assert method in ['do_random_evals', 'do_data_evals', 'do_unit_hypercube_eval'] assert lip_estimator in ['LipMIP', 'FastLip', 'LipLP', 'CLEVER', 'LipSDP', 'NaiveUB', 'RandomLB', 'SeqLip'] assert time_or_value in ['time', 'value'] assert avg_or_stdev in ['avg', 'stdev'] def datum_getter(result_obj): if not hasattr(result_obj, 'average_stdevs'): if time_or_value == 'value': return result_obj[method].values(lip_estimator) else: return result_obj[method].compute_times(lip_estimator) else: triple = result_obj.average_stdevs(time_or_value) if avg_or_stdev == 'avg': return triple[0] else: return triple[1] return [datum_getter(_) for _ in result_iter]
[((320, 345), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (335, 345), False, 'import os\n'), ((4728, 4737), 'torch.nn.functional.relu', 'F.relu', (['x'], {}), '(x)\n', (4734, 4737), True, 'import torch.nn.functional as F\n'), ((5427, 5459), 'tempfile.TemporaryFile', 'tempfile.TemporaryFile', ([], {'mode': '"""w"""'}), "(mode='w')\n", (5449, 5459), False, 'import tempfile\n'), ((8052, 8083), 'numpy.concatenate', 'np.concatenate', (['np_rows'], {'axis': '(0)'}), '(np_rows, axis=0)\n', (8066, 8083), True, 'import numpy as np\n'), ((8238, 8265), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': 'figsize'}), '(figsize=figsize)\n', (8248, 8265), True, 'import matplotlib.pyplot as plt\n'), ((8348, 8358), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (8356, 8358), True, 'import matplotlib.pyplot as plt\n'), ((13529, 13571), 'os.path.join', 'os.path.join', (['COMPLETED_JOB_DIR', 'filematch'], {}), '(COMPLETED_JOB_DIR, filematch)\n', (13541, 13571), False, 'import os\n'), ((2322, 2333), 'time.time', 'time.time', ([], {}), '()\n', (2331, 2333), False, 'import time\n'), ((2371, 2382), 'time.time', 'time.time', ([], {}), '()\n', (2380, 2382), False, 'import time\n'), ((4477, 4494), 'numpy.vstack', 'np.vstack', (['[l, r]'], {}), '([l, r])\n', (4486, 4494), True, 'import numpy as np\n'), ((4746, 4756), 'torch.nn.functional.relu', 'F.relu', (['(-x)'], {}), '(-x)\n', (4752, 4756), True, 'import torch.nn.functional as F\n'), ((5259, 5287), 'numpy.moveaxis', 'np.moveaxis', (['x', 'source', 'dest'], {}), '(x, source, dest)\n', (5270, 5287), True, 'import numpy as np\n'), ((6779, 6798), 'torch.stack', 'torch.stack', (['[a, b]'], {}), '([a, b])\n', (6790, 6798), False, 'import torch\n'), ((13599, 13620), 'glob.glob', 'glob.glob', (['search_str'], {}), '(search_str)\n', (13608, 13620), False, 'import glob\n'), ((13898, 13924), 'os.path.basename', 'os.path.basename', (['filename'], {}), '(filename)\n', (13914, 13924), False, 'import os\n'), ((1236, 1276), 'inspect.getfullargspec', 'inspect.getfullargspec', (['self.constructor'], {}), '(self.constructor)\n', (1258, 1276), False, 'import inspect\n'), ((10074, 10084), 'gurobipy.Model', 'gb.Model', ([], {}), '()\n', (10082, 10084), True, 'import gurobipy as gb\n'), ((11664, 11700), 're.search', 're.search', (['"""_EPOCH\\\\d{4}_"""', 'filename'], {}), "('_EPOCH\\\\d{4}_', filename)\n", (11673, 11700), False, 'import re\n'), ((10457, 10484), 'gurobipy.LinExpr', 'gb.LinExpr', (['row', 'input_vars'], {}), '(row, input_vars)\n', (10467, 10484), True, 'import gurobipy as gb\n'), ((11879, 11893), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (11890, 11893), False, 'import pickle\n'), ((13938, 13972), 're.search', 're.search', (['"""_EPOCH\\\\d+_"""', 'filename'], {}), "('_EPOCH\\\\d+_', filename)\n", (13947, 13972), False, 'import re\n')]
alentoghostflame/StupidAlentoBot
OLD/karma_module/text.py
c024bfb79a9ecb0d9fda5ddc4e361a0cb878baba
ADDED_KARMA_TO_MEMBER = "Gave {} karma to {}, their karma is now at {}." REMOVED_KARMA_FROM_MEMBER = "Removed {} karma from {}, their karma is now at {}." LIST_KARMA_OWN = "You currently have {} karma." LIST_KARMA_OBJECT = "\"{}\" currently has {} karma." LIST_KARMA_MEMBER = "{} currently has {} karma." KARMA_TOP_START = "Top karma in server:\n" KARMA_TOP_FORMAT = "{}. {} \\| {}\n"
[]
anssilaukkarinen/mry-cluster2
read_delphin_data.py
65d80a7371a4991dfe248ff6944f050e1573f8fc
# -*- coding: utf-8 -*- """ Created on Mon Dec 6 14:51:24 2021 @author: laukkara This script is run first to fetch results data from university's network drive """ import os import pickle input_folder_for_Delphin_data = r'S:\91202_Rakfys_Mallinnus\RAMI\simulations' output_folder = os.path.join(r'C:\Local\laukkara\Data\github\mry-cluster2\input') output_pickle_file_name = 'S_RAMI.pickle' ## Preparations if not os.path.exists(output_folder): os.makedirs(output_folder) output_pickle_file_path = os.path.join(output_folder, output_pickle_file_name) ## Read in results data from pickle files cases = {} data = {} cases = os.listdir(input_folder_for_Delphin_data) cases.remove('olds') cases.remove('RAMI_simulated_cases.xlsx') data = {} for case in cases: print('Reading:', case) fname = os.path.join(input_folder_for_Delphin_data, case, 'd.pickle') with open(fname, 'rb') as f: try: df = pickle.load(f) if df.shape[0] == 1200: data[case] = df else: print('ERROR AT:', case) except: print('Error when reading case:', case) print(data[cases[0]].columns) with open(output_pickle_file_path, 'wb') as f: pickle.dump(data, f)
[((289, 359), 'os.path.join', 'os.path.join', (['"""C:\\\\Local\\\\laukkara\\\\Data\\\\github\\\\mry-cluster2\\\\input"""'], {}), "('C:\\\\Local\\\\laukkara\\\\Data\\\\github\\\\mry-cluster2\\\\input')\n", (301, 359), False, 'import os\n'), ((517, 569), 'os.path.join', 'os.path.join', (['output_folder', 'output_pickle_file_name'], {}), '(output_folder, output_pickle_file_name)\n', (529, 569), False, 'import os\n'), ((682, 723), 'os.listdir', 'os.listdir', (['input_folder_for_Delphin_data'], {}), '(input_folder_for_Delphin_data)\n', (692, 723), False, 'import os\n'), ((428, 457), 'os.path.exists', 'os.path.exists', (['output_folder'], {}), '(output_folder)\n', (442, 457), False, 'import os\n'), ((463, 489), 'os.makedirs', 'os.makedirs', (['output_folder'], {}), '(output_folder)\n', (474, 489), False, 'import os\n'), ((857, 918), 'os.path.join', 'os.path.join', (['input_folder_for_Delphin_data', 'case', '"""d.pickle"""'], {}), "(input_folder_for_Delphin_data, case, 'd.pickle')\n", (869, 918), False, 'import os\n'), ((1312, 1332), 'pickle.dump', 'pickle.dump', (['data', 'f'], {}), '(data, f)\n', (1323, 1332), False, 'import pickle\n'), ((987, 1001), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (998, 1001), False, 'import pickle\n')]
sumesh-aot/namex
api/config.py
53e11aed5ea550b71b7b983f1b57b65db5a06766
"""Config for initializing the namex-api.""" import os from dotenv import find_dotenv, load_dotenv # this will load all the envars from a .env file located in the project root (api) load_dotenv(find_dotenv()) CONFIGURATION = { 'development': 'config.DevConfig', 'testing': 'config.TestConfig', 'production': 'config.Config', 'default': 'config.Config' } class Config(object): """Base config (also production config).""" PROJECT_ROOT = os.path.abspath(os.path.dirname(__file__)) SECRET_KEY = 'a secret' SQLALCHEMY_TRACK_MODIFICATIONS = False NRO_SERVICE_ACCOUNT = os.getenv('NRO_SERVICE_ACCOUNT', 'nro_service_account') SOLR_BASE_URL = os.getenv('SOLR_BASE_URL', None) SOLR_SYNONYMS_API_URL = os.getenv('SOLR_SYNONYMS_API_URL', None) NRO_EXTRACTOR_URI = os.getenv('NRO_EXTRACTOR_URI', None) AUTO_ANALYZE_URL = os.getenv('AUTO_ANALYZE_URL', None) AUTO_ANALYZE_CONFIG = os.getenv('AUTO_ANALYZE_CONFIG', None) REPORT_SVC_URL = os.getenv('REPORT_SVC_URL', None) REPORT_TEMPLATE_PATH = os.getenv('REPORT_PATH', 'report-templates') ALEMBIC_INI = 'migrations/alembic.ini' # POSTGRESQL DB_USER = os.getenv('DATABASE_USERNAME', '') DB_PASSWORD = os.getenv('DATABASE_PASSWORD', '') DB_NAME = os.getenv('DATABASE_NAME', '') DB_HOST = os.getenv('DATABASE_HOST', '') DB_PORT = os.getenv('DATABASE_PORT', '5432') SQLALCHEMY_DATABASE_URI = 'postgresql://{user}:{password}@{host}:{port}/{name}'.format( user=DB_USER, password=DB_PASSWORD, host=DB_HOST, port=int(DB_PORT), name=DB_NAME ) # ORACLE - LEGACY NRO NAMESDB NRO_USER = os.getenv('NRO_USER', '') NRO_SCHEMA = os.getenv('NRO_SCHEMA', None) NRO_PASSWORD = os.getenv('NRO_PASSWORD', '') NRO_DB_NAME = os.getenv('NRO_DB_NAME', '') NRO_HOST = os.getenv('NRO_HOST', '') NRO_PORT = int(os.getenv('NRO_PORT', '1521')) # JWT_OIDC Settings JWT_OIDC_WELL_KNOWN_CONFIG = os.getenv('JWT_OIDC_WELL_KNOWN_CONFIG') JWT_OIDC_ALGORITHMS = os.getenv('JWT_OIDC_ALGORITHMS') JWT_OIDC_JWKS_URI = os.getenv('JWT_OIDC_JWKS_URI') JWT_OIDC_ISSUER = os.getenv('JWT_OIDC_ISSUER') JWT_OIDC_AUDIENCE = os.getenv('JWT_OIDC_AUDIENCE') JWT_OIDC_CLIENT_SECRET = os.getenv('JWT_OIDC_CLIENT_SECRET') JWT_OIDC_CACHING_ENABLED = os.getenv('JWT_OIDC_CACHING_ENABLED') JWT_OIDC_JWKS_CACHE_TIMEOUT = int(os.getenv('JWT_OIDC_JWKS_CACHE_TIMEOUT', '300')) TESTING = False, DEBUG = False # You can disable NRO updates for Name Requests by setting the variable in your .env / OpenShift configuration DISABLE_NAMEREQUEST_NRO_UPDATES = int(os.getenv('DISABLE_NAMEREQUEST_NRO_UPDATES', 0)) DISABLE_NAMEREQUEST_SOLR_UPDATES = int(os.getenv('DISABLE_NAMEREQUEST_SOLR_UPDATES', 0)) class DevConfig(Config): """Dev config used for development.""" TESTING = False, DEBUG = True # We can't run NRO locally unless you're provisioned, you can disable NRO updates for Name Requests by setting the variable in your .env DISABLE_NAMEREQUEST_NRO_UPDATES = int(os.getenv('DISABLE_NAMEREQUEST_NRO_UPDATES', 0)) DISABLE_NAMEREQUEST_SOLR_UPDATES = int(os.getenv('DISABLE_NAMEREQUEST_SOLR_UPDATES', 0)) class TestConfig(Config): """Test config used for pytests.""" DEBUG = True TESTING = True # POSTGRESQL DB_USER = os.getenv('DATABASE_TEST_USERNAME', '') DB_PASSWORD = os.getenv('DATABASE_TEST_PASSWORD', '') DB_NAME = os.getenv('DATABASE_TEST_NAME', '') DB_HOST = os.getenv('DATABASE_TEST_HOST', '') DB_PORT = os.getenv('DATABASE_TEST_PORT', '5432') # Allows for NRO add / update bypass if necessary (for local development) LOCAL_DEV_MODE = os.getenv('LOCAL_DEV_MODE', False) # Set this in your .env to debug SQL Alchemy queries (for local development) SQLALCHEMY_ECHO = 'debug' if os.getenv('DEBUG_SQL_QUERIES', False) else False SQLALCHEMY_DATABASE_URI = 'postgresql://{user}:{password}@{host}:{port}/{name}'.format( user=DB_USER, password=DB_PASSWORD, host=DB_HOST, port=int(DB_PORT), name=DB_NAME ) # We can't run NRO locally for running our tests DISABLE_NAMEREQUEST_NRO_UPDATES = int(os.getenv('DISABLE_NAMEREQUEST_NRO_UPDATES', 1)) DISABLE_NAMEREQUEST_SOLR_UPDATES = int(os.getenv('DISABLE_NAMEREQUEST_SOLR_UPDATES', 0)) # JWT OIDC settings # JWT_OIDC_TEST_MODE will set jwt_manager to use JWT_OIDC_TEST_MODE = True JWT_OIDC_TEST_AUDIENCE = 'example' JWT_OIDC_TEST_ISSUER = 'https://example.localdomain/auth/realms/example' JWT_OIDC_TEST_KEYS = { 'keys': [ { 'kid': 'flask-jwt-oidc-test-client', 'kty': 'RSA', 'alg': 'RS256', 'use': 'sig', 'n': 'AN-fWcpCyE5KPzHDjigLaSUVZI0uYrcGcc40InVtl-rQRDmAh-C2W8H4_Hxhr5VLc6crsJ2LiJTV_E72S03pzpOOaaYV6-TzAjCou2GYJIXev7f6Hh512PuG5wyxda_TlBSsI-gvphRTPsKCnPutrbiukCYrnPuWxX5_cES9eStR', # noqa: E501 'e': 'AQAB' } ] } JWT_OIDC_TEST_PRIVATE_KEY_JWKS = { 'keys': [ { 'kid': 'flask-jwt-oidc-test-client', 'kty': 'RSA', 'alg': 'RS256', 'use': 'sig', 'n': 'AN-fWcpCyE5KPzHDjigLaSUVZI0uYrcGcc40InVtl-rQRDmAh-C2W8H4_Hxhr5VLc6crsJ2LiJTV_E72S03pzpOOaaYV6-TzAjCou2GYJIXev7f6Hh512PuG5wyxda_TlBSsI-gvphRTPsKCnPutrbiukCYrnPuWxX5_cES9eStR', # noqa: E501 'e': 'AQAB', 'd': 'C0G3QGI6OQ6tvbCNYGCqq043YI_8MiBl7C5dqbGZmx1ewdJBhMNJPStuckhskURaDwk4-8VBW9SlvcfSJJrnZhgFMjOYSSsBtPGBIMIdM5eSKbenCCjO8Tg0BUh_xa3CHST1W4RQ5rFXadZ9AeNtaGcWj2acmXNO3DVETXAX3x0', # noqa: E501 'p': 'APXcusFMQNHjh6KVD_hOUIw87lvK13WkDEeeuqAydai9Ig9JKEAAfV94W6Aftka7tGgE7ulg1vo3eJoLWJ1zvKM', 'q': 'AOjX3OnPJnk0ZFUQBwhduCweRi37I6DAdLTnhDvcPTrrNWuKPg9uGwHjzFCJgKd8KBaDQ0X1rZTZLTqi3peT43s', 'dp': 'AN9kBoA5o6_Rl9zeqdsIdWFmv4DB5lEqlEnC7HlAP-3oo3jWFO9KQqArQL1V8w2D4aCd0uJULiC9pCP7aTHvBhc', 'dq': 'ANtbSY6njfpPploQsF9sU26U0s7MsuLljM1E8uml8bVJE1mNsiu9MgpUvg39jEu9BtM2tDD7Y51AAIEmIQex1nM', 'qi': 'XLE5O360x-MhsdFXx8Vwz4304-MJg-oGSJXCK_ZWYOB_FGXFRTfebxCsSYi0YwJo-oNu96bvZCuMplzRI1liZw' } ] } JWT_OIDC_TEST_PRIVATE_KEY_PEM = """ -----BEGIN RSA PRIVATE KEY----- MIICXQIBAAKBgQDfn1nKQshOSj8xw44oC2klFWSNLmK3BnHONCJ1bZfq0EQ5gIfg tlvB+Px8Ya+VS3OnK7Cdi4iU1fxO9ktN6c6TjmmmFevk8wIwqLthmCSF3r+3+h4e ddj7hucMsXWv05QUrCPoL6YUUz7Cgpz7ra24rpAmK5z7lsV+f3BEvXkrUQIDAQAB AoGAC0G3QGI6OQ6tvbCNYGCqq043YI/8MiBl7C5dqbGZmx1ewdJBhMNJPStuckhs kURaDwk4+8VBW9SlvcfSJJrnZhgFMjOYSSsBtPGBIMIdM5eSKbenCCjO8Tg0BUh/ xa3CHST1W4RQ5rFXadZ9AeNtaGcWj2acmXNO3DVETXAX3x0CQQD13LrBTEDR44ei lQ/4TlCMPO5bytd1pAxHnrqgMnWovSIPSShAAH1feFugH7ZGu7RoBO7pYNb6N3ia C1idc7yjAkEA6Nfc6c8meTRkVRAHCF24LB5GLfsjoMB0tOeEO9w9Ous1a4o+D24b AePMUImAp3woFoNDRfWtlNktOqLel5PjewJBAN9kBoA5o6/Rl9zeqdsIdWFmv4DB 5lEqlEnC7HlAP+3oo3jWFO9KQqArQL1V8w2D4aCd0uJULiC9pCP7aTHvBhcCQQDb W0mOp436T6ZaELBfbFNulNLOzLLi5YzNRPLppfG1SRNZjbIrvTIKVL4N/YxLvQbT NrQw+2OdQACBJiEHsdZzAkBcsTk7frTH4yGx0VfHxXDPjfTj4wmD6gZIlcIr9lZg 4H8UZcVFN95vEKxJiLRjAmj6g273pu9kK4ymXNEjWWJn -----END RSA PRIVATE KEY-----"""
[((196, 209), 'dotenv.find_dotenv', 'find_dotenv', ([], {}), '()\n', (207, 209), False, 'from dotenv import find_dotenv, load_dotenv\n'), ((608, 663), 'os.getenv', 'os.getenv', (['"""NRO_SERVICE_ACCOUNT"""', '"""nro_service_account"""'], {}), "('NRO_SERVICE_ACCOUNT', 'nro_service_account')\n", (617, 663), False, 'import os\n'), ((685, 717), 'os.getenv', 'os.getenv', (['"""SOLR_BASE_URL"""', 'None'], {}), "('SOLR_BASE_URL', None)\n", (694, 717), False, 'import os\n'), ((746, 786), 'os.getenv', 'os.getenv', (['"""SOLR_SYNONYMS_API_URL"""', 'None'], {}), "('SOLR_SYNONYMS_API_URL', None)\n", (755, 786), False, 'import os\n'), ((811, 847), 'os.getenv', 'os.getenv', (['"""NRO_EXTRACTOR_URI"""', 'None'], {}), "('NRO_EXTRACTOR_URI', None)\n", (820, 847), False, 'import os\n'), ((871, 906), 'os.getenv', 'os.getenv', (['"""AUTO_ANALYZE_URL"""', 'None'], {}), "('AUTO_ANALYZE_URL', None)\n", (880, 906), False, 'import os\n'), ((933, 971), 'os.getenv', 'os.getenv', (['"""AUTO_ANALYZE_CONFIG"""', 'None'], {}), "('AUTO_ANALYZE_CONFIG', None)\n", (942, 971), False, 'import os\n'), ((993, 1026), 'os.getenv', 'os.getenv', (['"""REPORT_SVC_URL"""', 'None'], {}), "('REPORT_SVC_URL', None)\n", (1002, 1026), False, 'import os\n'), ((1054, 1098), 'os.getenv', 'os.getenv', (['"""REPORT_PATH"""', '"""report-templates"""'], {}), "('REPORT_PATH', 'report-templates')\n", (1063, 1098), False, 'import os\n'), ((1175, 1209), 'os.getenv', 'os.getenv', (['"""DATABASE_USERNAME"""', '""""""'], {}), "('DATABASE_USERNAME', '')\n", (1184, 1209), False, 'import os\n'), ((1228, 1262), 'os.getenv', 'os.getenv', (['"""DATABASE_PASSWORD"""', '""""""'], {}), "('DATABASE_PASSWORD', '')\n", (1237, 1262), False, 'import os\n'), ((1277, 1307), 'os.getenv', 'os.getenv', (['"""DATABASE_NAME"""', '""""""'], {}), "('DATABASE_NAME', '')\n", (1286, 1307), False, 'import os\n'), ((1322, 1352), 'os.getenv', 'os.getenv', (['"""DATABASE_HOST"""', '""""""'], {}), "('DATABASE_HOST', '')\n", (1331, 1352), False, 'import os\n'), ((1367, 1401), 'os.getenv', 'os.getenv', (['"""DATABASE_PORT"""', '"""5432"""'], {}), "('DATABASE_PORT', '5432')\n", (1376, 1401), False, 'import os\n'), ((1671, 1696), 'os.getenv', 'os.getenv', (['"""NRO_USER"""', '""""""'], {}), "('NRO_USER', '')\n", (1680, 1696), False, 'import os\n'), ((1714, 1743), 'os.getenv', 'os.getenv', (['"""NRO_SCHEMA"""', 'None'], {}), "('NRO_SCHEMA', None)\n", (1723, 1743), False, 'import os\n'), ((1763, 1792), 'os.getenv', 'os.getenv', (['"""NRO_PASSWORD"""', '""""""'], {}), "('NRO_PASSWORD', '')\n", (1772, 1792), False, 'import os\n'), ((1811, 1839), 'os.getenv', 'os.getenv', (['"""NRO_DB_NAME"""', '""""""'], {}), "('NRO_DB_NAME', '')\n", (1820, 1839), False, 'import os\n'), ((1855, 1880), 'os.getenv', 'os.getenv', (['"""NRO_HOST"""', '""""""'], {}), "('NRO_HOST', '')\n", (1864, 1880), False, 'import os\n'), ((1989, 2028), 'os.getenv', 'os.getenv', (['"""JWT_OIDC_WELL_KNOWN_CONFIG"""'], {}), "('JWT_OIDC_WELL_KNOWN_CONFIG')\n", (1998, 2028), False, 'import os\n'), ((2055, 2087), 'os.getenv', 'os.getenv', (['"""JWT_OIDC_ALGORITHMS"""'], {}), "('JWT_OIDC_ALGORITHMS')\n", (2064, 2087), False, 'import os\n'), ((2112, 2142), 'os.getenv', 'os.getenv', (['"""JWT_OIDC_JWKS_URI"""'], {}), "('JWT_OIDC_JWKS_URI')\n", (2121, 2142), False, 'import os\n'), ((2165, 2193), 'os.getenv', 'os.getenv', (['"""JWT_OIDC_ISSUER"""'], {}), "('JWT_OIDC_ISSUER')\n", (2174, 2193), False, 'import os\n'), ((2218, 2248), 'os.getenv', 'os.getenv', (['"""JWT_OIDC_AUDIENCE"""'], {}), "('JWT_OIDC_AUDIENCE')\n", (2227, 2248), False, 'import os\n'), ((2278, 2313), 'os.getenv', 'os.getenv', (['"""JWT_OIDC_CLIENT_SECRET"""'], {}), "('JWT_OIDC_CLIENT_SECRET')\n", (2287, 2313), False, 'import os\n'), ((2345, 2382), 'os.getenv', 'os.getenv', (['"""JWT_OIDC_CACHING_ENABLED"""'], {}), "('JWT_OIDC_CACHING_ENABLED')\n", (2354, 2382), False, 'import os\n'), ((3382, 3421), 'os.getenv', 'os.getenv', (['"""DATABASE_TEST_USERNAME"""', '""""""'], {}), "('DATABASE_TEST_USERNAME', '')\n", (3391, 3421), False, 'import os\n'), ((3440, 3479), 'os.getenv', 'os.getenv', (['"""DATABASE_TEST_PASSWORD"""', '""""""'], {}), "('DATABASE_TEST_PASSWORD', '')\n", (3449, 3479), False, 'import os\n'), ((3494, 3529), 'os.getenv', 'os.getenv', (['"""DATABASE_TEST_NAME"""', '""""""'], {}), "('DATABASE_TEST_NAME', '')\n", (3503, 3529), False, 'import os\n'), ((3544, 3579), 'os.getenv', 'os.getenv', (['"""DATABASE_TEST_HOST"""', '""""""'], {}), "('DATABASE_TEST_HOST', '')\n", (3553, 3579), False, 'import os\n'), ((3594, 3633), 'os.getenv', 'os.getenv', (['"""DATABASE_TEST_PORT"""', '"""5432"""'], {}), "('DATABASE_TEST_PORT', '5432')\n", (3603, 3633), False, 'import os\n'), ((3733, 3767), 'os.getenv', 'os.getenv', (['"""LOCAL_DEV_MODE"""', '(False)'], {}), "('LOCAL_DEV_MODE', False)\n", (3742, 3767), False, 'import os\n'), ((481, 506), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (496, 506), False, 'import os\n'), ((1900, 1929), 'os.getenv', 'os.getenv', (['"""NRO_PORT"""', '"""1521"""'], {}), "('NRO_PORT', '1521')\n", (1909, 1929), False, 'import os\n'), ((2422, 2469), 'os.getenv', 'os.getenv', (['"""JWT_OIDC_JWKS_CACHE_TIMEOUT"""', '"""300"""'], {}), "('JWT_OIDC_JWKS_CACHE_TIMEOUT', '300')\n", (2431, 2469), False, 'import os\n'), ((2669, 2716), 'os.getenv', 'os.getenv', (['"""DISABLE_NAMEREQUEST_NRO_UPDATES"""', '(0)'], {}), "('DISABLE_NAMEREQUEST_NRO_UPDATES', 0)\n", (2678, 2716), False, 'import os\n'), ((2761, 2809), 'os.getenv', 'os.getenv', (['"""DISABLE_NAMEREQUEST_SOLR_UPDATES"""', '(0)'], {}), "('DISABLE_NAMEREQUEST_SOLR_UPDATES', 0)\n", (2770, 2809), False, 'import os\n'), ((3104, 3151), 'os.getenv', 'os.getenv', (['"""DISABLE_NAMEREQUEST_NRO_UPDATES"""', '(0)'], {}), "('DISABLE_NAMEREQUEST_NRO_UPDATES', 0)\n", (3113, 3151), False, 'import os\n'), ((3196, 3244), 'os.getenv', 'os.getenv', (['"""DISABLE_NAMEREQUEST_SOLR_UPDATES"""', '(0)'], {}), "('DISABLE_NAMEREQUEST_SOLR_UPDATES', 0)\n", (3205, 3244), False, 'import os\n'), ((3882, 3919), 'os.getenv', 'os.getenv', (['"""DEBUG_SQL_QUERIES"""', '(False)'], {}), "('DEBUG_SQL_QUERIES', False)\n", (3891, 3919), False, 'import os\n'), ((4247, 4294), 'os.getenv', 'os.getenv', (['"""DISABLE_NAMEREQUEST_NRO_UPDATES"""', '(1)'], {}), "('DISABLE_NAMEREQUEST_NRO_UPDATES', 1)\n", (4256, 4294), False, 'import os\n'), ((4339, 4387), 'os.getenv', 'os.getenv', (['"""DISABLE_NAMEREQUEST_SOLR_UPDATES"""', '(0)'], {}), "('DISABLE_NAMEREQUEST_SOLR_UPDATES', 0)\n", (4348, 4387), False, 'import os\n')]
pierre-haessig/matplotlib
examples/pylab_examples/fancybox_demo2.py
0d945044ca3fbf98cad55912584ef80911f330c6
import matplotlib.patches as mpatch import matplotlib.pyplot as plt styles = mpatch.BoxStyle.get_styles() figheight = (len(styles)+.5) fig1 = plt.figure(1, (4/1.5, figheight/1.5)) fontsize = 0.3 * 72 for i, (stylename, styleclass) in enumerate(styles.items()): fig1.text(0.5, (float(len(styles)) - 0.5 - i)/figheight, stylename, ha="center", size=fontsize, transform=fig1.transFigure, bbox=dict(boxstyle=stylename, fc="w", ec="k")) plt.draw() plt.show()
[((78, 106), 'matplotlib.patches.BoxStyle.get_styles', 'mpatch.BoxStyle.get_styles', ([], {}), '()\n', (104, 106), True, 'import matplotlib.patches as mpatch\n'), ((144, 185), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)', '(4 / 1.5, figheight / 1.5)'], {}), '(1, (4 / 1.5, figheight / 1.5))\n', (154, 185), True, 'import matplotlib.pyplot as plt\n'), ((495, 505), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (503, 505), True, 'import matplotlib.pyplot as plt\n'), ((506, 516), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (514, 516), True, 'import matplotlib.pyplot as plt\n')]
sdu-cfei/modest-py
setup.py
dc14091fb8c20a8b3fa5ab33bbf597c0b566ba0a
from setuptools import setup setup( name='modestpy', version='0.1', description='FMI-compliant model identification package', url='https://github.com/sdu-cfei/modest-py', keywords='fmi fmu optimization model identification estimation', author='Krzysztof Arendt, Center for Energy Informatics SDU', author_email='[email protected], [email protected]', license='BSD', platforms=['Windows', 'Linux'], packages=[ 'modestpy', 'modestpy.estim', 'modestpy.estim.ga_parallel', 'modestpy.estim.ga', 'modestpy.estim.ps', 'modestpy.estim.scipy', 'modestpy.fmi', 'modestpy.utilities', 'modestpy.test'], include_package_data=True, install_requires=[ 'fmpy[complete]', 'scipy', 'pandas', 'matplotlib', 'numpy', 'pyDOE', 'modestga' ], classifiers=[ 'Programming Language :: Python :: 3' ] )
[((30, 827), 'setuptools.setup', 'setup', ([], {'name': '"""modestpy"""', 'version': '"""0.1"""', 'description': '"""FMI-compliant model identification package"""', 'url': '"""https://github.com/sdu-cfei/modest-py"""', 'keywords': '"""fmi fmu optimization model identification estimation"""', 'author': '"""Krzysztof Arendt, Center for Energy Informatics SDU"""', 'author_email': '"""[email protected], [email protected]"""', 'license': '"""BSD"""', 'platforms': "['Windows', 'Linux']", 'packages': "['modestpy', 'modestpy.estim', 'modestpy.estim.ga_parallel',\n 'modestpy.estim.ga', 'modestpy.estim.ps', 'modestpy.estim.scipy',\n 'modestpy.fmi', 'modestpy.utilities', 'modestpy.test']", 'include_package_data': '(True)', 'install_requires': "['fmpy[complete]', 'scipy', 'pandas', 'matplotlib', 'numpy', 'pyDOE',\n 'modestga']", 'classifiers': "['Programming Language :: Python :: 3']"}), "(name='modestpy', version='0.1', description=\n 'FMI-compliant model identification package', url=\n 'https://github.com/sdu-cfei/modest-py', keywords=\n 'fmi fmu optimization model identification estimation', author=\n 'Krzysztof Arendt, Center for Energy Informatics SDU', author_email=\n '[email protected], [email protected]', license='BSD',\n platforms=['Windows', 'Linux'], packages=['modestpy', 'modestpy.estim',\n 'modestpy.estim.ga_parallel', 'modestpy.estim.ga', 'modestpy.estim.ps',\n 'modestpy.estim.scipy', 'modestpy.fmi', 'modestpy.utilities',\n 'modestpy.test'], include_package_data=True, install_requires=[\n 'fmpy[complete]', 'scipy', 'pandas', 'matplotlib', 'numpy', 'pyDOE',\n 'modestga'], classifiers=['Programming Language :: Python :: 3'])\n", (35, 827), False, 'from setuptools import setup\n')]
andersonbrands/gfworkflow
gfworkflow/core.py
81c646fd53b8227691bcd3e236f538fee0d9d93c
import re import subprocess as sp from typing import Union, List from gfworkflow.exceptions import RunCommandException def run(command: Union[str, List[str]]): completed_process = sp.run(command, stdout=sp.PIPE, stderr=sp.PIPE, universal_newlines=True) if completed_process.returncode: raise RunCommandException(completed_process) return completed_process def init(): run('git flow init -d -f') run('git config gitflow.prefix.versiontag v') def bump_version(part: str): run(f'bumpversion {part}') def start_release(new_version: str): run(f'git flow release start {new_version}') def get_new_version(part: str): output = run(f'bumpversion {part} --list -n --allow-dirty --no-configured-files').stdout return re.compile(r'new_version=(\S+)').search(output).group(1) def get_current_branch_name(): return run('git rev-parse --abbrev-ref HEAD').stdout.strip() def finish_release(release_name): run(f'git flow release finish -m " - " {release_name}')
[((187, 259), 'subprocess.run', 'sp.run', (['command'], {'stdout': 'sp.PIPE', 'stderr': 'sp.PIPE', 'universal_newlines': '(True)'}), '(command, stdout=sp.PIPE, stderr=sp.PIPE, universal_newlines=True)\n', (193, 259), True, 'import subprocess as sp\n'), ((311, 349), 'gfworkflow.exceptions.RunCommandException', 'RunCommandException', (['completed_process'], {}), '(completed_process)\n', (330, 349), False, 'from gfworkflow.exceptions import RunCommandException\n'), ((762, 794), 're.compile', 're.compile', (['"""new_version=(\\\\S+)"""'], {}), "('new_version=(\\\\S+)')\n", (772, 794), False, 'import re\n')]
jorges119/localstack
tests/integration/lambdas/lambda_python3.py
a8a78cda6c13b2e42bc46301b23c7143580132fb
# simple test function that uses python 3 features (e.g., f-strings) # see https://github.com/localstack/localstack/issues/264 def handler(event, context): # the following line is Python 3.6+ specific msg = f"Successfully processed {event}" # noqa This code is Python 3.6+ only return event
[]
etiennody/purchoice
import_off.py
43a2dc81ca953ac6168f8112e97a4bae91ace690
#! usr/bin/python3 # code: utf-8 """Download data from Open Food Facts API.""" import json import requests from src.purchoice.constants import CATEGORY_SELECTED from src.purchoice.purchoice_database import PurchoiceDatabase class ImportOff: """ImportOff class downloads data from Open Food Facts API.""" def __init__(self, db): self.url = "https://fr.openfoodfacts.org//cgi/search.pl?" self.db = db def get_url_params(self, category): """get_urls_params helps to define more precisely the request to Open Food Facts API. Arguments: category {string} -- a name of category. Returns: dictionnary -- contains parameters to complete the request to Open Food Facts API. """ return { "action": "process", "tagtype_0": "categories", "tag_contains_0": "contains", "tag_0": category, "sort_by": "unique_scans_n", "page_size": 500, "json": 1, } def get_off(self, category): """get_off method makes a request to the web page of Open Food Facts, and load data in json if the return status code is successful. Arguments: category {string} -- a category name. Returns: dictionnary -- Deserialize an bytearray instance containing a JSON document to a Python object as early as products. """ response = requests.get(self.url, params=self.get_url_params(category)) if response.status_code == 200: return json.loads(response.content)["products"] def import_by_category(self, category): """import_by_category method try to insert products, categories, brands and stores data for each product by category in the database. Arguments: category {string} -- a category name. """ products = self.get_off(category) products = products if isinstance(products, list) else products.items() print("Importation des données en cours. Patientez...") for product in products: try: p = self.db.add_product(product) for category in product.get("categories").split(","): c = self.db.add_category(category) p.categories.append(c) for brand in product.get("brands").split(","): b = self.db.add_brand(brand) p.brands.append(b) for store in product.get("stores").split(","): s = self.db.add_store(store) p.stores.append(s) except Exception: pass if __name__ == "__main__": db = PurchoiceDatabase() db.truncate_tables() import_off = ImportOff(db) for category in CATEGORY_SELECTED: import_off.import_by_category(category) print("Merci d'avoir patienté. Vous pouvez lancer l'application !")
[((2783, 2802), 'src.purchoice.purchoice_database.PurchoiceDatabase', 'PurchoiceDatabase', ([], {}), '()\n', (2800, 2802), False, 'from src.purchoice.purchoice_database import PurchoiceDatabase\n'), ((1611, 1639), 'json.loads', 'json.loads', (['response.content'], {}), '(response.content)\n', (1621, 1639), False, 'import json\n')]
zhjp0/Orio
orio/module/loop/cfg.py
7dfb80527053c5697d1bce1bd8ed996b1ea192c8
''' Created on April 26, 2015 @author: norris ''' import ast, sys, os, traceback from orio.main.util.globals import * from orio.tool.graphlib import graph from orio.module.loop import astvisitors class CFGVertex(graph.Vertex): '''A CFG vertex is a basic block.''' def __init__(self, name, node=None): try: graph.Vertex.__init__(self, name) except Exception,e: err("CFGVertex.__init__:" + str(e)) self.stmts = [node] # basic block, starting with leader node pass def append(self, node): self.stmts.append(node) def copy(self): v = CFGVertex(self.name) v.e = self.e v.data = self.data return v def succ(self): return self.out_v() def pred(self): return self.in_v() def __str__(self): return "<%s> " % self.name + str(self.stmts) pass # End of CFG vertex class class CFGEdge(graph.DirEdge): def __init__(self, v1, v2, name=''): if not name: name = Globals().incrementCounter() graph.DirEdge.__init__(self, name, v1, v2) pass pass # End of CFGEdge class class CFGGraph(graph.Graph): def __init__(self, nodes, name='CFG'): graph.Graph.__init__(self, name) self.cfgVisitor = CFGVisitor(self) self.cfgVisitor.visit(nodes) if True: self.display() pass def nodes(self): return self.v def pred(self, bb): return self.v[bb.name].in_v() def succ(self, bb): return self.v[bb.name].out_v() def display(self): #sys.stdout.write(str(self)) self.genDOT() def genDOT(self, fname=''): buf = 'digraph CFG {\n' for n,vertex in self.v.items(): label = '[label="%s%s...",shape=box]' % (n,str(vertex.stmts[0]).split('\n')[0]) buf += '\t%s %s;\n' % (n, label) for edge in vertex.out_e: for dv in edge.dest_v: buf += '\t%s -> %s;\n' % (n, dv.name) buf += '\n}\n' if fname == '': fname = Globals().tempfilename + '.dot' f=open(fname,'w') f.write(buf) f.close() # print buf return buf pass # End of CFG Graph class class CFGVisitor(astvisitors.ASTVisitor): def __init__(self, graph): astvisitors.ASTVisitor.__init__(self) self.cfg = graph v = CFGVertex('_TOP_') self.cfg.add_v(v) self.stack = [v] self.lead = True self.verbose = False self.last = None def display(self, node, msg=''): if self.verbose: sys.stdout.write("[%s] " % self.__class__.__name__ + node.__class__.__name__ + ': ' + msg+'\n') def visit(self, nodes, params={}): '''Invoke accept method for specified AST node''' if not isinstance(nodes, (list, tuple)): nodes = [nodes] try: for node in nodes: if not node: continue v = CFGVertex(node.id, node) if isinstance(node, ast.ForStmt): self.display(node) # Children: header: node.init, node.test, node.iter; body: node.stmt v = CFGVertex('ForLoop' + str(node.id), node) self.cfg.add_v(v) self.cfg.add_e(CFGEdge(self.stack.pop(),v)) self.stack.append(v) self.lead = True self.stack.append(v) self.visit(node.stmt) vbottom = CFGVertex('_JOIN_' + str(node.id)) self.cfg.add_v(vbottom) self.cfg.add_e(CFGEdge(v,vbottom)) self.cfg.add_e(CFGEdge(self.stack.pop(),vbottom)) self.stack.append(vbottom) self.lead = True elif isinstance(node, ast.IfStmt): self.display(node) v = CFGVertex('IfStmt' + str(node.id) , node) self.cfg.add_v(v) self.cfg.add_e(CFGEdge(self.stack.pop(),v)) self.stack.append(v) self.lead = True self.visit(node.true_stmt) truelast = self.stack.pop() self.stack.append(v) self.lead = True self.visit(node.false_stmt) falselast = self.stack.pop() self.lead = True vbottom = CFGVertex('_JOIN_' + str(node.id)) self.cfg.add_v(vbottom) self.cfg.add_e(CFGEdge(truelast,vbottom)) self.cfg.add_e(CFGEdge(falselast,vbottom)) self.stack.append(vbottom) elif isinstance(node, ast.CompStmt): self.display(node) self.visit(node.stmts) # TODO: handle gotos else: # Add to previous basic block if self.lead: v = CFGVertex(node.id, node) self.cfg.add_v(v) self.cfg.add_e(CFGEdge(self.stack.pop(),v)) self.stack.append(v) self.lead = False else: self.stack.pop() self.stack.append(v) self.stack[-1].append(node) except Exception as ex: err("[orio.module.loop.cfg.CFGVisitor.visit()] %s" % str(ex)) return def getCFG(self): return self.cfg pass # end of class CFGVisitor
[]
lubnc4261/House-Keeper
cogs rework/server specified/on_message_delete.py
6de20014afaf00cf9050e54c91cd8b3a02702a27
import discord from discord import Embed @commands.Cog.listener() async def on_message_delete(self, message): channel = "xxxxxxxxxxxxxxxxxxxxx" deleted = Embed( description=f"Message deleted in {message.channel.mention}", color=0x4040EC ).set_author(name=message.author, url=Embed.Empty, icon_url=message.author.avatar_url) deleted.add_field(name="Message", value=message.content) deleted.timestamp = message.created_at await channel.send(embed=deleted)
[((173, 259), 'discord.Embed', 'Embed', ([], {'description': 'f"""Message deleted in {message.channel.mention}"""', 'color': '(4210924)'}), "(description=f'Message deleted in {message.channel.mention}', color=\n 4210924)\n", (178, 259), False, 'from discord import Embed\n')]
icing/mod_md
test/modules/md/md_env.py
4522ed547f0426f27aae86f00fbc9b5b17de545f
import copy import inspect import json import logging import pytest import re import os import shutil import subprocess import time from datetime import datetime, timedelta from configparser import ConfigParser, ExtendedInterpolation from typing import Dict, List, Optional from pyhttpd.certs import CertificateSpec from .md_cert_util import MDCertUtil from pyhttpd.env import HttpdTestSetup, HttpdTestEnv from pyhttpd.result import ExecResult log = logging.getLogger(__name__) class MDTestSetup(HttpdTestSetup): def __init__(self, env: 'HttpdTestEnv'): super().__init__(env=env) def make(self): super().make(add_modules=["proxy_connect", "md"]) if "pebble" == self.env.acme_server: self._make_pebble_conf() def _make_pebble_conf(self): our_dir = os.path.dirname(inspect.getfile(MDTestSetup)) conf_src_dir = os.path.join(our_dir, 'pebble') conf_dest_dir = os.path.join(self.env.gen_dir, 'pebble') if not os.path.exists(conf_dest_dir): os.makedirs(conf_dest_dir) for name in os.listdir(conf_src_dir): src_path = os.path.join(conf_src_dir, name) m = re.match(r'(.+).template', name) if m: self._make_template(src_path, os.path.join(conf_dest_dir, m.group(1))) elif os.path.isfile(src_path): shutil.copy(src_path, os.path.join(conf_dest_dir, name)) class MDTestEnv(HttpdTestEnv): MD_S_UNKNOWN = 0 MD_S_INCOMPLETE = 1 MD_S_COMPLETE = 2 MD_S_EXPIRED = 3 MD_S_ERROR = 4 EMPTY_JOUT = {'status': 0, 'output': []} DOMAIN_SUFFIX = "%d.org" % time.time() LOG_FMT_TIGHT = '%(levelname)s: %(message)s' @classmethod def get_acme_server(cls): return os.environ['ACME'] if 'ACME' in os.environ else "pebble" @classmethod def has_acme_server(cls): return cls.get_acme_server() != 'none' @classmethod def has_acme_eab(cls): return cls.get_acme_server() == 'pebble' @classmethod def is_pebble(cls) -> bool: return cls.get_acme_server() == 'pebble' @classmethod def lacks_ocsp(cls): return cls.is_pebble() def __init__(self, pytestconfig=None, setup_dirs=True): super().__init__(pytestconfig=pytestconfig, local_dir=os.path.dirname(inspect.getfile(MDTestEnv)), interesting_modules=["md"]) self._acme_server = self.get_acme_server() self._acme_tos = "accepted" self._acme_ca_pemfile = os.path.join(self.gen_dir, "apache/acme-ca.pem") if "pebble" == self._acme_server: self._acme_url = "https://localhost:14000/dir" self._acme_eab_url = "https://localhost:14001/dir" elif "boulder" == self._acme_server: self._acme_url = "http://localhost:4001/directory" self._acme_eab_url = None else: raise Exception(f"unknown ACME server type: {self._acme_server}") self._acme_server_down = False self._acme_server_ok = False self._a2md_bin = os.path.join(self.bin_dir, 'a2md') self._default_domain = f"test1.{self.http_tld}" self._store_dir = "./md" self.set_store_dir_default() self.add_cert_specs([ CertificateSpec(domains=[f"expired.{self._http_tld}"], valid_from=timedelta(days=-100), valid_to=timedelta(days=-10)), CertificateSpec(domains=["localhost"], key_type='rsa2048'), ]) self.httpd_error_log.set_ignored_lognos([ #"AH10045", # mod_md complains that there is no vhost for an MDomain "AH10105", # mod_md does not find a vhost with SSL enabled for an MDomain "AH10085" # mod_ssl complains about fallback certificates ]) if self.lacks_ocsp(): self.httpd_error_log.set_ignored_patterns([ re.compile(r'.*certificate with serial \S+ has no OCSP responder URL.*'), ]) if setup_dirs: self._setup = MDTestSetup(env=self) self._setup.make() self.issue_certs() self.clear_store() def set_store_dir_default(self): dirpath = "md" if self.httpd_is_at_least("2.5.0"): dirpath = os.path.join("state", dirpath) self.set_store_dir(dirpath) def set_store_dir(self, dirpath): self._store_dir = os.path.join(self.server_dir, dirpath) if self.acme_url: self.a2md_stdargs([self.a2md_bin, "-a", self.acme_url, "-d", self._store_dir, "-C", self.acme_ca_pemfile, "-j"]) self.a2md_rawargs([self.a2md_bin, "-a", self.acme_url, "-d", self._store_dir, "-C", self.acme_ca_pemfile]) def get_apxs_var(self, name: str) -> str: p = subprocess.run([self._apxs, "-q", name], capture_output=True, text=True) if p.returncode != 0: return "" return p.stdout.strip() @property def acme_server(self): return self._acme_server @property def acme_url(self): return self._acme_url @property def acme_tos(self): return self._acme_tos @property def a2md_bin(self): return self._a2md_bin @property def acme_ca_pemfile(self): return self._acme_ca_pemfile @property def store_dir(self): return self._store_dir def get_request_domain(self, request): return "%s-%s" % (re.sub(r'[_]', '-', request.node.originalname), MDTestEnv.DOMAIN_SUFFIX) def get_method_domain(self, method): return "%s-%s" % (re.sub(r'[_]', '-', method.__name__.lower()), MDTestEnv.DOMAIN_SUFFIX) def get_module_domain(self, module): return "%s-%s" % (re.sub(r'[_]', '-', module.__name__.lower()), MDTestEnv.DOMAIN_SUFFIX) def get_class_domain(self, c): return "%s-%s" % (re.sub(r'[_]', '-', c.__name__.lower()), MDTestEnv.DOMAIN_SUFFIX) # --------- cmd execution --------- _a2md_args = [] _a2md_args_raw = [] def a2md_stdargs(self, args): self._a2md_args = [] + args def a2md_rawargs(self, args): self._a2md_args_raw = [] + args def a2md(self, args, raw=False) -> ExecResult: preargs = self._a2md_args if raw: preargs = self._a2md_args_raw log.debug("running: {0} {1}".format(preargs, args)) return self.run(preargs + args) def check_acme(self): if self._acme_server_ok: return True if self._acme_server_down: pytest.skip(msg="ACME server not running") return False if self.is_live(self.acme_url, timeout=timedelta(seconds=0.5)): self._acme_server_ok = True return True else: self._acme_server_down = True pytest.fail(msg="ACME server not running", pytrace=False) return False def get_ca_pem_file(self, hostname: str) -> Optional[str]: pem_file = super().get_ca_pem_file(hostname) if pem_file is None: pem_file = self.acme_ca_pemfile return pem_file # --------- access local store --------- def purge_store(self): log.debug("purge store dir: %s" % self._store_dir) assert len(self._store_dir) > 1 if os.path.exists(self._store_dir): shutil.rmtree(self._store_dir, ignore_errors=False) os.makedirs(self._store_dir) def clear_store(self): log.debug("clear store dir: %s" % self._store_dir) assert len(self._store_dir) > 1 if not os.path.exists(self._store_dir): os.makedirs(self._store_dir) for dirpath in ["challenges", "tmp", "archive", "domains", "accounts", "staging", "ocsp"]: shutil.rmtree(os.path.join(self._store_dir, dirpath), ignore_errors=True) def clear_ocsp_store(self): assert len(self._store_dir) > 1 dirpath = os.path.join(self._store_dir, "ocsp") log.debug("clear ocsp store dir: %s" % dir) if os.path.exists(dirpath): shutil.rmtree(dirpath, ignore_errors=True) def authz_save(self, name, content): dirpath = os.path.join(self._store_dir, 'staging', name) os.makedirs(dirpath) open(os.path.join(dirpath, 'authz.json'), "w").write(content) def path_store_json(self): return os.path.join(self._store_dir, 'md_store.json') def path_account(self, acct): return os.path.join(self._store_dir, 'accounts', acct, 'account.json') def path_account_key(self, acct): return os.path.join(self._store_dir, 'accounts', acct, 'account.pem') def store_domains(self): return os.path.join(self._store_dir, 'domains') def store_archives(self): return os.path.join(self._store_dir, 'archive') def store_stagings(self): return os.path.join(self._store_dir, 'staging') def store_challenges(self): return os.path.join(self._store_dir, 'challenges') def store_domain_file(self, domain, filename): return os.path.join(self.store_domains(), domain, filename) def store_archived_file(self, domain, version, filename): return os.path.join(self.store_archives(), "%s.%d" % (domain, version), filename) def store_staged_file(self, domain, filename): return os.path.join(self.store_stagings(), domain, filename) def path_fallback_cert(self, domain): return os.path.join(self._store_dir, 'domains', domain, 'fallback-pubcert.pem') def path_job(self, domain): return os.path.join(self._store_dir, 'staging', domain, 'job.json') def replace_store(self, src): shutil.rmtree(self._store_dir, ignore_errors=False) shutil.copytree(src, self._store_dir) def list_accounts(self): return os.listdir(os.path.join(self._store_dir, 'accounts')) def check_md(self, domain, md=None, state=-1, ca=None, protocol=None, agreement=None, contacts=None): domains = None if isinstance(domain, list): domains = domain domain = domains[0] if md: domain = md path = self.store_domain_file(domain, 'md.json') with open(path) as f: md = json.load(f) assert md if domains: assert md['domains'] == domains if state >= 0: assert md['state'] == state if ca: assert md['ca']['url'] == ca if protocol: assert md['ca']['proto'] == protocol if agreement: assert md['ca']['agreement'] == agreement if contacts: assert md['contacts'] == contacts def pkey_fname(self, pkeyspec=None): if pkeyspec and not re.match(r'^rsa( ?\d+)?$', pkeyspec.lower()): return "privkey.{0}.pem".format(pkeyspec) return 'privkey.pem' def cert_fname(self, pkeyspec=None): if pkeyspec and not re.match(r'^rsa( ?\d+)?$', pkeyspec.lower()): return "pubcert.{0}.pem".format(pkeyspec) return 'pubcert.pem' def check_md_complete(self, domain, pkey=None): md = self.get_md_status(domain) assert md assert 'state' in md, "md is unexpected: {0}".format(md) assert md['state'] is MDTestEnv.MD_S_COMPLETE, "unexpected state: {0}".format(md['state']) assert os.path.isfile(self.store_domain_file(domain, self.pkey_fname(pkey))) assert os.path.isfile(self.store_domain_file(domain, self.cert_fname(pkey))) def check_md_credentials(self, domain): if isinstance(domain, list): domains = domain domain = domains[0] else: domains = [domain] # check private key, validate certificate, etc MDCertUtil.validate_privkey(self.store_domain_file(domain, 'privkey.pem')) cert = MDCertUtil(self.store_domain_file(domain, 'pubcert.pem')) cert.validate_cert_matches_priv_key(self.store_domain_file(domain, 'privkey.pem')) # check SANs and CN assert cert.get_cn() == domain # compare lists twice in opposite directions: SAN may not respect ordering san_list = list(cert.get_san_list()) assert len(san_list) == len(domains) assert set(san_list).issubset(domains) assert set(domains).issubset(san_list) # check valid dates interval not_before = cert.get_not_before() not_after = cert.get_not_after() assert not_before < datetime.now(not_before.tzinfo) assert not_after > datetime.now(not_after.tzinfo) # --------- check utilities --------- def check_json_contains(self, actual, expected): # write all expected key:value bindings to a copy of the actual data ... # ... assert it stays unchanged test_json = copy.deepcopy(actual) test_json.update(expected) assert actual == test_json def check_file_access(self, path, exp_mask): actual_mask = os.lstat(path).st_mode & 0o777 assert oct(actual_mask) == oct(exp_mask) def check_dir_empty(self, path): assert os.listdir(path) == [] def get_http_status(self, domain, path, use_https=True): r = self.get_meta(domain, path, use_https, insecure=True) return r.response['status'] def get_cert(self, domain, tls=None, ciphers=None): return MDCertUtil.load_server_cert(self._httpd_addr, self.https_port, domain, tls=tls, ciphers=ciphers) def get_server_cert(self, domain, proto=None, ciphers=None): args = [ "openssl", "s_client", "-status", "-connect", "%s:%s" % (self._httpd_addr, self.https_port), "-CAfile", self.acme_ca_pemfile, "-servername", domain, "-showcerts" ] if proto is not None: args.extend(["-{0}".format(proto)]) if ciphers is not None: args.extend(["-cipher", ciphers]) r = self.run(args) # noinspection PyBroadException try: return MDCertUtil.parse_pem_cert(r.stdout) except: return None def verify_cert_key_lenghts(self, domain, pkeys): for p in pkeys: cert = self.get_server_cert(domain, proto="tls1_2", ciphers=p['ciphers']) if 0 == p['keylen']: assert cert is None else: assert cert, "no cert returned for cipher: {0}".format(p['ciphers']) assert cert.get_key_length() == p['keylen'], "key length, expected {0}, got {1}".format( p['keylen'], cert.get_key_length() ) def get_meta(self, domain, path, use_https=True, insecure=False): schema = "https" if use_https else "http" port = self.https_port if use_https else self.http_port r = self.curl_get(f"{schema}://{domain}:{port}{path}", insecure=insecure) assert r.exit_code == 0 assert r.response assert r.response['header'] return r def get_content(self, domain, path, use_https=True): schema = "https" if use_https else "http" port = self.https_port if use_https else self.http_port r = self.curl_get(f"{schema}://{domain}:{port}{path}") assert r.exit_code == 0 return r.stdout def get_json_content(self, domain, path, use_https=True, insecure=False, debug_log=True): schema = "https" if use_https else "http" port = self.https_port if use_https else self.http_port url = f"{schema}://{domain}:{port}{path}" r = self.curl_get(url, insecure=insecure, debug_log=debug_log) if r.exit_code != 0: log.error(f"curl get on {url} returned {r.exit_code}" f"\nstdout: {r.stdout}" f"\nstderr: {r.stderr}") assert r.exit_code == 0, r.stderr return r.json def get_certificate_status(self, domain) -> Dict: return self.get_json_content(domain, "/.httpd/certificate-status", insecure=True) def get_md_status(self, domain, via_domain=None, use_https=True, debug_log=False) -> Dict: if via_domain is None: via_domain = self._default_domain return self.get_json_content(via_domain, f"/md-status/{domain}", use_https=use_https, debug_log=debug_log) def get_server_status(self, query="/", via_domain=None, use_https=True): if via_domain is None: via_domain = self._default_domain return self.get_content(via_domain, "/server-status%s" % query, use_https=use_https) def await_completion(self, names, must_renew=False, restart=True, timeout=60, via_domain=None, use_https=True): try_until = time.time() + timeout renewals = {} names = names.copy() while len(names) > 0: if time.time() >= try_until: return False for name in names: mds = self.get_md_status(name, via_domain=via_domain, use_https=use_https) if mds is None: log.debug("not managed by md: %s" % name) return False if 'renewal' in mds: renewal = mds['renewal'] renewals[name] = True if 'finished' in renewal and renewal['finished'] is True: if (not must_renew) or (name in renewals): log.debug(f"domain cert was renewed: {name}") names.remove(name) if len(names) != 0: time.sleep(0.1) if restart: time.sleep(0.1) return self.apache_restart() == 0 return True def is_renewing(self, name): stat = self.get_certificate_status(name) return 'renewal' in stat def await_renewal(self, names, timeout=60): try_until = time.time() + timeout while len(names) > 0: if time.time() >= try_until: return False for name in names: md = self.get_md_status(name) if md is None: log.debug("not managed by md: %s" % name) return False if 'renewal' in md: names.remove(name) if len(names) != 0: time.sleep(0.1) return True def await_error(self, domain, timeout=60, via_domain=None, use_https=True, errors=1): try_until = time.time() + timeout while True: if time.time() >= try_until: return False md = self.get_md_status(domain, via_domain=via_domain, use_https=use_https) if md: if 'state' in md and md['state'] == MDTestEnv.MD_S_ERROR: return md if 'renewal' in md and 'errors' in md['renewal'] \ and md['renewal']['errors'] >= errors: return md time.sleep(0.1) return None def await_file(self, fpath, timeout=60): try_until = time.time() + timeout while True: if time.time() >= try_until: return False if os.path.isfile(fpath): return True time.sleep(0.1) def check_file_permissions(self, domain): md = self.a2md(["list", domain]).json['output'][0] assert md acct = md['ca']['account'] assert acct self.check_file_access(self.path_store_json(), 0o600) # domains self.check_file_access(self.store_domains(), 0o700) self.check_file_access(os.path.join(self.store_domains(), domain), 0o700) self.check_file_access(self.store_domain_file(domain, 'privkey.pem'), 0o600) self.check_file_access(self.store_domain_file(domain, 'pubcert.pem'), 0o600) self.check_file_access(self.store_domain_file(domain, 'md.json'), 0o600) # archive self.check_file_access(self.store_archived_file(domain, 1, 'md.json'), 0o600) # accounts self.check_file_access(os.path.join(self._store_dir, 'accounts'), 0o755) self.check_file_access(os.path.join(self._store_dir, 'accounts', acct), 0o755) self.check_file_access(self.path_account(acct), 0o644) self.check_file_access(self.path_account_key(acct), 0o644) # staging self.check_file_access(self.store_stagings(), 0o755) def get_ocsp_status(self, domain, proto=None, cipher=None, ca_file=None): stat = {} args = [ "openssl", "s_client", "-status", "-connect", "%s:%s" % (self._httpd_addr, self.https_port), "-CAfile", ca_file if ca_file else self.acme_ca_pemfile, "-servername", domain, "-showcerts" ] if proto is not None: args.extend(["-{0}".format(proto)]) if cipher is not None: args.extend(["-cipher", cipher]) r = self.run(args, debug_log=False) ocsp_regex = re.compile(r'OCSP response: +([^=\n]+)\n') matches = ocsp_regex.finditer(r.stdout) for m in matches: if m.group(1) != "": stat['ocsp'] = m.group(1) if 'ocsp' not in stat: ocsp_regex = re.compile(r'OCSP Response Status:\s*(.+)') matches = ocsp_regex.finditer(r.stdout) for m in matches: if m.group(1) != "": stat['ocsp'] = m.group(1) verify_regex = re.compile(r'Verify return code:\s*(.+)') matches = verify_regex.finditer(r.stdout) for m in matches: if m.group(1) != "": stat['verify'] = m.group(1) return stat def await_ocsp_status(self, domain, timeout=10, ca_file=None): try_until = time.time() + timeout while True: if time.time() >= try_until: break stat = self.get_ocsp_status(domain, ca_file=ca_file) if 'ocsp' in stat and stat['ocsp'] != "no response sent": return stat time.sleep(0.1) raise TimeoutError(f"ocsp respopnse not available: {domain}") def create_self_signed_cert(self, name_list, valid_days, serial=1000, path=None): dirpath = path if not path: dirpath = os.path.join(self.store_domains(), name_list[0]) return MDCertUtil.create_self_signed_cert(dirpath, name_list, valid_days, serial)
[((454, 481), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (471, 481), False, 'import logging\n'), ((881, 912), 'os.path.join', 'os.path.join', (['our_dir', '"""pebble"""'], {}), "(our_dir, 'pebble')\n", (893, 912), False, 'import os\n'), ((937, 977), 'os.path.join', 'os.path.join', (['self.env.gen_dir', '"""pebble"""'], {}), "(self.env.gen_dir, 'pebble')\n", (949, 977), False, 'import os\n'), ((1083, 1107), 'os.listdir', 'os.listdir', (['conf_src_dir'], {}), '(conf_src_dir)\n', (1093, 1107), False, 'import os\n'), ((1654, 1665), 'time.time', 'time.time', ([], {}), '()\n', (1663, 1665), False, 'import time\n'), ((2562, 2610), 'os.path.join', 'os.path.join', (['self.gen_dir', '"""apache/acme-ca.pem"""'], {}), "(self.gen_dir, 'apache/acme-ca.pem')\n", (2574, 2610), False, 'import os\n'), ((3115, 3149), 'os.path.join', 'os.path.join', (['self.bin_dir', '"""a2md"""'], {}), "(self.bin_dir, 'a2md')\n", (3127, 3149), False, 'import os\n'), ((4495, 4533), 'os.path.join', 'os.path.join', (['self.server_dir', 'dirpath'], {}), '(self.server_dir, dirpath)\n', (4507, 4533), False, 'import os\n'), ((4865, 4937), 'subprocess.run', 'subprocess.run', (["[self._apxs, '-q', name]"], {'capture_output': '(True)', 'text': '(True)'}), "([self._apxs, '-q', name], capture_output=True, text=True)\n", (4879, 4937), False, 'import subprocess\n'), ((7367, 7398), 'os.path.exists', 'os.path.exists', (['self._store_dir'], {}), '(self._store_dir)\n', (7381, 7398), False, 'import os\n'), ((7472, 7500), 'os.makedirs', 'os.makedirs', (['self._store_dir'], {}), '(self._store_dir)\n', (7483, 7500), False, 'import os\n'), ((7993, 8030), 'os.path.join', 'os.path.join', (['self._store_dir', '"""ocsp"""'], {}), "(self._store_dir, 'ocsp')\n", (8005, 8030), False, 'import os\n'), ((8094, 8117), 'os.path.exists', 'os.path.exists', (['dirpath'], {}), '(dirpath)\n', (8108, 8117), False, 'import os\n'), ((8234, 8280), 'os.path.join', 'os.path.join', (['self._store_dir', '"""staging"""', 'name'], {}), "(self._store_dir, 'staging', name)\n", (8246, 8280), False, 'import os\n'), ((8289, 8309), 'os.makedirs', 'os.makedirs', (['dirpath'], {}), '(dirpath)\n', (8300, 8309), False, 'import os\n'), ((8427, 8473), 'os.path.join', 'os.path.join', (['self._store_dir', '"""md_store.json"""'], {}), "(self._store_dir, 'md_store.json')\n", (8439, 8473), False, 'import os\n'), ((8524, 8587), 'os.path.join', 'os.path.join', (['self._store_dir', '"""accounts"""', 'acct', '"""account.json"""'], {}), "(self._store_dir, 'accounts', acct, 'account.json')\n", (8536, 8587), False, 'import os\n'), ((8642, 8704), 'os.path.join', 'os.path.join', (['self._store_dir', '"""accounts"""', 'acct', '"""account.pem"""'], {}), "(self._store_dir, 'accounts', acct, 'account.pem')\n", (8654, 8704), False, 'import os\n'), ((8750, 8790), 'os.path.join', 'os.path.join', (['self._store_dir', '"""domains"""'], {}), "(self._store_dir, 'domains')\n", (8762, 8790), False, 'import os\n'), ((8837, 8877), 'os.path.join', 'os.path.join', (['self._store_dir', '"""archive"""'], {}), "(self._store_dir, 'archive')\n", (8849, 8877), False, 'import os\n'), ((8924, 8964), 'os.path.join', 'os.path.join', (['self._store_dir', '"""staging"""'], {}), "(self._store_dir, 'staging')\n", (8936, 8964), False, 'import os\n'), ((9013, 9056), 'os.path.join', 'os.path.join', (['self._store_dir', '"""challenges"""'], {}), "(self._store_dir, 'challenges')\n", (9025, 9056), False, 'import os\n'), ((9509, 9581), 'os.path.join', 'os.path.join', (['self._store_dir', '"""domains"""', 'domain', '"""fallback-pubcert.pem"""'], {}), "(self._store_dir, 'domains', domain, 'fallback-pubcert.pem')\n", (9521, 9581), False, 'import os\n'), ((9630, 9690), 'os.path.join', 'os.path.join', (['self._store_dir', '"""staging"""', 'domain', '"""job.json"""'], {}), "(self._store_dir, 'staging', domain, 'job.json')\n", (9642, 9690), False, 'import os\n'), ((9734, 9785), 'shutil.rmtree', 'shutil.rmtree', (['self._store_dir'], {'ignore_errors': '(False)'}), '(self._store_dir, ignore_errors=False)\n', (9747, 9785), False, 'import shutil\n'), ((9794, 9831), 'shutil.copytree', 'shutil.copytree', (['src', 'self._store_dir'], {}), '(src, self._store_dir)\n', (9809, 9831), False, 'import shutil\n'), ((12875, 12896), 'copy.deepcopy', 'copy.deepcopy', (['actual'], {}), '(actual)\n', (12888, 12896), False, 'import copy\n'), ((21206, 21249), 're.compile', 're.compile', (['"""OCSP response: +([^=\\\\n]+)\\\\n"""'], {}), "('OCSP response: +([^=\\\\n]+)\\\\n')\n", (21216, 21249), False, 'import re\n'), ((21686, 21727), 're.compile', 're.compile', (['"""Verify return code:\\\\s*(.+)"""'], {}), "('Verify return code:\\\\s*(.+)')\n", (21696, 21727), False, 'import re\n'), ((828, 856), 'inspect.getfile', 'inspect.getfile', (['MDTestSetup'], {}), '(MDTestSetup)\n', (843, 856), False, 'import inspect\n'), ((993, 1022), 'os.path.exists', 'os.path.exists', (['conf_dest_dir'], {}), '(conf_dest_dir)\n', (1007, 1022), False, 'import os\n'), ((1036, 1062), 'os.makedirs', 'os.makedirs', (['conf_dest_dir'], {}), '(conf_dest_dir)\n', (1047, 1062), False, 'import os\n'), ((1132, 1164), 'os.path.join', 'os.path.join', (['conf_src_dir', 'name'], {}), '(conf_src_dir, name)\n', (1144, 1164), False, 'import os\n'), ((1181, 1212), 're.match', 're.match', (['"""(.+).template"""', 'name'], {}), "('(.+).template', name)\n", (1189, 1212), False, 'import re\n'), ((4363, 4393), 'os.path.join', 'os.path.join', (['"""state"""', 'dirpath'], {}), "('state', dirpath)\n", (4375, 4393), False, 'import os\n'), ((6614, 6656), 'pytest.skip', 'pytest.skip', ([], {'msg': '"""ACME server not running"""'}), "(msg='ACME server not running')\n", (6625, 6656), False, 'import pytest\n'), ((6886, 6943), 'pytest.fail', 'pytest.fail', ([], {'msg': '"""ACME server not running"""', 'pytrace': '(False)'}), "(msg='ACME server not running', pytrace=False)\n", (6897, 6943), False, 'import pytest\n'), ((7412, 7463), 'shutil.rmtree', 'shutil.rmtree', (['self._store_dir'], {'ignore_errors': '(False)'}), '(self._store_dir, ignore_errors=False)\n', (7425, 7463), False, 'import shutil\n'), ((7643, 7674), 'os.path.exists', 'os.path.exists', (['self._store_dir'], {}), '(self._store_dir)\n', (7657, 7674), False, 'import os\n'), ((7688, 7716), 'os.makedirs', 'os.makedirs', (['self._store_dir'], {}), '(self._store_dir)\n', (7699, 7716), False, 'import os\n'), ((8131, 8173), 'shutil.rmtree', 'shutil.rmtree', (['dirpath'], {'ignore_errors': '(True)'}), '(dirpath, ignore_errors=True)\n', (8144, 8173), False, 'import shutil\n'), ((9888, 9929), 'os.path.join', 'os.path.join', (['self._store_dir', '"""accounts"""'], {}), "(self._store_dir, 'accounts')\n", (9900, 9929), False, 'import os\n'), ((10302, 10314), 'json.load', 'json.load', (['f'], {}), '(f)\n', (10311, 10314), False, 'import json\n'), ((12545, 12576), 'datetime.datetime.now', 'datetime.now', (['not_before.tzinfo'], {}), '(not_before.tzinfo)\n', (12557, 12576), False, 'from datetime import datetime, timedelta\n'), ((12604, 12634), 'datetime.datetime.now', 'datetime.now', (['not_after.tzinfo'], {}), '(not_after.tzinfo)\n', (12616, 12634), False, 'from datetime import datetime, timedelta\n'), ((13172, 13188), 'os.listdir', 'os.listdir', (['path'], {}), '(path)\n', (13182, 13188), False, 'import os\n'), ((16888, 16899), 'time.time', 'time.time', ([], {}), '()\n', (16897, 16899), False, 'import time\n'), ((17798, 17813), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (17808, 17813), False, 'import time\n'), ((18065, 18076), 'time.time', 'time.time', ([], {}), '()\n', (18074, 18076), False, 'import time\n'), ((18662, 18673), 'time.time', 'time.time', ([], {}), '()\n', (18671, 18673), False, 'import time\n'), ((19157, 19172), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (19167, 19172), False, 'import time\n'), ((19259, 19270), 'time.time', 'time.time', ([], {}), '()\n', (19268, 19270), False, 'import time\n'), ((19386, 19407), 'os.path.isfile', 'os.path.isfile', (['fpath'], {}), '(fpath)\n', (19400, 19407), False, 'import os\n'), ((19449, 19464), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (19459, 19464), False, 'import time\n'), ((20271, 20312), 'os.path.join', 'os.path.join', (['self._store_dir', '"""accounts"""'], {}), "(self._store_dir, 'accounts')\n", (20283, 20312), False, 'import os\n'), ((20352, 20399), 'os.path.join', 'os.path.join', (['self._store_dir', '"""accounts"""', 'acct'], {}), "(self._store_dir, 'accounts', acct)\n", (20364, 20399), False, 'import os\n'), ((21454, 21497), 're.compile', 're.compile', (['"""OCSP Response Status:\\\\s*(.+)"""'], {}), "('OCSP Response Status:\\\\s*(.+)')\n", (21464, 21497), False, 'import re\n'), ((21989, 22000), 'time.time', 'time.time', ([], {}), '()\n', (21998, 22000), False, 'import time\n'), ((22269, 22284), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (22279, 22284), False, 'import time\n'), ((1336, 1360), 'os.path.isfile', 'os.path.isfile', (['src_path'], {}), '(src_path)\n', (1350, 1360), False, 'import os\n'), ((3506, 3564), 'pyhttpd.certs.CertificateSpec', 'CertificateSpec', ([], {'domains': "['localhost']", 'key_type': '"""rsa2048"""'}), "(domains=['localhost'], key_type='rsa2048')\n", (3521, 3564), False, 'from pyhttpd.certs import CertificateSpec\n'), ((5528, 5573), 're.sub', 're.sub', (['"""[_]"""', '"""-"""', 'request.node.originalname'], {}), "('[_]', '-', request.node.originalname)\n", (5534, 5573), False, 'import re\n'), ((6729, 6751), 'datetime.timedelta', 'timedelta', ([], {'seconds': '(0.5)'}), '(seconds=0.5)\n', (6738, 6751), False, 'from datetime import datetime, timedelta\n'), ((7842, 7880), 'os.path.join', 'os.path.join', (['self._store_dir', 'dirpath'], {}), '(self._store_dir, dirpath)\n', (7854, 7880), False, 'import os\n'), ((13039, 13053), 'os.lstat', 'os.lstat', (['path'], {}), '(path)\n', (13047, 13053), False, 'import os\n'), ((17006, 17017), 'time.time', 'time.time', ([], {}), '()\n', (17015, 17017), False, 'import time\n'), ((17750, 17765), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (17760, 17765), False, 'import time\n'), ((18132, 18143), 'time.time', 'time.time', ([], {}), '()\n', (18141, 18143), False, 'import time\n'), ((18515, 18530), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (18525, 18530), False, 'import time\n'), ((18719, 18730), 'time.time', 'time.time', ([], {}), '()\n', (18728, 18730), False, 'import time\n'), ((19316, 19327), 'time.time', 'time.time', ([], {}), '()\n', (19325, 19327), False, 'import time\n'), ((22046, 22057), 'time.time', 'time.time', ([], {}), '()\n', (22055, 22057), False, 'import time\n'), ((2361, 2387), 'inspect.getfile', 'inspect.getfile', (['MDTestEnv'], {}), '(MDTestEnv)\n', (2376, 2387), False, 'import inspect\n'), ((3982, 4054), 're.compile', 're.compile', (['""".*certificate with serial \\\\S+ has no OCSP responder URL.*"""'], {}), "('.*certificate with serial \\\\S+ has no OCSP responder URL.*')\n", (3992, 4054), False, 'import re\n'), ((8323, 8358), 'os.path.join', 'os.path.join', (['dirpath', '"""authz.json"""'], {}), "(dirpath, 'authz.json')\n", (8335, 8358), False, 'import os\n'), ((1400, 1433), 'os.path.join', 'os.path.join', (['conf_dest_dir', 'name'], {}), '(conf_dest_dir, name)\n', (1412, 1433), False, 'import os\n'), ((3413, 3433), 'datetime.timedelta', 'timedelta', ([], {'days': '(-100)'}), '(days=-100)\n', (3422, 3433), False, 'from datetime import datetime, timedelta\n'), ((3472, 3491), 'datetime.timedelta', 'timedelta', ([], {'days': '(-10)'}), '(days=-10)\n', (3481, 3491), False, 'from datetime import datetime, timedelta\n')]
ajrice6713/bw-messaging-emulator
models/create_message_response.py
d1be4976e2486ec91b419597afc8411c78ebfda7
import datetime import json import random import string from typing import Dict from sms_counter import SMSCounter class CreateMessageResponse: def __init__(self, request): self.id = self.generate_id() self.owner = request['from'] self.applicationId = request['applicationId'] self.time = str(datetime.datetime.utcnow().isoformat()) self.segmentCount = 1 self.direction = 'out' if type(request['to']) is str: self.to = [request['to']] else: self.to = request['to'] self.mfrom = request['from'] if 'media' in request: self.media = request['media'] if 'text' in request: self.text = request['text'] if 'tag' in request: self.tag = request['tag'] if 'priority' in request: self.priority = request['priority'] def calculate_segments(self, message) -> int: count = SMSCounter.count(message) return count['messages'] def generate_id(self) -> str: pre = random.randint(1400000000000,1799999999999) return str(pre) + ''.join(random.choice(string.ascii_lowercase) for x in range(16)) def to_json(self) -> str: dict_response = { 'id': self.id, 'owner': self.owner, 'applicationId': self.applicationId, 'time': self.time, 'direction': self.direction, 'to': self.to, 'from': self.mfrom } if hasattr(self, 'media'): dict_response['media'] = self.media if hasattr(self, 'text'): dict_response['text'] = self.text dict_response['segmentCount'] = self.calculate_segments(self.text) if hasattr(self, 'tag'): dict_response['tag'] = self.tag if hasattr(self, 'priority'): dict_response['priority'] = self.priority return json.dumps(dict_response)
[((964, 989), 'sms_counter.SMSCounter.count', 'SMSCounter.count', (['message'], {}), '(message)\n', (980, 989), False, 'from sms_counter import SMSCounter\n'), ((1077, 1121), 'random.randint', 'random.randint', (['(1400000000000)', '(1799999999999)'], {}), '(1400000000000, 1799999999999)\n', (1091, 1121), False, 'import random\n'), ((1923, 1948), 'json.dumps', 'json.dumps', (['dict_response'], {}), '(dict_response)\n', (1933, 1948), False, 'import json\n'), ((333, 359), 'datetime.datetime.utcnow', 'datetime.datetime.utcnow', ([], {}), '()\n', (357, 359), False, 'import datetime\n'), ((1155, 1192), 'random.choice', 'random.choice', (['string.ascii_lowercase'], {}), '(string.ascii_lowercase)\n', (1168, 1192), False, 'import random\n')]
victor95pc/ccxt
python/ccxt/async_support/uex.py
5c3e606296a1b15852a35f1330b645f451fa08d6
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code from ccxt.async_support.base.exchange import Exchange # ----------------------------------------------------------------------------- try: basestring # Python 3 except NameError: basestring = str # Python 2 import json from ccxt.base.errors import ExchangeError from ccxt.base.errors import AuthenticationError from ccxt.base.errors import PermissionDenied from ccxt.base.errors import ArgumentsRequired from ccxt.base.errors import InsufficientFunds from ccxt.base.errors import InvalidAddress from ccxt.base.errors import InvalidOrder from ccxt.base.errors import OrderNotFound from ccxt.base.errors import ExchangeNotAvailable class uex (Exchange): def describe(self): return self.deep_extend(super(uex, self).describe(), { 'id': 'uex', 'name': 'UEX', 'countries': ['SG', 'US'], 'version': 'v1.0.3', 'rateLimit': 1000, 'certified': False, # new metainfo interface 'has': { 'CORS': False, 'fetchMyTrades': True, 'fetchOHLCV': True, 'fetchOrder': True, 'fetchOpenOrders': True, 'fetchClosedOrders': True, 'fetchDepositAddress': True, 'fetchDeposits': True, 'fetchWithdrawals': True, 'withdraw': True, }, 'timeframes': { '1m': '1', '5m': '5', '15m': '15', '30m': '30', '1h': '60', '2h': '120', '3h': '180', '4h': '240', '6h': '360', '12h': '720', '1d': '1440', }, 'urls': { 'logo': 'https://user-images.githubusercontent.com/1294454/43999923-051d9884-9e1f-11e8-965a-76948cb17678.jpg', 'api': 'https://open-api.uex.com/open/api', 'www': 'https://www.uex.com', 'doc': 'https://download.uex.com/doc/UEX-API-English-1.0.3.pdf', 'fees': 'https://www.uex.com/footer/ufees.html', 'referral': 'https://www.uex.com/signup.html?code=VAGQLL', }, 'api': { 'public': { 'get': [ 'common/coins', # funding limits 'common/symbols', 'get_records', # ohlcvs 'get_ticker', 'get_trades', 'market_dept', # dept here is not a typo... they mean depth ], }, 'private': { 'get': [ 'deposit_address_list', 'withdraw_address_list', 'deposit_history', 'withdraw_history', 'user/account', 'market', # an assoc array of market ids to corresponding prices traded most recently(prices of last trades per market) 'order_info', 'new_order', # a list of currently open orders 'all_order', 'all_trade', ], 'post': [ 'create_order', 'cancel_order', 'create_withdraw', ], }, }, 'fees': { 'trading': { 'tierBased': False, 'percentage': True, 'maker': 0.0010, 'taker': 0.0010, }, }, 'exceptions': { # descriptions from ↓ exchange # '0': 'no error', # succeed '4': InsufficientFunds, # {"code":"4","msg":"余额不足:0E-16","data":null} '5': InvalidOrder, # fail to order {"code":"5","msg":"Price fluctuates more than1000.0%","data":null} '6': InvalidOrder, # the quantity value less than the minimum one {"code":"6","msg":"数量小于最小值:0.001","data":null} '7': InvalidOrder, # the quantity value more than the maximum one {"code":"7","msg":"数量大于最大值:10000","data":null} '8': InvalidOrder, # fail to cancel order '9': ExchangeError, # transaction be frozen '13': ExchangeError, # Sorry, the program made an error, please contact with the manager. '19': InsufficientFunds, # Available balance is insufficient. '22': OrderNotFound, # The order does not exist. {"code":"22","msg":"not exist order","data":null} '23': InvalidOrder, # Lack of parameters of numbers of transaction '24': InvalidOrder, # Lack of parameters of transaction price '100001': ExchangeError, # System is abnormal '100002': ExchangeNotAvailable, # Update System '100004': ExchangeError, # {"code":"100004","msg":"request parameter illegal","data":null} '100005': AuthenticationError, # {"code":"100005","msg":"request sign illegal","data":null} '100007': PermissionDenied, # illegal IP '110002': ExchangeError, # unknown currency code '110003': AuthenticationError, # fund password error '110004': AuthenticationError, # fund password error '110005': InsufficientFunds, # Available balance is insufficient. '110020': AuthenticationError, # Username does not exist. '110023': AuthenticationError, # Phone number is registered. '110024': AuthenticationError, # Email box is registered. '110025': PermissionDenied, # Account is locked by background manager '110032': PermissionDenied, # The user has no authority to do self operation. '110033': ExchangeError, # fail to recharge '110034': ExchangeError, # fail to withdraw '-100': ExchangeError, # {"code":"-100","msg":"Your request path is not exist or you can try method GET/POST.","data":null} '-1000': ExchangeNotAvailable, # {"msg":"System maintenancenot ","code":"-1000","data":null} }, 'requiredCredentials': { 'apiKey': True, 'secret': True, }, 'options': { 'createMarketBuyOrderRequiresPrice': True, 'limits': { 'BTC/USDT': {'amount': {'min': 0.001}, 'price': {'min': 0.01}}, 'ETH/USDT': {'amount': {'min': 0.001}, 'price': {'min': 0.01}}, 'BCH/USDT': {'amount': {'min': 0.001}, 'price': {'min': 0.01}}, 'ETH/BTC': {'amount': {'min': 0.001}, 'price': {'min': 0.000001}}, 'BCH/BTC': {'amount': {'min': 0.001}, 'price': {'min': 0.000001}}, 'LEEK/ETH': {'amount': {'min': 10}, 'price': {'min': 10}}, 'CTXC/ETH': {'amount': {'min': 10}, 'price': {'min': 10}}, 'COSM/ETH': {'amount': {'min': 10}, 'price': {'min': 10}}, 'MANA/ETH': {'amount': {'min': 10}, 'price': {'min': 10}}, 'LBA/BTC': {'amount': {'min': 10}, 'price': {'min': 10}}, 'OLT/ETH': {'amount': {'min': 10}, 'price': {'min': 10}}, 'DTA/ETH': {'amount': {'min': 10}, 'price': {'min': 10}}, 'KNT/ETH': {'amount': {'min': 10}, 'price': {'min': 10}}, 'REN/ETH': {'amount': {'min': 10}, 'price': {'min': 10}}, 'LBA/ETH': {'amount': {'min': 10}, 'price': {'min': 10}}, 'EXC/ETH': {'amount': {'min': 10}, 'price': {'min': 10}}, 'ZIL/ETH': {'amount': {'min': 10}, 'price': {'min': 10}}, 'RATING/ETH': {'amount': {'min': 100}, 'price': {'min': 100}}, 'CENNZ/ETH': {'amount': {'min': 10}, 'price': {'min': 10}}, 'TTC/ETH': {'amount': {'min': 10}, 'price': {'min': 10}}, }, }, }) def calculate_fee(self, symbol, type, side, amount, price, takerOrMaker='taker', params={}): market = self.markets[symbol] key = 'quote' rate = market[takerOrMaker] cost = float(self.cost_to_precision(symbol, amount * rate)) if side == 'sell': cost *= price else: key = 'base' return { 'type': takerOrMaker, 'currency': market[key], 'rate': rate, 'cost': float(self.currency_to_precision(market[key], cost)), } async def fetch_markets(self, params={}): response = await self.publicGetCommonSymbols() # # {code: "0", # msg: "suc", # data: [{ symbol: "btcusdt", # count_coin: "usdt", # amount_precision: 3, # base_coin: "btc", # price_precision: 2 }, # { symbol: "ethusdt", # count_coin: "usdt", # amount_precision: 3, # base_coin: "eth", # price_precision: 2 }, # { symbol: "ethbtc", # count_coin: "btc", # amount_precision: 3, # base_coin: "eth", # price_precision: 6 }]} # result = [] markets = response['data'] for i in range(0, len(markets)): market = markets[i] id = market['symbol'] baseId = market['base_coin'] quoteId = market['count_coin'] base = baseId.upper() quote = quoteId.upper() base = self.common_currency_code(base) quote = self.common_currency_code(quote) symbol = base + '/' + quote precision = { 'amount': market['amount_precision'], 'price': market['price_precision'], } active = True defaultLimits = self.safe_value(self.options['limits'], symbol, {}) limits = self.deep_extend({ 'amount': { 'min': None, 'max': None, }, 'price': { 'min': None, 'max': None, }, 'cost': { 'min': None, 'max': None, }, }, defaultLimits) result.append({ 'id': id, 'symbol': symbol, 'base': base, 'quote': quote, 'baseId': baseId, 'quoteId': quoteId, 'active': active, 'info': market, 'precision': precision, 'limits': limits, }) return result async def fetch_balance(self, params={}): await self.load_markets() response = await self.privateGetUserAccount(params) # # {code: "0", # msg: "suc", # data: {total_asset: "0.00000000", # coin_list: [{ normal: "0.00000000", # btcValuatin: "0.00000000", # locked: "0.00000000", # coin: "usdt" }, # { normal: "0.00000000", # btcValuatin: "0.00000000", # locked: "0.00000000", # coin: "btc" }, # { normal: "0.00000000", # btcValuatin: "0.00000000", # locked: "0.00000000", # coin: "eth" }, # { normal: "0.00000000", # btcValuatin: "0.00000000", # locked: "0.00000000", # coin: "ren" }]}} # balances = response['data']['coin_list'] result = {'info': balances} for i in range(0, len(balances)): balance = balances[i] currencyId = balance['coin'] code = currencyId.upper() if currencyId in self.currencies_by_id: code = self.currencies_by_id[currencyId]['code'] else: code = self.common_currency_code(code) account = self.account() free = float(balance['normal']) used = float(balance['locked']) total = self.sum(free, used) account['free'] = free account['used'] = used account['total'] = total result[code] = account return self.parse_balance(result) async def fetch_order_book(self, symbol, limit=None, params={}): await self.load_markets() response = await self.publicGetMarketDept(self.extend({ 'symbol': self.market_id(symbol), 'type': 'step0', # step1, step2 from most detailed to least detailed }, params)) # # {code: "0", # msg: "suc", # data: {tick: {asks: [["0.05824200", 9.77], # ["0.05830000", 7.81], # ["0.05832900", 8.59], # ["0.10000000", 0.001] ], # bids: [["0.05780000", 8.25], # ["0.05775000", 8.12], # ["0.05773200", 8.57], # ["0.00010000", 0.79] ], # time: 1533412622463 }} } # timestamp = self.safe_integer(response['data']['tick'], 'time') return self.parse_order_book(response['data']['tick'], timestamp) def parse_ticker(self, ticker, market=None): # # {code: "0", # msg: "suc", # data: {symbol: "ETHBTC", # high: 0.058426, # vol: 19055.875, # last: 0.058019, # low: 0.055802, # change: 0.03437271, # buy: "0.05780000", # sell: "0.05824200", # time: 1533413083184} } # timestamp = self.safe_integer(ticker, 'time') symbol = None if market is None: marketId = self.safe_string(ticker, 'symbol') marketId = marketId.lower() if marketId in self.markets_by_id: market = self.markets_by_id[marketId] if market is not None: symbol = market['symbol'] last = self.safe_float(ticker, 'last') change = self.safe_float(ticker, 'change') percentage = change * 100 return { 'symbol': symbol, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'high': self.safe_float(ticker, 'high'), 'low': self.safe_float(ticker, 'low'), 'bid': self.safe_float(ticker, 'buy'), 'bidVolume': None, 'ask': self.safe_float(ticker, 'sell'), 'askVolume': None, 'vwap': None, 'open': None, 'close': last, 'last': last, 'previousClose': None, 'change': None, 'percentage': percentage, 'average': None, 'baseVolume': self.safe_float(ticker, 'vol'), 'quoteVolume': None, 'info': ticker, } async def fetch_ticker(self, symbol, params={}): await self.load_markets() market = self.market(symbol) response = await self.publicGetGetTicker(self.extend({ 'symbol': market['id'], }, params)) # # {code: "0", # msg: "suc", # data: {symbol: "ETHBTC", # high: 0.058426, # vol: 19055.875, # last: 0.058019, # low: 0.055802, # change: 0.03437271, # buy: "0.05780000", # sell: "0.05824200", # time: 1533413083184} } # return self.parse_ticker(response['data'], market) def parse_trade(self, trade, market=None): # # public fetchTrades # # { amount: 0.88, # create_time: 1533414358000, # price: 0.058019, # id: 406531, # type: "sell" }, # # private fetchMyTrades, fetchOrder, fetchOpenOrders, fetchClosedOrders # # { volume: "0.010", # side: "SELL", # feeCoin: "BTC", # price: "0.05816200", # fee: "0.00000029", # ctime: 1533616674000, # deal_price: "0.00058162", # id: 415779, # type: "卖出", # bid_id: 3669539, # only in fetchMyTrades # ask_id: 3669583, # only in fetchMyTrades # } # timestamp = self.safe_integer_2(trade, 'create_time', 'ctime') if timestamp is None: timestring = self.safe_string(trade, 'created_at') if timestring is not None: timestamp = self.parse8601('2018-' + timestring + ':00Z') side = self.safe_string_2(trade, 'side', 'type') if side is not None: side = side.lower() id = self.safe_string(trade, 'id') symbol = None if market is not None: symbol = market['symbol'] price = self.safe_float(trade, 'price') amount = self.safe_float_2(trade, 'volume', 'amount') cost = self.safe_float(trade, 'deal_price') if cost is None: if amount is not None: if price is not None: cost = amount * price fee = None feeCost = self.safe_float_2(trade, 'fee', 'deal_fee') if feeCost is not None: feeCurrency = self.safe_string(trade, 'feeCoin') if feeCurrency is not None: currencyId = feeCurrency.lower() if currencyId in self.currencies_by_id: feeCurrency = self.currencies_by_id[currencyId]['code'] fee = { 'cost': feeCost, 'currency': feeCurrency, } orderIdField = 'ask_id' if (side == 'sell') else 'bid_id' orderId = self.safe_string(trade, orderIdField) return { 'id': id, 'info': trade, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'symbol': symbol, 'order': orderId, 'type': None, 'side': side, 'price': price, 'amount': amount, 'cost': cost, 'fee': fee, } async def fetch_trades(self, symbol, since=None, limit=None, params={}): await self.load_markets() market = self.market(symbol) response = await self.publicGetGetTrades(self.extend({ 'symbol': market['id'], }, params)) # # {code: "0", # msg: "suc", # data: [{ amount: 0.88, # create_time: 1533414358000, # price: 0.058019, # id: 406531, # type: "sell" }, # { amount: 4.88, # create_time: 1533414331000, # price: 0.058019, # id: 406530, # type: "buy" }, # { amount: 0.5, # create_time: 1533414311000, # price: 0.058019, # id: 406529, # type: "sell" }]} # return self.parse_trades(response['data'], market, since, limit) def parse_ohlcv(self, ohlcv, market=None, timeframe='1d', since=None, limit=None): return [ ohlcv[0] * 1000, # timestamp ohlcv[1], # open ohlcv[2], # high ohlcv[3], # low ohlcv[4], # close ohlcv[5], # volume ] async def fetch_ohlcv(self, symbol, timeframe='1m', since=None, limit=None, params={}): await self.load_markets() market = self.market(symbol) request = { 'symbol': market['id'], 'period': self.timeframes[timeframe], # in minutes } response = await self.publicGetGetRecords(self.extend(request, params)) # # {code: '0', # msg: 'suc', # data: # [[1533402420, 0.057833, 0.057833, 0.057833, 0.057833, 18.1], # [1533402480, 0.057833, 0.057833, 0.057833, 0.057833, 29.88], # [1533402540, 0.057833, 0.057833, 0.057833, 0.057833, 29.06] ]} # return self.parse_ohlcvs(response['data'], market, timeframe, since, limit) async def create_order(self, symbol, type, side, amount, price=None, params={}): if type == 'market': # for market buy it requires the amount of quote currency to spend if side == 'buy': if self.options['createMarketBuyOrderRequiresPrice']: if price is None: raise InvalidOrder(self.id + " createOrder() requires the price argument with market buy orders to calculate total order cost(amount to spend), where cost = amount * price. Supply a price argument to createOrder() call if you want the cost to be calculated for you from price and amount, or, alternatively, add .options['createMarketBuyOrderRequiresPrice'] = False to supply the cost in the amount argument(the exchange-specific behaviour)") else: amount = amount * price await self.load_markets() market = self.market(symbol) orderType = '1' if (type == 'limit') else '2' orderSide = side.upper() amountToPrecision = self.amount_to_precision(symbol, amount) request = { 'side': orderSide, 'type': orderType, 'symbol': market['id'], 'volume': amountToPrecision, # An excerpt from their docs: # side required Trading Direction # type required pending order types,1:Limit-price Delegation 2:Market- price Delegation # volume required # Purchase Quantity(polysemy,multiplex field) # type=1: Quantity of buying and selling # type=2: Buying represents gross price, and selling represents total number # Trading restriction user/me-user information # price optional Delegation Price:type=2:self parameter is no use. # fee_is_user_exchange_coin optional # 0,when making transactions with all platform currencies, # self parameter represents whether to use them to pay # fees or not and 0 is no, 1 is yes. } priceToPrecision = None if type == 'limit': priceToPrecision = self.price_to_precision(symbol, price) request['price'] = priceToPrecision response = await self.privatePostCreateOrder(self.extend(request, params)) # # {code: '0', # msg: 'suc', # data: {'order_id' : 34343} } # result = self.parse_order(response['data'], market) return self.extend(result, { 'info': response, 'symbol': symbol, 'type': type, 'side': side, 'status': 'open', 'price': float(priceToPrecision), 'amount': float(amountToPrecision), }) async def cancel_order(self, id, symbol=None, params={}): await self.load_markets() market = self.market(symbol) request = { 'order_id': id, 'symbol': market['id'], } response = await self.privatePostCancelOrder(self.extend(request, params)) order = self.safe_value(response, 'data', {}) return self.extend(self.parse_order(order), { 'id': id, 'symbol': symbol, 'status': 'canceled', }) def parse_order_status(self, status): statuses = { '0': 'open', # INIT(0,"primary order,untraded and not enter the market") '1': 'open', # NEW_(1,"new order,untraded and enter the market ") '2': 'closed', # FILLED(2,"complete deal") '3': 'open', # PART_FILLED(3,"partial deal") '4': 'canceled', # CANCELED(4,"already withdrawn") '5': 'canceled', # PENDING_CANCEL(5,"pending withdrawak") '6': 'canceled', # EXPIRED(6,"abnormal orders") } if status in statuses: return statuses[status] return status def parse_order(self, order, market=None): # # createOrder # # {"order_id":34343} # # fetchOrder, fetchOpenOrders, fetchClosedOrders # # { side: "BUY", # total_price: "0.10000000", # created_at: 1510993841000, # avg_price: "0.10000000", # countCoin: "btc", # source: 1, # type: 1, # side_msg: "买入", # volume: "1.000", # price: "0.10000000", # source_msg: "WEB", # status_msg: "完全成交", # deal_volume: "1.00000000", # id: 424, # remain_volume: "0.00000000", # baseCoin: "eth", # tradeList: [{ volume: "1.000", # feeCoin: "YLB", # price: "0.10000000", # fee: "0.16431104", # ctime: 1510996571195, # deal_price: "0.10000000", # id: 306, # type: "买入" }], # status: 2 } # # fetchOrder # # {trade_list: [{ volume: "0.010", # feeCoin: "BTC", # price: "0.05816200", # fee: "0.00000029", # ctime: 1533616674000, # deal_price: "0.00058162", # id: 415779, # type: "卖出" }], # order_info: { side: "SELL", # total_price: "0.010", # created_at: 1533616673000, # avg_price: "0.05816200", # countCoin: "btc", # source: 3, # type: 2, # side_msg: "卖出", # volume: "0.010", # price: "0.00000000", # source_msg: "API", # status_msg: "完全成交", # deal_volume: "0.01000000", # id: 3669583, # remain_volume: "0.00000000", # baseCoin: "eth", # tradeList: [{ volume: "0.010", # feeCoin: "BTC", # price: "0.05816200", # fee: "0.00000029", # ctime: 1533616674000, # deal_price: "0.00058162", # id: 415779, # type: "卖出" }], # status: 2 }} # side = self.safe_string(order, 'side') if side is not None: side = side.lower() status = self.parse_order_status(self.safe_string(order, 'status')) symbol = None if market is None: baseId = self.safe_string(order, 'baseCoin') quoteId = self.safe_string(order, 'countCoin') marketId = baseId + quoteId if marketId in self.markets_by_id: market = self.markets_by_id[marketId] else: if (baseId is not None) and(quoteId is not None): base = baseId.upper() quote = quoteId.upper() base = self.common_currency_code(base) quote = self.common_currency_code(quote) symbol = base + '/' + quote if market is not None: symbol = market['symbol'] timestamp = self.safe_integer(order, 'created_at') if timestamp is None: timestring = self.safe_string(order, 'created_at') if timestring is not None: timestamp = self.parse8601('2018-' + timestring + ':00Z') lastTradeTimestamp = None fee = None average = self.safe_float(order, 'avg_price') price = self.safe_float(order, 'price') if price == 0: price = average amount = self.safe_float(order, 'volume') filled = self.safe_float(order, 'deal_volume') remaining = self.safe_float(order, 'remain_volume') cost = self.safe_float(order, 'total_price') id = self.safe_string_2(order, 'id', 'order_id') trades = None tradeList = self.safe_value(order, 'tradeList', []) feeCurrencies = {} feeCost = None for i in range(0, len(tradeList)): trade = self.parse_trade(tradeList[i], market) if feeCost is None: feeCost = 0 feeCost = feeCost + trade['fee']['cost'] tradeFeeCurrency = trade['fee']['currency'] feeCurrencies[tradeFeeCurrency] = trade['fee']['cost'] if trades is None: trades = [] lastTradeTimestamp = trade['timestamp'] trades.append(self.extend(trade, { 'order': id, })) if feeCost is not None: feeCurrency = None keys = list(feeCurrencies.keys()) numCurrencies = len(keys) if numCurrencies == 1: feeCurrency = keys[0] fee = { 'cost': feeCost, 'currency': feeCurrency, } result = { 'info': order, 'id': id, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'lastTradeTimestamp': lastTradeTimestamp, 'symbol': symbol, 'type': 'limit', 'side': side, 'price': price, 'cost': cost, 'average': average, 'amount': amount, 'filled': filled, 'remaining': remaining, 'status': status, 'fee': fee, 'trades': trades, } return result async def fetch_orders_with_method(self, method, symbol=None, since=None, limit=None, params={}): if symbol is None: raise ArgumentsRequired(self.id + ' fetchOrdersWithMethod() requires a symbol argument') await self.load_markets() market = self.market(symbol) request = { # pageSize optional page size # page optional page number 'symbol': market['id'], } if limit is not None: request['pageSize'] = limit response = await getattr(self, method)(self.extend(request, params)) # # {code: "0", # msg: "suc", # data: { count: 1, # orderList: [{ side: "SELL", # total_price: "0.010", # created_at: 1533616673000, # avg_price: "0.05816200", # countCoin: "btc", # source: 3, # type: 2, # side_msg: "卖出", # volume: "0.010", # price: "0.00000000", # source_msg: "API", # status_msg: "完全成交", # deal_volume: "0.01000000", # id: 3669583, # remain_volume: "0.00000000", # baseCoin: "eth", # tradeList: [{ volume: "0.010", # feeCoin: "BTC", # price: "0.05816200", # fee: "0.00000029", # ctime: 1533616674000, # deal_price: "0.00058162", # id: 415779, # type: "卖出" }], # status: 2 }]} } # # privateGetNewOrder returns resultList, privateGetAllOrder returns orderList orders = self.safe_value_2(response['data'], 'orderList', 'resultList', []) return self.parse_orders(orders, market, since, limit) async def fetch_open_orders(self, symbol=None, since=None, limit=None, params={}): return self.fetch_orders_with_method('privateGetNewOrder', symbol, since, limit, params) async def fetch_closed_orders(self, symbol=None, since=None, limit=None, params={}): return self.fetch_orders_with_method('privateGetAllOrder', symbol, since, limit, params) async def fetch_order(self, id, symbol=None, params={}): await self.load_markets() market = self.market(symbol) request = { 'order_id': id, 'symbol': market['id'], } response = await self.privateGetOrderInfo(self.extend(request, params)) # # {code: "0", # msg: "suc", # data: {trade_list: [{ volume: "0.010", # feeCoin: "BTC", # price: "0.05816200", # fee: "0.00000029", # ctime: 1533616674000, # deal_price: "0.00058162", # id: 415779, # type: "卖出" }], # order_info: { side: "SELL", # total_price: "0.010", # created_at: 1533616673000, # avg_price: "0.05816200", # countCoin: "btc", # source: 3, # type: 2, # side_msg: "卖出", # volume: "0.010", # price: "0.00000000", # source_msg: "API", # status_msg: "完全成交", # deal_volume: "0.01000000", # id: 3669583, # remain_volume: "0.00000000", # baseCoin: "eth", # tradeList: [{ volume: "0.010", # feeCoin: "BTC", # price: "0.05816200", # fee: "0.00000029", # ctime: 1533616674000, # deal_price: "0.00058162", # id: 415779, # type: "卖出" }], # status: 2 }} } # return self.parse_order(response['data']['order_info'], market) async def fetch_my_trades(self, symbol=None, since=None, limit=None, params={}): if symbol is None: raise ArgumentsRequired(self.id + ' fetchMyTrades requires a symbol argument') await self.load_markets() market = self.market(symbol) request = { # pageSize optional page size # page optional page number 'symbol': market['id'], } if limit is not None: request['pageSize'] = limit response = await self.privateGetAllTrade(self.extend(request, params)) # # {code: "0", # msg: "suc", # data: { count: 1, # resultList: [{ volume: "0.010", # side: "SELL", # feeCoin: "BTC", # price: "0.05816200", # fee: "0.00000029", # ctime: 1533616674000, # deal_price: "0.00058162", # id: 415779, # type: "卖出", # bid_id: 3669539, # ask_id: 3669583 }]} } # trades = self.safe_value(response['data'], 'resultList', []) return self.parse_trades(trades, market, since, limit) async def fetch_deposit_address(self, code, params={}): await self.load_markets() currency = self.currency(code) request = { 'coin': currency['id'], } # https://github.com/UEX-OpenAPI/API_Docs_en/wiki/Query-deposit-address-of-assigned-token response = await self.privateGetDepositAddressList(self.extend(request, params)) # # { # "code": "0", # "msg": "suc", # "data": { # "addressList": [ # { # "address": "0x198803ef8e0df9e8812c0105421885e843e6d2e2", # "tag": "", # }, # ], # }, # } # data = self.safe_value(response, 'data') if data is None: raise InvalidAddress(self.id + ' privateGetDepositAddressList() returned no data') addressList = self.safe_value(data, 'addressList') if addressList is None: raise InvalidAddress(self.id + ' privateGetDepositAddressList() returned no address list') numAddresses = len(addressList) if numAddresses < 1: raise InvalidAddress(self.id + ' privatePostDepositAddresses() returned no addresses') firstAddress = addressList[0] address = self.safe_string(firstAddress, 'address') tag = self.safe_string(firstAddress, 'tag') self.check_address(address) return { 'currency': code, 'address': address, 'tag': tag, 'info': response, } async def fetch_transactions_by_type(self, type, code=None, since=None, limit=None, params={}): if code is None: raise ArgumentsRequired(self.id + ' fetchWithdrawals requires a currency code argument') currency = self.currency(code) request = { 'coin': currency['id'], } if limit is not None: request['pageSize'] = limit # default 10 transactionType = 'deposit' if (type == 'deposit') else 'withdraw' # instead of withdrawal... method = 'privateGet' + self.capitalize(transactionType) + 'History' # https://github.com/UEX-OpenAPI/API_Docs_en/wiki/Query-deposit-record-of-assigned-token # https://github.com/UEX-OpenAPI/API_Docs_en/wiki/Query-withdraw-record-of-assigned-token response = await getattr(self, method)(self.extend(request, params)) # # {code: "0", # msg: "suc", # data: {depositList: [{ createdAt: 1533615955000, # amount: "0.01", # updateAt: 1533616311000, # txid: "0x0922fde6ab8270fe6eb31cb5a37dc732d96dc8193f81cf46c4ab29fde…", # tag: "", # confirmations: 30, # addressTo: "0x198803ef8e0df9e8812c0105421885e843e6d2e2", # status: 1, # coin: "ETH" }]} } # # { # "code": "0", # "msg": "suc", # "data": { # "withdrawList": [{ # "updateAt": 1540344965000, # "createdAt": 1539311971000, # "status": 0, # "addressTo": "tz1d7DXJXU3AKWh77gSmpP7hWTeDYs8WF18q", # "tag": "100128877", # "id": 5, # "txid": "", # "fee": 0.0, # "amount": "1", # "symbol": "XTZ" # }] # } # } # transactions = self.safe_value(response['data'], transactionType + 'List') return self.parse_transactions_by_type(type, transactions, code, since, limit) async def fetch_deposits(self, code=None, since=None, limit=None, params={}): return await self.fetch_transactions_by_type('deposit', code, since, limit, params) async def fetch_withdrawals(self, code=None, since=None, limit=None, params={}): return await self.fetch_transactions_by_type('withdrawal', code, since, limit, params) def parse_transactions_by_type(self, type, transactions, code=None, since=None, limit=None): result = [] for i in range(0, len(transactions)): transaction = self.parse_transaction(self.extend({ 'type': type, }, transactions[i])) result.append(transaction) return self.filterByCurrencySinceLimit(result, code, since, limit) def parse_transaction(self, transaction, currency=None): # # deposits # # { createdAt: 1533615955000, # amount: "0.01", # updateAt: 1533616311000, # txid: "0x0922fde6ab8270fe6eb31cb5a37dc732d96dc8193f81cf46c4ab29fde…", # tag: "", # confirmations: 30, # addressTo: "0x198803ef8e0df9e8812c0105421885e843e6d2e2", # status: 1, # coin: "ETH" }]} } # # withdrawals # # { # "updateAt": 1540344965000, # "createdAt": 1539311971000, # "status": 0, # "addressTo": "tz1d7DXJXU3AKWh77gSmpP7hWTeDYs8WF18q", # "tag": "100128877", # "id": 5, # "txid": "", # "fee": 0.0, # "amount": "1", # "symbol": "XTZ" # } # id = self.safe_string(transaction, 'id') txid = self.safe_string(transaction, 'txid') timestamp = self.safe_integer(transaction, 'createdAt') updated = self.safe_integer(transaction, 'updateAt') code = None currencyId = self.safe_string_2(transaction, 'symbol', 'coin') currency = self.safe_value(self.currencies_by_id, currencyId) if currency is not None: code = currency['code'] else: code = self.common_currency_code(currencyId) address = self.safe_string(transaction, 'addressTo') tag = self.safe_string(transaction, 'tag') amount = self.safe_float(transaction, 'amount') status = self.parse_transaction_status(self.safe_string(transaction, 'status')) type = self.safe_string(transaction, 'type') # injected from the outside feeCost = self.safe_float(transaction, 'fee') if (type == 'deposit') and(feeCost is None): feeCost = 0 return { 'info': transaction, 'id': id, 'currency': code, 'amount': amount, 'address': address, 'tag': tag, 'status': status, 'type': type, 'updated': updated, 'txid': txid, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'fee': { 'currency': code, 'cost': feeCost, }, } def parse_transaction_status(self, status): statuses = { '0': 'pending', # unaudited '1': 'ok', # audited '2': 'failed', # audit failed '3': 'pending', # "payment" '4': 'failed', # payment failed '5': 'ok', '6': 'canceled', } return self.safe_string(statuses, status, status) async def withdraw(self, code, amount, address, tag=None, params={}): await self.load_markets() fee = self.safe_float(params, 'fee') if fee is None: raise ArgumentsRequired(self.id + 'requires a "fee" extra parameter in its last argument') self.check_address(address) currency = self.currency(code) request = { 'coin': currency['id'], 'address': address, # only supports existing addresses in your withdraw address list 'amount': amount, 'fee': fee, # balance >= self.sum(amount, fee) } if tag is not None: request['tag'] = tag # https://github.com/UEX-OpenAPI/API_Docs_en/wiki/Withdraw response = await self.privatePostCreateWithdraw(self.extend(request, params)) id = None return { 'info': response, 'id': id, } def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): url = self.urls['api'] + '/' + self.implode_params(path, params) if api == 'public': if params: url += '?' + self.urlencode(params) else: self.check_required_credentials() timestamp = str(self.seconds()) auth = '' query = self.keysort(self.extend(params, { 'api_key': self.apiKey, 'time': timestamp, })) keys = list(query.keys()) for i in range(0, len(keys)): key = keys[i] auth += key auth += str(query[key]) signature = self.hash(self.encode(auth + self.secret)) if query: if method == 'GET': url += '?' + self.urlencode(query) + '&sign=' + signature else: body = self.urlencode(query) + '&sign=' + signature headers = { 'Content-Type': 'application/x-www-form-urlencoded', } return {'url': url, 'method': method, 'body': body, 'headers': headers} def handle_errors(self, httpCode, reason, url, method, headers, body, response): if not isinstance(body, basestring): return # fallback to default error handler if len(body) < 2: return # fallback to default error handler if (body[0] == '{') or (body[0] == '['): response = json.loads(body) # # {"code":"0","msg":"suc","data":{}} # code = self.safe_string(response, 'code') # message = self.safe_string(response, 'msg') feedback = self.id + ' ' + self.json(response) exceptions = self.exceptions if code != '0': if code in exceptions: raise exceptions[code](feedback) else: raise ExchangeError(feedback)
[((33242, 33328), 'ccxt.base.errors.ArgumentsRequired', 'ArgumentsRequired', (["(self.id + ' fetchOrdersWithMethod() requires a symbol argument')"], {}), "(self.id +\n ' fetchOrdersWithMethod() requires a symbol argument')\n", (33259, 33328), False, 'from ccxt.base.errors import ArgumentsRequired\n'), ((39101, 39173), 'ccxt.base.errors.ArgumentsRequired', 'ArgumentsRequired', (["(self.id + ' fetchMyTrades requires a symbol argument')"], {}), "(self.id + ' fetchMyTrades requires a symbol argument')\n", (39118, 39173), False, 'from ccxt.base.errors import ArgumentsRequired\n'), ((41385, 41461), 'ccxt.base.errors.InvalidAddress', 'InvalidAddress', (["(self.id + ' privateGetDepositAddressList() returned no data')"], {}), "(self.id + ' privateGetDepositAddressList() returned no data')\n", (41399, 41461), False, 'from ccxt.base.errors import InvalidAddress\n'), ((41571, 41659), 'ccxt.base.errors.InvalidAddress', 'InvalidAddress', (["(self.id + ' privateGetDepositAddressList() returned no address list')"], {}), "(self.id +\n ' privateGetDepositAddressList() returned no address list')\n", (41585, 41659), False, 'from ccxt.base.errors import InvalidAddress\n'), ((41743, 41828), 'ccxt.base.errors.InvalidAddress', 'InvalidAddress', (["(self.id + ' privatePostDepositAddresses() returned no addresses')"], {}), "(self.id + ' privatePostDepositAddresses() returned no addresses'\n )\n", (41757, 41828), False, 'from ccxt.base.errors import InvalidAddress\n'), ((42297, 42383), 'ccxt.base.errors.ArgumentsRequired', 'ArgumentsRequired', (["(self.id + ' fetchWithdrawals requires a currency code argument')"], {}), "(self.id +\n ' fetchWithdrawals requires a currency code argument')\n", (42314, 42383), False, 'from ccxt.base.errors import ArgumentsRequired\n'), ((48625, 48713), 'ccxt.base.errors.ArgumentsRequired', 'ArgumentsRequired', (['(self.id + \'requires a "fee" extra parameter in its last argument\')'], {}), '(self.id +\n \'requires a "fee" extra parameter in its last argument\')\n', (48642, 48713), False, 'from ccxt.base.errors import ArgumentsRequired\n'), ((50892, 50908), 'json.loads', 'json.loads', (['body'], {}), '(body)\n', (50902, 50908), False, 'import json\n'), ((51366, 51389), 'ccxt.base.errors.ExchangeError', 'ExchangeError', (['feedback'], {}), '(feedback)\n', (51379, 51389), False, 'from ccxt.base.errors import ExchangeError\n'), ((22721, 23165), 'ccxt.base.errors.InvalidOrder', 'InvalidOrder', (['(self.id +\n " createOrder() requires the price argument with market buy orders to calculate total order cost(amount to spend), where cost = amount * price. Supply a price argument to createOrder() call if you want the cost to be calculated for you from price and amount, or, alternatively, add .options[\'createMarketBuyOrderRequiresPrice\'] = False to supply the cost in the amount argument(the exchange-specific behaviour)"\n )'], {}), '(self.id +\n " createOrder() requires the price argument with market buy orders to calculate total order cost(amount to spend), where cost = amount * price. Supply a price argument to createOrder() call if you want the cost to be calculated for you from price and amount, or, alternatively, add .options[\'createMarketBuyOrderRequiresPrice\'] = False to supply the cost in the amount argument(the exchange-specific behaviour)"\n )\n', (22733, 23165), False, 'from ccxt.base.errors import InvalidOrder\n')]
Mdlkxzmcp/various_python
Alpha & Beta/wootMath/decimalToBinaryFraction.py
be4f873c6263e3db11177bbccce2aa465514294d
def decimal_to_binary_fraction(x=0.5): """ Input: x, a float between 0 and 1 Returns binary representation of x """ p = 0 while ((2 ** p) * x) % 1 != 0: # print('Remainder = ' + str((2**p)*x - int((2**p)*x))) p += 1 num = int(x * (2 ** p)) result = '' if num == 0: result = '0' while num > 0: result = str(num % 2) + result num //= 2 for i in range(p - len(result)): result = '0' + result result = result[0:-p] + '.' + result[-p:] return result # If there is no integer p such that x*(2**p) is a whole number, then internal # representation is always an approximation # Suggest that testing equality of floats is not exact: Use abs(x-y) < some # small number, rather than x == y # Why does print(0.1) return 0.1, if not exact? # Because Python designers set it up this way to automatically round
[]
ajaysaini725/composer
composer/utils/run_directory.py
00fbf95823cd50354b2410fbd88f06eaf0481662
# Copyright 2021 MosaicML. All Rights Reserved. import datetime import logging import os import pathlib import time from composer.utils import dist log = logging.getLogger(__name__) _RUN_DIRECTORY_KEY = "COMPOSER_RUN_DIRECTORY" _start_time_str = datetime.datetime.now().isoformat() def get_node_run_directory() -> str: """Returns the run directory for the node. This folder is shared by all ranks on the node. Returns: str: The node run directory. """ node_run_directory = os.environ.get(_RUN_DIRECTORY_KEY, os.path.join("runs", _start_time_str)) if node_run_directory.endswith(os.path.sep): # chop off the training slash so os.path.basename would work as expected node_run_directory = node_run_directory[:-1] os.makedirs(node_run_directory, exist_ok=True) return os.path.abspath(node_run_directory) def get_run_directory() -> str: """Returns the run directory for the current rank. Returns: str: The run directory. """ run_dir = os.path.join(get_node_run_directory(), f"rank_{dist.get_global_rank()}") os.makedirs(run_dir, exist_ok=True) return run_dir def get_modified_files(modified_since_timestamp: float, *, ignore_hidden: bool = True): """Returns a list of files (recursively) in the run directory that have been modified since ``modified_since_timestamp``. Args: modified_since_timestamp (float): Minimum last modified timestamp(in seconds since EPOCH) of files to include. ignore_hidden (bool, optional): Whether to ignore hidden files and folders (default: ``True``) Returns: List[str]: List of filepaths that have been modified since ``modified_since_timestamp`` """ modified_files = [] run_directory = get_run_directory() if run_directory is None: raise RuntimeError("Run directory is not defined") for root, dirs, files in os.walk(run_directory): del dirs # unused for file in files: if ignore_hidden and any(x.startswith(".") for x in file.split(os.path.sep)): # skip hidden files and folders continue filepath = os.path.join(root, file) modified_time = os.path.getmtime(filepath) if modified_time >= modified_since_timestamp: modified_files.append(filepath) return modified_files def get_run_directory_timestamp() -> float: """Returns the current timestamp on the run directory filesystem. Note that the disk time can differ from system time (e.g. when using network filesystems). Returns: float: the current timestamp on the run directory filesystem. """ run_directory = get_run_directory() if run_directory is None: raise RuntimeError("Run directory is not defined") python_time = time.time() touch_file = (pathlib.Path(run_directory) / f".{python_time}") touch_file.touch() new_last_uploaded_timestamp = os.path.getmtime(str(touch_file)) os.remove(str(touch_file)) return new_last_uploaded_timestamp
[((157, 184), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (174, 184), False, 'import logging\n'), ((770, 816), 'os.makedirs', 'os.makedirs', (['node_run_directory'], {'exist_ok': '(True)'}), '(node_run_directory, exist_ok=True)\n', (781, 816), False, 'import os\n'), ((828, 863), 'os.path.abspath', 'os.path.abspath', (['node_run_directory'], {}), '(node_run_directory)\n', (843, 863), False, 'import os\n'), ((1102, 1137), 'os.makedirs', 'os.makedirs', (['run_dir'], {'exist_ok': '(True)'}), '(run_dir, exist_ok=True)\n', (1113, 1137), False, 'import os\n'), ((1921, 1943), 'os.walk', 'os.walk', (['run_directory'], {}), '(run_directory)\n', (1928, 1943), False, 'import os\n'), ((2851, 2862), 'time.time', 'time.time', ([], {}), '()\n', (2860, 2862), False, 'import time\n'), ((251, 274), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (272, 274), False, 'import datetime\n'), ((544, 581), 'os.path.join', 'os.path.join', (['"""runs"""', '_start_time_str'], {}), "('runs', _start_time_str)\n", (556, 581), False, 'import os\n'), ((2881, 2908), 'pathlib.Path', 'pathlib.Path', (['run_directory'], {}), '(run_directory)\n', (2893, 2908), False, 'import pathlib\n'), ((2185, 2209), 'os.path.join', 'os.path.join', (['root', 'file'], {}), '(root, file)\n', (2197, 2209), False, 'import os\n'), ((2238, 2264), 'os.path.getmtime', 'os.path.getmtime', (['filepath'], {}), '(filepath)\n', (2254, 2264), False, 'import os\n'), ((1072, 1094), 'composer.utils.dist.get_global_rank', 'dist.get_global_rank', ([], {}), '()\n', (1092, 1094), False, 'from composer.utils import dist\n')]
adi112100/newsapp
newsapp/migrations/0003_news.py
7cdf6070299b4a8dcc950e7fcdfb82cf1a1d98cb
# Generated by Django 3.0.8 on 2020-07-11 08:10 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('newsapp', '0002_auto_20200711_1124'), ] operations = [ migrations.CreateModel( name='News', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('date', models.DateTimeField()), ('indian_news', models.TextField()), ('national_news', models.TextField()), ('international_news', models.TextField()), ('bollywood_news', models.TextField()), ('lifestyle_news', models.TextField()), ('sport_news', models.TextField()), ('business_news', models.TextField()), ('sharemarket_news', models.TextField()), ('corona_news', models.TextField()), ('space_news', models.TextField()), ('motivation_news', models.TextField()), ], ), ]
[((328, 421), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (344, 421), False, 'from django.db import migrations, models\n'), ((445, 467), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {}), '()\n', (465, 467), False, 'from django.db import migrations, models\n'), ((502, 520), 'django.db.models.TextField', 'models.TextField', ([], {}), '()\n', (518, 520), False, 'from django.db import migrations, models\n'), ((557, 575), 'django.db.models.TextField', 'models.TextField', ([], {}), '()\n', (573, 575), False, 'from django.db import migrations, models\n'), ((617, 635), 'django.db.models.TextField', 'models.TextField', ([], {}), '()\n', (633, 635), False, 'from django.db import migrations, models\n'), ((673, 691), 'django.db.models.TextField', 'models.TextField', ([], {}), '()\n', (689, 691), False, 'from django.db import migrations, models\n'), ((729, 747), 'django.db.models.TextField', 'models.TextField', ([], {}), '()\n', (745, 747), False, 'from django.db import migrations, models\n'), ((781, 799), 'django.db.models.TextField', 'models.TextField', ([], {}), '()\n', (797, 799), False, 'from django.db import migrations, models\n'), ((836, 854), 'django.db.models.TextField', 'models.TextField', ([], {}), '()\n', (852, 854), False, 'from django.db import migrations, models\n'), ((894, 912), 'django.db.models.TextField', 'models.TextField', ([], {}), '()\n', (910, 912), False, 'from django.db import migrations, models\n'), ((947, 965), 'django.db.models.TextField', 'models.TextField', ([], {}), '()\n', (963, 965), False, 'from django.db import migrations, models\n'), ((999, 1017), 'django.db.models.TextField', 'models.TextField', ([], {}), '()\n', (1015, 1017), False, 'from django.db import migrations, models\n'), ((1056, 1074), 'django.db.models.TextField', 'models.TextField', ([], {}), '()\n', (1072, 1074), False, 'from django.db import migrations, models\n')]
NazarioJL/faker_enum
src/enum/__init__.py
c2703cae232b229b4d4ab2b73757102453d541ab
# -*- coding: utf-8 -*- from enum import Enum from typing import TypeVar, Type, List, Iterable, cast from faker.providers import BaseProvider TEnum = TypeVar("TEnum", bound=Enum) class EnumProvider(BaseProvider): """ A Provider for enums. """ def enum(self, enum_cls: Type[TEnum]) -> TEnum: members: List[TEnum] = list(cast(Iterable[TEnum], enum_cls)) return self.random_element(members)
[((152, 180), 'typing.TypeVar', 'TypeVar', (['"""TEnum"""'], {'bound': 'Enum'}), "('TEnum', bound=Enum)\n", (159, 180), False, 'from typing import TypeVar, Type, List, Iterable, cast\n'), ((349, 380), 'typing.cast', 'cast', (['Iterable[TEnum]', 'enum_cls'], {}), '(Iterable[TEnum], enum_cls)\n', (353, 380), False, 'from typing import TypeVar, Type, List, Iterable, cast\n')]
Varriount/sanic
tests/performance/bottle/simple_server.py
55c36e0240dfeb03deccdeb5a53ca7fcfa728bff
# Run with: gunicorn --workers=1 --worker-class=meinheld.gmeinheld.MeinheldWorker -b :8000 simple_server:app import bottle import ujson from bottle import route, run @route("/") def index(): return ujson.dumps({"test": True}) app = bottle.default_app()
[((170, 180), 'bottle.route', 'route', (['"""/"""'], {}), "('/')\n", (175, 180), False, 'from bottle import route, run\n'), ((241, 261), 'bottle.default_app', 'bottle.default_app', ([], {}), '()\n', (259, 261), False, 'import bottle\n'), ((205, 232), 'ujson.dumps', 'ujson.dumps', (["{'test': True}"], {}), "({'test': True})\n", (216, 232), False, 'import ujson\n')]
alvarocneto/alura_django
usuarios/views.py
da2d3619b30c9d1c8767fa910eb7253bc20eeb90
from django.shortcuts import redirect from django.shortcuts import render from django.contrib.auth.models import User from django.views.generic.base import View from perfis.models import Perfil from usuarios.forms import RegistrarUsuarioForm class RegistrarUsuarioView(View): template_name = 'registrar.html' def get(self, request): return render(request, self.template_name) def post(self, request): # preenche o from form = RegistrarUsuarioForm(request.POST) # verifica se eh valido if form.is_valid(): dados_form = form.data # cria o usuario usuario = User.objects.create_user(dados_form['nome'], dados_form['email'], dados_form['senha']) # cria o perfil perfil = Perfil(nome=dados_form['nome'], telefone=dados_form['telefone'], nome_empresa=dados_form['nome_empresa'], usuario=usuario) # grava no banco perfil.save() # redireciona para index return redirect('index') # so chega aqui se nao for valido # vamos devolver o form para mostrar o formulario preenchido return render(request, self.template_name, {'form': form})
[((360, 395), 'django.shortcuts.render', 'render', (['request', 'self.template_name'], {}), '(request, self.template_name)\n', (366, 395), False, 'from django.shortcuts import render\n'), ((476, 510), 'usuarios.forms.RegistrarUsuarioForm', 'RegistrarUsuarioForm', (['request.POST'], {}), '(request.POST)\n', (496, 510), False, 'from usuarios.forms import RegistrarUsuarioForm\n'), ((1432, 1483), 'django.shortcuts.render', 'render', (['request', 'self.template_name', "{'form': form}"], {}), "(request, self.template_name, {'form': form})\n", (1438, 1483), False, 'from django.shortcuts import render\n'), ((680, 770), 'django.contrib.auth.models.User.objects.create_user', 'User.objects.create_user', (["dados_form['nome']", "dados_form['email']", "dados_form['senha']"], {}), "(dados_form['nome'], dados_form['email'],\n dados_form['senha'])\n", (704, 770), False, 'from django.contrib.auth.models import User\n'), ((927, 1053), 'perfis.models.Perfil', 'Perfil', ([], {'nome': "dados_form['nome']", 'telefone': "dados_form['telefone']", 'nome_empresa': "dados_form['nome_empresa']", 'usuario': 'usuario'}), "(nome=dados_form['nome'], telefone=dados_form['telefone'],\n nome_empresa=dados_form['nome_empresa'], usuario=usuario)\n", (933, 1053), False, 'from perfis.models import Perfil\n'), ((1275, 1292), 'django.shortcuts.redirect', 'redirect', (['"""index"""'], {}), "('index')\n", (1283, 1292), False, 'from django.shortcuts import redirect\n')]
srsuper/BOT2020
antolib/AntoCommon.py
2cadfad470de62819b7aaa0f9ecf1e4b4052ea68
ANTO_VER = '0.1.2'
[]
CPChain/fusion
cpc_fusion/pkgs/keys/main.py
63b6913010e8e5b296a1900c59592c8fd1802c2e
from typing import (Any, Union, Type) # noqa: F401 from ..keys.datatypes import ( LazyBackend, PublicKey, PrivateKey, Signature, ) from eth_keys.exceptions import ( ValidationError, ) from eth_keys.validation import ( validate_message_hash, ) # These must be aliased due to a scoping issue in mypy # https://github.com/python/mypy/issues/1775 _PublicKey = PublicKey _PrivateKey = PrivateKey _Signature = Signature class KeyAPI(LazyBackend): # # datatype shortcuts # PublicKey = PublicKey # type: Type[_PublicKey] PrivateKey = PrivateKey # type: Type[_PrivateKey] Signature = Signature # type: Type[_Signature] # # Proxy method calls to the backends # def ecdsa_sign(self, message_hash, # type: bytes private_key # type: _PrivateKey ): # type: (...) -> _Signature validate_message_hash(message_hash) if not isinstance(private_key, PrivateKey): raise ValidationError( "The `private_key` must be an instance of `eth_keys.datatypes.PrivateKey`" ) signature = self.backend.ecdsa_sign(message_hash, private_key) if not isinstance(signature, Signature): raise ValidationError( "Backend returned an invalid signature. Return value must be " "an instance of `eth_keys.datatypes.Signature`" ) return signature def ecdsa_verify(self, message_hash, # type: bytes signature, # type: _Signature public_key # type: _PublicKey ) -> bool: if not isinstance(public_key, PublicKey): raise ValidationError( "The `public_key` must be an instance of `eth_keys.datatypes.PublicKey`" ) return self.ecdsa_recover(message_hash, signature) == public_key def ecdsa_recover(self, message_hash, # type: bytes signature # type: _Signature ): # type: (...) -> _PublicKey validate_message_hash(message_hash) if not isinstance(signature, Signature): raise ValidationError( "The `signature` must be an instance of `eth_keys.datatypes.Signature`" ) public_key = self.backend.ecdsa_recover(message_hash, signature) if not isinstance(public_key, _PublicKey): raise ValidationError( "Backend returned an invalid public_key. Return value must be " "an instance of `eth_keys.datatypes.PublicKey`" ) return public_key def private_key_to_public_key(self, private_key): if not isinstance(private_key, PrivateKey): raise ValidationError( "The `private_key` must be an instance of `eth_keys.datatypes.PrivateKey`" ) public_key = self.backend.private_key_to_public_key(private_key) if not isinstance(public_key, PublicKey): raise ValidationError( "Backend returned an invalid public_key. Return value must be " "an instance of `eth_keys.datatypes.PublicKey`" ) return public_key # This creates an easy to import backend which will lazily fetch whatever # backend has been configured at runtime (as opposed to import or instantiation time). lazy_key_api = KeyAPI(backend=None)
[((912, 947), 'eth_keys.validation.validate_message_hash', 'validate_message_hash', (['message_hash'], {}), '(message_hash)\n', (933, 947), False, 'from eth_keys.validation import validate_message_hash\n'), ((2154, 2189), 'eth_keys.validation.validate_message_hash', 'validate_message_hash', (['message_hash'], {}), '(message_hash)\n', (2175, 2189), False, 'from eth_keys.validation import validate_message_hash\n'), ((1018, 1114), 'eth_keys.exceptions.ValidationError', 'ValidationError', (['"""The `private_key` must be an instance of `eth_keys.datatypes.PrivateKey`"""'], {}), "(\n 'The `private_key` must be an instance of `eth_keys.datatypes.PrivateKey`')\n", (1033, 1114), False, 'from eth_keys.exceptions import ValidationError\n'), ((1278, 1413), 'eth_keys.exceptions.ValidationError', 'ValidationError', (['"""Backend returned an invalid signature. Return value must be an instance of `eth_keys.datatypes.Signature`"""'], {}), "(\n 'Backend returned an invalid signature. Return value must be an instance of `eth_keys.datatypes.Signature`'\n )\n", (1293, 1413), False, 'from eth_keys.exceptions import ValidationError\n'), ((1760, 1854), 'eth_keys.exceptions.ValidationError', 'ValidationError', (['"""The `public_key` must be an instance of `eth_keys.datatypes.PublicKey`"""'], {}), "(\n 'The `public_key` must be an instance of `eth_keys.datatypes.PublicKey`')\n", (1775, 1854), False, 'from eth_keys.exceptions import ValidationError\n'), ((2257, 2350), 'eth_keys.exceptions.ValidationError', 'ValidationError', (['"""The `signature` must be an instance of `eth_keys.datatypes.Signature`"""'], {}), "(\n 'The `signature` must be an instance of `eth_keys.datatypes.Signature`')\n", (2272, 2350), False, 'from eth_keys.exceptions import ValidationError\n'), ((2518, 2654), 'eth_keys.exceptions.ValidationError', 'ValidationError', (['"""Backend returned an invalid public_key. Return value must be an instance of `eth_keys.datatypes.PublicKey`"""'], {}), "(\n 'Backend returned an invalid public_key. Return value must be an instance of `eth_keys.datatypes.PublicKey`'\n )\n", (2533, 2654), False, 'from eth_keys.exceptions import ValidationError\n'), ((2845, 2941), 'eth_keys.exceptions.ValidationError', 'ValidationError', (['"""The `private_key` must be an instance of `eth_keys.datatypes.PrivateKey`"""'], {}), "(\n 'The `private_key` must be an instance of `eth_keys.datatypes.PrivateKey`')\n", (2860, 2941), False, 'from eth_keys.exceptions import ValidationError\n'), ((3108, 3244), 'eth_keys.exceptions.ValidationError', 'ValidationError', (['"""Backend returned an invalid public_key. Return value must be an instance of `eth_keys.datatypes.PublicKey`"""'], {}), "(\n 'Backend returned an invalid public_key. Return value must be an instance of `eth_keys.datatypes.PublicKey`'\n )\n", (3123, 3244), False, 'from eth_keys.exceptions import ValidationError\n')]
gadial/qiskit-terra
qiskit/pulse/transforms/canonicalization.py
0fc83f44a6e80969875c738b2cee7bc33223e45f
# This code is part of Qiskit. # # (C) Copyright IBM 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Basic rescheduling functions which take schedule or instructions and return new schedules.""" import warnings from collections import defaultdict from typing import List, Optional, Iterable, Union import numpy as np from qiskit.pulse import channels as chans, exceptions, instructions from qiskit.pulse.exceptions import PulseError from qiskit.pulse.exceptions import UnassignedDurationError from qiskit.pulse.instruction_schedule_map import InstructionScheduleMap from qiskit.pulse.instructions import directives from qiskit.pulse.schedule import Schedule, ScheduleBlock, ScheduleComponent def block_to_schedule(block: ScheduleBlock) -> Schedule: """Convert ``ScheduleBlock`` to ``Schedule``. Args: block: A ``ScheduleBlock`` to convert. Returns: Scheduled pulse program. Raises: UnassignedDurationError: When any instruction duration is not assigned. """ if not block.is_schedulable(): raise UnassignedDurationError( 'All instruction durations should be assigned before creating `Schedule`.' 'Please check `.parameters` to find unassigned parameter objects.') schedule = Schedule(name=block.name, metadata=block.metadata) for op_data in block.instructions: if isinstance(op_data, ScheduleBlock): context_schedule = block_to_schedule(op_data) schedule.append(context_schedule, inplace=True) else: schedule.append(op_data, inplace=True) # transform with defined policy return block.alignment_context.align(schedule) def compress_pulses(schedules: List[Schedule]) -> List[Schedule]: """Optimization pass to replace identical pulses. Args: schedules: Schedules to compress. Returns: Compressed schedules. """ existing_pulses = [] new_schedules = [] for schedule in schedules: new_schedule = Schedule(name=schedule.name, metadata=schedule.metadata) for time, inst in schedule.instructions: if isinstance(inst, instructions.Play): if inst.pulse in existing_pulses: idx = existing_pulses.index(inst.pulse) identical_pulse = existing_pulses[idx] new_schedule.insert(time, instructions.Play(identical_pulse, inst.channel, inst.name), inplace=True) else: existing_pulses.append(inst.pulse) new_schedule.insert(time, inst, inplace=True) else: new_schedule.insert(time, inst, inplace=True) new_schedules.append(new_schedule) return new_schedules def flatten(program: Schedule) -> Schedule: """Flatten (inline) any called nodes into a Schedule tree with no nested children. Args: program: Pulse program to remove nested structure. Returns: Flatten pulse program. Raises: PulseError: When invalid data format is given. """ if isinstance(program, Schedule): return Schedule(*program.instructions, name=program.name, metadata=program.metadata) else: raise PulseError(f'Invalid input program {program.__class__.__name__} is specified.') def inline_subroutines(program: Union[Schedule, ScheduleBlock]) -> Union[Schedule, ScheduleBlock]: """Recursively remove call instructions and inline the respective subroutine instructions. Assigned parameter values, which are stored in the parameter table, are also applied. The subroutine is copied before the parameter assignment to avoid mutation problem. Args: program: A program which may contain the subroutine, i.e. ``Call`` instruction. Returns: A schedule without subroutine. Raises: PulseError: When input program is not valid data format. """ if isinstance(program, Schedule): return _inline_schedule(program) elif isinstance(program, ScheduleBlock): return _inline_block(program) else: raise PulseError(f'Invalid program {program.__class__.__name__} is specified.') def _inline_schedule(schedule: Schedule) -> Schedule: """A helper function to inline subroutine of schedule. .. note:: If subroutine is ``ScheduleBlock`` it is converted into Schedule to get ``t0``. """ ret_schedule = Schedule(name=schedule.name, metadata=schedule.metadata) for t0, inst in schedule.instructions: if isinstance(inst, instructions.Call): # bind parameter subroutine = inst.assigned_subroutine() # convert into schedule if block is given if isinstance(subroutine, ScheduleBlock): subroutine = block_to_schedule(subroutine) # recursively inline the program inline_schedule = _inline_schedule(subroutine) ret_schedule.insert(t0, inline_schedule, inplace=True) else: ret_schedule.insert(t0, inst, inplace=True) return ret_schedule def _inline_block(block: ScheduleBlock) -> ScheduleBlock: """A helper function to inline subroutine of schedule block. .. note:: If subroutine is ``Schedule`` the function raises an error. """ ret_block = ScheduleBlock(alignment_context=block.alignment_context, name=block.name, metadata=block.metadata) for inst in block.instructions: if isinstance(inst, instructions.Call): # bind parameter subroutine = inst.assigned_subroutine() if isinstance(subroutine, Schedule): raise PulseError(f'A subroutine {subroutine.name} is a pulse Schedule. ' 'This program cannot be inserted into ScheduleBlock because ' 't0 associated with instruction will be lost.') # recursively inline the program inline_block = _inline_block(subroutine) ret_block.append(inline_block, inplace=True) else: ret_block.append(inst, inplace=True) return ret_block def remove_directives(schedule: Schedule) -> Schedule: """Remove directives. Args: schedule: A schedule to remove compiler directives. Returns: A schedule without directives. """ return schedule.exclude(instruction_types=[directives.Directive]) def remove_trivial_barriers(schedule: Schedule) -> Schedule: """Remove trivial barriers with 0 or 1 channels. Args: schedule: A schedule to remove trivial barriers. Returns: schedule: A schedule without trivial barriers """ def filter_func(inst): return (isinstance(inst[1], directives.RelativeBarrier) and len(inst[1].channels) < 2) return schedule.exclude(filter_func) def align_measures(schedules: Iterable[ScheduleComponent], inst_map: Optional[InstructionScheduleMap] = None, cal_gate: str = 'u3', max_calibration_duration: Optional[int] = None, align_time: Optional[int] = None, align_all: Optional[bool] = True, ) -> List[Schedule]: """Return new schedules where measurements occur at the same physical time. This transformation will align the first :class:`qiskit.pulse.Acquire` on every channel to occur at the same time. Minimum measurement wait time (to allow for calibration pulses) is enforced and may be set with ``max_calibration_duration``. By default only instructions containing a :class:`~qiskit.pulse.AcquireChannel` or :class:`~qiskit.pulse.MeasureChannel` will be shifted. If you wish to keep the relative timing of all instructions in the schedule set ``align_all=True``. This method assumes that ``MeasureChannel(i)`` and ``AcquireChannel(i)`` correspond to the same qubit and the acquire/play instructions should be shifted together on these channels. .. jupyter-kernel:: python3 :id: align_measures .. jupyter-execute:: from qiskit import pulse from qiskit.pulse import transforms with pulse.build() as sched: with pulse.align_sequential(): pulse.play(pulse.Constant(10, 0.5), pulse.DriveChannel(0)) pulse.play(pulse.Constant(10, 1.), pulse.MeasureChannel(0)) pulse.acquire(20, pulse.AcquireChannel(0), pulse.MemorySlot(0)) sched_shifted = sched << 20 aligned_sched, aligned_sched_shifted = transforms.align_measures([sched, sched_shifted]) assert aligned_sched == aligned_sched_shifted If it is desired to only shift acquisition and measurement stimulus instructions set the flag ``align_all=False``: .. jupyter-execute:: aligned_sched, aligned_sched_shifted = transforms.align_measures( [sched, sched_shifted], align_all=False, ) assert aligned_sched != aligned_sched_shifted Args: schedules: Collection of schedules to be aligned together inst_map: Mapping of circuit operations to pulse schedules cal_gate: The name of the gate to inspect for the calibration time max_calibration_duration: If provided, inst_map and cal_gate will be ignored align_time: If provided, this will be used as final align time. align_all: Shift all instructions in the schedule such that they maintain their relative alignment with the shifted acquisition instruction. If ``False`` only the acquisition and measurement pulse instructions will be shifted. Returns: The input list of schedules transformed to have their measurements aligned. Raises: PulseError: If the provided alignment time is negative. """ def get_first_acquire_times(schedules): """Return a list of first acquire times for each schedule.""" acquire_times = [] for schedule in schedules: visited_channels = set() qubit_first_acquire_times = defaultdict(lambda: None) for time, inst in schedule.instructions: if (isinstance(inst, instructions.Acquire) and inst.channel not in visited_channels): visited_channels.add(inst.channel) qubit_first_acquire_times[inst.channel.index] = time acquire_times.append(qubit_first_acquire_times) return acquire_times def get_max_calibration_duration(inst_map, cal_gate): """Return the time needed to allow for readout discrimination calibration pulses.""" # TODO (qiskit-terra #5472): fix behavior of this. max_calibration_duration = 0 for qubits in inst_map.qubits_with_instruction(cal_gate): cmd = inst_map.get(cal_gate, qubits, np.pi, 0, np.pi) max_calibration_duration = max(cmd.duration, max_calibration_duration) return max_calibration_duration if align_time is not None and align_time < 0: raise exceptions.PulseError("Align time cannot be negative.") first_acquire_times = get_first_acquire_times(schedules) # Extract the maximum acquire in every schedule across all acquires in the schedule. # If there are no acquires in the schedule default to 0. max_acquire_times = [max(0, *times.values()) for times in first_acquire_times] if align_time is None: if max_calibration_duration is None: if inst_map: max_calibration_duration = get_max_calibration_duration(inst_map, cal_gate) else: max_calibration_duration = 0 align_time = max(max_calibration_duration, *max_acquire_times) # Shift acquires according to the new scheduled time new_schedules = [] for sched_idx, schedule in enumerate(schedules): new_schedule = Schedule(name=schedule.name, metadata=schedule.metadata) stop_time = schedule.stop_time if align_all: if first_acquire_times[sched_idx]: shift = align_time - max_acquire_times[sched_idx] else: shift = align_time - stop_time else: shift = 0 for time, inst in schedule.instructions: measurement_channels = { chan.index for chan in inst.channels if isinstance(chan, (chans.MeasureChannel, chans.AcquireChannel)) } if measurement_channels: sched_first_acquire_times = first_acquire_times[sched_idx] max_start_time = max(sched_first_acquire_times[chan] for chan in measurement_channels if chan in sched_first_acquire_times) shift = align_time - max_start_time if shift < 0: warnings.warn( "The provided alignment time is scheduling an acquire instruction " "earlier than it was scheduled for in the original Schedule. " "This may result in an instruction being scheduled before t=0 and " "an error being raised." ) new_schedule.insert(time+shift, inst, inplace=True) new_schedules.append(new_schedule) return new_schedules def add_implicit_acquires(schedule: ScheduleComponent, meas_map: List[List[int]] ) -> Schedule: """Return a new schedule with implicit acquires from the measurement mapping replaced by explicit ones. .. warning:: Since new acquires are being added, Memory Slots will be set to match the qubit index. This may overwrite your specification. Args: schedule: Schedule to be aligned. meas_map: List of lists of qubits that are measured together. Returns: A ``Schedule`` with the additional acquisition instructions. """ new_schedule = Schedule(name=schedule.name, metadata=schedule.metadata) acquire_map = dict() for time, inst in schedule.instructions: if isinstance(inst, instructions.Acquire): if inst.mem_slot and inst.mem_slot.index != inst.channel.index: warnings.warn("One of your acquires was mapped to a memory slot which didn't match" " the qubit index. I'm relabeling them to match.") # Get the label of all qubits that are measured with the qubit(s) in this instruction all_qubits = [] for sublist in meas_map: if inst.channel.index in sublist: all_qubits.extend(sublist) # Replace the old acquire instruction by a new one explicitly acquiring all qubits in # the measurement group. for i in all_qubits: explicit_inst = instructions.Acquire(inst.duration, chans.AcquireChannel(i), mem_slot=chans.MemorySlot(i), kernel=inst.kernel, discriminator=inst.discriminator) if time not in acquire_map: new_schedule.insert(time, explicit_inst, inplace=True) acquire_map = {time: {i}} elif i not in acquire_map[time]: new_schedule.insert(time, explicit_inst, inplace=True) acquire_map[time].add(i) else: new_schedule.insert(time, inst, inplace=True) return new_schedule
[((1646, 1696), 'qiskit.pulse.schedule.Schedule', 'Schedule', ([], {'name': 'block.name', 'metadata': 'block.metadata'}), '(name=block.name, metadata=block.metadata)\n', (1654, 1696), False, 'from qiskit.pulse.schedule import Schedule, ScheduleBlock, ScheduleComponent\n'), ((4991, 5047), 'qiskit.pulse.schedule.Schedule', 'Schedule', ([], {'name': 'schedule.name', 'metadata': 'schedule.metadata'}), '(name=schedule.name, metadata=schedule.metadata)\n', (4999, 5047), False, 'from qiskit.pulse.schedule import Schedule, ScheduleBlock, ScheduleComponent\n'), ((5904, 6006), 'qiskit.pulse.schedule.ScheduleBlock', 'ScheduleBlock', ([], {'alignment_context': 'block.alignment_context', 'name': 'block.name', 'metadata': 'block.metadata'}), '(alignment_context=block.alignment_context, name=block.name,\n metadata=block.metadata)\n', (5917, 6006), False, 'from qiskit.pulse.schedule import Schedule, ScheduleBlock, ScheduleComponent\n'), ((14721, 14777), 'qiskit.pulse.schedule.Schedule', 'Schedule', ([], {'name': 'schedule.name', 'metadata': 'schedule.metadata'}), '(name=schedule.name, metadata=schedule.metadata)\n', (14729, 14777), False, 'from qiskit.pulse.schedule import Schedule, ScheduleBlock, ScheduleComponent\n'), ((1438, 1611), 'qiskit.pulse.exceptions.UnassignedDurationError', 'UnassignedDurationError', (['"""All instruction durations should be assigned before creating `Schedule`.Please check `.parameters` to find unassigned parameter objects."""'], {}), "(\n 'All instruction durations should be assigned before creating `Schedule`.Please check `.parameters` to find unassigned parameter objects.'\n )\n", (1461, 1611), False, 'from qiskit.pulse.exceptions import UnassignedDurationError\n'), ((2384, 2440), 'qiskit.pulse.schedule.Schedule', 'Schedule', ([], {'name': 'schedule.name', 'metadata': 'schedule.metadata'}), '(name=schedule.name, metadata=schedule.metadata)\n', (2392, 2440), False, 'from qiskit.pulse.schedule import Schedule, ScheduleBlock, ScheduleComponent\n'), ((3699, 3776), 'qiskit.pulse.schedule.Schedule', 'Schedule', (['*program.instructions'], {'name': 'program.name', 'metadata': 'program.metadata'}), '(*program.instructions, name=program.name, metadata=program.metadata)\n', (3707, 3776), False, 'from qiskit.pulse.schedule import Schedule, ScheduleBlock, ScheduleComponent\n'), ((3801, 3880), 'qiskit.pulse.exceptions.PulseError', 'PulseError', (['f"""Invalid input program {program.__class__.__name__} is specified."""'], {}), "(f'Invalid input program {program.__class__.__name__} is specified.')\n", (3811, 3880), False, 'from qiskit.pulse.exceptions import PulseError\n'), ((11773, 11828), 'qiskit.pulse.exceptions.PulseError', 'exceptions.PulseError', (['"""Align time cannot be negative."""'], {}), "('Align time cannot be negative.')\n", (11794, 11828), False, 'from qiskit.pulse import channels as chans, exceptions, instructions\n'), ((12604, 12660), 'qiskit.pulse.schedule.Schedule', 'Schedule', ([], {'name': 'schedule.name', 'metadata': 'schedule.metadata'}), '(name=schedule.name, metadata=schedule.metadata)\n', (12612, 12660), False, 'from qiskit.pulse.schedule import Schedule, ScheduleBlock, ScheduleComponent\n'), ((4680, 4753), 'qiskit.pulse.exceptions.PulseError', 'PulseError', (['f"""Invalid program {program.__class__.__name__} is specified."""'], {}), "(f'Invalid program {program.__class__.__name__} is specified.')\n", (4690, 4753), False, 'from qiskit.pulse.exceptions import PulseError\n'), ((10781, 10807), 'collections.defaultdict', 'defaultdict', (['(lambda : None)'], {}), '(lambda : None)\n', (10792, 10807), False, 'from collections import defaultdict\n'), ((6299, 6479), 'qiskit.pulse.exceptions.PulseError', 'PulseError', (['f"""A subroutine {subroutine.name} is a pulse Schedule. This program cannot be inserted into ScheduleBlock because t0 associated with instruction will be lost."""'], {}), "(\n f'A subroutine {subroutine.name} is a pulse Schedule. This program cannot be inserted into ScheduleBlock because t0 associated with instruction will be lost.'\n )\n", (6309, 6479), False, 'from qiskit.pulse.exceptions import PulseError\n'), ((13594, 13833), 'warnings.warn', 'warnings.warn', (['"""The provided alignment time is scheduling an acquire instruction earlier than it was scheduled for in the original Schedule. This may result in an instruction being scheduled before t=0 and an error being raised."""'], {}), "(\n 'The provided alignment time is scheduling an acquire instruction earlier than it was scheduled for in the original Schedule. This may result in an instruction being scheduled before t=0 and an error being raised.'\n )\n", (13607, 13833), False, 'import warnings\n'), ((14992, 15133), 'warnings.warn', 'warnings.warn', (['"""One of your acquires was mapped to a memory slot which didn\'t match the qubit index. I\'m relabeling them to match."""'], {}), '(\n "One of your acquires was mapped to a memory slot which didn\'t match the qubit index. I\'m relabeling them to match."\n )\n', (15005, 15133), False, 'import warnings\n'), ((15707, 15730), 'qiskit.pulse.channels.AcquireChannel', 'chans.AcquireChannel', (['i'], {}), '(i)\n', (15727, 15730), True, 'from qiskit.pulse import channels as chans, exceptions, instructions\n'), ((2798, 2857), 'qiskit.pulse.instructions.Play', 'instructions.Play', (['identical_pulse', 'inst.channel', 'inst.name'], {}), '(identical_pulse, inst.channel, inst.name)\n', (2815, 2857), False, 'from qiskit.pulse import channels as chans, exceptions, instructions\n'), ((15794, 15813), 'qiskit.pulse.channels.MemorySlot', 'chans.MemorySlot', (['i'], {}), '(i)\n', (15810, 15813), True, 'from qiskit.pulse import channels as chans, exceptions, instructions\n')]
ananelson/oacensus
tests/test_scraper.py
87916c92ab1233bcf82a481113017dfb8d7701b9
from oacensus.scraper import Scraper from oacensus.commands import defaults class TestScraper(Scraper): """ Scraper for testing scraper methods. """ aliases = ['testscraper'] def scrape(self): pass def process(self): pass def test_hashcode(): scraper = Scraper.create_instance('testscraper', defaults) assert len(scraper.hashcode()) == 32 def test_run(): scraper = Scraper.create_instance('testscraper', defaults) scraper.run()
[((301, 349), 'oacensus.scraper.Scraper.create_instance', 'Scraper.create_instance', (['"""testscraper"""', 'defaults'], {}), "('testscraper', defaults)\n", (324, 349), False, 'from oacensus.scraper import Scraper\n'), ((422, 470), 'oacensus.scraper.Scraper.create_instance', 'Scraper.create_instance', (['"""testscraper"""', 'defaults'], {}), "('testscraper', defaults)\n", (445, 470), False, 'from oacensus.scraper import Scraper\n')]
li-ma/homework
python/test-deco-1-1.py
d75b1752a02bd028af0806683abe079c7b0a9b29
def deco1(func): print("before myfunc() called.") func() print("after myfunc() called.") def myfunc(): print("myfunc() called.") deco1(myfunc)
[]
mmoucka/py-junos-eznc
lib/jnpr/junos/transport/tty_netconf.py
9ef5ad39e32ae670fe8ed0092d725661a45b3053
import re import time from lxml import etree import select import socket import logging import sys from lxml.builder import E from lxml.etree import XMLSyntaxError from datetime import datetime, timedelta from ncclient.operations.rpc import RPCReply, RPCError from ncclient.xml_ import to_ele import six from ncclient.transport.session import HelloHandler class PY6: NEW_LINE = six.b("\n") EMPTY_STR = six.b("") NETCONF_EOM = six.b("]]>]]>") STARTS_WITH = six.b("<!--") __all__ = ["xmlmode_netconf"] _NETCONF_EOM = six.b("]]>]]>") _xmlns = re.compile(six.b("xmlns=[^>]+")) _xmlns_strip = lambda text: _xmlns.sub(PY6.EMPTY_STR, text) _junosns = re.compile(six.b("junos:")) _junosns_strip = lambda text: _junosns.sub(PY6.EMPTY_STR, text) logger = logging.getLogger("jnpr.junos.tty_netconf") # ========================================================================= # xmlmode_netconf # ========================================================================= class tty_netconf(object): """ Basic Junos XML API for bootstraping through the TTY """ def __init__(self, tty): self._tty = tty self.hello = None self._session_id = -1 # ------------------------------------------------------------------------- # NETCONF session open and close # ------------------------------------------------------------------------- def open(self, at_shell): """ start the XML API process and receive the 'hello' message """ nc_cmd = ("junoscript", "xml-mode")[at_shell] self._tty.write(nc_cmd + " netconf need-trailer") mark_start = datetime.now() mark_end = mark_start + timedelta(seconds=15) while datetime.now() < mark_end: time.sleep(0.1) line = self._tty.read() if line.startswith(PY6.STARTS_WITH): break else: # exceeded the while loop timeout raise RuntimeError("Error: netconf not responding") self.hello = self._receive() self._session_id, _ = HelloHandler.parse(self.hello.decode("utf-8")) def close(self, device_handler, force=False): """ issue the XML API to close the session """ # if we do not have an open connection, then return now. if force is False: if self.hello is None: return self.rpc("close-session", device_handler) # removed flush # ------------------------------------------------------------------------- # MISC device commands # ------------------------------------------------------------------------- def zeroize(self): """ issue a reboot to the device """ cmd = E.command("request system zeroize") try: encode = None if sys.version < "3" else "unicode" self.rpc(etree.tostring(cmd, encoding=encode)) except: return False return True # ------------------------------------------------------------------------- # XML RPC command execution # ------------------------------------------------------------------------- def rpc(self, cmd, device_handler): """ Write the XML cmd and return the response as XML object. :cmd: <str> of the XML command. if the :cmd: is not XML, then this routine will perform the brackets; i.e. if given 'get-software-information', this routine will turn it into '<get-software-information/>' NOTES: The return XML object is the first child element after the <rpc-reply>. There is also no error-checking performing by this routine. """ if not cmd.startswith("<"): cmd = "<{}/>".format(cmd) rpc = six.b("<rpc>{}</rpc>".format(cmd)) logger.info("Calling rpc: %s" % rpc) self._tty.rawwrite(rpc) rsp = self._receive() rsp = rsp.decode("utf-8") if isinstance(rsp, bytes) else rsp reply = RPCReply(rsp, device_handler, huge_tree=self._tty._huge_tree) errors = reply.errors if len(errors) > 1: raise RPCError(to_ele(reply._raw), errs=errors) elif len(errors) == 1: raise reply.error return reply # ------------------------------------------------------------------------- # LOW-LEVEL I/O for reading back XML response # ------------------------------------------------------------------------- def _receive(self): # On windows select.select throws io.UnsupportedOperation: fileno # so use read function for windows serial COM ports if hasattr(self._tty, "port") and str(self._tty.port).startswith("COM"): return self._receive_serial_win() else: return self._receive_serial() def _receive_serial(self): """ process the XML response into an XML object """ rxbuf = PY6.EMPTY_STR line = PY6.EMPTY_STR while True: try: rd, wt, err = select.select([self._tty._rx], [], [], 0.1) except select.error as err: raise err except socket.error as err: raise err if rd: line, lastline = rd[0].read_until(PY6.NETCONF_EOM, 0.1), line if not line: continue if _NETCONF_EOM in line or _NETCONF_EOM in lastline + line: rxbuf = rxbuf + line break else: rxbuf = rxbuf + line if _NETCONF_EOM in rxbuf: break return self._parse_buffer(rxbuf) # ------------------------------------------------------------------------- # Read message from windows COM ports # ------------------------------------------------------------------------- def _receive_serial_win(self): """ process incoming data from windows port""" rxbuf = PY6.EMPTY_STR line = PY6.EMPTY_STR while True: line, lastline = self._tty.read().strip(), line if not line: continue if _NETCONF_EOM in line or _NETCONF_EOM in lastline + line: rxbuf = rxbuf + line break else: rxbuf = rxbuf + line if _NETCONF_EOM in rxbuf: break return self._parse_buffer(rxbuf) def _parse_buffer(self, rxbuf): rxbuf = rxbuf.splitlines() if _NETCONF_EOM in rxbuf[-1]: if rxbuf[-1] == _NETCONF_EOM: rxbuf.pop() else: rxbuf[-1] = rxbuf[-1].split(_NETCONF_EOM)[0] try: rxbuf = [i.strip() for i in rxbuf if i.strip() != PY6.EMPTY_STR] rcvd_data = PY6.NEW_LINE.join(rxbuf) logger.debug("Received: \n%s" % rcvd_data) parser = etree.XMLParser( remove_blank_text=True, huge_tree=self._tty._huge_tree ) try: etree.XML(rcvd_data, parser) except XMLSyntaxError: if _NETCONF_EOM in rcvd_data: rcvd_data = rcvd_data[: rcvd_data.index(_NETCONF_EOM)] etree.XML(rcvd_data) # just to recheck else: parser = etree.XMLParser(recover=True) rcvd_data = etree.tostring(etree.XML(rcvd_data, parser=parser)) return rcvd_data except: if "</xnm:error>" in rxbuf: for x in rxbuf: if "<message>" in x: return etree.XML( "<error-in-receive>" + x + "</error-in-receive>" ) else: return etree.XML("<error-in-receive/>")
[((537, 552), 'six.b', 'six.b', (['"""]]>]]>"""'], {}), "(']]>]]>')\n", (542, 552), False, 'import six\n'), ((768, 811), 'logging.getLogger', 'logging.getLogger', (['"""jnpr.junos.tty_netconf"""'], {}), "('jnpr.junos.tty_netconf')\n", (785, 811), False, 'import logging\n'), ((385, 396), 'six.b', 'six.b', (['"""\n"""'], {}), "('\\n')\n", (390, 396), False, 'import six\n'), ((413, 422), 'six.b', 'six.b', (['""""""'], {}), "('')\n", (418, 422), False, 'import six\n'), ((441, 456), 'six.b', 'six.b', (['"""]]>]]>"""'], {}), "(']]>]]>')\n", (446, 456), False, 'import six\n'), ((475, 488), 'six.b', 'six.b', (['"""<!--"""'], {}), "('<!--')\n", (480, 488), False, 'import six\n'), ((573, 593), 'six.b', 'six.b', (['"""xmlns=[^>]+"""'], {}), "('xmlns=[^>]+')\n", (578, 593), False, 'import six\n'), ((677, 692), 'six.b', 'six.b', (['"""junos:"""'], {}), "('junos:')\n", (682, 692), False, 'import six\n'), ((1632, 1646), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1644, 1646), False, 'from datetime import datetime, timedelta\n'), ((2720, 2755), 'lxml.builder.E.command', 'E.command', (['"""request system zeroize"""'], {}), "('request system zeroize')\n", (2729, 2755), False, 'from lxml.builder import E\n'), ((4024, 4085), 'ncclient.operations.rpc.RPCReply', 'RPCReply', (['rsp', 'device_handler'], {'huge_tree': 'self._tty._huge_tree'}), '(rsp, device_handler, huge_tree=self._tty._huge_tree)\n', (4032, 4085), False, 'from ncclient.operations.rpc import RPCReply, RPCError\n'), ((1679, 1700), 'datetime.timedelta', 'timedelta', ([], {'seconds': '(15)'}), '(seconds=15)\n', (1688, 1700), False, 'from datetime import datetime, timedelta\n'), ((1716, 1730), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1728, 1730), False, 'from datetime import datetime, timedelta\n'), ((1755, 1770), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (1765, 1770), False, 'import time\n'), ((6963, 7034), 'lxml.etree.XMLParser', 'etree.XMLParser', ([], {'remove_blank_text': '(True)', 'huge_tree': 'self._tty._huge_tree'}), '(remove_blank_text=True, huge_tree=self._tty._huge_tree)\n', (6978, 7034), False, 'from lxml import etree\n'), ((2852, 2888), 'lxml.etree.tostring', 'etree.tostring', (['cmd'], {'encoding': 'encode'}), '(cmd, encoding=encode)\n', (2866, 2888), False, 'from lxml import etree\n'), ((4171, 4189), 'ncclient.xml_.to_ele', 'to_ele', (['reply._raw'], {}), '(reply._raw)\n', (4177, 4189), False, 'from ncclient.xml_ import to_ele\n'), ((5057, 5100), 'select.select', 'select.select', (['[self._tty._rx]', '[]', '[]', '(0.1)'], {}), '([self._tty._rx], [], [], 0.1)\n', (5070, 5100), False, 'import select\n'), ((7098, 7126), 'lxml.etree.XML', 'etree.XML', (['rcvd_data', 'parser'], {}), '(rcvd_data, parser)\n', (7107, 7126), False, 'from lxml import etree\n'), ((7852, 7884), 'lxml.etree.XML', 'etree.XML', (['"""<error-in-receive/>"""'], {}), "('<error-in-receive/>')\n", (7861, 7884), False, 'from lxml import etree\n'), ((7303, 7323), 'lxml.etree.XML', 'etree.XML', (['rcvd_data'], {}), '(rcvd_data)\n', (7312, 7323), False, 'from lxml import etree\n'), ((7394, 7423), 'lxml.etree.XMLParser', 'etree.XMLParser', ([], {'recover': '(True)'}), '(recover=True)\n', (7409, 7423), False, 'from lxml import etree\n'), ((7471, 7506), 'lxml.etree.XML', 'etree.XML', (['rcvd_data'], {'parser': 'parser'}), '(rcvd_data, parser=parser)\n', (7480, 7506), False, 'from lxml import etree\n'), ((7697, 7756), 'lxml.etree.XML', 'etree.XML', (["('<error-in-receive>' + x + '</error-in-receive>')"], {}), "('<error-in-receive>' + x + '</error-in-receive>')\n", (7706, 7756), False, 'from lxml import etree\n')]
eydam-prototyping/mp_modbus
test/_test_client.py
8007c41dd16e6f71bd27b587628f57f38f27a7e0
from pymodbus.client.sync import ModbusTcpClient as ModbusClient import logging FORMAT = ('%(asctime)-15s %(threadName)-15s ' '%(levelname)-8s %(module)-15s:%(lineno)-8s %(message)s') logging.basicConfig(format=FORMAT) log = logging.getLogger() log.setLevel(logging.DEBUG) client = ModbusClient('192.168.178.61', port=502) client.connect() f = client.read_holding_registers(305,1) print(f.registers)
[((194, 228), 'logging.basicConfig', 'logging.basicConfig', ([], {'format': 'FORMAT'}), '(format=FORMAT)\n', (213, 228), False, 'import logging\n'), ((235, 254), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (252, 254), False, 'import logging\n'), ((292, 332), 'pymodbus.client.sync.ModbusTcpClient', 'ModbusClient', (['"""192.168.178.61"""'], {'port': '(502)'}), "('192.168.178.61', port=502)\n", (304, 332), True, 'from pymodbus.client.sync import ModbusTcpClient as ModbusClient\n')]
technolotrix/tests
tests/selenium/test_about/test_about_page.py
ae5b9741e80a1fd735c66de93cc014f672c5afb2
import unittest from selenium import webdriver import page class AboutPage(unittest.TestCase): def setUp(self): self.driver = webdriver.Firefox() self.driver.get("http://nicolesmith.nyc") #self.driver.get("http://127.0.0.1:4747/about") self.about_page = page.AboutPage(self.driver) ######## HEADER STUFF ######## def test_title_on_about_page(self): assert self.about_page.is_title_matches(), "about page title doesn't match" def test_click_get_quote(self): assert self.about_page.click_quote_button(), "link to contact page is broken" def test_click_home_button(self): assert self.about_page.click_home_button(), "home button does not go to homepage" @unittest.skip("Needs fixing.") def test_click_about_link(self): assert self.about_page.click_projects_link(), "about link does not go to about page" @unittest.skip("Needs fixing.") def test_click_projects_link(self): assert self.about_page.click_projects_link(), "projects link does not go to projects page" @unittest.skip("Needs fixing.") def test_click_services_link(self): assert self.about_page.click_projects_link(), "services link does not go to services page" ######## PAGE SPECIFIC STUFF ######## def test_click_resume(self): return self.about_page.click_resume(), "link to resume is broken" def test_click_resumator(self): return self.about_page.click_resumator(), "link to resumator is broken" def test_click_contact_me(self): return self.about_page.click_contact_me(), "link to contact me page is broken in FAQ" def test_click_html5up_backlink(self): return self.about_page.click_html5up_backlink(), "backlink to html5up in FAQ is broken" ######## FOOTER STUFF ######## def test_click_github(self): assert self.about_page.click_github_button(), "link to github is broken" def test_click_linkedin(self): assert self.about_page.click_linkedin_button(), "link to linkedin is broken" def test_click_gplus(self): assert self.about_page.click_gplus_button(), "link to google plus is broken" def test_click_twitter(self): assert self.about_page.click_twitter_button(), "link to twitter is broken" def test_click_html5up(self): assert self.about_page.click_html5up_link(), "link to html5up template owner is broken" def test_copyright_on_about_page(self): assert self.about_page.is_copyright_matches(), "about page has wrong copyright" def tearDown(self): self.driver.close() if __name__ == "__main__": unittest.main()
[((739, 769), 'unittest.skip', 'unittest.skip', (['"""Needs fixing."""'], {}), "('Needs fixing.')\n", (752, 769), False, 'import unittest\n'), ((906, 936), 'unittest.skip', 'unittest.skip', (['"""Needs fixing."""'], {}), "('Needs fixing.')\n", (919, 936), False, 'import unittest\n'), ((1082, 1112), 'unittest.skip', 'unittest.skip', (['"""Needs fixing."""'], {}), "('Needs fixing.')\n", (1095, 1112), False, 'import unittest\n'), ((2649, 2664), 'unittest.main', 'unittest.main', ([], {}), '()\n', (2662, 2664), False, 'import unittest\n'), ((140, 159), 'selenium.webdriver.Firefox', 'webdriver.Firefox', ([], {}), '()\n', (157, 159), False, 'from selenium import webdriver\n'), ((292, 319), 'page.AboutPage', 'page.AboutPage', (['self.driver'], {}), '(self.driver)\n', (306, 319), False, 'import page\n')]
pcen/pulumi
sdk/python/lib/test/langhost/future_input/__main__.py
1bb85ca98c90f2161fe915df083d47c56c135e4d
# Copyright 2016-2018, Pulumi Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import asyncio from pulumi import CustomResource, Output, Input async def read_a_file_or_something(): await asyncio.sleep(0) return "here's a file" def assert_eq(l, r): assert l == r class FileResource(CustomResource): contents: Output[str] def __init__(self, name: str, file_contents: Input[str]) -> None: CustomResource.__init__(self, "test:index:FileResource", name, { "contents": file_contents }) # read_a_file_or_something returns a coroutine when called, which needs to be scheduled # and awaited in order to yield a value. file_res = FileResource("file", read_a_file_or_something()) file_res.contents.apply(lambda c: assert_eq(c, "here's a file"))
[((702, 718), 'asyncio.sleep', 'asyncio.sleep', (['(0)'], {}), '(0)\n', (715, 718), False, 'import asyncio\n'), ((928, 1023), 'pulumi.CustomResource.__init__', 'CustomResource.__init__', (['self', '"""test:index:FileResource"""', 'name', "{'contents': file_contents}"], {}), "(self, 'test:index:FileResource', name, {'contents':\n file_contents})\n", (951, 1023), False, 'from pulumi import CustomResource, Output, Input\n')]
dewloosh/dewloosh-geom
src/dewloosh/geom/cells/h8.py
5c97fbab4b68f4748bf4309184b9e0e877f94cd6
# -*- coding: utf-8 -*- from dewloosh.geom.polyhedron import HexaHedron from dewloosh.math.numint import GaussPoints as Gauss from dewloosh.geom.utils import cells_coords from numba import njit, prange import numpy as np from numpy import ndarray __cache = True @njit(nogil=True, cache=__cache) def monoms_H8(pcoord: np.ndarray): r, s, t = pcoord return np.array([1, r, s, t, r*s, r*t, s*t, r*s*t]) @njit(nogil=True, cache=__cache) def shp_H8(pcoord): r, s, t = pcoord return np.array([-0.125*r*s*t + 0.125*r*s + 0.125*r*t - 0.125*r + 0.125*s*t - 0.125*s - 0.125*t + 0.125, 0.125*r*s*t - 0.125*r*s - 0.125*r*t + 0.125*r + 0.125*s*t - 0.125*s - 0.125*t + 0.125, -0.125*r*s*t + 0.125*r*s - 0.125*r*t + 0.125*r - 0.125*s*t + 0.125*s - 0.125*t + 0.125, 0.125*r*s*t - 0.125*r*s + 0.125*r*t - 0.125*r - 0.125*s*t + 0.125*s - 0.125*t + 0.125, 0.125*r*s*t + 0.125*r*s - 0.125*r*t - 0.125*r - 0.125*s*t - 0.125*s + 0.125*t + 0.125, -0.125*r*s*t - 0.125*r*s + 0.125*r*t + 0.125*r - 0.125*s*t - 0.125*s + 0.125*t + 0.125, 0.125*r*s*t + 0.125*r*s + 0.125*r*t + 0.125*r + 0.125*s*t + 0.125*s + 0.125*t + 0.125, -0.125*r*s*t - 0.125*r*s - 0.125*r*t - 0.125*r + 0.125*s*t + 0.125*s + 0.125*t + 0.125] ) @njit(nogil=True, parallel=True, cache=__cache) def shape_function_matrix_H8(pcoord: np.ndarray): eye = np.eye(3, dtype=pcoord.dtype) shp = shp_H8(pcoord) res = np.zeros((3, 24), dtype=pcoord.dtype) for i in prange(8): res[:, i*3: (i+1) * 3] = eye*shp[i] return res @njit(nogil=True, cache=__cache) def dshp_H8(pcoord): r, s, t = pcoord return np.array( [[-0.125*s*t + 0.125*s + 0.125*t - 0.125, -0.125*r*t + 0.125*r + 0.125*t - 0.125, -0.125*r*s + 0.125*r + 0.125*s - 0.125], [0.125*s*t - 0.125*s - 0.125*t + 0.125, 0.125*r*t - 0.125*r + 0.125*t - 0.125, 0.125*r*s - 0.125*r + 0.125*s - 0.125], [-0.125*s*t + 0.125*s - 0.125*t + 0.125, -0.125*r*t + 0.125*r - 0.125*t + 0.125, -0.125*r*s - 0.125*r - 0.125*s - 0.125], [0.125*s*t - 0.125*s + 0.125*t - 0.125, 0.125*r*t - 0.125*r - 0.125*t + 0.125, 0.125*r*s + 0.125*r - 0.125*s - 0.125], [0.125*s*t + 0.125*s - 0.125*t - 0.125, 0.125*r*t + 0.125*r - 0.125*t - 0.125, 0.125*r*s - 0.125*r - 0.125*s + 0.125], [-0.125*s*t - 0.125*s + 0.125*t + 0.125, -0.125*r*t - 0.125*r - 0.125*t - 0.125, -0.125*r*s + 0.125*r - 0.125*s + 0.125], [0.125*s*t + 0.125*s + 0.125*t + 0.125, 0.125*r*t + 0.125*r + 0.125*t + 0.125, 0.125*r*s + 0.125*r + 0.125*s + 0.125], [-0.125*s*t - 0.125*s - 0.125*t - 0.125, -0.125*r*t - 0.125*r + 0.125*t + 0.125, -0.125*r*s - 0.125*r + 0.125*s + 0.125]] ) @njit(nogil=True, parallel=True, cache=__cache) def dshp_H8_bulk(pcoords: ndarray): nP = pcoords.shape[0] res = np.zeros((nP, 8, 3), dtype=pcoords.dtype) for iP in prange(nP): res[iP] = dshp_H8(pcoords[iP]) return res @njit(nogil=True, parallel=True, fastmath=True, cache=__cache) def volumes_H8(ecoords: np.ndarray, qpos: np.ndarray, qweight: np.ndarray): nE = ecoords.shape[0] volumes = np.zeros(nE, dtype=ecoords.dtype) nQ = len(qweight) for iQ in range(nQ): dshp = dshp_H8(qpos[iQ]) for i in prange(nE): jac = ecoords[i].T @ dshp djac = np.linalg.det(jac) volumes[i] += qweight[iQ] * djac return volumes class H8(HexaHedron): """ 8-node isoparametric hexahedron. top 7--6 | | 4--5 bottom 3--2 | | 0--1 """ @classmethod def lcoords(cls, *args, **kwargs): return np.array([[-1., -1., -1], [1., -1., -1.], [1., 1., -1.], [-1., 1., -1.], [-1., -1., 1.], [1., -1., 1.], [1., 1., 1.], [-1., 1., 1.]]) @classmethod def lcenter(cls, *args, **kwargs): return np.array([0., 0., 0.]) def shape_function_derivatives(self, coords=None, *args, **kwargs): coords = self.pointdata.x.to_numpy() if coords is None else coords if len(coords.shape) == 2: return dshp_H8_bulk(coords) else: return dshp_H8(coords) def volumes(self, coords=None, topo=None): coords = self.pointdata.x.to_numpy() if coords is None else coords topo = self.nodes.to_numpy() if topo is None else topo ecoords = cells_coords(coords, topo) qpos, qweight = Gauss(2, 2, 2) return volumes_H8(ecoords, qpos, qweight)
[((265, 296), 'numba.njit', 'njit', ([], {'nogil': '(True)', 'cache': '__cache'}), '(nogil=True, cache=__cache)\n', (269, 296), False, 'from numba import njit, prange\n'), ((412, 443), 'numba.njit', 'njit', ([], {'nogil': '(True)', 'cache': '__cache'}), '(nogil=True, cache=__cache)\n', (416, 443), False, 'from numba import njit, prange\n'), ((1546, 1592), 'numba.njit', 'njit', ([], {'nogil': '(True)', 'parallel': '(True)', 'cache': '__cache'}), '(nogil=True, parallel=True, cache=__cache)\n', (1550, 1592), False, 'from numba import njit, prange\n'), ((1842, 1873), 'numba.njit', 'njit', ([], {'nogil': '(True)', 'cache': '__cache'}), '(nogil=True, cache=__cache)\n', (1846, 1873), False, 'from numba import njit, prange\n'), ((3126, 3172), 'numba.njit', 'njit', ([], {'nogil': '(True)', 'parallel': '(True)', 'cache': '__cache'}), '(nogil=True, parallel=True, cache=__cache)\n', (3130, 3172), False, 'from numba import njit, prange\n'), ((3370, 3431), 'numba.njit', 'njit', ([], {'nogil': '(True)', 'parallel': '(True)', 'fastmath': '(True)', 'cache': '__cache'}), '(nogil=True, parallel=True, fastmath=True, cache=__cache)\n', (3374, 3431), False, 'from numba import njit, prange\n'), ((364, 418), 'numpy.array', 'np.array', (['[1, r, s, t, r * s, r * t, s * t, r * s * t]'], {}), '([1, r, s, t, r * s, r * t, s * t, r * s * t])\n', (372, 418), True, 'import numpy as np\n'), ((496, 1452), 'numpy.array', 'np.array', (['[-0.125 * r * s * t + 0.125 * r * s + 0.125 * r * t - 0.125 * r + 0.125 * s *\n t - 0.125 * s - 0.125 * t + 0.125, 0.125 * r * s * t - 0.125 * r * s - \n 0.125 * r * t + 0.125 * r + 0.125 * s * t - 0.125 * s - 0.125 * t + \n 0.125, -0.125 * r * s * t + 0.125 * r * s - 0.125 * r * t + 0.125 * r -\n 0.125 * s * t + 0.125 * s - 0.125 * t + 0.125, 0.125 * r * s * t - \n 0.125 * r * s + 0.125 * r * t - 0.125 * r - 0.125 * s * t + 0.125 * s -\n 0.125 * t + 0.125, 0.125 * r * s * t + 0.125 * r * s - 0.125 * r * t - \n 0.125 * r - 0.125 * s * t - 0.125 * s + 0.125 * t + 0.125, -0.125 * r *\n s * t - 0.125 * r * s + 0.125 * r * t + 0.125 * r - 0.125 * s * t - \n 0.125 * s + 0.125 * t + 0.125, 0.125 * r * s * t + 0.125 * r * s + \n 0.125 * r * t + 0.125 * r + 0.125 * s * t + 0.125 * s + 0.125 * t + \n 0.125, -0.125 * r * s * t - 0.125 * r * s - 0.125 * r * t - 0.125 * r +\n 0.125 * s * t + 0.125 * s + 0.125 * t + 0.125]'], {}), '([-0.125 * r * s * t + 0.125 * r * s + 0.125 * r * t - 0.125 * r + \n 0.125 * s * t - 0.125 * s - 0.125 * t + 0.125, 0.125 * r * s * t - \n 0.125 * r * s - 0.125 * r * t + 0.125 * r + 0.125 * s * t - 0.125 * s -\n 0.125 * t + 0.125, -0.125 * r * s * t + 0.125 * r * s - 0.125 * r * t +\n 0.125 * r - 0.125 * s * t + 0.125 * s - 0.125 * t + 0.125, 0.125 * r *\n s * t - 0.125 * r * s + 0.125 * r * t - 0.125 * r - 0.125 * s * t + \n 0.125 * s - 0.125 * t + 0.125, 0.125 * r * s * t + 0.125 * r * s - \n 0.125 * r * t - 0.125 * r - 0.125 * s * t - 0.125 * s + 0.125 * t + \n 0.125, -0.125 * r * s * t - 0.125 * r * s + 0.125 * r * t + 0.125 * r -\n 0.125 * s * t - 0.125 * s + 0.125 * t + 0.125, 0.125 * r * s * t + \n 0.125 * r * s + 0.125 * r * t + 0.125 * r + 0.125 * s * t + 0.125 * s +\n 0.125 * t + 0.125, -0.125 * r * s * t - 0.125 * r * s - 0.125 * r * t -\n 0.125 * r + 0.125 * s * t + 0.125 * s + 0.125 * t + 0.125])\n', (504, 1452), True, 'import numpy as np\n'), ((1653, 1682), 'numpy.eye', 'np.eye', (['(3)'], {'dtype': 'pcoord.dtype'}), '(3, dtype=pcoord.dtype)\n', (1659, 1682), True, 'import numpy as np\n'), ((1718, 1755), 'numpy.zeros', 'np.zeros', (['(3, 24)'], {'dtype': 'pcoord.dtype'}), '((3, 24), dtype=pcoord.dtype)\n', (1726, 1755), True, 'import numpy as np\n'), ((1769, 1778), 'numba.prange', 'prange', (['(8)'], {}), '(8)\n', (1775, 1778), False, 'from numba import njit, prange\n'), ((1927, 3161), 'numpy.array', 'np.array', (['[[-0.125 * s * t + 0.125 * s + 0.125 * t - 0.125, -0.125 * r * t + 0.125 *\n r + 0.125 * t - 0.125, -0.125 * r * s + 0.125 * r + 0.125 * s - 0.125],\n [0.125 * s * t - 0.125 * s - 0.125 * t + 0.125, 0.125 * r * t - 0.125 *\n r + 0.125 * t - 0.125, 0.125 * r * s - 0.125 * r + 0.125 * s - 0.125],\n [-0.125 * s * t + 0.125 * s - 0.125 * t + 0.125, -0.125 * r * t + 0.125 *\n r - 0.125 * t + 0.125, -0.125 * r * s - 0.125 * r - 0.125 * s - 0.125],\n [0.125 * s * t - 0.125 * s + 0.125 * t - 0.125, 0.125 * r * t - 0.125 *\n r - 0.125 * t + 0.125, 0.125 * r * s + 0.125 * r - 0.125 * s - 0.125],\n [0.125 * s * t + 0.125 * s - 0.125 * t - 0.125, 0.125 * r * t + 0.125 *\n r - 0.125 * t - 0.125, 0.125 * r * s - 0.125 * r - 0.125 * s + 0.125],\n [-0.125 * s * t - 0.125 * s + 0.125 * t + 0.125, -0.125 * r * t - 0.125 *\n r - 0.125 * t - 0.125, -0.125 * r * s + 0.125 * r - 0.125 * s + 0.125],\n [0.125 * s * t + 0.125 * s + 0.125 * t + 0.125, 0.125 * r * t + 0.125 *\n r + 0.125 * t + 0.125, 0.125 * r * s + 0.125 * r + 0.125 * s + 0.125],\n [-0.125 * s * t - 0.125 * s - 0.125 * t - 0.125, -0.125 * r * t - 0.125 *\n r + 0.125 * t + 0.125, -0.125 * r * s - 0.125 * r + 0.125 * s + 0.125]]'], {}), '([[-0.125 * s * t + 0.125 * s + 0.125 * t - 0.125, -0.125 * r * t +\n 0.125 * r + 0.125 * t - 0.125, -0.125 * r * s + 0.125 * r + 0.125 * s -\n 0.125], [0.125 * s * t - 0.125 * s - 0.125 * t + 0.125, 0.125 * r * t -\n 0.125 * r + 0.125 * t - 0.125, 0.125 * r * s - 0.125 * r + 0.125 * s - \n 0.125], [-0.125 * s * t + 0.125 * s - 0.125 * t + 0.125, -0.125 * r * t +\n 0.125 * r - 0.125 * t + 0.125, -0.125 * r * s - 0.125 * r - 0.125 * s -\n 0.125], [0.125 * s * t - 0.125 * s + 0.125 * t - 0.125, 0.125 * r * t -\n 0.125 * r - 0.125 * t + 0.125, 0.125 * r * s + 0.125 * r - 0.125 * s - \n 0.125], [0.125 * s * t + 0.125 * s - 0.125 * t - 0.125, 0.125 * r * t +\n 0.125 * r - 0.125 * t - 0.125, 0.125 * r * s - 0.125 * r - 0.125 * s + \n 0.125], [-0.125 * s * t - 0.125 * s + 0.125 * t + 0.125, -0.125 * r * t -\n 0.125 * r - 0.125 * t - 0.125, -0.125 * r * s + 0.125 * r - 0.125 * s +\n 0.125], [0.125 * s * t + 0.125 * s + 0.125 * t + 0.125, 0.125 * r * t +\n 0.125 * r + 0.125 * t + 0.125, 0.125 * r * s + 0.125 * r + 0.125 * s + \n 0.125], [-0.125 * s * t - 0.125 * s - 0.125 * t - 0.125, -0.125 * r * t -\n 0.125 * r + 0.125 * t + 0.125, -0.125 * r * s - 0.125 * r + 0.125 * s +\n 0.125]])\n', (1935, 3161), True, 'import numpy as np\n'), ((3245, 3286), 'numpy.zeros', 'np.zeros', (['(nP, 8, 3)'], {'dtype': 'pcoords.dtype'}), '((nP, 8, 3), dtype=pcoords.dtype)\n', (3253, 3286), True, 'import numpy as np\n'), ((3301, 3311), 'numba.prange', 'prange', (['nP'], {}), '(nP)\n', (3307, 3311), False, 'from numba import njit, prange\n'), ((3563, 3596), 'numpy.zeros', 'np.zeros', (['nE'], {'dtype': 'ecoords.dtype'}), '(nE, dtype=ecoords.dtype)\n', (3571, 3596), True, 'import numpy as np\n'), ((3694, 3704), 'numba.prange', 'prange', (['nE'], {}), '(nE)\n', (3700, 3704), False, 'from numba import njit, prange\n'), ((4083, 4247), 'numpy.array', 'np.array', (['[[-1.0, -1.0, -1], [1.0, -1.0, -1.0], [1.0, 1.0, -1.0], [-1.0, 1.0, -1.0],\n [-1.0, -1.0, 1.0], [1.0, -1.0, 1.0], [1.0, 1.0, 1.0], [-1.0, 1.0, 1.0]]'], {}), '([[-1.0, -1.0, -1], [1.0, -1.0, -1.0], [1.0, 1.0, -1.0], [-1.0, 1.0,\n -1.0], [-1.0, -1.0, 1.0], [1.0, -1.0, 1.0], [1.0, 1.0, 1.0], [-1.0, 1.0,\n 1.0]])\n', (4091, 4247), True, 'import numpy as np\n'), ((4464, 4489), 'numpy.array', 'np.array', (['[0.0, 0.0, 0.0]'], {}), '([0.0, 0.0, 0.0])\n', (4472, 4489), True, 'import numpy as np\n'), ((4963, 4989), 'dewloosh.geom.utils.cells_coords', 'cells_coords', (['coords', 'topo'], {}), '(coords, topo)\n', (4975, 4989), False, 'from dewloosh.geom.utils import cells_coords\n'), ((5014, 5028), 'dewloosh.math.numint.GaussPoints', 'Gauss', (['(2)', '(2)', '(2)'], {}), '(2, 2, 2)\n', (5019, 5028), True, 'from dewloosh.math.numint import GaussPoints as Gauss\n'), ((3763, 3781), 'numpy.linalg.det', 'np.linalg.det', (['jac'], {}), '(jac)\n', (3776, 3781), True, 'import numpy as np\n')]
Simbadeveloper/studious-octo-waddle.io
shopping_cart_test/shoppingcart2.py
7ace6bb93e3b87c97d59df858e3079ec7a2db30e
class ShoppingCart(object): def __init__(self): self.total = 0 self.items = dict() def add_item(self, item_name, quantity, price): if item_name != None and quantity >= 1: self.items.update({item_name: quantity}) if quantity and price >= 1: self.total += (quantity * price) def remove_item(self, item_name, quantity, price): if item_name in self.items: if quantity < self.items[item_name] and quantity > 0: self.items[item_name] -= quantity self.total -= price*quantity def checkout(self, cash_paid): balance = 0 if cash_paid < self.total: return "Cash paid not enough" balance = cash_paid - self.total return balance class Shop(ShoppingCart): def __init__(self): self.quantity = 100 def remove_item(self): self.quantity -= 1
[]
heaven00/github-contribution-leaderboard
tests/models/pr_test_data.py
3de53a60a7c81b91291e29d063c7fd14696d426d
import copy import json from ghcl.models.pull_request import PullRequest class PRData: def __init__(self, data: dict = None): if data is None: with open('./tests/models/empty_pr_data.json') as file: self._data = json.load(file) else: self._data = data def with_pr_url(self, url: str = 'some-url'): data = copy.deepcopy(self._data) data['issues_data']['pull_request']['html_url'] = url return PRData(data) def with_label(self, label_to_add: str = None): data = copy.deepcopy(self._data) if label_to_add is None: label_number = len(data["issues_data"]["labels"]) + 1 label_to_add = f'label-{label_number}' data['issues_data']['labels'].append({'name': label_to_add}) return PRData(data) def with_created_at(self, created_at: str = '2014-04-24T16:34:47Z'): data = copy.deepcopy(self._data) data['issues_data']['created_at'] = created_at return PRData(data) def with_owner(self, owner: str = 'owner_user_id'): data = copy.deepcopy(self._data) data['pr_data']['base']['repo']['owner']['login'] = owner return PRData(data) def with_pr_raised_by(self, pr_raised_by: str = 'pr_raised_by_user_id'): data = copy.deepcopy(self._data) data['pr_data']['head']['user']['login'] = pr_raised_by return PRData(data) def with_merged(self, merged=False): data = copy.deepcopy(self._data) data['pr_data']['merged'] = merged return PRData(data) def with_state(self, state='some_state'): data = copy.deepcopy(self._data) data['issues_data']['state'] = state return PRData(data) def with_defaults(self): return PRData(self._data).with_pr_url()\ .with_label()\ .with_label()\ .with_created_at()\ .with_owner()\ .with_pr_raised_by()\ .with_merged()\ .with_state() def as_pull_request(self): return PullRequest(**self._data)
[((381, 406), 'copy.deepcopy', 'copy.deepcopy', (['self._data'], {}), '(self._data)\n', (394, 406), False, 'import copy\n'), ((565, 590), 'copy.deepcopy', 'copy.deepcopy', (['self._data'], {}), '(self._data)\n', (578, 590), False, 'import copy\n'), ((928, 953), 'copy.deepcopy', 'copy.deepcopy', (['self._data'], {}), '(self._data)\n', (941, 953), False, 'import copy\n'), ((1109, 1134), 'copy.deepcopy', 'copy.deepcopy', (['self._data'], {}), '(self._data)\n', (1122, 1134), False, 'import copy\n'), ((1322, 1347), 'copy.deepcopy', 'copy.deepcopy', (['self._data'], {}), '(self._data)\n', (1335, 1347), False, 'import copy\n'), ((1497, 1522), 'copy.deepcopy', 'copy.deepcopy', (['self._data'], {}), '(self._data)\n', (1510, 1522), False, 'import copy\n'), ((1656, 1681), 'copy.deepcopy', 'copy.deepcopy', (['self._data'], {}), '(self._data)\n', (1669, 1681), False, 'import copy\n'), ((2082, 2107), 'ghcl.models.pull_request.PullRequest', 'PullRequest', ([], {}), '(**self._data)\n', (2093, 2107), False, 'from ghcl.models.pull_request import PullRequest\n'), ((255, 270), 'json.load', 'json.load', (['file'], {}), '(file)\n', (264, 270), False, 'import json\n')]
PKUfudawei/cmssw
Validation/EventGenerator/python/BasicGenParticleValidation_cfi.py
8fbb5ce74398269c8a32956d7c7943766770c093
import FWCore.ParameterSet.Config as cms from DQMServices.Core.DQMEDAnalyzer import DQMEDAnalyzer basicGenParticleValidation = DQMEDAnalyzer('BasicGenParticleValidation', hepmcCollection = cms.InputTag("generatorSmeared"), genparticleCollection = cms.InputTag("genParticles",""), genjetsCollection = cms.InputTag("ak4GenJets",""), matchingPrecision = cms.double(0.001), verbosity = cms.untracked.uint32(0), UseWeightFromHepMC = cms.bool(True), signalParticlesOnly = cms.bool(False) ) basicGenParticleValidationHiMix = basicGenParticleValidation.clone(signalParticlesOnly = True)
[((194, 226), 'FWCore.ParameterSet.Config.InputTag', 'cms.InputTag', (['"""generatorSmeared"""'], {}), "('generatorSmeared')\n", (206, 226), True, 'import FWCore.ParameterSet.Config as cms\n'), ((256, 288), 'FWCore.ParameterSet.Config.InputTag', 'cms.InputTag', (['"""genParticles"""', '""""""'], {}), "('genParticles', '')\n", (268, 288), True, 'import FWCore.ParameterSet.Config as cms\n'), ((313, 343), 'FWCore.ParameterSet.Config.InputTag', 'cms.InputTag', (['"""ak4GenJets"""', '""""""'], {}), "('ak4GenJets', '')\n", (325, 343), True, 'import FWCore.ParameterSet.Config as cms\n'), ((368, 385), 'FWCore.ParameterSet.Config.double', 'cms.double', (['(0.001)'], {}), '(0.001)\n', (378, 385), True, 'import FWCore.ParameterSet.Config as cms\n'), ((403, 426), 'FWCore.ParameterSet.Config.untracked.uint32', 'cms.untracked.uint32', (['(0)'], {}), '(0)\n', (423, 426), True, 'import FWCore.ParameterSet.Config as cms\n'), ((453, 467), 'FWCore.ParameterSet.Config.bool', 'cms.bool', (['(True)'], {}), '(True)\n', (461, 467), True, 'import FWCore.ParameterSet.Config as cms\n'), ((495, 510), 'FWCore.ParameterSet.Config.bool', 'cms.bool', (['(False)'], {}), '(False)\n', (503, 510), True, 'import FWCore.ParameterSet.Config as cms\n')]