contract_name
stringlengths
1
61
file_path
stringlengths
5
50.4k
contract_address
stringlengths
42
42
language
stringclasses
1 value
class_name
stringlengths
1
61
class_code
stringlengths
4
330k
class_documentation
stringlengths
0
29.1k
class_documentation_type
stringclasses
6 values
func_name
stringlengths
0
62
func_code
stringlengths
1
303k
func_documentation
stringlengths
2
14.9k
func_documentation_type
stringclasses
4 values
compiler_version
stringlengths
15
42
license_type
stringclasses
14 values
swarm_source
stringlengths
0
71
meta
dict
__index_level_0__
int64
0
60.4k
Tiger
contracts/token/RhapsodyCreator.sol
0xeb6600e62c24d17734c1807414a9159b116c9520
Solidity
RhapsodyCreator
contract RhapsodyCreator is ERC721A, Ownable, ReentrancyGuard { /// ============ Libraries ============ /// @notice safe math for arithmetic operations using SafeMath for uint256; /// ============ Immutable storage ============ /// @notice promotional nfts count uint256 public immutable amountForPromotion; /// @notice max mintable tokens for each address in public uint256 public immutable maxPublicBatchPerAddress; /// @notice mint price of each nft; same for pre/public sale. uint256 public immutable mintPrice; /// ============ Mutable storage ============ /// @notice metadata object used for tokenURI string private _baseTokenURI; /// @notice ERC721-presale inclusion root bytes32 public presaleMerkleRoot; /// @notice time the presale starts; uint256 public presaleTime; /// @notice time the public starts; uint256 public publicTime; /// ============ Constructor ============ /// @notice Creates a new Creator contract /// @param _presaleMerkleRoot root of the merklelized whitelist /// @param _collectionSize the total size of the collection /// @param _maxPublicBatchPerAddress max mintable tokens in public sale /// @param _amountForPromotion promotional nfts count /// @param _mintPrice mint price of each nft constructor( string memory _name, string memory _symbol, bytes32 _presaleMerkleRoot, uint256 _collectionSize, uint256 _maxPublicBatchPerAddress, uint256 _amountForPromotion, uint256 _mintPrice ) ERC721A(_name, _symbol, _maxPublicBatchPerAddress, _collectionSize) { require(_amountForPromotion <= _collectionSize, "RhapsodyCreator/invalid-promotion-amount"); require(_mintPrice > 0, "RhapsodyCreator/invalid-mint-price"); maxPublicBatchPerAddress = _maxPublicBatchPerAddress; amountForPromotion = _amountForPromotion; mintPrice = _mintPrice; presaleMerkleRoot = _presaleMerkleRoot; } /// ============ Events ============ event Created(address indexed to, uint256 amount); /// =========== Sale =========== /// @notice Allows presale minting of tokens if address is part of merkle tree /// @param invocations number of tokens to mint /// @param maxInvocation max number of invocations of the user /// @param proof merkle proof to prove address and token mint count are in tree function presaleMint( uint256 invocations, uint256 maxInvocation, bytes32[] calldata proof ) external payable isMintValid(invocations, maxInvocation) isMintLive(presaleTime) { require(_mintOf(msg.sender) == 0, "RhapsodyCreator/invalid-double-mint"); require( MerkleProof.verify(proof, presaleMerkleRoot, keccak256(abi.encodePacked(msg.sender, maxInvocation))), "RhapsodyCreator/invalid-address-proof" ); _safeMint(msg.sender, invocations); emit Created(msg.sender, invocations); } /// @notice Allows public minting of tokens /// @param invocations number of tokens to mint /// @dev user can only mint less than maxPublicBatchPerAddress of tokens function publicMint(uint256 invocations) external payable isMintValid(invocations, maxPublicBatchPerAddress) isMintLive(publicTime) { _safeMint(msg.sender, invocations); emit Created(msg.sender, invocations); } /// @notice Set the time for the mint /// @param _presaleTime time the presale starts /// @param _publicTime time the public sale starts /// @dev this function can serve as an "active" and "non-active" sale status /// @dev set the values to uint256(-1) for "non-active" sale status /// @dev also, pass contract ownership to address(0) to close sale forever function setMintTime(uint256 _presaleTime, uint256 _publicTime) public onlyOwner { require(_presaleTime > _currentTime(), "RhapsodyCreator/invalid-presale-time"); require(_publicTime > _presaleTime, "RhapsodyCreator/invalid-public-time"); presaleTime = _presaleTime; publicTime = _publicTime; } /// @notice force override the merkle root used in presale mint /// @param _presaleMerkleRoot root of the merklelized whitelist function setMintMerkleRoot(bytes32 _presaleMerkleRoot) public onlyOwner { presaleMerkleRoot = _presaleMerkleRoot; } /// @notice ensures that minters need valid invocations + value to mint modifier isMintValid(uint256 invocations, uint256 maxInvocation) { require(tx.origin == msg.sender, "RhapsodyCreator/invalid-mint-caller"); require(totalSupply().add(invocations) <= collectionSize, "RhapsodyCreator/invalid-total-supply"); require(msg.value == mintPrice.mul(invocations), "RhapsodyCreator/invalid-mint-value"); require(msg.value > 0 && invocations > 0, "RhapsodyCreator/invalid-invocation-lower-boundary"); require( _mintOf(msg.sender).add(invocations) <= maxInvocation, "RhapsodyCreator/invalid-invocation-upper-boundary" ); _; } /// @notice used to check the time of mint of presale and public /// @dev only publicTime/presaleTime variable is used here; see publicMint/presaleMint function /// @dev time > 0 is optimization when the sale is not live; r.e mint "not-active" mode modifier isMintLive(uint256 time) { require(time > 0 && block.timestamp > time, "RhapsodyCreator/invalid-mint-time"); _; } /// =========== Metadata =========== /// @notice set the new baseURI to change the tokens metadata function setBaseURI(string calldata baseURI) external onlyOwner { _baseTokenURI = baseURI; } /// @notice core metadata baseURI used for tokens metadata function _baseURI() internal view virtual override returns (string memory) { return _baseTokenURI; } /// @notice core metadata baseURI used for tokens metadata function baseURI() public view returns (string memory) { return _baseURI(); } /// =========== Dev =========== /// @notice used by owner to mint promotional nfts /// @param invocations the number of invocations to batch mint function promotionMint(uint256 invocations) external onlyOwner { require(totalSupply().add(invocations) <= amountForPromotion, "RhapsodyCreator/invalid-promotion-supply"); require(invocations.mod(maxBatchSize) == 0, "RhapsodyCreator/invalid-batch-multiple"); uint256 blocks = invocations.div(maxBatchSize); for (uint256 i = 0; i < blocks; i++) { _safeMint(msg.sender, maxBatchSize); } emit Created(msg.sender, invocations); } /// @notice withdraws the ether in the contract to owner function withdrawMoney() external onlyOwner nonReentrant { (bool success, ) = msg.sender.call{ value: address(this).balance }(""); require(success, "RhapsodyCreator/invalid-withdraw-money"); } /// @notice returns the current block timestamp /// @dev this function is overriden in testing for time-dependent testing function _currentTime() internal virtual returns (uint256) { return block.timestamp; } /// @notice sets the owners quantity explicity /// @dev eliminate loops in future calls of ownerOf() function setOwnersExplicit(uint256 quantity) external onlyOwner nonReentrant { _setOwnersExplicit(quantity); } }
setMintTime
function setMintTime(uint256 _presaleTime, uint256 _publicTime) public onlyOwner { require(_presaleTime > _currentTime(), "RhapsodyCreator/invalid-presale-time"); require(_publicTime > _presaleTime, "RhapsodyCreator/invalid-public-time"); presaleTime = _presaleTime; publicTime = _publicTime; }
/// @notice Set the time for the mint /// @param _presaleTime time the presale starts /// @param _publicTime time the public sale starts /// @dev this function can serve as an "active" and "non-active" sale status /// @dev set the values to uint256(-1) for "non-active" sale status /// @dev also, pass contract ownership to address(0) to close sale forever
NatSpecSingleLine
v0.8.9+commit.e5eed63a
MIT
{ "func_code_index": [ 3874, 4208 ] }
2,707
Tiger
contracts/token/RhapsodyCreator.sol
0xeb6600e62c24d17734c1807414a9159b116c9520
Solidity
RhapsodyCreator
contract RhapsodyCreator is ERC721A, Ownable, ReentrancyGuard { /// ============ Libraries ============ /// @notice safe math for arithmetic operations using SafeMath for uint256; /// ============ Immutable storage ============ /// @notice promotional nfts count uint256 public immutable amountForPromotion; /// @notice max mintable tokens for each address in public uint256 public immutable maxPublicBatchPerAddress; /// @notice mint price of each nft; same for pre/public sale. uint256 public immutable mintPrice; /// ============ Mutable storage ============ /// @notice metadata object used for tokenURI string private _baseTokenURI; /// @notice ERC721-presale inclusion root bytes32 public presaleMerkleRoot; /// @notice time the presale starts; uint256 public presaleTime; /// @notice time the public starts; uint256 public publicTime; /// ============ Constructor ============ /// @notice Creates a new Creator contract /// @param _presaleMerkleRoot root of the merklelized whitelist /// @param _collectionSize the total size of the collection /// @param _maxPublicBatchPerAddress max mintable tokens in public sale /// @param _amountForPromotion promotional nfts count /// @param _mintPrice mint price of each nft constructor( string memory _name, string memory _symbol, bytes32 _presaleMerkleRoot, uint256 _collectionSize, uint256 _maxPublicBatchPerAddress, uint256 _amountForPromotion, uint256 _mintPrice ) ERC721A(_name, _symbol, _maxPublicBatchPerAddress, _collectionSize) { require(_amountForPromotion <= _collectionSize, "RhapsodyCreator/invalid-promotion-amount"); require(_mintPrice > 0, "RhapsodyCreator/invalid-mint-price"); maxPublicBatchPerAddress = _maxPublicBatchPerAddress; amountForPromotion = _amountForPromotion; mintPrice = _mintPrice; presaleMerkleRoot = _presaleMerkleRoot; } /// ============ Events ============ event Created(address indexed to, uint256 amount); /// =========== Sale =========== /// @notice Allows presale minting of tokens if address is part of merkle tree /// @param invocations number of tokens to mint /// @param maxInvocation max number of invocations of the user /// @param proof merkle proof to prove address and token mint count are in tree function presaleMint( uint256 invocations, uint256 maxInvocation, bytes32[] calldata proof ) external payable isMintValid(invocations, maxInvocation) isMintLive(presaleTime) { require(_mintOf(msg.sender) == 0, "RhapsodyCreator/invalid-double-mint"); require( MerkleProof.verify(proof, presaleMerkleRoot, keccak256(abi.encodePacked(msg.sender, maxInvocation))), "RhapsodyCreator/invalid-address-proof" ); _safeMint(msg.sender, invocations); emit Created(msg.sender, invocations); } /// @notice Allows public minting of tokens /// @param invocations number of tokens to mint /// @dev user can only mint less than maxPublicBatchPerAddress of tokens function publicMint(uint256 invocations) external payable isMintValid(invocations, maxPublicBatchPerAddress) isMintLive(publicTime) { _safeMint(msg.sender, invocations); emit Created(msg.sender, invocations); } /// @notice Set the time for the mint /// @param _presaleTime time the presale starts /// @param _publicTime time the public sale starts /// @dev this function can serve as an "active" and "non-active" sale status /// @dev set the values to uint256(-1) for "non-active" sale status /// @dev also, pass contract ownership to address(0) to close sale forever function setMintTime(uint256 _presaleTime, uint256 _publicTime) public onlyOwner { require(_presaleTime > _currentTime(), "RhapsodyCreator/invalid-presale-time"); require(_publicTime > _presaleTime, "RhapsodyCreator/invalid-public-time"); presaleTime = _presaleTime; publicTime = _publicTime; } /// @notice force override the merkle root used in presale mint /// @param _presaleMerkleRoot root of the merklelized whitelist function setMintMerkleRoot(bytes32 _presaleMerkleRoot) public onlyOwner { presaleMerkleRoot = _presaleMerkleRoot; } /// @notice ensures that minters need valid invocations + value to mint modifier isMintValid(uint256 invocations, uint256 maxInvocation) { require(tx.origin == msg.sender, "RhapsodyCreator/invalid-mint-caller"); require(totalSupply().add(invocations) <= collectionSize, "RhapsodyCreator/invalid-total-supply"); require(msg.value == mintPrice.mul(invocations), "RhapsodyCreator/invalid-mint-value"); require(msg.value > 0 && invocations > 0, "RhapsodyCreator/invalid-invocation-lower-boundary"); require( _mintOf(msg.sender).add(invocations) <= maxInvocation, "RhapsodyCreator/invalid-invocation-upper-boundary" ); _; } /// @notice used to check the time of mint of presale and public /// @dev only publicTime/presaleTime variable is used here; see publicMint/presaleMint function /// @dev time > 0 is optimization when the sale is not live; r.e mint "not-active" mode modifier isMintLive(uint256 time) { require(time > 0 && block.timestamp > time, "RhapsodyCreator/invalid-mint-time"); _; } /// =========== Metadata =========== /// @notice set the new baseURI to change the tokens metadata function setBaseURI(string calldata baseURI) external onlyOwner { _baseTokenURI = baseURI; } /// @notice core metadata baseURI used for tokens metadata function _baseURI() internal view virtual override returns (string memory) { return _baseTokenURI; } /// @notice core metadata baseURI used for tokens metadata function baseURI() public view returns (string memory) { return _baseURI(); } /// =========== Dev =========== /// @notice used by owner to mint promotional nfts /// @param invocations the number of invocations to batch mint function promotionMint(uint256 invocations) external onlyOwner { require(totalSupply().add(invocations) <= amountForPromotion, "RhapsodyCreator/invalid-promotion-supply"); require(invocations.mod(maxBatchSize) == 0, "RhapsodyCreator/invalid-batch-multiple"); uint256 blocks = invocations.div(maxBatchSize); for (uint256 i = 0; i < blocks; i++) { _safeMint(msg.sender, maxBatchSize); } emit Created(msg.sender, invocations); } /// @notice withdraws the ether in the contract to owner function withdrawMoney() external onlyOwner nonReentrant { (bool success, ) = msg.sender.call{ value: address(this).balance }(""); require(success, "RhapsodyCreator/invalid-withdraw-money"); } /// @notice returns the current block timestamp /// @dev this function is overriden in testing for time-dependent testing function _currentTime() internal virtual returns (uint256) { return block.timestamp; } /// @notice sets the owners quantity explicity /// @dev eliminate loops in future calls of ownerOf() function setOwnersExplicit(uint256 quantity) external onlyOwner nonReentrant { _setOwnersExplicit(quantity); } }
setMintMerkleRoot
function setMintMerkleRoot(bytes32 _presaleMerkleRoot) public onlyOwner { presaleMerkleRoot = _presaleMerkleRoot; }
/// @notice force override the merkle root used in presale mint /// @param _presaleMerkleRoot root of the merklelized whitelist
NatSpecSingleLine
v0.8.9+commit.e5eed63a
MIT
{ "func_code_index": [ 4346, 4477 ] }
2,708
Tiger
contracts/token/RhapsodyCreator.sol
0xeb6600e62c24d17734c1807414a9159b116c9520
Solidity
RhapsodyCreator
contract RhapsodyCreator is ERC721A, Ownable, ReentrancyGuard { /// ============ Libraries ============ /// @notice safe math for arithmetic operations using SafeMath for uint256; /// ============ Immutable storage ============ /// @notice promotional nfts count uint256 public immutable amountForPromotion; /// @notice max mintable tokens for each address in public uint256 public immutable maxPublicBatchPerAddress; /// @notice mint price of each nft; same for pre/public sale. uint256 public immutable mintPrice; /// ============ Mutable storage ============ /// @notice metadata object used for tokenURI string private _baseTokenURI; /// @notice ERC721-presale inclusion root bytes32 public presaleMerkleRoot; /// @notice time the presale starts; uint256 public presaleTime; /// @notice time the public starts; uint256 public publicTime; /// ============ Constructor ============ /// @notice Creates a new Creator contract /// @param _presaleMerkleRoot root of the merklelized whitelist /// @param _collectionSize the total size of the collection /// @param _maxPublicBatchPerAddress max mintable tokens in public sale /// @param _amountForPromotion promotional nfts count /// @param _mintPrice mint price of each nft constructor( string memory _name, string memory _symbol, bytes32 _presaleMerkleRoot, uint256 _collectionSize, uint256 _maxPublicBatchPerAddress, uint256 _amountForPromotion, uint256 _mintPrice ) ERC721A(_name, _symbol, _maxPublicBatchPerAddress, _collectionSize) { require(_amountForPromotion <= _collectionSize, "RhapsodyCreator/invalid-promotion-amount"); require(_mintPrice > 0, "RhapsodyCreator/invalid-mint-price"); maxPublicBatchPerAddress = _maxPublicBatchPerAddress; amountForPromotion = _amountForPromotion; mintPrice = _mintPrice; presaleMerkleRoot = _presaleMerkleRoot; } /// ============ Events ============ event Created(address indexed to, uint256 amount); /// =========== Sale =========== /// @notice Allows presale minting of tokens if address is part of merkle tree /// @param invocations number of tokens to mint /// @param maxInvocation max number of invocations of the user /// @param proof merkle proof to prove address and token mint count are in tree function presaleMint( uint256 invocations, uint256 maxInvocation, bytes32[] calldata proof ) external payable isMintValid(invocations, maxInvocation) isMintLive(presaleTime) { require(_mintOf(msg.sender) == 0, "RhapsodyCreator/invalid-double-mint"); require( MerkleProof.verify(proof, presaleMerkleRoot, keccak256(abi.encodePacked(msg.sender, maxInvocation))), "RhapsodyCreator/invalid-address-proof" ); _safeMint(msg.sender, invocations); emit Created(msg.sender, invocations); } /// @notice Allows public minting of tokens /// @param invocations number of tokens to mint /// @dev user can only mint less than maxPublicBatchPerAddress of tokens function publicMint(uint256 invocations) external payable isMintValid(invocations, maxPublicBatchPerAddress) isMintLive(publicTime) { _safeMint(msg.sender, invocations); emit Created(msg.sender, invocations); } /// @notice Set the time for the mint /// @param _presaleTime time the presale starts /// @param _publicTime time the public sale starts /// @dev this function can serve as an "active" and "non-active" sale status /// @dev set the values to uint256(-1) for "non-active" sale status /// @dev also, pass contract ownership to address(0) to close sale forever function setMintTime(uint256 _presaleTime, uint256 _publicTime) public onlyOwner { require(_presaleTime > _currentTime(), "RhapsodyCreator/invalid-presale-time"); require(_publicTime > _presaleTime, "RhapsodyCreator/invalid-public-time"); presaleTime = _presaleTime; publicTime = _publicTime; } /// @notice force override the merkle root used in presale mint /// @param _presaleMerkleRoot root of the merklelized whitelist function setMintMerkleRoot(bytes32 _presaleMerkleRoot) public onlyOwner { presaleMerkleRoot = _presaleMerkleRoot; } /// @notice ensures that minters need valid invocations + value to mint modifier isMintValid(uint256 invocations, uint256 maxInvocation) { require(tx.origin == msg.sender, "RhapsodyCreator/invalid-mint-caller"); require(totalSupply().add(invocations) <= collectionSize, "RhapsodyCreator/invalid-total-supply"); require(msg.value == mintPrice.mul(invocations), "RhapsodyCreator/invalid-mint-value"); require(msg.value > 0 && invocations > 0, "RhapsodyCreator/invalid-invocation-lower-boundary"); require( _mintOf(msg.sender).add(invocations) <= maxInvocation, "RhapsodyCreator/invalid-invocation-upper-boundary" ); _; } /// @notice used to check the time of mint of presale and public /// @dev only publicTime/presaleTime variable is used here; see publicMint/presaleMint function /// @dev time > 0 is optimization when the sale is not live; r.e mint "not-active" mode modifier isMintLive(uint256 time) { require(time > 0 && block.timestamp > time, "RhapsodyCreator/invalid-mint-time"); _; } /// =========== Metadata =========== /// @notice set the new baseURI to change the tokens metadata function setBaseURI(string calldata baseURI) external onlyOwner { _baseTokenURI = baseURI; } /// @notice core metadata baseURI used for tokens metadata function _baseURI() internal view virtual override returns (string memory) { return _baseTokenURI; } /// @notice core metadata baseURI used for tokens metadata function baseURI() public view returns (string memory) { return _baseURI(); } /// =========== Dev =========== /// @notice used by owner to mint promotional nfts /// @param invocations the number of invocations to batch mint function promotionMint(uint256 invocations) external onlyOwner { require(totalSupply().add(invocations) <= amountForPromotion, "RhapsodyCreator/invalid-promotion-supply"); require(invocations.mod(maxBatchSize) == 0, "RhapsodyCreator/invalid-batch-multiple"); uint256 blocks = invocations.div(maxBatchSize); for (uint256 i = 0; i < blocks; i++) { _safeMint(msg.sender, maxBatchSize); } emit Created(msg.sender, invocations); } /// @notice withdraws the ether in the contract to owner function withdrawMoney() external onlyOwner nonReentrant { (bool success, ) = msg.sender.call{ value: address(this).balance }(""); require(success, "RhapsodyCreator/invalid-withdraw-money"); } /// @notice returns the current block timestamp /// @dev this function is overriden in testing for time-dependent testing function _currentTime() internal virtual returns (uint256) { return block.timestamp; } /// @notice sets the owners quantity explicity /// @dev eliminate loops in future calls of ownerOf() function setOwnersExplicit(uint256 quantity) external onlyOwner nonReentrant { _setOwnersExplicit(quantity); } }
setBaseURI
function setBaseURI(string calldata baseURI) external onlyOwner { _baseTokenURI = baseURI; }
/// =========== Metadata =========== /// @notice set the new baseURI to change the tokens metadata
NatSpecSingleLine
v0.8.9+commit.e5eed63a
MIT
{ "func_code_index": [ 5709, 5817 ] }
2,709
Tiger
contracts/token/RhapsodyCreator.sol
0xeb6600e62c24d17734c1807414a9159b116c9520
Solidity
RhapsodyCreator
contract RhapsodyCreator is ERC721A, Ownable, ReentrancyGuard { /// ============ Libraries ============ /// @notice safe math for arithmetic operations using SafeMath for uint256; /// ============ Immutable storage ============ /// @notice promotional nfts count uint256 public immutable amountForPromotion; /// @notice max mintable tokens for each address in public uint256 public immutable maxPublicBatchPerAddress; /// @notice mint price of each nft; same for pre/public sale. uint256 public immutable mintPrice; /// ============ Mutable storage ============ /// @notice metadata object used for tokenURI string private _baseTokenURI; /// @notice ERC721-presale inclusion root bytes32 public presaleMerkleRoot; /// @notice time the presale starts; uint256 public presaleTime; /// @notice time the public starts; uint256 public publicTime; /// ============ Constructor ============ /// @notice Creates a new Creator contract /// @param _presaleMerkleRoot root of the merklelized whitelist /// @param _collectionSize the total size of the collection /// @param _maxPublicBatchPerAddress max mintable tokens in public sale /// @param _amountForPromotion promotional nfts count /// @param _mintPrice mint price of each nft constructor( string memory _name, string memory _symbol, bytes32 _presaleMerkleRoot, uint256 _collectionSize, uint256 _maxPublicBatchPerAddress, uint256 _amountForPromotion, uint256 _mintPrice ) ERC721A(_name, _symbol, _maxPublicBatchPerAddress, _collectionSize) { require(_amountForPromotion <= _collectionSize, "RhapsodyCreator/invalid-promotion-amount"); require(_mintPrice > 0, "RhapsodyCreator/invalid-mint-price"); maxPublicBatchPerAddress = _maxPublicBatchPerAddress; amountForPromotion = _amountForPromotion; mintPrice = _mintPrice; presaleMerkleRoot = _presaleMerkleRoot; } /// ============ Events ============ event Created(address indexed to, uint256 amount); /// =========== Sale =========== /// @notice Allows presale minting of tokens if address is part of merkle tree /// @param invocations number of tokens to mint /// @param maxInvocation max number of invocations of the user /// @param proof merkle proof to prove address and token mint count are in tree function presaleMint( uint256 invocations, uint256 maxInvocation, bytes32[] calldata proof ) external payable isMintValid(invocations, maxInvocation) isMintLive(presaleTime) { require(_mintOf(msg.sender) == 0, "RhapsodyCreator/invalid-double-mint"); require( MerkleProof.verify(proof, presaleMerkleRoot, keccak256(abi.encodePacked(msg.sender, maxInvocation))), "RhapsodyCreator/invalid-address-proof" ); _safeMint(msg.sender, invocations); emit Created(msg.sender, invocations); } /// @notice Allows public minting of tokens /// @param invocations number of tokens to mint /// @dev user can only mint less than maxPublicBatchPerAddress of tokens function publicMint(uint256 invocations) external payable isMintValid(invocations, maxPublicBatchPerAddress) isMintLive(publicTime) { _safeMint(msg.sender, invocations); emit Created(msg.sender, invocations); } /// @notice Set the time for the mint /// @param _presaleTime time the presale starts /// @param _publicTime time the public sale starts /// @dev this function can serve as an "active" and "non-active" sale status /// @dev set the values to uint256(-1) for "non-active" sale status /// @dev also, pass contract ownership to address(0) to close sale forever function setMintTime(uint256 _presaleTime, uint256 _publicTime) public onlyOwner { require(_presaleTime > _currentTime(), "RhapsodyCreator/invalid-presale-time"); require(_publicTime > _presaleTime, "RhapsodyCreator/invalid-public-time"); presaleTime = _presaleTime; publicTime = _publicTime; } /// @notice force override the merkle root used in presale mint /// @param _presaleMerkleRoot root of the merklelized whitelist function setMintMerkleRoot(bytes32 _presaleMerkleRoot) public onlyOwner { presaleMerkleRoot = _presaleMerkleRoot; } /// @notice ensures that minters need valid invocations + value to mint modifier isMintValid(uint256 invocations, uint256 maxInvocation) { require(tx.origin == msg.sender, "RhapsodyCreator/invalid-mint-caller"); require(totalSupply().add(invocations) <= collectionSize, "RhapsodyCreator/invalid-total-supply"); require(msg.value == mintPrice.mul(invocations), "RhapsodyCreator/invalid-mint-value"); require(msg.value > 0 && invocations > 0, "RhapsodyCreator/invalid-invocation-lower-boundary"); require( _mintOf(msg.sender).add(invocations) <= maxInvocation, "RhapsodyCreator/invalid-invocation-upper-boundary" ); _; } /// @notice used to check the time of mint of presale and public /// @dev only publicTime/presaleTime variable is used here; see publicMint/presaleMint function /// @dev time > 0 is optimization when the sale is not live; r.e mint "not-active" mode modifier isMintLive(uint256 time) { require(time > 0 && block.timestamp > time, "RhapsodyCreator/invalid-mint-time"); _; } /// =========== Metadata =========== /// @notice set the new baseURI to change the tokens metadata function setBaseURI(string calldata baseURI) external onlyOwner { _baseTokenURI = baseURI; } /// @notice core metadata baseURI used for tokens metadata function _baseURI() internal view virtual override returns (string memory) { return _baseTokenURI; } /// @notice core metadata baseURI used for tokens metadata function baseURI() public view returns (string memory) { return _baseURI(); } /// =========== Dev =========== /// @notice used by owner to mint promotional nfts /// @param invocations the number of invocations to batch mint function promotionMint(uint256 invocations) external onlyOwner { require(totalSupply().add(invocations) <= amountForPromotion, "RhapsodyCreator/invalid-promotion-supply"); require(invocations.mod(maxBatchSize) == 0, "RhapsodyCreator/invalid-batch-multiple"); uint256 blocks = invocations.div(maxBatchSize); for (uint256 i = 0; i < blocks; i++) { _safeMint(msg.sender, maxBatchSize); } emit Created(msg.sender, invocations); } /// @notice withdraws the ether in the contract to owner function withdrawMoney() external onlyOwner nonReentrant { (bool success, ) = msg.sender.call{ value: address(this).balance }(""); require(success, "RhapsodyCreator/invalid-withdraw-money"); } /// @notice returns the current block timestamp /// @dev this function is overriden in testing for time-dependent testing function _currentTime() internal virtual returns (uint256) { return block.timestamp; } /// @notice sets the owners quantity explicity /// @dev eliminate loops in future calls of ownerOf() function setOwnersExplicit(uint256 quantity) external onlyOwner nonReentrant { _setOwnersExplicit(quantity); } }
_baseURI
function _baseURI() internal view virtual override returns (string memory) { return _baseTokenURI; }
/// @notice core metadata baseURI used for tokens metadata
NatSpecSingleLine
v0.8.9+commit.e5eed63a
MIT
{ "func_code_index": [ 5882, 5998 ] }
2,710
Tiger
contracts/token/RhapsodyCreator.sol
0xeb6600e62c24d17734c1807414a9159b116c9520
Solidity
RhapsodyCreator
contract RhapsodyCreator is ERC721A, Ownable, ReentrancyGuard { /// ============ Libraries ============ /// @notice safe math for arithmetic operations using SafeMath for uint256; /// ============ Immutable storage ============ /// @notice promotional nfts count uint256 public immutable amountForPromotion; /// @notice max mintable tokens for each address in public uint256 public immutable maxPublicBatchPerAddress; /// @notice mint price of each nft; same for pre/public sale. uint256 public immutable mintPrice; /// ============ Mutable storage ============ /// @notice metadata object used for tokenURI string private _baseTokenURI; /// @notice ERC721-presale inclusion root bytes32 public presaleMerkleRoot; /// @notice time the presale starts; uint256 public presaleTime; /// @notice time the public starts; uint256 public publicTime; /// ============ Constructor ============ /// @notice Creates a new Creator contract /// @param _presaleMerkleRoot root of the merklelized whitelist /// @param _collectionSize the total size of the collection /// @param _maxPublicBatchPerAddress max mintable tokens in public sale /// @param _amountForPromotion promotional nfts count /// @param _mintPrice mint price of each nft constructor( string memory _name, string memory _symbol, bytes32 _presaleMerkleRoot, uint256 _collectionSize, uint256 _maxPublicBatchPerAddress, uint256 _amountForPromotion, uint256 _mintPrice ) ERC721A(_name, _symbol, _maxPublicBatchPerAddress, _collectionSize) { require(_amountForPromotion <= _collectionSize, "RhapsodyCreator/invalid-promotion-amount"); require(_mintPrice > 0, "RhapsodyCreator/invalid-mint-price"); maxPublicBatchPerAddress = _maxPublicBatchPerAddress; amountForPromotion = _amountForPromotion; mintPrice = _mintPrice; presaleMerkleRoot = _presaleMerkleRoot; } /// ============ Events ============ event Created(address indexed to, uint256 amount); /// =========== Sale =========== /// @notice Allows presale minting of tokens if address is part of merkle tree /// @param invocations number of tokens to mint /// @param maxInvocation max number of invocations of the user /// @param proof merkle proof to prove address and token mint count are in tree function presaleMint( uint256 invocations, uint256 maxInvocation, bytes32[] calldata proof ) external payable isMintValid(invocations, maxInvocation) isMintLive(presaleTime) { require(_mintOf(msg.sender) == 0, "RhapsodyCreator/invalid-double-mint"); require( MerkleProof.verify(proof, presaleMerkleRoot, keccak256(abi.encodePacked(msg.sender, maxInvocation))), "RhapsodyCreator/invalid-address-proof" ); _safeMint(msg.sender, invocations); emit Created(msg.sender, invocations); } /// @notice Allows public minting of tokens /// @param invocations number of tokens to mint /// @dev user can only mint less than maxPublicBatchPerAddress of tokens function publicMint(uint256 invocations) external payable isMintValid(invocations, maxPublicBatchPerAddress) isMintLive(publicTime) { _safeMint(msg.sender, invocations); emit Created(msg.sender, invocations); } /// @notice Set the time for the mint /// @param _presaleTime time the presale starts /// @param _publicTime time the public sale starts /// @dev this function can serve as an "active" and "non-active" sale status /// @dev set the values to uint256(-1) for "non-active" sale status /// @dev also, pass contract ownership to address(0) to close sale forever function setMintTime(uint256 _presaleTime, uint256 _publicTime) public onlyOwner { require(_presaleTime > _currentTime(), "RhapsodyCreator/invalid-presale-time"); require(_publicTime > _presaleTime, "RhapsodyCreator/invalid-public-time"); presaleTime = _presaleTime; publicTime = _publicTime; } /// @notice force override the merkle root used in presale mint /// @param _presaleMerkleRoot root of the merklelized whitelist function setMintMerkleRoot(bytes32 _presaleMerkleRoot) public onlyOwner { presaleMerkleRoot = _presaleMerkleRoot; } /// @notice ensures that minters need valid invocations + value to mint modifier isMintValid(uint256 invocations, uint256 maxInvocation) { require(tx.origin == msg.sender, "RhapsodyCreator/invalid-mint-caller"); require(totalSupply().add(invocations) <= collectionSize, "RhapsodyCreator/invalid-total-supply"); require(msg.value == mintPrice.mul(invocations), "RhapsodyCreator/invalid-mint-value"); require(msg.value > 0 && invocations > 0, "RhapsodyCreator/invalid-invocation-lower-boundary"); require( _mintOf(msg.sender).add(invocations) <= maxInvocation, "RhapsodyCreator/invalid-invocation-upper-boundary" ); _; } /// @notice used to check the time of mint of presale and public /// @dev only publicTime/presaleTime variable is used here; see publicMint/presaleMint function /// @dev time > 0 is optimization when the sale is not live; r.e mint "not-active" mode modifier isMintLive(uint256 time) { require(time > 0 && block.timestamp > time, "RhapsodyCreator/invalid-mint-time"); _; } /// =========== Metadata =========== /// @notice set the new baseURI to change the tokens metadata function setBaseURI(string calldata baseURI) external onlyOwner { _baseTokenURI = baseURI; } /// @notice core metadata baseURI used for tokens metadata function _baseURI() internal view virtual override returns (string memory) { return _baseTokenURI; } /// @notice core metadata baseURI used for tokens metadata function baseURI() public view returns (string memory) { return _baseURI(); } /// =========== Dev =========== /// @notice used by owner to mint promotional nfts /// @param invocations the number of invocations to batch mint function promotionMint(uint256 invocations) external onlyOwner { require(totalSupply().add(invocations) <= amountForPromotion, "RhapsodyCreator/invalid-promotion-supply"); require(invocations.mod(maxBatchSize) == 0, "RhapsodyCreator/invalid-batch-multiple"); uint256 blocks = invocations.div(maxBatchSize); for (uint256 i = 0; i < blocks; i++) { _safeMint(msg.sender, maxBatchSize); } emit Created(msg.sender, invocations); } /// @notice withdraws the ether in the contract to owner function withdrawMoney() external onlyOwner nonReentrant { (bool success, ) = msg.sender.call{ value: address(this).balance }(""); require(success, "RhapsodyCreator/invalid-withdraw-money"); } /// @notice returns the current block timestamp /// @dev this function is overriden in testing for time-dependent testing function _currentTime() internal virtual returns (uint256) { return block.timestamp; } /// @notice sets the owners quantity explicity /// @dev eliminate loops in future calls of ownerOf() function setOwnersExplicit(uint256 quantity) external onlyOwner nonReentrant { _setOwnersExplicit(quantity); } }
baseURI
function baseURI() public view returns (string memory) { return _baseURI(); }
/// @notice core metadata baseURI used for tokens metadata
NatSpecSingleLine
v0.8.9+commit.e5eed63a
MIT
{ "func_code_index": [ 6063, 6156 ] }
2,711
Tiger
contracts/token/RhapsodyCreator.sol
0xeb6600e62c24d17734c1807414a9159b116c9520
Solidity
RhapsodyCreator
contract RhapsodyCreator is ERC721A, Ownable, ReentrancyGuard { /// ============ Libraries ============ /// @notice safe math for arithmetic operations using SafeMath for uint256; /// ============ Immutable storage ============ /// @notice promotional nfts count uint256 public immutable amountForPromotion; /// @notice max mintable tokens for each address in public uint256 public immutable maxPublicBatchPerAddress; /// @notice mint price of each nft; same for pre/public sale. uint256 public immutable mintPrice; /// ============ Mutable storage ============ /// @notice metadata object used for tokenURI string private _baseTokenURI; /// @notice ERC721-presale inclusion root bytes32 public presaleMerkleRoot; /// @notice time the presale starts; uint256 public presaleTime; /// @notice time the public starts; uint256 public publicTime; /// ============ Constructor ============ /// @notice Creates a new Creator contract /// @param _presaleMerkleRoot root of the merklelized whitelist /// @param _collectionSize the total size of the collection /// @param _maxPublicBatchPerAddress max mintable tokens in public sale /// @param _amountForPromotion promotional nfts count /// @param _mintPrice mint price of each nft constructor( string memory _name, string memory _symbol, bytes32 _presaleMerkleRoot, uint256 _collectionSize, uint256 _maxPublicBatchPerAddress, uint256 _amountForPromotion, uint256 _mintPrice ) ERC721A(_name, _symbol, _maxPublicBatchPerAddress, _collectionSize) { require(_amountForPromotion <= _collectionSize, "RhapsodyCreator/invalid-promotion-amount"); require(_mintPrice > 0, "RhapsodyCreator/invalid-mint-price"); maxPublicBatchPerAddress = _maxPublicBatchPerAddress; amountForPromotion = _amountForPromotion; mintPrice = _mintPrice; presaleMerkleRoot = _presaleMerkleRoot; } /// ============ Events ============ event Created(address indexed to, uint256 amount); /// =========== Sale =========== /// @notice Allows presale minting of tokens if address is part of merkle tree /// @param invocations number of tokens to mint /// @param maxInvocation max number of invocations of the user /// @param proof merkle proof to prove address and token mint count are in tree function presaleMint( uint256 invocations, uint256 maxInvocation, bytes32[] calldata proof ) external payable isMintValid(invocations, maxInvocation) isMintLive(presaleTime) { require(_mintOf(msg.sender) == 0, "RhapsodyCreator/invalid-double-mint"); require( MerkleProof.verify(proof, presaleMerkleRoot, keccak256(abi.encodePacked(msg.sender, maxInvocation))), "RhapsodyCreator/invalid-address-proof" ); _safeMint(msg.sender, invocations); emit Created(msg.sender, invocations); } /// @notice Allows public minting of tokens /// @param invocations number of tokens to mint /// @dev user can only mint less than maxPublicBatchPerAddress of tokens function publicMint(uint256 invocations) external payable isMintValid(invocations, maxPublicBatchPerAddress) isMintLive(publicTime) { _safeMint(msg.sender, invocations); emit Created(msg.sender, invocations); } /// @notice Set the time for the mint /// @param _presaleTime time the presale starts /// @param _publicTime time the public sale starts /// @dev this function can serve as an "active" and "non-active" sale status /// @dev set the values to uint256(-1) for "non-active" sale status /// @dev also, pass contract ownership to address(0) to close sale forever function setMintTime(uint256 _presaleTime, uint256 _publicTime) public onlyOwner { require(_presaleTime > _currentTime(), "RhapsodyCreator/invalid-presale-time"); require(_publicTime > _presaleTime, "RhapsodyCreator/invalid-public-time"); presaleTime = _presaleTime; publicTime = _publicTime; } /// @notice force override the merkle root used in presale mint /// @param _presaleMerkleRoot root of the merklelized whitelist function setMintMerkleRoot(bytes32 _presaleMerkleRoot) public onlyOwner { presaleMerkleRoot = _presaleMerkleRoot; } /// @notice ensures that minters need valid invocations + value to mint modifier isMintValid(uint256 invocations, uint256 maxInvocation) { require(tx.origin == msg.sender, "RhapsodyCreator/invalid-mint-caller"); require(totalSupply().add(invocations) <= collectionSize, "RhapsodyCreator/invalid-total-supply"); require(msg.value == mintPrice.mul(invocations), "RhapsodyCreator/invalid-mint-value"); require(msg.value > 0 && invocations > 0, "RhapsodyCreator/invalid-invocation-lower-boundary"); require( _mintOf(msg.sender).add(invocations) <= maxInvocation, "RhapsodyCreator/invalid-invocation-upper-boundary" ); _; } /// @notice used to check the time of mint of presale and public /// @dev only publicTime/presaleTime variable is used here; see publicMint/presaleMint function /// @dev time > 0 is optimization when the sale is not live; r.e mint "not-active" mode modifier isMintLive(uint256 time) { require(time > 0 && block.timestamp > time, "RhapsodyCreator/invalid-mint-time"); _; } /// =========== Metadata =========== /// @notice set the new baseURI to change the tokens metadata function setBaseURI(string calldata baseURI) external onlyOwner { _baseTokenURI = baseURI; } /// @notice core metadata baseURI used for tokens metadata function _baseURI() internal view virtual override returns (string memory) { return _baseTokenURI; } /// @notice core metadata baseURI used for tokens metadata function baseURI() public view returns (string memory) { return _baseURI(); } /// =========== Dev =========== /// @notice used by owner to mint promotional nfts /// @param invocations the number of invocations to batch mint function promotionMint(uint256 invocations) external onlyOwner { require(totalSupply().add(invocations) <= amountForPromotion, "RhapsodyCreator/invalid-promotion-supply"); require(invocations.mod(maxBatchSize) == 0, "RhapsodyCreator/invalid-batch-multiple"); uint256 blocks = invocations.div(maxBatchSize); for (uint256 i = 0; i < blocks; i++) { _safeMint(msg.sender, maxBatchSize); } emit Created(msg.sender, invocations); } /// @notice withdraws the ether in the contract to owner function withdrawMoney() external onlyOwner nonReentrant { (bool success, ) = msg.sender.call{ value: address(this).balance }(""); require(success, "RhapsodyCreator/invalid-withdraw-money"); } /// @notice returns the current block timestamp /// @dev this function is overriden in testing for time-dependent testing function _currentTime() internal virtual returns (uint256) { return block.timestamp; } /// @notice sets the owners quantity explicity /// @dev eliminate loops in future calls of ownerOf() function setOwnersExplicit(uint256 quantity) external onlyOwner nonReentrant { _setOwnersExplicit(quantity); } }
promotionMint
function promotionMint(uint256 invocations) external onlyOwner { require(totalSupply().add(invocations) <= amountForPromotion, "RhapsodyCreator/invalid-promotion-supply"); require(invocations.mod(maxBatchSize) == 0, "RhapsodyCreator/invalid-batch-multiple"); uint256 blocks = invocations.div(maxBatchSize); for (uint256 i = 0; i < blocks; i++) { _safeMint(msg.sender, maxBatchSize); } emit Created(msg.sender, invocations); }
/// =========== Dev =========== /// @notice used by owner to mint promotional nfts /// @param invocations the number of invocations to batch mint
NatSpecSingleLine
v0.8.9+commit.e5eed63a
MIT
{ "func_code_index": [ 6317, 6810 ] }
2,712
Tiger
contracts/token/RhapsodyCreator.sol
0xeb6600e62c24d17734c1807414a9159b116c9520
Solidity
RhapsodyCreator
contract RhapsodyCreator is ERC721A, Ownable, ReentrancyGuard { /// ============ Libraries ============ /// @notice safe math for arithmetic operations using SafeMath for uint256; /// ============ Immutable storage ============ /// @notice promotional nfts count uint256 public immutable amountForPromotion; /// @notice max mintable tokens for each address in public uint256 public immutable maxPublicBatchPerAddress; /// @notice mint price of each nft; same for pre/public sale. uint256 public immutable mintPrice; /// ============ Mutable storage ============ /// @notice metadata object used for tokenURI string private _baseTokenURI; /// @notice ERC721-presale inclusion root bytes32 public presaleMerkleRoot; /// @notice time the presale starts; uint256 public presaleTime; /// @notice time the public starts; uint256 public publicTime; /// ============ Constructor ============ /// @notice Creates a new Creator contract /// @param _presaleMerkleRoot root of the merklelized whitelist /// @param _collectionSize the total size of the collection /// @param _maxPublicBatchPerAddress max mintable tokens in public sale /// @param _amountForPromotion promotional nfts count /// @param _mintPrice mint price of each nft constructor( string memory _name, string memory _symbol, bytes32 _presaleMerkleRoot, uint256 _collectionSize, uint256 _maxPublicBatchPerAddress, uint256 _amountForPromotion, uint256 _mintPrice ) ERC721A(_name, _symbol, _maxPublicBatchPerAddress, _collectionSize) { require(_amountForPromotion <= _collectionSize, "RhapsodyCreator/invalid-promotion-amount"); require(_mintPrice > 0, "RhapsodyCreator/invalid-mint-price"); maxPublicBatchPerAddress = _maxPublicBatchPerAddress; amountForPromotion = _amountForPromotion; mintPrice = _mintPrice; presaleMerkleRoot = _presaleMerkleRoot; } /// ============ Events ============ event Created(address indexed to, uint256 amount); /// =========== Sale =========== /// @notice Allows presale minting of tokens if address is part of merkle tree /// @param invocations number of tokens to mint /// @param maxInvocation max number of invocations of the user /// @param proof merkle proof to prove address and token mint count are in tree function presaleMint( uint256 invocations, uint256 maxInvocation, bytes32[] calldata proof ) external payable isMintValid(invocations, maxInvocation) isMintLive(presaleTime) { require(_mintOf(msg.sender) == 0, "RhapsodyCreator/invalid-double-mint"); require( MerkleProof.verify(proof, presaleMerkleRoot, keccak256(abi.encodePacked(msg.sender, maxInvocation))), "RhapsodyCreator/invalid-address-proof" ); _safeMint(msg.sender, invocations); emit Created(msg.sender, invocations); } /// @notice Allows public minting of tokens /// @param invocations number of tokens to mint /// @dev user can only mint less than maxPublicBatchPerAddress of tokens function publicMint(uint256 invocations) external payable isMintValid(invocations, maxPublicBatchPerAddress) isMintLive(publicTime) { _safeMint(msg.sender, invocations); emit Created(msg.sender, invocations); } /// @notice Set the time for the mint /// @param _presaleTime time the presale starts /// @param _publicTime time the public sale starts /// @dev this function can serve as an "active" and "non-active" sale status /// @dev set the values to uint256(-1) for "non-active" sale status /// @dev also, pass contract ownership to address(0) to close sale forever function setMintTime(uint256 _presaleTime, uint256 _publicTime) public onlyOwner { require(_presaleTime > _currentTime(), "RhapsodyCreator/invalid-presale-time"); require(_publicTime > _presaleTime, "RhapsodyCreator/invalid-public-time"); presaleTime = _presaleTime; publicTime = _publicTime; } /// @notice force override the merkle root used in presale mint /// @param _presaleMerkleRoot root of the merklelized whitelist function setMintMerkleRoot(bytes32 _presaleMerkleRoot) public onlyOwner { presaleMerkleRoot = _presaleMerkleRoot; } /// @notice ensures that minters need valid invocations + value to mint modifier isMintValid(uint256 invocations, uint256 maxInvocation) { require(tx.origin == msg.sender, "RhapsodyCreator/invalid-mint-caller"); require(totalSupply().add(invocations) <= collectionSize, "RhapsodyCreator/invalid-total-supply"); require(msg.value == mintPrice.mul(invocations), "RhapsodyCreator/invalid-mint-value"); require(msg.value > 0 && invocations > 0, "RhapsodyCreator/invalid-invocation-lower-boundary"); require( _mintOf(msg.sender).add(invocations) <= maxInvocation, "RhapsodyCreator/invalid-invocation-upper-boundary" ); _; } /// @notice used to check the time of mint of presale and public /// @dev only publicTime/presaleTime variable is used here; see publicMint/presaleMint function /// @dev time > 0 is optimization when the sale is not live; r.e mint "not-active" mode modifier isMintLive(uint256 time) { require(time > 0 && block.timestamp > time, "RhapsodyCreator/invalid-mint-time"); _; } /// =========== Metadata =========== /// @notice set the new baseURI to change the tokens metadata function setBaseURI(string calldata baseURI) external onlyOwner { _baseTokenURI = baseURI; } /// @notice core metadata baseURI used for tokens metadata function _baseURI() internal view virtual override returns (string memory) { return _baseTokenURI; } /// @notice core metadata baseURI used for tokens metadata function baseURI() public view returns (string memory) { return _baseURI(); } /// =========== Dev =========== /// @notice used by owner to mint promotional nfts /// @param invocations the number of invocations to batch mint function promotionMint(uint256 invocations) external onlyOwner { require(totalSupply().add(invocations) <= amountForPromotion, "RhapsodyCreator/invalid-promotion-supply"); require(invocations.mod(maxBatchSize) == 0, "RhapsodyCreator/invalid-batch-multiple"); uint256 blocks = invocations.div(maxBatchSize); for (uint256 i = 0; i < blocks; i++) { _safeMint(msg.sender, maxBatchSize); } emit Created(msg.sender, invocations); } /// @notice withdraws the ether in the contract to owner function withdrawMoney() external onlyOwner nonReentrant { (bool success, ) = msg.sender.call{ value: address(this).balance }(""); require(success, "RhapsodyCreator/invalid-withdraw-money"); } /// @notice returns the current block timestamp /// @dev this function is overriden in testing for time-dependent testing function _currentTime() internal virtual returns (uint256) { return block.timestamp; } /// @notice sets the owners quantity explicity /// @dev eliminate loops in future calls of ownerOf() function setOwnersExplicit(uint256 quantity) external onlyOwner nonReentrant { _setOwnersExplicit(quantity); } }
withdrawMoney
function withdrawMoney() external onlyOwner nonReentrant { (bool success, ) = msg.sender.call{ value: address(this).balance }(""); require(success, "RhapsodyCreator/invalid-withdraw-money"); }
/// @notice withdraws the ether in the contract to owner
NatSpecSingleLine
v0.8.9+commit.e5eed63a
MIT
{ "func_code_index": [ 6873, 7089 ] }
2,713
Tiger
contracts/token/RhapsodyCreator.sol
0xeb6600e62c24d17734c1807414a9159b116c9520
Solidity
RhapsodyCreator
contract RhapsodyCreator is ERC721A, Ownable, ReentrancyGuard { /// ============ Libraries ============ /// @notice safe math for arithmetic operations using SafeMath for uint256; /// ============ Immutable storage ============ /// @notice promotional nfts count uint256 public immutable amountForPromotion; /// @notice max mintable tokens for each address in public uint256 public immutable maxPublicBatchPerAddress; /// @notice mint price of each nft; same for pre/public sale. uint256 public immutable mintPrice; /// ============ Mutable storage ============ /// @notice metadata object used for tokenURI string private _baseTokenURI; /// @notice ERC721-presale inclusion root bytes32 public presaleMerkleRoot; /// @notice time the presale starts; uint256 public presaleTime; /// @notice time the public starts; uint256 public publicTime; /// ============ Constructor ============ /// @notice Creates a new Creator contract /// @param _presaleMerkleRoot root of the merklelized whitelist /// @param _collectionSize the total size of the collection /// @param _maxPublicBatchPerAddress max mintable tokens in public sale /// @param _amountForPromotion promotional nfts count /// @param _mintPrice mint price of each nft constructor( string memory _name, string memory _symbol, bytes32 _presaleMerkleRoot, uint256 _collectionSize, uint256 _maxPublicBatchPerAddress, uint256 _amountForPromotion, uint256 _mintPrice ) ERC721A(_name, _symbol, _maxPublicBatchPerAddress, _collectionSize) { require(_amountForPromotion <= _collectionSize, "RhapsodyCreator/invalid-promotion-amount"); require(_mintPrice > 0, "RhapsodyCreator/invalid-mint-price"); maxPublicBatchPerAddress = _maxPublicBatchPerAddress; amountForPromotion = _amountForPromotion; mintPrice = _mintPrice; presaleMerkleRoot = _presaleMerkleRoot; } /// ============ Events ============ event Created(address indexed to, uint256 amount); /// =========== Sale =========== /// @notice Allows presale minting of tokens if address is part of merkle tree /// @param invocations number of tokens to mint /// @param maxInvocation max number of invocations of the user /// @param proof merkle proof to prove address and token mint count are in tree function presaleMint( uint256 invocations, uint256 maxInvocation, bytes32[] calldata proof ) external payable isMintValid(invocations, maxInvocation) isMintLive(presaleTime) { require(_mintOf(msg.sender) == 0, "RhapsodyCreator/invalid-double-mint"); require( MerkleProof.verify(proof, presaleMerkleRoot, keccak256(abi.encodePacked(msg.sender, maxInvocation))), "RhapsodyCreator/invalid-address-proof" ); _safeMint(msg.sender, invocations); emit Created(msg.sender, invocations); } /// @notice Allows public minting of tokens /// @param invocations number of tokens to mint /// @dev user can only mint less than maxPublicBatchPerAddress of tokens function publicMint(uint256 invocations) external payable isMintValid(invocations, maxPublicBatchPerAddress) isMintLive(publicTime) { _safeMint(msg.sender, invocations); emit Created(msg.sender, invocations); } /// @notice Set the time for the mint /// @param _presaleTime time the presale starts /// @param _publicTime time the public sale starts /// @dev this function can serve as an "active" and "non-active" sale status /// @dev set the values to uint256(-1) for "non-active" sale status /// @dev also, pass contract ownership to address(0) to close sale forever function setMintTime(uint256 _presaleTime, uint256 _publicTime) public onlyOwner { require(_presaleTime > _currentTime(), "RhapsodyCreator/invalid-presale-time"); require(_publicTime > _presaleTime, "RhapsodyCreator/invalid-public-time"); presaleTime = _presaleTime; publicTime = _publicTime; } /// @notice force override the merkle root used in presale mint /// @param _presaleMerkleRoot root of the merklelized whitelist function setMintMerkleRoot(bytes32 _presaleMerkleRoot) public onlyOwner { presaleMerkleRoot = _presaleMerkleRoot; } /// @notice ensures that minters need valid invocations + value to mint modifier isMintValid(uint256 invocations, uint256 maxInvocation) { require(tx.origin == msg.sender, "RhapsodyCreator/invalid-mint-caller"); require(totalSupply().add(invocations) <= collectionSize, "RhapsodyCreator/invalid-total-supply"); require(msg.value == mintPrice.mul(invocations), "RhapsodyCreator/invalid-mint-value"); require(msg.value > 0 && invocations > 0, "RhapsodyCreator/invalid-invocation-lower-boundary"); require( _mintOf(msg.sender).add(invocations) <= maxInvocation, "RhapsodyCreator/invalid-invocation-upper-boundary" ); _; } /// @notice used to check the time of mint of presale and public /// @dev only publicTime/presaleTime variable is used here; see publicMint/presaleMint function /// @dev time > 0 is optimization when the sale is not live; r.e mint "not-active" mode modifier isMintLive(uint256 time) { require(time > 0 && block.timestamp > time, "RhapsodyCreator/invalid-mint-time"); _; } /// =========== Metadata =========== /// @notice set the new baseURI to change the tokens metadata function setBaseURI(string calldata baseURI) external onlyOwner { _baseTokenURI = baseURI; } /// @notice core metadata baseURI used for tokens metadata function _baseURI() internal view virtual override returns (string memory) { return _baseTokenURI; } /// @notice core metadata baseURI used for tokens metadata function baseURI() public view returns (string memory) { return _baseURI(); } /// =========== Dev =========== /// @notice used by owner to mint promotional nfts /// @param invocations the number of invocations to batch mint function promotionMint(uint256 invocations) external onlyOwner { require(totalSupply().add(invocations) <= amountForPromotion, "RhapsodyCreator/invalid-promotion-supply"); require(invocations.mod(maxBatchSize) == 0, "RhapsodyCreator/invalid-batch-multiple"); uint256 blocks = invocations.div(maxBatchSize); for (uint256 i = 0; i < blocks; i++) { _safeMint(msg.sender, maxBatchSize); } emit Created(msg.sender, invocations); } /// @notice withdraws the ether in the contract to owner function withdrawMoney() external onlyOwner nonReentrant { (bool success, ) = msg.sender.call{ value: address(this).balance }(""); require(success, "RhapsodyCreator/invalid-withdraw-money"); } /// @notice returns the current block timestamp /// @dev this function is overriden in testing for time-dependent testing function _currentTime() internal virtual returns (uint256) { return block.timestamp; } /// @notice sets the owners quantity explicity /// @dev eliminate loops in future calls of ownerOf() function setOwnersExplicit(uint256 quantity) external onlyOwner nonReentrant { _setOwnersExplicit(quantity); } }
_currentTime
function _currentTime() internal virtual returns (uint256) { return block.timestamp; }
/// @notice returns the current block timestamp /// @dev this function is overriden in testing for time-dependent testing
NatSpecSingleLine
v0.8.9+commit.e5eed63a
MIT
{ "func_code_index": [ 7221, 7323 ] }
2,714
Tiger
contracts/token/RhapsodyCreator.sol
0xeb6600e62c24d17734c1807414a9159b116c9520
Solidity
RhapsodyCreator
contract RhapsodyCreator is ERC721A, Ownable, ReentrancyGuard { /// ============ Libraries ============ /// @notice safe math for arithmetic operations using SafeMath for uint256; /// ============ Immutable storage ============ /// @notice promotional nfts count uint256 public immutable amountForPromotion; /// @notice max mintable tokens for each address in public uint256 public immutable maxPublicBatchPerAddress; /// @notice mint price of each nft; same for pre/public sale. uint256 public immutable mintPrice; /// ============ Mutable storage ============ /// @notice metadata object used for tokenURI string private _baseTokenURI; /// @notice ERC721-presale inclusion root bytes32 public presaleMerkleRoot; /// @notice time the presale starts; uint256 public presaleTime; /// @notice time the public starts; uint256 public publicTime; /// ============ Constructor ============ /// @notice Creates a new Creator contract /// @param _presaleMerkleRoot root of the merklelized whitelist /// @param _collectionSize the total size of the collection /// @param _maxPublicBatchPerAddress max mintable tokens in public sale /// @param _amountForPromotion promotional nfts count /// @param _mintPrice mint price of each nft constructor( string memory _name, string memory _symbol, bytes32 _presaleMerkleRoot, uint256 _collectionSize, uint256 _maxPublicBatchPerAddress, uint256 _amountForPromotion, uint256 _mintPrice ) ERC721A(_name, _symbol, _maxPublicBatchPerAddress, _collectionSize) { require(_amountForPromotion <= _collectionSize, "RhapsodyCreator/invalid-promotion-amount"); require(_mintPrice > 0, "RhapsodyCreator/invalid-mint-price"); maxPublicBatchPerAddress = _maxPublicBatchPerAddress; amountForPromotion = _amountForPromotion; mintPrice = _mintPrice; presaleMerkleRoot = _presaleMerkleRoot; } /// ============ Events ============ event Created(address indexed to, uint256 amount); /// =========== Sale =========== /// @notice Allows presale minting of tokens if address is part of merkle tree /// @param invocations number of tokens to mint /// @param maxInvocation max number of invocations of the user /// @param proof merkle proof to prove address and token mint count are in tree function presaleMint( uint256 invocations, uint256 maxInvocation, bytes32[] calldata proof ) external payable isMintValid(invocations, maxInvocation) isMintLive(presaleTime) { require(_mintOf(msg.sender) == 0, "RhapsodyCreator/invalid-double-mint"); require( MerkleProof.verify(proof, presaleMerkleRoot, keccak256(abi.encodePacked(msg.sender, maxInvocation))), "RhapsodyCreator/invalid-address-proof" ); _safeMint(msg.sender, invocations); emit Created(msg.sender, invocations); } /// @notice Allows public minting of tokens /// @param invocations number of tokens to mint /// @dev user can only mint less than maxPublicBatchPerAddress of tokens function publicMint(uint256 invocations) external payable isMintValid(invocations, maxPublicBatchPerAddress) isMintLive(publicTime) { _safeMint(msg.sender, invocations); emit Created(msg.sender, invocations); } /// @notice Set the time for the mint /// @param _presaleTime time the presale starts /// @param _publicTime time the public sale starts /// @dev this function can serve as an "active" and "non-active" sale status /// @dev set the values to uint256(-1) for "non-active" sale status /// @dev also, pass contract ownership to address(0) to close sale forever function setMintTime(uint256 _presaleTime, uint256 _publicTime) public onlyOwner { require(_presaleTime > _currentTime(), "RhapsodyCreator/invalid-presale-time"); require(_publicTime > _presaleTime, "RhapsodyCreator/invalid-public-time"); presaleTime = _presaleTime; publicTime = _publicTime; } /// @notice force override the merkle root used in presale mint /// @param _presaleMerkleRoot root of the merklelized whitelist function setMintMerkleRoot(bytes32 _presaleMerkleRoot) public onlyOwner { presaleMerkleRoot = _presaleMerkleRoot; } /// @notice ensures that minters need valid invocations + value to mint modifier isMintValid(uint256 invocations, uint256 maxInvocation) { require(tx.origin == msg.sender, "RhapsodyCreator/invalid-mint-caller"); require(totalSupply().add(invocations) <= collectionSize, "RhapsodyCreator/invalid-total-supply"); require(msg.value == mintPrice.mul(invocations), "RhapsodyCreator/invalid-mint-value"); require(msg.value > 0 && invocations > 0, "RhapsodyCreator/invalid-invocation-lower-boundary"); require( _mintOf(msg.sender).add(invocations) <= maxInvocation, "RhapsodyCreator/invalid-invocation-upper-boundary" ); _; } /// @notice used to check the time of mint of presale and public /// @dev only publicTime/presaleTime variable is used here; see publicMint/presaleMint function /// @dev time > 0 is optimization when the sale is not live; r.e mint "not-active" mode modifier isMintLive(uint256 time) { require(time > 0 && block.timestamp > time, "RhapsodyCreator/invalid-mint-time"); _; } /// =========== Metadata =========== /// @notice set the new baseURI to change the tokens metadata function setBaseURI(string calldata baseURI) external onlyOwner { _baseTokenURI = baseURI; } /// @notice core metadata baseURI used for tokens metadata function _baseURI() internal view virtual override returns (string memory) { return _baseTokenURI; } /// @notice core metadata baseURI used for tokens metadata function baseURI() public view returns (string memory) { return _baseURI(); } /// =========== Dev =========== /// @notice used by owner to mint promotional nfts /// @param invocations the number of invocations to batch mint function promotionMint(uint256 invocations) external onlyOwner { require(totalSupply().add(invocations) <= amountForPromotion, "RhapsodyCreator/invalid-promotion-supply"); require(invocations.mod(maxBatchSize) == 0, "RhapsodyCreator/invalid-batch-multiple"); uint256 blocks = invocations.div(maxBatchSize); for (uint256 i = 0; i < blocks; i++) { _safeMint(msg.sender, maxBatchSize); } emit Created(msg.sender, invocations); } /// @notice withdraws the ether in the contract to owner function withdrawMoney() external onlyOwner nonReentrant { (bool success, ) = msg.sender.call{ value: address(this).balance }(""); require(success, "RhapsodyCreator/invalid-withdraw-money"); } /// @notice returns the current block timestamp /// @dev this function is overriden in testing for time-dependent testing function _currentTime() internal virtual returns (uint256) { return block.timestamp; } /// @notice sets the owners quantity explicity /// @dev eliminate loops in future calls of ownerOf() function setOwnersExplicit(uint256 quantity) external onlyOwner nonReentrant { _setOwnersExplicit(quantity); } }
setOwnersExplicit
function setOwnersExplicit(uint256 quantity) external onlyOwner nonReentrant { _setOwnersExplicit(quantity); }
/// @notice sets the owners quantity explicity /// @dev eliminate loops in future calls of ownerOf()
NatSpecSingleLine
v0.8.9+commit.e5eed63a
MIT
{ "func_code_index": [ 7434, 7560 ] }
2,715
HodlDAO
HodlDAO.sol
0x6b3da034ebad473acb93729a7152c672cc0dc6cd
Solidity
HodlDAO
contract HodlDAO { /* ERC20 Public variables of the token */ string public version = 'HDAO 0.2'; string public name; string public symbol; uint8 public decimals; uint256 public totalSupply; /* ERC20 This creates an array with all balances */ mapping (address => uint256) public balanceOf; mapping (address => mapping (address => uint256)) public allowance; /* store the block number when a withdrawal has been requested*/ mapping (address => withdrawalRequest) public withdrawalRequests; struct withdrawalRequest { uint sinceBlock; uint256 amount; } /** * feePot collects fees from quick withdrawals. This gets re-distributed to slow-withdrawals */ uint256 public feePot; uint32 public constant blockWait = 172800; // roughly 30 days, (2592000 / 15) - assuming block time is ~15 sec. //uint public constant blockWait = 8; // roughly assuming block time is ~15 sec. /** * ERC20 events these generate a public event on the blockchain that will notify clients */ event Transfer(address indexed from, address indexed to, uint256 value); event Approval(address indexed _owner, address indexed _spender, uint256 _value); event WithdrawalQuick(address indexed by, uint256 amount, uint256 fee); // quick withdrawal done event InsufficientFee(address indexed by, uint256 feeRequired); // not enough fee paid for quick withdrawal event WithdrawalStarted(address indexed by, uint256 amount); event WithdrawalDone(address indexed by, uint256 amount, uint256 reward); // amount is the amount that was used to calculate reward event WithdrawalPremature(address indexed by, uint blocksToWait); // Needs to wait blocksToWait before withdrawal unlocked event Deposited(address indexed by, uint256 amount); /** * Initializes contract with initial supply tokens to the creator of the contract * In our case, there's no initial supply. Tokens will be created as ether is sent * to the fall-back function. Then tokens are burned when ether is withdrawn. */ function HodlDAO( uint256 initialSupply, string tokenName, uint8 decimalUnits, string tokenSymbol ) { balanceOf[msg.sender] = initialSupply; // Give the creator all initial tokens totalSupply = initialSupply; // Update total supply name = tokenName; // Set the name for display purposes symbol = tokenSymbol; // Set the symbol for display purposes decimals = decimalUnits; // Amount of decimals for display purposes } /** * notPendingWithdrawal modifier guards the function from executing when a * withdrawal has been requested and is currently pending */ modifier notPendingWithdrawal { if (withdrawalRequests[msg.sender].sinceBlock > 0) throw; _; } /** ERC20 - transfer sends tokens * @notice send `_value` token to `_to` from `msg.sender` * @param _to The address of the recipient * @param _value The amount of token to be transferred * @return Whether the transfer was successful or not */ function transfer(address _to, uint256 _value) notPendingWithdrawal { if (balanceOf[msg.sender] < _value) throw; // Check if the sender has enough if (balanceOf[_to] + _value < balanceOf[_to]) throw; // Check for overflows balanceOf[msg.sender] -= _value; // Subtract from the sender balanceOf[_to] += _value; // Add the same to the recipient Transfer(msg.sender, _to, _value); // Notify anyone listening that this transfer took place } /** ERC20 approve allows another contract to spend some tokens in your behalf * @notice `msg.sender` approves `_spender` to spend `_value` tokens * @param _spender The address of the account able to transfer the tokens * @param _value The amount of tokens to be approved for transfer * @return Whether the approval was successful or not */ function approve(address _spender, uint256 _value) notPendingWithdrawal returns (bool success) { allowance[msg.sender][_spender] = _value; return true; } /** * ERC-20 Approves and then calls the receiving contract */ function approveAndCall(address _spender, uint256 _value, bytes _extraData) notPendingWithdrawal returns (bool success) { allowance[msg.sender][_spender] = _value; Approval(msg.sender, _spender, _value); //call the receiveApproval function on the contract you want to be notified. This crafts the function signature manually so one doesn't have to include a contract in here just for this. //receiveApproval(address _from, uint256 _value, address _tokenContract, bytes _extraData) //it is assumed that when does this that the call *should* succeed, otherwise one would use vanilla approve instead. if(!_spender.call(bytes4(bytes32(sha3("receiveApproval(address,uint256,address,bytes)"))), msg.sender, _value, this, _extraData)) { throw; } return true; } /** * ERC20 A contract attempts to get the coins * @notice send `_value` token to `_to` from `_from` on the condition it is approved by `_from` * @param _from The address of the sender * @param _to The address of the recipient * @param _value The amount of token to be transferred * @return Whether the transfer was successful or not */ function transferFrom(address _from, address _to, uint256 _value) notPendingWithdrawal returns (bool success) { if (balanceOf[_from] < _value) throw; // Check if the sender has enough if (balanceOf[_to] + _value < balanceOf[_to]) throw; // Check for overflows if (_value > allowance[_from][msg.sender]) throw; // Check allowance balanceOf[_from] -= _value; // Subtract from the sender balanceOf[_to] += _value; // Add the same to the recipient allowance[_from][msg.sender] -= _value; Transfer(_from, _to, _value); return true; } /** * withdrawalInitiate initiates the withdrawal by going into a waiting period * It remembers the block number & amount held at the time of request. * After the waiting period finishes, the call withdrawalComplete */ function withdrawalInitiate() notPendingWithdrawal { WithdrawalStarted(msg.sender, balanceOf[msg.sender]); withdrawalRequests[msg.sender] = withdrawalRequest(block.number, balanceOf[msg.sender]); } /** * withdrawalComplete is called after the waiting period. The ether will be * returned to the caller and the tokens will be burned. * A reward will be issued based on the amount in the feePot relative to the * amount held when the withdrawal request was made. * * Gas: 17008 */ function withdrawalComplete() returns (bool) { withdrawalRequest r = withdrawalRequests[msg.sender]; if (r.sinceBlock == 0) throw; if ((r.sinceBlock + blockWait) > block.number) { WithdrawalPremature(msg.sender, r.sinceBlock + blockWait - block.number); return false; } uint256 amount = withdrawalRequests[msg.sender].amount; uint256 reward = calculateReward(r.amount); withdrawalRequests[msg.sender].sinceBlock = 0; withdrawalRequests[msg.sender].amount = 0; if (reward > 0) { if (feePot - reward > feePot) { feePot = 0; // overflow } else { feePot -= reward; } } doWithdrawal(reward); WithdrawalDone(msg.sender, amount, reward); return true; } /** * Reward is based on the amount held, relative to total supply of tokens. */ function calculateReward(uint256 v) constant returns (uint256) { uint256 reward = 0; if (feePot > 0) { reward = v / totalSupply * feePot; } return reward; } /** calculate the fee for quick withdrawal */ function calculateFee(uint256 v) constant returns (uint256) { uint256 feeRequired = v / (1 wei * 100); return feeRequired; } /** * Quick withdrawal, needs to send ether to this function for the fee. * * Gas use: 44129 (including call to processWithdrawal) */ function quickWithdraw() payable notPendingWithdrawal returns (bool) { // calculate required fee uint256 amount = balanceOf[msg.sender]; if (amount <= 0) throw; uint256 feeRequired = calculateFee(amount); if (msg.value < feeRequired) { // not enough fees sent InsufficientFee(msg.sender, feeRequired); return false; } uint256 overAmount = msg.value - feeRequired; // calculate any over-payment // add fee to the feePot, excluding any over-payment if (overAmount > 0) { feePot += msg.value - overAmount; } else { feePot += msg.value; } doWithdrawal(overAmount); // withdraw + return any over payment WithdrawalDone(msg.sender, amount, 0); return true; } /** * do withdrawal * Gas: 62483 */ function doWithdrawal(uint256 extra) internal { uint256 amount = balanceOf[msg.sender]; if (amount <= 0) throw; // cannot withdraw balanceOf[msg.sender] = 0; if (totalSupply > totalSupply - amount) { totalSupply = 0; // don't let it overflow } else { totalSupply -= amount; // deflate the supply! } Transfer(msg.sender, 0, amount); // burn baby burn if (!msg.sender.send(amount + extra)) throw; // return back the ether or rollback if failed } /** * Fallback function when sending ether to the contract * Gas use: 65051 */ function () payable notPendingWithdrawal { uint256 amount = msg.value; // amount that was sent if (amount <= 0) throw; // need to send some ETH balanceOf[msg.sender] += amount; // mint new tokens totalSupply += amount; // track the supply Transfer(0, msg.sender, amount); // notify of the event Deposited(msg.sender, amount); } }
/** * Hodld DAO and ERC20 token * Author: CurrencyTycoon on GitHub * License: MIT * Date: 2017 * * Deploy with the following args: * 0, "Hodl DAO", 18, "HODL" * */
NatSpecMultiLine
HodlDAO
function HodlDAO( uint256 initialSupply, string tokenName, uint8 decimalUnits, string tokenSymbol ) { balanceOf[msg.sender] = initialSupply; // Give the creator all initial tokens totalSupply = initialSupply; // Update total supply name = tokenName; // Set the name for display purposes symbol = tokenSymbol; // Set the symbol for display purposes decimals = decimalUnits; // Amount of decimals for display purposes }
/** * Initializes contract with initial supply tokens to the creator of the contract * In our case, there's no initial supply. Tokens will be created as ether is sent * to the fall-back function. Then tokens are burned when ether is withdrawn. */
NatSpecMultiLine
v0.4.10+commit.f0d539ae
bzzr://6a5ee1c65b020a24d6ab000e01e6e1c92714225d741017dfb4cf091466db691c
{ "func_code_index": [ 2144, 2770 ] }
2,716
HodlDAO
HodlDAO.sol
0x6b3da034ebad473acb93729a7152c672cc0dc6cd
Solidity
HodlDAO
contract HodlDAO { /* ERC20 Public variables of the token */ string public version = 'HDAO 0.2'; string public name; string public symbol; uint8 public decimals; uint256 public totalSupply; /* ERC20 This creates an array with all balances */ mapping (address => uint256) public balanceOf; mapping (address => mapping (address => uint256)) public allowance; /* store the block number when a withdrawal has been requested*/ mapping (address => withdrawalRequest) public withdrawalRequests; struct withdrawalRequest { uint sinceBlock; uint256 amount; } /** * feePot collects fees from quick withdrawals. This gets re-distributed to slow-withdrawals */ uint256 public feePot; uint32 public constant blockWait = 172800; // roughly 30 days, (2592000 / 15) - assuming block time is ~15 sec. //uint public constant blockWait = 8; // roughly assuming block time is ~15 sec. /** * ERC20 events these generate a public event on the blockchain that will notify clients */ event Transfer(address indexed from, address indexed to, uint256 value); event Approval(address indexed _owner, address indexed _spender, uint256 _value); event WithdrawalQuick(address indexed by, uint256 amount, uint256 fee); // quick withdrawal done event InsufficientFee(address indexed by, uint256 feeRequired); // not enough fee paid for quick withdrawal event WithdrawalStarted(address indexed by, uint256 amount); event WithdrawalDone(address indexed by, uint256 amount, uint256 reward); // amount is the amount that was used to calculate reward event WithdrawalPremature(address indexed by, uint blocksToWait); // Needs to wait blocksToWait before withdrawal unlocked event Deposited(address indexed by, uint256 amount); /** * Initializes contract with initial supply tokens to the creator of the contract * In our case, there's no initial supply. Tokens will be created as ether is sent * to the fall-back function. Then tokens are burned when ether is withdrawn. */ function HodlDAO( uint256 initialSupply, string tokenName, uint8 decimalUnits, string tokenSymbol ) { balanceOf[msg.sender] = initialSupply; // Give the creator all initial tokens totalSupply = initialSupply; // Update total supply name = tokenName; // Set the name for display purposes symbol = tokenSymbol; // Set the symbol for display purposes decimals = decimalUnits; // Amount of decimals for display purposes } /** * notPendingWithdrawal modifier guards the function from executing when a * withdrawal has been requested and is currently pending */ modifier notPendingWithdrawal { if (withdrawalRequests[msg.sender].sinceBlock > 0) throw; _; } /** ERC20 - transfer sends tokens * @notice send `_value` token to `_to` from `msg.sender` * @param _to The address of the recipient * @param _value The amount of token to be transferred * @return Whether the transfer was successful or not */ function transfer(address _to, uint256 _value) notPendingWithdrawal { if (balanceOf[msg.sender] < _value) throw; // Check if the sender has enough if (balanceOf[_to] + _value < balanceOf[_to]) throw; // Check for overflows balanceOf[msg.sender] -= _value; // Subtract from the sender balanceOf[_to] += _value; // Add the same to the recipient Transfer(msg.sender, _to, _value); // Notify anyone listening that this transfer took place } /** ERC20 approve allows another contract to spend some tokens in your behalf * @notice `msg.sender` approves `_spender` to spend `_value` tokens * @param _spender The address of the account able to transfer the tokens * @param _value The amount of tokens to be approved for transfer * @return Whether the approval was successful or not */ function approve(address _spender, uint256 _value) notPendingWithdrawal returns (bool success) { allowance[msg.sender][_spender] = _value; return true; } /** * ERC-20 Approves and then calls the receiving contract */ function approveAndCall(address _spender, uint256 _value, bytes _extraData) notPendingWithdrawal returns (bool success) { allowance[msg.sender][_spender] = _value; Approval(msg.sender, _spender, _value); //call the receiveApproval function on the contract you want to be notified. This crafts the function signature manually so one doesn't have to include a contract in here just for this. //receiveApproval(address _from, uint256 _value, address _tokenContract, bytes _extraData) //it is assumed that when does this that the call *should* succeed, otherwise one would use vanilla approve instead. if(!_spender.call(bytes4(bytes32(sha3("receiveApproval(address,uint256,address,bytes)"))), msg.sender, _value, this, _extraData)) { throw; } return true; } /** * ERC20 A contract attempts to get the coins * @notice send `_value` token to `_to` from `_from` on the condition it is approved by `_from` * @param _from The address of the sender * @param _to The address of the recipient * @param _value The amount of token to be transferred * @return Whether the transfer was successful or not */ function transferFrom(address _from, address _to, uint256 _value) notPendingWithdrawal returns (bool success) { if (balanceOf[_from] < _value) throw; // Check if the sender has enough if (balanceOf[_to] + _value < balanceOf[_to]) throw; // Check for overflows if (_value > allowance[_from][msg.sender]) throw; // Check allowance balanceOf[_from] -= _value; // Subtract from the sender balanceOf[_to] += _value; // Add the same to the recipient allowance[_from][msg.sender] -= _value; Transfer(_from, _to, _value); return true; } /** * withdrawalInitiate initiates the withdrawal by going into a waiting period * It remembers the block number & amount held at the time of request. * After the waiting period finishes, the call withdrawalComplete */ function withdrawalInitiate() notPendingWithdrawal { WithdrawalStarted(msg.sender, balanceOf[msg.sender]); withdrawalRequests[msg.sender] = withdrawalRequest(block.number, balanceOf[msg.sender]); } /** * withdrawalComplete is called after the waiting period. The ether will be * returned to the caller and the tokens will be burned. * A reward will be issued based on the amount in the feePot relative to the * amount held when the withdrawal request was made. * * Gas: 17008 */ function withdrawalComplete() returns (bool) { withdrawalRequest r = withdrawalRequests[msg.sender]; if (r.sinceBlock == 0) throw; if ((r.sinceBlock + blockWait) > block.number) { WithdrawalPremature(msg.sender, r.sinceBlock + blockWait - block.number); return false; } uint256 amount = withdrawalRequests[msg.sender].amount; uint256 reward = calculateReward(r.amount); withdrawalRequests[msg.sender].sinceBlock = 0; withdrawalRequests[msg.sender].amount = 0; if (reward > 0) { if (feePot - reward > feePot) { feePot = 0; // overflow } else { feePot -= reward; } } doWithdrawal(reward); WithdrawalDone(msg.sender, amount, reward); return true; } /** * Reward is based on the amount held, relative to total supply of tokens. */ function calculateReward(uint256 v) constant returns (uint256) { uint256 reward = 0; if (feePot > 0) { reward = v / totalSupply * feePot; } return reward; } /** calculate the fee for quick withdrawal */ function calculateFee(uint256 v) constant returns (uint256) { uint256 feeRequired = v / (1 wei * 100); return feeRequired; } /** * Quick withdrawal, needs to send ether to this function for the fee. * * Gas use: 44129 (including call to processWithdrawal) */ function quickWithdraw() payable notPendingWithdrawal returns (bool) { // calculate required fee uint256 amount = balanceOf[msg.sender]; if (amount <= 0) throw; uint256 feeRequired = calculateFee(amount); if (msg.value < feeRequired) { // not enough fees sent InsufficientFee(msg.sender, feeRequired); return false; } uint256 overAmount = msg.value - feeRequired; // calculate any over-payment // add fee to the feePot, excluding any over-payment if (overAmount > 0) { feePot += msg.value - overAmount; } else { feePot += msg.value; } doWithdrawal(overAmount); // withdraw + return any over payment WithdrawalDone(msg.sender, amount, 0); return true; } /** * do withdrawal * Gas: 62483 */ function doWithdrawal(uint256 extra) internal { uint256 amount = balanceOf[msg.sender]; if (amount <= 0) throw; // cannot withdraw balanceOf[msg.sender] = 0; if (totalSupply > totalSupply - amount) { totalSupply = 0; // don't let it overflow } else { totalSupply -= amount; // deflate the supply! } Transfer(msg.sender, 0, amount); // burn baby burn if (!msg.sender.send(amount + extra)) throw; // return back the ether or rollback if failed } /** * Fallback function when sending ether to the contract * Gas use: 65051 */ function () payable notPendingWithdrawal { uint256 amount = msg.value; // amount that was sent if (amount <= 0) throw; // need to send some ETH balanceOf[msg.sender] += amount; // mint new tokens totalSupply += amount; // track the supply Transfer(0, msg.sender, amount); // notify of the event Deposited(msg.sender, amount); } }
/** * Hodld DAO and ERC20 token * Author: CurrencyTycoon on GitHub * License: MIT * Date: 2017 * * Deploy with the following args: * 0, "Hodl DAO", 18, "HODL" * */
NatSpecMultiLine
transfer
function transfer(address _to, uint256 _value) notPendingWithdrawal { if (balanceOf[msg.sender] < _value) throw; // Check if the sender has enough if (balanceOf[_to] + _value < balanceOf[_to]) throw; // Check for overflows balanceOf[msg.sender] -= _value; // Subtract from the sender balanceOf[_to] += _value; // Add the same to the recipient Transfer(msg.sender, _to, _value); // Notify anyone listening that this transfer took place }
/** ERC20 - transfer sends tokens * @notice send `_value` token to `_to` from `msg.sender` * @param _to The address of the recipient * @param _value The amount of token to be transferred * @return Whether the transfer was successful or not */
NatSpecMultiLine
v0.4.10+commit.f0d539ae
bzzr://6a5ee1c65b020a24d6ab000e01e6e1c92714225d741017dfb4cf091466db691c
{ "func_code_index": [ 3339, 3905 ] }
2,717
HodlDAO
HodlDAO.sol
0x6b3da034ebad473acb93729a7152c672cc0dc6cd
Solidity
HodlDAO
contract HodlDAO { /* ERC20 Public variables of the token */ string public version = 'HDAO 0.2'; string public name; string public symbol; uint8 public decimals; uint256 public totalSupply; /* ERC20 This creates an array with all balances */ mapping (address => uint256) public balanceOf; mapping (address => mapping (address => uint256)) public allowance; /* store the block number when a withdrawal has been requested*/ mapping (address => withdrawalRequest) public withdrawalRequests; struct withdrawalRequest { uint sinceBlock; uint256 amount; } /** * feePot collects fees from quick withdrawals. This gets re-distributed to slow-withdrawals */ uint256 public feePot; uint32 public constant blockWait = 172800; // roughly 30 days, (2592000 / 15) - assuming block time is ~15 sec. //uint public constant blockWait = 8; // roughly assuming block time is ~15 sec. /** * ERC20 events these generate a public event on the blockchain that will notify clients */ event Transfer(address indexed from, address indexed to, uint256 value); event Approval(address indexed _owner, address indexed _spender, uint256 _value); event WithdrawalQuick(address indexed by, uint256 amount, uint256 fee); // quick withdrawal done event InsufficientFee(address indexed by, uint256 feeRequired); // not enough fee paid for quick withdrawal event WithdrawalStarted(address indexed by, uint256 amount); event WithdrawalDone(address indexed by, uint256 amount, uint256 reward); // amount is the amount that was used to calculate reward event WithdrawalPremature(address indexed by, uint blocksToWait); // Needs to wait blocksToWait before withdrawal unlocked event Deposited(address indexed by, uint256 amount); /** * Initializes contract with initial supply tokens to the creator of the contract * In our case, there's no initial supply. Tokens will be created as ether is sent * to the fall-back function. Then tokens are burned when ether is withdrawn. */ function HodlDAO( uint256 initialSupply, string tokenName, uint8 decimalUnits, string tokenSymbol ) { balanceOf[msg.sender] = initialSupply; // Give the creator all initial tokens totalSupply = initialSupply; // Update total supply name = tokenName; // Set the name for display purposes symbol = tokenSymbol; // Set the symbol for display purposes decimals = decimalUnits; // Amount of decimals for display purposes } /** * notPendingWithdrawal modifier guards the function from executing when a * withdrawal has been requested and is currently pending */ modifier notPendingWithdrawal { if (withdrawalRequests[msg.sender].sinceBlock > 0) throw; _; } /** ERC20 - transfer sends tokens * @notice send `_value` token to `_to` from `msg.sender` * @param _to The address of the recipient * @param _value The amount of token to be transferred * @return Whether the transfer was successful or not */ function transfer(address _to, uint256 _value) notPendingWithdrawal { if (balanceOf[msg.sender] < _value) throw; // Check if the sender has enough if (balanceOf[_to] + _value < balanceOf[_to]) throw; // Check for overflows balanceOf[msg.sender] -= _value; // Subtract from the sender balanceOf[_to] += _value; // Add the same to the recipient Transfer(msg.sender, _to, _value); // Notify anyone listening that this transfer took place } /** ERC20 approve allows another contract to spend some tokens in your behalf * @notice `msg.sender` approves `_spender` to spend `_value` tokens * @param _spender The address of the account able to transfer the tokens * @param _value The amount of tokens to be approved for transfer * @return Whether the approval was successful or not */ function approve(address _spender, uint256 _value) notPendingWithdrawal returns (bool success) { allowance[msg.sender][_spender] = _value; return true; } /** * ERC-20 Approves and then calls the receiving contract */ function approveAndCall(address _spender, uint256 _value, bytes _extraData) notPendingWithdrawal returns (bool success) { allowance[msg.sender][_spender] = _value; Approval(msg.sender, _spender, _value); //call the receiveApproval function on the contract you want to be notified. This crafts the function signature manually so one doesn't have to include a contract in here just for this. //receiveApproval(address _from, uint256 _value, address _tokenContract, bytes _extraData) //it is assumed that when does this that the call *should* succeed, otherwise one would use vanilla approve instead. if(!_spender.call(bytes4(bytes32(sha3("receiveApproval(address,uint256,address,bytes)"))), msg.sender, _value, this, _extraData)) { throw; } return true; } /** * ERC20 A contract attempts to get the coins * @notice send `_value` token to `_to` from `_from` on the condition it is approved by `_from` * @param _from The address of the sender * @param _to The address of the recipient * @param _value The amount of token to be transferred * @return Whether the transfer was successful or not */ function transferFrom(address _from, address _to, uint256 _value) notPendingWithdrawal returns (bool success) { if (balanceOf[_from] < _value) throw; // Check if the sender has enough if (balanceOf[_to] + _value < balanceOf[_to]) throw; // Check for overflows if (_value > allowance[_from][msg.sender]) throw; // Check allowance balanceOf[_from] -= _value; // Subtract from the sender balanceOf[_to] += _value; // Add the same to the recipient allowance[_from][msg.sender] -= _value; Transfer(_from, _to, _value); return true; } /** * withdrawalInitiate initiates the withdrawal by going into a waiting period * It remembers the block number & amount held at the time of request. * After the waiting period finishes, the call withdrawalComplete */ function withdrawalInitiate() notPendingWithdrawal { WithdrawalStarted(msg.sender, balanceOf[msg.sender]); withdrawalRequests[msg.sender] = withdrawalRequest(block.number, balanceOf[msg.sender]); } /** * withdrawalComplete is called after the waiting period. The ether will be * returned to the caller and the tokens will be burned. * A reward will be issued based on the amount in the feePot relative to the * amount held when the withdrawal request was made. * * Gas: 17008 */ function withdrawalComplete() returns (bool) { withdrawalRequest r = withdrawalRequests[msg.sender]; if (r.sinceBlock == 0) throw; if ((r.sinceBlock + blockWait) > block.number) { WithdrawalPremature(msg.sender, r.sinceBlock + blockWait - block.number); return false; } uint256 amount = withdrawalRequests[msg.sender].amount; uint256 reward = calculateReward(r.amount); withdrawalRequests[msg.sender].sinceBlock = 0; withdrawalRequests[msg.sender].amount = 0; if (reward > 0) { if (feePot - reward > feePot) { feePot = 0; // overflow } else { feePot -= reward; } } doWithdrawal(reward); WithdrawalDone(msg.sender, amount, reward); return true; } /** * Reward is based on the amount held, relative to total supply of tokens. */ function calculateReward(uint256 v) constant returns (uint256) { uint256 reward = 0; if (feePot > 0) { reward = v / totalSupply * feePot; } return reward; } /** calculate the fee for quick withdrawal */ function calculateFee(uint256 v) constant returns (uint256) { uint256 feeRequired = v / (1 wei * 100); return feeRequired; } /** * Quick withdrawal, needs to send ether to this function for the fee. * * Gas use: 44129 (including call to processWithdrawal) */ function quickWithdraw() payable notPendingWithdrawal returns (bool) { // calculate required fee uint256 amount = balanceOf[msg.sender]; if (amount <= 0) throw; uint256 feeRequired = calculateFee(amount); if (msg.value < feeRequired) { // not enough fees sent InsufficientFee(msg.sender, feeRequired); return false; } uint256 overAmount = msg.value - feeRequired; // calculate any over-payment // add fee to the feePot, excluding any over-payment if (overAmount > 0) { feePot += msg.value - overAmount; } else { feePot += msg.value; } doWithdrawal(overAmount); // withdraw + return any over payment WithdrawalDone(msg.sender, amount, 0); return true; } /** * do withdrawal * Gas: 62483 */ function doWithdrawal(uint256 extra) internal { uint256 amount = balanceOf[msg.sender]; if (amount <= 0) throw; // cannot withdraw balanceOf[msg.sender] = 0; if (totalSupply > totalSupply - amount) { totalSupply = 0; // don't let it overflow } else { totalSupply -= amount; // deflate the supply! } Transfer(msg.sender, 0, amount); // burn baby burn if (!msg.sender.send(amount + extra)) throw; // return back the ether or rollback if failed } /** * Fallback function when sending ether to the contract * Gas use: 65051 */ function () payable notPendingWithdrawal { uint256 amount = msg.value; // amount that was sent if (amount <= 0) throw; // need to send some ETH balanceOf[msg.sender] += amount; // mint new tokens totalSupply += amount; // track the supply Transfer(0, msg.sender, amount); // notify of the event Deposited(msg.sender, amount); } }
/** * Hodld DAO and ERC20 token * Author: CurrencyTycoon on GitHub * License: MIT * Date: 2017 * * Deploy with the following args: * 0, "Hodl DAO", 18, "HODL" * */
NatSpecMultiLine
approve
function approve(address _spender, uint256 _value) notPendingWithdrawal returns (bool success) { allowance[msg.sender][_spender] = _value; return true; }
/** ERC20 approve allows another contract to spend some tokens in your behalf * @notice `msg.sender` approves `_spender` to spend `_value` tokens * @param _spender The address of the account able to transfer the tokens * @param _value The amount of tokens to be approved for transfer * @return Whether the approval was successful or not */
NatSpecMultiLine
v0.4.10+commit.f0d539ae
bzzr://6a5ee1c65b020a24d6ab000e01e6e1c92714225d741017dfb4cf091466db691c
{ "func_code_index": [ 4283, 4469 ] }
2,718
HodlDAO
HodlDAO.sol
0x6b3da034ebad473acb93729a7152c672cc0dc6cd
Solidity
HodlDAO
contract HodlDAO { /* ERC20 Public variables of the token */ string public version = 'HDAO 0.2'; string public name; string public symbol; uint8 public decimals; uint256 public totalSupply; /* ERC20 This creates an array with all balances */ mapping (address => uint256) public balanceOf; mapping (address => mapping (address => uint256)) public allowance; /* store the block number when a withdrawal has been requested*/ mapping (address => withdrawalRequest) public withdrawalRequests; struct withdrawalRequest { uint sinceBlock; uint256 amount; } /** * feePot collects fees from quick withdrawals. This gets re-distributed to slow-withdrawals */ uint256 public feePot; uint32 public constant blockWait = 172800; // roughly 30 days, (2592000 / 15) - assuming block time is ~15 sec. //uint public constant blockWait = 8; // roughly assuming block time is ~15 sec. /** * ERC20 events these generate a public event on the blockchain that will notify clients */ event Transfer(address indexed from, address indexed to, uint256 value); event Approval(address indexed _owner, address indexed _spender, uint256 _value); event WithdrawalQuick(address indexed by, uint256 amount, uint256 fee); // quick withdrawal done event InsufficientFee(address indexed by, uint256 feeRequired); // not enough fee paid for quick withdrawal event WithdrawalStarted(address indexed by, uint256 amount); event WithdrawalDone(address indexed by, uint256 amount, uint256 reward); // amount is the amount that was used to calculate reward event WithdrawalPremature(address indexed by, uint blocksToWait); // Needs to wait blocksToWait before withdrawal unlocked event Deposited(address indexed by, uint256 amount); /** * Initializes contract with initial supply tokens to the creator of the contract * In our case, there's no initial supply. Tokens will be created as ether is sent * to the fall-back function. Then tokens are burned when ether is withdrawn. */ function HodlDAO( uint256 initialSupply, string tokenName, uint8 decimalUnits, string tokenSymbol ) { balanceOf[msg.sender] = initialSupply; // Give the creator all initial tokens totalSupply = initialSupply; // Update total supply name = tokenName; // Set the name for display purposes symbol = tokenSymbol; // Set the symbol for display purposes decimals = decimalUnits; // Amount of decimals for display purposes } /** * notPendingWithdrawal modifier guards the function from executing when a * withdrawal has been requested and is currently pending */ modifier notPendingWithdrawal { if (withdrawalRequests[msg.sender].sinceBlock > 0) throw; _; } /** ERC20 - transfer sends tokens * @notice send `_value` token to `_to` from `msg.sender` * @param _to The address of the recipient * @param _value The amount of token to be transferred * @return Whether the transfer was successful or not */ function transfer(address _to, uint256 _value) notPendingWithdrawal { if (balanceOf[msg.sender] < _value) throw; // Check if the sender has enough if (balanceOf[_to] + _value < balanceOf[_to]) throw; // Check for overflows balanceOf[msg.sender] -= _value; // Subtract from the sender balanceOf[_to] += _value; // Add the same to the recipient Transfer(msg.sender, _to, _value); // Notify anyone listening that this transfer took place } /** ERC20 approve allows another contract to spend some tokens in your behalf * @notice `msg.sender` approves `_spender` to spend `_value` tokens * @param _spender The address of the account able to transfer the tokens * @param _value The amount of tokens to be approved for transfer * @return Whether the approval was successful or not */ function approve(address _spender, uint256 _value) notPendingWithdrawal returns (bool success) { allowance[msg.sender][_spender] = _value; return true; } /** * ERC-20 Approves and then calls the receiving contract */ function approveAndCall(address _spender, uint256 _value, bytes _extraData) notPendingWithdrawal returns (bool success) { allowance[msg.sender][_spender] = _value; Approval(msg.sender, _spender, _value); //call the receiveApproval function on the contract you want to be notified. This crafts the function signature manually so one doesn't have to include a contract in here just for this. //receiveApproval(address _from, uint256 _value, address _tokenContract, bytes _extraData) //it is assumed that when does this that the call *should* succeed, otherwise one would use vanilla approve instead. if(!_spender.call(bytes4(bytes32(sha3("receiveApproval(address,uint256,address,bytes)"))), msg.sender, _value, this, _extraData)) { throw; } return true; } /** * ERC20 A contract attempts to get the coins * @notice send `_value` token to `_to` from `_from` on the condition it is approved by `_from` * @param _from The address of the sender * @param _to The address of the recipient * @param _value The amount of token to be transferred * @return Whether the transfer was successful or not */ function transferFrom(address _from, address _to, uint256 _value) notPendingWithdrawal returns (bool success) { if (balanceOf[_from] < _value) throw; // Check if the sender has enough if (balanceOf[_to] + _value < balanceOf[_to]) throw; // Check for overflows if (_value > allowance[_from][msg.sender]) throw; // Check allowance balanceOf[_from] -= _value; // Subtract from the sender balanceOf[_to] += _value; // Add the same to the recipient allowance[_from][msg.sender] -= _value; Transfer(_from, _to, _value); return true; } /** * withdrawalInitiate initiates the withdrawal by going into a waiting period * It remembers the block number & amount held at the time of request. * After the waiting period finishes, the call withdrawalComplete */ function withdrawalInitiate() notPendingWithdrawal { WithdrawalStarted(msg.sender, balanceOf[msg.sender]); withdrawalRequests[msg.sender] = withdrawalRequest(block.number, balanceOf[msg.sender]); } /** * withdrawalComplete is called after the waiting period. The ether will be * returned to the caller and the tokens will be burned. * A reward will be issued based on the amount in the feePot relative to the * amount held when the withdrawal request was made. * * Gas: 17008 */ function withdrawalComplete() returns (bool) { withdrawalRequest r = withdrawalRequests[msg.sender]; if (r.sinceBlock == 0) throw; if ((r.sinceBlock + blockWait) > block.number) { WithdrawalPremature(msg.sender, r.sinceBlock + blockWait - block.number); return false; } uint256 amount = withdrawalRequests[msg.sender].amount; uint256 reward = calculateReward(r.amount); withdrawalRequests[msg.sender].sinceBlock = 0; withdrawalRequests[msg.sender].amount = 0; if (reward > 0) { if (feePot - reward > feePot) { feePot = 0; // overflow } else { feePot -= reward; } } doWithdrawal(reward); WithdrawalDone(msg.sender, amount, reward); return true; } /** * Reward is based on the amount held, relative to total supply of tokens. */ function calculateReward(uint256 v) constant returns (uint256) { uint256 reward = 0; if (feePot > 0) { reward = v / totalSupply * feePot; } return reward; } /** calculate the fee for quick withdrawal */ function calculateFee(uint256 v) constant returns (uint256) { uint256 feeRequired = v / (1 wei * 100); return feeRequired; } /** * Quick withdrawal, needs to send ether to this function for the fee. * * Gas use: 44129 (including call to processWithdrawal) */ function quickWithdraw() payable notPendingWithdrawal returns (bool) { // calculate required fee uint256 amount = balanceOf[msg.sender]; if (amount <= 0) throw; uint256 feeRequired = calculateFee(amount); if (msg.value < feeRequired) { // not enough fees sent InsufficientFee(msg.sender, feeRequired); return false; } uint256 overAmount = msg.value - feeRequired; // calculate any over-payment // add fee to the feePot, excluding any over-payment if (overAmount > 0) { feePot += msg.value - overAmount; } else { feePot += msg.value; } doWithdrawal(overAmount); // withdraw + return any over payment WithdrawalDone(msg.sender, amount, 0); return true; } /** * do withdrawal * Gas: 62483 */ function doWithdrawal(uint256 extra) internal { uint256 amount = balanceOf[msg.sender]; if (amount <= 0) throw; // cannot withdraw balanceOf[msg.sender] = 0; if (totalSupply > totalSupply - amount) { totalSupply = 0; // don't let it overflow } else { totalSupply -= amount; // deflate the supply! } Transfer(msg.sender, 0, amount); // burn baby burn if (!msg.sender.send(amount + extra)) throw; // return back the ether or rollback if failed } /** * Fallback function when sending ether to the contract * Gas use: 65051 */ function () payable notPendingWithdrawal { uint256 amount = msg.value; // amount that was sent if (amount <= 0) throw; // need to send some ETH balanceOf[msg.sender] += amount; // mint new tokens totalSupply += amount; // track the supply Transfer(0, msg.sender, amount); // notify of the event Deposited(msg.sender, amount); } }
/** * Hodld DAO and ERC20 token * Author: CurrencyTycoon on GitHub * License: MIT * Date: 2017 * * Deploy with the following args: * 0, "Hodl DAO", 18, "HODL" * */
NatSpecMultiLine
approveAndCall
function approveAndCall(address _spender, uint256 _value, bytes _extraData) notPendingWithdrawal returns (bool success) { allowance[msg.sender][_spender] = _value; Approval(msg.sender, _spender, _value); //call the receiveApproval function on the contract you want to be notified. This crafts the function signature manually so one doesn't have to include a contract in here just for this. //receiveApproval(address _from, uint256 _value, address _tokenContract, bytes _extraData) //it is assumed that when does this that the call *should* succeed, otherwise one would use vanilla approve instead. if(!_spender.call(bytes4(bytes32(sha3("receiveApproval(address,uint256,address,bytes)"))), msg.sender, _value, this, _extraData)) { throw; } return true; }
/** * ERC-20 Approves and then calls the receiving contract */
NatSpecMultiLine
v0.4.10+commit.f0d539ae
bzzr://6a5ee1c65b020a24d6ab000e01e6e1c92714225d741017dfb4cf091466db691c
{ "func_code_index": [ 4553, 5374 ] }
2,719
HodlDAO
HodlDAO.sol
0x6b3da034ebad473acb93729a7152c672cc0dc6cd
Solidity
HodlDAO
contract HodlDAO { /* ERC20 Public variables of the token */ string public version = 'HDAO 0.2'; string public name; string public symbol; uint8 public decimals; uint256 public totalSupply; /* ERC20 This creates an array with all balances */ mapping (address => uint256) public balanceOf; mapping (address => mapping (address => uint256)) public allowance; /* store the block number when a withdrawal has been requested*/ mapping (address => withdrawalRequest) public withdrawalRequests; struct withdrawalRequest { uint sinceBlock; uint256 amount; } /** * feePot collects fees from quick withdrawals. This gets re-distributed to slow-withdrawals */ uint256 public feePot; uint32 public constant blockWait = 172800; // roughly 30 days, (2592000 / 15) - assuming block time is ~15 sec. //uint public constant blockWait = 8; // roughly assuming block time is ~15 sec. /** * ERC20 events these generate a public event on the blockchain that will notify clients */ event Transfer(address indexed from, address indexed to, uint256 value); event Approval(address indexed _owner, address indexed _spender, uint256 _value); event WithdrawalQuick(address indexed by, uint256 amount, uint256 fee); // quick withdrawal done event InsufficientFee(address indexed by, uint256 feeRequired); // not enough fee paid for quick withdrawal event WithdrawalStarted(address indexed by, uint256 amount); event WithdrawalDone(address indexed by, uint256 amount, uint256 reward); // amount is the amount that was used to calculate reward event WithdrawalPremature(address indexed by, uint blocksToWait); // Needs to wait blocksToWait before withdrawal unlocked event Deposited(address indexed by, uint256 amount); /** * Initializes contract with initial supply tokens to the creator of the contract * In our case, there's no initial supply. Tokens will be created as ether is sent * to the fall-back function. Then tokens are burned when ether is withdrawn. */ function HodlDAO( uint256 initialSupply, string tokenName, uint8 decimalUnits, string tokenSymbol ) { balanceOf[msg.sender] = initialSupply; // Give the creator all initial tokens totalSupply = initialSupply; // Update total supply name = tokenName; // Set the name for display purposes symbol = tokenSymbol; // Set the symbol for display purposes decimals = decimalUnits; // Amount of decimals for display purposes } /** * notPendingWithdrawal modifier guards the function from executing when a * withdrawal has been requested and is currently pending */ modifier notPendingWithdrawal { if (withdrawalRequests[msg.sender].sinceBlock > 0) throw; _; } /** ERC20 - transfer sends tokens * @notice send `_value` token to `_to` from `msg.sender` * @param _to The address of the recipient * @param _value The amount of token to be transferred * @return Whether the transfer was successful or not */ function transfer(address _to, uint256 _value) notPendingWithdrawal { if (balanceOf[msg.sender] < _value) throw; // Check if the sender has enough if (balanceOf[_to] + _value < balanceOf[_to]) throw; // Check for overflows balanceOf[msg.sender] -= _value; // Subtract from the sender balanceOf[_to] += _value; // Add the same to the recipient Transfer(msg.sender, _to, _value); // Notify anyone listening that this transfer took place } /** ERC20 approve allows another contract to spend some tokens in your behalf * @notice `msg.sender` approves `_spender` to spend `_value` tokens * @param _spender The address of the account able to transfer the tokens * @param _value The amount of tokens to be approved for transfer * @return Whether the approval was successful or not */ function approve(address _spender, uint256 _value) notPendingWithdrawal returns (bool success) { allowance[msg.sender][_spender] = _value; return true; } /** * ERC-20 Approves and then calls the receiving contract */ function approveAndCall(address _spender, uint256 _value, bytes _extraData) notPendingWithdrawal returns (bool success) { allowance[msg.sender][_spender] = _value; Approval(msg.sender, _spender, _value); //call the receiveApproval function on the contract you want to be notified. This crafts the function signature manually so one doesn't have to include a contract in here just for this. //receiveApproval(address _from, uint256 _value, address _tokenContract, bytes _extraData) //it is assumed that when does this that the call *should* succeed, otherwise one would use vanilla approve instead. if(!_spender.call(bytes4(bytes32(sha3("receiveApproval(address,uint256,address,bytes)"))), msg.sender, _value, this, _extraData)) { throw; } return true; } /** * ERC20 A contract attempts to get the coins * @notice send `_value` token to `_to` from `_from` on the condition it is approved by `_from` * @param _from The address of the sender * @param _to The address of the recipient * @param _value The amount of token to be transferred * @return Whether the transfer was successful or not */ function transferFrom(address _from, address _to, uint256 _value) notPendingWithdrawal returns (bool success) { if (balanceOf[_from] < _value) throw; // Check if the sender has enough if (balanceOf[_to] + _value < balanceOf[_to]) throw; // Check for overflows if (_value > allowance[_from][msg.sender]) throw; // Check allowance balanceOf[_from] -= _value; // Subtract from the sender balanceOf[_to] += _value; // Add the same to the recipient allowance[_from][msg.sender] -= _value; Transfer(_from, _to, _value); return true; } /** * withdrawalInitiate initiates the withdrawal by going into a waiting period * It remembers the block number & amount held at the time of request. * After the waiting period finishes, the call withdrawalComplete */ function withdrawalInitiate() notPendingWithdrawal { WithdrawalStarted(msg.sender, balanceOf[msg.sender]); withdrawalRequests[msg.sender] = withdrawalRequest(block.number, balanceOf[msg.sender]); } /** * withdrawalComplete is called after the waiting period. The ether will be * returned to the caller and the tokens will be burned. * A reward will be issued based on the amount in the feePot relative to the * amount held when the withdrawal request was made. * * Gas: 17008 */ function withdrawalComplete() returns (bool) { withdrawalRequest r = withdrawalRequests[msg.sender]; if (r.sinceBlock == 0) throw; if ((r.sinceBlock + blockWait) > block.number) { WithdrawalPremature(msg.sender, r.sinceBlock + blockWait - block.number); return false; } uint256 amount = withdrawalRequests[msg.sender].amount; uint256 reward = calculateReward(r.amount); withdrawalRequests[msg.sender].sinceBlock = 0; withdrawalRequests[msg.sender].amount = 0; if (reward > 0) { if (feePot - reward > feePot) { feePot = 0; // overflow } else { feePot -= reward; } } doWithdrawal(reward); WithdrawalDone(msg.sender, amount, reward); return true; } /** * Reward is based on the amount held, relative to total supply of tokens. */ function calculateReward(uint256 v) constant returns (uint256) { uint256 reward = 0; if (feePot > 0) { reward = v / totalSupply * feePot; } return reward; } /** calculate the fee for quick withdrawal */ function calculateFee(uint256 v) constant returns (uint256) { uint256 feeRequired = v / (1 wei * 100); return feeRequired; } /** * Quick withdrawal, needs to send ether to this function for the fee. * * Gas use: 44129 (including call to processWithdrawal) */ function quickWithdraw() payable notPendingWithdrawal returns (bool) { // calculate required fee uint256 amount = balanceOf[msg.sender]; if (amount <= 0) throw; uint256 feeRequired = calculateFee(amount); if (msg.value < feeRequired) { // not enough fees sent InsufficientFee(msg.sender, feeRequired); return false; } uint256 overAmount = msg.value - feeRequired; // calculate any over-payment // add fee to the feePot, excluding any over-payment if (overAmount > 0) { feePot += msg.value - overAmount; } else { feePot += msg.value; } doWithdrawal(overAmount); // withdraw + return any over payment WithdrawalDone(msg.sender, amount, 0); return true; } /** * do withdrawal * Gas: 62483 */ function doWithdrawal(uint256 extra) internal { uint256 amount = balanceOf[msg.sender]; if (amount <= 0) throw; // cannot withdraw balanceOf[msg.sender] = 0; if (totalSupply > totalSupply - amount) { totalSupply = 0; // don't let it overflow } else { totalSupply -= amount; // deflate the supply! } Transfer(msg.sender, 0, amount); // burn baby burn if (!msg.sender.send(amount + extra)) throw; // return back the ether or rollback if failed } /** * Fallback function when sending ether to the contract * Gas use: 65051 */ function () payable notPendingWithdrawal { uint256 amount = msg.value; // amount that was sent if (amount <= 0) throw; // need to send some ETH balanceOf[msg.sender] += amount; // mint new tokens totalSupply += amount; // track the supply Transfer(0, msg.sender, amount); // notify of the event Deposited(msg.sender, amount); } }
/** * Hodld DAO and ERC20 token * Author: CurrencyTycoon on GitHub * License: MIT * Date: 2017 * * Deploy with the following args: * 0, "Hodl DAO", 18, "HODL" * */
NatSpecMultiLine
transferFrom
function transferFrom(address _from, address _to, uint256 _value) notPendingWithdrawal returns (bool success) { if (balanceOf[_from] < _value) throw; // Check if the sender has enough if (balanceOf[_to] + _value < balanceOf[_to]) throw; // Check for overflows if (_value > allowance[_from][msg.sender]) throw; // Check allowance balanceOf[_from] -= _value; // Subtract from the sender balanceOf[_to] += _value; // Add the same to the recipient allowance[_from][msg.sender] -= _value; Transfer(_from, _to, _value); return true; }
/** * ERC20 A contract attempts to get the coins * @notice send `_value` token to `_to` from `_from` on the condition it is approved by `_from` * @param _from The address of the sender * @param _to The address of the recipient * @param _value The amount of token to be transferred * @return Whether the transfer was successful or not */
NatSpecMultiLine
v0.4.10+commit.f0d539ae
bzzr://6a5ee1c65b020a24d6ab000e01e6e1c92714225d741017dfb4cf091466db691c
{ "func_code_index": [ 5761, 6452 ] }
2,720
HodlDAO
HodlDAO.sol
0x6b3da034ebad473acb93729a7152c672cc0dc6cd
Solidity
HodlDAO
contract HodlDAO { /* ERC20 Public variables of the token */ string public version = 'HDAO 0.2'; string public name; string public symbol; uint8 public decimals; uint256 public totalSupply; /* ERC20 This creates an array with all balances */ mapping (address => uint256) public balanceOf; mapping (address => mapping (address => uint256)) public allowance; /* store the block number when a withdrawal has been requested*/ mapping (address => withdrawalRequest) public withdrawalRequests; struct withdrawalRequest { uint sinceBlock; uint256 amount; } /** * feePot collects fees from quick withdrawals. This gets re-distributed to slow-withdrawals */ uint256 public feePot; uint32 public constant blockWait = 172800; // roughly 30 days, (2592000 / 15) - assuming block time is ~15 sec. //uint public constant blockWait = 8; // roughly assuming block time is ~15 sec. /** * ERC20 events these generate a public event on the blockchain that will notify clients */ event Transfer(address indexed from, address indexed to, uint256 value); event Approval(address indexed _owner, address indexed _spender, uint256 _value); event WithdrawalQuick(address indexed by, uint256 amount, uint256 fee); // quick withdrawal done event InsufficientFee(address indexed by, uint256 feeRequired); // not enough fee paid for quick withdrawal event WithdrawalStarted(address indexed by, uint256 amount); event WithdrawalDone(address indexed by, uint256 amount, uint256 reward); // amount is the amount that was used to calculate reward event WithdrawalPremature(address indexed by, uint blocksToWait); // Needs to wait blocksToWait before withdrawal unlocked event Deposited(address indexed by, uint256 amount); /** * Initializes contract with initial supply tokens to the creator of the contract * In our case, there's no initial supply. Tokens will be created as ether is sent * to the fall-back function. Then tokens are burned when ether is withdrawn. */ function HodlDAO( uint256 initialSupply, string tokenName, uint8 decimalUnits, string tokenSymbol ) { balanceOf[msg.sender] = initialSupply; // Give the creator all initial tokens totalSupply = initialSupply; // Update total supply name = tokenName; // Set the name for display purposes symbol = tokenSymbol; // Set the symbol for display purposes decimals = decimalUnits; // Amount of decimals for display purposes } /** * notPendingWithdrawal modifier guards the function from executing when a * withdrawal has been requested and is currently pending */ modifier notPendingWithdrawal { if (withdrawalRequests[msg.sender].sinceBlock > 0) throw; _; } /** ERC20 - transfer sends tokens * @notice send `_value` token to `_to` from `msg.sender` * @param _to The address of the recipient * @param _value The amount of token to be transferred * @return Whether the transfer was successful or not */ function transfer(address _to, uint256 _value) notPendingWithdrawal { if (balanceOf[msg.sender] < _value) throw; // Check if the sender has enough if (balanceOf[_to] + _value < balanceOf[_to]) throw; // Check for overflows balanceOf[msg.sender] -= _value; // Subtract from the sender balanceOf[_to] += _value; // Add the same to the recipient Transfer(msg.sender, _to, _value); // Notify anyone listening that this transfer took place } /** ERC20 approve allows another contract to spend some tokens in your behalf * @notice `msg.sender` approves `_spender` to spend `_value` tokens * @param _spender The address of the account able to transfer the tokens * @param _value The amount of tokens to be approved for transfer * @return Whether the approval was successful or not */ function approve(address _spender, uint256 _value) notPendingWithdrawal returns (bool success) { allowance[msg.sender][_spender] = _value; return true; } /** * ERC-20 Approves and then calls the receiving contract */ function approveAndCall(address _spender, uint256 _value, bytes _extraData) notPendingWithdrawal returns (bool success) { allowance[msg.sender][_spender] = _value; Approval(msg.sender, _spender, _value); //call the receiveApproval function on the contract you want to be notified. This crafts the function signature manually so one doesn't have to include a contract in here just for this. //receiveApproval(address _from, uint256 _value, address _tokenContract, bytes _extraData) //it is assumed that when does this that the call *should* succeed, otherwise one would use vanilla approve instead. if(!_spender.call(bytes4(bytes32(sha3("receiveApproval(address,uint256,address,bytes)"))), msg.sender, _value, this, _extraData)) { throw; } return true; } /** * ERC20 A contract attempts to get the coins * @notice send `_value` token to `_to` from `_from` on the condition it is approved by `_from` * @param _from The address of the sender * @param _to The address of the recipient * @param _value The amount of token to be transferred * @return Whether the transfer was successful or not */ function transferFrom(address _from, address _to, uint256 _value) notPendingWithdrawal returns (bool success) { if (balanceOf[_from] < _value) throw; // Check if the sender has enough if (balanceOf[_to] + _value < balanceOf[_to]) throw; // Check for overflows if (_value > allowance[_from][msg.sender]) throw; // Check allowance balanceOf[_from] -= _value; // Subtract from the sender balanceOf[_to] += _value; // Add the same to the recipient allowance[_from][msg.sender] -= _value; Transfer(_from, _to, _value); return true; } /** * withdrawalInitiate initiates the withdrawal by going into a waiting period * It remembers the block number & amount held at the time of request. * After the waiting period finishes, the call withdrawalComplete */ function withdrawalInitiate() notPendingWithdrawal { WithdrawalStarted(msg.sender, balanceOf[msg.sender]); withdrawalRequests[msg.sender] = withdrawalRequest(block.number, balanceOf[msg.sender]); } /** * withdrawalComplete is called after the waiting period. The ether will be * returned to the caller and the tokens will be burned. * A reward will be issued based on the amount in the feePot relative to the * amount held when the withdrawal request was made. * * Gas: 17008 */ function withdrawalComplete() returns (bool) { withdrawalRequest r = withdrawalRequests[msg.sender]; if (r.sinceBlock == 0) throw; if ((r.sinceBlock + blockWait) > block.number) { WithdrawalPremature(msg.sender, r.sinceBlock + blockWait - block.number); return false; } uint256 amount = withdrawalRequests[msg.sender].amount; uint256 reward = calculateReward(r.amount); withdrawalRequests[msg.sender].sinceBlock = 0; withdrawalRequests[msg.sender].amount = 0; if (reward > 0) { if (feePot - reward > feePot) { feePot = 0; // overflow } else { feePot -= reward; } } doWithdrawal(reward); WithdrawalDone(msg.sender, amount, reward); return true; } /** * Reward is based on the amount held, relative to total supply of tokens. */ function calculateReward(uint256 v) constant returns (uint256) { uint256 reward = 0; if (feePot > 0) { reward = v / totalSupply * feePot; } return reward; } /** calculate the fee for quick withdrawal */ function calculateFee(uint256 v) constant returns (uint256) { uint256 feeRequired = v / (1 wei * 100); return feeRequired; } /** * Quick withdrawal, needs to send ether to this function for the fee. * * Gas use: 44129 (including call to processWithdrawal) */ function quickWithdraw() payable notPendingWithdrawal returns (bool) { // calculate required fee uint256 amount = balanceOf[msg.sender]; if (amount <= 0) throw; uint256 feeRequired = calculateFee(amount); if (msg.value < feeRequired) { // not enough fees sent InsufficientFee(msg.sender, feeRequired); return false; } uint256 overAmount = msg.value - feeRequired; // calculate any over-payment // add fee to the feePot, excluding any over-payment if (overAmount > 0) { feePot += msg.value - overAmount; } else { feePot += msg.value; } doWithdrawal(overAmount); // withdraw + return any over payment WithdrawalDone(msg.sender, amount, 0); return true; } /** * do withdrawal * Gas: 62483 */ function doWithdrawal(uint256 extra) internal { uint256 amount = balanceOf[msg.sender]; if (amount <= 0) throw; // cannot withdraw balanceOf[msg.sender] = 0; if (totalSupply > totalSupply - amount) { totalSupply = 0; // don't let it overflow } else { totalSupply -= amount; // deflate the supply! } Transfer(msg.sender, 0, amount); // burn baby burn if (!msg.sender.send(amount + extra)) throw; // return back the ether or rollback if failed } /** * Fallback function when sending ether to the contract * Gas use: 65051 */ function () payable notPendingWithdrawal { uint256 amount = msg.value; // amount that was sent if (amount <= 0) throw; // need to send some ETH balanceOf[msg.sender] += amount; // mint new tokens totalSupply += amount; // track the supply Transfer(0, msg.sender, amount); // notify of the event Deposited(msg.sender, amount); } }
/** * Hodld DAO and ERC20 token * Author: CurrencyTycoon on GitHub * License: MIT * Date: 2017 * * Deploy with the following args: * 0, "Hodl DAO", 18, "HODL" * */
NatSpecMultiLine
withdrawalInitiate
function withdrawalInitiate() notPendingWithdrawal { WithdrawalStarted(msg.sender, balanceOf[msg.sender]); withdrawalRequests[msg.sender] = withdrawalRequest(block.number, balanceOf[msg.sender]); }
/** * withdrawalInitiate initiates the withdrawal by going into a waiting period * It remembers the block number & amount held at the time of request. * After the waiting period finishes, the call withdrawalComplete */
NatSpecMultiLine
v0.4.10+commit.f0d539ae
bzzr://6a5ee1c65b020a24d6ab000e01e6e1c92714225d741017dfb4cf091466db691c
{ "func_code_index": [ 6703, 6928 ] }
2,721
HodlDAO
HodlDAO.sol
0x6b3da034ebad473acb93729a7152c672cc0dc6cd
Solidity
HodlDAO
contract HodlDAO { /* ERC20 Public variables of the token */ string public version = 'HDAO 0.2'; string public name; string public symbol; uint8 public decimals; uint256 public totalSupply; /* ERC20 This creates an array with all balances */ mapping (address => uint256) public balanceOf; mapping (address => mapping (address => uint256)) public allowance; /* store the block number when a withdrawal has been requested*/ mapping (address => withdrawalRequest) public withdrawalRequests; struct withdrawalRequest { uint sinceBlock; uint256 amount; } /** * feePot collects fees from quick withdrawals. This gets re-distributed to slow-withdrawals */ uint256 public feePot; uint32 public constant blockWait = 172800; // roughly 30 days, (2592000 / 15) - assuming block time is ~15 sec. //uint public constant blockWait = 8; // roughly assuming block time is ~15 sec. /** * ERC20 events these generate a public event on the blockchain that will notify clients */ event Transfer(address indexed from, address indexed to, uint256 value); event Approval(address indexed _owner, address indexed _spender, uint256 _value); event WithdrawalQuick(address indexed by, uint256 amount, uint256 fee); // quick withdrawal done event InsufficientFee(address indexed by, uint256 feeRequired); // not enough fee paid for quick withdrawal event WithdrawalStarted(address indexed by, uint256 amount); event WithdrawalDone(address indexed by, uint256 amount, uint256 reward); // amount is the amount that was used to calculate reward event WithdrawalPremature(address indexed by, uint blocksToWait); // Needs to wait blocksToWait before withdrawal unlocked event Deposited(address indexed by, uint256 amount); /** * Initializes contract with initial supply tokens to the creator of the contract * In our case, there's no initial supply. Tokens will be created as ether is sent * to the fall-back function. Then tokens are burned when ether is withdrawn. */ function HodlDAO( uint256 initialSupply, string tokenName, uint8 decimalUnits, string tokenSymbol ) { balanceOf[msg.sender] = initialSupply; // Give the creator all initial tokens totalSupply = initialSupply; // Update total supply name = tokenName; // Set the name for display purposes symbol = tokenSymbol; // Set the symbol for display purposes decimals = decimalUnits; // Amount of decimals for display purposes } /** * notPendingWithdrawal modifier guards the function from executing when a * withdrawal has been requested and is currently pending */ modifier notPendingWithdrawal { if (withdrawalRequests[msg.sender].sinceBlock > 0) throw; _; } /** ERC20 - transfer sends tokens * @notice send `_value` token to `_to` from `msg.sender` * @param _to The address of the recipient * @param _value The amount of token to be transferred * @return Whether the transfer was successful or not */ function transfer(address _to, uint256 _value) notPendingWithdrawal { if (balanceOf[msg.sender] < _value) throw; // Check if the sender has enough if (balanceOf[_to] + _value < balanceOf[_to]) throw; // Check for overflows balanceOf[msg.sender] -= _value; // Subtract from the sender balanceOf[_to] += _value; // Add the same to the recipient Transfer(msg.sender, _to, _value); // Notify anyone listening that this transfer took place } /** ERC20 approve allows another contract to spend some tokens in your behalf * @notice `msg.sender` approves `_spender` to spend `_value` tokens * @param _spender The address of the account able to transfer the tokens * @param _value The amount of tokens to be approved for transfer * @return Whether the approval was successful or not */ function approve(address _spender, uint256 _value) notPendingWithdrawal returns (bool success) { allowance[msg.sender][_spender] = _value; return true; } /** * ERC-20 Approves and then calls the receiving contract */ function approveAndCall(address _spender, uint256 _value, bytes _extraData) notPendingWithdrawal returns (bool success) { allowance[msg.sender][_spender] = _value; Approval(msg.sender, _spender, _value); //call the receiveApproval function on the contract you want to be notified. This crafts the function signature manually so one doesn't have to include a contract in here just for this. //receiveApproval(address _from, uint256 _value, address _tokenContract, bytes _extraData) //it is assumed that when does this that the call *should* succeed, otherwise one would use vanilla approve instead. if(!_spender.call(bytes4(bytes32(sha3("receiveApproval(address,uint256,address,bytes)"))), msg.sender, _value, this, _extraData)) { throw; } return true; } /** * ERC20 A contract attempts to get the coins * @notice send `_value` token to `_to` from `_from` on the condition it is approved by `_from` * @param _from The address of the sender * @param _to The address of the recipient * @param _value The amount of token to be transferred * @return Whether the transfer was successful or not */ function transferFrom(address _from, address _to, uint256 _value) notPendingWithdrawal returns (bool success) { if (balanceOf[_from] < _value) throw; // Check if the sender has enough if (balanceOf[_to] + _value < balanceOf[_to]) throw; // Check for overflows if (_value > allowance[_from][msg.sender]) throw; // Check allowance balanceOf[_from] -= _value; // Subtract from the sender balanceOf[_to] += _value; // Add the same to the recipient allowance[_from][msg.sender] -= _value; Transfer(_from, _to, _value); return true; } /** * withdrawalInitiate initiates the withdrawal by going into a waiting period * It remembers the block number & amount held at the time of request. * After the waiting period finishes, the call withdrawalComplete */ function withdrawalInitiate() notPendingWithdrawal { WithdrawalStarted(msg.sender, balanceOf[msg.sender]); withdrawalRequests[msg.sender] = withdrawalRequest(block.number, balanceOf[msg.sender]); } /** * withdrawalComplete is called after the waiting period. The ether will be * returned to the caller and the tokens will be burned. * A reward will be issued based on the amount in the feePot relative to the * amount held when the withdrawal request was made. * * Gas: 17008 */ function withdrawalComplete() returns (bool) { withdrawalRequest r = withdrawalRequests[msg.sender]; if (r.sinceBlock == 0) throw; if ((r.sinceBlock + blockWait) > block.number) { WithdrawalPremature(msg.sender, r.sinceBlock + blockWait - block.number); return false; } uint256 amount = withdrawalRequests[msg.sender].amount; uint256 reward = calculateReward(r.amount); withdrawalRequests[msg.sender].sinceBlock = 0; withdrawalRequests[msg.sender].amount = 0; if (reward > 0) { if (feePot - reward > feePot) { feePot = 0; // overflow } else { feePot -= reward; } } doWithdrawal(reward); WithdrawalDone(msg.sender, amount, reward); return true; } /** * Reward is based on the amount held, relative to total supply of tokens. */ function calculateReward(uint256 v) constant returns (uint256) { uint256 reward = 0; if (feePot > 0) { reward = v / totalSupply * feePot; } return reward; } /** calculate the fee for quick withdrawal */ function calculateFee(uint256 v) constant returns (uint256) { uint256 feeRequired = v / (1 wei * 100); return feeRequired; } /** * Quick withdrawal, needs to send ether to this function for the fee. * * Gas use: 44129 (including call to processWithdrawal) */ function quickWithdraw() payable notPendingWithdrawal returns (bool) { // calculate required fee uint256 amount = balanceOf[msg.sender]; if (amount <= 0) throw; uint256 feeRequired = calculateFee(amount); if (msg.value < feeRequired) { // not enough fees sent InsufficientFee(msg.sender, feeRequired); return false; } uint256 overAmount = msg.value - feeRequired; // calculate any over-payment // add fee to the feePot, excluding any over-payment if (overAmount > 0) { feePot += msg.value - overAmount; } else { feePot += msg.value; } doWithdrawal(overAmount); // withdraw + return any over payment WithdrawalDone(msg.sender, amount, 0); return true; } /** * do withdrawal * Gas: 62483 */ function doWithdrawal(uint256 extra) internal { uint256 amount = balanceOf[msg.sender]; if (amount <= 0) throw; // cannot withdraw balanceOf[msg.sender] = 0; if (totalSupply > totalSupply - amount) { totalSupply = 0; // don't let it overflow } else { totalSupply -= amount; // deflate the supply! } Transfer(msg.sender, 0, amount); // burn baby burn if (!msg.sender.send(amount + extra)) throw; // return back the ether or rollback if failed } /** * Fallback function when sending ether to the contract * Gas use: 65051 */ function () payable notPendingWithdrawal { uint256 amount = msg.value; // amount that was sent if (amount <= 0) throw; // need to send some ETH balanceOf[msg.sender] += amount; // mint new tokens totalSupply += amount; // track the supply Transfer(0, msg.sender, amount); // notify of the event Deposited(msg.sender, amount); } }
/** * Hodld DAO and ERC20 token * Author: CurrencyTycoon on GitHub * License: MIT * Date: 2017 * * Deploy with the following args: * 0, "Hodl DAO", 18, "HODL" * */
NatSpecMultiLine
withdrawalComplete
function withdrawalComplete() returns (bool) { withdrawalRequest r = withdrawalRequests[msg.sender]; if (r.sinceBlock == 0) throw; if ((r.sinceBlock + blockWait) > block.number) { WithdrawalPremature(msg.sender, r.sinceBlock + blockWait - block.number); return false; } uint256 amount = withdrawalRequests[msg.sender].amount; uint256 reward = calculateReward(r.amount); withdrawalRequests[msg.sender].sinceBlock = 0; withdrawalRequests[msg.sender].amount = 0; if (reward > 0) { if (feePot - reward > feePot) { feePot = 0; // overflow } else { feePot -= reward; } } doWithdrawal(reward); WithdrawalDone(msg.sender, amount, reward); return true; }
/** * withdrawalComplete is called after the waiting period. The ether will be * returned to the caller and the tokens will be burned. * A reward will be issued based on the amount in the feePot relative to the * amount held when the withdrawal request was made. * * Gas: 17008 */
NatSpecMultiLine
v0.4.10+commit.f0d539ae
bzzr://6a5ee1c65b020a24d6ab000e01e6e1c92714225d741017dfb4cf091466db691c
{ "func_code_index": [ 7259, 8134 ] }
2,722
HodlDAO
HodlDAO.sol
0x6b3da034ebad473acb93729a7152c672cc0dc6cd
Solidity
HodlDAO
contract HodlDAO { /* ERC20 Public variables of the token */ string public version = 'HDAO 0.2'; string public name; string public symbol; uint8 public decimals; uint256 public totalSupply; /* ERC20 This creates an array with all balances */ mapping (address => uint256) public balanceOf; mapping (address => mapping (address => uint256)) public allowance; /* store the block number when a withdrawal has been requested*/ mapping (address => withdrawalRequest) public withdrawalRequests; struct withdrawalRequest { uint sinceBlock; uint256 amount; } /** * feePot collects fees from quick withdrawals. This gets re-distributed to slow-withdrawals */ uint256 public feePot; uint32 public constant blockWait = 172800; // roughly 30 days, (2592000 / 15) - assuming block time is ~15 sec. //uint public constant blockWait = 8; // roughly assuming block time is ~15 sec. /** * ERC20 events these generate a public event on the blockchain that will notify clients */ event Transfer(address indexed from, address indexed to, uint256 value); event Approval(address indexed _owner, address indexed _spender, uint256 _value); event WithdrawalQuick(address indexed by, uint256 amount, uint256 fee); // quick withdrawal done event InsufficientFee(address indexed by, uint256 feeRequired); // not enough fee paid for quick withdrawal event WithdrawalStarted(address indexed by, uint256 amount); event WithdrawalDone(address indexed by, uint256 amount, uint256 reward); // amount is the amount that was used to calculate reward event WithdrawalPremature(address indexed by, uint blocksToWait); // Needs to wait blocksToWait before withdrawal unlocked event Deposited(address indexed by, uint256 amount); /** * Initializes contract with initial supply tokens to the creator of the contract * In our case, there's no initial supply. Tokens will be created as ether is sent * to the fall-back function. Then tokens are burned when ether is withdrawn. */ function HodlDAO( uint256 initialSupply, string tokenName, uint8 decimalUnits, string tokenSymbol ) { balanceOf[msg.sender] = initialSupply; // Give the creator all initial tokens totalSupply = initialSupply; // Update total supply name = tokenName; // Set the name for display purposes symbol = tokenSymbol; // Set the symbol for display purposes decimals = decimalUnits; // Amount of decimals for display purposes } /** * notPendingWithdrawal modifier guards the function from executing when a * withdrawal has been requested and is currently pending */ modifier notPendingWithdrawal { if (withdrawalRequests[msg.sender].sinceBlock > 0) throw; _; } /** ERC20 - transfer sends tokens * @notice send `_value` token to `_to` from `msg.sender` * @param _to The address of the recipient * @param _value The amount of token to be transferred * @return Whether the transfer was successful or not */ function transfer(address _to, uint256 _value) notPendingWithdrawal { if (balanceOf[msg.sender] < _value) throw; // Check if the sender has enough if (balanceOf[_to] + _value < balanceOf[_to]) throw; // Check for overflows balanceOf[msg.sender] -= _value; // Subtract from the sender balanceOf[_to] += _value; // Add the same to the recipient Transfer(msg.sender, _to, _value); // Notify anyone listening that this transfer took place } /** ERC20 approve allows another contract to spend some tokens in your behalf * @notice `msg.sender` approves `_spender` to spend `_value` tokens * @param _spender The address of the account able to transfer the tokens * @param _value The amount of tokens to be approved for transfer * @return Whether the approval was successful or not */ function approve(address _spender, uint256 _value) notPendingWithdrawal returns (bool success) { allowance[msg.sender][_spender] = _value; return true; } /** * ERC-20 Approves and then calls the receiving contract */ function approveAndCall(address _spender, uint256 _value, bytes _extraData) notPendingWithdrawal returns (bool success) { allowance[msg.sender][_spender] = _value; Approval(msg.sender, _spender, _value); //call the receiveApproval function on the contract you want to be notified. This crafts the function signature manually so one doesn't have to include a contract in here just for this. //receiveApproval(address _from, uint256 _value, address _tokenContract, bytes _extraData) //it is assumed that when does this that the call *should* succeed, otherwise one would use vanilla approve instead. if(!_spender.call(bytes4(bytes32(sha3("receiveApproval(address,uint256,address,bytes)"))), msg.sender, _value, this, _extraData)) { throw; } return true; } /** * ERC20 A contract attempts to get the coins * @notice send `_value` token to `_to` from `_from` on the condition it is approved by `_from` * @param _from The address of the sender * @param _to The address of the recipient * @param _value The amount of token to be transferred * @return Whether the transfer was successful or not */ function transferFrom(address _from, address _to, uint256 _value) notPendingWithdrawal returns (bool success) { if (balanceOf[_from] < _value) throw; // Check if the sender has enough if (balanceOf[_to] + _value < balanceOf[_to]) throw; // Check for overflows if (_value > allowance[_from][msg.sender]) throw; // Check allowance balanceOf[_from] -= _value; // Subtract from the sender balanceOf[_to] += _value; // Add the same to the recipient allowance[_from][msg.sender] -= _value; Transfer(_from, _to, _value); return true; } /** * withdrawalInitiate initiates the withdrawal by going into a waiting period * It remembers the block number & amount held at the time of request. * After the waiting period finishes, the call withdrawalComplete */ function withdrawalInitiate() notPendingWithdrawal { WithdrawalStarted(msg.sender, balanceOf[msg.sender]); withdrawalRequests[msg.sender] = withdrawalRequest(block.number, balanceOf[msg.sender]); } /** * withdrawalComplete is called after the waiting period. The ether will be * returned to the caller and the tokens will be burned. * A reward will be issued based on the amount in the feePot relative to the * amount held when the withdrawal request was made. * * Gas: 17008 */ function withdrawalComplete() returns (bool) { withdrawalRequest r = withdrawalRequests[msg.sender]; if (r.sinceBlock == 0) throw; if ((r.sinceBlock + blockWait) > block.number) { WithdrawalPremature(msg.sender, r.sinceBlock + blockWait - block.number); return false; } uint256 amount = withdrawalRequests[msg.sender].amount; uint256 reward = calculateReward(r.amount); withdrawalRequests[msg.sender].sinceBlock = 0; withdrawalRequests[msg.sender].amount = 0; if (reward > 0) { if (feePot - reward > feePot) { feePot = 0; // overflow } else { feePot -= reward; } } doWithdrawal(reward); WithdrawalDone(msg.sender, amount, reward); return true; } /** * Reward is based on the amount held, relative to total supply of tokens. */ function calculateReward(uint256 v) constant returns (uint256) { uint256 reward = 0; if (feePot > 0) { reward = v / totalSupply * feePot; } return reward; } /** calculate the fee for quick withdrawal */ function calculateFee(uint256 v) constant returns (uint256) { uint256 feeRequired = v / (1 wei * 100); return feeRequired; } /** * Quick withdrawal, needs to send ether to this function for the fee. * * Gas use: 44129 (including call to processWithdrawal) */ function quickWithdraw() payable notPendingWithdrawal returns (bool) { // calculate required fee uint256 amount = balanceOf[msg.sender]; if (amount <= 0) throw; uint256 feeRequired = calculateFee(amount); if (msg.value < feeRequired) { // not enough fees sent InsufficientFee(msg.sender, feeRequired); return false; } uint256 overAmount = msg.value - feeRequired; // calculate any over-payment // add fee to the feePot, excluding any over-payment if (overAmount > 0) { feePot += msg.value - overAmount; } else { feePot += msg.value; } doWithdrawal(overAmount); // withdraw + return any over payment WithdrawalDone(msg.sender, amount, 0); return true; } /** * do withdrawal * Gas: 62483 */ function doWithdrawal(uint256 extra) internal { uint256 amount = balanceOf[msg.sender]; if (amount <= 0) throw; // cannot withdraw balanceOf[msg.sender] = 0; if (totalSupply > totalSupply - amount) { totalSupply = 0; // don't let it overflow } else { totalSupply -= amount; // deflate the supply! } Transfer(msg.sender, 0, amount); // burn baby burn if (!msg.sender.send(amount + extra)) throw; // return back the ether or rollback if failed } /** * Fallback function when sending ether to the contract * Gas use: 65051 */ function () payable notPendingWithdrawal { uint256 amount = msg.value; // amount that was sent if (amount <= 0) throw; // need to send some ETH balanceOf[msg.sender] += amount; // mint new tokens totalSupply += amount; // track the supply Transfer(0, msg.sender, amount); // notify of the event Deposited(msg.sender, amount); } }
/** * Hodld DAO and ERC20 token * Author: CurrencyTycoon on GitHub * License: MIT * Date: 2017 * * Deploy with the following args: * 0, "Hodl DAO", 18, "HODL" * */
NatSpecMultiLine
calculateReward
function calculateReward(uint256 v) constant returns (uint256) { uint256 reward = 0; if (feePot > 0) { reward = v / totalSupply * feePot; } return reward; }
/** * Reward is based on the amount held, relative to total supply of tokens. */
NatSpecMultiLine
v0.4.10+commit.f0d539ae
bzzr://6a5ee1c65b020a24d6ab000e01e6e1c92714225d741017dfb4cf091466db691c
{ "func_code_index": [ 8235, 8450 ] }
2,723
HodlDAO
HodlDAO.sol
0x6b3da034ebad473acb93729a7152c672cc0dc6cd
Solidity
HodlDAO
contract HodlDAO { /* ERC20 Public variables of the token */ string public version = 'HDAO 0.2'; string public name; string public symbol; uint8 public decimals; uint256 public totalSupply; /* ERC20 This creates an array with all balances */ mapping (address => uint256) public balanceOf; mapping (address => mapping (address => uint256)) public allowance; /* store the block number when a withdrawal has been requested*/ mapping (address => withdrawalRequest) public withdrawalRequests; struct withdrawalRequest { uint sinceBlock; uint256 amount; } /** * feePot collects fees from quick withdrawals. This gets re-distributed to slow-withdrawals */ uint256 public feePot; uint32 public constant blockWait = 172800; // roughly 30 days, (2592000 / 15) - assuming block time is ~15 sec. //uint public constant blockWait = 8; // roughly assuming block time is ~15 sec. /** * ERC20 events these generate a public event on the blockchain that will notify clients */ event Transfer(address indexed from, address indexed to, uint256 value); event Approval(address indexed _owner, address indexed _spender, uint256 _value); event WithdrawalQuick(address indexed by, uint256 amount, uint256 fee); // quick withdrawal done event InsufficientFee(address indexed by, uint256 feeRequired); // not enough fee paid for quick withdrawal event WithdrawalStarted(address indexed by, uint256 amount); event WithdrawalDone(address indexed by, uint256 amount, uint256 reward); // amount is the amount that was used to calculate reward event WithdrawalPremature(address indexed by, uint blocksToWait); // Needs to wait blocksToWait before withdrawal unlocked event Deposited(address indexed by, uint256 amount); /** * Initializes contract with initial supply tokens to the creator of the contract * In our case, there's no initial supply. Tokens will be created as ether is sent * to the fall-back function. Then tokens are burned when ether is withdrawn. */ function HodlDAO( uint256 initialSupply, string tokenName, uint8 decimalUnits, string tokenSymbol ) { balanceOf[msg.sender] = initialSupply; // Give the creator all initial tokens totalSupply = initialSupply; // Update total supply name = tokenName; // Set the name for display purposes symbol = tokenSymbol; // Set the symbol for display purposes decimals = decimalUnits; // Amount of decimals for display purposes } /** * notPendingWithdrawal modifier guards the function from executing when a * withdrawal has been requested and is currently pending */ modifier notPendingWithdrawal { if (withdrawalRequests[msg.sender].sinceBlock > 0) throw; _; } /** ERC20 - transfer sends tokens * @notice send `_value` token to `_to` from `msg.sender` * @param _to The address of the recipient * @param _value The amount of token to be transferred * @return Whether the transfer was successful or not */ function transfer(address _to, uint256 _value) notPendingWithdrawal { if (balanceOf[msg.sender] < _value) throw; // Check if the sender has enough if (balanceOf[_to] + _value < balanceOf[_to]) throw; // Check for overflows balanceOf[msg.sender] -= _value; // Subtract from the sender balanceOf[_to] += _value; // Add the same to the recipient Transfer(msg.sender, _to, _value); // Notify anyone listening that this transfer took place } /** ERC20 approve allows another contract to spend some tokens in your behalf * @notice `msg.sender` approves `_spender` to spend `_value` tokens * @param _spender The address of the account able to transfer the tokens * @param _value The amount of tokens to be approved for transfer * @return Whether the approval was successful or not */ function approve(address _spender, uint256 _value) notPendingWithdrawal returns (bool success) { allowance[msg.sender][_spender] = _value; return true; } /** * ERC-20 Approves and then calls the receiving contract */ function approveAndCall(address _spender, uint256 _value, bytes _extraData) notPendingWithdrawal returns (bool success) { allowance[msg.sender][_spender] = _value; Approval(msg.sender, _spender, _value); //call the receiveApproval function on the contract you want to be notified. This crafts the function signature manually so one doesn't have to include a contract in here just for this. //receiveApproval(address _from, uint256 _value, address _tokenContract, bytes _extraData) //it is assumed that when does this that the call *should* succeed, otherwise one would use vanilla approve instead. if(!_spender.call(bytes4(bytes32(sha3("receiveApproval(address,uint256,address,bytes)"))), msg.sender, _value, this, _extraData)) { throw; } return true; } /** * ERC20 A contract attempts to get the coins * @notice send `_value` token to `_to` from `_from` on the condition it is approved by `_from` * @param _from The address of the sender * @param _to The address of the recipient * @param _value The amount of token to be transferred * @return Whether the transfer was successful or not */ function transferFrom(address _from, address _to, uint256 _value) notPendingWithdrawal returns (bool success) { if (balanceOf[_from] < _value) throw; // Check if the sender has enough if (balanceOf[_to] + _value < balanceOf[_to]) throw; // Check for overflows if (_value > allowance[_from][msg.sender]) throw; // Check allowance balanceOf[_from] -= _value; // Subtract from the sender balanceOf[_to] += _value; // Add the same to the recipient allowance[_from][msg.sender] -= _value; Transfer(_from, _to, _value); return true; } /** * withdrawalInitiate initiates the withdrawal by going into a waiting period * It remembers the block number & amount held at the time of request. * After the waiting period finishes, the call withdrawalComplete */ function withdrawalInitiate() notPendingWithdrawal { WithdrawalStarted(msg.sender, balanceOf[msg.sender]); withdrawalRequests[msg.sender] = withdrawalRequest(block.number, balanceOf[msg.sender]); } /** * withdrawalComplete is called after the waiting period. The ether will be * returned to the caller and the tokens will be burned. * A reward will be issued based on the amount in the feePot relative to the * amount held when the withdrawal request was made. * * Gas: 17008 */ function withdrawalComplete() returns (bool) { withdrawalRequest r = withdrawalRequests[msg.sender]; if (r.sinceBlock == 0) throw; if ((r.sinceBlock + blockWait) > block.number) { WithdrawalPremature(msg.sender, r.sinceBlock + blockWait - block.number); return false; } uint256 amount = withdrawalRequests[msg.sender].amount; uint256 reward = calculateReward(r.amount); withdrawalRequests[msg.sender].sinceBlock = 0; withdrawalRequests[msg.sender].amount = 0; if (reward > 0) { if (feePot - reward > feePot) { feePot = 0; // overflow } else { feePot -= reward; } } doWithdrawal(reward); WithdrawalDone(msg.sender, amount, reward); return true; } /** * Reward is based on the amount held, relative to total supply of tokens. */ function calculateReward(uint256 v) constant returns (uint256) { uint256 reward = 0; if (feePot > 0) { reward = v / totalSupply * feePot; } return reward; } /** calculate the fee for quick withdrawal */ function calculateFee(uint256 v) constant returns (uint256) { uint256 feeRequired = v / (1 wei * 100); return feeRequired; } /** * Quick withdrawal, needs to send ether to this function for the fee. * * Gas use: 44129 (including call to processWithdrawal) */ function quickWithdraw() payable notPendingWithdrawal returns (bool) { // calculate required fee uint256 amount = balanceOf[msg.sender]; if (amount <= 0) throw; uint256 feeRequired = calculateFee(amount); if (msg.value < feeRequired) { // not enough fees sent InsufficientFee(msg.sender, feeRequired); return false; } uint256 overAmount = msg.value - feeRequired; // calculate any over-payment // add fee to the feePot, excluding any over-payment if (overAmount > 0) { feePot += msg.value - overAmount; } else { feePot += msg.value; } doWithdrawal(overAmount); // withdraw + return any over payment WithdrawalDone(msg.sender, amount, 0); return true; } /** * do withdrawal * Gas: 62483 */ function doWithdrawal(uint256 extra) internal { uint256 amount = balanceOf[msg.sender]; if (amount <= 0) throw; // cannot withdraw balanceOf[msg.sender] = 0; if (totalSupply > totalSupply - amount) { totalSupply = 0; // don't let it overflow } else { totalSupply -= amount; // deflate the supply! } Transfer(msg.sender, 0, amount); // burn baby burn if (!msg.sender.send(amount + extra)) throw; // return back the ether or rollback if failed } /** * Fallback function when sending ether to the contract * Gas use: 65051 */ function () payable notPendingWithdrawal { uint256 amount = msg.value; // amount that was sent if (amount <= 0) throw; // need to send some ETH balanceOf[msg.sender] += amount; // mint new tokens totalSupply += amount; // track the supply Transfer(0, msg.sender, amount); // notify of the event Deposited(msg.sender, amount); } }
/** * Hodld DAO and ERC20 token * Author: CurrencyTycoon on GitHub * License: MIT * Date: 2017 * * Deploy with the following args: * 0, "Hodl DAO", 18, "HODL" * */
NatSpecMultiLine
calculateFee
function calculateFee(uint256 v) constant returns (uint256) { uint256 feeRequired = v / (1 wei * 100); return feeRequired; }
/** calculate the fee for quick withdrawal */
NatSpecMultiLine
v0.4.10+commit.f0d539ae
bzzr://6a5ee1c65b020a24d6ab000e01e6e1c92714225d741017dfb4cf091466db691c
{ "func_code_index": [ 8510, 8663 ] }
2,724
HodlDAO
HodlDAO.sol
0x6b3da034ebad473acb93729a7152c672cc0dc6cd
Solidity
HodlDAO
contract HodlDAO { /* ERC20 Public variables of the token */ string public version = 'HDAO 0.2'; string public name; string public symbol; uint8 public decimals; uint256 public totalSupply; /* ERC20 This creates an array with all balances */ mapping (address => uint256) public balanceOf; mapping (address => mapping (address => uint256)) public allowance; /* store the block number when a withdrawal has been requested*/ mapping (address => withdrawalRequest) public withdrawalRequests; struct withdrawalRequest { uint sinceBlock; uint256 amount; } /** * feePot collects fees from quick withdrawals. This gets re-distributed to slow-withdrawals */ uint256 public feePot; uint32 public constant blockWait = 172800; // roughly 30 days, (2592000 / 15) - assuming block time is ~15 sec. //uint public constant blockWait = 8; // roughly assuming block time is ~15 sec. /** * ERC20 events these generate a public event on the blockchain that will notify clients */ event Transfer(address indexed from, address indexed to, uint256 value); event Approval(address indexed _owner, address indexed _spender, uint256 _value); event WithdrawalQuick(address indexed by, uint256 amount, uint256 fee); // quick withdrawal done event InsufficientFee(address indexed by, uint256 feeRequired); // not enough fee paid for quick withdrawal event WithdrawalStarted(address indexed by, uint256 amount); event WithdrawalDone(address indexed by, uint256 amount, uint256 reward); // amount is the amount that was used to calculate reward event WithdrawalPremature(address indexed by, uint blocksToWait); // Needs to wait blocksToWait before withdrawal unlocked event Deposited(address indexed by, uint256 amount); /** * Initializes contract with initial supply tokens to the creator of the contract * In our case, there's no initial supply. Tokens will be created as ether is sent * to the fall-back function. Then tokens are burned when ether is withdrawn. */ function HodlDAO( uint256 initialSupply, string tokenName, uint8 decimalUnits, string tokenSymbol ) { balanceOf[msg.sender] = initialSupply; // Give the creator all initial tokens totalSupply = initialSupply; // Update total supply name = tokenName; // Set the name for display purposes symbol = tokenSymbol; // Set the symbol for display purposes decimals = decimalUnits; // Amount of decimals for display purposes } /** * notPendingWithdrawal modifier guards the function from executing when a * withdrawal has been requested and is currently pending */ modifier notPendingWithdrawal { if (withdrawalRequests[msg.sender].sinceBlock > 0) throw; _; } /** ERC20 - transfer sends tokens * @notice send `_value` token to `_to` from `msg.sender` * @param _to The address of the recipient * @param _value The amount of token to be transferred * @return Whether the transfer was successful or not */ function transfer(address _to, uint256 _value) notPendingWithdrawal { if (balanceOf[msg.sender] < _value) throw; // Check if the sender has enough if (balanceOf[_to] + _value < balanceOf[_to]) throw; // Check for overflows balanceOf[msg.sender] -= _value; // Subtract from the sender balanceOf[_to] += _value; // Add the same to the recipient Transfer(msg.sender, _to, _value); // Notify anyone listening that this transfer took place } /** ERC20 approve allows another contract to spend some tokens in your behalf * @notice `msg.sender` approves `_spender` to spend `_value` tokens * @param _spender The address of the account able to transfer the tokens * @param _value The amount of tokens to be approved for transfer * @return Whether the approval was successful or not */ function approve(address _spender, uint256 _value) notPendingWithdrawal returns (bool success) { allowance[msg.sender][_spender] = _value; return true; } /** * ERC-20 Approves and then calls the receiving contract */ function approveAndCall(address _spender, uint256 _value, bytes _extraData) notPendingWithdrawal returns (bool success) { allowance[msg.sender][_spender] = _value; Approval(msg.sender, _spender, _value); //call the receiveApproval function on the contract you want to be notified. This crafts the function signature manually so one doesn't have to include a contract in here just for this. //receiveApproval(address _from, uint256 _value, address _tokenContract, bytes _extraData) //it is assumed that when does this that the call *should* succeed, otherwise one would use vanilla approve instead. if(!_spender.call(bytes4(bytes32(sha3("receiveApproval(address,uint256,address,bytes)"))), msg.sender, _value, this, _extraData)) { throw; } return true; } /** * ERC20 A contract attempts to get the coins * @notice send `_value` token to `_to` from `_from` on the condition it is approved by `_from` * @param _from The address of the sender * @param _to The address of the recipient * @param _value The amount of token to be transferred * @return Whether the transfer was successful or not */ function transferFrom(address _from, address _to, uint256 _value) notPendingWithdrawal returns (bool success) { if (balanceOf[_from] < _value) throw; // Check if the sender has enough if (balanceOf[_to] + _value < balanceOf[_to]) throw; // Check for overflows if (_value > allowance[_from][msg.sender]) throw; // Check allowance balanceOf[_from] -= _value; // Subtract from the sender balanceOf[_to] += _value; // Add the same to the recipient allowance[_from][msg.sender] -= _value; Transfer(_from, _to, _value); return true; } /** * withdrawalInitiate initiates the withdrawal by going into a waiting period * It remembers the block number & amount held at the time of request. * After the waiting period finishes, the call withdrawalComplete */ function withdrawalInitiate() notPendingWithdrawal { WithdrawalStarted(msg.sender, balanceOf[msg.sender]); withdrawalRequests[msg.sender] = withdrawalRequest(block.number, balanceOf[msg.sender]); } /** * withdrawalComplete is called after the waiting period. The ether will be * returned to the caller and the tokens will be burned. * A reward will be issued based on the amount in the feePot relative to the * amount held when the withdrawal request was made. * * Gas: 17008 */ function withdrawalComplete() returns (bool) { withdrawalRequest r = withdrawalRequests[msg.sender]; if (r.sinceBlock == 0) throw; if ((r.sinceBlock + blockWait) > block.number) { WithdrawalPremature(msg.sender, r.sinceBlock + blockWait - block.number); return false; } uint256 amount = withdrawalRequests[msg.sender].amount; uint256 reward = calculateReward(r.amount); withdrawalRequests[msg.sender].sinceBlock = 0; withdrawalRequests[msg.sender].amount = 0; if (reward > 0) { if (feePot - reward > feePot) { feePot = 0; // overflow } else { feePot -= reward; } } doWithdrawal(reward); WithdrawalDone(msg.sender, amount, reward); return true; } /** * Reward is based on the amount held, relative to total supply of tokens. */ function calculateReward(uint256 v) constant returns (uint256) { uint256 reward = 0; if (feePot > 0) { reward = v / totalSupply * feePot; } return reward; } /** calculate the fee for quick withdrawal */ function calculateFee(uint256 v) constant returns (uint256) { uint256 feeRequired = v / (1 wei * 100); return feeRequired; } /** * Quick withdrawal, needs to send ether to this function for the fee. * * Gas use: 44129 (including call to processWithdrawal) */ function quickWithdraw() payable notPendingWithdrawal returns (bool) { // calculate required fee uint256 amount = balanceOf[msg.sender]; if (amount <= 0) throw; uint256 feeRequired = calculateFee(amount); if (msg.value < feeRequired) { // not enough fees sent InsufficientFee(msg.sender, feeRequired); return false; } uint256 overAmount = msg.value - feeRequired; // calculate any over-payment // add fee to the feePot, excluding any over-payment if (overAmount > 0) { feePot += msg.value - overAmount; } else { feePot += msg.value; } doWithdrawal(overAmount); // withdraw + return any over payment WithdrawalDone(msg.sender, amount, 0); return true; } /** * do withdrawal * Gas: 62483 */ function doWithdrawal(uint256 extra) internal { uint256 amount = balanceOf[msg.sender]; if (amount <= 0) throw; // cannot withdraw balanceOf[msg.sender] = 0; if (totalSupply > totalSupply - amount) { totalSupply = 0; // don't let it overflow } else { totalSupply -= amount; // deflate the supply! } Transfer(msg.sender, 0, amount); // burn baby burn if (!msg.sender.send(amount + extra)) throw; // return back the ether or rollback if failed } /** * Fallback function when sending ether to the contract * Gas use: 65051 */ function () payable notPendingWithdrawal { uint256 amount = msg.value; // amount that was sent if (amount <= 0) throw; // need to send some ETH balanceOf[msg.sender] += amount; // mint new tokens totalSupply += amount; // track the supply Transfer(0, msg.sender, amount); // notify of the event Deposited(msg.sender, amount); } }
/** * Hodld DAO and ERC20 token * Author: CurrencyTycoon on GitHub * License: MIT * Date: 2017 * * Deploy with the following args: * 0, "Hodl DAO", 18, "HODL" * */
NatSpecMultiLine
quickWithdraw
function quickWithdraw() payable notPendingWithdrawal returns (bool) { // calculate required fee uint256 amount = balanceOf[msg.sender]; if (amount <= 0) throw; uint256 feeRequired = calculateFee(amount); if (msg.value < feeRequired) { // not enough fees sent InsufficientFee(msg.sender, feeRequired); return false; } uint256 overAmount = msg.value - feeRequired; // calculate any over-payment // add fee to the feePot, excluding any over-payment if (overAmount > 0) { feePot += msg.value - overAmount; } else { feePot += msg.value; } doWithdrawal(overAmount); // withdraw + return any over payment WithdrawalDone(msg.sender, amount, 0); return true; }
/** * Quick withdrawal, needs to send ether to this function for the fee. * * Gas use: 44129 (including call to processWithdrawal) */
NatSpecMultiLine
v0.4.10+commit.f0d539ae
bzzr://6a5ee1c65b020a24d6ab000e01e6e1c92714225d741017dfb4cf091466db691c
{ "func_code_index": [ 8828, 9685 ] }
2,725
HodlDAO
HodlDAO.sol
0x6b3da034ebad473acb93729a7152c672cc0dc6cd
Solidity
HodlDAO
contract HodlDAO { /* ERC20 Public variables of the token */ string public version = 'HDAO 0.2'; string public name; string public symbol; uint8 public decimals; uint256 public totalSupply; /* ERC20 This creates an array with all balances */ mapping (address => uint256) public balanceOf; mapping (address => mapping (address => uint256)) public allowance; /* store the block number when a withdrawal has been requested*/ mapping (address => withdrawalRequest) public withdrawalRequests; struct withdrawalRequest { uint sinceBlock; uint256 amount; } /** * feePot collects fees from quick withdrawals. This gets re-distributed to slow-withdrawals */ uint256 public feePot; uint32 public constant blockWait = 172800; // roughly 30 days, (2592000 / 15) - assuming block time is ~15 sec. //uint public constant blockWait = 8; // roughly assuming block time is ~15 sec. /** * ERC20 events these generate a public event on the blockchain that will notify clients */ event Transfer(address indexed from, address indexed to, uint256 value); event Approval(address indexed _owner, address indexed _spender, uint256 _value); event WithdrawalQuick(address indexed by, uint256 amount, uint256 fee); // quick withdrawal done event InsufficientFee(address indexed by, uint256 feeRequired); // not enough fee paid for quick withdrawal event WithdrawalStarted(address indexed by, uint256 amount); event WithdrawalDone(address indexed by, uint256 amount, uint256 reward); // amount is the amount that was used to calculate reward event WithdrawalPremature(address indexed by, uint blocksToWait); // Needs to wait blocksToWait before withdrawal unlocked event Deposited(address indexed by, uint256 amount); /** * Initializes contract with initial supply tokens to the creator of the contract * In our case, there's no initial supply. Tokens will be created as ether is sent * to the fall-back function. Then tokens are burned when ether is withdrawn. */ function HodlDAO( uint256 initialSupply, string tokenName, uint8 decimalUnits, string tokenSymbol ) { balanceOf[msg.sender] = initialSupply; // Give the creator all initial tokens totalSupply = initialSupply; // Update total supply name = tokenName; // Set the name for display purposes symbol = tokenSymbol; // Set the symbol for display purposes decimals = decimalUnits; // Amount of decimals for display purposes } /** * notPendingWithdrawal modifier guards the function from executing when a * withdrawal has been requested and is currently pending */ modifier notPendingWithdrawal { if (withdrawalRequests[msg.sender].sinceBlock > 0) throw; _; } /** ERC20 - transfer sends tokens * @notice send `_value` token to `_to` from `msg.sender` * @param _to The address of the recipient * @param _value The amount of token to be transferred * @return Whether the transfer was successful or not */ function transfer(address _to, uint256 _value) notPendingWithdrawal { if (balanceOf[msg.sender] < _value) throw; // Check if the sender has enough if (balanceOf[_to] + _value < balanceOf[_to]) throw; // Check for overflows balanceOf[msg.sender] -= _value; // Subtract from the sender balanceOf[_to] += _value; // Add the same to the recipient Transfer(msg.sender, _to, _value); // Notify anyone listening that this transfer took place } /** ERC20 approve allows another contract to spend some tokens in your behalf * @notice `msg.sender` approves `_spender` to spend `_value` tokens * @param _spender The address of the account able to transfer the tokens * @param _value The amount of tokens to be approved for transfer * @return Whether the approval was successful or not */ function approve(address _spender, uint256 _value) notPendingWithdrawal returns (bool success) { allowance[msg.sender][_spender] = _value; return true; } /** * ERC-20 Approves and then calls the receiving contract */ function approveAndCall(address _spender, uint256 _value, bytes _extraData) notPendingWithdrawal returns (bool success) { allowance[msg.sender][_spender] = _value; Approval(msg.sender, _spender, _value); //call the receiveApproval function on the contract you want to be notified. This crafts the function signature manually so one doesn't have to include a contract in here just for this. //receiveApproval(address _from, uint256 _value, address _tokenContract, bytes _extraData) //it is assumed that when does this that the call *should* succeed, otherwise one would use vanilla approve instead. if(!_spender.call(bytes4(bytes32(sha3("receiveApproval(address,uint256,address,bytes)"))), msg.sender, _value, this, _extraData)) { throw; } return true; } /** * ERC20 A contract attempts to get the coins * @notice send `_value` token to `_to` from `_from` on the condition it is approved by `_from` * @param _from The address of the sender * @param _to The address of the recipient * @param _value The amount of token to be transferred * @return Whether the transfer was successful or not */ function transferFrom(address _from, address _to, uint256 _value) notPendingWithdrawal returns (bool success) { if (balanceOf[_from] < _value) throw; // Check if the sender has enough if (balanceOf[_to] + _value < balanceOf[_to]) throw; // Check for overflows if (_value > allowance[_from][msg.sender]) throw; // Check allowance balanceOf[_from] -= _value; // Subtract from the sender balanceOf[_to] += _value; // Add the same to the recipient allowance[_from][msg.sender] -= _value; Transfer(_from, _to, _value); return true; } /** * withdrawalInitiate initiates the withdrawal by going into a waiting period * It remembers the block number & amount held at the time of request. * After the waiting period finishes, the call withdrawalComplete */ function withdrawalInitiate() notPendingWithdrawal { WithdrawalStarted(msg.sender, balanceOf[msg.sender]); withdrawalRequests[msg.sender] = withdrawalRequest(block.number, balanceOf[msg.sender]); } /** * withdrawalComplete is called after the waiting period. The ether will be * returned to the caller and the tokens will be burned. * A reward will be issued based on the amount in the feePot relative to the * amount held when the withdrawal request was made. * * Gas: 17008 */ function withdrawalComplete() returns (bool) { withdrawalRequest r = withdrawalRequests[msg.sender]; if (r.sinceBlock == 0) throw; if ((r.sinceBlock + blockWait) > block.number) { WithdrawalPremature(msg.sender, r.sinceBlock + blockWait - block.number); return false; } uint256 amount = withdrawalRequests[msg.sender].amount; uint256 reward = calculateReward(r.amount); withdrawalRequests[msg.sender].sinceBlock = 0; withdrawalRequests[msg.sender].amount = 0; if (reward > 0) { if (feePot - reward > feePot) { feePot = 0; // overflow } else { feePot -= reward; } } doWithdrawal(reward); WithdrawalDone(msg.sender, amount, reward); return true; } /** * Reward is based on the amount held, relative to total supply of tokens. */ function calculateReward(uint256 v) constant returns (uint256) { uint256 reward = 0; if (feePot > 0) { reward = v / totalSupply * feePot; } return reward; } /** calculate the fee for quick withdrawal */ function calculateFee(uint256 v) constant returns (uint256) { uint256 feeRequired = v / (1 wei * 100); return feeRequired; } /** * Quick withdrawal, needs to send ether to this function for the fee. * * Gas use: 44129 (including call to processWithdrawal) */ function quickWithdraw() payable notPendingWithdrawal returns (bool) { // calculate required fee uint256 amount = balanceOf[msg.sender]; if (amount <= 0) throw; uint256 feeRequired = calculateFee(amount); if (msg.value < feeRequired) { // not enough fees sent InsufficientFee(msg.sender, feeRequired); return false; } uint256 overAmount = msg.value - feeRequired; // calculate any over-payment // add fee to the feePot, excluding any over-payment if (overAmount > 0) { feePot += msg.value - overAmount; } else { feePot += msg.value; } doWithdrawal(overAmount); // withdraw + return any over payment WithdrawalDone(msg.sender, amount, 0); return true; } /** * do withdrawal * Gas: 62483 */ function doWithdrawal(uint256 extra) internal { uint256 amount = balanceOf[msg.sender]; if (amount <= 0) throw; // cannot withdraw balanceOf[msg.sender] = 0; if (totalSupply > totalSupply - amount) { totalSupply = 0; // don't let it overflow } else { totalSupply -= amount; // deflate the supply! } Transfer(msg.sender, 0, amount); // burn baby burn if (!msg.sender.send(amount + extra)) throw; // return back the ether or rollback if failed } /** * Fallback function when sending ether to the contract * Gas use: 65051 */ function () payable notPendingWithdrawal { uint256 amount = msg.value; // amount that was sent if (amount <= 0) throw; // need to send some ETH balanceOf[msg.sender] += amount; // mint new tokens totalSupply += amount; // track the supply Transfer(0, msg.sender, amount); // notify of the event Deposited(msg.sender, amount); } }
/** * Hodld DAO and ERC20 token * Author: CurrencyTycoon on GitHub * License: MIT * Date: 2017 * * Deploy with the following args: * 0, "Hodl DAO", 18, "HODL" * */
NatSpecMultiLine
doWithdrawal
function doWithdrawal(uint256 extra) internal { uint256 amount = balanceOf[msg.sender]; if (amount <= 0) throw; // cannot withdraw balanceOf[msg.sender] = 0; if (totalSupply > totalSupply - amount) { totalSupply = 0; // don't let it overflow } else { totalSupply -= amount; // deflate the supply! } Transfer(msg.sender, 0, amount); // burn baby burn if (!msg.sender.send(amount + extra)) throw; // return back the ether or rollback if failed }
/** * do withdrawal * Gas: 62483 */
NatSpecMultiLine
v0.4.10+commit.f0d539ae
bzzr://6a5ee1c65b020a24d6ab000e01e6e1c92714225d741017dfb4cf091466db691c
{ "func_code_index": [ 9747, 10316 ] }
2,726
HodlDAO
HodlDAO.sol
0x6b3da034ebad473acb93729a7152c672cc0dc6cd
Solidity
HodlDAO
contract HodlDAO { /* ERC20 Public variables of the token */ string public version = 'HDAO 0.2'; string public name; string public symbol; uint8 public decimals; uint256 public totalSupply; /* ERC20 This creates an array with all balances */ mapping (address => uint256) public balanceOf; mapping (address => mapping (address => uint256)) public allowance; /* store the block number when a withdrawal has been requested*/ mapping (address => withdrawalRequest) public withdrawalRequests; struct withdrawalRequest { uint sinceBlock; uint256 amount; } /** * feePot collects fees from quick withdrawals. This gets re-distributed to slow-withdrawals */ uint256 public feePot; uint32 public constant blockWait = 172800; // roughly 30 days, (2592000 / 15) - assuming block time is ~15 sec. //uint public constant blockWait = 8; // roughly assuming block time is ~15 sec. /** * ERC20 events these generate a public event on the blockchain that will notify clients */ event Transfer(address indexed from, address indexed to, uint256 value); event Approval(address indexed _owner, address indexed _spender, uint256 _value); event WithdrawalQuick(address indexed by, uint256 amount, uint256 fee); // quick withdrawal done event InsufficientFee(address indexed by, uint256 feeRequired); // not enough fee paid for quick withdrawal event WithdrawalStarted(address indexed by, uint256 amount); event WithdrawalDone(address indexed by, uint256 amount, uint256 reward); // amount is the amount that was used to calculate reward event WithdrawalPremature(address indexed by, uint blocksToWait); // Needs to wait blocksToWait before withdrawal unlocked event Deposited(address indexed by, uint256 amount); /** * Initializes contract with initial supply tokens to the creator of the contract * In our case, there's no initial supply. Tokens will be created as ether is sent * to the fall-back function. Then tokens are burned when ether is withdrawn. */ function HodlDAO( uint256 initialSupply, string tokenName, uint8 decimalUnits, string tokenSymbol ) { balanceOf[msg.sender] = initialSupply; // Give the creator all initial tokens totalSupply = initialSupply; // Update total supply name = tokenName; // Set the name for display purposes symbol = tokenSymbol; // Set the symbol for display purposes decimals = decimalUnits; // Amount of decimals for display purposes } /** * notPendingWithdrawal modifier guards the function from executing when a * withdrawal has been requested and is currently pending */ modifier notPendingWithdrawal { if (withdrawalRequests[msg.sender].sinceBlock > 0) throw; _; } /** ERC20 - transfer sends tokens * @notice send `_value` token to `_to` from `msg.sender` * @param _to The address of the recipient * @param _value The amount of token to be transferred * @return Whether the transfer was successful or not */ function transfer(address _to, uint256 _value) notPendingWithdrawal { if (balanceOf[msg.sender] < _value) throw; // Check if the sender has enough if (balanceOf[_to] + _value < balanceOf[_to]) throw; // Check for overflows balanceOf[msg.sender] -= _value; // Subtract from the sender balanceOf[_to] += _value; // Add the same to the recipient Transfer(msg.sender, _to, _value); // Notify anyone listening that this transfer took place } /** ERC20 approve allows another contract to spend some tokens in your behalf * @notice `msg.sender` approves `_spender` to spend `_value` tokens * @param _spender The address of the account able to transfer the tokens * @param _value The amount of tokens to be approved for transfer * @return Whether the approval was successful or not */ function approve(address _spender, uint256 _value) notPendingWithdrawal returns (bool success) { allowance[msg.sender][_spender] = _value; return true; } /** * ERC-20 Approves and then calls the receiving contract */ function approveAndCall(address _spender, uint256 _value, bytes _extraData) notPendingWithdrawal returns (bool success) { allowance[msg.sender][_spender] = _value; Approval(msg.sender, _spender, _value); //call the receiveApproval function on the contract you want to be notified. This crafts the function signature manually so one doesn't have to include a contract in here just for this. //receiveApproval(address _from, uint256 _value, address _tokenContract, bytes _extraData) //it is assumed that when does this that the call *should* succeed, otherwise one would use vanilla approve instead. if(!_spender.call(bytes4(bytes32(sha3("receiveApproval(address,uint256,address,bytes)"))), msg.sender, _value, this, _extraData)) { throw; } return true; } /** * ERC20 A contract attempts to get the coins * @notice send `_value` token to `_to` from `_from` on the condition it is approved by `_from` * @param _from The address of the sender * @param _to The address of the recipient * @param _value The amount of token to be transferred * @return Whether the transfer was successful or not */ function transferFrom(address _from, address _to, uint256 _value) notPendingWithdrawal returns (bool success) { if (balanceOf[_from] < _value) throw; // Check if the sender has enough if (balanceOf[_to] + _value < balanceOf[_to]) throw; // Check for overflows if (_value > allowance[_from][msg.sender]) throw; // Check allowance balanceOf[_from] -= _value; // Subtract from the sender balanceOf[_to] += _value; // Add the same to the recipient allowance[_from][msg.sender] -= _value; Transfer(_from, _to, _value); return true; } /** * withdrawalInitiate initiates the withdrawal by going into a waiting period * It remembers the block number & amount held at the time of request. * After the waiting period finishes, the call withdrawalComplete */ function withdrawalInitiate() notPendingWithdrawal { WithdrawalStarted(msg.sender, balanceOf[msg.sender]); withdrawalRequests[msg.sender] = withdrawalRequest(block.number, balanceOf[msg.sender]); } /** * withdrawalComplete is called after the waiting period. The ether will be * returned to the caller and the tokens will be burned. * A reward will be issued based on the amount in the feePot relative to the * amount held when the withdrawal request was made. * * Gas: 17008 */ function withdrawalComplete() returns (bool) { withdrawalRequest r = withdrawalRequests[msg.sender]; if (r.sinceBlock == 0) throw; if ((r.sinceBlock + blockWait) > block.number) { WithdrawalPremature(msg.sender, r.sinceBlock + blockWait - block.number); return false; } uint256 amount = withdrawalRequests[msg.sender].amount; uint256 reward = calculateReward(r.amount); withdrawalRequests[msg.sender].sinceBlock = 0; withdrawalRequests[msg.sender].amount = 0; if (reward > 0) { if (feePot - reward > feePot) { feePot = 0; // overflow } else { feePot -= reward; } } doWithdrawal(reward); WithdrawalDone(msg.sender, amount, reward); return true; } /** * Reward is based on the amount held, relative to total supply of tokens. */ function calculateReward(uint256 v) constant returns (uint256) { uint256 reward = 0; if (feePot > 0) { reward = v / totalSupply * feePot; } return reward; } /** calculate the fee for quick withdrawal */ function calculateFee(uint256 v) constant returns (uint256) { uint256 feeRequired = v / (1 wei * 100); return feeRequired; } /** * Quick withdrawal, needs to send ether to this function for the fee. * * Gas use: 44129 (including call to processWithdrawal) */ function quickWithdraw() payable notPendingWithdrawal returns (bool) { // calculate required fee uint256 amount = balanceOf[msg.sender]; if (amount <= 0) throw; uint256 feeRequired = calculateFee(amount); if (msg.value < feeRequired) { // not enough fees sent InsufficientFee(msg.sender, feeRequired); return false; } uint256 overAmount = msg.value - feeRequired; // calculate any over-payment // add fee to the feePot, excluding any over-payment if (overAmount > 0) { feePot += msg.value - overAmount; } else { feePot += msg.value; } doWithdrawal(overAmount); // withdraw + return any over payment WithdrawalDone(msg.sender, amount, 0); return true; } /** * do withdrawal * Gas: 62483 */ function doWithdrawal(uint256 extra) internal { uint256 amount = balanceOf[msg.sender]; if (amount <= 0) throw; // cannot withdraw balanceOf[msg.sender] = 0; if (totalSupply > totalSupply - amount) { totalSupply = 0; // don't let it overflow } else { totalSupply -= amount; // deflate the supply! } Transfer(msg.sender, 0, amount); // burn baby burn if (!msg.sender.send(amount + extra)) throw; // return back the ether or rollback if failed } /** * Fallback function when sending ether to the contract * Gas use: 65051 */ function () payable notPendingWithdrawal { uint256 amount = msg.value; // amount that was sent if (amount <= 0) throw; // need to send some ETH balanceOf[msg.sender] += amount; // mint new tokens totalSupply += amount; // track the supply Transfer(0, msg.sender, amount); // notify of the event Deposited(msg.sender, amount); } }
/** * Hodld DAO and ERC20 token * Author: CurrencyTycoon on GitHub * License: MIT * Date: 2017 * * Deploy with the following args: * 0, "Hodl DAO", 18, "HODL" * */
NatSpecMultiLine
function () payable notPendingWithdrawal { uint256 amount = msg.value; // amount that was sent if (amount <= 0) throw; // need to send some ETH balanceOf[msg.sender] += amount; // mint new tokens totalSupply += amount; // track the supply Transfer(0, msg.sender, amount); // notify of the event Deposited(msg.sender, amount); }
/** * Fallback function when sending ether to the contract * Gas use: 65051 */
NatSpecMultiLine
v0.4.10+commit.f0d539ae
bzzr://6a5ee1c65b020a24d6ab000e01e6e1c92714225d741017dfb4cf091466db691c
{ "func_code_index": [ 10422, 10814 ] }
2,727
MadInu
MadInu.sol
0x62af108df4d945288f13400bcc26580147f7f0ce
Solidity
IERC20
interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
totalSupply
function totalSupply() external view returns (uint256);
/** * @dev Returns the amount of tokens in existence. */
NatSpecMultiLine
v0.6.12+commit.27d51765
None
ipfs://3bb9f707bc1f997acc4ae81a865fc9bccce25d061620c69d6fb8e984919939cf
{ "func_code_index": [ 94, 154 ] }
2,728
MadInu
MadInu.sol
0x62af108df4d945288f13400bcc26580147f7f0ce
Solidity
IERC20
interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
balanceOf
function balanceOf(address account) external view returns (uint256);
/** * @dev Returns the amount of tokens owned by `account`. */
NatSpecMultiLine
v0.6.12+commit.27d51765
None
ipfs://3bb9f707bc1f997acc4ae81a865fc9bccce25d061620c69d6fb8e984919939cf
{ "func_code_index": [ 237, 310 ] }
2,729
MadInu
MadInu.sol
0x62af108df4d945288f13400bcc26580147f7f0ce
Solidity
IERC20
interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
transfer
function transfer(address recipient, uint256 amount) external returns (bool);
/** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */
NatSpecMultiLine
v0.6.12+commit.27d51765
None
ipfs://3bb9f707bc1f997acc4ae81a865fc9bccce25d061620c69d6fb8e984919939cf
{ "func_code_index": [ 534, 616 ] }
2,730
MadInu
MadInu.sol
0x62af108df4d945288f13400bcc26580147f7f0ce
Solidity
IERC20
interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
allowance
function allowance(address owner, address spender) external view returns (uint256);
/** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */
NatSpecMultiLine
v0.6.12+commit.27d51765
None
ipfs://3bb9f707bc1f997acc4ae81a865fc9bccce25d061620c69d6fb8e984919939cf
{ "func_code_index": [ 895, 983 ] }
2,731
MadInu
MadInu.sol
0x62af108df4d945288f13400bcc26580147f7f0ce
Solidity
IERC20
interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
approve
function approve(address spender, uint256 amount) external returns (bool);
/** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */
NatSpecMultiLine
v0.6.12+commit.27d51765
None
ipfs://3bb9f707bc1f997acc4ae81a865fc9bccce25d061620c69d6fb8e984919939cf
{ "func_code_index": [ 1647, 1726 ] }
2,732
MadInu
MadInu.sol
0x62af108df4d945288f13400bcc26580147f7f0ce
Solidity
IERC20
interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
transferFrom
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */
NatSpecMultiLine
v0.6.12+commit.27d51765
None
ipfs://3bb9f707bc1f997acc4ae81a865fc9bccce25d061620c69d6fb8e984919939cf
{ "func_code_index": [ 2039, 2141 ] }
2,733
MadInu
MadInu.sol
0x62af108df4d945288f13400bcc26580147f7f0ce
Solidity
SafeMath
library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } }
add
function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; }
/** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */
NatSpecMultiLine
v0.6.12+commit.27d51765
None
ipfs://3bb9f707bc1f997acc4ae81a865fc9bccce25d061620c69d6fb8e984919939cf
{ "func_code_index": [ 259, 445 ] }
2,734
MadInu
MadInu.sol
0x62af108df4d945288f13400bcc26580147f7f0ce
Solidity
SafeMath
library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } }
sub
function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); }
/** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */
NatSpecMultiLine
v0.6.12+commit.27d51765
None
ipfs://3bb9f707bc1f997acc4ae81a865fc9bccce25d061620c69d6fb8e984919939cf
{ "func_code_index": [ 723, 864 ] }
2,735
MadInu
MadInu.sol
0x62af108df4d945288f13400bcc26580147f7f0ce
Solidity
SafeMath
library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } }
sub
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; }
/** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */
NatSpecMultiLine
v0.6.12+commit.27d51765
None
ipfs://3bb9f707bc1f997acc4ae81a865fc9bccce25d061620c69d6fb8e984919939cf
{ "func_code_index": [ 1162, 1359 ] }
2,736
MadInu
MadInu.sol
0x62af108df4d945288f13400bcc26580147f7f0ce
Solidity
SafeMath
library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } }
mul
function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; }
/** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */
NatSpecMultiLine
v0.6.12+commit.27d51765
None
ipfs://3bb9f707bc1f997acc4ae81a865fc9bccce25d061620c69d6fb8e984919939cf
{ "func_code_index": [ 1613, 2089 ] }
2,737
MadInu
MadInu.sol
0x62af108df4d945288f13400bcc26580147f7f0ce
Solidity
SafeMath
library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } }
div
function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); }
/** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */
NatSpecMultiLine
v0.6.12+commit.27d51765
None
ipfs://3bb9f707bc1f997acc4ae81a865fc9bccce25d061620c69d6fb8e984919939cf
{ "func_code_index": [ 2560, 2697 ] }
2,738
MadInu
MadInu.sol
0x62af108df4d945288f13400bcc26580147f7f0ce
Solidity
SafeMath
library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } }
div
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; }
/** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */
NatSpecMultiLine
v0.6.12+commit.27d51765
None
ipfs://3bb9f707bc1f997acc4ae81a865fc9bccce25d061620c69d6fb8e984919939cf
{ "func_code_index": [ 3188, 3471 ] }
2,739
MadInu
MadInu.sol
0x62af108df4d945288f13400bcc26580147f7f0ce
Solidity
SafeMath
library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } }
mod
function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); }
/** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */
NatSpecMultiLine
v0.6.12+commit.27d51765
None
ipfs://3bb9f707bc1f997acc4ae81a865fc9bccce25d061620c69d6fb8e984919939cf
{ "func_code_index": [ 3931, 4066 ] }
2,740
MadInu
MadInu.sol
0x62af108df4d945288f13400bcc26580147f7f0ce
Solidity
SafeMath
library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } }
mod
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; }
/** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */
NatSpecMultiLine
v0.6.12+commit.27d51765
None
ipfs://3bb9f707bc1f997acc4ae81a865fc9bccce25d061620c69d6fb8e984919939cf
{ "func_code_index": [ 4546, 4717 ] }
2,741
MadInu
MadInu.sol
0x62af108df4d945288f13400bcc26580147f7f0ce
Solidity
Address
library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return _functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); return _functionCallWithValue(target, data, value, errorMessage); } function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) { require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: weiValue }(data); if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
isContract
function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); }
/** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */
NatSpecMultiLine
v0.6.12+commit.27d51765
None
ipfs://3bb9f707bc1f997acc4ae81a865fc9bccce25d061620c69d6fb8e984919939cf
{ "func_code_index": [ 606, 1230 ] }
2,742
MadInu
MadInu.sol
0x62af108df4d945288f13400bcc26580147f7f0ce
Solidity
Address
library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return _functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); return _functionCallWithValue(target, data, value, errorMessage); } function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) { require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: weiValue }(data); if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
sendValue
function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); }
/** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */
NatSpecMultiLine
v0.6.12+commit.27d51765
None
ipfs://3bb9f707bc1f997acc4ae81a865fc9bccce25d061620c69d6fb8e984919939cf
{ "func_code_index": [ 2160, 2562 ] }
2,743
MadInu
MadInu.sol
0x62af108df4d945288f13400bcc26580147f7f0ce
Solidity
Address
library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return _functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); return _functionCallWithValue(target, data, value, errorMessage); } function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) { require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: weiValue }(data); if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
functionCall
function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); }
/** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */
NatSpecMultiLine
v0.6.12+commit.27d51765
None
ipfs://3bb9f707bc1f997acc4ae81a865fc9bccce25d061620c69d6fb8e984919939cf
{ "func_code_index": [ 3318, 3496 ] }
2,744
MadInu
MadInu.sol
0x62af108df4d945288f13400bcc26580147f7f0ce
Solidity
Address
library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return _functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); return _functionCallWithValue(target, data, value, errorMessage); } function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) { require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: weiValue }(data); if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
functionCall
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return _functionCallWithValue(target, data, 0, errorMessage); }
/** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */
NatSpecMultiLine
v0.6.12+commit.27d51765
None
ipfs://3bb9f707bc1f997acc4ae81a865fc9bccce25d061620c69d6fb8e984919939cf
{ "func_code_index": [ 3721, 3922 ] }
2,745
MadInu
MadInu.sol
0x62af108df4d945288f13400bcc26580147f7f0ce
Solidity
Address
library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return _functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); return _functionCallWithValue(target, data, value, errorMessage); } function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) { require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: weiValue }(data); if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
functionCallWithValue
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); }
/** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */
NatSpecMultiLine
v0.6.12+commit.27d51765
None
ipfs://3bb9f707bc1f997acc4ae81a865fc9bccce25d061620c69d6fb8e984919939cf
{ "func_code_index": [ 4292, 4523 ] }
2,746
MadInu
MadInu.sol
0x62af108df4d945288f13400bcc26580147f7f0ce
Solidity
Address
library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return _functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); return _functionCallWithValue(target, data, value, errorMessage); } function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) { require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: weiValue }(data); if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
functionCallWithValue
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); return _functionCallWithValue(target, data, value, errorMessage); }
/** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */
NatSpecMultiLine
v0.6.12+commit.27d51765
None
ipfs://3bb9f707bc1f997acc4ae81a865fc9bccce25d061620c69d6fb8e984919939cf
{ "func_code_index": [ 4774, 5095 ] }
2,747
MadInu
MadInu.sol
0x62af108df4d945288f13400bcc26580147f7f0ce
Solidity
Ownable
contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor () internal { address msgSender = _msgSender(); _owner = msgSender; emit OwnershipTransferred(address(0), msgSender); } /** * @dev Returns the address of the current owner. */ function owner() public view returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(_owner == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } }
owner
function owner() public view returns (address) { return _owner; }
/** * @dev Returns the address of the current owner. */
NatSpecMultiLine
v0.6.12+commit.27d51765
None
ipfs://3bb9f707bc1f997acc4ae81a865fc9bccce25d061620c69d6fb8e984919939cf
{ "func_code_index": [ 497, 581 ] }
2,748
MadInu
MadInu.sol
0x62af108df4d945288f13400bcc26580147f7f0ce
Solidity
Ownable
contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor () internal { address msgSender = _msgSender(); _owner = msgSender; emit OwnershipTransferred(address(0), msgSender); } /** * @dev Returns the address of the current owner. */ function owner() public view returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(_owner == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } }
renounceOwnership
function renounceOwnership() public virtual onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); }
/** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */
NatSpecMultiLine
v0.6.12+commit.27d51765
None
ipfs://3bb9f707bc1f997acc4ae81a865fc9bccce25d061620c69d6fb8e984919939cf
{ "func_code_index": [ 1139, 1292 ] }
2,749
MadInu
MadInu.sol
0x62af108df4d945288f13400bcc26580147f7f0ce
Solidity
Ownable
contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor () internal { address msgSender = _msgSender(); _owner = msgSender; emit OwnershipTransferred(address(0), msgSender); } /** * @dev Returns the address of the current owner. */ function owner() public view returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(_owner == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } }
transferOwnership
function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; }
/** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */
NatSpecMultiLine
v0.6.12+commit.27d51765
None
ipfs://3bb9f707bc1f997acc4ae81a865fc9bccce25d061620c69d6fb8e984919939cf
{ "func_code_index": [ 1442, 1691 ] }
2,750
FollowersToken
FollowersToken.sol
0x422401a78d6fb4727f96cc435884ecf5ce16f527
Solidity
ERC721
contract ERC721 { // Required methods function approve(address _to, uint256 _tokenId) public; function balanceOf(address _owner) public view returns (uint256 balance); function implementsERC721() public pure returns (bool); function ownerOf(uint256 _tokenId) public view returns (address addr); function takeOwnership(uint256 _tokenId) public; function totalSupply() public view returns (uint256 total); function transferFrom(address _from, address _to, uint256 _tokenId) public; function transfer(address _to, uint256 _tokenId) public; event Transfer(address indexed from, address indexed to, uint256 tokenId); event Approval(address indexed owner, address indexed approved, uint256 tokenId); // Optional // function name() public view returns (string name); // function symbol() public view returns (string symbol); // function tokenOfOwnerByIndex(address _owner, uint256 _index) external view returns (uint256 tokenId); // function tokenMetadata(uint256 _tokenId) public view returns (string infoUrl); }
/// @title Interface for contracts conforming to ERC-721: Non-Fungible Tokens /// @author Dieter Shirley <[email protected]> (https://github.com/dete)
NatSpecSingleLine
approve
function approve(address _to, uint256 _tokenId) public;
// Required methods
LineComment
v0.4.25+commit.59dbf8f1
bzzr://59dd1558164b17ca4a47af763275232cf864eaf7416c3c91c8368ee08d982eee
{ "func_code_index": [ 42, 100 ] }
2,751
FollowersToken
FollowersToken.sol
0x422401a78d6fb4727f96cc435884ecf5ce16f527
Solidity
SafeMath
library SafeMath { /** * @dev Multiplies two numbers, throws on overflow. */ function mul(uint256 _a, uint256 _b) internal pure returns (uint256 c) { // Gas optimization: this is cheaper than asserting 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522 if (_a == 0) { return 0; } c = _a * _b; assert(c / _a == _b); return c; } /** * @dev Integer division of two numbers, truncating the quotient. */ function div(uint256 _a, uint256 _b) internal pure returns (uint256) { // assert(_b > 0); // Solidity automatically throws when dividing by 0 // uint256 c = _a / _b; // assert(_a == _b * c + _a % _b); // There is no case in which this doesn't hold return _a / _b; } /** * @dev Subtracts two numbers, throws on overflow (i.e. if subtrahend is greater than minuend). */ function sub(uint256 _a, uint256 _b) internal pure returns (uint256) { assert(_b <= _a); return _a - _b; } /** * @dev Adds two numbers, throws on overflow. */ function add(uint256 _a, uint256 _b) internal pure returns (uint256 c) { c = _a + _b; assert(c >= _a); return c; } }
/** * @title SafeMath * @dev Math operations with safety checks that throw on error */
NatSpecMultiLine
mul
function mul(uint256 _a, uint256 _b) internal pure returns (uint256 c) { // Gas optimization: this is cheaper than asserting 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522 if (_a == 0) { return 0; } c = _a * _b; assert(c / _a == _b); return c; }
/** * @dev Multiplies two numbers, throws on overflow. */
NatSpecMultiLine
v0.4.25+commit.59dbf8f1
bzzr://59dd1558164b17ca4a47af763275232cf864eaf7416c3c91c8368ee08d982eee
{ "func_code_index": [ 89, 483 ] }
2,752
FollowersToken
FollowersToken.sol
0x422401a78d6fb4727f96cc435884ecf5ce16f527
Solidity
SafeMath
library SafeMath { /** * @dev Multiplies two numbers, throws on overflow. */ function mul(uint256 _a, uint256 _b) internal pure returns (uint256 c) { // Gas optimization: this is cheaper than asserting 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522 if (_a == 0) { return 0; } c = _a * _b; assert(c / _a == _b); return c; } /** * @dev Integer division of two numbers, truncating the quotient. */ function div(uint256 _a, uint256 _b) internal pure returns (uint256) { // assert(_b > 0); // Solidity automatically throws when dividing by 0 // uint256 c = _a / _b; // assert(_a == _b * c + _a % _b); // There is no case in which this doesn't hold return _a / _b; } /** * @dev Subtracts two numbers, throws on overflow (i.e. if subtrahend is greater than minuend). */ function sub(uint256 _a, uint256 _b) internal pure returns (uint256) { assert(_b <= _a); return _a - _b; } /** * @dev Adds two numbers, throws on overflow. */ function add(uint256 _a, uint256 _b) internal pure returns (uint256 c) { c = _a + _b; assert(c >= _a); return c; } }
/** * @title SafeMath * @dev Math operations with safety checks that throw on error */
NatSpecMultiLine
div
function div(uint256 _a, uint256 _b) internal pure returns (uint256) { // assert(_b > 0); // Solidity automatically throws when dividing by 0 // uint256 c = _a / _b; // assert(_a == _b * c + _a % _b); // There is no case in which this doesn't hold return _a / _b; }
/** * @dev Integer division of two numbers, truncating the quotient. */
NatSpecMultiLine
v0.4.25+commit.59dbf8f1
bzzr://59dd1558164b17ca4a47af763275232cf864eaf7416c3c91c8368ee08d982eee
{ "func_code_index": [ 567, 858 ] }
2,753
FollowersToken
FollowersToken.sol
0x422401a78d6fb4727f96cc435884ecf5ce16f527
Solidity
SafeMath
library SafeMath { /** * @dev Multiplies two numbers, throws on overflow. */ function mul(uint256 _a, uint256 _b) internal pure returns (uint256 c) { // Gas optimization: this is cheaper than asserting 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522 if (_a == 0) { return 0; } c = _a * _b; assert(c / _a == _b); return c; } /** * @dev Integer division of two numbers, truncating the quotient. */ function div(uint256 _a, uint256 _b) internal pure returns (uint256) { // assert(_b > 0); // Solidity automatically throws when dividing by 0 // uint256 c = _a / _b; // assert(_a == _b * c + _a % _b); // There is no case in which this doesn't hold return _a / _b; } /** * @dev Subtracts two numbers, throws on overflow (i.e. if subtrahend is greater than minuend). */ function sub(uint256 _a, uint256 _b) internal pure returns (uint256) { assert(_b <= _a); return _a - _b; } /** * @dev Adds two numbers, throws on overflow. */ function add(uint256 _a, uint256 _b) internal pure returns (uint256 c) { c = _a + _b; assert(c >= _a); return c; } }
/** * @title SafeMath * @dev Math operations with safety checks that throw on error */
NatSpecMultiLine
sub
function sub(uint256 _a, uint256 _b) internal pure returns (uint256) { assert(_b <= _a); return _a - _b; }
/** * @dev Subtracts two numbers, throws on overflow (i.e. if subtrahend is greater than minuend). */
NatSpecMultiLine
v0.4.25+commit.59dbf8f1
bzzr://59dd1558164b17ca4a47af763275232cf864eaf7416c3c91c8368ee08d982eee
{ "func_code_index": [ 972, 1094 ] }
2,754
FollowersToken
FollowersToken.sol
0x422401a78d6fb4727f96cc435884ecf5ce16f527
Solidity
SafeMath
library SafeMath { /** * @dev Multiplies two numbers, throws on overflow. */ function mul(uint256 _a, uint256 _b) internal pure returns (uint256 c) { // Gas optimization: this is cheaper than asserting 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522 if (_a == 0) { return 0; } c = _a * _b; assert(c / _a == _b); return c; } /** * @dev Integer division of two numbers, truncating the quotient. */ function div(uint256 _a, uint256 _b) internal pure returns (uint256) { // assert(_b > 0); // Solidity automatically throws when dividing by 0 // uint256 c = _a / _b; // assert(_a == _b * c + _a % _b); // There is no case in which this doesn't hold return _a / _b; } /** * @dev Subtracts two numbers, throws on overflow (i.e. if subtrahend is greater than minuend). */ function sub(uint256 _a, uint256 _b) internal pure returns (uint256) { assert(_b <= _a); return _a - _b; } /** * @dev Adds two numbers, throws on overflow. */ function add(uint256 _a, uint256 _b) internal pure returns (uint256 c) { c = _a + _b; assert(c >= _a); return c; } }
/** * @title SafeMath * @dev Math operations with safety checks that throw on error */
NatSpecMultiLine
add
function add(uint256 _a, uint256 _b) internal pure returns (uint256 c) { c = _a + _b; assert(c >= _a); return c; }
/** * @dev Adds two numbers, throws on overflow. */
NatSpecMultiLine
v0.4.25+commit.59dbf8f1
bzzr://59dd1558164b17ca4a47af763275232cf864eaf7416c3c91c8368ee08d982eee
{ "func_code_index": [ 1158, 1293 ] }
2,755
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
SafeMath
library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. * * _Available since v2.4.0._ */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. * * _Available since v2.4.0._ */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. * * _Available since v2.4.0._ */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } }
/** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */
NatSpecMultiLine
add
function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; }
/** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * - Addition cannot overflow. */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 251, 437 ] }
2,756
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
SafeMath
library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. * * _Available since v2.4.0._ */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. * * _Available since v2.4.0._ */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. * * _Available since v2.4.0._ */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } }
/** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */
NatSpecMultiLine
sub
function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); }
/** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 707, 848 ] }
2,757
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
SafeMath
library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. * * _Available since v2.4.0._ */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. * * _Available since v2.4.0._ */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. * * _Available since v2.4.0._ */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } }
/** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */
NatSpecMultiLine
sub
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; }
/** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. * * _Available since v2.4.0._ */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 1180, 1377 ] }
2,758
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
SafeMath
library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. * * _Available since v2.4.0._ */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. * * _Available since v2.4.0._ */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. * * _Available since v2.4.0._ */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } }
/** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */
NatSpecMultiLine
mul
function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; }
/** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * - Multiplication cannot overflow. */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 1623, 2099 ] }
2,759
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
SafeMath
library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. * * _Available since v2.4.0._ */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. * * _Available since v2.4.0._ */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. * * _Available since v2.4.0._ */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } }
/** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */
NatSpecMultiLine
div
function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); }
/** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 2562, 2699 ] }
2,760
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
SafeMath
library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. * * _Available since v2.4.0._ */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. * * _Available since v2.4.0._ */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. * * _Available since v2.4.0._ */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } }
/** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */
NatSpecMultiLine
div
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; }
/** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. * * _Available since v2.4.0._ */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 3224, 3574 ] }
2,761
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
SafeMath
library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. * * _Available since v2.4.0._ */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. * * _Available since v2.4.0._ */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. * * _Available since v2.4.0._ */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } }
/** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */
NatSpecMultiLine
mod
function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); }
/** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 4026, 4161 ] }
2,762
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
SafeMath
library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. * * _Available since v2.4.0._ */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. * * _Available since v2.4.0._ */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. * * _Available since v2.4.0._ */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } }
/** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */
NatSpecMultiLine
mod
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; }
/** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. * * _Available since v2.4.0._ */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 4675, 4846 ] }
2,763
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
Address
library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Converts an `address` into `address payable`. Note that this is * simply a type cast: the actual underlying value is not changed. * * _Available since v2.4.0._ */ function toPayable(address account) internal pure returns (address payable) { return address(uint160(account)); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. * * _Available since v2.4.0._ */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-call-value (bool success, ) = recipient.call.value(amount)(""); require(success, "Address: unable to send value, recipient may have reverted"); } }
/** * @dev Collection of functions related to the address type */
NatSpecMultiLine
isContract
function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); }
/** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 607, 1231 ] }
2,764
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
Address
library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Converts an `address` into `address payable`. Note that this is * simply a type cast: the actual underlying value is not changed. * * _Available since v2.4.0._ */ function toPayable(address account) internal pure returns (address payable) { return address(uint160(account)); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. * * _Available since v2.4.0._ */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-call-value (bool success, ) = recipient.call.value(amount)(""); require(success, "Address: unable to send value, recipient may have reverted"); } }
/** * @dev Collection of functions related to the address type */
NatSpecMultiLine
toPayable
function toPayable(address account) internal pure returns (address payable) { return address(uint160(account)); }
/** * @dev Converts an `address` into `address payable`. Note that this is * simply a type cast: the actual underlying value is not changed. * * _Available since v2.4.0._ */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 1443, 1575 ] }
2,765
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
Address
library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Converts an `address` into `address payable`. Note that this is * simply a type cast: the actual underlying value is not changed. * * _Available since v2.4.0._ */ function toPayable(address account) internal pure returns (address payable) { return address(uint160(account)); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. * * _Available since v2.4.0._ */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-call-value (bool success, ) = recipient.call.value(amount)(""); require(success, "Address: unable to send value, recipient may have reverted"); } }
/** * @dev Collection of functions related to the address type */
NatSpecMultiLine
sendValue
function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-call-value (bool success, ) = recipient.call.value(amount)(""); require(success, "Address: unable to send value, recipient may have reverted"); }
/** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. * * _Available since v2.4.0._ */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 2547, 2923 ] }
2,766
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
Roles
library Roles { struct Role { mapping (address => bool) bearer; } /** * @dev give an account access to this role */ function add(Role storage role, address account) internal { require(account != address(0)); require(!has(role, account)); role.bearer[account] = true; } /** * @dev remove an account's access to this role */ function remove(Role storage role, address account) internal { require(account != address(0)); require(has(role, account)); role.bearer[account] = false; } /** * @dev check if an account has this role * @return bool */ function has(Role storage role, address account) internal view returns (bool) { require(account != address(0)); return role.bearer[account]; } }
/** * @title Roles * @dev Library for managing addresses assigned to a Role. */
NatSpecMultiLine
add
function add(Role storage role, address account) internal { require(account != address(0)); require(!has(role, account)); role.bearer[account] = true; }
/** * @dev give an account access to this role */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 155, 346 ] }
2,767
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
Roles
library Roles { struct Role { mapping (address => bool) bearer; } /** * @dev give an account access to this role */ function add(Role storage role, address account) internal { require(account != address(0)); require(!has(role, account)); role.bearer[account] = true; } /** * @dev remove an account's access to this role */ function remove(Role storage role, address account) internal { require(account != address(0)); require(has(role, account)); role.bearer[account] = false; } /** * @dev check if an account has this role * @return bool */ function has(Role storage role, address account) internal view returns (bool) { require(account != address(0)); return role.bearer[account]; } }
/** * @title Roles * @dev Library for managing addresses assigned to a Role. */
NatSpecMultiLine
remove
function remove(Role storage role, address account) internal { require(account != address(0)); require(has(role, account)); role.bearer[account] = false; }
/** * @dev remove an account's access to this role */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 420, 614 ] }
2,768
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
Roles
library Roles { struct Role { mapping (address => bool) bearer; } /** * @dev give an account access to this role */ function add(Role storage role, address account) internal { require(account != address(0)); require(!has(role, account)); role.bearer[account] = true; } /** * @dev remove an account's access to this role */ function remove(Role storage role, address account) internal { require(account != address(0)); require(has(role, account)); role.bearer[account] = false; } /** * @dev check if an account has this role * @return bool */ function has(Role storage role, address account) internal view returns (bool) { require(account != address(0)); return role.bearer[account]; } }
/** * @title Roles * @dev Library for managing addresses assigned to a Role. */
NatSpecMultiLine
has
function has(Role storage role, address account) internal view returns (bool) { require(account != address(0)); return role.bearer[account]; }
/** * @dev check if an account has this role * @return bool */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 703, 873 ] }
2,769
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
Context
contract Context { // Empty internal constructor, to prevent people from mistakenly deploying // an instance of this contract, which should be used via inheritance. constructor () internal { } // solhint-disable-previous-line no-empty-blocks function _msgSender() internal view returns (address payable) { return msg.sender; } function _msgData() internal view returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } }
/* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */
Comment
_msgSender
function _msgSender() internal view returns (address payable) { return msg.sender; }
// solhint-disable-previous-line no-empty-blocks
LineComment
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 265, 368 ] }
2,770
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
IERC165
interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
/** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */
NatSpecMultiLine
supportsInterface
function supportsInterface(bytes4 interfaceId) external view returns (bool);
/** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 374, 455 ] }
2,771
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
ERC165
contract ERC165 is IERC165 { /* * bytes4(keccak256('supportsInterface(bytes4)')) == 0x01ffc9a7 */ bytes4 private constant _INTERFACE_ID_ERC165 = 0x01ffc9a7; /** * @dev Mapping of interface ids to whether or not it's supported. */ mapping(bytes4 => bool) private _supportedInterfaces; constructor () internal { // Derived contracts need only register support for their own interfaces, // we register support for ERC165 itself here _registerInterface(_INTERFACE_ID_ERC165); } /** * @dev See {IERC165-supportsInterface}. * * Time complexity O(1), guaranteed to always use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool) { return _supportedInterfaces[interfaceId]; } /** * @dev Registers the contract as an implementer of the interface defined by * `interfaceId`. Support of the actual ERC165 interface is automatic and * registering its interface id is not required. * * See {IERC165-supportsInterface}. * * Requirements: * * - `interfaceId` cannot be the ERC165 invalid interface (`0xffffffff`). */ function _registerInterface(bytes4 interfaceId) internal { require(interfaceId != 0xffffffff, "ERC165: invalid interface id"); _supportedInterfaces[interfaceId] = true; } }
/** * @dev Implementation of the {IERC165} interface. * * Contracts may inherit from this and call {_registerInterface} to declare * their support of an interface. */
NatSpecMultiLine
supportsInterface
function supportsInterface(bytes4 interfaceId) external view returns (bool) { return _supportedInterfaces[interfaceId]; }
/** * @dev See {IERC165-supportsInterface}. * * Time complexity O(1), guaranteed to always use less than 30 000 gas. */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 711, 851 ] }
2,772
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
ERC165
contract ERC165 is IERC165 { /* * bytes4(keccak256('supportsInterface(bytes4)')) == 0x01ffc9a7 */ bytes4 private constant _INTERFACE_ID_ERC165 = 0x01ffc9a7; /** * @dev Mapping of interface ids to whether or not it's supported. */ mapping(bytes4 => bool) private _supportedInterfaces; constructor () internal { // Derived contracts need only register support for their own interfaces, // we register support for ERC165 itself here _registerInterface(_INTERFACE_ID_ERC165); } /** * @dev See {IERC165-supportsInterface}. * * Time complexity O(1), guaranteed to always use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool) { return _supportedInterfaces[interfaceId]; } /** * @dev Registers the contract as an implementer of the interface defined by * `interfaceId`. Support of the actual ERC165 interface is automatic and * registering its interface id is not required. * * See {IERC165-supportsInterface}. * * Requirements: * * - `interfaceId` cannot be the ERC165 invalid interface (`0xffffffff`). */ function _registerInterface(bytes4 interfaceId) internal { require(interfaceId != 0xffffffff, "ERC165: invalid interface id"); _supportedInterfaces[interfaceId] = true; } }
/** * @dev Implementation of the {IERC165} interface. * * Contracts may inherit from this and call {_registerInterface} to declare * their support of an interface. */
NatSpecMultiLine
_registerInterface
function _registerInterface(bytes4 interfaceId) internal { require(interfaceId != 0xffffffff, "ERC165: invalid interface id"); _supportedInterfaces[interfaceId] = true; }
/** * @dev Registers the contract as an implementer of the interface defined by * `interfaceId`. Support of the actual ERC165 interface is automatic and * registering its interface id is not required. * * See {IERC165-supportsInterface}. * * Requirements: * * - `interfaceId` cannot be the ERC165 invalid interface (`0xffffffff`). */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 1253, 1451 ] }
2,773
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
IERC721
contract IERC721 is IERC165 { event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of NFTs in `owner`'s account. */ function balanceOf(address owner) public view returns (uint256 balance); /** * @dev Returns the owner of the NFT specified by `tokenId`. */ function ownerOf(uint256 tokenId) public view returns (address owner); /** * @dev Transfers a specific NFT (`tokenId`) from one account (`from`) to * another (`to`). * * * * Requirements: * - `from`, `to` cannot be zero. * - `tokenId` must be owned by `from`. * - If the caller is not `from`, it must be have been allowed to move this * NFT by either {approve} or {setApprovalForAll}. */ function safeTransferFrom(address from, address to, uint256 tokenId) public; /** * @dev Transfers a specific NFT (`tokenId`) from one account (`from`) to * another (`to`). * * Requirements: * - If the caller is not `from`, it must be approved to move this NFT by * either {approve} or {setApprovalForAll}. */ function transferFrom(address from, address to, uint256 tokenId) public; function approve(address to, uint256 tokenId) public; function getApproved(uint256 tokenId) public view returns (address operator); function setApprovalForAll(address operator, bool _approved) public; function isApprovedForAll(address owner, address operator) public view returns (bool); function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public; }
/** * @dev Required interface of an ERC721 compliant contract. */
NatSpecMultiLine
balanceOf
function balanceOf(address owner) public view returns (uint256 balance);
/** * @dev Returns the number of NFTs in `owner`'s account. */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 387, 464 ] }
2,774
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
IERC721
contract IERC721 is IERC165 { event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of NFTs in `owner`'s account. */ function balanceOf(address owner) public view returns (uint256 balance); /** * @dev Returns the owner of the NFT specified by `tokenId`. */ function ownerOf(uint256 tokenId) public view returns (address owner); /** * @dev Transfers a specific NFT (`tokenId`) from one account (`from`) to * another (`to`). * * * * Requirements: * - `from`, `to` cannot be zero. * - `tokenId` must be owned by `from`. * - If the caller is not `from`, it must be have been allowed to move this * NFT by either {approve} or {setApprovalForAll}. */ function safeTransferFrom(address from, address to, uint256 tokenId) public; /** * @dev Transfers a specific NFT (`tokenId`) from one account (`from`) to * another (`to`). * * Requirements: * - If the caller is not `from`, it must be approved to move this NFT by * either {approve} or {setApprovalForAll}. */ function transferFrom(address from, address to, uint256 tokenId) public; function approve(address to, uint256 tokenId) public; function getApproved(uint256 tokenId) public view returns (address operator); function setApprovalForAll(address operator, bool _approved) public; function isApprovedForAll(address owner, address operator) public view returns (bool); function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public; }
/** * @dev Required interface of an ERC721 compliant contract. */
NatSpecMultiLine
ownerOf
function ownerOf(uint256 tokenId) public view returns (address owner);
/** * @dev Returns the owner of the NFT specified by `tokenId`. */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 551, 626 ] }
2,775
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
IERC721
contract IERC721 is IERC165 { event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of NFTs in `owner`'s account. */ function balanceOf(address owner) public view returns (uint256 balance); /** * @dev Returns the owner of the NFT specified by `tokenId`. */ function ownerOf(uint256 tokenId) public view returns (address owner); /** * @dev Transfers a specific NFT (`tokenId`) from one account (`from`) to * another (`to`). * * * * Requirements: * - `from`, `to` cannot be zero. * - `tokenId` must be owned by `from`. * - If the caller is not `from`, it must be have been allowed to move this * NFT by either {approve} or {setApprovalForAll}. */ function safeTransferFrom(address from, address to, uint256 tokenId) public; /** * @dev Transfers a specific NFT (`tokenId`) from one account (`from`) to * another (`to`). * * Requirements: * - If the caller is not `from`, it must be approved to move this NFT by * either {approve} or {setApprovalForAll}. */ function transferFrom(address from, address to, uint256 tokenId) public; function approve(address to, uint256 tokenId) public; function getApproved(uint256 tokenId) public view returns (address operator); function setApprovalForAll(address operator, bool _approved) public; function isApprovedForAll(address owner, address operator) public view returns (bool); function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public; }
/** * @dev Required interface of an ERC721 compliant contract. */
NatSpecMultiLine
safeTransferFrom
function safeTransferFrom(address from, address to, uint256 tokenId) public;
/** * @dev Transfers a specific NFT (`tokenId`) from one account (`from`) to * another (`to`). * * * * Requirements: * - `from`, `to` cannot be zero. * - `tokenId` must be owned by `from`. * - If the caller is not `from`, it must be have been allowed to move this * NFT by either {approve} or {setApprovalForAll}. */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 1017, 1098 ] }
2,776
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
IERC721
contract IERC721 is IERC165 { event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of NFTs in `owner`'s account. */ function balanceOf(address owner) public view returns (uint256 balance); /** * @dev Returns the owner of the NFT specified by `tokenId`. */ function ownerOf(uint256 tokenId) public view returns (address owner); /** * @dev Transfers a specific NFT (`tokenId`) from one account (`from`) to * another (`to`). * * * * Requirements: * - `from`, `to` cannot be zero. * - `tokenId` must be owned by `from`. * - If the caller is not `from`, it must be have been allowed to move this * NFT by either {approve} or {setApprovalForAll}. */ function safeTransferFrom(address from, address to, uint256 tokenId) public; /** * @dev Transfers a specific NFT (`tokenId`) from one account (`from`) to * another (`to`). * * Requirements: * - If the caller is not `from`, it must be approved to move this NFT by * either {approve} or {setApprovalForAll}. */ function transferFrom(address from, address to, uint256 tokenId) public; function approve(address to, uint256 tokenId) public; function getApproved(uint256 tokenId) public view returns (address operator); function setApprovalForAll(address operator, bool _approved) public; function isApprovedForAll(address owner, address operator) public view returns (bool); function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public; }
/** * @dev Required interface of an ERC721 compliant contract. */
NatSpecMultiLine
transferFrom
function transferFrom(address from, address to, uint256 tokenId) public;
/** * @dev Transfers a specific NFT (`tokenId`) from one account (`from`) to * another (`to`). * * Requirements: * - If the caller is not `from`, it must be approved to move this NFT by * either {approve} or {setApprovalForAll}. */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 1378, 1455 ] }
2,777
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
IERC721Receiver
contract IERC721Receiver { /** * @notice Handle the receipt of an NFT * @dev The ERC721 smart contract calls this function on the recipient * after a {IERC721-safeTransferFrom}. This function MUST return the function selector, * otherwise the caller will revert the transaction. The selector to be * returned can be obtained as `this.onERC721Received.selector`. This * function MAY throw to revert and reject the transfer. * Note: the ERC721 contract address is always the message sender. * @param operator The address which called `safeTransferFrom` function * @param from The address which previously owned the token * @param tokenId The NFT identifier which is being transferred * @param data Additional data with no specified format * @return bytes4 `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))` */ function onERC721Received(address operator, address from, uint256 tokenId, bytes memory data) public returns (bytes4); }
/** * @title ERC721 token receiver interface * @dev Interface for any contract that wants to support safeTransfers * from ERC721 asset contracts. */
NatSpecMultiLine
onERC721Received
function onERC721Received(address operator, address from, uint256 tokenId, bytes memory data) public returns (bytes4);
/** * @notice Handle the receipt of an NFT * @dev The ERC721 smart contract calls this function on the recipient * after a {IERC721-safeTransferFrom}. This function MUST return the function selector, * otherwise the caller will revert the transaction. The selector to be * returned can be obtained as `this.onERC721Received.selector`. This * function MAY throw to revert and reject the transfer. * Note: the ERC721 contract address is always the message sender. * @param operator The address which called `safeTransferFrom` function * @param from The address which previously owned the token * @param tokenId The NFT identifier which is being transferred * @param data Additional data with no specified format * @return bytes4 `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))` */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 912, 1040 ] }
2,778
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
ERC721
contract ERC721 is Context, ERC165, IERC721 { using SafeMath for uint256; using Address for address; using Counters for Counters.Counter; // Equals to `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))` // which can be also obtained as `IERC721Receiver(0).onERC721Received.selector` bytes4 private constant _ERC721_RECEIVED = 0x150b7a02; // Mapping from token ID to owner mapping (uint256 => address) private _tokenOwner; // Mapping from token ID to approved address mapping (uint256 => address) private _tokenApprovals; // Mapping from owner to number of owned token mapping (address => Counters.Counter) private _ownedTokensCount; // Mapping from owner to operator approvals mapping (address => mapping (address => bool)) private _operatorApprovals; /* * bytes4(keccak256('balanceOf(address)')) == 0x70a08231 * bytes4(keccak256('ownerOf(uint256)')) == 0x6352211e * bytes4(keccak256('approve(address,uint256)')) == 0x095ea7b3 * bytes4(keccak256('getApproved(uint256)')) == 0x081812fc * bytes4(keccak256('setApprovalForAll(address,bool)')) == 0xa22cb465 * bytes4(keccak256('isApprovedForAll(address,address)')) == 0xe985e9c5 * bytes4(keccak256('transferFrom(address,address,uint256)')) == 0x23b872dd * bytes4(keccak256('safeTransferFrom(address,address,uint256)')) == 0x42842e0e * bytes4(keccak256('safeTransferFrom(address,address,uint256,bytes)')) == 0xb88d4fde * * => 0x70a08231 ^ 0x6352211e ^ 0x095ea7b3 ^ 0x081812fc ^ * 0xa22cb465 ^ 0xe985e9c ^ 0x23b872dd ^ 0x42842e0e ^ 0xb88d4fde == 0x80ac58cd */ bytes4 private constant _INTERFACE_ID_ERC721 = 0x80ac58cd; constructor () public { // register the supported interfaces to conform to ERC721 via ERC165 _registerInterface(_INTERFACE_ID_ERC721); } /** * @dev Gets the balance of the specified address. * @param owner address to query the balance of * @return uint256 representing the amount owned by the passed address */ function balanceOf(address owner) public view returns (uint256) { require(owner != address(0), "ERC721: balance query for the zero address"); return _ownedTokensCount[owner].current(); } /** * @dev Gets the owner of the specified token ID. * @param tokenId uint256 ID of the token to query the owner of * @return address currently marked as the owner of the given token ID */ function ownerOf(uint256 tokenId) public view returns (address) { address owner = _tokenOwner[tokenId]; require(owner != address(0), "ERC721: owner query for nonexistent token"); return owner; } /** * @dev Approves another address to transfer the given token ID * The zero address indicates there is no approved address. * There can only be one approved address per token at a given time. * Can only be called by the token owner or an approved operator. * @param to address to be approved for the given token ID * @param tokenId uint256 ID of the token to be approved */ function approve(address to, uint256 tokenId) public { address owner = ownerOf(tokenId); require(to != owner, "ERC721: approval to current owner"); require(_msgSender() == owner || isApprovedForAll(owner, _msgSender()), "ERC721: approve caller is not owner nor approved for all" ); _tokenApprovals[tokenId] = to; emit Approval(owner, to, tokenId); } /** * @dev Gets the approved address for a token ID, or zero if no address set * Reverts if the token ID does not exist. * @param tokenId uint256 ID of the token to query the approval of * @return address currently approved for the given token ID */ function getApproved(uint256 tokenId) public view returns (address) { require(_exists(tokenId), "ERC721: approved query for nonexistent token"); return _tokenApprovals[tokenId]; } /** * @dev Sets or unsets the approval of a given operator * An operator is allowed to transfer all tokens of the sender on their behalf. * @param to operator address to set the approval * @param approved representing the status of the approval to be set */ function setApprovalForAll(address to, bool approved) public { require(to != _msgSender(), "ERC721: approve to caller"); _operatorApprovals[_msgSender()][to] = approved; emit ApprovalForAll(_msgSender(), to, approved); } /** * @dev Tells whether an operator is approved by a given owner. * @param owner owner address which you want to query the approval of * @param operator operator address which you want to query the approval of * @return bool whether the given operator is approved by the given owner */ function isApprovedForAll(address owner, address operator) public view returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev Transfers the ownership of a given token ID to another address. * Usage of this method is discouraged, use {safeTransferFrom} whenever possible. * Requires the msg.sender to be the owner, approved, or operator. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function transferFrom(address from, address to, uint256 tokenId) public { //solhint-disable-next-line max-line-length require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _transferFrom(from, to, tokenId); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function safeTransferFrom(address from, address to, uint256 tokenId) public { safeTransferFrom(from, to, tokenId, ""); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the _msgSender() to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) public { require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _safeTransferFrom(from, to, tokenId, _data); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function _safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) internal { _transferFrom(from, to, tokenId); require(_checkOnERC721Received(from, to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Returns whether the specified token exists. * @param tokenId uint256 ID of the token to query the existence of * @return bool whether the token exists */ function _exists(uint256 tokenId) internal view returns (bool) { address owner = _tokenOwner[tokenId]; return owner != address(0); } /** * @dev Returns whether the given spender can transfer a given token ID. * @param spender address of the spender to query * @param tokenId uint256 ID of the token to be transferred * @return bool whether the msg.sender is approved for the given token ID, * is an operator of the owner, or is the owner of the token */ function _isApprovedOrOwner(address spender, uint256 tokenId) internal view returns (bool) { require(_exists(tokenId), "ERC721: operator query for nonexistent token"); address owner = ownerOf(tokenId); return (spender == owner || getApproved(tokenId) == spender || isApprovedForAll(owner, spender)); } /** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _safeMint(address to, uint256 tokenId) internal { _safeMint(to, tokenId, ""); } /** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted * @param _data bytes data to send along with a safe transfer check */ function _safeMint(address to, uint256 tokenId, bytes memory _data) internal { _mint(to, tokenId); require(_checkOnERC721Received(address(0), to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Internal function to mint a new token. * Reverts if the given token ID already exists. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _mint(address to, uint256 tokenId) internal { require(to != address(0), "ERC721: mint to the zero address"); require(!_exists(tokenId), "ERC721: token already minted"); _tokenOwner[tokenId] = to; _ownedTokensCount[to].increment(); emit Transfer(address(0), to, tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * Deprecated, use {_burn} instead. * @param owner owner of the token to burn * @param tokenId uint256 ID of the token being burned */ function _burn(address owner, uint256 tokenId) internal { require(ownerOf(tokenId) == owner, "ERC721: burn of token that is not own"); _clearApproval(tokenId); _ownedTokensCount[owner].decrement(); _tokenOwner[tokenId] = address(0); emit Transfer(owner, address(0), tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * @param tokenId uint256 ID of the token being burned */ function _burn(uint256 tokenId) internal { _burn(ownerOf(tokenId), tokenId); } /** * @dev Internal function to transfer ownership of a given token ID to another address. * As opposed to {transferFrom}, this imposes no restrictions on msg.sender. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function _transferFrom(address from, address to, uint256 tokenId) internal { require(ownerOf(tokenId) == from, "ERC721: transfer of token that is not own"); require(to != address(0), "ERC721: transfer to the zero address"); _clearApproval(tokenId); _ownedTokensCount[from].decrement(); _ownedTokensCount[to].increment(); _tokenOwner[tokenId] = to; emit Transfer(from, to, tokenId); } /** * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address. * The call is not executed if the target address is not a contract. * * This is an internal detail of the `ERC721` contract and its use is deprecated. * @param from address representing the previous owner of the given token ID * @param to target address that will receive the tokens * @param tokenId uint256 ID of the token to be transferred * @param _data bytes optional data to send along with the call * @return bool whether the call correctly returned the expected magic value */ function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory _data) internal returns (bool) { if (!to.isContract()) { return true; } // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = to.call(abi.encodeWithSelector( IERC721Receiver(to).onERC721Received.selector, _msgSender(), from, tokenId, _data )); if (!success) { if (returndata.length > 0) { // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert("ERC721: transfer to non ERC721Receiver implementer"); } } else { bytes4 retval = abi.decode(returndata, (bytes4)); return (retval == _ERC721_RECEIVED); } } /** * @dev Private function to clear current approval of a given token ID. * @param tokenId uint256 ID of the token to be transferred */ function _clearApproval(uint256 tokenId) private { if (_tokenApprovals[tokenId] != address(0)) { _tokenApprovals[tokenId] = address(0); } } }
/** * @title ERC721 Non-Fungible Token Standard basic implementation * @dev see https://eips.ethereum.org/EIPS/eip-721 */
NatSpecMultiLine
balanceOf
function balanceOf(address owner) public view returns (uint256) { require(owner != address(0), "ERC721: balance query for the zero address"); return _ownedTokensCount[owner].current(); }
/** * @dev Gets the balance of the specified address. * @param owner address to query the balance of * @return uint256 representing the amount owned by the passed address */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 2172, 2388 ] }
2,779
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
ERC721
contract ERC721 is Context, ERC165, IERC721 { using SafeMath for uint256; using Address for address; using Counters for Counters.Counter; // Equals to `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))` // which can be also obtained as `IERC721Receiver(0).onERC721Received.selector` bytes4 private constant _ERC721_RECEIVED = 0x150b7a02; // Mapping from token ID to owner mapping (uint256 => address) private _tokenOwner; // Mapping from token ID to approved address mapping (uint256 => address) private _tokenApprovals; // Mapping from owner to number of owned token mapping (address => Counters.Counter) private _ownedTokensCount; // Mapping from owner to operator approvals mapping (address => mapping (address => bool)) private _operatorApprovals; /* * bytes4(keccak256('balanceOf(address)')) == 0x70a08231 * bytes4(keccak256('ownerOf(uint256)')) == 0x6352211e * bytes4(keccak256('approve(address,uint256)')) == 0x095ea7b3 * bytes4(keccak256('getApproved(uint256)')) == 0x081812fc * bytes4(keccak256('setApprovalForAll(address,bool)')) == 0xa22cb465 * bytes4(keccak256('isApprovedForAll(address,address)')) == 0xe985e9c5 * bytes4(keccak256('transferFrom(address,address,uint256)')) == 0x23b872dd * bytes4(keccak256('safeTransferFrom(address,address,uint256)')) == 0x42842e0e * bytes4(keccak256('safeTransferFrom(address,address,uint256,bytes)')) == 0xb88d4fde * * => 0x70a08231 ^ 0x6352211e ^ 0x095ea7b3 ^ 0x081812fc ^ * 0xa22cb465 ^ 0xe985e9c ^ 0x23b872dd ^ 0x42842e0e ^ 0xb88d4fde == 0x80ac58cd */ bytes4 private constant _INTERFACE_ID_ERC721 = 0x80ac58cd; constructor () public { // register the supported interfaces to conform to ERC721 via ERC165 _registerInterface(_INTERFACE_ID_ERC721); } /** * @dev Gets the balance of the specified address. * @param owner address to query the balance of * @return uint256 representing the amount owned by the passed address */ function balanceOf(address owner) public view returns (uint256) { require(owner != address(0), "ERC721: balance query for the zero address"); return _ownedTokensCount[owner].current(); } /** * @dev Gets the owner of the specified token ID. * @param tokenId uint256 ID of the token to query the owner of * @return address currently marked as the owner of the given token ID */ function ownerOf(uint256 tokenId) public view returns (address) { address owner = _tokenOwner[tokenId]; require(owner != address(0), "ERC721: owner query for nonexistent token"); return owner; } /** * @dev Approves another address to transfer the given token ID * The zero address indicates there is no approved address. * There can only be one approved address per token at a given time. * Can only be called by the token owner or an approved operator. * @param to address to be approved for the given token ID * @param tokenId uint256 ID of the token to be approved */ function approve(address to, uint256 tokenId) public { address owner = ownerOf(tokenId); require(to != owner, "ERC721: approval to current owner"); require(_msgSender() == owner || isApprovedForAll(owner, _msgSender()), "ERC721: approve caller is not owner nor approved for all" ); _tokenApprovals[tokenId] = to; emit Approval(owner, to, tokenId); } /** * @dev Gets the approved address for a token ID, or zero if no address set * Reverts if the token ID does not exist. * @param tokenId uint256 ID of the token to query the approval of * @return address currently approved for the given token ID */ function getApproved(uint256 tokenId) public view returns (address) { require(_exists(tokenId), "ERC721: approved query for nonexistent token"); return _tokenApprovals[tokenId]; } /** * @dev Sets or unsets the approval of a given operator * An operator is allowed to transfer all tokens of the sender on their behalf. * @param to operator address to set the approval * @param approved representing the status of the approval to be set */ function setApprovalForAll(address to, bool approved) public { require(to != _msgSender(), "ERC721: approve to caller"); _operatorApprovals[_msgSender()][to] = approved; emit ApprovalForAll(_msgSender(), to, approved); } /** * @dev Tells whether an operator is approved by a given owner. * @param owner owner address which you want to query the approval of * @param operator operator address which you want to query the approval of * @return bool whether the given operator is approved by the given owner */ function isApprovedForAll(address owner, address operator) public view returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev Transfers the ownership of a given token ID to another address. * Usage of this method is discouraged, use {safeTransferFrom} whenever possible. * Requires the msg.sender to be the owner, approved, or operator. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function transferFrom(address from, address to, uint256 tokenId) public { //solhint-disable-next-line max-line-length require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _transferFrom(from, to, tokenId); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function safeTransferFrom(address from, address to, uint256 tokenId) public { safeTransferFrom(from, to, tokenId, ""); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the _msgSender() to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) public { require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _safeTransferFrom(from, to, tokenId, _data); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function _safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) internal { _transferFrom(from, to, tokenId); require(_checkOnERC721Received(from, to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Returns whether the specified token exists. * @param tokenId uint256 ID of the token to query the existence of * @return bool whether the token exists */ function _exists(uint256 tokenId) internal view returns (bool) { address owner = _tokenOwner[tokenId]; return owner != address(0); } /** * @dev Returns whether the given spender can transfer a given token ID. * @param spender address of the spender to query * @param tokenId uint256 ID of the token to be transferred * @return bool whether the msg.sender is approved for the given token ID, * is an operator of the owner, or is the owner of the token */ function _isApprovedOrOwner(address spender, uint256 tokenId) internal view returns (bool) { require(_exists(tokenId), "ERC721: operator query for nonexistent token"); address owner = ownerOf(tokenId); return (spender == owner || getApproved(tokenId) == spender || isApprovedForAll(owner, spender)); } /** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _safeMint(address to, uint256 tokenId) internal { _safeMint(to, tokenId, ""); } /** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted * @param _data bytes data to send along with a safe transfer check */ function _safeMint(address to, uint256 tokenId, bytes memory _data) internal { _mint(to, tokenId); require(_checkOnERC721Received(address(0), to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Internal function to mint a new token. * Reverts if the given token ID already exists. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _mint(address to, uint256 tokenId) internal { require(to != address(0), "ERC721: mint to the zero address"); require(!_exists(tokenId), "ERC721: token already minted"); _tokenOwner[tokenId] = to; _ownedTokensCount[to].increment(); emit Transfer(address(0), to, tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * Deprecated, use {_burn} instead. * @param owner owner of the token to burn * @param tokenId uint256 ID of the token being burned */ function _burn(address owner, uint256 tokenId) internal { require(ownerOf(tokenId) == owner, "ERC721: burn of token that is not own"); _clearApproval(tokenId); _ownedTokensCount[owner].decrement(); _tokenOwner[tokenId] = address(0); emit Transfer(owner, address(0), tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * @param tokenId uint256 ID of the token being burned */ function _burn(uint256 tokenId) internal { _burn(ownerOf(tokenId), tokenId); } /** * @dev Internal function to transfer ownership of a given token ID to another address. * As opposed to {transferFrom}, this imposes no restrictions on msg.sender. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function _transferFrom(address from, address to, uint256 tokenId) internal { require(ownerOf(tokenId) == from, "ERC721: transfer of token that is not own"); require(to != address(0), "ERC721: transfer to the zero address"); _clearApproval(tokenId); _ownedTokensCount[from].decrement(); _ownedTokensCount[to].increment(); _tokenOwner[tokenId] = to; emit Transfer(from, to, tokenId); } /** * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address. * The call is not executed if the target address is not a contract. * * This is an internal detail of the `ERC721` contract and its use is deprecated. * @param from address representing the previous owner of the given token ID * @param to target address that will receive the tokens * @param tokenId uint256 ID of the token to be transferred * @param _data bytes optional data to send along with the call * @return bool whether the call correctly returned the expected magic value */ function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory _data) internal returns (bool) { if (!to.isContract()) { return true; } // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = to.call(abi.encodeWithSelector( IERC721Receiver(to).onERC721Received.selector, _msgSender(), from, tokenId, _data )); if (!success) { if (returndata.length > 0) { // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert("ERC721: transfer to non ERC721Receiver implementer"); } } else { bytes4 retval = abi.decode(returndata, (bytes4)); return (retval == _ERC721_RECEIVED); } } /** * @dev Private function to clear current approval of a given token ID. * @param tokenId uint256 ID of the token to be transferred */ function _clearApproval(uint256 tokenId) private { if (_tokenApprovals[tokenId] != address(0)) { _tokenApprovals[tokenId] = address(0); } } }
/** * @title ERC721 Non-Fungible Token Standard basic implementation * @dev see https://eips.ethereum.org/EIPS/eip-721 */
NatSpecMultiLine
ownerOf
function ownerOf(uint256 tokenId) public view returns (address) { address owner = _tokenOwner[tokenId]; require(owner != address(0), "ERC721: owner query for nonexistent token"); return owner; }
/** * @dev Gets the owner of the specified token ID. * @param tokenId uint256 ID of the token to query the owner of * @return address currently marked as the owner of the given token ID */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 2609, 2842 ] }
2,780
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
ERC721
contract ERC721 is Context, ERC165, IERC721 { using SafeMath for uint256; using Address for address; using Counters for Counters.Counter; // Equals to `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))` // which can be also obtained as `IERC721Receiver(0).onERC721Received.selector` bytes4 private constant _ERC721_RECEIVED = 0x150b7a02; // Mapping from token ID to owner mapping (uint256 => address) private _tokenOwner; // Mapping from token ID to approved address mapping (uint256 => address) private _tokenApprovals; // Mapping from owner to number of owned token mapping (address => Counters.Counter) private _ownedTokensCount; // Mapping from owner to operator approvals mapping (address => mapping (address => bool)) private _operatorApprovals; /* * bytes4(keccak256('balanceOf(address)')) == 0x70a08231 * bytes4(keccak256('ownerOf(uint256)')) == 0x6352211e * bytes4(keccak256('approve(address,uint256)')) == 0x095ea7b3 * bytes4(keccak256('getApproved(uint256)')) == 0x081812fc * bytes4(keccak256('setApprovalForAll(address,bool)')) == 0xa22cb465 * bytes4(keccak256('isApprovedForAll(address,address)')) == 0xe985e9c5 * bytes4(keccak256('transferFrom(address,address,uint256)')) == 0x23b872dd * bytes4(keccak256('safeTransferFrom(address,address,uint256)')) == 0x42842e0e * bytes4(keccak256('safeTransferFrom(address,address,uint256,bytes)')) == 0xb88d4fde * * => 0x70a08231 ^ 0x6352211e ^ 0x095ea7b3 ^ 0x081812fc ^ * 0xa22cb465 ^ 0xe985e9c ^ 0x23b872dd ^ 0x42842e0e ^ 0xb88d4fde == 0x80ac58cd */ bytes4 private constant _INTERFACE_ID_ERC721 = 0x80ac58cd; constructor () public { // register the supported interfaces to conform to ERC721 via ERC165 _registerInterface(_INTERFACE_ID_ERC721); } /** * @dev Gets the balance of the specified address. * @param owner address to query the balance of * @return uint256 representing the amount owned by the passed address */ function balanceOf(address owner) public view returns (uint256) { require(owner != address(0), "ERC721: balance query for the zero address"); return _ownedTokensCount[owner].current(); } /** * @dev Gets the owner of the specified token ID. * @param tokenId uint256 ID of the token to query the owner of * @return address currently marked as the owner of the given token ID */ function ownerOf(uint256 tokenId) public view returns (address) { address owner = _tokenOwner[tokenId]; require(owner != address(0), "ERC721: owner query for nonexistent token"); return owner; } /** * @dev Approves another address to transfer the given token ID * The zero address indicates there is no approved address. * There can only be one approved address per token at a given time. * Can only be called by the token owner or an approved operator. * @param to address to be approved for the given token ID * @param tokenId uint256 ID of the token to be approved */ function approve(address to, uint256 tokenId) public { address owner = ownerOf(tokenId); require(to != owner, "ERC721: approval to current owner"); require(_msgSender() == owner || isApprovedForAll(owner, _msgSender()), "ERC721: approve caller is not owner nor approved for all" ); _tokenApprovals[tokenId] = to; emit Approval(owner, to, tokenId); } /** * @dev Gets the approved address for a token ID, or zero if no address set * Reverts if the token ID does not exist. * @param tokenId uint256 ID of the token to query the approval of * @return address currently approved for the given token ID */ function getApproved(uint256 tokenId) public view returns (address) { require(_exists(tokenId), "ERC721: approved query for nonexistent token"); return _tokenApprovals[tokenId]; } /** * @dev Sets or unsets the approval of a given operator * An operator is allowed to transfer all tokens of the sender on their behalf. * @param to operator address to set the approval * @param approved representing the status of the approval to be set */ function setApprovalForAll(address to, bool approved) public { require(to != _msgSender(), "ERC721: approve to caller"); _operatorApprovals[_msgSender()][to] = approved; emit ApprovalForAll(_msgSender(), to, approved); } /** * @dev Tells whether an operator is approved by a given owner. * @param owner owner address which you want to query the approval of * @param operator operator address which you want to query the approval of * @return bool whether the given operator is approved by the given owner */ function isApprovedForAll(address owner, address operator) public view returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev Transfers the ownership of a given token ID to another address. * Usage of this method is discouraged, use {safeTransferFrom} whenever possible. * Requires the msg.sender to be the owner, approved, or operator. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function transferFrom(address from, address to, uint256 tokenId) public { //solhint-disable-next-line max-line-length require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _transferFrom(from, to, tokenId); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function safeTransferFrom(address from, address to, uint256 tokenId) public { safeTransferFrom(from, to, tokenId, ""); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the _msgSender() to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) public { require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _safeTransferFrom(from, to, tokenId, _data); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function _safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) internal { _transferFrom(from, to, tokenId); require(_checkOnERC721Received(from, to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Returns whether the specified token exists. * @param tokenId uint256 ID of the token to query the existence of * @return bool whether the token exists */ function _exists(uint256 tokenId) internal view returns (bool) { address owner = _tokenOwner[tokenId]; return owner != address(0); } /** * @dev Returns whether the given spender can transfer a given token ID. * @param spender address of the spender to query * @param tokenId uint256 ID of the token to be transferred * @return bool whether the msg.sender is approved for the given token ID, * is an operator of the owner, or is the owner of the token */ function _isApprovedOrOwner(address spender, uint256 tokenId) internal view returns (bool) { require(_exists(tokenId), "ERC721: operator query for nonexistent token"); address owner = ownerOf(tokenId); return (spender == owner || getApproved(tokenId) == spender || isApprovedForAll(owner, spender)); } /** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _safeMint(address to, uint256 tokenId) internal { _safeMint(to, tokenId, ""); } /** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted * @param _data bytes data to send along with a safe transfer check */ function _safeMint(address to, uint256 tokenId, bytes memory _data) internal { _mint(to, tokenId); require(_checkOnERC721Received(address(0), to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Internal function to mint a new token. * Reverts if the given token ID already exists. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _mint(address to, uint256 tokenId) internal { require(to != address(0), "ERC721: mint to the zero address"); require(!_exists(tokenId), "ERC721: token already minted"); _tokenOwner[tokenId] = to; _ownedTokensCount[to].increment(); emit Transfer(address(0), to, tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * Deprecated, use {_burn} instead. * @param owner owner of the token to burn * @param tokenId uint256 ID of the token being burned */ function _burn(address owner, uint256 tokenId) internal { require(ownerOf(tokenId) == owner, "ERC721: burn of token that is not own"); _clearApproval(tokenId); _ownedTokensCount[owner].decrement(); _tokenOwner[tokenId] = address(0); emit Transfer(owner, address(0), tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * @param tokenId uint256 ID of the token being burned */ function _burn(uint256 tokenId) internal { _burn(ownerOf(tokenId), tokenId); } /** * @dev Internal function to transfer ownership of a given token ID to another address. * As opposed to {transferFrom}, this imposes no restrictions on msg.sender. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function _transferFrom(address from, address to, uint256 tokenId) internal { require(ownerOf(tokenId) == from, "ERC721: transfer of token that is not own"); require(to != address(0), "ERC721: transfer to the zero address"); _clearApproval(tokenId); _ownedTokensCount[from].decrement(); _ownedTokensCount[to].increment(); _tokenOwner[tokenId] = to; emit Transfer(from, to, tokenId); } /** * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address. * The call is not executed if the target address is not a contract. * * This is an internal detail of the `ERC721` contract and its use is deprecated. * @param from address representing the previous owner of the given token ID * @param to target address that will receive the tokens * @param tokenId uint256 ID of the token to be transferred * @param _data bytes optional data to send along with the call * @return bool whether the call correctly returned the expected magic value */ function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory _data) internal returns (bool) { if (!to.isContract()) { return true; } // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = to.call(abi.encodeWithSelector( IERC721Receiver(to).onERC721Received.selector, _msgSender(), from, tokenId, _data )); if (!success) { if (returndata.length > 0) { // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert("ERC721: transfer to non ERC721Receiver implementer"); } } else { bytes4 retval = abi.decode(returndata, (bytes4)); return (retval == _ERC721_RECEIVED); } } /** * @dev Private function to clear current approval of a given token ID. * @param tokenId uint256 ID of the token to be transferred */ function _clearApproval(uint256 tokenId) private { if (_tokenApprovals[tokenId] != address(0)) { _tokenApprovals[tokenId] = address(0); } } }
/** * @title ERC721 Non-Fungible Token Standard basic implementation * @dev see https://eips.ethereum.org/EIPS/eip-721 */
NatSpecMultiLine
approve
function approve(address to, uint256 tokenId) public { address owner = ownerOf(tokenId); require(to != owner, "ERC721: approval to current owner"); require(_msgSender() == owner || isApprovedForAll(owner, _msgSender()), "ERC721: approve caller is not owner nor approved for all" ); _tokenApprovals[tokenId] = to; emit Approval(owner, to, tokenId); }
/** * @dev Approves another address to transfer the given token ID * The zero address indicates there is no approved address. * There can only be one approved address per token at a given time. * Can only be called by the token owner or an approved operator. * @param to address to be approved for the given token ID * @param tokenId uint256 ID of the token to be approved */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 3268, 3698 ] }
2,781
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
ERC721
contract ERC721 is Context, ERC165, IERC721 { using SafeMath for uint256; using Address for address; using Counters for Counters.Counter; // Equals to `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))` // which can be also obtained as `IERC721Receiver(0).onERC721Received.selector` bytes4 private constant _ERC721_RECEIVED = 0x150b7a02; // Mapping from token ID to owner mapping (uint256 => address) private _tokenOwner; // Mapping from token ID to approved address mapping (uint256 => address) private _tokenApprovals; // Mapping from owner to number of owned token mapping (address => Counters.Counter) private _ownedTokensCount; // Mapping from owner to operator approvals mapping (address => mapping (address => bool)) private _operatorApprovals; /* * bytes4(keccak256('balanceOf(address)')) == 0x70a08231 * bytes4(keccak256('ownerOf(uint256)')) == 0x6352211e * bytes4(keccak256('approve(address,uint256)')) == 0x095ea7b3 * bytes4(keccak256('getApproved(uint256)')) == 0x081812fc * bytes4(keccak256('setApprovalForAll(address,bool)')) == 0xa22cb465 * bytes4(keccak256('isApprovedForAll(address,address)')) == 0xe985e9c5 * bytes4(keccak256('transferFrom(address,address,uint256)')) == 0x23b872dd * bytes4(keccak256('safeTransferFrom(address,address,uint256)')) == 0x42842e0e * bytes4(keccak256('safeTransferFrom(address,address,uint256,bytes)')) == 0xb88d4fde * * => 0x70a08231 ^ 0x6352211e ^ 0x095ea7b3 ^ 0x081812fc ^ * 0xa22cb465 ^ 0xe985e9c ^ 0x23b872dd ^ 0x42842e0e ^ 0xb88d4fde == 0x80ac58cd */ bytes4 private constant _INTERFACE_ID_ERC721 = 0x80ac58cd; constructor () public { // register the supported interfaces to conform to ERC721 via ERC165 _registerInterface(_INTERFACE_ID_ERC721); } /** * @dev Gets the balance of the specified address. * @param owner address to query the balance of * @return uint256 representing the amount owned by the passed address */ function balanceOf(address owner) public view returns (uint256) { require(owner != address(0), "ERC721: balance query for the zero address"); return _ownedTokensCount[owner].current(); } /** * @dev Gets the owner of the specified token ID. * @param tokenId uint256 ID of the token to query the owner of * @return address currently marked as the owner of the given token ID */ function ownerOf(uint256 tokenId) public view returns (address) { address owner = _tokenOwner[tokenId]; require(owner != address(0), "ERC721: owner query for nonexistent token"); return owner; } /** * @dev Approves another address to transfer the given token ID * The zero address indicates there is no approved address. * There can only be one approved address per token at a given time. * Can only be called by the token owner or an approved operator. * @param to address to be approved for the given token ID * @param tokenId uint256 ID of the token to be approved */ function approve(address to, uint256 tokenId) public { address owner = ownerOf(tokenId); require(to != owner, "ERC721: approval to current owner"); require(_msgSender() == owner || isApprovedForAll(owner, _msgSender()), "ERC721: approve caller is not owner nor approved for all" ); _tokenApprovals[tokenId] = to; emit Approval(owner, to, tokenId); } /** * @dev Gets the approved address for a token ID, or zero if no address set * Reverts if the token ID does not exist. * @param tokenId uint256 ID of the token to query the approval of * @return address currently approved for the given token ID */ function getApproved(uint256 tokenId) public view returns (address) { require(_exists(tokenId), "ERC721: approved query for nonexistent token"); return _tokenApprovals[tokenId]; } /** * @dev Sets or unsets the approval of a given operator * An operator is allowed to transfer all tokens of the sender on their behalf. * @param to operator address to set the approval * @param approved representing the status of the approval to be set */ function setApprovalForAll(address to, bool approved) public { require(to != _msgSender(), "ERC721: approve to caller"); _operatorApprovals[_msgSender()][to] = approved; emit ApprovalForAll(_msgSender(), to, approved); } /** * @dev Tells whether an operator is approved by a given owner. * @param owner owner address which you want to query the approval of * @param operator operator address which you want to query the approval of * @return bool whether the given operator is approved by the given owner */ function isApprovedForAll(address owner, address operator) public view returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev Transfers the ownership of a given token ID to another address. * Usage of this method is discouraged, use {safeTransferFrom} whenever possible. * Requires the msg.sender to be the owner, approved, or operator. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function transferFrom(address from, address to, uint256 tokenId) public { //solhint-disable-next-line max-line-length require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _transferFrom(from, to, tokenId); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function safeTransferFrom(address from, address to, uint256 tokenId) public { safeTransferFrom(from, to, tokenId, ""); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the _msgSender() to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) public { require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _safeTransferFrom(from, to, tokenId, _data); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function _safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) internal { _transferFrom(from, to, tokenId); require(_checkOnERC721Received(from, to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Returns whether the specified token exists. * @param tokenId uint256 ID of the token to query the existence of * @return bool whether the token exists */ function _exists(uint256 tokenId) internal view returns (bool) { address owner = _tokenOwner[tokenId]; return owner != address(0); } /** * @dev Returns whether the given spender can transfer a given token ID. * @param spender address of the spender to query * @param tokenId uint256 ID of the token to be transferred * @return bool whether the msg.sender is approved for the given token ID, * is an operator of the owner, or is the owner of the token */ function _isApprovedOrOwner(address spender, uint256 tokenId) internal view returns (bool) { require(_exists(tokenId), "ERC721: operator query for nonexistent token"); address owner = ownerOf(tokenId); return (spender == owner || getApproved(tokenId) == spender || isApprovedForAll(owner, spender)); } /** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _safeMint(address to, uint256 tokenId) internal { _safeMint(to, tokenId, ""); } /** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted * @param _data bytes data to send along with a safe transfer check */ function _safeMint(address to, uint256 tokenId, bytes memory _data) internal { _mint(to, tokenId); require(_checkOnERC721Received(address(0), to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Internal function to mint a new token. * Reverts if the given token ID already exists. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _mint(address to, uint256 tokenId) internal { require(to != address(0), "ERC721: mint to the zero address"); require(!_exists(tokenId), "ERC721: token already minted"); _tokenOwner[tokenId] = to; _ownedTokensCount[to].increment(); emit Transfer(address(0), to, tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * Deprecated, use {_burn} instead. * @param owner owner of the token to burn * @param tokenId uint256 ID of the token being burned */ function _burn(address owner, uint256 tokenId) internal { require(ownerOf(tokenId) == owner, "ERC721: burn of token that is not own"); _clearApproval(tokenId); _ownedTokensCount[owner].decrement(); _tokenOwner[tokenId] = address(0); emit Transfer(owner, address(0), tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * @param tokenId uint256 ID of the token being burned */ function _burn(uint256 tokenId) internal { _burn(ownerOf(tokenId), tokenId); } /** * @dev Internal function to transfer ownership of a given token ID to another address. * As opposed to {transferFrom}, this imposes no restrictions on msg.sender. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function _transferFrom(address from, address to, uint256 tokenId) internal { require(ownerOf(tokenId) == from, "ERC721: transfer of token that is not own"); require(to != address(0), "ERC721: transfer to the zero address"); _clearApproval(tokenId); _ownedTokensCount[from].decrement(); _ownedTokensCount[to].increment(); _tokenOwner[tokenId] = to; emit Transfer(from, to, tokenId); } /** * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address. * The call is not executed if the target address is not a contract. * * This is an internal detail of the `ERC721` contract and its use is deprecated. * @param from address representing the previous owner of the given token ID * @param to target address that will receive the tokens * @param tokenId uint256 ID of the token to be transferred * @param _data bytes optional data to send along with the call * @return bool whether the call correctly returned the expected magic value */ function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory _data) internal returns (bool) { if (!to.isContract()) { return true; } // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = to.call(abi.encodeWithSelector( IERC721Receiver(to).onERC721Received.selector, _msgSender(), from, tokenId, _data )); if (!success) { if (returndata.length > 0) { // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert("ERC721: transfer to non ERC721Receiver implementer"); } } else { bytes4 retval = abi.decode(returndata, (bytes4)); return (retval == _ERC721_RECEIVED); } } /** * @dev Private function to clear current approval of a given token ID. * @param tokenId uint256 ID of the token to be transferred */ function _clearApproval(uint256 tokenId) private { if (_tokenApprovals[tokenId] != address(0)) { _tokenApprovals[tokenId] = address(0); } } }
/** * @title ERC721 Non-Fungible Token Standard basic implementation * @dev see https://eips.ethereum.org/EIPS/eip-721 */
NatSpecMultiLine
getApproved
function getApproved(uint256 tokenId) public view returns (address) { require(_exists(tokenId), "ERC721: approved query for nonexistent token"); return _tokenApprovals[tokenId]; }
/** * @dev Gets the approved address for a token ID, or zero if no address set * Reverts if the token ID does not exist. * @param tokenId uint256 ID of the token to query the approval of * @return address currently approved for the given token ID */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 3986, 4195 ] }
2,782
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
ERC721
contract ERC721 is Context, ERC165, IERC721 { using SafeMath for uint256; using Address for address; using Counters for Counters.Counter; // Equals to `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))` // which can be also obtained as `IERC721Receiver(0).onERC721Received.selector` bytes4 private constant _ERC721_RECEIVED = 0x150b7a02; // Mapping from token ID to owner mapping (uint256 => address) private _tokenOwner; // Mapping from token ID to approved address mapping (uint256 => address) private _tokenApprovals; // Mapping from owner to number of owned token mapping (address => Counters.Counter) private _ownedTokensCount; // Mapping from owner to operator approvals mapping (address => mapping (address => bool)) private _operatorApprovals; /* * bytes4(keccak256('balanceOf(address)')) == 0x70a08231 * bytes4(keccak256('ownerOf(uint256)')) == 0x6352211e * bytes4(keccak256('approve(address,uint256)')) == 0x095ea7b3 * bytes4(keccak256('getApproved(uint256)')) == 0x081812fc * bytes4(keccak256('setApprovalForAll(address,bool)')) == 0xa22cb465 * bytes4(keccak256('isApprovedForAll(address,address)')) == 0xe985e9c5 * bytes4(keccak256('transferFrom(address,address,uint256)')) == 0x23b872dd * bytes4(keccak256('safeTransferFrom(address,address,uint256)')) == 0x42842e0e * bytes4(keccak256('safeTransferFrom(address,address,uint256,bytes)')) == 0xb88d4fde * * => 0x70a08231 ^ 0x6352211e ^ 0x095ea7b3 ^ 0x081812fc ^ * 0xa22cb465 ^ 0xe985e9c ^ 0x23b872dd ^ 0x42842e0e ^ 0xb88d4fde == 0x80ac58cd */ bytes4 private constant _INTERFACE_ID_ERC721 = 0x80ac58cd; constructor () public { // register the supported interfaces to conform to ERC721 via ERC165 _registerInterface(_INTERFACE_ID_ERC721); } /** * @dev Gets the balance of the specified address. * @param owner address to query the balance of * @return uint256 representing the amount owned by the passed address */ function balanceOf(address owner) public view returns (uint256) { require(owner != address(0), "ERC721: balance query for the zero address"); return _ownedTokensCount[owner].current(); } /** * @dev Gets the owner of the specified token ID. * @param tokenId uint256 ID of the token to query the owner of * @return address currently marked as the owner of the given token ID */ function ownerOf(uint256 tokenId) public view returns (address) { address owner = _tokenOwner[tokenId]; require(owner != address(0), "ERC721: owner query for nonexistent token"); return owner; } /** * @dev Approves another address to transfer the given token ID * The zero address indicates there is no approved address. * There can only be one approved address per token at a given time. * Can only be called by the token owner or an approved operator. * @param to address to be approved for the given token ID * @param tokenId uint256 ID of the token to be approved */ function approve(address to, uint256 tokenId) public { address owner = ownerOf(tokenId); require(to != owner, "ERC721: approval to current owner"); require(_msgSender() == owner || isApprovedForAll(owner, _msgSender()), "ERC721: approve caller is not owner nor approved for all" ); _tokenApprovals[tokenId] = to; emit Approval(owner, to, tokenId); } /** * @dev Gets the approved address for a token ID, or zero if no address set * Reverts if the token ID does not exist. * @param tokenId uint256 ID of the token to query the approval of * @return address currently approved for the given token ID */ function getApproved(uint256 tokenId) public view returns (address) { require(_exists(tokenId), "ERC721: approved query for nonexistent token"); return _tokenApprovals[tokenId]; } /** * @dev Sets or unsets the approval of a given operator * An operator is allowed to transfer all tokens of the sender on their behalf. * @param to operator address to set the approval * @param approved representing the status of the approval to be set */ function setApprovalForAll(address to, bool approved) public { require(to != _msgSender(), "ERC721: approve to caller"); _operatorApprovals[_msgSender()][to] = approved; emit ApprovalForAll(_msgSender(), to, approved); } /** * @dev Tells whether an operator is approved by a given owner. * @param owner owner address which you want to query the approval of * @param operator operator address which you want to query the approval of * @return bool whether the given operator is approved by the given owner */ function isApprovedForAll(address owner, address operator) public view returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev Transfers the ownership of a given token ID to another address. * Usage of this method is discouraged, use {safeTransferFrom} whenever possible. * Requires the msg.sender to be the owner, approved, or operator. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function transferFrom(address from, address to, uint256 tokenId) public { //solhint-disable-next-line max-line-length require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _transferFrom(from, to, tokenId); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function safeTransferFrom(address from, address to, uint256 tokenId) public { safeTransferFrom(from, to, tokenId, ""); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the _msgSender() to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) public { require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _safeTransferFrom(from, to, tokenId, _data); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function _safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) internal { _transferFrom(from, to, tokenId); require(_checkOnERC721Received(from, to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Returns whether the specified token exists. * @param tokenId uint256 ID of the token to query the existence of * @return bool whether the token exists */ function _exists(uint256 tokenId) internal view returns (bool) { address owner = _tokenOwner[tokenId]; return owner != address(0); } /** * @dev Returns whether the given spender can transfer a given token ID. * @param spender address of the spender to query * @param tokenId uint256 ID of the token to be transferred * @return bool whether the msg.sender is approved for the given token ID, * is an operator of the owner, or is the owner of the token */ function _isApprovedOrOwner(address spender, uint256 tokenId) internal view returns (bool) { require(_exists(tokenId), "ERC721: operator query for nonexistent token"); address owner = ownerOf(tokenId); return (spender == owner || getApproved(tokenId) == spender || isApprovedForAll(owner, spender)); } /** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _safeMint(address to, uint256 tokenId) internal { _safeMint(to, tokenId, ""); } /** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted * @param _data bytes data to send along with a safe transfer check */ function _safeMint(address to, uint256 tokenId, bytes memory _data) internal { _mint(to, tokenId); require(_checkOnERC721Received(address(0), to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Internal function to mint a new token. * Reverts if the given token ID already exists. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _mint(address to, uint256 tokenId) internal { require(to != address(0), "ERC721: mint to the zero address"); require(!_exists(tokenId), "ERC721: token already minted"); _tokenOwner[tokenId] = to; _ownedTokensCount[to].increment(); emit Transfer(address(0), to, tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * Deprecated, use {_burn} instead. * @param owner owner of the token to burn * @param tokenId uint256 ID of the token being burned */ function _burn(address owner, uint256 tokenId) internal { require(ownerOf(tokenId) == owner, "ERC721: burn of token that is not own"); _clearApproval(tokenId); _ownedTokensCount[owner].decrement(); _tokenOwner[tokenId] = address(0); emit Transfer(owner, address(0), tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * @param tokenId uint256 ID of the token being burned */ function _burn(uint256 tokenId) internal { _burn(ownerOf(tokenId), tokenId); } /** * @dev Internal function to transfer ownership of a given token ID to another address. * As opposed to {transferFrom}, this imposes no restrictions on msg.sender. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function _transferFrom(address from, address to, uint256 tokenId) internal { require(ownerOf(tokenId) == from, "ERC721: transfer of token that is not own"); require(to != address(0), "ERC721: transfer to the zero address"); _clearApproval(tokenId); _ownedTokensCount[from].decrement(); _ownedTokensCount[to].increment(); _tokenOwner[tokenId] = to; emit Transfer(from, to, tokenId); } /** * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address. * The call is not executed if the target address is not a contract. * * This is an internal detail of the `ERC721` contract and its use is deprecated. * @param from address representing the previous owner of the given token ID * @param to target address that will receive the tokens * @param tokenId uint256 ID of the token to be transferred * @param _data bytes optional data to send along with the call * @return bool whether the call correctly returned the expected magic value */ function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory _data) internal returns (bool) { if (!to.isContract()) { return true; } // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = to.call(abi.encodeWithSelector( IERC721Receiver(to).onERC721Received.selector, _msgSender(), from, tokenId, _data )); if (!success) { if (returndata.length > 0) { // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert("ERC721: transfer to non ERC721Receiver implementer"); } } else { bytes4 retval = abi.decode(returndata, (bytes4)); return (retval == _ERC721_RECEIVED); } } /** * @dev Private function to clear current approval of a given token ID. * @param tokenId uint256 ID of the token to be transferred */ function _clearApproval(uint256 tokenId) private { if (_tokenApprovals[tokenId] != address(0)) { _tokenApprovals[tokenId] = address(0); } } }
/** * @title ERC721 Non-Fungible Token Standard basic implementation * @dev see https://eips.ethereum.org/EIPS/eip-721 */
NatSpecMultiLine
setApprovalForAll
function setApprovalForAll(address to, bool approved) public { require(to != _msgSender(), "ERC721: approve to caller"); _operatorApprovals[_msgSender()][to] = approved; emit ApprovalForAll(_msgSender(), to, approved); }
/** * @dev Sets or unsets the approval of a given operator * An operator is allowed to transfer all tokens of the sender on their behalf. * @param to operator address to set the approval * @param approved representing the status of the approval to be set */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 4491, 4750 ] }
2,783
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
ERC721
contract ERC721 is Context, ERC165, IERC721 { using SafeMath for uint256; using Address for address; using Counters for Counters.Counter; // Equals to `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))` // which can be also obtained as `IERC721Receiver(0).onERC721Received.selector` bytes4 private constant _ERC721_RECEIVED = 0x150b7a02; // Mapping from token ID to owner mapping (uint256 => address) private _tokenOwner; // Mapping from token ID to approved address mapping (uint256 => address) private _tokenApprovals; // Mapping from owner to number of owned token mapping (address => Counters.Counter) private _ownedTokensCount; // Mapping from owner to operator approvals mapping (address => mapping (address => bool)) private _operatorApprovals; /* * bytes4(keccak256('balanceOf(address)')) == 0x70a08231 * bytes4(keccak256('ownerOf(uint256)')) == 0x6352211e * bytes4(keccak256('approve(address,uint256)')) == 0x095ea7b3 * bytes4(keccak256('getApproved(uint256)')) == 0x081812fc * bytes4(keccak256('setApprovalForAll(address,bool)')) == 0xa22cb465 * bytes4(keccak256('isApprovedForAll(address,address)')) == 0xe985e9c5 * bytes4(keccak256('transferFrom(address,address,uint256)')) == 0x23b872dd * bytes4(keccak256('safeTransferFrom(address,address,uint256)')) == 0x42842e0e * bytes4(keccak256('safeTransferFrom(address,address,uint256,bytes)')) == 0xb88d4fde * * => 0x70a08231 ^ 0x6352211e ^ 0x095ea7b3 ^ 0x081812fc ^ * 0xa22cb465 ^ 0xe985e9c ^ 0x23b872dd ^ 0x42842e0e ^ 0xb88d4fde == 0x80ac58cd */ bytes4 private constant _INTERFACE_ID_ERC721 = 0x80ac58cd; constructor () public { // register the supported interfaces to conform to ERC721 via ERC165 _registerInterface(_INTERFACE_ID_ERC721); } /** * @dev Gets the balance of the specified address. * @param owner address to query the balance of * @return uint256 representing the amount owned by the passed address */ function balanceOf(address owner) public view returns (uint256) { require(owner != address(0), "ERC721: balance query for the zero address"); return _ownedTokensCount[owner].current(); } /** * @dev Gets the owner of the specified token ID. * @param tokenId uint256 ID of the token to query the owner of * @return address currently marked as the owner of the given token ID */ function ownerOf(uint256 tokenId) public view returns (address) { address owner = _tokenOwner[tokenId]; require(owner != address(0), "ERC721: owner query for nonexistent token"); return owner; } /** * @dev Approves another address to transfer the given token ID * The zero address indicates there is no approved address. * There can only be one approved address per token at a given time. * Can only be called by the token owner or an approved operator. * @param to address to be approved for the given token ID * @param tokenId uint256 ID of the token to be approved */ function approve(address to, uint256 tokenId) public { address owner = ownerOf(tokenId); require(to != owner, "ERC721: approval to current owner"); require(_msgSender() == owner || isApprovedForAll(owner, _msgSender()), "ERC721: approve caller is not owner nor approved for all" ); _tokenApprovals[tokenId] = to; emit Approval(owner, to, tokenId); } /** * @dev Gets the approved address for a token ID, or zero if no address set * Reverts if the token ID does not exist. * @param tokenId uint256 ID of the token to query the approval of * @return address currently approved for the given token ID */ function getApproved(uint256 tokenId) public view returns (address) { require(_exists(tokenId), "ERC721: approved query for nonexistent token"); return _tokenApprovals[tokenId]; } /** * @dev Sets or unsets the approval of a given operator * An operator is allowed to transfer all tokens of the sender on their behalf. * @param to operator address to set the approval * @param approved representing the status of the approval to be set */ function setApprovalForAll(address to, bool approved) public { require(to != _msgSender(), "ERC721: approve to caller"); _operatorApprovals[_msgSender()][to] = approved; emit ApprovalForAll(_msgSender(), to, approved); } /** * @dev Tells whether an operator is approved by a given owner. * @param owner owner address which you want to query the approval of * @param operator operator address which you want to query the approval of * @return bool whether the given operator is approved by the given owner */ function isApprovedForAll(address owner, address operator) public view returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev Transfers the ownership of a given token ID to another address. * Usage of this method is discouraged, use {safeTransferFrom} whenever possible. * Requires the msg.sender to be the owner, approved, or operator. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function transferFrom(address from, address to, uint256 tokenId) public { //solhint-disable-next-line max-line-length require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _transferFrom(from, to, tokenId); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function safeTransferFrom(address from, address to, uint256 tokenId) public { safeTransferFrom(from, to, tokenId, ""); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the _msgSender() to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) public { require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _safeTransferFrom(from, to, tokenId, _data); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function _safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) internal { _transferFrom(from, to, tokenId); require(_checkOnERC721Received(from, to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Returns whether the specified token exists. * @param tokenId uint256 ID of the token to query the existence of * @return bool whether the token exists */ function _exists(uint256 tokenId) internal view returns (bool) { address owner = _tokenOwner[tokenId]; return owner != address(0); } /** * @dev Returns whether the given spender can transfer a given token ID. * @param spender address of the spender to query * @param tokenId uint256 ID of the token to be transferred * @return bool whether the msg.sender is approved for the given token ID, * is an operator of the owner, or is the owner of the token */ function _isApprovedOrOwner(address spender, uint256 tokenId) internal view returns (bool) { require(_exists(tokenId), "ERC721: operator query for nonexistent token"); address owner = ownerOf(tokenId); return (spender == owner || getApproved(tokenId) == spender || isApprovedForAll(owner, spender)); } /** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _safeMint(address to, uint256 tokenId) internal { _safeMint(to, tokenId, ""); } /** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted * @param _data bytes data to send along with a safe transfer check */ function _safeMint(address to, uint256 tokenId, bytes memory _data) internal { _mint(to, tokenId); require(_checkOnERC721Received(address(0), to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Internal function to mint a new token. * Reverts if the given token ID already exists. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _mint(address to, uint256 tokenId) internal { require(to != address(0), "ERC721: mint to the zero address"); require(!_exists(tokenId), "ERC721: token already minted"); _tokenOwner[tokenId] = to; _ownedTokensCount[to].increment(); emit Transfer(address(0), to, tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * Deprecated, use {_burn} instead. * @param owner owner of the token to burn * @param tokenId uint256 ID of the token being burned */ function _burn(address owner, uint256 tokenId) internal { require(ownerOf(tokenId) == owner, "ERC721: burn of token that is not own"); _clearApproval(tokenId); _ownedTokensCount[owner].decrement(); _tokenOwner[tokenId] = address(0); emit Transfer(owner, address(0), tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * @param tokenId uint256 ID of the token being burned */ function _burn(uint256 tokenId) internal { _burn(ownerOf(tokenId), tokenId); } /** * @dev Internal function to transfer ownership of a given token ID to another address. * As opposed to {transferFrom}, this imposes no restrictions on msg.sender. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function _transferFrom(address from, address to, uint256 tokenId) internal { require(ownerOf(tokenId) == from, "ERC721: transfer of token that is not own"); require(to != address(0), "ERC721: transfer to the zero address"); _clearApproval(tokenId); _ownedTokensCount[from].decrement(); _ownedTokensCount[to].increment(); _tokenOwner[tokenId] = to; emit Transfer(from, to, tokenId); } /** * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address. * The call is not executed if the target address is not a contract. * * This is an internal detail of the `ERC721` contract and its use is deprecated. * @param from address representing the previous owner of the given token ID * @param to target address that will receive the tokens * @param tokenId uint256 ID of the token to be transferred * @param _data bytes optional data to send along with the call * @return bool whether the call correctly returned the expected magic value */ function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory _data) internal returns (bool) { if (!to.isContract()) { return true; } // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = to.call(abi.encodeWithSelector( IERC721Receiver(to).onERC721Received.selector, _msgSender(), from, tokenId, _data )); if (!success) { if (returndata.length > 0) { // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert("ERC721: transfer to non ERC721Receiver implementer"); } } else { bytes4 retval = abi.decode(returndata, (bytes4)); return (retval == _ERC721_RECEIVED); } } /** * @dev Private function to clear current approval of a given token ID. * @param tokenId uint256 ID of the token to be transferred */ function _clearApproval(uint256 tokenId) private { if (_tokenApprovals[tokenId] != address(0)) { _tokenApprovals[tokenId] = address(0); } } }
/** * @title ERC721 Non-Fungible Token Standard basic implementation * @dev see https://eips.ethereum.org/EIPS/eip-721 */
NatSpecMultiLine
isApprovedForAll
function isApprovedForAll(address owner, address operator) public view returns (bool) { return _operatorApprovals[owner][operator]; }
/** * @dev Tells whether an operator is approved by a given owner. * @param owner owner address which you want to query the approval of * @param operator operator address which you want to query the approval of * @return bool whether the given operator is approved by the given owner */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 5075, 5227 ] }
2,784
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
ERC721
contract ERC721 is Context, ERC165, IERC721 { using SafeMath for uint256; using Address for address; using Counters for Counters.Counter; // Equals to `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))` // which can be also obtained as `IERC721Receiver(0).onERC721Received.selector` bytes4 private constant _ERC721_RECEIVED = 0x150b7a02; // Mapping from token ID to owner mapping (uint256 => address) private _tokenOwner; // Mapping from token ID to approved address mapping (uint256 => address) private _tokenApprovals; // Mapping from owner to number of owned token mapping (address => Counters.Counter) private _ownedTokensCount; // Mapping from owner to operator approvals mapping (address => mapping (address => bool)) private _operatorApprovals; /* * bytes4(keccak256('balanceOf(address)')) == 0x70a08231 * bytes4(keccak256('ownerOf(uint256)')) == 0x6352211e * bytes4(keccak256('approve(address,uint256)')) == 0x095ea7b3 * bytes4(keccak256('getApproved(uint256)')) == 0x081812fc * bytes4(keccak256('setApprovalForAll(address,bool)')) == 0xa22cb465 * bytes4(keccak256('isApprovedForAll(address,address)')) == 0xe985e9c5 * bytes4(keccak256('transferFrom(address,address,uint256)')) == 0x23b872dd * bytes4(keccak256('safeTransferFrom(address,address,uint256)')) == 0x42842e0e * bytes4(keccak256('safeTransferFrom(address,address,uint256,bytes)')) == 0xb88d4fde * * => 0x70a08231 ^ 0x6352211e ^ 0x095ea7b3 ^ 0x081812fc ^ * 0xa22cb465 ^ 0xe985e9c ^ 0x23b872dd ^ 0x42842e0e ^ 0xb88d4fde == 0x80ac58cd */ bytes4 private constant _INTERFACE_ID_ERC721 = 0x80ac58cd; constructor () public { // register the supported interfaces to conform to ERC721 via ERC165 _registerInterface(_INTERFACE_ID_ERC721); } /** * @dev Gets the balance of the specified address. * @param owner address to query the balance of * @return uint256 representing the amount owned by the passed address */ function balanceOf(address owner) public view returns (uint256) { require(owner != address(0), "ERC721: balance query for the zero address"); return _ownedTokensCount[owner].current(); } /** * @dev Gets the owner of the specified token ID. * @param tokenId uint256 ID of the token to query the owner of * @return address currently marked as the owner of the given token ID */ function ownerOf(uint256 tokenId) public view returns (address) { address owner = _tokenOwner[tokenId]; require(owner != address(0), "ERC721: owner query for nonexistent token"); return owner; } /** * @dev Approves another address to transfer the given token ID * The zero address indicates there is no approved address. * There can only be one approved address per token at a given time. * Can only be called by the token owner or an approved operator. * @param to address to be approved for the given token ID * @param tokenId uint256 ID of the token to be approved */ function approve(address to, uint256 tokenId) public { address owner = ownerOf(tokenId); require(to != owner, "ERC721: approval to current owner"); require(_msgSender() == owner || isApprovedForAll(owner, _msgSender()), "ERC721: approve caller is not owner nor approved for all" ); _tokenApprovals[tokenId] = to; emit Approval(owner, to, tokenId); } /** * @dev Gets the approved address for a token ID, or zero if no address set * Reverts if the token ID does not exist. * @param tokenId uint256 ID of the token to query the approval of * @return address currently approved for the given token ID */ function getApproved(uint256 tokenId) public view returns (address) { require(_exists(tokenId), "ERC721: approved query for nonexistent token"); return _tokenApprovals[tokenId]; } /** * @dev Sets or unsets the approval of a given operator * An operator is allowed to transfer all tokens of the sender on their behalf. * @param to operator address to set the approval * @param approved representing the status of the approval to be set */ function setApprovalForAll(address to, bool approved) public { require(to != _msgSender(), "ERC721: approve to caller"); _operatorApprovals[_msgSender()][to] = approved; emit ApprovalForAll(_msgSender(), to, approved); } /** * @dev Tells whether an operator is approved by a given owner. * @param owner owner address which you want to query the approval of * @param operator operator address which you want to query the approval of * @return bool whether the given operator is approved by the given owner */ function isApprovedForAll(address owner, address operator) public view returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev Transfers the ownership of a given token ID to another address. * Usage of this method is discouraged, use {safeTransferFrom} whenever possible. * Requires the msg.sender to be the owner, approved, or operator. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function transferFrom(address from, address to, uint256 tokenId) public { //solhint-disable-next-line max-line-length require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _transferFrom(from, to, tokenId); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function safeTransferFrom(address from, address to, uint256 tokenId) public { safeTransferFrom(from, to, tokenId, ""); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the _msgSender() to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) public { require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _safeTransferFrom(from, to, tokenId, _data); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function _safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) internal { _transferFrom(from, to, tokenId); require(_checkOnERC721Received(from, to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Returns whether the specified token exists. * @param tokenId uint256 ID of the token to query the existence of * @return bool whether the token exists */ function _exists(uint256 tokenId) internal view returns (bool) { address owner = _tokenOwner[tokenId]; return owner != address(0); } /** * @dev Returns whether the given spender can transfer a given token ID. * @param spender address of the spender to query * @param tokenId uint256 ID of the token to be transferred * @return bool whether the msg.sender is approved for the given token ID, * is an operator of the owner, or is the owner of the token */ function _isApprovedOrOwner(address spender, uint256 tokenId) internal view returns (bool) { require(_exists(tokenId), "ERC721: operator query for nonexistent token"); address owner = ownerOf(tokenId); return (spender == owner || getApproved(tokenId) == spender || isApprovedForAll(owner, spender)); } /** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _safeMint(address to, uint256 tokenId) internal { _safeMint(to, tokenId, ""); } /** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted * @param _data bytes data to send along with a safe transfer check */ function _safeMint(address to, uint256 tokenId, bytes memory _data) internal { _mint(to, tokenId); require(_checkOnERC721Received(address(0), to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Internal function to mint a new token. * Reverts if the given token ID already exists. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _mint(address to, uint256 tokenId) internal { require(to != address(0), "ERC721: mint to the zero address"); require(!_exists(tokenId), "ERC721: token already minted"); _tokenOwner[tokenId] = to; _ownedTokensCount[to].increment(); emit Transfer(address(0), to, tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * Deprecated, use {_burn} instead. * @param owner owner of the token to burn * @param tokenId uint256 ID of the token being burned */ function _burn(address owner, uint256 tokenId) internal { require(ownerOf(tokenId) == owner, "ERC721: burn of token that is not own"); _clearApproval(tokenId); _ownedTokensCount[owner].decrement(); _tokenOwner[tokenId] = address(0); emit Transfer(owner, address(0), tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * @param tokenId uint256 ID of the token being burned */ function _burn(uint256 tokenId) internal { _burn(ownerOf(tokenId), tokenId); } /** * @dev Internal function to transfer ownership of a given token ID to another address. * As opposed to {transferFrom}, this imposes no restrictions on msg.sender. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function _transferFrom(address from, address to, uint256 tokenId) internal { require(ownerOf(tokenId) == from, "ERC721: transfer of token that is not own"); require(to != address(0), "ERC721: transfer to the zero address"); _clearApproval(tokenId); _ownedTokensCount[from].decrement(); _ownedTokensCount[to].increment(); _tokenOwner[tokenId] = to; emit Transfer(from, to, tokenId); } /** * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address. * The call is not executed if the target address is not a contract. * * This is an internal detail of the `ERC721` contract and its use is deprecated. * @param from address representing the previous owner of the given token ID * @param to target address that will receive the tokens * @param tokenId uint256 ID of the token to be transferred * @param _data bytes optional data to send along with the call * @return bool whether the call correctly returned the expected magic value */ function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory _data) internal returns (bool) { if (!to.isContract()) { return true; } // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = to.call(abi.encodeWithSelector( IERC721Receiver(to).onERC721Received.selector, _msgSender(), from, tokenId, _data )); if (!success) { if (returndata.length > 0) { // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert("ERC721: transfer to non ERC721Receiver implementer"); } } else { bytes4 retval = abi.decode(returndata, (bytes4)); return (retval == _ERC721_RECEIVED); } } /** * @dev Private function to clear current approval of a given token ID. * @param tokenId uint256 ID of the token to be transferred */ function _clearApproval(uint256 tokenId) private { if (_tokenApprovals[tokenId] != address(0)) { _tokenApprovals[tokenId] = address(0); } } }
/** * @title ERC721 Non-Fungible Token Standard basic implementation * @dev see https://eips.ethereum.org/EIPS/eip-721 */
NatSpecMultiLine
transferFrom
function transferFrom(address from, address to, uint256 tokenId) public { //solhint-disable-next-line max-line-length require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _transferFrom(from, to, tokenId); }
/** * @dev Transfers the ownership of a given token ID to another address. * Usage of this method is discouraged, use {safeTransferFrom} whenever possible. * Requires the msg.sender to be the owner, approved, or operator. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 5669, 5966 ] }
2,785
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
ERC721
contract ERC721 is Context, ERC165, IERC721 { using SafeMath for uint256; using Address for address; using Counters for Counters.Counter; // Equals to `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))` // which can be also obtained as `IERC721Receiver(0).onERC721Received.selector` bytes4 private constant _ERC721_RECEIVED = 0x150b7a02; // Mapping from token ID to owner mapping (uint256 => address) private _tokenOwner; // Mapping from token ID to approved address mapping (uint256 => address) private _tokenApprovals; // Mapping from owner to number of owned token mapping (address => Counters.Counter) private _ownedTokensCount; // Mapping from owner to operator approvals mapping (address => mapping (address => bool)) private _operatorApprovals; /* * bytes4(keccak256('balanceOf(address)')) == 0x70a08231 * bytes4(keccak256('ownerOf(uint256)')) == 0x6352211e * bytes4(keccak256('approve(address,uint256)')) == 0x095ea7b3 * bytes4(keccak256('getApproved(uint256)')) == 0x081812fc * bytes4(keccak256('setApprovalForAll(address,bool)')) == 0xa22cb465 * bytes4(keccak256('isApprovedForAll(address,address)')) == 0xe985e9c5 * bytes4(keccak256('transferFrom(address,address,uint256)')) == 0x23b872dd * bytes4(keccak256('safeTransferFrom(address,address,uint256)')) == 0x42842e0e * bytes4(keccak256('safeTransferFrom(address,address,uint256,bytes)')) == 0xb88d4fde * * => 0x70a08231 ^ 0x6352211e ^ 0x095ea7b3 ^ 0x081812fc ^ * 0xa22cb465 ^ 0xe985e9c ^ 0x23b872dd ^ 0x42842e0e ^ 0xb88d4fde == 0x80ac58cd */ bytes4 private constant _INTERFACE_ID_ERC721 = 0x80ac58cd; constructor () public { // register the supported interfaces to conform to ERC721 via ERC165 _registerInterface(_INTERFACE_ID_ERC721); } /** * @dev Gets the balance of the specified address. * @param owner address to query the balance of * @return uint256 representing the amount owned by the passed address */ function balanceOf(address owner) public view returns (uint256) { require(owner != address(0), "ERC721: balance query for the zero address"); return _ownedTokensCount[owner].current(); } /** * @dev Gets the owner of the specified token ID. * @param tokenId uint256 ID of the token to query the owner of * @return address currently marked as the owner of the given token ID */ function ownerOf(uint256 tokenId) public view returns (address) { address owner = _tokenOwner[tokenId]; require(owner != address(0), "ERC721: owner query for nonexistent token"); return owner; } /** * @dev Approves another address to transfer the given token ID * The zero address indicates there is no approved address. * There can only be one approved address per token at a given time. * Can only be called by the token owner or an approved operator. * @param to address to be approved for the given token ID * @param tokenId uint256 ID of the token to be approved */ function approve(address to, uint256 tokenId) public { address owner = ownerOf(tokenId); require(to != owner, "ERC721: approval to current owner"); require(_msgSender() == owner || isApprovedForAll(owner, _msgSender()), "ERC721: approve caller is not owner nor approved for all" ); _tokenApprovals[tokenId] = to; emit Approval(owner, to, tokenId); } /** * @dev Gets the approved address for a token ID, or zero if no address set * Reverts if the token ID does not exist. * @param tokenId uint256 ID of the token to query the approval of * @return address currently approved for the given token ID */ function getApproved(uint256 tokenId) public view returns (address) { require(_exists(tokenId), "ERC721: approved query for nonexistent token"); return _tokenApprovals[tokenId]; } /** * @dev Sets or unsets the approval of a given operator * An operator is allowed to transfer all tokens of the sender on their behalf. * @param to operator address to set the approval * @param approved representing the status of the approval to be set */ function setApprovalForAll(address to, bool approved) public { require(to != _msgSender(), "ERC721: approve to caller"); _operatorApprovals[_msgSender()][to] = approved; emit ApprovalForAll(_msgSender(), to, approved); } /** * @dev Tells whether an operator is approved by a given owner. * @param owner owner address which you want to query the approval of * @param operator operator address which you want to query the approval of * @return bool whether the given operator is approved by the given owner */ function isApprovedForAll(address owner, address operator) public view returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev Transfers the ownership of a given token ID to another address. * Usage of this method is discouraged, use {safeTransferFrom} whenever possible. * Requires the msg.sender to be the owner, approved, or operator. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function transferFrom(address from, address to, uint256 tokenId) public { //solhint-disable-next-line max-line-length require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _transferFrom(from, to, tokenId); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function safeTransferFrom(address from, address to, uint256 tokenId) public { safeTransferFrom(from, to, tokenId, ""); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the _msgSender() to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) public { require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _safeTransferFrom(from, to, tokenId, _data); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function _safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) internal { _transferFrom(from, to, tokenId); require(_checkOnERC721Received(from, to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Returns whether the specified token exists. * @param tokenId uint256 ID of the token to query the existence of * @return bool whether the token exists */ function _exists(uint256 tokenId) internal view returns (bool) { address owner = _tokenOwner[tokenId]; return owner != address(0); } /** * @dev Returns whether the given spender can transfer a given token ID. * @param spender address of the spender to query * @param tokenId uint256 ID of the token to be transferred * @return bool whether the msg.sender is approved for the given token ID, * is an operator of the owner, or is the owner of the token */ function _isApprovedOrOwner(address spender, uint256 tokenId) internal view returns (bool) { require(_exists(tokenId), "ERC721: operator query for nonexistent token"); address owner = ownerOf(tokenId); return (spender == owner || getApproved(tokenId) == spender || isApprovedForAll(owner, spender)); } /** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _safeMint(address to, uint256 tokenId) internal { _safeMint(to, tokenId, ""); } /** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted * @param _data bytes data to send along with a safe transfer check */ function _safeMint(address to, uint256 tokenId, bytes memory _data) internal { _mint(to, tokenId); require(_checkOnERC721Received(address(0), to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Internal function to mint a new token. * Reverts if the given token ID already exists. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _mint(address to, uint256 tokenId) internal { require(to != address(0), "ERC721: mint to the zero address"); require(!_exists(tokenId), "ERC721: token already minted"); _tokenOwner[tokenId] = to; _ownedTokensCount[to].increment(); emit Transfer(address(0), to, tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * Deprecated, use {_burn} instead. * @param owner owner of the token to burn * @param tokenId uint256 ID of the token being burned */ function _burn(address owner, uint256 tokenId) internal { require(ownerOf(tokenId) == owner, "ERC721: burn of token that is not own"); _clearApproval(tokenId); _ownedTokensCount[owner].decrement(); _tokenOwner[tokenId] = address(0); emit Transfer(owner, address(0), tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * @param tokenId uint256 ID of the token being burned */ function _burn(uint256 tokenId) internal { _burn(ownerOf(tokenId), tokenId); } /** * @dev Internal function to transfer ownership of a given token ID to another address. * As opposed to {transferFrom}, this imposes no restrictions on msg.sender. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function _transferFrom(address from, address to, uint256 tokenId) internal { require(ownerOf(tokenId) == from, "ERC721: transfer of token that is not own"); require(to != address(0), "ERC721: transfer to the zero address"); _clearApproval(tokenId); _ownedTokensCount[from].decrement(); _ownedTokensCount[to].increment(); _tokenOwner[tokenId] = to; emit Transfer(from, to, tokenId); } /** * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address. * The call is not executed if the target address is not a contract. * * This is an internal detail of the `ERC721` contract and its use is deprecated. * @param from address representing the previous owner of the given token ID * @param to target address that will receive the tokens * @param tokenId uint256 ID of the token to be transferred * @param _data bytes optional data to send along with the call * @return bool whether the call correctly returned the expected magic value */ function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory _data) internal returns (bool) { if (!to.isContract()) { return true; } // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = to.call(abi.encodeWithSelector( IERC721Receiver(to).onERC721Received.selector, _msgSender(), from, tokenId, _data )); if (!success) { if (returndata.length > 0) { // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert("ERC721: transfer to non ERC721Receiver implementer"); } } else { bytes4 retval = abi.decode(returndata, (bytes4)); return (retval == _ERC721_RECEIVED); } } /** * @dev Private function to clear current approval of a given token ID. * @param tokenId uint256 ID of the token to be transferred */ function _clearApproval(uint256 tokenId) private { if (_tokenApprovals[tokenId] != address(0)) { _tokenApprovals[tokenId] = address(0); } } }
/** * @title ERC721 Non-Fungible Token Standard basic implementation * @dev see https://eips.ethereum.org/EIPS/eip-721 */
NatSpecMultiLine
safeTransferFrom
function safeTransferFrom(address from, address to, uint256 tokenId) public { safeTransferFrom(from, to, tokenId, ""); }
/** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 6623, 6762 ] }
2,786
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
ERC721
contract ERC721 is Context, ERC165, IERC721 { using SafeMath for uint256; using Address for address; using Counters for Counters.Counter; // Equals to `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))` // which can be also obtained as `IERC721Receiver(0).onERC721Received.selector` bytes4 private constant _ERC721_RECEIVED = 0x150b7a02; // Mapping from token ID to owner mapping (uint256 => address) private _tokenOwner; // Mapping from token ID to approved address mapping (uint256 => address) private _tokenApprovals; // Mapping from owner to number of owned token mapping (address => Counters.Counter) private _ownedTokensCount; // Mapping from owner to operator approvals mapping (address => mapping (address => bool)) private _operatorApprovals; /* * bytes4(keccak256('balanceOf(address)')) == 0x70a08231 * bytes4(keccak256('ownerOf(uint256)')) == 0x6352211e * bytes4(keccak256('approve(address,uint256)')) == 0x095ea7b3 * bytes4(keccak256('getApproved(uint256)')) == 0x081812fc * bytes4(keccak256('setApprovalForAll(address,bool)')) == 0xa22cb465 * bytes4(keccak256('isApprovedForAll(address,address)')) == 0xe985e9c5 * bytes4(keccak256('transferFrom(address,address,uint256)')) == 0x23b872dd * bytes4(keccak256('safeTransferFrom(address,address,uint256)')) == 0x42842e0e * bytes4(keccak256('safeTransferFrom(address,address,uint256,bytes)')) == 0xb88d4fde * * => 0x70a08231 ^ 0x6352211e ^ 0x095ea7b3 ^ 0x081812fc ^ * 0xa22cb465 ^ 0xe985e9c ^ 0x23b872dd ^ 0x42842e0e ^ 0xb88d4fde == 0x80ac58cd */ bytes4 private constant _INTERFACE_ID_ERC721 = 0x80ac58cd; constructor () public { // register the supported interfaces to conform to ERC721 via ERC165 _registerInterface(_INTERFACE_ID_ERC721); } /** * @dev Gets the balance of the specified address. * @param owner address to query the balance of * @return uint256 representing the amount owned by the passed address */ function balanceOf(address owner) public view returns (uint256) { require(owner != address(0), "ERC721: balance query for the zero address"); return _ownedTokensCount[owner].current(); } /** * @dev Gets the owner of the specified token ID. * @param tokenId uint256 ID of the token to query the owner of * @return address currently marked as the owner of the given token ID */ function ownerOf(uint256 tokenId) public view returns (address) { address owner = _tokenOwner[tokenId]; require(owner != address(0), "ERC721: owner query for nonexistent token"); return owner; } /** * @dev Approves another address to transfer the given token ID * The zero address indicates there is no approved address. * There can only be one approved address per token at a given time. * Can only be called by the token owner or an approved operator. * @param to address to be approved for the given token ID * @param tokenId uint256 ID of the token to be approved */ function approve(address to, uint256 tokenId) public { address owner = ownerOf(tokenId); require(to != owner, "ERC721: approval to current owner"); require(_msgSender() == owner || isApprovedForAll(owner, _msgSender()), "ERC721: approve caller is not owner nor approved for all" ); _tokenApprovals[tokenId] = to; emit Approval(owner, to, tokenId); } /** * @dev Gets the approved address for a token ID, or zero if no address set * Reverts if the token ID does not exist. * @param tokenId uint256 ID of the token to query the approval of * @return address currently approved for the given token ID */ function getApproved(uint256 tokenId) public view returns (address) { require(_exists(tokenId), "ERC721: approved query for nonexistent token"); return _tokenApprovals[tokenId]; } /** * @dev Sets or unsets the approval of a given operator * An operator is allowed to transfer all tokens of the sender on their behalf. * @param to operator address to set the approval * @param approved representing the status of the approval to be set */ function setApprovalForAll(address to, bool approved) public { require(to != _msgSender(), "ERC721: approve to caller"); _operatorApprovals[_msgSender()][to] = approved; emit ApprovalForAll(_msgSender(), to, approved); } /** * @dev Tells whether an operator is approved by a given owner. * @param owner owner address which you want to query the approval of * @param operator operator address which you want to query the approval of * @return bool whether the given operator is approved by the given owner */ function isApprovedForAll(address owner, address operator) public view returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev Transfers the ownership of a given token ID to another address. * Usage of this method is discouraged, use {safeTransferFrom} whenever possible. * Requires the msg.sender to be the owner, approved, or operator. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function transferFrom(address from, address to, uint256 tokenId) public { //solhint-disable-next-line max-line-length require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _transferFrom(from, to, tokenId); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function safeTransferFrom(address from, address to, uint256 tokenId) public { safeTransferFrom(from, to, tokenId, ""); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the _msgSender() to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) public { require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _safeTransferFrom(from, to, tokenId, _data); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function _safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) internal { _transferFrom(from, to, tokenId); require(_checkOnERC721Received(from, to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Returns whether the specified token exists. * @param tokenId uint256 ID of the token to query the existence of * @return bool whether the token exists */ function _exists(uint256 tokenId) internal view returns (bool) { address owner = _tokenOwner[tokenId]; return owner != address(0); } /** * @dev Returns whether the given spender can transfer a given token ID. * @param spender address of the spender to query * @param tokenId uint256 ID of the token to be transferred * @return bool whether the msg.sender is approved for the given token ID, * is an operator of the owner, or is the owner of the token */ function _isApprovedOrOwner(address spender, uint256 tokenId) internal view returns (bool) { require(_exists(tokenId), "ERC721: operator query for nonexistent token"); address owner = ownerOf(tokenId); return (spender == owner || getApproved(tokenId) == spender || isApprovedForAll(owner, spender)); } /** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _safeMint(address to, uint256 tokenId) internal { _safeMint(to, tokenId, ""); } /** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted * @param _data bytes data to send along with a safe transfer check */ function _safeMint(address to, uint256 tokenId, bytes memory _data) internal { _mint(to, tokenId); require(_checkOnERC721Received(address(0), to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Internal function to mint a new token. * Reverts if the given token ID already exists. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _mint(address to, uint256 tokenId) internal { require(to != address(0), "ERC721: mint to the zero address"); require(!_exists(tokenId), "ERC721: token already minted"); _tokenOwner[tokenId] = to; _ownedTokensCount[to].increment(); emit Transfer(address(0), to, tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * Deprecated, use {_burn} instead. * @param owner owner of the token to burn * @param tokenId uint256 ID of the token being burned */ function _burn(address owner, uint256 tokenId) internal { require(ownerOf(tokenId) == owner, "ERC721: burn of token that is not own"); _clearApproval(tokenId); _ownedTokensCount[owner].decrement(); _tokenOwner[tokenId] = address(0); emit Transfer(owner, address(0), tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * @param tokenId uint256 ID of the token being burned */ function _burn(uint256 tokenId) internal { _burn(ownerOf(tokenId), tokenId); } /** * @dev Internal function to transfer ownership of a given token ID to another address. * As opposed to {transferFrom}, this imposes no restrictions on msg.sender. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function _transferFrom(address from, address to, uint256 tokenId) internal { require(ownerOf(tokenId) == from, "ERC721: transfer of token that is not own"); require(to != address(0), "ERC721: transfer to the zero address"); _clearApproval(tokenId); _ownedTokensCount[from].decrement(); _ownedTokensCount[to].increment(); _tokenOwner[tokenId] = to; emit Transfer(from, to, tokenId); } /** * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address. * The call is not executed if the target address is not a contract. * * This is an internal detail of the `ERC721` contract and its use is deprecated. * @param from address representing the previous owner of the given token ID * @param to target address that will receive the tokens * @param tokenId uint256 ID of the token to be transferred * @param _data bytes optional data to send along with the call * @return bool whether the call correctly returned the expected magic value */ function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory _data) internal returns (bool) { if (!to.isContract()) { return true; } // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = to.call(abi.encodeWithSelector( IERC721Receiver(to).onERC721Received.selector, _msgSender(), from, tokenId, _data )); if (!success) { if (returndata.length > 0) { // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert("ERC721: transfer to non ERC721Receiver implementer"); } } else { bytes4 retval = abi.decode(returndata, (bytes4)); return (retval == _ERC721_RECEIVED); } } /** * @dev Private function to clear current approval of a given token ID. * @param tokenId uint256 ID of the token to be transferred */ function _clearApproval(uint256 tokenId) private { if (_tokenApprovals[tokenId] != address(0)) { _tokenApprovals[tokenId] = address(0); } } }
/** * @title ERC721 Non-Fungible Token Standard basic implementation * @dev see https://eips.ethereum.org/EIPS/eip-721 */
NatSpecMultiLine
safeTransferFrom
function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) public { require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _safeTransferFrom(from, to, tokenId, _data); }
/** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the _msgSender() to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 7494, 7771 ] }
2,787
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
ERC721
contract ERC721 is Context, ERC165, IERC721 { using SafeMath for uint256; using Address for address; using Counters for Counters.Counter; // Equals to `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))` // which can be also obtained as `IERC721Receiver(0).onERC721Received.selector` bytes4 private constant _ERC721_RECEIVED = 0x150b7a02; // Mapping from token ID to owner mapping (uint256 => address) private _tokenOwner; // Mapping from token ID to approved address mapping (uint256 => address) private _tokenApprovals; // Mapping from owner to number of owned token mapping (address => Counters.Counter) private _ownedTokensCount; // Mapping from owner to operator approvals mapping (address => mapping (address => bool)) private _operatorApprovals; /* * bytes4(keccak256('balanceOf(address)')) == 0x70a08231 * bytes4(keccak256('ownerOf(uint256)')) == 0x6352211e * bytes4(keccak256('approve(address,uint256)')) == 0x095ea7b3 * bytes4(keccak256('getApproved(uint256)')) == 0x081812fc * bytes4(keccak256('setApprovalForAll(address,bool)')) == 0xa22cb465 * bytes4(keccak256('isApprovedForAll(address,address)')) == 0xe985e9c5 * bytes4(keccak256('transferFrom(address,address,uint256)')) == 0x23b872dd * bytes4(keccak256('safeTransferFrom(address,address,uint256)')) == 0x42842e0e * bytes4(keccak256('safeTransferFrom(address,address,uint256,bytes)')) == 0xb88d4fde * * => 0x70a08231 ^ 0x6352211e ^ 0x095ea7b3 ^ 0x081812fc ^ * 0xa22cb465 ^ 0xe985e9c ^ 0x23b872dd ^ 0x42842e0e ^ 0xb88d4fde == 0x80ac58cd */ bytes4 private constant _INTERFACE_ID_ERC721 = 0x80ac58cd; constructor () public { // register the supported interfaces to conform to ERC721 via ERC165 _registerInterface(_INTERFACE_ID_ERC721); } /** * @dev Gets the balance of the specified address. * @param owner address to query the balance of * @return uint256 representing the amount owned by the passed address */ function balanceOf(address owner) public view returns (uint256) { require(owner != address(0), "ERC721: balance query for the zero address"); return _ownedTokensCount[owner].current(); } /** * @dev Gets the owner of the specified token ID. * @param tokenId uint256 ID of the token to query the owner of * @return address currently marked as the owner of the given token ID */ function ownerOf(uint256 tokenId) public view returns (address) { address owner = _tokenOwner[tokenId]; require(owner != address(0), "ERC721: owner query for nonexistent token"); return owner; } /** * @dev Approves another address to transfer the given token ID * The zero address indicates there is no approved address. * There can only be one approved address per token at a given time. * Can only be called by the token owner or an approved operator. * @param to address to be approved for the given token ID * @param tokenId uint256 ID of the token to be approved */ function approve(address to, uint256 tokenId) public { address owner = ownerOf(tokenId); require(to != owner, "ERC721: approval to current owner"); require(_msgSender() == owner || isApprovedForAll(owner, _msgSender()), "ERC721: approve caller is not owner nor approved for all" ); _tokenApprovals[tokenId] = to; emit Approval(owner, to, tokenId); } /** * @dev Gets the approved address for a token ID, or zero if no address set * Reverts if the token ID does not exist. * @param tokenId uint256 ID of the token to query the approval of * @return address currently approved for the given token ID */ function getApproved(uint256 tokenId) public view returns (address) { require(_exists(tokenId), "ERC721: approved query for nonexistent token"); return _tokenApprovals[tokenId]; } /** * @dev Sets or unsets the approval of a given operator * An operator is allowed to transfer all tokens of the sender on their behalf. * @param to operator address to set the approval * @param approved representing the status of the approval to be set */ function setApprovalForAll(address to, bool approved) public { require(to != _msgSender(), "ERC721: approve to caller"); _operatorApprovals[_msgSender()][to] = approved; emit ApprovalForAll(_msgSender(), to, approved); } /** * @dev Tells whether an operator is approved by a given owner. * @param owner owner address which you want to query the approval of * @param operator operator address which you want to query the approval of * @return bool whether the given operator is approved by the given owner */ function isApprovedForAll(address owner, address operator) public view returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev Transfers the ownership of a given token ID to another address. * Usage of this method is discouraged, use {safeTransferFrom} whenever possible. * Requires the msg.sender to be the owner, approved, or operator. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function transferFrom(address from, address to, uint256 tokenId) public { //solhint-disable-next-line max-line-length require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _transferFrom(from, to, tokenId); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function safeTransferFrom(address from, address to, uint256 tokenId) public { safeTransferFrom(from, to, tokenId, ""); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the _msgSender() to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) public { require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _safeTransferFrom(from, to, tokenId, _data); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function _safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) internal { _transferFrom(from, to, tokenId); require(_checkOnERC721Received(from, to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Returns whether the specified token exists. * @param tokenId uint256 ID of the token to query the existence of * @return bool whether the token exists */ function _exists(uint256 tokenId) internal view returns (bool) { address owner = _tokenOwner[tokenId]; return owner != address(0); } /** * @dev Returns whether the given spender can transfer a given token ID. * @param spender address of the spender to query * @param tokenId uint256 ID of the token to be transferred * @return bool whether the msg.sender is approved for the given token ID, * is an operator of the owner, or is the owner of the token */ function _isApprovedOrOwner(address spender, uint256 tokenId) internal view returns (bool) { require(_exists(tokenId), "ERC721: operator query for nonexistent token"); address owner = ownerOf(tokenId); return (spender == owner || getApproved(tokenId) == spender || isApprovedForAll(owner, spender)); } /** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _safeMint(address to, uint256 tokenId) internal { _safeMint(to, tokenId, ""); } /** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted * @param _data bytes data to send along with a safe transfer check */ function _safeMint(address to, uint256 tokenId, bytes memory _data) internal { _mint(to, tokenId); require(_checkOnERC721Received(address(0), to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Internal function to mint a new token. * Reverts if the given token ID already exists. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _mint(address to, uint256 tokenId) internal { require(to != address(0), "ERC721: mint to the zero address"); require(!_exists(tokenId), "ERC721: token already minted"); _tokenOwner[tokenId] = to; _ownedTokensCount[to].increment(); emit Transfer(address(0), to, tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * Deprecated, use {_burn} instead. * @param owner owner of the token to burn * @param tokenId uint256 ID of the token being burned */ function _burn(address owner, uint256 tokenId) internal { require(ownerOf(tokenId) == owner, "ERC721: burn of token that is not own"); _clearApproval(tokenId); _ownedTokensCount[owner].decrement(); _tokenOwner[tokenId] = address(0); emit Transfer(owner, address(0), tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * @param tokenId uint256 ID of the token being burned */ function _burn(uint256 tokenId) internal { _burn(ownerOf(tokenId), tokenId); } /** * @dev Internal function to transfer ownership of a given token ID to another address. * As opposed to {transferFrom}, this imposes no restrictions on msg.sender. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function _transferFrom(address from, address to, uint256 tokenId) internal { require(ownerOf(tokenId) == from, "ERC721: transfer of token that is not own"); require(to != address(0), "ERC721: transfer to the zero address"); _clearApproval(tokenId); _ownedTokensCount[from].decrement(); _ownedTokensCount[to].increment(); _tokenOwner[tokenId] = to; emit Transfer(from, to, tokenId); } /** * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address. * The call is not executed if the target address is not a contract. * * This is an internal detail of the `ERC721` contract and its use is deprecated. * @param from address representing the previous owner of the given token ID * @param to target address that will receive the tokens * @param tokenId uint256 ID of the token to be transferred * @param _data bytes optional data to send along with the call * @return bool whether the call correctly returned the expected magic value */ function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory _data) internal returns (bool) { if (!to.isContract()) { return true; } // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = to.call(abi.encodeWithSelector( IERC721Receiver(to).onERC721Received.selector, _msgSender(), from, tokenId, _data )); if (!success) { if (returndata.length > 0) { // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert("ERC721: transfer to non ERC721Receiver implementer"); } } else { bytes4 retval = abi.decode(returndata, (bytes4)); return (retval == _ERC721_RECEIVED); } } /** * @dev Private function to clear current approval of a given token ID. * @param tokenId uint256 ID of the token to be transferred */ function _clearApproval(uint256 tokenId) private { if (_tokenApprovals[tokenId] != address(0)) { _tokenApprovals[tokenId] = address(0); } } }
/** * @title ERC721 Non-Fungible Token Standard basic implementation * @dev see https://eips.ethereum.org/EIPS/eip-721 */
NatSpecMultiLine
_safeTransferFrom
function _safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) internal { _transferFrom(from, to, tokenId); require(_checkOnERC721Received(from, to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); }
/** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 8485, 8762 ] }
2,788
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
ERC721
contract ERC721 is Context, ERC165, IERC721 { using SafeMath for uint256; using Address for address; using Counters for Counters.Counter; // Equals to `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))` // which can be also obtained as `IERC721Receiver(0).onERC721Received.selector` bytes4 private constant _ERC721_RECEIVED = 0x150b7a02; // Mapping from token ID to owner mapping (uint256 => address) private _tokenOwner; // Mapping from token ID to approved address mapping (uint256 => address) private _tokenApprovals; // Mapping from owner to number of owned token mapping (address => Counters.Counter) private _ownedTokensCount; // Mapping from owner to operator approvals mapping (address => mapping (address => bool)) private _operatorApprovals; /* * bytes4(keccak256('balanceOf(address)')) == 0x70a08231 * bytes4(keccak256('ownerOf(uint256)')) == 0x6352211e * bytes4(keccak256('approve(address,uint256)')) == 0x095ea7b3 * bytes4(keccak256('getApproved(uint256)')) == 0x081812fc * bytes4(keccak256('setApprovalForAll(address,bool)')) == 0xa22cb465 * bytes4(keccak256('isApprovedForAll(address,address)')) == 0xe985e9c5 * bytes4(keccak256('transferFrom(address,address,uint256)')) == 0x23b872dd * bytes4(keccak256('safeTransferFrom(address,address,uint256)')) == 0x42842e0e * bytes4(keccak256('safeTransferFrom(address,address,uint256,bytes)')) == 0xb88d4fde * * => 0x70a08231 ^ 0x6352211e ^ 0x095ea7b3 ^ 0x081812fc ^ * 0xa22cb465 ^ 0xe985e9c ^ 0x23b872dd ^ 0x42842e0e ^ 0xb88d4fde == 0x80ac58cd */ bytes4 private constant _INTERFACE_ID_ERC721 = 0x80ac58cd; constructor () public { // register the supported interfaces to conform to ERC721 via ERC165 _registerInterface(_INTERFACE_ID_ERC721); } /** * @dev Gets the balance of the specified address. * @param owner address to query the balance of * @return uint256 representing the amount owned by the passed address */ function balanceOf(address owner) public view returns (uint256) { require(owner != address(0), "ERC721: balance query for the zero address"); return _ownedTokensCount[owner].current(); } /** * @dev Gets the owner of the specified token ID. * @param tokenId uint256 ID of the token to query the owner of * @return address currently marked as the owner of the given token ID */ function ownerOf(uint256 tokenId) public view returns (address) { address owner = _tokenOwner[tokenId]; require(owner != address(0), "ERC721: owner query for nonexistent token"); return owner; } /** * @dev Approves another address to transfer the given token ID * The zero address indicates there is no approved address. * There can only be one approved address per token at a given time. * Can only be called by the token owner or an approved operator. * @param to address to be approved for the given token ID * @param tokenId uint256 ID of the token to be approved */ function approve(address to, uint256 tokenId) public { address owner = ownerOf(tokenId); require(to != owner, "ERC721: approval to current owner"); require(_msgSender() == owner || isApprovedForAll(owner, _msgSender()), "ERC721: approve caller is not owner nor approved for all" ); _tokenApprovals[tokenId] = to; emit Approval(owner, to, tokenId); } /** * @dev Gets the approved address for a token ID, or zero if no address set * Reverts if the token ID does not exist. * @param tokenId uint256 ID of the token to query the approval of * @return address currently approved for the given token ID */ function getApproved(uint256 tokenId) public view returns (address) { require(_exists(tokenId), "ERC721: approved query for nonexistent token"); return _tokenApprovals[tokenId]; } /** * @dev Sets or unsets the approval of a given operator * An operator is allowed to transfer all tokens of the sender on their behalf. * @param to operator address to set the approval * @param approved representing the status of the approval to be set */ function setApprovalForAll(address to, bool approved) public { require(to != _msgSender(), "ERC721: approve to caller"); _operatorApprovals[_msgSender()][to] = approved; emit ApprovalForAll(_msgSender(), to, approved); } /** * @dev Tells whether an operator is approved by a given owner. * @param owner owner address which you want to query the approval of * @param operator operator address which you want to query the approval of * @return bool whether the given operator is approved by the given owner */ function isApprovedForAll(address owner, address operator) public view returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev Transfers the ownership of a given token ID to another address. * Usage of this method is discouraged, use {safeTransferFrom} whenever possible. * Requires the msg.sender to be the owner, approved, or operator. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function transferFrom(address from, address to, uint256 tokenId) public { //solhint-disable-next-line max-line-length require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _transferFrom(from, to, tokenId); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function safeTransferFrom(address from, address to, uint256 tokenId) public { safeTransferFrom(from, to, tokenId, ""); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the _msgSender() to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) public { require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _safeTransferFrom(from, to, tokenId, _data); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function _safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) internal { _transferFrom(from, to, tokenId); require(_checkOnERC721Received(from, to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Returns whether the specified token exists. * @param tokenId uint256 ID of the token to query the existence of * @return bool whether the token exists */ function _exists(uint256 tokenId) internal view returns (bool) { address owner = _tokenOwner[tokenId]; return owner != address(0); } /** * @dev Returns whether the given spender can transfer a given token ID. * @param spender address of the spender to query * @param tokenId uint256 ID of the token to be transferred * @return bool whether the msg.sender is approved for the given token ID, * is an operator of the owner, or is the owner of the token */ function _isApprovedOrOwner(address spender, uint256 tokenId) internal view returns (bool) { require(_exists(tokenId), "ERC721: operator query for nonexistent token"); address owner = ownerOf(tokenId); return (spender == owner || getApproved(tokenId) == spender || isApprovedForAll(owner, spender)); } /** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _safeMint(address to, uint256 tokenId) internal { _safeMint(to, tokenId, ""); } /** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted * @param _data bytes data to send along with a safe transfer check */ function _safeMint(address to, uint256 tokenId, bytes memory _data) internal { _mint(to, tokenId); require(_checkOnERC721Received(address(0), to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Internal function to mint a new token. * Reverts if the given token ID already exists. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _mint(address to, uint256 tokenId) internal { require(to != address(0), "ERC721: mint to the zero address"); require(!_exists(tokenId), "ERC721: token already minted"); _tokenOwner[tokenId] = to; _ownedTokensCount[to].increment(); emit Transfer(address(0), to, tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * Deprecated, use {_burn} instead. * @param owner owner of the token to burn * @param tokenId uint256 ID of the token being burned */ function _burn(address owner, uint256 tokenId) internal { require(ownerOf(tokenId) == owner, "ERC721: burn of token that is not own"); _clearApproval(tokenId); _ownedTokensCount[owner].decrement(); _tokenOwner[tokenId] = address(0); emit Transfer(owner, address(0), tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * @param tokenId uint256 ID of the token being burned */ function _burn(uint256 tokenId) internal { _burn(ownerOf(tokenId), tokenId); } /** * @dev Internal function to transfer ownership of a given token ID to another address. * As opposed to {transferFrom}, this imposes no restrictions on msg.sender. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function _transferFrom(address from, address to, uint256 tokenId) internal { require(ownerOf(tokenId) == from, "ERC721: transfer of token that is not own"); require(to != address(0), "ERC721: transfer to the zero address"); _clearApproval(tokenId); _ownedTokensCount[from].decrement(); _ownedTokensCount[to].increment(); _tokenOwner[tokenId] = to; emit Transfer(from, to, tokenId); } /** * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address. * The call is not executed if the target address is not a contract. * * This is an internal detail of the `ERC721` contract and its use is deprecated. * @param from address representing the previous owner of the given token ID * @param to target address that will receive the tokens * @param tokenId uint256 ID of the token to be transferred * @param _data bytes optional data to send along with the call * @return bool whether the call correctly returned the expected magic value */ function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory _data) internal returns (bool) { if (!to.isContract()) { return true; } // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = to.call(abi.encodeWithSelector( IERC721Receiver(to).onERC721Received.selector, _msgSender(), from, tokenId, _data )); if (!success) { if (returndata.length > 0) { // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert("ERC721: transfer to non ERC721Receiver implementer"); } } else { bytes4 retval = abi.decode(returndata, (bytes4)); return (retval == _ERC721_RECEIVED); } } /** * @dev Private function to clear current approval of a given token ID. * @param tokenId uint256 ID of the token to be transferred */ function _clearApproval(uint256 tokenId) private { if (_tokenApprovals[tokenId] != address(0)) { _tokenApprovals[tokenId] = address(0); } } }
/** * @title ERC721 Non-Fungible Token Standard basic implementation * @dev see https://eips.ethereum.org/EIPS/eip-721 */
NatSpecMultiLine
_exists
function _exists(uint256 tokenId) internal view returns (bool) { address owner = _tokenOwner[tokenId]; return owner != address(0); }
/** * @dev Returns whether the specified token exists. * @param tokenId uint256 ID of the token to query the existence of * @return bool whether the token exists */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 8959, 9119 ] }
2,789
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
ERC721
contract ERC721 is Context, ERC165, IERC721 { using SafeMath for uint256; using Address for address; using Counters for Counters.Counter; // Equals to `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))` // which can be also obtained as `IERC721Receiver(0).onERC721Received.selector` bytes4 private constant _ERC721_RECEIVED = 0x150b7a02; // Mapping from token ID to owner mapping (uint256 => address) private _tokenOwner; // Mapping from token ID to approved address mapping (uint256 => address) private _tokenApprovals; // Mapping from owner to number of owned token mapping (address => Counters.Counter) private _ownedTokensCount; // Mapping from owner to operator approvals mapping (address => mapping (address => bool)) private _operatorApprovals; /* * bytes4(keccak256('balanceOf(address)')) == 0x70a08231 * bytes4(keccak256('ownerOf(uint256)')) == 0x6352211e * bytes4(keccak256('approve(address,uint256)')) == 0x095ea7b3 * bytes4(keccak256('getApproved(uint256)')) == 0x081812fc * bytes4(keccak256('setApprovalForAll(address,bool)')) == 0xa22cb465 * bytes4(keccak256('isApprovedForAll(address,address)')) == 0xe985e9c5 * bytes4(keccak256('transferFrom(address,address,uint256)')) == 0x23b872dd * bytes4(keccak256('safeTransferFrom(address,address,uint256)')) == 0x42842e0e * bytes4(keccak256('safeTransferFrom(address,address,uint256,bytes)')) == 0xb88d4fde * * => 0x70a08231 ^ 0x6352211e ^ 0x095ea7b3 ^ 0x081812fc ^ * 0xa22cb465 ^ 0xe985e9c ^ 0x23b872dd ^ 0x42842e0e ^ 0xb88d4fde == 0x80ac58cd */ bytes4 private constant _INTERFACE_ID_ERC721 = 0x80ac58cd; constructor () public { // register the supported interfaces to conform to ERC721 via ERC165 _registerInterface(_INTERFACE_ID_ERC721); } /** * @dev Gets the balance of the specified address. * @param owner address to query the balance of * @return uint256 representing the amount owned by the passed address */ function balanceOf(address owner) public view returns (uint256) { require(owner != address(0), "ERC721: balance query for the zero address"); return _ownedTokensCount[owner].current(); } /** * @dev Gets the owner of the specified token ID. * @param tokenId uint256 ID of the token to query the owner of * @return address currently marked as the owner of the given token ID */ function ownerOf(uint256 tokenId) public view returns (address) { address owner = _tokenOwner[tokenId]; require(owner != address(0), "ERC721: owner query for nonexistent token"); return owner; } /** * @dev Approves another address to transfer the given token ID * The zero address indicates there is no approved address. * There can only be one approved address per token at a given time. * Can only be called by the token owner or an approved operator. * @param to address to be approved for the given token ID * @param tokenId uint256 ID of the token to be approved */ function approve(address to, uint256 tokenId) public { address owner = ownerOf(tokenId); require(to != owner, "ERC721: approval to current owner"); require(_msgSender() == owner || isApprovedForAll(owner, _msgSender()), "ERC721: approve caller is not owner nor approved for all" ); _tokenApprovals[tokenId] = to; emit Approval(owner, to, tokenId); } /** * @dev Gets the approved address for a token ID, or zero if no address set * Reverts if the token ID does not exist. * @param tokenId uint256 ID of the token to query the approval of * @return address currently approved for the given token ID */ function getApproved(uint256 tokenId) public view returns (address) { require(_exists(tokenId), "ERC721: approved query for nonexistent token"); return _tokenApprovals[tokenId]; } /** * @dev Sets or unsets the approval of a given operator * An operator is allowed to transfer all tokens of the sender on their behalf. * @param to operator address to set the approval * @param approved representing the status of the approval to be set */ function setApprovalForAll(address to, bool approved) public { require(to != _msgSender(), "ERC721: approve to caller"); _operatorApprovals[_msgSender()][to] = approved; emit ApprovalForAll(_msgSender(), to, approved); } /** * @dev Tells whether an operator is approved by a given owner. * @param owner owner address which you want to query the approval of * @param operator operator address which you want to query the approval of * @return bool whether the given operator is approved by the given owner */ function isApprovedForAll(address owner, address operator) public view returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev Transfers the ownership of a given token ID to another address. * Usage of this method is discouraged, use {safeTransferFrom} whenever possible. * Requires the msg.sender to be the owner, approved, or operator. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function transferFrom(address from, address to, uint256 tokenId) public { //solhint-disable-next-line max-line-length require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _transferFrom(from, to, tokenId); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function safeTransferFrom(address from, address to, uint256 tokenId) public { safeTransferFrom(from, to, tokenId, ""); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the _msgSender() to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) public { require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _safeTransferFrom(from, to, tokenId, _data); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function _safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) internal { _transferFrom(from, to, tokenId); require(_checkOnERC721Received(from, to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Returns whether the specified token exists. * @param tokenId uint256 ID of the token to query the existence of * @return bool whether the token exists */ function _exists(uint256 tokenId) internal view returns (bool) { address owner = _tokenOwner[tokenId]; return owner != address(0); } /** * @dev Returns whether the given spender can transfer a given token ID. * @param spender address of the spender to query * @param tokenId uint256 ID of the token to be transferred * @return bool whether the msg.sender is approved for the given token ID, * is an operator of the owner, or is the owner of the token */ function _isApprovedOrOwner(address spender, uint256 tokenId) internal view returns (bool) { require(_exists(tokenId), "ERC721: operator query for nonexistent token"); address owner = ownerOf(tokenId); return (spender == owner || getApproved(tokenId) == spender || isApprovedForAll(owner, spender)); } /** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _safeMint(address to, uint256 tokenId) internal { _safeMint(to, tokenId, ""); } /** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted * @param _data bytes data to send along with a safe transfer check */ function _safeMint(address to, uint256 tokenId, bytes memory _data) internal { _mint(to, tokenId); require(_checkOnERC721Received(address(0), to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Internal function to mint a new token. * Reverts if the given token ID already exists. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _mint(address to, uint256 tokenId) internal { require(to != address(0), "ERC721: mint to the zero address"); require(!_exists(tokenId), "ERC721: token already minted"); _tokenOwner[tokenId] = to; _ownedTokensCount[to].increment(); emit Transfer(address(0), to, tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * Deprecated, use {_burn} instead. * @param owner owner of the token to burn * @param tokenId uint256 ID of the token being burned */ function _burn(address owner, uint256 tokenId) internal { require(ownerOf(tokenId) == owner, "ERC721: burn of token that is not own"); _clearApproval(tokenId); _ownedTokensCount[owner].decrement(); _tokenOwner[tokenId] = address(0); emit Transfer(owner, address(0), tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * @param tokenId uint256 ID of the token being burned */ function _burn(uint256 tokenId) internal { _burn(ownerOf(tokenId), tokenId); } /** * @dev Internal function to transfer ownership of a given token ID to another address. * As opposed to {transferFrom}, this imposes no restrictions on msg.sender. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function _transferFrom(address from, address to, uint256 tokenId) internal { require(ownerOf(tokenId) == from, "ERC721: transfer of token that is not own"); require(to != address(0), "ERC721: transfer to the zero address"); _clearApproval(tokenId); _ownedTokensCount[from].decrement(); _ownedTokensCount[to].increment(); _tokenOwner[tokenId] = to; emit Transfer(from, to, tokenId); } /** * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address. * The call is not executed if the target address is not a contract. * * This is an internal detail of the `ERC721` contract and its use is deprecated. * @param from address representing the previous owner of the given token ID * @param to target address that will receive the tokens * @param tokenId uint256 ID of the token to be transferred * @param _data bytes optional data to send along with the call * @return bool whether the call correctly returned the expected magic value */ function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory _data) internal returns (bool) { if (!to.isContract()) { return true; } // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = to.call(abi.encodeWithSelector( IERC721Receiver(to).onERC721Received.selector, _msgSender(), from, tokenId, _data )); if (!success) { if (returndata.length > 0) { // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert("ERC721: transfer to non ERC721Receiver implementer"); } } else { bytes4 retval = abi.decode(returndata, (bytes4)); return (retval == _ERC721_RECEIVED); } } /** * @dev Private function to clear current approval of a given token ID. * @param tokenId uint256 ID of the token to be transferred */ function _clearApproval(uint256 tokenId) private { if (_tokenApprovals[tokenId] != address(0)) { _tokenApprovals[tokenId] = address(0); } } }
/** * @title ERC721 Non-Fungible Token Standard basic implementation * @dev see https://eips.ethereum.org/EIPS/eip-721 */
NatSpecMultiLine
_isApprovedOrOwner
function _isApprovedOrOwner(address spender, uint256 tokenId) internal view returns (bool) { require(_exists(tokenId), "ERC721: operator query for nonexistent token"); address owner = ownerOf(tokenId); return (spender == owner || getApproved(tokenId) == spender || isApprovedForAll(owner, spender)); }
/** * @dev Returns whether the given spender can transfer a given token ID. * @param spender address of the spender to query * @param tokenId uint256 ID of the token to be transferred * @return bool whether the msg.sender is approved for the given token ID, * is an operator of the owner, or is the owner of the token */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 9484, 9822 ] }
2,790
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
ERC721
contract ERC721 is Context, ERC165, IERC721 { using SafeMath for uint256; using Address for address; using Counters for Counters.Counter; // Equals to `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))` // which can be also obtained as `IERC721Receiver(0).onERC721Received.selector` bytes4 private constant _ERC721_RECEIVED = 0x150b7a02; // Mapping from token ID to owner mapping (uint256 => address) private _tokenOwner; // Mapping from token ID to approved address mapping (uint256 => address) private _tokenApprovals; // Mapping from owner to number of owned token mapping (address => Counters.Counter) private _ownedTokensCount; // Mapping from owner to operator approvals mapping (address => mapping (address => bool)) private _operatorApprovals; /* * bytes4(keccak256('balanceOf(address)')) == 0x70a08231 * bytes4(keccak256('ownerOf(uint256)')) == 0x6352211e * bytes4(keccak256('approve(address,uint256)')) == 0x095ea7b3 * bytes4(keccak256('getApproved(uint256)')) == 0x081812fc * bytes4(keccak256('setApprovalForAll(address,bool)')) == 0xa22cb465 * bytes4(keccak256('isApprovedForAll(address,address)')) == 0xe985e9c5 * bytes4(keccak256('transferFrom(address,address,uint256)')) == 0x23b872dd * bytes4(keccak256('safeTransferFrom(address,address,uint256)')) == 0x42842e0e * bytes4(keccak256('safeTransferFrom(address,address,uint256,bytes)')) == 0xb88d4fde * * => 0x70a08231 ^ 0x6352211e ^ 0x095ea7b3 ^ 0x081812fc ^ * 0xa22cb465 ^ 0xe985e9c ^ 0x23b872dd ^ 0x42842e0e ^ 0xb88d4fde == 0x80ac58cd */ bytes4 private constant _INTERFACE_ID_ERC721 = 0x80ac58cd; constructor () public { // register the supported interfaces to conform to ERC721 via ERC165 _registerInterface(_INTERFACE_ID_ERC721); } /** * @dev Gets the balance of the specified address. * @param owner address to query the balance of * @return uint256 representing the amount owned by the passed address */ function balanceOf(address owner) public view returns (uint256) { require(owner != address(0), "ERC721: balance query for the zero address"); return _ownedTokensCount[owner].current(); } /** * @dev Gets the owner of the specified token ID. * @param tokenId uint256 ID of the token to query the owner of * @return address currently marked as the owner of the given token ID */ function ownerOf(uint256 tokenId) public view returns (address) { address owner = _tokenOwner[tokenId]; require(owner != address(0), "ERC721: owner query for nonexistent token"); return owner; } /** * @dev Approves another address to transfer the given token ID * The zero address indicates there is no approved address. * There can only be one approved address per token at a given time. * Can only be called by the token owner or an approved operator. * @param to address to be approved for the given token ID * @param tokenId uint256 ID of the token to be approved */ function approve(address to, uint256 tokenId) public { address owner = ownerOf(tokenId); require(to != owner, "ERC721: approval to current owner"); require(_msgSender() == owner || isApprovedForAll(owner, _msgSender()), "ERC721: approve caller is not owner nor approved for all" ); _tokenApprovals[tokenId] = to; emit Approval(owner, to, tokenId); } /** * @dev Gets the approved address for a token ID, or zero if no address set * Reverts if the token ID does not exist. * @param tokenId uint256 ID of the token to query the approval of * @return address currently approved for the given token ID */ function getApproved(uint256 tokenId) public view returns (address) { require(_exists(tokenId), "ERC721: approved query for nonexistent token"); return _tokenApprovals[tokenId]; } /** * @dev Sets or unsets the approval of a given operator * An operator is allowed to transfer all tokens of the sender on their behalf. * @param to operator address to set the approval * @param approved representing the status of the approval to be set */ function setApprovalForAll(address to, bool approved) public { require(to != _msgSender(), "ERC721: approve to caller"); _operatorApprovals[_msgSender()][to] = approved; emit ApprovalForAll(_msgSender(), to, approved); } /** * @dev Tells whether an operator is approved by a given owner. * @param owner owner address which you want to query the approval of * @param operator operator address which you want to query the approval of * @return bool whether the given operator is approved by the given owner */ function isApprovedForAll(address owner, address operator) public view returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev Transfers the ownership of a given token ID to another address. * Usage of this method is discouraged, use {safeTransferFrom} whenever possible. * Requires the msg.sender to be the owner, approved, or operator. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function transferFrom(address from, address to, uint256 tokenId) public { //solhint-disable-next-line max-line-length require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _transferFrom(from, to, tokenId); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function safeTransferFrom(address from, address to, uint256 tokenId) public { safeTransferFrom(from, to, tokenId, ""); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the _msgSender() to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) public { require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _safeTransferFrom(from, to, tokenId, _data); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function _safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) internal { _transferFrom(from, to, tokenId); require(_checkOnERC721Received(from, to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Returns whether the specified token exists. * @param tokenId uint256 ID of the token to query the existence of * @return bool whether the token exists */ function _exists(uint256 tokenId) internal view returns (bool) { address owner = _tokenOwner[tokenId]; return owner != address(0); } /** * @dev Returns whether the given spender can transfer a given token ID. * @param spender address of the spender to query * @param tokenId uint256 ID of the token to be transferred * @return bool whether the msg.sender is approved for the given token ID, * is an operator of the owner, or is the owner of the token */ function _isApprovedOrOwner(address spender, uint256 tokenId) internal view returns (bool) { require(_exists(tokenId), "ERC721: operator query for nonexistent token"); address owner = ownerOf(tokenId); return (spender == owner || getApproved(tokenId) == spender || isApprovedForAll(owner, spender)); } /** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _safeMint(address to, uint256 tokenId) internal { _safeMint(to, tokenId, ""); } /** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted * @param _data bytes data to send along with a safe transfer check */ function _safeMint(address to, uint256 tokenId, bytes memory _data) internal { _mint(to, tokenId); require(_checkOnERC721Received(address(0), to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Internal function to mint a new token. * Reverts if the given token ID already exists. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _mint(address to, uint256 tokenId) internal { require(to != address(0), "ERC721: mint to the zero address"); require(!_exists(tokenId), "ERC721: token already minted"); _tokenOwner[tokenId] = to; _ownedTokensCount[to].increment(); emit Transfer(address(0), to, tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * Deprecated, use {_burn} instead. * @param owner owner of the token to burn * @param tokenId uint256 ID of the token being burned */ function _burn(address owner, uint256 tokenId) internal { require(ownerOf(tokenId) == owner, "ERC721: burn of token that is not own"); _clearApproval(tokenId); _ownedTokensCount[owner].decrement(); _tokenOwner[tokenId] = address(0); emit Transfer(owner, address(0), tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * @param tokenId uint256 ID of the token being burned */ function _burn(uint256 tokenId) internal { _burn(ownerOf(tokenId), tokenId); } /** * @dev Internal function to transfer ownership of a given token ID to another address. * As opposed to {transferFrom}, this imposes no restrictions on msg.sender. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function _transferFrom(address from, address to, uint256 tokenId) internal { require(ownerOf(tokenId) == from, "ERC721: transfer of token that is not own"); require(to != address(0), "ERC721: transfer to the zero address"); _clearApproval(tokenId); _ownedTokensCount[from].decrement(); _ownedTokensCount[to].increment(); _tokenOwner[tokenId] = to; emit Transfer(from, to, tokenId); } /** * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address. * The call is not executed if the target address is not a contract. * * This is an internal detail of the `ERC721` contract and its use is deprecated. * @param from address representing the previous owner of the given token ID * @param to target address that will receive the tokens * @param tokenId uint256 ID of the token to be transferred * @param _data bytes optional data to send along with the call * @return bool whether the call correctly returned the expected magic value */ function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory _data) internal returns (bool) { if (!to.isContract()) { return true; } // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = to.call(abi.encodeWithSelector( IERC721Receiver(to).onERC721Received.selector, _msgSender(), from, tokenId, _data )); if (!success) { if (returndata.length > 0) { // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert("ERC721: transfer to non ERC721Receiver implementer"); } } else { bytes4 retval = abi.decode(returndata, (bytes4)); return (retval == _ERC721_RECEIVED); } } /** * @dev Private function to clear current approval of a given token ID. * @param tokenId uint256 ID of the token to be transferred */ function _clearApproval(uint256 tokenId) private { if (_tokenApprovals[tokenId] != address(0)) { _tokenApprovals[tokenId] = address(0); } } }
/** * @title ERC721 Non-Fungible Token Standard basic implementation * @dev see https://eips.ethereum.org/EIPS/eip-721 */
NatSpecMultiLine
_safeMint
function _safeMint(address to, uint256 tokenId) internal { _safeMint(to, tokenId, ""); }
/** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 10358, 10465 ] }
2,791
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
ERC721
contract ERC721 is Context, ERC165, IERC721 { using SafeMath for uint256; using Address for address; using Counters for Counters.Counter; // Equals to `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))` // which can be also obtained as `IERC721Receiver(0).onERC721Received.selector` bytes4 private constant _ERC721_RECEIVED = 0x150b7a02; // Mapping from token ID to owner mapping (uint256 => address) private _tokenOwner; // Mapping from token ID to approved address mapping (uint256 => address) private _tokenApprovals; // Mapping from owner to number of owned token mapping (address => Counters.Counter) private _ownedTokensCount; // Mapping from owner to operator approvals mapping (address => mapping (address => bool)) private _operatorApprovals; /* * bytes4(keccak256('balanceOf(address)')) == 0x70a08231 * bytes4(keccak256('ownerOf(uint256)')) == 0x6352211e * bytes4(keccak256('approve(address,uint256)')) == 0x095ea7b3 * bytes4(keccak256('getApproved(uint256)')) == 0x081812fc * bytes4(keccak256('setApprovalForAll(address,bool)')) == 0xa22cb465 * bytes4(keccak256('isApprovedForAll(address,address)')) == 0xe985e9c5 * bytes4(keccak256('transferFrom(address,address,uint256)')) == 0x23b872dd * bytes4(keccak256('safeTransferFrom(address,address,uint256)')) == 0x42842e0e * bytes4(keccak256('safeTransferFrom(address,address,uint256,bytes)')) == 0xb88d4fde * * => 0x70a08231 ^ 0x6352211e ^ 0x095ea7b3 ^ 0x081812fc ^ * 0xa22cb465 ^ 0xe985e9c ^ 0x23b872dd ^ 0x42842e0e ^ 0xb88d4fde == 0x80ac58cd */ bytes4 private constant _INTERFACE_ID_ERC721 = 0x80ac58cd; constructor () public { // register the supported interfaces to conform to ERC721 via ERC165 _registerInterface(_INTERFACE_ID_ERC721); } /** * @dev Gets the balance of the specified address. * @param owner address to query the balance of * @return uint256 representing the amount owned by the passed address */ function balanceOf(address owner) public view returns (uint256) { require(owner != address(0), "ERC721: balance query for the zero address"); return _ownedTokensCount[owner].current(); } /** * @dev Gets the owner of the specified token ID. * @param tokenId uint256 ID of the token to query the owner of * @return address currently marked as the owner of the given token ID */ function ownerOf(uint256 tokenId) public view returns (address) { address owner = _tokenOwner[tokenId]; require(owner != address(0), "ERC721: owner query for nonexistent token"); return owner; } /** * @dev Approves another address to transfer the given token ID * The zero address indicates there is no approved address. * There can only be one approved address per token at a given time. * Can only be called by the token owner or an approved operator. * @param to address to be approved for the given token ID * @param tokenId uint256 ID of the token to be approved */ function approve(address to, uint256 tokenId) public { address owner = ownerOf(tokenId); require(to != owner, "ERC721: approval to current owner"); require(_msgSender() == owner || isApprovedForAll(owner, _msgSender()), "ERC721: approve caller is not owner nor approved for all" ); _tokenApprovals[tokenId] = to; emit Approval(owner, to, tokenId); } /** * @dev Gets the approved address for a token ID, or zero if no address set * Reverts if the token ID does not exist. * @param tokenId uint256 ID of the token to query the approval of * @return address currently approved for the given token ID */ function getApproved(uint256 tokenId) public view returns (address) { require(_exists(tokenId), "ERC721: approved query for nonexistent token"); return _tokenApprovals[tokenId]; } /** * @dev Sets or unsets the approval of a given operator * An operator is allowed to transfer all tokens of the sender on their behalf. * @param to operator address to set the approval * @param approved representing the status of the approval to be set */ function setApprovalForAll(address to, bool approved) public { require(to != _msgSender(), "ERC721: approve to caller"); _operatorApprovals[_msgSender()][to] = approved; emit ApprovalForAll(_msgSender(), to, approved); } /** * @dev Tells whether an operator is approved by a given owner. * @param owner owner address which you want to query the approval of * @param operator operator address which you want to query the approval of * @return bool whether the given operator is approved by the given owner */ function isApprovedForAll(address owner, address operator) public view returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev Transfers the ownership of a given token ID to another address. * Usage of this method is discouraged, use {safeTransferFrom} whenever possible. * Requires the msg.sender to be the owner, approved, or operator. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function transferFrom(address from, address to, uint256 tokenId) public { //solhint-disable-next-line max-line-length require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _transferFrom(from, to, tokenId); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function safeTransferFrom(address from, address to, uint256 tokenId) public { safeTransferFrom(from, to, tokenId, ""); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the _msgSender() to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) public { require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _safeTransferFrom(from, to, tokenId, _data); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function _safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) internal { _transferFrom(from, to, tokenId); require(_checkOnERC721Received(from, to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Returns whether the specified token exists. * @param tokenId uint256 ID of the token to query the existence of * @return bool whether the token exists */ function _exists(uint256 tokenId) internal view returns (bool) { address owner = _tokenOwner[tokenId]; return owner != address(0); } /** * @dev Returns whether the given spender can transfer a given token ID. * @param spender address of the spender to query * @param tokenId uint256 ID of the token to be transferred * @return bool whether the msg.sender is approved for the given token ID, * is an operator of the owner, or is the owner of the token */ function _isApprovedOrOwner(address spender, uint256 tokenId) internal view returns (bool) { require(_exists(tokenId), "ERC721: operator query for nonexistent token"); address owner = ownerOf(tokenId); return (spender == owner || getApproved(tokenId) == spender || isApprovedForAll(owner, spender)); } /** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _safeMint(address to, uint256 tokenId) internal { _safeMint(to, tokenId, ""); } /** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted * @param _data bytes data to send along with a safe transfer check */ function _safeMint(address to, uint256 tokenId, bytes memory _data) internal { _mint(to, tokenId); require(_checkOnERC721Received(address(0), to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Internal function to mint a new token. * Reverts if the given token ID already exists. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _mint(address to, uint256 tokenId) internal { require(to != address(0), "ERC721: mint to the zero address"); require(!_exists(tokenId), "ERC721: token already minted"); _tokenOwner[tokenId] = to; _ownedTokensCount[to].increment(); emit Transfer(address(0), to, tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * Deprecated, use {_burn} instead. * @param owner owner of the token to burn * @param tokenId uint256 ID of the token being burned */ function _burn(address owner, uint256 tokenId) internal { require(ownerOf(tokenId) == owner, "ERC721: burn of token that is not own"); _clearApproval(tokenId); _ownedTokensCount[owner].decrement(); _tokenOwner[tokenId] = address(0); emit Transfer(owner, address(0), tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * @param tokenId uint256 ID of the token being burned */ function _burn(uint256 tokenId) internal { _burn(ownerOf(tokenId), tokenId); } /** * @dev Internal function to transfer ownership of a given token ID to another address. * As opposed to {transferFrom}, this imposes no restrictions on msg.sender. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function _transferFrom(address from, address to, uint256 tokenId) internal { require(ownerOf(tokenId) == from, "ERC721: transfer of token that is not own"); require(to != address(0), "ERC721: transfer to the zero address"); _clearApproval(tokenId); _ownedTokensCount[from].decrement(); _ownedTokensCount[to].increment(); _tokenOwner[tokenId] = to; emit Transfer(from, to, tokenId); } /** * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address. * The call is not executed if the target address is not a contract. * * This is an internal detail of the `ERC721` contract and its use is deprecated. * @param from address representing the previous owner of the given token ID * @param to target address that will receive the tokens * @param tokenId uint256 ID of the token to be transferred * @param _data bytes optional data to send along with the call * @return bool whether the call correctly returned the expected magic value */ function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory _data) internal returns (bool) { if (!to.isContract()) { return true; } // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = to.call(abi.encodeWithSelector( IERC721Receiver(to).onERC721Received.selector, _msgSender(), from, tokenId, _data )); if (!success) { if (returndata.length > 0) { // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert("ERC721: transfer to non ERC721Receiver implementer"); } } else { bytes4 retval = abi.decode(returndata, (bytes4)); return (retval == _ERC721_RECEIVED); } } /** * @dev Private function to clear current approval of a given token ID. * @param tokenId uint256 ID of the token to be transferred */ function _clearApproval(uint256 tokenId) private { if (_tokenApprovals[tokenId] != address(0)) { _tokenApprovals[tokenId] = address(0); } } }
/** * @title ERC721 Non-Fungible Token Standard basic implementation * @dev see https://eips.ethereum.org/EIPS/eip-721 */
NatSpecMultiLine
_safeMint
function _safeMint(address to, uint256 tokenId, bytes memory _data) internal { _mint(to, tokenId); require(_checkOnERC721Received(address(0), to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); }
/** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted * @param _data bytes data to send along with a safe transfer check */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 11074, 11321 ] }
2,792
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
ERC721
contract ERC721 is Context, ERC165, IERC721 { using SafeMath for uint256; using Address for address; using Counters for Counters.Counter; // Equals to `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))` // which can be also obtained as `IERC721Receiver(0).onERC721Received.selector` bytes4 private constant _ERC721_RECEIVED = 0x150b7a02; // Mapping from token ID to owner mapping (uint256 => address) private _tokenOwner; // Mapping from token ID to approved address mapping (uint256 => address) private _tokenApprovals; // Mapping from owner to number of owned token mapping (address => Counters.Counter) private _ownedTokensCount; // Mapping from owner to operator approvals mapping (address => mapping (address => bool)) private _operatorApprovals; /* * bytes4(keccak256('balanceOf(address)')) == 0x70a08231 * bytes4(keccak256('ownerOf(uint256)')) == 0x6352211e * bytes4(keccak256('approve(address,uint256)')) == 0x095ea7b3 * bytes4(keccak256('getApproved(uint256)')) == 0x081812fc * bytes4(keccak256('setApprovalForAll(address,bool)')) == 0xa22cb465 * bytes4(keccak256('isApprovedForAll(address,address)')) == 0xe985e9c5 * bytes4(keccak256('transferFrom(address,address,uint256)')) == 0x23b872dd * bytes4(keccak256('safeTransferFrom(address,address,uint256)')) == 0x42842e0e * bytes4(keccak256('safeTransferFrom(address,address,uint256,bytes)')) == 0xb88d4fde * * => 0x70a08231 ^ 0x6352211e ^ 0x095ea7b3 ^ 0x081812fc ^ * 0xa22cb465 ^ 0xe985e9c ^ 0x23b872dd ^ 0x42842e0e ^ 0xb88d4fde == 0x80ac58cd */ bytes4 private constant _INTERFACE_ID_ERC721 = 0x80ac58cd; constructor () public { // register the supported interfaces to conform to ERC721 via ERC165 _registerInterface(_INTERFACE_ID_ERC721); } /** * @dev Gets the balance of the specified address. * @param owner address to query the balance of * @return uint256 representing the amount owned by the passed address */ function balanceOf(address owner) public view returns (uint256) { require(owner != address(0), "ERC721: balance query for the zero address"); return _ownedTokensCount[owner].current(); } /** * @dev Gets the owner of the specified token ID. * @param tokenId uint256 ID of the token to query the owner of * @return address currently marked as the owner of the given token ID */ function ownerOf(uint256 tokenId) public view returns (address) { address owner = _tokenOwner[tokenId]; require(owner != address(0), "ERC721: owner query for nonexistent token"); return owner; } /** * @dev Approves another address to transfer the given token ID * The zero address indicates there is no approved address. * There can only be one approved address per token at a given time. * Can only be called by the token owner or an approved operator. * @param to address to be approved for the given token ID * @param tokenId uint256 ID of the token to be approved */ function approve(address to, uint256 tokenId) public { address owner = ownerOf(tokenId); require(to != owner, "ERC721: approval to current owner"); require(_msgSender() == owner || isApprovedForAll(owner, _msgSender()), "ERC721: approve caller is not owner nor approved for all" ); _tokenApprovals[tokenId] = to; emit Approval(owner, to, tokenId); } /** * @dev Gets the approved address for a token ID, or zero if no address set * Reverts if the token ID does not exist. * @param tokenId uint256 ID of the token to query the approval of * @return address currently approved for the given token ID */ function getApproved(uint256 tokenId) public view returns (address) { require(_exists(tokenId), "ERC721: approved query for nonexistent token"); return _tokenApprovals[tokenId]; } /** * @dev Sets or unsets the approval of a given operator * An operator is allowed to transfer all tokens of the sender on their behalf. * @param to operator address to set the approval * @param approved representing the status of the approval to be set */ function setApprovalForAll(address to, bool approved) public { require(to != _msgSender(), "ERC721: approve to caller"); _operatorApprovals[_msgSender()][to] = approved; emit ApprovalForAll(_msgSender(), to, approved); } /** * @dev Tells whether an operator is approved by a given owner. * @param owner owner address which you want to query the approval of * @param operator operator address which you want to query the approval of * @return bool whether the given operator is approved by the given owner */ function isApprovedForAll(address owner, address operator) public view returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev Transfers the ownership of a given token ID to another address. * Usage of this method is discouraged, use {safeTransferFrom} whenever possible. * Requires the msg.sender to be the owner, approved, or operator. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function transferFrom(address from, address to, uint256 tokenId) public { //solhint-disable-next-line max-line-length require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _transferFrom(from, to, tokenId); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function safeTransferFrom(address from, address to, uint256 tokenId) public { safeTransferFrom(from, to, tokenId, ""); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the _msgSender() to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) public { require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _safeTransferFrom(from, to, tokenId, _data); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function _safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) internal { _transferFrom(from, to, tokenId); require(_checkOnERC721Received(from, to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Returns whether the specified token exists. * @param tokenId uint256 ID of the token to query the existence of * @return bool whether the token exists */ function _exists(uint256 tokenId) internal view returns (bool) { address owner = _tokenOwner[tokenId]; return owner != address(0); } /** * @dev Returns whether the given spender can transfer a given token ID. * @param spender address of the spender to query * @param tokenId uint256 ID of the token to be transferred * @return bool whether the msg.sender is approved for the given token ID, * is an operator of the owner, or is the owner of the token */ function _isApprovedOrOwner(address spender, uint256 tokenId) internal view returns (bool) { require(_exists(tokenId), "ERC721: operator query for nonexistent token"); address owner = ownerOf(tokenId); return (spender == owner || getApproved(tokenId) == spender || isApprovedForAll(owner, spender)); } /** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _safeMint(address to, uint256 tokenId) internal { _safeMint(to, tokenId, ""); } /** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted * @param _data bytes data to send along with a safe transfer check */ function _safeMint(address to, uint256 tokenId, bytes memory _data) internal { _mint(to, tokenId); require(_checkOnERC721Received(address(0), to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Internal function to mint a new token. * Reverts if the given token ID already exists. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _mint(address to, uint256 tokenId) internal { require(to != address(0), "ERC721: mint to the zero address"); require(!_exists(tokenId), "ERC721: token already minted"); _tokenOwner[tokenId] = to; _ownedTokensCount[to].increment(); emit Transfer(address(0), to, tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * Deprecated, use {_burn} instead. * @param owner owner of the token to burn * @param tokenId uint256 ID of the token being burned */ function _burn(address owner, uint256 tokenId) internal { require(ownerOf(tokenId) == owner, "ERC721: burn of token that is not own"); _clearApproval(tokenId); _ownedTokensCount[owner].decrement(); _tokenOwner[tokenId] = address(0); emit Transfer(owner, address(0), tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * @param tokenId uint256 ID of the token being burned */ function _burn(uint256 tokenId) internal { _burn(ownerOf(tokenId), tokenId); } /** * @dev Internal function to transfer ownership of a given token ID to another address. * As opposed to {transferFrom}, this imposes no restrictions on msg.sender. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function _transferFrom(address from, address to, uint256 tokenId) internal { require(ownerOf(tokenId) == from, "ERC721: transfer of token that is not own"); require(to != address(0), "ERC721: transfer to the zero address"); _clearApproval(tokenId); _ownedTokensCount[from].decrement(); _ownedTokensCount[to].increment(); _tokenOwner[tokenId] = to; emit Transfer(from, to, tokenId); } /** * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address. * The call is not executed if the target address is not a contract. * * This is an internal detail of the `ERC721` contract and its use is deprecated. * @param from address representing the previous owner of the given token ID * @param to target address that will receive the tokens * @param tokenId uint256 ID of the token to be transferred * @param _data bytes optional data to send along with the call * @return bool whether the call correctly returned the expected magic value */ function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory _data) internal returns (bool) { if (!to.isContract()) { return true; } // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = to.call(abi.encodeWithSelector( IERC721Receiver(to).onERC721Received.selector, _msgSender(), from, tokenId, _data )); if (!success) { if (returndata.length > 0) { // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert("ERC721: transfer to non ERC721Receiver implementer"); } } else { bytes4 retval = abi.decode(returndata, (bytes4)); return (retval == _ERC721_RECEIVED); } } /** * @dev Private function to clear current approval of a given token ID. * @param tokenId uint256 ID of the token to be transferred */ function _clearApproval(uint256 tokenId) private { if (_tokenApprovals[tokenId] != address(0)) { _tokenApprovals[tokenId] = address(0); } } }
/** * @title ERC721 Non-Fungible Token Standard basic implementation * @dev see https://eips.ethereum.org/EIPS/eip-721 */
NatSpecMultiLine
_mint
function _mint(address to, uint256 tokenId) internal { require(to != address(0), "ERC721: mint to the zero address"); require(!_exists(tokenId), "ERC721: token already minted"); _tokenOwner[tokenId] = to; _ownedTokensCount[to].increment(); emit Transfer(address(0), to, tokenId); }
/** * @dev Internal function to mint a new token. * Reverts if the given token ID already exists. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 11569, 11909 ] }
2,793
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
ERC721
contract ERC721 is Context, ERC165, IERC721 { using SafeMath for uint256; using Address for address; using Counters for Counters.Counter; // Equals to `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))` // which can be also obtained as `IERC721Receiver(0).onERC721Received.selector` bytes4 private constant _ERC721_RECEIVED = 0x150b7a02; // Mapping from token ID to owner mapping (uint256 => address) private _tokenOwner; // Mapping from token ID to approved address mapping (uint256 => address) private _tokenApprovals; // Mapping from owner to number of owned token mapping (address => Counters.Counter) private _ownedTokensCount; // Mapping from owner to operator approvals mapping (address => mapping (address => bool)) private _operatorApprovals; /* * bytes4(keccak256('balanceOf(address)')) == 0x70a08231 * bytes4(keccak256('ownerOf(uint256)')) == 0x6352211e * bytes4(keccak256('approve(address,uint256)')) == 0x095ea7b3 * bytes4(keccak256('getApproved(uint256)')) == 0x081812fc * bytes4(keccak256('setApprovalForAll(address,bool)')) == 0xa22cb465 * bytes4(keccak256('isApprovedForAll(address,address)')) == 0xe985e9c5 * bytes4(keccak256('transferFrom(address,address,uint256)')) == 0x23b872dd * bytes4(keccak256('safeTransferFrom(address,address,uint256)')) == 0x42842e0e * bytes4(keccak256('safeTransferFrom(address,address,uint256,bytes)')) == 0xb88d4fde * * => 0x70a08231 ^ 0x6352211e ^ 0x095ea7b3 ^ 0x081812fc ^ * 0xa22cb465 ^ 0xe985e9c ^ 0x23b872dd ^ 0x42842e0e ^ 0xb88d4fde == 0x80ac58cd */ bytes4 private constant _INTERFACE_ID_ERC721 = 0x80ac58cd; constructor () public { // register the supported interfaces to conform to ERC721 via ERC165 _registerInterface(_INTERFACE_ID_ERC721); } /** * @dev Gets the balance of the specified address. * @param owner address to query the balance of * @return uint256 representing the amount owned by the passed address */ function balanceOf(address owner) public view returns (uint256) { require(owner != address(0), "ERC721: balance query for the zero address"); return _ownedTokensCount[owner].current(); } /** * @dev Gets the owner of the specified token ID. * @param tokenId uint256 ID of the token to query the owner of * @return address currently marked as the owner of the given token ID */ function ownerOf(uint256 tokenId) public view returns (address) { address owner = _tokenOwner[tokenId]; require(owner != address(0), "ERC721: owner query for nonexistent token"); return owner; } /** * @dev Approves another address to transfer the given token ID * The zero address indicates there is no approved address. * There can only be one approved address per token at a given time. * Can only be called by the token owner or an approved operator. * @param to address to be approved for the given token ID * @param tokenId uint256 ID of the token to be approved */ function approve(address to, uint256 tokenId) public { address owner = ownerOf(tokenId); require(to != owner, "ERC721: approval to current owner"); require(_msgSender() == owner || isApprovedForAll(owner, _msgSender()), "ERC721: approve caller is not owner nor approved for all" ); _tokenApprovals[tokenId] = to; emit Approval(owner, to, tokenId); } /** * @dev Gets the approved address for a token ID, or zero if no address set * Reverts if the token ID does not exist. * @param tokenId uint256 ID of the token to query the approval of * @return address currently approved for the given token ID */ function getApproved(uint256 tokenId) public view returns (address) { require(_exists(tokenId), "ERC721: approved query for nonexistent token"); return _tokenApprovals[tokenId]; } /** * @dev Sets or unsets the approval of a given operator * An operator is allowed to transfer all tokens of the sender on their behalf. * @param to operator address to set the approval * @param approved representing the status of the approval to be set */ function setApprovalForAll(address to, bool approved) public { require(to != _msgSender(), "ERC721: approve to caller"); _operatorApprovals[_msgSender()][to] = approved; emit ApprovalForAll(_msgSender(), to, approved); } /** * @dev Tells whether an operator is approved by a given owner. * @param owner owner address which you want to query the approval of * @param operator operator address which you want to query the approval of * @return bool whether the given operator is approved by the given owner */ function isApprovedForAll(address owner, address operator) public view returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev Transfers the ownership of a given token ID to another address. * Usage of this method is discouraged, use {safeTransferFrom} whenever possible. * Requires the msg.sender to be the owner, approved, or operator. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function transferFrom(address from, address to, uint256 tokenId) public { //solhint-disable-next-line max-line-length require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _transferFrom(from, to, tokenId); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function safeTransferFrom(address from, address to, uint256 tokenId) public { safeTransferFrom(from, to, tokenId, ""); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the _msgSender() to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) public { require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _safeTransferFrom(from, to, tokenId, _data); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function _safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) internal { _transferFrom(from, to, tokenId); require(_checkOnERC721Received(from, to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Returns whether the specified token exists. * @param tokenId uint256 ID of the token to query the existence of * @return bool whether the token exists */ function _exists(uint256 tokenId) internal view returns (bool) { address owner = _tokenOwner[tokenId]; return owner != address(0); } /** * @dev Returns whether the given spender can transfer a given token ID. * @param spender address of the spender to query * @param tokenId uint256 ID of the token to be transferred * @return bool whether the msg.sender is approved for the given token ID, * is an operator of the owner, or is the owner of the token */ function _isApprovedOrOwner(address spender, uint256 tokenId) internal view returns (bool) { require(_exists(tokenId), "ERC721: operator query for nonexistent token"); address owner = ownerOf(tokenId); return (spender == owner || getApproved(tokenId) == spender || isApprovedForAll(owner, spender)); } /** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _safeMint(address to, uint256 tokenId) internal { _safeMint(to, tokenId, ""); } /** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted * @param _data bytes data to send along with a safe transfer check */ function _safeMint(address to, uint256 tokenId, bytes memory _data) internal { _mint(to, tokenId); require(_checkOnERC721Received(address(0), to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Internal function to mint a new token. * Reverts if the given token ID already exists. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _mint(address to, uint256 tokenId) internal { require(to != address(0), "ERC721: mint to the zero address"); require(!_exists(tokenId), "ERC721: token already minted"); _tokenOwner[tokenId] = to; _ownedTokensCount[to].increment(); emit Transfer(address(0), to, tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * Deprecated, use {_burn} instead. * @param owner owner of the token to burn * @param tokenId uint256 ID of the token being burned */ function _burn(address owner, uint256 tokenId) internal { require(ownerOf(tokenId) == owner, "ERC721: burn of token that is not own"); _clearApproval(tokenId); _ownedTokensCount[owner].decrement(); _tokenOwner[tokenId] = address(0); emit Transfer(owner, address(0), tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * @param tokenId uint256 ID of the token being burned */ function _burn(uint256 tokenId) internal { _burn(ownerOf(tokenId), tokenId); } /** * @dev Internal function to transfer ownership of a given token ID to another address. * As opposed to {transferFrom}, this imposes no restrictions on msg.sender. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function _transferFrom(address from, address to, uint256 tokenId) internal { require(ownerOf(tokenId) == from, "ERC721: transfer of token that is not own"); require(to != address(0), "ERC721: transfer to the zero address"); _clearApproval(tokenId); _ownedTokensCount[from].decrement(); _ownedTokensCount[to].increment(); _tokenOwner[tokenId] = to; emit Transfer(from, to, tokenId); } /** * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address. * The call is not executed if the target address is not a contract. * * This is an internal detail of the `ERC721` contract and its use is deprecated. * @param from address representing the previous owner of the given token ID * @param to target address that will receive the tokens * @param tokenId uint256 ID of the token to be transferred * @param _data bytes optional data to send along with the call * @return bool whether the call correctly returned the expected magic value */ function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory _data) internal returns (bool) { if (!to.isContract()) { return true; } // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = to.call(abi.encodeWithSelector( IERC721Receiver(to).onERC721Received.selector, _msgSender(), from, tokenId, _data )); if (!success) { if (returndata.length > 0) { // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert("ERC721: transfer to non ERC721Receiver implementer"); } } else { bytes4 retval = abi.decode(returndata, (bytes4)); return (retval == _ERC721_RECEIVED); } } /** * @dev Private function to clear current approval of a given token ID. * @param tokenId uint256 ID of the token to be transferred */ function _clearApproval(uint256 tokenId) private { if (_tokenApprovals[tokenId] != address(0)) { _tokenApprovals[tokenId] = address(0); } } }
/** * @title ERC721 Non-Fungible Token Standard basic implementation * @dev see https://eips.ethereum.org/EIPS/eip-721 */
NatSpecMultiLine
_burn
function _burn(address owner, uint256 tokenId) internal { require(ownerOf(tokenId) == owner, "ERC721: burn of token that is not own"); _clearApproval(tokenId); _ownedTokensCount[owner].decrement(); _tokenOwner[tokenId] = address(0); emit Transfer(owner, address(0), tokenId); }
/** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * Deprecated, use {_burn} instead. * @param owner owner of the token to burn * @param tokenId uint256 ID of the token being burned */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 12181, 12519 ] }
2,794
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
ERC721
contract ERC721 is Context, ERC165, IERC721 { using SafeMath for uint256; using Address for address; using Counters for Counters.Counter; // Equals to `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))` // which can be also obtained as `IERC721Receiver(0).onERC721Received.selector` bytes4 private constant _ERC721_RECEIVED = 0x150b7a02; // Mapping from token ID to owner mapping (uint256 => address) private _tokenOwner; // Mapping from token ID to approved address mapping (uint256 => address) private _tokenApprovals; // Mapping from owner to number of owned token mapping (address => Counters.Counter) private _ownedTokensCount; // Mapping from owner to operator approvals mapping (address => mapping (address => bool)) private _operatorApprovals; /* * bytes4(keccak256('balanceOf(address)')) == 0x70a08231 * bytes4(keccak256('ownerOf(uint256)')) == 0x6352211e * bytes4(keccak256('approve(address,uint256)')) == 0x095ea7b3 * bytes4(keccak256('getApproved(uint256)')) == 0x081812fc * bytes4(keccak256('setApprovalForAll(address,bool)')) == 0xa22cb465 * bytes4(keccak256('isApprovedForAll(address,address)')) == 0xe985e9c5 * bytes4(keccak256('transferFrom(address,address,uint256)')) == 0x23b872dd * bytes4(keccak256('safeTransferFrom(address,address,uint256)')) == 0x42842e0e * bytes4(keccak256('safeTransferFrom(address,address,uint256,bytes)')) == 0xb88d4fde * * => 0x70a08231 ^ 0x6352211e ^ 0x095ea7b3 ^ 0x081812fc ^ * 0xa22cb465 ^ 0xe985e9c ^ 0x23b872dd ^ 0x42842e0e ^ 0xb88d4fde == 0x80ac58cd */ bytes4 private constant _INTERFACE_ID_ERC721 = 0x80ac58cd; constructor () public { // register the supported interfaces to conform to ERC721 via ERC165 _registerInterface(_INTERFACE_ID_ERC721); } /** * @dev Gets the balance of the specified address. * @param owner address to query the balance of * @return uint256 representing the amount owned by the passed address */ function balanceOf(address owner) public view returns (uint256) { require(owner != address(0), "ERC721: balance query for the zero address"); return _ownedTokensCount[owner].current(); } /** * @dev Gets the owner of the specified token ID. * @param tokenId uint256 ID of the token to query the owner of * @return address currently marked as the owner of the given token ID */ function ownerOf(uint256 tokenId) public view returns (address) { address owner = _tokenOwner[tokenId]; require(owner != address(0), "ERC721: owner query for nonexistent token"); return owner; } /** * @dev Approves another address to transfer the given token ID * The zero address indicates there is no approved address. * There can only be one approved address per token at a given time. * Can only be called by the token owner or an approved operator. * @param to address to be approved for the given token ID * @param tokenId uint256 ID of the token to be approved */ function approve(address to, uint256 tokenId) public { address owner = ownerOf(tokenId); require(to != owner, "ERC721: approval to current owner"); require(_msgSender() == owner || isApprovedForAll(owner, _msgSender()), "ERC721: approve caller is not owner nor approved for all" ); _tokenApprovals[tokenId] = to; emit Approval(owner, to, tokenId); } /** * @dev Gets the approved address for a token ID, or zero if no address set * Reverts if the token ID does not exist. * @param tokenId uint256 ID of the token to query the approval of * @return address currently approved for the given token ID */ function getApproved(uint256 tokenId) public view returns (address) { require(_exists(tokenId), "ERC721: approved query for nonexistent token"); return _tokenApprovals[tokenId]; } /** * @dev Sets or unsets the approval of a given operator * An operator is allowed to transfer all tokens of the sender on their behalf. * @param to operator address to set the approval * @param approved representing the status of the approval to be set */ function setApprovalForAll(address to, bool approved) public { require(to != _msgSender(), "ERC721: approve to caller"); _operatorApprovals[_msgSender()][to] = approved; emit ApprovalForAll(_msgSender(), to, approved); } /** * @dev Tells whether an operator is approved by a given owner. * @param owner owner address which you want to query the approval of * @param operator operator address which you want to query the approval of * @return bool whether the given operator is approved by the given owner */ function isApprovedForAll(address owner, address operator) public view returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev Transfers the ownership of a given token ID to another address. * Usage of this method is discouraged, use {safeTransferFrom} whenever possible. * Requires the msg.sender to be the owner, approved, or operator. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function transferFrom(address from, address to, uint256 tokenId) public { //solhint-disable-next-line max-line-length require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _transferFrom(from, to, tokenId); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function safeTransferFrom(address from, address to, uint256 tokenId) public { safeTransferFrom(from, to, tokenId, ""); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the _msgSender() to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) public { require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _safeTransferFrom(from, to, tokenId, _data); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function _safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) internal { _transferFrom(from, to, tokenId); require(_checkOnERC721Received(from, to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Returns whether the specified token exists. * @param tokenId uint256 ID of the token to query the existence of * @return bool whether the token exists */ function _exists(uint256 tokenId) internal view returns (bool) { address owner = _tokenOwner[tokenId]; return owner != address(0); } /** * @dev Returns whether the given spender can transfer a given token ID. * @param spender address of the spender to query * @param tokenId uint256 ID of the token to be transferred * @return bool whether the msg.sender is approved for the given token ID, * is an operator of the owner, or is the owner of the token */ function _isApprovedOrOwner(address spender, uint256 tokenId) internal view returns (bool) { require(_exists(tokenId), "ERC721: operator query for nonexistent token"); address owner = ownerOf(tokenId); return (spender == owner || getApproved(tokenId) == spender || isApprovedForAll(owner, spender)); } /** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _safeMint(address to, uint256 tokenId) internal { _safeMint(to, tokenId, ""); } /** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted * @param _data bytes data to send along with a safe transfer check */ function _safeMint(address to, uint256 tokenId, bytes memory _data) internal { _mint(to, tokenId); require(_checkOnERC721Received(address(0), to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Internal function to mint a new token. * Reverts if the given token ID already exists. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _mint(address to, uint256 tokenId) internal { require(to != address(0), "ERC721: mint to the zero address"); require(!_exists(tokenId), "ERC721: token already minted"); _tokenOwner[tokenId] = to; _ownedTokensCount[to].increment(); emit Transfer(address(0), to, tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * Deprecated, use {_burn} instead. * @param owner owner of the token to burn * @param tokenId uint256 ID of the token being burned */ function _burn(address owner, uint256 tokenId) internal { require(ownerOf(tokenId) == owner, "ERC721: burn of token that is not own"); _clearApproval(tokenId); _ownedTokensCount[owner].decrement(); _tokenOwner[tokenId] = address(0); emit Transfer(owner, address(0), tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * @param tokenId uint256 ID of the token being burned */ function _burn(uint256 tokenId) internal { _burn(ownerOf(tokenId), tokenId); } /** * @dev Internal function to transfer ownership of a given token ID to another address. * As opposed to {transferFrom}, this imposes no restrictions on msg.sender. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function _transferFrom(address from, address to, uint256 tokenId) internal { require(ownerOf(tokenId) == from, "ERC721: transfer of token that is not own"); require(to != address(0), "ERC721: transfer to the zero address"); _clearApproval(tokenId); _ownedTokensCount[from].decrement(); _ownedTokensCount[to].increment(); _tokenOwner[tokenId] = to; emit Transfer(from, to, tokenId); } /** * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address. * The call is not executed if the target address is not a contract. * * This is an internal detail of the `ERC721` contract and its use is deprecated. * @param from address representing the previous owner of the given token ID * @param to target address that will receive the tokens * @param tokenId uint256 ID of the token to be transferred * @param _data bytes optional data to send along with the call * @return bool whether the call correctly returned the expected magic value */ function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory _data) internal returns (bool) { if (!to.isContract()) { return true; } // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = to.call(abi.encodeWithSelector( IERC721Receiver(to).onERC721Received.selector, _msgSender(), from, tokenId, _data )); if (!success) { if (returndata.length > 0) { // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert("ERC721: transfer to non ERC721Receiver implementer"); } } else { bytes4 retval = abi.decode(returndata, (bytes4)); return (retval == _ERC721_RECEIVED); } } /** * @dev Private function to clear current approval of a given token ID. * @param tokenId uint256 ID of the token to be transferred */ function _clearApproval(uint256 tokenId) private { if (_tokenApprovals[tokenId] != address(0)) { _tokenApprovals[tokenId] = address(0); } } }
/** * @title ERC721 Non-Fungible Token Standard basic implementation * @dev see https://eips.ethereum.org/EIPS/eip-721 */
NatSpecMultiLine
_burn
function _burn(uint256 tokenId) internal { _burn(ownerOf(tokenId), tokenId); }
/** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * @param tokenId uint256 ID of the token being burned */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 12702, 12799 ] }
2,795
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
ERC721
contract ERC721 is Context, ERC165, IERC721 { using SafeMath for uint256; using Address for address; using Counters for Counters.Counter; // Equals to `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))` // which can be also obtained as `IERC721Receiver(0).onERC721Received.selector` bytes4 private constant _ERC721_RECEIVED = 0x150b7a02; // Mapping from token ID to owner mapping (uint256 => address) private _tokenOwner; // Mapping from token ID to approved address mapping (uint256 => address) private _tokenApprovals; // Mapping from owner to number of owned token mapping (address => Counters.Counter) private _ownedTokensCount; // Mapping from owner to operator approvals mapping (address => mapping (address => bool)) private _operatorApprovals; /* * bytes4(keccak256('balanceOf(address)')) == 0x70a08231 * bytes4(keccak256('ownerOf(uint256)')) == 0x6352211e * bytes4(keccak256('approve(address,uint256)')) == 0x095ea7b3 * bytes4(keccak256('getApproved(uint256)')) == 0x081812fc * bytes4(keccak256('setApprovalForAll(address,bool)')) == 0xa22cb465 * bytes4(keccak256('isApprovedForAll(address,address)')) == 0xe985e9c5 * bytes4(keccak256('transferFrom(address,address,uint256)')) == 0x23b872dd * bytes4(keccak256('safeTransferFrom(address,address,uint256)')) == 0x42842e0e * bytes4(keccak256('safeTransferFrom(address,address,uint256,bytes)')) == 0xb88d4fde * * => 0x70a08231 ^ 0x6352211e ^ 0x095ea7b3 ^ 0x081812fc ^ * 0xa22cb465 ^ 0xe985e9c ^ 0x23b872dd ^ 0x42842e0e ^ 0xb88d4fde == 0x80ac58cd */ bytes4 private constant _INTERFACE_ID_ERC721 = 0x80ac58cd; constructor () public { // register the supported interfaces to conform to ERC721 via ERC165 _registerInterface(_INTERFACE_ID_ERC721); } /** * @dev Gets the balance of the specified address. * @param owner address to query the balance of * @return uint256 representing the amount owned by the passed address */ function balanceOf(address owner) public view returns (uint256) { require(owner != address(0), "ERC721: balance query for the zero address"); return _ownedTokensCount[owner].current(); } /** * @dev Gets the owner of the specified token ID. * @param tokenId uint256 ID of the token to query the owner of * @return address currently marked as the owner of the given token ID */ function ownerOf(uint256 tokenId) public view returns (address) { address owner = _tokenOwner[tokenId]; require(owner != address(0), "ERC721: owner query for nonexistent token"); return owner; } /** * @dev Approves another address to transfer the given token ID * The zero address indicates there is no approved address. * There can only be one approved address per token at a given time. * Can only be called by the token owner or an approved operator. * @param to address to be approved for the given token ID * @param tokenId uint256 ID of the token to be approved */ function approve(address to, uint256 tokenId) public { address owner = ownerOf(tokenId); require(to != owner, "ERC721: approval to current owner"); require(_msgSender() == owner || isApprovedForAll(owner, _msgSender()), "ERC721: approve caller is not owner nor approved for all" ); _tokenApprovals[tokenId] = to; emit Approval(owner, to, tokenId); } /** * @dev Gets the approved address for a token ID, or zero if no address set * Reverts if the token ID does not exist. * @param tokenId uint256 ID of the token to query the approval of * @return address currently approved for the given token ID */ function getApproved(uint256 tokenId) public view returns (address) { require(_exists(tokenId), "ERC721: approved query for nonexistent token"); return _tokenApprovals[tokenId]; } /** * @dev Sets or unsets the approval of a given operator * An operator is allowed to transfer all tokens of the sender on their behalf. * @param to operator address to set the approval * @param approved representing the status of the approval to be set */ function setApprovalForAll(address to, bool approved) public { require(to != _msgSender(), "ERC721: approve to caller"); _operatorApprovals[_msgSender()][to] = approved; emit ApprovalForAll(_msgSender(), to, approved); } /** * @dev Tells whether an operator is approved by a given owner. * @param owner owner address which you want to query the approval of * @param operator operator address which you want to query the approval of * @return bool whether the given operator is approved by the given owner */ function isApprovedForAll(address owner, address operator) public view returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev Transfers the ownership of a given token ID to another address. * Usage of this method is discouraged, use {safeTransferFrom} whenever possible. * Requires the msg.sender to be the owner, approved, or operator. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function transferFrom(address from, address to, uint256 tokenId) public { //solhint-disable-next-line max-line-length require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _transferFrom(from, to, tokenId); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function safeTransferFrom(address from, address to, uint256 tokenId) public { safeTransferFrom(from, to, tokenId, ""); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the _msgSender() to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) public { require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _safeTransferFrom(from, to, tokenId, _data); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function _safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) internal { _transferFrom(from, to, tokenId); require(_checkOnERC721Received(from, to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Returns whether the specified token exists. * @param tokenId uint256 ID of the token to query the existence of * @return bool whether the token exists */ function _exists(uint256 tokenId) internal view returns (bool) { address owner = _tokenOwner[tokenId]; return owner != address(0); } /** * @dev Returns whether the given spender can transfer a given token ID. * @param spender address of the spender to query * @param tokenId uint256 ID of the token to be transferred * @return bool whether the msg.sender is approved for the given token ID, * is an operator of the owner, or is the owner of the token */ function _isApprovedOrOwner(address spender, uint256 tokenId) internal view returns (bool) { require(_exists(tokenId), "ERC721: operator query for nonexistent token"); address owner = ownerOf(tokenId); return (spender == owner || getApproved(tokenId) == spender || isApprovedForAll(owner, spender)); } /** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _safeMint(address to, uint256 tokenId) internal { _safeMint(to, tokenId, ""); } /** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted * @param _data bytes data to send along with a safe transfer check */ function _safeMint(address to, uint256 tokenId, bytes memory _data) internal { _mint(to, tokenId); require(_checkOnERC721Received(address(0), to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Internal function to mint a new token. * Reverts if the given token ID already exists. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _mint(address to, uint256 tokenId) internal { require(to != address(0), "ERC721: mint to the zero address"); require(!_exists(tokenId), "ERC721: token already minted"); _tokenOwner[tokenId] = to; _ownedTokensCount[to].increment(); emit Transfer(address(0), to, tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * Deprecated, use {_burn} instead. * @param owner owner of the token to burn * @param tokenId uint256 ID of the token being burned */ function _burn(address owner, uint256 tokenId) internal { require(ownerOf(tokenId) == owner, "ERC721: burn of token that is not own"); _clearApproval(tokenId); _ownedTokensCount[owner].decrement(); _tokenOwner[tokenId] = address(0); emit Transfer(owner, address(0), tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * @param tokenId uint256 ID of the token being burned */ function _burn(uint256 tokenId) internal { _burn(ownerOf(tokenId), tokenId); } /** * @dev Internal function to transfer ownership of a given token ID to another address. * As opposed to {transferFrom}, this imposes no restrictions on msg.sender. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function _transferFrom(address from, address to, uint256 tokenId) internal { require(ownerOf(tokenId) == from, "ERC721: transfer of token that is not own"); require(to != address(0), "ERC721: transfer to the zero address"); _clearApproval(tokenId); _ownedTokensCount[from].decrement(); _ownedTokensCount[to].increment(); _tokenOwner[tokenId] = to; emit Transfer(from, to, tokenId); } /** * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address. * The call is not executed if the target address is not a contract. * * This is an internal detail of the `ERC721` contract and its use is deprecated. * @param from address representing the previous owner of the given token ID * @param to target address that will receive the tokens * @param tokenId uint256 ID of the token to be transferred * @param _data bytes optional data to send along with the call * @return bool whether the call correctly returned the expected magic value */ function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory _data) internal returns (bool) { if (!to.isContract()) { return true; } // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = to.call(abi.encodeWithSelector( IERC721Receiver(to).onERC721Received.selector, _msgSender(), from, tokenId, _data )); if (!success) { if (returndata.length > 0) { // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert("ERC721: transfer to non ERC721Receiver implementer"); } } else { bytes4 retval = abi.decode(returndata, (bytes4)); return (retval == _ERC721_RECEIVED); } } /** * @dev Private function to clear current approval of a given token ID. * @param tokenId uint256 ID of the token to be transferred */ function _clearApproval(uint256 tokenId) private { if (_tokenApprovals[tokenId] != address(0)) { _tokenApprovals[tokenId] = address(0); } } }
/** * @title ERC721 Non-Fungible Token Standard basic implementation * @dev see https://eips.ethereum.org/EIPS/eip-721 */
NatSpecMultiLine
_transferFrom
function _transferFrom(address from, address to, uint256 tokenId) internal { require(ownerOf(tokenId) == from, "ERC721: transfer of token that is not own"); require(to != address(0), "ERC721: transfer to the zero address"); _clearApproval(tokenId); _ownedTokensCount[from].decrement(); _ownedTokensCount[to].increment(); _tokenOwner[tokenId] = to; emit Transfer(from, to, tokenId); }
/** * @dev Internal function to transfer ownership of a given token ID to another address. * As opposed to {transferFrom}, this imposes no restrictions on msg.sender. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 13180, 13644 ] }
2,796
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
ERC721
contract ERC721 is Context, ERC165, IERC721 { using SafeMath for uint256; using Address for address; using Counters for Counters.Counter; // Equals to `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))` // which can be also obtained as `IERC721Receiver(0).onERC721Received.selector` bytes4 private constant _ERC721_RECEIVED = 0x150b7a02; // Mapping from token ID to owner mapping (uint256 => address) private _tokenOwner; // Mapping from token ID to approved address mapping (uint256 => address) private _tokenApprovals; // Mapping from owner to number of owned token mapping (address => Counters.Counter) private _ownedTokensCount; // Mapping from owner to operator approvals mapping (address => mapping (address => bool)) private _operatorApprovals; /* * bytes4(keccak256('balanceOf(address)')) == 0x70a08231 * bytes4(keccak256('ownerOf(uint256)')) == 0x6352211e * bytes4(keccak256('approve(address,uint256)')) == 0x095ea7b3 * bytes4(keccak256('getApproved(uint256)')) == 0x081812fc * bytes4(keccak256('setApprovalForAll(address,bool)')) == 0xa22cb465 * bytes4(keccak256('isApprovedForAll(address,address)')) == 0xe985e9c5 * bytes4(keccak256('transferFrom(address,address,uint256)')) == 0x23b872dd * bytes4(keccak256('safeTransferFrom(address,address,uint256)')) == 0x42842e0e * bytes4(keccak256('safeTransferFrom(address,address,uint256,bytes)')) == 0xb88d4fde * * => 0x70a08231 ^ 0x6352211e ^ 0x095ea7b3 ^ 0x081812fc ^ * 0xa22cb465 ^ 0xe985e9c ^ 0x23b872dd ^ 0x42842e0e ^ 0xb88d4fde == 0x80ac58cd */ bytes4 private constant _INTERFACE_ID_ERC721 = 0x80ac58cd; constructor () public { // register the supported interfaces to conform to ERC721 via ERC165 _registerInterface(_INTERFACE_ID_ERC721); } /** * @dev Gets the balance of the specified address. * @param owner address to query the balance of * @return uint256 representing the amount owned by the passed address */ function balanceOf(address owner) public view returns (uint256) { require(owner != address(0), "ERC721: balance query for the zero address"); return _ownedTokensCount[owner].current(); } /** * @dev Gets the owner of the specified token ID. * @param tokenId uint256 ID of the token to query the owner of * @return address currently marked as the owner of the given token ID */ function ownerOf(uint256 tokenId) public view returns (address) { address owner = _tokenOwner[tokenId]; require(owner != address(0), "ERC721: owner query for nonexistent token"); return owner; } /** * @dev Approves another address to transfer the given token ID * The zero address indicates there is no approved address. * There can only be one approved address per token at a given time. * Can only be called by the token owner or an approved operator. * @param to address to be approved for the given token ID * @param tokenId uint256 ID of the token to be approved */ function approve(address to, uint256 tokenId) public { address owner = ownerOf(tokenId); require(to != owner, "ERC721: approval to current owner"); require(_msgSender() == owner || isApprovedForAll(owner, _msgSender()), "ERC721: approve caller is not owner nor approved for all" ); _tokenApprovals[tokenId] = to; emit Approval(owner, to, tokenId); } /** * @dev Gets the approved address for a token ID, or zero if no address set * Reverts if the token ID does not exist. * @param tokenId uint256 ID of the token to query the approval of * @return address currently approved for the given token ID */ function getApproved(uint256 tokenId) public view returns (address) { require(_exists(tokenId), "ERC721: approved query for nonexistent token"); return _tokenApprovals[tokenId]; } /** * @dev Sets or unsets the approval of a given operator * An operator is allowed to transfer all tokens of the sender on their behalf. * @param to operator address to set the approval * @param approved representing the status of the approval to be set */ function setApprovalForAll(address to, bool approved) public { require(to != _msgSender(), "ERC721: approve to caller"); _operatorApprovals[_msgSender()][to] = approved; emit ApprovalForAll(_msgSender(), to, approved); } /** * @dev Tells whether an operator is approved by a given owner. * @param owner owner address which you want to query the approval of * @param operator operator address which you want to query the approval of * @return bool whether the given operator is approved by the given owner */ function isApprovedForAll(address owner, address operator) public view returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev Transfers the ownership of a given token ID to another address. * Usage of this method is discouraged, use {safeTransferFrom} whenever possible. * Requires the msg.sender to be the owner, approved, or operator. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function transferFrom(address from, address to, uint256 tokenId) public { //solhint-disable-next-line max-line-length require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _transferFrom(from, to, tokenId); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function safeTransferFrom(address from, address to, uint256 tokenId) public { safeTransferFrom(from, to, tokenId, ""); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the _msgSender() to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) public { require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _safeTransferFrom(from, to, tokenId, _data); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function _safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) internal { _transferFrom(from, to, tokenId); require(_checkOnERC721Received(from, to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Returns whether the specified token exists. * @param tokenId uint256 ID of the token to query the existence of * @return bool whether the token exists */ function _exists(uint256 tokenId) internal view returns (bool) { address owner = _tokenOwner[tokenId]; return owner != address(0); } /** * @dev Returns whether the given spender can transfer a given token ID. * @param spender address of the spender to query * @param tokenId uint256 ID of the token to be transferred * @return bool whether the msg.sender is approved for the given token ID, * is an operator of the owner, or is the owner of the token */ function _isApprovedOrOwner(address spender, uint256 tokenId) internal view returns (bool) { require(_exists(tokenId), "ERC721: operator query for nonexistent token"); address owner = ownerOf(tokenId); return (spender == owner || getApproved(tokenId) == spender || isApprovedForAll(owner, spender)); } /** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _safeMint(address to, uint256 tokenId) internal { _safeMint(to, tokenId, ""); } /** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted * @param _data bytes data to send along with a safe transfer check */ function _safeMint(address to, uint256 tokenId, bytes memory _data) internal { _mint(to, tokenId); require(_checkOnERC721Received(address(0), to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Internal function to mint a new token. * Reverts if the given token ID already exists. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _mint(address to, uint256 tokenId) internal { require(to != address(0), "ERC721: mint to the zero address"); require(!_exists(tokenId), "ERC721: token already minted"); _tokenOwner[tokenId] = to; _ownedTokensCount[to].increment(); emit Transfer(address(0), to, tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * Deprecated, use {_burn} instead. * @param owner owner of the token to burn * @param tokenId uint256 ID of the token being burned */ function _burn(address owner, uint256 tokenId) internal { require(ownerOf(tokenId) == owner, "ERC721: burn of token that is not own"); _clearApproval(tokenId); _ownedTokensCount[owner].decrement(); _tokenOwner[tokenId] = address(0); emit Transfer(owner, address(0), tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * @param tokenId uint256 ID of the token being burned */ function _burn(uint256 tokenId) internal { _burn(ownerOf(tokenId), tokenId); } /** * @dev Internal function to transfer ownership of a given token ID to another address. * As opposed to {transferFrom}, this imposes no restrictions on msg.sender. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function _transferFrom(address from, address to, uint256 tokenId) internal { require(ownerOf(tokenId) == from, "ERC721: transfer of token that is not own"); require(to != address(0), "ERC721: transfer to the zero address"); _clearApproval(tokenId); _ownedTokensCount[from].decrement(); _ownedTokensCount[to].increment(); _tokenOwner[tokenId] = to; emit Transfer(from, to, tokenId); } /** * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address. * The call is not executed if the target address is not a contract. * * This is an internal detail of the `ERC721` contract and its use is deprecated. * @param from address representing the previous owner of the given token ID * @param to target address that will receive the tokens * @param tokenId uint256 ID of the token to be transferred * @param _data bytes optional data to send along with the call * @return bool whether the call correctly returned the expected magic value */ function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory _data) internal returns (bool) { if (!to.isContract()) { return true; } // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = to.call(abi.encodeWithSelector( IERC721Receiver(to).onERC721Received.selector, _msgSender(), from, tokenId, _data )); if (!success) { if (returndata.length > 0) { // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert("ERC721: transfer to non ERC721Receiver implementer"); } } else { bytes4 retval = abi.decode(returndata, (bytes4)); return (retval == _ERC721_RECEIVED); } } /** * @dev Private function to clear current approval of a given token ID. * @param tokenId uint256 ID of the token to be transferred */ function _clearApproval(uint256 tokenId) private { if (_tokenApprovals[tokenId] != address(0)) { _tokenApprovals[tokenId] = address(0); } } }
/** * @title ERC721 Non-Fungible Token Standard basic implementation * @dev see https://eips.ethereum.org/EIPS/eip-721 */
NatSpecMultiLine
_checkOnERC721Received
function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory _data) internal returns (bool) { if (!to.isContract()) { return true; } // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = to.call(abi.encodeWithSelector( IERC721Receiver(to).onERC721Received.selector, _msgSender(), from, tokenId, _data )); if (!success) { if (returndata.length > 0) { // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert("ERC721: transfer to non ERC721Receiver implementer"); } } else { bytes4 retval = abi.decode(returndata, (bytes4)); return (retval == _ERC721_RECEIVED); } }
/** * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address. * The call is not executed if the target address is not a contract. * * This is an internal detail of the `ERC721` contract and its use is deprecated. * @param from address representing the previous owner of the given token ID * @param to target address that will receive the tokens * @param tokenId uint256 ID of the token to be transferred * @param _data bytes optional data to send along with the call * @return bool whether the call correctly returned the expected magic value */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 14291, 15375 ] }
2,797
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
ERC721
contract ERC721 is Context, ERC165, IERC721 { using SafeMath for uint256; using Address for address; using Counters for Counters.Counter; // Equals to `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))` // which can be also obtained as `IERC721Receiver(0).onERC721Received.selector` bytes4 private constant _ERC721_RECEIVED = 0x150b7a02; // Mapping from token ID to owner mapping (uint256 => address) private _tokenOwner; // Mapping from token ID to approved address mapping (uint256 => address) private _tokenApprovals; // Mapping from owner to number of owned token mapping (address => Counters.Counter) private _ownedTokensCount; // Mapping from owner to operator approvals mapping (address => mapping (address => bool)) private _operatorApprovals; /* * bytes4(keccak256('balanceOf(address)')) == 0x70a08231 * bytes4(keccak256('ownerOf(uint256)')) == 0x6352211e * bytes4(keccak256('approve(address,uint256)')) == 0x095ea7b3 * bytes4(keccak256('getApproved(uint256)')) == 0x081812fc * bytes4(keccak256('setApprovalForAll(address,bool)')) == 0xa22cb465 * bytes4(keccak256('isApprovedForAll(address,address)')) == 0xe985e9c5 * bytes4(keccak256('transferFrom(address,address,uint256)')) == 0x23b872dd * bytes4(keccak256('safeTransferFrom(address,address,uint256)')) == 0x42842e0e * bytes4(keccak256('safeTransferFrom(address,address,uint256,bytes)')) == 0xb88d4fde * * => 0x70a08231 ^ 0x6352211e ^ 0x095ea7b3 ^ 0x081812fc ^ * 0xa22cb465 ^ 0xe985e9c ^ 0x23b872dd ^ 0x42842e0e ^ 0xb88d4fde == 0x80ac58cd */ bytes4 private constant _INTERFACE_ID_ERC721 = 0x80ac58cd; constructor () public { // register the supported interfaces to conform to ERC721 via ERC165 _registerInterface(_INTERFACE_ID_ERC721); } /** * @dev Gets the balance of the specified address. * @param owner address to query the balance of * @return uint256 representing the amount owned by the passed address */ function balanceOf(address owner) public view returns (uint256) { require(owner != address(0), "ERC721: balance query for the zero address"); return _ownedTokensCount[owner].current(); } /** * @dev Gets the owner of the specified token ID. * @param tokenId uint256 ID of the token to query the owner of * @return address currently marked as the owner of the given token ID */ function ownerOf(uint256 tokenId) public view returns (address) { address owner = _tokenOwner[tokenId]; require(owner != address(0), "ERC721: owner query for nonexistent token"); return owner; } /** * @dev Approves another address to transfer the given token ID * The zero address indicates there is no approved address. * There can only be one approved address per token at a given time. * Can only be called by the token owner or an approved operator. * @param to address to be approved for the given token ID * @param tokenId uint256 ID of the token to be approved */ function approve(address to, uint256 tokenId) public { address owner = ownerOf(tokenId); require(to != owner, "ERC721: approval to current owner"); require(_msgSender() == owner || isApprovedForAll(owner, _msgSender()), "ERC721: approve caller is not owner nor approved for all" ); _tokenApprovals[tokenId] = to; emit Approval(owner, to, tokenId); } /** * @dev Gets the approved address for a token ID, or zero if no address set * Reverts if the token ID does not exist. * @param tokenId uint256 ID of the token to query the approval of * @return address currently approved for the given token ID */ function getApproved(uint256 tokenId) public view returns (address) { require(_exists(tokenId), "ERC721: approved query for nonexistent token"); return _tokenApprovals[tokenId]; } /** * @dev Sets or unsets the approval of a given operator * An operator is allowed to transfer all tokens of the sender on their behalf. * @param to operator address to set the approval * @param approved representing the status of the approval to be set */ function setApprovalForAll(address to, bool approved) public { require(to != _msgSender(), "ERC721: approve to caller"); _operatorApprovals[_msgSender()][to] = approved; emit ApprovalForAll(_msgSender(), to, approved); } /** * @dev Tells whether an operator is approved by a given owner. * @param owner owner address which you want to query the approval of * @param operator operator address which you want to query the approval of * @return bool whether the given operator is approved by the given owner */ function isApprovedForAll(address owner, address operator) public view returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev Transfers the ownership of a given token ID to another address. * Usage of this method is discouraged, use {safeTransferFrom} whenever possible. * Requires the msg.sender to be the owner, approved, or operator. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function transferFrom(address from, address to, uint256 tokenId) public { //solhint-disable-next-line max-line-length require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _transferFrom(from, to, tokenId); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function safeTransferFrom(address from, address to, uint256 tokenId) public { safeTransferFrom(from, to, tokenId, ""); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement {IERC721Receiver-onERC721Received}, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the _msgSender() to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) public { require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _safeTransferFrom(from, to, tokenId, _data); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function _safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) internal { _transferFrom(from, to, tokenId); require(_checkOnERC721Received(from, to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Returns whether the specified token exists. * @param tokenId uint256 ID of the token to query the existence of * @return bool whether the token exists */ function _exists(uint256 tokenId) internal view returns (bool) { address owner = _tokenOwner[tokenId]; return owner != address(0); } /** * @dev Returns whether the given spender can transfer a given token ID. * @param spender address of the spender to query * @param tokenId uint256 ID of the token to be transferred * @return bool whether the msg.sender is approved for the given token ID, * is an operator of the owner, or is the owner of the token */ function _isApprovedOrOwner(address spender, uint256 tokenId) internal view returns (bool) { require(_exists(tokenId), "ERC721: operator query for nonexistent token"); address owner = ownerOf(tokenId); return (spender == owner || getApproved(tokenId) == spender || isApprovedForAll(owner, spender)); } /** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _safeMint(address to, uint256 tokenId) internal { _safeMint(to, tokenId, ""); } /** * @dev Internal function to safely mint a new token. * Reverts if the given token ID already exists. * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted * @param _data bytes data to send along with a safe transfer check */ function _safeMint(address to, uint256 tokenId, bytes memory _data) internal { _mint(to, tokenId); require(_checkOnERC721Received(address(0), to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Internal function to mint a new token. * Reverts if the given token ID already exists. * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _mint(address to, uint256 tokenId) internal { require(to != address(0), "ERC721: mint to the zero address"); require(!_exists(tokenId), "ERC721: token already minted"); _tokenOwner[tokenId] = to; _ownedTokensCount[to].increment(); emit Transfer(address(0), to, tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * Deprecated, use {_burn} instead. * @param owner owner of the token to burn * @param tokenId uint256 ID of the token being burned */ function _burn(address owner, uint256 tokenId) internal { require(ownerOf(tokenId) == owner, "ERC721: burn of token that is not own"); _clearApproval(tokenId); _ownedTokensCount[owner].decrement(); _tokenOwner[tokenId] = address(0); emit Transfer(owner, address(0), tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * @param tokenId uint256 ID of the token being burned */ function _burn(uint256 tokenId) internal { _burn(ownerOf(tokenId), tokenId); } /** * @dev Internal function to transfer ownership of a given token ID to another address. * As opposed to {transferFrom}, this imposes no restrictions on msg.sender. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function _transferFrom(address from, address to, uint256 tokenId) internal { require(ownerOf(tokenId) == from, "ERC721: transfer of token that is not own"); require(to != address(0), "ERC721: transfer to the zero address"); _clearApproval(tokenId); _ownedTokensCount[from].decrement(); _ownedTokensCount[to].increment(); _tokenOwner[tokenId] = to; emit Transfer(from, to, tokenId); } /** * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address. * The call is not executed if the target address is not a contract. * * This is an internal detail of the `ERC721` contract and its use is deprecated. * @param from address representing the previous owner of the given token ID * @param to target address that will receive the tokens * @param tokenId uint256 ID of the token to be transferred * @param _data bytes optional data to send along with the call * @return bool whether the call correctly returned the expected magic value */ function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory _data) internal returns (bool) { if (!to.isContract()) { return true; } // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = to.call(abi.encodeWithSelector( IERC721Receiver(to).onERC721Received.selector, _msgSender(), from, tokenId, _data )); if (!success) { if (returndata.length > 0) { // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert("ERC721: transfer to non ERC721Receiver implementer"); } } else { bytes4 retval = abi.decode(returndata, (bytes4)); return (retval == _ERC721_RECEIVED); } } /** * @dev Private function to clear current approval of a given token ID. * @param tokenId uint256 ID of the token to be transferred */ function _clearApproval(uint256 tokenId) private { if (_tokenApprovals[tokenId] != address(0)) { _tokenApprovals[tokenId] = address(0); } } }
/** * @title ERC721 Non-Fungible Token Standard basic implementation * @dev see https://eips.ethereum.org/EIPS/eip-721 */
NatSpecMultiLine
_clearApproval
function _clearApproval(uint256 tokenId) private { if (_tokenApprovals[tokenId] != address(0)) { _tokenApprovals[tokenId] = address(0); } }
/** * @dev Private function to clear current approval of a given token ID. * @param tokenId uint256 ID of the token to be transferred */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 15538, 15718 ] }
2,798
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
ERC721Enumerable
contract ERC721Enumerable is Context, ERC165, ERC721, IERC721Enumerable { // Mapping from owner to list of owned token IDs mapping(address => uint256[]) private _ownedTokens; // Mapping from token ID to index of the owner tokens list mapping(uint256 => uint256) private _ownedTokensIndex; // Array with all token ids, used for enumeration uint256[] private _allTokens; // Mapping from token id to position in the allTokens array mapping(uint256 => uint256) private _allTokensIndex; /* * bytes4(keccak256('totalSupply()')) == 0x18160ddd * bytes4(keccak256('tokenOfOwnerByIndex(address,uint256)')) == 0x2f745c59 * bytes4(keccak256('tokenByIndex(uint256)')) == 0x4f6ccce7 * * => 0x18160ddd ^ 0x2f745c59 ^ 0x4f6ccce7 == 0x780e9d63 */ bytes4 private constant _INTERFACE_ID_ERC721_ENUMERABLE = 0x780e9d63; /** * @dev Constructor function. */ constructor () public { // register the supported interface to conform to ERC721Enumerable via ERC165 _registerInterface(_INTERFACE_ID_ERC721_ENUMERABLE); } /** * @dev Gets the token ID at a given index of the tokens list of the requested owner. * @param owner address owning the tokens list to be accessed * @param index uint256 representing the index to be accessed of the requested tokens list * @return uint256 token ID at the given index of the tokens list owned by the requested address */ function tokenOfOwnerByIndex(address owner, uint256 index) public view returns (uint256) { require(index < balanceOf(owner), "ERC721Enumerable: owner index out of bounds"); return _ownedTokens[owner][index]; } /** * @dev Gets the total amount of tokens stored by the contract. * @return uint256 representing the total amount of tokens */ function totalSupply() public view returns (uint256) { return _allTokens.length; } /** * @dev Gets the token ID at a given index of all the tokens in this contract * Reverts if the index is greater or equal to the total number of tokens. * @param index uint256 representing the index to be accessed of the tokens list * @return uint256 token ID at the given index of the tokens list */ function tokenByIndex(uint256 index) public view returns (uint256) { require(index < totalSupply(), "ERC721Enumerable: global index out of bounds"); return _allTokens[index]; } /** * @dev Internal function to transfer ownership of a given token ID to another address. * As opposed to transferFrom, this imposes no restrictions on msg.sender. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function _transferFrom(address from, address to, uint256 tokenId) internal { super._transferFrom(from, to, tokenId); _removeTokenFromOwnerEnumeration(from, tokenId); _addTokenToOwnerEnumeration(to, tokenId); } /** * @dev Internal function to mint a new token. * Reverts if the given token ID already exists. * @param to address the beneficiary that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _mint(address to, uint256 tokenId) internal { super._mint(to, tokenId); _addTokenToOwnerEnumeration(to, tokenId); _addTokenToAllTokensEnumeration(tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * Deprecated, use {ERC721-_burn} instead. * @param owner owner of the token to burn * @param tokenId uint256 ID of the token being burned */ function _burn(address owner, uint256 tokenId) internal { super._burn(owner, tokenId); _removeTokenFromOwnerEnumeration(owner, tokenId); // Since tokenId will be deleted, we can clear its slot in _ownedTokensIndex to trigger a gas refund _ownedTokensIndex[tokenId] = 0; _removeTokenFromAllTokensEnumeration(tokenId); } /** * @dev Gets the list of token IDs of the requested owner. * @param owner address owning the tokens * @return uint256[] List of token IDs owned by the requested address */ function _tokensOfOwner(address owner) internal view returns (uint256[] storage) { return _ownedTokens[owner]; } /** * @dev Private function to add a token to this extension's ownership-tracking data structures. * @param to address representing the new owner of the given token ID * @param tokenId uint256 ID of the token to be added to the tokens list of the given address */ function _addTokenToOwnerEnumeration(address to, uint256 tokenId) private { _ownedTokensIndex[tokenId] = _ownedTokens[to].length; _ownedTokens[to].push(tokenId); } /** * @dev Private function to add a token to this extension's token tracking data structures. * @param tokenId uint256 ID of the token to be added to the tokens list */ function _addTokenToAllTokensEnumeration(uint256 tokenId) private { _allTokensIndex[tokenId] = _allTokens.length; _allTokens.push(tokenId); } /** * @dev Private function to remove a token from this extension's ownership-tracking data structures. Note that * while the token is not assigned a new owner, the `_ownedTokensIndex` mapping is _not_ updated: this allows for * gas optimizations e.g. when performing a transfer operation (avoiding double writes). * This has O(1) time complexity, but alters the order of the _ownedTokens array. * @param from address representing the previous owner of the given token ID * @param tokenId uint256 ID of the token to be removed from the tokens list of the given address */ function _removeTokenFromOwnerEnumeration(address from, uint256 tokenId) private { // To prevent a gap in from's tokens array, we store the last token in the index of the token to delete, and // then delete the last slot (swap and pop). uint256 lastTokenIndex = _ownedTokens[from].length.sub(1); uint256 tokenIndex = _ownedTokensIndex[tokenId]; // When the token to delete is the last token, the swap operation is unnecessary if (tokenIndex != lastTokenIndex) { uint256 lastTokenId = _ownedTokens[from][lastTokenIndex]; _ownedTokens[from][tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token _ownedTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index } // This also deletes the contents at the last position of the array _ownedTokens[from].length--; // Note that _ownedTokensIndex[tokenId] hasn't been cleared: it still points to the old slot (now occupied by // lastTokenId, or just over the end of the array if the token was the last one). } /** * @dev Private function to remove a token from this extension's token tracking data structures. * This has O(1) time complexity, but alters the order of the _allTokens array. * @param tokenId uint256 ID of the token to be removed from the tokens list */ function _removeTokenFromAllTokensEnumeration(uint256 tokenId) private { // To prevent a gap in the tokens array, we store the last token in the index of the token to delete, and // then delete the last slot (swap and pop). uint256 lastTokenIndex = _allTokens.length.sub(1); uint256 tokenIndex = _allTokensIndex[tokenId]; // When the token to delete is the last token, the swap operation is unnecessary. However, since this occurs so // rarely (when the last minted token is burnt) that we still do the swap here to avoid the gas cost of adding // an 'if' statement (like in _removeTokenFromOwnerEnumeration) uint256 lastTokenId = _allTokens[lastTokenIndex]; _allTokens[tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token _allTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index // This also deletes the contents at the last position of the array _allTokens.length--; _allTokensIndex[tokenId] = 0; } }
/** * @title ERC-721 Non-Fungible Token with optional enumeration extension logic * @dev See https://eips.ethereum.org/EIPS/eip-721 */
NatSpecMultiLine
tokenOfOwnerByIndex
function tokenOfOwnerByIndex(address owner, uint256 index) public view returns (uint256) { require(index < balanceOf(owner), "ERC721Enumerable: owner index out of bounds"); return _ownedTokens[owner][index]; }
/** * @dev Gets the token ID at a given index of the tokens list of the requested owner. * @param owner address owning the tokens list to be accessed * @param index uint256 representing the index to be accessed of the requested tokens list * @return uint256 token ID at the given index of the tokens list owned by the requested address */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 1527, 1764 ] }
2,799
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
ERC721Enumerable
contract ERC721Enumerable is Context, ERC165, ERC721, IERC721Enumerable { // Mapping from owner to list of owned token IDs mapping(address => uint256[]) private _ownedTokens; // Mapping from token ID to index of the owner tokens list mapping(uint256 => uint256) private _ownedTokensIndex; // Array with all token ids, used for enumeration uint256[] private _allTokens; // Mapping from token id to position in the allTokens array mapping(uint256 => uint256) private _allTokensIndex; /* * bytes4(keccak256('totalSupply()')) == 0x18160ddd * bytes4(keccak256('tokenOfOwnerByIndex(address,uint256)')) == 0x2f745c59 * bytes4(keccak256('tokenByIndex(uint256)')) == 0x4f6ccce7 * * => 0x18160ddd ^ 0x2f745c59 ^ 0x4f6ccce7 == 0x780e9d63 */ bytes4 private constant _INTERFACE_ID_ERC721_ENUMERABLE = 0x780e9d63; /** * @dev Constructor function. */ constructor () public { // register the supported interface to conform to ERC721Enumerable via ERC165 _registerInterface(_INTERFACE_ID_ERC721_ENUMERABLE); } /** * @dev Gets the token ID at a given index of the tokens list of the requested owner. * @param owner address owning the tokens list to be accessed * @param index uint256 representing the index to be accessed of the requested tokens list * @return uint256 token ID at the given index of the tokens list owned by the requested address */ function tokenOfOwnerByIndex(address owner, uint256 index) public view returns (uint256) { require(index < balanceOf(owner), "ERC721Enumerable: owner index out of bounds"); return _ownedTokens[owner][index]; } /** * @dev Gets the total amount of tokens stored by the contract. * @return uint256 representing the total amount of tokens */ function totalSupply() public view returns (uint256) { return _allTokens.length; } /** * @dev Gets the token ID at a given index of all the tokens in this contract * Reverts if the index is greater or equal to the total number of tokens. * @param index uint256 representing the index to be accessed of the tokens list * @return uint256 token ID at the given index of the tokens list */ function tokenByIndex(uint256 index) public view returns (uint256) { require(index < totalSupply(), "ERC721Enumerable: global index out of bounds"); return _allTokens[index]; } /** * @dev Internal function to transfer ownership of a given token ID to another address. * As opposed to transferFrom, this imposes no restrictions on msg.sender. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function _transferFrom(address from, address to, uint256 tokenId) internal { super._transferFrom(from, to, tokenId); _removeTokenFromOwnerEnumeration(from, tokenId); _addTokenToOwnerEnumeration(to, tokenId); } /** * @dev Internal function to mint a new token. * Reverts if the given token ID already exists. * @param to address the beneficiary that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _mint(address to, uint256 tokenId) internal { super._mint(to, tokenId); _addTokenToOwnerEnumeration(to, tokenId); _addTokenToAllTokensEnumeration(tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * Deprecated, use {ERC721-_burn} instead. * @param owner owner of the token to burn * @param tokenId uint256 ID of the token being burned */ function _burn(address owner, uint256 tokenId) internal { super._burn(owner, tokenId); _removeTokenFromOwnerEnumeration(owner, tokenId); // Since tokenId will be deleted, we can clear its slot in _ownedTokensIndex to trigger a gas refund _ownedTokensIndex[tokenId] = 0; _removeTokenFromAllTokensEnumeration(tokenId); } /** * @dev Gets the list of token IDs of the requested owner. * @param owner address owning the tokens * @return uint256[] List of token IDs owned by the requested address */ function _tokensOfOwner(address owner) internal view returns (uint256[] storage) { return _ownedTokens[owner]; } /** * @dev Private function to add a token to this extension's ownership-tracking data structures. * @param to address representing the new owner of the given token ID * @param tokenId uint256 ID of the token to be added to the tokens list of the given address */ function _addTokenToOwnerEnumeration(address to, uint256 tokenId) private { _ownedTokensIndex[tokenId] = _ownedTokens[to].length; _ownedTokens[to].push(tokenId); } /** * @dev Private function to add a token to this extension's token tracking data structures. * @param tokenId uint256 ID of the token to be added to the tokens list */ function _addTokenToAllTokensEnumeration(uint256 tokenId) private { _allTokensIndex[tokenId] = _allTokens.length; _allTokens.push(tokenId); } /** * @dev Private function to remove a token from this extension's ownership-tracking data structures. Note that * while the token is not assigned a new owner, the `_ownedTokensIndex` mapping is _not_ updated: this allows for * gas optimizations e.g. when performing a transfer operation (avoiding double writes). * This has O(1) time complexity, but alters the order of the _ownedTokens array. * @param from address representing the previous owner of the given token ID * @param tokenId uint256 ID of the token to be removed from the tokens list of the given address */ function _removeTokenFromOwnerEnumeration(address from, uint256 tokenId) private { // To prevent a gap in from's tokens array, we store the last token in the index of the token to delete, and // then delete the last slot (swap and pop). uint256 lastTokenIndex = _ownedTokens[from].length.sub(1); uint256 tokenIndex = _ownedTokensIndex[tokenId]; // When the token to delete is the last token, the swap operation is unnecessary if (tokenIndex != lastTokenIndex) { uint256 lastTokenId = _ownedTokens[from][lastTokenIndex]; _ownedTokens[from][tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token _ownedTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index } // This also deletes the contents at the last position of the array _ownedTokens[from].length--; // Note that _ownedTokensIndex[tokenId] hasn't been cleared: it still points to the old slot (now occupied by // lastTokenId, or just over the end of the array if the token was the last one). } /** * @dev Private function to remove a token from this extension's token tracking data structures. * This has O(1) time complexity, but alters the order of the _allTokens array. * @param tokenId uint256 ID of the token to be removed from the tokens list */ function _removeTokenFromAllTokensEnumeration(uint256 tokenId) private { // To prevent a gap in the tokens array, we store the last token in the index of the token to delete, and // then delete the last slot (swap and pop). uint256 lastTokenIndex = _allTokens.length.sub(1); uint256 tokenIndex = _allTokensIndex[tokenId]; // When the token to delete is the last token, the swap operation is unnecessary. However, since this occurs so // rarely (when the last minted token is burnt) that we still do the swap here to avoid the gas cost of adding // an 'if' statement (like in _removeTokenFromOwnerEnumeration) uint256 lastTokenId = _allTokens[lastTokenIndex]; _allTokens[tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token _allTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index // This also deletes the contents at the last position of the array _allTokens.length--; _allTokensIndex[tokenId] = 0; } }
/** * @title ERC-721 Non-Fungible Token with optional enumeration extension logic * @dev See https://eips.ethereum.org/EIPS/eip-721 */
NatSpecMultiLine
totalSupply
function totalSupply() public view returns (uint256) { return _allTokens.length; }
/** * @dev Gets the total amount of tokens stored by the contract. * @return uint256 representing the total amount of tokens */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 1918, 2019 ] }
2,800
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
ERC721Enumerable
contract ERC721Enumerable is Context, ERC165, ERC721, IERC721Enumerable { // Mapping from owner to list of owned token IDs mapping(address => uint256[]) private _ownedTokens; // Mapping from token ID to index of the owner tokens list mapping(uint256 => uint256) private _ownedTokensIndex; // Array with all token ids, used for enumeration uint256[] private _allTokens; // Mapping from token id to position in the allTokens array mapping(uint256 => uint256) private _allTokensIndex; /* * bytes4(keccak256('totalSupply()')) == 0x18160ddd * bytes4(keccak256('tokenOfOwnerByIndex(address,uint256)')) == 0x2f745c59 * bytes4(keccak256('tokenByIndex(uint256)')) == 0x4f6ccce7 * * => 0x18160ddd ^ 0x2f745c59 ^ 0x4f6ccce7 == 0x780e9d63 */ bytes4 private constant _INTERFACE_ID_ERC721_ENUMERABLE = 0x780e9d63; /** * @dev Constructor function. */ constructor () public { // register the supported interface to conform to ERC721Enumerable via ERC165 _registerInterface(_INTERFACE_ID_ERC721_ENUMERABLE); } /** * @dev Gets the token ID at a given index of the tokens list of the requested owner. * @param owner address owning the tokens list to be accessed * @param index uint256 representing the index to be accessed of the requested tokens list * @return uint256 token ID at the given index of the tokens list owned by the requested address */ function tokenOfOwnerByIndex(address owner, uint256 index) public view returns (uint256) { require(index < balanceOf(owner), "ERC721Enumerable: owner index out of bounds"); return _ownedTokens[owner][index]; } /** * @dev Gets the total amount of tokens stored by the contract. * @return uint256 representing the total amount of tokens */ function totalSupply() public view returns (uint256) { return _allTokens.length; } /** * @dev Gets the token ID at a given index of all the tokens in this contract * Reverts if the index is greater or equal to the total number of tokens. * @param index uint256 representing the index to be accessed of the tokens list * @return uint256 token ID at the given index of the tokens list */ function tokenByIndex(uint256 index) public view returns (uint256) { require(index < totalSupply(), "ERC721Enumerable: global index out of bounds"); return _allTokens[index]; } /** * @dev Internal function to transfer ownership of a given token ID to another address. * As opposed to transferFrom, this imposes no restrictions on msg.sender. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function _transferFrom(address from, address to, uint256 tokenId) internal { super._transferFrom(from, to, tokenId); _removeTokenFromOwnerEnumeration(from, tokenId); _addTokenToOwnerEnumeration(to, tokenId); } /** * @dev Internal function to mint a new token. * Reverts if the given token ID already exists. * @param to address the beneficiary that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _mint(address to, uint256 tokenId) internal { super._mint(to, tokenId); _addTokenToOwnerEnumeration(to, tokenId); _addTokenToAllTokensEnumeration(tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * Deprecated, use {ERC721-_burn} instead. * @param owner owner of the token to burn * @param tokenId uint256 ID of the token being burned */ function _burn(address owner, uint256 tokenId) internal { super._burn(owner, tokenId); _removeTokenFromOwnerEnumeration(owner, tokenId); // Since tokenId will be deleted, we can clear its slot in _ownedTokensIndex to trigger a gas refund _ownedTokensIndex[tokenId] = 0; _removeTokenFromAllTokensEnumeration(tokenId); } /** * @dev Gets the list of token IDs of the requested owner. * @param owner address owning the tokens * @return uint256[] List of token IDs owned by the requested address */ function _tokensOfOwner(address owner) internal view returns (uint256[] storage) { return _ownedTokens[owner]; } /** * @dev Private function to add a token to this extension's ownership-tracking data structures. * @param to address representing the new owner of the given token ID * @param tokenId uint256 ID of the token to be added to the tokens list of the given address */ function _addTokenToOwnerEnumeration(address to, uint256 tokenId) private { _ownedTokensIndex[tokenId] = _ownedTokens[to].length; _ownedTokens[to].push(tokenId); } /** * @dev Private function to add a token to this extension's token tracking data structures. * @param tokenId uint256 ID of the token to be added to the tokens list */ function _addTokenToAllTokensEnumeration(uint256 tokenId) private { _allTokensIndex[tokenId] = _allTokens.length; _allTokens.push(tokenId); } /** * @dev Private function to remove a token from this extension's ownership-tracking data structures. Note that * while the token is not assigned a new owner, the `_ownedTokensIndex` mapping is _not_ updated: this allows for * gas optimizations e.g. when performing a transfer operation (avoiding double writes). * This has O(1) time complexity, but alters the order of the _ownedTokens array. * @param from address representing the previous owner of the given token ID * @param tokenId uint256 ID of the token to be removed from the tokens list of the given address */ function _removeTokenFromOwnerEnumeration(address from, uint256 tokenId) private { // To prevent a gap in from's tokens array, we store the last token in the index of the token to delete, and // then delete the last slot (swap and pop). uint256 lastTokenIndex = _ownedTokens[from].length.sub(1); uint256 tokenIndex = _ownedTokensIndex[tokenId]; // When the token to delete is the last token, the swap operation is unnecessary if (tokenIndex != lastTokenIndex) { uint256 lastTokenId = _ownedTokens[from][lastTokenIndex]; _ownedTokens[from][tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token _ownedTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index } // This also deletes the contents at the last position of the array _ownedTokens[from].length--; // Note that _ownedTokensIndex[tokenId] hasn't been cleared: it still points to the old slot (now occupied by // lastTokenId, or just over the end of the array if the token was the last one). } /** * @dev Private function to remove a token from this extension's token tracking data structures. * This has O(1) time complexity, but alters the order of the _allTokens array. * @param tokenId uint256 ID of the token to be removed from the tokens list */ function _removeTokenFromAllTokensEnumeration(uint256 tokenId) private { // To prevent a gap in the tokens array, we store the last token in the index of the token to delete, and // then delete the last slot (swap and pop). uint256 lastTokenIndex = _allTokens.length.sub(1); uint256 tokenIndex = _allTokensIndex[tokenId]; // When the token to delete is the last token, the swap operation is unnecessary. However, since this occurs so // rarely (when the last minted token is burnt) that we still do the swap here to avoid the gas cost of adding // an 'if' statement (like in _removeTokenFromOwnerEnumeration) uint256 lastTokenId = _allTokens[lastTokenIndex]; _allTokens[tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token _allTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index // This also deletes the contents at the last position of the array _allTokens.length--; _allTokensIndex[tokenId] = 0; } }
/** * @title ERC-721 Non-Fungible Token with optional enumeration extension logic * @dev See https://eips.ethereum.org/EIPS/eip-721 */
NatSpecMultiLine
tokenByIndex
function tokenByIndex(uint256 index) public view returns (uint256) { require(index < totalSupply(), "ERC721Enumerable: global index out of bounds"); return _allTokens[index]; }
/** * @dev Gets the token ID at a given index of all the tokens in this contract * Reverts if the index is greater or equal to the total number of tokens. * @param index uint256 representing the index to be accessed of the tokens list * @return uint256 token ID at the given index of the tokens list */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 2360, 2564 ] }
2,801
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
ERC721Enumerable
contract ERC721Enumerable is Context, ERC165, ERC721, IERC721Enumerable { // Mapping from owner to list of owned token IDs mapping(address => uint256[]) private _ownedTokens; // Mapping from token ID to index of the owner tokens list mapping(uint256 => uint256) private _ownedTokensIndex; // Array with all token ids, used for enumeration uint256[] private _allTokens; // Mapping from token id to position in the allTokens array mapping(uint256 => uint256) private _allTokensIndex; /* * bytes4(keccak256('totalSupply()')) == 0x18160ddd * bytes4(keccak256('tokenOfOwnerByIndex(address,uint256)')) == 0x2f745c59 * bytes4(keccak256('tokenByIndex(uint256)')) == 0x4f6ccce7 * * => 0x18160ddd ^ 0x2f745c59 ^ 0x4f6ccce7 == 0x780e9d63 */ bytes4 private constant _INTERFACE_ID_ERC721_ENUMERABLE = 0x780e9d63; /** * @dev Constructor function. */ constructor () public { // register the supported interface to conform to ERC721Enumerable via ERC165 _registerInterface(_INTERFACE_ID_ERC721_ENUMERABLE); } /** * @dev Gets the token ID at a given index of the tokens list of the requested owner. * @param owner address owning the tokens list to be accessed * @param index uint256 representing the index to be accessed of the requested tokens list * @return uint256 token ID at the given index of the tokens list owned by the requested address */ function tokenOfOwnerByIndex(address owner, uint256 index) public view returns (uint256) { require(index < balanceOf(owner), "ERC721Enumerable: owner index out of bounds"); return _ownedTokens[owner][index]; } /** * @dev Gets the total amount of tokens stored by the contract. * @return uint256 representing the total amount of tokens */ function totalSupply() public view returns (uint256) { return _allTokens.length; } /** * @dev Gets the token ID at a given index of all the tokens in this contract * Reverts if the index is greater or equal to the total number of tokens. * @param index uint256 representing the index to be accessed of the tokens list * @return uint256 token ID at the given index of the tokens list */ function tokenByIndex(uint256 index) public view returns (uint256) { require(index < totalSupply(), "ERC721Enumerable: global index out of bounds"); return _allTokens[index]; } /** * @dev Internal function to transfer ownership of a given token ID to another address. * As opposed to transferFrom, this imposes no restrictions on msg.sender. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function _transferFrom(address from, address to, uint256 tokenId) internal { super._transferFrom(from, to, tokenId); _removeTokenFromOwnerEnumeration(from, tokenId); _addTokenToOwnerEnumeration(to, tokenId); } /** * @dev Internal function to mint a new token. * Reverts if the given token ID already exists. * @param to address the beneficiary that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _mint(address to, uint256 tokenId) internal { super._mint(to, tokenId); _addTokenToOwnerEnumeration(to, tokenId); _addTokenToAllTokensEnumeration(tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * Deprecated, use {ERC721-_burn} instead. * @param owner owner of the token to burn * @param tokenId uint256 ID of the token being burned */ function _burn(address owner, uint256 tokenId) internal { super._burn(owner, tokenId); _removeTokenFromOwnerEnumeration(owner, tokenId); // Since tokenId will be deleted, we can clear its slot in _ownedTokensIndex to trigger a gas refund _ownedTokensIndex[tokenId] = 0; _removeTokenFromAllTokensEnumeration(tokenId); } /** * @dev Gets the list of token IDs of the requested owner. * @param owner address owning the tokens * @return uint256[] List of token IDs owned by the requested address */ function _tokensOfOwner(address owner) internal view returns (uint256[] storage) { return _ownedTokens[owner]; } /** * @dev Private function to add a token to this extension's ownership-tracking data structures. * @param to address representing the new owner of the given token ID * @param tokenId uint256 ID of the token to be added to the tokens list of the given address */ function _addTokenToOwnerEnumeration(address to, uint256 tokenId) private { _ownedTokensIndex[tokenId] = _ownedTokens[to].length; _ownedTokens[to].push(tokenId); } /** * @dev Private function to add a token to this extension's token tracking data structures. * @param tokenId uint256 ID of the token to be added to the tokens list */ function _addTokenToAllTokensEnumeration(uint256 tokenId) private { _allTokensIndex[tokenId] = _allTokens.length; _allTokens.push(tokenId); } /** * @dev Private function to remove a token from this extension's ownership-tracking data structures. Note that * while the token is not assigned a new owner, the `_ownedTokensIndex` mapping is _not_ updated: this allows for * gas optimizations e.g. when performing a transfer operation (avoiding double writes). * This has O(1) time complexity, but alters the order of the _ownedTokens array. * @param from address representing the previous owner of the given token ID * @param tokenId uint256 ID of the token to be removed from the tokens list of the given address */ function _removeTokenFromOwnerEnumeration(address from, uint256 tokenId) private { // To prevent a gap in from's tokens array, we store the last token in the index of the token to delete, and // then delete the last slot (swap and pop). uint256 lastTokenIndex = _ownedTokens[from].length.sub(1); uint256 tokenIndex = _ownedTokensIndex[tokenId]; // When the token to delete is the last token, the swap operation is unnecessary if (tokenIndex != lastTokenIndex) { uint256 lastTokenId = _ownedTokens[from][lastTokenIndex]; _ownedTokens[from][tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token _ownedTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index } // This also deletes the contents at the last position of the array _ownedTokens[from].length--; // Note that _ownedTokensIndex[tokenId] hasn't been cleared: it still points to the old slot (now occupied by // lastTokenId, or just over the end of the array if the token was the last one). } /** * @dev Private function to remove a token from this extension's token tracking data structures. * This has O(1) time complexity, but alters the order of the _allTokens array. * @param tokenId uint256 ID of the token to be removed from the tokens list */ function _removeTokenFromAllTokensEnumeration(uint256 tokenId) private { // To prevent a gap in the tokens array, we store the last token in the index of the token to delete, and // then delete the last slot (swap and pop). uint256 lastTokenIndex = _allTokens.length.sub(1); uint256 tokenIndex = _allTokensIndex[tokenId]; // When the token to delete is the last token, the swap operation is unnecessary. However, since this occurs so // rarely (when the last minted token is burnt) that we still do the swap here to avoid the gas cost of adding // an 'if' statement (like in _removeTokenFromOwnerEnumeration) uint256 lastTokenId = _allTokens[lastTokenIndex]; _allTokens[tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token _allTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index // This also deletes the contents at the last position of the array _allTokens.length--; _allTokensIndex[tokenId] = 0; } }
/** * @title ERC-721 Non-Fungible Token with optional enumeration extension logic * @dev See https://eips.ethereum.org/EIPS/eip-721 */
NatSpecMultiLine
_transferFrom
function _transferFrom(address from, address to, uint256 tokenId) internal { super._transferFrom(from, to, tokenId); _removeTokenFromOwnerEnumeration(from, tokenId); _addTokenToOwnerEnumeration(to, tokenId); }
/** * @dev Internal function to transfer ownership of a given token ID to another address. * As opposed to transferFrom, this imposes no restrictions on msg.sender. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 2943, 3193 ] }
2,802
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
ERC721Enumerable
contract ERC721Enumerable is Context, ERC165, ERC721, IERC721Enumerable { // Mapping from owner to list of owned token IDs mapping(address => uint256[]) private _ownedTokens; // Mapping from token ID to index of the owner tokens list mapping(uint256 => uint256) private _ownedTokensIndex; // Array with all token ids, used for enumeration uint256[] private _allTokens; // Mapping from token id to position in the allTokens array mapping(uint256 => uint256) private _allTokensIndex; /* * bytes4(keccak256('totalSupply()')) == 0x18160ddd * bytes4(keccak256('tokenOfOwnerByIndex(address,uint256)')) == 0x2f745c59 * bytes4(keccak256('tokenByIndex(uint256)')) == 0x4f6ccce7 * * => 0x18160ddd ^ 0x2f745c59 ^ 0x4f6ccce7 == 0x780e9d63 */ bytes4 private constant _INTERFACE_ID_ERC721_ENUMERABLE = 0x780e9d63; /** * @dev Constructor function. */ constructor () public { // register the supported interface to conform to ERC721Enumerable via ERC165 _registerInterface(_INTERFACE_ID_ERC721_ENUMERABLE); } /** * @dev Gets the token ID at a given index of the tokens list of the requested owner. * @param owner address owning the tokens list to be accessed * @param index uint256 representing the index to be accessed of the requested tokens list * @return uint256 token ID at the given index of the tokens list owned by the requested address */ function tokenOfOwnerByIndex(address owner, uint256 index) public view returns (uint256) { require(index < balanceOf(owner), "ERC721Enumerable: owner index out of bounds"); return _ownedTokens[owner][index]; } /** * @dev Gets the total amount of tokens stored by the contract. * @return uint256 representing the total amount of tokens */ function totalSupply() public view returns (uint256) { return _allTokens.length; } /** * @dev Gets the token ID at a given index of all the tokens in this contract * Reverts if the index is greater or equal to the total number of tokens. * @param index uint256 representing the index to be accessed of the tokens list * @return uint256 token ID at the given index of the tokens list */ function tokenByIndex(uint256 index) public view returns (uint256) { require(index < totalSupply(), "ERC721Enumerable: global index out of bounds"); return _allTokens[index]; } /** * @dev Internal function to transfer ownership of a given token ID to another address. * As opposed to transferFrom, this imposes no restrictions on msg.sender. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function _transferFrom(address from, address to, uint256 tokenId) internal { super._transferFrom(from, to, tokenId); _removeTokenFromOwnerEnumeration(from, tokenId); _addTokenToOwnerEnumeration(to, tokenId); } /** * @dev Internal function to mint a new token. * Reverts if the given token ID already exists. * @param to address the beneficiary that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _mint(address to, uint256 tokenId) internal { super._mint(to, tokenId); _addTokenToOwnerEnumeration(to, tokenId); _addTokenToAllTokensEnumeration(tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * Deprecated, use {ERC721-_burn} instead. * @param owner owner of the token to burn * @param tokenId uint256 ID of the token being burned */ function _burn(address owner, uint256 tokenId) internal { super._burn(owner, tokenId); _removeTokenFromOwnerEnumeration(owner, tokenId); // Since tokenId will be deleted, we can clear its slot in _ownedTokensIndex to trigger a gas refund _ownedTokensIndex[tokenId] = 0; _removeTokenFromAllTokensEnumeration(tokenId); } /** * @dev Gets the list of token IDs of the requested owner. * @param owner address owning the tokens * @return uint256[] List of token IDs owned by the requested address */ function _tokensOfOwner(address owner) internal view returns (uint256[] storage) { return _ownedTokens[owner]; } /** * @dev Private function to add a token to this extension's ownership-tracking data structures. * @param to address representing the new owner of the given token ID * @param tokenId uint256 ID of the token to be added to the tokens list of the given address */ function _addTokenToOwnerEnumeration(address to, uint256 tokenId) private { _ownedTokensIndex[tokenId] = _ownedTokens[to].length; _ownedTokens[to].push(tokenId); } /** * @dev Private function to add a token to this extension's token tracking data structures. * @param tokenId uint256 ID of the token to be added to the tokens list */ function _addTokenToAllTokensEnumeration(uint256 tokenId) private { _allTokensIndex[tokenId] = _allTokens.length; _allTokens.push(tokenId); } /** * @dev Private function to remove a token from this extension's ownership-tracking data structures. Note that * while the token is not assigned a new owner, the `_ownedTokensIndex` mapping is _not_ updated: this allows for * gas optimizations e.g. when performing a transfer operation (avoiding double writes). * This has O(1) time complexity, but alters the order of the _ownedTokens array. * @param from address representing the previous owner of the given token ID * @param tokenId uint256 ID of the token to be removed from the tokens list of the given address */ function _removeTokenFromOwnerEnumeration(address from, uint256 tokenId) private { // To prevent a gap in from's tokens array, we store the last token in the index of the token to delete, and // then delete the last slot (swap and pop). uint256 lastTokenIndex = _ownedTokens[from].length.sub(1); uint256 tokenIndex = _ownedTokensIndex[tokenId]; // When the token to delete is the last token, the swap operation is unnecessary if (tokenIndex != lastTokenIndex) { uint256 lastTokenId = _ownedTokens[from][lastTokenIndex]; _ownedTokens[from][tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token _ownedTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index } // This also deletes the contents at the last position of the array _ownedTokens[from].length--; // Note that _ownedTokensIndex[tokenId] hasn't been cleared: it still points to the old slot (now occupied by // lastTokenId, or just over the end of the array if the token was the last one). } /** * @dev Private function to remove a token from this extension's token tracking data structures. * This has O(1) time complexity, but alters the order of the _allTokens array. * @param tokenId uint256 ID of the token to be removed from the tokens list */ function _removeTokenFromAllTokensEnumeration(uint256 tokenId) private { // To prevent a gap in the tokens array, we store the last token in the index of the token to delete, and // then delete the last slot (swap and pop). uint256 lastTokenIndex = _allTokens.length.sub(1); uint256 tokenIndex = _allTokensIndex[tokenId]; // When the token to delete is the last token, the swap operation is unnecessary. However, since this occurs so // rarely (when the last minted token is burnt) that we still do the swap here to avoid the gas cost of adding // an 'if' statement (like in _removeTokenFromOwnerEnumeration) uint256 lastTokenId = _allTokens[lastTokenIndex]; _allTokens[tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token _allTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index // This also deletes the contents at the last position of the array _allTokens.length--; _allTokensIndex[tokenId] = 0; } }
/** * @title ERC-721 Non-Fungible Token with optional enumeration extension logic * @dev See https://eips.ethereum.org/EIPS/eip-721 */
NatSpecMultiLine
_mint
function _mint(address to, uint256 tokenId) internal { super._mint(to, tokenId); _addTokenToOwnerEnumeration(to, tokenId); _addTokenToAllTokensEnumeration(tokenId); }
/** * @dev Internal function to mint a new token. * Reverts if the given token ID already exists. * @param to address the beneficiary that will own the minted token * @param tokenId uint256 ID of the token to be minted */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 3453, 3660 ] }
2,803
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
ERC721Enumerable
contract ERC721Enumerable is Context, ERC165, ERC721, IERC721Enumerable { // Mapping from owner to list of owned token IDs mapping(address => uint256[]) private _ownedTokens; // Mapping from token ID to index of the owner tokens list mapping(uint256 => uint256) private _ownedTokensIndex; // Array with all token ids, used for enumeration uint256[] private _allTokens; // Mapping from token id to position in the allTokens array mapping(uint256 => uint256) private _allTokensIndex; /* * bytes4(keccak256('totalSupply()')) == 0x18160ddd * bytes4(keccak256('tokenOfOwnerByIndex(address,uint256)')) == 0x2f745c59 * bytes4(keccak256('tokenByIndex(uint256)')) == 0x4f6ccce7 * * => 0x18160ddd ^ 0x2f745c59 ^ 0x4f6ccce7 == 0x780e9d63 */ bytes4 private constant _INTERFACE_ID_ERC721_ENUMERABLE = 0x780e9d63; /** * @dev Constructor function. */ constructor () public { // register the supported interface to conform to ERC721Enumerable via ERC165 _registerInterface(_INTERFACE_ID_ERC721_ENUMERABLE); } /** * @dev Gets the token ID at a given index of the tokens list of the requested owner. * @param owner address owning the tokens list to be accessed * @param index uint256 representing the index to be accessed of the requested tokens list * @return uint256 token ID at the given index of the tokens list owned by the requested address */ function tokenOfOwnerByIndex(address owner, uint256 index) public view returns (uint256) { require(index < balanceOf(owner), "ERC721Enumerable: owner index out of bounds"); return _ownedTokens[owner][index]; } /** * @dev Gets the total amount of tokens stored by the contract. * @return uint256 representing the total amount of tokens */ function totalSupply() public view returns (uint256) { return _allTokens.length; } /** * @dev Gets the token ID at a given index of all the tokens in this contract * Reverts if the index is greater or equal to the total number of tokens. * @param index uint256 representing the index to be accessed of the tokens list * @return uint256 token ID at the given index of the tokens list */ function tokenByIndex(uint256 index) public view returns (uint256) { require(index < totalSupply(), "ERC721Enumerable: global index out of bounds"); return _allTokens[index]; } /** * @dev Internal function to transfer ownership of a given token ID to another address. * As opposed to transferFrom, this imposes no restrictions on msg.sender. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function _transferFrom(address from, address to, uint256 tokenId) internal { super._transferFrom(from, to, tokenId); _removeTokenFromOwnerEnumeration(from, tokenId); _addTokenToOwnerEnumeration(to, tokenId); } /** * @dev Internal function to mint a new token. * Reverts if the given token ID already exists. * @param to address the beneficiary that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _mint(address to, uint256 tokenId) internal { super._mint(to, tokenId); _addTokenToOwnerEnumeration(to, tokenId); _addTokenToAllTokensEnumeration(tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * Deprecated, use {ERC721-_burn} instead. * @param owner owner of the token to burn * @param tokenId uint256 ID of the token being burned */ function _burn(address owner, uint256 tokenId) internal { super._burn(owner, tokenId); _removeTokenFromOwnerEnumeration(owner, tokenId); // Since tokenId will be deleted, we can clear its slot in _ownedTokensIndex to trigger a gas refund _ownedTokensIndex[tokenId] = 0; _removeTokenFromAllTokensEnumeration(tokenId); } /** * @dev Gets the list of token IDs of the requested owner. * @param owner address owning the tokens * @return uint256[] List of token IDs owned by the requested address */ function _tokensOfOwner(address owner) internal view returns (uint256[] storage) { return _ownedTokens[owner]; } /** * @dev Private function to add a token to this extension's ownership-tracking data structures. * @param to address representing the new owner of the given token ID * @param tokenId uint256 ID of the token to be added to the tokens list of the given address */ function _addTokenToOwnerEnumeration(address to, uint256 tokenId) private { _ownedTokensIndex[tokenId] = _ownedTokens[to].length; _ownedTokens[to].push(tokenId); } /** * @dev Private function to add a token to this extension's token tracking data structures. * @param tokenId uint256 ID of the token to be added to the tokens list */ function _addTokenToAllTokensEnumeration(uint256 tokenId) private { _allTokensIndex[tokenId] = _allTokens.length; _allTokens.push(tokenId); } /** * @dev Private function to remove a token from this extension's ownership-tracking data structures. Note that * while the token is not assigned a new owner, the `_ownedTokensIndex` mapping is _not_ updated: this allows for * gas optimizations e.g. when performing a transfer operation (avoiding double writes). * This has O(1) time complexity, but alters the order of the _ownedTokens array. * @param from address representing the previous owner of the given token ID * @param tokenId uint256 ID of the token to be removed from the tokens list of the given address */ function _removeTokenFromOwnerEnumeration(address from, uint256 tokenId) private { // To prevent a gap in from's tokens array, we store the last token in the index of the token to delete, and // then delete the last slot (swap and pop). uint256 lastTokenIndex = _ownedTokens[from].length.sub(1); uint256 tokenIndex = _ownedTokensIndex[tokenId]; // When the token to delete is the last token, the swap operation is unnecessary if (tokenIndex != lastTokenIndex) { uint256 lastTokenId = _ownedTokens[from][lastTokenIndex]; _ownedTokens[from][tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token _ownedTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index } // This also deletes the contents at the last position of the array _ownedTokens[from].length--; // Note that _ownedTokensIndex[tokenId] hasn't been cleared: it still points to the old slot (now occupied by // lastTokenId, or just over the end of the array if the token was the last one). } /** * @dev Private function to remove a token from this extension's token tracking data structures. * This has O(1) time complexity, but alters the order of the _allTokens array. * @param tokenId uint256 ID of the token to be removed from the tokens list */ function _removeTokenFromAllTokensEnumeration(uint256 tokenId) private { // To prevent a gap in the tokens array, we store the last token in the index of the token to delete, and // then delete the last slot (swap and pop). uint256 lastTokenIndex = _allTokens.length.sub(1); uint256 tokenIndex = _allTokensIndex[tokenId]; // When the token to delete is the last token, the swap operation is unnecessary. However, since this occurs so // rarely (when the last minted token is burnt) that we still do the swap here to avoid the gas cost of adding // an 'if' statement (like in _removeTokenFromOwnerEnumeration) uint256 lastTokenId = _allTokens[lastTokenIndex]; _allTokens[tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token _allTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index // This also deletes the contents at the last position of the array _allTokens.length--; _allTokensIndex[tokenId] = 0; } }
/** * @title ERC-721 Non-Fungible Token with optional enumeration extension logic * @dev See https://eips.ethereum.org/EIPS/eip-721 */
NatSpecMultiLine
_burn
function _burn(address owner, uint256 tokenId) internal { super._burn(owner, tokenId); _removeTokenFromOwnerEnumeration(owner, tokenId); // Since tokenId will be deleted, we can clear its slot in _ownedTokensIndex to trigger a gas refund _ownedTokensIndex[tokenId] = 0; _removeTokenFromAllTokensEnumeration(tokenId); }
/** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * Deprecated, use {ERC721-_burn} instead. * @param owner owner of the token to burn * @param tokenId uint256 ID of the token being burned */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 3939, 4316 ] }
2,804
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
ERC721Enumerable
contract ERC721Enumerable is Context, ERC165, ERC721, IERC721Enumerable { // Mapping from owner to list of owned token IDs mapping(address => uint256[]) private _ownedTokens; // Mapping from token ID to index of the owner tokens list mapping(uint256 => uint256) private _ownedTokensIndex; // Array with all token ids, used for enumeration uint256[] private _allTokens; // Mapping from token id to position in the allTokens array mapping(uint256 => uint256) private _allTokensIndex; /* * bytes4(keccak256('totalSupply()')) == 0x18160ddd * bytes4(keccak256('tokenOfOwnerByIndex(address,uint256)')) == 0x2f745c59 * bytes4(keccak256('tokenByIndex(uint256)')) == 0x4f6ccce7 * * => 0x18160ddd ^ 0x2f745c59 ^ 0x4f6ccce7 == 0x780e9d63 */ bytes4 private constant _INTERFACE_ID_ERC721_ENUMERABLE = 0x780e9d63; /** * @dev Constructor function. */ constructor () public { // register the supported interface to conform to ERC721Enumerable via ERC165 _registerInterface(_INTERFACE_ID_ERC721_ENUMERABLE); } /** * @dev Gets the token ID at a given index of the tokens list of the requested owner. * @param owner address owning the tokens list to be accessed * @param index uint256 representing the index to be accessed of the requested tokens list * @return uint256 token ID at the given index of the tokens list owned by the requested address */ function tokenOfOwnerByIndex(address owner, uint256 index) public view returns (uint256) { require(index < balanceOf(owner), "ERC721Enumerable: owner index out of bounds"); return _ownedTokens[owner][index]; } /** * @dev Gets the total amount of tokens stored by the contract. * @return uint256 representing the total amount of tokens */ function totalSupply() public view returns (uint256) { return _allTokens.length; } /** * @dev Gets the token ID at a given index of all the tokens in this contract * Reverts if the index is greater or equal to the total number of tokens. * @param index uint256 representing the index to be accessed of the tokens list * @return uint256 token ID at the given index of the tokens list */ function tokenByIndex(uint256 index) public view returns (uint256) { require(index < totalSupply(), "ERC721Enumerable: global index out of bounds"); return _allTokens[index]; } /** * @dev Internal function to transfer ownership of a given token ID to another address. * As opposed to transferFrom, this imposes no restrictions on msg.sender. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function _transferFrom(address from, address to, uint256 tokenId) internal { super._transferFrom(from, to, tokenId); _removeTokenFromOwnerEnumeration(from, tokenId); _addTokenToOwnerEnumeration(to, tokenId); } /** * @dev Internal function to mint a new token. * Reverts if the given token ID already exists. * @param to address the beneficiary that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _mint(address to, uint256 tokenId) internal { super._mint(to, tokenId); _addTokenToOwnerEnumeration(to, tokenId); _addTokenToAllTokensEnumeration(tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * Deprecated, use {ERC721-_burn} instead. * @param owner owner of the token to burn * @param tokenId uint256 ID of the token being burned */ function _burn(address owner, uint256 tokenId) internal { super._burn(owner, tokenId); _removeTokenFromOwnerEnumeration(owner, tokenId); // Since tokenId will be deleted, we can clear its slot in _ownedTokensIndex to trigger a gas refund _ownedTokensIndex[tokenId] = 0; _removeTokenFromAllTokensEnumeration(tokenId); } /** * @dev Gets the list of token IDs of the requested owner. * @param owner address owning the tokens * @return uint256[] List of token IDs owned by the requested address */ function _tokensOfOwner(address owner) internal view returns (uint256[] storage) { return _ownedTokens[owner]; } /** * @dev Private function to add a token to this extension's ownership-tracking data structures. * @param to address representing the new owner of the given token ID * @param tokenId uint256 ID of the token to be added to the tokens list of the given address */ function _addTokenToOwnerEnumeration(address to, uint256 tokenId) private { _ownedTokensIndex[tokenId] = _ownedTokens[to].length; _ownedTokens[to].push(tokenId); } /** * @dev Private function to add a token to this extension's token tracking data structures. * @param tokenId uint256 ID of the token to be added to the tokens list */ function _addTokenToAllTokensEnumeration(uint256 tokenId) private { _allTokensIndex[tokenId] = _allTokens.length; _allTokens.push(tokenId); } /** * @dev Private function to remove a token from this extension's ownership-tracking data structures. Note that * while the token is not assigned a new owner, the `_ownedTokensIndex` mapping is _not_ updated: this allows for * gas optimizations e.g. when performing a transfer operation (avoiding double writes). * This has O(1) time complexity, but alters the order of the _ownedTokens array. * @param from address representing the previous owner of the given token ID * @param tokenId uint256 ID of the token to be removed from the tokens list of the given address */ function _removeTokenFromOwnerEnumeration(address from, uint256 tokenId) private { // To prevent a gap in from's tokens array, we store the last token in the index of the token to delete, and // then delete the last slot (swap and pop). uint256 lastTokenIndex = _ownedTokens[from].length.sub(1); uint256 tokenIndex = _ownedTokensIndex[tokenId]; // When the token to delete is the last token, the swap operation is unnecessary if (tokenIndex != lastTokenIndex) { uint256 lastTokenId = _ownedTokens[from][lastTokenIndex]; _ownedTokens[from][tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token _ownedTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index } // This also deletes the contents at the last position of the array _ownedTokens[from].length--; // Note that _ownedTokensIndex[tokenId] hasn't been cleared: it still points to the old slot (now occupied by // lastTokenId, or just over the end of the array if the token was the last one). } /** * @dev Private function to remove a token from this extension's token tracking data structures. * This has O(1) time complexity, but alters the order of the _allTokens array. * @param tokenId uint256 ID of the token to be removed from the tokens list */ function _removeTokenFromAllTokensEnumeration(uint256 tokenId) private { // To prevent a gap in the tokens array, we store the last token in the index of the token to delete, and // then delete the last slot (swap and pop). uint256 lastTokenIndex = _allTokens.length.sub(1); uint256 tokenIndex = _allTokensIndex[tokenId]; // When the token to delete is the last token, the swap operation is unnecessary. However, since this occurs so // rarely (when the last minted token is burnt) that we still do the swap here to avoid the gas cost of adding // an 'if' statement (like in _removeTokenFromOwnerEnumeration) uint256 lastTokenId = _allTokens[lastTokenIndex]; _allTokens[tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token _allTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index // This also deletes the contents at the last position of the array _allTokens.length--; _allTokensIndex[tokenId] = 0; } }
/** * @title ERC-721 Non-Fungible Token with optional enumeration extension logic * @dev See https://eips.ethereum.org/EIPS/eip-721 */
NatSpecMultiLine
_tokensOfOwner
function _tokensOfOwner(address owner) internal view returns (uint256[] storage) { return _ownedTokens[owner]; }
/** * @dev Gets the list of token IDs of the requested owner. * @param owner address owning the tokens * @return uint256[] List of token IDs owned by the requested address */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 4523, 4654 ] }
2,805
TAIT
TAIT.sol
0x91eb270469976168bc099b25cf02838c29656aab
Solidity
ERC721Enumerable
contract ERC721Enumerable is Context, ERC165, ERC721, IERC721Enumerable { // Mapping from owner to list of owned token IDs mapping(address => uint256[]) private _ownedTokens; // Mapping from token ID to index of the owner tokens list mapping(uint256 => uint256) private _ownedTokensIndex; // Array with all token ids, used for enumeration uint256[] private _allTokens; // Mapping from token id to position in the allTokens array mapping(uint256 => uint256) private _allTokensIndex; /* * bytes4(keccak256('totalSupply()')) == 0x18160ddd * bytes4(keccak256('tokenOfOwnerByIndex(address,uint256)')) == 0x2f745c59 * bytes4(keccak256('tokenByIndex(uint256)')) == 0x4f6ccce7 * * => 0x18160ddd ^ 0x2f745c59 ^ 0x4f6ccce7 == 0x780e9d63 */ bytes4 private constant _INTERFACE_ID_ERC721_ENUMERABLE = 0x780e9d63; /** * @dev Constructor function. */ constructor () public { // register the supported interface to conform to ERC721Enumerable via ERC165 _registerInterface(_INTERFACE_ID_ERC721_ENUMERABLE); } /** * @dev Gets the token ID at a given index of the tokens list of the requested owner. * @param owner address owning the tokens list to be accessed * @param index uint256 representing the index to be accessed of the requested tokens list * @return uint256 token ID at the given index of the tokens list owned by the requested address */ function tokenOfOwnerByIndex(address owner, uint256 index) public view returns (uint256) { require(index < balanceOf(owner), "ERC721Enumerable: owner index out of bounds"); return _ownedTokens[owner][index]; } /** * @dev Gets the total amount of tokens stored by the contract. * @return uint256 representing the total amount of tokens */ function totalSupply() public view returns (uint256) { return _allTokens.length; } /** * @dev Gets the token ID at a given index of all the tokens in this contract * Reverts if the index is greater or equal to the total number of tokens. * @param index uint256 representing the index to be accessed of the tokens list * @return uint256 token ID at the given index of the tokens list */ function tokenByIndex(uint256 index) public view returns (uint256) { require(index < totalSupply(), "ERC721Enumerable: global index out of bounds"); return _allTokens[index]; } /** * @dev Internal function to transfer ownership of a given token ID to another address. * As opposed to transferFrom, this imposes no restrictions on msg.sender. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function _transferFrom(address from, address to, uint256 tokenId) internal { super._transferFrom(from, to, tokenId); _removeTokenFromOwnerEnumeration(from, tokenId); _addTokenToOwnerEnumeration(to, tokenId); } /** * @dev Internal function to mint a new token. * Reverts if the given token ID already exists. * @param to address the beneficiary that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _mint(address to, uint256 tokenId) internal { super._mint(to, tokenId); _addTokenToOwnerEnumeration(to, tokenId); _addTokenToAllTokensEnumeration(tokenId); } /** * @dev Internal function to burn a specific token. * Reverts if the token does not exist. * Deprecated, use {ERC721-_burn} instead. * @param owner owner of the token to burn * @param tokenId uint256 ID of the token being burned */ function _burn(address owner, uint256 tokenId) internal { super._burn(owner, tokenId); _removeTokenFromOwnerEnumeration(owner, tokenId); // Since tokenId will be deleted, we can clear its slot in _ownedTokensIndex to trigger a gas refund _ownedTokensIndex[tokenId] = 0; _removeTokenFromAllTokensEnumeration(tokenId); } /** * @dev Gets the list of token IDs of the requested owner. * @param owner address owning the tokens * @return uint256[] List of token IDs owned by the requested address */ function _tokensOfOwner(address owner) internal view returns (uint256[] storage) { return _ownedTokens[owner]; } /** * @dev Private function to add a token to this extension's ownership-tracking data structures. * @param to address representing the new owner of the given token ID * @param tokenId uint256 ID of the token to be added to the tokens list of the given address */ function _addTokenToOwnerEnumeration(address to, uint256 tokenId) private { _ownedTokensIndex[tokenId] = _ownedTokens[to].length; _ownedTokens[to].push(tokenId); } /** * @dev Private function to add a token to this extension's token tracking data structures. * @param tokenId uint256 ID of the token to be added to the tokens list */ function _addTokenToAllTokensEnumeration(uint256 tokenId) private { _allTokensIndex[tokenId] = _allTokens.length; _allTokens.push(tokenId); } /** * @dev Private function to remove a token from this extension's ownership-tracking data structures. Note that * while the token is not assigned a new owner, the `_ownedTokensIndex` mapping is _not_ updated: this allows for * gas optimizations e.g. when performing a transfer operation (avoiding double writes). * This has O(1) time complexity, but alters the order of the _ownedTokens array. * @param from address representing the previous owner of the given token ID * @param tokenId uint256 ID of the token to be removed from the tokens list of the given address */ function _removeTokenFromOwnerEnumeration(address from, uint256 tokenId) private { // To prevent a gap in from's tokens array, we store the last token in the index of the token to delete, and // then delete the last slot (swap and pop). uint256 lastTokenIndex = _ownedTokens[from].length.sub(1); uint256 tokenIndex = _ownedTokensIndex[tokenId]; // When the token to delete is the last token, the swap operation is unnecessary if (tokenIndex != lastTokenIndex) { uint256 lastTokenId = _ownedTokens[from][lastTokenIndex]; _ownedTokens[from][tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token _ownedTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index } // This also deletes the contents at the last position of the array _ownedTokens[from].length--; // Note that _ownedTokensIndex[tokenId] hasn't been cleared: it still points to the old slot (now occupied by // lastTokenId, or just over the end of the array if the token was the last one). } /** * @dev Private function to remove a token from this extension's token tracking data structures. * This has O(1) time complexity, but alters the order of the _allTokens array. * @param tokenId uint256 ID of the token to be removed from the tokens list */ function _removeTokenFromAllTokensEnumeration(uint256 tokenId) private { // To prevent a gap in the tokens array, we store the last token in the index of the token to delete, and // then delete the last slot (swap and pop). uint256 lastTokenIndex = _allTokens.length.sub(1); uint256 tokenIndex = _allTokensIndex[tokenId]; // When the token to delete is the last token, the swap operation is unnecessary. However, since this occurs so // rarely (when the last minted token is burnt) that we still do the swap here to avoid the gas cost of adding // an 'if' statement (like in _removeTokenFromOwnerEnumeration) uint256 lastTokenId = _allTokens[lastTokenIndex]; _allTokens[tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token _allTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index // This also deletes the contents at the last position of the array _allTokens.length--; _allTokensIndex[tokenId] = 0; } }
/** * @title ERC-721 Non-Fungible Token with optional enumeration extension logic * @dev See https://eips.ethereum.org/EIPS/eip-721 */
NatSpecMultiLine
_addTokenToOwnerEnumeration
function _addTokenToOwnerEnumeration(address to, uint256 tokenId) private { _ownedTokensIndex[tokenId] = _ownedTokens[to].length; _ownedTokens[to].push(tokenId); }
/** * @dev Private function to add a token to this extension's ownership-tracking data structures. * @param to address representing the new owner of the given token ID * @param tokenId uint256 ID of the token to be added to the tokens list of the given address */
NatSpecMultiLine
v0.5.13+commit.5b0b510c
MIT
bzzr://517d20cc1d72f1cd9f7a238cb696f06b038f2c6b956874ccaa2959a78ce6ac7a
{ "func_code_index": [ 4950, 5141 ] }
2,806