repo_name
stringlengths
7
94
repo_path
stringlengths
4
237
repo_head_hexsha
stringlengths
40
40
content
stringlengths
10
680k
apis
stringlengths
2
680k
Ibrahem3amer/bala7
cms/tests/test_views.py
70638c121ea85ff0e6a650c5f2641b0b3b04d6d0
from django.core.urlresolvers import resolve from django.urls import reverse from django.test import TestCase, RequestFactory from django.http import HttpRequest, Http404 from django.contrib.auth.models import User from unittest import skip from users.models import University, Faculty, Department, UserProfile from cms.models import Topic from cms.views import get_topic class AccessRestriction(TestCase): def setUp(self): self.user = User.objects.create(username='test_username', email='[email protected]', password='secrettt23455') self.uni = University.objects.create(name='test_university') self.fac = Faculty.objects.create(name='Test faculty') self.dep = Department.objects.create(name='Test dep') self.profile = UserProfile.objects.create(university=self.uni, faculty=self.fac, department=self.dep) self.topic = Topic.objects.create(name='cs', desc="test test test", faculty=self.fac, term=1) self.topic.department.add(self.dep) self.user.profile = self.profile self.profile.topics.add(self.topic) def test_return_topic_that_match_user(self): # Setup test request = RequestFactory() request = request.get(reverse('get_topic', kwargs={'dep_id': self.dep.id, 'topic_id': self.topic.id})) request.user = self.user # Exercise test response = get_topic(request, self.dep.id, self.topic.id) # Assert test self.assertEqual(200, response.status_code) def test_return_topic_that_has_different_department(self): # Setup test request = RequestFactory() request = request.get(reverse('get_topic', kwargs={'dep_id': self.dep.id, 'topic_id': self.topic.id})) request.user = self.user # Exercise test another_dep = Department.objects.create() try: response = get_topic(request, another_dep.id, self.topic.id) flag = False except Http404: flag = True # Assert test self.assertTrue(flag) def test_return_topic_that_does_not_exist(self): # Setup test request = RequestFactory() request = request.get(reverse('get_topic', kwargs={'dep_id': self.dep.id, 'topic_id': self.topic.id})) request.user = self.user # Exercise test try: response = get_topic(request, self.dep.id, 990) flag = False except Http404: flag = True # Assert test self.assertTrue(flag) def test_return_topic_that_outside_user_topics(self): # Setup test another_topic = Topic.objects.create(name='is', desc="test test test", faculty=self.fac, term=1) another_topic.department.add(self.dep) self.user.profile.topics.add(another_topic) request = RequestFactory() request = request.get(reverse('get_topic', kwargs={'dep_id': self.dep.id, 'topic_id': self.topic.id})) request.user = self.user # Exercise test outsider_topic = Topic.objects.create(name='ms', desc="test test test", faculty=self.fac, term=1) outsider_topic.department.add(self.dep) try: response = get_topic(request, self.dep.id, outsider_topic.id) flag = False except Http404: flag = True # Assert test self.assertTrue(flag) def test_get_topic_with_no_parameters(self): # Setup test another_topic = Topic.objects.create(name='is', desc="test test test", faculty=self.fac, term=1) another_topic.department.add(self.dep) self.user.profile.topics.add(another_topic) request = RequestFactory() request = request.get(reverse('get_topic', kwargs={'dep_id': self.dep.id, 'topic_id': self.topic.id})) request.user = self.user # Exercise test outsider_topic = Topic.objects.create(name='ms', desc="test test test", faculty=self.fac, term=1) outsider_topic.department.add(self.dep) try: response = get_topic(request) flag = False except Http404: flag = True # Assert test self.assertTrue(flag) class TableViews(TestCase): def setUp(self): self.user = User.objects.create_user(username='ssss', email='[email protected]', password='secrettt23455') self.fac = Faculty.objects.create() self.dep = Department.objects.create(faculty=self.fac) self.profile = UserProfile.objects.create(user=self.user, department=self.dep, faculty=self.fac) def test_page_load_on_get(self): # Setup test url = reverse('web_dep_table') request = self.client.login(username="ssss", password="secrettt23455") # Exercise test request = self.client.get(url) # Assert test self.assertEqual(200, request.status_code) self.assertTemplateUsed(request, 'tables/table_main.html') def test_page_redirect_on_post(self): # Setup test url = reverse('web_dep_table') request = self.client.login(username="ssss", password="secrettt23455") # Exercise test request = self.client.post(url) # Assert test self.assertEqual(302, request.status_code) def test_page_redirect_on_no_profile(self): # Setup test user = User.objects.create_user( username='test_username', email='[email protected]', password='secrettt23455' ) url = reverse('web_dep_table') request = self.client.login(username="test_username", password="secrettt23455") # Exercise test request = self.client.get(url) # Assert test self.assertEqual(302, request.status_code) class UserTableViews(TestCase): def setUp(self): self.user = User.objects.create_user(username='ssss', email='[email protected]', password='secrettt23455') self.fac = Faculty.objects.create() self.dep = Department.objects.create(faculty=self.fac) UserProfile.objects.create(user=self.user, department=self.dep, faculty=self.fac) self.topic = Topic.objects.create(name='topic name', desc='ddddd', term=1) self.topic.department.add(self.dep) def test_page_load_on_get(self): # Setup test url = reverse('web_user_table') request = self.client.login(username="ssss", password="secrettt23455") # Exercise test request = self.client.get(url) # Assert test self.assertEqual(200, request.status_code) self.assertTemplateUsed(request, 'tables/user_table.html') def test_page_load_if_no_profile(self): # Setup test url = reverse('web_user_table') another_user = User.objects.create_user(username='xxxss', email='[email protected]', password='secrettt23455') request = self.client.login(username="xxxss", password="secrettt23455") # Exercise test request = self.client.get(url) # Assert test self.assertEqual(200, request.status_code) self.assertTemplateUsed(request, 'tables/user_table.html') def test_post_when_no_choices(self): # Setup test url = reverse('web_user_table') data = {} request = self.client.login(username="xxxss", password="secrettt23455") # Exercise test request = self.client.post(url, data=data) # Assert test self.assertEqual(302, request.status_code)
[((450, 551), 'django.contrib.auth.models.User.objects.create', 'User.objects.create', ([], {'username': '"""test_username"""', 'email': '"""[email protected]"""', 'password': '"""secrettt23455"""'}), "(username='test_username', email='[email protected]',\n password='secrettt23455')\n", (469, 551), False, 'from django.contrib.auth.models import User\n'), ((567, 616), 'users.models.University.objects.create', 'University.objects.create', ([], {'name': '"""test_university"""'}), "(name='test_university')\n", (592, 616), False, 'from users.models import University, Faculty, Department, UserProfile\n'), ((636, 679), 'users.models.Faculty.objects.create', 'Faculty.objects.create', ([], {'name': '"""Test faculty"""'}), "(name='Test faculty')\n", (658, 679), False, 'from users.models import University, Faculty, Department, UserProfile\n'), ((699, 741), 'users.models.Department.objects.create', 'Department.objects.create', ([], {'name': '"""Test dep"""'}), "(name='Test dep')\n", (724, 741), False, 'from users.models import University, Faculty, Department, UserProfile\n'), ((765, 855), 'users.models.UserProfile.objects.create', 'UserProfile.objects.create', ([], {'university': 'self.uni', 'faculty': 'self.fac', 'department': 'self.dep'}), '(university=self.uni, faculty=self.fac,\n department=self.dep)\n', (791, 855), False, 'from users.models import University, Faculty, Department, UserProfile\n'), ((873, 958), 'cms.models.Topic.objects.create', 'Topic.objects.create', ([], {'name': '"""cs"""', 'desc': '"""test test test"""', 'faculty': 'self.fac', 'term': '(1)'}), "(name='cs', desc='test test test', faculty=self.fac, term=1\n )\n", (893, 958), False, 'from cms.models import Topic\n'), ((1172, 1188), 'django.test.RequestFactory', 'RequestFactory', ([], {}), '()\n', (1186, 1188), False, 'from django.test import TestCase, RequestFactory\n'), ((1377, 1423), 'cms.views.get_topic', 'get_topic', (['request', 'self.dep.id', 'self.topic.id'], {}), '(request, self.dep.id, self.topic.id)\n', (1386, 1423), False, 'from cms.views import get_topic\n'), ((1602, 1618), 'django.test.RequestFactory', 'RequestFactory', ([], {}), '()\n', (1616, 1618), False, 'from django.test import TestCase, RequestFactory\n'), ((1810, 1837), 'users.models.Department.objects.create', 'Department.objects.create', ([], {}), '()\n', (1835, 1837), False, 'from users.models import University, Faculty, Department, UserProfile\n'), ((2143, 2159), 'django.test.RequestFactory', 'RequestFactory', ([], {}), '()\n', (2157, 2159), False, 'from django.test import TestCase, RequestFactory\n'), ((2632, 2717), 'cms.models.Topic.objects.create', 'Topic.objects.create', ([], {'name': '"""is"""', 'desc': '"""test test test"""', 'faculty': 'self.fac', 'term': '(1)'}), "(name='is', desc='test test test', faculty=self.fac, term=1\n )\n", (2652, 2717), False, 'from cms.models import Topic\n'), ((2830, 2846), 'django.test.RequestFactory', 'RequestFactory', ([], {}), '()\n', (2844, 2846), False, 'from django.test import TestCase, RequestFactory\n'), ((3041, 3126), 'cms.models.Topic.objects.create', 'Topic.objects.create', ([], {'name': '"""ms"""', 'desc': '"""test test test"""', 'faculty': 'self.fac', 'term': '(1)'}), "(name='ms', desc='test test test', faculty=self.fac, term=1\n )\n", (3061, 3126), False, 'from cms.models import Topic\n'), ((3478, 3563), 'cms.models.Topic.objects.create', 'Topic.objects.create', ([], {'name': '"""is"""', 'desc': '"""test test test"""', 'faculty': 'self.fac', 'term': '(1)'}), "(name='is', desc='test test test', faculty=self.fac, term=1\n )\n", (3498, 3563), False, 'from cms.models import Topic\n'), ((3676, 3692), 'django.test.RequestFactory', 'RequestFactory', ([], {}), '()\n', (3690, 3692), False, 'from django.test import TestCase, RequestFactory\n'), ((3887, 3972), 'cms.models.Topic.objects.create', 'Topic.objects.create', ([], {'name': '"""ms"""', 'desc': '"""test test test"""', 'faculty': 'self.fac', 'term': '(1)'}), "(name='ms', desc='test test test', faculty=self.fac, term=1\n )\n", (3907, 3972), False, 'from cms.models import Topic\n'), ((4268, 4365), 'django.contrib.auth.models.User.objects.create_user', 'User.objects.create_user', ([], {'username': '"""ssss"""', 'email': '"""[email protected]"""', 'password': '"""secrettt23455"""'}), "(username='ssss', email='[email protected]',\n password='secrettt23455')\n", (4292, 4365), False, 'from django.contrib.auth.models import User\n'), ((4381, 4405), 'users.models.Faculty.objects.create', 'Faculty.objects.create', ([], {}), '()\n', (4403, 4405), False, 'from users.models import University, Faculty, Department, UserProfile\n'), ((4425, 4468), 'users.models.Department.objects.create', 'Department.objects.create', ([], {'faculty': 'self.fac'}), '(faculty=self.fac)\n', (4450, 4468), False, 'from users.models import University, Faculty, Department, UserProfile\n'), ((4492, 4578), 'users.models.UserProfile.objects.create', 'UserProfile.objects.create', ([], {'user': 'self.user', 'department': 'self.dep', 'faculty': 'self.fac'}), '(user=self.user, department=self.dep, faculty=\n self.fac)\n', (4518, 4578), False, 'from users.models import University, Faculty, Department, UserProfile\n'), ((4647, 4671), 'django.urls.reverse', 'reverse', (['"""web_dep_table"""'], {}), "('web_dep_table')\n", (4654, 4671), False, 'from django.urls import reverse\n'), ((5034, 5058), 'django.urls.reverse', 'reverse', (['"""web_dep_table"""'], {}), "('web_dep_table')\n", (5041, 5058), False, 'from django.urls import reverse\n'), ((5362, 5468), 'django.contrib.auth.models.User.objects.create_user', 'User.objects.create_user', ([], {'username': '"""test_username"""', 'email': '"""[email protected]"""', 'password': '"""secrettt23455"""'}), "(username='test_username', email='[email protected]',\n password='secrettt23455')\n", (5386, 5468), False, 'from django.contrib.auth.models import User\n'), ((5525, 5549), 'django.urls.reverse', 'reverse', (['"""web_dep_table"""'], {}), "('web_dep_table')\n", (5532, 5549), False, 'from django.urls import reverse\n'), ((5851, 5948), 'django.contrib.auth.models.User.objects.create_user', 'User.objects.create_user', ([], {'username': '"""ssss"""', 'email': '"""[email protected]"""', 'password': '"""secrettt23455"""'}), "(username='ssss', email='[email protected]',\n password='secrettt23455')\n", (5875, 5948), False, 'from django.contrib.auth.models import User\n'), ((5964, 5988), 'users.models.Faculty.objects.create', 'Faculty.objects.create', ([], {}), '()\n', (5986, 5988), False, 'from users.models import University, Faculty, Department, UserProfile\n'), ((6008, 6051), 'users.models.Department.objects.create', 'Department.objects.create', ([], {'faculty': 'self.fac'}), '(faculty=self.fac)\n', (6033, 6051), False, 'from users.models import University, Faculty, Department, UserProfile\n'), ((6060, 6146), 'users.models.UserProfile.objects.create', 'UserProfile.objects.create', ([], {'user': 'self.user', 'department': 'self.dep', 'faculty': 'self.fac'}), '(user=self.user, department=self.dep, faculty=\n self.fac)\n', (6086, 6146), False, 'from users.models import University, Faculty, Department, UserProfile\n'), ((6163, 6224), 'cms.models.Topic.objects.create', 'Topic.objects.create', ([], {'name': '"""topic name"""', 'desc': '"""ddddd"""', 'term': '(1)'}), "(name='topic name', desc='ddddd', term=1)\n", (6183, 6224), False, 'from cms.models import Topic\n'), ((6342, 6367), 'django.urls.reverse', 'reverse', (['"""web_user_table"""'], {}), "('web_user_table')\n", (6349, 6367), False, 'from django.urls import reverse\n'), ((6732, 6757), 'django.urls.reverse', 'reverse', (['"""web_user_table"""'], {}), "('web_user_table')\n", (6739, 6757), False, 'from django.urls import reverse\n'), ((6781, 6879), 'django.contrib.auth.models.User.objects.create_user', 'User.objects.create_user', ([], {'username': '"""xxxss"""', 'email': '"""[email protected]"""', 'password': '"""secrettt23455"""'}), "(username='xxxss', email='[email protected]',\n password='secrettt23455')\n", (6805, 6879), False, 'from django.contrib.auth.models import User\n'), ((7238, 7263), 'django.urls.reverse', 'reverse', (['"""web_user_table"""'], {}), "('web_user_table')\n", (7245, 7263), False, 'from django.urls import reverse\n'), ((1219, 1298), 'django.urls.reverse', 'reverse', (['"""get_topic"""'], {'kwargs': "{'dep_id': self.dep.id, 'topic_id': self.topic.id}"}), "('get_topic', kwargs={'dep_id': self.dep.id, 'topic_id': self.topic.id})\n", (1226, 1298), False, 'from django.urls import reverse\n'), ((1649, 1728), 'django.urls.reverse', 'reverse', (['"""get_topic"""'], {'kwargs': "{'dep_id': self.dep.id, 'topic_id': self.topic.id}"}), "('get_topic', kwargs={'dep_id': self.dep.id, 'topic_id': self.topic.id})\n", (1656, 1728), False, 'from django.urls import reverse\n'), ((1874, 1923), 'cms.views.get_topic', 'get_topic', (['request', 'another_dep.id', 'self.topic.id'], {}), '(request, another_dep.id, self.topic.id)\n', (1883, 1923), False, 'from cms.views import get_topic\n'), ((2190, 2269), 'django.urls.reverse', 'reverse', (['"""get_topic"""'], {'kwargs': "{'dep_id': self.dep.id, 'topic_id': self.topic.id}"}), "('get_topic', kwargs={'dep_id': self.dep.id, 'topic_id': self.topic.id})\n", (2197, 2269), False, 'from django.urls import reverse\n'), ((2365, 2401), 'cms.views.get_topic', 'get_topic', (['request', 'self.dep.id', '(990)'], {}), '(request, self.dep.id, 990)\n', (2374, 2401), False, 'from cms.views import get_topic\n'), ((2877, 2956), 'django.urls.reverse', 'reverse', (['"""get_topic"""'], {'kwargs': "{'dep_id': self.dep.id, 'topic_id': self.topic.id}"}), "('get_topic', kwargs={'dep_id': self.dep.id, 'topic_id': self.topic.id})\n", (2884, 2956), False, 'from django.urls import reverse\n'), ((3206, 3256), 'cms.views.get_topic', 'get_topic', (['request', 'self.dep.id', 'outsider_topic.id'], {}), '(request, self.dep.id, outsider_topic.id)\n', (3215, 3256), False, 'from cms.views import get_topic\n'), ((3723, 3802), 'django.urls.reverse', 'reverse', (['"""get_topic"""'], {'kwargs': "{'dep_id': self.dep.id, 'topic_id': self.topic.id}"}), "('get_topic', kwargs={'dep_id': self.dep.id, 'topic_id': self.topic.id})\n", (3730, 3802), False, 'from django.urls import reverse\n'), ((4052, 4070), 'cms.views.get_topic', 'get_topic', (['request'], {}), '(request)\n', (4061, 4070), False, 'from cms.views import get_topic\n')]
geometatqueens/RCNN
3D/Train_Module_3D.py
2e1e67264969f05a2f554595577dfb1025938245
"""The present code is the Version 1.0 of the RCNN approach to perform MPS in 3D for categorical variables. It has been developed by S. Avalos and J. Ortiz in the Geometallurygical Group at Queen's University as part of a PhD program. The code is not free of bugs but running end-to-end. Any comments and further improvements are well recevied to: [email protected] April 16, 2019. Geomet Group - Queen's University - Canada""" # Do not display the AVX message about using GPU import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' #from tensorflow.python.client import device_lib #print(device_lib.list_local_devices()) #os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" # see issue #152 #os.environ["CUDA_VISIBLE_DEVICES"]="0" ## ######################### import numpy as np import tensorflow as tf import time import External_Functions_3D as fns_nested import gc for ind0 in range(1): start_time_AllTrain = time.time() HyperPar = [] HyperPar.append(50) # SGsizex - Num 0 HyperPar.append(50) # SGsizey - Num 1 HyperPar.append(50) # SGsizez - Num 2 HyperPar.append(int(7)) # Search_x - Num 3 HyperPar.append(int(7)) # Search_y - Num 4 HyperPar.append(int(7)) # Search_z - Num 5 HyperPar.append(int(7)) # IPsizex - Num 6 HyperPar.append(int(7)) # IPsizey - Num 7 HyperPar.append(int(7)) # IPsizez - Num 8 HyperPar.append(50) # Percentage of Data Conditioning - Num 9 .. divided by 3 so 1% is 10 represents 1% HyperPar.append(1) # MinDC - Num 10 HyperPar.append(1500) # Num Fully Connected - Num 11 HyperPar.append(3) # wdnh - Num 12 HyperPar.append(16) # convdepth - Num 13 HyperPar.append(2) # num of categories - Num 14 print("SG: ", int(HyperPar[3]),"x",int(HyperPar[4]),"x",int(HyperPar[5]), "IP: ", int(HyperPar[6]),"x",int(HyperPar[7]),"x",int(HyperPar[8])) Ncicles = 500 Nepoch = 1 #Nbatch = 250 Nsamples = 512 TrainingImage = "TI_Collaboration_1of4_50x50x50_newRepresentation.dat" LocModel = 'Models/3D_NewRepresentation/Allperc/%sx%sx%s_%sx%sx%s_4ConvNets_4HL_BN_3FC%s_ws%sx%sx%s_%sconvdepth/FeatMaps'%(int(HyperPar[3]),int(HyperPar[4]),int(HyperPar[5]), int(HyperPar[6]),int(HyperPar[7]),int(HyperPar[8]), int(HyperPar[11]), int(HyperPar[12]),int(HyperPar[12]),int(HyperPar[12]), int(HyperPar[13])) #LocModel = 'Models/3D_NewRepresentation/New%sperc/%sx%sx%s_%sx%sx%s_4ConvNets_4HL_BN_3FC%s_ws%sx%sx%s_%sconvdepth/FeatMaps'%(int(HyperPar[9]), int(HyperPar[3]),int(HyperPar[4]),int(HyperPar[5]), int(HyperPar[6]),int(HyperPar[7]),int(HyperPar[8]), int(HyperPar[11]), int(HyperPar[12]),int(HyperPar[12]),int(HyperPar[12]), int(HyperPar[13])) LocFile = 'Models/3D_NewRepresentation/Allperc/%sx%sx%s_%sx%sx%s_4ConvNets_4HL_BN_3FC%s_ws%sx%sx%s_%sconvdepth'%(int(HyperPar[3]),int(HyperPar[4]),int(HyperPar[5]), int(HyperPar[6]),int(HyperPar[7]),int(HyperPar[8]), int(HyperPar[11]), int(HyperPar[12]),int(HyperPar[12]),int(HyperPar[12]), int(HyperPar[13])) #LocFile = 'Models/3D_NewRepresentation/New%sperc/%sx%sx%s_%sx%sx%s_4ConvNets_4HL_BN_3FC%s_ws%sx%sx%s_%sconvdepth'%(int(HyperPar[9]), int(HyperPar[3]),int(HyperPar[4]),int(HyperPar[5]), int(HyperPar[6]),int(HyperPar[7]),int(HyperPar[8]), int(HyperPar[11]), int(HyperPar[12]),int(HyperPar[12]),int(HyperPar[12]), int(HyperPar[13])) print("[Graph]") #fns_nested.CreateGraph_4ConvNets_4HL_NFeaConv_wdnhxwdnh_BN_3D_NoBN(HyperPar=HyperPar, LocModel=LocModel) fns_nested.CreateGraph_4ConvNets_4HL_NFeaConv_wdnhxwdnh_BN_3D(HyperPar=HyperPar, LocModel=LocModel) # To save the TI TempSimGrid = fns_nested.Grid(HyperPar=HyperPar, DBname=TrainingImage, Lvl=3,Training=False, Padding=True) TempSimGrid.SavePlot(name=LocModel+'_TI.png', Level=1) MaxLR, MinLR = 0.01, 0.001 StepLR = 10 PointStart = 1 for indTrain in range(Ncicles): #HyperPar[9] = np.random.randint(41)+10 cuos = indTrain%(2*StepLR) if cuos < StepLR: LearningRate = np.around(((MaxLR - MinLR)/StepLR)*cuos + MinLR, decimals=7) else: LearningRate = np.around(((MaxLR - MinLR)/StepLR)*(StepLR - cuos) + MaxLR, decimals=7) start_time_1 = time.time() print ("Cicle: {}".format(indTrain+PointStart), "Learning Rate: ", LearningRate) TempSimGrid = fns_nested.Grid(HyperPar=HyperPar, DBname=TrainingImage, Lvl=5, Training=True, Padding=True) print("[Sim]") TempSimGrid.Simulate_4ConvNets_BN_3D(LocModel=LocModel, Cicle=(indTrain+PointStart), Plot=True) print("[Saving Grid]") TempSimGrid.SaveGrid(file="{}/TrainReas_{}.txt".format(LocFile, indTrain+PointStart)) print("[Train]") TempSimGrid.Train_4ConvNets_BN_3D(Epochs=Nepoch, Num_samples=Nsamples, LocModel=LocModel, LR=LearningRate) print("--%s seconds of whole training process-" % (np.around((time.time() - start_time_1), decimals=2))) gc.collect() print(" ") print("--%s minutes of ALL training-" % ((time.time() - start_time_AllTrain)/60))
[((941, 952), 'time.time', 'time.time', ([], {}), '()\n', (950, 952), False, 'import time\n'), ((3421, 3525), 'External_Functions_3D.CreateGraph_4ConvNets_4HL_NFeaConv_wdnhxwdnh_BN_3D', 'fns_nested.CreateGraph_4ConvNets_4HL_NFeaConv_wdnhxwdnh_BN_3D', ([], {'HyperPar': 'HyperPar', 'LocModel': 'LocModel'}), '(HyperPar=\n HyperPar, LocModel=LocModel)\n', (3482, 3525), True, 'import External_Functions_3D as fns_nested\n'), ((3562, 3660), 'External_Functions_3D.Grid', 'fns_nested.Grid', ([], {'HyperPar': 'HyperPar', 'DBname': 'TrainingImage', 'Lvl': '(3)', 'Training': '(False)', 'Padding': '(True)'}), '(HyperPar=HyperPar, DBname=TrainingImage, Lvl=3, Training=\n False, Padding=True)\n', (3577, 3660), True, 'import External_Functions_3D as fns_nested\n'), ((4101, 4112), 'time.time', 'time.time', ([], {}), '()\n', (4110, 4112), False, 'import time\n'), ((4214, 4311), 'External_Functions_3D.Grid', 'fns_nested.Grid', ([], {'HyperPar': 'HyperPar', 'DBname': 'TrainingImage', 'Lvl': '(5)', 'Training': '(True)', 'Padding': '(True)'}), '(HyperPar=HyperPar, DBname=TrainingImage, Lvl=5, Training=\n True, Padding=True)\n', (4229, 4311), True, 'import External_Functions_3D as fns_nested\n'), ((4786, 4798), 'gc.collect', 'gc.collect', ([], {}), '()\n', (4796, 4798), False, 'import gc\n'), ((3920, 3982), 'numpy.around', 'np.around', (['((MaxLR - MinLR) / StepLR * cuos + MinLR)'], {'decimals': '(7)'}), '((MaxLR - MinLR) / StepLR * cuos + MinLR, decimals=7)\n', (3929, 3982), True, 'import numpy as np\n'), ((4010, 4083), 'numpy.around', 'np.around', (['((MaxLR - MinLR) / StepLR * (StepLR - cuos) + MaxLR)'], {'decimals': '(7)'}), '((MaxLR - MinLR) / StepLR * (StepLR - cuos) + MaxLR, decimals=7)\n', (4019, 4083), True, 'import numpy as np\n'), ((4863, 4874), 'time.time', 'time.time', ([], {}), '()\n', (4872, 4874), False, 'import time\n'), ((4737, 4748), 'time.time', 'time.time', ([], {}), '()\n', (4746, 4748), False, 'import time\n')]
steuke/django_feature_flags_example
feature_flags_project/feature_flags/providers.py
00e33378999d6d567c37593c17289405fc7b5847
import logging from typing import Dict from django.http import HttpRequest logger = logging.getLogger(__name__) class FeatureFlagProvider: def is_feature_enabled(self, feature_name: str, user_id: str = None, attributes: Dict = None): raise NotImplementedError("You must override FeatureFlagProvider.is_feature_enabled()") def _attributes_from_request(request: HttpRequest) -> Dict: if not request: return dict() attributes = dict() try: attributes["is_staff"] = request.user.is_staff return attributes except Exception: logger.exception( "Unexpected exception while trying to parse http-request for feature-attributes." ) return dict() def is_feature_enabled(feature_name: str, request: HttpRequest) -> bool: from django.conf import settings is_enabled = False attributes = _attributes_from_request(request) try: is_enabled = settings.FEATURE_FLAG_PROVIDER.is_feature_enabled( feature_name=feature_name, user_id="dontcare", attributes=attributes ) logger.info(f"Feature '{feature_name}' is enabled={is_enabled}") except Exception: logger.exception(f"Exception while trying to check feature-flag state for '{feature_name}'") return is_enabled
[((86, 113), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (103, 113), False, 'import logging\n'), ((946, 1069), 'django.conf.settings.FEATURE_FLAG_PROVIDER.is_feature_enabled', 'settings.FEATURE_FLAG_PROVIDER.is_feature_enabled', ([], {'feature_name': 'feature_name', 'user_id': '"""dontcare"""', 'attributes': 'attributes'}), "(feature_name=feature_name,\n user_id='dontcare', attributes=attributes)\n", (995, 1069), False, 'from django.conf import settings\n')]
roch1990/aiohttp-blog
src/app/database/__init__.py
32e7b76b5b293d4517631ea82dfa2b268a1662eb
from sqlalchemy.ext.declarative import declarative_base Base = declarative_base()
[((64, 82), 'sqlalchemy.ext.declarative.declarative_base', 'declarative_base', ([], {}), '()\n', (80, 82), False, 'from sqlalchemy.ext.declarative import declarative_base\n')]
timcera/plottoolbox
src/plottoolbox/functions/kde.py
b5f4b634d366eb5ba244e2f1fd33a7ef0eba7298
# -*- coding: utf-8 -*- """Collection of functions for the manipulation of time series.""" from __future__ import absolute_import, division, print_function import itertools import os import warnings import mando import numpy as np import pandas as pd from mando.rst_text_formatter import RSTHelpFormatter from tstoolbox import tsutils from .. import plotutils warnings.filterwarnings("ignore") @mando.command("kde", formatter_class=RSTHelpFormatter, doctype="numpy") @tsutils.doc(plotutils.ldocstrings) def kde_cli( input_ts="-", columns=None, start_date=None, end_date=None, clean=False, skiprows=None, index_type="datetime", names=None, ofilename="plot.png", xtitle="", ytitle="", title="", figsize="10,6.0", legend=None, legend_names=None, subplots=False, sharex=True, sharey=False, colors="auto", linestyles="auto", markerstyles=" ", bar_hatchstyles="auto", style="auto", logx=False, logy=False, xaxis="arithmetic", yaxis="arithmetic", xlim=None, ylim=None, secondary_y=False, mark_right=True, scatter_matrix_diagonal="kde", bootstrap_size=50, bootstrap_samples=500, norm_xaxis=False, norm_yaxis=False, lognorm_xaxis=False, lognorm_yaxis=False, xy_match_line="", grid=False, label_rotation=None, label_skip=1, force_freq=None, drawstyle="default", por=False, invert_xaxis=False, invert_yaxis=False, round_index=None, plotting_position="weibull", prob_plot_sort_values="descending", source_units=None, target_units=None, lag_plot_lag=1, plot_styles="bright", hlines_y=None, hlines_xmin=None, hlines_xmax=None, hlines_colors=None, hlines_linestyles="-", vlines_x=None, vlines_ymin=None, vlines_ymax=None, vlines_colors=None, vlines_linestyles="-", ): r"""Kernel density estimation of probability density function. "kde" will create a plot of estimation of the probability density function based on the data called kernel density estimation (KDE). {ydata} Parameters ---------- {input_ts} ofilename : str [optional, defaults to 'plot.png'] Output filename for the plot. Extension defines the type, for example 'filename.png' will create a PNG file. If used within Python, and `ofilename` is None will return the Matplotlib figure that can then be changed or added to as needed. lag_plot_lag [optional, default to 1] The lag used if ``type`` "lag_plot" is chosen. xtitle : str [optional, default depends on ``type``] Title of x-axis. ytitle : str [optional, default depends on ``type``] Title of y-axis. title : str [optional, defaults to ''] Title of chart. figsize : str [optional, defaults to '10,6.5'] The 'width,height' of plot in inches. legend [optional, defaults to True] Whether to display the legend. legend_names : str [optional, defaults to None] Legend would normally use the time-series names associated with the input data. The 'legend_names' option allows you to override the names in the data set. You must supply a comma separated list of strings for each time-series in the data set. subplots [optional, defaults to False] Make separate subplots for each time series. sharex [optional, default to True] In case subplots=True, share x axis. sharey [optional, default to False] In case subplots=True, share y axis. colors [optional, default is 'auto'] The default 'auto' will cycle through matplotlib colors in the chosen style. At the command line supply a comma separated matplotlib color codes, or within Python a list of color code strings. Can identify colors in four different ways. 1. Use 'CN' where N is a number from 0 to 9 that gets the Nth color from the current style. 2. Single character code from the table below. +------+---------+ | Code | Color | +======+=========+ | b | blue | +------+---------+ | g | green | +------+---------+ | r | red | +------+---------+ | c | cyan | +------+---------+ | m | magenta | +------+---------+ | y | yellow | +------+---------+ | k | black | +------+---------+ 3. Number between 0 and 1 that represents the level of gray, where 0 is white an 1 is black. 4. Any of the HTML color names. +------------------+ | HTML Color Names | +==================+ | red | +------------------+ | burlywood | +------------------+ | chartreuse | +------------------+ | ...etc. | +------------------+ Color reference: http://matplotlib.org/api/colors_api.html linestyles [optional, default to 'auto'] If 'auto' will iterate through the available matplotlib line types. Otherwise on the command line a comma separated list, or a list of strings if using the Python API. To not display lines use a space (' ') as the linestyle code. Separated 'colors', 'linestyles', and 'markerstyles' instead of using the 'style' keyword. +---------+--------------+ | Code | Lines | +=========+==============+ | ``-`` | solid | +---------+--------------+ | -- | dashed | +---------+--------------+ | -. | dash_dot | +---------+--------------+ | : | dotted | +---------+--------------+ | None | draw nothing | +---------+--------------+ | ' ' | draw nothing | +---------+--------------+ | '' | draw nothing | +---------+--------------+ Line reference: http://matplotlib.org/api/artist_api.html markerstyles [optional, default to ' '] The default ' ' will not plot a marker. If 'auto' will iterate through the available matplotlib marker types. Otherwise on the command line a comma separated list, or a list of strings if using the Python API. Separated 'colors', 'linestyles', and 'markerstyles' instead of using the 'style' keyword. +-------+----------------+ | Code | Markers | +=======+================+ | . | point | +-------+----------------+ | o | circle | +-------+----------------+ | v | triangle down | +-------+----------------+ | ^ | triangle up | +-------+----------------+ | < | triangle left | +-------+----------------+ | > | triangle right | +-------+----------------+ | 1 | tri_down | +-------+----------------+ | 2 | tri_up | +-------+----------------+ | 3 | tri_left | +-------+----------------+ | 4 | tri_right | +-------+----------------+ | 8 | octagon | +-------+----------------+ | s | square | +-------+----------------+ | p | pentagon | +-------+----------------+ | ``*`` | star | +-------+----------------+ | h | hexagon1 | +-------+----------------+ | H | hexagon2 | +-------+----------------+ | ``+`` | plus | +-------+----------------+ | x | x | +-------+----------------+ | D | diamond | +-------+----------------+ | d | thin diamond | +-------+----------------+ | _ | hlines_y | +-------+----------------+ | None | nothing | +-------+----------------+ | ' ' | nothing | +-------+----------------+ | '' | nothing | +-------+----------------+ Marker reference: http://matplotlib.org/api/markers_api.html style [optional, default is None] Still available, but if None is replaced by 'colors', 'linestyles', and 'markerstyles' options. Currently the 'style' option will override the others. Comma separated matplotlib style strings per time-series. Just combine codes in 'ColorMarkerLine' order, for example 'r*--' is a red dashed line with star marker. bar_hatchstyles [optional, default to "auto", only used if type equal to "bar", "barh", "bar_stacked", and "barh_stacked"] If 'auto' will iterate through the available matplotlib hatch types. Otherwise on the command line a comma separated list, or a list of strings if using the Python API. +-----------------+-------------------+ | bar_hatchstyles | Description | +=================+===================+ | / | diagonal hatching | +-----------------+-------------------+ | ``\`` | back diagonal | +-----------------+-------------------+ | ``|`` | vertical | +-----------------+-------------------+ | - | horizontal | +-----------------+-------------------+ | + | crossed | +-----------------+-------------------+ | x | crossed diagonal | +-----------------+-------------------+ | o | small circle | +-----------------+-------------------+ | O | large circle | +-----------------+-------------------+ | . | dots | +-----------------+-------------------+ | * | stars | +-----------------+-------------------+ logx DEPRECATED: use '--xaxis="log"' instead. logy DEPRECATED: use '--yaxis="log"' instead. xlim [optional, default is based on range of x values] Comma separated lower and upper limits for the x-axis of the plot. For example, '--xlim 1,1000' would limit the plot from 1 to 1000, where '--xlim ,1000' would base the lower limit on the data and set the upper limit to 1000. ylim [optional, default is based on range of y values] Comma separated lower and upper limits for the y-axis of the plot. See `xlim` for examples. xaxis : str [optional, default is 'arithmetic'] Defines the type of the xaxis. One of 'arithmetic', 'log'. yaxis : str [optional, default is 'arithmetic'] Defines the type of the yaxis. One of 'arithmetic', 'log'. secondary_y [optional, default is False] Whether to plot on the secondary y-axis. If a list/tuple, which time-series to plot on secondary y-axis. mark_right [optional, default is True] When using a secondary_y axis, should the legend label the axis of the various time-series automatically. scatter_matrix_diagonal : str [optional, defaults to 'kde'] If plot type is 'scatter_matrix', this specifies the plot along the diagonal. One of 'kde' for Kernel Density Estimation or 'hist' for a histogram. bootstrap_size : int [optional, defaults to 50] The size of the random subset for 'bootstrap' plot. bootstrap_samples [optional, defaults to 500] The number of random subsets of 'bootstrap_size'. norm_xaxis DEPRECATED: use '--type="norm_xaxis"' instead. norm_yaxis DEPRECATED: use '--type="norm_yaxis"' instead. lognorm_xaxis DEPRECATED: use '--type="lognorm_xaxis"' instead. lognorm_yaxis DEPRECATED: use '--type="lognorm_yaxis"' instead. xy_match_line : str [optional, defaults is ''] Will add a match line where x == y. Set to a line style code. grid [optional, default is False] Whether to plot grid lines on the major ticks. label_rotation : int [optional] Rotation for major labels for bar plots. label_skip : int [optional] Skip for major labels for bar plots. drawstyle : str [optional, default is 'default'] 'default' connects the points with lines. The steps variants produce step-plots. 'steps' is equivalent to 'steps-pre' and is maintained for backward-compatibility. ACCEPTS:: ['default' | 'steps' | 'steps-pre' | 'steps-mid' | 'steps-post'] por [optional] Plot from first good value to last good value. Strips NANs from beginning and end. {force_freq} invert_xaxis [optional, default is False] Invert the x-axis. invert_yaxis [optional, default is False] Invert the y-axis. plotting_position : str [optional, default is 'weibull'] {plotting_position_table} Only used for norm_xaxis, norm_yaxis, lognorm_xaxis, lognorm_yaxis, weibull_xaxis, and weibull_yaxis. prob_plot_sort_values : str [optional, default is 'descending'] How to sort the values for the probability plots. Only used for norm_xaxis, norm_yaxis, lognorm_xaxis, lognorm_yaxis, weibull_xaxis, and weibull_yaxis. {columns} {start_date} {end_date} {clean} {skiprows} {index_type} {names} {source_units} {target_units} {round_index} plot_styles: str [optional, default is "default"] Set the style of the plot. One or more of Matplotlib styles "classic", "Solarize_Light2", "bmh", "dark_background", "fast", "fivethirtyeight", "ggplot", "grayscale", "seaborn", "seaborn-bright", "seaborn-colorblind", "seaborn-dark", "seaborn-dark-palette", "seaborn-darkgrid", "seaborn-deep", "seaborn-muted", "seaborn-notebook", "seaborn-paper", "seaborn-pastel", "seaborn-poster", "seaborn-talk", "seaborn-ticks", "seaborn-white", "seaborn-whitegrid", "tableau-colorblind10", and SciencePlots styles "science", "grid", "ieee", "scatter", "notebook", "high-vis", "bright", "vibrant", "muted", and "retro". If multiple styles then each over rides some or all of the characteristics of the previous. Color Blind Appropriate Styles The styles "seaborn-colorblind", "tableau-colorblind10", "bright", "vibrant", and "muted" are all styles that are setup to be able to be distinguished by someone with color blindness. Black, White, and Gray Styles The "ieee" style is appropriate for black, white, and gray, however the "ieee" also will change the chart size to fit in a column of the "IEEE" journal. The "grayscale" is another style useful for photo-copyable black, white, nd gray. Matplotlib styles: https://matplotlib.org/3.3.1/gallery/style_sheets/style_sheets_reference.html SciencePlots styles: https://github.com/garrettj403/SciencePlots hlines_y: [optional, defaults to None] Number or list of y values where to place a horizontal line. hlines_xmin: [optional, defaults to None] List of minimum x values to start the horizontal line. If a list must be same length as `hlines_y`. If a single number will be used as the minimum x values for all horizontal lines. A missing value or None will start at the minimum x value for the entire plot. hlines_xmax: [optional, defaults to None] List of maximum x values to end each horizontal line. If a list must be same length as `hlines_y`. If a single number will be the maximum x value for all horizontal lines. A missing value or None will end at the maximum x value for the entire plot. hlines_colors: [optional, defaults to None] List of colors for the horizontal lines. If a single color then will be used as the color for all horizontal lines. If a list must be same length as `hlines_y`. If None will take from the color pallette in the current plot style. hlines_linestyles: [optional, defaults to None] List of linestyles for the horizontal lines. If a single linestyle then will be used as the linestyle for all horizontal lines. If a list must be same length as `hlines_y`. If None will take for the standard linestyles list. vlines_x: [optional, defaults to None] List of x values where to place a vertical line. vlines_ymin: [optional, defaults to None] List of minimum y values to start the vertical line. If a list must be same length as `vlines_x`. If a single number will be used as the minimum x values for all vertical lines. A missing value or None will start at the minimum x value for the entire plot. vlines_ymax: [optional, defaults to None] List of maximum x values to end each vertical line. If a list must be same length as `vlines_x`. If a single number will be the maximum x value for all vertical lines. A missing value or None will end at the maximum x value for the entire plot. vlines_colors: [optional, defaults to None] List of colors for the vertical lines. If a single color then will be used as the color for all vertical lines. If a list must be same length as `vlines_x`. If None will take from the color pallette in the current plot style. vlines_linestyles: [optional, defaults to None] List of linestyles for the vertical lines. If a single linestyle then will be used as the linestyle for all vertical lines. If a list must be same length as `vlines_x`. If None will take for the standard linestyles list. """ plt = kde( input_ts=input_ts, columns=columns, start_date=start_date, end_date=end_date, clean=clean, skiprows=skiprows, index_type=index_type, names=names, ofilename=ofilename, xtitle=xtitle, ytitle=ytitle, title=title, figsize=figsize, legend=legend, legend_names=legend_names, subplots=subplots, sharex=sharex, sharey=sharey, colors=colors, linestyles=linestyles, markerstyles=markerstyles, bar_hatchstyles=bar_hatchstyles, style=style, logx=logx, logy=logy, xaxis=xaxis, yaxis=yaxis, xlim=xlim, ylim=ylim, secondary_y=secondary_y, mark_right=mark_right, scatter_matrix_diagonal=scatter_matrix_diagonal, bootstrap_size=bootstrap_size, bootstrap_samples=bootstrap_samples, norm_xaxis=norm_xaxis, norm_yaxis=norm_yaxis, lognorm_xaxis=lognorm_xaxis, lognorm_yaxis=lognorm_yaxis, xy_match_line=xy_match_line, grid=grid, label_rotation=label_rotation, label_skip=label_skip, force_freq=force_freq, drawstyle=drawstyle, por=por, invert_xaxis=invert_xaxis, invert_yaxis=invert_yaxis, round_index=round_index, plotting_position=plotting_position, prob_plot_sort_values=prob_plot_sort_values, source_units=source_units, target_units=target_units, lag_plot_lag=lag_plot_lag, plot_styles=plot_styles, hlines_y=hlines_y, hlines_xmin=hlines_xmin, hlines_xmax=hlines_xmax, hlines_colors=hlines_colors, hlines_linestyles=hlines_linestyles, vlines_x=vlines_x, vlines_ymin=vlines_ymin, vlines_ymax=vlines_ymax, vlines_colors=vlines_colors, vlines_linestyles=vlines_linestyles, ) # @tsutils.validator( # ofilename=[str, ["pass", []], 1], # type=[str, ["domain", ["kde",],], 1,], # lag_plot_lag=[int, ["range", [1, None]], 1], # xtitle=[str, ["pass", []], 1], # ytitle=[str, ["pass", []], 1], # title=[str, ["pass", []], 1], # figsize=[float, ["range", [0, None]], 2], # legend=[bool, ["domain", [True, False]], 1], # legend_names=[str, ["pass", []], 1], # subplots=[bool, ["domain", [True, False]], 1], # sharex=[bool, ["domain", [True, False]], 1], # sharey=[bool, ["domain", [True, False]], 1], # colors=[str, ["pass", []], None], # linestyles=[str, ["domain", ["auto", None, "", " ", " "] + plotutils.LINE_LIST], None], # markerstyles=[str, ["domain", ["auto", None, "", " ", " "] + plotutils.MARKER_LIST], None], # bar_hatchstyles=[str, ["domain", ["auto", None, "", " ", " "] + plotutils.HATCH_LIST], None], # style=[str, ["pass", []], None], # xlim=[float, ["pass", []], 2], # ylim=[float, ["pass", []], 2], # xaxis=[str, ["domain", ["arithmetic", "log"]], 1], # yaxis=[str, ["domain", ["arithmetic", "log"]], 1], # secondary_y=[bool, ["domain", [True, False]], 1], # mark_right=[bool, ["domain", [True, False]], 1], # scatter_matrix_diagonal=[str, ["domain", ["kde", "hist"]], 1], # bootstrap_size=[int, ["range", [0, None]], 1], # xy_match_line=[str, ["pass", []], 1], # grid=[bool, ["domain", [True, False]], 1], # label_rotation=[float, ["pass", []], 1], # label_skip=[int, ["range", [1, None]], 1], # drawstyle=[str, ["pass", []], 1], # por=[bool, ["domain", [True, False]], 1], # invert_xaxis=[bool, ["domain", [True, False]], 1], # invert_yaxis=[bool, ["domain", [True, False]], 1], # plotting_position=[ # str, # [ # "domain", # ["weibull", "benard", "tukey", "gumbel", "hazen", "cunnane", "california"], # ], # 1, # ], # prob_plot_sort_values=[str, ["domain", ["ascending", "descending"]], 1], # plot_styles=[ # str, # [ # "domain", # [ # "classic", # "Solarize_Light2", # "bmh", # "dark_background", # "fast", # "fivethirtyeight", # "ggplot", # "grayscale", # "seaborn", # "seaborn-bright", # "seaborn-colorblind", # "seaborn-dark", # "seaborn-dark-palette", # "seaborn-darkgrid", # "seaborn-deep", # "seaborn-muted", # "seaborn-notebook", # "seaborn-paper", # "seaborn-pastel", # "seaborn-poster", # "seaborn-talk", # "seaborn-ticks", # "seaborn-white", # "seaborn-whitegrid", # "tableau-colorblind10", # "science", # "grid", # "ieee", # "scatter", # "notebook", # "high-vis", # "bright", # "vibrant", # "muted", # "retro", # ], # ], # None, # ], # hlines_y=[float, ["pass", []], None], # hlines_xmin=[float, ["pass", []], None], # hlines_xmax=[float, ["pass", []], None], # hlines_colors=[str, ["pass", []], None], # hlines_linestyles=[ # str, # ["domain", ["auto", None, "", " ", " "] + plotutils.LINE_LIST], # None, # ], # vlines_x=[float, ["pass", []], None], # vlines_ymin=[float, ["pass", []], None], # vlines_ymax=[float, ["pass", []], None], # vlines_colors=[str, ["pass", []], None], # vlines_linestyles=[ # str, # ["domain", ["auto", None, "", " ", " "] + plotutils.LINE_LIST], # None, # ], # ) def kde( input_ts="-", columns=None, start_date=None, end_date=None, clean=False, skiprows=None, index_type="datetime", names=None, ofilename="plot.png", xtitle="", ytitle="", title="", figsize="10,6.0", legend=None, legend_names=None, subplots=False, sharex=True, sharey=False, colors="auto", linestyles="auto", markerstyles=" ", bar_hatchstyles="auto", style="auto", logx=False, logy=False, xaxis="arithmetic", yaxis="arithmetic", xlim=None, ylim=None, secondary_y=False, mark_right=True, scatter_matrix_diagonal="kde", bootstrap_size=50, bootstrap_samples=500, norm_xaxis=False, norm_yaxis=False, lognorm_xaxis=False, lognorm_yaxis=False, xy_match_line="", grid=False, label_rotation=None, label_skip=1, force_freq=None, drawstyle="default", por=False, invert_xaxis=False, invert_yaxis=False, round_index=None, plotting_position="weibull", prob_plot_sort_values="descending", source_units=None, target_units=None, lag_plot_lag=1, plot_styles="bright", hlines_y=None, hlines_xmin=None, hlines_xmax=None, hlines_colors=None, hlines_linestyles="-", vlines_x=None, vlines_ymin=None, vlines_ymax=None, vlines_colors=None, vlines_linestyles="-", **kwds, ): r"""Plot data.""" # Need to work around some old option defaults with the implementation of # mando legend = bool(legend == "" or legend == "True" or legend is None) type = "kde" import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt from matplotlib.ticker import FixedLocator tsd = tsutils.common_kwds( input_ts, skiprows=skiprows, names=names, index_type=index_type, start_date=start_date, end_date=end_date, pick=columns, round_index=round_index, dropna="all", source_units=source_units, target_units=target_units, clean=clean, por=por, ) tsd, lnames = plotutils.check(type, tsd, legend_names) # This is to help pretty print the frequency try: try: pltfreq = str(tsd.index.freq, "utf-8").lower() except TypeError: pltfreq = str(tsd.index.freq).lower() if pltfreq.split(" ")[0][1:] == "1": beginstr = 3 else: beginstr = 1 if pltfreq == "none": short_freq = "" else: # short freq string (day) OR (2 day) short_freq = "({})".format(pltfreq[beginstr:-1]) except AttributeError: short_freq = "" if colors == "auto": colors = None else: colors = tsutils.make_list(colors) if linestyles == "auto": linestyles = plotutils.LINE_LIST else: linestyles = tsutils.make_list(linestyles) if bar_hatchstyles == "auto": bar_hatchstyles = plotutils.HATCH_LIST else: bar_hatchstyles = tsutils.make_list(bar_hatchstyles) if markerstyles == "auto": markerstyles = plotutils.MARKER_LIST else: markerstyles = tsutils.make_list(markerstyles) if markerstyles is None: markerstyles = " " if style != "auto": nstyle = tsutils.make_list(style) if len(nstyle) != len(tsd.columns): raise ValueError( tsutils.error_wrapper( """ You have to have the same number of style strings as time-series to plot. You supplied '{}' for style which has {} style strings, but you have {} time-series. """.format( style, len(nstyle), len(tsd.columns) ) ) ) colors = [] markerstyles = [] linestyles = [] for st in nstyle: colors.append(st[0]) if len(st) == 1: markerstyles.append(" ") linestyles.append("-") continue if st[1] in plotutils.MARKER_LIST: markerstyles.append(st[1]) try: linestyles.append(st[2:]) except IndexError: linestyles.append(" ") else: markerstyles.append(" ") linestyles.append(st[1:]) if linestyles is None: linestyles = [" "] else: linestyles = [" " if i in [" ", None] else i for i in linestyles] markerstyles = [" " if i is None else i for i in markerstyles] if colors is not None: icolors = itertools.cycle(colors) else: icolors = None imarkerstyles = itertools.cycle(markerstyles) ilinestyles = itertools.cycle(linestyles) # Only for bar, barh, bar_stacked, and barh_stacked. ibar_hatchstyles = itertools.cycle(bar_hatchstyles) if ( logx is True or logy is True or norm_xaxis is True or norm_yaxis is True or lognorm_xaxis is True or lognorm_yaxis is True ): warnings.warn( """ * * The --logx, --logy, --norm_xaxis, --norm_yaxis, --lognorm_xaxis, and * --lognorm_yaxis options are deprecated. * * For --logx use --xaxis="log" * For --logy use --yaxis="log" * For --norm_xaxis use --type="norm_xaxis" * For --norm_yaxis use --type="norm_yaxis" * For --lognorm_xaxis use --type="lognorm_xaxis" * For --lognorm_yaxis use --type="lognorm_yaxis" * """ ) if xaxis == "log": logx = True if yaxis == "log": logy = True xlim = plotutils.know_your_limits(xlim, axis=xaxis) ylim = plotutils.know_your_limits(ylim, axis=yaxis) plot_styles = tsutils.make_list(plot_styles) + ["no-latex"] style_loc = os.path.join( os.path.dirname(__file__), os.pardir, "SciencePlots_styles" ) plot_styles = [ os.path.join(style_loc, i + ".mplstyle") if os.path.exists(os.path.join(style_loc, i + ".mplstyle")) else i for i in plot_styles ] plt.style.use(plot_styles) figsize = tsutils.make_list(figsize, n=2) _, ax = plt.subplots(figsize=figsize) if type in ["kde", "probability_density"]: ax = tsd.plot.kde( legend=legend, subplots=subplots, sharex=sharex, sharey=sharey, style=None, logx=logx, logy=logy, xlim=xlim, ylim=ylim, secondary_y=secondary_y, figsize=figsize, ) for index, line in enumerate(ax.lines): if icolors is not None: c = next(icolors) else: c = None if imarkerstyles is not None: m = next(imarkerstyles) else: m = None if ilinestyles is not None: l = next(ilinestyles) else: l = None if c is not None: plt.setp(line, color=c) plt.setp(line, marker=m) plt.setp(line, linestyle=l) ytitle = ytitle or "Density" if legend is True: plt.legend(loc="best") if hlines_y is not None: hlines_y = tsutils.make_list(hlines_y) hlines_xmin = tsutils.make_list(hlines_xmin) hlines_xmax = tsutils.make_list(hlines_xmax) hlines_colors = tsutils.make_list(hlines_colors) hlines_linestyles = tsutils.make_list(hlines_linestyles) nxlim = ax.get_xlim() if hlines_xmin is None: hlines_xmin = nxlim[0] if hlines_xmax is None: hlines_xmax = nxlim[1] if vlines_x is not None: vlines_x = tsutils.make_list(vlines_x) vlines_ymin = tsutils.make_list(vlines_ymin) vlines_ymax = tsutils.make_list(vlines_ymax) vlines_colors = tsutils.make_list(vlines_colors) vlines_linestyles = tsutils.make_list(vlines_linestyles) nylim = ax.get_ylim() if vlines_ymin is None: vlines_ymin = nylim[0] if vlines_ymax is None: vlines_ymax = nylim[1] if type in [ "time", "xy", "bar", "bar_stacked", "histogram", "norm_xaxis", "lognorm_xaxis", "weibull_xaxis", "norm_yaxis", "lognorm_yaxis", "weibull_yaxis", ]: if hlines_y is not None: if type in ["norm_yaxis", "lognorm_yaxis", "weibull_yaxis"]: hlines_y = ppf(tsutils.make_list(hlines_y)) plt.hlines( hlines_y, hlines_xmin, hlines_xmax, colors=hlines_colors, linestyles=hlines_linestyles, ) if vlines_x is not None: if type in ["norm_xaxis", "lognorm_xaxis", "weibull_xaxis"]: vlines_x = ppf(tsutils.make_list(vlines_x)) plt.vlines( vlines_x, vlines_ymin, vlines_ymax, colors=vlines_colors, linestyles=vlines_linestyles, ) plt.xlabel(xtitle) plt.ylabel(ytitle) if invert_xaxis is True: plt.gca().invert_xaxis() if invert_yaxis is True: plt.gca().invert_yaxis() plt.grid(grid) plt.title(title) plt.tight_layout() if ofilename is not None: plt.savefig(ofilename) return plt kde.__doc__ = kde_cli.__doc__
[((365, 398), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (388, 398), False, 'import warnings\n'), ((402, 473), 'mando.command', 'mando.command', (['"""kde"""'], {'formatter_class': 'RSTHelpFormatter', 'doctype': '"""numpy"""'}), "('kde', formatter_class=RSTHelpFormatter, doctype='numpy')\n", (415, 473), False, 'import mando\n'), ((475, 509), 'tstoolbox.tsutils.doc', 'tsutils.doc', (['plotutils.ldocstrings'], {}), '(plotutils.ldocstrings)\n', (486, 509), False, 'from tstoolbox import tsutils\n'), ((26321, 26342), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (26335, 26342), False, 'import matplotlib\n'), ((26437, 26705), 'tstoolbox.tsutils.common_kwds', 'tsutils.common_kwds', (['input_ts'], {'skiprows': 'skiprows', 'names': 'names', 'index_type': 'index_type', 'start_date': 'start_date', 'end_date': 'end_date', 'pick': 'columns', 'round_index': 'round_index', 'dropna': '"""all"""', 'source_units': 'source_units', 'target_units': 'target_units', 'clean': 'clean', 'por': 'por'}), "(input_ts, skiprows=skiprows, names=names, index_type=\n index_type, start_date=start_date, end_date=end_date, pick=columns,\n round_index=round_index, dropna='all', source_units=source_units,\n target_units=target_units, clean=clean, por=por)\n", (26456, 26705), False, 'from tstoolbox import tsutils\n'), ((29424, 29453), 'itertools.cycle', 'itertools.cycle', (['markerstyles'], {}), '(markerstyles)\n', (29439, 29453), False, 'import itertools\n'), ((29472, 29499), 'itertools.cycle', 'itertools.cycle', (['linestyles'], {}), '(linestyles)\n', (29487, 29499), False, 'import itertools\n'), ((29581, 29613), 'itertools.cycle', 'itertools.cycle', (['bar_hatchstyles'], {}), '(bar_hatchstyles)\n', (29596, 29613), False, 'import itertools\n'), ((30796, 30822), 'matplotlib.pyplot.style.use', 'plt.style.use', (['plot_styles'], {}), '(plot_styles)\n', (30809, 30822), True, 'import matplotlib.pyplot as plt\n'), ((30838, 30869), 'tstoolbox.tsutils.make_list', 'tsutils.make_list', (['figsize'], {'n': '(2)'}), '(figsize, n=2)\n', (30855, 30869), False, 'from tstoolbox import tsutils\n'), ((30882, 30911), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': 'figsize'}), '(figsize=figsize)\n', (30894, 30911), True, 'import matplotlib.pyplot as plt\n'), ((33887, 33905), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['xtitle'], {}), '(xtitle)\n', (33897, 33905), True, 'import matplotlib.pyplot as plt\n'), ((33910, 33928), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['ytitle'], {}), '(ytitle)\n', (33920, 33928), True, 'import matplotlib.pyplot as plt\n'), ((34059, 34073), 'matplotlib.pyplot.grid', 'plt.grid', (['grid'], {}), '(grid)\n', (34067, 34073), True, 'import matplotlib.pyplot as plt\n'), ((34079, 34095), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (34088, 34095), True, 'import matplotlib.pyplot as plt\n'), ((34100, 34118), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (34116, 34118), True, 'import matplotlib.pyplot as plt\n'), ((27488, 27513), 'tstoolbox.tsutils.make_list', 'tsutils.make_list', (['colors'], {}), '(colors)\n', (27505, 27513), False, 'from tstoolbox import tsutils\n'), ((27616, 27645), 'tstoolbox.tsutils.make_list', 'tsutils.make_list', (['linestyles'], {}), '(linestyles)\n', (27633, 27645), False, 'from tstoolbox import tsutils\n'), ((27764, 27798), 'tstoolbox.tsutils.make_list', 'tsutils.make_list', (['bar_hatchstyles'], {}), '(bar_hatchstyles)\n', (27781, 27798), False, 'from tstoolbox import tsutils\n'), ((27909, 27940), 'tstoolbox.tsutils.make_list', 'tsutils.make_list', (['markerstyles'], {}), '(markerstyles)\n', (27926, 27940), False, 'from tstoolbox import tsutils\n'), ((28048, 28072), 'tstoolbox.tsutils.make_list', 'tsutils.make_list', (['style'], {}), '(style)\n', (28065, 28072), False, 'from tstoolbox import tsutils\n'), ((29347, 29370), 'itertools.cycle', 'itertools.cycle', (['colors'], {}), '(colors)\n', (29362, 29370), False, 'import itertools\n'), ((29810, 30223), 'warnings.warn', 'warnings.warn', (['"""\n*\n* The --logx, --logy, --norm_xaxis, --norm_yaxis, --lognorm_xaxis, and\n* --lognorm_yaxis options are deprecated.\n*\n* For --logx use --xaxis="log"\n* For --logy use --yaxis="log"\n* For --norm_xaxis use --type="norm_xaxis"\n* For --norm_yaxis use --type="norm_yaxis"\n* For --lognorm_xaxis use --type="lognorm_xaxis"\n* For --lognorm_yaxis use --type="lognorm_yaxis"\n*\n"""'], {}), '(\n """\n*\n* The --logx, --logy, --norm_xaxis, --norm_yaxis, --lognorm_xaxis, and\n* --lognorm_yaxis options are deprecated.\n*\n* For --logx use --xaxis="log"\n* For --logy use --yaxis="log"\n* For --norm_xaxis use --type="norm_xaxis"\n* For --norm_yaxis use --type="norm_yaxis"\n* For --lognorm_xaxis use --type="lognorm_xaxis"\n* For --lognorm_yaxis use --type="lognorm_yaxis"\n*\n"""\n )\n', (29823, 30223), False, 'import warnings\n'), ((30455, 30485), 'tstoolbox.tsutils.make_list', 'tsutils.make_list', (['plot_styles'], {}), '(plot_styles)\n', (30472, 30485), False, 'from tstoolbox import tsutils\n'), ((30539, 30564), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (30554, 30564), False, 'import os\n'), ((31993, 32020), 'tstoolbox.tsutils.make_list', 'tsutils.make_list', (['hlines_y'], {}), '(hlines_y)\n', (32010, 32020), False, 'from tstoolbox import tsutils\n'), ((32043, 32073), 'tstoolbox.tsutils.make_list', 'tsutils.make_list', (['hlines_xmin'], {}), '(hlines_xmin)\n', (32060, 32073), False, 'from tstoolbox import tsutils\n'), ((32096, 32126), 'tstoolbox.tsutils.make_list', 'tsutils.make_list', (['hlines_xmax'], {}), '(hlines_xmax)\n', (32113, 32126), False, 'from tstoolbox import tsutils\n'), ((32151, 32183), 'tstoolbox.tsutils.make_list', 'tsutils.make_list', (['hlines_colors'], {}), '(hlines_colors)\n', (32168, 32183), False, 'from tstoolbox import tsutils\n'), ((32212, 32248), 'tstoolbox.tsutils.make_list', 'tsutils.make_list', (['hlines_linestyles'], {}), '(hlines_linestyles)\n', (32229, 32248), False, 'from tstoolbox import tsutils\n'), ((32461, 32488), 'tstoolbox.tsutils.make_list', 'tsutils.make_list', (['vlines_x'], {}), '(vlines_x)\n', (32478, 32488), False, 'from tstoolbox import tsutils\n'), ((32511, 32541), 'tstoolbox.tsutils.make_list', 'tsutils.make_list', (['vlines_ymin'], {}), '(vlines_ymin)\n', (32528, 32541), False, 'from tstoolbox import tsutils\n'), ((32564, 32594), 'tstoolbox.tsutils.make_list', 'tsutils.make_list', (['vlines_ymax'], {}), '(vlines_ymax)\n', (32581, 32594), False, 'from tstoolbox import tsutils\n'), ((32619, 32651), 'tstoolbox.tsutils.make_list', 'tsutils.make_list', (['vlines_colors'], {}), '(vlines_colors)\n', (32636, 32651), False, 'from tstoolbox import tsutils\n'), ((32680, 32716), 'tstoolbox.tsutils.make_list', 'tsutils.make_list', (['vlines_linestyles'], {}), '(vlines_linestyles)\n', (32697, 32716), False, 'from tstoolbox import tsutils\n'), ((34157, 34179), 'matplotlib.pyplot.savefig', 'plt.savefig', (['ofilename'], {}), '(ofilename)\n', (34168, 34179), True, 'import matplotlib.pyplot as plt\n'), ((30633, 30673), 'os.path.join', 'os.path.join', (['style_loc', "(i + '.mplstyle')"], {}), "(style_loc, i + '.mplstyle')\n", (30645, 30673), False, 'import os\n'), ((31780, 31804), 'matplotlib.pyplot.setp', 'plt.setp', (['line'], {'marker': 'm'}), '(line, marker=m)\n', (31788, 31804), True, 'import matplotlib.pyplot as plt\n'), ((31817, 31844), 'matplotlib.pyplot.setp', 'plt.setp', (['line'], {'linestyle': 'l'}), '(line, linestyle=l)\n', (31825, 31844), True, 'import matplotlib.pyplot as plt\n'), ((31921, 31943), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""best"""'}), "(loc='best')\n", (31931, 31943), True, 'import matplotlib.pyplot as plt\n'), ((33316, 33418), 'matplotlib.pyplot.hlines', 'plt.hlines', (['hlines_y', 'hlines_xmin', 'hlines_xmax'], {'colors': 'hlines_colors', 'linestyles': 'hlines_linestyles'}), '(hlines_y, hlines_xmin, hlines_xmax, colors=hlines_colors,\n linestyles=hlines_linestyles)\n', (33326, 33418), True, 'import matplotlib.pyplot as plt\n'), ((33688, 33790), 'matplotlib.pyplot.vlines', 'plt.vlines', (['vlines_x', 'vlines_ymin', 'vlines_ymax'], {'colors': 'vlines_colors', 'linestyles': 'vlines_linestyles'}), '(vlines_x, vlines_ymin, vlines_ymax, colors=vlines_colors,\n linestyles=vlines_linestyles)\n', (33698, 33790), True, 'import matplotlib.pyplot as plt\n'), ((30700, 30740), 'os.path.join', 'os.path.join', (['style_loc', "(i + '.mplstyle')"], {}), "(style_loc, i + '.mplstyle')\n", (30712, 30740), False, 'import os\n'), ((31744, 31767), 'matplotlib.pyplot.setp', 'plt.setp', (['line'], {'color': 'c'}), '(line, color=c)\n', (31752, 31767), True, 'import matplotlib.pyplot as plt\n'), ((33967, 33976), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (33974, 33976), True, 'import matplotlib.pyplot as plt\n'), ((34029, 34038), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (34036, 34038), True, 'import matplotlib.pyplot as plt\n'), ((33275, 33302), 'tstoolbox.tsutils.make_list', 'tsutils.make_list', (['hlines_y'], {}), '(hlines_y)\n', (33292, 33302), False, 'from tstoolbox import tsutils\n'), ((33647, 33674), 'tstoolbox.tsutils.make_list', 'tsutils.make_list', (['vlines_x'], {}), '(vlines_x)\n', (33664, 33674), False, 'from tstoolbox import tsutils\n')]
3verlyn/DL-abstract-argumentation
src/models/GNN.py
885e442077f5f8e576092c6648077e00ceb79dff
from collections import OrderedDict import torch import torch.nn as nn from torch_geometric.data.batch import Batch class GNN(nn.Module): def __init__(self, mp_steps, **config): super().__init__() self.mp_steps = mp_steps self.update_fns = self.assign_update_fns() self.readout_fns = self.assign_readout_fns() def assign_update_fns(self) -> OrderedDict: raise NotImplementedError def assign_readout_fns(self) -> dict: raise NotImplementedError def forward(self, batch: Batch, output_all_steps=True): edge_index = batch.edge_index sections = ( torch.bincount(batch.batch).tolist() if hasattr(batch, "batch") else None ) hiddens = self.initialize(batch) del batch # update attributes with update and aggregation step outputs = {element: [] for element in self.readout_fns.keys()} for step in range(self.mp_steps): hiddens = self.step(edge_index=edge_index, sections=sections, **hiddens) if not output_all_steps and (step + 1) != self.mp_steps: continue for element, readout_fn in self.readout_fns.items(): outputs[element].append(readout_fn(**hiddens)) return outputs def initialize(self, batch): hiddens = {} # initialize attributes trough embeddings and intialize lstm states to None for element in self.embeddings.keys(): embedding = self.embeddings[element](batch[f"{element}_input"]) hiddens.update( { f"{element}_input": embedding, f"{element}_embedding": embedding.clone(), f"{element}_lstm": None, } ) return hiddens def step(self, edge_index, sections, **hiddens): """ Perform a message passing step by propagating information and updating each element """ for element, update_fn in self.update_fns.items(): hiddens[f"{element}_embedding"], hiddens[f"{element}_lstm"] = update_fn( edge_index=edge_index, sections=sections, element=element, **hiddens ) return hiddens
[((642, 669), 'torch.bincount', 'torch.bincount', (['batch.batch'], {}), '(batch.batch)\n', (656, 669), False, 'import torch\n')]
vivek-r-2000/BoundaryNet
configs/baselines/DACN/GNN/GCN_res_layer.py
fce8d51a516646c1001116d03872dbba9e4c5082
import math import torch import torch.nn as nn from torch.nn.modules.module import Module from GNN.GCN_layer import GraphConvolution class GraphResConvolution(Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907 """ def __init__(self, state_dim, name=''): super(GraphResConvolution, self).__init__() self.state_dim = state_dim self.gcn_1 = GraphConvolution(state_dim, '%s_1' % name) self.gcn_2 = GraphConvolution(state_dim, '%s_2' % name) self.relu1 = nn.ReLU() self.relu2 = nn.ReLU() self.name = name def forward(self, input, adj): output_1 = self.gcn_1(input, adj) output_1_relu = self.relu1(output_1) output_2 = self.gcn_2(output_1_relu, adj) output_2_res = output_2 + input output = self.relu2(output_2_res) return output def __repr__(self): return self.__class__.__name__ + ' (' + self.name + ')'
[((407, 449), 'GNN.GCN_layer.GraphConvolution', 'GraphConvolution', (['state_dim', "('%s_1' % name)"], {}), "(state_dim, '%s_1' % name)\n", (423, 449), False, 'from GNN.GCN_layer import GraphConvolution\n'), ((471, 513), 'GNN.GCN_layer.GraphConvolution', 'GraphConvolution', (['state_dim', "('%s_2' % name)"], {}), "(state_dim, '%s_2' % name)\n", (487, 513), False, 'from GNN.GCN_layer import GraphConvolution\n'), ((536, 545), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (543, 545), True, 'import torch.nn as nn\n'), ((567, 576), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (574, 576), True, 'import torch.nn as nn\n')]
lukasvosyka/mtools
mtools/util/logfile.py
b94620cef48a9eb71b6a7fa93ad88f70cd36982f
#!/usr/bin/env python3 from __future__ import print_function import os import re import sys from datetime import datetime from math import ceil from mtools.util.input_source import InputSource from mtools.util.logevent import LogEvent class LogFile(InputSource): """Log file wrapper class. Handles open file streams or stdin.""" def __init__(self, filehandle): """Provide logfile as open file stream or stdin.""" self.filehandle = filehandle self.name = filehandle.name self.from_stdin = filehandle.name == "<stdin>" self._bounds_calculated = False self._start = None self._end = None self._filesize = None self._num_lines = None self._restarts = None self._binary = None self._timezone = None self._hostname = None self._port = None self._rs_state = None self._repl_set = None self._repl_set_members = None self._repl_set_version = None self._repl_set_protocol = None self._storage_engine = None self._datetime_format = None self._year_rollover = None self._shards = None self._csrs = None self._chunks_moved_from = None self._chunks_moved_to = None self._chunk_splits = None # Track previous file position for loop detection in _find_curr_line() self.prev_pos = None self._has_level = None # make sure bounds are calculated before starting to iterate, # including potential year rollovers self._calculate_bounds() @property def start(self): """ Lazy evaluation of start and end of logfile. Returns None for stdin input currently. """ if not self._start: self._calculate_bounds() return self._start @property def end(self): """ Lazy evaluation of start and end of logfile. Returns None for stdin input currently. """ if not self._end: self._calculate_bounds() return self._end @property def timezone(self): """Lazy evaluation of timezone of logfile.""" if not self._timezone: self._calculate_bounds() return self._timezone @property def filesize(self): """ Lazy evaluation of start and end of logfile. Returns None for stdin input currently. """ if self.from_stdin: return None if not self._filesize: self._calculate_bounds() return self._filesize @property def datetime_format(self): """Lazy evaluation of the datetime format.""" if not self._datetime_format: self._calculate_bounds() return self._datetime_format @property def has_level(self): """Lazy evaluation of the whether the logfile has any level lines.""" if self._has_level is None: self._iterate_lines() return self._has_level @property def year_rollover(self): """Lazy evaluation of the datetime format.""" if self._year_rollover is None: self._calculate_bounds() return self._year_rollover @property def num_lines(self): """ Lazy evaluation of the number of lines. Returns None for stdin input currently. """ if self.from_stdin: return None if not self._num_lines: self._iterate_lines() return self._num_lines @property def restarts(self): """Lazy evaluation of all restarts.""" if not self._num_lines: self._iterate_lines() return self._restarts @property def rs_state(self): """Lazy evaluation of all restarts.""" if not self._num_lines: self._iterate_lines() return self._rs_state @property def binary(self): """Lazy evaluation of the binary name.""" if not self._num_lines: self._iterate_lines() return self._binary @property def hostname(self): """Lazy evaluation of the binary name.""" if not self._num_lines: self._iterate_lines() return self._hostname @property def port(self): """Lazy evaluation of the binary name.""" if not self._num_lines: self._iterate_lines() return self._port @property def versions(self): """Return all version changes.""" versions = [] for v, _ in self.restarts: if len(versions) == 0 or v != versions[-1]: versions.append(v) return versions @property def repl_set(self): """Return the replSet (if available).""" if not self._num_lines: self._iterate_lines() return self._repl_set @property def repl_set_members(self): """Return the replSet (if available).""" if not self._num_lines: self._iterate_lines() return self._repl_set_members @property def repl_set_version(self): """Return the replSet (if available).""" if not self._num_lines: self._iterate_lines() return self._repl_set_version @property def repl_set_protocol(self): """Return the replSet protocolVersion (if available).""" if not self._num_lines: self._iterate_lines() return self._repl_set_protocol @property def storage_engine(self): """Return storage engine if available.""" if not self._num_lines: self._iterate_lines() return self._storage_engine @property def shards(self): """Lazily return the shards (if available)""" if not self._shards: self._find_sharding_info() return self._shards @property def csrs(self): """Lazily return the CSRS (if available)""" if not self._csrs: self._find_sharding_info() return self._csrs @property def chunks_moved_to(self): """Lazily return the chunks moved to this shard (if available)""" if not self._chunks_moved_to: self._find_sharding_info() return self._chunks_moved_to @property def chunks_moved_from(self): """Lazily return the chunks moved from this shard (if available)""" if not self._chunks_moved_from: self._find_sharding_info() return self._chunks_moved_from @property def chunk_splits(self): """Lazily return the chunks split in this shard (if available)""" if not self._chunk_splits: self._find_sharding_info() return self._chunk_splits def next(self): """Get next line, adjust for year rollover and hint datetime format.""" # use readline here because next() iterator uses internal readahead # buffer so seek position is wrong line = self.filehandle.readline() if isinstance(line, bytes): line = line.decode('utf-8', 'replace') if line == '': raise StopIteration line = line.rstrip('\n') le = LogEvent(line) # hint format and nextpos from previous line if self._datetime_format and self._datetime_nextpos is not None: ret = le.set_datetime_hint(self._datetime_format, self._datetime_nextpos, self.year_rollover) if not ret: # logevent indicates timestamp format has changed, # invalidate hint info self._datetime_format = None self._datetime_nextpos = None elif le.datetime: # gather new hint info from another logevent self._datetime_format = le.datetime_format self._datetime_nextpos = le._datetime_nextpos return le def __iter__(self): """ Iterate over LogFile object. Return a LogEvent object for each line (generator). """ le = None while True: try: le = self.next() except StopIteration as e: # end of log file, get end date if not self.end and self.from_stdin: if le and le.datetime: self._end = le.datetime # future iterations start from the beginning if not self.from_stdin: self.filehandle.seek(0) # return (instead of raising StopIteration exception) per PEP 479 return # get start date for stdin input if not self.start and self.from_stdin: if le and le.datetime: self._start = le.datetime try: yield le except StopIteration: return states = (['PRIMARY', 'SECONDARY', 'DOWN', 'STARTUP', 'STARTUP2', 'RECOVERING', 'ROLLBACK', 'ARBITER', 'UNKNOWN']) def __len__(self): """Return the number of lines in a log file.""" return self.num_lines def _iterate_lines(self): """Count number of lines (can be expensive).""" self._num_lines = 0 self._restarts = [] self._rs_state = [] ln = 0 for ln, line in enumerate(self.filehandle): if isinstance(line, bytes): line = line.decode("utf-8", "replace") if (self._has_level is None and line[28:31].strip() in LogEvent.log_levels and line[31:39].strip() in LogEvent.log_components): self._has_level = True # find version string (fast check to eliminate most lines) if "version" in line[:100]: logevent = LogEvent(line) restart = self._check_for_restart(logevent) if restart: self._restarts.append((restart, logevent)) if "starting :" in line or "starting:" in line: # look for hostname, port match = re.search('port=(?P<port>\d+).*host=(?P<host>\S+)', line) if match: self._hostname = match.group('host') self._port = match.group('port') """ For 3.0 the "[initandlisten] options:" long entry contained the "engine" field if WiredTiger was the storage engine. There were only two engines, MMAPv1 and WiredTiger """ if "[initandlisten] options:" in line: match = re.search('replSet: "(?P<replSet>\S+)"', line) if match: self._repl_set = match.group('replSet') match = re.search('engine: "(?P<engine>\S+)"', line) if match: self._storage_engine = match.group('engine') else: self._storage_engine = 'mmapv1' """ For 3.2 the "[initandlisten] options:" no longer contains the "engine" field So now we have to look for the "[initandlisten] wiredtiger_open config:" which was present in 3.0, but would now tell us definitively that wiredTiger is being used """ if "[initandlisten] wiredtiger_open config:" in line: self._storage_engine = 'wiredTiger' if "command admin.$cmd command: { replSetInitiate:" in line: match = re.search('{ _id: "(?P<replSet>\S+)", ' 'members: (?P<replSetMembers>[^]]+ ])', line) if match: self._repl_set = match.group('replSet') self._repl_set_members = match.group('replSetMembers') # Replica set config logging in MongoDB 3.0+ new_config = ("New replica set config in use: ") if new_config in line: match = re.search('{ _id: "(?P<replSet>\S+)", ' 'version: (?P<replSetVersion>\d+), ', line) if match: self._repl_set = match.group('replSet') self._repl_set_version = match.group('replSetVersion') match = re.search(', protocolVersion: (?P<replSetProtocol>\d+), ', line) if match: self._repl_set_protocol = match.group('replSetProtocol') match = re.search('members: (?P<replSetMembers>[^]]+ ])', line) if match: self._repl_set_members = match.group('replSetMembers') # if ("is now in state" in line and # next(state for state in states if line.endswith(state))): if "is now in state" in line: tokens = line.split() # 2.6 if tokens[1].endswith(']'): pos = 4 else: pos = 5 host = tokens[pos] rs_state = tokens[-1] state = (host, rs_state, LogEvent(line)) self._rs_state.append(state) continue if "[rsMgr] replSet" in line: tokens = line.split() if self._hostname: host = self._hostname + ':' + self._port else: host = os.path.basename(self.name) host += ' (self)' if tokens[-1] in self.states: rs_state = tokens[-1] else: # 2.6 if tokens[1].endswith(']'): pos = 2 else: pos = 6 rs_state = ' '.join(tokens[pos:]) state = (host, rs_state, LogEvent(line)) self._rs_state.append(state) continue self._num_lines = ln + 1 # reset logfile self.filehandle.seek(0) def _check_for_restart(self, logevent): if (logevent.thread == 'initandlisten' and "db version v" in logevent.line_str): self._binary = 'mongod' elif logevent.thread == 'mongosMain' and ('MongoS' in logevent.line_str or 'mongos' in logevent.line_str): self._binary = 'mongos' else: return False version = re.search(r'(\d\.\d\.\d+)', logevent.line_str) if version: version = version.group(1) return version else: return False def _calculate_bounds(self): """Calculate beginning and end of logfile.""" if self._bounds_calculated: # Assume no need to recalc bounds for lifetime of a Logfile object return if self.from_stdin: return False # we should be able to find a valid log line within max_start_lines max_start_lines = 10 lines_checked = 0 # get start datetime for line in self.filehandle: logevent = LogEvent(line) lines_checked += 1 if logevent.datetime: self._start = logevent.datetime self._timezone = logevent.datetime.tzinfo self._datetime_format = logevent.datetime_format self._datetime_nextpos = logevent._datetime_nextpos break if lines_checked > max_start_lines: break # sanity check before attempting to find end date if (self._start is None): raise SystemExit("Error: <%s> does not appear to be a supported " "MongoDB log file format" % self.filehandle.name) # get end datetime (lines are at most 10k, # go back 30k at most to make sure we catch one) self.filehandle.seek(0, 2) self._filesize = self.filehandle.tell() self.filehandle.seek(-min(self._filesize, 30000), 2) for line in reversed(self.filehandle.readlines()): logevent = LogEvent(line) if logevent.datetime: self._end = logevent.datetime break # if there was a roll-over, subtract 1 year from start time if self._end < self._start: self._start = self._start.replace(year=self._start.year - 1) self._year_rollover = self._end else: self._year_rollover = False # reset logfile self.filehandle.seek(0) self._bounds_calculated = True return True def _find_curr_line(self, prev=False): """ Internal helper function. Find the current (or previous if prev=True) line in a log file based on the current seek position. """ curr_pos = self.filehandle.tell() # jump back 15k characters (at most) and find last newline char jump_back = min(self.filehandle.tell(), 15000) self.filehandle.seek(-jump_back, 1) buff = self.filehandle.read(jump_back) self.filehandle.seek(curr_pos, 0) if prev and self.prev_pos is not None and self.prev_pos == curr_pos: # Number of characters to show before/after the log offset error_context = 300 self.filehandle.seek(-error_context, 1) buff = self.filehandle.read(curr_pos) hr = "-" * 60 print("Fatal log parsing loop detected trying to find previous " "log line near offset %s in %s:\n\n%s\n%s\n" "<--- (current log parsing offset) \n%s\n%s\n" % (curr_pos, self.name, hr, buff[:error_context], buff[error_context:error_context + 1], hr), file=sys.stderr) raise SystemExit("Cannot parse %s with requested options" % self.filehandle.name) else: self.prev_pos = curr_pos if isinstance(buff, bytes): buff = buff.decode("utf-8", "replace") newline_pos = buff.rfind('\n') if prev: newline_pos = buff[:newline_pos].rfind('\n') # move back to last newline char if newline_pos == -1: self.filehandle.seek(0) return self.next() self.filehandle.seek(newline_pos - jump_back + 1, 1) # roll forward until we found a line with a datetime try: logevent = self.next() while not logevent.datetime: logevent = self.next() return logevent except StopIteration: # reached end of file return None def _find_sharding_info(self): """ Iterate over file and find any sharding related information """ self._shards = [] self._chunks_moved_from = [] self._chunks_moved_to = [] self._chunk_splits = [] prev_line = "" for line in self.filehandle: if isinstance(line, bytes): line = line.decode("utf-8", "replace") if self.binary == "mongos": if "Starting new replica set monitor for" in line: if "[mongosMain]" in line: match = re.search("for (?P<csrsName>\w+)/" "(?P<replSetMembers>\S+)", line) if match: csrs_info = (match.group('csrsName'), match.group('replSetMembers')) self._csrs = csrs_info else: match = re.search("for (?P<shardName>\w+)/" "(?P<replSetMembers>\S+)", line) if match: shard_info = (match.group('shardName'), match.group('replSetMembers')) self._shards.append(shard_info) elif self.binary == "mongod": logevent = LogEvent(line) if "New replica set config in use" in line: if "configsvr: true" in line: match = re.search(' _id: "(?P<replSet>\S+)".*' 'members: (?P<replSetMembers>[^]]+ ])', line) if match: self._csrs = ( match.group('replSet'), match.group('replSetMembers') ) if "Starting new replica set monitor for" in line: match = re.search("for (?P<replSet>\w+)/" "(?P<replSetMembers>\S+)", line) if match: if self._csrs and match.group('replSet') != self._csrs[0]: self._shards.append(( match.group('replSet'), match.group('replSetMembers') )) elif not self._csrs: self._csrs = ( match.group('replSet'), match.group('replSetMembers') ) if "moveChunk.from" in line: logevent = LogEvent(line) match = re.search('ns: "(?P<namespace>\S+)".*' 'details: { (?P<range>.*\}).*' 'to: "(?P<movedTo>\S+)".*note: "(?P<note>\S+)"', line) if match: time = logevent.datetime chunk_range = match.group('range') namespace = match.group('namespace') moved_to = match.group('movedTo') note = match.group('note') if note == "success": errmsg = None steps = re.findall('(?P<steps>step \d of \d): (?P<stepTimes>\d+)', line) else: match = re.search(':: caused by :: (?P<errmsg>\S+):', prev_line) steps = None if match: errmsg = match.group('errmsg') else: errmsg = "Unknown" chunk_migration = (time, chunk_range, moved_to, namespace, steps, note, errmsg) self._chunks_moved_from.append(chunk_migration) if "moveChunk.to" in line: logevent = LogEvent(line) match = re.search('ns: "(?P<namespace>\S+)".*' 'details: { (?P<range>.*\}).*.*note: "(?P<note>\S+)"', line) if match: time = logevent.datetime chunk_range = match.group('range') namespace = match.group('namespace') # TODO: alter this to find moved from shard name when SERVER-45770 TICKET is added moved_from = "Unknown" note = match.group('note') if note == "success": errmsg = None steps = re.findall('(?P<steps>step \d of \d): (?P<stepTimes>\d+)', line) else: steps = None match = re.search('errmsg: "(?P<errmsg>.*)"', line) if match: errmsg = match.group('errmsg') chunk_migration = (time, chunk_range, moved_from, namespace, steps, note, errmsg) self._chunks_moved_to.append(chunk_migration) if "Finding the split vector for" in line: logevent = LogEvent(line) match = re.search('for (?P<namespace>\S+).*' 'numSplits: (?P<numSplits>\d+)', line) if match: time = logevent.datetime split_range = None namespace = match.group("namespace") numSplits = match.group('numSplits') success = None time_taken = 0 error = None self._chunk_splits.append((time, split_range, namespace, numSplits, success, time_taken, error)) elif "splitVector" in line: logevent = LogEvent(line) match = re.search('splitVector: "(?P<namespace>\S+)".*,' ' (?P<range>min:.*), max.*op_msg (?P<time_taken>\d+)', line) if match: time = logevent.datetime split_range = match.group("range") namespace = match.group("namespace") time_taken = match.group("time_taken") numSplits = 0 success = True error = None self._chunk_splits.append((time, split_range, namespace, numSplits, success, time_taken, error)) elif "Unable to auto-split chunk" in line: logevent = LogEvent(line) match = re.search("chunk \[(?P<range>.*)\) " 'in namespace (?P<namespace>\S+)' ' :: caused by :: (?P<error>\S+): ', line) if match: time = logevent.datetime split_range = match.group("range") namespace = match.group("namespace") numSplits = 0 success = False time_taken = 0 error = match.group("error") self._chunk_splits.append((time, split_range, namespace, numSplits, success, time_taken, error)) elif "jumbo" in line: logevent = LogEvent(line) match = re.search('migration (?P<namespace>\S+): \[(?P<range>.*)\)', prev_line) if match: time = logevent.datetime split_range = match.group("range") namespace = match.group("namespace") numSplits = 0 success = False time_taken = 0 error = "Jumbo" self._chunk_splits.append((time, split_range, namespace, numSplits, success, time_taken, error)) prev_line = line # reset logfile self.filehandle.seek(0) def fast_forward(self, start_dt): """ Fast-forward file to given start_dt datetime obj using binary search. Only fast for files. Streams need to be forwarded manually, and it will miss the first line that would otherwise match (as it consumes the log line). """ if self.from_stdin: # skip lines until start_dt is reached return else: # fast bisection path max_mark = self.filesize step_size = max_mark # check if start_dt is already smaller than first datetime self.filehandle.seek(0) le = self.next() if le.datetime and le.datetime >= start_dt: self.filehandle.seek(0) return le = None self.filehandle.seek(0) # search for lower bound while abs(step_size) > 100: step_size = ceil(step_size / 2.) self.filehandle.seek(step_size, 1) le = self._find_curr_line() if not le: break if le.datetime >= start_dt: step_size = -abs(step_size) else: step_size = abs(step_size) if not le: return # now walk backwards until we found a truly smaller line while self.filehandle.tell() >= 2 and (le.datetime is None or le.datetime >= start_dt): self.filehandle.seek(-2, 1) le = self._find_curr_line(prev=True)
[((7241, 7255), 'mtools.util.logevent.LogEvent', 'LogEvent', (['line'], {}), '(line)\n', (7249, 7255), False, 'from mtools.util.logevent import LogEvent\n'), ((14595, 14645), 're.search', 're.search', (['"""(\\\\d\\\\.\\\\d\\\\.\\\\d+)"""', 'logevent.line_str'], {}), "('(\\\\d\\\\.\\\\d\\\\.\\\\d+)', logevent.line_str)\n", (14604, 14645), False, 'import re\n'), ((15266, 15280), 'mtools.util.logevent.LogEvent', 'LogEvent', (['line'], {}), '(line)\n', (15274, 15280), False, 'from mtools.util.logevent import LogEvent\n'), ((16263, 16277), 'mtools.util.logevent.LogEvent', 'LogEvent', (['line'], {}), '(line)\n', (16271, 16277), False, 'from mtools.util.logevent import LogEvent\n'), ((9950, 9964), 'mtools.util.logevent.LogEvent', 'LogEvent', (['line'], {}), '(line)\n', (9958, 9964), False, 'from mtools.util.logevent import LogEvent\n'), ((10243, 10302), 're.search', 're.search', (['"""port=(?P<port>\\\\d+).*host=(?P<host>\\\\S+)"""', 'line'], {}), "('port=(?P<port>\\\\d+).*host=(?P<host>\\\\S+)', line)\n", (10252, 10302), False, 'import re\n'), ((10779, 10826), 're.search', 're.search', (['"""replSet: "(?P<replSet>\\\\S+)\\""""', 'line'], {}), '(\'replSet: "(?P<replSet>\\\\S+)"\', line)\n', (10788, 10826), False, 'import re\n'), ((10937, 10982), 're.search', 're.search', (['"""engine: "(?P<engine>\\\\S+)\\""""', 'line'], {}), '(\'engine: "(?P<engine>\\\\S+)"\', line)\n', (10946, 10982), False, 'import re\n'), ((11685, 11772), 're.search', 're.search', (['"""{ _id: "(?P<replSet>\\\\S+)", members: (?P<replSetMembers>[^]]+ ])"""', 'line'], {}), '(\'{ _id: "(?P<replSet>\\\\S+)", members: (?P<replSetMembers>[^]]+ ])\',\n line)\n', (11694, 11772), False, 'import re\n'), ((12144, 12230), 're.search', 're.search', (['"""{ _id: "(?P<replSet>\\\\S+)", version: (?P<replSetVersion>\\\\d+), """', 'line'], {}), '(\'{ _id: "(?P<replSet>\\\\S+)", version: (?P<replSetVersion>\\\\d+), \',\n line)\n', (12153, 12230), False, 'import re\n'), ((12447, 12512), 're.search', 're.search', (['""", protocolVersion: (?P<replSetProtocol>\\\\d+), """', 'line'], {}), "(', protocolVersion: (?P<replSetProtocol>\\\\d+), ', line)\n", (12456, 12512), False, 'import re\n'), ((12639, 12694), 're.search', 're.search', (['"""members: (?P<replSetMembers>[^]]+ ])"""', 'line'], {}), "('members: (?P<replSetMembers>[^]]+ ])', line)\n", (12648, 12694), False, 'import re\n'), ((21638, 21652), 'mtools.util.logevent.LogEvent', 'LogEvent', (['line'], {}), '(line)\n', (21646, 21652), False, 'from mtools.util.logevent import LogEvent\n'), ((21677, 21809), 're.search', 're.search', (['"""ns: "(?P<namespace>\\\\S+)".*details: { (?P<range>.*\\\\}).*to: "(?P<movedTo>\\\\S+)".*note: "(?P<note>\\\\S+)\\""""', 'line'], {}), '(\n \'ns: "(?P<namespace>\\\\S+)".*details: { (?P<range>.*\\\\}).*to: "(?P<movedTo>\\\\S+)".*note: "(?P<note>\\\\S+)"\'\n , line)\n', (21686, 21809), False, 'import re\n'), ((22911, 22925), 'mtools.util.logevent.LogEvent', 'LogEvent', (['line'], {}), '(line)\n', (22919, 22925), False, 'from mtools.util.logevent import LogEvent\n'), ((22950, 23059), 're.search', 're.search', (['"""ns: "(?P<namespace>\\\\S+)".*details: { (?P<range>.*\\\\}).*.*note: "(?P<note>\\\\S+)\\""""', 'line'], {}), '(\n \'ns: "(?P<namespace>\\\\S+)".*details: { (?P<range>.*\\\\}).*.*note: "(?P<note>\\\\S+)"\'\n , line)\n', (22959, 23059), False, 'import re\n'), ((24123, 24137), 'mtools.util.logevent.LogEvent', 'LogEvent', (['line'], {}), '(line)\n', (24131, 24137), False, 'from mtools.util.logevent import LogEvent\n'), ((24162, 24236), 're.search', 're.search', (['"""for (?P<namespace>\\\\S+).*numSplits: (?P<numSplits>\\\\d+)"""', 'line'], {}), "('for (?P<namespace>\\\\S+).*numSplits: (?P<numSplits>\\\\d+)', line)\n", (24171, 24236), False, 'import re\n'), ((27871, 27892), 'math.ceil', 'ceil', (['(step_size / 2.0)'], {}), '(step_size / 2.0)\n', (27875, 27892), False, 'from math import ceil\n'), ((13263, 13277), 'mtools.util.logevent.LogEvent', 'LogEvent', (['line'], {}), '(line)\n', (13271, 13277), False, 'from mtools.util.logevent import LogEvent\n'), ((13575, 13602), 'os.path.basename', 'os.path.basename', (['self.name'], {}), '(self.name)\n', (13591, 13602), False, 'import os\n'), ((14007, 14021), 'mtools.util.logevent.LogEvent', 'LogEvent', (['line'], {}), '(line)\n', (14015, 14021), False, 'from mtools.util.logevent import LogEvent\n'), ((20284, 20298), 'mtools.util.logevent.LogEvent', 'LogEvent', (['line'], {}), '(line)\n', (20292, 20298), False, 'from mtools.util.logevent import LogEvent\n'), ((24783, 24797), 'mtools.util.logevent.LogEvent', 'LogEvent', (['line'], {}), '(line)\n', (24791, 24797), False, 'from mtools.util.logevent import LogEvent\n'), ((24822, 24940), 're.search', 're.search', (['"""splitVector: "(?P<namespace>\\\\S+)".*, (?P<range>min:.*), max.*op_msg (?P<time_taken>\\\\d+)"""', 'line'], {}), '(\n \'splitVector: "(?P<namespace>\\\\S+)".*, (?P<range>min:.*), max.*op_msg (?P<time_taken>\\\\d+)\'\n , line)\n', (24831, 24940), False, 'import re\n'), ((19479, 19545), 're.search', 're.search', (['"""for (?P<csrsName>\\\\w+)/(?P<replSetMembers>\\\\S+)"""', 'line'], {}), "('for (?P<csrsName>\\\\w+)/(?P<replSetMembers>\\\\S+)', line)\n", (19488, 19545), False, 'import re\n'), ((19870, 19937), 're.search', 're.search', (['"""for (?P<shardName>\\\\w+)/(?P<replSetMembers>\\\\S+)"""', 'line'], {}), "('for (?P<shardName>\\\\w+)/(?P<replSetMembers>\\\\S+)', line)\n", (19879, 19937), False, 'import re\n'), ((20910, 20975), 're.search', 're.search', (['"""for (?P<replSet>\\\\w+)/(?P<replSetMembers>\\\\S+)"""', 'line'], {}), "('for (?P<replSet>\\\\w+)/(?P<replSetMembers>\\\\S+)', line)\n", (20919, 20975), False, 'import re\n'), ((22287, 22354), 're.findall', 're.findall', (['"""(?P<steps>step \\\\d of \\\\d): (?P<stepTimes>\\\\d+)"""', 'line'], {}), "('(?P<steps>step \\\\d of \\\\d): (?P<stepTimes>\\\\d+)', line)\n", (22297, 22354), False, 'import re\n'), ((22410, 22467), 're.search', 're.search', (['""":: caused by :: (?P<errmsg>\\\\S+):"""', 'prev_line'], {}), "(':: caused by :: (?P<errmsg>\\\\S+):', prev_line)\n", (22419, 22467), False, 'import re\n'), ((23573, 23640), 're.findall', 're.findall', (['"""(?P<steps>step \\\\d of \\\\d): (?P<stepTimes>\\\\d+)"""', 'line'], {}), "('(?P<steps>step \\\\d of \\\\d): (?P<stepTimes>\\\\d+)', line)\n", (23583, 23640), False, 'import re\n'), ((23733, 23776), 're.search', 're.search', (['"""errmsg: "(?P<errmsg>.*)\\""""', 'line'], {}), '(\'errmsg: "(?P<errmsg>.*)"\', line)\n', (23742, 23776), False, 'import re\n'), ((25509, 25523), 'mtools.util.logevent.LogEvent', 'LogEvent', (['line'], {}), '(line)\n', (25517, 25523), False, 'from mtools.util.logevent import LogEvent\n'), ((25548, 25669), 're.search', 're.search', (['"""chunk \\\\[(?P<range>.*)\\\\) in namespace (?P<namespace>\\\\S+) :: caused by :: (?P<error>\\\\S+): """', 'line'], {}), "(\n 'chunk \\\\[(?P<range>.*)\\\\) in namespace (?P<namespace>\\\\S+) :: caused by :: (?P<error>\\\\S+): '\n , line)\n", (25557, 25669), False, 'import re\n'), ((20462, 20548), 're.search', 're.search', (['""" _id: "(?P<replSet>\\\\S+)".*members: (?P<replSetMembers>[^]]+ ])"""', 'line'], {}), '(\' _id: "(?P<replSet>\\\\S+)".*members: (?P<replSetMembers>[^]]+ ])\',\n line)\n', (20471, 20548), False, 'import re\n'), ((26265, 26279), 'mtools.util.logevent.LogEvent', 'LogEvent', (['line'], {}), '(line)\n', (26273, 26279), False, 'from mtools.util.logevent import LogEvent\n'), ((26304, 26378), 're.search', 're.search', (['"""migration (?P<namespace>\\\\S+): \\\\[(?P<range>.*)\\\\)"""', 'prev_line'], {}), "('migration (?P<namespace>\\\\S+): \\\\[(?P<range>.*)\\\\)', prev_line)\n", (26313, 26378), False, 'import re\n')]
Tillsten/pyqtgraph
tests/svg.py
0045863165fe526988c58cf4f8232ae2d261a5ee
""" SVG export test """ import test import pyqtgraph as pg app = pg.mkQApp() class SVGTest(test.TestCase): #def test_plotscene(self): #pg.setConfigOption('foreground', (0,0,0)) #w = pg.GraphicsWindow() #w.show() #p1 = w.addPlot() #p2 = w.addPlot() #p1.plot([1,3,2,3,1,6,9,8,4,2,3,5,3], pen={'color':'k'}) #p1.setXRange(0,5) #p2.plot([1,5,2,3,4,6,1,2,4,2,3,5,3], pen={'color':'k', 'cosmetic':False, 'width': 0.3}) #app.processEvents() #app.processEvents() #ex = pg.exporters.SVGExporter.SVGExporter(w.scene()) #ex.export(fileName='test.svg') def test_simple(self): scene = pg.QtGui.QGraphicsScene() #rect = pg.QtGui.QGraphicsRectItem(0, 0, 100, 100) #scene.addItem(rect) #rect.setPos(20,20) #rect.translate(50, 50) #rect.rotate(30) #rect.scale(0.5, 0.5) #rect1 = pg.QtGui.QGraphicsRectItem(0, 0, 100, 100) #rect1.setParentItem(rect) #rect1.setFlag(rect1.ItemIgnoresTransformations) #rect1.setPos(20, 20) #rect1.scale(2,2) #el1 = pg.QtGui.QGraphicsEllipseItem(0, 0, 100, 100) #el1.setParentItem(rect1) ##grp = pg.ItemGroup() #grp.setParentItem(rect) #grp.translate(200,0) ##grp.rotate(30) #rect2 = pg.QtGui.QGraphicsRectItem(0, 0, 100, 25) #rect2.setFlag(rect2.ItemClipsChildrenToShape) #rect2.setParentItem(grp) #rect2.setPos(0,25) #rect2.rotate(30) #el = pg.QtGui.QGraphicsEllipseItem(0, 0, 100, 50) #el.translate(10,-5) #el.scale(0.5,2) #el.setParentItem(rect2) grp2 = pg.ItemGroup() scene.addItem(grp2) grp2.scale(100,100) rect3 = pg.QtGui.QGraphicsRectItem(0,0,2,2) rect3.setPen(pg.mkPen(width=1, cosmetic=False)) grp2.addItem(rect3) ex = pg.exporters.SVGExporter.SVGExporter(scene) ex.export(fileName='test.svg') if __name__ == '__main__': test.unittest.main()
[((65, 76), 'pyqtgraph.mkQApp', 'pg.mkQApp', ([], {}), '()\n', (74, 76), True, 'import pyqtgraph as pg\n'), ((2116, 2136), 'test.unittest.main', 'test.unittest.main', ([], {}), '()\n', (2134, 2136), False, 'import test\n'), ((704, 729), 'pyqtgraph.QtGui.QGraphicsScene', 'pg.QtGui.QGraphicsScene', ([], {}), '()\n', (727, 729), True, 'import pyqtgraph as pg\n'), ((1754, 1768), 'pyqtgraph.ItemGroup', 'pg.ItemGroup', ([], {}), '()\n', (1766, 1768), True, 'import pyqtgraph as pg\n'), ((1850, 1888), 'pyqtgraph.QtGui.QGraphicsRectItem', 'pg.QtGui.QGraphicsRectItem', (['(0)', '(0)', '(2)', '(2)'], {}), '(0, 0, 2, 2)\n', (1876, 1888), True, 'import pyqtgraph as pg\n'), ((1992, 2035), 'pyqtgraph.exporters.SVGExporter.SVGExporter', 'pg.exporters.SVGExporter.SVGExporter', (['scene'], {}), '(scene)\n', (2028, 2035), True, 'import pyqtgraph as pg\n'), ((1907, 1940), 'pyqtgraph.mkPen', 'pg.mkPen', ([], {'width': '(1)', 'cosmetic': '(False)'}), '(width=1, cosmetic=False)\n', (1915, 1940), True, 'import pyqtgraph as pg\n')]
jedicontributors/pythondataintegrator
src/api/models/enums/apschedulerevents.py
3e877b367ab9b20185476128ec053db41087879f
EVENT_SCHEDULER_STARTED = EVENT_SCHEDULER_START = 2 ** 0 EVENT_SCHEDULER_SHUTDOWN = 2 ** 1 EVENT_SCHEDULER_PAUSED = 2 ** 2 EVENT_SCHEDULER_RESUMED = 2 ** 3 EVENT_EXECUTOR_ADDED = 2 ** 4 EVENT_EXECUTOR_REMOVED = 2 ** 5 EVENT_JOBSTORE_ADDED = 2 ** 6 EVENT_JOBSTORE_REMOVED = 2 ** 7 EVENT_ALL_JOBS_REMOVED = 2 ** 8 EVENT_JOB_ADDED = 2 ** 9 EVENT_JOB_REMOVED = 2 ** 10 EVENT_JOB_MODIFIED = 2 ** 11 EVENT_JOB_EXECUTED = 2 ** 12 EVENT_JOB_ERROR = 2 ** 13 EVENT_JOB_MISSED = 2 ** 14 EVENT_JOB_SUBMITTED = 2 ** 15 EVENT_JOB_MAX_INSTANCES = 2 ** 16 EVENT_ALL = (EVENT_SCHEDULER_STARTED | EVENT_SCHEDULER_SHUTDOWN | EVENT_SCHEDULER_PAUSED | EVENT_SCHEDULER_RESUMED | EVENT_EXECUTOR_ADDED | EVENT_EXECUTOR_REMOVED | EVENT_JOBSTORE_ADDED | EVENT_JOBSTORE_REMOVED | EVENT_ALL_JOBS_REMOVED | EVENT_JOB_ADDED | EVENT_JOB_REMOVED | EVENT_JOB_MODIFIED | EVENT_JOB_EXECUTED | EVENT_JOB_ERROR | EVENT_JOB_MISSED | EVENT_JOB_SUBMITTED | EVENT_JOB_MAX_INSTANCES)
[]
mrninhvn/matter
scripts/build/build/targets.py
c577b233db9d2f3a6f87108a062b1699a40c5169
# Copyright (c) 2021 Project CHIP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from itertools import combinations from typing import List from builders.ameba import AmebaApp, AmebaBoard, AmebaBuilder from builders.android import AndroidApp, AndroidBoard, AndroidBuilder from builders.cc13x2x7_26x2x7 import cc13x2x7_26x2x7App, cc13x2x7_26x2x7Builder from builders.cyw30739 import Cyw30739App, Cyw30739Board, Cyw30739Builder from builders.efr32 import Efr32App, Efr32Board, Efr32Builder from builders.esp32 import Esp32App, Esp32Board, Esp32Builder from builders.host import HostApp, HostBoard, HostBuilder from builders.infineon import InfineonApp, InfineonBoard, InfineonBuilder from builders.k32w import K32WApp, K32WBuilder from builders.mbed import MbedApp, MbedBoard, MbedBuilder, MbedProfile from builders.nrf import NrfApp, NrfBoard, NrfConnectBuilder from builders.qpg import QpgApp, QpgBoard, QpgBuilder from builders.telink import TelinkApp, TelinkBoard, TelinkBuilder from builders.tizen import TizenApp, TizenBoard, TizenBuilder from builders.bl602 import Bl602App, Bl602Board, Bl602Builder from builders.imx import IMXApp, IMXBuilder class Target: """Represents a build target: Has a name identifier plus parameters on how to build it (what builder class to use and what arguments are required to produce the specified build) """ def __init__(self, name, builder_class, **kwargs): self.name = name self.builder_class = builder_class self.glob_blacklist_reason = None self.create_kw_args = kwargs def Clone(self): """Creates a clone of self.""" clone = Target(self.name, self.builder_class, **self.create_kw_args.copy()) clone.glob_blacklist_reason = self.glob_blacklist_reason return clone def Extend(self, suffix, **kargs): """Creates a clone of the current object extending its build parameters. Arguments: suffix: appended with a "-" as separator to the clone name **kargs: arguments needed to produce the new build variant """ clone = self.Clone() clone.name += "-" + suffix clone.create_kw_args.update(kargs) return clone def Create(self, runner, repository_path: str, output_prefix: str, enable_flashbundle: bool): builder = self.builder_class( repository_path, runner=runner, **self.create_kw_args) builder.target = self builder.identifier = self.name builder.output_dir = os.path.join(output_prefix, self.name) builder.enable_flashbundle(enable_flashbundle) return builder def GlobBlacklist(self, reason): clone = self.Clone() if clone.glob_blacklist_reason: clone.glob_blacklist_reason += ", " clone.glob_blacklist_reason += reason else: clone.glob_blacklist_reason = reason return clone @property def IsGlobBlacklisted(self): return self.glob_blacklist_reason is not None @property def GlobBlacklistReason(self): return self.glob_blacklist_reason class AcceptAnyName: def Accept(self, name: str): return True class AcceptNameWithSubstrings: def __init__(self, substr: List[str]): self.substr = substr def Accept(self, name: str): for s in self.substr: if s in name: return True return False class BuildVariant: def __init__(self, name: str, validator=AcceptAnyName(), conflicts: List[str] = [], requires: List[str] = [], **buildargs): self.name = name self.validator = validator self.conflicts = conflicts self.buildargs = buildargs self.requires = requires def HasConflicts(items: List[BuildVariant]) -> bool: for a, b in combinations(items, 2): if (a.name in b.conflicts) or (b.name in a.conflicts): return True return False def AllRequirementsMet(items: List[BuildVariant]) -> bool: """ Check that item.requires is satisfied for all items in the given list """ available = set([item.name for item in items]) for item in items: for requirement in item.requires: if requirement not in available: return False return True class VariantBuilder: """Handles creating multiple build variants based on a starting target. """ def __init__(self, targets: List[Target] = []): # note the clone in case the default arg is used self.targets = targets[:] self.variants = [] self.glob_whitelist = [] def WhitelistVariantNameForGlob(self, name): """ Whitelist the specified variant to be allowed for globbing. By default we do not want a 'build all' to select all variants, so variants are generally glob-blacklisted. """ self.glob_whitelist.append(name) def AppendVariant(self, **args): """ Add another variant to accepted variants. Arguments are construction variants to BuildVariant. Example usage: builder.AppendVariant(name="ipv6only", enable_ipv4=False) """ self.variants.append(BuildVariant(**args)) def AllVariants(self): """ Yields a list of acceptable variants for the given targets. Handles conflict resolution between build variants and globbing whitelist targets. """ for target in self.targets: yield target # skip variants that do not work for this target ok_variants = [ v for v in self.variants if v.validator.Accept(target.name)] # Build every possible variant for variant_count in range(1, len(ok_variants) + 1): for subgroup in combinations(ok_variants, variant_count): if HasConflicts(subgroup): continue if not AllRequirementsMet(subgroup): continue # Target ready to be created - no conflicts variant_target = target.Clone() for option in subgroup: variant_target = variant_target.Extend( option.name, **option.buildargs) # Only a few are whitelisted for globs name = '-'.join([o.name for o in subgroup]) if name not in self.glob_whitelist: if not variant_target.IsGlobBlacklisted: variant_target = variant_target.GlobBlacklist( 'Reduce default build variants') yield variant_target def HostTargets(): target = Target(HostBoard.NATIVE.PlatformName(), HostBuilder) target_native = target.Extend(HostBoard.NATIVE.BoardName(), board=HostBoard.NATIVE) targets = [target_native] # x64 linux supports cross compile cross_compile = (HostBoard.NATIVE.PlatformName() == 'linux') and (HostBoard.NATIVE.BoardName() != HostBoard.ARM64.BoardName()) if cross_compile: targets.append(target.Extend('arm64', board=HostBoard.ARM64)) app_targets = [] # Don't cross compile some builds app_targets.append( target_native.Extend('rpc-console', app=HostApp.RPC_CONSOLE)) app_targets.append( target_native.Extend('tv-app', app=HostApp.TV_APP)) app_targets.append( target_native.Extend('tv-casting-app', app=HostApp.TV_CASTING_APP)) app_targets.append( target_native.Extend('nl-test-runner', app=HostApp.NL_TEST_RUNNER)) for target in targets: app_targets.append(target.Extend( 'all-clusters', app=HostApp.ALL_CLUSTERS)) if (HostBoard.NATIVE.PlatformName() == 'darwin'): app_targets.append(target.Extend( 'chip-tool-darwin', app=HostApp.CHIP_TOOL_DARWIN)) app_targets.append(target.Extend('chip-tool', app=HostApp.CHIP_TOOL)) app_targets.append(target.Extend('thermostat', app=HostApp.THERMOSTAT)) app_targets.append(target.Extend('minmdns', app=HostApp.MIN_MDNS)) app_targets.append(target.Extend('light', app=HostApp.LIGHT)) app_targets.append(target.Extend('lock', app=HostApp.LOCK)) app_targets.append(target.Extend('shell', app=HostApp.SHELL)) app_targets.append(target.Extend( 'ota-provider', app=HostApp.OTA_PROVIDER, enable_ble=False)) app_targets.append(target.Extend( 'ota-requestor', app=HostApp.OTA_REQUESTOR, enable_ble=False)) app_targets.append(target.Extend('python-bindings', app=HostApp.PYTHON_BINDINGS)) builder = VariantBuilder() # Possible build variants. Note that number of potential # builds is exponential here builder.AppendVariant(name="same-event-loop", validator=AcceptNameWithSubstrings( ['-chip-tool', '-chip-tool-darwin']), separate_event_loop=False), builder.AppendVariant(name="no-interactive", validator=AcceptNameWithSubstrings( ['-chip-tool']), interactive_mode=False), builder.AppendVariant(name="ipv6only", enable_ipv4=False), builder.AppendVariant(name="no-ble", enable_ble=False), builder.AppendVariant(name="no-wifi", enable_wifi=False), builder.AppendVariant(name="tsan", conflicts=['asan'], use_tsan=True), builder.AppendVariant(name="asan", conflicts=['tsan'], use_asan=True), builder.AppendVariant(name="libfuzzer", requires=[ "clang"], use_libfuzzer=True), builder.AppendVariant(name="clang", use_clang=True), builder.AppendVariant(name="test", extra_tests=True), builder.WhitelistVariantNameForGlob('no-interactive-ipv6only') builder.WhitelistVariantNameForGlob('ipv6only') for target in app_targets: if ('-rpc-console' in target.name) or ('-python-bindings' in target.name) or ('nl-test-runner' in target.name): # Single-variant builds yield target else: builder.targets.append(target) for target in builder.AllVariants(): if cross_compile and 'chip-tool' in target.name and 'arm64' in target.name and '-no-interactive' not in target.name: # Interactive builds will not compile by default on arm cross compiles # because libreadline is not part of the default sysroot yield target.GlobBlacklist('Arm crosscompile does not support libreadline-dev') else: yield target # Without extra build variants yield target_native.Extend('chip-cert', app=HostApp.CERT_TOOL) yield target_native.Extend('address-resolve-tool', app=HostApp.ADDRESS_RESOLVE) yield target_native.Extend('address-resolve-tool-clang', app=HostApp.ADDRESS_RESOLVE, use_clang=True).GlobBlacklist("Reduce default build variants") yield target_native.Extend('address-resolve-tool-platform-mdns', app=HostApp.ADDRESS_RESOLVE, use_platform_mdns=True).GlobBlacklist("Reduce default build variants") yield target_native.Extend('address-resolve-tool-platform-mdns-ipv6only', app=HostApp.ADDRESS_RESOLVE, use_platform_mdns=True, enable_ipv4=False).GlobBlacklist("Reduce default build variants") test_target = Target(HostBoard.NATIVE.PlatformName(), HostBuilder) for board in [HostBoard.NATIVE, HostBoard.FAKE]: yield test_target.Extend(board.BoardName() + '-tests', board=board, app=HostApp.TESTS) def Esp32Targets(): esp32_target = Target('esp32', Esp32Builder) yield esp32_target.Extend('m5stack-all-clusters', board=Esp32Board.M5Stack, app=Esp32App.ALL_CLUSTERS) yield esp32_target.Extend('m5stack-all-clusters-ipv6only', board=Esp32Board.M5Stack, app=Esp32App.ALL_CLUSTERS, enable_ipv4=False) yield esp32_target.Extend('m5stack-all-clusters-rpc', board=Esp32Board.M5Stack, app=Esp32App.ALL_CLUSTERS, enable_rpcs=True) yield esp32_target.Extend('m5stack-all-clusters-rpc-ipv6only', board=Esp32Board.M5Stack, app=Esp32App.ALL_CLUSTERS, enable_rpcs=True, enable_ipv4=False) yield esp32_target.Extend('c3devkit-all-clusters', board=Esp32Board.C3DevKit, app=Esp32App.ALL_CLUSTERS) devkitc = esp32_target.Extend('devkitc', board=Esp32Board.DevKitC) yield devkitc.Extend('all-clusters', app=Esp32App.ALL_CLUSTERS) yield devkitc.Extend('all-clusters-ipv6only', app=Esp32App.ALL_CLUSTERS, enable_ipv4=False) yield devkitc.Extend('shell', app=Esp32App.SHELL) yield devkitc.Extend('light', app=Esp32App.LIGHT) yield devkitc.Extend('lock', app=Esp32App.LOCK) yield devkitc.Extend('bridge', app=Esp32App.BRIDGE) yield devkitc.Extend('temperature-measurement', app=Esp32App.TEMPERATURE_MEASUREMENT) yield devkitc.Extend('temperature-measurement-rpc', app=Esp32App.TEMPERATURE_MEASUREMENT, enable_rpcs=True) yield esp32_target.Extend('qemu-tests', board=Esp32Board.QEMU, app=Esp32App.TESTS) def Efr32Targets(): efr_target = Target('efr32', Efr32Builder) board_targets = [ efr_target.Extend('brd4161a', board=Efr32Board.BRD4161A), efr_target.Extend('brd4163a', board=Efr32Board.BRD4163A).GlobBlacklist( 'only user requested'), efr_target.Extend('brd4164a', board=Efr32Board.BRD4164A).GlobBlacklist( 'only user requested'), efr_target.Extend('brd4166a', board=Efr32Board.BRD4166A).GlobBlacklist( 'only user requested'), efr_target.Extend('brd4170a', board=Efr32Board.BRD4170A).GlobBlacklist( 'only user requested'), efr_target.Extend('brd4186a', board=Efr32Board.BRD4186A).GlobBlacklist( 'only user requested'), efr_target.Extend('brd4187a', board=Efr32Board.BRD4187A).GlobBlacklist( 'only user requested'), efr_target.Extend('brd4304a', board=Efr32Board.BRD4304A).GlobBlacklist( 'only user requested') ] builder = VariantBuilder() for board_target in board_targets: builder.targets.append(board_target.Extend( 'window-covering', app=Efr32App.WINDOW_COVERING)) builder.targets.append(board_target.Extend( 'switch', app=Efr32App.SWITCH)) builder.targets.append(board_target.Extend( 'unit-test', app=Efr32App.UNIT_TEST)) builder.targets.append( board_target.Extend('light', app=Efr32App.LIGHT)) builder.targets.append(board_target.Extend('lock', app=Efr32App.LOCK)) # Possible build variants. Note that number of potential # builds is exponential here builder.AppendVariant(name="rpc", validator=AcceptNameWithSubstrings( ['-light', '-lock']), enable_rpcs=True) builder.AppendVariant(name="with-ota-requestor", enable_ota_requestor=True) builder.WhitelistVariantNameForGlob('rpc') for target in builder.AllVariants(): yield target def NrfTargets(): target = Target('nrf', NrfConnectBuilder) yield target.Extend('native-posix-64-tests', board=NrfBoard.NATIVE_POSIX_64, app=NrfApp.UNIT_TESTS) targets = [ target.Extend('nrf5340dk', board=NrfBoard.NRF5340DK), target.Extend('nrf52840dk', board=NrfBoard.NRF52840DK), ] # Enable nrf52840dongle for all-clusters and lighting app only yield target.Extend('nrf52840dongle-all-clusters', board=NrfBoard.NRF52840DONGLE, app=NrfApp.ALL_CLUSTERS) yield target.Extend('nrf52840dongle-light', board=NrfBoard.NRF52840DONGLE, app=NrfApp.LIGHT) for target in targets: yield target.Extend('all-clusters', app=NrfApp.ALL_CLUSTERS) yield target.Extend('lock', app=NrfApp.LOCK) yield target.Extend('light', app=NrfApp.LIGHT) yield target.Extend('shell', app=NrfApp.SHELL) yield target.Extend('pump', app=NrfApp.PUMP) yield target.Extend('pump-controller', app=NrfApp.PUMP_CONTROLLER) rpc = target.Extend('light-rpc', app=NrfApp.LIGHT, enable_rpcs=True) if '-nrf5340dk-' in rpc.name: rpc = rpc.GlobBlacklist( 'Compile failure due to pw_build args not forwarded to proto compiler. ' 'https://pigweed-review.googlesource.com/c/pigweed/pigweed/+/66760') yield rpc def AndroidTargets(): target = Target('android', AndroidBuilder) yield target.Extend('arm-chip-tool', board=AndroidBoard.ARM, app=AndroidApp.CHIP_TOOL) yield target.Extend('arm64-chip-tool', board=AndroidBoard.ARM64, app=AndroidApp.CHIP_TOOL) yield target.Extend('x64-chip-tool', board=AndroidBoard.X64, app=AndroidApp.CHIP_TOOL) yield target.Extend('x86-chip-tool', board=AndroidBoard.X86, app=AndroidApp.CHIP_TOOL) yield target.Extend('arm64-chip-test', board=AndroidBoard.ARM64, app=AndroidApp.CHIP_TEST) yield target.Extend('androidstudio-arm-chip-tool', board=AndroidBoard.AndroidStudio_ARM, app=AndroidApp.CHIP_TOOL) yield target.Extend('androidstudio-arm64-chip-tool', board=AndroidBoard.AndroidStudio_ARM64, app=AndroidApp.CHIP_TOOL) yield target.Extend('androidstudio-x86-chip-tool', board=AndroidBoard.AndroidStudio_X86, app=AndroidApp.CHIP_TOOL) yield target.Extend('androidstudio-x64-chip-tool', board=AndroidBoard.AndroidStudio_X64, app=AndroidApp.CHIP_TOOL) yield target.Extend('arm64-chip-tvserver', board=AndroidBoard.ARM64, app=AndroidApp.CHIP_TVServer) yield target.Extend('arm-chip-tvserver', board=AndroidBoard.ARM, app=AndroidApp.CHIP_TVServer) yield target.Extend('x86-chip-tvserver', board=AndroidBoard.X86, app=AndroidApp.CHIP_TVServer) yield target.Extend('x64-chip-tvserver', board=AndroidBoard.X64, app=AndroidApp.CHIP_TVServer) yield target.Extend('arm64-chip-tv-casting-app', board=AndroidBoard.ARM64, app=AndroidApp.CHIP_TV_CASTING_APP) yield target.Extend('arm-chip-tv-casting-app', board=AndroidBoard.ARM, app=AndroidApp.CHIP_TV_CASTING_APP) def MbedTargets(): target = Target('mbed', MbedBuilder) targets = [ target.Extend('CY8CPROTO_062_4343W', board=MbedBoard.CY8CPROTO_062_4343W), ] app_targets = [] for target in targets: app_targets.append(target.Extend('lock', app=MbedApp.LOCK)) app_targets.append(target.Extend('light', app=MbedApp.LIGHT)) app_targets.append(target.Extend( 'all-clusters', app=MbedApp.ALL_CLUSTERS)) app_targets.append(target.Extend('pigweed', app=MbedApp.PIGWEED)) app_targets.append(target.Extend('shell', app=MbedApp.SHELL)) for target in app_targets: yield target.Extend('release', profile=MbedProfile.RELEASE) yield target.Extend('develop', profile=MbedProfile.DEVELOP).GlobBlacklist( 'Compile only for debugging purpose - ' 'https://os.mbed.com/docs/mbed-os/latest/program-setup/build-profiles-and-rules.html') yield target.Extend('debug', profile=MbedProfile.DEBUG).GlobBlacklist( 'Compile only for debugging purpose - ' 'https://os.mbed.com/docs/mbed-os/latest/program-setup/build-profiles-and-rules.html') def InfineonTargets(): target = Target('infineon', InfineonBuilder) yield target.Extend('p6-lock', board=InfineonBoard.P6BOARD, app=InfineonApp.LOCK) yield target.Extend('p6-all-clusters', board=InfineonBoard.P6BOARD, app=InfineonApp.ALL_CLUSTERS) yield target.Extend('p6-light', board=InfineonBoard.P6BOARD, app=InfineonApp.LIGHT) def AmebaTargets(): ameba_target = Target('ameba', AmebaBuilder) yield ameba_target.Extend('amebad-all-clusters', board=AmebaBoard.AMEBAD, app=AmebaApp.ALL_CLUSTERS) yield ameba_target.Extend('amebad-light', board=AmebaBoard.AMEBAD, app=AmebaApp.LIGHT) yield ameba_target.Extend('amebad-pigweed', board=AmebaBoard.AMEBAD, app=AmebaApp.PIGWEED) def K32WTargets(): target = Target('k32w', K32WBuilder) yield target.Extend('light-ota-se', app=K32WApp.LIGHT, release=True, disable_ble=True, se05x=True).GlobBlacklist("Only on demand build") yield target.Extend('light-release-no-ota', app=K32WApp.LIGHT, tokenizer=True, disable_ota=True, release=True) yield target.Extend('shell-release', app=K32WApp.SHELL, release=True) yield target.Extend('lock-release', app=K32WApp.LOCK, release=True) yield target.Extend('lock-low-power-release', app=K32WApp.LOCK, low_power=True, release=True).GlobBlacklist("Only on demand build") def cc13x2x7_26x2x7Targets(): target = Target('cc13x2x7_26x2x7', cc13x2x7_26x2x7Builder) yield target.Extend('lock-ftd', app=cc13x2x7_26x2x7App.LOCK, openthread_ftd=True) yield target.Extend('lock-mtd', app=cc13x2x7_26x2x7App.LOCK, openthread_ftd=False) yield target.Extend('pump', app=cc13x2x7_26x2x7App.PUMP) yield target.Extend('pump-controller', app=cc13x2x7_26x2x7App.PUMP_CONTROLLER) yield target.Extend('all-clusters', app=cc13x2x7_26x2x7App.ALL_CLUSTERS) yield target.Extend('shell', app=cc13x2x7_26x2x7App.SHELL) def Cyw30739Targets(): yield Target('cyw30739-cyw930739m2evb_01-light', Cyw30739Builder, board=Cyw30739Board.CYW930739M2EVB_01, app=Cyw30739App.LIGHT) yield Target('cyw30739-cyw930739m2evb_01-lock', Cyw30739Builder, board=Cyw30739Board.CYW930739M2EVB_01, app=Cyw30739App.LOCK) yield Target('cyw30739-cyw930739m2evb_01-ota-requestor', Cyw30739Builder, board=Cyw30739Board.CYW930739M2EVB_01, app=Cyw30739App.OTA_REQUESTOR).GlobBlacklist( "Running out of XIP flash space") yield Target('cyw30739-cyw930739m2evb_01-ota-requestor-no-progress-logging', Cyw30739Builder, board=Cyw30739Board.CYW930739M2EVB_01, app=Cyw30739App.OTA_REQUESTOR, progress_logging=False) def QorvoTargets(): target = Target('qpg', QpgBuilder) yield target.Extend('lock', board=QpgBoard.QPG6105, app=QpgApp.LOCK) yield target.Extend('light', board=QpgBoard.QPG6105, app=QpgApp.LIGHT) yield target.Extend('shell', board=QpgBoard.QPG6105, app=QpgApp.SHELL) yield target.Extend('persistent-storage', board=QpgBoard.QPG6105, app=QpgApp.PERSISTENT_STORAGE) def TizenTargets(): # Possible build variants. # NOTE: The number of potential builds is exponential here. builder = VariantBuilder() builder.AppendVariant(name="no-ble", enable_ble=False) builder.AppendVariant(name="no-wifi", enable_wifi=False) builder.AppendVariant(name="asan", use_asan=True) target = Target('tizen-arm', TizenBuilder, board=TizenBoard.ARM) builder.targets.append(target.Extend('light', app=TizenApp.LIGHT)) for target in builder.AllVariants(): yield target def Bl602Targets(): target = Target('bl602', Bl602Builder) yield target.Extend('light', board=Bl602Board.BL602BOARD, app=Bl602App.LIGHT) def IMXTargets(): target = Target('imx', IMXBuilder) yield target.Extend('chip-tool', app=IMXApp.CHIP_TOOL) yield target.Extend('lighting-app', app=IMXApp.LIGHT) yield target.Extend('thermostat', app=IMXApp.THERMOSTAT) yield target.Extend('all-clusters-app', app=IMXApp.ALL_CLUSTERS) yield target.Extend('ota-provider-app', app=IMXApp.OTA_PROVIDER) yield target.Extend('chip-tool-release', app=IMXApp.CHIP_TOOL, release=True) yield target.Extend('lighting-app-release', app=IMXApp.LIGHT, release=True) yield target.Extend('thermostat-release', app=IMXApp.THERMOSTAT, release=True) yield target.Extend('all-clusters-app-release', app=IMXApp.ALL_CLUSTERS, release=True) yield target.Extend('ota-provider-app-release', app=IMXApp.OTA_PROVIDER, release=True) ALL = [] target_generators = [ HostTargets(), Esp32Targets(), Efr32Targets(), NrfTargets(), AndroidTargets(), MbedTargets(), InfineonTargets(), AmebaTargets(), K32WTargets(), cc13x2x7_26x2x7Targets(), Cyw30739Targets(), QorvoTargets(), TizenTargets(), Bl602Targets(), IMXTargets(), ] for generator in target_generators: for target in generator: ALL.append(target) # Simple targets added one by one ALL.append(Target('telink-tlsr9518adk80d-light', TelinkBuilder, board=TelinkBoard.TLSR9518ADK80D, app=TelinkApp.LIGHT)) ALL.append(Target('telink-tlsr9518adk80d-light-switch', TelinkBuilder, board=TelinkBoard.TLSR9518ADK80D, app=TelinkApp.SWITCH)) # have a consistent order overall ALL.sort(key=lambda t: t.name)
[((4433, 4455), 'itertools.combinations', 'combinations', (['items', '(2)'], {}), '(items, 2)\n', (4445, 4455), False, 'from itertools import combinations\n'), ((3092, 3130), 'os.path.join', 'os.path.join', (['output_prefix', 'self.name'], {}), '(output_prefix, self.name)\n', (3104, 3130), False, 'import os\n'), ((7412, 7443), 'builders.host.HostBoard.NATIVE.PlatformName', 'HostBoard.NATIVE.PlatformName', ([], {}), '()\n', (7441, 7443), False, 'from builders.host import HostApp, HostBoard, HostBuilder\n'), ((7492, 7520), 'builders.host.HostBoard.NATIVE.BoardName', 'HostBoard.NATIVE.BoardName', ([], {}), '()\n', (7518, 7520), False, 'from builders.host import HostApp, HostBoard, HostBuilder\n'), ((11989, 12020), 'builders.host.HostBoard.NATIVE.PlatformName', 'HostBoard.NATIVE.PlatformName', ([], {}), '()\n', (12018, 12020), False, 'from builders.host import HostApp, HostBoard, HostBuilder\n'), ((7639, 7670), 'builders.host.HostBoard.NATIVE.PlatformName', 'HostBoard.NATIVE.PlatformName', ([], {}), '()\n', (7668, 7670), False, 'from builders.host import HostApp, HostBoard, HostBuilder\n'), ((7688, 7716), 'builders.host.HostBoard.NATIVE.BoardName', 'HostBoard.NATIVE.BoardName', ([], {}), '()\n', (7714, 7716), False, 'from builders.host import HostApp, HostBoard, HostBuilder\n'), ((7720, 7747), 'builders.host.HostBoard.ARM64.BoardName', 'HostBoard.ARM64.BoardName', ([], {}), '()\n', (7745, 7747), False, 'from builders.host import HostApp, HostBoard, HostBuilder\n'), ((8418, 8449), 'builders.host.HostBoard.NATIVE.PlatformName', 'HostBoard.NATIVE.PlatformName', ([], {}), '()\n', (8447, 8449), False, 'from builders.host import HostApp, HostBoard, HostBuilder\n'), ((6445, 6485), 'itertools.combinations', 'combinations', (['ok_variants', 'variant_count'], {}), '(ok_variants, variant_count)\n', (6457, 6485), False, 'from itertools import combinations\n')]
TRINITRONIC/musegan
src/musegan/data.py
0a62e0303a8ff357d7f385dcc6edba76afb132b2
"""This file contains functions for loading and preprocessing pianoroll data. """ import logging import numpy as np import tensorflow.compat.v1 as tf from musegan.config import SHUFFLE_BUFFER_SIZE, PREFETCH_SIZE LOGGER = logging.getLogger(__name__) # --- Data loader -------------------------------------------------------------- def load_data_from_npy(filename): """Load and return the training data from a npy file.""" return np.load(filename) def load_data_from_npz(filename): """Load and return the training data from a npz file (sparse format).""" with np.load(filename) as f: data = np.zeros(f['shape'], np.bool_) data[[x for x in f['nonzero']]] = True return data def load_data(data_source, data_filename): """Load and return the training data.""" if data_source == 'sa': import SharedArray as sa return sa.attach(data_filename) if data_source == 'npy': return load_data_from_npy(data_filename) if data_source == 'npz': return load_data_from_npz(data_filename) raise ValueError("Expect `data_source` to be one of 'sa', 'npy', 'npz'. " "But get " + str(data_source)) # --- Dataset Utilities ------------------------------------------------------- def random_transpose(pianoroll): """Randomly transpose a pianoroll with [-5, 6] semitones.""" semitone = np.random.randint(-5, 6) if semitone > 0: pianoroll[:, semitone:, 1:] = pianoroll[:, :-semitone, 1:] pianoroll[:, :semitone, 1:] = 0 elif semitone < 0: pianoroll[:, :semitone, 1:] = pianoroll[:, -semitone:, 1:] pianoroll[:, semitone:, 1:] = 0 return pianoroll def set_pianoroll_shape(pianoroll, data_shape): """Set the pianoroll shape and return the pianoroll.""" pianoroll.set_shape(data_shape) return pianoroll def set_label_shape(label): """Set the label shape and return the label.""" label.set_shape([1]) return label # --- Sampler ------------------------------------------------------------------ def get_samples(n_samples, data, labels=None, use_random_transpose=False): """Return some random samples of the training data.""" indices = np.random.choice(len(data), n_samples, False) if np.issubdtype(data.dtype, np.bool_): sample_data = data[indices] * 2. - 1. else: sample_data = data[indices] if use_random_transpose: sample_data = np.array([random_transpose(x) for x in sample_data]) if labels is None: return sample_data return sample_data, labels[indices] # --- Tensorflow Dataset ------------------------------------------------------- def _gen_data(data, labels=None): """Data Generator.""" if labels is None: for item in data: if np.issubdtype(data.dtype, np.bool_): yield item * 2. - 1. else: yield item else: for i, item in enumerate(data): if np.issubdtype(data.dtype, np.bool_): yield (item * 2. - 1., labels[i]) else: yield (item, labels[i]) def get_dataset(data, labels=None, batch_size=None, data_shape=None, use_random_transpose=False, num_threads=1): """Create and return a tensorflow dataset from an array.""" if labels is None: dataset = tf.data.Dataset.from_generator( lambda: _gen_data(data), tf.float32) if use_random_transpose: dataset = dataset.map( lambda pianoroll: tf.py_func( random_transpose, [pianoroll], tf.float32), num_parallel_calls=num_threads) dataset = dataset.map(lambda pianoroll: set_pianoroll_shape( pianoroll, data_shape), num_parallel_calls=num_threads) else: assert len(data) == len(labels), ( "Lengths of `data` and `lables` do not match.") dataset = tf.data.Dataset.from_generator( lambda: _gen_data(data, labels), [tf.float32, tf.int32]) if use_random_transpose: dataset = dataset.map( lambda pianoroll, label: ( tf.py_func(random_transpose, [pianoroll], tf.float32), label), num_parallel_calls=num_threads) dataset = dataset.map( lambda pianoroll, label: (set_pianoroll_shape( pianoroll, data_shape), set_label_shape(label)), num_parallel_calls=num_threads) dataset = dataset.shuffle(SHUFFLE_BUFFER_SIZE).repeat().batch(batch_size) return dataset.prefetch(PREFETCH_SIZE)
[((221, 248), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (238, 248), False, 'import logging\n'), ((437, 454), 'numpy.load', 'np.load', (['filename'], {}), '(filename)\n', (444, 454), True, 'import numpy as np\n'), ((1379, 1403), 'numpy.random.randint', 'np.random.randint', (['(-5)', '(6)'], {}), '(-5, 6)\n', (1396, 1403), True, 'import numpy as np\n'), ((2255, 2290), 'numpy.issubdtype', 'np.issubdtype', (['data.dtype', 'np.bool_'], {}), '(data.dtype, np.bool_)\n', (2268, 2290), True, 'import numpy as np\n'), ((576, 593), 'numpy.load', 'np.load', (['filename'], {}), '(filename)\n', (583, 593), True, 'import numpy as np\n'), ((615, 645), 'numpy.zeros', 'np.zeros', (["f['shape']", 'np.bool_'], {}), "(f['shape'], np.bool_)\n", (623, 645), True, 'import numpy as np\n'), ((874, 898), 'SharedArray.attach', 'sa.attach', (['data_filename'], {}), '(data_filename)\n', (883, 898), True, 'import SharedArray as sa\n'), ((2784, 2819), 'numpy.issubdtype', 'np.issubdtype', (['data.dtype', 'np.bool_'], {}), '(data.dtype, np.bool_)\n', (2797, 2819), True, 'import numpy as np\n'), ((2968, 3003), 'numpy.issubdtype', 'np.issubdtype', (['data.dtype', 'np.bool_'], {}), '(data.dtype, np.bool_)\n', (2981, 3003), True, 'import numpy as np\n'), ((3532, 3585), 'tensorflow.compat.v1.py_func', 'tf.py_func', (['random_transpose', '[pianoroll]', 'tf.float32'], {}), '(random_transpose, [pianoroll], tf.float32)\n', (3542, 3585), True, 'import tensorflow.compat.v1 as tf\n'), ((4156, 4209), 'tensorflow.compat.v1.py_func', 'tf.py_func', (['random_transpose', '[pianoroll]', 'tf.float32'], {}), '(random_transpose, [pianoroll], tf.float32)\n', (4166, 4209), True, 'import tensorflow.compat.v1 as tf\n')]
PushpneetSingh/Hello-world
Python/hello-world-pt-BR.py
def0f44737e02fb40063cd347e93e456658e2532
print(u"Olá mundo!")
[]
saidulislam/flask-bootcamp-2
02-static-templates-files/02_html_template.py
4ba8f5e012aa0159275ab264f0247815dcf635e6
from flask import Flask, app = Flask(__name__) @app.route("/") def homepage(): return "Paws Rescue Center 🐾" @app.route("/about") def about(): return """We are a non-profit organization working as an animal rescue center. We aim to help you connect with purrfect furbaby for you! The animals you find at our website are rescue animals which have been rehabilitated. Our mission is to promote the ideology of "Adopt, don't Shop"! """ if __name__ == "__main__": app.run(debug=True)
[]
arpastrana/compas
src/compas/datastructures/mesh/bbox.py
ed677a162c14dbe562c82d72f370279259faf7da
from __future__ import absolute_import from __future__ import division from __future__ import print_function from compas.geometry import bounding_box from compas.geometry import bounding_box_xy __all__ = [ 'mesh_bounding_box', 'mesh_bounding_box_xy', ] def mesh_bounding_box(mesh): """Compute the (axis aligned) bounding box of a mesh. Parameters ---------- mesh : compas.datastructures.Mesh The mesh data structure. Returns ------- list of point The 8 corners of the bounding box of the mesh. Examples -------- >>> mesh_bounding_box(mesh) [[0.0, 0.0, 0.0], [10.0, 0.0, 0.0], [10.0, 10.0, 0.0], [0.0, 10.0, 0.0], [0.0, 0.0, 0.0], [10.0, 0.0, 0.0], [10.0, 10.0, 0.0], [0.0, 10.0, 0.0]] """ xyz = mesh.vertices_attributes('xyz', keys=list(mesh.vertices())) return bounding_box(xyz) def mesh_bounding_box_xy(mesh): """Compute the (axis aligned) bounding box of a projection of the mesh in the XY plane. Parameters ---------- mesh : compas.datastructures.Mesh The mesh data structure. Returns ------- list of point The 4 corners of the bounding polygon in the XY plane. Examples -------- >>> mesh_bounding_box_xy(mesh) [[0.0, 0.0, 0.0], [10.0, 0.0, 0.0], [10.0, 10.0, 0.0], [0.0, 10.0, 0.0]] """ xyz = mesh.vertices_attributes('xyz') return bounding_box_xy(xyz) # ============================================================================== # Main # ============================================================================== if __name__ == '__main__': import doctest import compas from compas.datastructures import Mesh mesh = Mesh.from_obj(compas.get('faces.obj')) doctest.testmod()
[((852, 869), 'compas.geometry.bounding_box', 'bounding_box', (['xyz'], {}), '(xyz)\n', (864, 869), False, 'from compas.geometry import bounding_box\n'), ((1405, 1425), 'compas.geometry.bounding_box_xy', 'bounding_box_xy', (['xyz'], {}), '(xyz)\n', (1420, 1425), False, 'from compas.geometry import bounding_box_xy\n'), ((1762, 1779), 'doctest.testmod', 'doctest.testmod', ([], {}), '()\n', (1777, 1779), False, 'import doctest\n'), ((1732, 1755), 'compas.get', 'compas.get', (['"""faces.obj"""'], {}), "('faces.obj')\n", (1742, 1755), False, 'import compas\n')]
Lars-H/federated_crop
crop/source_selection/__init__.py
8e936926462aa5df5a9b8e6b42b061a3623fddf4
from naive import NaiveSourceSelection from star_based import StarBasedSourceSelection from utils import AskSourceSelector, HybridSourceSelector, StatSourceSelector from charset_selector import CharSet_Selector
[]
Mhaiyang/iccv
base3_plus.py
04a8ee52c2323d7ff5cdf03c0be1466e8180d2eb
""" @Time : 201/21/19 10:47 @Author : TaylorMei @Email : [email protected] @Project : iccv @File : base3_plus.py @Function: """
[]
oknuutti/hw_visnav
visnav/algo/orig/tools.py
5254b8bdd146548413554c00e6e76264a2540e8b
import math import time import numpy as np import numba as nb import quaternion # adds to numpy # noqa # pylint: disable=unused-import import sys import scipy from astropy.coordinates import SkyCoord from scipy.interpolate import RectBivariateSpline from scipy.interpolate import NearestNDInterpolator # from scipy.spatial.ckdtree import cKDTree from visnav.settings import * class PositioningException(Exception): pass class Stopwatch: # from https://www.safaribooksonline.com/library/view/python-cookbook-3rd/9781449357337/ch13s13.html def __init__(self, elapsed=0.0, func=time.perf_counter): self._elapsed = elapsed self._func = func self._start = None @property def elapsed(self): return self._elapsed + ((self._func() - self._start) if self.running else 0) def start(self): if self._start is not None: raise RuntimeError('Already started') self._start = self._func() def stop(self): if self._start is None: raise RuntimeError('Not started') end = self._func() self._elapsed += end - self._start self._start = None def reset(self): self._elapsed = 0.0 @property def running(self): return self._start is not None def __enter__(self): self.start() return self def __exit__(self, *args): self.stop() def sphere_angle_radius(loc, r): return np.arcsin(r / np.linalg.norm(loc, axis=1)) def dist_across_and_along_vect(A, b): """ A: array of vectors, b: axis vector """ lat, lon, r = cartesian2spherical(*b) q = ypr_to_q(lat, lon, 0).conj() R = quaternion.as_rotation_matrix(q) Ab = R.dot(A.T).T d = Ab[:, 0:1] r = np.linalg.norm(Ab[:, 1:3], axis=1).reshape((-1, 1)) return r, d def point_vector_dist(A, B, dist_along_v=False): """ A: point, B: vector """ # (length of b)**2 normB2 = (B ** 2).sum(-1).reshape((-1, 1)) # a dot b vector product (project a on b but also times length of b) diagAB = (A * B).sum(-1).reshape((-1, 1)) # A projected along B (projection = a dot b/||b|| * b/||b||) A_B = (diagAB / normB2) * B # vector from projected A to A, it is perpendicular to B AB2A = A - A_B # diff vector lengths normD = np.sqrt((AB2A ** 2).sum(-1)).reshape((-1, 1)) return (normD, diagAB / np.sqrt(normB2)) if dist_along_v else normD def sc_asteroid_max_shift_error(A, B): """ Calculate max error between two set of vertices when projected to camera, A = estimated vertex positions B = true vertex positions Error is a vector perpendicular to B, i.e. A - A|| """ # diff vector lengths normD = point_vector_dist(A, B) # max length of diff vectors return np.max(normD) @nb.njit(nb.f8[:](nb.f8[:], nb.f8[:])) def cross3d(left, right): # for short vectors cross product is faster in pure python than with numpy.cross x = ((left[1] * right[2]) - (left[2] * right[1])) y = ((left[2] * right[0]) - (left[0] * right[2])) z = ((left[0] * right[1]) - (left[1] * right[0])) return np.array((x, y, z)) def normalize_v(v): norm = np.linalg.norm(v) return v / norm if norm != 0 else v @nb.njit(nb.types.f8[:](nb.types.f8[:])) def normalize_v_f8(v): norm = np.linalg.norm(v) return v / norm if norm != 0 else v def generate_field_fft(shape, sd=(0.33, 0.33, 0.34), len_sc=(0.5, 0.5 / 4, 0.5 / 16)): from visnav.algo.image import ImageProc sds = sd if getattr(sd, '__len__', False) else [sd] len_scs = len_sc if getattr(len_sc, '__len__', False) else [len_sc] assert len(shape) == 2, 'only 2d shapes are valid' assert len(sds) == len(len_scs), 'len(sd) differs from len(len_sc)' n = np.prod(shape) kernel = np.sum( np.stack([1 / len_sc * sd * n * ImageProc.gkern2d(shape, 1 / len_sc) for sd, len_sc in zip(sds, len_scs)], axis=2), axis=2) f_img = np.random.normal(0, 1, shape) + np.complex(0, 1) * np.random.normal(0, 1, shape) f_img = np.real(np.fft.ifft2(np.fft.fftshift(kernel * f_img))) return f_img @nb.njit(nb.types.f8[:](nb.types.f8[:], nb.types.f8[:], nb.types.f8[:])) def _surf_normal(x1, x2, x3): # a, b, c = np.array(x1, dtype=np.float64), np.array(x2, dtype=np.float64), np.array(x3, dtype=np.float64) return normalize_v_f8(cross3d(x2-x1, x3-x1)) def surf_normal(x1, x2, x3): a, b, c = np.array(x1, dtype=np.float64), np.array(x2, dtype=np.float64), np.array(x3, dtype=np.float64) return _surf_normal(a, b, c) # return normalize_v_f8(cross3d(b-a, c-a)) def vector_projection(a, b): return a.dot(b) / b.dot(b) * b def vector_rejection(a, b): return a - vector_projection(a, b) def angle_between_v(v1, v2): # Notice: only returns angles between 0 and 180 deg try: v1 = np.reshape(v1, (1, -1)) v2 = np.reshape(v2, (-1, 1)) n1 = v1 / np.linalg.norm(v1) n2 = v2 / np.linalg.norm(v2) cos_angle = n1.dot(n2) except TypeError as e: raise Exception('Bad vectors:\n\tv1: %s\n\tv2: %s' % (v1, v2)) from e return math.acos(np.clip(cos_angle, -1, 1)) def angle_between_v_mx(a, B, normalize=True): Bn = B / np.linalg.norm(B, axis=1).reshape((-1, 1)) if normalize else B an = normalize_v(a).reshape((-1, 1)) if normalize else a return np.arccos(np.clip(Bn.dot(an), -1.0, 1.0)) def angle_between_mx(A, B): return angle_between_rows(A, B) def angle_between_rows(A, B, normalize=True): assert A.shape[1] == 3 and B.shape[1] == 3, 'matrices need to be of shape (n, 3) and (m, 3)' if A.shape[0] == B.shape[0]: # from https://stackoverflow.com/questions/50772176/calculate-the-angle-between-the-rows-of-two-matrices-in-numpy/50772253 cos_angles = np.einsum('ij,ij->i', A, B) if normalize: p2 = np.einsum('ij,ij->i', A, A) p3 = np.einsum('ij,ij->i', B, B) cos_angles /= np.sqrt(p2 * p3) else: if normalize: A = A / np.linalg.norm(A, axis=1).reshape((-1, 1)) B = B / np.linalg.norm(B, axis=1).reshape((-1, 1)) cos_angles = B.dot(A.T) return np.arccos(np.clip(cos_angles, -1.0, 1.0)) def rand_q(angle): r = normalize_v(np.random.normal(size=3)) return angleaxis_to_q(np.hstack((angle, r))) def angle_between_q(q1, q2): # from https://chrischoy.github.io/research/measuring-rotation/ qd = q1.conj() * q2 return abs(wrap_rads(2 * math.acos(qd.normalized().w))) def angle_between_q_arr(q1, q2): qd = quaternion.as_float_array(q1.conj() * q2) qd = qd / np.linalg.norm(qd, axis=1).reshape((-1, 1)) return np.abs(wrap_rads(2 * np.arccos(qd[:, 0]))) def angle_between_ypr(ypr1, ypr2): q1 = ypr_to_q(*ypr1) q2 = ypr_to_q(*ypr2) return angle_between_q(q1, q2) def distance_mx(A, B): assert A.shape[1] == B.shape[1], 'matrices must have same amount of columns' k = A.shape[1] O = np.repeat(A.reshape((-1, 1, k)), B.shape[0], axis=1) - np.repeat(B.reshape((1, -1, k)), A.shape[0], axis=0) D = np.linalg.norm(O, axis=2) return D def q_to_unitbase(q): U0 = quaternion.as_quat_array([[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1.]]) Uq = q * U0 * q.conj() return quaternion.as_float_array(Uq)[:, 1:] def equatorial_to_ecliptic(ra, dec): """ translate from equatorial ra & dec to ecliptic ones """ sc = SkyCoord(ra, dec, unit='deg', frame='icrs', obstime='J2000') \ .transform_to('barycentrictrueecliptic') return sc.lat.value, sc.lon.value def q_to_angleaxis(q, compact=False): theta = math.acos(np.clip(q.w, -1, 1)) * 2.0 v = normalize_v(np.array([q.x, q.y, q.z])) if compact: return theta * v else: return np.array((theta,) + tuple(v)) def angleaxis_to_q(rv): """ first angle, then axis """ if len(rv) == 4: theta = rv[0] v = normalize_v(np.array(rv[1:])) elif len(rv) == 3: theta = math.sqrt(sum(x ** 2 for x in rv)) v = np.array(rv) / (1 if theta == 0 else theta) else: raise Exception('Invalid angle-axis vector: %s' % (rv,)) w = math.cos(theta / 2) v = v * math.sin(theta / 2) return np.quaternion(w, *v).normalized() def ypr_to_q(lat, lon, roll): # Tait-Bryan angles, aka yaw-pitch-roll, nautical angles, cardan angles # intrinsic euler rotations z-y'-x'', pitch=-lat, yaw=lon return ( np.quaternion(math.cos(lon / 2), 0, 0, math.sin(lon / 2)) * np.quaternion(math.cos(-lat / 2), 0, math.sin(-lat / 2), 0) * np.quaternion(math.cos(roll / 2), math.sin(roll / 2), 0, 0) ) def eul_to_q(angles, order='xyz', reverse=False): assert len(angles) == len(order), 'len(angles) != len(order)' q = quaternion.one idx = {'x': 0, 'y': 1, 'z': 2} for angle, axis in zip(angles, order): w = math.cos(angle / 2) v = [0, 0, 0] v[idx[axis]] = math.sin(angle / 2) dq = np.quaternion(w, *v) q = (dq * q) if reverse else (q * dq) return q def q_to_ypr(q): # from https://math.stackexchange.com/questions/687964/getting-euler-tait-bryan-angles-from-quaternion-representation q0, q1, q2, q3 = quaternion.as_float_array(q) roll = np.arctan2(q2 * q3 + q0 * q1, .5 - q1 ** 2 - q2 ** 2) lat = -np.arcsin(np.clip(-2 * (q1 * q3 - q0 * q2), -1, 1)) lon = np.arctan2(q1 * q2 + q0 * q3, .5 - q2 ** 2 - q3 ** 2) return lat, lon, roll def mean_q(qs, ws=None): """ returns a (weighted) mean of a set of quaternions idea is to rotate a bit in the direction of new quaternion from the sum of previous rotations NOTE: not tested properly, might not return same mean quaternion if order of input changed """ wtot = 0 qtot = quaternion.one for q, w in zip(qs, np.ones((len(qs),)) if ws is None else ws): ddaa = q_to_angleaxis(qtot.conj() * q) ddaa[0] = wrap_rads(ddaa[0]) * w / (w + wtot) qtot = angleaxis_to_q(ddaa) * qtot wtot += w return qtot def q_times_v(q, v): qv = np.quaternion(0, *v) qv2 = q * qv * q.conj() return np.array([qv2.x, qv2.y, qv2.z]) def q_times_mx(q, mx): qqmx = q * mx2qmx(mx) * q.conj() aqqmx = quaternion.as_float_array(qqmx) return aqqmx[:, 1:] def mx2qmx(mx): qmx = np.zeros((mx.shape[0], 4)) qmx[:, 1:] = mx return quaternion.as_quat_array(qmx) def wrap_rads(a): return (a + math.pi) % (2 * math.pi) - math.pi def wrap_degs(a): return (a + 180) % 360 - 180 def eccentric_anomaly(eccentricity, mean_anomaly, tol=1e-6): # from http://www.jgiesen.de/kepler/kepler.html E = mean_anomaly if eccentricity < 0.8 else math.pi F = E - eccentricity * math.sin(mean_anomaly) - mean_anomaly; for i in range(30): if abs(F) < tol: break E = E - F / (1.0 - eccentricity * math.cos(E)) F = E - eccentricity * math.sin(E) - mean_anomaly return round(E / tol) * tol def solar_elongation(ast_v, sc_q): sco_x, sco_y, sco_z = q_to_unitbase(sc_q) if USE_ICRS: sc = SkyCoord(x=ast_v[0], y=ast_v[1], z=ast_v[2], frame='icrs', unit='m', representation_type='cartesian', obstime='J2000') \ .transform_to('hcrs') \ .represent_as('cartesian') ast_v = np.array([sc.x.value, sc.y.value, sc.z.value]) # angle between camera axis and the sun, 0: right ahead, pi: behind elong = angle_between_v(-ast_v, sco_x) # direction the sun is at when looking along camera axis nvec = np.cross(sco_x, ast_v) direc = angle_between_v(nvec, sco_z) # decide if direction needs to be negative or not if np.cross(nvec, sco_z).dot(sco_x) < 0: direc = -direc return elong, direc def find_nearest_lesser(array, value): I = np.where(array < value) idx = (np.abs(array - value)).argmin() return array[I[idx]], I[idx] def find_nearest_greater(array, value): I = np.where(array > value) idx = (np.abs(array - value)).argmin() return array[I[idx]], I[idx] def find_nearest(array, value): idx = (np.abs(array - value)).argmin() return array[idx], idx def find_nearest_arr(array, value, ord=None, fun=None): diff = array - value idx = np.linalg.norm(diff if fun is None else list(map(fun, diff)), ord=ord, axis=1).argmin() return array[idx], idx def find_nearest_n(array, value, r, ord=None, fun=None): diff = array - value d = np.linalg.norm(diff if fun is None else list(map(fun, diff)), ord=ord, axis=1) idxs = np.where(d < r) return idxs[0] def find_nearest_each(haystack, needles, ord=None): assert len(haystack.shape) == 2 and len(needles.shape) == 2 and haystack.shape[1] == needles.shape[1], \ 'wrong shapes for haystack and needles, %s and %s, respectively' % (haystack.shape, needles.shape) c = haystack.shape[1] diff_mx = np.repeat(needles.reshape((-1, 1, c)), haystack.shape[0], axis=1) - np.repeat( haystack.reshape((1, -1, c)), needles.shape[0], axis=0) norm_mx = np.linalg.norm(diff_mx, axis=2, ord=ord) idxs = norm_mx.argmin(axis=1) return haystack[idxs], idxs def cartesian2spherical(x, y, z): r = math.sqrt(x ** 2 + y ** 2 + z ** 2) theta = math.acos(z / r) phi = math.atan2(y, x) lat = math.pi / 2 - theta lon = phi return np.array([lat, lon, r]) def spherical2cartesian(lat, lon, r): theta = math.pi / 2 - lat phi = lon x = r * math.sin(theta) * math.cos(phi) y = r * math.sin(theta) * math.sin(phi) z = r * math.cos(theta) return np.array([x, y, z]) def spherical2cartesian_arr(A, r=None): theta = math.pi / 2 - A[:, 0] phi = A[:, 1] r = (r or A[:, 2]) x = r * np.sin(theta) y = x * np.sin(phi) x *= np.cos(phi) # x = r * np.sin(theta) * np.cos(phi) # y = r * np.sin(theta) * np.sin(phi) z = r * np.cos(theta) return np.vstack([x, y, z]).T def discretize_v(v, tol=None, lat_range=(-math.pi / 2, math.pi / 2), points=None): """ simulate feature database by giving closest light direction with given tolerance """ if tol is not None and points is not None or tol is None and points is None: assert False, 'Give either tol or points' elif tol is not None: points = bf2_lat_lon(tol, lat_range=lat_range) lat, lon, r = cartesian2spherical(*v) (nlat, nlon), idx = find_nearest_arr( points, np.array((lat, lon)), ord=2, fun=wrap_rads, ) ret = spherical2cartesian(nlat, nlon, r) return ret, idx def discretize_q(q, tol=None, lat_range=(-math.pi / 2, math.pi / 2), points=None): """ simulate feature database by giving closest lat & roll with given tolerance and set lon to zero as feature detectors are rotation invariant (in opengl coords) """ if tol is not None and points is not None or tol is None and points is None: assert False, 'Give either tol or points' elif tol is not None: points = bf2_lat_lon(tol, lat_range=lat_range) lat, lon, roll = q_to_ypr(q) (nlat, nroll), idx = find_nearest_arr( points, np.array((lat, roll)), ord=2, fun=wrap_rads, ) nq0 = ypr_to_q(nlat, 0, nroll) return nq0, idx def bf_lat_lon(tol, lat_range=(-math.pi / 2, math.pi / 2)): # tol**2 == (step/2)**2 + (step/2)**2 -- 7deg is quite nice in terms of len(lon)*len(lat) == 1260 step = math.sqrt(2) * tol lat_steps = np.linspace(*lat_range, num=math.ceil((lat_range[1] - lat_range[0]) / step), endpoint=False)[1:] lon_steps = np.linspace(-math.pi, math.pi, num=math.ceil(2 * math.pi / step), endpoint=False) return lat_steps, lon_steps def bf2_lat_lon(tol, lat_range=(-math.pi / 2, math.pi / 2)): # tol**2 == (step/2)**2 + (step/2)**2 -- 7deg is quite nice in terms of len(lon)*len(lat) == 1260 step = math.sqrt(2) * tol lat_steps = np.linspace(*lat_range, num=math.ceil((lat_range[1] - lat_range[0]) / step), endpoint=False)[1:] # similar to https://www.cmu.edu/biolphys/deserno/pdf/sphere_equi.pdf points = [] for lat in lat_steps: Mphi = math.ceil(2 * math.pi * math.cos(lat) / step) lon_steps = np.linspace(-math.pi, math.pi, num=Mphi, endpoint=False) points.extend(zip([lat] * len(lon_steps), lon_steps)) return points def robust_mean(arr, discard_percentile=0.2, ret_n=False, axis=None): J = np.logical_not(np.isnan(arr)) if axis is not None: J = np.all(J, axis=1 if axis == 0 else 0) if axis == 0: arr = arr[J, :] elif axis == 1: arr = arr[:, J] else: arr = arr[J] low = np.percentile(arr, discard_percentile, axis=axis) high = np.percentile(arr, 100 - discard_percentile, axis=axis) I = np.logical_and(low < arr, arr < high) if axis is not None: I = np.all(I, axis=1 if axis == 0 else 0) m = np.mean(arr[:, I] if axis == 1 else arr[I], axis=axis) return (m, np.sum(I, axis=axis)) if ret_n else m def robust_std(arr, discard_percentile=0.2, mean=None, axis=None): corr = 1 if mean is None: mean, n = robust_mean(arr, discard_percentile=discard_percentile, ret_n=True, axis=axis) corr = n / (n - 1) return np.sqrt(robust_mean((arr - mean) ** 2, discard_percentile=discard_percentile, axis=axis) * corr) def mv_normal(mean, cov=None, L=None, size=None): if size is None: final_shape = [] elif isinstance(size, (int, np.integer)): final_shape = [size] else: final_shape = size final_shape = list(final_shape[:]) final_shape.append(mean.shape[0]) if L is None and cov is None \ or L is not None and cov is not None: raise ValueError("you must provide either cov or L (cholesky decomp result)") if len(mean.shape) != 1: raise ValueError("mean must be 1 dimensional") if L is not None: if (len(L.shape) != 2) or (L.shape[0] != L.shape[1]): raise ValueError("L must be 2 dimensional and square") if mean.shape[0] != L.shape[0]: raise ValueError("mean and L must have same length") if cov is not None: if (len(cov.shape) != 2) or (cov.shape[0] != cov.shape[1]): raise ValueError("cov must be 2 dimensional and square") if mean.shape[0] != cov.shape[0]: raise ValueError("mean and cov must have same length") L = np.linalg.cholesky(cov) from numpy.random import standard_normal z = standard_normal(final_shape).reshape(mean.shape[0], -1) x = L.dot(z).T x += mean x.shape = tuple(final_shape) return x, L def point_cloud_vs_model_err(points: np.ndarray, model) -> np.ndarray: faces = np.array([f[0] for f in model.faces], dtype='uint') vertices = np.array(model.vertices) errs = get_model_errors(points, vertices, faces) return errs # @nb.njit(nb.f8[:](nb.f8[:, :], nb.f8[:, :]), nogil=True) @nb.njit(nb.f8(nb.f8[:, :], nb.f8[:, :]), nogil=True, cache=True) def poly_line_intersect(poly, line): # extend_line = True eps = 1e-6 none = np.inf # np.zeros(1) v0v1 = poly[1, :] - poly[0, :] v0v2 = poly[2, :] - poly[0, :] dir = line[1, :] - line[0, :] line_len = math.sqrt(np.sum(dir ** 2)) if line_len < eps: return none dir = dir / line_len pvec = cross3d(dir, v0v2).ravel() det = np.dot(v0v1, pvec) if abs(det) < eps: return none # backface culling if False and det < 0: return none # frontface culling if False and det > 0: return none inv_det = 1.0 / det tvec = line[0, :] - poly[0, :] u = tvec.dot(pvec) * inv_det if u + eps < 0 or u - eps > 1: return none qvec = cross3d(tvec, v0v1).ravel() v = dir.dot(qvec) * inv_det if v + eps < 0 or u + v - eps > 1: return none t = v0v2.dot(qvec) * inv_det if True: # return error directly return t - line_len else: # return actual 3d intersect point if not extend_line and t - eps > line_len: return none return line[0, :] + t * dir # INVESTIGATE: parallel = True does not speed up at all (or marginally) for some reason even though all cores are in use @nb.njit(nb.f8(nb.u4[:, :], nb.f8[:, :], nb.f8[:, :]), nogil=True, parallel=False, cache=True) def intersections(faces, vertices, line): # pts = np.zeros((10, 3)) # i = 0 min_err = np.ones(faces.shape[0]) * np.inf for k in nb.prange(1, faces.shape[0]): err = poly_line_intersect(vertices[faces[k, :], :], line) min_err[k] = err # if abs(err) < min_err: # min_err = err # if len(pt) == 3: # pts[i, :] = pt # i += 1 # if i >= pts.shape[0]: # print('too many intersects') # i -= 1 i = np.argmin(np.abs(min_err)) return min_err[i] # pts[0:i, :] # @nb.jit(nb.f8[:](nb.f8[:, :], nb.f8[:, :], nb.i4[:, :]), nogil=True, parallel=False) def get_model_errors(points, vertices, faces): count = len(points) show_progress(count // 10, 0) j = 0 devs = np.empty(points.shape[0]) for i in nb.prange(count): vx = points[i, :] err = intersections(faces, vertices, np.array(((0, 0, 0), vx))) if math.isinf(err): # len(pts) == 0: print('no intersections!') continue if False: idx = np.argmin([np.linalg.norm(pt - vx) for pt in pts]) err = np.linalg.norm(pts[idx]) - np.linalg.norm(vx) devs[i] = err if j < i // 10: show_progress(count // 10, i // 10) j = i // 10 return devs def crop_model(model, cam_v, cam_q, x_fov, y_fov): assert False, 'not implemented' def augment_model(model, multiplier=3, length_scales=(0, 0.1, 1), sds=(1e-5, 1.6e-4, 2.4e-4)): assert multiplier > 1 and multiplier % 1 == 0, 'multiplier must be integer and >1' from scipy.interpolate import LinearNDInterpolator try: from sklearn.gaussian_process.kernels import Matern, WhiteKernel except: print('Requires scikit-learn, install using "conda install scikit-learn"') sys.exit() points = np.array(model.vertices) max_rng = np.max(np.ptp(points, axis=0)) # white noise to ensure positive definite covariance matrix ls = dict(zip(length_scales, sds)) sd0 = ls.pop(0, 1e-5) kernel = WhiteKernel(noise_level=sd0 * max_rng) for l, s in ls.items(): kernel += s ** 2 * Matern(length_scale=l * max_rng, nu=1.5) assert False, 'not implemented' # TODO: how is the covariance mx constructed again? y_cov = kernel(points) # TODO: sample gp ??? how to tie existing points and generate the new points in between? aug_points, L = mv_normal(points, cov=y_cov) # TODO: how to interpolate faces? pass # interpolate texture # TODO: augment texture interp = LinearNDInterpolator(points, model.texcoords) aug_texcoords = interp(aug_points) data = model.as_dict() data['faces'] = aug_faces data['vertices'] = aug_points data['texcoords'] = aug_texcoords from visnav.iotools import objloader aug_model = objloader.ShapeModel(data=data) aug_model.recalc_norms() return aug_model, L def apply_noise(model, support=(None, None), L=(None, None), len_sc=SHAPE_MODEL_NOISE_LEN_SC, noise_lv=SHAPE_MODEL_NOISE_LV['lo'], only_z=False, tx_noise=0, tx_noise_len_sc=SHAPE_MODEL_NOISE_LEN_SC, tx_hf_noise=True): Sv, St = support Lv, Lt = L inplace = noise_lv == 0 and model.texfile is None if noise_lv > 0: noisy_points, avg_dev, Lv = points_with_noise(points=model.vertices, support=Sv, L=Lv, noise_lv=noise_lv, len_sc=len_sc, only_z=only_z) else: noisy_points, avg_dev, Lv = model.vertices, 0, None tex = model.tex if tx_noise > 0: if inplace: model.tex = np.ones(model.tex.shape) Lt = Lv if Lt is None and tx_noise == noise_lv and tx_noise_len_sc == len_sc else Lt tex, tx_avg_dev, Lt = texture_noise(model, support=St, L=Lt, noise_sd=tx_noise, len_sc=tx_noise_len_sc, hf_noise=tx_hf_noise) if inplace: model.tex = tex noisy_model = model else: data = model.as_dict() data['vertices'] = noisy_points if tx_noise > 0: data['tex'] = tex data['texfile'] = None from visnav.iotools import objloader noisy_model = objloader.ShapeModel(data=data) if noise_lv > 0: noisy_model.recalc_norms() else: noisy_model.normals = model.normals return noisy_model, avg_dev, (Lv, Lt) def texture_noise(model, support=None, L=None, noise_sd=SHAPE_MODEL_NOISE_LV['lo'], len_sc=SHAPE_MODEL_NOISE_LEN_SC, max_rng=None, max_n=1e4, hf_noise=True): tex = model.load_texture() if tex is None: print('tools.texture_noise: no texture loaded') return [None] * 3 r = np.sqrt(max_n / np.prod(tex.shape[:2])) ny, nx = (np.array(tex.shape[:2]) * r).astype(np.int) n = nx * ny tx_grid_xx, tx_grid_yy = np.meshgrid(np.linspace(0, 1, nx), np.linspace(0, 1, ny)) tx_grid = np.hstack((tx_grid_xx.reshape((-1, 1)), tx_grid_yy.reshape((-1, 1)))) support = support if support else model points = np.array(support.vertices) max_rng = np.max(np.ptp(points, axis=0)) if max_rng is None else max_rng # use vertices for distances, find corresponding vertex for each pixel y_cov = None if L is None: try: from sklearn.gaussian_process.kernels import Matern, WhiteKernel except: print('Requires scikit-learn, install using "conda install scikit-learn"') sys.exit() kernel = 1.0 * noise_sd * Matern(length_scale=len_sc * max_rng, nu=1.5) \ + 0.5 * noise_sd * Matern(length_scale=0.1 * len_sc * max_rng, nu=1.5) \ + WhiteKernel( noise_level=1e-5 * noise_sd * max_rng) # white noise for positive definite covariance matrix only # texture coordinates given so that x points left and *Y POINTS UP* tex_img_coords = np.array(support.texcoords) tex_img_coords[:, 1] = 1 - tex_img_coords[:, 1] _, idxs = find_nearest_each(haystack=tex_img_coords, needles=tx_grid) tx2vx = support.texture_to_vertex_map() y_cov = kernel(points[tx2vx[idxs], :] - np.mean(points, axis=0)) if 0: # for debugging distances import matplotlib.pyplot as plt import cv2 from visnav.algo.image import ImageProc orig_tx = cv2.imread(os.path.join(DATA_DIR, '67p+tex.png'), cv2.IMREAD_GRAYSCALE) gx, gy = np.gradient(points[tx2vx[idxs], :].reshape((ny, nx, 3)), axis=(1, 0)) gxy = np.linalg.norm(gx, axis=2) + np.linalg.norm(gy, axis=2) gxy = (gxy - np.min(gxy)) / (np.max(gxy) - np.min(gxy)) grad_img = cv2.resize((gxy * 255).astype('uint8'), orig_tx.shape) overlaid = ImageProc.merge((orig_tx, grad_img)) plt.figure(1) plt.imshow(overlaid) plt.show() # sample gp e0, L = mv_normal(np.zeros(n), cov=y_cov, L=L) e0 = e0.reshape((ny, nx)) # interpolate for final texture x = np.linspace(np.min(tx_grid_xx), np.max(tx_grid_xx), tex.shape[1]) y = np.linspace(np.min(tx_grid_yy), np.max(tx_grid_yy), tex.shape[0]) interp0 = RectBivariateSpline(tx_grid_xx[0, :], tx_grid_yy[:, 0], e0, kx=1, ky=1) err0 = interp0(x, y) if 0: import matplotlib.pyplot as plt import cv2 from visnav.algo.image import ImageProc orig_tx = cv2.imread(os.path.join(DATA_DIR, '67p+tex.png'), cv2.IMREAD_GRAYSCALE) err_ = err0 if 1 else e0 eimg = (err_ - np.min(err_)) / (np.max(err_) - np.min(err_)) eimg = cv2.resize((eimg * 255).astype('uint8'), orig_tx.shape) overlaid = ImageProc.merge((orig_tx, eimg)) plt.figure(1) plt.imshow(overlaid) plt.show() err1 = 0 if hf_noise: e1, L = mv_normal(np.zeros(n), L=L) e1 = e1.reshape((ny, nx)) interp1 = RectBivariateSpline(tx_grid_xx[0, :], tx_grid_yy[:, 0], e1, kx=1, ky=1) err_coef = interp1(x, y) lo, hi = np.min(err_coef), np.max(err_coef) err_coef = (err_coef - lo) / (hi - lo) len_sc = 10 err1 = generate_field_fft(tex.shape, (6 * noise_sd, 4 * noise_sd), (len_sc / 1000, len_sc / 4500)) if hf_noise else 0 err1 *= err_coef noisy_tex = tex + err0 + err1 noisy_tex /= np.max(noisy_tex) if 0: import matplotlib.pyplot as plt plt.figure(1) plt.imshow(noisy_tex) plt.figure(2) plt.imshow(err0) plt.figure(3) plt.imshow(err1) plt.show() return noisy_tex, np.std(err0 + err1), L class NearestKernelNDInterpolator(NearestNDInterpolator): def __init__(self, *args, k_nearest=None, kernel='gaussian', kernel_sc=None, kernel_eps=1e-12, query_eps=0.05, max_distance=None, **kwargs): """ Parameters ---------- kernel : one of the following functions of distance that give weight to neighbours: 'linear': (kernel_sc/(r + kernel_eps)) 'quadratic': (kernel_sc/(r + kernel_eps))**2 'cubic': (kernel_sc/(r + kernel_eps))**3 'gaussian': exp(-(r/kernel_sc)**2) k_nearest : if given, uses k_nearest neighbours for interpolation regardless of their distances """ choices = ('linear', 'quadratic', 'cubic', 'gaussian') assert kernel in choices, 'kernel must be one of %s' % (choices,) self._tree_options = kwargs.get('tree_options', {}) super(NearestKernelNDInterpolator, self).__init__(*args, **kwargs) if max_distance is None: if kernel_sc is None: d, _ = self.tree.query(self.points, k=k_nearest) kernel_sc = np.mean(d) * k_nearest / (k_nearest - 1) max_distance = kernel_sc * 3 assert kernel_sc is not None, 'kernel_sc need to be set' self.kernel = kernel self.kernel_sc = kernel_sc self.kernel_eps = kernel_eps self.k_nearest = k_nearest self.max_distance = max_distance self.query_eps = query_eps def _linear(self, r): if scipy.sparse.issparse(r): return self.kernel_sc / (r + self.kernel_eps) else: return self.kernel_sc / (r + self.kernel_eps) def _quadratic(self, r): if scipy.sparse.issparse(r): return np.power(self.kernel_sc / (r.data + self.kernel_eps), 2, out=r.data) else: return (self.kernel_sc / (r + self.kernel_eps)) ** 2 def _cubic(self, r): if scipy.sparse.issparse(r): return self.kernel_sc / (r + self.kernel_eps).power(3) else: return (self.kernel_sc / (r + self.kernel_eps)) ** 3 def _gaussian(self, r): if scipy.sparse.issparse(r): return np.exp((-r.data / self.kernel_sc) ** 2, out=r.data) else: return np.exp(-(r / self.kernel_sc) ** 2) def __call__(self, *args): """ Evaluate interpolator at given points. Parameters ---------- xi : ndarray of float, shape (..., ndim) Points where to interpolate data at. """ from scipy.interpolate.interpnd import _ndim_coords_from_arrays xi = _ndim_coords_from_arrays(args, ndim=self.points.shape[1]) xi = self._check_call_shape(xi) xi = self._scale_x(xi) r, idxs = self.tree.query(xi, self.k_nearest, eps=self.query_eps, distance_upper_bound=self.max_distance or np.inf) w = getattr(self, '_' + self.kernel)(r).reshape((-1, self.k_nearest, 1)) + self.kernel_eps w /= np.sum(w, axis=1).reshape((-1, 1, 1)) yt = np.vstack((self.values, [0])) # if idxs[i, j] == len(values), then i:th point doesnt have j:th match yi = np.sum(yt[idxs, :] * w, axis=1) return yi def points_with_noise(points, support=None, L=None, noise_lv=SHAPE_MODEL_NOISE_LV['lo'], len_sc=SHAPE_MODEL_NOISE_LEN_SC, max_rng=None, only_z=False): try: from sklearn.gaussian_process.kernels import Matern, WhiteKernel except: print('Requires scikit-learn, install using "conda install scikit-learn"') sys.exit() if support is None: support = points # [random.sample(list(range(len(points))), min(3000,len(points)))] n = len(support) mean = np.mean(points, axis=0) max_rng = np.max(np.ptp(points, axis=0)) if max_rng is None else max_rng y_cov = None if L is None: kernel = 0.6 * noise_lv * Matern(length_scale=len_sc * max_rng, nu=1.5) \ + 0.4 * noise_lv * Matern(length_scale=0.1 * len_sc * max_rng, nu=1.5) \ + WhiteKernel( noise_level=1e-5 * noise_lv * max_rng) # white noise for positive definite covariance matrix only y_cov = kernel(support - mean) # sample gp e0, L = mv_normal(np.zeros(n), cov=y_cov, L=L) err = np.exp(e0.astype(points.dtype)).reshape((-1, 1)) if len(err) == len(points): full_err = err if DEBUG: print('using orig gp sampled err') else: # interpolate sc = 0.05 * len_sc * max_rng interp = NearestKernelNDInterpolator(support - mean, err, k_nearest=12, kernel='gaussian', kernel_sc=sc, max_distance=sc * 6) full_err = interp(points - mean).astype(points.dtype) # maybe extrapolate nanidx = tuple(np.isnan(full_err).flat) if np.any(nanidx): assert False, 'shouldnt happen' # if DEBUG or not BATCH_MODE: # print('%sx nans'%np.sum(nanidx)) # naninterp = NearestNDInterpolator(support, err) # try: # full_err[nanidx,] = naninterp(points[nanidx, :]).astype(points.dtype) # except IndexError as e: # raise IndexError('%s,%s,%s'%(err.shape, full_err.shape, points.shape)) from e # extra high frequency noise # white_noise = 1 if True else np.exp(np.random.normal(scale=0.2*noise_lv*max_rng, size=(len(full_err),1))) if only_z: add_err_z = (max_rng / 2) * (full_err - 1) add_err = np.concatenate((np.zeros((len(full_err), 2)), add_err_z), axis=1) noisy_points = points + add_err devs = np.abs(noisy_points[:, 2] - points[:, 2]) / (max_rng / 2) assert np.isclose(devs.flatten(), np.abs(full_err - 1).flatten()).all(), 'something wrong' else: # noisy_points = (points-mean)*full_err*white_noise +mean # r = np.sqrt(np.sum((points - mean)**2, axis=-1)).reshape(-1, 1) # noisy_points = (points - mean) * (1 + np.log(full_err)/r) + mean noisy_points = (points - mean) * full_err + mean devs = np.sqrt(np.sum((noisy_points - points) ** 2, axis=-1) / np.sum((points - mean) ** 2, axis=-1)) if DEBUG or not BATCH_MODE: print('noise (lv=%.3f): %.3f, %.3f; avg=%.3f' % ( (noise_lv,) + tuple(np.percentile(devs, (68, 95))) + (np.mean(devs),))) if False: import matplotlib.pyplot as plt plt.figure(1, figsize=(8, 8)) # plt.plot(np.concatenate((points[:,0], err0[:,0], err[:,0], points[:,0]*err[:,0]))) plt.subplot(2, 2, 1) plt.plot(points[:, 0]) plt.title('original', fontsize=12) plt.subplot(2, 2, 2) plt.plot(err0[:, 0]) plt.title('norm-err', fontsize=12) plt.subplot(2, 2, 3) plt.plot(err[:, 0]) plt.title('exp-err', fontsize=12) plt.subplot(2, 2, 4) plt.plot(noisy_points[:, 0]) plt.title('noisy', fontsize=12) plt.tight_layout() plt.show() assert False, 'exiting' return noisy_points, np.mean(devs), L def foreground_idxs(array, max_val=None): iy, ix = np.where(array < max_val) idxs = np.concatenate(((iy,), (ix,)), axis=0).T return idxs def interp2(array, x, y, max_val=None, max_dist=30, idxs=None, discard_bg=False): assert y < array.shape[0] and x < array.shape[1], 'out of bounds %s: %s' % (array.shape, (y, x)) v = array[int(y):int(y) + 2, int(x):int(x) + 2] xf = x - int(x) yf = y - int(y) w = np.array(( ((1 - yf) * (1 - xf), (1 - yf) * xf), (yf * (1 - xf), yf * xf), )) # ignore background depths if max_val is not None: idx = v.reshape(1, -1) < max_val * 0.999 else: idx = ~np.isnan(v.reshape(1, -1)) w_sum = np.sum(w.reshape(1, -1)[idx]) if w_sum > 0: # ignore background values val = np.sum(w.reshape(1, -1)[idx] * v.reshape(1, -1)[idx]) / w_sum elif discard_bg: return float('nan') else: # no foreground values in 2x2 matrix, find nearest foreground value if idxs is None: idxs = foreground_idxs(array, max_val) fallback = len(idxs) == 0 if not fallback: dist = np.linalg.norm(idxs - np.array((y, x)), axis=1) i = np.argmin(dist) val = array[idxs[i, 0], idxs[i, 1]] # print('\n%s, %s, %s, %s, %s, %s, %s'%(v, x,y,dist[i],idxs[i,1],idxs[i,0],val)) fallback = dist[i] > max_dist if fallback: val = np.sum(w * v) / np.sum(w) return val def solve_rotation(src_q, dst_q): """ q*src_q*q.conj() == dst_q, solve for q """ # based on http://web.cs.iastate.edu/~cs577/handouts/quaternion.pdf # and https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation#Pairs_of_unit_quaternions_as_rotations_in_4D_space # NOTE: not certain if works.. M = np.zeros((4, 4)) for i in range(len(src_q)): si = src_q[i] Pi = np.array(( (si.w, -si.x, -si.y, -si.z), (si.x, si.w, si.z, -si.y), (si.y, -si.z, si.w, si.x), (si.z, si.y, -si.x, si.w), )) qi = dst_q[i] Qi = np.array(( (qi.w, -qi.x, -qi.y, -qi.z), (qi.x, qi.w, -qi.z, qi.y), (qi.y, qi.z, qi.w, -qi.x), (qi.z, -qi.y, qi.x, qi.w), )) M += Pi.T * Qi w, v = np.linalg.eig(M) i = np.argmax(w) res_q = np.quaternion(*v[:, i]) # alt = v.dot(w) # print('%s,%s'%(res_q, alt)) # res_q = np.quaternion(*alt).normalized() return res_q def solve_q_bf(src_q, dst_q): qs = [] d = [] for res_q in ( np.quaternion(0, 0, 0, 1).normalized(), np.quaternion(0, 0, 1, 0).normalized(), np.quaternion(0, 0, 1, 1).normalized(), np.quaternion(0, 0, -1, 1).normalized(), np.quaternion(0, 1, 0, 0).normalized(), np.quaternion(0, 1, 0, 1).normalized(), np.quaternion(0, 1, 0, -1).normalized(), np.quaternion(0, 1, 1, 0).normalized(), np.quaternion(0, 1, -1, 0).normalized(), np.quaternion(0, 1, 1, 1).normalized(), np.quaternion(0, 1, 1, -1).normalized(), np.quaternion(0, 1, -1, 1).normalized(), np.quaternion(0, 1, -1, -1).normalized(), np.quaternion(1, 0, 0, 1).normalized(), np.quaternion(1, 0, 0, -1).normalized(), np.quaternion(1, 0, 1, 0).normalized(), np.quaternion(1, 0, -1, 0).normalized(), np.quaternion(1, 0, 1, 1).normalized(), np.quaternion(1, 0, 1, -1).normalized(), np.quaternion(1, 0, -1, 1).normalized(), np.quaternion(1, 0, -1, -1).normalized(), np.quaternion(1, 1, 0, 0).normalized(), np.quaternion(1, -1, 0, 0).normalized(), np.quaternion(1, 1, 0, 1).normalized(), np.quaternion(1, 1, 0, -1).normalized(), np.quaternion(1, -1, 0, 1).normalized(), np.quaternion(1, -1, 0, -1).normalized(), np.quaternion(1, 1, 1, 0).normalized(), np.quaternion(1, 1, -1, 0).normalized(), np.quaternion(1, -1, 1, 0).normalized(), np.quaternion(1, -1, -1, 0).normalized(), np.quaternion(1, 1, 1, -1).normalized(), np.quaternion(1, 1, -1, 1).normalized(), np.quaternion(1, 1, -1, -1).normalized(), np.quaternion(1, -1, 1, 1).normalized(), np.quaternion(1, -1, 1, -1).normalized(), np.quaternion(1, -1, -1, 1).normalized(), np.quaternion(1, -1, -1, -1).normalized(), ): tq = res_q * src_q * res_q.conj() qs.append(res_q) # d.append(1-np.array((tq.w, tq.x, tq.y, tq.z)).dot(np.array((dst_q.w, dst_q.x, dst_q.y, dst_q.z)))**2) d.append(angle_between_q(tq, dst_q)) i = np.argmin(d) return qs[i] def hover_annotate(fig, ax, line, annotations): annot = ax.annotate("", xy=(0, 0), xytext=(-20, 20), textcoords="offset points", bbox=dict(boxstyle="round", fc="w"), arrowprops=dict(arrowstyle="->")) annot.set_visible(False) def update_annot(ind): idx = ind["ind"][0] try: # for regular plots x, y = line.get_data() annot.xy = (x[idx], y[idx]) except AttributeError: # for scatter plots annot.xy = tuple(line.get_offsets()[idx]) text = ", ".join([annotations[n] for n in ind["ind"]]) annot.set_text(text) annot.get_bbox_patch().set_alpha(0.4) def hover(event): vis = annot.get_visible() if event.inaxes == ax: cont, ind = line.contains(event) if cont: update_annot(ind) annot.set_visible(True) fig.canvas.draw_idle() else: if vis: annot.set_visible(False) fig.canvas.draw_idle() fig.canvas.mpl_connect("motion_notify_event", hover) def plot_vectors(pts3d, scatter=True, conseq=True, neg_z=True): import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() ax = Axes3D(fig) if scatter: ax.scatter(pts3d[:, 0], pts3d[:, 1], pts3d[:, 2]) else: if conseq: ax.set_prop_cycle('color', map(lambda c: '%f' % c, np.linspace(1, 0, len(pts3d)))) for i, v1 in enumerate(pts3d): if v1 is not None: ax.plot((0, v1[0]), (0, v1[1]), (0, v1[2])) ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') if neg_z: ax.view_init(90, -90) else: ax.view_init(-90, -90) plt.show() def numeric(s): try: float(s) except ValueError: return False return True def pseudo_huber_loss(a, delta): # from https://en.wikipedia.org/wiki/Huber_loss # first +1e-15 is to avoid divide by zero, second to avoid loss becoming zero if delta > 1e7 due to float precision return delta ** 2 * (np.sqrt(1 + a ** 2 / (delta ** 2 + 1e-15)) - 1 + 1e-15) def fixed_precision(val, precision, as_str=False): if val == 0: return ('%%.%df' % precision) % val if as_str else val d = math.ceil(math.log10(abs(val))) - precision c = 10 ** d fp_val = round(val / c) * c return ('%%.%df' % max(0, -d)) % fp_val if as_str else fp_val def plot_quats(quats, conseq=True, wait=True): import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() ax = Axes3D(fig) ax.set_xlim(-1, 1) ax.set_ylim(-1, 1) ax.set_zlim(-1, 1) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') if conseq: ax.set_prop_cycle('color', map(lambda c: '%f' % c, np.linspace(1, 0, len(quats)))) for i, q in enumerate(quats): if q is not None: lat, lon, _ = q_to_ypr(q) v1 = spherical2cartesian(lat, lon, 1) v2 = (v1 + normalize_v(np.cross(np.cross(v1, np.array([0, 0, 1])), v1)) * 0.1) * 0.85 v2 = q_times_v(q, v2) ax.plot((0, v1[0], v2[0]), (0, v1[1], v2[1]), (0, v1[2], v2[2])) while (wait and not plt.waitforbuttonpress()): pass def plot_poses(poses, conseq=True, wait=True, arrow_len=1): import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() ax = Axes3D(fig) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') if conseq: plt.hsv() # ax.set_prop_cycle('color', map(lambda c: '%f' % c, np.linspace(.7, 0, len(poses)))) for i, pose in enumerate(poses): if pose is not None: q = np.quaternion(*pose[3:]) lat, lon, _ = q_to_ypr(q) v1 = spherical2cartesian(lat, lon, 1) * arrow_len v2 = (v1 + normalize_v(np.cross(np.cross(v1, np.array([0, 0, 1])), v1)) * 0.1 * arrow_len) * 0.85 v2 = q_times_v(q, v2) ax.plot((pose[0], v1[0], v2[0]), (pose[1], v1[1], v2[1]), (pose[2], v1[2], v2[2])) while (wait and not plt.waitforbuttonpress()): pass # # Not sure if unitbase_to_q works, haven't deleted just in case still need: # # def unitbase_to_q(b_dst, b_src = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]): # # based on http://stackoverflow.com/questions/16648452/calculating-\ # # quaternion-for-transformation-between-2-3d-cartesian-coordinate-syst # # , which is based on http://dx.doi.org/10.1117/12.57955 # # M = np.zeros((3, 3)) # # for i, v in enumerate(b_src): # x = np.matrix(np.outer(v, b_dst[i])) # M = M + x # # N11 = M[0, 0] + M[1, 1] + M[2, 2] # N22 = M[0, 0] - M[1, 1] - M[2, 2] # N33 = -M[0, 0] + M[1, 1] - M[2, 2] # N44 = -M[0, 0] - M[1, 1] + M[2, 2] # N12 = M[1, 2] - M[2, 1] # N13 = M[2, 0] - M[0, 2] # N14 = M[0, 1] - M[1, 0] # N21 = N12 # N23 = M[0, 1] + M[1, 0] # N24 = M[2, 0] + M[0, 2] # N31 = N13 # N32 = N23 # N34 = M[1, 2] + M[2, 1] # N41 = N14 # N42 = N24 # N43 = N34 # # N=np.matrix([[N11, N12, N13, N14],\ # [N21, N22, N23, N24],\ # [N31, N32, N33, N34],\ # [N41, N42, N43, N44]]) # # values, vectors = np.linalg.eig(N) # quat = vectors[:, np.argmax(values)] # #quat = np.array(quat).reshape(-1,).tolist() # # return np.quaternion(*quat) import tracemalloc import os import linecache def display_top(top_stats, key_type='lineno', limit=10): # snapshot = snapshot.filter_traces(( # tracemalloc.Filter(False, "<frozen importlib._bootstrap>"), # tracemalloc.Filter(False, "<unknown>"), # )) # top_stats = snapshot.statistics(key_type, cumulative=True) print("Top %s lines" % limit) for index, stat in enumerate(top_stats[:limit], 1): frame = stat.traceback[0] # replace "/path/to/module/file.py" with "module/file.py" filename = os.sep.join(frame.filename.split(os.sep)[-2:]) print("#%s: %s:%s: %.1f MB (x%.0f)" % (index, filename, frame.lineno, stat.size / 1024 / 1024, stat.count)) line = linecache.getline(frame.filename, frame.lineno).strip() if line: print(' %s' % line) other = top_stats[limit:] if other: size = sum(stat.size for stat in other) print("%s other: %.1f MB" % (len(other), size / 1024 / 1024)) total = sum(stat.size for stat in top_stats) print("Total allocated size: %.1f MB" % (total / 1024 / 1024)) def show_progress(tot, i): digits = int(math.ceil(math.log10(tot + 1))) if i == 0: print('%s/%d' % ('0' * digits, tot), end='', flush=True) else: print(('%s%0' + str(digits) + 'd/%d') % ('\b' * (digits * 2 + 1), i + 1, tot), end='', flush=True) def smooth1d(xt, x, Y, weight_fun=lambda d: 0.9 ** abs(d)): if xt.ndim != 1 or x.ndim != 1: raise ValueError("smooth1d only accepts 1 dimension arrays for location") if x.shape[0] != Y.shape[0]: raise ValueError("different lenght x and Y") D = np.repeat(np.expand_dims(xt, 1), len(x), axis=1) - np.repeat(np.expand_dims(x, 0), len(xt), axis=0) weights = np.array(list(map(weight_fun, D.flatten()))).reshape(D.shape) Yt = np.sum(Y * weights, axis=1) / np.sum(weights, axis=1) return Yt
[((1674, 1706), 'quaternion.as_rotation_matrix', 'quaternion.as_rotation_matrix', (['q'], {}), '(q)\n', (1703, 1706), False, 'import quaternion\n'), ((2797, 2810), 'numpy.max', 'np.max', (['normD'], {}), '(normD)\n', (2803, 2810), True, 'import numpy as np\n'), ((3136, 3155), 'numpy.array', 'np.array', (['(x, y, z)'], {}), '((x, y, z))\n', (3144, 3155), True, 'import numpy as np\n'), ((3189, 3206), 'numpy.linalg.norm', 'np.linalg.norm', (['v'], {}), '(v)\n', (3203, 3206), True, 'import numpy as np\n'), ((3324, 3341), 'numpy.linalg.norm', 'np.linalg.norm', (['v'], {}), '(v)\n', (3338, 3341), True, 'import numpy as np\n'), ((3778, 3792), 'numpy.prod', 'np.prod', (['shape'], {}), '(shape)\n', (3785, 3792), True, 'import numpy as np\n'), ((7122, 7147), 'numpy.linalg.norm', 'np.linalg.norm', (['O'], {'axis': '(2)'}), '(O, axis=2)\n', (7136, 7147), True, 'import numpy as np\n'), ((7194, 7264), 'quaternion.as_quat_array', 'quaternion.as_quat_array', (['[[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1.0]]'], {}), '([[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1.0]])\n', (7218, 7264), False, 'import quaternion\n'), ((8193, 8212), 'math.cos', 'math.cos', (['(theta / 2)'], {}), '(theta / 2)\n', (8201, 8212), False, 'import math\n'), ((9268, 9296), 'quaternion.as_float_array', 'quaternion.as_float_array', (['q'], {}), '(q)\n', (9293, 9296), False, 'import quaternion\n'), ((9308, 9362), 'numpy.arctan2', 'np.arctan2', (['(q2 * q3 + q0 * q1)', '(0.5 - q1 ** 2 - q2 ** 2)'], {}), '(q2 * q3 + q0 * q1, 0.5 - q1 ** 2 - q2 ** 2)\n', (9318, 9362), True, 'import numpy as np\n'), ((9435, 9489), 'numpy.arctan2', 'np.arctan2', (['(q1 * q2 + q0 * q3)', '(0.5 - q2 ** 2 - q3 ** 2)'], {}), '(q1 * q2 + q0 * q3, 0.5 - q2 ** 2 - q3 ** 2)\n', (9445, 9489), True, 'import numpy as np\n'), ((10122, 10142), 'numpy.quaternion', 'np.quaternion', (['(0)', '*v'], {}), '(0, *v)\n', (10135, 10142), True, 'import numpy as np\n'), ((10182, 10213), 'numpy.array', 'np.array', (['[qv2.x, qv2.y, qv2.z]'], {}), '([qv2.x, qv2.y, qv2.z])\n', (10190, 10213), True, 'import numpy as np\n'), ((10288, 10319), 'quaternion.as_float_array', 'quaternion.as_float_array', (['qqmx'], {}), '(qqmx)\n', (10313, 10319), False, 'import quaternion\n'), ((10372, 10398), 'numpy.zeros', 'np.zeros', (['(mx.shape[0], 4)'], {}), '((mx.shape[0], 4))\n', (10380, 10398), True, 'import numpy as np\n'), ((10430, 10459), 'quaternion.as_quat_array', 'quaternion.as_quat_array', (['qmx'], {}), '(qmx)\n', (10454, 10459), False, 'import quaternion\n'), ((11619, 11641), 'numpy.cross', 'np.cross', (['sco_x', 'ast_v'], {}), '(sco_x, ast_v)\n', (11627, 11641), True, 'import numpy as np\n'), ((11880, 11903), 'numpy.where', 'np.where', (['(array < value)'], {}), '(array < value)\n', (11888, 11903), True, 'import numpy as np\n'), ((12030, 12053), 'numpy.where', 'np.where', (['(array > value)'], {}), '(array > value)\n', (12038, 12053), True, 'import numpy as np\n'), ((12624, 12639), 'numpy.where', 'np.where', (['(d < r)'], {}), '(d < r)\n', (12632, 12639), True, 'import numpy as np\n'), ((13126, 13166), 'numpy.linalg.norm', 'np.linalg.norm', (['diff_mx'], {'axis': '(2)', 'ord': 'ord'}), '(diff_mx, axis=2, ord=ord)\n', (13140, 13166), True, 'import numpy as np\n'), ((13277, 13312), 'math.sqrt', 'math.sqrt', (['(x ** 2 + y ** 2 + z ** 2)'], {}), '(x ** 2 + y ** 2 + z ** 2)\n', (13286, 13312), False, 'import math\n'), ((13325, 13341), 'math.acos', 'math.acos', (['(z / r)'], {}), '(z / r)\n', (13334, 13341), False, 'import math\n'), ((13352, 13368), 'math.atan2', 'math.atan2', (['y', 'x'], {}), '(y, x)\n', (13362, 13368), False, 'import math\n'), ((13424, 13447), 'numpy.array', 'np.array', (['[lat, lon, r]'], {}), '([lat, lon, r])\n', (13432, 13447), True, 'import numpy as np\n'), ((13659, 13678), 'numpy.array', 'np.array', (['[x, y, z]'], {}), '([x, y, z])\n', (13667, 13678), True, 'import numpy as np\n'), ((13855, 13866), 'numpy.cos', 'np.cos', (['phi'], {}), '(phi)\n', (13861, 13866), True, 'import numpy as np\n'), ((16754, 16803), 'numpy.percentile', 'np.percentile', (['arr', 'discard_percentile'], {'axis': 'axis'}), '(arr, discard_percentile, axis=axis)\n', (16767, 16803), True, 'import numpy as np\n'), ((16815, 16870), 'numpy.percentile', 'np.percentile', (['arr', '(100 - discard_percentile)'], {'axis': 'axis'}), '(arr, 100 - discard_percentile, axis=axis)\n', (16828, 16870), True, 'import numpy as np\n'), ((16879, 16916), 'numpy.logical_and', 'np.logical_and', (['(low < arr)', '(arr < high)'], {}), '(low < arr, arr < high)\n', (16893, 16916), True, 'import numpy as np\n'), ((17000, 17056), 'numpy.mean', 'np.mean', (['(arr[:, (I)] if axis == 1 else arr[I])'], {'axis': 'axis'}), '(arr[:, (I)] if axis == 1 else arr[I], axis=axis)\n', (17007, 17056), True, 'import numpy as np\n'), ((18829, 18880), 'numpy.array', 'np.array', (['[f[0] for f in model.faces]'], {'dtype': '"""uint"""'}), "([f[0] for f in model.faces], dtype='uint')\n", (18837, 18880), True, 'import numpy as np\n'), ((18896, 18920), 'numpy.array', 'np.array', (['model.vertices'], {}), '(model.vertices)\n', (18904, 18920), True, 'import numpy as np\n'), ((19496, 19514), 'numpy.dot', 'np.dot', (['v0v1', 'pvec'], {}), '(v0v1, pvec)\n', (19502, 19514), True, 'import numpy as np\n'), ((19060, 19091), 'numba.f8', 'nb.f8', (['nb.f8[:, :]', 'nb.f8[:, :]'], {}), '(nb.f8[:, :], nb.f8[:, :])\n', (19065, 19091), True, 'import numba as nb\n'), ((20613, 20641), 'numba.prange', 'nb.prange', (['(1)', 'faces.shape[0]'], {}), '(1, faces.shape[0])\n', (20622, 20641), True, 'import numba as nb\n'), ((20383, 20427), 'numba.f8', 'nb.f8', (['nb.u4[:, :]', 'nb.f8[:, :]', 'nb.f8[:, :]'], {}), '(nb.u4[:, :], nb.f8[:, :], nb.f8[:, :])\n', (20388, 20427), True, 'import numba as nb\n'), ((21267, 21292), 'numpy.empty', 'np.empty', (['points.shape[0]'], {}), '(points.shape[0])\n', (21275, 21292), True, 'import numpy as np\n'), ((21306, 21322), 'numba.prange', 'nb.prange', (['count'], {}), '(count)\n', (21315, 21322), True, 'import numba as nb\n'), ((22354, 22378), 'numpy.array', 'np.array', (['model.vertices'], {}), '(model.vertices)\n', (22362, 22378), True, 'import numpy as np\n'), ((22567, 22605), 'sklearn.gaussian_process.kernels.WhiteKernel', 'WhiteKernel', ([], {'noise_level': '(sd0 * max_rng)'}), '(noise_level=sd0 * max_rng)\n', (22578, 22605), False, 'from sklearn.gaussian_process.kernels import Matern, WhiteKernel\n'), ((23083, 23128), 'scipy.interpolate.LinearNDInterpolator', 'LinearNDInterpolator', (['points', 'model.texcoords'], {}), '(points, model.texcoords)\n', (23103, 23128), False, 'from scipy.interpolate import LinearNDInterpolator\n'), ((23355, 23386), 'visnav.iotools.objloader.ShapeModel', 'objloader.ShapeModel', ([], {'data': 'data'}), '(data=data)\n', (23375, 23386), False, 'from visnav.iotools import objloader\n'), ((25627, 25653), 'numpy.array', 'np.array', (['support.vertices'], {}), '(support.vertices)\n', (25635, 25653), True, 'import numpy as np\n'), ((27777, 27852), 'scipy.interpolate.RectBivariateSpline', 'RectBivariateSpline', (['tx_grid_xx[(0), :]', 'tx_grid_yy[:, (0)]', 'e0'], {'kx': '(1)', 'ky': '(1)'}), '(tx_grid_xx[(0), :], tx_grid_yy[:, (0)], e0, kx=1, ky=1)\n', (27796, 27852), False, 'from scipy.interpolate import RectBivariateSpline\n'), ((28966, 28983), 'numpy.max', 'np.max', (['noisy_tex'], {}), '(noisy_tex)\n', (28972, 28983), True, 'import numpy as np\n'), ((33036, 33059), 'numpy.mean', 'np.mean', (['points'], {'axis': '(0)'}), '(points, axis=0)\n', (33043, 33059), True, 'import numpy as np\n'), ((36490, 36515), 'numpy.where', 'np.where', (['(array < max_val)'], {}), '(array < max_val)\n', (36498, 36515), True, 'import numpy as np\n'), ((36870, 36944), 'numpy.array', 'np.array', (['(((1 - yf) * (1 - xf), (1 - yf) * xf), (yf * (1 - xf), yf * xf))'], {}), '((((1 - yf) * (1 - xf), (1 - yf) * xf), (yf * (1 - xf), yf * xf)))\n', (36878, 36944), True, 'import numpy as np\n'), ((38266, 38282), 'numpy.zeros', 'np.zeros', (['(4, 4)'], {}), '((4, 4))\n', (38274, 38282), True, 'import numpy as np\n'), ((38782, 38798), 'numpy.linalg.eig', 'np.linalg.eig', (['M'], {}), '(M)\n', (38795, 38798), True, 'import numpy as np\n'), ((38807, 38819), 'numpy.argmax', 'np.argmax', (['w'], {}), '(w)\n', (38816, 38819), True, 'import numpy as np\n'), ((38832, 38857), 'numpy.quaternion', 'np.quaternion', (['*v[:, (i)]'], {}), '(*v[:, (i)])\n', (38845, 38857), True, 'import numpy as np\n'), ((41307, 41319), 'numpy.argmin', 'np.argmin', (['d'], {}), '(d)\n', (41316, 41319), True, 'import numpy as np\n'), ((42663, 42675), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (42673, 42675), True, 'import matplotlib.pyplot as plt\n'), ((42685, 42696), 'mpl_toolkits.mplot3d.Axes3D', 'Axes3D', (['fig'], {}), '(fig)\n', (42691, 42696), False, 'from mpl_toolkits.mplot3d import Axes3D\n'), ((43185, 43195), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (43193, 43195), True, 'import matplotlib.pyplot as plt\n'), ((44027, 44039), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (44037, 44039), True, 'import matplotlib.pyplot as plt\n'), ((44049, 44060), 'mpl_toolkits.mplot3d.Axes3D', 'Axes3D', (['fig'], {}), '(fig)\n', (44055, 44060), False, 'from mpl_toolkits.mplot3d import Axes3D\n'), ((44880, 44892), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (44890, 44892), True, 'import matplotlib.pyplot as plt\n'), ((44902, 44913), 'mpl_toolkits.mplot3d.Axes3D', 'Axes3D', (['fig'], {}), '(fig)\n', (44908, 44913), False, 'from mpl_toolkits.mplot3d import Axes3D\n'), ((3976, 4005), 'numpy.random.normal', 'np.random.normal', (['(0)', '(1)', 'shape'], {}), '(0, 1, shape)\n', (3992, 4005), True, 'import numpy as np\n'), ((4450, 4480), 'numpy.array', 'np.array', (['x1'], {'dtype': 'np.float64'}), '(x1, dtype=np.float64)\n', (4458, 4480), True, 'import numpy as np\n'), ((4482, 4512), 'numpy.array', 'np.array', (['x2'], {'dtype': 'np.float64'}), '(x2, dtype=np.float64)\n', (4490, 4512), True, 'import numpy as np\n'), ((4514, 4544), 'numpy.array', 'np.array', (['x3'], {'dtype': 'np.float64'}), '(x3, dtype=np.float64)\n', (4522, 4544), True, 'import numpy as np\n'), ((4870, 4893), 'numpy.reshape', 'np.reshape', (['v1', '(1, -1)'], {}), '(v1, (1, -1))\n', (4880, 4893), True, 'import numpy as np\n'), ((4907, 4930), 'numpy.reshape', 'np.reshape', (['v2', '(-1, 1)'], {}), '(v2, (-1, 1))\n', (4917, 4930), True, 'import numpy as np\n'), ((5165, 5190), 'numpy.clip', 'np.clip', (['cos_angle', '(-1)', '(1)'], {}), '(cos_angle, -1, 1)\n', (5172, 5190), True, 'import numpy as np\n'), ((5826, 5853), 'numpy.einsum', 'np.einsum', (['"""ij,ij->i"""', 'A', 'B'], {}), "('ij,ij->i', A, B)\n", (5835, 5853), True, 'import numpy as np\n'), ((6221, 6251), 'numpy.clip', 'np.clip', (['cos_angles', '(-1.0)', '(1.0)'], {}), '(cos_angles, -1.0, 1.0)\n', (6228, 6251), True, 'import numpy as np\n'), ((6294, 6318), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(3)'}), '(size=3)\n', (6310, 6318), True, 'import numpy as np\n'), ((6346, 6367), 'numpy.hstack', 'np.hstack', (['(angle, r)'], {}), '((angle, r))\n', (6355, 6367), True, 'import numpy as np\n'), ((7302, 7331), 'quaternion.as_float_array', 'quaternion.as_float_array', (['Uq'], {}), '(Uq)\n', (7327, 7331), False, 'import quaternion\n'), ((7710, 7735), 'numpy.array', 'np.array', (['[q.x, q.y, q.z]'], {}), '([q.x, q.y, q.z])\n', (7718, 7735), True, 'import numpy as np\n'), ((8225, 8244), 'math.sin', 'math.sin', (['(theta / 2)'], {}), '(theta / 2)\n', (8233, 8244), False, 'import math\n'), ((8928, 8947), 'math.cos', 'math.cos', (['(angle / 2)'], {}), '(angle / 2)\n', (8936, 8947), False, 'import math\n'), ((8993, 9012), 'math.sin', 'math.sin', (['(angle / 2)'], {}), '(angle / 2)\n', (9001, 9012), False, 'import math\n'), ((9026, 9046), 'numpy.quaternion', 'np.quaternion', (['w', '*v'], {}), '(w, *v)\n', (9039, 9046), True, 'import numpy as np\n'), ((11383, 11429), 'numpy.array', 'np.array', (['[sc.x.value, sc.y.value, sc.z.value]'], {}), '([sc.x.value, sc.y.value, sc.z.value])\n', (11391, 11429), True, 'import numpy as np\n'), ((13562, 13575), 'math.cos', 'math.cos', (['phi'], {}), '(phi)\n', (13570, 13575), False, 'import math\n'), ((13606, 13619), 'math.sin', 'math.sin', (['phi'], {}), '(phi)\n', (13614, 13619), False, 'import math\n'), ((13632, 13647), 'math.cos', 'math.cos', (['theta'], {}), '(theta)\n', (13640, 13647), False, 'import math\n'), ((13808, 13821), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (13814, 13821), True, 'import numpy as np\n'), ((13834, 13845), 'numpy.sin', 'np.sin', (['phi'], {}), '(phi)\n', (13840, 13845), True, 'import numpy as np\n'), ((13963, 13976), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (13969, 13976), True, 'import numpy as np\n'), ((13988, 14008), 'numpy.vstack', 'np.vstack', (['[x, y, z]'], {}), '([x, y, z])\n', (13997, 14008), True, 'import numpy as np\n'), ((14520, 14540), 'numpy.array', 'np.array', (['(lat, lon)'], {}), '((lat, lon))\n', (14528, 14540), True, 'import numpy as np\n'), ((15234, 15255), 'numpy.array', 'np.array', (['(lat, roll)'], {}), '((lat, roll))\n', (15242, 15255), True, 'import numpy as np\n'), ((15533, 15545), 'math.sqrt', 'math.sqrt', (['(2)'], {}), '(2)\n', (15542, 15545), False, 'import math\n'), ((15973, 15985), 'math.sqrt', 'math.sqrt', (['(2)'], {}), '(2)\n', (15982, 15985), False, 'import math\n'), ((16303, 16359), 'numpy.linspace', 'np.linspace', (['(-math.pi)', 'math.pi'], {'num': 'Mphi', 'endpoint': '(False)'}), '(-math.pi, math.pi, num=Mphi, endpoint=False)\n', (16314, 16359), True, 'import numpy as np\n'), ((16536, 16549), 'numpy.isnan', 'np.isnan', (['arr'], {}), '(arr)\n', (16544, 16549), True, 'import numpy as np\n'), ((16588, 16625), 'numpy.all', 'np.all', (['J'], {'axis': '(1 if axis == 0 else 0)'}), '(J, axis=1 if axis == 0 else 0)\n', (16594, 16625), True, 'import numpy as np\n'), ((16954, 16991), 'numpy.all', 'np.all', (['I'], {'axis': '(1 if axis == 0 else 0)'}), '(I, axis=1 if axis == 0 else 0)\n', (16960, 16991), True, 'import numpy as np\n'), ((18526, 18549), 'numpy.linalg.cholesky', 'np.linalg.cholesky', (['cov'], {}), '(cov)\n', (18544, 18549), True, 'import numpy as np\n'), ((19361, 19377), 'numpy.sum', 'np.sum', (['(dir ** 2)'], {}), '(dir ** 2)\n', (19367, 19377), True, 'import numpy as np\n'), ((20567, 20590), 'numpy.ones', 'np.ones', (['faces.shape[0]'], {}), '(faces.shape[0])\n', (20574, 20590), True, 'import numpy as np\n'), ((20997, 21012), 'numpy.abs', 'np.abs', (['min_err'], {}), '(min_err)\n', (21003, 21012), True, 'import numpy as np\n'), ((21433, 21448), 'math.isinf', 'math.isinf', (['err'], {}), '(err)\n', (21443, 21448), False, 'import math\n'), ((22400, 22422), 'numpy.ptp', 'np.ptp', (['points'], {'axis': '(0)'}), '(points, axis=0)\n', (22406, 22422), True, 'import numpy as np\n'), ((24763, 24794), 'visnav.iotools.objloader.ShapeModel', 'objloader.ShapeModel', ([], {'data': 'data'}), '(data=data)\n', (24783, 24794), False, 'from visnav.iotools import objloader\n'), ((25439, 25460), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', 'nx'], {}), '(0, 1, nx)\n', (25450, 25460), True, 'import numpy as np\n'), ((25462, 25483), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', 'ny'], {}), '(0, 1, ny)\n', (25473, 25483), True, 'import numpy as np\n'), ((26476, 26503), 'numpy.array', 'np.array', (['support.texcoords'], {}), '(support.texcoords)\n', (26484, 26503), True, 'import numpy as np\n'), ((27519, 27530), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (27527, 27530), True, 'import numpy as np\n'), ((27635, 27653), 'numpy.min', 'np.min', (['tx_grid_xx'], {}), '(tx_grid_xx)\n', (27641, 27653), True, 'import numpy as np\n'), ((27655, 27673), 'numpy.max', 'np.max', (['tx_grid_xx'], {}), '(tx_grid_xx)\n', (27661, 27673), True, 'import numpy as np\n'), ((27709, 27727), 'numpy.min', 'np.min', (['tx_grid_yy'], {}), '(tx_grid_yy)\n', (27715, 27727), True, 'import numpy as np\n'), ((27729, 27747), 'numpy.max', 'np.max', (['tx_grid_yy'], {}), '(tx_grid_yy)\n', (27735, 27747), True, 'import numpy as np\n'), ((28274, 28306), 'visnav.algo.image.ImageProc.merge', 'ImageProc.merge', (['(orig_tx, eimg)'], {}), '((orig_tx, eimg))\n', (28289, 28306), False, 'from visnav.algo.image import ImageProc\n'), ((28315, 28328), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {}), '(1)\n', (28325, 28328), True, 'import matplotlib.pyplot as plt\n'), ((28337, 28357), 'matplotlib.pyplot.imshow', 'plt.imshow', (['overlaid'], {}), '(overlaid)\n', (28347, 28357), True, 'import matplotlib.pyplot as plt\n'), ((28366, 28376), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (28374, 28376), True, 'import matplotlib.pyplot as plt\n'), ((28504, 28579), 'scipy.interpolate.RectBivariateSpline', 'RectBivariateSpline', (['tx_grid_xx[(0), :]', 'tx_grid_yy[:, (0)]', 'e1'], {'kx': '(1)', 'ky': '(1)'}), '(tx_grid_xx[(0), :], tx_grid_yy[:, (0)], e1, kx=1, ky=1)\n', (28523, 28579), False, 'from scipy.interpolate import RectBivariateSpline\n'), ((29043, 29056), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {}), '(1)\n', (29053, 29056), True, 'import matplotlib.pyplot as plt\n'), ((29065, 29086), 'matplotlib.pyplot.imshow', 'plt.imshow', (['noisy_tex'], {}), '(noisy_tex)\n', (29075, 29086), True, 'import matplotlib.pyplot as plt\n'), ((29095, 29108), 'matplotlib.pyplot.figure', 'plt.figure', (['(2)'], {}), '(2)\n', (29105, 29108), True, 'import matplotlib.pyplot as plt\n'), ((29117, 29133), 'matplotlib.pyplot.imshow', 'plt.imshow', (['err0'], {}), '(err0)\n', (29127, 29133), True, 'import matplotlib.pyplot as plt\n'), ((29142, 29155), 'matplotlib.pyplot.figure', 'plt.figure', (['(3)'], {}), '(3)\n', (29152, 29155), True, 'import matplotlib.pyplot as plt\n'), ((29164, 29180), 'matplotlib.pyplot.imshow', 'plt.imshow', (['err1'], {}), '(err1)\n', (29174, 29180), True, 'import matplotlib.pyplot as plt\n'), ((29189, 29199), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (29197, 29199), True, 'import matplotlib.pyplot as plt\n'), ((29223, 29242), 'numpy.std', 'np.std', (['(err0 + err1)'], {}), '(err0 + err1)\n', (29229, 29242), True, 'import numpy as np\n'), ((30765, 30789), 'scipy.sparse.issparse', 'scipy.sparse.issparse', (['r'], {}), '(r)\n', (30786, 30789), False, 'import scipy\n'), ((30962, 30986), 'scipy.sparse.issparse', 'scipy.sparse.issparse', (['r'], {}), '(r)\n', (30983, 30986), False, 'import scipy\n'), ((31192, 31216), 'scipy.sparse.issparse', 'scipy.sparse.issparse', (['r'], {}), '(r)\n', (31213, 31216), False, 'import scipy\n'), ((31404, 31428), 'scipy.sparse.issparse', 'scipy.sparse.issparse', (['r'], {}), '(r)\n', (31425, 31428), False, 'import scipy\n'), ((31896, 31953), 'scipy.interpolate.interpnd._ndim_coords_from_arrays', '_ndim_coords_from_arrays', (['args'], {'ndim': 'self.points.shape[1]'}), '(args, ndim=self.points.shape[1])\n', (31920, 31953), False, 'from scipy.interpolate.interpnd import _ndim_coords_from_arrays\n'), ((32349, 32378), 'numpy.vstack', 'np.vstack', (['(self.values, [0])'], {}), '((self.values, [0]))\n', (32358, 32378), True, 'import numpy as np\n'), ((32464, 32497), 'numpy.sum', 'np.sum', (['(yt[(idxs), :] * w)'], {'axis': '(1)'}), '(yt[(idxs), :] * w, axis=1)\n', (32470, 32497), True, 'import numpy as np\n'), ((33566, 33577), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (33574, 33577), True, 'import numpy as np\n'), ((34173, 34187), 'numpy.any', 'np.any', (['nanidx'], {}), '(nanidx)\n', (34179, 34187), True, 'import numpy as np\n'), ((35776, 35805), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {'figsize': '(8, 8)'}), '(1, figsize=(8, 8))\n', (35786, 35805), True, 'import matplotlib.pyplot as plt\n'), ((35907, 35927), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(1)'], {}), '(2, 2, 1)\n', (35918, 35927), True, 'import matplotlib.pyplot as plt\n'), ((35936, 35960), 'matplotlib.pyplot.plot', 'plt.plot', (['points[:, (0)]'], {}), '(points[:, (0)])\n', (35944, 35960), True, 'import matplotlib.pyplot as plt\n'), ((35967, 36001), 'matplotlib.pyplot.title', 'plt.title', (['"""original"""'], {'fontsize': '(12)'}), "('original', fontsize=12)\n", (35976, 36001), True, 'import matplotlib.pyplot as plt\n'), ((36011, 36031), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(2)'], {}), '(2, 2, 2)\n', (36022, 36031), True, 'import matplotlib.pyplot as plt\n'), ((36040, 36062), 'matplotlib.pyplot.plot', 'plt.plot', (['err0[:, (0)]'], {}), '(err0[:, (0)])\n', (36048, 36062), True, 'import matplotlib.pyplot as plt\n'), ((36069, 36103), 'matplotlib.pyplot.title', 'plt.title', (['"""norm-err"""'], {'fontsize': '(12)'}), "('norm-err', fontsize=12)\n", (36078, 36103), True, 'import matplotlib.pyplot as plt\n'), ((36113, 36133), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(3)'], {}), '(2, 2, 3)\n', (36124, 36133), True, 'import matplotlib.pyplot as plt\n'), ((36142, 36163), 'matplotlib.pyplot.plot', 'plt.plot', (['err[:, (0)]'], {}), '(err[:, (0)])\n', (36150, 36163), True, 'import matplotlib.pyplot as plt\n'), ((36170, 36203), 'matplotlib.pyplot.title', 'plt.title', (['"""exp-err"""'], {'fontsize': '(12)'}), "('exp-err', fontsize=12)\n", (36179, 36203), True, 'import matplotlib.pyplot as plt\n'), ((36213, 36233), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(4)'], {}), '(2, 2, 4)\n', (36224, 36233), True, 'import matplotlib.pyplot as plt\n'), ((36242, 36272), 'matplotlib.pyplot.plot', 'plt.plot', (['noisy_points[:, (0)]'], {}), '(noisy_points[:, (0)])\n', (36250, 36272), True, 'import matplotlib.pyplot as plt\n'), ((36279, 36310), 'matplotlib.pyplot.title', 'plt.title', (['"""noisy"""'], {'fontsize': '(12)'}), "('noisy', fontsize=12)\n", (36288, 36310), True, 'import matplotlib.pyplot as plt\n'), ((36320, 36338), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (36336, 36338), True, 'import matplotlib.pyplot as plt\n'), ((36347, 36357), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (36355, 36357), True, 'import matplotlib.pyplot as plt\n'), ((36416, 36429), 'numpy.mean', 'np.mean', (['devs'], {}), '(devs)\n', (36423, 36429), True, 'import numpy as np\n'), ((36527, 36565), 'numpy.concatenate', 'np.concatenate', (['((iy,), (ix,))'], {'axis': '(0)'}), '(((iy,), (ix,)), axis=0)\n', (36541, 36565), True, 'import numpy as np\n'), ((38350, 38475), 'numpy.array', 'np.array', (['((si.w, -si.x, -si.y, -si.z), (si.x, si.w, si.z, -si.y), (si.y, -si.z, si.w,\n si.x), (si.z, si.y, -si.x, si.w))'], {}), '(((si.w, -si.x, -si.y, -si.z), (si.x, si.w, si.z, -si.y), (si.y, -\n si.z, si.w, si.x), (si.z, si.y, -si.x, si.w)))\n', (38358, 38475), True, 'import numpy as np\n'), ((38566, 38691), 'numpy.array', 'np.array', (['((qi.w, -qi.x, -qi.y, -qi.z), (qi.x, qi.w, -qi.z, qi.y), (qi.y, qi.z, qi.w,\n -qi.x), (qi.z, -qi.y, qi.x, qi.w))'], {}), '(((qi.w, -qi.x, -qi.y, -qi.z), (qi.x, qi.w, -qi.z, qi.y), (qi.y, qi\n .z, qi.w, -qi.x), (qi.z, -qi.y, qi.x, qi.w)))\n', (38574, 38691), True, 'import numpy as np\n'), ((45006, 45015), 'matplotlib.pyplot.hsv', 'plt.hsv', ([], {}), '()\n', (45013, 45015), True, 'import matplotlib.pyplot as plt\n'), ((48718, 48745), 'numpy.sum', 'np.sum', (['(Y * weights)'], {'axis': '(1)'}), '(Y * weights, axis=1)\n', (48724, 48745), True, 'import numpy as np\n'), ((48748, 48771), 'numpy.sum', 'np.sum', (['weights'], {'axis': '(1)'}), '(weights, axis=1)\n', (48754, 48771), True, 'import numpy as np\n'), ((1470, 1497), 'numpy.linalg.norm', 'np.linalg.norm', (['loc'], {'axis': '(1)'}), '(loc, axis=1)\n', (1484, 1497), True, 'import numpy as np\n'), ((1756, 1790), 'numpy.linalg.norm', 'np.linalg.norm', (['Ab[:, 1:3]'], {'axis': '(1)'}), '(Ab[:, 1:3], axis=1)\n', (1770, 1790), True, 'import numpy as np\n'), ((4008, 4024), 'numpy.complex', 'np.complex', (['(0)', '(1)'], {}), '(0, 1)\n', (4018, 4024), True, 'import numpy as np\n'), ((4027, 4056), 'numpy.random.normal', 'np.random.normal', (['(0)', '(1)', 'shape'], {}), '(0, 1, shape)\n', (4043, 4056), True, 'import numpy as np\n'), ((4090, 4121), 'numpy.fft.fftshift', 'np.fft.fftshift', (['(kernel * f_img)'], {}), '(kernel * f_img)\n', (4105, 4121), True, 'import numpy as np\n'), ((4950, 4968), 'numpy.linalg.norm', 'np.linalg.norm', (['v1'], {}), '(v1)\n', (4964, 4968), True, 'import numpy as np\n'), ((4987, 5005), 'numpy.linalg.norm', 'np.linalg.norm', (['v2'], {}), '(v2)\n', (5001, 5005), True, 'import numpy as np\n'), ((5893, 5920), 'numpy.einsum', 'np.einsum', (['"""ij,ij->i"""', 'A', 'A'], {}), "('ij,ij->i', A, A)\n", (5902, 5920), True, 'import numpy as np\n'), ((5938, 5965), 'numpy.einsum', 'np.einsum', (['"""ij,ij->i"""', 'B', 'B'], {}), "('ij,ij->i', B, B)\n", (5947, 5965), True, 'import numpy as np\n'), ((5992, 6008), 'numpy.sqrt', 'np.sqrt', (['(p2 * p3)'], {}), '(p2 * p3)\n', (5999, 6008), True, 'import numpy as np\n'), ((7451, 7511), 'astropy.coordinates.SkyCoord', 'SkyCoord', (['ra', 'dec'], {'unit': '"""deg"""', 'frame': '"""icrs"""', 'obstime': '"""J2000"""'}), "(ra, dec, unit='deg', frame='icrs', obstime='J2000')\n", (7459, 7511), False, 'from astropy.coordinates import SkyCoord\n'), ((7663, 7682), 'numpy.clip', 'np.clip', (['q.w', '(-1)', '(1)'], {}), '(q.w, -1, 1)\n', (7670, 7682), True, 'import numpy as np\n'), ((7961, 7977), 'numpy.array', 'np.array', (['rv[1:]'], {}), '(rv[1:])\n', (7969, 7977), True, 'import numpy as np\n'), ((8256, 8276), 'numpy.quaternion', 'np.quaternion', (['w', '*v'], {}), '(w, *v)\n', (8269, 8276), True, 'import numpy as np\n'), ((8645, 8663), 'math.cos', 'math.cos', (['(roll / 2)'], {}), '(roll / 2)\n', (8653, 8663), False, 'import math\n'), ((8665, 8683), 'math.sin', 'math.sin', (['(roll / 2)'], {}), '(roll / 2)\n', (8673, 8683), False, 'import math\n'), ((9383, 9423), 'numpy.clip', 'np.clip', (['(-2 * (q1 * q3 - q0 * q2))', '(-1)', '(1)'], {}), '(-2 * (q1 * q3 - q0 * q2), -1, 1)\n', (9390, 9423), True, 'import numpy as np\n'), ((11915, 11936), 'numpy.abs', 'np.abs', (['(array - value)'], {}), '(array - value)\n', (11921, 11936), True, 'import numpy as np\n'), ((12065, 12086), 'numpy.abs', 'np.abs', (['(array - value)'], {}), '(array - value)\n', (12071, 12086), True, 'import numpy as np\n'), ((12175, 12196), 'numpy.abs', 'np.abs', (['(array - value)'], {}), '(array - value)\n', (12181, 12196), True, 'import numpy as np\n'), ((13544, 13559), 'math.sin', 'math.sin', (['theta'], {}), '(theta)\n', (13552, 13559), False, 'import math\n'), ((13588, 13603), 'math.sin', 'math.sin', (['theta'], {}), '(theta)\n', (13596, 13603), False, 'import math\n'), ((15716, 15745), 'math.ceil', 'math.ceil', (['(2 * math.pi / step)'], {}), '(2 * math.pi / step)\n', (15725, 15745), False, 'import math\n'), ((17070, 17090), 'numpy.sum', 'np.sum', (['I'], {'axis': 'axis'}), '(I, axis=axis)\n', (17076, 17090), True, 'import numpy as np\n'), ((18604, 18632), 'numpy.random.standard_normal', 'standard_normal', (['final_shape'], {}), '(final_shape)\n', (18619, 18632), False, 'from numpy.random import standard_normal\n'), ((21395, 21420), 'numpy.array', 'np.array', (['((0, 0, 0), vx)'], {}), '(((0, 0, 0), vx))\n', (21403, 21420), True, 'import numpy as np\n'), ((22329, 22339), 'sys.exit', 'sys.exit', ([], {}), '()\n', (22337, 22339), False, 'import sys\n'), ((22662, 22702), 'sklearn.gaussian_process.kernels.Matern', 'Matern', ([], {'length_scale': '(l * max_rng)', 'nu': '(1.5)'}), '(length_scale=l * max_rng, nu=1.5)\n', (22668, 22702), False, 'from sklearn.gaussian_process.kernels import Matern, WhiteKernel\n'), ((24159, 24183), 'numpy.ones', 'np.ones', (['model.tex.shape'], {}), '(model.tex.shape)\n', (24166, 24183), True, 'import numpy as np\n'), ((25300, 25322), 'numpy.prod', 'np.prod', (['tex.shape[:2]'], {}), '(tex.shape[:2])\n', (25307, 25322), True, 'import numpy as np\n'), ((25675, 25697), 'numpy.ptp', 'np.ptp', (['points'], {'axis': '(0)'}), '(points, axis=0)\n', (25681, 25697), True, 'import numpy as np\n'), ((26250, 26301), 'sklearn.gaussian_process.kernels.WhiteKernel', 'WhiteKernel', ([], {'noise_level': '(1e-05 * noise_sd * max_rng)'}), '(noise_level=1e-05 * noise_sd * max_rng)\n', (26261, 26301), False, 'from sklearn.gaussian_process.kernels import Matern, WhiteKernel\n'), ((27360, 27396), 'visnav.algo.image.ImageProc.merge', 'ImageProc.merge', (['(orig_tx, grad_img)'], {}), '((orig_tx, grad_img))\n', (27375, 27396), False, 'from visnav.algo.image import ImageProc\n'), ((27410, 27423), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {}), '(1)\n', (27420, 27423), True, 'import matplotlib.pyplot as plt\n'), ((27436, 27456), 'matplotlib.pyplot.imshow', 'plt.imshow', (['overlaid'], {}), '(overlaid)\n', (27446, 27456), True, 'import matplotlib.pyplot as plt\n'), ((27469, 27479), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (27477, 27479), True, 'import matplotlib.pyplot as plt\n'), ((28021, 28058), 'os.path.join', 'os.path.join', (['DATA_DIR', '"""67p+tex.png"""'], {}), "(DATA_DIR, '67p+tex.png')\n", (28033, 28058), False, 'import os\n'), ((28434, 28445), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (28442, 28445), True, 'import numpy as np\n'), ((28626, 28642), 'numpy.min', 'np.min', (['err_coef'], {}), '(err_coef)\n', (28632, 28642), True, 'import numpy as np\n'), ((28644, 28660), 'numpy.max', 'np.max', (['err_coef'], {}), '(err_coef)\n', (28650, 28660), True, 'import numpy as np\n'), ((31007, 31075), 'numpy.power', 'np.power', (['(self.kernel_sc / (r.data + self.kernel_eps))', '(2)'], {'out': 'r.data'}), '(self.kernel_sc / (r.data + self.kernel_eps), 2, out=r.data)\n', (31015, 31075), True, 'import numpy as np\n'), ((31449, 31500), 'numpy.exp', 'np.exp', (['((-r.data / self.kernel_sc) ** 2)'], {'out': 'r.data'}), '((-r.data / self.kernel_sc) ** 2, out=r.data)\n', (31455, 31500), True, 'import numpy as np\n'), ((31534, 31568), 'numpy.exp', 'np.exp', (['(-(r / self.kernel_sc) ** 2)'], {}), '(-(r / self.kernel_sc) ** 2)\n', (31540, 31568), True, 'import numpy as np\n'), ((32874, 32884), 'sys.exit', 'sys.exit', ([], {}), '()\n', (32882, 32884), False, 'import sys\n'), ((33081, 33103), 'numpy.ptp', 'np.ptp', (['points'], {'axis': '(0)'}), '(points, axis=0)\n', (33087, 33103), True, 'import numpy as np\n'), ((33364, 33415), 'sklearn.gaussian_process.kernels.WhiteKernel', 'WhiteKernel', ([], {'noise_level': '(1e-05 * noise_lv * max_rng)'}), '(noise_level=1e-05 * noise_lv * max_rng)\n', (33375, 33415), False, 'from sklearn.gaussian_process.kernels import Matern, WhiteKernel\n'), ((34981, 35026), 'numpy.abs', 'np.abs', (['(noisy_points[:, (2)] - points[:, (2)])'], {}), '(noisy_points[:, (2)] - points[:, (2)])\n', (34987, 35026), True, 'import numpy as np\n'), ((44687, 44711), 'matplotlib.pyplot.waitforbuttonpress', 'plt.waitforbuttonpress', ([], {}), '()\n', (44709, 44711), True, 'import matplotlib.pyplot as plt\n'), ((45192, 45216), 'numpy.quaternion', 'np.quaternion', (['*pose[3:]'], {}), '(*pose[3:])\n', (45205, 45216), True, 'import numpy as np\n'), ((45581, 45605), 'matplotlib.pyplot.waitforbuttonpress', 'plt.waitforbuttonpress', ([], {}), '()\n', (45603, 45605), True, 'import matplotlib.pyplot as plt\n'), ((48039, 48058), 'math.log10', 'math.log10', (['(tot + 1)'], {}), '(tot + 1)\n', (48049, 48058), False, 'import math\n'), ((48543, 48564), 'numpy.expand_dims', 'np.expand_dims', (['xt', '(1)'], {}), '(xt, 1)\n', (48557, 48564), True, 'import numpy as np\n'), ((48594, 48614), 'numpy.expand_dims', 'np.expand_dims', (['x', '(0)'], {}), '(x, 0)\n', (48608, 48614), True, 'import numpy as np\n'), ((2390, 2405), 'numpy.sqrt', 'np.sqrt', (['normB2'], {}), '(normB2)\n', (2397, 2405), True, 'import numpy as np\n'), ((6653, 6679), 'numpy.linalg.norm', 'np.linalg.norm', (['qd'], {'axis': '(1)'}), '(qd, axis=1)\n', (6667, 6679), True, 'import numpy as np\n'), ((6729, 6750), 'numpy.arccos', 'np.arccos', (['qd[:, (0)]'], {}), '(qd[:, (0)])\n', (6738, 6750), True, 'import numpy as np\n'), ((8065, 8077), 'numpy.array', 'np.array', (['rv'], {}), '(rv)\n', (8073, 8077), True, 'import numpy as np\n'), ((8499, 8516), 'math.cos', 'math.cos', (['(lon / 2)'], {}), '(lon / 2)\n', (8507, 8516), False, 'import math\n'), ((8524, 8541), 'math.sin', 'math.sin', (['(lon / 2)'], {}), '(lon / 2)\n', (8532, 8541), False, 'import math\n'), ((8571, 8589), 'math.cos', 'math.cos', (['(-lat / 2)'], {}), '(-lat / 2)\n', (8579, 8589), False, 'import math\n'), ((8594, 8612), 'math.sin', 'math.sin', (['(-lat / 2)'], {}), '(-lat / 2)\n', (8602, 8612), False, 'import math\n'), ((10783, 10805), 'math.sin', 'math.sin', (['mean_anomaly'], {}), '(mean_anomaly)\n', (10791, 10805), False, 'import math\n'), ((11745, 11766), 'numpy.cross', 'np.cross', (['nvec', 'sco_z'], {}), '(nvec, sco_z)\n', (11753, 11766), True, 'import numpy as np\n'), ((15596, 15643), 'math.ceil', 'math.ceil', (['((lat_range[1] - lat_range[0]) / step)'], {}), '((lat_range[1] - lat_range[0]) / step)\n', (15605, 15643), False, 'import math\n'), ((16036, 16083), 'math.ceil', 'math.ceil', (['((lat_range[1] - lat_range[0]) / step)'], {}), '((lat_range[1] - lat_range[0]) / step)\n', (16045, 16083), False, 'import math\n'), ((21634, 21658), 'numpy.linalg.norm', 'np.linalg.norm', (['pts[idx]'], {}), '(pts[idx])\n', (21648, 21658), True, 'import numpy as np\n'), ((21661, 21679), 'numpy.linalg.norm', 'np.linalg.norm', (['vx'], {}), '(vx)\n', (21675, 21679), True, 'import numpy as np\n'), ((25338, 25361), 'numpy.array', 'np.array', (['tex.shape[:2]'], {}), '(tex.shape[:2])\n', (25346, 25361), True, 'import numpy as np\n'), ((26047, 26057), 'sys.exit', 'sys.exit', ([], {}), '()\n', (26055, 26057), False, 'import sys\n'), ((26734, 26757), 'numpy.mean', 'np.mean', (['points'], {'axis': '(0)'}), '(points, axis=0)\n', (26741, 26757), True, 'import numpy as np\n'), ((26965, 27002), 'os.path.join', 'os.path.join', (['DATA_DIR', '"""67p+tex.png"""'], {}), "(DATA_DIR, '67p+tex.png')\n", (26977, 27002), False, 'import os\n'), ((27135, 27161), 'numpy.linalg.norm', 'np.linalg.norm', (['gx'], {'axis': '(2)'}), '(gx, axis=2)\n', (27149, 27161), True, 'import numpy as np\n'), ((27164, 27190), 'numpy.linalg.norm', 'np.linalg.norm', (['gy'], {'axis': '(2)'}), '(gy, axis=2)\n', (27178, 27190), True, 'import numpy as np\n'), ((28138, 28150), 'numpy.min', 'np.min', (['err_'], {}), '(err_)\n', (28144, 28150), True, 'import numpy as np\n'), ((28155, 28167), 'numpy.max', 'np.max', (['err_'], {}), '(err_)\n', (28161, 28167), True, 'import numpy as np\n'), ((28170, 28182), 'numpy.min', 'np.min', (['err_'], {}), '(err_)\n', (28176, 28182), True, 'import numpy as np\n'), ((32297, 32314), 'numpy.sum', 'np.sum', (['w'], {'axis': '(1)'}), '(w, axis=1)\n', (32303, 32314), True, 'import numpy as np\n'), ((34137, 34155), 'numpy.isnan', 'np.isnan', (['full_err'], {}), '(full_err)\n', (34145, 34155), True, 'import numpy as np\n'), ((35443, 35488), 'numpy.sum', 'np.sum', (['((noisy_points - points) ** 2)'], {'axis': '(-1)'}), '((noisy_points - points) ** 2, axis=-1)\n', (35449, 35488), True, 'import numpy as np\n'), ((35491, 35528), 'numpy.sum', 'np.sum', (['((points - mean) ** 2)'], {'axis': '(-1)'}), '((points - mean) ** 2, axis=-1)\n', (35497, 35528), True, 'import numpy as np\n'), ((37657, 37672), 'numpy.argmin', 'np.argmin', (['dist'], {}), '(dist)\n', (37666, 37672), True, 'import numpy as np\n'), ((39070, 39095), 'numpy.quaternion', 'np.quaternion', (['(0)', '(0)', '(0)', '(1)'], {}), '(0, 0, 0, 1)\n', (39083, 39095), True, 'import numpy as np\n'), ((39122, 39147), 'numpy.quaternion', 'np.quaternion', (['(0)', '(0)', '(1)', '(0)'], {}), '(0, 0, 1, 0)\n', (39135, 39147), True, 'import numpy as np\n'), ((39174, 39199), 'numpy.quaternion', 'np.quaternion', (['(0)', '(0)', '(1)', '(1)'], {}), '(0, 0, 1, 1)\n', (39187, 39199), True, 'import numpy as np\n'), ((39226, 39252), 'numpy.quaternion', 'np.quaternion', (['(0)', '(0)', '(-1)', '(1)'], {}), '(0, 0, -1, 1)\n', (39239, 39252), True, 'import numpy as np\n'), ((39279, 39304), 'numpy.quaternion', 'np.quaternion', (['(0)', '(1)', '(0)', '(0)'], {}), '(0, 1, 0, 0)\n', (39292, 39304), True, 'import numpy as np\n'), ((39331, 39356), 'numpy.quaternion', 'np.quaternion', (['(0)', '(1)', '(0)', '(1)'], {}), '(0, 1, 0, 1)\n', (39344, 39356), True, 'import numpy as np\n'), ((39383, 39409), 'numpy.quaternion', 'np.quaternion', (['(0)', '(1)', '(0)', '(-1)'], {}), '(0, 1, 0, -1)\n', (39396, 39409), True, 'import numpy as np\n'), ((39436, 39461), 'numpy.quaternion', 'np.quaternion', (['(0)', '(1)', '(1)', '(0)'], {}), '(0, 1, 1, 0)\n', (39449, 39461), True, 'import numpy as np\n'), ((39488, 39514), 'numpy.quaternion', 'np.quaternion', (['(0)', '(1)', '(-1)', '(0)'], {}), '(0, 1, -1, 0)\n', (39501, 39514), True, 'import numpy as np\n'), ((39541, 39566), 'numpy.quaternion', 'np.quaternion', (['(0)', '(1)', '(1)', '(1)'], {}), '(0, 1, 1, 1)\n', (39554, 39566), True, 'import numpy as np\n'), ((39593, 39619), 'numpy.quaternion', 'np.quaternion', (['(0)', '(1)', '(1)', '(-1)'], {}), '(0, 1, 1, -1)\n', (39606, 39619), True, 'import numpy as np\n'), ((39646, 39672), 'numpy.quaternion', 'np.quaternion', (['(0)', '(1)', '(-1)', '(1)'], {}), '(0, 1, -1, 1)\n', (39659, 39672), True, 'import numpy as np\n'), ((39699, 39726), 'numpy.quaternion', 'np.quaternion', (['(0)', '(1)', '(-1)', '(-1)'], {}), '(0, 1, -1, -1)\n', (39712, 39726), True, 'import numpy as np\n'), ((39753, 39778), 'numpy.quaternion', 'np.quaternion', (['(1)', '(0)', '(0)', '(1)'], {}), '(1, 0, 0, 1)\n', (39766, 39778), True, 'import numpy as np\n'), ((39805, 39831), 'numpy.quaternion', 'np.quaternion', (['(1)', '(0)', '(0)', '(-1)'], {}), '(1, 0, 0, -1)\n', (39818, 39831), True, 'import numpy as np\n'), ((39858, 39883), 'numpy.quaternion', 'np.quaternion', (['(1)', '(0)', '(1)', '(0)'], {}), '(1, 0, 1, 0)\n', (39871, 39883), True, 'import numpy as np\n'), ((39910, 39936), 'numpy.quaternion', 'np.quaternion', (['(1)', '(0)', '(-1)', '(0)'], {}), '(1, 0, -1, 0)\n', (39923, 39936), True, 'import numpy as np\n'), ((39963, 39988), 'numpy.quaternion', 'np.quaternion', (['(1)', '(0)', '(1)', '(1)'], {}), '(1, 0, 1, 1)\n', (39976, 39988), True, 'import numpy as np\n'), ((40015, 40041), 'numpy.quaternion', 'np.quaternion', (['(1)', '(0)', '(1)', '(-1)'], {}), '(1, 0, 1, -1)\n', (40028, 40041), True, 'import numpy as np\n'), ((40068, 40094), 'numpy.quaternion', 'np.quaternion', (['(1)', '(0)', '(-1)', '(1)'], {}), '(1, 0, -1, 1)\n', (40081, 40094), True, 'import numpy as np\n'), ((40121, 40148), 'numpy.quaternion', 'np.quaternion', (['(1)', '(0)', '(-1)', '(-1)'], {}), '(1, 0, -1, -1)\n', (40134, 40148), True, 'import numpy as np\n'), ((40175, 40200), 'numpy.quaternion', 'np.quaternion', (['(1)', '(1)', '(0)', '(0)'], {}), '(1, 1, 0, 0)\n', (40188, 40200), True, 'import numpy as np\n'), ((40227, 40253), 'numpy.quaternion', 'np.quaternion', (['(1)', '(-1)', '(0)', '(0)'], {}), '(1, -1, 0, 0)\n', (40240, 40253), True, 'import numpy as np\n'), ((40280, 40305), 'numpy.quaternion', 'np.quaternion', (['(1)', '(1)', '(0)', '(1)'], {}), '(1, 1, 0, 1)\n', (40293, 40305), True, 'import numpy as np\n'), ((40332, 40358), 'numpy.quaternion', 'np.quaternion', (['(1)', '(1)', '(0)', '(-1)'], {}), '(1, 1, 0, -1)\n', (40345, 40358), True, 'import numpy as np\n'), ((40385, 40411), 'numpy.quaternion', 'np.quaternion', (['(1)', '(-1)', '(0)', '(1)'], {}), '(1, -1, 0, 1)\n', (40398, 40411), True, 'import numpy as np\n'), ((40438, 40465), 'numpy.quaternion', 'np.quaternion', (['(1)', '(-1)', '(0)', '(-1)'], {}), '(1, -1, 0, -1)\n', (40451, 40465), True, 'import numpy as np\n'), ((40492, 40517), 'numpy.quaternion', 'np.quaternion', (['(1)', '(1)', '(1)', '(0)'], {}), '(1, 1, 1, 0)\n', (40505, 40517), True, 'import numpy as np\n'), ((40544, 40570), 'numpy.quaternion', 'np.quaternion', (['(1)', '(1)', '(-1)', '(0)'], {}), '(1, 1, -1, 0)\n', (40557, 40570), True, 'import numpy as np\n'), ((40597, 40623), 'numpy.quaternion', 'np.quaternion', (['(1)', '(-1)', '(1)', '(0)'], {}), '(1, -1, 1, 0)\n', (40610, 40623), True, 'import numpy as np\n'), ((40650, 40677), 'numpy.quaternion', 'np.quaternion', (['(1)', '(-1)', '(-1)', '(0)'], {}), '(1, -1, -1, 0)\n', (40663, 40677), True, 'import numpy as np\n'), ((40704, 40730), 'numpy.quaternion', 'np.quaternion', (['(1)', '(1)', '(1)', '(-1)'], {}), '(1, 1, 1, -1)\n', (40717, 40730), True, 'import numpy as np\n'), ((40757, 40783), 'numpy.quaternion', 'np.quaternion', (['(1)', '(1)', '(-1)', '(1)'], {}), '(1, 1, -1, 1)\n', (40770, 40783), True, 'import numpy as np\n'), ((40810, 40837), 'numpy.quaternion', 'np.quaternion', (['(1)', '(1)', '(-1)', '(-1)'], {}), '(1, 1, -1, -1)\n', (40823, 40837), True, 'import numpy as np\n'), ((40864, 40890), 'numpy.quaternion', 'np.quaternion', (['(1)', '(-1)', '(1)', '(1)'], {}), '(1, -1, 1, 1)\n', (40877, 40890), True, 'import numpy as np\n'), ((40917, 40944), 'numpy.quaternion', 'np.quaternion', (['(1)', '(-1)', '(1)', '(-1)'], {}), '(1, -1, 1, -1)\n', (40930, 40944), True, 'import numpy as np\n'), ((40971, 40998), 'numpy.quaternion', 'np.quaternion', (['(1)', '(-1)', '(-1)', '(1)'], {}), '(1, -1, -1, 1)\n', (40984, 40998), True, 'import numpy as np\n'), ((41025, 41053), 'numpy.quaternion', 'np.quaternion', (['(1)', '(-1)', '(-1)', '(-1)'], {}), '(1, -1, -1, -1)\n', (41038, 41053), True, 'import numpy as np\n'), ((43532, 43574), 'numpy.sqrt', 'np.sqrt', (['(1 + a ** 2 / (delta ** 2 + 1e-15))'], {}), '(1 + a ** 2 / (delta ** 2 + 1e-15))\n', (43539, 43574), True, 'import numpy as np\n'), ((47596, 47643), 'linecache.getline', 'linecache.getline', (['frame.filename', 'frame.lineno'], {}), '(frame.filename, frame.lineno)\n', (47613, 47643), False, 'import linecache\n'), ((3855, 3891), 'visnav.algo.image.ImageProc.gkern2d', 'ImageProc.gkern2d', (['shape', '(1 / len_sc)'], {}), '(shape, 1 / len_sc)\n', (3872, 3891), False, 'from visnav.algo.image import ImageProc\n'), ((5253, 5278), 'numpy.linalg.norm', 'np.linalg.norm', (['B'], {'axis': '(1)'}), '(B, axis=1)\n', (5267, 5278), True, 'import numpy as np\n'), ((10975, 10986), 'math.sin', 'math.sin', (['E'], {}), '(E)\n', (10983, 10986), False, 'import math\n'), ((16261, 16274), 'math.cos', 'math.cos', (['lat'], {}), '(lat)\n', (16269, 16274), False, 'import math\n'), ((21576, 21599), 'numpy.linalg.norm', 'np.linalg.norm', (['(pt - vx)'], {}), '(pt - vx)\n', (21590, 21599), True, 'import numpy as np\n'), ((26093, 26138), 'sklearn.gaussian_process.kernels.Matern', 'Matern', ([], {'length_scale': '(len_sc * max_rng)', 'nu': '(1.5)'}), '(length_scale=len_sc * max_rng, nu=1.5)\n', (26099, 26138), False, 'from sklearn.gaussian_process.kernels import Matern, WhiteKernel\n'), ((26177, 26228), 'sklearn.gaussian_process.kernels.Matern', 'Matern', ([], {'length_scale': '(0.1 * len_sc * max_rng)', 'nu': '(1.5)'}), '(length_scale=0.1 * len_sc * max_rng, nu=1.5)\n', (26183, 26228), False, 'from sklearn.gaussian_process.kernels import Matern, WhiteKernel\n'), ((27216, 27227), 'numpy.min', 'np.min', (['gxy'], {}), '(gxy)\n', (27222, 27227), True, 'import numpy as np\n'), ((27232, 27243), 'numpy.max', 'np.max', (['gxy'], {}), '(gxy)\n', (27238, 27243), True, 'import numpy as np\n'), ((27246, 27257), 'numpy.min', 'np.min', (['gxy'], {}), '(gxy)\n', (27252, 27257), True, 'import numpy as np\n'), ((33207, 33252), 'sklearn.gaussian_process.kernels.Matern', 'Matern', ([], {'length_scale': '(len_sc * max_rng)', 'nu': '(1.5)'}), '(length_scale=len_sc * max_rng, nu=1.5)\n', (33213, 33252), False, 'from sklearn.gaussian_process.kernels import Matern, WhiteKernel\n'), ((33291, 33342), 'sklearn.gaussian_process.kernels.Matern', 'Matern', ([], {'length_scale': '(0.1 * len_sc * max_rng)', 'nu': '(1.5)'}), '(length_scale=0.1 * len_sc * max_rng, nu=1.5)\n', (33297, 33342), False, 'from sklearn.gaussian_process.kernels import Matern, WhiteKernel\n'), ((37896, 37909), 'numpy.sum', 'np.sum', (['(w * v)'], {}), '(w * v)\n', (37902, 37909), True, 'import numpy as np\n'), ((37912, 37921), 'numpy.sum', 'np.sum', (['w'], {}), '(w)\n', (37918, 37921), True, 'import numpy as np\n'), ((6061, 6086), 'numpy.linalg.norm', 'np.linalg.norm', (['A'], {'axis': '(1)'}), '(A, axis=1)\n', (6075, 6086), True, 'import numpy as np\n'), ((6124, 6149), 'numpy.linalg.norm', 'np.linalg.norm', (['B'], {'axis': '(1)'}), '(B, axis=1)\n', (6138, 6149), True, 'import numpy as np\n'), ((10931, 10942), 'math.cos', 'math.cos', (['E'], {}), '(E)\n', (10939, 10942), False, 'import math\n'), ((11149, 11271), 'astropy.coordinates.SkyCoord', 'SkyCoord', ([], {'x': 'ast_v[0]', 'y': 'ast_v[1]', 'z': 'ast_v[2]', 'frame': '"""icrs"""', 'unit': '"""m"""', 'representation_type': '"""cartesian"""', 'obstime': '"""J2000"""'}), "(x=ast_v[0], y=ast_v[1], z=ast_v[2], frame='icrs', unit='m',\n representation_type='cartesian', obstime='J2000')\n", (11157, 11271), False, 'from astropy.coordinates import SkyCoord\n'), ((30367, 30377), 'numpy.mean', 'np.mean', (['d'], {}), '(d)\n', (30374, 30377), True, 'import numpy as np\n'), ((35695, 35708), 'numpy.mean', 'np.mean', (['devs'], {}), '(devs)\n', (35702, 35708), True, 'import numpy as np\n'), ((37615, 37631), 'numpy.array', 'np.array', (['(y, x)'], {}), '((y, x))\n', (37623, 37631), True, 'import numpy as np\n'), ((35081, 35101), 'numpy.abs', 'np.abs', (['(full_err - 1)'], {}), '(full_err - 1)\n', (35087, 35101), True, 'import numpy as np\n'), ((35661, 35690), 'numpy.percentile', 'np.percentile', (['devs', '(68, 95)'], {}), '(devs, (68, 95))\n', (35674, 35690), True, 'import numpy as np\n'), ((44510, 44529), 'numpy.array', 'np.array', (['[0, 0, 1]'], {}), '([0, 0, 1])\n', (44518, 44529), True, 'import numpy as np\n'), ((45374, 45393), 'numpy.array', 'np.array', (['[0, 0, 1]'], {}), '([0, 0, 1])\n', (45382, 45393), True, 'import numpy as np\n')]
Tarekbouamer/Image-Retrieval-for-Image-Based-Localization
cirtorch/filters/sobel.py
fcad9af4f558bebb3cbec1d08e49603a452f439d
import torch import torch.nn as nn import torch.nn.functional as F from .kernels import ( get_spatial_gradient_kernel2d, get_spatial_gradient_kernel3d, normalize_kernel2d ) def spatial_gradient(input, mode='sobel', order=1, normalized=True): """ Computes the first order image derivative in both x and y using a Sobel operator. """ if not len(input.shape) == 4: raise ValueError("Invalid input shape, we expect BxCxHxW. Got: {}" .format(input.shape)) # allocate kernel kernel = get_spatial_gradient_kernel2d(mode, order) if normalized: kernel = normalize_kernel2d(kernel) # prepare kernel b, c, h, w = input.shape tmp_kernel = kernel.to(input).detach() tmp_kernel = tmp_kernel.unsqueeze(1).unsqueeze(1) # convolve input tensor with sobel kernel kernel_flip = tmp_kernel.flip(-3) # Pad with "replicate for spatial dims, but with zeros for channel spatial_pad = [ kernel.size(1) // 2, kernel.size(1) // 2, kernel.size(2) // 2, kernel.size(2) // 2 ] out_channels = 3 if order == 2 else 2 padded_inp = F.pad(input.reshape(b * c, 1, h, w), spatial_pad, 'replicate')[:, :, None] return F.conv3d(padded_inp, kernel_flip, padding=0).view(b, c, out_channels, h, w) def spatial_gradient3d(input, mode='diff', order=1): """ Computes the first and second order volume derivative in x, y and d using a diff operator. """ if not len(input.shape) == 5: raise ValueError("Invalid input shape, we expect BxCxDxHxW. Got: {}" .format(input.shape)) # allocate kernel kernel = get_spatial_gradient_kernel3d(mode, order) # prepare kernel b, c, d, h, w = input.shape tmp_kernel = kernel.to(input).detach() tmp_kernel = tmp_kernel.repeat(c, 1, 1, 1, 1) # convolve input tensor with grad kernel kernel_flip = tmp_kernel.flip(-3) # Pad with "replicate for spatial dims, but with zeros for channel spatial_pad = [ kernel.size(2) // 2, kernel.size(2) // 2, kernel.size(3) // 2, kernel.size(3) // 2, kernel.size(4) // 2, kernel.size(4) // 2 ] out_ch = 6 if order == 2 else 3 return F.conv3d(F.pad( input, spatial_pad, 'replicate'), kernel_flip, padding=0, groups=c).view(b, c, out_ch, d, h, w) def sobel(input, normalized=True, eps=1e-6): """ Computes the Sobel operator and returns the magnitude per channel. """ if not len(input.shape) == 4: raise ValueError("Invalid input shape, we expect BxCxHxW. Got: {}" .format(input.shape)) # comput the x/y gradients edges = spatial_gradient(input, normalized=normalized) # unpack the edges gx = edges[:, :, 0] gy = edges[:, :, 1] # compute gradient maginitude magnitude = torch.sqrt(gx * gx + gy * gy + eps) return magnitude class SpatialGradient(nn.Module): """ Computes the first order image derivative in both x and y using a Sobel operator. """ def __init__(self, mode='sobel', order=1, normalized=True): super(SpatialGradient, self).__init__() self.normalized = normalized self.order = order self.mode = mode def forward(self, input): return spatial_gradient(input, self.mode, self.order, self.normalized) class SpatialGradient3d(nn.Module): """ Computes the first and second order volume derivative in x, y and d using a diff operator. """ def __init__(self, mode='diff', order=1): super(SpatialGradient3d, self).__init__() self.order = order self.mode = mode self.kernel = get_spatial_gradient_kernel3d(mode, order) def forward(self, input): return spatial_gradient3d(input, self.mode, self.order) class Sobel(nn.Module): """ Computes the Sobel operator and returns the magnitude per channel. """ def __init__(self, normalized=True, eps=1e-6): super(Sobel, self).__init__() self.normalized = normalized self.eps = eps def forward(self, input): return sobel(input, self.normalized, self.eps)
[((2916, 2951), 'torch.sqrt', 'torch.sqrt', (['(gx * gx + gy * gy + eps)'], {}), '(gx * gx + gy * gy + eps)\n', (2926, 2951), False, 'import torch\n'), ((1255, 1299), 'torch.nn.functional.conv3d', 'F.conv3d', (['padded_inp', 'kernel_flip'], {'padding': '(0)'}), '(padded_inp, kernel_flip, padding=0)\n', (1263, 1299), True, 'import torch.nn.functional as F\n'), ((2296, 2334), 'torch.nn.functional.pad', 'F.pad', (['input', 'spatial_pad', '"""replicate"""'], {}), "(input, spatial_pad, 'replicate')\n", (2301, 2334), True, 'import torch.nn.functional as F\n')]
xu6148152/Binea_Python_Project
PythonCookbook/concurrent_test/findrobots.py
d943eb5f4685d08f080b372dcf1a7cbd5d63efed
# -*- encoding: utf-8 -*- import gzip import io import glob from concurrent import futures def find_robots(filename): ''' Find all of the hosts that access robots.txt in a single log file ''' robots = set() with gzip.open(filename) as f: for line in io.TextIOWrapper(f, encoding='ascii'): fields = line.split() if fields[6] == '/robots.txt': robots.add(fields[0]) return robots def find_all_robots(logdir): ''' Find all hosts across and entire sequence of files ''' files = glob.glob(logdir + '/*.log.gz') all_robots = set() with futures.ProcessPoolExecutor() as pool: for robots in pool.map(find_robots, files): all_robots.update(robots) return all_robots if __name__ == '__main__': robots = find_all_robots('logs') for ipaddr in robots: print(ipaddr)
[((567, 598), 'glob.glob', 'glob.glob', (["(logdir + '/*.log.gz')"], {}), "(logdir + '/*.log.gz')\n", (576, 598), False, 'import glob\n'), ((235, 254), 'gzip.open', 'gzip.open', (['filename'], {}), '(filename)\n', (244, 254), False, 'import gzip\n'), ((281, 318), 'io.TextIOWrapper', 'io.TextIOWrapper', (['f'], {'encoding': '"""ascii"""'}), "(f, encoding='ascii')\n", (297, 318), False, 'import io\n'), ((631, 660), 'concurrent.futures.ProcessPoolExecutor', 'futures.ProcessPoolExecutor', ([], {}), '()\n', (658, 660), False, 'from concurrent import futures\n')]
sreynit02/RunestoneServer
docker/setup.py
2d72fd1c26264a8d7d88e2bccfe9bfbb4d8b9a98
# ****************************************************************** # |docname| - Provide `docker_tools.py` as the script `docker-tools` # ****************************************************************** from setuptools import setup setup( name="runestone-docker-tools", version="0.1", install_requires=["click"], entry_points={ "console_scripts": ["docker-tools = docker_tools:cli"] }, )
[((237, 397), 'setuptools.setup', 'setup', ([], {'name': '"""runestone-docker-tools"""', 'version': '"""0.1"""', 'install_requires': "['click']", 'entry_points': "{'console_scripts': ['docker-tools = docker_tools:cli']}"}), "(name='runestone-docker-tools', version='0.1', install_requires=[\n 'click'], entry_points={'console_scripts': [\n 'docker-tools = docker_tools:cli']})\n", (242, 397), False, 'from setuptools import setup\n')]
AbhinavSingh-21f1002369/AFKZenCoders
PS12/api2.py
344475e7d5d60c09637b0bec28c5dab1befe2b65
from flask import Flask, render_template, request, jsonify,send_file, redirect,session, url_for from werkzeug import secure_filename import os import utilities, queries import logger from flask_cors import CORS, cross_origin from datetime import timedelta app = Flask(__name__) CORS(app) cors = CORS(app, resources={r"/*": {"origins": "*"}}) UPLOAD_FOLDER = '/home/pi/Desktop/AFKZenCoders/PS12/uploads/' app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER app.config['CORS_HEADERS'] = 'Content-Type' app.secret_key = "AFKZenCodersAAS" app.permanent_session_lifetime = timedelta(minutes=60) @app.route('/') def hello(): if "username" in session: logger.logit("Rendered upload.html - test wali") return render_template('upload.html') else: logger.logit("Session does not exist") logger.logit("Rendered root '/'") return render_template('index.html') @app.route('/restart') def restart(): logger.logit(f"---GOOGLE RESTART---") os.system("sudo reboot -h now") @app.route('/userauth', methods = ['POST','GET']) def userauth(): username = request.form.get('username') password = request.form.get('password') if username=="root" and password=="toor": logger.logit(f"Success LOGIN Request Username:{username} Password:{password}") session["username"] = username session.permanent = True return redirect(url_for("page_upload")) else: logger.logit(f"Failure LOGIN Request Username:{username} Password:{password}") return redirect("http://www.themedallionschool.com/abhinav/PS12/incorrect.html", code=302) @app.route('/page_upload') def page_upload(): if "username" in session: logger.logit("Rendered upload.html") return render_template('upload.html') else: logger.logit("Session does not exist") return redirect("/") @app.route('/page_cdr') def page_cdr(): if "username" in session: logger.logit("Rendered cdr.html") return render_template('cdr.html') else: logger.logit("Session does not exist") return redirect("/") @app.route('/page_fir') def page_fir(): if "username" in session: logger.logit("Rendered fir.html") return render_template('fir.html') else: logger.logit("Session does not exist") return redirect("/") @app.route('/logout') def logout(): if "username" in session: session.pop("username", None) logger.logit("Successfull logout") return redirect("/") else: logger.logit("Session does not exist") return redirect("/") @app.route('/upload') def upload_file(): logger.logit("Rendered upload.html - test wali") return render_template('upload.html') @app.route('/uploader',methods=['GET','POST']) def uploader(): uploaded_files = request.files.getlist("file") #number = request.args.get('number') #number = "7982345234" #print(uploaded_files) logger.logit(f"/° Multiple Files Upload Start") for file in uploaded_files: filename = secure_filename(file.filename) if filename=="917982345234.csv": path = os.path.join(app.config['UPLOAD_FOLDER'],filename) file.save(path) number = filename[2:11] logger.logit(f"| CDRData Saved {number}") utilities.addCDRData(path,number) elif filename=="918367448476.csv": path = os.path.join(app.config['UPLOAD_FOLDER'],filename) file.save(path) number = filename[2:11] logger.logit(f"| CDRData Saved {number}") utilities.addCDRData(path,number) elif filename=="916100080762.csv": path = os.path.join(app.config['UPLOAD_FOLDER'],filename) file.save(path) number = filename[2:11] logger.logit(f"| CDRData Saved {number}") utilities.addCDRData(path,number) elif filename=="CGI_Dataset.csv": path = os.path.join(app.config['UPLOAD_FOLDER'],filename) file.save(path) logger.logit("| CGIData Saved") utilities.addCGIData(path) elif filename=="Bank_Details.csv": path = os.path.join(app.config['UPLOAD_FOLDER'],filename) file.save(path) logger.logit("| Bank_Details Saved") utilities.addBankData(path) elif filename=="FIR_Dataset.csv": path = os.path.join(app.config['UPLOAD_FOLDER'],filename) file.save(path) logger.logit("| FIR_Dataset Saved") utilities.addFIRData(path) elif filename=="Thana.csv": path = os.path.join(app.config['UPLOAD_FOLDER'],filename) file.save(path) logger.logit("| Thana Saved") utilities.addThanaData(path) elif filename=="Thana_list_UP.csv": path = os.path.join(app.config['UPLOAD_FOLDER'],filename) # print(path,file,filename) # /home/pi/Desktop/AFKZenCoders/PS12/uploads/Thana_list_UP.csv <FileStorage: 'Thana_list_UP.csv' ('application/vnd.ms-excel')> Thana_list_UP.csv file.save(path) logger.logit("| Thana_list_UP Saved") utilities.addthanaListData(path) else: logger.logit(f"File Upload error - {filename}") logger.logit(f"\. Multiple Files Uploaded - {len(uploaded_files)}") return render_template('cdr.html') @app.route('/uploader/cdr', methods = ['GET', 'POST']) def upload_cdr_fxn(): if request.method == 'POST': # Getting the File file = request.files['file'] number = request.files['number'] filename = secure_filename(file.filename) # Path for file path_of_csv = os.path.join(app.config['UPLOAD_FOLDER'], filename) # Saving File file.save(path_of_csv) logger.logit("CDRData Saved") print("CDR File Saved successfully") # Loading File To Database utilities.addCDRData(path_of_csv,number) return "CDR File Saved and Loaded to Database Successfully" @app.route('/uploader/thana', methods = ['GET', 'POST']) def upload_thana_fxn(): if request.method == 'POST': # Getting the File file = request.files['file'] filename = secure_filename(file.filename) # Path for file path_of_csv = os.path.join(app.config['UPLOAD_FOLDER'], filename) # Saving File file.save(path_of_csv) logger.logit("ThanaData Saved") print("Thana File Saved successfully") # Loading File To Database utilities.addThanaData(path_of_csv) return "Thana File Saved and Loaded to Database Successfully" @app.route('/uploader/bankacc', methods = ['GET', 'POST']) def upload_bankacc_fxn(): if request.method == 'POST': # Getting the File file = request.files['file'] filename = secure_filename(file.filename) # Path for file path_of_csv = os.path.join(app.config['UPLOAD_FOLDER'], filename) # Saving File file.save(path_of_csv) print("BankAcc File Saved successfully") logger.logit("BankData Saved") # Loading File To Database utilities.addBankData(path_of_csv) return "BankAcc File Saved and Loaded to Database Successfully" @app.route('/uploader/cgi', methods = ['GET', 'POST']) def upload_cgi_fxn(): if request.method == 'POST': # Getting the File file = request.files['file'] filename = secure_filename(file.filename) # Path for file path_of_csv = os.path.join(app.config['UPLOAD_FOLDER'], filename) # Saving File file.save(path_of_csv) print("CGI File Saved successfully") logger.logit("CGIData Saved") # Loading File To Database utilities.addCGIData(path_of_csv) return "CGI File Saved and Loaded to Database Successfully" @app.route('/uploader/fir', methods = ['GET', 'POST']) def upload_fir_fxn(): if request.method == 'POST': # Getting the File file = request.files['file'] filename = secure_filename(file.filename) # Path for file path_of_csv = os.path.join(app.config['UPLOAD_FOLDER'], filename) # Saving File file.save(path_of_csv) print("FIR File Saved successfully") logger.logit("FIRData Saved") # Loading File To Database utilities.addFIRData(path_of_csv) return "FIR File Saved and Loaded to Database Successfully" @app.route('/uploader/thanalist', methods = ['GET', 'POST']) def upload_thanalist_fxn(): if request.method == 'POST': # Getting the File file = request.files['file'] filename = secure_filename(file.filename) # Path for file path_of_csv = os.path.join(app.config['UPLOAD_FOLDER'], filename) # Saving File file.save(path_of_csv) print("Thana List File Saved successfully") logger.logit("ThanaListDATA Saved") # Loading File To Database utilities.addthanaListData(path_of_csv) return "Thana File Saved and Loaded to Database Successfully" # ############################### Queries ################################## @app.route('/query/1/', methods = ['GET']) def query_1(): headers = ["Calling Number","Called Number","Start Time","Duration(sec)","Call Type"] query = "SELECT calling_number, called_number, start_time, duration, cell_type FROM CallData ORDER BY duration DESC" result = queries.runQuery(query) if len(result) != 0: response = {'headers':headers,'rows':result} else: response = {'headers':["No Data Available"],'rows':[]} logger.logit(">>> Query 1 Call") return jsonify(response) @app.route('/query/2/', methods = ['GET']) def query_2(): # Parsing the Headers since = str(request.args.get('since')) + " 00:00:00" till = str(request.args.get('till')) + " 23:59:59" headers = ["Calling Number","Called Number","Start Time","End Time","Duration(sec)","Start Tower","End Tower","Call Type","IMEI","IMSI","SMSC","Service Provider"] query = f'SELECT * FROM CallData WHERE start_time < "{till}" AND start_time > "{since}";' result = queries.runQuery(query) if len(result) != 0: response = {'headers':headers,'rows':result} else: response = {'headers':["No Data Available"],'rows':[]} fString = f">>> Query 2 Call since:{since}, till:{till}" logger.logit(fString) return jsonify(response) @app.route('/query/3/', methods = ['GET']) def query_3(): headers = ["Calling Number","Called Number","Start Time","End Time","Duration(sec)","Start Tower","End Tower","Call Type","IMEI","IMSI","SMSC","Service Provider"] query = f"SELECT * FROM CallData ORDER BY duration DESC LIMIT 10" result = queries.runQuery(query) if len(result) != 0: response = {'headers':headers,'rows':result} else: response = {'headers':["No Data Available"],'rows':[]} logger.logit(">>> Query 3 Call") return jsonify(response) @app.route('/query/4/', methods = ['GET']) def query_4(): headers = ["Dialled Number","Total Dialled Calls","Total Duration"] query = f'''SELECT called_number, count(*) as 'Frequency', sum(duration) as 'Total Duration' from CallData where cell_type="OUT" GROUP by called_number ORDER by Frequency DESC''' result = queries.runQuery(query) if len(result) != 0: response = {'headers':headers,'rows':result} else: response = {'headers':["No Data Available"],'rows':[]} logger.logit(">>> Query 4 Call") return jsonify(response) @app.route('/query/5/', methods = ['GET']) def query_5(): headers = ["Caller","Total Recieved Calls","Total Duration"] query = f'''SELECT calling_number, count(*) as 'Frequency', sum(duration) as 'Total Duration' from CallData where cell_type="IN" GROUP by calling_number ORDER by Frequency DESC''' result = queries.runQuery(query) if len(result) != 0: response = {'headers':headers,'rows':result} else: response = {'headers':["No Data Available"],'rows':[]} logger.logit(">>> Query 5 Call") return jsonify(response) @app.route('/query/6/', methods = ['GET']) def query_6(): headers = ["Called Number","Total Duration(sec)"] query = f"SELECT DISTINCT called_number, sum(duration) as totalDuration FROM CallData WHERE called_number NOT in (7982345234) GROUP BY called_number ORDER BY totalDuration DESC " result = queries.runQuery(query) if len(result) != 0: response = {'headers':headers,'rows':result} else: response = {'headers':["No Data Available"],'rows':[]} logger.logit(">>> Query 6 Call") return jsonify(response) @app.route('/query/7/', methods = ['GET']) def query_7(): headers = ["Called Number","Duration","Call Type"] query = f'SELECT called_number, duration, cell_type FROM CallData WHERE cell_type="OUT" ORDER by duration DESC' result = queries.runQuery(query) if len(result) != 0: response = {'headers':headers,'rows':result} else: response = {'headers':["No Data Available"],'rows':[]} logger.logit(">>> Query 7 Call") return jsonify(response) @app.route('/query/8/', methods = ['GET']) def query_8(): headers = ["Calling Number","Duration","Call Type"] query = f'SELECT calling_number, duration, cell_type FROM CallData WHERE cell_type="IN" ORDER by duration DESC' result = queries.runQuery(query) headers = ["Phone NO","Duration","Call Type"] if len(result) != 0: response = {'headers':headers,'rows':result} else: response = {'headers':["No Data Available"],'rows':[]} logger.logit(">>> Query 8 Call") return jsonify(response) @app.route('/query/9/', methods = ['GET']) def query_9(): headers = ["Calling Number","Called Number","Start Time","End Time","Duration(sec)","Start Tower","End Tower","Call Type","IMEI","IMSI","SMSC","Service Provider"] # Parsing the Headers date = request.args.get('date') query = f'SELECT * from CallData where start_time like "{date}%" or end_time like "{date}%"' result = queries.runQuery(query) if len(result) != 0: response = {'headers':headers,'rows':result} else: response = {'headers':["No Data Available"],'rows':[]} fString = f">>> Query 10 Call date:{date}" logger.logit(fString) return jsonify(response) @app.route('/query/10/', methods = ['GET']) def query_10(): headers = ["Start Time","End Time","Tower 1","Tower 2"] # Parsing the Headers date = request.args.get('date') query = f'''SELECT start_time, end_time, cell1, cell2 from CallData where (start_time like "2021-01-04%" or end_time like "2021-01-04%")''' result = queries.runQuery(query) #print(result) fString = f">>> Query 10 Call date:{date}" if len(result) != 0: response = {'headers':headers,'rows':result} else: response = {'headers':["No Data Available"],'rows':[]} logger.logit(fString) return jsonify(response) @app.route('/query/11/', methods = ['GET']) def query_11(): query = f'''SELECT DISTINCT called_number FROM CallData WHERE cell_type="OUT" UNION SELECT DISTINCT calling_number FROM CallData WHERE cell_type="IN"''' result = queries.runQuery(query) #print(result) #res = [] #for item in result: # res.append(item[0]) headers = ["Mobile Number"] if len(result) != 0: response = {'headers':headers,'rows':result} else: response = {'headers':["No Data Available"],'rows':[]} logger.logit(">>> Query 11 Call") return jsonify(response) @app.route('/query/12/', methods = ['GET']) def query_12(): # Parsing the Headers number = request.args.get('number') query = f'''SELECT * FROM CallData WHERE called_number="{number}" or calling_number="{number}"''' result = queries.runQuery(query) headers = ["Calling Number","Called Number","Start Time","End Time","Duration(sec)","Start Tower","End Tower","Call Type","IMEI","IMSI","SMSC","Service Provider"] if len(result) != 0: response = {'headers':headers,'rows':result} else: response = {'headers':["No Data Available"],'rows':[]} fString = f">>> Query 12 Call number:{number}" logger.logit(fString) return jsonify(response) @app.route('/query/20/', methods = ['GET']) def query_20(): # Parsing the Headers fir = request.args.get('fir') query = f'SELECT * from FIR WHERE FIR_No={int(fir)}' result = queries.runQuery(query) #print(result) headers = ["FIR No","District","PS ID","Time of FIR","Complainant","Act","Section","Complainant Mobile Number"] if len(result) != 0: response = {'headers':headers,'rows':result} else: response = {'headers':["No Data Available"],'rows':[]} fString = f">>> Query 20 Call for:{fir}" logger.logit(fString) return jsonify(response) @app.route('/query/100/', methods = ['GET']) def query_100(): # Parsing the Headers IMEI = request.args.get('imei') query = f'SELECT * from FIR WHERE FIR_No={int(fir)}' result = queries.runQuery(query) #print(result) headers = ["FIR No","District","PS ID","Time of FIR","Complainant","Act","Section","Complainant Mobile Number"] if len(result) != 0: response = {'headers':headers,'rows':result} else: response = {'headers':["No Data Available"],'rows':[]} fString = f">>> Query 100 Call IMEI:{imei}" logger.logit(fString) return jsonify(response) @app.route('/query/101/', methods = ['GET']) def query_101(): #unique IMEIs IMEI = [] unique_imeis_query = f'SELECT DISTINCT imei FROM CallData' resultset = queries.runQuery(unique_imeis_query) for results in resultset: print(results) #unique_imsi_query = f'SELECT * from CallData where imei={results}' return ("OK", code=200) #unique_imsi = @app.route('/loadedfiles', methods = ['GET']) def loadedfiles(): csv_files = [] for filename in os.listdir("/home/pi/Desktop/AFKZenCoders/PS12/uploads/"): if filename.endswith(".csv"): csv_files.append(filename) logger.logit("Rendered uploaded files") return jsonify({'CSV files':csv_files}) @app.route('/deleteloaded', methods = ['GET']) def deleteloaded(): csv_files = [] for filename in os.listdir("/home/pi/Desktop/AFKZenCoders/PS12/uploads/"): if filename.endswith(".csv"): fstring = f"/home/pi/Desktop/AFKZenCoders/PS12/uploads/{filename}" os.remove(fstring) os.remove("/home/pi/Desktop/AFKZenCoders/PS12/CDRdata.db") logger.logit("### Files Deleted ###") return jsonify({'CSV files':csv_files}) # Download API @app.route("/downloadfile/<filename>", methods = ['GET']) def download_file(filename): logger.logit("Rendered download.html") return render_template('download.html',value=filename) @app.route('/return-files/<filename>') def return_files_tut(filename): file_path = "/home/pi/Desktop/AFKZenCoders/PS12/CDRdata.db" logger.logit("Database Downloaded") return send_file(file_path, as_attachment=True, attachment_filename='') @app.route('/logs') def logs(): with open("/home/pi/Desktop/AFKZenCoders/PS12/Logs.txt","r") as f: lines = f.readlines() f.close() formated_lines = [] for i in range(len(lines)-1,0,-1): formated_lines.append(lines[i]) return jsonify({'logs':formated_lines}) @app.route('/graph') def graph(): query = f'SELECT date,in_count,out_count,sms_count,total from "798234523"' result = queries.runQuery(query) #print(result) headers = ["Date","Incomming Calls","OutGoing Calls","SMS","Total Interactions"] if len(result) != 0: response = {'headers':headers,'rows':result} else: response = {'headers':["No Data Available"],'rows':[]} fString = f">>> GRAPH Call" logger.logit(fString) return jsonify(response) if __name__ == "__main__": app.run(host='0.0.0.0',port = 1313,debug = True)
[]
Fassial/Air-Writing-with-TL
cnnblstm_with_adabn/cnnblstm_with_adabn.py
9b9047c5bd5aef3a869e2d5166be1c0cf0c5ccf0
import os import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import numpy as np import matplotlib.pyplot as plt # local model import sys sys.path.append("../network") import Coral from lstm import LSTMHardSigmoid from AdaBN import AdaBN sys.path.append("../network/AutoEncoder") import AutoEncoder class cnnblstm_with_adabn(nn.Module): PARAMS_FILE = "params.pkl" PARAMS_AE = "params_ae.pkl" NET1_ADABN = "net1_adabn" NET2_ADABN = "net2_adabn" NET3_ADABN = "net3_adabn" def __init__(self, time_steps = 800, n_features = 3, n_outputs = 10, use_cuda = False, params_dir = "./params", enable_CORAL = False): super(cnnblstm_with_adabn, self).__init__() self.time_steps = time_steps self.n_features = n_features self.n_outputs = n_outputs self.use_cuda = use_cuda self.params_dir = params_dir if not os.path.exists(self.params_dir): os.mkdir(self.params_dir) self.enable_CORAL = enable_CORAL self.n_filters = 128 self.kernel_size = 15 self.n_hidden = 150 # 150 self.n_layers = 1 self.bidirectional = True # self.ae = AutoEncoder.load_AE(type = "ConvAE", time_steps = self.time_steps, n_features = self.n_features, use_cuda = self.use_cuda, params_pkl = os.path.join(self.params_dir, cnnblstm_with_adabn.PARAMS_AE)) # build net1 cnn self.net1 = nn.Sequential( nn.Conv1d(in_channels = self.n_features, out_channels = self.n_filters, kernel_size = self.kernel_size), # nn.Conv1d(in_channels = self.ae.n_filters3, out_channels = self.n_filters, kernel_size = self.kernel_size), nn.ReLU(), # nn.Sigmoid(), nn.Dropout(p = 0.5), nn.MaxPool1d(kernel_size = 2) ) # build net1_adabn self.net1_adabn = AdaBN(self.n_filters, variables_dir = os.path.join(self.params_dir, cnnblstm_with_adabn.NET1_ADABN), use_cuda = self.use_cuda) # build net2 blstm # self.net2 = nn.LSTM(input_size = self.n_filters, hidden_size = self.n_hidden, num_layers = self.n_layers, dropout = 0.2, batch_first = True, bidirectional = self.bidirectional, bias = True) self.net2 = LSTMHardSigmoid(input_size = self.n_filters, hidden_size = self.n_hidden, num_layers = self.n_layers, dropout = 0.2, batch_first = True, bidirectional = self.bidirectional, bias = True) # build net2_adabn if self.bidirectional: n_blstm_output = self.n_hidden * 2 else: n_blstm_output = self.n_hidden self.net2_adabn = AdaBN(n_blstm_output, variables_dir = os.path.join(self.params_dir, cnnblstm_with_adabn.NET2_ADABN), use_cuda = self.use_cuda) # build net3 fc self.net3 = nn.Sequential( nn.Linear(n_blstm_output, 50, bias = True), nn.ReLU(), # nn.Sigmoid(), ) # build net3_adabn self.net3_adabn = AdaBN(50, variables_dir = os.path.join(self.params_dir, cnnblstm_with_adabn.NET3_ADABN), use_cuda = self.use_cuda) # build net4 fc self.net4 = nn.Sequential( nn.Dropout(p = 0.2), nn.Linear(50, self.n_outputs, bias = True), nn.Softmax(dim = 1) ) def init_hidden(self, batch_size): """ init blstm's hidden states """ if self.bidirectional: n_layers = self.n_layers * 2 else: n_layers = self.n_layers if self.use_cuda: hidden_state = torch.zeros(n_layers, batch_size, self.n_hidden).cuda() cell_state = torch.zeros(n_layers, batch_size, self.n_hidden).cuda() else: hidden_state = torch.zeros(n_layers, batch_size, self.n_hidden) cell_state = torch.zeros(n_layers, batch_size, self.n_hidden) self.hidden = (hidden_state, cell_state) def reset_parameters(self): """ temp useless Here we reproduce Keras default initialization weights for consistency with Keras version """ # get weights & bias set net1_weights = ((name, param.data) for name, param in self.named_parameters() if (("weight" in name) and (("net1" in name) and ("net1_adabn" not in name)))) net1_biases = ((name, param.data) for name, param in self.named_parameters() if (("bias" in name) and (("net1" in name) and ("net1_adabn" not in name)))) # net2_weights = ((name, param.data) for name, param in self.named_parameters() if (("weight" in name) and (("net2" in name) and ("net2_adabn" not in name)))) # net2_biases = ((name, param.data) for name, param in self.named_parameters() if (("bias" in name) and (("net2" in name) and ("net2_adabn" not in name)))) net3_weights = ((name, param.data) for name, param in self.named_parameters() if (("weight" in name) and (("net3" in name) and ("net3_adabn" not in name)))) net3_biases = ((name, param.data) for name, param in self.named_parameters() if (("bias" in name) and (("net3" in name) and ("net3_adabn" not in name)))) net4_weights = ((name, param.data) for name, param in self.named_parameters() if (("weight" in name) and (("net4" in name) and ("net4_adabn" not in name)))) net4_biases = ((name, param.data) for name, param in self.named_parameters() if (("bias" in name) and (("net4" in name) and ("net4_adabn" not in name)))) # init weights & bias # self.ae.reset_parameters() for name, params_data in net1_weights: # print(name) nn.init.xavier_uniform_(params_data) for name, params_data in net1_biases: nn.init.constant_(params_data, 0) self.net1_adabn.reset_parameters() self.net2.reset_parameters() # lstm reset parameters self.net2_adabn.reset_parameters() for name, params_data in net3_weights: nn.init.xavier_uniform_(params_data) for name, params_data in net3_biases: nn.init.constant_(params_data, 0) self.net3_adabn.reset_parameters() for name, params_data in net4_weights: nn.init.xavier_uniform_(params_data) for name, params_data in net4_biases: nn.init.constant_(params_data, 0) def forward(self, input): """ compute the output of input according to the entire network model """ # print(input.shape) # AutoEncoder # input = self.ae.encoder(input) # input = self.ae(input) # MaxPool1d maxPool1d_output = self.net1(input) # maxPool1d_adabn_output = maxPool1d_output maxPool1d_adabn_output, maxPool1d_output = self.net1_adabn(maxPool1d_output), None maxPool1d_adabn_t_output = maxPool1d_adabn_output.permute(0, 2, 1).contiguous() # BiLSTM (bilstm_output, _), maxPool1d_adabn_t_output = self.net2(maxPool1d_adabn_t_output, None), None # MaxPooling1D time_steps bilstm_output = bilstm_output.permute(0, 2, 1) maxPooling_output, bilstm_output = F.max_pool1d(bilstm_output, kernel_size = bilstm_output.size(2)).squeeze(2), None # maxPooling_adabn_output = maxPooling_output maxPooling_adabn_output, maxPooling_output = self.net2_adabn(maxPooling_output), None # get classifier net3_output, maxPooling_adabn_output = self.net3(maxPooling_adabn_output), None net3_adabn_output, net3_output = self.net3_adabn(net3_output), None linear2_softmax_output, net3_adabn_output = self.net4(net3_adabn_output), None return linear2_softmax_output def update_adabn_running_stats(self): """ update adabn running states, update mu_j with mu_j_next to start next round """ self.net1_adabn.update_running_stats() self.net2_adabn.update_running_stats() self.net3_adabn.update_running_stats() def trainAllLayers(self, train_x, train_y, test_x = None, learning_rate = 0.001, n_epoches = 20, batch_size = 20, shuffle = True): """ train all layers of network model """ # print(os.environ["CUDA_VISIBLE_DEVICES"]) # CORAL if self.enable_CORAL: if test_x == None: print("ERROR: (in cnnblstm_with_adabn.trainAllLayers) test_x == None!") return # review train_x & test_x train_x = train_x.view(-1, self.time_steps * self.n_features) test_x = test_x.view(-1, self.time_steps * self.n_features) # get CORAL(train_x, test_x) train_x = Coral.CORAL_torch(train_x, test_x) # review train_x train_x = train_x.view(-1, self.n_features, self.time_steps) # optimize all cnn parameters params = [{"params": model.parameters()} for model in self.children() if model not in [self.ae]] optimizer = torch.optim.Adam(params, lr = learning_rate) # the target label is not one-hotted loss_func = nn.CrossEntropyLoss() # init params self.reset_parameters() # load params self.load_params() # set train mode True self.train() # get parallel model parallel_cba = self if self.use_cuda: # print("we use cuda!") parallel_cba = torch.nn.DataParallel(self, device_ids = range(torch.cuda.device_count())) # parallel_cba = parallel_cba.cuda() # if use_cuda if self.use_cuda: train_x = train_x.cuda() train_y = train_y.cuda() """ # get autoencoder self.ae = AutoEncoder.train_AE(self.ae, train_x, train_x, n_epoches = 20) self.ae.save_params() """ # get train_data train_data = torch.utils.data.TensorDataset(train_x, train_y) # Data Loader for easy mini-batch return in training train_loader = torch.utils.data.DataLoader(dataset = train_data, batch_size = batch_size, shuffle = shuffle) # training and testing for epoch in range(n_epoches): # init loss & acc train_loss = 0 train_acc = 0 for step, (b_x, b_y) in enumerate(train_loader): # gives batch data b_x = b_x.view(-1, self.n_features, self.time_steps) # reshape x to (batch, n_features, time_step) if self.use_cuda: b_x, b_y = Variable(b_x).cuda(), Variable(b_y).cuda() else: b_x, b_y = Variable(b_x), Variable(b_y) """ # get hidden if self.use_cuda: self.init_hidden(b_x.size(0) // torch.cuda.device_count()) else: self.init_hidden(b_x.size(0)) """ # update adabn running stats self.update_adabn_running_stats() # get output output = parallel_cba(b_x) # CNN_BLSTM output # get loss loss = loss_func(output, b_y) # cross entropy loss train_loss += loss.item() * len(b_y) _, pre = torch.max(output, 1) num_acc = (pre == b_y).sum() train_acc += num_acc.item() # backward optimizer.zero_grad() # clear gradients for this training step loss.backward() # backpropagation, compute gradients optimizer.step() # apply gradients # print loss # if (step + 1) % 5 == 0: # print("[{}/{}], train loss is: {:.6f}, train acc is: {:.6f}".format(step, len(train_loader), train_loss / ((step + 1) * batch_size), train_acc / ((step + 1) * batch_size))) print("[{}/{}], train loss is: {:.6f}, train acc is: {:.6f}".format(len(train_loader), len(train_loader), train_loss / (len(train_loader) * batch_size), train_acc / (len(train_loader) * batch_size))) # save params self.save_params() # print("train finish!") def getTestAccuracy(self, test_x, test_y): """ test network model with test set """ # init params self.reset_parameters() # load params self.load_params() # set eval self.eval() # get parallel model parallel_cba = self if self.use_cuda: # print("we use cuda!") parallel_cba = torch.nn.DataParallel(self, device_ids = range(torch.cuda.device_count())) # parallel_cba = parallel_cba.cuda() # cuda test_data with torch.no_grad(): if self.use_cuda: test_x, test_y = Variable(test_x).cuda(), Variable(test_y).cuda() else: test_x, test_y = Variable(test_x), Variable(test_y) """ # get hidden if self.use_cuda: self.init_hidden(test_x.size(0) // torch.cuda.device_count()) else: self.init_hidden(test_x.size(0)) """ # update adabn running stats self.update_adabn_running_stats() # get output with torch.no_grad(): output = parallel_cba(test_x) # print(output) prediction = torch.max(output, 1)[1] pred_y = prediction.cpu().data.numpy() # print(pred_y) target_y = test_y.cpu().data.numpy() # print(test_y) accuracy = float((pred_y == target_y).astype(int).sum()) / float(target_y.size) # print("Accuracy: ", str(accuracy)) return accuracy def save_params(self): """ save params & adabn's inner stats """ self.save_adabn_variables() torch.save(self.state_dict(), os.path.join(self.params_dir, cnnblstm_with_adabn.PARAMS_FILE)) # self.ae.save_params() # print("save_params success!") def save_adabn_variables(self): """ save adabn's inner stats """ self.net1_adabn.save_attrs() self.net2_adabn.save_attrs() self.net3_adabn.save_attrs() def load_params(self): """ load params & adabn's inner stats """ self.load_adabn_variables() if os.path.exists(os.path.join(self.params_dir, cnnblstm_with_adabn.PARAMS_FILE)): if self.use_cuda: self.load_state_dict(torch.load(os.path.join(self.params_dir, cnnblstm_with_adabn.PARAMS_FILE), map_location = torch.device('cuda'))) else: self.load_state_dict(torch.load(os.path.join(self.params_dir, cnnblstm_with_adabn.PARAMS_FILE), map_location = torch.device('cpu'))) # print("load_params success!") # self.ae.load_params() def load_adabn_variables(self): """ load adabn's inner stats """ self.net1_adabn.load_attrs() self.net2_adabn.load_attrs() self.net3_adabn.load_attrs() def get_model(self, pre_trained = False): """ get pretrained model """ if pre_trained: self.load_params() return self if __name__ == '__main__': use_cuda = torch.cuda.is_available() if use_cuda: cnnblstm = cnnblstm_with_adabn(use_cuda = use_cuda).cuda() else: cnnblstm = cnnblstm_with_adabn(use_cuda = use_cuda) print(cnnblstm) # get train_x, train_y train_x = torch.rand(20, 3, 800, dtype = torch.float32) train_y = torch.randint(10, (20, ), dtype = torch.int64) # train_y = torch.LongTensor(20, 1).random_() % 10 print(train_x.type()) # train_y = torch.zeros(20, 10).scatter_(1, train_y, 1) print(train_y) train_data = torch.utils.data.TensorDataset(train_x, train_y) cnnblstm.trainAllLayers(train_data)
[((189, 218), 'sys.path.append', 'sys.path.append', (['"""../network"""'], {}), "('../network')\n", (204, 218), False, 'import sys\n'), ((289, 330), 'sys.path.append', 'sys.path.append', (['"""../network/AutoEncoder"""'], {}), "('../network/AutoEncoder')\n", (304, 330), False, 'import sys\n'), ((13068, 13093), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (13091, 13093), False, 'import torch\n'), ((13282, 13325), 'torch.rand', 'torch.rand', (['(20)', '(3)', '(800)'], {'dtype': 'torch.float32'}), '(20, 3, 800, dtype=torch.float32)\n', (13292, 13325), False, 'import torch\n'), ((13339, 13382), 'torch.randint', 'torch.randint', (['(10)', '(20,)'], {'dtype': 'torch.int64'}), '(10, (20,), dtype=torch.int64)\n', (13352, 13382), False, 'import torch\n'), ((13548, 13596), 'torch.utils.data.TensorDataset', 'torch.utils.data.TensorDataset', (['train_x', 'train_y'], {}), '(train_x, train_y)\n', (13578, 13596), False, 'import torch\n'), ((2066, 2246), 'lstm.LSTMHardSigmoid', 'LSTMHardSigmoid', ([], {'input_size': 'self.n_filters', 'hidden_size': 'self.n_hidden', 'num_layers': 'self.n_layers', 'dropout': '(0.2)', 'batch_first': '(True)', 'bidirectional': 'self.bidirectional', 'bias': '(True)'}), '(input_size=self.n_filters, hidden_size=self.n_hidden,\n num_layers=self.n_layers, dropout=0.2, batch_first=True, bidirectional=\n self.bidirectional, bias=True)\n', (2081, 2246), False, 'from lstm import LSTMHardSigmoid\n'), ((7921, 7963), 'torch.optim.Adam', 'torch.optim.Adam', (['params'], {'lr': 'learning_rate'}), '(params, lr=learning_rate)\n', (7937, 7963), False, 'import torch\n'), ((8019, 8040), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (8038, 8040), True, 'import torch.nn as nn\n'), ((8650, 8698), 'torch.utils.data.TensorDataset', 'torch.utils.data.TensorDataset', (['train_x', 'train_y'], {}), '(train_x, train_y)\n', (8680, 8698), False, 'import torch\n'), ((8771, 8862), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', ([], {'dataset': 'train_data', 'batch_size': 'batch_size', 'shuffle': 'shuffle'}), '(dataset=train_data, batch_size=batch_size,\n shuffle=shuffle)\n', (8798, 8862), False, 'import torch\n'), ((869, 900), 'os.path.exists', 'os.path.exists', (['self.params_dir'], {}), '(self.params_dir)\n', (883, 900), False, 'import os\n'), ((905, 930), 'os.mkdir', 'os.mkdir', (['self.params_dir'], {}), '(self.params_dir)\n', (913, 930), False, 'import os\n'), ((1355, 1456), 'torch.nn.Conv1d', 'nn.Conv1d', ([], {'in_channels': 'self.n_features', 'out_channels': 'self.n_filters', 'kernel_size': 'self.kernel_size'}), '(in_channels=self.n_features, out_channels=self.n_filters,\n kernel_size=self.kernel_size)\n', (1364, 1456), True, 'import torch.nn as nn\n'), ((1576, 1585), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (1583, 1585), True, 'import torch.nn as nn\n'), ((1609, 1626), 'torch.nn.Dropout', 'nn.Dropout', ([], {'p': '(0.5)'}), '(p=0.5)\n', (1619, 1626), True, 'import torch.nn as nn\n'), ((1633, 1660), 'torch.nn.MaxPool1d', 'nn.MaxPool1d', ([], {'kernel_size': '(2)'}), '(kernel_size=2)\n', (1645, 1660), True, 'import torch.nn as nn\n'), ((2577, 2617), 'torch.nn.Linear', 'nn.Linear', (['n_blstm_output', '(50)'], {'bias': '(True)'}), '(n_blstm_output, 50, bias=True)\n', (2586, 2617), True, 'import torch.nn as nn\n'), ((2624, 2633), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (2631, 2633), True, 'import torch.nn as nn\n'), ((2866, 2883), 'torch.nn.Dropout', 'nn.Dropout', ([], {'p': '(0.2)'}), '(p=0.2)\n', (2876, 2883), True, 'import torch.nn as nn\n'), ((2890, 2930), 'torch.nn.Linear', 'nn.Linear', (['(50)', 'self.n_outputs'], {'bias': '(True)'}), '(50, self.n_outputs, bias=True)\n', (2899, 2930), True, 'import torch.nn as nn\n'), ((2937, 2954), 'torch.nn.Softmax', 'nn.Softmax', ([], {'dim': '(1)'}), '(dim=1)\n', (2947, 2954), True, 'import torch.nn as nn\n'), ((3324, 3372), 'torch.zeros', 'torch.zeros', (['n_layers', 'batch_size', 'self.n_hidden'], {}), '(n_layers, batch_size, self.n_hidden)\n', (3335, 3372), False, 'import torch\n'), ((3389, 3437), 'torch.zeros', 'torch.zeros', (['n_layers', 'batch_size', 'self.n_hidden'], {}), '(n_layers, batch_size, self.n_hidden)\n', (3400, 3437), False, 'import torch\n'), ((5037, 5073), 'torch.nn.init.xavier_uniform_', 'nn.init.xavier_uniform_', (['params_data'], {}), '(params_data)\n', (5060, 5073), True, 'import torch.nn as nn\n'), ((5117, 5150), 'torch.nn.init.constant_', 'nn.init.constant_', (['params_data', '(0)'], {}), '(params_data, 0)\n', (5134, 5150), True, 'import torch.nn as nn\n'), ((5325, 5361), 'torch.nn.init.xavier_uniform_', 'nn.init.xavier_uniform_', (['params_data'], {}), '(params_data)\n', (5348, 5361), True, 'import torch.nn as nn\n'), ((5405, 5438), 'torch.nn.init.constant_', 'nn.init.constant_', (['params_data', '(0)'], {}), '(params_data, 0)\n', (5422, 5438), True, 'import torch.nn as nn\n'), ((5520, 5556), 'torch.nn.init.xavier_uniform_', 'nn.init.xavier_uniform_', (['params_data'], {}), '(params_data)\n', (5543, 5556), True, 'import torch.nn as nn\n'), ((5600, 5633), 'torch.nn.init.constant_', 'nn.init.constant_', (['params_data', '(0)'], {}), '(params_data, 0)\n', (5617, 5633), True, 'import torch.nn as nn\n'), ((7658, 7692), 'Coral.CORAL_torch', 'Coral.CORAL_torch', (['train_x', 'test_x'], {}), '(train_x, test_x)\n', (7675, 7692), False, 'import Coral\n'), ((10969, 10984), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (10982, 10984), False, 'import torch\n'), ((11387, 11402), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (11400, 11402), False, 'import torch\n'), ((11470, 11490), 'torch.max', 'torch.max', (['output', '(1)'], {}), '(output, 1)\n', (11479, 11490), False, 'import torch\n'), ((11885, 11947), 'os.path.join', 'os.path.join', (['self.params_dir', 'cnnblstm_with_adabn.PARAMS_FILE'], {}), '(self.params_dir, cnnblstm_with_adabn.PARAMS_FILE)\n', (11897, 11947), False, 'import os\n'), ((12298, 12360), 'os.path.join', 'os.path.join', (['self.params_dir', 'cnnblstm_with_adabn.PARAMS_FILE'], {}), '(self.params_dir, cnnblstm_with_adabn.PARAMS_FILE)\n', (12310, 12360), False, 'import os\n'), ((1747, 1808), 'os.path.join', 'os.path.join', (['self.params_dir', 'cnnblstm_with_adabn.NET1_ADABN'], {}), '(self.params_dir, cnnblstm_with_adabn.NET1_ADABN)\n', (1759, 1808), False, 'import os\n'), ((2437, 2498), 'os.path.join', 'os.path.join', (['self.params_dir', 'cnnblstm_with_adabn.NET2_ADABN'], {}), '(self.params_dir, cnnblstm_with_adabn.NET2_ADABN)\n', (2449, 2498), False, 'import os\n'), ((2726, 2787), 'os.path.join', 'os.path.join', (['self.params_dir', 'cnnblstm_with_adabn.NET3_ADABN'], {}), '(self.params_dir, cnnblstm_with_adabn.NET3_ADABN)\n', (2738, 2787), False, 'import os\n'), ((9730, 9750), 'torch.max', 'torch.max', (['output', '(1)'], {}), '(output, 1)\n', (9739, 9750), False, 'import torch\n'), ((3170, 3218), 'torch.zeros', 'torch.zeros', (['n_layers', 'batch_size', 'self.n_hidden'], {}), '(n_layers, batch_size, self.n_hidden)\n', (3181, 3218), False, 'import torch\n'), ((3242, 3290), 'torch.zeros', 'torch.zeros', (['n_layers', 'batch_size', 'self.n_hidden'], {}), '(n_layers, batch_size, self.n_hidden)\n', (3253, 3290), False, 'import torch\n'), ((11107, 11123), 'torch.autograd.Variable', 'Variable', (['test_x'], {}), '(test_x)\n', (11115, 11123), False, 'from torch.autograd import Variable\n'), ((11125, 11141), 'torch.autograd.Variable', 'Variable', (['test_y'], {}), '(test_y)\n', (11133, 11141), False, 'from torch.autograd import Variable\n'), ((8320, 8345), 'torch.cuda.device_count', 'torch.cuda.device_count', ([], {}), '()\n', (8343, 8345), False, 'import torch\n'), ((9262, 9275), 'torch.autograd.Variable', 'Variable', (['b_x'], {}), '(b_x)\n', (9270, 9275), False, 'from torch.autograd import Variable\n'), ((9277, 9290), 'torch.autograd.Variable', 'Variable', (['b_y'], {}), '(b_y)\n', (9285, 9290), False, 'from torch.autograd import Variable\n'), ((10875, 10900), 'torch.cuda.device_count', 'torch.cuda.device_count', ([], {}), '()\n', (10898, 10900), False, 'import torch\n'), ((12420, 12482), 'os.path.join', 'os.path.join', (['self.params_dir', 'cnnblstm_with_adabn.PARAMS_FILE'], {}), '(self.params_dir, cnnblstm_with_adabn.PARAMS_FILE)\n', (12432, 12482), False, 'import os\n'), ((12567, 12629), 'os.path.join', 'os.path.join', (['self.params_dir', 'cnnblstm_with_adabn.PARAMS_FILE'], {}), '(self.params_dir, cnnblstm_with_adabn.PARAMS_FILE)\n', (12579, 12629), False, 'import os\n'), ((11028, 11044), 'torch.autograd.Variable', 'Variable', (['test_x'], {}), '(test_x)\n', (11036, 11044), False, 'from torch.autograd import Variable\n'), ((11053, 11069), 'torch.autograd.Variable', 'Variable', (['test_y'], {}), '(test_y)\n', (11061, 11069), False, 'from torch.autograd import Variable\n'), ((12499, 12519), 'torch.device', 'torch.device', (['"""cuda"""'], {}), "('cuda')\n", (12511, 12519), False, 'import torch\n'), ((12646, 12665), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (12658, 12665), False, 'import torch\n'), ((9193, 9206), 'torch.autograd.Variable', 'Variable', (['b_x'], {}), '(b_x)\n', (9201, 9206), False, 'from torch.autograd import Variable\n'), ((9215, 9228), 'torch.autograd.Variable', 'Variable', (['b_y'], {}), '(b_y)\n', (9223, 9228), False, 'from torch.autograd import Variable\n')]
woffett/emmental
src/emmental/model.py
87884fcd89662cca45f0ea0f78cff73380cc47c8
"""Emmental model.""" import itertools import logging import os from collections import defaultdict from collections.abc import Iterable from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union import numpy as np import torch from numpy import ndarray from torch import Tensor, nn as nn from torch.nn import ModuleDict from tqdm import tqdm from emmental.data import EmmentalDataLoader from emmental.meta import Meta from emmental.scorer import Scorer from emmental.task import EmmentalTask from emmental.utils.utils import construct_identifier, move_to_device, prob_to_pred logger = logging.getLogger(__name__) class EmmentalModel(nn.Module): """A class to build multi-task model. Args: name: Name of the model, defaults to None. tasks: A task or a list of tasks. """ def __init__( self, name: Optional[str] = None, tasks: Optional[Union[EmmentalTask, List[EmmentalTask]]] = None, ) -> None: """Initialize EmmentalModel.""" super().__init__() self.name = name if name is not None else type(self).__name__ # Initiate the model attributes self.module_pool: ModuleDict = ModuleDict() self.task_names: Set[str] = set() self.task_flows: Dict[str, Any] = dict() # TODO: make it concrete self.loss_funcs: Dict[str, Callable] = dict() self.output_funcs: Dict[str, Callable] = dict() self.scorers: Dict[str, Scorer] = dict() self.action_outputs: Dict[ str, Optional[List[Union[Tuple[str, str], Tuple[str, int]]]] ] = dict() self.weights: Dict[str, float] = dict() # Build network with given tasks if tasks is not None: self.add_tasks(tasks) if Meta.config["meta_config"]["verbose"]: logger.info( f"Created emmental model {self.name} that contains " f"task {self.task_names}." ) # Move model to specified device self._move_to_device() def _move_to_device(self) -> None: """Move model to specified device.""" if Meta.config["model_config"]["device"] != -1: if torch.cuda.is_available(): device = ( f"cuda:{Meta.config['model_config']['device']}" if isinstance(Meta.config["model_config"]["device"], int) else Meta.config["model_config"]["device"] ) if Meta.config["meta_config"]["verbose"]: logger.info(f"Moving model to GPU ({device}).") self.to(torch.device(device)) else: if Meta.config["meta_config"]["verbose"]: logger.info("No cuda device available. Switch to cpu instead.") def _to_dataparallel(self) -> None: for key in self.module_pool.keys(): self.module_pool[key] = torch.nn.DataParallel(self.module_pool[key]) def _to_distributed_dataparallel(self) -> None: for key in self.module_pool.keys(): self.module_pool[ key ] = torch.nn.parallel.DistributedDataParallel( # type: ignore self.module_pool[key], device_ids=[Meta.config["learner_config"]["local_rank"]], output_device=Meta.config["learner_config"]["local_rank"], find_unused_parameters=True, ) def add_tasks(self, tasks: Union[EmmentalTask, List[EmmentalTask]]) -> None: """Build the MTL network using all tasks. Args: tasks: A task or a list of tasks. """ if not isinstance(tasks, Iterable): tasks = [tasks] for task in tasks: self.add_task(task) def add_task(self, task: EmmentalTask) -> None: """Add a single task into MTL network. Args: task: A task to add. """ if not isinstance(task, EmmentalTask): raise ValueError(f"Unrecognized task type {task}.") if task.name in self.task_names: raise ValueError( f"Found duplicate task {task.name}, different task should use " f"different task name." ) # Combine module_pool from all tasks for key in task.module_pool.keys(): if key in self.module_pool.keys(): task.module_pool[key] = self.module_pool[key] else: self.module_pool[key] = task.module_pool[key] # Collect task name self.task_names.add(task.name) # Collect task flow self.task_flows[task.name] = task.task_flow # Collect loss function self.loss_funcs[task.name] = task.loss_func # Collect output function self.output_funcs[task.name] = task.output_func # Collect action outputs self.action_outputs[task.name] = task.action_outputs # Collect scorer self.scorers[task.name] = task.scorer # Collect weight self.weights[task.name] = task.weight # Move model to specified device self._move_to_device() def update_task(self, task: EmmentalTask) -> None: """Update a existing task in MTL network. Args: task: A task to update. """ # Update module_pool with task for key in task.module_pool.keys(): # Update the model's module with the task's module self.module_pool[key] = task.module_pool[key] # Update task flow self.task_flows[task.name] = task.task_flow # Update loss function self.loss_funcs[task.name] = task.loss_func # Update output function self.output_funcs[task.name] = task.output_func # Update action outputs self.action_outputs[task.name] = task.action_outputs # Update scorer self.scorers[task.name] = task.scorer # Update weight self.weights[task.name] = task.weight # Move model to specified device self._move_to_device() def remove_task(self, task_name: str) -> None: """Remove a existing task from MTL network. Args: task_name: The task name to remove. """ if task_name not in self.task_flows: if Meta.config["meta_config"]["verbose"]: logger.info(f"Task ({task_name}) not in the current model, skip...") return # Remove task by task_name if Meta.config["meta_config"]["verbose"]: logger.info(f"Removing Task {task_name}.") self.task_names.remove(task_name) del self.task_flows[task_name] del self.loss_funcs[task_name] del self.output_funcs[task_name] del self.action_outputs[task_name] del self.scorers[task_name] del self.weights[task_name] # TODO: remove the modules only associate with that task def __repr__(self) -> str: """Represent the model as a string.""" cls_name = type(self).__name__ return f"{cls_name}(name={self.name})" def flow(self, X_dict: Dict[str, Any], task_names: List[str]) -> Dict[str, Any]: """Forward based on input and task flow. Note: We assume that all shared modules from all tasks are based on the same input. Args: X_dict: The input data task_names: The task names that needs to forward. Returns: The output of all forwarded modules """ X_dict = move_to_device(X_dict, Meta.config["model_config"]["device"]) output_dict = dict(_input_=X_dict) # Call forward for each task for task_name in task_names: for action in self.task_flows[task_name]: if action["name"] not in output_dict: if action["inputs"]: try: input = [ output_dict[action_name][output_index] for action_name, output_index in action["inputs"] ] except Exception: raise ValueError(f"Unrecognized action {action}.") output = self.module_pool[action["module"]].forward(*input) else: output = self.module_pool[action["module"]].forward(output_dict) if isinstance(output, tuple): output = list(output) if not isinstance(output, list) and not isinstance(output, dict): output = [output] output_dict[action["name"]] = output return output_dict def forward( # type: ignore self, uids: List[str], X_dict: Dict[str, Any], Y_dict: Dict[str, Tensor], task_to_label_dict: Dict[str, str], return_action_outputs=False, ) -> Union[ Tuple[ Dict[str, List[str]], Dict[str, ndarray], Dict[str, ndarray], Dict[str, ndarray], Dict[str, Dict[str, ndarray]], ], Tuple[ Dict[str, List[str]], Dict[str, ndarray], Dict[str, ndarray], Dict[str, ndarray], ], ]: """Forward function. Args: uids: The uids of input data. X_dict: The input data. Y_dict: The output data. task_to_label_dict: The task to label mapping. return_action_outputs: Whether return action_outputs or not, defaults to False. Returns: The (active) uids, loss, prob, gold, action_output (optional) in the batch of all tasks. """ uid_dict: Dict[str, List[str]] = defaultdict(list) loss_dict: Dict[str, ndarray] = defaultdict(float) gold_dict: Dict[str, ndarray] = defaultdict(list) prob_dict: Dict[str, ndarray] = defaultdict(list) out_dict: Dict[str, Dict[str, ndarray]] = defaultdict(lambda: defaultdict(list)) task_names = ( list(task_to_label_dict.keys()) if isinstance(task_to_label_dict, dict) else list(task_to_label_dict) ) output_dict = self.flow(X_dict, task_names) if Y_dict is not None: # Calculate logit and loss for each task for task_name, label_name in task_to_label_dict.items(): Y = Y_dict[label_name] # Select the active samples if Meta.config["learner_config"]["ignore_index"] is not None: if len(Y.size()) == 1: active = ( Y.detach() != Meta.config["learner_config"]["ignore_index"] ) else: active = torch.any( Y.detach() != Meta.config["learner_config"]["ignore_index"], dim=1, ) else: active = torch.BoolTensor([True] * Y.size()[0]) # type: ignore # Only calculate the loss when active example exists if active.any(): uid_dict[task_name] = [*itertools.compress(uids, active.numpy())] loss_dict[task_name] = self.loss_funcs[task_name]( output_dict, move_to_device( Y_dict[label_name], Meta.config["model_config"]["device"] ), move_to_device(active, Meta.config["model_config"]["device"]), ) prob_dict[task_name] = ( self.output_funcs[task_name](output_dict)[ move_to_device( active, Meta.config["model_config"]["device"] ) ] .cpu() .detach() .numpy() ) gold_dict[task_name] = Y_dict[label_name][active].cpu().numpy() if ( return_action_outputs and self.action_outputs[task_name] is not None ): for action_name, output_index in self.action_outputs[task_name]: out_dict[task_name][f"{action_name}_{output_index}"] = ( output_dict[action_name][output_index][ move_to_device( active, Meta.config["model_config"]["device"] ) ] .cpu() .detach() .numpy() ) else: # Calculate logit for each task for task_name in task_to_label_dict: uid_dict[task_name] = uids prob_dict[task_name] = ( self.output_funcs[task_name](output_dict).cpu().detach().numpy() ) if return_action_outputs and self.action_outputs[task_name] is not None: for action_name, output_index in self.action_outputs[task_name]: out_dict[task_name][f"{action_name}_{output_index}"] = ( output_dict[action_name][output_index] .cpu() .detach() .numpy() ) loss_dict = None gold_dict = None if return_action_outputs: return uid_dict, loss_dict, prob_dict, gold_dict, out_dict else: return uid_dict, loss_dict, prob_dict, gold_dict @torch.no_grad() def predict( self, dataloader: EmmentalDataLoader, return_preds: bool = False, return_action_outputs: bool = True, ) -> Dict[str, Any]: """Predict from dataloader. Args: dataloader: The dataloader to predict. return_preds: Whether return predictions or not, defaults to False. return_action_outputs: Whether return action_outputs or not, defaults to True. Returns: The result dict. """ self.eval() uid_dict: Dict[str, List[str]] = defaultdict(list) prob_dict: Dict[str, List[Union[ndarray, int, float]]] = defaultdict(list) pred_dict: Dict[str, List[ndarray]] = defaultdict(list) gold_dict: Dict[str, List[Union[ndarray, int, float]]] = defaultdict(list) out_dict: Dict[str, Dict[str, List[Union[ndarray, int, float]]]] = defaultdict( lambda: defaultdict(list) ) loss_dict: Dict[str, Union[ndarray, float]] = defaultdict(list) # type: ignore if not dataloader.is_learnable: gold_dict = None loss_dict = None # Collect dataloader information task_to_label_dict = dataloader.task_to_label_dict uid = dataloader.uid for batch_num, bdict in tqdm( enumerate(dataloader), total=len(dataloader), desc=f"Evaluating {dataloader.data_name} ({dataloader.split})", ): if isinstance(bdict, dict) == 1: X_bdict = bdict Y_bdict = None else: X_bdict, Y_bdict = bdict if not dataloader.is_learnable: Y_bdict = None if return_action_outputs: ( uid_bdict, loss_bdict, prob_bdict, gold_bdict, out_bdict, ) = self.forward( # type: ignore X_bdict[uid], X_bdict, Y_bdict, task_to_label_dict, return_action_outputs=return_action_outputs, ) else: ( uid_bdict, loss_bdict, prob_bdict, gold_bdict, ) = self.forward( # type: ignore X_bdict[uid], X_bdict, Y_bdict, task_to_label_dict, return_action_outputs=return_action_outputs, ) out_bdict = None for task_name in uid_bdict.keys(): uid_dict[task_name].extend(uid_bdict[task_name]) prob_dict[task_name].extend(prob_bdict[task_name]) if dataloader.is_learnable: gold_dict[task_name].extend(gold_bdict[task_name]) if len(loss_bdict[task_name].size()) == 0: if loss_dict[task_name] == []: loss_dict[task_name] = 0 loss_dict[task_name] += loss_bdict[task_name].item() * len( uid_bdict[task_name] ) else: loss_dict[task_name].extend( # type: ignore loss_bdict[task_name].cpu().numpy() ) if return_action_outputs and out_bdict: for task_name in out_bdict.keys(): for action_name in out_bdict[task_name].keys(): out_dict[task_name][action_name].extend( out_bdict[task_name][action_name] ) # Calculate average loss if dataloader.is_learnable: for task_name in uid_dict.keys(): if not isinstance(loss_dict[task_name], list): loss_dict[task_name] /= len(uid_dict[task_name]) res = { "uids": uid_dict, "golds": gold_dict, "probs": prob_dict, "losses": loss_dict, } if return_action_outputs: res["outputs"] = out_dict if return_preds: for task_name, prob in prob_dict.items(): pred_dict[task_name] = prob_to_pred(prob) res["preds"] = pred_dict return res @torch.no_grad() def score( self, dataloaders: Union[EmmentalDataLoader, List[EmmentalDataLoader]], return_average: bool = True, ) -> Dict[str, float]: """Score the data from dataloader. Args: dataloaders: The dataloaders to score. return_average: Whether to return average score. Returns: Score dict. """ self.eval() if not isinstance(dataloaders, list): dataloaders = [dataloaders] metric_score_dict = dict() if return_average: micro_score_dict: defaultdict = defaultdict(list) macro_score_dict: defaultdict = defaultdict(list) macro_loss_dict: defaultdict = defaultdict(list) for dataloader in dataloaders: if not dataloader.is_learnable: logger.warning( f"Dataloader {dataloader.data_name} doesn't have gold data, " f"continue..." ) continue predictions = self.predict(dataloader, return_preds=True) for task_name in predictions["uids"].keys(): metric_score = self.scorers[task_name].score( predictions["golds"][task_name], predictions["probs"][task_name], predictions["preds"][task_name], predictions["uids"][task_name], ) for metric_name, metric_value in metric_score.items(): identifier = construct_identifier( task_name, dataloader.data_name, dataloader.split, metric_name ) metric_score_dict[identifier] = metric_value # Store the loss identifier = construct_identifier( task_name, dataloader.data_name, dataloader.split, "loss" ) metric_score_dict[identifier] = np.mean( predictions["losses"][task_name] ) if return_average: # Collect average score identifier = construct_identifier( task_name, dataloader.data_name, dataloader.split, "average" ) metric_score_dict[identifier] = np.mean(list(metric_score.values())) micro_score_dict[dataloader.split].extend( list(metric_score.values()) ) macro_score_dict[dataloader.split].append( metric_score_dict[identifier] ) # Store the loss identifier = construct_identifier( task_name, dataloader.data_name, dataloader.split, "loss" ) macro_loss_dict[dataloader.split].append( metric_score_dict[identifier] ) if return_average: # Collect split-wise micro/macro average score for split in micro_score_dict.keys(): identifier = construct_identifier( "model", "all", split, "micro_average" ) metric_score_dict[identifier] = np.mean(micro_score_dict[split]) identifier = construct_identifier( "model", "all", split, "macro_average" ) metric_score_dict[identifier] = np.mean(macro_score_dict[split]) identifier = construct_identifier("model", "all", split, "loss") metric_score_dict[identifier] = np.mean(macro_loss_dict[split]) # Collect overall micro/macro average score/loss if len(micro_score_dict): identifier = construct_identifier( "model", "all", "all", "micro_average" ) metric_score_dict[identifier] = np.mean( list(itertools.chain.from_iterable(micro_score_dict.values())) ) if len(macro_score_dict): identifier = construct_identifier( "model", "all", "all", "macro_average" ) metric_score_dict[identifier] = np.mean( list(itertools.chain.from_iterable(macro_score_dict.values())) ) if len(macro_loss_dict): identifier = construct_identifier("model", "all", "all", "loss") metric_score_dict[identifier] = np.mean( list(itertools.chain.from_iterable(macro_loss_dict.values())) ) # TODO: have a better to handle global evaluation metric if Meta.config["learner_config"]["global_evaluation_metric_dict"]: global_evaluation_metric_dict = Meta.config["learner_config"][ "global_evaluation_metric_dict" ] for metric_name, metric in global_evaluation_metric_dict.items(): metric_score_dict[metric_name] = metric(metric_score_dict) return metric_score_dict def save(self, model_path: str) -> None: """Save the current model. Args: model_path: Saved model path. """ # Check existence of model saving directory and create if does not exist. if not os.path.exists(os.path.dirname(model_path)): os.makedirs(os.path.dirname(model_path)) state_dict = { "model": { "name": self.name, "module_pool": self.collect_state_dict(), # "task_names": self.task_names, # "task_flows": self.task_flows, # "loss_funcs": self.loss_funcs, # "output_funcs": self.output_funcs, # "scorers": self.scorers, } } try: torch.save(state_dict, model_path) except BaseException: logger.warning("Saving failed... continuing anyway.") if Meta.config["meta_config"]["verbose"]: logger.info(f"[{self.name}] Model saved in {model_path}") def load(self, model_path: str) -> None: """Load model state_dict from file and reinitialize the model weights. Args: model_path: Saved model path. """ if not os.path.exists(model_path): logger.error("Loading failed... Model does not exist.") try: checkpoint = torch.load(model_path, map_location=torch.device("cpu")) except BaseException: logger.error(f"Loading failed... Cannot load model from {model_path}") raise self.load_state_dict(checkpoint["model"]["module_pool"]) if Meta.config["meta_config"]["verbose"]: logger.info(f"[{self.name}] Model loaded from {model_path}") # Move model to specified device self._move_to_device() def collect_state_dict(self) -> Dict[str, Any]: """Collect the state dict.""" state_dict: Dict[str, Any] = defaultdict(list) for module_name, module in self.module_pool.items(): if hasattr(module, "module"): state_dict[module_name] = module.module.state_dict() # type: ignore else: state_dict[module_name] = module.state_dict() return state_dict def load_state_dict(self, state_dict: Dict[str, Any]) -> None: # type: ignore """Load the state dict. Args: state_dict: The state dict to load. """ for module_name, module_state_dict in state_dict.items(): if module_name in self.module_pool: if hasattr(self.module_pool[module_name], "module"): self.module_pool[module_name].module.load_state_dict( module_state_dict ) else: self.module_pool[module_name].load_state_dict(module_state_dict) else: logger.info(f"Missing {module_name} in module_pool, skip it..")
[((604, 631), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (621, 631), False, 'import logging\n'), ((14036, 14051), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (14049, 14051), False, 'import torch\n'), ((18511, 18526), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (18524, 18526), False, 'import torch\n'), ((1190, 1202), 'torch.nn.ModuleDict', 'ModuleDict', ([], {}), '()\n', (1200, 1202), False, 'from torch.nn import ModuleDict\n'), ((7563, 7624), 'emmental.utils.utils.move_to_device', 'move_to_device', (['X_dict', "Meta.config['model_config']['device']"], {}), "(X_dict, Meta.config['model_config']['device'])\n", (7577, 7624), False, 'from emmental.utils.utils import construct_identifier, move_to_device, prob_to_pred\n'), ((9861, 9878), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (9872, 9878), False, 'from collections import defaultdict\n'), ((9919, 9937), 'collections.defaultdict', 'defaultdict', (['float'], {}), '(float)\n', (9930, 9937), False, 'from collections import defaultdict\n'), ((9978, 9995), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (9989, 9995), False, 'from collections import defaultdict\n'), ((10036, 10053), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (10047, 10053), False, 'from collections import defaultdict\n'), ((14614, 14631), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (14625, 14631), False, 'from collections import defaultdict\n'), ((14697, 14714), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (14708, 14714), False, 'from collections import defaultdict\n'), ((14761, 14778), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (14772, 14778), False, 'from collections import defaultdict\n'), ((14844, 14861), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (14855, 14861), False, 'from collections import defaultdict\n'), ((15052, 15069), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (15063, 15069), False, 'from collections import defaultdict\n'), ((25629, 25646), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (25640, 25646), False, 'from collections import defaultdict\n'), ((2192, 2217), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (2215, 2217), False, 'import torch\n'), ((2926, 2970), 'torch.nn.DataParallel', 'torch.nn.DataParallel', (['self.module_pool[key]'], {}), '(self.module_pool[key])\n', (2947, 2970), False, 'import torch\n'), ((3134, 3354), 'torch.nn.parallel.DistributedDataParallel', 'torch.nn.parallel.DistributedDataParallel', (['self.module_pool[key]'], {'device_ids': "[Meta.config['learner_config']['local_rank']]", 'output_device': "Meta.config['learner_config']['local_rank']", 'find_unused_parameters': '(True)'}), "(self.module_pool[key], device_ids\n =[Meta.config['learner_config']['local_rank']], output_device=Meta.\n config['learner_config']['local_rank'], find_unused_parameters=True)\n", (3175, 3354), False, 'import torch\n'), ((19127, 19144), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (19138, 19144), False, 'from collections import defaultdict\n'), ((19189, 19206), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (19200, 19206), False, 'from collections import defaultdict\n'), ((19250, 19267), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (19261, 19267), False, 'from collections import defaultdict\n'), ((24456, 24490), 'torch.save', 'torch.save', (['state_dict', 'model_path'], {}), '(state_dict, model_path)\n', (24466, 24490), False, 'import torch\n'), ((24915, 24941), 'os.path.exists', 'os.path.exists', (['model_path'], {}), '(model_path)\n', (24929, 24941), False, 'import os\n'), ((10124, 10141), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (10135, 10141), False, 'from collections import defaultdict\n'), ((14970, 14987), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (14981, 14987), False, 'from collections import defaultdict\n'), ((18429, 18447), 'emmental.utils.utils.prob_to_pred', 'prob_to_pred', (['prob'], {}), '(prob)\n', (18441, 18447), False, 'from emmental.utils.utils import construct_identifier, move_to_device, prob_to_pred\n'), ((20325, 20404), 'emmental.utils.utils.construct_identifier', 'construct_identifier', (['task_name', 'dataloader.data_name', 'dataloader.split', '"""loss"""'], {}), "(task_name, dataloader.data_name, dataloader.split, 'loss')\n", (20345, 20404), False, 'from emmental.utils.utils import construct_identifier, move_to_device, prob_to_pred\n'), ((20491, 20532), 'numpy.mean', 'np.mean', (["predictions['losses'][task_name]"], {}), "(predictions['losses'][task_name])\n", (20498, 20532), True, 'import numpy as np\n'), ((21680, 21740), 'emmental.utils.utils.construct_identifier', 'construct_identifier', (['"""model"""', '"""all"""', 'split', '"""micro_average"""'], {}), "('model', 'all', split, 'micro_average')\n", (21700, 21740), False, 'from emmental.utils.utils import construct_identifier, move_to_device, prob_to_pred\n'), ((21827, 21859), 'numpy.mean', 'np.mean', (['micro_score_dict[split]'], {}), '(micro_score_dict[split])\n', (21834, 21859), True, 'import numpy as np\n'), ((21889, 21949), 'emmental.utils.utils.construct_identifier', 'construct_identifier', (['"""model"""', '"""all"""', 'split', '"""macro_average"""'], {}), "('model', 'all', split, 'macro_average')\n", (21909, 21949), False, 'from emmental.utils.utils import construct_identifier, move_to_device, prob_to_pred\n'), ((22036, 22068), 'numpy.mean', 'np.mean', (['macro_score_dict[split]'], {}), '(macro_score_dict[split])\n', (22043, 22068), True, 'import numpy as np\n'), ((22098, 22149), 'emmental.utils.utils.construct_identifier', 'construct_identifier', (['"""model"""', '"""all"""', 'split', '"""loss"""'], {}), "('model', 'all', split, 'loss')\n", (22118, 22149), False, 'from emmental.utils.utils import construct_identifier, move_to_device, prob_to_pred\n'), ((22198, 22229), 'numpy.mean', 'np.mean', (['macro_loss_dict[split]'], {}), '(macro_loss_dict[split])\n', (22205, 22229), True, 'import numpy as np\n'), ((22359, 22419), 'emmental.utils.utils.construct_identifier', 'construct_identifier', (['"""model"""', '"""all"""', '"""all"""', '"""micro_average"""'], {}), "('model', 'all', 'all', 'micro_average')\n", (22379, 22419), False, 'from emmental.utils.utils import construct_identifier, move_to_device, prob_to_pred\n'), ((22683, 22743), 'emmental.utils.utils.construct_identifier', 'construct_identifier', (['"""model"""', '"""all"""', '"""all"""', '"""macro_average"""'], {}), "('model', 'all', 'all', 'macro_average')\n", (22703, 22743), False, 'from emmental.utils.utils import construct_identifier, move_to_device, prob_to_pred\n'), ((23006, 23057), 'emmental.utils.utils.construct_identifier', 'construct_identifier', (['"""model"""', '"""all"""', '"""all"""', '"""loss"""'], {}), "('model', 'all', 'all', 'loss')\n", (23026, 23057), False, 'from emmental.utils.utils import construct_identifier, move_to_device, prob_to_pred\n'), ((23940, 23967), 'os.path.dirname', 'os.path.dirname', (['model_path'], {}), '(model_path)\n', (23955, 23967), False, 'import os\n'), ((23994, 24021), 'os.path.dirname', 'os.path.dirname', (['model_path'], {}), '(model_path)\n', (24009, 24021), False, 'import os\n'), ((2623, 2643), 'torch.device', 'torch.device', (['device'], {}), '(device)\n', (2635, 2643), False, 'import torch\n'), ((20066, 20154), 'emmental.utils.utils.construct_identifier', 'construct_identifier', (['task_name', 'dataloader.data_name', 'dataloader.split', 'metric_name'], {}), '(task_name, dataloader.data_name, dataloader.split,\n metric_name)\n', (20086, 20154), False, 'from emmental.utils.utils import construct_identifier, move_to_device, prob_to_pred\n'), ((20684, 20770), 'emmental.utils.utils.construct_identifier', 'construct_identifier', (['task_name', 'dataloader.data_name', 'dataloader.split', '"""average"""'], {}), "(task_name, dataloader.data_name, dataloader.split,\n 'average')\n", (20704, 20770), False, 'from emmental.utils.utils import construct_identifier, move_to_device, prob_to_pred\n'), ((21250, 21329), 'emmental.utils.utils.construct_identifier', 'construct_identifier', (['task_name', 'dataloader.data_name', 'dataloader.split', '"""loss"""'], {}), "(task_name, dataloader.data_name, dataloader.split, 'loss')\n", (21270, 21329), False, 'from emmental.utils.utils import construct_identifier, move_to_device, prob_to_pred\n'), ((25086, 25105), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (25098, 25105), False, 'import torch\n'), ((11523, 11596), 'emmental.utils.utils.move_to_device', 'move_to_device', (['Y_dict[label_name]', "Meta.config['model_config']['device']"], {}), "(Y_dict[label_name], Meta.config['model_config']['device'])\n", (11537, 11596), False, 'from emmental.utils.utils import construct_identifier, move_to_device, prob_to_pred\n'), ((11676, 11737), 'emmental.utils.utils.move_to_device', 'move_to_device', (['active', "Meta.config['model_config']['device']"], {}), "(active, Meta.config['model_config']['device'])\n", (11690, 11737), False, 'from emmental.utils.utils import construct_identifier, move_to_device, prob_to_pred\n'), ((11902, 11963), 'emmental.utils.utils.move_to_device', 'move_to_device', (['active', "Meta.config['model_config']['device']"], {}), "(active, Meta.config['model_config']['device'])\n", (11916, 11963), False, 'from emmental.utils.utils import construct_identifier, move_to_device, prob_to_pred\n'), ((12705, 12766), 'emmental.utils.utils.move_to_device', 'move_to_device', (['active', "Meta.config['model_config']['device']"], {}), "(active, Meta.config['model_config']['device'])\n", (12719, 12766), False, 'from emmental.utils.utils import construct_identifier, move_to_device, prob_to_pred\n')]
jangxx/OVRT_Soundpad
server/ws_server.py
2f9b2cd19421bc7b5586a3dcded2998d381ba688
import asyncio, json from config import Config from soundpad_manager import SoundpadManager from version import BRIDGE_VERSION import websockets from sanic.log import logger # yes I know that it's very lazy to run a separate WS and HTTP server, when both could be run on the same port # I don't like sanics WS implementation tho and this is just a quick and dirty project anyway, so there is no reason to get all that fancy class WebsocketServer: def __init__(self, config: Config, sp_manager: SoundpadManager): self._server = None self._config = config self._soundpad = sp_manager # ephemeral state self._state = { "edit_mode": False, "soundpad_connected": False, "version": BRIDGE_VERSION, } self._index_sockets = set() self._control_sockets = set() def start(self): port = self._config.get(["server", "ws_port"]) logger.info(f"Websocket server is running on port {port}") self._server = asyncio.get_event_loop().run_until_complete(websockets.serve(self.connHandler, "localhost", port)) async def stop(self): self._server.close() await self._server.wait_closed() async def changeState(self, key, value): self._state[key] = value await self.emitEvent("state-update", self._state) async def commandHandler(self, socket, command, params): if command == "register": if params["as"] == "index": self._index_sockets.add(socket) elif params["as"] == "control": self._control_sockets.add(socket) await self.emitEvent("settings-change", self._config.getExternalSerialized(), socket=socket, index_sockets=False, control_sockets=False) await self.emitEvent("state-update", self._state, socket=socket, index_sockets=False, control_sockets=False) elif command == "change-settings": if params["setting"] == [ "board", "rows" ] or params["setting"] == [ "board", "columns" ]: if not 1 <= params["value"] <= 10: return # invalid values are not allowed self._config.set(params["setting"], params["value"]) await self.emitEvent("settings-change", self._config.getExternalSerialized()) elif command == "set-edit-mode": self._state["edit_mode"] = params["value"] await self.emitEvent("state-update", self._state) elif command == "select-sound": if not 0 <= params['page'] <= 9 or not 0 <= params['row'] <= 9 or not 0 <= params['col'] <= 9: return # out of bounds if params['page'] == 0 and self._config.exists([ "sounds", f"{params['row']},{params['col']}" ]): self._config.delete([ "sounds", f"{params['row']},{params['col']}" ]) sound_index = f"{params['page']}:{params['row']},{params['col']}" self._config.set([ "sounds", sound_index ], params["sound"]) await self.emitEvent("settings-change", self._config.getExternalSerialized(), index_sockets=False) elif command == "play-sound": sound_id = params["sound"] self._soundpad.playSound(sound_id) elif command == "stop-sound": self._soundpad.stopSound() elif command == "pause-sound": self._soundpad.pauseSound() elif command == "log": if "message" in params: logger.info("Log: " + params["message"]) else: logger.info("Log: " + json.dumps(params)) async def emitEvent(self, event, data, socket=None, index_sockets=True, control_sockets=True): msg = json.dumps({ "type": "event", "event": event, "data": data }) if socket is not None: await socket.send(msg) if index_sockets: for socket in self._index_sockets: await socket.send(msg) if control_sockets: for socket in self._control_sockets: await socket.send(msg) async def connHandler(self, socket, path): print("Client connected") try: async for raw_msg in socket: try: msg = json.loads(raw_msg) except Exception as err: logger.error(f"Could not parse JSON: {repr(err)}") continue if not "type" in msg: continue if msg["type"] == "command": if not "command" in msg or not "params" in msg: continue try: await self.commandHandler(socket, msg["command"], msg["params"]) except Exception as e: # if we get garbage data just ignore print(f"Error in commandHandler: {msg['command']}({msg['params']}): {repr(e)}") pass except websockets.ConnectionClosedError: pass finally: if socket in self._index_sockets: self._index_sockets.discard(socket) if socket in self._control_sockets: self._control_sockets.discard(socket) print("Client disconnected")
[((886, 944), 'sanic.log.logger.info', 'logger.info', (['f"""Websocket server is running on port {port}"""'], {}), "(f'Websocket server is running on port {port}')\n", (897, 944), False, 'from sanic.log import logger\n'), ((3359, 3418), 'json.dumps', 'json.dumps', (["{'type': 'event', 'event': event, 'data': data}"], {}), "({'type': 'event', 'event': event, 'data': data})\n", (3369, 3418), False, 'import asyncio, json\n'), ((1007, 1060), 'websockets.serve', 'websockets.serve', (['self.connHandler', '"""localhost"""', 'port'], {}), "(self.connHandler, 'localhost', port)\n", (1023, 1060), False, 'import websockets\n'), ((963, 987), 'asyncio.get_event_loop', 'asyncio.get_event_loop', ([], {}), '()\n', (985, 987), False, 'import asyncio, json\n'), ((3797, 3816), 'json.loads', 'json.loads', (['raw_msg'], {}), '(raw_msg)\n', (3807, 3816), False, 'import asyncio, json\n'), ((3153, 3193), 'sanic.log.logger.info', 'logger.info', (["('Log: ' + params['message'])"], {}), "('Log: ' + params['message'])\n", (3164, 3193), False, 'from sanic.log import logger\n'), ((3231, 3249), 'json.dumps', 'json.dumps', (['params'], {}), '(params)\n', (3241, 3249), False, 'import asyncio, json\n')]
CityPulse/dynamic-bus-scheduling
tests/route_generator_test.py
7516283be5a374fe0a27715f4facee11c847f39f
#!/usr/local/bin/python # -*- coding: utf-8 -*- """ - LICENCE The MIT License (MIT) Copyright (c) 2016 Eleftherios Anagnostopoulos for Ericsson AB (EU FP7 CityPulse Project) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. - DESCRIPTION OF DOCUMENTS -- MongoDB Database Documents: address_document: { '_id', 'name', 'node_id', 'point': {'longitude', 'latitude'} } bus_line_document: { '_id', 'bus_line_id', 'bus_stops': [{'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}] } bus_stop_document: { '_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'} } bus_stop_waypoints_document: { '_id', 'starting_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, 'ending_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, 'waypoints': [[edge_object_id]] } bus_vehicle_document: { '_id', 'bus_vehicle_id', 'maximum_capacity', 'routes': [{'starting_datetime', 'ending_datetime', 'timetable_id'}] } detailed_bus_stop_waypoints_document: { '_id', 'starting_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, 'ending_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, 'waypoints': [[edge_document]] } edge_document: { '_id', 'starting_node': {'osm_id', 'point': {'longitude', 'latitude'}}, 'ending_node': {'osm_id', 'point': {'longitude', 'latitude'}}, 'max_speed', 'road_type', 'way_id', 'traffic_density' } node_document: { '_id', 'osm_id', 'tags', 'point': {'longitude', 'latitude'} } point_document: { '_id', 'osm_id', 'point': {'longitude', 'latitude'} } timetable_document: { '_id', 'timetable_id', 'bus_line_id', 'bus_vehicle_id', 'timetable_entries': [{ 'starting_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, 'ending_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, 'departure_datetime', 'arrival_datetime', 'number_of_onboarding_passengers', 'number_of_deboarding_passengers', 'number_of_current_passengers', 'route': { 'total_distance', 'total_time', 'node_osm_ids', 'points', 'edges', 'distances_from_starting_node', 'times_from_starting_node', 'distances_from_previous_node', 'times_from_previous_node' } }], 'travel_requests': [{ '_id', 'client_id', 'bus_line_id', 'starting_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, 'ending_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, 'departure_datetime', 'arrival_datetime', 'starting_timetable_entry_index', 'ending_timetable_entry_index' }] } traffic_event_document: { '_id', 'event_id', 'event_type', 'event_level', 'point': {'longitude', 'latitude'}, 'datetime' } travel_request_document: { '_id', 'client_id', 'bus_line_id', 'starting_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, 'ending_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, 'departure_datetime', 'arrival_datetime', 'starting_timetable_entry_index', 'ending_timetable_entry_index' } way_document: { '_id', 'osm_id', 'tags', 'references' } -- Route Generator Responses: get_route_between_two_bus_stops: { 'starting_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, 'ending_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, 'route': { 'total_distance', 'total_time', 'node_osm_ids', 'points', 'edges', 'distances_from_starting_node', 'times_from_starting_node', 'distances_from_previous_node', 'times_from_previous_node' } } get_route_between_multiple_bus_stops: [{ 'starting_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, 'ending_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, 'route': { 'total_distance', 'total_time', 'node_osm_ids', 'points', 'edges', 'distances_from_starting_node', 'times_from_starting_node', 'distances_from_previous_node', 'times_from_previous_node' } }] get_waypoints_between_two_bus_stops: { 'starting_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, 'ending_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, 'waypoints': [[{ '_id', 'starting_node': {'osm_id', 'point': {'longitude', 'latitude'}}, 'ending_node': {'osm_id', 'point': {'longitude', 'latitude'}}, 'max_speed', 'road_type', 'way_id', 'traffic_density' }]] } get_waypoints_between_multiple_bus_stops: [{ 'starting_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, 'ending_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, 'waypoints': [[{ '_id', 'starting_node': {'osm_id', 'point': {'longitude', 'latitude'}}, 'ending_node': {'osm_id', 'point': {'longitude', 'latitude'}}, 'max_speed', 'road_type', 'way_id', 'traffic_density' }]] }] """ import time import os import sys sys.path.append(os.path.join(os.path.dirname(__file__), '../')) from src.common.logger import log from src.common.parameters import testing_bus_stop_names from src.route_generator.route_generator_client import get_route_between_two_bus_stops, \ get_route_between_multiple_bus_stops, get_waypoints_between_two_bus_stops, get_waypoints_between_multiple_bus_stops __author__ = 'Eleftherios Anagnostopoulos' __email__ = '[email protected]' __credits__ = [ 'Azadeh Bararsani (Senior Researcher at Ericsson AB) - email: [email protected]' 'Aneta Vulgarakis Feljan (Senior Researcher at Ericsson AB) - email: [email protected]' ] def test_get_route_between_two_bus_stops(starting_bus_stop=None, ending_bus_stop=None, starting_bus_stop_name=None, ending_bus_stop_name=None): """ :param starting_bus_stop: bus_stop_document :param ending_bus_stop: bus_stop_document :param starting_bus_stop_name: string :param ending_bus_stop_name: string """ log(module_name='route_generator_test', log_type='INFO', log_message='get_route_between_two_bus_stops: starting') start_time = time.time() # response = { # 'starting_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, # 'ending_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, # 'route': { # 'total_distance', 'total_time', 'node_osm_ids', 'points', 'edges', # 'distances_from_starting_node', 'times_from_starting_node', # 'distances_from_previous_node', 'times_from_previous_node' # } # } response = get_route_between_two_bus_stops( starting_bus_stop=starting_bus_stop, ending_bus_stop=ending_bus_stop, starting_bus_stop_name=starting_bus_stop_name, ending_bus_stop_name=ending_bus_stop_name ) starting_bus_stop = response.get('starting_bus_stop') ending_bus_stop = response.get('ending_bus_stop') route = response.get('route') if route is not None: total_distance = route.get('total_distance') total_time = route.get('total_time') node_osm_ids = route.get('node_osm_ids') points = route.get('points') edges = route.get('edges') distances_from_starting_node = route.get('distances_from_starting_node') times_from_starting_node = route.get('times_from_starting_node') distances_from_previous_node = route.get('distances_from_previous_node') times_from_previous_node = route.get('times_from_previous_node') output = '\nstarting_bus_stop: ' + str(starting_bus_stop) + \ '\nending_bus_stop: ' + str(ending_bus_stop) + \ '\ntotal_distance: ' + str(total_distance) + \ '\ntotal_time: ' + str(total_time) + \ '\nnode_osm_ids: ' + str(node_osm_ids) + \ '\npoints: ' + str(points) + \ '\nedges: ' + str(edges) + \ '\ndistances_from_starting_node: ' + str(distances_from_starting_node) + \ '\ntimes_from_starting_node: ' + str(times_from_starting_node) + \ '\ndistances_from_previous_node: ' + str(distances_from_previous_node) + \ '\ntimes_from_previous_node: ' + str(times_from_previous_node) else: output = '\nstarting_bus_stop: ' + str(starting_bus_stop) + \ '\nending_bus_stop: ' + str(ending_bus_stop) + \ '\nroute: None' print output elapsed_time = time.time() - start_time time.sleep(0.1) log(module_name='route_generator_test', log_type='INFO', log_message='test_get_route_between_two_bus_stops: finished - elapsed_time = ' + str(elapsed_time) + ' sec') def test_get_route_between_multiple_bus_stops(bus_stops=None, bus_stop_names=None): """ :param bus_stops: [bus_stop_document] :param bus_stop_names: [string] """ log(module_name='route_generator_test', log_type='INFO', log_message='get_route_between_multiple_bus_stops: starting') start_time = time.time() route_distance = 0 route_traveling_time = 0 # response = [{ # 'starting_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, # 'ending_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, # 'route': { # 'total_distance', 'total_time', 'node_osm_ids', 'points', 'edges', # 'distances_from_starting_node', 'times_from_starting_node', # 'distances_from_previous_node', 'times_from_previous_node' # } # }] response = get_route_between_multiple_bus_stops( bus_stops=bus_stops, bus_stop_names=bus_stop_names ) for intermediate_response in response: starting_bus_stop = intermediate_response.get('starting_bus_stop') ending_bus_stop = intermediate_response.get('ending_bus_stop') intermediate_route = intermediate_response.get('route') if intermediate_route is not None: total_distance = intermediate_route.get('total_distance') route_distance += total_distance total_time = intermediate_route.get('total_time') route_traveling_time += total_time node_osm_ids = intermediate_route.get('node_osm_ids') points = intermediate_route.get('points') edges = intermediate_route.get('edges') distances_from_starting_node = intermediate_route.get('distances_from_starting_node') times_from_starting_node = intermediate_route.get('times_from_starting_node') distances_from_previous_node = intermediate_route.get('distances_from_previous_node') times_from_previous_node = intermediate_route.get('times_from_previous_node') output = '\nstarting_bus_stop: ' + str(starting_bus_stop) + \ '\nending_bus_stop: ' + str(ending_bus_stop) + \ '\ntotal_distance: ' + str(total_distance) + \ '\ntotal_time: ' + str(total_time) + \ '\nnode_osm_ids: ' + str(node_osm_ids) + \ '\npoints: ' + str(points) + \ '\nedges: ' + str(edges) + \ '\ndistances_from_starting_node: ' + str(distances_from_starting_node) + \ '\ntimes_from_starting_node: ' + str(times_from_starting_node) + \ '\ndistances_from_previous_node: ' + str(distances_from_previous_node) + \ '\ntimes_from_previous_node: ' + str(times_from_previous_node) else: output = '\nstarting_bus_stop: ' + str(starting_bus_stop) + \ '\nending_bus_stop: ' + str(ending_bus_stop) + \ '\nroute: None' print output route_average_speed = (route_distance / 1000) / (route_traveling_time / 3600) print '\nroute_distance: ' + str(route_distance / 1000) + \ ' - route_traveling_time: ' + str(route_traveling_time / 60) + \ ' - route_average_speed: ' + str(route_average_speed) elapsed_time = time.time() - start_time time.sleep(0.1) log(module_name='route_generator_test', log_type='INFO', log_message='test_get_route_between_multiple_bus_stops: finished - elapsed_time = ' + str(elapsed_time) + ' sec') def test_get_waypoints_between_two_bus_stops(starting_bus_stop=None, ending_bus_stop=None, starting_bus_stop_name=None, ending_bus_stop_name=None): """ :param starting_bus_stop: bus_stop_document :param ending_bus_stop: bus_stop_document :param starting_bus_stop_name: string :param ending_bus_stop_name: string """ log(module_name='route_generator_test', log_type='INFO', log_message='test_get_waypoints_between_two_bus_stops: starting') start_time = time.time() # response = { # 'starting_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, # 'ending_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, # 'waypoints': [[{ # '_id', 'starting_node': {'osm_id', 'point': {'longitude', 'latitude'}}, # 'ending_node': {'osm_id', 'point': {'longitude', 'latitude'}}, # 'max_speed', 'road_type', 'way_id', 'traffic_density' # }]] # } response = get_waypoints_between_two_bus_stops( starting_bus_stop=starting_bus_stop, ending_bus_stop=ending_bus_stop, starting_bus_stop_name=starting_bus_stop_name, ending_bus_stop_name=ending_bus_stop_name ) starting_bus_stop = response.get('starting_bus_stop') ending_bus_stop = response.get('ending_bus_stop') waypoints = response.get('waypoints') output = '\nstarting_bus_stop: ' + str(starting_bus_stop) + \ '\nending_bus_stop: ' + str(ending_bus_stop) print output for separate_waypoints in waypoints: print 'waypoints: ' + str(separate_waypoints) elapsed_time = time.time() - start_time time.sleep(0.1) log(module_name='route_generator_test', log_type='INFO', log_message='test_get_waypoints_between_two_bus_stops: finished - elapsed_time = ' + str(elapsed_time) + ' sec') def test_get_waypoints_between_multiple_bus_stops(bus_stops=None, bus_stop_names=None): """ :param bus_stops: [bus_stop_document] :param bus_stop_names: [string] """ log(module_name='route_generator_test', log_type='INFO', log_message='test_get_waypoints_between_multiple_bus_stops: starting') start_time = time.time() # response = [{ # 'starting_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, # 'ending_bus_stop': {'_id', 'osm_id', 'name', 'point': {'longitude', 'latitude'}}, # 'waypoints': [[{ # '_id', 'starting_node': {'osm_id', 'point': {'longitude', 'latitude'}}, # 'ending_node': {'osm_id', 'point': {'longitude', 'latitude'}}, # 'max_speed', 'road_type', 'way_id', 'traffic_density' # }]] # }] response = get_waypoints_between_multiple_bus_stops( bus_stops=bus_stops, bus_stop_names=bus_stop_names ) for intermediate_response in response: starting_bus_stop = intermediate_response.get('starting_bus_stop') ending_bus_stop = intermediate_response.get('ending_bus_stop') waypoints = intermediate_response.get('waypoints') output = '\nstarting_bus_stop: ' + str(starting_bus_stop) + \ '\nending_bus_stop: ' + str(ending_bus_stop) print output for separate_waypoints in waypoints: print 'waypoints: ' + str(separate_waypoints) elapsed_time = time.time() - start_time time.sleep(0.1) log(module_name='route_generator_test', log_type='INFO', log_message='test_get_waypoints_between_multiple_bus_stops: finished - elapsed_time = ' + str(elapsed_time) + ' sec') if __name__ == '__main__': selection = '' while True: selection = raw_input( '\n0. exit' '\n1. test_get_route_between_two_bus_stops' '\n2. test_get_route_between_multiple_bus_stops' '\n3. test_get_waypoints_between_two_bus_stops' '\n4. test_get_waypoints_between_multiple_bus_stops' '\nSelection: ' ) if selection == '0': break elif selection == '1': test_get_route_between_two_bus_stops( starting_bus_stop_name=testing_bus_stop_names[0], ending_bus_stop_name=testing_bus_stop_names[1] ) elif selection == '2': test_get_route_between_multiple_bus_stops( bus_stop_names=testing_bus_stop_names ) elif selection == '3': test_get_waypoints_between_two_bus_stops( starting_bus_stop_name=testing_bus_stop_names[0], ending_bus_stop_name=testing_bus_stop_names[1] ) elif selection == '4': test_get_waypoints_between_multiple_bus_stops( bus_stop_names=testing_bus_stop_names ) else: print 'Invalid input'
[]
gian1312/suchen
tensorforce/tests/test_model_save_restore.py
df863140fd8df1ac2e195cbdfa4756f09f962270
from __future__ import absolute_import from __future__ import print_function from __future__ import division import unittest import pytest from tensorforce import TensorForceError from tensorforce.core.networks import LayeredNetwork from tensorforce.models import DistributionModel from tensorforce.tests.minimal_test import MinimalTest from tensorforce.agents import PPOAgent from tensorforce.execution import Runner import tensorflow as tf import numpy as np from tensorforce.util import SavableComponent import os class SavableNetwork(LayeredNetwork, SavableComponent): """ Minimal implementation of a Network that can be saved and restored independently of the Model. """ def get_savable_variables(self): return super(SavableNetwork, self).get_variables(include_nontrainable=False) def _get_base_variable_scope(self): return self.apply.variable_scope_name def create_environment(spec): return MinimalTest(spec) def create_agent(environment, network_spec): return PPOAgent( update_mode=dict( unit='episodes', batch_size=4, frequency=4 ), memory=dict( type='latest', include_next_states=False, capacity=100 ), step_optimizer=dict( type='adam', learning_rate=1e-3 ), subsampling_fraction=0.3, optimization_steps=20, states=environment.states, actions=environment.actions, network=network_spec ) class TestModelSaveRestore(unittest.TestCase): @pytest.fixture(autouse=True) def initdir(self, tmpdir): tmpdir.chdir() self._tmp_dir_path = str(tmpdir) print("Using %s" % (self._tmp_dir_path, )) def test_save_restore(self): environment_spec = {"float": ()} environment = create_environment(environment_spec) network_spec = [ dict(type='dense', size=32) ] agent = create_agent(environment, network_spec) runner = Runner(agent=agent, environment=environment) runner.run(episodes=100) model_values = agent.model.session.run(agent.model.get_variables( include_submodules=True, include_nontrainable=False )) save_path = agent.model.save(directory=self._tmp_dir_path + "/model") print("Saved at: %s" % (save_path,)) runner.close() agent = create_agent(environment, network_spec) agent.model.restore(directory="", file=save_path) restored_model_values = agent.model.session.run(agent.model.get_variables( include_submodules=True, include_nontrainable=False )) assert len(model_values) == len(restored_model_values) assert all([np.array_equal(v1, v2) for v1, v2 in zip(model_values, restored_model_values)]) agent.close() def test_save_network(self): """ Test to validate that calls to save and restore of a SavableComponent successfully save and restore the component's state. """ environment_spec = {"float": ()} environment = create_environment(environment_spec) network_spec = dict( type=SavableNetwork, layers=[dict(type='dense', size=1)] ) agent = create_agent(environment, network_spec) assert isinstance(agent.model.network, SavableComponent) runner = Runner(agent=agent, environment=environment) runner.run(episodes=100) network_values = agent.model.session.run(agent.model.network.get_variables()) distribution = next(iter(agent.model.distributions.values())) distribution_values = agent.model.session.run(distribution.get_variables()) save_path = self._tmp_dir_path + "/network" agent.model.save_component(component_name=DistributionModel.COMPONENT_NETWORK, save_path=save_path) runner.close() assert os.path.isfile(save_path + ".data-00000-of-00001") assert os.path.isfile(save_path + ".index") agent = create_agent(environment, network_spec) agent.model.restore_component(component_name=DistributionModel.COMPONENT_NETWORK, save_path=save_path) # Ensure only the network variables are loaded restored_network_values = agent.model.session.run(agent.model.network.get_variables(include_nontrainable=True)) distribution = next(iter(agent.model.distributions.values())) restored_distribution_values = agent.model.session.run(distribution.get_variables()) assert len(restored_network_values) == len(network_values) assert all([np.array_equal(v1, v2) for v1, v2 in zip(network_values, restored_network_values)]) assert len(restored_distribution_values) == len(distribution_values) assert not all([np.array_equal(v1, v2) for v1, v2 in zip(distribution_values, restored_distribution_values)]) agent.close() environment.close() def test_pretrain_network(self): """ Simulates training outside of Tensorforce and then loading the parameters in the agent's network. """ environment_spec = {"float": ()} environment = create_environment(environment_spec) size = environment.states["shape"] output_size = 1 save_path = self._tmp_dir_path + "/network" g = tf.Graph() with g.as_default(): x = tf.placeholder(dtype=environment.states["type"], shape=[None, size]) layer = tf.layers.Dense(units=output_size) y = layer(x) y_ = tf.placeholder(dtype=environment.states["type"], shape=[None, output_size]) loss = tf.losses.mean_squared_error(y_, y) optimizer = tf.train.AdamOptimizer(learning_rate=0.1) train_step = optimizer.minimize(loss) batch_size = 64 with tf.Session(graph=g) as sess: sess.run(tf.global_variables_initializer()) for epoch in range(100): batch = np.random.random([batch_size, size]) correct = np.ones(shape=[batch.shape[0], output_size]) loss_value, _ = sess.run([loss, train_step], {x: batch, y_: correct}) if epoch % 10 == 0: print("epoch %d: %f" % (epoch, loss_value)) var_map = { "dense0/apply/linear/apply/W:0": layer.kernel, "dense0/apply/linear/apply/b:0": layer.bias } saver = tf.train.Saver(var_list=var_map) saver.save(sess=sess, write_meta_graph=False, save_path=save_path) network_spec = dict( type=SavableNetwork, layers=[dict(type='dense', size=output_size)], ) agent = create_agent(environment, network_spec) agent.model.restore_component(component_name=agent.model.COMPONENT_NETWORK, save_path=save_path) agent.close() def test_non_savable_component(self): environment_spec = {"float": ()} environment = create_environment(environment_spec) network_spec = [dict(type='dense', size=32)] agent = create_agent(environment, network_spec) expected_message = "Component network must implement SavableComponent but is " with pytest.raises(TensorForceError) as excinfo: agent.model.restore_component(component_name="network", save_path=self._tmp_dir_path + "/network") assert expected_message in str(excinfo.value) with pytest.raises(TensorForceError) as excinfo: agent.model.save_component(component_name="network", save_path=self._tmp_dir_path + "/network") assert expected_message in str(excinfo.value) with pytest.raises(TensorForceError) as excinfo: agent.model.restore_component(component_name="non-existent", save_path=self._tmp_dir_path + "/network") assert "Component non-existent must implement SavableComponent but is None" == str(excinfo.value) agent.close()
[((944, 961), 'tensorforce.tests.minimal_test.MinimalTest', 'MinimalTest', (['spec'], {}), '(spec)\n', (955, 961), False, 'from tensorforce.tests.minimal_test import MinimalTest\n'), ((1591, 1619), 'pytest.fixture', 'pytest.fixture', ([], {'autouse': '(True)'}), '(autouse=True)\n', (1605, 1619), False, 'import pytest\n'), ((2048, 2092), 'tensorforce.execution.Runner', 'Runner', ([], {'agent': 'agent', 'environment': 'environment'}), '(agent=agent, environment=environment)\n', (2054, 2092), False, 'from tensorforce.execution import Runner\n'), ((3462, 3506), 'tensorforce.execution.Runner', 'Runner', ([], {'agent': 'agent', 'environment': 'environment'}), '(agent=agent, environment=environment)\n', (3468, 3506), False, 'from tensorforce.execution import Runner\n'), ((3980, 4030), 'os.path.isfile', 'os.path.isfile', (["(save_path + '.data-00000-of-00001')"], {}), "(save_path + '.data-00000-of-00001')\n", (3994, 4030), False, 'import os\n'), ((4046, 4082), 'os.path.isfile', 'os.path.isfile', (["(save_path + '.index')"], {}), "(save_path + '.index')\n", (4060, 4082), False, 'import os\n'), ((5409, 5419), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (5417, 5419), True, 'import tensorflow as tf\n'), ((5465, 5533), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': "environment.states['type']", 'shape': '[None, size]'}), "(dtype=environment.states['type'], shape=[None, size])\n", (5479, 5533), True, 'import tensorflow as tf\n'), ((5554, 5588), 'tensorflow.layers.Dense', 'tf.layers.Dense', ([], {'units': 'output_size'}), '(units=output_size)\n', (5569, 5588), True, 'import tensorflow as tf\n'), ((5631, 5706), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': "environment.states['type']", 'shape': '[None, output_size]'}), "(dtype=environment.states['type'], shape=[None, output_size])\n", (5645, 5706), True, 'import tensorflow as tf\n'), ((5726, 5761), 'tensorflow.losses.mean_squared_error', 'tf.losses.mean_squared_error', (['y_', 'y'], {}), '(y_, y)\n', (5754, 5761), True, 'import tensorflow as tf\n'), ((5786, 5827), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', ([], {'learning_rate': '(0.1)'}), '(learning_rate=0.1)\n', (5808, 5827), True, 'import tensorflow as tf\n'), ((7376, 7407), 'pytest.raises', 'pytest.raises', (['TensorForceError'], {}), '(TensorForceError)\n', (7389, 7407), False, 'import pytest\n'), ((7599, 7630), 'pytest.raises', 'pytest.raises', (['TensorForceError'], {}), '(TensorForceError)\n', (7612, 7630), False, 'import pytest\n'), ((7819, 7850), 'pytest.raises', 'pytest.raises', (['TensorForceError'], {}), '(TensorForceError)\n', (7832, 7850), False, 'import pytest\n'), ((2802, 2824), 'numpy.array_equal', 'np.array_equal', (['v1', 'v2'], {}), '(v1, v2)\n', (2816, 2824), True, 'import numpy as np\n'), ((4678, 4700), 'numpy.array_equal', 'np.array_equal', (['v1', 'v2'], {}), '(v1, v2)\n', (4692, 4700), True, 'import numpy as np\n'), ((5923, 5942), 'tensorflow.Session', 'tf.Session', ([], {'graph': 'g'}), '(graph=g)\n', (5933, 5942), True, 'import tensorflow as tf\n'), ((6592, 6624), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {'var_list': 'var_map'}), '(var_list=var_map)\n', (6606, 6624), True, 'import tensorflow as tf\n'), ((4863, 4885), 'numpy.array_equal', 'np.array_equal', (['v1', 'v2'], {}), '(v1, v2)\n', (4877, 4885), True, 'import numpy as np\n'), ((5977, 6010), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (6008, 6010), True, 'import tensorflow as tf\n'), ((6081, 6117), 'numpy.random.random', 'np.random.random', (['[batch_size, size]'], {}), '([batch_size, size])\n', (6097, 6117), True, 'import numpy as np\n'), ((6148, 6192), 'numpy.ones', 'np.ones', ([], {'shape': '[batch.shape[0], output_size]'}), '(shape=[batch.shape[0], output_size])\n', (6155, 6192), True, 'import numpy as np\n')]
lihuiba/SoftSAN
guid.py
1b8ab2cae92b7aac34211909b27d4ebe595275d7
import random import messages_pb2 as msg def assign(x, y): x.a=y.a; x.b=y.b; x.c=y.c; x.d=y.d def isZero(x): return (x.a==0 and x.b==0 and x.c==0 and x.d==0) def setZero(x): x.a=0; x.b=0; x.c=0; x.d=0 def toStr(x): return "%08x-%08x-%08x-%08x" % (x.a, x.b, x.c, x.d) def toTuple(x): return (x.a, x.b, x.c, x.d) def fromTuple(x): ret=msg.Guid() ret.a=x[0] ret.b=x[1] ret.c=x[2] ret.d=x[3] return ret def generate(guid=None): ret=guid or msg.Guid() ret.a=random.randint(0, 0xffffffff) ret.b=random.randint(0, 0xffffffff) ret.c=random.randint(0, 0xffffffff) ret.d=random.randint(0, 0xffffffff) return ret def fromStr(s): ret=msg.Guid() s=s.split('-') ret.a=int(s[0], 16) ret.b=int(s[1], 16) ret.c=int(s[2], 16) ret.d=int(s[3], 16) return ret
[((363, 373), 'messages_pb2.Guid', 'msg.Guid', ([], {}), '()\n', (371, 373), True, 'import messages_pb2 as msg\n'), ((512, 541), 'random.randint', 'random.randint', (['(0)', '(4294967295)'], {}), '(0, 4294967295)\n', (526, 541), False, 'import random\n'), ((552, 581), 'random.randint', 'random.randint', (['(0)', '(4294967295)'], {}), '(0, 4294967295)\n', (566, 581), False, 'import random\n'), ((592, 621), 'random.randint', 'random.randint', (['(0)', '(4294967295)'], {}), '(0, 4294967295)\n', (606, 621), False, 'import random\n'), ((632, 661), 'random.randint', 'random.randint', (['(0)', '(4294967295)'], {}), '(0, 4294967295)\n', (646, 661), False, 'import random\n'), ((702, 712), 'messages_pb2.Guid', 'msg.Guid', ([], {}), '()\n', (710, 712), True, 'import messages_pb2 as msg\n'), ((491, 501), 'messages_pb2.Guid', 'msg.Guid', ([], {}), '()\n', (499, 501), True, 'import messages_pb2 as msg\n')]
kronael/mango-explorer
mango/__init__.py
6292c089c2a3d1ff2cf0b50b815849451a50ec39
# In --strict mode, mypy complains about imports unless they're done this way. # # It complains 'Module has no attribute ABC' or 'Module "mango" does not explicitly export # attribute "XYZ"; implicit reexport disabled'. We could dial that back by using the # --implicit-reexport parameter, but let's keep things strict. # # Each import then *must* be of the form `from .file import X as X`. (Until/unless there's # a better way.) # from .account import Account as Account from .account import AccountSlot as AccountSlot from .accountflags import AccountFlags as AccountFlags from .accountinfo import AccountInfo as AccountInfo from .accountinfoconverter import build_account_info_converter as build_account_info_converter from .accountinstrumentvalues import AccountInstrumentValues as AccountInstrumentValues from .accountinstrumentvalues import PricedAccountInstrumentValues as PricedAccountInstrumentValues from .accountliquidator import AccountLiquidator as AccountLiquidator from .accountliquidator import NullAccountLiquidator as NullAccountLiquidator from .accountscout import AccountScout as AccountScout from .accountscout import ScoutReport as ScoutReport from .addressableaccount import AddressableAccount as AddressableAccount from .arguments import parse_args as parse_args from .arguments import output as output from .balancesheet import BalanceSheet as BalanceSheet from .cache import Cache as Cache from .cache import MarketCache as MarketCache from .cache import PerpMarketCache as PerpMarketCache from .cache import PriceCache as PriceCache from .cache import RootBankCache as RootBankCache from .client import BetterClient as BetterClient from .client import BlockhashNotFoundException as BlockhashNotFoundException from .client import ClientException as ClientException from .client import CompoundException as CompoundException from .client import CompoundRPCCaller as CompoundRPCCaller from .client import FailedToFetchBlockhashException as FailedToFetchBlockhashException from .client import NodeIsBehindException as NodeIsBehindException from .client import RateLimitException as RateLimitException from .client import RPCCaller as RPCCaller from .client import SlotHolder as SlotHolder from .client import TooManyRequestsRateLimitException as TooManyRequestsRateLimitException from .client import TooMuchBandwidthRateLimitException as TooMuchBandwidthRateLimitException from .client import TransactionException as TransactionException from .combinableinstructions import CombinableInstructions as CombinableInstructions from .constants import MangoConstants as MangoConstants from .constants import DATA_PATH as DATA_PATH from .constants import SOL_DECIMAL_DIVISOR as SOL_DECIMAL_DIVISOR from .constants import SOL_DECIMALS as SOL_DECIMALS from .constants import SOL_MINT_ADDRESS as SOL_MINT_ADDRESS from .constants import SYSTEM_PROGRAM_ADDRESS as SYSTEM_PROGRAM_ADDRESS from .constants import WARNING_DISCLAIMER_TEXT as WARNING_DISCLAIMER_TEXT from .constants import version as version from .context import Context as Context from .contextbuilder import ContextBuilder as ContextBuilder from .createmarketoperations import create_market_instruction_builder as create_market_instruction_builder from .createmarketoperations import create_market_operations as create_market_operations from .encoding import decode_binary as decode_binary from .encoding import encode_binary as encode_binary from .encoding import encode_key as encode_key from .encoding import encode_int as encode_int from .ensuremarketloaded import ensure_market_loaded as ensure_market_loaded from .ensuremarketloaded import load_market_by_symbol as load_market_by_symbol from .group import Group as Group from .group import GroupSlot as GroupSlot from .group import GroupSlotPerpMarket as GroupSlotPerpMarket from .group import GroupSlotSpotMarket as GroupSlotSpotMarket from .healthcheck import HealthCheck as HealthCheck from .idl import IdlParser as IdlParser from .idl import lazy_load_cached_idl_parser as lazy_load_cached_idl_parser from .idsjsonmarketlookup import IdsJsonMarketLookup as IdsJsonMarketLookup from .inventory import Inventory as Inventory from .inventory import PerpInventoryAccountWatcher as PerpInventoryAccountWatcher from .inventory import SpotInventoryAccountWatcher as SpotInventoryAccountWatcher from .instructions import build_cancel_perp_order_instructions as build_cancel_perp_order_instructions from .instructions import build_cancel_spot_order_instructions as build_cancel_spot_order_instructions from .instructions import build_close_spl_account_instructions as build_close_spl_account_instructions from .instructions import build_create_account_instructions as build_create_account_instructions from .instructions import build_create_associated_spl_account_instructions as build_create_associated_spl_account_instructions from .instructions import build_create_solana_account_instructions as build_create_solana_account_instructions from .instructions import build_create_spl_account_instructions as build_create_spl_account_instructions from .instructions import build_create_serum_open_orders_instructions as build_create_serum_open_orders_instructions from .instructions import build_deposit_instructions as build_deposit_instructions from .instructions import build_faucet_airdrop_instructions as build_faucet_airdrop_instructions from .instructions import build_mango_consume_events_instructions as build_mango_consume_events_instructions from .instructions import build_place_perp_order_instructions as build_place_perp_order_instructions from .instructions import build_redeem_accrued_mango_instructions as build_redeem_accrued_mango_instructions from .instructions import build_serum_consume_events_instructions as build_serum_consume_events_instructions from .instructions import build_serum_place_order_instructions as build_serum_place_order_instructions from .instructions import build_serum_settle_instructions as build_serum_settle_instructions from .instructions import build_spot_place_order_instructions as build_spot_place_order_instructions from .instructions import build_transfer_spl_tokens_instructions as build_transfer_spl_tokens_instructions from .instructions import build_withdraw_instructions as build_withdraw_instructions from .instructionreporter import InstructionReporter as InstructionReporter from .instructionreporter import SerumInstructionReporter as SerumInstructionReporter from .instructionreporter import MangoInstructionReporter as MangoInstructionReporter from .instructionreporter import CompoundInstructionReporter as CompoundInstructionReporter from .instructiontype import InstructionType as InstructionType from .instrumentlookup import InstrumentLookup as InstrumentLookup from .instrumentlookup import NullInstrumentLookup as NullInstrumentLookup from .instrumentlookup import CompoundInstrumentLookup as CompoundInstrumentLookup from .instrumentlookup import IdsJsonTokenLookup as IdsJsonTokenLookup from .instrumentlookup import NonSPLInstrumentLookup as NonSPLInstrumentLookup from .instrumentlookup import SPLTokenLookup as SPLTokenLookup from .instrumentvalue import InstrumentValue as InstrumentValue from .liquidatablereport import LiquidatableState as LiquidatableState from .liquidatablereport import LiquidatableReport as LiquidatableReport from .liquidationevent import LiquidationEvent as LiquidationEvent from .liquidationprocessor import LiquidationProcessor as LiquidationProcessor from .liquidationprocessor import LiquidationProcessorState as LiquidationProcessorState from .loadedmarket import LoadedMarket as LoadedMarket from .logmessages import expand_log_messages as expand_log_messages from .lotsizeconverter import LotSizeConverter as LotSizeConverter from .mangoinstruction import MangoInstruction as MangoInstruction from .lotsizeconverter import NullLotSizeConverter as NullLotSizeConverter from .market import DryRunMarket as DryRunMarket from .market import InventorySource as InventorySource from .market import Market as Market from .marketlookup import CompoundMarketLookup as CompoundMarketLookup from .marketlookup import MarketLookup as MarketLookup from .marketlookup import NullMarketLookup as NullMarketLookup from .marketoperations import MarketInstructionBuilder as MarketInstructionBuilder from .marketoperations import MarketOperations as MarketOperations from .marketoperations import NullMarketInstructionBuilder as NullMarketInstructionBuilder from .marketoperations import NullMarketOperations as NullMarketOperations from .metadata import Metadata as Metadata from .modelstate import ModelState as ModelState from .notification import CompoundNotificationTarget as CompoundNotificationTarget from .notification import ConsoleNotificationTarget as ConsoleNotificationTarget from .notification import CsvFileNotificationTarget as CsvFileNotificationTarget from .notification import DiscordNotificationTarget as DiscordNotificationTarget from .notification import FilteringNotificationTarget as FilteringNotificationTarget from .notification import MailjetNotificationTarget as MailjetNotificationTarget from .notification import NotificationHandler as NotificationHandler from .notification import NotificationTarget as NotificationTarget from .notification import TelegramNotificationTarget as TelegramNotificationTarget from .notification import parse_notification_target as parse_notification_target from .observables import CaptureFirstItem as CaptureFirstItem from .observables import CollectingObserverSubscriber as CollectingObserverSubscriber from .observables import DisposePropagator as DisposePropagator from .observables import DisposeWrapper as DisposeWrapper from .observables import EventSource as EventSource from .observables import FunctionObserver as FunctionObserver from .observables import LatestItemObserverSubscriber as LatestItemObserverSubscriber from .observables import NullObserverSubscriber as NullObserverSubscriber from .observables import PrintingObserverSubscriber as PrintingObserverSubscriber from .observables import TimestampedPrintingObserverSubscriber as TimestampedPrintingObserverSubscriber from .observables import create_backpressure_skipping_observer as create_backpressure_skipping_observer from .observables import debug_print_item as debug_print_item from .observables import log_subscription_error as log_subscription_error from .observables import observable_pipeline_error_reporter as observable_pipeline_error_reporter from .openorders import OpenOrders as OpenOrders from .oracle import Oracle as Oracle from .oracle import OracleProvider as OracleProvider from .oracle import OracleSource as OracleSource from .oracle import Price as Price from .oracle import SupportedOracleFeature as SupportedOracleFeature from .orderbookside import OrderBookSideType as OrderBookSideType from .orderbookside import PerpOrderBookSide as PerpOrderBookSide from .orders import Order as Order from .orders import OrderType as OrderType from .orders import OrderBook as OrderBook from .orders import Side as Side from .ownedinstrumentvalue import OwnedInstrumentValue as OwnedInstrumentValue from .oraclefactory import create_oracle_provider as create_oracle_provider from .parse_account_info_to_orders import parse_account_info_to_orders as parse_account_info_to_orders from .perpaccount import PerpAccount as PerpAccount from .perpeventqueue import PerpEvent as PerpEvent from .perpeventqueue import PerpEventQueue as PerpEventQueue from .perpeventqueue import PerpFillEvent as PerpFillEvent from .perpeventqueue import PerpOutEvent as PerpOutEvent from .perpeventqueue import PerpUnknownEvent as PerpUnknownEvent from .perpeventqueue import UnseenPerpEventChangesTracker as UnseenPerpEventChangesTracker from .perpmarket import PerpMarket as PerpMarket from .perpmarket import PerpMarketStub as PerpMarketStub from .perpmarketdetails import PerpMarketDetails as PerpMarketDetails from .perpmarketoperations import PerpMarketInstructionBuilder as PerpMarketInstructionBuilder from .perpmarketoperations import PerpMarketOperations as PerpMarketOperations from .perpopenorders import PerpOpenOrders as PerpOpenOrders from .placedorder import PlacedOrder as PlacedOrder from .placedorder import PlacedOrdersContainer as PlacedOrdersContainer from .publickey import encode_public_key_for_sorting as encode_public_key_for_sorting from .reconnectingwebsocket import ReconnectingWebsocket as ReconnectingWebsocket from .retrier import RetryWithPauses as RetryWithPauses from .retrier import retry_context as retry_context from .serumeventqueue import SerumEventQueue as SerumEventQueue from .serumeventqueue import UnseenSerumEventChangesTracker as UnseenSerumEventChangesTracker from .serummarket import SerumMarket as SerumMarket from .serummarket import SerumMarketStub as SerumMarketStub from .serummarketlookup import SerumMarketLookup as SerumMarketLookup from .serummarketoperations import SerumMarketInstructionBuilder as SerumMarketInstructionBuilder from .serummarketoperations import SerumMarketOperations as SerumMarketOperations from .spotmarket import SpotMarket as SpotMarket from .spotmarket import SpotMarketStub as SpotMarketStub from .spotmarketoperations import SpotMarketInstructionBuilder as SpotMarketInstructionBuilder from .spotmarketoperations import SpotMarketOperations as SpotMarketOperations from .text import indent_collection_as_str as indent_collection_as_str from .text import indent_item_by as indent_item_by from .token import Instrument as Instrument from .token import SolToken as SolToken from .token import Token as Token from .tokenaccount import TokenAccount as TokenAccount from .tokenbank import BankBalances as BankBalances from .tokenbank import InterestRates as InterestRates from .tokenbank import NodeBank as NodeBank from .tokenbank import RootBank as RootBank from .tokenbank import TokenBank as TokenBank from .tradeexecutor import ImmediateTradeExecutor as ImmediateTradeExecutor from .tradeexecutor import NullTradeExecutor as NullTradeExecutor from .tradeexecutor import TradeExecutor as TradeExecutor from .tradehistory import TradeHistory as TradeHistory from .transactionscout import TransactionScout as TransactionScout from .transactionscout import fetch_all_recent_transaction_signatures as fetch_all_recent_transaction_signatures from .transactionscout import mango_instruction_from_response as mango_instruction_from_response from .valuation import AccountValuation as AccountValuation from .valuation import TokenValuation as TokenValuation from .valuation import Valuation as Valuation from .version import Version as Version from .wallet import Wallet as Wallet from .walletbalancer import FilterSmallChanges as FilterSmallChanges from .walletbalancer import FixedTargetBalance as FixedTargetBalance from .walletbalancer import LiveAccountBalancer as LiveAccountBalancer from .walletbalancer import LiveWalletBalancer as LiveWalletBalancer from .walletbalancer import NullWalletBalancer as NullWalletBalancer from .walletbalancer import PercentageTargetBalance as PercentageTargetBalance from .walletbalancer import TargetBalance as TargetBalance from .walletbalancer import WalletBalancer as WalletBalancer from .walletbalancer import calculate_required_balance_changes as calculate_required_balance_changes from .walletbalancer import parse_fixed_target_balance as parse_fixed_target_balance from .walletbalancer import parse_target_balance as parse_target_balance from .walletbalancer import sort_changes_for_trades as sort_changes_for_trades from .watcher import LamdaUpdateWatcher as LamdaUpdateWatcher from .watcher import ManualUpdateWatcher as ManualUpdateWatcher from .watcher import Watcher as Watcher from .watchers import build_group_watcher as build_group_watcher from .watchers import build_account_watcher as build_account_watcher from .watchers import build_cache_watcher as build_cache_watcher from .watchers import build_spot_open_orders_watcher as build_spot_open_orders_watcher from .watchers import build_serum_open_orders_watcher as build_serum_open_orders_watcher from .watchers import build_perp_open_orders_watcher as build_perp_open_orders_watcher from .watchers import build_price_watcher as build_price_watcher from .watchers import build_serum_inventory_watcher as build_serum_inventory_watcher from .watchers import build_orderbook_watcher as build_orderbook_watcher from .websocketsubscription import IndividualWebSocketSubscriptionManager as IndividualWebSocketSubscriptionManager from .websocketsubscription import SharedWebSocketSubscriptionManager as SharedWebSocketSubscriptionManager from .websocketsubscription import WebSocketAccountSubscription as WebSocketAccountSubscription from .websocketsubscription import WebSocketLogSubscription as WebSocketLogSubscription from .websocketsubscription import WebSocketProgramSubscription as WebSocketProgramSubscription from .websocketsubscription import WebSocketSubscription as WebSocketSubscription from .websocketsubscription import WebSocketSubscriptionManager as WebSocketSubscriptionManager from .layouts import layouts import decimal # Increased precision from 18 to 36 because for a decimal like: # val = Decimal("17436036573.2030800") # # The following rounding operations would both throw decimal.InvalidOperation: # val.quantize(Decimal('.000000001')) # round(val, 9) decimal.getcontext().prec = 36
[((17390, 17410), 'decimal.getcontext', 'decimal.getcontext', ([], {}), '()\n', (17408, 17410), False, 'import decimal\n')]
MariannaJan/LettersOfSherlock
letters_of_sherlock.py
cf356c002078d4e0e6bcf1a669bc8b358680460f
import lettercounter as lc #Books form Gutenberg Project: https://www.gutenberg.org/ebooks/author/69 lc.showPlots(text_directory_pathname="./Books/", title="Sir Arthur Conan Doyle's favourite letters", legend_label_main="in Doyle's stories")
[((103, 253), 'lettercounter.showPlots', 'lc.showPlots', ([], {'text_directory_pathname': '"""./Books/"""', 'title': '"""Sir Arthur Conan Doyle\'s favourite letters"""', 'legend_label_main': '"""in Doyle\'s stories"""'}), '(text_directory_pathname=\'./Books/\', title=\n "Sir Arthur Conan Doyle\'s favourite letters", legend_label_main=\n "in Doyle\'s stories")\n', (115, 253), True, 'import lettercounter as lc\n')]
mwaitzman/GOF2BountyBot
BB/bbObjects/items/bbTurret.py
b66026228b752b07ac4734ca74b60730dbd74995
from .bbItem import bbItem from ...bbConfig import bbData class bbTurret(bbItem): dps = 0.0 def __init__(self, name, aliases, dps=0.0, value=0, wiki="", manufacturer="", icon="", emoji=""): super(bbTurret, self).__init__(name, aliases, value=value, wiki=wiki, manufacturer=manufacturer, icon=icon, emoji=emoji) self.dps = dps def statsStringShort(self): return "*Dps: " + str(self.dps) + "*" def getType(self): return bbTurret def fromDict(turretDict): if turretDict["builtIn"]: return bbData.builtInTurretObjs[turretDict["name"]] else: return bbTurret(turretDict["name"], turretDict["aliases"], dps=turretDict["dps"], value=turretDict["value"], wiki=turretDict["wiki"] if "wiki" in turretDict else "", manufacturer=turretDict["manufacturer"] if "manufacturer" in turretDict else "", icon=turretDict["icon"] if "icon" in turretDict else bbData.rocketIcon, emoji=turretDict["emoji"] if "emoji" in turretDict else "")
[]
s-maibuecher/what_can_i_cook
what_can_i_cook/urls.py
07d0eb1e1862fad299477b800654e895d7f8829a
from django.urls import path from what_can_i_cook.views import WCICFilterView, WCICResultView app_name = "wcic" urlpatterns = [ path("", WCICFilterView.as_view(), name="wcic-start"), path("results/", WCICResultView.as_view(), name="wcic-results"), ]
[((145, 169), 'what_can_i_cook.views.WCICFilterView.as_view', 'WCICFilterView.as_view', ([], {}), '()\n', (167, 169), False, 'from what_can_i_cook.views import WCICFilterView, WCICResultView\n'), ((212, 236), 'what_can_i_cook.views.WCICResultView.as_view', 'WCICResultView.as_view', ([], {}), '()\n', (234, 236), False, 'from what_can_i_cook.views import WCICFilterView, WCICResultView\n')]
justchris1/scap-security-guide
shared/templates/grub2_bootloader_argument/template.py
030097afa80041fcdffc537a49c09896efedadca
import ssg.utils def preprocess(data, lang): data["arg_name_value"] = data["arg_name"] + "=" + data["arg_value"] if lang == "oval": # escape dot, this is used in oval regex data["escaped_arg_name_value"] = data["arg_name_value"].replace(".", "\\.") # replace . with _, this is used in test / object / state ids data["sanitized_arg_name"] = ssg.utils.escape_id(data["arg_name"]) return data
[]
NNDEV1/NMTWithLuongAttention
preprocess.py
e6f11d9e8c5f999d413fa0dc51219e979a8f975c
import tensorflow as tf import os import contractions import tensorflow as tf import pandas as pd import numpy as np import time import rich from rich.progress import track import spacy from config import params #Preprocessing Text class preprocess_text(): def __init__(self): pass def remove_pattern(self, text, pattern= r'[^a-zA-Z0-9.!?, ]', replace_with= ""): return re.sub(pattern, replace_with, text) def tokenize_sent(self, text, nlp): doc= nlp(text) return [sent.text for sent in doc.sents] def tokenize_words(self, text, nlp): doc= nlp(text) return " ".join(tok.text for tok in doc) def expand_contractions(self, text): return contractions.fix(text) def do_lemmatization(self, text, nlp): doc= nlp(text) return ' '.join(tok.lemma_ if tok.lemma_ != "-PRON-" else tok.text for tok in doc) def add_sos_eos(self, text, sos= False, eos= False): if (sos and eos): return "<sos> " + text + " <eos>" if eos: return text + " <eos>" if sos: return "<sos> " + text return text def remove_accents(self, text): return unicodedata.normalize('NFKD', text).encode('ascii', 'ignore').decode('UTF-8', 'ignore') def call_preprocessing(df_col, nlp_en= True, lower_= True, remove_pattern_= False, tokenize_words_= False, expand_contractions_= False, do_lemmatization_= False, sos= False, eos= False, remove_accents_= False): nlp= spacy.load('en_core_web_sm') if nlp_en else spacy.load('de_core_news_sm') prep= preprocess_text() if expand_contractions_: df_col= df_col.map(lambda text: prep.expand_contractions(text)) if remove_accents_: df_col= df_col.map(lambda text: prep.remove_accents(text)) if do_lemmatization_: df_col= df_col.map(lambda text: prep.do_lemmatization(text, nlp)) if tokenize_words_: df_col= df_col.map(lambda text: prep.tokenize_words(text, nlp)) if remove_pattern_: df_col= df_col.map(lambda text: prep.remove_pattern_(text)) if eos or sos: df_col= df_col.map(lambda text: prep.add_sos_eos(text, sos, eos)) if lower_: df_col= df_col.map(lambda text: text.lower()) return df_col def tokenizer(df_col, nlp_en= True): vocab= set() _= [[vocab.update([tok]) for tok in text.split(" ")] for text in df_col] if not nlp_en: vocab.update(["<sos>"]) vocab.update(["<eos>"]) tokenize= dict(zip(vocab, range(1, 1+len(vocab)))) detokenize= dict(zip(range(1, 1+len(vocab)), vocab)) return tokenize, detokenize, len(vocab) def padding(txt_toks, max_len): curr_ls= txt_toks.split(" ") len_ls= len(curr_ls) _= [curr_ls.append("<pad>") for i in range(max_len-len_ls) if len(curr_ls)<max_len] return " ".join(curr_ls) def make_minibatches(df, col1= 'rev_eng_tok', col2= 'teach_force_tok', col3= 'target_tok'): enc_seq= np.array([df[col1].values[i] for i in range(len(df[col1]))]) enc_seq= tf.data.Dataset.from_tensor_slices(enc_seq).batch(params.batch_size) teach_force_seq= np.array([df[col2].values[i] for i in range(len(df[col2]))]) teach_force_seq= tf.data.Dataset.from_tensor_slices(teach_force_seq).batch(params.batch_size) y= np.array([df[col3].values[i] for i in range(len(df[col3]))]) y= tf.data.Dataset.from_tensor_slices(y).batch(params.batch_size) return enc_seq, teach_force_seq, y
[((736, 758), 'contractions.fix', 'contractions.fix', (['text'], {}), '(text)\n', (752, 758), False, 'import contractions\n'), ((1591, 1619), 'spacy.load', 'spacy.load', (['"""en_core_web_sm"""'], {}), "('en_core_web_sm')\n", (1601, 1619), False, 'import spacy\n'), ((1635, 1664), 'spacy.load', 'spacy.load', (['"""de_core_news_sm"""'], {}), "('de_core_news_sm')\n", (1645, 1664), False, 'import spacy\n'), ((3170, 3213), 'tensorflow.data.Dataset.from_tensor_slices', 'tf.data.Dataset.from_tensor_slices', (['enc_seq'], {}), '(enc_seq)\n', (3204, 3213), True, 'import tensorflow as tf\n'), ((3343, 3394), 'tensorflow.data.Dataset.from_tensor_slices', 'tf.data.Dataset.from_tensor_slices', (['teach_force_seq'], {}), '(teach_force_seq)\n', (3377, 3394), True, 'import tensorflow as tf\n'), ((3496, 3533), 'tensorflow.data.Dataset.from_tensor_slices', 'tf.data.Dataset.from_tensor_slices', (['y'], {}), '(y)\n', (3530, 3533), True, 'import tensorflow as tf\n')]
johannesulf/dsigma
setup.py
729337c94669f4a0fdacb51b175df1e13e26304c
from setuptools import setup, find_packages from distutils.extension import Extension from distutils.command.sdist import sdist try: from Cython.Build import cythonize USE_CYTHON = True except ImportError: USE_CYTHON = False ext = 'pyx' if USE_CYTHON else 'c' extensions = [Extension( 'dsigma.precompute_engine', ['dsigma/precompute_engine.{}'.format(ext)], extra_compile_args=['-Ofast', '-march=native'])] if USE_CYTHON: extensions = cythonize(extensions) class sdist_with_cythonize(sdist): def run(self): cythonize(['dsigma/precompute_engine.pyx']) sdist.run(self) with open('README.md', 'r') as fstream: long_description = fstream.read() setup( name='dsigma', version='0.5.0', description=('A Galaxy-Galaxy Lensing Pipeline'), long_description=long_description, long_description_content_type='text/markdown', classifiers=[ 'Intended Audience :: Science/Research', 'Topic :: Scientific/Engineering :: Astronomy', 'Operating System :: OS Independent', 'Programming Language :: Python :: 3 :: Only', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', ], keywords='astronomy, weak-lensing', url='https://github.com/johannesulf/dsigma', author='Johannes Lange, Song Huang', author_email='[email protected]', packages=find_packages(), install_requires=['numpy', 'astropy', 'scipy', 'scikit-learn', 'healpy'], python_requires='>=3.4', ext_modules=extensions, cmdclass={'sdist': sdist_with_cythonize} )
[((462, 483), 'Cython.Build.cythonize', 'cythonize', (['extensions'], {}), '(extensions)\n', (471, 483), False, 'from Cython.Build import cythonize\n'), ((548, 591), 'Cython.Build.cythonize', 'cythonize', (["['dsigma/precompute_engine.pyx']"], {}), "(['dsigma/precompute_engine.pyx'])\n", (557, 591), False, 'from Cython.Build import cythonize\n'), ((600, 615), 'distutils.command.sdist.sdist.run', 'sdist.run', (['self'], {}), '(self)\n', (609, 615), False, 'from distutils.command.sdist import sdist\n'), ((1444, 1459), 'setuptools.find_packages', 'find_packages', ([], {}), '()\n', (1457, 1459), False, 'from setuptools import setup, find_packages\n')]
jtfan3/face_detection
face_detector/modules/mod_faceDetection.py
82e3bc839bf12c956f3166c07012912a0638048f
import cv2 import mediapipe as mp class FaceDetection(): # initialize the face detection class with arguments from https://google.github.io/mediapipe/solutions/face_detection.html def __init__(self, model_selection = 0, threshold = 0.5): self.model_selection = model_selection self.threshold = threshold self.mp_draw = mp.solutions.drawing_utils self.face_detection = mp.solutions.face_detection.FaceDetection(model_selection = self.model_selection, min_detection_confidence = self.threshold) # gets bounding boxes using self.face_detection, returns a list of element, elment = (score, bbox_dict) def get_bboxs(self, frame): mp_detections = self.face_detection.process(frame) score_bboxs = [] if mp_detections.detections: for detection in mp_detections.detections: score = detection.score[0] mp_bbox = detection.location_data.relative_bounding_box bbox_dict = { 'x_min': mp_bbox.xmin, 'y_min': mp_bbox.ymin, 'w': mp_bbox.width, 'h': mp_bbox.height } score_bboxs.append([score, bbox_dict]) return score_bboxs # draws the bbox onto the frame def draw_bbox(self, face_probs, bbox_dict, frame, col = (255, 0, 255), gender = None, gender_score = None): x_min, y_min, w, h = bbox_dict.values() frame_h, frame_w, _ = frame.shape bbox = int(x_min * frame_w), int(y_min * frame_h), int(w * frame_w), int(h * frame_h) # prepare text, depending on what atributes we predict text = str(round(face_probs, 3)) if gender: text = gender + ": " + str(round(gender_score, 2)) # draw bbox cv2.rectangle(frame, bbox, col, 2) cv2.putText(frame, text, (bbox[0], bbox[1] - 10), cv2.FONT_HERSHEY_COMPLEX, 0.5, col, 1)
[((410, 535), 'mediapipe.solutions.face_detection.FaceDetection', 'mp.solutions.face_detection.FaceDetection', ([], {'model_selection': 'self.model_selection', 'min_detection_confidence': 'self.threshold'}), '(model_selection=self.\n model_selection, min_detection_confidence=self.threshold)\n', (451, 535), True, 'import mediapipe as mp\n'), ((1814, 1848), 'cv2.rectangle', 'cv2.rectangle', (['frame', 'bbox', 'col', '(2)'], {}), '(frame, bbox, col, 2)\n', (1827, 1848), False, 'import cv2\n'), ((1857, 1949), 'cv2.putText', 'cv2.putText', (['frame', 'text', '(bbox[0], bbox[1] - 10)', 'cv2.FONT_HERSHEY_COMPLEX', '(0.5)', 'col', '(1)'], {}), '(frame, text, (bbox[0], bbox[1] - 10), cv2.FONT_HERSHEY_COMPLEX,\n 0.5, col, 1)\n', (1868, 1949), False, 'import cv2\n')]
bmj-hackathon/ethberlinzwei-babelfish_3_0
backend/0_publish_audio.py
e986ad1b9fa896f20d7cdd296d130d804f55ecfa
import sys import logging # loggers_dict = logging.Logger.manager.loggerDict # # logger = logging.getLogger() # logger.handlers = [] # # # Set level # logger.setLevel(logging.DEBUG) # # # FORMAT = "%(asctime)s - %(levelno)s - %(module)-15s - %(funcName)-15s - %(message)s" # # FORMAT = "%(asctime)s %(levelno)s: %(module)30s %(message)s" # FORMAT = "%(levelno)s - %(module)-15s - %(funcName)-15s - %(message)s" # # DATE_FMT = "%Y-%m-%d %H:%M:%S" # DATE_FMT = "%Y-%m-%d %H:%M:%S" # formatter = logging.Formatter(FORMAT, DATE_FMT) # # # Create handler and assign # handler = logging.StreamHandler(sys.stderr) # handler.setFormatter(formatter) # logger.handlers = [handler] # logger.debug("Logging started") #%% # Standard imports import os from pathlib import Path import json from time import sleep # Ocean imports import squid_py from squid_py.ocean.ocean import Ocean from squid_py.config import Config from pprint import pprint import mantaray_utilities as manta_utils from mantaray_utilities.user import password_map #%% CONFIG OCEAN_CONFIG_PATH = Path().cwd() / 'config_nile.ini' assert OCEAN_CONFIG_PATH.exists(), "{} - path does not exist".format(OCEAN_CONFIG_PATH) os.environ['OCEAN_CONFIG_PATH'] = str(OCEAN_CONFIG_PATH) PASSWORD_PATH=Path().cwd() / ".nile_passwords" assert PASSWORD_PATH.exists() os.environ["PASSWORD_PATH"] = str(PASSWORD_PATH) MARKET_PLACE_PROVIDER_ADDRESS="0x376817c638d2a04f475a73af37f7b51a2862d567" os.environ["MARKET_PLACE_PROVIDER_ADDRESS"] = MARKET_PLACE_PROVIDER_ADDRESS JSON_TEMPLATE = Path().cwd() / 'metadata_template.json' assert JSON_TEMPLATE.exists() #%% ARGPARSE import argparse parser = argparse.ArgumentParser(description='Publish audio') parser.add_argument('--url', type=str, help='URL for input audio file') parser.add_argument('--price', type=int, help='Selling price in Ocean token') parser.add_argument('--reward', type=int, help='Reward offered in Ocean token') parser.add_argument('--number-nodes', type=int, help='Number of processor nodes requested') args = parser.parse_args() logging.info("************************************************************".format()) logging.info("*** ETHBERLINZWEI HACKATHON ***".format()) logging.info("*** SPEECH2TEXT ***".format()) logging.info("*** STEP 1 - CLIENT REGISTERS A CLIP INTO OCEAN PROTOCOL ***".format()) logging.info("************************************************************".format()) logging.info("".format()) logging.info("(Step 1.1 not implemented - upload audio file from client to storage)".format()) logging.info("Publishing Audio to NILE network: {}".format(args.url)) logging.info("Will set price to {} OCEAN".format(args.price)) logging.info("Offering {} OCEAN reward".format(args.reward)) logging.info("Requesting {} processors".format(args.number_nodes)) logging.info("".format()) #%% # Get the configuration file path for this environment logging.info("Configuration file selected: {}".format(OCEAN_CONFIG_PATH)) # logging.critical("Deployment type: {}".format(manta_utils.config.get_deployment_type())) logging.info("Squid API version: {}".format(squid_py.__version__)) #%% # Instantiate Ocean with the default configuration file. configuration = Config(OCEAN_CONFIG_PATH) squid_py.ConfigProvider.set_config(configuration) ocn = Ocean(configuration) #%% # Get a publisher account publisher_acct = manta_utils.user.get_account_by_index(ocn,0) #%% logging.info("Publisher account address: {}".format(publisher_acct.address)) logging.info("Publisher account Testnet 'ETH' balance: {:>6.1f}".format(ocn.accounts.balance(publisher_acct).eth/10**18)) logging.info("Publisher account Testnet Ocean balance: {:>6.1f}".format(ocn.accounts.balance(publisher_acct).ocn/10**18)) def publish(url, price, reward, number_nodes): # metadata = squid_py.ddo.metadata.Metadata.get_example() # print('Name of asset:', metadata['base']['name']) with open(JSON_TEMPLATE, 'r') as f: metadata = json.load(f) metadata['base']['files'][0]['url'] = url metadata['base']['price'] = str(price) metadata['additionalInformation']['reward'] = str(reward) metadata['additionalInformation']['numberNodes'] = str(number_nodes) ddo = ocn.assets.create(metadata, publisher_acct) registered_did = ddo.did logging.info("New asset registered at {}".format(str(registered_did))) logging.info("Asset name: {}".format(metadata['base']['name'])) logging.info("Encrypted files to secret store, cipher text: [{}...] . ".format(ddo.metadata['base']['encryptedFiles'][:50])) return registered_did registered_did = publish(args.url, args.price, args.reward, args.number_nodes) #TODO: Better handling based on reciept print("Wait for the transaction to complete!") sleep(10) # %% ddo = ocn.assets.resolve(registered_did) # print("Asset '{}' resolved from Aquarius metadata storage: {}".format(ddo.did,ddo.metadata['base']['name'])) # %% [markdown] # Similarly, we can verify that this asset is registered into the blockchain, and that you are the owner. # %% # We need the pure ID string as in the DID registry (a DID without the prefixes) asset_id = squid_py.did.did_to_id(registered_did) owner = ocn._keeper.did_registry.contract_concise.getDIDOwner(asset_id) # print("Asset ID", asset_id, "owned by", owner) assert str.lower(owner) == str.lower(publisher_acct.address) logging.info("".format()) logging.info("Successfully registered Audio!".format()) logging.info("Asset Owner: {}".format(owner)) logging.info("Asset DID: {}".format(registered_did))
[((1639, 1691), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Publish audio"""'}), "(description='Publish audio')\n", (1662, 1691), False, 'import argparse\n'), ((3251, 3276), 'squid_py.config.Config', 'Config', (['OCEAN_CONFIG_PATH'], {}), '(OCEAN_CONFIG_PATH)\n', (3257, 3276), False, 'from squid_py.config import Config\n'), ((3277, 3326), 'squid_py.ConfigProvider.set_config', 'squid_py.ConfigProvider.set_config', (['configuration'], {}), '(configuration)\n', (3311, 3326), False, 'import squid_py\n'), ((3333, 3353), 'squid_py.ocean.ocean.Ocean', 'Ocean', (['configuration'], {}), '(configuration)\n', (3338, 3353), False, 'from squid_py.ocean.ocean import Ocean\n'), ((3403, 3448), 'mantaray_utilities.user.get_account_by_index', 'manta_utils.user.get_account_by_index', (['ocn', '(0)'], {}), '(ocn, 0)\n', (3440, 3448), True, 'import mantaray_utilities as manta_utils\n'), ((4788, 4797), 'time.sleep', 'sleep', (['(10)'], {}), '(10)\n', (4793, 4797), False, 'from time import sleep\n'), ((5176, 5214), 'squid_py.did.did_to_id', 'squid_py.did.did_to_id', (['registered_did'], {}), '(registered_did)\n', (5198, 5214), False, 'import squid_py\n'), ((4000, 4012), 'json.load', 'json.load', (['f'], {}), '(f)\n', (4009, 4012), False, 'import json\n'), ((1055, 1061), 'pathlib.Path', 'Path', ([], {}), '()\n', (1059, 1061), False, 'from pathlib import Path\n'), ((1248, 1254), 'pathlib.Path', 'Path', ([], {}), '()\n', (1252, 1254), False, 'from pathlib import Path\n'), ((1529, 1535), 'pathlib.Path', 'Path', ([], {}), '()\n', (1533, 1535), False, 'from pathlib import Path\n')]
guillerminaamorin/pyRofex
src/pyRofex/components/messages.py
14fd623ab1f1a3213e51a9454485ed478912075f
# -*- coding: utf-8 -*- """ pyRofex.components.messages Defines APIs messages templates """ # Template for a Market Data Subscription message MARKET_DATA_SUBSCRIPTION = '{{"type":"smd","level":1, "entries":[{entries}],"products":[{symbols}]}}' # Template for an Order Subscription message ORDER_SUBSCRIPTION = '{{"type":"os","account":{{"id":"{a}"}},"snapshotOnlyActive":{snapshot}}}' # Template to specify an instrument in a market data subscription message INSTRUMENT = '{{"symbol":"{ticker}","marketId":"{market}"}}' # Template to insert a Double Quote DOUBLE_QUOTES = '"{item}"'
[]
duboviy/async
course/task_6/flask_app.py
5055daddc66e5335fb772aeb59493cc63e4a2739
#!/usr/bin/env python3.4 from flask import Flask import requests from fibonacci import fibonacci as fib app = Flask(__name__) @app.route('/count/<key>') def count(key): return requests.get('http://127.0.0.1:8080/count/{}'.format(key)).text @app.route('/fibonacci/<n>') def fibonacci(n): return str(fib(int(n))) if __name__ == "__main__": app.run(host='0.0.0.0', port=8082, debug=True)
[((112, 127), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (117, 127), False, 'from flask import Flask\n')]
Patralos/nexpose-client-python
nexpose/nexpose_vulnerabilityexception.py
bec81da29883b1b004046e29a9e7f7a6686467c1
# Future Imports for py2/3 backwards compat. from __future__ import (absolute_import, division, print_function, unicode_literals) from builtins import object from .xml_utils import get_attribute, get_content_of from future import standard_library standard_library.install_aliases() def fix_null(data): if data == 'null': return 0 return data class VulnerabilityExceptionStatus(object): UNDER_REVIEW = "Under Review" APPROVED = "Approved" REJECTED = "Rejected" DELETED = "Deleted" # This state is also used for recalled exceptions! class VulnerabilityExceptionReason(object): FALSE_POSITIVE = "False Positive" COMPENSATING_CONTROL = "Compensating Control" ACCEPTABLE_USE = "Acceptable Use" ACCEPTABLE_RISK = "Acceptable Risk" OTHER = "Other" class VulnerabilityExceptionScope(object): ALL_INSTANCES = "All Instances" ALL_INSTANCES_SPECIFIC_ASSET = "All Instances on a Specific Asset" ALL_INSTANCES_SPECIFIC_SITE = "All Instances on a Specific Site" SPECIFIC_INSTANCE_SPECIFIC_ASSET = "Specific Instance of Specific Asset" class SiloVulnerabilityExceptionDetails(object): @staticmethod def CreateFromXML(xml_data): details = SiloVulnerabilityExceptionDetails() details.silo_id = get_attribute(xml_data, 'siloId', details.silo_id) details.oldest_exception_creation_date = get_attribute(xml_data, 'oldestExceptionCreationDate', details.oldest_exception_creation_date) # TODO: date object details.pending_exception_count = get_attribute(xml_data, 'pendingVulnExceptionsCount', details.pending_exception_count) return details def __init__(self): self.silo_id = '' self.oldest_exception_creation_date = 'N/A' # TODO: date object self.pending_exception_count = 0 class VulnerabilityException(object): @staticmethod def CreateFromXML(xml_data): details = VulnerabilityException() details.id = int(get_attribute(xml_data, 'exception-id', details.id)) details.vulnerability_id = get_attribute(xml_data, 'vuln-id', details.vulnerability_id) details.vulnerability_key = get_attribute(xml_data, 'vuln-key', details.vulnerability_key) details.expiration_date = get_attribute(xml_data, 'expiration-date', details.expiration_date) # TODO: date object details.submitter = get_attribute(xml_data, 'submitter', details.submitter) details.submitter_comment = get_content_of(xml_data, 'submitter-comment', details.submitter_comment) details.reviewer = get_attribute(xml_data, 'reviewer', details.reviewer) details.reviewer_comment = get_content_of(xml_data, 'reviewer-comment', details.reviewer_comment) details.status = get_attribute(xml_data, 'status', details.status) details.reason = get_attribute(xml_data, 'reason', details.reason) details.scope = get_attribute(xml_data, 'scope', details.scope) details.asset_id = int(fix_null(get_attribute(xml_data, 'device-id', details.asset_id))) details.asset_port = int(fix_null(get_attribute(xml_data, 'port-no', details.asset_port))) return details def __init__(self): self.id = 0 self.vulnerability_id = '' self.vulnerability_key = '' self.expiration_date = '' # TODO: date object self.submitter = '' self.submitter_comment = '' self.reviewer = '' self.reviewer_comment = '' self.status = '' self.reason = '' self.scope = '' self.asset_id = 0 self.asset_port = 0
[((271, 305), 'future.standard_library.install_aliases', 'standard_library.install_aliases', ([], {}), '()\n', (303, 305), False, 'from future import standard_library\n')]
captainTOKIO/Premchand_Aug2022_fullstack_august_python1
myproject/IND_Project/backend/signup/apps.py
5fbbdd106a764c2f862cf933fdcd69d6bf4ebdf0
from django.apps import AppConfig class SignupConfig(AppConfig): default_auto_field = 'django.db.models.BigAutoField' name = 'signup'
[]
cherish-web/pymc
pymc/mc_enum.py
9c322abfdcceca0a78b633d85da23e1290c036c8
# _*_ coding: utf-8 _*_ # @Time : 2021/3/29 上午 08:57 # @Author : cherish_peng # @Email : [email protected] # @File : cmd.py # @Software : PyCharm from enum import Enum class EnumSubTitle(Enum): Request4e = 0x5400 # 请求 Request = 0x5000 # 应答 Respond = 0xD000 Respond4e = 0xD400 class EnumEndCode(Enum): # 正常应答 Ok = 0x0000 # 异常应答 Err = 0x51C0 class EnumCmd(Enum): # 成批读 ReadBatch = 0x0401 # 成批写 WriteBatch = 0x1401 class EnumSubCmd(Enum): # 有存储扩展模块b7=0,b6=0:随机读出,监视数据注册用外 # 按位读写 Bit = 0x0001 # 按字读写 Word = 0x0000 # 有存储扩展模块b7=1,b6=0:随机读出,监视数据注册用外 # 按位读写 BitEx = 0x0081 # 按字读写 WordEx = 0x0080 class EnumType(Enum): # 位类型 Bit = 0 # 字类型 Word = 1
[]
getsentry/sentry-data-schemas
py/sentry_data_schemas/__init__.py
6b49188a66a24663737c4f5cf4708fe992d011c2
from importlib.resources import path from jsonschema_typed import JSONSchema with path("sentry_data_schemas", "event.schema.json") as schema_path: EventData = JSONSchema["var:sentry_data_schemas:schema_path"]
[((83, 131), 'importlib.resources.path', 'path', (['"""sentry_data_schemas"""', '"""event.schema.json"""'], {}), "('sentry_data_schemas', 'event.schema.json')\n", (87, 131), False, 'from importlib.resources import path\n')]
faroit/deep-fireball
predict.py
b37d08cb5b15359c363e7816fc7c163c1709a5ac
# elsewhere... import pandas as pd from keras.models import model_from_json import random import sys import numpy as np maxlen = 15 step = 3 df = pd.read_pickle('articles.pandas') text = str.join(' ', df.text.tolist()) chars = set(text) print('total chars:', len(chars)) char_indices = dict((c, i) for i, c in enumerate(chars)) indices_char = dict((i, c) for i, c in enumerate(chars)) start_index = random.randint(0, len(text) - maxlen - 1) model = model_from_json(open('model.json').read()) model.compile(loss='categorical_crossentropy', optimizer='rmsprop') model.load_weights('weights.h5') def sample(a, temperature=1.0): # helper function to sample an index from a probability array a = np.log(a) / temperature a = np.exp(a) / np.sum(np.exp(a)) return np.argmax(np.random.multinomial(1, a, 1)) for diversity in [0.25]: print() print('----- diversity:', diversity) generated = '' sentence = text[start_index: start_index + maxlen] generated += sentence print('----- Generating with seed: "' + sentence + '"') sys.stdout.write(generated) for i in range(200): x = np.zeros((1, maxlen, len(chars))) for t, char in enumerate(sentence): x[0, t, char_indices[char]] = 1. preds = model.predict(x, verbose=0)[0] next_index = sample(preds, diversity) next_char = indices_char[next_index] generated += next_char sentence = sentence[1:] + next_char sys.stdout.write(next_char) sys.stdout.flush() print()
[((149, 182), 'pandas.read_pickle', 'pd.read_pickle', (['"""articles.pandas"""'], {}), "('articles.pandas')\n", (163, 182), True, 'import pandas as pd\n'), ((1068, 1095), 'sys.stdout.write', 'sys.stdout.write', (['generated'], {}), '(generated)\n', (1084, 1095), False, 'import sys\n'), ((708, 717), 'numpy.log', 'np.log', (['a'], {}), '(a)\n', (714, 717), True, 'import numpy as np\n'), ((740, 749), 'numpy.exp', 'np.exp', (['a'], {}), '(a)\n', (746, 749), True, 'import numpy as np\n'), ((791, 821), 'numpy.random.multinomial', 'np.random.multinomial', (['(1)', 'a', '(1)'], {}), '(1, a, 1)\n', (812, 821), True, 'import numpy as np\n'), ((1481, 1508), 'sys.stdout.write', 'sys.stdout.write', (['next_char'], {}), '(next_char)\n', (1497, 1508), False, 'import sys\n'), ((1517, 1535), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (1533, 1535), False, 'import sys\n'), ((759, 768), 'numpy.exp', 'np.exp', (['a'], {}), '(a)\n', (765, 768), True, 'import numpy as np\n')]
Zavioer/SIR-simulation-IBM-ESI
tests/simulation/test_container.py
45a7b1d4f0e3cec8dcd8284e00f25386b6e77c58
import unittest from simulation import container from simulation import person class ContainerTestCase(unittest.TestCase): def setUp(self) -> None: self.box = container.Container(100, 1000, 300, 1, 0.5) self.s_instance = person.Person(x=0, y=0, infection_probability=0.25, recover_probability=0.2, dead_probability=0.05, infection_range=0.8) def test_01__check_if_dimensions_was_set_correctly(self): width = 100 height = 100 self.assertEqual(self.box.width, width, msg="Container width was set incorrect.") self.assertEqual(self.box.height, height, msg="Container height was set incorrect.") print("> (test_01) Container dimensions are set correctly.") def test_02__check_if_new_object_added_correctly_to_objects_list(self): self.box.add_instances(1, "susceptible", infection_probability=0.4, recover_probability=0.2, dead_probability=0.05, infection_range=1.25) self.assertEqual(len(self.box.object_list), 1, msg="New instance was not correctly added to" "objects list.") print("> (test_02) New instance correctly added to object_list.") def test_03__check_if_container_time_to_live_not_elapsed__return_bool(self): self.assertIsInstance(self.box.is_alive(), bool, msg="Box method is_alive was not return bool.") print("> (test_03) Method is_alive() returns bool type.") def test_04__check_if_container_lives_in_elapsed_time(self): self.box.time_to_live = 0 self.assertFalse(self.box.is_alive(), msg="Container instance lives longer" "than time_to_live attribute.") print("> (test_04) Container can not have more cycles than time_to_live " "attribute specified.") def test_05__check_if_action_time_interval_is_positive(self): self.assertGreater(self.box.action_interval, 0, msg="action_interval parameters allows to insert" "negative values.") print("> (test_05) Parameter action_interval can not allows to insert " "negative values.") def test_06__check_if_container_can_lives(self): self.box.time_to_live = 100 self.assertTrue(self.box.is_alive(), msg="Container does not live in " "correctly specified time_to_live.") print("> (test_06) Container live correctly base on time_to_live" " parameter.") def test_07__check_if_possible_move_distance_is_positive(self): self.assertGreater(self.box.move_distance_length, 0, msg="move_distance parameter value can be negative.") print("> (test_07) Parameter move_distance can not be negative.") def test_08__check_if_possible_move_distance_is_less_than_container_size(self): self.assertLess(self.box.move_distance_length, self.box.width, msg="Parameter move_distance can be longer than" "container size.") print("> (test_08) Parameter move_distance is smaller than container size.") def test_09__check_if_action_time_interval_is_less_than_minute(self): self.assertLessEqual(self.box.action_interval, 60, msg="action_time_interval could be greater than" "minute.") print("> (test_09) Parameter time_interval could not be greater than minute.") def test_10__check_if_group_could_be_grater_than_population(self): self.assertRaises(ValueError, self.box.initial_set_up, 900, 100, 10, 0, infection_probability=0.4, recover_probability=0.2, dead_probability=0.05, infection_range=1.25) print("> (test_10) All specified groups can not be greater than population.") if __name__ == '__main__': unittest.main()
[((4184, 4199), 'unittest.main', 'unittest.main', ([], {}), '()\n', (4197, 4199), False, 'import unittest\n'), ((173, 216), 'simulation.container.Container', 'container.Container', (['(100)', '(1000)', '(300)', '(1)', '(0.5)'], {}), '(100, 1000, 300, 1, 0.5)\n', (192, 216), False, 'from simulation import container\n'), ((243, 367), 'simulation.person.Person', 'person.Person', ([], {'x': '(0)', 'y': '(0)', 'infection_probability': '(0.25)', 'recover_probability': '(0.2)', 'dead_probability': '(0.05)', 'infection_range': '(0.8)'}), '(x=0, y=0, infection_probability=0.25, recover_probability=0.2,\n dead_probability=0.05, infection_range=0.8)\n', (256, 367), False, 'from simulation import person\n')]
Tratty/pontoon
pontoon/base/migrations/0007_auto_20150710_0944.py
ecb903d72f9274f02137b16669cc3c5859f6329c
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import pontoon.base.models class Migration(migrations.Migration): dependencies = [ ("base", "0006_auto_20150602_0616"), ] operations = [ migrations.AddField( model_name="locale", name="cldr_plurals", field=models.CommaSeparatedIntegerField( blank=True, max_length=11, verbose_name=b"CLDR Plurals", validators=[pontoon.base.models.validate_cldr], ), ), migrations.AlterField( model_name="resource", name="format", field=models.CharField( blank=True, max_length=20, verbose_name=b"Format", choices=[ (b"po", b"po"), (b"xliff", b"xliff"), (b"properties", b"properties"), (b"dtd", b"dtd"), (b"inc", b"inc"), (b"ini", b"ini"), (b"lang", b"lang"), (b"l20n", b"l20n"), ], ), ), migrations.AlterField( model_name="translation", name="date", field=models.DateTimeField(auto_now_add=True), ), ]
[((380, 523), 'django.db.models.CommaSeparatedIntegerField', 'models.CommaSeparatedIntegerField', ([], {'blank': '(True)', 'max_length': '(11)', 'verbose_name': "b'CLDR Plurals'", 'validators': '[pontoon.base.models.validate_cldr]'}), "(blank=True, max_length=11, verbose_name=\n b'CLDR Plurals', validators=[pontoon.base.models.validate_cldr])\n", (413, 523), False, 'from django.db import models, migrations\n'), ((721, 976), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'max_length': '(20)', 'verbose_name': "b'Format'", 'choices': "[(b'po', b'po'), (b'xliff', b'xliff'), (b'properties', b'properties'), (\n b'dtd', b'dtd'), (b'inc', b'inc'), (b'ini', b'ini'), (b'lang', b'lang'),\n (b'l20n', b'l20n')]"}), "(blank=True, max_length=20, verbose_name=b'Format', choices\n =[(b'po', b'po'), (b'xliff', b'xliff'), (b'properties', b'properties'),\n (b'dtd', b'dtd'), (b'inc', b'inc'), (b'ini', b'ini'), (b'lang', b'lang'\n ), (b'l20n', b'l20n')])\n", (737, 976), False, 'from django.db import models, migrations\n'), ((1345, 1384), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (1365, 1384), False, 'from django.db import models, migrations\n')]
ufo2011/platformio-core
platformio/project/commands/init.py
0ceae62701731f8b32c34d7993a34dea34aea59c
# Copyright (c) 2014-present PlatformIO <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=line-too-long,too-many-arguments,too-many-locals import json import os import click from platformio import fs from platformio.package.commands.install import install_project_dependencies from platformio.package.manager.platform import PlatformPackageManager from platformio.platform.exception import UnknownBoard from platformio.project.config import ProjectConfig from platformio.project.generator import ProjectGenerator from platformio.project.helpers import is_platformio_project def validate_boards(ctx, param, value): # pylint: disable=W0613 pm = PlatformPackageManager() for id_ in value: try: pm.board_config(id_) except UnknownBoard: raise click.BadParameter( "`%s`. Please search for board ID using `platformio boards` " "command" % id_ ) return value @click.command("init", short_help="Initialize a project or update existing") @click.option( "--project-dir", "-d", default=os.getcwd, type=click.Path( exists=True, file_okay=False, dir_okay=True, writable=True, resolve_path=True ), ) @click.option("-b", "--board", multiple=True, metavar="ID", callback=validate_boards) @click.option("--ide", type=click.Choice(ProjectGenerator.get_supported_ides())) @click.option("-e", "--environment", help="Update existing environment") @click.option("-O", "--project-option", multiple=True) @click.option("--env-prefix", default="") @click.option("--no-install-dependencies", is_flag=True) @click.option("-s", "--silent", is_flag=True) def project_init_cmd( project_dir, board, ide, environment, project_option, env_prefix, no_install_dependencies, silent, ): is_new_project = not is_platformio_project(project_dir) if is_new_project: if not silent: print_header(project_dir) init_base_project(project_dir) if environment: update_project_env(project_dir, environment, project_option) elif board: update_board_envs(project_dir, board, project_option, env_prefix) # resolve project dependencies if not no_install_dependencies and (environment or board): install_project_dependencies( options=dict( project_dir=project_dir, environments=[environment] if environment else [], silent=silent, ) ) if ide: if not silent: click.echo( "Updating metadata for the %s IDE..." % click.style(ide, fg="cyan") ) with fs.cd(project_dir): config = ProjectConfig.get_instance( os.path.join(project_dir, "platformio.ini") ) config.validate() ProjectGenerator(config, environment, ide, board).generate() if is_new_project: init_cvs_ignore(project_dir) if not silent: print_footer(is_new_project) def print_header(project_dir): if project_dir == os.getcwd(): click.secho("\nThe current working directory ", fg="yellow", nl=False) try: click.secho(project_dir, fg="cyan", nl=False) except UnicodeEncodeError: click.secho(json.dumps(project_dir), fg="cyan", nl=False) click.secho(" will be used for the project.", fg="yellow") click.echo("") click.echo("The next files/directories have been created in ", nl=False) try: click.secho(project_dir, fg="cyan") except UnicodeEncodeError: click.secho(json.dumps(project_dir), fg="cyan") click.echo("%s - Put project header files here" % click.style("include", fg="cyan")) click.echo( "%s - Put here project specific (private) libraries" % click.style("lib", fg="cyan") ) click.echo("%s - Put project source files here" % click.style("src", fg="cyan")) click.echo( "%s - Project Configuration File" % click.style("platformio.ini", fg="cyan") ) def print_footer(is_new_project): if is_new_project: return click.secho( "\nProject has been successfully initialized! Useful commands:\n" "`pio run` - process/build project from the current directory\n" "`pio run --target upload` or `pio run -t upload` " "- upload firmware to a target\n" "`pio run --target clean` - clean project (remove compiled files)" "\n`pio run --help` - additional information", fg="green", ) return click.secho( "Project has been successfully updated!", fg="green", ) def init_base_project(project_dir): with fs.cd(project_dir): config = ProjectConfig() config.save() dir_to_readme = [ (config.get("platformio", "src_dir"), None), (config.get("platformio", "include_dir"), init_include_readme), (config.get("platformio", "lib_dir"), init_lib_readme), (config.get("platformio", "test_dir"), init_test_readme), ] for (path, cb) in dir_to_readme: if os.path.isdir(path): continue os.makedirs(path) if cb: cb(path) def init_include_readme(include_dir): with open(os.path.join(include_dir, "README"), mode="w", encoding="utf8") as fp: fp.write( """ This directory is intended for project header files. A header file is a file containing C declarations and macro definitions to be shared between several project source files. You request the use of a header file in your project source file (C, C++, etc) located in `src` folder by including it, with the C preprocessing directive `#include'. ```src/main.c #include "header.h" int main (void) { ... } ``` Including a header file produces the same results as copying the header file into each source file that needs it. Such copying would be time-consuming and error-prone. With a header file, the related declarations appear in only one place. If they need to be changed, they can be changed in one place, and programs that include the header file will automatically use the new version when next recompiled. The header file eliminates the labor of finding and changing all the copies as well as the risk that a failure to find one copy will result in inconsistencies within a program. In C, the usual convention is to give header files names that end with `.h'. It is most portable to use only letters, digits, dashes, and underscores in header file names, and at most one dot. Read more about using header files in official GCC documentation: * Include Syntax * Include Operation * Once-Only Headers * Computed Includes https://gcc.gnu.org/onlinedocs/cpp/Header-Files.html """, ) def init_lib_readme(lib_dir): with open(os.path.join(lib_dir, "README"), mode="w", encoding="utf8") as fp: fp.write( """ This directory is intended for project specific (private) libraries. PlatformIO will compile them to static libraries and link into executable file. The source code of each library should be placed in a an own separate directory ("lib/your_library_name/[here are source files]"). For example, see a structure of the following two libraries `Foo` and `Bar`: |--lib | | | |--Bar | | |--docs | | |--examples | | |--src | | |- Bar.c | | |- Bar.h | | |- library.json (optional, custom build options, etc) https://docs.platformio.org/page/librarymanager/config.html | | | |--Foo | | |- Foo.c | | |- Foo.h | | | |- README --> THIS FILE | |- platformio.ini |--src |- main.c and a contents of `src/main.c`: ``` #include <Foo.h> #include <Bar.h> int main (void) { ... } ``` PlatformIO Library Dependency Finder will find automatically dependent libraries scanning project source files. More information about PlatformIO Library Dependency Finder - https://docs.platformio.org/page/librarymanager/ldf.html """, ) def init_test_readme(test_dir): with open(os.path.join(test_dir, "README"), mode="w", encoding="utf8") as fp: fp.write( """ This directory is intended for PlatformIO Test Runner and project tests. Unit Testing is a software testing method by which individual units of source code, sets of one or more MCU program modules together with associated control data, usage procedures, and operating procedures, are tested to determine whether they are fit for use. Unit testing finds problems early in the development cycle. More information about PlatformIO Unit Testing: - https://docs.platformio.org/en/latest/advanced/unit-testing/index.html """, ) def init_cvs_ignore(project_dir): conf_path = os.path.join(project_dir, ".gitignore") if os.path.isfile(conf_path): return with open(conf_path, mode="w", encoding="utf8") as fp: fp.write(".pio\n") def update_board_envs(project_dir, board_ids, project_option, env_prefix): config = ProjectConfig( os.path.join(project_dir, "platformio.ini"), parse_extra=False ) used_boards = [] for section in config.sections(): cond = [section.startswith("env:"), config.has_option(section, "board")] if all(cond): used_boards.append(config.get(section, "board")) pm = PlatformPackageManager() modified = False for id_ in board_ids: board_config = pm.board_config(id_) if id_ in used_boards: continue used_boards.append(id_) modified = True envopts = {"platform": board_config["platform"], "board": id_} # find default framework for board frameworks = board_config.get("frameworks") if frameworks: envopts["framework"] = frameworks[0] for item in project_option: if "=" not in item: continue _name, _value = item.split("=", 1) envopts[_name.strip()] = _value.strip() section = "env:%s%s" % (env_prefix, id_) config.add_section(section) for option, value in envopts.items(): config.set(section, option, value) if modified: config.save() def update_project_env(project_dir, environment, project_option): if not project_option: return config = ProjectConfig( os.path.join(project_dir, "platformio.ini"), parse_extra=False ) section = "env:%s" % environment if not config.has_section(section): config.add_section(section) for item in project_option: if "=" not in item: continue _name, _value = item.split("=", 1) config.set(section, _name.strip(), _value.strip()) config.save()
[((1497, 1572), 'click.command', 'click.command', (['"""init"""'], {'short_help': '"""Initialize a project or update existing"""'}), "('init', short_help='Initialize a project or update existing')\n", (1510, 1572), False, 'import click\n'), ((1759, 1848), 'click.option', 'click.option', (['"""-b"""', '"""--board"""'], {'multiple': '(True)', 'metavar': '"""ID"""', 'callback': 'validate_boards'}), "('-b', '--board', multiple=True, metavar='ID', callback=\n validate_boards)\n", (1771, 1848), False, 'import click\n'), ((1926, 1997), 'click.option', 'click.option', (['"""-e"""', '"""--environment"""'], {'help': '"""Update existing environment"""'}), "('-e', '--environment', help='Update existing environment')\n", (1938, 1997), False, 'import click\n'), ((1999, 2052), 'click.option', 'click.option', (['"""-O"""', '"""--project-option"""'], {'multiple': '(True)'}), "('-O', '--project-option', multiple=True)\n", (2011, 2052), False, 'import click\n'), ((2054, 2094), 'click.option', 'click.option', (['"""--env-prefix"""'], {'default': '""""""'}), "('--env-prefix', default='')\n", (2066, 2094), False, 'import click\n'), ((2096, 2151), 'click.option', 'click.option', (['"""--no-install-dependencies"""'], {'is_flag': '(True)'}), "('--no-install-dependencies', is_flag=True)\n", (2108, 2151), False, 'import click\n'), ((2153, 2197), 'click.option', 'click.option', (['"""-s"""', '"""--silent"""'], {'is_flag': '(True)'}), "('-s', '--silent', is_flag=True)\n", (2165, 2197), False, 'import click\n'), ((1193, 1217), 'platformio.package.manager.platform.PlatformPackageManager', 'PlatformPackageManager', ([], {}), '()\n', (1215, 1217), False, 'from platformio.package.manager.platform import PlatformPackageManager\n'), ((3996, 4068), 'click.echo', 'click.echo', (['"""The next files/directories have been created in """'], {'nl': '(False)'}), "('The next files/directories have been created in ', nl=False)\n", (4006, 4068), False, 'import click\n'), ((5148, 5213), 'click.secho', 'click.secho', (['"""Project has been successfully updated!"""'], {'fg': '"""green"""'}), "('Project has been successfully updated!', fg='green')\n", (5159, 5213), False, 'import click\n'), ((9333, 9372), 'os.path.join', 'os.path.join', (['project_dir', '""".gitignore"""'], {}), "(project_dir, '.gitignore')\n", (9345, 9372), False, 'import os\n'), ((9380, 9405), 'os.path.isfile', 'os.path.isfile', (['conf_path'], {}), '(conf_path)\n', (9394, 9405), False, 'import os\n'), ((9923, 9947), 'platformio.package.manager.platform.PlatformPackageManager', 'PlatformPackageManager', ([], {}), '()\n', (9945, 9947), False, 'from platformio.package.manager.platform import PlatformPackageManager\n'), ((2379, 2413), 'platformio.project.helpers.is_platformio_project', 'is_platformio_project', (['project_dir'], {}), '(project_dir)\n', (2400, 2413), False, 'from platformio.project.helpers import is_platformio_project\n'), ((1651, 1744), 'click.Path', 'click.Path', ([], {'exists': '(True)', 'file_okay': '(False)', 'dir_okay': '(True)', 'writable': '(True)', 'resolve_path': '(True)'}), '(exists=True, file_okay=False, dir_okay=True, writable=True,\n resolve_path=True)\n', (1661, 1744), False, 'import click\n'), ((3633, 3644), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (3642, 3644), False, 'import os\n'), ((3654, 3727), 'click.secho', 'click.secho', (['"""\nThe current working directory """'], {'fg': '"""yellow"""', 'nl': '(False)'}), '("""\nThe current working directory """, fg=\'yellow\', nl=False)\n', (3665, 3727), False, 'import click\n'), ((3909, 3967), 'click.secho', 'click.secho', (['""" will be used for the project."""'], {'fg': '"""yellow"""'}), "(' will be used for the project.', fg='yellow')\n", (3920, 3967), False, 'import click\n'), ((3976, 3990), 'click.echo', 'click.echo', (['""""""'], {}), "('')\n", (3986, 3990), False, 'import click\n'), ((4086, 4121), 'click.secho', 'click.secho', (['project_dir'], {'fg': '"""cyan"""'}), "(project_dir, fg='cyan')\n", (4097, 4121), False, 'import click\n'), ((4687, 5035), 'click.secho', 'click.secho', (['"""\nProject has been successfully initialized! Useful commands:\n`pio run` - process/build project from the current directory\n`pio run --target upload` or `pio run -t upload` - upload firmware to a target\n`pio run --target clean` - clean project (remove compiled files)\n`pio run --help` - additional information"""'], {'fg': '"""green"""'}), '(\n """\nProject has been successfully initialized! Useful commands:\n`pio run` - process/build project from the current directory\n`pio run --target upload` or `pio run -t upload` - upload firmware to a target\n`pio run --target clean` - clean project (remove compiled files)\n`pio run --help` - additional information"""\n , fg=\'green\')\n', (4698, 5035), False, 'import click\n'), ((5284, 5302), 'platformio.fs.cd', 'fs.cd', (['project_dir'], {}), '(project_dir)\n', (5289, 5302), False, 'from platformio import fs\n'), ((5321, 5336), 'platformio.project.config.ProjectConfig', 'ProjectConfig', ([], {}), '()\n', (5334, 5336), False, 'from platformio.project.config import ProjectConfig\n'), ((9621, 9664), 'os.path.join', 'os.path.join', (['project_dir', '"""platformio.ini"""'], {}), "(project_dir, 'platformio.ini')\n", (9633, 9664), False, 'import os\n'), ((10945, 10988), 'os.path.join', 'os.path.join', (['project_dir', '"""platformio.ini"""'], {}), "(project_dir, 'platformio.ini')\n", (10957, 10988), False, 'import os\n'), ((3214, 3232), 'platformio.fs.cd', 'fs.cd', (['project_dir'], {}), '(project_dir)\n', (3219, 3232), False, 'from platformio import fs\n'), ((1885, 1922), 'platformio.project.generator.ProjectGenerator.get_supported_ides', 'ProjectGenerator.get_supported_ides', ([], {}), '()\n', (1920, 1922), False, 'from platformio.project.generator import ProjectGenerator\n'), ((3750, 3795), 'click.secho', 'click.secho', (['project_dir'], {'fg': '"""cyan"""', 'nl': '(False)'}), "(project_dir, fg='cyan', nl=False)\n", (3761, 3795), False, 'import click\n'), ((4263, 4296), 'click.style', 'click.style', (['"""include"""'], {'fg': '"""cyan"""'}), "('include', fg='cyan')\n", (4274, 4296), False, 'import click\n'), ((4385, 4414), 'click.style', 'click.style', (['"""lib"""'], {'fg': '"""cyan"""'}), "('lib', fg='cyan')\n", (4396, 4414), False, 'import click\n'), ((4475, 4504), 'click.style', 'click.style', (['"""src"""'], {'fg': '"""cyan"""'}), "('src', fg='cyan')\n", (4486, 4504), False, 'import click\n'), ((4566, 4606), 'click.style', 'click.style', (['"""platformio.ini"""'], {'fg': '"""cyan"""'}), "('platformio.ini', fg='cyan')\n", (4577, 4606), False, 'import click\n'), ((5722, 5741), 'os.path.isdir', 'os.path.isdir', (['path'], {}), '(path)\n', (5735, 5741), False, 'import os\n'), ((5780, 5797), 'os.makedirs', 'os.makedirs', (['path'], {}), '(path)\n', (5791, 5797), False, 'import os\n'), ((5896, 5931), 'os.path.join', 'os.path.join', (['include_dir', '"""README"""'], {}), "(include_dir, 'README')\n", (5908, 5931), False, 'import os\n'), ((7447, 7478), 'os.path.join', 'os.path.join', (['lib_dir', '"""README"""'], {}), "(lib_dir, 'README')\n", (7459, 7478), False, 'import os\n'), ((8647, 8679), 'os.path.join', 'os.path.join', (['test_dir', '"""README"""'], {}), "(test_dir, 'README')\n", (8659, 8679), False, 'import os\n'), ((1333, 1432), 'click.BadParameter', 'click.BadParameter', (["('`%s`. Please search for board ID using `platformio boards` command' % id_)"], {}), "(\n '`%s`. Please search for board ID using `platformio boards` command' % id_)\n", (1351, 1432), False, 'import click\n'), ((3299, 3342), 'os.path.join', 'os.path.join', (['project_dir', '"""platformio.ini"""'], {}), "(project_dir, 'platformio.ini')\n", (3311, 3342), False, 'import os\n'), ((4173, 4196), 'json.dumps', 'json.dumps', (['project_dir'], {}), '(project_dir)\n', (4183, 4196), False, 'import json\n'), ((3159, 3186), 'click.style', 'click.style', (['ide'], {'fg': '"""cyan"""'}), "(ide, fg='cyan')\n", (3170, 3186), False, 'import click\n'), ((3399, 3448), 'platformio.project.generator.ProjectGenerator', 'ProjectGenerator', (['config', 'environment', 'ide', 'board'], {}), '(config, environment, ide, board)\n', (3415, 3448), False, 'from platformio.project.generator import ProjectGenerator\n'), ((3855, 3878), 'json.dumps', 'json.dumps', (['project_dir'], {}), '(project_dir)\n', (3865, 3878), False, 'import json\n')]
DeveloperLY/Python-practice
12_module_release/message/__init__.py
85062afee1dc6b60b7011b0e3800b65fc9b9e9b2
from . import send_message from . import receive_message
[]
peopledoc/django-guardian
guardian/decorators.py
459827c2329975113cbf0d11f4fd476b5689a055
from django.conf import settings from django.contrib.auth import REDIRECT_FIELD_NAME from django.core.exceptions import PermissionDenied from django.http import HttpResponseForbidden, HttpResponseRedirect from django.utils.functional import wraps from django.utils.http import urlquote from django.db.models import Model, get_model from django.db.models.base import ModelBase from django.db.models.query import QuerySet from django.shortcuts import get_object_or_404, render_to_response from django.template import RequestContext, TemplateDoesNotExist from guardian.conf import settings as guardian_settings from guardian.exceptions import GuardianError def permission_required(perm, lookup_variables=None, **kwargs): """ Decorator for views that checks whether a user has a particular permission enabled. Optionally, instances for which check should be made may be passed as an second argument or as a tuple parameters same as those passed to ``get_object_or_404`` but must be provided as pairs of strings. :param login_url: if denied, user would be redirected to location set by this parameter. Defaults to ``django.conf.settings.LOGIN_URL``. :param redirect_field_name: name of the parameter passed if redirected. Defaults to ``django.contrib.auth.REDIRECT_FIELD_NAME``. :param return_403: if set to ``True`` then instead of redirecting to the login page, response with status code 403 is returned ( ``django.http.HttpResponseForbidden`` instance or rendered template - see :setting:`GUARDIAN_RENDER_403`). Defaults to ``False``. :param accept_global_perms: if set to ``True``, then *object level permission* would be required **only if user does NOT have global permission** for target *model*. If turned on, makes this decorator like an extension over standard ``django.contrib.admin.decorators.permission_required`` as it would check for global permissions first. Defaults to ``False``. Examples:: @permission_required('auth.change_user', return_403=True) def my_view(request): return HttpResponse('Hello') @permission_required('auth.change_user', (User, 'username', 'username')) def my_view(request, username): user = get_object_or_404(User, username=username) return user.get_absolute_url() @permission_required('auth.change_user', (User, 'username', 'username', 'groups__name', 'group_name')) def my_view(request, username, group_name): user = get_object_or_404(User, username=username, group__name=group_name) return user.get_absolute_url() """ login_url = kwargs.pop('login_url', settings.LOGIN_URL) redirect_field_name = kwargs.pop('redirect_field_name', REDIRECT_FIELD_NAME) return_403 = kwargs.pop('return_403', False) accept_global_perms = kwargs.pop('accept_global_perms', False) # Check if perm is given as string in order not to decorate # view function itself which makes debugging harder if not isinstance(perm, basestring): raise GuardianError("First argument must be in format: " "'app_label.codename or a callable which return similar string'") def decorator(view_func): def _wrapped_view(request, *args, **kwargs): # if more than one parameter is passed to the decorator we try to # fetch object for which check would be made obj = None if lookup_variables: model, lookups = lookup_variables[0], lookup_variables[1:] # Parse model if isinstance(model, basestring): splitted = model.split('.') if len(splitted) != 2: raise GuardianError("If model should be looked up from " "string it needs format: 'app_label.ModelClass'") model = get_model(*splitted) elif type(model) in (Model, ModelBase, QuerySet): pass else: raise GuardianError("First lookup argument must always be " "a model, string pointing at app/model or queryset. " "Given: %s (type: %s)" % (model, type(model))) # Parse lookups if len(lookups) % 2 != 0: raise GuardianError("Lookup variables must be provided " "as pairs of lookup_string and view_arg") lookup_dict = {} for lookup, view_arg in zip(lookups[::2], lookups[1::2]): if view_arg not in kwargs: raise GuardianError("Argument %s was not passed " "into view function" % view_arg) lookup_dict[lookup] = kwargs[view_arg] obj = get_object_or_404(model, **lookup_dict) # Handles both original and with object provided permission check # as ``obj`` defaults to None has_perm = accept_global_perms and request.user.has_perm(perm) if not has_perm and not request.user.has_perm(perm, obj): if return_403: if guardian_settings.RENDER_403: try: response = render_to_response( guardian_settings.TEMPLATE_403, {}, RequestContext(request)) response.status_code = 403 return response except TemplateDoesNotExist, e: if settings.DEBUG: raise e elif guardian_settings.RAISE_403: raise PermissionDenied return HttpResponseForbidden() else: path = urlquote(request.get_full_path()) tup = login_url, redirect_field_name, path return HttpResponseRedirect("%s?%s=%s" % tup) return view_func(request, *args, **kwargs) return wraps(view_func)(_wrapped_view) return decorator def permission_required_or_403(perm, *args, **kwargs): """ Simple wrapper for permission_required decorator. Standard Django's permission_required decorator redirects user to login page in case permission check failed. This decorator may be used to return HttpResponseForbidden (status 403) instead of redirection. The only difference between ``permission_required`` decorator is that this one always set ``return_403`` parameter to ``True``. """ kwargs['return_403'] = True return permission_required(perm, *args, **kwargs)
[]
mpgarate/OST-fauxra
images/forms.py
d2aa554a082b14268c72220a0b19f2a306deb4d2
from django import forms from django.forms import ModelForm from images.models import Image class ImageForm(ModelForm): class Meta: model = Image
[]
MORIMOTO520212/Arm-crawler
WebIOPi-0.7.1/python/webiopi/devices/analog/__init__.py
95dca0ea9485e4c20a0910687362010604331b55
# Copyright 2012-2013 Eric Ptak - trouch.com # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from webiopi.decorators.rest import request, response from webiopi.utils.types import M_JSON class ADC(): def __init__(self, channelCount, resolution, vref): self._analogCount = channelCount self._analogResolution = resolution self._analogMax = 2**resolution - 1 self._analogRef = vref def __family__(self): return "ADC" def checkAnalogChannel(self, channel): if not 0 <= channel < self._analogCount: raise ValueError("Channel %d out of range [%d..%d]" % (channel, 0, self._analogCount-1)) def checkAnalogValue(self, value): if not 0 <= value <= self._analogMax: raise ValueError("Value %d out of range [%d..%d]" % (value, 0, self._analogMax)) @request("GET", "analog/count") @response("%d") def analogCount(self): return self._analogCount @request("GET", "analog/resolution") @response("%d") def analogResolution(self): return self._analogResolution @request("GET", "analog/max") @response("%d") def analogMaximum(self): return int(self._analogMax) @request("GET", "analog/vref") @response("%.2f") def analogReference(self): return self._analogRef def __analogRead__(self, channel, diff): raise NotImplementedError @request("GET", "analog/%(channel)d/integer") @response("%d") def analogRead(self, channel, diff=False): self.checkAnalogChannel(channel) return self.__analogRead__(channel, diff) @request("GET", "analog/%(channel)d/float") @response("%.2f") def analogReadFloat(self, channel, diff=False): return self.analogRead(channel, diff) / float(self._analogMax) @request("GET", "analog/%(channel)d/volt") @response("%.2f") def analogReadVolt(self, channel, diff=False): if self._analogRef == 0: raise NotImplementedError return self.analogReadFloat(channel, diff) * self._analogRef @request("GET", "analog/*/integer") @response(contentType=M_JSON) def analogReadAll(self): values = {} for i in range(self._analogCount): values[i] = self.analogRead(i) return values @request("GET", "analog/*/float") @response(contentType=M_JSON) def analogReadAllFloat(self): values = {} for i in range(self._analogCount): values[i] = float("%.2f" % self.analogReadFloat(i)) return values @request("GET", "analog/*/volt") @response(contentType=M_JSON) def analogReadAllVolt(self): values = {} for i in range(self._analogCount): values[i] = float("%.2f" % self.analogReadVolt(i)) return values class DAC(ADC): def __init__(self, channelCount, resolution, vref): ADC.__init__(self, channelCount, resolution, vref) def __family__(self): return "DAC" def __analogWrite__(self, channel, value): raise NotImplementedError @request("POST", "analog/%(channel)d/integer/%(value)d") @response("%d") def analogWrite(self, channel, value): self.checkAnalogChannel(channel) self.checkAnalogValue(value) self.__analogWrite__(channel, value) return self.analogRead(channel) @request("POST", "analog/%(channel)d/float/%(value)f") @response("%.2f") def analogWriteFloat(self, channel, value): self.analogWrite(channel, int(value * self._analogMax)) return self.analogReadFloat(channel) @request("POST", "analog/%(channel)d/volt/%(value)f") @response("%.2f") def analogWriteVolt(self, channel, value): self.analogWriteFloat(channel, value /self._analogRef) return self.analogReadVolt(channel) class PWM(): def __init__(self, channelCount, resolution, frequency): self._pwmCount = channelCount self._pwmResolution = resolution self._pwmMax = 2**resolution - 1 self.frequency = frequency self.period = 1.0/frequency # Futaba servos standard self.servo_neutral = 0.00152 self.servo_travel_time = 0.0004 self.servo_travel_angle = 45.0 self.reverse = [False for i in range(channelCount)] def __family__(self): return "PWM" def checkPWMChannel(self, channel): if not 0 <= channel < self._pwmCount: raise ValueError("Channel %d out of range [%d..%d]" % (channel, 0, self._pwmCount-1)) def checkPWMValue(self, value): if not 0 <= value <= self._pwmMax: raise ValueError("Value %d out of range [%d..%d]" % (value, 0, self._pwmMax)) def __pwmRead__(self, channel): raise NotImplementedError def __pwmWrite__(self, channel, value): raise NotImplementedError @request("GET", "pwm/count") @response("%d") def pwmCount(self): return self._pwmCount @request("GET", "pwm/resolution") @response("%d") def pwmResolution(self): return self._pwmResolution @request("GET", "pwm/max") @response("%d") def pwmMaximum(self): return int(self._pwmMax) @request("GET", "pwm/%(channel)d/integer") @response("%d") def pwmRead(self, channel): self.checkPWMChannel(channel) return self.__pwmRead__(channel) @request("GET", "pwm/%(channel)d/float") @response("%.2f") def pwmReadFloat(self, channel): return self.pwmRead(channel) / float(self._pwmMax) @request("POST", "pwm/%(channel)d/integer/%(value)d") @response("%d") def pwmWrite(self, channel, value): self.checkPWMChannel(channel) self.checkPWMValue(value) self.__pwmWrite__(channel, value) return self.pwmRead(channel) @request("POST", "pwm/%(channel)d/float/%(value)f") @response("%.2f") def pwmWriteFloat(self, channel, value): self.pwmWrite(channel, int(value * self._pwmMax)) return self.pwmReadFloat(channel) def getReverse(self, channel): self.checkChannel(channel) return self.reverse[channel] def setReverse(self, channel, value): self.checkChannel(channel) self.reverse[channel] = value return value def RatioToAngle(self, value): f = value f *= self.period f -= self.servo_neutral f *= self.servo_travel_angle f /= self.servo_travel_time return f def AngleToRatio(self, value): f = value f *= self.servo_travel_time f /= self.servo_travel_angle f += self.servo_neutral f /= self.period return f @request("GET", "pwm/%(channel)d/angle") @response("%.2f") def pwmReadAngle(self, channel): f = self.pwmReadFloat(channel) f = self.RatioToAngle(f) if self.reverse[channel]: f = -f else: f = f return f @request("POST", "pwm/%(channel)d/angle/%(value)f") @response("%.2f") def pwmWriteAngle(self, channel, value): if self.reverse[channel]: f = -value else: f = value f = self.AngleToRatio(f) self.pwmWriteFloat(channel, f) return self.pwmReadAngle(channel) @request("GET", "pwm/*") @response(contentType=M_JSON) def pwmWildcard(self): values = {} for i in range(self._pwmCount): val = self.pwmReadFloat(i) values[i] = {} values[i]["float"] = float("%.2f" % val) values[i]["angle"] = float("%.2f" % self.RatioToAngle(val)) return values DRIVERS = {} DRIVERS["ads1x1x"] = ["ADS1014", "ADS1015", "ADS1114", "ADS1115"] DRIVERS["mcp3x0x"] = ["MCP3002", "MCP3004", "MCP3008", "MCP3204", "MCP3208"] DRIVERS["mcp4725"] = ["MCP4725"] DRIVERS["mcp48XX"] = ["MCP4802", "MCP4812", "MCP4822"] DRIVERS["mcp492X"] = ["MCP4921", "MCP4922"] DRIVERS["pca9685"] = ["PCA9685"] DRIVERS["pcf8591"] = ["PCF8591"]
[((1370, 1400), 'webiopi.decorators.rest.request', 'request', (['"""GET"""', '"""analog/count"""'], {}), "('GET', 'analog/count')\n", (1377, 1400), False, 'from webiopi.decorators.rest import request, response\n'), ((1406, 1420), 'webiopi.decorators.rest.response', 'response', (['"""%d"""'], {}), "('%d')\n", (1414, 1420), False, 'from webiopi.decorators.rest import request, response\n'), ((1487, 1522), 'webiopi.decorators.rest.request', 'request', (['"""GET"""', '"""analog/resolution"""'], {}), "('GET', 'analog/resolution')\n", (1494, 1522), False, 'from webiopi.decorators.rest import request, response\n'), ((1528, 1542), 'webiopi.decorators.rest.response', 'response', (['"""%d"""'], {}), "('%d')\n", (1536, 1542), False, 'from webiopi.decorators.rest import request, response\n'), ((1623, 1651), 'webiopi.decorators.rest.request', 'request', (['"""GET"""', '"""analog/max"""'], {}), "('GET', 'analog/max')\n", (1630, 1651), False, 'from webiopi.decorators.rest import request, response\n'), ((1657, 1671), 'webiopi.decorators.rest.response', 'response', (['"""%d"""'], {}), "('%d')\n", (1665, 1671), False, 'from webiopi.decorators.rest import request, response\n'), ((1747, 1776), 'webiopi.decorators.rest.request', 'request', (['"""GET"""', '"""analog/vref"""'], {}), "('GET', 'analog/vref')\n", (1754, 1776), False, 'from webiopi.decorators.rest import request, response\n'), ((1782, 1798), 'webiopi.decorators.rest.response', 'response', (['"""%.2f"""'], {}), "('%.2f')\n", (1790, 1798), False, 'from webiopi.decorators.rest import request, response\n'), ((1955, 1999), 'webiopi.decorators.rest.request', 'request', (['"""GET"""', '"""analog/%(channel)d/integer"""'], {}), "('GET', 'analog/%(channel)d/integer')\n", (1962, 1999), False, 'from webiopi.decorators.rest import request, response\n'), ((2005, 2019), 'webiopi.decorators.rest.response', 'response', (['"""%d"""'], {}), "('%d')\n", (2013, 2019), False, 'from webiopi.decorators.rest import request, response\n'), ((2168, 2210), 'webiopi.decorators.rest.request', 'request', (['"""GET"""', '"""analog/%(channel)d/float"""'], {}), "('GET', 'analog/%(channel)d/float')\n", (2175, 2210), False, 'from webiopi.decorators.rest import request, response\n'), ((2216, 2232), 'webiopi.decorators.rest.response', 'response', (['"""%.2f"""'], {}), "('%.2f')\n", (2224, 2232), False, 'from webiopi.decorators.rest import request, response\n'), ((2366, 2407), 'webiopi.decorators.rest.request', 'request', (['"""GET"""', '"""analog/%(channel)d/volt"""'], {}), "('GET', 'analog/%(channel)d/volt')\n", (2373, 2407), False, 'from webiopi.decorators.rest import request, response\n'), ((2413, 2429), 'webiopi.decorators.rest.response', 'response', (['"""%.2f"""'], {}), "('%.2f')\n", (2421, 2429), False, 'from webiopi.decorators.rest import request, response\n'), ((2631, 2665), 'webiopi.decorators.rest.request', 'request', (['"""GET"""', '"""analog/*/integer"""'], {}), "('GET', 'analog/*/integer')\n", (2638, 2665), False, 'from webiopi.decorators.rest import request, response\n'), ((2671, 2699), 'webiopi.decorators.rest.response', 'response', ([], {'contentType': 'M_JSON'}), '(contentType=M_JSON)\n', (2679, 2699), False, 'from webiopi.decorators.rest import request, response\n'), ((2875, 2907), 'webiopi.decorators.rest.request', 'request', (['"""GET"""', '"""analog/*/float"""'], {}), "('GET', 'analog/*/float')\n", (2882, 2907), False, 'from webiopi.decorators.rest import request, response\n'), ((2913, 2941), 'webiopi.decorators.rest.response', 'response', ([], {'contentType': 'M_JSON'}), '(contentType=M_JSON)\n', (2921, 2941), False, 'from webiopi.decorators.rest import request, response\n'), ((3135, 3166), 'webiopi.decorators.rest.request', 'request', (['"""GET"""', '"""analog/*/volt"""'], {}), "('GET', 'analog/*/volt')\n", (3142, 3166), False, 'from webiopi.decorators.rest import request, response\n'), ((3172, 3200), 'webiopi.decorators.rest.response', 'response', ([], {'contentType': 'M_JSON'}), '(contentType=M_JSON)\n', (3180, 3200), False, 'from webiopi.decorators.rest import request, response\n'), ((3666, 3721), 'webiopi.decorators.rest.request', 'request', (['"""POST"""', '"""analog/%(channel)d/integer/%(value)d"""'], {}), "('POST', 'analog/%(channel)d/integer/%(value)d')\n", (3673, 3721), False, 'from webiopi.decorators.rest import request, response\n'), ((3727, 3741), 'webiopi.decorators.rest.response', 'response', (['"""%d"""'], {}), "('%d')\n", (3735, 3741), False, 'from webiopi.decorators.rest import request, response\n'), ((3962, 4015), 'webiopi.decorators.rest.request', 'request', (['"""POST"""', '"""analog/%(channel)d/float/%(value)f"""'], {}), "('POST', 'analog/%(channel)d/float/%(value)f')\n", (3969, 4015), False, 'from webiopi.decorators.rest import request, response\n'), ((4029, 4045), 'webiopi.decorators.rest.response', 'response', (['"""%.2f"""'], {}), "('%.2f')\n", (4037, 4045), False, 'from webiopi.decorators.rest import request, response\n'), ((4217, 4269), 'webiopi.decorators.rest.request', 'request', (['"""POST"""', '"""analog/%(channel)d/volt/%(value)f"""'], {}), "('POST', 'analog/%(channel)d/volt/%(value)f')\n", (4224, 4269), False, 'from webiopi.decorators.rest import request, response\n'), ((4283, 4299), 'webiopi.decorators.rest.response', 'response', (['"""%.2f"""'], {}), "('%.2f')\n", (4291, 4299), False, 'from webiopi.decorators.rest import request, response\n'), ((5536, 5563), 'webiopi.decorators.rest.request', 'request', (['"""GET"""', '"""pwm/count"""'], {}), "('GET', 'pwm/count')\n", (5543, 5563), False, 'from webiopi.decorators.rest import request, response\n'), ((5569, 5583), 'webiopi.decorators.rest.response', 'response', (['"""%d"""'], {}), "('%d')\n", (5577, 5583), False, 'from webiopi.decorators.rest import request, response\n'), ((5644, 5676), 'webiopi.decorators.rest.request', 'request', (['"""GET"""', '"""pwm/resolution"""'], {}), "('GET', 'pwm/resolution')\n", (5651, 5676), False, 'from webiopi.decorators.rest import request, response\n'), ((5682, 5696), 'webiopi.decorators.rest.response', 'response', (['"""%d"""'], {}), "('%d')\n", (5690, 5696), False, 'from webiopi.decorators.rest import request, response\n'), ((5771, 5796), 'webiopi.decorators.rest.request', 'request', (['"""GET"""', '"""pwm/max"""'], {}), "('GET', 'pwm/max')\n", (5778, 5796), False, 'from webiopi.decorators.rest import request, response\n'), ((5802, 5816), 'webiopi.decorators.rest.response', 'response', (['"""%d"""'], {}), "('%d')\n", (5810, 5816), False, 'from webiopi.decorators.rest import request, response\n'), ((5886, 5927), 'webiopi.decorators.rest.request', 'request', (['"""GET"""', '"""pwm/%(channel)d/integer"""'], {}), "('GET', 'pwm/%(channel)d/integer')\n", (5893, 5927), False, 'from webiopi.decorators.rest import request, response\n'), ((5933, 5947), 'webiopi.decorators.rest.response', 'response', (['"""%d"""'], {}), "('%d')\n", (5941, 5947), False, 'from webiopi.decorators.rest import request, response\n'), ((6069, 6108), 'webiopi.decorators.rest.request', 'request', (['"""GET"""', '"""pwm/%(channel)d/float"""'], {}), "('GET', 'pwm/%(channel)d/float')\n", (6076, 6108), False, 'from webiopi.decorators.rest import request, response\n'), ((6114, 6130), 'webiopi.decorators.rest.response', 'response', (['"""%.2f"""'], {}), "('%.2f')\n", (6122, 6130), False, 'from webiopi.decorators.rest import request, response\n'), ((6237, 6289), 'webiopi.decorators.rest.request', 'request', (['"""POST"""', '"""pwm/%(channel)d/integer/%(value)d"""'], {}), "('POST', 'pwm/%(channel)d/integer/%(value)d')\n", (6244, 6289), False, 'from webiopi.decorators.rest import request, response\n'), ((6295, 6309), 'webiopi.decorators.rest.response', 'response', (['"""%d"""'], {}), "('%d')\n", (6303, 6309), False, 'from webiopi.decorators.rest import request, response\n'), ((6515, 6565), 'webiopi.decorators.rest.request', 'request', (['"""POST"""', '"""pwm/%(channel)d/float/%(value)f"""'], {}), "('POST', 'pwm/%(channel)d/float/%(value)f')\n", (6522, 6565), False, 'from webiopi.decorators.rest import request, response\n'), ((6579, 6595), 'webiopi.decorators.rest.response', 'response', (['"""%.2f"""'], {}), "('%.2f')\n", (6587, 6595), False, 'from webiopi.decorators.rest import request, response\n'), ((7414, 7453), 'webiopi.decorators.rest.request', 'request', (['"""GET"""', '"""pwm/%(channel)d/angle"""'], {}), "('GET', 'pwm/%(channel)d/angle')\n", (7421, 7453), False, 'from webiopi.decorators.rest import request, response\n'), ((7459, 7475), 'webiopi.decorators.rest.response', 'response', (['"""%.2f"""'], {}), "('%.2f')\n", (7467, 7475), False, 'from webiopi.decorators.rest import request, response\n'), ((7701, 7751), 'webiopi.decorators.rest.request', 'request', (['"""POST"""', '"""pwm/%(channel)d/angle/%(value)f"""'], {}), "('POST', 'pwm/%(channel)d/angle/%(value)f')\n", (7708, 7751), False, 'from webiopi.decorators.rest import request, response\n'), ((7757, 7773), 'webiopi.decorators.rest.response', 'response', (['"""%.2f"""'], {}), "('%.2f')\n", (7765, 7773), False, 'from webiopi.decorators.rest import request, response\n'), ((8032, 8055), 'webiopi.decorators.rest.request', 'request', (['"""GET"""', '"""pwm/*"""'], {}), "('GET', 'pwm/*')\n", (8039, 8055), False, 'from webiopi.decorators.rest import request, response\n'), ((8061, 8089), 'webiopi.decorators.rest.response', 'response', ([], {'contentType': 'M_JSON'}), '(contentType=M_JSON)\n', (8069, 8089), False, 'from webiopi.decorators.rest import request, response\n')]
dtroyer/osc-loco
osc_choochoo/tests/v1/test_train.py
57119ab84528933da9cbcd57dcd4f5b842a58186
# Copyright 2013 Nebula Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # import mock import os from osc_choochoo.tests import base from osc_choochoo.tests import fakes from osc_choochoo.v1 import train # Load the plugin init module for the plugin list and show commands plugin_name = 'osc_choochoo' plugin_client = 'osc_choochoo.plugin' class FakeTrainV1Client(object): def __init__(self, **kwargs): self.auth_token = kwargs['token'] self.management_url = kwargs['endpoint'] class TestTrainV1(base.TestCommand): def setUp(self): super(TestTrainV1, self).setUp() self.app.client_manager.osc_choochoo = FakeTrainV1Client( endpoint=fakes.AUTH_URL, token=fakes.AUTH_TOKEN, ) class TestTrainList(TestTrainV1): def setUp(self): super(TestTrainList, self).setUp() # Get the command object to test self.cmd = train.TrainList(self.app, None) def test_train_list(self): arglist = [] verifylist = [] parsed_args = self.check_parser(self.cmd, arglist, verifylist) collist = ('Name', ) datalist = ['1.txt', '2.txt'] with mock.patch('os.listdir') as mock_list: mock_list.return_value = datalist # DisplayCommandBase.take_action() returns two tuples columns, data = self.cmd.take_action(parsed_args) self.assertEqual(collist, columns) for d in data: self.assertTrue(d[0] + '.txt' in datalist) class TestTrainShow(TestTrainV1): def setUp(self): super(TestTrainShow, self).setUp() # Get the command object to test self.cmd = train.TrainShow(self.app, None) def test_train_show(self): arglist = [ plugin_name, ] verifylist = [ ('name', plugin_name), ] parsed_args = self.check_parser(self.cmd, arglist, verifylist) collist = ['name', 'data'] datalist = [ plugin_name, 'dummy', ] with mock.patch('io.open') as mock_open: mock_open.return_value = mock.MagicMock() m_file = mock_open.return_value.__enter__.return_value m_file.read.return_value = 'dummy' columns, data = self.cmd.take_action(parsed_args) mock_open.assert_called_once_with( os.path.join( train.DATA_PATH, plugin_name + '.txt', ) ) self.assertEqual(collist, columns) self.assertEqual(datalist, data)
[((1438, 1469), 'osc_choochoo.v1.train.TrainList', 'train.TrainList', (['self.app', 'None'], {}), '(self.app, None)\n', (1453, 1469), False, 'from osc_choochoo.v1 import train\n'), ((2209, 2240), 'osc_choochoo.v1.train.TrainShow', 'train.TrainShow', (['self.app', 'None'], {}), '(self.app, None)\n', (2224, 2240), False, 'from osc_choochoo.v1 import train\n'), ((1700, 1724), 'mock.patch', 'mock.patch', (['"""os.listdir"""'], {}), "('os.listdir')\n", (1710, 1724), False, 'import mock\n'), ((2594, 2615), 'mock.patch', 'mock.patch', (['"""io.open"""'], {}), "('io.open')\n", (2604, 2615), False, 'import mock\n'), ((2667, 2683), 'mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (2681, 2683), False, 'import mock\n'), ((2925, 2976), 'os.path.join', 'os.path.join', (['train.DATA_PATH', "(plugin_name + '.txt')"], {}), "(train.DATA_PATH, plugin_name + '.txt')\n", (2937, 2976), False, 'import os\n')]
darioncassel/OmniCrawl
scripts/firefox-wrapper.py
62317e07340df7eb758a1b8de80679b6d4293d49
#!/usr/bin/env python3 import sys from os.path import dirname, abspath, join import subprocess # Note this does not resolve symbolic links # https://stackoverflow.com/a/17806123 FIREFOX_BINARY = join(dirname(abspath(__file__)), 'firefox') argvs = list(sys.argv) argvs[0] = FIREFOX_BINARY # geckdriver will run `firefox -version` first to check the version if len(sys.argv) == 2 and sys.argv[1] == '-version': subprocess.check_call(argvs) exit(0) # First search for the -tmpprofile option new_profile_path = None for idx, argv in enumerate(sys.argv): if argv == '-tmpprofile': new_profile_path = sys.argv[idx + 1] break # If it's present, replace profile with tmp_profile if new_profile_path: for idx, argv in enumerate(sys.argv): if argv == '-profile': old_profile_path = sys.argv[idx + 1] subprocess.check_call(['rm', '-r', new_profile_path]) subprocess.check_call(['cp', '-r', old_profile_path, new_profile_path]) argvs[idx+1] = new_profile_path break # Firefox will ignore the -tmpprofile option subprocess.check_call(argvs)
[((1105, 1133), 'subprocess.check_call', 'subprocess.check_call', (['argvs'], {}), '(argvs)\n', (1126, 1133), False, 'import subprocess\n'), ((417, 445), 'subprocess.check_call', 'subprocess.check_call', (['argvs'], {}), '(argvs)\n', (438, 445), False, 'import subprocess\n'), ((210, 227), 'os.path.abspath', 'abspath', (['__file__'], {}), '(__file__)\n', (217, 227), False, 'from os.path import dirname, abspath, join\n'), ((859, 912), 'subprocess.check_call', 'subprocess.check_call', (["['rm', '-r', new_profile_path]"], {}), "(['rm', '-r', new_profile_path])\n", (880, 912), False, 'import subprocess\n'), ((925, 996), 'subprocess.check_call', 'subprocess.check_call', (["['cp', '-r', old_profile_path, new_profile_path]"], {}), "(['cp', '-r', old_profile_path, new_profile_path])\n", (946, 996), False, 'import subprocess\n')]
whiteyhat/pretix
src/pretix/base/payment.py
34d1fcf077a92765cd796d81d1aa6695d4801a9a
import json import logging from collections import OrderedDict from decimal import ROUND_HALF_UP, Decimal from typing import Any, Dict, Union import pytz from django import forms from django.conf import settings from django.core.exceptions import ImproperlyConfigured from django.dispatch import receiver from django.forms import Form from django.http import HttpRequest from django.template.loader import get_template from django.utils.timezone import now from django.utils.translation import pgettext_lazy, ugettext_lazy as _ from django_countries import Countries from i18nfield.forms import I18nFormField, I18nTextarea, I18nTextInput from i18nfield.strings import LazyI18nString from pretix.base.forms import PlaceholderValidator from pretix.base.models import ( CartPosition, Event, InvoiceAddress, Order, OrderPayment, OrderRefund, Quota, ) from pretix.base.reldate import RelativeDateField, RelativeDateWrapper from pretix.base.settings import SettingsSandbox from pretix.base.signals import register_payment_providers from pretix.base.templatetags.money import money_filter from pretix.base.templatetags.rich_text import rich_text from pretix.helpers.money import DecimalTextInput from pretix.presale.views import get_cart_total from pretix.presale.views.cart import cart_session, get_or_create_cart_id logger = logging.getLogger(__name__) class PaymentProviderForm(Form): def clean(self): cleaned_data = super().clean() for k, v in self.fields.items(): val = cleaned_data.get(k) if v._required and not val: self.add_error(k, _('This field is required.')) class BasePaymentProvider: """ This is the base class for all payment providers. """ def __init__(self, event: Event): self.event = event self.settings = SettingsSandbox('payment', self.identifier, event) # Default values if self.settings.get('_fee_reverse_calc') is None: self.settings.set('_fee_reverse_calc', True) def __str__(self): return self.identifier @property def is_implicit(self) -> bool: """ Returns whether or whether not this payment provider is an "implicit" payment provider that will *always* and unconditionally be used if is_allowed() returns True and does not require any input. This is intended to be used by the FreePaymentProvider, which skips the payment choice page. By default, this returns ``False``. Please do not set this if you don't know exactly what you are doing. """ return False @property def is_meta(self) -> bool: """ Returns whether or whether not this payment provider is a "meta" payment provider that only works as a settings holder for other payment providers and should never be used directly. This is a trick to implement payment gateways with multiple payment methods but unified payment settings. Take a look at the built-in stripe provider to see how this might be used. By default, this returns ``False``. """ return False @property def is_enabled(self) -> bool: """ Returns whether or whether not this payment provider is enabled. By default, this is determined by the value of the ``_enabled`` setting. """ return self.settings.get('_enabled', as_type=bool) @property def test_mode_message(self) -> str: """ If this property is set to a string, this will be displayed when this payment provider is selected while the event is in test mode. You should use it to explain to your user how your plugin behaves, e.g. if it falls back to a test mode automatically as well or if actual payments will be performed. If you do not set this (or, return ``None``), pretix will show a default message warning the user that this plugin does not support test mode payments. """ return None def calculate_fee(self, price: Decimal) -> Decimal: """ Calculate the fee for this payment provider which will be added to final price before fees (but after taxes). It should include any taxes. The default implementation makes use of the setting ``_fee_abs`` for an absolute fee and ``_fee_percent`` for a percentage. :param price: The total value without the payment method fee, after taxes. """ fee_abs = self.settings.get('_fee_abs', as_type=Decimal, default=0) fee_percent = self.settings.get('_fee_percent', as_type=Decimal, default=0) fee_reverse_calc = self.settings.get('_fee_reverse_calc', as_type=bool, default=True) places = settings.CURRENCY_PLACES.get(self.event.currency, 2) if fee_reverse_calc: return ((price + fee_abs) * (1 / (1 - fee_percent / 100)) - price).quantize( Decimal('1') / 10 ** places, ROUND_HALF_UP ) else: return (price * fee_percent / 100 + fee_abs).quantize( Decimal('1') / 10 ** places, ROUND_HALF_UP ) @property def verbose_name(self) -> str: """ A human-readable name for this payment provider. This should be short but self-explaining. Good examples include 'Bank transfer' and 'Credit card via Stripe'. """ raise NotImplementedError() # NOQA @property def public_name(self) -> str: """ A human-readable name for this payment provider to be shown to the public. This should be short but self-explaining. Good examples include 'Bank transfer' and 'Credit card', but 'Credit card via Stripe' might be to explicit. By default, this is the same as ``verbose_name`` """ return self.verbose_name @property def identifier(self) -> str: """ A short and unique identifier for this payment provider. This should only contain lowercase letters and in most cases will be the same as your package name. """ raise NotImplementedError() # NOQA @property def abort_pending_allowed(self) -> bool: """ Whether or not a user can abort a payment in pending start to switch to another payment method. This returns ``False`` by default which is no guarantee that aborting a pending payment can never happen, it just hides the frontend button to avoid users accidentally committing double payments. """ return False @property def settings_form_fields(self) -> dict: """ When the event's administrator visits the event configuration page, this method is called to return the configuration fields available. It should therefore return a dictionary where the keys should be (unprefixed) settings keys and the values should be corresponding Django form fields. The default implementation returns the appropriate fields for the ``_enabled``, ``_fee_abs``, ``_fee_percent`` and ``_availability_date`` settings mentioned above. We suggest that you return an ``OrderedDict`` object instead of a dictionary and make use of the default implementation. Your implementation could look like this:: @property def settings_form_fields(self): return OrderedDict( list(super().settings_form_fields.items()) + [ ('bank_details', forms.CharField( widget=forms.Textarea, label=_('Bank account details'), required=False )) ] ) .. WARNING:: It is highly discouraged to alter the ``_enabled`` field of the default implementation. """ places = settings.CURRENCY_PLACES.get(self.event.currency, 2) d = OrderedDict([ ('_enabled', forms.BooleanField( label=_('Enable payment method'), required=False, )), ('_availability_date', RelativeDateField( label=_('Available until'), help_text=_('Users will not be able to choose this payment provider after the given date.'), required=False, )), ('_invoice_text', I18nFormField( label=_('Text on invoices'), help_text=_('Will be printed just below the payment figures and above the closing text on invoices. ' 'This will only be used if the invoice is generated before the order is paid. If the ' 'invoice is generated later, it will show a text stating that it has already been paid.'), required=False, widget=I18nTextarea, widget_kwargs={'attrs': {'rows': '2'}} )), ('_total_min', forms.DecimalField( label=_('Minimum order total'), help_text=_('This payment will be available only if the order total is equal to or exceeds the given ' 'value. The order total for this purpose may be computed without taking the fees imposed ' 'by this payment method into account.'), localize=True, required=False, decimal_places=places, widget=DecimalTextInput(places=places) )), ('_total_max', forms.DecimalField( label=_('Maximum order total'), help_text=_('This payment will be available only if the order total is equal to or below the given ' 'value. The order total for this purpose may be computed without taking the fees imposed ' 'by this payment method into account.'), localize=True, required=False, decimal_places=places, widget=DecimalTextInput(places=places) )), ('_fee_abs', forms.DecimalField( label=_('Additional fee'), help_text=_('Absolute value'), localize=True, required=False, decimal_places=places, widget=DecimalTextInput(places=places) )), ('_fee_percent', forms.DecimalField( label=_('Additional fee'), help_text=_('Percentage of the order total.'), localize=True, required=False, )), ('_fee_reverse_calc', forms.BooleanField( label=_('Calculate the fee from the total value including the fee.'), help_text=_('We recommend to enable this if you want your users to pay the payment fees of your ' 'payment provider. <a href="{docs_url}" target="_blank" rel="noopener">Click here ' 'for detailed information on what this does.</a> Don\'t forget to set the correct fees ' 'above!').format(docs_url='https://docs.pretix.eu/en/latest/user/payments/fees.html'), required=False )), ('_restricted_countries', forms.MultipleChoiceField( label=_('Restrict to countries'), choices=Countries(), help_text=_('Only allow choosing this payment provider for invoice addresses in the selected ' 'countries. If you don\'t select any country, all countries are allowed. This is only ' 'enabled if the invoice address is required.'), widget=forms.CheckboxSelectMultiple( attrs={'class': 'scrolling-multiple-choice'} ), required=False, disabled=not self.event.settings.invoice_address_required )), ]) d['_restricted_countries']._as_type = list return d def settings_form_clean(self, cleaned_data): """ Overriding this method allows you to inject custom validation into the settings form. :param cleaned_data: Form data as per previous validations. :return: Please return the modified cleaned_data """ return cleaned_data def settings_content_render(self, request: HttpRequest) -> str: """ When the event's administrator visits the event configuration page, this method is called. It may return HTML containing additional information that is displayed below the form fields configured in ``settings_form_fields``. """ return "" def render_invoice_text(self, order: Order, payment: OrderPayment) -> str: """ This is called when an invoice for an order with this payment provider is generated. The default implementation returns the content of the _invoice_text configuration variable (an I18nString), or an empty string if unconfigured. For paid orders, the default implementation always renders a string stating that the invoice is already paid. """ if order.status == Order.STATUS_PAID: return pgettext_lazy('invoice', 'The payment for this invoice has already been received.') return self.settings.get('_invoice_text', as_type=LazyI18nString, default='') @property def payment_form_fields(self) -> dict: """ This is used by the default implementation of :py:meth:`payment_form`. It should return an object similar to :py:attr:`settings_form_fields`. The default implementation returns an empty dictionary. """ return {} def payment_form(self, request: HttpRequest) -> Form: """ This is called by the default implementation of :py:meth:`payment_form_render` to obtain the form that is displayed to the user during the checkout process. The default implementation constructs the form using :py:attr:`payment_form_fields` and sets appropriate prefixes for the form and all fields and fills the form with data form the user's session. If you overwrite this, we strongly suggest that you inherit from ``PaymentProviderForm`` (from this module) that handles some nasty issues about required fields for you. """ form = PaymentProviderForm( data=(request.POST if request.method == 'POST' and request.POST.get("payment") == self.identifier else None), prefix='payment_%s' % self.identifier, initial={ k.replace('payment_%s_' % self.identifier, ''): v for k, v in request.session.items() if k.startswith('payment_%s_' % self.identifier) } ) form.fields = self.payment_form_fields for k, v in form.fields.items(): v._required = v.required v.required = False v.widget.is_required = False return form def _is_still_available(self, now_dt=None, cart_id=None, order=None): now_dt = now_dt or now() tz = pytz.timezone(self.event.settings.timezone) availability_date = self.settings.get('_availability_date', as_type=RelativeDateWrapper) if availability_date: if self.event.has_subevents and cart_id: availability_date = min([ availability_date.datetime(se).date() for se in self.event.subevents.filter( id__in=CartPosition.objects.filter( cart_id=cart_id, event=self.event ).values_list('subevent', flat=True) ) ]) elif self.event.has_subevents and order: availability_date = min([ availability_date.datetime(se).date() for se in self.event.subevents.filter( id__in=order.positions.values_list('subevent', flat=True) ) ]) elif self.event.has_subevents: logger.error('Payment provider is not subevent-ready.') return False else: availability_date = availability_date.datetime(self.event).date() return availability_date >= now_dt.astimezone(tz).date() return True def is_allowed(self, request: HttpRequest, total: Decimal=None) -> bool: """ You can use this method to disable this payment provider for certain groups of users, products or other criteria. If this method returns ``False``, the user will not be able to select this payment method. This will only be called during checkout, not on retrying. The default implementation checks for the _availability_date setting to be either unset or in the future and for the _total_max and _total_min requirements to be met. It also checks the ``_restrict_countries`` setting. :param total: The total value without the payment method fee, after taxes. .. versionchanged:: 1.17.0 The ``total`` parameter has been added. For backwards compatibility, this method is called again without this parameter if it raises a ``TypeError`` on first try. """ timing = self._is_still_available(cart_id=get_or_create_cart_id(request)) pricing = True if (self.settings._total_max is not None or self.settings._total_min is not None) and total is None: raise ImproperlyConfigured('This payment provider does not support maximum or minimum amounts.') if self.settings._total_max is not None: pricing = pricing and total <= Decimal(self.settings._total_max) if self.settings._total_min is not None: pricing = pricing and total >= Decimal(self.settings._total_min) def get_invoice_address(): if not hasattr(request, '_checkout_flow_invoice_address'): cs = cart_session(request) iapk = cs.get('invoice_address') if not iapk: request._checkout_flow_invoice_address = InvoiceAddress() else: try: request._checkout_flow_invoice_address = InvoiceAddress.objects.get(pk=iapk, order__isnull=True) except InvoiceAddress.DoesNotExist: request._checkout_flow_invoice_address = InvoiceAddress() return request._checkout_flow_invoice_address if self.event.settings.invoice_address_required: restricted_countries = self.settings.get('_restricted_countries', as_type=list) if restricted_countries: ia = get_invoice_address() if str(ia.country) not in restricted_countries: return False return timing and pricing def payment_form_render(self, request: HttpRequest, total: Decimal) -> str: """ When the user selects this provider as their preferred payment method, they will be shown the HTML you return from this method. The default implementation will call :py:meth:`payment_form` and render the returned form. If your payment method doesn't require the user to fill out form fields, you should just return a paragraph of explanatory text. """ form = self.payment_form(request) template = get_template('pretixpresale/event/checkout_payment_form_default.html') ctx = {'request': request, 'form': form} return template.render(ctx) def checkout_confirm_render(self, request) -> str: """ If the user has successfully filled in their payment data, they will be redirected to a confirmation page which lists all details of their order for a final review. This method should return the HTML which should be displayed inside the 'Payment' box on this page. In most cases, this should include a short summary of the user's input and a short explanation on how the payment process will continue. """ raise NotImplementedError() # NOQA def payment_pending_render(self, request: HttpRequest, payment: OrderPayment) -> str: """ Render customer-facing instructions on how to proceed with a pending payment :return: HTML """ return "" def checkout_prepare(self, request: HttpRequest, cart: Dict[str, Any]) -> Union[bool, str]: """ Will be called after the user selects this provider as their payment method. If you provided a form to the user to enter payment data, this method should at least store the user's input into their session. This method should return ``False`` if the user's input was invalid, ``True`` if the input was valid and the frontend should continue with default behavior or a string containing a URL if the user should be redirected somewhere else. On errors, you should use Django's message framework to display an error message to the user (or the normal form validation error messages). The default implementation stores the input into the form returned by :py:meth:`payment_form` in the user's session. If your payment method requires you to redirect the user to an external provider, this might be the place to do so. .. IMPORTANT:: If this is called, the user has not yet confirmed their order. You may NOT do anything which actually moves money. :param cart: This dictionary contains at least the following keys: positions: A list of ``CartPosition`` objects that are annotated with the special attributes ``count`` and ``total`` because multiple objects of the same content are grouped into one. raw: The raw list of ``CartPosition`` objects in the users cart total: The overall total *including* the fee for the payment method. payment_fee: The fee for the payment method. """ form = self.payment_form(request) if form.is_valid(): for k, v in form.cleaned_data.items(): request.session['payment_%s_%s' % (self.identifier, k)] = v return True else: return False def payment_is_valid_session(self, request: HttpRequest) -> bool: """ This is called at the time the user tries to place the order. It should return ``True`` if the user's session is valid and all data your payment provider requires in future steps is present. """ raise NotImplementedError() # NOQA def execute_payment(self, request: HttpRequest, payment: OrderPayment) -> str: """ After the user has confirmed their purchase, this method will be called to complete the payment process. This is the place to actually move the money if applicable. You will be passed an :py:class:`pretix.base.models.OrderPayment` object that contains the amount of money that should be paid. If you need any special behavior, you can return a string containing the URL the user will be redirected to. If you are done with your process you should return the user to the order's detail page. If the payment is completed, you should call ``payment.confirm()``. Please note that ``this`` might raise a ``Quota.QuotaExceededException`` if (and only if) the payment term of this order is over and some of the items are sold out. You should use the exception message to display a meaningful error to the user. The default implementation just returns ``None`` and therefore leaves the order unpaid. The user will be redirected to the order's detail page by default. On errors, you should raise a ``PaymentException``. :param order: The order object :param payment: An ``OrderPayment`` instance """ return None def order_pending_mail_render(self, order: Order, payment: OrderPayment) -> str: """ After the user has submitted their order, they will receive a confirmation email. You can return a string from this method if you want to add additional information to this email. :param order: The order object :param payment: The payment object """ return "" def order_change_allowed(self, order: Order) -> bool: """ Will be called to check whether it is allowed to change the payment method of an order to this one. The default implementation checks for the _availability_date setting to be either unset or in the future, as well as for the _total_max, _total_min and _restricted_countries settings. :param order: The order object """ ps = order.pending_sum if self.settings._total_max is not None and ps > Decimal(self.settings._total_max): return False if self.settings._total_min is not None and ps < Decimal(self.settings._total_min): return False restricted_countries = self.settings.get('_restricted_countries', as_type=list) if restricted_countries: try: ia = order.invoice_address except InvoiceAddress.DoesNotExist: return True else: if str(ia.country) not in restricted_countries: return False return self._is_still_available(order=order) def payment_prepare(self, request: HttpRequest, payment: OrderPayment) -> Union[bool, str]: """ Will be called if the user retries to pay an unpaid order (after the user filled in e.g. the form returned by :py:meth:`payment_form`) or if the user changes the payment method. It should return and report errors the same way as :py:meth:`checkout_prepare`, but receives an ``Order`` object instead of a cart object. Note: The ``Order`` object given to this method might be different from the version stored in the database as it's total will already contain the payment fee for the new payment method. """ form = self.payment_form(request) if form.is_valid(): for k, v in form.cleaned_data.items(): request.session['payment_%s_%s' % (self.identifier, k)] = v return True else: return False def payment_control_render(self, request: HttpRequest, payment: OrderPayment) -> str: """ Will be called if the *event administrator* views the details of a payment. It should return HTML code containing information regarding the current payment status and, if applicable, next steps. The default implementation returns the verbose name of the payment provider. :param order: The order object """ return '' def payment_refund_supported(self, payment: OrderPayment) -> bool: """ Will be called to check if the provider supports automatic refunding for this payment. """ return False def payment_partial_refund_supported(self, payment: OrderPayment) -> bool: """ Will be called to check if the provider supports automatic partial refunding for this payment. """ return False def execute_refund(self, refund: OrderRefund): """ Will be called to execute an refund. Note that refunds have an amount property and can be partial. This should transfer the money back (if possible). On success, you should call ``refund.done()``. On failure, you should raise a PaymentException. """ raise PaymentException(_('Automatic refunds are not supported by this payment provider.')) def shred_payment_info(self, obj: Union[OrderPayment, OrderRefund]): """ When personal data is removed from an event, this method is called to scrub payment-related data from a payment or refund. By default, it removes all info from the ``info`` attribute. You can override this behavior if you want to retain attributes that are not personal data on their own, i.e. a reference to a transaction in an external system. You can also override this to scrub more data, e.g. data from external sources that is saved in LogEntry objects or other places. :param order: An order """ obj.info = '{}' obj.save(update_fields=['info']) class PaymentException(Exception): pass class FreeOrderProvider(BasePaymentProvider): is_implicit = True is_enabled = True identifier = "free" def checkout_confirm_render(self, request: HttpRequest) -> str: return _("No payment is required as this order only includes products which are free of charge.") def payment_is_valid_session(self, request: HttpRequest) -> bool: return True @property def verbose_name(self) -> str: return _("Free of charge") def execute_payment(self, request: HttpRequest, payment: OrderPayment): try: payment.confirm(send_mail=False) except Quota.QuotaExceededException as e: raise PaymentException(str(e)) @property def settings_form_fields(self) -> dict: return {} def is_allowed(self, request: HttpRequest, total: Decimal=None) -> bool: from .services.cart import get_fees total = get_cart_total(request) total += sum([f.value for f in get_fees(self.event, request, total, None, None)]) return total == 0 def order_change_allowed(self, order: Order) -> bool: return False class BoxOfficeProvider(BasePaymentProvider): is_implicit = True is_enabled = True identifier = "boxoffice" verbose_name = _("Box office") def execute_payment(self, request: HttpRequest, payment: OrderPayment): try: payment.confirm(send_mail=False) except Quota.QuotaExceededException as e: raise PaymentException(str(e)) @property def settings_form_fields(self) -> dict: return {} def is_allowed(self, request: HttpRequest, total: Decimal=None) -> bool: return False def order_change_allowed(self, order: Order) -> bool: return False def payment_control_render(self, request, payment) -> str: if not payment.info: return payment_info = json.loads(payment.info) template = get_template('pretixcontrol/boxoffice/payment.html') ctx = { 'request': request, 'event': self.event, 'settings': self.settings, 'payment_info': payment_info, 'payment': payment, 'provider': self, } return template.render(ctx) class ManualPayment(BasePaymentProvider): identifier = 'manual' verbose_name = _('Manual payment') @property def test_mode_message(self): return _('In test mode, you can just manually mark this order as paid in the backend after it has been ' 'created.') @property def is_implicit(self): return 'pretix.plugins.manualpayment' not in self.event.plugins def is_allowed(self, request: HttpRequest, total: Decimal=None): return 'pretix.plugins.manualpayment' in self.event.plugins and super().is_allowed(request, total) def order_change_allowed(self, order: Order): return 'pretix.plugins.manualpayment' in self.event.plugins and super().order_change_allowed(order) @property def public_name(self): return str(self.settings.get('public_name', as_type=LazyI18nString)) @property def settings_form_fields(self): d = OrderedDict( [ ('public_name', I18nFormField( label=_('Payment method name'), widget=I18nTextInput, )), ('checkout_description', I18nFormField( label=_('Payment process description during checkout'), help_text=_('This text will be shown during checkout when the user selects this payment method. ' 'It should give a short explanation on this payment method.'), widget=I18nTextarea, )), ('email_instructions', I18nFormField( label=_('Payment process description in order confirmation emails'), help_text=_('This text will be included for the {payment_info} placeholder in order confirmation ' 'mails. It should instruct the user on how to proceed with the payment. You can use' 'the placeholders {order}, {total}, {currency} and {total_with_currency}'), widget=I18nTextarea, validators=[PlaceholderValidator(['{order}', '{total}', '{currency}', '{total_with_currency}'])], )), ('pending_description', I18nFormField( label=_('Payment process description for pending orders'), help_text=_('This text will be shown on the order confirmation page for pending orders. ' 'It should instruct the user on how to proceed with the payment. You can use' 'the placeholders {order}, {total}, {currency} and {total_with_currency}'), widget=I18nTextarea, validators=[PlaceholderValidator(['{order}', '{total}', '{currency}', '{total_with_currency}'])], )), ] + list(super().settings_form_fields.items()) ) d.move_to_end('_enabled', last=False) return d def payment_form_render(self, request) -> str: return rich_text( str(self.settings.get('checkout_description', as_type=LazyI18nString)) ) def checkout_prepare(self, request, total): return True def payment_is_valid_session(self, request): return True def checkout_confirm_render(self, request): return self.payment_form_render(request) def format_map(self, order): return { 'order': order.code, 'total': order.total, 'currency': self.event.currency, 'total_with_currency': money_filter(order.total, self.event.currency) } def order_pending_mail_render(self, order) -> str: msg = str(self.settings.get('email_instructions', as_type=LazyI18nString)).format_map(self.format_map(order)) return msg def payment_pending_render(self, request, payment) -> str: return rich_text( str(self.settings.get('pending_description', as_type=LazyI18nString)).format_map(self.format_map(payment.order)) ) class OffsettingProvider(BasePaymentProvider): is_enabled = True identifier = "offsetting" verbose_name = _("Offsetting") is_implicit = True def execute_payment(self, request: HttpRequest, payment: OrderPayment): try: payment.confirm() except Quota.QuotaExceededException as e: raise PaymentException(str(e)) def execute_refund(self, refund: OrderRefund): code = refund.info_data['orders'][0] try: order = Order.objects.get(code=code, event__organizer=self.event.organizer) except Order.DoesNotExist: raise PaymentException(_('You entered an order that could not be found.')) p = order.payments.create( state=OrderPayment.PAYMENT_STATE_PENDING, amount=refund.amount, payment_date=now(), provider='offsetting', info=json.dumps({'orders': [refund.order.code]}) ) p.confirm() @property def settings_form_fields(self) -> dict: return {} def is_allowed(self, request: HttpRequest, total: Decimal=None) -> bool: return False def order_change_allowed(self, order: Order) -> bool: return False def payment_control_render(self, request: HttpRequest, payment: OrderPayment) -> str: return _('Balanced against orders: %s' % ', '.join(payment.info_data['orders'])) @receiver(register_payment_providers, dispatch_uid="payment_free") def register_payment_provider(sender, **kwargs): return [FreeOrderProvider, BoxOfficeProvider, OffsettingProvider, ManualPayment]
[((1331, 1358), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (1348, 1358), False, 'import logging\n'), ((36977, 37042), 'django.dispatch.receiver', 'receiver', (['register_payment_providers'], {'dispatch_uid': '"""payment_free"""'}), "(register_payment_providers, dispatch_uid='payment_free')\n", (36985, 37042), False, 'from django.dispatch import receiver\n'), ((30517, 30532), 'django.utils.translation.ugettext_lazy', '_', (['"""Box office"""'], {}), "('Box office')\n", (30518, 30532), True, 'from django.utils.translation import pgettext_lazy, ugettext_lazy as _\n'), ((31609, 31628), 'django.utils.translation.ugettext_lazy', '_', (['"""Manual payment"""'], {}), "('Manual payment')\n", (31610, 31628), True, 'from django.utils.translation import pgettext_lazy, ugettext_lazy as _\n'), ((35685, 35700), 'django.utils.translation.ugettext_lazy', '_', (['"""Offsetting"""'], {}), "('Offsetting')\n", (35686, 35700), True, 'from django.utils.translation import pgettext_lazy, ugettext_lazy as _\n'), ((1826, 1876), 'pretix.base.settings.SettingsSandbox', 'SettingsSandbox', (['"""payment"""', 'self.identifier', 'event'], {}), "('payment', self.identifier, event)\n", (1841, 1876), False, 'from pretix.base.settings import SettingsSandbox\n'), ((4732, 4784), 'django.conf.settings.CURRENCY_PLACES.get', 'settings.CURRENCY_PLACES.get', (['self.event.currency', '(2)'], {}), '(self.event.currency, 2)\n', (4760, 4784), False, 'from django.conf import settings\n'), ((7969, 8021), 'django.conf.settings.CURRENCY_PLACES.get', 'settings.CURRENCY_PLACES.get', (['self.event.currency', '(2)'], {}), '(self.event.currency, 2)\n', (7997, 8021), False, 'from django.conf import settings\n'), ((15499, 15542), 'pytz.timezone', 'pytz.timezone', (['self.event.settings.timezone'], {}), '(self.event.settings.timezone)\n', (15512, 15542), False, 'import pytz\n'), ((19898, 19968), 'django.template.loader.get_template', 'get_template', (['"""pretixpresale/event/checkout_payment_form_default.html"""'], {}), "('pretixpresale/event/checkout_payment_form_default.html')\n", (19910, 19968), False, 'from django.template.loader import get_template\n'), ((29445, 29540), 'django.utils.translation.ugettext_lazy', '_', (['"""No payment is required as this order only includes products which are free of charge."""'], {}), "('No payment is required as this order only includes products which are free of charge.'\n )\n", (29446, 29540), True, 'from django.utils.translation import pgettext_lazy, ugettext_lazy as _\n'), ((29692, 29711), 'django.utils.translation.ugettext_lazy', '_', (['"""Free of charge"""'], {}), "('Free of charge')\n", (29693, 29711), True, 'from django.utils.translation import pgettext_lazy, ugettext_lazy as _\n'), ((30156, 30179), 'pretix.presale.views.get_cart_total', 'get_cart_total', (['request'], {}), '(request)\n', (30170, 30179), False, 'from pretix.presale.views import get_cart_total\n'), ((31152, 31176), 'json.loads', 'json.loads', (['payment.info'], {}), '(payment.info)\n', (31162, 31176), False, 'import json\n'), ((31196, 31248), 'django.template.loader.get_template', 'get_template', (['"""pretixcontrol/boxoffice/payment.html"""'], {}), "('pretixcontrol/boxoffice/payment.html')\n", (31208, 31248), False, 'from django.template.loader import get_template\n'), ((31692, 31803), 'django.utils.translation.ugettext_lazy', '_', (['"""In test mode, you can just manually mark this order as paid in the backend after it has been created."""'], {}), "('In test mode, you can just manually mark this order as paid in the backend after it has been created.'\n )\n", (31693, 31803), True, 'from django.utils.translation import pgettext_lazy, ugettext_lazy as _\n'), ((13557, 13644), 'django.utils.translation.pgettext_lazy', 'pgettext_lazy', (['"""invoice"""', '"""The payment for this invoice has already been received."""'], {}), "('invoice',\n 'The payment for this invoice has already been received.')\n", (13570, 13644), False, 'from django.utils.translation import pgettext_lazy, ugettext_lazy as _\n'), ((15480, 15485), 'django.utils.timezone.now', 'now', ([], {}), '()\n', (15483, 15485), False, 'from django.utils.timezone import now\n'), ((17958, 18053), 'django.core.exceptions.ImproperlyConfigured', 'ImproperlyConfigured', (['"""This payment provider does not support maximum or minimum amounts."""'], {}), "(\n 'This payment provider does not support maximum or minimum amounts.')\n", (17978, 18053), False, 'from django.core.exceptions import ImproperlyConfigured\n'), ((28419, 28485), 'django.utils.translation.ugettext_lazy', '_', (['"""Automatic refunds are not supported by this payment provider."""'], {}), "('Automatic refunds are not supported by this payment provider.')\n", (28420, 28485), True, 'from django.utils.translation import pgettext_lazy, ugettext_lazy as _\n'), ((35090, 35136), 'pretix.base.templatetags.money.money_filter', 'money_filter', (['order.total', 'self.event.currency'], {}), '(order.total, self.event.currency)\n', (35102, 35136), False, 'from pretix.base.templatetags.money import money_filter\n'), ((36067, 36134), 'pretix.base.models.Order.objects.get', 'Order.objects.get', ([], {'code': 'code', 'event__organizer': 'self.event.organizer'}), '(code=code, event__organizer=self.event.organizer)\n', (36084, 36134), False, 'from pretix.base.models import CartPosition, Event, InvoiceAddress, Order, OrderPayment, OrderRefund, Quota\n'), ((17775, 17805), 'pretix.presale.views.cart.get_or_create_cart_id', 'get_or_create_cart_id', (['request'], {}), '(request)\n', (17796, 17805), False, 'from pretix.presale.views.cart import cart_session, get_or_create_cart_id\n'), ((18431, 18452), 'pretix.presale.views.cart.cart_session', 'cart_session', (['request'], {}), '(request)\n', (18443, 18452), False, 'from pretix.presale.views.cart import cart_session, get_or_create_cart_id\n'), ((25543, 25576), 'decimal.Decimal', 'Decimal', (['self.settings._total_max'], {}), '(self.settings._total_max)\n', (25550, 25576), False, 'from decimal import ROUND_HALF_UP, Decimal\n'), ((25661, 25694), 'decimal.Decimal', 'Decimal', (['self.settings._total_min'], {}), '(self.settings._total_min)\n', (25668, 25694), False, 'from decimal import ROUND_HALF_UP, Decimal\n'), ((36405, 36410), 'django.utils.timezone.now', 'now', ([], {}), '()\n', (36408, 36410), False, 'from django.utils.timezone import now\n'), ((36464, 36507), 'json.dumps', 'json.dumps', (["{'orders': [refund.order.code]}"], {}), "({'orders': [refund.order.code]})\n", (36474, 36507), False, 'import json\n'), ((1607, 1635), 'django.utils.translation.ugettext_lazy', '_', (['"""This field is required."""'], {}), "('This field is required.')\n", (1608, 1635), True, 'from django.utils.translation import pgettext_lazy, ugettext_lazy as _\n'), ((4919, 4931), 'decimal.Decimal', 'Decimal', (['"""1"""'], {}), "('1')\n", (4926, 4931), False, 'from decimal import ROUND_HALF_UP, Decimal\n'), ((5073, 5085), 'decimal.Decimal', 'Decimal', (['"""1"""'], {}), "('1')\n", (5080, 5085), False, 'from decimal import ROUND_HALF_UP, Decimal\n'), ((18142, 18175), 'decimal.Decimal', 'Decimal', (['self.settings._total_max'], {}), '(self.settings._total_max)\n', (18149, 18175), False, 'from decimal import ROUND_HALF_UP, Decimal\n'), ((18269, 18302), 'decimal.Decimal', 'Decimal', (['self.settings._total_min'], {}), '(self.settings._total_min)\n', (18276, 18302), False, 'from decimal import ROUND_HALF_UP, Decimal\n'), ((18592, 18608), 'pretix.base.models.InvoiceAddress', 'InvoiceAddress', ([], {}), '()\n', (18606, 18608), False, 'from pretix.base.models import CartPosition, Event, InvoiceAddress, Order, OrderPayment, OrderRefund, Quota\n'), ((36205, 36255), 'django.utils.translation.ugettext_lazy', '_', (['"""You entered an order that could not be found."""'], {}), "('You entered an order that could not be found.')\n", (36206, 36255), True, 'from django.utils.translation import pgettext_lazy, ugettext_lazy as _\n'), ((18721, 18776), 'pretix.base.models.InvoiceAddress.objects.get', 'InvoiceAddress.objects.get', ([], {'pk': 'iapk', 'order__isnull': '(True)'}), '(pk=iapk, order__isnull=True)\n', (18747, 18776), False, 'from pretix.base.models import CartPosition, Event, InvoiceAddress, Order, OrderPayment, OrderRefund, Quota\n'), ((8129, 8155), 'django.utils.translation.ugettext_lazy', '_', (['"""Enable payment method"""'], {}), "('Enable payment method')\n", (8130, 8155), True, 'from django.utils.translation import pgettext_lazy, ugettext_lazy as _\n'), ((8297, 8317), 'django.utils.translation.ugettext_lazy', '_', (['"""Available until"""'], {}), "('Available until')\n", (8298, 8317), True, 'from django.utils.translation import pgettext_lazy, ugettext_lazy as _\n'), ((8346, 8432), 'django.utils.translation.ugettext_lazy', '_', (['"""Users will not be able to choose this payment provider after the given date."""'], {}), "('Users will not be able to choose this payment provider after the given date.'\n )\n", (8347, 8432), True, 'from django.utils.translation import pgettext_lazy, ugettext_lazy as _\n'), ((8560, 8581), 'django.utils.translation.ugettext_lazy', '_', (['"""Text on invoices"""'], {}), "('Text on invoices')\n", (8561, 8581), True, 'from django.utils.translation import pgettext_lazy, ugettext_lazy as _\n'), ((8610, 8877), 'django.utils.translation.ugettext_lazy', '_', (['"""Will be printed just below the payment figures and above the closing text on invoices. This will only be used if the invoice is generated before the order is paid. If the invoice is generated later, it will show a text stating that it has already been paid."""'], {}), "('Will be printed just below the payment figures and above the closing text on invoices. This will only be used if the invoice is generated before the order is paid. If the invoice is generated later, it will show a text stating that it has already been paid.'\n )\n", (8611, 8877), True, 'from django.utils.translation import pgettext_lazy, ugettext_lazy as _\n'), ((9165, 9189), 'django.utils.translation.ugettext_lazy', '_', (['"""Minimum order total"""'], {}), "('Minimum order total')\n", (9166, 9189), True, 'from django.utils.translation import pgettext_lazy, ugettext_lazy as _\n'), ((9218, 9440), 'django.utils.translation.ugettext_lazy', '_', (['"""This payment will be available only if the order total is equal to or exceeds the given value. The order total for this purpose may be computed without taking the fees imposed by this payment method into account."""'], {}), "('This payment will be available only if the order total is equal to or exceeds the given value. The order total for this purpose may be computed without taking the fees imposed by this payment method into account.'\n )\n", (9219, 9440), True, 'from django.utils.translation import pgettext_lazy, ugettext_lazy as _\n'), ((9630, 9661), 'pretix.helpers.money.DecimalTextInput', 'DecimalTextInput', ([], {'places': 'places'}), '(places=places)\n', (9646, 9661), False, 'from pretix.helpers.money import DecimalTextInput\n'), ((9762, 9786), 'django.utils.translation.ugettext_lazy', '_', (['"""Maximum order total"""'], {}), "('Maximum order total')\n", (9763, 9786), True, 'from django.utils.translation import pgettext_lazy, ugettext_lazy as _\n'), ((9815, 10035), 'django.utils.translation.ugettext_lazy', '_', (['"""This payment will be available only if the order total is equal to or below the given value. The order total for this purpose may be computed without taking the fees imposed by this payment method into account."""'], {}), "('This payment will be available only if the order total is equal to or below the given value. The order total for this purpose may be computed without taking the fees imposed by this payment method into account.'\n )\n", (9816, 10035), True, 'from django.utils.translation import pgettext_lazy, ugettext_lazy as _\n'), ((10225, 10256), 'pretix.helpers.money.DecimalTextInput', 'DecimalTextInput', ([], {'places': 'places'}), '(places=places)\n', (10241, 10256), False, 'from pretix.helpers.money import DecimalTextInput\n'), ((10355, 10374), 'django.utils.translation.ugettext_lazy', '_', (['"""Additional fee"""'], {}), "('Additional fee')\n", (10356, 10374), True, 'from django.utils.translation import pgettext_lazy, ugettext_lazy as _\n'), ((10403, 10422), 'django.utils.translation.ugettext_lazy', '_', (['"""Absolute value"""'], {}), "('Absolute value')\n", (10404, 10422), True, 'from django.utils.translation import pgettext_lazy, ugettext_lazy as _\n'), ((10553, 10584), 'pretix.helpers.money.DecimalTextInput', 'DecimalTextInput', ([], {'places': 'places'}), '(places=places)\n', (10569, 10584), False, 'from pretix.helpers.money import DecimalTextInput\n'), ((10687, 10706), 'django.utils.translation.ugettext_lazy', '_', (['"""Additional fee"""'], {}), "('Additional fee')\n", (10688, 10706), True, 'from django.utils.translation import pgettext_lazy, ugettext_lazy as _\n'), ((10735, 10770), 'django.utils.translation.ugettext_lazy', '_', (['"""Percentage of the order total."""'], {}), "('Percentage of the order total.')\n", (10736, 10770), True, 'from django.utils.translation import pgettext_lazy, ugettext_lazy as _\n'), ((10944, 11006), 'django.utils.translation.ugettext_lazy', '_', (['"""Calculate the fee from the total value including the fee."""'], {}), "('Calculate the fee from the total value including the fee.')\n", (10945, 11006), True, 'from django.utils.translation import pgettext_lazy, ugettext_lazy as _\n'), ((11620, 11646), 'django.utils.translation.ugettext_lazy', '_', (['"""Restrict to countries"""'], {}), "('Restrict to countries')\n", (11621, 11646), True, 'from django.utils.translation import pgettext_lazy, ugettext_lazy as _\n'), ((11673, 11684), 'django_countries.Countries', 'Countries', ([], {}), '()\n', (11682, 11684), False, 'from django_countries import Countries\n'), ((11713, 11930), 'django.utils.translation.ugettext_lazy', '_', (['"""Only allow choosing this payment provider for invoice addresses in the selected countries. If you don\'t select any country, all countries are allowed. This is only enabled if the invoice address is required."""'], {}), '("Only allow choosing this payment provider for invoice addresses in the selected countries. If you don\'t select any country, all countries are allowed. This is only enabled if the invoice address is required."\n )\n', (11714, 11930), True, 'from django.utils.translation import pgettext_lazy, ugettext_lazy as _\n'), ((12016, 12090), 'django.forms.CheckboxSelectMultiple', 'forms.CheckboxSelectMultiple', ([], {'attrs': "{'class': 'scrolling-multiple-choice'}"}), "(attrs={'class': 'scrolling-multiple-choice'})\n", (12044, 12090), False, 'from django import forms\n'), ((18898, 18914), 'pretix.base.models.InvoiceAddress', 'InvoiceAddress', ([], {}), '()\n', (18912, 18914), False, 'from pretix.base.models import CartPosition, Event, InvoiceAddress, Order, OrderPayment, OrderRefund, Quota\n'), ((32551, 32575), 'django.utils.translation.ugettext_lazy', '_', (['"""Payment method name"""'], {}), "('Payment method name')\n", (32552, 32575), True, 'from django.utils.translation import pgettext_lazy, ugettext_lazy as _\n'), ((32721, 32769), 'django.utils.translation.ugettext_lazy', '_', (['"""Payment process description during checkout"""'], {}), "('Payment process description during checkout')\n", (32722, 32769), True, 'from django.utils.translation import pgettext_lazy, ugettext_lazy as _\n'), ((32801, 32952), 'django.utils.translation.ugettext_lazy', '_', (['"""This text will be shown during checkout when the user selects this payment method. It should give a short explanation on this payment method."""'], {}), "('This text will be shown during checkout when the user selects this payment method. It should give a short explanation on this payment method.'\n )\n", (32802, 32952), True, 'from django.utils.translation import pgettext_lazy, ugettext_lazy as _\n'), ((33125, 33186), 'django.utils.translation.ugettext_lazy', '_', (['"""Payment process description in order confirmation emails"""'], {}), "('Payment process description in order confirmation emails')\n", (33126, 33186), True, 'from django.utils.translation import pgettext_lazy, ugettext_lazy as _\n'), ((33218, 33465), 'django.utils.translation.ugettext_lazy', '_', (['"""This text will be included for the {payment_info} placeholder in order confirmation mails. It should instruct the user on how to proceed with the payment. You can usethe placeholders {order}, {total}, {currency} and {total_with_currency}"""'], {}), "('This text will be included for the {payment_info} placeholder in order confirmation mails. It should instruct the user on how to proceed with the payment. You can usethe placeholders {order}, {total}, {currency} and {total_with_currency}'\n )\n", (33219, 33465), True, 'from django.utils.translation import pgettext_lazy, ugettext_lazy as _\n'), ((33792, 33843), 'django.utils.translation.ugettext_lazy', '_', (['"""Payment process description for pending orders"""'], {}), "('Payment process description for pending orders')\n", (33793, 33843), True, 'from django.utils.translation import pgettext_lazy, ugettext_lazy as _\n'), ((33875, 34106), 'django.utils.translation.ugettext_lazy', '_', (['"""This text will be shown on the order confirmation page for pending orders. It should instruct the user on how to proceed with the payment. You can usethe placeholders {order}, {total}, {currency} and {total_with_currency}"""'], {}), "('This text will be shown on the order confirmation page for pending orders. It should instruct the user on how to proceed with the payment. You can usethe placeholders {order}, {total}, {currency} and {total_with_currency}'\n )\n", (33876, 34106), True, 'from django.utils.translation import pgettext_lazy, ugettext_lazy as _\n'), ((11035, 11301), 'django.utils.translation.ugettext_lazy', '_', (['"""We recommend to enable this if you want your users to pay the payment fees of your payment provider. <a href="{docs_url}" target="_blank" rel="noopener">Click here for detailed information on what this does.</a> Don\'t forget to set the correct fees above!"""'], {}), '(\'We recommend to enable this if you want your users to pay the payment fees of your payment provider. <a href="{docs_url}" target="_blank" rel="noopener">Click here for detailed information on what this does.</a> Don\\\'t forget to set the correct fees above!\'\n )\n', (11036, 11301), True, 'from django.utils.translation import pgettext_lazy, ugettext_lazy as _\n'), ((33605, 33692), 'pretix.base.forms.PlaceholderValidator', 'PlaceholderValidator', (["['{order}', '{total}', '{currency}', '{total_with_currency}']"], {}), "(['{order}', '{total}', '{currency}',\n '{total_with_currency}'])\n", (33625, 33692), False, 'from pretix.base.forms import PlaceholderValidator\n'), ((34246, 34333), 'pretix.base.forms.PlaceholderValidator', 'PlaceholderValidator', (["['{order}', '{total}', '{currency}', '{total_with_currency}']"], {}), "(['{order}', '{total}', '{currency}',\n '{total_with_currency}'])\n", (34266, 34333), False, 'from pretix.base.forms import PlaceholderValidator\n'), ((15914, 15976), 'pretix.base.models.CartPosition.objects.filter', 'CartPosition.objects.filter', ([], {'cart_id': 'cart_id', 'event': 'self.event'}), '(cart_id=cart_id, event=self.event)\n', (15941, 15976), False, 'from pretix.base.models import CartPosition, Event, InvoiceAddress, Order, OrderPayment, OrderRefund, Quota\n')]
sag-tgo/EPL_assert_demo
tests/AssertFail/run.py
a43541e4472dfab7da6538ae9f220b5e042d158c
from pysys.basetest import BaseTest from apama.correlator import CorrelatorHelper import os class PySysTest(BaseTest): def execute(self): corr = CorrelatorHelper(self, name='correlator') corr.start(logfile='correlator.log') corr.injectEPL(os.getenv('APAMA_HOME','') + '/monitors/ManagementImpl.mon') corr.injectEPL(os.getenv('APAMA_HOME','') + '/monitors/Management.mon') corr.injectEPL('../../../src/Assert.mon') corr.injectEPL('TestAssertFail.mon') self.waitForGrep('correlator.log', 'Removed monitor TestAssertFail') def validate(self): self.assertGrep('correlator.log', r' (ERROR|WARN) .*', contains=False)
[((149, 190), 'apama.correlator.CorrelatorHelper', 'CorrelatorHelper', (['self'], {'name': '"""correlator"""'}), "(self, name='correlator')\n", (165, 190), False, 'from apama.correlator import CorrelatorHelper\n'), ((247, 274), 'os.getenv', 'os.getenv', (['"""APAMA_HOME"""', '""""""'], {}), "('APAMA_HOME', '')\n", (256, 274), False, 'import os\n'), ((325, 352), 'os.getenv', 'os.getenv', (['"""APAMA_HOME"""', '""""""'], {}), "('APAMA_HOME', '')\n", (334, 352), False, 'import os\n')]
Ziftr/stellard
src/beast/python/beast/env/ReadEnvFile_test.py
626514cbbb2c6c2b6844315ca98a2bfcbca0b43d
from __future__ import absolute_import, division, print_function, unicode_literals from unittest import TestCase from beast.env.ReadEnvFile import read_env_file from beast.util import Terminal Terminal.CAN_CHANGE_COLOR = False JSON = """ { "FOO": "foo", "BAR": "bar bar bar", "CPPFLAGS": "-std=c++11 -frtti -fno-strict-aliasing -DWOMBAT" }""" ENV = """ # An env file. FOO=foo export BAR="bar bar bar" CPPFLAGS=-std=c++11 -frtti -fno-strict-aliasing -DWOMBAT # export BAZ=baz should be ignored. """ RESULT = { 'FOO': 'foo', 'BAR': 'bar bar bar', 'CPPFLAGS': '-std=c++11 -frtti -fno-strict-aliasing -DWOMBAT', } BAD_ENV = ENV + """ This line isn't right. NO SPACES IN NAMES="valid value" """ class test_ReadEnvFile(TestCase): def test_read_json(self): self.assertEqual(read_env_file(JSON), RESULT) def test_read_env(self): self.assertEqual(read_env_file(ENV), RESULT) def test_read_env_error(self): errors = [] self.assertEqual(read_env_file(BAD_ENV, errors.append), RESULT) self.assertEqual(errors, [ "WARNING: Didn't understand the following environment file lines:", "11. >>> This line isn't right.", '12. >>> NO SPACES IN NAMES="valid value"'])
[((805, 824), 'beast.env.ReadEnvFile.read_env_file', 'read_env_file', (['JSON'], {}), '(JSON)\n', (818, 824), False, 'from beast.env.ReadEnvFile import read_env_file\n'), ((883, 901), 'beast.env.ReadEnvFile.read_env_file', 'read_env_file', (['ENV'], {}), '(ENV)\n', (896, 901), False, 'from beast.env.ReadEnvFile import read_env_file\n'), ((982, 1019), 'beast.env.ReadEnvFile.read_env_file', 'read_env_file', (['BAD_ENV', 'errors.append'], {}), '(BAD_ENV, errors.append)\n', (995, 1019), False, 'from beast.env.ReadEnvFile import read_env_file\n')]
pptnz/swa_team2
signin/tests.py
253ae83d73c00245d359574d6a16f4eba9830950
import json from django.test import TestCase from django.contrib.auth.models import User from .models import CustomUser from django.apps import apps from .apps import SigninConfig class SignInTest(TestCase): def setUp(self): self.django_user = User.objects.create_user(username='testusername', password='testpassword') self.custom_user = CustomUser.objects.create(django_user=self.django_user) def test_apps(self): self.assertEqual(SigninConfig.name, 'signin') self.assertEqual(apps.get_app_config('signin').name, 'signin') def test_sign_in_redirect_page(self): response = self.client.get('/') self.assertRedirects(response, '/sign_in/') def test_get(self): response = self.client.get('/sign_in/') self.assertEqual(response.status_code, 200) def test_wrong_username(self): response = self.client.post('/sign_in/', {'username': 'wrongusername', 'password': 'testpassword'}) self.assertEqual(response.status_code, 200) def test_wrong_password(self): response = self.client.post('/sign_in/', {'username': 'testusername', 'password': 'wrongpassword'}) self.assertEqual(response.status_code, 200) def test_login(self): response = self.client.post('/sign_in/', {'username': 'testusername', 'password': 'testpassword'}) self.assertRedirects(response, '/habitmaker/') # todo: change this link def test_login_other_page(self): response = self.client.post('/sign_in/?next=/habitmaker/', {'username': 'testusername', 'password': 'testpassword'}) self.assertRedirects(response, '/habitmaker/') def test_form_not_valid(self): response = self.client.post('/sign_in/', {'username': 'testusername'}) self.assertEqual(response.status_code, 200) def test_email_verification(self): self.custom_user.authenticate_email() self.assertTrue(self.custom_user.is_email_authenticated) def test_already_signed_in(self): self.client.login(username='testusername', password='testpassword') response = self.client.get('/sign_in/') self.assertRedirects(response, '/habitmaker/')
[((259, 333), 'django.contrib.auth.models.User.objects.create_user', 'User.objects.create_user', ([], {'username': '"""testusername"""', 'password': '"""testpassword"""'}), "(username='testusername', password='testpassword')\n", (283, 333), False, 'from django.contrib.auth.models import User\n'), ((522, 551), 'django.apps.apps.get_app_config', 'apps.get_app_config', (['"""signin"""'], {}), "('signin')\n", (541, 551), False, 'from django.apps import apps\n')]
EliHar/BinaryTree-ADT
tree/list/BinaryNode.py
bf220eb8ccb04f6fee7d7a67ef7e9cd00cc6a4c1
__author__ = 'Elias Haroun' class BinaryNode(object): def __init__(self, data, left, right): self.data = data self.left = left self.right = right def getData(self): return self.data def getLeft(self): return self.left def getRight(self): return self.right def setData(self, data): self.data = data def setLeft(self, aNode): self.left = aNode def setRight(self, aNode): self.right = aNode def hasLeft(self): return self.getLeft() is not None def hasRight(self): return self.getRight() is not None def isLeaf(self): return not(self.hasLeft() | self.hasRight())
[]
AbrahmAB/booleannet
boolean2/tokenizer.py
a07124047d18a5b7265e050a234969ac58970c7a
""" Main tokenizer. """ from itertools import * import sys, random import util import ply.lex as lex class Lexer: """ Lexer for boolean rules """ literals = '=*,' tokens = ( 'LABEL', 'ID','STATE', 'ASSIGN', 'EQUAL', 'AND', 'OR', 'NOT', 'NUMBER', 'LPAREN','RPAREN', 'COMMA', ) reserved = { 'and' : 'AND', 'or' : 'OR', 'not' : 'NOT', 'True' : 'STATE', 'False' : 'STATE', 'Random' : 'STATE', } def __init__(self, **kwargs): # nothing here yet self.lexer = lex.lex(object=self, **kwargs) def t_ID( self, t): "[a-zA-Z_\+\-][a-zA-Z_0-9\+\-]*" # check for reserved words t.type = self.reserved.get( t.value, 'ID') return t def t_LABEL (self, t): "[0-9][0-9]*:" t.value = int(t.value[:-1]) return t def t_NUMBER(self, t): "[\+-]*\d+\.?\d*" try: t.value = float(t.value) except ValueError: util.error( "value too large", t.value ) return t t_LPAREN = r'\(' t_RPAREN = r'\)' t_ASSIGN = r'\*' t_EQUAL = r'=' t_COMMA = r',' t_ignore = ' \t' t_ignore_COMMENT = r'\#.*' def t_newline(self, t): "Newline handling" r'\n+' t.lexer.lineno += t.value.count("\n") def t_error(self, t): "Error message" msg = "lexer error in '%s' at '%s'" % (self.last, t.value) util.error( msg ) def tokenize_line(self, line ): "Runs the lexer a single line retutns a list of tokens" tokens = [] self.last = line self.lexer.input( line ) while 1: t = self.lexer.token() if t: tokens.append(t) else: break return tokens def tokenize_text(self, text): "Runs the lexer on text and returns a list of lists of tokens" return map( self.tokenize_line, util.split(text) ) def init_tokens( tokenlist ): """ Returns elments of the list that are initializers """ def cond( elem ): return elem[1].type == 'EQUAL' return filter( cond, tokenlist) def label_tokens( tokenlist ): """ Returns elements where the first token is a LABEL (updating rules with labels) """ def cond( elem ): return elem[0].type == 'LABEL' return filter( cond, tokenlist) def async_tokens( tokenlist ): """ Returns elements where the second token is ASSIGN (updating rules with no LABELs) """ def cond( elem ): return elem[1].type == 'ASSIGN' return filter( cond, tokenlist) def update_tokens( tokenlist ): """ Returns tokens that perform updates """ def cond( elem ): return elem[1].type == 'ASSIGN' or elem[2].type == 'ASSIGN' return filter( cond, tokenlist) def get_nodes( tokenlist ): """ Flattens the list of tokenlist and returns the value of all ID tokens """ def cond ( token ): return token.type == 'ID' def get( token): return token.value nodes = map(get, filter( cond, chain( *tokenlist ))) nodes = set(nodes) util.check_case( nodes ) return nodes def tok2line( tokens ): """ Turns a list of tokens into a line that can be parsed again """ elems = [ str(t.value) for t in tokens ] if tokens[0].type == 'LABEL': elems[0] = elems[0] + ':' return ' '.join( elems ) def test(): """ Main testrunnner >>> import util >>> >>> text = ''' ... A = B = True ... 1: A* = B ... 2: B* = A and B ... C* = not C ... E = False ... F = (1, 2, 3) ... ''' >>> >>> lexer = Lexer() >>> tokens = lexer.tokenize_text( text ) >>> tokens[0] [LexToken(ID,'A',1,0), LexToken(EQUAL,'=',1,2), LexToken(ID,'B',1,4), LexToken(EQUAL,'=',1,6), LexToken(STATE,'True',1,8)] >>> tokens[1] [LexToken(LABEL,1,1,0), LexToken(ID,'A',1,3), LexToken(ASSIGN,'*',1,4), LexToken(EQUAL,'=',1,6), LexToken(ID,'B',1,8)] >>> tokens[2] [LexToken(LABEL,2,1,0), LexToken(ID,'B',1,3), LexToken(ASSIGN,'*',1,4), LexToken(EQUAL,'=',1,6), LexToken(ID,'A',1,8), LexToken(AND,'and',1,10), LexToken(ID,'B',1,14)] >>> tokens[3] [LexToken(ID,'C',1,0), LexToken(ASSIGN,'*',1,1), LexToken(EQUAL,'=',1,3), LexToken(NOT,'not',1,5), LexToken(ID,'C',1,9)] >>> >>> get_nodes( tokens ) set(['A', 'C', 'B', 'E', 'F']) """ # runs the local suite import doctest doctest.testmod( optionflags=doctest.ELLIPSIS + doctest.NORMALIZE_WHITESPACE ) def tokenize( text ): "A one step tokenizer" lexer = Lexer() return lexer.tokenize_text( text ) def modify_states( text, turnon=[], turnoff=[] ): """ Turns nodes on and off and comments out lines that contain assignment to any of the nodes Will use the main lexer. """ turnon = util.as_set( turnon ) turnoff = util.as_set( turnoff ) tokens = tokenize( text ) init = init_tokens( tokens ) init_lines = map(tok2line, init) # override the initial values init_lines.extend( [ '%s=True' % node for node in turnon ] ) init_lines.extend( [ '%s=False' % node for node in turnoff ] ) alter = turnon | turnoff update = update_tokens ( tokens ) update_lines = [] for token in update: line = tok2line( token) if token[0].value in alter or token[1].value in alter: line = '#' + line update_lines.append( line ) all = init_lines + update_lines return '\n'.join( all ) if __name__ == '__main__': test() lexer = Lexer() text = """ A = B = C = False D = True 1: A* = B 2: B* = A and B C* = not C D* = A """ print modify_states( text, turnon=['A', 'B'], turnoff=['C'] )
[]
tomzhang/aiida_core
aiida/cmdline/params/options/test_interactive.py
949810e9f3daff0f748c5c9aa1dde4f5222bb49b
"""Unit tests for the InteractiveOption.""" from __future__ import absolute_import import unittest import click from click.testing import CliRunner from click.types import IntParamType from aiida.cmdline.params.options.interactive import InteractiveOption from aiida.cmdline.params.options import NON_INTERACTIVE class Only42IntParamType(IntParamType): """ Param type that only accepts 42 as valid value """ name = 'only42int' def convert(self, value, param, ctx): newval = super(Only42IntParamType, self).convert(value, param, ctx) if newval != 42: self.fail("Type validation: invalid, should be 42") return newval def __repr__(self): return 'ONLY42INT' class InteractiveOptionTest(unittest.TestCase): """Unit tests for InteractiveOption.""" # pylint: disable=too-many-public-methods, missing-docstring def simple_command(self, **kwargs): """Return a simple command with one InteractiveOption, kwargs get relayed to the option.""" # pylint: disable=no-self-use @click.command() @click.option('--opt', prompt='Opt', cls=InteractiveOption, **kwargs) @NON_INTERACTIVE() def cmd(opt, non_interactive): """test command for InteractiveOption""" # pylint: disable=unused-argument click.echo(str(opt)) return cmd @classmethod def setUpClass(cls): cls.runner = CliRunner() def prompt_output(self, cli_input, converted=None): """Return expected output of simple_command, given a commandline cli_input string.""" # pylint: disable=no-self-use return "Opt: {}\n{}\n".format(cli_input, converted or cli_input) def test_prompt_str(self): """ scenario: using InteractiveOption with type=str behaviour: giving no option prompts, accepts a string """ cmd = self.simple_command(type=str) runner = CliRunner() result = runner.invoke(cmd, [], input='TEST\n') expected = self.prompt_output('TEST') self.assertIsNone(result.exception) self.assertIn(expected, result.output) def test_prompt_empty_input(self): """ scenario: using InteractiveOption with type=str and invoking without options behaviour: pressing enter on empty line at prompt repeats the prompt without a message """ cmd = self.simple_command(type=str) runner = CliRunner() result = runner.invoke(cmd, [], input='\nTEST\n') expected = "Opt: \nOpt: TEST\nTEST\n" self.assertIsNone(result.exception) self.assertIn(expected, result.output) def test_prompt_help_default(self): """ scenario: using InteractiveOption with type=str and no help parameter and invoking without options behaviour: entering '?' leads to a default help message being printed and prompt repeated """ cmd = self.simple_command(type=str) runner = CliRunner() result = runner.invoke(cmd, [], input='?\nTEST\n') expected_1 = 'Opt: ?\n' expected_2 = 'Expecting text\n' expected_3 = 'Opt: TEST\nTEST\n' self.assertIsNone(result.exception) self.assertIn(expected_1, result.output) self.assertIn(expected_2, result.output) self.assertIn(expected_3, result.output) def test_prompt_help_custom(self): """ scenario: using InteractiveOption with type=str and help message and invoking without options behaviour: entering '?' leads to the given help message being printed and the prompt repeated """ cmd = self.simple_command(type=str, help='Please enter some text') runner = CliRunner() result = runner.invoke(cmd, [], input='?\nTEST\n') expected_1 = 'Opt: ?\n' expected_2 = 'Please enter some text\n' expected_3 = 'Opt: TEST\nTEST\n' self.assertIsNone(result.exception) self.assertIn(expected_1, result.output) self.assertIn(expected_2, result.output) self.assertIn(expected_3, result.output) def test_prompt_simple(self): """ scenario: using InteractiveOption with type=bool behaviour: giving no option prompts, accepts 'true' """ params = [(bool, 'true', 'True'), (int, '98', '98'), (float, '3.14e-7', '3.14e-07')] for ptype, cli_input, output in params: cmd = self.simple_command(type=ptype, help='help msg') runner = CliRunner() result = runner.invoke(cmd, [], input='\n?\n{}\n'.format(cli_input)) expected_1 = 'Opt: \nOpt: ?\n' expected_2 = 'help msg\n' expected_2 += self.prompt_output(cli_input, output) self.assertIsNone(result.exception) self.assertIn(expected_1, result.output) self.assertIn(expected_2, result.output) @staticmethod def strip_line(text): """returns text without the last line""" return text.rsplit('\n')[0] def test_prompt_complex(self): """ scenario: using InteractiveOption with type=float behaviour: giving no option prompts, accepts 3.14e-7 """ params = [(click.File(), __file__), (click.Path(exists=True), __file__)] for ptype, cli_input in params: cmd = self.simple_command(type=ptype, help='help msg') runner = CliRunner() result = runner.invoke(cmd, [], input='\n?\n{}\n'.format(cli_input)) expected_1 = 'Opt: \nOpt: ?\n' expected_2 = 'help msg\n' expected_2 += self.strip_line(self.prompt_output(cli_input)) self.assertIsNone(result.exception) self.assertIn(expected_1, result.output) self.assertIn(expected_2, result.output) def test_default_value_prompt(self): """ scenario: using InteractiveOption with a default value, invoke without options behaviour: prompt, showing the default value, take default on empty cli_input. """ returns = [] cmd = self.simple_command(default='default') result = self.runner.invoke(cmd, [], input='\n') returns.append(result) expected = 'Opt [default]: \ndefault\n' self.assertIsNone(result.exception) self.assertIn(expected, result.output) result = self.runner.invoke(cmd, [], input='TEST\n') returns.append(result) expected = 'Opt [default]: TEST\nTEST\n' self.assertIsNone(result.exception) self.assertIn(expected, result.output) return returns def test_default_value_empty_opt(self): """ scenario: InteractiveOption with default value, invoke with empty option (--opt=) behaviour: accept empty string as input """ cmd = self.simple_command(default='default') runner = CliRunner() result = runner.invoke(cmd, ['--opt=']) expected = '\n' self.assertIsNone(result.exception) self.assertEqual(result.output, expected) def test_opt_given_valid(self): """ scenario: InteractiveOption, invoked with a valid value on the cmdline behaviour: accept valid value """ cmd = self.simple_command(type=int) runner = CliRunner() result = runner.invoke(cmd, ['--opt=4']) expected = '4\n' self.assertIsNone(result.exception) self.assertEqual(result.output, expected) def test_opt_given_invalid(self): """ scenario: InteractiveOption, invoked with a valid value on the cmdline behaviour: accept valid value """ cmd = self.simple_command(type=int) runner = CliRunner() result = runner.invoke(cmd, ['--opt=foo']) self.assertIsNotNone(result.exception) self.assertIn('Invalid value', result.output) def test_non_interactive(self): """ scenario: InteractiveOption, invoked with only --non-interactive (and the option is required) behaviout: fail """ cmd = self.simple_command(required=True) runner = CliRunner() result = runner.invoke(cmd, ['--non-interactive']) self.assertIsNotNone(result.exception) self.assertIn('Usage: ', result.output) self.assertIn('Missing option', result.output) def test_non_interactive_default(self): """ scenario: InteractiveOption, invoked with only --non-interactive behaviour: fail """ cmd = self.simple_command(default='default') runner = CliRunner() result = runner.invoke(cmd, ['--non-interactive']) self.assertIsNone(result.exception) self.assertEqual(result.output, 'default\n') @staticmethod def user_callback(_ctx, param, value): """ A fake user callback ued for testing. :param _ctx: The click context :param param: The parameter name :param value: The parameter value :return: The validated parameter """ if not value: return -1 elif value != 42: raise click.BadParameter('invalid', param=param) else: return value def test_after_callback_valid(self): """ scenario: InteractiveOption with a user callback action: invoke with valid value behaviour: user callback runs & succeeds """ cmd = self.simple_command(callback=self.user_callback, type=int) result = self.runner.invoke(cmd, ['--opt=42']) self.assertIsNone(result.exception) self.assertEqual(result.output, '42\n') def test_after_callback_invalid(self): """ scenario: InteractiveOption with a user callback action: invoke with invalid value of right type behaviour: user callback runs & succeeds """ cmd = self.simple_command(callback=self.user_callback, type=int) result = self.runner.invoke(cmd, ['--opt=234234']) self.assertIsNotNone(result.exception) self.assertIn('Invalid value', result.output) self.assertIn('invalid', result.output) def test_after_callback_wrong_typ(self): """ scenario: InteractiveOption with a user callback action: invoke with invalid value of wrong type behaviour: user callback does not run """ cmd = self.simple_command(callback=self.user_callback, type=int) result = self.runner.invoke(cmd, ['--opt=bla']) self.assertIsNotNone(result.exception) self.assertIn('Invalid value', result.output) self.assertIn('bla', result.output) def test_after_callback_empty(self): """ scenario: InteractiveOption with a user callback action: invoke with invalid value of wrong type behaviour: user callback does not run """ cmd = self.simple_command(callback=self.user_callback, type=int) result = self.runner.invoke(cmd, ['--opt=']) self.assertIsNotNone(result.exception) self.assertIn('Invalid value', result.output) self.assertNotIn('empty', result.output) def test_after_validation_interactive(self): """ Test that the type validation gets called on values entered at a prompt. Scenario: * InteractiveOption with custom type and prompt set * invoked without passing the options * on prompt: first enter an invalid value, then a valid one Behaviour: * Prompt for the value * reject invalid value, prompt again * accept valid value """ cmd = self.simple_command(callback=self.user_callback, type=Only42IntParamType()) result = self.runner.invoke(cmd, [], input='23\n42\n') self.assertIsNone(result.exception) self.assertIn('Opt: 23\n', result.output) self.assertIn('Type validation: invalid', result.output) self.assertIn('Opt: 42\n42\n', result.output) def test_after_callback_default_noninteractive(self): """ Test that the callback gets called on the default, in line with click 6 behaviour. Scenario: * InteractiveOption with user callback and invalid default * invoke with no options and --non-interactive Behaviour: * the default value gets passed through the callback and rejected """ # pylint: disable=invalid-name cmd = self.simple_command(callback=self.user_callback, type=int, default=23) result = self.runner.invoke(cmd, ['--non-interactive']) self.assertIsNotNone(result.exception) self.assertIn('Invalid value', result.output) def test_default_empty_empty_cli(self): """Test that default="" allows to pass an empty cli option.""" cmd = self.simple_command(default="", type=str) result = self.runner.invoke(cmd, ['--opt=']) self.assertIsNone(result.exception) self.assertEqual(result.output, '\n') def test_default_empty_prompt(self): """Test that default="" allows to pass an empty cli option.""" cmd = self.simple_command(default="", type=str) result = self.runner.invoke(cmd, input='\n') expected = 'Opt []: \n\n' self.assertIsNone(result.exception) self.assertIn(expected, result.output) def test_prompt_dynamic_default(self): """Test that dynamic defaults for prompting still work.""" def test_not_required_noninteractive(self): cmd = self.simple_command(required=False) result = self.runner.invoke(cmd, ['--non-interactive']) self.assertIsNone(result.exception) # I strip, there is typically a \n at the end self.assertEqual(result.output, 'None\n') def test_not_required_interactive(self): cmd = self.simple_command(required=False) result = self.runner.invoke(cmd, input='value\n') expected = 'Opt: value\nvalue\n' self.assertIsNone(result.exception) self.assertIn(expected, result.output) def test_not_required_noninteractive_default(self): cmd = self.simple_command(required=False, default='') result = self.runner.invoke(cmd, ['--non-interactive']) self.assertIsNone(result.exception) self.assertEqual(result.output, '\n') def test_not_required_interactive_default(self): cmd = self.simple_command(required=False, default='') result = self.runner.invoke(cmd, input='\nnot needed\n') expected = 'Opt []: \n\n' self.assertIsNone(result.exception) self.assertIn(expected, result.output)
[((1079, 1094), 'click.command', 'click.command', ([], {}), '()\n', (1092, 1094), False, 'import click\n'), ((1104, 1172), 'click.option', 'click.option', (['"""--opt"""'], {'prompt': '"""Opt"""', 'cls': 'InteractiveOption'}), "('--opt', prompt='Opt', cls=InteractiveOption, **kwargs)\n", (1116, 1172), False, 'import click\n'), ((1182, 1199), 'aiida.cmdline.params.options.NON_INTERACTIVE', 'NON_INTERACTIVE', ([], {}), '()\n', (1197, 1199), False, 'from aiida.cmdline.params.options import NON_INTERACTIVE\n'), ((1456, 1467), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (1465, 1467), False, 'from click.testing import CliRunner\n'), ((1966, 1977), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (1975, 1977), False, 'from click.testing import CliRunner\n'), ((2476, 2487), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (2485, 2487), False, 'from click.testing import CliRunner\n'), ((3014, 3025), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (3023, 3025), False, 'from click.testing import CliRunner\n'), ((3749, 3760), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (3758, 3760), False, 'from click.testing import CliRunner\n'), ((6921, 6932), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (6930, 6932), False, 'from click.testing import CliRunner\n'), ((7338, 7349), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (7347, 7349), False, 'from click.testing import CliRunner\n'), ((7759, 7770), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (7768, 7770), False, 'from click.testing import CliRunner\n'), ((8176, 8187), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (8185, 8187), False, 'from click.testing import CliRunner\n'), ((8633, 8644), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (8642, 8644), False, 'from click.testing import CliRunner\n'), ((4537, 4548), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (4546, 4548), False, 'from click.testing import CliRunner\n'), ((5447, 5458), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (5456, 5458), False, 'from click.testing import CliRunner\n'), ((5257, 5269), 'click.File', 'click.File', ([], {}), '()\n', (5267, 5269), False, 'import click\n'), ((5283, 5306), 'click.Path', 'click.Path', ([], {'exists': '(True)'}), '(exists=True)\n', (5293, 5306), False, 'import click\n'), ((9185, 9227), 'click.BadParameter', 'click.BadParameter', (['"""invalid"""'], {'param': 'param'}), "('invalid', param=param)\n", (9203, 9227), False, 'import click\n')]
fabmiz/osf.io
scripts/migration/migrate_registered_meta.py
8d86af3f0a6e5388bd5b18383e68e27b65a66247
""" Changes existing registered_meta on a node to new schema layout required for the prereg-prize """ import json import sys import logging from modularodm import Q from framework.mongo import database as db from framework.mongo.utils import from_mongo from framework.transactions.context import TokuTransaction from website.models import MetaSchema from website.app import init_app from website.project.metadata.schemas import _id_to_name from scripts import utils as scripts_utils logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) def prepare_nodes(_db=None): _db = _db or db _db['node'].update( {}, { '$set': { 'registered_schema': [] } }, multi=True ) def from_json_or_fail(schema): # Unstringify stored metadata try: schema = json.loads(schema) if schema else {} except TypeError as e: if isinstance(schema, dict): pass else: raise e return schema def main(dev=False, _db=None): _db = _db or db init_app(routes=False) count = 0 skipped = 0 scripts_utils.add_file_logger(logger, __file__) logger.info("Iterating over all registrations") # convert registered_schema to list field prepare_nodes() node_documents = _db['node'].find({'is_registration': True}) for node in node_documents: registered_schemas = [] registered_meta = {} schemas = node['registered_meta'] if not schemas: logger.info('Node: {0} is registered but has no registered_meta'.format(node['_id'])) continue for schema_id, schema in schemas.iteritems(): name = _id_to_name(from_mongo(schema_id)) schema = from_json_or_fail(schema) # append matching schema to node.registered_schema try: meta_schema = MetaSchema.find( Q('name', 'eq', name) ).sort('-schema_version')[0] except IndexError as e: logger.error('No MetaSchema matching name: {0} found for node: {1}.'.format(name, node['_id'])) # Skip over missing schemas skipped += 1 if dev: continue else: raise e else: registered_meta[meta_schema._id] = { key: { 'value': value } for key, value in schema.items() } registered_schemas.append(meta_schema._id) db['node'].update( {'_id': node['_id']}, {'$set': { 'registered_meta': registered_meta, 'registered_schema': registered_schemas }} ) count = count + 1 logger.info('Done with {0} nodes migrated and {1} nodes skipped.'.format(count, skipped)) if __name__ == '__main__': dry_run = 'dry' in sys.argv dev = 'dev' in sys.argv with TokuTransaction(): main(dev=dev) if dry_run: raise RuntimeError('Dry run, rolling back transaction.')
[((497, 524), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (514, 524), False, 'import logging\n'), ((1081, 1103), 'website.app.init_app', 'init_app', ([], {'routes': '(False)'}), '(routes=False)\n', (1089, 1103), False, 'from website.app import init_app\n'), ((1138, 1185), 'scripts.utils.add_file_logger', 'scripts_utils.add_file_logger', (['logger', '__file__'], {}), '(logger, __file__)\n', (1167, 1185), True, 'from scripts import utils as scripts_utils\n'), ((3065, 3082), 'framework.transactions.context.TokuTransaction', 'TokuTransaction', ([], {}), '()\n', (3080, 3082), False, 'from framework.transactions.context import TokuTransaction\n'), ((855, 873), 'json.loads', 'json.loads', (['schema'], {}), '(schema)\n', (865, 873), False, 'import json\n'), ((1734, 1755), 'framework.mongo.utils.from_mongo', 'from_mongo', (['schema_id'], {}), '(schema_id)\n', (1744, 1755), False, 'from framework.mongo.utils import from_mongo\n'), ((1951, 1972), 'modularodm.Q', 'Q', (['"""name"""', '"""eq"""', 'name'], {}), "('name', 'eq', name)\n", (1952, 1972), False, 'from modularodm import Q\n')]
hypernicon/pyec
pyec/distribution/bayes/structure/basic.py
7072835c97d476fc45ffc3b34f5c3ec607988e6d
""" Copyright (C) 2012 Alan J Lockett Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from numpy import * import sys import weakref class CyclicException(Exception): pass class DuplicateEdgeException(Exception): pass class IrreversibleEdgeException(Exception): pass class StructureSearch(object): def __init__(self, scorer, autocommit=False): self.scorer = scorer self.autocommit = autocommit self.network = None def canReverse(self, newChild, newParent): """ check to ensure reverse link is not already present (In a DAG, it should not be) """ if newChild.parents.has_key(newParent.index): return False return True def admissibleEdge(self, var1, var2): """Is edge admissible in a DAG?""" if var1.index == var2.index: return False if var1.parents.has_key(var2.index): return False if var2.parents.has_key(var1.index): return False return True def merge(self, net, other, data, allowCyclic=False): """add the edges from other to self, preventing cycles if asked""" self.network = net net.computeEdgeStatistics() other.computeEdgeStatistics() indexMap = dict([(v.index, v) for v in net.variables]) undoList = [] def undo(update=True): for undo2 in reversed(undoList): undo2(False) for frm, to in other.edges: try: frm2 = indexMap[frm.index] to2 = indexMap[to.index] undo2 = self.addEdge(to2, frm2, data, allowCyclic) frm2.children = None undoList.append(undo2) except Exception, msg: pass self.network = None return undo def cross(self, net, other, data, allowCyclic=False): self.network = net net.computeEdgeStatistics() other.computeEdgeStatistics() indexMap = dict([(v.index, v) for v in net.variables]) indexMap2 = dict([(v.index, v) for v in other.variables]) undoList = [] if len(net.edges) == 0: return other if len(other.edges) == 0: return net if len(net.edges) < net.numVariables / 2 and len(other.edges) < other.numVariables / 2: return net def undo(update=True): for undo2 in reversed(undoList): undo2(False) for variable in net.variables: # pick a parent if random.random_sample < 0.5: # Add relationships from other, avoiding cycles ps = len(variable.parents) for idx, parent in variable.parents.iteritems(): undoList.append(self.removeEdge(idx, variable, allowCyclic)) parent.children = None for idx, parent2 in v2.parents.iteritems(): try: parent = indexMap[parent.index] undoList.append(self.addEdge(variable, parent, data, allowCyclic)) parent.children = None except Exception, msg: pass net.computeEdgeStatistics() self.network = None return undo def removeEdge(self, i, variable, data=None): self.network.computeEdgeStatistics() oldstate = self.network.getComputedState() toRemove = variable.parents[i] variable.removeParent(toRemove) toRemove.children = None self.network.dirty = True netref = weakref.ref(self.network) varref = weakref.ref(variable) remref = weakref.ref(toRemove) def undo(update=True): var = varref() rem = remref() net = netref() if var is not None and rem is not None and net is not None: var.addParent(rem) rem.children = None net.restoreComputedState(oldstate) try: self.network.updateVar(variable, data) except: undo() raise return undo def addEdge(self, child, parent, data = None, allowCyclic = False): self.network.computeEdgeStatistics() oldstate = self.network.getComputedState() if child.parents.has_key(parent.index): raise DuplicateEdgeException, "Edge already exists" child.addParent(parent) parent.children = None self.network.dirty = True parentref = weakref.ref(parent) childref = weakref.ref(child) netref = weakref.ref(self.network) def undo(update=True): parent = parentref() child = childref() network = netref() if parent is not None and child is not None and network is not None: parent.children = None child.removeParent(parent) network.restoreComputedState(oldstate) if (not allowCyclic) and not self.network.isAcyclic(): undo() raise CyclicException, "Adding an edge makes network cyclic" try: self.network.updateVar(child, data) except: undo() raise return undo def reverseEdge(self, i, variable, data=None, allowCyclic = False): """toReverse is new child, variable is new parent""" self.network.computeEdgeStatistics() oldstate = self.network.getComputedState() toReverse = variable.parents[i] if not self.canReverse(toReverse, variable): raise IrreversibleEdgeException, "Edge reversal disallowed" variable.removeParent(toReverse) toReverse.addParent(variable) variable.children = None toReverse.children = None self.network.dirty = True varref = weakref.ref(variable) revref = weakref.ref(toReverse) netref = weakref.ref(self.network) def undo(update=True): variable = varref() toReverse = revref() network = netref() if (variable is not None and toReverse is not None and network is not None): variable.addParent(toReverse) toReverse.removeParent(variable) network.restoreComputedState(oldstate) if (not allowCyclic) and not self.network.isAcyclic(): undo() raise CyclicException, "Reversing an edge makes nework cyclic" try: self.network.updateVar(variable, data) self.network.updateVar(toReverse, data) except: undo() raise return undo def attempt(self, fn, exc): try: return fn() except: exc() raise
[]
pingrunhuang/CodeChallenge
graph/tsp.py
a8e5274e04c47d851836197907266418af4f1a22
""" given a fully connected undirected graph(If no path exists between two cities, adding an arbitrarily long edge will complete the graph without affecting the optimal tour), find the path with the lowest cost in total for a salesman to travel from a given start vertex """ import time class Edge: def __init__(self, target, weight): self.target = target self.weight = weight def __repr__(self): return self.target class TSP(object): """ This is a fully connected graph with edge weight value positive """ def __init__(self): self.graph = {} self.prev = {} self.start = None def add_vertex(self, name, edges): self.graph[name] = edges def permutation(self, edge, result=[]): if edge.target == self.start: return result for x in result: if x.target == edge.target: return result result.append(edge) for next_edge in self.graph[edge.target]: self.permutation(next_edge, result) return result def tsp_recursive(self, start): """ Essentially, the tsp problem is a permutation problem """ self.start = start result = [] for edge in self.graph[start]: result.append(self.permutation(edge, [Edge(start, 0)])) smallest_val = 100000 print(result) path = [] for solution in result: total_cost = sum(map(lambda x:x.weight, solution)) if smallest_val>total_cost: path = solution smallest_val = total_cost return (smallest_val, path) def tsp_dp(self, graph, start): pass if __name__ == "__main__": tsp = TSP() tsp.add_vertex('w', [Edge('y', 1), Edge('x', 6), Edge('z', 3)]) tsp.add_vertex('x', [Edge('w', 6), Edge('z', 3), Edge('y', 4)]) tsp.add_vertex('z', [Edge('y', 2), Edge('w', 3), Edge('x', 3)]) tsp.add_vertex('y', [Edge('w', 1), Edge('x', 3), Edge('z', 2)]) result = tsp.tsp_recursive('x') print(result)
[]
only-romano/junkyard
projects/code_combat/8_Cloudrip_Mountain/471-Distracting_Dungeon/distracting_dungeon.py
b60a25b2643f429cdafee438d20f9966178d6f36
def moveBothTo(point): while hero.distanceTo(point) > 1: hero.move(point) hero.command(peasant, "move", point) peasant = hero.findNearest(hero.findFriends()) while True: hero.command(peasant, "buildXY", "decoy", peasant.pos.x + 2, peasant.pos.y) var nextPoint = {"x": hero.pos.x, "y": hero.pos.y + 28} moveBothTo(nextPoint) nextPoint = {"x": hero.pos.x + 28, "y": hero.pos.y} var enemy = hero.findNearestEnemy() while enemy: while enemy.health > 0: hero.attack(enemy) enemy = hero.findNearestEnemy() moveBothTo(nextPoint)
[]
pflun/learningAlgorithms
firstBadVersion.py
3101e989488dfc8a56f1bf256a1c03a837fe7d97
# The isBadVersion API is already defined for you. # @param version, an integer # @return a bool # def isBadVersion(version): class Solution(object): def firstBadVersion(self, n): start = 1 end = n while start + 1 < end: mid = start + (end - start) / 2 if isBadVersion(mid): end = mid else: start = mid if isBadVersion(start): return start elif isBadVersion(end): return end
[]
QizaiMing/ergo-project-manager
issues/migrations/0001_initial.py
2b02b2ab6d9e48bfccbbca8c05180b07177dcb77
# Generated by Django 2.2.12 on 2020-05-01 03:34 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Issue', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=100)), ('description', models.TextField(max_length=2000)), ('created', models.DateTimeField(auto_now_add=True)), ('modified', models.DateTimeField(auto_now=True)), ('status', models.CharField(choices=[('To Do', 'To Do'), ('In Progress', 'In Progress'), ('Done', 'Done')], default='To Do', max_length=20)), ('priority', models.CharField(choices=[('Low', 'Low'), ('Medium', 'Medium'), ('High', 'High')], default='Low', max_length=20)), ('assignee', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='assigned', to=settings.AUTH_USER_MODEL)), ('creator', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='issues', to=settings.AUTH_USER_MODEL)), ('linked_to', models.ManyToManyField(related_name='_issue_linked_to_+', to='issues.Issue')), ], ), migrations.CreateModel( name='Comment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', models.DateTimeField(auto_now_add=True)), ('content', models.TextField(max_length=1000)), ('creator', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='comments', to=settings.AUTH_USER_MODEL)), ('issue', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='comments', to='issues.Issue')), ], ), migrations.CreateModel( name='Attachment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('file', models.FileField(upload_to='media/files')), ('issue', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='attachments', to='issues.Issue')), ], ), ]
[((248, 305), 'django.db.migrations.swappable_dependency', 'migrations.swappable_dependency', (['settings.AUTH_USER_MODEL'], {}), '(settings.AUTH_USER_MODEL)\n', (279, 305), False, 'from django.db import migrations, models\n'), ((435, 528), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (451, 528), False, 'from django.db import migrations, models\n'), ((553, 585), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (569, 585), False, 'from django.db import migrations, models\n'), ((620, 653), 'django.db.models.TextField', 'models.TextField', ([], {'max_length': '(2000)'}), '(max_length=2000)\n', (636, 653), False, 'from django.db import migrations, models\n'), ((684, 723), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (704, 723), False, 'from django.db import migrations, models\n'), ((755, 790), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(True)'}), '(auto_now=True)\n', (775, 790), False, 'from django.db import migrations, models\n'), ((820, 953), 'django.db.models.CharField', 'models.CharField', ([], {'choices': "[('To Do', 'To Do'), ('In Progress', 'In Progress'), ('Done', 'Done')]", 'default': '"""To Do"""', 'max_length': '(20)'}), "(choices=[('To Do', 'To Do'), ('In Progress', 'In Progress'\n ), ('Done', 'Done')], default='To Do', max_length=20)\n", (836, 953), False, 'from django.db import migrations, models\n'), ((980, 1096), 'django.db.models.CharField', 'models.CharField', ([], {'choices': "[('Low', 'Low'), ('Medium', 'Medium'), ('High', 'High')]", 'default': '"""Low"""', 'max_length': '(20)'}), "(choices=[('Low', 'Low'), ('Medium', 'Medium'), ('High',\n 'High')], default='Low', max_length=20)\n", (996, 1096), False, 'from django.db import migrations, models\n'), ((1124, 1245), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""assigned"""', 'to': 'settings.AUTH_USER_MODEL'}), "(on_delete=django.db.models.deletion.CASCADE, related_name\n ='assigned', to=settings.AUTH_USER_MODEL)\n", (1141, 1245), False, 'from django.db import migrations, models\n'), ((1271, 1390), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""issues"""', 'to': 'settings.AUTH_USER_MODEL'}), "(on_delete=django.db.models.deletion.CASCADE, related_name\n ='issues', to=settings.AUTH_USER_MODEL)\n", (1288, 1390), False, 'from django.db import migrations, models\n'), ((1418, 1494), 'django.db.models.ManyToManyField', 'models.ManyToManyField', ([], {'related_name': '"""_issue_linked_to_+"""', 'to': '"""issues.Issue"""'}), "(related_name='_issue_linked_to_+', to='issues.Issue')\n", (1440, 1494), False, 'from django.db import migrations, models\n'), ((1627, 1720), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (1643, 1720), False, 'from django.db import migrations, models\n'), ((1747, 1786), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (1767, 1786), False, 'from django.db import migrations, models\n'), ((1817, 1850), 'django.db.models.TextField', 'models.TextField', ([], {'max_length': '(1000)'}), '(max_length=1000)\n', (1833, 1850), False, 'from django.db import migrations, models\n'), ((1881, 2002), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""comments"""', 'to': 'settings.AUTH_USER_MODEL'}), "(on_delete=django.db.models.deletion.CASCADE, related_name\n ='comments', to=settings.AUTH_USER_MODEL)\n", (1898, 2002), False, 'from django.db import migrations, models\n'), ((2026, 2137), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""comments"""', 'to': '"""issues.Issue"""'}), "(on_delete=django.db.models.deletion.CASCADE, related_name\n ='comments', to='issues.Issue')\n", (2043, 2137), False, 'from django.db import migrations, models\n'), ((2268, 2361), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (2284, 2361), False, 'from django.db import migrations, models\n'), ((2385, 2426), 'django.db.models.FileField', 'models.FileField', ([], {'upload_to': '"""media/files"""'}), "(upload_to='media/files')\n", (2401, 2426), False, 'from django.db import migrations, models\n'), ((2455, 2569), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""attachments"""', 'to': '"""issues.Issue"""'}), "(on_delete=django.db.models.deletion.CASCADE, related_name\n ='attachments', to='issues.Issue')\n", (2472, 2569), False, 'from django.db import migrations, models\n')]
ffffff0x/python-hacker
com/binghe/hacker/tools/script/ak/check_virus.py
a2dc7f9031669a86bd2c87892c0a8c1e54bb2a79
#!/usr/bin/env python # -*- coding: utf-8 -*- # -*- coding: gbk -*- # Date: 2019/2/22 # Created by 冰河 # Description 将生成的bindshell.exe提交到vscan.novirusthanks.org检测 # 用法 python check_virus.py -f bindshell.exe # 博客 https://blog.csdn.net/l1028386804 import re import httplib import time import os import optparse from urlparse import urlparse def printResults(url): status = 200 host = urlparse(url)[1] path = urlparse(url)[2] if 'analysis' not in path: while status != 302: conn = httplib.HTTPConnection(host) conn.request('GET', path) resp = conn.getresponse() status = resp.status print '[+] Scanning file...' conn.close() time.sleep(15) print '[+] Scan Complete.' path = path.replace('file', 'analysis') conn = httplib.HTTPConnection(host) conn.request('GET', path) resp = conn.getresponse() data = resp.read() conn.close() reResults = re.findall(r'Detection rate:.*\)', data) htmlStripRes = reResults[1]. \ replace('&lt;font color=\'red\'&gt;', ''). \ replace('&lt;/font&gt;', '') print '[+] ' + str(htmlStripRes) def uploadFile(fileName): print "[+] Uploading file to NoVirusThanks..." fileContents = open(fileName, 'rb').read() header = {'Content-Type': 'multipart/form-data; \ boundary=----WebKitFormBoundaryF17rwCZdGuPNPT9U'} params = "------WebKitFormBoundaryF17rwCZdGuPNPT9U" params += "\r\nContent-Disposition: form-data; " + \ "name=\"upfile\"; filename=\"" + str(fileName) + "\"" params += "\r\nContent-Type: " + \ "application/octet stream\r\n\r\n" params += fileContents params += "\r\n------WebKitFormBoundaryF17rwCZdGuPNPT9U" params += "\r\nContent-Disposition: form-data; " + \ "name=\"submitfile\"\r\n" params += "\r\nSubmit File\r\n" params += "------WebKitFormBoundaryF17rwCZdGuPNPT9U--\r\n" conn = httplib.HTTPConnection('vscan.novirusthanks.org') conn.request("POST", "/", params, header) response = conn.getresponse() location = response.getheader('location') conn.close() return location def main(): parser = optparse.OptionParser('usage %prog -f <filename>') parser.add_option('-f', dest='fileName', type='string', \ help='specify filename') (options, args) = parser.parse_args() fileName = options.fileName if fileName == None: print parser.usage exit(0) elif os.path.isfile(fileName) == False: print '[+] ' + fileName + ' does not exist.' exit(0) else: loc = uploadFile(fileName) printResults(loc) if __name__ == '__main__': main()
[]
LoganHaug/reminder-bot
cogs/remind.py
1bb1853b79e0299240a214e947e8bc29ed34e46e
import asyncio from typing import Union import datetime import time from discord.ext import commands import yaml from cogs import checks import database import utils # Loads the repeating interval dictionary with open("conversions.yml", "r") as conversion_file: conversion_dict = yaml.load(conversion_file, Loader=yaml.Loader) prefix = utils.get_prefix() class Remind(commands.Cog): def __init__(self, bot): self.bot = bot self.reminders = [] self.tasks = [] asyncio.create_task(self.update_schedule()) async def update_schedule(self): """Updates the schedule""" reminders = database.get_reminders() new_reminders = [] for reminder in reminders: if reminder["date"] - time.time() < 0: database.remove_reminder(reminder) else: new_reminders.append(reminder) self.reminders.clear() self.reminders.extend(new_reminders) async def setup_reminders(self): """Sets up the reminders""" await self.clear_tasks() await self.update_schedule() scheduled_reminders = [] for task in self.tasks: if task.get_coro().cr_frame is not None: scheduled_reminders.append( task.get_coro().cr_frame.f_locals["reminder"] ) # Create tasks for all reminders, call the remind function for reminder in self.reminders: if reminder not in scheduled_reminders: task = asyncio.create_task(self.remind(reminder)) self.tasks.append(task) scheduled_reminders.append( task.get_coro().cr_frame.f_locals["reminder"] ) # Run the tasks asyncio.gather(*self.tasks) async def clear_tasks(self): for task in self.tasks: if task._state == "FINISHED": self.tasks.remove(task) async def remind(self, reminder: dict): """Execute one reminder""" # Check if the reminder is in the future and if it exists in the database if reminder["date"] > time.time() and database.get_reminders(**reminder) != []: await asyncio.sleep(reminder["date"] - time.time()) # Checks if the reminder is still exists, in case of deletion if database.get_reminders(**reminder) != [] and reminder in self.reminders: await self.bot.get_channel(reminder["channel"]).send( f"Reminder:\n{reminder['reminder_text']}" ) if reminder["repeating"] != False: await self.schedule_repeat(reminder) self.reminders.remove(reminder) # Remove the reminder database.remove_reminder(reminder) # Remove a reminder that has passed else: database.remove_reminder(reminder) async def schedule_repeat(self, reminder: dict): """Schedules a repeating reminder""" if reminder["repeating"] and database.get_reminders(**reminder) != []: # Calculate when the next reminder should be reminder_date = datetime.datetime.fromtimestamp( reminder["date"] + conversion_dict[reminder["repeating"]] ) # Remove the old reminder database.remove_reminder(reminder) # Add the new reminder database.insert_reminder( reminder["guild"], reminder["channel"], reminder_date.year, reminder_date.month, reminder_date.day, reminder_date.hour, reminder_date.minute, reminder["reminder_text"], reminder["repeating"], ) asyncio.create_task(self.setup_reminders()) @commands.command( help="Date should be in month/day/year format, either with slashes or dashes (ex. month/day/year or month-day-year)\n\nRepeating is an interval of time after which the reminder should be sent again, must be either daily, weekly, biweekly, or triweekly\n\nText is the text the reminder will be sent with, wrap with quotations if this contains whitespace", aliases=["reminder", "add_r", "ar"], ) @commands.check(checks.is_operator) async def add_reminder( self, ctx, date: str, user_time: str, text: str, repeating: Union[str, bool] = False, ): """Attempts to add a reminder""" # Checks if the reminder should repeat, and if it is a valid interval try: _date = utils.split_date(date) _time = utils.split_time(user_time) except UnboundLocalError: raise commands.UserInputError("Date or time was not in the correct format.") if repeating and repeating not in conversion_dict: raise commands.UserInputError() # Tries to insert the reminder result = database.insert_reminder( ctx.guild.id, ctx.channel.id, _date["year"], _date["month"], _date["day"], _time["hour"], _time["minute"], text, repeating, ) # Sends a status message, and restarts the reminders if result: await asyncio.create_task(self.setup_reminders()) await ctx.send( embed=utils.generate_embed( "Reminder Stored", f"{date}\n{user_time}\n{text}\nrepeating: {repeating}", ) ) # This means the insertion of the reminder failed else: await ctx.send( embed=utils.generate_embed( "Error", "`This reminder already exists in the database or is not in the future`", ) ) @add_reminder.error async def add_reminder_error(self, ctx, error): """Called when add_reminder() errors""" print(error) if isinstance(error, commands.errors.MissingRequiredArgument): await ctx.send( embed=utils.generate_embed( "Error", f"`{error} Run {prefix}help add_reminder`" ) ) elif isinstance(error, commands.errors.UserInputError): await ctx.send( embed=utils.generate_embed( "Error", f"`{error} Run {prefix}help add_reminder`" ) ) elif isinstance(error, commands.errors.CheckFailure): await ctx.send( embed=utils.generate_embed( "Error", "`You do not have permissions for this command`" ) ) else: await ctx.send( embed=utils.generate_embed( "Error", f"`An unexpected error has occured, run {prefix}help add_reminder`", ) ) def setup(bot): cog = Remind(bot) bot.add_cog(cog) asyncio.create_task(cog.setup_reminders())
[((346, 364), 'utils.get_prefix', 'utils.get_prefix', ([], {}), '()\n', (362, 364), False, 'import utils\n'), ((288, 334), 'yaml.load', 'yaml.load', (['conversion_file'], {'Loader': 'yaml.Loader'}), '(conversion_file, Loader=yaml.Loader)\n', (297, 334), False, 'import yaml\n'), ((3895, 4313), 'discord.ext.commands.command', 'commands.command', ([], {'help': '"""Date should be in month/day/year format, either with slashes or dashes (ex. month/day/year or month-day-year)\n\nRepeating is an interval of time after which the reminder should be sent again, must be either daily, weekly, biweekly, or triweekly\n\nText is the text the reminder will be sent with, wrap with quotations if this contains whitespace"""', 'aliases': "['reminder', 'add_r', 'ar']"}), '(help=\n """Date should be in month/day/year format, either with slashes or dashes (ex. month/day/year or month-day-year)\n\nRepeating is an interval of time after which the reminder should be sent again, must be either daily, weekly, biweekly, or triweekly\n\nText is the text the reminder will be sent with, wrap with quotations if this contains whitespace"""\n , aliases=[\'reminder\', \'add_r\', \'ar\'])\n', (3911, 4313), False, 'from discord.ext import commands\n'), ((4332, 4366), 'discord.ext.commands.check', 'commands.check', (['checks.is_operator'], {}), '(checks.is_operator)\n', (4346, 4366), False, 'from discord.ext import commands\n'), ((644, 668), 'database.get_reminders', 'database.get_reminders', ([], {}), '()\n', (666, 668), False, 'import database\n'), ((1797, 1824), 'asyncio.gather', 'asyncio.gather', (['*self.tasks'], {}), '(*self.tasks)\n', (1811, 1824), False, 'import asyncio\n'), ((5041, 5194), 'database.insert_reminder', 'database.insert_reminder', (['ctx.guild.id', 'ctx.channel.id', "_date['year']", "_date['month']", "_date['day']", "_time['hour']", "_time['minute']", 'text', 'repeating'], {}), "(ctx.guild.id, ctx.channel.id, _date['year'], _date\n ['month'], _date['day'], _time['hour'], _time['minute'], text, repeating)\n", (5065, 5194), False, 'import database\n'), ((2801, 2835), 'database.remove_reminder', 'database.remove_reminder', (['reminder'], {}), '(reminder)\n', (2825, 2835), False, 'import database\n'), ((2906, 2940), 'database.remove_reminder', 'database.remove_reminder', (['reminder'], {}), '(reminder)\n', (2930, 2940), False, 'import database\n'), ((3204, 3299), 'datetime.datetime.fromtimestamp', 'datetime.datetime.fromtimestamp', (["(reminder['date'] + conversion_dict[reminder['repeating']])"], {}), "(reminder['date'] + conversion_dict[reminder\n ['repeating']])\n", (3235, 3299), False, 'import datetime\n'), ((3375, 3409), 'database.remove_reminder', 'database.remove_reminder', (['reminder'], {}), '(reminder)\n', (3399, 3409), False, 'import database\n'), ((3457, 3685), 'database.insert_reminder', 'database.insert_reminder', (["reminder['guild']", "reminder['channel']", 'reminder_date.year', 'reminder_date.month', 'reminder_date.day', 'reminder_date.hour', 'reminder_date.minute', "reminder['reminder_text']", "reminder['repeating']"], {}), "(reminder['guild'], reminder['channel'],\n reminder_date.year, reminder_date.month, reminder_date.day,\n reminder_date.hour, reminder_date.minute, reminder['reminder_text'],\n reminder['repeating'])\n", (3481, 3685), False, 'import database\n'), ((4688, 4710), 'utils.split_date', 'utils.split_date', (['date'], {}), '(date)\n', (4704, 4710), False, 'import utils\n'), ((4731, 4758), 'utils.split_time', 'utils.split_time', (['user_time'], {}), '(user_time)\n', (4747, 4758), False, 'import utils\n'), ((4959, 4984), 'discord.ext.commands.UserInputError', 'commands.UserInputError', ([], {}), '()\n', (4982, 4984), False, 'from discord.ext import commands\n'), ((798, 832), 'database.remove_reminder', 'database.remove_reminder', (['reminder'], {}), '(reminder)\n', (822, 832), False, 'import database\n'), ((2165, 2176), 'time.time', 'time.time', ([], {}), '()\n', (2174, 2176), False, 'import time\n'), ((2181, 2215), 'database.get_reminders', 'database.get_reminders', ([], {}), '(**reminder)\n', (2203, 2215), False, 'import database\n'), ((3077, 3111), 'database.get_reminders', 'database.get_reminders', ([], {}), '(**reminder)\n', (3099, 3111), False, 'import database\n'), ((4811, 4881), 'discord.ext.commands.UserInputError', 'commands.UserInputError', (['"""Date or time was not in the correct format."""'], {}), "('Date or time was not in the correct format.')\n", (4834, 4881), False, 'from discord.ext import commands\n'), ((765, 776), 'time.time', 'time.time', ([], {}), '()\n', (774, 776), False, 'import time\n'), ((2376, 2410), 'database.get_reminders', 'database.get_reminders', ([], {}), '(**reminder)\n', (2398, 2410), False, 'import database\n'), ((2274, 2285), 'time.time', 'time.time', ([], {}), '()\n', (2283, 2285), False, 'import time\n'), ((5501, 5601), 'utils.generate_embed', 'utils.generate_embed', (['"""Reminder Stored"""', 'f"""{date}\n{user_time}\n{text}\nrepeating: {repeating}"""'], {}), '(\'Reminder Stored\',\n f"""{date}\n{user_time}\n{text}\nrepeating: {repeating}""")\n', (5521, 5601), False, 'import utils\n'), ((5792, 5899), 'utils.generate_embed', 'utils.generate_embed', (['"""Error"""', '"""`This reminder already exists in the database or is not in the future`"""'], {}), "('Error',\n '`This reminder already exists in the database or is not in the future`')\n", (5812, 5899), False, 'import utils\n'), ((6236, 6309), 'utils.generate_embed', 'utils.generate_embed', (['"""Error"""', 'f"""`{error} Run {prefix}help add_reminder`"""'], {}), "('Error', f'`{error} Run {prefix}help add_reminder`')\n", (6256, 6309), False, 'import utils\n'), ((6476, 6549), 'utils.generate_embed', 'utils.generate_embed', (['"""Error"""', 'f"""`{error} Run {prefix}help add_reminder`"""'], {}), "('Error', f'`{error} Run {prefix}help add_reminder`')\n", (6496, 6549), False, 'import utils\n'), ((6714, 6793), 'utils.generate_embed', 'utils.generate_embed', (['"""Error"""', '"""`You do not have permissions for this command`"""'], {}), "('Error', '`You do not have permissions for this command`')\n", (6734, 6793), False, 'import utils\n'), ((6910, 7012), 'utils.generate_embed', 'utils.generate_embed', (['"""Error"""', 'f"""`An unexpected error has occured, run {prefix}help add_reminder`"""'], {}), "('Error',\n f'`An unexpected error has occured, run {prefix}help add_reminder`')\n", (6930, 7012), False, 'import utils\n')]
csengor/toraman_py
setup.py
5cb7b39ae073ecc2adcb7cea83b79492ac5aa485
import setuptools from toraman.version import __version__ with open('README.md', 'r') as input_file: long_description = input_file.read() setuptools.setup( name='toraman', version=__version__, author='Çağatay Onur Şengör', author_email='[email protected]', description='A computer-assisted translation tool package', keywords = ['CAT', 'computer-assisted translation', 'computer-aided translation', 'translation', 'free-to-use'], long_description=long_description, long_description_content_type='text/markdown', url='https://github.com/csengor/toraman-py', packages=setuptools.find_packages(), install_requires=[ 'lxml', 'python-levenshtein', 'regex' ], classifiers=[ 'Development Status :: 3 - Alpha', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python :: 3', ], )
[((615, 641), 'setuptools.find_packages', 'setuptools.find_packages', ([], {}), '()\n', (639, 641), False, 'import setuptools\n')]
li-ar/declarations.com.ua
declarations_site/cms_pages/migrations/0015_auto_20150615_0201.py
343cd86cc5a4bd895f2859ed896728f6416ac223
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('cms_pages', '0014_homepage_news_count'), ] operations = [ migrations.AlterField( model_name='newspage', name='lead', field=models.TextField(blank=True, verbose_name='Лід'), preserve_default=True, ), ]
[((355, 403), 'django.db.models.TextField', 'models.TextField', ([], {'blank': '(True)', 'verbose_name': '"""Лід"""'}), "(blank=True, verbose_name='Лід')\n", (371, 403), False, 'from django.db import models, migrations\n')]
nightlessbaron/pytorch-lightning
tests/models/test_grad_norm.py
239bea5c29cef0d1a0cfb319de5dbc9227aa2a53
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from unittest import mock from unittest.mock import patch import numpy as np import pytest from pytorch_lightning import Trainer from tests.base import EvalModelTemplate from tests.base.develop_utils import reset_seed class ModelWithManualGradTracker(EvalModelTemplate): def __init__(self, norm_type, *args, **kwargs): super().__init__(*args, **kwargs) self.stored_grad_norms, self.norm_type = [], float(norm_type) # validation spoils logger's metrics with `val_loss` records validation_step = None val_dataloader = None def training_step(self, batch, batch_idx, optimizer_idx=None): # just return a loss, no log or progress bar meta x, y = batch loss_val = self.loss(y, self(x.flatten(1, -1))) return {'loss': loss_val} def on_after_backward(self): out, norms = {}, [] prefix = f'grad_{self.norm_type}_norm_' for name, p in self.named_parameters(): if p.grad is None: continue # `np.linalg.norm` implementation likely uses fp64 intermediates flat = p.grad.data.cpu().numpy().ravel() norm = np.linalg.norm(flat, self.norm_type) norms.append(norm) out[prefix + name] = round(norm, 4) # handle total norm norm = np.linalg.norm(norms, self.norm_type) out[prefix + 'total'] = round(norm, 4) self.stored_grad_norms.append(out) @mock.patch.dict(os.environ, {"PL_DEV_DEBUG": "1"}) @pytest.mark.parametrize("norm_type", [1., 1.25, 2, 3, 5, 10, 'inf']) def test_grad_tracking(tmpdir, norm_type, rtol=5e-3): # rtol=5e-3 respects the 3 decimals rounding in `.grad_norms` and above reset_seed() # use a custom grad tracking module and a list logger model = ModelWithManualGradTracker(norm_type) trainer = Trainer( default_root_dir=tmpdir, max_epochs=3, track_grad_norm=norm_type, log_every_n_steps=1, # request grad_norms every batch ) result = trainer.fit(model) assert result == 1, "Training failed" logged_metrics = trainer.dev_debugger.logged_metrics assert len(logged_metrics) == len(model.stored_grad_norms) # compare the logged metrics against tracked norms on `.backward` for mod, log in zip(model.stored_grad_norms, logged_metrics): common = mod.keys() & log.keys() log, mod = [log[k] for k in common], [mod[k] for k in common] assert np.allclose(log, mod, rtol=rtol) @pytest.mark.parametrize("log_every_n_steps", [1, 2, 3]) def test_grad_tracking_interval(tmpdir, log_every_n_steps): """ Test that gradient norms get tracked in the right interval and that everytime the same keys get logged. """ trainer = Trainer( default_root_dir=tmpdir, track_grad_norm=2, log_every_n_steps=log_every_n_steps, max_steps=10, ) with patch.object(trainer.logger, "log_metrics") as mocked: model = EvalModelTemplate() trainer.fit(model) expected = trainer.global_step // log_every_n_steps grad_norm_dicts = [] for _, kwargs in mocked.call_args_list: metrics = kwargs.get("metrics", {}) grad_norm_dict = {k: v for k, v in metrics.items() if k.startswith("grad_")} if grad_norm_dict: grad_norm_dicts.append(grad_norm_dict) assert len(grad_norm_dicts) == expected assert all(grad_norm_dicts[0].keys() == g.keys() for g in grad_norm_dicts)
[((2047, 2097), 'unittest.mock.patch.dict', 'mock.patch.dict', (['os.environ', "{'PL_DEV_DEBUG': '1'}"], {}), "(os.environ, {'PL_DEV_DEBUG': '1'})\n", (2062, 2097), False, 'from unittest import mock\n'), ((2099, 2168), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""norm_type"""', "[1.0, 1.25, 2, 3, 5, 10, 'inf']"], {}), "('norm_type', [1.0, 1.25, 2, 3, 5, 10, 'inf'])\n", (2122, 2168), False, 'import pytest\n'), ((3104, 3159), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""log_every_n_steps"""', '[1, 2, 3]'], {}), "('log_every_n_steps', [1, 2, 3])\n", (3127, 3159), False, 'import pytest\n'), ((2303, 2315), 'tests.base.develop_utils.reset_seed', 'reset_seed', ([], {}), '()\n', (2313, 2315), False, 'from tests.base.develop_utils import reset_seed\n'), ((2440, 2538), 'pytorch_lightning.Trainer', 'Trainer', ([], {'default_root_dir': 'tmpdir', 'max_epochs': '(3)', 'track_grad_norm': 'norm_type', 'log_every_n_steps': '(1)'}), '(default_root_dir=tmpdir, max_epochs=3, track_grad_norm=norm_type,\n log_every_n_steps=1)\n', (2447, 2538), False, 'from pytorch_lightning import Trainer\n'), ((3350, 3457), 'pytorch_lightning.Trainer', 'Trainer', ([], {'default_root_dir': 'tmpdir', 'track_grad_norm': '(2)', 'log_every_n_steps': 'log_every_n_steps', 'max_steps': '(10)'}), '(default_root_dir=tmpdir, track_grad_norm=2, log_every_n_steps=\n log_every_n_steps, max_steps=10)\n', (3357, 3457), False, 'from pytorch_lightning import Trainer\n'), ((1916, 1953), 'numpy.linalg.norm', 'np.linalg.norm', (['norms', 'self.norm_type'], {}), '(norms, self.norm_type)\n', (1930, 1953), True, 'import numpy as np\n'), ((3068, 3100), 'numpy.allclose', 'np.allclose', (['log', 'mod'], {'rtol': 'rtol'}), '(log, mod, rtol=rtol)\n', (3079, 3100), True, 'import numpy as np\n'), ((3502, 3545), 'unittest.mock.patch.object', 'patch.object', (['trainer.logger', '"""log_metrics"""'], {}), "(trainer.logger, 'log_metrics')\n", (3514, 3545), False, 'from unittest.mock import patch\n'), ((3573, 3592), 'tests.base.EvalModelTemplate', 'EvalModelTemplate', ([], {}), '()\n', (3590, 3592), False, 'from tests.base import EvalModelTemplate\n'), ((1755, 1791), 'numpy.linalg.norm', 'np.linalg.norm', (['flat', 'self.norm_type'], {}), '(flat, self.norm_type)\n', (1769, 1791), True, 'import numpy as np\n')]
junjun315/tensorflow
tensorflow/tools/compatibility/renames_v2.py
40b800fc24e1eea8642b79087925939121e8e25f
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=line-too-long """List of renames to apply when converting from TF 1.0 to TF 2.0. THIS FILE IS AUTOGENERATED: To update, please run: bazel build tensorflow/tools/compatibility/update:generate_v2_renames_map bazel-bin/tensorflow/tools/compatibility/update/generate_v2_renames_map This file should be updated whenever endpoints are deprecated. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function renames = { 'tf.AUTO_REUSE': 'tf.compat.v1.AUTO_REUSE', 'tf.AttrValue': 'tf.compat.v1.AttrValue', 'tf.COMPILER_VERSION': 'tf.version.COMPILER_VERSION', 'tf.CXX11_ABI_FLAG': 'tf.sysconfig.CXX11_ABI_FLAG', 'tf.ConditionalAccumulator': 'tf.compat.v1.ConditionalAccumulator', 'tf.ConditionalAccumulatorBase': 'tf.compat.v1.ConditionalAccumulatorBase', 'tf.ConfigProto': 'tf.compat.v1.ConfigProto', 'tf.DeviceSpec': 'tf.compat.v1.DeviceSpec', 'tf.Dimension': 'tf.compat.v1.Dimension', 'tf.Event': 'tf.compat.v1.Event', 'tf.FIFOQueue': 'tf.queue.FIFOQueue', 'tf.FixedLenFeature': 'tf.io.FixedLenFeature', 'tf.FixedLenSequenceFeature': 'tf.io.FixedLenSequenceFeature', 'tf.FixedLengthRecordReader': 'tf.compat.v1.FixedLengthRecordReader', 'tf.GIT_VERSION': 'tf.version.GIT_VERSION', 'tf.GPUOptions': 'tf.compat.v1.GPUOptions', 'tf.GRAPH_DEF_VERSION': 'tf.version.GRAPH_DEF_VERSION', 'tf.GRAPH_DEF_VERSION_MIN_CONSUMER': 'tf.version.GRAPH_DEF_VERSION_MIN_CONSUMER', 'tf.GRAPH_DEF_VERSION_MIN_PRODUCER': 'tf.version.GRAPH_DEF_VERSION_MIN_PRODUCER', 'tf.GraphDef': 'tf.compat.v1.GraphDef', 'tf.GraphKeys': 'tf.compat.v1.GraphKeys', 'tf.GraphOptions': 'tf.compat.v1.GraphOptions', 'tf.HistogramProto': 'tf.compat.v1.HistogramProto', 'tf.IdentityReader': 'tf.compat.v1.IdentityReader', 'tf.InteractiveSession': 'tf.compat.v1.InteractiveSession', 'tf.LMDBReader': 'tf.compat.v1.LMDBReader', 'tf.LogMessage': 'tf.compat.v1.LogMessage', 'tf.MONOLITHIC_BUILD': 'tf.sysconfig.MONOLITHIC_BUILD', 'tf.MetaGraphDef': 'tf.compat.v1.MetaGraphDef', 'tf.NameAttrList': 'tf.compat.v1.NameAttrList', 'tf.NoGradient': 'tf.no_gradient', 'tf.NodeDef': 'tf.compat.v1.NodeDef', 'tf.NotDifferentiable': 'tf.no_gradient', 'tf.OpError': 'tf.errors.OpError', 'tf.OptimizerOptions': 'tf.compat.v1.OptimizerOptions', 'tf.PaddingFIFOQueue': 'tf.queue.PaddingFIFOQueue', 'tf.Print': 'tf.compat.v1.Print', 'tf.PriorityQueue': 'tf.queue.PriorityQueue', 'tf.QUANTIZED_DTYPES': 'tf.dtypes.QUANTIZED_DTYPES', 'tf.QueueBase': 'tf.queue.QueueBase', 'tf.RandomShuffleQueue': 'tf.queue.RandomShuffleQueue', 'tf.ReaderBase': 'tf.compat.v1.ReaderBase', 'tf.RunMetadata': 'tf.compat.v1.RunMetadata', 'tf.RunOptions': 'tf.compat.v1.RunOptions', 'tf.Session': 'tf.compat.v1.Session', 'tf.SessionLog': 'tf.compat.v1.SessionLog', 'tf.SparseConditionalAccumulator': 'tf.sparse.SparseConditionalAccumulator', 'tf.SparseFeature': 'tf.io.SparseFeature', 'tf.SparseTensorValue': 'tf.compat.v1.SparseTensorValue', 'tf.Summary': 'tf.compat.v1.Summary', 'tf.SummaryMetadata': 'tf.compat.v1.SummaryMetadata', 'tf.TFRecordReader': 'tf.compat.v1.TFRecordReader', 'tf.TensorInfo': 'tf.compat.v1.TensorInfo', 'tf.TextLineReader': 'tf.compat.v1.TextLineReader', 'tf.VERSION': 'tf.version.VERSION', 'tf.VarLenFeature': 'tf.io.VarLenFeature', 'tf.VariableScope': 'tf.compat.v1.VariableScope', 'tf.WholeFileReader': 'tf.compat.v1.WholeFileReader', 'tf.accumulate_n': 'tf.math.accumulate_n', 'tf.add_check_numerics_ops': 'tf.compat.v1.add_check_numerics_ops', 'tf.add_to_collection': 'tf.compat.v1.add_to_collection', 'tf.add_to_collections': 'tf.compat.v1.add_to_collections', 'tf.all_variables': 'tf.compat.v1.all_variables', 'tf.angle': 'tf.math.angle', 'tf.app.run': 'tf.compat.v1.app.run', 'tf.assert_greater_equal': 'tf.compat.v1.assert_greater_equal', 'tf.assert_integer': 'tf.compat.v1.assert_integer', 'tf.assert_less_equal': 'tf.compat.v1.assert_less_equal', 'tf.assert_near': 'tf.compat.v1.assert_near', 'tf.assert_negative': 'tf.compat.v1.assert_negative', 'tf.assert_non_negative': 'tf.compat.v1.assert_non_negative', 'tf.assert_non_positive': 'tf.compat.v1.assert_non_positive', 'tf.assert_none_equal': 'tf.compat.v1.assert_none_equal', 'tf.assert_positive': 'tf.compat.v1.assert_positive', 'tf.assert_proper_iterable': 'tf.debugging.assert_proper_iterable', 'tf.assert_rank_at_least': 'tf.compat.v1.assert_rank_at_least', 'tf.assert_rank_in': 'tf.compat.v1.assert_rank_in', 'tf.assert_same_float_dtype': 'tf.debugging.assert_same_float_dtype', 'tf.assert_scalar': 'tf.compat.v1.assert_scalar', 'tf.assert_type': 'tf.compat.v1.assert_type', 'tf.assert_variables_initialized': 'tf.compat.v1.assert_variables_initialized', 'tf.assign': 'tf.compat.v1.assign', 'tf.assign_add': 'tf.compat.v1.assign_add', 'tf.assign_sub': 'tf.compat.v1.assign_sub', 'tf.batch_scatter_update': 'tf.compat.v1.batch_scatter_update', 'tf.betainc': 'tf.math.betainc', 'tf.ceil': 'tf.math.ceil', 'tf.check_numerics': 'tf.debugging.check_numerics', 'tf.cholesky': 'tf.linalg.cholesky', 'tf.cholesky_solve': 'tf.linalg.cholesky_solve', 'tf.clip_by_average_norm': 'tf.compat.v1.clip_by_average_norm', 'tf.colocate_with': 'tf.compat.v1.colocate_with', 'tf.conj': 'tf.math.conj', 'tf.container': 'tf.compat.v1.container', 'tf.convert_to_tensor_or_indexed_slices': 'tf.compat.v1.convert_to_tensor_or_indexed_slices', 'tf.convert_to_tensor_or_sparse_tensor': 'tf.compat.v1.convert_to_tensor_or_sparse_tensor', 'tf.count_up_to': 'tf.compat.v1.count_up_to', 'tf.create_partitioned_variables': 'tf.compat.v1.create_partitioned_variables', 'tf.cross': 'tf.linalg.cross', 'tf.cumprod': 'tf.math.cumprod', 'tf.data.make_initializable_iterator': 'tf.compat.v1.data.make_initializable_iterator', 'tf.data.make_one_shot_iterator': 'tf.compat.v1.data.make_one_shot_iterator', 'tf.debugging.is_finite': 'tf.math.is_finite', 'tf.debugging.is_inf': 'tf.math.is_inf', 'tf.debugging.is_nan': 'tf.math.is_nan', 'tf.debugging.is_non_decreasing': 'tf.math.is_non_decreasing', 'tf.debugging.is_strictly_increasing': 'tf.math.is_strictly_increasing', 'tf.decode_base64': 'tf.io.decode_base64', 'tf.decode_compressed': 'tf.io.decode_compressed', 'tf.decode_json_example': 'tf.io.decode_json_example', 'tf.decode_raw': 'tf.io.decode_raw', 'tf.delete_session_tensor': 'tf.compat.v1.delete_session_tensor', 'tf.depth_to_space': 'tf.compat.v1.depth_to_space', 'tf.dequantize': 'tf.quantization.dequantize', 'tf.deserialize_many_sparse': 'tf.io.deserialize_many_sparse', 'tf.diag': 'tf.linalg.tensor_diag', 'tf.diag_part': 'tf.linalg.tensor_diag_part', 'tf.digamma': 'tf.math.digamma', 'tf.dimension_at_index': 'tf.compat.dimension_at_index', 'tf.dimension_value': 'tf.compat.dimension_value', 'tf.disable_eager_execution': 'tf.compat.v1.disable_eager_execution', 'tf.disable_resource_variables': 'tf.compat.v1.disable_resource_variables', 'tf.disable_v2_batch_normalization': 'tf.compat.v1.disable_v2_batch_normalization', 'tf.disable_v2_behavior': 'tf.compat.v1.disable_v2_behavior', 'tf.disable_v2_tensorshape': 'tf.compat.v1.disable_v2_tensorshape', 'tf.distributions.Bernoulli': 'tf.compat.v1.distributions.Bernoulli', 'tf.distributions.Beta': 'tf.compat.v1.distributions.Beta', 'tf.distributions.Categorical': 'tf.compat.v1.distributions.Categorical', 'tf.distributions.Dirichlet': 'tf.compat.v1.distributions.Dirichlet', 'tf.distributions.DirichletMultinomial': 'tf.compat.v1.distributions.DirichletMultinomial', 'tf.distributions.Distribution': 'tf.compat.v1.distributions.Distribution', 'tf.distributions.Exponential': 'tf.compat.v1.distributions.Exponential', 'tf.distributions.FULLY_REPARAMETERIZED': 'tf.compat.v1.distributions.FULLY_REPARAMETERIZED', 'tf.distributions.Gamma': 'tf.compat.v1.distributions.Gamma', 'tf.distributions.Laplace': 'tf.compat.v1.distributions.Laplace', 'tf.distributions.Multinomial': 'tf.compat.v1.distributions.Multinomial', 'tf.distributions.NOT_REPARAMETERIZED': 'tf.compat.v1.distributions.NOT_REPARAMETERIZED', 'tf.distributions.Normal': 'tf.compat.v1.distributions.Normal', 'tf.distributions.RegisterKL': 'tf.compat.v1.distributions.RegisterKL', 'tf.distributions.ReparameterizationType': 'tf.compat.v1.distributions.ReparameterizationType', 'tf.distributions.StudentT': 'tf.compat.v1.distributions.StudentT', 'tf.distributions.Uniform': 'tf.compat.v1.distributions.Uniform', 'tf.distributions.kl_divergence': 'tf.compat.v1.distributions.kl_divergence', 'tf.div': 'tf.compat.v1.div', 'tf.dtypes.as_string': 'tf.strings.as_string', 'tf.enable_eager_execution': 'tf.compat.v1.enable_eager_execution', 'tf.enable_resource_variables': 'tf.compat.v1.enable_resource_variables', 'tf.enable_v2_batch_normalization': 'tf.compat.v1.enable_v2_batch_normalization', 'tf.enable_v2_behavior': 'tf.compat.v1.enable_v2_behavior', 'tf.enable_v2_tensorshape': 'tf.compat.v1.enable_v2_tensorshape', 'tf.encode_base64': 'tf.io.encode_base64', 'tf.erf': 'tf.math.erf', 'tf.erfc': 'tf.math.erfc', 'tf.expm1': 'tf.math.expm1', 'tf.fake_quant_with_min_max_args': 'tf.quantization.fake_quant_with_min_max_args', 'tf.fake_quant_with_min_max_args_gradient': 'tf.quantization.fake_quant_with_min_max_args_gradient', 'tf.fake_quant_with_min_max_vars': 'tf.quantization.fake_quant_with_min_max_vars', 'tf.fake_quant_with_min_max_vars_gradient': 'tf.quantization.fake_quant_with_min_max_vars_gradient', 'tf.fake_quant_with_min_max_vars_per_channel': 'tf.quantization.fake_quant_with_min_max_vars_per_channel', 'tf.fake_quant_with_min_max_vars_per_channel_gradient': 'tf.quantization.fake_quant_with_min_max_vars_per_channel_gradient', 'tf.feature_column.input_layer': 'tf.compat.v1.feature_column.input_layer', 'tf.feature_column.linear_model': 'tf.compat.v1.feature_column.linear_model', 'tf.fft': 'tf.signal.fft', 'tf.fft2d': 'tf.signal.fft2d', 'tf.fft3d': 'tf.signal.fft3d', 'tf.fixed_size_partitioner': 'tf.compat.v1.fixed_size_partitioner', 'tf.floordiv': 'tf.math.floordiv', 'tf.get_collection': 'tf.compat.v1.get_collection', 'tf.get_collection_ref': 'tf.compat.v1.get_collection_ref', 'tf.get_default_graph': 'tf.compat.v1.get_default_graph', 'tf.get_default_session': 'tf.compat.v1.get_default_session', 'tf.get_local_variable': 'tf.compat.v1.get_local_variable', 'tf.get_seed': 'tf.compat.v1.get_seed', 'tf.get_session_handle': 'tf.compat.v1.get_session_handle', 'tf.get_session_tensor': 'tf.compat.v1.get_session_tensor', 'tf.get_variable': 'tf.compat.v1.get_variable', 'tf.get_variable_scope': 'tf.compat.v1.get_variable_scope', 'tf.gfile.FastGFile': 'tf.compat.v1.gfile.FastGFile', 'tf.gfile.GFile': 'tf.io.gfile.GFile', 'tf.gfile.Open': 'tf.io.gfile.GFile', 'tf.global_norm': 'tf.linalg.global_norm', 'tf.global_variables': 'tf.compat.v1.global_variables', 'tf.global_variables_initializer': 'tf.compat.v1.global_variables_initializer', 'tf.glorot_normal_initializer': 'tf.compat.v1.glorot_normal_initializer', 'tf.glorot_uniform_initializer': 'tf.compat.v1.glorot_uniform_initializer', 'tf.graph_util.convert_variables_to_constants': 'tf.compat.v1.graph_util.convert_variables_to_constants', 'tf.graph_util.extract_sub_graph': 'tf.compat.v1.graph_util.extract_sub_graph', 'tf.graph_util.must_run_on_cpu': 'tf.compat.v1.graph_util.must_run_on_cpu', 'tf.graph_util.remove_training_nodes': 'tf.compat.v1.graph_util.remove_training_nodes', 'tf.graph_util.tensor_shape_from_node_def_name': 'tf.compat.v1.graph_util.tensor_shape_from_node_def_name', 'tf.ifft': 'tf.signal.ifft', 'tf.ifft2d': 'tf.signal.ifft2d', 'tf.ifft3d': 'tf.signal.ifft3d', 'tf.igamma': 'tf.math.igamma', 'tf.igammac': 'tf.math.igammac', 'tf.imag': 'tf.math.imag', 'tf.image.resize_area': 'tf.compat.v1.image.resize_area', 'tf.image.resize_bicubic': 'tf.compat.v1.image.resize_bicubic', 'tf.image.resize_bilinear': 'tf.compat.v1.image.resize_bilinear', 'tf.image.resize_nearest_neighbor': 'tf.compat.v1.image.resize_nearest_neighbor', 'tf.image.transpose_image': 'tf.compat.v1.image.transpose_image', 'tf.initialize_all_tables': 'tf.compat.v1.initialize_all_tables', 'tf.initialize_all_variables': 'tf.compat.v1.initialize_all_variables', 'tf.initialize_local_variables': 'tf.compat.v1.initialize_local_variables', 'tf.initialize_variables': 'tf.compat.v1.initialize_variables', 'tf.initializers.constant': 'tf.compat.v1.initializers.constant', 'tf.initializers.global_variables': 'tf.compat.v1.initializers.global_variables', 'tf.initializers.glorot_normal': 'tf.compat.v1.initializers.glorot_normal', 'tf.initializers.glorot_uniform': 'tf.compat.v1.initializers.glorot_uniform', 'tf.initializers.he_normal': 'tf.compat.v1.initializers.he_normal', 'tf.initializers.he_uniform': 'tf.compat.v1.initializers.he_uniform', 'tf.initializers.identity': 'tf.compat.v1.initializers.identity', 'tf.initializers.lecun_normal': 'tf.compat.v1.initializers.lecun_normal', 'tf.initializers.lecun_uniform': 'tf.compat.v1.initializers.lecun_uniform', 'tf.initializers.local_variables': 'tf.compat.v1.initializers.local_variables', 'tf.initializers.ones': 'tf.compat.v1.initializers.ones', 'tf.initializers.orthogonal': 'tf.compat.v1.initializers.orthogonal', 'tf.initializers.random_normal': 'tf.compat.v1.initializers.random_normal', 'tf.initializers.random_uniform': 'tf.compat.v1.initializers.random_uniform', 'tf.initializers.tables_initializer': 'tf.compat.v1.initializers.tables_initializer', 'tf.initializers.truncated_normal': 'tf.compat.v1.initializers.truncated_normal', 'tf.initializers.uniform_unit_scaling': 'tf.compat.v1.initializers.uniform_unit_scaling', 'tf.initializers.variables': 'tf.compat.v1.initializers.variables', 'tf.initializers.variance_scaling': 'tf.compat.v1.initializers.variance_scaling', 'tf.initializers.zeros': 'tf.compat.v1.initializers.zeros', 'tf.invert_permutation': 'tf.math.invert_permutation', 'tf.io.PaddingFIFOQueue': 'tf.queue.PaddingFIFOQueue', 'tf.io.PriorityQueue': 'tf.queue.PriorityQueue', 'tf.io.QueueBase': 'tf.queue.QueueBase', 'tf.io.RandomShuffleQueue': 'tf.queue.RandomShuffleQueue', 'tf.io.tf_record_iterator': 'tf.compat.v1.io.tf_record_iterator', 'tf.is_finite': 'tf.math.is_finite', 'tf.is_inf': 'tf.math.is_inf', 'tf.is_nan': 'tf.math.is_nan', 'tf.is_non_decreasing': 'tf.math.is_non_decreasing', 'tf.is_numeric_tensor': 'tf.debugging.is_numeric_tensor', 'tf.is_strictly_increasing': 'tf.math.is_strictly_increasing', 'tf.is_variable_initialized': 'tf.compat.v1.is_variable_initialized', 'tf.keras.initializers.Identity': 'tf.compat.v1.keras.initializers.Identity', 'tf.keras.initializers.Orthogonal': 'tf.compat.v1.keras.initializers.Orthogonal', 'tf.keras.initializers.TruncatedNormal': 'tf.compat.v1.keras.initializers.TruncatedNormal', 'tf.keras.initializers.VarianceScaling': 'tf.compat.v1.keras.initializers.VarianceScaling', 'tf.keras.initializers.constant': 'tf.compat.v1.keras.initializers.constant', 'tf.keras.initializers.glorot_normal': 'tf.compat.v1.keras.initializers.glorot_normal', 'tf.keras.initializers.glorot_uniform': 'tf.compat.v1.keras.initializers.glorot_uniform', 'tf.keras.initializers.he_normal': 'tf.compat.v1.keras.initializers.he_normal', 'tf.keras.initializers.he_uniform': 'tf.compat.v1.keras.initializers.he_uniform', 'tf.keras.initializers.identity': 'tf.compat.v1.keras.initializers.identity', 'tf.keras.initializers.lecun_normal': 'tf.compat.v1.keras.initializers.lecun_normal', 'tf.keras.initializers.lecun_uniform': 'tf.compat.v1.keras.initializers.lecun_uniform', 'tf.keras.initializers.normal': 'tf.compat.v1.keras.initializers.normal', 'tf.keras.initializers.ones': 'tf.compat.v1.keras.initializers.ones', 'tf.keras.initializers.orthogonal': 'tf.compat.v1.keras.initializers.orthogonal', 'tf.keras.initializers.random_normal': 'tf.compat.v1.keras.initializers.random_normal', 'tf.keras.initializers.random_uniform': 'tf.compat.v1.keras.initializers.random_uniform', 'tf.keras.initializers.truncated_normal': 'tf.compat.v1.keras.initializers.truncated_normal', 'tf.keras.initializers.uniform': 'tf.compat.v1.keras.initializers.uniform', 'tf.keras.initializers.zeros': 'tf.compat.v1.keras.initializers.zeros', 'tf.layers.AveragePooling1D': 'tf.compat.v1.layers.AveragePooling1D', 'tf.layers.AveragePooling2D': 'tf.compat.v1.layers.AveragePooling2D', 'tf.layers.AveragePooling3D': 'tf.compat.v1.layers.AveragePooling3D', 'tf.layers.BatchNormalization': 'tf.compat.v1.layers.BatchNormalization', 'tf.layers.Conv1D': 'tf.compat.v1.layers.Conv1D', 'tf.layers.Conv2D': 'tf.compat.v1.layers.Conv2D', 'tf.layers.Conv2DTranspose': 'tf.compat.v1.layers.Conv2DTranspose', 'tf.layers.Conv3D': 'tf.compat.v1.layers.Conv3D', 'tf.layers.Conv3DTranspose': 'tf.compat.v1.layers.Conv3DTranspose', 'tf.layers.Dense': 'tf.compat.v1.layers.Dense', 'tf.layers.Dropout': 'tf.compat.v1.layers.Dropout', 'tf.layers.Flatten': 'tf.compat.v1.layers.Flatten', 'tf.layers.InputSpec': 'tf.keras.layers.InputSpec', 'tf.layers.Layer': 'tf.compat.v1.layers.Layer', 'tf.layers.MaxPooling1D': 'tf.compat.v1.layers.MaxPooling1D', 'tf.layers.MaxPooling2D': 'tf.compat.v1.layers.MaxPooling2D', 'tf.layers.MaxPooling3D': 'tf.compat.v1.layers.MaxPooling3D', 'tf.layers.SeparableConv1D': 'tf.compat.v1.layers.SeparableConv1D', 'tf.layers.SeparableConv2D': 'tf.compat.v1.layers.SeparableConv2D', 'tf.layers.average_pooling1d': 'tf.compat.v1.layers.average_pooling1d', 'tf.layers.average_pooling2d': 'tf.compat.v1.layers.average_pooling2d', 'tf.layers.average_pooling3d': 'tf.compat.v1.layers.average_pooling3d', 'tf.layers.batch_normalization': 'tf.compat.v1.layers.batch_normalization', 'tf.layers.conv1d': 'tf.compat.v1.layers.conv1d', 'tf.layers.conv2d': 'tf.compat.v1.layers.conv2d', 'tf.layers.conv2d_transpose': 'tf.compat.v1.layers.conv2d_transpose', 'tf.layers.conv3d': 'tf.compat.v1.layers.conv3d', 'tf.layers.conv3d_transpose': 'tf.compat.v1.layers.conv3d_transpose', 'tf.layers.dense': 'tf.compat.v1.layers.dense', 'tf.layers.dropout': 'tf.compat.v1.layers.dropout', 'tf.layers.experimental.keras_style_scope': 'tf.compat.v1.layers.experimental.keras_style_scope', 'tf.layers.experimental.set_keras_style': 'tf.compat.v1.layers.experimental.set_keras_style', 'tf.layers.flatten': 'tf.compat.v1.layers.flatten', 'tf.layers.max_pooling1d': 'tf.compat.v1.layers.max_pooling1d', 'tf.layers.max_pooling2d': 'tf.compat.v1.layers.max_pooling2d', 'tf.layers.max_pooling3d': 'tf.compat.v1.layers.max_pooling3d', 'tf.layers.separable_conv1d': 'tf.compat.v1.layers.separable_conv1d', 'tf.layers.separable_conv2d': 'tf.compat.v1.layers.separable_conv2d', 'tf.lbeta': 'tf.math.lbeta', 'tf.lgamma': 'tf.math.lgamma', 'tf.lin_space': 'tf.linspace', 'tf.local_variables': 'tf.compat.v1.local_variables', 'tf.local_variables_initializer': 'tf.compat.v1.local_variables_initializer', 'tf.log': 'tf.math.log', 'tf.log1p': 'tf.math.log1p', 'tf.log_sigmoid': 'tf.math.log_sigmoid', 'tf.logging.DEBUG': 'tf.compat.v1.logging.DEBUG', 'tf.logging.ERROR': 'tf.compat.v1.logging.ERROR', 'tf.logging.FATAL': 'tf.compat.v1.logging.FATAL', 'tf.logging.INFO': 'tf.compat.v1.logging.INFO', 'tf.logging.TaskLevelStatusMessage': 'tf.compat.v1.logging.TaskLevelStatusMessage', 'tf.logging.WARN': 'tf.compat.v1.logging.WARN', 'tf.logging.debug': 'tf.compat.v1.logging.debug', 'tf.logging.error': 'tf.compat.v1.logging.error', 'tf.logging.fatal': 'tf.compat.v1.logging.fatal', 'tf.logging.flush': 'tf.compat.v1.logging.flush', 'tf.logging.get_verbosity': 'tf.compat.v1.logging.get_verbosity', 'tf.logging.info': 'tf.compat.v1.logging.info', 'tf.logging.log': 'tf.compat.v1.logging.log', 'tf.logging.log_every_n': 'tf.compat.v1.logging.log_every_n', 'tf.logging.log_first_n': 'tf.compat.v1.logging.log_first_n', 'tf.logging.log_if': 'tf.compat.v1.logging.log_if', 'tf.logging.set_verbosity': 'tf.compat.v1.logging.set_verbosity', 'tf.logging.vlog': 'tf.compat.v1.logging.vlog', 'tf.logging.warn': 'tf.compat.v1.logging.warn', 'tf.logging.warning': 'tf.compat.v1.logging.warning', 'tf.logical_xor': 'tf.math.logical_xor', 'tf.losses.absolute_difference': 'tf.compat.v1.losses.absolute_difference', 'tf.losses.add_loss': 'tf.compat.v1.losses.add_loss', 'tf.losses.compute_weighted_loss': 'tf.compat.v1.losses.compute_weighted_loss', 'tf.losses.cosine_distance': 'tf.compat.v1.losses.cosine_distance', 'tf.losses.get_losses': 'tf.compat.v1.losses.get_losses', 'tf.losses.get_regularization_loss': 'tf.compat.v1.losses.get_regularization_loss', 'tf.losses.get_regularization_losses': 'tf.compat.v1.losses.get_regularization_losses', 'tf.losses.get_total_loss': 'tf.compat.v1.losses.get_total_loss', 'tf.losses.hinge_loss': 'tf.compat.v1.losses.hinge_loss', 'tf.losses.huber_loss': 'tf.compat.v1.losses.huber_loss', 'tf.losses.log_loss': 'tf.compat.v1.losses.log_loss', 'tf.losses.mean_pairwise_squared_error': 'tf.compat.v1.losses.mean_pairwise_squared_error', 'tf.losses.mean_squared_error': 'tf.compat.v1.losses.mean_squared_error', 'tf.losses.sigmoid_cross_entropy': 'tf.compat.v1.losses.sigmoid_cross_entropy', 'tf.losses.softmax_cross_entropy': 'tf.compat.v1.losses.softmax_cross_entropy', 'tf.losses.sparse_softmax_cross_entropy': 'tf.compat.v1.losses.sparse_softmax_cross_entropy', 'tf.make_template': 'tf.compat.v1.make_template', 'tf.make_tensor_proto': 'tf.compat.v1.make_tensor_proto', 'tf.manip.gather_nd': 'tf.gather_nd', 'tf.manip.reshape': 'tf.reshape', 'tf.manip.reverse': 'tf.reverse', 'tf.manip.roll': 'tf.roll', 'tf.manip.scatter_nd': 'tf.scatter_nd', 'tf.manip.space_to_batch_nd': 'tf.space_to_batch_nd', 'tf.manip.tile': 'tf.tile', 'tf.matching_files': 'tf.io.matching_files', 'tf.matrix_band_part': 'tf.linalg.band_part', 'tf.matrix_determinant': 'tf.linalg.det', 'tf.matrix_diag': 'tf.linalg.diag', 'tf.matrix_diag_part': 'tf.linalg.diag_part', 'tf.matrix_inverse': 'tf.linalg.inv', 'tf.matrix_set_diag': 'tf.linalg.set_diag', 'tf.matrix_solve': 'tf.linalg.solve', 'tf.matrix_solve_ls': 'tf.linalg.lstsq', 'tf.matrix_transpose': 'tf.linalg.transpose', 'tf.matrix_triangular_solve': 'tf.linalg.triangular_solve', 'tf.metrics.accuracy': 'tf.compat.v1.metrics.accuracy', 'tf.metrics.auc': 'tf.compat.v1.metrics.auc', 'tf.metrics.average_precision_at_k': 'tf.compat.v1.metrics.average_precision_at_k', 'tf.metrics.false_negatives': 'tf.compat.v1.metrics.false_negatives', 'tf.metrics.false_negatives_at_thresholds': 'tf.compat.v1.metrics.false_negatives_at_thresholds', 'tf.metrics.false_positives': 'tf.compat.v1.metrics.false_positives', 'tf.metrics.false_positives_at_thresholds': 'tf.compat.v1.metrics.false_positives_at_thresholds', 'tf.metrics.mean': 'tf.compat.v1.metrics.mean', 'tf.metrics.mean_absolute_error': 'tf.compat.v1.metrics.mean_absolute_error', 'tf.metrics.mean_cosine_distance': 'tf.compat.v1.metrics.mean_cosine_distance', 'tf.metrics.mean_iou': 'tf.compat.v1.metrics.mean_iou', 'tf.metrics.mean_per_class_accuracy': 'tf.compat.v1.metrics.mean_per_class_accuracy', 'tf.metrics.mean_relative_error': 'tf.compat.v1.metrics.mean_relative_error', 'tf.metrics.mean_squared_error': 'tf.compat.v1.metrics.mean_squared_error', 'tf.metrics.mean_tensor': 'tf.compat.v1.metrics.mean_tensor', 'tf.metrics.percentage_below': 'tf.compat.v1.metrics.percentage_below', 'tf.metrics.precision': 'tf.compat.v1.metrics.precision', 'tf.metrics.precision_at_k': 'tf.compat.v1.metrics.precision_at_k', 'tf.metrics.precision_at_thresholds': 'tf.compat.v1.metrics.precision_at_thresholds', 'tf.metrics.precision_at_top_k': 'tf.compat.v1.metrics.precision_at_top_k', 'tf.metrics.recall': 'tf.compat.v1.metrics.recall', 'tf.metrics.recall_at_k': 'tf.compat.v1.metrics.recall_at_k', 'tf.metrics.recall_at_thresholds': 'tf.compat.v1.metrics.recall_at_thresholds', 'tf.metrics.recall_at_top_k': 'tf.compat.v1.metrics.recall_at_top_k', 'tf.metrics.root_mean_squared_error': 'tf.compat.v1.metrics.root_mean_squared_error', 'tf.metrics.sensitivity_at_specificity': 'tf.compat.v1.metrics.sensitivity_at_specificity', 'tf.metrics.sparse_average_precision_at_k': 'tf.compat.v1.metrics.sparse_average_precision_at_k', 'tf.metrics.sparse_precision_at_k': 'tf.compat.v1.metrics.sparse_precision_at_k', 'tf.metrics.specificity_at_sensitivity': 'tf.compat.v1.metrics.specificity_at_sensitivity', 'tf.metrics.true_negatives': 'tf.compat.v1.metrics.true_negatives', 'tf.metrics.true_negatives_at_thresholds': 'tf.compat.v1.metrics.true_negatives_at_thresholds', 'tf.metrics.true_positives': 'tf.compat.v1.metrics.true_positives', 'tf.metrics.true_positives_at_thresholds': 'tf.compat.v1.metrics.true_positives_at_thresholds', 'tf.min_max_variable_partitioner': 'tf.compat.v1.min_max_variable_partitioner', 'tf.model_variables': 'tf.compat.v1.model_variables', 'tf.moving_average_variables': 'tf.compat.v1.moving_average_variables', 'tf.nn.bidirectional_dynamic_rnn': 'tf.compat.v1.nn.bidirectional_dynamic_rnn', 'tf.nn.conv3d_backprop_filter_v2': 'tf.nn.conv3d_backprop_filter', 'tf.nn.ctc_beam_search_decoder_v2': 'tf.nn.ctc_beam_search_decoder', 'tf.nn.ctc_loss_v2': 'tf.nn.ctc_loss', 'tf.nn.depthwise_conv2d_native': 'tf.compat.v1.nn.depthwise_conv2d_native', 'tf.nn.depthwise_conv2d_native_backprop_filter': 'tf.nn.depthwise_conv2d_backprop_filter', 'tf.nn.depthwise_conv2d_native_backprop_input': 'tf.nn.depthwise_conv2d_backprop_input', 'tf.nn.dynamic_rnn': 'tf.compat.v1.nn.dynamic_rnn', 'tf.nn.log_uniform_candidate_sampler': 'tf.random.log_uniform_candidate_sampler', 'tf.nn.quantized_avg_pool': 'tf.compat.v1.nn.quantized_avg_pool', 'tf.nn.quantized_conv2d': 'tf.compat.v1.nn.quantized_conv2d', 'tf.nn.quantized_max_pool': 'tf.compat.v1.nn.quantized_max_pool', 'tf.nn.quantized_relu_x': 'tf.compat.v1.nn.quantized_relu_x', 'tf.nn.raw_rnn': 'tf.compat.v1.nn.raw_rnn', 'tf.nn.relu_layer': 'tf.compat.v1.nn.relu_layer', 'tf.nn.rnn_cell.BasicLSTMCell': 'tf.compat.v1.nn.rnn_cell.BasicLSTMCell', 'tf.nn.rnn_cell.BasicRNNCell': 'tf.compat.v1.nn.rnn_cell.BasicRNNCell', 'tf.nn.rnn_cell.DropoutWrapper': 'tf.compat.v1.nn.rnn_cell.DropoutWrapper', 'tf.nn.rnn_cell.GRUCell': 'tf.compat.v1.nn.rnn_cell.GRUCell', 'tf.nn.rnn_cell.LSTMCell': 'tf.compat.v1.nn.rnn_cell.LSTMCell', 'tf.nn.rnn_cell.MultiRNNCell': 'tf.compat.v1.nn.rnn_cell.MultiRNNCell', 'tf.nn.static_bidirectional_rnn': 'tf.compat.v1.nn.static_bidirectional_rnn', 'tf.nn.static_rnn': 'tf.compat.v1.nn.static_rnn', 'tf.nn.uniform_candidate_sampler': 'tf.random.uniform_candidate_sampler', 'tf.nn.xw_plus_b': 'tf.compat.v1.nn.xw_plus_b', 'tf.op_scope': 'tf.compat.v1.op_scope', 'tf.orthogonal_initializer': 'tf.compat.v1.orthogonal_initializer', 'tf.parse_single_sequence_example': 'tf.io.parse_single_sequence_example', 'tf.parse_tensor': 'tf.io.parse_tensor', 'tf.placeholder': 'tf.compat.v1.placeholder', 'tf.placeholder_with_default': 'tf.compat.v1.placeholder_with_default', 'tf.polygamma': 'tf.math.polygamma', 'tf.profiler.AdviceProto': 'tf.compat.v1.profiler.AdviceProto', 'tf.profiler.GraphNodeProto': 'tf.compat.v1.profiler.GraphNodeProto', 'tf.profiler.MultiGraphNodeProto': 'tf.compat.v1.profiler.MultiGraphNodeProto', 'tf.profiler.OpLogProto': 'tf.compat.v1.profiler.OpLogProto', 'tf.profiler.ProfileOptionBuilder': 'tf.compat.v1.profiler.ProfileOptionBuilder', 'tf.profiler.Profiler': 'tf.compat.v1.profiler.Profiler', 'tf.profiler.advise': 'tf.compat.v1.profiler.advise', 'tf.profiler.profile': 'tf.compat.v1.profiler.profile', 'tf.profiler.write_op_log': 'tf.compat.v1.profiler.write_op_log', 'tf.py_func': 'tf.compat.v1.py_func', 'tf.python_io.TFRecordCompressionType': 'tf.io.TFRecordCompressionType', 'tf.python_io.TFRecordOptions': 'tf.io.TFRecordOptions', 'tf.python_io.TFRecordWriter': 'tf.io.TFRecordWriter', 'tf.python_io.tf_record_iterator': 'tf.compat.v1.python_io.tf_record_iterator', 'tf.qr': 'tf.linalg.qr', 'tf.quantize': 'tf.quantization.quantize', 'tf.quantized_concat': 'tf.quantization.quantized_concat', 'tf.ragged.RaggedTensorValue': 'tf.compat.v1.ragged.RaggedTensorValue', 'tf.ragged.constant_value': 'tf.compat.v1.ragged.constant_value', 'tf.random.get_seed': 'tf.compat.v1.random.get_seed', 'tf.random.set_random_seed': 'tf.compat.v1.random.set_random_seed', 'tf.random_crop': 'tf.image.random_crop', 'tf.random_gamma': 'tf.random.gamma', 'tf.random_normal': 'tf.random.normal', 'tf.random_shuffle': 'tf.random.shuffle', 'tf.random_uniform': 'tf.random.uniform', 'tf.read_file': 'tf.io.read_file', 'tf.real': 'tf.math.real', 'tf.reciprocal': 'tf.math.reciprocal', 'tf.regex_replace': 'tf.strings.regex_replace', 'tf.report_uninitialized_variables': 'tf.compat.v1.report_uninitialized_variables', 'tf.reset_default_graph': 'tf.compat.v1.reset_default_graph', 'tf.resource_loader.get_data_files_path': 'tf.compat.v1.resource_loader.get_data_files_path', 'tf.resource_loader.get_path_to_datafile': 'tf.compat.v1.resource_loader.get_path_to_datafile', 'tf.resource_loader.get_root_dir_with_all_resources': 'tf.compat.v1.resource_loader.get_root_dir_with_all_resources', 'tf.resource_loader.load_resource': 'tf.compat.v1.resource_loader.load_resource', 'tf.resource_loader.readahead_file_path': 'tf.compat.v1.resource_loader.readahead_file_path', 'tf.reverse_v2': 'tf.reverse', 'tf.rint': 'tf.math.rint', 'tf.rsqrt': 'tf.math.rsqrt', 'tf.saved_model.Builder': 'tf.compat.v1.saved_model.Builder', 'tf.saved_model.LEGACY_INIT_OP_KEY': 'tf.compat.v1.saved_model.LEGACY_INIT_OP_KEY', 'tf.saved_model.MAIN_OP_KEY': 'tf.compat.v1.saved_model.MAIN_OP_KEY', 'tf.saved_model.build_tensor_info': 'tf.compat.v1.saved_model.build_tensor_info', 'tf.saved_model.builder.SavedModelBuilder': 'tf.compat.v1.saved_model.builder.SavedModelBuilder', 'tf.saved_model.constants.ASSETS_DIRECTORY': 'tf.saved_model.ASSETS_DIRECTORY', 'tf.saved_model.constants.ASSETS_KEY': 'tf.saved_model.ASSETS_KEY', 'tf.saved_model.constants.LEGACY_INIT_OP_KEY': 'tf.compat.v1.saved_model.constants.LEGACY_INIT_OP_KEY', 'tf.saved_model.constants.MAIN_OP_KEY': 'tf.compat.v1.saved_model.constants.MAIN_OP_KEY', 'tf.saved_model.constants.SAVED_MODEL_FILENAME_PB': 'tf.saved_model.SAVED_MODEL_FILENAME_PB', 'tf.saved_model.constants.SAVED_MODEL_FILENAME_PBTXT': 'tf.saved_model.SAVED_MODEL_FILENAME_PBTXT', 'tf.saved_model.constants.SAVED_MODEL_SCHEMA_VERSION': 'tf.saved_model.SAVED_MODEL_SCHEMA_VERSION', 'tf.saved_model.constants.VARIABLES_DIRECTORY': 'tf.saved_model.VARIABLES_DIRECTORY', 'tf.saved_model.constants.VARIABLES_FILENAME': 'tf.saved_model.VARIABLES_FILENAME', 'tf.saved_model.experimental.save': 'tf.saved_model.save', 'tf.saved_model.get_tensor_from_tensor_info': 'tf.compat.v1.saved_model.get_tensor_from_tensor_info', 'tf.saved_model.load': 'tf.compat.v1.saved_model.load', 'tf.saved_model.loader.load': 'tf.compat.v1.saved_model.loader.load', 'tf.saved_model.loader.maybe_saved_model_directory': 'tf.compat.v1.saved_model.loader.maybe_saved_model_directory', 'tf.saved_model.main_op.main_op': 'tf.compat.v1.saved_model.main_op.main_op', 'tf.saved_model.main_op.main_op_with_restore': 'tf.compat.v1.saved_model.main_op.main_op_with_restore', 'tf.saved_model.main_op_with_restore': 'tf.compat.v1.saved_model.main_op_with_restore', 'tf.saved_model.maybe_saved_model_directory': 'tf.compat.v1.saved_model.maybe_saved_model_directory', 'tf.saved_model.signature_constants.CLASSIFY_INPUTS': 'tf.saved_model.CLASSIFY_INPUTS', 'tf.saved_model.signature_constants.CLASSIFY_METHOD_NAME': 'tf.saved_model.CLASSIFY_METHOD_NAME', 'tf.saved_model.signature_constants.CLASSIFY_OUTPUT_CLASSES': 'tf.saved_model.CLASSIFY_OUTPUT_CLASSES', 'tf.saved_model.signature_constants.CLASSIFY_OUTPUT_SCORES': 'tf.saved_model.CLASSIFY_OUTPUT_SCORES', 'tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY': 'tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY', 'tf.saved_model.signature_constants.PREDICT_INPUTS': 'tf.saved_model.PREDICT_INPUTS', 'tf.saved_model.signature_constants.PREDICT_METHOD_NAME': 'tf.saved_model.PREDICT_METHOD_NAME', 'tf.saved_model.signature_constants.PREDICT_OUTPUTS': 'tf.saved_model.PREDICT_OUTPUTS', 'tf.saved_model.signature_constants.REGRESS_INPUTS': 'tf.saved_model.REGRESS_INPUTS', 'tf.saved_model.signature_constants.REGRESS_METHOD_NAME': 'tf.saved_model.REGRESS_METHOD_NAME', 'tf.saved_model.signature_constants.REGRESS_OUTPUTS': 'tf.saved_model.REGRESS_OUTPUTS', 'tf.saved_model.signature_def_utils.build_signature_def': 'tf.saved_model.build_signature_def', 'tf.saved_model.signature_def_utils.classification_signature_def': 'tf.saved_model.classification_signature_def', 'tf.saved_model.signature_def_utils.is_valid_signature': 'tf.saved_model.is_valid_signature', 'tf.saved_model.signature_def_utils.predict_signature_def': 'tf.saved_model.predict_signature_def', 'tf.saved_model.signature_def_utils.regression_signature_def': 'tf.saved_model.regression_signature_def', 'tf.saved_model.simple_save': 'tf.compat.v1.saved_model.simple_save', 'tf.saved_model.tag_constants.GPU': 'tf.saved_model.GPU', 'tf.saved_model.tag_constants.SERVING': 'tf.saved_model.SERVING', 'tf.saved_model.tag_constants.TPU': 'tf.saved_model.TPU', 'tf.saved_model.tag_constants.TRAINING': 'tf.saved_model.TRAINING', 'tf.saved_model.utils.build_tensor_info': 'tf.compat.v1.saved_model.utils.build_tensor_info', 'tf.saved_model.utils.get_tensor_from_tensor_info': 'tf.compat.v1.saved_model.utils.get_tensor_from_tensor_info', 'tf.scatter_add': 'tf.compat.v1.scatter_add', 'tf.scatter_nd_add': 'tf.compat.v1.scatter_nd_add', 'tf.scatter_nd_sub': 'tf.compat.v1.scatter_nd_sub', 'tf.scatter_nd_update': 'tf.compat.v1.scatter_nd_update', 'tf.scatter_sub': 'tf.compat.v1.scatter_sub', 'tf.scatter_update': 'tf.compat.v1.scatter_update', 'tf.segment_max': 'tf.math.segment_max', 'tf.segment_mean': 'tf.math.segment_mean', 'tf.segment_min': 'tf.math.segment_min', 'tf.segment_prod': 'tf.math.segment_prod', 'tf.segment_sum': 'tf.math.segment_sum', 'tf.self_adjoint_eig': 'tf.linalg.eigh', 'tf.self_adjoint_eigvals': 'tf.linalg.eigvalsh', 'tf.serialize_many_sparse': 'tf.compat.v1.serialize_many_sparse', 'tf.serialize_sparse': 'tf.compat.v1.serialize_sparse', 'tf.serialize_tensor': 'tf.io.serialize_tensor', 'tf.set_random_seed': 'tf.compat.v1.set_random_seed', 'tf.setdiff1d': 'tf.compat.v1.setdiff1d', 'tf.sets.set_difference': 'tf.sets.difference', 'tf.sets.set_intersection': 'tf.sets.intersection', 'tf.sets.set_size': 'tf.sets.size', 'tf.sets.set_union': 'tf.sets.union', 'tf.space_to_depth': 'tf.compat.v1.space_to_depth', 'tf.sparse.matmul': 'tf.sparse.sparse_dense_matmul', 'tf.sparse.merge': 'tf.compat.v1.sparse.merge', 'tf.sparse.placeholder': 'tf.compat.v1.sparse.placeholder', 'tf.sparse.reduce_max_sparse': 'tf.compat.v1.sparse.reduce_max_sparse', 'tf.sparse.reduce_sum_sparse': 'tf.compat.v1.sparse.reduce_sum_sparse', 'tf.sparse_fill_empty_rows': 'tf.sparse.fill_empty_rows', 'tf.sparse_mask': 'tf.sparse.mask', 'tf.sparse_maximum': 'tf.sparse.maximum', 'tf.sparse_merge': 'tf.compat.v1.sparse_merge', 'tf.sparse_minimum': 'tf.sparse.minimum', 'tf.sparse_placeholder': 'tf.compat.v1.sparse_placeholder', 'tf.sparse_reduce_max_sparse': 'tf.compat.v1.sparse_reduce_max_sparse', 'tf.sparse_reduce_sum_sparse': 'tf.compat.v1.sparse_reduce_sum_sparse', 'tf.sparse_reorder': 'tf.sparse.reorder', 'tf.sparse_reset_shape': 'tf.sparse.reset_shape', 'tf.sparse_reshape': 'tf.sparse.reshape', 'tf.sparse_retain': 'tf.sparse.retain', 'tf.sparse_segment_mean': 'tf.compat.v1.sparse_segment_mean', 'tf.sparse_segment_sqrt_n': 'tf.compat.v1.sparse_segment_sqrt_n', 'tf.sparse_segment_sum': 'tf.compat.v1.sparse_segment_sum', 'tf.sparse_slice': 'tf.sparse.slice', 'tf.sparse_softmax': 'tf.sparse.softmax', 'tf.sparse_tensor_dense_matmul': 'tf.sparse.sparse_dense_matmul', 'tf.sparse_tensor_to_dense': 'tf.sparse.to_dense', 'tf.sparse_to_dense': 'tf.compat.v1.sparse_to_dense', 'tf.sparse_to_indicator': 'tf.sparse.to_indicator', 'tf.sparse_transpose': 'tf.sparse.transpose', 'tf.spectral.dct': 'tf.signal.dct', 'tf.spectral.fft': 'tf.signal.fft', 'tf.spectral.fft2d': 'tf.signal.fft2d', 'tf.spectral.fft3d': 'tf.signal.fft3d', 'tf.spectral.idct': 'tf.signal.idct', 'tf.spectral.ifft': 'tf.signal.ifft', 'tf.spectral.ifft2d': 'tf.signal.ifft2d', 'tf.spectral.ifft3d': 'tf.signal.ifft3d', 'tf.spectral.irfft': 'tf.signal.irfft', 'tf.spectral.irfft2d': 'tf.signal.irfft2d', 'tf.spectral.irfft3d': 'tf.signal.irfft3d', 'tf.spectral.rfft': 'tf.signal.rfft', 'tf.spectral.rfft2d': 'tf.signal.rfft2d', 'tf.spectral.rfft3d': 'tf.signal.rfft3d', 'tf.squared_difference': 'tf.math.squared_difference', 'tf.string_join': 'tf.strings.join', 'tf.string_strip': 'tf.strings.strip', 'tf.string_to_hash_bucket_fast': 'tf.strings.to_hash_bucket_fast', 'tf.string_to_hash_bucket_strong': 'tf.strings.to_hash_bucket_strong', 'tf.summary.Event': 'tf.compat.v1.summary.Event', 'tf.summary.FileWriter': 'tf.compat.v1.summary.FileWriter', 'tf.summary.FileWriterCache': 'tf.compat.v1.summary.FileWriterCache', 'tf.summary.SessionLog': 'tf.compat.v1.summary.SessionLog', 'tf.summary.Summary': 'tf.compat.v1.summary.Summary', 'tf.summary.SummaryDescription': 'tf.compat.v1.summary.SummaryDescription', 'tf.summary.TaggedRunMetadata': 'tf.compat.v1.summary.TaggedRunMetadata', 'tf.summary.audio': 'tf.compat.v1.summary.audio', 'tf.summary.get_summary_description': 'tf.compat.v1.summary.get_summary_description', 'tf.summary.histogram': 'tf.compat.v1.summary.histogram', 'tf.summary.image': 'tf.compat.v1.summary.image', 'tf.summary.merge': 'tf.compat.v1.summary.merge', 'tf.summary.merge_all': 'tf.compat.v1.summary.merge_all', 'tf.summary.scalar': 'tf.compat.v1.summary.scalar', 'tf.summary.tensor_summary': 'tf.compat.v1.summary.tensor_summary', 'tf.summary.text': 'tf.compat.v1.summary.text', 'tf.svd': 'tf.linalg.svd', 'tf.tables_initializer': 'tf.compat.v1.tables_initializer', 'tf.test.StubOutForTesting': 'tf.compat.v1.test.StubOutForTesting', 'tf.test.compute_gradient': 'tf.compat.v1.test.compute_gradient', 'tf.test.compute_gradient_error': 'tf.compat.v1.test.compute_gradient_error', 'tf.test.get_temp_dir': 'tf.compat.v1.test.get_temp_dir', 'tf.test.mock': 'tf.compat.v1.test.mock', 'tf.test.test_src_dir_path': 'tf.compat.v1.test.test_src_dir_path', 'tf.to_bfloat16': 'tf.compat.v1.to_bfloat16', 'tf.to_complex128': 'tf.compat.v1.to_complex128', 'tf.to_complex64': 'tf.compat.v1.to_complex64', 'tf.to_double': 'tf.compat.v1.to_double', 'tf.to_float': 'tf.compat.v1.to_float', 'tf.to_int32': 'tf.compat.v1.to_int32', 'tf.to_int64': 'tf.compat.v1.to_int64', 'tf.trace': 'tf.linalg.trace', 'tf.train.AdadeltaOptimizer': 'tf.compat.v1.train.AdadeltaOptimizer', 'tf.train.AdagradDAOptimizer': 'tf.compat.v1.train.AdagradDAOptimizer', 'tf.train.AdagradOptimizer': 'tf.compat.v1.train.AdagradOptimizer', 'tf.train.AdamOptimizer': 'tf.compat.v1.train.AdamOptimizer', 'tf.train.CheckpointSaverHook': 'tf.estimator.CheckpointSaverHook', 'tf.train.CheckpointSaverListener': 'tf.estimator.CheckpointSaverListener', 'tf.train.ChiefSessionCreator': 'tf.compat.v1.train.ChiefSessionCreator', 'tf.train.FeedFnHook': 'tf.estimator.FeedFnHook', 'tf.train.FinalOpsHook': 'tf.estimator.FinalOpsHook', 'tf.train.FtrlOptimizer': 'tf.compat.v1.train.FtrlOptimizer', 'tf.train.GlobalStepWaiterHook': 'tf.estimator.GlobalStepWaiterHook', 'tf.train.GradientDescentOptimizer': 'tf.compat.v1.train.GradientDescentOptimizer', 'tf.train.LoggingTensorHook': 'tf.estimator.LoggingTensorHook', 'tf.train.LooperThread': 'tf.compat.v1.train.LooperThread', 'tf.train.MomentumOptimizer': 'tf.compat.v1.train.MomentumOptimizer', 'tf.train.MonitoredSession': 'tf.compat.v1.train.MonitoredSession', 'tf.train.MonitoredTrainingSession': 'tf.compat.v1.train.MonitoredTrainingSession', 'tf.train.NanLossDuringTrainingError': 'tf.estimator.NanLossDuringTrainingError', 'tf.train.NanTensorHook': 'tf.estimator.NanTensorHook', 'tf.train.NewCheckpointReader': 'tf.compat.v1.train.NewCheckpointReader', 'tf.train.Optimizer': 'tf.compat.v1.train.Optimizer', 'tf.train.ProfilerHook': 'tf.estimator.ProfilerHook', 'tf.train.ProximalAdagradOptimizer': 'tf.compat.v1.train.ProximalAdagradOptimizer', 'tf.train.ProximalGradientDescentOptimizer': 'tf.compat.v1.train.ProximalGradientDescentOptimizer', 'tf.train.QueueRunner': 'tf.compat.v1.train.QueueRunner', 'tf.train.RMSPropOptimizer': 'tf.compat.v1.train.RMSPropOptimizer', 'tf.train.Saver': 'tf.compat.v1.train.Saver', 'tf.train.SaverDef': 'tf.compat.v1.train.SaverDef', 'tf.train.Scaffold': 'tf.compat.v1.train.Scaffold', 'tf.train.SecondOrStepTimer': 'tf.estimator.SecondOrStepTimer', 'tf.train.Server': 'tf.distribute.Server', 'tf.train.SessionCreator': 'tf.compat.v1.train.SessionCreator', 'tf.train.SessionManager': 'tf.compat.v1.train.SessionManager', 'tf.train.SessionRunArgs': 'tf.estimator.SessionRunArgs', 'tf.train.SessionRunContext': 'tf.estimator.SessionRunContext', 'tf.train.SessionRunHook': 'tf.estimator.SessionRunHook', 'tf.train.SessionRunValues': 'tf.estimator.SessionRunValues', 'tf.train.SingularMonitoredSession': 'tf.compat.v1.train.SingularMonitoredSession', 'tf.train.StepCounterHook': 'tf.estimator.StepCounterHook', 'tf.train.StopAtStepHook': 'tf.estimator.StopAtStepHook', 'tf.train.SummarySaverHook': 'tf.estimator.SummarySaverHook', 'tf.train.Supervisor': 'tf.compat.v1.train.Supervisor', 'tf.train.SyncReplicasOptimizer': 'tf.compat.v1.train.SyncReplicasOptimizer', 'tf.train.VocabInfo': 'tf.estimator.VocabInfo', 'tf.train.WorkerSessionCreator': 'tf.compat.v1.train.WorkerSessionCreator', 'tf.train.add_queue_runner': 'tf.compat.v1.train.add_queue_runner', 'tf.train.assert_global_step': 'tf.compat.v1.train.assert_global_step', 'tf.train.basic_train_loop': 'tf.compat.v1.train.basic_train_loop', 'tf.train.batch': 'tf.compat.v1.train.batch', 'tf.train.batch_join': 'tf.compat.v1.train.batch_join', 'tf.train.checkpoint_exists': 'tf.compat.v1.train.checkpoint_exists', 'tf.train.create_global_step': 'tf.compat.v1.train.create_global_step', 'tf.train.do_quantize_training_on_graphdef': 'tf.compat.v1.train.do_quantize_training_on_graphdef', 'tf.train.export_meta_graph': 'tf.compat.v1.train.export_meta_graph', 'tf.train.generate_checkpoint_state_proto': 'tf.compat.v1.train.generate_checkpoint_state_proto', 'tf.train.get_checkpoint_mtimes': 'tf.compat.v1.train.get_checkpoint_mtimes', 'tf.train.get_global_step': 'tf.compat.v1.train.get_global_step', 'tf.train.get_or_create_global_step': 'tf.compat.v1.train.get_or_create_global_step', 'tf.train.global_step': 'tf.compat.v1.train.global_step', 'tf.train.import_meta_graph': 'tf.compat.v1.train.import_meta_graph', 'tf.train.init_from_checkpoint': 'tf.compat.v1.train.init_from_checkpoint', 'tf.train.input_producer': 'tf.compat.v1.train.input_producer', 'tf.train.limit_epochs': 'tf.compat.v1.train.limit_epochs', 'tf.train.match_filenames_once': 'tf.io.match_filenames_once', 'tf.train.maybe_batch': 'tf.compat.v1.train.maybe_batch', 'tf.train.maybe_batch_join': 'tf.compat.v1.train.maybe_batch_join', 'tf.train.maybe_shuffle_batch': 'tf.compat.v1.train.maybe_shuffle_batch', 'tf.train.maybe_shuffle_batch_join': 'tf.compat.v1.train.maybe_shuffle_batch_join', 'tf.train.piecewise_constant': 'tf.compat.v1.train.piecewise_constant', 'tf.train.queue_runner.QueueRunner': 'tf.compat.v1.train.queue_runner.QueueRunner', 'tf.train.queue_runner.add_queue_runner': 'tf.compat.v1.train.queue_runner.add_queue_runner', 'tf.train.queue_runner.start_queue_runners': 'tf.compat.v1.train.queue_runner.start_queue_runners', 'tf.train.range_input_producer': 'tf.compat.v1.train.range_input_producer', 'tf.train.remove_checkpoint': 'tf.compat.v1.train.remove_checkpoint', 'tf.train.replica_device_setter': 'tf.compat.v1.train.replica_device_setter', 'tf.train.shuffle_batch': 'tf.compat.v1.train.shuffle_batch', 'tf.train.shuffle_batch_join': 'tf.compat.v1.train.shuffle_batch_join', 'tf.train.slice_input_producer': 'tf.compat.v1.train.slice_input_producer', 'tf.train.start_queue_runners': 'tf.compat.v1.train.start_queue_runners', 'tf.train.string_input_producer': 'tf.compat.v1.train.string_input_producer', 'tf.train.summary_iterator': 'tf.compat.v1.train.summary_iterator', 'tf.train.update_checkpoint_state': 'tf.compat.v1.train.update_checkpoint_state', 'tf.train.warm_start': 'tf.compat.v1.train.warm_start', 'tf.train.write_graph': 'tf.io.write_graph', 'tf.trainable_variables': 'tf.compat.v1.trainable_variables', 'tf.truncated_normal': 'tf.random.truncated_normal', 'tf.uniform_unit_scaling_initializer': 'tf.compat.v1.uniform_unit_scaling_initializer', 'tf.unsorted_segment_max': 'tf.math.unsorted_segment_max', 'tf.unsorted_segment_mean': 'tf.math.unsorted_segment_mean', 'tf.unsorted_segment_min': 'tf.math.unsorted_segment_min', 'tf.unsorted_segment_prod': 'tf.math.unsorted_segment_prod', 'tf.unsorted_segment_sqrt_n': 'tf.math.unsorted_segment_sqrt_n', 'tf.unsorted_segment_sum': 'tf.math.unsorted_segment_sum', 'tf.variable_axis_size_partitioner': 'tf.compat.v1.variable_axis_size_partitioner', 'tf.variable_op_scope': 'tf.compat.v1.variable_op_scope', 'tf.variable_scope': 'tf.compat.v1.variable_scope', 'tf.variables_initializer': 'tf.compat.v1.variables_initializer', 'tf.variance_scaling_initializer': 'tf.compat.v1.variance_scaling_initializer', 'tf.verify_tensor_all_finite': 'tf.compat.v1.verify_tensor_all_finite', 'tf.wrap_function': 'tf.compat.v1.wrap_function', 'tf.write_file': 'tf.io.write_file', 'tf.zeta': 'tf.math.zeta' }
[]
Canpio/models
deep_speech_2/decoder.py
72874de98fba93592edee42b776e3d876b1d5504
""" CTC-like decoder utilitis. """ from itertools import groupby import numpy as np def ctc_best_path_decode(probs_seq, vocabulary): """ Best path decoding, also called argmax decoding or greedy decoding. Path consisting of the most probable tokens are further post-processed to remove consecutive repetitions and all blanks. :param probs_seq: 2-D list of probabilities over the vocabulary for each character. Each element is a list of float probabilities for one character. :type probs_seq: list :param vocabulary: Vocabulary list. :type vocabulary: list :return: Decoding result string. :rtype: baseline """ # dimension verification for probs in probs_seq: if not len(probs) == len(vocabulary) + 1: raise ValueError("probs_seq dimension mismatchedd with vocabulary") # argmax to get the best index for each time step max_index_list = list(np.array(probs_seq).argmax(axis=1)) # remove consecutive duplicate indexes index_list = [index_group[0] for index_group in groupby(max_index_list)] # remove blank indexes blank_index = len(vocabulary) index_list = [index for index in index_list if index != blank_index] # convert index list to string return ''.join([vocabulary[index] for index in index_list]) def ctc_decode(probs_seq, vocabulary, method): """ CTC-like sequence decoding from a sequence of likelihood probablilites. :param probs_seq: 2-D list of probabilities over the vocabulary for each character. Each element is a list of float probabilities for one character. :type probs_seq: list :param vocabulary: Vocabulary list. :type vocabulary: list :param method: Decoding method name, with options: "best_path". :type method: basestring :return: Decoding result string. :rtype: baseline """ for prob_list in probs_seq: if not len(prob_list) == len(vocabulary) + 1: raise ValueError("probs dimension mismatchedd with vocabulary") if method == "best_path": return ctc_best_path_decode(probs_seq, vocabulary) else: raise ValueError("Decoding method [%s] is not supported.")
[((1104, 1127), 'itertools.groupby', 'groupby', (['max_index_list'], {}), '(max_index_list)\n', (1111, 1127), False, 'from itertools import groupby\n'), ((973, 992), 'numpy.array', 'np.array', (['probs_seq'], {}), '(probs_seq)\n', (981, 992), True, 'import numpy as np\n')]
Humbedooh/infrastructure-puppet
modules/gitbox/files/asfgit/hooks/sync.py
a85f797d847b80e877cd5b7c66513970f6f80703
#!/usr/local/bin/python import json import socket import sys import asfgit.cfg as cfg import asfgit.git as git import asfgit.log as log import asfgit.util as util import subprocess, os, time def main(): ghurl = "git@github:apache/%s.git" % cfg.repo_name os.chdir("/x1/repos/asf/%s.git" % cfg.repo_name) try: for ref in git.stream_refs(sys.stdin): if ref.is_rewrite(): print("Syncing %s (FORCED)..." % ref.name) subprocess.check_call(["git", "push", "-f", ghurl, "%s:%s" % (ref.newsha, ref.name)]) else: print("Syncing %s..." % ref.name) subprocess.check_call(["git", "push", ghurl, "%s:%s" % (ref.newsha, ref.name)]) except subprocess.CalledProcessError as err: util.abort("Could not sync with GitHub: %s" % err.output)
[((265, 313), 'os.chdir', 'os.chdir', (["('/x1/repos/asf/%s.git' % cfg.repo_name)"], {}), "('/x1/repos/asf/%s.git' % cfg.repo_name)\n", (273, 313), False, 'import subprocess, os, time\n'), ((341, 367), 'asfgit.git.stream_refs', 'git.stream_refs', (['sys.stdin'], {}), '(sys.stdin)\n', (356, 367), True, 'import asfgit.git as git\n'), ((768, 825), 'asfgit.util.abort', 'util.abort', (["('Could not sync with GitHub: %s' % err.output)"], {}), "('Could not sync with GitHub: %s' % err.output)\n", (778, 825), True, 'import asfgit.util as util\n'), ((469, 558), 'subprocess.check_call', 'subprocess.check_call', (["['git', 'push', '-f', ghurl, '%s:%s' % (ref.newsha, ref.name)]"], {}), "(['git', 'push', '-f', ghurl, '%s:%s' % (ref.newsha,\n ref.name)])\n", (490, 558), False, 'import subprocess, os, time\n'), ((631, 710), 'subprocess.check_call', 'subprocess.check_call', (["['git', 'push', ghurl, '%s:%s' % (ref.newsha, ref.name)]"], {}), "(['git', 'push', ghurl, '%s:%s' % (ref.newsha, ref.name)])\n", (652, 710), False, 'import subprocess, os, time\n')]
asmodehn/rosimport
rosimport/_rosdef_loader.py
c63e4769650b1cf19f23fbaa65a356ffae20a536
from __future__ import absolute_import, division, print_function import contextlib import importlib import site import tempfile import shutil from rosimport import genrosmsg_py, genrossrv_py """ A module to setup custom importer for .msg and .srv files Upon import, it will first find the .msg file, then generate the python module for it, then load it. TODO... """ # We need to be extra careful with python versions # Ref : https://docs.python.org/dev/library/importlib.html#importlib.import_module # Ref : http://stackoverflow.com/questions/67631/how-to-import-a-module-given-the-full-path # Note : Couldn't find a way to make imp.load_source deal with packages or relative imports (necessary for our generated message classes) import os import sys import logging # Class to allow dynamic search of packages class RosSearchPath(dict): """ Class to allow dynamic search of packages. This is where we hook up into python import mechanism in order to generate and discover packages and messages we are depending on. But it should not be used during the generation of multiple messages in only one package, as this is too tricky to get right, and too easy to break by mistake. """ def __init__(self, **ros_package_paths): # we use the default ROS_PACKAGE_PATH if already setup in environment. # This allows us to find message definitions in a ROS distro (and collaborate with pyros_setup) package_paths = {} for distropath in [d for d in os.environ.get('ROS_PACKAGE_PATH', '').split(':') if os.path.exists(d)]: for p in [pkgd for pkgd in os.listdir(distropath) if os.path.exists(os.path.join(distropath, pkgd, 'msg'))]: package_paths[p] = package_paths.get(p, set()) | {os.path.join(distropath, p, 'msg')} # we add any extra path package_paths.update(ros_package_paths) super(RosSearchPath, self).__init__(package_paths) def try_import(self, item): try: # we need to import the .msg submodule (only one usable as dependency) mod = importlib.import_module(item + '.msg') # import succeeded : we should get the namespace path # and add it to the list of paths to avoid going through this all over again... for p in mod.__path__: # Note we want dependencies here. dependencies are ALWAYS '.msg' files in 'msg' directory. msg_path = os.path.join(p) # We add a path only if we can find the 'msg' directory self[item] = self.get(item, set() | ({msg_path} if os.path.exists(msg_path) else set())) return mod except ImportError: # import failed return None def __contains__(self, item): """ True if D has a key k, else False. """ has = super(RosSearchPath, self).__contains__(item) if not has: # attempt importing. solving ROS path setup problem with python import paths setup. self.try_import(item) # Note : if ROS is setup, rospkg.RosPack can find packages # try again (might work now) return super(RosSearchPath, self).__contains__(item) def __getitem__(self, item): """ x.__getitem__(y) <==> x[y] """ got = super(RosSearchPath, self).get(item) if got is None: # attempt discovery by relying on python core import feature. self.try_import(item) # Note : if ROS is setup, rospkg.RosPack can find packages return super(RosSearchPath, self).get(item) # singleton instance, to keep used ros package paths in cache ros_import_search_path = RosSearchPath() def RosLoader(rosdef_extension): """ Function generating ROS loaders. This is used to keep .msg and .srv loaders very similar """ if rosdef_extension == '.msg': loader_origin_subdir = 'msg' loader_file_extension = rosdef_extension loader_generated_subdir = 'msg' loader_generator = genrosmsg_py elif rosdef_extension == '.srv': loader_origin_subdir = 'srv' loader_file_extension = rosdef_extension loader_generated_subdir = 'srv' loader_generator = genrossrv_py else: raise RuntimeError("RosLoader for a format {0} other than .msg or .srv is not supported".format(rosdef_extension)) import filefinder2.machinery class ROSDefLoader(filefinder2.machinery.SourceFileLoader): """ Python Loader for Rosdef files. Note : We support ROS layout : - msg/myMsg.msg - srv/mySrv.srv - my_pkg/__init__.py # doesnt really matters ( we rely on PEP 420 ) OR inside the python code: - my_pkg/__init__.py # doesnt really matters ( we rely on PEP 420 ) - my_pkg/msg/myMsg.msg - my_pkg/srv/mySrv.srv BUT the following is also importable relatively, which is especially useful for tests or intra-package ROS communication, although it cannot be used as another package dependency (due to ROS limitations) - my_pkg/__init__.py # doesnt really matters ( we rely on PEP 420 ) - my_pkg/subpkg/__init__.py # doesnt really matters ( we rely on PEP 420 ) - my_pkg/subpkg/msg/myMsg.msg - my_pkg/subpkg/srv/mySrv.srv In that case myMsg.py will also be generated under mypkg.msg, but can be imported relatively from my_pkg/subpkg/module.py with "from .msg import mypkg" """ rosimport_tempdir = os.path.join(tempfile.gettempdir(), 'rosimport') def __init__(self, fullname, path): self.logger = logging.getLogger(__name__) # to normalize input path = os.path.normpath(path) # Doing this in each loader, in case we are running from different processes, # avoiding to reload from same file (especially useful for boxed tests). # But deterministic path to avoid regenerating from the same interpreter rosimport_path = os.path.join(self.rosimport_tempdir, str(os.getpid())) if not os.path.exists(rosimport_path): os.makedirs(rosimport_path) rospackage = fullname.partition('.')[0] if os.path.isdir(path): # if we get a package name ending with msg or srv and a non empty directory if ( fullname.endswith(loader_origin_subdir) and any([f.endswith(loader_file_extension) for f in os.listdir(path)]) ): # TODO : dynamic in memory generation (we do not need the file ultimately...) outdir, gen_rosdef_pkgpath = loader_generator( # generate message's python code at once, for this package level. rosdef_files=[os.path.join(path, f) for f in os.listdir(path)], package=fullname, sitedir=rosimport_path, search_path=ros_import_search_path, ) # TODO : handle thrown exception (cleaner than hacking the search path dict...) # try: # generator.generate_messages(package, rosfiles, outdir, search_path) # except genmsg.MsgNotFound as mnf: # try: # mod = importlib.import_module(mnf.package) # # import succeeded : we should get the namespace path that has '/msg' # # and add it to the list of paths to avoid going through this all over again... # for p in mod.__path__: # # Note we want dependencies here. dependencies are ALWAYS '.msg' files in 'msg' directory. # msg_path = os.path.join(p, genmsg_MSG_DIR) # # We add a path only if we can find the 'msg' directory # search_path[mnf.package] = search_path[mnf.package] + ([msg_path] if os.path.exists(msg_path) else []) # # Try generation again # generator.generate_messages(package, rosfiles, outdir, search_path) # except ImportError: # # import failed # return None if not os.path.exists(gen_rosdef_pkgpath): raise ImportError("{0} file not found".format(gen_rosdef_pkgpath)) # relying on usual source file loader since we have generated normal python code super(ROSDefLoader, self).__init__(fullname, gen_rosdef_pkgpath) def get_gen_path(self): """Returning the generated path matching the import""" return self.path # TODO : maybe useless ? # return os.path.join(self.outdir_pkg, loader_generated_subdir) def __repr__(self): return "ROSDefLoader/{0}({1}, {2})".format(loader_file_extension, self.name, self.path) @staticmethod def get_file_extension(): return loader_file_extension @staticmethod def get_origin_subdir(): return loader_origin_subdir @staticmethod def get_generated_subdir(): return loader_generated_subdir return ROSDefLoader ROSMsgLoader = RosLoader(rosdef_extension='.msg') ROSSrvLoader = RosLoader(rosdef_extension='.srv')
[((2094, 2132), 'importlib.import_module', 'importlib.import_module', (["(item + '.msg')"], {}), "(item + '.msg')\n", (2117, 2132), False, 'import importlib\n'), ((5560, 5581), 'tempfile.gettempdir', 'tempfile.gettempdir', ([], {}), '()\n', (5579, 5581), False, 'import tempfile\n'), ((5668, 5695), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (5685, 5695), False, 'import logging\n'), ((5748, 5770), 'os.path.normpath', 'os.path.normpath', (['path'], {}), '(path)\n', (5764, 5770), False, 'import os\n'), ((6280, 6299), 'os.path.isdir', 'os.path.isdir', (['path'], {}), '(path)\n', (6293, 6299), False, 'import os\n'), ((1564, 1581), 'os.path.exists', 'os.path.exists', (['d'], {}), '(d)\n', (1578, 1581), False, 'import os\n'), ((2460, 2475), 'os.path.join', 'os.path.join', (['p'], {}), '(p)\n', (2472, 2475), False, 'import os\n'), ((6135, 6165), 'os.path.exists', 'os.path.exists', (['rosimport_path'], {}), '(rosimport_path)\n', (6149, 6165), False, 'import os\n'), ((6183, 6210), 'os.makedirs', 'os.makedirs', (['rosimport_path'], {}), '(rosimport_path)\n', (6194, 6210), False, 'import os\n'), ((1623, 1645), 'os.listdir', 'os.listdir', (['distropath'], {}), '(distropath)\n', (1633, 1645), False, 'import os\n'), ((6102, 6113), 'os.getpid', 'os.getpid', ([], {}), '()\n', (6111, 6113), False, 'import os\n'), ((1511, 1549), 'os.environ.get', 'os.environ.get', (['"""ROS_PACKAGE_PATH"""', '""""""'], {}), "('ROS_PACKAGE_PATH', '')\n", (1525, 1549), False, 'import os\n'), ((1664, 1701), 'os.path.join', 'os.path.join', (['distropath', 'pkgd', '"""msg"""'], {}), "(distropath, pkgd, 'msg')\n", (1676, 1701), False, 'import os\n'), ((1771, 1805), 'os.path.join', 'os.path.join', (['distropath', 'p', '"""msg"""'], {}), "(distropath, p, 'msg')\n", (1783, 1805), False, 'import os\n'), ((8502, 8536), 'os.path.exists', 'os.path.exists', (['gen_rosdef_pkgpath'], {}), '(gen_rosdef_pkgpath)\n', (8516, 8536), False, 'import os\n'), ((2615, 2639), 'os.path.exists', 'os.path.exists', (['msg_path'], {}), '(msg_path)\n', (2629, 2639), False, 'import os\n'), ((6562, 6578), 'os.listdir', 'os.listdir', (['path'], {}), '(path)\n', (6572, 6578), False, 'import os\n'), ((6894, 6915), 'os.path.join', 'os.path.join', (['path', 'f'], {}), '(path, f)\n', (6906, 6915), False, 'import os\n'), ((6925, 6941), 'os.listdir', 'os.listdir', (['path'], {}), '(path)\n', (6935, 6941), False, 'import os\n')]
Ahuge/PyLeague
PyLeague/logger.py
ee8a14061c44c1c26a5102a05e33ad820f2b1b63
import sys def color(text, color): if color == "blue": color = "0;34m" elif color == "green": color = "0;32m" elif color == "red": color = "0;31m" elif color == "yellow": color = "0;33m" else: return text return "\033[%s%s\033[0m\n" % (color, text) class NotALogger(object): def info(self, msg): sys.stdout.write( color(msg, "blue") ) def error(self, msg): sys.stdout.write( color(msg, "red") ) def warning(self, msg): sys.stdout.write( color(msg, "yellow") ) def success(self, msg): sys.stdout.write( color(msg, "green") ) def header(self): msg = "=" * 50 msg += "\n" + "=" + (" " * 48) + "=" msg += "\n" + "=" + (" " * 48) + "=" msg += "\n" + ("=" * 50) sys.stdout.write( color(msg, "green") ) def line(self): sys.stdout.write( color("-" * 50, "blue") ) log = NotALogger() __all__ = ["log"]
[]
swtwsk/dbt-airflow-manifest-parser
setup.py
fae0049fb8ff3bc7a78488a48a31023f67fbeef3
"""dbt_airflow_factory module.""" from setuptools import find_packages, setup with open("README.md") as f: README = f.read() # Runtime Requirements. INSTALL_REQUIRES = ["pytimeparse==1.1.8"] # Dev Requirements EXTRA_REQUIRE = { "tests": [ "pytest>=6.2.2, <7.0.0", "pytest-cov>=2.8.0, <3.0.0", "tox==3.21.1", "pre-commit==2.9.3", "pandas==1.2.5", "apache-airflow[kubernetes]==2.2.0", ], "docs": [ "sphinx==4.3.1", "sphinx-rtd-theme==1.0.0", "sphinx-click>=3.0,<3.1", "myst-parser>=0.16, <0.17", "docutils>=0.17,<0.18", ], } setup( name="dbt-airflow-factory", version="0.18.0", description="Library to convert DBT manifest metadata to Airflow tasks", long_description=README, long_description_content_type="text/markdown", license="Apache Software License (Apache 2.0)", python_requires=">=3", classifiers=[ "Development Status :: 3 - Alpha", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", ], keywords="dbt airflow manifest parser python", author=u"Piotr Pekala", author_email="[email protected]", url="https://github.com/getindata/dbt-airflow-factory/", packages=find_packages(exclude=["ez_setup", "examples", "tests", "docs"]), include_package_data=True, zip_safe=False, install_requires=INSTALL_REQUIRES, extras_require=EXTRA_REQUIRE, )
[((1299, 1363), 'setuptools.find_packages', 'find_packages', ([], {'exclude': "['ez_setup', 'examples', 'tests', 'docs']"}), "(exclude=['ez_setup', 'examples', 'tests', 'docs'])\n", (1312, 1363), False, 'from setuptools import find_packages, setup\n')]
jmb/NightLightPi
nightlightpi/errorstrings.py
82f5d37a35e3457e31ca100524011908e5b33c4d
# -*- coding: utf-8; -*- """Define error strings raised by the application.""" MISSING_CONFIG_VALUE = """ '{0}' is not specified or invalid in the config file! """.strip()
[]
European-XFEL/karabo-bridge-py
karabo_bridge/tests/test_serialize.py
c4b2847b837ae7156640cb8f787fcf96ac7f632e
import numpy as np import pytest from karabo_bridge import serialize, deserialize from .utils import compare_nested_dict def test_serialize(data, protocol_version): msg = serialize(data, protocol_version=protocol_version) assert isinstance(msg, list) d, m = deserialize(msg) compare_nested_dict(data, d) assert m['source1'] == {'timestamp.tid': 9876543210, 'timestamp': 12345678} assert m['XMPL/DET/MOD0'] == {} def test_serialize_with_metadata(data, metadata, protocol_version): msg = serialize(data, metadata, protocol_version=protocol_version) d, m = deserialize(msg) compare_nested_dict(metadata, m) def test_serialize_with_dummy_timestamps(data, protocol_version): msg = serialize(data, protocol_version=protocol_version, dummy_timestamps=True) d, m = deserialize(msg) assert set(m['XMPL/DET/MOD0']) == {'timestamp', 'timestamp.sec', 'timestamp.frac'} assert set(m['source1']) == {'timestamp', 'timestamp.tid'} assert m['source1']['timestamp.tid'] == 9876543210 assert m['source1']['timestamp'] == 12345678 def test_serialize_with_metadata_and_dummy_timestamp(data, metadata, protocol_version): msg = serialize(data, metadata, protocol_version=protocol_version, dummy_timestamps=True) d, m = deserialize(msg) compare_nested_dict(metadata, m) def test_wrong_version(data): with pytest.raises(ValueError): serialize(data, protocol_version='3.0')
[((179, 229), 'karabo_bridge.serialize', 'serialize', (['data'], {'protocol_version': 'protocol_version'}), '(data, protocol_version=protocol_version)\n', (188, 229), False, 'from karabo_bridge import serialize, deserialize\n'), ((275, 291), 'karabo_bridge.deserialize', 'deserialize', (['msg'], {}), '(msg)\n', (286, 291), False, 'from karabo_bridge import serialize, deserialize\n'), ((521, 581), 'karabo_bridge.serialize', 'serialize', (['data', 'metadata'], {'protocol_version': 'protocol_version'}), '(data, metadata, protocol_version=protocol_version)\n', (530, 581), False, 'from karabo_bridge import serialize, deserialize\n'), ((594, 610), 'karabo_bridge.deserialize', 'deserialize', (['msg'], {}), '(msg)\n', (605, 610), False, 'from karabo_bridge import serialize, deserialize\n'), ((726, 799), 'karabo_bridge.serialize', 'serialize', (['data'], {'protocol_version': 'protocol_version', 'dummy_timestamps': '(True)'}), '(data, protocol_version=protocol_version, dummy_timestamps=True)\n', (735, 799), False, 'from karabo_bridge import serialize, deserialize\n'), ((832, 848), 'karabo_bridge.deserialize', 'deserialize', (['msg'], {}), '(msg)\n', (843, 848), False, 'from karabo_bridge import serialize, deserialize\n'), ((1203, 1290), 'karabo_bridge.serialize', 'serialize', (['data', 'metadata'], {'protocol_version': 'protocol_version', 'dummy_timestamps': '(True)'}), '(data, metadata, protocol_version=protocol_version,\n dummy_timestamps=True)\n', (1212, 1290), False, 'from karabo_bridge import serialize, deserialize\n'), ((1319, 1335), 'karabo_bridge.deserialize', 'deserialize', (['msg'], {}), '(msg)\n', (1330, 1335), False, 'from karabo_bridge import serialize, deserialize\n'), ((1414, 1439), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (1427, 1439), False, 'import pytest\n'), ((1449, 1488), 'karabo_bridge.serialize', 'serialize', (['data'], {'protocol_version': '"""3.0"""'}), "(data, protocol_version='3.0')\n", (1458, 1488), False, 'from karabo_bridge import serialize, deserialize\n')]
bpedersen2/indico
indico/testing/fixtures/util.py
8410ee5f8f8530a8692f3dd2d4015c3074b0aa30
# This file is part of Indico. # Copyright (C) 2002 - 2021 CERN # # Indico is free software; you can redistribute it and/or # modify it under the terms of the MIT License; see the # LICENSE file for more details. import inspect from datetime import datetime import freezegun import pytest from sqlalchemy import DateTime, cast from sqlalchemy.sql.functions import _FunctionGenerator @pytest.fixture def monkeypatch_methods(monkeypatch): """Monkeypatch all methods from `cls` onto `target`. This utility lets you easily mock multiple methods in an existing class. In case of classmethods the binding will not be changed, i.e. `cls` will keep pointing to the source class and not the target class. """ def _monkeypatch_methods(target, cls): for name, method in inspect.getmembers(cls, inspect.ismethod): if method.__self__ is None: # For unbound methods we need to copy the underlying function method = method.__func__ monkeypatch.setattr(f'{target}.{name}', method) return _monkeypatch_methods @pytest.fixture def freeze_time(monkeypatch): """Return a function that freezes the current time. It affects datetime.now, date.today, etc. and also SQLAlchemy's `func.now()` which simply returns the current time from `datetime.now()` instead of retrieving it using the actual `now()` function of PostgreSQL. """ freezers = [] orig_call = _FunctionGenerator.__call__ def FunctionGenerator_call(self, *args, **kwargs): if self._FunctionGenerator__names == ['now']: return cast(datetime.now().isoformat(), DateTime) return orig_call(self, *args, **kwargs) monkeypatch.setattr(_FunctionGenerator, '__call__', FunctionGenerator_call) def _freeze_time(time_to_freeze): freezer = freezegun.freeze_time(time_to_freeze) freezer.start() freezers.append(freezer) yield _freeze_time for freezer in reversed(freezers): freezer.stop()
[((797, 838), 'inspect.getmembers', 'inspect.getmembers', (['cls', 'inspect.ismethod'], {}), '(cls, inspect.ismethod)\n', (815, 838), False, 'import inspect\n'), ((1848, 1885), 'freezegun.freeze_time', 'freezegun.freeze_time', (['time_to_freeze'], {}), '(time_to_freeze)\n', (1869, 1885), False, 'import freezegun\n'), ((1624, 1638), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1636, 1638), False, 'from datetime import datetime\n')]
RomashkaGang/Update_Checker
config.py
1763ec5d8110462a72f5015abdc5c5be3e3c9498
#!/usr/bin/env python3 # encoding: utf-8 import os # 是否启用调试 若启用 将不再忽略检查过程中发生的任何异常 # 建议在开发环境中启用 在生产环境中禁用 DEBUG_ENABLE = False # SQLite 数据库文件名 SQLITE_FILE = "saved.db" # 日志文件名 LOG_FILE = "log.txt" # 是否启用日志 ENABLE_LOGGER = True # 循环检查的间隔时间(默认: 180分钟) LOOP_CHECK_INTERVAL = 180 * 60 # 代理服务器 PROXIES = "127.0.0.1:1080" # 请求超时 TIMEOUT = 20 # 是否为 Socks5 代理 IS_SOCKS = False # 是否启用 TG BOT 发送消息的功能 ENABLE_SENDMESSAGE = False # TG BOT TOKEN TG_TOKEN = os.environ.get("TG_TOKEN", "") # 发送消息到... TG_SENDTO = os.environ.get("TG_SENDTO", "") if IS_SOCKS: _PROXIES_DIC = {"http": "socks5h://%s" % PROXIES, "https": "socks5h://%s" % PROXIES} else: _PROXIES_DIC = {"http": PROXIES, "https": PROXIES}
[((453, 483), 'os.environ.get', 'os.environ.get', (['"""TG_TOKEN"""', '""""""'], {}), "('TG_TOKEN', '')\n", (467, 483), False, 'import os\n'), ((508, 539), 'os.environ.get', 'os.environ.get', (['"""TG_SENDTO"""', '""""""'], {}), "('TG_SENDTO', '')\n", (522, 539), False, 'import os\n')]
zjj1002/aws-cloud-cmdb-system
cmdb-compliance/biz/handlers/asset_hipaa_data.py
47982007688e5db1272435891cb654ab11d0d60a
from sqlalchemy import or_ from websdk.db_context import DBContext from libs.base_handler import BaseHandler from libs.pagination import pagination_util from models.hipaa_data import HipaaData, model_to_dict class HipaaDataHandler(BaseHandler): @pagination_util def get(self, *args, **kwargs): key = self.get_argument('key', default=None, strip=True) hipaa_data_list = [] with DBContext('r') as session: if key: # 模糊查所有 hipaa_data_info = session.query(HipaaData).filter( or_(HipaaData.profile.like('%{}%'.format(key)), HipaaData.result.like('%{}%'.format(key)), HipaaData.level.like('%{}%'.format(key)), HipaaData.region.like('%{}%'.format(key)), HipaaData.account_id.like('%{}%'.format(key)), HipaaData.group.like('%{}%'.format(key)), HipaaData.group.like('%{}%'.format(key)), HipaaData.check_title.like('%{}%'.format(key)), HipaaData.check_output.like('%{}%'.format(key))) ).filter( HipaaData.result != "PASS" ).all() else: hipaa_data_info = session.query(HipaaData).filter( HipaaData.result != "PASS" ).all() for data in hipaa_data_info: data_dict = model_to_dict(data) hipaa_data_list.append(data_dict) return hipaa_data_list hipaa_data_host_urls = [ (r"/v1/cmdb/hipaa_data/", HipaaDataHandler), ] if __name__ == '__main__': pass
[((412, 426), 'websdk.db_context.DBContext', 'DBContext', (['"""r"""'], {}), "('r')\n", (421, 426), False, 'from websdk.db_context import DBContext\n'), ((1480, 1499), 'models.hipaa_data.model_to_dict', 'model_to_dict', (['data'], {}), '(data)\n', (1493, 1499), False, 'from models.hipaa_data import HipaaData, model_to_dict\n')]
hellocit/kadai2
scripts/count.py
896acc2394ea522d4b0d32db31321aea5b5f5dbd
#!/usr/bin/env python3 import rospy from std_msgs.msg import Int32 import time rospy.init_node('count') # ノード名「count」に設定 pub = rospy.Publisher('count_up', Int32, queue_size=1) # パブリッシャ「count_up」を作成 rate = rospy.Rate(10) # 10Hzで実行 n = 0 time.sleep(2) while not rospy.is_shutdown(): n += 1 if n % 3 == 0: print("これは%d" % n) pub.publish(n) else: pub.publish(n) if n == 227: print("\nThis is unko\n") rate.sleep()
[((80, 104), 'rospy.init_node', 'rospy.init_node', (['"""count"""'], {}), "('count')\n", (95, 104), False, 'import rospy\n'), ((159, 207), 'rospy.Publisher', 'rospy.Publisher', (['"""count_up"""', 'Int32'], {'queue_size': '(1)'}), "('count_up', Int32, queue_size=1)\n", (174, 207), False, 'import rospy\n'), ((238, 252), 'rospy.Rate', 'rospy.Rate', (['(10)'], {}), '(10)\n', (248, 252), False, 'import rospy\n'), ((304, 317), 'time.sleep', 'time.sleep', (['(2)'], {}), '(2)\n', (314, 317), False, 'import time\n'), ((329, 348), 'rospy.is_shutdown', 'rospy.is_shutdown', ([], {}), '()\n', (346, 348), False, 'import rospy\n')]
alexanderfefelov/nav-add-ons
snmp/nav/smidumps/ZyXEL_GS4012F_mib.py
c63d6942a9b8b1bf220efd7d33fb6be5f6bbb8af
# python version 1.0 DO NOT EDIT # # Generated by smidump version 0.4.8: # # smidump -f python ZYXEL-GS4012F-MIB FILENAME = "mibs/ZyXEL/zyxel-GS4012F.mib" MIB = { "moduleName" : "ZYXEL-GS4012F-MIB", "ZYXEL-GS4012F-MIB" : { "nodetype" : "module", "language" : "SMIv2", "organization" : """ZyXEL""", "contact" : """""", "description" : """Fault event trap definitions""", "revisions" : ( { "date" : "2004-11-03 12:00", "description" : """[Revision added by libsmi due to a LAST-UPDATED clause.]""", }, { "date" : "2004-11-01 12:00", "description" : """[Revision added by libsmi due to a LAST-UPDATED clause.]""", }, ), "identity node" : "faultTrapsMIB", }, "imports" : ( {"module" : "RFC1155-SMI", "name" : "enterprises"}, {"module" : "SNMPv2-SMI", "name" : "OBJECT-TYPE"}, {"module" : "SNMPv2-TC", "name" : "RowStatus"}, {"module" : "SNMPv2-TC", "name" : "DateAndTime"}, {"module" : "SNMPv2-TC", "name" : "TruthValue"}, {"module" : "SNMPv2-TC", "name" : "StorageType"}, {"module" : "SNMPv2-TC", "name" : "MacAddress"}, {"module" : "RFC1213-MIB", "name" : "DisplayString"}, {"module" : "P-BRIDGE-MIB", "name" : "EnabledStatus"}, {"module" : "Q-BRIDGE-MIB", "name" : "PortList"}, {"module" : "BRIDGE-MIB", "name" : "dot1dBasePort"}, {"module" : "IF-MIB", "name" : "InterfaceIndexOrZero"}, {"module" : "SNMP-FRAMEWORK-MIB", "name" : "SnmpAdminString"}, {"module" : "INET-ADDRESS-MIB", "name" : "InetAddressType"}, {"module" : "INET-ADDRESS-MIB", "name" : "InetAddress"}, {"module" : "DISMAN-PING-MIB", "name" : "OperationResponseStatus"}, {"module" : "OSPF-MIB", "name" : "ospfIfIpAddress"}, {"module" : "OSPF-MIB", "name" : "ospfAddressLessIf"}, {"module" : "OSPF-MIB", "name" : "ospfAreaId"}, {"module" : "OSPF-MIB", "name" : "ospfNbrIpAddr"}, {"module" : "OSPF-MIB", "name" : "ospfNbrAddressLessIndex"}, {"module" : "OSPF-MIB", "name" : "ospfLsdbAreaId"}, {"module" : "OSPF-MIB", "name" : "ospfLsdbType"}, {"module" : "OSPF-MIB", "name" : "ospfLsdbLSID"}, {"module" : "OSPF-MIB", "name" : "ospfLsdbRouterId"}, {"module" : "OSPF-MIB", "name" : "ospfVirtIfAreaID"}, {"module" : "OSPF-MIB", "name" : "ospfVirtIfNeighbor"}, {"module" : "BRIDGE-MIB", "name" : "BridgeId"}, {"module" : "BRIDGE-MIB", "name" : "Timeout"}, ), "typedefs" : { "UtcTimeStamp" : { "basetype" : "Unsigned32", "status" : "current", "description" : """Universal Time Coordinated as a 32-bit value that designates the number of seconds since Jan 1, 1970 12:00AM.""", }, "EventIdNumber" : { "basetype" : "Integer32", "status" : "current", "description" : """This textual convention describes the index that uniquely identifies a fault event type in the entire system. Every fault event type, e.g. link down, has a unique EventIdNumber.""", }, "EventSeverity" : { "basetype" : "Enumeration", "status" : "current", "critical" : { "nodetype" : "namednumber", "number" : "1" }, "major" : { "nodetype" : "namednumber", "number" : "2" }, "minor" : { "nodetype" : "namednumber", "number" : "3" }, "informational" : { "nodetype" : "namednumber", "number" : "4" }, "description" : """This textual convention describes the severity of a fault event. The decreasing order of severity is shown in the textual convention.""", }, "EventServiceAffective" : { "basetype" : "Enumeration", "status" : "current", "noServiceAffected" : { "nodetype" : "namednumber", "number" : "1" }, "serviceAffected" : { "nodetype" : "namednumber", "number" : "2" }, "description" : """This textual convention indicates whether an event is immediately service affecting or not.""", }, "InstanceType" : { "basetype" : "Enumeration", "status" : "current", "unknown" : { "nodetype" : "namednumber", "number" : "1" }, "node" : { "nodetype" : "namednumber", "number" : "2" }, "shelf" : { "nodetype" : "namednumber", "number" : "3" }, "line" : { "nodetype" : "namednumber", "number" : "4" }, "switch" : { "nodetype" : "namednumber", "number" : "5" }, "lsp" : { "nodetype" : "namednumber", "number" : "6" }, "l2Interface" : { "nodetype" : "namednumber", "number" : "7" }, "l3Interface" : { "nodetype" : "namednumber", "number" : "8" }, "rowIndex" : { "nodetype" : "namednumber", "number" : "9" }, "description" : """This textual convention describes the type of an instanceId associated with each event and by that means specifies how the instanceId variable should be intepreted. Various instanceId types are specified below to enable fault monitoring for different kind of devices from fixed configuration pizza boxes to multi chassis nodes. All instanceId types may not need to be used in every device type. Note also that instanceId semantics are element type dependent (e.g. different kind of interface naming conventions may be used) and thus instanceId usage may vary from element to element. ========================================================================= Type Description Example form of InstanceId ========================================================================= unknown (1) unknown type - Irrelevant- ------------------------------------------------------------------------- node (2) Associated with events originating from 1 the node. Used for general events that (Node number) can not be associated with any specific block. InstanceId value 1 is used for single node equipment. ------------------------------------------------------------------------- shelf (3) Associated with events originating from 1 the shelf. In the case of fixed (shelf number) configuration devices this type is used for events that are associated with the physical enclosure, e.g. faults related to fan etc. InstanceId value 1 is used for single self equipment. ------------------------------------------------------------------------- line (4) Associated with events originating from physical interfaces or associated components such as line cards. InstanceId usage examples for faults originating from: - Physical port: Simply port number, e.g. .......1 ------------------------------------------------------------------------- switch (5) Associated with events originating from 1 from a switch chip or a switch card. (switch number) For single switch equipment InstanceId value 1 is used, for multi swich nodes InstanceId semantics if for further study. ------------------------------------------------------------------------- lsp (6) Associated with events originating from 1 a particular lsp. (lsp index) NOTE: In this case the InstanceName contains the lsp name and InstanceId contains lsp index. ------------------------------------------------------------------------- l2Interface(7) Associated with events originating from - TBD - a particular layer 2 interface. Used for layer 2 related events such as L2 control protocol faults. InstanceId semantics is for further study. ------------------------------------------------------------------------- l3Interface(8) Associated with events originating from - TBD - a particular layer 3 interface. Used for layer 3 related events such as L3 control protocol faults. InstanceId semantics is for further study. ------------------------------------------------------------------------- rowIndex (9) Associated with events reporting about a 'logical' or conceptual table that consists of rows. The Instance Id is the index/key for a row in the table. The format of the Instance Id will simply be a series of decimal numbers seperated by a '.': =========================================================================""", }, "EventPersistence" : { "basetype" : "Enumeration", "status" : "current", "normal" : { "nodetype" : "namednumber", "number" : "1" }, "delta" : { "nodetype" : "namednumber", "number" : "2" }, "description" : """This textual convention indicates whether the event is delta (automatically and immediately cleared) or normal (not automatically cleared).""", }, "MstiOrCistInstanceIndex" : { "basetype" : "Integer32", "status" : "current", "ranges" : [ { "min" : "0", "max" : "16" }, ], "range" : { "min" : "0", "max" : "16" }, "description" : """This textual convention is an extension of the MstiInstanceIndex convention. This extension permits the additional value of zero, which means Common and Internal Spanning Tree (CIST).""", }, }, # typedefs "nodes" : { "zyxel" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890", }, # node "products" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1", }, # node "accessSwitch" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5", }, # node "esSeries" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8", }, # node "gs4012f" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20", }, # node "sysInfo" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.1", }, # node "sysSwPlatformMajorVers" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.1.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """SW platform major version, e.g. 3.""", }, # scalar "sysSwPlatformMinorVers" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.1.2", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """SW platform minor version, e.g. 50.""", }, # scalar "sysSwModelString" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.1.3", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readonly", "description" : """Model letters, e.g. TJ""", }, # scalar "sysSwVersionControlNbr" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.1.4", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """Version control number, e.g. 0.""", }, # scalar "sysSwDay" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.1.5", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """SW compilation day, e.g. 19.""", }, # scalar "sysSwMonth" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.1.6", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """SW compilation month, e.g. 8.""", }, # scalar "sysSwYear" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.1.7", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """SW compilation year, e.g. 2004.""", }, # scalar "sysHwMajorVers" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.1.8", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """HW major version number, e.g. 1.""", }, # scalar "sysHwMinorVers" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.1.9", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """HW minor version number, e.g. 0.""", }, # scalar "sysSerialNumber" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.1.10", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readonly", "description" : """Serial number""", }, # scalar "rateLimitSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.2", }, # node "rateLimitState" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.2.1", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """Ingress/egress rate limiting enabled/disabled for the switch.""", }, # scalar "rateLimitPortTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.2.2", "status" : "current", "description" : """""", }, # table "rateLimitPortEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.2.2.1", "status" : "current", "linkage" : [ "dot1dBasePort", ], "description" : """An entry in rateLimitPortTable.""", }, # row "rateLimitPortState" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.2.2.1.1", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """Ingress/egress rate limiting enabled/disabled on the port.""", }, # column "rateLimitPortCommitRate" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.2.2.1.2", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """Commit rate in Kbit/s. The range of FE port is between 0 and 100,000. For GE port, the range is between 0 and 1000,000.""", }, # column "rateLimitPortPeakRate" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.2.2.1.3", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """Peak rate in Kbit/s. The range of FE port is between 1 and 100,000. For GE port, the range is between 1 and 1000,000.""", }, # column "rateLimitPortEgrRate" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.2.2.1.4", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """Egress rate in Mbit/s. The granularity of FE port is between 1 and 100. For GE port, the granularity is between 1 and 1000.""", }, # column "rateLimitPortPeakState" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.2.2.1.5", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """Ingress peak rate limiting enabled/disabled on the port.""", }, # column "rateLimitPortEgrState" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.2.2.1.6", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """Egress rate limiting enabled/disabled on the port.""", }, # column "rateLimitPortCommitState" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.2.2.1.7", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """Ingress commit rate limiting enabled/disabled on the port.""", }, # column "brLimitSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.3", }, # node "brLimitState" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.3.1", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """Broadcast/multicast/DLF rate limiting enabled/disabled for the switch.""", }, # scalar "brLimitPortTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.3.2", "status" : "current", "description" : """""", }, # table "brLimitPortEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.3.2.1", "status" : "current", "linkage" : [ "dot1dBasePort", ], "description" : """An entry in brLimitPortTable.""", }, # row "brLimitPortBrState" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.3.2.1.1", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """Broadcast rate limiting enabled/disabled on the port.""", }, # column "brLimitPortBrRate" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.3.2.1.2", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """Allowed broadcast rate in pkts/s. For FE port, the maximum value is 148800. For GE port, the maximum value is 262143.""", }, # column "brLimitPortMcState" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.3.2.1.3", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """Multicast rate limiting enabled/disabled on the port.""", }, # column "brLimitPortMcRate" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.3.2.1.4", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """AAllowed mullticast rate in pkts/s. For FE port, the maximum value is 148800. For GE port, the maximum value is 262143.""", }, # column "brLimitPortDlfState" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.3.2.1.5", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """Destination lookup failure frames rate limiting enabled/disabled on the port.""", }, # column "brLimitPortDlfRate" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.3.2.1.6", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """Allowed destination lookup failure frames rate in pkts/s. For FE port, the maximum value is 148800. For GE port, the maximum value is 262143.""", }, # column "portSecuritySetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.4", }, # node "portSecurityState" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.4.1", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # scalar "portSecurityPortTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.4.2", "status" : "current", "description" : """""", }, # table "portSecurityPortEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.4.2.1", "status" : "current", "linkage" : [ "dot1dBasePort", ], "description" : """An entry in portSecurityPortTable.""", }, # row "portSecurityPortState" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.4.2.1.1", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """Port Security enabled/disabled on the port. Active(1) means this port only accept frames from static MAC addresses that are configured for the port, and dynamic MAC address frames up to the number specified by portSecurityPortCount object.""", }, # column "portSecurityPortLearnState" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.4.2.1.2", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """MAC address learning enabled/disable on the port.""", }, # column "portSecurityPortCount" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.4.2.1.3", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """Number of (dynamic) MAC addresses that may be learned on the port.""", }, # column "portSecurityMacFreeze" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.4.3", "status" : "current", "syntax" : { "type" : { "module" :"Q-BRIDGE-MIB", "name" : "PortList"}, }, "access" : "readwrite", "description" : """""", }, # scalar "vlanTrunkSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.5", }, # node "vlanTrunkPortTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.5.1", "status" : "current", "description" : """""", }, # table "vlanTrunkPortEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.5.1.1", "status" : "current", "linkage" : [ "dot1dBasePort", ], "description" : """An entry in vlanTrunkPortTable.""", }, # row "vlanTrunkPortState" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.5.1.1.1", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """VlanTrunking enabled/disabled on the port. Active(1) to allow frames belonging to unknown VLAN groups to pass through the switch.""", }, # column "ctlProtTransSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.6", }, # node "ctlProtTransState" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.6.1", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """Bridge control protocol transparency enabled/disabled for the switch""", }, # scalar "ctlProtTransTunnelPortTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.6.2", "status" : "current", "description" : """""", }, # table "ctlProtTransTunnelPortEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.6.2.1", "status" : "current", "linkage" : [ "dot1dBasePort", ], "description" : """An entry in ctlProtTransTunnelPortTable.""", }, # row "ctlProtTransTunnelMode" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.6.2.1.1", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "peer" : { "nodetype" : "namednumber", "number" : "0" }, "tunnel" : { "nodetype" : "namednumber", "number" : "1" }, "discard" : { "nodetype" : "namednumber", "number" : "2" }, "network" : { "nodetype" : "namednumber", "number" : "3" }, }, }, "access" : "readwrite", "description" : """Bridge control protocol transparency mode for the port. Modes: Peer(0), Tunnel(1), Discard(2), Network(3)""", }, # column "vlanStackSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.7", }, # node "vlanStackState" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.7.1", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """VLAN Stacking enabled/disabled for the switch.""", }, # scalar "vlanStackTpid" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.7.2", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """SP TPID in hex format, e.g. 8100.""", }, # scalar "vlanStackPortTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.7.3", "status" : "current", "description" : """""", }, # table "vlanStackPortEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.7.3.1", "status" : "current", "linkage" : [ "dot1dBasePort", ], "description" : """An entry in vlanStackPortTable.""", }, # row "vlanStackPortMode" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.7.3.1.1", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "normal" : { "nodetype" : "namednumber", "number" : "1" }, "access" : { "nodetype" : "namednumber", "number" : "2" }, "tunnel" : { "nodetype" : "namednumber", "number" : "3" }, }, }, "access" : "readwrite", "description" : """Mode of the port.Set Access mode to have the switch add the SP TPID tag to all incoming frames received on this port. Set Access mode for ingress ports at the edge of the service provider's network. Set Tunnel mode (available for Gigabit ports only) for egress ports at the edge of the service provider's network. In order to support VLAN stacking on a port, the port must be able to allow frames of 1526 Bytes (1522 Bytes + 4 Bytes for the second tag) to pass through it. Access (0), tunnel (1)""", }, # column "vlanStackPortVid" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.7.3.1.2", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """VLAN ID used in service provider tag.""", }, # column "vlanStackPortPrio" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.7.3.1.3", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "prioriry-0" : { "nodetype" : "namednumber", "number" : "0" }, "prioriry-1" : { "nodetype" : "namednumber", "number" : "1" }, "prioriry-2" : { "nodetype" : "namednumber", "number" : "2" }, "prioriry-3" : { "nodetype" : "namednumber", "number" : "3" }, "prioriry-4" : { "nodetype" : "namednumber", "number" : "4" }, "prioriry-5" : { "nodetype" : "namednumber", "number" : "5" }, "prioriry-6" : { "nodetype" : "namednumber", "number" : "6" }, "prioriry-7" : { "nodetype" : "namednumber", "number" : "7" }, }, }, "access" : "readwrite", "description" : """Priority value for service provider tag. 0 is the lowest priority level and 7 is the highest.""", }, # column "dot1xSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.8", }, # node "portAuthState" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.8.3", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """802.1x port authentication enabled/disabled for the switch.""", }, # scalar "portAuthTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.8.4", "status" : "current", "description" : """""", }, # table "portAuthEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.8.4.1", "status" : "current", "linkage" : [ "dot1dBasePort", ], "description" : """An entry in portAuthTable.""", }, # row "portAuthEntryState" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.8.4.1.1", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """802.1x port authentication enabled or disabled on the port.""", }, # column "portReAuthEntryState" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.8.4.1.2", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """802.1x port re-authentication enabled or disabled on the port.""", }, # column "portReAuthEntryTimer" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.8.4.1.3", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """Re-authentication timer in seconds.""", }, # column "hwMonitorInfo" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.9", }, # node "fanRpmTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.9.1", "status" : "current", "description" : """""", }, # table "fanRpmEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.9.1.1", "status" : "current", "linkage" : [ "fanRpmIndex", ], "description" : """An entry in fanRpmTable.""", }, # row "fanRpmIndex" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.9.1.1.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """Index of FAN.""", }, # column "fanRpmCurValue" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.9.1.1.2", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """Current speed in Revolutions Per Minute (RPM) on the fan.""", }, # column "fanRpmMaxValue" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.9.1.1.3", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """Maximum speed measured in Revolutions Per Minute (RPM) on the fan.""", }, # column "fanRpmMinValue" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.9.1.1.4", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """Minimum speed measured in Revolutions Per Minute (RPM) on the fan.""", }, # column "fanRpmLowThresh" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.9.1.1.5", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """The minimum speed at which a normal fan should work.""", }, # column "fanRpmDescr" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.9.1.1.6", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readonly", "description" : """'Normal' indicates that this fan is functioning above the minimum speed. 'Error' indicates that this fan is functioning below the minimum speed.""", }, # column "tempTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.9.2", "status" : "current", "description" : """""", }, # table "tempEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.9.2.1", "status" : "current", "linkage" : [ "tempIndex", ], "description" : """An entry in tempTable.""", }, # row "tempIndex" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.9.2.1.1", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "mac" : { "nodetype" : "namednumber", "number" : "1" }, "cpu" : { "nodetype" : "namednumber", "number" : "2" }, "phy" : { "nodetype" : "namednumber", "number" : "3" }, }, }, "access" : "readonly", "description" : """Index of temperature unit. 1:MAC, 2:CPU, 3:PHY""", }, # column "tempCurValue" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.9.2.1.2", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """The current temperature measured at this sensor.""", }, # column "tempMaxValue" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.9.2.1.3", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """The maximum temperature measured at this sensor.""", }, # column "tempMinValue" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.9.2.1.4", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """The minimum temperature measured at this sensor.""", }, # column "tempHighThresh" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.9.2.1.5", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """The upper temperature limit at this sensor.""", }, # column "tempDescr" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.9.2.1.6", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readonly", "description" : """'Normal' indicates temperatures below the threshold and 'Error' for those above.""", }, # column "voltageTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.9.3", "status" : "current", "description" : """""", }, # table "voltageEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.9.3.1", "status" : "current", "linkage" : [ "voltageIndex", ], "description" : """An entry in voltageTable.""", }, # row "voltageIndex" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.9.3.1.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """Index of voltage.""", }, # column "voltageCurValue" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.9.3.1.2", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """The current voltage reading.""", }, # column "voltageMaxValue" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.9.3.1.3", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """The maximum voltage measured at this point.""", }, # column "voltageMinValue" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.9.3.1.4", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """The minimum voltage measured at this point.""", }, # column "voltageNominalValue" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.9.3.1.5", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """The normal voltage at wchich the switch work.""", }, # column "voltageLowThresh" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.9.3.1.6", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """The minimum voltage at which the switch should work.""", }, # column "voltageDescr" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.9.3.1.7", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readonly", "description" : """'Normal' indicates that the voltage is within an acceptable operating range at this point; otherwise 'Error' is displayed.""", }, # column "snmpSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.10", }, # node "snmpGetCommunity" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.10.1", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readwrite", "description" : """""", }, # scalar "snmpSetCommunity" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.10.2", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readwrite", "description" : """""", }, # scalar "snmpTrapCommunity" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.10.3", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readwrite", "description" : """""", }, # scalar "snmpTrapDestTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.10.4", "status" : "current", "description" : """""", }, # table "snmpTrapDestEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.10.4.1", "create" : "true", "status" : "current", "linkage" : [ "snmpTrapDestIP", ], "description" : """An entry in snmpTrapDestTable.""", }, # row "snmpTrapDestIP" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.10.4.1.1", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "noaccess", "description" : """IP address of trap destination.""", }, # column "snmpTrapDestRowStatus" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.10.4.1.2", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-TC", "name" : "RowStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "snmpTrapDestPort" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.10.4.1.3", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """The UDP port of the trap destination.""", }, # column "snmpTrapVersion" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.10.4.1.4", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "v1" : { "nodetype" : "namednumber", "number" : "0" }, "v2c" : { "nodetype" : "namednumber", "number" : "1" }, "v3" : { "nodetype" : "namednumber", "number" : "2" }, }, }, "access" : "readwrite", "description" : """The SNMP protocol version to send traps.""", }, # column "snmpTrapUserName" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.10.4.1.5", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readwrite", "description" : """The user name for sending SNMPv3 traps.""", }, # column "snmpVersion" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.10.5", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "v2c" : { "nodetype" : "namednumber", "number" : "0" }, "v3" : { "nodetype" : "namednumber", "number" : "1" }, "v3v2c" : { "nodetype" : "namednumber", "number" : "2" }, }, }, "access" : "readwrite", "description" : """The SNMP version to be used. v3v2c means that the manager can get/set by SNMPv3 and can get by SNMPv2c.""", }, # scalar "snmpUserTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.10.6", "status" : "current", "description" : """A table that contains SNMPv3 user information.""", }, # table "snmpUserEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.10.6.1", "status" : "current", "linkage" : [ "snmpUserName", ], "description" : """An entry of snmpUserTable.""", }, # row "snmpUserName" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.10.6.1.1", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readonly", "description" : """The user name.""", }, # column "snmpUserSecurityLevel" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.10.6.1.2", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "noAuthNoPriv" : { "nodetype" : "namednumber", "number" : "0" }, "authNoPriv" : { "nodetype" : "namednumber", "number" : "1" }, "authPriv" : { "nodetype" : "namednumber", "number" : "2" }, }, }, "access" : "readwrite", "description" : """The level of security at which SNMP messages can be sent or with which operations are being processed.""", }, # column "snmpUserAuthProtocol" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.10.6.1.3", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "md5" : { "nodetype" : "namednumber", "number" : "0" }, "sha" : { "nodetype" : "namednumber", "number" : "1" }, }, }, "access" : "readwrite", "description" : """The type of authentication protocol to be used.""", }, # column "snmpUserPrivProtocol" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.10.6.1.4", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "des" : { "nodetype" : "namednumber", "number" : "0" }, "aes" : { "nodetype" : "namednumber", "number" : "1" }, }, }, "access" : "readwrite", "description" : """The type of privacy protocol to be used.""", }, # column "snmpTrapGroupTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.10.7", "status" : "current", "description" : """""", }, # table "snmpTrapGroupEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.10.7.1", "status" : "current", "linkage" : [ "snmpTrapDestIP", ], "description" : """An entry in snmpTrapGroupTable.""", }, # row "snmpTrapSystemGroup" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.10.7.1.1", "status" : "current", "syntax" : { "type" : { "basetype" : "Bits", "coldStart" : { "nodetype" : "namednumber", "number" : "0" }, "warmStart" : { "nodetype" : "namednumber", "number" : "1" }, "fanSpeed" : { "nodetype" : "namednumber", "number" : "2" }, "temperature" : { "nodetype" : "namednumber", "number" : "3" }, "voltage" : { "nodetype" : "namednumber", "number" : "4" }, "reset" : { "nodetype" : "namednumber", "number" : "5" }, "timeSync" : { "nodetype" : "namednumber", "number" : "6" }, "intrusionlock" : { "nodetype" : "namednumber", "number" : "7" }, }, }, "access" : "readwrite", "description" : """""", }, # column "snmpTrapInterfaceGroup" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.10.7.1.2", "status" : "current", "syntax" : { "type" : { "basetype" : "Bits", "linkup" : { "nodetype" : "namednumber", "number" : "0" }, "linkdown" : { "nodetype" : "namednumber", "number" : "1" }, "autonegotiation" : { "nodetype" : "namednumber", "number" : "2" }, }, }, "access" : "readwrite", "description" : """""", }, # column "snmpTrapAAAGroup" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.10.7.1.3", "status" : "current", "syntax" : { "type" : { "basetype" : "Bits", "authentication" : { "nodetype" : "namednumber", "number" : "0" }, "accounting" : { "nodetype" : "namednumber", "number" : "1" }, }, }, "access" : "readwrite", "description" : """""", }, # column "snmpTrapIPGroup" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.10.7.1.4", "status" : "current", "syntax" : { "type" : { "basetype" : "Bits", "ping" : { "nodetype" : "namednumber", "number" : "0" }, "traceroute" : { "nodetype" : "namednumber", "number" : "1" }, }, }, "access" : "readwrite", "description" : """""", }, # column "snmpTrapSwitchGroup" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.10.7.1.5", "status" : "current", "syntax" : { "type" : { "basetype" : "Bits", "stp" : { "nodetype" : "namednumber", "number" : "0" }, "mactable" : { "nodetype" : "namednumber", "number" : "1" }, "rmon" : { "nodetype" : "namednumber", "number" : "2" }, }, }, "access" : "readwrite", "description" : """""", }, # column "dateTimeSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.11", }, # node "dateTimeServerType" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.11.1", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "none" : { "nodetype" : "namednumber", "number" : "1" }, "daytime" : { "nodetype" : "namednumber", "number" : "2" }, "time" : { "nodetype" : "namednumber", "number" : "3" }, "ntp" : { "nodetype" : "namednumber", "number" : "4" }, }, }, "access" : "readwrite", "description" : """The time service protocol.""", }, # scalar "dateTimeServerIP" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.11.2", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readwrite", "description" : """IP address of time server.""", }, # scalar "dateTimeZone" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.11.3", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """The time difference between UTC. Ex: +01""", }, # scalar "dateTimeNewDateYear" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.11.4", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """The new date in year.""", }, # scalar "dateTimeNewDateMonth" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.11.5", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """The new date in month.""", }, # scalar "dateTimeNewDateDay" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.11.6", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """The new date in day.""", }, # scalar "dateTimeNewTimeHour" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.11.7", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """The new time in hour.""", }, # scalar "dateTimeNewTimeMinute" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.11.8", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """The new time in minute.""", }, # scalar "dateTimeNewTimeSecond" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.11.9", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """The new time in second.""", }, # scalar "dateTimeDaylightSavingTimeSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.11.10", }, # node "daylightSavingTimeState" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.11.10.1", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """Daylight saving time service enabled/disabled for the switch.""", }, # scalar "daylightSavingTimeStartDateWeek" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.11.10.2", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "first" : { "nodetype" : "namednumber", "number" : "1" }, "second" : { "nodetype" : "namednumber", "number" : "2" }, "third" : { "nodetype" : "namednumber", "number" : "3" }, "fourth" : { "nodetype" : "namednumber", "number" : "4" }, "last" : { "nodetype" : "namednumber", "number" : "5" }, }, }, "access" : "readwrite", "description" : """Daylight saving time service start week.""", }, # scalar "daylightSavingTimeStartDateDay" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.11.10.3", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "sunday" : { "nodetype" : "namednumber", "number" : "0" }, "monday" : { "nodetype" : "namednumber", "number" : "1" }, "tuesday" : { "nodetype" : "namednumber", "number" : "2" }, "wednesday" : { "nodetype" : "namednumber", "number" : "3" }, "thursday" : { "nodetype" : "namednumber", "number" : "4" }, "friday" : { "nodetype" : "namednumber", "number" : "5" }, "saturday" : { "nodetype" : "namednumber", "number" : "6" }, }, }, "access" : "readwrite", "description" : """Daylight saving time service start day.""", }, # scalar "daylightSavingTimeStartDateMonth" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.11.10.4", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "january" : { "nodetype" : "namednumber", "number" : "1" }, "february" : { "nodetype" : "namednumber", "number" : "2" }, "march" : { "nodetype" : "namednumber", "number" : "3" }, "april" : { "nodetype" : "namednumber", "number" : "4" }, "may" : { "nodetype" : "namednumber", "number" : "5" }, "june" : { "nodetype" : "namednumber", "number" : "6" }, "july" : { "nodetype" : "namednumber", "number" : "7" }, "august" : { "nodetype" : "namednumber", "number" : "8" }, "september" : { "nodetype" : "namednumber", "number" : "9" }, "october" : { "nodetype" : "namednumber", "number" : "10" }, "november" : { "nodetype" : "namednumber", "number" : "11" }, "december" : { "nodetype" : "namednumber", "number" : "12" }, }, }, "access" : "readwrite", "description" : """Daylight saving time service start month.""", }, # scalar "daylightSavingTimeStartDateHour" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.11.10.5", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """Daylight saving time service start time.""", }, # scalar "daylightSavingTimeEndDateWeek" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.11.10.6", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "first" : { "nodetype" : "namednumber", "number" : "1" }, "second" : { "nodetype" : "namednumber", "number" : "2" }, "third" : { "nodetype" : "namednumber", "number" : "3" }, "fourth" : { "nodetype" : "namednumber", "number" : "4" }, "last" : { "nodetype" : "namednumber", "number" : "5" }, }, }, "access" : "readwrite", "description" : """Daylight saving time service end week.""", }, # scalar "daylightSavingTimeEndDateDay" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.11.10.7", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "sunday" : { "nodetype" : "namednumber", "number" : "0" }, "monday" : { "nodetype" : "namednumber", "number" : "1" }, "tuesday" : { "nodetype" : "namednumber", "number" : "2" }, "wednesday" : { "nodetype" : "namednumber", "number" : "3" }, "thursday" : { "nodetype" : "namednumber", "number" : "4" }, "friday" : { "nodetype" : "namednumber", "number" : "5" }, "saturday" : { "nodetype" : "namednumber", "number" : "6" }, }, }, "access" : "readwrite", "description" : """Daylight saving time service end day.""", }, # scalar "daylightSavingTimeEndDateMonth" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.11.10.8", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "january" : { "nodetype" : "namednumber", "number" : "1" }, "february" : { "nodetype" : "namednumber", "number" : "2" }, "march" : { "nodetype" : "namednumber", "number" : "3" }, "april" : { "nodetype" : "namednumber", "number" : "4" }, "may" : { "nodetype" : "namednumber", "number" : "5" }, "june" : { "nodetype" : "namednumber", "number" : "6" }, "july" : { "nodetype" : "namednumber", "number" : "7" }, "august" : { "nodetype" : "namednumber", "number" : "8" }, "september" : { "nodetype" : "namednumber", "number" : "9" }, "october" : { "nodetype" : "namednumber", "number" : "10" }, "november" : { "nodetype" : "namednumber", "number" : "11" }, "december" : { "nodetype" : "namednumber", "number" : "12" }, }, }, "access" : "readwrite", "description" : """Daylight saving time service end month.""", }, # scalar "daylightSavingTimeEndDateHour" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.11.10.9", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """Daylight saving time service end time.""", }, # scalar "sysMgmt" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.12", }, # node "sysMgmtConfigSave" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.12.1", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "config_1" : { "nodetype" : "namednumber", "number" : "1" }, "config_2" : { "nodetype" : "namednumber", "number" : "2" }, }, }, "access" : "readwrite", "description" : """If setting value is given, the variable write index will be set and running-config will be written to the assigned configuration file. If not, running-config will be written to the booting one.""", }, # scalar "sysMgmtBootupConfig" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.12.2", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "config_1" : { "nodetype" : "namednumber", "number" : "1" }, "config_2" : { "nodetype" : "namednumber", "number" : "2" }, }, }, "access" : "readwrite", "description" : """The setting value (read index) will be written into non-volatile memory. While rebooting, the variable write index is equal to read index initially. You can change the value of write index by CLI / MIB.""", }, # scalar "sysMgmtReboot" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.12.3", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "nothing" : { "nodetype" : "namednumber", "number" : "0" }, "reboot" : { "nodetype" : "namednumber", "number" : "1" }, }, }, "access" : "readwrite", "description" : """Reboot switch from SNMP. 1:Reboot, 0:Nothing""", }, # scalar "sysMgmtDefaultConfig" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.12.4", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "nothing" : { "nodetype" : "namednumber", "number" : "0" }, "reset_to_default" : { "nodetype" : "namednumber", "number" : "1" }, }, }, "access" : "readwrite", "description" : """Erase running config and reset to default.""", }, # scalar "sysMgmtLastActionStatus" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.12.5", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "none" : { "nodetype" : "namednumber", "number" : "0" }, "success" : { "nodetype" : "namednumber", "number" : "1" }, "fail" : { "nodetype" : "namednumber", "number" : "2" }, }, }, "access" : "readonly", "description" : """Display status of last mgmt action.""", }, # scalar "sysMgmtSystemStatus" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.12.6", "status" : "current", "syntax" : { "type" : { "basetype" : "Bits", "sysAlarmDetected" : { "nodetype" : "namednumber", "number" : "0" }, "sysTemperatureError" : { "nodetype" : "namednumber", "number" : "1" }, "sysFanRPMError" : { "nodetype" : "namednumber", "number" : "2" }, "sysVoltageRangeError" : { "nodetype" : "namednumber", "number" : "3" }, }, }, "access" : "readonly", "description" : """This variable indicates the status of the system. The sysMgmtAlarmStatus is a bit map represented a sum, therefore, it can represent multiple defects simultaneously. The sysNoDefect should be set if and only if no other flag is set. The various bit positions are: 0 sysAlarmDetected 1 sysTemperatureError 2 sysFanRPMError 3 sysVoltageRangeError""", }, # scalar "sysMgmtCPUUsage" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.12.7", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """Show device CPU load in %, it's the snapshot of CPU load when getting the values.""", }, # scalar "sysMgmtCounterReset" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.12.9", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "enable" : { "nodetype" : "namednumber", "number" : "1" }, "disable" : { "nodetype" : "namednumber", "number" : "2" }, }, }, "access" : "readwrite", "description" : """Reset all port counters.""", }, # scalar "sysMgmtTftpServiceSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.12.10", }, # node "sysMgmtTftpServerIp" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.12.10.1", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readwrite", "description" : """ IP address of TFTP server""", }, # scalar "sysMgmtTftpRemoteFileName" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.12.10.2", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readwrite", "description" : """The file name that you want to backup to or restore from TFTP server""", }, # scalar "layer2Setup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.13", }, # node "vlanTypeSetup" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.13.1", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "dot1Q" : { "nodetype" : "namednumber", "number" : "1" }, "port_based" : { "nodetype" : "namednumber", "number" : "2" }, }, }, "access" : "readwrite", "description" : """""", }, # scalar "igmpSnoopingStateSetup" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.13.2", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # scalar "tagVlanPortIsolationState" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.13.3", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # scalar "stpState" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.13.4", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # scalar "igmpFilteringStateSetup" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.13.5", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # scalar "unknownMulticastFrameForwarding" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.13.6", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "flooding" : { "nodetype" : "namednumber", "number" : "1" }, "drop" : { "nodetype" : "namednumber", "number" : "2" }, }, }, "access" : "readwrite", "description" : """""", }, # scalar "multicastGrpHostTimeout" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.13.7", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """Specify host timeout for all multicast groups when the specific port is in auto mode.""", }, # scalar "multicastGrpLeaveTimeout" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.13.8", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """Specify leave timeout for all multicast groups.""", }, # scalar "reservedMulticastFrameForwarding" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.13.9", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "flooding" : { "nodetype" : "namednumber", "number" : "1" }, "drop" : { "nodetype" : "namednumber", "number" : "2" }, }, }, "access" : "readwrite", "description" : """""", }, # scalar "igmpsnp8021pPriority" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.13.10", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """Set the 802.1p priority of control messages for igmp-snooping(0~8, 8-No Change)""", }, # scalar "igmpsnpVlanMode" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.13.11", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "auto" : { "nodetype" : "namednumber", "number" : "1" }, "fixed" : { "nodetype" : "namednumber", "number" : "2" }, }, }, "access" : "readwrite", "description" : """""", }, # scalar "stpMode" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.13.12", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "rstp" : { "nodetype" : "namednumber", "number" : "1" }, "mrstp" : { "nodetype" : "namednumber", "number" : "2" }, "mstp" : { "nodetype" : "namednumber", "number" : "3" }, }, }, "access" : "readwrite", "description" : """""", }, # scalar "igmpsnpVlanTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.13.13", "status" : "current", "description" : """""", }, # table "igmpsnpVlanEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.13.13.1", "create" : "true", "status" : "current", "linkage" : [ "igmpsnpVid", ], "description" : """An entry in IgmpsnpVlanTable.""", }, # row "igmpsnpVid" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.13.13.1.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "igmpsnpVlanName" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.13.13.1.2", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readwrite", "description" : """""", }, # column "igmpsnpVlanRowStatus" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.13.13.1.3", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-TC", "name" : "RowStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "ipSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.14", }, # node "dnsIpAddress" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.14.1", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readwrite", "description" : """""", }, # scalar "defaultMgmt" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.14.2", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "in_band" : { "nodetype" : "namednumber", "number" : "0" }, "out_of_band" : { "nodetype" : "namednumber", "number" : "1" }, }, }, "access" : "readwrite", "description" : """""", }, # scalar "defaultGateway" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.14.3", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readwrite", "description" : """""", }, # scalar "outOfBandIpSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.14.4", }, # node "outOfBandIp" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.14.4.1", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readwrite", "description" : """""", }, # scalar "outOfBandSubnetMask" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.14.4.2", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readwrite", "description" : """""", }, # scalar "outOfBandGateway" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.14.4.3", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readwrite", "description" : """""", }, # scalar "maxNumOfInbandIp" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.14.5", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # scalar "inbandIpTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.14.6", "status" : "current", "description" : """""", }, # table "inbandIpEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.14.6.1", "create" : "true", "status" : "current", "linkage" : [ "inbandEntryIp", "inbandEntrySubnetMask", ], "description" : """An entry in inbandIpTable.""", }, # row "inbandEntryIp" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.14.6.1.1", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readwrite", "description" : """""", }, # column "inbandEntrySubnetMask" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.14.6.1.2", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readwrite", "description" : """""", }, # column "inbandEntryVid" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.14.6.1.3", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """""", }, # column "inbandEntryRowStatus" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.14.6.1.4", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-TC", "name" : "RowStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "filterSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.15", }, # node "filterTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.15.1", "status" : "current", "description" : """""", }, # table "filterEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.15.1.1", "create" : "true", "status" : "current", "linkage" : [ "filterMacAddr", "filterVid", ], "description" : """An entry in filterTable.""", }, # row "filterName" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.15.1.1.1", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readwrite", "description" : """""", }, # column "filterActionState" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.15.1.1.2", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "discard_source" : { "nodetype" : "namednumber", "number" : "1" }, "discard_destination" : { "nodetype" : "namednumber", "number" : "2" }, "both" : { "nodetype" : "namednumber", "number" : "3" }, }, }, "access" : "readwrite", "description" : """""", }, # column "filterMacAddr" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.15.1.1.3", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-TC", "name" : "MacAddress"}, }, "access" : "readonly", "description" : """""", }, # column "filterVid" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.15.1.1.4", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "filterRowStatus" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.15.1.1.5", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-TC", "name" : "RowStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "mirrorSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.16", }, # node "mirrorState" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.16.1", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # scalar "mirrorMonitorPort" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.16.2", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """""", }, # scalar "mirrorTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.16.3", "status" : "current", "description" : """""", }, # table "mirrorEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.16.3.1", "status" : "current", "linkage" : [ "dot1dBasePort", ], "description" : """An entry in mirrorTable.""", }, # row "mirrorMirroredState" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.16.3.1.1", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "mirrorDirection" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.16.3.1.2", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "ingress" : { "nodetype" : "namednumber", "number" : "0" }, "egress" : { "nodetype" : "namednumber", "number" : "1" }, "both" : { "nodetype" : "namednumber", "number" : "2" }, }, }, "access" : "readwrite", "description" : """""", }, # column "aggrSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.17", }, # node "aggrState" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.17.1", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # scalar "aggrSystemPriority" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.17.2", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """""", }, # scalar "aggrGroupTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.17.3", "status" : "current", "description" : """""", }, # table "aggrGroupEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.17.3.1", "status" : "current", "linkage" : [ "aggrGroupIndex", ], "description" : """An entry in aggrGroupTable.""", }, # row "aggrGroupIndex" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.17.3.1.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "aggrGroupState" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.17.3.1.2", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "aggrGroupDynamicState" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.17.3.1.3", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "aggrPortTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.17.4", "status" : "current", "description" : """""", }, # table "aggrPortEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.17.4.1", "status" : "current", "linkage" : [ "dot1dBasePort", ], "description" : """An entry in aggrPortTable.""", }, # row "aggrPortGroup" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.17.4.1.1", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "none" : { "nodetype" : "namednumber", "number" : "0" }, "t1" : { "nodetype" : "namednumber", "number" : "1" }, "t2" : { "nodetype" : "namednumber", "number" : "2" }, "t3" : { "nodetype" : "namednumber", "number" : "3" }, "t4" : { "nodetype" : "namednumber", "number" : "4" }, "t5" : { "nodetype" : "namednumber", "number" : "5" }, "t6" : { "nodetype" : "namednumber", "number" : "6" }, }, }, "access" : "readwrite", "description" : """""", }, # column "aggrPortDynamicStateTimeout" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.17.4.1.2", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """""", }, # column "accessCtlSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.18", }, # node "accessCtlTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.18.1", "status" : "current", "description" : """""", }, # table "accessCtlEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.18.1.1", "status" : "current", "linkage" : [ "accessCtlService", ], "description" : """An entry in accessCtlTable.""", }, # row "accessCtlService" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.18.1.1.1", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "telnet" : { "nodetype" : "namednumber", "number" : "1" }, "ssh" : { "nodetype" : "namednumber", "number" : "2" }, "ftp" : { "nodetype" : "namednumber", "number" : "3" }, "http" : { "nodetype" : "namednumber", "number" : "4" }, "https" : { "nodetype" : "namednumber", "number" : "5" }, "icmp" : { "nodetype" : "namednumber", "number" : "6" }, "snmp" : { "nodetype" : "namednumber", "number" : "7" }, }, }, "access" : "readonly", "description" : """""", }, # column "accessCtlEnable" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.18.1.1.2", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "accessCtlServicePort" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.18.1.1.3", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """""", }, # column "accessCtlTimeout" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.18.1.1.4", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """""", }, # column "securedClientTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.18.2", "status" : "current", "description" : """""", }, # table "securedClientEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.18.2.1", "status" : "current", "linkage" : [ "securedClientIndex", ], "description" : """An entry in securedClientTable.""", }, # row "securedClientIndex" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.18.2.1.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "securedClientEnable" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.18.2.1.2", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "securedClientStartIp" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.18.2.1.3", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readwrite", "description" : """""", }, # column "securedClientEndIp" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.18.2.1.4", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readwrite", "description" : """""", }, # column "securedClientService" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.18.2.1.5", "status" : "current", "syntax" : { "type" : { "basetype" : "Bits", "telnet" : { "nodetype" : "namednumber", "number" : "0" }, "ftp" : { "nodetype" : "namednumber", "number" : "1" }, "http" : { "nodetype" : "namednumber", "number" : "2" }, "icmp" : { "nodetype" : "namednumber", "number" : "3" }, "snmp" : { "nodetype" : "namednumber", "number" : "4" }, "ssh" : { "nodetype" : "namednumber", "number" : "5" }, "https" : { "nodetype" : "namednumber", "number" : "6" }, }, }, "access" : "readwrite", "description" : """""", }, # column "queuingMethodSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.19", }, # node "portQueuingMethodTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.19.1", "status" : "current", "description" : """""", }, # table "portQueuingMethodEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.19.1.1", "status" : "current", "linkage" : [ "dot1dBasePort", "portQueuingMethodQueue", ], "description" : """An entry in portQueuingMethodTable.""", }, # row "portQueuingMethodQueue" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.19.1.1.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """0...7""", }, # column "portQueuingMethodWeight" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.19.1.1.2", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """0...15""", }, # column "dhcpSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.20", }, # node "globalDhcpRelay" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.20.1", }, # node "globalDhcpRelayEnable" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.20.1.1", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # scalar "globalDhcpRelayOption82Enable" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.20.1.2", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # scalar "globalDhcpRelayInfoEnable" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.20.1.3", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # scalar "globalDhcpRelayInfoData" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.20.1.4", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readonly", "description" : """""", }, # scalar "maxNumberOfGlobalDhcpRelayRemoteServer" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.20.1.5", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # scalar "globalDhcpRelayRemoteServerTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.20.1.6", "status" : "current", "description" : """""", }, # table "globalDhcpRelayRemoteServerEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.20.1.6.1", "create" : "true", "status" : "current", "linkage" : [ "globalDhcpRelayRemoteServerIp", ], "description" : """An entry in globalDhcpRelayRemoteServerTable.""", }, # row "globalDhcpRelayRemoteServerIp" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.20.1.6.1.1", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readonly", "description" : """""", }, # column "globalDhcpRelayRemoteServerRowStatus" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.20.1.6.1.2", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-TC", "name" : "RowStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "dhcpServer" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.20.2", }, # node "maxNumberOfDhcpServers" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.20.2.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """The maximum number of DHCP server entries that can be created. A value of 0 for this object implies that there exists settings for global DHCP relay.""", }, # scalar "dhcpServerTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.20.2.2", "status" : "current", "description" : """""", }, # table "dhcpServerEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.20.2.2.1", "create" : "true", "status" : "current", "linkage" : [ "dhcpServerVid", ], "description" : """An entry in dhcpServerTable.""", }, # row "dhcpServerVid" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.20.2.2.1.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "dhcpServerStartAddr" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.20.2.2.1.2", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readwrite", "description" : """""", }, # column "dhcpServerPoolSize" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.20.2.2.1.3", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """""", }, # column "dhcpServerMask" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.20.2.2.1.4", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readwrite", "description" : """""", }, # column "dhcpServerGateway" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.20.2.2.1.5", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readwrite", "description" : """""", }, # column "dhcpServerPrimaryDNS" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.20.2.2.1.6", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readwrite", "description" : """""", }, # column "dhcpServerSecondaryDNS" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.20.2.2.1.7", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readwrite", "description" : """""", }, # column "dhcpServerRowStatus" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.20.2.2.1.8", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-TC", "name" : "RowStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "dhcpRelay" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.20.3", }, # node "dhcpRelayInfoData" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.20.3.1", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readonly", "description" : """""", }, # scalar "maxNumberOfDhcpRelay" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.20.3.2", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """The maximum number of DHCP relay entries that can be created. A value of 0 for this object implies that there exists settings for global DHCP relay.""", }, # scalar "maxNumberOfDhcpRelayRemoteServer" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.20.3.3", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # scalar "dhcpRelayRemoteServerTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.20.3.4", "status" : "current", "description" : """""", }, # table "dhcpRelayRemoteServerEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.20.3.4.1", "create" : "true", "status" : "current", "linkage" : [ "dhcpRelayVid", "dhcpRelayRemoteServerIp", ], "description" : """An entry in dhcpRelayRemoteServerTable.""", }, # row "dhcpRelayVid" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.20.3.4.1.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "dhcpRelayRemoteServerIp" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.20.3.4.1.2", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readonly", "description" : """""", }, # column "dhcpRelayRemoteServerRowStatus" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.20.3.4.1.3", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-TC", "name" : "RowStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "dhcpRelayTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.20.3.5", "status" : "current", "description" : """""", }, # table "dhcpRelayEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.20.3.5.1", "status" : "current", "linkage" : [ "dhcpRelayVid", ], "description" : """An entry in dhcpRelayTable.""", }, # row "dhcpRelayOption82Enable" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.20.3.5.1.1", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "dhcpRelayInfoEnable" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.20.3.5.1.2", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "staticRouteSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.21", }, # node "maxNumberOfStaticRoutes" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.21.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # scalar "staticRouteTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.21.2", "status" : "current", "description" : """""", }, # table "staticRouteEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.21.2.1", "create" : "true", "status" : "current", "linkage" : [ "staticRouteIp", "staticRouteMask", ], "description" : """An entry in staticRouteTable.""", }, # row "staticRouteName" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.21.2.1.1", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readwrite", "description" : """""", }, # column "staticRouteIp" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.21.2.1.2", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readonly", "description" : """""", }, # column "staticRouteMask" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.21.2.1.3", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readonly", "description" : """""", }, # column "staticRouteGateway" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.21.2.1.4", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readwrite", "description" : """""", }, # column "staticRouteMetric" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.21.2.1.5", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """""", }, # column "staticRouteRowStatus" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.21.2.1.6", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-TC", "name" : "RowStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "arpInfo" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.22", }, # node "arpTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.22.1", "status" : "current", "description" : """""", }, # table "arpEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.22.1.1", "status" : "current", "linkage" : [ "arpIpAddr", "arpMacVid", ], "description" : """An entry in arpTable.""", }, # row "arpIndex" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.22.1.1.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "arpIpAddr" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.22.1.1.2", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readonly", "description" : """""", }, # column "arpMacAddr" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.22.1.1.3", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-TC", "name" : "MacAddress"}, }, "access" : "readonly", "description" : """""", }, # column "arpMacVid" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.22.1.1.4", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "arpType" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.22.1.1.5", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "static" : { "nodetype" : "namednumber", "number" : "1" }, "dynamic" : { "nodetype" : "namednumber", "number" : "2" }, }, }, "access" : "readonly", "description" : """1-static, 2-dynamic""", }, # column "portOpModeSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.23", }, # node "portOpModePortTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.23.1", "status" : "current", "description" : """""", }, # table "portOpModePortEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.23.1.1", "status" : "current", "linkage" : [ "dot1dBasePort", ], "description" : """An entry in portOpModePortTable.""", }, # row "portOpModePortFlowCntl" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.23.1.1.2", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "off" : { "nodetype" : "namednumber", "number" : "0" }, "on" : { "nodetype" : "namednumber", "number" : "1" }, }, }, "access" : "readwrite", "description" : """""", }, # column "portOpModePortName" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.23.1.1.3", "status" : "current", "syntax" : { "type" : { "basetype" : "OctetString", "ranges" : [ { "min" : "0", "max" : "32" }, ], "range" : { "min" : "0", "max" : "32" }, }, }, "access" : "readwrite", "description" : """""", }, # column "portOpModePortLinkUpType" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.23.1.1.5", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "down" : { "nodetype" : "namednumber", "number" : "0" }, "copper" : { "nodetype" : "namednumber", "number" : "1" }, "fiber" : { "nodetype" : "namednumber", "number" : "2" }, }, }, "access" : "readonly", "description" : """""", }, # column "portOpModePortIntrusionLock" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.23.1.1.6", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "portOpModePortLBTestStatus" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.23.1.1.7", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "none" : { "nodetype" : "namednumber", "number" : "0" }, "underTesting" : { "nodetype" : "namednumber", "number" : "1" }, "success" : { "nodetype" : "namednumber", "number" : "2" }, "fail" : { "nodetype" : "namednumber", "number" : "3" }, }, }, "access" : "readonly", "description" : """This entry display latest loopback test status of port while performing loopback test.""", }, # column "portOpModePortCounterReset" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.23.1.1.8", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "enable" : { "nodetype" : "namednumber", "number" : "1" }, "disable" : { "nodetype" : "namednumber", "number" : "2" }, }, }, "access" : "readwrite", "description" : """This entry resets port counter.""", }, # column "portBasedVlanSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.24", }, # node "portBasedVlanPortListTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.24.1", "status" : "current", "description" : """""", }, # table "portBasedVlanPortListEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.24.1.1", "status" : "current", "linkage" : [ "dot1dBasePort", ], "description" : """An entry in portBasedVlanPortListTable.""", }, # row "portBasedVlanPortListMembers" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.24.1.1.1", "status" : "current", "syntax" : { "type" : { "module" :"Q-BRIDGE-MIB", "name" : "PortList"}, }, "access" : "readwrite", "description" : """""", }, # column "multicastPortSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.25", }, # node "multicastPortTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.25.1", "status" : "current", "description" : """""", }, # table "multicastPortEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.25.1.1", "status" : "current", "linkage" : [ "dot1dBasePort", ], "description" : """An entry in multicastPortTable.""", }, # row "multicastPortImmediateLeave" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.25.1.1.1", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "multicastPortMaxGroupLimited" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.25.1.1.2", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "multicastPortMaxOfGroup" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.25.1.1.3", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """0..255""", }, # column "multicastPortIgmpFilteringProfile" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.25.1.1.4", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readwrite", "description" : """""", }, # column "multicastPortQuerierMode" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.25.1.1.5", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "auto" : { "nodetype" : "namednumber", "number" : "1" }, "fixed" : { "nodetype" : "namednumber", "number" : "2" }, "edge" : { "nodetype" : "namednumber", "number" : "3" }, }, }, "access" : "readwrite", "description" : """Specify query mode for each port""", }, # column "multicastStatus" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.26", }, # node "multicastStatusTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.26.1", "status" : "current", "description" : """""", }, # table "multicastStatusEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.26.1.1", "status" : "current", "linkage" : [ "multicastStatusVlanID", "multicastStatusPort", "multicastStatusGroup", ], "description" : """An entry in multicastStatusTable.""", }, # row "multicastStatusIndex" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.26.1.1.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "multicastStatusVlanID" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.26.1.1.2", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "multicastStatusPort" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.26.1.1.3", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "multicastStatusGroup" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.26.1.1.4", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readonly", "description" : """""", }, # column "igmpCountTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.26.2", "status" : "current", "description" : """A count table of igmp query/report/leave message.""", }, # table "igmpCountEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.26.2.1", "status" : "current", "linkage" : [ "igmpCountIndex", ], "description" : """An entry in igmpCountTable.""", }, # row "igmpCountIndex" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.26.2.1.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """Index of IgmpCountEntry. 0 means total count in whole system""", }, # column "igmpCountInQuery" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.26.2.1.2", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "igmpCountInReport" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.26.2.1.3", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "igmpCountInLeave" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.26.2.1.4", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "igmpCountInQueryDrop" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.26.2.1.5", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "igmpCountInReportDrop" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.26.2.1.6", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "igmpCountInLeaveDrop" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.26.2.1.7", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "igmpCountOutQuery" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.26.2.1.8", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "igmpCountOutReport" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.26.2.1.9", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "igmpCountOutLeave" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.26.2.1.10", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "multicastVlanStatusTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.26.3", "status" : "current", "description" : """""", }, # table "multicastVlanStatusEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.26.3.1", "status" : "current", "linkage" : [ "multicastVlanStatusVlanID", ], "description" : """An entry in multicastVlanStatusTable.""", }, # row "multicastVlanStatusVlanID" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.26.3.1.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "multicastVlanStatusType" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.26.3.1.2", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "dynamic" : { "nodetype" : "namednumber", "number" : "1" }, "mvr" : { "nodetype" : "namednumber", "number" : "2" }, "static" : { "nodetype" : "namednumber", "number" : "3" }, }, }, "access" : "readonly", "description" : """""", }, # column "multicastVlanQueryPort" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.26.3.1.3", "status" : "current", "syntax" : { "type" : { "module" :"Q-BRIDGE-MIB", "name" : "PortList"}, }, "access" : "readonly", "description" : """""", }, # column "igmpFilteringProfileSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.27", }, # node "igmpFilteringMaxNumberOfProfile" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.27.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # scalar "igmpFilteringProfileTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.27.2", "status" : "current", "description" : """""", }, # table "igmpFilteringProfileEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.27.2.1", "create" : "true", "status" : "current", "linkage" : [ "igmpFilteringProfileName", "igmpFilteringProfileStartAddress", "igmpFilteringProfileEndAddress", ], "description" : """An entry in igmpFilteringProfileTable.""", }, # row "igmpFilteringProfileName" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.27.2.1.1", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readonly", "description" : """""", }, # column "igmpFilteringProfileStartAddress" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.27.2.1.2", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readonly", "description" : """""", }, # column "igmpFilteringProfileEndAddress" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.27.2.1.3", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readonly", "description" : """""", }, # column "igmpFilteringProfileRowStatus" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.27.2.1.4", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-TC", "name" : "RowStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "mvrSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.28", }, # node "maxNumberOfMVR" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.28.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # scalar "mvrTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.28.2", "status" : "current", "description" : """""", }, # table "mvrEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.28.2.1", "create" : "true", "status" : "current", "linkage" : [ "mvrVlanID", ], "description" : """An entry in mvrTable.""", }, # row "mvrVlanID" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.28.2.1.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """1..4094""", }, # column "mvrName" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.28.2.1.2", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readwrite", "description" : """""", }, # column "mvrMode" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.28.2.1.3", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "dynamic" : { "nodetype" : "namednumber", "number" : "0" }, "compatible" : { "nodetype" : "namednumber", "number" : "1" }, }, }, "access" : "readwrite", "description" : """""", }, # column "mvrRowStatus" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.28.2.1.4", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-TC", "name" : "RowStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "mvr8021pPriority" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.28.2.1.5", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """Set the 802.1p priority of control messages within MVR (0~7)""", }, # column "mvrPortTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.28.3", "status" : "current", "description" : """""", }, # table "mvrPortEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.28.3.1", "status" : "current", "linkage" : [ "mvrVlanID", "dot1dBasePort", ], "description" : """An entry in mvrPortTable.""", }, # row "mvrPortRole" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.28.3.1.1", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "none" : { "nodetype" : "namednumber", "number" : "1" }, "source_port" : { "nodetype" : "namednumber", "number" : "2" }, "receiver_port" : { "nodetype" : "namednumber", "number" : "3" }, }, }, "access" : "readwrite", "description" : """""", }, # column "mvrPortTagging" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.28.3.1.2", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "maxNumberOfMvrGroup" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.28.4", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # scalar "mvrGroupTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.28.5", "status" : "current", "description" : """""", }, # table "mvrGroupEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.28.5.1", "create" : "true", "status" : "current", "linkage" : [ "mvrVlanID", "mvrGroupName", ], "description" : """An entry in mvrGroupTable.""", }, # row "mvrGroupName" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.28.5.1.1", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readonly", "description" : """""", }, # column "mvrGroupStartAddress" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.28.5.1.2", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readwrite", "description" : """""", }, # column "mvrGroupEndAddress" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.28.5.1.3", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readwrite", "description" : """""", }, # column "mvrGroupRowStatus" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.28.5.1.4", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-TC", "name" : "RowStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "layer3Setup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.29", }, # node "routerRipState" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.29.1", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # scalar "routerIgmpState" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.29.2", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # scalar "routerDvmrpState" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.29.3", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # scalar "routerDvmrpThreshold" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.29.4", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """""", }, # scalar "routerIpmcPortSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.30", }, # node "routerIpmcPortTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.30.1", "status" : "current", "description" : """""", }, # table "routerIpmcPortEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.30.1.1", "status" : "current", "linkage" : [ "dot1dBasePort", ], "description" : """An entry in routerIpmcPortTable.""", }, # row "routerIpmcPortEgressUntagVlan" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.30.1.1.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """""", }, # column "routerVrrpSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.31", }, # node "routerVrrpMaxNumber" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.31.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """Always set it as 14.""", }, # scalar "routerVrrpTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.31.2", "status" : "current", "description" : """""", }, # table "routerVrrpEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.31.2.1", "create" : "true", "status" : "current", "linkage" : [ "routerDomainIpAddress", "routerDomainIpMaskBits", "routerVrrpVirtualID", "routerVrrpUplinkGateway", ], "description" : """An entry in routerVrrpTable.""", }, # row "routerVrrpVirtualID" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.31.2.1.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "routerVrrpUplinkGateway" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.31.2.1.2", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readonly", "description" : """""", }, # column "routerVrrpPreempt" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.31.2.1.3", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "routerVrrpInterval" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.31.2.1.4", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """1-255""", }, # column "routerVrrpPriority" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.31.2.1.5", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """1-254""", }, # column "routerVrrpPrimaryVirtualIP" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.31.2.1.6", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readwrite", "description" : """""", }, # column "routerVrrpName" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.31.2.1.7", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readwrite", "description" : """""", }, # column "routerVrrpSecondaryVirtualIP" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.31.2.1.8", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readwrite", "description" : """""", }, # column "rpVrrpRowStatus" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.31.2.1.9", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-TC", "name" : "RowStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "routerVrrpDomainTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.31.3", "status" : "current", "description" : """""", }, # table "routerVrrpDomainEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.31.3.1", "status" : "current", "linkage" : [ "routerDomainIpAddress", "routerDomainIpMaskBits", ], "description" : """An entry in routerVrrpTable.""", }, # row "routerVrrpAuthType" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.31.3.1.1", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "none" : { "nodetype" : "namednumber", "number" : "0" }, "simple" : { "nodetype" : "namednumber", "number" : "1" }, }, }, "access" : "readwrite", "description" : """""", }, # column "routerVrrpAuthKey" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.31.3.1.2", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readwrite", "description" : """""", }, # column "routerVrrpStatus" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.32", }, # node "routerVrrpStatusTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.32.1", "status" : "current", "description" : """""", }, # table "routerVrrpStatusEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.32.1.1", "status" : "current", "linkage" : [ "routerVrrpStatusIpAddress", "routerVrrpStatusIpMaskBits", "routerVrrpStatusVirtualID", ], "description" : """ """, }, # row "routerVrrpStatusIpAddress" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.32.1.1.1", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readonly", "description" : """""", }, # column "routerVrrpStatusIpMaskBits" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.32.1.1.2", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "routerVrrpStatusVirtualID" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.32.1.1.3", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "routerVrrpStatusVRStatus" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.32.1.1.4", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readonly", "description" : """""", }, # column "routerVrrpStatusUpLinkStatus" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.32.1.1.5", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readonly", "description" : """""", }, # column "routerDomainSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.33", }, # node "routerDomainTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.33.1", "status" : "current", "description" : """""", }, # table "routerDomainEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.33.1.1", "status" : "current", "linkage" : [ "routerDomainIpAddress", "routerDomainIpMaskBits", ], "description" : """An entry in routerDomainTable.""", }, # row "routerDomainIpAddress" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.33.1.1.1", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readonly", "description" : """""", }, # column "routerDomainIpMaskBits" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.33.1.1.2", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "routerDomainVid" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.33.1.1.3", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "routerDomainIpTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.33.2", "status" : "current", "description" : """""", }, # table "routerDomainIpEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.33.2.1", "status" : "current", "linkage" : [ "routerDomainIpAddress", "routerDomainIpMaskBits", ], "description" : """An entry in routerDomainIpTable.""", }, # row "routerDomainIpRipDirection" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.33.2.1.1", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "none" : { "nodetype" : "namednumber", "number" : "0" }, "outgoing" : { "nodetype" : "namednumber", "number" : "1" }, "incoming" : { "nodetype" : "namednumber", "number" : "2" }, "both" : { "nodetype" : "namednumber", "number" : "3" }, }, }, "access" : "readwrite", "description" : """""", }, # column "routerDomainIpRipVersion" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.33.2.1.2", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "v1" : { "nodetype" : "namednumber", "number" : "0" }, "v2b" : { "nodetype" : "namednumber", "number" : "1" }, "v2m" : { "nodetype" : "namednumber", "number" : "2" }, }, }, "access" : "readwrite", "description" : """""", }, # column "routerDomainIpIgmpVersion" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.33.2.1.3", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "none" : { "nodetype" : "namednumber", "number" : "0" }, "igmp_v1" : { "nodetype" : "namednumber", "number" : "1" }, "igmp_v2" : { "nodetype" : "namednumber", "number" : "2" }, "igmp_v3" : { "nodetype" : "namednumber", "number" : "3" }, }, }, "access" : "readwrite", "description" : """""", }, # column "routerDomainIpDvmrp" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.33.2.1.4", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "diffservSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.34", }, # node "diffservState" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.34.1", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # scalar "diffservMapTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.34.2", "status" : "current", "description" : """""", }, # table "diffservMapEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.34.2.1", "status" : "current", "linkage" : [ "diffservMapDscp", ], "description" : """An entry in diffservMapTable.""", }, # row "diffservMapDscp" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.34.2.1.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """0-63""", }, # column "diffservMapPriority" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.34.2.1.2", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """0-7""", }, # column "diffservPortTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.34.3", "status" : "current", "description" : """""", }, # table "diffservPortEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.34.3.1", "status" : "current", "linkage" : [ "dot1dBasePort", ], "description" : """An entry in diffservPortTable.""", }, # row "diffservPortState" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.34.3.1.1", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "clusterSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.35", }, # node "clusterManager" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.35.1", }, # node "clusterMaxNumOfManager" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.35.1.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # scalar "clusterManagerTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.35.1.2", "status" : "current", "description" : """""", }, # table "clusterManagerEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.35.1.2.1", "create" : "true", "status" : "current", "linkage" : [ "clusterManagerVid", ], "description" : """An entry in clusterManagerTable.""", }, # row "clusterManagerVid" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.35.1.2.1.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "clusterManagerName" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.35.1.2.1.2", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readwrite", "description" : """""", }, # column "clusterManagerRowStatus" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.35.1.2.1.3", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-TC", "name" : "RowStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "clusterMembers" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.35.2", }, # node "clusterMaxNumOfMember" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.35.2.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # scalar "clusterMemberTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.35.2.2", "status" : "current", "description" : """""", }, # table "clusterMemberEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.35.2.2.1", "create" : "true", "status" : "current", "linkage" : [ "clusterMemberMac", ], "description" : """An entry in clusterMemberTable.""", }, # row "clusterMemberMac" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.35.2.2.1.1", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-TC", "name" : "MacAddress"}, }, "access" : "noaccess", "description" : """""", }, # column "clusterMemberName" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.35.2.2.1.2", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readonly", "description" : """""", }, # column "clusterMemberModel" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.35.2.2.1.3", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readonly", "description" : """""", }, # column "clusterMemberPassword" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.35.2.2.1.4", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readwrite", "description" : """""", }, # column "clusterMemberRowStatus" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.35.2.2.1.5", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-TC", "name" : "RowStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "clusterCandidates" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.35.3", }, # node "clusterCandidateTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.35.3.1", "status" : "current", "description" : """""", }, # table "clusterCandidateEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.35.3.1.1", "status" : "current", "linkage" : [ "clusterCandidateMac", ], "description" : """An entry in clusterCandidateTable.""", }, # row "clusterCandidateMac" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.35.3.1.1.1", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readonly", "description" : """""", }, # column "clusterCandidateName" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.35.3.1.1.2", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readonly", "description" : """""", }, # column "clusterCandidateModel" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.35.3.1.1.3", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readonly", "description" : """""", }, # column "clusterStatus" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.35.4", }, # node "clusterStatusRole" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.35.4.1", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "none" : { "nodetype" : "namednumber", "number" : "0" }, "manager" : { "nodetype" : "namednumber", "number" : "1" }, "member" : { "nodetype" : "namednumber", "number" : "2" }, }, }, "access" : "readonly", "description" : """""", }, # scalar "clusterStatusManager" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.35.4.2", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readonly", "description" : """""", }, # scalar "clsuterStatusMaxNumOfMember" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.35.4.3", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # scalar "clusterStatusMemberTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.35.4.4", "status" : "current", "description" : """""", }, # table "clusterStatusMemberEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.35.4.4.1", "status" : "current", "linkage" : [ "clusterStatusMemberMac", ], "description" : """An entry in clusterStatusMemberTable.""", }, # row "clusterStatusMemberMac" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.35.4.4.1.1", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readonly", "description" : """""", }, # column "clusterStatusMemberName" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.35.4.4.1.2", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readonly", "description" : """""", }, # column "clusterStatusMemberModel" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.35.4.4.1.3", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readonly", "description" : """""", }, # column "clusterStatusMemberStatus" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.35.4.4.1.4", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "error" : { "nodetype" : "namednumber", "number" : "0" }, "online" : { "nodetype" : "namednumber", "number" : "1" }, "offline" : { "nodetype" : "namednumber", "number" : "2" }, }, }, "access" : "readonly", "description" : """""", }, # column "faultMIB" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.36", "status" : "current", }, # node "eventObjects" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.36.1", }, # node "eventTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.36.1.1", "status" : "current", "description" : """A list of currently active fault events. All faults of normal type regardless of their severity level are recorded in the event table. When a normal type fault is cleared it is deleted from the event table.""", }, # table "eventEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.36.1.1.1", "status" : "current", "linkage" : [ "eventSeqNum", ], "description" : """An entry containing information about an event in the event table.""", }, # row "eventSeqNum" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.36.1.1.1.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """This variable represents the sequence number of an event. Sequence number is incremented monotonically starting from 0 until it reaches its maximum and wraps around back to 0. Sequence number is incremented when - the state of a normal type fault is set on (the same sequence number is present in the events table as well as in the trap that is sent to notify about the fault on event) - delta event occurs (sequence number present in trap message) - the state of a normal type fault is set off (sequence number present in trap that is sent to notify for clearing).""", }, # column "eventEventId" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.36.1.1.1.2", "status" : "current", "syntax" : { "type" : { "module" :"ZYXEL-GS4012F-MIB", "name" : "EventIdNumber"}, }, "access" : "readonly", "description" : """This variable represents the event ID which uniquely identifies the event in the entire system.""", }, # column "eventName" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.36.1.1.1.3", "status" : "current", "syntax" : { "type" : { "basetype" : "OctetString", "parent module" : { "name" : "RFC1213-MIB", "type" : "DisplayString", }, "ranges" : [ { "min" : "0", "max" : "40" }, ], "range" : { "min" : "0", "max" : "40" }, }, }, "access" : "readonly", "description" : """This variable represents the name of the event, for example 'Ethernet Link Down'""", }, # column "eventInstanceType" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.36.1.1.1.4", "status" : "current", "syntax" : { "type" : { "module" :"ZYXEL-GS4012F-MIB", "name" : "InstanceType"}, }, "access" : "readonly", "description" : """This variable represents the type of InstanceId of a particular event in the event table. In brief the instanceType refers to the type of sub-component generating this event in the system, for example switch (5). For more details see the textual conventions section. AFFECTS: eventInstanceId, eventInstanceName""", }, # column "eventInstanceId" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.36.1.1.1.5", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readonly", "description" : """This variable represents the InstanceId of a particular event in the event current table. In brief the instanceId refers to the sub-component generating this event in the system, for example '1' for port 1. For more details see the textual conventions section. DEPENDS ON: eventInstanceType""", }, # column "eventInstanceName" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.36.1.1.1.6", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readonly", "description" : """This variable is mainly used to store additional information about the sub-component that is generating an event. For example this field may specify what cooling fan is faulty. DEPENDS ON: eventInstanceType""", }, # column "eventSeverity" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.36.1.1.1.7", "status" : "current", "syntax" : { "type" : { "module" :"ZYXEL-GS4012F-MIB", "name" : "EventSeverity"}, }, "access" : "readonly", "description" : """This variable dictates the urgency of action when a event occurs. There are four severity levels - Critical, Major, Minor, and Informational. Critical events are those, which require immediate operator intervention to prevent/reduce system down time. Major events require quick attention and Minor events possibly require some attention. Informational events indicate the occurrence of events that may need to be investigated.""", }, # column "eventSetTime" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.36.1.1.1.8", "status" : "current", "syntax" : { "type" : { "module" :"ZYXEL-GS4012F-MIB", "name" : "UtcTimeStamp"}, }, "access" : "readonly", "description" : """This table contains only normal events and this variable represents the time when the event become active, i.e. the number of seconds since Jan 1, 1970 12:00AM.""", }, # column "eventDescription" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.36.1.1.1.9", "status" : "current", "syntax" : { "type" : { "basetype" : "OctetString", "parent module" : { "name" : "RFC1213-MIB", "type" : "DisplayString", }, "ranges" : [ { "min" : "0", "max" : "255" }, ], "range" : { "min" : "0", "max" : "255" }, }, }, "access" : "readonly", "description" : """This variable contains a description of the event and reasons behind the event. This is a free format alpha-numeric string that is set by the entity generating this event. This variable may be empty if there is no usefull information to report. The maximum length of this string is 255 characters.""", }, # column "eventServAffective" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.36.1.1.1.10", "status" : "current", "syntax" : { "type" : { "module" :"ZYXEL-GS4012F-MIB", "name" : "EventServiceAffective"}, }, "access" : "readonly", "description" : """This variable indicates whether the event is service affective or not""", }, # column "faultTrapsMIB" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.37", "status" : "current", }, # node "trapInfoObjects" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.37.1", }, # node "trapRefSeqNum" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.37.1.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """Indicates the former sequence number of a cleared event in the event table. Not intended to read but only used in trap notifications.""", }, # scalar "trapPersistence" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.37.1.2", "status" : "current", "syntax" : { "type" : { "module" :"ZYXEL-GS4012F-MIB", "name" : "EventPersistence"}, }, "access" : "readonly", "description" : """Indicates whether the event is delta (automatically and immediately cleared) or normal (not automatically cleared). Not intended to read but only used in trap notifications.""", }, # scalar "trapSenderNodeId" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.37.1.3", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """Represents the node ID of the sending network element. If not supported should be set to 0. Not intended to read but only used in trap notifications.""", }, # scalar "trapNotifications" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.37.2", }, # node "ipStatus" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.38", }, # node "ipStatusTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.38.1", "status" : "current", "description" : """""", }, # table "ipStatusEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.38.1.1", "status" : "current", "linkage" : [ "ipStatusIPAddress", "ipStatusVid", ], "description" : """""", }, # row "ipStatusIPAddress" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.38.1.1.1", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readonly", "description" : """""", }, # column "ipStatusVid" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.38.1.1.2", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "ipStatusPort" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.38.1.1.3", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readonly", "description" : """""", }, # column "ipStatusType" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.38.1.1.4", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "static" : { "nodetype" : "namednumber", "number" : "1" }, "dynamic" : { "nodetype" : "namednumber", "number" : "2" }, }, }, "access" : "readonly", "description" : """""", }, # column "routingStatus" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.39", }, # node "routingStatusTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.39.1", "status" : "current", "description" : """""", }, # table "routingStatusEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.39.1.1", "status" : "current", "linkage" : [ "routingStatusDestAddress", ], "description" : """""", }, # row "routingStatusDestAddress" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.39.1.1.1", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readonly", "description" : """""", }, # column "routingStatusDestMaskbits" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.39.1.1.2", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "routingStatusGateway" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.39.1.1.3", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readonly", "description" : """""", }, # column "routingStatusInterface" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.39.1.1.4", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readonly", "description" : """""", }, # column "routingStatusMetric" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.39.1.1.5", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "routingStatusType" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.39.1.1.6", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "rip" : { "nodetype" : "namednumber", "number" : "1" }, "bgp" : { "nodetype" : "namednumber", "number" : "2" }, "ospf" : { "nodetype" : "namednumber", "number" : "3" }, "static" : { "nodetype" : "namednumber", "number" : "4" }, }, }, "access" : "readonly", "description" : """""", }, # column "ospfExt" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.40", }, # node "ospfInterfaceTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.40.1", "status" : "current", "description" : """""", }, # table "ospfInterfaceEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.40.1.1", "status" : "current", "linkage" : [ "ospfIfIpAddress", "ospfAddressLessIf", ], "description" : """""", }, # row "ospfIfKeyId" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.40.1.1.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """""", }, # column "ospfIfMaskbits" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.40.1.1.2", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "ospfIfDesignatedRouterID" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.40.1.1.3", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readonly", "description" : """""", }, # column "ospfIfBackupDesignatedRouterID" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.40.1.1.4", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readonly", "description" : """""", }, # column "ospfIfNbrCount" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.40.1.1.5", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "ospfIfAdjacentNbrCount" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.40.1.1.6", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "ospfIfHelloDueTime" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.40.1.1.7", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readonly", "description" : """""", }, # column "ospfAreaExtTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.40.2", "status" : "current", "description" : """""", }, # table "ospfAreaExtEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.40.2.1", "status" : "current", "linkage" : [ "ospfAreaId", ], "description" : """""", }, # row "ospfAreaExtName" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.40.2.1.1", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readwrite", "description" : """""", }, # column "ospfRedistributeRouteTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.40.3", "status" : "current", "description" : """""", }, # table "ospfRedistributeRouteEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.40.3.1", "status" : "current", "linkage" : [ "ospfRedistributeRouteProtocol", ], "description" : """""", }, # row "ospfRedistributeRouteProtocol" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.40.3.1.1", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "rip" : { "nodetype" : "namednumber", "number" : "1" }, "static" : { "nodetype" : "namednumber", "number" : "2" }, }, }, "access" : "readonly", "description" : """""", }, # column "ospfRedistributeRouteState" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.40.3.1.2", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "ospfRedistributeRouteType" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.40.3.1.3", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """""", }, # column "ospfRedistributeRouteMetric" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.40.3.1.4", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """""", }, # column "ospfNbrExtTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.40.4", "status" : "current", "description" : """""", }, # table "ospfNbrExtEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.40.4.1", "status" : "current", "linkage" : [ "ospfNbrIpAddr", "ospfNbrAddressLessIndex", ], "description" : """""", }, # row "ospfNbrExtRole" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.40.4.1.1", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "dr" : { "nodetype" : "namednumber", "number" : "1" }, "backup" : { "nodetype" : "namednumber", "number" : "2" }, "dr_other" : { "nodetype" : "namednumber", "number" : "3" }, }, }, "access" : "readonly", "description" : """""", }, # column "ospfNbrExtDeadtime" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.40.4.1.2", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readonly", "description" : """""", }, # column "ospfNbrExtInterface" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.40.4.1.3", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readonly", "description" : """""", }, # column "ospfNbrExtRXmtL" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.40.4.1.4", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "ospfNbrExtRqstL" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.40.4.1.5", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "ospfNbrExtDBsmL" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.40.4.1.6", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "ospfLsdbExtTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.40.5", "status" : "current", "description" : """""", }, # table "ospfLsdbExtEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.40.5.1", "status" : "current", "linkage" : [ "ospfLsdbAreaId", "ospfLsdbType", "ospfLsdbLSID", "ospfLsdbRouterId", ], "description" : """""", }, # row "ospfLsdbExtLinkCount" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.40.5.1.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "ospfLsdbExtRouteAddress" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.40.5.1.2", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readonly", "description" : """""", }, # column "ospfLsdbExtRouteMaskbits" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.40.5.1.3", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "ospfVirtualLinkTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.40.6", "status" : "current", "description" : """""", }, # table "ospfVirtualLinkEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.40.6.1", "status" : "current", "linkage" : [ "ospfVirtIfAreaID", "ospfVirtIfNeighbor", ], "description" : """""", }, # row "ospfVirtualLinkName" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.40.6.1.1", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readwrite", "description" : """""", }, # column "ospfVirtualLinkKeyId" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.40.6.1.2", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """""", }, # column "sysLogSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.41", }, # node "sysLogState" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.41.1", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """sysLog enabled/disabled for the switch.""", }, # scalar "sysLogTypeTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.41.2", "status" : "current", "description" : """""", }, # table "sysLogTypeEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.41.2.1", "status" : "current", "linkage" : [ "sysLogTypeIndex", ], "description" : """An entry in sysLogTypeTable.""", }, # row "sysLogTypeIndex" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.41.2.1.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "noaccess", "description" : """""", }, # column "sysLogTypeName" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.41.2.1.2", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readonly", "description" : """""", }, # column "sysLogTypeState" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.41.2.1.3", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "sysLogTypeFacility" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.41.2.1.4", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "local_user0" : { "nodetype" : "namednumber", "number" : "0" }, "local_user1" : { "nodetype" : "namednumber", "number" : "1" }, "local_user2" : { "nodetype" : "namednumber", "number" : "2" }, "local_user3" : { "nodetype" : "namednumber", "number" : "3" }, "local_user4" : { "nodetype" : "namednumber", "number" : "4" }, "local_user5" : { "nodetype" : "namednumber", "number" : "5" }, "local_user6" : { "nodetype" : "namednumber", "number" : "6" }, "local_user7" : { "nodetype" : "namednumber", "number" : "7" }, }, }, "access" : "readwrite", "description" : """""", }, # column "sysLogServerTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.41.3", "status" : "current", "description" : """""", }, # table "sysLogServerEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.41.3.1", "create" : "true", "status" : "current", "linkage" : [ "sysLogServerAddress", ], "description" : """An entry in sysLogServerTable.""", }, # row "sysLogServerAddress" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.41.3.1.1", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "noaccess", "description" : """""", }, # column "sysLogServerLogLevel" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.41.3.1.2", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "level0" : { "nodetype" : "namednumber", "number" : "0" }, "level0-1" : { "nodetype" : "namednumber", "number" : "1" }, "level0-2" : { "nodetype" : "namednumber", "number" : "2" }, "level0-3" : { "nodetype" : "namednumber", "number" : "3" }, "level0-4" : { "nodetype" : "namednumber", "number" : "4" }, "level0-5" : { "nodetype" : "namednumber", "number" : "5" }, "level0-6" : { "nodetype" : "namednumber", "number" : "6" }, "level0-7" : { "nodetype" : "namednumber", "number" : "7" }, }, }, "access" : "readwrite", "description" : """""", }, # column "sysLogServerRowStatus" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.41.3.1.3", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-TC", "name" : "RowStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "mrstp" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.42", }, # node "mrstpSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.42.1", }, # node "mrstpBridgeTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.42.1.1", "status" : "current", "description" : """""", }, # table "mrstpBridgeEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.42.1.1.1", "status" : "current", "linkage" : [ "mrstpBridgeIndex", ], "description" : """An entry in mrstpBridgeTable.""", }, # row "mrstpBridgeIndex" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.42.1.1.1.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """The tree index of the MRSTP.""", }, # column "mrstpState" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.42.1.1.1.2", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """Enabled/disabled on the mrstp bridge.""", }, # column "mrstpProtocolSpecification" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.42.1.1.1.3", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "unknown" : { "nodetype" : "namednumber", "number" : "1" }, "decLb100" : { "nodetype" : "namednumber", "number" : "2" }, "ieee8021d" : { "nodetype" : "namednumber", "number" : "3" }, }, }, "access" : "readonly", "description" : """An indication of what version of the Spanning Tree Protocol is being run. The value 'decLb100(2)' indicates the DEC LANbridge 100 Spanning Tree protocol. IEEE 802.1d implementations will return 'ieee8021d(3)'. If future versions of the IEEE Spanning Tree Protocol are released that are incompatible with the current version a new value will be defined.""", }, # column "mrstpPriority" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.42.1.1.1.4", "status" : "current", "syntax" : { "type" : { "basetype" : "Integer32", "ranges" : [ { "min" : "0", "max" : "65535" }, ], "range" : { "min" : "0", "max" : "65535" }, }, }, "access" : "readwrite", "description" : """The value of the write-able portion of the Bridge ID, i.e., the first two octets of the (8 octet long) Bridge ID. The other (last) 6 octets of the Bridge ID are given by the value of dot1dBaseBridgeAddress.""", "reference>" : """IEEE 802.1D-1990: Section 4.5.3.7""", }, # column "mrstpTimeSinceTopologyChange" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.42.1.1.1.5", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "TimeTicks"}, }, "access" : "readonly", "description" : """The time (in hundredths of a second) since the last time a topology change was detected by the bridge entity.""", "reference>" : """IEEE 802.1D-1990: Section 6.8.1.1.3""", }, # column "mrstpTopChanges" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.42.1.1.1.6", "status" : "current", "access" : "readonly", "description" : """The total number of topology changes detected by this bridge since the management entity was last reset or initialized.""", "reference>" : """IEEE 802.1D-1990: Section 6.8.1.1.3""", }, # column "mrstpDesignatedRoot" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.42.1.1.1.7", "status" : "current", "syntax" : { "type" : { "module" :"BRIDGE-MIB", "name" : "BridgeId"}, }, "access" : "readonly", "description" : """The bridge identifier of the root of the spanning tree as determined by the Spanning Tree Protocol as executed by this node. This value is used as the Root Identifier parameter in all Configuration Bridge PDUs originated by this node.""", "reference>" : """IEEE 802.1D-1990: Section 4.5.3.1""", }, # column "mrstpRootCost" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.42.1.1.1.8", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """The cost of the path to the root as seen from this bridge.""", "reference>" : """IEEE 802.1D-1990: Section 4.5.3.2""", }, # column "mrstpRootPort" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.42.1.1.1.9", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """The port number of the port which offers the lowest cost path from this bridge to the root bridge.""", "reference>" : """IEEE 802.1D-1990: Section 4.5.3.3""", }, # column "mrstpMaxAge" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.42.1.1.1.10", "status" : "current", "syntax" : { "type" : { "module" :"BRIDGE-MIB", "name" : "Timeout"}, }, "access" : "readonly", "description" : """The maximum age of Spanning Tree Protocol information learned from the network on any port before it is discarded, in units of hundredths of a second. This is the actual value that this bridge is currently using.""", "reference>" : """IEEE 802.1D-1990: Section 4.5.3.4""", }, # column "mrstpHelloTime" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.42.1.1.1.11", "status" : "current", "syntax" : { "type" : { "module" :"BRIDGE-MIB", "name" : "Timeout"}, }, "access" : "readonly", "description" : """The amount of time between the transmission of Configuration bridge PDUs by this node on any port when it is the root of the spanning tree or trying to become so, in units of hundredths of a second. This is the actual value that this bridge is currently using.""", "reference>" : """IEEE 802.1D-1990: Section 4.5.3.5""", }, # column "mrstpHoldTime" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.42.1.1.1.12", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """This time value determines the interval length during which no more than two Configuration bridge PDUs shall be transmitted by this node, in units of hundredths of a second.""", "reference>" : """IEEE 802.1D-1990: Section 4.5.3.14""", }, # column "mrstpForwardDelay" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.42.1.1.1.13", "status" : "current", "syntax" : { "type" : { "module" :"BRIDGE-MIB", "name" : "Timeout"}, }, "access" : "readonly", "description" : """This time value, measured in units of hundredths of a second, controls how fast a port changes its spanning state when moving towards the Forwarding state. The value determines how long the port stays in each of the Listening and Learning states, which precede the Forwarding state. This value is also used, when a topology change has been detected and is underway, to age all dynamic entries in the Forwarding Database. [Note that this value is the one that this bridge is currently using, in contrast to mrstpBridgeForwardDelay which is the value that this bridge and all others would start using if/when this bridge were to become the root.]""", "reference>" : """IEEE 802.1D-1990: Section 4.5.3.6""", }, # column "mrstpBridgeMaxAge" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.42.1.1.1.14", "status" : "current", "syntax" : { "type" : { "basetype" : "Integer32", "parent module" : { "name" : "BRIDGE-MIB", "type" : "Timeout", }, "ranges" : [ { "min" : "600", "max" : "4000" }, ], "range" : { "min" : "600", "max" : "4000" }, }, }, "access" : "readwrite", "description" : """The value that all bridges use for MaxAge when this bridge is acting as the root. Note that 802.1D-1990 specifies that the range for this parameter is related to the value of mrstpBridgeHelloTime. The granularity of this timer is specified by 802.1D-1990 to be 1 second. An agent may return a badValue error if a set is attempted to a value which is not a whole number of seconds.""", "reference>" : """IEEE 802.1D-1990: Section 4.5.3.8""", }, # column "mrstpBridgeHelloTime" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.42.1.1.1.15", "status" : "current", "syntax" : { "type" : { "basetype" : "Integer32", "parent module" : { "name" : "BRIDGE-MIB", "type" : "Timeout", }, "ranges" : [ { "min" : "100", "max" : "1000" }, ], "range" : { "min" : "100", "max" : "1000" }, }, }, "access" : "readwrite", "description" : """The value that all bridges use for HelloTime when this bridge is acting as the root. The granularity of this timer is specified by 802.1D- 1990 to be 1 second. An agent may return a badValue error if a set is attempted to a value which is not a whole number of seconds.""", "reference>" : """IEEE 802.1D-1990: Section 4.5.3.9""", }, # column "mrstpBridgeForwardDelay" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.42.1.1.1.16", "status" : "current", "syntax" : { "type" : { "basetype" : "Integer32", "parent module" : { "name" : "BRIDGE-MIB", "type" : "Timeout", }, "ranges" : [ { "min" : "400", "max" : "3000" }, ], "range" : { "min" : "400", "max" : "3000" }, }, }, "access" : "readwrite", "description" : """The value that all bridges use for ForwardDelay when this bridge is acting as the root. Note that 802.1D-1990 specifies that the range for this parameter is related to the value of mrstpBridgeMaxAge. The granularity of this timer is specified by 802.1D-1990 to be 1 second. An agent may return a badValue error if a set is attempted to a value which is not a whole number of seconds.""", "reference>" : """IEEE 802.1D-1990: Section 4.5.3.10""", }, # column "mrstpPortTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.42.1.2", "status" : "current", "description" : """A table that contains port-specific information for the Spanning Tree Protocol.""", }, # table "mrstpPortEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.42.1.2.1", "status" : "current", "linkage" : [ "mrstpPort", ], "description" : """A list of information maintained by every port about the Spanning Tree Protocol state for that port.""", }, # row "mrstpPort" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.42.1.2.1.1", "status" : "current", "syntax" : { "type" : { "basetype" : "Integer32", "ranges" : [ { "min" : "1", "max" : "65535" }, ], "range" : { "min" : "1", "max" : "65535" }, }, }, "access" : "readonly", "description" : """The port number of the port for which this entry contains Spanning Tree Protocol management information.""", "reference>" : """IEEE 802.1D-1990: Section 6.8.2.1.2""", }, # column "mrstpPortPriority" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.42.1.2.1.2", "status" : "current", "syntax" : { "type" : { "basetype" : "Integer32", "ranges" : [ { "min" : "0", "max" : "255" }, ], "range" : { "min" : "0", "max" : "255" }, }, }, "access" : "readwrite", "description" : """The value of the priority field which is contained in the first (in network byte order) octet of the (2 octet long) Port ID. The other octet of the Port ID is given by the value of mrstpPort.""", "reference>" : """IEEE 802.1D-1990: Section 4.5.5.1""", }, # column "mrstpPortState" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.42.1.2.1.3", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "disabled" : { "nodetype" : "namednumber", "number" : "1" }, "blocking" : { "nodetype" : "namednumber", "number" : "2" }, "listening" : { "nodetype" : "namednumber", "number" : "3" }, "learning" : { "nodetype" : "namednumber", "number" : "4" }, "forwarding" : { "nodetype" : "namednumber", "number" : "5" }, "broken" : { "nodetype" : "namednumber", "number" : "6" }, }, }, "access" : "readonly", "description" : """The port's current state as defined by application of the Spanning Tree Protocol. This state controls what action a port takes on reception of a frame. If the bridge has detected a port that is malfunctioning it will place that port into the broken(6) state. For ports which are disabled (see mrstpPortEnable), this object will have a value of disabled(1).""", "reference>" : """IEEE 802.1D-1990: Section 4.5.5.2""", }, # column "mrstpPortEnable" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.42.1.2.1.4", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "enabled" : { "nodetype" : "namednumber", "number" : "1" }, "disabled" : { "nodetype" : "namednumber", "number" : "2" }, }, }, "access" : "readwrite", "description" : """The enabled/disabled status of the port.""", "reference>" : """IEEE 802.1D-1990: Section 4.5.5.2""", }, # column "mrstpPortPathCost" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.42.1.2.1.5", "status" : "current", "syntax" : { "type" : { "basetype" : "Integer32", "ranges" : [ { "min" : "1", "max" : "65535" }, ], "range" : { "min" : "1", "max" : "65535" }, }, }, "access" : "readwrite", "description" : """The contribution of this port to the path cost of paths towards the spanning tree root which include this port. 802.1D-1990 recommends that the default value of this parameter be in inverse proportion to the speed of the attached LAN.""", "reference>" : """IEEE 802.1D-1990: Section 4.5.5.3""", }, # column "mrstpPortDesignatedRoot" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.42.1.2.1.6", "status" : "current", "syntax" : { "type" : { "module" :"BRIDGE-MIB", "name" : "BridgeId"}, }, "access" : "readonly", "description" : """The unique Bridge Identifier of the Bridge recorded as the Root in the Configuration BPDUs transmitted by the Designated Bridge for the segment to which the port is attached.""", "reference>" : """IEEE 802.1D-1990: Section 4.5.5.4""", }, # column "mrstpPortDesignatedCost" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.42.1.2.1.7", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """The path cost of the Designated Port of the segment connected to this port. This value is compared to the Root Path Cost field in received bridge PDUs.""", "reference>" : """IEEE 802.1D-1990: Section 4.5.5.5""", }, # column "mrstpPortDesignatedBridge" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.42.1.2.1.8", "status" : "current", "syntax" : { "type" : { "module" :"BRIDGE-MIB", "name" : "BridgeId"}, }, "access" : "readonly", "description" : """The Bridge Identifier of the bridge which this port considers to be the Designated Bridge for this port's segment.""", "reference>" : """IEEE 802.1D-1990: Section 4.5.5.6""", }, # column "mrstpPortDesignatedPort" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.42.1.2.1.9", "status" : "current", "syntax" : { "type" : { "basetype" : "OctetString", "ranges" : [ { "min" : "2", "max" : "2" }, ], "range" : { "min" : "2", "max" : "2" }, }, }, "access" : "readonly", "description" : """The Port Identifier of the port on the Designated Bridge for this port's segment.""", "reference>" : """IEEE 802.1D-1990: Section 4.5.5.7""", }, # column "mrstpPortForwardTransitions" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.42.1.2.1.10", "status" : "current", "access" : "readonly", "description" : """The number of times this port has transitioned from the Learning state to the Forwarding state.""", }, # column "mrstpPortOnBridgeIndex" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.42.1.2.1.11", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """Indetify the bridge index that this port joined to in MRSTP.""", }, # column "mrstpNotifications" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.42.2", }, # node "radiusServerSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.43", }, # node "radiusAuthServerSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.43.1", }, # node "radiusAuthServerTimeout" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.43.1.2", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """""", }, # scalar "radiusAuthServerTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.43.1.3", "status" : "current", "description" : """""", }, # table "radiusAuthServerEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.43.1.3.1", "status" : "current", "linkage" : [ "radiusAuthServerIndex", ], "description" : """An entry in radiusAuthServerTable.""", }, # row "radiusAuthServerIndex" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.43.1.3.1.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "noaccess", "description" : """""", }, # column "radiusAuthServerIpAddr" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.43.1.3.1.2", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readwrite", "description" : """""", }, # column "radiusAuthServerUdpPort" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.43.1.3.1.3", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """""", }, # column "radiusAuthServerSharedSecret" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.43.1.3.1.4", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readwrite", "description" : """""", }, # column "radiusAcctServerSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.43.2", }, # node "radiusAcctServerTimeout" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.43.2.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """""", }, # scalar "radiusAcctServerTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.43.2.2", "status" : "current", "description" : """""", }, # table "radiusAcctServerEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.43.2.2.1", "status" : "current", "linkage" : [ "radiusAcctServerIndex", ], "description" : """An entry in radiusAcctServerTable.""", }, # row "radiusAcctServerIndex" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.43.2.2.1.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "noaccess", "description" : """""", }, # column "radiusAcctServerIpAddr" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.43.2.2.1.2", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readwrite", "description" : """""", }, # column "radiusAcctServerUdpPort" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.43.2.2.1.3", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """""", }, # column "radiusAcctServerSharedSecret" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.43.2.2.1.4", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readwrite", "description" : """""", }, # column "tacacsServerSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.44", }, # node "tacacsAuthServerSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.44.1", }, # node "tacacsAuthServerTimeout" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.44.1.2", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """""", }, # scalar "tacacsAuthServerTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.44.1.3", "status" : "current", "description" : """""", }, # table "tacacsAuthServerEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.44.1.3.1", "status" : "current", "linkage" : [ "tacacsAuthServerIndex", ], "description" : """An entry in tacacsAuthServerTable.""", }, # row "tacacsAuthServerIndex" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.44.1.3.1.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "noaccess", "description" : """""", }, # column "tacacsAuthServerIpAddr" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.44.1.3.1.2", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readwrite", "description" : """""", }, # column "tacacsAuthServerTcpPort" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.44.1.3.1.3", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """""", }, # column "tacacsAuthServerSharedSecret" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.44.1.3.1.4", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readwrite", "description" : """""", }, # column "tacacsAcctServerSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.44.2", }, # node "tacacsAcctServerTimeout" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.44.2.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """""", }, # scalar "tacacsAcctServerTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.44.2.2", "status" : "current", "description" : """""", }, # table "tacacsAcctServerEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.44.2.2.1", "status" : "current", "linkage" : [ "tacacsAcctServerIndex", ], "description" : """An entry in tacacsAcctServerTable.""", }, # row "tacacsAcctServerIndex" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.44.2.2.1.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "noaccess", "description" : """""", }, # column "tacacsAcctServerIpAddr" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.44.2.2.1.2", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readwrite", "description" : """""", }, # column "tacacsAcctServerTcpPort" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.44.2.2.1.3", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """""", }, # column "tacacsAcctServerSharedSecret" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.44.2.2.1.4", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readwrite", "description" : """""", }, # column "aaaSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.45", }, # node "authenticationSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.45.1", }, # node "authenticationTypeTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.45.1.1", "status" : "current", "description" : """""", }, # table "authenticationTypeEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.45.1.1.1", "status" : "current", "linkage" : [ "authenticationTypeName", ], "description" : """An entry in authenticationTypeTable.""", }, # row "authenticationTypeName" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.45.1.1.1.1", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readonly", "description" : """""", }, # column "authenticationTypeMethodList" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.45.1.1.1.2", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "OctetString"}, }, "access" : "readwrite", "description" : """""", }, # column "accountingSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.45.2", }, # node "accountingUpdatePeriod" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.45.2.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """""", }, # scalar "accountingTypeTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.45.2.2", "status" : "current", "description" : """""", }, # table "accountingTypeEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.45.2.2.1", "status" : "current", "linkage" : [ "accountingTypeName", ], "description" : """An entry in accountingTypeTable.""", }, # row "accountingTypeName" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.45.2.2.1.1", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readonly", "description" : """""", }, # column "accountingTypeActive" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.45.2.2.1.2", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "accountingTypeBroadcast" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.45.2.2.1.3", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "accountingTypeMode" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.45.2.2.1.4", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "start-stop" : { "nodetype" : "namednumber", "number" : "1" }, "stop-only" : { "nodetype" : "namednumber", "number" : "2" }, "not-available" : { "nodetype" : "namednumber", "number" : "255" }, }, }, "access" : "readwrite", "description" : """""", }, # column "accountingTypeMethod" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.45.2.2.1.5", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "radius" : { "nodetype" : "namednumber", "number" : "1" }, "tacacs" : { "nodetype" : "namednumber", "number" : "2" }, }, }, "access" : "readwrite", "description" : """""", }, # column "accountingTypePrivilege" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.45.2.2.1.6", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "privilege-0" : { "nodetype" : "namednumber", "number" : "0" }, "privilege-1" : { "nodetype" : "namednumber", "number" : "1" }, "privilege-2" : { "nodetype" : "namednumber", "number" : "2" }, "privilege-3" : { "nodetype" : "namednumber", "number" : "3" }, "privilege-4" : { "nodetype" : "namednumber", "number" : "4" }, "privilege-5" : { "nodetype" : "namednumber", "number" : "5" }, "privilege-6" : { "nodetype" : "namednumber", "number" : "6" }, "privilege-7" : { "nodetype" : "namednumber", "number" : "7" }, "privilege-8" : { "nodetype" : "namednumber", "number" : "8" }, "privilege-9" : { "nodetype" : "namednumber", "number" : "9" }, "privilege-10" : { "nodetype" : "namednumber", "number" : "10" }, "privilege-11" : { "nodetype" : "namednumber", "number" : "11" }, "privilege-12" : { "nodetype" : "namednumber", "number" : "12" }, "privilege-13" : { "nodetype" : "namednumber", "number" : "13" }, "privilege-14" : { "nodetype" : "namednumber", "number" : "14" }, "not-available" : { "nodetype" : "namednumber", "number" : "255" }, }, }, "access" : "readwrite", "description" : """""", }, # column "dhcpSnp" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100", }, # node "dhcpSnpVlanTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.1", "status" : "current", "description" : """""", }, # table "dhcpSnpVlanEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.1.1", "status" : "current", "linkage" : [ "dhcpSnpVlanEntryVid", ], "description" : """""", }, # row "dhcpSnpVlanEntryVid" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.1.1.1", "status" : "current", "syntax" : { "type" : { "basetype" : "Integer32", "ranges" : [ { "min" : "1", "max" : "4094" }, ], "range" : { "min" : "1", "max" : "4094" }, }, }, "access" : "readonly", "description" : """""", }, # column "dhcpSnpVlanEntryEnable" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.1.1.2", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "dhcpSnpVlanEntryOption82Enable" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.1.1.3", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "dhcpSnpVlanEntryInfo" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.1.1.4", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "dhcpSnpPortTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.2", "status" : "current", "description" : """""", }, # table "dhcpSnpPortEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.2.1", "status" : "current", "linkage" : [ "dhcpSnpPortEntryPort", ], "description" : """""", }, # row "dhcpSnpPortEntryPort" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.2.1.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "dhcpSnpPortEntryTrust" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.2.1.2", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "dhcpSnpPortEntryRate" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.2.1.3", "status" : "current", "syntax" : { "type" : { "basetype" : "Integer32", "ranges" : [ { "min" : "0", "max" : "2048" }, ], "range" : { "min" : "0", "max" : "2048" }, }, }, "access" : "readwrite", "description" : """0 means unlimited""", }, # column "dhcpSnpBindTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.3", "status" : "current", "description" : """""", }, # table "dhcpSnpBindEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.3.1", "status" : "current", "linkage" : [ "dhcpSnpBindEntryMac", "dhcpSnpBindEntryVid", ], "description" : """""", }, # row "dhcpSnpBindEntryMac" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.3.1.1", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-TC", "name" : "MacAddress"}, }, "access" : "readonly", "description" : """""", }, # column "dhcpSnpBindEntryVid" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.3.1.2", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "dhcpSnpBindEntryIP" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.3.1.3", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readonly", "description" : """""", }, # column "dhcpSnpBindEntryLease" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.3.1.4", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "dhcpSnpBindEntryType" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.3.1.5", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "dynamic" : { "nodetype" : "namednumber", "number" : "2" }, }, }, "access" : "readonly", "description" : """""", }, # column "dhcpSnpBindEntryPort" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.3.1.6", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "dhcpSnpEnable" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.4", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # scalar "dhcpSnpDb" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.5", }, # node "dhcpSnpDbAbort" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.5.1", "status" : "current", "syntax" : { "type" : { "basetype" : "Integer32", "ranges" : [ { "min" : "1", "max" : "65535" }, ], "range" : { "min" : "1", "max" : "65535" }, }, }, "access" : "readwrite", "description" : """""", }, # scalar "dhcpSnpDbWriteDelay" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.5.2", "status" : "current", "syntax" : { "type" : { "basetype" : "Integer32", "ranges" : [ { "min" : "1", "max" : "65535" }, ], "range" : { "min" : "1", "max" : "65535" }, }, }, "access" : "readwrite", "description" : """""", }, # scalar "dhcpSnpDbUrl" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.5.3", "status" : "current", "syntax" : { "type" : { "basetype" : "OctetString", "parent module" : { "name" : "RFC1213-MIB", "type" : "DisplayString", }, "ranges" : [ { "min" : "0", "max" : "255" }, ], "range" : { "min" : "0", "max" : "255" }, }, }, "access" : "readwrite", "description" : """""", }, # scalar "dhcpSnpDbUrlRenew" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.5.4", "status" : "current", "syntax" : { "type" : { "basetype" : "OctetString", "parent module" : { "name" : "RFC1213-MIB", "type" : "DisplayString", }, "ranges" : [ { "min" : "0", "max" : "255" }, ], "range" : { "min" : "0", "max" : "255" }, }, }, "access" : "readwrite", "description" : """""", }, # scalar "dhcpSnpDbStat" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.5.5", }, # node "dhcpSnpDbStatClear" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.5.5.1", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # scalar "dhcpSnpDbStatDelayExpiry" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.5.5.3", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # scalar "dhcpSnpDbStatAbortExpiry" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.5.5.4", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # scalar "dhcpSnpDbStatLastSuccTime" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.5.5.5", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readonly", "description" : """""", }, # scalar "dhcpSnpDbStatLastFailTime" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.5.5.6", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readonly", "description" : """""", }, # scalar "dhcpSnpDbStatLastFailReason" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.5.5.7", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readonly", "description" : """""", }, # scalar "dhcpSnpDbStatTotalAttempt" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.5.5.8", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # scalar "dhcpSnpDbStatStartupFail" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.5.5.9", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # scalar "dhcpSnpDbStatSuccTrans" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.5.5.10", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # scalar "dhcpSnpDbStatFailTrans" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.5.5.11", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # scalar "dhcpSnpDbStatSuccRead" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.5.5.12", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # scalar "dhcpSnpDbStatFailRead" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.5.5.13", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # scalar "dhcpSnpDbStatSuccWrite" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.5.5.14", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # scalar "dhcpSnpDbStatFailWrite" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.5.5.15", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # scalar "dhcpSnpDbStatLastIgnoreBindCol" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.5.5.17", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """Last ignored: binding collision""", }, # scalar "dhcpSnpDbStatLastIgnoreExpireLease" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.5.5.18", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """Last ignored: expired leases""", }, # scalar "dhcpSnpDbStatLastIgnoreInvalidIntf" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.5.5.19", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """Last ignored: invalid interface""", }, # scalar "dhcpSnpDbStatLastIgnoreUnsuppVlan" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.5.5.20", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """Last ignored: unsupported vlans""", }, # scalar "dhcpSnpDbStatLastIgnoreParse" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.5.5.21", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """Last ignored: parsing error""", }, # scalar "dhcpSnpDbStatTotalIgnoreBindCol" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.5.5.22", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """Total ignored: binding collision""", }, # scalar "dhcpSnpDbStatTotalIgnoreExpireLease" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.5.5.23", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """Total ignored: expired leases""", }, # scalar "dhcpSnpDbStatTotalIgnoreInvalidIntf" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.5.5.24", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """Total ignored: invalid interface""", }, # scalar "dhcpSnpDbStatTotalIgnoreUnsuppVlan" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.5.5.25", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """Total ignored: unsupported vlans""", }, # scalar "dhcpSnpDbStatTotalIgnoreParse" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.5.5.26", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """Total ignored: parsing error""", }, # scalar "dhcpSnpDbStatLastIgnoreTime" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.5.5.27", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readonly", "description" : """""", }, # scalar "dhcpSnpDhcpVlan" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.6", }, # node "dhcpSnpDhcpVlanVid" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.100.6.1", "status" : "current", "syntax" : { "type" : { "basetype" : "Integer32", "ranges" : [ { "min" : "0", "max" : "4094" }, ], "range" : { "min" : "0", "max" : "4094" }, }, }, "access" : "readwrite", "description" : """0: disable DHCP VLAN.""", }, # scalar "ipsg" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.101", }, # node "ipsgTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.101.1", "status" : "current", "description" : """""", }, # table "ipsgEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.101.1.1", "create" : "true", "status" : "current", "linkage" : [ "ipsgEntryMac", "ipsgEntryVid", ], "description" : """""", }, # row "ipsgEntryMac" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.101.1.1.1", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-TC", "name" : "MacAddress"}, }, "access" : "readonly", "description" : """""", }, # column "ipsgEntryVid" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.101.1.1.2", "status" : "current", "syntax" : { "type" : { "basetype" : "Integer32", "ranges" : [ { "min" : "1", "max" : "4094" }, ], "range" : { "min" : "1", "max" : "4094" }, }, }, "access" : "readonly", "description" : """""", }, # column "ipsgEntryIp" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.101.1.1.3", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readwrite", "description" : """""", }, # column "ipsgEntryLease" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.101.1.1.4", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """second""", }, # column "ipsgEntryType" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.101.1.1.5", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "static" : { "nodetype" : "namednumber", "number" : "1" }, "dhcp" : { "nodetype" : "namednumber", "number" : "2" }, }, }, "access" : "readonly", "description" : """""", }, # column "ipsgEntryPort" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.101.1.1.6", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """0 means any port""", }, # column "ipsgEntryState" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.101.1.1.7", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-TC", "name" : "RowStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "arpInspect" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102", }, # node "arpInspectSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.1", }, # node "arpInspectState" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.1.1", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # scalar "arpInspectFilterAgingTime" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.1.2", "status" : "current", "syntax" : { "type" : { "basetype" : "Integer32", "ranges" : [ { "min" : "0", "max" : "2147483647" }, ], "range" : { "min" : "0", "max" : "2147483647" }, }, }, "access" : "readwrite", "description" : """""", }, # scalar "arpInspectLog" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.1.3", }, # node "arpInspectLogEntries" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.1.3.1", "status" : "current", "syntax" : { "type" : { "basetype" : "Integer32", "ranges" : [ { "min" : "0", "max" : "1024" }, ], "range" : { "min" : "0", "max" : "1024" }, }, }, "access" : "readwrite", "description" : """""", }, # scalar "arpInspectLogRate" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.1.3.2", "status" : "current", "syntax" : { "type" : { "basetype" : "Integer32", "ranges" : [ { "min" : "0", "max" : "1024" }, ], "range" : { "min" : "0", "max" : "1024" }, }, }, "access" : "readwrite", "description" : """""", }, # scalar "arpInspectLogInterval" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.1.3.3", "status" : "current", "syntax" : { "type" : { "basetype" : "Integer32", "ranges" : [ { "min" : "0", "max" : "2147483647" }, ], "range" : { "min" : "0", "max" : "2147483647" }, }, }, "access" : "readwrite", "description" : """""", }, # scalar "arpInspectVlanTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.1.4", "status" : "current", "description" : """""", }, # table "arpInspectVlanEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.1.4.1", "status" : "current", "linkage" : [ "arpInspectVlanVid", ], "description" : """""", }, # row "arpInspectVlanVid" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.1.4.1.1", "status" : "current", "syntax" : { "type" : { "basetype" : "Integer32", "ranges" : [ { "min" : "1", "max" : "4094" }, ], "range" : { "min" : "1", "max" : "4094" }, }, }, "access" : "readonly", "description" : """""", }, # column "arpInspectVlanLog" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.1.4.1.2", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "all" : { "nodetype" : "namednumber", "number" : "1" }, "none" : { "nodetype" : "namednumber", "number" : "2" }, "permit" : { "nodetype" : "namednumber", "number" : "3" }, "deny" : { "nodetype" : "namednumber", "number" : "4" }, }, }, "access" : "readwrite", "description" : """""", }, # column "arpInspectVlanStatus" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.1.4.1.3", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "enabled" : { "nodetype" : "namednumber", "number" : "1" }, "disabled" : { "nodetype" : "namednumber", "number" : "2" }, }, }, "access" : "readwrite", "description" : """""", }, # column "arpInspectPortTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.1.5", "status" : "current", "description" : """""", }, # table "arpInspectPortEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.1.5.1", "status" : "current", "linkage" : [ "arpInspectPortIndex", ], "description" : """""", }, # row "arpInspectPortIndex" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.1.5.1.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "arpInspectPortTrust" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.1.5.1.2", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "trusted" : { "nodetype" : "namednumber", "number" : "1" }, "untrusted" : { "nodetype" : "namednumber", "number" : "2" }, }, }, "access" : "readwrite", "description" : """""", }, # column "arpInspectPortRate" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.1.5.1.3", "status" : "current", "syntax" : { "type" : { "basetype" : "Integer32", "ranges" : [ { "min" : "0", "max" : "2048" }, ], "range" : { "min" : "0", "max" : "2048" }, }, }, "access" : "readwrite", "description" : """""", }, # column "arpInspectPortInterval" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.1.5.1.4", "status" : "current", "syntax" : { "type" : { "basetype" : "Integer32", "ranges" : [ { "min" : "1", "max" : "15" }, ], "range" : { "min" : "1", "max" : "15" }, }, }, "access" : "readwrite", "description" : """""", }, # column "arpInspectStatus" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.2", }, # node "arpInspectFilterClear" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.2.1", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # scalar "arpInspectLogClear" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.2.2", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # scalar "arpInspectFilterTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.2.3", "status" : "current", "description" : """""", }, # table "arpInspectFilterEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.2.3.1", "create" : "true", "status" : "current", "linkage" : [ "arpInspectFilterMac", "arpInspectFilterVid", ], "description" : """""", }, # row "arpInspectFilterMac" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.2.3.1.1", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-TC", "name" : "MacAddress"}, }, "access" : "readonly", "description" : """""", }, # column "arpInspectFilterVid" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.2.3.1.2", "status" : "current", "syntax" : { "type" : { "basetype" : "Integer32", "ranges" : [ { "min" : "1", "max" : "4094" }, ], "range" : { "min" : "1", "max" : "4094" }, }, }, "access" : "readonly", "description" : """""", }, # column "arpInspectFilterPort" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.2.3.1.3", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "arpInspectFilterExpiry" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.2.3.1.4", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "arpInspectFilterReason" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.2.3.1.5", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "macVid" : { "nodetype" : "namednumber", "number" : "1" }, "port" : { "nodetype" : "namednumber", "number" : "2" }, "ip" : { "nodetype" : "namednumber", "number" : "3" }, }, }, "access" : "readonly", "description" : """""", }, # column "arpInspectFilterRowStatus" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.2.3.1.6", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-TC", "name" : "RowStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "arpInspectLogTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.2.4", "status" : "current", "description" : """""", }, # table "arpInspectLogEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.2.4.1", "status" : "current", "linkage" : [ "arpInspectLogMac", "arpInspectLogVid", "arpInspectLogPort", "arpInspectLogIp", ], "description" : """""", }, # row "arpInspectLogMac" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.2.4.1.1", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-TC", "name" : "MacAddress"}, }, "access" : "readonly", "description" : """""", }, # column "arpInspectLogVid" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.2.4.1.2", "status" : "current", "syntax" : { "type" : { "basetype" : "Integer32", "ranges" : [ { "min" : "1", "max" : "4094" }, ], "range" : { "min" : "1", "max" : "4094" }, }, }, "access" : "readonly", "description" : """""", }, # column "arpInspectLogPort" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.2.4.1.3", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "arpInspectLogIp" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.2.4.1.4", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readonly", "description" : """""", }, # column "arpInspectLogNumPkt" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.2.4.1.5", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "arpInspectLogTime" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.2.4.1.7", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-TC", "name" : "DateAndTime"}, }, "access" : "readonly", "description" : """""", }, # column "arpInspectStatisticsTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.2.5", "status" : "current", "description" : """""", }, # table "arpInspectStatisticsEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.2.5.1", "status" : "current", "linkage" : [ "arpInspectStatisticsVid", ], "description" : """""", }, # row "arpInspectStatisticsVid" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.2.5.1.1", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """""", }, # column "arpInspectStatisticsReceived" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.2.5.1.2", "status" : "current", "access" : "readonly", "description" : """""", }, # column "arpInspectStatisticsRequest" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.2.5.1.3", "status" : "current", "access" : "readonly", "description" : """""", }, # column "arpInspectStatisticsReply" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.2.5.1.4", "status" : "current", "access" : "readonly", "description" : """""", }, # column "arpInspectStatisticsForward" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.2.5.1.5", "status" : "current", "access" : "readonly", "description" : """""", }, # column "arpInspectStatisticsDrop" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.2.5.1.6", "status" : "current", "access" : "readonly", "description" : """""", }, # column "arpInspectStatisticsClear" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.102.2.5.1.7", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "trTCMSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.103", }, # node "trTCMState" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.103.1", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """Two-rate three color marker enabled/disabled for the switch.""", }, # scalar "trTCMMode" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.103.2", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "color-aware" : { "nodetype" : "namednumber", "number" : "0" }, "color-blind" : { "nodetype" : "namednumber", "number" : "1" }, }, }, "access" : "readwrite", "description" : """""", }, # scalar "trTCMPortTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.103.3", "status" : "current", "description" : """""", }, # table "trTCMPortEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.103.3.1", "create" : "true", "status" : "current", "linkage" : [ "dot1dBasePort", ], "description" : """An entry in trTCMPortTable.""", }, # row "trTCMPortState" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.103.3.1.1", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-TC", "name" : "RowStatus"}, }, "access" : "readwrite", "description" : """Two-rate three color marker enabled/disabled on the port.""", }, # column "trTCMPortCIR" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.103.3.1.2", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """Allowed CIR in pkts/s.""", }, # column "trTCMPortPIR" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.103.3.1.3", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """Allowed PIR in pkts/s.""", }, # column "trTCMPortDscpGreen" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.103.3.1.4", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """0-63""", }, # column "trTCMPortDscpYellow" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.103.3.1.5", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """0-63""", }, # column "trTCMPortDscpRed" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.103.3.1.6", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """0-63""", }, # column "loopGuardSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.104", }, # node "loopGuardState" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.104.1", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # scalar "loopGuardPortTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.104.2", "status" : "current", "description" : """""", }, # table "loopGuardPortEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.104.2.1", "status" : "current", "linkage" : [ "dot1dBasePort", ], "description" : """An entry in loopGuardPortTable.""", }, # row "loopGuardPortState" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.104.2.1.1", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "subnetBasedVlanSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.105", }, # node "subnetBasedVlanState" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.105.1", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """subnet-based vlan feature enabled/disabled for the switch.""", }, # scalar "dhcpVlanOverrideState" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.105.2", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """dhcp vlan override enabled/disabled when subnet-based vlan is enabled.""", }, # scalar "subnetBasedVlanTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.105.3", "status" : "current", "description" : """""", }, # table "subnetBasedVlanEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.105.3.1", "create" : "true", "status" : "current", "linkage" : [ "subnetBasedVlanSrcIp", "subnetBasedVlanSrcMaskBit", ], "description" : """An entry in subnetBasedVlanTable.""", }, # row "subnetBasedVlanSrcIp" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.105.3.1.1", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "IpAddress"}, }, "access" : "readonly", "description" : """source ip for subnet-based vlan entry""", }, # column "subnetBasedVlanSrcMaskBit" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.105.3.1.2", "status" : "current", "syntax" : { "type" : { "basetype" : "Integer32", "ranges" : [ { "min" : "1", "max" : "32" }, ], "range" : { "min" : "1", "max" : "32" }, }, }, "access" : "readonly", "description" : """source ip mask-bits for subnet-based vlan entry""", }, # column "subnetBasedVlanName" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.105.3.1.3", "status" : "current", "syntax" : { "type" : { "basetype" : "OctetString", "parent module" : { "name" : "RFC1213-MIB", "type" : "DisplayString", }, "ranges" : [ { "min" : "0", "max" : "31" }, ], "range" : { "min" : "0", "max" : "31" }, }, }, "access" : "readwrite", "description" : """name for subnet-based vlan entry""", }, # column "subnetBasedVlanVid" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.105.3.1.4", "status" : "current", "syntax" : { "type" : { "basetype" : "Integer32", "ranges" : [ { "min" : "1", "max" : "4094" }, ], "range" : { "min" : "1", "max" : "4094" }, }, }, "access" : "readwrite", "description" : """vid for subnet-based vlan entry""", }, # column "subnetBasedVlanPriority" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.105.3.1.5", "status" : "current", "syntax" : { "type" : { "basetype" : "Integer32", "ranges" : [ { "min" : "0", "max" : "7" }, ], "range" : { "min" : "0", "max" : "7" }, }, }, "access" : "readwrite", "description" : """priority for subnet-based vlan entry""", }, # column "subnetBasedVlanEntryState" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.105.3.1.6", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-TC", "name" : "RowStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "macAuthenticationSetup" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.106", }, # node "macAuthenticationState" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.106.1", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # scalar "macAuthenticationNamePrefix" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.106.2", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readwrite", "description" : """""", }, # scalar "macAuthenticationPassword" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.106.3", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readwrite", "description" : """""", }, # scalar "macAuthenticationTimeout" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.106.4", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """""", }, # scalar "macAuthenticationPortTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.106.5", "status" : "current", "description" : """""", }, # table "macAuthenticationPortEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.106.5.1", "status" : "current", "linkage" : [ "dot1dBasePort", ], "description" : """An entry in macAuthenticationPortTable.""", }, # row "macAuthenticationPortState" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.106.5.1.1", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "mstp" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107", }, # node "mstpGen" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.1", }, # node "mstpGenState" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.1.1", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """Enabled/disabled on the mrstp bridge.""", }, # scalar "mstpGenCfgIdName" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.1.2", "status" : "current", "syntax" : { "type" : { "module" :"RFC1213-MIB", "name" : "DisplayString"}, }, "access" : "readwrite", "description" : """The configuration name that identifies the MST region and is used as one of the inputs in the computation of the MST Configuration Identifier.""", "reference>" : """12.12.3.4.2.b)""", }, # scalar "mstpGenCfgIdRevLevel" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.1.3", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readwrite", "description" : """This object identifies the MST revision that identifies the MST region and is used as one of the inputs in the computation of the MST configuration Identifier.""", "reference>" : """12.12.3.4.2.c)""", }, # scalar "mstpGenCfgIdCfgDigest" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.1.4", "status" : "current", "syntax" : { "type" : { "basetype" : "OctetString", "ranges" : [ { "min" : "16", "max" : "16" }, ], "range" : { "min" : "16", "max" : "16" }, }, }, "access" : "readonly", "description" : """Configuration Digest.""", "reference>" : """12.12.3.3.3.a.4""", }, # scalar "mstpGenHelloTime" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.1.5", "status" : "current", "syntax" : { "type" : { "basetype" : "Integer32", "parent module" : { "name" : "BRIDGE-MIB", "type" : "Timeout", }, "ranges" : [ { "min" : "1", "max" : "10" }, ], "range" : { "min" : "1", "max" : "10" }, }, }, "access" : "readwrite", "description" : """""", }, # scalar "mstpGenMaxAge" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.1.6", "status" : "current", "syntax" : { "type" : { "basetype" : "Integer32", "parent module" : { "name" : "BRIDGE-MIB", "type" : "Timeout", }, "ranges" : [ { "min" : "6", "max" : "40" }, ], "range" : { "min" : "6", "max" : "40" }, }, }, "access" : "readwrite", "description" : """""", }, # scalar "mstpGenForwardDelay" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.1.7", "status" : "current", "syntax" : { "type" : { "basetype" : "Integer32", "parent module" : { "name" : "BRIDGE-MIB", "type" : "Timeout", }, "ranges" : [ { "min" : "4", "max" : "30" }, ], "range" : { "min" : "4", "max" : "30" }, }, }, "access" : "readwrite", "description" : """""", }, # scalar "mstpGenMaxHops" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.1.8", "status" : "current", "syntax" : { "type" : { "basetype" : "Integer32", "ranges" : [ { "min" : "4", "max" : "30" }, ], "range" : { "min" : "4", "max" : "30" }, }, }, "access" : "readwrite", "description" : """13.22.f)""", }, # scalar "mstpGenCistRootPathCost" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.1.9", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """.""", }, # scalar "mstpGenCistRootBrid" : { "nodetype" : "scalar", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.1.10", "status" : "current", "syntax" : { "type" : { "basetype" : "OctetString", "ranges" : [ { "min" : "32", "max" : "32" }, ], "range" : { "min" : "32", "max" : "32" }, }, }, "access" : "readonly", "description" : """.""", }, # scalar "mstMapTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.20", "status" : "current", "description" : """This table contains one entry for each instance of MSTP.""", }, # table "mstMapEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.20.1", "create" : "true", "status" : "current", "linkage" : [ "mstMapIndex", ], "description" : """A conceptual row containing the status of the MSTP instance.""", }, # row "mstMapIndex" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.20.1.1", "status" : "current", "syntax" : { "type" : { "module" :"ZYXEL-GS4012F-MIB", "name" : "MstiOrCistInstanceIndex"}, }, "access" : "noaccess", "description" : """Uniquely identifies an instance. The entry of this table with index 0 presents always, represents CIST. When SET operation """, }, # column "mstMapVlans1k" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.20.1.2", "status" : "current", "syntax" : { "type" : { "basetype" : "OctetString", "ranges" : [ { "min" : "0", "max" : "128" }, ], "range" : { "min" : "0", "max" : "128" }, }, }, "access" : "readwrite", "description" : """A string of octets containing one bit per VLAN. The first octet corresponds to VLANs with VlanIndex values 1 through 8; the second octet to VLANs 9 through 16 etc. The most significant bit of each octet corresponds to the lowest VlanIndex value in that octet. For each VLAN that is mapped to this MSTP instance, the bit corresponding to that VLAN is set to '1'. Empty (zero) most significant octes are not mandatory.""", }, # column "mstMapVlans2k" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.20.1.3", "status" : "current", "syntax" : { "type" : { "basetype" : "OctetString", "ranges" : [ { "min" : "0", "max" : "128" }, ], "range" : { "min" : "0", "max" : "128" }, }, }, "access" : "readwrite", "description" : """A string of octets containing one bit per VLAN for VLANS with VlanIndex values 1024 through 2047. The first octet corresponds to VLANs with VlanIndex values 1024 through 1031; the second octet to VLANs 1032 through 1039 etc. The most significant bit of each octet corresponds to the lowest VlanIndex value in that octet. For each VLAN that is mapped to this MSTP instance, the bit corresponding to that VLAN is set to '1'. Empty (zero) most significant octes are not mandatory.""", }, # column "mstMapVlans3k" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.20.1.4", "status" : "current", "syntax" : { "type" : { "basetype" : "OctetString", "ranges" : [ { "min" : "0", "max" : "128" }, ], "range" : { "min" : "0", "max" : "128" }, }, }, "access" : "readwrite", "description" : """A string of octets containing one bit per VLAN for VLANS with VlanIndex values 2048 through 3071. The first octet corresponds to VLANs with VlanIndex values of 2048 through 2055; the second octet to VLANs 2056 through 2063 etc. The most significant bit of each octet corresponds to the lowest VlanIndex value in that octet. For each VLAN that is mapped to this MSTP instance, the bit corresponding to that VLAN is set to '1'. Empty (zero) most significant octes are not mandatory.""", }, # column "mstMapVlans4k" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.20.1.5", "status" : "current", "syntax" : { "type" : { "basetype" : "OctetString", "ranges" : [ { "min" : "0", "max" : "128" }, ], "range" : { "min" : "0", "max" : "128" }, }, }, "access" : "readwrite", "description" : """A string of octets containing one bit per VLAN for VLANS with VlanIndex values 3072 through 4095. The first octet corresponds to VLANs with VlanIndex values 3072 through 3079; the second octet to VLANs 3080 through 3087 etc. The most significant bit of each octet corresponds to the lowest VlanIndex value in that octet. For each VLAN that is mapped to this MSTP instance, the bit corresponding to that VLAN is set to '1'. Empty (zero) most significant octes are not mandatory.""", }, # column "mstMapRowStatus" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.20.1.6", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-TC", "name" : "RowStatus"}, }, "access" : "readwrite", "description" : """""", }, # column "mstVlanTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.30", "status" : "current", "description" : """This table contains one entry for each VlanId.""", }, # table "mstVlanEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.30.1", "status" : "current", "linkage" : [ "mstVlanIndex", ], "description" : """Information regarding the instance to which each Vlan is mapped.""", }, # row "mstVlanIndex" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.30.1.1", "status" : "current", "syntax" : { "type" : { "basetype" : "Integer32", "ranges" : [ { "min" : "1", "max" : "4094" }, ], "range" : { "min" : "1", "max" : "4094" }, }, }, "access" : "noaccess", "description" : """The VlanId for which this entry contains the instance mapped.""", }, # column "mstVlanMstIndex" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.30.1.2", "status" : "current", "syntax" : { "type" : { "module" :"ZYXEL-GS4012F-MIB", "name" : "MstiOrCistInstanceIndex"}, }, "access" : "readonly", "description" : """An integer with values ranging from 0 to 64 that identify a the CIST/MSTI instance to which this VLAN is mapped""", }, # column "mstpPortTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.40", "status" : "current", "description" : """A table that contains generic information about every port that is associated with this bridge.""", }, # table "mstpPortEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.40.1", "status" : "current", "linkage" : [ "mstpPortIndex", ], "description" : """A list of information for each port of the bridge.""", }, # row "mstpPortIndex" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.40.1.1", "status" : "current", "syntax" : { "type" : { "basetype" : "Integer32", "ranges" : [ { "min" : "1", "max" : "65535" }, ], "range" : { "min" : "1", "max" : "65535" }, }, }, "access" : "noaccess", "description" : """A unique value, greater than zero, for each Port. The value for each interface sub-layer must remain constant at least from one re-initialization of the entity's network management system to the next re- initialization.""", }, # column "mstpPortOperEdgePort" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.40.1.2", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-TC", "name" : "TruthValue"}, }, "access" : "readonly", "description" : """""", "reference>" : """""", }, # column "mstpPortOperPointToPointMAC" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.40.1.3", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-TC", "name" : "TruthValue"}, }, "access" : "readonly", "description" : """""", "reference>" : """""", }, # column "mstpXstTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.50", "status" : "current", "description" : """.""", }, # table "mstpXstEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.50.1", "status" : "current", "linkage" : [ "mstpXstId", ], "description" : """.""", }, # row "mstpXstId" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.50.1.1", "status" : "current", "syntax" : { "type" : { "module" :"ZYXEL-GS4012F-MIB", "name" : "MstiOrCistInstanceIndex"}, }, "access" : "readonly", "description" : """0 means CIST.""", }, # column "mstpXstBridgePriority" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.50.1.2", "status" : "current", "syntax" : { "type" : { "basetype" : "Integer32", "ranges" : [ { "min" : "0", "max" : "61440" }, ], "range" : { "min" : "0", "max" : "61440" }, }, }, "access" : "readwrite", "default" : "32768", "description" : """Bridge priority, in steps of 4096.""", }, # column "mstpXstBridgeId" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.50.1.3", "status" : "current", "syntax" : { "type" : { "module" :"BRIDGE-MIB", "name" : "BridgeId"}, }, "access" : "readonly", "description" : """.""", }, # column "mstpXstInternalRootCost" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.50.1.4", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """.""", }, # column "mstpXstRootPort" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.50.1.5", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """.""", }, # column "mstpXstTimeSinceTopologyChange" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.50.1.6", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "TimeTicks"}, }, "access" : "readonly", "description" : """.""", }, # column "mstpXstTopologyChangesCount" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.50.1.7", "status" : "current", "syntax" : { "type" : { "module" :"SNMPv2-SMI", "name" : "Counter32"}, }, "access" : "readonly", "description" : """.""", }, # column "mstpXstPortTable" : { "nodetype" : "table", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.60", "status" : "current", "description" : """.""", }, # table "mstpXstPortEntry" : { "nodetype" : "row", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.60.1", "status" : "current", "linkage" : [ "mstpXstPortXstId", "mstpXstPortIndex", ], "description" : """.""", "reference>" : """.""", }, # row "mstpXstPortXstId" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.60.1.1", "status" : "current", "syntax" : { "type" : { "module" :"ZYXEL-GS4012F-MIB", "name" : "MstiOrCistInstanceIndex"}, }, "access" : "noaccess", "description" : """0 means CIST.""", }, # column "mstpXstPortIndex" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.60.1.2", "status" : "current", "syntax" : { "type" : { "basetype" : "Integer32", "ranges" : [ { "min" : "1", "max" : "65535" }, ], "range" : { "min" : "1", "max" : "65535" }, }, }, "access" : "readonly", "description" : """The value of mstpPortIndex of the Port in mstpPortTable.""", }, # column "mstpXstPortEnable" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.60.1.3", "status" : "current", "syntax" : { "type" : { "module" :"P-BRIDGE-MIB", "name" : "EnabledStatus"}, }, "access" : "readwrite", "description" : """.""", }, # column "mstpXstPortPriority" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.60.1.4", "status" : "current", "syntax" : { "type" : { "basetype" : "Integer32", "ranges" : [ { "min" : "0", "max" : "255" }, ], "range" : { "min" : "0", "max" : "255" }, }, }, "access" : "readwrite", "default" : "128", "description" : """Port priority, in steps of 16.""", }, # column "mstpXstPortPathCost" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.60.1.5", "status" : "current", "syntax" : { "type" : { "basetype" : "Integer32", "ranges" : [ { "min" : "1", "max" : "65535" }, ], "range" : { "min" : "1", "max" : "65535" }, }, }, "access" : "readwrite", "description" : """.""", }, # column "mstpXstPortState" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.60.1.6", "status" : "current", "syntax" : { "type" : { "basetype" : "Enumeration", "disabled" : { "nodetype" : "namednumber", "number" : "0" }, "discarding" : { "nodetype" : "namednumber", "number" : "1" }, "learning" : { "nodetype" : "namednumber", "number" : "2" }, "forwarding" : { "nodetype" : "namednumber", "number" : "3" }, "unknown" : { "nodetype" : "namednumber", "number" : "4" }, }, }, "access" : "readonly", "description" : """.""", }, # column "mstpXstPortDesignatedRoot" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.60.1.7", "status" : "current", "syntax" : { "type" : { "module" :"BRIDGE-MIB", "name" : "BridgeId"}, }, "access" : "readonly", "description" : """.""", }, # column "mstpXstPortDesignatedCost" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.60.1.8", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """.""", }, # column "mstpXstPortDesignatedBridge" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.60.1.9", "status" : "current", "syntax" : { "type" : { "module" :"BRIDGE-MIB", "name" : "BridgeId"}, }, "access" : "readonly", "description" : """.""", }, # column "mstpXstPortDesignatedPort" : { "nodetype" : "column", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.60.1.10", "status" : "current", "syntax" : { "type" : { "module" :"", "name" : "Integer32"}, }, "access" : "readonly", "description" : """.""", }, # column "mstpNotifications" : { "nodetype" : "node", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.70", }, # node }, # nodes "notifications" : { "eventOnTrap" : { "nodetype" : "notification", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.37.2.1", "status" : "current", "objects" : { "eventSeqNum" : { "nodetype" : "object", "module" : "ZYXEL-GS4012F-MIB" }, "eventEventId" : { "nodetype" : "object", "module" : "ZYXEL-GS4012F-MIB" }, "eventName" : { "nodetype" : "object", "module" : "ZYXEL-GS4012F-MIB" }, "eventSetTime" : { "nodetype" : "object", "module" : "ZYXEL-GS4012F-MIB" }, "eventSeverity" : { "nodetype" : "object", "module" : "ZYXEL-GS4012F-MIB" }, "eventInstanceType" : { "nodetype" : "object", "module" : "ZYXEL-GS4012F-MIB" }, "eventInstanceId" : { "nodetype" : "object", "module" : "ZYXEL-GS4012F-MIB" }, "eventInstanceName" : { "nodetype" : "object", "module" : "ZYXEL-GS4012F-MIB" }, "eventServAffective" : { "nodetype" : "object", "module" : "ZYXEL-GS4012F-MIB" }, "eventDescription" : { "nodetype" : "object", "module" : "ZYXEL-GS4012F-MIB" }, "trapPersistence" : { "nodetype" : "object", "module" : "ZYXEL-GS4012F-MIB" }, "trapSenderNodeId" : { "nodetype" : "object", "module" : "ZYXEL-GS4012F-MIB" }, "sysObjectID" : { "nodetype" : "object", "module" : "ZYXEL-GS4012F-MIB" }, }, "description" : """This trap is used to inform network management system that a delta fault event (events that are automatically cleared) has occured or a normal fault event (not automatically cleared) state has been set on. Objects are used as follows: - eventSeqNum is the sequence number of the event. For normal type of events must equal to the sequence number of the event in the events table. - eventEventId specifies what fault event has occured. - eventName specifies the name of the fault event. - eventSetTime indicates when fault event has occured (delta events) or when fault has been set on (normal events). - eventSeverity reports the severity level of the event. - eventInstanceType indicates what kind of object is faulty. - eventInstanceId specifies what instance is faulty. - eventInstanceName may contain textual description for the faulty object. - eventServAffective specifies whether the event is immediately service affcetive. - eventDescription reports possible additional information about the event. - trapPersistence tells whether this event is a delta or normal event. - trapSenderNodeId specifies the node ID of the sending network element if configuring it is supported for the network element, otherwise 0. - sysObjectID specifies what kind of equipment reports the fault event. For more information see the eventTable specification""", }, # notification "eventClearedTrap" : { "nodetype" : "notification", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.37.2.2", "status" : "current", "objects" : { "eventSeqNum" : { "nodetype" : "object", "module" : "ZYXEL-GS4012F-MIB" }, "eventEventId" : { "nodetype" : "object", "module" : "ZYXEL-GS4012F-MIB" }, "eventSetTime" : { "nodetype" : "object", "module" : "ZYXEL-GS4012F-MIB" }, "eventInstanceType" : { "nodetype" : "object", "module" : "ZYXEL-GS4012F-MIB" }, "eventInstanceId" : { "nodetype" : "object", "module" : "ZYXEL-GS4012F-MIB" }, "trapRefSeqNum" : { "nodetype" : "object", "module" : "ZYXEL-GS4012F-MIB" }, "trapSenderNodeId" : { "nodetype" : "object", "module" : "ZYXEL-GS4012F-MIB" }, "sysObjectID" : { "nodetype" : "object", "module" : "ZYXEL-GS4012F-MIB" }, }, "description" : """This trap is used to inform network management system that a normal type fault event has been cleared (state set off). Objects are used as follows: - eventSeqNum is the sequence number of the this clearing event. Note that the sequence number of the cleared event is reported in the trapRefSeqNum object. - eventEventId specifies what event has been cleared. - eventSetTime indicates when fault event has been cleared. - eventInstanceType indicates what kind of object has been faulty. - eventInstanceId specifies what instance has been faulty. - trapRefSeqNum specifies the sequence number of the cleared event (i.e. the sequence number was assigned for the event in the events table). - trapSenderNodeId specifies the node ID of the sending network element if configuring it is supported for the network element, otherwise 0. - sysObjectID specifies what kind of equipment reports the clearing event. For more information see the eventTable specification""", }, # notification "newRoot" : { "nodetype" : "notification", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.42.2.1", "status" : "current", "objects" : { "mrstpBridgeIndex" : { "nodetype" : "object", "module" : "ZYXEL-GS4012F-MIB" }, }, "description" : """""", }, # notification "topologyChange" : { "nodetype" : "notification", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.42.2.2", "status" : "current", "objects" : { "mrstpBridgeIndex" : { "nodetype" : "object", "module" : "ZYXEL-GS4012F-MIB" }, }, "description" : """""", }, # notification "newRoot" : { "nodetype" : "notification", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.70.1", "status" : "current", "objects" : { "mstpXstId" : { "nodetype" : "object", "module" : "ZYXEL-GS4012F-MIB" }, }, "description" : """""", }, # notification "topologyChange" : { "nodetype" : "notification", "moduleName" : "ZYXEL-GS4012F-MIB", "oid" : "1.3.6.1.4.1.890.1.5.8.20.107.70.2", "status" : "current", "objects" : { "mstpXstId" : { "nodetype" : "object", "module" : "ZYXEL-GS4012F-MIB" }, }, "description" : """""", }, # notification }, # notifications }
[]
yutiansut/RxPY
rx/concurrency/timeoutscheduler.py
c3bbba77f9ebd7706c949141725e220096deabd4
import logging from threading import Timer from datetime import timedelta from rx.core import Scheduler, Disposable from rx.disposables import SingleAssignmentDisposable, CompositeDisposable from .schedulerbase import SchedulerBase log = logging.getLogger("Rx") class TimeoutScheduler(SchedulerBase): """A scheduler that schedules work via a timed callback based upon platform.""" def schedule(self, action, state=None): """Schedules an action to be executed.""" disposable = SingleAssignmentDisposable() def interval(): disposable.disposable = self.invoke_action(action, state) timer = Timer(0, interval) timer.setDaemon(True) timer.start() def dispose(): timer.cancel() return CompositeDisposable(disposable, Disposable.create(dispose)) def schedule_relative(self, duetime, action, state=None): """Schedules an action to be executed after duetime.""" scheduler = self timespan = self.to_timedelta(duetime) if timespan == timedelta(0): return scheduler.schedule(action, state) disposable = SingleAssignmentDisposable() def interval(): disposable.disposable = self.invoke_action(action, state) seconds = timespan.total_seconds() log.debug("timeout: %s", seconds) timer = Timer(seconds, interval) timer.setDaemon(True) timer.start() def dispose(): timer.cancel() return CompositeDisposable(disposable, Disposable.create(dispose)) def schedule_absolute(self, duetime, action, state=None): """Schedules an action to be executed after duetime.""" duetime = self.to_datetime(duetime) return self.schedule_relative(duetime - self.now, action, state) def _start_timer(self, period, action): timer = Timer(period, action) timer.setDaemon(True) timer.start() return timer timeout_scheduler = TimeoutScheduler()
[((241, 264), 'logging.getLogger', 'logging.getLogger', (['"""Rx"""'], {}), "('Rx')\n", (258, 264), False, 'import logging\n'), ((507, 535), 'rx.disposables.SingleAssignmentDisposable', 'SingleAssignmentDisposable', ([], {}), '()\n', (533, 535), False, 'from rx.disposables import SingleAssignmentDisposable, CompositeDisposable\n'), ((647, 665), 'threading.Timer', 'Timer', (['(0)', 'interval'], {}), '(0, interval)\n', (652, 665), False, 'from threading import Timer\n'), ((1155, 1183), 'rx.disposables.SingleAssignmentDisposable', 'SingleAssignmentDisposable', ([], {}), '()\n', (1181, 1183), False, 'from rx.disposables import SingleAssignmentDisposable, CompositeDisposable\n'), ((1381, 1405), 'threading.Timer', 'Timer', (['seconds', 'interval'], {}), '(seconds, interval)\n', (1386, 1405), False, 'from threading import Timer\n'), ((1891, 1912), 'threading.Timer', 'Timer', (['period', 'action'], {}), '(period, action)\n', (1896, 1912), False, 'from threading import Timer\n'), ((816, 842), 'rx.core.Disposable.create', 'Disposable.create', (['dispose'], {}), '(dispose)\n', (833, 842), False, 'from rx.core import Scheduler, Disposable\n'), ((1066, 1078), 'datetime.timedelta', 'timedelta', (['(0)'], {}), '(0)\n', (1075, 1078), False, 'from datetime import timedelta\n'), ((1557, 1583), 'rx.core.Disposable.create', 'Disposable.create', (['dispose'], {}), '(dispose)\n', (1574, 1583), False, 'from rx.core import Scheduler, Disposable\n')]
edomin/vgazer
vgazer/version/custom_checker/inputproto.py
3ffe64f2517cbfbe0b0292bacc9fbf7391687e76
import requests from bs4 import BeautifulSoup def Check(auth, mirrors): response = requests.get("https://www.x.org/releases/individual/proto/") html = response.content.decode("utf-8") parsedHtml = BeautifulSoup(html, "html.parser") links = parsedHtml.find_all("a") maxVersionMajor = -1 maxVersionMinor = -1 maxVersionPatch = -1 maxVersionSubpatch = -1 for link in links: if ("inputproto-" in link.text and ".tar.gz" in link.text and ".sig" not in link.text): version = link.text.split("-")[1].split(".tar.gz")[0].split(".") versionMajor = int(version[0]) versionMinor = int(version[1]) if len(version) == 3: versionPatch = int(version[2]) versionSubpatch = 0 elif len(version) == 2: versionPatch = 0 versionSubpatch = 0 else: versionPatch = int(version[2]) versionSubpatch = int(version[3]) if versionMajor > maxVersionMajor: maxVersionMajor = versionMajor maxVersionMinor = versionMinor maxVersionPatch = versionPatch maxVersionSubpatch = versionSubpatch versionText = link.text.split("-")[1].split(".tar.gz")[0] elif (versionMajor == maxVersionMajor and versionMinor > maxVersionMinor): maxVersionMinor = versionMinor maxVersionPatch = versionPatch maxVersionSubpatch = versionSubpatch versionText = link.text.split("-")[1].split(".tar.gz")[0] elif (versionMajor == maxVersionMajor and versionMinor == maxVersionMinor and versionPatch > maxVersionPatch): maxVersionPatch = versionPatch maxVersionSubpatch = versionSubpatch versionText = link.text.split("-")[1].split(".tar.gz")[0] elif (versionMajor == maxVersionMajor and versionMinor == maxVersionMinor and versionPatch == maxVersionPatch and versionSubpatch > maxVersionSubpatch): maxVersionSubpatch = versionSubpatch versionText = link.text.split("-")[1].split(".tar.gz")[0] return versionText
[((88, 148), 'requests.get', 'requests.get', (['"""https://www.x.org/releases/individual/proto/"""'], {}), "('https://www.x.org/releases/individual/proto/')\n", (100, 148), False, 'import requests\n'), ((210, 244), 'bs4.BeautifulSoup', 'BeautifulSoup', (['html', '"""html.parser"""'], {}), "(html, 'html.parser')\n", (223, 244), False, 'from bs4 import BeautifulSoup\n')]
briangrahamww/pandas-profiling
src/pandas_profiling/model/summary_helpers.py
62f8e3fd81720d444041069191c4aacd03d79ad5
import os import string from collections import Counter from datetime import datetime from functools import partial from pathlib import Path from typing import Optional import numpy as np import pandas as pd from scipy.stats.stats import chisquare from tangled_up_in_unicode import block, block_abbr, category, category_long, script from pandas_profiling.config import Settings from pandas_profiling.model.summary_helpers_image import ( extract_exif, hash_image, is_image_truncated, open_image, ) def mad(arr: np.ndarray) -> np.ndarray: """Median Absolute Deviation: a "Robust" version of standard deviation. Indices variability of the sample. https://en.wikipedia.org/wiki/Median_absolute_deviation """ return np.median(np.abs(arr - np.median(arr))) def named_aggregate_summary(series: pd.Series, key: str) -> dict: summary = { f"max_{key}": np.max(series), f"mean_{key}": np.mean(series), f"median_{key}": np.median(series), f"min_{key}": np.min(series), } return summary def length_summary(series: pd.Series, summary: dict = None) -> dict: if summary is None: summary = {} length = series.str.len() summary.update({"length": length}) summary.update(named_aggregate_summary(length, "length")) return summary def file_summary(series: pd.Series) -> dict: """ Args: series: series to summarize Returns: """ # Transform stats = series.map(lambda x: os.stat(x)) def convert_datetime(x: float) -> str: return datetime.fromtimestamp(x).strftime("%Y-%m-%d %H:%M:%S") # Transform some more summary = { "file_size": stats.map(lambda x: x.st_size), "file_created_time": stats.map(lambda x: x.st_ctime).map(convert_datetime), "file_accessed_time": stats.map(lambda x: x.st_atime).map(convert_datetime), "file_modified_time": stats.map(lambda x: x.st_mtime).map(convert_datetime), } return summary def path_summary(series: pd.Series) -> dict: """ Args: series: series to summarize Returns: """ # TODO: optimize using value counts summary = { "common_prefix": os.path.commonprefix(series.values.tolist()) or "No common prefix", "stem_counts": series.map(lambda x: os.path.splitext(x)[0]).value_counts(), "suffix_counts": series.map(lambda x: os.path.splitext(x)[1]).value_counts(), "name_counts": series.map(lambda x: os.path.basename(x)).value_counts(), "parent_counts": series.map(lambda x: os.path.dirname(x)).value_counts(), "anchor_counts": series.map(lambda x: os.path.splitdrive(x)[0]).value_counts(), } summary["n_stem_unique"] = len(summary["stem_counts"]) summary["n_suffix_unique"] = len(summary["suffix_counts"]) summary["n_name_unique"] = len(summary["name_counts"]) summary["n_parent_unique"] = len(summary["parent_counts"]) summary["n_anchor_unique"] = len(summary["anchor_counts"]) return summary def url_summary(series: pd.Series) -> dict: """ Args: series: series to summarize Returns: """ summary = { "scheme_counts": series.map(lambda x: x.scheme).value_counts(), "netloc_counts": series.map(lambda x: x.netloc).value_counts(), "path_counts": series.map(lambda x: x.path).value_counts(), "query_counts": series.map(lambda x: x.query).value_counts(), "fragment_counts": series.map(lambda x: x.fragment).value_counts(), } return summary def count_duplicate_hashes(image_descriptions: dict) -> int: """ Args: image_descriptions: Returns: """ counts = pd.Series( [x["hash"] for x in image_descriptions if "hash" in x] ).value_counts() return counts.sum() - len(counts) def extract_exif_series(image_exifs: list) -> dict: """ Args: image_exifs: Returns: """ exif_keys = [] exif_values: dict = {} for image_exif in image_exifs: # Extract key exif_keys.extend(list(image_exif.keys())) # Extract values per key for exif_key, exif_val in image_exif.items(): if exif_key not in exif_values: exif_values[exif_key] = [] exif_values[exif_key].append(exif_val) series = {"exif_keys": pd.Series(exif_keys, dtype=object).value_counts().to_dict()} for k, v in exif_values.items(): series[k] = pd.Series(v).value_counts() return series def extract_image_information( path: Path, exif: bool = False, hash: bool = False ) -> dict: """Extracts all image information per file, as opening files is slow Args: path: Path to the image exif: extract exif information hash: calculate hash (for duplicate detection) Returns: A dict containing image information """ information: dict = {} image = open_image(path) information["opened"] = image is not None if image is not None: information["truncated"] = is_image_truncated(image) if not information["truncated"]: information["size"] = image.size if exif: information["exif"] = extract_exif(image) if hash: information["hash"] = hash_image(image) return information def image_summary(series: pd.Series, exif: bool = False, hash: bool = False) -> dict: """ Args: series: series to summarize exif: extract exif information hash: calculate hash (for duplicate detection) Returns: """ image_information = series.apply( partial(extract_image_information, exif=exif, hash=hash) ) summary = { "n_truncated": sum( [1 for x in image_information if "truncated" in x and x["truncated"]] ), "image_dimensions": pd.Series( [x["size"] for x in image_information if "size" in x], name="image_dimensions", ), } image_widths = summary["image_dimensions"].map(lambda x: x[0]) summary.update(named_aggregate_summary(image_widths, "width")) image_heights = summary["image_dimensions"].map(lambda x: x[1]) summary.update(named_aggregate_summary(image_heights, "height")) image_areas = image_widths * image_heights summary.update(named_aggregate_summary(image_areas, "area")) if hash: summary["n_duplicate_hash"] = count_duplicate_hashes(image_information) if exif: exif_series = extract_exif_series( [x["exif"] for x in image_information if "exif" in x] ) summary["exif_keys_counts"] = exif_series["exif_keys"] summary["exif_data"] = exif_series return summary def get_character_counts(series: pd.Series) -> Counter: """Function to return the character counts Args: series: the Series to process Returns: A dict with character counts """ return Counter(series.str.cat()) def counter_to_series(counter: Counter) -> pd.Series: if not counter: return pd.Series([], dtype=object) counter_as_tuples = counter.most_common() items, counts = zip(*counter_as_tuples) return pd.Series(counts, index=items) def unicode_summary(series: pd.Series) -> dict: # Unicode Character Summaries (category and script name) character_counts = get_character_counts(series) character_counts_series = counter_to_series(character_counts) char_to_block = {key: block(key) for key in character_counts.keys()} char_to_category_short = {key: category(key) for key in character_counts.keys()} char_to_script = {key: script(key) for key in character_counts.keys()} summary = { "n_characters": len(character_counts_series), "character_counts": character_counts_series, "category_alias_values": { key: category_long(value) for key, value in char_to_category_short.items() }, "block_alias_values": { key: block_abbr(value) for key, value in char_to_block.items() }, } # Retrieve original distribution block_alias_counts: Counter = Counter() per_block_char_counts: dict = { k: Counter() for k in summary["block_alias_values"].values() } for char, n_char in character_counts.items(): block_name = summary["block_alias_values"][char] block_alias_counts[block_name] += n_char per_block_char_counts[block_name][char] = n_char summary["block_alias_counts"] = counter_to_series(block_alias_counts) summary["block_alias_char_counts"] = { k: counter_to_series(v) for k, v in per_block_char_counts.items() } script_counts: Counter = Counter() per_script_char_counts: dict = {k: Counter() for k in char_to_script.values()} for char, n_char in character_counts.items(): script_name = char_to_script[char] script_counts[script_name] += n_char per_script_char_counts[script_name][char] = n_char summary["script_counts"] = counter_to_series(script_counts) summary["script_char_counts"] = { k: counter_to_series(v) for k, v in per_script_char_counts.items() } category_alias_counts: Counter = Counter() per_category_alias_char_counts: dict = { k: Counter() for k in summary["category_alias_values"].values() } for char, n_char in character_counts.items(): category_alias_name = summary["category_alias_values"][char] category_alias_counts[category_alias_name] += n_char per_category_alias_char_counts[category_alias_name][char] += n_char summary["category_alias_counts"] = counter_to_series(category_alias_counts) summary["category_alias_char_counts"] = { k: counter_to_series(v) for k, v in per_category_alias_char_counts.items() } # Unique counts summary["n_category"] = len(summary["category_alias_counts"]) summary["n_scripts"] = len(summary["script_counts"]) summary["n_block_alias"] = len(summary["block_alias_counts"]) if len(summary["category_alias_counts"]) > 0: summary["category_alias_counts"].index = summary[ "category_alias_counts" ].index.str.replace("_", " ") return summary def histogram_compute( config: Settings, finite_values: np.ndarray, n_unique: int, name: str = "histogram", weights: Optional[np.ndarray] = None, ) -> dict: stats = {} bins = config.plot.histogram.bins bins_arg = "auto" if bins == 0 else min(bins, n_unique) stats[name] = np.histogram(finite_values, bins=bins_arg, weights=weights) max_bins = config.plot.histogram.max_bins if bins_arg == "auto" and len(stats[name][1]) > max_bins: stats[name] = np.histogram(finite_values, bins=max_bins, weights=None) return stats def chi_square( values: Optional[np.ndarray] = None, histogram: Optional[np.ndarray] = None ) -> dict: if histogram is None: histogram, _ = np.histogram(values, bins="auto") return dict(chisquare(histogram)._asdict()) def word_summary(series: pd.Series) -> dict: # TODO: preprocess (stopwords) # TODO: configurable lowercase/punctuation etc. word_lists = series.str.lower().str.split() words = word_lists.explode() words = words.str.strip(string.punctuation) return {"word_counts": words.value_counts()}
[((5143, 5159), 'pandas_profiling.model.summary_helpers_image.open_image', 'open_image', (['path'], {}), '(path)\n', (5153, 5159), False, 'from pandas_profiling.model.summary_helpers_image import extract_exif, hash_image, is_image_truncated, open_image\n'), ((7511, 7541), 'pandas.Series', 'pd.Series', (['counts'], {'index': 'items'}), '(counts, index=items)\n', (7520, 7541), True, 'import pandas as pd\n'), ((8482, 8491), 'collections.Counter', 'Counter', ([], {}), '()\n', (8489, 8491), False, 'from collections import Counter\n'), ((9056, 9065), 'collections.Counter', 'Counter', ([], {}), '()\n', (9063, 9065), False, 'from collections import Counter\n'), ((9578, 9587), 'collections.Counter', 'Counter', ([], {}), '()\n', (9585, 9587), False, 'from collections import Counter\n'), ((10939, 10998), 'numpy.histogram', 'np.histogram', (['finite_values'], {'bins': 'bins_arg', 'weights': 'weights'}), '(finite_values, bins=bins_arg, weights=weights)\n', (10951, 10998), True, 'import numpy as np\n'), ((929, 943), 'numpy.max', 'np.max', (['series'], {}), '(series)\n', (935, 943), True, 'import numpy as np\n'), ((969, 984), 'numpy.mean', 'np.mean', (['series'], {}), '(series)\n', (976, 984), True, 'import numpy as np\n'), ((1012, 1029), 'numpy.median', 'np.median', (['series'], {}), '(series)\n', (1021, 1029), True, 'import numpy as np\n'), ((1054, 1068), 'numpy.min', 'np.min', (['series'], {}), '(series)\n', (1060, 1068), True, 'import numpy as np\n'), ((5270, 5295), 'pandas_profiling.model.summary_helpers_image.is_image_truncated', 'is_image_truncated', (['image'], {}), '(image)\n', (5288, 5295), False, 'from pandas_profiling.model.summary_helpers_image import extract_exif, hash_image, is_image_truncated, open_image\n'), ((5893, 5949), 'functools.partial', 'partial', (['extract_image_information'], {'exif': 'exif', 'hash': 'hash'}), '(extract_image_information, exif=exif, hash=hash)\n', (5900, 5949), False, 'from functools import partial\n'), ((6127, 6221), 'pandas.Series', 'pd.Series', (["[x['size'] for x in image_information if 'size' in x]"], {'name': '"""image_dimensions"""'}), "([x['size'] for x in image_information if 'size' in x], name=\n 'image_dimensions')\n", (6136, 6221), True, 'import pandas as pd\n'), ((7377, 7404), 'pandas.Series', 'pd.Series', (['[]'], {'dtype': 'object'}), '([], dtype=object)\n', (7386, 7404), True, 'import pandas as pd\n'), ((7808, 7818), 'tangled_up_in_unicode.block', 'block', (['key'], {}), '(key)\n', (7813, 7818), False, 'from tangled_up_in_unicode import block, block_abbr, category, category_long, script\n'), ((7891, 7904), 'tangled_up_in_unicode.category', 'category', (['key'], {}), '(key)\n', (7899, 7904), False, 'from tangled_up_in_unicode import block, block_abbr, category, category_long, script\n'), ((7969, 7980), 'tangled_up_in_unicode.script', 'script', (['key'], {}), '(key)\n', (7975, 7980), False, 'from tangled_up_in_unicode import block, block_abbr, category, category_long, script\n'), ((8541, 8550), 'collections.Counter', 'Counter', ([], {}), '()\n', (8548, 8550), False, 'from collections import Counter\n'), ((9106, 9115), 'collections.Counter', 'Counter', ([], {}), '()\n', (9113, 9115), False, 'from collections import Counter\n'), ((9646, 9655), 'collections.Counter', 'Counter', ([], {}), '()\n', (9653, 9655), False, 'from collections import Counter\n'), ((11134, 11190), 'numpy.histogram', 'np.histogram', (['finite_values'], {'bins': 'max_bins', 'weights': 'None'}), '(finite_values, bins=max_bins, weights=None)\n', (11146, 11190), True, 'import numpy as np\n'), ((11376, 11409), 'numpy.histogram', 'np.histogram', (['values'], {'bins': '"""auto"""'}), "(values, bins='auto')\n", (11388, 11409), True, 'import numpy as np\n'), ((1569, 1579), 'os.stat', 'os.stat', (['x'], {}), '(x)\n', (1576, 1579), False, 'import os\n'), ((3853, 3918), 'pandas.Series', 'pd.Series', (["[x['hash'] for x in image_descriptions if 'hash' in x]"], {}), "([x['hash'] for x in image_descriptions if 'hash' in x])\n", (3862, 3918), True, 'import pandas as pd\n'), ((8199, 8219), 'tangled_up_in_unicode.category_long', 'category_long', (['value'], {}), '(value)\n', (8212, 8219), False, 'from tangled_up_in_unicode import block, block_abbr, category, category_long, script\n'), ((8332, 8349), 'tangled_up_in_unicode.block_abbr', 'block_abbr', (['value'], {}), '(value)\n', (8342, 8349), False, 'from tangled_up_in_unicode import block, block_abbr, category, category_long, script\n'), ((801, 815), 'numpy.median', 'np.median', (['arr'], {}), '(arr)\n', (810, 815), True, 'import numpy as np\n'), ((1643, 1668), 'datetime.datetime.fromtimestamp', 'datetime.fromtimestamp', (['x'], {}), '(x)\n', (1665, 1668), False, 'from datetime import datetime\n'), ((4663, 4675), 'pandas.Series', 'pd.Series', (['v'], {}), '(v)\n', (4672, 4675), True, 'import pandas as pd\n'), ((5445, 5464), 'pandas_profiling.model.summary_helpers_image.extract_exif', 'extract_exif', (['image'], {}), '(image)\n', (5457, 5464), False, 'from pandas_profiling.model.summary_helpers_image import extract_exif, hash_image, is_image_truncated, open_image\n'), ((5526, 5543), 'pandas_profiling.model.summary_helpers_image.hash_image', 'hash_image', (['image'], {}), '(image)\n', (5536, 5543), False, 'from pandas_profiling.model.summary_helpers_image import extract_exif, hash_image, is_image_truncated, open_image\n'), ((11427, 11447), 'scipy.stats.stats.chisquare', 'chisquare', (['histogram'], {}), '(histogram)\n', (11436, 11447), False, 'from scipy.stats.stats import chisquare\n'), ((2599, 2618), 'os.path.basename', 'os.path.basename', (['x'], {}), '(x)\n', (2615, 2618), False, 'import os\n'), ((2683, 2701), 'os.path.dirname', 'os.path.dirname', (['x'], {}), '(x)\n', (2698, 2701), False, 'import os\n'), ((4541, 4575), 'pandas.Series', 'pd.Series', (['exif_keys'], {'dtype': 'object'}), '(exif_keys, dtype=object)\n', (4550, 4575), True, 'import pandas as pd\n'), ((2427, 2446), 'os.path.splitext', 'os.path.splitext', (['x'], {}), '(x)\n', (2443, 2446), False, 'import os\n'), ((2514, 2533), 'os.path.splitext', 'os.path.splitext', (['x'], {}), '(x)\n', (2530, 2533), False, 'import os\n'), ((2766, 2787), 'os.path.splitdrive', 'os.path.splitdrive', (['x'], {}), '(x)\n', (2784, 2787), False, 'import os\n')]
ZephyrII/competitive_colaboration
inverse_warp.py
a557d1e23ef2c0b8e3794f085a79bfffb860f9df
# Author: Anurag Ranjan # Copyright (c) 2019, Anurag Ranjan # All rights reserved. # based on github.com/ClementPinard/SfMLearner-Pytorch from __future__ import division import torch from torch.autograd import Variable pixel_coords = None def set_id_grid(depth): global pixel_coords b, h, w = depth.size() i_range = Variable(torch.arange(0, h).view(1, h, 1).expand(1,h,w)).type_as(depth) # [1, H, W] j_range = Variable(torch.arange(0, w).view(1, 1, w).expand(1,h,w)).type_as(depth) # [1, H, W] ones = Variable(torch.ones(1,h,w)).type_as(depth) pixel_coords = torch.stack((j_range, i_range, ones), dim=1) # [1, 3, H, W] def check_sizes(input, input_name, expected): condition = [input.ndimension() == len(expected)] for i,size in enumerate(expected): if size.isdigit(): condition.append(input.size(i) == int(size)) assert(all(condition)), "wrong size for {}, expected {}, got {}".format(input_name, 'x'.join(expected), list(input.size())) def pixel2cam(depth, intrinsics_inv): global pixel_coords """Transform coordinates in the pixel frame to the camera frame. Args: depth: depth maps -- [B, H, W] intrinsics_inv: intrinsics_inv matrix for each element of batch -- [B, 3, 3] Returns: array of (u,v,1) cam coordinates -- [B, 3, H, W] """ b, h, w = depth.size() if (pixel_coords is None) or pixel_coords.size(2) != h or pixel_coords.size(3) != w: set_id_grid(depth) current_pixel_coords = pixel_coords[:,:,:h,:w].expand(b,3,h,w).contiguous().view(b, 3, -1) # [B, 3, H*W] cam_coords = intrinsics_inv.bmm(current_pixel_coords).view(b, 3, h, w) return cam_coords * depth.unsqueeze(1) def cam2pixel(cam_coords, proj_c2p_rot, proj_c2p_tr, padding_mode): """Transform coordinates in the camera frame to the pixel frame. Args: cam_coords: pixel coordinates defined in the first camera coordinates system -- [B, 4, H, W] proj_c2p_rot: rotation matrix of cameras -- [B, 3, 4] proj_c2p_tr: translation vectors of cameras -- [B, 3, 1] Returns: array of [-1,1] coordinates -- [B, 2, H, W] """ b, _, h, w = cam_coords.size() cam_coords_flat = cam_coords.view(b, 3, -1) # [B, 3, H*W] if proj_c2p_rot is not None: pcoords = proj_c2p_rot.bmm(cam_coords_flat) else: pcoords = cam_coords_flat if proj_c2p_tr is not None: pcoords = pcoords + proj_c2p_tr # [B, 3, H*W] X = pcoords[:, 0] Y = pcoords[:, 1] Z = pcoords[:, 2].clamp(min=1e-3) X_norm = 2*(X / Z)/(w-1) - 1 # Normalized, -1 if on extreme left, 1 if on extreme right (x = w-1) [B, H*W] Y_norm = 2*(Y / Z)/(h-1) - 1 # Idem [B, H*W] if padding_mode == 'zeros': X_mask = ((X_norm > 1)+(X_norm < -1)).detach() X_norm[X_mask] = 2 # make sure that no point in warped image is a combinaison of im and gray Y_mask = ((Y_norm > 1)+(Y_norm < -1)).detach() Y_norm[Y_mask] = 2 pixel_coords = torch.stack([X_norm, Y_norm], dim=2) # [B, H*W, 2] return pixel_coords.view(b,h,w,2) def euler2mat(angle): """Convert euler angles to rotation matrix. Reference: https://github.com/pulkitag/pycaffe-utils/blob/master/rot_utils.py#L174 Args: angle: rotation angle along 3 axis (in radians) -- size = [B, 3] Returns: Rotation matrix corresponding to the euler angles -- size = [B, 3, 3] """ B = angle.size(0) x, y, z = angle[:,0], angle[:,1], angle[:,2] cosz = torch.cos(z) sinz = torch.sin(z) zeros = z.detach()*0 ones = zeros.detach()+1 zmat = torch.stack([cosz, -sinz, zeros, sinz, cosz, zeros, zeros, zeros, ones], dim=1).view(B, 3, 3) cosy = torch.cos(y) siny = torch.sin(y) ymat = torch.stack([cosy, zeros, siny, zeros, ones, zeros, -siny, zeros, cosy], dim=1).view(B, 3, 3) cosx = torch.cos(x) sinx = torch.sin(x) xmat = torch.stack([ones, zeros, zeros, zeros, cosx, -sinx, zeros, sinx, cosx], dim=1).view(B, 3, 3) rotMat = xmat.bmm(ymat).bmm(zmat) return rotMat def quat2mat(quat): """Convert quaternion coefficients to rotation matrix. Args: quat: first three coeff of quaternion of rotation. fourht is then computed to have a norm of 1 -- size = [B, 3] Returns: Rotation matrix corresponding to the quaternion -- size = [B, 3, 3] """ norm_quat = torch.cat([quat[:,:1].detach()*0 + 1, quat], dim=1) norm_quat = norm_quat/norm_quat.norm(p=2, dim=1, keepdim=True) w, x, y, z = norm_quat[:,0], norm_quat[:,1], norm_quat[:,2], norm_quat[:,3] B = quat.size(0) w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2) wx, wy, wz = w*x, w*y, w*z xy, xz, yz = x*y, x*z, y*z rotMat = torch.stack([w2 + x2 - y2 - z2, 2*xy - 2*wz, 2*wy + 2*xz, 2*wz + 2*xy, w2 - x2 + y2 - z2, 2*yz - 2*wx, 2*xz - 2*wy, 2*wx + 2*yz, w2 - x2 - y2 + z2], dim=1).view(B, 3, 3) return rotMat def pose_vec2mat(vec, rotation_mode='euler'): """ Convert 6DoF parameters to transformation matrix. Args:s vec: 6DoF parameters in the order of tx, ty, tz, rx, ry, rz -- [B, 6] Returns: A transformation matrix -- [B, 3, 4] """ translation = vec[:, :3].unsqueeze(-1) # [B, 3, 1] rot = vec[:,3:] if rotation_mode == 'euler': rot_mat = euler2mat(rot) # [B, 3, 3] elif rotation_mode == 'quat': rot_mat = quat2mat(rot) # [B, 3, 3] transform_mat = torch.cat([rot_mat, translation], dim=2) # [B, 3, 4] return transform_mat def flow_warp(img, flow, padding_mode='zeros'): """ Inverse warp a source image to the target image plane. Args: img: the source image (where to sample pixels) -- [B, 3, H, W] flow: flow map of the target image -- [B, 2, H, W] Returns: Source image warped to the target image plane """ check_sizes(img, 'img', 'BCHW') check_sizes(flow, 'flow', 'B2HW') bs, _, h, w = flow.size() u = flow[:,0,:,:] v = flow[:,1,:,:] grid_x = Variable(torch.arange(0, w).view(1, 1, w).expand(1,h,w), requires_grad=False).type_as(u).expand_as(u) # [bs, H, W] grid_y = Variable(torch.arange(0, h).view(1, h, 1).expand(1,h,w), requires_grad=False).type_as(v).expand_as(v) # [bs, H, W] X = grid_x + u Y = grid_y + v X = 2*(X/(w-1.0) - 0.5) Y = 2*(Y/(h-1.0) - 0.5) grid_tf = torch.stack((X,Y), dim=3) img_tf = torch.nn.functional.grid_sample(img, grid_tf, padding_mode=padding_mode) return img_tf def pose2flow(depth, pose, intrinsics, intrinsics_inv, rotation_mode='euler', padding_mode=None): """ Converts pose parameters to rigid optical flow """ check_sizes(depth, 'depth', 'BHW') check_sizes(pose, 'pose', 'B6') check_sizes(intrinsics, 'intrinsics', 'B33') check_sizes(intrinsics_inv, 'intrinsics', 'B33') assert(intrinsics_inv.size() == intrinsics.size()) bs, h, w = depth.size() grid_x = Variable(torch.arange(0, w).view(1, 1, w).expand(1,h,w), requires_grad=False).type_as(depth).expand_as(depth) # [bs, H, W] grid_y = Variable(torch.arange(0, h).view(1, h, 1).expand(1,h,w), requires_grad=False).type_as(depth).expand_as(depth) # [bs, H, W] cam_coords = pixel2cam(depth, intrinsics_inv) # [B,3,H,W] pose_mat = pose_vec2mat(pose, rotation_mode) # [B,3,4] # Get projection matrix for tgt camera frame to source pixel frame proj_cam_to_src_pixel = intrinsics.bmm(pose_mat) # [B, 3, 4] src_pixel_coords = cam2pixel(cam_coords, proj_cam_to_src_pixel[:,:,:3], proj_cam_to_src_pixel[:,:,-1:], padding_mode) # [B,H,W,2] X = (w-1)*(src_pixel_coords[:,:,:,0]/2.0 + 0.5) - grid_x Y = (h-1)*(src_pixel_coords[:,:,:,1]/2.0 + 0.5) - grid_y return torch.stack((X,Y), dim=1) def flow2oob(flow): check_sizes(flow, 'flow', 'B2HW') bs, _, h, w = flow.size() u = flow[:,0,:,:] v = flow[:,1,:,:] grid_x = Variable(torch.arange(0, w).view(1, 1, w).expand(1,h,w), requires_grad=False).type_as(u).expand_as(u) # [bs, H, W] grid_y = Variable(torch.arange(0, h).view(1, h, 1).expand(1,h,w), requires_grad=False).type_as(v).expand_as(v) # [bs, H, W] X = grid_x + u Y = grid_y + v X = 2*(X/(w-1.0) - 0.5) Y = 2*(Y/(h-1.0) - 0.5) oob = (X.abs()>1).add(Y.abs()>1)>0 return oob def occlusion_mask(grid, depth): check_sizes(img, 'grid', 'BHW2') check_sizes(depth, 'depth', 'BHW') mask = grid return mask def inverse_warp(img, depth, pose, intrinsics, intrinsics_inv, rotation_mode='euler', padding_mode='zeros'): """ Inverse warp a source image to the target image plane. Args: img: the source image (where to sample pixels) -- [B, 3, H, W] depth: depth map of the target image -- [B, H, W] pose: 6DoF pose parameters from target to source -- [B, 6] intrinsics: camera intrinsic matrix -- [B, 3, 3] intrinsics_inv: inverse of the intrinsic matrix -- [B, 3, 3] Returns: Source image warped to the target image plane """ check_sizes(img, 'img', 'B3HW') check_sizes(depth, 'depth', 'BHW') check_sizes(pose, 'pose', 'B6') check_sizes(intrinsics, 'intrinsics', 'B33') check_sizes(intrinsics_inv, 'intrinsics', 'B33') assert(intrinsics_inv.size() == intrinsics.size()) batch_size, _, img_height, img_width = img.size() cam_coords = pixel2cam(depth, intrinsics_inv) # [B,3,H,W] pose_mat = pose_vec2mat(pose, rotation_mode) # [B,3,4] # Get projection matrix for tgt camera frame to source pixel frame proj_cam_to_src_pixel = intrinsics.bmm(pose_mat) # [B, 3, 4] src_pixel_coords = cam2pixel(cam_coords, proj_cam_to_src_pixel[:,:,:3], proj_cam_to_src_pixel[:,:,-1:], padding_mode) # [B,H,W,2] projected_img = torch.nn.functional.grid_sample(img, src_pixel_coords, padding_mode=padding_mode) return projected_img
[((590, 634), 'torch.stack', 'torch.stack', (['(j_range, i_range, ones)'], {'dim': '(1)'}), '((j_range, i_range, ones), dim=1)\n', (601, 634), False, 'import torch\n'), ((3022, 3058), 'torch.stack', 'torch.stack', (['[X_norm, Y_norm]'], {'dim': '(2)'}), '([X_norm, Y_norm], dim=2)\n', (3033, 3058), False, 'import torch\n'), ((3539, 3551), 'torch.cos', 'torch.cos', (['z'], {}), '(z)\n', (3548, 3551), False, 'import torch\n'), ((3563, 3575), 'torch.sin', 'torch.sin', (['z'], {}), '(z)\n', (3572, 3575), False, 'import torch\n'), ((3797, 3809), 'torch.cos', 'torch.cos', (['y'], {}), '(y)\n', (3806, 3809), False, 'import torch\n'), ((3821, 3833), 'torch.sin', 'torch.sin', (['y'], {}), '(y)\n', (3830, 3833), False, 'import torch\n'), ((4003, 4015), 'torch.cos', 'torch.cos', (['x'], {}), '(x)\n', (4012, 4015), False, 'import torch\n'), ((4027, 4039), 'torch.sin', 'torch.sin', (['x'], {}), '(x)\n', (4036, 4039), False, 'import torch\n'), ((5697, 5737), 'torch.cat', 'torch.cat', (['[rot_mat, translation]'], {'dim': '(2)'}), '([rot_mat, translation], dim=2)\n', (5706, 5737), False, 'import torch\n'), ((6626, 6652), 'torch.stack', 'torch.stack', (['(X, Y)'], {'dim': '(3)'}), '((X, Y), dim=3)\n', (6637, 6652), False, 'import torch\n'), ((6665, 6737), 'torch.nn.functional.grid_sample', 'torch.nn.functional.grid_sample', (['img', 'grid_tf'], {'padding_mode': 'padding_mode'}), '(img, grid_tf, padding_mode=padding_mode)\n', (6696, 6737), False, 'import torch\n'), ((7992, 8018), 'torch.stack', 'torch.stack', (['(X, Y)'], {'dim': '(1)'}), '((X, Y), dim=1)\n', (8003, 8018), False, 'import torch\n'), ((10035, 10121), 'torch.nn.functional.grid_sample', 'torch.nn.functional.grid_sample', (['img', 'src_pixel_coords'], {'padding_mode': 'padding_mode'}), '(img, src_pixel_coords, padding_mode=\n padding_mode)\n', (10066, 10121), False, 'import torch\n'), ((3641, 3720), 'torch.stack', 'torch.stack', (['[cosz, -sinz, zeros, sinz, cosz, zeros, zeros, zeros, ones]'], {'dim': '(1)'}), '([cosz, -sinz, zeros, sinz, cosz, zeros, zeros, zeros, ones], dim=1)\n', (3652, 3720), False, 'import torch\n'), ((3846, 3925), 'torch.stack', 'torch.stack', (['[cosy, zeros, siny, zeros, ones, zeros, -siny, zeros, cosy]'], {'dim': '(1)'}), '([cosy, zeros, siny, zeros, ones, zeros, -siny, zeros, cosy], dim=1)\n', (3857, 3925), False, 'import torch\n'), ((4052, 4131), 'torch.stack', 'torch.stack', (['[ones, zeros, zeros, zeros, cosx, -sinx, zeros, sinx, cosx]'], {'dim': '(1)'}), '([ones, zeros, zeros, zeros, cosx, -sinx, zeros, sinx, cosx], dim=1)\n', (4063, 4131), False, 'import torch\n'), ((4937, 5125), 'torch.stack', 'torch.stack', (['[w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, 2 * wz + 2 * xy, w2 -\n x2 + y2 - z2, 2 * yz - 2 * wx, 2 * xz - 2 * wy, 2 * wx + 2 * yz, w2 -\n x2 - y2 + z2]'], {'dim': '(1)'}), '([w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, 2 * wz + \n 2 * xy, w2 - x2 + y2 - z2, 2 * yz - 2 * wx, 2 * xz - 2 * wy, 2 * wx + 2 *\n yz, w2 - x2 - y2 + z2], dim=1)\n', (4948, 5125), False, 'import torch\n'), ((536, 555), 'torch.ones', 'torch.ones', (['(1)', 'h', 'w'], {}), '(1, h, w)\n', (546, 555), False, 'import torch\n'), ((341, 359), 'torch.arange', 'torch.arange', (['(0)', 'h'], {}), '(0, h)\n', (353, 359), False, 'import torch\n'), ((440, 458), 'torch.arange', 'torch.arange', (['(0)', 'w'], {}), '(0, w)\n', (452, 458), False, 'import torch\n'), ((6280, 6298), 'torch.arange', 'torch.arange', (['(0)', 'w'], {}), '(0, w)\n', (6292, 6298), False, 'import torch\n'), ((6409, 6427), 'torch.arange', 'torch.arange', (['(0)', 'h'], {}), '(0, h)\n', (6421, 6427), False, 'import torch\n'), ((7208, 7226), 'torch.arange', 'torch.arange', (['(0)', 'w'], {}), '(0, w)\n', (7220, 7226), False, 'import torch\n'), ((7345, 7363), 'torch.arange', 'torch.arange', (['(0)', 'h'], {}), '(0, h)\n', (7357, 7363), False, 'import torch\n'), ((8175, 8193), 'torch.arange', 'torch.arange', (['(0)', 'w'], {}), '(0, w)\n', (8187, 8193), False, 'import torch\n'), ((8304, 8322), 'torch.arange', 'torch.arange', (['(0)', 'h'], {}), '(0, h)\n', (8316, 8322), False, 'import torch\n')]
ramonsanabria/lingvo
lingvo/core/egdd.py
f38dc3801d36ed08a4117d4a66e6f1f10f76909d
# Lint as: python2, python3 # Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Exponentiated Gradient Delta-Delta optimizer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: disable=g-direct-tensorflow-import from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import clip_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import linalg_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import state_ops from tensorflow.python.training import optimizer # pylint: enable=g-direct-tensorflow-import class EGDD(optimizer.Optimizer): """A version of GD Momentum with adaptive gain and learning rate. Exponentiated Gradient Delta-delta optimizer starts with a local gain of 1.0 for every weight and a lr_scale of 1.0 for all weights. The EGDD update rule applies: momentum <- mu * momentum + learning_rate * gain * grad var <- var - lr_scale * momentum The gain as well as the lr_scale are updated using the unnormalized exponentiated gradient algorithm [KW97]. Reference: TBA [KW97] Kivinen, J., & Warmuth, M. K. Exponentiated gradient versus gradient descent for linear predictors. Information and Computation, 1997. """ def __init__(self, learning_rate, momentum, beta=0.9, gain_learning_rate=0.01, scale_learning_rate=0.001, initial_gain=1.0, min_gain=1e-2, max_gain=1e2, initial_scale=1.0, min_scale=1e-1, max_scale=1e1, use_directions=True, use_signs=True, name="EGDD"): """Construct a new EG-DD optimizer. Args: learning_rate: A `Tensor` or a floating point value. The learning rate. momentum: A `Tensor` or a floating point value. beta: `float` decay rate of the gradient EMA. gain_learning_rate: `float` gain learning rate. scale_learning_rate: `float` scale learning rate. initial_gain: `float` initial gain. min_gain: `float` minimum gain. max_gain: `float` maximum gain, initial_scale: `float` initial scale. min_scale: `float` minimum learning rate scale. max_scale: `float` maximum learning rate scale. use_directions: `bool` whether to use directions only for scale updates. use_signs: `bool` whether to use the signs for updating gains. name: Optional name prefix for the operations created when applying gradients. Raises: ValueError: If the `initial_accumulator_value` is invalid. """ super(EGDD, self).__init__(False, name) self._learning_rate = learning_rate self._momentum = momentum self._beta = beta self._gain_learning_rate = gain_learning_rate self._scale_learning_rate = scale_learning_rate self._initial_gain = initial_gain self._min_gain = min_gain self._max_gain = max_gain self._initial_scale = initial_scale self._min_scale = min_scale self._max_scale = max_scale self._use_directions = use_directions self._use_signs = use_signs def _create_slots(self, var_list): for v in var_list: self._zeros_slot(v, "momentum", self._name) self._zeros_slot(v, "gbar", self._name) g_tensor = ops.convert_to_tensor(v) gain_init = self._initial_gain * array_ops.ones_like(g_tensor) _ = self._get_or_make_slot(v, self._initial_scale * array_ops.ones((1)), "lr_scale", self._name) _ = self._get_or_make_slot(v, gain_init, "gain", self._name) _ = self._get_or_make_slot(v, array_ops.zeros((1)), "counter", self._name) def _prepare(self): learning_rate = self._call_if_callable(self._learning_rate) self._learning_rate_tensor = ops.convert_to_tensor( learning_rate, name="learning_rate") momentum = self._call_if_callable(self._momentum) self._momentum_tensor = ops.convert_to_tensor(momentum, name="momentum") def _apply_dense(self, grad, var): lr_scale = self.get_slot(var, "lr_scale") momentum = self.get_slot(var, "momentum") gbar = self.get_slot(var, "gbar") gain = self.get_slot(var, "gain") counter = self.get_slot(var, "counter") counter_updated = state_ops.assign(counter, counter + 1) # lr_scale update uses normalized grad and momentum to be independent of dim normalized_grad = grad / (linalg_ops.norm(grad) + 1e-10) normalized_momentum = momentum / (linalg_ops.norm(momentum) + 1e-10) # Apply EG updates on lr_scale: # grad_lr_scale = -inner_product(current_grad, old_momentum) # lr_scale <- lr_scale * exp(-scale_learning_rate * grad_lr_scale) lr_scale_unnormalized_updated = clip_ops.clip_by_value( lr_scale * math_ops.exp( self._scale_learning_rate * math_ops.reduce_sum(grad * momentum)), self._min_scale, self._max_scale) lr_scale_normalized_updated = clip_ops.clip_by_value( lr_scale * math_ops.exp(self._scale_learning_rate * math_ops.reduce_sum( normalized_grad * normalized_momentum)), self._min_scale, self._max_scale) lr_scale_updated = state_ops.assign( lr_scale, array_ops.where(self._use_directions, lr_scale_normalized_updated, lr_scale_unnormalized_updated)) # remove the bias of zero initialization in gbar corrected_gbar = gbar / ( 1.0 - self._beta**math_ops.maximum(counter_updated - 1, 1)) # Apply EG updates on gain: # grad_gain = - current_grad * old_gbar # gain <- gain * exp(-gain_learning_rate * grad_gain) gain_unnormalized_updated = clip_ops.clip_by_value( gain * math_ops.exp(self._gain_learning_rate * grad * corrected_gbar), self._min_gain, self._max_gain) # Normalized update uses sign(grad) * sign(gbar) as a proxy for grad_gain. gain_normalized_updated = clip_ops.clip_by_value( gain * math_ops.exp(self._gain_learning_rate * math_ops.sign(grad) * math_ops.sign(gbar)), self._min_gain, self._max_gain) gain_updated = state_ops.assign( gain, array_ops.where(self._use_signs, gain_normalized_updated, gain_unnormalized_updated)) scaled_g = self._learning_rate_tensor * gain_updated * grad with ops.control_dependencies([lr_scale_updated, scaled_g]): momentum_updated = state_ops.assign( momentum, self._momentum_tensor * momentum + scaled_g) gbar_updated = state_ops.assign( gbar, self._beta * gbar + (1.0 - self._beta) * grad) with ops.control_dependencies([gbar_updated]): return state_ops.assign_sub(var, lr_scale_updated * momentum_updated) def _resource_apply_dense(self, grad, var): return self._apply_dense(grad, var) # Sparse gradients are not handled currently and is part of future work. def _resource_apply_sparse(self, grad_values, var, grad_indices): return control_flow_ops.no_op() def _apply_sparse(self, grad, var): return control_flow_ops.no_op()
[((4580, 4638), 'tensorflow.python.framework.ops.convert_to_tensor', 'ops.convert_to_tensor', (['learning_rate'], {'name': '"""learning_rate"""'}), "(learning_rate, name='learning_rate')\n", (4601, 4638), False, 'from tensorflow.python.framework import ops\n'), ((4730, 4778), 'tensorflow.python.framework.ops.convert_to_tensor', 'ops.convert_to_tensor', (['momentum'], {'name': '"""momentum"""'}), "(momentum, name='momentum')\n", (4751, 4778), False, 'from tensorflow.python.framework import ops\n'), ((5051, 5089), 'tensorflow.python.ops.state_ops.assign', 'state_ops.assign', (['counter', '(counter + 1)'], {}), '(counter, counter + 1)\n', (5067, 5089), False, 'from tensorflow.python.ops import state_ops\n'), ((7753, 7777), 'tensorflow.python.ops.control_flow_ops.no_op', 'control_flow_ops.no_op', ([], {}), '()\n', (7775, 7777), False, 'from tensorflow.python.ops import control_flow_ops\n'), ((7828, 7852), 'tensorflow.python.ops.control_flow_ops.no_op', 'control_flow_ops.no_op', ([], {}), '()\n', (7850, 7852), False, 'from tensorflow.python.ops import control_flow_ops\n'), ((4082, 4106), 'tensorflow.python.framework.ops.convert_to_tensor', 'ops.convert_to_tensor', (['v'], {}), '(v)\n', (4103, 4106), False, 'from tensorflow.python.framework import ops\n'), ((5993, 6094), 'tensorflow.python.ops.array_ops.where', 'array_ops.where', (['self._use_directions', 'lr_scale_normalized_updated', 'lr_scale_unnormalized_updated'], {}), '(self._use_directions, lr_scale_normalized_updated,\n lr_scale_unnormalized_updated)\n', (6008, 6094), False, 'from tensorflow.python.ops import array_ops\n'), ((6935, 7023), 'tensorflow.python.ops.array_ops.where', 'array_ops.where', (['self._use_signs', 'gain_normalized_updated', 'gain_unnormalized_updated'], {}), '(self._use_signs, gain_normalized_updated,\n gain_unnormalized_updated)\n', (6950, 7023), False, 'from tensorflow.python.ops import array_ops\n'), ((7118, 7172), 'tensorflow.python.framework.ops.control_dependencies', 'ops.control_dependencies', (['[lr_scale_updated, scaled_g]'], {}), '([lr_scale_updated, scaled_g])\n', (7142, 7172), False, 'from tensorflow.python.framework import ops\n'), ((7199, 7270), 'tensorflow.python.ops.state_ops.assign', 'state_ops.assign', (['momentum', '(self._momentum_tensor * momentum + scaled_g)'], {}), '(momentum, self._momentum_tensor * momentum + scaled_g)\n', (7215, 7270), False, 'from tensorflow.python.ops import state_ops\n'), ((7303, 7372), 'tensorflow.python.ops.state_ops.assign', 'state_ops.assign', (['gbar', '(self._beta * gbar + (1.0 - self._beta) * grad)'], {}), '(gbar, self._beta * gbar + (1.0 - self._beta) * grad)\n', (7319, 7372), False, 'from tensorflow.python.ops import state_ops\n'), ((7393, 7433), 'tensorflow.python.framework.ops.control_dependencies', 'ops.control_dependencies', (['[gbar_updated]'], {}), '([gbar_updated])\n', (7417, 7433), False, 'from tensorflow.python.framework import ops\n'), ((7448, 7510), 'tensorflow.python.ops.state_ops.assign_sub', 'state_ops.assign_sub', (['var', '(lr_scale_updated * momentum_updated)'], {}), '(var, lr_scale_updated * momentum_updated)\n', (7468, 7510), False, 'from tensorflow.python.ops import state_ops\n'), ((4146, 4175), 'tensorflow.python.ops.array_ops.ones_like', 'array_ops.ones_like', (['g_tensor'], {}), '(g_tensor)\n', (4165, 4175), False, 'from tensorflow.python.ops import array_ops\n'), ((4415, 4433), 'tensorflow.python.ops.array_ops.zeros', 'array_ops.zeros', (['(1)'], {}), '(1)\n', (4430, 4433), False, 'from tensorflow.python.ops import array_ops\n'), ((5202, 5223), 'tensorflow.python.ops.linalg_ops.norm', 'linalg_ops.norm', (['grad'], {}), '(grad)\n', (5217, 5223), False, 'from tensorflow.python.ops import linalg_ops\n'), ((5271, 5296), 'tensorflow.python.ops.linalg_ops.norm', 'linalg_ops.norm', (['momentum'], {}), '(momentum)\n', (5286, 5296), False, 'from tensorflow.python.ops import linalg_ops\n'), ((6472, 6534), 'tensorflow.python.ops.math_ops.exp', 'math_ops.exp', (['(self._gain_learning_rate * grad * corrected_gbar)'], {}), '(self._gain_learning_rate * grad * corrected_gbar)\n', (6484, 6534), False, 'from tensorflow.python.ops import math_ops\n'), ((4234, 4251), 'tensorflow.python.ops.array_ops.ones', 'array_ops.ones', (['(1)'], {}), '(1)\n', (4248, 4251), False, 'from tensorflow.python.ops import array_ops\n'), ((6225, 6265), 'tensorflow.python.ops.math_ops.maximum', 'math_ops.maximum', (['(counter_updated - 1)', '(1)'], {}), '(counter_updated - 1, 1)\n', (6241, 6265), False, 'from tensorflow.python.ops import math_ops\n'), ((5611, 5647), 'tensorflow.python.ops.math_ops.reduce_sum', 'math_ops.reduce_sum', (['(grad * momentum)'], {}), '(grad * momentum)\n', (5630, 5647), False, 'from tensorflow.python.ops import math_ops\n'), ((5810, 5868), 'tensorflow.python.ops.math_ops.reduce_sum', 'math_ops.reduce_sum', (['(normalized_grad * normalized_momentum)'], {}), '(normalized_grad * normalized_momentum)\n', (5829, 5868), False, 'from tensorflow.python.ops import math_ops\n'), ((6814, 6833), 'tensorflow.python.ops.math_ops.sign', 'math_ops.sign', (['gbar'], {}), '(gbar)\n', (6827, 6833), False, 'from tensorflow.python.ops import math_ops\n'), ((6764, 6783), 'tensorflow.python.ops.math_ops.sign', 'math_ops.sign', (['grad'], {}), '(grad)\n', (6777, 6783), False, 'from tensorflow.python.ops import math_ops\n')]
cloudspectatordevelopment/cudamat
examples/nn_cudamat.py
d26cf019a7855077b7d4344ae1a3202a156c5170
# This file shows how to implement a single hidden layer neural network for # performing binary classification on the GPU using cudamat. from __future__ import division import pdb import time import numpy as np import cudamat as cm from cudamat import learn as cl import util # initialize CUDA cm.cublas_init() # load data util.load('mnist49.dat', globals()) # Put training data onto the GPU. dat_train = dat_train/255. dat_train = dat_train - (np.mean(dat_train, 1)+10**-8)[:, np.newaxis] dev_train = cm.CUDAMatrix(dat_train) dev_lbl = cm.CUDAMatrix(lbl_train) # training parameters epsilon = 0.01 momentum = 0.9 num_epochs = 30 batch_size = 128 num_batches = dat_train.shape[1]//batch_size # model parameters dim_in = dat_train.shape[0] dim_out = 1 num_hid = 1024 # initialize weights w_w1 = cm.CUDAMatrix(dim_in ** -0.5 * np.random.randn(dim_in, num_hid)) w_b1 = cm.CUDAMatrix(np.zeros((num_hid, 1))) w_w2 = cm.CUDAMatrix(num_hid ** -0.5 * np.random.randn(num_hid, dim_out)) w_b2 = cm.CUDAMatrix(np.zeros((dim_out, 1))) # initialize weight update matrices wu_w1 = cm.empty(w_w1.shape).assign(0) wu_b1 = cm.empty(w_b1.shape).assign(0) wu_w2 = cm.empty(w_w2.shape).assign(0) wu_b2 = cm.empty(w_b2.shape).assign(0) # initialize temporary storage h = cm.empty((num_hid, batch_size)) out = cm.empty((dim_out, batch_size)) delta = cm.empty((num_hid, batch_size)) # Train neural network. start_time = time.time() for epoch in range(num_epochs): print("Epoch %i" % (epoch + 1)) err = [] for batch in range(num_batches): # get current minibatch inp = dev_train.slice(batch*batch_size,(batch + 1)*batch_size) target = dev_lbl.slice(batch*batch_size,(batch + 1)*batch_size) # forward pass cm.dot(w_w1.T, inp, target = h) h.add_col_vec(w_b1) h.apply_sigmoid() cm.dot(w_w2.T, h, target = out) out.add_col_vec(w_b2) out.apply_sigmoid() # back prop errors out.subtract(target) # compute error # gradients for w_w2 and w_b2 wu_w2.add_dot(h, out.T, beta = momentum) wu_b2.add_sums(out, axis = 1, beta = momentum) # compute delta cm.dot(w_w2, out, target = delta) # delta = delta * h * (1 - h) cl.mult_by_sigmoid_deriv(delta, h) # gradients for w_w1 and w_b1 wu_w1.add_dot(inp, delta.T, beta = momentum) wu_b1.add_sums(delta, axis = 1, beta = momentum) # update weights w_w1.subtract_mult(wu_w1, epsilon/batch_size) w_b1.subtract_mult(wu_b1, epsilon/batch_size) w_w2.subtract_mult(wu_w2, epsilon/batch_size) w_b2.subtract_mult(wu_b2, epsilon/batch_size) # calculate error on current minibatch err.append(np.abs(out.asarray())>0.5) print("Training misclassification rate: %f" % np.mean(err)) print("Time: %f" % (time.time() - start_time)) # Evaluate neural network on test data. # Load test data onto the GPU. dat_test = dat_test/255. dat_test = dat_test - np.mean(dat_test, 1)[:, np.newaxis] dev_test = cm.CUDAMatrix(dat_test) dev_lbl = cm.CUDAMatrix(lbl_test) # Initalize temporary storage. h = cm.empty((num_hid, dat_test.shape[1])) out = cm.empty((dim_out, dat_test.shape[1])) # forward pass cm.dot(w_w1.T, dev_test, target = h) h.add_col_vec(w_b1) h.apply_sigmoid() cm.dot(w_w2.T, h, target = out) out.add_col_vec(w_b2) out.apply_sigmoid() # compute error out.subtract(dev_lbl) print("Testing misclassification rate: %f" % np.mean(np.abs(out.asarray())>0.5)) cm.cublas_shutdown()
[((296, 312), 'cudamat.cublas_init', 'cm.cublas_init', ([], {}), '()\n', (310, 312), True, 'import cudamat as cm\n'), ((506, 530), 'cudamat.CUDAMatrix', 'cm.CUDAMatrix', (['dat_train'], {}), '(dat_train)\n', (519, 530), True, 'import cudamat as cm\n'), ((541, 565), 'cudamat.CUDAMatrix', 'cm.CUDAMatrix', (['lbl_train'], {}), '(lbl_train)\n', (554, 565), True, 'import cudamat as cm\n'), ((1260, 1291), 'cudamat.empty', 'cm.empty', (['(num_hid, batch_size)'], {}), '((num_hid, batch_size))\n', (1268, 1291), True, 'import cudamat as cm\n'), ((1298, 1329), 'cudamat.empty', 'cm.empty', (['(dim_out, batch_size)'], {}), '((dim_out, batch_size))\n', (1306, 1329), True, 'import cudamat as cm\n'), ((1338, 1369), 'cudamat.empty', 'cm.empty', (['(num_hid, batch_size)'], {}), '((num_hid, batch_size))\n', (1346, 1369), True, 'import cudamat as cm\n'), ((1408, 1419), 'time.time', 'time.time', ([], {}), '()\n', (1417, 1419), False, 'import time\n'), ((3067, 3090), 'cudamat.CUDAMatrix', 'cm.CUDAMatrix', (['dat_test'], {}), '(dat_test)\n', (3080, 3090), True, 'import cudamat as cm\n'), ((3101, 3124), 'cudamat.CUDAMatrix', 'cm.CUDAMatrix', (['lbl_test'], {}), '(lbl_test)\n', (3114, 3124), True, 'import cudamat as cm\n'), ((3161, 3199), 'cudamat.empty', 'cm.empty', (['(num_hid, dat_test.shape[1])'], {}), '((num_hid, dat_test.shape[1]))\n', (3169, 3199), True, 'import cudamat as cm\n'), ((3206, 3244), 'cudamat.empty', 'cm.empty', (['(dim_out, dat_test.shape[1])'], {}), '((dim_out, dat_test.shape[1]))\n', (3214, 3244), True, 'import cudamat as cm\n'), ((3261, 3295), 'cudamat.dot', 'cm.dot', (['w_w1.T', 'dev_test'], {'target': 'h'}), '(w_w1.T, dev_test, target=h)\n', (3267, 3295), True, 'import cudamat as cm\n'), ((3338, 3367), 'cudamat.dot', 'cm.dot', (['w_w2.T', 'h'], {'target': 'out'}), '(w_w2.T, h, target=out)\n', (3344, 3367), True, 'import cudamat as cm\n'), ((3535, 3555), 'cudamat.cublas_shutdown', 'cm.cublas_shutdown', ([], {}), '()\n', (3553, 3555), True, 'import cudamat as cm\n'), ((888, 910), 'numpy.zeros', 'np.zeros', (['(num_hid, 1)'], {}), '((num_hid, 1))\n', (896, 910), True, 'import numpy as np\n'), ((1007, 1029), 'numpy.zeros', 'np.zeros', (['(dim_out, 1)'], {}), '((dim_out, 1))\n', (1015, 1029), True, 'import numpy as np\n'), ((833, 865), 'numpy.random.randn', 'np.random.randn', (['dim_in', 'num_hid'], {}), '(dim_in, num_hid)\n', (848, 865), True, 'import numpy as np\n'), ((951, 984), 'numpy.random.randn', 'np.random.randn', (['num_hid', 'dim_out'], {}), '(num_hid, dim_out)\n', (966, 984), True, 'import numpy as np\n'), ((1076, 1096), 'cudamat.empty', 'cm.empty', (['w_w1.shape'], {}), '(w_w1.shape)\n', (1084, 1096), True, 'import cudamat as cm\n'), ((1115, 1135), 'cudamat.empty', 'cm.empty', (['w_b1.shape'], {}), '(w_b1.shape)\n', (1123, 1135), True, 'import cudamat as cm\n'), ((1154, 1174), 'cudamat.empty', 'cm.empty', (['w_w2.shape'], {}), '(w_w2.shape)\n', (1162, 1174), True, 'import cudamat as cm\n'), ((1193, 1213), 'cudamat.empty', 'cm.empty', (['w_b2.shape'], {}), '(w_b2.shape)\n', (1201, 1213), True, 'import cudamat as cm\n'), ((1746, 1775), 'cudamat.dot', 'cm.dot', (['w_w1.T', 'inp'], {'target': 'h'}), '(w_w1.T, inp, target=h)\n', (1752, 1775), True, 'import cudamat as cm\n'), ((1842, 1871), 'cudamat.dot', 'cm.dot', (['w_w2.T', 'h'], {'target': 'out'}), '(w_w2.T, h, target=out)\n', (1848, 1871), True, 'import cudamat as cm\n'), ((2182, 2213), 'cudamat.dot', 'cm.dot', (['w_w2', 'out'], {'target': 'delta'}), '(w_w2, out, target=delta)\n', (2188, 2213), True, 'import cudamat as cm\n'), ((2263, 2297), 'cudamat.learn.mult_by_sigmoid_deriv', 'cl.mult_by_sigmoid_deriv', (['delta', 'h'], {}), '(delta, h)\n', (2287, 2297), True, 'from cudamat import learn as cl\n'), ((3020, 3040), 'numpy.mean', 'np.mean', (['dat_test', '(1)'], {}), '(dat_test, 1)\n', (3027, 3040), True, 'import numpy as np\n'), ((449, 470), 'numpy.mean', 'np.mean', (['dat_train', '(1)'], {}), '(dat_train, 1)\n', (456, 470), True, 'import numpy as np\n'), ((2835, 2847), 'numpy.mean', 'np.mean', (['err'], {}), '(err)\n', (2842, 2847), True, 'import numpy as np\n'), ((2873, 2884), 'time.time', 'time.time', ([], {}), '()\n', (2882, 2884), False, 'import time\n')]
znicholls/FAIR
fair/forcing/ozone_tr.py
599c44ed140b069968ba7d1ca99de40218e42545
from __future__ import division import numpy as np from ..constants import molwt def regress(emissions, beta=np.array([2.8249e-4, 1.0695e-4, -9.3604e-4, 99.7831e-4])): """Calculates tropospheric ozone forcing from precursor emissions. Inputs: (nt x 40) emissions array Keywords: beta: 4-element array of regression coefficients of precursor radiative efficiency, W m-2 (Mt yr-1)-1. order is [CH4, CO, NMVOC, NOx] Outputs: tropospheric ozone ERF time series. """ if emissions.ndim==2: em_CH4, em_CO, em_NMVOC, em_NOx = emissions[:,[3, 6, 7, 8]].T else: em_CH4, em_CO, em_NMVOC, em_NOx = emissions[[3, 6, 7, 8]] F_CH4 = beta[0] * em_CH4 F_CO = beta[1] * em_CO F_NMVOC = beta[2] * em_NMVOC F_NOx = beta[3] * em_NOx F = F_CH4 + F_CO + F_NMVOC + F_NOx return F def cmip6_stevenson(emissions, C_CH4, T=0, feedback=False, PI=np.array([722, 170, 10, 4.29]), beta=np.array([1.77871043e-04, 5.80173377e-05, 2.09151270e-03, 1.94458719e-04])): """Calculates tropospheric ozone forcing from precursor emissions based on Stevenson et al, 2013 10.5194/acp-13-3063-2013 Inputs: emissions: (nt x 40) numpy array C_CH4 : (nt) numpy array of methane concentrations, ppb Keywords: T : change in surface temperature since pre-industrial feedback : True or False - include temperature feedback on ozone forcing? PI: : 4-element array of pre-industrial CH4 concentrations, CO emissions, NMVOC emissions and NOx emissions beta: : coefficients of how CH4 concentrations, CO emissions, NMVOC emissions and NOx emissions affect forcing Outputs: tropospheric ozone ERF time series. """ # expand to 2D/1D if not already if emissions.ndim == 1: nspec = len(emissions) emissions = emissions.reshape((1, nspec)) if np.isscalar(C_CH4): C_CH4 = np.ones(1)*C_CH4 year, em_CO, em_NMVOC, em_NOx = emissions[:,[0, 6, 7, 8]].T nt = len(year) F_CH4, F_CO, F_NMVOC, F_NOx = np.zeros((4,nt)) for i in range(nt): F_CH4[i] = beta[0] * (C_CH4[i]-PI[0]) F_CO[i] = beta[1] * (em_CO[i]-PI[1]) F_NMVOC[i] = beta[2] * (em_NMVOC[i]-PI[2]) F_NOx[i] = beta[3] * (em_NOx[i]-PI[3]) # Include the effect of climate feedback? We fit a curve to the 2000, 2030 # and 2100 best estimates of feedback based on middle-of-the-road # temperature projections. def temperature_feedback(T, a=0.03189267, b=1.34966941, c=-0.03214807): if T<=0: return 0 else: return a*np.exp(-b*T)+c if feedback: F = F_CH4 + F_CO + F_NMVOC + F_NOx + temperature_feedback(T) else: F = F_CH4 + F_CO + F_NMVOC + F_NOx return F def stevenson(emissions, C_CH4, T=0, feedback=False, fix_pre1850_RCP=False, PI=np.array([722, 170, 10, 4.29])): """Calculates tropospheric ozone forcing from precursor emissions based on Stevenson et al, 2013 10.5194/acp-13-3063-2013 Inputs: emissions: (nt x 40) numpy array C_CH4 : (nt) numpy array of methane concentrations, ppb Keywords: T : change in surface temperature since pre-industrial feedback : True or False - include temperature feedback on ozone forcing? fix_pre1850_RCP: Use different relationship for 1750/65 to 1850 based on anthropogenic emissions from Skeie et al (2011) for 1750 (atmos-chem-phys.net/11/11827/2011) PI: : 4-element array of pre-industrial CH4 concentrations, CO emissions, NMVOC emissions and NOx emissions Outputs: tropospheric ozone ERF time series. """ # expand to 2D/1D if not already if emissions.ndim == 1: nspec = len(emissions) emissions = emissions.reshape((1, nspec)) if np.isscalar(C_CH4): C_CH4 = np.ones(1)*C_CH4 # numbers in denominator are 2000-1750 concs or emissions used in # Stevenson and traced back to Lamarque et al 2010 for 2000 # https://www.atmos-chem-phys.net/10/7017/2010/ year, em_CO, em_NMVOC, em_NOx = emissions[:,[0, 6, 7, 8]].T nt = len(year) F_CH4, F_CO, F_NMVOC, F_NOx = np.zeros((4,nt)) for i in range(nt): if year[i]>=1850 or fix_pre1850_RCP==False: F_CH4[i] = 0.166/960 * (C_CH4[i]-PI[0]) F_CO[i] = 0.058/681.8 * (em_CO[i]-PI[1]) F_NMVOC[i] = 0.035/155.84 * (em_NMVOC[i]-PI[2]) F_NOx[i] = 0.119/61.16 * (em_NOx[i] * molwt.NO / molwt.N - PI[3]) # The RCP scenarios give a negative forcing prior to ~1780. This is # because the anthropogenic emissions are given to be zero in RCPs but # not zero in the Skeie numbers which are used here. This can be fixed # to give a more linear behaviour. else: F_CH4[i] = 0.166/960 * (C_CH4[i]-722) F_CO[i] = 0.058/681.8 * 215.59 * em_CO[i] / 385.59 F_NMVOC[i] = 0.035/155.84 * 51.97 * em_NMVOC[i] / 61.97 F_NOx[i] = 0.119/61.16 * 7.31 * (em_NOx[i] * molwt.NO / molwt.N) / 11.6 # Include the effect of climate feedback? We fit a curve to the 2000, 2030 # and 2100 best estimates of feedback based on middle-of-the-road # temperature projections. def temperature_feedback(T, a=0.03189267, b=1.34966941, c=-0.03214807): if T<=0: return 0 else: return a*np.exp(-b*T)+c if feedback: F = F_CH4 + F_CO + F_NMVOC + F_NOx + temperature_feedback(T) else: F = F_CH4 + F_CO + F_NMVOC + F_NOx return F
[((123, 182), 'numpy.array', 'np.array', (['[0.00028249, 0.00010695, -0.00093604, 0.00997831]'], {}), '([0.00028249, 0.00010695, -0.00093604, 0.00997831])\n', (131, 182), True, 'import numpy as np\n'), ((964, 994), 'numpy.array', 'np.array', (['[722, 170, 10, 4.29]'], {}), '([722, 170, 10, 4.29])\n', (972, 994), True, 'import numpy as np\n'), ((1006, 1078), 'numpy.array', 'np.array', (['[0.000177871043, 5.80173377e-05, 0.0020915127, 0.000194458719]'], {}), '([0.000177871043, 5.80173377e-05, 0.0020915127, 0.000194458719])\n', (1014, 1078), True, 'import numpy as np\n'), ((2076, 2094), 'numpy.isscalar', 'np.isscalar', (['C_CH4'], {}), '(C_CH4)\n', (2087, 2094), True, 'import numpy as np\n'), ((2247, 2264), 'numpy.zeros', 'np.zeros', (['(4, nt)'], {}), '((4, nt))\n', (2255, 2264), True, 'import numpy as np\n'), ((3069, 3099), 'numpy.array', 'np.array', (['[722, 170, 10, 4.29]'], {}), '([722, 170, 10, 4.29])\n', (3077, 3099), True, 'import numpy as np\n'), ((4159, 4177), 'numpy.isscalar', 'np.isscalar', (['C_CH4'], {}), '(C_CH4)\n', (4170, 4177), True, 'import numpy as np\n'), ((4517, 4534), 'numpy.zeros', 'np.zeros', (['(4, nt)'], {}), '((4, nt))\n', (4525, 4534), True, 'import numpy as np\n'), ((2112, 2122), 'numpy.ones', 'np.ones', (['(1)'], {}), '(1)\n', (2119, 2122), True, 'import numpy as np\n'), ((4195, 4205), 'numpy.ones', 'np.ones', (['(1)'], {}), '(1)\n', (4202, 4205), True, 'import numpy as np\n'), ((2815, 2829), 'numpy.exp', 'np.exp', (['(-b * T)'], {}), '(-b * T)\n', (2821, 2829), True, 'import numpy as np\n'), ((5798, 5812), 'numpy.exp', 'np.exp', (['(-b * T)'], {}), '(-b * T)\n', (5804, 5812), True, 'import numpy as np\n')]
oarepo/oarepo-references-draft
tests/test_publish.py
7e5ad4225c4ace9781d5de952c3765a65b33fd8e
import uuid from invenio_indexer.api import RecordIndexer from invenio_pidstore.models import PersistentIdentifier, PIDStatus from invenio_records_draft.api import RecordContext from invenio_records_draft.proxies import current_drafts from invenio_search import RecordsSearch, current_search, current_search_client from sample.records.config import DraftRecord, PublishedRecord from tests.helpers import disable_test_authenticated def test_publish(app, db, schemas, mappings, prepare_es): with disable_test_authenticated(): with db.session.begin_nested(): draft_uuid = uuid.uuid4() rec1 = DraftRecord.create({ 'id': '1', 'title': 'rec1' }, id_=draft_uuid) draft1_pid = PersistentIdentifier.create( pid_type='drecid', pid_value='1', status=PIDStatus.REGISTERED, object_type='rec', object_uuid=draft_uuid ) published_uuid = uuid.uuid4() published = PublishedRecord.create({ 'id': '3', 'title': 'rec1a' }, id_=published_uuid) published_pid = PersistentIdentifier.create( pid_type='recid', pid_value='3', status=PIDStatus.REGISTERED, object_type='rec', object_uuid=published_uuid ) draft2_uuid = uuid.uuid4() rec2 = DraftRecord.create({ 'id': '2', 'title': 'rec2', 'ref': {'$ref': 'http://localhost/drafts/records/1'}, 'ref_pub': {'$ref': 'http://localhost/records/3'} }, id_=draft2_uuid) draft2_pid = PersistentIdentifier.create( pid_type='drecid', pid_value='2', status=PIDStatus.REGISTERED, object_type='rec', object_uuid=draft2_uuid ) RecordIndexer().index(rec2) current_search_client.indices.refresh() current_search_client.indices.flush() es_draft2 = RecordsSearch(index='draft-records-record-v1.0.0').\ get_record(draft2_pid.object_uuid).execute() assert len(es_draft2.hits) == 1 current_drafts.publish(RecordContext(record=rec2, record_pid=draft2_pid)) published2_pid = PersistentIdentifier.get(pid_type='recid', pid_value=draft2_pid.pid_value) pr = PublishedRecord.get_record(published2_pid.object_uuid) assert pr.dumps() == { '$schema': 'https://localhost/schemas/records/record-v1.0.0.json', 'id': '2', 'ref': {'$ref': 'http://localhost/records/1'}, 'ref_pub': {'$ref': 'http://localhost/records/3'}, 'title': 'rec2' } current_search_client.indices.refresh() current_search_client.indices.flush() es_published2 = RecordsSearch(index='records-record-v1.0.0').\ get_record(published2_pid.object_uuid).execute() assert len(es_published2.hits) == 1 es_published2 = es_published2.hits[0].to_dict() es_published2.pop('_created') es_published2.pop('_updated') assert es_published2 == { '$schema': 'https://localhost/schemas/records/record-v1.0.0.json', 'id': '2', 'ref': {'published': '1'}, 'ref_pub': {'published': '3'}, 'title': 'rec2'} es_draft2 = RecordsSearch(index='draft-records-record-v1.0.0').\ get_record(draft2_pid.object_uuid).execute() assert len(es_draft2.hits) == 0
[((501, 529), 'tests.helpers.disable_test_authenticated', 'disable_test_authenticated', ([], {}), '()\n', (527, 529), False, 'from tests.helpers import disable_test_authenticated\n'), ((1906, 1945), 'invenio_search.current_search_client.indices.refresh', 'current_search_client.indices.refresh', ([], {}), '()\n', (1943, 1945), False, 'from invenio_search import RecordsSearch, current_search, current_search_client\n'), ((1954, 1991), 'invenio_search.current_search_client.indices.flush', 'current_search_client.indices.flush', ([], {}), '()\n', (1989, 1991), False, 'from invenio_search import RecordsSearch, current_search, current_search_client\n'), ((2272, 2346), 'invenio_pidstore.models.PersistentIdentifier.get', 'PersistentIdentifier.get', ([], {'pid_type': '"""recid"""', 'pid_value': 'draft2_pid.pid_value'}), "(pid_type='recid', pid_value=draft2_pid.pid_value)\n", (2296, 2346), False, 'from invenio_pidstore.models import PersistentIdentifier, PIDStatus\n'), ((2360, 2414), 'sample.records.config.PublishedRecord.get_record', 'PublishedRecord.get_record', (['published2_pid.object_uuid'], {}), '(published2_pid.object_uuid)\n', (2386, 2414), False, 'from sample.records.config import DraftRecord, PublishedRecord\n'), ((2717, 2756), 'invenio_search.current_search_client.indices.refresh', 'current_search_client.indices.refresh', ([], {}), '()\n', (2754, 2756), False, 'from invenio_search import RecordsSearch, current_search, current_search_client\n'), ((2765, 2802), 'invenio_search.current_search_client.indices.flush', 'current_search_client.indices.flush', ([], {}), '()\n', (2800, 2802), False, 'from invenio_search import RecordsSearch, current_search, current_search_client\n'), ((596, 608), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (606, 608), False, 'import uuid\n'), ((629, 693), 'sample.records.config.DraftRecord.create', 'DraftRecord.create', (["{'id': '1', 'title': 'rec1'}"], {'id_': 'draft_uuid'}), "({'id': '1', 'title': 'rec1'}, id_=draft_uuid)\n", (647, 693), False, 'from sample.records.config import DraftRecord, PublishedRecord\n'), ((765, 903), 'invenio_pidstore.models.PersistentIdentifier.create', 'PersistentIdentifier.create', ([], {'pid_type': '"""drecid"""', 'pid_value': '"""1"""', 'status': 'PIDStatus.REGISTERED', 'object_type': '"""rec"""', 'object_uuid': 'draft_uuid'}), "(pid_type='drecid', pid_value='1', status=\n PIDStatus.REGISTERED, object_type='rec', object_uuid=draft_uuid)\n", (792, 903), False, 'from invenio_pidstore.models import PersistentIdentifier, PIDStatus\n'), ((975, 987), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (985, 987), False, 'import uuid\n'), ((1012, 1085), 'sample.records.config.PublishedRecord.create', 'PublishedRecord.create', (["{'id': '3', 'title': 'rec1a'}"], {'id_': 'published_uuid'}), "({'id': '3', 'title': 'rec1a'}, id_=published_uuid)\n", (1034, 1085), False, 'from sample.records.config import DraftRecord, PublishedRecord\n'), ((1160, 1301), 'invenio_pidstore.models.PersistentIdentifier.create', 'PersistentIdentifier.create', ([], {'pid_type': '"""recid"""', 'pid_value': '"""3"""', 'status': 'PIDStatus.REGISTERED', 'object_type': '"""rec"""', 'object_uuid': 'published_uuid'}), "(pid_type='recid', pid_value='3', status=\n PIDStatus.REGISTERED, object_type='rec', object_uuid=published_uuid)\n", (1187, 1301), False, 'from invenio_pidstore.models import PersistentIdentifier, PIDStatus\n'), ((1370, 1382), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (1380, 1382), False, 'import uuid\n'), ((1402, 1580), 'sample.records.config.DraftRecord.create', 'DraftRecord.create', (["{'id': '2', 'title': 'rec2', 'ref': {'$ref':\n 'http://localhost/drafts/records/1'}, 'ref_pub': {'$ref':\n 'http://localhost/records/3'}}"], {'id_': 'draft2_uuid'}), "({'id': '2', 'title': 'rec2', 'ref': {'$ref':\n 'http://localhost/drafts/records/1'}, 'ref_pub': {'$ref':\n 'http://localhost/records/3'}}, id_=draft2_uuid)\n", (1420, 1580), False, 'from sample.records.config import DraftRecord, PublishedRecord\n'), ((1676, 1815), 'invenio_pidstore.models.PersistentIdentifier.create', 'PersistentIdentifier.create', ([], {'pid_type': '"""drecid"""', 'pid_value': '"""2"""', 'status': 'PIDStatus.REGISTERED', 'object_type': '"""rec"""', 'object_uuid': 'draft2_uuid'}), "(pid_type='drecid', pid_value='2', status=\n PIDStatus.REGISTERED, object_type='rec', object_uuid=draft2_uuid)\n", (1703, 1815), False, 'from invenio_pidstore.models import PersistentIdentifier, PIDStatus\n'), ((2195, 2244), 'invenio_records_draft.api.RecordContext', 'RecordContext', ([], {'record': 'rec2', 'record_pid': 'draft2_pid'}), '(record=rec2, record_pid=draft2_pid)\n', (2208, 2244), False, 'from invenio_records_draft.api import RecordContext\n'), ((1869, 1884), 'invenio_indexer.api.RecordIndexer', 'RecordIndexer', ([], {}), '()\n', (1882, 1884), False, 'from invenio_indexer.api import RecordIndexer\n'), ((2013, 2063), 'invenio_search.RecordsSearch', 'RecordsSearch', ([], {'index': '"""draft-records-record-v1.0.0"""'}), "(index='draft-records-record-v1.0.0')\n", (2026, 2063), False, 'from invenio_search import RecordsSearch, current_search, current_search_client\n'), ((2828, 2872), 'invenio_search.RecordsSearch', 'RecordsSearch', ([], {'index': '"""records-record-v1.0.0"""'}), "(index='records-record-v1.0.0')\n", (2841, 2872), False, 'from invenio_search import RecordsSearch, current_search, current_search_client\n'), ((3380, 3430), 'invenio_search.RecordsSearch', 'RecordsSearch', ([], {'index': '"""draft-records-record-v1.0.0"""'}), "(index='draft-records-record-v1.0.0')\n", (3393, 3430), False, 'from invenio_search import RecordsSearch, current_search, current_search_client\n')]
xiaotiansf/tiscamera
examples/ROS/tiscamera.py
8451449788f7429621240e2bbce065d65c5ac10e
import os import subprocess from collections import namedtuple import gi gi.require_version("Gst", "1.0") gi.require_version("Tcam", "0.1") from gi.repository import Tcam, Gst, GLib, GObject DeviceInfo = namedtuple("DeviceInfo", "status name identifier connection_type") CameraProperty = namedtuple("CameraProperty", "status value min max default step type flags category group") # Disable pylint false positives # pylint:disable=E0712 class Camera: """""" def __init__(self, serial, width, height, framerate, color, liveview): """ Constructor. Creates the sink pipeline and the source pipeline. :param serial: Serial number of the camera to use. :param width: Width of the video format, e.g. 640, 1920 etc, :param height: Height of the video format, e.g. 480, 1080 :param framerate: Numerator of the frame rate, e.g. 15, 30, 60 etc :param color: If True, color is used, else gray scale :param liveview: If True an own live window is opened. """ Gst.init([]) self.height = height self.width = width self.sample = None self.samplelocked = False self.newsample = False self.pid = -1 self.__remove_tmp_file() pixelformat = "BGRx" if not color: pixelformat = "GRAY8" if liveview: p = 'tcambin serial="%s" name=source ! video/x-raw,format=%s,width=%d,height=%d,framerate=%d/1' % (serial, pixelformat, width, height, framerate,) p += ' ! tee name=t' p += ' t. ! queue ! videoconvert ! video/x-raw,format=RGB ,width=%d,height=%d,framerate=%d/1! shmsink socket-path=/tmp/ros_mem' % (width, height, framerate,) p += ' t. ! queue ! videoconvert ! ximagesink' else: p = 'tcambin serial="%s" name=source ! video/x-raw,format=%s,width=%d,height=%d,framerate=%d/1' % ( serial, pixelformat, width, height, framerate,) p += ' ! videoconvert ! video/x-raw,format=RGB ,width=%d,height=%d,framerate=%d/1! shmsink socket-path=/tmp/ros_mem' % (width, height, framerate,) print(p) try: self.pipeline = Gst.parse_launch(p) except GLib.Error as error: raise RuntimeError("Error creating pipeline: {0}".format(error)) self.pipeline.set_state(Gst.State.READY) if self.pipeline.get_state(10 * Gst.SECOND)[0] != Gst.StateChangeReturn.SUCCESS: raise RuntimeError("Failed to start video stream.") # Query a pointer to our source, so we can set properties. self.source = self.pipeline.get_by_name("source") # Create gscam_config variable with content gscam = 'shmsrc socket-path=/tmp/ros_mem ! video/x-raw-rgb, width=%d,height=%d,framerate=%d/1' % (width, height, framerate,) gscam += ',bpp=24,depth=24,blue_mask=16711680, green_mask=65280, red_mask=255 ! ffmpegcolorspace' os.environ["GSCAM_CONFIG"] = gscam def start_pipeline(self): """ Starts the camera sink pipeline and the rosrun process :return: """ try: self.pipeline.set_state(Gst.State.PLAYING) self.pid = subprocess.Popen(["rosrun", "gscam", "gscam"]) except GLib.Error as error: print("Error starting pipeline: {0}".format(error)) raise def stop_pipeline(self): """ Stops the camera pipeline. Should also kill the rosrun process, but is not implemented :return: """ self.pipeline.set_state(Gst.State.PAUSED) self.pipeline.set_state(Gst.State.READY) self.pipeline.set_state(Gst.State.NULL) self.pid.kill() def list_properties(self): """ Helper function. List available properties :return: """ for name in self.source.get_tcam_property_names(): print(name) def get_property(self, property_name): """ Return the value of the passed property. Use list_properties for querying names of available properties. :param property_name: Name of the property, e.g. Gain, Exposure, Gain Auto. :return: Current value of the property. """ try: return CameraProperty(*self.source.get_tcam_property(property_name)) except GLib.Error as error: raise RuntimeError("Error get Property {0}: {1}", property_name, format(error)) def set_property(self, property_name, value): """ Set a property. Use list_properties for querying names of available properties. :param property_name: Name of the property, e.g. Gain, Exposure, Gain Auto. :param value: Value to be set. :return: """ try: self.source.set_tcam_property(property_name, value) except GLib.Error as error: raise RuntimeError("Error set Property {0}: {1}", property_name, format(error)) def push_property(self, property_name): """ Simplify push properties, like Auto Focus one push :param property_name: Name of the property to be pushed :return: """ try: self.source.set_tcam_property(property_name, True) except GLib.Error as error: raise RuntimeError("Error set Property {0}: {1}", property_name, format(error)) def __remove_tmp_file(self): """ Delete the memory file used by the pipelines to share memory :return: """ try: os.remove('/tmp/ros_mem') except OSError: pass
[((74, 106), 'gi.require_version', 'gi.require_version', (['"""Gst"""', '"""1.0"""'], {}), "('Gst', '1.0')\n", (92, 106), False, 'import gi\n'), ((107, 140), 'gi.require_version', 'gi.require_version', (['"""Tcam"""', '"""0.1"""'], {}), "('Tcam', '0.1')\n", (125, 140), False, 'import gi\n'), ((207, 273), 'collections.namedtuple', 'namedtuple', (['"""DeviceInfo"""', '"""status name identifier connection_type"""'], {}), "('DeviceInfo', 'status name identifier connection_type')\n", (217, 273), False, 'from collections import namedtuple\n'), ((291, 386), 'collections.namedtuple', 'namedtuple', (['"""CameraProperty"""', '"""status value min max default step type flags category group"""'], {}), "('CameraProperty',\n 'status value min max default step type flags category group')\n", (301, 386), False, 'from collections import namedtuple\n'), ((1041, 1053), 'gi.repository.Gst.init', 'Gst.init', (['[]'], {}), '([])\n', (1049, 1053), False, 'from gi.repository import Tcam, Gst, GLib, GObject\n'), ((2194, 2213), 'gi.repository.Gst.parse_launch', 'Gst.parse_launch', (['p'], {}), '(p)\n', (2210, 2213), False, 'from gi.repository import Tcam, Gst, GLib, GObject\n'), ((3210, 3256), 'subprocess.Popen', 'subprocess.Popen', (["['rosrun', 'gscam', 'gscam']"], {}), "(['rosrun', 'gscam', 'gscam'])\n", (3226, 3256), False, 'import subprocess\n'), ((5513, 5538), 'os.remove', 'os.remove', (['"""/tmp/ros_mem"""'], {}), "('/tmp/ros_mem')\n", (5522, 5538), False, 'import os\n')]
bertrand-caron/cv_blog_flask
helpers/config.py
ce779db31805f0b1a7bbc9a6f09a7d3fe1af74b2
from typing import Dict, Any from yaml import load def get_config() -> Dict[str, Any]: try: return load(open('config/config.yml').read()) except Exception as e: raise Exception('ERROR: Missing config/config.yml file.') from e CONFIG = get_config()
[]
falckt/raman
raman/unmixing.py
8f9fae0e211dd49cebaba98e71787bb663be8fcf
# Author: Tillmann Falck <[email protected]> # # License: BSD 3 clause # # SPDX-License-Identifier: BSD-3-Clause import collections from itertools import product import cvxpy as cp import numpy as np def sunsal_tv(A, Y, lambda_1, lambda_tv, sweep='prod', tv_type='iso', additional_constraint='none'): r""" Sparse unmixing via variable splitting and augmented Lagrangian and total variation (SUnSAL-TV) solves the following optimization problem min || Y - A * X ||_F + lambda_1 || X ||_1 + lambda_TV || X ||_TV X subject to X >= 0 # if additional_constraint is 'positive' sum(X, axis=0) == 1 # if additional_constraint is 'sum_to_one' with || X ||_1 = \sum_i | x_i | # for a flattened array X || X ||_TV = \sum_i (\sum_j |X_ij|^p)^(1/p) # p = 1 for non-isotropic and p = 2 for isotropic Parameters ---------- A: array - N x L, spectral library, where L is the number of library elements and N the number of points in each spectrum Y: array - N x m_1 x ... x m_d, target spectra, m_1, ..., m_d are spatial dimnesions lambda_1: float - regularization constant for elementwise sparsity inducing term lambda_TV: float - regularization constant for TV regularizer (sparse changes along spatial dimensions) sweep: {'prod', 'zip'} - tv_type: {'iso', 'non-iso'} - type of total variation norm, isotropic or non-isotropic additional_constraint: {'none', 'positive', 'sum_to_one'} - additional constraint on solution Returns ------- X: array - L x m_1 x ... x m_d References ---------- [1] M. Iordache, J. M. Bioucas-Dias and A. Plaza, "Total Variation Spatial Regularization for Sparse Hyperspectral Unmixing," in IEEE Transactions on Geoscience and Remote Sensing, vol. 50, no. 11, pp. 4484-4502, Nov. 2012. [2] Matlab implementation, downloaded from https://github.com/ricardoborsoi/MUA_SparseUnmixing/blob/57802d5b2f77649fb32c2e4c75258f8d91084f7d/sunsal_tv.m [3] https://dsp.stackexchange.com/questions/57977/isotropic-and-anisotropic-in-the-total-variation-framework """ # get dimensions num_spectra, lib_size = A.shape sample_dims = Y.shape[1:] assert Y.shape[0] == num_spectra, 'Size of library does not size of target variables' # reshape Y from [spectra x Xpos x Ypos x ...] --> [spectra x (Xpos * Ypos * ...)] Y = Y.reshape((num_spectra, -1)) num_samples = Y.shape[1] # create optimization variables positive_solution = (additional_constraint == 'positive') X = cp.Variable((lib_size, num_samples), nonneg=positive_solution) p_lambda_1 = cp.Parameter(1, nonneg=True) p_lambda_tv = cp.Parameter(1, nonneg=True) # calculate first differences in each direction idx = np.r_[:num_samples] idx_s = idx.reshape(sample_dims) differences = [] for n, d in enumerate(sample_dims): ia = np.ravel(idx_s.take(indices=np.r_[np.r_[1:d], 0], axis=n)) ib = np.ravel(idx_s.take(indices=np.r_[:d], axis=n)) differences.append(X[:, ia] - X[:, ib]) # compute TV norm if tv_type == 'iso': D = [x*x for x in differences] D = cp.sqrt(cp.sum(D)) tv = cp.sum(D) elif tv_type == 'non-iso': D = [cp.sum(cp.abs(x)) for x in differences] tv = cp.sum(D) else: raise ValueError(f'TV norm type `{tv_type}` is not defined') # define object function obj = cp.norm(Y - A @ X, p='fro') + p_lambda_1 * cp.pnorm(X, p=1) + p_lambda_tv * tv # constraints constr = [] if additional_constraint == 'sum_to_one': constr.append(cp.sum(X, axis=0) == 1) # opimiztion problem prob = cp.Problem(cp.Minimize(obj), constr) # init parameter sweep # if lambda_1 and lambda_tv are scalar return result # otherwise return a dict with (lambda_1, lambda_tv): result lambda_scalar = True if not isinstance(lambda_1, collections.Iterable): lambda_1 = [lambda_1] else: lambda_scalar = False if not isinstance(lambda_tv, collections.Iterable): lambda_tv = [lambda_tv] else: lambda_scalar = False if sweep == 'prod': l_iter = product(lambda_1, lambda_tv) elif sweep == 'zip': l_iter = zip(lambda_1, lambda_tv) else: raise ValueError(f'Parameter sweep `{sweep}` not supported') results = {} for l_1, l_tv in l_iter: p_lambda_1.value = l_1 p_lambda_tv.value = l_tv # solution prob.solve(solver=cp.SCS, verbose=True) results[(l_1, l_tv)] = X.value.reshape((lib_size, ) + sample_dims) if lambda_scalar: return results.popitem()[1] else: return results
[((2598, 2660), 'cvxpy.Variable', 'cp.Variable', (['(lib_size, num_samples)'], {'nonneg': 'positive_solution'}), '((lib_size, num_samples), nonneg=positive_solution)\n', (2609, 2660), True, 'import cvxpy as cp\n'), ((2678, 2706), 'cvxpy.Parameter', 'cp.Parameter', (['(1)'], {'nonneg': '(True)'}), '(1, nonneg=True)\n', (2690, 2706), True, 'import cvxpy as cp\n'), ((2725, 2753), 'cvxpy.Parameter', 'cp.Parameter', (['(1)'], {'nonneg': '(True)'}), '(1, nonneg=True)\n', (2737, 2753), True, 'import cvxpy as cp\n'), ((3249, 3258), 'cvxpy.sum', 'cp.sum', (['D'], {}), '(D)\n', (3255, 3258), True, 'import cvxpy as cp\n'), ((3739, 3755), 'cvxpy.Minimize', 'cp.Minimize', (['obj'], {}), '(obj)\n', (3750, 3755), True, 'import cvxpy as cp\n'), ((4236, 4264), 'itertools.product', 'product', (['lambda_1', 'lambda_tv'], {}), '(lambda_1, lambda_tv)\n', (4243, 4264), False, 'from itertools import product\n'), ((3225, 3234), 'cvxpy.sum', 'cp.sum', (['D'], {}), '(D)\n', (3231, 3234), True, 'import cvxpy as cp\n'), ((3356, 3365), 'cvxpy.sum', 'cp.sum', (['D'], {}), '(D)\n', (3362, 3365), True, 'import cvxpy as cp\n'), ((3485, 3512), 'cvxpy.norm', 'cp.norm', (['(Y - A @ X)'], {'p': '"""fro"""'}), "(Y - A @ X, p='fro')\n", (3492, 3512), True, 'import cvxpy as cp\n'), ((3528, 3544), 'cvxpy.pnorm', 'cp.pnorm', (['X'], {'p': '(1)'}), '(X, p=1)\n', (3536, 3544), True, 'import cvxpy as cp\n'), ((3667, 3684), 'cvxpy.sum', 'cp.sum', (['X'], {'axis': '(0)'}), '(X, axis=0)\n', (3673, 3684), True, 'import cvxpy as cp\n'), ((3310, 3319), 'cvxpy.abs', 'cp.abs', (['x'], {}), '(x)\n', (3316, 3319), True, 'import cvxpy as cp\n')]
ucsb-cs48-w19/6pm-stock-trading
test_stock.py
daf70b684c15182753d8ca9b820238cf9cd5b75c
import pytest def test_stock(): assert(0 == 0)
[]
damirishpreet/TM1py
TM1py/Objects/ElementAttribute.py
8482d0787fd5a9e5eb05a0288c41b75fc1fc93ac
# -*- coding: utf-8 -*- import json from TM1py.Objects.TM1Object import TM1Object class ElementAttribute(TM1Object): """ Abstraction of TM1 Element Attributes """ valid_types = ['NUMERIC', 'STRING', 'ALIAS'] def __init__(self, name, attribute_type): self.name = name self.attribute_type = attribute_type @property def name(self): return self._name @name.setter def name(self, value): self._name = value @property def attribute_type(self): return self._attribute_type @attribute_type.setter def attribute_type(self, value): if value.upper() in ElementAttribute.valid_types: self._attribute_type = value else: raise Exception('{} not a valid Attribute Type.'.format(value)) @property def body_as_dict(self): return {"Name": self._name, "Type": self._attribute_type} @property def body(self): return json.dumps(self.body_as_dict, ensure_ascii=False) @classmethod def from_json(cls, element_attribute_as_json): return cls.from_dict(json.loads(element_attribute_as_json)) @classmethod def from_dict(cls, element_attribute_as_dict): return cls(name=element_attribute_as_dict['Name'], attribute_type=element_attribute_as_dict['Type']) def __eq__(self, other): return self.name == other
[((973, 1022), 'json.dumps', 'json.dumps', (['self.body_as_dict'], {'ensure_ascii': '(False)'}), '(self.body_as_dict, ensure_ascii=False)\n', (983, 1022), False, 'import json\n'), ((1121, 1158), 'json.loads', 'json.loads', (['element_attribute_as_json'], {}), '(element_attribute_as_json)\n', (1131, 1158), False, 'import json\n')]
MaherClinc/stockly-bs
account.py
4a2c5741673b85bee9100afef0b404520cb10b5d
from sqlalchemy import exc from sqlalchemy.sql.expression import func from models import Watchlist, Portfolio, Activity from app import db import metric def buy_stock(ticker, units): unit_price = metric.get_price(ticker) total_price = units * unit_price max_id = db.session.query(func.max(Activity.activity_id)).scalar() if max_id is None: old_buying_power = 100000 else: old_buying_power = Activity.query.filter(Activity.activity_id == max_id).all()[0].buying_power new_buying_power = old_buying_power - total_price if new_buying_power > 0: try: db.session.add( Activity(ticker=ticker, units=units, order_type= "b", unit_price=unit_price, total_price=total_price, buying_power=new_buying_power) ) update_portfolio_buy(ticker, units, total_price) db.session.commit() return { 'status': True, 'error': None } except exc.SQLAlchemyError: return { 'status': False, 'error': 'database error' } else: return { 'status': False, 'error': 'Insufficient Funds' } def sell_stock(ticker, units): unit_price = metric.get_price(ticker) row = Portfolio.query.filter(Portfolio.ticker == ticker).all() if len(row): available_units = int(row[0].total_units) units = min(available_units, units) if units >= 1 else int(available_units*units) total_price = units * unit_price max_id = db.session.query(func.max(Activity.activity_id)).scalar() old_buying_power = Activity.query.filter(Activity.activity_id == max_id).all()[0].buying_power new_buying_power = old_buying_power + total_price try: db.session.add( Activity(ticker=ticker, units=units, order_type= "s", unit_price=unit_price, total_price=total_price, buying_power=new_buying_power) ) update_portfolio_sell(ticker, units, total_price) db.session.commit() return { 'status': True, 'amount': units, 'error': None } except exc.SQLAlchemyError: return { 'status': False, 'error': 'database error' } else: return { 'status': False, 'error': 'No Stock by this name' } def update_portfolio_buy(ticker, units, total_price): row = Portfolio.query.filter(Portfolio.ticker == ticker).all() if len(row): row[0].total_units = int(row[0].total_units) + units row[0].total_invested = int(row[0].total_invested) + total_price else: db.session.add( Portfolio(ticker=ticker, total_units=units, total_invested=total_price) ) def update_portfolio_sell(ticker, units, total_price): row = Portfolio.query.filter(Portfolio.ticker == ticker).all() if len(row): row[0].total_invested = int(row[0].total_invested) - ((int(row[0].total_invested)/int(row[0].total_units)) * units) row[0].total_units = int(row[0].total_units) - units Portfolio.query.filter(Portfolio.total_units == 0).delete() def get_watchlist(): rows = Watchlist.query.all() if len(rows): watchlist = [row.ticker for row in rows] else: watchlist = [] return watchlist def get_portfolio(): rows = Portfolio.query.all() portfolio = [{'ticker':row.ticker, 'total_units':row.total_units, 'total_invested':row.total_invested} for row in rows] return portfolio def is_stock_in_watchlist(ticker): rows = Watchlist.query.filter(Watchlist.ticker == ticker).all() return True if len(rows) else False def add_to_watchlist(ticker): industry = metric.get_company(ticker)["industry"] try: db.session.add( Watchlist(ticker=ticker, industry=industry) ) db.session.commit() return True except exc.SQLAlchemyError: return False def remove_from_watchlist(ticker): try: Watchlist.query.filter(Watchlist.ticker == ticker).delete() db.session.commit() return True except exc.SQLAlchemyError: return False
[((202, 226), 'metric.get_price', 'metric.get_price', (['ticker'], {}), '(ticker)\n', (218, 226), False, 'import metric\n'), ((1165, 1189), 'metric.get_price', 'metric.get_price', (['ticker'], {}), '(ticker)\n', (1181, 1189), False, 'import metric\n'), ((3039, 3060), 'models.Watchlist.query.all', 'Watchlist.query.all', ([], {}), '()\n', (3058, 3060), False, 'from models import Watchlist, Portfolio, Activity\n'), ((3216, 3237), 'models.Portfolio.query.all', 'Portfolio.query.all', ([], {}), '()\n', (3235, 3237), False, 'from models import Watchlist, Portfolio, Activity\n'), ((3573, 3599), 'metric.get_company', 'metric.get_company', (['ticker'], {}), '(ticker)\n', (3591, 3599), False, 'import metric\n'), ((3699, 3718), 'app.db.session.commit', 'db.session.commit', ([], {}), '()\n', (3716, 3718), False, 'from app import db\n'), ((3913, 3932), 'app.db.session.commit', 'db.session.commit', ([], {}), '()\n', (3930, 3932), False, 'from app import db\n'), ((865, 884), 'app.db.session.commit', 'db.session.commit', ([], {}), '()\n', (882, 884), False, 'from app import db\n'), ((1200, 1250), 'models.Portfolio.query.filter', 'Portfolio.query.filter', (['(Portfolio.ticker == ticker)'], {}), '(Portfolio.ticker == ticker)\n', (1222, 1250), False, 'from models import Watchlist, Portfolio, Activity\n'), ((1960, 1979), 'app.db.session.commit', 'db.session.commit', ([], {}), '()\n', (1977, 1979), False, 'from app import db\n'), ((2296, 2346), 'models.Portfolio.query.filter', 'Portfolio.query.filter', (['(Portfolio.ticker == ticker)'], {}), '(Portfolio.ticker == ticker)\n', (2318, 2346), False, 'from models import Watchlist, Portfolio, Activity\n'), ((2538, 2609), 'models.Portfolio', 'Portfolio', ([], {'ticker': 'ticker', 'total_units': 'units', 'total_invested': 'total_price'}), '(ticker=ticker, total_units=units, total_invested=total_price)\n', (2547, 2609), False, 'from models import Watchlist, Portfolio, Activity\n'), ((2678, 2728), 'models.Portfolio.query.filter', 'Portfolio.query.filter', (['(Portfolio.ticker == ticker)'], {}), '(Portfolio.ticker == ticker)\n', (2700, 2728), False, 'from models import Watchlist, Portfolio, Activity\n'), ((2946, 2996), 'models.Portfolio.query.filter', 'Portfolio.query.filter', (['(Portfolio.total_units == 0)'], {}), '(Portfolio.total_units == 0)\n', (2968, 2996), False, 'from models import Watchlist, Portfolio, Activity\n'), ((3430, 3480), 'models.Watchlist.query.filter', 'Watchlist.query.filter', (['(Watchlist.ticker == ticker)'], {}), '(Watchlist.ticker == ticker)\n', (3452, 3480), False, 'from models import Watchlist, Portfolio, Activity\n'), ((3645, 3688), 'models.Watchlist', 'Watchlist', ([], {'ticker': 'ticker', 'industry': 'industry'}), '(ticker=ticker, industry=industry)\n', (3654, 3688), False, 'from models import Watchlist, Portfolio, Activity\n'), ((294, 324), 'sqlalchemy.sql.expression.func.max', 'func.max', (['Activity.activity_id'], {}), '(Activity.activity_id)\n', (302, 324), False, 'from sqlalchemy.sql.expression import func\n'), ((640, 775), 'models.Activity', 'Activity', ([], {'ticker': 'ticker', 'units': 'units', 'order_type': '"""b"""', 'unit_price': 'unit_price', 'total_price': 'total_price', 'buying_power': 'new_buying_power'}), "(ticker=ticker, units=units, order_type='b', unit_price=unit_price,\n total_price=total_price, buying_power=new_buying_power)\n", (648, 775), False, 'from models import Watchlist, Portfolio, Activity\n'), ((1734, 1869), 'models.Activity', 'Activity', ([], {'ticker': 'ticker', 'units': 'units', 'order_type': '"""s"""', 'unit_price': 'unit_price', 'total_price': 'total_price', 'buying_power': 'new_buying_power'}), "(ticker=ticker, units=units, order_type='s', unit_price=unit_price,\n total_price=total_price, buying_power=new_buying_power)\n", (1742, 1869), False, 'from models import Watchlist, Portfolio, Activity\n'), ((3845, 3895), 'models.Watchlist.query.filter', 'Watchlist.query.filter', (['(Watchlist.ticker == ticker)'], {}), '(Watchlist.ticker == ticker)\n', (3867, 3895), False, 'from models import Watchlist, Portfolio, Activity\n'), ((1490, 1520), 'sqlalchemy.sql.expression.func.max', 'func.max', (['Activity.activity_id'], {}), '(Activity.activity_id)\n', (1498, 1520), False, 'from sqlalchemy.sql.expression import func\n'), ((434, 487), 'models.Activity.query.filter', 'Activity.query.filter', (['(Activity.activity_id == max_id)'], {}), '(Activity.activity_id == max_id)\n', (455, 487), False, 'from models import Watchlist, Portfolio, Activity\n'), ((1558, 1611), 'models.Activity.query.filter', 'Activity.query.filter', (['(Activity.activity_id == max_id)'], {}), '(Activity.activity_id == max_id)\n', (1579, 1611), False, 'from models import Watchlist, Portfolio, Activity\n')]
Tilapiatsu/blender-custom_conf
scripts/addons/kekit/ke_fit2grid.py
05592fedf74e4b7075a6228b8448a5cda10f7753
bl_info = { "name": "ke_fit2grid", "author": "Kjell Emanuelsson", "category": "Modeling", "version": (1, 0, 2), "blender": (2, 80, 0), } import bpy import bmesh from .ke_utils import get_loops, correct_normal, average_vector from mathutils import Vector, Matrix def fit_to_grid(co, grid): x, y, z = round(co[0] / grid) * grid, round(co[1] / grid) * grid, round(co[2] / grid) * grid return round(x, 5), round(y, 5), round(z, 5) class VIEW3D_OT_ke_fit2grid(bpy.types.Operator): bl_idname = "view3d.ke_fit2grid" bl_label = "Fit2Grid" bl_description = "EDIT: Snaps verts of selected VERTS/EDGES/FACES to nearest set world grid step." bl_options = {'REGISTER', 'UNDO'} set_grid: bpy.props.FloatProperty() @classmethod def poll(cls, context): return context.object is not None def execute(self, context): if not self.set_grid: grid_setting = bpy.context.scene.kekit.fit2grid else: grid_setting = self.set_grid obj = context.object if obj.type == 'MESH' and obj.data.is_editmode: od = obj.data bm = bmesh.from_edit_mesh(od) obj_mtx = obj.matrix_world.copy() verts = [v for v in bm.verts if v.select] if verts: vert_cos = [obj_mtx @ v.co for v in verts] modified = [] for v,co in zip(verts, vert_cos): new_coords = fit_to_grid(co, grid_setting) old_coords = tuple([round(i, 5) for i in co]) if new_coords != old_coords: new_coords = new_coords v.co = obj_mtx.inverted() @ Vector(new_coords) modified.append(v) bpy.ops.mesh.select_all(action='DESELECT') if modified: for v in modified: v.select = True bmesh.update_edit_mesh(od) bm.free() bpy.ops.object.mode_set(mode="OBJECT") bpy.ops.object.mode_set(mode='EDIT') if modified: bpy.ops.mesh.select_mode(type="VERT") self.report({"INFO"}, "Fit2Grid: %i vert(s) not on grid" % len(modified)) else: self.report({"INFO"}, "Fit2Grid: On grid - All good!") else: self.report({"INFO"}, "Fit2Grid: Nothing Selected?") elif context.mode == "OBJECT": new_loc = fit_to_grid(obj.location, grid_setting) obj.location = new_loc else: self.report({"INFO"}, "Fit2Grid: Invalid object/mode - Aborted") return {'FINISHED'} # ------------------------------------------------------------------------------------------------- # Class Registration & Unregistration # ------------------------------------------------------------------------------------------------- def register(): bpy.utils.register_class(VIEW3D_OT_ke_fit2grid) def unregister(): bpy.utils.unregister_class(VIEW3D_OT_ke_fit2grid) if __name__ == "__main__": register()
[((727, 752), 'bpy.props.FloatProperty', 'bpy.props.FloatProperty', ([], {}), '()\n', (750, 752), False, 'import bpy\n'), ((3011, 3058), 'bpy.utils.register_class', 'bpy.utils.register_class', (['VIEW3D_OT_ke_fit2grid'], {}), '(VIEW3D_OT_ke_fit2grid)\n', (3035, 3058), False, 'import bpy\n'), ((3082, 3131), 'bpy.utils.unregister_class', 'bpy.utils.unregister_class', (['VIEW3D_OT_ke_fit2grid'], {}), '(VIEW3D_OT_ke_fit2grid)\n', (3108, 3131), False, 'import bpy\n'), ((1149, 1173), 'bmesh.from_edit_mesh', 'bmesh.from_edit_mesh', (['od'], {}), '(od)\n', (1169, 1173), False, 'import bmesh\n'), ((1796, 1838), 'bpy.ops.mesh.select_all', 'bpy.ops.mesh.select_all', ([], {'action': '"""DESELECT"""'}), "(action='DESELECT')\n", (1819, 1838), False, 'import bpy\n'), ((1965, 1991), 'bmesh.update_edit_mesh', 'bmesh.update_edit_mesh', (['od'], {}), '(od)\n', (1987, 1991), False, 'import bmesh\n'), ((2034, 2072), 'bpy.ops.object.mode_set', 'bpy.ops.object.mode_set', ([], {'mode': '"""OBJECT"""'}), "(mode='OBJECT')\n", (2057, 2072), False, 'import bpy\n'), ((2089, 2125), 'bpy.ops.object.mode_set', 'bpy.ops.object.mode_set', ([], {'mode': '"""EDIT"""'}), "(mode='EDIT')\n", (2112, 2125), False, 'import bpy\n'), ((2176, 2213), 'bpy.ops.mesh.select_mode', 'bpy.ops.mesh.select_mode', ([], {'type': '"""VERT"""'}), "(type='VERT')\n", (2200, 2213), False, 'import bpy\n'), ((1717, 1735), 'mathutils.Vector', 'Vector', (['new_coords'], {}), '(new_coords)\n', (1723, 1735), False, 'from mathutils import Vector, Matrix\n')]
en0/pyavl3
tests/test_update.py
c9dad3189da1f18e935e61d13d7c971aceafd895
import unittest from pyavl3 import AVLTree class AVLTreeUpdateTest(unittest.TestCase): def test_add_one(self): a = AVLTree() a.update({1:'a'}) self.assertEqual(len(a), 1)
[((129, 138), 'pyavl3.AVLTree', 'AVLTree', ([], {}), '()\n', (136, 138), False, 'from pyavl3 import AVLTree\n')]