repo_name
stringlengths
7
94
repo_path
stringlengths
4
237
repo_head_hexsha
stringlengths
40
40
content
stringlengths
10
680k
apis
stringlengths
2
680k
wanderlog/posthog
ee/clickhouse/sql/person.py
a88b81d44ab31d262be07e84a85d045c4e28f2a3
from ee.clickhouse.sql.clickhouse import KAFKA_COLUMNS, STORAGE_POLICY, kafka_engine from ee.clickhouse.sql.table_engines import CollapsingMergeTree, ReplacingMergeTree from ee.kafka_client.topics import KAFKA_PERSON, KAFKA_PERSON_DISTINCT_ID, KAFKA_PERSON_UNIQUE_ID from posthog.settings import CLICKHOUSE_CLUSTER, CLICKHOUSE_DATABASE TRUNCATE_PERSON_TABLE_SQL = f"TRUNCATE TABLE IF EXISTS person ON CLUSTER '{CLICKHOUSE_CLUSTER}'" DROP_PERSON_TABLE_SQL = f"DROP TABLE IF EXISTS person ON CLUSTER '{CLICKHOUSE_CLUSTER}'" TRUNCATE_PERSON_DISTINCT_ID_TABLE_SQL = f"TRUNCATE TABLE IF EXISTS person_distinct_id ON CLUSTER '{CLICKHOUSE_CLUSTER}'" TRUNCATE_PERSON_DISTINCT_ID2_TABLE_SQL = ( f"TRUNCATE TABLE IF EXISTS person_distinct_id2 ON CLUSTER '{CLICKHOUSE_CLUSTER}'" ) PERSONS_TABLE = "person" PERSONS_TABLE_BASE_SQL = """ CREATE TABLE IF NOT EXISTS {table_name} ON CLUSTER '{cluster}' ( id UUID, created_at DateTime64, team_id Int64, properties VARCHAR, is_identified Int8, is_deleted Int8 DEFAULT 0 {extra_fields} ) ENGINE = {engine} """ PERSONS_TABLE_ENGINE = lambda: ReplacingMergeTree(PERSONS_TABLE, ver="_timestamp") PERSONS_TABLE_SQL = lambda: ( PERSONS_TABLE_BASE_SQL + """Order By (team_id, id) {storage_policy} """ ).format( table_name=PERSONS_TABLE, cluster=CLICKHOUSE_CLUSTER, engine=PERSONS_TABLE_ENGINE(), extra_fields=KAFKA_COLUMNS, storage_policy=STORAGE_POLICY(), ) KAFKA_PERSONS_TABLE_SQL = lambda: PERSONS_TABLE_BASE_SQL.format( table_name="kafka_" + PERSONS_TABLE, cluster=CLICKHOUSE_CLUSTER, engine=kafka_engine(KAFKA_PERSON), extra_fields="", ) # You must include the database here because of a bug in clickhouse # related to https://github.com/ClickHouse/ClickHouse/issues/10471 PERSONS_TABLE_MV_SQL = """ CREATE MATERIALIZED VIEW {table_name}_mv ON CLUSTER '{cluster}' TO {database}.{table_name} AS SELECT id, created_at, team_id, properties, is_identified, is_deleted, _timestamp, _offset FROM {database}.kafka_{table_name} """.format( table_name=PERSONS_TABLE, cluster=CLICKHOUSE_CLUSTER, database=CLICKHOUSE_DATABASE, ) GET_LATEST_PERSON_SQL = """ SELECT * FROM person JOIN ( SELECT id, max(_timestamp) as _timestamp, max(is_deleted) as is_deleted FROM person WHERE team_id = %(team_id)s GROUP BY id ) as person_max ON person.id = person_max.id AND person._timestamp = person_max._timestamp WHERE team_id = %(team_id)s AND person_max.is_deleted = 0 {query} """ GET_LATEST_PERSON_ID_SQL = """ (select id from ( {latest_person_sql} )) """.format( latest_person_sql=GET_LATEST_PERSON_SQL ) # # person_distinct_id table - use this still in queries, but this will eventually get removed. # PERSONS_DISTINCT_ID_TABLE = "person_distinct_id" PERSONS_DISTINCT_ID_TABLE_BASE_SQL = """ CREATE TABLE IF NOT EXISTS {table_name} ON CLUSTER '{cluster}' ( distinct_id VARCHAR, person_id UUID, team_id Int64, _sign Int8 DEFAULT 1, is_deleted Int8 ALIAS if(_sign==-1, 1, 0) {extra_fields} ) ENGINE = {engine} """ PERSONS_DISTINCT_ID_TABLE_SQL = lambda: ( PERSONS_DISTINCT_ID_TABLE_BASE_SQL + """Order By (team_id, distinct_id, person_id) {storage_policy} """ ).format( table_name=PERSONS_DISTINCT_ID_TABLE, cluster=CLICKHOUSE_CLUSTER, engine=CollapsingMergeTree(PERSONS_DISTINCT_ID_TABLE, ver="_sign"), extra_fields=KAFKA_COLUMNS, storage_policy=STORAGE_POLICY(), ) # :KLUDGE: We default is_deleted to 0 for backwards compatibility for when we drop `is_deleted` from message schema. # Can't make DEFAULT if(_sign==-1, 1, 0) because Cyclic aliases error. KAFKA_PERSONS_DISTINCT_ID_TABLE_SQL = lambda: """ CREATE TABLE {table_name} ON CLUSTER '{cluster}' ( distinct_id VARCHAR, person_id UUID, team_id Int64, _sign Nullable(Int8), is_deleted Nullable(Int8) ) ENGINE = {engine} """.format( table_name="kafka_" + PERSONS_DISTINCT_ID_TABLE, cluster=CLICKHOUSE_CLUSTER, engine=kafka_engine(KAFKA_PERSON_UNIQUE_ID), ) # You must include the database here because of a bug in clickhouse # related to https://github.com/ClickHouse/ClickHouse/issues/10471 PERSONS_DISTINCT_ID_TABLE_MV_SQL = """ CREATE MATERIALIZED VIEW {table_name}_mv ON CLUSTER '{cluster}' TO {database}.{table_name} AS SELECT distinct_id, person_id, team_id, coalesce(_sign, if(is_deleted==0, 1, -1)) AS _sign, _timestamp, _offset FROM {database}.kafka_{table_name} """.format( table_name=PERSONS_DISTINCT_ID_TABLE, cluster=CLICKHOUSE_CLUSTER, database=CLICKHOUSE_DATABASE, ) # # person_distinct_ids2 - new table! # PERSON_DISTINCT_ID2_TABLE = "person_distinct_id2" PERSON_DISTINCT_ID2_TABLE_BASE_SQL = """ CREATE TABLE IF NOT EXISTS {table_name} ON CLUSTER '{cluster}' ( team_id Int64, distinct_id VARCHAR, person_id UUID, is_deleted Int8, version Int64 DEFAULT 1 {extra_fields} ) ENGINE = {engine} """ PERSON_DISTINCT_ID2_TABLE_ENGINE = lambda: ReplacingMergeTree(PERSON_DISTINCT_ID2_TABLE, ver="version") PERSON_DISTINCT_ID2_TABLE_SQL = lambda: ( PERSON_DISTINCT_ID2_TABLE_BASE_SQL + """ ORDER BY (team_id, distinct_id) SETTINGS index_granularity = 512 """ ).format( table_name=PERSON_DISTINCT_ID2_TABLE, cluster=CLICKHOUSE_CLUSTER, engine=PERSON_DISTINCT_ID2_TABLE_ENGINE(), extra_fields=KAFKA_COLUMNS + "\n, _partition UInt64", ) KAFKA_PERSON_DISTINCT_ID2_TABLE_SQL = lambda: PERSON_DISTINCT_ID2_TABLE_BASE_SQL.format( table_name="kafka_" + PERSON_DISTINCT_ID2_TABLE, cluster=CLICKHOUSE_CLUSTER, engine=kafka_engine(KAFKA_PERSON_DISTINCT_ID), extra_fields="", ) # You must include the database here because of a bug in clickhouse # related to https://github.com/ClickHouse/ClickHouse/issues/10471 PERSON_DISTINCT_ID2_MV_SQL = """ CREATE MATERIALIZED VIEW {table_name}_mv ON CLUSTER '{cluster}' TO {database}.{table_name} AS SELECT team_id, distinct_id, person_id, is_deleted, version, _timestamp, _offset, _partition FROM {database}.kafka_{table_name} """.format( table_name=PERSON_DISTINCT_ID2_TABLE, cluster=CLICKHOUSE_CLUSTER, database=CLICKHOUSE_DATABASE, ) # # Static Cohort # PERSON_STATIC_COHORT_TABLE = "person_static_cohort" PERSON_STATIC_COHORT_BASE_SQL = """ CREATE TABLE IF NOT EXISTS {table_name} ON CLUSTER '{cluster}' ( id UUID, person_id UUID, cohort_id Int64, team_id Int64 {extra_fields} ) ENGINE = {engine} """ PERSON_STATIC_COHORT_TABLE_ENGINE = lambda: ReplacingMergeTree(PERSON_STATIC_COHORT_TABLE, ver="_timestamp") PERSON_STATIC_COHORT_TABLE_SQL = lambda: ( PERSON_STATIC_COHORT_BASE_SQL + """Order By (team_id, cohort_id, person_id, id) {storage_policy} """ ).format( table_name=PERSON_STATIC_COHORT_TABLE, cluster=CLICKHOUSE_CLUSTER, engine=PERSON_STATIC_COHORT_TABLE_ENGINE(), storage_policy=STORAGE_POLICY(), extra_fields=KAFKA_COLUMNS, ) TRUNCATE_PERSON_STATIC_COHORT_TABLE_SQL = ( f"TRUNCATE TABLE IF EXISTS {PERSON_STATIC_COHORT_TABLE} ON CLUSTER '{CLICKHOUSE_CLUSTER}'" ) INSERT_PERSON_STATIC_COHORT = ( f"INSERT INTO {PERSON_STATIC_COHORT_TABLE} (id, person_id, cohort_id, team_id, _timestamp) VALUES" ) # # Other queries # GET_TEAM_PERSON_DISTINCT_IDS = """ SELECT distinct_id, argMax(person_id, _timestamp) as person_id FROM ( SELECT distinct_id, person_id, max(_timestamp) as _timestamp FROM person_distinct_id WHERE team_id = %(team_id)s %(extra_where)s GROUP BY person_id, distinct_id, team_id HAVING max(is_deleted) = 0 ) GROUP BY distinct_id """ # Query to query distinct ids using the new table, will be used if 0003_fill_person_distinct_id2 migration is complete GET_TEAM_PERSON_DISTINCT_IDS_NEW_TABLE = """ SELECT distinct_id, argMax(person_id, version) as person_id FROM person_distinct_id2 WHERE team_id = %(team_id)s %(extra_where)s GROUP BY distinct_id HAVING argMax(is_deleted, version) = 0 """ GET_PERSON_IDS_BY_FILTER = """ SELECT DISTINCT p.id FROM ({latest_person_sql}) AS p INNER JOIN ({GET_TEAM_PERSON_DISTINCT_IDS}) AS pdi ON p.id = pdi.person_id WHERE team_id = %(team_id)s {distinct_query} {limit} {offset} """.format( latest_person_sql=GET_LATEST_PERSON_SQL, distinct_query="{distinct_query}", limit="{limit}", offset="{offset}", GET_TEAM_PERSON_DISTINCT_IDS="{GET_TEAM_PERSON_DISTINCT_IDS}", ) INSERT_PERSON_SQL = """ INSERT INTO person (id, created_at, team_id, properties, is_identified, _timestamp, _offset, is_deleted) SELECT %(id)s, %(created_at)s, %(team_id)s, %(properties)s, %(is_identified)s, %(_timestamp)s, 0, 0 """ INSERT_PERSON_DISTINCT_ID = """ INSERT INTO person_distinct_id SELECT %(distinct_id)s, %(person_id)s, %(team_id)s, %(_sign)s, now(), 0 VALUES """ INSERT_PERSON_DISTINCT_ID2 = """ INSERT INTO person_distinct_id2 (distinct_id, person_id, team_id, is_deleted, version, _timestamp, _offset, _partition) SELECT %(distinct_id)s, %(person_id)s, %(team_id)s, 0, %(version)s, now(), 0, 0 VALUES """ DELETE_PERSON_BY_ID = """ INSERT INTO person (id, created_at, team_id, properties, is_identified, _timestamp, _offset, is_deleted) SELECT %(id)s, %(created_at)s, %(team_id)s, %(properties)s, %(is_identified)s, %(_timestamp)s, 0, 1 """ DELETE_PERSON_EVENTS_BY_ID = """ ALTER TABLE events DELETE WHERE distinct_id IN ( SELECT distinct_id FROM person_distinct_id WHERE person_id=%(id)s AND team_id = %(team_id)s ) AND team_id = %(team_id)s """ INSERT_COHORT_ALL_PEOPLE_THROUGH_PERSON_ID = """ INSERT INTO {cohort_table} SELECT generateUUIDv4(), actor_id, %(cohort_id)s, %(team_id)s, %(_timestamp)s, 0 FROM ( SELECT actor_id FROM ({query}) ) """ INSERT_COHORT_ALL_PEOPLE_SQL = """ INSERT INTO {cohort_table} SELECT generateUUIDv4(), id, %(cohort_id)s, %(team_id)s, %(_timestamp)s, 0 FROM ( SELECT id FROM ( {latest_person_sql} ) as person INNER JOIN ( SELECT person_id, distinct_id FROM ({GET_TEAM_PERSON_DISTINCT_IDS}) WHERE person_id IN ({content_sql}) ) as pdi ON person.id = pdi.person_id WHERE team_id = %(team_id)s GROUP BY id ) """ GET_DISTINCT_IDS_BY_PROPERTY_SQL = """ SELECT distinct_id FROM ( {GET_TEAM_PERSON_DISTINCT_IDS} ) WHERE person_id IN ( SELECT id FROM ( SELECT id, argMax(properties, person._timestamp) as properties, max(is_deleted) as is_deleted FROM person WHERE team_id = %(team_id)s GROUP BY id HAVING is_deleted = 0 ) WHERE {filters} ) """ GET_DISTINCT_IDS_BY_PERSON_ID_FILTER = """ SELECT distinct_id FROM ({GET_TEAM_PERSON_DISTINCT_IDS}) WHERE {filters} """ GET_PERSON_PROPERTIES_COUNT = """ SELECT tupleElement(keysAndValues, 1) as key, count(*) as count FROM person ARRAY JOIN JSONExtractKeysAndValuesRaw(properties) as keysAndValues WHERE team_id = %(team_id)s GROUP BY tupleElement(keysAndValues, 1) ORDER BY count DESC, key ASC """ GET_ACTORS_FROM_EVENT_QUERY = """ SELECT {id_field} AS actor_id {matching_events_select_statement} FROM ({events_query}) GROUP BY actor_id {limit} {offset} """ COMMENT_DISTINCT_ID_COLUMN_SQL = ( lambda: f"ALTER TABLE person_distinct_id ON CLUSTER '{CLICKHOUSE_CLUSTER}' COMMENT COLUMN distinct_id 'skip_0003_fill_person_distinct_id2'" ) SELECT_PERSON_PROP_VALUES_SQL = """ SELECT value, count(value) FROM ( SELECT {property_field} as value FROM person WHERE team_id = %(team_id)s AND is_deleted = 0 AND {property_field} IS NOT NULL AND {property_field} != '' ORDER BY id DESC LIMIT 100000 ) GROUP BY value ORDER BY count(value) DESC LIMIT 20 """ SELECT_PERSON_PROP_VALUES_SQL_WITH_FILTER = """ SELECT value, count(value) FROM ( SELECT {property_field} as value FROM person WHERE team_id = %(team_id)s AND is_deleted = 0 AND {property_field} ILIKE %(value)s ORDER BY id DESC LIMIT 100000 ) GROUP BY value ORDER BY count(value) DESC LIMIT 20 """
[((1110, 1161), 'ee.clickhouse.sql.table_engines.ReplacingMergeTree', 'ReplacingMergeTree', (['PERSONS_TABLE'], {'ver': '"""_timestamp"""'}), "(PERSONS_TABLE, ver='_timestamp')\n", (1128, 1161), False, 'from ee.clickhouse.sql.table_engines import CollapsingMergeTree, ReplacingMergeTree\n'), ((4949, 5009), 'ee.clickhouse.sql.table_engines.ReplacingMergeTree', 'ReplacingMergeTree', (['PERSON_DISTINCT_ID2_TABLE'], {'ver': '"""version"""'}), "(PERSON_DISTINCT_ID2_TABLE, ver='version')\n", (4967, 5009), False, 'from ee.clickhouse.sql.table_engines import CollapsingMergeTree, ReplacingMergeTree\n'), ((6462, 6526), 'ee.clickhouse.sql.table_engines.ReplacingMergeTree', 'ReplacingMergeTree', (['PERSON_STATIC_COHORT_TABLE'], {'ver': '"""_timestamp"""'}), "(PERSON_STATIC_COHORT_TABLE, ver='_timestamp')\n", (6480, 6526), False, 'from ee.clickhouse.sql.table_engines import CollapsingMergeTree, ReplacingMergeTree\n'), ((1430, 1446), 'ee.clickhouse.sql.clickhouse.STORAGE_POLICY', 'STORAGE_POLICY', ([], {}), '()\n', (1444, 1446), False, 'from ee.clickhouse.sql.clickhouse import KAFKA_COLUMNS, STORAGE_POLICY, kafka_engine\n'), ((1592, 1618), 'ee.clickhouse.sql.clickhouse.kafka_engine', 'kafka_engine', (['KAFKA_PERSON'], {}), '(KAFKA_PERSON)\n', (1604, 1618), False, 'from ee.clickhouse.sql.clickhouse import KAFKA_COLUMNS, STORAGE_POLICY, kafka_engine\n'), ((3307, 3366), 'ee.clickhouse.sql.table_engines.CollapsingMergeTree', 'CollapsingMergeTree', (['PERSONS_DISTINCT_ID_TABLE'], {'ver': '"""_sign"""'}), "(PERSONS_DISTINCT_ID_TABLE, ver='_sign')\n", (3326, 3366), False, 'from ee.clickhouse.sql.table_engines import CollapsingMergeTree, ReplacingMergeTree\n'), ((3419, 3435), 'ee.clickhouse.sql.clickhouse.STORAGE_POLICY', 'STORAGE_POLICY', ([], {}), '()\n', (3433, 3435), False, 'from ee.clickhouse.sql.clickhouse import KAFKA_COLUMNS, STORAGE_POLICY, kafka_engine\n'), ((3980, 4016), 'ee.clickhouse.sql.clickhouse.kafka_engine', 'kafka_engine', (['KAFKA_PERSON_UNIQUE_ID'], {}), '(KAFKA_PERSON_UNIQUE_ID)\n', (3992, 4016), False, 'from ee.clickhouse.sql.clickhouse import KAFKA_COLUMNS, STORAGE_POLICY, kafka_engine\n'), ((5559, 5597), 'ee.clickhouse.sql.clickhouse.kafka_engine', 'kafka_engine', (['KAFKA_PERSON_DISTINCT_ID'], {}), '(KAFKA_PERSON_DISTINCT_ID)\n', (5571, 5597), False, 'from ee.clickhouse.sql.clickhouse import KAFKA_COLUMNS, STORAGE_POLICY, kafka_engine\n'), ((6831, 6847), 'ee.clickhouse.sql.clickhouse.STORAGE_POLICY', 'STORAGE_POLICY', ([], {}), '()\n', (6845, 6847), False, 'from ee.clickhouse.sql.clickhouse import KAFKA_COLUMNS, STORAGE_POLICY, kafka_engine\n')]
davmre/sigvisa
scripts/dump_training_data.py
91a1f163b8f3a258dfb78d88a07f2a11da41bd04
from sigvisa.learn.train_coda_models import get_shape_training_data import numpy as np X, y, evids = get_shape_training_data(runid=4, site="AS12", chan="SHZ", band="freq_2.0_3.0", phases=["P",], target="amp_transfer", max_acost=np.float("inf"), min_amp=-2) np.savetxt("X.txt", X) np.savetxt("y.txt", y) np.savetxt("evids.txt", evids)
[((258, 280), 'numpy.savetxt', 'np.savetxt', (['"""X.txt"""', 'X'], {}), "('X.txt', X)\n", (268, 280), True, 'import numpy as np\n'), ((281, 303), 'numpy.savetxt', 'np.savetxt', (['"""y.txt"""', 'y'], {}), "('y.txt', y)\n", (291, 303), True, 'import numpy as np\n'), ((304, 334), 'numpy.savetxt', 'np.savetxt', (['"""evids.txt"""', 'evids'], {}), "('evids.txt', evids)\n", (314, 334), True, 'import numpy as np\n'), ((229, 244), 'numpy.float', 'np.float', (['"""inf"""'], {}), "('inf')\n", (237, 244), True, 'import numpy as np\n')]
wbrandenburger/ShadowDetection
shdw/tools/welford.py
2a58df93e32e8baf99806555655a7daf7e68735a
import math import numpy as np # plt.style.use('seaborn') # plt.rcParams['figure.figsize'] = (12, 8) def welford(x_array): k = 0 M = 0 S = 0 for x in x_array: k += 1 Mnext = M + (x - M) / k S = S + (x - M)*(x - Mnext) M = Mnext return (M, S/(k-1)) class Welford(object): """ Implements Welford's algorithm for computing a running mean and standard deviation as described at: http://www.johndcook.com/standard_deviation.html can take single values or iterables Properties: mean - returns the mean std - returns the std meanfull- returns the mean and std of the mean Usage: >>> foo = Welford() >>> foo(range(100)) >>> foo <Welford: 49.5 +- 29.0114919759> >>> foo([1]*1000) >>> foo <Welford: 5.40909090909 +- 16.4437417146> >>> foo.mean 5.409090909090906 >>> foo.std 16.44374171455467 >>> foo.meanfull (5.409090909090906, 0.4957974674244838) """ def __init__(self,lst=None, num=1, mean=0, std=0): self._num = num self._mean = mean self._std = math.pow(std, 2)*(num-1) self.__call__(lst) @property def num(self): return self._num @property def mean(self): return self._mean @property def std(self): if self._num==1: return 0 return math.sqrt(self._std/(self._num-1)) @property def meanfull(self): return self._mean, self._std/math.sqrt(self._num) @property def stats(self): return self._mean, self.std def update(self, lst): if lst is None: return if hasattr(lst, "__iter__"): for x in lst: self.update_welford(x) else: self.update_welford(lst) def update_welford(self, x): if x is None: return new_mean = self._mean + (x - self._mean)*1./self._num new_std = self._std + (x - self._mean)*(x - new_mean) self._num += 1 self._mean, self._std = new_mean, new_std def consume(self,lst): if isinstance(lst, np.ndarray): npfunc = np.vectorize(self.update) npfunc(lst) else: lst = iter(lst) for x in lst: self.update(x) def __call__(self,x): if hasattr(x,"__iter__"): self.consume(x) else: self.update(x) def __repr__(self): return "<Stats: {} +- {}>".format(self.mean, self.std)
[((1475, 1513), 'math.sqrt', 'math.sqrt', (['(self._std / (self._num - 1))'], {}), '(self._std / (self._num - 1))\n', (1484, 1513), False, 'import math\n'), ((1195, 1211), 'math.pow', 'math.pow', (['std', '(2)'], {}), '(std, 2)\n', (1203, 1211), False, 'import math\n'), ((2268, 2293), 'numpy.vectorize', 'np.vectorize', (['self.update'], {}), '(self.update)\n', (2280, 2293), True, 'import numpy as np\n'), ((1586, 1606), 'math.sqrt', 'math.sqrt', (['self._num'], {}), '(self._num)\n', (1595, 1606), False, 'import math\n')]
lilbond/bitis
day3/functions.py
58e5eeebade6cea99fbf86fdf285721fb602e4ef
def greet(): print("Hi") def greet_again(message): print(message) def greet_again_with_type(message): print(type(message)) print(message) greet() greet_again("Hello Again") greet_again_with_type("One Last Time") greet_again_with_type(1234) # multiple types def multiple_types(x): if x < 0: return -1 else: return "Returning Hello" print(multiple_types(-2)) print(multiple_types(10)) # variable arguments def var_arguments(*args): # args will be tuples containing all the values for value in args: print(value) var_arguments(1, 2, 3) a = [1, 2, 3] var_arguments(a) var_arguments(*a) # expanding def key_arg(**kwargs): for key,value in kwargs.items(): print(key, value) v b = {"first" : "python", "second" : "python again"} key_arg(b)
[]
KipCrossing/Micropython-AD9833
test.py
c684f5a9543bc5b67dcbf357c50f4d8f4057b2bf
from ad9833 import AD9833 # DUMMY classes for testing without board class SBI(object): def __init__(self): pass def send(self, data): print(data) class Pin(object): def __init__(self): pass def low(self): print(" 0") def high(self): print(" 1") # Code SBI1 = SBI() PIN3 = Pin() wave = AD9833(SBI1, PIN3) wave.set_freq(14500) wave.set_type(2) wave.send() print(wave.shape_type)
[((387, 405), 'ad9833.AD9833', 'AD9833', (['SBI1', 'PIN3'], {}), '(SBI1, PIN3)\n', (393, 405), False, 'from ad9833 import AD9833\n')]
devicehive/devicehive-plugin-python-template
tests/test_api_network.py
ad532a57ebf9ae52f12afc98eeb867380707d47d
# Copyright (C) 2018 DataArt # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= from six.moves import range def test_subscribe_events(test): test.only_admin_implementation() plugin_api = test.plugin_api() device_hive_api = test.device_hive_api() def init_data(): net_name = test.generate_id('n-s-e', test.NETWORK_ENTITY) net_description = '%s-description' % net_name network = device_hive_api.create_network(net_name, net_description) device_id = test.generate_id('n-s-e', test.DEVICE_ENTITY) device = device_hive_api.put_device(device_id, network_id=network.id) command_name = '%s-command' % device_id notification_name = '%s-notification' % device_id return {'device': device, 'network': network, 'command_name': command_name, 'notification_name': notification_name} def send_data(device, command_name, notification_name): command = device.send_command(command_name) command.status = 'status' command.save() notification = device.send_notification(notification_name) return command.id, command.id, notification.id def handle_connect(handler): event_ids = send_data(handler.data['device'], handler.data['command_name'], handler.data['notification_name']) command_insert_id, command_update_id, notification_id = event_ids handler.data['event_ids'] = [('command/insert', command_insert_id), ('command/update', command_update_id), ('notification/insert', notification_id)] def handle_event(handler, event): action_id_pair = (event.action, event.data.id) assert action_id_pair in handler.data['event_ids'] handler.data['event_ids'].remove(action_id_pair) if handler.data['event_ids']: return handler.data['device'].remove() handler.disconnect() data = init_data() name = test.generate_id('n-s-e', test.PLUGIN_ENTITY) description = '%s-description' % name plugin = plugin_api.create_plugin(name, description, network_ids=[data['network'].id]) test.run(plugin, handle_connect, handle_event, data=data) plugin_api.remove_plugin(plugin['topicName']) # ========================================================================= def handle_connect(handler): event_ids = send_data(handler.data['device'], handler.data['command_name'], handler.data['notification_name']) command_insert_id, command_update_id, notification_id = event_ids handler.data['event_ids'] = [('command/insert', command_insert_id), ('command/update', command_update_id)] data = init_data() name = test.generate_id('n-s-e', test.PLUGIN_ENTITY) description = '%s-description' % name plugin = plugin_api.create_plugin(name, description, network_ids=[data['network'].id], subscribe_notifications=False) test.run(plugin, handle_connect, handle_event, data=data) plugin_api.remove_plugin(plugin['topicName']) # ========================================================================= def handle_connect(handler): event_ids = send_data(handler.data['device'], handler.data['command_name'], handler.data['notification_name']) command_insert_id, command_update_id, notification_id = event_ids handler.data['event_ids'] = [('command/insert', command_insert_id), ('notification/insert', notification_id)] data = init_data() name = test.generate_id('n-s-e', test.PLUGIN_ENTITY) description = '%s-description' % name plugin = plugin_api.create_plugin(name, description, network_ids=[data['network'].id], subscribe_update_commands=False) test.run(plugin, handle_connect, handle_event, data=data) plugin_api.remove_plugin(plugin['topicName']) # ========================================================================= def handle_connect(handler): event_ids = send_data(handler.data['device'], handler.data['command_name'], handler.data['notification_name']) command_insert_id, command_update_id, notification_id = event_ids handler.data['event_ids'] = [('command/update', command_update_id), ('notification/insert', notification_id)] data = init_data() name = test.generate_id('n-s-e', test.PLUGIN_ENTITY) description = '%s-description' % name plugin = plugin_api.create_plugin(name, description, network_ids=[data['network'].id], subscribe_insert_commands=False) test.run(plugin, handle_connect, handle_event, data=data) plugin_api.remove_plugin(plugin['topicName']) def test_subscribe_insert_commands(test): test.only_admin_implementation() plugin_api = test.plugin_api() device_hive_api = test.device_hive_api() def init_data(): net_name = test.generate_id('n-s-i-c', test.NETWORK_ENTITY) net_description = '%s-description' % net_name network = device_hive_api.create_network(net_name, net_description) device_id = test.generate_id('n-s-i-c', test.DEVICE_ENTITY) device = device_hive_api.put_device(device_id, network_id=network.id) command_names = ['%s-name-%s' % (device_id, i) for i in range(2)] return {'device': device, 'network': network, 'command_names': command_names} def send_data(device, command_names): return [device.send_command(name).id for name in command_names] def handle_connect(handler): handler.data['command_ids'] = send_data(handler.data['device'], handler.data['command_names']) def handle_command_insert(handler, command): assert command.id in handler.data['command_ids'] handler.data['command_ids'].remove(command.id) if handler.data['command_ids']: return handler.data['device'].remove() handler.disconnect() data = init_data() name = test.generate_id('n-s-i-c', test.PLUGIN_ENTITY) description = '%s-description' % name plugin = plugin_api.create_plugin(name, description, network_ids=[data['network'].id], subscribe_update_commands=False, subscribe_notifications=False) test.run(plugin, handle_connect, handle_command_insert=handle_command_insert, data=data) plugin_api.remove_plugin(plugin['topicName']) # ========================================================================= def handle_connect(handler): handler.data['command_ids'] = send_data( handler.data['device'], handler.data['command_names'])[-1:] data = init_data() name = test.generate_id('n-s-i-c', test.PLUGIN_ENTITY) description = '%s-description' % name plugin = plugin_api.create_plugin(name, description, network_ids=[data['network'].id], names=data['command_names'][-1:], subscribe_update_commands=False, subscribe_notifications=False) test.run(plugin, handle_connect, handle_command_insert=handle_command_insert, data=data) plugin_api.remove_plugin(plugin['topicName']) def test_subscribe_update_commands(test): test.only_admin_implementation() plugin_api = test.plugin_api() device_hive_api = test.device_hive_api() def init_data(): net_name = test.generate_id('n-s-u-c', test.NETWORK_ENTITY) net_description = '%s-description' % net_name network = device_hive_api.create_network(net_name, net_description) device_id = test.generate_id('n-s-u-c', test.DEVICE_ENTITY) device = device_hive_api.put_device(device_id, network_id=network.id) command_names = ['%s-name-%s' % (device_id, i) for i in range(2)] return {'device': device, 'network': network, 'command_names': command_names} def send_data(device, command_names): command_ids = [] for name in command_names: command = device.send_command(name) command.status = 'status' command.save() command_ids.append(command.id) return command_ids def handle_connect(handler): handler.data['command_ids'] = send_data(handler.data['device'], handler.data['command_names']) def handle_command_update(handler, command): assert command.id in handler.data['command_ids'] assert command.status == 'status' handler.data['command_ids'].remove(command.id) if handler.data['command_ids']: return handler.data['device'].remove() handler.disconnect() data = init_data() name = test.generate_id('n-s-u-c', test.PLUGIN_ENTITY) description = '%s-description' % name plugin = plugin_api.create_plugin(name, description, network_ids=[data['network'].id], subscribe_insert_commands=False, subscribe_notifications=False) test.run(plugin, handle_connect, handle_command_update=handle_command_update, data=data) plugin_api.remove_plugin(plugin['topicName']) # ========================================================================= def handle_connect(handler): handler.data['command_ids'] = send_data( handler.data['device'], handler.data['command_names'])[-1:] data = init_data() name = test.generate_id('n-s-u-c', test.PLUGIN_ENTITY) description = '%s-description' % name plugin = plugin_api.create_plugin(name, description, network_ids=[data['network'].id], names=data['command_names'][-1:], subscribe_insert_commands=False, subscribe_notifications=False) test.run(plugin, handle_connect, handle_command_update=handle_command_update, data=data) plugin_api.remove_plugin(plugin['topicName']) def test_subscribe_notifications(test): test.only_admin_implementation() plugin_api = test.plugin_api() device_hive_api = test.device_hive_api() def init_data(): net_name = test.generate_id('n-s-n', test.NETWORK_ENTITY) net_description = '%s-description' % net_name network = device_hive_api.create_network(net_name, net_description) device_id = test.generate_id('n-s-n', test.DEVICE_ENTITY) device = device_hive_api.put_device(device_id, network_id=network.id) notification_names = ['%s-name-%s' % (device_id, i) for i in range(2)] return {'device': device, 'network': network, 'notification_names': notification_names} def send_data(device, notification_names): return [device.send_notification(name).id for name in notification_names] def handle_connect(handler): handler.data['notification_ids'] = send_data( handler.data['device'], handler.data['notification_names']) def handle_notification(handler, notification): assert notification.id in handler.data['notification_ids'] handler.data['notification_ids'].remove(notification.id) if handler.data['notification_ids']: return handler.data['device'].remove() handler.disconnect() data = init_data() name = test.generate_id('n-s-n', test.PLUGIN_ENTITY) description = '%s-description' % name plugin = plugin_api.create_plugin(name, description, network_ids=[data['network'].id], subscribe_insert_commands=False, subscribe_update_commands=False) test.run(plugin, handle_connect, handle_notification=handle_notification, data=data) plugin_api.remove_plugin(plugin['topicName']) # ========================================================================= def handle_connect(handler): handler.data['notification_ids'] = send_data( handler.data['device'], handler.data['notification_names'])[-1:] data = init_data() name = test.generate_id('n-s-n', test.PLUGIN_ENTITY) description = '%s-description' % name plugin = plugin_api.create_plugin(name, description, network_ids=[data['network'].id], names=data['notification_names'][-1:], subscribe_insert_commands=False, subscribe_update_commands=False) test.run(plugin, handle_connect, handle_notification=handle_notification, data=data) plugin_api.remove_plugin(plugin['topicName'])
[((6449, 6457), 'six.moves.range', 'range', (['(2)'], {}), '(2)\n', (6454, 6457), False, 'from six.moves import range\n'), ((9168, 9176), 'six.moves.range', 'range', (['(2)'], {}), '(2)\n', (9173, 9176), False, 'from six.moves import range\n'), ((12099, 12107), 'six.moves.range', 'range', (['(2)'], {}), '(2)\n', (12104, 12107), False, 'from six.moves import range\n')]
miciux/telegram-bot-admin
filehandler.py
feb267ba6ce715b734b1a5911487c1080410a4a9
import logging import abstracthandler import os class FileHandler(abstracthandler.AbstractHandler): def __init__(self, conf, bot): abstracthandler.AbstractHandler.__init__(self, 'file', conf, bot) self.log = logging.getLogger(__name__) self.commands={} self.commands['list'] = self.get_file_list def handle_message(self,cid, command, args): try: self.commands[command](cid,args) except Exception as e: self.send_formatted_message(cid,self.get_sorry_message()) self.log.error(e) def get_file_list(self, cid, args): if len(args) >= 1: for folder in args: self.send_formatted_message(cid,self.get_folder_content(folder)) else: self.send_formatted_message(cid,'*file list* usage: file list _[DIRECTORY]_...') def get_folder_content(self, folder): message = 'Lista dei files in *%s*:\n_%s_' files = '\n'.join(os.listdir(folder)) return message % (folder,files);
[((145, 210), 'abstracthandler.AbstractHandler.__init__', 'abstracthandler.AbstractHandler.__init__', (['self', '"""file"""', 'conf', 'bot'], {}), "(self, 'file', conf, bot)\n", (185, 210), False, 'import abstracthandler\n'), ((230, 257), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (247, 257), False, 'import logging\n'), ((981, 999), 'os.listdir', 'os.listdir', (['folder'], {}), '(folder)\n', (991, 999), False, 'import os\n')]
Tensorflow-Devs/federated
tensorflow_federated/python/learning/federated_evaluation.py
5df96d42d72fa43a050df6465271a38175a5fd7a
# Copyright 2019, The TensorFlow Federated Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A simple implementation of federated evaluation.""" import collections from typing import Callable, Optional import tensorflow as tf from tensorflow_federated.python.core.api import computation_base from tensorflow_federated.python.core.api import computations from tensorflow_federated.python.core.impl.federated_context import intrinsics from tensorflow_federated.python.core.impl.types import computation_types from tensorflow_federated.python.core.templates import measured_process from tensorflow_federated.python.learning import model as model_lib from tensorflow_federated.python.learning import model_utils from tensorflow_federated.python.learning.framework import dataset_reduce from tensorflow_federated.python.learning.framework import optimizer_utils # Convenience aliases. SequenceType = computation_types.SequenceType def build_federated_evaluation( model_fn: Callable[[], model_lib.Model], broadcast_process: Optional[measured_process.MeasuredProcess] = None, use_experimental_simulation_loop: bool = False, ) -> computation_base.Computation: """Builds the TFF computation for federated evaluation of the given model. Args: model_fn: A no-arg function that returns a `tff.learning.Model`. This method must *not* capture TensorFlow tensors or variables and use them. The model must be constructed entirely from scratch on each invocation, returning the same pre-constructed model each call will result in an error. broadcast_process: A `tff.templates.MeasuredProcess` that broadcasts the model weights on the server to the clients. It must support the signature `(input_values@SERVER -> output_values@CLIENTS)` and have empty state. If set to default None, the server model is broadcast to the clients using the default tff.federated_broadcast. use_experimental_simulation_loop: Controls the reduce loop function for input dataset. An experimental reduce loop is used for simulation. Returns: A federated computation (an instance of `tff.Computation`) that accepts model parameters and federated data, and returns the evaluation metrics as aggregated by `tff.learning.Model.federated_output_computation`. """ if broadcast_process is not None: if not isinstance(broadcast_process, measured_process.MeasuredProcess): raise ValueError('`broadcast_process` must be a `MeasuredProcess`, got ' f'{type(broadcast_process)}.') if optimizer_utils.is_stateful_process(broadcast_process): raise ValueError( 'Cannot create a federated evaluation with a stateful ' 'broadcast process, must be stateless, has state: ' f'{broadcast_process.initialize.type_signature.result!r}') # Construct the model first just to obtain the metadata and define all the # types needed to define the computations that follow. # TODO(b/124477628): Ideally replace the need for stamping throwaway models # with some other mechanism. with tf.Graph().as_default(): model = model_fn() model_weights_type = model_utils.weights_type_from_model(model) batch_type = computation_types.to_type(model.input_spec) @computations.tf_computation(model_weights_type, SequenceType(batch_type)) @tf.function def client_eval(incoming_model_weights, dataset): """Returns local outputs after evaluting `model_weights` on `dataset`.""" with tf.init_scope(): model = model_fn() model_weights = model_utils.ModelWeights.from_model(model) tf.nest.map_structure(lambda v, t: v.assign(t), model_weights, incoming_model_weights) def reduce_fn(num_examples, batch): model_output = model.forward_pass(batch, training=False) if model_output.num_examples is None: # Compute shape from the size of the predictions if model didn't use the # batch size. return num_examples + tf.shape( model_output.predictions, out_type=tf.int64)[0] else: return num_examples + tf.cast(model_output.num_examples, tf.int64) dataset_reduce_fn = dataset_reduce.build_dataset_reduce_fn( use_experimental_simulation_loop) num_examples = dataset_reduce_fn( reduce_fn=reduce_fn, dataset=dataset, initial_state_fn=lambda: tf.zeros([], dtype=tf.int64)) return collections.OrderedDict( local_outputs=model.report_local_outputs(), num_examples=num_examples) @computations.federated_computation( computation_types.at_server(model_weights_type), computation_types.at_clients(SequenceType(batch_type))) def server_eval(server_model_weights, federated_dataset): if broadcast_process is not None: # TODO(b/179091838): Zip the measurements from the broadcast_process with # the result of `model.federated_output_computation` below to avoid # dropping these metrics. broadcast_output = broadcast_process.next(broadcast_process.initialize(), server_model_weights) client_outputs = intrinsics.federated_map( client_eval, (broadcast_output.result, federated_dataset)) else: client_outputs = intrinsics.federated_map(client_eval, [ intrinsics.federated_broadcast(server_model_weights), federated_dataset ]) model_metrics = model.federated_output_computation( client_outputs.local_outputs) statistics = collections.OrderedDict( num_examples=intrinsics.federated_sum(client_outputs.num_examples)) return intrinsics.federated_zip( collections.OrderedDict(eval=model_metrics, stat=statistics)) return server_eval
[((3079, 3133), 'tensorflow_federated.python.learning.framework.optimizer_utils.is_stateful_process', 'optimizer_utils.is_stateful_process', (['broadcast_process'], {}), '(broadcast_process)\n', (3114, 3133), False, 'from tensorflow_federated.python.learning.framework import optimizer_utils\n'), ((3679, 3721), 'tensorflow_federated.python.learning.model_utils.weights_type_from_model', 'model_utils.weights_type_from_model', (['model'], {}), '(model)\n', (3714, 3721), False, 'from tensorflow_federated.python.learning import model_utils\n'), ((3739, 3782), 'tensorflow_federated.python.core.impl.types.computation_types.to_type', 'computation_types.to_type', (['model.input_spec'], {}), '(model.input_spec)\n', (3764, 3782), False, 'from tensorflow_federated.python.core.impl.types import computation_types\n'), ((4077, 4119), 'tensorflow_federated.python.learning.model_utils.ModelWeights.from_model', 'model_utils.ModelWeights.from_model', (['model'], {}), '(model)\n', (4112, 4119), False, 'from tensorflow_federated.python.learning import model_utils\n'), ((4700, 4772), 'tensorflow_federated.python.learning.framework.dataset_reduce.build_dataset_reduce_fn', 'dataset_reduce.build_dataset_reduce_fn', (['use_experimental_simulation_loop'], {}), '(use_experimental_simulation_loop)\n', (4738, 4772), False, 'from tensorflow_federated.python.learning.framework import dataset_reduce\n'), ((5098, 5145), 'tensorflow_federated.python.core.impl.types.computation_types.at_server', 'computation_types.at_server', (['model_weights_type'], {}), '(model_weights_type)\n', (5125, 5145), False, 'from tensorflow_federated.python.core.impl.types import computation_types\n'), ((4015, 4030), 'tensorflow.init_scope', 'tf.init_scope', ([], {}), '()\n', (4028, 4030), True, 'import tensorflow as tf\n'), ((5666, 5753), 'tensorflow_federated.python.core.impl.federated_context.intrinsics.federated_map', 'intrinsics.federated_map', (['client_eval', '(broadcast_output.result, federated_dataset)'], {}), '(client_eval, (broadcast_output.result,\n federated_dataset))\n', (5690, 5753), False, 'from tensorflow_federated.python.core.impl.federated_context import intrinsics\n'), ((6192, 6252), 'collections.OrderedDict', 'collections.OrderedDict', ([], {'eval': 'model_metrics', 'stat': 'statistics'}), '(eval=model_metrics, stat=statistics)\n', (6215, 6252), False, 'import collections\n'), ((3606, 3616), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (3614, 3616), True, 'import tensorflow as tf\n'), ((6092, 6145), 'tensorflow_federated.python.core.impl.federated_context.intrinsics.federated_sum', 'intrinsics.federated_sum', (['client_outputs.num_examples'], {}), '(client_outputs.num_examples)\n', (6116, 6145), False, 'from tensorflow_federated.python.core.impl.federated_context import intrinsics\n'), ((4630, 4674), 'tensorflow.cast', 'tf.cast', (['model_output.num_examples', 'tf.int64'], {}), '(model_output.num_examples, tf.int64)\n', (4637, 4674), True, 'import tensorflow as tf\n'), ((4907, 4935), 'tensorflow.zeros', 'tf.zeros', (['[]'], {'dtype': 'tf.int64'}), '([], dtype=tf.int64)\n', (4915, 4935), True, 'import tensorflow as tf\n'), ((5844, 5896), 'tensorflow_federated.python.core.impl.federated_context.intrinsics.federated_broadcast', 'intrinsics.federated_broadcast', (['server_model_weights'], {}), '(server_model_weights)\n', (5874, 5896), False, 'from tensorflow_federated.python.core.impl.federated_context import intrinsics\n'), ((4518, 4571), 'tensorflow.shape', 'tf.shape', (['model_output.predictions'], {'out_type': 'tf.int64'}), '(model_output.predictions, out_type=tf.int64)\n', (4526, 4571), True, 'import tensorflow as tf\n')]
joaompinto/pylibcontainer
pylibcontainer/image.py
794f12e7511dc2452521bad040a7873eff40f50b
from __future__ import print_function import os import shutil import hashlib import requests import click from tempfile import NamedTemporaryFile from hashlib import sha256 from os.path import expanduser, join, exists, basename from .utils import HumanSize from .tar import extract_layer from . import trust from . import container from .colorhelper import print_info, print_error, print_warn, print_success from .colorhelper import success from .image_index import get_url from clint.textui import progress from dateutil.parser import parse as parsedate from datetime import datetime CACHE_PATH = join(expanduser("~"), ".pylibcontainer", "images_cache") class Cache(object): cache_dir = CACHE_PATH """ Provides an image caching mechanism on disk """ def __init__(self): if not exists(CACHE_PATH): os.makedirs(CACHE_PATH, 0o700) def get(self, cache_key, default=None): """ return info for cached file """ cache_hash = sha256(cache_key.encode()).hexdigest() cache_fn = join(CACHE_PATH, "url_" + cache_hash) if exists(cache_fn): file_stat = os.stat(cache_fn) last_modified = datetime.fromtimestamp(file_stat.st_mtime) file_size = file_stat.st_size return cache_fn, cache_hash, last_modified, file_size return default def put(self, filename, cache_key): """ put a file into cache """ cache_hash = sha256(cache_key.encode()).hexdigest() cache_fn = join(CACHE_PATH, "url_" + cache_hash) shutil.move(filename, cache_fn) return cache_hash, cache_fn def download(image_url): """ Download image (if not found in cache) and return it's filename """ response = requests.head(image_url) file_size = remote_file_size = int(response.headers.get("Content-Length")) remote_last_modified = parsedate(response.headers.get("Last-Modified")).replace( tzinfo=None ) remote_is_valid = response.status_code == 200 and file_size and remote_last_modified # Check if image is on cache cache = Cache() cached_image = cache.get(image_url) if cached_image: if remote_is_valid: cache_fn, cache_hash, last_modified, file_size = cached_image if remote_file_size == file_size and remote_last_modified < last_modified: print_info("Using file from cache", CACHE_PATH) return cache_hash, cache_fn print_info("Downloading new remote file because an update was found") else: print_warn("Unable to check the status for " + image_url) print_warn("Assuming local cache is valid") # Not cached, and no valid remote information was found if not remote_is_valid: print_error( "Unable to get file, http_code=%s, size=%s, last_modified=%s" % (response.status_code, remote_file_size, remote_last_modified) ) exit(2) # Dowload image print_info( "Downloading image... ", "{0} [{1:.2S}]".format(basename(image_url), HumanSize(file_size)), ) remote_sha256 = hashlib.sha256() response = requests.get(image_url, stream=True) with NamedTemporaryFile(delete=False) as tmp_file: for chunk in progress.bar( response.iter_content(chunk_size=1024), expected_size=(file_size / 1024) + 1 ): if chunk: remote_sha256.update(chunk) tmp_file.write(chunk) tmp_file.flush() # Verify image integrity trust_verify = trust.verify(image_url, tmp_file.name, remote_sha256.hexdigest()) if not trust_verify or not trust_verify.valid or not trust_verify.username: print_error("Integrity/authenticity error - GPG signature mismatch!") exit(3) print("{0:>10}: {1}".format("GPG Signer", success(trust_verify.username))) print("{0:>10}: {1}".format("GPG ID", success(trust_verify.pubkey_fingerprint))) print("{0:>10}: {1}".format("Creation", success(trust_verify.creation_date))) return cache.put(tmp_file.name, image_url) @click.command() @click.argument("image_url") @click.option("--as_root", is_flag=True) @click.option("--overlay", "-o", multiple=True) @click.argument("command", nargs=-1) def run(image_url, command, as_root, overlay): url = get_url(image_url) image_url = url or image_url if not image_url: print_info("No index was found for image", image_url) exit(5) is_validate_only = False if not command: command = ["/bin/sh"] image_protocol = image_url.split(":")[0].lower() if image_protocol in ["http", "https"]: _, image_fn = download(image_url) else: _, image_fn = sha256(image_url).hexdigest(), image_url rootfs = extract_layer(image_fn) if len(command) == 1 and command[0] == "-": is_validate_only = True print("Validating container setup with the rootfs") else: print_info("Executing", " ".join(command)) _, exit_code = container.runc(rootfs, command, as_root, overlay) if exit_code != 0: print_error("Last command returned an error") elif is_validate_only: print_success("OK")
[((4116, 4131), 'click.command', 'click.command', ([], {}), '()\n', (4129, 4131), False, 'import click\n'), ((4133, 4160), 'click.argument', 'click.argument', (['"""image_url"""'], {}), "('image_url')\n", (4147, 4160), False, 'import click\n'), ((4162, 4201), 'click.option', 'click.option', (['"""--as_root"""'], {'is_flag': '(True)'}), "('--as_root', is_flag=True)\n", (4174, 4201), False, 'import click\n'), ((4203, 4249), 'click.option', 'click.option', (['"""--overlay"""', '"""-o"""'], {'multiple': '(True)'}), "('--overlay', '-o', multiple=True)\n", (4215, 4249), False, 'import click\n'), ((4251, 4286), 'click.argument', 'click.argument', (['"""command"""'], {'nargs': '(-1)'}), "('command', nargs=-1)\n", (4265, 4286), False, 'import click\n'), ((604, 619), 'os.path.expanduser', 'expanduser', (['"""~"""'], {}), "('~')\n", (614, 619), False, 'from os.path import expanduser, join, exists, basename\n'), ((1738, 1762), 'requests.head', 'requests.head', (['image_url'], {}), '(image_url)\n', (1751, 1762), False, 'import requests\n'), ((3134, 3150), 'hashlib.sha256', 'hashlib.sha256', ([], {}), '()\n', (3148, 3150), False, 'import hashlib\n'), ((3166, 3202), 'requests.get', 'requests.get', (['image_url'], {'stream': '(True)'}), '(image_url, stream=True)\n', (3178, 3202), False, 'import requests\n'), ((1034, 1071), 'os.path.join', 'join', (['CACHE_PATH', "('url_' + cache_hash)"], {}), "(CACHE_PATH, 'url_' + cache_hash)\n", (1038, 1071), False, 'from os.path import expanduser, join, exists, basename\n'), ((1084, 1100), 'os.path.exists', 'exists', (['cache_fn'], {}), '(cache_fn)\n', (1090, 1100), False, 'from os.path import expanduser, join, exists, basename\n'), ((1505, 1542), 'os.path.join', 'join', (['CACHE_PATH', "('url_' + cache_hash)"], {}), "(CACHE_PATH, 'url_' + cache_hash)\n", (1509, 1542), False, 'from os.path import expanduser, join, exists, basename\n'), ((1551, 1582), 'shutil.move', 'shutil.move', (['filename', 'cache_fn'], {}), '(filename, cache_fn)\n', (1562, 1582), False, 'import shutil\n'), ((3212, 3244), 'tempfile.NamedTemporaryFile', 'NamedTemporaryFile', ([], {'delete': '(False)'}), '(delete=False)\n', (3230, 3244), False, 'from tempfile import NamedTemporaryFile\n'), ((803, 821), 'os.path.exists', 'exists', (['CACHE_PATH'], {}), '(CACHE_PATH)\n', (809, 821), False, 'from os.path import expanduser, join, exists, basename\n'), ((835, 863), 'os.makedirs', 'os.makedirs', (['CACHE_PATH', '(448)'], {}), '(CACHE_PATH, 448)\n', (846, 863), False, 'import os\n'), ((1126, 1143), 'os.stat', 'os.stat', (['cache_fn'], {}), '(cache_fn)\n', (1133, 1143), False, 'import os\n'), ((1172, 1214), 'datetime.datetime.fromtimestamp', 'datetime.fromtimestamp', (['file_stat.st_mtime'], {}), '(file_stat.st_mtime)\n', (1194, 1214), False, 'from datetime import datetime\n'), ((3064, 3083), 'os.path.basename', 'basename', (['image_url'], {}), '(image_url)\n', (3072, 3083), False, 'from os.path import expanduser, join, exists, basename\n'), ((4746, 4763), 'hashlib.sha256', 'sha256', (['image_url'], {}), '(image_url)\n', (4752, 4763), False, 'from hashlib import sha256\n')]
michel117/robotframework-doctestlibrary
utest/test_compareimage.py
305b220b73846bd389c47d74c2e0431c7bfaff94
from DocTest.CompareImage import CompareImage import pytest from pathlib import Path import numpy def test_single_png(testdata_dir): img = CompareImage(testdata_dir / 'text_big.png') assert len(img.opencv_images)==1 assert type(img.opencv_images)==list type(img.opencv_images[0])==numpy.ndarray def test_single_pdf(testdata_dir): pass def test_multipage_pdf(testdata_dir): pass def test_huge_pdf(testdata_dir): pass def test_image_text_content(testdata_dir): pass def test_pdf_text_content(testdata_dir): pass def test_non_existing_file(testdata_dir): with pytest.raises(AssertionError): img = CompareImage(testdata_dir / 'does_not_exist.png') def test_corrupt_image(testdata_dir): with pytest.raises(AssertionError): img = CompareImage(testdata_dir / 'corrupt_image.png') def test_corrupt_pdf(testdata_dir): with pytest.raises(AssertionError): img = CompareImage(testdata_dir / 'corrupt_pdf.pdf')
[((144, 187), 'DocTest.CompareImage.CompareImage', 'CompareImage', (["(testdata_dir / 'text_big.png')"], {}), "(testdata_dir / 'text_big.png')\n", (156, 187), False, 'from DocTest.CompareImage import CompareImage\n'), ((604, 633), 'pytest.raises', 'pytest.raises', (['AssertionError'], {}), '(AssertionError)\n', (617, 633), False, 'import pytest\n'), ((649, 698), 'DocTest.CompareImage.CompareImage', 'CompareImage', (["(testdata_dir / 'does_not_exist.png')"], {}), "(testdata_dir / 'does_not_exist.png')\n", (661, 698), False, 'from DocTest.CompareImage import CompareImage\n'), ((755, 784), 'pytest.raises', 'pytest.raises', (['AssertionError'], {}), '(AssertionError)\n', (768, 784), False, 'import pytest\n'), ((800, 848), 'DocTest.CompareImage.CompareImage', 'CompareImage', (["(testdata_dir / 'corrupt_image.png')"], {}), "(testdata_dir / 'corrupt_image.png')\n", (812, 848), False, 'from DocTest.CompareImage import CompareImage\n'), ((895, 924), 'pytest.raises', 'pytest.raises', (['AssertionError'], {}), '(AssertionError)\n', (908, 924), False, 'import pytest\n'), ((940, 986), 'DocTest.CompareImage.CompareImage', 'CompareImage', (["(testdata_dir / 'corrupt_pdf.pdf')"], {}), "(testdata_dir / 'corrupt_pdf.pdf')\n", (952, 986), False, 'from DocTest.CompareImage import CompareImage\n')]
haruiz/PytorchCvStudio
cvstudio/view/widgets/labels_tableview/__init__.py
ccf79dd0cc0d61f3fd01b1b5d96f7cda7b681eef
from .labels_tableview import LabelsTableView
[]
vishalbelsare/ags_nlp_solver
experiments/solve_different_methods.py
3558e8aae5507285d0c5e74f163c01d09a9cb805
import functools import numpy as np import math import argparse import ags_solver import go_problems import nlopt import sys from Simple import SimpleTuner import itertools from scipy.spatial import Delaunay from scipy.optimize import differential_evolution from scipy.optimize import basinhopping from sdaopt import sda from stochopy import Evolutionary from pyOpt import Optimization from pyOpt import MIDACO import pyOpt from shgo import shgo from benchmark_tools.core import Solver, solve_class, GrishClass, GKLSClass from benchmark_tools.plot import plot_cmcs from benchmark_tools.stats import save_stats, compute_stats class AGSWrapper(Solver): def __init__(self, dist_stop, max_iters, class_name, eps=0.01, mixedFast=False): params = self.class_name2params(class_name) params.mixedFastMode = mixedFast if dist_stop: params.eps = 0 params.itersLimit = max_iters self.solver = ags_solver.Solver() self.solver.SetParameters(params) self.dist_stop = dist_stop self.eps = eps def class_name2params(self, name): params = ags_solver.Parameters() if 'grish' in name: params.r = 3 elif 'gklss2' in name: params.r = 4.6 elif 'gklsh2' in name: params.r = 6.5 elif 'gklss3' in name: params.r = 3.7 elif 'gklsh3' in name: params.r = 4.4 elif 'gklss4' in name: params.r = 4.7 elif 'gklsh4' in name: params.r = 4.9 elif 'gklss5' in name: params.r = 4 params.evolventDensity = 10 elif 'gklsh5' in name: params.r = 4 params.evolventDensity = 10 return params def Solve(self, problem): self.solver.SetProblem([lambda x: problem.Calculate(x)], *problem.GetBounds()) #self.solver.SetProblem(problem) if not self.dist_stop: point, val, idx = self.solver.Solve() else: opt_pt = np.array(problem.GetOptimumPoint()) point, val, idx = self.solver.Solve(lambda x: np.linalg.norm(np.array(x)-opt_pt, np.inf) < self.eps) #calcCounters = self.solver.GetCalculationsStatistics() calcCounters = problem.GetCalculationsStatistics() return point, val, calcCounters class SDAWrapper: def __init__(self, dist_stop, max_iters, class_name, eps=0.01): self.dist_stop = dist_stop self.eps = eps self.max_iters = max_iters self.class_name = class_name def Solve(self, problem): lb, ub = problem.GetBounds() ret = sda(lambda x: problem.Calculate(x), None, bounds=list(zip(lb, ub)), \ seed=100, maxfun=self.max_iters, visit=2.72, maxiter=self.max_iters) n_evals = problem.GetCalculationsStatistics() return ret.x, ret.fun, n_evals class SCBasinhoppingWrapper: def __init__(self, dist_stop, max_iters, class_name, eps=0.01): self.dist_stop = dist_stop self.eps = eps self.max_iters = max_iters self.class_name = class_name def Solve(self, problem): lb, ub = problem.GetBounds() #pop_size = self.class_name2params(self.class_name) class MyBounds(object): def __init__(self, xmax=[1.1,1.1], xmin=[-1.1,-1.1] ): self.xmax = np.array(xmax) self.xmin = np.array(xmin) def __call__(self, **kwargs): x = kwargs["x_new"] tmax = bool(np.all(x <= self.xmax)) tmin = bool(np.all(x >= self.xmin)) return tmax and tmin x0 = [.5]*problem.GetDimension() result = \ basinhopping(lambda x: problem.Calculate(x), x0, accept_test=MyBounds(ub, lb), seed=100, T=10, stepsize=0.3) n_evals = problem.GetCalculationsStatistics() return result.x, result.fun, n_evals class SCDEWrapper(Solver): def __init__(self, dist_stop, max_iters, class_name, eps=0.01): self.dist_stop = dist_stop self.eps = eps self.max_iters = max_iters self.class_name = class_name def class_name2params(self, name): if 'grish' in name: popsize = 60 elif 'gklss2' in name: popsize = 60 elif 'gklsh2' in name: popsize = 60 elif 'gklss3' in name: popsize = 70 elif 'gklsh3' in name: popsize = 80 elif 'gklss4' in name: popsize = 90 elif 'gklsh4' in name: popsize = 100 elif 'gklss5' in name: popsize = 120 elif 'gklsh5' in name: popsize = 140 return popsize def Solve(self, problem): lb, ub = problem.GetBounds() bounds = [(l, u) for l, u in zip(lb, ub)] pop_size = self.class_name2params(self.class_name) result = \ differential_evolution( lambda x: problem.Calculate(x), bounds, mutation=(1.1,1.9), tol=1e-12, maxiter=int(float(self.max_iters) / (pop_size*problem.GetDimension())), popsize=pop_size, disp=False, seed=100) n_evals = problem.GetCalculationsStatistics() return result.x, result.fun, n_evals class PyEvolveWrapper(Solver): def __init__(self, dist_stop, max_iters, class_name, eps=0.01): self.dist_stop = dist_stop self.eps = eps def Solve(self, problem): lb, ub = problem.GetBounds() # Genome instance genome = G1DList.G1DList(2) genome.setParams(rangemin=lb[0], rangemax=ub[0], bestRawScore=-100, roundDecimal=2) genome.initializator.set(Initializators.G1DListInitializatorReal) genome.mutator.set(Mutators.G1DListMutatorRealGaussian) # The evaluator function (objective function) genome.evaluator.set(lambda x: problem.Calculate(x) + 100) # Genetic Algorithm Instance ga = GSimpleGA.GSimpleGA(genome) ga.selector.set(Selectors.GRouletteWheel) ga.minimax = Consts.minimaxType["minimize"] ga.setGenerations(5000) ga.setMutationRate(0.05) ga.terminationCriteria.set(GSimpleGA.ConvergenceCriteria) # Do the evolution, with stats dump # frequency of 10 generations ga.evolve(freq_stats=100) # Best individual best = ga.bestIndividual() print ("\nBest individual score: %.2f" % (best.score - 100,)) print (best) from bayes_opt import BayesianOptimization class BOptWrapper: def __init__(self, dist_stop, max_iters, class_name, eps=0.01): self.dist_stop = dist_stop self.eps = eps def Solve(self, problem): lb, ub = problem.GetBounds() bo = BayesianOptimization(lambda x, y: -problem.Calculate([x, y]), {'x': (lb[0], ub[0]), 'y': (lb[1], ub[1])}) bo.maximize(init_points=5, n_iter=20, kappa=1.5) n_evals = problem.GetCalculationsStatistics() opt_val = -bo.res['max']['max_val'] opt_point = [bo.res['max']['max_params']['x'], bo.res['max']['max_params']['y']] return opt_point, opt_val, n_evals class SimpleWrapper: def __init__(self, dist_stop, max_iters, class_name, eps=0.01): self.dist_stop = dist_stop self.eps = eps self.max_iters = max_iters self.exploration = self.class_name2params(class_name) def class_name2params(self, name): if 'grish' in name: return 0.1 elif 'gklss2' in name: return 0.15 elif 'gklsh2' in name: return 0.15 elif 'gklss3' in name: return 0.15 elif 'gklsh3' in name: return 0.25 elif 'gklss4' in name: return 0.2 elif 'gklsh4' in name: return 0.25 def Solve(self, problem): objective_function = lambda x: -problem.Calculate(x) lb, ub = problem.GetBounds() opt_pt = problem.GetOptimumPoint() bounds = [[l, u] for l, u in zip(lb, ub)] points = np.array([point for point in itertools.product(*bounds)]) tri = Delaunay(points) optimization_domain_vertices = points[tri.simplices] exploration = self.exploration # optional, default 0.15 tuner = SimpleTuner(optimization_domain_vertices, objective_function, \ exploration_preference=exploration, stop_criterion=lambda x:np.linalg.norm(np.array(x)-opt_pt, np.inf) < self.eps) tuner.optimize(self.max_iters) opt_val, opt_point = tuner.get_best() #tuner.plot() # only works in 2D n_evals = problem.GetCalculationsStatistics() return opt_point, -opt_val, n_evals class NLOptWrapper: def __init__(self, dist_stop, max_iters, class_name, method=nlopt.GD_STOGO, eps=0.01): self.dist_stop = dist_stop self.eps = eps self.method = method self.max_iters = max_iters self.pop_size = self.class_name2params(class_name) def class_name2params(self, name): if 'grish' in name: popsize = 150 elif 'gklss2' in name: popsize = 200 elif 'gklsh2' in name: popsize = 400 elif 'gklss3' in name: popsize = 1000 elif 'gklsh3' in name: popsize = 2000 elif 'gklss4' in name: popsize = 8000 elif 'gklsh4' in name: popsize = 16000 elif 'gklss5' in name: popsize = 25000 elif 'gklsh5' in name: popsize = 30000 return popsize def Solve(self, problem): lb, ub = problem.GetBounds() self.opt = nlopt.opt(self.method, problem.GetDimension()) self.opt.set_local_optimizer(nlopt.opt(nlopt.LN_SBPLX, problem.GetDimension())) self.opt.set_lower_bounds(lb) self.opt.set_upper_bounds(ub) self.opt.set_min_objective(lambda x, grad: problem.Calculate(x)) self.opt.set_maxeval(self.max_iters) self.opt.set_xtol_rel(1e-13) if self.method == nlopt.GN_CRS2_LM: self.opt.set_population(self.pop_size) x = self.opt.optimize([.5]*problem.GetDimension()) minf = self.opt.last_optimum_value() n_evals = problem.GetCalculationsStatistics() return x, minf, n_evals class StochOpyWrapper: def __init__(self, dist_stop, max_iters, class_name, eps=0.01): self.dist_stop = dist_stop self.eps = eps self.max_iters = max_iters self.popsize = self.class_name2params(class_name) def class_name2params(self, name): if 'grish' in name: popsize = 60 elif 'gklss2' in name: popsize = 60 elif 'gklsh2' in name: popsize = 60 elif 'gklss3' in name: popsize = 70 elif 'gklsh3' in name: popsize = 80 elif 'gklss4' in name: popsize = 90 elif 'gklsh4' in name: popsize = 100 elif 'gklss5' in name: popsize = 120 elif 'gklsh5' in name: popsize = 140 return popsize def Solve(self, problem): objective_function = lambda x: 50 + problem.Calculate(x) lb, ub = problem.GetBounds() ea = Evolutionary(objective_function, lower=lb, upper=ub, popsize=self.popsize, \ max_iter=int(self.max_iters/self.popsize), eps1=1e-16, eps2=1e-16) xopt, gfit = ea.optimize(solver='cpso', sync=False, CR=0.4, F=0.5) n_evals = problem.GetCalculationsStatistics() return xopt, gfit, n_evals class PyOptWrapper: def __init__(self, dist_stop, max_iters, class_name, eps=0.01): self.dist_stop = dist_stop self.eps = eps self.max_iters = max_iters def Solve(self, problem): objective_function = lambda x: [problem.Calculate(x), 0, 0] lb, ub = problem.GetBounds() opt_prob = pyOpt.Optimization('Problem', objective_function) opt_prob.addObj('f') for i in range(problem.GetDimension()): opt_prob.addVar('x'+str(i),'c',lower=lb[i],upper=ub[i],value=(lb[i] + ub[i])/2.) midaco_none = MIDACO(pll_type=None) midaco_none.setOption('IPRINT',-1) midaco_none.setOption('ISEED', 100) midaco_none.setOption('MAXEVAL',self.max_iters) midaco_none.setOption('FOCUS', -4) fstr, xstr, inform = midaco_none(opt_prob) n_evals = problem.GetCalculationsStatistics() return xstr, fstr[0], n_evals class SHGOWrapper: def __init__(self, dist_stop, max_iters, class_name, eps=0.01): self.dist_stop = dist_stop self.eps = eps self.max_iters = max_iters def Solve(self, problem): objective_function = lambda x: problem.Calculate(x) bounds = zip(*problem.GetBounds()) opts = {'maxfev': self.max_iters} result = shgo(objective_function, bounds, options=opts) n_evals = problem.GetCalculationsStatistics() return result.x, result.fun, n_evals algos = {'scd': SCDEWrapper, 'ags': AGSWrapper, 'agsd': functools.partial(AGSWrapper, mixedFast=True), 'direct': functools.partial(NLOptWrapper, method=nlopt.GN_ORIG_DIRECT), 'directl': functools.partial(NLOptWrapper, method=nlopt.GN_ORIG_DIRECT_L), 'stogo': functools.partial(NLOptWrapper, method=nlopt.GD_STOGO), 'mlsl': functools.partial(NLOptWrapper, method=nlopt.G_MLSL_LDS), 'crs': functools.partial(NLOptWrapper, method=nlopt.GN_CRS2_LM), 'simple': SimpleWrapper, 'scb': SCBasinhoppingWrapper, 'sda': SDAWrapper, 'stochopy': StochOpyWrapper, 'shgo': SHGOWrapper, 'pyopt': PyOptWrapper} algo2cature = {'scd': 'Scipy DE', 'ags': 'AGS', 'direct': 'DIRECT', 'agsd': 'AGSd', 'directl': 'DIRECTl', 'simple': 'Simple', 'stogo': 'StoGO', 'mlsl': 'MLSL', 'crs':'CRS', 'scb': 'Scipy B-H', 'sda': 'SDA', 'stochopy': 'Stochopy', 'pysot': 'PySOT', 'pyopt': 'PyOpt', 'shgo': 'SHGO'} serg_eps = {2: 0.01, 3: 0.01, 4: math.pow(1e-6, 1./4), 5: math.pow(1e-7, 1./5)} def main(args): wrapper_class = algos[args.algo] if args.problems_class == 'grish': problems = GrishClass() else: assert args.problems_dim > 1 and args.problems_dim < 6 if args.problems_class == 'gklss': problems = GKLSClass(args.problems_dim, go_problems.GKLSClass.Simple) else: problems = GKLSClass(args.problems_dim, go_problems.GKLSClass.Hard) eps = 0.01 if args.serg_eps: eps = serg_eps[args.problems_dim] wrapper = wrapper_class(args.dist_stop, args.max_iters, args.problems_class+str(args.problems_dim), eps=0.01) calc_stats, solved_status = solve_class(problems, wrapper, verbose=args.verbose, eps_check=eps) stats = compute_stats(calc_stats, solved_status) print('Problems solved: {}'.format(stats['num_solved'])) for i, avg in enumerate(stats['avg_calcs'][:-1]): print('Average number of calculations of constraint #{}: {}'.format(i, avg)) print('Average number of calculations of objective: {}'.format(stats['avg_calcs'][-1])) #plot_cmcs([stats['cmc']], captures=[algo2cature(args.algo)], show=True, filename='') save_stats(stats, args.stats_fname, capture=algo2cature[args.algo]) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Sample for AGS solver') parser.add_argument('--max_iters', type=int, default=10000, help='limit of iterations for the method') parser.add_argument('--problems_class', type=str, choices=['grish','gklss','gklsh'], default='grish') parser.add_argument('--algo', type=str, choices=algos.keys(), default='scd') parser.add_argument('--problems_dim', type=int, default=2) parser.add_argument('--verbose', action='store_true', help='Print additional info to console') parser.add_argument('--dist_stop', action='store_true', help='Stop algorithm then the next point is close enough to the optimum') parser.add_argument('--serg_eps', action='store_true') parser.add_argument('--stats_fname', type=str, default='') main(parser.parse_args())
[((13158, 13203), 'functools.partial', 'functools.partial', (['AGSWrapper'], {'mixedFast': '(True)'}), '(AGSWrapper, mixedFast=True)\n', (13175, 13203), False, 'import functools\n'), ((13224, 13284), 'functools.partial', 'functools.partial', (['NLOptWrapper'], {'method': 'nlopt.GN_ORIG_DIRECT'}), '(NLOptWrapper, method=nlopt.GN_ORIG_DIRECT)\n', (13241, 13284), False, 'import functools\n'), ((13306, 13368), 'functools.partial', 'functools.partial', (['NLOptWrapper'], {'method': 'nlopt.GN_ORIG_DIRECT_L'}), '(NLOptWrapper, method=nlopt.GN_ORIG_DIRECT_L)\n', (13323, 13368), False, 'import functools\n'), ((13388, 13442), 'functools.partial', 'functools.partial', (['NLOptWrapper'], {'method': 'nlopt.GD_STOGO'}), '(NLOptWrapper, method=nlopt.GD_STOGO)\n', (13405, 13442), False, 'import functools\n'), ((13461, 13517), 'functools.partial', 'functools.partial', (['NLOptWrapper'], {'method': 'nlopt.G_MLSL_LDS'}), '(NLOptWrapper, method=nlopt.G_MLSL_LDS)\n', (13478, 13517), False, 'import functools\n'), ((13535, 13591), 'functools.partial', 'functools.partial', (['NLOptWrapper'], {'method': 'nlopt.GN_CRS2_LM'}), '(NLOptWrapper, method=nlopt.GN_CRS2_LM)\n', (13552, 13591), False, 'import functools\n'), ((14130, 14154), 'math.pow', 'math.pow', (['(1e-06)', '(1.0 / 4)'], {}), '(1e-06, 1.0 / 4)\n', (14138, 14154), False, 'import math\n'), ((14155, 14179), 'math.pow', 'math.pow', (['(1e-07)', '(1.0 / 5)'], {}), '(1e-07, 1.0 / 5)\n', (14163, 14179), False, 'import math\n'), ((14821, 14888), 'benchmark_tools.core.solve_class', 'solve_class', (['problems', 'wrapper'], {'verbose': 'args.verbose', 'eps_check': 'eps'}), '(problems, wrapper, verbose=args.verbose, eps_check=eps)\n', (14832, 14888), False, 'from benchmark_tools.core import Solver, solve_class, GrishClass, GKLSClass\n'), ((14901, 14941), 'benchmark_tools.stats.compute_stats', 'compute_stats', (['calc_stats', 'solved_status'], {}), '(calc_stats, solved_status)\n', (14914, 14941), False, 'from benchmark_tools.stats import save_stats, compute_stats\n'), ((15330, 15397), 'benchmark_tools.stats.save_stats', 'save_stats', (['stats', 'args.stats_fname'], {'capture': 'algo2cature[args.algo]'}), '(stats, args.stats_fname, capture=algo2cature[args.algo])\n', (15340, 15397), False, 'from benchmark_tools.stats import save_stats, compute_stats\n'), ((15439, 15499), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Sample for AGS solver"""'}), "(description='Sample for AGS solver')\n", (15462, 15499), False, 'import argparse\n'), ((944, 963), 'ags_solver.Solver', 'ags_solver.Solver', ([], {}), '()\n', (961, 963), False, 'import ags_solver\n'), ((1121, 1144), 'ags_solver.Parameters', 'ags_solver.Parameters', ([], {}), '()\n', (1142, 1144), False, 'import ags_solver\n'), ((8158, 8174), 'scipy.spatial.Delaunay', 'Delaunay', (['points'], {}), '(points)\n', (8166, 8174), False, 'from scipy.spatial import Delaunay\n'), ((11978, 12027), 'pyOpt.Optimization', 'pyOpt.Optimization', (['"""Problem"""', 'objective_function'], {}), "('Problem', objective_function)\n", (11996, 12027), False, 'import pyOpt\n'), ((12220, 12241), 'pyOpt.MIDACO', 'MIDACO', ([], {'pll_type': 'None'}), '(pll_type=None)\n', (12226, 12241), False, 'from pyOpt import MIDACO\n'), ((12946, 12992), 'shgo.shgo', 'shgo', (['objective_function', 'bounds'], {'options': 'opts'}), '(objective_function, bounds, options=opts)\n', (12950, 12992), False, 'from shgo import shgo\n'), ((14290, 14302), 'benchmark_tools.core.GrishClass', 'GrishClass', ([], {}), '()\n', (14300, 14302), False, 'from benchmark_tools.core import Solver, solve_class, GrishClass, GKLSClass\n'), ((14442, 14500), 'benchmark_tools.core.GKLSClass', 'GKLSClass', (['args.problems_dim', 'go_problems.GKLSClass.Simple'], {}), '(args.problems_dim, go_problems.GKLSClass.Simple)\n', (14451, 14500), False, 'from benchmark_tools.core import Solver, solve_class, GrishClass, GKLSClass\n'), ((14538, 14594), 'benchmark_tools.core.GKLSClass', 'GKLSClass', (['args.problems_dim', 'go_problems.GKLSClass.Hard'], {}), '(args.problems_dim, go_problems.GKLSClass.Hard)\n', (14547, 14594), False, 'from benchmark_tools.core import Solver, solve_class, GrishClass, GKLSClass\n'), ((3378, 3392), 'numpy.array', 'np.array', (['xmax'], {}), '(xmax)\n', (3386, 3392), True, 'import numpy as np\n'), ((3421, 3435), 'numpy.array', 'np.array', (['xmin'], {}), '(xmin)\n', (3429, 3435), True, 'import numpy as np\n'), ((3542, 3564), 'numpy.all', 'np.all', (['(x <= self.xmax)'], {}), '(x <= self.xmax)\n', (3548, 3564), True, 'import numpy as np\n'), ((3594, 3616), 'numpy.all', 'np.all', (['(x >= self.xmin)'], {}), '(x >= self.xmin)\n', (3600, 3616), True, 'import numpy as np\n'), ((8115, 8141), 'itertools.product', 'itertools.product', (['*bounds'], {}), '(*bounds)\n', (8132, 8141), False, 'import itertools\n'), ((2144, 2155), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (2152, 2155), True, 'import numpy as np\n'), ((8487, 8498), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (8495, 8498), True, 'import numpy as np\n')]
mattyschell/geodatabase-toiler
src/py/fc.py
c8231999c3156bf41f9b80f151085afa97ba8586
import arcpy import logging import pathlib import subprocess import gdb import cx_sde class Fc(object): def __init__(self ,gdb ,name): # gdb object self.gdb = gdb # ex BUILDING self.name = name.upper() # esri tools usually expect this C:/sdefiles/bldg.sde/BUILDING # also acceptable: C:/sdefiles/bldg.sde/BLDG.BUILDING self.featureclass = self.gdb.sdeconn + "/" + self.name def getfields(self): desc = arcpy.Describe(self.featureclass) fields = desc.fields fieldsameslist = [] for field in fields: fieldsameslist.append(field.name) return fieldsameslist def exists(self): return arcpy.Exists(self.featureclass) def delete(self): logging.info('deleting {0}'.format(self.name)) desc = arcpy.Describe(self.featureclass) if desc.IsArchived == True: # disable archving and axe the _H table arcpy.DisableArchiving_management(self.featureclass, 'DELETE') arcpy.Delete_management(self.featureclass) def locksexist(self): if arcpy.TestSchemaLock(self.featureclass): # "True A schema lock can be applied to the dataset" return False else: return True def interpret(self ,resobject): # could also work with resobject.status output = 0 if 'succeeded' not in resobject.getMessages().lower(): output = 1 logging.warn('response code is {0}'.format(resobject.status)) logging.warn('response messages are {0}'.format(resobject.getMessages())) return output def version(self): # https://pro.arcgis.com/en/pro-app/tool-reference/data-management/register-as-versioned.htm logging.info('versioning {0}'.format(self.name)) arcpy.RegisterAsVersioned_management(self.featureclass ,"NO_EDITS_TO_BASE") # https://support.esri.com/en/technical-article/000023226 # When an ArcGIS 10.8 / ArcGIS Pro 2.5 (or newer) client connects to a # 10.7.1, or earlier, release of an Enterprise geodatabase in Oracle, # and registers the data as versioned, the versioned view is not created # for the associated table or feature class. # I cant get this shell out to python27 to work # so like I dummy I'm gonna print it to the screen for now # the test will fail until I (or esri) get it right, thats honest at least py2versionedviews = pathlib.Path(__file__).parent.parent \ .joinpath('py27') \ .joinpath('create_versionedviews.py') # see gdb class for this path, perhaps 'C:\Python27\ArcGIS10.6' callcmd = r'{0} {1} {2}'.format(self.gdb.arcpy2path, py2versionedviews, self.name) logging.info('YOU MUST CREATE versioned views from py27 using {0}'.format(callcmd)) logging.info('YOU YES YOU MUST call this: {0}'.format(callcmd)) # From a script run a postprocess something like: # C:\Python27\ArcGIS10.6\python.exe C:\matt_projects\geodatabase-toiler\src\py27\create_versionedviews.py TOILERTESTFC # exit_code = subprocess.call(callcmd,shell=True) # exit_code = subprocess.run([self.gdb.arcpy2path, 'C:\matt_projects\geodatabase-toiler\src\py27\create_versionedviews.py']) # subprocess.Popen(["virtualenv1/bin/python", "my_script.py"]) # attempts above yield # File "C:\Program Files\ArcGIS\Pro\bin\Python\envs\arcgispro-py3\Lib\site.py", line 177 #file=sys.stderr) # ^ # SyntaxError: invalid syntax def trackedits(self): # https://pro.arcgis.com/en/pro-app/tool-reference/data-management/enable-editor-tracking.htm # this will create fields only if they dont exist # I am gonna fix the field names here. Reminder that our goal is to # be opinionated and consistent across anything we manage logging.info('enabling editor tracking on {0}'.format(self.name)) return self.interpret(arcpy.EnableEditorTracking_management(self.featureclass ,'CREATED_USER' ,'CREATED_DATE' ,'LAST_EDITED_USER' ,'LAST_EDITED_DATE' ,'NO_ADD_FIELDS' ,'UTC')) def grantprivileges(self ,user ,edits='GRANT'): # or AS_IS # https://pro.arcgis.com/en/pro-app/tool-reference/data-management/change-privileges.htm # caller should know who editors are we dont concern ourselves here # always grant select, edits are GRANT or AS_IS for grant select only # The nobs and dials on this tool are confounding logging.info('granting privileges on {0} to {1}'.format(self.name ,user)) return self.interpret(arcpy.ChangePrivileges_management(self.featureclass ,user ,'GRANT' ,edits)) def index(self ,column): # https://pro.arcgis.com/en/pro-app/tool-reference/data-management/add-attribute-index.htm # unique indexes cant be specified for multiversioned tables logging.info('indexing column {0} on {1}'.format(column ,self.name)) # BUILDINGBINIX # BUILDING_HISTORICDOITT_IDIX = 27 careful friend return self.interpret(arcpy.AddIndex_management(self.featureclass ,column ,'{0}{1}{2}'.format(self.name ,column ,'IX'))) def analyze(self ,components=['BUSINESS','ADDS','DELETES']): return self.interpret(arcpy.Analyze_management(self.featureclass ,components)) def rebuildindexes(self): # https://pro.arcgis.com/en/pro-app/latest/tool-reference/data-management/rebuild-indexes.htm return self.interpret(arcpy.RebuildIndexes_management(self.gdb.sdeconn ,'NO_SYSTEM' ,self.name ,'ALL')) def enablearchiving(self): desc = arcpy.Describe(self.featureclass) if desc.IsArchived == False: return self.interpret(arcpy.EnableArchiving_management(self.featureclass)) else: return 0 def exporttoshp(self ,outputdir ,outputname): # print('fc2fc {0} {1} {2}'.format(self.featureclass, outputdir, outputname)) arcpy.FeatureClassToFeatureClass_conversion(self.featureclass ,outputdir ,outputname) # TODO exportogeopackage if ESRI ever fills in some functionality in # https://pro.arcgis.com/en/pro-app/latest/tool-reference/conversion/an-overview-of-the-to-geopackage-toolset.htm # TODO exportogeojson if ESRI tool does something other than error 99999 (guess: sdo_geometry not supported) # For now export to shp, then ogr2ogr to other formats. Classic
[((513, 546), 'arcpy.Describe', 'arcpy.Describe', (['self.featureclass'], {}), '(self.featureclass)\n', (527, 546), False, 'import arcpy\n'), ((749, 780), 'arcpy.Exists', 'arcpy.Exists', (['self.featureclass'], {}), '(self.featureclass)\n', (761, 780), False, 'import arcpy\n'), ((877, 910), 'arcpy.Describe', 'arcpy.Describe', (['self.featureclass'], {}), '(self.featureclass)\n', (891, 910), False, 'import arcpy\n'), ((1140, 1182), 'arcpy.Delete_management', 'arcpy.Delete_management', (['self.featureclass'], {}), '(self.featureclass)\n', (1163, 1182), False, 'import arcpy\n'), ((1222, 1261), 'arcpy.TestSchemaLock', 'arcpy.TestSchemaLock', (['self.featureclass'], {}), '(self.featureclass)\n', (1242, 1261), False, 'import arcpy\n'), ((1982, 2057), 'arcpy.RegisterAsVersioned_management', 'arcpy.RegisterAsVersioned_management', (['self.featureclass', '"""NO_EDITS_TO_BASE"""'], {}), "(self.featureclass, 'NO_EDITS_TO_BASE')\n", (2018, 2057), False, 'import arcpy\n'), ((7326, 7359), 'arcpy.Describe', 'arcpy.Describe', (['self.featureclass'], {}), '(self.featureclass)\n', (7340, 7359), False, 'import arcpy\n'), ((7722, 7811), 'arcpy.FeatureClassToFeatureClass_conversion', 'arcpy.FeatureClassToFeatureClass_conversion', (['self.featureclass', 'outputdir', 'outputname'], {}), '(self.featureclass, outputdir,\n outputname)\n', (7765, 7811), False, 'import arcpy\n'), ((1021, 1083), 'arcpy.DisableArchiving_management', 'arcpy.DisableArchiving_management', (['self.featureclass', '"""DELETE"""'], {}), "(self.featureclass, 'DELETE')\n", (1054, 1083), False, 'import arcpy\n'), ((4345, 4505), 'arcpy.EnableEditorTracking_management', 'arcpy.EnableEditorTracking_management', (['self.featureclass', '"""CREATED_USER"""', '"""CREATED_DATE"""', '"""LAST_EDITED_USER"""', '"""LAST_EDITED_DATE"""', '"""NO_ADD_FIELDS"""', '"""UTC"""'], {}), "(self.featureclass, 'CREATED_USER',\n 'CREATED_DATE', 'LAST_EDITED_USER', 'LAST_EDITED_DATE', 'NO_ADD_FIELDS',\n 'UTC')\n", (4382, 4505), False, 'import arcpy\n'), ((5512, 5586), 'arcpy.ChangePrivileges_management', 'arcpy.ChangePrivileges_management', (['self.featureclass', 'user', '"""GRANT"""', 'edits'], {}), "(self.featureclass, user, 'GRANT', edits)\n", (5545, 5586), False, 'import arcpy\n'), ((6737, 6792), 'arcpy.Analyze_management', 'arcpy.Analyze_management', (['self.featureclass', 'components'], {}), '(self.featureclass, components)\n', (6761, 6792), False, 'import arcpy\n'), ((7013, 7098), 'arcpy.RebuildIndexes_management', 'arcpy.RebuildIndexes_management', (['self.gdb.sdeconn', '"""NO_SYSTEM"""', 'self.name', '"""ALL"""'], {}), "(self.gdb.sdeconn, 'NO_SYSTEM', self.name, 'ALL'\n )\n", (7044, 7098), False, 'import arcpy\n'), ((7441, 7492), 'arcpy.EnableArchiving_management', 'arcpy.EnableArchiving_management', (['self.featureclass'], {}), '(self.featureclass)\n', (7473, 7492), False, 'import arcpy\n'), ((2698, 2720), 'pathlib.Path', 'pathlib.Path', (['__file__'], {}), '(__file__)\n', (2710, 2720), False, 'import pathlib\n')]
gomesGabriel/Pythonicos
desafiosCursoEmVideo/ex004.py
b491cefbb0479dd83fee267304d0fa30b99786a5
n = input('Digite algo: ') print('O tipo primitivo da variável é: ', type(n)) print('O que foi digitado é alfa numérico? ', n.isalnum()) print('O que foi digitado é alfabético? ', n.isalpha()) print('O que foi digitado é um decimal? ', n.isdecimal()) print('O que foi digitado é minúsculo? ', n.islower()) print('O que foi digitado é numérico? ', n.isnumeric()) print('O que foi digitado pode ser impresso? ', n.isprintable()) print('O que foi digitado é apenas espaço? ', n.isspace()) print('O que foi digitado está capitalizada? ', n.istitle()) print('O que foi digitado é maiúsculo? ', n.isupper())
[]
dalmia/Lisa-Lab-Tutorials
Machine learning book/3 - MultiLayer Perceptron/test_regression.py
ee1b0b4fcb82914085420bb289ebda09f248c8d1
from numpy import * import numpy as np import matplotlib.pyplot as plt from mlp import mlp x = ones((1, 40)) * linspace(0, 1, 40) t = sin(2 * pi * x) + cos(2 * pi * x) + np.random.randn(40) * 0.2 x = transpose(x) t = transpose(t) n_hidden = 3 eta = 0.25 n_iterations = 101 plt.plot(x, t, '.') plt.show() train = x[0::2, :] test = x[1::4, :] valid = x[3::4, :] train_targets = t[0::2, :] test_targets = t[1::4, :] valid_targets = t[3::4, :] net = mlp(train, train_targets, n_hidden, out_type='linear') net.mlptrain(train, train_targets, eta, n_iterations) best_err = net.earlystopping(train, train_targets, valid, valid_targets, eta)
[((276, 295), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 't', '"""."""'], {}), "(x, t, '.')\n", (284, 295), True, 'import matplotlib.pyplot as plt\n'), ((296, 306), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (304, 306), True, 'import matplotlib.pyplot as plt\n'), ((452, 506), 'mlp.mlp', 'mlp', (['train', 'train_targets', 'n_hidden'], {'out_type': '"""linear"""'}), "(train, train_targets, n_hidden, out_type='linear')\n", (455, 506), False, 'from mlp import mlp\n'), ((171, 190), 'numpy.random.randn', 'np.random.randn', (['(40)'], {}), '(40)\n', (186, 190), True, 'import numpy as np\n')]
IllIIIllll/reinforcement-learning-omok
gomoku/networks/__init__.py
1c76ba76c203a3b7c99095fde0626aff45b1b94b
# © 2020 지성. all rights reserved. # <[email protected]> # Apache License 2.0 from .small import * from .medium import * from .large import *
[]
snowxmas/alipay-sdk-python-all
alipay/aop/api/domain/AlipayEbppInvoiceAuthSignModel.py
96870ced60facd96c5bce18d19371720cbda3317
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class AlipayEbppInvoiceAuthSignModel(object): def __init__(self): self._authorization_type = None self._m_short_name = None self._user_id = None @property def authorization_type(self): return self._authorization_type @authorization_type.setter def authorization_type(self, value): self._authorization_type = value @property def m_short_name(self): return self._m_short_name @m_short_name.setter def m_short_name(self, value): self._m_short_name = value @property def user_id(self): return self._user_id @user_id.setter def user_id(self, value): self._user_id = value def to_alipay_dict(self): params = dict() if self.authorization_type: if hasattr(self.authorization_type, 'to_alipay_dict'): params['authorization_type'] = self.authorization_type.to_alipay_dict() else: params['authorization_type'] = self.authorization_type if self.m_short_name: if hasattr(self.m_short_name, 'to_alipay_dict'): params['m_short_name'] = self.m_short_name.to_alipay_dict() else: params['m_short_name'] = self.m_short_name if self.user_id: if hasattr(self.user_id, 'to_alipay_dict'): params['user_id'] = self.user_id.to_alipay_dict() else: params['user_id'] = self.user_id return params @staticmethod def from_alipay_dict(d): if not d: return None o = AlipayEbppInvoiceAuthSignModel() if 'authorization_type' in d: o.authorization_type = d['authorization_type'] if 'm_short_name' in d: o.m_short_name = d['m_short_name'] if 'user_id' in d: o.user_id = d['user_id'] return o
[]
jmcshane/experimental
sdk/python/tekton_pipeline/models/v1beta1_embedded_task.py
3c47c7e87bcdadc6172941169f3f24fc3f159ae0
# Copyright 2020 The Tekton Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 """ Tekton Tekton Pipeline # noqa: E501 The version of the OpenAPI document: v0.17.2 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from tekton_pipeline.configuration import Configuration class V1beta1EmbeddedTask(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'description': 'str', 'metadata': 'V1beta1PipelineTaskMetadata', 'params': 'list[V1beta1ParamSpec]', 'resources': 'V1beta1TaskResources', 'results': 'list[V1beta1TaskResult]', 'sidecars': 'list[V1beta1Sidecar]', 'step_template': 'V1Container', 'steps': 'list[V1beta1Step]', 'volumes': 'list[V1Volume]', 'workspaces': 'list[V1beta1WorkspaceDeclaration]' } attribute_map = { 'description': 'description', 'metadata': 'metadata', 'params': 'params', 'resources': 'resources', 'results': 'results', 'sidecars': 'sidecars', 'step_template': 'stepTemplate', 'steps': 'steps', 'volumes': 'volumes', 'workspaces': 'workspaces' } def __init__(self, description=None, metadata=None, params=None, resources=None, results=None, sidecars=None, step_template=None, steps=None, volumes=None, workspaces=None, local_vars_configuration=None): # noqa: E501 """V1beta1EmbeddedTask - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._description = None self._metadata = None self._params = None self._resources = None self._results = None self._sidecars = None self._step_template = None self._steps = None self._volumes = None self._workspaces = None self.discriminator = None if description is not None: self.description = description if metadata is not None: self.metadata = metadata if params is not None: self.params = params if resources is not None: self.resources = resources if results is not None: self.results = results if sidecars is not None: self.sidecars = sidecars if step_template is not None: self.step_template = step_template if steps is not None: self.steps = steps if volumes is not None: self.volumes = volumes if workspaces is not None: self.workspaces = workspaces @property def description(self): """Gets the description of this V1beta1EmbeddedTask. # noqa: E501 Description is a user-facing description of the task that may be used to populate a UI. # noqa: E501 :return: The description of this V1beta1EmbeddedTask. # noqa: E501 :rtype: str """ return self._description @description.setter def description(self, description): """Sets the description of this V1beta1EmbeddedTask. Description is a user-facing description of the task that may be used to populate a UI. # noqa: E501 :param description: The description of this V1beta1EmbeddedTask. # noqa: E501 :type: str """ self._description = description @property def metadata(self): """Gets the metadata of this V1beta1EmbeddedTask. # noqa: E501 :return: The metadata of this V1beta1EmbeddedTask. # noqa: E501 :rtype: V1beta1PipelineTaskMetadata """ return self._metadata @metadata.setter def metadata(self, metadata): """Sets the metadata of this V1beta1EmbeddedTask. :param metadata: The metadata of this V1beta1EmbeddedTask. # noqa: E501 :type: V1beta1PipelineTaskMetadata """ self._metadata = metadata @property def params(self): """Gets the params of this V1beta1EmbeddedTask. # noqa: E501 Params is a list of input parameters required to run the task. Params must be supplied as inputs in TaskRuns unless they declare a default value. # noqa: E501 :return: The params of this V1beta1EmbeddedTask. # noqa: E501 :rtype: list[V1beta1ParamSpec] """ return self._params @params.setter def params(self, params): """Sets the params of this V1beta1EmbeddedTask. Params is a list of input parameters required to run the task. Params must be supplied as inputs in TaskRuns unless they declare a default value. # noqa: E501 :param params: The params of this V1beta1EmbeddedTask. # noqa: E501 :type: list[V1beta1ParamSpec] """ self._params = params @property def resources(self): """Gets the resources of this V1beta1EmbeddedTask. # noqa: E501 :return: The resources of this V1beta1EmbeddedTask. # noqa: E501 :rtype: V1beta1TaskResources """ return self._resources @resources.setter def resources(self, resources): """Sets the resources of this V1beta1EmbeddedTask. :param resources: The resources of this V1beta1EmbeddedTask. # noqa: E501 :type: V1beta1TaskResources """ self._resources = resources @property def results(self): """Gets the results of this V1beta1EmbeddedTask. # noqa: E501 Results are values that this Task can output # noqa: E501 :return: The results of this V1beta1EmbeddedTask. # noqa: E501 :rtype: list[V1beta1TaskResult] """ return self._results @results.setter def results(self, results): """Sets the results of this V1beta1EmbeddedTask. Results are values that this Task can output # noqa: E501 :param results: The results of this V1beta1EmbeddedTask. # noqa: E501 :type: list[V1beta1TaskResult] """ self._results = results @property def sidecars(self): """Gets the sidecars of this V1beta1EmbeddedTask. # noqa: E501 Sidecars are run alongside the Task's step containers. They begin before the steps start and end after the steps complete. # noqa: E501 :return: The sidecars of this V1beta1EmbeddedTask. # noqa: E501 :rtype: list[V1beta1Sidecar] """ return self._sidecars @sidecars.setter def sidecars(self, sidecars): """Sets the sidecars of this V1beta1EmbeddedTask. Sidecars are run alongside the Task's step containers. They begin before the steps start and end after the steps complete. # noqa: E501 :param sidecars: The sidecars of this V1beta1EmbeddedTask. # noqa: E501 :type: list[V1beta1Sidecar] """ self._sidecars = sidecars @property def step_template(self): """Gets the step_template of this V1beta1EmbeddedTask. # noqa: E501 :return: The step_template of this V1beta1EmbeddedTask. # noqa: E501 :rtype: V1Container """ return self._step_template @step_template.setter def step_template(self, step_template): """Sets the step_template of this V1beta1EmbeddedTask. :param step_template: The step_template of this V1beta1EmbeddedTask. # noqa: E501 :type: V1Container """ self._step_template = step_template @property def steps(self): """Gets the steps of this V1beta1EmbeddedTask. # noqa: E501 Steps are the steps of the build; each step is run sequentially with the source mounted into /workspace. # noqa: E501 :return: The steps of this V1beta1EmbeddedTask. # noqa: E501 :rtype: list[V1beta1Step] """ return self._steps @steps.setter def steps(self, steps): """Sets the steps of this V1beta1EmbeddedTask. Steps are the steps of the build; each step is run sequentially with the source mounted into /workspace. # noqa: E501 :param steps: The steps of this V1beta1EmbeddedTask. # noqa: E501 :type: list[V1beta1Step] """ self._steps = steps @property def volumes(self): """Gets the volumes of this V1beta1EmbeddedTask. # noqa: E501 Volumes is a collection of volumes that are available to mount into the steps of the build. # noqa: E501 :return: The volumes of this V1beta1EmbeddedTask. # noqa: E501 :rtype: list[V1Volume] """ return self._volumes @volumes.setter def volumes(self, volumes): """Sets the volumes of this V1beta1EmbeddedTask. Volumes is a collection of volumes that are available to mount into the steps of the build. # noqa: E501 :param volumes: The volumes of this V1beta1EmbeddedTask. # noqa: E501 :type: list[V1Volume] """ self._volumes = volumes @property def workspaces(self): """Gets the workspaces of this V1beta1EmbeddedTask. # noqa: E501 Workspaces are the volumes that this Task requires. # noqa: E501 :return: The workspaces of this V1beta1EmbeddedTask. # noqa: E501 :rtype: list[V1beta1WorkspaceDeclaration] """ return self._workspaces @workspaces.setter def workspaces(self, workspaces): """Sets the workspaces of this V1beta1EmbeddedTask. Workspaces are the volumes that this Task requires. # noqa: E501 :param workspaces: The workspaces of this V1beta1EmbeddedTask. # noqa: E501 :type: list[V1beta1WorkspaceDeclaration] """ self._workspaces = workspaces def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1beta1EmbeddedTask): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, V1beta1EmbeddedTask): return True return self.to_dict() != other.to_dict()
[((10862, 10895), 'six.iteritems', 'six.iteritems', (['self.openapi_types'], {}), '(self.openapi_types)\n', (10875, 10895), False, 'import six\n'), ((2520, 2535), 'tekton_pipeline.configuration.Configuration', 'Configuration', ([], {}), '()\n', (2533, 2535), False, 'from tekton_pipeline.configuration import Configuration\n')]
gmlunesa/zhat
tzp.py
3bf62625d102bd40274fcd39c91f21c169e334a8
import zmq import curses import argparse import configparser import threading import time from curses import wrapper from client import Client from ui import UI def parse_args(): parser = argparse.ArgumentParser(description='Client for teezeepee') # Please specify your username parser.add_argument('username', type=str, help='Specified username') parser.add_argument('--config-file', type=str, help='Default path for configuration file.') return parser.parse_args() def display_section(window, display): window_lines, window_cols = window.getmaxyx() bottom_line = window_lines - 1 window.bkgd(curses.A_NORMAL) window.scrollok(1) while True: window.addstr(bottom_line, 1, display.recv_string()) window.move(bottom_line, 1) window.scroll(1) window.refresh() def input_section(window, chat_sender): window.bkgd(curses.A_NORMAL) window.clear() window.box() window.refresh() while True: window.clear() window.box() window.refresh() s = window.getstr(1, 1).decode('utf-8') if s is not None and s != "": chat_sender.send_string(s) # Short pause time.sleep(0.01) def main(stdscr): config_file = args.config_file if args.config_file is not None else 'tzp.cfg' config = configparser.ConfigParser() config.read(config_file) config = config['default'] receiver = zmq.Context().instance().socket(zmq.PAIR) receiver.bind("inproc://clientchat") sender = zmq.Context().instance().socket(zmq.PAIR) sender.connect("inproc://clientchat") client = Client(args.username, config['server_host'], config['chat_port'], receiver) client.run() show_receiver = zmq.Context().instance().socket(zmq.PAIR) show_receiver.bind("inproc://clientdisplay") show_sender = zmq.Context().instance().socket(zmq.PAIR) show_sender.connect("inproc://clientdisplay") ui = UI(config['server_host'], config['display_port'], show_sender) ui.run() curses.init_pair(1, curses.COLOR_BLACK, curses.COLOR_WHITE) curses.init_pair(2, curses.COLOR_BLACK, curses.COLOR_WHITE) curses.echo() curses.curs_set(0) window_height = curses.LINES window_width = curses.COLS divider = int(window_height * 0.5) history_screen = stdscr.subpad(divider, window_width, 0, 0) input_screen = stdscr.subpad(window_height - divider, window_width, divider, 0) history_thread = threading.Thread(target=display_section, args=(history_screen, show_receiver)) history_thread.daemon = True history_thread.start() input_thread = threading.Thread(target=input_section, args=(input_screen, sender)) input_thread.daemon = True input_thread.start() history_thread.join() input_thread.join() if '__main__' == __name__: try: args = parse_args() wrapper(main) except KeyboardInterrupt as e: pass except: raise
[((196, 255), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Client for teezeepee"""'}), "(description='Client for teezeepee')\n", (219, 255), False, 'import argparse\n'), ((1448, 1475), 'configparser.ConfigParser', 'configparser.ConfigParser', ([], {}), '()\n', (1473, 1475), False, 'import configparser\n'), ((1747, 1822), 'client.Client', 'Client', (['args.username', "config['server_host']", "config['chat_port']", 'receiver'], {}), "(args.username, config['server_host'], config['chat_port'], receiver)\n", (1753, 1822), False, 'from client import Client\n'), ((2097, 2159), 'ui.UI', 'UI', (["config['server_host']", "config['display_port']", 'show_sender'], {}), "(config['server_host'], config['display_port'], show_sender)\n", (2099, 2159), False, 'from ui import UI\n'), ((2178, 2237), 'curses.init_pair', 'curses.init_pair', (['(1)', 'curses.COLOR_BLACK', 'curses.COLOR_WHITE'], {}), '(1, curses.COLOR_BLACK, curses.COLOR_WHITE)\n', (2194, 2237), False, 'import curses\n'), ((2242, 2301), 'curses.init_pair', 'curses.init_pair', (['(2)', 'curses.COLOR_BLACK', 'curses.COLOR_WHITE'], {}), '(2, curses.COLOR_BLACK, curses.COLOR_WHITE)\n', (2258, 2301), False, 'import curses\n'), ((2307, 2320), 'curses.echo', 'curses.echo', ([], {}), '()\n', (2318, 2320), False, 'import curses\n'), ((2325, 2343), 'curses.curs_set', 'curses.curs_set', (['(0)'], {}), '(0)\n', (2340, 2343), False, 'import curses\n'), ((2624, 2702), 'threading.Thread', 'threading.Thread', ([], {'target': 'display_section', 'args': '(history_screen, show_receiver)'}), '(target=display_section, args=(history_screen, show_receiver))\n', (2640, 2702), False, 'import threading\n'), ((2783, 2850), 'threading.Thread', 'threading.Thread', ([], {'target': 'input_section', 'args': '(input_screen, sender)'}), '(target=input_section, args=(input_screen, sender))\n', (2799, 2850), False, 'import threading\n'), ((1316, 1332), 'time.sleep', 'time.sleep', (['(0.01)'], {}), '(0.01)\n', (1326, 1332), False, 'import time\n'), ((3032, 3045), 'curses.wrapper', 'wrapper', (['main'], {}), '(main)\n', (3039, 3045), False, 'from curses import wrapper\n'), ((1552, 1565), 'zmq.Context', 'zmq.Context', ([], {}), '()\n', (1563, 1565), False, 'import zmq\n'), ((1649, 1662), 'zmq.Context', 'zmq.Context', ([], {}), '()\n', (1660, 1662), False, 'import zmq\n'), ((1885, 1898), 'zmq.Context', 'zmq.Context', ([], {}), '()\n', (1896, 1898), False, 'import zmq\n'), ((1995, 2008), 'zmq.Context', 'zmq.Context', ([], {}), '()\n', (2006, 2008), False, 'import zmq\n')]
Sam-Gresh/linkage-agent-tools
anonlink-entity-service/backend/entityservice/tasks/solver.py
f405c7efe3fa82d99bc047f130c0fac6f3f5bf82
import anonlink from anonlink.candidate_generation import _merge_similarities from entityservice.object_store import connect_to_object_store from entityservice.async_worker import celery, logger from entityservice.settings import Config as config from entityservice.tasks.base_task import TracedTask from entityservice.tasks.permutation import save_and_permute @celery.task(base=TracedTask, ignore_result=True, args_as_tags=('project_id', 'run_id')) def solver_task(similarity_scores_filename, project_id, run_id, dataset_sizes, parent_span): log = logger.bind(pid=project_id, run_id=run_id) mc = connect_to_object_store() solver_task.span.log_kv({'datasetSizes': dataset_sizes, 'filename': similarity_scores_filename}) score_file = mc.get_object(config.MINIO_BUCKET, similarity_scores_filename) log.debug("Creating python sparse matrix from bytes data") candidate_pairs_with_duplicates = anonlink.serialization.load_candidate_pairs(score_file) similarity_scores, (dset_is0, dset_is1), (rec_is0, rec_is1) = candidate_pairs_with_duplicates log.info(f"Number of candidate pairs before deduplication: {len(candidate_pairs_with_duplicates[0])}") if len(candidate_pairs_with_duplicates[0]) > 0: # TODO use public interface when available # https://github.com/data61/anonlink/issues/271 candidate_pairs = _merge_similarities([zip(similarity_scores, dset_is0, dset_is1, rec_is0, rec_is1)], k=None) log.info(f"Number of candidate pairs after deduplication: {len(candidate_pairs[0])}") log.info("Calculating the optimal mapping from similarity matrix") groups = anonlink.solving.greedy_solve(candidate_pairs) else: groups = [] log.info("Entity groups have been computed") res = { "groups": groups, "datasetSizes": dataset_sizes } save_and_permute.delay(res, project_id, run_id, solver_task.get_serialized_span())
[((365, 456), 'entityservice.async_worker.celery.task', 'celery.task', ([], {'base': 'TracedTask', 'ignore_result': '(True)', 'args_as_tags': "('project_id', 'run_id')"}), "(base=TracedTask, ignore_result=True, args_as_tags=('project_id',\n 'run_id'))\n", (376, 456), False, 'from entityservice.async_worker import celery, logger\n'), ((556, 598), 'entityservice.async_worker.logger.bind', 'logger.bind', ([], {'pid': 'project_id', 'run_id': 'run_id'}), '(pid=project_id, run_id=run_id)\n', (567, 598), False, 'from entityservice.async_worker import celery, logger\n'), ((608, 633), 'entityservice.object_store.connect_to_object_store', 'connect_to_object_store', ([], {}), '()\n', (631, 633), False, 'from entityservice.object_store import connect_to_object_store\n'), ((945, 1000), 'anonlink.serialization.load_candidate_pairs', 'anonlink.serialization.load_candidate_pairs', (['score_file'], {}), '(score_file)\n', (988, 1000), False, 'import anonlink\n'), ((1671, 1717), 'anonlink.solving.greedy_solve', 'anonlink.solving.greedy_solve', (['candidate_pairs'], {}), '(candidate_pairs)\n', (1700, 1717), False, 'import anonlink\n')]
nickmvincent/ugc-val-est
portal/migrations/0007_auto_20170824_1341.py
b5cceda14ef5830f1befaddfccfd90a694c9677a
# -*- coding: utf-8 -*- # Generated by Django 1.11.3 on 2017-08-24 13:41 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('portal', '0006_auto_20170824_0950'), ] operations = [ migrations.AddField( model_name='sampledstackoverflowpost', name='num_question_comments', field=models.IntegerField(default=0), ), migrations.AddField( model_name='sampledstackoverflowpost', name='question_score', field=models.IntegerField(default=0), ), migrations.AddField( model_name='sampledstackoverflowpost', name='title', field=models.CharField(default='', max_length=1182), ), migrations.AddField( model_name='sampledstackoverflowpost', name='title_coleman_liau_index', field=models.IntegerField(default=0), ), migrations.AddField( model_name='sampledstackoverflowpost', name='title_length', field=models.IntegerField(default=0), ), migrations.AddField( model_name='sampledstackoverflowpost', name='title_lexicon_count', field=models.IntegerField(default=0), ), migrations.AddField( model_name='sampledstackoverflowpost', name='title_percent_punctuation', field=models.IntegerField(default=0), ), migrations.AddField( model_name='sampledstackoverflowpost', name='title_percent_spaces', field=models.IntegerField(default=0), ), migrations.AddField( model_name='sampledstackoverflowpost', name='title_percent_uppercase', field=models.IntegerField(default=0), ), migrations.AddField( model_name='sampledstackoverflowpost', name='title_sentence_count', field=models.IntegerField(default=0), ), migrations.AddField( model_name='sampledstackoverflowpost', name='title_starts_capitalized', field=models.BooleanField(default=False), ), migrations.AlterField( model_name='sampledredditthread', name='title', field=models.CharField(default='', max_length=1182), ), migrations.AlterField( model_name='stackoverflowanswer', name='owner_user_id', field=models.IntegerField(blank=True, db_index=True, null=True), ), migrations.AlterField( model_name='stackoverflowanswer', name='parent_id', field=models.IntegerField(db_index=True), ), migrations.AlterField( model_name='stackoverflowquestion', name='accepted_answer_id', field=models.IntegerField(blank=True, db_index=True, null=True), ), migrations.AlterField( model_name='stackoverflowquestion', name='owner_user_id', field=models.IntegerField(db_index=True), ), ]
[((431, 461), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(0)'}), '(default=0)\n', (450, 461), False, 'from django.db import migrations, models\n'), ((607, 637), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(0)'}), '(default=0)\n', (626, 637), False, 'from django.db import migrations, models\n'), ((774, 819), 'django.db.models.CharField', 'models.CharField', ([], {'default': '""""""', 'max_length': '(1182)'}), "(default='', max_length=1182)\n", (790, 819), False, 'from django.db import migrations, models\n'), ((975, 1005), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(0)'}), '(default=0)\n', (994, 1005), False, 'from django.db import migrations, models\n'), ((1149, 1179), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(0)'}), '(default=0)\n', (1168, 1179), False, 'from django.db import migrations, models\n'), ((1330, 1360), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(0)'}), '(default=0)\n', (1349, 1360), False, 'from django.db import migrations, models\n'), ((1517, 1547), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(0)'}), '(default=0)\n', (1536, 1547), False, 'from django.db import migrations, models\n'), ((1699, 1729), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(0)'}), '(default=0)\n', (1718, 1729), False, 'from django.db import migrations, models\n'), ((1884, 1914), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(0)'}), '(default=0)\n', (1903, 1914), False, 'from django.db import migrations, models\n'), ((2066, 2096), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(0)'}), '(default=0)\n', (2085, 2096), False, 'from django.db import migrations, models\n'), ((2252, 2286), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'default': '(False)'}), '(default=False)\n', (2271, 2286), False, 'from django.db import migrations, models\n'), ((2420, 2465), 'django.db.models.CharField', 'models.CharField', ([], {'default': '""""""', 'max_length': '(1182)'}), "(default='', max_length=1182)\n", (2436, 2465), False, 'from django.db import migrations, models\n'), ((2607, 2664), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'blank': '(True)', 'db_index': '(True)', 'null': '(True)'}), '(blank=True, db_index=True, null=True)\n', (2626, 2664), False, 'from django.db import migrations, models\n'), ((2802, 2836), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'db_index': '(True)'}), '(db_index=True)\n', (2821, 2836), False, 'from django.db import migrations, models\n'), ((2985, 3042), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'blank': '(True)', 'db_index': '(True)', 'null': '(True)'}), '(blank=True, db_index=True, null=True)\n', (3004, 3042), False, 'from django.db import migrations, models\n'), ((3186, 3220), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'db_index': '(True)'}), '(db_index=True)\n', (3205, 3220), False, 'from django.db import migrations, models\n')]
AleRiccardi/technical-neural-network-course
exercise-09/programming_assignment/hopfield.py
bfcca623a9dc3f7f4c20e1efe39abe986cd8869e
import numpy as np import random letter_C = np.array([ [1, 1, 1, 1, 1], [1, 0, 0, 0, 0], [1, 0, 0, 0, 0], [1, 0, 0, 0, 0], [1, 1, 1, 1, 1], ]) noisy_C = np.array([ [1, 1, 1, 1, 1], [0, 1, 0, 0, 1], [1, 0, 0, 0, 0], [1, 0, 0, 1, 0], [1, 0, 1, 1, 1], ]) letter_I = np.array([ [0, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 0, 1, 0, 0], [0, 0, 1, 0, 0], [1, 1, 1, 1, 1], ]) noisy_I = np.array([ [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 1, 1, 0, 0], [0, 0, 0, 0, 0], [0, 1, 0, 1, 1], ]) letter_T = np.array([ [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 0, 1, 0, 0], [0, 0, 1, 0, 0], [0, 0, 1, 0, 0], ]) noisy_T = np.array([ [1, 1, 0, 1, 0], [0, 0, 1, 0, 0], [0, 1, 1, 0, 0], [0, 0, 0, 0, 0], [0, 0, 1, 0, 0], ]) class HopfieldNet: def __init__(self, num_neurons, threshold=None): assert num_neurons <= 1000 self.weights = np.zeros((num_neurons, num_neurons)).astype(np.int) self.state = np.array((1, num_neurons)) if threshold: self.thresholds = np.array([threshold for _ in num_neurons]) else: self.thresholds = np.zeros((num_neurons,)) def fit(self, X): num_p = X.shape[0] num_k = X.shape[1] # check right number of pattern assert num_p < num_k * 0.138 num_k = X.shape[1] for p in range(X.shape[0]): X_p = X[p, :].reshape((1, num_k)) matrix_lr = np.dot(X_p.T, X_p).astype(np.int) np.fill_diagonal(matrix_lr, 0) self.weights += matrix_lr def predict(self, X, show_energy=False, show_char=False): num_k = X.shape[1] X_pred = X.copy() # loop per every pattern for p in range(X_pred.shape[0]): differ = True time_s = 0 # loop until the state # stay the same while differ: X_prev = X_pred[p].copy() # print energy if show_energy: self.print_energy(X_pred[p], p, time_s) # print char if show_char and num_k <= 100: self.print_char(X_pred[p], p, time_s) # loop per every neuron for k in range(num_k): val = np.dot(X_pred[p], self.weights[:, k]) val_thres = 1 if val > self.thresholds[k] else -1 X_pred[p, k] = val_thres # check if the new state differs from the previous one differ = False if np.array_equal(X_pred[p], X_prev) else True time_s += 1 return X_pred def print_energy(self, state, num_p, time_s): first_term = 0 second_term = 0 for i in range(state.shape[0]): for j in range(state.shape[0]): first_term += self.weights[i, j] * state[i] * state[j] for k in range(state.shape[0]): second_term += self.thresholds[k] * state[k] energy = -0.5 * first_term + second_term print('Pattern: {}\t||\tTime stamp: {}\t||\tEnergy: {:7.0f}'.format(num_p, time_s, energy)) return energy def print_char(self, sequence, num_p, time_s): sqrtK = np.sqrt(sequence.shape[0]) # check if correct sequence assert sqrtK % 1 == 0 print('Pattern: {}\t||\tTime stamp: {}'.format(num_p, time_s)) for y in range(int(sqrtK)): for x in range(int(sqrtK)): idx = int(y * sqrtK + x) val = '*' if sequence[idx] > 0 else ' ' print(val, end=' ') print('', sep='', end='\n') print('', sep='', end='\n') def test_w_less_101(): print('\n================') print('K < 101') print('================\n') X = np.array([ letter_C.flatten(), letter_I.flatten(), letter_T.flatten(), ]) X = np.where(X > 0, 1, -1) net = HopfieldNet(X.shape[1]) net.fit(X) X_test = np.array([ noisy_C.flatten(), noisy_I.flatten(), noisy_T.flatten(), ]) X_test = np.where(X_test > 0, 1, -1) _ = net.predict(X_test, show_char=True) def test_w_more_100(): print('\n================') print('K > 100') print('================\n') num_k = random.randint(101, 1000) binary = 2 X = np.array([ np.random.randint(binary, size=num_k), np.random.randint(binary, size=num_k), np.random.randint(binary, size=num_k), np.random.randint(binary, size=num_k), np.random.randint(binary, size=num_k), np.random.randint(binary, size=num_k), np.random.randint(binary, size=num_k), np.random.randint(binary, size=num_k), np.random.randint(binary, size=num_k), ]) X = np.where(X > 0, 1, -1) net = HopfieldNet(X.shape[1]) net.fit(X) X_test = np.array([ np.random.randint(binary, size=num_k), np.random.randint(binary, size=num_k), np.random.randint(binary, size=num_k), ]) X_test = np.where(X_test > 0, 1, -1) _ = net.predict(X_test, show_energy=True) if __name__ == '__main__': test_w_less_101() test_w_more_100()
[((45, 145), 'numpy.array', 'np.array', (['[[1, 1, 1, 1, 1], [1, 0, 0, 0, 0], [1, 0, 0, 0, 0], [1, 0, 0, 0, 0], [1, 1,\n 1, 1, 1]]'], {}), '([[1, 1, 1, 1, 1], [1, 0, 0, 0, 0], [1, 0, 0, 0, 0], [1, 0, 0, 0, 0\n ], [1, 1, 1, 1, 1]])\n', (53, 145), True, 'import numpy as np\n'), ((174, 274), 'numpy.array', 'np.array', (['[[1, 1, 1, 1, 1], [0, 1, 0, 0, 1], [1, 0, 0, 0, 0], [1, 0, 0, 1, 0], [1, 0,\n 1, 1, 1]]'], {}), '([[1, 1, 1, 1, 1], [0, 1, 0, 0, 1], [1, 0, 0, 0, 0], [1, 0, 0, 1, 0\n ], [1, 0, 1, 1, 1]])\n', (182, 274), True, 'import numpy as np\n'), ((305, 405), 'numpy.array', 'np.array', (['[[0, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 0, 1, 0, 0], [0, 0, 1, 0, 0], [1, 1,\n 1, 1, 1]]'], {}), '([[0, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 0, 1, 0, 0], [0, 0, 1, 0, 0\n ], [1, 1, 1, 1, 1]])\n', (313, 405), True, 'import numpy as np\n'), ((434, 534), 'numpy.array', 'np.array', (['[[1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 1, 1, 0, 0], [0, 0, 0, 0, 0], [0, 1,\n 0, 1, 1]]'], {}), '([[1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 1, 1, 0, 0], [0, 0, 0, 0, 0\n ], [0, 1, 0, 1, 1]])\n', (442, 534), True, 'import numpy as np\n'), ((565, 665), 'numpy.array', 'np.array', (['[[1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 0, 1, 0, 0], [0, 0, 1, 0, 0], [0, 0,\n 1, 0, 0]]'], {}), '([[1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 0, 1, 0, 0], [0, 0, 1, 0, 0\n ], [0, 0, 1, 0, 0]])\n', (573, 665), True, 'import numpy as np\n'), ((694, 794), 'numpy.array', 'np.array', (['[[1, 1, 0, 1, 0], [0, 0, 1, 0, 0], [0, 1, 1, 0, 0], [0, 0, 0, 0, 0], [0, 0,\n 1, 0, 0]]'], {}), '([[1, 1, 0, 1, 0], [0, 0, 1, 0, 0], [0, 1, 1, 0, 0], [0, 0, 0, 0, 0\n ], [0, 0, 1, 0, 0]])\n', (702, 794), True, 'import numpy as np\n'), ((3973, 3995), 'numpy.where', 'np.where', (['(X > 0)', '(1)', '(-1)'], {}), '(X > 0, 1, -1)\n', (3981, 3995), True, 'import numpy as np\n'), ((4171, 4198), 'numpy.where', 'np.where', (['(X_test > 0)', '(1)', '(-1)'], {}), '(X_test > 0, 1, -1)\n', (4179, 4198), True, 'import numpy as np\n'), ((4366, 4391), 'random.randint', 'random.randint', (['(101)', '(1000)'], {}), '(101, 1000)\n', (4380, 4391), False, 'import random\n'), ((4864, 4886), 'numpy.where', 'np.where', (['(X > 0)', '(1)', '(-1)'], {}), '(X > 0, 1, -1)\n', (4872, 4886), True, 'import numpy as np\n'), ((5122, 5149), 'numpy.where', 'np.where', (['(X_test > 0)', '(1)', '(-1)'], {}), '(X_test > 0, 1, -1)\n', (5130, 5149), True, 'import numpy as np\n'), ((1018, 1044), 'numpy.array', 'np.array', (['(1, num_neurons)'], {}), '((1, num_neurons))\n', (1026, 1044), True, 'import numpy as np\n'), ((3294, 3320), 'numpy.sqrt', 'np.sqrt', (['sequence.shape[0]'], {}), '(sequence.shape[0])\n', (3301, 3320), True, 'import numpy as np\n'), ((1097, 1139), 'numpy.array', 'np.array', (['[threshold for _ in num_neurons]'], {}), '([threshold for _ in num_neurons])\n', (1105, 1139), True, 'import numpy as np\n'), ((1184, 1208), 'numpy.zeros', 'np.zeros', (['(num_neurons,)'], {}), '((num_neurons,))\n', (1192, 1208), True, 'import numpy as np\n'), ((1543, 1573), 'numpy.fill_diagonal', 'np.fill_diagonal', (['matrix_lr', '(0)'], {}), '(matrix_lr, 0)\n', (1559, 1573), True, 'import numpy as np\n'), ((4434, 4471), 'numpy.random.randint', 'np.random.randint', (['binary'], {'size': 'num_k'}), '(binary, size=num_k)\n', (4451, 4471), True, 'import numpy as np\n'), ((4481, 4518), 'numpy.random.randint', 'np.random.randint', (['binary'], {'size': 'num_k'}), '(binary, size=num_k)\n', (4498, 4518), True, 'import numpy as np\n'), ((4528, 4565), 'numpy.random.randint', 'np.random.randint', (['binary'], {'size': 'num_k'}), '(binary, size=num_k)\n', (4545, 4565), True, 'import numpy as np\n'), ((4575, 4612), 'numpy.random.randint', 'np.random.randint', (['binary'], {'size': 'num_k'}), '(binary, size=num_k)\n', (4592, 4612), True, 'import numpy as np\n'), ((4622, 4659), 'numpy.random.randint', 'np.random.randint', (['binary'], {'size': 'num_k'}), '(binary, size=num_k)\n', (4639, 4659), True, 'import numpy as np\n'), ((4669, 4706), 'numpy.random.randint', 'np.random.randint', (['binary'], {'size': 'num_k'}), '(binary, size=num_k)\n', (4686, 4706), True, 'import numpy as np\n'), ((4716, 4753), 'numpy.random.randint', 'np.random.randint', (['binary'], {'size': 'num_k'}), '(binary, size=num_k)\n', (4733, 4753), True, 'import numpy as np\n'), ((4763, 4800), 'numpy.random.randint', 'np.random.randint', (['binary'], {'size': 'num_k'}), '(binary, size=num_k)\n', (4780, 4800), True, 'import numpy as np\n'), ((4810, 4847), 'numpy.random.randint', 'np.random.randint', (['binary'], {'size': 'num_k'}), '(binary, size=num_k)\n', (4827, 4847), True, 'import numpy as np\n'), ((4969, 5006), 'numpy.random.randint', 'np.random.randint', (['binary'], {'size': 'num_k'}), '(binary, size=num_k)\n', (4986, 5006), True, 'import numpy as np\n'), ((5016, 5053), 'numpy.random.randint', 'np.random.randint', (['binary'], {'size': 'num_k'}), '(binary, size=num_k)\n', (5033, 5053), True, 'import numpy as np\n'), ((5063, 5100), 'numpy.random.randint', 'np.random.randint', (['binary'], {'size': 'num_k'}), '(binary, size=num_k)\n', (5080, 5100), True, 'import numpy as np\n'), ((945, 981), 'numpy.zeros', 'np.zeros', (['(num_neurons, num_neurons)'], {}), '((num_neurons, num_neurons))\n', (953, 981), True, 'import numpy as np\n'), ((1497, 1515), 'numpy.dot', 'np.dot', (['X_p.T', 'X_p'], {}), '(X_p.T, X_p)\n', (1503, 1515), True, 'import numpy as np\n'), ((2347, 2386), 'numpy.dot', 'np.dot', (['X_pred[p]', 'self.weights[:, (k)]'], {}), '(X_pred[p], self.weights[:, (k)])\n', (2353, 2386), True, 'import numpy as np\n'), ((2606, 2639), 'numpy.array_equal', 'np.array_equal', (['X_pred[p]', 'X_prev'], {}), '(X_pred[p], X_prev)\n', (2620, 2639), True, 'import numpy as np\n')]
cdla/murfi2
util/infoclient/test_infoclient.py
45dba5eb90e7f573f01706a50e584265f0f8ffa7
from infoclientLib import InfoClient ic = InfoClient('localhost', 15002, 'localhost', 15003) ic.add('roi-weightedave', 'active') ic.start()
[((43, 93), 'infoclientLib.InfoClient', 'InfoClient', (['"""localhost"""', '(15002)', '"""localhost"""', '(15003)'], {}), "('localhost', 15002, 'localhost', 15003)\n", (53, 93), False, 'from infoclientLib import InfoClient\n')]
MovestaDev/low-resource-text-classification-framework
lrtc_lib/experiment_runners/experiment_runner.py
4380755a65b35265e84ecbf4b87e872d79e8f079
# (c) Copyright IBM Corporation 2020. # LICENSE: Apache License 2.0 (Apache-2.0) # http://www.apache.org/licenses/LICENSE-2.0 import abc import logging import time from collections import defaultdict from typing import List import numpy as np from dataclasses import dataclass logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s') import lrtc_lib.data_access.data_access_factory as data_access_factory import lrtc_lib.experiment_runners.experiments_results_handler as res_handler from lrtc_lib.oracle_data_access import oracle_data_access_api from lrtc_lib.active_learning.diversity_calculator import DiversityCalculator from lrtc_lib.active_learning.knn_outlier_calculator import KnnOutlierCalculator from lrtc_lib.active_learning.strategies import ActiveLearningStrategies from lrtc_lib.data_access.core.data_structs import TextElement from lrtc_lib.data_access.data_access_api import DataAccessApi from lrtc_lib.data_access.data_access_factory import get_data_access from lrtc_lib.orchestrator import orchestrator_api from lrtc_lib.orchestrator.orchestrator_api import DeleteModels from lrtc_lib.train_and_infer_service.model_type import ModelType from lrtc_lib.training_set_selector.train_and_dev_set_selector_api import TrainingSetSelectionStrategy @dataclass class ExperimentParams: experiment_name: str train_dataset_name: str dev_dataset_name: str test_dataset_name: str category_name: str workspace_id: str model: ModelType active_learning_strategies: list repeat_id: int train_params: dict def compute_batch_scores(config, elements): data_access = get_data_access() unlabeled = data_access.sample_unlabeled_text_elements(config.workspace_id, config.train_dataset_name, config.category_name, 10 ** 6)["results"] unlabeled_emb = np.array(orchestrator_api.infer(config.workspace_id, config.category_name, unlabeled)["embeddings"]) batch_emb = np.array(orchestrator_api.infer(config.workspace_id, config.category_name, elements)["embeddings"]) outlier_calculator = KnnOutlierCalculator(unlabeled_emb) outlier_value = outlier_calculator.compute_batch_score(batch_emb) representativeness_value = 1 / outlier_value diversity_calculator = DiversityCalculator(unlabeled_emb) diversity_value = diversity_calculator.compute_batch_score(batch_emb) return diversity_value, representativeness_value class ExperimentRunner(object, metaclass=abc.ABCMeta): NO_AL = 'no_active_learning' def __init__(self, first_model_positives_num: int, first_model_negatives_num: int, active_learning_suggestions_num: int): """ Init the ExperimentsRunner :param first_model_positives_num: the number of positives instances to provide for the first model. :param first_model_negatives_num: the number of negative instances to provide for the first model. :param active_learning_suggestions_num: the number of instances to be suggested by the active learning strategy for the training of the second model. """ self.first_model_positives_num = first_model_positives_num self.first_model_negatives_num = first_model_negatives_num self.active_learning_suggestions_num = active_learning_suggestions_num self.data_access: DataAccessApi = data_access_factory.get_data_access() self.cached_first_model_scores = False orchestrator_api.set_training_set_selection_strategy(TrainingSetSelectionStrategy.ALL_LABELED) def run(self, config: ExperimentParams, active_learning_iterations_num: int, results_file_path: str, delete_workspaces: bool = True): # key: active learning name, value: list of results oevr iterations (first model has no iterations) results_per_active_learning = defaultdict(dict) # train first model iteration = 0 res_dict = self.train_first_model(config=config) res_handler.save_results(results_file_path, [res_dict]) results_per_active_learning[self.NO_AL][iteration] = res_dict original_workspace_id = config.workspace_id for al in config.active_learning_strategies: orchestrator_api.set_active_learning_strategy(al) if not orchestrator_api.is_model_compatible_with_active_learning(al, config.model): logging.info(f'skipping active learning strategy {al.name} for model {config.model.name} ' f'since the strategy does not support this model.') continue al_workspace_id = original_workspace_id + "-" + al.name if orchestrator_api.workspace_exists(al_workspace_id): orchestrator_api.delete_workspace(al_workspace_id) orchestrator_api.copy_workspace(original_workspace_id, al_workspace_id) config.workspace_id = al_workspace_id for iteration in range(1, active_learning_iterations_num + 1): logging.info(f'Run AL strategy: {al.name}, iteration num: {iteration}, repeat num: {config.repeat_id}\t' f'workspace: {config.workspace_id}') res_dict, train_id = self.run_active_learning_iteration(config, al, iteration) res_handler.save_results(results_file_path, [res_dict]) results_per_active_learning[al.name][iteration] = res_dict if delete_workspaces: orchestrator_api.delete_workspace(config.workspace_id, DeleteModels.ALL_BUT_FIRST_MODEL) if delete_workspaces: orchestrator_api.delete_workspace(original_workspace_id) return results_per_active_learning def train_first_model(self, config: ExperimentParams): if orchestrator_api.workspace_exists(config.workspace_id): orchestrator_api.delete_workspace(config.workspace_id) orchestrator_api.create_workspace(config.workspace_id, config.train_dataset_name, dev_dataset_name=config.dev_dataset_name) orchestrator_api.create_new_category(config.workspace_id, config.category_name, "No description for you") dev_text_elements_uris = orchestrator_api.get_all_text_elements_uris(config.dev_dataset_name) dev_text_elements_and_labels = oracle_data_access_api.get_gold_labels(config.dev_dataset_name, dev_text_elements_uris) if dev_text_elements_and_labels is not None: orchestrator_api.set_labels(config.workspace_id, dev_text_elements_and_labels) random_seed = sum([ord(c) for c in config.workspace_id]) logging.info(str(config)) logging.info(f'random seed: {random_seed}') self.set_first_model_positives(config, random_seed) self.set_first_model_negatives(config, random_seed) # train first model logging.info(f'Starting first model training (model: {config.model.name})\tworkspace: {config.workspace_id}') new_model_id = orchestrator_api.train(config.workspace_id, config.category_name, config.model, train_params=config.train_params) if new_model_id is None: raise Exception(f'a new model was not trained\tworkspace: {config.workspace_id}') eval_dataset = config.test_dataset_name res_dict = self.evaluate(config, al=self.NO_AL, iteration=0, eval_dataset=eval_dataset) res_dict.update(self.generate_al_batch_dict(config)) # ensures AL-related keys are in the results dictionary logging.info(f'Evaluation on dataset: {eval_dataset}, iteration: 0, first model (id: {new_model_id}) ' f'repeat: {config.repeat_id}, is: {res_dict}\t' f'workspace: {config.workspace_id}') return res_dict def run_active_learning_iteration(self, config: ExperimentParams, al, iteration): # get suggested elements for labeling (and their gold labels) suggested_text_elements, suggested_uris_and_gold_labels = \ self.get_suggested_elements_and_gold_labels(config, al) # calculate metrics for the batch suggested by the active learning strategy al_batch_dict = self.generate_al_batch_dict(config, suggested_text_elements) # set gold labels as the user-provided labels of the elements suggested by the active learning strategy orchestrator_api.set_labels(config.workspace_id, suggested_uris_and_gold_labels) # train a new model with the additional elements suggested by the active learning strategy new_model_id = orchestrator_api.train(config.workspace_id, config.category_name, config.model, train_params=config.train_params) if new_model_id is None: raise Exception('New model was not trained') # evaluate the new model eval_dataset = config.test_dataset_name res_dict = self.evaluate(config, al.name, iteration, eval_dataset, suggested_text_elements) res_dict.update(al_batch_dict) logging.info(f'Evaluation on dataset: {eval_dataset}, with AL: {al.name}, iteration: {iteration}, ' f'repeat: {config.repeat_id}, model (id: {new_model_id}) is: {res_dict}\t' f'workspace: {config.workspace_id}') return res_dict, new_model_id def get_suggested_elements_and_gold_labels(self, config, al): start = time.time() suggested_text_elements_for_labeling = \ orchestrator_api.get_elements_to_label(config.workspace_id, config.category_name, self.active_learning_suggestions_num) end = time.time() logging.info(f'{len(suggested_text_elements_for_labeling)} instances ' f'suggested by active learning strategy: {al.name} ' f'for dataset: {config.train_dataset_name} and category: {config.category_name}.\t' f'runtime: {end - start}\tworkspace: {config.workspace_id}') uris_for_labeling = [elem.uri for elem in suggested_text_elements_for_labeling] uris_and_gold_labels = oracle_data_access_api.get_gold_labels(config.train_dataset_name, uris_for_labeling, config.category_name) return suggested_text_elements_for_labeling, uris_and_gold_labels def evaluate(self, config: ExperimentParams, al, iteration, eval_dataset, suggested_text_elements_for_labeling=None): metadata_dict = res_handler.generate_metadata_dict(config, eval_dataset, al, iteration) labels_counts_dict = res_handler.generate_train_labels_counts_dict(config) performance_dict = res_handler.generate_performance_metrics_dict(config, eval_dataset) experiment_specific_metrics_dict = \ self.generate_additional_metrics_dict(config, suggested_text_elements_for_labeling) res_dict = {**metadata_dict, **labels_counts_dict, **performance_dict, **experiment_specific_metrics_dict} return res_dict @abc.abstractmethod def set_first_model_positives(self, config, random_seed) -> List[TextElement]: """ Set the positive instances for the training of the first model. :param config: experiment config for this run :param random_seed: a seed for the Random being used for sampling :return: a list of TextElements and a log message """ func_name = self.set_first_model_positives.__name__ raise NotImplementedError('users must define ' + func_name + ' to use this base class') @abc.abstractmethod def set_first_model_negatives(self, config, random_seed) -> List[TextElement]: """ Set the negative instances for the training of the first model. :param config: experiment config for this run :param random_seed: a seed for the Random being used for sampling :return: a list of TextElements and a log message """ func_name = self.set_first_model_negatives.__name__ raise NotImplementedError('users must define ' + func_name + ' to use this base class') @staticmethod def generate_al_batch_dict(config, batch_elements=None): batch_dict = {} model_supports_embeddings = \ orchestrator_api.is_model_compatible_with_active_learning(ActiveLearningStrategies.DAL, config.model) if batch_elements is not None and model_supports_embeddings: diversity_value, representativeness_value = compute_batch_scores(config, batch_elements) batch_dict["diversity"] = diversity_value batch_dict["representativeness"] = representativeness_value else: batch_dict["diversity"] = "NA" batch_dict["representativeness"] = "NA" return batch_dict def generate_additional_metrics_dict(self, config, suggested_text_elements_for_labeling): return {}
[((281, 401), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.INFO', 'format': '"""%(asctime)s %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s"""'}), "(level=logging.INFO, format=\n '%(asctime)s %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s')\n", (300, 401), False, 'import logging\n'), ((1673, 1690), 'lrtc_lib.data_access.data_access_factory.get_data_access', 'get_data_access', ([], {}), '()\n', (1688, 1690), False, 'from lrtc_lib.data_access.data_access_factory import get_data_access\n'), ((2162, 2197), 'lrtc_lib.active_learning.knn_outlier_calculator.KnnOutlierCalculator', 'KnnOutlierCalculator', (['unlabeled_emb'], {}), '(unlabeled_emb)\n', (2182, 2197), False, 'from lrtc_lib.active_learning.knn_outlier_calculator import KnnOutlierCalculator\n'), ((2344, 2378), 'lrtc_lib.active_learning.diversity_calculator.DiversityCalculator', 'DiversityCalculator', (['unlabeled_emb'], {}), '(unlabeled_emb)\n', (2363, 2378), False, 'from lrtc_lib.active_learning.diversity_calculator import DiversityCalculator\n'), ((3436, 3473), 'lrtc_lib.data_access.data_access_factory.get_data_access', 'data_access_factory.get_data_access', ([], {}), '()\n', (3471, 3473), True, 'import lrtc_lib.data_access.data_access_factory as data_access_factory\n'), ((3529, 3628), 'lrtc_lib.orchestrator.orchestrator_api.set_training_set_selection_strategy', 'orchestrator_api.set_training_set_selection_strategy', (['TrainingSetSelectionStrategy.ALL_LABELED'], {}), '(\n TrainingSetSelectionStrategy.ALL_LABELED)\n', (3581, 3628), False, 'from lrtc_lib.orchestrator import orchestrator_api\n'), ((3922, 3939), 'collections.defaultdict', 'defaultdict', (['dict'], {}), '(dict)\n', (3933, 3939), False, 'from collections import defaultdict\n'), ((4055, 4110), 'lrtc_lib.experiment_runners.experiments_results_handler.save_results', 'res_handler.save_results', (['results_file_path', '[res_dict]'], {}), '(results_file_path, [res_dict])\n', (4079, 4110), True, 'import lrtc_lib.experiment_runners.experiments_results_handler as res_handler\n'), ((5855, 5909), 'lrtc_lib.orchestrator.orchestrator_api.workspace_exists', 'orchestrator_api.workspace_exists', (['config.workspace_id'], {}), '(config.workspace_id)\n', (5888, 5909), False, 'from lrtc_lib.orchestrator import orchestrator_api\n'), ((5987, 6115), 'lrtc_lib.orchestrator.orchestrator_api.create_workspace', 'orchestrator_api.create_workspace', (['config.workspace_id', 'config.train_dataset_name'], {'dev_dataset_name': 'config.dev_dataset_name'}), '(config.workspace_id, config.\n train_dataset_name, dev_dataset_name=config.dev_dataset_name)\n', (6020, 6115), False, 'from lrtc_lib.orchestrator import orchestrator_api\n'), ((6161, 6271), 'lrtc_lib.orchestrator.orchestrator_api.create_new_category', 'orchestrator_api.create_new_category', (['config.workspace_id', 'config.category_name', '"""No description for you"""'], {}), "(config.workspace_id, config.\n category_name, 'No description for you')\n", (6197, 6271), False, 'from lrtc_lib.orchestrator import orchestrator_api\n'), ((6301, 6369), 'lrtc_lib.orchestrator.orchestrator_api.get_all_text_elements_uris', 'orchestrator_api.get_all_text_elements_uris', (['config.dev_dataset_name'], {}), '(config.dev_dataset_name)\n', (6344, 6369), False, 'from lrtc_lib.orchestrator import orchestrator_api\n'), ((6409, 6500), 'lrtc_lib.oracle_data_access.oracle_data_access_api.get_gold_labels', 'oracle_data_access_api.get_gold_labels', (['config.dev_dataset_name', 'dev_text_elements_uris'], {}), '(config.dev_dataset_name,\n dev_text_elements_uris)\n', (6447, 6500), False, 'from lrtc_lib.oracle_data_access import oracle_data_access_api\n'), ((6827, 6870), 'logging.info', 'logging.info', (['f"""random seed: {random_seed}"""'], {}), "(f'random seed: {random_seed}')\n", (6839, 6870), False, 'import logging\n'), ((7029, 7148), 'logging.info', 'logging.info', (['f"""Starting first model training (model: {config.model.name})\tworkspace: {config.workspace_id}"""'], {}), "(\n f'Starting first model training (model: {config.model.name})\\tworkspace: {config.workspace_id}'\n )\n", (7041, 7148), False, 'import logging\n'), ((7162, 7280), 'lrtc_lib.orchestrator.orchestrator_api.train', 'orchestrator_api.train', (['config.workspace_id', 'config.category_name', 'config.model'], {'train_params': 'config.train_params'}), '(config.workspace_id, config.category_name, config.\n model, train_params=config.train_params)\n', (7184, 7280), False, 'from lrtc_lib.orchestrator import orchestrator_api\n'), ((7675, 7864), 'logging.info', 'logging.info', (['f"""Evaluation on dataset: {eval_dataset}, iteration: 0, first model (id: {new_model_id}) repeat: {config.repeat_id}, is: {res_dict}\tworkspace: {config.workspace_id}"""'], {}), "(\n f'Evaluation on dataset: {eval_dataset}, iteration: 0, first model (id: {new_model_id}) repeat: {config.repeat_id}, is: {res_dict}\\tworkspace: {config.workspace_id}'\n )\n", (7687, 7864), False, 'import logging\n'), ((8514, 8599), 'lrtc_lib.orchestrator.orchestrator_api.set_labels', 'orchestrator_api.set_labels', (['config.workspace_id', 'suggested_uris_and_gold_labels'], {}), '(config.workspace_id, suggested_uris_and_gold_labels\n )\n', (8541, 8599), False, 'from lrtc_lib.orchestrator import orchestrator_api\n'), ((8718, 8836), 'lrtc_lib.orchestrator.orchestrator_api.train', 'orchestrator_api.train', (['config.workspace_id', 'config.category_name', 'config.model'], {'train_params': 'config.train_params'}), '(config.workspace_id, config.category_name, config.\n model, train_params=config.train_params)\n', (8740, 8836), False, 'from lrtc_lib.orchestrator import orchestrator_api\n'), ((9152, 9365), 'logging.info', 'logging.info', (['f"""Evaluation on dataset: {eval_dataset}, with AL: {al.name}, iteration: {iteration}, repeat: {config.repeat_id}, model (id: {new_model_id}) is: {res_dict}\tworkspace: {config.workspace_id}"""'], {}), "(\n f'Evaluation on dataset: {eval_dataset}, with AL: {al.name}, iteration: {iteration}, repeat: {config.repeat_id}, model (id: {new_model_id}) is: {res_dict}\\tworkspace: {config.workspace_id}'\n )\n", (9164, 9365), False, 'import logging\n'), ((9527, 9538), 'time.time', 'time.time', ([], {}), '()\n', (9536, 9538), False, 'import time\n'), ((9600, 9724), 'lrtc_lib.orchestrator.orchestrator_api.get_elements_to_label', 'orchestrator_api.get_elements_to_label', (['config.workspace_id', 'config.category_name', 'self.active_learning_suggestions_num'], {}), '(config.workspace_id, config.\n category_name, self.active_learning_suggestions_num)\n', (9638, 9724), False, 'from lrtc_lib.orchestrator import orchestrator_api\n'), ((9785, 9796), 'time.time', 'time.time', ([], {}), '()\n', (9794, 9796), False, 'import time\n'), ((10256, 10366), 'lrtc_lib.oracle_data_access.oracle_data_access_api.get_gold_labels', 'oracle_data_access_api.get_gold_labels', (['config.train_dataset_name', 'uris_for_labeling', 'config.category_name'], {}), '(config.train_dataset_name,\n uris_for_labeling, config.category_name)\n', (10294, 10366), False, 'from lrtc_lib.oracle_data_access import oracle_data_access_api\n'), ((10671, 10742), 'lrtc_lib.experiment_runners.experiments_results_handler.generate_metadata_dict', 'res_handler.generate_metadata_dict', (['config', 'eval_dataset', 'al', 'iteration'], {}), '(config, eval_dataset, al, iteration)\n', (10705, 10742), True, 'import lrtc_lib.experiment_runners.experiments_results_handler as res_handler\n'), ((10772, 10825), 'lrtc_lib.experiment_runners.experiments_results_handler.generate_train_labels_counts_dict', 'res_handler.generate_train_labels_counts_dict', (['config'], {}), '(config)\n', (10817, 10825), True, 'import lrtc_lib.experiment_runners.experiments_results_handler as res_handler\n'), ((10853, 10920), 'lrtc_lib.experiment_runners.experiments_results_handler.generate_performance_metrics_dict', 'res_handler.generate_performance_metrics_dict', (['config', 'eval_dataset'], {}), '(config, eval_dataset)\n', (10898, 10920), True, 'import lrtc_lib.experiment_runners.experiments_results_handler as res_handler\n'), ((12449, 12555), 'lrtc_lib.orchestrator.orchestrator_api.is_model_compatible_with_active_learning', 'orchestrator_api.is_model_compatible_with_active_learning', (['ActiveLearningStrategies.DAL', 'config.model'], {}), '(\n ActiveLearningStrategies.DAL, config.model)\n', (12506, 12555), False, 'from lrtc_lib.orchestrator import orchestrator_api\n'), ((1928, 2004), 'lrtc_lib.orchestrator.orchestrator_api.infer', 'orchestrator_api.infer', (['config.workspace_id', 'config.category_name', 'unlabeled'], {}), '(config.workspace_id, config.category_name, unlabeled)\n', (1950, 2004), False, 'from lrtc_lib.orchestrator import orchestrator_api\n'), ((2045, 2120), 'lrtc_lib.orchestrator.orchestrator_api.infer', 'orchestrator_api.infer', (['config.workspace_id', 'config.category_name', 'elements'], {}), '(config.workspace_id, config.category_name, elements)\n', (2067, 2120), False, 'from lrtc_lib.orchestrator import orchestrator_api\n'), ((4300, 4349), 'lrtc_lib.orchestrator.orchestrator_api.set_active_learning_strategy', 'orchestrator_api.set_active_learning_strategy', (['al'], {}), '(al)\n', (4345, 4349), False, 'from lrtc_lib.orchestrator import orchestrator_api\n'), ((4743, 4793), 'lrtc_lib.orchestrator.orchestrator_api.workspace_exists', 'orchestrator_api.workspace_exists', (['al_workspace_id'], {}), '(al_workspace_id)\n', (4776, 4793), False, 'from lrtc_lib.orchestrator import orchestrator_api\n'), ((4874, 4945), 'lrtc_lib.orchestrator.orchestrator_api.copy_workspace', 'orchestrator_api.copy_workspace', (['original_workspace_id', 'al_workspace_id'], {}), '(original_workspace_id, al_workspace_id)\n', (4905, 4945), False, 'from lrtc_lib.orchestrator import orchestrator_api\n'), ((5684, 5740), 'lrtc_lib.orchestrator.orchestrator_api.delete_workspace', 'orchestrator_api.delete_workspace', (['original_workspace_id'], {}), '(original_workspace_id)\n', (5717, 5740), False, 'from lrtc_lib.orchestrator import orchestrator_api\n'), ((5923, 5977), 'lrtc_lib.orchestrator.orchestrator_api.delete_workspace', 'orchestrator_api.delete_workspace', (['config.workspace_id'], {}), '(config.workspace_id)\n', (5956, 5977), False, 'from lrtc_lib.orchestrator import orchestrator_api\n'), ((6640, 6718), 'lrtc_lib.orchestrator.orchestrator_api.set_labels', 'orchestrator_api.set_labels', (['config.workspace_id', 'dev_text_elements_and_labels'], {}), '(config.workspace_id, dev_text_elements_and_labels)\n', (6667, 6718), False, 'from lrtc_lib.orchestrator import orchestrator_api\n'), ((4369, 4444), 'lrtc_lib.orchestrator.orchestrator_api.is_model_compatible_with_active_learning', 'orchestrator_api.is_model_compatible_with_active_learning', (['al', 'config.model'], {}), '(al, config.model)\n', (4426, 4444), False, 'from lrtc_lib.orchestrator import orchestrator_api\n'), ((4462, 4610), 'logging.info', 'logging.info', (['f"""skipping active learning strategy {al.name} for model {config.model.name} since the strategy does not support this model."""'], {}), "(\n f'skipping active learning strategy {al.name} for model {config.model.name} since the strategy does not support this model.'\n )\n", (4474, 4610), False, 'import logging\n'), ((4811, 4861), 'lrtc_lib.orchestrator.orchestrator_api.delete_workspace', 'orchestrator_api.delete_workspace', (['al_workspace_id'], {}), '(al_workspace_id)\n', (4844, 4861), False, 'from lrtc_lib.orchestrator import orchestrator_api\n'), ((5088, 5235), 'logging.info', 'logging.info', (['f"""Run AL strategy: {al.name}, iteration num: {iteration}, repeat num: {config.repeat_id}\tworkspace: {config.workspace_id}"""'], {}), "(\n f'Run AL strategy: {al.name}, iteration num: {iteration}, repeat num: {config.repeat_id}\\tworkspace: {config.workspace_id}'\n )\n", (5100, 5235), False, 'import logging\n'), ((5371, 5426), 'lrtc_lib.experiment_runners.experiments_results_handler.save_results', 'res_handler.save_results', (['results_file_path', '[res_dict]'], {}), '(results_file_path, [res_dict])\n', (5395, 5426), True, 'import lrtc_lib.experiment_runners.experiments_results_handler as res_handler\n'), ((5553, 5646), 'lrtc_lib.orchestrator.orchestrator_api.delete_workspace', 'orchestrator_api.delete_workspace', (['config.workspace_id', 'DeleteModels.ALL_BUT_FIRST_MODEL'], {}), '(config.workspace_id, DeleteModels.\n ALL_BUT_FIRST_MODEL)\n', (5586, 5646), False, 'from lrtc_lib.orchestrator import orchestrator_api\n')]
alexbjorling/acquisition-framework
contrast/environment/data.py
4090381344aabca05155612845ba4e4a47455dc3
try: from tango import DeviceProxy, DevError except ModuleNotFoundError: pass class PathFixer(object): """ Basic pathfixer which takes a path manually. """ def __init__(self): self.directory = None class SdmPathFixer(object): """ MAX IV pathfixer which takes a path from a Tango device. """ def __init__(self, sdm_device): self.device = DeviceProxy(sdm_device) self.TRIALS = 10 self.cache = None @property def directory(self): for trial in range(self.TRIALS): try: val = self.device.SamplePath self.cache = val return val except DevError: print('Failed in getting SDM path from Tango. Trying again...') print('Failed %u times, using cached value: %s' % (self.TRIALS, self.cache)) return self.cache
[((397, 420), 'tango.DeviceProxy', 'DeviceProxy', (['sdm_device'], {}), '(sdm_device)\n', (408, 420), False, 'from tango import DeviceProxy, DevError\n')]
fung04/csrw_game
game_2048/views.py
9673fdd311583057d5bf756dec7b99959d961d0c
import json from django.contrib.auth.models import User from django.http import JsonResponse from django.shortcuts import redirect, render from .models import Game2048 # Create your views here. # test_user # 8!S#5RP!WVMACg def game(request): return render(request, 'game_2048/index.html') def set_result(request): user = request.user if str( request.user) != "AnonymousUser" else User.objects.get(username='test_user') if request.method == 'POST': # Get the game state from the POST request game_state = request.body obj = Game2048.objects.get(user=user) # Check if the game state idendical to the server game state if game_state != obj.game_state: # let string to JSON object json_game_state = json.loads(game_state) # extract value of best from JSON objest obj.best_score = json_game_state['best'] obj.game_state = json_game_state # save JSON object to game_state obj.save() else: return redirect('game_2048:game') return JsonResponse("", safe=False) def get_result(request): # Check if user is logged in if not set user to test_user user = request.user if str( request.user) != "AnonymousUser" else User.objects.get(username='test_user') if request.method == 'GET': obj, created = Game2048.objects.get_or_create(user=user) game_state = obj.game_state return JsonResponse(game_state, safe=False)
[((260, 299), 'django.shortcuts.render', 'render', (['request', '"""game_2048/index.html"""'], {}), "(request, 'game_2048/index.html')\n", (266, 299), False, 'from django.shortcuts import redirect, render\n'), ((1086, 1114), 'django.http.JsonResponse', 'JsonResponse', (['""""""'], {'safe': '(False)'}), "('', safe=False)\n", (1098, 1114), False, 'from django.http import JsonResponse\n'), ((1467, 1503), 'django.http.JsonResponse', 'JsonResponse', (['game_state'], {'safe': '(False)'}), '(game_state, safe=False)\n', (1479, 1503), False, 'from django.http import JsonResponse\n'), ((405, 443), 'django.contrib.auth.models.User.objects.get', 'User.objects.get', ([], {'username': '"""test_user"""'}), "(username='test_user')\n", (421, 443), False, 'from django.contrib.auth.models import User\n'), ((1047, 1073), 'django.shortcuts.redirect', 'redirect', (['"""game_2048:game"""'], {}), "('game_2048:game')\n", (1055, 1073), False, 'from django.shortcuts import redirect, render\n'), ((1282, 1320), 'django.contrib.auth.models.User.objects.get', 'User.objects.get', ([], {'username': '"""test_user"""'}), "(username='test_user')\n", (1298, 1320), False, 'from django.contrib.auth.models import User\n'), ((791, 813), 'json.loads', 'json.loads', (['game_state'], {}), '(game_state)\n', (801, 813), False, 'import json\n')]
Silvicek/distributional-dqn
distdeepq/__init__.py
41a9095393dd25b7375119b4af7d2c35ee3ec6cc
from distdeepq import models # noqa from distdeepq.build_graph import build_act, build_train # noqa from distdeepq.simple import learn, load, make_session # noqa from distdeepq.replay_buffer import ReplayBuffer, PrioritizedReplayBuffer # noqa from distdeepq.static import * from distdeepq.plots import PlotMachine
[]
17nikhil/codecademy
python/10.Authentication-&-API-Keys.py
58fbd652691c9df8139544965ebb0e9748142538
# Authentication & API Keys # Many APIs require an API key. Just as a real-world key allows you to access something, an API key grants you access to a particular API. Moreover, an API key identifies you to the API, which helps the API provider keep track of how their service is used and prevent unauthorized or malicious activity. # # Some APIs require authentication using a protocol called OAuth. We won't get into the details, but if you've ever been redirected to a page asking for permission to link an application with your account, you've probably used OAuth. # # API keys are often long alphanumeric strings. We've made one up in the editor to the right! (It won't actually work on anything, but when you receive your own API keys in future projects, they'll look a lot like this.) api_key = "string"
[]
takkaria/json-plucker
plucker/__init__.py
6407dcc9a21d99d8f138128e9ee80c901a08c2e1
from .plucker import pluck, Path from .exceptions import PluckError __all__ = ["pluck", "Path", "PluckError"]
[]
gimbo/arviz
arviz/plots/pairplot.py
c1df1847aa5170ad2810ae3d705d576d2643e3ec
"""Plot a scatter or hexbin of sampled parameters.""" import warnings import numpy as np from ..data import convert_to_dataset, convert_to_inference_data from .plot_utils import xarray_to_ndarray, get_coords, get_plotting_function from ..utils import _var_names def plot_pair( data, group="posterior", var_names=None, coords=None, figsize=None, textsize=None, kind="scatter", gridsize="auto", contour=True, fill_last=True, divergences=False, colorbar=False, ax=None, divergences_kwargs=None, plot_kwargs=None, backend=None, backend_kwargs=None, show=None, ): """ Plot a scatter or hexbin matrix of the sampled parameters. Parameters ---------- data : obj Any object that can be converted to an az.InferenceData object Refer to documentation of az.convert_to_dataset for details group : str, optional Specifies which InferenceData group should be plotted. Defaults to 'posterior'. var_names : list of variable names Variables to be plotted, if None all variable are plotted coords : mapping, optional Coordinates of var_names to be plotted. Passed to `Dataset.sel` figsize : figure size tuple If None, size is (8 + numvars, 8 + numvars) textsize: int Text size for labels. If None it will be autoscaled based on figsize. kind : str Type of plot to display (scatter, kde or hexbin) gridsize : int or (int, int), optional Only works for kind=hexbin. The number of hexagons in the x-direction. The corresponding number of hexagons in the y-direction is chosen such that the hexagons are approximately regular. Alternatively, gridsize can be a tuple with two elements specifying the number of hexagons in the x-direction and the y-direction. contour : bool If True plot the 2D KDE using contours, otherwise plot a smooth 2D KDE. Defaults to True. fill_last : bool If True fill the last contour of the 2D KDE plot. Defaults to True. divergences : Boolean If True divergences will be plotted in a different color, only if group is either 'prior' or 'posterior'. colorbar : bool If True a colorbar will be included as part of the plot (Defaults to False). Only works when kind=hexbin ax: axes, optional Matplotlib axes or bokeh figures. divergences_kwargs : dicts, optional Additional keywords passed to ax.scatter for divergences plot_kwargs : dicts, optional Additional keywords passed to ax.plot, az.plot_kde or ax.hexbin backend: str, optional Select plotting backend {"matplotlib","bokeh"}. Default "matplotlib". backend_kwargs: bool, optional These are kwargs specific to the backend being used. For additional documentation check the plotting method of the backend. show : bool, optional Call backend show function. Returns ------- axes : matplotlib axes or bokeh figures Examples -------- KDE Pair Plot .. plot:: :context: close-figs >>> import arviz as az >>> centered = az.load_arviz_data('centered_eight') >>> coords = {'school': ['Choate', 'Deerfield']} >>> az.plot_pair(centered, >>> var_names=['theta', 'mu', 'tau'], >>> kind='kde', >>> coords=coords, >>> divergences=True, >>> textsize=18) Hexbin pair plot .. plot:: :context: close-figs >>> az.plot_pair(centered, >>> var_names=['theta', 'mu'], >>> coords=coords, >>> textsize=18, >>> kind='hexbin') Pair plot showing divergences .. plot:: :context: close-figs >>> az.plot_pair(centered, ... var_names=['theta', 'mu', 'tau'], ... coords=coords, ... divergences=True, ... textsize=18) """ valid_kinds = ["scatter", "kde", "hexbin"] if kind not in valid_kinds: raise ValueError( ("Plot type {} not recognized." "Plot type must be in {}").format(kind, valid_kinds) ) if coords is None: coords = {} if plot_kwargs is None: plot_kwargs = {} if kind == "scatter": plot_kwargs.setdefault("marker", ".") plot_kwargs.setdefault("lw", 0) if divergences_kwargs is None: divergences_kwargs = {} divergences_kwargs.setdefault("marker", "o") divergences_kwargs.setdefault("markeredgecolor", "k") divergences_kwargs.setdefault("color", "C1") divergences_kwargs.setdefault("lw", 0) # Get posterior draws and combine chains data = convert_to_inference_data(data) grouped_data = convert_to_dataset(data, group=group) var_names = _var_names(var_names, grouped_data) flat_var_names, infdata_group = xarray_to_ndarray( get_coords(grouped_data, coords), var_names=var_names, combined=True ) divergent_data = None diverging_mask = None # Assigning divergence group based on group param if group == "posterior": divergent_group = "sample_stats" elif group == "prior": divergent_group = "sample_stats_prior" else: divergences = False # Get diverging draws and combine chains if divergences: if hasattr(data, divergent_group) and hasattr(getattr(data, divergent_group), "diverging"): divergent_data = convert_to_dataset(data, group=divergent_group) _, diverging_mask = xarray_to_ndarray( divergent_data, var_names=("diverging",), combined=True ) diverging_mask = np.squeeze(diverging_mask) else: divergences = False warnings.warn( "Divergences data not found, plotting without divergences. " "Make sure the sample method provides divergences data and " "that it is present in the `diverging` field of `sample_stats` " "or `sample_stats_prior` or set divergences=False", SyntaxWarning, ) if gridsize == "auto": gridsize = int(len(infdata_group[0]) ** 0.35) numvars = len(flat_var_names) if numvars < 2: raise Exception("Number of variables to be plotted must be 2 or greater.") pairplot_kwargs = dict( ax=ax, infdata_group=infdata_group, numvars=numvars, figsize=figsize, textsize=textsize, kind=kind, plot_kwargs=plot_kwargs, contour=contour, fill_last=fill_last, gridsize=gridsize, colorbar=colorbar, divergences=divergences, diverging_mask=diverging_mask, divergences_kwargs=divergences_kwargs, flat_var_names=flat_var_names, backend_kwargs=backend_kwargs, show=show, ) if backend == "bokeh": pairplot_kwargs.pop("gridsize", None) pairplot_kwargs.pop("colorbar", None) pairplot_kwargs.pop("divergences_kwargs", None) pairplot_kwargs.pop("hexbin_values", None) # TODO: Add backend kwargs plot = get_plotting_function("plot_pair", "pairplot", backend) ax = plot(**pairplot_kwargs) return ax
[((5835, 5861), 'numpy.squeeze', 'np.squeeze', (['diverging_mask'], {}), '(diverging_mask)\n', (5845, 5861), True, 'import numpy as np\n'), ((5920, 6188), 'warnings.warn', 'warnings.warn', (['"""Divergences data not found, plotting without divergences. Make sure the sample method provides divergences data and that it is present in the `diverging` field of `sample_stats` or `sample_stats_prior` or set divergences=False"""', 'SyntaxWarning'], {}), "(\n 'Divergences data not found, plotting without divergences. Make sure the sample method provides divergences data and that it is present in the `diverging` field of `sample_stats` or `sample_stats_prior` or set divergences=False'\n , SyntaxWarning)\n", (5933, 6188), False, 'import warnings\n')]
LisandroCanteros/Grupo2_COM06_Info2021
cuestionario/formularios.py
86ad9e08db4e8935bf397b6e4db0b3d9d72cb320
from django.forms import ModelForm from .models import Cuestionario, Categoria from preguntas.models import Pregunta, Respuesta class CuestionarioForm(ModelForm): class Meta: model = Cuestionario fields = '__all__' class PreguntaForm(ModelForm): class Meta: model = Pregunta fields = '__all__' class RespuestaForm(ModelForm): class Meta: model = Respuesta fields = '__all__' class CategoriaForm(ModelForm): class Meta: model = Categoria fields = '__all__'
[]
biocross/VITCloud
vitcloud/views.py
9656bd489c6d05717bf529d0661e07da0cd2551a
from django.views.generic import View from django.http import HttpResponse import os, json, datetime from django.shortcuts import redirect from django.shortcuts import render_to_response from vitcloud.models import File from django.views.decorators.csrf import csrf_exempt from listingapikeys import findResult import sys # sys.setdefaultencoding is cancelled by site.py reload(sys) # to re-enable sys.setdefaultencoding() sys.setdefaultencoding('utf-8') #Custom Functions: def repeated(fname, fsize, fblock, froom): if(File.objects.filter(name=fname, size=fsize, block=fblock, room=froom)): return True else: return False #**Not for Production** Views def clean(request): q = File.objects.filter(block__iexact="L") q.delete() #Views: def home(request): no_of_files = len(File.objects.values_list('name').distinct()) no_of_blocks = len(File.objects.values_list('block').distinct()) no_of_rooms = len(File.objects.values_list('room').distinct()) file_sizes = File.objects.all() total_file_size = 0 for x in file_sizes: total_file_size = total_file_size + int(x.size) total_file_size = (total_file_size/1024) return render_to_response('home/home.htm' , {'x' : no_of_files, 'y' : no_of_blocks, 'z' : no_of_rooms, 'w' : total_file_size }) def pageSearch(request): return render_to_response('home/search.htm') def pageHowitworks(request): return render_to_response('home/howitworks.htm') def pageTopsharers(request): return render_to_response('home/topsharers.htm') def pageGettheapp(request): return render_to_response('home/gettheapp.htm') def search(request): if request.method == "GET": if (request.GET['thesearchbox'] == ""): if ('latest' in request.GET): results = File.objects.all().order_by("-id") no = len(results) paragraph = True return render_to_response('home/results.htm', {'results' : results, 'paragraph' : paragraph, 'no' : no }) else: return redirect('/blockwise') else: filename = str(request.GET['thesearchbox']) paragraph = False results = File.objects.filter(name__icontains=filename).order_by("-id") no = len(results) return render_to_response('home/results.htm', {'results' : results, 'paragraph': paragraph, 'no' : no }) def blockwise(request): blockNames = File.objects.values_list('block').distinct() for x in blockNames: print str(x[0]) return render_to_response('home/blockwise.htm', {'blocks' : blockNames}) def blockwiseFeeder(request): if request.method == "GET": block = request.GET['block'] blockFiles = File.objects.filter(block__iexact=block).order_by("-id") return render_to_response('home/blockwiseFeeder.htm', {'block': block, 'results': blockFiles}) def suggestions(request): if request.method == "GET": filename = str(request.GET['q']) results = File.objects.filter(name__icontains=filename) length = len(results) suggestions = [filename, []] for x in range(0, length, 1): suggestions[1].append(results[x].name) return HttpResponse(json.dumps(suggestions)) class Block: name = "" total = "" def statistics(request): finalArray = [] blockNames = [] blockSizes = [] blocks = File.objects.values_list('block').distinct() for x in blocks: blockName = str(str(x[0]).upper()) blockName = blockName + " Block" blockNames.append(str(blockName).encode('utf-8')) blockFiles = File.objects.filter(block__iexact=x[0]) totalSize = 0 for y in blockFiles: totalSize = totalSize + int(y.size) blockSizes.append(totalSize/1024) return render_to_response('home/stats.htm', { 'blockNames' : blockNames, 'blockSizes' : blockSizes }) def apiFeed(request): if request.method == "GET": if("q" in request.GET): filename = str(request.GET['q']) result = findResult(filename) return HttpResponse(json.dumps(result)) else: return HttpResponse("Need The Required Parameters to work!") def fileDetails(request): if request.method == "GET": filename = str(request.GET['q']) results = File.objects.filter(name__icontains=filename) filen = "NOTFOUND.404" for x in results: filen = x.name return render_to_response('home/file.htm', {'results' : results, 'filen': filen }) def submitOne(request): error = False if 'filename' in request.GET: filename = request.GET['filename'] filesize = 100000 fileblock = "MN" fileroom = "447" if not filename: error = True else: now = datetime.datetime.now() p1 = File.objects.create(name=filename, size = filesize, block = fileblock, room = fileroom, date = now) results = File.objects.all() return render_to_response('home/success.htm', { 'results': results }) return render_to_response('home/submitone.htm', { 'error': error }) @csrf_exempt def interface(request): if request.method == "POST": data = json.loads(request.body) currentBlock = str(data['Block']) currentRoom = str(data['Room']) currentHostelType = str(data['Hostel']) no = len(data['Files']) inserted = 0 data=data['Files'] for x in range(0, no, 2): data[x+1] = int(data[x+1]) data[x+1] = (data[x+1]/1048576) if not repeated(fname = data[x], fsize = str(data[x+1]), fblock=currentBlock, froom = currentRoom): now = datetime.datetime.now() temp = File.objects.create(name=data[x], size=str(data[x+1]), block = currentBlock, room = currentRoom, date = now) inserted = (inserted + 1) files_inserted = inserted result = "inserted files: \n\n" + str(files_inserted) return HttpResponse(result) else: return HttpResponse("<h2>VITCloud</h2> <h4>Desktop App Interface</h4><br/><br/><strong>Current Status:</strong> Listening at /interface...<br/><br/>Copyright 2012-2013<br/>Siddharth Gupta<br/>Saurabh Joshi")
[]
jeremytiki/blurple.py
blurple/ui/base.py
c8f65955539cc27be588a06592b1c81c03f59c37
from abc import ABC import discord class Base(discord.Embed, ABC): async def send(self, client: discord.abc.Messageable): """ Send the component as a message in discord. :param client: The client used, usually a :class:`discord.abc.Messageable`. Must have implemented :func:`.send` :returns: :class:`discord.Message` """ return await client.send(embed=self)
[]
jonzxz/project-piscator
migrations/versions/e86dd3bc539c_change_admin_to_boolean.py
588c8b1ac9355f9a82ac449fdbeaa1ef7eb441ef
"""change admin to boolean Revision ID: e86dd3bc539c Revises: 6f63ef516cdc Create Date: 2020-11-11 22:32:00.707936 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'e86dd3bc539c' down_revision = '6f63ef516cdc' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('email_address', sa.Column('active', sa.Boolean(), nullable=False)) op.add_column('email_address', sa.Column('email_password', sa.String(length=255), nullable=False)) op.add_column('email_address', sa.Column('last_mailbox_size', sa.Integer(), nullable=True)) op.add_column('email_address', sa.Column('last_updated', sa.DateTime(), nullable=True)) op.add_column('email_address', sa.Column('phishing_mail_detected', sa.Integer(), nullable=True)) op.add_column('user', sa.Column('is_active', sa.Boolean(), nullable=False)) op.add_column('user', sa.Column('is_admin', sa.Boolean(), nullable=True)) op.add_column('user', sa.Column('last_logged_in', sa.DateTime(), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('user', 'last_logged_in') op.drop_column('user', 'is_admin') op.drop_column('user', 'is_active') op.drop_column('email_address', 'phishing_mail_detected') op.drop_column('email_address', 'last_updated') op.drop_column('email_address', 'last_mailbox_size') op.drop_column('email_address', 'email_password') op.drop_column('email_address', 'active') # ### end Alembic commands ###
[((1235, 1275), 'alembic.op.drop_column', 'op.drop_column', (['"""user"""', '"""last_logged_in"""'], {}), "('user', 'last_logged_in')\n", (1249, 1275), False, 'from alembic import op\n'), ((1280, 1314), 'alembic.op.drop_column', 'op.drop_column', (['"""user"""', '"""is_admin"""'], {}), "('user', 'is_admin')\n", (1294, 1314), False, 'from alembic import op\n'), ((1319, 1354), 'alembic.op.drop_column', 'op.drop_column', (['"""user"""', '"""is_active"""'], {}), "('user', 'is_active')\n", (1333, 1354), False, 'from alembic import op\n'), ((1359, 1416), 'alembic.op.drop_column', 'op.drop_column', (['"""email_address"""', '"""phishing_mail_detected"""'], {}), "('email_address', 'phishing_mail_detected')\n", (1373, 1416), False, 'from alembic import op\n'), ((1421, 1468), 'alembic.op.drop_column', 'op.drop_column', (['"""email_address"""', '"""last_updated"""'], {}), "('email_address', 'last_updated')\n", (1435, 1468), False, 'from alembic import op\n'), ((1473, 1525), 'alembic.op.drop_column', 'op.drop_column', (['"""email_address"""', '"""last_mailbox_size"""'], {}), "('email_address', 'last_mailbox_size')\n", (1487, 1525), False, 'from alembic import op\n'), ((1530, 1579), 'alembic.op.drop_column', 'op.drop_column', (['"""email_address"""', '"""email_password"""'], {}), "('email_address', 'email_password')\n", (1544, 1579), False, 'from alembic import op\n'), ((1584, 1625), 'alembic.op.drop_column', 'op.drop_column', (['"""email_address"""', '"""active"""'], {}), "('email_address', 'active')\n", (1598, 1625), False, 'from alembic import op\n'), ((445, 457), 'sqlalchemy.Boolean', 'sa.Boolean', ([], {}), '()\n', (455, 457), True, 'import sqlalchemy as sa\n'), ((539, 560), 'sqlalchemy.String', 'sa.String', ([], {'length': '(255)'}), '(length=255)\n', (548, 560), True, 'import sqlalchemy as sa\n'), ((645, 657), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (655, 657), True, 'import sqlalchemy as sa\n'), ((736, 749), 'sqlalchemy.DateTime', 'sa.DateTime', ([], {}), '()\n', (747, 749), True, 'import sqlalchemy as sa\n'), ((838, 850), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (848, 850), True, 'import sqlalchemy as sa\n'), ((917, 929), 'sqlalchemy.Boolean', 'sa.Boolean', ([], {}), '()\n', (927, 929), True, 'import sqlalchemy as sa\n'), ((996, 1008), 'sqlalchemy.Boolean', 'sa.Boolean', ([], {}), '()\n', (1006, 1008), True, 'import sqlalchemy as sa\n'), ((1080, 1093), 'sqlalchemy.DateTime', 'sa.DateTime', ([], {}), '()\n', (1091, 1093), True, 'import sqlalchemy as sa\n')]
adrianomqsmts/django-escola
school/migrations/0010_alter_sala_unique_together.py
a69541bceb3f30bdd2e9f0f41aa9c2da6081a1d1
# Generated by Django 4.0.3 on 2022-03-16 03:09 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('school', '0009_rename_periodo_semestre_alter_semestre_options_and_more'), ] operations = [ migrations.AlterUniqueTogether( name='sala', unique_together={('porta', 'predio')}, ), ]
[((263, 349), 'django.db.migrations.AlterUniqueTogether', 'migrations.AlterUniqueTogether', ([], {'name': '"""sala"""', 'unique_together': "{('porta', 'predio')}"}), "(name='sala', unique_together={('porta',\n 'predio')})\n", (293, 349), False, 'from django.db import migrations\n')]
chris4540/DD2430-ds-proj
code_trunk/trainer/abc.py
b876efabe949392b27a7ebd4afb2be623174e287
""" Abstract training class """ from abc import ABC as AbstractBaseClass from abc import abstractmethod class AdstractTrainer(AbstractBaseClass): @abstractmethod def run(self): pass @abstractmethod def prepare_data_loaders(self): """ For preparing data loaders and save them as instance attributes """ pass @abstractmethod def prepare_exp_settings(self): """ Define stuff which are before the actual run. For example: - Optimizer - Model """ pass @abstractmethod def prepare_logging(self): pass
[]
melvyniandrag/quadpy
quadpy/triangle/cools_haegemans.py
ae28fc17351be8e76909033f03d71776c7ef8280
# -*- coding: utf-8 -*- # from mpmath import mp from .helpers import untangle2 class CoolsHaegemans(object): """ R. Cools, A. Haegemans, Construction of minimal cubature formulae for the square and the triangle using invariant theory, Department of Computer Science, K.U.Leuven, TW Reports vol:TW96, Sept. 1987, <https://lirias.kuleuven.be/handle/123456789/131869>. """ def __init__(self, index, mpmath=False): self.name = "CoolsHaegemans({})".format(index) assert index == 1 self.degree = 8 flt = mp.mpf if mpmath else float mp.dps = 20 data = { "rot": [ [ flt("0.16058343856681218798E-09"), flt("0.34579201116826902882E+00"), flt("0.36231682215692616667E+01"), ], [ flt("0.26530624434780379347E-01"), flt("0.65101993458939166328E-01"), flt("0.87016510156356306078E+00"), ], [ flt("0.29285717640155892159E-01"), flt("0.65177530364879570754E+00"), flt("0.31347788752373300717E+00"), ], [ flt("0.43909556791220782402E-01"), flt("0.31325121067172530696E+00"), flt("0.63062143431895614010E+00"), ], [ flt("0.66940767639916174192E-01"), flt("0.51334692063945414949E+00"), flt("0.28104124731511039057E+00"), ], ] } # elif index == 2: # self.degree = 10 # data = [ # (0.15319130036758557631E-06_r3(+0.58469201683584513031E-01, -0.54887778772527519316E+00)), # (0.13260526227928785221E-01_r3(0.50849285064031410705E-01, 0.90799059794957813439E+00)), # (0.15646439344539042136E-01_r3(0.51586732419949574487E+00, 0.46312452842927062902E+00)), # (0.21704258224807323311E-01_r3(0.24311033191739048230E+00, 0.72180595182371959467E-00)), # (0.21797613600129922367E-01_r3(0.75397765920922660134E-00, 0.20647569839132397633E+00)), # (0.38587913508193459468E-01_r3(0.42209207910846960294E-00, 0.12689533413411127327E+00)), # (0.39699584282594413022E-01_r3(0.19823878346663354068E+00, 0.62124412566393319745E+00)), # (0.47910534861520060665E-01numpy.array([[1.0/3.0, 1.0/3.0, 1.0/3.0]]) # ] self.bary, self.weights = untangle2(data) self.points = self.bary[:, 1:] self.weights *= 2 return
[]
RichardLeeH/invoce_sys
account/admin.py
42a6f5750f45b25e0d7282114ccb7f9f72ee1761
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.contrib import admin from django.contrib.auth.admin import UserAdmin from django.contrib.auth.models import User from rest_framework.authtoken.models import Token from account.models import Profile admin.site.site_header = 'invoce' class TokenAdmin(admin.ModelAdmin): list_display = ('key', 'uid', 'user', 'created') fields = ('user',) ordering = ('-created',) def uid(self, obj): return obj.user.id uid.short_description = u'用户ID' admin.site.unregister(Token) admin.site.register(Token, TokenAdmin) class ProfileInline(admin.StackedInline): model = Profile class UserCustomAdmin(UserAdmin): list_display = ('id', 'username', 'email', 'is_active', 'is_staff') inlines = (ProfileInline, ) ordering = ('-id', ) admin.site.unregister(User) admin.site.register(User, UserCustomAdmin)
[((543, 571), 'django.contrib.admin.site.unregister', 'admin.site.unregister', (['Token'], {}), '(Token)\n', (564, 571), False, 'from django.contrib import admin\n'), ((572, 610), 'django.contrib.admin.site.register', 'admin.site.register', (['Token', 'TokenAdmin'], {}), '(Token, TokenAdmin)\n', (591, 610), False, 'from django.contrib import admin\n'), ((841, 868), 'django.contrib.admin.site.unregister', 'admin.site.unregister', (['User'], {}), '(User)\n', (862, 868), False, 'from django.contrib import admin\n'), ((869, 911), 'django.contrib.admin.site.register', 'admin.site.register', (['User', 'UserCustomAdmin'], {}), '(User, UserCustomAdmin)\n', (888, 911), False, 'from django.contrib import admin\n')]
krishankansal/PythonPrograms
oops/#016exceptions.py
6d4d989068195b8c8dd9d71cf4f920fef1177cf2
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Jun 18 08:40:11 2020 @author: krishan """ def funny_division2(anumber): try: if anumber == 13: raise ValueError("13 is an unlucky number") return 100 / anumber except (ZeroDivisionError, TypeError): return "Enter a number other than zero" def funny_division3(anumber): try: if anumber == 13: raise ValueError("13 is an unlucky number") return 100 / anumber except ZeroDivisionError: return "Enter a number other than zero" except TypeError: return "Enter a numerical value" except ValueError as e: print("The exception arguments were",e.args) #raise for val in (0, "hello", 50.0, 13): print(f"Testing {val}:", funny_division3(val))
[]
denn-s/SimCLR
config/simclr_config.py
e2239ac52464b1271c3b8ad1ec4eb26f3b73c7d4
import os from datetime import datetime import torch from dataclasses import dataclass class SimCLRConfig: @dataclass() class Base: output_dir_path: str log_dir_path: str log_file_path: str device: object num_gpu: int logger_name: str @dataclass() class Train: # batch_size as usual. examples: 16,32,.. batch_size: int # number of workers to be used for data loading. examples: 2,4,... num_workers: int # start training with this epoch. most likely: 0 start_epoch: int # in case of restart this is where the saved model is expected to be located restart_log_dir_path: str # end training with this epoch. examples: 10, 100,... epochs: int # directory where the datasets are located. example: "/home/USER_NAME/Data" data_dir_path: str # dataset name. options: ["CIFAR10", "STL10", "iNaturalist2019", "ImageNet"] dataset: str # save trained model every n epochs. examples: 1,5,10,... save_num_epochs: int # image size obtained from last data preparation step img_size: int # name of the optimizer. options: ["Adam", "LARS"] # TODO: implement LARS ptimizer optimizer: str weight_decay: float temperature: float global_step: int current_epoch: int @dataclass() class Model: # model architecture. options: ["resnet18", "resnet50"] resnet: str normalize: bool projection_dim: int @dataclass() class SimCLR: train: object model: object @dataclass() class LogisticRegression: epochs: int batch_size: int learning_rate: float momentum: float img_size: int model_path: str epoch_num: int @dataclass() class FineTuning: epochs: int batch_size: int learning_rate: float momentum: float img_size: int save_num_epochs: int # decay "learning_rate" by a factor of "gamma" every "step_size" epochs gamma: float step_size: int model_path: str epoch_num: int @dataclass() class ONNX: batch_size: int img_size: int model_path: str epoch_num: int def __init__(self, config): global_step = 0 current_epoch = 0 simclr_train = SimCLRConfig.Train(**config['simclr']['train'], global_step=global_step, current_epoch=current_epoch) simclr_model = SimCLRConfig.Model(**config['simclr']['model']) self.simclr = SimCLRConfig.SimCLR(simclr_train, simclr_model) model_path = None epoch_num = None self.logistic_regression = SimCLRConfig.LogisticRegression(**config['logistic_regression'], model_path=model_path, epoch_num=epoch_num) model_path = None epoch_num = None self.fine_tuning = SimCLRConfig.FineTuning(**config['fine_tuning'], model_path=model_path, epoch_num=epoch_num) model_path = None epoch_num = None self.onnx = SimCLRConfig.ONNX(**config['onnx'], model_path=model_path, epoch_num=epoch_num) logger_name = config['logger_name'] output_dir_path = 'output' now = datetime.now() dt_string: str = now.strftime("%Y_%m_%d_%H_%M_%S") log_dir_name = dt_string + '_' + logger_name + '_' + self.simclr.train.dataset.lower() log_dir_path = os.path.join(output_dir_path, log_dir_name) log_file_path = os.path.join(log_dir_path, 'log.txt') device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") num_gpu = torch.cuda.device_count() self.base = SimCLRConfig.Base(output_dir_path, log_dir_path, log_file_path, device, num_gpu, logger_name) def __str__(self): return str(self.__class__) + ": " + str(self.__dict__)
[((115, 126), 'dataclasses.dataclass', 'dataclass', ([], {}), '()\n', (124, 126), False, 'from dataclasses import dataclass\n'), ((300, 311), 'dataclasses.dataclass', 'dataclass', ([], {}), '()\n', (309, 311), False, 'from dataclasses import dataclass\n'), ((1430, 1441), 'dataclasses.dataclass', 'dataclass', ([], {}), '()\n', (1439, 1441), False, 'from dataclasses import dataclass\n'), ((1601, 1612), 'dataclasses.dataclass', 'dataclass', ([], {}), '()\n', (1610, 1612), False, 'from dataclasses import dataclass\n'), ((1681, 1692), 'dataclasses.dataclass', 'dataclass', ([], {}), '()\n', (1690, 1692), False, 'from dataclasses import dataclass\n'), ((1896, 1907), 'dataclasses.dataclass', 'dataclass', ([], {}), '()\n', (1905, 1907), False, 'from dataclasses import dataclass\n'), ((2257, 2268), 'dataclasses.dataclass', 'dataclass', ([], {}), '()\n', (2266, 2268), False, 'from dataclasses import dataclass\n'), ((3502, 3516), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (3514, 3516), False, 'from datetime import datetime\n'), ((3695, 3738), 'os.path.join', 'os.path.join', (['output_dir_path', 'log_dir_name'], {}), '(output_dir_path, log_dir_name)\n', (3707, 3738), False, 'import os\n'), ((3763, 3800), 'os.path.join', 'os.path.join', (['log_dir_path', '"""log.txt"""'], {}), "(log_dir_path, 'log.txt')\n", (3775, 3800), False, 'import os\n'), ((3901, 3926), 'torch.cuda.device_count', 'torch.cuda.device_count', ([], {}), '()\n', (3924, 3926), False, 'import torch\n'), ((3844, 3869), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (3867, 3869), False, 'import torch\n')]
Priyanka-Askani/swift
test/unit/common/middleware/s3api/test_obj.py
1ab691f63778008015b34ce004992844acee9968
# Copyright (c) 2014 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from datetime import datetime import hashlib import os from os.path import join import time from mock import patch from swift.common import swob from swift.common.swob import Request from test.unit.common.middleware.s3api import S3ApiTestCase from test.unit.common.middleware.s3api.test_s3_acl import s3acl from swift.common.middleware.s3api.subresource import ACL, User, encode_acl, \ Owner, Grant from swift.common.middleware.s3api.etree import fromstring from swift.common.middleware.s3api.utils import mktime, S3Timestamp from test.unit.common.middleware.s3api.helpers import FakeSwift def _wrap_fake_auth_middleware(org_func): def fake_fake_auth_middleware(self, env): org_func(env) if 'swift.authorize_override' in env: return if 'HTTP_AUTHORIZATION' not in env: return _, authorization = env['HTTP_AUTHORIZATION'].split(' ') tenant_user, sign = authorization.rsplit(':', 1) tenant, user = tenant_user.rsplit(':', 1) env['HTTP_X_TENANT_NAME'] = tenant env['HTTP_X_USER_NAME'] = user return fake_fake_auth_middleware class TestS3ApiObj(S3ApiTestCase): def setUp(self): super(TestS3ApiObj, self).setUp() self.object_body = 'hello' self.etag = hashlib.md5(self.object_body).hexdigest() self.last_modified = 'Fri, 01 Apr 2014 12:00:00 GMT' self.response_headers = {'Content-Type': 'text/html', 'Content-Length': len(self.object_body), 'Content-Disposition': 'inline', 'Content-Language': 'en', 'x-object-meta-test': 'swift', 'etag': self.etag, 'last-modified': self.last_modified, 'expires': 'Mon, 21 Sep 2015 12:00:00 GMT', 'x-robots-tag': 'nofollow', 'cache-control': 'private'} self.swift.register('GET', '/v1/AUTH_test/bucket/object', swob.HTTPOk, self.response_headers, self.object_body) self.swift.register('PUT', '/v1/AUTH_test/bucket/object', swob.HTTPCreated, {'etag': self.etag, 'last-modified': self.last_modified, 'x-object-meta-something': 'oh hai'}, None) def _test_object_GETorHEAD(self, method): req = Request.blank('/bucket/object', environ={'REQUEST_METHOD': method}, headers={'Authorization': 'AWS test:tester:hmac', 'Date': self.get_date_header()}) status, headers, body = self.call_s3api(req) self.assertEqual(status.split()[0], '200') unexpected_headers = [] for key, val in self.response_headers.iteritems(): if key in ('Content-Length', 'Content-Type', 'content-encoding', 'last-modified', 'cache-control', 'Content-Disposition', 'Content-Language', 'expires', 'x-robots-tag'): self.assertIn(key, headers) self.assertEqual(headers[key], str(val)) elif key == 'etag': self.assertEqual(headers[key], '"%s"' % val) elif key.startswith('x-object-meta-'): self.assertIn('x-amz-meta-' + key[14:], headers) self.assertEqual(headers['x-amz-meta-' + key[14:]], val) else: unexpected_headers.append((key, val)) if unexpected_headers: self.fail('unexpected headers: %r' % unexpected_headers) self.assertEqual(headers['etag'], '"%s"' % self.response_headers['etag']) if method == 'GET': self.assertEqual(body, self.object_body) @s3acl def test_object_HEAD_error(self): # HEAD does not return the body even an error response in the # specifications of the REST API. # So, check the response code for error test of HEAD. req = Request.blank('/bucket/object', environ={'REQUEST_METHOD': 'HEAD'}, headers={'Authorization': 'AWS test:tester:hmac', 'Date': self.get_date_header()}) self.swift.register('HEAD', '/v1/AUTH_test/bucket/object', swob.HTTPUnauthorized, {}, None) status, headers, body = self.call_s3api(req) self.assertEqual(status.split()[0], '403') self.assertEqual(body, '') # sanity req = Request.blank('/bucket/object', environ={'REQUEST_METHOD': 'HEAD'}, headers={'Authorization': 'AWS test:tester:hmac', 'Date': self.get_date_header()}) self.swift.register('HEAD', '/v1/AUTH_test/bucket/object', swob.HTTPForbidden, {}, None) status, headers, body = self.call_s3api(req) self.assertEqual(status.split()[0], '403') self.assertEqual(body, '') # sanity req = Request.blank('/bucket/object', environ={'REQUEST_METHOD': 'HEAD'}, headers={'Authorization': 'AWS test:tester:hmac', 'Date': self.get_date_header()}) self.swift.register('HEAD', '/v1/AUTH_test/bucket/object', swob.HTTPNotFound, {}, None) status, headers, body = self.call_s3api(req) self.assertEqual(status.split()[0], '404') self.assertEqual(body, '') # sanity req = Request.blank('/bucket/object', environ={'REQUEST_METHOD': 'HEAD'}, headers={'Authorization': 'AWS test:tester:hmac', 'Date': self.get_date_header()}) self.swift.register('HEAD', '/v1/AUTH_test/bucket/object', swob.HTTPPreconditionFailed, {}, None) status, headers, body = self.call_s3api(req) self.assertEqual(status.split()[0], '412') self.assertEqual(body, '') # sanity req = Request.blank('/bucket/object', environ={'REQUEST_METHOD': 'HEAD'}, headers={'Authorization': 'AWS test:tester:hmac', 'Date': self.get_date_header()}) self.swift.register('HEAD', '/v1/AUTH_test/bucket/object', swob.HTTPServerError, {}, None) status, headers, body = self.call_s3api(req) self.assertEqual(status.split()[0], '500') self.assertEqual(body, '') # sanity req = Request.blank('/bucket/object', environ={'REQUEST_METHOD': 'HEAD'}, headers={'Authorization': 'AWS test:tester:hmac', 'Date': self.get_date_header()}) self.swift.register('HEAD', '/v1/AUTH_test/bucket/object', swob.HTTPServiceUnavailable, {}, None) status, headers, body = self.call_s3api(req) self.assertEqual(status.split()[0], '500') self.assertEqual(body, '') # sanity def test_object_HEAD(self): self._test_object_GETorHEAD('HEAD') def _test_object_HEAD_Range(self, range_value): req = Request.blank('/bucket/object', environ={'REQUEST_METHOD': 'HEAD'}, headers={'Authorization': 'AWS test:tester:hmac', 'Range': range_value, 'Date': self.get_date_header()}) return self.call_s3api(req) @s3acl def test_object_HEAD_Range_with_invalid_value(self): range_value = '' status, headers, body = self._test_object_HEAD_Range(range_value) self.assertEqual(status.split()[0], '200') self.assertTrue('content-length' in headers) self.assertEqual(headers['content-length'], '5') self.assertTrue('content-range' not in headers) range_value = 'hoge' status, headers, body = self._test_object_HEAD_Range(range_value) self.assertEqual(status.split()[0], '200') self.assertTrue('content-length' in headers) self.assertEqual(headers['content-length'], '5') self.assertTrue('content-range' not in headers) range_value = 'bytes=' status, headers, body = self._test_object_HEAD_Range(range_value) self.assertEqual(status.split()[0], '200') self.assertTrue('content-length' in headers) self.assertEqual(headers['content-length'], '5') self.assertTrue('content-range' not in headers) range_value = 'bytes=1' status, headers, body = self._test_object_HEAD_Range(range_value) self.assertEqual(status.split()[0], '200') self.assertTrue('content-length' in headers) self.assertEqual(headers['content-length'], '5') self.assertTrue('content-range' not in headers) range_value = 'bytes=5-1' status, headers, body = self._test_object_HEAD_Range(range_value) self.assertEqual(status.split()[0], '200') self.assertTrue('content-length' in headers) self.assertEqual(headers['content-length'], '5') self.assertTrue('content-range' not in headers) range_value = 'bytes=5-10' status, headers, body = self._test_object_HEAD_Range(range_value) self.assertEqual(status.split()[0], '416') @s3acl def test_object_HEAD_Range(self): # update response headers self.swift.register('HEAD', '/v1/AUTH_test/bucket/object', swob.HTTPOk, self.response_headers, self.object_body) range_value = 'bytes=0-3' status, headers, body = self._test_object_HEAD_Range(range_value) self.assertEqual(status.split()[0], '206') self.assertTrue('content-length' in headers) self.assertEqual(headers['content-length'], '4') self.assertTrue('content-range' in headers) self.assertTrue(headers['content-range'].startswith('bytes 0-3')) self.assertTrue('x-amz-meta-test' in headers) self.assertEqual('swift', headers['x-amz-meta-test']) range_value = 'bytes=3-3' status, headers, body = self._test_object_HEAD_Range(range_value) self.assertEqual(status.split()[0], '206') self.assertTrue('content-length' in headers) self.assertEqual(headers['content-length'], '1') self.assertTrue('content-range' in headers) self.assertTrue(headers['content-range'].startswith('bytes 3-3')) self.assertTrue('x-amz-meta-test' in headers) self.assertEqual('swift', headers['x-amz-meta-test']) range_value = 'bytes=1-' status, headers, body = self._test_object_HEAD_Range(range_value) self.assertEqual(status.split()[0], '206') self.assertTrue('content-length' in headers) self.assertEqual(headers['content-length'], '4') self.assertTrue('content-range' in headers) self.assertTrue(headers['content-range'].startswith('bytes 1-4')) self.assertTrue('x-amz-meta-test' in headers) self.assertEqual('swift', headers['x-amz-meta-test']) range_value = 'bytes=-3' status, headers, body = self._test_object_HEAD_Range(range_value) self.assertEqual(status.split()[0], '206') self.assertTrue('content-length' in headers) self.assertEqual(headers['content-length'], '3') self.assertTrue('content-range' in headers) self.assertTrue(headers['content-range'].startswith('bytes 2-4')) self.assertTrue('x-amz-meta-test' in headers) self.assertEqual('swift', headers['x-amz-meta-test']) @s3acl def test_object_GET_error(self): code = self._test_method_error('GET', '/bucket/object', swob.HTTPUnauthorized) self.assertEqual(code, 'SignatureDoesNotMatch') code = self._test_method_error('GET', '/bucket/object', swob.HTTPForbidden) self.assertEqual(code, 'AccessDenied') code = self._test_method_error('GET', '/bucket/object', swob.HTTPNotFound) self.assertEqual(code, 'NoSuchKey') code = self._test_method_error('GET', '/bucket/object', swob.HTTPServerError) self.assertEqual(code, 'InternalError') code = self._test_method_error('GET', '/bucket/object', swob.HTTPPreconditionFailed) self.assertEqual(code, 'PreconditionFailed') code = self._test_method_error('GET', '/bucket/object', swob.HTTPServiceUnavailable) self.assertEqual(code, 'InternalError') @s3acl def test_object_GET(self): self._test_object_GETorHEAD('GET') @s3acl(s3acl_only=True) def test_object_GET_with_s3acl_and_keystone(self): # for passing keystone authentication root fake_auth = self.swift._fake_auth_middleware with patch.object(FakeSwift, '_fake_auth_middleware', _wrap_fake_auth_middleware(fake_auth)): self._test_object_GETorHEAD('GET') _, _, headers = self.swift.calls_with_headers[-1] self.assertNotIn('Authorization', headers) _, _, headers = self.swift.calls_with_headers[0] self.assertNotIn('Authorization', headers) @s3acl def test_object_GET_Range(self): req = Request.blank('/bucket/object', environ={'REQUEST_METHOD': 'GET'}, headers={'Authorization': 'AWS test:tester:hmac', 'Range': 'bytes=0-3', 'Date': self.get_date_header()}) status, headers, body = self.call_s3api(req) self.assertEqual(status.split()[0], '206') self.assertTrue('content-range' in headers) self.assertTrue(headers['content-range'].startswith('bytes 0-3')) @s3acl def test_object_GET_Range_error(self): code = self._test_method_error('GET', '/bucket/object', swob.HTTPRequestedRangeNotSatisfiable) self.assertEqual(code, 'InvalidRange') @s3acl def test_object_GET_Response(self): req = Request.blank('/bucket/object', environ={'REQUEST_METHOD': 'GET', 'QUERY_STRING': 'response-content-type=%s&' 'response-content-language=%s&' 'response-expires=%s&' 'response-cache-control=%s&' 'response-content-disposition=%s&' 'response-content-encoding=%s&' % ('text/plain', 'en', 'Fri, 01 Apr 2014 12:00:00 GMT', 'no-cache', 'attachment', 'gzip')}, headers={'Authorization': 'AWS test:tester:hmac', 'Date': self.get_date_header()}) status, headers, body = self.call_s3api(req) self.assertEqual(status.split()[0], '200') self.assertTrue('content-type' in headers) self.assertEqual(headers['content-type'], 'text/plain') self.assertTrue('content-language' in headers) self.assertEqual(headers['content-language'], 'en') self.assertTrue('expires' in headers) self.assertEqual(headers['expires'], 'Fri, 01 Apr 2014 12:00:00 GMT') self.assertTrue('cache-control' in headers) self.assertEqual(headers['cache-control'], 'no-cache') self.assertTrue('content-disposition' in headers) self.assertEqual(headers['content-disposition'], 'attachment') self.assertTrue('content-encoding' in headers) self.assertEqual(headers['content-encoding'], 'gzip') @s3acl def test_object_PUT_error(self): code = self._test_method_error('PUT', '/bucket/object', swob.HTTPUnauthorized) self.assertEqual(code, 'SignatureDoesNotMatch') code = self._test_method_error('PUT', '/bucket/object', swob.HTTPForbidden) self.assertEqual(code, 'AccessDenied') code = self._test_method_error('PUT', '/bucket/object', swob.HTTPNotFound) self.assertEqual(code, 'NoSuchBucket') code = self._test_method_error('PUT', '/bucket/object', swob.HTTPRequestEntityTooLarge) self.assertEqual(code, 'EntityTooLarge') code = self._test_method_error('PUT', '/bucket/object', swob.HTTPServerError) self.assertEqual(code, 'InternalError') code = self._test_method_error('PUT', '/bucket/object', swob.HTTPUnprocessableEntity) self.assertEqual(code, 'BadDigest') code = self._test_method_error('PUT', '/bucket/object', swob.HTTPLengthRequired) self.assertEqual(code, 'MissingContentLength') code = self._test_method_error('PUT', '/bucket/object', swob.HTTPPreconditionFailed) self.assertEqual(code, 'InternalError') code = self._test_method_error('PUT', '/bucket/object', swob.HTTPServiceUnavailable) self.assertEqual(code, 'InternalError') code = self._test_method_error('PUT', '/bucket/object', swob.HTTPCreated, {'X-Amz-Copy-Source': ''}) self.assertEqual(code, 'InvalidArgument') code = self._test_method_error('PUT', '/bucket/object', swob.HTTPCreated, {'X-Amz-Copy-Source': '/'}) self.assertEqual(code, 'InvalidArgument') code = self._test_method_error('PUT', '/bucket/object', swob.HTTPCreated, {'X-Amz-Copy-Source': '/bucket'}) self.assertEqual(code, 'InvalidArgument') code = self._test_method_error('PUT', '/bucket/object', swob.HTTPCreated, {'X-Amz-Copy-Source': '/bucket/'}) self.assertEqual(code, 'InvalidArgument') code = self._test_method_error( 'PUT', '/bucket/object', swob.HTTPCreated, {'X-Amz-Copy-Source': '/bucket/src_obj?foo=bar'}) self.assertEqual(code, 'InvalidArgument') # adding other query paramerters will cause an error code = self._test_method_error( 'PUT', '/bucket/object', swob.HTTPCreated, {'X-Amz-Copy-Source': '/bucket/src_obj?versionId=foo&bar=baz'}) self.assertEqual(code, 'InvalidArgument') # ...even versionId appears in the last code = self._test_method_error( 'PUT', '/bucket/object', swob.HTTPCreated, {'X-Amz-Copy-Source': '/bucket/src_obj?bar=baz&versionId=foo'}) self.assertEqual(code, 'InvalidArgument') code = self._test_method_error( 'PUT', '/bucket/object', swob.HTTPCreated, {'X-Amz-Copy-Source': '/bucket/src_obj?versionId=foo'}) self.assertEqual(code, 'NotImplemented') code = self._test_method_error( 'PUT', '/bucket/object', swob.HTTPCreated, {'X-Amz-Copy-Source': '/src_bucket/src_object', 'X-Amz-Copy-Source-Range': 'bytes=0-0'}) self.assertEqual(code, 'InvalidArgument') code = self._test_method_error('PUT', '/bucket/object', swob.HTTPRequestTimeout) self.assertEqual(code, 'RequestTimeout') @s3acl def test_object_PUT(self): etag = self.response_headers['etag'] content_md5 = etag.decode('hex').encode('base64').strip() req = Request.blank( '/bucket/object', environ={'REQUEST_METHOD': 'PUT'}, headers={'Authorization': 'AWS test:tester:hmac', 'x-amz-storage-class': 'STANDARD', 'Content-MD5': content_md5, 'Date': self.get_date_header()}, body=self.object_body) req.date = datetime.now() req.content_type = 'text/plain' status, headers, body = self.call_s3api(req) self.assertEqual(status.split()[0], '200') # Check that s3api returns an etag header. self.assertEqual(headers['etag'], '"%s"' % etag) _, _, headers = self.swift.calls_with_headers[-1] # Check that s3api converts a Content-MD5 header into an etag. self.assertEqual(headers['etag'], etag) def test_object_PUT_headers(self): content_md5 = self.etag.decode('hex').encode('base64').strip() self.swift.register('HEAD', '/v1/AUTH_test/some/source', swob.HTTPOk, {'last-modified': self.last_modified}, None) req = Request.blank( '/bucket/object', environ={'REQUEST_METHOD': 'PUT'}, headers={'Authorization': 'AWS test:tester:hmac', 'X-Amz-Storage-Class': 'STANDARD', 'X-Amz-Meta-Something': 'oh hai', 'X-Amz-Meta-Unreadable-Prefix': '\x04w', 'X-Amz-Meta-Unreadable-Suffix': 'h\x04', 'X-Amz-Meta-Lots-Of-Unprintable': 5 * '\x04', 'X-Amz-Copy-Source': '/some/source', 'Content-MD5': content_md5, 'Date': self.get_date_header()}) req.date = datetime.now() req.content_type = 'text/plain' status, headers, body = self.call_s3api(req) # Check that s3api does not return an etag header, # specified copy source. self.assertTrue(headers.get('etag') is None) # Check that s3api does not return custom metadata in response self.assertTrue(headers.get('x-amz-meta-something') is None) _, _, headers = self.swift.calls_with_headers[-1] # Check that s3api converts a Content-MD5 header into an etag. self.assertEqual(headers['ETag'], self.etag) self.assertEqual(headers['X-Object-Meta-Something'], 'oh hai') self.assertEqual(headers['X-Object-Meta-Unreadable-Prefix'], '=?UTF-8?Q?=04w?=') self.assertEqual(headers['X-Object-Meta-Unreadable-Suffix'], '=?UTF-8?Q?h=04?=') self.assertEqual(headers['X-Object-Meta-Lots-Of-Unprintable'], '=?UTF-8?B?BAQEBAQ=?=') self.assertEqual(headers['X-Copy-From'], '/some/source') self.assertEqual(headers['Content-Length'], '0') def _test_object_PUT_copy(self, head_resp, put_header=None, src_path='/some/source', timestamp=None): account = 'test:tester' grants = [Grant(User(account), 'FULL_CONTROL')] head_headers = \ encode_acl('object', ACL(Owner(account, account), grants)) head_headers.update({'last-modified': self.last_modified}) self.swift.register('HEAD', '/v1/AUTH_test/some/source', head_resp, head_headers, None) put_header = put_header or {} return self._call_object_copy(src_path, put_header, timestamp) def _test_object_PUT_copy_self(self, head_resp, put_header=None, timestamp=None): account = 'test:tester' grants = [Grant(User(account), 'FULL_CONTROL')] head_headers = \ encode_acl('object', ACL(Owner(account, account), grants)) head_headers.update({'last-modified': self.last_modified}) self.swift.register('HEAD', '/v1/AUTH_test/bucket/object', head_resp, head_headers, None) put_header = put_header or {} return self._call_object_copy('/bucket/object', put_header, timestamp) def _call_object_copy(self, src_path, put_header, timestamp=None): put_headers = {'Authorization': 'AWS test:tester:hmac', 'X-Amz-Copy-Source': src_path, 'Date': self.get_date_header()} put_headers.update(put_header) req = Request.blank('/bucket/object', environ={'REQUEST_METHOD': 'PUT'}, headers=put_headers) req.date = datetime.now() req.content_type = 'text/plain' timestamp = timestamp or time.time() with patch('swift.common.middleware.s3api.utils.time.time', return_value=timestamp): return self.call_s3api(req) @s3acl def test_object_PUT_copy(self): def do_test(src_path=None): date_header = self.get_date_header() timestamp = mktime(date_header) last_modified = S3Timestamp(timestamp).s3xmlformat status, headers, body = self._test_object_PUT_copy( swob.HTTPOk, put_header={'Date': date_header}, timestamp=timestamp, src_path=src_path) self.assertEqual(status.split()[0], '200') self.assertEqual(headers['Content-Type'], 'application/xml') self.assertTrue(headers.get('etag') is None) self.assertTrue(headers.get('x-amz-meta-something') is None) elem = fromstring(body, 'CopyObjectResult') self.assertEqual(elem.find('LastModified').text, last_modified) self.assertEqual(elem.find('ETag').text, '"%s"' % self.etag) _, _, headers = self.swift.calls_with_headers[-1] self.assertEqual(headers['X-Copy-From'], '/some/source') self.assertEqual(headers['Content-Length'], '0') do_test('/some/source') do_test('/some/source?') do_test('/some/source?versionId=null') # Some clients (like Boto) don't include the leading slash; # AWS seems to tolerate this so we should, too do_test('some/source') @s3acl def test_object_PUT_copy_self(self): status, headers, body = \ self._test_object_PUT_copy_self(swob.HTTPOk) self.assertEqual(status.split()[0], '400') elem = fromstring(body, 'Error') err_msg = ("This copy request is illegal because it is trying to copy " "an object to itself without changing the object's " "metadata, storage class, website redirect location or " "encryption attributes.") self.assertEqual(elem.find('Code').text, 'InvalidRequest') self.assertEqual(elem.find('Message').text, err_msg) @s3acl def test_object_PUT_copy_self_metadata_copy(self): header = {'x-amz-metadata-directive': 'COPY'} status, headers, body = \ self._test_object_PUT_copy_self(swob.HTTPOk, header) self.assertEqual(status.split()[0], '400') elem = fromstring(body, 'Error') err_msg = ("This copy request is illegal because it is trying to copy " "an object to itself without changing the object's " "metadata, storage class, website redirect location or " "encryption attributes.") self.assertEqual(elem.find('Code').text, 'InvalidRequest') self.assertEqual(elem.find('Message').text, err_msg) @s3acl def test_object_PUT_copy_self_metadata_replace(self): date_header = self.get_date_header() timestamp = mktime(date_header) last_modified = S3Timestamp(timestamp).s3xmlformat header = {'x-amz-metadata-directive': 'REPLACE', 'Date': date_header} status, headers, body = self._test_object_PUT_copy_self( swob.HTTPOk, header, timestamp=timestamp) self.assertEqual(status.split()[0], '200') self.assertEqual(headers['Content-Type'], 'application/xml') self.assertTrue(headers.get('etag') is None) elem = fromstring(body, 'CopyObjectResult') self.assertEqual(elem.find('LastModified').text, last_modified) self.assertEqual(elem.find('ETag').text, '"%s"' % self.etag) _, _, headers = self.swift.calls_with_headers[-1] self.assertEqual(headers['X-Copy-From'], '/bucket/object') self.assertEqual(headers['Content-Length'], '0') @s3acl def test_object_PUT_copy_headers_error(self): etag = '7dfa07a8e59ddbcd1dc84d4c4f82aea1' last_modified_since = 'Fri, 01 Apr 2014 12:00:00 GMT' header = {'X-Amz-Copy-Source-If-Match': etag, 'Date': self.get_date_header()} status, header, body = \ self._test_object_PUT_copy(swob.HTTPPreconditionFailed, header) self.assertEqual(self._get_error_code(body), 'PreconditionFailed') header = {'X-Amz-Copy-Source-If-None-Match': etag} status, header, body = \ self._test_object_PUT_copy(swob.HTTPNotModified, header) self.assertEqual(self._get_error_code(body), 'PreconditionFailed') header = {'X-Amz-Copy-Source-If-Modified-Since': last_modified_since} status, header, body = \ self._test_object_PUT_copy(swob.HTTPNotModified, header) self.assertEqual(self._get_error_code(body), 'PreconditionFailed') header = \ {'X-Amz-Copy-Source-If-Unmodified-Since': last_modified_since} status, header, body = \ self._test_object_PUT_copy(swob.HTTPPreconditionFailed, header) self.assertEqual(self._get_error_code(body), 'PreconditionFailed') def test_object_PUT_copy_headers_with_match(self): etag = '7dfa07a8e59ddbcd1dc84d4c4f82aea1' last_modified_since = 'Fri, 01 Apr 2014 11:00:00 GMT' header = {'X-Amz-Copy-Source-If-Match': etag, 'X-Amz-Copy-Source-If-Modified-Since': last_modified_since, 'Date': self.get_date_header()} status, header, body = \ self._test_object_PUT_copy(swob.HTTPOk, header) self.assertEqual(status.split()[0], '200') self.assertEqual(len(self.swift.calls_with_headers), 2) _, _, headers = self.swift.calls_with_headers[-1] self.assertTrue(headers.get('If-Match') is None) self.assertTrue(headers.get('If-Modified-Since') is None) _, _, headers = self.swift.calls_with_headers[0] self.assertEqual(headers['If-Match'], etag) self.assertEqual(headers['If-Modified-Since'], last_modified_since) @s3acl(s3acl_only=True) def test_object_PUT_copy_headers_with_match_and_s3acl(self): etag = '7dfa07a8e59ddbcd1dc84d4c4f82aea1' last_modified_since = 'Fri, 01 Apr 2014 11:00:00 GMT' header = {'X-Amz-Copy-Source-If-Match': etag, 'X-Amz-Copy-Source-If-Modified-Since': last_modified_since, 'Date': self.get_date_header()} status, header, body = \ self._test_object_PUT_copy(swob.HTTPOk, header) self.assertEqual(status.split()[0], '200') self.assertEqual(len(self.swift.calls_with_headers), 3) # After the check of the copy source in the case of s3acl is valid, # s3api check the bucket write permissions of the destination. _, _, headers = self.swift.calls_with_headers[-2] self.assertTrue(headers.get('If-Match') is None) self.assertTrue(headers.get('If-Modified-Since') is None) _, _, headers = self.swift.calls_with_headers[-1] self.assertTrue(headers.get('If-Match') is None) self.assertTrue(headers.get('If-Modified-Since') is None) _, _, headers = self.swift.calls_with_headers[0] self.assertEqual(headers['If-Match'], etag) self.assertEqual(headers['If-Modified-Since'], last_modified_since) def test_object_PUT_copy_headers_with_not_match(self): etag = '7dfa07a8e59ddbcd1dc84d4c4f82aea1' last_modified_since = 'Fri, 01 Apr 2014 12:00:00 GMT' header = {'X-Amz-Copy-Source-If-None-Match': etag, 'X-Amz-Copy-Source-If-Unmodified-Since': last_modified_since, 'Date': self.get_date_header()} status, header, body = \ self._test_object_PUT_copy(swob.HTTPOk, header) self.assertEqual(status.split()[0], '200') self.assertEqual(len(self.swift.calls_with_headers), 2) _, _, headers = self.swift.calls_with_headers[-1] self.assertTrue(headers.get('If-None-Match') is None) self.assertTrue(headers.get('If-Unmodified-Since') is None) _, _, headers = self.swift.calls_with_headers[0] self.assertEqual(headers['If-None-Match'], etag) self.assertEqual(headers['If-Unmodified-Since'], last_modified_since) @s3acl(s3acl_only=True) def test_object_PUT_copy_headers_with_not_match_and_s3acl(self): etag = '7dfa07a8e59ddbcd1dc84d4c4f82aea1' last_modified_since = 'Fri, 01 Apr 2014 12:00:00 GMT' header = {'X-Amz-Copy-Source-If-None-Match': etag, 'X-Amz-Copy-Source-If-Unmodified-Since': last_modified_since, 'Date': self.get_date_header()} status, header, body = \ self._test_object_PUT_copy(swob.HTTPOk, header) self.assertEqual(status.split()[0], '200') # After the check of the copy source in the case of s3acl is valid, # s3api check the bucket write permissions of the destination. self.assertEqual(len(self.swift.calls_with_headers), 3) _, _, headers = self.swift.calls_with_headers[-1] self.assertTrue(headers.get('If-None-Match') is None) self.assertTrue(headers.get('If-Unmodified-Since') is None) _, _, headers = self.swift.calls_with_headers[0] self.assertEqual(headers['If-None-Match'], etag) self.assertEqual(headers['If-Unmodified-Since'], last_modified_since) @s3acl def test_object_POST_error(self): code = self._test_method_error('POST', '/bucket/object', None) self.assertEqual(code, 'NotImplemented') @s3acl def test_object_DELETE_error(self): code = self._test_method_error('DELETE', '/bucket/object', swob.HTTPUnauthorized) self.assertEqual(code, 'SignatureDoesNotMatch') code = self._test_method_error('DELETE', '/bucket/object', swob.HTTPForbidden) self.assertEqual(code, 'AccessDenied') code = self._test_method_error('DELETE', '/bucket/object', swob.HTTPServerError) self.assertEqual(code, 'InternalError') code = self._test_method_error('DELETE', '/bucket/object', swob.HTTPServiceUnavailable) self.assertEqual(code, 'InternalError') with patch( 'swift.common.middleware.s3api.s3request.get_container_info', return_value={'status': 204}): code = self._test_method_error('DELETE', '/bucket/object', swob.HTTPNotFound) self.assertEqual(code, 'NoSuchKey') with patch( 'swift.common.middleware.s3api.s3request.get_container_info', return_value={'status': 404}): code = self._test_method_error('DELETE', '/bucket/object', swob.HTTPNotFound) self.assertEqual(code, 'NoSuchBucket') @s3acl def test_object_DELETE_no_multipart(self): self.s3api.conf.allow_multipart_uploads = False req = Request.blank('/bucket/object', environ={'REQUEST_METHOD': 'DELETE'}, headers={'Authorization': 'AWS test:tester:hmac', 'Date': self.get_date_header()}) status, headers, body = self.call_s3api(req) self.assertEqual(status.split()[0], '204') self.assertNotIn(('HEAD', '/v1/AUTH_test/bucket/object'), self.swift.calls) self.assertIn(('DELETE', '/v1/AUTH_test/bucket/object'), self.swift.calls) _, path = self.swift.calls[-1] self.assertEqual(path.count('?'), 0) @s3acl def test_object_DELETE_multipart(self): req = Request.blank('/bucket/object', environ={'REQUEST_METHOD': 'DELETE'}, headers={'Authorization': 'AWS test:tester:hmac', 'Date': self.get_date_header()}) status, headers, body = self.call_s3api(req) self.assertEqual(status.split()[0], '204') self.assertIn(('HEAD', '/v1/AUTH_test/bucket/object'), self.swift.calls) self.assertIn(('DELETE', '/v1/AUTH_test/bucket/object'), self.swift.calls) _, path = self.swift.calls[-1] self.assertEqual(path.count('?'), 0) @s3acl def test_slo_object_DELETE(self): self.swift.register('HEAD', '/v1/AUTH_test/bucket/object', swob.HTTPOk, {'x-static-large-object': 'True'}, None) self.swift.register('DELETE', '/v1/AUTH_test/bucket/object', swob.HTTPOk, {}, '<SLO delete results>') req = Request.blank('/bucket/object', environ={'REQUEST_METHOD': 'DELETE'}, headers={'Authorization': 'AWS test:tester:hmac', 'Date': self.get_date_header(), 'Content-Type': 'foo/bar'}) status, headers, body = self.call_s3api(req) self.assertEqual(status.split()[0], '204') self.assertEqual(body, '') self.assertIn(('HEAD', '/v1/AUTH_test/bucket/object'), self.swift.calls) self.assertIn(('DELETE', '/v1/AUTH_test/bucket/object' '?multipart-manifest=delete'), self.swift.calls) _, path, headers = self.swift.calls_with_headers[-1] path, query_string = path.split('?', 1) query = {} for q in query_string.split('&'): key, arg = q.split('=') query[key] = arg self.assertEqual(query['multipart-manifest'], 'delete') self.assertNotIn('Content-Type', headers) def _test_object_for_s3acl(self, method, account): req = Request.blank('/bucket/object', environ={'REQUEST_METHOD': method}, headers={'Authorization': 'AWS %s:hmac' % account, 'Date': self.get_date_header()}) return self.call_s3api(req) def _test_set_container_permission(self, account, permission): grants = [Grant(User(account), permission)] headers = \ encode_acl('container', ACL(Owner('test:tester', 'test:tester'), grants)) self.swift.register('HEAD', '/v1/AUTH_test/bucket', swob.HTTPNoContent, headers, None) @s3acl(s3acl_only=True) def test_object_GET_without_permission(self): status, headers, body = self._test_object_for_s3acl('GET', 'test:other') self.assertEqual(self._get_error_code(body), 'AccessDenied') @s3acl(s3acl_only=True) def test_object_GET_with_read_permission(self): status, headers, body = self._test_object_for_s3acl('GET', 'test:read') self.assertEqual(status.split()[0], '200') @s3acl(s3acl_only=True) def test_object_GET_with_fullcontrol_permission(self): status, headers, body = \ self._test_object_for_s3acl('GET', 'test:full_control') self.assertEqual(status.split()[0], '200') @s3acl(s3acl_only=True) def test_object_PUT_without_permission(self): status, headers, body = self._test_object_for_s3acl('PUT', 'test:other') self.assertEqual(self._get_error_code(body), 'AccessDenied') @s3acl(s3acl_only=True) def test_object_PUT_with_owner_permission(self): status, headers, body = self._test_object_for_s3acl('PUT', 'test:tester') self.assertEqual(status.split()[0], '200') @s3acl(s3acl_only=True) def test_object_PUT_with_write_permission(self): account = 'test:other' self._test_set_container_permission(account, 'WRITE') status, headers, body = self._test_object_for_s3acl('PUT', account) self.assertEqual(status.split()[0], '200') @s3acl(s3acl_only=True) def test_object_PUT_with_fullcontrol_permission(self): account = 'test:other' self._test_set_container_permission(account, 'FULL_CONTROL') status, headers, body = \ self._test_object_for_s3acl('PUT', account) self.assertEqual(status.split()[0], '200') @s3acl(s3acl_only=True) def test_object_DELETE_without_permission(self): account = 'test:other' status, headers, body = self._test_object_for_s3acl('DELETE', account) self.assertEqual(self._get_error_code(body), 'AccessDenied') @s3acl(s3acl_only=True) def test_object_DELETE_with_owner_permission(self): status, headers, body = self._test_object_for_s3acl('DELETE', 'test:tester') self.assertEqual(status.split()[0], '204') @s3acl(s3acl_only=True) def test_object_DELETE_with_write_permission(self): account = 'test:other' self._test_set_container_permission(account, 'WRITE') status, headers, body = self._test_object_for_s3acl('DELETE', account) self.assertEqual(status.split()[0], '204') @s3acl(s3acl_only=True) def test_object_DELETE_with_fullcontrol_permission(self): account = 'test:other' self._test_set_container_permission(account, 'FULL_CONTROL') status, headers, body = self._test_object_for_s3acl('DELETE', account) self.assertEqual(status.split()[0], '204') def _test_object_copy_for_s3acl(self, account, src_permission=None, src_path='/src_bucket/src_obj'): owner = 'test:tester' grants = [Grant(User(account), src_permission)] \ if src_permission else [Grant(User(owner), 'FULL_CONTROL')] src_o_headers = \ encode_acl('object', ACL(Owner(owner, owner), grants)) src_o_headers.update({'last-modified': self.last_modified}) self.swift.register( 'HEAD', join('/v1/AUTH_test', src_path.lstrip('/')), swob.HTTPOk, src_o_headers, None) req = Request.blank( '/bucket/object', environ={'REQUEST_METHOD': 'PUT'}, headers={'Authorization': 'AWS %s:hmac' % account, 'X-Amz-Copy-Source': src_path, 'Date': self.get_date_header()}) return self.call_s3api(req) @s3acl(s3acl_only=True) def test_object_PUT_copy_with_owner_permission(self): status, headers, body = \ self._test_object_copy_for_s3acl('test:tester') self.assertEqual(status.split()[0], '200') @s3acl(s3acl_only=True) def test_object_PUT_copy_with_fullcontrol_permission(self): status, headers, body = \ self._test_object_copy_for_s3acl('test:full_control', 'FULL_CONTROL') self.assertEqual(status.split()[0], '200') @s3acl(s3acl_only=True) def test_object_PUT_copy_with_grantee_permission(self): status, headers, body = \ self._test_object_copy_for_s3acl('test:write', 'READ') self.assertEqual(status.split()[0], '200') @s3acl(s3acl_only=True) def test_object_PUT_copy_without_src_obj_permission(self): status, headers, body = \ self._test_object_copy_for_s3acl('test:write') self.assertEqual(status.split()[0], '403') @s3acl(s3acl_only=True) def test_object_PUT_copy_without_dst_container_permission(self): status, headers, body = \ self._test_object_copy_for_s3acl('test:other', 'READ') self.assertEqual(status.split()[0], '403') @s3acl(s3acl_only=True) def test_object_PUT_copy_empty_src_path(self): self.swift.register('PUT', '/v1/AUTH_test/bucket/object', swob.HTTPPreconditionFailed, {}, None) status, headers, body = self._test_object_copy_for_s3acl( 'test:write', 'READ', src_path='') self.assertEqual(status.split()[0], '400') class TestS3ApiObjNonUTC(TestS3ApiObj): def setUp(self): self.orig_tz = os.environ.get('TZ', '') os.environ['TZ'] = 'EST+05EDT,M4.1.0,M10.5.0' time.tzset() super(TestS3ApiObjNonUTC, self).setUp() def tearDown(self): super(TestS3ApiObjNonUTC, self).tearDown() os.environ['TZ'] = self.orig_tz time.tzset() if __name__ == '__main__': unittest.main()
[((13899, 13921), 'test.unit.common.middleware.s3api.test_s3_acl.s3acl', 's3acl', ([], {'s3acl_only': '(True)'}), '(s3acl_only=True)\n', (13904, 13921), False, 'from test.unit.common.middleware.s3api.test_s3_acl import s3acl\n'), ((32337, 32359), 'test.unit.common.middleware.s3api.test_s3_acl.s3acl', 's3acl', ([], {'s3acl_only': '(True)'}), '(s3acl_only=True)\n', (32342, 32359), False, 'from test.unit.common.middleware.s3api.test_s3_acl import s3acl\n'), ((34580, 34602), 'test.unit.common.middleware.s3api.test_s3_acl.s3acl', 's3acl', ([], {'s3acl_only': '(True)'}), '(s3acl_only=True)\n', (34585, 34602), False, 'from test.unit.common.middleware.s3api.test_s3_acl import s3acl\n'), ((41001, 41023), 'test.unit.common.middleware.s3api.test_s3_acl.s3acl', 's3acl', ([], {'s3acl_only': '(True)'}), '(s3acl_only=True)\n', (41006, 41023), False, 'from test.unit.common.middleware.s3api.test_s3_acl import s3acl\n'), ((41290, 41312), 'test.unit.common.middleware.s3api.test_s3_acl.s3acl', 's3acl', ([], {'s3acl_only': '(True)'}), '(s3acl_only=True)\n', (41295, 41312), False, 'from test.unit.common.middleware.s3api.test_s3_acl import s3acl\n'), ((41562, 41584), 'test.unit.common.middleware.s3api.test_s3_acl.s3acl', 's3acl', ([], {'s3acl_only': '(True)'}), '(s3acl_only=True)\n', (41567, 41584), False, 'from test.unit.common.middleware.s3api.test_s3_acl import s3acl\n'), ((41803, 41825), 'test.unit.common.middleware.s3api.test_s3_acl.s3acl', 's3acl', ([], {'s3acl_only': '(True)'}), '(s3acl_only=True)\n', (41808, 41825), False, 'from test.unit.common.middleware.s3api.test_s3_acl import s3acl\n'), ((42092, 42114), 'test.unit.common.middleware.s3api.test_s3_acl.s3acl', 's3acl', ([], {'s3acl_only': '(True)'}), '(s3acl_only=True)\n', (42097, 42114), False, 'from test.unit.common.middleware.s3api.test_s3_acl import s3acl\n'), ((42367, 42389), 'test.unit.common.middleware.s3api.test_s3_acl.s3acl', 's3acl', ([], {'s3acl_only': '(True)'}), '(s3acl_only=True)\n', (42372, 42389), False, 'from test.unit.common.middleware.s3api.test_s3_acl import s3acl\n'), ((42669, 42691), 'test.unit.common.middleware.s3api.test_s3_acl.s3acl', 's3acl', ([], {'s3acl_only': '(True)'}), '(s3acl_only=True)\n', (42674, 42691), False, 'from test.unit.common.middleware.s3api.test_s3_acl import s3acl\n'), ((42998, 43020), 'test.unit.common.middleware.s3api.test_s3_acl.s3acl', 's3acl', ([], {'s3acl_only': '(True)'}), '(s3acl_only=True)\n', (43003, 43020), False, 'from test.unit.common.middleware.s3api.test_s3_acl import s3acl\n'), ((43319, 43341), 'test.unit.common.middleware.s3api.test_s3_acl.s3acl', 's3acl', ([], {'s3acl_only': '(True)'}), '(s3acl_only=True)\n', (43324, 43341), False, 'from test.unit.common.middleware.s3api.test_s3_acl import s3acl\n'), ((43600, 43622), 'test.unit.common.middleware.s3api.test_s3_acl.s3acl', 's3acl', ([], {'s3acl_only': '(True)'}), '(s3acl_only=True)\n', (43605, 43622), False, 'from test.unit.common.middleware.s3api.test_s3_acl import s3acl\n'), ((43968, 43990), 'test.unit.common.middleware.s3api.test_s3_acl.s3acl', 's3acl', ([], {'s3acl_only': '(True)'}), '(s3acl_only=True)\n', (43973, 43990), False, 'from test.unit.common.middleware.s3api.test_s3_acl import s3acl\n'), ((45205, 45227), 'test.unit.common.middleware.s3api.test_s3_acl.s3acl', 's3acl', ([], {'s3acl_only': '(True)'}), '(s3acl_only=True)\n', (45210, 45227), False, 'from test.unit.common.middleware.s3api.test_s3_acl import s3acl\n'), ((45437, 45459), 'test.unit.common.middleware.s3api.test_s3_acl.s3acl', 's3acl', ([], {'s3acl_only': '(True)'}), '(s3acl_only=True)\n', (45442, 45459), False, 'from test.unit.common.middleware.s3api.test_s3_acl import s3acl\n'), ((45742, 45764), 'test.unit.common.middleware.s3api.test_s3_acl.s3acl', 's3acl', ([], {'s3acl_only': '(True)'}), '(s3acl_only=True)\n', (45747, 45764), False, 'from test.unit.common.middleware.s3api.test_s3_acl import s3acl\n'), ((45983, 46005), 'test.unit.common.middleware.s3api.test_s3_acl.s3acl', 's3acl', ([], {'s3acl_only': '(True)'}), '(s3acl_only=True)\n', (45988, 46005), False, 'from test.unit.common.middleware.s3api.test_s3_acl import s3acl\n'), ((46219, 46241), 'test.unit.common.middleware.s3api.test_s3_acl.s3acl', 's3acl', ([], {'s3acl_only': '(True)'}), '(s3acl_only=True)\n', (46224, 46241), False, 'from test.unit.common.middleware.s3api.test_s3_acl import s3acl\n'), ((46469, 46491), 'test.unit.common.middleware.s3api.test_s3_acl.s3acl', 's3acl', ([], {'s3acl_only': '(True)'}), '(s3acl_only=True)\n', (46474, 46491), False, 'from test.unit.common.middleware.s3api.test_s3_acl import s3acl\n'), ((47243, 47258), 'unittest.main', 'unittest.main', ([], {}), '()\n', (47256, 47258), False, 'import unittest\n'), ((21839, 21853), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (21851, 21853), False, 'from datetime import datetime\n'), ((23225, 23239), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (23237, 23239), False, 'from datetime import datetime\n'), ((25924, 26016), 'swift.common.swob.Request.blank', 'Request.blank', (['"""/bucket/object"""'], {'environ': "{'REQUEST_METHOD': 'PUT'}", 'headers': 'put_headers'}), "('/bucket/object', environ={'REQUEST_METHOD': 'PUT'}, headers=\n put_headers)\n", (25937, 26016), False, 'from swift.common.swob import Request\n'), ((26088, 26102), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (26100, 26102), False, 'from datetime import datetime\n'), ((27897, 27922), 'swift.common.middleware.s3api.etree.fromstring', 'fromstring', (['body', '"""Error"""'], {}), "(body, 'Error')\n", (27907, 27922), False, 'from swift.common.middleware.s3api.etree import fromstring\n'), ((28610, 28635), 'swift.common.middleware.s3api.etree.fromstring', 'fromstring', (['body', '"""Error"""'], {}), "(body, 'Error')\n", (28620, 28635), False, 'from swift.common.middleware.s3api.etree import fromstring\n'), ((29172, 29191), 'swift.common.middleware.s3api.utils.mktime', 'mktime', (['date_header'], {}), '(date_header)\n', (29178, 29191), False, 'from swift.common.middleware.s3api.utils import mktime, S3Timestamp\n'), ((29654, 29690), 'swift.common.middleware.s3api.etree.fromstring', 'fromstring', (['body', '"""CopyObjectResult"""'], {}), "(body, 'CopyObjectResult')\n", (29664, 29690), False, 'from swift.common.middleware.s3api.etree import fromstring\n'), ((46926, 46950), 'os.environ.get', 'os.environ.get', (['"""TZ"""', '""""""'], {}), "('TZ', '')\n", (46940, 46950), False, 'import os\n'), ((47013, 47025), 'time.tzset', 'time.tzset', ([], {}), '()\n', (47023, 47025), False, 'import time\n'), ((47198, 47210), 'time.tzset', 'time.tzset', ([], {}), '()\n', (47208, 47210), False, 'import time\n'), ((26176, 26187), 'time.time', 'time.time', ([], {}), '()\n', (26185, 26187), False, 'import time\n'), ((26201, 26279), 'mock.patch', 'patch', (['"""swift.common.middleware.s3api.utils.time.time"""'], {'return_value': 'timestamp'}), "('swift.common.middleware.s3api.utils.time.time', return_value=timestamp)\n", (26206, 26279), False, 'from mock import patch\n'), ((26497, 26516), 'swift.common.middleware.s3api.utils.mktime', 'mktime', (['date_header'], {}), '(date_header)\n', (26503, 26516), False, 'from swift.common.middleware.s3api.utils import mktime, S3Timestamp\n'), ((27041, 27077), 'swift.common.middleware.s3api.etree.fromstring', 'fromstring', (['body', '"""CopyObjectResult"""'], {}), "(body, 'CopyObjectResult')\n", (27051, 27077), False, 'from swift.common.middleware.s3api.etree import fromstring\n'), ((29216, 29238), 'swift.common.middleware.s3api.utils.S3Timestamp', 'S3Timestamp', (['timestamp'], {}), '(timestamp)\n', (29227, 29238), False, 'from swift.common.middleware.s3api.utils import mktime, S3Timestamp\n'), ((36662, 36763), 'mock.patch', 'patch', (['"""swift.common.middleware.s3api.s3request.get_container_info"""'], {'return_value': "{'status': 204}"}), "('swift.common.middleware.s3api.s3request.get_container_info',\n return_value={'status': 204})\n", (36667, 36763), False, 'from mock import patch\n'), ((36989, 37090), 'mock.patch', 'patch', (['"""swift.common.middleware.s3api.s3request.get_container_info"""'], {'return_value': "{'status': 404}"}), "('swift.common.middleware.s3api.s3request.get_container_info',\n return_value={'status': 404})\n", (36994, 37090), False, 'from mock import patch\n'), ((1894, 1923), 'hashlib.md5', 'hashlib.md5', (['self.object_body'], {}), '(self.object_body)\n', (1905, 1923), False, 'import hashlib\n'), ((24535, 24548), 'swift.common.middleware.s3api.subresource.User', 'User', (['account'], {}), '(account)\n', (24539, 24548), False, 'from swift.common.middleware.s3api.subresource import ACL, User, encode_acl, Owner, Grant\n'), ((24652, 24675), 'swift.common.middleware.s3api.subresource.Owner', 'Owner', (['account', 'account'], {}), '(account, account)\n', (24657, 24675), False, 'from swift.common.middleware.s3api.subresource import ACL, User, encode_acl, Owner, Grant\n'), ((25164, 25177), 'swift.common.middleware.s3api.subresource.User', 'User', (['account'], {}), '(account)\n', (25168, 25177), False, 'from swift.common.middleware.s3api.subresource import ACL, User, encode_acl, Owner, Grant\n'), ((25281, 25304), 'swift.common.middleware.s3api.subresource.Owner', 'Owner', (['account', 'account'], {}), '(account, account)\n', (25286, 25304), False, 'from swift.common.middleware.s3api.subresource import ACL, User, encode_acl, Owner, Grant\n'), ((26545, 26567), 'swift.common.middleware.s3api.utils.S3Timestamp', 'S3Timestamp', (['timestamp'], {}), '(timestamp)\n', (26556, 26567), False, 'from swift.common.middleware.s3api.utils import mktime, S3Timestamp\n'), ((40715, 40728), 'swift.common.middleware.s3api.subresource.User', 'User', (['account'], {}), '(account)\n', (40719, 40728), False, 'from swift.common.middleware.s3api.subresource import ACL, User, encode_acl, Owner, Grant\n'), ((40826, 40861), 'swift.common.middleware.s3api.subresource.Owner', 'Owner', (['"""test:tester"""', '"""test:tester"""'], {}), "('test:tester', 'test:tester')\n", (40831, 40861), False, 'from swift.common.middleware.s3api.subresource import ACL, User, encode_acl, Owner, Grant\n'), ((44648, 44667), 'swift.common.middleware.s3api.subresource.Owner', 'Owner', (['owner', 'owner'], {}), '(owner, owner)\n', (44653, 44667), False, 'from swift.common.middleware.s3api.subresource import ACL, User, encode_acl, Owner, Grant\n'), ((44479, 44492), 'swift.common.middleware.s3api.subresource.User', 'User', (['account'], {}), '(account)\n', (44483, 44492), False, 'from swift.common.middleware.s3api.subresource import ACL, User, encode_acl, Owner, Grant\n'), ((44555, 44566), 'swift.common.middleware.s3api.subresource.User', 'User', (['owner'], {}), '(owner)\n', (44559, 44566), False, 'from swift.common.middleware.s3api.subresource import ACL, User, encode_acl, Owner, Grant\n')]
EggPool/pynyzo
pynyzo/pynyzo/keyutil.py
7f3b86f15caa51a975e6a428f4dff578a1f24bcb
""" Eddsa Ed25519 key handling From https://github.com/n-y-z-o/nyzoVerifier/blob/b73bc25ba3094abe3470ec070ce306885ad9a18f/src/main/java/co/nyzo/verifier/KeyUtil.java plus https://github.com/n-y-z-o/nyzoVerifier/blob/17509f03a7f530c0431ce85377db9b35688c078e/src/main/java/co/nyzo/verifier/util/SignatureUtil.java """ # Uses https://github.com/warner/python-ed25519 , c binding, fast import ed25519 import hashlib from pynyzo.byteutil import ByteUtil class KeyUtil: @staticmethod def main(): """Temp test, not to be used""" signing_key, verifying_key = ed25519.create_keypair() print("Original private key", ByteUtil.bytes_as_string_with_dashes(signing_key.to_bytes()[:32])) # signing key has signing + verifying, we keep the first 32 to only get the private part. print("Original public key", ByteUtil.bytes_as_string_with_dashes(verifying_key.to_bytes())) @staticmethod def generateSeed(hashable_keyword: str='') -> bytes: """Generate a private key, with optional keyword to get reproducible tests results or later HD Wallet.""" if len(hashable_keyword): seed = hashlib.sha256(hashable_keyword).digest() signing_key = ed25519.SigningKey(seed) else: signing_key, _ = ed25519.create_keypair() return signing_key.to_bytes()[:32] @staticmethod def private_to_public(private: str) -> str: """Temp Test""" keydata = bytes.fromhex(private) signing_key = ed25519.SigningKey(keydata) verifying_key = signing_key.get_verifying_key() vkey_hex = verifying_key.to_ascii(encoding="hex") return vkey_hex.decode('utf-8') @staticmethod def get_from_private_seed_file(filename: str): """returns priv and pub key - as object - from the stored nyzo text id format""" with open(filename) as f: nyzo = f.read(80).replace('-', '').encode('utf-8').strip() signing_key = ed25519.SigningKey(nyzo, encoding="hex") verifying_key = signing_key.get_verifying_key() return signing_key, verifying_key @staticmethod def get_from_private_seed(seed: str): """returns priv and pub key - as object - from an hex seed""" seed = seed.replace('-', '').encode('utf-8').strip() signing_key = ed25519.SigningKey(seed, encoding="hex") verifying_key = signing_key.get_verifying_key() return signing_key, verifying_key @staticmethod def save_to_private_seed_file(filename: str, key: bytes) -> None: """Saves the privkey to the nyzo formatted file""" nyzo_format = ByteUtil.bytes_as_string_with_dashes(key) with open(filename, 'w') as f: f.write(nyzo_format) @staticmethod def sign_bytes(bytes_to_sign: bytes, private_key: ed25519.SigningKey) -> bytes: sig = private_key.sign(bytes_to_sign) return sig @staticmethod def signature_is_valid(signature: bytes, signed_bytes: bytes, public_id: bytes) -> bool: verifying_key = ed25519.VerifyingKey(public_id) # todo: cache key from id, see https://github.com/n-y-z-o/nyzoVerifier/blob/17509f03a7f530c0431ce85377db9b35688c078e/src/main/java/co/nyzo/verifier/util/SignatureUtil.java try: verifying_key.verify(signature, signed_bytes) # print("signature is good") return True except ed25519.BadSignatureError: # print("signature is bad!") return False if __name__ == "__main__": KeyUtil.main() # KeyUtil.private_to_public('nyzo-formatted-private-key'.replace('-', ''))
[((582, 606), 'ed25519.create_keypair', 'ed25519.create_keypair', ([], {}), '()\n', (604, 606), False, 'import ed25519\n'), ((1512, 1539), 'ed25519.SigningKey', 'ed25519.SigningKey', (['keydata'], {}), '(keydata)\n', (1530, 1539), False, 'import ed25519\n'), ((2341, 2381), 'ed25519.SigningKey', 'ed25519.SigningKey', (['seed'], {'encoding': '"""hex"""'}), "(seed, encoding='hex')\n", (2359, 2381), False, 'import ed25519\n'), ((2651, 2692), 'pynyzo.byteutil.ByteUtil.bytes_as_string_with_dashes', 'ByteUtil.bytes_as_string_with_dashes', (['key'], {}), '(key)\n', (2687, 2692), False, 'from pynyzo.byteutil import ByteUtil\n'), ((3069, 3100), 'ed25519.VerifyingKey', 'ed25519.VerifyingKey', (['public_id'], {}), '(public_id)\n', (3089, 3100), False, 'import ed25519\n'), ((1222, 1246), 'ed25519.SigningKey', 'ed25519.SigningKey', (['seed'], {}), '(seed)\n', (1240, 1246), False, 'import ed25519\n'), ((1290, 1314), 'ed25519.create_keypair', 'ed25519.create_keypair', ([], {}), '()\n', (1312, 1314), False, 'import ed25519\n'), ((1984, 2024), 'ed25519.SigningKey', 'ed25519.SigningKey', (['nyzo'], {'encoding': '"""hex"""'}), "(nyzo, encoding='hex')\n", (2002, 2024), False, 'import ed25519\n'), ((1154, 1186), 'hashlib.sha256', 'hashlib.sha256', (['hashable_keyword'], {}), '(hashable_keyword)\n', (1168, 1186), False, 'import hashlib\n')]
mir-group/CiderPress
mldftdat/scripts/train_gp.py
bf2b3536e6bd7432645c18dce5a745d63bc9df59
from argparse import ArgumentParser import os import numpy as np from joblib import dump from mldftdat.workflow_utils import SAVE_ROOT from mldftdat.models.gp import * from mldftdat.data import load_descriptors, filter_descriptors import yaml def parse_settings(args): fname = args.datasets_list[0] if args.suffix is not None: fname = fname + '_' + args.suffix fname = os.path.join(SAVE_ROOT, 'DATASETS', args.functional, args.basis, args.version, fname) print(fname) with open(os.path.join(fname, 'settings.yaml'), 'r') as f: d = yaml.load(f, Loader=yaml.Loader) args.gg_a0 = d.get('a0') args.gg_amin = d.get('amin') args.gg_facmul = d.get('fac_mul') def parse_dataset(args, i, val=False): if val: fname = args.validation_set[2*i] n = int(args.validation_set[2*i+1]) else: fname = args.datasets_list[2*i] n = int(args.datasets_list[2*i+1]) if args.suffix is not None: fname = fname + '_' + args.suffix fname = os.path.join(SAVE_ROOT, 'DATASETS', args.functional, args.basis, args.version, fname) print(fname) X, y, rho_data = load_descriptors(fname) if val: # offset in case repeat datasets are used X, y, rho_data = X[n//2+1:,:], y[n//2+1:], rho_data[:,n//2+1:] X, y, rho, rho_data = filter_descriptors(X, y, rho_data, tol=args.density_cutoff) print(X.shape, n) if args.randomize: inds = np.arange(X.shape[0]) np.random.shuffle(inds) X = X[inds,:] y = y[inds] rho = rho[inds] rho_data = rho_data[:,inds] return X[::n,:], y[::n], rho[::n], rho_data[:,::n] def parse_list(lststr, T=int): return [T(substr) for substr in lststr.split(',')] def main(): parser = ArgumentParser(description='Trains a GP exchange model') parser.add_argument('save_file', type=str) parser.add_argument('feature_file', type=str, help='serialized FeatureList object in yaml format') parser.add_argument('datasets_list', nargs='+', help='pairs of dataset names and inverse sampling densities') parser.add_argument('basis', metavar='basis', type=str, help='basis set code') parser.add_argument('--functional', metavar='functional', type=str, default=None, help='exchange-correlation functional, HF for Hartree-Fock') parser.add_argument('-r', '--randomize', action='store_true') parser.add_argument('-c', '--density-cutoff', type=float, default=1e-4) #parser.add_argument('-m', '--model-class', type=str, default=None) #parser.add_argument('-k', '--kernel', help='kernel initialization strategy', type=str, default=None) parser.add_argument('-s', '--seed', help='random seed', default=0, type=int) parser.add_argument('-vs', '--validation-set', nargs='+') parser.add_argument('-d', '--delete-k', action='store_true', help='Delete L (LL^T=K the kernel matrix) to save disk space. Need to refit when reloading to calculate covariance.') parser.add_argument('--heg', action='store_true', help='HEG exact constraint') parser.add_argument('--tail', action='store_true', help='atomic tail exact constraint') parser.add_argument('-o', '--desc-order', default=None, help='comma-separated list of descriptor order with no spaces. must start with 0,1.') parser.add_argument('-l', '--length-scale', default=None, help='comma-separated list initial length-scale guesses') parser.add_argument('--length-scale-mul', type=float, default=1.0, help='Used for automatic length-scale initial guess') parser.add_argument('-a', '--agpr', action='store_true', help='Whether to use Additive RBF. If False, use RBF') parser.add_argument('-as', '--agpr-scale', default=None) parser.add_argument('-ao', '--agpr-order', default=2, type=int) parser.add_argument('-an', '--agpr-nsingle', default=1, type=int) parser.add_argument('-x', '--xed-y-code', default='CHACHIYO', type=str) parser.add_argument('-on', '--optimize-noise', action='store_true', help='Whether to optimzie exponent of density noise.') parser.add_argument('-v', '--version', default='c', type=str, help='version of descriptor set. Default c') parser.add_argument('--suffix', default=None, type=str, help='customize data directories with this suffix') args = parser.parse_args() parse_settings(args) np.random.seed(args.seed) feature_list = FeatureList.load(args.feature_file) if args.length_scale is not None: args.length_scale = parse_list(args.length_scale, T=float) if args.agpr_scale is not None: args.agpr_scale = parse_list(args.agpr_scale, T=float) if args.desc_order is not None: args.desc_order = parse_list(args.desc_order) assert len(args.datasets_list) % 2 == 0, 'Need pairs of entries for datasets list.' assert len(args.datasets_list) != 0, 'Need training data' nd = len(args.datasets_list) // 2 if args.validation_set is None: nv = 0 else: assert len(args.validation_set) % 2 == 0, 'Need pairs of entries for datasets list.' nv = len(args.validation_set) // 2 X, y, rho, rho_data = parse_dataset(args, 0) for i in range(1, nd): Xn, yn, rhon, rho_datan, = parse_dataset(args, i) X = np.append(X, Xn, axis=0) y = np.append(y, yn, axis=0) rho = np.append(rho, rhon, axis=0) rho_data = np.append(rho_data, rho_datan, axis=1) if nv != 0: Xv, yv, rhov, rho_datav = parse_dataset(args, 0, val=True) for i in range(1, nv): Xn, yn, rhon, rho_datan, = parse_dataset(args, i, val=True) Xv = np.append(Xv, Xn, axis=0) yv = np.append(yv, yn, axis=0) rhov = np.append(rhov, rhon, axis=0) rho_datav = np.append(rho_datav, rho_datan, axis=1) gpcls = DFTGPR gpr = gpcls.from_settings(X, feature_list, args) gpr.fit(X, y, add_heg=args.heg, add_tail=args.tail) #if args.heg: # gpr.add_heg_limit() print('FINAL KERNEL', gpr.gp.kernel_) if nv != 0: pred = gpr.xed_to_y(gpr.predict(Xv), Xv) abserr = np.abs(pred - gpr.xed_to_y(yv, Xv)) print('MAE VAL SET', np.mean(abserr)) # Always attach the arguments to the object to keep track of settings. gpr.args = args if args.delete_k: gpr.L_ = None dump(gpr, args.save_file) if __name__ == '__main__': main()
[((390, 480), 'os.path.join', 'os.path.join', (['SAVE_ROOT', '"""DATASETS"""', 'args.functional', 'args.basis', 'args.version', 'fname'], {}), "(SAVE_ROOT, 'DATASETS', args.functional, args.basis, args.\n version, fname)\n", (402, 480), False, 'import os\n'), ((1042, 1132), 'os.path.join', 'os.path.join', (['SAVE_ROOT', '"""DATASETS"""', 'args.functional', 'args.basis', 'args.version', 'fname'], {}), "(SAVE_ROOT, 'DATASETS', args.functional, args.basis, args.\n version, fname)\n", (1054, 1132), False, 'import os\n'), ((1191, 1214), 'mldftdat.data.load_descriptors', 'load_descriptors', (['fname'], {}), '(fname)\n', (1207, 1214), False, 'from mldftdat.data import load_descriptors, filter_descriptors\n'), ((1374, 1433), 'mldftdat.data.filter_descriptors', 'filter_descriptors', (['X', 'y', 'rho_data'], {'tol': 'args.density_cutoff'}), '(X, y, rho_data, tol=args.density_cutoff)\n', (1392, 1433), False, 'from mldftdat.data import load_descriptors, filter_descriptors\n'), ((1863, 1919), 'argparse.ArgumentParser', 'ArgumentParser', ([], {'description': '"""Trains a GP exchange model"""'}), "(description='Trains a GP exchange model')\n", (1877, 1919), False, 'from argparse import ArgumentParser\n'), ((4702, 4727), 'numpy.random.seed', 'np.random.seed', (['args.seed'], {}), '(args.seed)\n', (4716, 4727), True, 'import numpy as np\n'), ((6664, 6689), 'joblib.dump', 'dump', (['gpr', 'args.save_file'], {}), '(gpr, args.save_file)\n', (6668, 6689), False, 'from joblib import dump\n'), ((593, 625), 'yaml.load', 'yaml.load', (['f'], {'Loader': 'yaml.Loader'}), '(f, Loader=yaml.Loader)\n', (602, 625), False, 'import yaml\n'), ((1539, 1560), 'numpy.arange', 'np.arange', (['X.shape[0]'], {}), '(X.shape[0])\n', (1548, 1560), True, 'import numpy as np\n'), ((1569, 1592), 'numpy.random.shuffle', 'np.random.shuffle', (['inds'], {}), '(inds)\n', (1586, 1592), True, 'import numpy as np\n'), ((5613, 5637), 'numpy.append', 'np.append', (['X', 'Xn'], {'axis': '(0)'}), '(X, Xn, axis=0)\n', (5622, 5637), True, 'import numpy as np\n'), ((5650, 5674), 'numpy.append', 'np.append', (['y', 'yn'], {'axis': '(0)'}), '(y, yn, axis=0)\n', (5659, 5674), True, 'import numpy as np\n'), ((5689, 5717), 'numpy.append', 'np.append', (['rho', 'rhon'], {'axis': '(0)'}), '(rho, rhon, axis=0)\n', (5698, 5717), True, 'import numpy as np\n'), ((5737, 5775), 'numpy.append', 'np.append', (['rho_data', 'rho_datan'], {'axis': '(1)'}), '(rho_data, rho_datan, axis=1)\n', (5746, 5775), True, 'import numpy as np\n'), ((5967, 5992), 'numpy.append', 'np.append', (['Xv', 'Xn'], {'axis': '(0)'}), '(Xv, Xn, axis=0)\n', (5976, 5992), True, 'import numpy as np\n'), ((6006, 6031), 'numpy.append', 'np.append', (['yv', 'yn'], {'axis': '(0)'}), '(yv, yn, axis=0)\n', (6015, 6031), True, 'import numpy as np\n'), ((6047, 6076), 'numpy.append', 'np.append', (['rhov', 'rhon'], {'axis': '(0)'}), '(rhov, rhon, axis=0)\n', (6056, 6076), True, 'import numpy as np\n'), ((6097, 6136), 'numpy.append', 'np.append', (['rho_datav', 'rho_datan'], {'axis': '(1)'}), '(rho_datav, rho_datan, axis=1)\n', (6106, 6136), True, 'import numpy as np\n'), ((532, 568), 'os.path.join', 'os.path.join', (['fname', '"""settings.yaml"""'], {}), "(fname, 'settings.yaml')\n", (544, 568), False, 'import os\n'), ((6503, 6518), 'numpy.mean', 'np.mean', (['abserr'], {}), '(abserr)\n', (6510, 6518), True, 'import numpy as np\n')]
zaratec/picoCTF
picoCTF-web/api/routes/admin.py
b0a63f03625bb4657a8116f43bea26346ca6f010
import api import bson from api.annotations import ( api_wrapper, log_action, require_admin, require_login, require_teacher ) from api.common import WebError, WebSuccess from flask import ( Blueprint, Flask, render_template, request, send_from_directory, session ) blueprint = Blueprint("admin_api", __name__) @blueprint.route('/problems', methods=['GET']) @api_wrapper @require_admin def get_problem_data_hook(): has_instances = lambda p : len(p["instances"]) > 0 problems = list(filter(has_instances, api.problem.get_all_problems(show_disabled=True))) for problem in problems: problem["reviews"] = api.problem_feedback.get_problem_feedback(pid=problem["pid"]) data = { "problems": problems, "bundles": api.problem.get_all_bundles() } return WebSuccess(data=data) @blueprint.route('/users', methods=['GET']) @api_wrapper @require_admin def get_all_users_hook(): users = api.user.get_all_users() if users is None: return WebError("There was an error query users from the database.") return WebSuccess(data=users) @blueprint.route('/exceptions', methods=['GET']) @api_wrapper @require_admin def get_exceptions_hook(): try: limit = abs(int(request.args.get("limit"))) exceptions = api.admin.get_api_exceptions(result_limit=limit) return WebSuccess(data=exceptions) except (ValueError, TypeError): return WebError("limit is not a valid integer.") @blueprint.route('/exceptions/dismiss', methods=['POST']) @api_wrapper @require_admin def dismiss_exceptions_hook(): trace = request.form.get("trace", None) if trace: api.admin.dismiss_api_exceptions(trace) return WebSuccess(data="Successfuly changed exception visibility.") else: return WebError(message="You must supply a trace to hide.") @blueprint.route("/problems/submissions", methods=["GET"]) @api_wrapper @require_admin def get_problem(): submission_data = {p["name"]:api.stats.get_problem_submission_stats(pid=p["pid"]) \ for p in api.problem.get_all_problems(show_disabled=True)} return WebSuccess(data=submission_data) @blueprint.route("/problems/availability", methods=["POST"]) @api_wrapper @require_admin def change_problem_availability_hook(): pid = request.form.get("pid", None) desired_state = request.form.get("state", None) if desired_state == None: return WebError("Problems are either enabled or disabled.") else: state = bson.json_util.loads(desired_state) api.admin.set_problem_availability(pid, state) return WebSuccess(data="Problem state changed successfully.") @blueprint.route("/shell_servers", methods=["GET"]) @api_wrapper @require_admin def get_shell_servers(): return WebSuccess(data=api.shell_servers.get_servers()) @blueprint.route("/shell_servers/add", methods=["POST"]) @api_wrapper @require_admin def add_shell_server(): params = api.common.flat_multi(request.form) api.shell_servers.add_server(params) return WebSuccess("Shell server added.") @blueprint.route("/shell_servers/update", methods=["POST"]) @api_wrapper @require_admin def update_shell_server(): params = api.common.flat_multi(request.form) sid = params.get("sid", None) if sid is None: return WebError("Must specify sid to be updated") api.shell_servers.update_server(sid, params) return WebSuccess("Shell server updated.") @blueprint.route("/shell_servers/remove", methods=["POST"]) @api_wrapper @require_admin def remove_shell_server(): sid = request.form.get("sid", None) if sid is None: return WebError("Must specify sid to be removed") api.shell_servers.remove_server(sid) return WebSuccess("Shell server removed.") @blueprint.route("/shell_servers/load_problems", methods=["POST"]) @api_wrapper @require_admin def load_problems_from_shell_server(): sid = request.form.get("sid", None) if sid is None: return WebError("Must provide sid to load from.") number = api.shell_servers.load_problems_from_server(sid) return WebSuccess("Loaded {} problems from the server".format(number)) @blueprint.route("/shell_servers/check_status", methods=["GET"]) @api_wrapper @require_admin def check_status_of_shell_server(): sid = request.args.get("sid", None) if sid is None: return WebError("Must provide sid to load from.") all_online, data = api.shell_servers.get_problem_status_from_server(sid) if all_online: return WebSuccess("All problems are online", data=data) else: return WebError("One or more problems are offline. Please connect and fix the errors.", data=data) @blueprint.route("/bundle/dependencies_active", methods=["POST"]) @api_wrapper @require_admin def bundle_dependencies(): bid = request.form.get("bid", None) state = request.form.get("state", None) if bid is None: return WebError("Must provide bid to load from.") if state is None: return WebError("Must provide a state to set.") state = bson.json_util.loads(state) api.problem.set_bundle_dependencies_enabled(bid, state) return WebSuccess("Dependencies are now {}.".format("enabled" if state else "disabled")) @blueprint.route("/settings", methods=["GET"]) @api_wrapper @require_admin def get_settings(): return WebSuccess(data=api.config.get_settings()) @blueprint.route("/settings/change", methods=["POST"]) @api_wrapper @require_admin def change_settings(): data = bson.json_util.loads(request.form["json"]) api.config.change_settings(data) return WebSuccess("Settings updated")
[((322, 354), 'flask.Blueprint', 'Blueprint', (['"""admin_api"""', '__name__'], {}), "('admin_api', __name__)\n", (331, 354), False, 'from flask import Blueprint, Flask, render_template, request, send_from_directory, session\n'), ((840, 861), 'api.common.WebSuccess', 'WebSuccess', ([], {'data': 'data'}), '(data=data)\n', (850, 861), False, 'from api.common import WebError, WebSuccess\n'), ((973, 997), 'api.user.get_all_users', 'api.user.get_all_users', ([], {}), '()\n', (995, 997), False, 'import api\n'), ((1108, 1130), 'api.common.WebSuccess', 'WebSuccess', ([], {'data': 'users'}), '(data=users)\n', (1118, 1130), False, 'from api.common import WebError, WebSuccess\n'), ((1634, 1665), 'flask.request.form.get', 'request.form.get', (['"""trace"""', 'None'], {}), "('trace', None)\n", (1650, 1665), False, 'from flask import Blueprint, Flask, render_template, request, send_from_directory, session\n'), ((2170, 2202), 'api.common.WebSuccess', 'WebSuccess', ([], {'data': 'submission_data'}), '(data=submission_data)\n', (2180, 2202), False, 'from api.common import WebError, WebSuccess\n'), ((2343, 2372), 'flask.request.form.get', 'request.form.get', (['"""pid"""', 'None'], {}), "('pid', None)\n", (2359, 2372), False, 'from flask import Blueprint, Flask, render_template, request, send_from_directory, session\n'), ((2393, 2424), 'flask.request.form.get', 'request.form.get', (['"""state"""', 'None'], {}), "('state', None)\n", (2409, 2424), False, 'from flask import Blueprint, Flask, render_template, request, send_from_directory, session\n'), ((2591, 2637), 'api.admin.set_problem_availability', 'api.admin.set_problem_availability', (['pid', 'state'], {}), '(pid, state)\n', (2625, 2637), False, 'import api\n'), ((2649, 2703), 'api.common.WebSuccess', 'WebSuccess', ([], {'data': '"""Problem state changed successfully."""'}), "(data='Problem state changed successfully.')\n", (2659, 2703), False, 'from api.common import WebError, WebSuccess\n'), ((2994, 3029), 'api.common.flat_multi', 'api.common.flat_multi', (['request.form'], {}), '(request.form)\n', (3015, 3029), False, 'import api\n'), ((3034, 3070), 'api.shell_servers.add_server', 'api.shell_servers.add_server', (['params'], {}), '(params)\n', (3062, 3070), False, 'import api\n'), ((3082, 3115), 'api.common.WebSuccess', 'WebSuccess', (['"""Shell server added."""'], {}), "('Shell server added.')\n", (3092, 3115), False, 'from api.common import WebError, WebSuccess\n'), ((3245, 3280), 'api.common.flat_multi', 'api.common.flat_multi', (['request.form'], {}), '(request.form)\n', (3266, 3280), False, 'import api\n'), ((3399, 3443), 'api.shell_servers.update_server', 'api.shell_servers.update_server', (['sid', 'params'], {}), '(sid, params)\n', (3430, 3443), False, 'import api\n'), ((3455, 3490), 'api.common.WebSuccess', 'WebSuccess', (['"""Shell server updated."""'], {}), "('Shell server updated.')\n", (3465, 3490), False, 'from api.common import WebError, WebSuccess\n'), ((3617, 3646), 'flask.request.form.get', 'request.form.get', (['"""sid"""', 'None'], {}), "('sid', None)\n", (3633, 3646), False, 'from flask import Blueprint, Flask, render_template, request, send_from_directory, session\n'), ((3730, 3766), 'api.shell_servers.remove_server', 'api.shell_servers.remove_server', (['sid'], {}), '(sid)\n', (3761, 3766), False, 'import api\n'), ((3778, 3813), 'api.common.WebSuccess', 'WebSuccess', (['"""Shell server removed."""'], {}), "('Shell server removed.')\n", (3788, 3813), False, 'from api.common import WebError, WebSuccess\n'), ((3959, 3988), 'flask.request.form.get', 'request.form.get', (['"""sid"""', 'None'], {}), "('sid', None)\n", (3975, 3988), False, 'from flask import Blueprint, Flask, render_template, request, send_from_directory, session\n'), ((4082, 4130), 'api.shell_servers.load_problems_from_server', 'api.shell_servers.load_problems_from_server', (['sid'], {}), '(sid)\n', (4125, 4130), False, 'import api\n'), ((4346, 4375), 'flask.request.args.get', 'request.args.get', (['"""sid"""', 'None'], {}), "('sid', None)\n", (4362, 4375), False, 'from flask import Blueprint, Flask, render_template, request, send_from_directory, session\n'), ((4479, 4532), 'api.shell_servers.get_problem_status_from_server', 'api.shell_servers.get_problem_status_from_server', (['sid'], {}), '(sid)\n', (4527, 4532), False, 'import api\n'), ((4866, 4895), 'flask.request.form.get', 'request.form.get', (['"""bid"""', 'None'], {}), "('bid', None)\n", (4882, 4895), False, 'from flask import Blueprint, Flask, render_template, request, send_from_directory, session\n'), ((4908, 4939), 'flask.request.form.get', 'request.form.get', (['"""state"""', 'None'], {}), "('state', None)\n", (4924, 4939), False, 'from flask import Blueprint, Flask, render_template, request, send_from_directory, session\n'), ((5111, 5138), 'bson.json_util.loads', 'bson.json_util.loads', (['state'], {}), '(state)\n', (5131, 5138), False, 'import bson\n'), ((5144, 5199), 'api.problem.set_bundle_dependencies_enabled', 'api.problem.set_bundle_dependencies_enabled', (['bid', 'state'], {}), '(bid, state)\n', (5187, 5199), False, 'import api\n'), ((5562, 5604), 'bson.json_util.loads', 'bson.json_util.loads', (["request.form['json']"], {}), "(request.form['json'])\n", (5582, 5604), False, 'import bson\n'), ((5609, 5641), 'api.config.change_settings', 'api.config.change_settings', (['data'], {}), '(data)\n', (5635, 5641), False, 'import api\n'), ((5653, 5683), 'api.common.WebSuccess', 'WebSuccess', (['"""Settings updated"""'], {}), "('Settings updated')\n", (5663, 5683), False, 'from api.common import WebError, WebSuccess\n'), ((667, 728), 'api.problem_feedback.get_problem_feedback', 'api.problem_feedback.get_problem_feedback', ([], {'pid': "problem['pid']"}), "(pid=problem['pid'])\n", (708, 728), False, 'import api\n'), ((792, 821), 'api.problem.get_all_bundles', 'api.problem.get_all_bundles', ([], {}), '()\n', (819, 821), False, 'import api\n'), ((1035, 1096), 'api.common.WebError', 'WebError', (['"""There was an error query users from the database."""'], {}), "('There was an error query users from the database.')\n", (1043, 1096), False, 'from api.common import WebError, WebSuccess\n'), ((1318, 1366), 'api.admin.get_api_exceptions', 'api.admin.get_api_exceptions', ([], {'result_limit': 'limit'}), '(result_limit=limit)\n', (1346, 1366), False, 'import api\n'), ((1382, 1409), 'api.common.WebSuccess', 'WebSuccess', ([], {'data': 'exceptions'}), '(data=exceptions)\n', (1392, 1409), False, 'from api.common import WebError, WebSuccess\n'), ((1688, 1727), 'api.admin.dismiss_api_exceptions', 'api.admin.dismiss_api_exceptions', (['trace'], {}), '(trace)\n', (1720, 1727), False, 'import api\n'), ((1743, 1803), 'api.common.WebSuccess', 'WebSuccess', ([], {'data': '"""Successfuly changed exception visibility."""'}), "(data='Successfuly changed exception visibility.')\n", (1753, 1803), False, 'from api.common import WebError, WebSuccess\n'), ((1829, 1881), 'api.common.WebError', 'WebError', ([], {'message': '"""You must supply a trace to hide."""'}), "(message='You must supply a trace to hide.')\n", (1837, 1881), False, 'from api.common import WebError, WebSuccess\n'), ((2022, 2074), 'api.stats.get_problem_submission_stats', 'api.stats.get_problem_submission_stats', ([], {'pid': "p['pid']"}), "(pid=p['pid'])\n", (2060, 2074), False, 'import api\n'), ((2471, 2523), 'api.common.WebError', 'WebError', (['"""Problems are either enabled or disabled."""'], {}), "('Problems are either enabled or disabled.')\n", (2479, 2523), False, 'from api.common import WebError, WebSuccess\n'), ((2550, 2585), 'bson.json_util.loads', 'bson.json_util.loads', (['desired_state'], {}), '(desired_state)\n', (2570, 2585), False, 'import bson\n'), ((3351, 3393), 'api.common.WebError', 'WebError', (['"""Must specify sid to be updated"""'], {}), "('Must specify sid to be updated')\n", (3359, 3393), False, 'from api.common import WebError, WebSuccess\n'), ((3682, 3724), 'api.common.WebError', 'WebError', (['"""Must specify sid to be removed"""'], {}), "('Must specify sid to be removed')\n", (3690, 3724), False, 'from api.common import WebError, WebSuccess\n'), ((4025, 4067), 'api.common.WebError', 'WebError', (['"""Must provide sid to load from."""'], {}), "('Must provide sid to load from.')\n", (4033, 4067), False, 'from api.common import WebError, WebSuccess\n'), ((4412, 4454), 'api.common.WebError', 'WebError', (['"""Must provide sid to load from."""'], {}), "('Must provide sid to load from.')\n", (4420, 4454), False, 'from api.common import WebError, WebSuccess\n'), ((4568, 4616), 'api.common.WebSuccess', 'WebSuccess', (['"""All problems are online"""'], {'data': 'data'}), "('All problems are online', data=data)\n", (4578, 4616), False, 'from api.common import WebError, WebSuccess\n'), ((4642, 4738), 'api.common.WebError', 'WebError', (['"""One or more problems are offline. Please connect and fix the errors."""'], {'data': 'data'}), "('One or more problems are offline. Please connect and fix the errors.'\n , data=data)\n", (4650, 4738), False, 'from api.common import WebError, WebSuccess\n'), ((4976, 5018), 'api.common.WebError', 'WebError', (['"""Must provide bid to load from."""'], {}), "('Must provide bid to load from.')\n", (4984, 5018), False, 'from api.common import WebError, WebSuccess\n'), ((5057, 5097), 'api.common.WebError', 'WebError', (['"""Must provide a state to set."""'], {}), "('Must provide a state to set.')\n", (5065, 5097), False, 'from api.common import WebError, WebSuccess\n'), ((557, 605), 'api.problem.get_all_problems', 'api.problem.get_all_problems', ([], {'show_disabled': '(True)'}), '(show_disabled=True)\n', (585, 605), False, 'import api\n'), ((1462, 1503), 'api.common.WebError', 'WebError', (['"""limit is not a valid integer."""'], {}), "('limit is not a valid integer.')\n", (1470, 1503), False, 'from api.common import WebError, WebSuccess\n'), ((2109, 2157), 'api.problem.get_all_problems', 'api.problem.get_all_problems', ([], {'show_disabled': '(True)'}), '(show_disabled=True)\n', (2137, 2157), False, 'import api\n'), ((2838, 2869), 'api.shell_servers.get_servers', 'api.shell_servers.get_servers', ([], {}), '()\n', (2867, 2869), False, 'import api\n'), ((5417, 5442), 'api.config.get_settings', 'api.config.get_settings', ([], {}), '()\n', (5440, 5442), False, 'import api\n'), ((1269, 1294), 'flask.request.args.get', 'request.args.get', (['"""limit"""'], {}), "('limit')\n", (1285, 1294), False, 'from flask import Blueprint, Flask, render_template, request, send_from_directory, session\n')]
thongnbui/MIDS_251_project
python code/influxdb_worker.py
8eee0f4569268e11c2d1d356024dbdc10f180b10
#!/usr/bin/python import json import argparse from influxdb import InfluxDBClient parser = argparse.ArgumentParser(description = 'pull data for softlayer queue' ) parser.add_argument( 'measurement' , help = 'measurement001' ) args = parser.parse_args() client_influxdb = InfluxDBClient('50.23.117.76', '8086', 'cricket', 'cricket', 'cricket_data') query = 'SELECT "data_center", "device", "value" FROM "cricket_data"."cricket_retention".'+args.measurement+' WHERE time > now() - 10m order by time' result = client_influxdb.query(query) for r in result: i = 0 for data_center, device, value, time in r: print args.measurement,'\t',r[i][data_center],'\t',r[i][device],'\t',r[i][time],'\t',r[i][value] i += 1
[]
xyzst/pants
src/python/pants/backend/docker/lint/hadolint/subsystem.py
d6a357fe67ee7e8e1aefeae625e107f5609f1717
# Copyright 2021 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import annotations from typing import cast from pants.core.util_rules.config_files import ConfigFilesRequest from pants.core.util_rules.external_tool import TemplatedExternalTool from pants.option.custom_types import file_option, shell_str class Hadolint(TemplatedExternalTool): options_scope = "hadolint" name = "hadolint" help = "A linter for Dockerfiles." default_version = "v2.8.0" # TODO: https://github.com/hadolint/hadolint/issues/411 tracks building and releasing # hadolint for Linux ARM64. default_known_versions = [ "v2.8.0|macos_x86_64|27985f257a216ecab06a16e643e8cb0123e7145b5d526cfcb4ce7a31fe99f357|2428944", "v2.8.0|macos_arm64 |27985f257a216ecab06a16e643e8cb0123e7145b5d526cfcb4ce7a31fe99f357|2428944", # same as mac x86 "v2.8.0|linux_x86_64|9dfc155139a1e1e9b3b28f3de9907736b9dfe7cead1c3a0ae7ff0158f3191674|5895708", ] default_url_template = ( "https://github.com/hadolint/hadolint/releases/download/{version}/hadolint-{platform}" ) default_url_platform_mapping = { "macos_arm64": "Darwin-x86_64", "macos_x86_64": "Darwin-x86_64", "linux_x86_64": "Linux-x86_64", } @classmethod def register_options(cls, register): super().register_options(register) register( "--skip", type=bool, default=False, help="Don't use Hadolint when running `./pants lint`.", ) register( "--args", type=list, member_type=shell_str, help=( "Arguments to pass directly to Hadolint, e.g. `--hadolint-args='--format json'`.'" ), ) register( "--config", type=file_option, default=None, advanced=True, help=( "Path to an YAML config file understood by Hadolint " "(https://github.com/hadolint/hadolint#configure).\n\n" f"Setting this option will disable `[{cls.options_scope}].config_discovery`. Use " "this option if the config is located in a non-standard location." ), ) register( "--config-discovery", type=bool, default=True, advanced=True, help=( "If true, Pants will include all relevant config files during runs " "(`.hadolint.yaml` and `.hadolint.yml`).\n\n" f"Use `[{cls.options_scope}].config` instead if your config is in a " "non-standard location." ), ) @property def skip(self) -> bool: return cast(bool, self.options.skip) @property def args(self) -> tuple[str, ...]: return tuple(self.options.args) @property def config(self) -> str | None: return cast("str | None", self.options.config) def config_request(self) -> ConfigFilesRequest: # Refer to https://github.com/hadolint/hadolint#configure for how config files are # discovered. return ConfigFilesRequest( specified=self.config, specified_option_name=f"[{self.options_scope}].config", discovery=cast(bool, self.options.config_discovery), check_existence=[".hadolint.yaml", ".hadolint.yml"], )
[((2848, 2877), 'typing.cast', 'cast', (['bool', 'self.options.skip'], {}), '(bool, self.options.skip)\n', (2852, 2877), False, 'from typing import cast\n'), ((3038, 3077), 'typing.cast', 'cast', (['"""str | None"""', 'self.options.config'], {}), "('str | None', self.options.config)\n", (3042, 3077), False, 'from typing import cast\n'), ((3404, 3445), 'typing.cast', 'cast', (['bool', 'self.options.config_discovery'], {}), '(bool, self.options.config_discovery)\n', (3408, 3445), False, 'from typing import cast\n')]
LucaCilibrasi/docker_viruclust
venv/lib/python3.9/site-packages/biorun/fetch.py
88149c17fd4b94a54397d0cb4a9daece00122c49
""" Handles functionality related to data storege. """ import sys, os, glob, re, gzip, json from biorun import const, utils, objects, ncbi from biorun.models import jsonrec import biorun.libs.placlib as plac # Module level logger. logger = utils.logger # A nicer error message on incorrect installation. try: from Bio import SeqIO except ImportError as exc: print(f"*** Error: {exc}", file=sys.stderr) print(f"*** This program requires biopython", file=sys.stderr) print(f"*** Install: conda install -y biopython>=1.78", file=sys.stderr) sys.exit(-1) def resolve_fname(name, format='json'): """ Resolve a file name given an accession number. """ ext = format.lower() fname = f"{name}.{ext}.gz" fname = os.path.join(utils.DATADIR, fname) return fname def delete_data(text): """ Deletes data under a filename. """ for name in text.split(","): fname = resolve_fname(name) if os.path.isfile(fname): os.remove(fname) logger.info(f"removed: {fname}") else: logger.info(f"file does not exist: {fname}") def read_json_file(fname): """ Returns the content of a JSON file. """ fp = utils.gz_read(fname) data = json.load(fp) fp.close() return data def save_json_file(fname, data): """ Returns the content of a JSON file. """ fp = utils.gz_write(fname) json.dump(data, fp) fp.close() logger.info(f"saved {fname}") return data def change_seqid(json_name, seqid): """ Changes the sequence id stored in a json file. """ if os.path.isfile(json_name): data = read_json_file(json_name) for item in data: item[const.SEQID] = seqid fp = utils.gz_write(json_name) json.dump(data, fp) fp.close() def fetch_data(data, param): """ Obtains data from NCBI. Fills each parameter with a json field. """ db = "protein" if param.protein else "nuccore" # Ensure json DB is built ncbi.build_db() genbank, taxon_acc, refseq = ncbi.get_data() for name in data: # Pretend no data if it is an update. json = None if param.update else get_json(name) # The data exists, nothing needs to be done. if json: continue # The JSON representation of the data. json_name = resolve_fname(name=name, format="json") # GenBank representation of the data. gbk_name = resolve_fname(name=name, format="gb") # Genome assembly data. if name.startswith("GCA") or name.startswith("GCF"): ncbi.genome(name=name, fname=gbk_name, update=param.update, genbank=genbank, refseq=refseq) else: # Genbank data. ncbi.genbank_save(name, db=db, fname=gbk_name) # Convert Genbank to JSON. data = jsonrec.parse_file(fname=gbk_name, seqid=param.seqid) # Save JSON file. save_json_file(fname=json_name, data=data) def genbank_view(params): for param in params: altname = resolve_fname(param.acc, format="gb") if os.path.isfile(param.acc): stream = utils.gz_read(param.acc) elif os.path.isfile(altname): stream = utils.gz_read(altname) else: stream = [] utils.error(f"data not found: {param.acc}") for line in stream: print(line, end='') def get_json(name, seqid=None, inter=False, strict=False): """ Attempts to return a JSON formatted data based on a name. """ # Data is an existing path to a JSON file. if os.path.isfile(name): try: data = jsonrec.parse_file(name, seqid=seqid) except Exception as exc: logger.error(f"JSON parsing error for file {name}: {exc}") sys.exit(-1) return data # The JSON representation of the data. json_name = resolve_fname(name=name, format="json") # GenBank representation of the data. gbk_name = resolve_fname(name=name, format="gb") # Found the JSON representation of the file. if os.path.isfile(json_name): logger.info(f"found {json_name}") data = read_json_file(json_name) return data # There is no JSON file but there is a GenBank file. if os.path.isfile(gbk_name): logger.info(f"found {gbk_name}") data = jsonrec.parse_file(fname=gbk_name, seqid=seqid) data = save_json_file(fname=json_name, data=data) return data # Interactive input, make JSON from name if inter: data = jsonrec.make_jsonrec(name, seqid=seqid) return data # Raise error if in strict mode if strict: utils.error(f"data not found: {name}") return None def rename_data(data, param, newname=None): """ Rename data. """ # Will only rename a single data newnames = newname.split(",") for name1, name2 in zip(data, newnames): src_json = resolve_fname(name=name1, format="json") dest_json = resolve_fname(name=name2, format="json") src_gb = resolve_fname(name=name1, format="gb") dest_gb = resolve_fname(name=name2, format="gb") if os.path.isfile(src_json): logger.info(f"renamed {name1} as {name2}") os.rename(src_json, dest_json) if param.seqid: change_seqid(dest_json, seqid=param.seqid) else: logger.info(f"file not found: {src_json}") if os.path.isfile(src_gb): if not os.path.isfile(dest_gb): os.symlink(src_gb, dest_gb) else: logger.info(f"file not found: {src_gb}") def print_data_list(): """ Returns a list of the files in the data directory """ pattern = os.path.join(os.path.join(utils.DATADIR, '*.json.gz')) matched = glob.glob(pattern) # Extract the definition from the JSON without parsing it. patt = re.compile(r'(definition\":\s*)(?P<value>\".+?\")') collect = [] for path in matched: fsize = utils.human_size(os.path.getsize(path)) base, fname = os.path.split(path) fname = fname.rsplit(".", maxsplit=2)[0] # Parse the first N lines stream = gzip.open(path, 'rt') if path.endswith('gz') else open(path, 'rt') text = stream.read(1000) match = patt.search(text) title = match.group("value") if match else '' title = title.strip('", ') # Trim the title stitle = title[:100] stitle = stitle + "..." if len(title) != len(stitle) else stitle collect.append((str(fsize), f"{fname:10s}", stitle)) collect = sorted(collect, key=lambda x: x[2]) for row in collect: line = "\t".join(row) print(line) @plac.pos("data", "data names") @plac.flg('fetch', "download data as accessions") @plac.flg('update', "updates data in storage") @plac.opt('rename', "rename the data") @plac.opt('seqid', "set the sequence id of the data") @plac.flg('protein', "use the protein database") @plac.flg('build', "build the database") @plac.flg('verbose', "verbose mode") def run(update=False, rename='', seqid='', protein=False, verbose=False, *data): """ Fetches and manages data in storage. """ # Set the verbosity utils.set_verbosity(logger, level=int(verbose)) # Reset counter (needed for consistency during testing). jsonrec.reset_counter() # A simple wrapper class to represent input parameters. param = objects.Param(seqid=seqid, rename=rename, start=1, protein=protein, update=update) # Fetch the data. fetch_data(data, param=param) # Renaming after fetching. if rename: rename_data(data, param=param, newname=rename) @plac.opt('delete', "deletes foo from storage", metavar='foo') @plac.flg('verbose', "verbose mode") def data(delete, verbose=False): """ Shows the data in the storage. Usage: bio data : lists the data bio data --delete foo : deletes data called foo bio data --delete foo,bar : deletes multiple datasets """ # Set the verbosity utils.set_verbosity(logger, level=int(verbose)) # Reset counter (needed for consistency during testing). jsonrec.reset_counter() # Delete should be the first to execute. if delete: delete_data(delete) else: # Prints the data listing. print_data_list()
[((6836, 6866), 'biorun.libs.placlib.pos', 'plac.pos', (['"""data"""', '"""data names"""'], {}), "('data', 'data names')\n", (6844, 6866), True, 'import biorun.libs.placlib as plac\n'), ((6868, 6916), 'biorun.libs.placlib.flg', 'plac.flg', (['"""fetch"""', '"""download data as accessions"""'], {}), "('fetch', 'download data as accessions')\n", (6876, 6916), True, 'import biorun.libs.placlib as plac\n'), ((6918, 6963), 'biorun.libs.placlib.flg', 'plac.flg', (['"""update"""', '"""updates data in storage"""'], {}), "('update', 'updates data in storage')\n", (6926, 6963), True, 'import biorun.libs.placlib as plac\n'), ((6965, 7002), 'biorun.libs.placlib.opt', 'plac.opt', (['"""rename"""', '"""rename the data"""'], {}), "('rename', 'rename the data')\n", (6973, 7002), True, 'import biorun.libs.placlib as plac\n'), ((7004, 7056), 'biorun.libs.placlib.opt', 'plac.opt', (['"""seqid"""', '"""set the sequence id of the data"""'], {}), "('seqid', 'set the sequence id of the data')\n", (7012, 7056), True, 'import biorun.libs.placlib as plac\n'), ((7058, 7105), 'biorun.libs.placlib.flg', 'plac.flg', (['"""protein"""', '"""use the protein database"""'], {}), "('protein', 'use the protein database')\n", (7066, 7105), True, 'import biorun.libs.placlib as plac\n'), ((7107, 7146), 'biorun.libs.placlib.flg', 'plac.flg', (['"""build"""', '"""build the database"""'], {}), "('build', 'build the database')\n", (7115, 7146), True, 'import biorun.libs.placlib as plac\n'), ((7148, 7183), 'biorun.libs.placlib.flg', 'plac.flg', (['"""verbose"""', '"""verbose mode"""'], {}), "('verbose', 'verbose mode')\n", (7156, 7183), True, 'import biorun.libs.placlib as plac\n'), ((7807, 7868), 'biorun.libs.placlib.opt', 'plac.opt', (['"""delete"""', '"""deletes foo from storage"""'], {'metavar': '"""foo"""'}), "('delete', 'deletes foo from storage', metavar='foo')\n", (7815, 7868), True, 'import biorun.libs.placlib as plac\n'), ((7870, 7905), 'biorun.libs.placlib.flg', 'plac.flg', (['"""verbose"""', '"""verbose mode"""'], {}), "('verbose', 'verbose mode')\n", (7878, 7905), True, 'import biorun.libs.placlib as plac\n'), ((749, 783), 'os.path.join', 'os.path.join', (['utils.DATADIR', 'fname'], {}), '(utils.DATADIR, fname)\n', (761, 783), False, 'import sys, os, glob, re, gzip, json\n'), ((1219, 1239), 'biorun.utils.gz_read', 'utils.gz_read', (['fname'], {}), '(fname)\n', (1232, 1239), False, 'from biorun import const, utils, objects, ncbi\n'), ((1251, 1264), 'json.load', 'json.load', (['fp'], {}), '(fp)\n', (1260, 1264), False, 'import sys, os, glob, re, gzip, json\n'), ((1396, 1417), 'biorun.utils.gz_write', 'utils.gz_write', (['fname'], {}), '(fname)\n', (1410, 1417), False, 'from biorun import const, utils, objects, ncbi\n'), ((1422, 1441), 'json.dump', 'json.dump', (['data', 'fp'], {}), '(data, fp)\n', (1431, 1441), False, 'import sys, os, glob, re, gzip, json\n'), ((1619, 1644), 'os.path.isfile', 'os.path.isfile', (['json_name'], {}), '(json_name)\n', (1633, 1644), False, 'import sys, os, glob, re, gzip, json\n'), ((2039, 2054), 'biorun.ncbi.build_db', 'ncbi.build_db', ([], {}), '()\n', (2052, 2054), False, 'from biorun import const, utils, objects, ncbi\n'), ((2089, 2104), 'biorun.ncbi.get_data', 'ncbi.get_data', ([], {}), '()\n', (2102, 2104), False, 'from biorun import const, utils, objects, ncbi\n'), ((3667, 3687), 'os.path.isfile', 'os.path.isfile', (['name'], {}), '(name)\n', (3681, 3687), False, 'import sys, os, glob, re, gzip, json\n'), ((4161, 4186), 'os.path.isfile', 'os.path.isfile', (['json_name'], {}), '(json_name)\n', (4175, 4186), False, 'import sys, os, glob, re, gzip, json\n'), ((4356, 4380), 'os.path.isfile', 'os.path.isfile', (['gbk_name'], {}), '(gbk_name)\n', (4370, 4380), False, 'import sys, os, glob, re, gzip, json\n'), ((5906, 5924), 'glob.glob', 'glob.glob', (['pattern'], {}), '(pattern)\n', (5915, 5924), False, 'import sys, os, glob, re, gzip, json\n'), ((6000, 6054), 're.compile', 're.compile', (['"""(definition\\\\":\\\\s*)(?P<value>\\\\".+?\\\\")"""'], {}), '(\'(definition\\\\":\\\\s*)(?P<value>\\\\".+?\\\\")\')\n', (6010, 6054), False, 'import sys, os, glob, re, gzip, json\n'), ((7465, 7488), 'biorun.models.jsonrec.reset_counter', 'jsonrec.reset_counter', ([], {}), '()\n', (7486, 7488), False, 'from biorun.models import jsonrec\n'), ((7562, 7649), 'biorun.objects.Param', 'objects.Param', ([], {'seqid': 'seqid', 'rename': 'rename', 'start': '(1)', 'protein': 'protein', 'update': 'update'}), '(seqid=seqid, rename=rename, start=1, protein=protein, update=\n update)\n', (7575, 7649), False, 'from biorun import const, utils, objects, ncbi\n'), ((8321, 8344), 'biorun.models.jsonrec.reset_counter', 'jsonrec.reset_counter', ([], {}), '()\n', (8342, 8344), False, 'from biorun.models import jsonrec\n'), ((560, 572), 'sys.exit', 'sys.exit', (['(-1)'], {}), '(-1)\n', (568, 572), False, 'import sys, os, glob, re, gzip, json\n'), ((957, 978), 'os.path.isfile', 'os.path.isfile', (['fname'], {}), '(fname)\n', (971, 978), False, 'import sys, os, glob, re, gzip, json\n'), ((1764, 1789), 'biorun.utils.gz_write', 'utils.gz_write', (['json_name'], {}), '(json_name)\n', (1778, 1789), False, 'from biorun import const, utils, objects, ncbi\n'), ((1798, 1817), 'json.dump', 'json.dump', (['data', 'fp'], {}), '(data, fp)\n', (1807, 1817), False, 'import sys, os, glob, re, gzip, json\n'), ((2910, 2963), 'biorun.models.jsonrec.parse_file', 'jsonrec.parse_file', ([], {'fname': 'gbk_name', 'seqid': 'param.seqid'}), '(fname=gbk_name, seqid=param.seqid)\n', (2928, 2963), False, 'from biorun.models import jsonrec\n'), ((3163, 3188), 'os.path.isfile', 'os.path.isfile', (['param.acc'], {}), '(param.acc)\n', (3177, 3188), False, 'import sys, os, glob, re, gzip, json\n'), ((4438, 4485), 'biorun.models.jsonrec.parse_file', 'jsonrec.parse_file', ([], {'fname': 'gbk_name', 'seqid': 'seqid'}), '(fname=gbk_name, seqid=seqid)\n', (4456, 4485), False, 'from biorun.models import jsonrec\n'), ((4639, 4678), 'biorun.models.jsonrec.make_jsonrec', 'jsonrec.make_jsonrec', (['name'], {'seqid': 'seqid'}), '(name, seqid=seqid)\n', (4659, 4678), False, 'from biorun.models import jsonrec\n'), ((4759, 4797), 'biorun.utils.error', 'utils.error', (['f"""data not found: {name}"""'], {}), "(f'data not found: {name}')\n", (4770, 4797), False, 'from biorun import const, utils, objects, ncbi\n'), ((5257, 5281), 'os.path.isfile', 'os.path.isfile', (['src_json'], {}), '(src_json)\n', (5271, 5281), False, 'import sys, os, glob, re, gzip, json\n'), ((5549, 5571), 'os.path.isfile', 'os.path.isfile', (['src_gb'], {}), '(src_gb)\n', (5563, 5571), False, 'import sys, os, glob, re, gzip, json\n'), ((5850, 5890), 'os.path.join', 'os.path.join', (['utils.DATADIR', '"""*.json.gz"""'], {}), "(utils.DATADIR, '*.json.gz')\n", (5862, 5890), False, 'import sys, os, glob, re, gzip, json\n'), ((6173, 6192), 'os.path.split', 'os.path.split', (['path'], {}), '(path)\n', (6186, 6192), False, 'import sys, os, glob, re, gzip, json\n'), ((992, 1008), 'os.remove', 'os.remove', (['fname'], {}), '(fname)\n', (1001, 1008), False, 'import sys, os, glob, re, gzip, json\n'), ((2642, 2737), 'biorun.ncbi.genome', 'ncbi.genome', ([], {'name': 'name', 'fname': 'gbk_name', 'update': 'param.update', 'genbank': 'genbank', 'refseq': 'refseq'}), '(name=name, fname=gbk_name, update=param.update, genbank=genbank,\n refseq=refseq)\n', (2653, 2737), False, 'from biorun import const, utils, objects, ncbi\n'), ((2812, 2858), 'biorun.ncbi.genbank_save', 'ncbi.genbank_save', (['name'], {'db': 'db', 'fname': 'gbk_name'}), '(name, db=db, fname=gbk_name)\n', (2829, 2858), False, 'from biorun import const, utils, objects, ncbi\n'), ((3211, 3235), 'biorun.utils.gz_read', 'utils.gz_read', (['param.acc'], {}), '(param.acc)\n', (3224, 3235), False, 'from biorun import const, utils, objects, ncbi\n'), ((3249, 3272), 'os.path.isfile', 'os.path.isfile', (['altname'], {}), '(altname)\n', (3263, 3272), False, 'import sys, os, glob, re, gzip, json\n'), ((3721, 3758), 'biorun.models.jsonrec.parse_file', 'jsonrec.parse_file', (['name'], {'seqid': 'seqid'}), '(name, seqid=seqid)\n', (3739, 3758), False, 'from biorun.models import jsonrec\n'), ((5350, 5380), 'os.rename', 'os.rename', (['src_json', 'dest_json'], {}), '(src_json, dest_json)\n', (5359, 5380), False, 'import sys, os, glob, re, gzip, json\n'), ((6128, 6149), 'os.path.getsize', 'os.path.getsize', (['path'], {}), '(path)\n', (6143, 6149), False, 'import sys, os, glob, re, gzip, json\n'), ((6294, 6315), 'gzip.open', 'gzip.open', (['path', '"""rt"""'], {}), "(path, 'rt')\n", (6303, 6315), False, 'import sys, os, glob, re, gzip, json\n'), ((3295, 3317), 'biorun.utils.gz_read', 'utils.gz_read', (['altname'], {}), '(altname)\n', (3308, 3317), False, 'from biorun import const, utils, objects, ncbi\n'), ((3368, 3411), 'biorun.utils.error', 'utils.error', (['f"""data not found: {param.acc}"""'], {}), "(f'data not found: {param.acc}')\n", (3379, 3411), False, 'from biorun import const, utils, objects, ncbi\n'), ((3875, 3887), 'sys.exit', 'sys.exit', (['(-1)'], {}), '(-1)\n', (3883, 3887), False, 'import sys, os, glob, re, gzip, json\n'), ((5592, 5615), 'os.path.isfile', 'os.path.isfile', (['dest_gb'], {}), '(dest_gb)\n', (5606, 5615), False, 'import sys, os, glob, re, gzip, json\n'), ((5633, 5660), 'os.symlink', 'os.symlink', (['src_gb', 'dest_gb'], {}), '(src_gb, dest_gb)\n', (5643, 5660), False, 'import sys, os, glob, re, gzip, json\n')]
LaverdeS/Genetic_Algorithm_EGame
game/items/game_item.py
89ff8c7870fa90768f4616cab6803227c8613396
import numpy as np from random import randint from PyQt5.QtGui import QImage from PyQt5.QtCore import QPointF class GameItem(): def __init__(self, parent, boundary, position=None): self.parent = parent self.config = parent.config self.items_config = self.config.items if position is None: _left_border = boundary _right_border = int(self.parent.frame_dimension[0]) - boundary _top_border = boundary _bottom_border = int(self.parent.frame_dimension[1]) - boundary _x = float(randint(_left_border, _right_border)) _y = float(randint(_top_border, _bottom_border)) self._position = np.array([_x, _y]) else: self._position = position def draw_image(self, painter): item_image = QImage(self.image) painter.drawImage(QPointF(self._position[0]-(item_image.height()/2), self._position[1]-(item_image.width()/2)), item_image)
[((829, 847), 'PyQt5.QtGui.QImage', 'QImage', (['self.image'], {}), '(self.image)\n', (835, 847), False, 'from PyQt5.QtGui import QImage\n'), ((701, 719), 'numpy.array', 'np.array', (['[_x, _y]'], {}), '([_x, _y])\n', (709, 719), True, 'import numpy as np\n'), ((573, 609), 'random.randint', 'randint', (['_left_border', '_right_border'], {}), '(_left_border, _right_border)\n', (580, 609), False, 'from random import randint\n'), ((634, 670), 'random.randint', 'randint', (['_top_border', '_bottom_border'], {}), '(_top_border, _bottom_border)\n', (641, 670), False, 'from random import randint\n')]
felipecosta09/cloudone-workload-controltower-lifecycle
source/deepsecurity/models/application_type_rights.py
7927c84d164058b034fc872701b5ee117641f4d1
# coding: utf-8 """ Trend Micro Deep Security API Copyright 2018 - 2020 Trend Micro Incorporated.<br/>Get protected, stay secured, and keep informed with Trend Micro Deep Security's new RESTful API. Access system data and manage security configurations to automate your security workflows and integrate Deep Security into your CI/CD pipeline. # noqa: E501 OpenAPI spec version: 12.5.841 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class ApplicationTypeRights(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'can_create_new_application_types': 'bool', 'can_delete_application_types': 'bool', 'can_edit_application_type_properties': 'bool' } attribute_map = { 'can_create_new_application_types': 'canCreateNewApplicationTypes', 'can_delete_application_types': 'canDeleteApplicationTypes', 'can_edit_application_type_properties': 'canEditApplicationTypeProperties' } def __init__(self, can_create_new_application_types=None, can_delete_application_types=None, can_edit_application_type_properties=None): # noqa: E501 """ApplicationTypeRights - a model defined in Swagger""" # noqa: E501 self._can_create_new_application_types = None self._can_delete_application_types = None self._can_edit_application_type_properties = None self.discriminator = None if can_create_new_application_types is not None: self.can_create_new_application_types = can_create_new_application_types if can_delete_application_types is not None: self.can_delete_application_types = can_delete_application_types if can_edit_application_type_properties is not None: self.can_edit_application_type_properties = can_edit_application_type_properties @property def can_create_new_application_types(self): """Gets the can_create_new_application_types of this ApplicationTypeRights. # noqa: E501 Right to create new application types. # noqa: E501 :return: The can_create_new_application_types of this ApplicationTypeRights. # noqa: E501 :rtype: bool """ return self._can_create_new_application_types @can_create_new_application_types.setter def can_create_new_application_types(self, can_create_new_application_types): """Sets the can_create_new_application_types of this ApplicationTypeRights. Right to create new application types. # noqa: E501 :param can_create_new_application_types: The can_create_new_application_types of this ApplicationTypeRights. # noqa: E501 :type: bool """ self._can_create_new_application_types = can_create_new_application_types @property def can_delete_application_types(self): """Gets the can_delete_application_types of this ApplicationTypeRights. # noqa: E501 Right to delete application types. # noqa: E501 :return: The can_delete_application_types of this ApplicationTypeRights. # noqa: E501 :rtype: bool """ return self._can_delete_application_types @can_delete_application_types.setter def can_delete_application_types(self, can_delete_application_types): """Sets the can_delete_application_types of this ApplicationTypeRights. Right to delete application types. # noqa: E501 :param can_delete_application_types: The can_delete_application_types of this ApplicationTypeRights. # noqa: E501 :type: bool """ self._can_delete_application_types = can_delete_application_types @property def can_edit_application_type_properties(self): """Gets the can_edit_application_type_properties of this ApplicationTypeRights. # noqa: E501 Right to edit application type properties. # noqa: E501 :return: The can_edit_application_type_properties of this ApplicationTypeRights. # noqa: E501 :rtype: bool """ return self._can_edit_application_type_properties @can_edit_application_type_properties.setter def can_edit_application_type_properties(self, can_edit_application_type_properties): """Sets the can_edit_application_type_properties of this ApplicationTypeRights. Right to edit application type properties. # noqa: E501 :param can_edit_application_type_properties: The can_edit_application_type_properties of this ApplicationTypeRights. # noqa: E501 :type: bool """ self._can_edit_application_type_properties = can_edit_application_type_properties def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(ApplicationTypeRights, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ApplicationTypeRights): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
[((5314, 5347), 'six.iteritems', 'six.iteritems', (['self.swagger_types'], {}), '(self.swagger_types)\n', (5327, 5347), False, 'import six\n')]
hardikvasa/database-journal
code-samples/aws_neptune.py
7932b5a7fe909f8adb3a909183532b43d450da7b
from __future__ import print_function # Python 2/3 compatibility from gremlin_python import statics from gremlin_python.structure.graph import Graph from gremlin_python.process.graph_traversal import __ from gremlin_python.process.strategies import * from gremlin_python.driver.driver_remote_connection import DriverRemoteConnection #initializing the graph object graph = Graph() #creating connection with the remote remoteConn = DriverRemoteConnection('wss://<endpoint>:8182/gremlin','g') g = graph.traversal().withRemote(DriverRemoteConnection('wss://<endpoint>:8182/gremlin','g')) print('Connection created.') #clearing out all the vertices to start fresh g.V().drop().iterate() print('Deleting everything and starting clean.') #Adding some vertices (nodes) gerald = g.addV('person').property('age','81').property('first_name','Gerald').property('stays_in','Portland').next() edith = g.addV('person').property('age','78').property('first_name','Edith').property('stays_in','Portland').next() peter = g.addV('person').property('age','52').property('first_name','Shane').property('stays_in','Seattle').next() mary = g.addV('person').property('age','50').property('first_name','Mary').property('stays_in','Seattle').next() betty = g.addV('person').property('age','19').property('first_name','Betty').property('stays_in','Chicago').next() print('Added some vertices (nodes).') #Adding relationships (edges) edge = g.V().has('first_name', 'Gerald').addE('husband_of').to(g.V().has('first_name', 'Edith')).property('married_since','1947').next() edge = g.V().has('first_name', 'Edith').addE('wife_of').to(g.V().has('first_name', 'Gerald')).property('married_since','1947').next() edge = g.V().has('first_name', 'Shane').addE('son_of').to(g.V().has('first_name', 'Gerald')).property('known_since','1964').next() edge = g.V().has('first_name', 'Gerald').addE('father_of').to(g.V().has('first_name', 'Shane')).property('known_since','1964').next() edge = g.V().has('first_name', 'Shane').addE('son_of').to(g.V().has('first_name', 'Edith')).property('known_since','1964').next() edge = g.V().has('first_name', 'Edith').addE('mother_of').to(g.V().has('first_name', 'Shane')).property('known_since','1964').next() edge = g.V().has('first_name', 'Shane').addE('husband_of').to(g.V().has('first_name', 'Mary')).property('known_since','1989').next() edge = g.V().has('first_name', 'Mary').addE('wife_of').to(g.V().has('first_name', 'Shane')).property('known_since','1989').next() edge = g.V().has('first_name', 'Shane').addE('father_of').to(g.V().has('first_name', 'Betty')).property('known_since','1991').next() edge = g.V().has('first_name', 'Betty').addE('daughter_of').to(g.V().has('first_name', 'Shane')).property('known_since','1991').next() edge = g.V().has('first_name', 'Mary').addE('mother_of').to(g.V().has('first_name', 'Betty')).property('known_since','1991').next() edge = g.V().has('first_name', 'Betty').addE('daughter_of').to(g.V().has('first_name', 'Mary')).property('known_since','1991').next() #print out all the node's first names print('\n Printing first name from all nodes:') print(g.V().first_name.toList()) #print out all the properties of person whose's first name is Shane print('\n Printing all properties of person whose first name is Shane:') print(g.V().has('person','first_name','Shane').valueMap().next()) #traversing the graph starting with Betty to then Shane to then Edith print('\n Finding Betty and then looking up her parents:') print(g.V().has('first_name', 'Betty').out('daughter_of').out('son_of').valueMap().toList()) #Print out all the nodes print('\n Printing out all the nodes:') people = g.V().valueMap().toList() print(people) #Print out all the connections (edges) print('\n Print out all the connections (edges):') connections = g.E().valueMap().toList() print(connections) #Closing the connection remoteConn.close() print('Connection closed!')
[((376, 383), 'gremlin_python.structure.graph.Graph', 'Graph', ([], {}), '()\n', (381, 383), False, 'from gremlin_python.structure.graph import Graph\n'), ((435, 495), 'gremlin_python.driver.driver_remote_connection.DriverRemoteConnection', 'DriverRemoteConnection', (['"""wss://<endpoint>:8182/gremlin"""', '"""g"""'], {}), "('wss://<endpoint>:8182/gremlin', 'g')\n", (457, 495), False, 'from gremlin_python.driver.driver_remote_connection import DriverRemoteConnection\n'), ((528, 588), 'gremlin_python.driver.driver_remote_connection.DriverRemoteConnection', 'DriverRemoteConnection', (['"""wss://<endpoint>:8182/gremlin"""', '"""g"""'], {}), "('wss://<endpoint>:8182/gremlin', 'g')\n", (550, 588), False, 'from gremlin_python.driver.driver_remote_connection import DriverRemoteConnection\n')]
Ramsha04/kits19-2d-reproduce
kits19cnn/io/preprocess_train.py
66678f1eda3688d6dc64389e9a80ae0b754a3052
import os from os.path import join, isdir from pathlib import Path from collections import defaultdict from tqdm import tqdm import nibabel as nib import numpy as np import json from .resample import resample_patient from .custom_augmentations import resize_data_and_seg, crop_to_bbox class Preprocessor(object): """ Preprocesses the original dataset (interpolated). Procedures: * Resampled all volumes to have a thickness of 3mm. * Clipped to [-30, 300] HU * z-score standardization (zero mean and unit variance) * Standardization per 3D image instead of ACROSS THE WHOLE TRAINING SET * save as .npy array * imaging.npy * segmentation.npy (if with_masks) """ def __init__(self, in_dir, out_dir, cases=None, kits_json_path=None, bbox_json_path=None, clip_values=[-30, 300], with_mask=True, fg_classes=[0, 1, 2], resize_xy_shape=(256, 256)): """ Attributes: in_dir (str): directory with the input data. Should be the kits19/data directory. out_dir (str): output directory where you want to save each case cases: list of case folders to preprocess kits_json_path (str): path to the kits.json file in the kits19/data directory. This only should be specfied if you're resampling. Defaults to None. bbox_json_path (str): path to the bbox_stage1.json file made from stage1 post-processing. Triggers cropping to the bboxes. Defaults to None. target_spacing (list/tuple): spacing to resample to clip_values (list, tuple): values you want to clip CT scans to. Defaults to None for no clipping. with_mask (bool): whether or not to preprocess with masks or no masks. Applicable to preprocessing test set (no labels available). fg_classes (list): of foreground class indices if None, doesn't gather fg class stats. """ self.in_dir = in_dir self.out_dir = out_dir self._load_kits_json(kits_json_path) self._load_bbox_json(bbox_json_path) self.clip_values = clip_values self.with_mask = with_mask self.fg_classes = fg_classes if not self.with_mask: assert self.fg_classes is None, \ "When with_mask is False, fg_classes must be None." self.cases = cases # automatically collecting all of the case folder names if self.cases is None: self.cases = [os.path.join(self.in_dir, case) \ for case in os.listdir(self.in_dir) \ if case.startswith("case")] self.cases = sorted(self.cases) assert len(self.cases) > 0, \ "Please make sure that in_dir refers to the proper directory." # making directory if out_dir doesn't exist if not isdir(out_dir): os.mkdir(out_dir) print("Created directory: {0}".format(out_dir)) self.resize_xy_shape = tuple(resize_xy_shape) def gen_data(self, save_fnames=["imaging", "segmentation"]): """ Generates and saves preprocessed data as numpy arrays (n, x, y). Args: task_path: file path to the task directory (must have the corresponding "dataset.json" in it) save_fnames (List[str]): save names for [image, seg] respectively. DOESN'T INCLUDE THE .npy Returns: None """ # Generating data and saving them recursively for case in tqdm(self.cases): x_path, y_path = join(case, "imaging.nii.gz"), join(case, "segmentation.nii.gz") image = nib.load(x_path).get_fdata()[None] label = nib.load(y_path).get_fdata()[None] if self.with_mask \ else None preprocessed_img, preprocessed_label = self.preprocess(image, label, case) if self.bbox_dict is not None: preprocessed_img, preprocessed_label = self.crop_case_to_bbox(preprocessed_img, preprocessed_label, case) self.save_imgs(preprocessed_img, preprocessed_label, case, save_fnames=save_fnames) def preprocess(self, image, mask, case=None): """ Clipping, cropping, and resampling. Args: image: numpy array shape (c, n, x, y) mask: numpy array or None shape (c, n, x, y) case (str): path to a case folder Returns: tuple of: - preprocessed image shape: (n, x, y) - preprocessed mask or None shape: (n, x, y) """ raw_case = Path(case).name # raw case name, i.e. case_00000 # resampling if self.kits_json is not None: for info_dict in self.kits_json: # guaranteeing that the info is corresponding to the right # case if info_dict["case_id"] == raw_case: case_info_dict = info_dict break # resampling the slices axis to 3mm orig_spacing = (case_info_dict["captured_slice_thickness"], case_info_dict["captured_pixel_width"], case_info_dict["captured_pixel_width"]) target_spacing = (3,) + orig_spacing[1:] image, mask = resample_patient(image, mask, np.array(orig_spacing), target_spacing=np.array(target_spacing)) if self.clip_values is not None: image = np.clip(image, self.clip_values[0], self.clip_values[1]) if self.resize_xy_shape is not None: # image coming in : shape (c, n, h, w); mask is same shape zdim_size = image.shape[1] resize_xy_shape = (zdim_size,) + self.resize_xy_shape image, mask = resize_data_and_seg(image, size=resize_xy_shape, seg=mask) image = standardize_per_image(image) mask = mask.squeeze() if mask is not None else mask return (image.squeeze(), mask) def save_imgs(self, image, mask, case, save_fnames=["imaging", "segmentation"]): """ Saves an image and mask pair as .npy arrays in the KiTS19 file structure Args: image: numpy array mask: numpy array case: path to a case folder (each element of self.cases) save_fnames (List[str]): save names for [image, seg] respectively. DOESN'T INCLUDE THE .npy """ for fname in save_fnames: assert not ".npy" in fname, \ "Filenames in save_fnames should not include .npy in the name." # saving the generated dataset # output dir in KiTS19 format # extracting the raw case folder name case_raw = Path(case).name # extracting the raw case folder name out_case_dir = join(self.out_dir, case_raw) # checking to make sure that the output directories exist if not isdir(out_case_dir): os.mkdir(out_case_dir) np.save(os.path.join(out_case_dir, f"{save_fnames[0]}.npy"), image) if mask is not None: np.save(os.path.join(out_case_dir, f"{save_fnames[1]}.npy"), mask) def save_dir_as_2d(self, base_fnames=["imaging", "segmentation"], delete3dcase=False): """ Takes preprocessed 3D numpy arrays and saves them as slices in the same directory. Arrays must have shape (n, h, w). Args: base_fnames (List[str]): names to read for [image, seg] respectively. DOESN'T INCLUDE THE .npy delete3dcase (bool): whether or not to delete the 3D volume after saving the 2D sliced versions """ for fname in base_fnames: assert not ".npy" in fname, \ "Filenames in base_fnames should not include .npy in the name." self.pos_per_class_dict = {} # saves slices per class self.pos_per_slice_dict = defaultdict(list) # saves classes per slice # Generating data and saving them recursively for case in tqdm(self.cases): # output dir in KiTS19 format case_raw = Path(case).name # extracting the raw case folder name out_case_dir = join(self.out_dir, case_raw) # checking to make sure that the output directories exist if not isdir(out_case_dir): os.mkdir(out_case_dir) # assumes the .npy files have shape: (d, h, w) paths = [join(out_case_dir, f"{base_fnames[0]}.npy"), join(out_case_dir, f"{base_fnames[1]}.npy")] image, label = np.load(paths[0]), np.load(paths[1]) self.save_3d_as_2d(image, label, case_raw, out_case_dir) # to deal with colaboratory storage limitations if delete3dcase: os.remove(paths[0]), os.remove(paths[1]) if self.fg_classes is not None: self._save_pos_slice_dict() def save_3d_as_2d(self, image, mask, case_raw, out_case_dir): """ Saves a 3D volume as separate 2D arrays for each slice across the axial axis. The naming convention is as follows: imaging_{parsed_slice_idx}.npy segmentation_{parsed_slice_idx}.npy where parsed_slice_idx is just the slice index but filled with zeros until it hits 5 digits (so sorting is easier.) Args: image: numpy array mask: numpy array case: raw case folder name """ # saving the generated dataset # iterates through all slices and saves them individually as 2D arrays assert len(image.shape) == 3, \ "Image shape should be (n, h, w)" slice_idx_per_class = defaultdict(list) for slice_idx in range(image.shape[0]): # naming slice_idx_str = parse_slice_idx_to_str(slice_idx) case_str = f"{case_raw}_{slice_idx_str}" if mask is not None: label_slice = mask[slice_idx] # appending fg slice indices if self.fg_classes is not None: for label_idx in self.fg_classes: if label_idx != 0 and (label_slice == label_idx).any(): slice_idx_per_class[label_idx].append(slice_idx) self.pos_per_slice_dict[case_str].append(label_idx) elif label_idx == 0 and np.sum(label_slice) == 0: # for completely blank labels slice_idx_per_class[label_idx].append(slice_idx) self.pos_per_slice_dict[case_str].append(label_idx) self._save_slices(image, mask, out_case_dir=out_case_dir, slice_idx=slice_idx, slice_idx_str=slice_idx_str) if self.fg_classes is not None: self.pos_per_class_dict[case_raw] = slice_idx_per_class def _save_pos_slice_dict(self): """ Saves the foreground (positive) class dictionaries: - slice_indices.json saves the slice indices per class { case: {fg_class1: [slice indices...], fg_class2: [slice indices...], ...} } - classes_per_slice.json the keys are not cases, but the actual filenames that are being read. { case_slice_idx_str: [classes_in_slice], case_slice_idx_str2: [classes_in_slice], } """ save_path_per_slice = join(self.out_dir, "classes_per_slice.json") # saving the dictionaries print(f"Logged the classes in {self.fg_classes} for each slice at", f"{save_path_per_slice}.") with open(save_path_per_slice, "w") as fp: json.dump(self.pos_per_slice_dict, fp) save_path = join(self.out_dir, "slice_indices.json") # saving the dictionaries print(f"Logged the slice indices for each class in {self.fg_classes} at", f"{save_path}.") with open(save_path, "w") as fp: json.dump(self.pos_per_class_dict, fp) def _save_slices(self, image, mask, out_case_dir, slice_idx, slice_idx_str): """ For saving the slices in self.save_3d_as_2d() """ np.save(join(out_case_dir, f"imaging_{slice_idx_str}.npy"), image[slice_idx]) if mask is not None: label_slice = mask[slice_idx] np.save(join(out_case_dir, f"segmentation_{slice_idx_str}.npy"), label_slice) def _load_kits_json(self, json_path): """ Loads the kits.json file into `self.kits_json` """ if json_path is None: self.kits_json = None print("`kits_json_path is empty, so not resampling.`") elif json_path is not None: with open(json_path, "r") as fp: self.kits_json = json.load(fp) def _load_bbox_json(self, json_path): """ Loads the kits.json file into `self.kits_json` """ if json_path is None: self.bbox_dict = None print("bbox_json_path, so not cropping volumes to their bbox.") else: with open(json_path, "r") as fp: self.bbox_dict = json.load(fp) def crop_case_to_bbox(self, image, label, case): """ Crops a 3D image and 3D label to the corresponding bounding box. """ bbox_coord = self.bbox_dict[case] return (crop_to_bbox(image, bbox), crop_to_bbox(label, case)) def standardize_per_image(image): """ Z-score standardization per image. """ mean, stddev = image.mean(), image.std() return (image - mean) / stddev def parse_slice_idx_to_str(slice_idx): """ Parse the slice index to a three digit string for saving and reading the 2D .npy files generated by io.preprocess.Preprocessor. Naming convention: {type of slice}_{case}_{slice_idx} * adding 0s to slice_idx until it reaches 3 digits, * so sorting files is easier when stacking """ return f"{slice_idx:03}"
[((3745, 3761), 'tqdm.tqdm', 'tqdm', (['self.cases'], {}), '(self.cases)\n', (3749, 3761), False, 'from tqdm import tqdm\n'), ((7526, 7554), 'os.path.join', 'join', (['self.out_dir', 'case_raw'], {}), '(self.out_dir, case_raw)\n', (7530, 7554), False, 'from os.path import join, isdir\n'), ((8671, 8688), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (8682, 8688), False, 'from collections import defaultdict\n'), ((8789, 8805), 'tqdm.tqdm', 'tqdm', (['self.cases'], {}), '(self.cases)\n', (8793, 8805), False, 'from tqdm import tqdm\n'), ((10485, 10502), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (10496, 10502), False, 'from collections import defaultdict\n'), ((12410, 12454), 'os.path.join', 'join', (['self.out_dir', '"""classes_per_slice.json"""'], {}), "(self.out_dir, 'classes_per_slice.json')\n", (12414, 12454), False, 'from os.path import join, isdir\n'), ((12729, 12769), 'os.path.join', 'join', (['self.out_dir', '"""slice_indices.json"""'], {}), "(self.out_dir, 'slice_indices.json')\n", (12733, 12769), False, 'from os.path import join, isdir\n'), ((3058, 3072), 'os.path.isdir', 'isdir', (['out_dir'], {}), '(out_dir)\n', (3063, 3072), False, 'from os.path import join, isdir\n'), ((3086, 3103), 'os.mkdir', 'os.mkdir', (['out_dir'], {}), '(out_dir)\n', (3094, 3103), False, 'import os\n'), ((5212, 5222), 'pathlib.Path', 'Path', (['case'], {}), '(case)\n', (5216, 5222), False, 'from pathlib import Path\n'), ((6124, 6180), 'numpy.clip', 'np.clip', (['image', 'self.clip_values[0]', 'self.clip_values[1]'], {}), '(image, self.clip_values[0], self.clip_values[1])\n', (6131, 6180), True, 'import numpy as np\n'), ((7449, 7459), 'pathlib.Path', 'Path', (['case'], {}), '(case)\n', (7453, 7459), False, 'from pathlib import Path\n'), ((7636, 7655), 'os.path.isdir', 'isdir', (['out_case_dir'], {}), '(out_case_dir)\n', (7641, 7655), False, 'from os.path import join, isdir\n'), ((7669, 7691), 'os.mkdir', 'os.mkdir', (['out_case_dir'], {}), '(out_case_dir)\n', (7677, 7691), False, 'import os\n'), ((7709, 7760), 'os.path.join', 'os.path.join', (['out_case_dir', 'f"""{save_fnames[0]}.npy"""'], {}), "(out_case_dir, f'{save_fnames[0]}.npy')\n", (7721, 7760), False, 'import os\n'), ((8953, 8981), 'os.path.join', 'join', (['self.out_dir', 'case_raw'], {}), '(self.out_dir, case_raw)\n', (8957, 8981), False, 'from os.path import join, isdir\n'), ((12669, 12707), 'json.dump', 'json.dump', (['self.pos_per_slice_dict', 'fp'], {}), '(self.pos_per_slice_dict, fp)\n', (12678, 12707), False, 'import json\n'), ((12970, 13008), 'json.dump', 'json.dump', (['self.pos_per_class_dict', 'fp'], {}), '(self.pos_per_class_dict, fp)\n', (12979, 13008), False, 'import json\n'), ((13206, 13256), 'os.path.join', 'join', (['out_case_dir', 'f"""imaging_{slice_idx_str}.npy"""'], {}), "(out_case_dir, f'imaging_{slice_idx_str}.npy')\n", (13210, 13256), False, 'from os.path import join, isdir\n'), ((2674, 2705), 'os.path.join', 'os.path.join', (['self.in_dir', 'case'], {}), '(self.in_dir, case)\n', (2686, 2705), False, 'import os\n'), ((3792, 3820), 'os.path.join', 'join', (['case', '"""imaging.nii.gz"""'], {}), "(case, 'imaging.nii.gz')\n", (3796, 3820), False, 'from os.path import join, isdir\n'), ((3822, 3855), 'os.path.join', 'join', (['case', '"""segmentation.nii.gz"""'], {}), "(case, 'segmentation.nii.gz')\n", (3826, 3855), False, 'from os.path import join, isdir\n'), ((5955, 5977), 'numpy.array', 'np.array', (['orig_spacing'], {}), '(orig_spacing)\n', (5963, 5977), True, 'import numpy as np\n'), ((7818, 7869), 'os.path.join', 'os.path.join', (['out_case_dir', 'f"""{save_fnames[1]}.npy"""'], {}), "(out_case_dir, f'{save_fnames[1]}.npy')\n", (7830, 7869), False, 'import os\n'), ((8872, 8882), 'pathlib.Path', 'Path', (['case'], {}), '(case)\n', (8876, 8882), False, 'from pathlib import Path\n'), ((9071, 9090), 'os.path.isdir', 'isdir', (['out_case_dir'], {}), '(out_case_dir)\n', (9076, 9090), False, 'from os.path import join, isdir\n'), ((9108, 9130), 'os.mkdir', 'os.mkdir', (['out_case_dir'], {}), '(out_case_dir)\n', (9116, 9130), False, 'import os\n'), ((9211, 9254), 'os.path.join', 'join', (['out_case_dir', 'f"""{base_fnames[0]}.npy"""'], {}), "(out_case_dir, f'{base_fnames[0]}.npy')\n", (9215, 9254), False, 'from os.path import join, isdir\n'), ((9277, 9320), 'os.path.join', 'join', (['out_case_dir', 'f"""{base_fnames[1]}.npy"""'], {}), "(out_case_dir, f'{base_fnames[1]}.npy')\n", (9281, 9320), False, 'from os.path import join, isdir\n'), ((9349, 9366), 'numpy.load', 'np.load', (['paths[0]'], {}), '(paths[0])\n', (9356, 9366), True, 'import numpy as np\n'), ((9368, 9385), 'numpy.load', 'np.load', (['paths[1]'], {}), '(paths[1])\n', (9375, 9385), True, 'import numpy as np\n'), ((13383, 13438), 'os.path.join', 'join', (['out_case_dir', 'f"""segmentation_{slice_idx_str}.npy"""'], {}), "(out_case_dir, f'segmentation_{slice_idx_str}.npy')\n", (13387, 13438), False, 'from os.path import join, isdir\n'), ((14208, 14221), 'json.load', 'json.load', (['fp'], {}), '(fp)\n', (14217, 14221), False, 'import json\n'), ((2746, 2769), 'os.listdir', 'os.listdir', (['self.in_dir'], {}), '(self.in_dir)\n', (2756, 2769), False, 'import os\n'), ((6037, 6061), 'numpy.array', 'np.array', (['target_spacing'], {}), '(target_spacing)\n', (6045, 6061), True, 'import numpy as np\n'), ((9561, 9580), 'os.remove', 'os.remove', (['paths[0]'], {}), '(paths[0])\n', (9570, 9580), False, 'import os\n'), ((9582, 9601), 'os.remove', 'os.remove', (['paths[1]'], {}), '(paths[1])\n', (9591, 9601), False, 'import os\n'), ((13840, 13853), 'json.load', 'json.load', (['fp'], {}), '(fp)\n', (13849, 13853), False, 'import json\n'), ((3876, 3892), 'nibabel.load', 'nib.load', (['x_path'], {}), '(x_path)\n', (3884, 3892), True, 'import nibabel as nib\n'), ((3931, 3947), 'nibabel.load', 'nib.load', (['y_path'], {}), '(y_path)\n', (3939, 3947), True, 'import nibabel as nib\n'), ((11171, 11190), 'numpy.sum', 'np.sum', (['label_slice'], {}), '(label_slice)\n', (11177, 11190), True, 'import numpy as np\n')]
opywan/calm-dsl
setup.py
1d89436d039a39265a0ae806022be5b52e757ac0
import sys import setuptools from setuptools.command.test import test as TestCommand def read_file(filename): with open(filename, "r", encoding='utf8') as f: return f.read() class PyTest(TestCommand): """PyTest""" def finalize_options(self): """finalize_options""" TestCommand.finalize_options(self) self.test_args = [] self.test_suite = True def run_tests(self): """run_tests""" import pytest errcode = pytest.main(self.test_args) sys.exit(errcode) setuptools.setup( name="calm.dsl", version="0.9.0-alpha", author="Nutanix", author_email="[email protected]", description="Calm DSL for blueprints", long_description=read_file("README.md"), long_description_content_type="text/markdown", url="https://github.com/nutanix/calm-dsl", packages=setuptools.find_namespace_packages(include=["calm.*"]), namespace_packages=["calm"], install_requires=read_file("requirements.txt"), tests_require=read_file("dev-requirements.txt"), cmdclass={"test": PyTest}, zip_safe=False, include_package_data=True, entry_points={"console_scripts": ["calm=calm.dsl.cli:main"]}, classifiers=[ "Development Status :: 3 - Alpha", "Environment :: Console", "Intended Audience :: Developers", "License :: OSI Approved :: Apache Software License", "Natural Language :: English", "Operating System :: OS Independent", "Programming Language :: Python :: 3.7", ], )
[((306, 340), 'setuptools.command.test.test.finalize_options', 'TestCommand.finalize_options', (['self'], {}), '(self)\n', (334, 340), True, 'from setuptools.command.test import test as TestCommand\n'), ((491, 518), 'pytest.main', 'pytest.main', (['self.test_args'], {}), '(self.test_args)\n', (502, 518), False, 'import pytest\n'), ((527, 544), 'sys.exit', 'sys.exit', (['errcode'], {}), '(errcode)\n', (535, 544), False, 'import sys\n'), ((873, 927), 'setuptools.find_namespace_packages', 'setuptools.find_namespace_packages', ([], {'include': "['calm.*']"}), "(include=['calm.*'])\n", (907, 927), False, 'import setuptools\n')]
chen88358323/HanLP
hanlp/pretrained/tok.py
ee9066c3b7aad405dfe0ccffb7f66c59017169ae
# -*- coding:utf-8 -*- # Author: hankcs # Date: 2019-12-28 21:12 from hanlp_common.constant import HANLP_URL SIGHAN2005_PKU_CONVSEG = HANLP_URL + 'tok/sighan2005-pku-convseg_20200110_153722.zip' 'Conv model (:cite:`wang-xu-2017-convolutional`) trained on sighan2005 pku dataset.' SIGHAN2005_MSR_CONVSEG = HANLP_URL + 'tok/convseg-msr-nocrf-noembed_20200110_153524.zip' 'Conv model (:cite:`wang-xu-2017-convolutional`) trained on sighan2005 msr dataset.' CTB6_CONVSEG = HANLP_URL + 'tok/ctb6_convseg_nowe_nocrf_20200110_004046.zip' 'Conv model (:cite:`wang-xu-2017-convolutional`) trained on CTB6 dataset.' PKU_NAME_MERGED_SIX_MONTHS_CONVSEG = HANLP_URL + 'tok/pku98_6m_conv_ngram_20200110_134736.zip' 'Conv model (:cite:`wang-xu-2017-convolutional`) trained on pku98 six months dataset with familiy name and given name merged into one unit.' LARGE_ALBERT_BASE = HANLP_URL + 'tok/large_corpus_cws_albert_base_20211228_160926.zip' 'ALBERT model (:cite:`Lan2020ALBERT:`) trained on the largest CWS dataset in the world.' SIGHAN2005_PKU_BERT_BASE_ZH = HANLP_URL + 'tok/sighan2005_pku_bert_base_zh_20201231_141130.zip' 'BERT model (:cite:`devlin-etal-2019-bert`) trained on sighan2005 pku dataset.' COARSE_ELECTRA_SMALL_ZH = HANLP_URL + 'tok/coarse_electra_small_20220220_013548.zip' 'Electra (:cite:`clark2020electra`) small model trained on coarse-grained CWS corpora. Its performance is P=96.97% R=96.87% F1=96.92% which is ' \ 'much higher than that of MTL model ' FINE_ELECTRA_SMALL_ZH = HANLP_URL + 'tok/fine_electra_small_20220217_190117.zip' 'Electra (:cite:`clark2020electra`) small model trained on fine-grained CWS corpora. Its performance is P=97.44% R=97.40% F1=97.42% which is ' \ 'much higher than that of MTL model ' CTB9_TOK_ELECTRA_SMALL = HANLP_URL + 'tok/ctb9_electra_small_20220215_205427.zip' 'Electra (:cite:`clark2020electra`) small model trained on CTB9. Its performance is P=97.15% R=97.36% F1=97.26% which is ' \ 'much higher than that of MTL model ' # Will be filled up during runtime ALL = {}
[]
bopopescu/webrtc-streaming-node
third_party/webrtc/src/chromium/src/tools/swarming_client/tests/logging_utils_test.py
727a441204344ff596401b0253caac372b714d91
#!/usr/bin/env python # Copyright 2015 The Swarming Authors. All rights reserved. # Use of this source code is governed under the Apache License, Version 2.0 that # can be found in the LICENSE file. import logging import os import subprocess import sys import tempfile import shutil import unittest import re THIS_FILE = os.path.abspath(__file__) sys.path.insert(0, os.path.dirname(os.path.dirname(THIS_FILE))) from utils import logging_utils # PID YYYY-MM-DD HH:MM:SS.MMM _LOG_HEADER = r'^%d \d\d\d\d-\d\d-\d\d \d\d:\d\d:\d\d\.\d\d\d' % os.getpid() _LOG_HEADER_PID = r'^\d+ \d\d\d\d-\d\d-\d\d \d\d:\d\d:\d\d\.\d\d\d' _PHASE = 'LOGGING_UTILS_TESTS_PHASE' def call(phase, cwd): """Calls itself back.""" env = os.environ.copy() env[_PHASE] = phase return subprocess.call([sys.executable, '-u', THIS_FILE], env=env, cwd=cwd) class Test(unittest.TestCase): def setUp(self): super(Test, self).setUp() self.tmp = tempfile.mkdtemp(prefix='logging_utils') def tearDown(self): try: shutil.rmtree(self.tmp) finally: super(Test, self).tearDown() def test_capture(self): root = logging.RootLogger(logging.DEBUG) with logging_utils.CaptureLogs('foo', root) as log: root.debug('foo') result = log.read() expected = _LOG_HEADER + ': DEBUG foo\n$' if sys.platform == 'win32': expected = expected.replace('\n', '\r\n') self.assertTrue(re.match(expected, result), (expected, result)) def test_prepare_logging(self): root = logging.RootLogger(logging.DEBUG) filepath = os.path.join(self.tmp, 'test.log') logging_utils.prepare_logging(filepath, root) root.debug('foo') with open(filepath, 'rb') as f: result = f.read() # It'd be nice to figure out a way to ensure it's properly in UTC but it's # tricky to do reliably. expected = _LOG_HEADER + ' D: foo\n$' self.assertTrue(re.match(expected, result), (expected, result)) def test_rotating(self): # Create a rotating log. Create a subprocess then delete the file. Make sure # nothing blows up. # Everything is done in a child process because the called functions mutate # the global state. self.assertEqual(0, call('test_rotating_phase_1', cwd=self.tmp)) self.assertEqual({'shared.1.log'}, set(os.listdir(self.tmp))) with open(os.path.join(self.tmp, 'shared.1.log'), 'rb') as f: lines = f.read().splitlines() expected = [ r' I: Parent1', r' I: Child1', r' I: Child2', r' I: Parent2', ] for e, l in zip(expected, lines): ex = _LOG_HEADER_PID + e + '$' self.assertTrue(re.match(ex, l), (ex, l)) self.assertEqual(len(expected), len(lines)) def test_rotating_phase_1(): logging_utils.prepare_logging('shared.log') logging.info('Parent1') r = call('test_rotating_phase_2', None) logging.info('Parent2') return r def test_rotating_phase_2(): # Simulate rotating the log. logging_utils.prepare_logging('shared.log') logging.info('Child1') os.rename('shared.log', 'shared.1.log') logging.info('Child2') return 0 def main(): phase = os.environ.get(_PHASE) if phase: return getattr(sys.modules[__name__], phase)() verbose = '-v' in sys.argv logging.basicConfig(level=logging.DEBUG if verbose else logging.ERROR) unittest.main() if __name__ == '__main__': sys.exit(main())
[((323, 348), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (338, 348), False, 'import os\n'), ((543, 554), 'os.getpid', 'os.getpid', ([], {}), '()\n', (552, 554), False, 'import os\n'), ((721, 738), 'os.environ.copy', 'os.environ.copy', ([], {}), '()\n', (736, 738), False, 'import os\n'), ((770, 838), 'subprocess.call', 'subprocess.call', (["[sys.executable, '-u', THIS_FILE]"], {'env': 'env', 'cwd': 'cwd'}), "([sys.executable, '-u', THIS_FILE], env=env, cwd=cwd)\n", (785, 838), False, 'import subprocess\n'), ((2726, 2769), 'utils.logging_utils.prepare_logging', 'logging_utils.prepare_logging', (['"""shared.log"""'], {}), "('shared.log')\n", (2755, 2769), False, 'from utils import logging_utils\n'), ((2772, 2795), 'logging.info', 'logging.info', (['"""Parent1"""'], {}), "('Parent1')\n", (2784, 2795), False, 'import logging\n'), ((2840, 2863), 'logging.info', 'logging.info', (['"""Parent2"""'], {}), "('Parent2')\n", (2852, 2863), False, 'import logging\n'), ((2939, 2982), 'utils.logging_utils.prepare_logging', 'logging_utils.prepare_logging', (['"""shared.log"""'], {}), "('shared.log')\n", (2968, 2982), False, 'from utils import logging_utils\n'), ((2985, 3007), 'logging.info', 'logging.info', (['"""Child1"""'], {}), "('Child1')\n", (2997, 3007), False, 'import logging\n'), ((3010, 3049), 'os.rename', 'os.rename', (['"""shared.log"""', '"""shared.1.log"""'], {}), "('shared.log', 'shared.1.log')\n", (3019, 3049), False, 'import os\n'), ((3052, 3074), 'logging.info', 'logging.info', (['"""Child2"""'], {}), "('Child2')\n", (3064, 3074), False, 'import logging\n'), ((3110, 3132), 'os.environ.get', 'os.environ.get', (['_PHASE'], {}), '(_PHASE)\n', (3124, 3132), False, 'import os\n'), ((3227, 3297), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': '(logging.DEBUG if verbose else logging.ERROR)'}), '(level=logging.DEBUG if verbose else logging.ERROR)\n', (3246, 3297), False, 'import logging\n'), ((3300, 3315), 'unittest.main', 'unittest.main', ([], {}), '()\n', (3313, 3315), False, 'import unittest\n'), ((384, 410), 'os.path.dirname', 'os.path.dirname', (['THIS_FILE'], {}), '(THIS_FILE)\n', (399, 410), False, 'import os\n'), ((936, 976), 'tempfile.mkdtemp', 'tempfile.mkdtemp', ([], {'prefix': '"""logging_utils"""'}), "(prefix='logging_utils')\n", (952, 976), False, 'import tempfile\n'), ((1125, 1158), 'logging.RootLogger', 'logging.RootLogger', (['logging.DEBUG'], {}), '(logging.DEBUG)\n', (1143, 1158), False, 'import logging\n'), ((1505, 1538), 'logging.RootLogger', 'logging.RootLogger', (['logging.DEBUG'], {}), '(logging.DEBUG)\n', (1523, 1538), False, 'import logging\n'), ((1554, 1588), 'os.path.join', 'os.path.join', (['self.tmp', '"""test.log"""'], {}), "(self.tmp, 'test.log')\n", (1566, 1588), False, 'import os\n'), ((1593, 1638), 'utils.logging_utils.prepare_logging', 'logging_utils.prepare_logging', (['filepath', 'root'], {}), '(filepath, root)\n', (1622, 1638), False, 'from utils import logging_utils\n'), ((1015, 1038), 'shutil.rmtree', 'shutil.rmtree', (['self.tmp'], {}), '(self.tmp)\n', (1028, 1038), False, 'import shutil\n'), ((1168, 1206), 'utils.logging_utils.CaptureLogs', 'logging_utils.CaptureLogs', (['"""foo"""', 'root'], {}), "('foo', root)\n", (1193, 1206), False, 'from utils import logging_utils\n'), ((1411, 1437), 're.match', 're.match', (['expected', 'result'], {}), '(expected, result)\n', (1419, 1437), False, 'import re\n'), ((1891, 1917), 're.match', 're.match', (['expected', 'result'], {}), '(expected, result)\n', (1899, 1917), False, 'import re\n'), ((2288, 2308), 'os.listdir', 'os.listdir', (['self.tmp'], {}), '(self.tmp)\n', (2298, 2308), False, 'import os\n'), ((2325, 2363), 'os.path.join', 'os.path.join', (['self.tmp', '"""shared.1.log"""'], {}), "(self.tmp, 'shared.1.log')\n", (2337, 2363), False, 'import os\n'), ((2619, 2634), 're.match', 're.match', (['ex', 'l'], {}), '(ex, l)\n', (2627, 2634), False, 'import re\n')]
HrishikV/ineuron_inceome_prediction_internship
model_selection.py
4a97a7f29d80198f394fcfd880cc5250fe2a0d1e
from featur_selection import df,race,occupation,workclass,country import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn.model_selection import cross_val_score,KFold from sklearn.linear_model import LogisticRegression from imblearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from imblearn.combine import SMOTETomek from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier,AdaBoostClassifier from sklearn.neighbors import KNeighborsClassifier from catboost import CatBoostClassifier from xgboost import XGBClassifier from sklearn.svm import SVC from matplotlib import pyplot as plt import seaborn as sns df1=df.copy() salary=df1['salary'].reset_index(drop=True) df1=df1.drop(['salary'],axis=1) def concat_dataframes(data): dataframe = pd.concat([data, workclass.iloc[data.index, :], race.iloc[data.index , :], occupation.iloc[data.index, :], country.iloc[data.index, :]], axis = 1) dataframe = dataframe.dropna() dataframe = dataframe.reset_index(drop=True) return dataframe df1= concat_dataframes(df1) features=['age_logarthmic','hours_per_week'] scaler = ColumnTransformer(transformers = [('scale_num_features', StandardScaler(), features)], remainder='passthrough') models = [LogisticRegression(), SVC(), AdaBoostClassifier(), RandomForestClassifier(), XGBClassifier(),DecisionTreeClassifier(), KNeighborsClassifier(), CatBoostClassifier()] model_labels = ['LogisticReg.','SVC','AdaBoost','RandomForest','Xgboost','DecisionTree','KNN', 'CatBoost'] mean_validation_f1_scores = [] for model in models: data_pipeline = Pipeline(steps = [ ('scaler', scaler), ('resample', SMOTETomek()), ('model', model) ]) mean_validation_f1 = float(cross_val_score(data_pipeline, df1, salary, cv=KFold(n_splits=10), scoring='f1',n_jobs=-1).mean()) mean_validation_f1_scores.append(mean_validation_f1) print(mean_validation_f1_scores) fig, axes = plt.subplots(nrows = 2, ncols = 1, figsize = (15,8)) sns.set_style('dark') sns.barplot(y = model_labels ,x = mean_validation_f1_scores, ax=axes[0]) axes[0].grid(True, color='k') sns.set_style('whitegrid') sns.lineplot(x = model_labels, y = mean_validation_f1_scores) axes[1].grid(True, color='k') fig.show()
[((706, 715), 'featur_selection.df.copy', 'df.copy', ([], {}), '()\n', (713, 715), False, 'from featur_selection import df, race, occupation, workclass, country\n'), ((2143, 2190), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': '(2)', 'ncols': '(1)', 'figsize': '(15, 8)'}), '(nrows=2, ncols=1, figsize=(15, 8))\n', (2155, 2190), True, 'from matplotlib import pyplot as plt\n'), ((2197, 2218), 'seaborn.set_style', 'sns.set_style', (['"""dark"""'], {}), "('dark')\n", (2210, 2218), True, 'import seaborn as sns\n'), ((2219, 2287), 'seaborn.barplot', 'sns.barplot', ([], {'y': 'model_labels', 'x': 'mean_validation_f1_scores', 'ax': 'axes[0]'}), '(y=model_labels, x=mean_validation_f1_scores, ax=axes[0])\n', (2230, 2287), True, 'import seaborn as sns\n'), ((2323, 2349), 'seaborn.set_style', 'sns.set_style', (['"""whitegrid"""'], {}), "('whitegrid')\n", (2336, 2349), True, 'import seaborn as sns\n'), ((2350, 2407), 'seaborn.lineplot', 'sns.lineplot', ([], {'x': 'model_labels', 'y': 'mean_validation_f1_scores'}), '(x=model_labels, y=mean_validation_f1_scores)\n', (2362, 2407), True, 'import seaborn as sns\n'), ((837, 998), 'pandas.concat', 'pd.concat', (['[data, workclass.iloc[(data.index), :], race.iloc[(data.index), :],\n occupation.iloc[(data.index), :], country.iloc[(data.index), :]]'], {'axis': '(1)'}), '([data, workclass.iloc[(data.index), :], race.iloc[(data.index), :\n ], occupation.iloc[(data.index), :], country.iloc[(data.index), :]], axis=1\n )\n', (846, 998), True, 'import pandas as pd\n'), ((1374, 1394), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {}), '()\n', (1392, 1394), False, 'from sklearn.linear_model import LogisticRegression\n'), ((1396, 1401), 'sklearn.svm.SVC', 'SVC', ([], {}), '()\n', (1399, 1401), False, 'from sklearn.svm import SVC\n'), ((1403, 1423), 'sklearn.ensemble.AdaBoostClassifier', 'AdaBoostClassifier', ([], {}), '()\n', (1421, 1423), False, 'from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier\n'), ((1425, 1449), 'sklearn.ensemble.RandomForestClassifier', 'RandomForestClassifier', ([], {}), '()\n', (1447, 1449), False, 'from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier\n'), ((1451, 1466), 'xgboost.XGBClassifier', 'XGBClassifier', ([], {}), '()\n', (1464, 1466), False, 'from xgboost import XGBClassifier\n'), ((1467, 1491), 'sklearn.tree.DecisionTreeClassifier', 'DecisionTreeClassifier', ([], {}), '()\n', (1489, 1491), False, 'from sklearn.tree import DecisionTreeClassifier\n'), ((1493, 1515), 'sklearn.neighbors.KNeighborsClassifier', 'KNeighborsClassifier', ([], {}), '()\n', (1513, 1515), False, 'from sklearn.neighbors import KNeighborsClassifier\n'), ((1517, 1537), 'catboost.CatBoostClassifier', 'CatBoostClassifier', ([], {}), '()\n', (1535, 1537), False, 'from catboost import CatBoostClassifier\n'), ((1308, 1324), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (1322, 1324), False, 'from sklearn.preprocessing import StandardScaler\n'), ((1842, 1854), 'imblearn.combine.SMOTETomek', 'SMOTETomek', ([], {}), '()\n', (1852, 1854), False, 'from imblearn.combine import SMOTETomek\n'), ((1991, 2009), 'sklearn.model_selection.KFold', 'KFold', ([], {'n_splits': '(10)'}), '(n_splits=10)\n', (1996, 2009), False, 'from sklearn.model_selection import cross_val_score, KFold\n')]
blazelibs/blazeweb
tests/apps/newlayout/tasks/init_data.py
b120a6a2e38c8b53da2b73443ff242e2d1438053
from __future__ import print_function def action_010(): print('doit')
[]
apie/advent-of-code
2021/d8b_bits.py
c49abec01b044166a688ade40ebb1e642f0e5ce0
#!/usr/bin/env python3 import pytest import fileinput from os.path import splitext, abspath F_NAME = 'd8' #implement day8 using bits def find_ones(d): '''count number of ones in binary number''' ones = 0 while d > 0: ones += d & 1 d >>= 1 return ones # Assign each segment a 'wire'. lut = { 'a':0b0000001, 'b':0b0000010, 'c':0b0000100, 'd':0b0001000, 'e':0b0010000, 'f':0b0100000, 'g':0b1000000, } def solve_line(line): def solve_output_val(output_values): '''Look up each output val in binary repr in the mapping and add them together shifting each digit to the left.''' output = 0 for o in output_values: b_val = sum(lut[c] for c in o) for k,v in mapping.items(): if v == b_val: output = output*10 + k break else: raise Exception(b_val, 'not found') return output def found(digit, bit_pattern): mapping[digit] = bit_pattern bpatterns.remove(bit_pattern) signal_pattern, output_value = line.split(' | ') # Convert letter string to binary pattern bpatterns = { sum(lut[c] for c in p) for p in signal_pattern.split() } ## Search for each digit and if found, remove it from bpatterns and add the digit to the mapping. ###################################### mapping = {} # 1,4,7,8 all have a unique count of segments. Find them. for bp in list(bpatterns): if find_ones(bp) == 2: found(1, bp) elif find_ones(bp) == 4: found(4, bp) elif find_ones(bp) == 3: found(7, bp) elif find_ones(bp) == 7: found(8, bp) # Find 0, 6, 9. All have 6 segments for bp in list(bpatterns): if find_ones(bp) != 6: continue #is 4 contained within p, then it is 9 if mapping[4] & bp >= mapping[4]: found(9, bp) #is 1 contained within p, then it is 0 elif mapping[1] & bp >= mapping[1]: found(0, bp) else: # 6 is left found(6, bp) #is p contained within 6, then it is 5 for bp in bpatterns: if mapping[6] & bp >= bp: found(5, bp) break #is p contained within 9, and it is not 8 or 5, then it is 3 for bp in bpatterns: if mapping[9] & bp >= bp: found(3, bp) break assert len(bpatterns) == 1, bpatterns #what is left is 2 for bp in bpatterns: found(2, bp) break assert len(bpatterns) == 0, bpatterns return solve_output_val(output_value.split()) def answer(lines): return sum(solve_line(line) for line in map(str.strip, lines)) @pytest.fixture def example_input1(): return fileinput.input(F_NAME + '.test.1') def test_answer1(example_input1): assert answer(example_input1) == 5353 @pytest.fixture def example_input(): return fileinput.input(F_NAME + '.test') def test_answer(example_input): assert answer(example_input) == 61229 if __name__ == '__main__': import timeit start = timeit.default_timer() filename = fileinput.input(F_NAME + '.input') ans = answer(filename) print('Answer:', ans) duration = timeit.default_timer()-start print(f'Execution time: {duration:.3f} s')
[((2843, 2878), 'fileinput.input', 'fileinput.input', (["(F_NAME + '.test.1')"], {}), "(F_NAME + '.test.1')\n", (2858, 2878), False, 'import fileinput\n'), ((3006, 3039), 'fileinput.input', 'fileinput.input', (["(F_NAME + '.test')"], {}), "(F_NAME + '.test')\n", (3021, 3039), False, 'import fileinput\n'), ((3174, 3196), 'timeit.default_timer', 'timeit.default_timer', ([], {}), '()\n', (3194, 3196), False, 'import timeit\n'), ((3212, 3246), 'fileinput.input', 'fileinput.input', (["(F_NAME + '.input')"], {}), "(F_NAME + '.input')\n", (3227, 3246), False, 'import fileinput\n'), ((3315, 3337), 'timeit.default_timer', 'timeit.default_timer', ([], {}), '()\n', (3335, 3337), False, 'import timeit\n')]
rizkiailham/two-stream-action-recognition-1
frame_dataloader/spatial_dataloader.py
01221f668e62eb26e3593f4ecd3f257b6b6979ab
""" ******************************** * Created by mohammed-alaa * ******************************** Spatial Dataloader implementing sequence api from keras (defines how to load a single item) this loads batches of images for each iteration it returns [batch_size, height, width ,3] ndarrays """ import copy import random import cv2 import numpy as np import tensorflow.keras as keras from .UCF_splitting_kernel import * from .helpers import get_training_augmenter, get_validation_augmenter class SpatialSequence(keras.utils.Sequence): def __init__(self, data_to_load, data_root_path, batch_size, is_training, augmenter): """get data structure to load data""" # list of (video names,frame/max_frame,label) self.data_to_load = copy.deepcopy(data_to_load) self.batch_size = batch_size self.is_training = is_training self.augmenter = copy.deepcopy(augmenter) self.data_root_path = data_root_path self.video_names, self.frames, self.labels = [list(one_of_three_tuples) for one_of_three_tuples in zip(*self.data_to_load)] # three lists def __len__(self): """Denotes the number of batches per epoch""" return (len(self.video_names) + self.batch_size - 1) // self.batch_size # ceiling div def get_actual_length(self): """Denotes the total number of samples""" return len(self.video_names) def __getitem__(self, batch_start): """Gets one batch""" batch_video_names = self.video_names[batch_start * self.batch_size:(batch_start + 1) * self.batch_size] batch_frames = self.frames[batch_start * self.batch_size:(batch_start + 1) * self.batch_size] batch_y = np.array(self.labels[batch_start * self.batch_size:(batch_start + 1) * self.batch_size]) batch_x = [] # could be less or equal batch size # for vid_id, _ in enumerate(batch_y): if self.is_training: # max frame is given frame_id = random.randint(1, batch_frames[vid_id]) # random frame (one based) else: frame_id = batch_frames[vid_id] # just as selected batch_x.append( cv2.cvtColor(cv2.imread(os.path.join(self.data_root_path, "v_" + batch_video_names[vid_id], 'frame{}'.format(str(frame_id).zfill(6)) + '.jpg')), cv2.COLOR_BGR2RGB) ) if self.is_training: return np.array(self.augmenter.augment_images(batch_x), dtype=np.float32) / 255.0, batch_y else: # no label needed since (test_video_to_label mapping) (dictionary of name to label) is returned return batch_video_names, np.array(self.augmenter.augment_images(batch_x), dtype=np.float32) / 255.0 def shuffle_and_reset(self): """ new data for the next epoch """ random.shuffle(self.data_to_load) self.video_names, self.frames, self.labels = [list(one_of_three_tuples) for one_of_three_tuples in zip(*self.data_to_load)] # shuffle all class SpatialDataLoader: def __init__(self, batch_size, testing_samples_per_video, width, height, log_stream=open("/tmp/null.log", "w"), augmenter_level=1, data_root_path='./jpegs_256/', ucf_list_path='./UCF_list/', ucf_split='01'): """ get the mapping and initialize the augmenter """ self.batch_size = batch_size self.width, self.height = width, height self.data_root_path = data_root_path self.testing_samples_per_video = testing_samples_per_video self.log_stream = log_stream # split the training and testing videos data_util_ = DataUtil(path=ucf_list_path, split=ucf_split) self.train_video_to_label, self.test_video_to_label = data_util_.get_train_test_video_to_label_mapping() # name without v_ or .avi and small s .. name to numeric label starts at 0 # get video frames self.video_frame_count = data_util_.get_video_frame_count() # name without v_ or .avi and small s self.augmenter_level = augmenter_level def run(self): """ get the data structure for training and validation """ train_loader = self.get_training_loader() val_loader = self.get_testing_loader() return train_loader, val_loader, self.test_video_to_label def get_training_data_structure(self): """ get the data structure for training """ training_data_structure = [] # list of (video names,frame/max_frame,label) for video_name in self.train_video_to_label: # sample from the whole video frames training_data_structure.append((video_name, self.video_frame_count[video_name], self.train_video_to_label[video_name])) return training_data_structure def get_testing_data_structure(self): """ get the data structure for validation """ test_data_structure = [] # list of (video names,frame/max_frame,label) for video_name in self.test_video_to_label: nb_frame = self.video_frame_count[video_name] interval = nb_frame // self.testing_samples_per_video if interval == 0: # for videos shorter than self.testing_samples_per_video interval = 1 # range is exclusive add one to be inclusive # 1 > self.testing_samples_per_video * interval for frame_idx in range(1, min(self.testing_samples_per_video * interval, nb_frame) + 1, interval): test_data_structure.append((video_name, frame_idx, self.test_video_to_label[video_name])) return test_data_structure def get_training_loader(self): """ an instance of sequence loader for spatial model for parallel dataloading using keras sequence """ loader = SpatialSequence(data_to_load=self.get_training_data_structure(), data_root_path=self.data_root_path, batch_size=self.batch_size, is_training=True, augmenter=get_training_augmenter(height=self.height, width=self.width, augmenter_level=self.augmenter_level), ) print('==> Training data :', len(loader.data_to_load), 'videos', file=self.log_stream) print('==> Training data :', len(loader.data_to_load), 'videos') return loader def get_testing_loader(self): """ an instance of sequence loader for spatial model for parallel dataloading using keras sequence """ loader = SpatialSequence(data_to_load=self.get_testing_data_structure(), data_root_path=self.data_root_path, batch_size=self.batch_size, is_training=False, augmenter=get_validation_augmenter(height=self.height, width=self.width), ) print('==> Validation data :', len(loader.data_to_load), 'frames', file=self.log_stream) print('==> Validation data :', len(loader.data_to_load), 'frames') return loader if __name__ == '__main__': data_loader = SpatialDataLoader(batch_size=64, use_multiprocessing=True, # data_root_path="data", ucf_split='01', testing_samples_per_video=19, width=224, height=224, num_workers=2) train_loader, test_loader, test_video_level_label = data_loader.run() print(len(train_loader)) print(len(test_loader)) print(train_loader.get_actual_length()) print(test_loader.get_actual_length()) print(train_loader.sequence[0][0].shape, train_loader.sequence[0][1].shape) print(train_loader[0][0].shape, train_loader[0][1].shape) # import tqdm # progress = tqdm.tqdm(train_loader.get_epoch_generator(), total=len(train_loader)) # for (sampled_frame, label) in progress: # pass import matplotlib.pyplot as plt # preview raw data def preview(data, labels): # 3 channels fig, axeslist = plt.subplots(ncols=8, nrows=8, figsize=(10, 10)) for i, sample in enumerate(data): axeslist.ravel()[i].imshow(data[i]) axeslist.ravel()[i].set_title(labels[i]) axeslist.ravel()[i].set_axis_off() plt.subplots_adjust(wspace=.4, hspace=.4) print("train sample") for batch in train_loader.get_epoch_generator(): print(batch[0].shape, batch[1].shape) print(batch[1]) preview(batch[0], batch[1]) break print("test sample") # same name will be displayed testing_samples_per_video with no shuffling for batch in test_loader.get_epoch_generator(): print(batch[1].shape, batch[2].shape) print(batch[0], batch[2]) preview(batch[1], batch[2]) break
[((760, 787), 'copy.deepcopy', 'copy.deepcopy', (['data_to_load'], {}), '(data_to_load)\n', (773, 787), False, 'import copy\n'), ((890, 914), 'copy.deepcopy', 'copy.deepcopy', (['augmenter'], {}), '(augmenter)\n', (903, 914), False, 'import copy\n'), ((1705, 1798), 'numpy.array', 'np.array', (['self.labels[batch_start * self.batch_size:(batch_start + 1) * self.batch_size]'], {}), '(self.labels[batch_start * self.batch_size:(batch_start + 1) * self\n .batch_size])\n', (1713, 1798), True, 'import numpy as np\n'), ((2837, 2870), 'random.shuffle', 'random.shuffle', (['self.data_to_load'], {}), '(self.data_to_load)\n', (2851, 2870), False, 'import random\n'), ((8155, 8203), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'ncols': '(8)', 'nrows': '(8)', 'figsize': '(10, 10)'}), '(ncols=8, nrows=8, figsize=(10, 10))\n', (8167, 8203), True, 'import matplotlib.pyplot as plt\n'), ((8404, 8447), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'wspace': '(0.4)', 'hspace': '(0.4)'}), '(wspace=0.4, hspace=0.4)\n', (8423, 8447), True, 'import matplotlib.pyplot as plt\n'), ((1990, 2029), 'random.randint', 'random.randint', (['(1)', 'batch_frames[vid_id]'], {}), '(1, batch_frames[vid_id])\n', (2004, 2029), False, 'import random\n')]
Svolcano/python_exercise
dianhua/worker/crawler/china_mobile/hunan/base_request_param.py
a50e05891cc7f1fbb40ebcae324b09b6a14473d2
# -*- coding:utf-8 -*- """ @version: v1.0 @author: xuelong.liu @license: Apache Licence @contact: [email protected] @software: PyCharm @file: base_request_param.py @time: 12/21/16 6:48 PM """ class RequestParam(object): """ 请求相关 """ # URL START_URL = "https://www.hn.10086.cn/service/static/componant/login.html" # GET_CAPTCHA_URL = "http://www.hn.10086.cn/service/ics/servlet/ImageServlet" GET_CAPTCHA_URL = "https://www.hn.10086.cn/service/ics/login/sendSms" # GET_CAPTCHA_URL = "http://www.hn.10086.cn/newservice/ics/servlet/ImageServlet?random=0.14531555527237483" LOGIN_URL = "https://www.hn.10086.cn/service/ics/login/SSOLogin" # GET_SMS_URL = "http://www.hn.10086.cn/newservice/ics/componant/initSendHattedCode?requestTel=%s&ajaxSubmitType=post&ajax_randomcode=0.5158618472543544" GET_SMS_URL_READY = "https://www.hn.10086.cn/service/ics/componant/initTelQCellCore?tel=%s&ajaxSubmitType=post&ajax_randomcode=0.9461358208494027" GET_SMS_URL = "https://www.hn.10086.cn/service/ics/componant/initSendHattedCode?requestTel=%s&ajaxSubmitType=post&ajax_randomcode=0.9461358208494027" # SMS_URL = "http://www.hn.10086.cn/newservice/ics/componant/initSmsCodeAndServicePwd" SMS_URL = "https://www.hn.10086.cn/service/ics/componant/initSmsCodeAndServicePwd?smsCode=%s&servicePwd=NaN&requestTel=%s&ajaxSubmitType=post&ajax_randomcode=0.012645535304207867" GET_CAL_LOG = "https://www.hn.10086.cn/service/ics/detailBillQuery/queryDetailBill" GET_USER_INFO = "https://www.hn.10086.cn/service/ics/basicInfo/queryUserBasicInfo"
[]
jack-beach/AdventOfCode2019
day02/puzzle2.py
a8ac53eaf03cd7595deb2a9aa798a2d17c21c513
# stdlib imports import copy # vendor imports import click @click.command() @click.argument("input_file", type=click.File("r")) def main(input_file): """Put your puzzle execution code here""" # Convert the comma-delimited string of numbers into a list of ints masterRegister = list( map(lambda op: int(op), input_file.read().strip().split(",")) ) def execute(noun, verb): # Create a local copy of the register for this execution register = copy.deepcopy(masterRegister) # Inject the noun and verb register[1] = noun register[2] = verb # We will start reading the opcodes at position 0 pointer = 0 # Loop infinitely until we reach the termination instruction while True: # Get the code at the current read position code = register[pointer] # Code 99 means immediate termination if code == 99: break # Code 1 is addition elif code == 1: # Get register addresses addendAPointer = register[pointer + 1] addendBPointer = register[pointer + 2] sumPointer = register[pointer + 3] # Perform the addition register[sumPointer] = ( register[addendAPointer] + register[addendBPointer] ) # Advance the code position by 4 pointer += 4 # Code 2 is multiplication elif code == 2: # Get register addresses factorAPointer = register[pointer + 1] factorBPointer = register[pointer + 2] productPointer = register[pointer + 3] # Perform the addition register[productPointer] = ( register[factorAPointer] * register[factorBPointer] ) # Advance the code position by 4 pointer += 4 # Unknown opcode means there was an error else: raise RuntimeError( f"Unknown opcode {code} at position {pointer}" ) # Return the result return register[0] # Iterate through all the possible combinations until the target is found target = 19690720 found = None for noun in range(100): for verb in range(100): result = execute(noun, verb) if result == target: found = (noun, verb) break if found: break # Calculate the final result print("RESULT:", 100 * found[0] + found[1]) # Execute cli function on main if __name__ == "__main__": main()
[((63, 78), 'click.command', 'click.command', ([], {}), '()\n', (76, 78), False, 'import click\n'), ((488, 517), 'copy.deepcopy', 'copy.deepcopy', (['masterRegister'], {}), '(masterRegister)\n', (501, 517), False, 'import copy\n'), ((114, 129), 'click.File', 'click.File', (['"""r"""'], {}), "('r')\n", (124, 129), False, 'import click\n')]
ionos-cloud/ionos-enterprise-sdk-python
ionosenterprise/items/backupunit.py
6b601990098ab36289a251406fb093489b647f1d
class BackupUnit(object): def __init__(self, name, password=None, email=None): """ BackupUnit class initializer. :param name: A name of that resource (only alphanumeric characters are acceptable)" :type name: ``str`` :param password: The password associated to that resource. :type password: ``str`` :param email: The email associated with the backup unit. Bear in mind that this email does not be the same email as of the user. :type email: ``str`` """ self.name = name self.password = password self.email = email def __repr__(self): return ('<BackupUnit: name=%s, password=%s, email=%s>' % (self.name, str(self.password), self.email))
[]
X-lab-3D/PANDORA
install.py
02912a03022e814ff8e0ae8ec52f5075f0e2e381
import os dirs = [ './PANDORA_files', './PANDORA_files/data', './PANDORA_files/data/csv_pkl_files', './PANDORA_files/data/csv_pkl_files/mhcseqs', './PANDORA_files/data/PDBs', './PANDORA_files/data/PDBs/pMHCI', './PANDORA_files/data/PDBs/pMHCII', './PANDORA_files/data/PDBs/Bad', './PANDORA_files/data/PDBs/Bad/pMHCI', './PANDORA_files/data/PDBs/Bad/pMHCII', './PANDORA_files/data/PDBs/IMGT_retrieved', './PANDORA_files/data/outputs', './test/test_data/PDBs/Bad','./test/test_data/PDBs/Bad/pMHCI', './test/test_data/PDBs/Bad/pMHCII', './test/test_data/csv_pkl_files' ] for D in dirs: try: os.mkdir(D) except OSError: print('Could not make directory: ' + D) # Install dependenciess # os.popen("alias KEY_MODELLER='XXXX'").read() # os.popen("conda install -y -c salilab modeller").read() # os.popen("conda install -y -c bioconda muscle").read() # os.popen("pip install -e ./").read()
[((675, 686), 'os.mkdir', 'os.mkdir', (['D'], {}), '(D)\n', (683, 686), False, 'import os\n')]
MainaKamau92/apexselftaught
app/auth/views.py
9f9a3bd1ba23e57a12e173730917fb9bb7003707
# app/auth/views.py import os from flask import flash, redirect, render_template, url_for, request from flask_login import login_required, login_user, logout_user, current_user from . import auth from .forms import (LoginForm, RegistrationForm, RequestResetForm, ResetPasswordForm) from .. import db, mail from ..models import User from flask_mail import Message from werkzeug.security import generate_password_hash @auth.route('/register/', methods=['GET', 'POST']) def register(): """ Handle requests to the /register route Add an user to the database through the registration form """ logout_user() form = RegistrationForm() if form.validate_on_submit(): user = User(first_name=form.first_name.data, last_name=form.last_name.data, email=form.email.data, username=form.username.data, password=form.password.data, is_freelancer=form.freelancer.data, is_employer=form.employer.data) # add user to the database db.session.add(user) db.session.commit() flash(f'You have successfully registered! You may now login', 'success') # redirect to the login page return redirect(url_for('auth.login')) # load registration form return render_template('auth/register.html', form=form, title='Register') @auth.route('/login/', methods=['GET', 'POST']) def login(): """ Handle requests to the /login route Log an employee in through the login form """ if current_user.is_authenticated: if current_user.is_freelancer == True and current_user.is_employer == False: # redirect to the freelancer dashboard page after login return redirect(url_for('freelancer.dashboard')) elif current_user.is_employer == True and current_user.is_freelancer == False: # redirect to the employer dashboard page after login return redirect(url_for('employer.dashboard')) elif current_user.is_employer and current_user.is_freelancer: # redirect to the employer dashboard page after login return redirect(url_for('employer.dashboard')) else: # redirect to the admin dashboard return redirect(url_for('admin.admin_dashboard')) form = LoginForm() if form.validate_on_submit(): # check whether user exists in the database # the password entered matches the password in the database user = User.query.filter_by(email=form.email.data).first() if user is not None and user.verify_password(form.password.data): login_user(user, remember=form.remember.data) #flash(f'Logged In', 'success') if user.is_freelancer == True and user.is_employer == False: # redirect to the freelancer dashboard page after login return redirect(url_for('freelancer.dashboard')) elif user.is_employer == True and user.is_freelancer == False: # redirect to the employer dashboard page after login return redirect(url_for('employer.dashboard')) elif user.is_employer and user.is_freelancer: # redirect to the employer dashboard page after login return redirect(url_for('employer.dashboard')) else: # redirect to the admin dashboard return redirect(url_for('admin.admin_dashboard')) flash(f'Invalid Credentials', 'danger') # load login template return render_template('auth/login.html', form=form, title='Login') @auth.route('/logout/', methods=['GET', 'POST']) @login_required def logout(): """ Handle requests to the /logout route Log an employee out through the logout link """ logout_user() flash(f'You have been logged out', 'success') # redirect to the login page return redirect(url_for('auth.login')) def send_reset_email(user): try: token = user.get_reset_token() msg = Message('Password Reset Request', sender='[email protected]', recipients=[user.email]) msg.body = f''' To reset your password visit the following link {url_for('auth.reset_password', token=token, _external=True)} If you did not make this request ignore this email ''' mail.send(msg) except Exception as e: print(e) @auth.route('/reset-password', methods=['GET', 'POST']) def request_reset(): if current_user.is_authenticated: next_page = request.args.get('next') if current_user.is_freelancer == True and current_user.is_employer == False: # redirect to the freelancer dashboard page after login return redirect(next_page) if next_page else redirect(url_for('freelancer.dashboard')) elif current_user.is_employer == True and current_user.is_freelancer == False: # redirect to the employer dashboard page after login return redirect(next_page) if next_page else redirect(url_for('employer.dashboard')) elif current_user.is_employer and current_user.is_freelancer: # redirect to the employer dashboard page after login return redirect(next_page) if next_page else redirect(url_for('employer.dashboard')) else: # redirect to the admin dashboard return redirect(next_page) if next_page else redirect(url_for('admin.admin_dashboard')) form = RequestResetForm() if form.validate_on_submit(): user = User.query.filter_by(email=form.email.data).first() send_reset_email(user) flash(f'Email has been sent with password reset instructions', 'info') return redirect(url_for('auth.login')) return render_template('auth/reset_request.html', form=form, title='Request Reset Password') @auth.route('/reset-password/<token>', methods=['GET', 'POST']) def reset_password(token): if current_user.is_authenticated: next_page = request.args.get('next') if current_user.is_freelancer == True and current_user.is_employer == False: # redirect to the freelancer dashboard page after login return redirect(next_page) if next_page else redirect(url_for('freelancer.dashboard')) elif current_user.is_employer == True and current_user.is_freelancer == False: # redirect to the employer dashboard page after login return redirect(next_page) if next_page else redirect(url_for('employer.dashboard')) elif current_user.is_employer and current_user.is_freelancer: # redirect to the employer dashboard page after login return redirect(next_page) if next_page else redirect(url_for('employer.dashboard')) else: # redirect to the admin dashboard return redirect(next_page) if next_page else redirect(url_for('admin.admin_dashboard')) user = User.verify_reset_token(token) if user is None: flash(f'Invalid token or expired token', 'warning') return redirect(url_for('auth.request_reset')) form = ResetPasswordForm() if form.validate_on_submit(): # add user to the database hashed_password = generate_password_hash(form.password.data) user.password_hash = hashed_password db.session.commit() flash( f'Your password has been reset successfully! You may now login', 'success') return redirect(url_for('auth.login')) return render_template('auth/reset_password.html', form=form, title='Reset Password')
[((630, 643), 'flask_login.logout_user', 'logout_user', ([], {}), '()\n', (641, 643), False, 'from flask_login import login_required, login_user, logout_user, current_user\n'), ((1360, 1426), 'flask.render_template', 'render_template', (['"""auth/register.html"""'], {'form': 'form', 'title': '"""Register"""'}), "('auth/register.html', form=form, title='Register')\n", (1375, 1426), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((3623, 3683), 'flask.render_template', 'render_template', (['"""auth/login.html"""'], {'form': 'form', 'title': '"""Login"""'}), "('auth/login.html', form=form, title='Login')\n", (3638, 3683), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((3874, 3887), 'flask_login.logout_user', 'logout_user', ([], {}), '()\n', (3885, 3887), False, 'from flask_login import login_required, login_user, logout_user, current_user\n'), ((3892, 3937), 'flask.flash', 'flash', (['f"""You have been logged out"""', '"""success"""'], {}), "(f'You have been logged out', 'success')\n", (3897, 3937), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((5892, 5982), 'flask.render_template', 'render_template', (['"""auth/reset_request.html"""'], {'form': 'form', 'title': '"""Request Reset Password"""'}), "('auth/reset_request.html', form=form, title=\n 'Request Reset Password')\n", (5907, 5982), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((7632, 7710), 'flask.render_template', 'render_template', (['"""auth/reset_password.html"""'], {'form': 'form', 'title': '"""Reset Password"""'}), "('auth/reset_password.html', form=form, title='Reset Password')\n", (7647, 7710), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((1161, 1233), 'flask.flash', 'flash', (['f"""You have successfully registered! You may now login"""', '"""success"""'], {}), "(f'You have successfully registered! You may now login', 'success')\n", (1166, 1233), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((3546, 3585), 'flask.flash', 'flash', (['f"""Invalid Credentials"""', '"""danger"""'], {}), "(f'Invalid Credentials', 'danger')\n", (3551, 3585), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((3991, 4012), 'flask.url_for', 'url_for', (['"""auth.login"""'], {}), "('auth.login')\n", (3998, 4012), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((4111, 4205), 'flask_mail.Message', 'Message', (['"""Password Reset Request"""'], {'sender': '"""[email protected]"""', 'recipients': '[user.email]'}), "('Password Reset Request', sender='[email protected]',\n recipients=[user.email])\n", (4118, 4205), False, 'from flask_mail import Message\n'), ((4673, 4697), 'flask.request.args.get', 'request.args.get', (['"""next"""'], {}), "('next')\n", (4689, 4697), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((5763, 5833), 'flask.flash', 'flash', (['f"""Email has been sent with password reset instructions"""', '"""info"""'], {}), "(f'Email has been sent with password reset instructions', 'info')\n", (5768, 5833), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((6129, 6153), 'flask.request.args.get', 'request.args.get', (['"""next"""'], {}), "('next')\n", (6145, 6153), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((7122, 7173), 'flask.flash', 'flash', (['f"""Invalid token or expired token"""', '"""warning"""'], {}), "(f'Invalid token or expired token', 'warning')\n", (7127, 7173), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((7355, 7397), 'werkzeug.security.generate_password_hash', 'generate_password_hash', (['form.password.data'], {}), '(form.password.data)\n', (7377, 7397), False, 'from werkzeug.security import generate_password_hash\n'), ((7479, 7564), 'flask.flash', 'flash', (['f"""Your password has been reset successfully! You may now login"""', '"""success"""'], {}), "(f'Your password has been reset successfully! You may now login',\n 'success')\n", (7484, 7564), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((1297, 1318), 'flask.url_for', 'url_for', (['"""auth.login"""'], {}), "('auth.login')\n", (1304, 1318), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((2705, 2750), 'flask_login.login_user', 'login_user', (['user'], {'remember': 'form.remember.data'}), '(user, remember=form.remember.data)\n', (2715, 2750), False, 'from flask_login import login_required, login_user, logout_user, current_user\n'), ((5858, 5879), 'flask.url_for', 'url_for', (['"""auth.login"""'], {}), "('auth.login')\n", (5865, 5879), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((7198, 7227), 'flask.url_for', 'url_for', (['"""auth.request_reset"""'], {}), "('auth.request_reset')\n", (7205, 7227), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((7598, 7619), 'flask.url_for', 'url_for', (['"""auth.login"""'], {}), "('auth.login')\n", (7605, 7619), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((1811, 1842), 'flask.url_for', 'url_for', (['"""freelancer.dashboard"""'], {}), "('freelancer.dashboard')\n", (1818, 1842), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((4347, 4406), 'flask.url_for', 'url_for', (['"""auth.reset_password"""'], {'token': 'token', '_external': '(True)'}), "('auth.reset_password', token=token, _external=True)\n", (4354, 4406), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((4870, 4889), 'flask.redirect', 'redirect', (['next_page'], {}), '(next_page)\n', (4878, 4889), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((6326, 6345), 'flask.redirect', 'redirect', (['next_page'], {}), '(next_page)\n', (6334, 6345), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((2025, 2054), 'flask.url_for', 'url_for', (['"""employer.dashboard"""'], {}), "('employer.dashboard')\n", (2032, 2054), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((2972, 3003), 'flask.url_for', 'url_for', (['"""freelancer.dashboard"""'], {}), "('freelancer.dashboard')\n", (2979, 3003), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((4917, 4948), 'flask.url_for', 'url_for', (['"""freelancer.dashboard"""'], {}), "('freelancer.dashboard')\n", (4924, 4948), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((5122, 5141), 'flask.redirect', 'redirect', (['next_page'], {}), '(next_page)\n', (5130, 5141), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((6373, 6404), 'flask.url_for', 'url_for', (['"""freelancer.dashboard"""'], {}), "('freelancer.dashboard')\n", (6380, 6404), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((6578, 6597), 'flask.redirect', 'redirect', (['next_page'], {}), '(next_page)\n', (6586, 6597), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((2220, 2249), 'flask.url_for', 'url_for', (['"""employer.dashboard"""'], {}), "('employer.dashboard')\n", (2227, 2249), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((2339, 2371), 'flask.url_for', 'url_for', (['"""admin.admin_dashboard"""'], {}), "('admin.admin_dashboard')\n", (2346, 2371), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((3182, 3211), 'flask.url_for', 'url_for', (['"""employer.dashboard"""'], {}), "('employer.dashboard')\n", (3189, 3211), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((5169, 5198), 'flask.url_for', 'url_for', (['"""employer.dashboard"""'], {}), "('employer.dashboard')\n", (5176, 5198), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((5355, 5374), 'flask.redirect', 'redirect', (['next_page'], {}), '(next_page)\n', (5363, 5374), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((5512, 5531), 'flask.redirect', 'redirect', (['next_page'], {}), '(next_page)\n', (5520, 5531), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((6625, 6654), 'flask.url_for', 'url_for', (['"""employer.dashboard"""'], {}), "('employer.dashboard')\n", (6632, 6654), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((6811, 6830), 'flask.redirect', 'redirect', (['next_page'], {}), '(next_page)\n', (6819, 6830), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((6968, 6987), 'flask.redirect', 'redirect', (['next_page'], {}), '(next_page)\n', (6976, 6987), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((3373, 3402), 'flask.url_for', 'url_for', (['"""employer.dashboard"""'], {}), "('employer.dashboard')\n", (3380, 3402), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((3504, 3536), 'flask.url_for', 'url_for', (['"""admin.admin_dashboard"""'], {}), "('admin.admin_dashboard')\n", (3511, 3536), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((5402, 5431), 'flask.url_for', 'url_for', (['"""employer.dashboard"""'], {}), "('employer.dashboard')\n", (5409, 5431), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((5559, 5591), 'flask.url_for', 'url_for', (['"""admin.admin_dashboard"""'], {}), "('admin.admin_dashboard')\n", (5566, 5591), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((6858, 6887), 'flask.url_for', 'url_for', (['"""employer.dashboard"""'], {}), "('employer.dashboard')\n", (6865, 6887), False, 'from flask import flash, redirect, render_template, url_for, request\n'), ((7015, 7047), 'flask.url_for', 'url_for', (['"""admin.admin_dashboard"""'], {}), "('admin.admin_dashboard')\n", (7022, 7047), False, 'from flask import flash, redirect, render_template, url_for, request\n')]
devendermishrajio/oslo.messaging
oslo_messaging/_drivers/zmq_driver/client/publishers/zmq_dealer_publisher.py
9e5fb5697d3f7259f01e3416af0582090d20859a
# Copyright 2015 Mirantis, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import logging from oslo_messaging._drivers.zmq_driver.client.publishers\ import zmq_publisher_base from oslo_messaging._drivers.zmq_driver import zmq_async from oslo_messaging._drivers.zmq_driver import zmq_names from oslo_messaging._i18n import _LI, _LW LOG = logging.getLogger(__name__) zmq = zmq_async.import_zmq() class DealerPublisher(zmq_publisher_base.PublisherMultisend): def __init__(self, conf, matchmaker): super(DealerPublisher, self).__init__(conf, matchmaker, zmq.DEALER) def send_request(self, request): self._check_request_pattern(request) dealer_socket, hosts = self._check_hosts_connections(request.target) if not dealer_socket.connections: # NOTE(ozamiatin): Here we can provide # a queue for keeping messages to send them later # when some listener appears. However such approach # being more reliable will consume additional memory. LOG.warning(_LW("Request %s was dropped because no connection") % request.msg_type) return if request.msg_type in zmq_names.MULTISEND_TYPES: for _ in range(dealer_socket.connections_count()): self._send_request(dealer_socket, request) else: self._send_request(dealer_socket, request) def _check_request_pattern(self, request): if request.msg_type == zmq_names.CALL_TYPE: raise zmq_publisher_base.UnsupportedSendPattern(request.msg_type) def _send_request(self, socket, request): socket.send(b'', zmq.SNDMORE) socket.send_pyobj(request) LOG.info(_LI("Sending message_id %(message)s to a target %(target)s") % {"message": request.message_id, "target": request.target}) def cleanup(self): super(DealerPublisher, self).cleanup() class DealerPublisherLight(zmq_publisher_base.PublisherBase): def __init__(self, conf, address): super(DealerPublisherLight, self).__init__(conf) self.socket = self.zmq_context.socket(zmq.DEALER) self.socket.connect(address) def send_request(self, request): if request.msg_type == zmq_names.CALL_TYPE: raise zmq_publisher_base.UnsupportedSendPattern(request.msg_type) envelope = request.create_envelope() self.socket.send(b'', zmq.SNDMORE) self.socket.send_pyobj(envelope, zmq.SNDMORE) self.socket.send_pyobj(request) def cleanup(self): self.socket.setsockopt(zmq.LINGER, 0) self.socket.close() class DealerPublisherProxy(DealerPublisher): def __init__(self, conf, matchmaker, reply_receiver): super(DealerPublisherProxy, self).__init__(conf, matchmaker) self.reply_receiver = reply_receiver def send_request(self, multipart_message): envelope = multipart_message[zmq_names.MULTIPART_IDX_ENVELOPE] LOG.info(_LI("Envelope: %s") % envelope) target = envelope[zmq_names.FIELD_TARGET] dealer_socket, hosts = self._check_hosts_connections(target) if not dealer_socket.connections: # NOTE(ozamiatin): Here we can provide # a queue for keeping messages to send them later # when some listener appears. However such approach # being more reliable will consume additional memory. LOG.warning(_LW("Request %s was dropped because no connection") % envelope[zmq_names.FIELD_MSG_TYPE]) return self.reply_receiver.track_socket(dealer_socket.handle) LOG.info(_LI("Sending message %(message)s to a target %(target)s") % {"message": envelope[zmq_names.FIELD_MSG_ID], "target": envelope[zmq_names.FIELD_TARGET]}) if envelope[zmq_names.FIELD_MSG_TYPE] in zmq_names.MULTISEND_TYPES: for _ in range(dealer_socket.connections_count()): self._send_request(dealer_socket, multipart_message) else: self._send_request(dealer_socket, multipart_message) def _send_request(self, socket, multipart_message): socket.send(b'', zmq.SNDMORE) socket.send_pyobj( multipart_message[zmq_names.MULTIPART_IDX_ENVELOPE], zmq.SNDMORE) socket.send(multipart_message[zmq_names.MULTIPART_IDX_BODY]) class ReplyReceiver(object): def __init__(self, poller): self.poller = poller LOG.info(_LI("Reply waiter created in broker")) def _receive_reply(self, socket): return socket.recv_multipart() def track_socket(self, socket): self.poller.register(socket, self._receive_reply) def cleanup(self): self.poller.close() class AcknowledgementReceiver(object): def __init__(self): self.poller = zmq_async.get_poller() self.thread = zmq_async.get_executor(self.poll_for_acknowledgements) self.thread.execute() def _receive_acknowledgement(self, socket): empty = socket.recv() assert empty == b"", "Empty delimiter expected" ack_message = socket.recv_pyobj() return ack_message def track_socket(self, socket): self.poller.register(socket, self._receive_acknowledgement) def poll_for_acknowledgements(self): ack_message, socket = self.poller.poll() LOG.info(_LI("Message %s acknowledged") % ack_message[zmq_names.FIELD_ID]) def cleanup(self): self.thread.stop() self.poller.close()
[((878, 905), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (895, 905), False, 'import logging\n'), ((913, 935), 'oslo_messaging._drivers.zmq_driver.zmq_async.import_zmq', 'zmq_async.import_zmq', ([], {}), '()\n', (933, 935), False, 'from oslo_messaging._drivers.zmq_driver import zmq_async\n'), ((5465, 5487), 'oslo_messaging._drivers.zmq_driver.zmq_async.get_poller', 'zmq_async.get_poller', ([], {}), '()\n', (5485, 5487), False, 'from oslo_messaging._drivers.zmq_driver import zmq_async\n'), ((5510, 5564), 'oslo_messaging._drivers.zmq_driver.zmq_async.get_executor', 'zmq_async.get_executor', (['self.poll_for_acknowledgements'], {}), '(self.poll_for_acknowledgements)\n', (5532, 5564), False, 'from oslo_messaging._drivers.zmq_driver import zmq_async\n'), ((2074, 2133), 'oslo_messaging._drivers.zmq_driver.client.publishers.zmq_publisher_base.UnsupportedSendPattern', 'zmq_publisher_base.UnsupportedSendPattern', (['request.msg_type'], {}), '(request.msg_type)\n', (2115, 2133), False, 'from oslo_messaging._drivers.zmq_driver.client.publishers import zmq_publisher_base\n'), ((2868, 2927), 'oslo_messaging._drivers.zmq_driver.client.publishers.zmq_publisher_base.UnsupportedSendPattern', 'zmq_publisher_base.UnsupportedSendPattern', (['request.msg_type'], {}), '(request.msg_type)\n', (2909, 2927), False, 'from oslo_messaging._drivers.zmq_driver.client.publishers import zmq_publisher_base\n'), ((5113, 5150), 'oslo_messaging._i18n._LI', '_LI', (['"""Reply waiter created in broker"""'], {}), "('Reply waiter created in broker')\n", (5116, 5150), False, 'from oslo_messaging._i18n import _LI, _LW\n'), ((2273, 2333), 'oslo_messaging._i18n._LI', '_LI', (['"""Sending message_id %(message)s to a target %(target)s"""'], {}), "('Sending message_id %(message)s to a target %(target)s')\n", (2276, 2333), False, 'from oslo_messaging._i18n import _LI, _LW\n'), ((3568, 3587), 'oslo_messaging._i18n._LI', '_LI', (['"""Envelope: %s"""'], {}), "('Envelope: %s')\n", (3571, 3587), False, 'from oslo_messaging._i18n import _LI, _LW\n'), ((4245, 4302), 'oslo_messaging._i18n._LI', '_LI', (['"""Sending message %(message)s to a target %(target)s"""'], {}), "('Sending message %(message)s to a target %(target)s')\n", (4248, 4302), False, 'from oslo_messaging._i18n import _LI, _LW\n'), ((6012, 6042), 'oslo_messaging._i18n._LI', '_LI', (['"""Message %s acknowledged"""'], {}), "('Message %s acknowledged')\n", (6015, 6042), False, 'from oslo_messaging._i18n import _LI, _LW\n'), ((1591, 1642), 'oslo_messaging._i18n._LW', '_LW', (['"""Request %s was dropped because no connection"""'], {}), "('Request %s was dropped because no connection')\n", (1594, 1642), False, 'from oslo_messaging._i18n import _LI, _LW\n'), ((4030, 4081), 'oslo_messaging._i18n._LW', '_LW', (['"""Request %s was dropped because no connection"""'], {}), "('Request %s was dropped because no connection')\n", (4033, 4081), False, 'from oslo_messaging._i18n import _LI, _LW\n')]
mrucker/banditbenchmark
coba/environments/filters.py
0365291b3a0cf1d862d294e0386d0ccad3f360f1
import pickle import warnings import collections.abc from math import isnan from statistics import mean, median, stdev, mode from abc import abstractmethod, ABC from numbers import Number from collections import defaultdict from itertools import islice, chain from typing import Hashable, Optional, Sequence, Union, Iterable, Dict, Any, List, Tuple, Callable, Mapping from coba.backports import Literal from coba import pipes from coba.random import CobaRandom from coba.exceptions import CobaException from coba.statistics import iqr from coba.pipes import Flatten from coba.environments.primitives import Interaction from coba.environments.logged.primitives import LoggedInteraction from coba.environments.simulated.primitives import SimulatedInteraction class EnvironmentFilter(pipes.Filter[Iterable[Interaction],Iterable[Interaction]], ABC): """A filter that can be applied to an Environment.""" @abstractmethod def filter(self, interactions: Iterable[Interaction]) -> Iterable[Interaction]: """Apply a filter to an Environment's interactions.""" ... class Identity(pipes.Identity, EnvironmentFilter): """Return whatever interactions are given to the filter.""" pass class Take(pipes.Take, EnvironmentFilter): """Take a fixed number of interactions from an Environment.""" pass class Shuffle(pipes.Shuffle, EnvironmentFilter): """Shuffle a sequence of Interactions in an Environment.""" pass class Reservoir(pipes.Reservoir, EnvironmentFilter): """Take a fixed number of random Interactions from an Environment.""" pass class Scale(EnvironmentFilter): """Shift and scale features to precondition them before learning.""" def __init__(self, shift: Union[Number,Literal["min","mean","med"]] = 0, scale: Union[Number,Literal["minmax","std","iqr","maxabs"]] = "minmax", target: Literal["features","rewards"] = "features", using: Optional[int] = None): """Instantiate a Scale filter. Args: shift: The statistic to use to shift each context feature. scale: The statistic to use to scale each context feature. target: The target data we wish to scale in the environment. using: The number of interactions to use when calculating the necessary statistics. """ assert isinstance(shift,Number) or shift in ["min","mean","med"] assert isinstance(scale,Number) or scale in ["minmax","std","iqr","maxabs"] self._shift = shift self._scale = scale self._using = using self._target = target @property def params(self) -> Dict[str, Any]: return { "scale_shift": self._shift, "scale_scale": self._scale, "scale_using": self._using, "scale_target": self._target } def filter(self, interactions: Iterable[Interaction]) -> Iterable[Interaction]: iter_interactions = iter(interactions) fitting_interactions = list(islice(iter_interactions,self._using)) shifts : Dict[Hashable,float] = defaultdict(lambda:0) scales : Dict[Hashable,float] = defaultdict(lambda:1) unscaled: Dict[Hashable,List[Any]] = defaultdict(list) if any([isinstance(i.context,dict) for i in fitting_interactions]) and self._shift != 0: raise CobaException("Shift is required to be 0 for sparse environments. Otherwise the environment will become dense.") mixed = set() had_non_numeric = set() for interaction in fitting_interactions: if self._target == "features": for name,value in self._feature_pairs(interaction.context): if name in mixed: continue is_numeric = isinstance(value,Number) is_nan = is_numeric and isnan(value) if is_nan: pass elif (not is_numeric and name in unscaled) or (is_numeric and name in had_non_numeric): mixed.add(name) if name in unscaled: del unscaled[name] if name in had_non_numeric: had_non_numeric.remove(name) elif not is_numeric: had_non_numeric.add(name) elif is_numeric and not is_nan: unscaled[name].append(value) if self._target == "rewards": unscaled["rewards"].extend(interaction.rewards) if mixed: warnings.warn(f"Some features were not scaled due to having mixed types: {mixed}. ") has_sparse_zero = set() for interaction in fitting_interactions: if isinstance(interaction.context,dict): has_sparse_zero |= unscaled.keys() - interaction.context.keys() - {"rewards"} for key in has_sparse_zero: unscaled[key].append(0) for name, values in unscaled.items(): if isinstance(self._shift, Number): shift = self._shift if self._shift == "min": shift = min(values) if self._shift == "mean": shift = mean(values) if self._shift == "med": shift = median(values) if isinstance(self._scale, Number): scale_num = self._scale scale_den = 1 if self._scale == "std": scale_num = 1 scale_den = stdev(values) if self._scale == "minmax": scale_num = 1 scale_den = max(values)-min(values) if self._scale == "iqr": scale_num = 1 scale_den = iqr(values) if self._scale == "maxabs": scale_num = 1 scale_den = max([abs(v-shift) for v in values]) shifts[name] = shift scales[name] = scale_num/scale_den if round(scale_den,10) != 0 else 1 for interaction in chain(fitting_interactions, iter_interactions): scaled_values = {} final_context = interaction.context final_rewards = None final_kwargs = interaction.kwargs.copy() if self._target == "features": for name,value in self._feature_pairs(interaction.context): if isinstance(value,Number): scaled_values[name] = (value-shifts[name])*scales[name] else: scaled_values[name] = value if interaction.context is None: final_context = None elif isinstance(interaction.context,dict): final_context = scaled_values elif isinstance(interaction.context,tuple): final_context = tuple(scaled_values[k] for k,_ in self._feature_pairs(interaction.context)) else: final_context = scaled_values[1] if self._target == "rewards": final_rewards = [ (r-shifts['rewards'])*scales['rewards'] for r in interaction.rewards ] if isinstance(interaction, SimulatedInteraction): yield SimulatedInteraction( final_context, interaction.actions, final_rewards or interaction.rewards, **interaction.kwargs ) elif isinstance(interaction, LoggedInteraction): yield LoggedInteraction( final_context, interaction.action, interaction.reward, interaction.probability, interaction.actions, **interaction.kwargs ) else: #pragma: no cover raise CobaException("Unknown interactions were given to Scale.") def _feature_pairs(self,context) -> Sequence[Tuple[Hashable,Any]]: if isinstance(context,dict ): return context.items() if isinstance(context,tuple): return enumerate(context) if context is not None : return [(1,context)] return [] class Impute(EnvironmentFilter): """Impute missing values (nan) in Interaction contexts.""" def __init__(self, stat : Literal["mean","median","mode"] = "mean", using: Optional[int] = None): """Instantiate an Impute filter. Args: stat: The statistic to use for impuatation. using: The number of interactions to use to calculate the imputation statistics. """ assert stat in ["mean","median","mode"] self._stat = stat self._using = using @property def params(self) -> Dict[str, Any]: return { "impute_stat": self._stat, "impute_using": self._using } def filter(self, interactions: Iterable[Interaction]) -> Iterable[Interaction]: iter_interactions = iter(interactions) train_interactions = list(islice(iter_interactions,self._using)) test_interactions = chain.from_iterable([train_interactions, iter_interactions]) stats : Dict[Hashable,float] = defaultdict(int) features: Dict[Hashable,List[Number]] = defaultdict(list) for interaction in train_interactions: for name,value in self._context_as_name_values(interaction.context): if isinstance(value,Number) and not isnan(value): features[name].append(value) for feat_name, feat_numeric_values in features.items(): if self._stat == "mean": stats[feat_name] = mean(feat_numeric_values) if self._stat == "median": stats[feat_name] = median(feat_numeric_values) if self._stat == "mode": stats[feat_name] = mode(feat_numeric_values) for interaction in test_interactions: kv_imputed_context = {} for name,value in self._context_as_name_values(interaction.context): kv_imputed_context[name] = stats[name] if isinstance(value,Number) and isnan(value) else value if interaction.context is None: final_context = None elif isinstance(interaction.context,dict): final_context = kv_imputed_context elif isinstance(interaction.context,tuple): final_context = tuple(kv_imputed_context[k] for k,_ in self._context_as_name_values(interaction.context)) else: final_context = kv_imputed_context[1] if isinstance(interaction, SimulatedInteraction): yield SimulatedInteraction( final_context, interaction.actions, interaction.rewards, **interaction.kwargs ) elif isinstance(interaction, LoggedInteraction): yield LoggedInteraction( final_context, interaction.action, interaction.reward, **interaction.kwargs ) else: #pragma: no cover raise CobaException("Unknown interactions were given to Impute.") def _context_as_name_values(self,context) -> Sequence[Tuple[Hashable,Any]]: if isinstance(context,dict ): return context.items() if isinstance(context,tuple): return enumerate(context) if context is not None : return [(1,context)] return [] class Sparse(EnvironmentFilter): """Sparsify an environment's feature representation. This has little utility beyond debugging. """ def __init__(self, context:bool = True, action:bool = False): """Instantiate a Sparse filter. Args: context: If True then contexts should be made sparse otherwise leave them alone. action: If True then actions should be made sparse otherwise leave them alone. """ self._context = context self._action = action @property def params(self) -> Dict[str, Any]: return { "sparse_C": self._context, "sparse_A": self._action } def filter(self, interactions: Iterable[Interaction]) -> Iterable[Interaction]: for interaction in interactions: sparse_context = self._make_sparse(interaction.context) if self._context else interaction.context if isinstance(interaction, SimulatedInteraction): sparse_actions = list(map(self._make_sparse,interaction.actions)) if self._action else interaction.actions yield SimulatedInteraction( sparse_context, sparse_actions, interaction.rewards ) elif isinstance(interaction, LoggedInteraction): sparse_action = self._make_sparse(interaction.action) if self._action else interaction.action yield LoggedInteraction( sparse_context, sparse_action, interaction.reward, interaction.probability, interaction.actions, **interaction.kwargs ) else: #pragma: no cover raise CobaException("Unknown interactions were given to Sparse.") def _make_sparse(self, value) -> Optional[dict]: if isinstance(value,dict) or value is None: return value if isinstance(value,(list,tuple)): return dict(enumerate(value)) return {0:value} class Cycle(EnvironmentFilter): """Cycle all rewards associated with actions by one place. This filter is useful for testing an algorithms response to a non-stationary shock. """ def __init__(self, after:int = 0): """Instantiate a Cycle filter. Args: after: How many interactions should be seen before applying the cycle filter. """ self._after = after @property def params(self) -> Dict[str, Any]: return { "cycle_after": self._after } def filter(self, interactions: Iterable[SimulatedInteraction]) -> Iterable[SimulatedInteraction]: underlying_iterable = iter(interactions) sans_cycle_interactions = islice(underlying_iterable, self._after) with_cycle_interactions = underlying_iterable for interaction in sans_cycle_interactions: yield interaction try: first_interaction = next(with_cycle_interactions) action_set = set(first_interaction.actions) n_actions = len(action_set) featureless_actions = [tuple([0]*n+[1]+[0]*(n_actions-n-1)) for n in range(n_actions)] with_cycle_interactions = chain([first_interaction], with_cycle_interactions) if len(set(action_set) & set(featureless_actions)) != len(action_set): warnings.warn("Cycle only works for environments without action features. It will be ignored in this case.") for interaction in with_cycle_interactions: yield interaction else: for interaction in with_cycle_interactions: rewards = interaction.rewards[-1:] + interaction.rewards[:-1] yield SimulatedInteraction(interaction.context, interaction.actions, rewards, **interaction.kwargs) except StopIteration: pass class Binary(EnvironmentFilter): """Binarize all rewards to either 1 (max rewards) or 0 (all others).""" @property def params(self) -> Dict[str, Any]: return { "binary": True } def filter(self, interactions: Iterable[SimulatedInteraction]) -> Iterable[SimulatedInteraction]: for interaction in interactions: max_rwd = max(interaction.rewards) rewards = [int(r==max_rwd) for r in interaction.rewards] yield SimulatedInteraction(interaction.context, interaction.actions, rewards, **interaction.kwargs) class Sort(EnvironmentFilter): """Sort a sequence of Interactions in an Environment.""" def __init__(self, *keys: Union[str,int,Sequence[Union[str,int]]]) -> None: """Instantiate a Sort filter. Args: *keys: The context items that should be sorted on. """ self._keys = list(Flatten().filter([list(keys)]))[0] @property def params(self) -> Dict[str, Any]: return { "sort": self._keys or '*' } def filter(self, interactions: Iterable[Interaction]) -> Iterable[Interaction]: full_sorter = lambda interaction: tuple(interaction.context ) list_sorter = lambda interaction: tuple(interaction.context[key] for key in self._keys) dict_sorter = lambda interaction: tuple(interaction.context.get(key,0) for key in self._keys) interactions = list(interactions) is_sparse = isinstance(interactions[0].context,dict) sorter = full_sorter if not self._keys else dict_sorter if is_sparse else list_sorter return sorted(interactions, key=sorter) class Where(EnvironmentFilter): """Define Environment selection criteria for an Environments pipe.""" def __init__(self, *, n_interactions: Union[int,Tuple[Optional[int],Optional[int]]] = None) -> None: """Instantiate a Where filter. Args: n_interactions: The minimum, maximum or exact number of interactions Environments must have. """ self._n_interactions = n_interactions @property def params(self) -> Dict[str, Any]: params = {} if self._n_interactions is not None: params["where_n_interactions"] = self._n_interactions return params def filter(self, interactions: Iterable[Interaction]) -> Iterable[Interaction]: interactions = iter(interactions) if self._n_interactions is None or self._n_interactions == (None,None): min_interactions = None max_interactions = None take_interactions = 0 elif isinstance(self._n_interactions, int): min_interactions = self._n_interactions max_interactions = self._n_interactions take_interactions = self._n_interactions+1 else: min_interactions = self._n_interactions[0] max_interactions = self._n_interactions[1] take_interactions = max(filter(lambda x: x is not None, list(self._n_interactions)))+1 taken_interactions = list(islice(interactions, take_interactions)) if max_interactions is not None and len(taken_interactions) > max_interactions: return [] if min_interactions is not None and len(taken_interactions) < min_interactions: return [] return chain(taken_interactions, interactions) class Warm(EnvironmentFilter): """Turn a SimulatedEnvironment into a WarmStartEnvironment.""" def __init__(self, n_warm:int, seed:int = 1): """Instantiate a Warm filter. Args: n_warm: The number of interactions that should be turned into LoggedInteractions. seed: The random number seed that determines the random logging policy for LoggedInteractions. """ self._n_warm = n_warm self._seed = seed @property def params(self) -> Dict[str, Any]: return { "n_warm": self._n_warm } def filter(self, interactions: Iterable[SimulatedInteraction]) -> Iterable[Interaction]: self._rng = CobaRandom(self._seed) underlying_iterable = iter(interactions) logged_interactions = map(self._to_logged_interaction, islice(underlying_iterable, self._n_warm)) simulated_interactions = underlying_iterable return chain(logged_interactions, simulated_interactions) def _to_logged_interaction(self, interaction: SimulatedInteraction) -> LoggedInteraction: num_actions = len(interaction.actions) probabilities = [1/num_actions] * num_actions idx = self._rng.choice(list(range(num_actions)), probabilities) actions = interaction.actions action = interaction.actions[idx] prob = probabilities[idx] reward = interaction.rewards[idx] return LoggedInteraction(interaction.context, action, reward, prob, actions) class Riffle(EnvironmentFilter): """Riffle shuffle Interactions by taking actions from the end and evenly distributing into the beginning.""" def __init__(self, spacing: int = 3, seed=1) -> None: """Instantiate a Riffle filter. Args: spacing: The number of interactions from the beginning between each interaction shuffled in from the end. seed: The seed used to determine the location of each ending interaction when placed within its beginning space. """ self._spacing = spacing self._seed = seed @property def params(self) -> Dict[str, Any]: return {"riffle_spacing": self._spacing, "riffle_seed": self._seed} def filter(self, interactions: Iterable[Interaction]) -> Iterable[Interaction]: rng = CobaRandom(self._seed) interactions = list(interactions) for i in range(int(len(interactions)/(self._spacing+1))): interactions.insert(i*self._spacing+rng.randint(0,self._spacing), interactions.pop()) return interactions class Noise(EnvironmentFilter): """Introduce noise to an environment.""" def __init__(self, context: Callable[[float,CobaRandom], float] = None, action : Callable[[float,CobaRandom], float] = None, reward : Callable[[float,CobaRandom], float] = None, seed : int = 1) -> None: """Instantiate a Noise EnvironmentFilter. Args: context: A noise generator for context features. action : A noise generator for action features. reward : A noise generator for rewards. seed : The seed initializing the random state of the noise generators. """ self._args = (context,action,reward,seed) self._no_noise = lambda x, _: x if context is None and action is None and reward is None: context = lambda x, rng: x+rng.gauss(0,1) self._context_noise = context or self._no_noise self._action_noise = action or self._no_noise self._reward_noise = reward or self._no_noise self._seed = seed def __reduce__(self) -> tuple: try: pickle.dumps(self._args) except Exception: message = ( "We were unable to pickle the Noise filter. This is likely due to using lambda functions for noise generation. " "To work around this we recommend you first define your lambda functions as a named function and then pass the " "named function to Noise." ) raise CobaException(message) else: return (Noise, self._args) @property def params(self) -> Dict[str, Any]: params = {} if self._context_noise != self._no_noise: params['context_noise'] = True if self._action_noise != self._no_noise : params['action_noise' ] = True if self._reward_noise != self._no_noise : params['reward_noise' ] = True params['noise_seed'] = self._seed return params def filter(self, interactions: Iterable[SimulatedInteraction]) -> Iterable[SimulatedInteraction]: rng = CobaRandom(self._seed) for interaction in interactions: if isinstance(interaction, LoggedInteraction): raise CobaException("We do not currently support adding noise to a LoggedInteraction.") noisy_context = self._noises(interaction.context, rng, self._context_noise) noisy_actions = [ self._noises(a, rng, self._action_noise) for a in interaction.actions ] noisy_rewards = [ self._noises(r, rng, self._reward_noise) for r in interaction.rewards ] yield SimulatedInteraction(noisy_context, noisy_actions, noisy_rewards, **interaction.kwargs) def _noises(self, value:Union[None,float,str,Mapping,Sequence], rng: CobaRandom, noiser: Callable[[float,CobaRandom], float]): if isinstance(value, collections.abc.Mapping): #we sort so that noise generation is deterministic with respect to seed return { k:self._noise(v, rng, noiser) for k,v in sorted(value.items()) } if isinstance(value, collections.abc.Sequence) and not isinstance(value, str): return [ self._noise(v, rng, noiser) for v in value ] return self._noise(value, rng, noiser) def _noise(self, value:Union[None,float,str], rng: CobaRandom, noiser: Callable[[float,CobaRandom], float]) -> float: return value if not isinstance(value,(int,float)) else noiser(value, rng)
[((3136, 3159), 'collections.defaultdict', 'defaultdict', (['(lambda : 0)'], {}), '(lambda : 0)\n', (3147, 3159), False, 'from collections import defaultdict\n'), ((3203, 3226), 'collections.defaultdict', 'defaultdict', (['(lambda : 1)'], {}), '(lambda : 1)\n', (3214, 3226), False, 'from collections import defaultdict\n'), ((3270, 3287), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (3281, 3287), False, 'from collections import defaultdict\n'), ((6070, 6116), 'itertools.chain', 'chain', (['fitting_interactions', 'iter_interactions'], {}), '(fitting_interactions, iter_interactions)\n', (6075, 6116), False, 'from itertools import islice, chain\n'), ((9166, 9226), 'itertools.chain.from_iterable', 'chain.from_iterable', (['[train_interactions, iter_interactions]'], {}), '([train_interactions, iter_interactions])\n', (9185, 9226), False, 'from itertools import islice, chain\n'), ((9276, 9292), 'collections.defaultdict', 'defaultdict', (['int'], {}), '(int)\n', (9287, 9292), False, 'from collections import defaultdict\n'), ((9341, 9358), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (9352, 9358), False, 'from collections import defaultdict\n'), ((14440, 14480), 'itertools.islice', 'islice', (['underlying_iterable', 'self._after'], {}), '(underlying_iterable, self._after)\n', (14446, 14480), False, 'from itertools import islice, chain\n'), ((19036, 19075), 'itertools.chain', 'chain', (['taken_interactions', 'interactions'], {}), '(taken_interactions, interactions)\n', (19041, 19075), False, 'from itertools import islice, chain\n'), ((19760, 19782), 'coba.random.CobaRandom', 'CobaRandom', (['self._seed'], {}), '(self._seed)\n', (19770, 19782), False, 'from coba.random import CobaRandom\n'), ((20014, 20064), 'itertools.chain', 'chain', (['logged_interactions', 'simulated_interactions'], {}), '(logged_interactions, simulated_interactions)\n', (20019, 20064), False, 'from itertools import islice, chain\n'), ((20517, 20586), 'coba.environments.logged.primitives.LoggedInteraction', 'LoggedInteraction', (['interaction.context', 'action', 'reward', 'prob', 'actions'], {}), '(interaction.context, action, reward, prob, actions)\n', (20534, 20586), False, 'from coba.environments.logged.primitives import LoggedInteraction\n'), ((21401, 21423), 'coba.random.CobaRandom', 'CobaRandom', (['self._seed'], {}), '(self._seed)\n', (21411, 21423), False, 'from coba.random import CobaRandom\n'), ((23780, 23802), 'coba.random.CobaRandom', 'CobaRandom', (['self._seed'], {}), '(self._seed)\n', (23790, 23802), False, 'from coba.random import CobaRandom\n'), ((3051, 3089), 'itertools.islice', 'islice', (['iter_interactions', 'self._using'], {}), '(iter_interactions, self._using)\n', (3057, 3089), False, 'from itertools import islice, chain\n'), ((3404, 3526), 'coba.exceptions.CobaException', 'CobaException', (['"""Shift is required to be 0 for sparse environments. Otherwise the environment will become dense."""'], {}), "(\n 'Shift is required to be 0 for sparse environments. Otherwise the environment will become dense.'\n )\n", (3417, 3526), False, 'from coba.exceptions import CobaException\n'), ((4584, 4673), 'warnings.warn', 'warnings.warn', (['f"""Some features were not scaled due to having mixed types: {mixed}. """'], {}), "(\n f'Some features were not scaled due to having mixed types: {mixed}. ')\n", (4597, 4673), False, 'import warnings\n'), ((9098, 9136), 'itertools.islice', 'islice', (['iter_interactions', 'self._using'], {}), '(iter_interactions, self._using)\n', (9104, 9136), False, 'from itertools import islice, chain\n'), ((14959, 15010), 'itertools.chain', 'chain', (['[first_interaction]', 'with_cycle_interactions'], {}), '([first_interaction], with_cycle_interactions)\n', (14964, 15010), False, 'from itertools import islice, chain\n'), ((18757, 18796), 'itertools.islice', 'islice', (['interactions', 'take_interactions'], {}), '(interactions, take_interactions)\n', (18763, 18796), False, 'from itertools import islice, chain\n'), ((19902, 19943), 'itertools.islice', 'islice', (['underlying_iterable', 'self._n_warm'], {}), '(underlying_iterable, self._n_warm)\n', (19908, 19943), False, 'from itertools import islice, chain\n'), ((22792, 22816), 'pickle.dumps', 'pickle.dumps', (['self._args'], {}), '(self._args)\n', (22804, 22816), False, 'import pickle\n'), ((5241, 5253), 'statistics.mean', 'mean', (['values'], {}), '(values)\n', (5245, 5253), False, 'from statistics import mean, median, stdev, mode\n'), ((5316, 5330), 'statistics.median', 'median', (['values'], {}), '(values)\n', (5322, 5330), False, 'from statistics import mean, median, stdev, mode\n'), ((5546, 5559), 'statistics.stdev', 'stdev', (['values'], {}), '(values)\n', (5551, 5559), False, 'from statistics import mean, median, stdev, mode\n'), ((5779, 5790), 'coba.statistics.iqr', 'iqr', (['values'], {}), '(values)\n', (5782, 5790), False, 'from coba.statistics import iqr\n'), ((9741, 9766), 'statistics.mean', 'mean', (['feat_numeric_values'], {}), '(feat_numeric_values)\n', (9745, 9766), False, 'from statistics import mean, median, stdev, mode\n'), ((9842, 9869), 'statistics.median', 'median', (['feat_numeric_values'], {}), '(feat_numeric_values)\n', (9848, 9869), False, 'from statistics import mean, median, stdev, mode\n'), ((9943, 9968), 'statistics.mode', 'mode', (['feat_numeric_values'], {}), '(feat_numeric_values)\n', (9947, 9968), False, 'from statistics import mean, median, stdev, mode\n'), ((15111, 15229), 'warnings.warn', 'warnings.warn', (['"""Cycle only works for environments without action features. It will be ignored in this case."""'], {}), "(\n 'Cycle only works for environments without action features. It will be ignored in this case.'\n )\n", (15124, 15229), False, 'import warnings\n'), ((16125, 16223), 'coba.environments.simulated.primitives.SimulatedInteraction', 'SimulatedInteraction', (['interaction.context', 'interaction.actions', 'rewards'], {}), '(interaction.context, interaction.actions, rewards, **\n interaction.kwargs)\n', (16145, 16223), False, 'from coba.environments.simulated.primitives import SimulatedInteraction\n'), ((23200, 23222), 'coba.exceptions.CobaException', 'CobaException', (['message'], {}), '(message)\n', (23213, 23222), False, 'from coba.exceptions import CobaException\n'), ((23927, 24013), 'coba.exceptions.CobaException', 'CobaException', (['"""We do not currently support adding noise to a LoggedInteraction."""'], {}), "(\n 'We do not currently support adding noise to a LoggedInteraction.')\n", (23940, 24013), False, 'from coba.exceptions import CobaException\n'), ((24321, 24413), 'coba.environments.simulated.primitives.SimulatedInteraction', 'SimulatedInteraction', (['noisy_context', 'noisy_actions', 'noisy_rewards'], {}), '(noisy_context, noisy_actions, noisy_rewards, **\n interaction.kwargs)\n', (24341, 24413), False, 'from coba.environments.simulated.primitives import SimulatedInteraction\n'), ((7292, 7412), 'coba.environments.simulated.primitives.SimulatedInteraction', 'SimulatedInteraction', (['final_context', 'interaction.actions', '(final_rewards or interaction.rewards)'], {}), '(final_context, interaction.actions, final_rewards or\n interaction.rewards, **interaction.kwargs)\n', (7312, 7412), False, 'from coba.environments.simulated.primitives import SimulatedInteraction\n'), ((7929, 7987), 'coba.exceptions.CobaException', 'CobaException', (['"""Unknown interactions were given to Scale."""'], {}), "('Unknown interactions were given to Scale.')\n", (7942, 7987), False, 'from coba.exceptions import CobaException\n'), ((10769, 10873), 'coba.environments.simulated.primitives.SimulatedInteraction', 'SimulatedInteraction', (['final_context', 'interaction.actions', 'interaction.rewards'], {}), '(final_context, interaction.actions, interaction.\n rewards, **interaction.kwargs)\n', (10789, 10873), False, 'from coba.environments.simulated.primitives import SimulatedInteraction\n'), ((11303, 11362), 'coba.exceptions.CobaException', 'CobaException', (['"""Unknown interactions were given to Impute."""'], {}), "('Unknown interactions were given to Impute.')\n", (11316, 11362), False, 'from coba.exceptions import CobaException\n'), ((12749, 12822), 'coba.environments.simulated.primitives.SimulatedInteraction', 'SimulatedInteraction', (['sparse_context', 'sparse_actions', 'interaction.rewards'], {}), '(sparse_context, sparse_actions, interaction.rewards)\n', (12769, 12822), False, 'from coba.environments.simulated.primitives import SimulatedInteraction\n'), ((13430, 13489), 'coba.exceptions.CobaException', 'CobaException', (['"""Unknown interactions were given to Sparse."""'], {}), "('Unknown interactions were given to Sparse.')\n", (13443, 13489), False, 'from coba.exceptions import CobaException\n'), ((3896, 3908), 'math.isnan', 'isnan', (['value'], {}), '(value)\n', (3901, 3908), False, 'from math import isnan\n'), ((7591, 7735), 'coba.environments.logged.primitives.LoggedInteraction', 'LoggedInteraction', (['final_context', 'interaction.action', 'interaction.reward', 'interaction.probability', 'interaction.actions'], {}), '(final_context, interaction.action, interaction.reward,\n interaction.probability, interaction.actions, **interaction.kwargs)\n', (7608, 7735), False, 'from coba.environments.logged.primitives import LoggedInteraction\n'), ((9540, 9552), 'math.isnan', 'isnan', (['value'], {}), '(value)\n', (9545, 9552), False, 'from math import isnan\n'), ((10222, 10234), 'math.isnan', 'isnan', (['value'], {}), '(value)\n', (10227, 10234), False, 'from math import isnan\n'), ((11051, 11150), 'coba.environments.logged.primitives.LoggedInteraction', 'LoggedInteraction', (['final_context', 'interaction.action', 'interaction.reward'], {}), '(final_context, interaction.action, interaction.reward, **\n interaction.kwargs)\n', (11068, 11150), False, 'from coba.environments.logged.primitives import LoggedInteraction\n'), ((13096, 13236), 'coba.environments.logged.primitives.LoggedInteraction', 'LoggedInteraction', (['sparse_context', 'sparse_action', 'interaction.reward', 'interaction.probability', 'interaction.actions'], {}), '(sparse_context, sparse_action, interaction.reward,\n interaction.probability, interaction.actions, **interaction.kwargs)\n', (13113, 13236), False, 'from coba.environments.logged.primitives import LoggedInteraction\n'), ((15504, 15602), 'coba.environments.simulated.primitives.SimulatedInteraction', 'SimulatedInteraction', (['interaction.context', 'interaction.actions', 'rewards'], {}), '(interaction.context, interaction.actions, rewards, **\n interaction.kwargs)\n', (15524, 15602), False, 'from coba.environments.simulated.primitives import SimulatedInteraction\n'), ((16548, 16557), 'coba.pipes.Flatten', 'Flatten', ([], {}), '()\n', (16555, 16557), False, 'from coba.pipes import Flatten\n')]
egoolish/cuml
python/cuml/preprocessing/LabelEncoder.py
5320eff78890b3e9129e04e13437496c0424820d
# # Copyright (c) 2019, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import cudf import nvcategory from librmm_cffi import librmm import numpy as np def _enforce_str(y: cudf.Series) -> cudf.Series: ''' Ensure that nvcategory is being given strings ''' if y.dtype != "object": return y.astype("str") return y def _enforce_npint32(y: cudf.Series) -> cudf.Series: if y.dtype != np.int32: return y.astype(np.int32) return y class LabelEncoder(object): """ An nvcategory based implementation of ordinal label encoding Examples -------- Converting a categorical implementation to a numerical one .. code-block:: python from cudf import DataFrame, Series data = DataFrame({'category': ['a', 'b', 'c', 'd']}) # There are two functionally equivalent ways to do this le = LabelEncoder() le.fit(data.category) # le = le.fit(data.category) also works encoded = le.transform(data.category) print(encoded) # This method is preferred le = LabelEncoder() encoded = le.fit_transform(data.category) print(encoded) # We can assign this to a new column data = data.assign(encoded=encoded) print(data.head()) # We can also encode more data test_data = Series(['c', 'a']) encoded = le.transform(test_data) print(encoded) # After train, ordinal label can be inverse_transform() back to # string labels ord_label = cudf.Series([0, 0, 1, 2, 1]) ord_label = dask_cudf.from_cudf(data, npartitions=2) str_label = le.inverse_transform(ord_label) print(str_label) Output: .. code-block:: python 0 0 1 1 2 2 3 3 dtype: int64 0 0 1 1 2 2 3 3 dtype: int32 category encoded 0 a 0 1 b 1 2 c 2 3 d 3 0 2 1 0 dtype: int64 0 a 1 a 2 b 3 c 4 b dtype: object """ def __init__(self, *args, **kwargs): self._cats: nvcategory.nvcategory = None self._dtype = None self._fitted: bool = False def _check_is_fitted(self): if not self._fitted: raise RuntimeError("Model must first be .fit()") def fit(self, y: cudf.Series) -> "LabelEncoder": """ Fit a LabelEncoder (nvcategory) instance to a set of categories Parameters --------- y : cudf.Series Series containing the categories to be encoded. It's elements may or may not be unique Returns ------- self : LabelEncoder A fitted instance of itself to allow method chaining """ self._dtype = y.dtype y = _enforce_str(y) self._cats = nvcategory.from_strings(y.data) self._fitted = True return self def transform(self, y: cudf.Series) -> cudf.Series: """ Transform an input into its categorical keys. This is intended for use with small inputs relative to the size of the dataset. For fitting and transforming an entire dataset, prefer `fit_transform`. Parameters ---------- y : cudf.Series Input keys to be transformed. Its values should match the categories given to `fit` Returns ------ encoded : cudf.Series The ordinally encoded input series Raises ------ KeyError if a category appears that was not seen in `fit` """ self._check_is_fitted() y = _enforce_str(y) encoded = cudf.Series( nvcategory.from_strings(y.data) .set_keys(self._cats.keys()) .values() ) if -1 in encoded: raise KeyError("Attempted to encode unseen key") return encoded def fit_transform(self, y: cudf.Series) -> cudf.Series: """ Simultaneously fit and transform an input This is functionally equivalent to (but faster than) `LabelEncoder().fit(y).transform(y)` """ self._dtype = y.dtype # Convert y to nvstrings series, if it isn't one y = _enforce_str(y) # Bottleneck is here, despite everything being done on the device self._cats = nvcategory.from_strings(y.data) self._fitted = True arr: librmm.device_array = librmm.device_array( y.data.size(), dtype=np.int32 ) self._cats.values(devptr=arr.device_ctypes_pointer.value) return cudf.Series(arr) def inverse_transform(self, y: cudf.Series) -> cudf.Series: ''' Revert ordinal label to original label Parameters ---------- y : cudf.Series, dtype=int32 Ordinal labels to be reverted Returns ------- reverted : cudf.Series Reverted labels ''' # check LabelEncoder is fitted self._check_is_fitted() # check input type is cudf.Series if not isinstance(y, cudf.Series): raise TypeError( 'Input of type {} is not cudf.Series'.format(type(y))) # check if y's dtype is np.int32, otherwise convert it y = _enforce_npint32(y) # check if ord_label out of bound ord_label = y.unique() category_num = len(self._cats.keys()) for ordi in ord_label: if ordi < 0 or ordi >= category_num: raise ValueError( 'y contains previously unseen label {}'.format(ordi)) # convert ordinal label to string label reverted = cudf.Series(self._cats.gather_strings( y.data.mem.device_ctypes_pointer.value, len(y))) return reverted
[((3543, 3574), 'nvcategory.from_strings', 'nvcategory.from_strings', (['y.data'], {}), '(y.data)\n', (3566, 3574), False, 'import nvcategory\n'), ((5096, 5127), 'nvcategory.from_strings', 'nvcategory.from_strings', (['y.data'], {}), '(y.data)\n', (5119, 5127), False, 'import nvcategory\n'), ((5346, 5362), 'cudf.Series', 'cudf.Series', (['arr'], {}), '(arr)\n', (5357, 5362), False, 'import cudf\n'), ((4427, 4458), 'nvcategory.from_strings', 'nvcategory.from_strings', (['y.data'], {}), '(y.data)\n', (4450, 4458), False, 'import nvcategory\n')]
jhamrick/cogsci-proceedings-analysis
cleaning.py
c3c8b0abd8b9ce639f6de0aea52aec46c2c8abca
import re import difflib import pandas as pd import numpy as np from nameparser import HumanName from nameparser.config import CONSTANTS CONSTANTS.titles.remove("gen") CONSTANTS.titles.remove("prin") def parse_paper_type(section_name): section_name = section_name.strip().lower() if section_name == '': paper_type = None elif re.match('.*workshop.*', section_name): paper_type = 'workshop' elif re.match('.*symposi.*', section_name): paper_type = 'symposium' elif re.match('.*poster.*', section_name): paper_type = 'poster' elif re.match('.*tutorial.*', section_name): paper_type = 'workshop' elif re.match('.*abstract.*', section_name): paper_type = 'poster' elif re.match('.*addenda.*', section_name): paper_type = 'other' else: paper_type = 'talk' return paper_type def clean_authors(authors): cleaned_authors = [] authors = authors.lower() # get rid of commas where there are suffixes, like Jr. or III authors = authors.replace(", jr.", " jr.") authors = authors.replace(", iii", " iii") authors = authors.replace(", ph.d", "") # special cases authors = authors.replace("organizer:", "") authors = authors.replace("roel m,", "roel m.") if authors == 'kozue miyashiro, etsuko harada, t.': author_list = ['kozue miyashiro', 'etsuko harada, t.'] else: author_list = authors.split(",") for author in author_list: author = HumanName(author.lower()) if author.first == '' or author.last == '': raise ValueError("invalid author name: {}".format(author)) author.capitalize() author.string_format = u"{last}, {title} {first} {middle}, {suffix}" cleaned_authors.append(unicode(author)) return cleaned_authors def extract_authors(papers): author_papers = [] for i, paper in papers.iterrows(): authors = clean_authors(paper['authors']) for author in authors: entry = paper.copy().drop('authors') entry['author'] = author author_papers.append(entry) author_papers = pd.DataFrame(author_papers) return author_papers def fix_author_misspellings(papers, G): authors = np.sort(papers['author'].unique()) for i in xrange(len(authors)): window = 20 lower = i + 1 upper = min(i + 1 + window, len(authors) - 1) for j in xrange(len(authors[lower:upper])): author1 = authors[i] author2 = authors[lower + j] if author1 == author2: continue author1_hn = HumanName(author1) author2_hn = HumanName(author2) same_first = author1_hn.first == author2_hn.first same_last = author1_hn.last == author2_hn.last if same_first and same_last: replace = True else: ratio = difflib.SequenceMatcher(None, author1, author2).ratio() if ratio > 0.9: coauthors = set(G[author1].keys()) & set(G[author2].keys()) if len(coauthors) > 0: replace = True else: print u"\nPossible match: '{}' vs '{}' (r={})".format( author1, author2, ratio) print sorted(G[author1].keys()) print sorted(G[author2].keys()) accept = "" while accept not in ("y", "n"): accept = raw_input("Accept? (y/n) ") replace = accept == "y" else: replace = False if replace: num1 = len(papers.groupby('author').get_group(author1)) num2 = len(papers.groupby('author').get_group(author2)) if num1 > num2: oldname = author2 newname = author1 else: oldname = author1 newname = author2 print u"Replacing '{}' with '{}'".format(oldname, newname) papers.loc[papers['author'] == oldname, 'author'] = newname authors[authors == oldname] = newname for neighbor in G[oldname]: if neighbor not in G[newname]: G.add_edge(newname, neighbor) G[newname][neighbor]['weight'] = 0 weight = G[oldname][neighbor]['weight'] G[newname][neighbor]['weight'] += weight G.remove_node(oldname) return papers, G if __name__ == "__main__": import graph papers = pd.read_csv("cogsci_proceedings_raw.csv") papers['type'] = papers['section'].apply(parse_paper_type) papers = extract_authors(papers) G = graph.make_author_graph(papers) papers, G = fix_author_misspellings(papers, G) papers.to_csv("cogsci_proceedings.csv", encoding='utf-8')
[]
CamilaBodack/template-projeto-selecao
quem_foi_para_mar_core/migrations/0004_auto_20200811_1945.py
b0a0cf6070bf8abab626a17af5c315c82368b010
# Generated by Django 3.1 on 2020-08-11 19:45 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('quem_foi_para_mar_core', '0003_auto_20200811_1944'), ] operations = [ migrations.RenameField( model_name='contato', old_name='pescador_id', new_name='pescador', ), ]
[((240, 333), 'django.db.migrations.RenameField', 'migrations.RenameField', ([], {'model_name': '"""contato"""', 'old_name': '"""pescador_id"""', 'new_name': '"""pescador"""'}), "(model_name='contato', old_name='pescador_id',\n new_name='pescador')\n", (262, 333), False, 'from django.db import migrations\n')]
MJ-SEO/py_fuzz
examples/tinytag/fuzz.py
789fbfea21bf644ba4d00554fe4141694b0a190a
from pythonfuzz.main import PythonFuzz from tinytag import TinyTag import io @PythonFuzz def fuzz(buf): try: f = open('temp.mp4', "wb") f.write(buf) f.seek(0) tag = TinyTag.get(f.name) except UnicodeDecodeError: pass if __name__ == '__main__': fuzz()
[((175, 194), 'tinytag.TinyTag.get', 'TinyTag.get', (['f.name'], {}), '(f.name)\n', (186, 194), False, 'from tinytag import TinyTag\n')]
GiulianaPola/select_repeats
venv/lib/python3.8/site-packages/requests/compat.py
17a0d053d4f874e42cf654dd142168c2ec8fbd11
/home/runner/.cache/pip/pool/d1/fc/c7/6cbbdf9c58b6591d28ed792bbd7944946d3f56042698e822a2869787f6
[]
StatMixedML/GPBoost
examples/python-guide/cross_validation_example.py
786d8be61c5c28da0690e167af636a6d777bf9e1
# coding: utf-8 # pylint: disable = invalid-name, C0111 import gpboost as gpb import numpy as np from sklearn.metrics import mean_squared_error import matplotlib.pyplot as plt plt.style.use('ggplot') #--------------------Cross validation for tree-boosting without GP or random effects---------------- print('Simulating data...') # Simulate and create your dataset def f1d(x): """Non-linear function for simulation""" return (1.7 * (1 / (1 + np.exp(-(x - 0.5) * 20)) + 0.75 * x)) x = np.linspace(0, 1, 200, endpoint=True) plt.plot(x, f1d(x), linewidth=2, color="r") plt.title("Mean function") plt.show() def sim_data(n): """Function that simulates data. Two covariates of which only one has an effect""" X = np.random.rand(n, 2) # mean function plus noise y = f1d(X[:, 0]) + np.random.normal(scale=0.1, size=n) return ([X, y]) # Simulate data n = 1000 data = sim_data(2 * n) # create dataset for gpb.train data_train = gpb.Dataset(data[0][0:n, :], data[1][0:n]) # specify your configurations as a dict params = { 'objective': 'regression_l2', 'metric': {'l2', 'l1'}, 'learning_rate': 0.1, 'max_depth': 6, 'min_data_in_leaf': 5, 'verbose': 0 } print('Starting cross-validation...') # do cross-validation cvbst = gpb.cv(params=params, train_set=data_train, num_boost_round=100, early_stopping_rounds=5, nfold=2, verbose_eval=True, show_stdv=False, seed=1) print("Best number of iterations: " + str(np.argmin(cvbst['l2-mean']))) # --------------------Combine tree-boosting and grouped random effects model---------------- print('Simulating data...') # Simulate data def f1d(x): """Non-linear function for simulation""" return (1.7 * (1 / (1 + np.exp(-(x - 0.5) * 20)) + 0.75 * x)) x = np.linspace(0, 1, 200, endpoint=True) plt.figure("Mean function") plt.plot(x, f1d(x), linewidth=2, color="r") plt.title("Mean function") plt.show() n = 1000 # number of samples np.random.seed(1) X = np.random.rand(n, 2) F = f1d(X[:, 0]) # Simulate grouped random effects m = 25 # number of categories / levels for grouping variable group = np.arange(n) # grouping variable for i in range(m): group[int(i * n / m):int((i + 1) * n / m)] = i # incidence matrix relating grouped random effects to samples Z1 = np.zeros((n, m)) for i in range(m): Z1[np.where(group == i), i] = 1 sigma2_1 = 1 ** 2 # random effect variance sigma2 = 0.1 ** 2 # error variance b1 = np.sqrt(sigma2_1) * np.random.normal(size=m) # simulate random effects eps = Z1.dot(b1) xi = np.sqrt(sigma2) * np.random.normal(size=n) # simulate error term y = F + eps + xi # observed data # define GPModel gp_model = gpb.GPModel(group_data=group) gp_model.set_optim_params(params={"optimizer_cov": "fisher_scoring"}) # create dataset for gpb.train data_train = gpb.Dataset(X, y) # specify your configurations as a dict params = { 'objective': 'regression_l2', 'learning_rate': 0.05, 'max_depth': 6, 'min_data_in_leaf': 5, 'verbose': 0 } print('Starting cross-validation...') # do cross-validation cvbst = gpb.cv(params=params, train_set=data_train, gp_model=gp_model, use_gp_model_for_validation=False, num_boost_round=100, early_stopping_rounds=5, nfold=2, verbose_eval=True, show_stdv=False, seed=1) print("Best number of iterations: " + str(np.argmin(cvbst['l2-mean']))) # Include random effect predictions for validation (observe the lower test error) gp_model = gpb.GPModel(group_data=group) print("Running cross validation for GPBoost model and use_gp_model_for_validation = TRUE") cvbst = gpb.cv(params=params, train_set=data_train, gp_model=gp_model, use_gp_model_for_validation=True, num_boost_round=100, early_stopping_rounds=5, nfold=2, verbose_eval=True, show_stdv=Falsem, seed=1) print("Best number of iterations: " + str(np.argmin(cvbst['l2-mean']))) cvbst.best_iteration
[((176, 199), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""ggplot"""'], {}), "('ggplot')\n", (189, 199), True, 'import matplotlib.pyplot as plt\n'), ((492, 529), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(200)'], {'endpoint': '(True)'}), '(0, 1, 200, endpoint=True)\n', (503, 529), True, 'import numpy as np\n'), ((574, 600), 'matplotlib.pyplot.title', 'plt.title', (['"""Mean function"""'], {}), "('Mean function')\n", (583, 600), True, 'import matplotlib.pyplot as plt\n'), ((601, 611), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (609, 611), True, 'import matplotlib.pyplot as plt\n'), ((948, 990), 'gpboost.Dataset', 'gpb.Dataset', (['data[0][0:n, :]', 'data[1][0:n]'], {}), '(data[0][0:n, :], data[1][0:n])\n', (959, 990), True, 'import gpboost as gpb\n'), ((1266, 1416), 'gpboost.cv', 'gpb.cv', ([], {'params': 'params', 'train_set': 'data_train', 'num_boost_round': '(100)', 'early_stopping_rounds': '(5)', 'nfold': '(2)', 'verbose_eval': '(True)', 'show_stdv': '(False)', 'seed': '(1)'}), '(params=params, train_set=data_train, num_boost_round=100,\n early_stopping_rounds=5, nfold=2, verbose_eval=True, show_stdv=False,\n seed=1)\n', (1272, 1416), True, 'import gpboost as gpb\n'), ((1777, 1814), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(200)'], {'endpoint': '(True)'}), '(0, 1, 200, endpoint=True)\n', (1788, 1814), True, 'import numpy as np\n'), ((1815, 1842), 'matplotlib.pyplot.figure', 'plt.figure', (['"""Mean function"""'], {}), "('Mean function')\n", (1825, 1842), True, 'import matplotlib.pyplot as plt\n'), ((1887, 1913), 'matplotlib.pyplot.title', 'plt.title', (['"""Mean function"""'], {}), "('Mean function')\n", (1896, 1913), True, 'import matplotlib.pyplot as plt\n'), ((1914, 1924), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1922, 1924), True, 'import matplotlib.pyplot as plt\n'), ((1955, 1972), 'numpy.random.seed', 'np.random.seed', (['(1)'], {}), '(1)\n', (1969, 1972), True, 'import numpy as np\n'), ((1977, 1997), 'numpy.random.rand', 'np.random.rand', (['n', '(2)'], {}), '(n, 2)\n', (1991, 1997), True, 'import numpy as np\n'), ((2119, 2131), 'numpy.arange', 'np.arange', (['n'], {}), '(n)\n', (2128, 2131), True, 'import numpy as np\n'), ((2290, 2306), 'numpy.zeros', 'np.zeros', (['(n, m)'], {}), '((n, m))\n', (2298, 2306), True, 'import numpy as np\n'), ((2670, 2699), 'gpboost.GPModel', 'gpb.GPModel', ([], {'group_data': 'group'}), '(group_data=group)\n', (2681, 2699), True, 'import gpboost as gpb\n'), ((2814, 2831), 'gpboost.Dataset', 'gpb.Dataset', (['X', 'y'], {}), '(X, y)\n', (2825, 2831), True, 'import gpboost as gpb\n'), ((3079, 3287), 'gpboost.cv', 'gpb.cv', ([], {'params': 'params', 'train_set': 'data_train', 'gp_model': 'gp_model', 'use_gp_model_for_validation': '(False)', 'num_boost_round': '(100)', 'early_stopping_rounds': '(5)', 'nfold': '(2)', 'verbose_eval': '(True)', 'show_stdv': '(False)', 'seed': '(1)'}), '(params=params, train_set=data_train, gp_model=gp_model,\n use_gp_model_for_validation=False, num_boost_round=100,\n early_stopping_rounds=5, nfold=2, verbose_eval=True, show_stdv=False,\n seed=1)\n', (3085, 3287), True, 'import gpboost as gpb\n'), ((3487, 3516), 'gpboost.GPModel', 'gpb.GPModel', ([], {'group_data': 'group'}), '(group_data=group)\n', (3498, 3516), True, 'import gpboost as gpb\n'), ((3616, 3824), 'gpboost.cv', 'gpb.cv', ([], {'params': 'params', 'train_set': 'data_train', 'gp_model': 'gp_model', 'use_gp_model_for_validation': '(True)', 'num_boost_round': '(100)', 'early_stopping_rounds': '(5)', 'nfold': '(2)', 'verbose_eval': '(True)', 'show_stdv': 'Falsem', 'seed': '(1)'}), '(params=params, train_set=data_train, gp_model=gp_model,\n use_gp_model_for_validation=True, num_boost_round=100,\n early_stopping_rounds=5, nfold=2, verbose_eval=True, show_stdv=Falsem,\n seed=1)\n', (3622, 3824), True, 'import gpboost as gpb\n'), ((724, 744), 'numpy.random.rand', 'np.random.rand', (['n', '(2)'], {}), '(n, 2)\n', (738, 744), True, 'import numpy as np\n'), ((2447, 2464), 'numpy.sqrt', 'np.sqrt', (['sigma2_1'], {}), '(sigma2_1)\n', (2454, 2464), True, 'import numpy as np\n'), ((2467, 2491), 'numpy.random.normal', 'np.random.normal', ([], {'size': 'm'}), '(size=m)\n', (2483, 2491), True, 'import numpy as np\n'), ((2541, 2556), 'numpy.sqrt', 'np.sqrt', (['sigma2'], {}), '(sigma2)\n', (2548, 2556), True, 'import numpy as np\n'), ((2559, 2583), 'numpy.random.normal', 'np.random.normal', ([], {'size': 'n'}), '(size=n)\n', (2575, 2583), True, 'import numpy as np\n'), ((799, 834), 'numpy.random.normal', 'np.random.normal', ([], {'scale': '(0.1)', 'size': 'n'}), '(scale=0.1, size=n)\n', (815, 834), True, 'import numpy as np\n'), ((1481, 1508), 'numpy.argmin', 'np.argmin', (["cvbst['l2-mean']"], {}), "(cvbst['l2-mean'])\n", (1490, 1508), True, 'import numpy as np\n'), ((3363, 3390), 'numpy.argmin', 'np.argmin', (["cvbst['l2-mean']"], {}), "(cvbst['l2-mean'])\n", (3372, 3390), True, 'import numpy as np\n'), ((3900, 3927), 'numpy.argmin', 'np.argmin', (["cvbst['l2-mean']"], {}), "(cvbst['l2-mean'])\n", (3909, 3927), True, 'import numpy as np\n'), ((2333, 2353), 'numpy.where', 'np.where', (['(group == i)'], {}), '(group == i)\n', (2341, 2353), True, 'import numpy as np\n'), ((450, 473), 'numpy.exp', 'np.exp', (['(-(x - 0.5) * 20)'], {}), '(-(x - 0.5) * 20)\n', (456, 473), True, 'import numpy as np\n'), ((1735, 1758), 'numpy.exp', 'np.exp', (['(-(x - 0.5) * 20)'], {}), '(-(x - 0.5) * 20)\n', (1741, 1758), True, 'import numpy as np\n')]
Florian-Sabonchi/synapse
synapse/rest/synapse/client/unsubscribe.py
c95b04bb0e719d3f5de1714b442f95a39c6e3634
# Copyright 2022 The Matrix.org Foundation C.I.C. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from synapse.api.errors import StoreError from synapse.http.server import DirectServeHtmlResource, respond_with_html_bytes from synapse.http.servlet import parse_string from synapse.http.site import SynapseRequest if TYPE_CHECKING: from synapse.server import HomeServer class UnsubscribeResource(DirectServeHtmlResource): """ To allow pusher to be delete by clicking a link (ie. GET request) """ SUCCESS_HTML = b"<html><body>You have been unsubscribed</body><html>" def __init__(self, hs: "HomeServer"): super().__init__() self.notifier = hs.get_notifier() self.auth = hs.get_auth() self.pusher_pool = hs.get_pusherpool() self.macaroon_generator = hs.get_macaroon_generator() async def _async_render_GET(self, request: SynapseRequest) -> None: token = parse_string(request, "access_token", required=True) app_id = parse_string(request, "app_id", required=True) pushkey = parse_string(request, "pushkey", required=True) user_id = self.macaroon_generator.verify_delete_pusher_token( token, app_id, pushkey ) try: await self.pusher_pool.remove_pusher( app_id=app_id, pushkey=pushkey, user_id=user_id ) except StoreError as se: if se.code != 404: # This is fine: they're already unsubscribed raise self.notifier.on_new_replication_data() respond_with_html_bytes( request, 200, UnsubscribeResource.SUCCESS_HTML, )
[((1465, 1517), 'synapse.http.servlet.parse_string', 'parse_string', (['request', '"""access_token"""'], {'required': '(True)'}), "(request, 'access_token', required=True)\n", (1477, 1517), False, 'from synapse.http.servlet import parse_string\n'), ((1535, 1581), 'synapse.http.servlet.parse_string', 'parse_string', (['request', '"""app_id"""'], {'required': '(True)'}), "(request, 'app_id', required=True)\n", (1547, 1581), False, 'from synapse.http.servlet import parse_string\n'), ((1600, 1647), 'synapse.http.servlet.parse_string', 'parse_string', (['request', '"""pushkey"""'], {'required': '(True)'}), "(request, 'pushkey', required=True)\n", (1612, 1647), False, 'from synapse.http.servlet import parse_string\n'), ((2111, 2182), 'synapse.http.server.respond_with_html_bytes', 'respond_with_html_bytes', (['request', '(200)', 'UnsubscribeResource.SUCCESS_HTML'], {}), '(request, 200, UnsubscribeResource.SUCCESS_HTML)\n', (2134, 2182), False, 'from synapse.http.server import DirectServeHtmlResource, respond_with_html_bytes\n')]
ravihammond/hanabi-convention-adaptation
pyhanabi/act_group.py
5dafa91742de8e8d5810e8213e0e2771818b2f54
import set_path import sys import torch set_path.append_sys_path() import rela import hanalearn import utils assert rela.__file__.endswith(".so") assert hanalearn.__file__.endswith(".so") class ActGroup: def __init__( self, devices, agent, partner_weight, seed, num_thread, num_game_per_thread, num_player, explore_eps, trinary, replay_buffer, max_len, gamma, convention, convention_act_override, ): self.devices = devices.split(",") self.seed = seed self.num_thread = num_thread self.num_player = num_player self.num_game_per_thread = num_game_per_thread self.explore_eps = explore_eps self.trinary = trinary self.replay_buffer = replay_buffer self.max_len = max_len self.gamma = gamma self.load_partner_model(partner_weight) self.model_runners = [] for dev in self.devices: runner = rela.BatchRunner(agent.clone(dev), dev) runner.add_method("act", 5000) runner.add_method("compute_priority", 100) runner.add_method("compute_target", 5000) partner_runner = rela.BatchRunner( self._partner_agent.clone(dev), dev) partner_runner.add_method("act", 5000) self.model_runners.append([runner, partner_runner]) self.num_runners = len(self.model_runners) self.convention = convention self.convention_act_override = convention_act_override self.create_r2d2_actors() def load_partner_model(self, weight_file): try: state_dict = torch.load(weight_file) except: sys.exit(f"weight_file {weight_file} can't be loaded") overwrite = {} overwrite["vdn"] = False overwrite["device"] = "cuda:0" overwrite["boltzmann_act"] = False if "fc_v.weight" in state_dict.keys(): agent, cfg = utils.load_agent(weight_file, overwrite) self._partner_sad = cfg["sad"] if "sad" in cfg else cfg["greedy_extra"] self._partner_hide_action = bool(cfg["hide_action"]) else: agent = utils.load_supervised_agent(weight_file, "cuda:0") self._partner_sad = False self._partner_hide_action = False agent.train(False) self._partner_agent = agent def create_r2d2_actors(self): convention_act_override = [0, 0] convention_sender = [1, 0] if self.convention_act_override: convention_act_override = [0, 1] convention_sender = [1, 0] actors = [] for i in range(self.num_thread): thread_actors = [] for j in range(self.num_game_per_thread): game_actors = [] actor = hanalearn.R2D2Actor( self.model_runners[i % self.num_runners][0], self.seed, self.num_player, 0, self.explore_eps, [0], # boltzmann_act False, 0, # sad 0, # shuffle_color 0, # hide_action self.trinary, self.replay_buffer, 1, # multi-step self.max_len, self.gamma, self.convention, 1, 0, True, # convention_fict_act_override True, # use_experience ) game_actors.append(actor) self.seed += 1 actor = hanalearn.R2D2Actor( self.model_runners[i % self.num_runners][1], # runner self.num_player, # numPlayer 1, # playerIdx False, # vdn self._partner_sad, # sad self._partner_hide_action, # hideAction self.convention, # convention 0, # conventionSender 1) # conventionOverride game_actors.append(actor) for k in range(self.num_player): partners = game_actors[:] partners[k] = None game_actors[k].set_partners(partners) thread_actors.append(game_actors) actors.append(thread_actors) self.actors = actors print("ActGroup created") def start(self): for runners in self.model_runners: for runner in runners: runner.start() def update_model(self, agent): for runner in self.model_runners: runner[0].update_model(agent)
[((41, 67), 'set_path.append_sys_path', 'set_path.append_sys_path', ([], {}), '()\n', (65, 67), False, 'import set_path\n'), ((119, 148), 'rela.__file__.endswith', 'rela.__file__.endswith', (['""".so"""'], {}), "('.so')\n", (141, 148), False, 'import rela\n'), ((156, 190), 'hanalearn.__file__.endswith', 'hanalearn.__file__.endswith', (['""".so"""'], {}), "('.so')\n", (183, 190), False, 'import hanalearn\n'), ((1722, 1745), 'torch.load', 'torch.load', (['weight_file'], {}), '(weight_file)\n', (1732, 1745), False, 'import torch\n'), ((2040, 2080), 'utils.load_agent', 'utils.load_agent', (['weight_file', 'overwrite'], {}), '(weight_file, overwrite)\n', (2056, 2080), False, 'import utils\n'), ((2264, 2314), 'utils.load_supervised_agent', 'utils.load_supervised_agent', (['weight_file', '"""cuda:0"""'], {}), "(weight_file, 'cuda:0')\n", (2291, 2314), False, 'import utils\n'), ((1774, 1828), 'sys.exit', 'sys.exit', (['f"""weight_file {weight_file} can\'t be loaded"""'], {}), '(f"weight_file {weight_file} can\'t be loaded")\n', (1782, 1828), False, 'import sys\n'), ((2903, 3147), 'hanalearn.R2D2Actor', 'hanalearn.R2D2Actor', (['self.model_runners[i % self.num_runners][0]', 'self.seed', 'self.num_player', '(0)', 'self.explore_eps', '[0]', '(False)', '(0)', '(0)', '(0)', 'self.trinary', 'self.replay_buffer', '(1)', 'self.max_len', 'self.gamma', 'self.convention', '(1)', '(0)', '(True)', '(True)'], {}), '(self.model_runners[i % self.num_runners][0], self.seed,\n self.num_player, 0, self.explore_eps, [0], False, 0, 0, 0, self.trinary,\n self.replay_buffer, 1, self.max_len, self.gamma, self.convention, 1, 0,\n True, True)\n', (2922, 3147), False, 'import hanalearn\n'), ((3766, 3935), 'hanalearn.R2D2Actor', 'hanalearn.R2D2Actor', (['self.model_runners[i % self.num_runners][1]', 'self.num_player', '(1)', '(False)', 'self._partner_sad', 'self._partner_hide_action', 'self.convention', '(0)', '(1)'], {}), '(self.model_runners[i % self.num_runners][1], self.\n num_player, 1, False, self._partner_sad, self._partner_hide_action,\n self.convention, 0, 1)\n', (3785, 3935), False, 'import hanalearn\n')]
vanHoek-dgnm/CARBON-DISC
A_source_code/carbon/code/make_mask.py
3ecd5f4efba5e032d43679ee977064d6b25154a9
# ****************************************************** ## Copyright 2019, PBL Netherlands Environmental Assessment Agency and Utrecht University. ## Reuse permitted under Gnu Public License, GPL v3. # ****************************************************** from netCDF4 import Dataset import numpy as np import general_path import accuflux import ascraster import get_surrounding_cells import make_np_grid def do(mask_asc_fn, mask_id, dum_asc, logical = "EQ", mask_type='np_grid'): dum_mask = ascraster.create_mask(mask_asc_fn, mask_id, logical = logical, numtype=int) mask=[] if mask_type=="rowcol": for i in dum_mask: mask.append(dum_asc.get_row_col_from_index(i)) elif mask_type=="index": for i in dum_mask: mask.append(i) elif mask_type=="latlon": for i in dum_mask: mask.append(dum_asc.get_coord_from_index(i)) elif mask_type=="np_grid": mask = np.zeros((dum_asc.nrows, dum_asc.ncols), dtype=bool) mask[:,:] = True for i in dum_mask: row, col = dum_asc.get_row_col_from_index(i) mask[row,col]=False return mask
[((503, 576), 'ascraster.create_mask', 'ascraster.create_mask', (['mask_asc_fn', 'mask_id'], {'logical': 'logical', 'numtype': 'int'}), '(mask_asc_fn, mask_id, logical=logical, numtype=int)\n', (524, 576), False, 'import ascraster\n'), ((930, 982), 'numpy.zeros', 'np.zeros', (['(dum_asc.nrows, dum_asc.ncols)'], {'dtype': 'bool'}), '((dum_asc.nrows, dum_asc.ncols), dtype=bool)\n', (938, 982), True, 'import numpy as np\n')]
gitFloyd/AAI-Project-2
Code/Dataset.py
c6bb4d389248c3385e58a0c399343322a6dd887f
from io import TextIOWrapper import math from typing import TypeVar import random import os from Settings import Settings class Dataset: DataT = TypeVar('DataT') WIN_NL = "\r\n" LINUX_NL = "\n" def __init__(self, path:str, filename:str, newline:str = WIN_NL) -> None: self.path_ = path self.filename_ = filename self.loaded_ = False self.parsed_ = False self.data_ = None self.nl = newline self.classes_ = set() self.attributes_ = [] self.types_ = [] self.data_ = [] def Data(self) -> list: return self.data_ def Attributes(self) -> list: return self.attributes_ def Types(self) -> list: return self.types_ def Classes(self) -> list: return self.classes_ def Load(self, reload:bool = False) -> DataT: if not self.loaded_ or reload: self.file_ = open(os.sep.join([self.path_, self.filename_])) self.loaded_ = True # If we reload, then we want to reparse as well. return self.Parse_(reload) def Parse_(self, reparse:bool = False) -> DataT: if not self.loaded_: # Silently return instead of raising an exception because # this method is not intended to be used outside of the # class. Although, it can be used that way if needed. return if not self.parsed_ or reparse: self.Parse_Hook_(self.file_.read()) return self.data_ def Parse_Hook_(self, data:str) -> None: self.data_ = data def __del__(self): if self.loaded_: self.file_.close() class ArffRow: ATTR_LABEL = '@ATTRIBUTE ' # need the space at the end here DATA_LABEL = '@DATA' ATTR_LEN = len(ATTR_LABEL) DATA_LEN = len(DATA_LABEL) Attributes = [] Types = [] Data = [] Classes = set() IsCollecting_ = False @classmethod def Reset(cls): cls.Attributes = [] cls.Types = [] cls.Data = [] cls.Classes = set() cls.IsCollecting_ = False def __init__(self, line:str, nl:str) -> None: self.line_ = line self.len_ = len(line) self.nl_ = nl def Len(self) -> str: return self.len_ def HasAttributeLabel(self) -> bool: return self.len_ >= ArffRow.ATTR_LEN and self.line_[0:ArffRow.ATTR_LEN] == ArffRow.ATTR_LABEL def HasDataLabel(self) -> bool: return self.len_ >= ArffRow.DATA_LEN and self.line_[0:ArffRow.DATA_LEN] == ArffRow.DATA_LABEL def GetAttributeData(self) -> tuple[str, str]: namePosition = 0 for (i, char) in enumerate(self.line_[ArffRow.ATTR_LEN:]): if char == '\t': namePosition = i + ArffRow.ATTR_LEN break return (self.line_[ArffRow.ATTR_LEN:namePosition], self.line_[namePosition + 1:]) def Parse(self): if ArffRow.IsCollecting_ and self.len_ > 1: ArffRow.Data.append(self.line_.split(',')) ArffRow.Classes.add(ArffRow.Data[-1][-1]) elif self.HasDataLabel(): ArffRow.IsCollecting_ = True elif self.HasAttributeLabel(): attrData = self.GetAttributeData() ArffRow.Attributes.append(attrData[0]) ArffRow.Types.append(attrData[1]) class ArffDataset(Dataset): # ARFF (Attribute-Relation File Format) #def __init__(self, path:str, filename:str, newline:str = Dataset.WIN_NL) -> None: # super().__init__(path, filename, newline) # # self.parser_ = { # 'attributesLoaded': False, # } def Parse_Hook_(self, data:str) -> None: ArffRow.Reset() rows = [ArffRow(line, self.nl) for line in data.split(self.nl)] for row in rows: row.Parse() for attribute in ArffRow.Attributes: self.attributes_.append(attribute) for typeName in ArffRow.Types: self.types_.append(typeName) for datum in ArffRow.Data: self.data_.append(datum) self.classes_ = self.classes_.union(ArffRow.Classes) classes = list(self.classes_) attribute_maxes = {} for row in self.data_: classIndex = classes.index(row[-1]) row[-1] = [1 if i == classIndex else 0 for (i, value) in enumerate(classes)] for i in range(len(row)): if self.types_[i] == 'REAL': row[i] = float(row[i]) elif self.types_[i] == 'INTEGER': row[i] = int(row[i]) else: continue if i not in attribute_maxes: attribute_maxes[i] = 0 if abs(row[i]) > attribute_maxes[i]: attribute_maxes[i] = row[i] for i in range(len(row)): if self.types_[i] == 'REAL' or self.types_[i] == 'INTEGER': row[i] = row[i] / attribute_maxes[i] self.data_ = self.RowSort(self.data_) def LexOrder(self, item1, item2): num_fields = len(item1) for i in range(num_fields): if item1[i] != item2[i]: if item1[i] < item2[i]: return -1 else: return 1 return 0 def RowSort(self, rows): rows_len = len(rows) if rows_len > 2: result1 = self.RowSort(rows[0: math.floor(rows_len * 0.5)]) result2 = self.RowSort(rows[math.floor(rows_len * 0.5):]) sorted_rows = [] item1 = None item2 = None while len(result1) > 0 or len(result2) > 0: if len(result1) > 0 and len(result2) > 0 and item1 == None and item2 == None: item1 = result1.pop(0) item2 = result2.pop(0) elif len(result1) > 0 and item1 == None: item1 = result1.pop(0) elif len(result2) > 0 and item2 == None: item2 = result2.pop(0) order = 0 if item1 == None and item2 != None: order = 1 elif item1 != None and item2 == None: order = -1 else: order = self.LexOrder(item1, item2) if order == -1: sorted_rows.append(item1) item1 = None elif order == 1: sorted_rows.append(item2) item2 = None else: sorted_rows.append(item1) sorted_rows.append(item2) item1 = None item2 = None if item1 != None: sorted_rows.append(item1) if item2 != None: sorted_rows.append(item2) return sorted_rows elif rows_len == 1: return rows else: order = self.LexOrder(rows[0], rows[1]) if order == 1: rows.reverse() return rows def Fetch(self, *fields:list[str], limit:int = None, offset:int = 0): cols = [] data = [] # iterate over the field names and find the column indices # for names that match the requested field names for (i, field) in enumerate(fields): try: cols.append(self.attributes_.index(field)) except ValueError: pass end = limit if limit != None: end += offset for row in self.data_[offset:end]: data.append([row[i] for i in cols]) return data def FetchFilter_(self, i, value): # Not used any more #if self.types_[i] == 'REAL': # return float(value) #elif self.types_[i] == 'INTEGER': # return int(value) #else: # return value pass def Size(self): length = len(self.data_) if length == 0: return (len(self.data_), None) return (len(self.data_), len(self.data_[0])) def Shuffle(self): random.shuffle(self.data_) class Pistachio(ArffDataset): SettingsKey = 'PistachioDataset' def __init__(self, newline:str = Dataset.WIN_NL) -> None: settings = Settings.Data() super().__init__( path = settings[Pistachio.SettingsKey]['Path'], filename = settings[Pistachio.SettingsKey]['FileName'], newline = newline ) #pist = Pistachio(Dataset.LINUX_NL) # #for row in pist.Load()[0:10]: # print(row)
[((157, 173), 'typing.TypeVar', 'TypeVar', (['"""DataT"""'], {}), "('DataT')\n", (164, 173), False, 'from typing import TypeVar\n'), ((6860, 6886), 'random.shuffle', 'random.shuffle', (['self.data_'], {}), '(self.data_)\n', (6874, 6886), False, 'import random\n'), ((7037, 7052), 'Settings.Settings.Data', 'Settings.Data', ([], {}), '()\n', (7050, 7052), False, 'from Settings import Settings\n'), ((841, 882), 'os.sep.join', 'os.sep.join', (['[self.path_, self.filename_]'], {}), '([self.path_, self.filename_])\n', (852, 882), False, 'import os\n'), ((4738, 4764), 'math.floor', 'math.floor', (['(rows_len * 0.5)'], {}), '(rows_len * 0.5)\n', (4748, 4764), False, 'import math\n'), ((4799, 4825), 'math.floor', 'math.floor', (['(rows_len * 0.5)'], {}), '(rows_len * 0.5)\n', (4809, 4825), False, 'import math\n')]
wahuneke/django-stripe-payments
payments/models.py
5d4b26b025fc3fa75d3a0aeaafd67fb825325c94
import datetime import decimal import json import traceback from django.conf import settings from django.core.mail import EmailMessage from django.db import models from django.utils import timezone from django.template.loader import render_to_string from django.contrib.sites.models import Site import stripe from jsonfield.fields import JSONField from .managers import CustomerManager, ChargeManager, TransferManager from .settings import ( DEFAULT_PLAN, INVOICE_FROM_EMAIL, PAYMENTS_PLANS, plan_from_stripe_id, SEND_EMAIL_RECEIPTS, TRIAL_PERIOD_FOR_USER_CALLBACK, PLAN_QUANTITY_CALLBACK ) from .signals import ( cancelled, card_changed, subscription_made, webhook_processing_error, WEBHOOK_SIGNALS, ) from .utils import convert_tstamp stripe.api_key = settings.STRIPE_SECRET_KEY stripe.api_version = getattr(settings, "STRIPE_API_VERSION", "2012-11-07") class StripeObject(models.Model): stripe_id = models.CharField(max_length=255, unique=True) created_at = models.DateTimeField(default=timezone.now) class Meta: # pylint: disable=E0012,C1001 abstract = True class EventProcessingException(models.Model): event = models.ForeignKey("Event", null=True) data = models.TextField() message = models.CharField(max_length=500) traceback = models.TextField() created_at = models.DateTimeField(default=timezone.now) @classmethod def log(cls, data, exception, event): cls.objects.create( event=event, data=data or "", message=str(exception), traceback=traceback.format_exc() ) def __unicode__(self): return u"<%s, pk=%s, Event=%s>" % (self.message, self.pk, self.event) class Event(StripeObject): kind = models.CharField(max_length=250) livemode = models.BooleanField() customer = models.ForeignKey("Customer", null=True) webhook_message = JSONField() validated_message = JSONField(null=True) valid = models.NullBooleanField(null=True) processed = models.BooleanField(default=False) stripe_connect = models.ForeignKey('ConnectUser', null=True) @property def message(self): return self.validated_message def __unicode__(self): return "%s - %s" % (self.kind, self.stripe_id) def link_customer(self): cus_id = None customer_crud_events = [ "customer.created", "customer.updated", "customer.deleted" ] if self.kind in customer_crud_events: cus_id = self.message["data"]["object"]["id"] else: cus_id = self.message["data"]["object"].get("customer", None) if cus_id is not None: try: self.customer = Customer.objects.get(stripe_id=cus_id) self.save() except Customer.DoesNotExist: pass def link_stripe_connect(self): connect_id = self.message["data"]["object"].get("user_id", None) if connect_id is not None: try: self.stripe_connect = ConnectUser.objects.get(account_id=connect_id) self.save() except ConnectUser.DoesNotExist: pass def validate(self): evt = stripe.Event.retrieve(self.stripe_id) self.validated_message = json.loads( json.dumps( evt.to_dict(), sort_keys=True, cls=stripe.StripeObjectEncoder ) ) if self.webhook_message["data"] == self.validated_message["data"]: self.valid = True else: self.valid = False self.save() def process(self): """ "account.updated", "account.application.deauthorized", "charge.succeeded", "charge.failed", "charge.refunded", "charge.dispute.created", "charge.dispute.updated", "chagne.dispute.closed", "customer.created", "customer.updated", "customer.deleted", "customer.subscription.created", "customer.subscription.updated", "customer.subscription.deleted", "customer.subscription.trial_will_end", "customer.discount.created", "customer.discount.updated", "customer.discount.deleted", "invoice.created", "invoice.updated", "invoice.payment_succeeded", "invoice.payment_failed", "invoiceitem.created", "invoiceitem.updated", "invoiceitem.deleted", "plan.created", "plan.updated", "plan.deleted", "coupon.created", "coupon.updated", "coupon.deleted", "transfer.created", "transfer.updated", "transfer.failed", "ping" """ if self.valid and not self.processed: try: if not self.kind.startswith("plan.") and \ not self.kind.startswith("transfer."): self.link_customer() if not self.stripe_connect: self.link_stripe_connect() if self.kind.startswith("invoice."): Invoice.handle_event(self) elif self.kind.startswith("charge."): if not self.customer: self.link_customer() self.customer.record_charge( self.message["data"]["object"]["id"] ) elif self.kind.startswith("transfer."): Transfer.process_transfer( self, self.message["data"]["object"] ) elif self.kind.startswith("customer.subscription."): if not self.customer: self.link_customer() if self.customer: self.customer.sync_current_subscription() elif self.kind == "customer.deleted": if not self.customer: self.link_customer() self.customer.purge() self.send_signal() self.processed = True self.save() except stripe.StripeError, e: EventProcessingException.log( data=e.http_body, exception=e, event=self ) webhook_processing_error.send( sender=Event, data=e.http_body, exception=e ) def send_signal(self): signal = WEBHOOK_SIGNALS.get(self.kind) if signal: return signal.send(sender=Event, event=self) class Transfer(StripeObject): # pylint: disable=C0301 event = models.ForeignKey(Event, related_name="transfers") amount = models.DecimalField(decimal_places=2, max_digits=9) status = models.CharField(max_length=25) date = models.DateTimeField() description = models.TextField(null=True, blank=True) adjustment_count = models.IntegerField(null=True) adjustment_fees = models.DecimalField(decimal_places=2, max_digits=7, null=True) adjustment_gross = models.DecimalField(decimal_places=2, max_digits=7, null=True) charge_count = models.IntegerField(null=True) charge_fees = models.DecimalField(decimal_places=2, max_digits=7, null=True) charge_gross = models.DecimalField(decimal_places=2, max_digits=9, null=True) collected_fee_count = models.IntegerField(null=True) collected_fee_gross = models.DecimalField(decimal_places=2, max_digits=7, null=True) net = models.DecimalField(decimal_places=2, max_digits=9, null=True) refund_count = models.IntegerField(null=True) refund_fees = models.DecimalField(decimal_places=2, max_digits=7, null=True) refund_gross = models.DecimalField(decimal_places=2, max_digits=7, null=True) validation_count = models.IntegerField(null=True) validation_fees = models.DecimalField(decimal_places=2, max_digits=7, null=True) stripe_connect = models.ForeignKey('ConnectUser', null=True) objects = TransferManager() def update_status(self): self.status = stripe.Transfer.retrieve(self.stripe_id).status self.save() @classmethod def process_transfer(cls, event, transfer): defaults = { "amount": transfer["amount"] / decimal.Decimal("100"), "status": transfer["status"], "date": convert_tstamp(transfer, "date"), "description": transfer.get("description", "") } summary = transfer.get("summary") if summary: defaults.update({ "adjustment_count": summary.get("adjustment_count"), "adjustment_fees": summary.get("adjustment_fees"), "adjustment_gross": summary.get("adjustment_gross"), "charge_count": summary.get("charge_count"), "charge_fees": summary.get("charge_fees"), "charge_gross": summary.get("charge_gross"), "collected_fee_count": summary.get("collected_fee_count"), "collected_fee_gross": summary.get("collected_fee_gross"), "refund_count": summary.get("refund_count"), "refund_fees": summary.get("refund_fees"), "refund_gross": summary.get("refund_gross"), "validation_count": summary.get("validation_count"), "validation_fees": summary.get("validation_fees"), "net": summary.get("net") / decimal.Decimal("100") }) for field in defaults: if field.endswith("fees") or field.endswith("gross"): defaults[field] = defaults[field] / decimal.Decimal("100") if event.kind == "transfer.paid": defaults.update({"event": event}) obj, created = Transfer.objects.get_or_create( stripe_id=transfer["id"], defaults=defaults ) else: obj, created = Transfer.objects.get_or_create( stripe_id=transfer["id"], event=event, defaults=defaults ) if event.stripe_connect: obj.stripe_connect = event.stripe_connect if created and summary: for fee in summary.get("charge_fee_details", []): obj.charge_fee_details.create( amount=fee["amount"] / decimal.Decimal("100"), application=fee.get("application", ""), description=fee.get("description", ""), kind=fee["type"] ) else: obj.status = transfer["status"] obj.save() if event.kind == "transfer.updated": obj.update_status() class TransferChargeFee(models.Model): transfer = models.ForeignKey(Transfer, related_name="charge_fee_details") amount = models.DecimalField(decimal_places=2, max_digits=7) application = models.TextField(null=True, blank=True) description = models.TextField(null=True, blank=True) kind = models.CharField(max_length=150) created_at = models.DateTimeField(default=timezone.now) class Customer(StripeObject): user = models.OneToOneField( getattr(settings, "AUTH_USER_MODEL", "auth.User"), null=True ) card_fingerprint = models.CharField(max_length=200, blank=True) card_last_4 = models.CharField(max_length=4, blank=True) card_kind = models.CharField(max_length=50, blank=True) date_purged = models.DateTimeField(null=True, editable=False) objects = CustomerManager() def __unicode__(self): return unicode(self.user) @property def stripe_customer(self): return stripe.Customer.retrieve(self.stripe_id) def purge(self): try: self.stripe_customer.delete() except stripe.InvalidRequestError as e: if e.message.startswith("No such customer:"): # The exception was thrown because the customer was already # deleted on the stripe side, ignore the exception pass else: # The exception was raised for another reason, re-raise it raise self.user = None self.card_fingerprint = "" self.card_last_4 = "" self.card_kind = "" self.date_purged = timezone.now() self.save() def delete(self, using=None): # Only way to delete a customer is to use SQL self.purge() def can_charge(self): return self.card_fingerprint and \ self.card_last_4 and \ self.card_kind and \ self.date_purged is None def has_active_subscription(self): try: return self.current_subscription.is_valid() except CurrentSubscription.DoesNotExist: return False def cancel(self, at_period_end=True): try: current = self.current_subscription except CurrentSubscription.DoesNotExist: return sub = self.stripe_customer.cancel_subscription( at_period_end=at_period_end ) current.status = sub.status current.cancel_at_period_end = sub.cancel_at_period_end current.current_period_end = convert_tstamp(sub, "current_period_end") current.save() cancelled.send(sender=self, stripe_response=sub) @classmethod def create(cls, user, card=None, plan=None, charge_immediately=True): if card and plan: plan = PAYMENTS_PLANS[plan]["stripe_plan_id"] elif DEFAULT_PLAN: plan = PAYMENTS_PLANS[DEFAULT_PLAN]["stripe_plan_id"] else: plan = None trial_end = None if TRIAL_PERIOD_FOR_USER_CALLBACK and plan: trial_days = TRIAL_PERIOD_FOR_USER_CALLBACK(user) trial_end = datetime.datetime.utcnow() + datetime.timedelta( days=trial_days ) stripe_customer = stripe.Customer.create( email=user.email, card=card, plan=plan or DEFAULT_PLAN, trial_end=trial_end ) if stripe_customer.active_card: cus = cls.objects.create( user=user, stripe_id=stripe_customer.id, card_fingerprint=stripe_customer.active_card.fingerprint, card_last_4=stripe_customer.active_card.last4, card_kind=stripe_customer.active_card.type ) else: cus = cls.objects.create( user=user, stripe_id=stripe_customer.id, ) if plan: if stripe_customer.subscription: cus.sync_current_subscription(cu=stripe_customer) if charge_immediately: cus.send_invoice() return cus def update_card(self, token): cu = self.stripe_customer cu.card = token cu.save() self.save_card(cu) def save_card(self, cu=None): cu = cu or self.stripe_customer active_card = cu.active_card self.card_fingerprint = active_card.fingerprint self.card_last_4 = active_card.last4 self.card_kind = active_card.type self.save() card_changed.send(sender=self, stripe_response=cu) def retry_unpaid_invoices(self): self.sync_invoices() for inv in self.invoices.filter(paid=False, closed=False): try: inv.retry() # Always retry unpaid invoices except stripe.InvalidRequestError, error: if error.message != "Invoice is already paid": raise error def send_invoice(self): try: invoice = stripe.Invoice.create(customer=self.stripe_id) if invoice.amount_due > 0: invoice.pay() return True except stripe.InvalidRequestError: return False # There was nothing to invoice def sync(self, cu=None): cu = cu or self.stripe_customer updated = False if hasattr(cu, "active_card") and cu.active_card: # Test to make sure the card has changed, otherwise do not update it # (i.e. refrain from sending any signals) if (self.card_last_4 != cu.active_card.last4 or self.card_fingerprint != cu.active_card.fingerprint or self.card_kind != cu.active_card.type): updated = True self.card_last_4 = cu.active_card.last4 self.card_fingerprint = cu.active_card.fingerprint self.card_kind = cu.active_card.type else: updated = True self.card_fingerprint = "" self.card_last_4 = "" self.card_kind = "" if updated: self.save() card_changed.send(sender=self, stripe_response=cu) def sync_invoices(self, cu=None): cu = cu or self.stripe_customer for invoice in cu.invoices().data: Invoice.sync_from_stripe_data(invoice, send_receipt=False) def sync_charges(self, cu=None): cu = cu or self.stripe_customer for charge in cu.charges().data: self.record_charge(charge.id) def sync_current_subscription(self, cu=None): cu = cu or self.stripe_customer sub = getattr(cu, "subscription", None) if sub is None: try: self.current_subscription.delete() except CurrentSubscription.DoesNotExist: pass else: try: sub_obj = self.current_subscription sub_obj.plan = plan_from_stripe_id(sub.plan.id) sub_obj.current_period_start = convert_tstamp( sub.current_period_start ) sub_obj.current_period_end = convert_tstamp( sub.current_period_end ) sub_obj.amount = (sub.plan.amount / decimal.Decimal("100")) sub_obj.status = sub.status sub_obj.cancel_at_period_end = sub.cancel_at_period_end sub_obj.start = convert_tstamp(sub.start) sub_obj.quantity = sub.quantity sub_obj.save() except CurrentSubscription.DoesNotExist: sub_obj = CurrentSubscription.objects.create( customer=self, plan=plan_from_stripe_id(sub.plan.id), current_period_start=convert_tstamp( sub.current_period_start ), current_period_end=convert_tstamp( sub.current_period_end ), amount=(sub.plan.amount / decimal.Decimal("100")), status=sub.status, cancel_at_period_end=sub.cancel_at_period_end, start=convert_tstamp(sub.start), quantity=sub.quantity ) if sub.trial_start and sub.trial_end: sub_obj.trial_start = convert_tstamp(sub.trial_start) sub_obj.trial_end = convert_tstamp(sub.trial_end) sub_obj.save() return sub_obj def update_plan_quantity(self, quantity, charge_immediately=False): self.subscribe( plan=plan_from_stripe_id( self.stripe_customer.subscription.plan.id ), quantity=quantity, charge_immediately=charge_immediately ) def subscribe(self, plan, quantity=None, trial_days=None, charge_immediately=True, token=None, coupon=None): if quantity is None: if PLAN_QUANTITY_CALLBACK is not None: quantity = PLAN_QUANTITY_CALLBACK(self) else: quantity = 1 cu = self.stripe_customer subscription_params = {} if trial_days: subscription_params["trial_end"] = \ datetime.datetime.utcnow() + datetime.timedelta(days=trial_days) if token: subscription_params["card"] = token subscription_params["plan"] = PAYMENTS_PLANS[plan]["stripe_plan_id"] subscription_params["quantity"] = quantity subscription_params["coupon"] = coupon resp = cu.update_subscription(**subscription_params) if token: # Refetch the stripe customer so we have the updated card info cu = self.stripe_customer self.save_card(cu) self.sync_current_subscription(cu) if charge_immediately: self.send_invoice() subscription_made.send(sender=self, plan=plan, stripe_response=resp) return resp def charge(self, amount, currency="usd", description=None, send_receipt=True, application_fee=None, stripe_connect_user=None): """ This method expects `amount` and 'application_fee' to be a Decimal type representing a dollar amount. It will be converted to cents so any decimals beyond two will be ignored. """ if not isinstance(amount, decimal.Decimal) or (not application_fee is None and not isinstance(application_fee, decimal.Decimal)): raise ValueError( "You must supply a decimal value representing dollars for amount and for application_fee (if supplied)." ) charge_args = { 'amount': int(amount * 100), 'currency': currency, 'description': description, } if stripe_connect_user and isinstance(stripe_connect_user, ConnectUser): charge_args['card'] = stripe.Token.create(customer=self.stripe_id, api_key=stripe_connect_user.stripe_access_token) charge_args['api_key'] = stripe_connect_user.stripe_access_token else: charge_args['customer'] = self.stripe_id if application_fee: charge_args['application_fee'] = int(application_fee * 100) resp = stripe.Charge.create(**charge_args) obj = self.record_charge(resp["id"], stripe_connect_user) if send_receipt: obj.send_receipt() return obj def record_charge(self, charge_id, stripe_connect_user=None): if stripe_connect_user and isinstance(stripe_connect_user, ConnectUser): data = stripe.Charge.retrieve(charge_id, api_key=stripe_connect_user.stripe_access_token) else: data = stripe.Charge.retrieve(charge_id) return Charge.sync_from_stripe_data(data) class ConnectUser(models.Model): """ A user in your system who you may be routing payments to through "Stripe Connect" """ user = models.OneToOneField( getattr(settings, "AUTH_USER_MODEL", "auth.User"), null=True ) # when a webhook is received for an action related to a ConnectUser, a 'user_id' will be provided # This is the same as an account id account_id = models.CharField(max_length=100) stripe_access_token = models.CharField(max_length=100) stripe_publishable_key = models.CharField(max_length=100) @staticmethod def account_id_lookup(stripe_access_token): data = stripe.Account.retrieve(api_key=stripe_access_token) return data.get('id', None) def __unicode__(self): return unicode(self.user) class CurrentSubscription(models.Model): customer = models.OneToOneField( Customer, related_name="current_subscription", null=True ) plan = models.CharField(max_length=100) quantity = models.IntegerField() start = models.DateTimeField() # trialing, active, past_due, canceled, or unpaid status = models.CharField(max_length=25) cancel_at_period_end = models.BooleanField(default=False) canceled_at = models.DateTimeField(blank=True, null=True) current_period_end = models.DateTimeField(blank=True, null=True) current_period_start = models.DateTimeField(blank=True, null=True) ended_at = models.DateTimeField(blank=True, null=True) trial_end = models.DateTimeField(blank=True, null=True) trial_start = models.DateTimeField(blank=True, null=True) amount = models.DecimalField(decimal_places=2, max_digits=7) created_at = models.DateTimeField(default=timezone.now) @property def total_amount(self): return self.amount * self.quantity def plan_display(self): return PAYMENTS_PLANS[self.plan]["name"] def status_display(self): return self.status.replace("_", " ").title() def is_period_current(self): return self.current_period_end > timezone.now() def is_status_current(self): return self.status in ["trialing", "active"] def is_valid(self): if not self.is_status_current(): return False if self.cancel_at_period_end and not self.is_period_current(): return False return True def delete(self, using=None): # pylint: disable=E1002 """ Set values to None while deleting the object so that any lingering references will not show previous values (such as when an Event signal is triggered after a subscription has been deleted) """ super(CurrentSubscription, self).delete(using=using) self.plan = None self.status = None self.quantity = 0 self.amount = 0 class Invoice(models.Model): stripe_id = models.CharField(max_length=255) customer = models.ForeignKey(Customer, related_name="invoices") attempted = models.NullBooleanField() attempts = models.PositiveIntegerField(null=True) closed = models.BooleanField(default=False) paid = models.BooleanField(default=False) period_end = models.DateTimeField() period_start = models.DateTimeField() subtotal = models.DecimalField(decimal_places=2, max_digits=7) total = models.DecimalField(decimal_places=2, max_digits=7) date = models.DateTimeField() charge = models.CharField(max_length=50, blank=True) created_at = models.DateTimeField(default=timezone.now) stripe_connect = models.ForeignKey(ConnectUser, null=True) class Meta: # pylint: disable=E0012,C1001 ordering = ["-date"] def retry(self): if not self.paid and not self.closed: inv = stripe.Invoice.retrieve(self.stripe_id) inv.pay() return True return False def status(self): if self.paid: return "Paid" return "Open" @classmethod def sync_from_stripe_data(cls, stripe_invoice, send_receipt=True, stripe_connect=None): c = Customer.objects.get(stripe_id=stripe_invoice["customer"]) period_end = convert_tstamp(stripe_invoice, "period_end") period_start = convert_tstamp(stripe_invoice, "period_start") date = convert_tstamp(stripe_invoice, "date") invoice, created = cls.objects.get_or_create( stripe_id=stripe_invoice["id"], defaults=dict( customer=c, attempted=stripe_invoice["attempted"], attempts=stripe_invoice["attempt_count"], closed=stripe_invoice["closed"], paid=stripe_invoice["paid"], period_end=period_end, period_start=period_start, subtotal=stripe_invoice["subtotal"] / decimal.Decimal("100"), total=stripe_invoice["total"] / decimal.Decimal("100"), date=date, charge=stripe_invoice.get("charge") or "", stripe_connect=stripe_connect ) ) if not created: # pylint: disable=C0301 invoice.attempted = stripe_invoice["attempted"] invoice.attempts = stripe_invoice["attempt_count"] invoice.closed = stripe_invoice["closed"] invoice.paid = stripe_invoice["paid"] invoice.period_end = period_end invoice.period_start = period_start invoice.subtotal = stripe_invoice["subtotal"] / decimal.Decimal("100") invoice.total = stripe_invoice["total"] / decimal.Decimal("100") invoice.date = date invoice.charge = stripe_invoice.get("charge") or "" invoice.stripe_connect = stripe_connect invoice.save() for item in stripe_invoice["lines"].get("data", []): period_end = convert_tstamp(item["period"], "end") period_start = convert_tstamp(item["period"], "start") if item.get("plan"): plan = plan_from_stripe_id(item["plan"]["id"]) else: plan = "" inv_item, inv_item_created = invoice.items.get_or_create( stripe_id=item["id"], defaults=dict( amount=(item["amount"] / decimal.Decimal("100")), currency=item["currency"], proration=item["proration"], description=item.get("description") or "", line_type=item["type"], plan=plan, period_start=period_start, period_end=period_end, quantity=item.get("quantity") ) ) if not inv_item_created: inv_item.amount = (item["amount"] / decimal.Decimal("100")) inv_item.currency = item["currency"] inv_item.proration = item["proration"] inv_item.description = item.get("description") or "" inv_item.line_type = item["type"] inv_item.plan = plan inv_item.period_start = period_start inv_item.period_end = period_end inv_item.quantity = item.get("quantity") inv_item.save() if stripe_invoice.get("charge"): obj = c.record_charge(stripe_invoice["charge"]) obj.invoice = invoice obj.save() if send_receipt: obj.send_receipt() return invoice @classmethod def handle_event(cls, event, send_receipt=SEND_EMAIL_RECEIPTS): valid_events = ["invoice.payment_failed", "invoice.payment_succeeded"] if event.kind in valid_events: invoice_data = event.message["data"]["object"] stripe_invoice = stripe.Invoice.retrieve(invoice_data["id"]) cls.sync_from_stripe_data(stripe_invoice, send_receipt=send_receipt, stripe_connect=event.stripe_connect) class InvoiceItem(models.Model): stripe_id = models.CharField(max_length=255) created_at = models.DateTimeField(default=timezone.now) invoice = models.ForeignKey(Invoice, related_name="items") amount = models.DecimalField(decimal_places=2, max_digits=7) currency = models.CharField(max_length=10) period_start = models.DateTimeField() period_end = models.DateTimeField() proration = models.BooleanField(default=False) line_type = models.CharField(max_length=50) description = models.CharField(max_length=200, blank=True) plan = models.CharField(max_length=100, blank=True) quantity = models.IntegerField(null=True) def plan_display(self): return PAYMENTS_PLANS[self.plan]["name"] class Charge(StripeObject): customer = models.ForeignKey(Customer, related_name="charges", null=True) invoice = models.ForeignKey(Invoice, null=True, related_name="charges") card_last_4 = models.CharField(max_length=4, blank=True) card_kind = models.CharField(max_length=50, blank=True) amount = models.DecimalField(decimal_places=2, max_digits=7, null=True) amount_refunded = models.DecimalField( decimal_places=2, max_digits=7, null=True ) description = models.TextField(blank=True) paid = models.NullBooleanField(null=True) disputed = models.NullBooleanField(null=True) refunded = models.NullBooleanField(null=True) fee = models.DecimalField(decimal_places=2, max_digits=7, null=True) receipt_sent = models.BooleanField(default=False) charge_created = models.DateTimeField(null=True, blank=True) stripe_connect = models.ForeignKey(ConnectUser, null=True) objects = ChargeManager() def calculate_refund_amount(self, amount=None): eligible_to_refund = self.amount - (self.amount_refunded or 0) if amount: amount_to_refund = min(eligible_to_refund, amount) else: amount_to_refund = eligible_to_refund return int(amount_to_refund * 100) def refund(self, amount=None): # pylint: disable=E1121 charge_obj = stripe.Charge.retrieve( self.stripe_id ).refund( amount=self.calculate_refund_amount(amount=amount) ) Charge.sync_from_stripe_data(charge_obj) @classmethod def sync_from_stripe_data(cls, data): obj, _ = Charge.objects.get_or_create( stripe_id=data["id"] ) customer_id = data.get("customer", None); customer = Customer.objects.get(stripe_id=customer_id) if customer_id else None obj.customer = customer invoice_id = data.get("invoice", None) if Invoice.objects.filter(stripe_id=invoice_id).exists(): obj.invoice = obj.customer.invoices.get(stripe_id=invoice_id) obj.card_last_4 = data["card"]["last4"] obj.card_kind = data["card"]["type"] obj.amount = (data["amount"] / decimal.Decimal("100")) obj.paid = data["paid"] obj.refunded = data["refunded"] obj.fee = (data["fee"] / decimal.Decimal("100")) obj.disputed = data["dispute"] is not None obj.charge_created = convert_tstamp(data, "created") if data.get("description"): obj.description = data["description"] if data.get("amount_refunded"): # pylint: disable=C0301 obj.amount_refunded = (data["amount_refunded"] / decimal.Decimal("100")) if data["refunded"]: obj.amount_refunded = (data["amount"] / decimal.Decimal("100")) user_id = data.get("user_id", None) if user_id and ConnectUser.objects.filter(account_id=user_id).exists(): obj.stripe_connect = ConnectUser.objects.get(account_id=user_id) obj.save() return obj def send_receipt(self): if not self.receipt_sent and self.customer: site = Site.objects.get_current() protocol = getattr(settings, "DEFAULT_HTTP_PROTOCOL", "http") ctx = { "charge": self, "site": site, "protocol": protocol, } subject = render_to_string("payments/email/subject.txt", ctx) subject = subject.strip() message = render_to_string("payments/email/body.txt", ctx) num_sent = EmailMessage( subject, message, to=[self.customer.user.email], from_email=INVOICE_FROM_EMAIL ).send() self.receipt_sent = num_sent > 0 self.save() @classmethod def create(cls, card, amount, currency="usd", description=None, application_fee=None, stripe_connect_user=None): """ This method expects `amount` and 'application_fee' to be a Decimal type representing a dollar amount. It will be converted to cents so any decimals beyond two will be ignored. """ if not isinstance(amount, decimal.Decimal) or (not application_fee is None and not isinstance(application_fee, decimal.Decimal)): raise ValueError( "You must supply a decimal value representing dollars for amount and for application_fee (if supplied)." ) charge_args = { 'amount': int(amount * 100), 'currency': currency, 'description': description, 'card': card, } if stripe_connect_user and isinstance(stripe_connect_user, ConnectUser): charge_args['api_key'] = stripe_connect_user.stripe_access_token elif stripe_connect_user: charge_args['api_key'] = stripe_connect_user if application_fee: charge_args['application_fee'] = int(application_fee * 100) resp = stripe.Charge.create(**charge_args) return Charge.sync_from_stripe_data(resp)
[]
tomzhang/mars-1
mars/tensor/base/flip.py
6f1d85e37eb1b383251314cb0ba13e06288af03d
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 1999-2020 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..datasource import tensor as astensor def flip(m, axis): """ Reverse the order of elements in a tensor along the given axis. The shape of the array is preserved, but the elements are reordered. Parameters ---------- m : array_like Input tensor. axis : integer Axis in tensor, which entries are reversed. Returns ------- out : array_like A view of `m` with the entries of axis reversed. Since a view is returned, this operation is done in constant time. See Also -------- flipud : Flip a tensor vertically (axis=0). fliplr : Flip a tensor horizontally (axis=1). Notes ----- flip(m, 0) is equivalent to flipud(m). flip(m, 1) is equivalent to fliplr(m). flip(m, n) corresponds to ``m[...,::-1,...]`` with ``::-1`` at position n. Examples -------- >>> import mars.tensor as mt >>> A = mt.arange(8).reshape((2,2,2)) >>> A.execute() array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]) >>> mt.flip(A, 0).execute() array([[[4, 5], [6, 7]], [[0, 1], [2, 3]]]) >>> mt.flip(A, 1).execute() array([[[2, 3], [0, 1]], [[6, 7], [4, 5]]]) >>> A = mt.random.randn(3,4,5) >>> mt.all(mt.flip(A,2) == A[:,:,::-1,...]).execute() True """ m = astensor(m) sl = [slice(None)] * m.ndim try: sl[axis] = slice(None, None, -1) except IndexError: raise ValueError("axis=%i is invalid for the %i-dimensional input tensor" % (axis, m.ndim)) return m[tuple(sl)]
[]
imabackstabber/mmcv
tests/test_ops/test_upfirdn2d.py
b272c09b463f00fd7fdd455f7bd4a055f9995521
# Copyright (c) OpenMMLab. All rights reserved. import pytest import torch _USING_PARROTS = True try: from parrots.autograd import gradcheck except ImportError: from torch.autograd import gradcheck, gradgradcheck _USING_PARROTS = False class TestUpFirDn2d: """Unit test for UpFirDn2d. Here, we just test the basic case of upsample version. More gerneal tests will be included in other unit test for UpFirDnUpsample and UpFirDnDownSample modules. """ @classmethod def setup_class(cls): kernel_1d = torch.tensor([1., 3., 3., 1.]) cls.kernel = kernel_1d[:, None] * kernel_1d[None, :] cls.kernel = cls.kernel / cls.kernel.sum() cls.factor = 2 pad = cls.kernel.shape[0] - cls.factor cls.pad = ((pad + 1) // 2 + cls.factor - 1, pad // 2) cls.input_tensor = torch.randn((2, 3, 4, 4), requires_grad=True) @pytest.mark.skipif(not torch.cuda.is_available(), reason='requires cuda') def test_upfirdn2d(self): from mmcv.ops import upfirdn2d if _USING_PARROTS: gradcheck( upfirdn2d, (self.input_tensor.cuda(), self.kernel.type_as( self.input_tensor).cuda(), self.factor, 1, self.pad), delta=1e-4, pt_atol=1e-3) else: gradcheck( upfirdn2d, (self.input_tensor.cuda(), self.kernel.type_as( self.input_tensor).cuda(), self.factor, 1, self.pad), eps=1e-4, atol=1e-3) gradgradcheck( upfirdn2d, (self.input_tensor.cuda(), self.kernel.type_as( self.input_tensor).cuda(), self.factor, 1, self.pad), eps=1e-4, atol=1e-3)
[((550, 584), 'torch.tensor', 'torch.tensor', (['[1.0, 3.0, 3.0, 1.0]'], {}), '([1.0, 3.0, 3.0, 1.0])\n', (562, 584), False, 'import torch\n'), ((853, 898), 'torch.randn', 'torch.randn', (['(2, 3, 4, 4)'], {'requires_grad': '(True)'}), '((2, 3, 4, 4), requires_grad=True)\n', (864, 898), False, 'import torch\n'), ((928, 953), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (951, 953), False, 'import torch\n')]
rmorain/kirby
dataset_creation/description_task2.py
ef115dbaed4acd1b23c3e10ca3b496f05b9a2382
import pandas as pd from tqdm import tqdm data_list = [] def get_questions(row): global data_list random_samples = df.sample(n=num_choices - 1) distractors = random_samples["description"].tolist() data = { "question": "What is " + row["label"] + "?", "correct": row["description"], "distractors": distractors, "knowledge": "{" + row["label"] + " : " + row["description"] + "}", } data_list.append(data) debug = False num_choices = 4 tqdm.pandas(desc="Progress") df = pd.read_pickle("data/augmented_datasets/pickle/label_description.pkl") if debug: df = df.iloc[:10] df = df.progress_apply(get_questions, axis=1) new_df = pd.DataFrame(data_list) if not debug: new_df.to_pickle("data/augmented_datasets/pickle/description_qa_knowledge.pkl") else: __import__("pudb").set_trace()
[((495, 523), 'tqdm.tqdm.pandas', 'tqdm.pandas', ([], {'desc': '"""Progress"""'}), "(desc='Progress')\n", (506, 523), False, 'from tqdm import tqdm\n'), ((529, 599), 'pandas.read_pickle', 'pd.read_pickle', (['"""data/augmented_datasets/pickle/label_description.pkl"""'], {}), "('data/augmented_datasets/pickle/label_description.pkl')\n", (543, 599), True, 'import pandas as pd\n'), ((689, 712), 'pandas.DataFrame', 'pd.DataFrame', (['data_list'], {}), '(data_list)\n', (701, 712), True, 'import pandas as pd\n')]
gonzoua/scarab
scarab/commands/attach.py
b86474527b7b2ec30710ae79ea3f1cf5b7a93005
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 """ 'attach' command implementation''' """ from base64 import b64encode import argparse import magic from ..bugzilla import BugzillaError from ..context import bugzilla_instance from .. import ui from .base import Base class Command(Base): """Attach file to the existing PR""" def register(self, subparsers): """Register 'attach' parser""" parser = subparsers.add_parser('attach') parser.set_defaults(func=self.run) parser.add_argument('attachment', type=str, help='path to the attachment') parser.add_argument('pr', type=int, help='PR number') parser.add_argument('-b', '--batch', action='store_true', \ help='batch mode, only print newly created attachment\'s id') parser.add_argument('-s', '--summary', dest='summary', help='summary for the attachment') comment_group = parser.add_mutually_exclusive_group() comment_group.add_argument('-c', '--comment', dest='comment', help='comment text') comment_group.add_argument('-F', '--comment-file', dest='comment_file', \ type=argparse.FileType('r'), help='file with comment text') parser.add_argument('-t', '--content-type', dest='content_type', help='file content type') def run(self, args): """Run 'attach' command""" bugzilla = bugzilla_instance() content_type = args.content_type # Read data and encode it to base64 try: with open(args.attachment, 'rb') as attach_file: data = attach_file.read() except IOError as ex: ui.fatal('error reading file: {}'.format(str(ex))) comment = args.comment if comment is None: if args.comment_file: comment = args.comment_file.read() if comment is None: if args.batch: comment = '' else: comment = ui.edit_message() # Try and guess file content type if content_type is None: mime = magic.Magic(mime=True) content_type = mime.from_file(args.attachment) try: attachment = bugzilla.add_attachment(args.pr, args.attachment, data, \ summary=args.summary, comment=comment, content_type=content_type) except BugzillaError as ex: ui.fatal('Bugzilla error: {}'.format(ex.message)) if args.batch: ui.output('{}'.format(attachment)) else: ui.output('New attachment {} has been added to bug {}'.format(attachment, args.pr)) ui.output('Attachment URL: {}'.format(bugzilla.attachment_url(attachment))) ui.output('Bug URL: {}'.format(bugzilla.bug_url(args.pr)))
[((2079, 2101), 'magic.Magic', 'magic.Magic', ([], {'mime': '(True)'}), '(mime=True)\n', (2090, 2101), False, 'import magic\n'), ((1145, 1167), 'argparse.FileType', 'argparse.FileType', (['"""r"""'], {}), "('r')\n", (1162, 1167), False, 'import argparse\n')]
chabotsi/pygmsh
test/test_airfoil.py
f2c26d9193c63efd9fa7676ea0860a18de7e8b52
#!/usr/bin/env python # -*- coding: utf-8 -*- # import numpy import pygmsh from helpers import compute_volume def test(): # Airfoil coordinates airfoil_coordinates = numpy.array([ [1.000000, 0.000000, 0.0], [0.999023, 0.000209, 0.0], [0.996095, 0.000832, 0.0], [0.991228, 0.001863, 0.0], [0.984438, 0.003289, 0.0], [0.975752, 0.005092, 0.0], [0.965201, 0.007252, 0.0], [0.952825, 0.009744, 0.0], [0.938669, 0.012538, 0.0], [0.922788, 0.015605, 0.0], [0.905240, 0.018910, 0.0], [0.886092, 0.022419, 0.0], [0.865417, 0.026096, 0.0], [0.843294, 0.029903, 0.0], [0.819807, 0.033804, 0.0], [0.795047, 0.037760, 0.0], [0.769109, 0.041734, 0.0], [0.742094, 0.045689, 0.0], [0.714107, 0.049588, 0.0], [0.685258, 0.053394, 0.0], [0.655659, 0.057071, 0.0], [0.625426, 0.060584, 0.0], [0.594680, 0.063897, 0.0], [0.563542, 0.066977, 0.0], [0.532136, 0.069789, 0.0], [0.500587, 0.072303, 0.0], [0.469022, 0.074486, 0.0], [0.437567, 0.076312, 0.0], [0.406350, 0.077752, 0.0], [0.375297, 0.078743, 0.0], [0.344680, 0.079180, 0.0], [0.314678, 0.079051, 0.0], [0.285418, 0.078355, 0.0], [0.257025, 0.077096, 0.0], [0.229618, 0.075287, 0.0], [0.203313, 0.072945, 0.0], [0.178222, 0.070096, 0.0], [0.154449, 0.066770, 0.0], [0.132094, 0.063005, 0.0], [0.111248, 0.058842, 0.0], [0.091996, 0.054325, 0.0], [0.074415, 0.049504, 0.0], [0.058573, 0.044427, 0.0], [0.044532, 0.039144, 0.0], [0.032343, 0.033704, 0.0], [0.022051, 0.028152, 0.0], [0.013692, 0.022531, 0.0], [0.007292, 0.016878, 0.0], [0.002870, 0.011224, 0.0], [0.000439, 0.005592, 0.0], [0.000000, 0.000000, 0.0], [0.001535, -0.005395, 0.0], [0.005015, -0.010439, 0.0], [0.010421, -0.015126, 0.0], [0.017725, -0.019451, 0.0], [0.026892, -0.023408, 0.0], [0.037880, -0.026990, 0.0], [0.050641, -0.030193, 0.0], [0.065120, -0.033014, 0.0], [0.081257, -0.035451, 0.0], [0.098987, -0.037507, 0.0], [0.118239, -0.039185, 0.0], [0.138937, -0.040493, 0.0], [0.161004, -0.041444, 0.0], [0.184354, -0.042054, 0.0], [0.208902, -0.042343, 0.0], [0.234555, -0.042335, 0.0], [0.261221, -0.042058, 0.0], [0.288802, -0.041541, 0.0], [0.317197, -0.040817, 0.0], [0.346303, -0.039923, 0.0], [0.376013, -0.038892, 0.0], [0.406269, -0.037757, 0.0], [0.437099, -0.036467, 0.0], [0.468187, -0.035009, 0.0], [0.499413, -0.033414, 0.0], [0.530654, -0.031708, 0.0], [0.561791, -0.029917, 0.0], [0.592701, -0.028066, 0.0], [0.623264, -0.026176, 0.0], [0.653358, -0.024269, 0.0], [0.682867, -0.022360, 0.0], [0.711672, -0.020466, 0.0], [0.739659, -0.018600, 0.0], [0.766718, -0.016774, 0.0], [0.792738, -0.014999, 0.0], [0.817617, -0.013284, 0.0], [0.841253, -0.011637, 0.0], [0.863551, -0.010068, 0.0], [0.884421, -0.008583, 0.0], [0.903777, -0.007191, 0.0], [0.921540, -0.005900, 0.0], [0.937637, -0.004717, 0.0], [0.952002, -0.003650, 0.0], [0.964576, -0.002708, 0.0], [0.975305, -0.001896, 0.0], [0.984145, -0.001222, 0.0], [0.991060, -0.000691, 0.0], [0.996020, -0.000308, 0.0], [0.999004, -0.000077, 0.0] ]) # Scale airfoil to input coord coord = 1.0 airfoil_coordinates *= coord # Instantiate geometry object geom = pygmsh.built_in.Geometry() # Create polygon for airfoil char_length = 1.0e-1 airfoil = geom.add_polygon( airfoil_coordinates, char_length, make_surface=False ) # Create surface for numerical domain with an airfoil-shaped hole left_dist = 1.0 right_dist = 3.0 top_dist = 1.0 bottom_dist = 1.0 xmin = airfoil_coordinates[:, 0].min() - left_dist*coord xmax = airfoil_coordinates[:, 0].max() + right_dist*coord ymin = airfoil_coordinates[:, 1].min() - bottom_dist*coord ymax = airfoil_coordinates[:, 1].max() + top_dist*coord domainCoordinates = numpy.array([ [xmin, ymin, 0.0], [xmax, ymin, 0.0], [xmax, ymax, 0.0], [xmin, ymax, 0.0], ]) polygon = geom.add_polygon( domainCoordinates, char_length, holes=[airfoil] ) geom.add_raw_code('Recombine Surface {%s};' % polygon.surface.id) ref = 10.525891646546 points, cells, _, _, _ = pygmsh.generate_mesh(geom) assert abs(compute_volume(points, cells) - ref) < 1.0e-2 * ref return points, cells if __name__ == '__main__': import meshio meshio.write('airfoil.vtu', *test())
[((177, 3082), 'numpy.array', 'numpy.array', (['[[1.0, 0.0, 0.0], [0.999023, 0.000209, 0.0], [0.996095, 0.000832, 0.0], [\n 0.991228, 0.001863, 0.0], [0.984438, 0.003289, 0.0], [0.975752, \n 0.005092, 0.0], [0.965201, 0.007252, 0.0], [0.952825, 0.009744, 0.0], [\n 0.938669, 0.012538, 0.0], [0.922788, 0.015605, 0.0], [0.90524, 0.01891,\n 0.0], [0.886092, 0.022419, 0.0], [0.865417, 0.026096, 0.0], [0.843294, \n 0.029903, 0.0], [0.819807, 0.033804, 0.0], [0.795047, 0.03776, 0.0], [\n 0.769109, 0.041734, 0.0], [0.742094, 0.045689, 0.0], [0.714107, \n 0.049588, 0.0], [0.685258, 0.053394, 0.0], [0.655659, 0.057071, 0.0], [\n 0.625426, 0.060584, 0.0], [0.59468, 0.063897, 0.0], [0.563542, 0.066977,\n 0.0], [0.532136, 0.069789, 0.0], [0.500587, 0.072303, 0.0], [0.469022, \n 0.074486, 0.0], [0.437567, 0.076312, 0.0], [0.40635, 0.077752, 0.0], [\n 0.375297, 0.078743, 0.0], [0.34468, 0.07918, 0.0], [0.314678, 0.079051,\n 0.0], [0.285418, 0.078355, 0.0], [0.257025, 0.077096, 0.0], [0.229618, \n 0.075287, 0.0], [0.203313, 0.072945, 0.0], [0.178222, 0.070096, 0.0], [\n 0.154449, 0.06677, 0.0], [0.132094, 0.063005, 0.0], [0.111248, 0.058842,\n 0.0], [0.091996, 0.054325, 0.0], [0.074415, 0.049504, 0.0], [0.058573, \n 0.044427, 0.0], [0.044532, 0.039144, 0.0], [0.032343, 0.033704, 0.0], [\n 0.022051, 0.028152, 0.0], [0.013692, 0.022531, 0.0], [0.007292, \n 0.016878, 0.0], [0.00287, 0.011224, 0.0], [0.000439, 0.005592, 0.0], [\n 0.0, 0.0, 0.0], [0.001535, -0.005395, 0.0], [0.005015, -0.010439, 0.0],\n [0.010421, -0.015126, 0.0], [0.017725, -0.019451, 0.0], [0.026892, -\n 0.023408, 0.0], [0.03788, -0.02699, 0.0], [0.050641, -0.030193, 0.0], [\n 0.06512, -0.033014, 0.0], [0.081257, -0.035451, 0.0], [0.098987, -\n 0.037507, 0.0], [0.118239, -0.039185, 0.0], [0.138937, -0.040493, 0.0],\n [0.161004, -0.041444, 0.0], [0.184354, -0.042054, 0.0], [0.208902, -\n 0.042343, 0.0], [0.234555, -0.042335, 0.0], [0.261221, -0.042058, 0.0],\n [0.288802, -0.041541, 0.0], [0.317197, -0.040817, 0.0], [0.346303, -\n 0.039923, 0.0], [0.376013, -0.038892, 0.0], [0.406269, -0.037757, 0.0],\n [0.437099, -0.036467, 0.0], [0.468187, -0.035009, 0.0], [0.499413, -\n 0.033414, 0.0], [0.530654, -0.031708, 0.0], [0.561791, -0.029917, 0.0],\n [0.592701, -0.028066, 0.0], [0.623264, -0.026176, 0.0], [0.653358, -\n 0.024269, 0.0], [0.682867, -0.02236, 0.0], [0.711672, -0.020466, 0.0],\n [0.739659, -0.0186, 0.0], [0.766718, -0.016774, 0.0], [0.792738, -\n 0.014999, 0.0], [0.817617, -0.013284, 0.0], [0.841253, -0.011637, 0.0],\n [0.863551, -0.010068, 0.0], [0.884421, -0.008583, 0.0], [0.903777, -\n 0.007191, 0.0], [0.92154, -0.0059, 0.0], [0.937637, -0.004717, 0.0], [\n 0.952002, -0.00365, 0.0], [0.964576, -0.002708, 0.0], [0.975305, -\n 0.001896, 0.0], [0.984145, -0.001222, 0.0], [0.99106, -0.000691, 0.0],\n [0.99602, -0.000308, 0.0], [0.999004, -7.7e-05, 0.0]]'], {}), '([[1.0, 0.0, 0.0], [0.999023, 0.000209, 0.0], [0.996095, \n 0.000832, 0.0], [0.991228, 0.001863, 0.0], [0.984438, 0.003289, 0.0], [\n 0.975752, 0.005092, 0.0], [0.965201, 0.007252, 0.0], [0.952825, \n 0.009744, 0.0], [0.938669, 0.012538, 0.0], [0.922788, 0.015605, 0.0], [\n 0.90524, 0.01891, 0.0], [0.886092, 0.022419, 0.0], [0.865417, 0.026096,\n 0.0], [0.843294, 0.029903, 0.0], [0.819807, 0.033804, 0.0], [0.795047, \n 0.03776, 0.0], [0.769109, 0.041734, 0.0], [0.742094, 0.045689, 0.0], [\n 0.714107, 0.049588, 0.0], [0.685258, 0.053394, 0.0], [0.655659, \n 0.057071, 0.0], [0.625426, 0.060584, 0.0], [0.59468, 0.063897, 0.0], [\n 0.563542, 0.066977, 0.0], [0.532136, 0.069789, 0.0], [0.500587, \n 0.072303, 0.0], [0.469022, 0.074486, 0.0], [0.437567, 0.076312, 0.0], [\n 0.40635, 0.077752, 0.0], [0.375297, 0.078743, 0.0], [0.34468, 0.07918, \n 0.0], [0.314678, 0.079051, 0.0], [0.285418, 0.078355, 0.0], [0.257025, \n 0.077096, 0.0], [0.229618, 0.075287, 0.0], [0.203313, 0.072945, 0.0], [\n 0.178222, 0.070096, 0.0], [0.154449, 0.06677, 0.0], [0.132094, 0.063005,\n 0.0], [0.111248, 0.058842, 0.0], [0.091996, 0.054325, 0.0], [0.074415, \n 0.049504, 0.0], [0.058573, 0.044427, 0.0], [0.044532, 0.039144, 0.0], [\n 0.032343, 0.033704, 0.0], [0.022051, 0.028152, 0.0], [0.013692, \n 0.022531, 0.0], [0.007292, 0.016878, 0.0], [0.00287, 0.011224, 0.0], [\n 0.000439, 0.005592, 0.0], [0.0, 0.0, 0.0], [0.001535, -0.005395, 0.0],\n [0.005015, -0.010439, 0.0], [0.010421, -0.015126, 0.0], [0.017725, -\n 0.019451, 0.0], [0.026892, -0.023408, 0.0], [0.03788, -0.02699, 0.0], [\n 0.050641, -0.030193, 0.0], [0.06512, -0.033014, 0.0], [0.081257, -\n 0.035451, 0.0], [0.098987, -0.037507, 0.0], [0.118239, -0.039185, 0.0],\n [0.138937, -0.040493, 0.0], [0.161004, -0.041444, 0.0], [0.184354, -\n 0.042054, 0.0], [0.208902, -0.042343, 0.0], [0.234555, -0.042335, 0.0],\n [0.261221, -0.042058, 0.0], [0.288802, -0.041541, 0.0], [0.317197, -\n 0.040817, 0.0], [0.346303, -0.039923, 0.0], [0.376013, -0.038892, 0.0],\n [0.406269, -0.037757, 0.0], [0.437099, -0.036467, 0.0], [0.468187, -\n 0.035009, 0.0], [0.499413, -0.033414, 0.0], [0.530654, -0.031708, 0.0],\n [0.561791, -0.029917, 0.0], [0.592701, -0.028066, 0.0], [0.623264, -\n 0.026176, 0.0], [0.653358, -0.024269, 0.0], [0.682867, -0.02236, 0.0],\n [0.711672, -0.020466, 0.0], [0.739659, -0.0186, 0.0], [0.766718, -\n 0.016774, 0.0], [0.792738, -0.014999, 0.0], [0.817617, -0.013284, 0.0],\n [0.841253, -0.011637, 0.0], [0.863551, -0.010068, 0.0], [0.884421, -\n 0.008583, 0.0], [0.903777, -0.007191, 0.0], [0.92154, -0.0059, 0.0], [\n 0.937637, -0.004717, 0.0], [0.952002, -0.00365, 0.0], [0.964576, -\n 0.002708, 0.0], [0.975305, -0.001896, 0.0], [0.984145, -0.001222, 0.0],\n [0.99106, -0.000691, 0.0], [0.99602, -0.000308, 0.0], [0.999004, -\n 7.7e-05, 0.0]])\n', (188, 3082), False, 'import numpy\n'), ((3881, 3907), 'pygmsh.built_in.Geometry', 'pygmsh.built_in.Geometry', ([], {}), '()\n', (3905, 3907), False, 'import pygmsh\n'), ((4509, 4602), 'numpy.array', 'numpy.array', (['[[xmin, ymin, 0.0], [xmax, ymin, 0.0], [xmax, ymax, 0.0], [xmin, ymax, 0.0]]'], {}), '([[xmin, ymin, 0.0], [xmax, ymin, 0.0], [xmax, ymax, 0.0], [xmin,\n ymax, 0.0]])\n', (4520, 4602), False, 'import numpy\n'), ((4882, 4908), 'pygmsh.generate_mesh', 'pygmsh.generate_mesh', (['geom'], {}), '(geom)\n', (4902, 4908), False, 'import pygmsh\n'), ((4924, 4953), 'helpers.compute_volume', 'compute_volume', (['points', 'cells'], {}), '(points, cells)\n', (4938, 4953), False, 'from helpers import compute_volume\n')]
ZintrulCre/LeetCode_Archiver
LeetCode/python3/287.py
de23e16ead29336b5ee7aa1898a392a5d6463d27
class Solution: def findDuplicate(self, nums: List[int]) -> int: p1, p2 = nums[0], nums[nums[0]] while nums[p1] != nums[p2]: p1 = nums[p1] p2 = nums[nums[p2]] p2 = 0 while nums[p1] != nums[p2]: p1 = nums[p1] p2 = nums[p2] return nums[p1]
[]
mathieui/twisted
src/twisted/test/myrebuilder1.py
35546d2b50742a32edba54719ce3e752dc50dd2a
class A: def a(self): return 'a' class B(A, object): def b(self): return 'b' class Inherit(A): def a(self): return 'c'
[]
MateuszG/django_auth
examples/test_yield_8.py
4cda699c1b6516ffaa26329f545a674a7c849a16
import pytest @pytest.yield_fixture def passwd(): print ("\nsetup before yield") f = open("/etc/passwd") yield f.readlines() print ("teardown after yield") f.close() def test_has_lines(passwd): print ("test called") assert passwd
[]
BuddyVolly/sepal
modules/google-earth-engine/docker/src/sepalinternal/gee.py
6a2356a88940a36568b1d83ba3aeaae4283d5445
import json from threading import Semaphore import ee from flask import request from google.auth import crypt from google.oauth2 import service_account from google.oauth2.credentials import Credentials service_account_credentials = None import logging export_semaphore = Semaphore(5) get_info_semaphore = Semaphore(2) def init_service_account_credentials(args): global service_account_credentials with open(args['gee_key_path'], 'r') as file_: key_data = file_.read() signer = crypt.RSASigner.from_string(key_data) service_account_credentials = service_account.Credentials( signer=signer, service_account_email=args['gee_email'], token_uri=ee.oauth.TOKEN_URI, scopes=ee.oauth.SCOPES + ['https://www.googleapis.com/auth/drive'] ) def init_ee(): credentials = service_account_credentials if 'sepal-user' in request.headers: user = json.loads(request.headers['sepal-user']) googleTokens = user.get('googleTokens', None) if googleTokens: credentials = Credentials(googleTokens['accessToken']) ee.InitializeThread(credentials) def to_asset_id(asset_path): asset_roots = ee.data.getAssetRoots() if not asset_roots: raise Exception('User has no GEE asset roots') return asset_roots[0]['id'] + '/' + asset_path def delete_asset_collection(asset_id): logging.info('Recursively deleting ' + asset_id) if ee.data.getInfo(asset_id): images = ee.data.getList({ 'id': asset_id, 'fields': 'id' }) for image in images: ee.data.deleteAsset(image['id']) logging.info('Deleted ' + image['id']) ee.data.deleteAsset(asset_id) logging.info('Deleted ' + asset_id) def create_asset_image_collection(asset_id): delete_asset_collection(asset_id) ee.data.create_assets( asset_ids=[asset_id], asset_type=ee.data.ASSET_TYPE_IMAGE_COLL, mk_parents=True ) def create_asset_folder(asset_id): ee.data.create_assets( asset_ids=[asset_id], asset_type=ee.data.ASSET_TYPE_FOLDER, mk_parents=True ) def get_info(ee_object): try: get_info_semaphore.acquire() return ee_object.getInfo() finally: get_info_semaphore.release()
[((274, 286), 'threading.Semaphore', 'Semaphore', (['(5)'], {}), '(5)\n', (283, 286), False, 'from threading import Semaphore\n'), ((308, 320), 'threading.Semaphore', 'Semaphore', (['(2)'], {}), '(2)\n', (317, 320), False, 'from threading import Semaphore\n'), ((503, 540), 'google.auth.crypt.RSASigner.from_string', 'crypt.RSASigner.from_string', (['key_data'], {}), '(key_data)\n', (530, 540), False, 'from google.auth import crypt\n'), ((575, 766), 'google.oauth2.service_account.Credentials', 'service_account.Credentials', ([], {'signer': 'signer', 'service_account_email': "args['gee_email']", 'token_uri': 'ee.oauth.TOKEN_URI', 'scopes': "(ee.oauth.SCOPES + ['https://www.googleapis.com/auth/drive'])"}), "(signer=signer, service_account_email=args[\n 'gee_email'], token_uri=ee.oauth.TOKEN_URI, scopes=ee.oauth.SCOPES + [\n 'https://www.googleapis.com/auth/drive'])\n", (602, 766), False, 'from google.oauth2 import service_account\n'), ((1105, 1137), 'ee.InitializeThread', 'ee.InitializeThread', (['credentials'], {}), '(credentials)\n', (1124, 1137), False, 'import ee\n'), ((1187, 1210), 'ee.data.getAssetRoots', 'ee.data.getAssetRoots', ([], {}), '()\n', (1208, 1210), False, 'import ee\n'), ((1386, 1434), 'logging.info', 'logging.info', (["('Recursively deleting ' + asset_id)"], {}), "('Recursively deleting ' + asset_id)\n", (1398, 1434), False, 'import logging\n'), ((1442, 1467), 'ee.data.getInfo', 'ee.data.getInfo', (['asset_id'], {}), '(asset_id)\n', (1457, 1467), False, 'import ee\n'), ((1866, 1973), 'ee.data.create_assets', 'ee.data.create_assets', ([], {'asset_ids': '[asset_id]', 'asset_type': 'ee.data.ASSET_TYPE_IMAGE_COLL', 'mk_parents': '(True)'}), '(asset_ids=[asset_id], asset_type=ee.data.\n ASSET_TYPE_IMAGE_COLL, mk_parents=True)\n', (1887, 1973), False, 'import ee\n'), ((2040, 2143), 'ee.data.create_assets', 'ee.data.create_assets', ([], {'asset_ids': '[asset_id]', 'asset_type': 'ee.data.ASSET_TYPE_FOLDER', 'mk_parents': '(True)'}), '(asset_ids=[asset_id], asset_type=ee.data.\n ASSET_TYPE_FOLDER, mk_parents=True)\n', (2061, 2143), False, 'import ee\n'), ((913, 954), 'json.loads', 'json.loads', (["request.headers['sepal-user']"], {}), "(request.headers['sepal-user'])\n", (923, 954), False, 'import json\n'), ((1486, 1535), 'ee.data.getList', 'ee.data.getList', (["{'id': asset_id, 'fields': 'id'}"], {}), "({'id': asset_id, 'fields': 'id'})\n", (1501, 1535), False, 'import ee\n'), ((1703, 1732), 'ee.data.deleteAsset', 'ee.data.deleteAsset', (['asset_id'], {}), '(asset_id)\n', (1722, 1732), False, 'import ee\n'), ((1741, 1776), 'logging.info', 'logging.info', (["('Deleted ' + asset_id)"], {}), "('Deleted ' + asset_id)\n", (1753, 1776), False, 'import logging\n'), ((1060, 1100), 'google.oauth2.credentials.Credentials', 'Credentials', (["googleTokens['accessToken']"], {}), "(googleTokens['accessToken'])\n", (1071, 1100), False, 'from google.oauth2.credentials import Credentials\n'), ((1611, 1643), 'ee.data.deleteAsset', 'ee.data.deleteAsset', (["image['id']"], {}), "(image['id'])\n", (1630, 1643), False, 'import ee\n'), ((1656, 1694), 'logging.info', 'logging.info', (["('Deleted ' + image['id'])"], {}), "('Deleted ' + image['id'])\n", (1668, 1694), False, 'import logging\n')]
mirontoli/tolle-rasp
micropython/007_boat_sink.py
020638e86c167aedd7b556d8515a3adef70724af
#https://microbit-micropython.readthedocs.io/en/latest/tutorials/images.html#animation from microbit import * boat1 = Image("05050:05050:05050:99999:09990") boat2 = Image("00000:05050:05050:05050:99999") boat3 = Image("00000:00000:05050:05050:05050") boat4 = Image("00000:00000:00000:05050:05050") boat5 = Image("00000:00000:00000:00000:05050") boat6 = Image("00000:00000:00000:00000:00000") all_boats = [boat1, boat2, boat3, boat4, boat5, boat6] display.show(all_boats, delay=200)
[]
groupdocs-legacy-sdk/python
examples/api-samples/inc_samples/convert_callback.py
80e5ef5a9a14ac4a7815c6cf933b5b2997381455
import os import json import shutil import time from pyramid.renderers import render_to_response from pyramid.response import Response from groupdocs.ApiClient import ApiClient from groupdocs.AsyncApi import AsyncApi from groupdocs.StorageApi import StorageApi from groupdocs.GroupDocsRequestSigner import GroupDocsRequestSigner # Checking value on null def IsNotNull(value): return value is not None and len(value) > 0 def convert_callback(request): currentDir = os.path.dirname(os.path.realpath(__file__)) if os.path.exists(currentDir + '/../user_info.txt'): f = open(currentDir + '/../user_info.txt') lines = f.readlines() f.close() clientId = lines[0].replace("\r\n", "") privateKey = lines[1] if IsNotNull(request.json_body): jsonPostData = request.json_body jobId = jsonPostData['SourceId'] # Create signer object signer = GroupDocsRequestSigner(privateKey) # Create apiClient object apiClient = ApiClient(signer) # Create AsyncApi object async = AsyncApi(apiClient) # Create Storage object api = StorageApi(apiClient) if jobId != '': time.sleep(5) # Make request to api for get document info by job id jobs = async.GetJobDocuments(clientId, jobId) if jobs.status == 'Ok': # Get file guid resultGuid = jobs.result.inputs[0].outputs[0].guid name = jobs.result.inputs[0].outputs[0].name currentDir = os.path.dirname(os.path.realpath(__file__)) downloadFolder = currentDir + '/../downloads/' if not os.path.isdir(downloadFolder): os.makedirs(downloadFolder) #Downlaoding of file fs = api.GetFile(clientId, resultGuid); if fs: filePath = downloadFolder + name with open(filePath, 'wb') as fp: shutil.copyfileobj(fs.inputStream, fp)
[]
AliShug/EvoArm
PyIK/src/litearm.py
a5dea204914ee1e25867e4412e88d245329316f2
from __future__ import print_function import numpy as np import struct import solvers import pid from util import * MOTORSPEED = 0.9 MOTORMARGIN = 1 MOTORSLOPE = 30 ERRORLIM = 5.0 class ArmConfig: """Holds an arm's proportions, limits and other configuration data""" def __init__(self, main_length = 148.4, forearm_length = 160, linkage_length = 155, lower_actuator_length = 65, upper_actuator_length = 54.4, wrist_length = 90.52, shoulder_offset = [-9.7, 18.71]): self.main_length = main_length self.forearm_length = forearm_length self.linkage_length = linkage_length self.lower_actuator_length = lower_actuator_length self.upper_actuator_length = upper_actuator_length self.wrist_length = wrist_length; self.shoulder_offset = shoulder_offset class ArmPose: """ Defines a physical configuration of a LiteArm robot arm. Internal angles are relative to vertical (elevator/actuator) or straight forward (swing), and are stored in radians. Extracted servo angles range 0-300 and are measured in degrees. Provides methods for: - finding the required servo angles to reach the pose - checking the validity of the pose """ structFormat = 'fffff' @staticmethod def calcElevatorAngle(servoAngle): return radians(178.21 - servoAngle) @staticmethod def calcSwingAngle(servoAngle): return radians(150.0 - servoAngle) @staticmethod def calcActuatorAngle(servoAngle): return radians(servoAngle - 204.78) @staticmethod def calcWristXAngle(servoAngle): return radians(150.0 - servoAngle) @staticmethod def calcWristYAngle(servoAngle): return radians(servoAngle - 147.0) def __init__(self, arm_config, swing_angle, shoulder_angle, actuator_angle, elbow_angle, elbow2D, wrist2D, effector2D, effector, wrist_x, wrist_y): self.cfg = arm_config self.swing_angle = swing_angle self.shoulder_angle = shoulder_angle self.actuator_angle = actuator_angle self.elbow_angle = elbow_angle # Joints in the arm shoulder = rotate(self.cfg.shoulder_offset, swing_angle) self.shoulder2D = [self.cfg.shoulder_offset[1], 0] self.shoulder = [shoulder[0], 0, shoulder[1]] self.wrist2D = wrist2D self.effector2D = effector2D self.effector = effector # Construct the 3D elbow & wrist positions from the 2D (planar) IK # solution arm_vec = effector - self.shoulder arm_vec[1] = 0 self.elbow2D = elbow2D self.elbow = self.shoulder + normalize(arm_vec)*elbow2D[0] self.elbow[1] = elbow2D[1] self.wrist = self.effector - normalize(arm_vec)*arm_config.wrist_length # Wrist pose self.wristXAngle = wrist_x self.wristYAngle = wrist_y def getServoElevator(self): return 178.21 - degrees(self.shoulder_angle) def getServoActuator(self): return degrees(self.actuator_angle) + 204.78 def getServoSwing(self): return 150 - degrees(self.swing_angle) def getServoWristX(self): return 150 - degrees(self.wristXAngle) def getServoWristY(self): return 147 + degrees(self.wristYAngle) def armDiffAngle(self): return degrees(self.shoulder_angle - self.actuator_angle) def checkActuator(self): angle = self.getServoActuator() return angle >= 95 and angle <= 250 def checkDiff(self): angle = self.armDiffAngle() return angle >= 44 and angle <= 175 def checkElevator(self): angle = self.getServoElevator() return angle >= 60 and angle <= 210 def checkForearm(self): angle = degrees(self.elbow_angle + self.shoulder_angle) return angle < 200 and angle > 80 def checkSwing(self): angle = self.getServoSwing() return angle >= 60 and angle <= 240 def checkWristX(self): angle = self.getServoWristX() return angle >= 60 and angle <= 240 def checkWristY(self): angle = self.getServoWristY() return angle >= 60 and angle <= 160 def checkPositioning(self): # When Y>0 Forearm always faces outwards if self.wrist2D[1] > 0 and self.wrist2D[0] < self.elbow2D[0]: return False # No valid positions X<=0 if self.wrist2D[0] <= 0: return False # Effector height range if self.effector[1] > 180 or self.effector[1] < -200: return False return True def checkClearance(self): return (self.checkDiff() and self.checkActuator() and self.checkElevator() and self.checkSwing() and self.checkWristX() and self.checkWristY() and self.checkPositioning() and self.checkForearm()) def serialize(self): """Returns a packed struct holding the pose information""" return struct.pack( ArmPose.structFormat, self.swing_angle, self.shoulder_angle, self.elbow_angle, self.wristXAngle, self.wristYAngle ) class ArmController: def __init__(self, servo_swing, servo_shoulder, servo_elbow, servo_wrist_x, servo_wrist_y, arm_config, motion_enable = False): # Solvers are responsible for calculating the target servo positions to # reach a given goal position self.ik = solvers.IKSolver( arm_config.main_length, arm_config.forearm_length, arm_config.wrist_length, arm_config.shoulder_offset) self.physsolver = solvers.PhysicalSolver( arm_config.main_length, arm_config.linkage_length, arm_config.lower_actuator_length, arm_config.upper_actuator_length) # Servos self.servos = {} self.servos["swing"] = servo_swing self.servos["shoulder"] = servo_shoulder self.servos["elbow"] = servo_elbow self.servos["wrist_x"] = servo_wrist_x self.servos["wrist_y"] = servo_wrist_y for key, servo in self.servos.iteritems(): if servo is None: print ("Warning: {0} servo not connected".format(key)) else: # Initialise a PID controller for the servo if servo.protocol == 1: servo.setGoalSpeed(-MOTORSPEED) servo.data['pid'] = pid.PIDControl(2.4, 0, 0.4) else: servo.setGoalSpeed(0) servo.data['error'] = 0.0 # Make sure the goal speed is set servo.setTorqueEnable(1) if servo.protocol == 1: print("Setting slope") servo.setCWMargin(MOTORMARGIN) servo.setCCWMargin(MOTORMARGIN) servo.setCWSlope(MOTORSLOPE) servo.setCCWSlope(MOTORSLOPE) # Store parameters self.motion_enable = True self.enableMovement(False) self.cfg = arm_config # Dirty flags for stored poses self.ik_pose = None self.ik_dirty = True self.real_pose = None self.real_dirty = True # Current target pose self.target_pose = None def enableMovement(self, enable): changed = False if enable and not self.motion_enable: print ("Warning: Arm enabled") self.motion_enable = True changed = True elif not enable: self.motion_enable = False changed = True if changed: # Set servos on/off if self.servos['swing'] is not None: self.servos['swing'].setTorqueEnable(self.motion_enable) if self.servos['shoulder'] is not None: self.servos['shoulder'].setTorqueEnable(self.motion_enable) if self.servos['elbow'] is not None: self.servos['elbow'].setTorqueEnable(self.motion_enable) if self.servos['wrist_x'] is not None: self.servos['wrist_x'].setTorqueEnable(self.motion_enable) if self.servos['wrist_y'] is not None: self.servos['wrist_y'].setTorqueEnable(self.motion_enable) def setWristGoalPosition(self, pos): self.ik.setGoal(pos) self.ik_dirty = True def setWristGoalDirection(self, normal): self.ik.setWristDir(normal) self.ik_dirty = True def getIKPose(self): if self.ik_dirty and self.ik.valid: # Construct geometry of arm from IK state main_arm = self.ik.elbow - self.ik.originpl arm_vert_angle = sigangle(main_arm, vertical) forearm = self.ik.wristpl - self.ik.elbow elbow_angle = angle_between(main_arm, forearm) # Solve actuator angle for given elbow angle # Base angle is between the main arm and actuator base_angle = self.physsolver.inverse_forearm(elbow_angle) actuator_angle = arm_vert_angle - base_angle self.ik_pose = ArmPose( self.cfg, swing_angle = self.ik.swing, # angles from vertical shoulder_angle = arm_vert_angle, actuator_angle = actuator_angle, # angle between the main arm and forearm elbow_angle = elbow_angle, elbow2D = self.ik.elbow, wrist2D = self.ik.wristpl, effector2D = self.ik.goalpl, effector = self.ik.goal, wrist_x = self.ik.wrist_x, wrist_y = self.ik.wrist_y ) return self.ik_pose def pollServos(self): """Poll the real-world servo positions""" for servo in self.servos.itervalues(): if servo is not None: newPos = servo.getPosition() if type(newPos) is float: servo.data['pos'] = newPos def clearPositionError(self): """Clears the servo's position-error accumulators""" for servo in self.servos.itervalues(): if servo is not None and servo.protocol == 1: servo.data['error'] = 0.0 def getRealPose(self): """Retrieve the real-world arm pose, or None if not all servos are connected. """ if any([servo is None for servo in self.servos.itervalues()]): return None # This whole function is essentially just FK based on the known servo # angles swing_servo = self.servos['swing'].data['pos'] elevator_servo = self.servos['shoulder'].data['pos'] actuator_servo = self.servos['elbow'].data['pos'] wrist_x_servo = self.servos['wrist_x'].data['pos'] wrist_y_servo = self.servos['wrist_y'].data['pos'] # Find the internal arm-pose angles for the given servo positions swing_angle = ArmPose.calcSwingAngle(swing_servo) elevator_angle = ArmPose.calcElevatorAngle(elevator_servo) actuator_angle = ArmPose.calcActuatorAngle(actuator_servo) wrist_x_angle = ArmPose.calcWristXAngle(wrist_x_servo) wrist_y_angle = ArmPose.calcWristYAngle(wrist_y_servo) # Solve elbow angle for given actuator and elevator angles # (this is the angle from the elevator arm's direction to the forearm's) elbow_angle = self.physsolver.solve_forearm(elevator_angle, actuator_angle) # FK positions from config and angles offset = self.cfg.shoulder_offset shoulder2D = np.array([offset[1], 0]) elbow2D = shoulder2D + rotate(vertical, elevator_angle)*self.cfg.main_length wrist2D = elbow2D + rotate(vertical, elevator_angle + elbow_angle)*self.cfg.forearm_length effector2D = wrist2D + [self.cfg.wrist_length, 0] # 3D Effector calculation is a little more involved td = rotate([offset[0], effector2D[0]], swing_angle) effector = np.array([td[0], effector2D[1], td[1]]) pose = ArmPose( self.cfg, swing_angle, elevator_angle, actuator_angle, elbow_angle, elbow2D, wrist2D, effector2D, effector, wrist_x_angle, wrist_y_angle) return pose def setTargetPose(self, new_pose): self.target_pose = new_pose def tick(self): if self.target_pose is not None: if self.motion_enable: # Drive servos gain = 0.1 if self.servos['swing'] is not None: s = self.servos['swing'] pos = s.data['pos'] target = self.target_pose.getServoSwing() # err = min(10, pos-target) # s.data['error'] += err*gain s.setGoalPosition(target) if self.servos['shoulder'] is not None: s = self.servos['shoulder'] # cumulative error pos = s.data['pos'] target = self.target_pose.getServoElevator() err = min(10, pos-target) s.data['error'] += err*gain s.data['error'] = np.clip(s.data['error'], -ERRORLIM, ERRORLIM) s.setGoalPosition(target - s.data['error']) if self.servos['elbow'] is not None: s = self.servos['elbow'] pos = s.data['pos'] target = self.target_pose.getServoActuator() err = min(10, pos-target) s.data['error'] += err*gain s.data['error'] = np.clip(s.data['error'], -ERRORLIM, ERRORLIM) s.setGoalPosition(target - s.data['error']) if self.servos['wrist_x'] is not None: self.servos['wrist_x'].setGoalPosition(self.target_pose.getServoWristX()) if self.servos['wrist_y'] is not None: self.servos['wrist_y'].setGoalPosition(self.target_pose.getServoWristY())
[((5285, 5415), 'struct.pack', 'struct.pack', (['ArmPose.structFormat', 'self.swing_angle', 'self.shoulder_angle', 'self.elbow_angle', 'self.wristXAngle', 'self.wristYAngle'], {}), '(ArmPose.structFormat, self.swing_angle, self.shoulder_angle,\n self.elbow_angle, self.wristXAngle, self.wristYAngle)\n', (5296, 5415), False, 'import struct\n'), ((5902, 6026), 'solvers.IKSolver', 'solvers.IKSolver', (['arm_config.main_length', 'arm_config.forearm_length', 'arm_config.wrist_length', 'arm_config.shoulder_offset'], {}), '(arm_config.main_length, arm_config.forearm_length,\n arm_config.wrist_length, arm_config.shoulder_offset)\n', (5918, 6026), False, 'import solvers\n'), ((6098, 6243), 'solvers.PhysicalSolver', 'solvers.PhysicalSolver', (['arm_config.main_length', 'arm_config.linkage_length', 'arm_config.lower_actuator_length', 'arm_config.upper_actuator_length'], {}), '(arm_config.main_length, arm_config.linkage_length,\n arm_config.lower_actuator_length, arm_config.upper_actuator_length)\n', (6120, 6243), False, 'import solvers\n'), ((12098, 12122), 'numpy.array', 'np.array', (['[offset[1], 0]'], {}), '([offset[1], 0])\n', (12106, 12122), True, 'import numpy as np\n'), ((12505, 12544), 'numpy.array', 'np.array', (['[td[0], effector2D[1], td[1]]'], {}), '([td[0], effector2D[1], td[1]])\n', (12513, 12544), True, 'import numpy as np\n'), ((6922, 6949), 'pid.PIDControl', 'pid.PIDControl', (['(2.4)', '(0)', '(0.4)'], {}), '(2.4, 0, 0.4)\n', (6936, 6949), False, 'import pid\n'), ((13731, 13776), 'numpy.clip', 'np.clip', (["s.data['error']", '(-ERRORLIM)', 'ERRORLIM'], {}), "(s.data['error'], -ERRORLIM, ERRORLIM)\n", (13738, 13776), True, 'import numpy as np\n'), ((14176, 14221), 'numpy.clip', 'np.clip', (["s.data['error']", '(-ERRORLIM)', 'ERRORLIM'], {}), "(s.data['error'], -ERRORLIM, ERRORLIM)\n", (14183, 14221), True, 'import numpy as np\n')]
jakobabesser/piano_aug
create_augmented_versions.py
37f78c77465749c80d7aa91d9e804b89024eb278
from pedalboard import Reverb, Compressor, Gain, LowpassFilter, Pedalboard import soundfile as sf if __name__ == '__main__': # replace by path of unprocessed piano file if necessar fn_wav_source = 'live_grand_piano.wav' # augmentation settings using Pedalboard library settings = {'rev-': [Reverb(room_size=.4)], 'rev+': [Reverb(room_size=.8)], 'comp+': [Compressor(threshold_db=-15, ratio=20)], 'comp-': [Compressor(threshold_db=-10, ratio=10)], 'gain+': [Gain(gain_db=15)], # clipping 'gain-': [Gain(gain_db=5)], 'lpf-': [LowpassFilter(cutoff_frequency_hz=50)], 'lpf+': [LowpassFilter(cutoff_frequency_hz=250)]} # create augmented versions for s in settings.keys(): # load unprocessed piano recording audio, sample_rate = sf.read(fn_wav_source) # create Pedalboard object board = Pedalboard(settings[s]) # create augmented audio effected = board(audio, sample_rate) # save it fn_target = fn_wav_source.replace('.wav', f'_{s}.wav') sf.write(fn_target, effected, sample_rate)
[((883, 905), 'soundfile.read', 'sf.read', (['fn_wav_source'], {}), '(fn_wav_source)\n', (890, 905), True, 'import soundfile as sf\n'), ((958, 981), 'pedalboard.Pedalboard', 'Pedalboard', (['settings[s]'], {}), '(settings[s])\n', (968, 981), False, 'from pedalboard import Reverb, Compressor, Gain, LowpassFilter, Pedalboard\n'), ((1151, 1193), 'soundfile.write', 'sf.write', (['fn_target', 'effected', 'sample_rate'], {}), '(fn_target, effected, sample_rate)\n', (1159, 1193), True, 'import soundfile as sf\n'), ((310, 331), 'pedalboard.Reverb', 'Reverb', ([], {'room_size': '(0.4)'}), '(room_size=0.4)\n', (316, 331), False, 'from pedalboard import Reverb, Compressor, Gain, LowpassFilter, Pedalboard\n'), ((358, 379), 'pedalboard.Reverb', 'Reverb', ([], {'room_size': '(0.8)'}), '(room_size=0.8)\n', (364, 379), False, 'from pedalboard import Reverb, Compressor, Gain, LowpassFilter, Pedalboard\n'), ((407, 445), 'pedalboard.Compressor', 'Compressor', ([], {'threshold_db': '(-15)', 'ratio': '(20)'}), '(threshold_db=-15, ratio=20)\n', (417, 445), False, 'from pedalboard import Reverb, Compressor, Gain, LowpassFilter, Pedalboard\n'), ((474, 512), 'pedalboard.Compressor', 'Compressor', ([], {'threshold_db': '(-10)', 'ratio': '(10)'}), '(threshold_db=-10, ratio=10)\n', (484, 512), False, 'from pedalboard import Reverb, Compressor, Gain, LowpassFilter, Pedalboard\n'), ((541, 557), 'pedalboard.Gain', 'Gain', ([], {'gain_db': '(15)'}), '(gain_db=15)\n', (545, 557), False, 'from pedalboard import Reverb, Compressor, Gain, LowpassFilter, Pedalboard\n'), ((598, 613), 'pedalboard.Gain', 'Gain', ([], {'gain_db': '(5)'}), '(gain_db=5)\n', (602, 613), False, 'from pedalboard import Reverb, Compressor, Gain, LowpassFilter, Pedalboard\n'), ((641, 678), 'pedalboard.LowpassFilter', 'LowpassFilter', ([], {'cutoff_frequency_hz': '(50)'}), '(cutoff_frequency_hz=50)\n', (654, 678), False, 'from pedalboard import Reverb, Compressor, Gain, LowpassFilter, Pedalboard\n'), ((706, 744), 'pedalboard.LowpassFilter', 'LowpassFilter', ([], {'cutoff_frequency_hz': '(250)'}), '(cutoff_frequency_hz=250)\n', (719, 744), False, 'from pedalboard import Reverb, Compressor, Gain, LowpassFilter, Pedalboard\n')]
siq/flux
flux/migrations/versions/9ba67b798fa_add_request_system.py
ca7563deb9ebef14840bbf0cb7bab4d9478b2470
"""add_request_system Revision: 9ba67b798fa Revises: 31b92bf6506d Created: 2013-07-23 02:49:09.342814 """ revision = '9ba67b798fa' down_revision = '31b92bf6506d' from alembic import op from spire.schema.fields import * from spire.mesh import SurrogateType from sqlalchemy import (Column, ForeignKey, ForeignKeyConstraint, PrimaryKeyConstraint, CheckConstraint, UniqueConstraint) from sqlalchemy.dialects import postgresql def upgrade(): op.create_table('request', Column('id', UUIDType(), nullable=False), Column('name', TextType(), nullable=False), Column('status', EnumerationType(), nullable=False), Column('originator', TokenType(), nullable=False), Column('assignee', TokenType(), nullable=False), PrimaryKeyConstraint('id'), UniqueConstraint('name'), ) op.create_table('request_slot', Column('id', UUIDType(), nullable=False), Column('request_id', UUIDType(), nullable=False), Column('token', TokenType(), nullable=False), Column('title', TextType(), nullable=True), Column('slot', TokenType(), nullable=False), ForeignKeyConstraint(['request_id'], ['request.id'], ondelete='CASCADE'), PrimaryKeyConstraint('id'), UniqueConstraint('request_id','token'), ) op.create_table('request_attachment', Column('id', UUIDType(), nullable=False), Column('request_id', UUIDType(), nullable=False), Column('token', TokenType(), nullable=True), Column('title', TextType(), nullable=True), Column('attachment', SurrogateType(), nullable=False), ForeignKeyConstraint(['request_id'], ['request.id'], ondelete='CASCADE'), PrimaryKeyConstraint('id'), ) op.create_table('request_product', Column('id', UUIDType(), nullable=False), Column('request_id', UUIDType(), nullable=False), Column('token', TokenType(), nullable=False), Column('title', TextType(), nullable=True), Column('product', SurrogateType(), nullable=False), ForeignKeyConstraint(['request_id'], ['request.id'], ondelete='CASCADE'), PrimaryKeyConstraint('id'), UniqueConstraint('request_id','token'), ) op.create_table('message', Column('id', UUIDType(), nullable=False), Column('request_id', UUIDType(), nullable=False), Column('author', TokenType(), nullable=False), Column('occurrence', DateTimeType(timezone=True), nullable=False), Column('message', TextType(), nullable=True), ForeignKeyConstraint(['request_id'], ['request.id'], ondelete='CASCADE'), PrimaryKeyConstraint('id'), ) def downgrade(): op.drop_table('message') op.drop_table('request_product') op.drop_table('request_attachment') op.drop_table('request_slot') op.drop_table('request')
[((2702, 2726), 'alembic.op.drop_table', 'op.drop_table', (['"""message"""'], {}), "('message')\n", (2715, 2726), False, 'from alembic import op\n'), ((2731, 2763), 'alembic.op.drop_table', 'op.drop_table', (['"""request_product"""'], {}), "('request_product')\n", (2744, 2763), False, 'from alembic import op\n'), ((2768, 2803), 'alembic.op.drop_table', 'op.drop_table', (['"""request_attachment"""'], {}), "('request_attachment')\n", (2781, 2803), False, 'from alembic import op\n'), ((2808, 2837), 'alembic.op.drop_table', 'op.drop_table', (['"""request_slot"""'], {}), "('request_slot')\n", (2821, 2837), False, 'from alembic import op\n'), ((2842, 2866), 'alembic.op.drop_table', 'op.drop_table', (['"""request"""'], {}), "('request')\n", (2855, 2866), False, 'from alembic import op\n'), ((763, 789), 'sqlalchemy.PrimaryKeyConstraint', 'PrimaryKeyConstraint', (['"""id"""'], {}), "('id')\n", (783, 789), False, 'from sqlalchemy import Column, ForeignKey, ForeignKeyConstraint, PrimaryKeyConstraint, CheckConstraint, UniqueConstraint\n'), ((799, 823), 'sqlalchemy.UniqueConstraint', 'UniqueConstraint', (['"""name"""'], {}), "('name')\n", (815, 823), False, 'from sqlalchemy import Column, ForeignKey, ForeignKeyConstraint, PrimaryKeyConstraint, CheckConstraint, UniqueConstraint\n'), ((1142, 1214), 'sqlalchemy.ForeignKeyConstraint', 'ForeignKeyConstraint', (["['request_id']", "['request.id']"], {'ondelete': '"""CASCADE"""'}), "(['request_id'], ['request.id'], ondelete='CASCADE')\n", (1162, 1214), False, 'from sqlalchemy import Column, ForeignKey, ForeignKeyConstraint, PrimaryKeyConstraint, CheckConstraint, UniqueConstraint\n'), ((1224, 1250), 'sqlalchemy.PrimaryKeyConstraint', 'PrimaryKeyConstraint', (['"""id"""'], {}), "('id')\n", (1244, 1250), False, 'from sqlalchemy import Column, ForeignKey, ForeignKeyConstraint, PrimaryKeyConstraint, CheckConstraint, UniqueConstraint\n'), ((1260, 1299), 'sqlalchemy.UniqueConstraint', 'UniqueConstraint', (['"""request_id"""', '"""token"""'], {}), "('request_id', 'token')\n", (1276, 1299), False, 'from sqlalchemy import Column, ForeignKey, ForeignKeyConstraint, PrimaryKeyConstraint, CheckConstraint, UniqueConstraint\n'), ((1632, 1704), 'sqlalchemy.ForeignKeyConstraint', 'ForeignKeyConstraint', (["['request_id']", "['request.id']"], {'ondelete': '"""CASCADE"""'}), "(['request_id'], ['request.id'], ondelete='CASCADE')\n", (1652, 1704), False, 'from sqlalchemy import Column, ForeignKey, ForeignKeyConstraint, PrimaryKeyConstraint, CheckConstraint, UniqueConstraint\n'), ((1714, 1740), 'sqlalchemy.PrimaryKeyConstraint', 'PrimaryKeyConstraint', (['"""id"""'], {}), "('id')\n", (1734, 1740), False, 'from sqlalchemy import Column, ForeignKey, ForeignKeyConstraint, PrimaryKeyConstraint, CheckConstraint, UniqueConstraint\n'), ((2069, 2141), 'sqlalchemy.ForeignKeyConstraint', 'ForeignKeyConstraint', (["['request_id']", "['request.id']"], {'ondelete': '"""CASCADE"""'}), "(['request_id'], ['request.id'], ondelete='CASCADE')\n", (2089, 2141), False, 'from sqlalchemy import Column, ForeignKey, ForeignKeyConstraint, PrimaryKeyConstraint, CheckConstraint, UniqueConstraint\n'), ((2151, 2177), 'sqlalchemy.PrimaryKeyConstraint', 'PrimaryKeyConstraint', (['"""id"""'], {}), "('id')\n", (2171, 2177), False, 'from sqlalchemy import Column, ForeignKey, ForeignKeyConstraint, PrimaryKeyConstraint, CheckConstraint, UniqueConstraint\n'), ((2187, 2226), 'sqlalchemy.UniqueConstraint', 'UniqueConstraint', (['"""request_id"""', '"""token"""'], {}), "('request_id', 'token')\n", (2203, 2226), False, 'from sqlalchemy import Column, ForeignKey, ForeignKeyConstraint, PrimaryKeyConstraint, CheckConstraint, UniqueConstraint\n'), ((2564, 2636), 'sqlalchemy.ForeignKeyConstraint', 'ForeignKeyConstraint', (["['request_id']", "['request.id']"], {'ondelete': '"""CASCADE"""'}), "(['request_id'], ['request.id'], ondelete='CASCADE')\n", (2584, 2636), False, 'from sqlalchemy import Column, ForeignKey, ForeignKeyConstraint, PrimaryKeyConstraint, CheckConstraint, UniqueConstraint\n'), ((2646, 2672), 'sqlalchemy.PrimaryKeyConstraint', 'PrimaryKeyConstraint', (['"""id"""'], {}), "('id')\n", (2666, 2672), False, 'from sqlalchemy import Column, ForeignKey, ForeignKeyConstraint, PrimaryKeyConstraint, CheckConstraint, UniqueConstraint\n'), ((1590, 1605), 'spire.mesh.SurrogateType', 'SurrogateType', ([], {}), '()\n', (1603, 1605), False, 'from spire.mesh import SurrogateType\n'), ((2027, 2042), 'spire.mesh.SurrogateType', 'SurrogateType', ([], {}), '()\n', (2040, 2042), False, 'from spire.mesh import SurrogateType\n')]
clalancette/ign-math
src/python/Vector2_TEST.py
84eb1bfe470d00d335c048f102b56c49a15b56be
# Copyright (C) 2021 Open Source Robotics Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import math from ignition.math import Vector2d from ignition.math import Vector2f class TestVector2(unittest.TestCase): def test_construction(self): v = Vector2d() self.assertAlmostEqual(0.0, v.x()) self.assertAlmostEqual(0.0, v.y()) vec = Vector2d(1, 0) self.assertEqual(vec.x(), 1) self.assertEqual(vec.y(), 0) vec2 = Vector2d(vec) self.assertEqual(vec2, vec) # Copy vec3 = vec self.assertEqual(vec3, vec) # Inequality vec4 = Vector2d() self.assertNotEqual(vec, vec4) def test_vector2(self): v = Vector2d(1, 2) # Distance self.assertAlmostEqual(2.236, v.distance(Vector2d()), delta=1e-2) # Normalize v.normalize() self.assertTrue(v.equal(Vector2d(0.447214, 0.894427), 1e-4)) # Set v.set(4, 5) self.assertTrue(v.equal(Vector2d(4, 5), 1e-4)) # Abs v.set(-1, -2) self.assertTrue(v.abs().equal(Vector2d(1, 2), 1e-4)) # _eq_ v = Vector2d(6, 7) self.assertTrue(v.equal(Vector2d(6, 7), 1e-4)) # _add_ v = v + Vector2d(1, 2) self.assertTrue(v.equal(Vector2d(7, 9), 1e-4)) v += Vector2d(5, 6) self.assertTrue(v.equal(Vector2d(12, 15), 1e-4)) # __sub__ v = v - Vector2d(2, 4) self.assertTrue(v.equal(Vector2d(10, 11), 1e-4)) v.set(2, 4) v -= Vector2d(1, 6) self.assertTrue(v.equal(Vector2d(1, -2), 1e-4)) # __truediv__ v.set(10, 6) v = v / Vector2d(2, 3) self.assertTrue(v.equal(Vector2d(5, 2), 1e-4)) v.set(10, 6) v /= Vector2d(2, 3) self.assertTrue(v.equal(Vector2d(5, 2), 1e-4)) # __truediv__ int v.set(10, 6) v = v / 2 self.assertTrue(v.equal(Vector2d(5, 3), 1e-4)) v.set(10, 6) v /= 2 self.assertTrue(v.equal(Vector2d(5, 3), 1e-4)) # __mul__ v.set(10, 6) v = v * Vector2d(2, 4) self.assertTrue(v.equal(Vector2d(20, 24), 1e-4)) v.set(10, 6) v *= Vector2d(2, 4) self.assertTrue(v.equal(Vector2d(20, 24), 1e-4)) # __mul__ int v.set(10, 6) v = v * 2 self.assertTrue(v.equal(Vector2d(20, 12), 1e-4)) v.set(10, 6) v *= 2 self.assertTrue(v.equal(Vector2d(20, 12), 1e-4)) # is_finite self.assertTrue(v.is_finite()) def test_max(self): vec1 = Vector2d(0.1, 0.2) vec2 = Vector2d(0.3, 0.5) vec3 = Vector2d(0.4, 0.2) self.assertAlmostEqual(vec1.max(), 0.2) self.assertAlmostEqual(vec3.max(), 0.4) vec1.max(vec2) self.assertAlmostEqual(vec1, Vector2d(0.3, 0.5)) vec1.max(vec3) self.assertAlmostEqual(vec1, Vector2d(0.4, 0.5)) def test_min(self): vec1 = Vector2d(0.3, 0.5) vec2 = Vector2d(0.1, 0.2) vec3 = Vector2d(0.05, 0.1) self.assertAlmostEqual(vec1.min(), 0.3) self.assertAlmostEqual(vec3.min(), 0.05) vec1.min(vec2) self.assertAlmostEqual(vec1, Vector2d(0.1, 0.2)) vec1.min(vec3) self.assertAlmostEqual(vec1, Vector2d(0.05, 0.1)) def test_equal_tolerance(self): # Test Equal function with specified tolerance self.assertFalse(Vector2d.ZERO.equal(Vector2d.ONE, 1e-6)) self.assertFalse(Vector2d.ZERO.equal(Vector2d.ONE, 1e-3)) self.assertFalse(Vector2d.ZERO.equal(Vector2d.ONE, 1e-1)) self.assertTrue(Vector2d.ZERO.equal(Vector2d.ONE, 1)) self.assertTrue(Vector2d.ZERO.equal(Vector2d.ONE, 1.1)) def test_dot(self): v = Vector2d(1, 2) self.assertAlmostEqual(v.dot(Vector2d(3, 4)), 11.0) self.assertAlmostEqual(v.dot(Vector2d(0, 0)), 0.0) self.assertAlmostEqual(v.dot(Vector2d(1, 0)), 1.0) self.assertAlmostEqual(v.dot(Vector2d(0, 1)), 2.0) def test_correct(self): vec1 = Vector2d(0, float("nan")) vec2 = Vector2d(float("inf"), -1) vec3 = Vector2d(10, -2) vec1.correct() vec2.correct() vec3.correct() self.assertAlmostEqual(vec1, Vector2d(0, 0)) self.assertAlmostEqual(vec2, Vector2d(0, -1)) self.assertAlmostEqual(vec3, Vector2d(10, -2)) def test_abs_dot(self): v = Vector2d(1, -2) self.assertAlmostEqual(v.abs_dot(Vector2d(3, 4)), 11.0) self.assertAlmostEqual(v.abs_dot(Vector2d(0, 0)), 0.0) self.assertAlmostEqual(v.abs_dot(Vector2d(1, 0)), 1.0) self.assertAlmostEqual(v.abs_dot(Vector2d(0, 1)), 2.0) def test_add(self): vec1 = Vector2d(0.1, 0.2) vec2 = Vector2d(1.1, 2.2) vec3 = vec1 vec3 += vec2 self.assertAlmostEqual(vec1 + vec2, Vector2d(1.2, 2.4)) self.assertAlmostEqual(vec3, Vector2d(1.2, 2.4)) # Add zero # Scalar right self.assertEqual(vec1 + 0, vec1) # Vector left and right self.assertAlmostEqual(Vector2d.ZERO + vec1, vec1) self.assertAlmostEqual(vec1 + Vector2d.ZERO, vec1) # Addition assigment vec4 = Vector2d(vec1) vec4 += 0 self.assertEqual(vec4, vec1) vec4 += Vector2d.ZERO self.assertAlmostEqual(vec4, vec1) # Add non-trivial scalar values left and right self.assertEqual(vec1 + 2.5, Vector2d(2.6, 2.7)) vec1 = vec4 vec4 += 2.5 self.assertEqual(vec4, Vector2d(2.6, 2.7)) def test_sub(self): vec1 = Vector2d(0.1, 0.2) vec2 = Vector2d(1.1, 2.2) vec3 = vec2 vec3 -= vec1 self.assertAlmostEqual(vec2 - vec1, Vector2d(1.0, 2.0)) self.assertAlmostEqual(vec3, Vector2d(1.0, 2.0)) # Subtraction with zeros # Scalar right self.assertEqual(vec1 - 0, vec1) # Vector left and right self.assertAlmostEqual(Vector2d.ZERO - vec1, -vec1) self.assertAlmostEqual(vec1 - Vector2d.ZERO, vec1) # Subtraction assignment vec4 = Vector2d(vec1) vec4 -= 0 self.assertEqual(vec4, vec1) vec4 -= Vector2d.ZERO self.assertAlmostEqual(vec4, vec1) # Subtract non-trivial scalar values left and right self.assertEqual(vec1 - 2.5, -Vector2d(2.4, 2.3)) vec4 = vec1 vec4 -= 2.5 self.assertEqual(vec4, -Vector2d(2.4, 2.3)) def test_multiply(self): v = Vector2d(0.1, -4.2) vec2 = v * 2.0 self.assertEqual(vec2, Vector2d(0.2, -8.4)) vec2 *= 4.0 self.assertEqual(vec2, Vector2d(0.8, -33.6)) # Multiply by zero # Scalar right self.assertEqual(v * 0, Vector2d.ZERO) # Element-wise vector multiplication self.assertEqual(v * Vector2d.ZERO, Vector2d.ZERO) # Multiply by one # Scalar right self.assertEqual(v * 1, v) # Element-wise vector multiplication self.assertEqual(v * Vector2d.ONE, v) # Multiply by non-trivial scalar value scalar = 2.5 expect = Vector2d(0.25, -10.5) self.assertEqual(v * scalar, expect) # Multiply by itself element-wise v.set(0.1, 0.5) self.assertAlmostEqual(v * v, Vector2d(0.01, 0.25)) def test_lenght(self): # Zero vector self.assertAlmostEqual(Vector2d.ZERO.length(), 0.0) self.assertAlmostEqual(Vector2d.ZERO.squared_length(), 0.0) # One vector self.assertAlmostEqual(Vector2d.ONE.length(), math.sqrt(2), delta=1e-10) self.assertAlmostEqual(Vector2d.ONE.squared_length(), 2.0) # Arbitrary vector v = Vector2d(0.1, -4.2) self.assertAlmostEqual(v.length(), 4.20119030752, delta=1e-10) self.assertAlmostEqual(v.squared_length(), 17.65) # Integer vector v = Vector2d(3, 4) self.assertAlmostEqual(v.length(), 5) self.assertAlmostEqual(v.squared_length(), 25) def test_nan(self): nanVec = Vector2d.NAN self.assertFalse(nanVec.is_finite()) self.assertTrue(math.isnan(nanVec.x())) self.assertTrue(math.isnan(nanVec.y())) nanVec.correct() self.assertEqual(Vector2d.ZERO, nanVec) self.assertTrue(nanVec.is_finite()) nanVecF = Vector2f.NAN self.assertFalse(nanVecF.is_finite()) self.assertTrue(math.isnan(nanVecF.x())) self.assertTrue(math.isnan(nanVecF.y())) nanVecF.correct() self.assertEqual(Vector2f.ZERO, nanVecF) self.assertTrue(nanVecF.is_finite()) if __name__ == '__main__': unittest.main()
[((9317, 9332), 'unittest.main', 'unittest.main', ([], {}), '()\n', (9330, 9332), False, 'import unittest\n'), ((786, 796), 'ignition.math.Vector2d', 'Vector2d', ([], {}), '()\n', (794, 796), False, 'from ignition.math import Vector2d\n'), ((898, 912), 'ignition.math.Vector2d', 'Vector2d', (['(1)', '(0)'], {}), '(1, 0)\n', (906, 912), False, 'from ignition.math import Vector2d\n'), ((1003, 1016), 'ignition.math.Vector2d', 'Vector2d', (['vec'], {}), '(vec)\n', (1011, 1016), False, 'from ignition.math import Vector2d\n'), ((1161, 1171), 'ignition.math.Vector2d', 'Vector2d', ([], {}), '()\n', (1169, 1171), False, 'from ignition.math import Vector2d\n'), ((1252, 1266), 'ignition.math.Vector2d', 'Vector2d', (['(1)', '(2)'], {}), '(1, 2)\n', (1260, 1266), False, 'from ignition.math import Vector2d\n'), ((1689, 1703), 'ignition.math.Vector2d', 'Vector2d', (['(6)', '(7)'], {}), '(6, 7)\n', (1697, 1703), False, 'from ignition.math import Vector2d\n'), ((1876, 1890), 'ignition.math.Vector2d', 'Vector2d', (['(5)', '(6)'], {}), '(5, 6)\n', (1884, 1890), False, 'from ignition.math import Vector2d\n'), ((2089, 2103), 'ignition.math.Vector2d', 'Vector2d', (['(1)', '(6)'], {}), '(1, 6)\n', (2097, 2103), False, 'from ignition.math import Vector2d\n'), ((2325, 2339), 'ignition.math.Vector2d', 'Vector2d', (['(2)', '(3)'], {}), '(2, 3)\n', (2333, 2339), False, 'from ignition.math import Vector2d\n'), ((2771, 2785), 'ignition.math.Vector2d', 'Vector2d', (['(2)', '(4)'], {}), '(2, 4)\n', (2779, 2785), False, 'from ignition.math import Vector2d\n'), ((3156, 3174), 'ignition.math.Vector2d', 'Vector2d', (['(0.1)', '(0.2)'], {}), '(0.1, 0.2)\n', (3164, 3174), False, 'from ignition.math import Vector2d\n'), ((3190, 3208), 'ignition.math.Vector2d', 'Vector2d', (['(0.3)', '(0.5)'], {}), '(0.3, 0.5)\n', (3198, 3208), False, 'from ignition.math import Vector2d\n'), ((3224, 3242), 'ignition.math.Vector2d', 'Vector2d', (['(0.4)', '(0.2)'], {}), '(0.4, 0.2)\n', (3232, 3242), False, 'from ignition.math import Vector2d\n'), ((3542, 3560), 'ignition.math.Vector2d', 'Vector2d', (['(0.3)', '(0.5)'], {}), '(0.3, 0.5)\n', (3550, 3560), False, 'from ignition.math import Vector2d\n'), ((3576, 3594), 'ignition.math.Vector2d', 'Vector2d', (['(0.1)', '(0.2)'], {}), '(0.1, 0.2)\n', (3584, 3594), False, 'from ignition.math import Vector2d\n'), ((3610, 3629), 'ignition.math.Vector2d', 'Vector2d', (['(0.05)', '(0.1)'], {}), '(0.05, 0.1)\n', (3618, 3629), False, 'from ignition.math import Vector2d\n'), ((4344, 4358), 'ignition.math.Vector2d', 'Vector2d', (['(1)', '(2)'], {}), '(1, 2)\n', (4352, 4358), False, 'from ignition.math import Vector2d\n'), ((4723, 4739), 'ignition.math.Vector2d', 'Vector2d', (['(10)', '(-2)'], {}), '(10, -2)\n', (4731, 4739), False, 'from ignition.math import Vector2d\n'), ((5014, 5029), 'ignition.math.Vector2d', 'Vector2d', (['(1)', '(-2)'], {}), '(1, -2)\n', (5022, 5029), False, 'from ignition.math import Vector2d\n'), ((5324, 5342), 'ignition.math.Vector2d', 'Vector2d', (['(0.1)', '(0.2)'], {}), '(0.1, 0.2)\n', (5332, 5342), False, 'from ignition.math import Vector2d\n'), ((5358, 5376), 'ignition.math.Vector2d', 'Vector2d', (['(1.1)', '(2.2)'], {}), '(1.1, 2.2)\n', (5366, 5376), False, 'from ignition.math import Vector2d\n'), ((5821, 5835), 'ignition.math.Vector2d', 'Vector2d', (['vec1'], {}), '(vec1)\n', (5829, 5835), False, 'from ignition.math import Vector2d\n'), ((6209, 6227), 'ignition.math.Vector2d', 'Vector2d', (['(0.1)', '(0.2)'], {}), '(0.1, 0.2)\n', (6217, 6227), False, 'from ignition.math import Vector2d\n'), ((6243, 6261), 'ignition.math.Vector2d', 'Vector2d', (['(1.1)', '(2.2)'], {}), '(1.1, 2.2)\n', (6251, 6261), False, 'from ignition.math import Vector2d\n'), ((6725, 6739), 'ignition.math.Vector2d', 'Vector2d', (['vec1'], {}), '(vec1)\n', (6733, 6739), False, 'from ignition.math import Vector2d\n'), ((7122, 7141), 'ignition.math.Vector2d', 'Vector2d', (['(0.1)', '(-4.2)'], {}), '(0.1, -4.2)\n', (7130, 7141), False, 'from ignition.math import Vector2d\n'), ((7758, 7779), 'ignition.math.Vector2d', 'Vector2d', (['(0.25)', '(-10.5)'], {}), '(0.25, -10.5)\n', (7766, 7779), False, 'from ignition.math import Vector2d\n'), ((8371, 8390), 'ignition.math.Vector2d', 'Vector2d', (['(0.1)', '(-4.2)'], {}), '(0.1, -4.2)\n', (8379, 8390), False, 'from ignition.math import Vector2d\n'), ((8558, 8572), 'ignition.math.Vector2d', 'Vector2d', (['(3)', '(4)'], {}), '(3, 4)\n', (8566, 8572), False, 'from ignition.math import Vector2d\n'), ((1792, 1806), 'ignition.math.Vector2d', 'Vector2d', (['(1)', '(2)'], {}), '(1, 2)\n', (1800, 1806), False, 'from ignition.math import Vector2d\n'), ((1983, 1997), 'ignition.math.Vector2d', 'Vector2d', (['(2)', '(4)'], {}), '(2, 4)\n', (1991, 1997), False, 'from ignition.math import Vector2d\n'), ((2220, 2234), 'ignition.math.Vector2d', 'Vector2d', (['(2)', '(3)'], {}), '(2, 3)\n', (2228, 2234), False, 'from ignition.math import Vector2d\n'), ((2664, 2678), 'ignition.math.Vector2d', 'Vector2d', (['(2)', '(4)'], {}), '(2, 4)\n', (2672, 2678), False, 'from ignition.math import Vector2d\n'), ((3401, 3419), 'ignition.math.Vector2d', 'Vector2d', (['(0.3)', '(0.5)'], {}), '(0.3, 0.5)\n', (3409, 3419), False, 'from ignition.math import Vector2d\n'), ((3482, 3500), 'ignition.math.Vector2d', 'Vector2d', (['(0.4)', '(0.5)'], {}), '(0.4, 0.5)\n', (3490, 3500), False, 'from ignition.math import Vector2d\n'), ((3789, 3807), 'ignition.math.Vector2d', 'Vector2d', (['(0.1)', '(0.2)'], {}), '(0.1, 0.2)\n', (3797, 3807), False, 'from ignition.math import Vector2d\n'), ((3870, 3889), 'ignition.math.Vector2d', 'Vector2d', (['(0.05)', '(0.1)'], {}), '(0.05, 0.1)\n', (3878, 3889), False, 'from ignition.math import Vector2d\n'), ((4008, 4048), 'ignition.math.Vector2d.ZERO.equal', 'Vector2d.ZERO.equal', (['Vector2d.ONE', '(1e-06)'], {}), '(Vector2d.ONE, 1e-06)\n', (4027, 4048), False, 'from ignition.math import Vector2d\n'), ((4074, 4114), 'ignition.math.Vector2d.ZERO.equal', 'Vector2d.ZERO.equal', (['Vector2d.ONE', '(0.001)'], {}), '(Vector2d.ONE, 0.001)\n', (4093, 4114), False, 'from ignition.math import Vector2d\n'), ((4140, 4178), 'ignition.math.Vector2d.ZERO.equal', 'Vector2d.ZERO.equal', (['Vector2d.ONE', '(0.1)'], {}), '(Vector2d.ONE, 0.1)\n', (4159, 4178), False, 'from ignition.math import Vector2d\n'), ((4205, 4241), 'ignition.math.Vector2d.ZERO.equal', 'Vector2d.ZERO.equal', (['Vector2d.ONE', '(1)'], {}), '(Vector2d.ONE, 1)\n', (4224, 4241), False, 'from ignition.math import Vector2d\n'), ((4267, 4305), 'ignition.math.Vector2d.ZERO.equal', 'Vector2d.ZERO.equal', (['Vector2d.ONE', '(1.1)'], {}), '(Vector2d.ONE, 1.1)\n', (4286, 4305), False, 'from ignition.math import Vector2d\n'), ((4848, 4862), 'ignition.math.Vector2d', 'Vector2d', (['(0)', '(0)'], {}), '(0, 0)\n', (4856, 4862), False, 'from ignition.math import Vector2d\n'), ((4901, 4916), 'ignition.math.Vector2d', 'Vector2d', (['(0)', '(-1)'], {}), '(0, -1)\n', (4909, 4916), False, 'from ignition.math import Vector2d\n'), ((4955, 4971), 'ignition.math.Vector2d', 'Vector2d', (['(10)', '(-2)'], {}), '(10, -2)\n', (4963, 4971), False, 'from ignition.math import Vector2d\n'), ((5464, 5482), 'ignition.math.Vector2d', 'Vector2d', (['(1.2)', '(2.4)'], {}), '(1.2, 2.4)\n', (5472, 5482), False, 'from ignition.math import Vector2d\n'), ((5521, 5539), 'ignition.math.Vector2d', 'Vector2d', (['(1.2)', '(2.4)'], {}), '(1.2, 2.4)\n', (5529, 5539), False, 'from ignition.math import Vector2d\n'), ((6057, 6075), 'ignition.math.Vector2d', 'Vector2d', (['(2.6)', '(2.7)'], {}), '(2.6, 2.7)\n', (6065, 6075), False, 'from ignition.math import Vector2d\n'), ((6149, 6167), 'ignition.math.Vector2d', 'Vector2d', (['(2.6)', '(2.7)'], {}), '(2.6, 2.7)\n', (6157, 6167), False, 'from ignition.math import Vector2d\n'), ((6349, 6367), 'ignition.math.Vector2d', 'Vector2d', (['(1.0)', '(2.0)'], {}), '(1.0, 2.0)\n', (6357, 6367), False, 'from ignition.math import Vector2d\n'), ((6406, 6424), 'ignition.math.Vector2d', 'Vector2d', (['(1.0)', '(2.0)'], {}), '(1.0, 2.0)\n', (6414, 6424), False, 'from ignition.math import Vector2d\n'), ((7197, 7216), 'ignition.math.Vector2d', 'Vector2d', (['(0.2)', '(-8.4)'], {}), '(0.2, -8.4)\n', (7205, 7216), False, 'from ignition.math import Vector2d\n'), ((7270, 7290), 'ignition.math.Vector2d', 'Vector2d', (['(0.8)', '(-33.6)'], {}), '(0.8, -33.6)\n', (7278, 7290), False, 'from ignition.math import Vector2d\n'), ((7930, 7950), 'ignition.math.Vector2d', 'Vector2d', (['(0.01)', '(0.25)'], {}), '(0.01, 0.25)\n', (7938, 7950), False, 'from ignition.math import Vector2d\n'), ((8033, 8055), 'ignition.math.Vector2d.ZERO.length', 'Vector2d.ZERO.length', ([], {}), '()\n', (8053, 8055), False, 'from ignition.math import Vector2d\n'), ((8093, 8123), 'ignition.math.Vector2d.ZERO.squared_length', 'Vector2d.ZERO.squared_length', ([], {}), '()\n', (8121, 8123), False, 'from ignition.math import Vector2d\n'), ((8183, 8204), 'ignition.math.Vector2d.ONE.length', 'Vector2d.ONE.length', ([], {}), '()\n', (8202, 8204), False, 'from ignition.math import Vector2d\n'), ((8237, 8249), 'math.sqrt', 'math.sqrt', (['(2)'], {}), '(2)\n', (8246, 8249), False, 'import math\n'), ((8295, 8324), 'ignition.math.Vector2d.ONE.squared_length', 'Vector2d.ONE.squared_length', ([], {}), '()\n', (8322, 8324), False, 'from ignition.math import Vector2d\n'), ((1336, 1346), 'ignition.math.Vector2d', 'Vector2d', ([], {}), '()\n', (1344, 1346), False, 'from ignition.math import Vector2d\n'), ((1436, 1464), 'ignition.math.Vector2d', 'Vector2d', (['(0.447214)', '(0.894427)'], {}), '(0.447214, 0.894427)\n', (1444, 1464), False, 'from ignition.math import Vector2d\n'), ((1540, 1554), 'ignition.math.Vector2d', 'Vector2d', (['(4)', '(5)'], {}), '(4, 5)\n', (1548, 1554), False, 'from ignition.math import Vector2d\n'), ((1638, 1652), 'ignition.math.Vector2d', 'Vector2d', (['(1)', '(2)'], {}), '(1, 2)\n', (1646, 1652), False, 'from ignition.math import Vector2d\n'), ((1736, 1750), 'ignition.math.Vector2d', 'Vector2d', (['(6)', '(7)'], {}), '(6, 7)\n', (1744, 1750), False, 'from ignition.math import Vector2d\n'), ((1839, 1853), 'ignition.math.Vector2d', 'Vector2d', (['(7)', '(9)'], {}), '(7, 9)\n', (1847, 1853), False, 'from ignition.math import Vector2d\n'), ((1923, 1939), 'ignition.math.Vector2d', 'Vector2d', (['(12)', '(15)'], {}), '(12, 15)\n', (1931, 1939), False, 'from ignition.math import Vector2d\n'), ((2030, 2046), 'ignition.math.Vector2d', 'Vector2d', (['(10)', '(11)'], {}), '(10, 11)\n', (2038, 2046), False, 'from ignition.math import Vector2d\n'), ((2136, 2151), 'ignition.math.Vector2d', 'Vector2d', (['(1)', '(-2)'], {}), '(1, -2)\n', (2144, 2151), False, 'from ignition.math import Vector2d\n'), ((2267, 2281), 'ignition.math.Vector2d', 'Vector2d', (['(5)', '(2)'], {}), '(5, 2)\n', (2275, 2281), False, 'from ignition.math import Vector2d\n'), ((2372, 2386), 'ignition.math.Vector2d', 'Vector2d', (['(5)', '(2)'], {}), '(5, 2)\n', (2380, 2386), False, 'from ignition.math import Vector2d\n'), ((2493, 2507), 'ignition.math.Vector2d', 'Vector2d', (['(5)', '(3)'], {}), '(5, 3)\n', (2501, 2507), False, 'from ignition.math import Vector2d\n'), ((2585, 2599), 'ignition.math.Vector2d', 'Vector2d', (['(5)', '(3)'], {}), '(5, 3)\n', (2593, 2599), False, 'from ignition.math import Vector2d\n'), ((2711, 2727), 'ignition.math.Vector2d', 'Vector2d', (['(20)', '(24)'], {}), '(20, 24)\n', (2719, 2727), False, 'from ignition.math import Vector2d\n'), ((2818, 2834), 'ignition.math.Vector2d', 'Vector2d', (['(20)', '(24)'], {}), '(20, 24)\n', (2826, 2834), False, 'from ignition.math import Vector2d\n'), ((2937, 2953), 'ignition.math.Vector2d', 'Vector2d', (['(20)', '(12)'], {}), '(20, 12)\n', (2945, 2953), False, 'from ignition.math import Vector2d\n'), ((3031, 3047), 'ignition.math.Vector2d', 'Vector2d', (['(20)', '(12)'], {}), '(20, 12)\n', (3039, 3047), False, 'from ignition.math import Vector2d\n'), ((4396, 4410), 'ignition.math.Vector2d', 'Vector2d', (['(3)', '(4)'], {}), '(3, 4)\n', (4404, 4410), False, 'from ignition.math import Vector2d\n'), ((4456, 4470), 'ignition.math.Vector2d', 'Vector2d', (['(0)', '(0)'], {}), '(0, 0)\n', (4464, 4470), False, 'from ignition.math import Vector2d\n'), ((4515, 4529), 'ignition.math.Vector2d', 'Vector2d', (['(1)', '(0)'], {}), '(1, 0)\n', (4523, 4529), False, 'from ignition.math import Vector2d\n'), ((4574, 4588), 'ignition.math.Vector2d', 'Vector2d', (['(0)', '(1)'], {}), '(0, 1)\n', (4582, 4588), False, 'from ignition.math import Vector2d\n'), ((5072, 5086), 'ignition.math.Vector2d', 'Vector2d', (['(3)', '(4)'], {}), '(3, 4)\n', (5080, 5086), False, 'from ignition.math import Vector2d\n'), ((5136, 5150), 'ignition.math.Vector2d', 'Vector2d', (['(0)', '(0)'], {}), '(0, 0)\n', (5144, 5150), False, 'from ignition.math import Vector2d\n'), ((5199, 5213), 'ignition.math.Vector2d', 'Vector2d', (['(1)', '(0)'], {}), '(1, 0)\n', (5207, 5213), False, 'from ignition.math import Vector2d\n'), ((5262, 5276), 'ignition.math.Vector2d', 'Vector2d', (['(0)', '(1)'], {}), '(0, 1)\n', (5270, 5276), False, 'from ignition.math import Vector2d\n'), ((6967, 6985), 'ignition.math.Vector2d', 'Vector2d', (['(2.4)', '(2.3)'], {}), '(2.4, 2.3)\n', (6975, 6985), False, 'from ignition.math import Vector2d\n'), ((7060, 7078), 'ignition.math.Vector2d', 'Vector2d', (['(2.4)', '(2.3)'], {}), '(2.4, 2.3)\n', (7068, 7078), False, 'from ignition.math import Vector2d\n')]
sodre/filesystem_spec
fsspec/tests/test_mapping.py
5fe51c5e85366b57a11ed66637a940970372ea4b
import os import fsspec from fsspec.implementations.memory import MemoryFileSystem import pickle import pytest def test_mapping_prefix(tmpdir): tmpdir = str(tmpdir) os.makedirs(os.path.join(tmpdir, "afolder")) open(os.path.join(tmpdir, "afile"), "w").write("test") open(os.path.join(tmpdir, "afolder", "anotherfile"), "w").write("test2") m = fsspec.get_mapper("file://" + tmpdir) assert "afile" in m assert m["afolder/anotherfile"] == b"test2" fs = fsspec.filesystem("file") m2 = fs.get_mapper(tmpdir) m3 = fs.get_mapper("file://" + tmpdir) assert m == m2 == m3 def test_ops(): MemoryFileSystem.store.clear() m = fsspec.get_mapper("memory://") assert not m assert list(m) == [] with pytest.raises(KeyError): m["hi"] assert m.pop("key", 0) == 0 m["key0"] = b"data" assert list(m) == ["key0"] assert m["key0"] == b"data" m.clear() assert list(m) == [] def test_pickle(): m = fsspec.get_mapper("memory://") assert isinstance(m.fs, MemoryFileSystem) m["key"] = b"data" m2 = pickle.loads(pickle.dumps(m)) assert list(m) == list(m2) def test_keys_view(): # https://github.com/intake/filesystem_spec/issues/186 m = fsspec.get_mapper("memory://") m["key"] = b"data" keys = m.keys() assert len(keys) == 1 # check that we don't consume the keys assert len(keys) == 1
[((365, 402), 'fsspec.get_mapper', 'fsspec.get_mapper', (["('file://' + tmpdir)"], {}), "('file://' + tmpdir)\n", (382, 402), False, 'import fsspec\n'), ((485, 510), 'fsspec.filesystem', 'fsspec.filesystem', (['"""file"""'], {}), "('file')\n", (502, 510), False, 'import fsspec\n'), ((633, 663), 'fsspec.implementations.memory.MemoryFileSystem.store.clear', 'MemoryFileSystem.store.clear', ([], {}), '()\n', (661, 663), False, 'from fsspec.implementations.memory import MemoryFileSystem\n'), ((672, 702), 'fsspec.get_mapper', 'fsspec.get_mapper', (['"""memory://"""'], {}), "('memory://')\n", (689, 702), False, 'import fsspec\n'), ((987, 1017), 'fsspec.get_mapper', 'fsspec.get_mapper', (['"""memory://"""'], {}), "('memory://')\n", (1004, 1017), False, 'import fsspec\n'), ((1248, 1278), 'fsspec.get_mapper', 'fsspec.get_mapper', (['"""memory://"""'], {}), "('memory://')\n", (1265, 1278), False, 'import fsspec\n'), ((187, 218), 'os.path.join', 'os.path.join', (['tmpdir', '"""afolder"""'], {}), "(tmpdir, 'afolder')\n", (199, 218), False, 'import os\n'), ((755, 778), 'pytest.raises', 'pytest.raises', (['KeyError'], {}), '(KeyError)\n', (768, 778), False, 'import pytest\n'), ((1109, 1124), 'pickle.dumps', 'pickle.dumps', (['m'], {}), '(m)\n', (1121, 1124), False, 'import pickle\n'), ((229, 258), 'os.path.join', 'os.path.join', (['tmpdir', '"""afile"""'], {}), "(tmpdir, 'afile')\n", (241, 258), False, 'import os\n'), ((288, 334), 'os.path.join', 'os.path.join', (['tmpdir', '"""afolder"""', '"""anotherfile"""'], {}), "(tmpdir, 'afolder', 'anotherfile')\n", (300, 334), False, 'import os\n')]
EderReisS/pythonChallenges
testedome/questions/quest_5.py
a880358c2cb4de0863f4b4cada36b3d439a8a018
""" A / | B C 'B, C' """ class CategoryTree: def __init__(self): self.root = {} self.all_categories = [] def add_category(self, category, parent): if category in self.all_categories: raise KeyError(f"{category} exists") if parent is None: self.root[category] = set() if parent: if parent not in self.root: raise KeyError(f"{parent} invalid") self.root[category] = set() self.root[parent].add(category) self.all_categories.append(category) def get_children(self, parent): if parent and parent not in self.root: raise KeyError(f"{parent} invalid") return list(self.root[parent]) if __name__ == "__main__": c = CategoryTree() c.add_category('A', None) c.add_category('B', 'A') c.add_category('C', 'A') print(','.join(c.get_children('A') or [])) print(','.join(c.get_children('E') or []))
[]
mirfan899/MTTS
sppas/sppas/src/anndata/aio/__init__.py
3167b65f576abcc27a8767d24c274a04712bd948
# -*- coding: UTF-8 -*- """ .. --------------------------------------------------------------------- ___ __ __ __ ___ / | \ | \ | \ / the automatic \__ |__/ |__/ |___| \__ annotation and \ | | | | \ analysis ___/ | | | | ___/ of speech http://www.sppas.org/ Use of this software is governed by the GNU Public License, version 3. SPPAS is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. SPPAS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with SPPAS. If not, see <http://www.gnu.org/licenses/>. This banner notice must not be removed. --------------------------------------------------------------------- anndata.aio ~~~~~~~~~~~ Readers and writers of annotated data. :author: Brigitte Bigi :organization: Laboratoire Parole et Langage, Aix-en-Provence, France :contact: [email protected] :license: GPL, v3 :copyright: Copyright (C) 2011-2018 Brigitte Bigi """ from .annotationpro import sppasANT from .annotationpro import sppasANTX from .anvil import sppasAnvil from .audacity import sppasAudacity from .elan import sppasEAF from .htk import sppasLab from .phonedit import sppasMRK from .phonedit import sppasSignaix from .praat import sppasTextGrid from .praat import sppasIntensityTier from .praat import sppasPitchTier from .sclite import sppasCTM from .sclite import sppasSTM from .subtitle import sppasSubRip from .subtitle import sppasSubViewer from .text import sppasRawText from .text import sppasCSV from .weka import sppasARFF from .weka import sppasXRFF from .xtrans import sppasTDF from .xra import sppasXRA # ---------------------------------------------------------------------------- # Variables # ---------------------------------------------------------------------------- # TODO: get extension from the "default_extension" member of each class ext_sppas = ['.xra', '.[Xx][Rr][Aa]'] ext_praat = ['.TextGrid', '.PitchTier', '.[Tt][eE][xX][tT][Gg][Rr][Ii][dD]','.[Pp][Ii][tT][cC][hH][Tt][Ii][Ee][rR]'] ext_transcriber = ['.trs','.[tT][rR][sS]'] ext_elan = ['.eaf', '[eE][aA][fF]'] ext_ascii = ['.txt', '.csv', '.[cC][sS][vV]', '.[tT][xX][Tt]', '.info'] ext_phonedit = ['.mrk', '.[mM][rR][kK]'] ext_signaix = ['.hz', '.[Hh][zZ]'] ext_sclite = ['.stm', '.ctm', '.[sScC][tT][mM]'] ext_htk = ['.lab', '.mlf'] ext_subtitles = ['.sub', '.srt', '.[sS][uU][bB]', '.[sS][rR][tT]'] ext_anvil = ['.anvil', '.[aA][aN][vV][iI][lL]'] ext_annotationpro = ['.antx', '.[aA][aN][tT][xX]'] ext_xtrans = ['.tdf', '.[tT][dD][fF]'] ext_audacity = ['.aup'] ext_weka = ['.arff', '.xrff'] primary_in = ['.hz', '.PitchTier'] annotations_in = ['.xra', '.TextGrid', '.eaf', '.csv', '.mrk', '.txt', '.stm', '.ctm', '.lab', '.mlf', '.sub', '.srt', '.antx', '.anvil', '.aup', '.trs', '.tdf'] extensions = ['.xra', '.textgrid', '.pitchtier', '.hz', '.eaf', '.trs', '.csv', '.mrk', '.txt', '.mrk', '.stm', '.ctm', '.lab', '.mlf', '.sub', '.srt', 'anvil', '.antx', '.tdf', '.arff', '.xrff'] extensionsul = ext_sppas + ext_praat + ext_transcriber + ext_elan + ext_ascii + ext_phonedit + ext_signaix + ext_sclite + ext_htk + ext_subtitles + ext_anvil + ext_annotationpro + ext_xtrans + ext_audacity + ext_weka extensions_in = primary_in + annotations_in extensions_out = ['.xra', '.TextGrid', '.eaf', '.csv', '.mrk', '.txt', '.stm', '.ctm', '.lab', '.mlf', '.sub', '.srt', '.antx', '.arff', '.xrff'] extensions_out_multitiers = ['.xra', '.TextGrid', '.eaf', '.csv', '.mrk', '.antx', '.arff', '.xrff'] # ---------------------------------------------------------------------------- __all__ = ( "sppasANT", "sppasANTX", "sppasAnvil", "sppasAudacity", "sppasEAF", "sppasLab", "sppasMRK", "sppasSignaix", "sppasTextGrid", "sppasIntensityTier", "sppasPitchTier", "sppasCTM", "sppasSTM", "sppasSubRip", "sppasSubViewer", "sppasRawText", "sppasCSV", "sppasARFF", "sppasXRFF", "sppasTDF", "sppasXRA", "extensions", "extensions_in", "extensions_out" )
[]
dapengchen123/hfsoftmax
models/__init__.py
467bd90814abdf3e5ad8384e6e05749172b68ae6
from .resnet import * from .hynet import * from .classifier import Classifier, HFClassifier, HNSWClassifier from .ext_layers import ParameterClient samplerClassifier = { 'hf': HFClassifier, 'hnsw': HNSWClassifier, }
[]
AgnirudraSil/tetris
scripts/multiplayer/server.py
2a4f4c26190fc8b669f98c116af343f7f1ac51bf
import pickle import socket import _thread from scripts.multiplayer import game, board, tetriminos server = "192.168.29.144" port = 5555 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: s.bind((server, port)) except socket.error as e: print(e) s.listen() print("Waiting for connection") connected = set() games = {} idCount = 0 def threaded_client(conn, p, gameId): global idCount conn.send(str.encode(str(p))) reply = "" while True: try: data = conn.recv(4096).decode() if gameId in games: game = games[gameId] if not data: break else: game.update(p, data) reply = game conn.sendall(pickle.dumps(reply)) else: break except: break print("Lost Connection!") try: del games[gameId] print("Closing Game", gameId) except: pass idCount -= 1 conn.close() while True: conn, addr = s.accept() print("Connected to: ", addr) idCount += 1 p = 0 game_id = (idCount - 1) // 2 if idCount % 2 == 1: games[game_id] = game.Game((0, 0, 0), None, board) else: games[game_id].ready = True p = 1 _thread.start_new_thread(threaded_client, (conn, p, game_id))
[((143, 192), 'socket.socket', 'socket.socket', (['socket.AF_INET', 'socket.SOCK_STREAM'], {}), '(socket.AF_INET, socket.SOCK_STREAM)\n', (156, 192), False, 'import socket\n'), ((1335, 1396), '_thread.start_new_thread', '_thread.start_new_thread', (['threaded_client', '(conn, p, game_id)'], {}), '(threaded_client, (conn, p, game_id))\n', (1359, 1396), False, 'import _thread\n'), ((1236, 1269), 'scripts.multiplayer.game.Game', 'game.Game', (['(0, 0, 0)', 'None', 'board'], {}), '((0, 0, 0), None, board)\n', (1245, 1269), False, 'from scripts.multiplayer import game, board, tetriminos\n'), ((701, 721), 'scripts.multiplayer.game.update', 'game.update', (['p', 'data'], {}), '(p, data)\n', (712, 721), False, 'from scripts.multiplayer import game, board, tetriminos\n'), ((789, 808), 'pickle.dumps', 'pickle.dumps', (['reply'], {}), '(reply)\n', (801, 808), False, 'import pickle\n')]
smaranjitghose/PyProjectEuler
solutions/6-sum-suqare-difference.py
d1303d18a0d90acf885ab5ac54b3ea91d99e83db
def sum_of_squares(n): return sum(i ** 2 for i in range(1, n+1)) def square_of_sum(n): return sum(range(1, n+1)) ** 2
[]
AustinTSchaffer/DailyProgrammer
AdventOfCode/2018/src/day-03/app.py
b16d9babb298ac5e879c514f9c4646b99c6860a8
import os import re from collections import defaultdict class Claim(object): def __init__(self, data_row): match = re.match(r'#(\d+) @ (\d+),(\d+): (\d+)x(\d+)', data_row) self.id = int(match[1]) self.x = int(match[2]) self.y = int(match[3]) self.width = int(match[4]) self.height = int(match[5]) def all_locations(self): for x in range(self.width): for y in range(self.height): yield (self.x + x, self.y + y) CURRENT_DIR, _ = os.path.split(__file__) DATA_FLIE = os.path.join(CURRENT_DIR, 'data.txt') def data_file_iter(data_file) -> Claim: with open(data_file, 'r') as data: for claim in data: claim = claim.strip() if (claim): yield Claim(claim) def part1(claims): """ This is basically a single-threaded collision detection method, implemented in pure python. Computation complexity is obviously not a consideration. """ # Determines how many times each locations was claimed claimed_space_registry = defaultdict(int) for claim in claims: for location in claim.all_locations(): claimed_space_registry[location] += 1 # Generates the set of all locations that were claimed more than once multi_claimed_spaces = { location for location,count in claimed_space_registry.items() if count > 1 } # Prints the number of locations that are claimed more than once # and returns the set of locations that were claimed more than once print('Multi-Claimed Spaces:', len(multi_claimed_spaces)) return multi_claimed_spaces def part2(claims, multi_claimed_spaces): """ Might not be the optimal solution, but it runs fast enough, and uses components that were already calculated in part 1. """ for claim in claims: all_locations_are_non_overlapping = all(map( lambda loc: loc not in multi_claimed_spaces, claim.all_locations() )) if all_locations_are_non_overlapping: print('Non-overlapping claim:', claim.id) return claim if __name__ == '__main__': claims = list(data_file_iter(DATA_FLIE)) mcs = part1(claims) santas_suit_material = part2(claims, mcs)
[((522, 545), 'os.path.split', 'os.path.split', (['__file__'], {}), '(__file__)\n', (535, 545), False, 'import os\n'), ((558, 595), 'os.path.join', 'os.path.join', (['CURRENT_DIR', '"""data.txt"""'], {}), "(CURRENT_DIR, 'data.txt')\n", (570, 595), False, 'import os\n'), ((1082, 1098), 'collections.defaultdict', 'defaultdict', (['int'], {}), '(int)\n', (1093, 1098), False, 'from collections import defaultdict\n'), ((128, 188), 're.match', 're.match', (['"""#(\\\\d+) @ (\\\\d+),(\\\\d+): (\\\\d+)x(\\\\d+)"""', 'data_row'], {}), "('#(\\\\d+) @ (\\\\d+),(\\\\d+): (\\\\d+)x(\\\\d+)', data_row)\n", (136, 188), False, 'import re\n')]
ArianeFire/HaniCam
facerec-master/py/facerec/distance.py
8a940486a613d680a0b556209a596cdf3eb71f53
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) Philipp Wagner. All rights reserved. # Licensed under the BSD license. See LICENSE file in the project root for full license information. import numpy as np class AbstractDistance(object): def __init__(self, name): self._name = name def __call__(self,p,q): raise NotImplementedError("Every AbstractDistance must implement the __call__ method.") @property def name(self): return self._name def __repr__(self): return self._name class EuclideanDistance(AbstractDistance): def __init__(self): AbstractDistance.__init__(self,"EuclideanDistance") def __call__(self, p, q): p = np.asarray(p).flatten() q = np.asarray(q).flatten() return np.sqrt(np.sum(np.power((p-q),2))) class CosineDistance(AbstractDistance): """ Negated Mahalanobis Cosine Distance. Literature: "Studies on sensitivity of face recognition performance to eye location accuracy.". Master Thesis (2004), Wang """ def __init__(self): AbstractDistance.__init__(self,"CosineDistance") def __call__(self, p, q): p = np.asarray(p).flatten() q = np.asarray(q).flatten() return -np.dot(p.T,q) / (np.sqrt(np.dot(p,p.T)*np.dot(q,q.T))) class NormalizedCorrelation(AbstractDistance): """ Calculates the NormalizedCorrelation Coefficient for two vectors. Literature: "Multi-scale Local Binary Pattern Histogram for Face Recognition". PhD (2008). Chi Ho Chan, University Of Surrey. """ def __init__(self): AbstractDistance.__init__(self,"NormalizedCorrelation") def __call__(self, p, q): p = np.asarray(p).flatten() q = np.asarray(q).flatten() pmu = p.mean() qmu = q.mean() pm = p - pmu qm = q - qmu return 1.0 - (np.dot(pm, qm) / (np.sqrt(np.dot(pm, pm)) * np.sqrt(np.dot(qm, qm)))) class ChiSquareDistance(AbstractDistance): """ Negated Mahalanobis Cosine Distance. Literature: "Studies on sensitivity of face recognition performance to eye location accuracy.". Master Thesis (2004), Wang """ def __init__(self): AbstractDistance.__init__(self,"ChiSquareDistance") def __call__(self, p, q): p = np.asarray(p).flatten() q = np.asarray(q).flatten() bin_dists = (p-q)**2 / (p+q+np.finfo('float').eps) return np.sum(bin_dists) class HistogramIntersection(AbstractDistance): def __init__(self): AbstractDistance.__init__(self,"HistogramIntersection") def __call__(self, p, q): p = np.asarray(p).flatten() q = np.asarray(q).flatten() return np.sum(np.minimum(p,q)) class BinRatioDistance(AbstractDistance): """ Calculates the Bin Ratio Dissimilarity. Literature: "Use Bin-Ratio Information for Category and Scene Classification" (2010), Xie et.al. """ def __init__(self): AbstractDistance.__init__(self,"BinRatioDistance") def __call__(self, p, q): p = np.asarray(p).flatten() q = np.asarray(q).flatten() a = np.abs(1-np.dot(p,q.T)) # NumPy needs np.dot instead of * for reducing to tensor b = ((p-q)**2 + 2*a*(p*q))/((p+q)**2+np.finfo('float').eps) return np.abs(np.sum(b)) class L1BinRatioDistance(AbstractDistance): """ Calculates the L1-Bin Ratio Dissimilarity. Literature: "Use Bin-Ratio Information for Category and Scene Classification" (2010), Xie et.al. """ def __init__(self): AbstractDistance.__init__(self,"L1-BinRatioDistance") def __call__(self, p, q): p = np.asarray(p, dtype=np.float).flatten() q = np.asarray(q, dtype=np.float).flatten() a = np.abs(1-np.dot(p,q.T)) # NumPy needs np.dot instead of * for reducing to tensor b = ((p-q)**2 + 2*a*(p*q)) * abs(p-q) / ((p+q)**2+np.finfo('float').eps) return np.abs(np.sum(b)) class ChiSquareBRD(AbstractDistance): """ Calculates the ChiSquare-Bin Ratio Dissimilarity. Literature: "Use Bin-Ratio Information for Category and Scene Classification" (2010), Xie et.al. """ def __init__(self): AbstractDistance.__init__(self,"ChiSquare-BinRatioDistance") def __call__(self, p, q): p = np.asarray(p, dtype=np.float).flatten() q = np.asarray(q, dtype=np.float).flatten() a = np.abs(1-np.dot(p,q.T)) # NumPy needs np.dot instead of * for reducing to tensor b = ((p-q)**2 + 2*a*(p*q)) * (p-q)**2 / ((p+q)**3+np.finfo('float').eps) return np.abs(np.sum(b))
[((2543, 2560), 'numpy.sum', 'np.sum', (['bin_dists'], {}), '(bin_dists)\n', (2549, 2560), True, 'import numpy as np\n'), ((2822, 2838), 'numpy.minimum', 'np.minimum', (['p', 'q'], {}), '(p, q)\n', (2832, 2838), True, 'import numpy as np\n'), ((3420, 3429), 'numpy.sum', 'np.sum', (['b'], {}), '(b)\n', (3426, 3429), True, 'import numpy as np\n'), ((4069, 4078), 'numpy.sum', 'np.sum', (['b'], {}), '(b)\n', (4075, 4078), True, 'import numpy as np\n'), ((4726, 4735), 'numpy.sum', 'np.sum', (['b'], {}), '(b)\n', (4732, 4735), True, 'import numpy as np\n'), ((742, 755), 'numpy.asarray', 'np.asarray', (['p'], {}), '(p)\n', (752, 755), True, 'import numpy as np\n'), ((778, 791), 'numpy.asarray', 'np.asarray', (['q'], {}), '(q)\n', (788, 791), True, 'import numpy as np\n'), ((832, 850), 'numpy.power', 'np.power', (['(p - q)', '(2)'], {}), '(p - q, 2)\n', (840, 850), True, 'import numpy as np\n'), ((1226, 1239), 'numpy.asarray', 'np.asarray', (['p'], {}), '(p)\n', (1236, 1239), True, 'import numpy as np\n'), ((1262, 1275), 'numpy.asarray', 'np.asarray', (['q'], {}), '(q)\n', (1272, 1275), True, 'import numpy as np\n'), ((1302, 1316), 'numpy.dot', 'np.dot', (['p.T', 'q'], {}), '(p.T, q)\n', (1308, 1316), True, 'import numpy as np\n'), ((1781, 1794), 'numpy.asarray', 'np.asarray', (['p'], {}), '(p)\n', (1791, 1794), True, 'import numpy as np\n'), ((1817, 1830), 'numpy.asarray', 'np.asarray', (['q'], {}), '(q)\n', (1827, 1830), True, 'import numpy as np\n'), ((1951, 1965), 'numpy.dot', 'np.dot', (['pm', 'qm'], {}), '(pm, qm)\n', (1957, 1965), True, 'import numpy as np\n'), ((2409, 2422), 'numpy.asarray', 'np.asarray', (['p'], {}), '(p)\n', (2419, 2422), True, 'import numpy as np\n'), ((2445, 2458), 'numpy.asarray', 'np.asarray', (['q'], {}), '(q)\n', (2455, 2458), True, 'import numpy as np\n'), ((2740, 2753), 'numpy.asarray', 'np.asarray', (['p'], {}), '(p)\n', (2750, 2753), True, 'import numpy as np\n'), ((2776, 2789), 'numpy.asarray', 'np.asarray', (['q'], {}), '(q)\n', (2786, 2789), True, 'import numpy as np\n'), ((3177, 3190), 'numpy.asarray', 'np.asarray', (['p'], {}), '(p)\n', (3187, 3190), True, 'import numpy as np\n'), ((3213, 3226), 'numpy.asarray', 'np.asarray', (['q'], {}), '(q)\n', (3223, 3226), True, 'import numpy as np\n'), ((3258, 3272), 'numpy.dot', 'np.dot', (['p', 'q.T'], {}), '(p, q.T)\n', (3264, 3272), True, 'import numpy as np\n'), ((3781, 3810), 'numpy.asarray', 'np.asarray', (['p'], {'dtype': 'np.float'}), '(p, dtype=np.float)\n', (3791, 3810), True, 'import numpy as np\n'), ((3833, 3862), 'numpy.asarray', 'np.asarray', (['q'], {'dtype': 'np.float'}), '(q, dtype=np.float)\n', (3843, 3862), True, 'import numpy as np\n'), ((3894, 3908), 'numpy.dot', 'np.dot', (['p', 'q.T'], {}), '(p, q.T)\n', (3900, 3908), True, 'import numpy as np\n'), ((4438, 4467), 'numpy.asarray', 'np.asarray', (['p'], {'dtype': 'np.float'}), '(p, dtype=np.float)\n', (4448, 4467), True, 'import numpy as np\n'), ((4490, 4519), 'numpy.asarray', 'np.asarray', (['q'], {'dtype': 'np.float'}), '(q, dtype=np.float)\n', (4500, 4519), True, 'import numpy as np\n'), ((4551, 4565), 'numpy.dot', 'np.dot', (['p', 'q.T'], {}), '(p, q.T)\n', (4557, 4565), True, 'import numpy as np\n'), ((1327, 1341), 'numpy.dot', 'np.dot', (['p', 'p.T'], {}), '(p, p.T)\n', (1333, 1341), True, 'import numpy as np\n'), ((1341, 1355), 'numpy.dot', 'np.dot', (['q', 'q.T'], {}), '(q, q.T)\n', (1347, 1355), True, 'import numpy as np\n'), ((2505, 2522), 'numpy.finfo', 'np.finfo', (['"""float"""'], {}), "('float')\n", (2513, 2522), True, 'import numpy as np\n'), ((3375, 3392), 'numpy.finfo', 'np.finfo', (['"""float"""'], {}), "('float')\n", (3383, 3392), True, 'import numpy as np\n'), ((4024, 4041), 'numpy.finfo', 'np.finfo', (['"""float"""'], {}), "('float')\n", (4032, 4041), True, 'import numpy as np\n'), ((4681, 4698), 'numpy.finfo', 'np.finfo', (['"""float"""'], {}), "('float')\n", (4689, 4698), True, 'import numpy as np\n'), ((1977, 1991), 'numpy.dot', 'np.dot', (['pm', 'pm'], {}), '(pm, pm)\n', (1983, 1991), True, 'import numpy as np\n'), ((2003, 2017), 'numpy.dot', 'np.dot', (['qm', 'qm'], {}), '(qm, qm)\n', (2009, 2017), True, 'import numpy as np\n')]
elina8013/android_demo
pgyer_uploader.py
d8cef19d06a4f21f7cf2c277bbabba8cf10a8608
#!/usr/bin/python #coding=utf-8 import os import requests import time import re from datetime import datetime import urllib2 import json import mimetypes import smtplib from email.MIMEText import MIMEText from email.MIMEMultipart import MIMEMultipart # configuration for pgyer USER_KEY = "f605b7c7826690f796078e3dd23a60d5" API_KEY = "8bdd05df986d598f01456914e51fc889" PGYER_UPLOAD_URL = "https://www.pgyer.com/apiv1/app/upload" repo_path = 'C:/Users/Administrator/.jenkins/workspace/Demo/app' repo_url = 'https://github.com/r17171709/iite_test' ipa_path = "C:/Users/Administrator/.jenkins/workspace/Demo/app/build/outputs/apk/app-release.apk" update_description = "版本更新测试" def parseUploadResult(jsonResult): print 'post response: %s' % jsonResult resultCode = jsonResult['code'] send_Email(jsonResult) if resultCode != 0: print "Upload Fail!" raise Exception("Reason: %s" % jsonResult['message']) print "Upload Success" appKey = jsonResult['data']['appKey'] appDownloadPageURL = "https://www.pgyer.com/%s" % appKey print "appDownloadPage: %s" % appDownloadPageURL return appDownloadPageURL def uploadIpaToPgyer(ipaPath, updateDescription): print "Begin to upload ipa to Pgyer: %s" % ipaPath headers = {'enctype': 'multipart/form-data'} payload = { 'uKey': USER_KEY, '_api_key': API_KEY, 'publishRange': '2', # 直接发布 'isPublishToPublic': '2', # 不发布到广场 'updateDescription': updateDescription # 版本更新描述 } try_times = 0 while try_times < 5: try: print "uploading ... %s" % datetime.now() ipa_file = {'file': open(ipaPath, 'rb')} r = requests.post(PGYER_UPLOAD_URL, headers = headers, files = ipa_file, data = payload ) assert r.status_code == requests.codes.ok result = r.json() appDownloadPageURL = parseUploadResult(result) return appDownloadPageURL except requests.exceptions.ConnectionError: print "requests.exceptions.ConnectionError occured!" time.sleep(60) print "try again ... %s" % datetime.now() try_times += 1 except Exception as e: print "Exception occured: %s" % str(e) time.sleep(60) print "try again ... %s" % datetime.now() try_times += 1 if try_times >= 5: raise Exception("Failed to upload ipa to Pgyer, retried 5 times.") def parseQRCodeImageUrl(appDownloadPageURL): try_times = 0 while try_times < 3: try: response = requests.get(appDownloadPageURL) regex = '<img src=\"(.*?)\" style=' m = re.search(regex, response.content) assert m is not None appQRCodeURL = m.group(1) print "appQRCodeURL: %s" % appQRCodeURL return appQRCodeURL except AssertionError: try_times += 1 time.sleep(60) print "Can not locate QRCode image. retry ... %s: %s" % (try_times, datetime.now()) if try_times >= 3: raise Exception("Failed to locate QRCode image in download page, retried 3 times.") def saveQRCodeImage(appDownloadPageURL, output_folder): appQRCodeURL = parseQRCodeImageUrl(appDownloadPageURL) response = requests.get(appQRCodeURL) qr_image_file_path = os.path.join(output_folder, 'QRCode.png') if response.status_code == 200: with open(qr_image_file_path, 'wb') as f: f.write(response.content) print 'Save QRCode image to file: %s' % qr_image_file_path def main(): appDownloadPageURL = uploadIpaToPgyer(ipa_path, update_description) try: output_folder = os.path.dirname(ipa_path) saveQRCodeImage(appDownloadPageURL, output_folder) except Exception as e: print "Exception occured: %s" % str(e) #获取 最后一次 提交git的信息 def getCommitInfo(): #方法一 使用 python 库 前提是 当前分支 在服务器上存在 # repo = Gittle(repo_path, origin_uri=repo_url) # commitInfo = repo.commit_info(start=0, end=1) # lastCommitInfo = commitInfo[0] #方法二 直接 cd 到 目录下 git log -1 打印commit 信息 os.chdir(repo_path); lastCommitInfo = run_cmd('git log -1') return lastCommitInfo #发送邮件 def send_Email(json_result): print '*******start to send mail****' appName = json_result['data']['appName'] appKey = json_result['data']['appKey'] appVersion = json_result['data']['appVersion'] appBuildVersion = json_result['data']['appBuildVersion'] appShortcutUrl = json_result['data']['appShortcutUrl'] #邮件接受者 mail_receiver = ['[email protected]'] #根据不同邮箱配置 host,user,和pwd mail_host = 'smtp.139.com' mail_port = 465 mail_user = '[email protected]' mail_pwd = 'xxx' mail_to = ','.join(mail_receiver) msg = MIMEMultipart() environsString = '<p><h3>本次打包相关信息</h3><p>' # environsString += '<p>ipa 包下载地址 : ' + 'wudizhi' + '<p>' environsString += '<p>蒲公英安装地址 : ' + 'http://www.pgyer.com/' + str(appShortcutUrl) + '<p><p><p><p>' # environsString += '<li><a href="itms-services://?action=download-manifest&url=https://ssl.pgyer.com/app/plist/' + str(appKey) + '"></a>点击直接安装</li>' environsString += '<p><h3>本次git提交相关信息</h3><p>' #获取git最后一次提交信息 lastCommitInfo = getCommitInfo() # #提交人 # committer = lastCommitInfo['committer']['raw'] # #提交信息 # description = lastCommitInfo['description'] environsString += '<p>' + '<font color="red">' + lastCommitInfo + '</font>' + '<p>' # environsString += '<p>Description:' + '<font color="red">' + description + '</font>' + '<p>' message = environsString body = MIMEText(message, _subtype='html', _charset='utf-8') msg["Accept-Language"]="zh-CN" msg["Accept-Charset"]="ISO-8859-1,utf-8" msg.attach(body) msg['To'] = mail_to msg['from'] = '[email protected]' msg['subject'] = 'Android APP 最新打包文件' try: s = smtplib.SMTP() # 设置为调试模式,就是在会话过程中会有输出信息 s.set_debuglevel(1) s.connect(mail_host) s.starttls() # 创建 SSL 安全加密 链接 s.login(mail_user, mail_pwd) s.sendmail(mail_user, mail_receiver, msg.as_string()) s.close() print '*******mail send ok****' except Exception, e: print e def run_cmd(cmd): try: import subprocess except ImportError: _, result_f, error_f = os.popen3(cmd) else: process = subprocess.Popen(cmd, shell = True, stdout = subprocess.PIPE, stderr = subprocess.PIPE) result_f, error_f = process.stdout, process.stderr errors = error_f.read() if errors: pass result_str = result_f.read().strip() if result_f : result_f.close() if error_f : error_f.close() return result_str if __name__ == '__main__': main()
[]