repo_name
stringlengths
7
94
repo_path
stringlengths
4
237
repo_head_hexsha
stringlengths
40
40
content
stringlengths
10
680k
apis
stringlengths
2
680k
j-rivero/ros_buildfarm
ros_buildfarm/debian_repo.py
840d2dc1dd5db00d5407da4644cd2bcbc5e0ac88
# Copyright 2014 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os from .common import PlatformPackageDescriptor from .http_cache import fetch_and_cache_gzip def get_debian_repo_index(debian_repository_baseurl, target, cache_dir): url = os.path.join( debian_repository_baseurl, 'dists', target.os_code_name, 'main') if target.arch == 'source': url = os.path.join(url, 'source', 'Sources.gz') else: url = os.path.join(url, 'binary-%s' % target.arch, 'Packages.gz') cache_filename = fetch_and_cache_gzip(url, cache_dir) logging.debug('Reading file: %s' % cache_filename) # split package blocks with open(cache_filename, 'rb') as f: blocks = f.read().decode('utf8').split('\n\n') blocks = [b.splitlines() for b in blocks if b] # extract version number of every package package_versions = {} for lines in blocks: prefix = 'Package: ' assert lines[0].startswith(prefix) debian_pkg_name = lines[0][len(prefix):] prefix = 'Version: ' versions = [l[len(prefix):] for l in lines if l.startswith(prefix)] version = versions[0] if len(versions) == 1 else None prefix = 'Source: ' source_names = [l[len(prefix):] for l in lines if l.startswith(prefix)] source_name = source_names[0] if len(source_names) == 1 else None package_versions[debian_pkg_name] = PlatformPackageDescriptor(version, source_name) return package_versions
[((804, 881), 'os.path.join', 'os.path.join', (['debian_repository_baseurl', '"""dists"""', 'target.os_code_name', '"""main"""'], {}), "(debian_repository_baseurl, 'dists', target.os_code_name, 'main')\n", (816, 881), False, 'import os\n'), ((1127, 1177), 'logging.debug', 'logging.debug', (["('Reading file: %s' % cache_filename)"], {}), "('Reading file: %s' % cache_filename)\n", (1140, 1177), False, 'import logging\n'), ((937, 978), 'os.path.join', 'os.path.join', (['url', '"""source"""', '"""Sources.gz"""'], {}), "(url, 'source', 'Sources.gz')\n", (949, 978), False, 'import os\n'), ((1003, 1062), 'os.path.join', 'os.path.join', (['url', "('binary-%s' % target.arch)", '"""Packages.gz"""'], {}), "(url, 'binary-%s' % target.arch, 'Packages.gz')\n", (1015, 1062), False, 'import os\n')]
Drayux/Battlematus
player.py
1709a15b58d9274b99ec36eff1a181014d155037
# PLAYER class player: def __init__(self):
[]
ConvolutedDog/Implicit-Im2col-for-Backpropagation
Framwork-Backpropagation/utils/utils_v2.py
529a62f52903326b9289091b7d0abb45e6c7bb31
# Copyright 2022 ConvolutedDog (https://github.com/ConvolutedDog/) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/usr/bin/python3 import torch import torch.nn as nn import torch.nn.functional as F from graphviz import Digraph, render from torch.autograd import Variable @torch.no_grad() def cross_entropy_loss(y_predict, y_true): print('\n=========================== Layer:'+' {0:18}'.format('cross_entropy_loss')+' Start ===========================') print('# y_predict.shape: ', list(y_predict.shape)) print('# y_true.shape: ', list(y_true.shape)) y_shift = torch.sub(y_predict, torch.max(y_predict, dim=1, keepdim=True).values) y_exp = torch.exp(y_shift) y_probability = torch.div(y_exp, torch.sum(y_exp, dim=1, keepdim=True)) ypred_loss = torch.mean(-torch.sum(torch.mul(y_true, torch.log(y_probability)), dim=1, keepdim=True)) dLoss_dypred = y_probability - y_true print('# dLoss_dypred.shape: ', list(dLoss_dypred.shape)) print('# Self calculated loss: ', ypred_loss.item()) print('=========================== Layer:'+' {0:18}'.format('cross_entropy_loss')+' End =============================') return ypred_loss, dLoss_dypred @torch.no_grad() def fc_backward(dLoss_dnextz, z, w): print('# next_dz.shape: ', list(dLoss_dnextz.shape)) print('# z.shape: ', list(z.shape)) print('# weight.shape: ', list(w.shape)) print('# bias.shape: ', '['+str(dLoss_dnextz.shape[1])+']') N = z.shape[0] if len(z.shape) == 4: z = z.view(z.size(0), -1) dLoss_dz = torch.matmul(dLoss_dnextz, w) #delta dLoss_dfcW = torch.matmul(dLoss_dnextz.t(), z) dLoss_dfcB = torch.sum(dLoss_dnextz, dim=0) print('# dz.shape: ', list(dLoss_dz.shape)) print('# dweight.shape: ', list(dLoss_dfcW.shape)) print('# dbias.shape: ', list(dLoss_dfcB.shape)) return dLoss_dz, dLoss_dfcW/N, dLoss_dfcB/N @torch.no_grad() def view_backward(dLoss_dnextz, last_z, params): print('# next_dz.shape: ', list(dLoss_dnextz.shape)) print('# last_z.shape: ', list(last_z.shape)) if params: pooling = params[0] stride = params[1] padding = params[2] output_size = (int((last_z.shape[2]-pooling[0]+2*padding[0])/stride[0]+1), \ int((last_z.shape[3]-pooling[0]+2*padding[0])/stride[0]+1)) dLoss_dz = dLoss_dnextz.reshape(last_z.shape[0], last_z.shape[1], output_size[0], output_size[1]) else: dLoss_dz = dLoss_dnextz.reshape(last_z.shape) print('# dz.shape: ', list(dLoss_dz.shape)) return dLoss_dz def add_backward(dLoss_dnextz): print('# next_dz.shape: ', list(dLoss_dnextz.shape)) dLoss_dz = dLoss_dnextz print('# dz.shape: ', list(dLoss_dz.shape)) return dLoss_dz @torch.no_grad() def relu_backward(next_dz, z): print('# next_dz.shape: ', list(next_dz.shape)) print('# z.shape: ', list(z.shape)) zeros_tensor = torch.zeros_like(next_dz) dLoss_dz = torch.where(torch.gt(z, 0), next_dz, zeros_tensor) print('# dz.shape: ', list(dLoss_dz.shape)) return dLoss_dz @torch.no_grad() def dropback_backward(next_dz, mask, p): print('# zeros probability: ', p) print('# next_dz.shape: ', list(next_dz.shape)) print('# mask.shape: ', list(mask.shape)) zeros_tensor = torch.zeros_like(mask) dLoss_dz = torch.mul(torch.where(torch.eq(mask, 1.), next_dz, zeros_tensor), 1./(1.-p)) print('# dz.shape: ', list(dLoss_dz.shape)) return dLoss_dz @torch.no_grad() def max_pooling_backward(next_dz, z, pooling, strides, padding=(0, 0)): print('# next_dz.shape: ', list(next_dz.shape)) print('# z.shape: ', list(z.shape)) print('# padding: ', padding) print('# strides: ', strides) N, C, H, W = z.shape _, _, out_h, out_w = next_dz.shape padding_z = F.pad(z, pad=(padding[1],padding[1],padding[0],\ padding[0],0,0), mode='constant', value=0) padding_dz = torch.zeros_like(padding_z) for n in torch.arange(N): for c in torch.arange(C): for i in torch.arange(out_h): for j in torch.arange(out_w): flat_idx = torch.argmax(padding_z[n, c, strides[0] * i:strides[0] * i + pooling[0], strides[1] * j:strides[1] * j + pooling[1]]) h_idx = strides[0] * i + flat_idx // pooling[1] w_idx = strides[1] * j + flat_idx % pooling[1] padding_dz[n, c, h_idx, w_idx] += next_dz[n, c, i, j] dz = _remove_padding(padding_dz, padding) # padding_z[:, :, padding[0]:-padding[0], padding[1]:-padding[1]] print('# dz.shape: ', list(dz.shape)) return dz @torch.no_grad() def batchnorm2d_backward(next_dz, z, eps, gamma=torch.Tensor([1.,1.,1.])): print('# next_dz.shape: ', list(next_dz.shape)) print('# z.shape: ', list(z.shape)) print('# eps: ', eps) print('# gamma.shape: ', list(gamma.shape)) N, C, H, W = z.shape m = N*H*W shape = [N,C,H,W] import numpy as np ax = list(np.arange(len(shape))) shape.pop(1) ax.pop(1) axis = tuple(ax) dxhut = torch.zeros_like(next_dz) for c in range(C): dxhut[:,c] = next_dz[:,c]*gamma[c] dz1 = m*dxhut mu = z.mean(axis=axis, keepdim=True) xmu = z - mu xmu2 = xmu**2 var = xmu2.sum(axis=axis, keepdim=True)/m ivar = 1./torch.pow(var+eps, 0.5) dz2 = (ivar**2)*((dxhut*xmu).sum(axis=axis, keepdim=True))*xmu dz3 = dxhut.sum(axis=axis, keepdim=True) dz = ivar/m*(dz1-dz2-dz3) print('# dz.shape: ', list(dz.shape)) return dz @torch.no_grad() def average_pooling_backward(next_dz, z, pooling, strides, padding=(0, 0)): print('# next_dz.shape: ', list(next_dz.shape)) print('# z.shape: ', list(z.shape)) print('# padding: ', padding) print('# strides: ', strides) N, C, H, W = z.shape _, _, out_h, out_w = next_dz.shape padding_z = F.pad(z, pad=(padding[1],padding[1],padding[0],\ padding[0],0,0), mode='constant', value=0) padding_dz = torch.zeros_like(padding_z) for n in torch.arange(N): for c in torch.arange(C): for i in torch.arange(out_h): for j in torch.arange(out_w): padding_dz[n, c, strides[0] * i:strides[0] * i + pooling[0], strides[1] * j:strides[1] * j + pooling[1]] += next_dz[n, c, i, j] / (pooling[0] * pooling[1]) dz = _remove_padding(padding_dz, padding) # padding_z[:, :, padding[0]:-padding[0], padding[1]:-padding[1]] print('# dz.shape: ', list(dz.shape)) return dz @torch.no_grad() def _remove_padding(z, padding): if padding[0] > 0 and padding[1] > 0: return z[:, :, padding[0]:-padding[0], padding[1]:-padding[1]] elif padding[0] > 0: return z[:, :, padding[0]:-padding[0], :] elif padding[1] > 0: return z[:, :, :, padding[1]:-padding[1]] else: return z @torch.no_grad() def conv_backward(next_dz, K, z, padding=(0, 0), strides=(1, 1)): N, C, H, W = z.shape D, C, k1, k2 = K.shape N, D, H1, W1 = next_dz.shape print('# next_dz.shape: ', list(next_dz.shape)) print('# z.shape: ', list(z.shape)) print('# weight.shape: ', list(K.shape)) print('# bias.shape: ', '['+str(K.shape[0])+']') print('# padding: ', padding) print('# strides: ', strides) padding_next_dz = _insert_zeros(next_dz, strides) flip_K = torch.flip(K, (2, 3)) swap_flip_K = torch.swapaxes(flip_K, 0, 1) ppadding_next_dz = F.pad(padding_next_dz, pad=(k2-1-padding[1],k2-1-padding[1],\ k1-1-padding[0],k1-1-padding[0],0,0), mode='constant', value=0) dz = _conv_forward(ppadding_next_dz, swap_flip_K) swap_z = torch.swapaxes(z, 0, 1) dK = _conv_forward(torch.swapaxes(F.pad(z, pad=(padding[1],padding[1],\ padding[0],padding[0],0,0), mode='constant', value=0), 0, 1), torch.swapaxes(padding_next_dz, 0, 1)) db = torch.sum(torch.sum(torch.sum(next_dz, axis=-1), axis=-1), axis=0) # 在高度、宽度上相加;批量大小上相加 print('# dz.shape: ', list(dz.shape)) print('# dweight.shape: ', list(dK.transpose(0,1).shape)) print('# dbias.shape: ', list(db.shape)) return dz, (dK/N).transpose(0,1), db/N @torch.no_grad() def _conv_forward(x, weight, strides=(1,1)): n, c, h_in, w_in = x.shape d, c, k, j = weight.shape x_pad = x x_pad = x_pad.unfold(2, k, strides[0]) x_pad = x_pad.unfold(3, j, strides[1]) out = torch.einsum( 'nchwkj,dckj->ndhw', x_pad, weight) return out @torch.no_grad() def _insert_zeros(dz, strides): N, D, H, W = dz.shape H_last = (H-1)*(strides[0]-1) + H W_last = (W-1)*(strides[1]-1) + W pz = torch.zeros(N, D, H_last, W_last) for n in range(N): for d in range(D): for h in range(0, H_last, strides[0]): for w in range(0, W_last, strides[1]): pz[n,d,h,w] = dz[n,d,h//strides[0],w//strides[1]] return pz @torch.no_grad() def judge_tensors_equal(tensor_A, tensor_B): if(not tensor_A.shape == tensor_B.shape): print('Shape of two compard tensors is not equal.') return None error = 0 error_tolerance = 0.001 np_A = tensor_A.detach().numpy() np_B = tensor_B.detach().numpy() if len(tensor_A.shape) == 4: N, C, H, W = tensor_A.shape for n in range(N): for c in range(C): for h in range(H): for w in range(W): if np_A[n,c,h,w]-np_B[n,c,h,w] > error_tolerance or np_B[n,c,h,w]-np_A[n,c,h,w] > error_tolerance: error += 1 if error%20 == 0: pass print('error', np_A[n,c,h,w], np_B[n,c,h,w]) else: if n*c*h*w % 20000000000000 == 0: pass #print('right', np_A[n,c,h,w], np_B[n,c,h,w]) #print('Error rate: ', error/(N*C*H*W)) print('4D-error-rate: ', end=' ') return error/(N*C*H*W) elif len(tensor_A.shape) == 1: C = tensor_A.shape[0] for c in range(C): if np_A[c]-np_B[c] > error_tolerance or np_B[c]-np_A[c] > error_tolerance: #print(np_A[c], np_B[c]) error += 1 #print('Error rate: ', error/C) print('1D-error-rate: ', end=' ') return error/C elif len(tensor_A.shape) == 2: N, C = tensor_A.shape for n in range(N): for c in range(C): if np_A[n,c]-np_B[n,c] > error_tolerance or np_B[n,c]-np_A[n,c] > error_tolerance: #print(np_A[n,c], np_B[n,c]) error += 1 #print('Error rate: ', error/(C*N)) print('2D-error-rate: ', end=' ') return error/(C*N) @torch.no_grad() def get_featuremap(featuremap_dir=None): import os featuremap = [] if featuremap_dir == None: pth_dir = "./tmp_file/" else: pth_dir = featuremap_dir files = os.listdir(pth_dir) file_nums = [] for i in range(len(files)): if '.pth' in files[i]: file_nums.append(int(files[i].split('.pth')[0])) file_nums.sort() for file_num in file_nums: tensor = torch.load(pth_dir+str(file_num)+'.pth') featuremap.append(tensor) delete_allpths(pth_dir=None) return featuremap @torch.no_grad() def get_structure_parameters_v1(model): layers = [] for layer in model.modules(): if not ':' in str(layer): layers.append(layer) parameters = [] fc_conv_weights = [] for layer in layers: if isinstance(layer, nn.Conv2d): layer_name = 'Conv2d' Conv2d_params = {} Conv2d_params['layer_name'] = layer_name # in_channel in_channel = layer.__dict__.get('in_channels') Conv2d_params['in_channel'] = in_channel # out_channel out_channel = layer.__dict__.get('out_channels') Conv2d_params['out_channel'] = out_channel # kernel_size kernel_size = layer.__dict__.get('kernel_size') if not isinstance(kernel_size, tuple): Conv2d_params['kernel_size'] = (kernel_size, kernel_size) else: Conv2d_params['kernel_size'] = kernel_size # stride stride = layer.__dict__.get('stride') if not isinstance(stride, tuple): Conv2d_params['stride'] = (stride, stride) else: Conv2d_params['stride'] = stride # padding padding = layer.__dict__.get('padding') if not isinstance(padding, tuple): Conv2d_params['padding'] = (padding, padding) else: Conv2d_params['padding'] = padding # return fc_conv_weights.append(layer.weight) parameters.append(Conv2d_params) elif isinstance(layer, nn.ReLU): layer_name = 'ReLU' parameters.append({'layer_name': layer_name}) elif isinstance(layer, nn.MaxPool2d): layer_name = 'MaxPool2d' MaxPool2d_params = {} MaxPool2d_params['layer_name'] = layer_name # kernel_size kernel_size = layer.__dict__.get('kernel_size') if not isinstance(kernel_size, tuple): MaxPool2d_params['kernel_size'] = (kernel_size, kernel_size) else: MaxPool2d_params['kernel_size'] = kernel_size # stride stride = layer.__dict__.get('stride') if not isinstance(stride, tuple): MaxPool2d_params['stride'] = (stride, stride) else: MaxPool2d_params['stride'] = stride # padding padding = layer.__dict__.get('padding') if not isinstance(padding, tuple): MaxPool2d_params['padding'] = (padding, padding) else: MaxPool2d_params['padding'] = padding # return parameters.append(MaxPool2d_params) elif isinstance(layer, nn.AvgPool2d): layer_name = 'AvgPool2d' AvgPool2d_params = {} AvgPool2d_params['layer_name'] = layer_name # kernel_size kernel_size = layer.__dict__.get('kernel_size') if not isinstance(kernel_size, tuple): AvgPool2d_params['kernel_size'] = (kernel_size, kernel_size) else: AvgPool2d_params['kernel_size'] = kernel_size # stride stride = layer.__dict__.get('stride') if not isinstance(stride, tuple): AvgPool2d_params['stride'] = (stride, stride) else: AvgPool2d_params['stride'] = stride # padding padding = layer.__dict__.get('padding') if not isinstance(padding, tuple): AvgPool2d_params['padding'] = (padding, padding) else: AvgPool2d_params['padding'] = padding # return parameters.append(AvgPool2d_params) elif isinstance(layer, nn.Dropout): layer_name = 'Dropout' Dropout_params = {} Dropout_params['layer_name'] = layer_name # p p = layer.__dict__.get('p') Dropout_params['p'] = p # return parameters.append(Dropout_params) elif isinstance(layer, nn.BatchNorm2d): layer_name = 'BatchNorm2d' BatchNorm2d_params = {} BatchNorm2d_params['layer_name'] = layer_name # num_features num_features = layer.__dict__.get('num_features') BatchNorm2d_params['num_features'] = num_features # eps eps = layer.__dict__.get('eps') BatchNorm2d_params['eps'] = eps # return fc_conv_weights.append(layer.weight) parameters.append(BatchNorm2d_params) elif isinstance(layer, nn.Linear): layer_name = 'Linear' Linear_params = {} Linear_params['layer_name'] = layer_name # in_features in_features = layer.__dict__.get('in_features') Linear_params['in_features'] = in_features # out_features out_features = layer.__dict__.get('out_features') Linear_params['out_features'] = out_features # return fc_conv_weights.append(layer.weight) parameters.append(Linear_params) elif isinstance(layer, nn.AdaptiveAvgPool2d): layer_name = 'AdaptiveAvgPool2d' AdaptiveAvgPool2d_params = {} AdaptiveAvgPool2d_params['layer_name'] = layer_name # output_size output_size = layer.__dict__.get('output_size') if not isinstance(output_size, tuple): AdaptiveAvgPool2d_params['output_size'] = (output_size, output_size) else: AdaptiveAvgPool2d_params['output_size'] = output_size # return parameters.append(AdaptiveAvgPool2d_params) else: print('The layer has not been processed in get_structure_parameters_v1!') return parameters, fc_conv_weights @torch.no_grad() def delete_allpths(pth_dir=None): import os if pth_dir == None: pth_dir = "./tmp_file/" for root, dirs, files in os.walk(pth_dir, topdown=False): for name in files: if name.endswith('.pth',): os.remove(os.path.join(root, name)) @torch.no_grad() def mul_items(tensor_size): x = list(tensor_size) mul = 1. for i in range(len(x)): mul *= x[i] return mul @torch.no_grad() def gradient_backward_v1(model, img, label, num_class=1000): return_dz = [] parameters, fc_conv_weights = get_structure_parameters_v1(model) featuremap = get_featuremap(featuremap_dir=None) featuremap.insert(0, img) ### y_true = F.one_hot(label, num_classes=num_class).float() loss, dLoss_dz = cross_entropy_loss(featuremap[-1], y_true) print('Self calculated loss: ', loss) featuremap.pop() return_dz.append(dLoss_dz) dW_dB_fc_conv = [] for i in range(len(parameters)-1, -1, -1): layer = parameters[i] print('\n======================== {0:3} Layer: '.format(str(i))+'{0:9}'.format(layer['layer_name'])+' Backward Start ========================') if layer['layer_name'] == 'Conv2d': z = featuremap[-1] weight_z = fc_conv_weights[-1] try: padding = layer['padding'] except: padding = (0, 0) stride = layer['stride'] dLoss_dz, dLoss_dW, dLoss_dB = conv_backward(dLoss_dz, weight_z, z, padding, stride) return_dz.append(dLoss_dz) fc_conv_weights.pop() if not len(featuremap) == 1: lastpop = featuremap.pop() if not len(dLoss_dz.shape) == len(lastpop.shape): dLoss_dz = dLoss_dz.reshape(lastpop.shape) elif layer['layer_name'] == 'ReLU': z = featuremap[-1] dLoss_dz = relu_backward(dLoss_dz, z) return_dz.append(dLoss_dz) lastpop = featuremap.pop() if not len(dLoss_dz.shape) == len(lastpop.shape): dLoss_dz = dLoss_dz.reshape(lastpop.shape) elif layer['layer_name'] == 'MaxPool2d': z = featuremap[-1] pooling = layer['kernel_size'] stride = layer['stride'] padding = layer['padding'] dLoss_dz = max_pooling_backward(dLoss_dz, z, pooling, stride, padding) return_dz.append(dLoss_dz) lastpop = featuremap.pop() if not len(dLoss_dz.shape) == len(lastpop.shape): dLoss_dz = dLoss_dz.reshape(lastpop.shape) elif layer['layer_name'] == 'AvgPool2d': z = featuremap[-1] pooling = layer['kernel_size'] stride = layer['stride'] padding = layer['padding'] dLoss_dz = average_pooling_backward(dLoss_dz, z, pooling, stride, padding) return_dz.append(dLoss_dz) lastpop = featuremap.pop() if not len(dLoss_dz.shape) == len(lastpop.shape): dLoss_dz = dLoss_dz.reshape(lastpop.shape) elif layer['layer_name'] == 'Linear': weight_z = fc_conv_weights[-1] z = featuremap[-1] dLoss_dz, dLoss_dW, dLoss_dB = fc_backward(dLoss_dz, z, weight_z) return_dz.append(dLoss_dz) fc_conv_weights.pop() lastpop = featuremap.pop() if not len(dLoss_dz.shape) == len(lastpop.shape): dLoss_dz = dLoss_dz.reshape(lastpop.shape) elif layer['layer_name'] == 'Dropout': p = layer['p'] mask = featuremap[-1] dLoss_dz = dropback_backward(dLoss_dz, mask, p) return_dz.append(dLoss_dz) featuremap.pop() lastpop = featuremap.pop() if not len(dLoss_dz.shape) == len(lastpop.shape): dLoss_dz = dLoss_dz.reshape(lastpop.shape) elif layer['layer_name'] == 'BatchNorm2d': eps = layer['eps'] z = featuremap[-1] gamma = fc_conv_weights[-1] dLoss_dz = batchnorm2d_backward(dLoss_dz, z, eps, gamma) return_dz.append(dLoss_dz) fc_conv_weights.pop() lastpop = featuremap.pop() if not len(dLoss_dz.shape) == len(lastpop.shape): dLoss_dz = dLoss_dz.reshape(lastpop.shape) else: print('Not completed in gradient_backward_v1!') print('======================== {0:3} Layer: '.format(str(i))+'{0:9}'.format(layer['layer_name'])+' Backward End ==========================') delete_allpths(pth_dir=None) return return_dz, dLoss_dW, dLoss_dB @torch.no_grad() def make_dot(var, params=None): """ Produces Graphviz representation of PyTorch autograd graph Blue nodes are the Variables that require grad, orange are Tensors saved for backward in torch.autograd.Function Args: var: output Variable params: dict of (name, Variable) to add names to node that require grad (TODO: make optional) """ if params is not None: assert isinstance(params.values()[0], Variable) param_map = {id(v): k for k, v in params.items()} node_attr = dict(style='filled', shape='box', align='left', fontsize='12', ranksep='0.1', height='0.2') dot = Digraph(node_attr=node_attr, graph_attr=dict(size="12,12")) seen = set() def size_to_str(size): return '('+(', ').join(['%d' % v for v in size])+')' def add_nodes(var): if var not in seen: if torch.is_tensor(var): dot.node(str(id(var)), size_to_str(var.size()), fillcolor='orange') elif hasattr(var, 'variable'): u = var.variable name = param_map[id(u)] if params is not None else '' node_name = '%s\n %s' % (name, size_to_str(u.size())) dot.node(str(id(var)), node_name, fillcolor='lightblue') else: dot.node(str(id(var)), str(type(var).__name__)) seen.add(var) if hasattr(var, 'next_functions'): for u in var.next_functions: if u[0] is not None: dot.edge(str(id(u[0])), str(id(var))) add_nodes(u[0]) if hasattr(var, 'saved_tensors'): for t in var.saved_tensors: dot.edge(str(id(t)), str(id(var))) add_nodes(t) print(var) add_nodes(var.grad_fn) return dot def generate_g(model, x): delete_allpths(pth_dir=None) print('\n=========================== Store network model Results Start =========================') y = model(x) print('=========================== Store network model Results End ===========================\n') if 'GoogLeNet' in str(model).split('\n')[0]: g = make_dot(y[0]) return g else: g = make_dot(y) return g @torch.no_grad() def exchange_name(name): if 'Relu' in name: return 'ReLU' elif 'AddmmBackward' in name: return 'Linear' elif 'ViewBackward' in name: return 'View' elif 'Mean' in name or 'Avg' in name: return 'AvgPool2d' elif 'BatchNorm' in name: return 'BatchNorm2d' elif 'Conv' in name: return 'Conv2d' elif 'MaxPool' in name: return 'MaxPool2d' elif 'MulBackward' in name: return 'Dropout_2' elif 'DivBackward' in name: return 'Dropout_1' elif 'AddBackward' in name: return 'Add' elif 'Cat' in name: return 'Cat' elif 'Hardtanh' in name: return 'ReLU6' else: return 'None' @torch.no_grad() def generate_connections(g): graph = str(g).split('\n') labels = {} connections = [] for i in range(len(graph)): if 'label' in graph[i] and graph[i][-1] == '"': labels[(graph[i]+graph[i+1][1:]).split('\t')[1].split(' ')[0]]=\ (graph[i]+graph[i+1][1:]).split('\t')[1].split('"')[1] if 'label' in graph[i] and graph[i][-1] == ']': labels[graph[i].split('\t')[1].split(' ')[0]]=\ graph[i].split('\t')[1].split('=')[1].split(']')[0] for i in range(len(graph)): if '->' in graph[i]: connections.append({labels[graph[i].split('\t')[1].split(' -> ')[0]]+'_'+\ graph[i].split('\t')[1].split(' -> ')[0]:\ labels[graph[i].split('\t')[1].split(' -> ')[1]]+'_'+\ graph[i].split('\t')[1].split(' -> ')[1]}) pop_index = [] for i in range(len(connections)): item_key = list(connections[i].keys())[0] if '(' in item_key or 'TBackward' in item_key: pop_index.append(connections[i]) for i in range(len(pop_index)-1, -1, -1): connections.remove(pop_index[i]) new_connections = [] for item in connections: key, value = list(item.items())[0] key1 = exchange_name(key.split('_')[0]) + '_' + key.split('_')[1] value1 = exchange_name(value.split('_')[0]) + '_' + value.split('_')[1] if 'None' in key1 or 'None' in value1: print('Not completed for '+key+' or '+value+'! Check exchange_name function!') exit() new_connections.append({key1: value1}) if not len(new_connections) == len(connections): print('Generate connections not done! Check generate_connections function!') exit() new_connections.insert(0, {list(new_connections[0].values())[0]: None}) new_connections.append({'None': 'None'}) return connections, new_connections @torch.no_grad() def get_split_connections(connections): return_connections = [] tmp_split = [] for i in range(len(connections)): item = connections[i] if len(tmp_split) == 0: tmp_split.append(item) continue value = list(item.values())[0] last_key = list(tmp_split[-1].keys())[0] if value == last_key: tmp_split.append(item) else: return_connections.append(tmp_split) tmp_split = [item] return return_connections @torch.no_grad() def find_start_end(list_dic_key_value, i, j): key1 = list(list_dic_key_value[i].values())[0] key2 = list(list_dic_key_value[j].keys())[0] start = 0 end = len(list_dic_key_value)-1 for index in range(len(list_dic_key_value)): if key1 == list(list_dic_key_value[index].keys())[0]: start = index break for index in range(len(list_dic_key_value)): if key2 == list(list_dic_key_value[index].keys())[0]: end = index break return start+1, end-1 @torch.no_grad() def merge_connections(connections): import copy last_connections = copy.deepcopy(connections) connections.append({'None':'None'}) num_Throwed = 0 notchoosed = [] print('\n=========================== Restore network model Start ===============================') for i in range(len(connections)): print('# Restore network model: processing {}/{}'.format(i, len(connections)-1)) item_key = list(connections[i].keys())[0] if not 'None' in item_key: if i == 0: pass else: last_item_key = list(connections[i-1].keys())[0] if not connections[i][item_key] == last_item_key: for j in range(i+1, len(connections)): if not list(connections[j].values())[0] == list(connections[j-1].keys())[0]: notchoosed.append(i) start, end = find_start_end(connections, i, j-1) tmp = [] tmp.append(connections[start:end+1]) tmp.append(connections[i:j-1]) last_connections[start:end+1] = [tmp] for kk in range(end-start): last_connections.insert(start, 'Throwed') num_Throwed += 1 break if not notchoosed == []: last_connections = last_connections[:notchoosed[0]] else: pass for i in range(num_Throwed): last_connections.remove('Throwed') if last_connections[-1] == {'None': 'None'}: last_connections.remove({'None': 'None'}) print('=========================== Restore network model End =================================\n') return last_connections @torch.no_grad() def find_next_layer_by_name(layers, name, start_i): for i in range(start_i, len(layers)): layer = layers[i] if name in str(layer): return layer, i @torch.no_grad() def get_layers(last_connections, model): return_layers = [] tmp_layers = [] for layer in model.modules(): if not ':' in str(layer): tmp_layers.append(layer) index_tmp_layers = 0 for i in range(len(last_connections)-1, -1, -1): if not isinstance(last_connections[i], list): # 单一层,无分支 current_layer_name = list(last_connections[i].keys())[0].split('_')[0] if 'ReLU' in current_layer_name: return_layers.insert(0, torch.nn.ReLU(inplace=True)) elif 'Add' in current_layer_name: return_layers.insert(0, 'Add') elif 'View' in current_layer_name: return_layers.insert(0, 'View') else: tmp = find_next_layer_by_name(tmp_layers, current_layer_name, index_tmp_layers) return_layers.insert(0, tmp[0]) if isinstance(last_connections[i-1], list): index_tmp_layers = tmp[1] + 1 elif not list(last_connections[i-1].keys())[0].split('_')[0] == 'Dropout': index_tmp_layers = tmp[1] + 1 else: return_layers.insert(0, []) for j in range(len(last_connections[i])): return_layers[0].append([]) if len(last_connections[i][j]) == 0: continue for k in range(len(last_connections[i][j])-1, -1, -1): current_layer_name = list(last_connections[i][j][k].keys())[0].split('_')[0] if 'ReLU' in current_layer_name: return_layers[0][j].insert(0, torch.nn.ReLU(inplace=True)) elif 'Add' in current_layer_name: return_layers[0][j].insert(0, 'Add') elif 'View' in current_layer_name: return_layers.insert(0, 'View') else: tmp = find_next_layer_by_name(tmp_layers, current_layer_name, index_tmp_layers) return_layers[0][j].insert(0, tmp[0]) if not list(last_connections[i][j][k-1].keys())[0].split('_')[0] == 'Dropout': index_tmp_layers = tmp[1] + 1 return return_layers @torch.no_grad() def get_tensors(last_connections): tensors = get_featuremap(featuremap_dir=None) index_tensors = 0 import copy last_tensors = copy.deepcopy(last_connections) for i in range(len(last_connections)-1, -1, -1): if not isinstance(last_connections[i], list): current_layer_name = list(last_connections[i].keys())[0].split('_')[0] if 'Add' in current_layer_name: last_tensors[i] = 'Add' elif 'View' in current_layer_name: last_tensors[i] = 'View' else: last_tensors[i] = tensors[index_tensors] index_tensors += 1 else: for j in range(len(last_connections[i])): if len(last_connections[i][j]) == 0: continue for k in range(len(last_connections[i][j])-1, -1, -1): current_layer_name = list(last_connections[i][j][k].keys())[0].split('_')[0] if 'Add' in current_layer_name: last_tensors[i][j][k] = 'Add' elif 'View' in current_layer_name: last_tensors[i][j][k] = 'View' else: last_tensors[i][j][k] = tensors[index_tensors] index_tensors += 1 for i in range(len(last_tensors)-1, -1, -1): if isinstance(last_tensors[i], str): # Add or View if last_tensors[i] == 'Add': last_tensors[i] = last_tensors[i+1][0][0] + last_tensors[i+1][1][0] if last_tensors[i] == 'View': last_tensors[i] = last_tensors[i+1].view(last_tensors[i+1].size(0), -1) elif isinstance(last_tensors[i], list): for j in range(len(last_tensors[i])): if len(last_tensors[i][j]) == 0: last_tensors[i][j].append(last_tensors[i+1]) return last_tensors @torch.no_grad() def get_structure_parameters(return_layers): import copy parameters = copy.deepcopy(return_layers) fc_conv_weights = copy.deepcopy(return_layers) for i in range(len(return_layers)): layer = return_layers[i] if isinstance(layer, nn.Conv2d): layer_name = 'Conv2d' Conv2d_params = {} Conv2d_params['layer_name'] = layer_name # in_channel in_channel = layer.__dict__.get('in_channels') Conv2d_params['in_channel'] = in_channel # out_channel out_channel = layer.__dict__.get('out_channels') Conv2d_params['out_channel'] = out_channel # kernel_size kernel_size = layer.__dict__.get('kernel_size') if not isinstance(kernel_size, tuple): Conv2d_params['kernel_size'] = (kernel_size, kernel_size) else: Conv2d_params['kernel_size'] = kernel_size # stride stride = layer.__dict__.get('stride') if not isinstance(stride, tuple): Conv2d_params['stride'] = (stride, stride) else: Conv2d_params['stride'] = stride # padding padding = layer.__dict__.get('padding') if not isinstance(padding, tuple): Conv2d_params['padding'] = (padding, padding) else: Conv2d_params['padding'] = padding # return fc_conv_weights[i] = layer.weight parameters[i] = Conv2d_params elif isinstance(layer, nn.ReLU): layer_name = 'ReLU' parameters[i] = {'layer_name': layer_name} elif layer == 'Add': layer_name = 'Add' parameters[i] = {'layer_name': layer_name} elif layer == 'View': layer_name = 'View' parameters[i] = {'layer_name': layer_name} elif layer == 'Cat': layer_name = 'Cat' parameters[i] = {'layer_name': layer_name} elif isinstance(layer, nn.MaxPool2d): layer_name = 'MaxPool2d' MaxPool2d_params = {} MaxPool2d_params['layer_name'] = layer_name # kernel_size kernel_size = layer.__dict__.get('kernel_size') if not isinstance(kernel_size, tuple): MaxPool2d_params['kernel_size'] = (kernel_size, kernel_size) else: MaxPool2d_params['kernel_size'] = kernel_size # stride stride = layer.__dict__.get('stride') if not isinstance(stride, tuple): MaxPool2d_params['stride'] = (stride, stride) else: MaxPool2d_params['stride'] = stride # padding padding = layer.__dict__.get('padding') if not isinstance(padding, tuple): MaxPool2d_params['padding'] = (padding, padding) else: MaxPool2d_params['padding'] = padding # return parameters[i] = MaxPool2d_params elif isinstance(layer, nn.AvgPool2d): layer_name = 'AvgPool2d' AvgPool2d_params = {} AvgPool2d_params['layer_name'] = layer_name # kernel_size kernel_size = layer.__dict__.get('kernel_size') if not isinstance(kernel_size, tuple): AvgPool2d_params['kernel_size'] = (kernel_size, kernel_size) else: AvgPool2d_params['kernel_size'] = kernel_size # stride stride = layer.__dict__.get('stride') if not isinstance(stride, tuple): AvgPool2d_params['stride'] = (stride, stride) else: AvgPool2d_params['stride'] = stride # padding padding = layer.__dict__.get('padding') if not isinstance(padding, tuple): AvgPool2d_params['padding'] = (padding, padding) else: AvgPool2d_params['padding'] = padding # return parameters[i] = AvgPool2d_params elif isinstance(layer, nn.Dropout): layer_name = 'Dropout' Dropout_params = {} Dropout_params['layer_name'] = layer_name # p p = layer.__dict__.get('p') Dropout_params['p'] = p # return parameters[i] = Dropout_params elif isinstance(layer, nn.BatchNorm2d): layer_name = 'BatchNorm2d' BatchNorm2d_params = {} BatchNorm2d_params['layer_name'] = layer_name # num_features num_features = layer.__dict__.get('num_features') BatchNorm2d_params['num_features'] = num_features # eps eps = layer.__dict__.get('eps') BatchNorm2d_params['eps'] = eps # return fc_conv_weights[i] = layer.weight parameters[i] = BatchNorm2d_params elif isinstance(layer, nn.Linear): layer_name = 'Linear' Linear_params = {} Linear_params['layer_name'] = layer_name # in_features in_features = layer.__dict__.get('in_features') Linear_params['in_features'] = in_features # out_features out_features = layer.__dict__.get('out_features') Linear_params['out_features'] = out_features # return fc_conv_weights[i] = layer.weight parameters[i] = Linear_params elif isinstance(layer, nn.AdaptiveAvgPool2d): layer_name = 'AdaptiveAvgPool2d' AdaptiveAvgPool2d_params = {} AdaptiveAvgPool2d_params['layer_name'] = layer_name # output_size output_size = layer.__dict__.get('output_size') if not isinstance(output_size, tuple): AdaptiveAvgPool2d_params['output_size'] = (output_size, output_size) else: AdaptiveAvgPool2d_params['output_size'] = output_size # return parameters[i] = AdaptiveAvgPool2d_params elif isinstance(layer, list): for j in range(len(layer)): for k in range(len(layer[j])): tmp_layer = layer[j][k] ### if isinstance(tmp_layer, nn.Conv2d): layer_name = 'Conv2d' Conv2d_params = {} Conv2d_params['layer_name'] = layer_name # in_channel in_channel = tmp_layer.__dict__.get('in_channels') Conv2d_params['in_channel'] = in_channel # out_channel out_channel = tmp_layer.__dict__.get('out_channels') Conv2d_params['out_channel'] = out_channel # kernel_size kernel_size = tmp_layer.__dict__.get('kernel_size') if not isinstance(kernel_size, tuple): Conv2d_params['kernel_size'] = (kernel_size, kernel_size) else: Conv2d_params['kernel_size'] = kernel_size # stride stride = tmp_layer.__dict__.get('stride') if not isinstance(stride, tuple): Conv2d_params['stride'] = (stride, stride) else: Conv2d_params['stride'] = stride # padding padding = tmp_layer.__dict__.get('padding') if not isinstance(padding, tuple): Conv2d_params['padding'] = (padding, padding) else: Conv2d_params['padding'] = padding # return fc_conv_weights[i][j][k] = tmp_layer.weight parameters[i][j][k] = Conv2d_params elif isinstance(tmp_layer, nn.ReLU): layer_name = 'ReLU' parameters[i][j][k] = {'layer_name': layer_name} elif tmp_layer == 'Add': layer_name = 'Add' parameters[i][j][k] = {'layer_name': layer_name} elif tmp_layer == 'View': layer_name = 'View' parameters[i][j][k] = {'layer_name': layer_name} elif tmp_layer == 'Cat': layer_name = 'Cat' parameters[i][j][k] = {'layer_name': layer_name} elif isinstance(tmp_layer, nn.MaxPool2d): layer_name = 'MaxPool2d' MaxPool2d_params = {} MaxPool2d_params['layer_name'] = layer_name # kernel_size kernel_size = tmp_layer.__dict__.get('kernel_size') if not isinstance(kernel_size, tuple): MaxPool2d_params['kernel_size'] = (kernel_size, kernel_size) else: MaxPool2d_params['kernel_size'] = kernel_size # stride stride = tmp_layer.__dict__.get('stride') if not isinstance(stride, tuple): MaxPool2d_params['stride'] = (stride, stride) else: MaxPool2d_params['stride'] = stride # padding padding = tmp_layer.__dict__.get('padding') if not isinstance(padding, tuple): MaxPool2d_params['padding'] = (padding, padding) else: MaxPool2d_params['padding'] = padding # return parameters[i][j][k] = MaxPool2d_params elif isinstance(tmp_layer, nn.AvgPool2d): layer_name = 'AvgPool2d' AvgPool2d_params = {} AvgPool2d_params['layer_name'] = layer_name # kernel_size kernel_size = tmp_layer.__dict__.get('kernel_size') if not isinstance(kernel_size, tuple): AvgPool2d_params['kernel_size'] = (kernel_size, kernel_size) else: AvgPool2d_params['kernel_size'] = kernel_size # stride stride = tmp_layer.__dict__.get('stride') if not isinstance(stride, tuple): AvgPool2d_params['stride'] = (stride, stride) else: AvgPool2d_params['stride'] = stride # padding padding = tmp_layer.__dict__.get('padding') if not isinstance(padding, tuple): AvgPool2d_params['padding'] = (padding, padding) else: AvgPool2d_params['padding'] = padding # return parameters[i][j][k] = AvgPool2d_params elif isinstance(tmp_layer, nn.Dropout): layer_name = 'Dropout' Dropout_params = {} Dropout_params['layer_name'] = layer_name # p p = tmp_layer.__dict__.get('p') Dropout_params['p'] = p # return parameters[i][j][k] = Dropout_params elif isinstance(tmp_layer, nn.BatchNorm2d): layer_name = 'BatchNorm2d' BatchNorm2d_params = {} BatchNorm2d_params['layer_name'] = layer_name # num_features num_features = tmp_layer.__dict__.get('num_features') BatchNorm2d_params['num_features'] = num_features # eps eps = tmp_layer.__dict__.get('eps') BatchNorm2d_params['eps'] = eps # return fc_conv_weights[i][j][k] = tmp_layer.weight parameters[i][j][k] = BatchNorm2d_params elif isinstance(tmp_layer, nn.Linear): layer_name = 'Linear' Linear_params = {} Linear_params['layer_name'] = layer_name # in_features in_features = tmp_layer.__dict__.get('in_features') Linear_params['in_features'] = in_features # out_features out_features = tmp_layer.__dict__.get('out_features') Linear_params['out_features'] = out_features # return fc_conv_weights[i][j][k] = tmp_layer.weight parameters[i][j][k] = Linear_params elif isinstance(tmp_layer, nn.AdaptiveAvgPool2d): layer_name = 'AdaptiveAvgPool2d' AdaptiveAvgPool2d_params = {} AdaptiveAvgPool2d_params['layer_name'] = layer_name # output_size output_size = tmp_layer.__dict__.get('output_size') if not isinstance(output_size, tuple): AdaptiveAvgPool2d_params['output_size'] = (output_size, output_size) else: AdaptiveAvgPool2d_params['output_size'] = output_size # return parameters[i][j][k] = AdaptiveAvgPool2d_params ### else: print('The layer has not been processed in get_structure_parameters!') return parameters, fc_conv_weights def gradient_backward_v2(model, img, label, num_class=1000, g_view=False): x = Variable(img) g = generate_g(model, x) if g_view: g.view() delete_allpths(pth_dir=None) print('\n=========================== Generate Tensors Start ====================================') result = model(img) print('=========================== Generate Tensors End ======================================\n') Loss = nn.CrossEntropyLoss() if 'GoogLeNet' in str(model).split('\n')[0]: loss_torch = Loss(result[0], label) else: loss_torch = Loss(result, label) _, connections = generate_connections(g) last_connections = merge_connections(connections) return_layers = get_layers(last_connections, model) return_tensors = get_tensors(last_connections) parameters, fc_conv_weights = get_structure_parameters(return_layers) ''' print('================') for i in range(len(last_connections)): print(i, last_connections[i]) print('================') print('================') for i in range(len(return_layers)): print(i, return_layers[i]) print('================') print('================') for i in range(len(parameters)): print(i, parameters[i]) print('================') print('================') for i in range(len(return_tensors)): if not isinstance(return_tensors[i], list) and not isinstance(return_tensors[i], str): print('=========', i, return_tensors[i].shape) print('================') ''' import copy return_dz = copy.deepcopy(last_connections) featuremap = return_tensors featuremap.append(img) y_true = F.one_hot(label, num_classes=num_class).float() loss, dLoss_dz = cross_entropy_loss(featuremap[0], y_true) featuremap.pop(0) return_dz.append(dLoss_dz) #####################tensors ''' for i in range(len(last_connections)): print(last_connections[i]) for i in range(len(featuremap)): if not isinstance(featuremap[i], list): print('=========', i, featuremap[i].shape) else: for j in range(len(featuremap[i])): for k in range(len(featuremap[i][j])): print(' =========', i, j, k, featuremap[i][j][k].shape) ''' ##################### # 前面n层倒序遍历 for i in range(len(parameters)): layer = parameters[i] if not isinstance(layer, list): print('\n======================== {0:3} Layer: '.format(str(len(parameters)-1-i))+'{0:11}'.format(layer['layer_name'])+' Backward Start ========================') if layer['layer_name'] == 'Conv2d': z = featuremap[i] weight_z = fc_conv_weights[i] try: padding = layer['padding'] except: padding = (0, 0) stride = layer['stride'] dLoss_dz, dLoss_dW, dLoss_dB = conv_backward(dLoss_dz, weight_z, z, padding, stride) return_dz[i] = dLoss_dz elif layer['layer_name'] == 'ReLU': z = featuremap[i] dLoss_dz = relu_backward(dLoss_dz, z) return_dz[i] = dLoss_dz elif layer['layer_name'] == 'MaxPool2d': z = featuremap[i] pooling = layer['kernel_size'] stride = layer['stride'] padding = layer['padding'] dLoss_dz = max_pooling_backward(dLoss_dz, z, pooling, stride, padding) return_dz[i] = dLoss_dz elif layer['layer_name'] == 'AvgPool2d': z = featuremap[i] pooling = layer['kernel_size'] stride = layer['stride'] padding = layer['padding'] dLoss_dz = average_pooling_backward(dLoss_dz, z, pooling, stride, padding) return_dz[i] = dLoss_dz elif layer['layer_name'] == 'Linear': weight_z = fc_conv_weights[i] z = featuremap[i] dLoss_dz, dLoss_dW, dLoss_dB = fc_backward(dLoss_dz, z, weight_z) return_dz[i] = dLoss_dz elif layer['layer_name'] == 'View': last_z = featuremap[i+1] if 'Pool' in parameters[i+1]['layer_name']: params = (parameters[i+1]['kernel_size'], parameters[i+1]['stride'], parameters[i+1]['padding']) else: params = None dLoss_dz = view_backward(dLoss_dz, last_z, params) return_dz[i] = dLoss_dz elif layer['layer_name'] == 'Add': dLoss_dz = add_backward(dLoss_dz) return_dz[i] = dLoss_dz elif layer['layer_name'] == 'Dropout': if parameters[i-1]['layer_name'] == 'Dropout': return_dz[i] = dLoss_dz print('# Skip this layer because the layer has been calcualted!') print('======================== {0:3} Layer: '.format(str(len(parameters)-1-i))+'{0:11}'.\ format(layer['layer_name'])+' Backward End ==========================') continue p = layer['p'] mask = featuremap[i] dLoss_dz = dropback_backward(dLoss_dz, mask, p) return_dz[i] = dLoss_dz elif layer['layer_name'] == 'BatchNorm2d': eps = layer['eps'] z = featuremap[i] gamma = fc_conv_weights[i] dLoss_dz = batchnorm2d_backward(dLoss_dz, z, eps, gamma) return_dz[i] = dLoss_dz print('======================== {0:3} Layer: '.format(str(len(parameters)-1-i))+'{0:11}'.format(layer['layer_name'])+' Backward End ==========================') elif isinstance(layer, list): import copy tmp_dLoss_dz = [] for j in range(len(layer)): tmp_dLoss_dz.append(copy.deepcopy(dLoss_dz)) for k in range(len(layer[j])): tmp_layer = layer[j][k] print('\n=========================== {0:3} Branch: '.format(str(len(parameters)-1-i))+'{0:11}'.format(tmp_layer['layer_name'])+' Backward Start ====================') if tmp_layer['layer_name'] == 'Conv2d': if k+1 >= len(featuremap[i-1][j]): z = featuremap[i] else: z = featuremap[i-1][j][k+1] weight_z = fc_conv_weights[i][j][k] try: padding = tmp_layer['padding'] except: padding = (0, 0) stride = tmp_layer['stride'] tmp_dLoss_dz[-1], dLoss_dW, dLoss_dB = conv_backward(tmp_dLoss_dz[-1], weight_z, z, padding, stride) return_dz[i][j][k] = tmp_dLoss_dz[-1] elif tmp_layer['layer_name'] == 'ReLU': z = featuremap[i-1][j][k+1] tmp_dLoss_dz[-1] = relu_backward(tmp_dLoss_dz[-1], z) return_dz[i][j][k] = tmp_dLoss_dz[-1] elif tmp_layer['layer_name'] == 'BatchNorm2d': eps = tmp_layer['eps'] z = featuremap[i-1][j][k+1] gamma = fc_conv_weights[i][j][k] tmp_dLoss_dz[-1] = batchnorm2d_backward(tmp_dLoss_dz[-1], z, eps, gamma) return_dz[i][j][k] = tmp_dLoss_dz[-1] print('=========================== {0:3} Branch: '.format(str(len(parameters)-1-i))+'{0:11}'.format(tmp_layer['layer_name'])+' Backward End ======================') print(tmp_dLoss_dz[0].shape, tmp_dLoss_dz[1].shape) dLoss_dz = tmp_dLoss_dz[0] + tmp_dLoss_dz[1] else: print('Not completed in gradient_backward!') print('# Torch calculated loss: ', loss_torch.detach().numpy()) loss_torch.backward() if 'VGG' in str(model) or 'AlexNet' in str(model): print(judge_tensors_equal(dLoss_dW, model.features[0].weight.grad)) elif 'ResNet' in str(model): print(judge_tensors_equal(dLoss_dW, model.conv1.weight.grad)) delete_allpths(pth_dir=None) return return_dz, dLoss_dW, dLoss_dB
[((806, 821), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (819, 821), False, 'import torch\n'), ((1697, 1712), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (1710, 1712), False, 'import torch\n'), ((2365, 2380), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (2378, 2380), False, 'import torch\n'), ((3167, 3182), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (3180, 3182), False, 'import torch\n'), ((3478, 3493), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (3491, 3493), False, 'import torch\n'), ((3864, 3879), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (3877, 3879), False, 'import torch\n'), ((4947, 4962), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (4960, 4962), False, 'import torch\n'), ((5815, 5830), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (5828, 5830), False, 'import torch\n'), ((6750, 6765), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (6763, 6765), False, 'import torch\n'), ((7066, 7081), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (7079, 7081), False, 'import torch\n'), ((8339, 8354), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (8352, 8354), False, 'import torch\n'), ((8660, 8675), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (8673, 8675), False, 'import torch\n'), ((9052, 9067), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (9065, 9067), False, 'import torch\n'), ((10590, 10605), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (10603, 10605), False, 'import torch\n'), ((11113, 11128), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (11126, 11128), False, 'import torch\n'), ((15997, 16012), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (16010, 16012), False, 'import torch\n'), ((16267, 16282), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (16280, 16282), False, 'import torch\n'), ((16407, 16422), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (16420, 16422), False, 'import torch\n'), ((20048, 20063), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (20061, 20063), False, 'import torch\n'), ((22082, 22097), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (22095, 22097), False, 'import torch\n'), ((22729, 22744), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (22742, 22744), False, 'import torch\n'), ((24482, 24497), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (24495, 24497), False, 'import torch\n'), ((24945, 24960), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (24958, 24960), False, 'import torch\n'), ((25440, 25455), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (25453, 25455), False, 'import torch\n'), ((26957, 26972), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (26970, 26972), False, 'import torch\n'), ((27137, 27152), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (27150, 27152), False, 'import torch\n'), ((29020, 29035), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (29033, 29035), False, 'import torch\n'), ((30623, 30638), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (30636, 30638), False, 'import torch\n'), ((1185, 1203), 'torch.exp', 'torch.exp', (['y_shift'], {}), '(y_shift)\n', (1194, 1203), False, 'import torch\n'), ((2033, 2062), 'torch.matmul', 'torch.matmul', (['dLoss_dnextz', 'w'], {}), '(dLoss_dnextz, w)\n', (2045, 2062), False, 'import torch\n'), ((2134, 2164), 'torch.sum', 'torch.sum', (['dLoss_dnextz'], {'dim': '(0)'}), '(dLoss_dnextz, dim=0)\n', (2143, 2164), False, 'import torch\n'), ((3320, 3345), 'torch.zeros_like', 'torch.zeros_like', (['next_dz'], {}), '(next_dz)\n', (3336, 3345), False, 'import torch\n'), ((3683, 3705), 'torch.zeros_like', 'torch.zeros_like', (['mask'], {}), '(mask)\n', (3699, 3705), False, 'import torch\n'), ((4181, 4280), 'torch.nn.functional.pad', 'F.pad', (['z'], {'pad': '(padding[1], padding[1], padding[0], padding[0], 0, 0)', 'mode': '"""constant"""', 'value': '(0)'}), "(z, pad=(padding[1], padding[1], padding[0], padding[0], 0, 0), mode=\n 'constant', value=0)\n", (4186, 4280), True, 'import torch.nn.functional as F\n'), ((4298, 4325), 'torch.zeros_like', 'torch.zeros_like', (['padding_z'], {}), '(padding_z)\n', (4314, 4325), False, 'import torch\n'), ((4337, 4352), 'torch.arange', 'torch.arange', (['N'], {}), '(N)\n', (4349, 4352), False, 'import torch\n'), ((5012, 5041), 'torch.Tensor', 'torch.Tensor', (['[1.0, 1.0, 1.0]'], {}), '([1.0, 1.0, 1.0])\n', (5024, 5041), False, 'import torch\n'), ((5366, 5391), 'torch.zeros_like', 'torch.zeros_like', (['next_dz'], {}), '(next_dz)\n', (5382, 5391), False, 'import torch\n'), ((6136, 6235), 'torch.nn.functional.pad', 'F.pad', (['z'], {'pad': '(padding[1], padding[1], padding[0], padding[0], 0, 0)', 'mode': '"""constant"""', 'value': '(0)'}), "(z, pad=(padding[1], padding[1], padding[0], padding[0], 0, 0), mode=\n 'constant', value=0)\n", (6141, 6235), True, 'import torch.nn.functional as F\n'), ((6253, 6280), 'torch.zeros_like', 'torch.zeros_like', (['padding_z'], {}), '(padding_z)\n', (6269, 6280), False, 'import torch\n'), ((6292, 6307), 'torch.arange', 'torch.arange', (['N'], {}), '(N)\n', (6304, 6307), False, 'import torch\n'), ((7545, 7566), 'torch.flip', 'torch.flip', (['K', '(2, 3)'], {}), '(K, (2, 3))\n', (7555, 7566), False, 'import torch\n'), ((7585, 7613), 'torch.swapaxes', 'torch.swapaxes', (['flip_K', '(0)', '(1)'], {}), '(flip_K, 0, 1)\n', (7599, 7613), False, 'import torch\n'), ((7637, 7786), 'torch.nn.functional.pad', 'F.pad', (['padding_next_dz'], {'pad': '(k2 - 1 - padding[1], k2 - 1 - padding[1], k1 - 1 - padding[0], k1 - 1 -\n padding[0], 0, 0)', 'mode': '"""constant"""', 'value': '(0)'}), "(padding_next_dz, pad=(k2 - 1 - padding[1], k2 - 1 - padding[1], k1 - \n 1 - padding[0], k1 - 1 - padding[0], 0, 0), mode='constant', value=0)\n", (7642, 7786), True, 'import torch.nn.functional as F\n'), ((7840, 7863), 'torch.swapaxes', 'torch.swapaxes', (['z', '(0)', '(1)'], {}), '(z, 0, 1)\n', (7854, 7863), False, 'import torch\n'), ((8565, 8613), 'torch.einsum', 'torch.einsum', (['"""nchwkj,dckj->ndhw"""', 'x_pad', 'weight'], {}), "('nchwkj,dckj->ndhw', x_pad, weight)\n", (8577, 8613), False, 'import torch\n'), ((8812, 8845), 'torch.zeros', 'torch.zeros', (['N', 'D', 'H_last', 'W_last'], {}), '(N, D, H_last, W_last)\n', (8823, 8845), False, 'import torch\n'), ((10780, 10799), 'os.listdir', 'os.listdir', (['pth_dir'], {}), '(pth_dir)\n', (10790, 10799), False, 'import os\n'), ((16136, 16167), 'os.walk', 'os.walk', (['pth_dir'], {'topdown': '(False)'}), '(pth_dir, topdown=False)\n', (16143, 16167), False, 'import os\n'), ((25528, 25554), 'copy.deepcopy', 'copy.deepcopy', (['connections'], {}), '(connections)\n', (25541, 25554), False, 'import copy\n'), ((29171, 29202), 'copy.deepcopy', 'copy.deepcopy', (['last_connections'], {}), '(last_connections)\n', (29184, 29202), False, 'import copy\n'), ((30714, 30742), 'copy.deepcopy', 'copy.deepcopy', (['return_layers'], {}), '(return_layers)\n', (30727, 30742), False, 'import copy\n'), ((30763, 30791), 'copy.deepcopy', 'copy.deepcopy', (['return_layers'], {}), '(return_layers)\n', (30776, 30791), False, 'import copy\n'), ((41412, 41425), 'torch.autograd.Variable', 'Variable', (['img'], {}), '(img)\n', (41420, 41425), False, 'from torch.autograd import Variable\n'), ((41746, 41767), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (41765, 41767), True, 'import torch.nn as nn\n'), ((42829, 42860), 'copy.deepcopy', 'copy.deepcopy', (['last_connections'], {}), '(last_connections)\n', (42842, 42860), False, 'import copy\n'), ((1239, 1276), 'torch.sum', 'torch.sum', (['y_exp'], {'dim': '(1)', 'keepdim': '(True)'}), '(y_exp, dim=1, keepdim=True)\n', (1248, 1276), False, 'import torch\n'), ((3371, 3385), 'torch.gt', 'torch.gt', (['z', '(0)'], {}), '(z, 0)\n', (3379, 3385), False, 'import torch\n'), ((4366, 4381), 'torch.arange', 'torch.arange', (['C'], {}), '(C)\n', (4378, 4381), False, 'import torch\n'), ((5597, 5622), 'torch.pow', 'torch.pow', (['(var + eps)', '(0.5)'], {}), '(var + eps, 0.5)\n', (5606, 5622), False, 'import torch\n'), ((6321, 6336), 'torch.arange', 'torch.arange', (['C'], {}), '(C)\n', (6333, 6336), False, 'import torch\n'), ((8012, 8049), 'torch.swapaxes', 'torch.swapaxes', (['padding_next_dz', '(0)', '(1)'], {}), '(padding_next_dz, 0, 1)\n', (8026, 8049), False, 'import torch\n'), ((1125, 1166), 'torch.max', 'torch.max', (['y_predict'], {'dim': '(1)', 'keepdim': '(True)'}), '(y_predict, dim=1, keepdim=True)\n', (1134, 1166), False, 'import torch\n'), ((3741, 3760), 'torch.eq', 'torch.eq', (['mask', '(1.0)'], {}), '(mask, 1.0)\n', (3749, 3760), False, 'import torch\n'), ((4396, 4415), 'torch.arange', 'torch.arange', (['out_h'], {}), '(out_h)\n', (4408, 4415), False, 'import torch\n'), ((6351, 6370), 'torch.arange', 'torch.arange', (['out_h'], {}), '(out_h)\n', (6363, 6370), False, 'import torch\n'), ((7903, 8002), 'torch.nn.functional.pad', 'F.pad', (['z'], {'pad': '(padding[1], padding[1], padding[0], padding[0], 0, 0)', 'mode': '"""constant"""', 'value': '(0)'}), "(z, pad=(padding[1], padding[1], padding[0], padding[0], 0, 0), mode=\n 'constant', value=0)\n", (7908, 8002), True, 'import torch.nn.functional as F\n'), ((8081, 8108), 'torch.sum', 'torch.sum', (['next_dz'], {'axis': '(-1)'}), '(next_dz, axis=-1)\n', (8090, 8108), False, 'import torch\n'), ((16663, 16702), 'torch.nn.functional.one_hot', 'F.one_hot', (['label'], {'num_classes': 'num_class'}), '(label, num_classes=num_class)\n', (16672, 16702), True, 'import torch.nn.functional as F\n'), ((20916, 20936), 'torch.is_tensor', 'torch.is_tensor', (['var'], {}), '(var)\n', (20931, 20936), False, 'import torch\n'), ((42935, 42974), 'torch.nn.functional.one_hot', 'F.one_hot', (['label'], {'num_classes': 'num_class'}), '(label, num_classes=num_class)\n', (42944, 42974), True, 'import torch.nn.functional as F\n'), ((4431, 4450), 'torch.arange', 'torch.arange', (['out_w'], {}), '(out_w)\n', (4443, 4450), False, 'import torch\n'), ((6386, 6405), 'torch.arange', 'torch.arange', (['out_w'], {}), '(out_w)\n', (6398, 6405), False, 'import torch\n'), ((1333, 1357), 'torch.log', 'torch.log', (['y_probability'], {}), '(y_probability)\n', (1342, 1357), False, 'import torch\n'), ((4469, 4594), 'torch.argmax', 'torch.argmax', (['padding_z[(n), (c), strides[0] * i:strides[0] * i + pooling[0], strides[1] *\n j:strides[1] * j + pooling[1]]'], {}), '(padding_z[(n), (c), strides[0] * i:strides[0] * i + pooling[0],\n strides[1] * j:strides[1] * j + pooling[1]])\n', (4481, 4594), False, 'import torch\n'), ((16237, 16261), 'os.path.join', 'os.path.join', (['root', 'name'], {}), '(root, name)\n', (16249, 16261), False, 'import os\n'), ((27606, 27633), 'torch.nn.ReLU', 'torch.nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (27619, 27633), False, 'import torch\n'), ((46488, 46511), 'copy.deepcopy', 'copy.deepcopy', (['dLoss_dz'], {}), '(dLoss_dz)\n', (46501, 46511), False, 'import copy\n'), ((28526, 28553), 'torch.nn.ReLU', 'torch.nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (28539, 28553), False, 'import torch\n')]
yubuyuabc/ark-nlp
ark_nlp/factory/utils/attack.py
165d35cfacd7476791c0aeba19bf43f4f8079553
import torch class FGM(object): """ 基于FGM算法的攻击机制 Args: module (:obj:`torch.nn.Module`): 模型 Examples:: >>> # 初始化 >>> fgm = FGM(module) >>> for batch_input, batch_label in data: >>> # 正常训练 >>> loss = module(batch_input, batch_label) >>> loss.backward() # 反向传播,得到正常的grad >>> # 对抗训练 >>> fgm.attack() # 在embedding上添加对抗扰动 >>> loss_adv = module(batch_input, batch_label) >>> loss_adv.backward() # 反向传播,并在正常的grad基础上,累加对抗训练的梯度 >>> fgm.restore() # 恢复embedding参数 >>> # 梯度下降,更新参数 >>> optimizer.step() >>> optimizer.zero_grad() Reference: [1] https://zhuanlan.zhihu.com/p/91269728 """ def __init__(self, module): self.module = module self.backup = {} def attack( self, epsilon=1., emb_name='word_embeddings' ): for name, param in self.module.named_parameters(): if param.requires_grad and emb_name in name: self.backup[name] = param.data.clone() norm = torch.norm(param.grad) if norm != 0 and not torch.isnan(norm): r_at = epsilon * param.grad / norm param.data.add_(r_at) def restore( self, emb_name='word_embeddings' ): for name, param in self.module.named_parameters(): if param.requires_grad and emb_name in name: assert name in self.backup param.data = self.backup[name] self.backup = {} class PGD(object): """ 基于PGD算法的攻击机制 Args: module (:obj:`torch.nn.Module`): 模型 Examples:: >>> pgd = PGD(module) >>> K = 3 >>> for batch_input, batch_label in data: >>> # 正常训练 >>> loss = module(batch_input, batch_label) >>> loss.backward() # 反向传播,得到正常的grad >>> pgd.backup_grad() >>> # 对抗训练 >>> for t in range(K): >>> pgd.attack(is_first_attack=(t==0)) # 在embedding上添加对抗扰动, first attack时备份param.data >>> if t != K-1: >>> optimizer.zero_grad() >>> else: >>> pgd.restore_grad() >>> loss_adv = module(batch_input, batch_label) >>> loss_adv.backward() # 反向传播,并在正常的grad基础上,累加对抗训练的梯度 >>> pgd.restore() # 恢复embedding参数 >>> # 梯度下降,更新参数 >>> optimizer.step() >>> optimizer.zero_grad() Reference: [1] https://zhuanlan.zhihu.com/p/91269728 """ def __init__(self, module): self.module = module self.emb_backup = {} self.grad_backup = {} def attack( self, epsilon=1., alpha=0.3, emb_name='emb.', is_first_attack=False ): # emb_name这个参数要换成你模型中embedding的参数名 for name, param in self.module.named_parameters(): if param.requires_grad and emb_name in name: if is_first_attack: self.emb_backup[name] = param.data.clone() norm = torch.norm(param.grad) if norm != 0 and not torch.isnan(norm): r_at = alpha * param.grad / norm param.data.add_(r_at) param.data = self.project(name, param.data, epsilon) def restore(self, emb_name='emb.'): # emb_name这个参数要换成你模型中embedding的参数名 for name, param in self.module.named_parameters(): if param.requires_grad and emb_name in name: assert name in self.emb_backup param.data = self.emb_backup[name] self.emb_backup = {} def project(self, param_name, param_data, epsilon): r = param_data - self.emb_backup[param_name] if torch.norm(r) > epsilon: r = epsilon * r / torch.norm(r) return self.emb_backup[param_name] + r def backup_grad(self): for name, param in self.module.named_parameters(): if param.requires_grad: self.grad_backup[name] = param.grad.clone() def restore_grad(self): for name, param in self.module.named_parameters(): if param.requires_grad: param.grad = self.grad_backup[name]
[((3897, 3910), 'torch.norm', 'torch.norm', (['r'], {}), '(r)\n', (3907, 3910), False, 'import torch\n'), ((1148, 1170), 'torch.norm', 'torch.norm', (['param.grad'], {}), '(param.grad)\n', (1158, 1170), False, 'import torch\n'), ((3202, 3224), 'torch.norm', 'torch.norm', (['param.grad'], {}), '(param.grad)\n', (3212, 3224), False, 'import torch\n'), ((3952, 3965), 'torch.norm', 'torch.norm', (['r'], {}), '(r)\n', (3962, 3965), False, 'import torch\n'), ((1208, 1225), 'torch.isnan', 'torch.isnan', (['norm'], {}), '(norm)\n', (1219, 1225), False, 'import torch\n'), ((3262, 3279), 'torch.isnan', 'torch.isnan', (['norm'], {}), '(norm)\n', (3273, 3279), False, 'import torch\n')]
sreejithr/deepfake
core.py
c7115ce90ea281e2eb95d75f436efa102c8f2e3c
import cv2 import torch import yaml import imageio import throttle import numpy as np import matplotlib.pyplot as plt from argparse import ArgumentParser from skimage.transform import resize from scipy.spatial import ConvexHull from modules.generator import OcclusionAwareGenerator from modules.keypoint_detector import KPDetector from sync_batchnorm import DataParallelWithCallback #from animate import normalize_kp # command = [ffmpeg, # '-y', # '-f', 'rawvideo', # '-vcodec','rawvideo', # '-pix_fmt', 'bgr24', # '-s', dimension, # '-i', '-', # '-c:v', 'libx264', # '-pix_fmt', 'yuv420p', # '-preset', 'ultrafast', # '-f', 'flv', # 'rtmp://10.10.10.80/live/mystream'] def normalize_kp(kp_source, kp_driving, kp_driving_initial, adapt_movement_scale=False, use_relative_movement=False, use_relative_jacobian=False): if adapt_movement_scale: source_area = ConvexHull(kp_source['value'][0].data.cpu().numpy()).volume driving_area = ConvexHull(kp_driving_initial['value'][0].data.cpu().numpy()).volume adapt_movement_scale = np.sqrt(source_area) / np.sqrt(driving_area) else: adapt_movement_scale = 1 kp_new = {k: v for k, v in kp_driving.items()} if use_relative_movement: kp_value_diff = (kp_driving['value'] - kp_driving_initial['value']) kp_value_diff *= adapt_movement_scale kp_new['value'] = kp_value_diff + kp_source['value'] if use_relative_jacobian: jacobian_diff = torch.matmul(kp_driving['jacobian'], torch.inverse(kp_driving_initial['jacobian'])) kp_new['jacobian'] = torch.matmul(jacobian_diff, kp_source['jacobian']) return kp_new def load_checkpoints(config_path, checkpoint_path, cpu=False): with open(config_path) as f: config = yaml.load(f) generator = OcclusionAwareGenerator(**config['model_params']['generator_params'], **config['model_params']['common_params']) if not cpu: generator.cuda() kp_detector = KPDetector(**config['model_params']['kp_detector_params'], **config['model_params']['common_params']) if not cpu: kp_detector.cuda() if cpu: checkpoint = torch.load(checkpoint_path, map_location=torch.device('cpu')) else: checkpoint = torch.load(checkpoint_path) generator.load_state_dict(checkpoint['generator']) kp_detector.load_state_dict(checkpoint['kp_detector']) if not cpu: generator = DataParallelWithCallback(generator) kp_detector = DataParallelWithCallback(kp_detector) generator.eval() kp_detector.eval() return generator, kp_detector @throttle.wrap(1, 2) def forward(source_image, driving_frame, kp_source, kp_driving_initial, generator, kp_detector, relative=True, adapt_scale=True, cpu=True): kp_driving = kp_detector(driving_frame) kp_norm = normalize_kp( kp_source=kp_source, kp_driving=kp_driving, kp_driving_initial=kp_driving_initial, use_relative_movement=relative, use_relative_jacobian=relative, adapt_movement_scale=adapt_scale ) out = generator(source_image, kp_source=kp_source, kp_driving=kp_norm) return np.transpose(out["prediction"].data.cpu().numpy(), [0, 2, 3, 1])[0] if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("--config", required=True, help="path to config") parser.add_argument("--source_image", required=True, help="path to source image") parser.add_argument("--checkpoint", default="vox-cpk.pth.tar", help="path to checkpoint") parser.add_argument("--relative", dest="relative", action="store_true", help="use relative or absolute keypoint coordinates") parser.add_argument("--adapt_scale", dest="adapt_scale", action="store_true", help="adapt movement scale based on convex hull of keypoints") parser.add_argument("--cpu", dest="cpu", action="store_true", help="CPU mode") parser.set_defaults(relative=False) parser.set_defaults(adapt_scale=False) opt = parser.parse_args() generator, kp_detector = load_checkpoints(config_path=opt.config, checkpoint_path=opt.checkpoint, cpu=opt.cpu) source_image = imageio.imread(opt.source_image) source_image = resize(source_image, (256, 256))[..., :3] source = torch.tensor(source_image[np.newaxis].astype(np.float32)).permute(0, 3, 1, 2) if not opt.cpu: source = source.cuda() kp_source = kp_detector(source) #out = cv2.VideoWriter('outpy.avi', cv2.VideoWriter_fourcc('M','J','P','G'), 30, (256, 256)) kp_driving_initial = None camera = cv2.VideoCapture(0) ret, frame = camera.read() while True: ret, frame = camera.read() resized = resize(frame, (256, 256))[..., :3] if not opt.cpu: resized = resized.cuda() # y = torch.tensor(np.array(resized)) # x = y.cpu().numpy() # image = cv2.cvtColor(x, cv2.COLOR_BGR2RGB) # # x = y.permute(1, 2, 0) # plt.imshow(np.array(image)) # plt.show() driving_resized = torch.tensor(np.array(resized)[np.newaxis].astype(np.float32)).permute(0, 3, 1, 2) if not kp_driving_initial: kp_driving_initial = kp_detector(driving_resized) fake_frame = forward( source, driving_resized, kp_source, kp_driving_initial, generator, kp_detector, relative=opt.relative, adapt_scale=opt.adapt_scale, cpu=opt.cpu ) cv2.imshow("frame", fake_frame) #x = np.squeeze(driving_resized, axis=(0,)) #x = driving_resized[0].permute(1, 2, 0) # plt_driving = driving_resized #permute(2, 3, 1) #print(plt_driving.shape) #plt.imshow(x) #plt.show() if cv2.waitKey(1) & 0xFF == ord('q'): break camera.release() cv2.destroyAllWindows()
[((2735, 2754), 'throttle.wrap', 'throttle.wrap', (['(1)', '(2)'], {}), '(1, 2)\n', (2748, 2754), False, 'import throttle\n'), ((1863, 1980), 'modules.generator.OcclusionAwareGenerator', 'OcclusionAwareGenerator', ([], {}), "(**config['model_params']['generator_params'], **\n config['model_params']['common_params'])\n", (1886, 1980), False, 'from modules.generator import OcclusionAwareGenerator\n'), ((2076, 2182), 'modules.keypoint_detector.KPDetector', 'KPDetector', ([], {}), "(**config['model_params']['kp_detector_params'], **config[\n 'model_params']['common_params'])\n", (2086, 2182), False, 'from modules.keypoint_detector import KPDetector\n'), ((3360, 3376), 'argparse.ArgumentParser', 'ArgumentParser', ([], {}), '()\n', (3374, 3376), False, 'from argparse import ArgumentParser\n'), ((4216, 4248), 'imageio.imread', 'imageio.imread', (['opt.source_image'], {}), '(opt.source_image)\n', (4230, 4248), False, 'import imageio\n'), ((4614, 4633), 'cv2.VideoCapture', 'cv2.VideoCapture', (['(0)'], {}), '(0)\n', (4630, 4633), False, 'import cv2\n'), ((5766, 5789), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (5787, 5789), False, 'import cv2\n'), ((1833, 1845), 'yaml.load', 'yaml.load', (['f'], {}), '(f)\n', (1842, 1845), False, 'import yaml\n'), ((2377, 2404), 'torch.load', 'torch.load', (['checkpoint_path'], {}), '(checkpoint_path)\n', (2387, 2404), False, 'import torch\n'), ((2557, 2592), 'sync_batchnorm.DataParallelWithCallback', 'DataParallelWithCallback', (['generator'], {}), '(generator)\n', (2581, 2592), False, 'from sync_batchnorm import DataParallelWithCallback\n'), ((2615, 2652), 'sync_batchnorm.DataParallelWithCallback', 'DataParallelWithCallback', (['kp_detector'], {}), '(kp_detector)\n', (2639, 2652), False, 'from sync_batchnorm import DataParallelWithCallback\n'), ((4266, 4298), 'skimage.transform.resize', 'resize', (['source_image', '(256, 256)'], {}), '(source_image, (256, 256))\n', (4272, 4298), False, 'from skimage.transform import resize\n'), ((5441, 5472), 'cv2.imshow', 'cv2.imshow', (['"""frame"""', 'fake_frame'], {}), "('frame', fake_frame)\n", (5451, 5472), False, 'import cv2\n'), ((1115, 1135), 'numpy.sqrt', 'np.sqrt', (['source_area'], {}), '(source_area)\n', (1122, 1135), True, 'import numpy as np\n'), ((1138, 1159), 'numpy.sqrt', 'np.sqrt', (['driving_area'], {}), '(driving_area)\n', (1145, 1159), True, 'import numpy as np\n'), ((1649, 1699), 'torch.matmul', 'torch.matmul', (['jacobian_diff', "kp_source['jacobian']"], {}), "(jacobian_diff, kp_source['jacobian'])\n", (1661, 1699), False, 'import torch\n'), ((4723, 4748), 'skimage.transform.resize', 'resize', (['frame', '(256, 256)'], {}), '(frame, (256, 256))\n', (4729, 4748), False, 'from skimage.transform import resize\n'), ((1569, 1614), 'torch.inverse', 'torch.inverse', (["kp_driving_initial['jacobian']"], {}), "(kp_driving_initial['jacobian'])\n", (1582, 1614), False, 'import torch\n'), ((2325, 2344), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (2337, 2344), False, 'import torch\n'), ((5694, 5708), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (5705, 5708), False, 'import cv2\n'), ((5046, 5063), 'numpy.array', 'np.array', (['resized'], {}), '(resized)\n', (5054, 5063), True, 'import numpy as np\n')]
cpempire/soupy
soupy/approximations/taylor/backup/__init__.py
9f65e3329fa126619c893daa4cd80478d83f840c
from __future__ import absolute_import, division, print_function from .controlPDEProblem import ControlPDEProblem from .controlPDEProblemMultiPDE import ControlPDEProblemMultiPDE from .costFunctionalConstant import CostFunctionalConstant from .costFunctionalConstantMultiPDE import CostFunctionalConstantMultiPDE from .costFunctionalLinear import CostFunctionalLinear from .costFunctionalLinearMultiPDE import CostFunctionalLinearMultiPDE from .costFunctionalQuadratic import CostFunctionalQuadratic from .costFunctionalQuadraticMultiPDE import CostFunctionalQuadraticMultiPDE # from .chanceConstraintQuadratic import ChanceConstraintQuadratic # from .chanceConstraintLinear import ChanceConstraintLinear # from .chanceConstraintConstant import ChanceConstraintConstant # to do list # 0. implement zero, Hessian term # 1. implement linear # 2. implement quadratic # 3. impelement SAA # to do list # 1. SAA does not run well in ccgo1, multiprocessor does not work, ### not clear bug, simplifing adjoint solver works # 2. quadratic approximation does not converge well, even without variance, does not converge ### record eigenvector after m_tr[i].zero() # 3. check gradient for quadratic + correction # what to show tomorrow # 1. variance reduction by mean square error # 2. trace estimation by MC and randomized SVD # 3. scaling with repsect to mesh (design + uncertainty), trace, variance reduction, #bfgs # 4. show the design and state, for both disk and submarine # 5. random sample and state at different design # April 9, 2018, work on reporting results # 1. random samples and states at different design # 2. table for variance reduction # 3. plot trace estimation # 4. plot #bfgs iterations # obtain all results as planned
[]
navekshasood/HuBMAP---Hacking-the-Kidney
models/1-Tom/train/kaggle-hubmap-main/src/02_train/transforms.py
018100fe4bfa5e8764b9df5a9d188e2c670ac061
import numpy as np from albumentations import (Compose, HorizontalFlip, VerticalFlip, Rotate, RandomRotate90, ShiftScaleRotate, ElasticTransform, GridDistortion, RandomSizedCrop, RandomCrop, CenterCrop, RandomBrightnessContrast, HueSaturationValue, IAASharpen, RandomGamma, RandomBrightness, RandomBrightnessContrast, GaussianBlur,CLAHE, Cutout, CoarseDropout, GaussNoise, ChannelShuffle, ToGray, OpticalDistortion, Normalize, OneOf, NoOp) from albumentations.pytorch import ToTensorV2 as ToTensor from get_config import get_config config = get_config() MEAN = np.array([0.485, 0.456, 0.406]) STD = np.array([0.229, 0.224, 0.225]) def get_transforms_train(): transform_train = Compose([ #Basic RandomRotate90(p=1), HorizontalFlip(p=0.5), #Morphology ShiftScaleRotate(shift_limit=0, scale_limit=(-0.2,0.2), rotate_limit=(-30,30), interpolation=1, border_mode=0, value=(0,0,0), p=0.5), GaussNoise(var_limit=(0,50.0), mean=0, p=0.5), GaussianBlur(blur_limit=(3,7), p=0.5), #Color RandomBrightnessContrast(brightness_limit=0.35, contrast_limit=0.5, brightness_by_max=True,p=0.5), HueSaturationValue(hue_shift_limit=30, sat_shift_limit=30, val_shift_limit=0, p=0.5), CoarseDropout(max_holes=2, max_height=config['input_resolution'][0]//4, max_width=config['input_resolution'][1]//4, min_holes=1, min_height=config['input_resolution'][0]//16, min_width=config['input_resolution'][1]//16, fill_value=0, mask_fill_value=0, p=0.5), Normalize(mean=(MEAN[0], MEAN[1], MEAN[2]), std=(STD[0], STD[1], STD[2])), ToTensor(), ]) return transform_train def get_transforms_valid(): transform_valid = Compose([ Normalize(mean=(MEAN[0], MEAN[1], MEAN[2]), std=(STD[0], STD[1], STD[2])), ToTensor(), ] ) return transform_valid def denormalize(z, mean=MEAN.reshape(-1,1,1), std=STD.reshape(-1,1,1)): return std*z + mean
[((737, 749), 'get_config.get_config', 'get_config', ([], {}), '()\n', (747, 749), False, 'from get_config import get_config\n'), ((758, 789), 'numpy.array', 'np.array', (['[0.485, 0.456, 0.406]'], {}), '([0.485, 0.456, 0.406])\n', (766, 789), True, 'import numpy as np\n'), ((797, 828), 'numpy.array', 'np.array', (['[0.229, 0.224, 0.225]'], {}), '([0.229, 0.224, 0.225])\n', (805, 828), True, 'import numpy as np\n'), ((913, 932), 'albumentations.RandomRotate90', 'RandomRotate90', ([], {'p': '(1)'}), '(p=1)\n', (927, 932), False, 'from albumentations import Compose, HorizontalFlip, VerticalFlip, Rotate, RandomRotate90, ShiftScaleRotate, ElasticTransform, GridDistortion, RandomSizedCrop, RandomCrop, CenterCrop, RandomBrightnessContrast, HueSaturationValue, IAASharpen, RandomGamma, RandomBrightness, RandomBrightnessContrast, GaussianBlur, CLAHE, Cutout, CoarseDropout, GaussNoise, ChannelShuffle, ToGray, OpticalDistortion, Normalize, OneOf, NoOp\n'), ((942, 963), 'albumentations.HorizontalFlip', 'HorizontalFlip', ([], {'p': '(0.5)'}), '(p=0.5)\n', (956, 963), False, 'from albumentations import Compose, HorizontalFlip, VerticalFlip, Rotate, RandomRotate90, ShiftScaleRotate, ElasticTransform, GridDistortion, RandomSizedCrop, RandomCrop, CenterCrop, RandomBrightnessContrast, HueSaturationValue, IAASharpen, RandomGamma, RandomBrightness, RandomBrightnessContrast, GaussianBlur, CLAHE, Cutout, CoarseDropout, GaussNoise, ChannelShuffle, ToGray, OpticalDistortion, Normalize, OneOf, NoOp\n'), ((1002, 1142), 'albumentations.ShiftScaleRotate', 'ShiftScaleRotate', ([], {'shift_limit': '(0)', 'scale_limit': '(-0.2, 0.2)', 'rotate_limit': '(-30, 30)', 'interpolation': '(1)', 'border_mode': '(0)', 'value': '(0, 0, 0)', 'p': '(0.5)'}), '(shift_limit=0, scale_limit=(-0.2, 0.2), rotate_limit=(-30,\n 30), interpolation=1, border_mode=0, value=(0, 0, 0), p=0.5)\n', (1018, 1142), False, 'from albumentations import Compose, HorizontalFlip, VerticalFlip, Rotate, RandomRotate90, ShiftScaleRotate, ElasticTransform, GridDistortion, RandomSizedCrop, RandomCrop, CenterCrop, RandomBrightnessContrast, HueSaturationValue, IAASharpen, RandomGamma, RandomBrightness, RandomBrightnessContrast, GaussianBlur, CLAHE, Cutout, CoarseDropout, GaussNoise, ChannelShuffle, ToGray, OpticalDistortion, Normalize, OneOf, NoOp\n'), ((1170, 1216), 'albumentations.GaussNoise', 'GaussNoise', ([], {'var_limit': '(0, 50.0)', 'mean': '(0)', 'p': '(0.5)'}), '(var_limit=(0, 50.0), mean=0, p=0.5)\n', (1180, 1216), False, 'from albumentations import Compose, HorizontalFlip, VerticalFlip, Rotate, RandomRotate90, ShiftScaleRotate, ElasticTransform, GridDistortion, RandomSizedCrop, RandomCrop, CenterCrop, RandomBrightnessContrast, HueSaturationValue, IAASharpen, RandomGamma, RandomBrightness, RandomBrightnessContrast, GaussianBlur, CLAHE, Cutout, CoarseDropout, GaussNoise, ChannelShuffle, ToGray, OpticalDistortion, Normalize, OneOf, NoOp\n'), ((1225, 1263), 'albumentations.GaussianBlur', 'GaussianBlur', ([], {'blur_limit': '(3, 7)', 'p': '(0.5)'}), '(blur_limit=(3, 7), p=0.5)\n', (1237, 1263), False, 'from albumentations import Compose, HorizontalFlip, VerticalFlip, Rotate, RandomRotate90, ShiftScaleRotate, ElasticTransform, GridDistortion, RandomSizedCrop, RandomCrop, CenterCrop, RandomBrightnessContrast, HueSaturationValue, IAASharpen, RandomGamma, RandomBrightness, RandomBrightnessContrast, GaussianBlur, CLAHE, Cutout, CoarseDropout, GaussNoise, ChannelShuffle, ToGray, OpticalDistortion, Normalize, OneOf, NoOp\n'), ((1296, 1398), 'albumentations.RandomBrightnessContrast', 'RandomBrightnessContrast', ([], {'brightness_limit': '(0.35)', 'contrast_limit': '(0.5)', 'brightness_by_max': '(True)', 'p': '(0.5)'}), '(brightness_limit=0.35, contrast_limit=0.5,\n brightness_by_max=True, p=0.5)\n', (1320, 1398), False, 'from albumentations import Compose, HorizontalFlip, VerticalFlip, Rotate, RandomRotate90, ShiftScaleRotate, ElasticTransform, GridDistortion, RandomSizedCrop, RandomCrop, CenterCrop, RandomBrightnessContrast, HueSaturationValue, IAASharpen, RandomGamma, RandomBrightness, RandomBrightnessContrast, GaussianBlur, CLAHE, Cutout, CoarseDropout, GaussNoise, ChannelShuffle, ToGray, OpticalDistortion, Normalize, OneOf, NoOp\n'), ((1437, 1526), 'albumentations.HueSaturationValue', 'HueSaturationValue', ([], {'hue_shift_limit': '(30)', 'sat_shift_limit': '(30)', 'val_shift_limit': '(0)', 'p': '(0.5)'}), '(hue_shift_limit=30, sat_shift_limit=30, val_shift_limit=\n 0, p=0.5)\n', (1455, 1526), False, 'from albumentations import Compose, HorizontalFlip, VerticalFlip, Rotate, RandomRotate90, ShiftScaleRotate, ElasticTransform, GridDistortion, RandomSizedCrop, RandomCrop, CenterCrop, RandomBrightnessContrast, HueSaturationValue, IAASharpen, RandomGamma, RandomBrightness, RandomBrightnessContrast, GaussianBlur, CLAHE, Cutout, CoarseDropout, GaussNoise, ChannelShuffle, ToGray, OpticalDistortion, Normalize, OneOf, NoOp\n'), ((1568, 1849), 'albumentations.CoarseDropout', 'CoarseDropout', ([], {'max_holes': '(2)', 'max_height': "(config['input_resolution'][0] // 4)", 'max_width': "(config['input_resolution'][1] // 4)", 'min_holes': '(1)', 'min_height': "(config['input_resolution'][0] // 16)", 'min_width': "(config['input_resolution'][1] // 16)", 'fill_value': '(0)', 'mask_fill_value': '(0)', 'p': '(0.5)'}), "(max_holes=2, max_height=config['input_resolution'][0] // 4,\n max_width=config['input_resolution'][1] // 4, min_holes=1, min_height=\n config['input_resolution'][0] // 16, min_width=config[\n 'input_resolution'][1] // 16, fill_value=0, mask_fill_value=0, p=0.5)\n", (1581, 1849), False, 'from albumentations import Compose, HorizontalFlip, VerticalFlip, Rotate, RandomRotate90, ShiftScaleRotate, ElasticTransform, GridDistortion, RandomSizedCrop, RandomCrop, CenterCrop, RandomBrightnessContrast, HueSaturationValue, IAASharpen, RandomGamma, RandomBrightness, RandomBrightnessContrast, GaussianBlur, CLAHE, Cutout, CoarseDropout, GaussNoise, ChannelShuffle, ToGray, OpticalDistortion, Normalize, OneOf, NoOp\n'), ((1937, 2010), 'albumentations.Normalize', 'Normalize', ([], {'mean': '(MEAN[0], MEAN[1], MEAN[2])', 'std': '(STD[0], STD[1], STD[2])'}), '(mean=(MEAN[0], MEAN[1], MEAN[2]), std=(STD[0], STD[1], STD[2]))\n', (1946, 2010), False, 'from albumentations import Compose, HorizontalFlip, VerticalFlip, Rotate, RandomRotate90, ShiftScaleRotate, ElasticTransform, GridDistortion, RandomSizedCrop, RandomCrop, CenterCrop, RandomBrightnessContrast, HueSaturationValue, IAASharpen, RandomGamma, RandomBrightness, RandomBrightnessContrast, GaussianBlur, CLAHE, Cutout, CoarseDropout, GaussNoise, ChannelShuffle, ToGray, OpticalDistortion, Normalize, OneOf, NoOp\n'), ((2039, 2049), 'albumentations.pytorch.ToTensorV2', 'ToTensor', ([], {}), '()\n', (2047, 2049), True, 'from albumentations.pytorch import ToTensorV2 as ToTensor\n'), ((2155, 2228), 'albumentations.Normalize', 'Normalize', ([], {'mean': '(MEAN[0], MEAN[1], MEAN[2])', 'std': '(STD[0], STD[1], STD[2])'}), '(mean=(MEAN[0], MEAN[1], MEAN[2]), std=(STD[0], STD[1], STD[2]))\n', (2164, 2228), False, 'from albumentations import Compose, HorizontalFlip, VerticalFlip, Rotate, RandomRotate90, ShiftScaleRotate, ElasticTransform, GridDistortion, RandomSizedCrop, RandomCrop, CenterCrop, RandomBrightnessContrast, HueSaturationValue, IAASharpen, RandomGamma, RandomBrightness, RandomBrightnessContrast, GaussianBlur, CLAHE, Cutout, CoarseDropout, GaussNoise, ChannelShuffle, ToGray, OpticalDistortion, Normalize, OneOf, NoOp\n'), ((2257, 2267), 'albumentations.pytorch.ToTensorV2', 'ToTensor', ([], {}), '()\n', (2265, 2267), True, 'from albumentations.pytorch import ToTensorV2 as ToTensor\n')]
Majikat/cubspack
cubspack/geometry.py
16aa6df0603d48d757d74837d3457a1934601d89
# -*- coding: utf-8 -*- from math import sqrt class Point(object): __slots__ = ('x', 'y', 'z') def __init__(self, x, y, z): self.x = x self.y = y self.z = z def __eq__(self, other): return (self.x == other.x and self.y == other.y and self.z == other.z) def __repr__(self): return "P({}, {}, {})".format(self.x, self.y, self.z) def distance(self, point): """Calculate distance to another point""" return sqrt((self.x - point.x)**2 + (self.y - point.y)**2 + ( self.z - point.z)**2) def distance_squared(self, point): return (self.x - point.x)**2 + (self.y - point.y)**2 + ( self.z - point.z)**2 class Segment(object): __slots__ = ('start', 'end') def __init__(self, start, end): """Arguments: start (Point): Segment start point end (Point): Segment end point """ assert(isinstance(start, Point) and isinstance(end, Point)) self.start = start self.end = end def __eq__(self, other): if not isinstance(other, self.__class__): None return self.start == other.start and self.end == other.end def __repr__(self): return "S({}, {})".format(self.start, self.end) @property def length_squared(self): """Faster than length and useful for some comparisons""" return self.start.distance_squared(self.end) @property def length(self): return self.start.distance(self.end) @property def top(self): return max(self.start.y, self.end.y) @property def bottom(self): return min(self.start.y, self.end.y) @property def right(self): return max(self.start.x, self.end.x) @property def left(self): return min(self.start.x, self.end.x) @property def ineye(self): return max(self.start.z, self.end.z) @property def outeye(self): return min(self.start.z, self.end.z) class HSegment(Segment): """Horizontal Segment""" def __init__(self, start, length): """Create an Horizontal segment given its left most end point and its length. Arguments: - start (Point): Starting Point - length (number): segment length """ assert(isinstance(start, Point) and not isinstance(length, Point)) super(HSegment, self).__init__( start, Point(start.x + length, start.y, start.z)) @property def length(self): return self.end.x - self.start.x class VSegment(Segment): """Vertical Segment""" def __init__(self, start, length): """Create a Vertical segment given its bottom most end point and its length. Arguments: - start (Point): Starting Point - length (number): segment length """ assert(isinstance(start, Point) and not isinstance(length, Point)) super(VSegment, self).__init__( start, Point(start.x, start.y + length, start.z)) @property def length(self): return self.end.y - self.start.y class DSegment(Segment): """In-Depth Segment""" def __init__(self, start, length): """Create an In-Depth segment given its bottom most end point and its length. Arguments: - start (Point): Starting Point - length (number): segment length """ assert(isinstance(start, Point) and not isinstance(length, Point)) super(VSegment, self).__init__( start, Point(start.x, start.y, start.z + length)) @property def length(self): return self.end.z - self.start.z class Cuboid(object): """Basic cuboid primitive class. x, y, z-> Lower right corner coordinates width - height - depth - """ __slots__ = ('width', 'height', 'depth', 'x', 'y', 'z', 'rid') def __init__(self, x, y, z, width, height, depth, rid=None): """Initiating the Cuboid Args: x (int, float): y (int, float): z (int, float): width (int, float): height (int, float): depth (int, float): rid (identifier object): """ assert(height >= 0 and width >= 0 and depth >= 0) self.width = width self.height = height self.depth = depth self.x = x self.y = y self.z = z self.rid = rid @property def bottom(self): """Cuboid bottom edge y coordinate""" return self.y @property def top(self): """Cuboid top edge y coordiante""" return self.y + self.height @property def left(self): """Cuboid left edge x coordinate""" return self.x @property def right(self): """Cuboid right edge x coordinate""" return self.x + self.width @property def outeye(self): """Cuboid farther from eye edge z coordinate""" return self.z @property def ineye(self): """Cuboid nearer from eye edge z coordinate""" return self.z + self.depth @property def corner_top_l(self): return Point(self.left, self.top, self.outeye) @property def corner_top_r(self): return Point(self.right, self.top, self.outeye) @property def corner_bot_r(self): return Point(self.right, self.bottom, self.outeye) @property def corner_bot_l(self): return Point(self.left, self.bottom, self.outeye) @property def corner_top_l_out(self): return Point(self.left, self.top, self.ineye) @property def corner_top_r_out(self): return Point(self.right, self.top, self.ineye) @property def corner_bot_r_out(self): return Point(self.right, self.bottom, self.ineye) @property def corner_bot_l_out(self): return Point(self.left, self.bottom, self.ineye) def __lt__(self, other): """Compare cuboids by volume (used for sorting)""" return self.volume() < other.volume() def __eq__(self, other): """Equal cuboids have same properties.""" if not isinstance(other, self.__class__): return False return (self.width == other.width and self.height == other.height and self.depth == other.depth and self.x == other.x and self.y == other.y and self.z == other.z) def __hash__(self): return hash( (self.x, self.y, self.z, self.width, self.height, self.depth)) def __iter__(self): """Iterate through cuboid corners""" yield self.corner_top_l yield self.corner_top_r yield self.corner_bot_r yield self.corner_bot_l yield self.corner_top_l_out yield self.corner_top_r_out yield self.corner_bot_r_out yield self.corner_bot_l_out def __repr__(self): return "R({}, {}, {}, {}, {}, {})".format( self.x, self.y, self.z, self.width, self.height, self.depth) def volume(self): """Cuboid volume""" return self.width * self.height * self.depth def move(self, x, y, z): """Move Cuboid to x,y,z coordinates Arguments: x (int, float): X coordinate y (int, float): Y coordinate z (int, float): Z coordinate """ self.x = x self.y = y self.z = z def contains(self, cub): """Tests if another cuboid is contained by this one Arguments: cub (Cuboid): The other cuboiud Returns: bool: True if it is inside this one, False otherwise """ return (cub.y >= self.y and cub.x >= self.x and cub.z >= self.z and cub.y + cub.height <= self.y + self.height and cub.x + cub.width <= self.x + self.width and cub.z + cub.depth <= self.z + self.depth) def intersects(self, cub, edges=False): """Detect intersections between this cuboid and cub. Args: cub (Cuboid): Cuboid to test for intersections. edges (bool): Accept edge touching cuboids as intersects or not Returns: bool: True if the cuboids intersect, False otherwise """ # Not even touching if (self.bottom > cub.top or self.top < cub.bottom or self.left > cub.right or self.right < cub.left or self.outeye > cub.ineye or self.ineye < cub.outeye): return False # Discard edge intersects if not edges: if (self.bottom == cub.top or self.top == cub.bottom or self.left == cub.right or self.right == cub.left or self.outeye == cub.ineye or self.ineye == cub.outeye): return False # Discard corner intersects if (self.left == cub.right and self.bottom == cub.top and self.outeye == cub.ineye or self.left == cub.right and cub.bottom == self.top and self.outeye == cub.ineye or self.left == cub.right and self.bottom == cub.top and cub.outeye == self.ineye or self.left == cub.right and cub.bottom == self.top and cub.outeye == self.ineye or cub.left == self.right and self.bottom == cub.top and self.outeye == cub.ineye or cub.left == self.right and cub.bottom == self.top and self.outeye == cub.ineye or cub.left == self.right and self.bottom == cub.top and cub.outeye == self.ineye or cub.left == self.right and cub.bottom == self.top and cub.outeye == self.ineye): return False return True def intersection(self, cub, edges=False): """Returns the cuboid resulting of the intersection of this and cub If the cuboids are only touching by their edges, and the argument 'edges' is True the cuboid returned will have a volume of 0. Returns None if there is no intersection. Arguments: cub (Cuboid): The other cuboid. edges (bool): If true, touching edges are considered an intersection, and a cuboid of 0 height or width or depth will be returned Returns: Cuboid: Intersection. None: There was no intersection. """ if not self.intersects(cub, edges=edges): return None bottom = max(self.bottom, cub.bottom) left = max(self.left, cub.left) top = min(self.top, cub.top) right = min(self.right, cub.right) outeye = max(self.outeye, cub.outeye) ineye = min(self.ineye, cub.ineye) return Cuboid( left, bottom, outeye, right - left, top - bottom, ineye - outeye) def join(self, other): """Try to join a cuboid to this one. If the result is also a cuboid and the operation is successful then this cuboid is modified to the union. Arguments: other (Cuboid): Cuboid to join Returns: bool: True when successfully joined, False otherwise """ if self.contains(other): return True if other.contains(self): self.x = other.x self.y = other.y self.z = other.z self.width = other.width self.height = other.height self.depth = other.depth return True if not self.intersects(other, edges=True): return False # Other cuboid is Up/Down from this if self.left == other.left and self.width == other.width and \ self.outeye == other.outeye and self.depth == self.depth: y_min = min(self.bottom, other.bottom) y_max = max(self.top, other.top) self.y = y_min self.height = y_max - y_min return True # Other cuboid is Right/Left from this if self.bottom == other.bottom and self.height == other.height and \ self.outeye == other.outeye and self.depth == self.depth: x_min = min(self.left, other.left) x_max = max(self.right, other.right) self.x = x_min self.width = x_max - x_min return True # Other cuboid is Right/Left from this if self.bottom == other.bottom and self.height == other.height and \ self.left == other.left and self.width == other.width: z_min = min(self.outeye, other.outeye) z_max = max(self.ineye, other.ineye) self.z = z_min self.depth = z_max - z_min return True return False
[((487, 572), 'math.sqrt', 'sqrt', (['((self.x - point.x) ** 2 + (self.y - point.y) ** 2 + (self.z - point.z) ** 2)'], {}), '((self.x - point.x) ** 2 + (self.y - point.y) ** 2 + (self.z - point.z) **\n 2)\n', (491, 572), False, 'from math import sqrt\n')]
tahmadvand/recipe_app_api
app/recipe/tests/test_recipe_api.py
40b4cc6960d7dc4858373b5f6ccca980ed0eeac8
from django.contrib.auth import get_user_model from django.test import TestCase from django.urls import reverse from rest_framework import status from rest_framework.test import APIClient # use that for making our API requests from core.models import Recipe, Tag, Ingredient from ..serializers import RecipeSerializer, RecipeDetailSerializer import tempfile # allows you to call a function which will then create a temp file # somewhere in the system and then you can remove that file after # you've used it import os # this allows us to perform things like # creating path names and also checking if files exist on the system from PIL import Image # pillow, this will import our image class which will let us then # create test images which we can then upload to our API RECIPES_URL = reverse('recipe:recipe-list') # since we're going to need to access the URL in more # or less all the tests let's assign that as a variable # at top of the class in all capitals. # app : identifier of the URL in the app # /api/recipe/recipes # /api/recipe/recipes/1/ (id) --> detail url def image_upload_url(recipe_id): """Return URL for recipe image upload""" return reverse('recipe:recipe-upload-image', args=[recipe_id]) # generate our upload image url # you're going to need the existing recipe ID in order to upload an image def detail_url(recipe_id): """Return recipe detail URL""" return reverse('recipe:recipe-detail', args=[recipe_id]) # name of the end point that the default router will create # for our viewset because we're going to have a detail action # this is how you specify arguments with the reverse function # you just pass in args and then you pass in a list of the # arguments you want to add # here we have single item def sample_tag(user, name='Main course'): """Create and return a sample tag""" return Tag.objects.create(user=user, name=name) def sample_ingredient(user, name='Cinnamon'): """Create and return a sample ingredient""" return Ingredient.objects.create(user=user, name=name) def sample_recipe(user, **params): """Create and return a sample recipe""" defaults = { 'title': 'Sample recipe', 'time_minutes': 10, 'price': 5.00, } defaults.update(params) return Recipe.objects.create(user=user, **defaults) # convert the dictionary into the argument # when you use the two asterisks when calling a # function it has the reverse effect. class PublicRecipeApiTests(TestCase): """Test unauthenticated recipe API access""" def setUp(self): self.client = APIClient() def test_required_auth(self): """Test the authenticaiton is required""" res = self.client.get(RECIPES_URL) self.assertEqual(res.status_code, status.HTTP_401_UNAUTHORIZED) class PrivateRecipeApiTests(TestCase): """Test authenticated recipe API access""" def setUp(self): self.client = APIClient() self.user = get_user_model().objects.create_user( '[email protected]', 'testpass' ) self.client.force_authenticate(self.user) def test_retrieve_recipes(self): """Test retrieving list of recipes""" sample_recipe(user=self.user) sample_recipe(user=self.user) # we're going to access them by retrieving # all of the recipes from our database. res = self.client.get(RECIPES_URL) recipes = Recipe.objects.all().order_by('-id') serializer = RecipeSerializer(recipes, many=True) self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertEqual(res.data, serializer.data) def test_recipes_limited_to_user(self): """Test retrieving recipes for user""" # test recipes are limited to the authenticated user. user2 = get_user_model().objects.create_user( '[email protected]', 'pass' ) sample_recipe(user=user2) sample_recipe(user=self.user) res = self.client.get(RECIPES_URL) # filter our recipes by the authenticated user recipes = Recipe.objects.filter(user=self.user) serializer = RecipeSerializer(recipes, many=True) # many=true: this is because we were returning the list view # or we wanted to simulate the list view in our serializer self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertEqual(len(res.data), 1) self.assertEqual(res.data, serializer.data) def test_view_recipe_detail(self): """Test viewing a recipe detail""" recipe = sample_recipe(user=self.user) recipe.tags.add(sample_tag(user=self.user)) recipe.ingredients.add(sample_ingredient(user=self.user)) url = detail_url(recipe.id) res = self.client.get(url) serializer = RecipeDetailSerializer(recipe) # in this case we just want to serialize a single object self.assertEqual(res.data, serializer.data) def test_create_basic_recipe(self): """Test creating recipe""" payload = { 'title': 'Test recipe', 'time_minutes': 30, 'price': 10.00, } res = self.client.post(RECIPES_URL, payload) # post this payload dictionary to our recipes URL. self.assertEqual(res.status_code, status.HTTP_201_CREATED) # this is the standard HTTP response code for creating objects # in an API. recipe = Recipe.objects.get(id=res.data['id']) # When you create an object using the Django rest framework the # default behavior is that it will return a dictionary containing # the created object This is how I know that if we do res.data and # retrieve the id key this will get the id of the created object. # Next what we're going to do is we're going to loop through each # one of these keys and then we're going to check # that is the correct value assigned to our recipe model. for key in payload.keys(): self.assertEqual(payload[key], getattr(recipe, key)) # assertion for each one of these keys, check that it is # equal to the same key in the recipe # payload[key]: This will actually get the value of the # key in our payload object # getattr: that allows you to retrieve an attribute from # an object by passing in a variable. (instead of recipe.key) def test_create_recipe_with_tags(self): """Test creating a recipe with tags""" tag1 = sample_tag(user=self.user, name='Tag 1') tag2 = sample_tag(user=self.user, name='Tag 2') payload = { 'title': 'Test recipe with two tags', 'tags': [tag1.id, tag2.id], 'time_minutes': 30, 'price': 10.00 } res = self.client.post(RECIPES_URL, payload) self.assertEqual(res.status_code, status.HTTP_201_CREATED) recipe = Recipe.objects.get(id=res.data['id']) # retrieve the created recipe tags = recipe.tags.all() # retrieve the tags that were created with the recipe self.assertEqual(tags.count(), 2) # because we expect two tags to be assigned. self.assertIn(tag1, tags) self.assertIn(tag2, tags) # check if the tags that we created as our sample tags are # the same as the tags that are in our queryset. def test_create_recipe_with_ingredients(self): """Test creating recipe with ingredients""" ingredient1 = sample_ingredient(user=self.user, name='Ingredient 1') ingredient2 = sample_ingredient(user=self.user, name='Ingredient 2') payload = { 'title': 'Test recipe with ingredients', 'ingredients': [ingredient1.id, ingredient2.id], 'time_minutes': 45, 'price': 15.00 } res = self.client.post(RECIPES_URL, payload) self.assertEqual(res.status_code, status.HTTP_201_CREATED) recipe = Recipe.objects.get(id=res.data['id']) ingredients = recipe.ingredients.all() # get the ingredients queryset self.assertEqual(ingredients.count(), 2) self.assertIn(ingredient1, ingredients) self.assertIn(ingredient2, ingredients) # test partial update and full update of an object # there are two ways in which you can update an object using the # API there's two different HTTP methods: put, patch # patch: Patch is used to update the fields that are provided # in the payload so the only fields that it will change are the # fields that are provided and any fields that are omitted from # the request will not be modified in the object that's being updated. def test_partial_update_recipe(self): """Test updating a recipe with patch""" # make a request to change a field in our recipe. recipe = sample_recipe(user=self.user) recipe.tags.add(sample_tag(user=self.user)) # add a tag to the recipe new_tag = sample_tag(user=self.user, name='Curry') # add a new tag and what we're going to do is we're going # to swap out this tag that we create here and we're going # to replace it with a new tag payload = {'title': 'Partially Updated sample recipe', 'tags': [new_tag.id]} # tags will be replaced with this new tag so the existing tag that # we created won't be assigned to it url = detail_url(recipe.id) # the way that you update an object using the Django rest framework # view sets is you use the detail URL so that is the URL of the # recipe with the ID of the recipe that we want to update. self.client.patch(url, payload) # make request # We're going to retrieve an update to the recipe from the # database and then we're going to check the fields that # are assigned and just make sure they match what we expect. recipe.refresh_from_db() # refreshes the details in our recipe from the database # typically when you create a new model and you have a # reference to a model the details of that won't change # unless you do refresh from dB if the values have changed # in the database. self.assertEqual(recipe.title, payload['title']) tags = recipe.tags.all() self.assertEqual(len(tags), 1) self.assertIn(new_tag, tags) # check that the tag new tag is in the tags that we retrieved # test full update # put: it will replace the object that we're updating with the full # object that is provided in the request that means if you exclude # any fields in the payload those fields will actually be removed # from the object that you're updating def test_full_update_recipe(self): """Test updating a recipe with put""" recipe = sample_recipe(user=self.user) recipe.tags.add(sample_tag(user=self.user)) payload = { 'title': 'Fully Updated sample recipe', 'time_minutes': 25, 'price': 5.00 } url = detail_url(recipe.id) self.client.put(url, payload) recipe.refresh_from_db() self.assertEqual(recipe.title, payload['title']) self.assertEqual(recipe.time_minutes, payload['time_minutes']) self.assertEqual(recipe.price, payload['price']) tags = recipe.tags.all() self.assertEqual(len(tags), 0) # we will check that the tags assigned are zero now as I explained # because when we do a HTTP put if we omit a field # that should clear the value of that field so now our recipe # that did have a sample tag assigned should not have any tags # assigned class RecipeImageUploadTests(TestCase): # what happens at the setup of the test def setUp(self): self.client = APIClient() self.user = get_user_model().objects.create_user('user', 'testpass') self.client.force_authenticate(self.user) # authenticate our user self.recipe = sample_recipe(user=self.user) # after the test runs it runs tear down def tearDown(self): self.recipe.image.delete() # make sure that our file system is kept clean after our test # removing all of the test files that we create # delete the image if it exists in the recipe def test_upload_image_to_recipe(self): """Test uploading an image to recipe""" url = image_upload_url(self.recipe.id) # going to use the sample recipe that gets created # it creates a named temporary file on the system at a random # location usually in the /temp folder # create a temporary file we're going to write an image # to that file and then we're going to upload that file # through the API like you would with a HTTP POST and then # we're going to run some assertions to check that it # uploaded correctly with tempfile.NamedTemporaryFile(suffix='.jpg') as ntf: img = Image.new('RGB', (10, 10)) # creates black square img.save(ntf, format='JPEG') ntf.seek(0) # it's the way that Python reads files so because we've # saved the file it will be the seeking will be done to the # end of the file so if you try to access it then it would # just be blank because you've already read up to the end # of the file so use this seek function to set # the pointer back to the beginning of the file res = self.client.post(url, {'image': ntf}, format='multipart') # assertions # refreshing the database for our recipe self.recipe.refresh_from_db() self.assertEqual(res.status_code, status.HTTP_200_OK) # check that the images in the response so that's the path to # the image that should be accessible self.assertIn('image', res.data) # check that the path exists for the image that is saved to our model self.assertTrue(os.path.exists(self.recipe.image.path)) def test_upload_image_bad_request(self): """Test uploading an invalid image""" url = image_upload_url(self.recipe.id) res = self.client.post(url, {'image': 'notimage'}, format='multipart') self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) def test_filter_recipes_by_tags(self): """Test returning recipes with specific tags""" recipe1 = sample_recipe(user=self.user, title='Thai vegetable curry') recipe2 = sample_recipe(user=self.user, title='Aubergine with tahini') tag1 = sample_tag(user=self.user, name='Vegan') tag2 = sample_tag(user=self.user, name='Vegetarian') recipe1.tags.add(tag1) recipe2.tags.add(tag2) recipe3 = sample_recipe(user=self.user, title='Fish and chips') res = self.client.get( RECIPES_URL, {'tags': '{},{}'.format(tag1.id, tag2.id)} ) # this will create a comma separated list string and assign # it to the tags get parameter # if our filtering is working # should only return the first two recipe # test the response: serializer1 = RecipeSerializer(recipe1) serializer2 = RecipeSerializer(recipe2) serializer3 = RecipeSerializer(recipe3) # serialize the recipes and we're going to check if # they exist in the responses returned self.assertIn(serializer1.data, res.data) self.assertIn(serializer2.data, res.data) self.assertNotIn(serializer3.data, res.data) # check the return result def test_filter_recipes_by_ingredients(self): """Test returning recipes with specific ingredients""" recipe1 = sample_recipe(user=self.user, title='Posh beans on toast') recipe2 = sample_recipe(user=self.user, title='Chicken cacciatore') ingredient1 = sample_ingredient(user=self.user, name='Feta cheese') ingredient2 = sample_ingredient(user=self.user, name='Chicken') recipe1.ingredients.add(ingredient1) recipe2.ingredients.add(ingredient2) recipe3 = sample_recipe(user=self.user, title='Steak and mushrooms') # test API res = self.client.get( RECIPES_URL, {'ingredients': '{},{}'.format(ingredient1.id, ingredient2.id)} ) serializer1 = RecipeSerializer(recipe1) serializer2 = RecipeSerializer(recipe2) serializer3 = RecipeSerializer(recipe3) self.assertIn(serializer1.data, res.data) self.assertIn(serializer2.data, res.data) self.assertNotIn(serializer3.data, res.data)
[((792, 821), 'django.urls.reverse', 'reverse', (['"""recipe:recipe-list"""'], {}), "('recipe:recipe-list')\n", (799, 821), False, 'from django.urls import reverse\n'), ((1171, 1226), 'django.urls.reverse', 'reverse', (['"""recipe:recipe-upload-image"""'], {'args': '[recipe_id]'}), "('recipe:recipe-upload-image', args=[recipe_id])\n", (1178, 1226), False, 'from django.urls import reverse\n'), ((1408, 1457), 'django.urls.reverse', 'reverse', (['"""recipe:recipe-detail"""'], {'args': '[recipe_id]'}), "('recipe:recipe-detail', args=[recipe_id])\n", (1415, 1457), False, 'from django.urls import reverse\n'), ((1853, 1893), 'core.models.Tag.objects.create', 'Tag.objects.create', ([], {'user': 'user', 'name': 'name'}), '(user=user, name=name)\n', (1871, 1893), False, 'from core.models import Recipe, Tag, Ingredient\n'), ((2001, 2048), 'core.models.Ingredient.objects.create', 'Ingredient.objects.create', ([], {'user': 'user', 'name': 'name'}), '(user=user, name=name)\n', (2026, 2048), False, 'from core.models import Recipe, Tag, Ingredient\n'), ((2278, 2322), 'core.models.Recipe.objects.create', 'Recipe.objects.create', ([], {'user': 'user'}), '(user=user, **defaults)\n', (2299, 2322), False, 'from core.models import Recipe, Tag, Ingredient\n'), ((2585, 2596), 'rest_framework.test.APIClient', 'APIClient', ([], {}), '()\n', (2594, 2596), False, 'from rest_framework.test import APIClient\n'), ((2930, 2941), 'rest_framework.test.APIClient', 'APIClient', ([], {}), '()\n', (2939, 2941), False, 'from rest_framework.test import APIClient\n'), ((4104, 4141), 'core.models.Recipe.objects.filter', 'Recipe.objects.filter', ([], {'user': 'self.user'}), '(user=self.user)\n', (4125, 4141), False, 'from core.models import Recipe, Tag, Ingredient\n'), ((5450, 5487), 'core.models.Recipe.objects.get', 'Recipe.objects.get', ([], {'id': "res.data['id']"}), "(id=res.data['id'])\n", (5468, 5487), False, 'from core.models import Recipe, Tag, Ingredient\n'), ((6921, 6958), 'core.models.Recipe.objects.get', 'Recipe.objects.get', ([], {'id': "res.data['id']"}), "(id=res.data['id'])\n", (6939, 6958), False, 'from core.models import Recipe, Tag, Ingredient\n'), ((7971, 8008), 'core.models.Recipe.objects.get', 'Recipe.objects.get', ([], {'id': "res.data['id']"}), "(id=res.data['id'])\n", (7989, 8008), False, 'from core.models import Recipe, Tag, Ingredient\n'), ((11775, 11786), 'rest_framework.test.APIClient', 'APIClient', ([], {}), '()\n', (11784, 11786), False, 'from rest_framework.test import APIClient\n'), ((12894, 12936), 'tempfile.NamedTemporaryFile', 'tempfile.NamedTemporaryFile', ([], {'suffix': '""".jpg"""'}), "(suffix='.jpg')\n", (12921, 12936), False, 'import tempfile\n'), ((12963, 12989), 'PIL.Image.new', 'Image.new', (['"""RGB"""', '(10, 10)'], {}), "('RGB', (10, 10))\n", (12972, 12989), False, 'from PIL import Image\n'), ((13996, 14034), 'os.path.exists', 'os.path.exists', (['self.recipe.image.path'], {}), '(self.recipe.image.path)\n', (14010, 14034), False, 'import os\n'), ((3434, 3454), 'core.models.Recipe.objects.all', 'Recipe.objects.all', ([], {}), '()\n', (3452, 3454), False, 'from core.models import Recipe, Tag, Ingredient\n'), ((2962, 2978), 'django.contrib.auth.get_user_model', 'get_user_model', ([], {}), '()\n', (2976, 2978), False, 'from django.contrib.auth import get_user_model\n'), ((3813, 3829), 'django.contrib.auth.get_user_model', 'get_user_model', ([], {}), '()\n', (3827, 3829), False, 'from django.contrib.auth import get_user_model\n'), ((11807, 11823), 'django.contrib.auth.get_user_model', 'get_user_model', ([], {}), '()\n', (11821, 11823), False, 'from django.contrib.auth import get_user_model\n')]
paju3125/LetsUpgrade-Python-B7
Assignment 1 n 2 Day 8.py
c5767361f60f1ec405ab235af85035e2bb9a71e3
# Assignment 1 Day 8 # write a decorator function for taking input for you # any kind of function you want to build def getInput(calculate_arg_fuc): def wrap_function(): print("Enter two numbers ") a=int(input("Enter first number = ")) b=int(input("Enter second number = ")) calculate_arg_fuc(a,b) return wrap_function @getInput def addition(num1,num2): print("Addition = ",num1+num2) @getInput def subtraction(num1,num2): print("Subtraction = ",num1-num2) @getInput def multiplication(num1,num2): print("Multiplication = ",num1*num2) @getInput def division(num1,num2): print("Division = ",num1/num2) addition() subtraction() multiplication() division() # Assignment 2 day 8 # you need to develop a python program to open a file in read only mode and # try writing something to it and handlethe subsequent errorusing Exception Handling try: f=open("abc.txt","r"); f.write("Heyy, i am prajval"); f.close(); except: print("File is in read only mode...")
[]
migueldvb/gwcs
gwcs/coordinate_frames.py
4eb2abdb1d9d49ee10c1edbcae0d1cec4c758c39
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Defines coordinate frames and ties them to data axes. """ from __future__ import absolute_import, division, unicode_literals, print_function import numpy as np from astropy import units as u from astropy import utils as astutil from astropy import coordinates as coord from astropy.extern import six from . import utils as gwutils __all__ = ['Frame2D', 'CelestialFrame', 'SpectralFrame', 'CompositeFrame', 'CoordinateFrame'] STANDARD_REFERENCE_FRAMES = [frame.upper() for frame in coord.builtin_frames.__all__] STANDARD_REFERENCE_POSITION = ["GEOCENTER", "BARYCENTER", "HELIOCENTER", "TOPOCENTER", "LSR", "LSRK", "LSRD", "GALACTIC_CENTER", "LOCAL_GROUP_CENTER"] class CoordinateFrame(object): """ Base class for CoordinateFrames. Parameters ---------- naxes : int Number of axes. axes_type : str One of ["SPATIAL", "SPECTRAL", "TIME"] axes_order : tuple of int A dimension in the input data that corresponds to this axis. reference_frame : astropy.coordinates.builtin_frames Reference frame (usually used with output_frame to convert to world coordinate objects). reference_position : str Reference position - one of `STANDARD_REFERENCE_POSITION` unit : list of astropy.units.Unit Unit for each axis. axes_names : list Names of the axes in this frame. name : str Name of this frame. """ def __init__(self, naxes, axes_type, axes_order, reference_frame=None, reference_position=None, unit=None, axes_names=None, name=None): self._naxes = naxes self._axes_order = tuple(axes_order) if isinstance(axes_type, six.string_types): self._axes_type = (axes_type,) else: self._axes_type = tuple(axes_type) self._reference_frame = reference_frame if unit is not None: if astutil.isiterable(unit): unit = tuple(unit) else: unit = (unit,) if len(unit) != naxes: raise ValueError("Number of units does not match number of axes.") else: self._unit = tuple([u.Unit(au) for au in unit]) if axes_names is not None: if isinstance(axes_names, six.string_types): axes_names = (axes_names,) else: axes_names = tuple(axes_names) if len(axes_names) != naxes: raise ValueError("Number of axes names does not match number of axes.") else: axes_names = tuple([""] * naxes) self._axes_names = axes_names if name is None: self._name = self.__class__.__name__ else: self._name = name if reference_position is not None: self._reference_position = reference_position else: self._reference_position = None super(CoordinateFrame, self).__init__() def __repr__(self): fmt = '<{0}(name="{1}", unit={2}, axes_names={3}, axes_order={4}'.format( self.__class__.__name__, self.name, self.unit, self.axes_names, self.axes_order) if self.reference_position is not None: fmt += ', reference_position="{0}"'.format(self.reference_position) if self.reference_frame is not None: fmt += ", reference_frame={0}".format(self.reference_frame) fmt += ")>" return fmt def __str__(self): if self._name is not None: return self._name else: return self.__class__.__name__ @property def name(self): """ A custom name of this frame.""" return self._name @name.setter def name(self, val): """ A custom name of this frame.""" self._name = val @property def naxes(self): """ The number of axes intheis frame.""" return self._naxes @property def unit(self): """The unit of this frame.""" return self._unit @property def axes_names(self): """ Names of axes in the frame.""" return self._axes_names @property def axes_order(self): """ A tuple of indices which map inputs to axes.""" return self._axes_order @property def reference_frame(self): return self._reference_frame @property def reference_position(self): try: return self._reference_position except AttributeError: return None def input_axes(self, start_frame=None): """ Computes which axes in `start_frame` contribute to each axis in the current frame. Parameters ---------- start_frame : ~gwcs.coordinate_frames.CoordinateFrame A frame in the WCS pipeline The transform between start_frame and the current frame is used to compute the mapping inputs: outputs. """ sep = self._separable(start_frame) inputs = [] for ax in self.axes_order: inputs.append(list(sep[ax].nonzero()[0])) return inputs @property def axes_type(self): """ Type of this frame : 'SPATIAL', 'SPECTRAL', 'TIME'. """ return self._axes_type def coordinates(self, *args): """ Create world coordinates object""" raise NotImplementedError("Subclasses may implement this") class CelestialFrame(CoordinateFrame): """ Celestial Frame Representation Parameters ---------- axes_order : tuple of int A dimension in the input data that corresponds to this axis. reference_frame : astropy.coordinates.builtin_frames A reference frame. reference_position : str Reference position. unit : str or units.Unit instance or iterable of those Units on axes. axes_names : list Names of the axes in this frame. name : str Name of this frame. """ def __init__(self, axes_order=None, reference_frame=None, unit=None, axes_names=None, name=None): naxes = 2 if reference_frame is not None: if reference_frame.name.upper() in STANDARD_REFERENCE_FRAMES: _axes_names = list(reference_frame.representation_component_names.values()) if 'distance' in _axes_names: _axes_names.remove('distance') if axes_names is None: axes_names = _axes_names naxes = len(_axes_names) _unit = list(reference_frame.representation_component_units.values()) if unit is None and _unit: unit = _unit if axes_order is None: axes_order = tuple(range(naxes)) if unit is None: unit = tuple([u.degree] * naxes) axes_type = ['SPATIAL'] * naxes super(CelestialFrame, self).__init__(naxes=naxes, axes_type=axes_type, axes_order=axes_order, reference_frame=reference_frame, unit=unit, axes_names=axes_names, name=name) def coordinates(self, *args): """ Create a SkyCoord object. Parameters ---------- args : float inputs to wcs.input_frame """ # Reorder axes if necesary. try: return coord.SkyCoord(*args, unit=self.unit, frame=self._reference_frame) except: raise class SpectralFrame(CoordinateFrame): """ Represents Spectral Frame Parameters ---------- axes_order : tuple or int A dimension in the input data that corresponds to this axis. reference_frame : astropy.coordinates.builtin_frames Reference frame (usually used with output_frame to convert to world coordinate objects). unit : str or units.Unit instance Spectral unit. axes_names : str Spectral axis name. name : str Name for this frame. """ def __init__(self, axes_order=(0,), reference_frame=None, unit=None, axes_names=None, name=None, reference_position=None): super(SpectralFrame, self).__init__(naxes=1, axes_type="SPECTRAL", axes_order=axes_order, axes_names=axes_names, reference_frame=reference_frame, unit=unit, name=name, reference_position=reference_position) def coordinates(self, *args): if np.isscalar(args): return args * self.unit[0] else: return args[0] * self.unit[0] class CompositeFrame(CoordinateFrame): """ Represents one or more frames. Parameters ---------- frames : list List of frames (TimeFrame, CelestialFrame, SpectralFrame, CoordinateFrame). name : str Name for this frame. """ def __init__(self, frames, name=None): self._frames = frames[:] naxes = sum([frame._naxes for frame in self._frames]) axes_type = list(range(naxes)) unit = list(range(naxes)) axes_names = list(range(naxes)) axes_order = [] for frame in frames: axes_order.extend(frame.axes_order) for frame in frames: for ind, axtype, un, n in zip(frame.axes_order, frame.axes_type, frame.unit, frame.axes_names): axes_type[ind] = axtype axes_names[ind] = n unit[ind] = un if len(np.unique(axes_order)) != len(axes_order): raise ValueError("Incorrect numbering of axes, " "axes_order should contain unique numbers, " "got {}.".format(axes_order)) super(CompositeFrame, self).__init__(naxes, axes_type=axes_type, axes_order=axes_order, unit=unit, axes_names=axes_names, name=name) @property def frames(self): return self._frames def __repr__(self): return repr(self.frames) def coordinates(self, *args): coo = [] for frame in self.frames: fargs = [args[i] for i in frame.axes_order] print(frame, fargs, frame.axes_order) coo.append(frame.coordinates(*fargs)) return coo class Frame2D(CoordinateFrame): """ A 2D coordinate frame. Parameters ---------- axes_order : tuple of int A dimension in the input data that corresponds to this axis. unit : list of astropy.units.Unit Unit for each axis. axes_names : list Names of the axes in this frame. name : str Name of this frame. """ def __init__(self, axes_order=(0, 1), unit=(u.pix, u.pix), axes_names=('x', 'y'), name=None): super(Frame2D, self).__init__(2, ["SPATIAL", "SPATIAL"], axes_order, name=name, axes_names=axes_names, unit=unit) def coordinates(self, *args): args = [args[i] for i in self.axes_order] coo = tuple([arg * un for arg, un in zip(args, self.unit)]) return coo
[((8880, 8897), 'numpy.isscalar', 'np.isscalar', (['args'], {}), '(args)\n', (8891, 8897), True, 'import numpy as np\n'), ((2050, 2074), 'astropy.utils.isiterable', 'astutil.isiterable', (['unit'], {}), '(unit)\n', (2068, 2074), True, 'from astropy import utils as astutil\n'), ((7717, 7783), 'astropy.coordinates.SkyCoord', 'coord.SkyCoord', (['*args'], {'unit': 'self.unit', 'frame': 'self._reference_frame'}), '(*args, unit=self.unit, frame=self._reference_frame)\n', (7731, 7783), True, 'from astropy import coordinates as coord\n'), ((9919, 9940), 'numpy.unique', 'np.unique', (['axes_order'], {}), '(axes_order)\n', (9928, 9940), True, 'import numpy as np\n'), ((2332, 2342), 'astropy.units.Unit', 'u.Unit', (['au'], {}), '(au)\n', (2338, 2342), True, 'from astropy import units as u\n')]
lukpazera/modox
modox/chan_modifier.py
4ee5a6033e405f9f7f3a7c80a1cb3c558c90fb01
import lx import modo import select import item from run import run class ChannelModifierUtils(object): @classmethod def attachModifierToItem(cls, modifierModoItem, hostModoItem): """ Allows for attaching modifier to locator type item. Attached item will show up under the locator item in item list (you can unfold it with a little plus icons next to item name in item list). Attached modifiers are getting deleted together with locator they are attached to. Parameters ---------- modifierModoItem : modo.Item Modifier item that you want to attach. hostModoItem : modo.Item Locator type item you want to attach modifier to. """ item.ItemUtils.addForwardGraphConnections(modifierModoItem, hostModoItem, 'chanMods') class TransformConstraintOperation(object): POSITION = 'pos' ROTATION = 'rot' SCALE = 'scl' class CMTransformConstraint(object): """ This class represents Transform Constraint channel modifier. Parameters ---------- modoItem : modo.Item The constraint modo item. """ Operation = TransformConstraintOperation @classmethod def new(cls, assemblyItem, hostItem, name='TransformConstraint'): """ Adds new transform constraint to the scene. Parameters ---------- assemblyItem : modo.Item This is assembly item to which the constraint will be added. Passing this item is mandatory. However, if you don't want to add constraints to any assembly pass an item that is not a group. This doesn't throw an error and it doesn't add constraint to any groups either. hostItem : modo.Item Constraint can be attached to an item such that it'll be under this item in item list. It'll also get deleted when the host item is deleted. name : str Name for new constraint item. Returns ------- CMTransformConstraint """ itemSelection = select.ItemSelection() itemSelection.clear() run('modifier.create "cmTransformConstraint:rot" item:{%s} insert:false' % assemblyItem.id) cnsItem = itemSelection.getOfTypeModo("cmTransformConstraint")[0] cnsItem.name = name ChannelModifierUtils.attachModifierToItem(cnsItem, hostItem) return CMTransformConstraint(cnsItem) @property def operation(self): """ Gets the type of the constraint. Returns ------- str One of TransformConstraintOperation constants. """ return self._item.channel('operation').get() @property def inputChannel(self): return self._item.channel('matrixInput') @property def outputChannel(self): return self._item.channel('matrixOutput') @property def isRotationConstraint(self): """ Tests if this is rotation constraint. Returns ------- bool """ return self.operation == self.Operation.ROTATION @property def offset(self): """ Gets the constraint offset vector. Returns ------- modo.Vector3 """ x = self._item.channel('offset.X').get() y = self._item.channel('offset.Y').get() z = self._item.channel('offset.Z').get() return modo.Vector3(x, y, z) @offset.setter def offset(self, offsetVec): """ Sets new offset for the constraint. Parameters ---------- offsetVec : modo.Vector3 """ self._item.channel('offset.X').set(offsetVec[0], 0.0, key=False, action=lx.symbol.s_ACTIONLAYER_SETUP) self._item.channel('offset.Y').set(offsetVec[1], 0.0, key=False, action=lx.symbol.s_ACTIONLAYER_SETUP) self._item.channel('offset.Z').set(offsetVec[2], 0.0, key=False, action=lx.symbol.s_ACTIONLAYER_SETUP) @property def modoItem(self): return self._item # -------- Private methods def __init__(self, modoItem): if modoItem.type != 'cmTransformConstraint': raise TypeError self._item = modoItem
[((757, 846), 'item.ItemUtils.addForwardGraphConnections', 'item.ItemUtils.addForwardGraphConnections', (['modifierModoItem', 'hostModoItem', '"""chanMods"""'], {}), "(modifierModoItem, hostModoItem,\n 'chanMods')\n", (798, 846), False, 'import item\n'), ((2133, 2155), 'select.ItemSelection', 'select.ItemSelection', ([], {}), '()\n', (2153, 2155), False, 'import select\n'), ((2195, 2290), 'run.run', 'run', (['(\'modifier.create "cmTransformConstraint:rot" item:{%s} insert:false\' %\n assemblyItem.id)'], {}), '(\'modifier.create "cmTransformConstraint:rot" item:{%s} insert:false\' %\n assemblyItem.id)\n', (2198, 2290), False, 'from run import run\n'), ((3496, 3517), 'modo.Vector3', 'modo.Vector3', (['x', 'y', 'z'], {}), '(x, y, z)\n', (3508, 3517), False, 'import modo\n')]
WangCHEN9/solidity_demos
brownie_fund_me/scripts/fund_and_withdraw.py
cf28111a1e972ab9dde70f6d3fac22c897d8b660
from brownie import FundMe from scripts.helpful_scripts import get_account def fund(): fund_me = FundMe[-1] account = get_account() entrance_fee = fund_me.getEntranceFee() print(f"entrance is {entrance_fee}") print("funding..") fund_me.fund({"from": account, "value": entrance_fee}) def withdraw(): fund_me = FundMe[-1] account = get_account() fund_me.withdraw({"from": account}) def main(): fund() withdraw() if __name__ == "__main__": main()
[((128, 141), 'scripts.helpful_scripts.get_account', 'get_account', ([], {}), '()\n', (139, 141), False, 'from scripts.helpful_scripts import get_account\n'), ((366, 379), 'scripts.helpful_scripts.get_account', 'get_account', ([], {}), '()\n', (377, 379), False, 'from scripts.helpful_scripts import get_account\n')]
jefernathan/Python
ex019.py
2f840a625e8d46d41ab36df07ef50ae15a03c5ab
# Um professor quer sortear um dos seus quatro alunos para apagar o quadro. Faça um programa que ajude ele, lendo o nome dos alunos e escrevendo na tela o nome do escolhido. from random import choice nome1 = input('Digite um nome: ') nome2 = input('Digite outro nome: ') nome3 = input('Digite mais um nome: ') nome4 = input('Digite o último nome: ') nome = [nome1, nome2, nome3, nome4] print(choice(nome))
[((395, 407), 'random.choice', 'choice', (['nome'], {}), '(nome)\n', (401, 407), False, 'from random import choice\n')]
liviamendes/agenda-django-project
contacts/admin.py
d602bb5e762ea477c3c97b5a475ad79036c0c93d
from django.contrib import admin from .models import Categoria, Contact class ContactAdmin(admin.ModelAdmin): list_display = ('id', 'name', 'last_name', 'phone', 'email', 'creation_date', 'categoria', 'show') list_display_links = ('id', 'name', 'last_name') list_filter = ('categoria',) list_per_page = 10 search_fields = ('name', 'last_name', 'phone') list_editable = ('phone', 'show') admin.site.register(Categoria) admin.site.register(Contact, ContactAdmin)
[((415, 445), 'django.contrib.admin.site.register', 'admin.site.register', (['Categoria'], {}), '(Categoria)\n', (434, 445), False, 'from django.contrib import admin\n'), ((446, 488), 'django.contrib.admin.site.register', 'admin.site.register', (['Contact', 'ContactAdmin'], {}), '(Contact, ContactAdmin)\n', (465, 488), False, 'from django.contrib import admin\n')]
robinrobinzon/fastpic
upload_from_folder.py
966f1aa8c6d7e98651727e7ed7f6b25970d5da11
import datetime import os import shutil import tempfile from joblib import Parallel, delayed from fastpic_upload import upload_file_to_fastpic _n_jobs_for_upload = 20 _root_folders_set = ( '/path/to/folder', ) _spoiler_for_each_file = True def process_one_pic(result_key, pic_path, tmp_dir): pic_url, pic_link = upload_file_to_fastpic(pic_path, tmp_dir) print(pic_url) return result_key, (pic_url, pic_link) def upload_from_folder(folder_path): pics_to_upload = {} for root, dirs, files in os.walk(folder_path): for file in files: if file.split('.')[-1] not in ('jpg', 'jpeg', 'bmp', 'png'): continue file_path = os.path.join(root, file) pics_to_upload[file] = file_path print(pics_to_upload) print('Need upload {} photo'.format(len(pics_to_upload))) result = {} tmp_dir = tempfile.mkdtemp() try: sub_results = Parallel(n_jobs=_n_jobs_for_upload, backend='threading')( delayed(process_one_pic)(key, pics_to_upload[key], tmp_dir) for key in sorted(pics_to_upload)) for sub_result in sub_results: result[sub_result[0]] = sub_result[1] finally: shutil.rmtree(tmp_dir) return result def print_result_to_file(result, result_file_path): with open(result_file_path, 'w', encoding='utf8', newline='') as codes_file: codes_file.write('[spoiler="Скриншоты"]') codes_file.write(os.linesep) codes_file.write(os.linesep) for result_key in sorted(result): if _spoiler_for_each_file: codes_file.write('[spoiler="{}"]'.format(result_key)) codes_file.write(os.linesep) url, link = result[result_key] codes_file.write('[url={}][img]{}[/img][/url]'.format(link, url)) if _spoiler_for_each_file: codes_file.write(os.linesep) codes_file.write('[/spoiler]') codes_file.write(os.linesep) codes_file.write(os.linesep) codes_file.write('[/spoiler]') def main(): for root_folder in _root_folders_set: result = upload_from_folder(root_folder) print_result_to_file(result, os.path.join(root_folder, 'result_codes.txt')) if __name__ == '__main__': started = datetime.datetime.now() print(started, 'started') main() finished = datetime.datetime.now() print(finished, 'all done in', finished - started)
[((326, 367), 'fastpic_upload.upload_file_to_fastpic', 'upload_file_to_fastpic', (['pic_path', 'tmp_dir'], {}), '(pic_path, tmp_dir)\n', (348, 367), False, 'from fastpic_upload import upload_file_to_fastpic\n'), ((523, 543), 'os.walk', 'os.walk', (['folder_path'], {}), '(folder_path)\n', (530, 543), False, 'import os\n'), ((884, 902), 'tempfile.mkdtemp', 'tempfile.mkdtemp', ([], {}), '()\n', (900, 902), False, 'import tempfile\n'), ((2311, 2334), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (2332, 2334), False, 'import datetime\n'), ((2391, 2414), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (2412, 2414), False, 'import datetime\n'), ((1210, 1232), 'shutil.rmtree', 'shutil.rmtree', (['tmp_dir'], {}), '(tmp_dir)\n', (1223, 1232), False, 'import shutil\n'), ((694, 718), 'os.path.join', 'os.path.join', (['root', 'file'], {}), '(root, file)\n', (706, 718), False, 'import os\n'), ((934, 990), 'joblib.Parallel', 'Parallel', ([], {'n_jobs': '_n_jobs_for_upload', 'backend': '"""threading"""'}), "(n_jobs=_n_jobs_for_upload, backend='threading')\n", (942, 990), False, 'from joblib import Parallel, delayed\n'), ((2221, 2266), 'os.path.join', 'os.path.join', (['root_folder', '"""result_codes.txt"""'], {}), "(root_folder, 'result_codes.txt')\n", (2233, 2266), False, 'import os\n'), ((1004, 1028), 'joblib.delayed', 'delayed', (['process_one_pic'], {}), '(process_one_pic)\n', (1011, 1028), False, 'from joblib import Parallel, delayed\n')]
TolyaTalamanov/open_model_zoo
tools/accuracy_checker/openvino/tools/accuracy_checker/postprocessor/clip_segmentation_mask.py
1697e60712df4ca72635a2080a197b9d3bc24129
""" Copyright (c) 2018-2022 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np from .postprocessor import PostprocessorWithSpecificTargets from ..representation import BrainTumorSegmentationAnnotation, BrainTumorSegmentationPrediction from ..config import NumberField, ConfigError class ClipSegmentationMask(PostprocessorWithSpecificTargets): __provider__ = 'clip_segmentation_mask' annotation_types = (BrainTumorSegmentationAnnotation, ) prediction_types = (BrainTumorSegmentationPrediction, ) @classmethod def parameters(cls): parameters = super().parameters() parameters.update({ 'min_value': NumberField(value_type=int, min_value=0, optional=True, default=0, description="Min value"), 'max_value': NumberField(value_type=int, description="Max value") }) return parameters def configure(self): self.min_value = self.get_value_from_config('min_value') self.max_value = self.get_value_from_config('max_value') if self.max_value < self.min_value: raise ConfigError('max_value should be greater than min_value') def process_image(self, annotation, prediction): for target in annotation: target.mask = np.clip(target.mask, a_min=self.min_value, a_max=self.max_value) for target in prediction: target.mask = np.clip(target.mask, a_min=self.min_value, a_max=self.max_value) return annotation, prediction
[((1764, 1828), 'numpy.clip', 'np.clip', (['target.mask'], {'a_min': 'self.min_value', 'a_max': 'self.max_value'}), '(target.mask, a_min=self.min_value, a_max=self.max_value)\n', (1771, 1828), True, 'import numpy as np\n'), ((1890, 1954), 'numpy.clip', 'np.clip', (['target.mask'], {'a_min': 'self.min_value', 'a_max': 'self.max_value'}), '(target.mask, a_min=self.min_value, a_max=self.max_value)\n', (1897, 1954), True, 'import numpy as np\n')]
isabella232/pynacl
tests/test_utils.py
b3f6c320569d858ba61d4bdf2ac788564528c1c9
# Copyright 2013 Donald Stufft and individual contributors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import nacl.secret import nacl.utils def test_random_bytes_produces(): assert len(nacl.utils.random(16)) == 16 def test_random_bytes_produces_different_bytes(): assert nacl.utils.random(16) != nacl.utils.random(16) def test_string_fixer(): assert str(nacl.secret.SecretBox(b"\x00" * 32)) == str(b"\x00" * 32) def test_deterministic_random_bytes(): expected = ( b"0d8e6cc68715648926732e7ea73250cfaf2d58422083904c841a8ba" b"33b986111f346ba50723a68ae283524a6bded09f83be6b80595856f" b"72e25b86918e8b114bafb94bc8abedd73daab454576b7c5833eb0bf" b"982a1bb4587a5c970ff0810ca3b791d7e12" ) seed = ( b"\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d" b"\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b" b"\x1c\x1d\x1e\x1f" ) assert ( nacl.utils.randombytes_deterministic( 100, seed, encoder=nacl.utils.encoding.HexEncoder ) == expected ) def test_deterministic_random_bytes_invalid_seed_length(): expected = "Deterministic random bytes must be generated from 32 bytes" seed = b"\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a" with pytest.raises(TypeError) as e: nacl.utils.randombytes_deterministic(100, seed) assert expected in str(e.value)
[((1802, 1826), 'pytest.raises', 'pytest.raises', (['TypeError'], {}), '(TypeError)\n', (1815, 1826), False, 'import pytest\n')]
citrok25/Codewars-1
Solutions/6kyu/6kyu_mister_safetys_treasure.py
dc641c5079e2e8b5955eb027fd15427e5bdb2e26
def unlock(m): return m.lower().translate( str.maketrans( 'abcdefghijklmnopqrstuvwxyz', '22233344455566677778889999' ) )
[]
Cha0sNation/RandomPython
guesstheword.py
7ba41d78f27bd90e9c09efcd4d5c26eac93e74ec
#! /home/cha0snation/anaconda3/bin/python import random def setup(): words = ["banana", "apple", "orange", "peach", "grape", "watermelon"] output = [] word = words[random.randint(0, len(words) - 1)] playing = True tries = 5 return [words, output, word, tries, playing] def check_finished(output, tries): if tries == 0: print("You ran out of tries") print() return True count = 0 for letter in output: if letter != "_": count += 1 if count == len(output): print_output(output) print() print() return True return False def check_letter(letter, word, tries): correct = False for index, letter in enumerate(word): if letter == guess: output[index] = guess correct = True if index == len(word) - 1: if not correct: print("Incorrect guess") print() return tries - 1 else: return tries def check_same(guess, output): same = False for i in output: if i == guess: same = True if same: print("You already found that letter") print() print_output(output) print() print() while True: guess = str(input("Guess: ")) if len(guess) == 1: break return guess else: return guess def print_output(output): for i in output: print("{0} ".format(i), end="") if __name__ == "__main__": words, output, word, tries, playing = setup() while playing: print("Try to guess the word:") if tries == 1: print("You have {0} try left.".format(tries)) else: print("You have {0} tries left.".format(tries)) # print("DEBUG: word is {0}".format(word)) if output == []: for i in word: output.append("_") for i in range(len(output)): print("_ ", end="") else: print_output(output) print() print() try: while True: guess = str(input("Guess: ")) if len(guess) == 1: break except (EOFError, KeyboardInterrupt): print() break except ValueError: print("Invalid guess") break print() guess = check_same(guess, output) tries = check_letter(guess, word, tries) if check_finished(output, tries): choice = input("Do you want to play again ? (y or n): ") print() if choice.lower().startswith("y"): words, output, word, tries, playing = setup() else: playing = False
[]
svakulenk0/ArtDATIS
web_app/index.py
29e646f7bcb931e733ee248cc973411ffb18be64
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' Created on Dec 8, 2019 .. codeauthor: svitlana vakulenko <[email protected]> Index docs into ES https://qbox.io/blog/building-an-elasticsearch-index-with-python ''' from settings import * import glob import re # n first characters for the doc preview LIMIT_START = 100 txts_path = '%s/artdatis/tagging/OCRed/typed/' % DATA_PATH text_corpus = [] def corpus_iterator(): # filter out and collect text files for file_path in glob.glob(txts_path+'*_text.txt'): with open(file_path, encoding="utf-8") as file: text = file.read() # filter duplicates if text not in text_corpus: text_corpus.append(text) text = re.sub(' +', ' ', text) start_text = text.lstrip()[:LIMIT_START] with open(file_path.split('_text.txt')[0]+'_path.txt') as path_file: path = path_file.read().strip().replace(DATA_PATH, '/images') yield { "_index": INDEX_NAME, "_type": TYPE_NAME, "_source": {"file_path": path, "text": text, "start_text": start_text}, } print("Loaded %d documents"%len(text_corpus)) from elasticsearch import Elasticsearch from elasticsearch.helpers import bulk # create ES client, create index es = Elasticsearch(hosts = [ES_HOST]) if es.indices.exists(INDEX_NAME): print("deleting '%s' index..." % (INDEX_NAME)) res = es.indices.delete(index = INDEX_NAME) print(" response: '%s'" % (res)) request_body = { "settings" : { "number_of_shards": 1, "number_of_replicas": 0 } } print("creating '%s' index..." % (INDEX_NAME)) res = es.indices.create(index = INDEX_NAME, body = request_body) print(" response: '%s'" % (res)) # bulk index the data print("bulk indexing...") bulk(es, corpus_iterator()) # sanity check res = es.search(index = INDEX_NAME, size=2, body={"query": {"match_all": {}}}) print("results:") for hit in res['hits']['hits']: print(hit["_source"])
[((1427, 1457), 'elasticsearch.Elasticsearch', 'Elasticsearch', ([], {'hosts': '[ES_HOST]'}), '(hosts=[ES_HOST])\n', (1440, 1457), False, 'from elasticsearch import Elasticsearch\n'), ((499, 534), 'glob.glob', 'glob.glob', (["(txts_path + '*_text.txt')"], {}), "(txts_path + '*_text.txt')\n", (508, 534), False, 'import glob\n'), ((757, 780), 're.sub', 're.sub', (['""" +"""', '""" """', 'text'], {}), "(' +', ' ', text)\n", (763, 780), False, 'import re\n')]
PythonIsMagic/ponyup
src/tokens.py
3b2630d573cd46d0569f713c6d4c3790688dc62d
""" A Token is a button or other object on the table that represents a position, a game state, layer state, or some other piece of info """ class Token(object): def __init__(self, name, table): self.table = table self.name = name self.seat = None
[]
maa76/SSof-Project1920
T05-09/program.py
9b4ad9ac41a648c425fcfcd49cd52ff84e528bde
nis=get('nis') q1="xpto1" q2=nis + "xpto2" query=query1.q2 koneksi=0 q=execute(query,koneksi)
[]
Xiangs18/Algorithms-with-Python-Second-Edition
Chapter09/interpolation_search.py
96844e1ae7054e099772dc691c1f41f15c2bfba5
def nearest_mid(input_list, lower_bound_index, upper_bound_index, search_value): return lower_bound_index + ( (upper_bound_index - lower_bound_index) // (input_list[upper_bound_index] - input_list[lower_bound_index]) ) * (search_value - input_list[lower_bound_index]) def interpolation_search(ordered_list, term): size_of_list = len(ordered_list) - 1 index_of_first_element = 0 index_of_last_element = size_of_list while index_of_first_element <= index_of_last_element: mid_point = nearest_mid( ordered_list, index_of_first_element, index_of_last_element, term ) if mid_point > index_of_last_element or mid_point < index_of_first_element: return None if ordered_list[mid_point] == term: return mid_point if term > ordered_list[mid_point]: index_of_first_element = mid_point + 1 else: index_of_last_element = mid_point - 1 store = [2, 4, 5, 12, 43, 54, 60, 77] a = interpolation_search(store, 2) print("Index position of value 2 is ", a)
[]
javixeneize/asvs-1
projects/models.py
31e9fdfd2d538c8ed1adf23fcb4f143ef28541c6
from django.db import models from django.db.models import Q from django.contrib.auth.models import User from django.urls import reverse class ProjectQuerySet(models.QuerySet): def projects_per_user(self, user): return self.filter( Q(project_owner=user.username) ) class Projects(models.Model): project_name = models.CharField(max_length=60) project_owner = models.CharField(default=User, max_length=60) project_created = models.DateTimeField(auto_now_add=True) project_description = models.CharField(max_length=255) project_level = models.IntegerField(default=0) objects = ProjectQuerySet.as_manager() def __str__(self): return str(self.pk)
[((349, 380), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(60)'}), '(max_length=60)\n', (365, 380), False, 'from django.db import models\n'), ((401, 446), 'django.db.models.CharField', 'models.CharField', ([], {'default': 'User', 'max_length': '(60)'}), '(default=User, max_length=60)\n', (417, 446), False, 'from django.db import models\n'), ((469, 508), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (489, 508), False, 'from django.db import models\n'), ((535, 567), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)'}), '(max_length=255)\n', (551, 567), False, 'from django.db import models\n'), ((588, 618), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(0)'}), '(default=0)\n', (607, 618), False, 'from django.db import models\n'), ((257, 287), 'django.db.models.Q', 'Q', ([], {'project_owner': 'user.username'}), '(project_owner=user.username)\n', (258, 287), False, 'from django.db.models import Q\n')]
peaudecastor/checkov
tests/serverless/checks/aws/test_AdminPolicyDocument.py
a4804b61c1b1390b7abd44ab53285fcbc3e7e80b
import os import unittest from checkov.serverless.checks.function.aws.AdminPolicyDocument import check from checkov.serverless.runner import Runner from checkov.runner_filter import RunnerFilter class TestAdminPolicyDocument(unittest.TestCase): def test_summary(self): runner = Runner() current_dir = os.path.dirname(os.path.realpath(__file__)) # Used in os.environ["sneaky_var"] = "*" test_files_dir = current_dir + "/example_AdminPolicyDocument" report = runner.run(root_folder=test_files_dir, runner_filter=RunnerFilter(checks=[check.id])) summary = report.get_summary() self.assertEqual(summary['passed'], 2, f"Passed checks: {[fc.file_path for fc in report.passed_checks]}") self.assertEqual(summary['failed'], 6, f"Failed checks: {[fc.file_path for fc in report.failed_checks]}") self.assertEqual(summary['skipped'], 0, f"Skipped checks: {[fc.file_path for fc in report.skipped_checks]}") self.assertEqual(summary['parsing_errors'], 0) if __name__ == '__main__': unittest.main()
[((1148, 1163), 'unittest.main', 'unittest.main', ([], {}), '()\n', (1161, 1163), False, 'import unittest\n'), ((293, 301), 'checkov.serverless.runner.Runner', 'Runner', ([], {}), '()\n', (299, 301), False, 'from checkov.serverless.runner import Runner\n'), ((340, 366), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (356, 366), False, 'import os\n'), ((567, 598), 'checkov.runner_filter.RunnerFilter', 'RunnerFilter', ([], {'checks': '[check.id]'}), '(checks=[check.id])\n', (579, 598), False, 'from checkov.runner_filter import RunnerFilter\n')]
lulinsheng/macro_pack
src/macro_pack.py
4e9d0178354bad2aa557298f44ba5d4385a72a2b
#!/usr/bin/python3 # encoding: utf-8 import os import sys import getopt import logging import shutil import psutil from modules.com_run import ComGenerator from modules.web_server import ListenServer from modules.Wlisten_server import WListenServer from modules.payload_builder_factory import PayloadBuilderFactory from common import utils, mp_session, help from common.utils import MSTypes from common.definitions import VERSION, LOGLEVEL if sys.platform == "win32": try: import win32com.client #@UnresolvedImport @UnusedImport except: print("Error: Could not find win32com.") sys.exit(1) MP_TYPE="Pro" if utils.checkModuleExist("pro_core"): from pro_modules.utilities.dcom_run import DcomGenerator from pro_modules.payload_builders.containers import ContainerGenerator from pro_core.payload_builder_factory_pro import PayloadBuilderFactoryPro from pro_core import arg_mgt_pro, mp_session_pro else: MP_TYPE="Community" from colorama import init from termcolor import colored # {PyArmor Protection Code} # {PyArmor Plugins} # use Colorama to make Termcolor work on Windows too init() WORKING_DIR = "temp" BANNER = help.getToolPres() def main(argv): global MP_TYPE logLevel = LOGLEVEL # initialize macro_pack session object working_directory = os.path.join(os.getcwd(), WORKING_DIR) if MP_TYPE == "Pro": mpSession = mp_session_pro.MpSessionPro(working_directory, VERSION, MP_TYPE) else: mpSession = mp_session.MpSession(working_directory, VERSION, MP_TYPE) try: longOptions = ["embed=", "listen=", "port=", "webdav-listen=", "generate=", "quiet", "input-file=", "encode", "obfuscate", "obfuscate-form", "obfuscate-names", "obfuscate-declares", "obfuscate-strings", "obfuscate-names-charset=", "obfuscate-names-minlen=", "obfuscate-names-maxlen=", "file=","template=","listtemplates","listformats","icon=", "start-function=","uac-bypass", "unicode-rtlo=", "dde", "print", "force-yes", "help"] shortOptions= "e:l:w:s:f:t:G:hqmop" # only for Pro release if MP_TYPE == "Pro": longOptions.extend(arg_mgt_pro.proArgsLongOptions) shortOptions += arg_mgt_pro.proArgsShortOptions # Only enabled on windows if sys.platform == "win32": longOptions.extend(["run=", "run-visible"]) opts, args = getopt.getopt(argv, shortOptions, longOptions) # @UnusedVariable except getopt.GetoptError: help.printUsage(BANNER, sys.argv[0]) sys.exit(2) for opt, arg in opts: if opt in ("-o", "--obfuscate"): mpSession.obfuscateForm = True mpSession.obfuscateNames = True mpSession.obfuscateStrings = True mpSession.obfuscateDeclares = True elif opt=="--obfuscate-form": mpSession.obfuscateForm = True elif opt=="--obfuscate-declares": mpSession.obfuscateDeclares = True elif opt=="--obfuscate-names": mpSession.obfuscateNames = True elif opt=="--obfuscate-names-charset": try: mpSession.obfuscatedNamesCharset = arg except ValueError: help.printUsage(BANNER, sys.argv[0]) sys.exit(0) elif opt=="--obfuscate-names-minlen": try: mpSession.obfuscatedNamesMinLen = int(arg) except ValueError: help.printUsage(BANNER, sys.argv[0]) sys.exit(0) if mpSession.obfuscatedNamesMinLen < 4 or mpSession.obfuscatedNamesMinLen > 255: help.printUsage(BANNER, sys.argv[0]) sys.exit(0) elif opt=="--obfuscate-names-maxlen": try: mpSession.obfuscatedNamesMaxLen = int(arg) except ValueError: help.printUsage(BANNER, sys.argv[0]) sys.exit(0) if mpSession.obfuscatedNamesMaxLen < 4 or mpSession.obfuscatedNamesMaxLen > 255: help.printUsage(BANNER, sys.argv[0]) sys.exit(0) elif opt=="--obfuscate-strings": mpSession.obfuscateStrings = True elif opt=="-s" or opt=="--start-function": mpSession.startFunction = arg elif opt=="-l" or opt=="--listen": mpSession.listen = True mpSession.listenRoot = os.path.abspath(arg) elif opt=="--port": mpSession.listenPort = int(arg) mpSession.WlistenPort = int(arg) elif opt=="--icon": mpSession.icon = arg elif opt=="-w" or opt=="--webdav-listen": mpSession.Wlisten = True mpSession.WRoot = os.path.abspath(arg) elif opt == "-f" or opt== "--input-file": mpSession.fileInput = arg elif opt == "-e" or opt== "--embed": mpSession.embeddedFilePath = os.path.abspath(arg) elif opt=="-t" or opt=="--template": mpSession.template = arg elif opt == "--listtemplates": help.printTemplatesUsage(BANNER, sys.argv[0]) sys.exit(0) elif opt=="-q" or opt=="--quiet": logLevel = "WARN" elif opt=="-p" or opt=="--print": mpSession.printFile = True elif opt == "--dde": if sys.platform == "win32": mpSession.ddeMode = True elif opt == "--run": if sys.platform == "win32": mpSession.runTarget = os.path.abspath(arg) elif opt == "--run-visible": if sys.platform == "win32": mpSession.runVisible = True elif opt == "--force-yes": mpSession.forceYes = True elif opt=="--uac-bypass": mpSession.uacBypass = True elif opt == "--unicode-rtlo": mpSession.unicodeRtlo = arg elif opt in ("-G", "--generate"): mpSession.outputFilePath = os.path.abspath(arg) elif opt == "--listformats": help.printAvailableFormats(BANNER) sys.exit(0) elif opt=="-h" or opt=="--help": help.printUsage(BANNER, sys.argv[0]) sys.exit(0) else: if MP_TYPE == "Pro": arg_mgt_pro.processProArg(opt, arg, mpSession, BANNER) else: help.printUsage(BANNER, sys.argv[0]) sys.exit(0) if logLevel == "INFO": os.system('cls' if os.name == 'nt' else 'clear') # Logging logging.basicConfig(level=getattr(logging, logLevel),format="%(message)s", handlers=[utils.ColorLogFiler()]) logging.info(colored(BANNER, 'green')) logging.info(" [+] Preparations...") # check input args if mpSession.fileInput is None: # Argument not supplied, try to get file content from stdin if not os.isatty(0): # check if something is being piped logging.info(" [-] Waiting for piped input feed...") mpSession.stdinContent = sys.stdin.readlines() # Close Stdin pipe, so we can call input() later without triggering EOF #sys.stdin.close() if sys.platform == "win32": sys.stdin = open("conIN$") else: sys.stdin = sys.__stdin__ else: if not os.path.isfile(mpSession.fileInput): logging.error(" [!] ERROR: Could not find %s!" % mpSession.fileInput) sys.exit(2) else: logging.info(" [-] Input file path: %s" % mpSession.fileInput) if MP_TYPE == "Pro": if mpSession.communityMode: logging.warning(" [!] Running in community mode (pro features not applied)") MP_TYPE="Community" else: arg_mgt_pro.verify(mpSession) # Check output file format if mpSession.outputFilePath: if not os.path.isdir(os.path.dirname(mpSession.outputFilePath)): logging.error(" [!] Could not find output folder %s." % os.path.dirname(mpSession.outputFilePath)) sys.exit(2) if mpSession.outputFileType == MSTypes.UNKNOWN: logging.error(" [!] %s is not a supported extension. Use --listformats to view supported MacroPack formats." % os.path.splitext(mpSession.outputFilePath)[1]) sys.exit(2) else: logging.info(" [-] Target output format: %s" % mpSession.outputFileType) elif not mpSession.listen and not mpSession.Wlisten and mpSession.runTarget is None and (MP_TYPE != "Pro" or mpSession.dcomTarget is None): logging.error(" [!] You need to provide an output file! (get help using %s -h)" % os.path.basename(utils.getRunningApp())) sys.exit(2) if not mpSession.isTrojanMode: # verify that output file does not already exist if os.path.isfile(mpSession.outputFilePath): logging.error(" [!] ERROR: Output file %s already exist!" % mpSession.outputFilePath) sys.exit(2) #Create temporary folder logging.info(" [-] Temporary working dir: %s" % working_directory) if not os.path.exists(working_directory): os.makedirs(working_directory) try: # Create temporary work file. if mpSession.ddeMode or mpSession.template or (mpSession.outputFileType not in MSTypes.VB_FORMATS+[MSTypes.VBA] and not mpSession.htaMacro): inputFile = os.path.join(working_directory, "command.cmd") else: inputFile = os.path.join(working_directory, utils.randomAlpha(9)) + ".vba" if mpSession.stdinContent is not None: import time time.sleep(0.4) # Needed to avoid some weird race condition logging.info(" [-] Store std input in file...") f = open(inputFile, 'w') f.writelines(mpSession.stdinContent) f.close() else: # Create temporary work file if mpSession.fileInput is not None: # Check there are not binary chars in input fil if utils.isBinaryString(open(mpSession.fileInput, 'rb').read(1024)): logging.error(" [!] ERROR: Invalid format for %s. Input should be text format containing your VBA script." % mpSession.fileInput) logging.info(" [+] Cleaning...") if os.path.isdir(working_directory): shutil.rmtree(working_directory) sys.exit(2) logging.info(" [-] Store input file...") shutil.copy2(mpSession.fileInput, inputFile) if os.path.isfile(inputFile): logging.info(" [-] Temporary input file: %s" % inputFile) # Edit outputfile name to spoof extension if unicodeRtlo option is enabled if mpSession.unicodeRtlo: # Reminder; mpSession.unicodeRtlo contains the extension we want to spoof, such as "jpg" logging.info(" [+] Inject %s false extension with unicode RTLO" % mpSession.unicodeRtlo) # Separate document path and extension (fileName, fileExtension) = os.path.splitext(mpSession.outputFilePath) logging.info(" [-] Extension %s " % fileExtension) # Append unicode RTLO to file name fileName += '\u202e' # Append extension to spoof in reverse order fileName += '\u200b' + mpSession.unicodeRtlo[::-1] # Prepend invisible space so filename does not end with flagged extension # Append file extension fileName += fileExtension mpSession.outputFilePath = fileName logging.info(" [-] File name modified to: %s" % mpSession.outputFilePath) # Retrieve the right payload builder if mpSession.outputFileType != MSTypes.UNKNOWN: if MP_TYPE == "Pro" and not mpSession.communityMode: payloadBuilder = PayloadBuilderFactoryPro().getPayloadBuilder(mpSession) else: payloadBuilder = PayloadBuilderFactory().getPayloadBuilder(mpSession) # Build payload if payloadBuilder is not None: payloadBuilder.run() if MP_TYPE == "Pro": generator = ContainerGenerator(mpSession) generator.run() #run com attack if mpSession.runTarget: generator = ComGenerator(mpSession) generator.run() if MP_TYPE == "Pro": #run dcom attack if mpSession.dcom: generator = DcomGenerator(mpSession) generator.run() # Activate Web server if mpSession.listen: listener = ListenServer(mpSession) listener.run() # Activate WebDav server if mpSession.Wlisten: Wlistener = WListenServer(mpSession) Wlistener.run() except Exception: logging.exception(" [!] Exception caught!") except KeyboardInterrupt: logging.error(" [!] Keyboard interrupt caught!") logging.info(" [+] Cleaning...") if os.path.isdir(working_directory): shutil.rmtree(working_directory) logging.info(" Done!\n") sys.exit(0) if __name__ == '__main__': # check if running from explorer, if yes restart from cmd line # running_from = psutil.Process(os.getpid()).parent().parent().name() # if running_from == 'explorer.exe': # os.system("cmd.exe /k \"%s\"" % utils.getRunningApp()) # PyArmor Plugin: checkPlug() main(sys.argv[1:])
[((640, 674), 'common.utils.checkModuleExist', 'utils.checkModuleExist', (['"""pro_core"""'], {}), "('pro_core')\n", (662, 674), False, 'from common import utils, mp_session, help\n'), ((1132, 1138), 'colorama.init', 'init', ([], {}), '()\n', (1136, 1138), False, 'from colorama import init\n'), ((1173, 1191), 'common.help.getToolPres', 'help.getToolPres', ([], {}), '()\n', (1189, 1191), False, 'from common import utils, mp_session, help\n'), ((6758, 6794), 'logging.info', 'logging.info', (['""" [+] Preparations..."""'], {}), "(' [+] Preparations...')\n", (6770, 6794), False, 'import logging\n'), ((9157, 9225), 'logging.info', 'logging.info', (["(' [-] Temporary working dir: %s' % working_directory)"], {}), "(' [-] Temporary working dir: %s' % working_directory)\n", (9169, 9225), False, 'import logging\n'), ((13256, 13288), 'logging.info', 'logging.info', (['""" [+] Cleaning..."""'], {}), "(' [+] Cleaning...')\n", (13268, 13288), False, 'import logging\n'), ((13296, 13328), 'os.path.isdir', 'os.path.isdir', (['working_directory'], {}), '(working_directory)\n', (13309, 13328), False, 'import os\n'), ((13376, 13400), 'logging.info', 'logging.info', (['""" Done!\n"""'], {}), "(' Done!\\n')\n", (13388, 13400), False, 'import logging\n'), ((13407, 13418), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (13415, 13418), False, 'import sys\n'), ((1333, 1344), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (1342, 1344), False, 'import os\n'), ((1404, 1468), 'pro_core.mp_session_pro.MpSessionPro', 'mp_session_pro.MpSessionPro', (['working_directory', 'VERSION', 'MP_TYPE'], {}), '(working_directory, VERSION, MP_TYPE)\n', (1431, 1468), False, 'from pro_core import arg_mgt_pro, mp_session_pro\n'), ((1499, 1556), 'common.mp_session.MpSession', 'mp_session.MpSession', (['working_directory', 'VERSION', 'MP_TYPE'], {}), '(working_directory, VERSION, MP_TYPE)\n', (1519, 1556), False, 'from common import utils, mp_session, help\n'), ((2472, 2518), 'getopt.getopt', 'getopt.getopt', (['argv', 'shortOptions', 'longOptions'], {}), '(argv, shortOptions, longOptions)\n', (2485, 2518), False, 'import getopt\n'), ((6531, 6579), 'os.system', 'os.system', (["('cls' if os.name == 'nt' else 'clear')"], {}), "('cls' if os.name == 'nt' else 'clear')\n", (6540, 6579), False, 'import os\n'), ((6727, 6751), 'termcolor.colored', 'colored', (['BANNER', '"""green"""'], {}), "(BANNER, 'green')\n", (6734, 6751), False, 'from termcolor import colored\n'), ((8957, 8997), 'os.path.isfile', 'os.path.isfile', (['mpSession.outputFilePath'], {}), '(mpSession.outputFilePath)\n', (8971, 8997), False, 'import os\n'), ((9237, 9270), 'os.path.exists', 'os.path.exists', (['working_directory'], {}), '(working_directory)\n', (9251, 9270), False, 'import os\n'), ((9280, 9310), 'os.makedirs', 'os.makedirs', (['working_directory'], {}), '(working_directory)\n', (9291, 9310), False, 'import os\n'), ((10737, 10762), 'os.path.isfile', 'os.path.isfile', (['inputFile'], {}), '(inputFile)\n', (10751, 10762), False, 'import os\n'), ((13338, 13370), 'shutil.rmtree', 'shutil.rmtree', (['working_directory'], {}), '(working_directory)\n', (13351, 13370), False, 'import shutil\n'), ((611, 622), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (619, 622), False, 'import sys\n'), ((2576, 2612), 'common.help.printUsage', 'help.printUsage', (['BANNER', 'sys.argv[0]'], {}), '(BANNER, sys.argv[0])\n', (2591, 2612), False, 'from common import utils, mp_session, help\n'), ((2621, 2632), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (2629, 2632), False, 'import sys\n'), ((6938, 6950), 'os.isatty', 'os.isatty', (['(0)'], {}), '(0)\n', (6947, 6950), False, 'import os\n'), ((7000, 7054), 'logging.info', 'logging.info', (['""" [-] Waiting for piped input feed..."""'], {}), "(' [-] Waiting for piped input feed...')\n", (7012, 7054), False, 'import logging\n'), ((7092, 7113), 'sys.stdin.readlines', 'sys.stdin.readlines', ([], {}), '()\n', (7111, 7113), False, 'import sys\n'), ((7423, 7458), 'os.path.isfile', 'os.path.isfile', (['mpSession.fileInput'], {}), '(mpSession.fileInput)\n', (7437, 7458), False, 'import os\n'), ((7472, 7543), 'logging.error', 'logging.error', (["(' [!] ERROR: Could not find %s!' % mpSession.fileInput)"], {}), "(' [!] ERROR: Could not find %s!' % mpSession.fileInput)\n", (7485, 7543), False, 'import logging\n'), ((7556, 7567), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (7564, 7567), False, 'import sys\n'), ((7594, 7658), 'logging.info', 'logging.info', (["(' [-] Input file path: %s' % mpSession.fileInput)"], {}), "(' [-] Input file path: %s' % mpSession.fileInput)\n", (7606, 7658), False, 'import logging\n'), ((7733, 7811), 'logging.warning', 'logging.warning', (['""" [!] Running in community mode (pro features not applied)"""'], {}), "(' [!] Running in community mode (pro features not applied)')\n", (7748, 7811), False, 'import logging\n'), ((7870, 7899), 'pro_core.arg_mgt_pro.verify', 'arg_mgt_pro.verify', (['mpSession'], {}), '(mpSession)\n', (7888, 7899), False, 'from pro_core import arg_mgt_pro, mp_session_pro\n'), ((8180, 8191), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (8188, 8191), False, 'import sys\n'), ((8441, 8452), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (8449, 8452), False, 'import sys\n'), ((8479, 8553), 'logging.info', 'logging.info', (["(' [-] Target output format: %s' % mpSession.outputFileType)"], {}), "(' [-] Target output format: %s' % mpSession.outputFileType)\n", (8491, 8553), False, 'import logging\n'), ((8840, 8851), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (8848, 8851), False, 'import sys\n'), ((9011, 9103), 'logging.error', 'logging.error', (["(' [!] ERROR: Output file %s already exist!' % mpSession.outputFilePath)"], {}), "(' [!] ERROR: Output file %s already exist!' % mpSession.\n outputFilePath)\n", (9024, 9103), False, 'import logging\n'), ((9111, 9122), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (9119, 9122), False, 'import sys\n'), ((9532, 9578), 'os.path.join', 'os.path.join', (['working_directory', '"""command.cmd"""'], {}), "(working_directory, 'command.cmd')\n", (9544, 9578), False, 'import os\n'), ((9763, 9778), 'time.sleep', 'time.sleep', (['(0.4)'], {}), '(0.4)\n', (9773, 9778), False, 'import time\n'), ((9835, 9884), 'logging.info', 'logging.info', (['""" [-] Store std input in file..."""'], {}), "(' [-] Store std input in file...')\n", (9847, 9884), False, 'import logging\n'), ((10777, 10836), 'logging.info', 'logging.info', (["(' [-] Temporary input file: %s' % inputFile)"], {}), "(' [-] Temporary input file: %s' % inputFile)\n", (10789, 10836), False, 'import logging\n'), ((11094, 11187), 'logging.info', 'logging.info', (["(' [+] Inject %s false extension with unicode RTLO' % mpSession.unicodeRtlo)"], {}), "(' [+] Inject %s false extension with unicode RTLO' % mpSession\n .unicodeRtlo)\n", (11106, 11187), False, 'import logging\n'), ((11274, 11316), 'os.path.splitext', 'os.path.splitext', (['mpSession.outputFilePath'], {}), '(mpSession.outputFilePath)\n', (11290, 11316), False, 'import os\n'), ((11342, 11394), 'logging.info', 'logging.info', (["(' [-] Extension %s ' % fileExtension)"], {}), "(' [-] Extension %s ' % fileExtension)\n", (11354, 11394), False, 'import logging\n'), ((11808, 11883), 'logging.info', 'logging.info', (["(' [-] File name modified to: %s' % mpSession.outputFilePath)"], {}), "(' [-] File name modified to: %s' % mpSession.outputFilePath)\n", (11820, 11883), False, 'import logging\n'), ((12586, 12609), 'modules.com_run.ComGenerator', 'ComGenerator', (['mpSession'], {}), '(mpSession)\n', (12598, 12609), False, 'from modules.com_run import ComGenerator\n'), ((12896, 12919), 'modules.web_server.ListenServer', 'ListenServer', (['mpSession'], {}), '(mpSession)\n', (12908, 12919), False, 'from modules.web_server import ListenServer\n'), ((13035, 13059), 'modules.Wlisten_server.WListenServer', 'WListenServer', (['mpSession'], {}), '(mpSession)\n', (13048, 13059), False, 'from modules.Wlisten_server import WListenServer\n'), ((13119, 13162), 'logging.exception', 'logging.exception', (['""" [!] Exception caught!"""'], {}), "(' [!] Exception caught!')\n", (13136, 13162), False, 'import logging\n'), ((13201, 13249), 'logging.error', 'logging.error', (['""" [!] Keyboard interrupt caught!"""'], {}), "(' [!] Keyboard interrupt caught!')\n", (13214, 13249), False, 'import logging\n'), ((6684, 6705), 'common.utils.ColorLogFiler', 'utils.ColorLogFiler', ([], {}), '()\n', (6703, 6705), False, 'from common import utils, mp_session, help\n'), ((8011, 8052), 'os.path.dirname', 'os.path.dirname', (['mpSession.outputFilePath'], {}), '(mpSession.outputFilePath)\n', (8026, 8052), False, 'import os\n'), ((10613, 10655), 'logging.info', 'logging.info', (['""" [-] Store input file..."""'], {}), "(' [-] Store input file...')\n", (10625, 10655), False, 'import logging\n'), ((10672, 10716), 'shutil.copy2', 'shutil.copy2', (['mpSession.fileInput', 'inputFile'], {}), '(mpSession.fileInput, inputFile)\n', (10684, 10716), False, 'import shutil\n'), ((12756, 12780), 'pro_modules.utilities.dcom_run.DcomGenerator', 'DcomGenerator', (['mpSession'], {}), '(mpSession)\n', (12769, 12780), False, 'from pro_modules.utilities.dcom_run import DcomGenerator\n'), ((8125, 8166), 'os.path.dirname', 'os.path.dirname', (['mpSession.outputFilePath'], {}), '(mpSession.outputFilePath)\n', (8140, 8166), False, 'import os\n'), ((9649, 9669), 'common.utils.randomAlpha', 'utils.randomAlpha', (['(9)'], {}), '(9)\n', (9666, 9669), False, 'from common import utils, mp_session, help\n'), ((10266, 10407), 'logging.error', 'logging.error', (["(' [!] ERROR: Invalid format for %s. Input should be text format containing your VBA script.'\n % mpSession.fileInput)"], {}), "(\n ' [!] ERROR: Invalid format for %s. Input should be text format containing your VBA script.'\n % mpSession.fileInput)\n", (10279, 10407), False, 'import logging\n'), ((10418, 10450), 'logging.info', 'logging.info', (['""" [+] Cleaning..."""'], {}), "(' [+] Cleaning...')\n", (10430, 10450), False, 'import logging\n'), ((10474, 10506), 'os.path.isdir', 'os.path.isdir', (['working_directory'], {}), '(working_directory)\n', (10487, 10506), False, 'import os\n'), ((10585, 10596), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (10593, 10596), False, 'import sys\n'), ((12439, 12468), 'pro_modules.payload_builders.containers.ContainerGenerator', 'ContainerGenerator', (['mpSession'], {}), '(mpSession)\n', (12457, 12468), False, 'from pro_modules.payload_builders.containers import ContainerGenerator\n'), ((8382, 8424), 'os.path.splitext', 'os.path.splitext', (['mpSession.outputFilePath'], {}), '(mpSession.outputFilePath)\n', (8398, 8424), False, 'import os\n'), ((8808, 8829), 'common.utils.getRunningApp', 'utils.getRunningApp', ([], {}), '()\n', (8827, 8829), False, 'from common import utils, mp_session, help\n'), ((10532, 10564), 'shutil.rmtree', 'shutil.rmtree', (['working_directory'], {}), '(working_directory)\n', (10545, 10564), False, 'import shutil\n'), ((12102, 12128), 'pro_core.payload_builder_factory_pro.PayloadBuilderFactoryPro', 'PayloadBuilderFactoryPro', ([], {}), '()\n', (12126, 12128), False, 'from pro_core.payload_builder_factory_pro import PayloadBuilderFactoryPro\n'), ((12209, 12232), 'modules.payload_builder_factory.PayloadBuilderFactory', 'PayloadBuilderFactory', ([], {}), '()\n', (12230, 12232), False, 'from modules.payload_builder_factory import PayloadBuilderFactory\n'), ((3305, 3341), 'common.help.printUsage', 'help.printUsage', (['BANNER', 'sys.argv[0]'], {}), '(BANNER, sys.argv[0])\n', (3320, 3341), False, 'from common import utils, mp_session, help\n'), ((3358, 3369), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (3366, 3369), False, 'import sys\n'), ((3713, 3749), 'common.help.printUsage', 'help.printUsage', (['BANNER', 'sys.argv[0]'], {}), '(BANNER, sys.argv[0])\n', (3728, 3749), False, 'from common import utils, mp_session, help\n'), ((3766, 3777), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (3774, 3777), False, 'import sys\n'), ((3539, 3575), 'common.help.printUsage', 'help.printUsage', (['BANNER', 'sys.argv[0]'], {}), '(BANNER, sys.argv[0])\n', (3554, 3575), False, 'from common import utils, mp_session, help\n'), ((3592, 3603), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (3600, 3603), False, 'import sys\n'), ((4121, 4157), 'common.help.printUsage', 'help.printUsage', (['BANNER', 'sys.argv[0]'], {}), '(BANNER, sys.argv[0])\n', (4136, 4157), False, 'from common import utils, mp_session, help\n'), ((4174, 4185), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (4182, 4185), False, 'import sys\n'), ((3947, 3983), 'common.help.printUsage', 'help.printUsage', (['BANNER', 'sys.argv[0]'], {}), '(BANNER, sys.argv[0])\n', (3962, 3983), False, 'from common import utils, mp_session, help\n'), ((4000, 4011), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (4008, 4011), False, 'import sys\n'), ((4482, 4502), 'os.path.abspath', 'os.path.abspath', (['arg'], {}), '(arg)\n', (4497, 4502), False, 'import os\n'), ((4799, 4819), 'os.path.abspath', 'os.path.abspath', (['arg'], {}), '(arg)\n', (4814, 4819), False, 'import os\n'), ((4994, 5014), 'os.path.abspath', 'os.path.abspath', (['arg'], {}), '(arg)\n', (5009, 5014), False, 'import os\n'), ((5148, 5193), 'common.help.printTemplatesUsage', 'help.printTemplatesUsage', (['BANNER', 'sys.argv[0]'], {}), '(BANNER, sys.argv[0])\n', (5172, 5193), False, 'from common import utils, mp_session, help\n'), ((5206, 5217), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (5214, 5217), False, 'import sys\n'), ((5588, 5608), 'os.path.abspath', 'os.path.abspath', (['arg'], {}), '(arg)\n', (5603, 5608), False, 'import os\n'), ((6035, 6055), 'os.path.abspath', 'os.path.abspath', (['arg'], {}), '(arg)\n', (6050, 6055), False, 'import os\n'), ((6105, 6139), 'common.help.printAvailableFormats', 'help.printAvailableFormats', (['BANNER'], {}), '(BANNER)\n', (6131, 6139), False, 'from common import utils, mp_session, help\n'), ((6152, 6163), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (6160, 6163), False, 'import sys\n'), ((6217, 6253), 'common.help.printUsage', 'help.printUsage', (['BANNER', 'sys.argv[0]'], {}), '(BANNER, sys.argv[0])\n', (6232, 6253), False, 'from common import utils, mp_session, help\n'), ((6266, 6277), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (6274, 6277), False, 'import sys\n'), ((6341, 6395), 'pro_core.arg_mgt_pro.processProArg', 'arg_mgt_pro.processProArg', (['opt', 'arg', 'mpSession', 'BANNER'], {}), '(opt, arg, mpSession, BANNER)\n', (6366, 6395), False, 'from pro_core import arg_mgt_pro, mp_session_pro\n'), ((6430, 6466), 'common.help.printUsage', 'help.printUsage', (['BANNER', 'sys.argv[0]'], {}), '(BANNER, sys.argv[0])\n', (6445, 6466), False, 'from common import utils, mp_session, help\n'), ((6483, 6494), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (6491, 6494), False, 'import sys\n')]
binhmuc/faced
faced/const.py
cbc18f552da9c53628d61d56de7dfda451a6e25f
import os MODELS_PATH = os.path.join(os.path.dirname(__file__), "models") YOLO_SIZE = 288 YOLO_TARGET = 9 CORRECTOR_SIZE = 50
[((40, 65), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (55, 65), False, 'import os\n')]
bilalelhoudaigui/plant-brapi-etl-data-lookup-gnpis
etl/load/elasticsearch.py
973dc444eac6d1cc80c020dd8b9a4656f70eeafb
# Load json bulk files into elasticsearch import json import os import time import traceback import elasticsearch from etl.common.store import list_entity_files from etl.common.utils import get_folder_path, get_file_path, create_logger, first, replace_template class ElasticSearchException(Exception): pass # Init Elasticsearch and test connection def init_es_client(url, logger): es_client = elasticsearch.Elasticsearch([url]) try: info = es_client.info() logger.debug('Connected to node "{}" of cluster "{}" on "{}"'.format(info['name'], info['cluster_name'], url)) except elasticsearch.exceptions.ConnectionError as e: logger.error('Connection error: Elasticsearch unavailable on "{}".\nPlease check your configuration'.format(url)) raise e return es_client def check_error(response): if response.get('errors'): raise ElasticSearchException(response) def create_index(es_client, index_name, logger): logger.debug('Creating index "{}"...'.format(index_name)) check_error(es_client.indices.create(index_name)) def delete_index(es_client, index_name, logger): logger.debug('Deleting index "{}"...'.format(index_name)) check_error(es_client.indices.delete(index_name)) def create_template(es_client, es_config, document_type, base_index_name, logger): template_name = 'template_elixir_' + base_index_name template_pattern = base_index_name + '-d*' mapping = es_config['document-mappings'].get(document_type+"_mapping") if not mapping: return logger.debug('Creating template "{}" on pattern "{}"...'.format(template_name, template_pattern)) template_body = {'template': template_pattern, 'mappings': mapping} if 'index-settings' in es_config: template_body['settings'] = es_config['index-settings'] check_error(es_client.indices.put_template(name=template_name, body=template_body)) def bulk_index(es_client, index_name, file_path, logger): file_name = os.path.basename(file_path) logger.debug('Bulk indexing file "{}" in index "{}"...'.format(file_name, index_name)) with open(file_path, 'r') as file: check_error(es_client.bulk(index=index_name, body=file.read(), timeout='2000ms')) def create_alias(es_client, alias_name, base_index_name, logger): logger.debug('Creating alias "{}" for index "{}"'.format(alias_name, base_index_name)) check_error(es_client.indices.put_alias(alias_name, base_index_name)) def get_indices(es_client, base_index_name): indices = es_client.cat.indices(base_index_name + '-d*', params={'h': 'index'}) index_names = list(map(lambda i: i['index'], indices)) index_names.sort(reverse=True) return index_names def load_source(source, config, source_bulk_dir, log_dir): """ Full Elasticsearch documents indexing """ source_name = source['schema:identifier'] action = 'load-elasticsearch-' + source_name log_file = get_file_path([log_dir, action], ext='.log', recreate=True) logger = create_logger(source_name, log_file, config['options']['verbose']) load_config = config['load-elasticsearch'] es_client = init_es_client(load_config['url'], logger) logger.info("Loading '{}' into elasticsearch '{}'...".format(source_bulk_dir, load_config['url'])) try: if not os.path.exists(source_bulk_dir): raise FileNotFoundError( 'No such file or directory: \'{}\'.\n' 'Please make sure you have run the BrAPI extraction and Elasticsearch document transformation' ' before trying to launch the transformation process.' .format(source_bulk_dir)) bulk_files = list(list_entity_files(source_bulk_dir)) all_document_types = set(map(first, bulk_files)) document_types = load_config.get('document-types') or all_document_types document_types = document_types.intersection(all_document_types) index_by_document = dict() logger.info("Preparing index with template mapping...") timestamp = int(time.time()) for document_type in document_types: base_index_name = replace_template( load_config['index-template'], {'source': source['schema:identifier'], 'documentType': document_type} ).lower() create_template(es_client, load_config, document_type, base_index_name, logger) index_name = base_index_name + '-d' + str(timestamp) create_index(es_client, index_name, logger) index_by_document[document_type] = base_index_name, index_name logger.info("Bulk indexing...") for document_type, file_path in bulk_files: if document_type in index_by_document: base_index_name, index_name = index_by_document[document_type] bulk_index(es_client, index_name, file_path, logger) logger.info("Creating index aliases and deleting old indices...") for document_type, (base_index_name, index_name) in index_by_document.items(): create_alias(es_client, index_name, base_index_name, logger) new_index, *old_indices = get_indices(es_client, base_index_name) for old_index in old_indices[1:]: delete_index(es_client, old_index, logger) logger.info("SUCCEEDED Loading {}.".format(source_name)) except Exception as e: logger.debug(traceback.format_exc()) logger.debug(getattr(e, 'long_message', '')) logger.info("FAILED Loading {} Elasticsearch documents.\n" "=> Check the logs ({}) for more details." .format(source_name, log_file)) def main(config): log_dir = config['log-dir'] bulk_dir = os.path.join(config['data-dir'], 'json-bulk') if not os.path.exists(bulk_dir): raise Exception('No json bulk folder found in ' + bulk_dir) sources = config['sources'] for (source_name, source) in sources.items(): source_bulk_dir = get_folder_path([bulk_dir, source_name]) load_source(source, config, source_bulk_dir, log_dir)
[((407, 441), 'elasticsearch.Elasticsearch', 'elasticsearch.Elasticsearch', (['[url]'], {}), '([url])\n', (434, 441), False, 'import elasticsearch\n'), ((2003, 2030), 'os.path.basename', 'os.path.basename', (['file_path'], {}), '(file_path)\n', (2019, 2030), False, 'import os\n'), ((2961, 3020), 'etl.common.utils.get_file_path', 'get_file_path', (['[log_dir, action]'], {'ext': '""".log"""', 'recreate': '(True)'}), "([log_dir, action], ext='.log', recreate=True)\n", (2974, 3020), False, 'from etl.common.utils import get_folder_path, get_file_path, create_logger, first, replace_template\n'), ((3034, 3100), 'etl.common.utils.create_logger', 'create_logger', (['source_name', 'log_file', "config['options']['verbose']"], {}), "(source_name, log_file, config['options']['verbose'])\n", (3047, 3100), False, 'from etl.common.utils import get_folder_path, get_file_path, create_logger, first, replace_template\n'), ((5785, 5830), 'os.path.join', 'os.path.join', (["config['data-dir']", '"""json-bulk"""'], {}), "(config['data-dir'], 'json-bulk')\n", (5797, 5830), False, 'import os\n'), ((5842, 5866), 'os.path.exists', 'os.path.exists', (['bulk_dir'], {}), '(bulk_dir)\n', (5856, 5866), False, 'import os\n'), ((6045, 6085), 'etl.common.utils.get_folder_path', 'get_folder_path', (['[bulk_dir, source_name]'], {}), '([bulk_dir, source_name])\n', (6060, 6085), False, 'from etl.common.utils import get_folder_path, get_file_path, create_logger, first, replace_template\n'), ((3336, 3367), 'os.path.exists', 'os.path.exists', (['source_bulk_dir'], {}), '(source_bulk_dir)\n', (3350, 3367), False, 'import os\n'), ((3712, 3746), 'etl.common.store.list_entity_files', 'list_entity_files', (['source_bulk_dir'], {}), '(source_bulk_dir)\n', (3729, 3746), False, 'from etl.common.store import list_entity_files\n'), ((4084, 4095), 'time.time', 'time.time', ([], {}), '()\n', (4093, 4095), False, 'import time\n'), ((5459, 5481), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (5479, 5481), False, 'import traceback\n'), ((4172, 4296), 'etl.common.utils.replace_template', 'replace_template', (["load_config['index-template']", "{'source': source['schema:identifier'], 'documentType': document_type}"], {}), "(load_config['index-template'], {'source': source[\n 'schema:identifier'], 'documentType': document_type})\n", (4188, 4296), False, 'from etl.common.utils import get_folder_path, get_file_path, create_logger, first, replace_template\n')]
redfrexx/geoplot
geoplot/crs.py
8231baab0e286f1dec870dd5e8c6c8218e5b5da7
""" This module defines the ``geoplot`` coordinate reference system classes, wrappers on ``cartopy.crs`` objects meant to be used as parameters to the ``projection`` parameter of all front-end ``geoplot`` outputs. For the list of Cartopy CRS objects this module derives from, refer to http://scitools.org.uk/cartopy/docs/latest/crs/projections.html. """ import cartopy.crs as ccrs import geopandas as gpd class Base: # TODO: RotatedPole """ Generate instances of ``cartopy.crs``.*name* where *name* matches the instance's class name. Parameters ---------- `load` : Return a Cartopy CRS initialized with defaults from the `centerings` dictionary, overridden by initialization parameters. `_as_mpl_axes` : Return the result of calling cartopy's ``_as_mpl_axes`` for `self.load` called with empty `df` and `centerings`. """ def __init__(self, **kwargs): """Save parameters that initialize Cartopy CRSs.""" self.args = kwargs def load(self, df, centerings): """ A meta-method which abstracts the internals of individual projections' load procedures. Parameters ---------- df : GeoDataFrame The GeoDataFrame which has been passed as input to the plotter at the top level. This data is needed to calculate reasonable centering variables in cases in which the user does not already provide them; which is, incidentally, the reason behind all of this funny twice-instantiation loading in the first place. centerings: dict A dictionary containing names and centering methods. Certain projections have certain centering parameters whilst others lack them. For example, the geospatial projection contains both ``central_longitude`` and ``central_latitude`` instance parameter, which together control the center of the plot, while the North Pole Stereo projection has only a ``central_longitude`` instance parameter, implying that latitude is fixed (as indeed it is, as this projection is centered on the North Pole!). A top-level centerings method is provided in each of the ``geoplot`` top-level plot functions; each of the projection wrapper classes defined here in turn selects the functions from this list relevent to this particular instance and passes them to the ``_generic_load`` method here. We then in turn execute these functions to get defaults for our ``df`` and pass them off to our output ``cartopy.crs`` instance. Returns ------- crs : ``cartopy.crs`` object instance Returns a ``cartopy.crs`` object instance whose appropriate instance variables have been set to reasonable defaults wherever not already provided by the user. """ return getattr(ccrs, self.__class__.__name__)(**{**centerings, **self.args}) def _as_mpl_axes(self): """ When ``matplotlib`` is provided a projection via a ``projection`` keyword argument, it expects to get something with a callable ``as_mpl_axes`` method. The precise details of what this method does, exactly, are not important: it suffices to know that every ``cartopy`` coordinate reference system object has one. When we pass a ``geoplot.crs`` crs object to a ``geoplot`` function, the loading and centering of the data occurs automatically (using the function defined immediately above). Since we control what ``geoplot`` does at execution, we gracefully integrate this two-step procedure into the function body. But there are also use cases outside of our control in which we are forced to pass a ``geoplot.crs`` object without having first called ``load``: most prominently, when creating a plot containing subplots, the "overall" projection must be pre-loaded. It's possible to get around this by using ``cartopy.crs`` objects instead, but this is inelegant. This method is a better way: when a ``geoplot.crs`` object called by ``matplotlib``, it silently swaps itself out for a vanilla version of its ``cartopy.crs`` mirror, and calls that function's ``_as_mpl_axes`` instead. Parameters ---------- proj : geoplot.crs projection instance The instance in question (self, in the method body). Returns ------- Mutates into a ``cartopy.crs`` object and returns the result of executing ``_as_mpl_axes`` on that object instead. """ proj = self.load(gpd.GeoDataFrame(), dict()) return proj._as_mpl_axes() class Filtering(Base): """CRS that `load`s with `centering` restricted to keys in `self.filter_`.""" def load(self, df, centerings): """Call `load` method with `centerings` filtered to keys in `self.filter_`.""" return super().load( df, {key: value for key, value in centerings.items() if key in self.filter_} ) class LongitudeCentering(Filtering): """Form a CRS that centers by longitude.""" filter_ = {'central_longitude'} class LatitudeCentering(Filtering): """For a CRS that centers by latitude.""" filter_ = {'central_latitude'} PlateCarree,\ LambertCylindrical,\ Mercator,\ Miller,\ Mollweide,\ Robinson,\ Sinusoidal,\ InterruptedGoodeHomolosine,\ Geostationary,\ NorthPolarStereo,\ SouthPolarStereo = tuple( type(name, (LongitudeCentering,), {}) for name in ('PlateCarree', 'LambertCylindrical', 'Mercator', 'Miller', 'Mollweide', 'Robinson', 'Sinusoidal', 'InterruptedGoodeHomolosine', 'Geostationary', 'NorthPolarStereo', 'SouthPolarStereo') ) Gnomonic = type('Gnomonic', (LatitudeCentering,), {}) AlbersEqualArea,\ AzimuthalEquidistant,\ LambertConformal,\ Orthographic,\ Stereographic,\ TransverseMercator,\ LambertAzimuthalEqualArea,\ UTM,\ OSGB,\ EuroPP,\ OSNI = tuple( type(name, (Base,), {}) for name in ('AlbersEqualArea', 'AzimuthalEquidistant', 'LambertConformal', 'Orthographic', 'Stereographic', 'TransverseMercator', 'LambertAzimuthalEqualArea', 'UTM', 'OSGB', 'EuroPP', 'OSNI') )
[((4688, 4706), 'geopandas.GeoDataFrame', 'gpd.GeoDataFrame', ([], {}), '()\n', (4704, 4706), True, 'import geopandas as gpd\n')]
cderwin/maps
api/views/stores/att_handler.py
0146260935a749679396022b6d2b1d90b6df2539
from .default_handler import StoresHandler class ATTStoresHandler(StoresHandler): def handle_request(self, **kwargs): kwargs.update({'provider': 'att'}) return super(ATTStoresHandler, self).handle_request(**kwargs) def get_url(self, **kwargs): lat = float(kwargs.get('lat')) lon = float(kwargs.get('lon')) sw_corner = "{0},{1}".format(lat - 1, lon - 1) ne_corner = "{0},{1}".format(lat + 1, lon + 1) return self.config[kwargs['provider']]['url'].format(lat=lat, lon=lon, sw_corner=sw_corner, ne_corner=ne_corner)
[]
lucasjlgc/Aulas-de-Python-
pythonProject/MUNDO 2/Desafio 54.py
6aaed1c660487a680e9c449210600ccdfa326612
#Leia o ano de nascimento de 7 pessoas e mostre quantas ja atingiram a maioridade e quantas ainda não for c in range(1,8): p=int(input('Qual o ano de seu nascimento? ')) a=2021-p if a>= 18: print('A pessoa numero {} já é maior de idade'.format(c)) else: print('A pessoa numero {} não é maior de idade!'.format(c))
[]
zjg540066169/tmoga
tmoga/utils/SDE.py
a3c3ecd0d72fc7c57fd5e5a624780e7ebf199c61
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Provide function to calculate SDE distance @auth: Jungang Zou @date: 2021/05/05 """ def SDE(front, values1, values2): shifted_dict = {} for i in front: shifted_dict[i] = [(values1[i], values2[i])] shifted_list = [] for j in front: if i == j: continue else: shifted_list.append((min(values1[i], values1[j]), min(values2[i], values2[j]))) shifted_dict[i].append(shifted_list) return shifted_dict
[]
pscly/shua_shouji
a1.py
1c03056c8f5db4a3a1222b2d31fdf44c3ab07cf6
# -*- encoding=utf8 -*- __author__ = "pscly" from airtest.core.api import * from airtest.cli.parser import cli_setup # from douyin import * if not cli_setup(): auto_setup(__file__, logdir=True, devices=[ "android://127.0.0.1:5037/decc8da3?cap_method=MINICAP_STREAM&&ori_method=MINICAPORI&&touch_method=MINITOUCH", ]) # script content print("start...") print("冲冲冲!") print("-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=") print("-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=") print("-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=") wake() # 启动手机 start_app("com.ss.android.ugc.aweme.lite") hua = 0 滑动方向 = 0 while 1: hua += 1 滑动方向 += 1 if hua == 10: touch(Template(r"tpl1607564875731.png", record_pos=(-0.404, -0.67), resolution=(1079, 2340))) sleep(5) swipe((484, 1711),(531,709)) print("-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=") print("-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=") print("-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=") # generate html report # from airtest.report.report import simple_report # simple_report(__file__, logpath=True)
[((149, 160), 'airtest.cli.parser.cli_setup', 'cli_setup', ([], {}), '()\n', (158, 160), False, 'from airtest.cli.parser import cli_setup\n')]
bmdepesa/validation-tests
tests/v3_validation/cattlevalidationtest/core/test_logs_api.py
23e7ab95ce76744483a0657f790b42a88a93436d
from common_fixtures import * # NOQA import websocket as ws import pytest def get_logs(client): hosts = client.list_host(kind='docker', removed_null=True) assert len(hosts) > 0 in_log = random_str() cmd = '/bin/bash -c "echo {}; sleep 2"'.format(in_log) c = client.create_container(image=TEST_IMAGE_UUID, command=cmd) c = client.wait_success(c) logs = c.logs() return logs, in_log, c def test_logs_token(client): logs, in_log, c = get_logs(client) conn = ws.create_connection(logs.url + '?token='+logs.token) result = conn.recv() assert result is not None assert in_log in result delete_all(client, [c]) def test_logs_no_token(client): logs, _, c = get_logs(client) with pytest.raises(Exception) as excinfo: ws.create_connection(logs.url) assert 'Handshake status 401' in str(excinfo.value) delete_all(client, [c]) def test_host_api_garbage_token(client): logs, _, c = get_logs(client) with pytest.raises(Exception) as excinfo: ws.create_connection(logs.url+'?token=random.garbage.token') assert 'Handshake status 401' in str(excinfo.value) delete_all(client, [c])
[((500, 555), 'websocket.create_connection', 'ws.create_connection', (["(logs.url + '?token=' + logs.token)"], {}), "(logs.url + '?token=' + logs.token)\n", (520, 555), True, 'import websocket as ws\n'), ((743, 767), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (756, 767), False, 'import pytest\n'), ((792, 822), 'websocket.create_connection', 'ws.create_connection', (['logs.url'], {}), '(logs.url)\n', (812, 822), True, 'import websocket as ws\n'), ((993, 1017), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (1006, 1017), False, 'import pytest\n'), ((1038, 1100), 'websocket.create_connection', 'ws.create_connection', (["(logs.url + '?token=random.garbage.token')"], {}), "(logs.url + '?token=random.garbage.token')\n", (1058, 1100), True, 'import websocket as ws\n')]
VITA-Group/Peek-a-Boo
models/psg_seed_resnet.py
9290d4e5e3aee0dff994e1a664ec91bd6ec93176
'''ResNet using PSG in PyTorch. For Pre-activation ResNet, see 'preact_resnet.py'. Reference: [1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun Deep Residual Learning for Image Recognition. arXiv:1512.03385 ''' from numpy.lib.arraysetops import isin import torch import torch.nn as nn import torch.nn.functional as F import math import numpy as np from models.masked_psg_seed_conv import PredictiveSeedConv2d from masked_layers import layers # Fixed NUM_BITS = 32 NUM_BITS_WEIGHT = 32 NUM_BITS_GRAD = None BIPRECISION = False PREDICTIVE_FORWARD = False WRITER = None WRITER_PREFIX_COUNTER = 0 # Tunable PREDICTIVE_BACKWARD = True MSB_BITS = 4 MSB_BITS_WEIGHT = 4 MSB_BITS_GRAD = 8 THRESHOLD = 0.0 SPARSIFY = False SIGN = True def conv1x1(in_planes, out_planes, stride=1, input_signed=True, predictive_forward=True, writer_prefix=""): "1x1 convolution with no padding" predictive_forward = PREDICTIVE_FORWARD and predictive_forward return PredictiveSeedConv2d( in_planes, out_planes, kernel_size=1, stride=stride, padding=0, bias=False, num_bits=NUM_BITS, num_bits_weight=NUM_BITS_WEIGHT, num_bits_grad=NUM_BITS_GRAD, biprecision=BIPRECISION, input_signed=input_signed, predictive_forward=predictive_forward, predictive_backward=PREDICTIVE_BACKWARD, msb_bits=MSB_BITS, msb_bits_weight=MSB_BITS_WEIGHT, msb_bits_grad=MSB_BITS_GRAD, threshold=THRESHOLD, sparsify=SPARSIFY, sign=SIGN, writer=WRITER, writer_prefix=writer_prefix) def conv3x3(in_planes, out_planes, stride=1, input_signed=False, predictive_forward=True, writer_prefix=""): "3x3 convolution with padding" predictive_forward = PREDICTIVE_FORWARD and predictive_forward return PredictiveSeedConv2d( in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False, num_bits=NUM_BITS, num_bits_weight=NUM_BITS_WEIGHT, num_bits_grad=NUM_BITS_GRAD, biprecision=BIPRECISION, input_signed=input_signed, predictive_forward=predictive_forward, predictive_backward=PREDICTIVE_BACKWARD, msb_bits=MSB_BITS, msb_bits_weight=MSB_BITS_WEIGHT, msb_bits_grad=MSB_BITS_GRAD, threshold=THRESHOLD, sparsify=SPARSIFY, sign=SIGN, writer=WRITER, writer_prefix=writer_prefix) class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = conv3x3(in_planes, planes, stride=stride, input_signed=False, predictive_forward=False, writer_prefix=None) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = conv3x3(planes, planes, stride=1, input_signed=False, predictive_forward=False, writer_prefix=None) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion*planes: self.shortcut = nn.Sequential( # nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False), conv1x1(in_planes, self.expansion*planes, stride=stride, input_signed=False, predictive_forward=False, writer_prefix=None), nn.BatchNorm2d(self.expansion*planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, in_planes, planes, stride=1): super(Bottleneck, self).__init__() # self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) self.conv1 = conv1x1(in_planes, planes, stride=1, input_signed=False, predictive_forward=False, writer_prefix=None) self.bn1 = nn.BatchNorm2d(planes) # self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.conv2 = conv3x3(planes, planes, stride=stride, input_signed=False, predictive_forward=False, writer_prefix=None) self.bn2 = nn.BatchNorm2d(planes) # self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False) self.conv3 = conv1x1(planes, self.expansion*planes, stride=1, input_signed=False, predictive_forward=False, writer_prefix=None) self.bn3 = nn.BatchNorm2d(self.expansion*planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion*planes: self.shortcut = nn.Sequential( # nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False), conv1x1(in_planes, self.expansion*planes, stride=stride, input_signed=False, predictive_forward=False, writer_prefix=None), nn.BatchNorm2d(self.expansion*planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) out += self.shortcut(x) out = F.relu(out) return out class ResNet(nn.Module): def __init__(self, block, num_blocks, in_planes=64, num_classes=10, init_method='standard'): super(ResNet, self).__init__() self.in_planes = in_planes self.conv1 = conv3x3(3, self.in_planes, stride=1, input_signed=True, predictive_forward=False, writer_prefix=None) self.bn1 = nn.BatchNorm2d(self.in_planes) if self.in_planes == 64: # self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) self.linear = nn.Linear(512*block.expansion, num_classes) #self.linear = layers.Linear(512*block.expansion, num_classes) elif self.in_planes == 16: self.layer1 = self._make_layer(block, 16, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 32, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 64, num_blocks[2], stride=2) self.layer4 = None self.linear = nn.Linear(64, num_classes) self.reset_conv_parameters(init_method) print('conv weights reset to {}'.format(init_method)) def reset_parameters(self, module, init_method="kaiming_uniform") -> None: if init_method == "kaiming_constant_signed": fan = nn.init._calculate_correct_fan(module.weight, "fan_in") gain = nn.init.calculate_gain("relu") std = gain / math.sqrt(fan) with torch.no_grad(): module.weight.data = module.weight.data.sign() * std elif init_method == "kaiming_constant_unsigned": fan = nn.init._calculate_correct_fan(module.weight, "fan_in") gain = nn.init.calculate_gain("relu") std = gain / math.sqrt(fan) with torch.no_grad(): module.weight.data = torch.ones_like(module.weight.data) * std elif init_method == "kaiming_normal": nn.init.kaiming_normal_(module.weight, mode="fan_in", nonlinearity="relu") elif init_method == "kaiming_uniform": nn.init.kaiming_uniform_(module.weight, mode="fan_in", nonlinearity="relu") elif init_method == "kaiming_laplace": fan = nn.init._calculate_correct_fan(module.weight, "fan_in") gain = nn.init.calculate_gain("relu") scale = gain / math.sqrt(2.0 * fan) with torch.no_grad(): new_weight = np.random.laplace(loc=0.0, scale=scale, size=module.weight.shape) module.weight.data = module.weight.data.new_tensor(torch.from_numpy(new_weight).clone().detach()) elif init_method == "xavier_normal": nn.init.xavier_normal_(module.weight) elif init_method == "xavier_constant": fan_in, fan_out = nn.init._calculate_fan_in_and_fan_out(module.weight) std = math.sqrt(2.0 / float(fan_in + fan_out)) with torch.no_grad(): module.weight.data = module.weight.data.sign() * std elif init_method == "standard": nn.init.kaiming_uniform_(module.weight, a=math.sqrt(5)) else: raise ValueError(f"{init_method} is not an initialization option!") def reset_conv_parameters(self, init_method="standard") -> None: for m in self.modules(): if isinstance(m, nn.Conv2d): self.reset_parameters(m, init_method) def get_bop_params(self): bop_params = [] for m in self.modules(): if isinstance(m, nn.Conv2d): bop_params += list(m.parameters()) return bop_params def get_non_bop_params(self): non_bop_params = [] for m in self.modules(): if isinstance(m, (nn.Linear, nn.BatchNorm2d,)): non_bop_params += list(m.parameters()) return non_bop_params def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1]*(num_blocks-1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) if self.layer4 is not None: out = self.layer4(out) # out = F.avg_pool2d(out, 4) out = F.avg_pool2d(out, out.size()[3]) out = out.view(out.size(0), -1) out = self.linear(out) return out def PsgSeedResNet20( num_classes=10, init_method='standard', predictive_backward=True, msb_bits=4, msb_bits_weight=4, msb_bits_grad=8, threshold=0.0, sparsify=False, sign=True ): global PREDICTIVE_BACKWARD, MSB_BITS, MSB_BITS_WEIGHT, MSB_BITS_GRAD, THRESHOLD, SPARSIFY, SIGN PREDICTIVE_BACKWARD = predictive_backward MSB_BITS = msb_bits MSB_BITS_WEIGHT = msb_bits_weight MSB_BITS_GRAD = msb_bits_grad THRESHOLD = threshold SPARSIFY = sparsify SIGN = sign return ResNet(BasicBlock, [3,3,3], in_planes=16, num_classes=num_classes, init_method=init_method) def PsgSeedResNet18( num_classes=10, init_method='standard', predictive_backward=True, msb_bits=4, msb_bits_weight=4, msb_bits_grad=8, threshold=0.0, sparsify=False, sign=True ): global PREDICTIVE_BACKWARD, MSB_BITS, MSB_BITS_WEIGHT, MSB_BITS_GRAD, THRESHOLD, SPARSIFY, SIGN PREDICTIVE_BACKWARD = predictive_backward MSB_BITS = msb_bits MSB_BITS_WEIGHT = msb_bits_weight MSB_BITS_GRAD = msb_bits_grad THRESHOLD = threshold SPARSIFY = sparsify SIGN = sign return ResNet(BasicBlock, [2,2,2,2], num_classes=num_classes, init_method=init_method) def PsgSeedResNet34( num_classes=10, init_method='standard', predictive_backward=True, msb_bits=4, msb_bits_weight=4, msb_bits_grad=8, threshold=0.0, sparsify=False, sign=True ): global PREDICTIVE_BACKWARD, MSB_BITS, MSB_BITS_WEIGHT, MSB_BITS_GRAD, THRESHOLD, SPARSIFY, SIGN PREDICTIVE_BACKWARD = predictive_backward MSB_BITS = msb_bits MSB_BITS_WEIGHT = msb_bits_weight MSB_BITS_GRAD = msb_bits_grad THRESHOLD = threshold SPARSIFY = sparsify SIGN = sign return ResNet(BasicBlock, [3,4,6,3], num_classes=num_classes, init_method=init_method) def PsgSeedResNet50( num_classes=10, init_method='standard', predictive_backward=True, msb_bits=4, msb_bits_weight=4, msb_bits_grad=8, threshold=0.0, sparsify=False, sign=True ): global PREDICTIVE_BACKWARD, MSB_BITS, MSB_BITS_WEIGHT, MSB_BITS_GRAD, THRESHOLD, SPARSIFY, SIGN PREDICTIVE_BACKWARD = predictive_backward MSB_BITS = msb_bits MSB_BITS_WEIGHT = msb_bits_weight MSB_BITS_GRAD = msb_bits_grad THRESHOLD = threshold SPARSIFY = sparsify SIGN = sign return ResNet(Bottleneck, [3,4,6,3], num_classes=num_classes, init_method=init_method) def PsgSeedResNet101( num_classes=10, init_method='standard', predictive_backward=True, msb_bits=4, msb_bits_weight=4, msb_bits_grad=8, threshold=0.0, sparsify=False, sign=True ): global PREDICTIVE_BACKWARD, MSB_BITS, MSB_BITS_WEIGHT, MSB_BITS_GRAD, THRESHOLD, SPARSIFY, SIGN PREDICTIVE_BACKWARD = predictive_backward MSB_BITS = msb_bits MSB_BITS_WEIGHT = msb_bits_weight MSB_BITS_GRAD = msb_bits_grad THRESHOLD = threshold SPARSIFY = sparsify SIGN = sign return ResNet(Bottleneck, [3,4,23,3], num_classes=num_classes, init_method=init_method) def PsgSeedResNet152( num_classes=10, init_method='standard', predictive_backward=True, msb_bits=4, msb_bits_weight=4, msb_bits_grad=8, threshold=0.0, sparsify=False, sign=True ): global PREDICTIVE_BACKWARD, MSB_BITS, MSB_BITS_WEIGHT, MSB_BITS_GRAD, THRESHOLD, SPARSIFY, SIGN PREDICTIVE_BACKWARD = predictive_backward MSB_BITS = msb_bits MSB_BITS_WEIGHT = msb_bits_weight MSB_BITS_GRAD = msb_bits_grad THRESHOLD = threshold SPARSIFY = sparsify SIGN = sign return ResNet(Bottleneck, [3,8,36,3], num_classes=num_classes, init_method=init_method) def test(): net = ResNet18() y = net(torch.randn(1,3,32,32)) print(y.size()) # test()
[((971, 1487), 'models.masked_psg_seed_conv.PredictiveSeedConv2d', 'PredictiveSeedConv2d', (['in_planes', 'out_planes'], {'kernel_size': '(1)', 'stride': 'stride', 'padding': '(0)', 'bias': '(False)', 'num_bits': 'NUM_BITS', 'num_bits_weight': 'NUM_BITS_WEIGHT', 'num_bits_grad': 'NUM_BITS_GRAD', 'biprecision': 'BIPRECISION', 'input_signed': 'input_signed', 'predictive_forward': 'predictive_forward', 'predictive_backward': 'PREDICTIVE_BACKWARD', 'msb_bits': 'MSB_BITS', 'msb_bits_weight': 'MSB_BITS_WEIGHT', 'msb_bits_grad': 'MSB_BITS_GRAD', 'threshold': 'THRESHOLD', 'sparsify': 'SPARSIFY', 'sign': 'SIGN', 'writer': 'WRITER', 'writer_prefix': 'writer_prefix'}), '(in_planes, out_planes, kernel_size=1, stride=stride,\n padding=0, bias=False, num_bits=NUM_BITS, num_bits_weight=\n NUM_BITS_WEIGHT, num_bits_grad=NUM_BITS_GRAD, biprecision=BIPRECISION,\n input_signed=input_signed, predictive_forward=predictive_forward,\n predictive_backward=PREDICTIVE_BACKWARD, msb_bits=MSB_BITS,\n msb_bits_weight=MSB_BITS_WEIGHT, msb_bits_grad=MSB_BITS_GRAD, threshold\n =THRESHOLD, sparsify=SPARSIFY, sign=SIGN, writer=WRITER, writer_prefix=\n writer_prefix)\n', (991, 1487), False, 'from models.masked_psg_seed_conv import PredictiveSeedConv2d\n'), ((1738, 2254), 'models.masked_psg_seed_conv.PredictiveSeedConv2d', 'PredictiveSeedConv2d', (['in_planes', 'out_planes'], {'kernel_size': '(3)', 'stride': 'stride', 'padding': '(1)', 'bias': '(False)', 'num_bits': 'NUM_BITS', 'num_bits_weight': 'NUM_BITS_WEIGHT', 'num_bits_grad': 'NUM_BITS_GRAD', 'biprecision': 'BIPRECISION', 'input_signed': 'input_signed', 'predictive_forward': 'predictive_forward', 'predictive_backward': 'PREDICTIVE_BACKWARD', 'msb_bits': 'MSB_BITS', 'msb_bits_weight': 'MSB_BITS_WEIGHT', 'msb_bits_grad': 'MSB_BITS_GRAD', 'threshold': 'THRESHOLD', 'sparsify': 'SPARSIFY', 'sign': 'SIGN', 'writer': 'WRITER', 'writer_prefix': 'writer_prefix'}), '(in_planes, out_planes, kernel_size=3, stride=stride,\n padding=1, bias=False, num_bits=NUM_BITS, num_bits_weight=\n NUM_BITS_WEIGHT, num_bits_grad=NUM_BITS_GRAD, biprecision=BIPRECISION,\n input_signed=input_signed, predictive_forward=predictive_forward,\n predictive_backward=PREDICTIVE_BACKWARD, msb_bits=MSB_BITS,\n msb_bits_weight=MSB_BITS_WEIGHT, msb_bits_grad=MSB_BITS_GRAD, threshold\n =THRESHOLD, sparsify=SPARSIFY, sign=SIGN, writer=WRITER, writer_prefix=\n writer_prefix)\n', (1758, 2254), False, 'from models.masked_psg_seed_conv import PredictiveSeedConv2d\n'), ((2575, 2597), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['planes'], {}), '(planes)\n', (2589, 2597), True, 'import torch.nn as nn\n'), ((2738, 2760), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['planes'], {}), '(planes)\n', (2752, 2760), True, 'import torch.nn as nn\n'), ((2786, 2801), 'torch.nn.Sequential', 'nn.Sequential', ([], {}), '()\n', (2799, 2801), True, 'import torch.nn as nn\n'), ((3379, 3390), 'torch.nn.functional.relu', 'F.relu', (['out'], {}), '(out)\n', (3385, 3390), True, 'import torch.nn.functional as F\n'), ((3778, 3800), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['planes'], {}), '(planes)\n', (3792, 3800), True, 'import torch.nn as nn\n'), ((4048, 4070), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['planes'], {}), '(planes)\n', (4062, 4070), True, 'import torch.nn as nn\n'), ((4317, 4356), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(self.expansion * planes)'], {}), '(self.expansion * planes)\n', (4331, 4356), True, 'import torch.nn as nn\n'), ((4380, 4395), 'torch.nn.Sequential', 'nn.Sequential', ([], {}), '()\n', (4393, 4395), True, 'import torch.nn as nn\n'), ((5021, 5032), 'torch.nn.functional.relu', 'F.relu', (['out'], {}), '(out)\n', (5027, 5032), True, 'import torch.nn.functional as F\n'), ((5393, 5423), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['self.in_planes'], {}), '(self.in_planes)\n', (5407, 5423), True, 'import torch.nn as nn\n'), ((9475, 9497), 'torch.nn.Sequential', 'nn.Sequential', (['*layers'], {}), '(*layers)\n', (9488, 9497), True, 'import torch.nn as nn\n'), ((13663, 13688), 'torch.randn', 'torch.randn', (['(1)', '(3)', '(32)', '(32)'], {}), '(1, 3, 32, 32)\n', (13674, 13688), False, 'import torch\n'), ((5895, 5940), 'torch.nn.Linear', 'nn.Linear', (['(512 * block.expansion)', 'num_classes'], {}), '(512 * block.expansion, num_classes)\n', (5904, 5940), True, 'import torch.nn as nn\n'), ((6632, 6687), 'torch.nn.init._calculate_correct_fan', 'nn.init._calculate_correct_fan', (['module.weight', '"""fan_in"""'], {}), "(module.weight, 'fan_in')\n", (6662, 6687), True, 'import torch.nn as nn\n'), ((6707, 6737), 'torch.nn.init.calculate_gain', 'nn.init.calculate_gain', (['"""relu"""'], {}), "('relu')\n", (6729, 6737), True, 'import torch.nn as nn\n'), ((3168, 3207), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(self.expansion * planes)'], {}), '(self.expansion * planes)\n', (3182, 3207), True, 'import torch.nn as nn\n'), ((4762, 4801), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(self.expansion * planes)'], {}), '(self.expansion * planes)\n', (4776, 4801), True, 'import torch.nn as nn\n'), ((6343, 6369), 'torch.nn.Linear', 'nn.Linear', (['(64)', 'num_classes'], {}), '(64, num_classes)\n', (6352, 6369), True, 'import torch.nn as nn\n'), ((6763, 6777), 'math.sqrt', 'math.sqrt', (['fan'], {}), '(fan)\n', (6772, 6777), False, 'import math\n'), ((6795, 6810), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (6808, 6810), False, 'import torch\n'), ((6956, 7011), 'torch.nn.init._calculate_correct_fan', 'nn.init._calculate_correct_fan', (['module.weight', '"""fan_in"""'], {}), "(module.weight, 'fan_in')\n", (6986, 7011), True, 'import torch.nn as nn\n'), ((7031, 7061), 'torch.nn.init.calculate_gain', 'nn.init.calculate_gain', (['"""relu"""'], {}), "('relu')\n", (7053, 7061), True, 'import torch.nn as nn\n'), ((7087, 7101), 'math.sqrt', 'math.sqrt', (['fan'], {}), '(fan)\n', (7096, 7101), False, 'import math\n'), ((7119, 7134), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (7132, 7134), False, 'import torch\n'), ((7273, 7347), 'torch.nn.init.kaiming_normal_', 'nn.init.kaiming_normal_', (['module.weight'], {'mode': '"""fan_in"""', 'nonlinearity': '"""relu"""'}), "(module.weight, mode='fan_in', nonlinearity='relu')\n", (7296, 7347), True, 'import torch.nn as nn\n'), ((7173, 7208), 'torch.ones_like', 'torch.ones_like', (['module.weight.data'], {}), '(module.weight.data)\n', (7188, 7208), False, 'import torch\n'), ((7407, 7482), 'torch.nn.init.kaiming_uniform_', 'nn.init.kaiming_uniform_', (['module.weight'], {'mode': '"""fan_in"""', 'nonlinearity': '"""relu"""'}), "(module.weight, mode='fan_in', nonlinearity='relu')\n", (7431, 7482), True, 'import torch.nn as nn\n'), ((7548, 7603), 'torch.nn.init._calculate_correct_fan', 'nn.init._calculate_correct_fan', (['module.weight', '"""fan_in"""'], {}), "(module.weight, 'fan_in')\n", (7578, 7603), True, 'import torch.nn as nn\n'), ((7623, 7653), 'torch.nn.init.calculate_gain', 'nn.init.calculate_gain', (['"""relu"""'], {}), "('relu')\n", (7645, 7653), True, 'import torch.nn as nn\n'), ((7681, 7701), 'math.sqrt', 'math.sqrt', (['(2.0 * fan)'], {}), '(2.0 * fan)\n', (7690, 7701), False, 'import math\n'), ((7719, 7734), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (7732, 7734), False, 'import torch\n'), ((7765, 7830), 'numpy.random.laplace', 'np.random.laplace', ([], {'loc': '(0.0)', 'scale': 'scale', 'size': 'module.weight.shape'}), '(loc=0.0, scale=scale, size=module.weight.shape)\n', (7782, 7830), True, 'import numpy as np\n'), ((8002, 8039), 'torch.nn.init.xavier_normal_', 'nn.init.xavier_normal_', (['module.weight'], {}), '(module.weight)\n', (8024, 8039), True, 'import torch.nn as nn\n'), ((8117, 8169), 'torch.nn.init._calculate_fan_in_and_fan_out', 'nn.init._calculate_fan_in_and_fan_out', (['module.weight'], {}), '(module.weight)\n', (8154, 8169), True, 'import torch.nn as nn\n'), ((8246, 8261), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (8259, 8261), False, 'import torch\n'), ((8426, 8438), 'math.sqrt', 'math.sqrt', (['(5)'], {}), '(5)\n', (8435, 8438), False, 'import math\n'), ((7898, 7926), 'torch.from_numpy', 'torch.from_numpy', (['new_weight'], {}), '(new_weight)\n', (7914, 7926), False, 'import torch\n')]
jsnlp/snorkel-tutorials
drybell/drybell_lfs_spark.py
b4cda9f918daf77f4011ec1598c08d9bd7e51c39
from pyspark.sql import Row from snorkel.labeling.lf import labeling_function from snorkel.labeling.lf.nlp_spark import spark_nlp_labeling_function from snorkel.preprocess import preprocessor from drybell_lfs import load_celebrity_knowledge_base ABSTAIN = -1 NEGATIVE = 0 POSITIVE = 1 @preprocessor() def combine_text(x): return Row(title=x.title, body=x.body, article=f"{x.title} {x.body}") @spark_nlp_labeling_function(text_field="article", pre=[combine_text]) def article_mentions_person(x): for ent in x.doc.ents: if ent.label_ == "PERSON": return ABSTAIN return NEGATIVE @spark_nlp_labeling_function( text_field="article", pre=[combine_text], resources=dict(celebrity_knowledge_base=load_celebrity_knowledge_base()), ) def person_in_db(x, celebrity_knowledge_base): for ent in x.doc.ents: if ent.label_ == "PERSON" and ent.text.lower() in celebrity_knowledge_base: return POSITIVE return ABSTAIN @labeling_function() def body_contains_fortune(x): return POSITIVE if "fortune" in x.body else ABSTAIN
[((290, 304), 'snorkel.preprocess.preprocessor', 'preprocessor', ([], {}), '()\n', (302, 304), False, 'from snorkel.preprocess import preprocessor\n'), ((403, 472), 'snorkel.labeling.lf.nlp_spark.spark_nlp_labeling_function', 'spark_nlp_labeling_function', ([], {'text_field': '"""article"""', 'pre': '[combine_text]'}), "(text_field='article', pre=[combine_text])\n", (430, 472), False, 'from snorkel.labeling.lf.nlp_spark import spark_nlp_labeling_function\n'), ((984, 1003), 'snorkel.labeling.lf.labeling_function', 'labeling_function', ([], {}), '()\n', (1001, 1003), False, 'from snorkel.labeling.lf import labeling_function\n'), ((337, 399), 'pyspark.sql.Row', 'Row', ([], {'title': 'x.title', 'body': 'x.body', 'article': 'f"""{x.title} {x.body}"""'}), "(title=x.title, body=x.body, article=f'{x.title} {x.body}')\n", (340, 399), False, 'from pyspark.sql import Row\n'), ((740, 771), 'drybell_lfs.load_celebrity_knowledge_base', 'load_celebrity_knowledge_base', ([], {}), '()\n', (769, 771), False, 'from drybell_lfs import load_celebrity_knowledge_base\n')]
dongleecsu/DREAMPlace
dreamplace/ops/dct/discrete_spectral_transform.py
86b56521a3eacfb5cadff935631302bf6986a689
## # @file discrete_spectral_transform.py # @author Yibo Lin # @date Jun 2018 # import os import sys import numpy as np import torch import torch.nn.functional as F import pdb """ Discrete spectral transformation leveraging fast fourier transform engine. The math here mainly uses Prosthaphaeresis properties. The trigonometric identities exploited by prosthaphaeresis relate products of trigonometric functions to sums. sin(a) sin(b) = 1/2 * (cos(a-b) - cos(a+b)) cos(a) cos(b) = 1/2 * (cos(a-b) + cos(a+b)) sin(a) cos(b) = 1/2 * (sin(a+b) + sin(a-b)) cos(a) sin(b) = 1/2 * (sin(a-b) - sin(a+b)) A 2D FFT performs y_{u, v} = \sum_i \sum_j x_{i, j} exp(-j*2*pi*u*i/M) exp(-j*2*pi*v*j/N) = \sum_i \sum_j x_{i, j} exp(-j*2*pi*(u*i/M + v*j/N)) = \sum_i \sum_j x_{i, j} (cos(-2*pi*(u*i/M + v*j/N)) + j sin(-2*pi*(u*i/M + v*j/N))). By mapping the original image from (i, j) to (i, N-j), we can have (u*i/M - v*j/N) inside exp. This will enable us to derive various cos/sin transformation by computing FFT twice. """ def get_expk(N, dtype, device): """ Compute 2*exp(-1j*pi*u/(2N)), but not exactly the same. The actual return is 2*cos(pi*u/(2N)), 2*sin(pi*u/(2N)). This will make later multiplication easier. """ pik_by_2N = torch.arange(N, dtype=dtype, device=device) pik_by_2N.mul_(np.pi/(2*N)) # cos, sin # I use sin because the real part requires subtraction # this will be easier for multiplication expk = torch.stack([pik_by_2N.cos(), pik_by_2N.sin()], dim=-1) expk.mul_(2) return expk.contiguous() def get_expkp1(N, dtype, device): """ Compute 2*exp(-1j*pi*(u+1)/(2N)), but not exactly the same. The actual return is 2*cos(pi*(u+1)/(2N)), 2*sin(pi*(u+1)/(2N)) """ neg_pik_by_2N = torch.arange(1, N+1, dtype=dtype, device=device) neg_pik_by_2N.mul_(np.pi/(2*N)) # sin, -cos # I swap -cos and sin because we need the imag part # this will be easier for multiplication expk = torch.stack([neg_pik_by_2N.cos(), neg_pik_by_2N.sin()], dim=-1) expk.mul_(2) return expk.contiguous() def get_exact_expk(N, dtype, device): # Compute exp(-j*pi*u/(2N)) = cos(pi*u/(2N)) - j * sin(pi*u/(2N)) pik_by_2N = torch.arange(N, dtype=dtype, device=device) pik_by_2N.mul_(np.pi/(2*N)) # cos, -sin expk = torch.stack([pik_by_2N.cos(), -pik_by_2N.sin()], dim=-1) return expk.contiguous() def get_perm(N, dtype, device): """ Compute permutation to generate following array 0, 2, 4, ..., 2*(N//2)-2, 2*(N//2)-1, 2*(N//2)-3, ..., 3, 1 """ perm = torch.zeros(N, dtype=dtype, device=device) perm[0:(N-1)//2+1] = torch.arange(0, N, 2, dtype=dtype, device=device) perm[(N-1)//2+1:] = torch.arange(2*(N//2)-1, 0, -2, dtype=dtype, device=device) return perm def dct_2N(x, expk=None): """ Batch Discrete Cosine Transformation without normalization to coefficients. Compute y_u = \sum_i x_i cos(pi*(2i+1)*u/(2N)), Impelements the 2N padding trick to solve DCT with FFT in the following link, https://dsp.stackexchange.com/questions/2807/fast-cosine-transform-via-fft 1. Pad x by zeros 2. Perform FFT 3. Multiply by 2*exp(-1j*pi*u/(2N)) 4. Extract the real part """ # last dimension N = x.size(-1) # pad last dimension x_pad = F.pad(x, (0, N), 'constant', 0) # the last dimension here becomes -2 because complex numbers introduce a new dimension y = torch.rfft(x_pad, signal_ndim=1, normalized=False, onesided=True)[..., 0:N, :] y.mul_(1.0/N) if expk is None: expk = get_expk(N, dtype=x.dtype, device=x.device) # get real part y.mul_(expk) # I found add is much faster than sum #y = y.sum(dim=-1) return y[..., 0]+y[..., 1] def dct_N(x, perm=None, expk=None): """ Batch Discrete Cosine Transformation without normalization to coefficients. Compute y_u = \sum_i x_i cos(pi*(2i+1)*u/(2N)), Impelements the N permuting trick to solve DCT with FFT in the following link, https://dsp.stackexchange.com/questions/2807/fast-cosine-transform-via-fft 1. permute x such that [a, b, c, d, e, f] becomes [a, c, e, f, d, b] 2. Perform FFT 3. Multiply by 2*exp(-1j*pi*u/(2N)) 4. Extract the real part """ # last dimension N = x.size(-1) if perm is None: perm = get_perm(N, dtype=torch.int64, device=x.device) if x.ndimension() <= 1: x_reorder = x.view([1, N]) else: x_reorder = x.clone() # switch from row-major to column-major for speedup x_reorder.transpose_(dim0=-2, dim1=-1) #x_reorder = x_reorder[..., perm, :] x_reorder = x_reorder.index_select(dim=-2, index=perm) # switch back x_reorder.transpose_(dim0=-2, dim1=-1) y = torch.rfft(x_reorder, signal_ndim=1, normalized=False, onesided=False)[..., 0:N, :] y.mul_(1.0/N) if expk is None: expk = get_expk(N, dtype=x.dtype, device=x.device) # get real part y.mul_(expk) # I found add is much faster than sum #y = y.sum(dim=-1) return y[..., 0]+y[..., 1] def idct_2N(x, expk=None): """ Batch Inverse Discrete Cosine Transformation without normalization to coefficients. Compute y_u = \sum_i x_i cos(pi*(2u+1)*i/(2N)), Impelements the 2N padding trick to solve IDCT with IFFT in the following link, https://github.com/tensorflow/tensorflow/blob/r1.10/tensorflow/python/ops/spectral_ops.py 1. Multiply by 2*exp(1j*pi*u/(2N)) 2. Pad x by zeros 3. Perform IFFT 4. Extract the real part """ # last dimension N = x.size(-1) if expk is None: expk = get_expk(N, dtype=x.dtype, device=x.device) # multiply by 2*exp(1j*pi*u/(2N)) x_pad = x.unsqueeze(-1).mul(expk) # pad second last dimension, excluding the complex number dimension x_pad = F.pad(x_pad, (0, 0, 0, N), 'constant', 0) if len(x.size()) == 1: x_pad.unsqueeze_(0) # the last dimension here becomes -2 because complex numbers introduce a new dimension y = torch.irfft(x_pad, signal_ndim=1, normalized=False, onesided=False, signal_sizes=[2*N])[..., 0:N] y.mul_(N) if len(x.size()) == 1: y.squeeze_(0) return y def idct_N(x, expk=None): N = x.size(-1) if expk is None: expk = get_expk(N, dtype=x.dtype, device=x.device) size = list(x.size()) size.append(2) x_reorder = torch.zeros(size, dtype=x.dtype, device=x.device) x_reorder[..., 0] = x x_reorder[..., 1:, 1] = x.flip([x.ndimension()-1])[..., :N-1].mul_(-1) x_reorder[..., 0] = x.mul(expk[..., 0]).sub_(x_reorder[..., 1].mul(expk[..., 1])) x_reorder[..., 1].mul_(expk[..., 0]) x_reorder[..., 1].add_(x.mul(expk[..., 1])) # this is to match idct_2N # normal way should multiply 0.25 x_reorder.mul_(0.5) y = torch.ifft(x_reorder, signal_ndim=1, normalized=False) y.mul_(N) z = torch.empty_like(x) z[..., 0:N:2] = y[..., :(N+1)//2, 0] z[..., 1:N:2] = y[..., (N+1)//2:, 0].flip([x.ndimension()-1]) return z def dst(x, expkp1=None): """ Batch Discrete Sine Transformation without normalization to coefficients. Compute y_u = \sum_i x_i sin(pi*(2i+1)*(u+1)/(2N)), Impelements the 2N padding trick to solve DCT with FFT in the following link, https://dsp.stackexchange.com/questions/2807/fast-cosine-transform-via-fft 1. Pad x by zeros 2. Perform FFT 3. Multiply by 2*exp(-1j*pi*u/(2N)) 4. Extract the real part """ # last dimension N = x.size(-1) # pad last dimension x_pad = F.pad(x, (0, N), 'constant', 0) # the last dimension here becomes -2 because complex numbers introduce a new dimension y = torch.rfft(x_pad, signal_ndim=1, normalized=False, onesided=True)[..., 1:N+1, :] if expkp1 is None: expkp1 = get_expkp1(N, dtype=x.dtype, device=x.device) # get imag part y = y[..., 1].mul(expkp1[:, 0]) - y[..., 0].mul(expkp1[:, 1]) return y def idst(x, expkp1=None): """ Batch Inverse Discrete Sine Transformation without normalization to coefficients. Compute y_u = \sum_i x_i cos(pi*(2u+1)*i/(2N)), Impelements the 2N padding trick to solve IDCT with IFFT in the following link, https://github.com/tensorflow/tensorflow/blob/r1.10/tensorflow/python/ops/spectral_ops.py 1. Multiply by 2*exp(1j*pi*u/(2N)) 2. Pad x by zeros 3. Perform IFFT 4. Extract the real part """ # last dimension N = x.size(-1) if expkp1 is None: expkp1 = get_expkp1(N, dtype=x.dtype, device=x.device) # multiply by 2*exp(1j*pi*u/(2N)) x_pad = x.unsqueeze(-1).mul(expkp1) # pad second last dimension, excluding the complex number dimension x_pad = F.pad(x_pad, (0, 0, 0, N), 'constant', 0) if len(x.size()) == 1: x_pad.unsqueeze_(0) # the last dimension here becomes -2 because complex numbers introduce a new dimension y = torch.irfft(x_pad, signal_ndim=1, normalized=False, onesided=False, signal_sizes=[2*N])[..., 1:N+1] y.mul_(N) if len(x.size()) == 1: y.squeeze_(0) return y def idxt(x, cos_or_sin_flag, expk=None): """ Batch Inverse Discrete Cosine Transformation without normalization to coefficients. Compute y_u = \sum_i x_i cos(pi*(2u+1)*i/(2N)), Impelements the 2N padding trick to solve IDCT with IFFT in the following link, https://github.com/tensorflow/tensorflow/blob/r1.10/tensorflow/python/ops/spectral_ops.py 1. Multiply by 2*exp(1j*pi*u/(2N)) 2. Pad x by zeros 3. Perform IFFT 4. Extract the real part @param x batch 1D tensor for conversion @param cos_or_sin_flag 0 for cosine tranformation and 1 or sine transformation @param expk 2*exp(j*pi*k/(2N)) """ # last dimension N = x.size(-1) if expk is None: expk = get_expk(N, dtype=x.dtype, device=x.device) # multiply by 2*exp(1j*pi*u/(2N)) x_pad = x.unsqueeze(-1).mul(expk) # pad second last dimension, excluding the complex number dimension x_pad = F.pad(x_pad, (0, 0, 0, N), 'constant', 0) if len(x.size()) == 1: x_pad.unsqueeze_(0) # the last dimension here becomes -2 because complex numbers introduce a new dimension # Must use IFFT here y = torch.ifft(x_pad, signal_ndim=1, normalized=False)[..., 0:N, cos_or_sin_flag] y.mul_(N) if len(x.size()) == 1: y.squeeze_(0) return y def dct2_2N(x, expk0=None, expk1=None): """ Batch 2D Discrete Cosine Transformation without normalization to coefficients. Compute 1D DCT twice. @param x batch tensor, the 2D part is MxN @param expk0 with length M @param expk1 with length N """ return dct_2N(dct_2N(x.transpose(dim0=-2, dim1=-1), expk0).transpose_(dim0=-2, dim1=-1), expk1) def dct2_N(x, perm0=None, expk0=None, perm1=None, expk1=None): """ Batch 2D Discrete Cosine Transformation without normalization to coefficients. Compute 1D DCT twice. @param x batch tensor, the 2D part is MxN @param perm0 with length M @param expk0 with length M @param perm1 with length N @param expk1 with length N """ return dct_N(dct_N(x.transpose(dim0=-2, dim1=-1), perm=perm0, expk=expk0).transpose_(dim0=-2, dim1=-1), perm=perm1, expk=expk1) def idct2_2N(x, expk0=None, expk1=None): """ Batch 2D Discrete Cosine Transformation without normalization to coefficients. Compute 1D DCT twice. @param x batch tensor, the 2D part is MxN @param expk0 with length M @param expk1 with length N """ return idct_2N(idct_2N(x.transpose(dim0=-2, dim1=-1), expk0).transpose_(dim0=-2, dim1=-1), expk1) def idct2_N(x, expk0=None, expk1=None): """ Batch 2D Discrete Cosine Transformation without normalization to coefficients. Compute 1D DCT twice. @param x batch tensor, the 2D part is MxN @param expk0 with length M @param expk1 with length N """ return idct_N(idct_N(x.transpose(dim0=-2, dim1=-1), expk0).transpose_(dim0=-2, dim1=-1), expk1) def dst2(x, expkp1_0=None, expkp1_1=None): """ Batch 2D Discrete Sine Transformation without normalization to coefficients. Compute 1D DST twice. @param x batch tensor, the 2D part is MxN @param expkp1_0 with length M @param expkp1_1 with length N """ return dst(dst(x.transpose(dim0=-2, dim1=-1), expkp1_0).transpose_(dim0=-2, dim1=-1), expkp1_1) def idcct2(x, expk_0=None, expk_1=None): """ Batch 2D Inverse Discrete Cosine-Cosine Transformation without normalization to coefficients. It computes following equation, which is slightly different from standard DCT formulation. y_{u, v} = \sum_p \sum_q x_{p, q} cos(pi/M*p*(u+0.5)) cos(pi/N*q*(v+0.5)) Compute 1D DCT twice. @param x batch tensor, the 2D part is MxN @param expk_0 with length M, 2*exp(-1j*pi*k/(2M)) @param expk_1 with length N, 2*exp(-1j*pi*k/(2N)) """ return idxt(idxt(x, 0, expk_1).transpose_(dim0=-2, dim1=-1), 0, expk_0).transpose(dim0=-2, dim1=-1) # return idxt(idxt(x.transpose(dim0=-2, dim1=-1), 0, expk_0).transpose_(dim0=-2, dim1=-1), 0, expk_1) def idsct2(x, expk_0=None, expk_1=None): """ Batch 2D Inverse Discrete Sine-Cosine Transformation without normalization to coefficients. It computes following equation, which is slightly different from standard DCT formulation. y_{u, v} = \sum_p \sum_q x_{p, q} sin(pi/M*p*(u+0.5)) cos(pi/N*q*(v+0.5)) Compute 1D DST and then 1D DCT. @param x batch tensor, the 2D part is MxN @param expk_0 with length M, 2*exp(-1j*pi*k/(2M)) @param expk_1 with length N, 2*exp(-1j*pi*k/(2N)) """ return idxt(idxt(x, 0, expk_1).transpose_(dim0=-2, dim1=-1), 1, expk_0).transpose_(dim0=-2, dim1=-1) # return idxt(idxt(x.transpose(dim0=-2, dim1=-1), 1, expk_0).transpose_(dim0=-2, dim1=-1), 0, expk_1) def idcst2(x, expk_0=None, expk_1=None): """ Batch 2D Inverse Discrete Cosine-Sine Transformation without normalization to coefficients. It computes following equation, which is slightly different from standard DCT formulation. y_{u, v} = \sum_p \sum_q x_{p, q} cos(pi/M*p*(u+0.5)) sin(pi/N*q*(v+0.5)) Compute 1D DCT and then 1D DST. @param x batch tensor, the 2D part is MxN @param expk_0 with length M, 2*exp(-1j*pi*k/(2M)) @param expk_1 with length N, 2*exp(-1j*pi*k/(2N)) """ return idxt(idxt(x, 1, expk_1).transpose_(dim0=-2, dim1=-1), 0, expk_0).transpose_(dim0=-2, dim1=-1) # return idxt(idxt(x.transpose(dim0=-2, dim1=-1), 0, expk_0).transpose_(dim0=-2, dim1=-1), 1, expk_1) def idxst_idct(x, expk_0=None, expk_1=None): ''' Batch 2D Inverse Discrete Sine-Cosine Transformation without normalization to coefficients. Compute idxst(idct(x)) @param x batch tensor, the 2D part is MxN @param expk_0 with length M, 2*exp(-1j*pi*k/(2M)) @param expk_1 with length N, 2*exp(-1j*pi*k/(2N)) ''' return idxt(idct_N(x, expk_1).transpose_(dim0=-2, dim1=-1), 1, expk_0).transpose_(dim0=-2, dim1=-1) def idct_idxst(x, expk_0=None, expk_1=None): ''' Batch 2D Inverse Discrete Cosine-Sine Transformation without normalization to coefficients. Compute idct(idxst(x)). @param x batch tensor, the 2D part is MxN @param expk_0 with length M, 2*exp(-1j*pi*k/(2M)) @param expk_1 with length N, 2*exp(-1j*pi*k/(2N)) ''' return idct_N(idxt(x, 1, expk_1).transpose_(dim0=-2, dim1=-1), expk_0).transpose_(dim0=-2, dim1=-1)
[((1268, 1311), 'torch.arange', 'torch.arange', (['N'], {'dtype': 'dtype', 'device': 'device'}), '(N, dtype=dtype, device=device)\n', (1280, 1311), False, 'import torch\n'), ((1777, 1827), 'torch.arange', 'torch.arange', (['(1)', '(N + 1)'], {'dtype': 'dtype', 'device': 'device'}), '(1, N + 1, dtype=dtype, device=device)\n', (1789, 1827), False, 'import torch\n'), ((2227, 2270), 'torch.arange', 'torch.arange', (['N'], {'dtype': 'dtype', 'device': 'device'}), '(N, dtype=dtype, device=device)\n', (2239, 2270), False, 'import torch\n'), ((2589, 2631), 'torch.zeros', 'torch.zeros', (['N'], {'dtype': 'dtype', 'device': 'device'}), '(N, dtype=dtype, device=device)\n', (2600, 2631), False, 'import torch\n'), ((2657, 2706), 'torch.arange', 'torch.arange', (['(0)', 'N', '(2)'], {'dtype': 'dtype', 'device': 'device'}), '(0, N, 2, dtype=dtype, device=device)\n', (2669, 2706), False, 'import torch\n'), ((2731, 2796), 'torch.arange', 'torch.arange', (['(2 * (N // 2) - 1)', '(0)', '(-2)'], {'dtype': 'dtype', 'device': 'device'}), '(2 * (N // 2) - 1, 0, -2, dtype=dtype, device=device)\n', (2743, 2796), False, 'import torch\n'), ((3330, 3361), 'torch.nn.functional.pad', 'F.pad', (['x', '(0, N)', '"""constant"""', '(0)'], {}), "(x, (0, N), 'constant', 0)\n", (3335, 3361), True, 'import torch.nn.functional as F\n'), ((5849, 5890), 'torch.nn.functional.pad', 'F.pad', (['x_pad', '(0, 0, 0, N)', '"""constant"""', '(0)'], {}), "(x_pad, (0, 0, 0, N), 'constant', 0)\n", (5854, 5890), True, 'import torch.nn.functional as F\n'), ((6413, 6462), 'torch.zeros', 'torch.zeros', (['size'], {'dtype': 'x.dtype', 'device': 'x.device'}), '(size, dtype=x.dtype, device=x.device)\n', (6424, 6462), False, 'import torch\n'), ((6842, 6896), 'torch.ifft', 'torch.ifft', (['x_reorder'], {'signal_ndim': '(1)', 'normalized': '(False)'}), '(x_reorder, signal_ndim=1, normalized=False)\n', (6852, 6896), False, 'import torch\n'), ((6920, 6939), 'torch.empty_like', 'torch.empty_like', (['x'], {}), '(x)\n', (6936, 6939), False, 'import torch\n'), ((7584, 7615), 'torch.nn.functional.pad', 'F.pad', (['x', '(0, N)', '"""constant"""', '(0)'], {}), "(x, (0, N), 'constant', 0)\n", (7589, 7615), True, 'import torch.nn.functional as F\n'), ((8743, 8784), 'torch.nn.functional.pad', 'F.pad', (['x_pad', '(0, 0, 0, N)', '"""constant"""', '(0)'], {}), "(x_pad, (0, 0, 0, N), 'constant', 0)\n", (8748, 8784), True, 'import torch.nn.functional as F\n'), ((10049, 10090), 'torch.nn.functional.pad', 'F.pad', (['x_pad', '(0, 0, 0, N)', '"""constant"""', '(0)'], {}), "(x_pad, (0, 0, 0, N), 'constant', 0)\n", (10054, 10090), True, 'import torch.nn.functional as F\n'), ((3462, 3527), 'torch.rfft', 'torch.rfft', (['x_pad'], {'signal_ndim': '(1)', 'normalized': '(False)', 'onesided': '(True)'}), '(x_pad, signal_ndim=1, normalized=False, onesided=True)\n', (3472, 3527), False, 'import torch\n'), ((4779, 4849), 'torch.rfft', 'torch.rfft', (['x_reorder'], {'signal_ndim': '(1)', 'normalized': '(False)', 'onesided': '(False)'}), '(x_reorder, signal_ndim=1, normalized=False, onesided=False)\n', (4789, 4849), False, 'import torch\n'), ((6047, 6140), 'torch.irfft', 'torch.irfft', (['x_pad'], {'signal_ndim': '(1)', 'normalized': '(False)', 'onesided': '(False)', 'signal_sizes': '[2 * N]'}), '(x_pad, signal_ndim=1, normalized=False, onesided=False,\n signal_sizes=[2 * N])\n', (6058, 6140), False, 'import torch\n'), ((7716, 7781), 'torch.rfft', 'torch.rfft', (['x_pad'], {'signal_ndim': '(1)', 'normalized': '(False)', 'onesided': '(True)'}), '(x_pad, signal_ndim=1, normalized=False, onesided=True)\n', (7726, 7781), False, 'import torch\n'), ((8941, 9034), 'torch.irfft', 'torch.irfft', (['x_pad'], {'signal_ndim': '(1)', 'normalized': '(False)', 'onesided': '(False)', 'signal_sizes': '[2 * N]'}), '(x_pad, signal_ndim=1, normalized=False, onesided=False,\n signal_sizes=[2 * N])\n', (8952, 9034), False, 'import torch\n'), ((10272, 10322), 'torch.ifft', 'torch.ifft', (['x_pad'], {'signal_ndim': '(1)', 'normalized': '(False)'}), '(x_pad, signal_ndim=1, normalized=False)\n', (10282, 10322), False, 'import torch\n')]
vkuznet/h2o
py/testdir_multi_jvm/test_many_fp_formats_libsvm_2.py
e08f7014f228cbaecfb21f57379970e6a3ac0756
import unittest, random, sys, time sys.path.extend(['.','..','py']) import h2o, h2o_cmd, h2o_hosts, h2o_browse as h2b, h2o_import as h2i, h2o_exec as h2e, h2o_glm import h2o_util zeroList = [ 'Result0 = 0', ] # the first column should use this exprList = [ 'Result<n> = sum(<keyX>[<col1>])', ] DO_SUMMARY = False DO_COMPARE_SUM = False def write_syn_dataset(csvPathname, rowCount, colCount, SEEDPERFILE, sel, distribution): # we can do all sorts of methods off the r object r = random.Random(SEEDPERFILE) def addRandValToRowStuff(colNumber, valMin, valMax, rowData, synColSumDict): # colNumber should not be 0, because the output will be there ## val = r.uniform(MIN,MAX) val = r.triangular(valMin,valMax,0) valFormatted = h2o_util.fp_format(val, sel) # force it to be zero in this range. so we don't print zeroes for svm! if (val > valMin/2) and (val < valMax/2): return None else: rowData.append(str(colNumber) + ":" + valFormatted) # f should always return string if colNumber in synColSumDict: synColSumDict[colNumber] += val # sum of column (dict) else: synColSumDict[colNumber] = val # sum of column (dict) return val valMin = -1e2 valMax = 1e2 classMin = -36 classMax = 36 dsf = open(csvPathname, "w+") synColSumDict = {0: 0} # guaranteed to have col 0 for output # even though we try to get a max colCount with random, we might fall short # track what max we really got colNumberMax = 0 for i in range(rowCount): rowData = [] d = random.randint(0,2) if d==0: if distribution == 'sparse': # only one value per row! # is it okay to specify col 0 in svm? where does the output data go? (col 0) colNumber = random.randint(1, colCount) val = addRandValToRowStuff(colNumber, valMin, valMax, rowData, synColSumDict) # did we add a val? if val and (colNumber > colNumberMax): colNumberMax = colNumber else: # some number of values per row.. 50% or so? for colNumber in range(1, colCount+1): val = addRandValToRowStuff(colNumber, valMin, valMax, rowData, synColSumDict) if val and (colNumber > colNumberMax): colNumberMax = colNumber # always need an output class, even if no cols are non-zero # space is the only valid separator # add the output (col 0) # random integer for class val = random.randint(classMin,classMax) rowData.insert(0, val) synColSumDict[0] += val # sum of column (dict) rowDataCsv = " ".join(map(str,rowData)) # FIX! vary the eol ? # randomly skip some rows. only write 1/3 dsf.write(rowDataCsv + "\n") dsf.close() return (colNumberMax, synColSumDict) class Basic(unittest.TestCase): def tearDown(self): h2o.check_sandbox_for_errors() @classmethod def setUpClass(cls): global SEED, localhost SEED = h2o.setup_random_seed() localhost = h2o.decide_if_localhost() if (localhost): h2o.build_cloud(2,java_heap_GB=5) else: h2o_hosts.build_cloud_with_hosts() @classmethod def tearDownClass(cls): h2o.tear_down_cloud() def test_many_fp_formats_libsvm_2(self): # h2b.browseTheCloud() SYNDATASETS_DIR = h2o.make_syn_dir() tryList = [ (100, 10000, 'cA', 300, 'sparse50'), (100, 10000, 'cB', 300, 'sparse'), # (100, 40000, 'cC', 300, 'sparse50'), # (100, 40000, 'cD', 300, 'sparse'), ] # h2b.browseTheCloud() for (rowCount, colCount, hex_key, timeoutSecs, distribution) in tryList: NUM_CASES = h2o_util.fp_format() for sel in [random.randint(0,NUM_CASES-1)]: # len(caseList) SEEDPERFILE = random.randint(0, sys.maxint) csvFilename = "syn_%s_%s_%s_%s.csv" % (SEEDPERFILE, sel, rowCount, colCount) csvPathname = SYNDATASETS_DIR + '/' + csvFilename print "Creating random", csvPathname # dict of col sums for comparison to exec col sums below (colNumberMax, synColSumDict) = write_syn_dataset(csvPathname, rowCount, colCount, SEEDPERFILE, sel, distribution) selKey2 = hex_key + "_" + str(sel) print "This dataset requires telling h2o parse it's a libsvm..doesn't detect automatically" parseResult = h2i.import_parse(path=csvPathname, schema='put', hex_key=selKey2, timeoutSecs=timeoutSecs, doSummary=False, parser_type='SVMLight') print csvFilename, 'parse time:', parseResult['response']['time'] print "Parse result['destination_key']:", parseResult['destination_key'] inspect = h2o_cmd.runInspect(None, parseResult['destination_key'], max_column_display=colNumberMax+1, timeoutSecs=timeoutSecs) num_cols = inspect['num_cols'] num_rows = inspect['num_rows'] print "\n" + csvFilename # SUMMARY**************************************** # gives us some reporting on missing values, constant values, # to see if we have x specified well # figures out everything from parseResult['destination_key'] # needs y to avoid output column (which can be index or name) # assume all the configs have the same y..just check with the firs tone goodX = h2o_glm.goodXFromColumnInfo(y=0, key=parseResult['destination_key'], timeoutSecs=300, noPrint=True) if DO_SUMMARY: summaryResult = h2o_cmd.runSummary(key=selKey2, max_column_display=colNumberMax+1, timeoutSecs=timeoutSecs) h2o_cmd.infoFromSummary(summaryResult, noPrint=True) self.assertEqual(colNumberMax+1, num_cols, msg="generated %s cols (including output). parsed to %s cols" % (colNumberMax+1, num_cols)) # Exec (column sums)************************************************* if DO_COMPARE_SUM: h2e.exec_zero_list(zeroList) colResultList = h2e.exec_expr_list_across_cols(None, exprList, selKey2, maxCol=colNumberMax+1, timeoutSecs=timeoutSecs) print "\n*************" print "colResultList", colResultList print "*************" self.assertEqual(rowCount, num_rows, msg="generated %s rows, parsed to %s rows" % (rowCount, num_rows)) # need to fix this for compare to expected # we should be able to keep the list of fp sums per col above # when we generate the dataset ### print "\nsynColSumDict:", synColSumDict for k,v in synColSumDict.iteritems(): if DO_COMPARE_SUM: # k should be integers that match the number of cols self.assertTrue(k>=0 and k<len(colResultList)) compare = colResultList[k] print "\nComparing col sums:", v, compare # Even though we're comparing floating point sums, the operations probably should have # been done in same order, so maybe the comparison can be exact (or not!) self.assertAlmostEqual(v, compare, places=0, msg='%0.6f col sum is not equal to expected %0.6f' % (v, compare)) synMean = (v + 0.0)/rowCount # enums don't have mean, but we're not enums mean = float(inspect['cols'][k]['mean']) # our fp formats in the syn generation sometimes only have two places? self.assertAlmostEqual(mean, synMean, places=0, msg='col %s mean %0.6f is not equal to generated mean %0.6f' % (k, mean, synMean)) num_missing_values = inspect['cols'][k]['num_missing_values'] self.assertEqual(0, num_missing_values, msg='col %s num_missing_values %d should be 0' % (k, num_missing_values)) if __name__ == '__main__': h2o.unit_main()
[]
SA-22C-smoothswing/spectrum-protect-sppmon
python/influx/database_tables.py
8a9c70f65d9faf6ffc35f3400383dcaa6e0fcbc6
"""Provides all database and table structures used for the influx database. Classes: Datatype Database Table RetentionPolicy """ from __future__ import annotations from enum import Enum, unique import re import json from typing import Any, Dict, List, Set, Tuple, Union import influx.influx_queries as Queries from utils.execption_utils import ExceptionUtils from utils.influx_utils import InfluxUtils from utils.spp_utils import SppUtils @unique class Datatype(Enum): """ This enum differentiates between the different Influx-Types. By declaring the type SPPMon will automatically insert the data in the right format. The order of the types within the enum is important: bool is a int, but a int is not a bool. Important: only use `TIME` for epoch timestamps, *NOT* for durations or counts. `TIME` is automatically converted into second format. Note: The return type is just a helper and not of a big use. Methods: get_auto_datatype - get Datatype enum by value typ analysis """ NONE = type(None) """Undeclared, only use as a placeholder.""" STRING = str """Special symbols and \" will be escaped.""" BOOL = bool """Any boolean, be aware it is a subtype of int. TODO Untested, saves as Boolean within Influx. """ INT = int """Appends a 'i' at end of number to declare. Fails if the data is mixed with any other type.""" FLOAT = float """Unchanged value. Default Influx numeric data type. Mixing with ints works.""" TIMESTAMP = type(int) """Automatic transform a timestamp into seconds. Important: Only use for Epoch timestamps, not duration or counter. Caution: Type is just a placeholder, do not set to int - causing problems! """ @staticmethod def get_auto_datatype(value: Any) -> Datatype: """get Datatype enum by value typ analysis. Usage should be avoided. Only use if no datatype is declared. It skips time-type and fails if ints are mixed with floats. If no type is detected emits a warning and returns `NONE`. Arguments: value {Union[str, float, int, bool, None]} -- Value to be analyzed Returns: Datatype -- type of value or `NONE`. """ for enum in Datatype: if(enum is Datatype.TIMESTAMP): continue if(isinstance(value, enum.value)): return enum ExceptionUtils.error_message(f"No auto type found for {value}") return Datatype.NONE class RetentionPolicy: """Represents a influxdb retention policy. By this policy it is declared afer which ammount of time a dataset is deleted from the DB. Attributes name - name of RP database - associated database duration - time until the data is purged replication - How often the date is replicated shard_duration - Size of memory-groups default - whether this is the default RP Methods to_dict - creates a dict out of the values """ @property def name(self) -> str: """name of the Retention Policy""" return self.__name @property def database(self) -> Database: """associated database""" return self.__database @property def duration(self) -> str: """time until the data is purged""" return self.__duration @property def replication(self) -> int: """How often the date is replicated. We only have 1 db instance so replication is always 1""" return self.__replication @property def shard_duration(self) -> str: """Size of memory-groups. Default time is 0s, then the db decides what to take""" return self.__shard_duration @property def default(self) -> bool: """ whether this is the default RP""" return self.__default def __init__(self, name: str, database: Database, duration: str, replication: int = 1, shard_duration: str = "0s", default: bool = False) -> None: if(not name): raise ValueError("need retention policy name for creation") if(not database): raise ValueError("need retention policy database for creation") if(not duration): raise ValueError("need retention policy duration for creation") if(not replication): raise ValueError("need retention policy replication factor for creation") if(not shard_duration): raise ValueError("need retention policy shard duration for creation") if(default is None): raise ValueError("need retention policy default setting for creation") self.__name = name self.__database = database self.__replication = replication self.__shard_duration = shard_duration self.__default = default try: # str due usage of method self.__duration: str = InfluxUtils.transform_time_literal(duration, single_vals=False) except ValueError as error: ExceptionUtils.exception_info(error) raise ValueError(f"duration for retention policy {name} is not in the correct time format") try: # str due usage of method self.__shard_duration: str = InfluxUtils.transform_time_literal(shard_duration, single_vals=False) except ValueError as error: ExceptionUtils.exception_info(error) raise ValueError(f"shard duration for retention policy {name} is not in the correct time format") def to_dict(self) -> Dict[str, Union[str, int, bool]]: """Used to create a dict out of the values, able to compare to influxdb-created dict""" return { 'name': self.name, 'duration': self.duration, 'shardGroupDuration': self.__shard_duration, 'replicaN': self.__replication, 'default': self.default } def __str__(self) -> str: return f"{self.database.name}.{self.name}" def __repr__(self) -> str: return f"Retention Policy: {self.name}" def __eq__(self, o: object) -> bool: if(isinstance(o, RetentionPolicy)): return o.to_dict() == self.to_dict() return False def __hash__(self) -> int: return hash(json.dumps(self.to_dict(), sort_keys=True)) class Table: """Represents a measurement in influx. Contains pre-defined tag and field definitions. Attributes name - name of table fields - dict of field name with datatype tags - tags as list of str time_key - key name of the timestamp field retention_policy - retention policy associated with this table database - table is declared within this database Methods split_by_table_def - Split the given dict into a pre-defined set of tags, fields and a timestamp. """ @property def fields(self) -> Dict[str, Datatype]: """fields of the table, name is key, value is datatype""" return self.__fields @property def tags(self) -> List[str]: """tags of the table, datatype always string""" return self.__tags @property def time_key(self) -> str: """name of the timestamp key""" return self.__time_key @property def name(self) -> str: """name of the table""" return self.__name @property def retention_policy(self) -> RetentionPolicy: """retention policy associated with this table""" return self.__retention_policy @property def database(self) -> Database: """table is declared within this database""" return self.__database __bad_measurement_characters: List[str] = [' ', ','] """those chars need to be escaped within a measurement/table name""" def __init__(self, database: Database, name: str, fields: Dict[str, Datatype] = None, tags: List[str] = None, time_key: str = 'time', retention_policy: RetentionPolicy = None) -> None: if(not database): raise ValueError("need database to create table") if(not name): raise ValueError("need str name to create table") if(not time_key): raise ValueError("time key cannot be None") if(not fields): fields = {} if(not tags): tags = [] if(not retention_policy): retention_policy = next(filter(lambda rp: rp.default, database.retention_policies)) self.__database: Database = database self.__fields: Dict[str, Datatype] = fields self.__tags: List[str] = tags self.__time_key: str = time_key self.__retention_policy = retention_policy # escape not allowed characters in Measurement for bad_character in self.__bad_measurement_characters: if(re.search(bad_character, name)): name = name.replace(bad_character, '\\%c'% bad_character) self.__name: str = name def __str__(self) -> str: return f"{self.database.name}.{self.retention_policy.name}.{self.name}" def __repr__(self) -> str: return f"Table: {self.name}" def split_by_table_def(self, mydict: Dict[str, Any]) -> Tuple[ Dict[str, Any], Dict[str, Any], Union[str, int, None]]: """Split the given dict into a pre-defined set of tags, fields and a timestamp. None-Values and empty strings are ignored. If there are no fields declared, it will split by a default pattern. Undeclared collums will produce a warning. This function uses the tag/field and timestamp definiton declared within this table. Arguments: self {Table} -- Table with predefined set of tags and fields mydict {Dict[str, Any]} -- dict with colums as keys. None-Values are ignored Raises: ValueError: If no dict is given or not of type dict. Returns: (Dict[str, Any], Dict[str, Any], int) -- Tuple of: tags, fields, timestamp """ if(not mydict): raise ValueError("need at least one value in dict to split") # if table is not defined use default split if(not self.fields): return InfluxUtils.default_split(mydict=mydict) # fill dicts # table.fields is a dict, we only need the keys fields: Dict[str, Any] = dict.fromkeys(self.fields.keys(), None) tags: Dict[str, Any] = dict.fromkeys(self.tags, None) # what field should be recorded as time time_stamp_field = self.time_key # helper variable to only overwrite if it is not the time_stamp_field time_overwrite_allowed = True # actualy timestamp saved time_stamp: Union[str, int, None] = None for (key, value) in mydict.items(): # Ignore empty entrys if(value is None or (isinstance(value, str) and not value)): continue # Check timestamp value if it matches any of predefined time names if(key in time_stamp_field or key in InfluxUtils.time_key_names): # sppmonCTS has lowest priority, only set if otherwise None if(time_stamp is None and key == SppUtils.capture_time_key): time_stamp = value # time_stamp_field is highest priority. Do not overwrite it. elif(key is time_stamp_field): time_overwrite_allowed: bool = False time_stamp = value # if time_stamp_field is not used yet, overwrite sppmonCaptureTime or others elif(time_overwrite_allowed): time_stamp = value # if no overwrite allowed, continue and drop field else: continue # Otherwise check for Keys or Fields if(key in fields): fields[key] = value elif(key in tags): tags[key] = value elif(key in InfluxUtils.time_key_names or key in time_stamp_field): continue else: ExceptionUtils.error_message(f"Not all columns for table {self.name} are declared: {key}") # before key+"MISSING" : Removed to avoid death-circle on repeated queries. fields[key] = value return (tags, fields, time_stamp) class Database: """ Represents a instance of influx database. Define all table definitions within the init method. Attributes name - name of the database tables - tables with predefined tags & fields retention_policies - Set of all provided Retention Policies continuous_queries - Set of all provided Continuous Queries Methods __getitem__ - [] access on the tables via name. Creates empty table if missing. """ @property def tables(self) -> Dict[str, Table]: """Dict with table definitions to look up""" return self.__tables @property def retention_policies(self) -> Set[RetentionPolicy]: """Set of all provided Retention Policies""" return self.__retention_policies @property def continuous_queries(self) -> Set[Queries.ContinuousQuery]: """Set of all provided Continuous Queries""" return self.__continuous_queries @property def name(self) -> str: """name of the database, also used as reference""" return self.__name def __getitem__(self, table_name: str) -> Table: """Aquire a instance of a predefined table, returns a empty table if it was not defined. []-Access. Arguments: table_name {str} -- name of the table you want to aquire Returns: Table -- Instance of a predefined table, otherwise new empty table """ return self.tables.get(table_name, Table(self, table_name)) def __str__(self) -> str: return self.name def __repr__(self) -> str: return f'Database: {self.name}' def __init__(self, name: str): self.__name: str = name self.__tables: Dict[str, Table] = {} self.__retention_policies: Set[RetentionPolicy] = set() self.__continuous_queries: Set[Queries.ContinuousQuery] = set()
[((2449, 2512), 'utils.execption_utils.ExceptionUtils.error_message', 'ExceptionUtils.error_message', (['f"""No auto type found for {value}"""'], {}), "(f'No auto type found for {value}')\n", (2477, 2512), False, 'from utils.execption_utils import ExceptionUtils\n'), ((4991, 5054), 'utils.influx_utils.InfluxUtils.transform_time_literal', 'InfluxUtils.transform_time_literal', (['duration'], {'single_vals': '(False)'}), '(duration, single_vals=False)\n', (5025, 5054), False, 'from utils.influx_utils import InfluxUtils\n'), ((5336, 5405), 'utils.influx_utils.InfluxUtils.transform_time_literal', 'InfluxUtils.transform_time_literal', (['shard_duration'], {'single_vals': '(False)'}), '(shard_duration, single_vals=False)\n', (5370, 5405), False, 'from utils.influx_utils import InfluxUtils\n'), ((8980, 9010), 're.search', 're.search', (['bad_character', 'name'], {}), '(bad_character, name)\n', (8989, 9010), False, 'import re\n'), ((10376, 10416), 'utils.influx_utils.InfluxUtils.default_split', 'InfluxUtils.default_split', ([], {'mydict': 'mydict'}), '(mydict=mydict)\n', (10401, 10416), False, 'from utils.influx_utils import InfluxUtils\n'), ((5103, 5139), 'utils.execption_utils.ExceptionUtils.exception_info', 'ExceptionUtils.exception_info', (['error'], {}), '(error)\n', (5132, 5139), False, 'from utils.execption_utils import ExceptionUtils\n'), ((5454, 5490), 'utils.execption_utils.ExceptionUtils.exception_info', 'ExceptionUtils.exception_info', (['error'], {}), '(error)\n', (5483, 5490), False, 'from utils.execption_utils import ExceptionUtils\n'), ((12290, 12385), 'utils.execption_utils.ExceptionUtils.error_message', 'ExceptionUtils.error_message', (['f"""Not all columns for table {self.name} are declared: {key}"""'], {}), "(\n f'Not all columns for table {self.name} are declared: {key}')\n", (12318, 12385), False, 'from utils.execption_utils import ExceptionUtils\n')]
calendar42/SleekXMPP--XEP-0080-
examples/rpc_server_side.py
d7bd5fd29f26a5d7de872a49ff63a353b8043e49
""" SleekXMPP: The Sleek XMPP Library Copyright (C) 2011 Dann Martens This file is part of SleekXMPP. See the file LICENSE for copying permission. """ from sleekxmpp.plugins.xep_0009.remote import Endpoint, remote, Remote, \ ANY_ALL import threading class Thermostat(Endpoint): def FQN(self): return 'thermostat' def __init(self, initial_temperature): self._temperature = initial_temperature self._event = threading.Event() @remote def set_temperature(self, temperature): print("Setting temperature to %s" % temperature) self._temperature = temperature @remote def get_temperature(self): return self._temperature @remote(False) def release(self): self._event.set() def wait_for_release(self): self._event.wait() def main(): session = Remote.new_session('[email protected]/rpc', '*****') thermostat = session.new_handler(ANY_ALL, Thermostat, 18) thermostat.wait_for_release() session.close() if __name__ == '__main__': main()
[((743, 756), 'sleekxmpp.plugins.xep_0009.remote.remote', 'remote', (['(False)'], {}), '(False)\n', (749, 756), False, 'from sleekxmpp.plugins.xep_0009.remote import Endpoint, remote, Remote, ANY_ALL\n'), ((917, 966), 'sleekxmpp.plugins.xep_0009.remote.Remote.new_session', 'Remote.new_session', (['"""[email protected]/rpc"""', '"""*****"""'], {}), "('[email protected]/rpc', '*****')\n", (935, 966), False, 'from sleekxmpp.plugins.xep_0009.remote import Endpoint, remote, Remote, ANY_ALL\n'), ((472, 489), 'threading.Event', 'threading.Event', ([], {}), '()\n', (487, 489), False, 'import threading\n')]
wuhuikai/DeepDrone
lib/TelloAPI.py
f4700178a7568fa9e308f34d0223e28635eb7660
import cv2 import time import socket import threading class Response(object): def __init__(self): pass def recv(self, data): pass def pop(self): pass def empty(self): pass class Command(Response): def __init__(self): super(Command, self).__init__() self.response = None self.lock = threading.RLock() def recv(self, data): with self.lock: self.response = data.decode('utf-8') def pop(self): with self.lock: response, self.response = self.response, None return response def empty(self): with self.lock: return self.response is None class State(Response): def __init__(self): super(State, self).__init__() self.response = {} self.lock = threading.RLock() def recv(self, data): with self.lock: self.response = {item.split(':')[0]:float(item.split(':')[1]) for item in data.decode('utf-8').split(';') if ':' in item} def pop(self): return self.response def empty(self): return False class Client(object): def __init__(self, local_port, buffer_size, daemon, response): self.response = response self.buffer_size = buffer_size self.socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) self.socket.bind(('', local_port)) self.receive_thread = threading.Thread(target=self._receive_thread) self.receive_thread.daemon = daemon self.receive_thread.start() def __del__(self): """Closes the local socket.""" self.socket.close() def _receive_thread(self): """Listens for responses from the Tello. Runs as a thread, sets self.response to whatever the Tello last returned. """ while True: try: self.response.recv(self.socket.recv(self.buffer_size)) except Exception as e: print(e) break def empty(self): return self.response.empty() def pop(self): return self.response.pop() class Video(object): def __init__(self, daemon=True): self.video = cv2.VideoCapture('udp://@0.0.0.0:11111') if not self.video.isOpened(): raise RuntimeError('Failed to connect to Tello') self.frame = None self.lock = threading.RLock() self.thread = threading.Thread(target=self._update_thread) self.thread.daemon = daemon self.thread.start() def __del__(self): self.video.release() def _update_thread(self): while True: ok, frame = self.video.read() if ok: with self.lock: self.frame = frame def empty(self): with self.lock: return self.frame is None def pop(self): with self.lock: frame, self.frame = self.frame, None return frame class Tello(object): def __init__(self, local_port=9999, command_timeout=0.35, state=True, video=True): """Connects to Tello in command mode. Args: local_port (int): port of local machine for receiving command response. command_timeout (float): seconds to wait for a response of command. state (bool): receive state from Tello? video (bool): receive video from Tello? Raises: RuntimeError: If the Tello rejects the attempt to enter command mode or open the video stream. """ self.command_timeout = command_timeout self.response_client = Client(local_port, 1024, True, Command()) self.state_client = Client(8890, 1024, True, State()) if state else None self.tello_address = ('192.168.10.1', 8889) self.enter_command_mode() self.video_client = None if video: self.open_video_stream() self.video_client = Video(True) def send_command(self, command, with_return=True): """Sends a command to the Tello and waits for a response. If self.command_timeout is exceeded before a response is received, a RuntimeError exception is raised. Args: command (str): Command to send. Returns: str: Response from Tello. Raises: RuntimeError: If no response is received within self.timeout seconds. """ self.response_client.pop() self.response_client.socket.sendto(command.encode('utf-8'), self.tello_address) if not with_return: return st = time.time() while self.response_client.empty(): if time.time() - st >= self.command_timeout: raise RuntimeError('No response to command') return self.response_client.pop() def state(self): return self.state_client.pop() if self.state_client else None def read_frame(self): if self.video_client is None: raise RuntimeError('Video is not available') while self.video_client.empty(): pass return self.video_client.pop() def enter_command_mode(self): if self.send_command('command') != 'ok': raise RuntimeError('Tello rejected the attempt to enter command mode') def take_off(self): """ return: 'ok' or 'error' """ return self.send_command('takeoff') def land(self): """ return: 'ok' or 'error' """ return self.send_command('land') def open_video_stream(self): if self.send_command('streamon') != 'ok': raise RuntimeError('Tello rejected to open the video stream') def close_video_stream(self): """ return: 'ok' or 'error' """ return self.send_command('streamoff') def emergency_shutdown(self): """ return: 'ok' or 'error' """ return self.send_command('emergency') def move_up(self, x, with_return=False): """ param x: int, [20, 500] param with_return: bool return: 'ok' or 'error' """ return self.send_command('up {}'.format(x), with_return) def move_down(self, x, with_return=False): """ param x: int, [20, 500] param with_return: bool return: 'ok' or 'error' """ return self.send_command('down {}'.format(x), with_return) def move_left(self, x, with_return=False): """ param x: int, [20, 500] param with_return: bool return: 'ok' or 'error' """ return self.send_command('left {}'.format(x), with_return) def move_right(self, x, with_return=False): """ param x: int, [20, 500] param with_return: bool return: 'ok' or 'error' """ return self.send_command('right {}'.format(x), with_return) def move_forward(self, x, with_return=False): """ param x: int, [20, 500] param with_return: bool return: 'ok' or 'error' """ return self.send_command('forward {}'.format(x), with_return) def move_backward(self, x, with_return=False): """ param x: int, [20, 500] param with_return: bool return: 'ok' or 'error' """ return self.send_command('back {}'.format(x), with_return) def rotate_clockwise(self, x, with_return=False): """ param x: int, [1, 3600] param with_return: bool return: 'ok' or 'error' """ return self.send_command('cw {}'.format(x), with_return) def rotate_counter_clockwise(self, x, with_return=False): """ param x: int, [1, 3600] param with_return: bool return: 'ok' or 'error' """ return self.send_command('ccw {}'.format(x), with_return) def flip_left(self, with_return=False): """ param with_return: bool return: 'ok' or 'error' """ return self.send_command('flip l', with_return) def flip_right(self, with_return=False): """ param with_return: bool return: 'ok' or 'error' """ return self.send_command('flip r', with_return) def flip_forward(self, with_return=False): """ param with_return: bool return: 'ok' or 'error' """ return self.send_command('flip f', with_return) def flip_backward(self, with_return=False): """ param with_return: bool return: 'ok' or 'error' """ return self.send_command('flip b', with_return) def goto(self, x, y, z, speed, with_return=False): """ param x: int, [20, 500] param y: int, [20, 500] param z: int, [20, 500] param speed: int, [10-100] param with_return: bool return: 'ok' or 'error' """ return self.send_command('go {} {} {} {}'.format(x, y, z, speed), with_return) def goto_curve(self, x1, y1, z1, x2, y2, z2, speed, with_return=False): """fly a curve defined by (0, 0, 0), (x1, y1, z1), (x2, y2, z2) with speed param x1, x2: int, [-500, 500] param y1, y2: int, [-500, 500] param z1, z2: int, [-500, 500] param speed: int, [10-60] param with_return: bool return: 'ok' or 'error' """ return self.send_command('curve {} {} {} {} {} {} {}'.format(x1, y1, z1, x2, y2, z2, speed), with_return) def set_speed(self, speed, with_return=False): """ param speed: int, [10-100] param with_return: bool return: 'ok' or 'error' """ return self.send_command('speed {}'.format(speed), with_return) def set_remote_controller_command(self, left_right_velocity, forward_backward_velocity, up_down_velocity, rotate_velocity, with_return=False): """ param left_right_velocity: int, [-100, 100] param forward_backward_velocity: int, [-100, 100] param up_down_velocity: int, [-100, 100] param rotate_velocity: int, [-100, 100] param with_return: bool return: 'ok' or 'error' """ return self.send_command('rc {} {} {} {}'.format(left_right_velocity, forward_backward_velocity, up_down_velocity, rotate_velocity), with_return) def get(self, command, split=False): """ param command param split: bool, multiple values? return: int or list(int) """ result = self.send_command(command) if split: return [int(x) for x in result.split(' ')] else: return int(result) def get_speed(self): """ return: int, [10, 100] """ return self.get('speed?') def get_battery(self): """ return: int, [0, 100] """ return self.get('battery?') def get_flight_time(self): """ return: int """ return self.get('time?') def get_relative_height(self): """ return: int, [10, 3000] """ return self.get('height?') def get_temperature(self): """ return: int, [0, 90] """ return self.get('temp?') def get_imu_pose(self): """[pitch, roll, yaw] return: list(int), [[-89, 89], [-179, 179], [-179, 179]] """ return self.get('attitude?', split=True) def get_absolute_height(self): """ return: int """ return self.get('baro?') def get_imu_acceleration(self): """ return: list(int) """ return self.get('acceleration?', split=True) def get_tof_height(self): """ return: int, [10, 400]; 6553: out of bounds """ return self.get('tof?')
[((365, 382), 'threading.RLock', 'threading.RLock', ([], {}), '()\n', (380, 382), False, 'import threading\n'), ((830, 847), 'threading.RLock', 'threading.RLock', ([], {}), '()\n', (845, 847), False, 'import threading\n'), ((1311, 1359), 'socket.socket', 'socket.socket', (['socket.AF_INET', 'socket.SOCK_DGRAM'], {}), '(socket.AF_INET, socket.SOCK_DGRAM)\n', (1324, 1359), False, 'import socket\n'), ((1434, 1479), 'threading.Thread', 'threading.Thread', ([], {'target': 'self._receive_thread'}), '(target=self._receive_thread)\n', (1450, 1479), False, 'import threading\n'), ((2212, 2252), 'cv2.VideoCapture', 'cv2.VideoCapture', (['"""udp://@0.0.0.0:11111"""'], {}), "('udp://@0.0.0.0:11111')\n", (2228, 2252), False, 'import cv2\n'), ((2398, 2415), 'threading.RLock', 'threading.RLock', ([], {}), '()\n', (2413, 2415), False, 'import threading\n'), ((2438, 2482), 'threading.Thread', 'threading.Thread', ([], {'target': 'self._update_thread'}), '(target=self._update_thread)\n', (2454, 2482), False, 'import threading\n'), ((4630, 4641), 'time.time', 'time.time', ([], {}), '()\n', (4639, 4641), False, 'import time\n'), ((4701, 4712), 'time.time', 'time.time', ([], {}), '()\n', (4710, 4712), False, 'import time\n')]
mjuenema/python-terrascript
terrascript/resource/sematext.py
6d8bb0273a14bfeb8ff8e950fe36f97f7c6e7b1d
# terrascript/resource/sematext.py # Automatically generated by tools/makecode.py (24-Sep-2021 15:26:36 UTC) # # For imports without namespace, e.g. # # >>> import terrascript.resource.sematext # # instead of # # >>> import terrascript.resource.sematext.sematext # # This is only available for 'official' and 'partner' providers. from terrascript.resource.sematext.sematext import *
[]
lithium0003/Image2UTF8-Transformer
eval_encoder.py
2620af2a8bdaf332e25b39ce05d610e21e6492fc
#!/usr/bin/env python3 import tensorflow as tf physical_devices = tf.config.list_physical_devices('GPU') try: tf.config.experimental.set_memory_growth(physical_devices[0], True) except: # Invalid device or cannot modify virtual devices once initialized. pass import numpy as np import os, time, csv import tqdm import umap import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import datetime import signal import net from matplotlib import rcParams rcParams['font.family'] = 'sans-serif' rcParams['font.sans-serif'] = ['Hiragino Maru Gothic Pro', 'Yu Gothic', 'Meirio', 'Takao', 'IPAexGothic', 'IPAPGothic', 'Noto Sans CJK JP'] import net class SimpleEncodeDecoder: def __init__(self): self.save_dir = './result/step1/' self.result_dir = './result/plot/' os.makedirs(self.result_dir, exist_ok=True) checkpoint_dir = self.save_dir self.max_epoch = 300 self.steps_per_epoch = 1000 self.batch_size = 64 lr = tf.keras.optimizers.schedules.ExponentialDecay(1e-3, 1e5, 0.5) self.optimizer = tf.keras.optimizers.Adam(lr) self.encoder = net.FeatureBlock() self.encoder.summary() self.decoder = net.SimpleDecoderBlock() self.decoder.summary() inputs = { 'image': tf.keras.Input(shape=(128,128,3)), } feature_out = self.encoder(inputs) outputs = self.decoder(feature_out) self.model = tf.keras.Model(inputs, outputs, name='SimpleEncodeDecoder') checkpoint = tf.train.Checkpoint(optimizer=self.optimizer, model=self.model) last = tf.train.latest_checkpoint(checkpoint_dir) checkpoint.restore(last) self.manager = tf.train.CheckpointManager( checkpoint, directory=checkpoint_dir, max_to_keep=2) if not last is None: self.init_epoch = int(os.path.basename(last).split('-')[1]) print('loaded %d epoch'%self.init_epoch) else: self.init_epoch = 0 self.model.summary() def eval(self): self.data = net.FontData() print("Plot: ", self.init_epoch + 1) acc = self.make_plot(self.data.test_data(self.batch_size), (self.init_epoch + 1)) print('acc', acc) @tf.function def eval_substep(self, inputs): input_data = { 'image': inputs['input'], } feature = self.encoder(input_data) outputs = self.decoder(feature) target_id = inputs['index'] target_id1 = inputs['idx1'] target_id2 = inputs['idx2'] pred_id1 = tf.nn.softmax(outputs['id1'], -1) pred_id2 = tf.nn.softmax(outputs['id2'], -1) return { 'feature': feature, 'pred_id1': pred_id1, 'pred_id2': pred_id2, 'target_id': target_id, 'target_id1': target_id1, 'target_id2': target_id2, } def make_plot(self, test_ds, epoch): result = [] labels = [] with open(os.path.join(self.result_dir,'test_result-%d.txt'%epoch),'w') as txt: correct_count = 0 failed_count = 0 with tqdm.tqdm(total=len(self.data.test_keys)) as pbar: for inputs in test_ds: pred = self.eval_substep(inputs) result += [pred['feature']] labels += [pred['target_id']] for i in range(pred['target_id1'].shape[0]): txt.write('---\n') target = pred['target_id'][i].numpy() txt.write('target: id %d = %s\n'%(target, self.data.glyphs[target-1])) predid1 = np.argmax(pred['pred_id1'][i]) predid2 = np.argmax(pred['pred_id2'][i]) predid = predid1 * 100 + predid2 if predid == 0: txt.write('predict: id %d nothing (p=%f)\n'%(predid, pred['pred_id1'][i][predid1] * pred['pred_id2'][i][predid2])) elif predid > self.data.id_count + 1: txt.write('predict: id %d nothing (p=%f)\n'%(predid, pred['pred_id1'][i][predid1] * pred['pred_id2'][i][predid2])) else: txt.write('predict: id %d = %s (p=%f)\n'%(predid, self.data.glyphs[predid-1], pred['pred_id1'][i][predid1] * pred['pred_id2'][i][predid2])) if target == predid: txt.write('Correct!\n') correct_count += 1 else: txt.write('Failed!\n') failed_count += 1 pbar.update(1) acc = correct_count / (correct_count + failed_count) txt.write('==============\n') txt.write('Correct = %d\n'%correct_count) txt.write('Failed = %d\n'%failed_count) txt.write('accuracy = %f\n'%acc) result = np.concatenate(result) labels = np.concatenate(labels) print('run UMAP') X_reduced = umap.UMAP(metric='cosine').fit_transform(result) fig, ax = plt.subplots(figsize=(50, 50)) ax.scatter(X_reduced[:, 0], X_reduced[:, 1], c=labels, cmap=plt.get_cmap('hsv')) print('plot UMAP') for i, label in enumerate(labels): ax.annotate(self.data.glyphs[label-1], (X_reduced[i,0], X_reduced[i,1])) plt.savefig(os.path.join(self.result_dir,'test_result-%d.png'%epoch), dpi=300) plt.close('all') return acc def eval(): encoder = SimpleEncodeDecoder() encoder.eval() if __name__ == '__main__': eval()
[((67, 105), 'tensorflow.config.list_physical_devices', 'tf.config.list_physical_devices', (['"""GPU"""'], {}), "('GPU')\n", (98, 105), True, 'import tensorflow as tf\n'), ((355, 376), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (369, 376), False, 'import matplotlib\n'), ((115, 182), 'tensorflow.config.experimental.set_memory_growth', 'tf.config.experimental.set_memory_growth', (['physical_devices[0]', '(True)'], {}), '(physical_devices[0], True)\n', (155, 182), True, 'import tensorflow as tf\n'), ((820, 863), 'os.makedirs', 'os.makedirs', (['self.result_dir'], {'exist_ok': '(True)'}), '(self.result_dir, exist_ok=True)\n', (831, 863), False, 'import os, time, csv\n'), ((1012, 1080), 'tensorflow.keras.optimizers.schedules.ExponentialDecay', 'tf.keras.optimizers.schedules.ExponentialDecay', (['(0.001)', '(100000.0)', '(0.5)'], {}), '(0.001, 100000.0, 0.5)\n', (1058, 1080), True, 'import tensorflow as tf\n'), ((1100, 1128), 'tensorflow.keras.optimizers.Adam', 'tf.keras.optimizers.Adam', (['lr'], {}), '(lr)\n', (1124, 1128), True, 'import tensorflow as tf\n'), ((1153, 1171), 'net.FeatureBlock', 'net.FeatureBlock', ([], {}), '()\n', (1169, 1171), False, 'import net\n'), ((1226, 1250), 'net.SimpleDecoderBlock', 'net.SimpleDecoderBlock', ([], {}), '()\n', (1248, 1250), False, 'import net\n'), ((1475, 1534), 'tensorflow.keras.Model', 'tf.keras.Model', (['inputs', 'outputs'], {'name': '"""SimpleEncodeDecoder"""'}), "(inputs, outputs, name='SimpleEncodeDecoder')\n", (1489, 1534), True, 'import tensorflow as tf\n'), ((1556, 1619), 'tensorflow.train.Checkpoint', 'tf.train.Checkpoint', ([], {'optimizer': 'self.optimizer', 'model': 'self.model'}), '(optimizer=self.optimizer, model=self.model)\n', (1575, 1619), True, 'import tensorflow as tf\n'), ((1664, 1706), 'tensorflow.train.latest_checkpoint', 'tf.train.latest_checkpoint', (['checkpoint_dir'], {}), '(checkpoint_dir)\n', (1690, 1706), True, 'import tensorflow as tf\n'), ((1763, 1842), 'tensorflow.train.CheckpointManager', 'tf.train.CheckpointManager', (['checkpoint'], {'directory': 'checkpoint_dir', 'max_to_keep': '(2)'}), '(checkpoint, directory=checkpoint_dir, max_to_keep=2)\n', (1789, 1842), True, 'import tensorflow as tf\n'), ((2131, 2145), 'net.FontData', 'net.FontData', ([], {}), '()\n', (2143, 2145), False, 'import net\n'), ((2642, 2675), 'tensorflow.nn.softmax', 'tf.nn.softmax', (["outputs['id1']", '(-1)'], {}), "(outputs['id1'], -1)\n", (2655, 2675), True, 'import tensorflow as tf\n'), ((2695, 2728), 'tensorflow.nn.softmax', 'tf.nn.softmax', (["outputs['id2']", '(-1)'], {}), "(outputs['id2'], -1)\n", (2708, 2728), True, 'import tensorflow as tf\n'), ((5079, 5101), 'numpy.concatenate', 'np.concatenate', (['result'], {}), '(result)\n', (5093, 5101), True, 'import numpy as np\n'), ((5119, 5141), 'numpy.concatenate', 'np.concatenate', (['labels'], {}), '(labels)\n', (5133, 5141), True, 'import numpy as np\n'), ((5256, 5286), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(50, 50)'}), '(figsize=(50, 50))\n', (5268, 5286), True, 'import matplotlib.pyplot as plt\n'), ((5636, 5652), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (5645, 5652), True, 'import matplotlib.pyplot as plt\n'), ((1322, 1357), 'tensorflow.keras.Input', 'tf.keras.Input', ([], {'shape': '(128, 128, 3)'}), '(shape=(128, 128, 3))\n', (1336, 1357), True, 'import tensorflow as tf\n'), ((5561, 5620), 'os.path.join', 'os.path.join', (['self.result_dir', "('test_result-%d.png' % epoch)"], {}), "(self.result_dir, 'test_result-%d.png' % epoch)\n", (5573, 5620), False, 'import os, time, csv\n'), ((3068, 3127), 'os.path.join', 'os.path.join', (['self.result_dir', "('test_result-%d.txt' % epoch)"], {}), "(self.result_dir, 'test_result-%d.txt' % epoch)\n", (3080, 3127), False, 'import os, time, csv\n'), ((5189, 5215), 'umap.UMAP', 'umap.UMAP', ([], {'metric': '"""cosine"""'}), "(metric='cosine')\n", (5198, 5215), False, 'import umap\n'), ((5355, 5374), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['"""hsv"""'], {}), "('hsv')\n", (5367, 5374), True, 'import matplotlib.pyplot as plt\n'), ((3754, 3784), 'numpy.argmax', 'np.argmax', (["pred['pred_id1'][i]"], {}), "(pred['pred_id1'][i])\n", (3763, 3784), True, 'import numpy as np\n'), ((3819, 3849), 'numpy.argmax', 'np.argmax', (["pred['pred_id2'][i]"], {}), "(pred['pred_id2'][i])\n", (3828, 3849), True, 'import numpy as np\n'), ((1923, 1945), 'os.path.basename', 'os.path.basename', (['last'], {}), '(last)\n', (1939, 1945), False, 'import os, time, csv\n')]
SimonZsx/clipper
clipper_admin/clipper_admin/clipper_admin.py
457088be2ebe68c68b94d90389d1308e35b4c844
from __future__ import absolute_import, division, print_function import logging import docker import tempfile import requests from requests.exceptions import RequestException import json import pprint import time import re import os import tarfile import sys from cloudpickle import CloudPickler import pickle import numpy as np from google.protobuf.json_format import MessageToDict if sys.version_info < (3, 0): try: from cStringIO import StringIO except ImportError: from StringIO import StringIO PY3 = False else: from io import BytesIO as StringIO PY3 = True import grpc from .rpc import model_pb2_grpc from .rpc import model_pb2 from .rpc import prediction_pb2_grpc from .rpc import prediction_pb2 from .rpc import management_pb2 from .rpc import management_pb2_grpc from .container_manager import CONTAINERLESS_MODEL_IMAGE, ClusterAdapter from .exceptions import ClipperException, UnconnectedException from .version import __version__, __registry__ from . import graph_parser DEFAULT_LABEL = [] DEFAULT_PREDICTION_CACHE_SIZE_BYTES = 33554432 CLIPPER_TEMP_DIR = "/tmp/clipper" # Used Internally for Test; Not Windows Compatible logging.basicConfig( format='%(asctime)s %(levelname)-8s %(message)s', datefmt='%y-%m-%d:%H:%M:%S', level=logging.INFO) # logging.basicConfig( # format='%(asctime)s %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s', # datefmt='%y-%m-%d:%H:%M:%S', # level=logging.INFO) logger = logging.getLogger(__name__) deploy_regex_str = "[a-z0-9]([-a-z0-9]*[a-z0-9])?\Z" deployment_regex = re.compile(deploy_regex_str) def _validate_versioned_model_name(name, version): if deployment_regex.match(name) is None: raise ClipperException( "Invalid value: {name}: a model name must be a valid DNS-1123 " " subdomain. It must consist of lower case " "alphanumeric characters, '-' or '.', and must start and end with " "an alphanumeric character (e.g. 'example.com', regex used for " "validation is '{reg}'".format(name=name, reg=deploy_regex_str)) if deployment_regex.match(version) is None: raise ClipperException( "Invalid value: {version}: a model version must be a valid DNS-1123 " " subdomain. It must consist of lower case " "alphanumeric characters, '-' or '.', and must start and end with " "an alphanumeric character (e.g. 'example.com', regex used for " "validation is '{reg}'".format( version=version, reg=deploy_regex_str)) class ClipperConnection(object): def __init__(self, container_manager): self.connected = False self.cm = container_manager #############TEST################ self.runtime_dag = "" self.lock = False ################################# self.logger = ClusterAdapter(logger, { 'cluster_name': self.cm.cluster_identifier }) def start_clipper(self, mgmt_frontend_image='{}/management_frontend:{}'.format( __registry__, __version__), cache_size=DEFAULT_PREDICTION_CACHE_SIZE_BYTES): try: self.cm.start_clipper(mgmt_frontend_image) # while True: # try: # query_frontend_url = "http://{host}/metrics".format( # host=self.cm.get_query_addr()) # mgmt_frontend_url = "http://{host}/admin/ping".format( # host=self.cm.get_admin_addr()) # for name, url in [('query frontend', query_frontend_url), # ('management frontend', mgmt_frontend_url)]: # r = requests.get(url, timeout=5) # if r.status_code != requests.codes.ok: # raise RequestException( # "{name} end point {url} health check failed".format(name=name, url=url)) # break # except RequestException as e: # self.logger.info("Clipper still initializing: \n {}".format(e)) # time.sleep(1) self.logger.info("Clipper is running") self.connected = True except ClipperException as e: self.logger.warning("Error starting Clipper: {}".format(e.msg)) raise e def connect(self): """Connect to a running Clipper cluster.""" self.cm.connect() self.connected = True self.logger.info( "Successfully connected to Clipper cluster at {}".format( self.cm.get_query_addr())) def build_and_deploy_DAG(self, name, version, dag_description, labels): if not self.connected: raise UnconnectedException() def build_and_deploy_model(self, name, version, input_type, model_data_path, base_image, labels=None, container_registry=None, num_replicas=1, batch_size=-1, pkgs_to_install=None): if not self.connected: raise UnconnectedException() image = self.build_model(name, version, model_data_path, base_image, container_registry, pkgs_to_install) self.deploy_model(name, version, input_type, image, labels, num_replicas, batch_size) def build_model(self, name, version, model_data_path, base_image, container_registry=None, pkgs_to_install=None): version = str(version) _validate_versioned_model_name(name, version) run_cmd = '' if pkgs_to_install: run_as_lst = 'RUN apt-get -y install build-essential && pip install'.split( ' ') run_cmd = ' '.join(run_as_lst + pkgs_to_install) with tempfile.NamedTemporaryFile( mode="w+b", suffix="tar") as context_file: # Create build context tarfile with tarfile.TarFile( fileobj=context_file, mode="w") as context_tar: context_tar.add(model_data_path) # From https://stackoverflow.com/a/740854/814642 try: df_contents = StringIO( str.encode( "FROM {container_name}\n{run_command}\nCOPY {data_path} /model/\n". format( container_name=base_image, data_path=model_data_path, run_command=run_cmd))) df_tarinfo = tarfile.TarInfo('Dockerfile') df_contents.seek(0, os.SEEK_END) df_tarinfo.size = df_contents.tell() df_contents.seek(0) context_tar.addfile(df_tarinfo, df_contents) except TypeError: df_contents = StringIO( "FROM {container_name}\n{run_command}\nCOPY {data_path} /model/\n". format( container_name=base_image, data_path=model_data_path, run_command=run_cmd)) df_tarinfo = tarfile.TarInfo('Dockerfile') df_contents.seek(0, os.SEEK_END) df_tarinfo.size = df_contents.tell() df_contents.seek(0) context_tar.addfile(df_tarinfo, df_contents) # Exit Tarfile context manager to finish the tar file # Seek back to beginning of file for reading context_file.seek(0) image = "{cluster}-{name}:{version}".format( cluster=self.cm.cluster_identifier, name=name, version=version) if container_registry is not None: image = "{reg}/{image}".format( reg=container_registry, image=image) docker_client = docker.from_env() self.logger.info( "Building model Docker image with model data from {}".format( model_data_path)) image_result, build_logs = docker_client.images.build( fileobj=context_file, custom_context=True, tag=image) for b in build_logs: if 'stream' in b and b['stream'] != '\n': #log build steps only self.logger.info(b['stream'].rstrip()) self.logger.info("Pushing model Docker image to {}".format(image)) for line in docker_client.images.push(repository=image, stream=True): self.logger.debug(line) return image def deploy_model(self, name, version, input_type, image, labels=None, num_replicas=1, batch_size=-1): if not self.connected: raise UnconnectedException() version = str(version) _validate_versioned_model_name(name, version) self.cm.deploy_model( name=name, version=version, input_type=input_type, image=image, num_replicas=num_replicas) # self.register_model( # name, # version, # input_type, # image=image, # labels=labels, # batch_size=batch_size) self.logger.info("Done deploying model {name}:{version}.".format( name=name, version=version)) def connect_host(self, host_ip, host_port): self.cm.connect_host(host_ip, "2375") def add_model(self, model_name, model_version, image, input_type="string", output_type="string", stateful=False): modelinfo = management_pb2.ModelInfo(modelname=model_name, modelversion=model_version, image=image, inputtype=input_type, outputtype=output_type, stateful=stateful).SerializeToString() self.cm.grpc_client("zsxhku/grpcclient", "--addmodel %s %s %s "%("localhost","33333", modelinfo)) return def deploy_DAG(self, name, version, dag_description=None, runtime=""): if not self.connected: raise UnconnectedException() # model_info = self.get_all_models() dag_description_ = dag_description #self.logger.info("dag_description: %s"%(dag_description_)) #if(dag_description==None): # dag_description_=self.get_dag_description() nodes_list = graph_parser.get_all_nodes(dag_description_) container_info = [] proxy_info = [] backup_info = [] count = 1 for model_info in nodes_list: model_name,model_version,model_image = graph_parser.get_name_version(model_info) container_name, container_id, host = self.cm.add_replica(model_name, model_version, "22222", model_image, runtime=runtime) self.logger.info("Started %s with container %s:%s (HOST:%s)"%(model_name, container_name, container_id, host)) container_ip = self.cm.get_container_ip(host, container_id) proxy_name, proxy_id = self.cm.set_proxy("mxschen/ai-proxy:latest", container_name, container_ip, host) ## get the ip of the instances proxy_ip = self.cm.get_container_ip(host, proxy_id) proxy_info.append([proxy_name,proxy_id,proxy_ip]) container_info.append([container_name, container_id, container_ip]) if graph_parser.is_stateful(model_info): backup_name, backup_id, backup_host = self.cm.add_replica(model_name, model_version, "22222", model_image) self.logger.info("[Backup] Started %s with container %s:%s (HOST:%s)"%(model_name, backup_name, backup_id, backup_host)) backup_ip = self.cm.get_container_ip(backup_host, backup_id) backup_proxy_name, backup_proxy_id = self.cm.set_proxy("mxschen/ai-proxy:latest", backup_name, backup_ip, backup_host) backup_proxy_ip= self.cm.get_container_ip(backup_host, backup_proxy_id) backup_info.append([backup_name, backup_id, backup_ip, backup_proxy_name, backup_proxy_id, backup_proxy_ip]) else: backup_info.append([]) #self.cm.check_container_status(host, container_id, 0.3, 20) #self.cm.check_container_status(host, proxy_id, 0.3, 20) #time.sleep(25) #self.logger.info("proxy_ip:%s"%(proxy_ip)) self.cm.grpc_client("zsxhku/grpcclient", "--setmodel %s %s %s %s %s %s"%(proxy_ip, "22223", container_name, count, container_ip, "22222" )) self.logger.info('[DEPLOYMENT] Finished setting model info to proxy') if(graph_parser.is_stateful(model_info)): self.cm.grpc_client("zsxhku/grpcclient", "--setmodel %s %s %s %s %s %s"%(backup_info[-1][-1], "22223", backup_info[-1][0], count, backup_info[-1][2], "22222" )) self.logger.info('[DEPLOYMENT][Backup] Finished setting model info to proxy') count += 1 # self.cm.grpc_client("zsxhku/grpcclient", "--setproxy %s %s %s %s"%(container_ip, "22222", proxy_name, "22223")) # self.logger.info('[DEPLOYMENT] Finished setting proxy info to model') # if(graph_parser.is_stateful(model_info)): # self.cm.grpc_client("zsxhku/grpcclient", "--setproxy %s %s %s %s"%(backup_info[-1][2], "22222", backup_info[-1][3], "22223")) # self.logger.info('[DEPLOYMENT][Backup] Finished setting proxy info to model') runtime_dag_id = name+version+str(1) ## Starting frontend frontend_name, frontend_container_id = self.cm.add_frontend("localhost", "mxschen/frontend",runtime_dag_id, proxy_info[0][2], "22223", max_workers=2048) frontend_ip = self.cm.get_container_ip("localhost", frontend_container_id) frontend_info = [frontend_name, frontend_container_id, frontend_ip] self.logger.info("[DEPLOYMENT] ################ Started Frontend #################") #expand the dag description with the model/proxy instances info expanded_dag = graph_parser.expand_dag(dag_description_, name, version, container_info, proxy_info, backup_info, frontend_info) self.runtime_dag = expanded_dag # TODO: need to modularize self.cm.grpc_client("zsxhku/grpcclient", "--addruntimedag %s %s %s %s %s %s %s"%('1', name, version, 'old' , self.cm.admin_ip, self.cm.admin_port, expanded_dag)) self.logger.info("Added new runtime DAG to admin daemon\n%s"%(expanded_dag)) #tells the proxy runtime dag info for tup in proxy_info: proxy_name = tup[0] proxy_id = tup[1] proxy_ip = tup[2] self.cm.grpc_client("zsxhku/grpcclient", "--setdag %s %s %s"%(proxy_ip, "22223", expanded_dag)) self.logger.info('[DEPLOYMENT] Finished setting DAG for proxy {proxy_name} '.format(proxy_name=proxy_name)) #tells the backups runtime dag info for tup in backup_info: if tup: self.cm.grpc_client("zsxhku/grpcclient", "--setdag %s %s %s"%(tup[-1], "22223", expanded_dag)) self.logger.info('[DEPLOYMENT][Backup] Finished setting DAG for proxy {proxy_name} '.format(proxy_name=tup[-1])) return def inspect_instance(self): """Fetches performance metrics from the running Clipper cluster. Returns ------- str The JSON string containing the current set of metrics for this instance. On error, the string will be an error message (not JSON formatted). Raises ------ :py:exc:`clipper.UnconnectedException` :py:exc:`clipper.ClipperException` """ def get_query_addr(self): """Get the IP address at which the query frontend can be reached request predictions. Returns ------- str The address as an IP address or hostname. Raises ------ :py:exc:`clipper.UnconnectedException` versions. All replicas for each version of each model will be stopped. """ if not self.connected: raise UnconnectedException() return self.cm.get_query_addr() def stop_models(self, model_names): """Stops all versions of the specified models. This is a convenience method to avoid the need to explicitly list all versions of a model when calling :py:meth:`clipper_admin.ClipperConnection.stop_versioned_models`. Parameters ---------- model_names : list(str) A list of model names. All replicas of all versions of each model specified in the list will be stopped. Raises ------ :py:exc:`clipper.UnconnectedException` versions. All replicas for each version of each model will be stopped. """ # if not self.connected: # raise UnconnectedException() # model_info = self.get_all_models(verbose=True) # model_dict = {} # for m in model_info: # if m["model_name"] in model_names: # if m["model_name"] in model_dict: # model_dict[m["model_name"]].append(m["model_version"]) # else: # model_dict[m["model_name"]] = [m["model_version"]] # self.cm.stop_models(model_dict) # pp = pprint.PrettyPrinter(indent=4) # self.logger.info( # "Stopped all containers for these models and versions:\n{}".format( # pp.pformat(model_dict))) def stop_versioned_models(self, model_versions_dict): """Stops the specified versions of the specified models. Parameters ---------- model_versions_dict : dict(str, list(str)) For each entry in the dict, the key is a model name and the value is a list of model Raises ------ :py:exc:`clipper.UnconnectedException` versions. All replicas for each version of each model will be stopped. Note ---- This method will stop the currently deployed versions of models if you specify them. You almost certainly want to use one of the other stop_* methods. Use with caution. """ # if not self.connected: # raise UnconnectedException() # self.cm.stop_models(model_versions_dict) # pp = pprint.PrettyPrinter(indent=4) # self.logger.info( # "Stopped all containers for these models and versions:\n{}".format( # pp.pformat(model_versions_dict))) def stop_inactive_model_versions(self, model_names): """Stops all model containers serving stale versions of the specified models. For example, if you have deployed versions 1, 2, and 3 of model "music_recommender" and version 3 is the current version:: clipper_conn.stop_inactive_model_versions(["music_recommender"]) will stop any containers serving versions 1 and 2 but will leave containers serving version 3 untouched. Parameters ---------- model_names : list(str) The names of the models whose old containers you want to stop. Raises ------ :py:exc:`clipper.UnconnectedException` """ # if not self.connected: # raise UnconnectedException() # model_info = self.get_all_models(verbose=True) # model_dict = {} # for m in model_info: # if m["model_name"] in model_names and not m["is_current_version"]: # if m["model_name"] in model_dict: # model_dict[m["model_name"]].append(m["model_version"]) # else: # model_dict[m["model_name"]] = [m["model_version"]] # self.cm.stop_models(model_dict) # pp = pprint.PrettyPrinter(indent=4) # self.logger.info( # "Stopped all containers for these models and versions:\n{}".format( # pp.pformat(model_dict))) def stop_all_model_containers(self): """Stops all model containers started via Clipper admin commands. This method can be used to clean up leftover Clipper model containers even if the Clipper management frontend or Redis has crashed. It can also be called without calling ``connect`` first. """ self.cm.stop_all_model_containers() self.logger.info("Stopped all Clipper model containers") def stop_all(self, graceful=True): """Stops all processes that were started via Clipper admin commands. This includes the query and management frontend Docker containers and all model containers. If you started Redis independently, this will not affect Redis. It can also be called without calling ``connect`` first. If graceful=False, Clipper will issue Docker Kill if it's in the Docker Mode. This parameter will take not effect in Kubernetes. """ self.cm.stop_all(graceful=graceful) self.logger.info( "Stopped all Clipper cluster and all model containers")
[((1180, 1302), 'logging.basicConfig', 'logging.basicConfig', ([], {'format': '"""%(asctime)s %(levelname)-8s %(message)s"""', 'datefmt': '"""%y-%m-%d:%H:%M:%S"""', 'level': 'logging.INFO'}), "(format='%(asctime)s %(levelname)-8s %(message)s',\n datefmt='%y-%m-%d:%H:%M:%S', level=logging.INFO)\n", (1199, 1302), False, 'import logging\n'), ((1489, 1516), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (1506, 1516), False, 'import logging\n'), ((1590, 1618), 're.compile', 're.compile', (['deploy_regex_str'], {}), '(deploy_regex_str)\n', (1600, 1618), False, 'import re\n'), ((6449, 6502), 'tempfile.NamedTemporaryFile', 'tempfile.NamedTemporaryFile', ([], {'mode': '"""w+b"""', 'suffix': '"""tar"""'}), "(mode='w+b', suffix='tar')\n", (6476, 6502), False, 'import tempfile\n'), ((8593, 8610), 'docker.from_env', 'docker.from_env', ([], {}), '()\n', (8608, 8610), False, 'import docker\n'), ((6597, 6644), 'tarfile.TarFile', 'tarfile.TarFile', ([], {'fileobj': 'context_file', 'mode': '"""w"""'}), "(fileobj=context_file, mode='w')\n", (6612, 6644), False, 'import tarfile\n'), ((7235, 7264), 'tarfile.TarInfo', 'tarfile.TarInfo', (['"""Dockerfile"""'], {}), "('Dockerfile')\n", (7250, 7264), False, 'import tarfile\n'), ((7875, 7904), 'tarfile.TarInfo', 'tarfile.TarInfo', (['"""Dockerfile"""'], {}), "('Dockerfile')\n", (7890, 7904), False, 'import tarfile\n')]
VaniSHadow/tpGenerator
graph.py
2a2e0a65df48c812d9fa2e2b1474573c6a6ab6c0
import random import numpy import copy class Graph: """n表示图中点的个数,m表示图中边的个数""" def __init__(self, n, m, edge_weight=1, directed=True, connected='weak', loop=False, weighted=False, trim=True): """ n 图中点的个数 m 图中边的个数 edge_weight 边的权值上限 directed 有向性 connected 连通性 loop 有环性 weighted 带权性 trim True:点编号从1开始 False:点编号从0开始 """ self.directed = directed self.weighted = weighted self.connected = connected self.loop = loop self.trim = trim if directed==True and connected=='weak' and loop==False:#弱连通有向无环 self.n = n self.m = m self.matr = numpy.zeros((n, n)) self.topo = list(range(n)) random.shuffle(self.topo) self.RandomGenerTopoEdges(m-(n-1)) weak_connected = self.CheckWeakConnectivity() if weak_connected: self.RandomGenerTopoEdges(n-1) else: count = 0 for i in range(n-1): if self.matr[self.topo[i]][self.topo[i+1]]!=1: self.matr[self.topo[i]][self.topo[i+1]]=1 count = count+1 self.RandomGenerTopoEdges(n-1-count) self.edges = list() for i in range(n): for j in range(n): if self.matr[i][j]==1: e = (i, j) self.edges.append(e) """检查图的弱连通性""" def CheckWeakConnectivity(self): temp = copy.deepcopy(self.matr) for i in range(self.n): for j in range(self.n): if temp[i][j]==1: temp[j][i]=1 elif temp[j][i]==1: temp[i][j]=1 for i in range(self.n-1): if i==0: result = temp.dot(temp) else: result = result.dot(temp) for i in range(self.n): for j in range(self.n): if result[i][j]==0 and i!=j: return False return True """在图中随机生成edge_num条边""" def RandomGenerTopoEdges(self, edge_num): for i in range(edge_num): mid = random.randint(1, self.n-2) st = random.randint(0, mid) end = random.randint(mid+1, self.n-1) while self.matr[self.topo[st]][self.topo[end]] != 0: mid = random.randint(1, self.n-2) st = random.randint(0, mid) end = random.randint(mid+1, self.n-1) self.matr[self.topo[st]][self.topo[end]] = 1 """以字符串返回第i条边的信息""" def GetEdge(self, i): if self.trim:#点从1开始 if self.weighted == False: return str(self.edges[i][0]+1) + " " + str(self.edges[i][1]+1) else: return str(self.edges[i][0]+1) + " " + str(self.edges[i][1]+1) + random.randint(1, edge_weight) else:#点从0开始 if self.weighted == False: return str(self.edges[i][0]) + " " + str(self.edges[i][1]) else: return str(self.edges[i][0]) + " " + str(self.edges[i][1]) + random.randint(1, edge_weight)
[]
AlexSkrn/csv2googlesheets
csv2googlesheets/to_google_sheets.py
71656dcc6827b1c58ffe80bc55aa6f1ee816f216
"""This module provides a console interface to convert CSV to Google Sheets.""" from csv2googlesheets.gapi_authorization import auth_with_google from csv2googlesheets.gapi_create_sheet import create_sheet from csv2googlesheets.gapi_write_to_sheet import write_to_sheet from csv2googlesheets.parse_file import build_spreadsheet_title from csv2googlesheets.parse_file import parse_file from csv2googlesheets.parse_cli_args import parse_cli_args def main(): """Control the flow of operations to write data from csv to G Sheets.""" cli_args = parse_cli_args() values = parse_file(path=cli_args.csv) spreadsheet_title = build_spreadsheet_title(cli_args.csv) google_service = auth_with_google(path_creds=cli_args.credentials_json) spreadsheet_id = create_sheet(google_service, spreadsheet_title) write_to_sheet( google_service, sheet_id=spreadsheet_id, values=values, ) if __name__ == '__main__': main()
[((551, 567), 'csv2googlesheets.parse_cli_args.parse_cli_args', 'parse_cli_args', ([], {}), '()\n', (565, 567), False, 'from csv2googlesheets.parse_cli_args import parse_cli_args\n'), ((581, 610), 'csv2googlesheets.parse_file.parse_file', 'parse_file', ([], {'path': 'cli_args.csv'}), '(path=cli_args.csv)\n', (591, 610), False, 'from csv2googlesheets.parse_file import parse_file\n'), ((635, 672), 'csv2googlesheets.parse_file.build_spreadsheet_title', 'build_spreadsheet_title', (['cli_args.csv'], {}), '(cli_args.csv)\n', (658, 672), False, 'from csv2googlesheets.parse_file import build_spreadsheet_title\n'), ((695, 749), 'csv2googlesheets.gapi_authorization.auth_with_google', 'auth_with_google', ([], {'path_creds': 'cli_args.credentials_json'}), '(path_creds=cli_args.credentials_json)\n', (711, 749), False, 'from csv2googlesheets.gapi_authorization import auth_with_google\n'), ((771, 818), 'csv2googlesheets.gapi_create_sheet.create_sheet', 'create_sheet', (['google_service', 'spreadsheet_title'], {}), '(google_service, spreadsheet_title)\n', (783, 818), False, 'from csv2googlesheets.gapi_create_sheet import create_sheet\n'), ((824, 894), 'csv2googlesheets.gapi_write_to_sheet.write_to_sheet', 'write_to_sheet', (['google_service'], {'sheet_id': 'spreadsheet_id', 'values': 'values'}), '(google_service, sheet_id=spreadsheet_id, values=values)\n', (838, 894), False, 'from csv2googlesheets.gapi_write_to_sheet import write_to_sheet\n')]
nfco/netforce
netforce_account/netforce_account/migrations/credit_remain_cur.py
35252eecd0a6633ab9d82162e9e3ff57d4da029a
from netforce.model import get_model from netforce import migration from netforce import database class Migration(migration.Migration): _name="account.credit_remain_cur" _version="2.5.0" def migrate(self): db=database.get_connection() db.execute("UPDATE account_invoice SET amount_credit_remain_cur=amount_credit_remain WHERE amount_credit_remain_cur IS NULL AND amount_credit_remain IS NOT NULL") Migration.register()
[((231, 256), 'netforce.database.get_connection', 'database.get_connection', ([], {}), '()\n', (254, 256), False, 'from netforce import database\n')]
chevah/compat
chevah/compat/testing/testcase.py
d22e5f551a628f8a1652c9f2eea306e17930cb8f
# -*- coding: utf-8 -*- # Copyright (c) 2011 Adi Roiban. # See LICENSE for details. """ TestCase used for Chevah project. """ from __future__ import print_function from __future__ import division from __future__ import absolute_import from six import text_type from six.moves import range import contextlib import inspect import threading import os import platform import socket import sys import time from bunch import Bunch from mock import patch, Mock from nose import SkipTest try: from twisted.internet.defer import Deferred from twisted.internet.posixbase import ( _SocketWaker, _UnixWaker, _SIGCHLDWaker ) from twisted.python.failure import Failure except ImportError: # Twisted support is optional. _SocketWaker = None _UnixWaker = None _SIGCHLDWaker = None from chevah.compat import ( DefaultAvatar, LocalFilesystem, process_capabilities, system_users, SuperAvatar, ) from chevah.compat.administration import os_administration from chevah.compat.testing.assertion import AssertionMixin from chevah.compat.testing.mockup import mk from chevah.compat.testing.constant import ( TEST_NAME_MARKER, ) from chevah.compat.testing.filesystem import LocalTestFilesystem # For Python below 2.7 we use the separate unittest2 module. # It comes by default in Python 2.7. if sys.version_info[0:2] < (2, 7): from unittest2 import TestCase # Shut up you linter. TestCase else: from unittest import TestCase try: # Import reactor last in case some other modules are changing the reactor. from twisted.internet import reactor except ImportError: reactor = None def _get_hostname(): """ Return hostname as resolved by default DNS resolver. """ return socket.gethostname() class TwistedTestCase(TestCase): """ Test case for Twisted specific code. Provides support for running deferred and start/stop the reactor during tests. """ # Number of second to wait for a deferred to have a result. DEFERRED_TIMEOUT = 1 # List of names for delayed calls which should not be considered as # required to wait for them when running the reactor. EXCEPTED_DELAYED_CALLS = [] EXCEPTED_READERS = [ _UnixWaker, _SocketWaker, _SIGCHLDWaker, ] # Scheduled event to stop waiting for a deferred. _reactor_timeout_call = None def setUp(self): super(TwistedTestCase, self).setUp() self._timeout_reached = False self._reactor_timeout_failure = None @property def _caller_success_member(self): """ Retrieve the 'success' member from the None test case. """ success = None for i in range(2, 6): try: success = inspect.stack()[i][0].f_locals['success'] break except KeyError: success = None if success is None: raise AssertionError('Failed to find "success" attribute.') return success def tearDown(self): try: if self._caller_success_member: # Check for a clean reactor at shutdown, only if test # passed. self.assertIsNone(self._reactor_timeout_failure) self._assertReactorIsClean() finally: self._cleanReactor() super(TwistedTestCase, self).tearDown() def _reactorQueueToString(self): """ Return a string representation of all delayed calls from reactor queue. """ result = [] for delayed in reactor.getDelayedCalls(): # noqa:cover result.append(text_type(delayed.func)) return '\n'.join(result) def _threadPoolQueue(self): """ Return current tasks of thread Pool, or [] when threadpool does not exists. This should only be called at cleanup as it removes elements from the Twisted thread queue, which will never be called. """ if not reactor.threadpool: return [] result = [] while len(reactor.threadpool._team._pending): result.append(reactor.threadpool._team._pending.pop()) return result def _threadPoolThreads(self): """ Return current threads from pool, or empty list when threadpool does not exists. """ if not reactor.threadpool: return [] else: return reactor.threadpool.threads def _threadPoolWorking(self): """ Return working thread from pool, or empty when threadpool does not exists or has no job. """ if not reactor.threadpool: return [] else: return reactor.threadpool.working @classmethod def _cleanReactor(cls): """ Remove all delayed calls, readers and writers from the reactor. This is only for cleanup purpose and should not be used by normal tests. """ if not reactor: return try: reactor.removeAll() except (RuntimeError, KeyError): # FIXME:863: # When running threads tests the reactor touched from the test # case itself which run in one tread and from the fixtures/cleanup # code which is executed from another thread. # removeAll might fail since it detects that internal state # is changed from other source. pass reactor.threadCallQueue = [] for delayed_call in reactor.getDelayedCalls(): try: delayed_call.cancel() except (ValueError, AttributeError): # AlreadyCancelled and AlreadyCalled are ValueError. # Might be canceled from the separate thread. # AttributeError can occur when we do multi-threading. pass def _raiseReactorTimeoutError(self, timeout): """ Signal an timeout error while executing the reactor. """ self._timeout_reached = True failure = AssertionError( 'Reactor took more than %.2f seconds to execute.' % timeout) self._reactor_timeout_failure = failure def _initiateTestReactor(self, timeout): """ Do the steps required to initiate a reactor for testing. """ self._timeout_reached = False # Set up timeout. self._reactor_timeout_call = reactor.callLater( timeout, self._raiseReactorTimeoutError, timeout) # Don't start the reactor if it is already started. # This can happen if we prevent stop in a previous run. if reactor._started: return reactor._startedBefore = False reactor._started = False reactor._justStopped = False reactor.startRunning() def _iterateTestReactor(self, debug=False): """ Iterate the reactor. """ reactor.runUntilCurrent() if debug: # noqa:cover # When debug is enabled with iterate using a small delay in steps, # to have a much better debug output. # Otherwise the debug messages will flood the output. print ( u'delayed: %s\n' u'threads: %s\n' u'writers: %s\n' u'readers: %s\n' u'threadpool size: %s\n' u'threadpool threads: %s\n' u'threadpool working: %s\n' u'\n' % ( self._reactorQueueToString(), reactor.threadCallQueue, reactor.getWriters(), reactor.getReaders(), reactor.getThreadPool().q.qsize(), self._threadPoolThreads(), self._threadPoolWorking(), ) ) t2 = reactor.timeout() # For testing we want to force to reactor to wake at an # interval of at most 1 second. if t2 is None or t2 > 1: t2 = 0.1 t = reactor.running and t2 reactor.doIteration(t) else: # FIXME:4428: # When not executed in debug mode, some test will fail as they # will not spin the reactor. # To not slow down all the tests, we run with a very small value. reactor.doIteration(0.000001) def _shutdownTestReactor(self, prevent_stop=False): """ Called at the end of a test reactor run. When prevent_stop=True, the reactor will not be stopped. """ if not self._timeout_reached: # Everything fine, disable timeout. if ( self._reactor_timeout_call and not self._reactor_timeout_call.cancelled ): self._reactor_timeout_call.cancel() if prevent_stop: # Don't continue with stop procedure. return # Let the reactor know that we want to stop reactor. reactor.stop() # Let the reactor run one more time to execute the stop code. reactor.iterate() # Set flag to fake a clean reactor. reactor._startedBefore = False reactor._started = False reactor._justStopped = False reactor.running = False # Start running has consumed the startup events, so we need # to restore them. reactor.addSystemEventTrigger( 'during', 'startup', reactor._reallyStartRunning) def _assertReactorIsClean(self): """ Check that the reactor has no delayed calls, readers or writers. This should only be called at teardown. """ if reactor is None: return def raise_failure(location, reason): raise AssertionError( 'Reactor is not clean. %s: %s' % (location, reason)) if reactor._started: # noqa:cover # Reactor was not stopped, so stop it before raising the error. self._shutdownTestReactor() raise AssertionError('Reactor was not stopped.') # Look at threads queue. if len(reactor.threadCallQueue) > 0: raise_failure('queued threads', reactor.threadCallQueue) if reactor.threadpool and len(reactor.threadpool.working) > 0: raise_failure('active threads', reactor.threadCallQueue) pool_queue = self._threadPoolQueue() if pool_queue: raise_failure('threadpoool queue', pool_queue) if self._threadPoolWorking(): raise_failure('threadpoool working', self._threadPoolWorking()) if self._threadPoolThreads(): raise_failure('threadpoool threads', self._threadPoolThreads()) if len(reactor.getWriters()) > 0: # noqa:cover raise_failure('writers', text_type(reactor.getWriters())) for reader in reactor.getReaders(): excepted = False for reader_type in self.EXCEPTED_READERS: if isinstance(reader, reader_type): excepted = True break if not excepted: # noqa:cover raise_failure('readers', text_type(reactor.getReaders())) for delayed_call in reactor.getDelayedCalls(): if delayed_call.active(): delayed_str = self._getDelayedCallName(delayed_call) if delayed_str in self.EXCEPTED_DELAYED_CALLS: continue raise_failure('delayed calls', delayed_str) def _runDeferred( self, deferred, timeout=None, debug=False, prevent_stop=False): """ This is low level method. In most tests you would like to use `getDeferredFailure` or `getDeferredResult`. Run the deferred in the reactor loop. Starts the reactor, waits for deferred execution, raises error in timeout, stops the reactor. This will do recursive calls, in case the original deferred returns another deferred. Usage:: checker = mk.credentialsChecker() credentials = mk.credentials() deferred = checker.requestAvatarId(credentials) self._runDeferred(deferred) self.assertIsNotFailure(deferred) self.assertEqual('something', deferred.result) """ if not isinstance(deferred, Deferred): raise AssertionError('This is not a deferred.') if timeout is None: timeout = self.DEFERRED_TIMEOUT try: self._initiateTestReactor(timeout=timeout) self._executeDeferred(deferred, timeout, debug=debug) finally: self._shutdownTestReactor( prevent_stop=prevent_stop) def _executeDeferred(self, deferred, timeout, debug): """ Does the actual deferred execution. """ if not deferred.called: deferred_done = False while not deferred_done: self._iterateTestReactor(debug=debug) deferred_done = deferred.called if self._timeout_reached: raise AssertionError( 'Deferred took more than %d to execute.' % timeout) # Check executing all deferred from chained callbacks. result = deferred.result while isinstance(result, Deferred): self._executeDeferred(result, timeout=timeout, debug=debug) result = deferred.result def executeReactor(self, timeout=None, debug=False, run_once=False): """ Run reactor until no more delayed calls, readers or writers or threads are in the queues. Set run_once=True to only run the reactor once. This is useful if you have persistent deferred which will be removed only at the end of test. Only use this for very high level integration code, where you don't have the change to get a "root" deferred. In most tests you would like to use one of the `getDeferredFailure` or `getDeferredResult`. Usage:: protocol = mk.makeFTPProtocol() transport = mk.makeStringTransportProtocol() protocol.makeConnection(transport) transport.protocol = protocol protocol.lineReceived('FEAT') self.executeReactor() result = transport.value() self.assertStartsWith('211-Features:\n', result) """ if timeout is None: timeout = self.DEFERRED_TIMEOUT self._initiateTestReactor(timeout=timeout) # Set it to True to enter the first loop. have_callbacks = True while have_callbacks and not self._timeout_reached: self._iterateTestReactor(debug=debug) have_callbacks = False # Check for active jobs in thread pool. if reactor.threadpool: if ( reactor.threadpool.working or (reactor.threadpool.q.qsize() > 0) ): time.sleep(0.01) have_callbacks = True continue # Look at delayed calls. for delayed in reactor.getDelayedCalls(): # We skip our own timeout call. if delayed is self._reactor_timeout_call: continue if not delayed.func: # Was already called. continue delayed_str = self._getDelayedCallName(delayed) is_exception = False for excepted_callback in self.EXCEPTED_DELAYED_CALLS: if excepted_callback in delayed_str: is_exception = True if not is_exception: # No need to look for other delayed calls. have_callbacks = True break # No need to look for other things as we already know that we need # to wait at least for delayed calls. if have_callbacks: continue if run_once: if have_callbacks: raise AssertionError( 'Reactor queue still contains delayed deferred.\n' '%s' % (self._reactorQueueToString())) break # Look at writers buffers: if len(reactor.getWriters()) > 0: have_callbacks = True continue for reader in reactor.getReaders(): have_callbacks = True for excepted_reader in self.EXCEPTED_READERS: if isinstance(reader, excepted_reader): have_callbacks = False break if have_callbacks: break if have_callbacks: continue # Look at threads queue and active thread. if len(reactor.threadCallQueue) > 0: have_callbacks = True continue if reactor.threadpool and len(reactor.threadpool.working) > 0: have_callbacks = True continue self._shutdownTestReactor() def executeDelayedCalls(self, timeout=None, debug=False): """ Run the reactor until no more delayed calls are scheduled. This will wait for delayed calls to be executed and will not stop the reactor. """ if timeout is None: timeout = self.DEFERRED_TIMEOUT self._initiateTestReactor(timeout=timeout) while not self._timeout_reached: self._iterateTestReactor(debug=debug) delayed_calls = reactor.getDelayedCalls() try: delayed_calls.remove(self._reactor_timeout_call) except ValueError: # noqa:cover # Timeout might be no longer be there. pass if not delayed_calls: break self._shutdownTestReactor(prevent_stop=True) if self._reactor_timeout_failure is not None: self._reactor_timeout_failure = None # We stop the reactor on failures. self._shutdownTestReactor() raise AssertionError( 'executeDelayedCalls took more than %s' % (timeout,)) def executeReactorUntil( self, callable, timeout=None, debug=False, prevent_stop=True): """ Run the reactor until callable returns `True`. """ if timeout is None: timeout = self.DEFERRED_TIMEOUT self._initiateTestReactor(timeout=timeout) while not self._timeout_reached: self._iterateTestReactor(debug=debug) if callable(reactor): break self._shutdownTestReactor(prevent_stop=prevent_stop) def iterateReactor(self, count=1, timeout=None, debug=False): """ Iterate the reactor without stopping it. """ iterations = [False] * (count - 1) iterations.append(True) self.executeReactorUntil( lambda _: iterations.pop(0), timeout=timeout, debug=debug) def iterateReactorWithStop(self, count=1, timeout=None, debug=False): """ Iterate the reactor and stop it at the end. """ iterations = [False] * (count - 1) iterations.append(True) self.executeReactorUntil( lambda _: iterations.pop(0), timeout=timeout, debug=debug, prevent_stop=False, ) def iterateReactorForSeconds(self, duration=1, debug=False): """ Iterate the reactor for `duration` seconds.. """ start = time.time() self.executeReactorUntil( lambda _: time.time() - start > duration, timeout=duration + 0.1, debug=debug, prevent_stop=False, ) def _getDelayedCallName(self, delayed_call): """ Return a string representation of the delayed call. """ raw_name = text_type(delayed_call.func) raw_name = raw_name.replace('<function ', '') raw_name = raw_name.replace('<bound method ', '') return raw_name.split(' ', 1)[0] def getDeferredFailure( self, deferred, timeout=None, debug=False, prevent_stop=False): """ Run the deferred and return the failure. Usage:: checker = mk.credentialsChecker() credentials = mk.credentials() deferred = checker.requestAvatarId(credentials) failure = self.getDeferredFailure(deferred) self.assertFailureType(AuthenticationError, failure) """ self._runDeferred( deferred, timeout=timeout, debug=debug, prevent_stop=prevent_stop, ) self.assertIsFailure(deferred) failure = deferred.result self.ignoreFailure(deferred) return failure def successResultOf(self, deferred): """ Return the current success result of C{deferred} or raise C{self.failException}. @param deferred: A L{Deferred<twisted.internet.defer.Deferred>} which has a success result. This means L{Deferred.callback<twisted.internet.defer.Deferred.callback>} or L{Deferred.errback<twisted.internet.defer.Deferred.errback>} has been called on it and it has reached the end of its callback chain and the last callback or errback returned a non-L{failure.Failure}. @type deferred: L{Deferred<twisted.internet.defer.Deferred>} @raise SynchronousTestCase.failureException: If the L{Deferred<twisted.internet.defer.Deferred>} has no result or has a failure result. @return: The result of C{deferred}. """ # FIXME:1370: # Remove / re-route this code after upgrading to Twisted 13.0. result = [] deferred.addBoth(result.append) if not result: self.fail( "Success result expected on %r, found no result instead" % ( deferred,)) elif isinstance(result[0], Failure): self.fail( "Success result expected on %r, " "found failure result instead:\n%s" % ( deferred, result[0].getBriefTraceback().decode( 'utf-8', errors='replace'))) else: return result[0] def failureResultOf(self, deferred, *expectedExceptionTypes): """ Return the current failure result of C{deferred} or raise C{self.failException}. @param deferred: A L{Deferred<twisted.internet.defer.Deferred>} which has a failure result. This means L{Deferred.callback<twisted.internet.defer.Deferred.callback>} or L{Deferred.errback<twisted.internet.defer.Deferred.errback>} has been called on it and it has reached the end of its callback chain and the last callback or errback raised an exception or returned a L{failure.Failure}. @type deferred: L{Deferred<twisted.internet.defer.Deferred>} @param expectedExceptionTypes: Exception types to expect - if provided, and the the exception wrapped by the failure result is not one of the types provided, then this test will fail. @raise SynchronousTestCase.failureException: If the L{Deferred<twisted.internet.defer.Deferred>} has no result, has a success result, or has an unexpected failure result. @return: The failure result of C{deferred}. @rtype: L{failure.Failure} """ # FIXME:1370: # Remove / re-route this code after upgrading to Twisted 13 result = [] deferred.addBoth(result.append) if not result: self.fail( "Failure result expected on %r, found no result instead" % ( deferred,)) elif not isinstance(result[0], Failure): self.fail( "Failure result expected on %r, " "found success result (%r) instead" % (deferred, result[0])) elif (expectedExceptionTypes and not result[0].check(*expectedExceptionTypes)): expectedString = " or ".join([ '.'.join((t.__module__, t.__name__)) for t in expectedExceptionTypes]) self.fail( "Failure of type (%s) expected on %r, " "found type %r instead: %s" % ( expectedString, deferred, result[0].type, result[0].getBriefTraceback().decode( 'utf-8', errors='replace'))) else: return result[0] def assertNoResult(self, deferred): """ Assert that C{deferred} does not have a result at this point. If the assertion succeeds, then the result of C{deferred} is left unchanged. Otherwise, any L{failure.Failure} result is swallowed. @param deferred: A L{Deferred<twisted.internet.defer.Deferred>} without a result. This means that neither L{Deferred.callback<twisted.internet.defer.Deferred.callback>} nor L{Deferred.errback<twisted.internet.defer.Deferred.errback>} has been called, or that the L{Deferred<twisted.internet.defer.Deferred>} is waiting on another L{Deferred<twisted.internet.defer.Deferred>} for a result. @type deferred: L{Deferred<twisted.internet.defer.Deferred>} @raise SynchronousTestCase.failureException: If the L{Deferred<twisted.internet.defer.Deferred>} has a result. """ # FIXME:1370: # Remove / re-route this code after upgrading to Twisted 13 result = [] def cb(res): result.append(res) return res deferred.addBoth(cb) if result: # If there is already a failure, the self.fail below will # report it, so swallow it in the deferred deferred.addErrback(lambda _: None) self.fail( "No result expected on %r, found %r instead" % ( deferred, result[0])) def getDeferredResult( self, deferred, timeout=None, debug=False, prevent_stop=False): """ Run the deferred and return the result. Usage:: checker = mk.credentialsChecker() credentials = mk.credentials() deferred = checker.requestAvatarId(credentials) result = self.getDeferredResult(deferred) self.assertEqual('something', result) """ self._runDeferred( deferred, timeout=timeout, debug=debug, prevent_stop=prevent_stop, ) self.assertIsNotFailure(deferred) return deferred.result def assertWasCalled(self, deferred): """ Check that deferred was called. """ if not deferred.called: raise AssertionError('This deferred was not called yet.') def ignoreFailure(self, deferred): """ Ignore the current failure on the deferred. It transforms an failure into result `None` so that the failure will not be raised at reactor shutdown for not being handled. """ deferred.addErrback(lambda failure: None) def assertIsFailure(self, deferred): """ Check that deferred is a failure. """ if not isinstance(deferred.result, Failure): raise AssertionError('Deferred is not a failure.') def assertIsNotFailure(self, deferred): """ Raise assertion error if deferred is a Failure. The failed deferred is handled by this method, to avoid propagating the error into the reactor. """ self.assertWasCalled(deferred) if isinstance(deferred.result, Failure): error = deferred.result self.ignoreFailure(deferred) raise AssertionError( 'Deferred contains a failure: %s' % (error)) def _get_os_version(): """ On non-Linux this is just the os_name. On Linux is the distribution name and the version. On Windows it is the `nt` followed by the major and minor NT version. It is not the marketing name. We only support the Windows NT family. See: https://en.wikipedia.org/wiki/Windows_NT#Releases On OSX it returns `osx` followed by the version. It is not the version of the underlying Darwin OS. See: https://en.wikipedia.org/wiki/MacOS#Release_history """ if os.name == 'nt': parts = platform.version().split('.') return 'nt-%s.%s' % (parts[0], parts[1]) # We are now in Unix zone. os_name = os.uname()[0].lower() if os_name == 'darwin': parts = platform.mac_ver()[0].split('.') return 'osx-%s.%s' % (parts[0], parts[1]) if os_name == 'sunos': parts = platform.release().split('.') return 'solaris-%s' % (parts[1],) if os_name == 'aix': # noqa:cover return 'aix-%s.%s' % (platform.version(), platform.release()) if os_name != 'linux': return process_capabilities.os_name # We delay the import as it will call lsb_release. import ld distro_name = ld.id() if distro_name == 'arch': # Arch has no version. return 'arch' if distro_name in ['centos', 'ol']: # Normalize all RHEL variants. distro_name = 'rhel' distro_version = ld.version().split('.', 1)[0] return '%s-%s' % (distro_name, distro_version) def _get_cpu_type(): """ Return the CPU type as used in the brink.sh script. """ base = platform.processor() if base == 'aarch64': return 'arm64' if base == 'x86_64': return 'x64' return base _CI_NAMES = Bunch( LOCAL='local', GITHUB='github-actions', TRAVIS='travis', BUILDBOT='buildbot', UNKNOWN='unknown-ci', AZURE='azure-pipelines', ) def _get_ci_name(): """ Return the name of the CI on which the tests are currently executed. """ if os.environ.get('BUILDBOT', '').lower() == 'true': return _CI_NAMES.BUILDBOT if os.environ.get('GITHUB_ACTIONS', '').lower() == 'true': return _CI_NAMES.GITHUB if os.environ.get('TRAVIS', '').lower() == 'true': return _CI_NAMES.TRAVIS if os.environ.get('INFRASTRUCTURE', '') == 'AZUREPIPELINES': return _CI_NAMES.AZURE if os.environ.get('CI', '').lower() == 'true': return _CI_NAMES.UNKNOWN return _CI_NAMES.LOCAL class ChevahTestCase(TwistedTestCase, AssertionMixin): """ Test case for Chevah tests. Checks that temporary folder is clean at exit. """ os_name = process_capabilities.os_name os_family = process_capabilities.os_family os_version = _get_os_version() cpu_type = process_capabilities.cpu_type ci_name = _get_ci_name() CI = _CI_NAMES TEST_LANGUAGE = os.getenv('TEST_LANG', 'EN') # List of partial thread names to ignore during the tearDown. # No need for the full thread name excepted_threads = [ 'MainThread', 'threaded_reactor', 'GlobalPool-WorkerHandler', 'GlobalPool-TaskHandler', 'GlobalPool-ResultHandler', 'PoolThread-twisted.internet.reactor', ] # We assume that hostname does not change during test and this # should save a few DNS queries. hostname = _get_hostname() Bunch = Bunch Mock = Mock #: Obsolete. Please use self.patch and self.patchObject. Patch = patch _environ_user = None _drop_user = '-' def setUp(self): super(ChevahTestCase, self).setUp() self.__cleanup__ = [] self._cleanup_stack = [] self._teardown_errors = [] self.test_segments = None def tearDown(self): self.callCleanup() self._checkTemporaryFiles() threads = threading.enumerate() if len(threads) > 1: for thread in threads: thread_name = thread.getName() if self._isExceptedThread(thread_name): continue self._teardown_errors.append(AssertionError( 'There are still active threads, ' 'beside the main thread: %s - %s' % ( thread_name, threads))) super(ChevahTestCase, self).tearDown() errors, self._teardown_errors = self._teardown_errors, None if errors: raise AssertionError('Cleanup errors: %r' % (errors,)) def _isExceptedThread(self, name): """ Return `True` if is OK for thread to exist after test is done. """ for exception in self.excepted_threads: if name in exception: return True if exception in name: return True return False def addCleanup(self, function, *args, **kwargs): """ Overwrite unit-test behaviour to run cleanup method before tearDown. """ self.__cleanup__.append((function, args, kwargs)) def callCleanup(self): """ Call all cleanup methods. If a cleanup fails, the next cleanups will continue to be called and the first failure is raised. """ for function, args, kwargs in reversed(self.__cleanup__): try: function(*args, **kwargs) except Exception as error: # noqa:cover self._teardown_errors.append(error) self.__cleanup__ = [] def enterCleanup(self): """ Called when start using stacked cleanups. """ self._cleanup_stack.append(self.__cleanup__) self.__cleanup__ = [] def exitCleanup(self): """ To be called at the end of a stacked cleanup. """ self.callCleanup() self.__cleanup__ = self._cleanup_stack.pop() @contextlib.contextmanager def stackedCleanup(self): """ Context manager for stacked cleanups. """ try: self.enterCleanup() yield finally: self.exitCleanup() def _checkTemporaryFiles(self): """ Check that no temporary files or folders are present. """ # FIXME:922: # Move all filesystem checks into a specialized class if self.test_segments: if mk.fs.isFolder(self.test_segments): mk.fs.deleteFolder( self.test_segments, recursive=True) else: mk.fs.deleteFile(self.test_segments) checks = [ self.assertTempIsClean, self.assertWorkingFolderIsClean, ] errors = [] for check in checks: try: check() except AssertionError as error: errors.append(error.message) if errors: # noqa:cover self._teardown_errors.append(AssertionError( 'There are temporary files or folders left over.\n %s' % ( '\n'.join(errors)))) def shortDescription(self): # noqa:cover """ The short description for the test. bla.bla.tests. is removed. The format is customized for Chevah Nose runner. This is only called when we run with -v or we show the error. """ class_name = text_type(self.__class__)[8:-2] class_name = class_name.replace('.Test', ':Test') tests_start = class_name.find('.tests.') + 7 class_name = class_name[tests_start:] return "%s - %s.%s" % ( self._testMethodName, class_name, self._testMethodName) def assertRaises(self, exception_class, callback=None, *args, **kwargs): """ Wrapper around the stdlib call to allow non-context usage. """ super_assertRaises = super(ChevahTestCase, self).assertRaises if callback is None: return super_assertRaises(exception_class) with super_assertRaises(exception_class) as context: callback(*args, **kwargs) return context.exception def assertSequenceEqual(self, first, second, msg, seq_type): super(ChevahTestCase, self).assertSequenceEqual( first, second, msg, seq_type) for first_element, second_element in zip(first, second): self.assertEqual(first_element, second_element) def assertDictEqual(self, first, second, msg): super(ChevahTestCase, self).assertDictEqual(first, second, msg) first_keys = sorted(first.keys()) second_keys = sorted(second.keys()) first_values = [first[key] for key in first_keys] second_values = [second[key] for key in second_keys] self.assertSequenceEqual(first_keys, second_keys, msg, list) self.assertSequenceEqual(first_values, second_values, msg, list) def assertSetEqual(self, first, second, msg): super(ChevahTestCase, self).assertSetEqual(first, second, msg) first_elements = sorted(first) second_elements = sorted(second) self.assertSequenceEqual(first_elements, second_elements, msg, list) def _baseAssertEqual(self, first, second, msg=None): """ Update to stdlib to make sure we don't compare str with unicode. """ if ( isinstance(first, text_type) and not isinstance(second, text_type) ): # noqa:cover if not msg: msg = u'First is unicode while second is str for "%s".' % ( first,) raise AssertionError(msg.encode('utf-8')) if ( not isinstance(first, text_type) and isinstance(second, text_type) ): # noqa:cover if not msg: msg = u'First is str while second is unicode for "%s".' % ( first,) raise AssertionError(msg.encode('utf-8')) return super(ChevahTestCase, self)._baseAssertEqual( first, second, msg=msg) @staticmethod def getHostname(): """ Return the hostname of the current system. """ return _get_hostname() @classmethod def initialize(cls, drop_user): """ Initialize the testing environment. """ cls._drop_user = drop_user os.environ['DROP_USER'] = drop_user if 'LOGNAME' in os.environ and 'USER' not in os.environ: os.environ['USER'] = os.environ['LOGNAME'] if 'USER' in os.environ and 'USERNAME' not in os.environ: os.environ['USERNAME'] = os.environ['USER'] if 'USERNAME' in os.environ and 'USER' not in os.environ: os.environ['USER'] = os.environ['USERNAME'] cls._environ_user = os.environ['USER'] cls.cleanTemporaryFolder() @classmethod def dropPrivileges(cls): '''Drop privileges to normal users.''' if cls._drop_user == '-': return os.environ['USERNAME'] = cls._drop_user os.environ['USER'] = cls._drop_user # Test suite should be started as root and we drop effective user # privileges. system_users.dropPrivileges(username=cls._drop_user) @staticmethod def skipTest(message=''): '''Return a SkipTest exception.''' return SkipTest(message) @property def _caller_success_member(self): '''Retrieve the 'success' member from the test case.''' success_state = None # We search starting with second stack, since first stack is the # current stack and we don't care about it. for level in inspect.stack()[1:]: try: success_state = level[0].f_locals['success'] break except KeyError: success_state = None if success_state is None: raise AssertionError('Failed to find "success" attribute.') return success_state @staticmethod def patch(*args, **kwargs): """ Helper for generic patching. """ return patch(*args, **kwargs) @staticmethod def patchObject(*args, **kwargs): """ Helper for patching objects. """ return patch.object(*args, **kwargs) def now(self): """ Return current Unix timestamp. """ return time.time() @classmethod def cleanTemporaryFolder(cls): """ Clean all test files from temporary folder. Return a list of members which were removed. """ return cls._cleanFolder(mk.fs.temp_segments) @classmethod def cleanWorkingFolder(cls): path = mk.fs.getAbsoluteRealPath('.') segments = mk.fs.getSegmentsFromRealPath(path) return cls._cleanFolder(segments, only_marked=True) @classmethod def _cleanFolder(cls, folder_segments, only_marked=False): """ Clean all test files from folder_segments. Return a list of members which were removed. """ if not mk.fs.exists(folder_segments): return [] # In case we are running the test suite as super user, # we use super filesystem for cleaning. if cls._environ_user == cls._drop_user: temp_avatar = SuperAvatar() else: temp_avatar = DefaultAvatar() temp_filesystem = LocalFilesystem(avatar=temp_avatar) temp_members = [] for member in (temp_filesystem.getFolderContent(folder_segments)): if only_marked and member.find(TEST_NAME_MARKER) == -1: continue temp_members.append(member) segments = folder_segments[:] segments.append(member) if temp_filesystem.isFolder(segments): temp_filesystem.deleteFolder(segments, recursive=True) else: temp_filesystem.deleteFile(segments) return temp_members @classmethod def getPeakMemoryUsage(cls): """ Return maximum memory usage in kilo bytes. """ if cls.os_family == 'posix': import resource return resource.getrusage(resource.RUSAGE_SELF).ru_maxrss elif cls.os_family == 'nt': from wmi import WMI local_wmi = WMI('.') query = ( u'SELECT PeakWorkingSetSize ' u'FROM Win32_Process ' u'WHERE Handle=%d' % os.getpid()) result = local_wmi.query(query.encode('utf-8')) peak_working_set_size = int(result[0].PeakWorkingSetSize) # FIXME:2099: # Windows XP reports value in bytes, instead of Kilobytes. return int(peak_working_set_size) else: raise AssertionError('OS not supported.') def folderInTemp(self, *args, **kwargs): """ Create a folder in the default temp folder and mark it for cleanup. """ kwargs['cleanup'] = self.addCleanup return mk.fs.folderInTemp(*args, **kwargs) def fileInTemp(self, *args, **kwargs): """ Create a file in the default temp folder and mark it for cleanup. """ kwargs['cleanup'] = self.addCleanup return mk.fs.fileInTemp(*args, **kwargs) def assertIn(self, target, source): """ Overwrite stdlib to swap the arguments. """ if source not in target: message = u'%s not in %s.' % (repr(source), repr(target)) raise AssertionError(message.encode('utf-8')) def assertIsInstance(self, expected_type, value, msg=None): """ Raise an exception if `value` is not an instance of `expected_type` """ # In Python 2.7 isInstance is already defined, but with swapped # arguments. if not inspect.isclass(expected_type): expected_type, value = value, expected_type if not isinstance(value, expected_type): raise AssertionError( "Expecting type %s, but got %s. %s" % ( expected_type, type(value), msg)) def tempPath(self, prefix='', suffix=''): """ Return (path, segments) for a path which is not created yet. """ return mk.fs.makePathInTemp(prefix=prefix, suffix=suffix) def tempPathCleanup(self, prefix='', suffix=''): """ Return (path, segments) for a path which is not created yet but which will be automatically removed. """ return mk.fs.pathInTemp( cleanup=self.addCleanup, prefix=prefix, suffix=suffix) def tempFile(self, content='', prefix='', suffix='', cleanup=True): """ Return (path, segments) for a new file created in temp which is auto cleaned. """ segments = mk.fs.createFileInTemp(prefix=prefix, suffix=suffix) path = mk.fs.getRealPathFromSegments(segments) if cleanup: self.addCleanup(mk.fs.deleteFile, segments) try: opened_file = mk.fs.openFileForWriting(segments) opened_file.write(content) finally: opened_file.close() return (path, segments) def tempFolder(self, name=None, prefix='', suffix=''): """ Create a new temp folder and return its path and segments, which is auto cleaned. """ segments = mk.fs.createFolderInTemp( foldername=name, prefix=prefix, suffix=suffix) path = mk.fs.getRealPathFromSegments(segments) self.addCleanup(mk.fs.deleteFolder, segments, recursive=True) return (path, segments) class FileSystemTestCase(ChevahTestCase): """ Common test case for all file-system tests using a real OS account. """ @classmethod def setUpClass(cls): # FIXME:924: # Disabled when we can not find the home folder path. if not process_capabilities.get_home_folder: raise cls.skipTest() super(FileSystemTestCase, cls).setUpClass() cls.os_user = cls.setUpTestUser() home_folder_path = system_users.getHomeFolder( username=cls.os_user.name, token=cls.os_user.token) cls.avatar = mk.makeFilesystemOSAvatar( name=cls.os_user.name, home_folder_path=home_folder_path, token=cls.os_user.token, ) cls.filesystem = LocalFilesystem(avatar=cls.avatar) @classmethod def tearDownClass(cls): if not cls.os_user.windows_create_local_profile: os_administration.deleteHomeFolder(cls.os_user) os_administration.deleteUser(cls.os_user) super(FileSystemTestCase, cls).tearDownClass() @classmethod def setUpTestUser(cls): """ Set-up OS user for file system testing. """ from chevah.compat.testing import TEST_ACCOUNT_GROUP user = mk.makeTestUser(home_group=TEST_ACCOUNT_GROUP) os_administration.addUser(user) return user def setUp(self): super(FileSystemTestCase, self).setUp() # Initialized only to clean the home folder. test_filesystem = LocalTestFilesystem(avatar=self.avatar) test_filesystem.cleanHomeFolder() class OSAccountFileSystemTestCase(FileSystemTestCase): """ Test case for tests that need a dedicated local OS account present. """ #: User will be created before running the test case and removed on #: teardown. CREATE_TEST_USER = None @classmethod def setUpTestUser(cls): """ Add `CREATE_TEST_USER` to local OS. """ os_administration.addUser(cls.CREATE_TEST_USER) return cls.CREATE_TEST_USER
[((30389, 30524), 'bunch.Bunch', 'Bunch', ([], {'LOCAL': '"""local"""', 'GITHUB': '"""github-actions"""', 'TRAVIS': '"""travis"""', 'BUILDBOT': '"""buildbot"""', 'UNKNOWN': '"""unknown-ci"""', 'AZURE': '"""azure-pipelines"""'}), "(LOCAL='local', GITHUB='github-actions', TRAVIS='travis', BUILDBOT=\n 'buildbot', UNKNOWN='unknown-ci', AZURE='azure-pipelines')\n", (30394, 30524), False, 'from bunch import Bunch\n'), ((1767, 1787), 'socket.gethostname', 'socket.gethostname', ([], {}), '()\n', (1785, 1787), False, 'import socket\n'), ((29831, 29838), 'ld.id', 'ld.id', ([], {}), '()\n', (29836, 29838), False, 'import ld\n'), ((30241, 30261), 'platform.processor', 'platform.processor', ([], {}), '()\n', (30259, 30261), False, 'import platform\n'), ((31543, 31571), 'os.getenv', 'os.getenv', (['"""TEST_LANG"""', '"""EN"""'], {}), "('TEST_LANG', 'EN')\n", (31552, 31571), False, 'import os\n'), ((2740, 2751), 'six.moves.range', 'range', (['(2)', '(6)'], {}), '(2, 6)\n', (2745, 2751), False, 'from six.moves import range\n'), ((3622, 3647), 'twisted.internet.reactor.getDelayedCalls', 'reactor.getDelayedCalls', ([], {}), '()\n', (3645, 3647), False, 'from twisted.internet import reactor\n'), ((5605, 5630), 'twisted.internet.reactor.getDelayedCalls', 'reactor.getDelayedCalls', ([], {}), '()\n', (5628, 5630), False, 'from twisted.internet import reactor\n'), ((6524, 6591), 'twisted.internet.reactor.callLater', 'reactor.callLater', (['timeout', 'self._raiseReactorTimeoutError', 'timeout'], {}), '(timeout, self._raiseReactorTimeoutError, timeout)\n', (6541, 6591), False, 'from twisted.internet import reactor\n'), ((6896, 6918), 'twisted.internet.reactor.startRunning', 'reactor.startRunning', ([], {}), '()\n', (6916, 6918), False, 'from twisted.internet import reactor\n'), ((7029, 7054), 'twisted.internet.reactor.runUntilCurrent', 'reactor.runUntilCurrent', ([], {}), '()\n', (7052, 7054), False, 'from twisted.internet import reactor\n'), ((9159, 9173), 'twisted.internet.reactor.stop', 'reactor.stop', ([], {}), '()\n', (9171, 9173), False, 'from twisted.internet import reactor\n'), ((9252, 9269), 'twisted.internet.reactor.iterate', 'reactor.iterate', ([], {}), '()\n', (9267, 9269), False, 'from twisted.internet import reactor\n'), ((9559, 9638), 'twisted.internet.reactor.addSystemEventTrigger', 'reactor.addSystemEventTrigger', (['"""during"""', '"""startup"""', 'reactor._reallyStartRunning'], {}), "('during', 'startup', reactor._reallyStartRunning)\n", (9588, 9638), False, 'from twisted.internet import reactor\n'), ((11050, 11070), 'twisted.internet.reactor.getReaders', 'reactor.getReaders', ([], {}), '()\n', (11068, 11070), False, 'from twisted.internet import reactor\n'), ((11415, 11440), 'twisted.internet.reactor.getDelayedCalls', 'reactor.getDelayedCalls', ([], {}), '()\n', (11438, 11440), False, 'from twisted.internet import reactor\n'), ((20022, 20033), 'time.time', 'time.time', ([], {}), '()\n', (20031, 20033), False, 'import time\n'), ((20383, 20411), 'six.text_type', 'text_type', (['delayed_call.func'], {}), '(delayed_call.func)\n', (20392, 20411), False, 'from six import text_type\n'), ((30945, 30981), 'os.environ.get', 'os.environ.get', (['"""INFRASTRUCTURE"""', '""""""'], {}), "('INFRASTRUCTURE', '')\n", (30959, 30981), False, 'import os\n'), ((32517, 32538), 'threading.enumerate', 'threading.enumerate', ([], {}), '()\n', (32536, 32538), False, 'import threading\n'), ((39884, 39936), 'chevah.compat.system_users.dropPrivileges', 'system_users.dropPrivileges', ([], {'username': 'cls._drop_user'}), '(username=cls._drop_user)\n', (39911, 39936), False, 'from chevah.compat import DefaultAvatar, LocalFilesystem, process_capabilities, system_users, SuperAvatar\n'), ((40044, 40061), 'nose.SkipTest', 'SkipTest', (['message'], {}), '(message)\n', (40052, 40061), False, 'from nose import SkipTest\n'), ((40803, 40825), 'mock.patch', 'patch', (['*args'], {}), '(*args, **kwargs)\n', (40808, 40825), False, 'from mock import patch, Mock\n'), ((40959, 40988), 'mock.patch.object', 'patch.object', (['*args'], {}), '(*args, **kwargs)\n', (40971, 40988), False, 'from mock import patch, Mock\n'), ((41087, 41098), 'time.time', 'time.time', ([], {}), '()\n', (41096, 41098), False, 'import time\n'), ((41401, 41431), 'chevah.compat.testing.mockup.mk.fs.getAbsoluteRealPath', 'mk.fs.getAbsoluteRealPath', (['"""."""'], {}), "('.')\n", (41426, 41431), False, 'from chevah.compat.testing.mockup import mk\n'), ((41451, 41486), 'chevah.compat.testing.mockup.mk.fs.getSegmentsFromRealPath', 'mk.fs.getSegmentsFromRealPath', (['path'], {}), '(path)\n', (41480, 41486), False, 'from chevah.compat.testing.mockup import mk\n'), ((42108, 42143), 'chevah.compat.LocalFilesystem', 'LocalFilesystem', ([], {'avatar': 'temp_avatar'}), '(avatar=temp_avatar)\n', (42123, 42143), False, 'from chevah.compat import DefaultAvatar, LocalFilesystem, process_capabilities, system_users, SuperAvatar\n'), ((43744, 43779), 'chevah.compat.testing.mockup.mk.fs.folderInTemp', 'mk.fs.folderInTemp', (['*args'], {}), '(*args, **kwargs)\n', (43762, 43779), False, 'from chevah.compat.testing.mockup import mk\n'), ((43981, 44014), 'chevah.compat.testing.mockup.mk.fs.fileInTemp', 'mk.fs.fileInTemp', (['*args'], {}), '(*args, **kwargs)\n', (43997, 44014), False, 'from chevah.compat.testing.mockup import mk\n'), ((44999, 45049), 'chevah.compat.testing.mockup.mk.fs.makePathInTemp', 'mk.fs.makePathInTemp', ([], {'prefix': 'prefix', 'suffix': 'suffix'}), '(prefix=prefix, suffix=suffix)\n', (45019, 45049), False, 'from chevah.compat.testing.mockup import mk\n'), ((45260, 45331), 'chevah.compat.testing.mockup.mk.fs.pathInTemp', 'mk.fs.pathInTemp', ([], {'cleanup': 'self.addCleanup', 'prefix': 'prefix', 'suffix': 'suffix'}), '(cleanup=self.addCleanup, prefix=prefix, suffix=suffix)\n', (45276, 45331), False, 'from chevah.compat.testing.mockup import mk\n'), ((45555, 45607), 'chevah.compat.testing.mockup.mk.fs.createFileInTemp', 'mk.fs.createFileInTemp', ([], {'prefix': 'prefix', 'suffix': 'suffix'}), '(prefix=prefix, suffix=suffix)\n', (45577, 45607), False, 'from chevah.compat.testing.mockup import mk\n'), ((45623, 45662), 'chevah.compat.testing.mockup.mk.fs.getRealPathFromSegments', 'mk.fs.getRealPathFromSegments', (['segments'], {}), '(segments)\n', (45652, 45662), False, 'from chevah.compat.testing.mockup import mk\n'), ((46137, 46208), 'chevah.compat.testing.mockup.mk.fs.createFolderInTemp', 'mk.fs.createFolderInTemp', ([], {'foldername': 'name', 'prefix': 'prefix', 'suffix': 'suffix'}), '(foldername=name, prefix=prefix, suffix=suffix)\n', (46161, 46208), False, 'from chevah.compat.testing.mockup import mk\n'), ((46237, 46276), 'chevah.compat.testing.mockup.mk.fs.getRealPathFromSegments', 'mk.fs.getRealPathFromSegments', (['segments'], {}), '(segments)\n', (46266, 46276), False, 'from chevah.compat.testing.mockup import mk\n'), ((46847, 46925), 'chevah.compat.system_users.getHomeFolder', 'system_users.getHomeFolder', ([], {'username': 'cls.os_user.name', 'token': 'cls.os_user.token'}), '(username=cls.os_user.name, token=cls.os_user.token)\n', (46873, 46925), False, 'from chevah.compat import DefaultAvatar, LocalFilesystem, process_capabilities, system_users, SuperAvatar\n'), ((46961, 47074), 'chevah.compat.testing.mockup.mk.makeFilesystemOSAvatar', 'mk.makeFilesystemOSAvatar', ([], {'name': 'cls.os_user.name', 'home_folder_path': 'home_folder_path', 'token': 'cls.os_user.token'}), '(name=cls.os_user.name, home_folder_path=\n home_folder_path, token=cls.os_user.token)\n', (46986, 47074), False, 'from chevah.compat.testing.mockup import mk\n'), ((47146, 47180), 'chevah.compat.LocalFilesystem', 'LocalFilesystem', ([], {'avatar': 'cls.avatar'}), '(avatar=cls.avatar)\n', (47161, 47180), False, 'from chevah.compat import DefaultAvatar, LocalFilesystem, process_capabilities, system_users, SuperAvatar\n'), ((47352, 47393), 'chevah.compat.administration.os_administration.deleteUser', 'os_administration.deleteUser', (['cls.os_user'], {}), '(cls.os_user)\n', (47380, 47393), False, 'from chevah.compat.administration import os_administration\n'), ((47644, 47690), 'chevah.compat.testing.mockup.mk.makeTestUser', 'mk.makeTestUser', ([], {'home_group': 'TEST_ACCOUNT_GROUP'}), '(home_group=TEST_ACCOUNT_GROUP)\n', (47659, 47690), False, 'from chevah.compat.testing.mockup import mk\n'), ((47699, 47730), 'chevah.compat.administration.os_administration.addUser', 'os_administration.addUser', (['user'], {}), '(user)\n', (47724, 47730), False, 'from chevah.compat.administration import os_administration\n'), ((47900, 47939), 'chevah.compat.testing.filesystem.LocalTestFilesystem', 'LocalTestFilesystem', ([], {'avatar': 'self.avatar'}), '(avatar=self.avatar)\n', (47919, 47939), False, 'from chevah.compat.testing.filesystem import LocalTestFilesystem\n'), ((48367, 48414), 'chevah.compat.administration.os_administration.addUser', 'os_administration.addUser', (['cls.CREATE_TEST_USER'], {}), '(cls.CREATE_TEST_USER)\n', (48392, 48414), False, 'from chevah.compat.administration import os_administration\n'), ((5108, 5127), 'twisted.internet.reactor.removeAll', 'reactor.removeAll', ([], {}), '()\n', (5125, 5127), False, 'from twisted.internet import reactor\n'), ((7974, 7991), 'twisted.internet.reactor.timeout', 'reactor.timeout', ([], {}), '()\n', (7989, 7991), False, 'from twisted.internet import reactor\n'), ((8217, 8239), 'twisted.internet.reactor.doIteration', 'reactor.doIteration', (['t'], {}), '(t)\n', (8236, 8239), False, 'from twisted.internet import reactor\n'), ((8486, 8512), 'twisted.internet.reactor.doIteration', 'reactor.doIteration', (['(1e-06)'], {}), '(1e-06)\n', (8505, 8512), False, 'from twisted.internet import reactor\n'), ((15444, 15469), 'twisted.internet.reactor.getDelayedCalls', 'reactor.getDelayedCalls', ([], {}), '()\n', (15467, 15469), False, 'from twisted.internet import reactor\n'), ((16779, 16799), 'twisted.internet.reactor.getReaders', 'reactor.getReaders', ([], {}), '()\n', (16797, 16799), False, 'from twisted.internet import reactor\n'), ((17992, 18017), 'twisted.internet.reactor.getDelayedCalls', 'reactor.getDelayedCalls', ([], {}), '()\n', (18015, 18017), False, 'from twisted.internet import reactor\n'), ((35032, 35066), 'chevah.compat.testing.mockup.mk.fs.isFolder', 'mk.fs.isFolder', (['self.test_segments'], {}), '(self.test_segments)\n', (35046, 35066), False, 'from chevah.compat.testing.mockup import mk\n'), ((36033, 36058), 'six.text_type', 'text_type', (['self.__class__'], {}), '(self.__class__)\n', (36042, 36058), False, 'from six import text_type\n'), ((40354, 40369), 'inspect.stack', 'inspect.stack', ([], {}), '()\n', (40367, 40369), False, 'import inspect\n'), ((41772, 41801), 'chevah.compat.testing.mockup.mk.fs.exists', 'mk.fs.exists', (['folder_segments'], {}), '(folder_segments)\n', (41784, 41801), False, 'from chevah.compat.testing.mockup import mk\n'), ((42011, 42024), 'chevah.compat.SuperAvatar', 'SuperAvatar', ([], {}), '()\n', (42022, 42024), False, 'from chevah.compat import DefaultAvatar, LocalFilesystem, process_capabilities, system_users, SuperAvatar\n'), ((42065, 42080), 'chevah.compat.DefaultAvatar', 'DefaultAvatar', ([], {}), '()\n', (42078, 42080), False, 'from chevah.compat import DefaultAvatar, LocalFilesystem, process_capabilities, system_users, SuperAvatar\n'), ((44562, 44592), 'inspect.isclass', 'inspect.isclass', (['expected_type'], {}), '(expected_type)\n', (44577, 44592), False, 'import inspect\n'), ((45780, 45814), 'chevah.compat.testing.mockup.mk.fs.openFileForWriting', 'mk.fs.openFileForWriting', (['segments'], {}), '(segments)\n', (45804, 45814), False, 'from chevah.compat.testing.mockup import mk\n'), ((47296, 47343), 'chevah.compat.administration.os_administration.deleteHomeFolder', 'os_administration.deleteHomeFolder', (['cls.os_user'], {}), '(cls.os_user)\n', (47330, 47343), False, 'from chevah.compat.administration import os_administration\n'), ((3689, 3712), 'six.text_type', 'text_type', (['delayed.func'], {}), '(delayed.func)\n', (3698, 3712), False, 'from six import text_type\n'), ((4191, 4230), 'twisted.internet.reactor.threadpool._team._pending.pop', 'reactor.threadpool._team._pending.pop', ([], {}), '()\n', (4228, 4230), False, 'from twisted.internet import reactor\n'), ((10916, 10936), 'twisted.internet.reactor.getWriters', 'reactor.getWriters', ([], {}), '()\n', (10934, 10936), False, 'from twisted.internet import reactor\n'), ((29169, 29187), 'platform.version', 'platform.version', ([], {}), '()\n', (29185, 29187), False, 'import platform\n'), ((29294, 29304), 'os.uname', 'os.uname', ([], {}), '()\n', (29302, 29304), False, 'import os\n'), ((29488, 29506), 'platform.release', 'platform.release', ([], {}), '()\n', (29504, 29506), False, 'import platform\n'), ((29630, 29648), 'platform.version', 'platform.version', ([], {}), '()\n', (29646, 29648), False, 'import platform\n'), ((29650, 29668), 'platform.release', 'platform.release', ([], {}), '()\n', (29666, 29668), False, 'import platform\n'), ((30053, 30065), 'ld.version', 'ld.version', ([], {}), '()\n', (30063, 30065), False, 'import ld\n'), ((30669, 30699), 'os.environ.get', 'os.environ.get', (['"""BUILDBOT"""', '""""""'], {}), "('BUILDBOT', '')\n", (30683, 30699), False, 'import os\n'), ((30761, 30797), 'os.environ.get', 'os.environ.get', (['"""GITHUB_ACTIONS"""', '""""""'], {}), "('GITHUB_ACTIONS', '')\n", (30775, 30797), False, 'import os\n'), ((30857, 30885), 'os.environ.get', 'os.environ.get', (['"""TRAVIS"""', '""""""'], {}), "('TRAVIS', '')\n", (30871, 30885), False, 'import os\n'), ((31042, 31066), 'os.environ.get', 'os.environ.get', (['"""CI"""', '""""""'], {}), "('CI', '')\n", (31056, 31066), False, 'import os\n'), ((35084, 35138), 'chevah.compat.testing.mockup.mk.fs.deleteFolder', 'mk.fs.deleteFolder', (['self.test_segments'], {'recursive': '(True)'}), '(self.test_segments, recursive=True)\n', (35102, 35138), False, 'from chevah.compat.testing.mockup import mk\n'), ((35194, 35230), 'chevah.compat.testing.mockup.mk.fs.deleteFile', 'mk.fs.deleteFile', (['self.test_segments'], {}), '(self.test_segments)\n', (35210, 35230), False, 'from chevah.compat.testing.mockup import mk\n'), ((42888, 42928), 'resource.getrusage', 'resource.getrusage', (['resource.RUSAGE_SELF'], {}), '(resource.RUSAGE_SELF)\n', (42906, 42928), False, 'import resource\n'), ((43031, 43039), 'wmi.WMI', 'WMI', (['"""."""'], {}), "('.')\n", (43034, 43039), False, 'from wmi import WMI\n'), ((11004, 11024), 'twisted.internet.reactor.getWriters', 'reactor.getWriters', ([], {}), '()\n', (11022, 11024), False, 'from twisted.internet import reactor\n'), ((15291, 15307), 'time.sleep', 'time.sleep', (['(0.01)'], {}), '(0.01)\n', (15301, 15307), False, 'import time\n'), ((16662, 16682), 'twisted.internet.reactor.getWriters', 'reactor.getWriters', ([], {}), '()\n', (16680, 16682), False, 'from twisted.internet import reactor\n'), ((29361, 29379), 'platform.mac_ver', 'platform.mac_ver', ([], {}), '()\n', (29377, 29379), False, 'import platform\n'), ((43185, 43196), 'os.getpid', 'os.getpid', ([], {}), '()\n', (43194, 43196), False, 'import os\n'), ((7704, 7724), 'twisted.internet.reactor.getWriters', 'reactor.getWriters', ([], {}), '()\n', (7722, 7724), False, 'from twisted.internet import reactor\n'), ((7746, 7766), 'twisted.internet.reactor.getReaders', 'reactor.getReaders', ([], {}), '()\n', (7764, 7766), False, 'from twisted.internet import reactor\n'), ((11363, 11383), 'twisted.internet.reactor.getReaders', 'reactor.getReaders', ([], {}), '()\n', (11381, 11383), False, 'from twisted.internet import reactor\n'), ((15210, 15238), 'twisted.internet.reactor.threadpool.q.qsize', 'reactor.threadpool.q.qsize', ([], {}), '()\n', (15236, 15238), False, 'from twisted.internet import reactor\n'), ((20091, 20102), 'time.time', 'time.time', ([], {}), '()\n', (20100, 20102), False, 'import time\n'), ((2796, 2811), 'inspect.stack', 'inspect.stack', ([], {}), '()\n', (2809, 2811), False, 'import inspect\n'), ((7788, 7811), 'twisted.internet.reactor.getThreadPool', 'reactor.getThreadPool', ([], {}), '()\n', (7809, 7811), False, 'from twisted.internet import reactor\n')]
jphacks/C_2118
web/snowflake.py
a63279e92362e09d1856e3d44edb4793d370fd7a
import time class Snowflake: def __init__(self, init_serial_no=0): self.machine_id = 0 self.epoch = 0 self.serial_no = init_serial_no def generate(self): unique_id = ( ((int(time.time() * 1000) - self.epoch) & 0x1FFFFFFFFFF) << 22 | (self.machine_id & 0x3FF) << 12 | (self.serial_no & 0xFFF) ) self.serial_no += 1 return unique_id
[((229, 240), 'time.time', 'time.time', ([], {}), '()\n', (238, 240), False, 'import time\n')]
icml2020submission6857/metarl
src/metarl/tf/plotter/__init__.py
9b66cefa2b6bcb6a38096d629ce8853b47c7171d
from metarl.tf.plotter.plotter import Plotter __all__ = ['Plotter']
[]
slaily/deep-learning-bits
generative_deep_learning/build_network.py
cb9ce7ec539efbdfcaa023d141466f919bd31b71
from keras import layers # Single-layer LSTM model for next-character prediction model = keras.models.Sequential() model.add(layers.LSTM(128, input_shape=(maxlen, len(chars)))) model.add(layers.Dense(len(chars), activation='softmax')) # Model compilation configuration optimizer = keras.optimizers.RMSprop(lr=0.01) model.compile(loss='categorical_crossentropy', optimizer=optimizer) # Function to sample the next character given the model’s predictions def sample(preds, temperature=1.0): preds = np.asarray(preds).astype('float64') preds = np.log(preds) / temperature exp_preds = np.exp(preds) preds = exp_preds / np.sum(exp_preds) probas = np.random.multinominal(1, preds, 1) return np.argmax(probas) # Text-generation loop import sys import random # Trains the model for 60 epochs for epoch in range(1, 60): print(f'Epoch: {epoch}') model.fit(x, y, batch_size=128, epochs=1) # Selects a text seed at random start_index = random.randint(0, len(text) - maxlen - 1) generated_text = text[start_index: start_index + maxlen] print(f'--- Generating with seed: {generated_text} ---') # Tries a range of different sampling temperatures for temperature in [0.2, 0.5, 1.0, 1.2]: print(f'--- Temperature {temperature} ---') sys.stdout.write(generated_text) # Generates 400 characters, starting from the seed text for i in range(400): sampled = np.zeros((1, maxlen, len(chars))) for t, char in enumerate(generated_text): sampled[0, t, char_indices[char]] = 1. # Samples the next character preds = model.predict(sampled, verbose=0)[0] next_index = sample(preds, temperature) next_char = chars[next_index] generated_text += next_char generated_text = generated_text[1:] sys.stdout.write(next_char)
[((1298, 1330), 'sys.stdout.write', 'sys.stdout.write', (['generated_text'], {}), '(generated_text)\n', (1314, 1330), False, 'import sys\n'), ((1884, 1911), 'sys.stdout.write', 'sys.stdout.write', (['next_char'], {}), '(next_char)\n', (1900, 1911), False, 'import sys\n')]
thunderbug1/pyanom
tests/test_structure_learning.py
e442bff70a4d1880a9a698c020287edf1933d498
import io import unittest import numpy as np class TestGraphicalLasso(unittest.TestCase): """Basic test cases.""" def _getTarget(self): from pyanom.structure_learning import GraphicalLasso return GraphicalLasso def _makeOne(self, *args, **kwargs): return self._getTarget()(*args, **kwargs) @classmethod def setUpClass(self): self.X_normal = np.array([[0.975586009, -0.745997359, -0.229331244], [-0.460992487, -1.304668238, -0.599247488], [-0.503171745, -1.308368748, -1.451411048], [-0.904446243, -0.287837582, 0.197153592], [-1.106120624, 0.243612535, 1.051237763], [0.371920628, 1.690566027, -0.468645532], [-0.861682655, 1.472544046, -0.846863556], [0.632918214, 1.35895507, -1.217528827], [0.017011646, 1.556247275, -0.149119024], [-1.129336215, 0.486811944, 0.012272206], [0.498967152, -0.530065628, -2.14011938], [0.402460108, -0.474465633, -0.041584595], [-0.847994655, -1.281269721, -0.430338406], [-0.583857254, 0.228815073, -1.321443286], [0.963425438, -1.136873938, 0.990406269], [-1.342349795, -0.147133485, 1.286410605], [-0.546153552, 0.134343445, -0.380672316], [-2.264867999, 0.227795362, 1.477762968], [0.070095074, -0.770899782, 2.100831522], [0.425213005, 0.796156033, 1.676164975]]) self.X_error = np.array([[-0.273095586, 0.356336588, 1.595876828], [-0.708547003, -0.572139833, 0.858932219], [-1.125947228, -1.049026454, 0.35980022], [0.653070988, -0.052417831, 0.787284547], [-1.059131881, 1.621161051, -1.295306533], [0.499065038, -1.064179225, 1.243325767], [0.452740621, -0.737171777, 0.352807563], [0.626897927, -1.100559392, -0.905560876], [1.338835274, 2.083549348, -1.280796042], [0.264928015, 10, 2.544472412], [-0.754827534, -1.031919195, 1.227285333], [-0.774019674, 0.241245625, -0.989132941], [1.298381426, 0.19445334, 2.267355363], [1.46892843, 1.24946146, 0.322341667], [1.057265661, -0.846614104, -0.355396321], [0.810670486, -0.719804484, -0.943762163], [1.169028226, 0.492444331, 0.234015505], [-0.307091024, -1.56195639, 0.509095939], [0.849156845, 0.533674261, 0.069183014], [0.102812565, 8, 1.545239732]]) def test_outlier_analysis_score_shape(self): target = self._makeOne() target.fit(self.X_normal) pred = target.outlier_analysis_score(self.X_error) self.assertEqual(pred.shape, (20, 3)) def test_incorrect_feature_size(self): X_normal = np.array([-0.056523959, - 0.881470896, -0.249935965, 0.186624902, -0.30183287, 2.000815584, 0.710538188, 0.591089702, 0.099804538, 0.114730483]).reshape(-1, 1) X_error = np.array([0.660985506, -1.450512173, -1.27733756, -1.420294211, 0.737179562, 1.481425898, -0.170147132, -1.527687346, 0.580282631, -3.722489636]).reshape(-1, 1) target = self._makeOne() with self.assertRaises(ValueError): target.fit(X_normal) def test_anomaly_analysis_score_shape(self): target = self._makeOne() target.fit(self.X_normal) pred, pmatrix = target.anomaly_analysis_score(self.X_error) self.assertEqual(pred.shape, (3, )) self.assertEqual(pmatrix.shape, (3, 3)) if __name__ == '__main__': unittest.main()
[((4946, 4961), 'unittest.main', 'unittest.main', ([], {}), '()\n', (4959, 4961), False, 'import unittest\n'), ((399, 1317), 'numpy.array', 'np.array', (['[[0.975586009, -0.745997359, -0.229331244], [-0.460992487, -1.304668238, -\n 0.599247488], [-0.503171745, -1.308368748, -1.451411048], [-0.904446243,\n -0.287837582, 0.197153592], [-1.106120624, 0.243612535, 1.051237763], [\n 0.371920628, 1.690566027, -0.468645532], [-0.861682655, 1.472544046, -\n 0.846863556], [0.632918214, 1.35895507, -1.217528827], [0.017011646, \n 1.556247275, -0.149119024], [-1.129336215, 0.486811944, 0.012272206], [\n 0.498967152, -0.530065628, -2.14011938], [0.402460108, -0.474465633, -\n 0.041584595], [-0.847994655, -1.281269721, -0.430338406], [-0.583857254,\n 0.228815073, -1.321443286], [0.963425438, -1.136873938, 0.990406269], [\n -1.342349795, -0.147133485, 1.286410605], [-0.546153552, 0.134343445, -\n 0.380672316], [-2.264867999, 0.227795362, 1.477762968], [0.070095074, -\n 0.770899782, 2.100831522], [0.425213005, 0.796156033, 1.676164975]]'], {}), '([[0.975586009, -0.745997359, -0.229331244], [-0.460992487, -\n 1.304668238, -0.599247488], [-0.503171745, -1.308368748, -1.451411048],\n [-0.904446243, -0.287837582, 0.197153592], [-1.106120624, 0.243612535, \n 1.051237763], [0.371920628, 1.690566027, -0.468645532], [-0.861682655, \n 1.472544046, -0.846863556], [0.632918214, 1.35895507, -1.217528827], [\n 0.017011646, 1.556247275, -0.149119024], [-1.129336215, 0.486811944, \n 0.012272206], [0.498967152, -0.530065628, -2.14011938], [0.402460108, -\n 0.474465633, -0.041584595], [-0.847994655, -1.281269721, -0.430338406],\n [-0.583857254, 0.228815073, -1.321443286], [0.963425438, -1.136873938, \n 0.990406269], [-1.342349795, -0.147133485, 1.286410605], [-0.546153552,\n 0.134343445, -0.380672316], [-2.264867999, 0.227795362, 1.477762968], [\n 0.070095074, -0.770899782, 2.100831522], [0.425213005, 0.796156033, \n 1.676164975]])\n', (407, 1317), True, 'import numpy as np\n'), ((1931, 2814), 'numpy.array', 'np.array', (['[[-0.273095586, 0.356336588, 1.595876828], [-0.708547003, -0.572139833, \n 0.858932219], [-1.125947228, -1.049026454, 0.35980022], [0.653070988, -\n 0.052417831, 0.787284547], [-1.059131881, 1.621161051, -1.295306533], [\n 0.499065038, -1.064179225, 1.243325767], [0.452740621, -0.737171777, \n 0.352807563], [0.626897927, -1.100559392, -0.905560876], [1.338835274, \n 2.083549348, -1.280796042], [0.264928015, 10, 2.544472412], [-\n 0.754827534, -1.031919195, 1.227285333], [-0.774019674, 0.241245625, -\n 0.989132941], [1.298381426, 0.19445334, 2.267355363], [1.46892843, \n 1.24946146, 0.322341667], [1.057265661, -0.846614104, -0.355396321], [\n 0.810670486, -0.719804484, -0.943762163], [1.169028226, 0.492444331, \n 0.234015505], [-0.307091024, -1.56195639, 0.509095939], [0.849156845, \n 0.533674261, 0.069183014], [0.102812565, 8, 1.545239732]]'], {}), '([[-0.273095586, 0.356336588, 1.595876828], [-0.708547003, -\n 0.572139833, 0.858932219], [-1.125947228, -1.049026454, 0.35980022], [\n 0.653070988, -0.052417831, 0.787284547], [-1.059131881, 1.621161051, -\n 1.295306533], [0.499065038, -1.064179225, 1.243325767], [0.452740621, -\n 0.737171777, 0.352807563], [0.626897927, -1.100559392, -0.905560876], [\n 1.338835274, 2.083549348, -1.280796042], [0.264928015, 10, 2.544472412],\n [-0.754827534, -1.031919195, 1.227285333], [-0.774019674, 0.241245625, \n -0.989132941], [1.298381426, 0.19445334, 2.267355363], [1.46892843, \n 1.24946146, 0.322341667], [1.057265661, -0.846614104, -0.355396321], [\n 0.810670486, -0.719804484, -0.943762163], [1.169028226, 0.492444331, \n 0.234015505], [-0.307091024, -1.56195639, 0.509095939], [0.849156845, \n 0.533674261, 0.069183014], [0.102812565, 8, 1.545239732]])\n', (1939, 2814), True, 'import numpy as np\n'), ((3673, 3826), 'numpy.array', 'np.array', (['[-0.056523959, -0.881470896, -0.249935965, 0.186624902, -0.30183287, \n 2.000815584, 0.710538188, 0.591089702, 0.099804538, 0.114730483]'], {}), '([-0.056523959, -0.881470896, -0.249935965, 0.186624902, -\n 0.30183287, 2.000815584, 0.710538188, 0.591089702, 0.099804538, \n 0.114730483])\n', (3681, 3826), True, 'import numpy as np\n'), ((4113, 4262), 'numpy.array', 'np.array', (['[0.660985506, -1.450512173, -1.27733756, -1.420294211, 0.737179562, \n 1.481425898, -0.170147132, -1.527687346, 0.580282631, -3.722489636]'], {}), '([0.660985506, -1.450512173, -1.27733756, -1.420294211, 0.737179562,\n 1.481425898, -0.170147132, -1.527687346, 0.580282631, -3.722489636])\n', (4121, 4262), True, 'import numpy as np\n')]
29riyasaxena/MDF
examples/MDF/states.py
476e6950d0f14f29463eb4f6e3be518dfb2160a5
""" Example of ModECI MDF - Testing state variables """ from modeci_mdf.mdf import * import sys def main(): mod = Model(id="States") mod_graph = Graph(id="state_example") mod.graphs.append(mod_graph) ## Counter node counter_node = Node(id="counter_node") p1 = Parameter(id="increment", value=1) counter_node.parameters.append(p1) p2 = Parameter(id="count", value="count + increment") counter_node.parameters.append(p2) op1 = OutputPort(id="out_port", value=p2.id) counter_node.output_ports.append(op1) mod_graph.nodes.append(counter_node) ## Sine node... sine_node = Node(id="sine_node") sine_node.parameters.append(Parameter(id="amp", value=3)) sine_node.parameters.append(Parameter(id="period", value=0.4)) s1 = Parameter( id="level", default_initial_value=0, time_derivative="6.283185 * rate / period" ) sine_node.parameters.append(s1) s2 = Parameter( id="rate", default_initial_value=1, time_derivative="-1 * 6.283185 * level / period", ) sine_node.parameters.append(s2) op1 = OutputPort(id="out_port", value="amp * level") sine_node.output_ports.append(op1) mod_graph.nodes.append(sine_node) new_file = mod.to_json_file("%s.json" % mod.id) new_file = mod.to_yaml_file("%s.yaml" % mod.id) if "-run" in sys.argv: verbose = True # verbose = False from modeci_mdf.utils import load_mdf, print_summary from modeci_mdf.execution_engine import EvaluableGraph eg = EvaluableGraph(mod_graph, verbose) dt = 0.01 duration = 2 t = 0 recorded = {} times = [] s = [] while t <= duration: times.append(t) print("====== Evaluating at t = %s ======" % (t)) if t == 0: eg.evaluate() # replace with initialize? else: eg.evaluate(time_increment=dt) s.append(eg.enodes["sine_node"].evaluable_outputs["out_port"].curr_value) t += dt if "-nogui" not in sys.argv: import matplotlib.pyplot as plt plt.plot(times, s) plt.show() if "-graph" in sys.argv: mod.to_graph_image( engine="dot", output_format="png", view_on_render=False, level=3, filename_root="states", only_warn_on_fail=True, # Makes sure test of this doesn't fail on Windows on GitHub Actions ) return mod_graph if __name__ == "__main__": main()
[((1568, 1602), 'modeci_mdf.execution_engine.EvaluableGraph', 'EvaluableGraph', (['mod_graph', 'verbose'], {}), '(mod_graph, verbose)\n', (1582, 1602), False, 'from modeci_mdf.execution_engine import EvaluableGraph\n'), ((2183, 2201), 'matplotlib.pyplot.plot', 'plt.plot', (['times', 's'], {}), '(times, s)\n', (2191, 2201), True, 'import matplotlib.pyplot as plt\n'), ((2214, 2224), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2222, 2224), True, 'import matplotlib.pyplot as plt\n')]
jseekamp/tinkerpop
gremlin-python/src/main/jython/tests/driver/test_client.py
5f7b7d2c4353cf2d8ee48eed6c0e5632666d16c0
''' Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' import pytest from gremlin_python.driver.protocol import GremlinServerError from gremlin_python.driver.client import Client from gremlin_python.driver.protocol import GremlinServerError from gremlin_python.driver.request import RequestMessage from gremlin_python.process.strategies import OptionsStrategy from gremlin_python.process.graph_traversal import __ from gremlin_python.structure.graph import Graph __author__ = 'David M. Brown ([email protected])' def test_connection(connection): g = Graph().traversal() t = g.V() message = RequestMessage('traversal', 'bytecode', {'gremlin': t.bytecode, 'aliases': {'g': 'gmodern'}}) results_set = connection.write(message).result() future = results_set.all() results = future.result() assert len(results) == 6 assert isinstance(results, list) assert results_set.done.done() assert 'host' in results_set.status_attributes def test_client_simple_eval(client): assert client.submit('1 + 1').all().result()[0] == 2 def test_client_simple_eval_bindings(client): assert client.submit('x + x', {'x': 2}).all().result()[0] == 4 def test_client_eval_traversal(client): assert len(client.submit('g.V()').all().result()) == 6 def test_client_error(client): try: # should fire an exception client.submit('1/0').all().result() assert False except GremlinServerError as ex: assert 'exceptions' in ex.status_attributes assert 'stackTrace' in ex.status_attributes def test_client_connection_pool_after_error(client): # Overwrite fixture with pool_size=1 client client = Client('ws://localhost:45940/gremlin', 'gmodern', pool_size=1) try: # should fire an exception client.submit('1/0').all().result() assert False except GremlinServerError as gse: # expecting the pool size to be 1 again after query returned assert gse.status_code == 597 assert client.available_pool_size == 1 def test_client_bytecode(client): g = Graph().traversal() t = g.V() message = RequestMessage('traversal', 'bytecode', {'gremlin': t.bytecode, 'aliases': {'g': 'gmodern'}}) result_set = client.submit(message) assert len(result_set.all().result()) == 6 def test_client_bytecode_options(client): # smoke test to validate serialization of OptionsStrategy. no way to really validate this from an integration # test perspective because there's no way to access the internals of the strategy via bytecode g = Graph().traversal() t = g.withStrategies(OptionsStrategy(options={"x": "test", "y": True})).V() message = RequestMessage('traversal', 'bytecode', {'gremlin': t.bytecode, 'aliases': {'g': 'gmodern'}}) result_set = client.submit(message) assert len(result_set.all().result()) == 6 ## t = g.with_("x", "test").with_("y", True).V() message = RequestMessage('traversal', 'bytecode', {'gremlin': t.bytecode, 'aliases': {'g': 'gmodern'}}) result_set = client.submit(message) assert len(result_set.all().result()) == 6 def test_iterate_result_set(client): g = Graph().traversal() t = g.V() message = RequestMessage('traversal', 'bytecode', {'gremlin': t.bytecode, 'aliases': {'g': 'gmodern'}}) result_set = client.submit(message) results = [] for result in result_set: results += result assert len(results) == 6 def test_client_async(client): g = Graph().traversal() t = g.V() message = RequestMessage('traversal', 'bytecode', {'gremlin': t.bytecode, 'aliases': {'g': 'gmodern'}}) future = client.submitAsync(message) result_set = future.result() assert len(result_set.all().result()) == 6 def test_connection_share(client): # Overwrite fixture with pool_size=1 client client = Client('ws://localhost:45940/gremlin', 'gmodern', pool_size=1) g = Graph().traversal() t = g.V() message = RequestMessage('traversal', 'bytecode', {'gremlin': t.bytecode, 'aliases': {'g': 'gmodern'}}) message2 = RequestMessage('traversal', 'bytecode', {'gremlin': t.bytecode, 'aliases': {'g': 'gmodern'}}) future = client.submitAsync(message) future2 = client.submitAsync(message2) result_set2 = future2.result() assert len(result_set2.all().result()) == 6 # This future has to finish for the second to yield result - pool_size=1 assert future.done() result_set = future.result() assert len(result_set.all().result()) == 6 def test_multi_conn_pool(client): g = Graph().traversal() t = g.V() message = RequestMessage('traversal', 'bytecode', {'gremlin': t.bytecode, 'aliases': {'g': 'gmodern'}}) message2 = RequestMessage('traversal', 'bytecode', {'gremlin': t.bytecode, 'aliases': {'g': 'gmodern'}}) client = Client('ws://localhost:45940/gremlin', 'g', pool_size=1) future = client.submitAsync(message) future2 = client.submitAsync(message2) result_set2 = future2.result() assert len(result_set2.all().result()) == 6 # with connection pool `future` may or may not be done here result_set = future.result() assert len(result_set.all().result()) == 6 def test_big_result_set(client): g = Graph().traversal() t = g.inject(1).repeat(__.addV('person').property('name', __.loops())).times(20000).count() message = RequestMessage('traversal', 'bytecode', {'gremlin': t.bytecode, 'aliases': {'g': 'g'}}) result_set = client.submit(message) results = [] for result in result_set: results += result assert len(results) == 1 t = g.V().limit(10) message = RequestMessage('traversal', 'bytecode', {'gremlin': t.bytecode, 'aliases': {'g': 'g'}}) result_set = client.submit(message) results = [] for result in result_set: results += result assert len(results) == 10 t = g.V().limit(100) message = RequestMessage('traversal', 'bytecode', {'gremlin': t.bytecode, 'aliases': {'g': 'g'}}) result_set = client.submit(message) results = [] for result in result_set: results += result assert len(results) == 100 t = g.V().limit(1000) message = RequestMessage('traversal', 'bytecode', {'gremlin': t.bytecode, 'aliases': {'g': 'g'}}) result_set = client.submit(message) results = [] for result in result_set: results += result assert len(results) == 1000 t = g.V().limit(10000) message = RequestMessage('traversal', 'bytecode', {'gremlin': t.bytecode, 'aliases': {'g': 'g'}}) result_set = client.submit(message) results = [] for result in result_set: results += result assert len(results) == 10000 def test_big_result_set_secure(secure_client): g = Graph().traversal() t = g.inject(1).repeat(__.addV('person').property('name', __.loops())).times(20000).count() message = RequestMessage('traversal', 'bytecode', {'gremlin': t.bytecode, 'aliases': {'g': 'g'}}) result_set = secure_client.submit(message) results = [] for result in result_set: results += result assert len(results) == 1 t = g.V().limit(10) message = RequestMessage('traversal', 'bytecode', {'gremlin': t.bytecode, 'aliases': {'g': 'g'}}) result_set = secure_client.submit(message) results = [] for result in result_set: results += result assert len(results) == 10 t = g.V().limit(100) message = RequestMessage('traversal', 'bytecode', {'gremlin': t.bytecode, 'aliases': {'g': 'g'}}) result_set = secure_client.submit(message) results = [] for result in result_set: results += result assert len(results) == 100 t = g.V().limit(1000) message = RequestMessage('traversal', 'bytecode', {'gremlin': t.bytecode, 'aliases': {'g': 'g'}}) result_set = secure_client.submit(message) results = [] for result in result_set: results += result assert len(results) == 1000 t = g.V().limit(10000) message = RequestMessage('traversal', 'bytecode', {'gremlin': t.bytecode, 'aliases': {'g': 'g'}}) result_set = secure_client.submit(message) results = [] for result in result_set: results += result assert len(results) == 10000
[((1314, 1411), 'gremlin_python.driver.request.RequestMessage', 'RequestMessage', (['"""traversal"""', '"""bytecode"""', "{'gremlin': t.bytecode, 'aliases': {'g': 'gmodern'}}"], {}), "('traversal', 'bytecode', {'gremlin': t.bytecode, 'aliases':\n {'g': 'gmodern'}})\n", (1328, 1411), False, 'from gremlin_python.driver.request import RequestMessage\n'), ((2385, 2447), 'gremlin_python.driver.client.Client', 'Client', (['"""ws://localhost:45940/gremlin"""', '"""gmodern"""'], {'pool_size': '(1)'}), "('ws://localhost:45940/gremlin', 'gmodern', pool_size=1)\n", (2391, 2447), False, 'from gremlin_python.driver.client import Client\n'), ((2842, 2939), 'gremlin_python.driver.request.RequestMessage', 'RequestMessage', (['"""traversal"""', '"""bytecode"""', "{'gremlin': t.bytecode, 'aliases': {'g': 'gmodern'}}"], {}), "('traversal', 'bytecode', {'gremlin': t.bytecode, 'aliases':\n {'g': 'gmodern'}})\n", (2856, 2939), False, 'from gremlin_python.driver.request import RequestMessage\n'), ((3402, 3499), 'gremlin_python.driver.request.RequestMessage', 'RequestMessage', (['"""traversal"""', '"""bytecode"""', "{'gremlin': t.bytecode, 'aliases': {'g': 'gmodern'}}"], {}), "('traversal', 'bytecode', {'gremlin': t.bytecode, 'aliases':\n {'g': 'gmodern'}})\n", (3416, 3499), False, 'from gremlin_python.driver.request import RequestMessage\n'), ((3654, 3751), 'gremlin_python.driver.request.RequestMessage', 'RequestMessage', (['"""traversal"""', '"""bytecode"""', "{'gremlin': t.bytecode, 'aliases': {'g': 'gmodern'}}"], {}), "('traversal', 'bytecode', {'gremlin': t.bytecode, 'aliases':\n {'g': 'gmodern'}})\n", (3668, 3751), False, 'from gremlin_python.driver.request import RequestMessage\n'), ((3930, 4027), 'gremlin_python.driver.request.RequestMessage', 'RequestMessage', (['"""traversal"""', '"""bytecode"""', "{'gremlin': t.bytecode, 'aliases': {'g': 'gmodern'}}"], {}), "('traversal', 'bytecode', {'gremlin': t.bytecode, 'aliases':\n {'g': 'gmodern'}})\n", (3944, 4027), False, 'from gremlin_python.driver.request import RequestMessage\n'), ((4255, 4352), 'gremlin_python.driver.request.RequestMessage', 'RequestMessage', (['"""traversal"""', '"""bytecode"""', "{'gremlin': t.bytecode, 'aliases': {'g': 'gmodern'}}"], {}), "('traversal', 'bytecode', {'gremlin': t.bytecode, 'aliases':\n {'g': 'gmodern'}})\n", (4269, 4352), False, 'from gremlin_python.driver.request import RequestMessage\n'), ((4568, 4630), 'gremlin_python.driver.client.Client', 'Client', (['"""ws://localhost:45940/gremlin"""', '"""gmodern"""'], {'pool_size': '(1)'}), "('ws://localhost:45940/gremlin', 'gmodern', pool_size=1)\n", (4574, 4630), False, 'from gremlin_python.driver.client import Client\n'), ((4687, 4784), 'gremlin_python.driver.request.RequestMessage', 'RequestMessage', (['"""traversal"""', '"""bytecode"""', "{'gremlin': t.bytecode, 'aliases': {'g': 'gmodern'}}"], {}), "('traversal', 'bytecode', {'gremlin': t.bytecode, 'aliases':\n {'g': 'gmodern'}})\n", (4701, 4784), False, 'from gremlin_python.driver.request import RequestMessage\n'), ((4796, 4893), 'gremlin_python.driver.request.RequestMessage', 'RequestMessage', (['"""traversal"""', '"""bytecode"""', "{'gremlin': t.bytecode, 'aliases': {'g': 'gmodern'}}"], {}), "('traversal', 'bytecode', {'gremlin': t.bytecode, 'aliases':\n {'g': 'gmodern'}})\n", (4810, 4893), False, 'from gremlin_python.driver.request import RequestMessage\n'), ((5333, 5430), 'gremlin_python.driver.request.RequestMessage', 'RequestMessage', (['"""traversal"""', '"""bytecode"""', "{'gremlin': t.bytecode, 'aliases': {'g': 'gmodern'}}"], {}), "('traversal', 'bytecode', {'gremlin': t.bytecode, 'aliases':\n {'g': 'gmodern'}})\n", (5347, 5430), False, 'from gremlin_python.driver.request import RequestMessage\n'), ((5442, 5539), 'gremlin_python.driver.request.RequestMessage', 'RequestMessage', (['"""traversal"""', '"""bytecode"""', "{'gremlin': t.bytecode, 'aliases': {'g': 'gmodern'}}"], {}), "('traversal', 'bytecode', {'gremlin': t.bytecode, 'aliases':\n {'g': 'gmodern'}})\n", (5456, 5539), False, 'from gremlin_python.driver.request import RequestMessage\n'), ((5549, 5605), 'gremlin_python.driver.client.Client', 'Client', (['"""ws://localhost:45940/gremlin"""', '"""g"""'], {'pool_size': '(1)'}), "('ws://localhost:45940/gremlin', 'g', pool_size=1)\n", (5555, 5605), False, 'from gremlin_python.driver.client import Client\n'), ((6092, 6183), 'gremlin_python.driver.request.RequestMessage', 'RequestMessage', (['"""traversal"""', '"""bytecode"""', "{'gremlin': t.bytecode, 'aliases': {'g': 'g'}}"], {}), "('traversal', 'bytecode', {'gremlin': t.bytecode, 'aliases':\n {'g': 'g'}})\n", (6106, 6183), False, 'from gremlin_python.driver.request import RequestMessage\n'), ((6361, 6452), 'gremlin_python.driver.request.RequestMessage', 'RequestMessage', (['"""traversal"""', '"""bytecode"""', "{'gremlin': t.bytecode, 'aliases': {'g': 'g'}}"], {}), "('traversal', 'bytecode', {'gremlin': t.bytecode, 'aliases':\n {'g': 'g'}})\n", (6375, 6452), False, 'from gremlin_python.driver.request import RequestMessage\n'), ((6632, 6723), 'gremlin_python.driver.request.RequestMessage', 'RequestMessage', (['"""traversal"""', '"""bytecode"""', "{'gremlin': t.bytecode, 'aliases': {'g': 'g'}}"], {}), "('traversal', 'bytecode', {'gremlin': t.bytecode, 'aliases':\n {'g': 'g'}})\n", (6646, 6723), False, 'from gremlin_python.driver.request import RequestMessage\n'), ((6905, 6996), 'gremlin_python.driver.request.RequestMessage', 'RequestMessage', (['"""traversal"""', '"""bytecode"""', "{'gremlin': t.bytecode, 'aliases': {'g': 'g'}}"], {}), "('traversal', 'bytecode', {'gremlin': t.bytecode, 'aliases':\n {'g': 'g'}})\n", (6919, 6996), False, 'from gremlin_python.driver.request import RequestMessage\n'), ((7180, 7271), 'gremlin_python.driver.request.RequestMessage', 'RequestMessage', (['"""traversal"""', '"""bytecode"""', "{'gremlin': t.bytecode, 'aliases': {'g': 'g'}}"], {}), "('traversal', 'bytecode', {'gremlin': t.bytecode, 'aliases':\n {'g': 'g'}})\n", (7194, 7271), False, 'from gremlin_python.driver.request import RequestMessage\n'), ((7601, 7692), 'gremlin_python.driver.request.RequestMessage', 'RequestMessage', (['"""traversal"""', '"""bytecode"""', "{'gremlin': t.bytecode, 'aliases': {'g': 'g'}}"], {}), "('traversal', 'bytecode', {'gremlin': t.bytecode, 'aliases':\n {'g': 'g'}})\n", (7615, 7692), False, 'from gremlin_python.driver.request import RequestMessage\n'), ((7877, 7968), 'gremlin_python.driver.request.RequestMessage', 'RequestMessage', (['"""traversal"""', '"""bytecode"""', "{'gremlin': t.bytecode, 'aliases': {'g': 'g'}}"], {}), "('traversal', 'bytecode', {'gremlin': t.bytecode, 'aliases':\n {'g': 'g'}})\n", (7891, 7968), False, 'from gremlin_python.driver.request import RequestMessage\n'), ((8155, 8246), 'gremlin_python.driver.request.RequestMessage', 'RequestMessage', (['"""traversal"""', '"""bytecode"""', "{'gremlin': t.bytecode, 'aliases': {'g': 'g'}}"], {}), "('traversal', 'bytecode', {'gremlin': t.bytecode, 'aliases':\n {'g': 'g'}})\n", (8169, 8246), False, 'from gremlin_python.driver.request import RequestMessage\n'), ((8435, 8526), 'gremlin_python.driver.request.RequestMessage', 'RequestMessage', (['"""traversal"""', '"""bytecode"""', "{'gremlin': t.bytecode, 'aliases': {'g': 'g'}}"], {}), "('traversal', 'bytecode', {'gremlin': t.bytecode, 'aliases':\n {'g': 'g'}})\n", (8449, 8526), False, 'from gremlin_python.driver.request import RequestMessage\n'), ((8717, 8808), 'gremlin_python.driver.request.RequestMessage', 'RequestMessage', (['"""traversal"""', '"""bytecode"""', "{'gremlin': t.bytecode, 'aliases': {'g': 'g'}}"], {}), "('traversal', 'bytecode', {'gremlin': t.bytecode, 'aliases':\n {'g': 'g'}})\n", (8731, 8808), False, 'from gremlin_python.driver.request import RequestMessage\n'), ((1266, 1273), 'gremlin_python.structure.graph.Graph', 'Graph', ([], {}), '()\n', (1271, 1273), False, 'from gremlin_python.structure.graph import Graph\n'), ((2794, 2801), 'gremlin_python.structure.graph.Graph', 'Graph', ([], {}), '()\n', (2799, 2801), False, 'from gremlin_python.structure.graph import Graph\n'), ((3288, 3295), 'gremlin_python.structure.graph.Graph', 'Graph', ([], {}), '()\n', (3293, 3295), False, 'from gremlin_python.structure.graph import Graph\n'), ((3882, 3889), 'gremlin_python.structure.graph.Graph', 'Graph', ([], {}), '()\n', (3887, 3889), False, 'from gremlin_python.structure.graph import Graph\n'), ((4207, 4214), 'gremlin_python.structure.graph.Graph', 'Graph', ([], {}), '()\n', (4212, 4214), False, 'from gremlin_python.structure.graph import Graph\n'), ((4639, 4646), 'gremlin_python.structure.graph.Graph', 'Graph', ([], {}), '()\n', (4644, 4646), False, 'from gremlin_python.structure.graph import Graph\n'), ((5285, 5292), 'gremlin_python.structure.graph.Graph', 'Graph', ([], {}), '()\n', (5290, 5292), False, 'from gremlin_python.structure.graph import Graph\n'), ((5962, 5969), 'gremlin_python.structure.graph.Graph', 'Graph', ([], {}), '()\n', (5967, 5969), False, 'from gremlin_python.structure.graph import Graph\n'), ((7471, 7478), 'gremlin_python.structure.graph.Graph', 'Graph', ([], {}), '()\n', (7476, 7478), False, 'from gremlin_python.structure.graph import Graph\n'), ((3333, 3382), 'gremlin_python.process.strategies.OptionsStrategy', 'OptionsStrategy', ([], {'options': "{'x': 'test', 'y': True}"}), "(options={'x': 'test', 'y': True})\n", (3348, 3382), False, 'from gremlin_python.process.strategies import OptionsStrategy\n'), ((6044, 6054), 'gremlin_python.process.graph_traversal.__.loops', '__.loops', ([], {}), '()\n', (6052, 6054), False, 'from gremlin_python.process.graph_traversal import __\n'), ((7553, 7563), 'gremlin_python.process.graph_traversal.__.loops', '__.loops', ([], {}), '()\n', (7561, 7563), False, 'from gremlin_python.process.graph_traversal import __\n'), ((6009, 6026), 'gremlin_python.process.graph_traversal.__.addV', '__.addV', (['"""person"""'], {}), "('person')\n", (6016, 6026), False, 'from gremlin_python.process.graph_traversal import __\n'), ((7518, 7535), 'gremlin_python.process.graph_traversal.__.addV', '__.addV', (['"""person"""'], {}), "('person')\n", (7525, 7535), False, 'from gremlin_python.process.graph_traversal import __\n')]
henrysky/gaia_tools
gaia_tools/xmatch/__init__.py
c151a1d8f6896d8ef5a379291baa8a1f027bd53b
# Tools for cross-matching catalogs import csv import sys import os import os.path import platform import shutil import subprocess import tempfile import warnings WIN32= platform.system() == 'Windows' import numpy import astropy.coordinates as acoords from astropy.table import Table from astropy import units as u from ..load.download import _ERASESTR def xmatch(cat1,cat2,maxdist=2, colRA1='RA',colDec1='DEC',epoch1=None, colRA2='RA',colDec2='DEC',epoch2=None, colpmRA2='pmra',colpmDec2='pmdec', swap=False, col_field=None): """ NAME: xmatch PURPOSE: cross-match two catalogs (incl. proper motion in cat2 if epochs are different) INPUT: cat1 - First catalog cat2 - Second catalog maxdist= (2) maximum distance in arcsec colRA1= ('RA') name of the tag in cat1 with the right ascension in degree in cat1 (assumed to be ICRS) colDec1= ('DEC') name of the tag in cat1 with the declination in degree in cat1 (assumed to be ICRS) epoch1= (2000.) epoch of the coordinates in cat1 colRA2= ('RA') name of the tag in cat2 with the right ascension in degree in cat2 (assumed to be ICRS) colDec2= ('DEC') name of the tag in cat2 with the declination in degree in cat2 (assumed to be ICRS) epoch2= (2000.) epoch of the coordinates in cat2 colpmRA2= ('pmra') name of the tag in cat2 with the proper motion in right ascension in degree in cat2 (assumed to be ICRS; includes cos(Dec)) [only used when epochs are different] colpmDec2= ('pmdec') name of the tag in cat2 with the proper motion in declination in degree in cat2 (assumed to be ICRS) [only used when epochs are different] swap= (False) if False, find closest matches in cat2 for each cat1 source, if False do the opposite (important when one of the catalogs has duplicates) col_field= (None) if None, simply cross-match on RA and Dec; if a string, then cross-match on RA and Dec with additional matching in the data tag specified by the string OUTPUT: (index into cat1 of matching objects, index into cat2 of matching objects, angular separation between matching objects) HISTORY: 2016-09-12 - Written - Bovy (UofT) 2016-09-21 - Account for Gaia epoch 2015 - Bovy (UofT) 2019-07-07 - add additional catalog field matching - Leung (UofT) """ if epoch1 is None: if 'ref_epoch' in cat1.dtype.fields: epoch1= cat1['ref_epoch'] else: epoch1= 2000. if epoch2 is None: if 'ref_epoch' in cat2.dtype.fields: epoch2= cat2['ref_epoch'] else: epoch2= 2000. _check_epoch(cat1,epoch1) _check_epoch(cat2,epoch2) depoch= epoch2-epoch1 if numpy.any(depoch != 0.): # Use proper motion to get both catalogs at the same time dra=cat2[colpmRA2]/numpy.cos(cat2[colDec2]/180.*numpy.pi)\ /3600000.*depoch ddec= cat2[colpmDec2]/3600000.*depoch # Don't shift objects with non-existing proper motion dra[numpy.isnan(cat2[colpmRA2])]= 0. ddec[numpy.isnan(cat2[colpmDec2])]= 0. else: dra= 0. ddec= 0. mc1= acoords.SkyCoord(cat1[colRA1],cat1[colDec1], unit=(u.degree, u.degree),frame='icrs') mc2= acoords.SkyCoord(cat2[colRA2]-dra,cat2[colDec2]-ddec, unit=(u.degree, u.degree),frame='icrs') if col_field is not None: try: # check if the field actually exists in both cat1/cat2 cat1[col_field] cat2[col_field] except KeyError: # python 2/3 format string raise KeyError("'%s' does not exist in both catalog" % col_field) uniques = numpy.unique(cat1[col_field]) if swap: # times neg one to indicate those indices untouch will be noticed at the end and filtered out d2d = numpy.ones(len(cat2)) * -1. idx = numpy.zeros(len(cat2), dtype=int) else: d2d = numpy.ones(len(cat1)) * -1. idx = numpy.zeros(len(cat1), dtype=int) for unique in uniques: # loop over the class idx_1 = numpy.arange(cat1[colRA1].shape[0])[cat1[col_field] == unique] idx_2 = numpy.arange(cat2[colRA2].shape[0])[cat2[col_field] == unique] if idx_1.shape[0] == 0 or idx_2.shape[0] == 0: # the case where a class only exists in one but not the other continue if swap: temp_idx, temp_d2d, d3d = mc2[idx_2].match_to_catalog_sky(mc1[idx_1]) m1 = numpy.arange(len(cat2)) idx[cat2[col_field] == unique] = idx_1[temp_idx] d2d[cat2[col_field] == unique] = temp_d2d else: temp_idx, temp_d2d, d3d = mc1[idx_1].match_to_catalog_sky(mc2[idx_2]) m1 = numpy.arange(len(cat1)) idx[cat1[col_field] == unique] = idx_2[temp_idx] d2d[cat1[col_field] == unique] = temp_d2d d2d = d2d * temp_d2d.unit # make sure finally we have an unit on d2d array s.t. "<" operation can complete else: if swap: idx,d2d,d3d = mc2.match_to_catalog_sky(mc1) m1= numpy.arange(len(cat2)) else: idx,d2d,d3d = mc1.match_to_catalog_sky(mc2) m1= numpy.arange(len(cat1)) # to make sure filtering out all neg ones which are untouched mindx= ((d2d < maxdist*u.arcsec) & (0.*u.arcsec <= d2d)) m1= m1[mindx] m2= idx[mindx] if swap: return (m2,m1,d2d[mindx]) else: return (m1,m2,d2d[mindx]) def cds(cat,xcat='vizier:I/350/gaiaedr3',maxdist=2,colRA='RA',colDec='DEC', selection='best',epoch=None,colpmRA='pmra',colpmDec='pmdec', savefilename=None,gaia_all_columns=False): """ NAME: cds PURPOSE: Cross-match against a catalog in the CDS archive using the CDS cross-matching service (http://cdsxmatch.u-strasbg.fr/xmatch); uses the curl interface INPUT: cat - a catalog to cross match, requires 'RA' and 'DEC' keywords (see below) xcat= ('vizier:I/350/gaiaedr3') name of the catalog to cross-match against, in a format understood by the CDS cross-matching service (see http://cdsxmatch.u-strasbg.fr/xmatch/doc/available-tables.html; things like 'vizier:Tycho2' or 'vizier:I/345/gaia2') maxdist= (2) maximum distance in arcsec colRA= ('RA') name of the tag in cat with the right ascension colDec= ('DEC') name of the tag in cat with the declination selection= ('best') select either all matches or the best match according to CDS (see 'selection' at http://cdsxmatch.u-strasbg.fr/xmatch/doc/API-calls.html) epoch= (2000.) epoch of the coordinates in cat colpmRA= ('pmra') name of the tag in cat with the proper motion in right ascension in degree in cat (assumed to be ICRS; includes cos(Dec)) [only used when epoch != 2000.] colpmDec= ('pmdec') name of the tag in cat with the proper motion in declination in degree in cat (assumed to be ICRS) [only used when epoch != 2000.] gaia_all_columns= (False) set to True if you are matching against Gaia DR2 and want *all* columns returned; this runs a query at the Gaia Archive, which may or may not work... savefilename= (None) if set, save the output from CDS to this path; can match back using cds_matchback OUTPUT: (xcat entries for those that match, indices into cat of matching sources: index[0] is cat index of xcat[0]) HISTORY: 2016-09-12 - Written based on RC catalog code - Bovy (UofT) 2016-09-21 - Account for Gaia epoch 2015 - Bovy (UofT) 2018-05-08 - Added gaia_all_columns - Bovy (UofT) """ if epoch is None: if 'ref_epoch' in cat.dtype.fields: epoch= cat['ref_epoch'] else: epoch= 2000. _check_epoch(cat,epoch) depoch= epoch-2000. if numpy.any(depoch != 0.): # Use proper motion to get both catalogs at the same time dra=cat[colpmRA]/numpy.cos(cat[colDec]/180.*numpy.pi)\ /3600000.*depoch ddec= cat[colpmDec]/3600000.*depoch # Don't shift objects with non-existing proper motion dra[numpy.isnan(cat[colpmRA])]= 0. ddec[numpy.isnan(cat[colpmDec])]= 0. else: dra= numpy.zeros(len(cat)) ddec= numpy.zeros(len(cat)) if selection != 'all': selection= 'best' if selection == 'all': raise NotImplementedError("selection='all' CDS cross-match not currently implemented") # Write positions posfilename= tempfile.mktemp('.csv',dir=os.getcwd()) resultfilename= tempfile.mktemp('.csv',dir=os.getcwd()) with open(posfilename,'w') as csvfile: wr= csv.writer(csvfile,delimiter=',',quoting=csv.QUOTE_MINIMAL) wr.writerow(['RA','DEC']) for ii in range(len(cat)): wr.writerow([(cat[ii][colRA]-dra[ii]+360.) % 360., cat[ii][colDec]]-ddec[ii]) _cds_match_batched(resultfilename,posfilename,maxdist,selection,xcat) # Directly match on input RA ma= cds_load(resultfilename) if gaia_all_columns: from astroquery.gaia import Gaia # Write another temporary file with the XML output of the cross-match tab= Table(numpy.array([ma['source_id'],ma['RA'],ma['DEC']]).T, names=('source_id','RA','DEC'), dtype=('int64','float64','float64')) xmlfilename= tempfile.mktemp('.xml',dir=os.getcwd()) tab.write(xmlfilename,format='votable') #get the data release.... table_identifier = xcat.split('/')[-1] if table_identifier == 'gaia2': table_identifier = 'gaiadr2' try: job= Gaia.launch_job_async( """select g.*, m.RA as mRA, m.DEC as mDEC from %s.gaia_source as g inner join tap_upload.my_table as m on m.source_id = g.source_id""" % table_identifier, upload_resource=xmlfilename, upload_table_name="my_table") ma= job.get_results() except: print("gaia_tools.xmath.cds failed to retrieve all gaia columns, returning just the default returned by the CDS xMatch instead...") else: ma.rename_column('mra','RA') ma.rename_column('mdec','DEC') finally: os.remove(xmlfilename) # Remove temporary files os.remove(posfilename) if savefilename is None: os.remove(resultfilename) else: shutil.move(resultfilename,savefilename) # Match back to the original catalog mai= cds_matchback(cat,ma,colRA=colRA,colDec=colDec,epoch=epoch, colpmRA=colpmRA,colpmDec=colpmDec) return (ma,mai) def _cds_match_batched(resultfilename,posfilename,maxdist,selection,xcat, nruns_necessary=1): """CDS xMatch (sometimes?) fails for large matches, because of a time-out, so we recursively split until the batches are small enough to not fail""" # Figure out which of the hierarchy we are running try: runs= ''.join([str(int(r)-1) for r in posfilename.split('csv.')[-1].split('.')]) except ValueError: runs= '' nruns= 2**len(runs) if nruns >= nruns_necessary: # Only run this level's match if we don't already know that we should # be using smaller batches _cds_basic_match(resultfilename,posfilename,maxdist,selection,xcat) try: ma= cds_load(resultfilename) except ValueError: # Assume this is the time-out failure pass else: return nruns # xMatch failed because of time-out, split posfilename1= posfilename+'.1' posfilename2= posfilename+'.2' resultfilename1= resultfilename+'.1' resultfilename2= resultfilename+'.2' # Figure out which of the hierarchy we are running runs= ''.join([str(int(r)-1) for r in posfilename1.split('csv.')[-1].split('.')]) nruns= 2**len(runs) thisrun1= 1+int(runs,2) thisrun2= 1+int(''.join([str(int(r)-1) for r in posfilename2.split('csv.')[-1].split('.')]),2) # Count the number of objects with open(posfilename,'r') as posfile: num_lines= sum(1 for line in posfile) # Write the header line with open(posfilename1,'w') as posfile1: with open(posfilename,'r') as posfile: posfile1.write(posfile.readline()) with open(posfilename2,'w') as posfile2: with open(posfilename,'r') as posfile: posfile2.write(posfile.readline()) # Cut in half cnt= 0 with open(posfilename,'r') as posfile: with open(posfilename1,'a') as posfile1: with open(posfilename2,'a') as posfile2: for line in posfile: if cnt == 0: cnt+= 1 continue if cnt < num_lines//2: posfile1.write(line) cnt+= 1 # Can stop counting once this if is done else: posfile2.write(line) # Run each sys.stdout.write('\r'+"Working on CDS xMatch batch {} / {} ...\r"\ .format(thisrun1,nruns)) sys.stdout.flush() nruns_necessary= _cds_match_batched(resultfilename1,posfilename1, maxdist,selection,xcat, nruns_necessary=nruns_necessary) sys.stdout.write('\r'+"Working on CDS xMatch batch {} / {} ...\r"\ .format(thisrun2,nruns)) sys.stdout.flush() nruns_necessary= _cds_match_batched(resultfilename2,posfilename2, maxdist,selection,xcat, nruns_necessary=nruns_necessary) sys.stdout.write('\r'+_ERASESTR+'\r') sys.stdout.flush() # Combine results with open(resultfilename,'w') as resultfile: with open(resultfilename1,'r') as resultfile1: for line in resultfile1: resultfile.write(line) with open(resultfilename2,'r') as resultfile2: for line in resultfile2: if line[0] == 'a': continue resultfile.write(line) # Remove intermediate files os.remove(posfilename1) os.remove(posfilename2) os.remove(resultfilename1) os.remove(resultfilename2) return nruns_necessary def _cds_basic_match(resultfilename,posfilename,maxdist,selection,xcat): # Send to CDS for matching result= open(resultfilename,'w') try: subprocess.check_call(['curl', '-X','POST', '-F','request=xmatch', '-F','distMaxArcsec=%i' % maxdist, '-F','selection=%s' % selection, '-F','RESPONSEFORMAT=csv', '-F','cat1=@%s' % os.path.basename(posfilename), '-F','colRA1=RA', '-F','colDec1=DEC', '-F','cat2=%s' % xcat, 'http://cdsxmatch.u-strasbg.fr/xmatch/api/v1/sync'], stdout=result) except subprocess.CalledProcessError: os.remove(posfilename) if os.path.exists(resultfilename): result.close() os.remove(resultfilename) result.close() return None def cds_load(filename): if WIN32: # windows do not have float128, but source_id is double # get around this by squeezing precision from int64 on source_id as source_id is always integer anyway # first read everything as fp64 and then convert source_id to int64 will keep its precision data = numpy.genfromtxt(filename, delimiter=',', skip_header=0, filling_values=-9999.99, names=True, max_rows=1, dtype='float64') # only read the first row max to reduce workload to just get the column name to_list = list(data.dtype.names) # construct a list where everything is fp64 except 'source_id' being int64 dtype_list = [('{}'.format(i), numpy.float64) for i in to_list] dtype_list[dtype_list.index(('source_id', numpy.float64))] = ('source_id', numpy.uint64) return numpy.genfromtxt(filename, delimiter=',', skip_header=0, filling_values=-9999.99, names=True, dtype=dtype_list) else: return numpy.genfromtxt(filename, delimiter=',', skip_header=0, filling_values=-9999.99, names=True, dtype='float128') def cds_matchback(cat,xcat,colRA='RA',colDec='DEC',selection='best', epoch=None,colpmRA='pmra',colpmDec='pmdec',): """ NAME: cds_matchback PURPOSE: Match a matched catalog from xmatch.cds back to the original catalog INPUT cat - original catalog xcat - matched catalog returned by xmatch.cds colRA= ('RA') name of the tag in cat with the right ascension colDec= ('DEC') name of the tag in cat with the declination selection= ('best') select either all matches or the best match according to CDS (see 'selection' at http://cdsxmatch.u-strasbg.fr/xmatch/doc/API-calls.html) epoch= (2000.) epoch of the coordinates in cat colpmRA= ('pmra') name of the tag in cat with the proper motion in right ascension in degree in cat (assumed to be ICRS; includes cos(Dec)) [only used when epoch != 2000.] colpmDec= ('pmdec') name of the tag in cat with the proper motion in declination in degree in cat (assumed to be ICRS) [only used when epoch != 2000.] OUTPUT: Array indices into cat of xcat entries: index[0] is cat index of xcat[0] HISTORY: 2016-09-12 - Written - Bovy (UofT) 2018-05-04 - Account for non-zero epoch difference - Bovy (UofT) """ if selection != 'all': selection= 'best' if selection == 'all': raise NotImplementedError("selection='all' CDS cross-match not currently implemented") if epoch is None: if 'ref_epoch' in cat.dtype.fields: epoch= cat['ref_epoch'] else: epoch= 2000. _check_epoch(cat,epoch) depoch= epoch-2000. if numpy.any(depoch != 0.): # Use proper motion to get both catalogs at the same time dra=cat[colpmRA]/numpy.cos(cat[colDec]/180.*numpy.pi)\ /3600000.*depoch ddec= cat[colpmDec]/3600000.*depoch # Don't shift objects with non-existing proper motion dra[numpy.isnan(cat[colpmRA])]= 0. ddec[numpy.isnan(cat[colpmDec])]= 0. else: dra= numpy.zeros(len(cat)) ddec= numpy.zeros(len(cat)) # xmatch to v. small diff., because match is against *original* coords, # not matched coords in CDS mc1= acoords.SkyCoord(cat[colRA]-dra,cat[colDec]-ddec, unit=(u.degree, u.degree),frame='icrs') mc2= acoords.SkyCoord(xcat['RA'],xcat['DEC'], unit=(u.degree, u.degree),frame='icrs') idx,d2d,d3d = mc2.match_to_catalog_sky(mc1) mindx= d2d < 1e-5*u.arcsec return idx[mindx] def _check_epoch(cat,epoch): warn_about_epoch= False if 'ref_epoch' in cat.dtype.fields: if 'designation' not in cat.dtype.fields: # Assume this is DR1 if numpy.any(numpy.fabs(epoch-2015.) > 0.01): warn_about_epoch= True elif 'Gaia DR2' in cat['designation'][0].decode('utf-8'): if numpy.any(numpy.fabs(epoch-2015.5) > 0.01): warn_about_epoch= True if warn_about_epoch: warnings.warn("You appear to be using a Gaia catalog, but are not setting the epoch to 2015. (DR1) or 2015.5 (DR2), which may lead to incorrect matches") return None
[((171, 188), 'platform.system', 'platform.system', ([], {}), '()\n', (186, 188), False, 'import platform\n'), ((2807, 2831), 'numpy.any', 'numpy.any', (['(depoch != 0.0)'], {}), '(depoch != 0.0)\n', (2816, 2831), False, 'import numpy\n'), ((3246, 3336), 'astropy.coordinates.SkyCoord', 'acoords.SkyCoord', (['cat1[colRA1]', 'cat1[colDec1]'], {'unit': '(u.degree, u.degree)', 'frame': '"""icrs"""'}), "(cat1[colRA1], cat1[colDec1], unit=(u.degree, u.degree),\n frame='icrs')\n", (3262, 3336), True, 'import astropy.coordinates as acoords\n'), ((3366, 3469), 'astropy.coordinates.SkyCoord', 'acoords.SkyCoord', (['(cat2[colRA2] - dra)', '(cat2[colDec2] - ddec)'], {'unit': '(u.degree, u.degree)', 'frame': '"""icrs"""'}), "(cat2[colRA2] - dra, cat2[colDec2] - ddec, unit=(u.degree,\n u.degree), frame='icrs')\n", (3382, 3469), True, 'import astropy.coordinates as acoords\n'), ((7993, 8017), 'numpy.any', 'numpy.any', (['(depoch != 0.0)'], {}), '(depoch != 0.0)\n', (8002, 8017), False, 'import numpy\n'), ((10529, 10551), 'os.remove', 'os.remove', (['posfilename'], {}), '(posfilename)\n', (10538, 10551), False, 'import os\n'), ((13409, 13427), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (13425, 13427), False, 'import sys\n'), ((13756, 13774), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (13772, 13774), False, 'import sys\n'), ((13986, 14027), 'sys.stdout.write', 'sys.stdout.write', (["('\\r' + _ERASESTR + '\\r')"], {}), "('\\r' + _ERASESTR + '\\r')\n", (14002, 14027), False, 'import sys\n'), ((14028, 14046), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (14044, 14046), False, 'import sys\n'), ((14460, 14483), 'os.remove', 'os.remove', (['posfilename1'], {}), '(posfilename1)\n', (14469, 14483), False, 'import os\n'), ((14488, 14511), 'os.remove', 'os.remove', (['posfilename2'], {}), '(posfilename2)\n', (14497, 14511), False, 'import os\n'), ((14516, 14542), 'os.remove', 'os.remove', (['resultfilename1'], {}), '(resultfilename1)\n', (14525, 14542), False, 'import os\n'), ((14547, 14573), 'os.remove', 'os.remove', (['resultfilename2'], {}), '(resultfilename2)\n', (14556, 14573), False, 'import os\n'), ((18577, 18601), 'numpy.any', 'numpy.any', (['(depoch != 0.0)'], {}), '(depoch != 0.0)\n', (18586, 18601), False, 'import numpy\n'), ((19152, 19252), 'astropy.coordinates.SkyCoord', 'acoords.SkyCoord', (['(cat[colRA] - dra)', '(cat[colDec] - ddec)'], {'unit': '(u.degree, u.degree)', 'frame': '"""icrs"""'}), "(cat[colRA] - dra, cat[colDec] - ddec, unit=(u.degree, u.\n degree), frame='icrs')\n", (19168, 19252), True, 'import astropy.coordinates as acoords\n'), ((19277, 19364), 'astropy.coordinates.SkyCoord', 'acoords.SkyCoord', (["xcat['RA']", "xcat['DEC']"], {'unit': '(u.degree, u.degree)', 'frame': '"""icrs"""'}), "(xcat['RA'], xcat['DEC'], unit=(u.degree, u.degree), frame=\n 'icrs')\n", (19293, 19364), True, 'import astropy.coordinates as acoords\n'), ((3791, 3820), 'numpy.unique', 'numpy.unique', (['cat1[col_field]'], {}), '(cat1[col_field])\n', (3803, 3820), False, 'import numpy\n'), ((8812, 8873), 'csv.writer', 'csv.writer', (['csvfile'], {'delimiter': '""","""', 'quoting': 'csv.QUOTE_MINIMAL'}), "(csvfile, delimiter=',', quoting=csv.QUOTE_MINIMAL)\n", (8822, 8873), False, 'import csv\n'), ((10589, 10614), 'os.remove', 'os.remove', (['resultfilename'], {}), '(resultfilename)\n', (10598, 10614), False, 'import os\n'), ((10633, 10674), 'shutil.move', 'shutil.move', (['resultfilename', 'savefilename'], {}), '(resultfilename, savefilename)\n', (10644, 10674), False, 'import shutil\n'), ((15985, 16112), 'numpy.genfromtxt', 'numpy.genfromtxt', (['filename'], {'delimiter': '""","""', 'skip_header': '(0)', 'filling_values': '(-9999.99)', 'names': '(True)', 'max_rows': '(1)', 'dtype': '"""float64"""'}), "(filename, delimiter=',', skip_header=0, filling_values=-\n 9999.99, names=True, max_rows=1, dtype='float64')\n", (16001, 16112), False, 'import numpy\n'), ((16559, 16675), 'numpy.genfromtxt', 'numpy.genfromtxt', (['filename'], {'delimiter': '""","""', 'skip_header': '(0)', 'filling_values': '(-9999.99)', 'names': '(True)', 'dtype': 'dtype_list'}), "(filename, delimiter=',', skip_header=0, filling_values=-\n 9999.99, names=True, dtype=dtype_list)\n", (16575, 16675), False, 'import numpy\n'), ((16760, 16876), 'numpy.genfromtxt', 'numpy.genfromtxt', (['filename'], {'delimiter': '""","""', 'skip_header': '(0)', 'filling_values': '(-9999.99)', 'names': '(True)', 'dtype': '"""float128"""'}), "(filename, delimiter=',', skip_header=0, filling_values=-\n 9999.99, names=True, dtype='float128')\n", (16776, 16876), False, 'import numpy\n'), ((19948, 20111), 'warnings.warn', 'warnings.warn', (['"""You appear to be using a Gaia catalog, but are not setting the epoch to 2015. (DR1) or 2015.5 (DR2), which may lead to incorrect matches"""'], {}), "(\n 'You appear to be using a Gaia catalog, but are not setting the epoch to 2015. (DR1) or 2015.5 (DR2), which may lead to incorrect matches'\n )\n", (19961, 20111), False, 'import warnings\n'), ((8684, 8695), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (8693, 8695), False, 'import os\n'), ((8744, 8755), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (8753, 8755), False, 'import os\n'), ((9821, 10071), 'astroquery.gaia.Gaia.launch_job_async', 'Gaia.launch_job_async', (['("""select g.*, m.RA as mRA, m.DEC as mDEC\nfrom %s.gaia_source as g\ninner join tap_upload.my_table as m on m.source_id = g.source_id"""\n % table_identifier)'], {'upload_resource': 'xmlfilename', 'upload_table_name': '"""my_table"""'}), '(\n """select g.*, m.RA as mRA, m.DEC as mDEC\nfrom %s.gaia_source as g\ninner join tap_upload.my_table as m on m.source_id = g.source_id"""\n % table_identifier, upload_resource=xmlfilename, upload_table_name=\n \'my_table\')\n', (9842, 10071), False, 'from astroquery.gaia import Gaia\n'), ((10473, 10495), 'os.remove', 'os.remove', (['xmlfilename'], {}), '(xmlfilename)\n', (10482, 10495), False, 'import os\n'), ((15490, 15512), 'os.remove', 'os.remove', (['posfilename'], {}), '(posfilename)\n', (15499, 15512), False, 'import os\n'), ((15524, 15554), 'os.path.exists', 'os.path.exists', (['resultfilename'], {}), '(resultfilename)\n', (15538, 15554), False, 'import os\n'), ((3114, 3141), 'numpy.isnan', 'numpy.isnan', (['cat2[colpmRA2]'], {}), '(cat2[colpmRA2])\n', (3125, 3141), False, 'import numpy\n'), ((3160, 3188), 'numpy.isnan', 'numpy.isnan', (['cat2[colpmDec2]'], {}), '(cat2[colpmDec2])\n', (3171, 3188), False, 'import numpy\n'), ((4218, 4253), 'numpy.arange', 'numpy.arange', (['cat1[colRA1].shape[0]'], {}), '(cat1[colRA1].shape[0])\n', (4230, 4253), False, 'import numpy\n'), ((4301, 4336), 'numpy.arange', 'numpy.arange', (['cat2[colRA2].shape[0]'], {}), '(cat2[colRA2].shape[0])\n', (4313, 4336), False, 'import numpy\n'), ((8294, 8319), 'numpy.isnan', 'numpy.isnan', (['cat[colpmRA]'], {}), '(cat[colpmRA])\n', (8305, 8319), False, 'import numpy\n'), ((8338, 8364), 'numpy.isnan', 'numpy.isnan', (['cat[colpmDec]'], {}), '(cat[colpmDec])\n', (8349, 8364), False, 'import numpy\n'), ((9360, 9411), 'numpy.array', 'numpy.array', (["[ma['source_id'], ma['RA'], ma['DEC']]"], {}), "([ma['source_id'], ma['RA'], ma['DEC']])\n", (9371, 9411), False, 'import numpy\n'), ((9568, 9579), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (9577, 9579), False, 'import os\n'), ((15595, 15620), 'os.remove', 'os.remove', (['resultfilename'], {}), '(resultfilename)\n', (15604, 15620), False, 'import os\n'), ((18878, 18903), 'numpy.isnan', 'numpy.isnan', (['cat[colpmRA]'], {}), '(cat[colpmRA])\n', (18889, 18903), False, 'import numpy\n'), ((18922, 18948), 'numpy.isnan', 'numpy.isnan', (['cat[colpmDec]'], {}), '(cat[colpmDec])\n', (18933, 18948), False, 'import numpy\n'), ((2925, 2968), 'numpy.cos', 'numpy.cos', (['(cat2[colDec2] / 180.0 * numpy.pi)'], {}), '(cat2[colDec2] / 180.0 * numpy.pi)\n', (2934, 2968), False, 'import numpy\n'), ((8109, 8150), 'numpy.cos', 'numpy.cos', (['(cat[colDec] / 180.0 * numpy.pi)'], {}), '(cat[colDec] / 180.0 * numpy.pi)\n', (8118, 8150), False, 'import numpy\n'), ((15126, 15155), 'os.path.basename', 'os.path.basename', (['posfilename'], {}), '(posfilename)\n', (15142, 15155), False, 'import os\n'), ((18693, 18734), 'numpy.cos', 'numpy.cos', (['(cat[colDec] / 180.0 * numpy.pi)'], {}), '(cat[colDec] / 180.0 * numpy.pi)\n', (18702, 18734), False, 'import numpy\n'), ((19679, 19705), 'numpy.fabs', 'numpy.fabs', (['(epoch - 2015.0)'], {}), '(epoch - 2015.0)\n', (19689, 19705), False, 'import numpy\n'), ((19842, 19868), 'numpy.fabs', 'numpy.fabs', (['(epoch - 2015.5)'], {}), '(epoch - 2015.5)\n', (19852, 19868), False, 'import numpy\n')]
ThomasLecat/ray
rllib/agents/dqn/dqn_torch_policy.py
eb025ea8cb27583e8ef6287f5654f23d1ab270ef
from typing import Dict, List, Tuple import gym import ray from ray.rllib.agents.a3c.a3c_torch_policy import apply_grad_clipping from ray.rllib.agents.dqn.dqn_tf_policy import ( PRIO_WEIGHTS, Q_SCOPE, Q_TARGET_SCOPE, postprocess_nstep_and_prio) from ray.rllib.agents.dqn.dqn_torch_model import DQNTorchModel from ray.rllib.agents.dqn.simple_q_torch_policy import TargetNetworkMixin from ray.rllib.models.catalog import ModelCatalog from ray.rllib.models.modelv2 import ModelV2 from ray.rllib.models.torch.torch_action_dist import (TorchCategorical, TorchDistributionWrapper) from ray.rllib.policy.policy import Policy from ray.rllib.policy.sample_batch import SampleBatch from ray.rllib.policy.torch_policy import LearningRateSchedule from ray.rllib.policy.torch_policy_template import build_torch_policy from ray.rllib.utils.error import UnsupportedSpaceException from ray.rllib.utils.exploration.parameter_noise import ParameterNoise from ray.rllib.utils.framework import try_import_torch from ray.rllib.utils.torch_ops import (FLOAT_MIN, huber_loss, reduce_mean_ignore_inf, softmax_cross_entropy_with_logits) from ray.rllib.utils.typing import TensorType, TrainerConfigDict torch, nn = try_import_torch() F = None if nn: F = nn.functional class QLoss: def __init__(self, q_t_selected, q_logits_t_selected, q_tp1_best, q_probs_tp1_best, importance_weights, rewards, done_mask, gamma=0.99, n_step=1, num_atoms=1, v_min=-10.0, v_max=10.0): if num_atoms > 1: # Distributional Q-learning which corresponds to an entropy loss z = torch.range(0.0, num_atoms - 1, dtype=torch.float32) z = v_min + z * (v_max - v_min) / float(num_atoms - 1) # (batch_size, 1) * (1, num_atoms) = (batch_size, num_atoms) r_tau = torch.unsqueeze( rewards, -1) + gamma**n_step * torch.unsqueeze( 1.0 - done_mask, -1) * torch.unsqueeze(z, 0) r_tau = torch.clamp(r_tau, v_min, v_max) b = (r_tau - v_min) / ((v_max - v_min) / float(num_atoms - 1)) lb = torch.floor(b) ub = torch.ceil(b) # Indispensable judgement which is missed in most implementations # when b happens to be an integer, lb == ub, so pr_j(s', a*) will # be discarded because (ub-b) == (b-lb) == 0. floor_equal_ceil = (ub - lb < 0.5).float() # (batch_size, num_atoms, num_atoms) l_project = F.one_hot(lb.long(), num_atoms) # (batch_size, num_atoms, num_atoms) u_project = F.one_hot(ub.long(), num_atoms) ml_delta = q_probs_tp1_best * (ub - b + floor_equal_ceil) mu_delta = q_probs_tp1_best * (b - lb) ml_delta = torch.sum( l_project * torch.unsqueeze(ml_delta, -1), dim=1) mu_delta = torch.sum( u_project * torch.unsqueeze(mu_delta, -1), dim=1) m = ml_delta + mu_delta # Rainbow paper claims that using this cross entropy loss for # priority is robust and insensitive to `prioritized_replay_alpha` self.td_error = softmax_cross_entropy_with_logits( logits=q_logits_t_selected, labels=m) self.loss = torch.mean(self.td_error * importance_weights) self.stats = { # TODO: better Q stats for dist dqn "mean_td_error": torch.mean(self.td_error), } else: q_tp1_best_masked = (1.0 - done_mask) * q_tp1_best # compute RHS of bellman equation q_t_selected_target = rewards + gamma**n_step * q_tp1_best_masked # compute the error (potentially clipped) self.td_error = q_t_selected - q_t_selected_target.detach() self.loss = torch.mean( importance_weights.float() * huber_loss(self.td_error)) self.stats = { "mean_q": torch.mean(q_t_selected), "min_q": torch.min(q_t_selected), "max_q": torch.max(q_t_selected), "mean_td_error": torch.mean(self.td_error), } class ComputeTDErrorMixin: def __init__(self): def compute_td_error(obs_t, act_t, rew_t, obs_tp1, done_mask, importance_weights): input_dict = self._lazy_tensor_dict({SampleBatch.CUR_OBS: obs_t}) input_dict[SampleBatch.ACTIONS] = act_t input_dict[SampleBatch.REWARDS] = rew_t input_dict[SampleBatch.NEXT_OBS] = obs_tp1 input_dict[SampleBatch.DONES] = done_mask input_dict[PRIO_WEIGHTS] = importance_weights # Do forward pass on loss to update td error attribute build_q_losses(self, self.model, None, input_dict) return self.q_loss.td_error self.compute_td_error = compute_td_error def build_q_model_and_distribution( policy: Policy, obs_space: gym.Space, action_space: gym.Space, config: TrainerConfigDict) -> Tuple[ModelV2, TorchDistributionWrapper]: if not isinstance(action_space, gym.spaces.Discrete): raise UnsupportedSpaceException( "Action space {} is not supported for DQN.".format(action_space)) if config["hiddens"]: # try to infer the last layer size, otherwise fall back to 256 num_outputs = ([256] + config["model"]["fcnet_hiddens"])[-1] config["model"]["no_final_linear"] = True else: num_outputs = action_space.n # TODO(sven): Move option to add LayerNorm after each Dense # generically into ModelCatalog. add_layer_norm = ( isinstance(getattr(policy, "exploration", None), ParameterNoise) or config["exploration_config"]["type"] == "ParameterNoise") policy.q_model = ModelCatalog.get_model_v2( obs_space=obs_space, action_space=action_space, num_outputs=num_outputs, model_config=config["model"], framework="torch", model_interface=DQNTorchModel, name=Q_SCOPE, q_hiddens=config["hiddens"], dueling=config["dueling"], num_atoms=config["num_atoms"], use_noisy=config["noisy"], v_min=config["v_min"], v_max=config["v_max"], sigma0=config["sigma0"], # TODO(sven): Move option to add LayerNorm after each Dense # generically into ModelCatalog. add_layer_norm=add_layer_norm) policy.q_func_vars = policy.q_model.variables() policy.target_q_model = ModelCatalog.get_model_v2( obs_space=obs_space, action_space=action_space, num_outputs=num_outputs, model_config=config["model"], framework="torch", model_interface=DQNTorchModel, name=Q_TARGET_SCOPE, q_hiddens=config["hiddens"], dueling=config["dueling"], num_atoms=config["num_atoms"], use_noisy=config["noisy"], v_min=config["v_min"], v_max=config["v_max"], sigma0=config["sigma0"], # TODO(sven): Move option to add LayerNorm after each Dense # generically into ModelCatalog. add_layer_norm=add_layer_norm) policy.target_q_func_vars = policy.target_q_model.variables() return policy.q_model, TorchCategorical def get_distribution_inputs_and_class( policy: Policy, model: ModelV2, obs_batch: TensorType, *, explore: bool = True, is_training: bool = False, **kwargs) -> Tuple[TensorType, type, List[TensorType]]: q_vals = compute_q_values(policy, model, obs_batch, explore, is_training) q_vals = q_vals[0] if isinstance(q_vals, tuple) else q_vals policy.q_values = q_vals return policy.q_values, TorchCategorical, [] # state-out def build_q_losses(policy: Policy, model, _, train_batch: SampleBatch) -> TensorType: config = policy.config # Q-network evaluation. q_t, q_logits_t, q_probs_t = compute_q_values( policy, policy.q_model, train_batch[SampleBatch.CUR_OBS], explore=False, is_training=True) # Target Q-network evaluation. q_tp1, q_logits_tp1, q_probs_tp1 = compute_q_values( policy, policy.target_q_model, train_batch[SampleBatch.NEXT_OBS], explore=False, is_training=True) # Q scores for actions which we know were selected in the given state. one_hot_selection = F.one_hot(train_batch[SampleBatch.ACTIONS], policy.action_space.n) q_t_selected = torch.sum( torch.where(q_t > FLOAT_MIN, q_t, torch.tensor(0.0, device=policy.device)) * one_hot_selection, 1) q_logits_t_selected = torch.sum( q_logits_t * torch.unsqueeze(one_hot_selection, -1), 1) # compute estimate of best possible value starting from state at t + 1 if config["double_q"]: q_tp1_using_online_net, q_logits_tp1_using_online_net, \ q_dist_tp1_using_online_net = compute_q_values( policy, policy.q_model, train_batch[SampleBatch.NEXT_OBS], explore=False, is_training=True) q_tp1_best_using_online_net = torch.argmax(q_tp1_using_online_net, 1) q_tp1_best_one_hot_selection = F.one_hot(q_tp1_best_using_online_net, policy.action_space.n) q_tp1_best = torch.sum( torch.where(q_tp1 > FLOAT_MIN, q_tp1, torch.tensor(0.0, device=policy.device)) * q_tp1_best_one_hot_selection, 1) q_probs_tp1_best = torch.sum( q_probs_tp1 * torch.unsqueeze(q_tp1_best_one_hot_selection, -1), 1) else: q_tp1_best_one_hot_selection = F.one_hot( torch.argmax(q_tp1, 1), policy.action_space.n) q_tp1_best = torch.sum( torch.where(q_tp1 > FLOAT_MIN, q_tp1, torch.tensor(0.0, device=policy.device)) * q_tp1_best_one_hot_selection, 1) q_probs_tp1_best = torch.sum( q_probs_tp1 * torch.unsqueeze(q_tp1_best_one_hot_selection, -1), 1) policy.q_loss = QLoss( q_t_selected, q_logits_t_selected, q_tp1_best, q_probs_tp1_best, train_batch[PRIO_WEIGHTS], train_batch[SampleBatch.REWARDS], train_batch[SampleBatch.DONES].float(), config["gamma"], config["n_step"], config["num_atoms"], config["v_min"], config["v_max"]) return policy.q_loss.loss def adam_optimizer(policy: Policy, config: TrainerConfigDict) -> "torch.optim.Optimizer": return torch.optim.Adam( policy.q_func_vars, lr=policy.cur_lr, eps=config["adam_epsilon"]) def build_q_stats(policy: Policy, batch) -> Dict[str, TensorType]: return dict({ "cur_lr": policy.cur_lr, }, **policy.q_loss.stats) def setup_early_mixins(policy: Policy, obs_space, action_space, config: TrainerConfigDict) -> None: LearningRateSchedule.__init__(policy, config["lr"], config["lr_schedule"]) def after_init(policy: Policy, obs_space: gym.Space, action_space: gym.Space, config: TrainerConfigDict) -> None: ComputeTDErrorMixin.__init__(policy) TargetNetworkMixin.__init__(policy, obs_space, action_space, config) # Move target net to device (this is done autoatically for the # policy.model, but not for any other models the policy has). policy.target_q_model = policy.target_q_model.to(policy.device) def compute_q_values(policy: Policy, model: ModelV2, obs: TensorType, explore, is_training: bool = False): config = policy.config model_out, state = model({ SampleBatch.CUR_OBS: obs, "is_training": is_training, }, [], None) if config["num_atoms"] > 1: (action_scores, z, support_logits_per_action, logits, probs_or_logits) = model.get_q_value_distributions(model_out) else: (action_scores, logits, probs_or_logits) = model.get_q_value_distributions(model_out) if config["dueling"]: state_score = model.get_state_value(model_out) if policy.config["num_atoms"] > 1: support_logits_per_action_mean = torch.mean( support_logits_per_action, dim=1) support_logits_per_action_centered = ( support_logits_per_action - torch.unsqueeze( support_logits_per_action_mean, dim=1)) support_logits_per_action = torch.unsqueeze( state_score, dim=1) + support_logits_per_action_centered support_prob_per_action = nn.functional.softmax( support_logits_per_action) value = torch.sum(z * support_prob_per_action, dim=-1) logits = support_logits_per_action probs_or_logits = support_prob_per_action else: advantages_mean = reduce_mean_ignore_inf(action_scores, 1) advantages_centered = action_scores - torch.unsqueeze( advantages_mean, 1) value = state_score + advantages_centered else: value = action_scores return value, logits, probs_or_logits def grad_process_and_td_error_fn(policy: Policy, optimizer: "torch.optim.Optimizer", loss: TensorType) -> Dict[str, TensorType]: # Clip grads if configured. return apply_grad_clipping(policy, optimizer, loss) def extra_action_out_fn(policy: Policy, input_dict, state_batches, model, action_dist) -> Dict[str, TensorType]: return {"q_values": policy.q_values} DQNTorchPolicy = build_torch_policy( name="DQNTorchPolicy", loss_fn=build_q_losses, get_default_config=lambda: ray.rllib.agents.dqn.dqn.DEFAULT_CONFIG, make_model_and_action_dist=build_q_model_and_distribution, action_distribution_fn=get_distribution_inputs_and_class, stats_fn=build_q_stats, postprocess_fn=postprocess_nstep_and_prio, optimizer_fn=adam_optimizer, extra_grad_process_fn=grad_process_and_td_error_fn, extra_learn_fetches_fn=lambda policy: {"td_error": policy.q_loss.td_error}, extra_action_out_fn=extra_action_out_fn, before_init=setup_early_mixins, after_init=after_init, mixins=[ TargetNetworkMixin, ComputeTDErrorMixin, LearningRateSchedule, ])
[((1327, 1345), 'ray.rllib.utils.framework.try_import_torch', 'try_import_torch', ([], {}), '()\n', (1343, 1345), False, 'from ray.rllib.utils.framework import try_import_torch\n'), ((14142, 14825), 'ray.rllib.policy.torch_policy_template.build_torch_policy', 'build_torch_policy', ([], {'name': '"""DQNTorchPolicy"""', 'loss_fn': 'build_q_losses', 'get_default_config': '(lambda : ray.rllib.agents.dqn.dqn.DEFAULT_CONFIG)', 'make_model_and_action_dist': 'build_q_model_and_distribution', 'action_distribution_fn': 'get_distribution_inputs_and_class', 'stats_fn': 'build_q_stats', 'postprocess_fn': 'postprocess_nstep_and_prio', 'optimizer_fn': 'adam_optimizer', 'extra_grad_process_fn': 'grad_process_and_td_error_fn', 'extra_learn_fetches_fn': "(lambda policy: {'td_error': policy.q_loss.td_error})", 'extra_action_out_fn': 'extra_action_out_fn', 'before_init': 'setup_early_mixins', 'after_init': 'after_init', 'mixins': '[TargetNetworkMixin, ComputeTDErrorMixin, LearningRateSchedule]'}), "(name='DQNTorchPolicy', loss_fn=build_q_losses,\n get_default_config=lambda : ray.rllib.agents.dqn.dqn.DEFAULT_CONFIG,\n make_model_and_action_dist=build_q_model_and_distribution,\n action_distribution_fn=get_distribution_inputs_and_class, stats_fn=\n build_q_stats, postprocess_fn=postprocess_nstep_and_prio, optimizer_fn=\n adam_optimizer, extra_grad_process_fn=grad_process_and_td_error_fn,\n extra_learn_fetches_fn=lambda policy: {'td_error': policy.q_loss.\n td_error}, extra_action_out_fn=extra_action_out_fn, before_init=\n setup_early_mixins, after_init=after_init, mixins=[TargetNetworkMixin,\n ComputeTDErrorMixin, LearningRateSchedule])\n", (14160, 14825), False, 'from ray.rllib.policy.torch_policy_template import build_torch_policy\n'), ((6151, 6581), 'ray.rllib.models.catalog.ModelCatalog.get_model_v2', 'ModelCatalog.get_model_v2', ([], {'obs_space': 'obs_space', 'action_space': 'action_space', 'num_outputs': 'num_outputs', 'model_config': "config['model']", 'framework': '"""torch"""', 'model_interface': 'DQNTorchModel', 'name': 'Q_SCOPE', 'q_hiddens': "config['hiddens']", 'dueling': "config['dueling']", 'num_atoms': "config['num_atoms']", 'use_noisy': "config['noisy']", 'v_min': "config['v_min']", 'v_max': "config['v_max']", 'sigma0': "config['sigma0']", 'add_layer_norm': 'add_layer_norm'}), "(obs_space=obs_space, action_space=action_space,\n num_outputs=num_outputs, model_config=config['model'], framework=\n 'torch', model_interface=DQNTorchModel, name=Q_SCOPE, q_hiddens=config[\n 'hiddens'], dueling=config['dueling'], num_atoms=config['num_atoms'],\n use_noisy=config['noisy'], v_min=config['v_min'], v_max=config['v_max'],\n sigma0=config['sigma0'], add_layer_norm=add_layer_norm)\n", (6176, 6581), False, 'from ray.rllib.models.catalog import ModelCatalog\n'), ((6873, 7312), 'ray.rllib.models.catalog.ModelCatalog.get_model_v2', 'ModelCatalog.get_model_v2', ([], {'obs_space': 'obs_space', 'action_space': 'action_space', 'num_outputs': 'num_outputs', 'model_config': "config['model']", 'framework': '"""torch"""', 'model_interface': 'DQNTorchModel', 'name': 'Q_TARGET_SCOPE', 'q_hiddens': "config['hiddens']", 'dueling': "config['dueling']", 'num_atoms': "config['num_atoms']", 'use_noisy': "config['noisy']", 'v_min': "config['v_min']", 'v_max': "config['v_max']", 'sigma0': "config['sigma0']", 'add_layer_norm': 'add_layer_norm'}), "(obs_space=obs_space, action_space=action_space,\n num_outputs=num_outputs, model_config=config['model'], framework=\n 'torch', model_interface=DQNTorchModel, name=Q_TARGET_SCOPE, q_hiddens=\n config['hiddens'], dueling=config['dueling'], num_atoms=config[\n 'num_atoms'], use_noisy=config['noisy'], v_min=config['v_min'], v_max=\n config['v_max'], sigma0=config['sigma0'], add_layer_norm=add_layer_norm)\n", (6898, 7312), False, 'from ray.rllib.models.catalog import ModelCatalog\n'), ((11388, 11462), 'ray.rllib.policy.torch_policy.LearningRateSchedule.__init__', 'LearningRateSchedule.__init__', (['policy', "config['lr']", "config['lr_schedule']"], {}), "(policy, config['lr'], config['lr_schedule'])\n", (11417, 11462), False, 'from ray.rllib.policy.torch_policy import LearningRateSchedule\n'), ((11639, 11707), 'ray.rllib.agents.dqn.simple_q_torch_policy.TargetNetworkMixin.__init__', 'TargetNetworkMixin.__init__', (['policy', 'obs_space', 'action_space', 'config'], {}), '(policy, obs_space, action_space, config)\n', (11666, 11707), False, 'from ray.rllib.agents.dqn.simple_q_torch_policy import TargetNetworkMixin\n'), ((13898, 13942), 'ray.rllib.agents.a3c.a3c_torch_policy.apply_grad_clipping', 'apply_grad_clipping', (['policy', 'optimizer', 'loss'], {}), '(policy, optimizer, loss)\n', (13917, 13942), False, 'from ray.rllib.agents.a3c.a3c_torch_policy import apply_grad_clipping\n'), ((3483, 3554), 'ray.rllib.utils.torch_ops.softmax_cross_entropy_with_logits', 'softmax_cross_entropy_with_logits', ([], {'logits': 'q_logits_t_selected', 'labels': 'm'}), '(logits=q_logits_t_selected, labels=m)\n', (3516, 3554), False, 'from ray.rllib.utils.torch_ops import FLOAT_MIN, huber_loss, reduce_mean_ignore_inf, softmax_cross_entropy_with_logits\n'), ((13377, 13417), 'ray.rllib.utils.torch_ops.reduce_mean_ignore_inf', 'reduce_mean_ignore_inf', (['action_scores', '(1)'], {}), '(action_scores, 1)\n', (13399, 13417), False, 'from ray.rllib.utils.torch_ops import FLOAT_MIN, huber_loss, reduce_mean_ignore_inf, softmax_cross_entropy_with_logits\n'), ((4206, 4231), 'ray.rllib.utils.torch_ops.huber_loss', 'huber_loss', (['self.td_error'], {}), '(self.td_error)\n', (4216, 4231), False, 'from ray.rllib.utils.torch_ops import FLOAT_MIN, huber_loss, reduce_mean_ignore_inf, softmax_cross_entropy_with_logits\n')]
SuffolkLITLab/FormFyxer
formfyxer/__init__.py
00a6a70b30f1899fc5273de1001f1f57c3728f60
from .lit_explorer import * from .pdf_wrangling import *
[]
priidupaomets/python_kursus
Overview/11 - funktsioonid.py
731ab386ca40c321288659db21db23912ca7f8dd
""" funktsioonid.py Funktsioonide ja protseduuride kasutamine """ # # Protseduur # def minu_funktsioon(): print("See on protseduur") # Kutsume funktsiooni välja minu_funktsioon() # # Funktsioon # def liida(num1, num2): return num1 + num2 sum = liida(3, 5) print(sum) # Näide vaikeväärtuste kasutamisest # def funk(arg1 = väärtus1, arg2 = väärtus2) # pass def funk(arg1 = 0, arg2 = "Test"): print(arg1, arg2) funk() # Kutsume funktsiooni välja ilma argumente kaasa andmata # # Algarvude leidmine # def isprime(n): if n <= 1: return False for i in range(2, n): if n % i == 0: return False else: return True # Kustume funktsiooni testimiseks välja n = 5 if isprime(n): print(f"{n} ON algarv") # Kasutame f-formaatimisstringi, mis lubab muutuja otse stringi sisse panna else: print(f"{n} EI OLE algarv") def list_primes(max_num = 100): for n in range(2, max_num): if isprime(n): print(n, end = ' ', flush = True) print() list_primes() # # Muutuva arvu argumentidega funktsioonid # # Lisame lihtsalt uusi argumente def summa(num1, num2, num3): return num1 + num2 + num3 print(summa(1, 2, 3)) # Töötab print(summa(1, 2)) # Saame vea, kuna uus funktsioon nõuab 3 argumenti # Katsetame funktsiooni ülelaadimist (function overloading või method overloading) def summa(num1, num2): return num1 + num2 def summa(num1, num2, num3): return num1 + num2 + num3 print(summa(1, 2)) # Saame vea, kuna viimane def kirjutab eelmise üle print(summa(1, 2, 3)) # Katsetame vaikeväärtustega funktsioone def summa(num1, num2, num3 = 0, num4 = 0): return num1 + num2 + num3 + num4 print(summa(1, 2)) print(summa(1, 2, 3)) print(summa(1, 2, 3, 4)) #print(summa(1, 2, 3, 4, 5)) # Selle tööle saamiseks peame f-ni muutma def keskmine(num1, num2, num3 = 0, num4 = 0): sum = num1 + num2 + num3 + num4 # Sama, mis summa(num1, num2, num3, num4) argumente = 4.0 return sum / argumente print(keskmine(1, 2)) # Ilmselgelt vale tulemus (1.5 asemel 0.75) print(keskmine(1, 2, 3)) # Ka vale tulemus (2 asemel 1.5) print(keskmine(1, 2, 3, 4)) # Õige tulemus # Täiendame argumentide arvu leidmist def keskmine(num1, num2, num3 = 0, num4 = 0): sum = num1 + num2 + num3 + num4 # Sama, mis summa(num1, num2, num3, num4) argumente = 2.0 # Minimaalselt 2 if num3 > 0: argumente = argumente + 1 if num4 > 0: argumente = argumente + 1 return sum / argumente print(keskmine(1, 2)) # Õige tulemus print(keskmine(1, 2, 3)) # Õige tulemus print(keskmine(1, 2, 3, 4)) # Õige tulemus print(keskmine(1, 2, 3, 0)) # Vale tulemus! print(keskmine(1, 0, 3, 2)) # Õige tulemus!?! Kuidas see nüüd õige on - kas tulemus sõltub argumentide järjekorrast? # Kasutame teistsugust vaikeväärtust def keskmine(num1, num2, num3 = None, num4 = None): sum = num1 + num2 # Ei saa kohe 4 arg'i kokku liita argumente = 2.0 # Minimaalselt 2 if num3 is not None: argumente += 1 sum = sum + num3 if num4 is not None: argumente += 1 sum = sum + num4 return sum / argumente print(keskmine(1, 2)) # Õige tulemus print(keskmine(1, 2, 3)) # Õige tulemus print(keskmine(1, 2, 3, 4)) # Õige tulemus print(keskmine(1, 2, 3, 0)) # Õige tulemus! print(keskmine(1, 0, 3, 2)) # Õige tulemus # Proovime listiga argumente defineerida def summa(numbrid=[]): sum = 0 for num in numbrid: sum += num return sum #print(summa(1)) # Ei tööta, kuna pole itereeritav tüüp #print(summa(1, 2)) # Ei tööta, kuna pole massiiv arvud=[1, 2] print(summa(arvud)) arvud=[1, 2, 3] print(summa(arvud)) arvud=[1, 2, 3, 4] print(summa(arvud)) print(summa([1, 2, 3, 4, 5])) # Võime panna ka ilma vahemuutujata arvud=[1] print(summa(arvud)) def summa(*numbrid): sum = 0 for num in numbrid: sum += num return sum print(summa()) # Isegi see variant töötab print(summa(1)) print(summa(1, 2)) arvud=[1, 2] print(summa(*arvud)) # Ka siin tuleb '*' kasutada arvud=[1, 2, 3] print(summa(*arvud)) arvud=[1, 2, 3, 4] print(summa(*arvud)) arvud=[1, 2, 3, 4, 5] print(summa(*arvud)) arvud=[1] print(summa(*arvud)) # Erinevat sort argumendid def argfun(arg1, arg2, *args, kw1 = 1, kw2 = "True"): print(arg1, arg2, *args, kw1, kw2) argfun(1, 2, 3, 4, 5, kw1 = 10, kw2 = 12) def argfun(**kwargs): for (arg, val) in kwargs.items(): print(f"{arg}={val}", end = ' ') print() argfun(kw2 = 10, kw3 = 12, kw4 = 14) def argfun(arg1, arg2, *args, **kwargs): print(arg1, arg2, *args) for (arg, val) in kwargs.items(): print(f"{arg}={val}", end = ' ') print() argfun(1, 2, 3, 4, 5, kw2 = 10, kw3 = 12, kw4 = 14) def argfun(arg1, arg2, *args, kw1 = 1, kw2 = "True", **kwargs): print(arg1, arg2, *args, kw1, kw2) for (arg, val) in kwargs.items(): print(f"{arg}={val}", end = ' ') print() argfun(1, 2, 3, 4, 5, kw2 = 10, kw3 = 12, kw4 = 14) # Kuidas garanteerida, et argumentideks on numbrid? def numsum(*numbrid): sum = 0 for num in numbrid: if isinstance(num, int) or isinstance(num, float): sum += num return sum def numcount(*numbrid): count = 0 for num in numbrid: if isinstance(num, int) or isinstance(num, float): count += 1 return count def numavg(*numbrid): sum = numsum(*numbrid) count = numcount(*numbrid) return sum / (count * 1.0) # Võime jagatava teha float tüübiks print(numsum(1)) print(numsum(1, 2)) print(numsum(1, 2, 3)) print(numsum(1, 2, 3, "4")) print(numsum(1, None, 3, 4, 5)) print("-"*30) print(numcount(1)) print(numcount(1, 2)) print(numcount(1, 2, 3)) print(numcount(1, 2, 3, "4")) print(numcount(1, None, 3, 4, 5)) print("-"*30) print(numavg(1)) print(numavg(1, 2)) print(numavg(1, 2, 3)) print(numavg(1, 2, 3, "4")) print(numavg(1, None, 3, 4, 5)) print(numavg()) # Viga! Nulliga jagamine!!! # Vigade haldamist vaatame peatselt ka lähemalt
[]
l2ol33rt/salt
tests/integration/states/test_cmd.py
ff68bbd9f4bda992a3e039822fb32f141e94347c
# -*- coding: utf-8 -*- ''' Tests for the file state ''' # Import python libs from __future__ import absolute_import import errno import os import textwrap import tempfile # Import Salt Testing libs from tests.support.case import ModuleCase from tests.support.paths import TMP_STATE_TREE from tests.support.mixins import SaltReturnAssertsMixin # Import salt libs import salt.utils IS_WINDOWS = salt.utils.is_windows() class CMDTest(ModuleCase, SaltReturnAssertsMixin): ''' Validate the cmd state ''' def test_run_simple(self): ''' cmd.run ''' cmd = 'dir' if IS_WINDOWS else 'ls' ret = self.run_state('cmd.run', name=cmd, cwd=tempfile.gettempdir()) self.assertSaltTrueReturn(ret) def test_test_run_simple(self): ''' cmd.run test interface ''' ret = self.run_state('cmd.run', name='ls', cwd=tempfile.gettempdir(), test=True) self.assertSaltNoneReturn(ret) class CMDRunRedirectTest(ModuleCase, SaltReturnAssertsMixin): ''' Validate the cmd state of run_redirect ''' def setUp(self): self.state_name = 'run_redirect' state_filename = self.state_name + '.sls' self.state_file = os.path.join(TMP_STATE_TREE, state_filename) # Create the testfile and release the handle fd, self.test_file = tempfile.mkstemp() try: os.close(fd) except OSError as exc: if exc.errno != errno.EBADF: raise exc # Create the testfile and release the handle fd, self.test_tmp_path = tempfile.mkstemp() try: os.close(fd) except OSError as exc: if exc.errno != errno.EBADF: raise exc super(CMDRunRedirectTest, self).setUp() def tearDown(self): for path in (self.state_file, self.test_tmp_path, self.test_file): try: os.remove(path) except OSError: # Not all of the tests leave files around that we want to remove # As some of the tests create the sls files in the test itself, # And some are using files in the integration test file state tree. pass super(CMDRunRedirectTest, self).tearDown() def test_run_unless(self): ''' test cmd.run unless ''' state_key = 'cmd_|-{0}_|-{0}_|-run'.format(self.test_tmp_path) with salt.utils.fopen(self.state_file, 'w') as fb_: fb_.write(textwrap.dedent(''' {0}: cmd.run: - unless: echo cheese > {1} '''.format(self.test_tmp_path, self.test_file))) ret = self.run_function('state.sls', [self.state_name]) self.assertTrue(ret[state_key]['result']) def test_run_unless_multiple_cmds(self): ''' test cmd.run using multiple unless options where the first cmd in the list will pass, but the second will fail. This tests the fix for issue #35384. (The fix is in PR #35545.) ''' sls = self.run_function('state.sls', mods='issue-35384') self.assertSaltTrueReturn(sls) # We must assert against the comment here to make sure the comment reads that the # command "echo "hello"" was run. This ensures that we made it to the last unless # command in the state. If the comment reads "unless execution succeeded", or similar, # then the unless state run bailed out after the first unless command succeeded, # which is the bug we're regression testing for. self.assertEqual(sls['cmd_|-cmd_run_unless_multiple_|-echo "hello"_|-run']['comment'], 'Command "echo "hello"" run') def test_run_creates_exists(self): ''' test cmd.run creates already there ''' state_key = 'cmd_|-echo >> {0}_|-echo >> {0}_|-run'.format(self.test_file) with salt.utils.fopen(self.state_file, 'w') as fb_: fb_.write(textwrap.dedent(''' echo >> {0}: cmd.run: - creates: {0} '''.format(self.test_file))) ret = self.run_function('state.sls', [self.state_name]) self.assertTrue(ret[state_key]['result']) self.assertEqual(len(ret[state_key]['changes']), 0) def test_run_creates_new(self): ''' test cmd.run creates not there ''' os.remove(self.test_file) state_key = 'cmd_|-echo >> {0}_|-echo >> {0}_|-run'.format(self.test_file) with salt.utils.fopen(self.state_file, 'w') as fb_: fb_.write(textwrap.dedent(''' echo >> {0}: cmd.run: - creates: {0} '''.format(self.test_file))) ret = self.run_function('state.sls', [self.state_name]) self.assertTrue(ret[state_key]['result']) self.assertEqual(len(ret[state_key]['changes']), 4) def test_run_redirect(self): ''' test cmd.run with shell redirect ''' state_key = 'cmd_|-echo test > {0}_|-echo test > {0}_|-run'.format(self.test_file) with salt.utils.fopen(self.state_file, 'w') as fb_: fb_.write(textwrap.dedent(''' echo test > {0}: cmd.run '''.format(self.test_file))) ret = self.run_function('state.sls', [self.state_name]) self.assertTrue(ret[state_key]['result']) class CMDRunWatchTest(ModuleCase, SaltReturnAssertsMixin): ''' Validate the cmd state of run_watch ''' def setUp(self): self.state_name = 'run_watch' state_filename = self.state_name + '.sls' self.state_file = os.path.join(TMP_STATE_TREE, state_filename) super(CMDRunWatchTest, self).setUp() def tearDown(self): os.remove(self.state_file) super(CMDRunWatchTest, self).tearDown() def test_run_watch(self): ''' test cmd.run watch ''' saltines_key = 'cmd_|-saltines_|-echo changed=true_|-run' biscuits_key = 'cmd_|-biscuits_|-echo biscuits_|-wait' with salt.utils.fopen(self.state_file, 'w') as fb_: fb_.write(textwrap.dedent(''' saltines: cmd.run: - name: echo changed=true - cwd: / - stateful: True biscuits: cmd.wait: - name: echo biscuits - cwd: / - watch: - cmd: saltines ''')) ret = self.run_function('state.sls', [self.state_name]) self.assertTrue(ret[saltines_key]['result']) self.assertTrue(ret[biscuits_key]['result'])
[((1258, 1302), 'os.path.join', 'os.path.join', (['TMP_STATE_TREE', 'state_filename'], {}), '(TMP_STATE_TREE, state_filename)\n', (1270, 1302), False, 'import os\n'), ((1386, 1404), 'tempfile.mkstemp', 'tempfile.mkstemp', ([], {}), '()\n', (1402, 1404), False, 'import tempfile\n'), ((1628, 1646), 'tempfile.mkstemp', 'tempfile.mkstemp', ([], {}), '()\n', (1644, 1646), False, 'import tempfile\n'), ((4515, 4540), 'os.remove', 'os.remove', (['self.test_file'], {}), '(self.test_file)\n', (4524, 4540), False, 'import os\n'), ((5800, 5844), 'os.path.join', 'os.path.join', (['TMP_STATE_TREE', 'state_filename'], {}), '(TMP_STATE_TREE, state_filename)\n', (5812, 5844), False, 'import os\n'), ((5923, 5949), 'os.remove', 'os.remove', (['self.state_file'], {}), '(self.state_file)\n', (5932, 5949), False, 'import os\n'), ((1430, 1442), 'os.close', 'os.close', (['fd'], {}), '(fd)\n', (1438, 1442), False, 'import os\n'), ((1672, 1684), 'os.close', 'os.close', (['fd'], {}), '(fd)\n', (1680, 1684), False, 'import os\n'), ((686, 707), 'tempfile.gettempdir', 'tempfile.gettempdir', ([], {}), '()\n', (705, 707), False, 'import tempfile\n'), ((924, 945), 'tempfile.gettempdir', 'tempfile.gettempdir', ([], {}), '()\n', (943, 945), False, 'import tempfile\n'), ((1965, 1980), 'os.remove', 'os.remove', (['path'], {}), '(path)\n', (1974, 1980), False, 'import os\n'), ((6292, 6702), 'textwrap.dedent', 'textwrap.dedent', (['"""\n saltines:\n cmd.run:\n - name: echo changed=true\n - cwd: /\n - stateful: True\n\n biscuits:\n cmd.wait:\n - name: echo biscuits\n - cwd: /\n - watch:\n - cmd: saltines\n """'], {}), '(\n """\n saltines:\n cmd.run:\n - name: echo changed=true\n - cwd: /\n - stateful: True\n\n biscuits:\n cmd.wait:\n - name: echo biscuits\n - cwd: /\n - watch:\n - cmd: saltines\n """\n )\n', (6307, 6702), False, 'import textwrap\n')]
ChenQuan/mars
mars/tensor/execution/datastore.py
46fc9747e99210cebfabfc2d85bcc8272440d1a3
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 1999-2018 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np try: import tiledb except ImportError: # pragma: no cover tiledb = None from ...lib.sparse import SparseNDArray from ...lib.sparse.core import sps from ..expressions import datastore from .utils import get_tiledb_ctx def _store_tiledb(ctx, chunk): tiledb_ctx = get_tiledb_ctx(chunk.op.tiledb_config) uri = chunk.op.tiledb_uri key = chunk.op.tiledb_key timestamp = chunk.op.tiledb_timestamp axis_offsets = chunk.op.axis_offsets if not chunk.issparse(): # dense to_store = np.ascontiguousarray(ctx[chunk.op.input.key]) slcs = [] for axis in range(chunk.ndim): axis_offset = axis_offsets[axis] axis_length = chunk.op.input.shape[axis] slcs.append(slice(axis_offset, axis_offset + axis_length)) with tiledb.DenseArray(tiledb_ctx, uri, mode='w', key=key, timestamp=timestamp) as arr: arr[tuple(slcs)] = to_store ctx[chunk.key] = np.empty((0,) * chunk.ndim, dtype=chunk.dtype) else: # sparse to_store = ctx[chunk.op.input.key].spmatrix.tocoo() if to_store.nnz > 0: with tiledb.SparseArray(tiledb_ctx, uri, mode='w', key=key, timestamp=timestamp) as arr: if chunk.ndim == 1: vec = to_store.col if to_store.shape[0] == 1 else to_store.row vec += axis_offsets[0] arr[vec] = to_store.data else: i, j = to_store.row + axis_offsets[0], to_store.col + axis_offsets[1] arr[i, j] = to_store.data ctx[chunk.key] = SparseNDArray(sps.csr_matrix((0, 0), dtype=chunk.dtype), shape=chunk.shape) def register_data_store_handler(): from ...executor import register register(datastore.TensorTileDBDataStore, _store_tiledb)
[((1186, 1231), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['ctx[chunk.op.input.key]'], {}), '(ctx[chunk.op.input.key])\n', (1206, 1231), True, 'import numpy as np\n'), ((1650, 1696), 'numpy.empty', 'np.empty', (['((0,) * chunk.ndim)'], {'dtype': 'chunk.dtype'}), '((0,) * chunk.ndim, dtype=chunk.dtype)\n', (1658, 1696), True, 'import numpy as np\n'), ((1471, 1545), 'tiledb.DenseArray', 'tiledb.DenseArray', (['tiledb_ctx', 'uri'], {'mode': '"""w"""', 'key': 'key', 'timestamp': 'timestamp'}), "(tiledb_ctx, uri, mode='w', key=key, timestamp=timestamp)\n", (1488, 1545), False, 'import tiledb\n'), ((1830, 1905), 'tiledb.SparseArray', 'tiledb.SparseArray', (['tiledb_ctx', 'uri'], {'mode': '"""w"""', 'key': 'key', 'timestamp': 'timestamp'}), "(tiledb_ctx, uri, mode='w', key=key, timestamp=timestamp)\n", (1848, 1905), False, 'import tiledb\n')]
ppmlguy/fastgradclip
fastgc/model/mlp.py
0d8bff42ab13fa3471c520a2823050ccf0ff4a21
import torch import torch.nn as nn import torch.nn.functional as F from fastgc.model.penet import PeGradNet from fastgc.layers.linear import Linear from fastgc.activation import activation class MLP(PeGradNet): def __init__(self, input_size, hidden_sizes, output_size, act_func='sigmoid', train_alg='batch'): """ Parameters: ------------------ - input_size: integer, the number of features in the input - hidden_sizes: a list of integers, a list object containing number of units for hidden layers - output_size: an integer, the length of output vector - act_func: string, name of activation function to use for each hidden layer - train_alg: string, allowed values are {'batch', 'reweight', 'naive'} """ super(MLP, self).__init__() self.input_size = input_size layer_sizes = [input_size] + hidden_sizes self.linears = nn.ModuleList([Linear(in_size, out_size, bias=True) for in_size, out_size in zip(layer_sizes[:-1], layer_sizes[1:])]) self.output_layer = Linear(hidden_sizes[-1], output_size, bias=True) self.act = activation[act_func] self.train_alg=train_alg # list of layers in the network self.layers = [layer for layer in self.linears] self.layers.append(self.output_layer) def forward(self, x): x = x.view(-1, self.input_size) out = x for layer in self.linears: out = self.act(layer(out)) logits = self.output_layer(out) return logits
[((1201, 1249), 'fastgc.layers.linear.Linear', 'Linear', (['hidden_sizes[-1]', 'output_size'], {'bias': '(True)'}), '(hidden_sizes[-1], output_size, bias=True)\n', (1207, 1249), False, 'from fastgc.layers.linear import Linear\n'), ((964, 1000), 'fastgc.layers.linear.Linear', 'Linear', (['in_size', 'out_size'], {'bias': '(True)'}), '(in_size, out_size, bias=True)\n', (970, 1000), False, 'from fastgc.layers.linear import Linear\n')]
ericchen12377/CS61A_LearningDoc
05-Environments/hw02/hw02/hw02.py
31f23962b0e2834795bf61eeb0f4884cc5da1809
""" Homework 2: Higher Order Functions""" HW_SOURCE_FILE = 'hw02.py' from operator import add, mul, sub square = lambda x: x * x identity = lambda x: x triple = lambda x: 3 * x increment = lambda x: x + 1 ###################### # Required Questions # ###################### def product(n, f): """Return the product of the first n terms in a sequence. n -- a positive integer f -- a function that takes one argument to produce the term >>> product(3, identity) # 1 * 2 * 3 6 >>> product(5, identity) # 1 * 2 * 3 * 4 * 5 120 >>> product(3, square) # 1^2 * 2^2 * 3^2 36 >>> product(5, square) # 1^2 * 2^2 * 3^2 * 4^2 * 5^2 14400 >>> product(3, increment) # (1+1) * (2+1) * (3+1) 24 >>> product(3, triple) # 1*3 * 2*3 * 3*3 162 """ "*** YOUR CODE HERE ***" result,k = 1,1 while k <= n: result,k = f(k)*result, k + 1 return result def accumulate(combiner, base, n, f): """Return the result of combining the first n terms in a sequence and base. The terms to be combined are f(1), f(2), ..., f(n). combiner is a two-argument commutative, associative function. >>> accumulate(add, 0, 5, identity) # 0 + 1 + 2 + 3 + 4 + 5 15 >>> accumulate(add, 11, 5, identity) # 11 + 1 + 2 + 3 + 4 + 5 26 >>> accumulate(add, 11, 0, identity) # 11 11 >>> accumulate(add, 11, 3, square) # 11 + 1^2 + 2^2 + 3^2 25 >>> accumulate(mul, 2, 3, square) # 2 * 1^2 * 2^2 * 3^2 72 >>> accumulate(lambda x, y: x + y + 1, 2, 3, square) 19 >>> accumulate(lambda x, y: 2 * (x + y), 2, 3, square) 58 >>> accumulate(lambda x, y: (x + y) % 17, 19, 20, square) 16 """ "*** YOUR CODE HERE ***" result, k = base,1 while k <= n: result, k = combiner(result,f(k)), k + 1 return result def summation_using_accumulate(n, f): """Returns the sum of f(1) + ... + f(n). The implementation uses accumulate. >>> summation_using_accumulate(5, square) 55 >>> summation_using_accumulate(5, triple) 45 >>> from construct_check import check >>> # ban iteration and recursion >>> check(HW_SOURCE_FILE, 'summation_using_accumulate', ... ['Recursion', 'For', 'While']) True """ "*** YOUR CODE HERE ***" # result, k = 0, 1 # while k <= n: # result, k = result + f(k), k + 1 return accumulate(add,0,n,f) def product_using_accumulate(n, f): """An implementation of product using accumulate. >>> product_using_accumulate(4, square) 576 >>> product_using_accumulate(6, triple) 524880 >>> from construct_check import check >>> # ban iteration and recursion >>> check(HW_SOURCE_FILE, 'product_using_accumulate', ... ['Recursion', 'For', 'While']) True """ "*** YOUR CODE HERE ***" # result, k = 1, 1 # while k <= n: # result, k = result * f(k), k + 1 return accumulate(mul,1,n,f) def compose1(h, g): """Return a function f, such that f(x) = h(g(x)).""" def f(x): return h(g(x)) return f def make_repeater(h, n): """Return the function that computes the nth application of h. >>> add_three = make_repeater(increment, 3) >>> add_three(5) 8 >>> make_repeater(triple, 5)(1) # 3 * 3 * 3 * 3 * 3 * 1 243 >>> make_repeater(square, 2)(5) # square(square(5)) 625 >>> make_repeater(square, 4)(5) # square(square(square(square(5)))) 152587890625 >>> make_repeater(square, 0)(5) # Yes, it makes sense to apply the function zero times! 5 """ "*** YOUR CODE HERE ***" def repeater(x): result, k = x,1 while k <= n: result,k = h(result), k + 1 return result return repeater ########################## # Just for fun Questions # ########################## def zero(f): return lambda x: x def successor(n): return lambda f: lambda x: f(n(f)(x)) def one(f): """Church numeral 1: same as successor(zero)""" "*** YOUR CODE HERE ***" return lambda x: f(x) def two(f): """Church numeral 2: same as successor(successor(zero))""" "*** YOUR CODE HERE ***" return lambda x: f(f(x)) three = successor(two) def church_to_int(n): """Convert the Church numeral n to a Python integer. >>> church_to_int(zero) 0 >>> church_to_int(one) 1 >>> church_to_int(two) 2 >>> church_to_int(three) 3 """ "*** YOUR CODE HERE ***" return n(lambda x: x + 1)(0) def add_church(m, n): """Return the Church numeral for m + n, for Church numerals m and n. >>> church_to_int(add_church(two, three)) 5 """ "*** YOUR CODE HERE ***" return lambda f: lambda x: m(f)(n(f)(x)) def mul_church(m, n): """Return the Church numeral for m * n, for Church numerals m and n. >>> four = successor(three) >>> church_to_int(mul_church(two, three)) 6 >>> church_to_int(mul_church(three, four)) 12 """ "*** YOUR CODE HERE ***" return lambda f: m(n(f)) def pow_church(m, n): """Return the Church numeral m ** n, for Church numerals m and n. >>> church_to_int(pow_church(two, three)) 8 >>> church_to_int(pow_church(three, two)) 9 """ "*** YOUR CODE HERE ***" return n(m)
[]
farleyb-amazon/aws-encryption-sdk-python
test_vector_handlers/src/awses_test_vectors/manifests/full_message/decrypt_generation.py
7950abd73ee333407d2dadd02ef2d57c3df464cf
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. """ AWS Encryption SDK Decrypt Message Generation manifest handler. Described in AWS Crypto Tools Test Vector Framework feature #0006 AWS Encryption SDK Decrypt Message Generation. """ import json import os import uuid from copy import copy import attr import six from aws_encryption_sdk.caches.local import LocalCryptoMaterialsCache from aws_encryption_sdk.materials_managers.base import CryptoMaterialsManager from aws_encryption_sdk.materials_managers.caching import CachingCryptoMaterialsManager from aws_encryption_sdk.materials_managers.default import DefaultCryptoMaterialsManager from awses_test_vectors.internal.defaults import ENCODING from awses_test_vectors.internal.util import ( dictionary_validator, file_reader, file_writer, iterable_validator, membership_validator, validate_manifest_type, ) from awses_test_vectors.manifests.full_message.decrypt import ( DecryptionMethod, MessageDecryptionManifest, MessageDecryptionTestResult, MessageDecryptionTestScenario, ) from awses_test_vectors.manifests.full_message.encrypt import MessageEncryptionTestScenario from awses_test_vectors.manifests.keys import KeysManifest try: from aws_encryption_sdk.identifiers import AlgorithmSuite except ImportError: from aws_encryption_sdk.identifiers import Algorithm as AlgorithmSuite from awses_test_vectors.manifests.master_key import MasterKeySpec, master_key_provider_from_master_key_specs try: # Python 3.5.0 and 3.5.1 have incompatible typing modules from typing import IO, Callable, Dict, Iterable, Optional # noqa pylint: disable=unused-import from awses_test_vectors.internal.mypy_types import ( # noqa pylint: disable=unused-import ENCRYPT_SCENARIO_SPEC, PLAINTEXTS_SPEC, ) except ImportError: # pragma: no cover # We only actually need these imports when running the mypy checks pass SUPPORTED_VERSIONS = (2,) class TamperingMethod: """Base class for all tampering methods.""" @classmethod def from_tampering_spec(cls, spec): """Load from a tampering specification""" if spec is None: return TamperingMethod() if spec == "truncate": return TruncateTamperingMethod() if spec == "mutate": return MutateTamperingMethod() if spec == "half-sign": return HalfSigningTamperingMethod() ((tampering_tag, tampering_values_spec),) = spec.items() if tampering_tag == "change-edk-provider-info": return ChangeEDKProviderInfoTamperingMethod.from_values_spec(tampering_values_spec) raise ValueError("Unrecognized tampering method tag: " + tampering_tag) # pylint: disable=R0201 def run_scenario_with_tampering(self, ciphertext_writer, generation_scenario, plaintext_uri): """ Run a given scenario, tampering with the input or the result. return: a list of (ciphertext, result) pairs """ materials_manager = DefaultCryptoMaterialsManager( generation_scenario.encryption_scenario.master_key_provider_fn() ) ciphertext_to_decrypt = generation_scenario.encryption_scenario.run(materials_manager) if generation_scenario.result: expected_result = generation_scenario.result else: expected_result = MessageDecryptionTestResult.expect_output( plaintext_uri=plaintext_uri, plaintext=generation_scenario.encryption_scenario.plaintext ) return [ generation_scenario.decryption_test_scenario_pair(ciphertext_writer, ciphertext_to_decrypt, expected_result) ] class ChangeEDKProviderInfoTamperingMethod(TamperingMethod): """Tampering method that changes the provider info on all EDKs.""" new_provider_infos = attr.ib(validator=iterable_validator(list, six.string_types)) def __init__(self, new_provider_infos): """Create a new instance for a given new provider info value.""" self.new_provider_infos = new_provider_infos @classmethod def from_values_spec(cls, values_spec): """Load from a tampering parameters specification""" return ChangeEDKProviderInfoTamperingMethod(values_spec) # pylint: disable=R0201 def run_scenario_with_tampering(self, ciphertext_writer, generation_scenario, _plaintext_uri): """ Run a given scenario, tampering with the input or the result. return: a list of (ciphertext, result) pairs. """ master_key_provider = generation_scenario.encryption_scenario.master_key_provider_fn() # Use a caching CMM to avoid generating a new data key every time. cache = LocalCryptoMaterialsCache(10) caching_cmm = CachingCryptoMaterialsManager( master_key_provider=master_key_provider, cache=cache, max_age=60.0, max_messages_encrypted=100, ) return [ self.run_scenario_with_new_provider_info( ciphertext_writer, generation_scenario, caching_cmm, new_provider_info ) for new_provider_info in self.new_provider_infos ] def run_scenario_with_new_provider_info( self, ciphertext_writer, generation_scenario, materials_manager, new_provider_info ): """Run with tampering for a specific new provider info value""" tampering_materials_manager = ProviderInfoChangingCryptoMaterialsManager(materials_manager, new_provider_info) ciphertext_to_decrypt = generation_scenario.encryption_scenario.run(tampering_materials_manager) expected_result = MessageDecryptionTestResult.expect_error( "Incorrect encrypted data key provider info: " + new_provider_info ) return generation_scenario.decryption_test_scenario_pair( ciphertext_writer, ciphertext_to_decrypt, expected_result ) class ProviderInfoChangingCryptoMaterialsManager(CryptoMaterialsManager): """ Custom CMM that modifies the provider info field on EDKS. THIS IS ONLY USED TO CREATE INVALID MESSAGES and should never be used in production! """ wrapped_cmm = attr.ib(validator=attr.validators.instance_of(CryptoMaterialsManager)) new_provider_info = attr.ib(validator=attr.validators.instance_of(six.string_types)) def __init__(self, materials_manager, new_provider_info): """Create a new CMM that wraps a the given CMM.""" self.wrapped_cmm = materials_manager self.new_provider_info = new_provider_info def get_encryption_materials(self, request): """ Request materials from the wrapped CMM, and then change the provider info on each EDK. """ result = self.wrapped_cmm.get_encryption_materials(request) for encrypted_data_key in result.encrypted_data_keys: encrypted_data_key.key_provider.key_info = self.new_provider_info return result def decrypt_materials(self, request): """Thunks to the wrapped CMM""" return self.wrapped_cmm.decrypt_materials(request) BITS_PER_BYTE = 8 class TruncateTamperingMethod(TamperingMethod): """Tampering method that truncates a good message at every byte (except zero).""" # pylint: disable=R0201 def run_scenario_with_tampering(self, ciphertext_writer, generation_scenario, _plaintext_uri): """ Run a given scenario, tampering with the input or the result. return: a list of (ciphertext, result) pairs. """ ciphertext_to_decrypt = generation_scenario.encryption_scenario.run() return [ generation_scenario.decryption_test_scenario_pair( ciphertext_writer, TruncateTamperingMethod.flip_bit(ciphertext_to_decrypt, bit), MessageDecryptionTestResult.expect_error("Bit {} flipped".format(bit)), ) for bit in range(0, len(ciphertext_to_decrypt) * BITS_PER_BYTE) ] @classmethod def flip_bit(cls, ciphertext, bit): """Flip only the given bit in the given ciphertext""" byte_index, bit_index = divmod(bit, BITS_PER_BYTE) result = bytearray(ciphertext) result[byte_index] ^= 1 << (BITS_PER_BYTE - bit_index - 1) return bytes(result) class MutateTamperingMethod(TamperingMethod): """Tampering method that produces a message with a single bit flipped, for every possible bit.""" # pylint: disable=R0201 def run_scenario_with_tampering(self, ciphertext_writer, generation_scenario, _plaintext_uri): """ Run a given scenario, tampering with the input or the result. return: a list of (ciphertext, result) pairs. """ ciphertext_to_decrypt = generation_scenario.encryption_scenario.run() return [ generation_scenario.decryption_test_scenario_pair( ciphertext_writer, ciphertext_to_decrypt[0:length], MessageDecryptionTestResult.expect_error("Truncated at byte {}".format(length)), ) for length in range(1, len(ciphertext_to_decrypt)) ] class HalfSigningTamperingMethod(TamperingMethod): """Tampering method that changes the provider info on all EDKs.""" # pylint: disable=R0201 def run_scenario_with_tampering(self, ciphertext_writer, generation_scenario, _plaintext_uri): """ Run a given scenario, tampering with the input or the result. return: a list of (ciphertext, result) pairs. """ tampering_materials_manager = HalfSigningCryptoMaterialsManager( generation_scenario.encryption_scenario.master_key_provider_fn() ) ciphertext_to_decrypt = generation_scenario.encryption_scenario.run(tampering_materials_manager) expected_result = MessageDecryptionTestResult.expect_error( "Unsigned message using a data key with a public key" ) return [ generation_scenario.decryption_test_scenario_pair(ciphertext_writer, ciphertext_to_decrypt, expected_result) ] class HalfSigningCryptoMaterialsManager(CryptoMaterialsManager): """ Custom CMM that generates materials for an unsigned algorithm suite that includes the "aws-crypto-public-key" encryption context. THIS IS ONLY USED TO CREATE INVALID MESSAGES and should never be used in production! It is imitating what a malicious decryptor without encryption permissions might do, to attempt to forge an unsigned message from a decrypted signed message, and therefore this is an important case for ESDKs to reject. """ wrapped_default_cmm = attr.ib(validator=attr.validators.instance_of(CryptoMaterialsManager)) def __init__(self, master_key_provider): """ Create a new CMM that wraps a new DefaultCryptoMaterialsManager based on the given master key provider. """ self.wrapped_default_cmm = DefaultCryptoMaterialsManager(master_key_provider) def get_encryption_materials(self, request): """ Generate half-signing materials by requesting signing materials from the wrapped default CMM, and then changing the algorithm suite and removing the signing key from teh result. """ if request.algorithm == AlgorithmSuite.AES_256_GCM_HKDF_SHA512_COMMIT_KEY: signing_request = copy(request) signing_request.algorithm = AlgorithmSuite.AES_256_GCM_HKDF_SHA512_COMMIT_KEY_ECDSA_P384 result = self.wrapped_default_cmm.get_encryption_materials(signing_request) result.algorithm = request.algorithm result.signing_key = None return result raise NotImplementedError( "The half-sign tampering method is only supported on the " "AES_256_GCM_HKDF_SHA512_COMMIT_KEY algorithm suite." ) def decrypt_materials(self, request): """Thunks to the wrapped default CMM""" return self.wrapped_default_cmm.decrypt_materials(request) @attr.s class MessageDecryptionTestScenarioGenerator(object): # pylint: disable=too-many-instance-attributes """Data class for a single full message decrypt test scenario. Handles serialization and deserialization to and from manifest specs. :param MessageEncryptionTestScenario encryption_scenario: Encryption parameters :param tampering_method: Optional method used to tamper with the ciphertext :type tampering_method: :class:`TamperingMethod` :param decryption_method: :param decryption_master_key_specs: Iterable of master key specifications :type decryption_master_key_specs: iterable of :class:`MasterKeySpec` :param Callable decryption_master_key_provider_fn: :param result: """ encryption_scenario = attr.ib(validator=attr.validators.instance_of(MessageEncryptionTestScenario)) tampering_method = attr.ib(validator=attr.validators.optional(attr.validators.instance_of(TamperingMethod))) decryption_method = attr.ib(validator=attr.validators.optional(attr.validators.instance_of(DecryptionMethod))) decryption_master_key_specs = attr.ib(validator=iterable_validator(list, MasterKeySpec)) decryption_master_key_provider_fn = attr.ib(validator=attr.validators.is_callable()) result = attr.ib(validator=attr.validators.optional(attr.validators.instance_of(MessageDecryptionTestResult))) @classmethod def from_scenario(cls, scenario, keys, plaintexts): """Load from a scenario specification. :param dict scenario: Scenario specification JSON :param KeysManifest keys: Loaded keys :param dict plaintexts: Mapping of plaintext names to plaintext values :return: Loaded test scenario :rtype: MessageDecryptionTestScenarioGenerator """ encryption_scenario_spec = scenario["encryption-scenario"] encryption_scenario = MessageEncryptionTestScenario.from_scenario(encryption_scenario_spec, keys, plaintexts) tampering = scenario.get("tampering") tampering_method = TamperingMethod.from_tampering_spec(tampering) decryption_method_spec = scenario.get("decryption-method") decryption_method = DecryptionMethod(decryption_method_spec) if decryption_method_spec else None if "decryption-master-keys" in scenario: decryption_master_key_specs = [ MasterKeySpec.from_scenario(spec) for spec in scenario["decryption-master-keys"] ] def decryption_master_key_provider_fn(): return master_key_provider_from_master_key_specs(keys, decryption_master_key_specs) else: decryption_master_key_specs = encryption_scenario.master_key_specs decryption_master_key_provider_fn = encryption_scenario.master_key_provider_fn result_spec = scenario.get("result") result = MessageDecryptionTestResult.from_result_spec(result_spec, None) if result_spec else None return cls( encryption_scenario=encryption_scenario, tampering_method=tampering_method, decryption_method=decryption_method, decryption_master_key_specs=decryption_master_key_specs, decryption_master_key_provider_fn=decryption_master_key_provider_fn, result=result, ) def run(self, ciphertext_writer, plaintext_uri): """Run this scenario, writing the resulting ciphertext with ``ciphertext_writer`` and returning a :class:`MessageDecryptionTestScenario` that describes the matching decrypt scenario. :param callable ciphertext_writer: Callable that will write the requested named ciphertext and return a URI locating the written data :param str plaintext_uri: URI locating the written plaintext data for this scenario :return: Decrypt test scenario that describes the generated scenario :rtype: MessageDecryptionTestScenario """ return dict(self.tampering_method.run_scenario_with_tampering(ciphertext_writer, self, plaintext_uri)) def decryption_test_scenario_pair(self, ciphertext_writer, ciphertext_to_decrypt, expected_result): """Create a new (name, decryption scenario) pair""" ciphertext_name = str(uuid.uuid4()) ciphertext_uri = ciphertext_writer(ciphertext_name, ciphertext_to_decrypt) return ( ciphertext_name, MessageDecryptionTestScenario( ciphertext_uri=ciphertext_uri, ciphertext=ciphertext_to_decrypt, master_key_specs=self.decryption_master_key_specs, master_key_provider_fn=self.decryption_master_key_provider_fn, decryption_method=self.decryption_method, result=expected_result, ), ) @attr.s class MessageDecryptionGenerationManifest(object): """AWS Encryption SDK Decryption Message Generation manifest handler. Described in AWS Crypto Tools Test Vector Framework feature #0006 AWS Encryption SDK Decrypt Message Generation. :param int version: Version of this manifest :param KeysManifest keys: Loaded keys :param dict plaintexts: Mapping of plaintext names to plaintext values :param dict tests: Mapping of test scenario names to :class:`MessageDecryptionGenerationManifest`s """ version = attr.ib(validator=membership_validator(SUPPORTED_VERSIONS)) keys = attr.ib(validator=attr.validators.instance_of(KeysManifest)) plaintexts = attr.ib(validator=dictionary_validator(six.string_types, six.binary_type)) tests = attr.ib(validator=dictionary_validator(six.string_types, MessageDecryptionTestScenarioGenerator)) type_name = "awses-decrypt-generate" @staticmethod def _generate_plaintexts(plaintexts_specs): # type: (PLAINTEXTS_SPEC) -> Dict[str, bytes] """Generate required plaintext values. :param dict plaintexts_specs: Mapping of plaintext name to size in bytes :return: Mapping of plaintext name to randomly generated bytes :rtype: dict """ return {name: os.urandom(size) for name, size in plaintexts_specs.items()} @classmethod def from_file(cls, input_file): # type: (IO) -> MessageDecryptionGenerationManifest """Load from a file containing a full message encrypt manifest. :param file input_file: File object for file containing JSON manifest :return: Loaded manifest :rtype: MessageEncryptionManifest """ raw_manifest = json.load(input_file) validate_manifest_type( type_name=cls.type_name, manifest_version=raw_manifest["manifest"], supported_versions=SUPPORTED_VERSIONS ) parent_dir = os.path.abspath(os.path.dirname(input_file.name)) reader = file_reader(parent_dir) raw_keys_manifest = json.loads(reader(raw_manifest["keys"]).decode(ENCODING)) keys = KeysManifest.from_manifest_spec(raw_keys_manifest) plaintexts = cls._generate_plaintexts(raw_manifest["plaintexts"]) tests = {} for name, scenario in raw_manifest["tests"].items(): try: tests[name] = MessageDecryptionTestScenarioGenerator.from_scenario( scenario=scenario, keys=keys, plaintexts=plaintexts ) except NotImplementedError: continue return cls(version=raw_manifest["manifest"]["version"], keys=keys, plaintexts=plaintexts, tests=tests) def run_and_write_to_dir(self, target_directory, json_indent=None): # type: (str, Optional[int]) -> None """Process all known encrypt test scenarios and write the resulting data and manifests to disk. :param str target_directory: Directory in which to write all output :param int json_indent: Number of spaces to indent JSON files (optional: default is to write minified) """ root_dir = os.path.abspath(target_directory) root_writer = file_writer(root_dir) root_writer("keys.json", json.dumps(self.keys.manifest_spec, indent=json_indent).encode(ENCODING)) plaintext_writer = file_writer(os.path.join(root_dir, "plaintexts")) plaintext_uris = {name: plaintext_writer(name, plaintext) for name, plaintext in self.plaintexts.items()} ciphertext_writer = file_writer(os.path.join(root_dir, "ciphertexts")) test_scenarios = { decrypt_scenario_name: decrypt_scenario for name, scenario in self.tests.items() for decrypt_scenario_name, decrypt_scenario in scenario.run( ciphertext_writer, plaintext_uris[scenario.encryption_scenario.plaintext_name] ).items() } decrypt_manifest = MessageDecryptionManifest( keys_uri="file://keys.json", keys=self.keys, test_scenarios=test_scenarios ) root_writer("manifest.json", json.dumps(decrypt_manifest.manifest_spec, indent=json_indent).encode(ENCODING))
[((5257, 5286), 'aws_encryption_sdk.caches.local.LocalCryptoMaterialsCache', 'LocalCryptoMaterialsCache', (['(10)'], {}), '(10)\n', (5282, 5286), False, 'from aws_encryption_sdk.caches.local import LocalCryptoMaterialsCache\n'), ((5309, 5438), 'aws_encryption_sdk.materials_managers.caching.CachingCryptoMaterialsManager', 'CachingCryptoMaterialsManager', ([], {'master_key_provider': 'master_key_provider', 'cache': 'cache', 'max_age': '(60.0)', 'max_messages_encrypted': '(100)'}), '(master_key_provider=master_key_provider,\n cache=cache, max_age=60.0, max_messages_encrypted=100)\n', (5338, 5438), False, 'from aws_encryption_sdk.materials_managers.caching import CachingCryptoMaterialsManager\n'), ((6203, 6316), 'awses_test_vectors.manifests.full_message.decrypt.MessageDecryptionTestResult.expect_error', 'MessageDecryptionTestResult.expect_error', (["('Incorrect encrypted data key provider info: ' + new_provider_info)"], {}), "(\n 'Incorrect encrypted data key provider info: ' + new_provider_info)\n", (6243, 6316), False, 'from awses_test_vectors.manifests.full_message.decrypt import DecryptionMethod, MessageDecryptionManifest, MessageDecryptionTestResult, MessageDecryptionTestScenario\n'), ((10425, 10525), 'awses_test_vectors.manifests.full_message.decrypt.MessageDecryptionTestResult.expect_error', 'MessageDecryptionTestResult.expect_error', (['"""Unsigned message using a data key with a public key"""'], {}), "(\n 'Unsigned message using a data key with a public key')\n", (10465, 10525), False, 'from awses_test_vectors.manifests.full_message.decrypt import DecryptionMethod, MessageDecryptionManifest, MessageDecryptionTestResult, MessageDecryptionTestScenario\n'), ((11555, 11605), 'aws_encryption_sdk.materials_managers.default.DefaultCryptoMaterialsManager', 'DefaultCryptoMaterialsManager', (['master_key_provider'], {}), '(master_key_provider)\n', (11584, 11605), False, 'from aws_encryption_sdk.materials_managers.default import DefaultCryptoMaterialsManager\n'), ((14530, 14621), 'awses_test_vectors.manifests.full_message.encrypt.MessageEncryptionTestScenario.from_scenario', 'MessageEncryptionTestScenario.from_scenario', (['encryption_scenario_spec', 'keys', 'plaintexts'], {}), '(encryption_scenario_spec, keys,\n plaintexts)\n', (14573, 14621), False, 'from awses_test_vectors.manifests.full_message.encrypt import MessageEncryptionTestScenario\n'), ((19188, 19209), 'json.load', 'json.load', (['input_file'], {}), '(input_file)\n', (19197, 19209), False, 'import json\n'), ((19218, 19352), 'awses_test_vectors.internal.util.validate_manifest_type', 'validate_manifest_type', ([], {'type_name': 'cls.type_name', 'manifest_version': "raw_manifest['manifest']", 'supported_versions': 'SUPPORTED_VERSIONS'}), "(type_name=cls.type_name, manifest_version=\n raw_manifest['manifest'], supported_versions=SUPPORTED_VERSIONS)\n", (19240, 19352), False, 'from awses_test_vectors.internal.util import dictionary_validator, file_reader, file_writer, iterable_validator, membership_validator, validate_manifest_type\n'), ((19459, 19482), 'awses_test_vectors.internal.util.file_reader', 'file_reader', (['parent_dir'], {}), '(parent_dir)\n', (19470, 19482), False, 'from awses_test_vectors.internal.util import dictionary_validator, file_reader, file_writer, iterable_validator, membership_validator, validate_manifest_type\n'), ((19584, 19634), 'awses_test_vectors.manifests.keys.KeysManifest.from_manifest_spec', 'KeysManifest.from_manifest_spec', (['raw_keys_manifest'], {}), '(raw_keys_manifest)\n', (19615, 19634), False, 'from awses_test_vectors.manifests.keys import KeysManifest\n'), ((20597, 20630), 'os.path.abspath', 'os.path.abspath', (['target_directory'], {}), '(target_directory)\n', (20612, 20630), False, 'import os\n'), ((20653, 20674), 'awses_test_vectors.internal.util.file_writer', 'file_writer', (['root_dir'], {}), '(root_dir)\n', (20664, 20674), False, 'from awses_test_vectors.internal.util import dictionary_validator, file_reader, file_writer, iterable_validator, membership_validator, validate_manifest_type\n'), ((21416, 21521), 'awses_test_vectors.manifests.full_message.decrypt.MessageDecryptionManifest', 'MessageDecryptionManifest', ([], {'keys_uri': '"""file://keys.json"""', 'keys': 'self.keys', 'test_scenarios': 'test_scenarios'}), "(keys_uri='file://keys.json', keys=self.keys,\n test_scenarios=test_scenarios)\n", (21441, 21521), False, 'from awses_test_vectors.manifests.full_message.decrypt import DecryptionMethod, MessageDecryptionManifest, MessageDecryptionTestResult, MessageDecryptionTestScenario\n'), ((3902, 4037), 'awses_test_vectors.manifests.full_message.decrypt.MessageDecryptionTestResult.expect_output', 'MessageDecryptionTestResult.expect_output', ([], {'plaintext_uri': 'plaintext_uri', 'plaintext': 'generation_scenario.encryption_scenario.plaintext'}), '(plaintext_uri=plaintext_uri,\n plaintext=generation_scenario.encryption_scenario.plaintext)\n', (3943, 4037), False, 'from awses_test_vectors.manifests.full_message.decrypt import DecryptionMethod, MessageDecryptionManifest, MessageDecryptionTestResult, MessageDecryptionTestScenario\n'), ((4390, 4432), 'awses_test_vectors.internal.util.iterable_validator', 'iterable_validator', (['list', 'six.string_types'], {}), '(list, six.string_types)\n', (4408, 4432), False, 'from awses_test_vectors.internal.util import dictionary_validator, file_reader, file_writer, iterable_validator, membership_validator, validate_manifest_type\n'), ((6765, 6816), 'attr.validators.instance_of', 'attr.validators.instance_of', (['CryptoMaterialsManager'], {}), '(CryptoMaterialsManager)\n', (6792, 6816), False, 'import attr\n'), ((6860, 6905), 'attr.validators.instance_of', 'attr.validators.instance_of', (['six.string_types'], {}), '(six.string_types)\n', (6887, 6905), False, 'import attr\n'), ((11277, 11328), 'attr.validators.instance_of', 'attr.validators.instance_of', (['CryptoMaterialsManager'], {}), '(CryptoMaterialsManager)\n', (11304, 11328), False, 'import attr\n'), ((11995, 12008), 'copy.copy', 'copy', (['request'], {}), '(request)\n', (11999, 12008), False, 'from copy import copy\n'), ((13438, 13496), 'attr.validators.instance_of', 'attr.validators.instance_of', (['MessageEncryptionTestScenario'], {}), '(MessageEncryptionTestScenario)\n', (13465, 13496), False, 'import attr\n'), ((13778, 13817), 'awses_test_vectors.internal.util.iterable_validator', 'iterable_validator', (['list', 'MasterKeySpec'], {}), '(list, MasterKeySpec)\n', (13796, 13817), False, 'from awses_test_vectors.internal.util import dictionary_validator, file_reader, file_writer, iterable_validator, membership_validator, validate_manifest_type\n'), ((13877, 13906), 'attr.validators.is_callable', 'attr.validators.is_callable', ([], {}), '()\n', (13904, 13906), False, 'import attr\n'), ((14833, 14873), 'awses_test_vectors.manifests.full_message.decrypt.DecryptionMethod', 'DecryptionMethod', (['decryption_method_spec'], {}), '(decryption_method_spec)\n', (14849, 14873), False, 'from awses_test_vectors.manifests.full_message.decrypt import DecryptionMethod, MessageDecryptionManifest, MessageDecryptionTestResult, MessageDecryptionTestScenario\n'), ((15515, 15578), 'awses_test_vectors.manifests.full_message.decrypt.MessageDecryptionTestResult.from_result_spec', 'MessageDecryptionTestResult.from_result_spec', (['result_spec', 'None'], {}), '(result_spec, None)\n', (15559, 15578), False, 'from awses_test_vectors.manifests.full_message.decrypt import DecryptionMethod, MessageDecryptionManifest, MessageDecryptionTestResult, MessageDecryptionTestScenario\n'), ((16902, 16914), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (16912, 16914), False, 'import uuid\n'), ((17058, 17352), 'awses_test_vectors.manifests.full_message.decrypt.MessageDecryptionTestScenario', 'MessageDecryptionTestScenario', ([], {'ciphertext_uri': 'ciphertext_uri', 'ciphertext': 'ciphertext_to_decrypt', 'master_key_specs': 'self.decryption_master_key_specs', 'master_key_provider_fn': 'self.decryption_master_key_provider_fn', 'decryption_method': 'self.decryption_method', 'result': 'expected_result'}), '(ciphertext_uri=ciphertext_uri, ciphertext=\n ciphertext_to_decrypt, master_key_specs=self.\n decryption_master_key_specs, master_key_provider_fn=self.\n decryption_master_key_provider_fn, decryption_method=self.\n decryption_method, result=expected_result)\n', (17087, 17352), False, 'from awses_test_vectors.manifests.full_message.decrypt import DecryptionMethod, MessageDecryptionManifest, MessageDecryptionTestResult, MessageDecryptionTestScenario\n'), ((18019, 18059), 'awses_test_vectors.internal.util.membership_validator', 'membership_validator', (['SUPPORTED_VERSIONS'], {}), '(SUPPORTED_VERSIONS)\n', (18039, 18059), False, 'from awses_test_vectors.internal.util import dictionary_validator, file_reader, file_writer, iterable_validator, membership_validator, validate_manifest_type\n'), ((18090, 18131), 'attr.validators.instance_of', 'attr.validators.instance_of', (['KeysManifest'], {}), '(KeysManifest)\n', (18117, 18131), False, 'import attr\n'), ((18168, 18223), 'awses_test_vectors.internal.util.dictionary_validator', 'dictionary_validator', (['six.string_types', 'six.binary_type'], {}), '(six.string_types, six.binary_type)\n', (18188, 18223), False, 'from awses_test_vectors.internal.util import dictionary_validator, file_reader, file_writer, iterable_validator, membership_validator, validate_manifest_type\n'), ((18255, 18333), 'awses_test_vectors.internal.util.dictionary_validator', 'dictionary_validator', (['six.string_types', 'MessageDecryptionTestScenarioGenerator'], {}), '(six.string_types, MessageDecryptionTestScenarioGenerator)\n', (18275, 18333), False, 'from awses_test_vectors.internal.util import dictionary_validator, file_reader, file_writer, iterable_validator, membership_validator, validate_manifest_type\n'), ((18752, 18768), 'os.urandom', 'os.urandom', (['size'], {}), '(size)\n', (18762, 18768), False, 'import os\n'), ((19408, 19440), 'os.path.dirname', 'os.path.dirname', (['input_file.name'], {}), '(input_file.name)\n', (19423, 19440), False, 'import os\n'), ((20823, 20859), 'os.path.join', 'os.path.join', (['root_dir', '"""plaintexts"""'], {}), "(root_dir, 'plaintexts')\n", (20835, 20859), False, 'import os\n'), ((21016, 21053), 'os.path.join', 'os.path.join', (['root_dir', '"""ciphertexts"""'], {}), "(root_dir, 'ciphertexts')\n", (21028, 21053), False, 'import os\n'), ((13564, 13608), 'attr.validators.instance_of', 'attr.validators.instance_of', (['TamperingMethod'], {}), '(TamperingMethod)\n', (13591, 13608), False, 'import attr\n'), ((13678, 13723), 'attr.validators.instance_of', 'attr.validators.instance_of', (['DecryptionMethod'], {}), '(DecryptionMethod)\n', (13705, 13723), False, 'import attr\n'), ((13964, 14020), 'attr.validators.instance_of', 'attr.validators.instance_of', (['MessageDecryptionTestResult'], {}), '(MessageDecryptionTestResult)\n', (13991, 14020), False, 'import attr\n'), ((15019, 15052), 'awses_test_vectors.manifests.master_key.MasterKeySpec.from_scenario', 'MasterKeySpec.from_scenario', (['spec'], {}), '(spec)\n', (15046, 15052), False, 'from awses_test_vectors.manifests.master_key import MasterKeySpec, master_key_provider_from_master_key_specs\n'), ((15191, 15267), 'awses_test_vectors.manifests.master_key.master_key_provider_from_master_key_specs', 'master_key_provider_from_master_key_specs', (['keys', 'decryption_master_key_specs'], {}), '(keys, decryption_master_key_specs)\n', (15232, 15267), False, 'from awses_test_vectors.manifests.master_key import MasterKeySpec, master_key_provider_from_master_key_specs\n'), ((20709, 20764), 'json.dumps', 'json.dumps', (['self.keys.manifest_spec'], {'indent': 'json_indent'}), '(self.keys.manifest_spec, indent=json_indent)\n', (20719, 20764), False, 'import json\n'), ((21578, 21640), 'json.dumps', 'json.dumps', (['decrypt_manifest.manifest_spec'], {'indent': 'json_indent'}), '(decrypt_manifest.manifest_spec, indent=json_indent)\n', (21588, 21640), False, 'import json\n')]
ismacaulay/qtcwatchdog
acceptance/test/TestStartStopFeature.py
72f3588eef1019bac8788fa58c52722dfa7c4d28
from acceptance.harness.acceptance_test import WatchdogAcceptanceTest class TestStartStopFeature(WatchdogAcceptanceTest): def test_willStartObserverWhenWatchdogStarted(self): self.create_and_start_watchdog() self.assertTrue(self.fs_observer.running) def test_willStopObserverWhenWatchdogStopped(self): self.create_and_start_watchdog() self.watchdog.stop() self.assertFalse(self.fs_observer.running) def test_willJoinObserverThreadWhenWatchdogStopped(self): self.create_and_start_watchdog() self.watchdog.stop() self.assertTrue(self.fs_observer.joined)
[]
VincentStimper/nsf
neural_spline_flows/nde/transforms/transform_test.py
6bde505639ebcb67bffa227ea0021e3de235e03d
import torch import torchtestcase from neural_spline_flows.nde.transforms import base class TransformTest(torchtestcase.TorchTestCase): """Base test for all transforms.""" def assert_tensor_is_good(self, tensor, shape=None): self.assertIsInstance(tensor, torch.Tensor) self.assertFalse(torch.isnan(tensor).any()) self.assertFalse(torch.isinf(tensor).any()) if shape is not None: self.assertEqual(tensor.shape, torch.Size(shape)) def assert_forward_inverse_are_consistent(self, transform, inputs): inverse = base.InverseTransform(transform) identity = base.CompositeTransform([inverse, transform]) outputs, logabsdet = identity(inputs) self.assert_tensor_is_good(outputs, shape=inputs.shape) self.assert_tensor_is_good(logabsdet, shape=inputs.shape[:1]) self.assertEqual(outputs, inputs) self.assertEqual(logabsdet, torch.zeros(inputs.shape[:1])) def assertNotEqual(self, first, second, msg=None): if ((self._eps and (first - second).abs().max().item() < self._eps) or (not self._eps and torch.equal(first, second))): self._fail_with_message(msg, "The tensors are _not_ different!")
[((576, 608), 'neural_spline_flows.nde.transforms.base.InverseTransform', 'base.InverseTransform', (['transform'], {}), '(transform)\n', (597, 608), False, 'from neural_spline_flows.nde.transforms import base\n'), ((628, 673), 'neural_spline_flows.nde.transforms.base.CompositeTransform', 'base.CompositeTransform', (['[inverse, transform]'], {}), '([inverse, transform])\n', (651, 673), False, 'from neural_spline_flows.nde.transforms import base\n'), ((933, 962), 'torch.zeros', 'torch.zeros', (['inputs.shape[:1]'], {}), '(inputs.shape[:1])\n', (944, 962), False, 'import torch\n'), ((466, 483), 'torch.Size', 'torch.Size', (['shape'], {}), '(shape)\n', (476, 483), False, 'import torch\n'), ((1134, 1160), 'torch.equal', 'torch.equal', (['first', 'second'], {}), '(first, second)\n', (1145, 1160), False, 'import torch\n'), ((314, 333), 'torch.isnan', 'torch.isnan', (['tensor'], {}), '(tensor)\n', (325, 333), False, 'import torch\n'), ((366, 385), 'torch.isinf', 'torch.isinf', (['tensor'], {}), '(tensor)\n', (377, 385), False, 'import torch\n')]
brandonaltermatt/penetration-testing-scripts
directory-traversal/validate-file-extension-null-byte-bypass.py
433b5d000a5573e60b9d8e49932cedce74937ebc
""" https://portswigger.net/web-security/file-path-traversal/lab-validate-file-extension-null-byte-bypass """ import sys import requests site = sys.argv[1] if 'https://' in site: site = site.rstrip('/').lstrip('https://') url = f'''https://{site}/image?filename=../../../etc/passwd%00.png''' s = requests.Session() resp = s.get(url) print(resp.text)
[((304, 322), 'requests.Session', 'requests.Session', ([], {}), '()\n', (320, 322), False, 'import requests\n')]
joselynzhao/One-shot-Person-Re-ID-ATM
atmpro1_vsm2.py
d039b1a66410f87cfe931774eba54a5f1a1a0260
#!/usr/bin/python3.6 # -*- coding: utf-8 -*- # @Time : 2020/9/3 上午11:03 # @Author : Joselynzhao # @Email : [email protected] # @File : atmpro1_vsm2.py # @Software: PyCharm # @Desc : #!/usr/bin/python3.6 # -*- coding: utf-8 -*- # @Time : 2020/9/1 下午7:07 # @Author : Joselynzhao # @Email : [email protected] # @File : atmpro1_vsm.py # @Software: PyCharm # @Desc : #!/usr/bin/python3.6 # -*- coding: utf-8 -*- # @Time : 2020/8/26 下午8:26 # @Author : Joselynzhao # @Email : [email protected] # @File : atmpro1.py # @Software: PyCharm # @Desc : from my_reid.eug import * from my_reid import datasets from my_reid import models import numpy as np import torch import argparse import os import warnings warnings.filterwarnings("ignore") from my_reid.utils.logging import Logger import os.path as osp import sys from torch.backends import cudnn from my_reid.utils.serialization import load_checkpoint from torch import nn import time import pickle import torch.distributed as dist from torch.nn.parallel import DistributedDataParallel as DDP from torch.utils.data.distributed import DistributedSampler from pathlib import Path def resume(savepath): import re pattern = re.compile(r'step_(\d+)\.ckpt') start_step = -1 ckpt_file = "" # find start step files = os.listdir(savepath) files.sort() for filename in files: try: iter_ = int(pattern.search(filename).groups()[0]) print(iter_) if iter_ > start_step: start_step = iter_ ckpt_file = osp.join(savepath, filename) except: continue # if need resume if start_step >= 0: print("continued from iter step", start_step) else: print("resume failed", start_step, files) return start_step, ckpt_file def main(args): father = Path('/mnt/') if father.exists(): # 是在服务器上 data_dir = Path('/mnt/share/datasets/RE-ID/data') # 服务器 logs_dir = Path('/mnt/home/{}'.format(args.log_name)) # 服务器 else: #本地 data_dir = Path('/home/joselyn/workspace/ATM_SERIES/data') # 本地跑用这个 logs_dir = Path('/home/joselyn/workspace/ATM_SERIES/{}'.format(args.log_name)) # 本地跑用这个 cudnn.benchmark = True cudnn.enabled = True save_path = os.path.join(logs_dir, args.dataset, args.exp_name, args.exp_order) # 到编号位置. total_step = 100 // args.EF + 1 sys.stdout = Logger(osp.join(save_path, 'log' + str(args.EF) + time.strftime(".%m_%d_%H:%M:%S") + '.txt')) dataf_file = open(osp.join(save_path, 'dataf.txt'), 'a') # 保存性能数据. #特征空间中的性能问题. data_file = open(osp.join(save_path, 'data.txt'), 'a') # 保存性能数据. #特征空间中的性能问题. kf_file = open(osp.join(save_path,'kf.txt'),'a') # 数据格式为 label_pre_r, select_pre_r,label_pre_t, select_pre_t ,加上了了tagper的数据. tagper_path = osp.join(save_path,'tagper') #tagper存储路径. if not Path(tagper_path).exists(): os.mkdir(tagper_path) '''# 记录配置信息 和路径''' print('-'*20+'config_info'+'-'*20) config_file = open(osp.join(save_path, 'config.txt'), 'w') config_info = str(args).split('(')[1].strip(')').split(',') config_info.sort() for one in config_info: key,value=map(str,one.split('=')) config_file.write(key.strip()+'='+value.strip('\'')+'\n') print(key.strip()+'='+value.strip('\'')) config_file.write('save_path='+save_path) print('save_path='+save_path) print('-' * 20 + 'config_info' + '-' * 20) config_file.close() train_time_file = open(osp.join(save_path, 'time.txt'), 'a') # 只记录训练所需要的时间. # 数据格式为 step_time total_time. total_time = 0 # get all the labeled and unlabeled data for training dataset_all = datasets.create(args.dataset, osp.join(data_dir, args.dataset)) num_all_examples = len(dataset_all.train) l_data, u_data = get_init_shot_in_cam1(dataset_all, load_path="./examples/{}_init_{}.pickle".format(dataset_all.name, args.init), init=args.init) resume_step, ckpt_file = -1, '' if args.resume: resume_step, ckpt_file = resume(save_path) # initial the EUG algorithm eug = EUG(batch_size=args.batch_size, num_classes=dataset_all.num_train_ids, dataset=dataset_all, l_data=l_data, u_data=u_data, save_path=save_path, max_frames=args.max_frames, embeding_fea_size=args.fea, momentum=args.momentum, lamda=args.lamda) tagper = EUG(batch_size=args.batch_size, num_classes=dataset_all.num_train_ids, dataset=dataset_all, l_data=l_data, u_data=u_data, save_path=tagper_path, max_frames=args.max_frames, embeding_fea_size=args.fea, momentum=args.momentum, lamda=args.lamda) new_train_data = l_data unselected_data = u_data iter_mode = 2 #迭代模式,确定是否训练tagper for step in range(total_step): # for resume if step < resume_step: continue ratio = (step + 1) * args.EF / 100 ratio_t = (step+1+args.t) * args.EF /100 nums_to_select = int(len(u_data) * ratio) nums_to_select_tagper = int(len(u_data) * ratio_t) if nums_to_select >= len(u_data): break #args.vsm_lambda的衰减 0.5 - 0 vsm_lambda = args.vsm_lambda*step/(1-(total_step/2)) +args.vsm_lambda vsm_lambda +=1 print("Runing: EF={}%, step {}:\t Nums_to_be_select {} \t Ritio \t Logs-dir {}".format( args.EF, step, nums_to_select, ratio, save_path)) # train the model or load ckpt start_time = time.time() print("training reid model") eug.train(new_train_data, unselected_data, step, loss=args.loss, epochs=args.epochs, step_size=args.step_size, init_lr=0.1) if step != resume_step else eug.resume(ckpt_file, step) # 只对eug进行性能评估 # mAP, rank1, rank5, rank10, rank20 = 0, 0, 0, 0, 0 mAP, rank1, rank5, rank10, rank20 = eug.evaluate(dataset_all.query, dataset_all.gallery) # 把数据写到data文件里. data_file.write('{} {:.2%} {:.2%} {:.2%} {:.2%} {:.2%}\n'.format(step, mAP, rank1, rank5, rank10, rank20)) pred_y, pred_score,label_pre,dists= eug.estimate_label_vsm() selected_idx = eug.select_top_data_vsm2(pred_score, dists,args.topk,vsm_lambda,min(nums_to_select_tagper,len(u_data)-50) if iter_mode==2 else min(nums_to_select,len(u_data))) #直接翻两倍取数据. -50个样本,保证unselected_data数量不为0 new_train_data, unselected_data, select_pre= eug.generate_new_train_data(selected_idx, pred_y) raw_label_pre, raw_select_pre = label_pre,select_pre t_label_pre,t_select_pre = 0,0 raw_select_pre_t = 0 # label_pre_t,select_pre_t=0,0 if iter_mode==2: raw_select_pre_t = raw_select_pre print("training tagper model") selected_idx = eug.select_top_data_vsm2(pred_score,dists,args.topk,vsm_lambda, min(nums_to_select, len(u_data))) _, _, raw_select_pre = eug.generate_new_train_data(selected_idx, pred_y) # kf_file.write('{} {:.2%} {:.2%}'.format(step, label_pre, select_pre)) tagper.resume(osp.join(save_path,'step_{}.ckpt'.format(step)),step) tagper.train(new_train_data, unselected_data, step, loss=args.loss, epochs=args.epochs, step_size=args.step_size, init_lr=0.1) pred_y, pred_score, label_pre,dists= tagper.estimate_label_vsm() selected_idx = tagper.select_top_data_vsm2(pred_score,dists,args.topk,vsm_lambda,min(nums_to_select,len(u_data))) # 采样目标数量 new_train_data, unselected_data, select_pre= tagper.generate_new_train_data(selected_idx, pred_y) t_label_pre,t_select_pre = label_pre,select_pre label_pre,select_pre = t_label_pre,t_select_pre if nums_to_select_tagper >=len(u_data): iter_mode=1 #切换模式 print('tagper is stop') else: #mode = 1 # raw_select_pre = raw_select_pre_t # raw_select_pre_t = 0 label_pre,select_pre = raw_label_pre,raw_select_pre end_time = time.time() step_time = end_time - start_time total_time = step_time + total_time train_time_file.write('{} {:.6} {:.6}\n'.format(step, step_time, total_time)) kf_file.write('{} {} {} {:.2%} {:.2%} {:.2%} {:.2%} {:.2%}\n'.format(step,nums_to_select,nums_to_select_tagper,raw_label_pre,raw_select_pre,raw_select_pre_t,t_label_pre,t_select_pre)) dataf_file.write( '{} {:.2%} {:.2%}\n'.format(step, label_pre, select_pre)) dataf_file.close() train_time_file.close() if __name__ == '__main__': parser = argparse.ArgumentParser(description='Progressive Learning for One-Example re-ID') parser.add_argument('-d', '--dataset', type=str, default='mars', choices=datasets.names()) parser.add_argument('-b', '--batch-size', type=int, default=16) parser.add_argument('-f', '--fea', type=int, default=1024) parser.add_argument('--EF', type=int, default=10) parser.add_argument('--t', type=float, default=2) #不再tagper采样的倍率, 而是表示跨多少个step采样. parser.add_argument('--exp_order', type=str, default='0') parser.add_argument('--exp_name', type=str, default='atm') parser.add_argument('--exp_aim', type=str, default='for paper') parser.add_argument('--run_file',type=str,default='train.py') parser.add_argument('--log_name',type=str,default='pl_logs') parser.add_argument('--topk',type=int,default=2) parser.add_argument('--vsm_lambda',type=float,default=0.5) parser.add_argument('--resume', type=str, default='Yes') parser.add_argument('--max_frames', type=int, default=900) parser.add_argument('--loss', type=str, default='ExLoss', choices=['CrossEntropyLoss', 'ExLoss']) parser.add_argument('--init', type=float, default=-1) parser.add_argument('-m', '--momentum', type=float, default=0.5) parser.add_argument('-e', '--epochs', type=int, default=70) parser.add_argument('-s', '--step_size', type=int, default=55) parser.add_argument('--lamda', type=float, default=0.5) main(parser.parse_args())
[((755, 788), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (778, 788), False, 'import warnings\n'), ((1235, 1267), 're.compile', 're.compile', (['"""step_(\\\\d+)\\\\.ckpt"""'], {}), "('step_(\\\\d+)\\\\.ckpt')\n", (1245, 1267), False, 'import re\n'), ((1341, 1361), 'os.listdir', 'os.listdir', (['savepath'], {}), '(savepath)\n', (1351, 1361), False, 'import os\n'), ((1894, 1907), 'pathlib.Path', 'Path', (['"""/mnt/"""'], {}), "('/mnt/')\n", (1898, 1907), False, 'from pathlib import Path\n'), ((2333, 2400), 'os.path.join', 'os.path.join', (['logs_dir', 'args.dataset', 'args.exp_name', 'args.exp_order'], {}), '(logs_dir, args.dataset, args.exp_name, args.exp_order)\n', (2345, 2400), False, 'import os\n'), ((2880, 2909), 'os.path.join', 'osp.join', (['save_path', '"""tagper"""'], {}), "(save_path, 'tagper')\n", (2888, 2909), True, 'import os.path as osp\n'), ((8751, 8837), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Progressive Learning for One-Example re-ID"""'}), "(description=\n 'Progressive Learning for One-Example re-ID')\n", (8774, 8837), False, 'import argparse\n'), ((1960, 1998), 'pathlib.Path', 'Path', (['"""/mnt/share/datasets/RE-ID/data"""'], {}), "('/mnt/share/datasets/RE-ID/data')\n", (1964, 1998), False, 'from pathlib import Path\n'), ((2108, 2155), 'pathlib.Path', 'Path', (['"""/home/joselyn/workspace/ATM_SERIES/data"""'], {}), "('/home/joselyn/workspace/ATM_SERIES/data')\n", (2112, 2155), False, 'from pathlib import Path\n'), ((2580, 2612), 'os.path.join', 'osp.join', (['save_path', '"""dataf.txt"""'], {}), "(save_path, 'dataf.txt')\n", (2588, 2612), True, 'import os.path as osp\n'), ((2665, 2696), 'os.path.join', 'osp.join', (['save_path', '"""data.txt"""'], {}), "(save_path, 'data.txt')\n", (2673, 2696), True, 'import os.path as osp\n'), ((2747, 2776), 'os.path.join', 'osp.join', (['save_path', '"""kf.txt"""'], {}), "(save_path, 'kf.txt')\n", (2755, 2776), True, 'import os.path as osp\n'), ((2970, 2991), 'os.mkdir', 'os.mkdir', (['tagper_path'], {}), '(tagper_path)\n', (2978, 2991), False, 'import os\n'), ((3079, 3112), 'os.path.join', 'osp.join', (['save_path', '"""config.txt"""'], {}), "(save_path, 'config.txt')\n", (3087, 3112), True, 'import os.path as osp\n'), ((3570, 3601), 'os.path.join', 'osp.join', (['save_path', '"""time.txt"""'], {}), "(save_path, 'time.txt')\n", (3578, 3601), True, 'import os.path as osp\n'), ((3785, 3817), 'os.path.join', 'osp.join', (['data_dir', 'args.dataset'], {}), '(data_dir, args.dataset)\n', (3793, 3817), True, 'import os.path as osp\n'), ((5657, 5668), 'time.time', 'time.time', ([], {}), '()\n', (5666, 5668), False, 'import time\n'), ((8186, 8197), 'time.time', 'time.time', ([], {}), '()\n', (8195, 8197), False, 'import time\n'), ((8934, 8950), 'my_reid.datasets.names', 'datasets.names', ([], {}), '()\n', (8948, 8950), False, 'from my_reid import datasets\n'), ((1604, 1632), 'os.path.join', 'osp.join', (['savepath', 'filename'], {}), '(savepath, filename)\n', (1612, 1632), True, 'import os.path as osp\n'), ((2934, 2951), 'pathlib.Path', 'Path', (['tagper_path'], {}), '(tagper_path)\n', (2938, 2951), False, 'from pathlib import Path\n'), ((2514, 2546), 'time.strftime', 'time.strftime', (['""".%m_%d_%H:%M:%S"""'], {}), "('.%m_%d_%H:%M:%S')\n", (2527, 2546), False, 'import time\n')]
eHealthAfrica/aether-elasticsearch-consumer
consumer/tests/test__index_handler.py
fc29a1da8cfd7482257b1023b50a1a43372886c5
# Copyright (C) 2019 by eHealth Africa : http://www.eHealthAfrica.org # # See the NOTICE file distributed with this work for additional information # regarding copyright ownership. # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import json import pytest import requests import responses from time import sleep from elasticsearch.exceptions import NotFoundError from aet.logger import get_logger from app import index_handler from . import * # noqa # fixtures LOG = get_logger('TEST-IDX') # convenience function for jsonpath @responses.activate @pytest.mark.unit def test__handle_http(): responses.add( responses.GET, 'http://bad-url', json={'error': 'not found'}, status=404 ) res = requests.get('http://bad-url') with pytest.raises(requests.exceptions.HTTPError): index_handler.handle_http(res) @pytest.mark.unit def test__get_es_index_from_autoconfig(SubscriptionDefinition, ComplexSchema): es_options = SubscriptionDefinition.get('es_options') tenant = 'dev' name = 'a-topic' alias = es_options.get('alias_name') index = index_handler.get_es_index_from_subscription( es_options, name, tenant, ComplexSchema ) LOG.debug(json.dumps(index, indent=2)) assert(first('$.name', index) == f'{tenant}.{name}') geo_name = es_options['geo_point_name'] assert(first( f'$.body.mappings._doc.properties.{geo_name}', index) is not None) @pytest.mark.unit def test__get_index_for_topic(SubscriptionDefinition, ComplexSchema): name = 'Person' es_options = SubscriptionDefinition.get('es_options') geo_name = es_options.get('geo_point_name') auto_ts = es_options.get('auto_timestamp') index = index_handler.get_index_for_topic(name, geo_name, auto_ts, ComplexSchema) index = index.get('mappings', None) assert(len(index) == 1) assert(first('$._doc', index) is not None) assert(first(f'$._doc.properties.{geo_name}.type', index) == 'geo_point') assert(first(f'$._doc._meta.aet_auto_ts', index) == auto_ts) @pytest.mark.unit def test__get_es_types_from_schema(ComplexSchema): res = index_handler.get_es_types_from_schema(ComplexSchema) assert(first('$.beds.type', res) == 'integer') assert(first('$.username.type', res) == 'keyword') assert(first('$._start.type', res) == 'date') assert(first('$.geometry.type', res) == 'object') assert(first('$.meta.type', res) == 'object') assert(first('$.mandatory_date.type', res) == 'date') assert(first('$.mandatory_date.format', res) == 'date') assert(first('$.optional_dt.type', res) == 'date') assert(first('$.optional_dt.format', res) == 'epoch_millis') assert(len(list(res.keys())) == 55) @pytest.mark.unit def test__make_kibana_index(AutoGenSchema): name = 'kibana-index-name' res = index_handler.make_kibana_index(name, AutoGenSchema) assert(res.get('attributes', {}).get('title') == name) @pytest.mark.unit def test___find_timestamp(ComplexSchema): result = index_handler._find_timestamp(ComplexSchema) assert(result == 'timestamp') @pytest.mark.unit def test___format_lookups(ComplexSchema): formatted = index_handler._format_lookups(ComplexSchema) assert( json.dumps( formatted.get( 'operational_status'), sort_keys=True) == json.dumps( SAMPLE_FIELD_LOOKUP.get( 'operational_status'), sort_keys=True) ) @pytest.mark.unit def test___format_single_lookup(ComplexSchema): matching = ComplexSchema.get_node('MySurvey.operational_status') res = index_handler._format_single_lookup(matching) assert( json.dumps(res, sort_keys=True) == json.dumps(SAMPLE_FIELD_LOOKUP.get( 'operational_status'), sort_keys=True) ) @pytest.mark.unit def test__get_alias_from_namespace(): namespace = 'A_Gather_Form_V1' res = index_handler.get_alias_from_namespace(namespace) assert(res == 'A_Gather_Form') @pytest.mark.integration def test__update_es_index(TestElasticsearch, PolySchemaA, PolySchemaB): # register index with mapping es = TestElasticsearch.get_session() doc_id = 'poly-test-doc' doc = { 'id': doc_id, 'poly': '1001' } index_a = index_handler.get_es_index_from_subscription( es_options={}, name='test1', tenant='test-tenant', schema=PolySchemaA ) index_name = index_a.get('name') index_b = index_handler.get_es_index_from_subscription( es_options={}, name='test1', tenant='test-tenant', schema=PolySchemaB ) alias = index_handler.get_alias_from_namespace(PolySchemaA.name) # register schema A index_handler.update_es_index(es, index_a, 'test-tenant', alias) # put doc es.create( index=index_name, id=doc_id, body=doc ) es.indices.refresh(index=index_name) res = es.search(index=index_name, body={ "query": {"term": {"poly": "1001"}} }) assert(res.get('hits').get('max_score') < 1.0) # find imperfect by string res = es.search(index=index_name, body={ "query": {"term": {"poly": 1001}} }) assert(res.get('hits').get('max_score') < 1.0) # find imperfect by string # migrate to schema B index_handler.update_es_index(es, index_b, 'test-tenant', alias) es.indices.refresh(index=index_name) res = es.search(index=index_name, body={ "query": {"term": {"poly": "1001"}} }) assert(res.get('hits').get('max_score') == 1.0) # find by string res = es.search(index=index_name, body={ "query": {"term": {"poly": 1001}} }) assert(res.get('hits').get('max_score') == 1.0) # find by int
[((976, 998), 'aet.logger.get_logger', 'get_logger', (['"""TEST-IDX"""'], {}), "('TEST-IDX')\n", (986, 998), False, 'from aet.logger import get_logger\n'), ((1105, 1196), 'responses.add', 'responses.add', (['responses.GET', '"""http://bad-url"""'], {'json': "{'error': 'not found'}", 'status': '(404)'}), "(responses.GET, 'http://bad-url', json={'error': 'not found'},\n status=404)\n", (1118, 1196), False, 'import responses\n'), ((1241, 1271), 'requests.get', 'requests.get', (['"""http://bad-url"""'], {}), "('http://bad-url')\n", (1253, 1271), False, 'import requests\n'), ((1616, 1705), 'app.index_handler.get_es_index_from_subscription', 'index_handler.get_es_index_from_subscription', (['es_options', 'name', 'tenant', 'ComplexSchema'], {}), '(es_options, name, tenant,\n ComplexSchema)\n', (1660, 1705), False, 'from app import index_handler\n'), ((2228, 2301), 'app.index_handler.get_index_for_topic', 'index_handler.get_index_for_topic', (['name', 'geo_name', 'auto_ts', 'ComplexSchema'], {}), '(name, geo_name, auto_ts, ComplexSchema)\n', (2261, 2301), False, 'from app import index_handler\n'), ((2641, 2694), 'app.index_handler.get_es_types_from_schema', 'index_handler.get_es_types_from_schema', (['ComplexSchema'], {}), '(ComplexSchema)\n', (2679, 2694), False, 'from app import index_handler\n'), ((3338, 3390), 'app.index_handler.make_kibana_index', 'index_handler.make_kibana_index', (['name', 'AutoGenSchema'], {}), '(name, AutoGenSchema)\n', (3369, 3390), False, 'from app import index_handler\n'), ((3525, 3569), 'app.index_handler._find_timestamp', 'index_handler._find_timestamp', (['ComplexSchema'], {}), '(ComplexSchema)\n', (3554, 3569), False, 'from app import index_handler\n'), ((3682, 3726), 'app.index_handler._format_lookups', 'index_handler._format_lookups', (['ComplexSchema'], {}), '(ComplexSchema)\n', (3711, 3726), False, 'from app import index_handler\n'), ((4109, 4154), 'app.index_handler._format_single_lookup', 'index_handler._format_single_lookup', (['matching'], {}), '(matching)\n', (4144, 4154), False, 'from app import index_handler\n'), ((4414, 4463), 'app.index_handler.get_alias_from_namespace', 'index_handler.get_alias_from_namespace', (['namespace'], {}), '(namespace)\n', (4452, 4463), False, 'from app import index_handler\n'), ((4780, 4899), 'app.index_handler.get_es_index_from_subscription', 'index_handler.get_es_index_from_subscription', ([], {'es_options': '{}', 'name': '"""test1"""', 'tenant': '"""test-tenant"""', 'schema': 'PolySchemaA'}), "(es_options={}, name='test1',\n tenant='test-tenant', schema=PolySchemaA)\n", (4824, 4899), False, 'from app import index_handler\n'), ((4985, 5104), 'app.index_handler.get_es_index_from_subscription', 'index_handler.get_es_index_from_subscription', ([], {'es_options': '{}', 'name': '"""test1"""', 'tenant': '"""test-tenant"""', 'schema': 'PolySchemaB'}), "(es_options={}, name='test1',\n tenant='test-tenant', schema=PolySchemaB)\n", (5029, 5104), False, 'from app import index_handler\n'), ((5151, 5207), 'app.index_handler.get_alias_from_namespace', 'index_handler.get_alias_from_namespace', (['PolySchemaA.name'], {}), '(PolySchemaA.name)\n', (5189, 5207), False, 'from app import index_handler\n'), ((5236, 5300), 'app.index_handler.update_es_index', 'index_handler.update_es_index', (['es', 'index_a', '"""test-tenant"""', 'alias'], {}), "(es, index_a, 'test-tenant', alias)\n", (5265, 5300), False, 'from app import index_handler\n'), ((5818, 5882), 'app.index_handler.update_es_index', 'index_handler.update_es_index', (['es', 'index_b', '"""test-tenant"""', 'alias'], {}), "(es, index_b, 'test-tenant', alias)\n", (5847, 5882), False, 'from app import index_handler\n'), ((1281, 1325), 'pytest.raises', 'pytest.raises', (['requests.exceptions.HTTPError'], {}), '(requests.exceptions.HTTPError)\n', (1294, 1325), False, 'import pytest\n'), ((1335, 1365), 'app.index_handler.handle_http', 'index_handler.handle_http', (['res'], {}), '(res)\n', (1360, 1365), False, 'from app import index_handler\n'), ((1730, 1757), 'json.dumps', 'json.dumps', (['index'], {'indent': '(2)'}), '(index, indent=2)\n', (1740, 1757), False, 'import json\n'), ((4175, 4206), 'json.dumps', 'json.dumps', (['res'], {'sort_keys': '(True)'}), '(res, sort_keys=True)\n', (4185, 4206), False, 'import json\n')]
datopian/plans
plans/config.py
12bd9ff6f725703e7a73f3ad90680f5ade8cebdf
import os database_url = os.environ.get('DATABASE_URL')
[((26, 56), 'os.environ.get', 'os.environ.get', (['"""DATABASE_URL"""'], {}), "('DATABASE_URL')\n", (40, 56), False, 'import os\n')]
ShubhamKahlon57/Letsupgrade-python-Batch-7
Assignment Day 2 .py
7989c2d2f17e58dd4ee8f278c37d2c1d18e5e3af
#!/usr/bin/env python # coding: utf-8 # In[ ]: #List and function # In[6]: # empty list my_list = [] # list of integers my_list = [1, 2, 3] # list with mixed data types my_list = [1, "Hello", 3.4] # In[7]: # nested list my_list = ["mouse", [8, 4, 6], ['a']] # In[11]: # List indexing my_list = ['p', 'r', 'o', 'b', 'e'] # Output: p print(my_list[0]) # Output: o print(my_list[2]) # Output: e print(my_list[4]) # Nested List n_list = ["Happy", [2, 0, 1, 5]] # Nested indexing print(n_list[0][1]) print(n_list[1][3]) # Error! Only integer can be used for indexing print(my_list[4]) # In[9]: # Appending and Extending lists in Python odd = [1, 3, 5] odd.append(7) print(odd) odd.extend([9, 11, 13]) print(odd) # In[13]: # Deleting list items my_list = ['p', 'r', 'o', 'b', 'l', 'e', 'm'] # delete one item del my_list[2] print(my_list) # delete multiple items del my_list[1:5] print(my_list) # delete entire list del my_list # In[14]: # Appending and Extending lists in Python odd = [1, 3, 5] odd.append(7) print(odd) odd.extend([9, 11, 13]) print(odd) # In[15]: #Dictionary and function # In[18]: y_dict = {} # dictionary with integer keys my_dict = {1: 'apple', 2: 'ball'} # dictionary with mixed keys my_dict = {'name': 'John', 1: [2, 4, 3]} # using dict() my_dict = dict({1:'apple', 2:'ball'}) # from sequence having each item as a pair my_dict = dict([(1,'apple'), (2,'ball')]) # In[20]: # get vs [] for retrieving elements my_dict = {'name': 'Jack', 'age': 26} # Output: Jack print(my_dict['name']) # Output: 26 print(my_dict.get('age')) # In[21]: # Changing and adding Dictionary Elements my_dict = {'name': 'Jack', 'age': 26} # update value my_dict['age'] = 27 #Output: {'age': 27, 'name': 'Jack'} print(my_dict) # add item my_dict['address'] = 'Downtown' # Output: {'address': 'Downtown', 'age': 27, 'name': 'Jack'} print(my_dict) # In[22]: #Sets and its function # In[23]: my_set = {1, 2, 3} print(my_set) # In[24]: my_set = {1.0, "Hello", (1, 2, 3)} print(my_set) # In[25]: # set cannot have duplicates my_set = {1, 2, 3, 4, 3, 2} print(my_set) # In[26]: #Tuple and its method # In[27]: # Tuple having integers my_tuple = (1, 2, 3) print(my_tuple) # In[28]: my_tuple = ("hello") print(type(my_tuple)) # In[30]: # Accessing tuple elements using indexing my_tuple = ('p','e','r','m','i','t') print(my_tuple[0]) print(my_tuple[5]) # In[31]: print(my_tuple[-1]) # In[32]: print(my_tuple[-6]) # In[36]: # Changing tuple values my_tuple = (4, 2, 3, [6, 5]) # TypeError: 'tuple' object does not support item assignment # my_tuple[1] = 9 # However, item of mutable element can be changed my_tuple[3][0] = 9 # Output: (4, 2, 3, [9, 5]) print(my_tuple) # Tuples can be reassigned my_tuple = ('p', 'r', 'o', 'g', 'r', 'a', 'm', 'i', 'z') # Output: ('p', 'r', 'o', 'g', 'r', 'a', 'm', 'i', 'z') print(my_tuple) # In[37]: #String and its function # In[38]: # Python string examples - all assignments are identical. String_var = 'Python' String_var = "Python" String_var = """Python""" # with Triple quotes Strings can extend to multiple lines String_var = """ This document will help you to explore all the concepts of Python Strings!!! """ # Replace "document" with "tutorial" and store in another variable substr_var = String_var.replace("document", "tutorial") print (substr_var) # In[ ]:
[]
irvandindaprakoso/online-test-py
hackerrank/pickingNumbers.py
a7a6cd98ba3e0b74558ecb7e431eb2729077a38a
def pickingNumbers(a): # Write your code here max = 0 for i in a: c = a.count(i) d = a.count(i-1) e = c+d if e>max: max = e return max
[]
preston-wagner/authorizesauce
tests/test_api_transaction.py
130ee30f500c8b5bf9a6384296ca4f5d5bb565e7
from datetime import date from six import BytesIO, binary_type, u from six.moves.urllib.parse import parse_qsl, urlencode from unittest2 import TestCase import mock from authorizesauce.apis.transaction import PROD_URL, TEST_URL, TransactionAPI from authorizesauce.data import Address, CreditCard from authorizesauce.exceptions import AuthorizeConnectionError, \ AuthorizeResponseError class MockResponse(BytesIO): class Headers(dict): def getparam(self, *args, **kwargs): """Python 2 version""" return None def get_content_charset(self, failobj=None, *args, **kwargs): """Python 3 version""" return failobj def __init__(self, *args, **kwargs): BytesIO.__init__(self, *args, **kwargs) self.headers = self.Headers() SUCCESS = MockResponse( b'1;1;1;This transaction has been approved.;IKRAGJ;Y;2171062816;;;20.00;CC' b';auth_only;;Jeffrey;Schenck;;45 Rose Ave;Venice;CA;90291;USA;;;;;;;;;;;;' b';;;;;375DD9293D7605E20DF0B437EE2A7B92;P;2;;;;;;;;;;;XXXX1111;Visa;;;;;;;' b';;;;;;;;;;Y') PARSED_SUCCESS = { 'cvv_response': 'P', 'authorization_code': 'IKRAGJ', 'response_code': '1', 'amount': '20.00', 'transaction_type': 'auth_only', 'avs_response': 'Y', 'response_reason_code': '1', 'response_reason_text': 'This transaction has been approved.', 'transaction_id': '2171062816', } ERROR = MockResponse( b'2;1;2;This transaction has been declined.;000000;N;2171062816;;;20.00;CC' b';auth_only;;Jeffrey;Schenck;;45 Rose Ave;Venice;CA;90291;USA;;;;;;;;;;;;' b';;;;;375DD9293D7605E20DF0B437EE2A7B92;N;1;;;;;;;;;;;XXXX1111;Visa;;;;;;;' b';;;;;;;;;;Y') PARSED_ERROR = { 'cvv_response': 'N', 'authorization_code': '000000', 'response_code': '2', 'amount': '20.00', 'transaction_type': 'auth_only', 'avs_response': 'N', 'response_reason_code': '2', 'response_reason_text': 'This transaction has been declined.', 'transaction_id': '2171062816', } def _unicode_str(s): if isinstance(s, binary_type): return s.decode('unicode_escape') return s def _are_params_eq(params1, params2): _params1, _params2 = map(_unicode_str, (params1, params2)) return frozenset(parse_qsl(_params1)) == frozenset(parse_qsl(_params2)) class TransactionAPITests(TestCase): def setUp(self): self.api = TransactionAPI('123', '456') self.success = lambda *args, **kwargs: SUCCESS.seek(0) or SUCCESS self.error = lambda *args, **kwargs: ERROR.seek(0) or ERROR self.year = date.today().year + 10 self.credit_card = CreditCard('4111111111111111', self.year, 1, '911') self.address = Address('45 Rose Ave', 'Venice', 'CA', '90291') def test_basic_api(self): api = TransactionAPI('123', '456') self.assertEqual(api.url, TEST_URL) api = TransactionAPI('123', '456', debug=False) self.assertEqual(api.url, PROD_URL) @mock.patch('authorizesauce.apis.transaction.urlopen') def test_make_call(self, urlopen): urlopen.side_effect = self.success params = {'a': '1', 'b': '2'} result = self.api._make_call(params) self.assertEqual(urlopen.call_args[0][0], TEST_URL) self.assertTrue(_are_params_eq( urlopen.call_args[1]['data'], urlencode(params) )) self.assertEqual(result, PARSED_SUCCESS) @mock.patch('authorizesauce.apis.transaction.urlopen') def test_make_call_with_unicode(self, urlopen): urlopen.side_effect = self.success result = self.api._make_call({u('\xe3'): '1', 'b': u('\xe3')}) self.assertEqual(urlopen.call_args[0][0], TEST_URL) self.assertTrue(_are_params_eq( urlopen.call_args[1]['data'], 'b=%C3%A3&%C3%A3=1' )) self.assertEqual(result, PARSED_SUCCESS) @mock.patch('authorizesauce.apis.transaction.urlopen') def test_make_call_connection_error(self, urlopen): urlopen.side_effect = IOError('Borked') self.assertRaises(AuthorizeConnectionError, self.api._make_call, {'a': '1', 'b': '2'}) @mock.patch('authorizesauce.apis.transaction.urlopen') def test_make_call_response_error(self, urlopen): urlopen.side_effect = self.error try: self.api._make_call({'a': '1', 'b': '2'}) except AuthorizeResponseError as e: self.assertTrue(str(e).startswith( 'This transaction has been declined.' )) self.assertEqual(e.full_response, PARSED_ERROR) def test_add_params(self): self.assertEqual(self.api._add_params({}), {}) params = self.api._add_params({}, credit_card=self.credit_card) self.assertEqual(params, { 'x_card_num': '4111111111111111', 'x_exp_date': '01-{0}'.format(self.year), 'x_card_code': '911', }) params = self.api._add_params({}, address=self.address) self.assertEqual(params, { 'x_address': '45 Rose Ave', 'x_city': 'Venice', 'x_state': 'CA', 'x_zip': '90291', 'x_country': 'US', }) params = self.api._add_params( {}, credit_card=self.credit_card, address=self.address ) self.assertEqual(params, { 'x_card_num': '4111111111111111', 'x_exp_date': '01-{0}'.format(self.year), 'x_card_code': '911', 'x_address': '45 Rose Ave', 'x_city': 'Venice', 'x_state': 'CA', 'x_zip': '90291', 'x_country': 'US', }) @mock.patch('authorizesauce.apis.transaction.urlopen') def test_auth(self, urlopen): urlopen.side_effect = self.success result = self.api.auth(20, self.credit_card, self.address) self.assertEqual(urlopen.call_args[0][0], TEST_URL) self.assertTrue(urlopen.call_args[1]['data'], ( 'x_login=123&x_zip=90291&x_card_num=4111111111111111&' 'x_amount=20.00&x_tran_key=456&x_city=Venice&x_country=US&' 'x_version=3.1&x_state=CA&x_delim_char=%3B&' 'x_address=45+Rose+Ave&x_exp_date=01-{0}&x_test_request=FALSE' '&x_card_code=911&x_type=AUTH_ONLY&x_delim_data=TRUE'.format( str(self.year) ) )) self.assertEqual(result, PARSED_SUCCESS) @mock.patch('authorizesauce.apis.transaction.urlopen') def test_capture(self, urlopen): urlopen.side_effect = self.success result = self.api.capture(20, self.credit_card, self.address) self.assertEqual(urlopen.call_args[0][0], TEST_URL) self.assertTrue(urlopen.call_args[1]['data'], ( 'x_login=123&x_zip=90291&x_card_num=4111111111111111&' 'x_amount=20.00&x_tran_key=456&x_city=Venice&x_country=US&' 'x_version=3.1&x_state=CA&x_delim_char=%3B&' 'x_address=45+Rose+Ave&x_exp_date=01-{0}&x_test_request=FALSE' '&x_card_code=911&x_type=AUTH_ONLY&x_delim_data=TRUE'.format( str(self.year) ) )) self.assertEqual(result, PARSED_SUCCESS) @mock.patch('authorizesauce.apis.transaction.urlopen') def test_settle(self, urlopen): urlopen.side_effect = self.success # Test without specified amount result = self.api.settle('123456') self.assertEqual(urlopen.call_args[0][0], TEST_URL) self.assertTrue(urlopen.call_args[1]['data'], ( 'https://test.authorize.net/gateway/transact.dll?x_login=123' '&x_trans_id=123456&x_version=3.1&x_delim_char=%3B' '&x_type=PRIOR_AUTH_CAPTURE&x_delim_data=TRUE&x_tran_key=456' '&x_test_request=FALSE' )) self.assertEqual(result, PARSED_SUCCESS) # Test with specified amount result = self.api.settle('123456', amount=10) self.assertEqual(urlopen.call_args[0][0], TEST_URL) self.assertTrue(urlopen.call_args[1]['data'], ( 'https://test.authorize.net/gateway/transact.dll?x_login=123' '&x_trans_id=123456&x_version=3.1&x_delim_char=%3B' '&x_type=PRIOR_AUTH_CAPTURE&x_amount=10.00&x_delim_data=TRUE' '&x_tran_key=456&x_test_request=FALSE' )) self.assertEqual(result, PARSED_SUCCESS) @mock.patch('authorizesauce.apis.transaction.urlopen') def test_credit(self, urlopen): urlopen.side_effect = self.success # Test with transaction_id, amount result = self.api.credit('1111', '123456', 10) self.assertEqual(urlopen.call_args[0][0], TEST_URL) self.assertTrue(urlopen.call_args[1]['data'], ( 'https://test.authorize.net/gateway/transact.dll?x_login=123' '&x_trans_id=123456&x_version=3.1&x_amount=10.00' '&x_delim_char=%3B&x_type=CREDIT&x_card_num=1111' '&x_delim_data=TRUE&x_tran_key=456&x_test_request=FALSE' )) self.assertEqual(result, PARSED_SUCCESS) @mock.patch('authorizesauce.apis.transaction.urlopen') def test_void(self, urlopen): urlopen.side_effect = self.success result = self.api.void('123456') self.assertEqual(urlopen.call_args[0][0], TEST_URL) self.assertTrue(urlopen.call_args[1]['data'], ( 'https://test.authorize.net/gateway/transact.dll?x_login=123' '&x_trans_id=123456&x_version=3.1&x_delim_char=%3B&x_type=VOID' '&x_delim_data=TRUE&x_tran_key=456&x_test_request=FALSE' )) self.assertEqual(result, PARSED_SUCCESS)
[((2995, 3048), 'mock.patch', 'mock.patch', (['"""authorizesauce.apis.transaction.urlopen"""'], {}), "('authorizesauce.apis.transaction.urlopen')\n", (3005, 3048), False, 'import mock\n'), ((3440, 3493), 'mock.patch', 'mock.patch', (['"""authorizesauce.apis.transaction.urlopen"""'], {}), "('authorizesauce.apis.transaction.urlopen')\n", (3450, 3493), False, 'import mock\n'), ((3888, 3941), 'mock.patch', 'mock.patch', (['"""authorizesauce.apis.transaction.urlopen"""'], {}), "('authorizesauce.apis.transaction.urlopen')\n", (3898, 3941), False, 'import mock\n'), ((4173, 4226), 'mock.patch', 'mock.patch', (['"""authorizesauce.apis.transaction.urlopen"""'], {}), "('authorizesauce.apis.transaction.urlopen')\n", (4183, 4226), False, 'import mock\n'), ((5684, 5737), 'mock.patch', 'mock.patch', (['"""authorizesauce.apis.transaction.urlopen"""'], {}), "('authorizesauce.apis.transaction.urlopen')\n", (5694, 5737), False, 'import mock\n'), ((6454, 6507), 'mock.patch', 'mock.patch', (['"""authorizesauce.apis.transaction.urlopen"""'], {}), "('authorizesauce.apis.transaction.urlopen')\n", (6464, 6507), False, 'import mock\n'), ((7230, 7283), 'mock.patch', 'mock.patch', (['"""authorizesauce.apis.transaction.urlopen"""'], {}), "('authorizesauce.apis.transaction.urlopen')\n", (7240, 7283), False, 'import mock\n'), ((8408, 8461), 'mock.patch', 'mock.patch', (['"""authorizesauce.apis.transaction.urlopen"""'], {}), "('authorizesauce.apis.transaction.urlopen')\n", (8418, 8461), False, 'import mock\n'), ((9089, 9142), 'mock.patch', 'mock.patch', (['"""authorizesauce.apis.transaction.urlopen"""'], {}), "('authorizesauce.apis.transaction.urlopen')\n", (9099, 9142), False, 'import mock\n'), ((735, 774), 'six.BytesIO.__init__', 'BytesIO.__init__', (['self', '*args'], {}), '(self, *args, **kwargs)\n', (751, 774), False, 'from six import BytesIO, binary_type, u\n'), ((2407, 2435), 'authorizesauce.apis.transaction.TransactionAPI', 'TransactionAPI', (['"""123"""', '"""456"""'], {}), "('123', '456')\n", (2421, 2435), False, 'from authorizesauce.apis.transaction import PROD_URL, TEST_URL, TransactionAPI\n'), ((2648, 2699), 'authorizesauce.data.CreditCard', 'CreditCard', (['"""4111111111111111"""', 'self.year', '(1)', '"""911"""'], {}), "('4111111111111111', self.year, 1, '911')\n", (2658, 2699), False, 'from authorizesauce.data import Address, CreditCard\n'), ((2723, 2770), 'authorizesauce.data.Address', 'Address', (['"""45 Rose Ave"""', '"""Venice"""', '"""CA"""', '"""90291"""'], {}), "('45 Rose Ave', 'Venice', 'CA', '90291')\n", (2730, 2770), False, 'from authorizesauce.data import Address, CreditCard\n'), ((2816, 2844), 'authorizesauce.apis.transaction.TransactionAPI', 'TransactionAPI', (['"""123"""', '"""456"""'], {}), "('123', '456')\n", (2830, 2844), False, 'from authorizesauce.apis.transaction import PROD_URL, TEST_URL, TransactionAPI\n'), ((2903, 2944), 'authorizesauce.apis.transaction.TransactionAPI', 'TransactionAPI', (['"""123"""', '"""456"""'], {'debug': '(False)'}), "('123', '456', debug=False)\n", (2917, 2944), False, 'from authorizesauce.apis.transaction import PROD_URL, TEST_URL, TransactionAPI\n'), ((2273, 2292), 'six.moves.urllib.parse.parse_qsl', 'parse_qsl', (['_params1'], {}), '(_params1)\n', (2282, 2292), False, 'from six.moves.urllib.parse import parse_qsl, urlencode\n'), ((2307, 2326), 'six.moves.urllib.parse.parse_qsl', 'parse_qsl', (['_params2'], {}), '(_params2)\n', (2316, 2326), False, 'from six.moves.urllib.parse import parse_qsl, urlencode\n'), ((2598, 2610), 'datetime.date.today', 'date.today', ([], {}), '()\n', (2608, 2610), False, 'from datetime import date\n'), ((3356, 3373), 'six.moves.urllib.parse.urlencode', 'urlencode', (['params'], {}), '(params)\n', (3365, 3373), False, 'from six.moves.urllib.parse import parse_qsl, urlencode\n'), ((3627, 3633), 'six.u', 'u', (['"""ã"""'], {}), "('ã')\n", (3628, 3633), False, 'from six import BytesIO, binary_type, u\n'), ((3648, 3654), 'six.u', 'u', (['"""ã"""'], {}), "('ã')\n", (3649, 3654), False, 'from six import BytesIO, binary_type, u\n')]
balmasea/genieparser
src/genie/libs/parser/iosxe/tests/ShowIpv6ProtocolsSectionRip/cli/equal/golden_output_2_expected.py
d1e71a96dfb081e0a8591707b9d4872decd5d9d3
expected_output = { "vrf": { "VRF1": { "address_family": { "ipv6": { "instance": { "rip ripng": { "redistribute": { "static": {"route_policy": "static-to-rip"}, "connected": {}, }, "interfaces": { "GigabitEthernet3.200": {}, "GigabitEthernet2.200": {}, }, } } } } } } }
[]
sungpyocho/covid19-aichi-tools
build_json.py
5170bf405f67b14179fe10838701ec5baa9d6cc1
import csv import io import json import pandas as pd import sys from dateutil import tz from datetime import datetime, date, time, timedelta # Japan Standard Time (UTC + 09:00) JST = tz.gettz('Asia/Tokyo') JST_current_time = datetime.now(tz=JST).strftime('%Y/%m/%d %H:%M') patients_list = [] patients_summary_dic = {} # 引数を取得 異常系処理はしてないので注意 args = sys.argv with open('data/patients.csv', 'r', encoding="utf-8") as csvfile: reader = csv.DictReader(csvfile) for row in reader: patients_list.append(row) patients_summary_dic.setdefault(row['date'], 0) patients_summary_dic[row['date']] += 1 # 日付のリストを生成 strdt = datetime.strptime("2020-01-26", '%Y-%m-%d') # 開始日 enddt = datetime.strptime(args[1], '%Y-%m-%d') # 終了日 # 日付差の日数を算出(リストに最終日も含めたいので、+1しています) days_num = (enddt - strdt).days + 1 datelist = [] for i in range(days_num): datelist.append(strdt + timedelta(days = i)) patients_summary_list = [] # 日付の新しい順に辿って小計が 0 でない日から開始する foundZero = True for date in reversed(datelist): if (not (date.strftime('%Y-%m-%d') in patients_summary_dic)) and foundZero: continue else: foundZero = False patients_summary_dic.setdefault(date.strftime('%Y-%m-%d'), 0) patients_summary_list.append({ "日付": date.strftime('%Y-%m-%d'), "小計": patients_summary_dic[date.strftime('%Y-%m-%d')] }) patients_summary_list = patients_summary_list[::-1] # 日付の昇順に並び替え # main_summary_history.csvをPandasのDataframeに変換 main_summary_history_df = pd.read_csv('data/main_summary_history.csv', keep_default_na=False) # 検査件数の読み込み inspections_summary_list = [] with open('data/inspections_summary.csv', 'r', encoding="utf-8") as csvfile: reader = csv.DictReader(csvfile) for row in reader: inspections_summary_list.append({ "日付": datetime.strptime(row['検査日'], '%Y/%m/%d').strftime('%Y-%m-%d'), "小計": int(row['検査件数(件)']), "合算": row['合算'] }) data = { "lastUpdate": JST_current_time, "patients": { "date": JST_current_time, "data": patients_list }, "patients_summary" : { "date": JST_current_time, "data": patients_summary_list }, "inspections_summary" : { "date": JST_current_time, "data": inspections_summary_list }, "main_summary_history": { "date": JST_current_time, "data": json.loads(main_summary_history_df.to_json(orient='records', force_ascii=False)) } } sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8') print(json.dumps(data, indent=4, ensure_ascii=False))
[((184, 206), 'dateutil.tz.gettz', 'tz.gettz', (['"""Asia/Tokyo"""'], {}), "('Asia/Tokyo')\n", (192, 206), False, 'from dateutil import tz\n'), ((646, 689), 'datetime.datetime.strptime', 'datetime.strptime', (['"""2020-01-26"""', '"""%Y-%m-%d"""'], {}), "('2020-01-26', '%Y-%m-%d')\n", (663, 689), False, 'from datetime import datetime, date, time, timedelta\n'), ((705, 743), 'datetime.datetime.strptime', 'datetime.strptime', (['args[1]', '"""%Y-%m-%d"""'], {}), "(args[1], '%Y-%m-%d')\n", (722, 743), False, 'from datetime import datetime, date, time, timedelta\n'), ((1527, 1594), 'pandas.read_csv', 'pd.read_csv', (['"""data/main_summary_history.csv"""'], {'keep_default_na': '(False)'}), "('data/main_summary_history.csv', keep_default_na=False)\n", (1538, 1594), True, 'import pandas as pd\n'), ((2513, 2566), 'io.TextIOWrapper', 'io.TextIOWrapper', (['sys.stdout.buffer'], {'encoding': '"""utf-8"""'}), "(sys.stdout.buffer, encoding='utf-8')\n", (2529, 2566), False, 'import io\n'), ((441, 464), 'csv.DictReader', 'csv.DictReader', (['csvfile'], {}), '(csvfile)\n', (455, 464), False, 'import csv\n'), ((1728, 1751), 'csv.DictReader', 'csv.DictReader', (['csvfile'], {}), '(csvfile)\n', (1742, 1751), False, 'import csv\n'), ((2573, 2619), 'json.dumps', 'json.dumps', (['data'], {'indent': '(4)', 'ensure_ascii': '(False)'}), '(data, indent=4, ensure_ascii=False)\n', (2583, 2619), False, 'import json\n'), ((226, 246), 'datetime.datetime.now', 'datetime.now', ([], {'tz': 'JST'}), '(tz=JST)\n', (238, 246), False, 'from datetime import datetime, date, time, timedelta\n'), ((893, 910), 'datetime.timedelta', 'timedelta', ([], {'days': 'i'}), '(days=i)\n', (902, 910), False, 'from datetime import datetime, date, time, timedelta\n'), ((1195, 1220), 'datetime.date.strftime', 'date.strftime', (['"""%Y-%m-%d"""'], {}), "('%Y-%m-%d')\n", (1208, 1220), False, 'from datetime import datetime, date, time, timedelta\n'), ((1035, 1060), 'datetime.date.strftime', 'date.strftime', (['"""%Y-%m-%d"""'], {}), "('%Y-%m-%d')\n", (1048, 1060), False, 'from datetime import datetime, date, time, timedelta\n'), ((1286, 1311), 'datetime.date.strftime', 'date.strftime', (['"""%Y-%m-%d"""'], {}), "('%Y-%m-%d')\n", (1299, 1311), False, 'from datetime import datetime, date, time, timedelta\n'), ((1352, 1377), 'datetime.date.strftime', 'date.strftime', (['"""%Y-%m-%d"""'], {}), "('%Y-%m-%d')\n", (1365, 1377), False, 'from datetime import datetime, date, time, timedelta\n'), ((1839, 1880), 'datetime.datetime.strptime', 'datetime.strptime', (["row['検査日']", '"""%Y/%m/%d"""'], {}), "(row['検査日'], '%Y/%m/%d')\n", (1856, 1880), False, 'from datetime import datetime, date, time, timedelta\n')]
jjjkkkjjj/pytorch.dl
dl/models/ssd/modules/utils.py
d82aa1191c14f328c62de85e391ac6fa1b4c7ee3
import torch from ....data.utils.boxes import centroids2corners, iou def matching_strategy(targets, dboxes, **kwargs): """ :param targets: Tensor, shape is (batch*object num(batch), 1+4+class_labels) :param dboxes: shape is (default boxes num, 4) IMPORTANT: Note that means (cx, cy, w, h) :param kwargs: threshold: (Optional) float, threshold for returned indicator batch_num: (Required) int, batch size :return: pos_indicator: Bool Tensor, shape = (batch, default box num). this represents whether each default box is object or background. matched_targets: Tensor, shape = (batch, default box num, 4+class_num) including background """ threshold = kwargs.pop('threshold', 0.5) batch_num = kwargs.pop('batch_num') device = dboxes.device dboxes_num = dboxes.shape[0] # minus 'box number per image' and 'localization=(cx, cy, w, h)' class_num = targets[0].shape[1] - 4 # convert centered coordinated to minmax coordinates dboxes_mm = centroids2corners(dboxes) # create returned empty Tensor pos_indicator, matched_targets = torch.empty((batch_num, dboxes_num), device=device, dtype=torch.bool), torch.empty((batch_num, dboxes_num, 4 + class_num), device=device) # matching for each batch index = 0 for b, target in enumerate(targets): targets_loc, targets_conf = target[:, :4], target[:, 4:] # overlaps' shape = (object num, default box num) overlaps = iou(centroids2corners(targets_loc), dboxes_mm.clone()) """ best_overlap_per_object, best_dbox_ind_per_object = overlaps.max(dim=1) best_overlap_per_dbox, best_object_ind_per_dbox = overlaps.max(dim=0) for object_ind, dbox_ind in enumerate(best_dbox_ind_per_object): best_object_ind_per_dbox[dbox_ind] = object_ind best_overlap_per_dbox.index_fill_(0, best_dbox_ind_per_object, 999) pos_ind = best_overlap_per_dbox > threshold pos_indicator[b] = pos_ind gt_loc[b], gt_conf[b] = targets[best_object_ind_per_dbox], targets_conf[best_object_ind_per_dbox] neg_ind = torch.logical_not(pos_ind) gt_conf[b, neg_ind] = 0 gt_conf[b, neg_ind, -1] = 1 """ # get maximum overlap value for each default box # shape = (batch num, dboxes num) overlaps_per_dbox, object_indices = overlaps.max(dim=0) #object_indices = object_indices.long() # for fancy indexing # get maximum overlap values for each object # shape = (batch num, object num) overlaps_per_object, dbox_indices = overlaps.max(dim=1) for obj_ind, dbox_ind in enumerate(dbox_indices): object_indices[dbox_ind] = obj_ind overlaps_per_dbox.index_fill_(0, dbox_indices, threshold + 1)# ensure N!=0 pos_ind = overlaps_per_dbox > threshold # assign targets matched_targets[b, :, :4], matched_targets[b, :, 4:] = targets_loc[object_indices], targets_conf[object_indices] pos_indicator[b] = pos_ind # set background flag neg_ind = torch.logical_not(pos_ind) matched_targets[b, neg_ind, 4:] = 0 matched_targets[b, neg_ind, -1] = 1 return pos_indicator, matched_targets def matching_strategy_quads(targets, dboxes, **kwargs): """ :param targets: Tensor, shape is (batch*object num(batch), 4=(cx,cy,w,h)+8=(x1,y1,x2,y2,...)+class_labels) :param dboxes: shape is (default boxes num, 4) IMPORTANT: Note that means (cx, cy, w, h) :param kwargs: threshold: (Optional) float, threshold for returned indicator batch_num: (Required) int, batch size :return: pos_indicator: Bool Tensor, shape = (batch, default box num). this represents whether each default box is object or background. matched_targets: Tensor, shape = (batch, default box num, 4+class_num) including background """ threshold = kwargs.pop('threshold', 0.5) batch_num = kwargs.pop('batch_num') device = dboxes.device dboxes_num = dboxes.shape[0] # minus 'box number per image' and 'localization=(cx, cy, w, h)' class_num = targets[0].shape[1] - 4 - 8 # convert centered coordinated to minmax coordinates dboxes_mm = centroids2corners(dboxes) # create returned empty Tensor pos_indicator, matched_targets = torch.empty((batch_num, dboxes_num), device=device, dtype=torch.bool), torch.empty( (batch_num, dboxes_num, 4 + 8 + class_num), device=device) # matching for each batch index = 0 for b, target in enumerate(targets): targets_loc, targets_quad, targets_conf = target[:, :4], target[:, 4:12], target[:, 12:] # overlaps' shape = (object num, default box num) overlaps = iou(centroids2corners(targets_loc), dboxes_mm.clone()) """ best_overlap_per_object, best_dbox_ind_per_object = overlaps.max(dim=1) best_overlap_per_dbox, best_object_ind_per_dbox = overlaps.max(dim=0) for object_ind, dbox_ind in enumerate(best_dbox_ind_per_object): best_object_ind_per_dbox[dbox_ind] = object_ind best_overlap_per_dbox.index_fill_(0, best_dbox_ind_per_object, 999) pos_ind = best_overlap_per_dbox > threshold pos_indicator[b] = pos_ind gt_loc[b], gt_conf[b] = targets[best_object_ind_per_dbox], targets_conf[best_object_ind_per_dbox] neg_ind = torch.logical_not(pos_ind) gt_conf[b, neg_ind] = 0 gt_conf[b, neg_ind, -1] = 1 """ # get maximum overlap value for each default box # shape = (batch num, dboxes num) overlaps_per_dbox, object_indices = overlaps.max(dim=0) # object_indices = object_indices.long() # for fancy indexing # get maximum overlap values for each object # shape = (batch num, object num) overlaps_per_object, dbox_indices = overlaps.max(dim=1) for obj_ind, dbox_ind in enumerate(dbox_indices): object_indices[dbox_ind] = obj_ind overlaps_per_dbox.index_fill_(0, dbox_indices, threshold + 1) # ensure N!=0 pos_ind = overlaps_per_dbox > threshold # assign targets matched_targets[b, :, :4], matched_targets[b, :, 4:12], matched_targets[b, :, 12:] = \ targets_loc[object_indices], targets_quad[object_indices], targets_conf[object_indices] pos_indicator[b] = pos_ind # set background flag neg_ind = torch.logical_not(pos_ind) matched_targets[b, neg_ind, 12:] = 0 matched_targets[b, neg_ind, -1] = 1 return pos_indicator, matched_targets
[((1129, 1198), 'torch.empty', 'torch.empty', (['(batch_num, dboxes_num)'], {'device': 'device', 'dtype': 'torch.bool'}), '((batch_num, dboxes_num), device=device, dtype=torch.bool)\n', (1140, 1198), False, 'import torch\n'), ((1200, 1266), 'torch.empty', 'torch.empty', (['(batch_num, dboxes_num, 4 + class_num)'], {'device': 'device'}), '((batch_num, dboxes_num, 4 + class_num), device=device)\n', (1211, 1266), False, 'import torch\n'), ((3110, 3136), 'torch.logical_not', 'torch.logical_not', (['pos_ind'], {}), '(pos_ind)\n', (3127, 3136), False, 'import torch\n'), ((4369, 4438), 'torch.empty', 'torch.empty', (['(batch_num, dboxes_num)'], {'device': 'device', 'dtype': 'torch.bool'}), '((batch_num, dboxes_num), device=device, dtype=torch.bool)\n', (4380, 4438), False, 'import torch\n'), ((4440, 4510), 'torch.empty', 'torch.empty', (['(batch_num, dboxes_num, 4 + 8 + class_num)'], {'device': 'device'}), '((batch_num, dboxes_num, 4 + 8 + class_num), device=device)\n', (4451, 4510), False, 'import torch\n'), ((6472, 6498), 'torch.logical_not', 'torch.logical_not', (['pos_ind'], {}), '(pos_ind)\n', (6489, 6498), False, 'import torch\n')]
lancelee82/bluelake
sandroad.py
3ac3bba191ec5e331dcf66e0a20725445585c316
""" Flatpath, go forward forever. http://codeincomplete.com/posts/javascript-racer/ http://www.extentofthejam.com/pseudo/ http://pixel.garoux.net/screen/game_list Usage: * UP/DOWN/LEFT/RIGHT * SPACE : hide/show road map * TAB : replay this road * RETURN : go to a new road TODO: * hill road * more road sprites * sound """ import math import random import time from starfish import pygm from starfish import consts from starfish import sptdraw from starfish import utils IMG_POS_BACKGROUND = { 'HILLS': { 'x': 5, 'y': 5, 'w': 1280, 'h': 480 }, 'SKY': { 'x': 5, 'y': 495, 'w': 1280, 'h': 480 }, 'TREES': { 'x': 5, 'y': 985, 'w': 1280, 'h': 480 }, } IMG_POS_SPRITES = { 'PALM_TREE': { 'x': 5, 'y': 5, 'w': 215, 'h': 540 }, 'BILLBOARD08': { 'x': 230, 'y': 5, 'w': 385, 'h': 265 }, 'TREE1': { 'x': 625, 'y': 5, 'w': 360, 'h': 360 }, 'DEAD_TREE1': { 'x': 5, 'y': 555, 'w': 135, 'h': 332 }, 'BILLBOARD09': { 'x': 150, 'y': 555, 'w': 328, 'h': 282 }, 'BOULDER3': { 'x': 230, 'y': 280, 'w': 320, 'h': 220 }, 'COLUMN': { 'x': 995, 'y': 5, 'w': 200, 'h': 315 }, 'BILLBOARD01': { 'x': 625, 'y': 375, 'w': 300, 'h': 170 }, 'BILLBOARD06': { 'x': 488, 'y': 555, 'w': 298, 'h': 190 }, 'BILLBOARD05': { 'x': 5, 'y': 897, 'w': 298, 'h': 190 }, 'BILLBOARD07': { 'x': 313, 'y': 897, 'w': 298, 'h': 190 }, 'BOULDER2': { 'x': 621, 'y': 897, 'w': 298, 'h': 140 }, 'TREE2': { 'x': 1205, 'y': 5, 'w': 282, 'h': 295 }, 'BILLBOARD04': { 'x': 1205, 'y': 310, 'w': 268, 'h': 170 }, 'DEAD_TREE2': { 'x': 1205, 'y': 490, 'w': 150, 'h': 260 }, 'BOULDER1': { 'x': 1205, 'y': 760, 'w': 168, 'h': 248 }, 'BUSH1': { 'x': 5, 'y': 1097, 'w': 240, 'h': 155 }, 'CACTUS': { 'x': 929, 'y': 897, 'w': 235, 'h': 118 }, 'BUSH2': { 'x': 255, 'y': 1097, 'w': 232, 'h': 152 }, 'BILLBOARD03': { 'x': 5, 'y': 1262, 'w': 230, 'h': 220 }, 'BILLBOARD02': { 'x': 245, 'y': 1262, 'w': 215, 'h': 220 }, 'STUMP': { 'x': 995, 'y': 330, 'w': 195, 'h': 140 }, 'SEMI': { 'x': 1365, 'y': 490, 'w': 122, 'h': 144 }, 'TRUCK': { 'x': 1365, 'y': 644, 'w': 100, 'h': 78 }, 'CAR03': { 'x': 1383, 'y': 760, 'w': 88, 'h': 55 }, 'CAR02': { 'x': 1383, 'y': 825, 'w': 80, 'h': 59 }, 'CAR04': { 'x': 1383, 'y': 894, 'w': 80, 'h': 57 }, 'CAR01': { 'x': 1205, 'y': 1018, 'w': 80, 'h': 56 }, 'PLAYER_UPHILL_LEFT': { 'x': 1383, 'y': 961, 'w': 80, 'h': 45 }, 'PLAYER_UPHILL_STRAIGHT': { 'x': 1295, 'y': 1018, 'w': 80, 'h': 45 }, 'PLAYER_UPHILL_RIGHT': { 'x': 1385, 'y': 1018, 'w': 80, 'h': 45 }, 'PLAYER_LEFT': { 'x': 995, 'y': 480, 'w': 80, 'h': 41 }, 'PLAYER_STRAIGHT': { 'x': 1085, 'y': 480, 'w': 80, 'h': 41 }, 'PLAYER_RIGHT': { 'x': 995, 'y': 531, 'w': 80, 'h': 41 } } FP_COLOR_WHITE = '#FFFFFF' FP_COLOR_BLACK = '#000000' FP_COLOR_YELLOW = '#EEEE00' FP_COLOR_BLUE = '#00EEEE' FP_COLORS = { 'SKY': '#72D7EE', 'TREE': '#005108', 'FOG': '#005108', 'LIGHT': {'road': '#6B6B6B', 'grass': '#10AA10', 'rumble': '#555555', 'lane': '#CCCCCC'}, 'DARK': {'road': '#696969', 'grass': '#009A00', 'rumble': '#BBBBBB' }, 'START': {'road': FP_COLOR_WHITE, 'grass': FP_COLOR_WHITE, 'rumble': FP_COLOR_WHITE}, 'FINISH': {'road': FP_COLOR_BLACK, 'grass': FP_COLOR_BLACK, 'rumble': FP_COLOR_BLACK}, 'START_Y': {'road': FP_COLOR_YELLOW, 'grass': '#10AA10', 'rumble': '#555555', 'lane': '#CCCCCC'}, } FP_ROAD = { 'LENGTH': {'NONE': 0, 'SHORT': 25, 'MEDIUM': 50, 'LONG': 100 }, # num segments 'CURVE': {'NONE': 0, 'EASY': 2, 'MEDIUM': 4, 'HARD': 6 }, 'HILL': {'NONE': 0, 'LOW': 20, 'MEDIUM': 40, 'HIGH': 60 }, } FP_ROAD_SPRTS = { 'chest': {'imgs': ['img_sprts/i_chest1.png'], 'score': 100,}, 'coin1': {'imgs': ['img_sprts/i_coin1.png'], 'score': 1,}, 'coin5': {'imgs': ['img_sprts/i_coin5.png'], 'score': 5,}, 'coin20': {'imgs': ['img_sprts/i_coin20.png'], 'score': 20,}, 'health': {'imgs': ['img_sprts/i_health.png'], 'score': 10,}, 'heart': {'imgs': ['img_sprts/i_heart.png'], 'score': 50,}, 'pot1': {'imgs': ['img_sprts/i_pot1.png'], 'score': -5,}, 'pot2': {'imgs': ['img_sprts/i_pot2.png'], 'score': -1,}, 'shell': {'imgs': ['img_sprts/p_shell.png'], 'score': -20,}, 'rockd': {'imgs': ['img_sprts/rock_d2.png'], 'score': -10,}, 'rockr': {'imgs': ['img_sprts/rock_r2.png'], 'score': -50,}, #'ashra_defeat': {'imgs': ['img_sprts/ashra_defeat1.png'], 'score': -100,}, #'bear': {'imgs': ['img_sprts/bear2.png'], 'score': -80,}, #'dinof': {'imgs': ['img_sprts/dinof2.png'], 'score': -50,}, 'blobb': {'imgs': ['img_sprts/blobb1.png'], 'score': -50,}, 'chick_fly': {'imgs': ['img_sprts/chick_fly3.png'], 'score': 70,}, 'clown': {'imgs': ['img_sprts/clown1.png'], 'score': -100,}, } class SptTmpx(sptdraw.SptDrawBase): def __init__(self, size, *args, **kwargs): super(SptTmpx, self).__init__(size) self.draw_on() def draw_on(self, *args, **kwargs): self.fill(consts.GREEN) self.pygm.draw.circle(self.surf, consts.WHITE, (self.size[0] / 2, self.size[1] / 2), self.size[0] / 2, 0) class SptTmpi(pygm.SptImg): def __init__(self, img_file, *args, **kwargs): super(SptTmpi, self).__init__(img_file) class FPSptBg(pygm.SptImgOne): def __init__(self, img_file, pos, *args, **kwargs): super(FPSptBg, self).__init__(img_file, pos) class FPSptSprts(pygm.SptImgOne): def __init__(self, img_file, pos, *args, **kwargs): super(FPSptSprts, self).__init__(img_file, pos) class FPSptFog(sptdraw.SptDrawBase): def __init__(self, size, c=[0, 81, 8, 0], h=30, *args, **kwargs): super(FPSptFog, self).__init__(size) self.c = c self.h = h self.draw_on() def draw_on(self, *args, **kwargs): #self.fill(self.c) d = 2 n = self.h / d for i in range(n): rct = [0, i * d, self.size[0], d] #ca = 255 / n * (n - i) ca = 200 / n * (n - i) self.c[3] = ca self.pygm.draw.rect(self.surf, self.c, rct) class FPSptRdSprts(pygm.SptImg): def __init__(self, img_file, *args, **kwargs): super(FPSptRdSprts, self).__init__(img_file) @classmethod def create_by_img(cls, img): return cls(img) # for test #o = SptTmpx((40, 40)) #return o class FPSptRoadB(sptdraw.SptDrawBase): def __init__(self, size, cfg, *args, **kwargs): super(FPSptRoadB, self).__init__(size) self.cfg = cfg self.car = kwargs.get('car') self.bg_sky = kwargs.get('bg_sky') self.bg_hills = kwargs.get('bg_hills') self.bg_trees = kwargs.get('bg_trees') self.clr_dark_road = utils.clr_from_str(FP_COLORS['DARK']['road']) self.clr_dark_grass = utils.clr_from_str(FP_COLORS['DARK']['grass']) self.rd_reset(init=True) self.add_fog() def prms_reset(self, keep_segs=False): self.e_keys_up = [] self.e_keys_dn = [] self.camera_x = 0.0 self.camera_y = 0.0 self.camera_z = 500.0#1000.0#0.0 == self.camera_h self.xw = 0.0 self.yw = 0.0 self.zw = 0.0 self.xc = 0.0 self.yc = 0.0 self.zc = 0.0 ## self.xp = 0.0 self.yp = 0.0 self.xs = 0.0 self.ys = 0.0 self.d = 200.0#100.0#10.0#30.0#1.0 self.w = self.size[0] self.h = self.size[1] if not keep_segs: self.segments = [] self.rd_sprt_objs = {} self.rd_sprt_cache = [] # for sprites render order self.track_len = 0.0 self.seg_len = 200.0#100.0#20.0#60.0#200.0# self.road_w = 2400#2000#600.0#200.0#1000.0#200# self.camera_h = 500.0#1000.0# self.speed_max = 300.0#180.0#200.0#100.0 self.lane_w = 60 self.seg_n = 300#200 #self.seg_draw_n = 200#150 self.seg_draw_n = 70#100#200#150 self.speed = 0.0 self.position = 0.0 self.player_x = 0.0#100.0#1000.0# self.centrifugal = 0.1#0.06#0.08#0.01#0.3 self.player_seg = None self.base_seg = None # the segment just under the car self.player_di = 0 # 0:^ 1:> 2:v 3:< self.player_go = 0 # 0:- 1:^ 2:v self.speed_dt_up = 1.0#2.0#3.0 self.speed_dt_dn = 2.0#4.0#6.0 self.speed_dt_na = 1.0#3.0 self.player_x_dt = 60.0#30.0#20.0 self.last_seg_i = 0 self.score = 0 self.game_over = False self.game_score = 0.0 self.tm_start = 0.0 self.tm_end = 0.0 self.tm_last_once = 0.0 self.sky_speed = 0.1#0.05# self.hill_speed = 0.2#0.1# self.tree_speed = 0.3#0.15# def rd_reset(self, init=False, keep_segs=False, segs_file=None): #if not init and not keep_segs: if not init: self.rd_sprts_del_all_objs() self.prms_reset(keep_segs=keep_segs) if segs_file is not None: try: segs = self.rd_seg_json_load(segs_file) self.segments = segs self.track_len = len(self.segments) * self.seg_len except Exception as e: print e self.init_rd_segs_rand_1() else: if not keep_segs: self.init_rd_segs_rand_1() self.draw_on() self.rd_seg_render() def init_rd_segs_rand_1(self): #self.rd_seg_init(self.seg_n) #self.rd_seg_init(self.seg_draw_n) #self.rd_seg_init(100)#20#500#2#10#4#1#100#200 #self.rd_seg_init(random.randint(30, 100)) self.rd_seg_init(random.randint(1, 10)) # for a3c train self.rd_seg_init_rand_curve() #self.add_curves() #self.add_low_rolling_hills(20, 2.0) ##self.add_low_rolling_hills(30, 4.0) #self.rd_seg_init_rand(10)#50#10#3#1 #segnrand = random.randint(3, 30) segnrand = random.randint(2, 6) # for a3c train self.rd_seg_init_rand(segnrand) # for segment draw #self.rd_seg_init(self.seg_draw_n) #self.rd_seg_init(100)#20#500#2#10#4#1#100#200 self.rd_seg_init(10) # for a3c train self.rd_start_seg_init() self.rd_sprts_init_rand() def draw_on(self, *args, **kwargs): self.fill(self.clr_dark_grass) def add_fog(self): self.fog = FPSptFog(self.size) self.fog.rect.top = 240 self.fog.rect.left = 0 self.disp_add(self.fog) def get_seg_base_i(self, pos=None): if pos is None: pos = self.position i = int(pos / self.seg_len) #x#i = int(utils.math_round(pos / self.seg_len)) #i = int(math.floor(pos / self.seg_len)) #i = int(math.ceil(pos / self.seg_len)) seg_n = len(self.segments) i = (i + seg_n) % seg_n return i def rd_get_segs(self, whole=False): if whole: segs = self.segments else: segs = self.segments[:-self.seg_draw_n] return segs # #### geometry #### # def geo_prjc_scale(self, d, zc): if zc == 0.0: return 1.0 else: return d / zc def xc_to_xp(self, xc, d, zc): if zc == 0.0: #xp = float('inf') #xp = 2 ** 64 xp = xc else: xp = xc * (d / zc) return xp def yc_to_yp(self, yc, d, zc): if zc == 0.0: #yp = float('inf') #yp = 2 ** 64 yp = yc else: yp = yc * (d / zc) return yp def xp_to_xs(self, xp, w): #xs = w / 2.0 + w / 2.0 * xp xs = w / 2.0 + xp return xs def yp_to_ys(self, yp, h): #ys = h / 2.0 - h / 2.0 * yp ys = h / 2.0 - yp return ys def rd_seg_init(self, a=500): for n in range(a): self.rd_seg_add(0.0, 0.0) def rd_seg_add(self, curve=0.0, yw=0.0): #print '+', curve, yw n = len(self.segments) #print n if n % 2 == 0: #if n % 4 == 0: c = FP_COLORS['LIGHT'] #c = {'road': FP_COLOR_WHITE} else: c = FP_COLORS['DARK'] #c = {'road': FP_COLOR_BLACK} seg = { 'index': n, 'p1': {'world': {'z': (n + 1) * self.seg_len, 'y': self.seg_lasy_y()}, 'camera': {}, 'screen': {}}, 'p2': {'world': {'z': (n + 2) * self.seg_len, 'y': yw}, 'camera': {}, 'screen': {}}, 'curve': curve, 'color': c, 'sprites': [], 'looped': 0, } self.segments.append(seg) self.track_len = len(self.segments) * self.seg_len #self.track_len = (len(self.segments) - self.seg_draw_n) * self.seg_len def seg_lasy_y(self): seg_n = len(self.segments) if seg_n == 0: return 0.0 else: return self.segments[seg_n - 1]['p2']['world'].get('y', 0.0) def rd_seg_init_rand(self, n=50): #print 'rd_seg_init_rand', n for i in range(n): p = random.random() #print p rl = random.choice([1, -1]) enter = random.randint(10, 40) hold = random.randint(10, 40) leave = random.randint(10, 40) if p < 0.3: curve = 0.0 yw = 0.0 #elif p < 0.8: # curve = 0.0 # yw = random.random() * 10.0 else: curve = rl * random.random() * 6.0 yw = 0.0 self.add_road(enter, hold, leave, curve, yw) def rd_seg_init_rand_2(self, n=50): for i in range(n): p = random.random() #print p rl = random.choice([1, -1]) if p < 0.35: self.add_road(FP_ROAD['LENGTH']['MEDIUM'], FP_ROAD['LENGTH']['MEDIUM'], FP_ROAD['LENGTH']['MEDIUM'], rl * FP_ROAD['CURVE']['MEDIUM']) elif p < 0.7: self.add_road(FP_ROAD['LENGTH']['MEDIUM'], FP_ROAD['LENGTH']['MEDIUM'], FP_ROAD['LENGTH']['MEDIUM'], rl * FP_ROAD['CURVE']['EASY']) else: enter = random.randint(10, 100) hold = random.randint(10, 100) leave = random.randint(10, 100) self.add_road(enter, hold, leave, 0.0, 0.0) def rd_seg_init_rand_curve(self, n=5): #print 'rd_seg_init_rand', n for i in range(n): rl = random.choice([1, -1]) enter = random.randint(10, 40) hold = random.randint(10, 40) leave = random.randint(10, 40) curve = rl * random.random() * 8.0 yw = 0.0 self.add_road(enter, hold, leave, curve, yw) def rd_start_seg_init(self, n=3): seg_n = len(self.segments) if seg_n == 0: return #self.segments[0]['color'] = FP_COLORS['START_Y'] #self.segments[2]['color'] = FP_COLORS['START_Y'] for i in range(n): self.segments[i]['color'] = FP_COLORS['START_Y'] def rd_sprts_init_rand(self, n=None): seg_n = len(self.segments) if n is None: #n = seg_n / 20 n = seg_n / random.randint(10, 30) for i in range(n): j = random.randint(10, seg_n - 10) sprt = random.choice(FP_ROAD_SPRTS.keys()) s = { 'name': sprt, 'type': 1, # image / animate / ... 'obj': None, # need to create at render ##'x_i': None, # get real (random) x from x_pos 'x_i': random.randint(0, 4), 'score': FP_ROAD_SPRTS[sprt].get('score', 0), } self.segments[j]['sprites'].append(s) def rd_sprts_del_all_objs(self): for k, sprt in self.rd_sprt_objs.items(): #print k, sprt self.disp_del(sprt) del self.rd_sprt_objs[k] def util_limit(self, value, mn, mx): return max(mn, min(value, mx)) def util_accelerate(self, v, accel, dt): return v + (accel * dt) def util_increase(self, start, increment, mx): # with looping result = start + increment while (result >= mx): result -= mx while (result < 0): result += mx return result def util_ease_in(self, a, b, percent): return a + (b - a) * math.pow(percent, 2) def util_ease_out(self, a, b, percent): return a + (b - a) * (1 - math.pow(1 - percent, 2)) def util_ease_in_out(self, a, b, percent): return a + (b - a) * ((-math.cos(percent * math.pi)/2) + 0.5) def util_curve_percent_remaining(self, n, total): return (n % total) / total def add_road(self, enter, hold, leave, curve, yw=0.0): #print enter, hold, leave, curve, yw start_y = self.seg_lasy_y() end_y = start_y + (int(yw) * self.seg_len) total = enter + hold + leave for n in range(enter): self.rd_seg_add(self.util_ease_in(0, curve, float(n)/enter), self.util_ease_out(start_y, end_y, float(n)/total)) for n in range(hold): self.rd_seg_add(curve, self.util_ease_out(start_y, end_y, (float(n)+enter)/total)) for n in range(leave): self.rd_seg_add(self.util_ease_out(curve, 0, n/leave), self.util_ease_out(start_y, end_y, (float(n)+enter+hold)/total)) def add_curves(self): self.add_road(FP_ROAD['LENGTH']['MEDIUM'], FP_ROAD['LENGTH']['MEDIUM'], FP_ROAD['LENGTH']['MEDIUM'], -FP_ROAD['CURVE']['EASY']) self.add_road(FP_ROAD['LENGTH']['MEDIUM'], FP_ROAD['LENGTH']['MEDIUM'], FP_ROAD['LENGTH']['MEDIUM'], FP_ROAD['CURVE']['MEDIUM']) self.add_road(FP_ROAD['LENGTH']['MEDIUM'], FP_ROAD['LENGTH']['MEDIUM'], FP_ROAD['LENGTH']['MEDIUM'], FP_ROAD['CURVE']['EASY']) self.add_road(FP_ROAD['LENGTH']['MEDIUM'], FP_ROAD['LENGTH']['MEDIUM'], FP_ROAD['LENGTH']['MEDIUM'], -FP_ROAD['CURVE']['EASY']) self.add_road(FP_ROAD['LENGTH']['MEDIUM'], FP_ROAD['LENGTH']['MEDIUM'], FP_ROAD['LENGTH']['MEDIUM'], -FP_ROAD['CURVE']['MEDIUM']) self.add_road(FP_ROAD['LENGTH']['MEDIUM'], FP_ROAD['LENGTH']['MEDIUM'], FP_ROAD['LENGTH']['MEDIUM'], 0.0) def add_low_rolling_hills(self, num, height): num = num or ROAD['LENGTH']['SHORT'] height = height or ROAD['HILL']['LOW'] self.add_road(num, num, num, 0, height/2.0) self.add_road(num, num, num, 0, -height) self.add_road(num, num, num, 0, height) self.add_road(num, num, num, 0, 0) self.add_road(num, num, num, 0, height/2.0) self.add_road(num, num, num, 0, 0) def rd_seg_get_cleared(self, segs=None): if not segs: segs = self.segments segs_c = [] for seg in segs: if not seg['sprites']: segs_c.append(seg) else: seg_c = {} for k, v in seg.items(): if k not in ['sprites']: seg_c[k] = v else: seg_c[k] = [] for spr in seg['sprites']: spr_n = {} for sk, sv in spr.items(): if sk not in ['obj']: spr_n[sk] = sv else: spr_n[sk] = None seg_c[k].append(spr_n) segs_c.append(seg_c) return segs_c def rd_seg_json_save(self, f): sc = self.rd_seg_get_cleared(self.segments) s = utils.json_dumps(sc) with open(f, 'w') as fo: fo.write(s) def rd_seg_json_load(self, f): with open(f, 'r') as fi: s = fi.read() segs = utils.json_loads(s) return segs def rd_seg_render__1_o(self): """straight""" xc1 = self.road_w / 2 - self.player_x xc2 = -self.road_w / 2 - self.player_x xc3 = self.road_w / 2 - self.player_x xc4 = -self.road_w / 2 - self.player_x xcl1 = xc1 - self.lane_w xcl2 = xc2 + self.lane_w xcl3 = xc3 - self.lane_w xcl4 = xc4 + self.lane_w xcr1 = self.lane_w - self.player_x xcr2 = -self.lane_w - self.player_x xcr3 = self.lane_w - self.player_x xcr4 = -self.lane_w - self.player_x yc = self.camera_h #print '=' * 80 #print 'self.position', self.position for i, seg in enumerate(self.segments): zw1 = seg['p1']['world']['z'] zw2 = seg['p2']['world']['z'] zc1 = zw1 - self.camera_z - self.position zc2 = zw2 - self.camera_z - self.position #zc1 = self.position - (zw1 - self.camera_z) #zc2 = self.position - (zw2 - self.camera_z) xp1 = self.xc_to_xp(xc1, self.d, zc1) xs1 = self.xp_to_xs(xp1, self.w) xp2 = self.xc_to_xp(xc2, self.d, zc1) xs2 = self.xp_to_xs(xp2, self.w) xp3 = self.xc_to_xp(xc3, self.d, zc2) xs3 = self.xp_to_xs(xp3, self.w) xp4 = self.xc_to_xp(xc4, self.d, zc2) xs4 = self.xp_to_xs(xp4, self.w) yp1 = self.yc_to_yp(yc, self.d, zc1) ys1 = self.yp_to_ys(yp1, self.h) ys2 = ys1 yp3 = self.yc_to_yp(yc, self.d, zc2) ys3 = self.yp_to_ys(yp3, self.h) ys4 = ys3 self.render_polygon(None, 0, ys1, self.w, ys2, self.w, ys4, 0, ys3, seg['color']['grass']) self.render_polygon(None, xs1, ys1, xs2, ys2, xs4, ys4, xs3, ys3, seg['color']['road']) if 1:#i % 2 == 1: xpl1 = self.xc_to_xp(xcl1, self.d, zc1) xsl1 = self.xp_to_xs(xpl1, self.w) xpl2 = self.xc_to_xp(xcl2, self.d, zc1) xsl2 = self.xp_to_xs(xpl2, self.w) xpl3 = self.xc_to_xp(xcl3, self.d, zc2) xsl3 = self.xp_to_xs(xpl3, self.w) xpl4 = self.xc_to_xp(xcl4, self.d, zc2) xsl4 = self.xp_to_xs(xpl4, self.w) self.render_polygon(None, xs1, ys1, xsl1, ys1, xsl3, ys3, xs3, ys3, seg['color']['rumble']) self.render_polygon(None, xs2, ys2, xsl2, ys2, xsl4, ys4, xs4, ys4, seg['color']['rumble']) xpr1 = self.xc_to_xp(xcr1, self.d, zc1) xsr1 = self.xp_to_xs(xpr1, self.w) xpr2 = self.xc_to_xp(xcr2, self.d, zc1) xsr2 = self.xp_to_xs(xpr2, self.w) xpr3 = self.xc_to_xp(xcr3, self.d, zc2) xsr3 = self.xp_to_xs(xpr3, self.w) xpr4 = self.xc_to_xp(xcr4, self.d, zc2) xsr4 = self.xp_to_xs(xpr4, self.w) self.render_polygon(None, xsr1, ys1, xsr2, ys2, xsr4, ys4, xsr3, ys3, seg['color']['rumble']) def rd_seg_render__2_o(self): """curve test 1""" #theta_i = math.pi /180.0 * 0.1 #theta_i = math.pi /180.0 * 0.5 theta_i = math.pi /180.0 * 0.9 #theta_i = 0.0 xc1 = self.road_w / 2 - self.player_x xc2 = -self.road_w / 2 - self.player_x xc3 = self.road_w / 2 - self.player_x xc4 = -self.road_w / 2 - self.player_x yc = self.camera_h print '=' * 80 print 'self.position', self.position # <2> seg_n = len(self.segments) segbi = self.get_seg_base_i() print 'segbi', segbi # TODO: do at update #dpx1 = self.seg_len * math.tan(theta_i) #self.player_x -= dpx1 # <1> #for i, seg in enumerate(self.segments): # <2> for i in range(self.seg_draw_n): #''' # <2> si = (segbi + i) % seg_n #print si seg = self.segments[si] #x#zw1 = (i+1)*self.seg_len #zw2 = (i+2)*self.seg_len #''' # <1> zw1 = seg['p1']['world']['z'] zw2 = seg['p2']['world']['z'] zc1 = zw1 - self.camera_z - self.position zc2 = zw2 - self.camera_z - self.position curve_d = 500 #x#xc1 = self.road_w / 2 - self.player_x - curve_d * i #xc2 = -self.road_w / 2 - self.player_x - curve_d * i #xc3 = self.road_w / 2 - self.player_x - curve_d * i #xc4 = -self.road_w / 2 - self.player_x - curve_d * i xp1 = self.xc_to_xp(xc1, self.d, zc1) xs1 = self.xp_to_xs(xp1, self.w) xp2 = self.xc_to_xp(xc2, self.d, zc1) xs2 = self.xp_to_xs(xp2, self.w) xp3 = self.xc_to_xp(xc3, self.d, zc2) xs3 = self.xp_to_xs(xp3, self.w) xp4 = self.xc_to_xp(xc4, self.d, zc2) xs4 = self.xp_to_xs(xp4, self.w) yp1 = self.yc_to_yp(yc, self.d, zc1) ys1 = self.yp_to_ys(yp1, self.h) ys2 = ys1 yp3 = self.yc_to_yp(yc, self.d, zc2) ys3 = self.yp_to_ys(yp3, self.h) ys4 = ys3 #''' #if 1: #if i < self.seg_draw_n / 2: if i < self.seg_draw_n / 4: theta1 = theta_i * i theta2 = theta_i * (i + 1) dx1 = self.seg_len * math.tan(theta1) dx2 = self.seg_len * math.tan(theta2) xs1 += dx1 xs2 += dx1 xs3 += dx2 #+ dx1 xs4 += dx2 #+ dx1 #''' self.render_polygon(None, 0, ys1, self.w, ys2, self.w, ys4, 0, ys3, seg['color']['grass']) self.render_polygon(None, xs1, ys1, xs2, ys2, xs4, ys4, xs3, ys3, seg['color']['road']) def rd_seg_render__3_o(self): """curve test 2: draw a circle""" #theta_i = math.pi /180.0 * 0.1 #theta_i = math.pi /180.0 * 0.5 theta_i = math.pi /180.0 * 0.9 #theta_i = 0.0 #xc1 = self.road_w / 2 - self.player_x #xc2 = -self.road_w / 2 - self.player_x #xc3 = self.road_w / 2 - self.player_x #xc4 = -self.road_w / 2 - self.player_x # <3> #engi = math.pi / 2.0 / self.seg_draw_n engi = math.pi / 2.0 / 60#10#20 rad = self.road_w * 4#2 rad1 = rad + self.road_w / 2 rad2 = rad - self.road_w / 2 yc = self.camera_h print '=' * 80 print 'self.position', self.position # <2> seg_n = len(self.segments) segbi = self.get_seg_base_i() print 'segbi', segbi # TODO: do at update #dpx1 = self.seg_len * math.tan(theta_i) #self.player_x -= dpx1 # <1> #for i, seg in enumerate(self.segments): # <2> for i in range(self.seg_draw_n): #''' # <2> si = (segbi + i) % seg_n #print si seg = self.segments[si] #x#zw1 = (i+1)*self.seg_len #zw2 = (i+2)*self.seg_len #''' # <1> zw1 = seg['p1']['world']['z'] zw2 = seg['p2']['world']['z'] zc1 = zw1 - self.camera_z - self.position zc2 = zw2 - self.camera_z - self.position curve_d = 500 #x#xc1 = self.road_w / 2 - self.player_x - curve_d * i #xc2 = -self.road_w / 2 - self.player_x - curve_d * i #xc3 = self.road_w / 2 - self.player_x - curve_d * i #xc4 = -self.road_w / 2 - self.player_x - curve_d * i # <3> xx1 = rad1 * math.cos(engi * i) xx2 = rad2 * math.cos(engi * i) xx3 = rad1 * math.cos(engi * (i + 1)) xx4 = rad2 * math.cos(engi * (i + 1)) xc1 = (rad - xx1) - self.player_x xc2 = (rad - xx2) - self.player_x xc3 = (rad - xx3) - self.player_x xc4 = (rad - xx4) - self.player_x xp1 = self.xc_to_xp(xc1, self.d, zc1) xs1 = self.xp_to_xs(xp1, self.w) xp2 = self.xc_to_xp(xc2, self.d, zc1) xs2 = self.xp_to_xs(xp2, self.w) xp3 = self.xc_to_xp(xc3, self.d, zc2) xs3 = self.xp_to_xs(xp3, self.w) xp4 = self.xc_to_xp(xc4, self.d, zc2) xs4 = self.xp_to_xs(xp4, self.w) yp1 = self.yc_to_yp(yc, self.d, zc1) ys1 = self.yp_to_ys(yp1, self.h) ys2 = ys1 yp3 = self.yc_to_yp(yc, self.d, zc2) ys3 = self.yp_to_ys(yp3, self.h) ys4 = ys3 ''' #if 1: #if i < self.seg_draw_n / 2: if i < self.seg_draw_n / 4: theta1 = theta_i * i theta2 = theta_i * (i + 1) dx1 = self.seg_len * math.tan(theta1) dx2 = self.seg_len * math.tan(theta2) xs1 += dx1 xs2 += dx1 xs3 += dx2 #+ dx1 xs4 += dx2 #+ dx1 ''' self.render_polygon(None, 0, ys1, self.w, ys2, self.w, ys4, 0, ys3, seg['color']['grass']) self.render_polygon(None, xs1, ys1, xs2, ys2, xs4, ys4, xs3, ys3, seg['color']['road']) def rd_seg_render__4_o(self): """curve""" #theta_i = math.pi /180.0 * 0.1 #theta_i = math.pi /180.0 * 0.5 theta_i = math.pi /180.0 * 0.9 #theta_i = 0.0 xc1 = self.road_w / 2 - self.player_x xc2 = -self.road_w / 2 - self.player_x xc3 = self.road_w / 2 - self.player_x xc4 = -self.road_w / 2 - self.player_x #xcl1 = xc1 - self.lane_w #xcl2 = xc2 + self.lane_w #xcl3 = xc3 - self.lane_w #xcl4 = xc4 + self.lane_w xcr1 = self.lane_w - self.player_x xcr2 = -self.lane_w - self.player_x xcr3 = self.lane_w - self.player_x xcr4 = -self.lane_w - self.player_x yc = self.camera_h print '=' * 80 print 'self.position', self.position # <2> seg_n = len(self.segments) segbi = self.get_seg_base_i() print 'segbi', segbi self.player_seg = self.segments[segbi] b_curve = self.player_seg.get('curve', 0.0) #b_percent = 0.5 b_percent = self.util_curve_percent_remaining(self.position, self.seg_len) dx_curve = - (b_curve * b_percent) x_curve = 0 # <1> #for i, seg in enumerate(self.segments): # <2> for i in range(self.seg_draw_n): #''' # <2> si = (segbi + i) % seg_n #print si seg = self.segments[si] #''' ''' #x# if seg['index'] < segbi: zw1 = (i+1)*self.seg_len zw2 = (i+2)*self.seg_len else: # <1> zw1 = seg['p1']['world']['z'] zw2 = seg['p2']['world']['z'] ''' zw1 = seg['p1']['world']['z'] zw2 = seg['p2']['world']['z'] zc1 = zw1 - self.camera_z - self.position zc2 = zw2 - self.camera_z - self.position # for curve xc1 = xc1 - x_curve xc2 = xc2 - x_curve xc3 = xc3 - x_curve - dx_curve xc4 = xc4 - x_curve - dx_curve xcl1 = xc1 - self.lane_w xcl2 = xc2 + self.lane_w xcl3 = xc3 - self.lane_w xcl4 = xc4 + self.lane_w xcr1 = xcr1 - x_curve xcr2 = xcr2 - x_curve xcr3 = xcr3 - x_curve - dx_curve xcr4 = xcr4 - x_curve - dx_curve x_curve = x_curve + dx_curve dx_curve = dx_curve + seg.get('curve', 0.0) xp1 = self.xc_to_xp(xc1, self.d, zc1) xs1 = self.xp_to_xs(xp1, self.w) xp2 = self.xc_to_xp(xc2, self.d, zc1) xs2 = self.xp_to_xs(xp2, self.w) xp3 = self.xc_to_xp(xc3, self.d, zc2) xs3 = self.xp_to_xs(xp3, self.w) xp4 = self.xc_to_xp(xc4, self.d, zc2) xs4 = self.xp_to_xs(xp4, self.w) yp1 = self.yc_to_yp(yc, self.d, zc1) ys1 = self.yp_to_ys(yp1, self.h) ys2 = ys1 yp3 = self.yc_to_yp(yc, self.d, zc2) ys3 = self.yp_to_ys(yp3, self.h) ys4 = ys3 ''' #if 1: #if i < self.seg_draw_n / 2: if i < self.seg_draw_n / 4: theta1 = theta_i * i theta2 = theta_i * (i + 1) dx1 = self.seg_len * math.tan(theta1) dx2 = self.seg_len * math.tan(theta2) xs1 += dx1 xs2 += dx1 xs3 += dx2 #+ dx1 xs4 += dx2 #+ dx1 ''' self.render_polygon(None, 0, ys1, self.w, ys2, self.w, ys4, 0, ys3, seg['color']['grass']) self.render_polygon(None, xs1, ys1, xs2, ys2, xs4, ys4, xs3, ys3, seg['color']['road']) if 1:#i % 2 == 1: xpl1 = self.xc_to_xp(xcl1, self.d, zc1) xsl1 = self.xp_to_xs(xpl1, self.w) xpl2 = self.xc_to_xp(xcl2, self.d, zc1) xsl2 = self.xp_to_xs(xpl2, self.w) xpl3 = self.xc_to_xp(xcl3, self.d, zc2) xsl3 = self.xp_to_xs(xpl3, self.w) xpl4 = self.xc_to_xp(xcl4, self.d, zc2) xsl4 = self.xp_to_xs(xpl4, self.w) self.render_polygon(None, xs1, ys1, xsl1, ys1, xsl3, ys3, xs3, ys3, seg['color']['rumble']) self.render_polygon(None, xs2, ys2, xsl2, ys2, xsl4, ys4, xs4, ys4, seg['color']['rumble']) xpr1 = self.xc_to_xp(xcr1, self.d, zc1) xsr1 = self.xp_to_xs(xpr1, self.w) xpr2 = self.xc_to_xp(xcr2, self.d, zc1) xsr2 = self.xp_to_xs(xpr2, self.w) xpr3 = self.xc_to_xp(xcr3, self.d, zc2) xsr3 = self.xp_to_xs(xpr3, self.w) xpr4 = self.xc_to_xp(xcr4, self.d, zc2) xsr4 = self.xp_to_xs(xpr4, self.w) self.render_polygon(None, xsr1, ys1, xsr2, ys2, xsr4, ys4, xsr3, ys3, seg['color']['rumble']) def rd_seg_render(self): """curve""" #theta_i = math.pi /180.0 * 0.1 #theta_i = math.pi /180.0 * 0.5 theta_i = math.pi /180.0 * 0.9 #theta_i = 0.0 xc1 = self.road_w / 2 - self.player_x xc2 = -self.road_w / 2 - self.player_x xc3 = self.road_w / 2 - self.player_x xc4 = -self.road_w / 2 - self.player_x #xcl1 = xc1 - self.lane_w #xcl2 = xc2 + self.lane_w #xcl3 = xc3 - self.lane_w #xcl4 = xc4 + self.lane_w xcr1 = self.lane_w - self.player_x xcr2 = -self.lane_w - self.player_x xcr3 = self.lane_w - self.player_x xcr4 = -self.lane_w - self.player_x yc = self.camera_h #print '=' * 80 #print 'self.position', self.position # <2> seg_n = len(self.segments) segbi = self.get_seg_base_i() #print 'segbi', segbi, ' / ', seg_n self.player_seg = self.segments[segbi] self.base_seg = self.segments[(segbi + 2) % seg_n] # for test #self.base_seg['color'] = FP_COLORS['FINISH'] b_curve = self.player_seg.get('curve', 0.0) #b_percent = 0.5 b_percent = self.util_curve_percent_remaining(self.position, self.seg_len) dx_curve = - (b_curve * b_percent) x_curve = 0 #print 'b_curve', b_curve #print 'world z', self.player_seg['p1']['world']['z'] #print 'world y', self.player_seg['p1']['world'].get('y', 0.0) # clear the sprites cache self.rd_sprt_cache = [] # <1> #for i, seg in enumerate(self.segments): # <2> for i in range(self.seg_draw_n): #''' # <2> si = (segbi + i) % seg_n #print si seg = self.segments[si] #''' ''' # for test if i < 10: print '>>> ', i print 'curve', seg.get('curve', 0.0) print 'world z', seg['p1']['world']['z'] print 'world y', seg['p1']['world'].get('y', 0.0) #print '-' * 30 ''' ''' #x# if seg['index'] < segbi: zw1 = (i+1)*self.seg_len zw2 = (i+2)*self.seg_len else: # <1> zw1 = seg['p1']['world']['z'] zw2 = seg['p2']['world']['z'] ''' zw1 = (i+1)*self.seg_len zw2 = (i+2)*self.seg_len zc1 = zw1 - self.camera_z - (self.position % self.seg_len) zc2 = zw2 - self.camera_z - (self.position % self.seg_len) ''' #x# zw1 = seg['p1']['world']['z'] zw2 = seg['p2']['world']['z'] zc1 = zw1 - self.camera_z - self.position zc2 = zw2 - self.camera_z - self.position ''' # for curve xc1 = xc1 - x_curve xc2 = xc2 - x_curve xc3 = xc3 - x_curve - dx_curve xc4 = xc4 - x_curve - dx_curve xcl1 = xc1 - self.lane_w xcl2 = xc2 + self.lane_w xcl3 = xc3 - self.lane_w xcl4 = xc4 + self.lane_w xcr1 = xcr1 - x_curve xcr2 = xcr2 - x_curve xcr3 = xcr3 - x_curve - dx_curve xcr4 = xcr4 - x_curve - dx_curve x_curve = x_curve + dx_curve dx_curve = dx_curve + seg.get('curve', 0.0) # for hills yw1 = seg['p1']['world'].get('y', 0.0) yw2 = seg['p2']['world'].get('y', 0.0) yc1 = yc - yw1 yc2 = yc - yw2 #print yw1, yw2 xp1 = self.xc_to_xp(xc1, self.d, zc1) xs1 = self.xp_to_xs(xp1, self.w) xp2 = self.xc_to_xp(xc2, self.d, zc1) xs2 = self.xp_to_xs(xp2, self.w) xp3 = self.xc_to_xp(xc3, self.d, zc2) xs3 = self.xp_to_xs(xp3, self.w) xp4 = self.xc_to_xp(xc4, self.d, zc2) xs4 = self.xp_to_xs(xp4, self.w) yp1 = self.yc_to_yp(yc1, self.d, zc1) ys1 = self.yp_to_ys(yp1, self.h) ys2 = ys1 yp3 = self.yc_to_yp(yc2, self.d, zc2) ys3 = self.yp_to_ys(yp3, self.h) ys4 = ys3 ''' # for test if i < 10: print xs1, ys1, xs2, ys2 print xs4, ys4, xs3, ys3 print '-' * 30 ''' # grass self.render_polygon(None, 0, ys1, self.w, ys2, self.w, ys4, 0, ys3, seg['color']['grass']) # road self.render_polygon(None, xs1, ys1, xs2, ys2, xs4, ys4, xs3, ys3, seg['color']['road']) if 1:#i % 2 == 1: xpl1 = self.xc_to_xp(xcl1, self.d, zc1) xsl1 = self.xp_to_xs(xpl1, self.w) xpl2 = self.xc_to_xp(xcl2, self.d, zc1) xsl2 = self.xp_to_xs(xpl2, self.w) xpl3 = self.xc_to_xp(xcl3, self.d, zc2) xsl3 = self.xp_to_xs(xpl3, self.w) xpl4 = self.xc_to_xp(xcl4, self.d, zc2) xsl4 = self.xp_to_xs(xpl4, self.w) self.render_polygon(None, xs1, ys1, xsl1, ys1, xsl3, ys3, xs3, ys3, seg['color']['rumble']) self.render_polygon(None, xs2, ys2, xsl2, ys2, xsl4, ys4, xs4, ys4, seg['color']['rumble']) xpr1 = self.xc_to_xp(xcr1, self.d, zc1) xsr1 = self.xp_to_xs(xpr1, self.w) xpr2 = self.xc_to_xp(xcr2, self.d, zc1) xsr2 = self.xp_to_xs(xpr2, self.w) xpr3 = self.xc_to_xp(xcr3, self.d, zc2) xsr3 = self.xp_to_xs(xpr3, self.w) xpr4 = self.xc_to_xp(xcr4, self.d, zc2) xsr4 = self.xp_to_xs(xpr4, self.w) self.render_polygon(None, xsr1, ys1, xsr2, ys2, xsr4, ys4, xsr3, ys3, seg['color']['rumble']) # for test #self.pygm.draw.circle(self.surf, consts.BLUE, # (int(xsr1), 116 - int(ys1)), # 3, 0) # render road sprites # TODO: check if this seg is looped seg_scale = self.geo_prjc_scale(self.d, zc1) x_rnd = random.randint(1, self.road_w / 2 - 10) * seg_scale #x_sprt = (xs1 + xs2) / 2.0 #y_sprt = (ys1 + ys3) / 2.0 x_dt = x_rnd * seg_scale x_pos = [xsr1, xsr2, (xsr1 + xsl1) / 2.0, (xsr2 + xsl2) / 2.0, xsl1, xsl2] #x_sprt = xsr1 x_sprt = (xsr1 + xsl1) / 2.0 #x_sprt = random.choice(x_pos) x_i = random.randint(0, len(x_pos) - 1) # NOTE: not used now !! ##x_i = 2 y_sprt = ys1 scale_sprt = seg_scale * 8.0#10.0#2.0 obj = self.rd_sprts_render(seg, x_pos, x_i, y_sprt, scale_sprt) if obj: self.rd_sprt_cache.append(obj) # render the sprites with right order for obj in self.rd_sprt_cache[::-1]: self.disp_add(obj) def render_polygon(self, ctx, x1, y1, x2, y2, x3, y3, x4, y4, color): #d = 200#100#240#50# #a = 60 #pnts = [[x1, y1], [x2, y2], [x3, y3], [x4, y4], [x1, y1]] #pnts = [[x1, y1-d], [x2, y2-d], [x3, y3-d], [x4, y4-d], [x1, y1-d]] #pnts = [[x1, y1+a], [x2, y2+a], [x3, y3+a], [x4, y4+a], [x1, y1+a]] # reflect the y- d = 116 pnts = [[x1, d-y1], [x2, d-y2], [x3, d-y3], [x4, d-y4], [x1, d-y1]] c = utils.clr_from_str(color) try: self.pygm.draw.polygon(self.surf, c, pnts) except Exception as e: #print '-' * 60 pass def rd_sprts_render(self, seg, x_pos, x_i, y, scale): sprts = seg.get('sprites') if not sprts: return None for i, info in enumerate(sprts): sprt = info['name'] obj_k = str(seg['index']) + '_' + str(i) + '_' + sprt obj = info.get('obj') ''' # TODO: <1> if not obj: obj = FPSptRdSprts.create_by_img(FP_ROAD_SPRTS[sprt][0]) info['obj'] = obj self.disp_add(obj) ''' # <2> if obj: self.disp_del(obj) # NOTE: objs will be deleted at rd_sprts_del_all_objs() ##del self.rd_sprt_objs[obj_k] img = FP_ROAD_SPRTS[sprt]['imgs'][0] obj = FPSptRdSprts.create_by_img(img) # avoid: pygame.error: Width or height is too large if scale > 500: #print 'scale <1>', scale pass else: try: obj.scale(scale) except: #print 'scale <2>', scale pass x_i_saved = info.get('x_i') #if not x_i_saved: # info['x_i'] = x_i # x_i_saved = x_i obj.rect.top = 116 - y + 240 - obj.rect.height obj.rect.left = x_pos[x_i_saved] - obj.rect.width / 2 #obj.scale(scale) info['obj'] = obj ##self.disp_add(obj) # NOTE: render out here self.rd_sprt_objs[obj_k] = obj # for reset to delete all # NOTE: only show one break return obj def handle_event(self, events, *args, **kwargs): #print '>>> ', events if not self.flag_check_event: return events else: return self.check_key(events) def key_to_di(self, k): if k == self.pglc.K_UP: return 0 elif k == self.pglc.K_RIGHT: return 1 elif k == self.pglc.K_DOWN: return 2 elif k == self.pglc.K_LEFT: return 3 else: return None def key_to_di_b(self, k): if k == self.pglc.K_f or k == self.pglc.K_j: return 0 elif k == self.pglc.K_k: return 1 elif k == self.pglc.K_SPACE or k == self.pglc.K_v or k == self.pglc.K_n: return 2 elif k == self.pglc.K_d: return 3 else: return None def check_key(self, events): #print id(events) r_events = [] e_keys_up = [] e_keys_dn = [] for event in events: #print event if event.type == self.pglc.KEYUP: di = self.key_to_di(event.key) if di is None: di = self.key_to_di_b(event.key) if di is not None: e_keys_up.append(di) else: r_events.append(event) elif event.type == self.pglc.KEYDOWN: di = self.key_to_di(event.key) if di is None: di = self.key_to_di_b(event.key) if di is not None: e_keys_dn.append(di) else: r_events.append(event) else: r_events.append(event) self.e_keys_up = e_keys_up self.e_keys_dn = e_keys_dn return r_events def refresh__1(self, fps_clock, *args, **kwargs): #print '>>> refresh' #''' if self.player_di == 3: # < self.player_x -= 9 if self.player_x < -1000: self.player_di = 1 elif self.player_di == 1: self.player_x += 19 if self.player_x > 1000: self.player_di = 3 #''' #''' self.position += 10.0#5.0#1.0 self.position += random.randint(2, 10) if self.position > self.track_len: self.position -= self.track_len #''' self.draw_on() self.rd_seg_render() def refresh(self, fps_clock, *args, **kwargs): self.check_player_di(self.e_keys_dn, self.e_keys_up) self.draw_on() self.rd_seg_render() self.update_world() self.check_if_car_out_road() self.check_score() self.check_tm() self.update_bg() def check_player_di(self, e_keys_dn, e_keys_up): if 0 in e_keys_dn: self.player_go = 1 elif 2 in e_keys_dn: self.player_go = 2 if 1 in e_keys_dn: self.player_di = 1 elif 3 in e_keys_dn: self.player_di = 3 if 0 in e_keys_up: if self.player_go != 2: self.player_go = 0 if 2 in e_keys_up: if self.player_go != 1: self.player_go = 0 if 1 in e_keys_up: if self.player_di != 3: self.player_di = 0 if 3 in e_keys_up: if self.player_di != 1: self.player_di = 0 def update_world(self): if self.player_go == 1: self.speed += self.speed_dt_up elif self.player_go == 2: self.speed -= self.speed_dt_dn else: self.speed -= self.speed_dt_na # if on the grass, slow down if self.player_x < -self.road_w / 2 or \ self.player_x > self.road_w / 2: self.speed -= 10 if self.speed < 0.0: self.speed = 0.0 elif self.speed > self.speed_max: self.speed = self.speed_max self.position += self.speed if self.position > self.track_len: self.position -= self.track_len # for check score self.last_seg_i = 0 self.game_over = True self.game_score = 1.0 if self.player_di == 1: #self.player_x += self.player_x_dt self.player_x += self.speed / 5 + 20 elif self.player_di == 3: #self.player_x -= self.player_x_dt self.player_x -= self.speed / 5 + 20 else: pass p_curve = self.player_seg.get('curve', 0.0) #print 'p_curve', p_curve p_dt = self.speed * p_curve * self.centrifugal #print p_dt #self.player_x -= p_dt self.player_x += p_dt def check_if_car_out_road(self): # decrease score when go out the road if self.player_x < -self.road_w / 2 or \ self.player_x > self.road_w / 2: if self.score > 0: self.score -= 1 #self.score -= 1 #if self.score < 0: # self.score = 0 self.game_over = True self.game_score = -1.0 def check_score(self): # make sure we check score once for a segment seg_i = self.player_seg['index'] if seg_i > self.last_seg_i: self.last_seg_i = seg_i else: return # NOTE: here we should use the segment just under the car #sprts = self.player_seg['sprites'] sprts = self.base_seg['sprites'] if not sprts: return # NOTE: we now only use the first sprite ! sprt = sprts[0] x_i = sprt.get('x_i') if x_i is None: return scr = sprt.get('score') if not scr: # None or 0 return obj = sprt.get('obj') if not obj: # None or 0 return #rd_w_half = self.road_w / 2 #x_pos = [rd_w_half + self.lane_w, # rd_w_half - self.lane_w] sprt_x = obj.rect.left sprt_w = obj.rect.width car_x = self.player_x car_w = self.car.rect.width * 2 sprt_at = 10000 if x_i == 0: sprt_at = 40 elif x_i == 1: sprt_at = -40 elif x_i == 2: sprt_at = 580 elif x_i == 3: sprt_at = -580 elif x_i == 4: sprt_at = 1100 elif x_i == 5: sprt_at = -1100 #print 'sprt_x', sprt_x #print 'car_x', car_x #print 'car_w', car_w #print 'sprt_at', (car_x - car_w / 2), sprt_at, (car_x + car_w / 2) #print '-' * 40 w_half = car_w / 2 + sprt_w / 2 #if (car_x + car_w / 2) < sprt_x < (car_x + car_w / 2): if (car_x - w_half) < sprt_at < (car_x + w_half): self.score += scr def check_tm(self): if self.position > self.seg_len * 2: if self.tm_start == 0.0: self.tm_start = time.time() self.tm_end = self.tm_start else: self.tm_end = time.time() self.tm_last_once = self.tm_end - self.tm_start else: self.tm_start = 0.0 #self.tm_end = 0.0 def update_bg(self): # always move the cloud for sky in self.bg_sky: sky.rect.left -= 1#self.sky_speed if sky.rect.left + sky.rect.width < 0: sky.rect.left += sky.rect.width * 2 if sky.rect.left - sky.rect.width > 0: sky.rect.left -= sky.rect.width * 2 if self.speed <= 0.0: return p_curve = self.player_seg.get('curve', 0.0) #p_curve = 3 #print 'p_curve', p_curve p_dt = self.speed * p_curve * self.centrifugal #p_dt = 40 #p_dt = -40 #p_dt = random.randint(-100, 100) #print p_dt for sky in self.bg_sky: #print sky sky.rect.left += int(self.sky_speed * p_dt) # always move the cloud #sky.rect.left -= self.sky_speed if sky.rect.left + sky.rect.width < 0: sky.rect.left += sky.rect.width * 2 if sky.rect.left - sky.rect.width > 0: sky.rect.left -= sky.rect.width * 2 for hill in self.bg_hills: hill.rect.left += int(self.hill_speed * p_dt) if hill.rect.left + hill.rect.width < 0: hill.rect.left += hill.rect.width * 2 if hill.rect.left - hill.rect.width > 0: hill.rect.left -= hill.rect.width * 2 for trees in self.bg_trees: trees.rect.left += int(self.tree_speed * p_dt) if trees.rect.left + trees.rect.width < 0: trees.rect.left += trees.rect.width * 2 if trees.rect.left - trees.rect.width > 0: trees.rect.left -= trees.rect.width * 2 class FPSptRoadMap(sptdraw.SptDrawBase): def __init__(self, size, segs, rad, *args, **kwargs): super(FPSptRoadMap, self).__init__(size) self.segs = segs self.rad = rad #self.fill(consts.WHITE) self.draw_segs(self.segs, self.rad) def xy_to_cntr(self, x, y): return [self.size[0] / 2 + x, self.size[1] / 2 - y] def cv_to_engl(self, curve, rad): a = float(curve) / rad #a *= 10.0 #print a s = 1.0 if a < 0.0: s = -1.0 if a < -1.0: a = -1.0 elif a > 1.0: a = 1.0 #tht_d = math.acos(a) tht_d = math.asin(a) return tht_d def get_segs_pnts(self, segs, rad): pnts = [] x, y = 0.0, 0.0 tht = 0.0 rad_m = 4.0#2.0#1.0# cv_s = 0 cv_l = 0.0 pnts.append([x, y]) for seg in segs: curve = seg.get('curve', 0.0) if curve == 0.0: if cv_s: tht_d = self.cv_to_engl(cv_l, rad) #tht += tht_d tht -= tht_d rad_m = 20.0#10.0#50.0# cv_s = 0 cv_l = 0.0 else: rad_m = 0.5#1.0#0.1# else: if cv_s: cv_l += curve else: cv_s = 1 continue x += rad_m * math.cos(tht) y += rad_m * math.sin(tht) pnts.append([x, y]) #print pnts return pnts def get_segs_pnts_1(self, segs, rad): pnts = [] x, y = 0.0, 0.0 tht = 0.0 rad_m = 4.0#2.0#1.0# pnts.append([x, y]) for seg in segs: curve = seg.get('curve', 0.0) if curve == 0.0: rad_m = 1.0#0.1# else: a = float(curve) / rad a *= 10.0 #print a if a < -1.0: a = -1.0 elif a > 1.0: a = 1.0 #tht_d = math.acos(a) tht_d = math.asin(a) # TODO: tht += tht_d rad_m = 10.0#50.0# x += rad_m * math.cos(tht) y += rad_m * math.sin(tht) pnts.append([x, y]) #print pnts return pnts def draw_segs(self, segs, rad): pnts = self.get_segs_pnts(segs, rad) #print pnts if len(pnts) <= 1: return #if len(pnts) > 0: # pnts.append(pnts[0]) cpnts = [self.xy_to_cntr(p[0], p[1]) for p in pnts] c = utils.clr_from_str(FP_COLOR_BLUE) #self.pygm.draw.polygon(self.surf, c, cpnts) self.pygm.draw.lines(self.surf, c, False, cpnts, 3) class FPSptProgress(sptdraw.SptDrawBase): def __init__(self, size, c_bg=consts.BLUE, c_prog=consts.GREEN): super(FPSptProgress, self).__init__(size) self.c_bg = c_bg self.c_prog = c_prog self.progress(0.0) def progress(self, prog): y = self.size[1] * prog self.fill(self.c_bg) #self.pygm.draw.rect(self.surf, consts.GREEN, # [1, 0, self.size[0] - 2, y]) # from down to up self.pygm.draw.rect(self.surf, self.c_prog, [1, self.size[1] - y, self.size[0] - 2, y]) class FPStraight(pygm.PyGMSprite): def __init__(self, cfg, *args, **kwargs): super(FPStraight, self).__init__() self.cfg = cfg self.bg_sky1 = FPSptBg('img_flatpath/images/background.png', IMG_POS_BACKGROUND['SKY']) self.bg_sky1.rect.top = 0 self.bg_sky1.rect.left = 0 self.disp_add(self.bg_sky1) self.bg_sky2 = FPSptBg('img_flatpath/images/background.png', IMG_POS_BACKGROUND['SKY']) self.bg_sky2.rect.top = 0 self.bg_sky2.rect.left = self.bg_sky1.rect.width self.disp_add(self.bg_sky2) self.bg_hills1 = FPSptBg('img_flatpath/images/background.png', IMG_POS_BACKGROUND['HILLS']) self.bg_hills1.rect.top = 0 self.bg_hills1.rect.left = 0 self.disp_add(self.bg_hills1) self.bg_hills2 = FPSptBg('img_flatpath/images/background.png', IMG_POS_BACKGROUND['HILLS']) self.bg_hills2.rect.top = 0 self.bg_hills2.rect.left = self.bg_hills1.rect.width self.disp_add(self.bg_hills2) self.bg_trees1 = FPSptBg('img_flatpath/images/background.png', IMG_POS_BACKGROUND['TREES']) self.bg_trees1.rect.top = 0 self.bg_trees1.rect.left = 0 self.disp_add(self.bg_trees1) self.bg_trees2 = FPSptBg('img_flatpath/images/background.png', IMG_POS_BACKGROUND['TREES']) self.bg_trees2.rect.top = 0 self.bg_trees2.rect.left = self.bg_trees1.rect.width self.disp_add(self.bg_trees2) self.car = FPSptSprts('img_flatpath/images/sprites.png', IMG_POS_SPRITES['PLAYER_STRAIGHT']) #print self.road.cameraDepth/self.road.playerZ #self.car.scale(self.road.cameraDepth/self.road.playerZ) self.car.scale(2) self.car.rect.top = 400 self.car.rect.left = (640 - self.car.rect.width) / 2 ##self.disp_add(self.car) # car disp add after road #self.road = FPSptRoad((640, 240), self.cfg) self.road = FPSptRoadB((640, 240), self.cfg, car=self.car, bg_sky=[self.bg_sky1, self.bg_sky2], bg_hills=[self.bg_hills1, self.bg_hills2], bg_trees=[self.bg_trees1, self.bg_trees2]) self.road.rect.top = 240 self.road.rect.left = 0 self.disp_add(self.road) self.disp_add(self.car) self.rdmap = FPSptRoadMap((480, 480), self.road.rd_get_segs(whole=True), self.road.seg_len) self.rdmap.rect.top = 0 self.rdmap.rect.left = 80 self.rdmap.rotate(90) self.disp_add(self.rdmap) self.rdpsd = pygm.SptLbl(str(int(self.road.speed)), c=consts.GREEN, font_size=12) self.rdpsd.rect.top = 456 self.rdpsd.rect.left = 312 self.disp_add(self.rdpsd) self.scr = pygm.SptLbl(str(int(self.road.score)), c=consts.RED, font_size=16) self.scr.rect.top = 40#454 self.scr.rect.left = 600 self.disp_add(self.scr) self.tm_once = pygm.SptLbl(str(int(self.road.tm_last_once)), c=consts.YELLOW, font_size=16) self.tm_once.rect.top = 20#454 self.tm_once.rect.left = 600 self.disp_add(self.tm_once) self.prog = FPSptProgress((4, 100), c_prog=consts.YELLOW) self.prog.rect.top = 70#340 self.prog.rect.left = 610 #self.prog.rotate(180) self.disp_add(self.prog) self.spd = FPSptProgress((4, 100), c_prog=consts.GREEN) self.spd.rect.top = 70#340 self.spd.rect.left = 602 #self.spd.rotate(180) self.disp_add(self.spd) def rdmap_hide(self): self.rdmap.hide() def rdmap_reset(self): self.rdmap.clear() self.rdmap.draw_segs(self.road.rd_get_segs(whole=True), self.road.seg_len) self.rdmap.rotate(90) def road_reset(self): self.road.rd_reset() self.rdmap_reset() def road_reset_keep_segs(self): self.road.rd_reset(init=False, keep_segs=True) def road_reset_from_file(self, segs_file='sr_roads/sr_road.txt'): segs_file = utils.dir_abs(segs_file, __file__) self.road.rd_reset(init=False, keep_segs=False, segs_file=segs_file) self.rdmap_reset() def road_segs_to_file(self, segs_file=None): if not segs_file: segs_file = 'sr_roads/sr_road_' + str(int(time.time())) + '.txt' segs_file = utils.dir_abs(segs_file, __file__) self.road.rd_seg_json_save(segs_file) def handle_event(self, events, *args, **kwargs): #return events r_events = [] for event in events: #print event if event.type == self.pglc.KEYUP: k = event.key if k == self.pglc.K_SPACE: # hide / show road map self.rdmap_hide() elif k == self.pglc.K_RETURN: self.road_reset() elif k == self.pglc.K_TAB: self.road_reset_keep_segs() elif k == self.pglc.K_BACKSPACE: self.road_reset_from_file() elif k == self.pglc.K_SLASH: self.road_segs_to_file() else: r_events.append(event) elif event.type == self.pglc.KEYDOWN: r_events.append(event) else: r_events.append(event) return r_events def refresh(self, fps_clock, *args, **kwargs): self.rdpsd.lbl_set(str(int(self.road.speed))) self.scr.lbl_set(str(int(self.road.score))) self.tm_once.lbl_set(str(int(self.road.tm_last_once))) prg = self.road.position / self.road.track_len self.prog.progress(prg) spdc = self.road.speed / self.road.speed_max self.spd.progress(spdc) class FPSceneA(pygm.PyGMScene): def __init__(self, *args, **kwargs): super(FPSceneA, self).__init__(*args, **kwargs) self.straight = FPStraight({}) self.straight.rect.top = 0 self.straight.rect.left = 0 self.disp_add(self.straight) '''' self.sn1 = SptTmpx((200, 200)) self.sn1.rect.top = 100 self.sn1.rect.left = 100 self.disp_add(self.sn1) ''' ''' self.lb1 = pygm.SptLbl('hello,', c=consts.GREEN, font_size=32) self.lb1.rect.top = 200 self.lb1.rect.left = 100 self.disp_add(self.lb1) ''' def handle_event(self, events, *args, **kwargs): return events def refresh(self, fps_clock, *args, **kwargs): pass class GMFlatpath(pygm.PyGMGame): def __init__(self, title, winw, winh, *args, **kwargs): super(GMFlatpath, self).__init__(title, winw, winh) bk_im = utils.dir_abs('starfish/data/img_bk_1.jpg', __file__) #self.bk = pygm.SptImg('data/img_bk_1.jpg') self.bk = pygm.SptImg(bk_im) self.bk.rect.top = -230 self.bk.rect.left = -230 #self.disp_add(self.bk) self.scn1 = FPSceneA() self.disp_add(self.scn1) road_file = kwargs.get('road_file') if road_file: self.scn1.straight.road_reset_from_file(segs_file=road_file) def main(): #sf = GMFlatpath('flatpath <:::>', 640, 480) sf = GMFlatpath('flatpath <:::>', 640, 480, road_file='sr_road.txt') sf.mainloop() if __name__ == '__main__': main()
[]
laetrid/learning
First_course/test5_base.py
b28312c34db2118fb7d5691834b8f7e628117642
#!/usr/bin/env python sw1_show_cdp_neighbors = ''' SW1>show cdp neighbors Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge S - Switch, H - Host, I - IGMP, r - Repeater, P - Phone Device ID Local Intrfce Holdtme Capability Platform Port ID R1 Fas 0/11 153 R S I 881 Fas 1 R2 Fas 0/12 123 R S I 881 Fas 1 R3 Fas 0/13 129 R S I 881 Fas 1 R4 Fas 0/14 173 R S I 881 Fas 1 R5 Fas 0/15 144 R S I 881 Fas 1 ''' sw1_show_cdp_neighbors_detail = ''' SW1> show cdp neighbors detail -------------------------- Device ID: R1 Entry address(es): IP address: 10.1.1.1 Platform: Cisco 881, Capabilities: Router Switch IGMP Interface: FastEthernet0/11, Port ID (outgoing port): FastEthernet1 Holdtime: 153 sec Version : Cisco IOS Software, C880 Software (C880DATA-UNIVERSALK9-M), Version 15.0(1)M4, RELEASE SOFTWARE (fc1) Technical Support: http://www.cisco.com/techsupport Copyright (c) 1986-2010 by Cisco Systems, Inc. Compiled Fri 29-Oct-10 00:02 by prod_rel_team advertisement version: 2 VTP Management Domain: '' Native VLAN: 1 Duplex: full Management address(es): -------------------------- Device ID: R2 Entry address(es): IP address: 10.1.1.2 Platform: Cisco 881, Capabilities: Router Switch IGMP Interface: FastEthernet0/12, Port ID (outgoing port): FastEthernet1 Holdtime: 123 sec Version : Cisco IOS Software, C880 Software (C880DATA-UNIVERSALK9-M), Version 15.0(1)M4, RELEASE SOFTWARE (fc1) Technical Support: http://www.cisco.com/techsupport Copyright (c) 1986-2010 by Cisco Systems, Inc. Compiled Fri 29-Oct-10 00:02 by prod_rel_team advertisement version: 2 VTP Management Domain: '' Native VLAN: 1 Duplex: full Management address(es): -------------------------- Device ID: R3 Entry address(es): IP address: 10.1.1.3 Platform: Cisco 881, Capabilities: Router Switch IGMP Interface: FastEthernet0/13, Port ID (outgoing port): FastEthernet1 Holdtime: 129 sec Version : Cisco IOS Software, C880 Software (C880DATA-UNIVERSALK9-M), Version 15.0(1)M4, RELEASE SOFTWARE (fc1) Technical Support: http://www.cisco.com/techsupport Copyright (c) 1986-2010 by Cisco Systems, Inc. Compiled Fri 29-Oct-10 00:02 by prod_rel_team advertisement version: 2 VTP Management Domain: '' Native VLAN: 1 Duplex: full Management address(es): -------------------------- Device ID: R4 Entry address(es): IP address: 10.1.1.4 Platform: Cisco 881, Capabilities: Router Switch IGMP Interface: FastEthernet0/14, Port ID (outgoing port): FastEthernet1 Holdtime: 173 sec Version : Cisco IOS Software, C880 Software (C880DATA-UNIVERSALK9-M), Version 15.0(1)M4, RELEASE SOFTWARE (fc1) Technical Support: http://www.cisco.com/techsupport Copyright (c) 1986-2010 by Cisco Systems, Inc. Compiled Fri 29-Oct-10 00:02 by prod_rel_team advertisement version: 2 VTP Management Domain: '' Native VLAN: 1 Duplex: full Management address(es): -------------------------- Device ID: R5 Entry address(es): IP address: 10.1.1.5 Platform: Cisco 881, Capabilities: Router Switch IGMP Interface: FastEthernet0/15, Port ID (outgoing port): FastEthernet1 Holdtime: 144 sec Version : Cisco IOS Software, C880 Software (C880DATA-UNIVERSALK9-M), Version 15.0(1)M4, RELEASE SOFTWARE (fc1) Technical Support: http://www.cisco.com/techsupport Copyright (c) 1986-2010 by Cisco Systems, Inc. Compiled Fri 29-Oct-10 00:02 by prod_rel_team advertisement version: 2 VTP Management Domain: '' Native VLAN: 1 Duplex: full Management address(es): ''' r1_show_cdp_neighbors = ''' R1>show cdp neighbors Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge S - Switch, H - Host, I - IGMP, r - Repeater Device ID Local Intrfce Holdtme Capability Platform Port ID SW1 Fas 1 150 S I WS-C2950- Fas 0/11 ''' r1_show_cdp_neighbors_detail = ''' R1>show cdp neighbors detail ------------------------- Device ID: SW1 Entry address(es): IP address: 10.1.1.22 Platform: cisco WS-C2950-24, Capabilities: Switch IGMP Interface: FastEthernet1, Port ID (outgoing port): FastEthernet0/11 Holdtime : 145 sec Version : Cisco Internetwork Operating System Software IOS (tm) C2950 Software (C2950-I6Q4L2-M), Version 12.1(22)EA8a, RELEASE SOFTWARE (fc1) Copyright (c) 1986-2006 by cisco Systems, Inc. Compiled Fri 28-Jul-06 15:16 by weiliu advertisement version: 2 Protocol Hello: OUI=0x00000C, Protocol ID=0x0112; payload len=27, value=00000000FFFFFFFF010221FF0000000000000019E845CE80FF0000 VTP Management Domain: '' Native VLAN: 1 Duplex: full ''' r2_show_cdp_neighbors = ''' R2>show cdp neighbors Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge S - Switch, H - Host, I - IGMP, r - Repeater Device ID Local Intrfce Holdtme Capability Platform Port ID SW1 Fas 1 150 S I WS-C2950- Fas 0/12 ''' r2_show_cdp_neighbors_detail = ''' R2>show cdp neighbors detail ------------------------- Device ID: SW1 Entry address(es): IP address: 10.1.1.22 Platform: cisco WS-C2950-24, Capabilities: Switch IGMP Interface: FastEthernet1, Port ID (outgoing port): FastEthernet0/12 Holdtime : 145 sec Version : Cisco Internetwork Operating System Software IOS (tm) C2950 Software (C2950-I6Q4L2-M), Version 12.1(22)EA8a, RELEASE SOFTWARE (fc1) Copyright (c) 1986-2006 by cisco Systems, Inc. Compiled Fri 28-Jul-06 15:16 by weiliu advertisement version: 2 Protocol Hello: OUI=0x00000C, Protocol ID=0x0112; payload len=27, value=00000000FFFFFFFF010221FF0000000000000019E845CE80FF0000 VTP Management Domain: '' Native VLAN: 1 Duplex: full ''' r3_show_cdp_neighbors = ''' R3>show cdp neighbors Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge S - Switch, H - Host, I - IGMP, r - Repeater Device ID Local Intrfce Holdtme Capability Platform Port ID SW1 Fas 1 150 S I WS-C2950- Fas 0/13 ''' r3_show_cdp_neighbors_detail = ''' R3>show cdp neighbors detail ------------------------- Device ID: SW1 Entry address(es): IP address: 10.1.1.22 Platform: cisco WS-C2950-24, Capabilities: Switch IGMP Interface: FastEthernet1, Port ID (outgoing port): FastEthernet0/13 Holdtime : 145 sec Version : Cisco Internetwork Operating System Software IOS (tm) C2950 Software (C2950-I6Q4L2-M), Version 12.1(22)EA8a, RELEASE SOFTWARE (fc1) Copyright (c) 1986-2006 by cisco Systems, Inc. Compiled Fri 28-Jul-06 15:16 by weiliu advertisement version: 2 Protocol Hello: OUI=0x00000C, Protocol ID=0x0112; payload len=27, value=00000000FFFFFFFF010221FF0000000000000019E845CE80FF0000 VTP Management Domain: '' Native VLAN: 1 Duplex: full ''' r4_show_cdp_neighbors = ''' R4>show cdp neighbors Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge S - Switch, H - Host, I - IGMP, r - Repeater Device ID Local Intrfce Holdtme Capability Platform Port ID SW1 Fas 1 150 S I WS-C2950- Fas 0/14 ''' r4_show_cdp_neighbors_detail = ''' R4>show cdp neighbors detail ------------------------- Device ID: SW1 Entry address(es): IP address: 10.1.1.22 Platform: cisco WS-C2950-24, Capabilities: Switch IGMP Interface: FastEthernet1, Port ID (outgoing port): FastEthernet0/14 Holdtime : 145 sec Version : Cisco Internetwork Operating System Software IOS (tm) C2950 Software (C2950-I6Q4L2-M), Version 12.1(22)EA8a, RELEASE SOFTWARE (fc1) Copyright (c) 1986-2006 by cisco Systems, Inc. Compiled Fri 28-Jul-06 15:16 by weiliu advertisement version: 2 Protocol Hello: OUI=0x00000C, Protocol ID=0x0112; payload len=27, value=00000000FFFFFFFF010221FF0000000000000019E845CE80FF0000 VTP Management Domain: '' Native VLAN: 1 Duplex: full ''' r5_show_cdp_neighbors = ''' R5>show cdp neighbors Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge S - Switch, H - Host, I - IGMP, r - Repeater Device ID Local Intrfce Holdtme Capability Platform Port ID SW1 Fas 1 150 S I WS-C2950- Fas 0/15 ''' r5_show_cdp_neighbors_detail = ''' R5>show cdp neighbors detail ------------------------- Device ID: SW1 Entry address(es): IP address: 10.1.1.22 Platform: cisco WS-C2950-24, Capabilities: Switch IGMP Interface: FastEthernet1, Port ID (outgoing port): FastEthernet0/15 Holdtime : 145 sec Version : Cisco Internetwork Operating System Software IOS (tm) C2950 Software (C2950-I6Q4L2-M), Version 12.1(22)EA8a, RELEASE SOFTWARE (fc1) Copyright (c) 1986-2006 by cisco Systems, Inc. Compiled Fri 28-Jul-06 15:16 by weiliu advertisement version: 2 Protocol Hello: OUI=0x00000C, Protocol ID=0x0112; payload len=27, value=00000000FFFFFFFF010221FF0000000000000019E845CE80FF0000 VTP Management Domain: '' Native VLAN: 1 Duplex: full '''
[]
jeremiedbb/scipy
scipy/optimize/_numdiff.py
2bea64c334b18fd445a7945b350d7ace2dc22913
"""Routines for numerical differentiation.""" from __future__ import division import numpy as np from numpy.linalg import norm from scipy.sparse.linalg import LinearOperator from ..sparse import issparse, csc_matrix, csr_matrix, coo_matrix, find from ._group_columns import group_dense, group_sparse EPS = np.finfo(np.float64).eps def _adjust_scheme_to_bounds(x0, h, num_steps, scheme, lb, ub): """Adjust final difference scheme to the presence of bounds. Parameters ---------- x0 : ndarray, shape (n,) Point at which we wish to estimate derivative. h : ndarray, shape (n,) Desired finite difference steps. num_steps : int Number of `h` steps in one direction required to implement finite difference scheme. For example, 2 means that we need to evaluate f(x0 + 2 * h) or f(x0 - 2 * h) scheme : {'1-sided', '2-sided'} Whether steps in one or both directions are required. In other words '1-sided' applies to forward and backward schemes, '2-sided' applies to center schemes. lb : ndarray, shape (n,) Lower bounds on independent variables. ub : ndarray, shape (n,) Upper bounds on independent variables. Returns ------- h_adjusted : ndarray, shape (n,) Adjusted step sizes. Step size decreases only if a sign flip or switching to one-sided scheme doesn't allow to take a full step. use_one_sided : ndarray of bool, shape (n,) Whether to switch to one-sided scheme. Informative only for ``scheme='2-sided'``. """ if scheme == '1-sided': use_one_sided = np.ones_like(h, dtype=bool) elif scheme == '2-sided': h = np.abs(h) use_one_sided = np.zeros_like(h, dtype=bool) else: raise ValueError("`scheme` must be '1-sided' or '2-sided'.") if np.all((lb == -np.inf) & (ub == np.inf)): return h, use_one_sided h_total = h * num_steps h_adjusted = h.copy() lower_dist = x0 - lb upper_dist = ub - x0 if scheme == '1-sided': x = x0 + h_total violated = (x < lb) | (x > ub) fitting = np.abs(h_total) <= np.maximum(lower_dist, upper_dist) h_adjusted[violated & fitting] *= -1 forward = (upper_dist >= lower_dist) & ~fitting h_adjusted[forward] = upper_dist[forward] / num_steps backward = (upper_dist < lower_dist) & ~fitting h_adjusted[backward] = -lower_dist[backward] / num_steps elif scheme == '2-sided': central = (lower_dist >= h_total) & (upper_dist >= h_total) forward = (upper_dist >= lower_dist) & ~central h_adjusted[forward] = np.minimum( h[forward], 0.5 * upper_dist[forward] / num_steps) use_one_sided[forward] = True backward = (upper_dist < lower_dist) & ~central h_adjusted[backward] = -np.minimum( h[backward], 0.5 * lower_dist[backward] / num_steps) use_one_sided[backward] = True min_dist = np.minimum(upper_dist, lower_dist) / num_steps adjusted_central = (~central & (np.abs(h_adjusted) <= min_dist)) h_adjusted[adjusted_central] = min_dist[adjusted_central] use_one_sided[adjusted_central] = False return h_adjusted, use_one_sided relative_step = {"2-point": EPS**0.5, "3-point": EPS**(1/3), "cs": EPS**0.5} def _compute_absolute_step(rel_step, x0, method): if rel_step is None: rel_step = relative_step[method] sign_x0 = (x0 >= 0).astype(float) * 2 - 1 return rel_step * sign_x0 * np.maximum(1.0, np.abs(x0)) def _prepare_bounds(bounds, x0): lb, ub = [np.asarray(b, dtype=float) for b in bounds] if lb.ndim == 0: lb = np.resize(lb, x0.shape) if ub.ndim == 0: ub = np.resize(ub, x0.shape) return lb, ub def group_columns(A, order=0): """Group columns of a 2-D matrix for sparse finite differencing [1]_. Two columns are in the same group if in each row at least one of them has zero. A greedy sequential algorithm is used to construct groups. Parameters ---------- A : array_like or sparse matrix, shape (m, n) Matrix of which to group columns. order : int, iterable of int with shape (n,) or None Permutation array which defines the order of columns enumeration. If int or None, a random permutation is used with `order` used as a random seed. Default is 0, that is use a random permutation but guarantee repeatability. Returns ------- groups : ndarray of int, shape (n,) Contains values from 0 to n_groups-1, where n_groups is the number of found groups. Each value ``groups[i]`` is an index of a group to which ith column assigned. The procedure was helpful only if n_groups is significantly less than n. References ---------- .. [1] A. Curtis, M. J. D. Powell, and J. Reid, "On the estimation of sparse Jacobian matrices", Journal of the Institute of Mathematics and its Applications, 13 (1974), pp. 117-120. """ if issparse(A): A = csc_matrix(A) else: A = np.atleast_2d(A) A = (A != 0).astype(np.int32) if A.ndim != 2: raise ValueError("`A` must be 2-dimensional.") m, n = A.shape if order is None or np.isscalar(order): rng = np.random.RandomState(order) order = rng.permutation(n) else: order = np.asarray(order) if order.shape != (n,): raise ValueError("`order` has incorrect shape.") A = A[:, order] if issparse(A): groups = group_sparse(m, n, A.indices, A.indptr) else: groups = group_dense(m, n, A) groups[order] = groups.copy() return groups def approx_derivative(fun, x0, method='3-point', rel_step=None, f0=None, bounds=(-np.inf, np.inf), sparsity=None, as_linear_operator=False, args=(), kwargs={}): """Compute finite difference approximation of the derivatives of a vector-valued function. If a function maps from R^n to R^m, its derivatives form m-by-n matrix called the Jacobian, where an element (i, j) is a partial derivative of f[i] with respect to x[j]. Parameters ---------- fun : callable Function of which to estimate the derivatives. The argument x passed to this function is ndarray of shape (n,) (never a scalar even if n=1). It must return 1-D array_like of shape (m,) or a scalar. x0 : array_like of shape (n,) or float Point at which to estimate the derivatives. Float will be converted to a 1-D array. method : {'3-point', '2-point', 'cs'}, optional Finite difference method to use: - '2-point' - use the first order accuracy forward or backward difference. - '3-point' - use central difference in interior points and the second order accuracy forward or backward difference near the boundary. - 'cs' - use a complex-step finite difference scheme. This assumes that the user function is real-valued and can be analytically continued to the complex plane. Otherwise, produces bogus results. rel_step : None or array_like, optional Relative step size to use. The absolute step size is computed as ``h = rel_step * sign(x0) * max(1, abs(x0))``, possibly adjusted to fit into the bounds. For ``method='3-point'`` the sign of `h` is ignored. If None (default) then step is selected automatically, see Notes. f0 : None or array_like, optional If not None it is assumed to be equal to ``fun(x0)``, in this case the ``fun(x0)`` is not called. Default is None. bounds : tuple of array_like, optional Lower and upper bounds on independent variables. Defaults to no bounds. Each bound must match the size of `x0` or be a scalar, in the latter case the bound will be the same for all variables. Use it to limit the range of function evaluation. Bounds checking is not implemented when `as_linear_operator` is True. sparsity : {None, array_like, sparse matrix, 2-tuple}, optional Defines a sparsity structure of the Jacobian matrix. If the Jacobian matrix is known to have only few non-zero elements in each row, then it's possible to estimate its several columns by a single function evaluation [3]_. To perform such economic computations two ingredients are required: * structure : array_like or sparse matrix of shape (m, n). A zero element means that a corresponding element of the Jacobian identically equals to zero. * groups : array_like of shape (n,). A column grouping for a given sparsity structure, use `group_columns` to obtain it. A single array or a sparse matrix is interpreted as a sparsity structure, and groups are computed inside the function. A tuple is interpreted as (structure, groups). If None (default), a standard dense differencing will be used. Note, that sparse differencing makes sense only for large Jacobian matrices where each row contains few non-zero elements. as_linear_operator : bool, optional When True the function returns an `scipy.sparse.linalg.LinearOperator`. Otherwise it returns a dense array or a sparse matrix depending on `sparsity`. The linear operator provides an efficient way of computing ``J.dot(p)`` for any vector ``p`` of shape (n,), but does not allow direct access to individual elements of the matrix. By default `as_linear_operator` is False. args, kwargs : tuple and dict, optional Additional arguments passed to `fun`. Both empty by default. The calling signature is ``fun(x, *args, **kwargs)``. Returns ------- J : {ndarray, sparse matrix, LinearOperator} Finite difference approximation of the Jacobian matrix. If `as_linear_operator` is True returns a LinearOperator with shape (m, n). Otherwise it returns a dense array or sparse matrix depending on how `sparsity` is defined. If `sparsity` is None then a ndarray with shape (m, n) is returned. If `sparsity` is not None returns a csr_matrix with shape (m, n). For sparse matrices and linear operators it is always returned as a 2-D structure, for ndarrays, if m=1 it is returned as a 1-D gradient array with shape (n,). See Also -------- check_derivative : Check correctness of a function computing derivatives. Notes ----- If `rel_step` is not provided, it assigned to ``EPS**(1/s)``, where EPS is machine epsilon for float64 numbers, s=2 for '2-point' method and s=3 for '3-point' method. Such relative step approximately minimizes a sum of truncation and round-off errors, see [1]_. A finite difference scheme for '3-point' method is selected automatically. The well-known central difference scheme is used for points sufficiently far from the boundary, and 3-point forward or backward scheme is used for points near the boundary. Both schemes have the second-order accuracy in terms of Taylor expansion. Refer to [2]_ for the formulas of 3-point forward and backward difference schemes. For dense differencing when m=1 Jacobian is returned with a shape (n,), on the other hand when n=1 Jacobian is returned with a shape (m, 1). Our motivation is the following: a) It handles a case of gradient computation (m=1) in a conventional way. b) It clearly separates these two different cases. b) In all cases np.atleast_2d can be called to get 2-D Jacobian with correct dimensions. References ---------- .. [1] W. H. Press et. al. "Numerical Recipes. The Art of Scientific Computing. 3rd edition", sec. 5.7. .. [2] A. Curtis, M. J. D. Powell, and J. Reid, "On the estimation of sparse Jacobian matrices", Journal of the Institute of Mathematics and its Applications, 13 (1974), pp. 117-120. .. [3] B. Fornberg, "Generation of Finite Difference Formulas on Arbitrarily Spaced Grids", Mathematics of Computation 51, 1988. Examples -------- >>> import numpy as np >>> from scipy.optimize import approx_derivative >>> >>> def f(x, c1, c2): ... return np.array([x[0] * np.sin(c1 * x[1]), ... x[0] * np.cos(c2 * x[1])]) ... >>> x0 = np.array([1.0, 0.5 * np.pi]) >>> approx_derivative(f, x0, args=(1, 2)) array([[ 1., 0.], [-1., 0.]]) Bounds can be used to limit the region of function evaluation. In the example below we compute left and right derivative at point 1.0. >>> def g(x): ... return x**2 if x >= 1 else x ... >>> x0 = 1.0 >>> approx_derivative(g, x0, bounds=(-np.inf, 1.0)) array([ 1.]) >>> approx_derivative(g, x0, bounds=(1.0, np.inf)) array([ 2.]) """ if method not in ['2-point', '3-point', 'cs']: raise ValueError("Unknown method '%s'. " % method) x0 = np.atleast_1d(x0) if x0.ndim > 1: raise ValueError("`x0` must have at most 1 dimension.") lb, ub = _prepare_bounds(bounds, x0) if lb.shape != x0.shape or ub.shape != x0.shape: raise ValueError("Inconsistent shapes between bounds and `x0`.") if as_linear_operator and not (np.all(np.isinf(lb)) and np.all(np.isinf(ub))): raise ValueError("Bounds not supported when " "`as_linear_operator` is True.") def fun_wrapped(x): f = np.atleast_1d(fun(x, *args, **kwargs)) if f.ndim > 1: raise RuntimeError("`fun` return value has " "more than 1 dimension.") return f if f0 is None: f0 = fun_wrapped(x0) else: f0 = np.atleast_1d(f0) if f0.ndim > 1: raise ValueError("`f0` passed has more than 1 dimension.") if np.any((x0 < lb) | (x0 > ub)): raise ValueError("`x0` violates bound constraints.") if as_linear_operator: if rel_step is None: rel_step = relative_step[method] return _linear_operator_difference(fun_wrapped, x0, f0, rel_step, method) else: h = _compute_absolute_step(rel_step, x0, method) if method == '2-point': h, use_one_sided = _adjust_scheme_to_bounds( x0, h, 1, '1-sided', lb, ub) elif method == '3-point': h, use_one_sided = _adjust_scheme_to_bounds( x0, h, 1, '2-sided', lb, ub) elif method == 'cs': use_one_sided = False if sparsity is None: return _dense_difference(fun_wrapped, x0, f0, h, use_one_sided, method) else: if not issparse(sparsity) and len(sparsity) == 2: structure, groups = sparsity else: structure = sparsity groups = group_columns(sparsity) if issparse(structure): structure = csc_matrix(structure) else: structure = np.atleast_2d(structure) groups = np.atleast_1d(groups) return _sparse_difference(fun_wrapped, x0, f0, h, use_one_sided, structure, groups, method) def _linear_operator_difference(fun, x0, f0, h, method): m = f0.size n = x0.size if method == '2-point': def matvec(p): if np.array_equal(p, np.zeros_like(p)): return np.zeros(m) dx = h / norm(p) x = x0 + dx*p df = fun(x) - f0 return df / dx elif method == '3-point': def matvec(p): if np.array_equal(p, np.zeros_like(p)): return np.zeros(m) dx = 2*h / norm(p) x1 = x0 - (dx/2)*p x2 = x0 + (dx/2)*p f1 = fun(x1) f2 = fun(x2) df = f2 - f1 return df / dx elif method == 'cs': def matvec(p): if np.array_equal(p, np.zeros_like(p)): return np.zeros(m) dx = h / norm(p) x = x0 + dx*p*1.j f1 = fun(x) df = f1.imag return df / dx else: raise RuntimeError("Never be here.") return LinearOperator((m, n), matvec) def _dense_difference(fun, x0, f0, h, use_one_sided, method): m = f0.size n = x0.size J_transposed = np.empty((n, m)) h_vecs = np.diag(h) for i in range(h.size): if method == '2-point': x = x0 + h_vecs[i] dx = x[i] - x0[i] # Recompute dx as exactly representable number. df = fun(x) - f0 elif method == '3-point' and use_one_sided[i]: x1 = x0 + h_vecs[i] x2 = x0 + 2 * h_vecs[i] dx = x2[i] - x0[i] f1 = fun(x1) f2 = fun(x2) df = -3.0 * f0 + 4 * f1 - f2 elif method == '3-point' and not use_one_sided[i]: x1 = x0 - h_vecs[i] x2 = x0 + h_vecs[i] dx = x2[i] - x1[i] f1 = fun(x1) f2 = fun(x2) df = f2 - f1 elif method == 'cs': f1 = fun(x0 + h_vecs[i]*1.j) df = f1.imag dx = h_vecs[i, i] else: raise RuntimeError("Never be here.") J_transposed[i] = df / dx if m == 1: J_transposed = np.ravel(J_transposed) return J_transposed.T def _sparse_difference(fun, x0, f0, h, use_one_sided, structure, groups, method): m = f0.size n = x0.size row_indices = [] col_indices = [] fractions = [] n_groups = np.max(groups) + 1 for group in range(n_groups): # Perturb variables which are in the same group simultaneously. e = np.equal(group, groups) h_vec = h * e if method == '2-point': x = x0 + h_vec dx = x - x0 df = fun(x) - f0 # The result is written to columns which correspond to perturbed # variables. cols, = np.nonzero(e) # Find all non-zero elements in selected columns of Jacobian. i, j, _ = find(structure[:, cols]) # Restore column indices in the full array. j = cols[j] elif method == '3-point': # Here we do conceptually the same but separate one-sided # and two-sided schemes. x1 = x0.copy() x2 = x0.copy() mask_1 = use_one_sided & e x1[mask_1] += h_vec[mask_1] x2[mask_1] += 2 * h_vec[mask_1] mask_2 = ~use_one_sided & e x1[mask_2] -= h_vec[mask_2] x2[mask_2] += h_vec[mask_2] dx = np.zeros(n) dx[mask_1] = x2[mask_1] - x0[mask_1] dx[mask_2] = x2[mask_2] - x1[mask_2] f1 = fun(x1) f2 = fun(x2) cols, = np.nonzero(e) i, j, _ = find(structure[:, cols]) j = cols[j] mask = use_one_sided[j] df = np.empty(m) rows = i[mask] df[rows] = -3 * f0[rows] + 4 * f1[rows] - f2[rows] rows = i[~mask] df[rows] = f2[rows] - f1[rows] elif method == 'cs': f1 = fun(x0 + h_vec*1.j) df = f1.imag dx = h_vec cols, = np.nonzero(e) i, j, _ = find(structure[:, cols]) j = cols[j] else: raise ValueError("Never be here.") # All that's left is to compute the fraction. We store i, j and # fractions as separate arrays and later construct coo_matrix. row_indices.append(i) col_indices.append(j) fractions.append(df[i] / dx[j]) row_indices = np.hstack(row_indices) col_indices = np.hstack(col_indices) fractions = np.hstack(fractions) J = coo_matrix((fractions, (row_indices, col_indices)), shape=(m, n)) return csr_matrix(J) def check_derivative(fun, jac, x0, bounds=(-np.inf, np.inf), args=(), kwargs={}): """Check correctness of a function computing derivatives (Jacobian or gradient) by comparison with a finite difference approximation. Parameters ---------- fun : callable Function of which to estimate the derivatives. The argument x passed to this function is ndarray of shape (n,) (never a scalar even if n=1). It must return 1-D array_like of shape (m,) or a scalar. jac : callable Function which computes Jacobian matrix of `fun`. It must work with argument x the same way as `fun`. The return value must be array_like or sparse matrix with an appropriate shape. x0 : array_like of shape (n,) or float Point at which to estimate the derivatives. Float will be converted to 1-D array. bounds : 2-tuple of array_like, optional Lower and upper bounds on independent variables. Defaults to no bounds. Each bound must match the size of `x0` or be a scalar, in the latter case the bound will be the same for all variables. Use it to limit the range of function evaluation. args, kwargs : tuple and dict, optional Additional arguments passed to `fun` and `jac`. Both empty by default. The calling signature is ``fun(x, *args, **kwargs)`` and the same for `jac`. Returns ------- accuracy : float The maximum among all relative errors for elements with absolute values higher than 1 and absolute errors for elements with absolute values less or equal than 1. If `accuracy` is on the order of 1e-6 or lower, then it is likely that your `jac` implementation is correct. See Also -------- approx_derivative : Compute finite difference approximation of derivative. Examples -------- >>> import numpy as np >>> from scipy.optimize import check_derivative >>> >>> >>> def f(x, c1, c2): ... return np.array([x[0] * np.sin(c1 * x[1]), ... x[0] * np.cos(c2 * x[1])]) ... >>> def jac(x, c1, c2): ... return np.array([ ... [np.sin(c1 * x[1]), c1 * x[0] * np.cos(c1 * x[1])], ... [np.cos(c2 * x[1]), -c2 * x[0] * np.sin(c2 * x[1])] ... ]) ... >>> >>> x0 = np.array([1.0, 0.5 * np.pi]) >>> check_derivative(f, jac, x0, args=(1, 2)) 2.4492935982947064e-16 """ J_to_test = jac(x0, *args, **kwargs) if issparse(J_to_test): J_diff = approx_derivative(fun, x0, bounds=bounds, sparsity=J_to_test, args=args, kwargs=kwargs) J_to_test = csr_matrix(J_to_test) abs_err = J_to_test - J_diff i, j, abs_err_data = find(abs_err) J_diff_data = np.asarray(J_diff[i, j]).ravel() return np.max(np.abs(abs_err_data) / np.maximum(1, np.abs(J_diff_data))) else: J_diff = approx_derivative(fun, x0, bounds=bounds, args=args, kwargs=kwargs) abs_err = np.abs(J_to_test - J_diff) return np.max(abs_err / np.maximum(1, np.abs(J_diff)))
[((310, 330), 'numpy.finfo', 'np.finfo', (['np.float64'], {}), '(np.float64)\n', (318, 330), True, 'import numpy as np\n'), ((1858, 1898), 'numpy.all', 'np.all', (['((lb == -np.inf) & (ub == np.inf))'], {}), '((lb == -np.inf) & (ub == np.inf))\n', (1864, 1898), True, 'import numpy as np\n'), ((13371, 13388), 'numpy.atleast_1d', 'np.atleast_1d', (['x0'], {}), '(x0)\n', (13384, 13388), True, 'import numpy as np\n'), ((14296, 14325), 'numpy.any', 'np.any', (['((x0 < lb) | (x0 > ub))'], {}), '((x0 < lb) | (x0 > ub))\n', (14302, 14325), True, 'import numpy as np\n'), ((16791, 16821), 'scipy.sparse.linalg.LinearOperator', 'LinearOperator', (['(m, n)', 'matvec'], {}), '((m, n), matvec)\n', (16805, 16821), False, 'from scipy.sparse.linalg import LinearOperator\n'), ((16937, 16953), 'numpy.empty', 'np.empty', (['(n, m)'], {}), '((n, m))\n', (16945, 16953), True, 'import numpy as np\n'), ((16967, 16977), 'numpy.diag', 'np.diag', (['h'], {}), '(h)\n', (16974, 16977), True, 'import numpy as np\n'), ((20310, 20332), 'numpy.hstack', 'np.hstack', (['row_indices'], {}), '(row_indices)\n', (20319, 20332), True, 'import numpy as np\n'), ((20351, 20373), 'numpy.hstack', 'np.hstack', (['col_indices'], {}), '(col_indices)\n', (20360, 20373), True, 'import numpy as np\n'), ((20390, 20410), 'numpy.hstack', 'np.hstack', (['fractions'], {}), '(fractions)\n', (20399, 20410), True, 'import numpy as np\n'), ((1638, 1665), 'numpy.ones_like', 'np.ones_like', (['h'], {'dtype': 'bool'}), '(h, dtype=bool)\n', (1650, 1665), True, 'import numpy as np\n'), ((3669, 3695), 'numpy.asarray', 'np.asarray', (['b'], {'dtype': 'float'}), '(b, dtype=float)\n', (3679, 3695), True, 'import numpy as np\n'), ((3747, 3770), 'numpy.resize', 'np.resize', (['lb', 'x0.shape'], {}), '(lb, x0.shape)\n', (3756, 3770), True, 'import numpy as np\n'), ((3806, 3829), 'numpy.resize', 'np.resize', (['ub', 'x0.shape'], {}), '(ub, x0.shape)\n', (3815, 3829), True, 'import numpy as np\n'), ((5187, 5203), 'numpy.atleast_2d', 'np.atleast_2d', (['A'], {}), '(A)\n', (5200, 5203), True, 'import numpy as np\n'), ((5363, 5381), 'numpy.isscalar', 'np.isscalar', (['order'], {}), '(order)\n', (5374, 5381), True, 'import numpy as np\n'), ((5397, 5425), 'numpy.random.RandomState', 'np.random.RandomState', (['order'], {}), '(order)\n', (5418, 5425), True, 'import numpy as np\n'), ((5487, 5504), 'numpy.asarray', 'np.asarray', (['order'], {}), '(order)\n', (5497, 5504), True, 'import numpy as np\n'), ((14175, 14192), 'numpy.atleast_1d', 'np.atleast_1d', (['f0'], {}), '(f0)\n', (14188, 14192), True, 'import numpy as np\n'), ((17914, 17936), 'numpy.ravel', 'np.ravel', (['J_transposed'], {}), '(J_transposed)\n', (17922, 17936), True, 'import numpy as np\n'), ((18180, 18194), 'numpy.max', 'np.max', (['groups'], {}), '(groups)\n', (18186, 18194), True, 'import numpy as np\n'), ((18317, 18340), 'numpy.equal', 'np.equal', (['group', 'groups'], {}), '(group, groups)\n', (18325, 18340), True, 'import numpy as np\n'), ((23642, 23668), 'numpy.abs', 'np.abs', (['(J_to_test - J_diff)'], {}), '(J_to_test - J_diff)\n', (23648, 23668), True, 'import numpy as np\n'), ((1708, 1717), 'numpy.abs', 'np.abs', (['h'], {}), '(h)\n', (1714, 1717), True, 'import numpy as np\n'), ((1742, 1770), 'numpy.zeros_like', 'np.zeros_like', (['h'], {'dtype': 'bool'}), '(h, dtype=bool)\n', (1755, 1770), True, 'import numpy as np\n'), ((2149, 2164), 'numpy.abs', 'np.abs', (['h_total'], {}), '(h_total)\n', (2155, 2164), True, 'import numpy as np\n'), ((2168, 2202), 'numpy.maximum', 'np.maximum', (['lower_dist', 'upper_dist'], {}), '(lower_dist, upper_dist)\n', (2178, 2202), True, 'import numpy as np\n'), ((2673, 2734), 'numpy.minimum', 'np.minimum', (['h[forward]', '(0.5 * upper_dist[forward] / num_steps)'], {}), '(h[forward], 0.5 * upper_dist[forward] / num_steps)\n', (2683, 2734), True, 'import numpy as np\n'), ((3608, 3618), 'numpy.abs', 'np.abs', (['x0'], {}), '(x0)\n', (3614, 3618), True, 'import numpy as np\n'), ((15573, 15594), 'numpy.atleast_1d', 'np.atleast_1d', (['groups'], {}), '(groups)\n', (15586, 15594), True, 'import numpy as np\n'), ((18598, 18611), 'numpy.nonzero', 'np.nonzero', (['e'], {}), '(e)\n', (18608, 18611), True, 'import numpy as np\n'), ((2875, 2938), 'numpy.minimum', 'np.minimum', (['h[backward]', '(0.5 * lower_dist[backward] / num_steps)'], {}), '(h[backward], 0.5 * lower_dist[backward] / num_steps)\n', (2885, 2938), True, 'import numpy as np\n'), ((3011, 3045), 'numpy.minimum', 'np.minimum', (['upper_dist', 'lower_dist'], {}), '(upper_dist, lower_dist)\n', (3021, 3045), True, 'import numpy as np\n'), ((15526, 15550), 'numpy.atleast_2d', 'np.atleast_2d', (['structure'], {}), '(structure)\n', (15539, 15550), True, 'import numpy as np\n'), ((15951, 15967), 'numpy.zeros_like', 'np.zeros_like', (['p'], {}), '(p)\n', (15964, 15967), True, 'import numpy as np\n'), ((15993, 16004), 'numpy.zeros', 'np.zeros', (['m'], {}), '(m)\n', (16001, 16004), True, 'import numpy as np\n'), ((16026, 16033), 'numpy.linalg.norm', 'norm', (['p'], {}), '(p)\n', (16030, 16033), False, 'from numpy.linalg import norm\n'), ((19271, 19282), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (19279, 19282), True, 'import numpy as np\n'), ((19453, 19466), 'numpy.nonzero', 'np.nonzero', (['e'], {}), '(e)\n', (19463, 19466), True, 'import numpy as np\n'), ((19592, 19603), 'numpy.empty', 'np.empty', (['m'], {}), '(m)\n', (19600, 19603), True, 'import numpy as np\n'), ((23358, 23382), 'numpy.asarray', 'np.asarray', (['J_diff[i, j]'], {}), '(J_diff[i, j])\n', (23368, 23382), True, 'import numpy as np\n'), ((23413, 23433), 'numpy.abs', 'np.abs', (['abs_err_data'], {}), '(abs_err_data)\n', (23419, 23433), True, 'import numpy as np\n'), ((3098, 3116), 'numpy.abs', 'np.abs', (['h_adjusted'], {}), '(h_adjusted)\n', (3104, 3116), True, 'import numpy as np\n'), ((13685, 13697), 'numpy.isinf', 'np.isinf', (['lb'], {}), '(lb)\n', (13693, 13697), True, 'import numpy as np\n'), ((13745, 13757), 'numpy.isinf', 'np.isinf', (['ub'], {}), '(ub)\n', (13753, 13757), True, 'import numpy as np\n'), ((16203, 16219), 'numpy.zeros_like', 'np.zeros_like', (['p'], {}), '(p)\n', (16216, 16219), True, 'import numpy as np\n'), ((16245, 16256), 'numpy.zeros', 'np.zeros', (['m'], {}), '(m)\n', (16253, 16256), True, 'import numpy as np\n'), ((16280, 16287), 'numpy.linalg.norm', 'norm', (['p'], {}), '(p)\n', (16284, 16287), False, 'from numpy.linalg import norm\n'), ((19901, 19914), 'numpy.nonzero', 'np.nonzero', (['e'], {}), '(e)\n', (19911, 19914), True, 'import numpy as np\n'), ((23472, 23491), 'numpy.abs', 'np.abs', (['J_diff_data'], {}), '(J_diff_data)\n', (23478, 23491), True, 'import numpy as np\n'), ((23715, 23729), 'numpy.abs', 'np.abs', (['J_diff'], {}), '(J_diff)\n', (23721, 23729), True, 'import numpy as np\n'), ((16534, 16550), 'numpy.zeros_like', 'np.zeros_like', (['p'], {}), '(p)\n', (16547, 16550), True, 'import numpy as np\n'), ((16576, 16587), 'numpy.zeros', 'np.zeros', (['m'], {}), '(m)\n', (16584, 16587), True, 'import numpy as np\n'), ((16609, 16616), 'numpy.linalg.norm', 'norm', (['p'], {}), '(p)\n', (16613, 16616), False, 'from numpy.linalg import norm\n')]
abhinavg97/pytorch-lightning
tests/models/test_hparams.py
0d54cf25a2dba33e4640ac52768a83406e7a0a94
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pickle from argparse import Namespace import cloudpickle import pytest import torch from fsspec.implementations.local import LocalFileSystem from omegaconf import OmegaConf, Container from torch.nn import functional as F from torch.utils.data import DataLoader from pytorch_lightning import Trainer, LightningModule from pytorch_lightning.core.saving import save_hparams_to_yaml, load_hparams_from_yaml from pytorch_lightning.utilities import AttributeDict, is_picklable from tests.base import EvalModelTemplate, TrialMNIST, BoringModel class SaveHparamsModel(EvalModelTemplate): """ Tests that a model can take an object """ def __init__(self, hparams): super().__init__() self.save_hyperparameters(hparams) class AssignHparamsModel(EvalModelTemplate): """ Tests that a model can take an object with explicit setter """ def __init__(self, hparams): super().__init__() self.hparams = hparams # ------------------------- # STANDARD TESTS # ------------------------- def _run_standard_hparams_test(tmpdir, model, cls, try_overwrite=False): """ Tests for the existence of an arg 'test_arg=14' """ hparam_type = type(model.hparams) # test proper property assignments assert model.hparams.test_arg == 14 # verify we can train trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, overfit_batches=2) trainer.fit(model) # make sure the raw checkpoint saved the properties raw_checkpoint_path = _raw_checkpoint_path(trainer) raw_checkpoint = torch.load(raw_checkpoint_path) assert LightningModule.CHECKPOINT_HYPER_PARAMS_KEY in raw_checkpoint assert raw_checkpoint[LightningModule.CHECKPOINT_HYPER_PARAMS_KEY]['test_arg'] == 14 # verify that model loads correctly model2 = cls.load_from_checkpoint(raw_checkpoint_path) assert model2.hparams.test_arg == 14 assert isinstance(model2.hparams, hparam_type) if try_overwrite: # verify that we can overwrite the property model3 = cls.load_from_checkpoint(raw_checkpoint_path, test_arg=78) assert model3.hparams.test_arg == 78 return raw_checkpoint_path @pytest.mark.parametrize("cls", [SaveHparamsModel, AssignHparamsModel]) def test_namespace_hparams(tmpdir, cls): # init model model = cls(hparams=Namespace(test_arg=14)) # run standard test suite _run_standard_hparams_test(tmpdir, model, cls) @pytest.mark.parametrize("cls", [SaveHparamsModel, AssignHparamsModel]) def test_dict_hparams(tmpdir, cls): # init model model = cls(hparams={'test_arg': 14}) # run standard test suite _run_standard_hparams_test(tmpdir, model, cls) @pytest.mark.parametrize("cls", [SaveHparamsModel, AssignHparamsModel]) def test_omega_conf_hparams(tmpdir, cls): # init model conf = OmegaConf.create(dict(test_arg=14, mylist=[15.4, dict(a=1, b=2)])) model = cls(hparams=conf) assert isinstance(model.hparams, Container) # run standard test suite raw_checkpoint_path = _run_standard_hparams_test(tmpdir, model, cls) model2 = cls.load_from_checkpoint(raw_checkpoint_path) assert isinstance(model2.hparams, Container) # config specific tests assert model2.hparams.test_arg == 14 assert model2.hparams.mylist[0] == 15.4 def test_explicit_args_hparams(tmpdir): """ Tests that a model can take implicit args and assign """ # define model class LocalModel(EvalModelTemplate): def __init__(self, test_arg, test_arg2): super().__init__() self.save_hyperparameters('test_arg', 'test_arg2') model = LocalModel(test_arg=14, test_arg2=90) # run standard test suite raw_checkpoint_path = _run_standard_hparams_test(tmpdir, model, LocalModel) model = LocalModel.load_from_checkpoint(raw_checkpoint_path, test_arg2=120) # config specific tests assert model.hparams.test_arg2 == 120 def test_implicit_args_hparams(tmpdir): """ Tests that a model can take regular args and assign """ # define model class LocalModel(EvalModelTemplate): def __init__(self, test_arg, test_arg2): super().__init__() self.save_hyperparameters() model = LocalModel(test_arg=14, test_arg2=90) # run standard test suite raw_checkpoint_path = _run_standard_hparams_test(tmpdir, model, LocalModel) model = LocalModel.load_from_checkpoint(raw_checkpoint_path, test_arg2=120) # config specific tests assert model.hparams.test_arg2 == 120 def test_explicit_missing_args_hparams(tmpdir): """ Tests that a model can take regular args and assign """ # define model class LocalModel(EvalModelTemplate): def __init__(self, test_arg, test_arg2): super().__init__() self.save_hyperparameters('test_arg') model = LocalModel(test_arg=14, test_arg2=90) # test proper property assignments assert model.hparams.test_arg == 14 # verify we can train trainer = Trainer(default_root_dir=tmpdir, max_epochs=2, overfit_batches=0.5) trainer.fit(model) # make sure the raw checkpoint saved the properties raw_checkpoint_path = _raw_checkpoint_path(trainer) raw_checkpoint = torch.load(raw_checkpoint_path) assert LightningModule.CHECKPOINT_HYPER_PARAMS_KEY in raw_checkpoint assert raw_checkpoint[LightningModule.CHECKPOINT_HYPER_PARAMS_KEY]['test_arg'] == 14 # verify that model loads correctly model = LocalModel.load_from_checkpoint(raw_checkpoint_path, test_arg2=123) assert model.hparams.test_arg == 14 assert 'test_arg2' not in model.hparams # test_arg2 is not registered in class init return raw_checkpoint_path # ------------------------- # SPECIFIC TESTS # ------------------------- def test_class_nesting(): class MyModule(LightningModule): def forward(self): ... # make sure PL modules are always nn.Module a = MyModule() assert isinstance(a, torch.nn.Module) def test_outside(): a = MyModule() _ = a.hparams class A: def test(self): a = MyModule() _ = a.hparams def test2(self): test_outside() test_outside() A().test2() A().test() class SubClassEvalModel(EvalModelTemplate): any_other_loss = torch.nn.CrossEntropyLoss() def __init__(self, *args, subclass_arg=1200, **kwargs): super().__init__(*args, **kwargs) self.save_hyperparameters() class SubSubClassEvalModel(SubClassEvalModel): pass class AggSubClassEvalModel(SubClassEvalModel): def __init__(self, *args, my_loss=torch.nn.CrossEntropyLoss(), **kwargs): super().__init__(*args, **kwargs) self.save_hyperparameters() class UnconventionalArgsEvalModel(EvalModelTemplate): """ A model that has unconventional names for "self", "*args" and "**kwargs". """ def __init__(obj, *more_args, other_arg=300, **more_kwargs): # intentionally named obj super().__init__(*more_args, **more_kwargs) obj.save_hyperparameters() class DictConfSubClassEvalModel(SubClassEvalModel): def __init__(self, *args, dict_conf=OmegaConf.create(dict(my_param='something')), **kwargs): super().__init__(*args, **kwargs) self.save_hyperparameters() @pytest.mark.parametrize("cls", [ EvalModelTemplate, SubClassEvalModel, SubSubClassEvalModel, AggSubClassEvalModel, UnconventionalArgsEvalModel, DictConfSubClassEvalModel, ]) def test_collect_init_arguments(tmpdir, cls): """ Test that the model automatically saves the arguments passed into the constructor """ extra_args = {} if cls is AggSubClassEvalModel: extra_args.update(my_loss=torch.nn.CosineEmbeddingLoss()) elif cls is DictConfSubClassEvalModel: extra_args.update(dict_conf=OmegaConf.create(dict(my_param='anything'))) model = cls(**extra_args) assert model.hparams.batch_size == 32 model = cls(batch_size=179, **extra_args) assert model.hparams.batch_size == 179 if isinstance(model, SubClassEvalModel): assert model.hparams.subclass_arg == 1200 if isinstance(model, AggSubClassEvalModel): assert isinstance(model.hparams.my_loss, torch.nn.CosineEmbeddingLoss) # verify that the checkpoint saved the correct values trainer = Trainer(default_root_dir=tmpdir, max_epochs=2, overfit_batches=0.5) trainer.fit(model) raw_checkpoint_path = _raw_checkpoint_path(trainer) raw_checkpoint = torch.load(raw_checkpoint_path) assert LightningModule.CHECKPOINT_HYPER_PARAMS_KEY in raw_checkpoint assert raw_checkpoint[LightningModule.CHECKPOINT_HYPER_PARAMS_KEY]['batch_size'] == 179 # verify that model loads correctly model = cls.load_from_checkpoint(raw_checkpoint_path) assert model.hparams.batch_size == 179 if isinstance(model, AggSubClassEvalModel): assert isinstance(model.hparams.my_loss, torch.nn.CosineEmbeddingLoss) if isinstance(model, DictConfSubClassEvalModel): assert isinstance(model.hparams.dict_conf, Container) assert model.hparams.dict_conf['my_param'] == 'anything' # verify that we can overwrite whatever we want model = cls.load_from_checkpoint(raw_checkpoint_path, batch_size=99) assert model.hparams.batch_size == 99 def _raw_checkpoint_path(trainer) -> str: raw_checkpoint_paths = os.listdir(trainer.checkpoint_callback.dirpath) raw_checkpoint_paths = [x for x in raw_checkpoint_paths if '.ckpt' in x] assert raw_checkpoint_paths raw_checkpoint_path = raw_checkpoint_paths[0] raw_checkpoint_path = os.path.join(trainer.checkpoint_callback.dirpath, raw_checkpoint_path) return raw_checkpoint_path class LocalVariableModelSuperLast(EvalModelTemplate): """ This model has the super().__init__() call at the end. """ def __init__(self, arg1, arg2, *args, **kwargs): self.argument1 = arg1 # arg2 intentionally not set arg1 = 'overwritten' local_var = 1234 super().__init__(*args, **kwargs) # this is intentionally here at the end class LocalVariableModelSuperFirst(EvalModelTemplate): """ This model has the _auto_collect_arguments() call at the end. """ def __init__(self, arg1, arg2, *args, **kwargs): super().__init__(*args, **kwargs) self.argument1 = arg1 # arg2 intentionally not set arg1 = 'overwritten' local_var = 1234 self.save_hyperparameters() # this is intentionally here at the end @pytest.mark.parametrize("cls", [ LocalVariableModelSuperFirst, # LocalVariableModelSuperLast, ]) def test_collect_init_arguments_with_local_vars(cls): """ Tests that only the arguments are collected and not local variables. """ model = cls(arg1=1, arg2=2) assert 'local_var' not in model.hparams assert model.hparams['arg1'] == 'overwritten' assert model.hparams['arg2'] == 2 # @pytest.mark.parametrize("cls,config", [ # (SaveHparamsModel, Namespace(my_arg=42)), # (SaveHparamsModel, dict(my_arg=42)), # (SaveHparamsModel, OmegaConf.create(dict(my_arg=42))), # (AssignHparamsModel, Namespace(my_arg=42)), # (AssignHparamsModel, dict(my_arg=42)), # (AssignHparamsModel, OmegaConf.create(dict(my_arg=42))), # ]) # def test_single_config_models(tmpdir, cls, config): # """ Test that the model automatically saves the arguments passed into the constructor """ # model = cls(config) # # # no matter how you do it, it should be assigned # assert model.hparams.my_arg == 42 # # # verify that the checkpoint saved the correct values # trainer = Trainer(default_root_dir=tmpdir, max_epochs=2, overfit_batches=0.5) # trainer.fit(model) # # # verify that model loads correctly # raw_checkpoint_path = _raw_checkpoint_path(trainer) # model = cls.load_from_checkpoint(raw_checkpoint_path) # assert model.hparams.my_arg == 42 class AnotherArgModel(EvalModelTemplate): def __init__(self, arg1): super().__init__() self.save_hyperparameters(arg1) class OtherArgsModel(EvalModelTemplate): def __init__(self, arg1, arg2): super().__init__() self.save_hyperparameters(arg1, arg2) @pytest.mark.parametrize("cls,config", [ (AnotherArgModel, dict(arg1=42)), (OtherArgsModel, dict(arg1=3.14, arg2='abc')), ]) def test_single_config_models_fail(tmpdir, cls, config): """ Test fail on passing unsupported config type. """ with pytest.raises(ValueError): _ = cls(**config) @pytest.mark.parametrize("past_key", ['module_arguments']) def test_load_past_checkpoint(tmpdir, past_key): model = EvalModelTemplate() # verify we can train trainer = Trainer(default_root_dir=tmpdir, max_epochs=1) trainer.fit(model) # make sure the raw checkpoint saved the properties raw_checkpoint_path = _raw_checkpoint_path(trainer) raw_checkpoint = torch.load(raw_checkpoint_path) raw_checkpoint[past_key] = raw_checkpoint[LightningModule.CHECKPOINT_HYPER_PARAMS_KEY] raw_checkpoint['hparams_type'] = 'Namespace' raw_checkpoint[past_key]['batch_size'] = -17 del raw_checkpoint[LightningModule.CHECKPOINT_HYPER_PARAMS_KEY] # save back the checkpoint torch.save(raw_checkpoint, raw_checkpoint_path) # verify that model loads correctly model2 = EvalModelTemplate.load_from_checkpoint(raw_checkpoint_path) assert model2.hparams.batch_size == -17 def test_hparams_pickle(tmpdir): ad = AttributeDict({'key1': 1, 'key2': 'abc'}) pkl = pickle.dumps(ad) assert ad == pickle.loads(pkl) pkl = cloudpickle.dumps(ad) assert ad == pickle.loads(pkl) class UnpickleableArgsEvalModel(EvalModelTemplate): """ A model that has an attribute that cannot be pickled. """ def __init__(self, foo='bar', pickle_me=(lambda x: x + 1), **kwargs): super().__init__(**kwargs) assert not is_picklable(pickle_me) self.save_hyperparameters() def test_hparams_pickle_warning(tmpdir): model = UnpickleableArgsEvalModel() trainer = Trainer(default_root_dir=tmpdir, max_steps=1) with pytest.warns(UserWarning, match="attribute 'pickle_me' removed from hparams because it cannot be pickled"): trainer.fit(model) assert 'pickle_me' not in model.hparams def test_hparams_save_yaml(tmpdir): hparams = dict(batch_size=32, learning_rate=0.001, data_root='./any/path/here', nasted=dict(any_num=123, anystr='abcd')) path_yaml = os.path.join(tmpdir, 'testing-hparams.yaml') save_hparams_to_yaml(path_yaml, hparams) assert load_hparams_from_yaml(path_yaml) == hparams save_hparams_to_yaml(path_yaml, Namespace(**hparams)) assert load_hparams_from_yaml(path_yaml) == hparams save_hparams_to_yaml(path_yaml, AttributeDict(hparams)) assert load_hparams_from_yaml(path_yaml) == hparams save_hparams_to_yaml(path_yaml, OmegaConf.create(hparams)) assert load_hparams_from_yaml(path_yaml) == hparams class NoArgsSubClassEvalModel(EvalModelTemplate): def __init__(self): super().__init__() class SimpleNoArgsModel(LightningModule): def __init__(self): super().__init__() self.l1 = torch.nn.Linear(28 * 28, 10) def forward(self, x): return torch.relu(self.l1(x.view(x.size(0), -1))) def training_step(self, batch, batch_nb): x, y = batch loss = F.cross_entropy(self(x), y) return {'loss': loss, 'log': {'train_loss': loss}} def test_step(self, batch, batch_nb): x, y = batch loss = F.cross_entropy(self(x), y) return {'loss': loss, 'log': {'train_loss': loss}} def configure_optimizers(self): return torch.optim.Adam(self.parameters(), lr=0.02) @pytest.mark.parametrize("cls", [ SimpleNoArgsModel, NoArgsSubClassEvalModel, ]) def test_model_nohparams_train_test(tmpdir, cls): """Test models that do not tae any argument in init.""" model = cls() trainer = Trainer( max_epochs=1, default_root_dir=tmpdir, ) train_loader = DataLoader(TrialMNIST(os.getcwd(), train=True, download=True), batch_size=32) trainer.fit(model, train_loader) test_loader = DataLoader(TrialMNIST(os.getcwd(), train=False, download=True), batch_size=32) trainer.test(test_dataloaders=test_loader) def test_model_ignores_non_exist_kwargument(tmpdir): """Test that the model takes only valid class arguments.""" class LocalModel(EvalModelTemplate): def __init__(self, batch_size=15): super().__init__(batch_size=batch_size) self.save_hyperparameters() model = LocalModel() assert model.hparams.batch_size == 15 # verify that the checkpoint saved the correct values trainer = Trainer(default_root_dir=tmpdir, max_epochs=1) trainer.fit(model) # verify that we can overwrite whatever we want raw_checkpoint_path = _raw_checkpoint_path(trainer) model = LocalModel.load_from_checkpoint(raw_checkpoint_path, non_exist_kwarg=99) assert 'non_exist_kwarg' not in model.hparams class SuperClassPositionalArgs(EvalModelTemplate): def __init__(self, hparams): super().__init__() self._hparams = None # pretend EvalModelTemplate did not call self.save_hyperparameters() self.hparams = hparams class SubClassVarArgs(SuperClassPositionalArgs): """ Loading this model should accept hparams and init in the super class """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def test_args(tmpdir): """ Test for inheritance: super class takes positional arg, subclass takes varargs. """ hparams = dict(test=1) model = SubClassVarArgs(hparams) trainer = Trainer(default_root_dir=tmpdir, max_epochs=1) trainer.fit(model) raw_checkpoint_path = _raw_checkpoint_path(trainer) with pytest.raises(TypeError, match="__init__\(\) got an unexpected keyword argument 'test'"): SubClassVarArgs.load_from_checkpoint(raw_checkpoint_path) class RuntimeParamChangeModelSaving(BoringModel): def __init__(self, **kwargs): super().__init__() self.save_hyperparameters() class RuntimeParamChangeModelAssign(BoringModel): def __init__(self, **kwargs): super().__init__() self.hparams = kwargs @pytest.mark.parametrize("cls", [RuntimeParamChangeModelSaving, RuntimeParamChangeModelAssign]) def test_init_arg_with_runtime_change(tmpdir, cls): """Test that we save/export only the initial hparams, no other runtime change allowed""" model = cls(running_arg=123) assert model.hparams.running_arg == 123 model.hparams.running_arg = -1 assert model.hparams.running_arg == -1 model.hparams = Namespace(abc=42) assert model.hparams.abc == 42 trainer = Trainer( default_root_dir=tmpdir, limit_train_batches=2, limit_val_batches=2, limit_test_batches=2, max_epochs=1, ) trainer.fit(model) path_yaml = os.path.join(trainer.logger.log_dir, trainer.logger.NAME_HPARAMS_FILE) hparams = load_hparams_from_yaml(path_yaml) assert hparams.get('running_arg') == 123 class UnsafeParamModel(BoringModel): def __init__(self, my_path, any_param=123): super().__init__() self.save_hyperparameters() def test_model_with_fsspec_as_parameter(tmpdir): model = UnsafeParamModel(LocalFileSystem(tmpdir)) trainer = Trainer( default_root_dir=tmpdir, limit_train_batches=2, limit_val_batches=2, limit_test_batches=2, max_epochs=1, ) trainer.fit(model) trainer.test()
[((2764, 2834), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""cls"""', '[SaveHparamsModel, AssignHparamsModel]'], {}), "('cls', [SaveHparamsModel, AssignHparamsModel])\n", (2787, 2834), False, 'import pytest\n'), ((3026, 3096), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""cls"""', '[SaveHparamsModel, AssignHparamsModel]'], {}), "('cls', [SaveHparamsModel, AssignHparamsModel])\n", (3049, 3096), False, 'import pytest\n'), ((3277, 3347), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""cls"""', '[SaveHparamsModel, AssignHparamsModel]'], {}), "('cls', [SaveHparamsModel, AssignHparamsModel])\n", (3300, 3347), False, 'import pytest\n'), ((7932, 8110), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""cls"""', '[EvalModelTemplate, SubClassEvalModel, SubSubClassEvalModel,\n AggSubClassEvalModel, UnconventionalArgsEvalModel,\n DictConfSubClassEvalModel]'], {}), "('cls', [EvalModelTemplate, SubClassEvalModel,\n SubSubClassEvalModel, AggSubClassEvalModel, UnconventionalArgsEvalModel,\n DictConfSubClassEvalModel])\n", (7955, 8110), False, 'import pytest\n'), ((11162, 11224), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""cls"""', '[LocalVariableModelSuperFirst]'], {}), "('cls', [LocalVariableModelSuperFirst])\n", (11185, 11224), False, 'import pytest\n'), ((13180, 13237), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""past_key"""', "['module_arguments']"], {}), "('past_key', ['module_arguments'])\n", (13203, 13237), False, 'import pytest\n'), ((16412, 16488), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""cls"""', '[SimpleNoArgsModel, NoArgsSubClassEvalModel]'], {}), "('cls', [SimpleNoArgsModel, NoArgsSubClassEvalModel])\n", (16435, 16488), False, 'import pytest\n'), ((18985, 19083), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""cls"""', '[RuntimeParamChangeModelSaving, RuntimeParamChangeModelAssign]'], {}), "('cls', [RuntimeParamChangeModelSaving,\n RuntimeParamChangeModelAssign])\n", (19008, 19083), False, 'import pytest\n'), ((1923, 1988), 'pytorch_lightning.Trainer', 'Trainer', ([], {'default_root_dir': 'tmpdir', 'max_epochs': '(1)', 'overfit_batches': '(2)'}), '(default_root_dir=tmpdir, max_epochs=1, overfit_batches=2)\n', (1930, 1988), False, 'from pytorch_lightning import Trainer, LightningModule\n'), ((2146, 2177), 'torch.load', 'torch.load', (['raw_checkpoint_path'], {}), '(raw_checkpoint_path)\n', (2156, 2177), False, 'import torch\n'), ((5614, 5681), 'pytorch_lightning.Trainer', 'Trainer', ([], {'default_root_dir': 'tmpdir', 'max_epochs': '(2)', 'overfit_batches': '(0.5)'}), '(default_root_dir=tmpdir, max_epochs=2, overfit_batches=0.5)\n', (5621, 5681), False, 'from pytorch_lightning import Trainer, LightningModule\n'), ((5839, 5870), 'torch.load', 'torch.load', (['raw_checkpoint_path'], {}), '(raw_checkpoint_path)\n', (5849, 5870), False, 'import torch\n'), ((6940, 6967), 'torch.nn.CrossEntropyLoss', 'torch.nn.CrossEntropyLoss', ([], {}), '()\n', (6965, 6967), False, 'import torch\n'), ((8975, 9042), 'pytorch_lightning.Trainer', 'Trainer', ([], {'default_root_dir': 'tmpdir', 'max_epochs': '(2)', 'overfit_batches': '(0.5)'}), '(default_root_dir=tmpdir, max_epochs=2, overfit_batches=0.5)\n', (8982, 9042), False, 'from pytorch_lightning import Trainer, LightningModule\n'), ((9145, 9176), 'torch.load', 'torch.load', (['raw_checkpoint_path'], {}), '(raw_checkpoint_path)\n', (9155, 9176), False, 'import torch\n'), ((10032, 10079), 'os.listdir', 'os.listdir', (['trainer.checkpoint_callback.dirpath'], {}), '(trainer.checkpoint_callback.dirpath)\n', (10042, 10079), False, 'import os\n'), ((10265, 10335), 'os.path.join', 'os.path.join', (['trainer.checkpoint_callback.dirpath', 'raw_checkpoint_path'], {}), '(trainer.checkpoint_callback.dirpath, raw_checkpoint_path)\n', (10277, 10335), False, 'import os\n'), ((13299, 13318), 'tests.base.EvalModelTemplate', 'EvalModelTemplate', ([], {}), '()\n', (13316, 13318), False, 'from tests.base import EvalModelTemplate, TrialMNIST, BoringModel\n'), ((13360, 13406), 'pytorch_lightning.Trainer', 'Trainer', ([], {'default_root_dir': 'tmpdir', 'max_epochs': '(1)'}), '(default_root_dir=tmpdir, max_epochs=1)\n', (13367, 13406), False, 'from pytorch_lightning import Trainer, LightningModule\n'), ((13564, 13595), 'torch.load', 'torch.load', (['raw_checkpoint_path'], {}), '(raw_checkpoint_path)\n', (13574, 13595), False, 'import torch\n'), ((13888, 13935), 'torch.save', 'torch.save', (['raw_checkpoint', 'raw_checkpoint_path'], {}), '(raw_checkpoint, raw_checkpoint_path)\n', (13898, 13935), False, 'import torch\n'), ((13990, 14049), 'tests.base.EvalModelTemplate.load_from_checkpoint', 'EvalModelTemplate.load_from_checkpoint', (['raw_checkpoint_path'], {}), '(raw_checkpoint_path)\n', (14028, 14049), False, 'from tests.base import EvalModelTemplate, TrialMNIST, BoringModel\n'), ((14138, 14179), 'pytorch_lightning.utilities.AttributeDict', 'AttributeDict', (["{'key1': 1, 'key2': 'abc'}"], {}), "({'key1': 1, 'key2': 'abc'})\n", (14151, 14179), False, 'from pytorch_lightning.utilities import AttributeDict, is_picklable\n'), ((14190, 14206), 'pickle.dumps', 'pickle.dumps', (['ad'], {}), '(ad)\n', (14202, 14206), False, 'import pickle\n'), ((14252, 14273), 'cloudpickle.dumps', 'cloudpickle.dumps', (['ad'], {}), '(ad)\n', (14269, 14273), False, 'import cloudpickle\n'), ((14715, 14760), 'pytorch_lightning.Trainer', 'Trainer', ([], {'default_root_dir': 'tmpdir', 'max_steps': '(1)'}), '(default_root_dir=tmpdir, max_steps=1)\n', (14722, 14760), False, 'from pytorch_lightning import Trainer, LightningModule\n'), ((15147, 15191), 'os.path.join', 'os.path.join', (['tmpdir', '"""testing-hparams.yaml"""'], {}), "(tmpdir, 'testing-hparams.yaml')\n", (15159, 15191), False, 'import os\n'), ((15197, 15237), 'pytorch_lightning.core.saving.save_hparams_to_yaml', 'save_hparams_to_yaml', (['path_yaml', 'hparams'], {}), '(path_yaml, hparams)\n', (15217, 15237), False, 'from pytorch_lightning.core.saving import save_hparams_to_yaml, load_hparams_from_yaml\n'), ((16643, 16689), 'pytorch_lightning.Trainer', 'Trainer', ([], {'max_epochs': '(1)', 'default_root_dir': 'tmpdir'}), '(max_epochs=1, default_root_dir=tmpdir)\n', (16650, 16689), False, 'from pytorch_lightning import Trainer, LightningModule\n'), ((17430, 17476), 'pytorch_lightning.Trainer', 'Trainer', ([], {'default_root_dir': 'tmpdir', 'max_epochs': '(1)'}), '(default_root_dir=tmpdir, max_epochs=1)\n', (17437, 17476), False, 'from pytorch_lightning import Trainer, LightningModule\n'), ((18398, 18444), 'pytorch_lightning.Trainer', 'Trainer', ([], {'default_root_dir': 'tmpdir', 'max_epochs': '(1)'}), '(default_root_dir=tmpdir, max_epochs=1)\n', (18405, 18444), False, 'from pytorch_lightning import Trainer, LightningModule\n'), ((19400, 19417), 'argparse.Namespace', 'Namespace', ([], {'abc': '(42)'}), '(abc=42)\n', (19409, 19417), False, 'from argparse import Namespace\n'), ((19468, 19584), 'pytorch_lightning.Trainer', 'Trainer', ([], {'default_root_dir': 'tmpdir', 'limit_train_batches': '(2)', 'limit_val_batches': '(2)', 'limit_test_batches': '(2)', 'max_epochs': '(1)'}), '(default_root_dir=tmpdir, limit_train_batches=2, limit_val_batches=2,\n limit_test_batches=2, max_epochs=1)\n', (19475, 19584), False, 'from pytorch_lightning import Trainer, LightningModule\n'), ((19668, 19738), 'os.path.join', 'os.path.join', (['trainer.logger.log_dir', 'trainer.logger.NAME_HPARAMS_FILE'], {}), '(trainer.logger.log_dir, trainer.logger.NAME_HPARAMS_FILE)\n', (19680, 19738), False, 'import os\n'), ((19753, 19786), 'pytorch_lightning.core.saving.load_hparams_from_yaml', 'load_hparams_from_yaml', (['path_yaml'], {}), '(path_yaml)\n', (19775, 19786), False, 'from pytorch_lightning.core.saving import save_hparams_to_yaml, load_hparams_from_yaml\n'), ((20101, 20217), 'pytorch_lightning.Trainer', 'Trainer', ([], {'default_root_dir': 'tmpdir', 'limit_train_batches': '(2)', 'limit_val_batches': '(2)', 'limit_test_batches': '(2)', 'max_epochs': '(1)'}), '(default_root_dir=tmpdir, limit_train_batches=2, limit_val_batches=2,\n limit_test_batches=2, max_epochs=1)\n', (20108, 20217), False, 'from pytorch_lightning import Trainer, LightningModule\n'), ((7253, 7280), 'torch.nn.CrossEntropyLoss', 'torch.nn.CrossEntropyLoss', ([], {}), '()\n', (7278, 7280), False, 'import torch\n'), ((13124, 13149), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (13137, 13149), False, 'import pytest\n'), ((14224, 14241), 'pickle.loads', 'pickle.loads', (['pkl'], {}), '(pkl)\n', (14236, 14241), False, 'import pickle\n'), ((14291, 14308), 'pickle.loads', 'pickle.loads', (['pkl'], {}), '(pkl)\n', (14303, 14308), False, 'import pickle\n'), ((14770, 14881), 'pytest.warns', 'pytest.warns', (['UserWarning'], {'match': '"""attribute \'pickle_me\' removed from hparams because it cannot be pickled"""'}), '(UserWarning, match=\n "attribute \'pickle_me\' removed from hparams because it cannot be pickled")\n', (14782, 14881), False, 'import pytest\n'), ((15249, 15282), 'pytorch_lightning.core.saving.load_hparams_from_yaml', 'load_hparams_from_yaml', (['path_yaml'], {}), '(path_yaml)\n', (15271, 15282), False, 'from pytorch_lightning.core.saving import save_hparams_to_yaml, load_hparams_from_yaml\n'), ((15331, 15351), 'argparse.Namespace', 'Namespace', ([], {}), '(**hparams)\n', (15340, 15351), False, 'from argparse import Namespace\n'), ((15364, 15397), 'pytorch_lightning.core.saving.load_hparams_from_yaml', 'load_hparams_from_yaml', (['path_yaml'], {}), '(path_yaml)\n', (15386, 15397), False, 'from pytorch_lightning.core.saving import save_hparams_to_yaml, load_hparams_from_yaml\n'), ((15446, 15468), 'pytorch_lightning.utilities.AttributeDict', 'AttributeDict', (['hparams'], {}), '(hparams)\n', (15459, 15468), False, 'from pytorch_lightning.utilities import AttributeDict, is_picklable\n'), ((15481, 15514), 'pytorch_lightning.core.saving.load_hparams_from_yaml', 'load_hparams_from_yaml', (['path_yaml'], {}), '(path_yaml)\n', (15503, 15514), False, 'from pytorch_lightning.core.saving import save_hparams_to_yaml, load_hparams_from_yaml\n'), ((15563, 15588), 'omegaconf.OmegaConf.create', 'OmegaConf.create', (['hparams'], {}), '(hparams)\n', (15579, 15588), False, 'from omegaconf import OmegaConf, Container\n'), ((15601, 15634), 'pytorch_lightning.core.saving.load_hparams_from_yaml', 'load_hparams_from_yaml', (['path_yaml'], {}), '(path_yaml)\n', (15623, 15634), False, 'from pytorch_lightning.core.saving import save_hparams_to_yaml, load_hparams_from_yaml\n'), ((15862, 15890), 'torch.nn.Linear', 'torch.nn.Linear', (['(28 * 28)', '(10)'], {}), '(28 * 28, 10)\n', (15877, 15890), False, 'import torch\n'), ((18534, 18629), 'pytest.raises', 'pytest.raises', (['TypeError'], {'match': '"""__init__\\\\(\\\\) got an unexpected keyword argument \'test\'"""'}), '(TypeError, match=\n "__init__\\\\(\\\\) got an unexpected keyword argument \'test\'")\n', (18547, 18629), False, 'import pytest\n'), ((20062, 20085), 'fsspec.implementations.local.LocalFileSystem', 'LocalFileSystem', (['tmpdir'], {}), '(tmpdir)\n', (20077, 20085), False, 'from fsspec.implementations.local import LocalFileSystem\n'), ((2917, 2939), 'argparse.Namespace', 'Namespace', ([], {'test_arg': '(14)'}), '(test_arg=14)\n', (2926, 2939), False, 'from argparse import Namespace\n'), ((14558, 14581), 'pytorch_lightning.utilities.is_picklable', 'is_picklable', (['pickle_me'], {}), '(pickle_me)\n', (14570, 14581), False, 'from pytorch_lightning.utilities import AttributeDict, is_picklable\n'), ((16755, 16766), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (16764, 16766), False, 'import os\n'), ((16889, 16900), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (16898, 16900), False, 'import os\n'), ((8360, 8390), 'torch.nn.CosineEmbeddingLoss', 'torch.nn.CosineEmbeddingLoss', ([], {}), '()\n', (8388, 8390), False, 'import torch\n')]
hadrianmontes/jax-md
tests/space_test.py
cea1cc6b22db6044a502eeeab4bddde35ac15d94
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for jax_md.space.""" from absl.testing import absltest from absl.testing import parameterized from jax.config import config as jax_config from jax import random import jax.numpy as jnp from jax import grad, jit, jacfwd from jax import test_util as jtu from jax_md import space, test_util, quantity, energy from jax_md.util import * from functools import partial from unittest import SkipTest test_util.update_test_tolerance(5e-5, 5e-13) jax_config.parse_flags_with_absl() jax_config.enable_omnistaging() FLAGS = jax_config.FLAGS PARTICLE_COUNT = 10 STOCHASTIC_SAMPLES = 10 SHIFT_STEPS = 10 SPATIAL_DIMENSION = [2, 3] BOX_FORMATS = ['scalar', 'vector', 'matrix'] if FLAGS.jax_enable_x64: POSITION_DTYPE = [f32, f64] else: POSITION_DTYPE = [f32] def make_periodic_general_test_system(N, dim, dtype, box_format): assert box_format in BOX_FORMATS box_size = quantity.box_size_at_number_density(N, 1.0, dim) box = dtype(box_size) if box_format == 'vector': box = jnp.array(jnp.ones(dim) * box_size, dtype) elif box_format == 'matrix': box = jnp.array(jnp.eye(dim) * box_size, dtype) d, s = space.periodic(jnp.diag(box) if box_format == 'matrix' else box) d_gf, s_gf = space.periodic_general(box) d_g, s_g = space.periodic_general(box, fractional_coordinates=False) key = random.PRNGKey(0) R_f = random.uniform(key, (N, dim), dtype=dtype) R = space.transform(box, R_f) E = jit(energy.soft_sphere_pair(d)) E_gf = jit(energy.soft_sphere_pair(d_gf)) E_g = jit(energy.soft_sphere_pair(d_g)) return R_f, R, box, (s, E), (s_gf, E_gf), (s_g, E_g) # pylint: disable=invalid-name class SpaceTest(jtu.JaxTestCase): # pylint: disable=g-complex-comprehension @parameterized.named_parameters(jtu.cases_from_list( { 'testcase_name': '_dim={}_dtype={}'.format(dim, dtype.__name__), 'spatial_dimension': dim, 'dtype': dtype } for dim in SPATIAL_DIMENSION for dtype in POSITION_DTYPE)) def test_transform(self, spatial_dimension, dtype): key = random.PRNGKey(0) for _ in range(STOCHASTIC_SAMPLES): key, split1, split2 = random.split(key, 3) R = random.normal( split1, (PARTICLE_COUNT, spatial_dimension), dtype=dtype) T = random.normal( split2, (spatial_dimension, spatial_dimension), dtype=dtype) R_prime_exact = jnp.array(jnp.einsum('ij,kj->ki', T, R), dtype=dtype) R_prime = space.transform(T, R) self.assertAllClose(R_prime_exact, R_prime) @parameterized.named_parameters(jtu.cases_from_list( { 'testcase_name': '_dim={}'.format(dim), 'spatial_dimension': dim } for dim in SPATIAL_DIMENSION)) def test_transform_grad(self, spatial_dimension): key = random.PRNGKey(0) for _ in range(STOCHASTIC_SAMPLES): key, split1, split2 = random.split(key, 3) R = random.normal(split1, (PARTICLE_COUNT, spatial_dimension)) T = random.normal(split2, (spatial_dimension, spatial_dimension)) R_prime = space.transform(T, R) energy_direct = lambda R: jnp.sum(R ** 2) energy_indirect = lambda T, R: jnp.sum(space.transform(T, R) ** 2) grad_direct = grad(energy_direct)(R_prime) grad_indirect = grad(energy_indirect, 1)(T, R) self.assertAllClose(grad_direct, grad_indirect) @parameterized.named_parameters(jtu.cases_from_list( { 'testcase_name': '_dim={}_dtype={}'.format(dim, dtype.__name__), 'spatial_dimension': dim, 'dtype': dtype } for dim in SPATIAL_DIMENSION for dtype in POSITION_DTYPE)) def test_transform_inverse(self, spatial_dimension, dtype): key = random.PRNGKey(0) tol = 1e-13 if dtype is f32: tol = 1e-5 for _ in range(STOCHASTIC_SAMPLES): key, split1, split2 = random.split(key, 3) R = random.normal( split1, (PARTICLE_COUNT, spatial_dimension), dtype=dtype) T = random.normal( split2, (spatial_dimension, spatial_dimension), dtype=dtype) T_inv = space.inverse(T) R_test = space.transform(T_inv, space.transform(T, R)) self.assertAllClose(R, R_test) @parameterized.named_parameters(jtu.cases_from_list( { 'testcase_name': '_dim={}_dtype={}'.format(dim, dtype.__name__), 'spatial_dimension': dim, 'dtype': dtype } for dim in SPATIAL_DIMENSION for dtype in POSITION_DTYPE)) def test_canonicalize_displacement_or_metric(self, spatial_dimension, dtype): key = random.PRNGKey(0) displacement, _ = space.periodic_general(jnp.eye(spatial_dimension)) metric = space.metric(displacement) test_metric = space.canonicalize_displacement_or_metric(displacement) metric = space.map_product(metric) test_metric = space.map_product(test_metric) for _ in range(STOCHASTIC_SAMPLES): key, split1, split2 = random.split(key, 3) R = random.normal( split1, (PARTICLE_COUNT, spatial_dimension), dtype=dtype) self.assertAllClose(metric(R, R), test_metric(R, R)) @parameterized.named_parameters(jtu.cases_from_list( { 'testcase_name': '_dim={}_dtype={}'.format(dim, dtype.__name__), 'spatial_dimension': dim, 'dtype': dtype } for dim in SPATIAL_DIMENSION for dtype in POSITION_DTYPE)) def test_periodic_displacement(self, spatial_dimension, dtype): key = random.PRNGKey(0) for _ in range(STOCHASTIC_SAMPLES): key, split = random.split(key) R = random.uniform( split, (PARTICLE_COUNT, spatial_dimension), dtype=dtype) dR = space.map_product(space.pairwise_displacement)(R, R) dR_wrapped = space.periodic_displacement(f32(1.0), dR) dR_direct = dR dr_direct = space.distance(dR) dr_direct = jnp.reshape(dr_direct, dr_direct.shape + (1,)) if spatial_dimension == 2: for i in range(-1, 2): for j in range(-1, 2): dR_shifted = dR + jnp.array([i, j], dtype=R.dtype) dr_shifted = space.distance(dR_shifted) dr_shifted = jnp.reshape(dr_shifted, dr_shifted.shape + (1,)) dR_direct = jnp.where(dr_shifted < dr_direct, dR_shifted, dR_direct) dr_direct = jnp.where(dr_shifted < dr_direct, dr_shifted, dr_direct) elif spatial_dimension == 3: for i in range(-1, 2): for j in range(-1, 2): for k in range(-1, 2): dR_shifted = dR + jnp.array([i, j, k], dtype=R.dtype) dr_shifted = space.distance(dR_shifted) dr_shifted = jnp.reshape(dr_shifted, dr_shifted.shape + (1,)) dR_direct = jnp.where( dr_shifted < dr_direct, dR_shifted, dR_direct) dr_direct = jnp.where( dr_shifted < dr_direct, dr_shifted, dr_direct) dR_direct = jnp.array(dR_direct, dtype=dR.dtype) assert dR_wrapped.dtype == dtype self.assertAllClose(dR_wrapped, dR_direct) @parameterized.named_parameters(jtu.cases_from_list( { 'testcase_name': '_dim={}_dtype={}'.format(dim, dtype.__name__), 'spatial_dimension': dim, 'dtype': dtype } for dim in SPATIAL_DIMENSION for dtype in POSITION_DTYPE)) def test_periodic_shift(self, spatial_dimension, dtype): key = random.PRNGKey(0) for _ in range(STOCHASTIC_SAMPLES): key, split1, split2 = random.split(key, 3) R = random.uniform( split1, (PARTICLE_COUNT, spatial_dimension), dtype=dtype) dR = jnp.sqrt(f32(0.1)) * random.normal( split2, (PARTICLE_COUNT, spatial_dimension), dtype=dtype) dR = jnp.where(dR > 0.49, f32(0.49), dR) dR = jnp.where(dR < -0.49, f32(-0.49), dR) R_shift = space.periodic_shift(f32(1.0), R, dR) assert R_shift.dtype == R.dtype assert jnp.all(R_shift < 1.0) assert jnp.all(R_shift > 0.0) dR_after = space.periodic_displacement(f32(1.0), R_shift - R) assert dR_after.dtype == R.dtype self.assertAllClose(dR_after, dR) @parameterized.named_parameters(jtu.cases_from_list( { 'testcase_name': '_dim={}_dtype={}'.format(dim, dtype.__name__), 'spatial_dimension': dim, 'dtype': dtype } for dim in SPATIAL_DIMENSION for dtype in POSITION_DTYPE)) def test_periodic_against_periodic_general(self, spatial_dimension, dtype): key = random.PRNGKey(0) tol = 1e-13 if dtype is f32: tol = 1e-5 for _ in range(STOCHASTIC_SAMPLES): key, split1, split2, split3 = random.split(key, 4) max_box_size = f32(10.0) box_size = max_box_size * random.uniform( split1, (spatial_dimension,), dtype=dtype) transform = jnp.diag(box_size) R = random.uniform( split2, (PARTICLE_COUNT, spatial_dimension), dtype=dtype) R_scaled = R * box_size dR = random.normal( split3, (PARTICLE_COUNT, spatial_dimension), dtype=dtype) disp_fn, shift_fn = space.periodic(box_size) general_disp_fn, general_shift_fn = space.periodic_general(transform) disp_fn = space.map_product(disp_fn) general_disp_fn = space.map_product(general_disp_fn) self.assertAllClose(disp_fn(R_scaled, R_scaled), general_disp_fn(R, R)) assert disp_fn(R_scaled, R_scaled).dtype == dtype self.assertAllClose( shift_fn(R_scaled, dR), general_shift_fn(R, dR) * box_size) assert shift_fn(R_scaled, dR).dtype == dtype @parameterized.named_parameters(jtu.cases_from_list( { 'testcase_name': '_dim={}_dtype={}'.format(dim, dtype.__name__), 'spatial_dimension': dim, 'dtype': dtype } for dim in SPATIAL_DIMENSION for dtype in POSITION_DTYPE)) def test_periodic_against_periodic_general_grad(self, spatial_dimension, dtype): key = random.PRNGKey(0) tol = 1e-13 if dtype is f32: tol = 1e-5 for _ in range(STOCHASTIC_SAMPLES): key, split1, split2, split3 = random.split(key, 4) max_box_size = f32(10.0) box_size = max_box_size * random.uniform( split1, (spatial_dimension,), dtype=dtype) transform = jnp.diag(box_size) R = random.uniform( split2, (PARTICLE_COUNT, spatial_dimension), dtype=dtype) R_scaled = R * box_size dR = random.normal( split3, (PARTICLE_COUNT, spatial_dimension), dtype=dtype) disp_fn, shift_fn = space.periodic(box_size) general_disp_fn, general_shift_fn = space.periodic_general(transform) disp_fn = space.map_product(disp_fn) general_disp_fn = space.map_product(general_disp_fn) grad_fn = grad(lambda R: jnp.sum(disp_fn(R, R) ** 2)) general_grad_fn = grad(lambda R: jnp.sum(general_disp_fn(R, R) ** 2)) self.assertAllClose(grad_fn(R_scaled), general_grad_fn(R)) assert general_grad_fn(R).dtype == dtype @parameterized.named_parameters(jtu.cases_from_list( { 'testcase_name': '_dim={}_dtype={}'.format(dim, dtype.__name__), 'spatial_dimension': dim, 'dtype': dtype, } for dim in SPATIAL_DIMENSION for dtype in POSITION_DTYPE)) def test_periodic_general_dynamic(self, spatial_dimension, dtype): key = random.PRNGKey(0) eye = jnp.eye(spatial_dimension) for _ in range(STOCHASTIC_SAMPLES): key, split_T0_scale, split_T0_dT = random.split(key, 3) key, split_T1_scale, split_T1_dT = random.split(key, 3) key, split_t, split_R, split_dR = random.split(key, 4) size_0 = 10.0 * random.uniform(split_T0_scale, ()) dtransform_0 = 0.5 * random.normal( split_T0_dT, (spatial_dimension, spatial_dimension)) T_0 = jnp.array(size_0 * (eye + dtransform_0), dtype=dtype) size_1 = 10.0 * random.uniform(split_T1_scale, (), dtype=dtype) dtransform_1 = 0.5 * random.normal( split_T1_dT, (spatial_dimension, spatial_dimension), dtype=dtype) T_1 = jnp.array(size_1 * (eye + dtransform_1), dtype=dtype) disp_fn, shift_fn = space.periodic_general(T_0) true_disp_fn, true_shift_fn = space.periodic_general(T_1) disp_fn = partial(disp_fn, box=T_1) disp_fn = space.map_product(disp_fn) true_disp_fn = space.map_product(true_disp_fn) R = random.uniform( split_R, (PARTICLE_COUNT, spatial_dimension), dtype=dtype) dR = random.normal( split_dR, (PARTICLE_COUNT, spatial_dimension), dtype=dtype) self.assertAllClose( disp_fn(R, R), jnp.array(true_disp_fn(R, R), dtype=dtype)) self.assertAllClose( shift_fn(R, dR, box=T_1), jnp.array(true_shift_fn(R, dR), dtype=dtype)) @parameterized.named_parameters(jtu.cases_from_list( { 'testcase_name': '_dim={}_dtype={}'.format(dim, dtype.__name__), 'spatial_dimension': dim, 'dtype': dtype, } for dim in SPATIAL_DIMENSION for dtype in POSITION_DTYPE)) def test_periodic_general_wrapped_vs_unwrapped( self, spatial_dimension, dtype): key = random.PRNGKey(0) eye = jnp.eye(spatial_dimension, dtype=dtype) tol = 1e-13 if dtype is f32: tol = 2e-5 for _ in range(STOCHASTIC_SAMPLES): key, split_R, split_T = random.split(key, 3) dT = random.normal( split_T, (spatial_dimension, spatial_dimension), dtype=dtype) T = eye + dT + jnp.transpose(dT) R = random.uniform( split_R, (PARTICLE_COUNT, spatial_dimension), dtype=dtype) R0 = R unwrapped_R = R displacement, shift = space.periodic_general(T) _, unwrapped_shift = space.periodic_general(T, wrapped=False) displacement = space.map_product(displacement) for _ in range(SHIFT_STEPS): key, split = random.split(key) dR = random.normal( split, (PARTICLE_COUNT, spatial_dimension), dtype=dtype) R = shift(R, dR) unwrapped_R = unwrapped_shift(unwrapped_R, dR) self.assertAllClose( displacement(R, R0), displacement(unwrapped_R, R0)) assert not (jnp.all(unwrapped_R > 0) and jnp.all(unwrapped_R < 1)) @parameterized.named_parameters(jtu.cases_from_list( { 'testcase_name': f'_dim={dim}_dtype={dtype.__name__}_box_format={box_format}', 'spatial_dimension': dim, 'dtype': dtype, 'box_format': box_format } for dim in SPATIAL_DIMENSION for dtype in POSITION_DTYPE for box_format in BOX_FORMATS)) def test_periodic_general_energy(self, spatial_dimension, dtype, box_format): N = 16 R_f, R, box, (s, E), (s_gf, E_gf), (s_g, E_g) = \ make_periodic_general_test_system(N, spatial_dimension, dtype, box_format) self.assertAllClose(E(R), E_gf(R_f)) self.assertAllClose(E(R), E_g(R)) @parameterized.named_parameters(jtu.cases_from_list( { 'testcase_name': f'_dim={dim}_dtype={dtype.__name__}_box_format={box_format}', 'spatial_dimension': dim, 'dtype': dtype, 'box_format': box_format } for dim in SPATIAL_DIMENSION for dtype in POSITION_DTYPE for box_format in BOX_FORMATS)) def test_periodic_general_force(self, spatial_dimension, dtype, box_format): N = 16 R_f, R, box, (s, E), (s_gf, E_gf), (s_g, E_g) = \ make_periodic_general_test_system(N, spatial_dimension, dtype, box_format) self.assertAllClose(grad(E)(R), grad(E_gf)(R_f)) self.assertAllClose(grad(E)(R), grad(E_g)(R)) @parameterized.named_parameters(jtu.cases_from_list( { 'testcase_name': f'_dim={dim}_dtype={dtype.__name__}_box_format={box_format}', 'spatial_dimension': dim, 'dtype': dtype, 'box_format': box_format } for dim in SPATIAL_DIMENSION for dtype in POSITION_DTYPE for box_format in BOX_FORMATS)) def test_periodic_general_shift(self, spatial_dimension, dtype, box_format): N = 16 R_f, R, box, (s, E), (s_gf, E_gf), (s_g, E_g) = \ make_periodic_general_test_system(N, spatial_dimension, dtype, box_format) R_new = s(R, grad(E)(R)) R_gf_new = s_gf(R_f, grad(E_gf)(R_f)) R_g_new = s_g(R, grad(E_g)(R)) self.assertAllClose(R_new, space.transform(box, R_gf_new)) self.assertAllClose(R_new, R_g_new) @parameterized.named_parameters(jtu.cases_from_list( { 'testcase_name': f'_dim={dim}_dtype={dtype.__name__}_box_format={box_format}', 'spatial_dimension': dim, 'dtype': dtype, 'box_format': box_format } for dim in SPATIAL_DIMENSION for dtype in POSITION_DTYPE for box_format in BOX_FORMATS)) def test_periodic_general_deform(self, spatial_dimension, dtype, box_format): N = 16 R_f, R, box, (s, E), (s_gf, E_gf), (s_g, E_g) = \ make_periodic_general_test_system(N, spatial_dimension, dtype, box_format) deformed_box = box * 0.9 self.assertAllClose(E_gf(R_f, box=deformed_box), E_g(R, new_box=deformed_box)) @parameterized.named_parameters(jtu.cases_from_list( { 'testcase_name': f'_dim={dim}_dtype={dtype.__name__}_box_format={box_format}', 'spatial_dimension': dim, 'dtype': dtype, 'box_format': box_format } for dim in SPATIAL_DIMENSION for dtype in POSITION_DTYPE for box_format in BOX_FORMATS)) def test_periodic_general_deform_grad(self, spatial_dimension, dtype, box_format): N = 16 R_f, R, box, (s, E), (s_gf, E_gf), (s_g, E_g) = \ make_periodic_general_test_system(N, spatial_dimension, dtype, box_format) deformed_box = box * 0.9 self.assertAllClose(grad(E_gf)(R_f, box=deformed_box), grad(E_g)(R, new_box=deformed_box)) self.assertAllClose(jacfwd(E_gf)(R_f, box=deformed_box), jacfwd(E_g)(R, new_box=deformed_box)) @parameterized.named_parameters(jtu.cases_from_list( { 'testcase_name': f'_dim={dim}_dtype={dtype.__name__}_box_format={box_format}', 'spatial_dimension': dim, 'dtype': dtype, 'box_format': box_format } for dim in SPATIAL_DIMENSION for dtype in POSITION_DTYPE for box_format in BOX_FORMATS)) def test_periodic_general_deform_shift(self, spatial_dimension, dtype, box_format): N = 16 R_f, R, box, (s, E), (s_gf, E_gf), (s_g, E_g) = \ make_periodic_general_test_system(N, spatial_dimension, dtype, box_format) deformed_box = box * 0.9 R_new = s_g(R, grad(E_g)(R), new_box=deformed_box) R_gf_new = space.transform(deformed_box, s_gf(R_f, grad(E_gf)(R_f))) self.assertAllClose(R_new, R_gf_new) @parameterized.named_parameters(jtu.cases_from_list( { 'testcase_name': f'_dim={dim}_dtype={dtype.__name__}_box_format={box_format}', 'spatial_dimension': dim, 'dtype': dtype, 'box_format': box_format } for dim in SPATIAL_DIMENSION for dtype in POSITION_DTYPE for box_format in BOX_FORMATS)) def test_periodic_general_grad_box(self, spatial_dimension, dtype, box_format): if box_format == 'scalar': raise SkipTest('Scalar case fails due to JAX Issue #5849.') N = 16 R_f, R, box, (s, E), (s_gf, E_gf), (s_g, E_g) = \ make_periodic_general_test_system(N, spatial_dimension, dtype, box_format) @grad def box_energy_g_fn(box): return E_g(R, new_box=box) @grad def box_energy_gf_fn(box): return E_gf(R_f, box=box) self.assertAllClose(box_energy_g_fn(box), box_energy_gf_fn(box)) if __name__ == '__main__': absltest.main()
[((984, 1029), 'jax_md.test_util.update_test_tolerance', 'test_util.update_test_tolerance', (['(5e-05)', '(5e-13)'], {}), '(5e-05, 5e-13)\n', (1015, 1029), False, 'from jax_md import space, test_util, quantity, energy\n'), ((1030, 1064), 'jax.config.config.parse_flags_with_absl', 'jax_config.parse_flags_with_absl', ([], {}), '()\n', (1062, 1064), True, 'from jax.config import config as jax_config\n'), ((1065, 1096), 'jax.config.config.enable_omnistaging', 'jax_config.enable_omnistaging', ([], {}), '()\n', (1094, 1096), True, 'from jax.config import config as jax_config\n'), ((1460, 1508), 'jax_md.quantity.box_size_at_number_density', 'quantity.box_size_at_number_density', (['N', '(1.0)', 'dim'], {}), '(N, 1.0, dim)\n', (1495, 1508), False, 'from jax_md import space, test_util, quantity, energy\n'), ((1788, 1815), 'jax_md.space.periodic_general', 'space.periodic_general', (['box'], {}), '(box)\n', (1810, 1815), False, 'from jax_md import space, test_util, quantity, energy\n'), ((1829, 1886), 'jax_md.space.periodic_general', 'space.periodic_general', (['box'], {'fractional_coordinates': '(False)'}), '(box, fractional_coordinates=False)\n', (1851, 1886), False, 'from jax_md import space, test_util, quantity, energy\n'), ((1896, 1913), 'jax.random.PRNGKey', 'random.PRNGKey', (['(0)'], {}), '(0)\n', (1910, 1913), False, 'from jax import random\n'), ((1923, 1965), 'jax.random.uniform', 'random.uniform', (['key', '(N, dim)'], {'dtype': 'dtype'}), '(key, (N, dim), dtype=dtype)\n', (1937, 1965), False, 'from jax import random\n'), ((1972, 1997), 'jax_md.space.transform', 'space.transform', (['box', 'R_f'], {}), '(box, R_f)\n', (1987, 1997), False, 'from jax_md import space, test_util, quantity, energy\n'), ((20126, 20141), 'absl.testing.absltest.main', 'absltest.main', ([], {}), '()\n', (20139, 20141), False, 'from absl.testing import absltest\n'), ((2009, 2035), 'jax_md.energy.soft_sphere_pair', 'energy.soft_sphere_pair', (['d'], {}), '(d)\n', (2032, 2035), False, 'from jax_md import space, test_util, quantity, energy\n'), ((2050, 2079), 'jax_md.energy.soft_sphere_pair', 'energy.soft_sphere_pair', (['d_gf'], {}), '(d_gf)\n', (2073, 2079), False, 'from jax_md import space, test_util, quantity, energy\n'), ((2093, 2121), 'jax_md.energy.soft_sphere_pair', 'energy.soft_sphere_pair', (['d_g'], {}), '(d_g)\n', (2116, 2121), False, 'from jax_md import space, test_util, quantity, energy\n'), ((2621, 2638), 'jax.random.PRNGKey', 'random.PRNGKey', (['(0)'], {}), '(0)\n', (2635, 2638), False, 'from jax import random\n'), ((3331, 3348), 'jax.random.PRNGKey', 'random.PRNGKey', (['(0)'], {}), '(0)\n', (3345, 3348), False, 'from jax import random\n'), ((4239, 4256), 'jax.random.PRNGKey', 'random.PRNGKey', (['(0)'], {}), '(0)\n', (4253, 4256), False, 'from jax import random\n'), ((5077, 5094), 'jax.random.PRNGKey', 'random.PRNGKey', (['(0)'], {}), '(0)\n', (5091, 5094), False, 'from jax import random\n'), ((5182, 5208), 'jax_md.space.metric', 'space.metric', (['displacement'], {}), '(displacement)\n', (5194, 5208), False, 'from jax_md import space, test_util, quantity, energy\n'), ((5227, 5282), 'jax_md.space.canonicalize_displacement_or_metric', 'space.canonicalize_displacement_or_metric', (['displacement'], {}), '(displacement)\n', (5268, 5282), False, 'from jax_md import space, test_util, quantity, energy\n'), ((5297, 5322), 'jax_md.space.map_product', 'space.map_product', (['metric'], {}), '(metric)\n', (5314, 5322), False, 'from jax_md import space, test_util, quantity, energy\n'), ((5341, 5371), 'jax_md.space.map_product', 'space.map_product', (['test_metric'], {}), '(test_metric)\n', (5358, 5371), False, 'from jax_md import space, test_util, quantity, energy\n'), ((5957, 5974), 'jax.random.PRNGKey', 'random.PRNGKey', (['(0)'], {}), '(0)\n', (5971, 5974), False, 'from jax import random\n'), ((7864, 7881), 'jax.random.PRNGKey', 'random.PRNGKey', (['(0)'], {}), '(0)\n', (7878, 7881), False, 'from jax import random\n'), ((8947, 8964), 'jax.random.PRNGKey', 'random.PRNGKey', (['(0)'], {}), '(0)\n', (8961, 8964), False, 'from jax import random\n'), ((10376, 10393), 'jax.random.PRNGKey', 'random.PRNGKey', (['(0)'], {}), '(0)\n', (10390, 10393), False, 'from jax import random\n'), ((11761, 11778), 'jax.random.PRNGKey', 'random.PRNGKey', (['(0)'], {}), '(0)\n', (11775, 11778), False, 'from jax import random\n'), ((11790, 11816), 'jax.numpy.eye', 'jnp.eye', (['spatial_dimension'], {}), '(spatial_dimension)\n', (11797, 11816), True, 'import jax.numpy as jnp\n'), ((13541, 13558), 'jax.random.PRNGKey', 'random.PRNGKey', (['(0)'], {}), '(0)\n', (13555, 13558), False, 'from jax import random\n'), ((13570, 13609), 'jax.numpy.eye', 'jnp.eye', (['spatial_dimension'], {'dtype': 'dtype'}), '(spatial_dimension, dtype=dtype)\n', (13577, 13609), True, 'import jax.numpy as jnp\n'), ((14658, 14929), 'jax.test_util.cases_from_list', 'jtu.cases_from_list', (["({'testcase_name':\n f'_dim={dim}_dtype={dtype.__name__}_box_format={box_format}',\n 'spatial_dimension': dim, 'dtype': dtype, 'box_format': box_format} for\n dim in SPATIAL_DIMENSION for dtype in POSITION_DTYPE for box_format in\n BOX_FORMATS)"], {}), "({'testcase_name':\n f'_dim={dim}_dtype={dtype.__name__}_box_format={box_format}',\n 'spatial_dimension': dim, 'dtype': dtype, 'box_format': box_format} for\n dim in SPATIAL_DIMENSION for dtype in POSITION_DTYPE for box_format in\n BOX_FORMATS)\n", (14677, 14929), True, 'from jax import test_util as jtu\n'), ((15318, 15589), 'jax.test_util.cases_from_list', 'jtu.cases_from_list', (["({'testcase_name':\n f'_dim={dim}_dtype={dtype.__name__}_box_format={box_format}',\n 'spatial_dimension': dim, 'dtype': dtype, 'box_format': box_format} for\n dim in SPATIAL_DIMENSION for dtype in POSITION_DTYPE for box_format in\n BOX_FORMATS)"], {}), "({'testcase_name':\n f'_dim={dim}_dtype={dtype.__name__}_box_format={box_format}',\n 'spatial_dimension': dim, 'dtype': dtype, 'box_format': box_format} for\n dim in SPATIAL_DIMENSION for dtype in POSITION_DTYPE for box_format in\n BOX_FORMATS)\n", (15337, 15589), True, 'from jax import test_util as jtu\n'), ((16001, 16272), 'jax.test_util.cases_from_list', 'jtu.cases_from_list', (["({'testcase_name':\n f'_dim={dim}_dtype={dtype.__name__}_box_format={box_format}',\n 'spatial_dimension': dim, 'dtype': dtype, 'box_format': box_format} for\n dim in SPATIAL_DIMENSION for dtype in POSITION_DTYPE for box_format in\n BOX_FORMATS)"], {}), "({'testcase_name':\n f'_dim={dim}_dtype={dtype.__name__}_box_format={box_format}',\n 'spatial_dimension': dim, 'dtype': dtype, 'box_format': box_format} for\n dim in SPATIAL_DIMENSION for dtype in POSITION_DTYPE for box_format in\n BOX_FORMATS)\n", (16020, 16272), True, 'from jax import test_util as jtu\n'), ((16792, 17063), 'jax.test_util.cases_from_list', 'jtu.cases_from_list', (["({'testcase_name':\n f'_dim={dim}_dtype={dtype.__name__}_box_format={box_format}',\n 'spatial_dimension': dim, 'dtype': dtype, 'box_format': box_format} for\n dim in SPATIAL_DIMENSION for dtype in POSITION_DTYPE for box_format in\n BOX_FORMATS)"], {}), "({'testcase_name':\n f'_dim={dim}_dtype={dtype.__name__}_box_format={box_format}',\n 'spatial_dimension': dim, 'dtype': dtype, 'box_format': box_format} for\n dim in SPATIAL_DIMENSION for dtype in POSITION_DTYPE for box_format in\n BOX_FORMATS)\n", (16811, 17063), True, 'from jax import test_util as jtu\n'), ((17509, 17780), 'jax.test_util.cases_from_list', 'jtu.cases_from_list', (["({'testcase_name':\n f'_dim={dim}_dtype={dtype.__name__}_box_format={box_format}',\n 'spatial_dimension': dim, 'dtype': dtype, 'box_format': box_format} for\n dim in SPATIAL_DIMENSION for dtype in POSITION_DTYPE for box_format in\n BOX_FORMATS)"], {}), "({'testcase_name':\n f'_dim={dim}_dtype={dtype.__name__}_box_format={box_format}',\n 'spatial_dimension': dim, 'dtype': dtype, 'box_format': box_format} for\n dim in SPATIAL_DIMENSION for dtype in POSITION_DTYPE for box_format in\n BOX_FORMATS)\n", (17528, 17780), True, 'from jax import test_util as jtu\n'), ((18407, 18678), 'jax.test_util.cases_from_list', 'jtu.cases_from_list', (["({'testcase_name':\n f'_dim={dim}_dtype={dtype.__name__}_box_format={box_format}',\n 'spatial_dimension': dim, 'dtype': dtype, 'box_format': box_format} for\n dim in SPATIAL_DIMENSION for dtype in POSITION_DTYPE for box_format in\n BOX_FORMATS)"], {}), "({'testcase_name':\n f'_dim={dim}_dtype={dtype.__name__}_box_format={box_format}',\n 'spatial_dimension': dim, 'dtype': dtype, 'box_format': box_format} for\n dim in SPATIAL_DIMENSION for dtype in POSITION_DTYPE for box_format in\n BOX_FORMATS)\n", (18426, 18678), True, 'from jax import test_util as jtu\n'), ((19234, 19505), 'jax.test_util.cases_from_list', 'jtu.cases_from_list', (["({'testcase_name':\n f'_dim={dim}_dtype={dtype.__name__}_box_format={box_format}',\n 'spatial_dimension': dim, 'dtype': dtype, 'box_format': box_format} for\n dim in SPATIAL_DIMENSION for dtype in POSITION_DTYPE for box_format in\n BOX_FORMATS)"], {}), "({'testcase_name':\n f'_dim={dim}_dtype={dtype.__name__}_box_format={box_format}',\n 'spatial_dimension': dim, 'dtype': dtype, 'box_format': box_format} for\n dim in SPATIAL_DIMENSION for dtype in POSITION_DTYPE for box_format in\n BOX_FORMATS)\n", (19253, 19505), True, 'from jax import test_util as jtu\n'), ((1723, 1736), 'jax.numpy.diag', 'jnp.diag', (['box'], {}), '(box)\n', (1731, 1736), True, 'import jax.numpy as jnp\n'), ((2708, 2728), 'jax.random.split', 'random.split', (['key', '(3)'], {}), '(key, 3)\n', (2720, 2728), False, 'from jax import random\n'), ((2740, 2811), 'jax.random.normal', 'random.normal', (['split1', '(PARTICLE_COUNT, spatial_dimension)'], {'dtype': 'dtype'}), '(split1, (PARTICLE_COUNT, spatial_dimension), dtype=dtype)\n', (2753, 2811), False, 'from jax import random\n'), ((2831, 2905), 'jax.random.normal', 'random.normal', (['split2', '(spatial_dimension, spatial_dimension)'], {'dtype': 'dtype'}), '(split2, (spatial_dimension, spatial_dimension), dtype=dtype)\n', (2844, 2905), False, 'from jax import random\n'), ((3008, 3029), 'jax_md.space.transform', 'space.transform', (['T', 'R'], {}), '(T, R)\n', (3023, 3029), False, 'from jax_md import space, test_util, quantity, energy\n'), ((3418, 3438), 'jax.random.split', 'random.split', (['key', '(3)'], {}), '(key, 3)\n', (3430, 3438), False, 'from jax import random\n'), ((3450, 3508), 'jax.random.normal', 'random.normal', (['split1', '(PARTICLE_COUNT, spatial_dimension)'], {}), '(split1, (PARTICLE_COUNT, spatial_dimension))\n', (3463, 3508), False, 'from jax import random\n'), ((3519, 3580), 'jax.random.normal', 'random.normal', (['split2', '(spatial_dimension, spatial_dimension)'], {}), '(split2, (spatial_dimension, spatial_dimension))\n', (3532, 3580), False, 'from jax import random\n'), ((3598, 3619), 'jax_md.space.transform', 'space.transform', (['T', 'R'], {}), '(T, R)\n', (3613, 3619), False, 'from jax_md import space, test_util, quantity, energy\n'), ((4381, 4401), 'jax.random.split', 'random.split', (['key', '(3)'], {}), '(key, 3)\n', (4393, 4401), False, 'from jax import random\n'), ((4413, 4484), 'jax.random.normal', 'random.normal', (['split1', '(PARTICLE_COUNT, spatial_dimension)'], {'dtype': 'dtype'}), '(split1, (PARTICLE_COUNT, spatial_dimension), dtype=dtype)\n', (4426, 4484), False, 'from jax import random\n'), ((4505, 4579), 'jax.random.normal', 'random.normal', (['split2', '(spatial_dimension, spatial_dimension)'], {'dtype': 'dtype'}), '(split2, (spatial_dimension, spatial_dimension), dtype=dtype)\n', (4518, 4579), False, 'from jax import random\n'), ((4603, 4619), 'jax_md.space.inverse', 'space.inverse', (['T'], {}), '(T)\n', (4616, 4619), False, 'from jax_md import space, test_util, quantity, energy\n'), ((5141, 5167), 'jax.numpy.eye', 'jnp.eye', (['spatial_dimension'], {}), '(spatial_dimension)\n', (5148, 5167), True, 'import jax.numpy as jnp\n'), ((5441, 5461), 'jax.random.split', 'random.split', (['key', '(3)'], {}), '(key, 3)\n', (5453, 5461), False, 'from jax import random\n'), ((5473, 5544), 'jax.random.normal', 'random.normal', (['split1', '(PARTICLE_COUNT, spatial_dimension)'], {'dtype': 'dtype'}), '(split1, (PARTICLE_COUNT, spatial_dimension), dtype=dtype)\n', (5486, 5544), False, 'from jax import random\n'), ((6035, 6052), 'jax.random.split', 'random.split', (['key'], {}), '(key)\n', (6047, 6052), False, 'from jax import random\n'), ((6064, 6135), 'jax.random.uniform', 'random.uniform', (['split', '(PARTICLE_COUNT, spatial_dimension)'], {'dtype': 'dtype'}), '(split, (PARTICLE_COUNT, spatial_dimension), dtype=dtype)\n', (6078, 6135), False, 'from jax import random\n'), ((6311, 6329), 'jax_md.space.distance', 'space.distance', (['dR'], {}), '(dR)\n', (6325, 6329), False, 'from jax_md import space, test_util, quantity, energy\n'), ((6348, 6394), 'jax.numpy.reshape', 'jnp.reshape', (['dr_direct', '(dr_direct.shape + (1,))'], {}), '(dr_direct, dr_direct.shape + (1,))\n', (6359, 6394), True, 'import jax.numpy as jnp\n'), ((7403, 7439), 'jax.numpy.array', 'jnp.array', (['dR_direct'], {'dtype': 'dR.dtype'}), '(dR_direct, dtype=dR.dtype)\n', (7412, 7439), True, 'import jax.numpy as jnp\n'), ((7951, 7971), 'jax.random.split', 'random.split', (['key', '(3)'], {}), '(key, 3)\n', (7963, 7971), False, 'from jax import random\n'), ((7983, 8055), 'jax.random.uniform', 'random.uniform', (['split1', '(PARTICLE_COUNT, spatial_dimension)'], {'dtype': 'dtype'}), '(split1, (PARTICLE_COUNT, spatial_dimension), dtype=dtype)\n', (7997, 8055), False, 'from jax import random\n'), ((8384, 8406), 'jax.numpy.all', 'jnp.all', (['(R_shift < 1.0)'], {}), '(R_shift < 1.0)\n', (8391, 8406), True, 'import jax.numpy as jnp\n'), ((8420, 8442), 'jax.numpy.all', 'jnp.all', (['(R_shift > 0.0)'], {}), '(R_shift > 0.0)\n', (8427, 8442), True, 'import jax.numpy as jnp\n'), ((9097, 9117), 'jax.random.split', 'random.split', (['key', '(4)'], {}), '(key, 4)\n', (9109, 9117), False, 'from jax import random\n'), ((9267, 9285), 'jax.numpy.diag', 'jnp.diag', (['box_size'], {}), '(box_size)\n', (9275, 9285), True, 'import jax.numpy as jnp\n'), ((9297, 9369), 'jax.random.uniform', 'random.uniform', (['split2', '(PARTICLE_COUNT, spatial_dimension)'], {'dtype': 'dtype'}), '(split2, (PARTICLE_COUNT, spatial_dimension), dtype=dtype)\n', (9311, 9369), False, 'from jax import random\n'), ((9421, 9492), 'jax.random.normal', 'random.normal', (['split3', '(PARTICLE_COUNT, spatial_dimension)'], {'dtype': 'dtype'}), '(split3, (PARTICLE_COUNT, spatial_dimension), dtype=dtype)\n', (9434, 9492), False, 'from jax import random\n'), ((9529, 9553), 'jax_md.space.periodic', 'space.periodic', (['box_size'], {}), '(box_size)\n', (9543, 9553), False, 'from jax_md import space, test_util, quantity, energy\n'), ((9596, 9629), 'jax_md.space.periodic_general', 'space.periodic_general', (['transform'], {}), '(transform)\n', (9618, 9629), False, 'from jax_md import space, test_util, quantity, energy\n'), ((9647, 9673), 'jax_md.space.map_product', 'space.map_product', (['disp_fn'], {}), '(disp_fn)\n', (9664, 9673), False, 'from jax_md import space, test_util, quantity, energy\n'), ((9698, 9732), 'jax_md.space.map_product', 'space.map_product', (['general_disp_fn'], {}), '(general_disp_fn)\n', (9715, 9732), False, 'from jax_md import space, test_util, quantity, energy\n'), ((10526, 10546), 'jax.random.split', 'random.split', (['key', '(4)'], {}), '(key, 4)\n', (10538, 10546), False, 'from jax import random\n'), ((10696, 10714), 'jax.numpy.diag', 'jnp.diag', (['box_size'], {}), '(box_size)\n', (10704, 10714), True, 'import jax.numpy as jnp\n'), ((10726, 10798), 'jax.random.uniform', 'random.uniform', (['split2', '(PARTICLE_COUNT, spatial_dimension)'], {'dtype': 'dtype'}), '(split2, (PARTICLE_COUNT, spatial_dimension), dtype=dtype)\n', (10740, 10798), False, 'from jax import random\n'), ((10850, 10921), 'jax.random.normal', 'random.normal', (['split3', '(PARTICLE_COUNT, spatial_dimension)'], {'dtype': 'dtype'}), '(split3, (PARTICLE_COUNT, spatial_dimension), dtype=dtype)\n', (10863, 10921), False, 'from jax import random\n'), ((10958, 10982), 'jax_md.space.periodic', 'space.periodic', (['box_size'], {}), '(box_size)\n', (10972, 10982), False, 'from jax_md import space, test_util, quantity, energy\n'), ((11025, 11058), 'jax_md.space.periodic_general', 'space.periodic_general', (['transform'], {}), '(transform)\n', (11047, 11058), False, 'from jax_md import space, test_util, quantity, energy\n'), ((11076, 11102), 'jax_md.space.map_product', 'space.map_product', (['disp_fn'], {}), '(disp_fn)\n', (11093, 11102), False, 'from jax_md import space, test_util, quantity, energy\n'), ((11127, 11161), 'jax_md.space.map_product', 'space.map_product', (['general_disp_fn'], {}), '(general_disp_fn)\n', (11144, 11161), False, 'from jax_md import space, test_util, quantity, energy\n'), ((11899, 11919), 'jax.random.split', 'random.split', (['key', '(3)'], {}), '(key, 3)\n', (11911, 11919), False, 'from jax import random\n'), ((11961, 11981), 'jax.random.split', 'random.split', (['key', '(3)'], {}), '(key, 3)\n', (11973, 11981), False, 'from jax import random\n'), ((12022, 12042), 'jax.random.split', 'random.split', (['key', '(4)'], {}), '(key, 4)\n', (12034, 12042), False, 'from jax import random\n'), ((12216, 12269), 'jax.numpy.array', 'jnp.array', (['(size_0 * (eye + dtransform_0))'], {'dtype': 'dtype'}), '(size_0 * (eye + dtransform_0), dtype=dtype)\n', (12225, 12269), True, 'import jax.numpy as jnp\n'), ((12471, 12524), 'jax.numpy.array', 'jnp.array', (['(size_1 * (eye + dtransform_1))'], {'dtype': 'dtype'}), '(size_1 * (eye + dtransform_1), dtype=dtype)\n', (12480, 12524), True, 'import jax.numpy as jnp\n'), ((12552, 12579), 'jax_md.space.periodic_general', 'space.periodic_general', (['T_0'], {}), '(T_0)\n', (12574, 12579), False, 'from jax_md import space, test_util, quantity, energy\n'), ((12616, 12643), 'jax_md.space.periodic_general', 'space.periodic_general', (['T_1'], {}), '(T_1)\n', (12638, 12643), False, 'from jax_md import space, test_util, quantity, energy\n'), ((12661, 12686), 'functools.partial', 'partial', (['disp_fn'], {'box': 'T_1'}), '(disp_fn, box=T_1)\n', (12668, 12686), False, 'from functools import partial\n'), ((12704, 12730), 'jax_md.space.map_product', 'space.map_product', (['disp_fn'], {}), '(disp_fn)\n', (12721, 12730), False, 'from jax_md import space, test_util, quantity, energy\n'), ((12752, 12783), 'jax_md.space.map_product', 'space.map_product', (['true_disp_fn'], {}), '(true_disp_fn)\n', (12769, 12783), False, 'from jax_md import space, test_util, quantity, energy\n'), ((12795, 12868), 'jax.random.uniform', 'random.uniform', (['split_R', '(PARTICLE_COUNT, spatial_dimension)'], {'dtype': 'dtype'}), '(split_R, (PARTICLE_COUNT, spatial_dimension), dtype=dtype)\n', (12809, 12868), False, 'from jax import random\n'), ((12889, 12962), 'jax.random.normal', 'random.normal', (['split_dR', '(PARTICLE_COUNT, spatial_dimension)'], {'dtype': 'dtype'}), '(split_dR, (PARTICLE_COUNT, spatial_dimension), dtype=dtype)\n', (12902, 12962), False, 'from jax import random\n'), ((13736, 13756), 'jax.random.split', 'random.split', (['key', '(3)'], {}), '(key, 3)\n', (13748, 13756), False, 'from jax import random\n'), ((13769, 13844), 'jax.random.normal', 'random.normal', (['split_T', '(spatial_dimension, spatial_dimension)'], {'dtype': 'dtype'}), '(split_T, (spatial_dimension, spatial_dimension), dtype=dtype)\n', (13782, 13844), False, 'from jax import random\n'), ((13904, 13977), 'jax.random.uniform', 'random.uniform', (['split_R', '(PARTICLE_COUNT, spatial_dimension)'], {'dtype': 'dtype'}), '(split_R, (PARTICLE_COUNT, spatial_dimension), dtype=dtype)\n', (13918, 13977), False, 'from jax import random\n'), ((14051, 14076), 'jax_md.space.periodic_general', 'space.periodic_general', (['T'], {}), '(T)\n', (14073, 14076), False, 'from jax_md import space, test_util, quantity, energy\n'), ((14104, 14144), 'jax_md.space.periodic_general', 'space.periodic_general', (['T'], {'wrapped': '(False)'}), '(T, wrapped=False)\n', (14126, 14144), False, 'from jax_md import space, test_util, quantity, energy\n'), ((14167, 14198), 'jax_md.space.map_product', 'space.map_product', (['displacement'], {}), '(displacement)\n', (14184, 14198), False, 'from jax_md import space, test_util, quantity, energy\n'), ((16685, 16715), 'jax_md.space.transform', 'space.transform', (['box', 'R_gf_new'], {}), '(box, R_gf_new)\n', (16700, 16715), False, 'from jax_md import space, test_util, quantity, energy\n'), ((19679, 19732), 'unittest.SkipTest', 'SkipTest', (['"""Scalar case fails due to JAX Issue #5849."""'], {}), "('Scalar case fails due to JAX Issue #5849.')\n", (19687, 19732), False, 'from unittest import SkipTest\n'), ((1582, 1595), 'jax.numpy.ones', 'jnp.ones', (['dim'], {}), '(dim)\n', (1590, 1595), True, 'import jax.numpy as jnp\n'), ((2948, 2977), 'jax.numpy.einsum', 'jnp.einsum', (['"""ij,kj->ki"""', 'T', 'R'], {}), "('ij,kj->ki', T, R)\n", (2958, 2977), True, 'import jax.numpy as jnp\n'), ((3653, 3668), 'jax.numpy.sum', 'jnp.sum', (['(R ** 2)'], {}), '(R ** 2)\n', (3660, 3668), True, 'import jax.numpy as jnp\n'), ((3763, 3782), 'jax.grad', 'grad', (['energy_direct'], {}), '(energy_direct)\n', (3767, 3782), False, 'from jax import grad, jit, jacfwd\n'), ((3814, 3838), 'jax.grad', 'grad', (['energy_indirect', '(1)'], {}), '(energy_indirect, 1)\n', (3818, 3838), False, 'from jax import grad, jit, jacfwd\n'), ((4659, 4680), 'jax_md.space.transform', 'space.transform', (['T', 'R'], {}), '(T, R)\n', (4674, 4680), False, 'from jax_md import space, test_util, quantity, energy\n'), ((6156, 6202), 'jax_md.space.map_product', 'space.map_product', (['space.pairwise_displacement'], {}), '(space.pairwise_displacement)\n', (6173, 6202), False, 'from jax_md import space, test_util, quantity, energy\n'), ((8097, 8168), 'jax.random.normal', 'random.normal', (['split2', '(PARTICLE_COUNT, spatial_dimension)'], {'dtype': 'dtype'}), '(split2, (PARTICLE_COUNT, spatial_dimension), dtype=dtype)\n', (8110, 8168), False, 'from jax import random\n'), ((9182, 9239), 'jax.random.uniform', 'random.uniform', (['split1', '(spatial_dimension,)'], {'dtype': 'dtype'}), '(split1, (spatial_dimension,), dtype=dtype)\n', (9196, 9239), False, 'from jax import random\n'), ((10611, 10668), 'jax.random.uniform', 'random.uniform', (['split1', '(spatial_dimension,)'], {'dtype': 'dtype'}), '(split1, (spatial_dimension,), dtype=dtype)\n', (10625, 10668), False, 'from jax import random\n'), ((12066, 12100), 'jax.random.uniform', 'random.uniform', (['split_T0_scale', '()'], {}), '(split_T0_scale, ())\n', (12080, 12100), False, 'from jax import random\n'), ((12128, 12194), 'jax.random.normal', 'random.normal', (['split_T0_dT', '(spatial_dimension, spatial_dimension)'], {}), '(split_T0_dT, (spatial_dimension, spatial_dimension))\n', (12141, 12194), False, 'from jax import random\n'), ((12293, 12340), 'jax.random.uniform', 'random.uniform', (['split_T1_scale', '()'], {'dtype': 'dtype'}), '(split_T1_scale, (), dtype=dtype)\n', (12307, 12340), False, 'from jax import random\n'), ((12368, 12447), 'jax.random.normal', 'random.normal', (['split_T1_dT', '(spatial_dimension, spatial_dimension)'], {'dtype': 'dtype'}), '(split_T1_dT, (spatial_dimension, spatial_dimension), dtype=dtype)\n', (12381, 12447), False, 'from jax import random\n'), ((13875, 13892), 'jax.numpy.transpose', 'jnp.transpose', (['dT'], {}), '(dT)\n', (13888, 13892), True, 'import jax.numpy as jnp\n'), ((14256, 14273), 'jax.random.split', 'random.split', (['key'], {}), '(key)\n', (14268, 14273), False, 'from jax import random\n'), ((14287, 14357), 'jax.random.normal', 'random.normal', (['split', '(PARTICLE_COUNT, spatial_dimension)'], {'dtype': 'dtype'}), '(split, (PARTICLE_COUNT, spatial_dimension), dtype=dtype)\n', (14300, 14357), False, 'from jax import random\n'), ((15887, 15894), 'jax.grad', 'grad', (['E'], {}), '(E)\n', (15891, 15894), False, 'from jax import grad, jit, jacfwd\n'), ((15899, 15909), 'jax.grad', 'grad', (['E_gf'], {}), '(E_gf)\n', (15903, 15909), False, 'from jax import grad, jit, jacfwd\n'), ((15940, 15947), 'jax.grad', 'grad', (['E'], {}), '(E)\n', (15944, 15947), False, 'from jax import grad, jit, jacfwd\n'), ((15952, 15961), 'jax.grad', 'grad', (['E_g'], {}), '(E_g)\n', (15956, 15961), False, 'from jax import grad, jit, jacfwd\n'), ((16564, 16571), 'jax.grad', 'grad', (['E'], {}), '(E)\n', (16568, 16571), False, 'from jax import grad, jit, jacfwd\n'), ((16601, 16611), 'jax.grad', 'grad', (['E_gf'], {}), '(E_gf)\n', (16605, 16611), False, 'from jax import grad, jit, jacfwd\n'), ((16639, 16648), 'jax.grad', 'grad', (['E_g'], {}), '(E_g)\n', (16643, 16648), False, 'from jax import grad, jit, jacfwd\n'), ((18153, 18163), 'jax.grad', 'grad', (['E_gf'], {}), '(E_gf)\n', (18157, 18163), False, 'from jax import grad, jit, jacfwd\n'), ((18212, 18221), 'jax.grad', 'grad', (['E_g'], {}), '(E_g)\n', (18216, 18221), False, 'from jax import grad, jit, jacfwd\n'), ((18273, 18285), 'jax.jacfwd', 'jacfwd', (['E_gf'], {}), '(E_gf)\n', (18279, 18285), False, 'from jax import grad, jit, jacfwd\n'), ((18334, 18345), 'jax.jacfwd', 'jacfwd', (['E_g'], {}), '(E_g)\n', (18340, 18345), False, 'from jax import grad, jit, jacfwd\n'), ((19048, 19057), 'jax.grad', 'grad', (['E_g'], {}), '(E_g)\n', (19052, 19057), False, 'from jax import grad, jit, jacfwd\n'), ((1666, 1678), 'jax.numpy.eye', 'jnp.eye', (['dim'], {}), '(dim)\n', (1673, 1678), True, 'import jax.numpy as jnp\n'), ((14568, 14592), 'jax.numpy.all', 'jnp.all', (['(unwrapped_R > 0)'], {}), '(unwrapped_R > 0)\n', (14575, 14592), True, 'import jax.numpy as jnp\n'), ((14597, 14621), 'jax.numpy.all', 'jnp.all', (['(unwrapped_R < 1)'], {}), '(unwrapped_R < 1)\n', (14604, 14621), True, 'import jax.numpy as jnp\n'), ((19139, 19149), 'jax.grad', 'grad', (['E_gf'], {}), '(E_gf)\n', (19143, 19149), False, 'from jax import grad, jit, jacfwd\n'), ((3714, 3735), 'jax_md.space.transform', 'space.transform', (['T', 'R'], {}), '(T, R)\n', (3729, 3735), False, 'from jax_md import space, test_util, quantity, energy\n'), ((6582, 6608), 'jax_md.space.distance', 'space.distance', (['dR_shifted'], {}), '(dR_shifted)\n', (6596, 6608), False, 'from jax_md import space, test_util, quantity, energy\n'), ((6634, 6682), 'jax.numpy.reshape', 'jnp.reshape', (['dr_shifted', '(dr_shifted.shape + (1,))'], {}), '(dr_shifted, dr_shifted.shape + (1,))\n', (6645, 6682), True, 'import jax.numpy as jnp\n'), ((6708, 6764), 'jax.numpy.where', 'jnp.where', (['(dr_shifted < dr_direct)', 'dR_shifted', 'dR_direct'], {}), '(dr_shifted < dr_direct, dR_shifted, dR_direct)\n', (6717, 6764), True, 'import jax.numpy as jnp\n'), ((6789, 6845), 'jax.numpy.where', 'jnp.where', (['(dr_shifted < dr_direct)', 'dr_shifted', 'dr_direct'], {}), '(dr_shifted < dr_direct, dr_shifted, dr_direct)\n', (6798, 6845), True, 'import jax.numpy as jnp\n'), ((6523, 6555), 'jax.numpy.array', 'jnp.array', (['[i, j]'], {'dtype': 'R.dtype'}), '([i, j], dtype=R.dtype)\n', (6532, 6555), True, 'import jax.numpy as jnp\n'), ((7076, 7102), 'jax_md.space.distance', 'space.distance', (['dR_shifted'], {}), '(dR_shifted)\n', (7090, 7102), False, 'from jax_md import space, test_util, quantity, energy\n'), ((7130, 7178), 'jax.numpy.reshape', 'jnp.reshape', (['dr_shifted', '(dr_shifted.shape + (1,))'], {}), '(dr_shifted, dr_shifted.shape + (1,))\n', (7141, 7178), True, 'import jax.numpy as jnp\n'), ((7206, 7262), 'jax.numpy.where', 'jnp.where', (['(dr_shifted < dr_direct)', 'dR_shifted', 'dR_direct'], {}), '(dr_shifted < dr_direct, dR_shifted, dR_direct)\n', (7215, 7262), True, 'import jax.numpy as jnp\n'), ((7308, 7364), 'jax.numpy.where', 'jnp.where', (['(dr_shifted < dr_direct)', 'dr_shifted', 'dr_direct'], {}), '(dr_shifted < dr_direct, dr_shifted, dr_direct)\n', (7317, 7364), True, 'import jax.numpy as jnp\n'), ((7012, 7047), 'jax.numpy.array', 'jnp.array', (['[i, j, k]'], {'dtype': 'R.dtype'}), '([i, j, k], dtype=R.dtype)\n', (7021, 7047), True, 'import jax.numpy as jnp\n')]
TrollPursePublishing/trollpurse-trollops
functions/batch-custom-action/status-api/lambda.py
27e54cfd1ba1eed27097e2e3038dfab56691cf49
import boto3 batch_client = boto3.client('batch') def lambda_handler(event, context): describe_response = batch_client.describe_jobs( jobs=[ event.get('jobId', '')] ) return describe_response.get('jobs', [{}])[0].get('status', '')
[((29, 50), 'boto3.client', 'boto3.client', (['"""batch"""'], {}), "('batch')\n", (41, 50), False, 'import boto3\n')]
ifaraag/app
app/auth/views.py
d952f0dc58fd703074c19ed3235c1520119baf5f
from flask import Blueprint, render_template, redirect, url_for, request, flash from flask.ext.login import login_required, login_user, logout_user from werkzeug import check_password_hash, generate_password_hash from app import db, login_manager, pubnub, app, _callback from .models import User from .forms import LoginForm, SignupForm mod_auth = Blueprint('auth', __name__) @mod_auth.route('/login', methods=['GET', 'POST']) def login(): form = LoginForm(request.form) error = None print(request.method) if request.method == 'POST': user = db.users.find_one({'username': request.form['username']}) if not user: error = 'User does not exist' elif not check_password_hash(user['password'], request.form['password']): error = 'Invalid credentials. Please try again.' else: user_obj = User(user['username']) login_user(user_obj) return redirect(url_for('devices.list_devices')) return render_template('auth/login.html', title='Log In to Hydrosmart', form=form, error=error) @mod_auth.route('/signup', methods=['GET', 'POST']) def signup(): form = SignupForm(request.form) error = None if request.method == 'POST': existing_user = db.users.find_one({'username' : request.form['username']}) if existing_user: error = 'Username already exists' else: new_user = {'username' : request.form['username'], 'email' : request.form['email'], 'zip' : request.form['zip'], 'password' : generate_password_hash(request.form['password'])} db.users.insert_one(new_user) user = db.users.find_one({'username': request.form['username']}) pubnub.channel_group_add_channel(channel_group=app.config['PUBNUB_CHANNEL_GRP'], channel=user['username']) pubnub.grant(channel=user['username'], auth_key=app.config['PUBNUB_AUTH_KEY'], read=True, write=True, manage=True, ttl=0) return redirect(url_for('dashboard.dashboard')) return render_template('auth/signup.html', form=form, title='Sign Up for Hydrosmart', error=error) # @mod_auth.route('/googlelogin', methods=['GET', 'POST']) @mod_auth.route("/logout") @login_required def logout(): logout_user() flash("Logged out.") return redirect('/login') @login_manager.unauthorized_handler def unauthorized_callback(): return redirect('/login') @login_manager.user_loader def load_user(username): u = db.users.find_one({'username': username}) if not u: return None return User(u['username']) def callback(message, channel): db.data.insert_one(message) def error(message): db.data.insert_one(message)
[((350, 377), 'flask.Blueprint', 'Blueprint', (['"""auth"""', '__name__'], {}), "('auth', __name__)\n", (359, 377), False, 'from flask import Blueprint, render_template, redirect, url_for, request, flash\n'), ((998, 1090), 'flask.render_template', 'render_template', (['"""auth/login.html"""'], {'title': '"""Log In to Hydrosmart"""', 'form': 'form', 'error': 'error'}), "('auth/login.html', title='Log In to Hydrosmart', form=form,\n error=error)\n", (1013, 1090), False, 'from flask import Blueprint, render_template, redirect, url_for, request, flash\n'), ((2236, 2332), 'flask.render_template', 'render_template', (['"""auth/signup.html"""'], {'form': 'form', 'title': '"""Sign Up for Hydrosmart"""', 'error': 'error'}), "('auth/signup.html', form=form, title=\n 'Sign Up for Hydrosmart', error=error)\n", (2251, 2332), False, 'from flask import Blueprint, render_template, redirect, url_for, request, flash\n'), ((2477, 2490), 'flask.ext.login.logout_user', 'logout_user', ([], {}), '()\n', (2488, 2490), False, 'from flask.ext.login import login_required, login_user, logout_user\n'), ((2495, 2515), 'flask.flash', 'flash', (['"""Logged out."""'], {}), "('Logged out.')\n", (2500, 2515), False, 'from flask import Blueprint, render_template, redirect, url_for, request, flash\n'), ((2527, 2545), 'flask.redirect', 'redirect', (['"""/login"""'], {}), "('/login')\n", (2535, 2545), False, 'from flask import Blueprint, render_template, redirect, url_for, request, flash\n'), ((2621, 2639), 'flask.redirect', 'redirect', (['"""/login"""'], {}), "('/login')\n", (2629, 2639), False, 'from flask import Blueprint, render_template, redirect, url_for, request, flash\n'), ((2699, 2740), 'app.db.users.find_one', 'db.users.find_one', (["{'username': username}"], {}), "({'username': username})\n", (2716, 2740), False, 'from app import db, login_manager, pubnub, app, _callback\n'), ((2835, 2862), 'app.db.data.insert_one', 'db.data.insert_one', (['message'], {}), '(message)\n', (2853, 2862), False, 'from app import db, login_manager, pubnub, app, _callback\n'), ((2886, 2913), 'app.db.data.insert_one', 'db.data.insert_one', (['message'], {}), '(message)\n', (2904, 2913), False, 'from app import db, login_manager, pubnub, app, _callback\n'), ((569, 626), 'app.db.users.find_one', 'db.users.find_one', (["{'username': request.form['username']}"], {}), "({'username': request.form['username']})\n", (586, 626), False, 'from app import db, login_manager, pubnub, app, _callback\n'), ((1345, 1402), 'app.db.users.find_one', 'db.users.find_one', (["{'username': request.form['username']}"], {}), "({'username': request.form['username']})\n", (1362, 1402), False, 'from app import db, login_manager, pubnub, app, _callback\n'), ((1805, 1834), 'app.db.users.insert_one', 'db.users.insert_one', (['new_user'], {}), '(new_user)\n', (1824, 1834), False, 'from app import db, login_manager, pubnub, app, _callback\n'), ((1854, 1911), 'app.db.users.find_one', 'db.users.find_one', (["{'username': request.form['username']}"], {}), "({'username': request.form['username']})\n", (1871, 1911), False, 'from app import db, login_manager, pubnub, app, _callback\n'), ((1924, 2035), 'app.pubnub.channel_group_add_channel', 'pubnub.channel_group_add_channel', ([], {'channel_group': "app.config['PUBNUB_CHANNEL_GRP']", 'channel': "user['username']"}), "(channel_group=app.config[\n 'PUBNUB_CHANNEL_GRP'], channel=user['username'])\n", (1956, 2035), False, 'from app import db, login_manager, pubnub, app, _callback\n'), ((2043, 2169), 'app.pubnub.grant', 'pubnub.grant', ([], {'channel': "user['username']", 'auth_key': "app.config['PUBNUB_AUTH_KEY']", 'read': '(True)', 'write': '(True)', 'manage': '(True)', 'ttl': '(0)'}), "(channel=user['username'], auth_key=app.config[\n 'PUBNUB_AUTH_KEY'], read=True, write=True, manage=True, ttl=0)\n", (2055, 2169), False, 'from app import db, login_manager, pubnub, app, _callback\n'), ((707, 770), 'werkzeug.check_password_hash', 'check_password_hash', (["user['password']", "request.form['password']"], {}), "(user['password'], request.form['password'])\n", (726, 770), False, 'from werkzeug import check_password_hash, generate_password_hash\n'), ((905, 925), 'flask.ext.login.login_user', 'login_user', (['user_obj'], {}), '(user_obj)\n', (915, 925), False, 'from flask.ext.login import login_required, login_user, logout_user\n'), ((1743, 1791), 'werkzeug.generate_password_hash', 'generate_password_hash', (["request.form['password']"], {}), "(request.form['password'])\n", (1765, 1791), False, 'from werkzeug import check_password_hash, generate_password_hash\n'), ((2193, 2223), 'flask.url_for', 'url_for', (['"""dashboard.dashboard"""'], {}), "('dashboard.dashboard')\n", (2200, 2223), False, 'from flask import Blueprint, render_template, redirect, url_for, request, flash\n'), ((954, 985), 'flask.url_for', 'url_for', (['"""devices.list_devices"""'], {}), "('devices.list_devices')\n", (961, 985), False, 'from flask import Blueprint, render_template, redirect, url_for, request, flash\n')]
xingjianpan/news_reader_backend
economist/migrations/0003_auto_20170406_1402.py
c892e157460ef22720bfcbad5a7d2bfe9bcd4aa9
# -*- coding: utf-8 -*- # Generated by Django 1.10.6 on 2017-04-06 06:02 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('economist', '0002_auto_20170406_1153'), ] operations = [ migrations.AlterField( model_name='article', name='alternativename', field=models.TextField(blank=True, null=True), ), migrations.AlterField( model_name='article', name='category', field=models.TextField(blank=True, null=True), ), migrations.AlterField( model_name='article', name='fly_title', field=models.TextField(blank=True, null=True), ), migrations.AlterField( model_name='article', name='headline', field=models.TextField(blank=True, null=True), ), migrations.AlterField( model_name='article', name='project', field=models.TextField(editable=False), ), migrations.AlterField( model_name='article', name='source', field=models.TextField(blank=True, null=True), ), migrations.AlterField( model_name='article', name='source_url', field=models.URLField(editable=False), ), migrations.AlterField( model_name='article', name='spider', field=models.TextField(editable=False), ), ]
[((413, 452), 'django.db.models.TextField', 'models.TextField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (429, 452), False, 'from django.db import migrations, models\n'), ((577, 616), 'django.db.models.TextField', 'models.TextField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (593, 616), False, 'from django.db import migrations, models\n'), ((742, 781), 'django.db.models.TextField', 'models.TextField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (758, 781), False, 'from django.db import migrations, models\n'), ((906, 945), 'django.db.models.TextField', 'models.TextField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (922, 945), False, 'from django.db import migrations, models\n'), ((1069, 1101), 'django.db.models.TextField', 'models.TextField', ([], {'editable': '(False)'}), '(editable=False)\n', (1085, 1101), False, 'from django.db import migrations, models\n'), ((1224, 1263), 'django.db.models.TextField', 'models.TextField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (1240, 1263), False, 'from django.db import migrations, models\n'), ((1390, 1421), 'django.db.models.URLField', 'models.URLField', ([], {'editable': '(False)'}), '(editable=False)\n', (1405, 1421), False, 'from django.db import migrations, models\n'), ((1544, 1576), 'django.db.models.TextField', 'models.TextField', ([], {'editable': '(False)'}), '(editable=False)\n', (1560, 1576), False, 'from django.db import migrations, models\n')]
coinplus-sa/coinplus-solo
test/test_ethereum.py
e4f385a3d9eb7b72e14e397761fd9a113938917a
import unittest from coinplus_solo_redeem.common import wif_export_bitcoin, compute_public_key_sec256k1, address_from_publickey_ethereum class TestEthereum(unittest.TestCase): """test of the bitcoin conversion from private key to wif""" def setUp(self): self.test_add_vector = [("03cb3e5f30245658e1e3615f1620e5b40f7d9016c0edb3611dd786327dd5e40caa", "0xfd965bB8907566c550D8C0325207a1cB744f2fc2"), ("03c2773e19b0cd4175832d781d521390e5aac7b0841904f93211bf114786f5a145", "0xDB1F8a8B668F15B9e696dDfF30Ce233703f9eC97"), ("0277c3757e791426b7fa43cf64197bfd5c2fe277ece721b12558a52729f6b68b8a", "0x6C4DCd1f900d89a7A70C9A5bA9F7a24a4Bd70878"), ("02d93dfcd93a76d7bac5b0fa394ad4bfd6cd92d10a64728b4b5f707d87db9cd2aa", "0x42F7C7ccD753055c219B85ddc5F05512b3f94528"), ("037049004c5ad576beb518dcc74506df3faf520109a489886b7d1435a63b9b0b88", "0x0af4DbEf58063AEd75e6fF57610348E55954E8FB"), ("0260bbacc03555af21f062ff04e9fbde36bcf0ae7396812d336e7f2e5292306f2b", "0xd13AA41456549AAf4F00C681e014E8CEd8c04d60"), ("0343710601de0710dd81a0b7102bf1b794809a330caf4e1b4ae6567923c00df6a5", "0x011934E5d9EE8C230BBFccF33Ab83c62E5486d91"), ("028c48ff458287f34cc1ad5c58a441500f8f315e9cabe34ff1601a5a0f791e4d0a", "0x98447B7aC721BDeb197a7e72780f6f41BECA2919"), ("0258cdabe1dad468dda6a7d62bee9e0cddadfe87d664e62df9143e769c017dd651", "0xaA5EacE5be0D09B09BAf66df62b0D85EA20b4ee4"), ("0289a6d2272382ceec291674530eebb1b05dadab88ebf1bc45569ba612a4e3973a", "0x79B4044CeB2DFAa123FbE5B4da43BF7cFF01718c")] def test_address_testvector(self): for publickey_hex, address_expected in self.test_add_vector: publickey = bytearray.fromhex(publickey_hex) address = address_from_publickey_ethereum(publickey) self.assertEqual(address, address_expected)
[((1952, 1994), 'coinplus_solo_redeem.common.address_from_publickey_ethereum', 'address_from_publickey_ethereum', (['publickey'], {}), '(publickey)\n', (1983, 1994), False, 'from coinplus_solo_redeem.common import wif_export_bitcoin, compute_public_key_sec256k1, address_from_publickey_ethereum\n')]
youaresherlock/PythonPractice
python97/chapter05/list_gen.py
2e22d3fdcb26353cb0d8215c150e84d11bc9a022
#!usr/bin/python # -*- coding:utf8 -*- # 列表生成式(列表推导式) # 1. 提取出1-20之间的奇数 # odd_list = [] # for i in range(21): # if i % 2 == 1: # odd_list.append(i) # odd_list = [i for i in range(21) if i % 2 == 1] # print(odd_list) # 2. 逻辑复杂的情况 如果是奇数将结果平方 # 列表生成式性能高于列表操作 def handle_item(item): return item * item odd_list = [handle_item(i) for i in range(21) if i % 2 == 1] print(odd_list) # 生成器表达式 odd_gen = (i for i in range(21) if i % 2 == 1) print(type(odd_gen)) for item in odd_gen: print(item) # 字典推导式 my_dict = {"bobby1": 22, "bobby2": 23, "imooc.com": 5} reversed_dict = {value:key for key, value in my_dict.items()} print(reversed_dict) # 集合推导式 my_set = set(my_dict.keys()) my_set = {key for key, value in my_dict.items()} print(type(my_set))
[]
isqad/streamlink
src/streamlink/plugin/plugin.py
f6708f1d38d056177ac3d614ebbb740d956d46f0
import ast import operator import re from collections import OrderedDict from functools import partial from ..cache import Cache from ..exceptions import PluginError, NoStreamsError from ..options import Options # FIXME: This is a crude attempt at making a bitrate's # weight end up similar to the weight of a resolution. # Someone who knows math, please fix. BIT_RATE_WEIGHT_RATIO = 2.8 ALT_WEIGHT_MOD = 0.01 QUALITY_WEIGTHS_EXTRA = { "other": { "live": 1080, }, "tv": { "hd": 1080, "sd": 576, }, "quality": { "ehq": 720, "hq": 576, "sq": 360, }, } FILTER_OPERATORS = { "<": operator.lt, "<=": operator.le, ">": operator.gt, ">=": operator.ge, } PARAMS_REGEX = r"(\w+)=({.+?}|\[.+?\]|\(.+?\)|'(?:[^'\\]|\\')*'|\"(?:[^\"\\]|\\\")*\"|\S+)" HIGH_PRIORITY = 30 NORMAL_PRIORITY = 20 LOW_PRIORITY = 10 NO_PRIORITY = 0 def stream_weight(stream): for group, weights in QUALITY_WEIGTHS_EXTRA.items(): if stream in weights: return weights[stream], group match = re.match(r"^(\d+)(k|p)?(\d+)?(\+)?(?:_(\d+)k)?(?:_(alt)(\d)?)?$", stream) if match: weight = 0 if match.group(6): if match.group(7): weight -= ALT_WEIGHT_MOD * int(match.group(7)) else: weight -= ALT_WEIGHT_MOD name_type = match.group(2) if name_type == "k": # bit rate bitrate = int(match.group(1)) weight += bitrate / BIT_RATE_WEIGHT_RATIO return weight, "bitrate" elif name_type == "p": # resolution weight += int(match.group(1)) if match.group(3): # fps eg. 60p or 50p weight += int(match.group(3)) if match.group(4) == "+": weight += 1 if match.group(5): # bit rate classifier for resolution weight += int(match.group(5)) / BIT_RATE_WEIGHT_RATIO return weight, "pixels" return 0, "none" def iterate_streams(streams): for name, stream in streams: if isinstance(stream, list): for sub_stream in stream: yield (name, sub_stream) else: yield (name, stream) def stream_type_priority(stream_types, stream): stream_type = type(stream[1]).shortname() try: prio = stream_types.index(stream_type) except ValueError: try: prio = stream_types.index("*") except ValueError: prio = 99 return prio def stream_sorting_filter(expr, stream_weight): match = re.match(r"(?P<op><=|>=|<|>)?(?P<value>[\w+]+)", expr) if not match: raise PluginError("Invalid filter expression: {0}".format(expr)) op, value = match.group("op", "value") op = FILTER_OPERATORS.get(op, operator.eq) filter_weight, filter_group = stream_weight(value) def func(quality): weight, group = stream_weight(quality) if group == filter_group: return not op(weight, filter_weight) return True return func def parse_url_params(url): split = url.split(" ", 1) url = split[0] params = split[1] if len(split) > 1 else '' return url, parse_params(params) def parse_params(params): rval = {} matches = re.findall(PARAMS_REGEX, params) for key, value in matches: try: value = ast.literal_eval(value) except Exception: pass rval[key] = value return rval class Plugin(object): """A plugin can retrieve stream information from the URL specified. :param url: URL that the plugin will operate on """ cache = None logger = None module = "unknown" options = Options() session = None @classmethod def bind(cls, session, module): cls.cache = Cache(filename="plugin-cache.json", key_prefix=module) cls.logger = session.logger.new_module("plugin." + module) cls.module = module cls.session = session def __init__(self, url): self.url = url @classmethod def can_handle_url(cls, url): raise NotImplementedError @classmethod def set_option(cls, key, value): cls.options.set(key, value) @classmethod def get_option(cls, key): return cls.options.get(key) @classmethod def stream_weight(cls, stream): return stream_weight(stream) @classmethod def default_stream_types(cls, streams): stream_types = ["rtmp", "hls", "hds", "http"] for name, stream in iterate_streams(streams): stream_type = type(stream).shortname() if stream_type not in stream_types: stream_types.append(stream_type) return stream_types @classmethod def broken(cls, issue=None): def func(*args, **kwargs): msg = ( "This plugin has been marked as broken. This is likely due to " "changes to the service preventing a working implementation. " ) if issue: msg += "More info: https://github.com/streamlink/streamlink/issues/{0}".format(issue) raise PluginError(msg) def decorator(*args, **kwargs): return func return decorator @classmethod def priority(cls, url): """ Return the plugin priority for a given URL, by default it returns NORMAL priority. :return: priority level """ return NORMAL_PRIORITY def streams(self, stream_types=None, sorting_excludes=None): """Attempts to extract available streams. Returns a :class:`dict` containing the streams, where the key is the name of the stream, most commonly the quality and the value is a :class:`Stream` object. The result can contain the synonyms **best** and **worst** which points to the streams which are likely to be of highest and lowest quality respectively. If multiple streams with the same name are found, the order of streams specified in *stream_types* will determine which stream gets to keep the name while the rest will be renamed to "<name>_<stream type>". The synonyms can be fine tuned with the *sorting_excludes* parameter. This can be either of these types: - A list of filter expressions in the format *[operator]<value>*. For example the filter ">480p" will exclude streams ranked higher than "480p" from the list used in the synonyms ranking. Valid operators are >, >=, < and <=. If no operator is specified then equality will be tested. - A function that is passed to filter() with a list of stream names as input. :param stream_types: A list of stream types to return. :param sorting_excludes: Specify which streams to exclude from the best/worst synonyms. .. versionchanged:: 1.4.2 Added *priority* parameter. .. versionchanged:: 1.5.0 Renamed *priority* to *stream_types* and changed behaviour slightly. .. versionchanged:: 1.5.0 Added *sorting_excludes* parameter. .. versionchanged:: 1.6.0 *sorting_excludes* can now be a list of filter expressions or a function that is passed to filter(). """ try: ostreams = self._get_streams() if isinstance(ostreams, dict): ostreams = ostreams.items() # Flatten the iterator to a list so we can reuse it. if ostreams: ostreams = list(ostreams) except NoStreamsError: return {} except (IOError, OSError, ValueError) as err: raise PluginError(err) if not ostreams: return {} if stream_types is None: stream_types = self.default_stream_types(ostreams) # Add streams depending on stream type and priorities sorted_streams = sorted(iterate_streams(ostreams), key=partial(stream_type_priority, stream_types)) streams = {} for name, stream in sorted_streams: stream_type = type(stream).shortname() # Use * as wildcard to match other stream types if "*" not in stream_types and stream_type not in stream_types: continue # drop _alt from any stream names if name.endswith("_alt"): name = name[:-len("_alt")] existing = streams.get(name) if existing: existing_stream_type = type(existing).shortname() if existing_stream_type != stream_type: name = "{0}_{1}".format(name, stream_type) if name in streams: name = "{0}_alt".format(name) num_alts = len(list(filter(lambda n: n.startswith(name), streams.keys()))) # We shouldn't need more than 2 alt streams if num_alts >= 2: continue elif num_alts > 0: name = "{0}{1}".format(name, num_alts + 1) # Validate stream name and discard the stream if it's bad. match = re.match("([A-z0-9_+]+)", name) if match: name = match.group(1) else: self.logger.debug("The stream '{0}' has been ignored " "since it is badly named.", name) continue # Force lowercase name and replace space with underscore. streams[name.lower()] = stream # Create the best/worst synonmys def stream_weight_only(s): return (self.stream_weight(s)[0] or (len(streams) == 1 and 1)) stream_names = filter(stream_weight_only, streams.keys()) sorted_streams = sorted(stream_names, key=stream_weight_only) if isinstance(sorting_excludes, list): for expr in sorting_excludes: filter_func = stream_sorting_filter(expr, self.stream_weight) sorted_streams = list(filter(filter_func, sorted_streams)) elif callable(sorting_excludes): sorted_streams = list(filter(sorting_excludes, sorted_streams)) final_sorted_streams = OrderedDict() for stream_name in sorted(streams, key=stream_weight_only): final_sorted_streams[stream_name] = streams[stream_name] if len(sorted_streams) > 0: best = sorted_streams[-1] worst = sorted_streams[0] final_sorted_streams["worst"] = streams[worst] final_sorted_streams["best"] = streams[best] return final_sorted_streams def get_streams(self, *args, **kwargs): """Deprecated since version 1.9.0. Has been renamed to :func:`Plugin.streams`, this is an alias for backwards compatibility. """ return self.streams(*args, **kwargs) def _get_streams(self): raise NotImplementedError __all__ = ["Plugin"]
[((1082, 1159), 're.match', 're.match', (['"""^(\\\\d+)(k|p)?(\\\\d+)?(\\\\+)?(?:_(\\\\d+)k)?(?:_(alt)(\\\\d)?)?$"""', 'stream'], {}), "('^(\\\\d+)(k|p)?(\\\\d+)?(\\\\+)?(?:_(\\\\d+)k)?(?:_(alt)(\\\\d)?)?$', stream)\n", (1090, 1159), False, 'import re\n'), ((2624, 2678), 're.match', 're.match', (['"""(?P<op><=|>=|<|>)?(?P<value>[\\\\w+]+)"""', 'expr'], {}), "('(?P<op><=|>=|<|>)?(?P<value>[\\\\w+]+)', expr)\n", (2632, 2678), False, 'import re\n'), ((3329, 3361), 're.findall', 're.findall', (['PARAMS_REGEX', 'params'], {}), '(PARAMS_REGEX, params)\n', (3339, 3361), False, 'import re\n'), ((10628, 10641), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (10639, 10641), False, 'from collections import OrderedDict\n'), ((3427, 3450), 'ast.literal_eval', 'ast.literal_eval', (['value'], {}), '(value)\n', (3443, 3450), False, 'import ast\n'), ((9540, 9571), 're.match', 're.match', (['"""([A-z0-9_+]+)"""', 'name'], {}), "('([A-z0-9_+]+)', name)\n", (9548, 9571), False, 'import re\n'), ((8276, 8319), 'functools.partial', 'partial', (['stream_type_priority', 'stream_types'], {}), '(stream_type_priority, stream_types)\n', (8283, 8319), False, 'from functools import partial\n')]
Aahbree/reference-data-repository
tests/cli/conftest.py
f318c0532aaf941ec4f00c8375c9dea45c56f186
# This file is part of the Reference Data Repository (refdata). # # Copyright (C) 2021 New York University. # # refdata is free software; you can redistribute it and/or modify it under the # terms of the MIT License; see LICENSE file for more details. """Fixtures for testing the command-line interface.""" import os import pytest from click.testing import CliRunner from refdata.db import DB import refdata.config as config @pytest.fixture def refdata_cli(tmpdir): """Initialize the environment and the database for the local store.""" basedir = os.path.abspath(str(tmpdir)) connect_url = 'sqlite:///{}'.format(os.path.join(basedir, 'test.db')) DB(connect_url=connect_url).init() os.environ[config.ENV_BASEDIR] = basedir os.environ[config.ENV_URL] = connect_url # Make sure to reset the database. yield CliRunner() # Clear environment variables that were set for the test runner. del os.environ[config.ENV_BASEDIR] del os.environ[config.ENV_URL]
[((631, 663), 'os.path.join', 'os.path.join', (['basedir', '"""test.db"""'], {}), "(basedir, 'test.db')\n", (643, 663), False, 'import os\n'), ((843, 854), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (852, 854), False, 'from click.testing import CliRunner\n'), ((669, 696), 'refdata.db.DB', 'DB', ([], {'connect_url': 'connect_url'}), '(connect_url=connect_url)\n', (671, 696), False, 'from refdata.db import DB\n')]
lhoestq/DeDLOC
swav/vissl/vissl/data/ssl_transforms/img_patches_tensor.py
36f5a6d043c3d727f9d098a35fba94aa351a5cd4
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging import math from typing import Any, Dict import numpy as np from classy_vision.dataset.transforms import register_transform from classy_vision.dataset.transforms.classy_transform import ClassyTransform @register_transform("ImgPatchesFromTensor") class ImgPatchesFromTensor(ClassyTransform): """ Create image patches from a torch Tensor or numpy array. This transform was proposed in Jigsaw - https://arxiv.org/abs/1603.09246 Args: num_patches (int): how many image patches to create patch_jitter (int): space to leave between patches """ def __init__(self, num_patches=9, patch_jitter=21): self.num_patches = num_patches self.patch_jitter = patch_jitter assert self.patch_jitter > 0, "Negative jitter not supported" self.grid_side_len = int(math.sqrt(self.num_patches)) # usually = 3 logging.info( f"ImgPatchesFromTensor: num_patches: {num_patches} " f"patch_jitter: {patch_jitter}" ) def __call__(self, image): """ Input image which is a torch.Tensor object of shape 3 x H x W """ data = [] grid_size = int(image.shape[1] / self.grid_side_len) patch_size = grid_size - self.patch_jitter jitter = np.random.randint( 0, self.patch_jitter, (2, self.grid_side_len, self.grid_side_len) ) for i in range(self.grid_side_len): for j in range(self.grid_side_len): x_offset = i * grid_size y_offset = j * grid_size grid_cell = image[ :, y_offset : y_offset + grid_size, x_offset : x_offset + grid_size ] patch = grid_cell[ :, jitter[1, i, j] : jitter[1, i, j] + patch_size, jitter[0, i, j] : jitter[0, i, j] + patch_size, ] assert patch.shape[1] == patch_size, "Image not cropped properly" assert patch.shape[2] == patch_size, "Image not cropped properly" # copy patch data so that all patches are different in underlying memory data.append(np.copy(patch)) return data @classmethod def from_config(cls, config: Dict[str, Any]) -> "ImgPatchesFromTensor": """ Instantiates ImgPatchesFromTensor from configuration. Args: config (Dict): arguments for for the transform Returns: ImgPatchesFromTensor instance. """ num_patches = config.get("num_patches", 9) patch_jitter = config.get("patch_jitter", 21) logging.info(f"ImgPatchesFromTensor | Using num_patches: {num_patches}") logging.info(f"ImgPatchesFromTensor | Using patch_jitter: {patch_jitter}") return cls(num_patches=num_patches, patch_jitter=patch_jitter)
[((293, 335), 'classy_vision.dataset.transforms.register_transform', 'register_transform', (['"""ImgPatchesFromTensor"""'], {}), "('ImgPatchesFromTensor')\n", (311, 335), False, 'from classy_vision.dataset.transforms import register_transform\n'), ((957, 1061), 'logging.info', 'logging.info', (['f"""ImgPatchesFromTensor: num_patches: {num_patches} patch_jitter: {patch_jitter}"""'], {}), "(\n f'ImgPatchesFromTensor: num_patches: {num_patches} patch_jitter: {patch_jitter}'\n )\n", (969, 1061), False, 'import logging\n'), ((1363, 1452), 'numpy.random.randint', 'np.random.randint', (['(0)', 'self.patch_jitter', '(2, self.grid_side_len, self.grid_side_len)'], {}), '(0, self.patch_jitter, (2, self.grid_side_len, self.\n grid_side_len))\n', (1380, 1452), True, 'import numpy as np\n'), ((2744, 2816), 'logging.info', 'logging.info', (['f"""ImgPatchesFromTensor | Using num_patches: {num_patches}"""'], {}), "(f'ImgPatchesFromTensor | Using num_patches: {num_patches}')\n", (2756, 2816), False, 'import logging\n'), ((2825, 2899), 'logging.info', 'logging.info', (['f"""ImgPatchesFromTensor | Using patch_jitter: {patch_jitter}"""'], {}), "(f'ImgPatchesFromTensor | Using patch_jitter: {patch_jitter}')\n", (2837, 2899), False, 'import logging\n'), ((905, 932), 'math.sqrt', 'math.sqrt', (['self.num_patches'], {}), '(self.num_patches)\n', (914, 932), False, 'import math\n'), ((2280, 2294), 'numpy.copy', 'np.copy', (['patch'], {}), '(patch)\n', (2287, 2294), True, 'import numpy as np\n')]
Jittor/Jittor
python/jittor/utils/publish.py
bc945bae94bded917214b0afe12be6bf5b919dbe
#!/usr/bin/python3 # *************************************************************** # Copyright (c) 2022 Jittor. All Rights Reserved. # Maintainers: # Dun Liang <[email protected]>. # # This file is subject to the terms and conditions defined in # file 'LICENSE.txt', which is part of this source code package. # *************************************************************** # Publish steps: # 1. build,push,upload docker image[jittor/jittor] # 2. build,push,upload docker image[jittor/jittor-cuda] # upload to pip: # rm -rf dist && python3.7 ./setup.py sdist && python3.7 -m twine upload dist/* import os def run_cmd(cmd): print("[run cmd]", cmd) assert os.system(cmd) == 0 def upload_file(path): run_cmd(f"rsync -avPu {path} jittor-web:Documents/jittor-blog/assets/build/") def docker_task(name, build_cmd): run_cmd(build_cmd) run_cmd(f"sudo docker push {name}") bname = os.path.basename(name) run_cmd(f"sudo docker save {name}:latest -o /tmp/{bname}.tgz && sudo chmod 666 /tmp/{bname}.tgz") upload_file(f"/tmp/{bname}.tgz") docker_task( "jittor/jittor-cuda-11-1", "sudo docker build --tag jittor/jittor-cuda-11-1:latest -f script/Dockerfile_cuda11 . --network host" ) docker_task( "jittor/jittor", "sudo docker build --tag jittor/jittor:latest . --network host" ) docker_task( "jittor/jittor-cuda", "sudo docker build --tag jittor/jittor-cuda:latest --build-arg FROM_IMAGE='nvidia/cuda:10.2-cudnn7-devel-ubuntu18.04' . --network host" ) docker_task( "jittor/jittor-cuda-10-1", "sudo docker build --tag jittor/jittor-cuda-10-1:latest --build-arg FROM_IMAGE='nvidia/cuda:10.1-cudnn7-devel-ubuntu18.04' . --network host" ) run_cmd("ssh jittor-web Documents/jittor-blog.git/hooks/post-update")
[((915, 937), 'os.path.basename', 'os.path.basename', (['name'], {}), '(name)\n', (931, 937), False, 'import os\n'), ((679, 693), 'os.system', 'os.system', (['cmd'], {}), '(cmd)\n', (688, 693), False, 'import os\n')]
DineshDevaraj/interview_answers
prodapt_solutions/config/cliargs.py
8d3d631dc96dc97ebef80604d6455c2c57c8823d
import argparse from helper.metaclasses_definition import Singleton class CliArgs(metaclass=Singleton): LogLevel = None BankName = None InputFilepath = None @staticmethod def init(): my_parser = argparse.ArgumentParser() my_parser.add_argument('--bank-name', required=True) my_parser.add_argument('--input-filepath') my_parser.add_argument('--log-level') args = my_parser.parse_args() CliArgs.BankName = args.bank_name CliArgs.InputFilepath = args.input_filepath CliArgs.LogLevel = args.log_level
[((229, 254), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (252, 254), False, 'import argparse\n')]
TeoZosa/flytekit
plugins/flytekit-papermill/setup.py
c4f33c6deaf36a3feaf397cfc6de3bd62e986733
from setuptools import setup PLUGIN_NAME = "papermill" microlib_name = f"flytekitplugins-{PLUGIN_NAME}" plugin_requires = [ "flytekit>=0.16.0b0,<1.0.0", "flytekitplugins-spark>=0.16.0b0,<1.0.0,!=0.24.0b0", "papermill>=1.2.0", "nbconvert>=6.0.7", "ipykernel>=5.0.0", ] __version__ = "0.0.0+develop" setup( name=microlib_name, version=__version__, author="flyteorg", author_email="[email protected]", description="This is the flytekit papermill plugin", namespace_packages=["flytekitplugins"], packages=[f"flytekitplugins.{PLUGIN_NAME}"], install_requires=plugin_requires, license="apache2", python_requires=">=3.7", classifiers=[ "Intended Audience :: Science/Research", "Intended Audience :: Developers", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Topic :: Scientific/Engineering", "Topic :: Scientific/Engineering :: Artificial Intelligence", "Topic :: Software Development", "Topic :: Software Development :: Libraries", "Topic :: Software Development :: Libraries :: Python Modules", ], )
[((323, 1161), 'setuptools.setup', 'setup', ([], {'name': 'microlib_name', 'version': '__version__', 'author': '"""flyteorg"""', 'author_email': '"""[email protected]"""', 'description': '"""This is the flytekit papermill plugin"""', 'namespace_packages': "['flytekitplugins']", 'packages': "[f'flytekitplugins.{PLUGIN_NAME}']", 'install_requires': 'plugin_requires', 'license': '"""apache2"""', 'python_requires': '""">=3.7"""', 'classifiers': "['Intended Audience :: Science/Research', 'Intended Audience :: Developers',\n 'License :: OSI Approved :: Apache Software License',\n 'Programming Language :: Python :: 3.7',\n 'Programming Language :: Python :: 3.8',\n 'Topic :: Scientific/Engineering',\n 'Topic :: Scientific/Engineering :: Artificial Intelligence',\n 'Topic :: Software Development',\n 'Topic :: Software Development :: Libraries',\n 'Topic :: Software Development :: Libraries :: Python Modules']"}), "(name=microlib_name, version=__version__, author='flyteorg',\n author_email='[email protected]', description=\n 'This is the flytekit papermill plugin', namespace_packages=[\n 'flytekitplugins'], packages=[f'flytekitplugins.{PLUGIN_NAME}'],\n install_requires=plugin_requires, license='apache2', python_requires=\n '>=3.7', classifiers=['Intended Audience :: Science/Research',\n 'Intended Audience :: Developers',\n 'License :: OSI Approved :: Apache Software License',\n 'Programming Language :: Python :: 3.7',\n 'Programming Language :: Python :: 3.8',\n 'Topic :: Scientific/Engineering',\n 'Topic :: Scientific/Engineering :: Artificial Intelligence',\n 'Topic :: Software Development',\n 'Topic :: Software Development :: Libraries',\n 'Topic :: Software Development :: Libraries :: Python Modules'])\n", (328, 1161), False, 'from setuptools import setup\n')]
vla3089/adventofcode
2017/third.py
0aefb5509e9f816f89eeab703393be7222632e02
#!/usr/bin/env python input = 368078 size = 1 s_size = size * size # squared size while (s_size < input): size += 2 s_size = size * size bottom_right = s_size bottom_left = s_size - size + 1 top_left = s_size - 2 * size + 2 top_right = s_size - 3 * size + 3 input_x = -1 input_y = -1 # bottom horizontal line if (input > bottom_left): input_x = size - 1 input_y = input - bottom_left elif (input > top_left): input_y = input - top_left input_x = 0 elif (input > top_right): input_x = 0 input_y = size - input + top_right - 1 else: input_x = top_right - input input_y = size - 1 ap_x = size / 2 ap_y = ap_x print abs(ap_x - input_x) + abs(ap_y - input_y)
[]
max-eth/racer
racer/methods/genetic_programming/parameterized.py
952991aedec5d8229bb1126c9c066613f5c30146
import copy import numpy as np from racer.utils import load_pickle from racer.methods.genetic_programming.program_tree import ProgramTree class ParameterizedTree(ProgramTree): # This makes the assumption that all children of the underlying tree are in a field .children and that the underlying tree has the field .name def __init__(self, underlying_tree, init_fct=None, _copy=True): if _copy: underlying_tree = copy.deepcopy(underlying_tree) # safety first if hasattr(underlying_tree, "children"): underlying_tree.children = [ ParameterizedTree(underlying_tree=child, _copy=False) for child in underlying_tree.children ] self.underlying_tree = underlying_tree if init_fct is None: self.set_params([1, 0]) else: self.set_params(init_fct()) def set_params(self, params): self.weight, self.bias = params self.name = self.underlying_tree.name + " * {} + {}".format( self.weight, self.bias ) def get_params(self): return [self.weight, self.bias] def __call__(self, *x): return self.underlying_tree(*x) * self.weight + self.bias def __len__(self): return len(self.underlying_tree) def display(self, prefix): res = prefix + self.name + "\n" if hasattr(self.underlying_tree, "children"): for child in self.underlying_tree.children: res += child.display(prefix=" " + prefix) return res def _set_dirty(self): raise Exception("Parameterized trees should not be mutated") def in_order(self): yield self if hasattr(self.underlying_tree, "children"): for child in self.underlying_tree.children: for node in child.in_order(): yield node class ParameterizedIndividual: def __init__(self, parameterized_trees): self.parameterized_trees = parameterized_trees @staticmethod def from_individual(ind): return ParameterizedIndividual( parameterized_trees=[ParameterizedTree(tree) for tree in ind.trees] ) @staticmethod def from_pickled_individual(fname): return ParameterizedIndividual.from_individual(load_pickle(fname)) def __call__(self, *x): return [tree(*x) for tree in self.parameterized_trees] def __len__(self): return sum(len(tree) for tree in self.parameterized_trees) def set_flat_parameters(self, params): n_used = 0 for tree in self.parameterized_trees: for node in tree.in_order(): node.set_params(list(params[n_used : n_used + 2])) n_used += 2 def get_flat_parameters(self): params = [] for tree in self.parameterized_trees: for node in tree.in_order(): params += node.get_params() return np.array(params)
[((2964, 2980), 'numpy.array', 'np.array', (['params'], {}), '(params)\n', (2972, 2980), True, 'import numpy as np\n'), ((441, 471), 'copy.deepcopy', 'copy.deepcopy', (['underlying_tree'], {}), '(underlying_tree)\n', (454, 471), False, 'import copy\n'), ((2314, 2332), 'racer.utils.load_pickle', 'load_pickle', (['fname'], {}), '(fname)\n', (2325, 2332), False, 'from racer.utils import load_pickle\n')]
danielecook/upvote.pub
base/frontends/views.py
fdda3c0895427ddc76f4680d0d63f2d4bac59da0
# -*- coding: utf-8 -*- """ """ import os import markdown2 from flask import (Blueprint, request, render_template, flash, g, session, redirect, url_for, abort, Markup) from werkzeug import check_password_hash, generate_password_hash from logzero import logger from base import db, app from base import search as search_module # don't override function name from base.users.forms import RegisterForm, LoginForm from base.users.models import User from base.threads.models import Thread, Publication from base.subreddits.models import Subreddit from base.users.decorators import requires_login from base.utils.user_utils import get_school from base.subreddits.forms import subreddit_subs, sub_form from base.utils.email import send_email from base.utils.misc import random_string, validate_sort_type mod = Blueprint('frontends', __name__, url_prefix='') @mod.before_request def before_request(): g.user = None if session.get('user_id'): g.user = User.query.get(session['user_id']) def home_subreddit(): logger.info(g.user) if g.get('user'): subreddit_subs = g.user.subreddit_subs.get('subs') subs = Thread.query.order_by(db.desc(Thread.hotness), db.desc(Thread.hotness)) \ .filter(Subreddit.name.in_(subreddit_subs)) else: subs = Thread.query.order_by(db.desc(Thread.hotness), db.desc(Thread.hotness)) return subs def get_subreddits(): """ Fetch user subreddits otherwise fetch a list of defaults """ if g.get('user'): subreddit_subs = g.user.subreddit_subs.get('subs') subreddits = Subreddit.query.filter(Subreddit.name.in_(subreddit_subs)) else: # Default set of subreddits subreddits = Subreddit.query.all() return subreddits def process_thread_paginator(trending=False, rs=None, subreddit=None, sort_type='hot'): """ abstracted because many sources pull from a thread listing source (subreddit permalink, homepage, etc) """ threads_per_page = 15 cur_page = request.args.get('page') or 1 cur_page = int(cur_page) thread_paginator = None # if we are passing in a resultset, that means we are just looking to # quickly paginate some arbitrary data, no sorting if rs: thread_paginator = rs.paginate(cur_page, per_page=threads_per_page, error_out=True) return thread_paginator # sexy line of code :) base_query = subreddit.threads if subreddit else Thread.query # Filter by user subs logger.info(g.user) if g.user: subreddit_subs = g.user.subreddit_subs.get('subs') base_query = base_query.join(Subreddit).filter(Subreddit.name.in_(subreddit_subs)) # Sorting if sort_type == 'hot': base_query = base_query.order_by(db.desc(Thread.hotness)) elif sort_type == 'top': base_query = base_query.order_by(db.desc(Thread.votes)) elif sort_type == 'comments': base_query = base_query.order_by(db.desc(Thread.n_comments)) elif sort_type == 'new': base_query = base_query.order_by(db.desc(Thread.created_on)) elif sort_type == 'publication_date': base_query = base_query.join(Publication).order_by(db.desc(Publication.pub_date)) thread_paginator = base_query.paginate(cur_page, per_page=threads_per_page, error_out=True) return thread_paginator @mod.route('/') def home(sort_type='hot'): """ If not trending we order by creation date """ atom_url = url_for('subreddits.atom_feed', subreddit_name='frontpage', _external=True) trending = True if request.path.endswith('trending') else False page_title = "Trending" if trending else "Frontpage" thread_paginator = process_thread_paginator(trending=trending) return render_template('home.html', atom_url=atom_url, page_title=page_title, cur_subreddit=home_subreddit(), thread_paginator=thread_paginator) @mod.route('/.atom') @mod.route('/.xml') @mod.route('/.rss') def atom_redirect(): return redirect(url_for("subreddits.atom_feed", subreddit_name="frontpage")) @mod.route('/h/<string:page>') def render_markdown(page): page_md = f"base/markdown/{page}.md" if not os.path.exists(page_md): abort(404) with open(page_md, 'r') as f: content = f.read() md = markdown2.markdown(content, extras = ['fenced-code-blocks', 'nofollow', 'target-blank-links', 'toc', 'tables', 'footnotes', 'metadata', 'markdown-in-html']) return render_template('markdown.html', page=md, **md.metadata) @mod.route('/search/', methods=['GET']) def search(): """ Allows users to search threads and comments """ query = request.args.get('query') page_title=f"Search results for '{query}'" rs = search_module.search(query, orderby='creation', search_title=True, search_text=True) thread_paginator = process_thread_paginator(rs=rs) #rs = rs.all() num_searches = rs.count() subreddits = get_subreddits() return render_template('home.html', page_title=page_title, cur_subreddit=home_subreddit(), thread_paginator=thread_paginator, num_searches=num_searches) @mod.route('/login/', methods=['GET', 'POST']) def login(): """ We had to do some extra work to route the user back to his or her original place before logging in """ if g.user: return redirect(url_for('frontends.home')) next = '' if request.method == 'GET': if 'next' in request.args: next = request.args['next'] form = LoginForm(request.form) # make sure data is valid, but doesn't validate password is right if form.validate_on_submit(): # continue where we left off if so user = User.query.filter_by(email=form.email.data).first() # we use werzeug to validate user's password if user and check_password_hash(user.password, form.password.data): # the session can't be modified as it's signed, # it's a safe place to store the user id session['user_id'] = user.id if 'next' in request.form and request.form['next']: return redirect(request.form['next']) return redirect(url_for('frontends.home')) flash('Wrong email or password', 'danger') return render_template("login.html", form=form, next=next) @mod.route('/logout/', methods=['GET', 'POST']) @requires_login def logout(): session.pop('user_id', None) return redirect(url_for('frontends.home')) @mod.route('/confirm-email/<string:token>') def confirm_email(token): """ Confirm user email """ user = User.query.filter_by(email_token=token).first() if user.email_token == token: user.email_verified = True db.session.commit() flash("Thank you for confirming your email! You can now submit and comment.", 'success') return redirect(url_for('frontends.home')) @mod.route('/register/', methods=['GET', 'POST']) def register(): """ Registration page """ if g.user: # If the user is logged in send them home return redirect(url_for('frontends.home')) next = '' if request.method == 'GET': if 'next' in request.args: next = request.args['next'] form = RegisterForm(request.form) if form.validate_on_submit(): # create an user instance not yet stored in the database user = User(username=form.username.data, email=form.email.data, \ password=generate_password_hash(form.password.data), university=get_school(form.email.data), email_token=random_string()) # Insert the record in our database and commit it db.session.add(user) email_confirm_link = url_for('frontends.confirm_email', token = user.email_token) email_response = send_email("Confirm upvote.pub email", """Please visit the link below to confirm your email:\n\n{}{}""".format(request.url_root.strip("/"), email_confirm_link), user.email) # Log the user in, as he now has an id db.session.commit() session['user_id'] = user.id flash('Thanks for signing up! Please confirm your email by following the link sent in the confirmation email.', 'success') if 'next' in request.form and request.form['next']: return redirect(request.form['next']) return redirect(url_for('frontends.home')) return render_template("register.html", form=form, next=next) @mod.route('/subs/', methods=['GET', 'POST']) def view_all(): """ """ subreddit_list = Subreddit.query.all() form = None if g.user: if request.form: form = subreddit_subs(request.form) if form.validate_on_submit(): form_subs = form.data.get('subs') form_subs = list(set([x['sub_name'] for x in form_subs if x['value']])) g.user.subreddit_subs = {'subs': form_subs} flash("Updated Subs", 'success') db.session.commit() else: form = subreddit_subs() for subreddit in subreddit_list: sform = sub_form() sform.sub_name = subreddit.name sform.sub_group = subreddit.group if g.user: sform.value=subreddit.name in g.user.subreddit_subs['subs'] form.subs.append_entry(sform) return render_template('subreddits/subs.html', cur_subreddit=None, page_title='subs', form=form, subreddit_list=subreddit_list)
[((957, 1004), 'flask.Blueprint', 'Blueprint', (['"""frontends"""', '__name__'], {'url_prefix': '""""""'}), "('frontends', __name__, url_prefix='')\n", (966, 1004), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, abort, Markup\n'), ((1074, 1096), 'flask.session.get', 'session.get', (['"""user_id"""'], {}), "('user_id')\n", (1085, 1096), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, abort, Markup\n'), ((1178, 1197), 'logzero.logger.info', 'logger.info', (['g.user'], {}), '(g.user)\n', (1189, 1197), False, 'from logzero import logger\n'), ((1205, 1218), 'flask.g.get', 'g.get', (['"""user"""'], {}), "('user')\n", (1210, 1218), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, abort, Markup\n'), ((1660, 1673), 'flask.g.get', 'g.get', (['"""user"""'], {}), "('user')\n", (1665, 1673), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, abort, Markup\n'), ((2738, 2757), 'logzero.logger.info', 'logger.info', (['g.user'], {}), '(g.user)\n', (2749, 2757), False, 'from logzero import logger\n'), ((3705, 3780), 'flask.url_for', 'url_for', (['"""subreddits.atom_feed"""'], {'subreddit_name': '"""frontpage"""', '_external': '(True)'}), "('subreddits.atom_feed', subreddit_name='frontpage', _external=True)\n", (3712, 3780), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, abort, Markup\n'), ((5120, 5176), 'flask.render_template', 'render_template', (['"""markdown.html"""'], {'page': 'md'}), "('markdown.html', page=md, **md.metadata)\n", (5135, 5176), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, abort, Markup\n'), ((5363, 5388), 'flask.request.args.get', 'request.args.get', (['"""query"""'], {}), "('query')\n", (5379, 5388), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, abort, Markup\n'), ((5445, 5533), 'base.search.search', 'search_module.search', (['query'], {'orderby': '"""creation"""', 'search_title': '(True)', 'search_text': '(True)'}), "(query, orderby='creation', search_title=True,\n search_text=True)\n", (5465, 5533), True, 'from base import search as search_module\n'), ((6336, 6359), 'base.users.forms.LoginForm', 'LoginForm', (['request.form'], {}), '(request.form)\n', (6345, 6359), False, 'from base.users.forms import RegisterForm, LoginForm\n'), ((7094, 7145), 'flask.render_template', 'render_template', (['"""login.html"""'], {'form': 'form', 'next': 'next'}), "('login.html', form=form, next=next)\n", (7109, 7145), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, abort, Markup\n'), ((7230, 7258), 'flask.session.pop', 'session.pop', (['"""user_id"""', 'None'], {}), "('user_id', None)\n", (7241, 7258), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, abort, Markup\n'), ((7553, 7572), 'base.db.session.commit', 'db.session.commit', ([], {}), '()\n', (7570, 7572), False, 'from base import db, app\n'), ((7577, 7669), 'flask.flash', 'flash', (['"""Thank you for confirming your email! You can now submit and comment."""', '"""success"""'], {}), "('Thank you for confirming your email! You can now submit and comment.',\n 'success')\n", (7582, 7669), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, abort, Markup\n'), ((8073, 8099), 'base.users.forms.RegisterForm', 'RegisterForm', (['request.form'], {}), '(request.form)\n', (8085, 8099), False, 'from base.users.forms import RegisterForm, LoginForm\n'), ((9338, 9392), 'flask.render_template', 'render_template', (['"""register.html"""'], {'form': 'form', 'next': 'next'}), "('register.html', form=form, next=next)\n", (9353, 9392), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, abort, Markup\n'), ((9494, 9515), 'base.subreddits.models.Subreddit.query.all', 'Subreddit.query.all', ([], {}), '()\n', (9513, 9515), False, 'from base.subreddits.models import Subreddit\n'), ((10339, 10464), 'flask.render_template', 'render_template', (['"""subreddits/subs.html"""'], {'cur_subreddit': 'None', 'page_title': '"""subs"""', 'form': 'form', 'subreddit_list': 'subreddit_list'}), "('subreddits/subs.html', cur_subreddit=None, page_title=\n 'subs', form=form, subreddit_list=subreddit_list)\n", (10354, 10464), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, abort, Markup\n'), ((1115, 1149), 'base.users.models.User.query.get', 'User.query.get', (["session['user_id']"], {}), "(session['user_id'])\n", (1129, 1149), False, 'from base.users.models import User\n'), ((1245, 1278), 'flask.g.user.subreddit_subs.get', 'g.user.subreddit_subs.get', (['"""subs"""'], {}), "('subs')\n", (1270, 1278), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, abort, Markup\n'), ((1700, 1733), 'flask.g.user.subreddit_subs.get', 'g.user.subreddit_subs.get', (['"""subs"""'], {}), "('subs')\n", (1725, 1733), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, abort, Markup\n'), ((1881, 1902), 'base.subreddits.models.Subreddit.query.all', 'Subreddit.query.all', ([], {}), '()\n', (1900, 1902), False, 'from base.subreddits.models import Subreddit\n'), ((2183, 2207), 'flask.request.args.get', 'request.args.get', (['"""page"""'], {}), "('page')\n", (2199, 2207), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, abort, Markup\n'), ((2798, 2831), 'flask.g.user.subreddit_subs.get', 'g.user.subreddit_subs.get', (['"""subs"""'], {}), "('subs')\n", (2823, 2831), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, abort, Markup\n'), ((3804, 3837), 'flask.request.path.endswith', 'request.path.endswith', (['"""trending"""'], {}), "('trending')\n", (3825, 3837), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, abort, Markup\n'), ((4335, 4394), 'flask.url_for', 'url_for', (['"""subreddits.atom_feed"""'], {'subreddit_name': '"""frontpage"""'}), "('subreddits.atom_feed', subreddit_name='frontpage')\n", (4342, 4394), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, abort, Markup\n'), ((4508, 4531), 'os.path.exists', 'os.path.exists', (['page_md'], {}), '(page_md)\n', (4522, 4531), False, 'import os\n'), ((4541, 4551), 'flask.abort', 'abort', (['(404)'], {}), '(404)\n', (4546, 4551), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, abort, Markup\n'), ((4626, 4788), 'markdown2.markdown', 'markdown2.markdown', (['content'], {'extras': "['fenced-code-blocks', 'nofollow', 'target-blank-links', 'toc', 'tables',\n 'footnotes', 'metadata', 'markdown-in-html']"}), "(content, extras=['fenced-code-blocks', 'nofollow',\n 'target-blank-links', 'toc', 'tables', 'footnotes', 'metadata',\n 'markdown-in-html'])\n", (4644, 4788), False, 'import markdown2\n'), ((7040, 7082), 'flask.flash', 'flash', (['"""Wrong email or password"""', '"""danger"""'], {}), "('Wrong email or password', 'danger')\n", (7045, 7082), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, abort, Markup\n'), ((7279, 7304), 'flask.url_for', 'url_for', (['"""frontends.home"""'], {}), "('frontends.home')\n", (7286, 7304), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, abort, Markup\n'), ((7686, 7711), 'flask.url_for', 'url_for', (['"""frontends.home"""'], {}), "('frontends.home')\n", (7693, 7711), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, abort, Markup\n'), ((8541, 8561), 'base.db.session.add', 'db.session.add', (['user'], {}), '(user)\n', (8555, 8561), False, 'from base import db, app\n'), ((8591, 8649), 'flask.url_for', 'url_for', (['"""frontends.confirm_email"""'], {'token': 'user.email_token'}), "('frontends.confirm_email', token=user.email_token)\n", (8598, 8649), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, abort, Markup\n'), ((8977, 8996), 'base.db.session.commit', 'db.session.commit', ([], {}), '()\n', (8994, 8996), False, 'from base import db, app\n'), ((9042, 9174), 'flask.flash', 'flash', (['"""Thanks for signing up! Please confirm your email by following the link sent in the confirmation email."""', '"""success"""'], {}), "(\n 'Thanks for signing up! Please confirm your email by following the link sent in the confirmation email.'\n , 'success')\n", (9047, 9174), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, abort, Markup\n'), ((1403, 1437), 'base.subreddits.models.Subreddit.name.in_', 'Subreddit.name.in_', (['subreddit_subs'], {}), '(subreddit_subs)\n', (1421, 1437), False, 'from base.subreddits.models import Subreddit\n'), ((1486, 1509), 'base.db.desc', 'db.desc', (['Thread.hotness'], {}), '(Thread.hotness)\n', (1493, 1509), False, 'from base import db, app\n'), ((1511, 1534), 'base.db.desc', 'db.desc', (['Thread.hotness'], {}), '(Thread.hotness)\n', (1518, 1534), False, 'from base import db, app\n'), ((1778, 1812), 'base.subreddits.models.Subreddit.name.in_', 'Subreddit.name.in_', (['subreddit_subs'], {}), '(subreddit_subs)\n', (1796, 1812), False, 'from base.subreddits.models import Subreddit\n'), ((2887, 2921), 'base.subreddits.models.Subreddit.name.in_', 'Subreddit.name.in_', (['subreddit_subs'], {}), '(subreddit_subs)\n', (2905, 2921), False, 'from base.subreddits.models import Subreddit\n'), ((3006, 3029), 'base.db.desc', 'db.desc', (['Thread.hotness'], {}), '(Thread.hotness)\n', (3013, 3029), False, 'from base import db, app\n'), ((6175, 6200), 'flask.url_for', 'url_for', (['"""frontends.home"""'], {}), "('frontends.home')\n", (6182, 6200), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, abort, Markup\n'), ((6647, 6701), 'werkzeug.check_password_hash', 'check_password_hash', (['user.password', 'form.password.data'], {}), '(user.password, form.password.data)\n', (6666, 6701), False, 'from werkzeug import check_password_hash, generate_password_hash\n'), ((7432, 7471), 'base.users.models.User.query.filter_by', 'User.query.filter_by', ([], {'email_token': 'token'}), '(email_token=token)\n', (7452, 7471), False, 'from base.users.models import User\n'), ((7912, 7937), 'flask.url_for', 'url_for', (['"""frontends.home"""'], {}), "('frontends.home')\n", (7919, 7937), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, abort, Markup\n'), ((9244, 9274), 'flask.redirect', 'redirect', (["request.form['next']"], {}), "(request.form['next'])\n", (9252, 9274), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, abort, Markup\n'), ((9299, 9324), 'flask.url_for', 'url_for', (['"""frontends.home"""'], {}), "('frontends.home')\n", (9306, 9324), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, abort, Markup\n'), ((9591, 9619), 'base.subreddits.forms.subreddit_subs', 'subreddit_subs', (['request.form'], {}), '(request.form)\n', (9605, 9619), False, 'from base.subreddits.forms import subreddit_subs, sub_form\n'), ((9978, 9994), 'base.subreddits.forms.subreddit_subs', 'subreddit_subs', ([], {}), '()\n', (9992, 9994), False, 'from base.subreddits.forms import subreddit_subs, sub_form\n'), ((3101, 3122), 'base.db.desc', 'db.desc', (['Thread.votes'], {}), '(Thread.votes)\n', (3108, 3122), False, 'from base import db, app\n'), ((6522, 6565), 'base.users.models.User.query.filter_by', 'User.query.filter_by', ([], {'email': 'form.email.data'}), '(email=form.email.data)\n', (6542, 6565), False, 'from base.users.models import User\n'), ((6945, 6975), 'flask.redirect', 'redirect', (["request.form['next']"], {}), "(request.form['next'])\n", (6953, 6975), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, abort, Markup\n'), ((7004, 7029), 'flask.url_for', 'url_for', (['"""frontends.home"""'], {}), "('frontends.home')\n", (7011, 7029), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, abort, Markup\n'), ((8322, 8364), 'werkzeug.generate_password_hash', 'generate_password_hash', (['form.password.data'], {}), '(form.password.data)\n', (8344, 8364), False, 'from werkzeug import check_password_hash, generate_password_hash\n'), ((8397, 8424), 'base.utils.user_utils.get_school', 'get_school', (['form.email.data'], {}), '(form.email.data)\n', (8407, 8424), False, 'from base.utils.user_utils import get_school\n'), ((8458, 8473), 'base.utils.misc.random_string', 'random_string', ([], {}), '()\n', (8471, 8473), False, 'from base.utils.misc import random_string, validate_sort_type\n'), ((8824, 8851), 'flask.request.url_root.strip', 'request.url_root.strip', (['"""/"""'], {}), "('/')\n", (8846, 8851), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, abort, Markup\n'), ((9876, 9908), 'flask.flash', 'flash', (['"""Updated Subs"""', '"""success"""'], {}), "('Updated Subs', 'success')\n", (9881, 9908), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, abort, Markup\n'), ((9925, 9944), 'base.db.session.commit', 'db.session.commit', ([], {}), '()\n', (9942, 9944), False, 'from base import db, app\n'), ((10064, 10074), 'base.subreddits.forms.sub_form', 'sub_form', ([], {}), '()\n', (10072, 10074), False, 'from base.subreddits.forms import subreddit_subs, sub_form\n'), ((1316, 1339), 'base.db.desc', 'db.desc', (['Thread.hotness'], {}), '(Thread.hotness)\n', (1323, 1339), False, 'from base import db, app\n'), ((1341, 1364), 'base.db.desc', 'db.desc', (['Thread.hotness'], {}), '(Thread.hotness)\n', (1348, 1364), False, 'from base import db, app\n'), ((3199, 3225), 'base.db.desc', 'db.desc', (['Thread.n_comments'], {}), '(Thread.n_comments)\n', (3206, 3225), False, 'from base import db, app\n'), ((3297, 3323), 'base.db.desc', 'db.desc', (['Thread.created_on'], {}), '(Thread.created_on)\n', (3304, 3323), False, 'from base import db, app\n'), ((3426, 3455), 'base.db.desc', 'db.desc', (['Publication.pub_date'], {}), '(Publication.pub_date)\n', (3433, 3455), False, 'from base import db, app\n')]
vijayeshmt/Securitylock
Jarvis.py
5877663a170a22ab8b5931dcef07c74f149cf9b8
import pyttsx3 import datetime import speech_recognition as sr import wikipedia import webbrowser import os import smtplib engine = pyttsx3.init('sapi5') voices = engine.getProperty('voices') engine.setProperty('voice', voices[0].id) # To change the voice to female change 0 to 1. def speak(audio): engine.say(audio) engine.runAndWait() pass def take_command(): """ It takes microphone input from the user and returns a string :return: """ r = sr.Recognizer() with sr.Microphone() as source: print("Listening...") r.pause_threshold = 1.5 # It will wait 1.5 seconds to complete a sentence audio = r.listen(source) #Do read details try: print("Recognizing") query = r.recognize_google(audio,language='en-in') print(f'user said : {query}\n') except Exception as e: #print(e) print("Say that again please") return "None" return query def sendEmail(to,content): server =smtplib.SMTP('smtp.gmail.com',28) # server.connect("smtp.gmail.com",465) # server.ehlo() server.login('[email protected]','########') server.sendmail('[email protected]',to,content) server.close() def wish_me(): hour = int(datetime.datetime.now().hour) if hour >= 0 and hour < 12: speak("Good morning") elif hour >= 12 and hour < 18: speak("Good afternoon") else: speak("Good night") speak("I am JARVIS how can i help you") if __name__ == '__main__': wish_me() while True: query =take_command().lower() if 'wikipedia' in query: speak("Searching wikipedia") query = query.replace('wikipedia','') results = wikipedia.summary(query,sentences=2)#To read more increase sentence to decrease sentence decreease sentence speak("According to wikipedia") #print(results) speak(results) elif 'open youtube' in query: # webbrowser.Chrome.open_new("youtube.com") webbrowser.open("youtube.com") elif "open google" in query: webbrowser.open("google.com") elif "play music" in query: music_dir = "D:\\vijayesh\\music" songs = os.listdir(music_dir) print(songs) os.startfile(os.path.join(music_dir,songs[1])) elif "the time" in query: strtime = datetime.datetime.now().strftime("%H:%M:%S") speak(f"The time is {strtime}") elif " open pycharm" in query: pycharmpath ="C:\\Program Files\\JetBrains\\PyCharm Community Edition 2021" os.startfile(pycharmpath) #elif "open command" in query: # filelocation = "path of the particular file like above" # os.startfile(filelocation) elif " email to vijayesh" or "email to vijesh" in query: try: speak("What should i say")#error present content = take_command() to = "[email protected]" sendEmail(to,content) speak("Email has been sent") exit() except Exception as e: print(e) speak("Sorry,I am not able to send this email") exit()
[((145, 166), 'pyttsx3.init', 'pyttsx3.init', (['"""sapi5"""'], {}), "('sapi5')\n", (157, 166), False, 'import pyttsx3\n'), ((495, 510), 'speech_recognition.Recognizer', 'sr.Recognizer', ([], {}), '()\n', (508, 510), True, 'import speech_recognition as sr\n'), ((961, 995), 'smtplib.SMTP', 'smtplib.SMTP', (['"""smtp.gmail.com"""', '(28)'], {}), "('smtp.gmail.com', 28)\n", (973, 995), False, 'import smtplib\n'), ((518, 533), 'speech_recognition.Microphone', 'sr.Microphone', ([], {}), '()\n', (531, 533), True, 'import speech_recognition as sr\n'), ((1211, 1234), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (1232, 1234), False, 'import datetime\n'), ((1640, 1677), 'wikipedia.summary', 'wikipedia.summary', (['query'], {'sentences': '(2)'}), '(query, sentences=2)\n', (1657, 1677), False, 'import wikipedia\n'), ((1910, 1940), 'webbrowser.open', 'webbrowser.open', (['"""youtube.com"""'], {}), "('youtube.com')\n", (1925, 1940), False, 'import webbrowser\n'), ((1977, 2006), 'webbrowser.open', 'webbrowser.open', (['"""google.com"""'], {}), "('google.com')\n", (1992, 2006), False, 'import webbrowser\n'), ((2092, 2113), 'os.listdir', 'os.listdir', (['music_dir'], {}), '(music_dir)\n', (2102, 2113), False, 'import os\n'), ((2148, 2181), 'os.path.join', 'os.path.join', (['music_dir', 'songs[1]'], {}), '(music_dir, songs[1])\n', (2160, 2181), False, 'import os\n'), ((2426, 2451), 'os.startfile', 'os.startfile', (['pycharmpath'], {}), '(pycharmpath)\n', (2438, 2451), False, 'import os\n'), ((2227, 2250), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (2248, 2250), False, 'import datetime\n')]
kolotaev/sdk
clients/kratos/python/test/test_v0alpha1_api.py
0dda1becd70be8d7b9d678321ebe780c1ba00485
""" Ory Kratos API Documentation for all public and administrative Ory Kratos APIs. Public and administrative APIs are exposed on different ports. Public APIs can face the public internet without any protection while administrative APIs should never be exposed without prior authorization. To protect the administative API port you should use something like Nginx, Ory Oathkeeper, or any other technology capable of authorizing incoming requests. # noqa: E501 The version of the OpenAPI document: v0.7.0-alpha.1 Contact: [email protected] Generated by: https://openapi-generator.tech """ import unittest import ory_kratos_client from ory_kratos_client.api.v0alpha1_api import V0alpha1Api # noqa: E501 class TestV0alpha1Api(unittest.TestCase): """V0alpha1Api unit test stubs""" def setUp(self): self.api = V0alpha1Api() # noqa: E501 def tearDown(self): pass def test_admin_create_identity(self): """Test case for admin_create_identity Create an Identity # noqa: E501 """ pass def test_admin_create_self_service_recovery_link(self): """Test case for admin_create_self_service_recovery_link Create a Recovery Link # noqa: E501 """ pass def test_admin_delete_identity(self): """Test case for admin_delete_identity Delete an Identity # noqa: E501 """ pass def test_admin_get_identity(self): """Test case for admin_get_identity Get an Identity # noqa: E501 """ pass def test_admin_list_identities(self): """Test case for admin_list_identities List Identities # noqa: E501 """ pass def test_admin_update_identity(self): """Test case for admin_update_identity Update an Identity # noqa: E501 """ pass def test_create_self_service_logout_flow_url_for_browsers(self): """Test case for create_self_service_logout_flow_url_for_browsers Create a Logout URL for Browsers # noqa: E501 """ pass def test_get_json_schema(self): """Test case for get_json_schema """ pass def test_get_self_service_error(self): """Test case for get_self_service_error Get Self-Service Errors # noqa: E501 """ pass def test_get_self_service_login_flow(self): """Test case for get_self_service_login_flow Get Login Flow # noqa: E501 """ pass def test_get_self_service_recovery_flow(self): """Test case for get_self_service_recovery_flow Get Recovery Flow # noqa: E501 """ pass def test_get_self_service_registration_flow(self): """Test case for get_self_service_registration_flow Get Registration Flow # noqa: E501 """ pass def test_get_self_service_settings_flow(self): """Test case for get_self_service_settings_flow Get Settings Flow # noqa: E501 """ pass def test_get_self_service_verification_flow(self): """Test case for get_self_service_verification_flow Get Verification Flow # noqa: E501 """ pass def test_initialize_self_service_login_flow_for_browsers(self): """Test case for initialize_self_service_login_flow_for_browsers Initialize Login Flow for Browsers # noqa: E501 """ pass def test_initialize_self_service_login_flow_without_browser(self): """Test case for initialize_self_service_login_flow_without_browser Initialize Login Flow for APIs, Services, Apps, ... # noqa: E501 """ pass def test_initialize_self_service_recovery_flow_for_browsers(self): """Test case for initialize_self_service_recovery_flow_for_browsers Initialize Recovery Flow for Browsers # noqa: E501 """ pass def test_initialize_self_service_recovery_flow_without_browser(self): """Test case for initialize_self_service_recovery_flow_without_browser Initialize Recovery Flow for APIs, Services, Apps, ... # noqa: E501 """ pass def test_initialize_self_service_registration_flow_for_browsers(self): """Test case for initialize_self_service_registration_flow_for_browsers Initialize Registration Flow for Browsers # noqa: E501 """ pass def test_initialize_self_service_registration_flow_without_browser(self): """Test case for initialize_self_service_registration_flow_without_browser Initialize Registration Flow for APIs, Services, Apps, ... # noqa: E501 """ pass def test_initialize_self_service_settings_flow_for_browsers(self): """Test case for initialize_self_service_settings_flow_for_browsers Initialize Settings Flow for Browsers # noqa: E501 """ pass def test_initialize_self_service_settings_flow_without_browser(self): """Test case for initialize_self_service_settings_flow_without_browser Initialize Settings Flow for APIs, Services, Apps, ... # noqa: E501 """ pass def test_initialize_self_service_verification_flow_for_browsers(self): """Test case for initialize_self_service_verification_flow_for_browsers Initialize Verification Flow for Browser Clients # noqa: E501 """ pass def test_initialize_self_service_verification_flow_without_browser(self): """Test case for initialize_self_service_verification_flow_without_browser Initialize Verification Flow for APIs, Services, Apps, ... # noqa: E501 """ pass def test_submit_self_service_login_flow(self): """Test case for submit_self_service_login_flow Submit a Login Flow # noqa: E501 """ pass def test_submit_self_service_logout_flow(self): """Test case for submit_self_service_logout_flow Complete Self-Service Logout # noqa: E501 """ pass def test_submit_self_service_logout_flow_without_browser(self): """Test case for submit_self_service_logout_flow_without_browser Perform Logout for APIs, Services, Apps, ... # noqa: E501 """ pass def test_submit_self_service_recovery_flow(self): """Test case for submit_self_service_recovery_flow Complete Recovery Flow # noqa: E501 """ pass def test_submit_self_service_registration_flow(self): """Test case for submit_self_service_registration_flow Submit a Registration Flow # noqa: E501 """ pass def test_submit_self_service_settings_flow(self): """Test case for submit_self_service_settings_flow Complete Settings Flow # noqa: E501 """ pass def test_submit_self_service_verification_flow(self): """Test case for submit_self_service_verification_flow Complete Verification Flow # noqa: E501 """ pass def test_to_session(self): """Test case for to_session Check Who the Current HTTP Session Belongs To # noqa: E501 """ pass if __name__ == '__main__': unittest.main()
[((7307, 7322), 'unittest.main', 'unittest.main', ([], {}), '()\n', (7320, 7322), False, 'import unittest\n'), ((844, 857), 'ory_kratos_client.api.v0alpha1_api.V0alpha1Api', 'V0alpha1Api', ([], {}), '()\n', (855, 857), False, 'from ory_kratos_client.api.v0alpha1_api import V0alpha1Api\n')]
XaKingas/osrsapi
osrsapi/__init__.py
14b93e0f6902724e57ebb1f50d817bd557e41c3d
from .grandexchange import GrandExchange, GameItemNotFound, GameItemParseError from .item import Item from .priceinfo import PriceInfo from .pricetrend import PriceTrend
[]
dilum1995/DAugmentor
utils/data_loader.py
6cc86dccf826415a88b8226265e16ae96b5cc05b
import pandas as pd import os import numpy as np import cv2 from utils import constants as const import matplotlib.pyplot as plt class DataLoader: def load_data(): ''' This function is handling the data loading and pre-processing :return: (xtrain, ytrain), (xtest, ytest) ''' print('**** Read data into DAugmentor ****') x_train = [] y_train = [] x_test = [] y_test = [] # setting the path to metadata path = const.PATH metadata_csv_path = os.path.join(path, const.FILE_METADATA) test_img_dir_path = os.path.join(path, const.DIR_TEST) train_img_dir_path = os.path.join(path, const.DIR_TRAIN) print(metadata_csv_path) # setting the path to train data x_train_path = os.path.join(path, const.DIR_TRAIN) print(x_train_path) # setting the path to train data x_test_path = os.path.join(path, const.DIR_TEST) # reading meta data file as dataframe df = pd.read_csv(metadata_csv_path, delimiter=',') # dataset format: # image_name # label # data_type data_type_row = df["data_type"].tolist() image_row = df["image_name"].tolist() label_row = df["label"].tolist() data_rows = len(data_type_row) for row in range(data_rows): if (data_type_row[row] == "TRAIN"): # setting the path of the current image img_path = os.path.join(train_img_dir_path, image_row[row]) # reading image image = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE) # downscaling image to 28x28 image = cv2.resize(image, (128, 128)) x_train.append(image) print("Loaded: " + img_path) # extracting labels y_train.append(label_row[row]) if (data_type_row[row] == "TEST"): # setting the path of the current image img_path = os.path.join(test_img_dir_path, image_row[row]) # reading image image = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE) # downscaling image to 28x28 image = cv2.resize(image, (128, 128)) x_test.append(image) print("Loaded: " + img_path) # extracting labels y_test.append(label_row[row]) xtrain = np.asarray(x_train) ytrain = np.asarray(y_train) xtest = np.asarray(x_test) ytest = np.asarray(y_test) print(x_train[0].shape) print(x_train[0].shape) print(xtrain[0].shape) print(x_test[0].shape) #(X_train, y_train), (X_test, y_test) return (xtrain, ytrain), (xtest, ytest)
[((546, 585), 'os.path.join', 'os.path.join', (['path', 'const.FILE_METADATA'], {}), '(path, const.FILE_METADATA)\n', (558, 585), False, 'import os\n'), ((614, 648), 'os.path.join', 'os.path.join', (['path', 'const.DIR_TEST'], {}), '(path, const.DIR_TEST)\n', (626, 648), False, 'import os\n'), ((678, 713), 'os.path.join', 'os.path.join', (['path', 'const.DIR_TRAIN'], {}), '(path, const.DIR_TRAIN)\n', (690, 713), False, 'import os\n'), ((812, 847), 'os.path.join', 'os.path.join', (['path', 'const.DIR_TRAIN'], {}), '(path, const.DIR_TRAIN)\n', (824, 847), False, 'import os\n'), ((940, 974), 'os.path.join', 'os.path.join', (['path', 'const.DIR_TEST'], {}), '(path, const.DIR_TEST)\n', (952, 974), False, 'import os\n'), ((1035, 1080), 'pandas.read_csv', 'pd.read_csv', (['metadata_csv_path'], {'delimiter': '""","""'}), "(metadata_csv_path, delimiter=',')\n", (1046, 1080), True, 'import pandas as pd\n'), ((2489, 2508), 'numpy.asarray', 'np.asarray', (['x_train'], {}), '(x_train)\n', (2499, 2508), True, 'import numpy as np\n'), ((2526, 2545), 'numpy.asarray', 'np.asarray', (['y_train'], {}), '(y_train)\n', (2536, 2545), True, 'import numpy as np\n'), ((2562, 2580), 'numpy.asarray', 'np.asarray', (['x_test'], {}), '(x_test)\n', (2572, 2580), True, 'import numpy as np\n'), ((2597, 2615), 'numpy.asarray', 'np.asarray', (['y_test'], {}), '(y_test)\n', (2607, 2615), True, 'import numpy as np\n'), ((1517, 1565), 'os.path.join', 'os.path.join', (['train_img_dir_path', 'image_row[row]'], {}), '(train_img_dir_path, image_row[row])\n', (1529, 1565), False, 'import os\n'), ((1622, 1664), 'cv2.imread', 'cv2.imread', (['img_path', 'cv2.IMREAD_GRAYSCALE'], {}), '(img_path, cv2.IMREAD_GRAYSCALE)\n', (1632, 1664), False, 'import cv2\n'), ((1734, 1763), 'cv2.resize', 'cv2.resize', (['image', '(128, 128)'], {}), '(image, (128, 128))\n', (1744, 1763), False, 'import cv2\n'), ((2061, 2108), 'os.path.join', 'os.path.join', (['test_img_dir_path', 'image_row[row]'], {}), '(test_img_dir_path, image_row[row])\n', (2073, 2108), False, 'import os\n'), ((2165, 2207), 'cv2.imread', 'cv2.imread', (['img_path', 'cv2.IMREAD_GRAYSCALE'], {}), '(img_path, cv2.IMREAD_GRAYSCALE)\n', (2175, 2207), False, 'import cv2\n'), ((2277, 2306), 'cv2.resize', 'cv2.resize', (['image', '(128, 128)'], {}), '(image, (128, 128))\n', (2287, 2306), False, 'import cv2\n')]
valternunez/Compiler
CompilerPython/LexerPython/main.py
879cecbbeb1c21d9d19021664ace62442273d3ba
from lexer import * import sys if len(sys.argv) != 2: print("usage: main.py file") else: lex = Lexer(sys.argv[1]) with open(sys.argv[1]) as f: while True: c = f.read(1) if not c: break print(lex.scan().toString())
[]