html_url
stringlengths
48
51
title
stringlengths
1
290
comments
sequencelengths
0
30
body
stringlengths
0
228k
number
int64
2
7.08k
https://github.com/huggingface/datasets/issues/4056
Unexpected behavior of _TempDirWithCustomCleanup
[ "Hi ! Would setting TMPDIR at the beginning of your python script/session work ? I mean, even before importing transformers, datasets, etc. and using them ? I think this would be the most robust solution given any library that uses `tempfile`. I don't think we aim to support environment variables to be changed at run time", "Hi, yeah setting the environment variable before the imports / as environment variable outside is another way to fix this. I am just arguing that `datasets` already uses its own global variable to track temporary files: `_TEMP_DIR_FOR_TEMP_CACHE_FILES`, and the creation of this global variable should respect TMPDIR instead of relying on tempfile to do so." ]
## Describe the bug This is not 100% a bug in `datasets`, but behavior that surprised me and I think this could be made more robust on the `datasets`side. When using `datasets.disable_caching()`, cache files are written to a temporary directory. This directory should be based on the environment variable TMPDIR. I want to set TMPDIR at runtime using os.ENVIRON["TMPDIR"] = something, but depending on other imported modules this can fail to take effect. ## Steps to reproduce the bug `_TempDirWithCustomCleanup` relies on `tempfile` to generate a path to a temporary directory. However, `tempfile` generates the path only once. This can be a problem when trying to set TMPDIR at runtime whenever other code imports `tempfile` first and does something unexpected. For example (after too much trial and error) I found out that a different part of the code base I work with defines a class `PatchedDataCollatorForLanguageModeling(transformers.DataCollatorForLanguageModeling)` based on a `transformers` class. This import is enough to trigger `tempfile` to generate `tempfile` to generate a temporary path and leading to the wrong path being cached in `tempfile.tempdir`. ## Suggestion: I could file this also as bug with `transformers`, but I think fixing this on the datasets would be much more robust: Datasets could recompute the temporary path once (technically possible via `tempfile._get_default_tempdir` or resetting the global variable `tempfile.tmpdir` to None) before setting its own global `_TEMP_DIR_FOR_TEMP_CACHE_FILES`.
4,056
https://github.com/huggingface/datasets/issues/4053
Modify datatype from `int32` to `float` for pearsonr, spearmanr.
[ "@Woodywarhol9 good catch, thanks for reporting.\r\n\r\nWe are fixing this." ]
**Is your feature request related to a problem? Please describe.** - Now [Pearsonr](https://github.com/huggingface/datasets/blob/master/metrics/pearsonr/pearsonr.py) and [Spearmanr](https://github.com/huggingface/datasets/blob/master/metrics/spearmanr/spearmanr.py) both get input data as 'int32'. **Describe the solution you'd like** - Considering that those metrics are widely used for the STS task(labels are in 'float' data type), it would be better to modify datatype from 'int32' to 'float' for getting exact values of similarity.
4,053
https://github.com/huggingface/datasets/issues/4052
metric = metric_cls( TypeError: 'NoneType' object is not callable
[ "Hi @klyuhang9,\r\n\r\nI'm sorry but I can't reproduce your problem:\r\n```python\r\nIn [2]: metric = load_metric('glue', 'rte')\r\nDownloading builder script: 5.76kB [00:00, 2.40MB/s]\r\n```\r\n\r\nCould you please, retry to load the metric? Sometimes there are temporary connectivity issues.\r\n\r\nFeel free to re-open this issue of the problem persists." ]
Hi, friend. I meet a problem. When I run the code: `metric = load_metric('glue', 'rte')` There is a problem raising: `metric = metric_cls( TypeError: 'NoneType' object is not callable ` I don't know why. Thanks for your help!
4,052
https://github.com/huggingface/datasets/issues/4051
ConnectionError: Couldn't reach https://raw.githubusercontent.com/huggingface/datasets/2.0.0/datasets/glue/glue.py
[ "Hi @klyuhang9,\r\n\r\nI'm sorry but I can't reproduce your problem:\r\n```python\r\nIn [4]: ds = load_dataset(\"glue\", \"sst2\", download_mode=\"force_redownload\")\r\nDownloading builder script: 28.8kB [00:00, 9.15MB/s] \r\nDownloading metadata: 28.7kB [00:00, 10.7MB/s] \r\nDownloading and preparing dataset glue/sst2 (download: 7.09 MiB, generated: 4.78 MiB, post-processed: Unknown size, total: 11.88 MiB) to .../.cache/huggingface/datasets/glue/sst2/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad...\r\nDownloading data: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 7.44M/7.44M [00:01<00:00, 4.12MB/s]\r\nDataset glue downloaded and prepared to .../.cache/huggingface/datasets/glue/sst2/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad. Subsequent calls will reuse this data. \r\n100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 1047.96it/s]\r\n\r\nIn [5]: ds\r\nOut[5]: \r\nDatasetDict({\r\n train: Dataset({\r\n features: ['sentence', 'label', 'idx'],\r\n num_rows: 67349\r\n })\r\n validation: Dataset({\r\n features: ['sentence', 'label', 'idx'],\r\n num_rows: 872\r\n })\r\n test: Dataset({\r\n features: ['sentence', 'label', 'idx'],\r\n num_rows: 1821\r\n })\r\n})\r\n```\r\n\r\nPlease, note that sometimes GitHub has some temporary connectivity issues. Feel free to retry and re-open this issue if the problem persists.", "Maybe it's because we are in China.", "Are you able to access the URL in your web browser?", "> Are you able to access the URL in your web browser?\r\n\r\nYes, with or without a VPN, we (people in China) can access the URL. And we can even use wget to download these files. We can download the pretrained language model automatically with the code.\r\nHowever, we CANNOT access glue.py & metric.py automatically. Every time, it will raise ConnectionError, and we have to download datasets manually (SQuAD is extremely hard to preprocess) and replace metric.py with scipy.metrics. If this problem is solved, many Chinese will save a lot of time.", "> ConnectionError: Couldn't reach https://raw.githubusercontent.com/huggingface/datasets/2.0.0/datasets/glue/glue.py\r\n> \r\n> I don't know why; it is ok when I use\r\n\r\nIf you would query the question `ConnectionError: Couldn't reach` in www.baidu.com (Chinese Google, Google is banned and some people cannot access it), you will find that there are so many questions about accessing `https://raw.githubusercontent.com`. There are some solutions like adding `185.199.108.133 raw.githubusercontent.com` to `C:/windows/systen32/drives/etc/hosts`, but it is time-consuming, hard for green-hand, and invalid sometimes." ]
Hi, I meet a problem. When I run the code: `dataset = load_dataset('glue','sst2')` There is a issue raising: ConnectionError: Couldn't reach https://raw.githubusercontent.com/huggingface/datasets/2.0.0/datasets/glue/glue.py I don't know why; it is ok when I use Google Chrome to view this url. Thanks for your help!
4,051
https://github.com/huggingface/datasets/issues/4048
Split size error on `amazon_us_reviews` / `PC_v1_00` dataset
[ "Follow-up: I have confirmed there are no duplicate lines via `sort amazon_reviews_us_PC_v1_00.tsv | uniq -cd` after extracting the raw file.", "Hi @trentonstrong, thanks for reporting!\r\n\r\nI confirm that loading this dataset configuration throws a `NonMatchingSplitsSizesError`:\r\n```\r\nNonMatchingSplitsSizesError: [{'expected': SplitInfo(name='train', num_bytes=350242049, num_examples=785730, dataset_name='amazon_us_reviews'), 'recorded': SplitInfo(name='train', num_bytes=3982712078, num_examples=6908554, dataset_name='amazon_us_reviews')}]\r\n```\r\n\r\nAlso thank you for your offer to fix this. You can find information about how to update the metadata JSON file here: https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md#automatically-add-code-metadata\r\n```shell\r\ndatasets-cli test datasets/amazon_us_reviews --save_infos --all_configs\r\n```\r\nPlease, feel free to open a PR with this fix. And do not hesitate to ping me if you need any help.", "No sweat. Will get it patched up ASAP." ]
## Describe the bug When downloading this subset as of 3-28-2022 you will encounter a split size error after the dataset is extracted. The extracted dataset has roughly ~6m rows while the split expects <1m. Upon digging a little deeper, I downloaded the raw files from `https://s3.amazonaws.com/amazon-reviews-pds/tsv/amazon_reviews_us_PC_v1_00.tsv.gz` and extracted them. A line count via `wc -l` confirms the ~6m number that we see and the data looks valid at a glance (I did not check for duplicate rows). My guess is this file has either been updated in place or there is a bug in the dataset metadata. Happy to submit a PR and fix this up if turns out to be a metadata issue but wanted to get some other :eyes: on it first. ## Steps to reproduce the bug ```python load_dataset('amazon_us_reviews', 'PC_v1_00') ``` ## Expected results Dataset is downloaded and extracted successfully. ## Actual results An split size exception is thrown. ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 2.0.0 - Platform: Linux-5.10.16.3-microsoft-standard-WSL2-x86_64-with-glibc2.29 - Python version: 3.8.10 - PyArrow version: 7.0.0 - Pandas version: 1.4.1
4,048
https://github.com/huggingface/datasets/issues/4047
Dataset.unique(column: str) -> ArrowNotImplementedError
[ "Hi @orkenstein, thanks for reporting.\r\n\r\nPlease note that for this case, our `datasets` library uses under the hood the Apache Arrow `unique` function: https://arrow.apache.org/docs/python/generated/pyarrow.compute.unique.html#pyarrow.compute.unique\r\n\r\nAnd currently the Apache Arrow `unique` function is only implemented for these input types (see info in their [docs](https://arrow.apache.org/docs/cpp/compute.html#array-wise-vector-functions)): Boolean, Null, Numeric, Temporal, Binary- and String-like.\r\n\r\nHowever, the data types of the `wikiann` dataset are all `list<item: string>` (see its [dataset card](https://huggingface.co/datasets/wikiann#data-fields)), and thus, not yet supported by the Apache Arrow `unique` function.", "As a workaround solution you can use pandas:\r\n```python\r\nfrom datasets import load_dataset\r\n\r\ndataset = load_dataset('wikiann', 'en', split='train')\r\ndf = dataset.to_pandas()\r\nunique_df = df[~df.tokens.apply(tuple).duplicated()] # from https://stackoverflow.com/a/46958336/17517845\r\n```\r\n\r\nNote that pandas loads the dataset in memory (this one is small so it's fine).", "@lhoestq thank you! I will fall back to this method for now" ]
## Describe the bug I'm trying to use `unique()` function, but it fails ## Steps to reproduce the bug 1. Get dataset 2. Call `unique` 3. Error # Sample code to reproduce the bug ```python !pip show datasets from datasets import load_dataset dataset = load_dataset('wikiann', 'en') dataset['train'].column_names dataset['train'].unique(dataset['train'].column_names[0]) ``` ## Expected results It would be nice to actually see unique items ## Actual results Error: ```python --------------------------------------------------------------------------- ArrowNotImplementedError Traceback (most recent call last) [<ipython-input-10-5e0de07ed42c>](https://s0qyv2vjaji-496ff2e9c6d22116-0-colab.googleusercontent.com/outputframe.html?vrz=colab-20220324-060046-RC00_436956229#) in <module>() 6 7 dataset['train'].column_names ----> 8 dataset['train'].unique(dataset['train'].column_names[0]) 5 frames /usr/local/lib/python3.7/dist-packages/pyarrow/error.pxi in pyarrow.lib.check_status() ArrowNotImplementedError: Function unique has no kernel matching input types (array[list<item: string>]) ``` ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 2.0.0 - Platform: Google Collab - Python version: 3.7.13 - PyArrow version: 6.0.1
4,047
https://github.com/huggingface/datasets/issues/4044
CLI dummy data generation is broken
[]
## Describe the bug We get a TypeError when running CLI dummy data generation: ```shell datasets-cli dummy_data datasets/<your-dataset-folder> --auto_generate ``` gives: ``` File ".../huggingface/datasets/src/datasets/commands/dummy_data.py", line 361, in _autogenerate_dummy_data dataset_builder._prepare_split(split_generator) TypeError: _prepare_split() missing 1 required positional argument: 'check_duplicate_keys' ```
4,044
https://github.com/huggingface/datasets/issues/4041
Add support for IIIF in datasets
[ "Hi! Thanks for the detailed analysis of adding IIIF support. I like the idea of \"using IIIF through datasets scripts\" due to its ease of use. Another approach that I like is yielding image ids and using the `piffle` library (which offers a bit more flexibility) + `map` to download + cache images. We can handle bad URLs in `map` by returning `None`. Plus, we can add a `Dataset Preprocessing` section with the code that explains this approach to the card of such datasets. WDYT?\r\n\r\n> currently, IIIF is mainly used by cultural heritage organizations (museums, archives etc.) The adoption of IIIF in this sector has been growing but it's possible that adoption won't be extended to other industries which may also be a source of image data for training ML models.\r\n\r\nThis is why (currently) adding a new feature type would be overkill, IMO.\r\n" ]
This is a feature request for support for IIIF in `datasets`. Apologies for the long issue. I have also used a different format to the usual feature request since I think that makes more sense but happy to use the standard template if preferred. ## What is [IIIF](https://iiif.io/)? IIIF (International Image Interoperability Framework) > is a set of open standards for delivering high-quality, attributed digital objects online at scale. It’s also an international community developing and implementing the IIIF APIs. IIIF is backed by a consortium of leading cultural institutions. The tl;dr is that IIIF provides various specifications for implementing useful functionality for: - Institutions to make available images for various use cases - Users to have a consistent way of interacting/requesting these images - For developers to have a common standard for developing tools for working with IIIF images that will work across all institutions that implement a particular IIIF standard (for example the image viewer for the BNF can also work for the Library of Congress if they both use IIIF). Some institutions that various levels of support IIF include: The British Library, Internet Archive, Library of Congress, Wikidata. There are also many smaller institutions that have IIIF support. An incomplete list can be found here: https://iiif.io/guides/finding_resources/ ## IIIF APIs IIIF consists of a number of APIs which could be integrated with datasets. I think the most obvious candidate for inclusion would be the [Image API](https://iiif.io/api/image/3.0/) ### IIIF Image API The Image API https://iiif.io/api/image/3.0/ is likely the most suitable first candidate for integration with datasets. The Image API offers a consistent protocol for requesting images via a URL: ```{scheme}://{server}{/prefix}/{identifier}/{region}/{size}/{rotation}/{quality}.{format}``` A concrete example of this: ```https://stacks.stanford.edu/image/iiif/hg676jb4964%2F0380_796-44/full/full/0/default.jpg``` As you can see the scheme offers a number of options that can be specified in the URL, for example, size. Using the example URL we return: ![](https://stacks.stanford.edu/image/iiif/hg676jb4964%2F0380_796-44/full/full/0/default.jpg) We can change the size to request a size of 250 by 250, this is done by changing the size from `full` to `250,250` i.e. switching the URL to `https://stacks.stanford.edu/image/iiif/hg676jb4964%2F0380_796-44/full/250,250/0/default.jpg` ![](https://stacks.stanford.edu/image/iiif/hg676jb4964%2F0380_796-44/full/250,250/0/default.jpg) We can also request the image with max width 250, max height 250 whilst maintaining the aspect ratio using `!w,h`. i.e. change the url to `https://stacks.stanford.edu/image/iiif/hg676jb4964%2F0380_796-44/full/!250,250/0/default.jpg` ![](https://stacks.stanford.edu/image/iiif/hg676jb4964%2F0380_796-44/full/!250,250/0/default.jpg) A full overview of the options for size can be found here: https://iiif.io/api/image/3.0/#42-size ## Why would/could this be useful for datasets? There are a few reasons why support for the IIIF Image API could be useful. Broadly the ability to have more control over how an image is returned from a server is useful for many ML workflows: - images can be requested in the right size, this prevents having to download/stream large images when the actual desired size is much smaller - can select a subset of an image: it is possible to select a sub-region of an image, this could be useful for example when you already have a bounding box for a subset of an image and then want to use this subset of an image for another task. For example, https://github.com/Living-with-machines/nnanno uses IIIF to request parts of a newspaper image that have been detected as 'photograph', 'illustration' etc for downstream use. - options for quality, rotation, the format can all be encoded in the URL request. These may become particularly useful when pre-training models on large image datasets where the cost of downloading images with 1600 pixel width when you actually want 240 has a larger impact. ## What could this look like in datasets? I think there are various ways in which support for IIIF could potentially be included in `datasets`. These suggestions aren't fully fleshed out but hopefully, give a sense of possible approaches that match existing `datasets` methods in their approach. ### Use through datasets scripts Loading images via URL is already supported. There are a few possible 'extras' that could be included when using IIIF. One option is to leverage the IIIF protocol in datasets scripts, i.e. the dataset script can expose the IIIF options via the dataset script: ```python ds = load_dataset("iiif_dataset", image_size="250,250", fmt="jpg") ``` This is already possible. The approach to parsing the IIIF URLs would be left to the person creating the dataset script. ### Support through dataset scripts (with some datasets support) This is similar to the above but `datasets` would offer some way of saying this is a iiif URL and then expose the options associated with IIIF images automatically. i.e. if you did something like: ```python features = {"label": ClassLabel(names=['dog','cat']), "url": datasets.IIIFURL()} ``` inside your loading script, you would automatically have exposed `size`, `fmt` etc. options when loading the dataset. ### Other possible integrations Some other possible pseudocode ways that a user could interact with IIIF URLs: The ability to cast to an `IIIFImage` feature type: ``` ds.cast_column('url', IIIFImage, download=False) ``` The ability to specify some options associated with IIIF urls. ``` ds = ds.set_iiif_options(column='url', size="250,250") ``` I think all of these would rely on having an `IIIFImage` feature type - this would be a little bit of a Frankenstein between a `string` and `datasets.Image`. I think most of the actual image behaviour would be exactly the same as `datasets.Image`, the difference would be that the underlying URL could be modified in various ways. ## prerequisite requirements There are a few pre-requisites that I can anticipate. This doesn't cover a full implementation of IIIF support which would have different requirements depending on the approach taken to implementing IIIF. Some of these features would be useful independently of adding IIIF support: ### support for handling failed images loaded via a URL (or a specific IIIFImage feature). Working with images via web requests will inevitably return the odd failed request. If these images are then requests and don't return it would be useful to have a `None` returned instead of an error. For example, when using `push_to_hub` `datasets` will try and include the image but currently fails with bad URLs. ```python from datasets import Dataset import datasets urls = ['https://stacks.stanford.edu/image/iiif/hg676jb4964%2F0380_796-44/full/!250,250/0/default.jpg']*3 urls.append("badurl.com/image.jpg") data = {"url":urls} ds = Dataset.from_dict(data) ds = ds.cast_column('url', datasets.Image()) ds[3]['url'] ``` returns a `FileNotFoundError`, for streaming large datasets of images using their URLs it could be useful to have `None` returned instead. This has implications for the actual training loop i.e. you now need to somehow skip those examples because of this it might not be desirable to support this. ### Caching support Since IIIF requests images via a URL it would be great to have a way of not requesting the images multiple times. This is tracked in https://github.com/huggingface/datasets/issues/3142 and I think this would also be very desirable to have here particularly as one of the primary use cases of IIIF may be to do unsupervised pre-training on large datasets of IIIF URLs. ### Support for Parsing IIIF URLs This gets closer to the actual implementation. Here the requirement would be some way for `datasets` to parse a URL that the users specify is an IIIF URL. An example of a Python library that does this: https://github.com/Princeton-CDH/piffle. I also have a rough version that uses `dataclasses` which I can share. ## Why it might not be worthwhile/suitable for datasets There are some reasons that this might not be worth implementing: - currently, IIIF is mainly used by cultural heritage organizations (museums, archives etc.) The adoption of IIIF in this sector has been growing but it's possible that adoption won't be extended to other industries which may also be a source of image data for training ML models. - It may end up being better to leave this to the user. It would for example be possible for someone to write map functions to change an IIIF URL to the correct size etc. Adding direct support for IIIF in datasets may potentially not be worth the trouble. - The impact of different approaches to doing image scaling can impact the downstream model's performance, see: https://twitter.com/wightmanr/status/1479528581466243073?s=20. Since different IIIF image servers may implement different approaches to resizing images this could have a downstream impact on model performance. think this is something that could be flagged to the end-user in the documentation. This probably also falls into general "gotchas" that probably aren't the `datasets` libraries' role to protect users from. Some of the requirements outlined above would be useful for images anyway. These could be implemented prior to a final decision about whether IIIF support could/should be added to datasets. ## Suggested next steps: I realise this is a long and slightly open-ended issue. I am happy to clarify/answer questions on IIIF and possible integrations. If the prerequisite requirements seem worth exploring/are better explored in their own issues let me know and I can open new issues for those.
4,041
https://github.com/huggingface/datasets/issues/4037
Error while building documentation
[ "After some investigation, maybe the bug is in `doc-builder`.\r\n\r\nI've opened an issue there:\r\n- huggingface/doc-builder#160", "Fixed by @lewtun (thank you):\r\n- huggingface/doc-builder@31fe6c8bc7225810e281c2f6c6cd32f38828c504" ]
## Describe the bug Documentation building is failing: - https://github.com/huggingface/datasets/runs/5716300989?check_suite_focus=true ``` ValueError: There was an error when converting ../datasets/docs/source/package_reference/main_classes.mdx to the MDX format. Unable to find datasets.filesystems.S3FileSystem in datasets. Make sure the path to that object is correct. ```
4,037
https://github.com/huggingface/datasets/issues/4032
can't download cats_vs_dogs dataset
[ "Thnaks for reporting @RRaphaell.\r\n\r\nWe are fixing it. " ]
## Describe the bug can't download cats_vs_dogs dataset. error: Checksums didn't match for dataset source files ## Steps to reproduce the bug ```python from datasets import load_dataset dataset = load_dataset("cats_vs_dogs") ``` ## Expected results loaded successfully. ## Actual results NonMatchingChecksumError: Checksums didn't match for dataset source files: ['https://download.microsoft.com/download/3/E/1/3E1C3F21-ECDB-4869-8368-6DEBA77B919F/kagglecatsanddogs_3367a.zip'] ## Environment info fresh google colab notebook
4,032
https://github.com/huggingface/datasets/issues/4031
Cannot load the dataset conll2012_ontonotesv5
[ "Hi @cathyxl, thanks for reporting.\r\n\r\nIndeed, we have recently updated the loading script of that dataset (and fixed that bug as well):\r\n- #4002\r\n\r\nThat fix will be available in our next `datasets` library release. In the meantime, you can incorporate that fix by:\r\n- installing `datasets` from our GitHub repo:\r\n```bash\r\npip install git+https://github.com/huggingface/datasets#egg=datasets\r\n```\r\n- forcing the data files to be redownloaded\r\n```python\r\nds = load_dataset('conll2012_ontonotesv5', 'english_v4', split=\"test\", download_mode=\"force_redownload\")\r\n```\r\n\r\nFeel free to re-open this issue if the problem persists." ]
## Describe the bug Cannot load the dataset conll2012_ontonotesv5 ## Steps to reproduce the bug ```python # Sample code to reproduce the bug from datasets import load_dataset dataset = load_dataset('conll2012_ontonotesv5', 'english_v4', split="test") print(dataset) ``` ## Expected results The datasets should be downloaded successfully ## Actual results raise NonMatchingChecksumError(error_msg + str(bad_urls)) datasets.utils.info_utils.NonMatchingChecksumError: Checksums didn't match for dataset source files: ['https://md-datasets-cache-zipfiles-prod.s3.eu-west-1.amazonaws.com/zmycy7t9h9-1.zip'] ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 2.0.0 - Platform: Linux-5.4.0-88-generic-x86_64-with-glibc2.31 - Python version: 3.9.7 - PyArrow version: 7.0.0
4,031
https://github.com/huggingface/datasets/issues/4029
Add FAISS .range_search() method for retrieving all texts from dataset above similarity threshold
[ "Hi ! You can access the faiss index with\r\n```python\r\nfaiss_index = my_dataset.get_index(\"my_index_name\").faiss_index\r\n```\r\nand then do whatever you want with it, e.g. query it using range_search:\r\n```python\r\nthreshold = 0.95\r\nlimits, distances, indices = faiss_index.range_search(x=xq, thresh=threshold)\r\n\r\ntexts = dataset[indices]\r\n```", "wow, that's great, thank you for the explanation. (if that's not already in the documentation, could be worth adding it)\r\n\r\nwhich type of faiss index is Datasets using? I looked into faiss recently and I understand that there are several different types of indexes and the choice is important, e.g. regarding which distance metric you use (euclidian vs. cosine/dot product), the size of my dataset etc. can I chose the type of index somehow as well?", "`Dataset.add_faiss_index` has a `string_factory` parameter, used to set the type of index (see the faiss documentation about [index factory](https://github.com/facebookresearch/faiss/wiki/The-index-factory)). Alternatively, you can pass an index you've defined yourself using faiss with the `custom_index` parameter of `Dataset.add_faiss_index` \r\n\r\nHere is the full documentation of `Dataset.add_faiss_index`: https://huggingface.co/docs/datasets/v2.0.0/en/package_reference/main_classes#datasets.Dataset.add_faiss_index", "great thanks, I will try it out" ]
**Is your feature request related to a problem? Please describe.** I would like to retrieve all texts from a dataset, which are semantically similar to a specific input text (query), above a certain (cosine) similarity threshold. My dataset is very large (Wikipedia), so I need to use Datasets and FAISS for this. I would like to be able to repeat many different queries on the dataset quickly. **Describe the solution you'd like** dataset objects currently have the .get_nearest_examples() method for text retrieval via FAISS. But this only allows retrieving a specific number of K texts instead of everything above a specified similarity threshold. It would be great if HF Datasets would also support the FAISS method .range_search() for retrieving texts above a certain similarity threshold. see details here: https://github.com/facebookresearch/faiss/issues/1273 **Describe alternatives you've considered** I've considered using native FAISS, but doing this via HF datasets would be better. My assumption is that Dataset features like dataset streaming make it easier to work with large datasets **Additional context** The concrete use-case is: I have a large dataset (wikipedia) and I would like to retrieve all paragraphs which are similar to a query. I will use sentence-transformers for encoding the texts.
4,029
https://github.com/huggingface/datasets/issues/4027
ElasticSearch Indexing example: TypeError: __init__() missing 1 required positional argument: 'scheme'
[ "Hi, @MoritzLaurer, thanks for reporting.\r\n\r\nNormally this is due to a mismatch between the versions of your Elasticsearch client and server:\r\n- your ES client is passing only keyword arguments to your ES server\r\n- whereas your ES server expects a positional argument called 'scheme'\r\n\r\nIn order to fix this, you should align the major versions of both Elasticsearch client and server.\r\n\r\nYou can have more info:\r\n- on this other issue page: https://github.com/huggingface/datasets/issues/3956#issuecomment-1072115173\r\n- Elasticsearch client docs: https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/overview.html#_compatibility\r\n\r\nFeel free to re-open this issue if the problem persists.\r\n\r\nDuplicate of:\r\n- #3956", "1. Check elasticsearch version\r\n```\r\nimport elasticsearch\r\nprint(elasticsearch.__version__)\r\n```\r\nEx: 7.9.1\r\n2. Uninstall current elasticsearch package\r\n`pip uninstall elasticsearch`\r\n3. Install elasticsearch 7.9.1 package\r\n`pip install elasticsearch==7.9.1`" ]
## Describe the bug I am following the example in the documentation for elastic search step by step (on google colab): https://huggingface.co/docs/datasets/faiss_es#elasticsearch ``` from datasets import load_dataset squad = load_dataset('crime_and_punish', split='train[:1000]') ``` When I run the line: `squad.add_elasticsearch_index("context", host="localhost", port="9200")` I get the error: `TypeError: __init__() missing 1 required positional argument: 'scheme'` ## Expected results No error message ## Actual results ``` TypeError Traceback (most recent call last) [<ipython-input-23-9205593edef3>](https://localhost:8080/#) in <module>() 1 import elasticsearch ----> 2 squad.add_elasticsearch_index("text", host="localhost", port="9200") 6 frames [/usr/local/lib/python3.7/dist-packages/elasticsearch/_sync/client/utils.py](https://localhost:8080/#) in host_mapping_to_node_config(host) 209 options["path_prefix"] = options.pop("url_prefix") 210 --> 211 return NodeConfig(**options) # type: ignore 212 213 TypeError: __init__() missing 1 required positional argument: 'scheme' ``` ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 2.2.0 - Platform: Linux, Google Colab - Python version: Google Colab (probably 3.7) - PyArrow version: ?
4,027
https://github.com/huggingface/datasets/issues/4025
Missing argument in precision/recall
[ "Thanks for the suggestion, @Dref360.\r\n\r\nWe are adding that argument. " ]
**Is your feature request related to a problem? Please describe.** [`sklearn.metrics.precision_score`](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html) accepts an argument `zero_division`, but it is not available in [precision Metric](https://github.com/huggingface/datasets/blob/master/metrics/precision/precision.py#L117) Same issue is present for Recall. **Describe the solution you'd like** Support for **kwargs or adding a new field for `zero_division`. **Describe alternatives you've considered** I could filter the warnings myself, but that is not ideal. **Additional context** I can make the requested changes if this is approved.
4,025
https://github.com/huggingface/datasets/issues/4015
Can not correctly parse the classes with imagefolder
[ "I found that the problem arises because the image files in my folder are actually symbolic links (for my own reasons). After modifications, the classes can now be correctly parsed. Therefore, I close this issue.", "HI, I have a question. How much time did you load the ImageNet data files? " ]
## Describe the bug I try to load my own image dataset with imagefolder, but the parsing of classes is incorrect. ## Steps to reproduce the bug I organized my dataset (ImageNet) in the following structure: ``` - imagenet/ - train/ - n01440764/ - ILSVRC2012_val_00000293.jpg - ...... - n01695060/ - ...... - val/ - n01440764/ - n01695060/ - ...... ``` At first, I followed the instructions from the Huggingface [example](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification#using-your-own-data) to load my data as: ``` from datasets import load_dataset data_files = {'train': 'imagenet/train', 'val': 'imagenet/val'} ds = load_dataset("nateraw/image-folder", data_files=data_files, task="image-classification") ``` but it resulted following error (I mask my personal path as <PERSONAL_PATH>): ``` FileNotFoundError: Unable to find 'https://huggingface.co/datasets/nateraw/image-folder/resolve/main/imagenet/train' at <PERSONAL_PATH>/ImageNet/https:/huggingface.co/datasets/nateraw/image-folder/resolve/main ``` Next, I followed a recent issue #3960 to load data as: ``` from datasets import load_dataset data_files = {'train': ['imagenet/train/**'], 'val': ['imagenet/val/**']} ds = load_dataset("imagefolder", data_files=data_files, task="image-classification") ``` and the data can be loaded without error as: (I copy val folder to train folder for illustration) ``` >>> ds DatasetDict({ train: Dataset({ features: ['image', 'labels'], num_rows: 50000 }) val: Dataset({ features: ['image', 'labels'], num_rows: 50000 }) }) ``` However, the parsed classes is wrong (should be 1000 classes): ``` >>> ds["train"].features {'image': Image(decode=True, id=None), 'labels': ClassLabel(num_classes=1, names=['val'], id=None)} ``` ## Expected results I expect that the "labels" in ds["train"].features should contain 1000 classes. ## Actual results The "labels" in ds["train"].features contains only 1 wrong class. ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 2.0.0 - Platform: Ubuntu 18.04 - Python version: Python 3.7.12 - PyArrow version: 7.0.0
4,015
https://github.com/huggingface/datasets/issues/4013
Cannot preview "hazal/Turkish-Biomedical-corpus-trM"
[ "Hi @hazalturkmen, thanks for reporting.\r\n\r\nNote that your dataset repository does not contain any loading script; it only contains a data file named `tr_article_2`.\r\n\r\nWhen there is no loading script but only data files, the `datasets` library tries to infer how to load the data by looking at the data file extensions. However, your data file does not have any extension.\r\n\r\nNote that current supported data file extensions are: 'csv', 'tsv', 'json', 'jsonl', 'parquet', 'txt', 'blp', 'bmp', 'dib', 'bufr', 'cur', 'pcx', 'dcx', 'dds', 'ps', 'eps', 'fit', 'fits', 'fli', 'flc', 'ftc', 'ftu', 'gbr', 'gif', 'grib', 'h5', 'hdf', 'png', 'apng', 'jp2', 'j2k', 'jpc', 'jpf', 'jpx', 'j2c', 'icns', 'ico', 'im', 'iim', 'tif', 'tiff', 'jfif', 'jpe', 'jpg', 'jpeg', 'mpg', 'mpeg', 'msp', 'pcd', 'pxr', 'pbm', 'pgm', 'ppm', 'pnm', 'psd', 'bw', 'rgb', 'rgba', 'sgi', 'ras', 'tga', 'icb', 'vda', 'vst', 'webp', 'wmf', 'emf', 'xbm', 'xpm', 'zip'.\r\n\r\nYou have more info on our docs: [How to share a dataset](https://huggingface.co/docs/datasets/share).", "thanks for reply :)" ]
## Dataset viewer issue for '*hazal/Turkish-Biomedical-corpus-trM' **Link:** *https://huggingface.co/datasets/hazal/Turkish-Biomedical-corpus-trM* *I cannot see the dataset preview.* ``` Server Error Status code: 400 Exception: HTTPError Message: 403 Client Error: Forbidden for url: https://huggingface.co/api/datasets/hazal/Turkish-Biomedical-corpus-trM?full=true ``` Am I the one who added this dataset ? Yes
4,013
https://github.com/huggingface/datasets/issues/4009
AMI load_dataset error: sndfile library not found
[ "Issue unresolved, see [4000](https://github.com/huggingface/datasets/issues/4009#issue-1179658611)" ]
## Describe the bug Getting error message when loading AMI dataset. ## Steps to reproduce the bug `python3 -c "from datasets import load_dataset; print(load_dataset('ami', 'headset-single', split='validation')[0])" ` ## Expected results A clear and concise description of the expected results. ## Actual results Traceback (most recent call last): File "<string>", line 1, in <module> File "/home/neo/.virtualenvs/hubert/lib/python3.7/site-packages/datasets/load.py", line 1707, in load_dataset use_auth_token=use_auth_token, File "/home/neo/.virtualenvs/hubert/lib/python3.7/site-packages/datasets/builder.py", line 595, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/home/neo/.virtualenvs/hubert/lib/python3.7/site-packages/datasets/builder.py", line 690, in _download_and_prepare ) from None OSError: Cannot find data file. Original error: sndfile library not found ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 1.18.3 - Platform: Linux-4.19.0-18-cloud-amd64-x86_64-with-debian-10.11 - Python version: 3.7.3 - PyArrow version: 7.0.0
4,009
https://github.com/huggingface/datasets/issues/4007
set_format does not work with multi dimension tensor
[ "Hi! Use the `ArrayXD` feature type (where X is the number of dimensions) to get correctly formated tensors. So in your case, define the dataset as follows :\r\n```python\r\nds = Dataset.from_dict({\"A\": [torch.rand((2, 2))]}, features=Features({\"A\": Array2D(shape=(2, 2), dtype=\"float32\")}))\r\n```\r\n", "Hi @mariosasko I'm facing the same issue and the only work around I've found so far is to convert my `DatasetDict` to a dictionary and then create new objects with `Dataset.from_dict`.\r\n```\r\ndataset = load_dataset(\"my_dataset.py\")\r\ndataset = dataset.map(lambda example: blabla(example))\r\ndict_dataset_test = dataset[\"test\"].to_dict()\r\n...\r\ndataset_test = Dataset.from_dict(dict_dataset_test, features=Features(features))\r\n```\r\nHowever, converting a `Dataset` object to a dict takes quite a lot of time and memory... Is there a way to directly create an `Array2D` without having to transform the original `Dataset` to a dict?", "Hi! Yes, you can directly pass the `Features` dictionary as `features` in `map` to cast the column to `Array2D`:\r\n```python\r\ndataset = dataset.map(lambda example: blabla(example), features=Features(features))\r\n```\r\nOr you can use `cast` after `map` to do that:\r\n```python\r\ndataset = dataset.map(lambda example: blabla(example))\r\ndataset = dataset.cast(Features(features))\r\n```", "Fantastic thank you @mariosasko\r\nThe first option you suggested is indeed way faster 😃 " ]
## Describe the bug set_format only transforms the last dimension of a multi-dimension list to tensor ## Steps to reproduce the bug ```python import torch from datasets import Dataset ds = Dataset.from_dict({"A": [torch.rand((2, 2))]}) # ds = Dataset.from_dict({"A": [np.random.rand(2, 2)]}) # => same result ds = ds.with_format("torch") print(ds[0]) ``` ## Expected results ``` {'A': [tensor([[0.6689, 0.1516], [0.1403, 0.5567]])]} ``` ## Actual results ``` {'A': [tensor([0.6689, 0.1516]), tensor([0.1403, 0.5567])]} ``` ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - datasets version: 2.0.0 - Platform: Mac OSX - Python version: 3.8.12 - PyArrow version: 7.0.0
4,007
https://github.com/huggingface/datasets/issues/4005
Yelp not working
[ "I don't think it's an issue with the dataset-viewer. Maybe @lhoestq or @albertvillanova could confirm.\r\n\r\n```python\r\n>>> from datasets import load_dataset, DownloadMode\r\n>>> import itertools\r\n>>> # without streaming\r\n>>> dataset = load_dataset(\"yelp_review_full\", name=\"yelp_review_full\", split=\"train\", download_mode=DownloadMode.FORCE_REDOWNLOAD)\r\n\r\nDownloading builder script: 4.39kB [00:00, 5.97MB/s]\r\nDownloading metadata: 2.13kB [00:00, 3.14MB/s]\r\nDownloading and preparing dataset yelp_review_full/yelp_review_full (download: 187.06 MiB, generated: 496.94 MiB, post-processed: Unknown size, total: 684.00 MiB) to /home/slesage/.cache/huggingface/datasets/yelp_review_full/yelp_review_full/1.0.0/13c31a618ba62568ec8572a222a283dfc29a6517776a3ac5945fb508877dde43...\r\nDownloading data: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1.10k/1.10k [00:00<00:00, 1.39MB/s]\r\nTraceback (most recent call last):\r\n File \"<stdin>\", line 1, in <module>\r\n File \"/home/slesage/hf/datasets/src/datasets/load.py\", line 1687, in load_dataset\r\n builder_instance.download_and_prepare(\r\n File \"/home/slesage/hf/datasets/src/datasets/builder.py\", line 605, in download_and_prepare\r\n self._download_and_prepare(\r\n File \"/home/slesage/hf/datasets/src/datasets/builder.py\", line 1104, in _download_and_prepare\r\n super()._download_and_prepare(dl_manager, verify_infos, check_duplicate_keys=verify_infos)\r\n File \"/home/slesage/hf/datasets/src/datasets/builder.py\", line 676, in _download_and_prepare\r\n verify_checksums(\r\n File \"/home/slesage/hf/datasets/src/datasets/utils/info_utils.py\", line 40, in verify_checksums\r\n raise NonMatchingChecksumError(error_msg + str(bad_urls))\r\ndatasets.utils.info_utils.NonMatchingChecksumError: Checksums didn't match for dataset source files:\r\n['https://drive.google.com/uc?export=download&id=0Bz8a_Dbh9QhbZlU4dXhHTFhZQU0']\r\n\r\n>>> # with streaming\r\n>>> dataset = load_dataset(\"yelp_review_full\", name=\"yelp_review_full\", split=\"train\", download_mode=DownloadMode.FORCE_REDOWNLOAD, streaming=True)\r\n\r\nDownloading builder script: 4.39kB [00:00, 5.53MB/s]\r\nDownloading metadata: 2.13kB [00:00, 3.14MB/s]\r\nTraceback (most recent call last):\r\n File \"/home/slesage/.pyenv/versions/datasets/lib/python3.8/site-packages/fsspec/implementations/http.py\", line 375, in _info\r\n await _file_info(\r\n File \"/home/slesage/.pyenv/versions/datasets/lib/python3.8/site-packages/fsspec/implementations/http.py\", line 736, in _file_info\r\n r.raise_for_status()\r\n File \"/home/slesage/.pyenv/versions/datasets/lib/python3.8/site-packages/aiohttp/client_reqrep.py\", line 1000, in raise_for_status\r\n raise ClientResponseError(\r\naiohttp.client_exceptions.ClientResponseError: 403, message='Forbidden', url=URL('https://doc-0g-bs-docs.googleusercontent.com/docs/securesc/ha0ro937gcuc7l7deffksulhg5h7mbp1/gklhpdq1arj8v15qrg7ces34a8c3413d/1648144575000/07511006523564980941/*/0Bz8a_Dbh9QhbZlU4dXhHTFhZQU0?e=download')\r\n\r\nThe above exception was the direct cause of the following exception:\r\n\r\nTraceback (most recent call last):\r\n File \"<stdin>\", line 1, in <module>\r\n File \"/home/slesage/hf/datasets/src/datasets/load.py\", line 1677, in load_dataset\r\n return builder_instance.as_streaming_dataset(\r\n File \"/home/slesage/hf/datasets/src/datasets/builder.py\", line 906, in as_streaming_dataset\r\n splits_generators = {sg.name: sg for sg in self._split_generators(dl_manager)}\r\n File \"/home/slesage/.cache/huggingface/modules/datasets_modules/datasets/yelp_review_full/13c31a618ba62568ec8572a222a283dfc29a6517776a3ac5945fb508877dde43/yelp_review_full.py\", line 102, in _split_generators\r\n data_dir = dl_manager.download_and_extract(my_urls)\r\n File \"/home/slesage/hf/datasets/src/datasets/utils/streaming_download_manager.py\", line 800, in download_and_extract\r\n return self.extract(self.download(url_or_urls))\r\n File \"/home/slesage/hf/datasets/src/datasets/utils/streaming_download_manager.py\", line 778, in extract\r\n urlpaths = map_nested(self._extract, path_or_paths, map_tuple=True)\r\n File \"/home/slesage/hf/datasets/src/datasets/utils/py_utils.py\", line 306, in map_nested\r\n return function(data_struct)\r\n File \"/home/slesage/hf/datasets/src/datasets/utils/streaming_download_manager.py\", line 783, in _extract\r\n protocol = _get_extraction_protocol(urlpath, use_auth_token=self.download_config.use_auth_token)\r\n File \"/home/slesage/hf/datasets/src/datasets/utils/streaming_download_manager.py\", line 372, in _get_extraction_protocol\r\n with fsspec.open(urlpath, **kwargs) as f:\r\n File \"/home/slesage/.pyenv/versions/datasets/lib/python3.8/site-packages/fsspec/core.py\", line 102, in __enter__\r\n f = self.fs.open(self.path, mode=mode)\r\n File \"/home/slesage/.pyenv/versions/datasets/lib/python3.8/site-packages/fsspec/spec.py\", line 978, in open\r\n f = self._open(\r\n File \"/home/slesage/.pyenv/versions/datasets/lib/python3.8/site-packages/fsspec/implementations/http.py\", line 335, in _open\r\n size = size or self.info(path, **kwargs)[\"size\"]\r\n File \"/home/slesage/.pyenv/versions/datasets/lib/python3.8/site-packages/fsspec/asyn.py\", line 88, in wrapper\r\n return sync(self.loop, func, *args, **kwargs)\r\n File \"/home/slesage/.pyenv/versions/datasets/lib/python3.8/site-packages/fsspec/asyn.py\", line 69, in sync\r\n raise result[0]\r\n File \"/home/slesage/.pyenv/versions/datasets/lib/python3.8/site-packages/fsspec/asyn.py\", line 25, in _runner\r\n result[0] = await coro\r\n File \"/home/slesage/.pyenv/versions/datasets/lib/python3.8/site-packages/fsspec/implementations/http.py\", line 388, in _info\r\n raise FileNotFoundError(url) from exc\r\nFileNotFoundError: https://drive.google.com/uc?export=download&id=0Bz8a_Dbh9QhbZlU4dXhHTFhZQU0&confirm=t\r\n```\r\n\r\nAnd this is before even trying to access the rows with\r\n\r\n```python\r\n>>> rows = list(itertools.islice(dataset, 100))\r\n>>> rows = list(dataset.take(100))\r\n```", "Yet another issue related to google drive not being nice. Most likely your IP has been banned from using their API programmatically. Do you know if we are allowed to host and redistribute the data ourselves ?", "Hi,\r\n\r\nFacing the same issue while loading the dataset: \r\n\r\n`Error: {NonMatchingChecksumError}Checksums didn't match for dataset source files`\r\n\r\nThanks", "> Facing the same issue while loading the dataset:\r\n> \r\n> Error: {NonMatchingChecksumError}Checksums didn't match for dataset source files\r\n\r\nThanks for reporting. I think this is the same issue. Feel free to try again later, once Google Drive stopped blocking you. You can retry by passing `download_mode=\"force_redownload\"` to `load_dataset`", "I noticed that FastAI hosts the Yelp dataset at https://s3.amazonaws.com/fast-ai-nlp/yelp_review_full_csv.tgz (from their catalog [here](https://course.fast.ai/datasets))\r\n\r\nLet's update the yelp dataset script to download from there instead of Google Drive", "I updated the link to not use Google Drive anymore, we will do a release early next week with the updated download url of the dataset :)" ]
## Dataset viewer issue for '*name of the dataset*' **Link:** https://huggingface.co/datasets/yelp_review_full/viewer/yelp_review_full/train Doesn't work: ``` Server error Status code: 400 Exception: Error Message: line contains NULL ``` Am I the one who added this dataset ? No A seamingly copy of the dataset: https://huggingface.co/datasets/SetFit/yelp_review_full works . The original one: https://huggingface.co/datasets/yelp_review_full has > 20K downloads.
4,005
https://github.com/huggingface/datasets/issues/4003
ASSIN2 dataset checksum bug
[ "Using latest code, I am still facing the issue.\r\n\r\n```python\r\n(base) vimos@vimosmu ➜ ~ ipython\r\nPython 3.6.7 | packaged by conda-forge | (default, Nov 6 2019, 16:19:42) \r\nType 'copyright', 'credits' or 'license' for more information\r\nIPython 7.11.1 -- An enhanced Interactive Python. Type '?' for help.\r\n\r\nIn [1]: from datasets import load_dataset\r\n\r\nIn [2]: load_dataset(\"assin2\")\r\nDownloading builder script: 4.24kB [00:00, 244kB/s]\r\nDownloading metadata: 2.58kB [00:00, 2.19MB/s]\r\nUsing custom data configuration default\r\nDownloading and preparing dataset assin2/default (download: 2.02 MiB, generated: 1.21 MiB, post-processed: Unknown size, total: 3.23 MiB) to /home/vimos/.cache/huggingface/datasets/assin2/default/1.0.0/8467f7acbda82f62ab960ca869dc1e96350e0e103a1ef7eaa43bbee530b80061...\r\nDownloading data: 1.51MB [00:00, 102MB/s]\r\nDownloading data: 116kB [00:00, 63.6MB/s]\r\nDownloading data: 493kB [00:00, 95.8MB/s] \r\nDownloading data files: 100%|██████████████████████████████████████████| 3/3 [00:00<00:00, 8.27it/s]\r\n---------------------------------------------------------------------------\r\nExpectedMoreDownloadedFiles Traceback (most recent call last)\r\n<ipython-input-2-b367d1ffd68e> in <module>\r\n----> 1 load_dataset(\"assin2\")\r\n\r\n~/anaconda3/lib/python3.6/site-packages/datasets/load.py in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, **config_kwargs)\r\n 1694 ignore_verifications=ignore_verifications,\r\n 1695 try_from_hf_gcs=try_from_hf_gcs,\r\n-> 1696 use_auth_token=use_auth_token,\r\n 1697 )\r\n 1698\r\n\r\n~/anaconda3/lib/python3.6/site-packages/datasets/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, **download_and_prepare_kwargs)\r\n 604 if not downloaded_from_gcs:\r\n 605 self._download_and_prepare(\r\n--> 606 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs\r\n 607 )\r\n 608 # Sync info\r\n\r\n~/anaconda3/lib/python3.6/site-packages/datasets/builder.py in _download_and_prepare(self, dl_manager, verify_infos)\r\n 1102\r\n 1103 def _download_and_prepare(self, dl_manager, verify_infos):\r\n-> 1104 super()._download_and_prepare(dl_manager, verify_infos, check_duplicate_keys=verify_infos)\r\n 1105\r\n 1106 def _get_examples_iterable_for_split(self, split_generator: SplitGenerator) -> ExamplesIterable:\r\n\r\n~/anaconda3/lib/python3.6/site-packages/datasets/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs)\r\n 675 if verify_infos:\r\n 676 verify_checksums(\r\n--> 677 self.info.download_checksums, dl_manager.get_recorded_sizes_checksums(), \"dataset source files\"\r\n 678 )\r\n 679\r\n\r\n~/anaconda3/lib/python3.6/site-packages/datasets/utils/info_utils.py in verify_checksums(expected_checksums, recorded_checksums, verification_name)\r\n 31 return\r\n 32 if len(set(expected_checksums) - set(recorded_checksums)) > 0:\r\n---> 33 raise ExpectedMoreDownloadedFiles(str(set(expected_checksums) - set(recorded_checksums)))\r\n 34 if len(set(recorded_checksums) - set(expected_checksums)) > 0:\r\n 35 raise UnexpectedDownloadedFile(str(set(recorded_checksums) - set(expected_checksums)))\r\n\r\nExpectedMoreDownloadedFiles: {'https://drive.google.com/u/0/uc?id=1kb7xq6Mb3eaqe9cOAo70BaG9ypwkIqEU&export=download', 'https://drive.google.com/u/0/uc?id=1J3FpQaHxpM-FDfBUyooh-sZF-B-bM_lU&export=download', 'https://drive.google.com/u/0/uc?id=1Q9j1a83CuKzsHCGaNulSkNxBm7Dkn7Ln&export=download'}\r\n```", "That's true. Steps to reproduce the bug on Google Colab:\r\n\r\n```\r\ngit clone https://github.com/huggingface/datasets.git\r\ncd datasets\r\npip install -e .\r\npython -c \"from datasets import load_dataset; print(load_dataset('assin2')['train'][0])\"\r\n```\r\n\r\nHowever the dataset will load without any problems if you just install version 2.0.0:\r\n\r\n ```\r\npip install datasets\r\npython -c \"from datasets import load_dataset; print(load_dataset('assin2')['train'][0])\"\r\n```\r\n\r\nAny thoughts @lhoestq ?", "Right indeed ! Let me open a PR to fix this.\r\nThe dataset_infos.json file that stores some metadata about the dataset to download (and is used to verify it was correctly downloaded) hasn't been updated correctly", "Not sure what the status of this is, but personally I am still getting this error, with glue.", "Can you open a new issue if you got an error with glue please ?", "Have posted at #4241" ]
## Describe the bug Checksum error after trying to load the [ASSIN 2 dataset](https://huggingface.co/datasets/assin2). `NonMatchingChecksumError` triggered by calling `load_dataset("assin2")`. Similar to #3952 , #3942 , #3941 , etc. ``` --------------------------------------------------------------------------- NonMatchingChecksumError Traceback (most recent call last) [<ipython-input-13-c664a92ad5e7>](https://localhost:8080/#) in <module>() ----> 1 load_dataset('assin2') 4 frames [/usr/local/lib/python3.7/dist-packages/datasets/utils/info_utils.py](https://localhost:8080/#) in verify_checksums(expected_checksums, recorded_checksums, verification_name) 38 if len(bad_urls) > 0: 39 error_msg = "Checksums didn't match" + for_verification_name + ":\n" ---> 40 raise NonMatchingChecksumError(error_msg + str(bad_urls)) 41 logger.info("All the checksums matched successfully" + for_verification_name) 42 NonMatchingChecksumError: Checksums didn't match for dataset source files: ['https://drive.google.com/u/0/uc?id=1Q9j1a83CuKzsHCGaNulSkNxBm7Dkn7Ln&export=download'] ``` ## Steps to reproduce the bug ```python from datasets import load_dataset load_dataset("assin2") ``` ## Expected results Load the dataset. ## Actual results The dataset won't load. ## Environment info - `datasets` version: 2.0.1.dev0 - Platform: Google Colab - Python version: 3.7.12 - PyArrow version: 6.0.1
4,003
https://github.com/huggingface/datasets/issues/4001
How to use generate this multitask dataset for SQUAD? I am getting a value error.
[ "Hi! Replacing `nlp.<obj>` with `datasets.<obj>` in the script should fix the problem. `nlp` has been renamed to `datasets` more than a year ago, so please use `datasets` instead to avoid weird issues.", "Thank You! Was able to solve with the help of this.", "But I request you to please fix the same in the dataset hub explorer as well...", "May I ask how to get this dataset?" ]
## Dataset viewer issue for 'squad_multitask*' **Link:** https://huggingface.co/datasets/vershasaxena91/squad_multitask *short description of the issue* I am trying to generate the multitask dataset for squad dataset. However, gives the error in dataset explorer as well as my local machine. I tried the command: dataset = load_dataset("vershasaxena91/squad_multitask", 'highlight_qg_format') Error: Status code: 400 Exception: TypeError Message: argument of type 'Value' is not iterable Kindly advice.
4,001
https://github.com/huggingface/datasets/issues/4000
load_dataset error: sndfile library not found
[ "Hi @i-am-neo,\r\n\r\nThe audio support is an extra feature of `datasets` and therefore it must be installed as an additional optional dependency:\r\n```shell\r\npip install datasets[audio]\r\n```\r\nAdditionally, for specific MP3 support (which is not the case for AMI dataset, that contains WAV audio files), there is another third-party dependency on `torchaudio`.\r\n\r\nYou have all the information in our docs: https://huggingface.co/docs/datasets/audio_process#installation", "Thanks @albertvillanova . Unfortunately the error persists after installing ```datasets[audio]```. Can you direct towards a solution?\r\n\r\n```\r\npip3 install datasets[audio]\r\n```\r\n### log\r\nRequirement already satisfied: datasets[audio] in ./.virtualenvs/hubert/lib/python3.7/site-packages (1.18.3)\r\nRequirement already satisfied: numpy>=1.17 in ./.virtualenvs/hubert/lib/python3.7/site-packages (from datasets[audio]) (1.21.5)\r\nRequirement already satisfied: xxhash in ./.virtualenvs/hubert/lib/python3.7/site-packages (from datasets[audio]) (3.0.0)\r\nRequirement already satisfied: fsspec[http]>=2021.05.0 in ./.virtualenvs/hubert/lib/python3.7/site-packages (from datasets[audio]) (2022.2.0)\r\nRequirement already satisfied: dill in ./.virtualenvs/hubert/lib/python3.7/site-packages (from datasets[audio]) (0.3.4)\r\nRequirement already satisfied: pandas in ./.virtualenvs/hubert/lib/python3.7/site-packages (from datasets[audio]) (1.3.5)\r\nRequirement already satisfied: huggingface-hub<1.0.0,>=0.1.0 in ./.virtualenvs/hubert/lib/python3.7/site-packages (from datasets[audio]) (0.4.0)\r\nRequirement already satisfied: packaging in ./.virtualenvs/hubert/lib/python3.7/site-packages (from datasets[audio]) (21.3)\r\nRequirement already satisfied: multiprocess in ./.virtualenvs/hubert/lib/python3.7/site-packages (from datasets[audio]) (0.70.12.2)\r\nRequirement already satisfied: pyarrow!=4.0.0,>=3.0.0 in ./.virtualenvs/hubert/lib/python3.7/site-packages (from datasets[audio]) (7.0.0)\r\nRequirement already satisfied: tqdm>=4.62.1 in ./.virtualenvs/hubert/lib/python3.7/site-packages (from datasets[audio]) (4.63.1)\r\nRequirement already satisfied: aiohttp in ./.virtualenvs/hubert/lib/python3.7/site-packages (from datasets[audio]) (3.8.1)\r\nRequirement already satisfied: importlib-metadata in ./.virtualenvs/hubert/lib/python3.7/site-packages (from datasets[audio]) (4.11.3)\r\nRequirement already satisfied: requests>=2.19.0 in ./.virtualenvs/hubert/lib/python3.7/site-packages (from datasets[audio]) (2.27.1)\r\nRequirement already satisfied: librosa in ./.virtualenvs/hubert/lib/python3.7/site-packages (from datasets[audio]) (0.9.1)\r\nRequirement already satisfied: pyyaml in ./.virtualenvs/hubert/lib/python3.7/site-packages (from huggingface-hub<1.0.0,>=0.1.0->datasets[audio]) (6.0)\r\nRequirement already satisfied: typing-extensions>=3.7.4.3 in ./.virtualenvs/hubert/lib/python3.7/site-packages (from huggingface-hub<1.0.0,>=0.1.0->datasets[audio]) (4.1.1)\r\nRequirement already satisfied: filelock in ./.virtualenvs/hubert/lib/python3.7/site-packages (from huggingface-hub<1.0.0,>=0.1.0->datasets[audio]) (3.6.0)\r\nRequirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in ./.virtualenvs/hubert/lib/python3.7/site-packages (from packaging->datasets[audio]) (3.0.7)\r\nRequirement already satisfied: idna<4,>=2.5 in ./.virtualenvs/hubert/lib/python3.7/site-packages (from requests>=2.19.0->datasets[audio]) (3.3)\r\nRequirement already satisfied: certifi>=2017.4.17 in ./.virtualenvs/hubert/lib/python3.7/site-packages (from requests>=2.19.0->datasets[audio]) (2021.10.8)\r\nRequirement already satisfied: charset-normalizer~=2.0.0 in ./.virtualenvs/hubert/lib/python3.7/site-packages (from requests>=2.19.0->datasets[audio]) (2.0.12)\r\nRequirement already satisfied: urllib3<1.27,>=1.21.1 in ./.virtualenvs/hubert/lib/python3.7/site-packages (from requests>=2.19.0->datasets[audio]) (1.26.9)\r\nRequirement already satisfied: attrs>=17.3.0 in ./.virtualenvs/hubert/lib/python3.7/site-packages (from aiohttp->datasets[audio]) (21.4.0)\r\nRequirement already satisfied: frozenlist>=1.1.1 in ./.virtualenvs/hubert/lib/python3.7/site-packages (from aiohttp->datasets[audio]) (1.3.0)\r\nRequirement already satisfied: aiosignal>=1.1.2 in ./.virtualenvs/hubert/lib/python3.7/site-packages (from aiohttp->datasets[audio]) (1.2.0)\r\nRequirement already satisfied: yarl<2.0,>=1.0 in ./.virtualenvs/hubert/lib/python3.7/site-packages (from aiohttp->datasets[audio]) (1.7.2)\r\nRequirement already satisfied: asynctest==0.13.0 in ./.virtualenvs/hubert/lib/python3.7/site-packages (from aiohttp->datasets[audio]) (0.13.0)\r\nRequirement already satisfied: multidict<7.0,>=4.5 in ./.virtualenvs/hubert/lib/python3.7/site-packages (from aiohttp->datasets[audio]) (6.0.2)\r\nRequirement already satisfied: async-timeout<5.0,>=4.0.0a3 in ./.virtualenvs/hubert/lib/python3.7/site-packages (from aiohttp->datasets[audio]) (4.0.2)\r\nRequirement already satisfied: zipp>=0.5 in ./.virtualenvs/hubert/lib/python3.7/site-packages (from importlib-metadata->datasets[audio]) (3.7.0)\r\nRequirement already satisfied: decorator>=4.0.10 in ./.virtualenvs/hubert/lib/python3.7/site-packages (from librosa->datasets[audio]) (5.1.1)\r\nRequirement already satisfied: soundfile>=0.10.2 in ./.virtualenvs/hubert/lib/python3.7/site-packages (from librosa->datasets[audio]) (0.10.3.post1)\r\nRequirement already satisfied: numba>=0.45.1 in ./.virtualenvs/hubert/lib/python3.7/site-packages (from librosa->datasets[audio]) (0.55.1)\r\nRequirement already satisfied: pooch>=1.0 in ./.virtualenvs/hubert/lib/python3.7/site-packages (from librosa->datasets[audio]) (1.6.0)\r\nRequirement already satisfied: resampy>=0.2.2 in ./.virtualenvs/hubert/lib/python3.7/site-packages (from librosa->datasets[audio]) (0.2.2)\r\nRequirement already satisfied: audioread>=2.1.5 in ./.virtualenvs/hubert/lib/python3.7/site-packages (from librosa->datasets[audio]) (2.1.9)\r\nRequirement already satisfied: joblib>=0.14 in ./.virtualenvs/hubert/lib/python3.7/site-packages (from librosa->datasets[audio]) (1.1.0)\r\nRequirement already satisfied: scipy>=1.2.0 in ./.virtualenvs/hubert/lib/python3.7/site-packages (from librosa->datasets[audio]) (1.7.3)\r\nRequirement already satisfied: scikit-learn>=0.19.1 in ./.virtualenvs/hubert/lib/python3.7/site-packages (from librosa->datasets[audio]) (1.0.2)\r\nRequirement already satisfied: python-dateutil>=2.7.3 in ./.virtualenvs/hubert/lib/python3.7/site-packages (from pandas->datasets[audio]) (2.8.2)\r\nRequirement already satisfied: pytz>=2017.3 in ./.virtualenvs/hubert/lib/python3.7/site-packages (from pandas->datasets[audio]) (2022.1)\r\nRequirement already satisfied: setuptools in ./.virtualenvs/hubert/lib/python3.7/site-packages (from numba>=0.45.1->librosa->datasets[audio]) (60.10.0)\r\nRequirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.virtualenvs/hubert/lib/python3.7/site-packages (from numba>=0.45.1->librosa->datasets[audio]) (0.38.0)\r\nRequirement already satisfied: appdirs>=1.3.0 in ./.virtualenvs/hubert/lib/python3.7/site-packages (from pooch>=1.0->librosa->datasets[audio]) (1.4.4)\r\nRequirement already satisfied: six>=1.5 in ./.virtualenvs/hubert/lib/python3.7/site-packages (from python-dateutil>=2.7.3->pandas->datasets[audio]) (1.16.0)\r\nRequirement already satisfied: threadpoolctl>=2.0.0 in ./.virtualenvs/hubert/lib/python3.7/site-packages (from scikit-learn>=0.19.1->librosa->datasets[audio]) (3.1.0)\r\nRequirement already satisfied: cffi>=1.0 in ./.virtualenvs/hubert/lib/python3.7/site-packages (from soundfile>=0.10.2->librosa->datasets[audio]) (1.15.0)\r\nRequirement already satisfied: pycparser in ./.virtualenvs/hubert/lib/python3.7/site-packages (from cffi>=1.0->soundfile>=0.10.2->librosa->datasets[audio]) (2.21)\r\n\r\n### reload\r\n```\r\npython3 -c \"from datasets import load_dataset; print(load_dataset('ami', 'headset-single', split='validation')[0])\"\r\n```\r\n\r\n### log\r\nDownloading and preparing dataset ami/headset-single (download: 10.71 GiB, generated: 49.99 MiB, post-processed: Unknown size, total: 10.76 GiB) to /home/neo/.cache/huggingface/datasets/ami/headset-single/1.6.2/2accdf810f7c0585f78f4bcfa47684fbb980e35d29ecf126e6906dbecb872d9e...\r\nAMI corpus cannot be downloaded using multi-processing. Setting number of downloaded processes `num_proc` to 1. \r\n100%|██████████████████████████████████████████████████████| 136/136 [00:00<00:00, 33542.59it/s]\r\n100%|█████████████████████████████████████████████████████████| 136/136 [00:06<00:00, 22.28it/s]\r\n100%|████████████████████████████████████████████████████████| 18/18 [00:00<00:00, 21558.39it/s]\r\n100%|█████████████████████████████████████████████████████████| 18/18 [00:00<00:00, 2996.41it/s]\r\n100%|████████████████████████████████████████████████████████| 16/16 [00:00<00:00, 23431.87it/s]\r\n100%|█████████████████████████████████████████████████████████| 16/16 [00:00<00:00, 2697.52it/s]\r\nTraceback (most recent call last):\r\n File \"<string>\", line 1, in <module>\r\n File \"/home/neo/.virtualenvs/hubert/lib/python3.7/site-packages/datasets/load.py\", line 1707, in load_dataset\r\n use_auth_token=use_auth_token,\r\n File \"/home/neo/.virtualenvs/hubert/lib/python3.7/site-packages/datasets/builder.py\", line 595, in download_and_prepare\r\n dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs\r\n File \"/home/neo/.virtualenvs/hubert/lib/python3.7/site-packages/datasets/builder.py\", line 690, in _download_and_prepare\r\n ) from None\r\nOSError: Cannot find data file. \r\nOriginal error:\r\nsndfile library not found\r\n\r\n### just to double-check as per your docs\r\n```\r\npip3 install librosa torchaudio\r\n```\r\n\r\n### logs\r\nRequirement already satisfied: librosa in /home/neo/.virtualenvs/hubert/lib/python3.7/site-packages (0.9.1)\r\nRequirement already satisfied: torchaudio in /home/neo/.virtualenvs/hubert/lib/python3.7/site-packages (0.11.0+cu113)\r\nRequirement already satisfied: audioread>=2.1.5 in /home/neo/.virtualenvs/hubert/lib/python3.7/site-packages (from librosa) (2.1.9)\r\nRequirement already satisfied: joblib>=0.14 in /home/neo/.virtualenvs/hubert/lib/python3.7/site-packages (from librosa) (1.1.0)\r\nRequirement already satisfied: packaging>=20.0 in /home/neo/.virtualenvs/hubert/lib/python3.7/site-packages (from librosa) (21.3)\r\nRequirement already satisfied: scikit-learn>=0.19.1 in /home/neo/.virtualenvs/hubert/lib/python3.7/site-packages (from librosa) (1.0.2)\r\nRequirement already satisfied: scipy>=1.2.0 in /home/neo/.virtualenvs/hubert/lib/python3.7/site-packages (from librosa) (1.7.3)\r\nRequirement already satisfied: decorator>=4.0.10 in /home/neo/.virtualenvs/hubert/lib/python3.7/site-packages (from librosa) (5.1.1)\r\nRequirement already satisfied: resampy>=0.2.2 in /home/neo/.virtualenvs/hubert/lib/python3.7/site-packages (from librosa) (0.2.2)\r\nRequirement already satisfied: pooch>=1.0 in /home/neo/.virtualenvs/hubert/lib/python3.7/site-packages (from librosa) (1.6.0)\r\nRequirement already satisfied: numpy>=1.17.0 in /home/neo/.virtualenvs/hubert/lib/python3.7/site-packages (from librosa) (1.21.5)\r\nRequirement already satisfied: soundfile>=0.10.2 in /home/neo/.virtualenvs/hubert/lib/python3.7/site-packages (from librosa) (0.10.3.post1)\r\nRequirement already satisfied: numba>=0.45.1 in /home/neo/.virtualenvs/hubert/lib/python3.7/site-packages (from librosa) (0.55.1)\r\nRequirement already satisfied: torch==1.11.0 in /home/neo/.virtualenvs/hubert/lib/python3.7/site-packages (from torchaudio) (1.11.0+cu113)\r\nRequirement already satisfied: typing-extensions in /home/neo/.virtualenvs/hubert/lib/python3.7/site-packages (from torch==1.11.0->torchaudio) (4.1.1)\r\nRequirement already satisfied: setuptools in /home/neo/.virtualenvs/hubert/lib/python3.7/site-packages (from numba>=0.45.1->librosa) (60.10.0)\r\nRequirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in /home/neo/.virtualenvs/hubert/lib/python3.7/site-packages (from numba>=0.45.1->librosa) (0.38.0)\r\nRequirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /home/neo/.virtualenvs/hubert/lib/python3.7/site-packages (from packaging>=20.0->librosa) (3.0.7)\r\nRequirement already satisfied: requests>=2.19.0 in /home/neo/.virtualenvs/hubert/lib/python3.7/site-packages (from pooch>=1.0->librosa) (2.27.1)\r\nRequirement already satisfied: appdirs>=1.3.0 in /home/neo/.virtualenvs/hubert/lib/python3.7/site-packages (from pooch>=1.0->librosa) (1.4.4)\r\nRequirement already satisfied: six>=1.3 in /home/neo/.virtualenvs/hubert/lib/python3.7/site-packages (from resampy>=0.2.2->librosa) (1.16.0)\r\nRequirement already satisfied: threadpoolctl>=2.0.0 in /home/neo/.virtualenvs/hubert/lib/python3.7/site-packages (from scikit-learn>=0.19.1->librosa) (3.1.0)\r\nRequirement already satisfied: cffi>=1.0 in /home/neo/.virtualenvs/hubert/lib/python3.7/site-packages (from soundfile>=0.10.2->librosa) (1.15.0)\r\nRequirement already satisfied: pycparser in /home/neo/.virtualenvs/hubert/lib/python3.7/site-packages (from cffi>=1.0->soundfile>=0.10.2->librosa) (2.21)\r\nRequirement already satisfied: charset-normalizer~=2.0.0 in /home/neo/.virtualenvs/hubert/lib/python3.7/site-packages (from requests>=2.19.0->pooch>=1.0->librosa) (2.0.12)\r\nRequirement already satisfied: certifi>=2017.4.17 in /home/neo/.virtualenvs/hubert/lib/python3.7/site-packages (from requests>=2.19.0->pooch>=1.0->librosa) (2021.10.8)\r\nRequirement already satisfied: urllib3<1.27,>=1.21.1 in /home/neo/.virtualenvs/hubert/lib/python3.7/site-packages (from requests>=2.19.0->pooch>=1.0->librosa) (1.26.9)\r\nRequirement already satisfied: idna<4,>=2.5 in /home/neo/.virtualenvs/hubert/lib/python3.7/site-packages (from requests>=2.19.0->pooch>=1.0->librosa) (3.3)\r\n\r\n### try loading again\r\n```\r\npython3 -c \"from datasets import load_dataset; print(load_dataset('ami', 'headset-single', split='validation')[0])\"\r\n```\r\n\r\n### same error\r\nDownloading and preparing dataset ami/headset-single (download: 10.71 GiB, generated: 49.99 MiB, post-processed: Unknown size, total: 10.76 GiB) to /home/neo/.cache/huggingface/datasets/ami/headset-single/1.6.2/2accdf810f7c0585f78f4bcfa47684fbb980e35d29ecf126e6906dbecb872d9e...\r\nAMI corpus cannot be downloaded using multi-processing. Setting number of downloaded processes `num_proc` to 1. \r\n100%|██████████████████████████████████████████████████████| 136/136 [00:00<00:00, 33542.59it/s]\r\n100%|█████████████████████████████████████████████████████████| 136/136 [00:06<00:00, 22.28it/s]\r\n100%|████████████████████████████████████████████████████████| 18/18 [00:00<00:00, 21558.39it/s]\r\n100%|█████████████████████████████████████████████████████████| 18/18 [00:00<00:00, 2996.41it/s]\r\n100%|████████████████████████████████████████████████████████| 16/16 [00:00<00:00, 23431.87it/s]\r\n100%|█████████████████████████████████████████████████████████| 16/16 [00:00<00:00, 2697.52it/s]\r\nTraceback (most recent call last):\r\n File \"<string>\", line 1, in <module>\r\n File \"/home/neo/.virtualenvs/hubert/lib/python3.7/site-packages/datasets/load.py\", line 1707, in load_dataset\r\n use_auth_token=use_auth_token,\r\n File \"/home/neo/.virtualenvs/hubert/lib/python3.7/site-packages/datasets/builder.py\", line 595, in download_and_prepare\r\n dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs\r\n File \"/home/neo/.virtualenvs/hubert/lib/python3.7/site-packages/datasets/builder.py\", line 690, in _download_and_prepare\r\n ) from None\r\nOSError: Cannot find data file. \r\nOriginal error:\r\nsndfile library not found\r\n", "Hi @i-am-neo, thanks again for your detailed report.\r\n\r\nOur `datasets` library support for audio relies on a third-party Python library called `librosa`, which is installed when you do:\r\n```shell\r\npip install datasets[audio]\r\n```\r\n\r\nHowever, the `librosa` library has a dependency on `soundfile`; and `soundfile` depends on a non-Python package called `sndfile`. \r\n\r\nOn Linux (which is your case), this must be installed manually using your operating system package manager, for example:\r\n```shell\r\nsudo apt-get install libsndfile1\r\n```\r\n\r\nPlease, let me know if this works and if so, I will update our docs with all this information.", "@albertvillanova thanks, all good. The key is ```libsndfile1``` - it may help others to note that in your docs. I had installed libsndfile previously." ]
## Describe the bug Can't load ami dataset ## Steps to reproduce the bug ``` python3 -c "from datasets import load_dataset; print(load_dataset('ami', 'headset-single', split='validation')[0])" ``` ## Expected results ## Actual results Downloading and preparing dataset ami/headset-single (download: 10.71 GiB, generated: 49.99 MiB, post-processed: Unknown size, total: 10.76 GiB) to /home/neo/.cache/huggingface/datasets/ami/headset-single/1.6.2/2accdf810f7c0585f78f4bcfa47684fbb980e35d29ecf126e6906dbecb872d9e... AMI corpus cannot be downloaded using multi-processing. Setting number of downloaded processes `num_proc` to 1. 100%|██████████████████████████████████████████████████████| 136/136 [00:00<00:00, 36004.88it/s] 100%|█████████████████████████████████████████████████████████| 136/136 [00:01<00:00, 79.10it/s] 100%|████████████████████████████████████████████████████████| 18/18 [00:00<00:00, 25343.23it/s] 100%|█████████████████████████████████████████████████████████| 18/18 [00:00<00:00, 2874.78it/s] 100%|████████████████████████████████████████████████████████| 16/16 [00:00<00:00, 27950.38it/s] 100%|█████████████████████████████████████████████████████████| 16/16 [00:00<00:00, 2892.25it/s] Traceback (most recent call last): File "<string>", line 1, in <module> File "/home/neo/.virtualenvs/hubert/lib/python3.7/site-packages/datasets/load.py", line 1707, in load_dataset use_auth_token=use_auth_token, File "/home/neo/.virtualenvs/hubert/lib/python3.7/site-packages/datasets/builder.py", line 595, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/home/neo/.virtualenvs/hubert/lib/python3.7/site-packages/datasets/builder.py", line 690, in _download_and_prepare ) from None OSError: Cannot find data file. Original error: sndfile library not found ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 1.18.3 - Platform: Linux-4.19.0-18-cloud-amd64-x86_64-with-debian-10.11 - Python version: 3.7.3 - PyArrow version: 7.0.0
4,000
https://github.com/huggingface/datasets/issues/3996
Audio.encode_example() throws an error when writing example from array
[ "Good catch ! Yes I think passing `format=\"wav\"` is the right thing to do", "Thanks @polinaeterna for reporting this issue.\r\n\r\nIn relation to the decoding of MP3 audio files without torchaudio, I remember Patrick made some tests and these had quite bad performance. That is why he proposed to support MP3 files only with torchaudio. But yes, nice to give an alternative to non-torchaudio users (with a big warning on performance).", "> I remember Patrick made some tests and these had quite bad performance. That is why he proposed to support MP3 files only with torchaudio.\r\n\r\nYeah, I know, but as far as I understand, some users just categorically don't want to have torchaudio in their environment. Anyway, it's just a more or less random example, they can use any library they like following the same logic (I'm just not a big expert in decoding utils so if you can give me some presentation / resources about that I would really appreciate it 🤗)" ]
## Describe the bug When trying to do `Audio().encode_example()` with preexisting array (see [this line](https://github.com/huggingface/datasets/blob/master/src/datasets/features/audio.py#L73)), `sf.write()` throws you an error: `TypeError: No format specified and unable to get format from file extension: <_io.BytesIO object at 0x7f4218c0db30>` ## Steps to reproduce the bug ### Sample code to reproduce the bug ```python # download sample file !wget https://huggingface.co/datasets/polinaeterna/test_encode_example/resolve/main/common_voice_vi_21824030.mp3 arr, sr = librosa.load("common_voice_vi_21824030.mp3") Audio().encode_example({ "path": "common_voice_vi_21824030.mp3", "array": arr, "sampling_rate":sr }) ``` ## Expected results An encoded example (`{"bytes": b'....', "path": 'path'}`) ## Actual results ```python TypeError Traceback (most recent call last) Input In [3], in <module> 1 arr, sr = librosa.load("common_voice_vi_21824030.mp3") ----> 3 Audio().encode_example({ 4 "path": "common_voice_vi_21824030.mp3", 5 "array": arr, 6 "sampling_rate":sr 7 }) File ~/workspace/datasets/src/datasets/features/audio.py:75, in Audio.encode_example(self, value) 73 elif isinstance(value, dict) and "array" in value: 74 buffer = BytesIO() ---> 75 sf.write(buffer, value["array"], value["sampling_rate"]) 76 return {"bytes": buffer.getvalue(), "path": value.get("path")} 77 elif value.get("bytes") is not None or value.get("path") is not None: File ~/miniconda3/envs/datasets/lib/python3.8/site-packages/soundfile.py:314, in write(file, data, samplerate, subtype, endian, format, closefd) 312 else: 313 channels = data.shape[1] --> 314 with SoundFile(file, 'w', samplerate, channels, 315 subtype, endian, format, closefd) as f: 316 f.write(data) File ~/miniconda3/envs/datasets/lib/python3.8/site-packages/soundfile.py:627, in SoundFile.__init__(self, file, mode, samplerate, channels, subtype, endian, format, closefd) 625 mode_int = _check_mode(mode) 626 self._mode = mode --> 627 self._info = _create_info_struct(file, mode, samplerate, channels, 628 format, subtype, endian) 629 self._file = self._open(file, mode_int, closefd) 630 if set(mode).issuperset('r+') and self.seekable(): 631 # Move write position to 0 (like in Python file objects) File ~/miniconda3/envs/datasets/lib/python3.8/site-packages/soundfile.py:1416, in _create_info_struct(file, mode, samplerate, channels, format, subtype, endian) 1414 original_format = format 1415 if format is None: -> 1416 format = _get_format_from_filename(file, mode) 1417 assert isinstance(format, (_unicode, str)) 1418 else: File ~/miniconda3/envs/datasets/lib/python3.8/site-packages/soundfile.py:1457, in _get_format_from_filename(file, mode) 1455 pass 1456 if format.upper() not in _formats and 'r' not in mode: -> 1457 raise TypeError("No format specified and unable to get format from " 1458 "file extension: {0!r}".format(file)) 1459 return format TypeError: No format specified and unable to get format from file extension: <_io.BytesIO object at 0x7fd8daf88180> ``` ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: datasets master - Platform: Ubuntu 20.04 - Python version: python 3.8.12 - PyArrow version: 6.0.1 ## Solution I guess we just need to add `format` arg in [this line](https://github.com/huggingface/datasets/blob/master/src/datasets/features/audio.py#L75) like this: ```python sf.write(buffer, value["array"], value["sampling_rate"], format="wav") ``` BTW discovered this when trying to decode audio in mp3 format without torchaudio (would be useful for TensorFlow users), like this: ```python from datasets import load_dataset, Features, Audio ds = load_dataset("common_voice", "vi", split="test") ds = ds.remove_columns("audio") ds.select(range(3)) # 3 samples just for testing def load_mp3_with_librosa(example): arr, sr = librosa.load(example["path"]) example["audio"] = { "path": example["path"], "array": arr, "sampling_rate": sr } return example updated_dataset = ds.map(lambda example: load_mp3_with_librosa(example), features=Features( {"audio": Audio(decode=False)} )) ``` @lhoestq @mariosasko @albertvillanova am I right in my logic? do we agree that we can set wav as the format? 🤗
3,996
https://github.com/huggingface/datasets/issues/3993
Streaming dataset + interleave + DataLoader hangs with multiple workers
[ "Same thing occurs when streaming files loaded from disk.", "Hi ! Thanks for reporting, could this be related to https://github.com/huggingface/datasets/issues/3950 ?\r\n\r\nCurrently streaming datasets only works in single process, but we're working on having in work in distributed setups as well :) (EDIT: done)", "Hi, thanks for your reply. It seems related :)", "+1", "Please update `datasets` if you're having this issue. What version are you using ?" ]
## Describe the bug Interleaving multiple iterable datasets that use `load_dataset` on streaming mode hangs when passed to `torch.utils.data.DataLoader` with multiple workers. ## Steps to reproduce the bug ```python from datasets import interleave_datasets, load_dataset from torch.utils.data import DataLoader en_dataset = load_dataset('oscar', "unshuffled_deduplicated_en", split='train', streaming=True) fr_dataset = load_dataset('oscar', "unshuffled_deduplicated_fr", split='train', streaming=True) it_dataset = load_dataset('oscar', "unshuffled_deduplicated_it", split='train', streaming=True) de_dataset = load_dataset('oscar', "unshuffled_deduplicated_de", split='train', streaming=True) multilingual_dataset = interleave_datasets([en_dataset, fr_dataset, de_dataset, it_dataset]) multilingual_dataset = multilingual_dataset.with_format('torch') next(iter(multilingual_dataset)) # works fairly fast dataloader = DataLoader(multilingual_dataset, batch_size=8, num_workers=4) for batch in dataloader: print(len(batch)) # prints nothing after 30 min of waiting dataloader = DataLoader(multilingual_dataset, batch_size=8, num_workers=0) for batch in dataloader: print(len(batch)) # prints right away ``` ## Expected results It should be able to iterate the dataset with multiple workers. ## Actual results Prints with results with `next(iter(multilingual_dataset)) ` and `num_workers=0` but it prints nothing with `num_workers=4` or any number above 0. ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 2.0.1.dev0 - `pytorch` version: 1.10.0+cu113 - Python version: 3.7 - PyArrow version: 6.0.1
3,993
https://github.com/huggingface/datasets/issues/3992
Image column is not decoded in map when using with with_transform
[ "Hi! This behavior stems from this line: https://github.com/huggingface/datasets/blob/799b817d97590ddc97cbd38d07469403e030de8c/src/datasets/arrow_dataset.py#L1919\r\nBasically, the `Image`/`Audio` columns are decoded only if the `format_type` attribute is `None` (`set_format`/`with_format` and `set_transform`/`with_transform` assign a non-`None` value to it) and the `input_columns` param is not specified (see https://github.com/huggingface/datasets/issues/3756). We will remove these limitations soon.\r\n\r\n\r\n\r\n" ]
## Describe the bug Image column is not _decoded_ in **map** when using with `with_transform` ## Steps to reproduce the bug ```python from datasets import Image, Dataset def add_C(batch): batch["C"] = batch["A"] return batch ds = Dataset.from_dict({"A": ["image.png"]}).cast_column("A", Image()) ds = ds.with_transform(lambda x: x) # <= This line causes the problem ds = ds.map(add_C, batched=True) print(ds[0]) ``` ## Expected results ``` {'C': <PIL.PngImagePlugin.PngImageFile>, ...} ``` ## Actual results ``` {'C': {'bytes': None, 'path': 'image.png'}, ...} ``` If we remove the `with_transform` line, we get the expected result. ## Environment info - `datasets` version: 2.0.0 - Platform: Mac OSX - Python version: 3.8.12 - PyArrow version: 7.0.0
3,992
https://github.com/huggingface/datasets/issues/3991
Add Lung Image Database Consortium image collection (LIDC-IDRI) dataset
[]
## Adding a Dataset - **Name:** *Lung Image Database Consortium image collection (LIDC-IDRI)* - **Description:** *Consists of diagnostic and lung cancer screening thoracic computed tomography (CT) scans with marked-up annotated lesions. It is a web-accessible international resource for development, training, and evaluation of computer-assisted diagnostic (CAD) methods for lung cancer detection and diagnosis. Initiated by the National Cancer Institute (NCI), further advanced by the Foundation for the National Institutes of Health (FNIH), and accompanied by the Food and Drug Administration (FDA) through active participation, this public-private partnership demonstrates the success of a consortium founded on a consensus-based process.* - **Data:** *[link to the Github repository or current dataset location](https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI)* - **Motivation:** *Key dataset in the healthcare community* Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md). FYI @osanseviero @abidlabs
3,991
https://github.com/huggingface/datasets/issues/3990
Improve AutomaticSpeechRecognition task template
[ "There is an open PR to do that: #3364. I just haven't had time to finish it... ", "> There is an open PR to do that: #3364. I just haven't had time to finish it...\r\n\r\n😬 thanks..." ]
**Is your feature request related to a problem? Please describe.** [AutomaticSpeechRecognition task template](https://github.com/huggingface/datasets/blob/master/src/datasets/tasks/automatic_speech_recognition.py) is outdated as it uses path to audiofile as an audio column instead of a Audio feature itself (I guess it's because Audio feature didn't exist at the time this template was created). **Describe the solution you'd like** Change audio columns from string path to Audio feature.
3,990
https://github.com/huggingface/datasets/issues/3986
Dataset loads indefinitely after modifying default cache path (~/.cache/huggingface)
[ "Hi ! I didn't managed to reproduce the issue. When you kill the process, is there any stacktrace that shows at what point in the code python is hanging ?", "Hi @lhoestq , I've traced the issue back to file locking. It's similar to this thread, using Lustre filesystem as well. https://github.com/huggingface/datasets/issues/329 . In this case the user was able to modify and add -o flock option while mounting and it solved the problem. \r\nHowever in other cases such as mine, we do not have the permissions to modify the commands while mounting. I'm still trying to figure out a workaround. Any ideas how can we use a mounted Lustre filesystem with no flock option?\r\n", "Hi @kelvinAI , I've had this issue on our institution's system which uses Lustre (in addition to our compute nodes being siloed off from external network access). The workaround I made for downloading/loading datasets was to set the `$HFHOME` environment variable to a location on the node's local storage (SSD), effectively a location that gets cleared regularly and sometimes gets used for temporary or cached files which is pretty common, e.g. \"scratch\" storage. Maybe your sysadmins, if you have them, could point you to subdirectories on a node that aren't linked to the Lustre filesystem. After downloading to scratch I found that the transformers, modules, and metrics cached folders were fine to move to my user drives on the Lustre filesystem but cached datasets that had fingerprints still had some issues with filelock, so it would help to use the function `my_dataset.save_to_disk('path/on/lustre_fs')` and static class function `Dataset.load_from_disk('path/on/lustre_fs')`. In rough steps:\r\n\r\n1. Initially download to scratch storage with `ds = datasets.load_dataset(dataset_name)`\r\n2. Call `ds.save_to_disk(my_path_on_lustre)` with a path in your user space on the Lustre filesystem\r\n3. Load datasets with `from datasets import Dataset; new_ds = Dataset.load_from_disk(my_path_on_lustre)`\r\n\r\nObviously this hinges on there existing scratch storage on the nodes you're using. Fingers crossed.", "Hi @jpmcd , thanks for sharing your experience. For my case, the Lustre filesystem (with more storage space) is the scratch storage like the one you've mentioned. We have a local storage for each user but unfortunately there's not enough space in it to 'cache' huge datasets, hence that is why I tried changing HF_HOME to point to the scratch disk with more space and encountered the flock issue. Unfortunately I'm not aware of any viable solution to this for now so I simply fall back to using torch dataset. ", "@jpmcd your comment saved me from pulling my hair out in frustration. Setting `HF_HOME` to a directory that's not on Lustre works like a charm. ✨ " ]
## Describe the bug Dataset loads indefinitely after modifying cache path (~/.cache/huggingface) If none of the environment variables are set, this custom dataset loads fine ( json-based dataset with custom dataset load script) ** Update: Transformer modules faces the same issue as well during loading ## A clear and concise description of what the bug is. Issue: - Dataset loading stalls / freezes indefinitely when HF_HOME is changed to a custom directory - No error code, had to terminate the process - There are some files created in the cache directory: ``` custom_cache_dir | -- modules | -- __init__.py | -- datasets_modules | -- __init__.py | -- datasets | -- __init__.py | -- script.py (Dataset loading script) | -- script.lock ``` There's no error nor any logs thrown so I'm out of ideas of how to to debug this. The custom dataset works fine if the default ~/.cache dir is used, but unfortunately it's out of space and we do not have permissions to modify the disk. ## Steps to reproduce the bug What I've tried: - Modifying HF_HOME (https://github.com/huggingface/transformers/issues/8703) - Modifying HF_DATASETS_CACHE (https://huggingface.co/docs/datasets/v1.12.0/cache.html) - Modifying cache_dir param during runtime ```python >>> from datasets import load_dataset >>> dataset = load_dataset('test_dataset', cache_dir='/path/to/new/cache') ``` - Disabling dataset cache ```python >>> from datasets import set_caching_enabled >>> set_caching_enabled(False) ``` ## Expected results Datasets should load / cache as usual with the only exception that cache directory is different ## Actual results Any actions taken above to change the cache directory results in loading indefinitely without terminating. ## Environment info - `transformers` version: 4.18.0.dev0 - Platform: Linux-4.15.0-54-generic-x86_64-with-glibc2.10 - Python version: 3.8.8 - Huggingface_hub version: 0.4.0 - PyTorch version (GPU?): 1.8.1+cu102 (True) - Tensorflow version (GPU?): 2.4.1 (False) - Flax version (CPU?/GPU?/TPU?): not installed (NA) - Jax version: not installed - JaxLib version: not installed - Using GPU in script?: Yes - Using distributed or parallel set-up in script?: No
3,986
https://github.com/huggingface/datasets/issues/3985
[image feature] Too many files open error when image feature is returned as a path
[]
## Describe the bug PR in context: #3967. If I load the dataset in this PR (TextVQA), and do a simple list comprehension on the dataset, I get `Too many open files error`. This is happening due to the way we are loading the image feature when a str path is returned from the `_generate_examples`. Specifically at https://github.com/huggingface/datasets/blob/508eb4ab5d52f590baa677b4f64b1cc069139f7b/src/datasets/features/image.py#L110, we are open the file handle to the image but never closing it. This in my understanding is causing the issue. ## Steps to reproduce the bug Pull the PR locally and run the following code ```python from datasets import load_dataset dataset = load_dataset("./datasets/textvqa")["train"] data = [item for item in dataset] # Error happens ``` ## Expected results List comprehension should work smoothly ## Actual results `Too many open files error` ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 2.0.1.dev0 - Platform: macOS-12.2-arm64-arm-64bit - Python version: 3.10.0 - PyArrow version: 7.0.0 - Pandas version: 1.4.1
3,985
https://github.com/huggingface/datasets/issues/3984
Local and automatic tests fail
[ "Hi ! To be able to run the tests, you need to install all the test dependencies and additional ones with\r\n```\r\npip install -e .[tests]\r\npip install -r additional-tests-requirements.txt --no-deps\r\n```\r\n\r\nIn particular, you probably need to `sacrebleu`. It looks like it wasn't able to instantiate `sacrebleu.TER` properly." ]
## Describe the bug Running the tests from CircleCI on a PR or locally fails, even with no changes. Tests seem to fail on `test_metric_common.py` ## Steps to reproduce the bug ```shell git clone https://huggingface/datasets.git cd datasets ``` ```python python -m pip install -e . pytest ``` ## Expected results All tests passing ## Actual results ``` tests/test_metric_common.py:91: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ../.pyenv/versions/3.8.5/lib/python3.8/doctest.py:1336: in __run exec(compile(example.source, filename, "single", <doctest datasets_modules.metrics.ter.c0cfb5adedac7eb15ffa47bba6a70fabd80f3eb906ee508abf5e1906285d1155.ter.Ter[3]>:1: in <module> ??? ../datasets/src/datasets/metric.py:430: in compute output = self._compute(**inputs, **compute_kwargs) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ self = Metric(name: "ter", features: {'predictions': Value(dtype='string', id='sequence'), 'references': Sequence(feature=Val...ences=references) >>> print(results) {'score': 0.0, 'num_edits': 0, 'ref_length': 6.5} """, stored examples: 0) predictions = ['hello there general kenobi', 'foo bar foobar'] references = [['hello there general kenobi', 'hello there !'], ['foo bar foobar', 'foo bar foobar']] normalized = False, no_punct = False, asian_support = False, case_sensitive = False def _compute( self, predictions, references, normalized: bool = False, no_punct: bool = False, asian_support: bool = False, case_sensitive: bool = False, ): references_per_prediction = len(references[0]) if any(len(refs) != references_per_prediction for refs in references): raise ValueError("Sacrebleu requires the same number of references for each prediction") transformed_references = [[refs[i] for refs in references] for i in range(references_per_prediction)] > sb_ter = TER(normalized, no_punct, asian_support, case_sensitive) E TypeError: __init__() takes 2 positional arguments but 5 were given /tmp/pytest-of-markussagen/pytest-1/cache/modules/datasets_modules/metrics/ter/c0cfb5adedac7eb15ffa47bba6a70fabd80f3eb906ee508abf5e1906285d1155/ter.py:130: TypeError ------------------------------ Captured stdout call ------------------------------- Trying: predictions = ["hello there general kenobi", "foo bar foobar"] Expecting nothing ok Trying: references = [["hello there general kenobi", "hello there !"], ["foo bar foobar", "foo bar foobar"]] Expecting nothing ok Trying: ter = datasets.load_metric("ter") Expecting nothing ok Trying: results = ter.compute(predictions=predictions, references=references) Expecting nothing ================================ warnings summary ================================= ../.pyenv/versions/3.8.5/envs/huggingface/lib/python3.8/site-packages/hdfs/config.py:15 /home/markussagen/.pyenv/versions/3.8.5/envs/huggingface/lib/python3.8/site-packages/hdfs/config.py:15: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses from imp import load_source ../datasets/src/datasets/commands/test.py:35 /home/markussagen/datasets/src/datasets/commands/test.py:35: PytestCollectionWarning: cannot collect test class 'TestCommand' because it has a __init__ constructor (from: tests/commands/test_test.py) class TestCommand(BaseDatasetsCLICommand): tests/commands/test_test.py:33 /home/markussagen/mydataset/tests/commands/test_test.py:33: PytestCollectionWarning: cannot collect test class 'TestCommandArgs' because it has a __new__ constructor (from: tests/commands/test_test.py) class TestCommandArgs: tests/test_arrow_dataset.py: 760 warnings tests/test_formatting.py: 60 warnings tests/test_search.py: 31 warnings tests/features/test_array_xd.py: 117 warnings /home/markussagen/datasets/src/datasets/formatting/formatting.py:197: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations (isinstance(x, np.ndarray) and (x.dtype == np.object or x.shape != array[0].shape)) tests/test_arrow_dataset.py: 154 warnings tests/features/test_array_xd.py: 1 warning /home/markussagen/datasets/src/datasets/formatting/formatting.py:201: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations return np.array(array, copy=False, **{**self.np_array_kwargs, "dtype": np.object}) tests/test_arrow_dataset.py: 60 warnings /home/markussagen/datasets/src/datasets/arrow_dataset.py:3105: DeprecationWarning: `np.str` is a deprecated alias for the builtin `str`. To silence this warning, use `str` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.str_` here. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations elif np.issubdtype(values.dtype, np.str): tests/test_arrow_dataset.py: 138 warnings tests/test_formatting.py: 21 warnings /home/markussagen/datasets/src/datasets/formatting/tf_formatter.py:69: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations data_struct.dtype == np.object tests/test_arrow_dataset.py: 240 warnings tests/test_formatting.py: 20 warnings /home/markussagen/datasets/src/datasets/formatting/torch_formatter.py:49: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations if data_struct.dtype == np.object: # pytorch tensors cannot be instantied from an array of objects tests/test_arrow_dataset.py: 12 warnings tests/test_search.py: 2 warnings tests/features/test_array_xd.py: 6 warnings tests/features/test_image.py: 4 warnings /home/markussagen/datasets/src/datasets/features/features.py:1129: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations [0] + [len(arr) for arr in l_arr], dtype=np.object tests/test_dataset_common.py::LocalDatasetTest::test_builder_class_banking77 /tmp/pytest-of-markussagen/pytest-1/cache/modules/datasets_modules/datasets/banking77/aec0289529599d4572d76ab00c8944cb84f88410ad0c9e7da26189d31f62a55b/banking77.py:24: DeprecationWarning: invalid escape sequence \~ _CITATION = """\ tests/test_dataset_common.py::LocalDatasetTest::test_builder_class_universal_dependencies /tmp/pytest-of-markussagen/pytest-1/cache/modules/datasets_modules/datasets/universal_dependencies/065e728dfe9a8371434a6e87132c2386a6eacab1a076d3a12aa417b994e6ef7d/universal_dependencies.py:6: DeprecationWarning: invalid escape sequence \= _CITATION = """\ tests/test_filesystem.py: 105 warnings /home/markussagen/.pyenv/versions/3.8.5/envs/huggingface/lib/python3.8/site-packages/responses/__init__.py:398: DeprecationWarning: stream argument is deprecated. Use stream parameter in request directly warn( tests/test_formatting.py::FormatterTest::test_jax_formatter tests/test_formatting.py::FormatterTest::test_jax_formatter tests/test_formatting.py::FormatterTest::test_jax_formatter tests/test_formatting.py::FormatterTest::test_jax_formatter tests/test_formatting.py::FormatterTest::test_jax_formatter_np_array_kwargs tests/test_formatting.py::FormatterTest::test_jax_formatter_np_array_kwargs tests/test_formatting.py::FormatterTest::test_jax_formatter_np_array_kwargs tests/test_formatting.py::FormatterTest::test_jax_formatter_np_array_kwargs /home/markussagen/datasets/src/datasets/formatting/jax_formatter.py:57: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations if data_struct.dtype == np.object: # jax arrays cannot be instantied from an array of objects tests/test_formatting.py::FormatterTest::test_jax_formatter tests/test_formatting.py::FormatterTest::test_jax_formatter tests/test_formatting.py::FormatterTest::test_jax_formatter /home/markussagen/.pyenv/versions/3.8.5/envs/huggingface/lib/python3.8/site-packages/jax/_src/numpy/lax_numpy.py:3567: UserWarning: Explicitly requested dtype <class 'jax._src.numpy.lax_numpy.int64'> requested in array is not available, and will be truncated to dtype int32. To enable more dtypes, set the jax_enable_x64 configuration option or the JAX_ENABLE_X64 shell environment variable. See https://github.com/google/jax#current-gotchas for more. lax._check_user_dtype_supported(dtype, "array") tests/test_metric_common.py::LocalMetricTest::test_load_metric_frugalscore /home/markussagen/.pyenv/versions/3.8.5/envs/huggingface/lib/python3.8/site-packages/apscheduler/util.py:95: PytzUsageWarning: The zone attribute is specific to pytz's interface; please migrate to a new time zone provider. For more details on how to do so, see https://pytz-deprecation-shim.readthedocs.io/en/latest/migration.html if obj.zone == 'local': tests/test_upstream_hub.py::TestPushToHub::test_push_dataset_to_hub_custom_features _audio /home/markussagen/.pyenv/versions/3.8.5/envs/huggingface/lib/python3.8/site-packages/librosa/core/constantq.py:1059: DeprecationWarning: `np.complex` is a deprecated alias for the builtin `complex`. To silence this warning, use `complex` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.complex128` here. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations dtype=np.complex, tests/features/test_array_xd.py::test_array_xd_with_none /home/markussagen/mydataset/tests/features/test_array_xd.py:338: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations assert isinstance(arr, np.ndarray) and arr.dtype == np.object and arr.shape == (3,) -- Docs: https://docs.pytest.org/en/stable/warnings.html ============================= short test summary info ============================= FAILED tests/test_metric_common.py::LocalMetricTest::test_load_metric_bleurt - I... FAILED tests/test_metric_common.py::LocalMetricTest::test_load_metric_chrf - Att... FAILED tests/test_metric_common.py::LocalMetricTest::test_load_metric_code_eval FAILED tests/test_metric_common.py::LocalMetricTest::test_load_metric_comet - Im... FAILED tests/test_metric_common.py::LocalMetricTest::test_load_metric_competition_math FAILED tests/test_metric_common.py::LocalMetricTest::test_load_metric_coval - Im... FAILED tests/test_metric_common.py::LocalMetricTest::test_load_metric_frugalscore FAILED tests/test_metric_common.py::LocalMetricTest::test_load_metric_perplexity FAILED tests/test_metric_common.py::LocalMetricTest::test_load_metric_ter - Type... ``` ## Environment info - `datasets` version: 2.0.1.dev0 - Platform: Linux-5.16.11-76051611-generic-x86_64-with-glibc2.33 - Python version: 3.8.5 - PyArrow version: 5.0.0
3,984
https://github.com/huggingface/datasets/issues/3983
Infinitely attempting lock
[ "Hi ! Thanks for reporting. We're using filelock` as our locking mechanism.\r\n\r\nCan you try deleting the .lock file mentioned in the logs and try again ? Make sure that no other process is generating the `cnn_dailymail` dataset.\r\n\r\nIf it doesn't work, could you try to set up a lock using the latest version of filelock` and see if it works ?\r\n\r\n```\r\npip install filelock\r\n```\r\nhere is a code example from the `filelock` documentation that you can try:\r\n\r\n```python\r\nfrom filelock import FileLock\r\n\r\nlock = FileLock(\"test.txt.lock\")\r\nwith lock:\r\n with open(\"test.txt\", \"a\") as f:\r\n f.write(\"foo\")\r\n```", "I ran into this problem on my school server as well? Any update on how we can solve it? Thanks! ", "Have you tried running the code above to check if FileLock works in your setup ? You may also be interested in checking the https://github.com/tox-dev/filelock repository for issues", "Can you try using a different cache directory ? Maybe there are permissions issues with the default one.\r\n\r\nYou can do so by passing `cache_dir=...` to load_dataset()" ]
I am trying to run one of the examples of the `transformers` repo, which makes use of `datasets`. Important to note is that I am trying to run this via a Databricks notebook, and all the files reside in the Databricks Filesystem (DBFS). ``` %sh python /dbfs/transformers/examples/pytorch/summarization/run_summarization.py \ --model_name_or_path t5-small \ --do_train \ --do_eval \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir /dbfs/transformers/tmp/tst-summarization \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --overwrite_output_dir \ --predict_with_generate \ --log_level debug \ --cache_dir /dbfs/transformers/cache ``` All goes well until acquiring a lock -- ``` 03/21/2022 17:53:19 - DEBUG - datasets.utils.filelock - Attempting to acquire lock 140386484514192 on /dbfs/transformers/cache/_dbfs_transformers_cache_cnn_dailymail_3.0.0_3.0.0_3cb851bf7cf5826e45d49db2863f627cba583cbc32342df7349dfe6c38060234.lock 03/21/2022 17:53:19 - DEBUG - datasets.utils.filelock - Lock 140386484514192 not acquired on /dbfs/transformers/cache/_dbfs_transformers_cache_cnn_dailymail_3.0.0_3.0.0_3cb851bf7cf5826e45d49db2863f627cba583cbc32342df7349dfe6c38060234.lock, waiting 0.05 seconds ... 03/21/2022 17:53:20 - DEBUG - datasets.utils.filelock - Attempting to acquire lock 140386484514192 on /dbfs/transformers/cache/_dbfs_transformers_cache_cnn_dailymail_3.0.0_3.0.0_3cb851bf7cf5826e45d49db2863f627cba583cbc32342df7349dfe6c38060234.lock 03/21/2022 17:53:20 - DEBUG - datasets.utils.filelock - Lock 140386484514192 not acquired on /dbfs/transformers/cache/_dbfs_transformers_cache_cnn_dailymail_3.0.0_3.0.0_3cb851bf7cf5826e45d49db2863f627cba583cbc32342df7349dfe6c38060234.lock, waiting 0.05 seconds ... 03/21/2022 17:53:20 - DEBUG - datasets.utils.filelock - Attempting to acquire lock 140386484514192 on /dbfs/transformers/cache/_dbfs_transformers_cache_cnn_dailymail_3.0.0_3.0.0_3cb851bf7cf5826e45d49db2863f627cba583cbc32342df7349dfe6c38060234.lock 03/21/2022 17:53:20 - DEBUG - datasets.utils.filelock - Lock 140386484514192 not acquired on /dbfs/transformers/cache/_dbfs_transformers_cache_cnn_dailymail_3.0.0_3.0.0_3cb851bf7cf5826e45d49db2863f627cba583cbc32342df7349dfe6c38060234.lock, waiting 0.05 seconds ... 03/21/2022 17:53:20 - DEBUG - datasets.utils.filelock - Attempting to acquire lock 140386484514192 on /dbfs/transformers/cache/_dbfs_transformers_cache_cnn_dailymail_3.0.0_3.0.0_3cb851bf7cf5826e45d49db2863f627cba583cbc32342df7349dfe6c38060234.lock 03/21/2022 17:53:20 - DEBUG - datasets.utils.filelock - Lock 140386484514192 not acquired on /dbfs/transformers/cache/_dbfs_transformers_cache_cnn_dailymail_3.0.0_3.0.0_3cb851bf7cf5826e45d49db2863f627cba583cbc32342df7349dfe6c38060234.lock, waiting 0.05 seconds ... 03/21/2022 17:53:20 - DEBUG - datasets.utils.filelock - Attempting to acquire lock 140386484514192 on /dbfs/transformers/cache/_dbfs_transformers_cache_cnn_dailymail_3.0.0_3.0.0_3cb851bf7cf5826e45d49db2863f627cba583cbc32342df7349dfe6c38060234.lock 03/21/2022 17:53:20 - DEBUG - datasets.utils.filelock - Lock 140386484514192 not acquired on /dbfs/transformers/cache/_dbfs_transformers_cache_cnn_dailymail_3.0.0_3.0.0_3cb851bf7cf5826e45d49db2863f627cba583cbc32342df7349dfe6c38060234.lock, waiting 0.05 seconds ... 03/21/2022 17:53:20 - DEBUG - datasets.utils.filelock - Attempting to acquire lock 140386484514192 on /dbfs/transformers/cache/_dbfs_transformers_cache_cnn_dailymail_3.0.0_3.0.0_3cb851bf7cf5826e45d49db2863f627cba583cbc32342df7349dfe6c38060234.lock 03/21/2022 17:53:20 - DEBUG - datasets.utils.filelock - Lock 140386484514192 not acquired on /dbfs/transformers/cache/_dbfs_transformers_cache_cnn_dailymail_3.0.0_3.0.0_3cb851bf7cf5826e45d49db2863f627cba583cbc32342df7349dfe6c38060234.lock, waiting 0.05 seconds ... ``` and so on. I imagine this has to do with DBFS -- is there a way to tackle this?
3,983
https://github.com/huggingface/datasets/issues/3978
I can't view HFcallback dataset for ASR Space
[ "the dataset viewer is working on this dataset. I imagine the issue is that we would expect to be able to listen to the audio files in the `Please Record Your Voice file` column, right?\r\n\r\nmaybe @lhoestq or @albertvillanova could help\r\n\r\n<img width=\"1019\" alt=\"Capture d’écran 2022-03-24 à 17 36 20\" src=\"https://user-images.githubusercontent.com/1676121/159966006-57dcf8f7-b65f-4200-ac8c-66859318a8bb.png\">\r\n", "The structure of the dataset is not supported. Only the CSV file is parsed and the audio files are ignored.\r\n\r\nWe're working on supporting audio datasets with a specific structure in #3963 ", "Got it.", "Current error:\r\n\r\n```\r\nError code: StreamingRowsError\r\nException: LibsndfileError\r\nMessage: Error opening <File-like object HfFileSystem, datasets/kingabzpro/Urdu-ASR-flags@6a8878cfe3a41343fa86ec8b4254209fe56a0f0d/Please Record Your Voice/0.wav>: Format not recognised.\r\nTraceback: Traceback (most recent call last):\r\n File \"/src/services/worker/src/worker/utils.py\", line 263, in get_rows_or_raise\r\n return get_rows(\r\n File \"/src/services/worker/src/worker/utils.py\", line 204, in decorator\r\n return func(*args, **kwargs)\r\n File \"/src/services/worker/src/worker/utils.py\", line 241, in get_rows\r\n rows_plus_one = list(itertools.islice(ds, rows_max_number + 1))\r\n File \"/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py\", line 1357, in __iter__\r\n example = _apply_feature_types_on_example(\r\n File \"/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py\", line 1051, in _apply_feature_types_on_example\r\n decoded_example = features.decode_example(encoded_example, token_per_repo_id=token_per_repo_id)\r\n File \"/src/services/worker/.venv/lib/python3.9/site-packages/datasets/features/features.py\", line 1902, in decode_example\r\n return {\r\n File \"/src/services/worker/.venv/lib/python3.9/site-packages/datasets/features/features.py\", line 1903, in <dictcomp>\r\n column_name: decode_nested_example(feature, value, token_per_repo_id=token_per_repo_id)\r\n File \"/src/services/worker/.venv/lib/python3.9/site-packages/datasets/features/features.py\", line 1325, in decode_nested_example\r\n return schema.decode_example(obj, token_per_repo_id=token_per_repo_id)\r\n File \"/src/services/worker/.venv/lib/python3.9/site-packages/datasets/features/audio.py\", line 187, in decode_example\r\n array, sampling_rate = sf.read(f)\r\n File \"/src/services/worker/.venv/lib/python3.9/site-packages/soundfile.py\", line 285, in read\r\n with SoundFile(file, 'r', samplerate, channels,\r\n File \"/src/services/worker/.venv/lib/python3.9/site-packages/soundfile.py\", line 658, in __init__\r\n self._file = self._open(file, mode_int, closefd)\r\n File \"/src/services/worker/.venv/lib/python3.9/site-packages/soundfile.py\", line 1216, in _open\r\n raise LibsndfileError(err, prefix=\"Error opening {0!r}: \".format(self.name))\r\n soundfile.LibsndfileError: Error opening <File-like object HfFileSystem, datasets/kingabzpro/Urdu-ASR-flags@6a8878cfe3a41343fa86ec8b4254209fe56a0f0d/Please Record Your Voice/0.wav>: Format not recognised.\r\n```\r\n\r\nMaybe switch to a discussion here? https://huggingface.co/datasets/kingabzpro/Urdu-ASR-flags/discussions. cc @albertvillanova " ]
## Dataset viewer issue for '*Urdu-ASR-flags*' **Link:** *[link to the dataset viewer page](https://huggingface.co/datasets/kingabzpro/Urdu-ASR-flags)* *I think dataset should show some thing and if you want me to add script, please show me the documentation. I thought this was suppose to be automatic task.* Am I the one who added this dataset ? Yes
3,978
https://github.com/huggingface/datasets/issues/3977
Adapt `docs/README.md` for datasets
[ "Thanks for reporting @qqaatw.\r\n\r\nYes, we should definitely adapt that file for `datasets`. " ]
## Describe the bug Currently `docs/README.md` is a direct copy from `transformers`, we should probably adapt this file for `datasets`.
3,977
https://github.com/huggingface/datasets/issues/3973
ConnectionError and SSLError
[ "Hi ! You can download the `oscar.py` file from this repository at `/datasets/oscar/oscar.py`.\r\n\r\nThen you can load the dataset by passing the local path to `oscar.py` to `load_dataset`:\r\n```python\r\nload_dataset(\"path/to/oscar.py\", \"unshuffled_deduplicated_it\")\r\n```", "it works,but another error occurs.\r\n```\r\nConnectionError: Couldn't reach https://s3.amazonaws.com/datasets.huggingface.co/oscar/1.0/unshuffled/deduplicated/it/it_sha256.txt (SSLError(MaxRetryError(\"HTTPSConnectionPool(host='s3.amazonaws.com', port=443): Max retries exceeded with url: /datasets.huggingface.co/oscar/1.0/unshuffled/deduplicated/it/it_sha256.txt (Caused by SSLError(SSLEOFError(8, 'EOF occurred in violation of protocol (_ssl.c:1129)')))\")))\r\n```\r\nI can access `https://s3.amazonaws.com/datasets.huggingface.co/oscar/1.0/unshuffled/deduplicated/it/it_sha256.txt` and `https://aws.amazon.com/cn/s3/` directly, so why it reports a SSLError, should I need tomodify the host file?", "Could it be an issue with your python environment or your version of OpenSSL ?", "you are so wise!\r\nit report [ConnectionError] in python 3.9.7\r\nand works well in python 3.8.12\r\n\r\nI need you help again: how can I specify the path for download files?\r\nthe data is too large and my C hardware is not enough", "Cool ! And you can specify the path for download files with to the `cache_dir` parameter:\r\n```python\r\nfrom datasets import load_dataset\r\ndataset = load_dataset('oscar', 'unshuffled_deduplicated_it', cache_dir='path/to/directory')", "It takes me some days to download data completely, Despise sometimes it occurs again, change py version is feasible way to avoid this ConnectionEror.\r\nparameter `cache_dir` works well, thanks for your kindness again!" ]
code ``` from datasets import load_dataset dataset = load_dataset('oscar', 'unshuffled_deduplicated_it') ``` bug report ``` --------------------------------------------------------------------------- ConnectionError Traceback (most recent call last) ~\AppData\Local\Temp/ipykernel_29788/2615425180.py in <module> ----> 1 dataset = load_dataset('oscar', 'unshuffled_deduplicated_it') D:\DataScience\PythonSet\IDES\anaconda\lib\site-packages\datasets\load.py in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, **config_kwargs) 1658 1659 # Create a dataset builder -> 1660 builder_instance = load_dataset_builder( 1661 path=path, 1662 name=name, D:\DataScience\PythonSet\IDES\anaconda\lib\site-packages\datasets\load.py in load_dataset_builder(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, use_auth_token, **config_kwargs) 1484 download_config = download_config.copy() if download_config else DownloadConfig() 1485 download_config.use_auth_token = use_auth_token -> 1486 dataset_module = dataset_module_factory( 1487 path, 1488 revision=revision, D:\DataScience\PythonSet\IDES\anaconda\lib\site-packages\datasets\load.py in dataset_module_factory(path, revision, download_config, download_mode, force_local_path, dynamic_modules_path, data_dir, data_files, **download_kwargs) 1236 f"Couldn't find '{path}' on the Hugging Face Hub either: {type(e1).__name__}: {e1}" 1237 ) from None -> 1238 raise e1 from None 1239 else: 1240 raise FileNotFoundError( D:\DataScience\PythonSet\IDES\anaconda\lib\site-packages\datasets\load.py in dataset_module_factory(path, revision, download_config, download_mode, force_local_path, dynamic_modules_path, data_dir, data_files, **download_kwargs) 1173 if path.count("/") == 0: # even though the dataset is on the Hub, we get it from GitHub for now 1174 # TODO(QL): use a Hub dataset module factory instead of GitHub -> 1175 return GithubDatasetModuleFactory( 1176 path, 1177 revision=revision, D:\DataScience\PythonSet\IDES\anaconda\lib\site-packages\datasets\load.py in get_module(self) 531 revision = self.revision 532 try: --> 533 local_path = self.download_loading_script(revision) 534 except FileNotFoundError: 535 if revision is not None or os.getenv("HF_SCRIPTS_VERSION", None) is not None: D:\DataScience\PythonSet\IDES\anaconda\lib\site-packages\datasets\load.py in download_loading_script(self, revision) 511 if download_config.download_desc is None: 512 download_config.download_desc = "Downloading builder script" --> 513 return cached_path(file_path, download_config=download_config) 514 515 def download_dataset_infos_file(self, revision: Optional[str]) -> str: D:\DataScience\PythonSet\IDES\anaconda\lib\site-packages\datasets\utils\file_utils.py in cached_path(url_or_filename, download_config, **download_kwargs) 232 if is_remote_url(url_or_filename): 233 # URL, so get it from the cache (downloading if necessary) --> 234 output_path = get_from_cache( 235 url_or_filename, 236 cache_dir=cache_dir, D:\DataScience\PythonSet\IDES\anaconda\lib\site-packages\datasets\utils\file_utils.py in get_from_cache(url, cache_dir, force_download, proxies, etag_timeout, resume_download, user_agent, local_files_only, use_etag, max_retries, use_auth_token, ignore_url_params, download_desc) 580 _raise_if_offline_mode_is_enabled(f"Tried to reach {url}") 581 if head_error is not None: --> 582 raise ConnectionError(f"Couldn't reach {url} ({repr(head_error)})") 583 elif response is not None: 584 raise ConnectionError(f"Couldn't reach {url} (error {response.status_code})") ConnectionError: Couldn't reach https://raw.githubusercontent.com/huggingface/datasets/2.0.0/datasets/oscar/oscar.py (SSLError(MaxRetryError("HTTPSConnectionPool(host='raw.githubusercontent.com', port=443): Max retries exceeded with url: /huggingface/datasets/2.0.0/datasets/oscar/oscar.py (Caused by SSLError(SSLEOFError(8, 'EOF occurred in violation of protocol (_ssl.c:1129)')))"))) ``` It may be caused by Caused by SSLError(in China?) because it works well on google colab. So how can I download this dataset manually?
3,973
https://github.com/huggingface/datasets/issues/3969
Cannot preview cnn_dailymail dataset
[ "I guess the cache got corrupted due to a previous issue with Google Drive service.\r\n\r\nThe cache should be regenerated, e.g. by passing `download_mode=\"force_redownload\"`.\r\n\r\nCC: @severo ", "Note that the dataset preview uses its own cache, not `datasets`' cache. So `download_mode=\"force_redownload\"` doesn't help. But yes indeed the cache must be refreshed.\r\n\r\nThe CNN Dailymail dataste is currently hosted on Google Drive, which is an unreliable host and we've had many issues with it. Unless we found another most reliable host for the data, we will keep running into issues from time to time.\r\n\r\nAt Hugging Face we're not allowed to host the CNN Dailymail data by ourselves AFAIK", "Yes @lhoestq, I didn't explain myself well: my previous message was addressed to @severo. ", "I remove the tag dataset-viewer, since it's more an issue with the hosting on Google Drive", "Sounds good. I was looking for another host of this dataset but couldn't find any (yet)", "It seems like the issue is with the streaming mode, not with the hosting:\r\n\r\n```python\r\n>>> import datasets\r\n>>> dataset = datasets.load_dataset('cnn_dailymail', name=\"3.0.0\", split=\"train\", streaming=True, download_mode=\"force_redownload\")\r\nDownloading builder script: 9.35kB [00:00, 10.2MB/s]\r\nDownloading metadata: 9.50kB [00:00, 12.2MB/s]\r\n>>> len(list(dataset))\r\n0\r\n>>> dataset = datasets.load_dataset('cnn_dailymail', name=\"3.0.0\", split=\"train\", streaming=False)\r\nReusing dataset cnn_dailymail (/home/slesage/.cache/huggingface/datasets/cnn_dailymail/3.0.0/3.0.0/3cb851bf7cf5826e45d49db2863f627cba583cbc32342df7349dfe6c38060234)\r\n>>> len(dataset)\r\n287113\r\n```\r\n\r\nNote, in particular, that the streaming mode is failing silently, returning 0 row while I would have expected an exception instead. The result is that the dataset viewer shows `No data` instead of a detailed error.\r\n\r\n<img width=\"1511\" alt=\"Capture d’écran 2022-04-12 à 11 50 46\" src=\"https://user-images.githubusercontent.com/1676121/162935341-d50f1e73-d053-41d4-917f-e79708a0ca23.png\">\r\n", "Well this is because the host (Google Drive) returns a document that is not the actual data, but an error page", "Do you think that `datasets` should detect this anyway and throw an exception?", "Yes it definitely should ! I don't have the bandwidth to work on this right now though", "Indeed, streaming was not supported: tgz archives were not properly iterated.\r\n\r\nI've opened a PR to support streaming.\r\n\r\nHowever, keep in mind that Google Drive will keep generating issues from time to time, like 403,..." ]
## Dataset viewer issue for '*cnn_dailymail*' **Link:** https://huggingface.co/datasets/cnn_dailymail *short description of the issue* Am I the one who added this dataset ? Yes-No
3,969
https://github.com/huggingface/datasets/issues/3968
Cannot preview 'indonesian-nlp/eli5_id' dataset
[ "Hi @cahya-wirawan, thanks for reporting.\r\n\r\nYour dataset is working OK in streaming mode:\r\n```python\r\nIn [1]: from datasets import load_dataset\r\n ...: ds = load_dataset(\"indonesian-nlp/eli5_id\", split=\"train\", streaming=True)\r\n ...: item = next(iter(ds))\r\n ...: item\r\nUsing custom data configuration indonesian-nlp--eli5_id-9fe728a7e760fb7b\r\n\r\nOut[1]: \r\n{'q_id': '1oy5tc',\r\n 'title': 'dalam sepak bola apa gunanya menyia-nyiakan dua permainan pertama dengan terburu-buru - di tengah - bukan permainan terburu-buru biasa saya mendapatkannya',\r\n 'selftext': '',\r\n 'document': '',\r\n 'subreddit': 'explainlikeimfive',\r\n 'answers': {'a_id': ['ccwtgnz', 'ccwtmho', 'ccwt946', 'ccwvj0u'],\r\n 'text': ['Jaga pertahanan tetap jujur, rasakan operan terburu-buru, buka permainan yang lewat. Pelanggaran yang terlalu satu dimensi akan gagal. Dan mereka yang bergegas ke tengah kadang-kadang dapat dibuka lebar-lebar untuk ukuran yard yang besar.',\r\n 'Jika Anda melempar bola sepanjang waktu, maka pertahanan akan beradaptasi untuk selalu menutupi umpan. Dengan melakukan permainan lari sederhana sesekali, Anda memaksa pertahanan untuk tetap dekat dan menjaga dari lari. Terkadang, pelanggaran dapat membuat pertahanan lengah dengan berpura-pura berlari dan membebaskan penerima mereka. Selain itu, Anda tidak perlu mendapatkan yard besar di setiap permainan. Terkadang, paling baik mendapatkan beberapa yard sekaligus. Selama Anda mendapatkan yang pertama, Anda dalam kondisi yang baik.',\r\n 'Dalam kebanyakan kasus, O-Line seharusnya membuat lubang untuk dilalui kembali. Jika Anda menjalankan terlalu banyak permainan ke luar / melempar, pertahanan akan mengejar. Juga, 2 permainan 5 yard memberi Anda satu set down baru.',\r\n 'Saya Anda tidak suka jenis drama itu, tonton CFL. Kami hanya mendapatkan 3 down sehingga Anda tidak bisa menyia-nyiakannya. Lebih banyak lagi yang lewat.'],\r\n 'score': [3, 2, 2, 2]},\r\n 'title_urls': {'url': []},\r\n 'selftext_urls': {'url': []},\r\n 'answers_urls': {'url': []}}\r\n```\r\nTherefore, it should be properly rendered in the previewer. Let me ping @severo to have a look at it.", "Thanks @albertvillanova for checking it. Btw, I have another dataset indonesian-nlp/lfqa_id which has the same issue. However, this dataset is still private, is it the reason why the preview doesn't work?", "Yes, preview is not supported on private datasets yet. We are working on that though...", "Thanks for the confirmation ", "Fixed. Thanks for your feedback." ]
## Dataset viewer issue for '*indonesian-nlp/eli5_id*' **Link:** https://huggingface.co/datasets/indonesian-nlp/eli5_id I can not see the dataset preview. ``` Server Error Status code: 400 Exception: Status400Error Message: Not found. Maybe the cache is missing, or maybe the dataset does not exist. ``` Am I the one who added this dataset ? Yes
3,968
https://github.com/huggingface/datasets/issues/3965
TypeError: Couldn't cast array of type for JSONLines dataset
[ "Hi @lewtun, thanks for reporting.\r\n\r\nIt seems that our library fails at inferring the dtype of the columns:\r\n- `milestone`\r\n- `performed_via_github_app` \r\n\r\n(and assigns them `null` dtype)." ]
## Describe the bug One of the [course participants](https://discuss.huggingface.co/t/chapter-5-questions/11744/20?u=lewtun) is having trouble loading a JSONLines dataset that's composed of the GitHub issues from `spacy` (see stack trace below). This reminds me a bit of #2799 where one can load the dataset in `pandas` but not in `datasets` and perhaps increasing the `block_size` is needed again. ## Steps to reproduce the bug ```python from datasets import load_dataset from huggingface_hub import hf_hub_url import pandas as pd # returns 'https://huggingface.co/datasets/Evan/spaCy-github-issues/resolve/main/spacy-issues.jsonl' data_files = hf_hub_url(repo_id="Evan/spaCy-github-issues", filename="spacy-issues.jsonl", repo_type="dataset") # throws TypeError: Couldn't cast array of type dset = load_dataset("json", data_files=data_files, split="test") # no problem with pandas - note this take a while as the file is >2GB df = pd.read_json(data_files, orient="records", lines=True) df.head() ``` ## Expected results I can load any line-separated JSON file, similar to pandas. ## Actual results ``` Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/Users/lewtun/miniconda3/envs/hf/lib/python3.9/site-packages/datasets/load.py", line 1702, in load_dataset builder_instance.download_and_prepare( File "/Users/lewtun/miniconda3/envs/hf/lib/python3.9/site-packages/datasets/builder.py", line 594, in download_and_prepare self._download_and_prepare( File "/Users/lewtun/miniconda3/envs/hf/lib/python3.9/site-packages/datasets/builder.py", line 683, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/Users/lewtun/miniconda3/envs/hf/lib/python3.9/site-packages/datasets/builder.py", line 1136, in _prepare_split writer.write_table(table) File "/Users/lewtun/miniconda3/envs/hf/lib/python3.9/site-packages/datasets/arrow_writer.py", line 511, in write_table pa_table = table_cast(pa_table, self._schema) File "/Users/lewtun/miniconda3/envs/hf/lib/python3.9/site-packages/datasets/table.py", line 1121, in table_cast return cast_table_to_features(table, Features.from_arrow_schema(schema)) File "/Users/lewtun/miniconda3/envs/hf/lib/python3.9/site-packages/datasets/table.py", line 1102, in cast_table_to_features arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()] File "/Users/lewtun/miniconda3/envs/hf/lib/python3.9/site-packages/datasets/table.py", line 1102, in <listcomp> arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()] File "/Users/lewtun/miniconda3/envs/hf/lib/python3.9/site-packages/datasets/table.py", line 944, in wrapper return func(array, *args, **kwargs) File "/Users/lewtun/miniconda3/envs/hf/lib/python3.9/site-packages/datasets/table.py", line 918, in wrapper return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "/Users/lewtun/miniconda3/envs/hf/lib/python3.9/site-packages/datasets/table.py", line 918, in <listcomp> return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "/Users/lewtun/miniconda3/envs/hf/lib/python3.9/site-packages/datasets/table.py", line 1086, in cast_array_to_feature return array_cast(array, feature(), allow_number_to_str=allow_number_to_str) File "/Users/lewtun/miniconda3/envs/hf/lib/python3.9/site-packages/datasets/table.py", line 944, in wrapper return func(array, *args, **kwargs) File "/Users/lewtun/miniconda3/envs/hf/lib/python3.9/site-packages/datasets/table.py", line 920, in wrapper return func(array, *args, **kwargs) File "/Users/lewtun/miniconda3/envs/hf/lib/python3.9/site-packages/datasets/table.py", line 1019, in array_cast raise TypeError(f"Couldn't cast array of type\n{array.type}\nto\n{pa_type}") TypeError: Couldn't cast array of type struct<url: string, html_url: string, labels_url: string, id: int64, node_id: string, number: int64, title: string, description: string, creator: struct<login: string, id: int64, node_id: string, avatar_url: string, gravatar_id: string, url: string, html_url: string, followers_url: string, following_url: string, gists_url: string, starred_url: string, subscriptions_url: string, organizations_url: string, repos_url: string, events_url: string, received_events_url: string, type: string, site_admin: bool>, open_issues: int64, closed_issues: int64, state: string, created_at: timestamp[s], updated_at: timestamp[s], due_on: null, closed_at: timestamp[s]> to null ``` ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 2.0.0 - Platform: macOS-10.16-x86_64-i386-64bit - Python version: 3.9.7 - PyArrow version: 7.0.0 - Pandas version: 1.4.1
3,965
https://github.com/huggingface/datasets/issues/3964
Add default Audio Loader
[]
**Is your feature request related to a problem? Please describe.** Writing a custom loading dataset script might be a bit challenging for users. **Describe the solution you'd like** Add default Audio loader (analogous to ImageFolder) for small datasets with standard directory structure. **Describe alternatives you've considered** Create a custom loading script? that's what users doing now.
3,964
https://github.com/huggingface/datasets/issues/3961
Scores from Index at extra positions are not filtered out
[ "Hi! Yes, that makes sense! Would you like to submit a PR to fix this?", "Created PR https://github.com/huggingface/datasets/pull/3971" ]
If a FAISS index has fewer records than the requested number of top results (k), then it returns -1 in indices for the additional positions. The get_nearest_examples method only filters out the extra results from the dataset samples. It would be better to filter out extra scores too. Reference: https://github.com/huggingface/datasets/blob/2.0.0/src/datasets/search.py#L693
3,961
https://github.com/huggingface/datasets/issues/3960
Load local dataset error
[ "Hi! Instead of @nateraw's `image-folder`, I suggest using the newly released `imagefolder` dataset:\r\n```python\r\n>>> from datasets import load_dataset\r\n>>> data_files={'train': ['/ssd/datasets/imagenet/pytorch/train/**'], 'validation': ['/ssd/datasets/imagenet/pytorch/val/**']}\r\n>>> ds = load_dataset('imagefolder', data_files=data_files, cache_dir='./', task='image-classification')\r\n```\r\n\r\n\r\nLet us know if that resolves the issue.", "> Hi! Instead of @nateraw's `image-folder`, I suggest using the newly released `imagefolder` dataset:\r\n> \r\n> ```python\r\n> >>> from datasets import load_dataset\r\n> >>> data_files={'train': ['/ssd/datasets/imagenet/pytorch/train/**'], 'validation': ['/ssd/datasets/imagenet/pytorch/val/**']}\r\n> >>> ds = load_dataset('imagefolder', data_files=data_files, cache_dir='./', task='image-classification')\r\n> ```\r\n> \r\n> Let us know if that resolves the issue.\r\n\r\nSorry, replied late.\r\nThanks a lot! It's worked for me. But it seems much slower than before, and now gets stuck.....\r\n\r\n```\r\n>>> from datasets import load_dataset\r\n>>> data_files={'train': ['/ssd/datasets/imagenet/pytorch/train/**'], 'validation': ['/ssd/datasets/imagenet/pytorch/val/**']}\r\n>>> ds = load_dataset('imagefolder', data_files=data_files, cache_dir='./', task='image-classification')\r\nResolving data files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1281167/1281167 [00:02<00:00, 437283.97it/s]\r\nResolving data files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 50001/50001 [00:00<00:00, 89094.29it/s]\r\nUsing custom data configuration default-baebca6347576b33\r\nDownloading and preparing dataset image_folder/default to ./image_folder/default-baebca6347576b33/0.0.0/ee92df8e96c6907f3c851a987be3fd03d4b93b247e727b69a8e23ac94392a091...\r\nDownloading data files #0: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 80073/80073 [00:00<00:00, 82289.56obj/s]\r\nDownloading data files #1: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 80073/80073 [00:01<00:00, 73559.11obj/s]\r\nDownloading data files #2: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 80073/80073 [00:00<00:00, 81600.46obj/s]\r\nDownloading data files #3: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 80073/80073 [00:01<00:00, 79691.56obj/s]\r\nDownloading data files #4: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 80073/80073 [00:00<00:00, 82341.37obj/s]\r\nDownloading data files #5: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 80073/80073 [00:01<00:00, 75784.46obj/s]\r\nDownloading data files #6: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 80073/80073 [00:00<00:00, 81466.18obj/s]\r\nDownloading data files #7: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 80073/80073 [00:00<00:00, 82320.27obj/s]\r\nDownloading data files #8: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 80073/80073 [00:01<00:00, 78094.00obj/s]\r\nDownloading data files #9: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 80073/80073 [00:00<00:00, 84057.59obj/s]\r\nDownloading data files #10: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 80073/80073 [00:00<00:00, 83082.31obj/s]\r\nDownloading data files #11: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 80073/80073 [00:01<00:00, 79944.21obj/s]\r\nDownloading data files #12: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 80073/80073 [00:00<00:00, 84569.77obj/s]\r\nDownloading data files #13: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 80073/80073 [00:00<00:00, 84949.63obj/s]\r\nDownloading data files #14: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 80073/80073 [00:00<00:00, 80666.53obj/s]\r\nDownloading data files #15: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 80072/80072 [00:01<00:00, 76723.20obj/s]\r\n^[[Bloading data files #8: 94%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████▌ | 75061/80073 [00:00<00:00, 82609.89obj/s]\r\nDownloading data files #9: 85%|████████████████████████████████████████████████████████████████████████████████████████████████████▍ | 68120/80073 [00:00<00:00, 83868.54obj/s]\r\nDownloading data files #9: 96%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████▏ | 76784/80073 [00:00<00:00, 84722.34obj/s]\r\nDownloading data files #10: 75%|███████████████████████████████████████████████████████████████████████████████████████▋ | 59995/80073 [00:00<00:00, 84148.19obj/s]\r\nDownloading data files #10: 97%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████ | 77412/80073 [00:00<00:00, 85724.53obj/s]\r\nDownloading data files #11: 71%|███████████████████████████████████████████████████████████████████████████████████▎ | 57032/80073 [00:00<00:00, 79930.58obj/s]\r\nDownloading data files #11: 92%|███████████████████████████████████████████████████████████████████████████████████████████████████████████ | 73277/80073 [00:00<00:00, 78091.27obj/s]\r\nDownloading data files #12: 86%|█████████████████████████████████████████████████████████████████████████████████████████████████████ | 69125/80073 [00:00<00:00, 84723.02obj/s]\r\nDownloading data files #12: 97%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████▋ | 77803/80073 [00:00<00:00, 85351.59obj/s]\r\nDownloading data files #13: 75%|████████████████████████████████████████████████████████████████████████████████████████▏ | 60356/80073 [00:00<00:00, 84833.35obj/s]\r\nDownloading data files #13: 97%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████ | 77368/80073 [00:00<00:00, 84475.10obj/s]\r\nDownloading data files #14: 72%|████████████████████████████████████████████████████████████████████████████████████▍ | 57751/80073 [00:00<00:00, 80727.33obj/s]\r\nDownloading data files #14: 92%|████████████████████████████████████████████████████████████████████████████████████████████████████████████▏ | 74022/80073 [00:00<00:00, 78703.16obj/s]\r\nDownloading data files #15: 78%|███████████████████████████████████████████████████████████████████████████████████████████▋ | 62724/80072 [00:00<00:00, 78387.33obj/s]\r\nDownloading data files #15: 99%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████▎ | 78933/80072 [00:01<00:00, 79353.63obj/s]\r\n```", "Wait a long time, it completed. I don't know why it's so slow...", "You can pass `ignore_verifications=True` in `load_dataset` to make it fast (to skip checksum verification). I'll add this tip to the docs.", "> You can pass `ignore_verifications=True` in `load_dataset` to make it fast (to skip checksum verification). I'll add this tip to the docs.\r\n\r\nThanks!It's worked well.", "> You can pass `ignore_verifications=True` in `load_dataset` to make it fast (to skip checksum verification). I'll add this tip to the docs.\r\n\r\nI find current `load_dataset` loads ImageNet still slowly, even add `ignore_verifications=True`.\r\nFirst loading, it costs about 20 min in my servers.\r\n```\r\nreal\t19m23.023s\r\nuser\t21m18.360s\r\nsys\t7m59.080s\r\n```\r\n\r\nSecond reusing, it costs about 15 min in my servers.\r\n```\r\nreal\t15m20.735s\r\nuser\t12m22.979s\r\nsys\t5m46.960s\r\n```\r\n\r\nI think it's too much slow, is there other method to make it faster?", "And in transformers the [ViT example](https://github.com/huggingface/transformers/blob/main/examples/pytorch/image-classification/run_image_classification.py), could you make some changes ? Like the `collect_fn`\r\n```python\r\ndef collate_fn(examples):\r\n pixel_values = torch.stack([example[\"pixel_values\"] for example in examples])\r\n labels = torch.tensor([example[\"labels\"] for example in examples])\r\n return {\"pixel_values\": pixel_values, \"labels\": labels}\r\n```\r\nHow to know the keys of example?", "Loading the image files slowly, is it because the multiple processes load files at the same time?", "Could you please share the output you get after the second loading? Also, feel free to interrupt (`KeyboardInterrupt`) the process while waiting for it to end and share a traceback to show us where the process hangs. \r\n\r\n> And in transformers the [ViT example](https://github.com/huggingface/transformers/blob/main/examples/pytorch/image-classification/run_image_classification.py), could you make some changes ? Like the `collect_fn`\r\n> \r\n> ```python\r\n> def collate_fn(examples):\r\n> pixel_values = torch.stack([example[\"pixel_values\"] for example in examples])\r\n> labels = torch.tensor([example[\"labels\"] for example in examples])\r\n> return {\"pixel_values\": pixel_values, \"labels\": labels}\r\n> ```\r\n> \r\n> How to know the keys of example?\r\n\r\nWhat do you mean by \"could you make some changes\".The `ViT` script doesn't remove unused columns by default, so the keys of an example are equal to the columns of the given dataset.\r\n\r\n", "> Could you please share the output you get after the second loading? Also, feel free to interrupt (`KeyboardInterrupt`) the process while waiting for it to end and share a traceback to show us where the process hangs.\r\n> \r\n> > And in transformers the [ViT example](https://github.com/huggingface/transformers/blob/main/examples/pytorch/image-classification/run_image_classification.py), could you make some changes ? Like the `collect_fn`\r\n> > ```python\r\n> > def collate_fn(examples):\r\n> > pixel_values = torch.stack([example[\"pixel_values\"] for example in examples])\r\n> > labels = torch.tensor([example[\"labels\"] for example in examples])\r\n> > return {\"pixel_values\": pixel_values, \"labels\": labels}\r\n> > ```\r\n> > \r\n> > \r\n> > \r\n> > \r\n> > \r\n> > \r\n> > \r\n> > \r\n> > \r\n> > \r\n> > \r\n> > How to know the keys of example?\r\n> \r\n> What do you mean by \"could you make some changes\".The `ViT` script doesn't remove unused columns by default, so the keys of an example are equal to the columns of the given dataset.\r\n\r\nThanks for your reply!\r\n\r\n1. I did not record the second output, so I run it again. \r\n```\r\n(merak) txacs@master:/dat/txacs/test$ time python test.py \r\nResolving data files: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1281167/1281167 [00:02<00:00, 469497.89it/s]\r\nResolving data files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 50001/50001 [00:00<00:00, 70123.73it/s]\r\nUsing custom data configuration default-baebca6347576b33\r\nReusing dataset image_folder (./image_folder/default-baebca6347576b33/0.0.0/ee92df8e96c6907f3c851a987be3fd03d4b93b247e727b69a8e23ac94392a091)\r\n100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:10<00:00, 5.37s/it]\r\nLoading cached processed dataset at ./image_folder/default-baebca6347576b33/0.0.0/ee92df8e96c6907f3c851a987be3fd03d4b93b247e727b69a8e23ac94392a091/cache-cd3fbdc025e03f8c.arrow\r\nLoading cached processed dataset at ./image_folder/default-baebca6347576b33/0.0.0/ee92df8e96c6907f3c851a987be3fd03d4b93b247e727b69a8e23ac94392a091/cache-b5a9de701bbdbb2b.arrow\r\nDatasetDict({\r\n train: Dataset({\r\n features: ['image', 'labels'],\r\n num_rows: 1281167\r\n })\r\n validation: Dataset({\r\n features: ['image', 'labels'],\r\n num_rows: 50000\r\n })\r\n})\r\n\r\nreal\t10m10.413s\r\nuser\t9m33.195s\r\nsys\t2m47.528s\r\n```\r\nAlthough it cost less time than the last, but still slowly.\r\n\r\n2. Sorry, forgive my poor statement. I solved it, updating to new script 'run_image_classification.py'.", "Thanks for rerunning the code to record the output. Is it the `\"Resolving data files\"` part on your machine that takes a long time to complete, or is it `\"Loading cached processed dataset at ...\"˙`? We plan to speed up the latter by splitting bigger Arrow files into smaller ones, but your dataset doesn't seem that big, so not sure if that's the issue.", "> Thanks for rerunning the code to record the output. Is it the `\"Resolving data files\"` part on your machine that takes a long time to complete, or is it `\"Loading cached processed dataset at ...\"˙`? We plan to speed up the latter by splitting bigger Arrow files into smaller ones, but your dataset doesn't seem that big, so not sure if that's the issue.\r\n\r\nSounds good! The main position, which costs long time, is from program starting to `\"Resolving data files\"`. I hope you can solve it early, thanks!", "I'm getting this problem. Script has been stuck at this part for the past 15 or so minutes:\r\n \r\n`Resolving data files: 100%|█████████████████████████████████████████| 107/107 [00:00<00:00, 472.74it/s]`\r\n\r\nI had everything working fine on an AWS EC2 node with a single GPU. Then I created an image based on the single GPU machine, and spun up a new one with 4 GPUs, so I got all of the training data ready at .cache. \r\n\r\nTurned off all checks with `verification_mode='no_checks'`. Logged in with huggingface-cli again just to be sure.\r\n\r\nInterrupting shows the code is stuck here:\r\n\r\n```\r\nFile \"/opt/conda/envs/pytorch/lib/python3.10/site-packages/datasets/arrow_reader.py\", line 200, in _read_files\r\n pa_table: Table = self._get_table_from_filename(f_dict, in_memory=in_memory)\r\n File \"/opt/conda/envs/pytorch/lib/python3.10/site-packages/datasets/arrow_reader.py\", line 336, in _get_table_from_filename\r\n table = ArrowReader.read_table(filename, in_memory=in_memory)\r\n File \"/opt/conda/envs/pytorch/lib/python3.10/site-packages/datasets/arrow_reader.py\", line 357, in read_table\r\n return table_cls.from_file(filename)\r\n File \"/opt/conda/envs/pytorch/lib/python3.10/site-packages/datasets/table.py\", line 1059, in from_file\r\n table = _memory_mapped_arrow_table_from_file(filename)\r\n File \"/opt/conda/envs/pytorch/lib/python3.10/site-packages/datasets/table.py\", line 66, in _memory_mapped_arrow_table_from_file\r\n pa_table = opened_stream.read_all()\r\n```\r\n\r\nIs it just going to take a while or am I going to run out of money? :sweat_smile: \r\n\r\nedit: ping @mariosasko " ]
When i used the datasets==1.11.0, it's all right. Util update the latest version, it get the error like this: ``` >>> from datasets import load_dataset >>> data_files={'train': ['/ssd/datasets/imagenet/pytorch/train'], 'validation': ['/ssd/datasets/imagenet/pytorch/val']} >>> ds = load_dataset('nateraw/image-folder', data_files=data_files, cache_dir='./', task='image-classification') [] https://huggingface.co/datasets/nateraw/image-folder/resolve/main/ /dat/txacs/git/txacs/examples/image-classification/https:/huggingface.co/datasets/nateraw/image-folder/resolve/main Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/gf3/home/txacs/gv3/anaconda3/envs/txacs/lib/python3.6/site-packages/datasets/load.py", line 1671, in load_dataset **config_kwargs, File "/gf3/home/txacs/gv3/anaconda3/envs/txacs/lib/python3.6/site-packages/datasets/load.py", line 1521, in load_dataset_builder **config_kwargs, File "/gf3/home/txacs/gv3/anaconda3/envs/txacs/lib/python3.6/site-packages/datasets/builder.py", line 1031, in __init__ super().__init__(*args, **kwargs) File "/gf3/home/txacs/gv3/anaconda3/envs/txacs/lib/python3.6/site-packages/datasets/builder.py", line 255, in __init__ sanitize_patterns(data_files), base_path=base_path, use_auth_token=use_auth_token File "/gf3/home/txacs/gv3/anaconda3/envs/txacs/lib/python3.6/site-packages/datasets/data_files.py", line 584, in from_local_or_remote if not isinstance(patterns_for_key, DataFilesList) File "/gf3/home/txacs/gv3/anaconda3/envs/txacs/lib/python3.6/site-packages/datasets/data_files.py", line 546, in from_local_or_remote data_files = resolve_patterns_locally_or_by_urls(base_path, patterns, allowed_extensions) File "/gf3/home/txacs/gv3/anaconda3/envs/txacs/lib/python3.6/site-packages/datasets/data_files.py", line 196, in resolve_patterns_locally_or_by_urls for path in _resolve_single_pattern_locally(base_path, pattern, allowed_extensions): File "/gf3/home/txacs/gv3/anaconda3/envs/txacs/lib/python3.6/site-packages/datasets/data_files.py", line 146, in _resolve_single_pattern_locally raise FileNotFoundError(error_msg) FileNotFoundError: Unable to find '/ssd/datasets/imagenet/pytorch/train' at /dat/txacs/git/txacs/examples/image-classification/https:/huggingface.co/datasets/nateraw/image-folder/resolve/main ``` I need some help to solve the problem, thanks!
3,960
https://github.com/huggingface/datasets/issues/3959
Medium-sized dataset conversion from pandas causes a crash
[ "Hi ! It looks like an issue with pyarrow, could you try updating pyarrow and try again ?", "@albertvillanova did you find a solution to this?", "I´m getting the same problem with some files, @albertvillanova did you find a solution to this?" ]
Hi, I am suffering from the following issue: ## Describe the bug Conversion to arrow dataset from pandas dataframe of a certain size deterministically causes the following crash: ``` File "/home/datasets_crash.py", line 7, in <module> arrow=datasets.Dataset.from_pandas(d) File "/home/.conda/envs/tools/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 783, in from_pandas table = InMemoryTable.from_pandas( File "/home/.conda/envs/tools/lib/python3.9/site-packages/datasets/table.py", line 379, in from_pandas return cls(pa.Table.from_pandas(*args, **kwargs)) File "pyarrow/table.pxi", line 1487, in pyarrow.lib.Table.from_pandas File "pyarrow/table.pxi", line 1532, in pyarrow.lib.Table.from_arrays File "pyarrow/table.pxi", line 1181, in pyarrow.lib.Table.validate File "pyarrow/error.pxi", line 84, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Column 1: In chunk 0: Invalid: List child array invalid: Invalid: Struct child array #1 has length smaller than expected for struct array (1192457 < 1192458) ``` ## Steps to reproduce the bug I have a dataset made from replicated single example mocking a dict representation of a publication. I copy over this example 140k times and create a pandas frame. I use 'Dataset.from_pandas' and boom ```python # Sample code to reproduce the bug import copy import datasets import pandas # serialized dict is quite long to be realistic representation of a publication content paper_as_dict=eval("{'article_id': '2020-11-05T14:25:05.321Z02bc3286-91b7-486a-9c74-4f457fbc586a', 'sections': [{'section_id': 'body.0', 'paragraphs': [{'sentences': ['11010111001000000011010011110011101110111011000100001010011100101001111010110111101011101111101010101110001111011110111010111', '1101100110110010010101010100110011000111001100100000011100010111010000011100001101111000000011010111001111001010101111110011010010111011000110100110010', '101011011000010100000010011001011011000000110011011110000101001110110000010001100110111100011100110101010010110000101', '1101101110101010101000000010101011111001111000101000110001110100111000100000011001110100110000110100111011001010110011101001001110']}]}, {'section_id': 'body.1', 'paragraphs': [{'sentences': ['11111100100100111000101001011110100110011001011011001001100110100111011010000110011000010001010100101110001001101011110111110101111100001001001000011110110010110011100110110111110011100011111000101010111010101011001110000100000001001010010010011101111100011010', '10101000110000110111110011101111000101010010001001010000001111001100000010001000001110111110010011101000000111011', '111010011111101111110011111110110001000111100101001000100110101111110000111000111111110000101001101000110011010111011101001010110110001000100000001110001111100110110001110001001100011010100110100010100111000110110100010010100101011110000110000101010010001110101100000']}, {'sentences': ['111110011110110110001111001101011110010110100011101010110101011001101110110111100000111101010110011110111101001111000101110001001010010101100111111001001000011101000100110000101', '011101101101111101001100101010000010111101100101110100101000001100010100110011010010100001101001110111100011010011011111000111111101110001010111010011010110001000010101100110000100010110101110110011001010011001100111101100001001', '1110001011011010101001100001110001110001000111111111101110100001011101101001110100000110000011010001101010101110101110101101001010100100010000000010110010010010', '11101111000111111100111110010000111101110010010101001111011001111110011000011100110001010010000100101010', '111000110110110010101100010010100001100100110010101000001000011101000100101011011010000011001011011111001101100001110010100001111110111001001010101100100110001011011100000101010010000000001100010000101100110110111101110010100010011101110110111010011011000011001010111011100000000010101001011000100000011010100011101001011001010010011110100100']}, {'sentences': ['001101111100001101001001001110000110010101011101001001111111011000111001111011101011110111000000100001110110101110001010001111110100010', '0000110010110101001100011011000011001101001110001000000110010101000011101011110110000000100111000001010000101011111011110001001100001110101010101110101011111000000011001111011110001010010111010000100100000001111001011100101111010101111001001101100101001101111000111011010110010001010010010111010000001101101111100101000111101011001000101', '00000101100101100111101010000101011100101100001100011001100100001100001010001010010011001001111001000010100010000110100111110000001000101000111100010111110011000100000111100010000100010111100010101', '111100110010100110000010010101010101110011110100000101110000000111010101111001011110010101001110000001001000010110010010011110111110010110100101110011001101110111001111100011100100011110010010100101011111111']}, {'sentences': ['1100001110101111000001011001100110001011100011110110010011001000101000011110010101010011011000111010000101010011010000000111011001000010100101000011111101000000000101111000', '1110101000100110001111000011000101110111001100101010011001100011010011111111111010101011010101010011000101001100100000110010100110110110110001101100', '00010001100100101100100111111110111111101000100110101111101111110101110001010001011100000000000011010101101001111010001110101101110011001011111101110100010000111101', '011100011101011001000110010110100100000010100010010110011000000010101110011111111101010010010001100110101010010001100010110011110001011011101010111111100100110110010111101001100101010111001', '10111000011010101111110110011010101011111001000001010010111111010010111111100100010100110100101101110100110011001000110100000111000100110000001000111010', '0010011111111011100111010001111001011101001010000010110000010111000101001101000011101110100100000000100100010010101010100011100101001000100110110000010111111110000011011101111000111010']}]}, {'section_id': 'body.2.0', 'paragraphs': [{'sentences': ['110010010011001110100100011001111100010011110111101011011011001010010010010011101011', '000110101110011011101011000000100011111000001100011011110101101011000110011010001010001101101100000111100101001011111001001101111', '1000011100100000100100100010010000111011000100110010000011110111100110110001101001010100011111010100101000111', '11110111111000110010000000000100010010110001100010001010000111011000101100011010010101110110011010110101001101110011101011101100000001000100101011010110110100101011101010010101101000011110000010101011001011000001000000001010110000100010000100011110101001111100001000100000111000001010011111111110101010100011011000010000111000110', '1001000111011000111110001111111001100001000000101000111011101101100101010110001101000000001111010111100011111000000100001001110', '100110010111010101111010100000010001110101111001010010001100001110100100100101110011010101001000100101000100100011001110001100111000010010011011000010011010010000110001000000100011110010110110011010001100111010111110011']}, {'sentences': ['10010101011100010111011111001001001010100011001001111101101001000000001111101110000111101011000001001011101110101001100010010001101111001110000100010010001001101111011111110010011011110011', '110001110010110000101111000000110010010010100000010100001111101101000101100000000110000000011111011001111000010110110001011010011011101100100110011000100110101010111010111111000111001111010110010001001110100001011011000110000000111101110000001111011011101110100000100010000110001000000110100000', '101010000000010000110110111000110000100111000001110100101101101010001010010010101010100111010110001001000101011110010011001001001110111001101101100100011110011011110101100010110111001010000001000110100000001010011111111110111010011110001001110100011011000101011000110110011011010110100100011111111011100111110110000110011011110110110011101010101111001101010110101000000001100101111010000101110', '1010100110111111111000110110111110010100000100001110101110111001011000010001110110001111111110000101001001110010001110000111010101111010111111011100100011100111111101101111000010001100101000010001100110110100110111111100100011001011000001111110010100110111000010011110111011001101100000101011111110101000011000010', '00000001110000101001110101110011101001110011000111111101111101111000010011100000101000001011001110', '101000111010010000011010011010011010010010100010110100011100100111011101010100101110100111010001000000', '01101000110001101011001101100010100011011010000000001010101000010101000110100010000000110001110001010010000000101101000011000100000110011101100001010100011111101010010110001101110101010111101100001110000011001101', '0010010111000011110010011110001010100000111100001011010100100010101010010011101101100110001001111001000110000111011110010000110101010110111111010110100000011010001001010001000110001101101000101110001011110000101101110000110010110010111001100010011011100011', '00110111110000000100110111101011000100100110001000001001101011001000010100100001100111100110000110110101111010000010101000000101000011001011101001', '0100100001000111001110110110000001000100111001101101110100100111010111110001110010110111100110011111001001000011101110100101111011000110100000111010011101']}, {'sentences': ['100001001011101111111100110111011110001101111101100001000110110000100101011000000100000', '10101001001111110101001010100110011110101101001']}]}, {'section_id': 'body.2.0.0', 'paragraphs': [{'sentences': ['1110101100001100011000101000010000100010101101010110101011100101110110110111010101001100100000000111011001000100011110101011111010100101001010000010001001101010100011110010101110011001100010000100110011000011101010001000111001000001100', '101000000011001001110101000100101010000111000111100010010001111111100110001100000100011010011010010101101111010101010000110011101001111001111011111001110001010000110101101011101111010000001100', '01100001011110010100000101001101111101010011100010011001011110110010010011100101000', '0011100111000101111000010001111100000111000101110001111010001100001000111010000101100001110101100111111', '00001100000011110001011010010110000000111110110001111000110000011011001110000000100011001010110000010000010001101010101100000010011011000101011111100010010', '1011101011101111000001100100111000011000010010011110011000110111010010111100111101100110011010000110000111000110111110101111000001000010011101111000110000100011110101101101001101000110010000001000010011011010101100', '1000010011100011100000010011011111111110101101111011101010010111000000101011000000110101111000010011', '01100000110011001110101111101101011001011101000010001100101010100011010101010100111011011110100010100111', '011011010100011011110010101000110001111110110']}]}, {'section_id': 'body.2.0.1', 'paragraphs': [{'sentences': ['00111011011101000100100111000001101001011000111100100010101001010011001011000010011111001100000100010001100101110011001000110001101011010111011111011000010011010010111010011111101000110111011100010011100111111110110111011', '011011010101101101010000001011010110011111011110100111010101010110001101000010011111000011100', '110001000110010000000111101110111110101110111000101000010001110101000101001000111000010001011101010000110001010001101001001110111110111010111010011101000101101010000', '001000111110100110000001111100000111001110111001110111001000111010001001100111001101000001001001010111000111011100001111011001111110001011000111110011111101011101000100101001111011100001000110101010101111111110011111111011000101110001000000000100111011111011001100111', '11010101100010010100010010010101001011001011000001100010101111111101001101110011001010010100000111010101', '01110000110011111000110010011010000011100000010010001111100010010100100001011011111110001100', '011101111100011101100111110101111001101010010001001110101100001101000000111000']}]}, {'section_id': 'body.2.0.2', 'paragraphs': [{'sentences': ['0111011000110100110000001011001110111000011110100111011000000001000010001111111001101111011100101110101101000111000101000010000111011010110000011101111110111110100111000111000011', '00100110111000110101100111000110100010011010010101001010011000000101000110100110011010011111000100000011000000010001010000100111101011111111101010001111010000001011100001110100000101001101101010011011101000', '000001110001010010100101010100010101001100011001001101101101110111011111101010010111010110110111011110101100001000011110111011001', '0001110010111110100110110011000001111100100100110101011010010101010100101000010101000100101000011011', '1000010010010101001100101110010111010100000110101110000000111001111111001011111010000011110001011001001001000101', '0001111100111010010100010111010110011011000000001111010010110001000011010001100111101110001110000011010101111100001000011010110100000100100001111011110110000000101000010001111001010010110101110111101101110111000100', '1000101100001000100001101110111110000100000001000010101111010011010010010111011010100011001000100100001010001100110']}]}, {'section_id': 'body.2.0.3', 'paragraphs': [{'sentences': ['1010100111100011110110101011100001011010011010100100010011000110111000001010010110111001001101111000010100100110101001010001010001000110010000001', '100010101010100111000011111101010100101110011000100011100100100111000010000011001010010111011010000101010011011110111001010110', '0110000110110110110011011000011010010000001010011000010001011110110010000100011111010100110111111010010111000101111', '10100100000011100010110110011111011011101101111000001001010100001001011010000011001010101100000', '1011111111100001001100000010000100110010101000010100111111110010110011101110000101101011101', '10001111110000011100100000101100000000010000100000011100110000011110111010011101010111101001111000100000000110000011010010001100110111100001001011101011001111110010100111001001010001010011010010010111001101110101110000101011', '101101111111101101010010000110111110000110000111001001010011111101011001011010101100010100110101101011100111100100110010001011110001110010000011101100100100001001110010000010011111100110101']}]}, {'section_id': 'body.2.1', 'paragraphs': [{'sentences': ['1010010011010011001111111001000110010001101111101011001011011000101001010101010001000110100011110101110001110110111010010010100100111000101100100101111110100000011111001101010111101010100101011011110111111110', '000010101101111100000110010110011001111100001101011101000100010001001001000000101101000001110000011010111100000010010000010101110101100010011000101110110111111001000101000111000110100001001100001010101010100011', '0000000011101110111100100010111100101010110001111101110110010000100100010000101001101111001111001001100110010011010000101001110010000000100101011101001010100100011101101001011000010111110100101010110110011001110000110010010111110110101100001011101001100111010001000010111010001010000100010010011110111100110011100011111101101000011100111110101010100110001100100000100011011010111000111110010110100010111101001001101000001100100010000111110000011101111100111101000000000']}, {'sentences': ['01011000010110011000000101101000110101011010100111011001001001100001101101111101111001101111100101111001101011011001011110110110110100001100111111010100101110111111101000101100101010110011111011100101101010100110111001111100100011001110011101000110100000001100001100110001110101001000011010000110101011010000001111100100000100101110011000001001010011011101100011000001100000011', '1001100000101000000011110100110001100001101001100011010000111111010110101111001000100111000011010100100000110110001', '10010011000110110111010110000010010000000111101000100101100111101101001100111110101001001111100001110011110000010101000001000000010100011011110011000100110101001100110111111001101000011010100110000000011110001000101010101000110010010']}]}, {'section_id': 'body.2.2', 'paragraphs': [{'sentences': ['000011000000010011000001101111000101000111111111111010001011110000011001010111010101010110001111110000010', '10101001101011101010001111011000110100000100011110010001100111111101101100010010111110110101101011000011000001101110010111011111100111110000000101110010111', '100001011110010111010110001101101001100000000001000010110101011001111100101101101111010010111111000000111001111010011111000100010001111011110001010000110010101010111110100101011011100001010101000001011011111111101', '1000110111111011101000110101001111111111000100011001000011010100001010011110001111010011011111000111011100101001011111001000010101110110101000111011111111010010001101001010110111000011110101011000010000110', '1011100000100000010101101111001001100110111000010001011010111111000000001010101001111011101011010101101001111101101100101001011101000011011010001001101100100111101111111100010011010101111011100001100001000100101100100110101000010000011000000011001100000110000001', '0001001101111001111111010000001101010110110110100110110100000100110101101010010101011000010010111011000010111110000001110101110111000010011000100110111001000111011000100101110111111', '0110010010011000011010001111001100101001100001001000010100101100010110000000101010110001001010001100111101010001110010010000111011100101101010111111101001100010001011100110010100110111010101000100001110000101110011111011111000010101010110101100010010111100100010010100111110111100101010100011101001110110010000011110001010101010000100010000100111001111011101', '000001010000010001100000101011000000110101000100010111111100101111111000110111001001110110101111110011100001001000011001010000011011', '0101101001010101001101010100011000111011001000100001110100110011100000001001010110001101010110011100111111100101101111101111011001111111110010111010011011011111011011110000101011010', '11000001110111000001100100001110000111001010000101011011101010111001011100010010010111111111000011111110010111100011100110001001100011111010100111110111001110010', '0100010110100001010101110111100011100100010111111011101001100101111110101011010010101111001000101001111000001110001100011001110010100110101100110100100000001010101101011110011001000101100111001001001110100', '100000100010011111001101010000100110011110001100000010010110110100000111111011010100101111010111001110101000100001111101001110000011010110000010100', '00100110000011100101000110110001000011101000011010101000010001111011100001111111001011100111101000001000000110110001000101111010010010001100111', '0110110100011001110011001111100010101001011111011001011001101101010010101101110101010100001000100100000111101110001001110111000110011101101010100000101', '0011111010010011011101010110100110000011000011100100101011011001110110001110001111000011010111011000110100111111011101110111000010010000011011010011011100000011101100110110100100000010110101110100110101001100111011101001010111011011110100110101110010011011010001010111110011001000010100010101010010110010010110000100110001000011010011000100101011010100100111010']}]}]}") d=pandas.DataFrame.from_records(copy.deepcopy(paper_as_dict) for _ in range(140_100)) arrow=datasets.Dataset.from_pandas(d) ``` ## Expected results The dataset should be converted without error. ## Actual results Error `pyarrow.lib.ArrowInvalid: Column 1: In chunk 0: Invalid: List child array invalid: Invalid: Struct child array #1 has length smaller than expected for struct array (1192457 < 1192458)` ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: datasets==1.18.4 pandas==1.3.5 - Platform: macOS 11.6 or CentOS Linux 7 (Core) - Python version: Python 3.9.7 - PyArrow version: pyarrow==3.0.0
3,959
https://github.com/huggingface/datasets/issues/3956
TypeError: __init__() missing 1 required positional argument: 'scheme'
[ "Hi @amirj, thanks for reporting.\r\n\r\nAt first sight, your issue seems a version incompatibility between your Elasticsearch client and your Elasticsearch server.\r\n\r\nFeel free to have a look at Elasticsearch client docs: https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/overview.html#_compatibility\r\n> Language clients are forward compatible; meaning that clients support communicating with greater or equal minor versions of Elasticsearch. Elasticsearch language clients are only backwards compatible with default distributions and without guarantees made.", "@albertvillanova It doesn't seem a version incompatibility between the client and server, since the following code is working:\r\n\r\n```\r\nfrom elasticsearch import Elasticsearch\r\nes_client = Elasticsearch(\"http://localhost:9200\")\r\ndataset.add_elasticsearch_index(column=\"e1\", es_client=es_client, es_index_name=\"e1_index\")\r\n```", "Hi @amirj, \r\n\r\nI really think it is a version incompatibility issue between your Elasticsearch client and server:\r\n- Your Elasticsearch server NodeConfig expects a positional argument named 'scheme'\r\n- Whereas your Elasticsearch client passes only keyword arguments: `NodeConfig(**options)`\r\n\r\nMoreover:\r\n- Looking at your stack trace, I deduce you are using Elasticsearch client **\"8\"** major version:\r\n - the Elasticsearch file \"elasticsearch/_sync/client/utils.py\" was created in version \"8.0.0a1\": https://github.com/elastic/elasticsearch-py/commit/21fa13b0f03b7b27ace9e19a1f763d40bd2e2ba4\r\n - you can check your Elasticsearch client version by running this Python code:\r\n ```python\r\n import elasticsearch\r\n print(elasticsearch.__version__)\r\n ```\r\n\r\n- However, in the *Environment info*, you informed that the major version of your Eleasticsearch cluster server is **\"7\"** (\"7.10.2-SNAPSHOT\")\r\n\r\nCould you please align the Elasticsearch client/server major versions (as pointed out in Elasticsearch docs) and check if the problem persists?", "I'm closing this issue, @amirj.\r\n\r\nFeel free to re-open it if the problem persists. \r\n\r\n", "```\r\nfrom elasticsearch import Elasticsearch\r\nes = Elasticsearch([{'host': 'localhost', 'port': 9200}])\r\n```\r\n```\r\nTypeError Traceback (most recent call last)\r\n<ipython-input-8-675c6ffe5293> in <module>\r\n 1 #es = Elasticsearch([{'host':'localhost', 'port':9200}])\r\n 2 from elasticsearch import Elasticsearch\r\n----> 3 es = Elasticsearch([{'host': 'localhost', 'port': 9200}])\r\n\r\nC:\\ProgramData\\Anaconda3\\lib\\site-packages\\elasticsearch\\_sync\\client\\__init__.py in __init__(self, hosts, cloud_id, api_key, basic_auth, bearer_auth, opaque_id, headers, connections_per_node, http_compress, verify_certs, ca_certs, client_cert, client_key, ssl_assert_hostname, ssl_assert_fingerprint, ssl_version, ssl_context, ssl_show_warn, transport_class, request_timeout, node_class, node_pool_class, randomize_nodes_in_pool, node_selector_class, dead_node_backoff_factor, max_dead_node_backoff, serializer, serializers, default_mimetype, max_retries, retry_on_status, retry_on_timeout, sniff_on_start, sniff_before_requests, sniff_on_node_failure, sniff_timeout, min_delay_between_sniffing, sniffed_node_callback, meta_header, timeout, randomize_hosts, host_info_callback, sniffer_timeout, sniff_on_connection_fail, http_auth, maxsize, _transport)\r\n 310 \r\n 311 if _transport is None:\r\n--> 312 node_configs = client_node_configs(\r\n 313 hosts,\r\n 314 cloud_id=cloud_id,\r\n\r\nC:\\ProgramData\\Anaconda3\\lib\\site-packages\\elasticsearch\\_sync\\client\\utils.py in client_node_configs(hosts, cloud_id, **kwargs)\r\n 99 else:\r\n 100 assert hosts is not None\r\n--> 101 node_configs = hosts_to_node_configs(hosts)\r\n 102 \r\n 103 # Remove all values which are 'DEFAULT' to avoid overwriting actual defaults.\r\n\r\nC:\\ProgramData\\Anaconda3\\lib\\site-packages\\elasticsearch\\_sync\\client\\utils.py in hosts_to_node_configs(hosts)\r\n 142 \r\n 143 elif isinstance(host, Mapping):\r\n--> 144 node_configs.append(host_mapping_to_node_config(host))\r\n 145 else:\r\n 146 raise ValueError(\r\n\r\nC:\\ProgramData\\Anaconda3\\lib\\site-packages\\elasticsearch\\_sync\\client\\utils.py in host_mapping_to_node_config(host)\r\n 209 options[\"path_prefix\"] = options.pop(\"url_prefix\")\r\n 210 \r\n--> 211 return NodeConfig(**options) # type: ignore\r\n 212 \r\n 213 \r\n\r\nTypeError: __init__() missing 1 required positional argument: 'scheme'\r\n```", "I am facing the same issue, and version is same for the both i.e(8.1.3)", "@raj713335, thanks for reporting.\r\n\r\nPlease note that in your code example, you are not using our `datasets` library. \r\n\r\nThus, I think you should report that issue to `elasticsearch` library: https://github.com/elastic/elasticsearch-py\r\n\r\n", "it is simple hack which shock you just replace https to http in scheme\r\n\r\n**In My Case:** ->\r\n\r\n`es = Elasticsearch([{'host': 'localhost', 'port': 9200, \"scheme\": \"http\"}])\r\n if es.ping():\r\n print('Connected to ES!')\r\n else:\r\n print('Could not connect!')\r\n sys.exit()`" ]
## Describe the bug Based on [this tutorial](https://huggingface.co/docs/datasets/faiss_es#elasticsearch) the provided code should add Elasticsearch index but raised the following error, probably the new Elasticsearch version is not compatible though the tutorial doesn't provide any information about the supporting Elasticsearch version. ## Steps to reproduce the bug ```python # Sample code to reproduce the bug from datasets import load_dataset squad = load_dataset('squad', split='validation') squad.add_elasticsearch_index("context", host="localhost", port="9200") ``` ## Expected results [Creating an elastic index based on the provided tutorial](https://huggingface.co/docs/datasets/faiss_es#elasticsearch) ## Actual results ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-6-8fb51aa33961> in <module> 1 from datasets import load_dataset 2 squad = load_dataset('squad', split='validation') ----> 3 squad.add_elasticsearch_index("context", host="localhost", port="9200") ~/opt/anaconda3/lib/python3.8/site-packages/datasets/arrow_dataset.py in add_elasticsearch_index(self, column, index_name, host, port, es_client, es_index_name, es_index_config) 3777 """ 3778 with self.formatted_as(type=None, columns=[column]): -> 3779 super().add_elasticsearch_index( 3780 column=column, 3781 index_name=index_name, ~/opt/anaconda3/lib/python3.8/site-packages/datasets/search.py in add_elasticsearch_index(self, column, index_name, host, port, es_client, es_index_name, es_index_config) 587 """ 588 index_name = index_name if index_name is not None else column --> 589 es_index = ElasticSearchIndex( 590 host=host, port=port, es_client=es_client, es_index_name=es_index_name, es_index_config=es_index_config 591 ) ~/opt/anaconda3/lib/python3.8/site-packages/datasets/search.py in __init__(self, host, port, es_client, es_index_name, es_index_config) 123 from elasticsearch import Elasticsearch # noqa: F811 124 --> 125 self.es_client = es_client if es_client is not None else Elasticsearch([{"host": host, "port": str(port)}]) 126 self.es_index_name = ( 127 es_index_name ~/opt/anaconda3/lib/python3.8/site-packages/elasticsearch/_sync/client/__init__.py in __init__(self, hosts, cloud_id, api_key, basic_auth, bearer_auth, opaque_id, headers, connections_per_node, http_compress, verify_certs, ca_certs, client_cert, client_key, ssl_assert_hostname, ssl_assert_fingerprint, ssl_version, ssl_context, ssl_show_warn, transport_class, request_timeout, node_class, node_pool_class, randomize_nodes_in_pool, node_selector_class, dead_node_backoff_factor, max_dead_node_backoff, serializer, serializers, default_mimetype, max_retries, retry_on_status, retry_on_timeout, sniff_on_start, sniff_before_requests, sniff_on_node_failure, sniff_timeout, min_delay_between_sniffing, sniffed_node_callback, meta_header, timeout, randomize_hosts, host_info_callback, sniffer_timeout, sniff_on_connection_fail, http_auth, maxsize, _transport) 310 311 if _transport is None: --> 312 node_configs = client_node_configs( 313 hosts, 314 cloud_id=cloud_id, ~/opt/anaconda3/lib/python3.8/site-packages/elasticsearch/_sync/client/utils.py in client_node_configs(hosts, cloud_id, **kwargs) 99 else: 100 assert hosts is not None --> 101 node_configs = hosts_to_node_configs(hosts) 102 103 # Remove all values which are 'DEFAULT' to avoid overwriting actual defaults. ~/opt/anaconda3/lib/python3.8/site-packages/elasticsearch/_sync/client/utils.py in hosts_to_node_configs(hosts) 142 143 elif isinstance(host, Mapping): --> 144 node_configs.append(host_mapping_to_node_config(host)) 145 else: 146 raise ValueError( ~/opt/anaconda3/lib/python3.8/site-packages/elasticsearch/_sync/client/utils.py in host_mapping_to_node_config(host) 209 options["path_prefix"] = options.pop("url_prefix") 210 --> 211 return NodeConfig(**options) # type: ignore 212 213 TypeError: __init__() missing 1 required positional argument: 'scheme' ``` ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 2.0.0 - Platform: Mac - Python version: 3.8.0 - PyArrow version: 7.0.0 - ElaticSearch Info: { "name" : "byname", "cluster_name" : "elasticsearch_brew", "cluster_uuid" : "9xkjrltiQIG0J95ciWhqRA", "version" : { "number" : "7.10.2-SNAPSHOT", "build_flavor" : "oss", "build_type" : "tar", "build_hash" : "unknown", "build_date" : "2021-01-16T01:41:27.115673Z", "build_snapshot" : true, "lucene_version" : "8.7.0", "minimum_wire_compatibility_version" : "6.8.0", "minimum_index_compatibility_version" : "6.0.0-beta1" }, "tagline" : "You Know, for Search" }
3,956
https://github.com/huggingface/datasets/issues/3954
The dataset preview is not available for tdklab/Hebrew_Squad_v1.1 dataset
[ "Hi @MatanBenChorin, thanks for reporting.\r\n\r\nPlease, take into account that the preview may take some time until it properly renders (we are working to reduce this time).\r\n\r\nMaybe @severo can give more details on this.", "Hi, \r\nThank you", "Thanks for reporting. We are looking at it and will give updates here.", "I imagine the dataset has been moved to https://huggingface.co/datasets/tdklab/Hebrew_Squad_v1, which still has an issue:\r\n\r\n```\r\nServer Error\r\n\r\nStatus code: 400\r\nException: NameError\r\nMessage: name 'HebrewSquad' is not defined\r\n```", "The issue is not related to the dataset viewer but to the loading script (cc @albertvillanova @lhoestq @mariosasko)\r\n\r\n```python\r\n>>> import datasets as ds\r\n>>> hf_token = \"hf_...\" # <- required because the dataset is gated\r\n>>> d = ds.load_dataset('tdklab/Hebrew_Squad_v1', use_auth_token=hf_token)\r\n...\r\nNameError: name 'HebrewSquad' is not defined\r\n```", "Yes indeed there is an error in [Hebrew_Squad_v1.py:L40](https://huggingface.co/datasets/tdklab/Hebrew_Squad_v1/blob/main/Hebrew_Squad_v1.py#L40)\r\n\r\nHere is the fix @MatanBenChorin :\r\n\r\n```diff\r\n- HebrewSquad(\r\n+ HebrewSquadConfig(\r\n```" ]
## Dataset viewer issue for 'tdklab/Hebrew_Squad_v1.1' **Link:** https://huggingface.co/api/datasets/tdklab/Hebrew_Squad_v1.1?full=true The dataset preview is not available for this dataset. Am I the one who added this dataset ? Yes
3,954
https://github.com/huggingface/datasets/issues/3953
Add ImageNet Sketch
[ "Can you assign this task to me? @nreimers @mariosasko ", "Hi! Sure! Let us know if you need any pointers." ]
## Adding a Dataset - **Name:** ImageNet Sketch - **Description:** ImageNet-Sketch is a dataset consisting of sketch-like images, that matches the ImageNet classification validation set in categories and scale. - **Paper:** [Learning Robust Global Representations by Penalizing Local Predictive Power](https://arxiv.org/abs/1905.13549) - **Data:** https://github.com/HaohanWang/ImageNet-Sketch - **Motivation:** Allows for evaluating the robustness of vision models. Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
3,953
https://github.com/huggingface/datasets/issues/3952
Checksum error for glue sst2, stsb, rte etc datasets
[ "Hi, @ravindra-ut.\r\n\r\nI'm sorry but I can't reproduce your problem:\r\n```python\r\nIn [1]: from datasets import load_dataset\r\n\r\nIn [2]: ds = load_dataset(\"glue\", \"sst2\")\r\nDownloading builder script: 28.8kB [00:00, 11.6MB/s] \r\nDownloading metadata: 28.7kB [00:00, 12.9MB/s] \r\nDownloading and preparing dataset glue/sst2 (download: 7.09 MiB, generated: 4.81 MiB, post-processed: Unknown size, total: 11.90 MiB) to .../.cache/huggingface/datasets/glue/sst2/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad...\r\nDownloading data: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 7.44M/7.44M [00:01<00:00, 5.82MB/s]\r\nDataset glue downloaded and prepared to .../.cache/huggingface/datasets/glue/sst2/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad. Subsequent calls will reuse this data. \r\n100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 895.96it/s]\r\n\r\nIn [3]: ds\r\nOut[2]: \r\nDatasetDict({\r\n train: Dataset({\r\n features: ['sentence', 'label', 'idx'],\r\n num_rows: 67349\r\n })\r\n validation: Dataset({\r\n features: ['sentence', 'label', 'idx'],\r\n num_rows: 872\r\n })\r\n test: Dataset({\r\n features: ['sentence', 'label', 'idx'],\r\n num_rows: 1821\r\n })\r\n})\r\n``` \r\n\r\nMoreover, I see in your traceback that your error was for an URL at https://firebasestorage.googleapis.com\r\nHowever, the URLs were updated on Sep 16, 2020 (`datasets` version 1.0.2) to https://dl.fbaipublicfiles.com: https://github.com/huggingface/datasets/commit/2f03041a21c03abaececb911760c3fe4f420c229\r\n\r\nCould you please try to update `datasets`\r\n```shell\r\npip install -U datasets\r\n```\r\nand then force redownload\r\n```python\r\nds = load_dataset(\"glue\", \"sst2\", download_mode=\"force_redownload\")\r\n```\r\nto update the cache?\r\n\r\nPlease, feel free to reopen this issue if the problem persists." ]
## Describe the bug Checksum error for glue sst2, stsb, rte etc datasets ## Steps to reproduce the bug ```python >>> nlp.load_dataset('glue', 'sst2') Downloading and preparing dataset glue/sst2 (download: 7.09 MiB, generated: 4.81 MiB, post-processed: Unknown sizetotal: 11.90 MiB) to Downloading: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 73.0/73.0 [00:00<00:00, 18.2kB/s] Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/Library/Python/3.8/lib/python/site-packages/nlp/load.py", line 548, in load_dataset builder_instance.download_and_prepare( File "/Library/Python/3.8/lib/python/site-packages/nlp/builder.py", line 462, in download_and_prepare self._download_and_prepare( File "/Library/Python/3.8/lib/python/site-packages/nlp/builder.py", line 521, in _download_and_prepare verify_checksums( File "/Library/Python/3.8/lib/python/site-packages/nlp/utils/info_utils.py", line 38, in verify_checksums raise NonMatchingChecksumError(error_msg + str(bad_urls)) nlp.utils.info_utils.NonMatchingChecksumError: Checksums didn't match for dataset source files: ['https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FSST-2.zip?alt=media&token=aabc5f6b-e466-44a2-b9b4-cf6337f84ac8'] ``` ## Expected results dataset load should succeed without checksum error. ## Actual results ``` Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/Library/Python/3.8/lib/python/site-packages/nlp/load.py", line 548, in load_dataset builder_instance.download_and_prepare( File "/Library/Python/3.8/lib/python/site-packages/nlp/builder.py", line 462, in download_and_prepare self._download_and_prepare( File "/Library/Python/3.8/lib/python/site-packages/nlp/builder.py", line 521, in _download_and_prepare verify_checksums( File "/Library/Python/3.8/lib/python/site-packages/nlp/utils/info_utils.py", line 38, in verify_checksums raise NonMatchingChecksumError(error_msg + str(bad_urls)) nlp.utils.info_utils.NonMatchingChecksumError: Checksums didn't match for dataset source files: ['https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FSST-2.zip?alt=media&token=aabc5f6b-e466-44a2-b9b4-cf6337f84ac8'] ``` ## Environment info - `datasets` version: '1.18.3' - Platform: Mac OS - Python version: Python 3.8.9 - PyArrow version: '7.0.0'
3,952
https://github.com/huggingface/datasets/issues/3951
Forked streaming datasets try to `open` data urls rather than use network
[ "Thanks for reporting this second issue as well. We definitely want to make streaming datasets fully working in a distributed setup and with the best performance. Right now it only supports single process.\r\n\r\nIn this issue it seems that the streaming capabilities that we offer to dataset builders are not transferred to the forked process (so it fails to open remote files and start streaming data from them). In particular `open` is supposed to be mocked by our `xopen` function that is an extended open that supports remote files. Let me try to fix this" ]
## Describe the bug Building on #3950, if you bypass the pickling problem you still can't use the dataset. Somehow something gets confused and the forked processes try to `open` urls rather than anything else. ## Steps to reproduce the bug ```python from multiprocessing import freeze_support import transformers from transformers import Trainer, AutoModelForCausalLM, TrainingArguments import datasets import torch.utils.data # work around #3950 class TorchIterableDataset(datasets.IterableDataset, torch.utils.data.IterableDataset): pass def _ensure_format(v: datasets.IterableDataset) -> datasets.IterableDataset: return TorchIterableDataset(v._ex_iterable, v.info, v.split, "torch", v._shuffling) if __name__ == '__main__': freeze_support() ds = datasets.load_dataset('oscar', "unshuffled_deduplicated_en", split='train', streaming=True) ds = _ensure_format(ds) model = AutoModelForCausalLM.from_pretrained("distilgpt2") Trainer(model, train_dataset=ds, args=TrainingArguments("out", max_steps=1000, dataloader_num_workers=4)).train() ``` ## Expected results I'd expect the dataset to load the url correctly and produce examples. ## Actual results ``` warnings.warn( ***** Running training ***** Num examples = 8000 Num Epochs = 9223372036854775807 Instantaneous batch size per device = 8 Total train batch size (w. parallel, distributed & accumulation) = 8 Gradient Accumulation steps = 1 Total optimization steps = 1000 0%| | 0/1000 [00:00<?, ?it/s]Traceback (most recent call last): File "/Users/dlwh/src/mistral/src/stream_fork_crash.py", line 22, in <module> Trainer(model, train_dataset=ds, args=TrainingArguments("out", max_steps=1000, dataloader_num_workers=4)).train() File "/Users/dlwh/.conda/envs/mistral/lib/python3.8/site-packages/transformers/trainer.py", line 1339, in train for step, inputs in enumerate(epoch_iterator): File "/Users/dlwh/.conda/envs/mistral/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 521, in __next__ data = self._next_data() File "/Users/dlwh/.conda/envs/mistral/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1203, in _next_data return self._process_data(data) File "/Users/dlwh/.conda/envs/mistral/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1229, in _process_data data.reraise() File "/Users/dlwh/.conda/envs/mistral/lib/python3.8/site-packages/torch/_utils.py", line 434, in reraise raise exception FileNotFoundError: Caught FileNotFoundError in DataLoader worker process 0. Original Traceback (most recent call last): File "/Users/dlwh/.conda/envs/mistral/lib/python3.8/site-packages/torch/utils/data/_utils/worker.py", line 287, in _worker_loop data = fetcher.fetch(index) File "/Users/dlwh/.conda/envs/mistral/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 32, in fetch data.append(next(self.dataset_iter)) File "/Users/dlwh/.conda/envs/mistral/lib/python3.8/site-packages/datasets/iterable_dataset.py", line 497, in __iter__ for key, example in self._iter(): File "/Users/dlwh/.conda/envs/mistral/lib/python3.8/site-packages/datasets/iterable_dataset.py", line 494, in _iter yield from ex_iterable File "/Users/dlwh/.conda/envs/mistral/lib/python3.8/site-packages/datasets/iterable_dataset.py", line 87, in __iter__ yield from self.generate_examples_fn(**self.kwargs) File "/Users/dlwh/.cache/huggingface/modules/datasets_modules/datasets/oscar/84838bd49d2295f62008383b05620571535451d84545037bb94d6f3501651df2/oscar.py", line 358, in _generate_examples with gzip.open(open(filepath, "rb"), "rt", encoding="utf-8") as f: FileNotFoundError: [Errno 2] No such file or directory: 'https://s3.amazonaws.com/datasets.huggingface.co/oscar/1.0/unshuffled/deduplicated/en/en_part_1.txt.gz' Error in atexit._run_exitfuncs: Traceback (most recent call last): File "/Users/dlwh/.conda/envs/mistral/lib/python3.8/multiprocessing/popen_fork.py", line 27, in poll pid, sts = os.waitpid(self.pid, flag) File "/Users/dlwh/.conda/envs/mistral/lib/python3.8/site-packages/torch/utils/data/_utils/signal_handling.py", line 66, in handler _error_if_any_worker_fails() RuntimeError: DataLoader worker (pid 6932) is killed by signal: Terminated: 15. 0%| | 0/1000 [00:02<?, ?it/s] ``` ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 2.0.0 - Platform: macOS-12.2-arm64-arm-64bit - Python version: 3.8.12 - PyArrow version: 7.0.0 - Pandas version: 1.4.1
3,951
https://github.com/huggingface/datasets/issues/3950
Streaming Datasets don't work with Transformers Trainer when dataloader_num_workers>1
[ "Hi, thanks for reporting. This could be related to https://github.com/huggingface/datasets/issues/3148 too\r\n\r\nWe should definitely make `TorchIterableDataset` picklable by moving it in the main code instead of inside a function. If you'd like to contribute, feel free to open a Pull Request :)\r\n\r\nI'm also taking a look at your second issue, which is more technical" ]
## Describe the bug Streaming Datasets can't be pickled, so any interaction between them and multiprocessing results in a crash. ## Steps to reproduce the bug ```python import transformers from transformers import Trainer, AutoModelForCausalLM, TrainingArguments import datasets ds = datasets.load_dataset('oscar', "unshuffled_deduplicated_en", split='train', streaming=True).with_format("torch") model = AutoModelForCausalLM.from_pretrained("distilgpt2") Trainer(model, train_dataset=ds, args=TrainingArguments("out", max_steps=1000, dataloader_num_workers=4)).train() ``` ## Expected results For this code I'd expect a crash related to not having preprocessed the data, but instead we get a pickling error. ## Actual results ``` 0%| | 0/1000 [00:00<?, ?it/s]Traceback (most recent call last): File "/Users/dlwh/src/mistral/src/stream_fork_crash.py", line 7, in <module> Trainer(model, train_dataset=ds, args=TrainingArguments("out", max_steps=1000, dataloader_num_workers=4)).train() File "/Users/dlwh/.conda/envs/mistral/lib/python3.8/site-packages/transformers/trainer.py", line 1339, in train for step, inputs in enumerate(epoch_iterator): File "/Users/dlwh/.conda/envs/mistral/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 359, in __iter__ return self._get_iterator() File "/Users/dlwh/.conda/envs/mistral/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 305, in _get_iterator return _MultiProcessingDataLoaderIter(self) File "/Users/dlwh/.conda/envs/mistral/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 918, in __init__ w.start() File "/Users/dlwh/.conda/envs/mistral/lib/python3.8/multiprocessing/process.py", line 121, in start self._popen = self._Popen(self) File "/Users/dlwh/.conda/envs/mistral/lib/python3.8/multiprocessing/context.py", line 224, in _Popen return _default_context.get_context().Process._Popen(process_obj) File "/Users/dlwh/.conda/envs/mistral/lib/python3.8/multiprocessing/context.py", line 284, in _Popen return Popen(process_obj) File "/Users/dlwh/.conda/envs/mistral/lib/python3.8/multiprocessing/popen_spawn_posix.py", line 32, in __init__ super().__init__(process_obj) File "/Users/dlwh/.conda/envs/mistral/lib/python3.8/multiprocessing/popen_fork.py", line 19, in __init__ self._launch(process_obj) File "/Users/dlwh/.conda/envs/mistral/lib/python3.8/multiprocessing/popen_spawn_posix.py", line 47, in _launch reduction.dump(process_obj, fp) File "/Users/dlwh/.conda/envs/mistral/lib/python3.8/multiprocessing/reduction.py", line 60, in dump ForkingPickler(file, protocol).dump(obj) AttributeError: Can't pickle local object 'iterable_dataset.<locals>.TorchIterableDataset' 0%| | 0/1000 [00:00<?, ?it/s] ``` This immediate crash can be fixed by not using a local class to make the `TorchIterableDataset` (Note that you have to do with_format("torch") or you get an exception because the dataset has no len) However, any lambdas etc used as maps will also trigger this crash. A more permanent fix would be to move away from multiprocessing and instead use something like pathos or multiprocessing_on_dill (https://stackoverflow.com/questions/19984152/what-can-multiprocessing-and-dill-do-together) Note that if you bypass this crash you get another crash. (I'll file a separate bug). ## Environment info - `datasets` version: 2.0.0 - Platform: macOS-12.2-arm64-arm-64bit - Python version: 3.8.12 - PyArrow version: 7.0.0 - Pandas version: 1.4.1
3,950
https://github.com/huggingface/datasets/issues/3942
reddit_tifu dataset: Checksums didn't match for dataset source files
[ "Hi @XingxingZhang, \r\n\r\nWe have already fixed this. You should update `datasets` version to at least 1.18.4:\r\n```shell\r\npip install -U datasets\r\n```\r\nAnd then force the redownload:\r\n```python\r\nload_dataset(\"...\", download_mode=\"force_redownload\")\r\n```\r\n\r\nDuplicate of:\r\n- #3773", "thanks @albertvillanova . by upgrading to 1.18.4 and using `load_dataset(\"...\", download_mode=\"force_redownload\")` fixed \r\n the bug.\r\n\r\nusing the following as you suggested in another thread can also fixed the bug\r\n```\r\npip install git+https://github.com/huggingface/datasets#egg=datasets\r\n```\r\n", "The latter solution (installing from GitHub) was proposed because the fix was not released yet. But last week we made the 1.18.4 patch release (with the fix), so no longer necessary to install from GitHub.\r\n\r\nYou can now install from PyPI, as usual:\r\n```shell\r\npip install -U datasets\r\n```\r\n" ]
## Describe the bug When loading the reddit_tifu dataset, it throws the exception "Checksums didn't match for dataset source files" ## Steps to reproduce the bug ```python import datasets from datasets import load_dataset print(datasets.__version__) # load_dataset('billsum') load_dataset('reddit_tifu', 'short') ``` ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 1.17.0 - Platform: mac os - Python version: Python 3.7.6 - PyArrow version: 3.0.0
3,942
https://github.com/huggingface/datasets/issues/3941
billsum dataset: Checksums didn't match for dataset source files:
[ "Hi @XingxingZhang, thanks for reporting.\r\n\r\nThis was due to a change in Google Drive service:\r\n- #3786 \r\n\r\nWe have already fixed it:\r\n- #3787\r\n\r\nYou should update `datasets` version to at least 1.18.4:\r\n```shell\r\npip install -U datasets\r\n```\r\nAnd then force the redownload:\r\n```python\r\nload_dataset(\"...\", download_mode=\"force_redownload\")\r\n```", "thanks @albertvillanova ", "@albertvillanova \r\nYOU Said: pip install git+ https://github.com/huggingface/datasets.git Then set: dataset=load_dataset (\"multinews\", download_mode=\"force-redownload\"). I changed the ’datautils‘ file according to this setting: traindata=load_dataset (path='wikitext ', name='wikitext-2-raw v1', split='train ', download_mode=\"force-redownload\")\r\nTestdata=load_dataset (path='wikitext ', name='wikitext-2-raw v1', split='test ', download_mode=\"force-redownload\")\r\nthen the bug is\r\n![image](https://github.com/huggingface/datasets/assets/149936473/ee956e8f-e6f1-46bf-b514-0a7a0a0e0e37)\r\n![image](https://github.com/huggingface/datasets/assets/149936473/f1318686-942c-4341-a61d-9be7a4b5747a)\r\nI have tried both versions\r\n![image](https://github.com/huggingface/datasets/assets/149936473/d3f0d786-304b-4596-83c6-49c3cac58aad)\r\n" ]
## Describe the bug When loading the `billsum` dataset, it throws the exception "Checksums didn't match for dataset source files" ``` File "virtualenv_projects/codex/lib/python3.7/site-packages/datasets/utils/info_utils.py", line 40, in verify_checksums raise NonMatchingChecksumError(error_msg + str(bad_urls)) datasets.utils.info_utils.NonMatchingChecksumError: Checksums didn't match for dataset source files: ['https://drive.google.com/uc?export=download&id=1g89WgFHMRbr4QrvA0ngh26PY081Nv3lx'] ``` ## Steps to reproduce the bug ```python import datasets from datasets import load_dataset print(datasets.__version__) load_dataset('billsum') ``` ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 1.17.0 - Platform: mac os - Python version: Python 3.7.6 - PyArrow version: 3.0.0
3,941
https://github.com/huggingface/datasets/issues/3939
Source links broken
[ "Thanks for reporting @qqaatw.\r\n\r\n@mishig25 @sgugger do you think this can be tweaked in the new doc framework?\r\n- From: https://github.com/huggingface/datasets/blob/v2.0.0/\r\n- To: https://github.com/huggingface/datasets/blob/2.0.0/", "@qqaatw thanks a lot for notifying about this issue!\r\n\r\nin comparison, transformers tags start with `v` like [this one](https://github.com/huggingface/transformers/blob/v4.17.0/src/transformers/models/bert/configuration_bert.py#L54).\r\n\r\nTherefore, we have to do one of 2 options below:\r\n1. Make necessary changes on doc-builder side\r\nOR\r\n2. Make [datasets tags](https://github.com/huggingface/datasets/tags) start with `v`, just like [transformers](https://github.com/huggingface/transformers/tags) (so that tag naming can be consistent amongst hf repos)\r\n\r\nI'll let you decide @albertvillanova @lhoestq @sgugger ", "I think option 2 is the easiest and would provide harmony in the HF ecosystem but we can also add a doc config parameter to decide whether the default version has a v or not if `datasets` folks prefer their tags without a v :-)", "For me it is OK to conform to the rest of libraries and tag/release with a preceding \"v\", rather than adding an extra argument to the doc builder just for `datasets`.\r\n\r\nLet me know if it is also OK for you @lhoestq. ", "https://github.com/huggingface/doc-build/commit/f41c1e8ff900724213af4c75d287d8b61ecf6141\r\n\r\nhotfix so that `datasets` docs source button works correctly on hf.co/docs/datasets", "We could add a tag for each release without a 'v' but it could be confusing on github to see both tags `v2.0.0` and `2.0.0` IMO (not sure if many users check them though). Removing the tags without 'v' would break our versioning for github datasets: the library looks for dataset scripts at the URLs like `https://raw.githubusercontent.com/huggingface/datasets/{revision}/datasets/{path}/{name}` where `revision` is equal to `datasets.__version__` (which doesn't start with a 'v') for all released versions of `datasets`.\r\n\r\nI think we could just have a parameter for the documentation - and having different URLs schemes for the source links that the users don't even see (they simply click on a button) is probably fine", "This is done in #3943 to go along with [doc-builder#146](https://github.com/huggingface/doc-builder/pull/146).\r\n\r\nNote that this will only work for future versions, so once those two are merged, the actual v2.0.0 doc should be fixed. The easiest is to cherry-pick this commit on the v2.0.0 release branch (or on a new branch created from the 2.0.0 tag, with a name that triggers the doc building job, for instance v2.0.0-release)", "Thanks for fixing @sgugger." ]
## Describe the bug The source links of v2.0.0 docs are broken: For exmaple, clicking the source button of this [class](https://huggingface.co/docs/datasets/v2.0.0/en/package_reference/main_classes#datasets.ClassLabel) will direct users to `https://github.com/huggingface/datasets/blob/v2.0.0/src/datasets/features/features.py#L747` here, the `v2.0.0` should be `2.0.0`. ## Steps to reproduce the bug ```python # Sample code to reproduce the bug ``` ## Expected results Redirecting to this link: `https://github.com/huggingface/datasets/blob/2.0.0/src/datasets/features/features.py#L747` ## Actual results Described above. ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: - Platform: - Python version: - PyArrow version:
3,939
https://github.com/huggingface/datasets/issues/3937
Missing languages in lvwerra/github-code dataset
[ "Thanks for contacting @Eytan-S.\r\n\r\nI think @lvwerra could better answer this. ", "That seems to be an oversight - I originally planned to include them in the dataset and for some reason they were in the list of languages but not in the query. Since there is an issue with the deduplication step I'll rerun the pipeline anyway and will double check the query.\r\n\r\nThanks for reporting this @Eytan-S!", "Can confirm that the two languages are indeed missing from the dataset. Here are the file counts per language:\r\n```Python\r\n{'Assembly': 82847,\r\n 'Batchfile': 236755,\r\n 'C': 14127969,\r\n 'C#': 6793439,\r\n 'C++': 7368473,\r\n 'CMake': 175076,\r\n 'CSS': 1733625,\r\n 'Dockerfile': 331966,\r\n 'FORTRAN': 141963,\r\n 'GO': 2259363,\r\n 'Haskell': 340521,\r\n 'HTML': 11165464,\r\n 'Java': 19515696,\r\n 'JavaScript': 11829024,\r\n 'Julia': 58177,\r\n 'Lua': 576279,\r\n 'Makefile': 679338,\r\n 'Markdown': 8454049,\r\n 'PHP': 11181930,\r\n 'Perl': 497490,\r\n 'PowerShell': 136827,\r\n 'Python': 7203553,\r\n 'Ruby': 4479767,\r\n 'Rust': 321765,\r\n 'SQL': 655657,\r\n 'Scala': 0,\r\n 'Shell': 1382786,\r\n 'TypeScript': 0,\r\n 'TeX': 250764,\r\n 'Visual Basic': 155371}\r\n ```", "@Eytan-S check out v1.1 of the `github-code` dataset where issue should be fixed:\r\n\r\n| | Language |File Count| Size (GB)|\r\n|---:|:-------------|---------:|-------:|\r\n| 0 | Java | 19548190 | 107.7 |\r\n| 1 | C | 14143113 | 183.83 |\r\n| 2 | JavaScript | 11839883 | 87.82 |\r\n| 3 | HTML | 11178557 | 118.12 |\r\n| 4 | PHP | 11177610 | 61.41 |\r\n| 5 | Markdown | 8464626 | 23.09 |\r\n| 6 | C++ | 7380520 | 87.73 |\r\n| 7 | Python | 7226626 | 52.03 |\r\n| 8 | C# | 6811652 | 36.83 |\r\n| 9 | Ruby | 4473331 | 10.95 |\r\n| 10 | GO | 2265436 | 19.28 |\r\n| 11 | TypeScript | 1940406 | 24.59 |\r\n| 12 | CSS | 1734406 | 22.67 |\r\n| 13 | Shell | 1385648 | 3.01 |\r\n| 14 | Scala | 835755 | 3.87 |\r\n| 15 | Makefile | 679430 | 2.92 |\r\n| 16 | SQL | 656671 | 5.67 |\r\n| 17 | Lua | 578554 | 2.81 |\r\n| 18 | Perl | 497949 | 4.7 |\r\n| 19 | Dockerfile | 366505 | 0.71 |\r\n| 20 | Haskell | 340623 | 1.85 |\r\n| 21 | Rust | 322431 | 2.68 |\r\n| 22 | TeX | 251015 | 2.15 |\r\n| 23 | Batchfile | 236945 | 0.7 |\r\n| 24 | CMake | 175282 | 0.54 |\r\n| 25 | Visual Basic | 155652 | 1.91 |\r\n| 26 | FORTRAN | 142038 | 1.62 |\r\n| 27 | PowerShell | 136846 | 0.69 |\r\n| 28 | Assembly | 82905 | 0.78 |\r\n| 29 | Julia | 58317 | 0.29 |", "Thanks @lvwerra. " ]
Hi, I'm working with the github-code dataset. First of all, thank you for creating this amazing dataset! I've noticed that two languages are missing from the dataset: TypeScript and Scala. Looks like they're also omitted from the query you used to get the original code. Are there any plans to add them in the future? Thanks!
3,937
https://github.com/huggingface/datasets/issues/3929
Load a local dataset twice
[ "Hi @caush, thanks for reporting:\r\n\r\nIn order to load local CSV files, you can use our \"csv\" loading script: https://huggingface.co/docs/datasets/loading#csv\r\n```python\r\ndataset = load_dataset(\"csv\", data_files=[\"data/file1.csv\", \"data/file2.csv\"])\r\n```\r\nOR:\r\n```python\r\ndataset = load_dataset(\"csv\", data_dir=\"data\")\r\n```\r\n\r\nAlternatively, you may also use:\r\n```python\r\ndataset = load_dataset(\"data\")" ]
## Describe the bug Load a local "dataset" composed of two csv files twice. ## Steps to reproduce the bug Put the two joined files in a repository named "Data". Then in python: import datasets as ds ds.load_dataset('Data', data_files = {'file1.csv', 'file2.csv'}) ## Expected results Should give something like (because files have only one data row): Title, clicks Truc et astuce, 123 Machin, 12 ## Actual results Gives Title, clicks Truc et astuce, 123 Machin, 12 Truc et astuce, 123 Machin, 12 ## Environment info [file1.csv](https://github.com/huggingface/datasets/files/8256322/file1.csv) [file2.csv](https://github.com/huggingface/datasets/files/8256323/file2.csv) - `datasets` version: 2.0.0 - Platform: Linux-5.4.0-65-generic-x86_64-with-glibc2.10 - Python version: 3.8.12 - PyArrow version: 7.0.0 - Pandas version: 1.4.1
3,929
https://github.com/huggingface/datasets/issues/3928
Frugal score deprecations
[ "Hi @Ierezell, thanks for reporting.\r\n\r\nI'm making a PR to suppress those logs from the terminal. " ]
## Describe the bug The frugal score returns a really verbose output with warnings that can be easily changed. ## Steps to reproduce the bug ```python # Sample code to reproduce the bug from datasets.load import load_metric frugal = load_metric("frugalscore") frugal.compute(predictions=["Do you like spinachis"], references=["Do you like spinach"]) ``` ## Expected results A clear and concise description of the expected results. ``` {'scores': [0.9946]} ``` ## Actual results Specify the actual results or traceback. ``` PyTorch: setting up devices The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-). 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 864.09ba/s] Using amp half precision backend The following columns in the test set don't have a corresponding argument in `BertForSequenceClassification.forward` and have been ignored: sentence2, sentence1. If sentence2, sentence1 are not expected by `BertForSequenceClassification.forward`, you can safely ignore this message. ***** Running Prediction ***** Num examples = 1 Batch size = 64 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 4644.85it/s] {'scores': [0.9946]} ``` ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 1.17.0 - Platform: Linux-5.13.0-30-generic-x86_64-with-glibc2.29 - Python version: 3.8.10 - PyArrow version: 7.0.0
3,928
https://github.com/huggingface/datasets/issues/3920
'datasets.features' is not a package
[ "Hi @Arij-Aladel,\r\n\r\nYou are using a very old version of our library `datasets`: 1.8.0\r\nCurrent version is 2.0.0 (and the previous one was 1.18.4)\r\n\r\nPlease, try to update `datasets` library and check if the problem persists:\r\n```shell\r\n/env/bin/pip install -U datasets", "The problem I can no I have build my project on this version and old version on transformers. I have preprocessed the data again to use it. Thank for your reply" ]
@albertvillanova python 3.9 os: ubuntu 20.04 In conda environment torch installed by ```/env/bin/pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html``` datasets package is installed by ``` /env/bin/pip install datasets==1.8.0 ``` During runing the code I have this error ``` [6]<stderr>: File "/home/arij/Memory-transformer-with-hierarchical-attention_MLM/env/lib/python3.9/site-packages/torch/serialization.py", line 875, in find_class [6]<stderr>: return super().find_class(mod_name, name) [6]<stderr>:ModuleNotFoundError: No module named 'datasets.features.features'; 'datasets.features' is not a package ``` precisely this error appears when torch.load('data_file.pt') ``` Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/arij/Memory-transformer-with-hierarchical-attention_MLM/env/lib/python3.9/site-packages/torch/serialization.py", line 607, in load return _load(opened_zipfile, map_location, pickle_module, **pickle_load_args) File "/home/arij/Memory-transformer-with-hierarchical-attention_MLM/env/lib/python3.9/site-packages/torch/serialization.py", line 882, in _load result = unpickler.load() File "/home/arij/Memory-transformer-with-hierarchical-attention_MLM/env/lib/python3.9/site-packages/torch/serialization.py", line 875, in find_class return super().find_class(mod_name, name) ModuleNotFoundError: No module named 'datasets.features.features'; 'datasets.features' is not a package ``` Why I am getting this error?
3,920
https://github.com/huggingface/datasets/issues/3919
AttributeError: 'DatasetDict' object has no attribute 'features'
[ "You are likely trying to get the `features` from a `DatasetDict`, a dictionary containing `Datasets`. You probably first want to index into a particular split from your `DatasetDict` i.e. `dataset['train'].features`. \r\n\r\nFor example \r\n\r\n```python \r\nds = load_dataset('mnist')\r\nds.features\r\n```\r\nReturns \r\n```python\r\n---------------------------------------------------------------------------\r\n\r\nAttributeError Traceback (most recent call last)\r\n\r\n[<ipython-input-39-791c1f9df6c2>](https://localhost:8080/#) in <module>()\r\n----> 1 ds.features\r\n\r\nAttributeError: 'DatasetDict' object has no attribute 'features'\r\n```\r\n\r\nIf we look at the dataset variable, we see it is a `DatasetDict`:\r\n\r\n```python \r\nprint(ds)\r\nDatasetDict({\r\n train: Dataset({\r\n features: ['image', 'label'],\r\n num_rows: 60000\r\n })\r\n test: Dataset({\r\n features: ['image', 'label'],\r\n num_rows: 10000\r\n })\r\n})\r\n```\r\n\r\nWe can grab the features from a split by indexing into `train`:\r\n```python\r\nds['train'].features\r\n{'image': Image(decode=True, id=None),\r\n 'label': ClassLabel(num_classes=10, names=['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'], id=None)}\r\n```\r\n\r\nHope that helps ", "Yes, Thanks for that clarification," ]
## Describe the bug Receiving the error when trying to check for Dataset features ## Steps to reproduce the bug from datasets import Dataset dataset = Dataset.from_pandas(df[['id', 'words', 'bboxes', 'ner_tags', 'image_path']]) dataset.features ## Expected results A clear and concise description of the expected results. ## Actual results Getting the following errror AttributeError: 'DatasetDict' object has no attribute 'features' ## Environment info Copy-and-paste the text below in your GitHub issue. - `datasets` version: 1.18.4 - Platform: Linux-4.14.252-131.483.amzn1.x86_64-x86_64-with-glibc2.9 - Python version: 3.6.13 - PyArrow version: 6.0.1
3,919
https://github.com/huggingface/datasets/issues/3918
datasets.utils.info_utils.NonMatchingChecksumError: Checksums didn't match for dataset source files
[ "Hi @willowdong! These issues were fixed on master. We will have a new release of `datasets` later today. In the meantime, you can avoid these issues by installing `datasets` from master as follows:\r\n```bash\r\npip install git+https://github.com/huggingface/datasets.git\r\n```", "You should force redownload:\r\n```python\r\ndataset = load_dataset(\"multi_news\", download_mode=\"force_redownload\")\r\ndataset_2 = load_dataset(\"reddit_tifu\", \"long\", download_mode=\"force_redownload\")", "Fixed by:\r\n- #3787 \r\n- #3843" ]
## Describe the bug Can't load the dataset ## Steps to reproduce the bug ```python # Sample code to reproduce the bug ``` from datasets import load_dataset dataset = load_dataset('multi_news') dataset_2=load_dataset("reddit_tifu", "long") ## Actual results raise NonMatchingChecksumError(error_msg + str(bad_urls)) datasets.utils.info_utils.NonMatchingChecksumError: Checksums didn't match for dataset source files: ['https://drive.google.com/uc?export=download&id=1ffWfITKFMJeqjT8loC8aiCLRNJpc_XnF'] ## Environment info - `datasets` version: 1.18.4 - Platform: macOS-10.16-x86_64-i386-64bit - Python version: 3.8.0 - PyArrow version: 6.0.1
3,918
https://github.com/huggingface/datasets/issues/3909
Error loading file audio when downloading the Common Voice dataset directly from the Hub
[ "Hi ! It could an issue with torchaudio, which version of torchaudio are you using ? Can you also try updating `datasets` to 2.0.0 and see if it works ?", "I _might_ have a similar issue. I'm trying to use the librispeech_asr dataset and read it with soundfile.\r\n\r\n```python\r\nfrom datasets import load_dataset, load_metric\r\nfrom transformers import Speech2TextForConditionalGeneration, Speech2TextProcessor\r\nimport soundfile as sf\r\n\r\nlibrispeech_eval = load_dataset(\"librispeech_asr\", \"clean\", split=\"test\") # change to \"other\" for other test dataset\r\nwer = load_metric(\"wer\")\r\n\r\nmodel = Speech2TextForConditionalGeneration.from_pretrained(\"facebook/s2t-small-librispeech-asr\").to(\"cuda\")\r\nprocessor = Speech2TextProcessor.from_pretrained(\"facebook/s2t-small-librispeech-asr\", do_upper_case=True)\r\n\r\ndef map_to_array(batch):\r\n speech, _ = sf.read(batch[\"file\"])\r\n batch[\"speech\"] = speech\r\n return batch\r\n\r\nlibrispeech_eval = librispeech_eval.map(map_to_array)\r\n\r\ndef map_to_pred(batch):\r\n features = processor(batch[\"speech\"], sampling_rate=16000, padding=True, return_tensors=\"pt\")\r\n input_features = features.input_features.to(\"cuda\")\r\n attention_mask = features.attention_mask.to(\"cuda\")\r\n\r\n gen_tokens = model.generate(input_ids=input_features, attention_mask=attention_mask)\r\n batch[\"transcription\"] = processor.batch_decode(gen_tokens, skip_special_tokens=True)\r\n return batch\r\n\r\nresult = librispeech_eval.map(map_to_pred, batched=True, batch_size=8, remove_columns=[\"speech\"])\r\n\r\nprint(\"WER:\", wer(predictions=result[\"transcription\"], references=result[\"text\"]))\r\n```\r\n\r\nThe code is taken directly from \"https://huggingface.co/facebook/s2t-small-librispeech-asr\".\r\n\r\nThe short error code is \"RuntimeError: Error opening '6930-75918-0000.flac': System error.\" (it can't find the first file), and I agree, I can't find the file either. The dataset has downloaded correctly (it says), but on the location, there are only \".arrow\" files, no \".flac\" files.\r\n\r\n**Error message:**\r\n\r\n```python\r\nRuntimeError Traceback (most recent call last)\r\nInput In [15], in <cell line: 16>()\r\n 13 batch[\"speech\"] = speech\r\n 14 return batch\r\n---> 16 librispeech_eval = librispeech_eval.map(map_to_array)\r\n 18 def map_to_pred(batch):\r\n 19 features = processor(batch[\"speech\"], sampling_rate=16000, padding=True, return_tensors=\"pt\")\r\n\r\nFile C:\\ProgramData\\Miniconda3\\envs\\noise_cancel\\lib\\site-packages\\datasets\\arrow_dataset.py:1953, in Dataset.map(self, function, with_indices, with_rank, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc, suffix_template, new_fingerprint, desc)\r\n 1950 disable_tqdm = not logging.is_progress_bar_enabled()\r\n 1952 if num_proc is None or num_proc == 1:\r\n-> 1953 return self._map_single(\r\n 1954 function=function,\r\n 1955 with_indices=with_indices,\r\n 1956 with_rank=with_rank,\r\n 1957 input_columns=input_columns,\r\n 1958 batched=batched,\r\n 1959 batch_size=batch_size,\r\n 1960 drop_last_batch=drop_last_batch,\r\n 1961 remove_columns=remove_columns,\r\n 1962 keep_in_memory=keep_in_memory,\r\n 1963 load_from_cache_file=load_from_cache_file,\r\n 1964 cache_file_name=cache_file_name,\r\n 1965 writer_batch_size=writer_batch_size,\r\n 1966 features=features,\r\n 1967 disable_nullable=disable_nullable,\r\n 1968 fn_kwargs=fn_kwargs,\r\n 1969 new_fingerprint=new_fingerprint,\r\n 1970 disable_tqdm=disable_tqdm,\r\n 1971 desc=desc,\r\n 1972 )\r\n 1973 else:\r\n 1975 def format_cache_file_name(cache_file_name, rank):\r\n\r\nFile C:\\ProgramData\\Miniconda3\\envs\\noise_cancel\\lib\\site-packages\\datasets\\arrow_dataset.py:519, in transmit_tasks.<locals>.wrapper(*args, **kwargs)\r\n 517 self: \"Dataset\" = kwargs.pop(\"self\")\r\n 518 # apply actual function\r\n--> 519 out: Union[\"Dataset\", \"DatasetDict\"] = func(self, *args, **kwargs)\r\n 520 datasets: List[\"Dataset\"] = list(out.values()) if isinstance(out, dict) else [out]\r\n 521 for dataset in datasets:\r\n 522 # Remove task templates if a column mapping of the template is no longer valid\r\n\r\nFile C:\\ProgramData\\Miniconda3\\envs\\noise_cancel\\lib\\site-packages\\datasets\\arrow_dataset.py:486, in transmit_format.<locals>.wrapper(*args, **kwargs)\r\n 479 self_format = {\r\n 480 \"type\": self._format_type,\r\n 481 \"format_kwargs\": self._format_kwargs,\r\n 482 \"columns\": self._format_columns,\r\n 483 \"output_all_columns\": self._output_all_columns,\r\n 484 }\r\n 485 # apply actual function\r\n--> 486 out: Union[\"Dataset\", \"DatasetDict\"] = func(self, *args, **kwargs)\r\n 487 datasets: List[\"Dataset\"] = list(out.values()) if isinstance(out, dict) else [out]\r\n 488 # re-apply format to the output\r\n\r\nFile C:\\ProgramData\\Miniconda3\\envs\\noise_cancel\\lib\\site-packages\\datasets\\fingerprint.py:458, in fingerprint_transform.<locals>._fingerprint.<locals>.wrapper(*args, **kwargs)\r\n 452 kwargs[fingerprint_name] = update_fingerprint(\r\n 453 self._fingerprint, transform, kwargs_for_fingerprint\r\n 454 )\r\n 456 # Call actual function\r\n--> 458 out = func(self, *args, **kwargs)\r\n 460 # Update fingerprint of in-place transforms + update in-place history of transforms\r\n 462 if inplace: # update after calling func so that the fingerprint doesn't change if the function fails\r\n\r\nFile C:\\ProgramData\\Miniconda3\\envs\\noise_cancel\\lib\\site-packages\\datasets\\arrow_dataset.py:2318, in Dataset._map_single(self, function, with_indices, with_rank, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, new_fingerprint, rank, offset, disable_tqdm, desc, cache_only)\r\n 2316 if not batched:\r\n 2317 for i, example in enumerate(pbar):\r\n-> 2318 example = apply_function_on_filtered_inputs(example, i, offset=offset)\r\n 2319 if update_data:\r\n 2320 if i == 0:\r\n\r\nFile C:\\ProgramData\\Miniconda3\\envs\\noise_cancel\\lib\\site-packages\\datasets\\arrow_dataset.py:2218, in Dataset._map_single.<locals>.apply_function_on_filtered_inputs(inputs, indices, check_same_num_examples, offset)\r\n 2216 if with_rank:\r\n 2217 additional_args += (rank,)\r\n-> 2218 processed_inputs = function(*fn_args, *additional_args, **fn_kwargs)\r\n 2219 if update_data is None:\r\n 2220 # Check if the function returns updated examples\r\n 2221 update_data = isinstance(processed_inputs, (Mapping, pa.Table))\r\n\r\nFile C:\\ProgramData\\Miniconda3\\envs\\noise_cancel\\lib\\site-packages\\datasets\\arrow_dataset.py:1913, in Dataset.map.<locals>.decorate.<locals>.decorated(item, *args, **kwargs)\r\n 1909 decorated_item = (\r\n 1910 Example(item, features=self.features) if not batched else Batch(item, features=self.features)\r\n 1911 )\r\n 1912 # Use the LazyDict internally, while mapping the function\r\n-> 1913 result = f(decorated_item, *args, **kwargs)\r\n 1914 # Return a standard dict\r\n 1915 return result.data if isinstance(result, LazyDict) else result\r\n\r\nInput In [15], in map_to_array(batch)\r\n 11 def map_to_array(batch):\r\n---> 12 speech, _ = sf.read(batch[\"file\"])\r\n 13 batch[\"speech\"] = speech\r\n 14 return batch\r\n\r\nFile C:\\ProgramData\\Miniconda3\\envs\\noise_cancel\\lib\\site-packages\\soundfile.py:256, in read(file, frames, start, stop, dtype, always_2d, fill_value, out, samplerate, channels, format, subtype, endian, closefd)\r\n 170 def read(file, frames=-1, start=0, stop=None, dtype='float64', always_2d=False,\r\n 171 fill_value=None, out=None, samplerate=None, channels=None,\r\n 172 format=None, subtype=None, endian=None, closefd=True):\r\n 173 \"\"\"Provide audio data from a sound file as NumPy array.\r\n 174 \r\n 175 By default, the whole file is read from the beginning, but the\r\n (...)\r\n 254 \r\n 255 \"\"\"\r\n--> 256 with SoundFile(file, 'r', samplerate, channels,\r\n 257 subtype, endian, format, closefd) as f:\r\n 258 frames = f._prepare_read(start, stop, frames)\r\n 259 data = f.read(frames, dtype, always_2d, fill_value, out)\r\n\r\nFile C:\\ProgramData\\Miniconda3\\envs\\noise_cancel\\lib\\site-packages\\soundfile.py:629, in SoundFile.__init__(self, file, mode, samplerate, channels, subtype, endian, format, closefd)\r\n 626 self._mode = mode\r\n 627 self._info = _create_info_struct(file, mode, samplerate, channels,\r\n 628 format, subtype, endian)\r\n--> 629 self._file = self._open(file, mode_int, closefd)\r\n 630 if set(mode).issuperset('r+') and self.seekable():\r\n 631 # Move write position to 0 (like in Python file objects)\r\n 632 self.seek(0)\r\n\r\nFile C:\\ProgramData\\Miniconda3\\envs\\noise_cancel\\lib\\site-packages\\soundfile.py:1183, in SoundFile._open(self, file, mode_int, closefd)\r\n 1181 else:\r\n 1182 raise TypeError(\"Invalid file: {0!r}\".format(self.name))\r\n-> 1183 _error_check(_snd.sf_error(file_ptr),\r\n 1184 \"Error opening {0!r}: \".format(self.name))\r\n 1185 if mode_int == _snd.SFM_WRITE:\r\n 1186 # Due to a bug in libsndfile version <= 1.0.25, frames != 0\r\n 1187 # when opening a named pipe in SFM_WRITE mode.\r\n 1188 # See http://github.com/erikd/libsndfile/issues/77.\r\n 1189 self._info.frames = 0\r\n\r\nFile C:\\ProgramData\\Miniconda3\\envs\\noise_cancel\\lib\\site-packages\\soundfile.py:1357, in _error_check(err, prefix)\r\n 1355 if err != 0:\r\n 1356 err_str = _snd.sf_error_number(err)\r\n-> 1357 raise RuntimeError(prefix + _ffi.string(err_str).decode('utf-8', 'replace'))\r\n\r\nRuntimeError: Error opening '6930-75918-0000.flac': System error.\r\n```\r\n\r\n**Package versions:**\r\n```python\r\npython: 3.9\r\ntransformers: 4.17.0\r\ndatasets: 2.0.0\r\nSoundFile: 0.10.3.post1\r\n```\r\n", "Hi ! In `datasets` 2.0 can access the audio array with `librispeech_eval[0][\"audio\"][\"array\"]` already, no need to use `map_to_array`. See our documentation on [how to process audio data](https://huggingface.co/docs/datasets/audio_process) :)\r\n\r\ncc @patrickvonplaten we will need to update the readme at [facebook/s2t-small-librispeech-asr](https://huggingface.co/facebook/s2t-small-librispeech-asr) as well as https://huggingface.co/docs/transformers/model_doc/speech_to_text", "Thanks!\r\n\r\nAnd sorry for posting this problem in what turned on to be an unrelated thread.\r\n\r\nI rewrote the code, and the model works. The WER is 0.137 however, so I'm not sure if I have missed a step. I will look further into that at a later point. The transcriptions look good through manual inspection.\r\n\r\nThe rewritten code:\r\n```python\r\nfrom datasets import load_dataset, load_metric\r\nfrom transformers import Speech2TextForConditionalGeneration, Speech2TextProcessor, Wav2Vec2Processor\r\n\r\nlibrispeech_eval = load_dataset(\"librispeech_asr\", \"clean\", split=\"test\") # change to \"other\" for other test dataset\r\nwer = load_metric(\"wer\")\r\n\r\nmodel = Speech2TextForConditionalGeneration.from_pretrained(\"facebook/s2t-small-librispeech-asr\").to(\"cuda\")\r\nprocessor = Speech2TextProcessor.from_pretrained(\"facebook/s2t-small-librispeech-asr\", do_upper_case=True)\r\n\r\ndef map_to_pred(batch):\r\n audio = batch[\"audio\"]\r\n features = processor(audio[\"array\"], sampling_rate=audio[\"sampling_rate\"], padding=True, return_tensors=\"pt\")\r\n input_features = features.input_features.to(\"cuda\")\r\n attention_mask = features.attention_mask.to(\"cuda\")\r\n\r\n gen_tokens = model.generate(input_features=input_features, attention_mask=attention_mask)\r\n batch[\"transcription\"] = processor.batch_decode(gen_tokens, skip_special_tokens=True)\r\n return batch\r\n\r\nresult = librispeech_eval.map(map_to_pred)#, batched=True, batch_size=8)\r\n\r\nprint(\"WER:\", wer.compute(predictions=result[\"transcription\"], references=result[\"text\"]))\r\n```", "I think the issue comes from the fact that you set `batched=False` while `map_to_pred` still returns a list of strings for \"transcription\". You can fix it by adding `[0]` at the end of this line to get the string:\r\n```python\r\nbatch[\"transcription\"] = processor.batch_decode(gen_tokens, skip_special_tokens=True)[0]\r\n```", "Updating as many model cards now as I can find", "https://github.com/huggingface/transformers/pull/16611", "We no longer use `torchaudio` for decoding MP3 files, and the problem with model cards has been addressed, so I'm closing this issue." ]
## Describe the bug When loading the Common_Voice dataset, by downloading it directly from the Hugging Face hub, some files can not be opened. ## Steps to reproduce the bug ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "it", split="test") #test_dataset = load_dataset('csv', data_files = {'test': '/workspace/Dataset/Common_Voice/cv-corpus80/it/test.csv'}) wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("joorock12/wav2vec2-large-xlsr-italian") model = Wav2Vec2ForCTC.from_pretrained("joorock12/wav2vec2-large-xlsr-italian") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\'\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) ``` ## Expected results The common voice dataset downloaded and correctly loaded whit the use of the hugging face datasets library. ## Actual results The error is: ```python 0ex [00:00, ?ex/s] --------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) <ipython-input-48-ef87f4129e6e> in <module> 7 return batch 8 ----> 9 test_dataset = test_dataset.map(speech_file_to_array_fn) /opt/conda/lib/python3.8/site-packages/datasets/arrow_dataset.py in map(self, function, with_indices, with_rank, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc, suffix_template, new_fingerprint, desc) 2107 2108 if num_proc is None or num_proc == 1: -> 2109 return self._map_single( 2110 function=function, 2111 with_indices=with_indices, /opt/conda/lib/python3.8/site-packages/datasets/arrow_dataset.py in wrapper(*args, **kwargs) 516 self: "Dataset" = kwargs.pop("self") 517 # apply actual function --> 518 out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) 519 datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [out] 520 for dataset in datasets: /opt/conda/lib/python3.8/site-packages/datasets/arrow_dataset.py in wrapper(*args, **kwargs) 483 } 484 # apply actual function --> 485 out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) 486 datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [out] 487 # re-apply format to the output /opt/conda/lib/python3.8/site-packages/datasets/fingerprint.py in wrapper(*args, **kwargs) 411 # Call actual function 412 --> 413 out = func(self, *args, **kwargs) 414 415 # Update fingerprint of in-place transforms + update in-place history of transforms /opt/conda/lib/python3.8/site-packages/datasets/arrow_dataset.py in _map_single(self, function, with_indices, with_rank, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, new_fingerprint, rank, offset, disable_tqdm, desc, cache_only) 2465 if not batched: 2466 for i, example in enumerate(pbar): -> 2467 example = apply_function_on_filtered_inputs(example, i, offset=offset) 2468 if update_data: 2469 if i == 0: /opt/conda/lib/python3.8/site-packages/datasets/arrow_dataset.py in apply_function_on_filtered_inputs(inputs, indices, check_same_num_examples, offset) 2372 if with_rank: 2373 additional_args += (rank,) -> 2374 processed_inputs = function(*fn_args, *additional_args, **fn_kwargs) 2375 if update_data is None: 2376 # Check if the function returns updated examples /opt/conda/lib/python3.8/site-packages/datasets/arrow_dataset.py in decorated(item, *args, **kwargs) 2067 ) 2068 # Use the LazyDict internally, while mapping the function -> 2069 result = f(decorated_item, *args, **kwargs) 2070 # Return a standard dict 2071 return result.data if isinstance(result, LazyDict) else result <ipython-input-48-ef87f4129e6e> in speech_file_to_array_fn(batch) 3 def speech_file_to_array_fn(batch): 4 batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() ----> 5 speech_array, sampling_rate = torchaudio.load(batch["path"]) 6 batch["speech"] = resampler(speech_array).squeeze().numpy() 7 return batch /opt/conda/lib/python3.8/site-packages/torchaudio/backend/sox_io_backend.py in load(filepath, frame_offset, num_frames, normalize, channels_first, format) 150 filepath, frame_offset, num_frames, normalize, channels_first, format) 151 filepath = os.fspath(filepath) --> 152 return torch.ops.torchaudio.sox_io_load_audio_file( 153 filepath, frame_offset, num_frames, normalize, channels_first, format) 154 RuntimeError: Error loading audio file: failed to open file common_voice_it_17415776.mp3 ``` ## Environment info - `datasets` version: 1.18.4 - Platform: Linux-5.4.0-x86_64-with-glibc2.10 - Python version: 3.8.5 - PyArrow version: 7.0.0
3,909
https://github.com/huggingface/datasets/issues/3906
NonMatchingChecksumError on Spider dataset
[ "Hi @kolk, thanks for reporting.\r\n\r\nIndeed, Google Drive service recently changed their service and we had to add a fix to our library to cope with that change:\r\n- #3787 \r\n\r\nWe just made patch release last week: 1.18.4 https://github.com/huggingface/datasets/releases/tag/1.18.4\r\n\r\nPlease, feel free to update your local `datasets` version, so that you get the fix:\r\n```shell\r\npip install -U datasets\r\n```" ]
## Describe the bug Failure to generate dataset ```spider``` because of checksums error for dataset source files. ## Steps to reproduce the bug ``` from datasets import load_dataset spider = load_dataset("spider") ``` ## Expected results Checksums should match for files from url ['https://drive.google.com/uc?export=download&id=1_AckYkinAnhqmRQtGsQgUKAnTHxxX5J0'] ## Actual results ``` >>> load_dataset("spider") load_dataset("spider") Downloading and preparing dataset spider/spider (download: 95.12 MiB, generated: 5.17 MiB, post-processed: Unknown size, total: 100.29 MiB) to /home/user/.cache/huggingface/datasets/spider/spider/1.0.0/79778ebea87c59b19411f1eb3eda317e9dd5f7788a556d837ef25c3ae6e5e8b7... Traceback (most recent call last): File "/home/user/py3_env/lib/python3.8/site-packages/IPython/core/interactiveshell.py", line 3441, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-5-d4cb54197348>", line 1, in <module> load_dataset("spider") File "/home/user/py3_env/lib/python3.8/site-packages/datasets/load.py", line 1702, in load_dataset builder_instance.download_and_prepare( File "/home/user/py3_env/lib/python3.8/site-packages/datasets/builder.py", line 594, in download_and_prepare self._download_and_prepare( File "/home/user/py3_env/lib/python3.8/site-packages/datasets/builder.py", line 665, in _download_and_prepare verify_checksums( File "/home/user/py3_env/lib/python3.8/site-packages/datasets/utils/info_utils.py", line 40, in verify_checksums raise NonMatchingChecksumError(error_msg + str(bad_urls)) datasets.utils.info_utils.NonMatchingChecksumError: Checksums didn't match for dataset source files: ['https://drive.google.com/uc?export=download&id=1_AckYkinAnhqmRQtGsQgUKAnTHxxX5J0'] ``` ## Environment info datasets version: 1.18.3 Platform: Ubuntu 20 LTS Python version: 3.8.10 PyArrow version: 6.0.1
3,906
https://github.com/huggingface/datasets/issues/3904
CONLL2003 Dataset not available
[ "Thanks for reporting, @omarespejel.\r\n\r\nI'm sorry but I can't reproduce the issue: the loading of the dataset works perfecto for me and I can reach the data URL: https://data.deepai.org/conll2003.zip\r\n\r\nMight it be due to a temporary problem in the data owner site (https://data.deepai.org/) that is fixed now?\r\nCould you please try loading the dataset again and tell if the problem persists?", "@omarespejel I'm closing this issue. Feel free to reopen it if the problem persists.", "getting same issue. Can't find any solution.", "I am getting the same issue. I use google colab with CPU.\r\nThe code I used is exactly the same as described above.\r\n```\r\nfrom datasets import load_dataset\r\ndataset = load_dataset(\"conll2003\")\r\n```\r\n\r\nThe produced error:\r\n![image](https://github.com/huggingface/datasets/assets/9371628/d87f7fb0-ef58-4755-abb5-f8f92c51fe02)\r\n\r\nNote: This error is different from what was initially described in this thread. This is because I use CPU. When I use GPU I reproduce the same initial error of the thread.\r\n\r\nMoreover, I receive the following warning:\r\n```\r\nWARNING:urllib3.connection:Certificate did not match expected hostname: data.deepai.org. Certificate: {'subject': ((('commonName', '*.b-cdn.net'),),), 'issuer': ((('countryName', 'GB'),), (('stateOrProvinceName', 'Greater Manchester'),), (('localityName', 'Salford'),), (('organizationName', 'Sectigo Limited'),), (('commonName', 'Sectigo RSA Domain Validation Secure Server CA'),)), 'version': 3, 'serialNumber': 'DDED48B13E1EA03983E833AB2C35EF07', 'notBefore': 'Nov 7 00:00:00 2022 GMT', 'notAfter': 'Nov 11 23:59:59 2023 GMT', 'subjectAltName': (('DNS', '*.b-cdn.net'), ('DNS', 'b-cdn.net')), 'OCSP': ('http://ocsp.sectigo.com/',), 'caIssuers': ('http://crt.sectigo.com/SectigoRSADomainValidationSecureServerCA.crt',)}\r\nDownloading and preparing dataset conll2003/conll2003 to /root/.cache/huggingface/datasets/conll2003/conll2003/1.0.0/9a4d16a94f8674ba3466315300359b0acd891b68b6c8743ddf60b9c702adce98...\r\nWARNING:urllib3.connection:Certificate did not match expected hostname: data.deepai.org. Certificate: {'subject': ((('commonName', '*.b-cdn.net'),),), 'issuer': ((('countryName', 'GB'),), (('stateOrProvinceName', 'Greater Manchester'),), (('localityName', 'Salford'),), (('organizationName', 'Sectigo Limited'),), (('commonName', 'Sectigo RSA Domain Validation Secure Server CA'),)), 'version': 3, 'serialNumber': 'DDED48B13E1EA03983E833AB2C35EF07', 'notBefore': 'Nov 7 00:00:00 2022 GMT', 'notAfter': 'Nov 11 23:59:59 2023 GMT', 'subjectAltName': (('DNS', '*.b-cdn.net'), ('DNS', 'b-cdn.net')), 'OCSP': ('http://ocsp.sectigo.com/',), 'caIssuers': ('http://crt.sectigo.com/SectigoRSADomainValidationSecureServerCA.crt',)}\r\n```\r\n" ]
## Describe the bug [CONLL2003](https://huggingface.co/datasets/conll2003) Dataset can no longer reach 'https://data.deepai.org/conll2003.zip' ![image](https://user-images.githubusercontent.com/4755430/158084483-ff83631c-5154-4823-892d-577bf1166db0.png) ## Steps to reproduce the bug ```python from datasets import load_dataset datasets = load_dataset("conll2003") ``` ## Expected results Download the conll2003 dataset. ## Actual results Error: `ConnectionError: Couldn't reach https://data.deepai.org/conll2003.zip (error 502)`
3,904
https://github.com/huggingface/datasets/issues/3902
Can't import datasets: partially initialized module 'fsspec' has no attribute 'utils'
[ "Update: `\"python3 -c \"from from datasets import Dataset, DatasetDict\"` works, but not if I import without the `python3 -c`", "Hi @arunasank, thanks for reporting.\r\n\r\nIt seems that this can be caused because you are using an old version of `fsspec`: the reason why it works if you run `python3` seems to be that `python3` runs in a Python virtual env (with an updated version of `fsspec`); whereas the error arises when you run the import from other Python virtual env (with an old version of `fsspec`).\r\n\r\nIn order to fix this, you should update `fsspec` from within the \"problematic\" Python virtual env:\r\n```\r\npip install -U \"fsspec[http]>=2021.05.0\"", "I'm closing this issue, @arunasank.\r\n\r\nFeel free to re-open it if the problem persists. ", "from lightgbm import LGBMModel,LGBMClassifier, plot_importance\r\nafter importing lib getting (partially initialized module 'fsspec' has no attribute 'utils' (most likely due to a circular import) error, can help me", "@deepakmahtha I think you are not using `datasets`: this is the GitHub repository of Hugging Face Datasets.\r\n\r\nIf you are using `lightgbm`, you should report the issue to their repository instead.\r\n\r\nAnyway, we have proposed a possible fix just in a comment above: to update fsspec.\r\nhttps://github.com/huggingface/datasets/issues/3902#issuecomment-1066517824" ]
## Describe the bug Unable to import datasets ## Steps to reproduce the bug ```python from datasets import Dataset, DatasetDict ``` ## Expected results The import works without errors ## Actual results ``` AttributeError Traceback (most recent call last) <ipython-input-37-c8cfcbe62127> in <module> 11 # from tqdm import tqdm 12 # import torch ---> 13 from datasets import Dataset 14 # from transformers import Trainer, TrainingArguments, AutoModel, AutoTokenizer, AutoModelForMaskedLM, DataCollatorForLanguageModeling 15 # from sentence_transformers import SentenceTransformer ~/.local/lib/python3.8/site-packages/datasets/__init__.py in <module> 31 ) 32 ---> 33 from .arrow_dataset import Dataset, concatenate_datasets 34 from .arrow_reader import ArrowReader, ReadInstruction 35 from .arrow_writer import ArrowWriter ~/.local/lib/python3.8/site-packages/datasets/arrow_dataset.py in <module> 46 ) 47 ---> 48 import fsspec 49 import numpy as np 50 import pandas as pd ~/.local/lib/python3.8/site-packages/fsspec/__init__.py in <module> 10 from . import _version, caching 11 from .callbacks import Callback ---> 12 from .core import get_fs_token_paths, open, open_files, open_local 13 from .exceptions import FSTimeoutError 14 from .mapping import FSMap, get_mapper ~/.local/lib/python3.8/site-packages/fsspec/core.py in <module> 16 caches, 17 ) ---> 18 from .compression import compr 19 from .registry import filesystem, get_filesystem_class 20 from .utils import ( ~/.local/lib/python3.8/site-packages/fsspec/compression.py in <module> 68 69 ---> 70 register_compression("zip", unzip, "zip") 71 register_compression("bz2", BZ2File, "bz2") 72 ~/.local/lib/python3.8/site-packages/fsspec/compression.py in register_compression(name, callback, extensions, force) 44 45 for ext in extensions: ---> 46 if ext in fsspec.utils.compressions and not force: 47 raise ValueError( 48 "Duplicate compression file extension: %s (%s)" % (ext, name) AttributeError: partially initialized module 'fsspec' has no attribute 'utils' (most likely due to a circular import) ``` ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 1.18.4 - Platform: Jupyter notebook - Python version: 3.8.10 - PyArrow version: 7.0.0
3,902
https://github.com/huggingface/datasets/issues/3901
Dataset viewer issue for IndicParaphrase- the preview doesn't show
[ "It seems to have been fixed:\r\n\r\n<img width=\"1534\" alt=\"Capture d’écran 2022-04-12 à 14 10 07\" src=\"https://user-images.githubusercontent.com/1676121/162959599-6b7fef7c-8411-4e03-8f00-90040a658079.png\">\r\n" ]
## Dataset viewer issue for '*IndicParaphrase*' **Link:** *[IndicParaphrase](https://huggingface.co/datasets/ai4bharat/IndicParaphrase/viewer/hi/validation)* *The preview of the dataset doesn't come up. The error on the console is: Status code: 400 Exception: FileNotFoundError Message: [Errno 2] No such file or directory: '/home/hf/datasets-preview-backend/hi_IndicParaphrase_v1.0.tar'* Am I the one who added this dataset ? Yes
3,901
https://github.com/huggingface/datasets/issues/3896
Missing google file for `multi_news` dataset
[ "reported by @abidlabs ", "related to https://github.com/huggingface/datasets/pull/3843?", "`datasets` 1.18.4 fixes the issue when you load the dataset with `load_dataset`.\r\n\r\nWhen loading in streaming mode, the fix is indeed on https://github.com/huggingface/datasets/pull/3843 which will be merged soon :)", "That is. The PR #3843 was just opened a bit later we had made our 1.18.4 patch release...\r\nOnce merged, that will fix this issue. ", "OK. Should fix the viewer for 50 datasets\r\n\r\n<img width=\"148\" alt=\"Capture d’écran 2022-03-14 à 11 51 02\" src=\"https://user-images.githubusercontent.com/1676121/158157853-6c544a47-2d6d-4ac4-964a-6f10951ec36b.png\">\r\n" ]
## Dataset viewer issue for '*multi_news*' **Link:** https://huggingface.co/datasets/multi_news ``` Server error Status code: 400 Exception: FileNotFoundError Message: https://drive.google.com/uc?export=download&id=1vRY2wM6rlOZrf9exGTm5pXj5ExlVwJ0C/multi-news-original/train.src ``` Am I the one who added this dataset ? No
3,896
https://github.com/huggingface/datasets/issues/3889
Cannot load beans dataset (Couldn't reach the dataset)
[ "Hi ! A pull request is open to fix the dataset, we'll release a patch soon with a new release of `datasets` :)" ]
## Describe the bug The beans dataset is unavailable to download. ## Steps to reproduce the bug ```python from datasets import load_dataset ds = load_dataset('beans') ``` ## Expected results The dataset would be downloaded with no issue. ## Actual results ``` ConnectionError: Couldn't reach https://storage.googleapis.com/ibeans/train.zip (error 403) ``` [It looks like the billing of this project has been disabled because it is associated with a delinquent account.](https://storage.googleapis.com/ibeans/train.zip ) ## Environment info Google Colab
3,889
https://github.com/huggingface/datasets/issues/3888
IterableDataset columns and feature types
[ "#self-assign", "@alvarobartt I've assigned you the issue since I'm not actively working on it.", "Cool thanks @mariosasko I'll try to fix it in the upcoming days, thanks!", "@lhoestq so in order to address what’s not completed in this issue, do you think it makes sense to add a param `features` to `IterableDataset.map` so that the output features right after the `map` are defined there? ", "Yes that would be ideal IMO, thanks again for the help :)", "@lhoestq cool then if you agree I can work on that! I’ll also update the docs accordingly once done, thanks!", "I've already started with a PR as a draft @lhoestq, should we also try to look for a way to explicitly request pre-fetching right after a map operation is applied, so that the features are inferred if the user says explicitly so? Thanks!", "> should we also try to look for a way to explicitly request pre-fetching right after a map operation is applied, so that the features are inferred if the user says explicitly so?\r\n\r\nRight now one can use `ds = ds._resolve_features()` do to so. It can be used after `map` or `load_dataset` if the features are not known. Maybe we can make this method public ?" ]
Right now, an IterableDataset (e.g. when streaming a dataset) doesn't require to know the list of columns it contains, nor their types: `my_iterable_dataset.features` may be `None` However it's often interesting to know the column types and types. This helps knowing what's inside your dataset without having to manually check a few examples, and this is useful to prepare a processing pipeline or to train models. Here are a few cases that lead to `features` being `None`: 1. when loading a dataset with `load_dataset` on CSV, JSON Lines, etc. files: type inference is only done when iterating over the dataset 2. when calling `map`, because we don't know in advance what's the output of the user's function passed to `map` 3. when calling `rename_columns`, `remove_columns`, etc. because they rely on `map` Things we can consider, for each point above: 1.a infer the type automatically from the first samples on the dataset using prefetching, when the dataset builder doesn't provide the `features` 2.a allow the user to specify the `features` as an argument to `map` (this would be consistent with the non-streaming API) 2.b prefetch the first output value to infer the type 3.a don't rely on `map` directly and reuse the previous `features` and rename/remove the corresponding ones The thing is that prefetching can take a few seconds, while the operations above are instantaneous since no data are downloaded. Therefore I'm not sure whether this solution may be worth it. Maybe prefetching could also be done when explicitly asked by the user cc @mariosasko @albertvillanova
3,888
https://github.com/huggingface/datasets/issues/3883
The metric Meteor doesn't work for nltk ==3.6.4
[ "Hi @zhaowei-wang98, thanks for reporting.\r\n\r\nWe are fixing it... " ]
## Describe the bug Using the metric Meteor with nltk == 3.6.4 gives a TypeError: TypeError: descriptor 'lower' for 'str' objects doesn't apply to a 'list' object ## Steps to reproduce the bug ```python import datasets metric = datasets.load_metric("meteor") predictions = ["hello world"] references = ["hello world"] metric.compute(predictions=predictions, references=references) ``` ## Expected results TypeError: descriptor 'lower' for 'str' objects doesn't apply to a 'list' object I think this TypeError exists because input sentences are tokenized into lists of tokens and the str.lower() is applied to this list of tokens. ## Actual results No error but a meteor score ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 1.18.3 - Platform: linux - Python version: 3.8.12 - PyArrow version: 7.0.0
3,883
https://github.com/huggingface/datasets/issues/3881
How to use Image folder
[ "Even this from docs throw same error\r\n```\r\ndataset = load_dataset(\"imagefolder\", data_files=\"https://download.microsoft.com/download/3/E/1/3E1C3F21-ECDB-4869-8368-6DEBA77B919F/kagglecatsanddogs_3367a.zip\", split=\"train\")\r\n\r\n```", "Hi @INF800,\r\n\r\nPlease note that the `imagefolder` feature enhancement was just recently merged to our master branch (https://github.com/huggingface/datasets/commit/207be676bffe9d164740a41a883af6125edef135), but has not yet been released.\r\n\r\nWe are planning to make the 2.0 release of our library in the coming days and then that feature will be available by updating your `datasets` library from PyPI.\r\n\r\nIn the meantime, you can incorporate that feature if you install our library from our GitHub master branch:\r\n```shell\r\npip install git+https://github.com/huggingface/datasets#egg=datasets\r\n```\r\n\r\nThen:\r\n```python\r\nIn [1]: from datasets import load_dataset\r\n ds = load_dataset(\"imagefolder\", data_files=\"https://download.microsoft.com/download/3/E/1/3E1C3F21-ECDB-4869-8368-6DEBA77B919F/kagglecatsanddogs_3367a.zip\", split=\"train\")\r\nUsing custom data configuration default-7eb4e80d960deb18\r\nDownloading and preparing dataset image_folder/default to .../.cache/huggingface/datasets/image_folder/default-7eb4e80d960deb18/0.0.0/8de8dc6d68ce3c81cc102b93cc82ede27162b5d30cd003094f935942c8294f60...\r\nDownloading data files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 690.19it/s]\r\nExtracting data files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 852.85it/s]\r\nDataset image_folder downloaded and prepared to .../.cache/huggingface/datasets/image_folder/default-7eb4e80d960deb18/0.0.0/8de8dc6d68ce3c81cc102b93cc82ede27162b5d30cd003094f935942c8294f60. Subsequent calls will reuse this data.\r\n\r\nIn [2]: ds\r\nOut[2]: \r\nDataset({\r\n features: ['image', 'label'],\r\n num_rows: 25000\r\n})\r\n```", "Hey @albertvillanova. Does this load entire dataset in memory? Because I am facing huge trouble with loading very big datasets (OOM errors)", "Can you provide the error stack trace? The loader only stores the `data_files` dict, which can get big after globbing. Then, the OOM error would mean you don't have enough memory to keep all the paths to the image files. You can circumvent this by generating an archive and loading the dataset from there. Maybe we can optimize the globbing part in our data files resolution at some point, cc @lhoestq for visibility.", "Hey, memory error is resolved. It was fluke.\r\n\r\nBut there is another issue. Currently `load_dataset(\"imagefolder\", data_dir=\"./path/to/train\",)` takes only `train` as arg to `split` parameter.\r\n\r\nI am creating vaildation dataset using\r\n\r\n```\r\nds_valid = datasets.DatasetDict(valid=load_dataset(\"imagefolder\", data_dir=\"./path/to/valid\",)['train'])\r\n```", "`data_dir=\"path/to/folder\"` is a shorthand syntax fox `data_files={\"train\": \"path/to/folder/**\"}`, so use `data_files` in that case instead:\r\n```python\r\nds = load_dataset(\"imagefolder\", data_files={\"train\": \"path/to/train/**\", \"test\": \"path/to/test/**\", \"valid\": \"path/to/valid/**\"})\r\n```", "And there was another issue. I loaded black and white images (jpeg file). Using load dataset. It reads it as PIL jpeg data format. But instead of converting it into 3 channel tensor, input to collator function is coming as a single channel tensor.", "We don't apply any additional preprocessing on top of `PIL.Image.open(image_file)`, so you need to do the conversion yourself:\r\n\r\n```python\r\ndef to_rgb(batch):\r\n batch[\"image\"] = [img.convert(\"RGB\") for img in batch[\"image\"]]\r\n return batch\r\n\r\nds_rgb = ds.map(to_rgb, batched=True)\r\n```\r\n\r\nPlease use our Forum for questions of this kind in the future." ]
Ran this code ``` load_dataset("imagefolder", data_dir="./my-dataset") ``` `https://raw.githubusercontent.com/huggingface/datasets/master/datasets/imagefolder/imagefolder.py` missing ``` --------------------------------------------------------------------------- FileNotFoundError Traceback (most recent call last) /tmp/ipykernel_33/1648737256.py in <module> ----> 1 load_dataset("imagefolder", data_dir="./my-dataset") /opt/conda/lib/python3.7/site-packages/datasets/load.py in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, script_version, **config_kwargs) 1684 revision=revision, 1685 use_auth_token=use_auth_token, -> 1686 **config_kwargs, 1687 ) 1688 /opt/conda/lib/python3.7/site-packages/datasets/load.py in load_dataset_builder(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, use_auth_token, script_version, **config_kwargs) 1511 download_config.use_auth_token = use_auth_token 1512 dataset_module = dataset_module_factory( -> 1513 path, revision=revision, download_config=download_config, download_mode=download_mode, data_files=data_files 1514 ) 1515 /opt/conda/lib/python3.7/site-packages/datasets/load.py in dataset_module_factory(path, revision, download_config, download_mode, force_local_path, dynamic_modules_path, data_files, **download_kwargs) 1200 f"Couldn't find a dataset script at {relative_to_absolute_path(combined_path)} or any data file in the same directory. " 1201 f"Couldn't find '{path}' on the Hugging Face Hub either: {type(e1).__name__}: {e1}" -> 1202 ) from None 1203 raise e1 from None 1204 else: FileNotFoundError: Couldn't find a dataset script at /kaggle/working/imagefolder/imagefolder.py or any data file in the same directory. Couldn't find 'imagefolder' on the Hugging Face Hub either: FileNotFoundError: Couldn't find file at https://raw.githubusercontent.com/huggingface/datasets/master/datasets/imagefolder/imagefolder.py ```
3,881
https://github.com/huggingface/datasets/issues/3877
Align metadata to DCAT/DCAT-AP
[]
**Is your feature request related to a problem? Please describe.** Align to DCAT metadata to describe datasets **Describe the solution you'd like** Reuse terms and structure from DCAT in the metadata file, ideally generate a json-ld file dcat compliant **Describe alternatives you've considered** **Additional context** DCAT is a W3C standard extended in Europe with DCAT-AP, an example is data.europa.eu publishing datasets metadata in DCAT-AP
3,877
https://github.com/huggingface/datasets/issues/3872
HTTP error 504 Server Error: Gateway Time-out
[ "is pushing directly with git (and git-lfs) an option for you?", "I have installed git-lfs and doing this push with that\r\n", "yes but is there any way you could try pushing with `git` command line directly instead of `push_to_hub`?", "Okay. I didnt saved the dataset to my local machine. So, I processed the dataset and pushed it directly to the hub. I think I should try saving those dataset to my local machine by `save_to_disk` and then push it with git command line", "cc @lhoestq @albertvillanova @LysandreJik because maybe I'm giving dumb advice here 😅 ", "`push_to_hub` is the preferred way of uploading a dataset to the Hub, which can then be reloaded with `load_dataset`. Feel free to try again and see if the server is working as expected now. Maybe we can add a retry mechanism in the meantime to workaround 504 errors.\r\n\r\nRegarding `save_to_disk`, this must only be used for local serialization (because it's uncompressed and compatible with memory-mapping). If you upload a dataset saved with `save_to_disk` to the Hub, then to reload it you will have to download/clone the repository locally by yourself and use `load_from_disk`." ]
I am trying to push a large dataset(450000+) records with the help of `push_to_hub()` While pushing, it gives some error like this. ``` Traceback (most recent call last): File "data_split_speech.py", line 159, in <module> data_new_2.push_to_hub("user-name/dataset-name",private=True) File "/opt/conda/lib/python3.8/site-packages/datasets/dataset_dict.py", line 951, in push_to_hub repo_id, split, uploaded_size, dataset_nbytes = self[split]._push_parquet_shards_to_hub( File "/opt/conda/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 3556, in _push_parquet_shards_to_hub api.upload_file( File "/opt/conda/lib/python3.8/site-packages/huggingface_hub/hf_api.py", line 1017, in upload_file raise err File "/opt/conda/lib/python3.8/site-packages/huggingface_hub/hf_api.py", line 1008, in upload_file r.raise_for_status() File "/opt/conda/lib/python3.8/site-packages/requests/models.py", line 953, in raise_for_status raise HTTPError(http_error_msg, response=self) requests.exceptions.HTTPError: 504 Server Error: Gateway Time-out for url: https://huggingface.co/api/datasets/user-name/dataset-name/upload/main/data/train2-00041-of-00064.parquet ``` Can anyone help me to resolve this issue.
3,872
https://github.com/huggingface/datasets/issues/3869
Making the Hub the place for datasets in Portuguese
[ "Hi @omarespejel! I think the philosophy for `datasets` issues is to create concrete issues with proposals to add a specific, individual dataset rather than umbrella issues for things such as datasets for a language, since we could end up with hundreds of issues (one per language). I see NILC - USP has many datasets, I would suggest to either create an issue for their datasets, or even better, we are trying to push to upload datasets as community datasets instead of adding them to the core library as guided in https://huggingface.co/docs/datasets/share. That would have the additional benefit that the dataset would live under the NILC organization.\r\n\r\n@lhoestq correct me if I'm wrong please 😄 " ]
Let's make Hugging Face Datasets the central hub for datasets in Portuguese :) **Motivation**. Datasets are currently quite scattered and an open-source central point such as the Hugging Face Hub would be ideal to support the growth of the Portuguese speaking community. What are some datasets in Portuguese worth integrating into the Hugging Face hub? Special thanks to @augusnunes for his collaboration on identifying the first ones: - [NILC - USP](http://www.nilc.icmc.usp.br/nilc/index.php/tools-and-resources). Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md). cc @osanseviero
3,869
https://github.com/huggingface/datasets/issues/3861
big_patent cased version
[ "To follow up on this: the cased and uncased versions actually contain different content, and the cased one is easier since it contains a Summary of the Invention in the input.\r\n\r\nSee the paper describing the issue here:\r\nhttps://aclanthology.org/2022.gem-1.34/", "Thanks for proposing the addition of the cased version of this dataset and for pinging again recently.\r\n\r\nI have just merged a PR that adds the cased version: https://huggingface.co/datasets/big_patent/discussions/3\r\n\r\nThe cased version (2.1.2) is the default one:\r\n```python\r\nds = load_dataset(\"big_patent\", \"all\")\r\n```\r\n\r\nTo use the 1.0.0 version (lower cased tokenized words), pass both parameters `codes` and `version`:\r\n```python\r\nds = load_dataset(\"big_patent\", codes=\"all\", version=\"1.0.0\")\r\n```\r\n\r\nClosed by: https://huggingface.co/datasets/big_patent/discussions/3" ]
Hi! I am interested in working with the big_patent dataset. In Tensorflow, there are a number of versions of the dataset: - 1.0.0 : lower cased tokenized words - 2.0.0 : Update to use cased raw strings - 2.1.2 (default): Fix update to cased raw strings. The version in the huggingface `datasets` library is the 1.0.0. I would be very interested in using the 2.1.2 cased version (used more, recently, for example in the Pegasus paper), but it does not seem to be supported (I tried using the `revision` parameter in `load_datasets`). Is there a way to already load it, or would it be possible to add that version?
3,861
https://github.com/huggingface/datasets/issues/3859
Unable to dowload big_patent (FileNotFoundError)
[ "Hi @slvcsl, thanks for reporting.\r\n\r\nYesterday we just made a patch release of our `datasets` library that fixes this issue: version 1.18.4.\r\nhttps://pypi.org/project/datasets/#history\r\n\r\nPlease, feel free to update `datasets` library to the latest version: \r\n```shell\r\npip install -U datasets\r\n```\r\nAnd then you should force redownload of the data file to update your local cache: \r\n```python\r\nds = load_dataset(\"big_patent\", \"g\", split=\"validation\", download_mode=\"force_redownload\")\r\n```\r\n- Note that before the fix, you just downloaded and cached the Google Drive virus scan warning page, instead of the data file\r\n\r\nThis issue was already reported \r\n- #3784\r\n\r\nand its root cause is a change in the Google Drive service. See:\r\n- #3786 \r\n\r\nWe already fixed it. See:\r\n- #3787 \r\n" ]
## Describe the bug I am trying to download some splits of the big_patent dataset, using the following code: `ds = load_dataset("big_patent", "g", split="validation", download_mode="force_redownload") ` However, this leads to a FileNotFoundError. FileNotFoundError Traceback (most recent call last) [<ipython-input-3-8d8a745706a9>](https://localhost:8080/#) in <module>() 1 from datasets import load_dataset ----> 2 ds = load_dataset("big_patent", "g", split="validation", download_mode="force_redownload") 8 frames [/usr/local/lib/python3.7/dist-packages/datasets/load.py](https://localhost:8080/#) in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, script_version, **config_kwargs) 1705 ignore_verifications=ignore_verifications, 1706 try_from_hf_gcs=try_from_hf_gcs, -> 1707 use_auth_token=use_auth_token, 1708 ) 1709 [/usr/local/lib/python3.7/dist-packages/datasets/builder.py](https://localhost:8080/#) in download_and_prepare(self, download_config, download_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, **download_and_prepare_kwargs) 593 if not downloaded_from_gcs: 594 self._download_and_prepare( --> 595 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs 596 ) 597 # Sync info [/usr/local/lib/python3.7/dist-packages/datasets/builder.py](https://localhost:8080/#) in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs) 659 split_dict = SplitDict(dataset_name=self.name) 660 split_generators_kwargs = self._make_split_generators_kwargs(prepare_split_kwargs) --> 661 split_generators = self._split_generators(dl_manager, **split_generators_kwargs) 662 663 # Checksums verification [/root/.cache/huggingface/modules/datasets_modules/datasets/big_patent/bdefa7c0b39fba8bba1c6331b70b738e30d63c8ad4567f983ce315a5fef6131c/big_patent.py](https://localhost:8080/#) in _split_generators(self, dl_manager) 123 split_types = ["train", "val", "test"] 124 extract_paths = dl_manager.extract( --> 125 {k: os.path.join(dl_path, "bigPatentData", k + ".tar.gz") for k in split_types} 126 ) 127 extract_paths = {k: os.path.join(extract_paths[k], k) for k in split_types} [/usr/local/lib/python3.7/dist-packages/datasets/utils/download_manager.py](https://localhost:8080/#) in extract(self, path_or_paths, num_proc) 282 download_config.extract_compressed_file = True 283 extracted_paths = map_nested( --> 284 partial(cached_path, download_config=download_config), path_or_paths, num_proc=num_proc, disable_tqdm=False 285 ) 286 path_or_paths = NestedDataStructure(path_or_paths) [/usr/local/lib/python3.7/dist-packages/datasets/utils/py_utils.py](https://localhost:8080/#) in map_nested(function, data_struct, dict_only, map_list, map_tuple, map_numpy, num_proc, types, disable_tqdm) 260 mapped = [ 261 _single_map_nested((function, obj, types, None, True)) --> 262 for obj in utils.tqdm(iterable, disable=disable_tqdm) 263 ] 264 else: [/usr/local/lib/python3.7/dist-packages/datasets/utils/py_utils.py](https://localhost:8080/#) in <listcomp>(.0) 260 mapped = [ 261 _single_map_nested((function, obj, types, None, True)) --> 262 for obj in utils.tqdm(iterable, disable=disable_tqdm) 263 ] 264 else: [/usr/local/lib/python3.7/dist-packages/datasets/utils/py_utils.py](https://localhost:8080/#) in _single_map_nested(args) 194 # Singleton first to spare some computation 195 if not isinstance(data_struct, dict) and not isinstance(data_struct, types): --> 196 return function(data_struct) 197 198 # Reduce logging to keep things readable in multiprocessing with tqdm [/usr/local/lib/python3.7/dist-packages/datasets/utils/file_utils.py](https://localhost:8080/#) in cached_path(url_or_filename, download_config, **download_kwargs) 314 elif is_local_path(url_or_filename): 315 # File, but it doesn't exist. --> 316 raise FileNotFoundError(f"Local file {url_or_filename} doesn't exist") 317 else: 318 # Something unknown FileNotFoundError: Local file /root/.cache/huggingface/datasets/downloads/extracted/ad068abb3e11f9f2f5440b62e37eb2b03ee515df9de1637c55cd1793b68668b2/bigPatentData/train.tar.gz doesn't exist I have tried this in a number of machines, including on Colab, so I think this is not environment dependent. How do I load the bigPatent dataset?
3,859
https://github.com/huggingface/datasets/issues/3857
Order of dataset changes due to glob.glob.
[ "I agree using `glob.glob` alone is bad practice because it's not deterministic. Using `sorted` is a nice solution.\r\n\r\nNote that the `xglob` function you are referring to in the `streaming_download_manager.py` code just extends `glob.glob` for URLs - we don't change its behavior. That's why it has no `sorted()`" ]
## Describe the bug After discussion with @lhoestq, just want to mention here that `glob.glob(...)` should always be used in combination with `sorted(...)` to make sure the list of files returned by `glob.glob(...)` doesn't change depending on the OS system. There are currently multiple datasets that use `glob.glob()` without making use of `sorted(...)` even the streaming download manager (if I'm not mistaken): https://github.com/huggingface/datasets/blob/c14bfeb4af89da14f870de5ddaa584b08aa08eeb/src/datasets/utils/streaming_download_manager.py#L483
3,857
https://github.com/huggingface/datasets/issues/3855
Bad error message when loading private dataset
[ "We raise the error “ FileNotFoundError: can’t find the dataset” mainly to follow best practice in security (otherwise users could be able to guess what private repositories users/orgs may have)\r\n\r\nWe can indeed reformulate this and add the \"If this is a private repository,...\" part !", "Resolved via https://github.com/huggingface/datasets/pull/4536" ]
## Describe the bug A pretty common behavior of an interaction between the Hub and datasets is the following. An organization adds a dataset in private mode and wants to load it afterward. ```python from transformers import load_dataset ds = load_dataset("NewT5/dummy_data", "dummy") ``` This command then fails with: ```bash FileNotFoundError: Couldn't find a dataset script at /home/patrick/NewT5/dummy_data/dummy_data.py or any data file in the same directory. Couldn't find 'NewT5/dummy_data' on the Hugging Face Hub either: FileNotFoundError: Dataset 'NewT5/dummy_data' doesn't exist on the Hub ``` **even though** the user has access to the website `NewT5/dummy_data` since she/he is part of the org. We need to improve the error message here similar to how @sgugger, @LysandreJik and @julien-c have done it for transformers IMO. ## Steps to reproduce the bug E.g. execute the following code to see the different error messages between `transformes` and `datasets`. 1. Transformers ```python from transformers import BertModel BertModel.from_pretrained("NewT5/dummy_model") ``` The error message is clearer here - it gives: ``` OSError: patrickvonplaten/gpt2-xl is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo with `use_auth_token` or log in with `huggingface-cli login` and pass `use_auth_token=True`. ``` Let's maybe do the same for datasets? The PR was introduced to `transformers` here: https://github.com/huggingface/transformers/pull/15261 ## Expected results Better error message ## Actual results Specify the actual results or traceback. ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 1.18.4.dev0 - Platform: Linux-5.15.15-76051515-generic-x86_64-with-glibc2.34 - Python version: 3.9.7 - PyArrow version: 6.0.1
3,855
https://github.com/huggingface/datasets/issues/3854
load only England English dataset from common voice english dataset
[ "Hi @amanjaiswal777,\r\n\r\nFirst note that the dataset you are trying to load is deprecated: it was the Common Voice dataset release as of Dec 2020.\r\n\r\nCurrently, Common Voice dataset releases are directly hosted on the Hub, under the Mozilla Foundation organization: https://huggingface.co/mozilla-foundation\r\n\r\nFor example, to get their latest Common Voice relase (8.0):\r\n- Go to the dataset page and request access permission (Mozilla Foundation requires this for people willing to use their datasets): https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0\r\n- Looking at the dataset card, you can check that data instances have, among other fields, the ones you are interested in: \"accent\", \"age\",... \r\n- Then you can load their \"en\" language dataset as usual, besides passing your authentication token (more info on auth token here: https://huggingface.co/docs/hub/security)\r\n ```python\r\n from datasets import load_dataset\r\n ds_en = load_dataset(\"mozilla-foundation/common_voice_8_0\", \"en\", use_auth_token=True)\r\n ```\r\n- Finally, you can filter only the data instances you are interested in (more info on `filter` here: https://huggingface.co/docs/datasets/process#select-and-filter):\r\n ```python\r\n ds_england_en = ds_en.filter(lambda item: item[\"accent\"] == \"England English\")\r\n ```\r\n\r\nFeel free to reopen this issue if you need further assistance.", "Hey @albertvillanova trying the same approach as you with the common_voice_16_1 dataset. What I'm trying to do is to filter the valencian accent in the catalan subset. Gave me this error and I have everything it asks for decoding mp3:\r\n![image](https://github.com/huggingface/datasets/assets/96977715/7ec02483-e728-4358-9372-ba74ec1b7fd4)\r\n\r\n![image](https://github.com/huggingface/datasets/assets/96977715/c10fcf23-a141-4dba-a88d-89e293acfe67)\r\n\r\n" ]
training_data = load_dataset("common_voice", "en",split='train[:250]+validation[:250]') testing_data = load_dataset("common_voice", "en", split="test[:200]") I'm trying to load only 8% of the English common voice data with accent == "England English." Can somebody assist me with this? **Typical Voice Accent Proportions:** - 24% United States English - 8% England English - 5% India and South Asia (India, Pakistan, Sri Lanka) - 3% Australian English - 3% Canadian English - 2% Scottish English - 1% Irish English - 1% Southern African (South Africa, Zimbabwe, Namibia) - 1% New Zealand English Can we replicate this for Age as well? **Age proportions of the common voice:-** - 24% 19 - 29 - 14% 30 - 39 - 10% 40 - 49 - 6% < 19 - 4% 50 - 59 - 4% 60 - 69 - 1% 70 – 79
3,854
https://github.com/huggingface/datasets/issues/3851
Load audio dataset error
[ "Hi @lemoner20, thanks for reporting.\r\n\r\nI'm sorry but I cannot reproduce your problem:\r\n```python\r\nIn [1]: from datasets import load_dataset, load_metric, Audio\r\n ...: raw_datasets = load_dataset(\"superb\", \"ks\", split=\"train\")\r\n ...: print(raw_datasets[0][\"audio\"])\r\nDownloading builder script: 30.2kB [00:00, 13.0MB/s] \r\nDownloading metadata: 38.0kB [00:00, 16.6MB/s] \r\nDownloading and preparing dataset superb/ks (download: 1.45 GiB, generated: 9.64 MiB, post-processed: Unknown size, total: 1.46 GiB) to .../.cache/huggingface/datasets/superb/ks/1.9.0/fc1f59e1fa54262dfb42de99c326a806ef7de1263ece177b59359a1a3354a9c9...\r\nDownloading data: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1.49G/1.49G [00:37<00:00, 39.3MB/s]\r\nDownloading data: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 71.3M/71.3M [00:01<00:00, 36.1MB/s]\r\nDownloading data files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:41<00:00, 20.67s/it]\r\nExtracting data files: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:28<00:00, 14.24s/it]\r\nDataset superb downloaded and prepared to .../.cache/huggingface/datasets/superb/ks/1.9.0/fc1f59e1fa54262dfb42de99c326a806ef7de1263ece177b59359a1a3354a9c9. Subsequent calls will reuse this data.\r\n{'path': '.../.cache/huggingface/datasets/downloads/extracted/8571921d3088b48f58f75b2e514815033e1ffbd06aa63fd4603691ac9f1c119f/_background_noise_/doing_the_dishes.wav', 'array': array([ 0. , 0. , 0. , ..., -0.00592041,\r\n -0.00405884, -0.00253296], dtype=float32), 'sampling_rate': 16000}\r\n``` \r\n\r\nWhich version of `datasets` are you using? Could you please fill in the environment info requested in the bug report template? You can run the command `datasets-cli env` and copy-and-paste its output below\r\n## Environment info\r\n<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->\r\n- `datasets` version:\r\n- Platform:\r\n- Python version:\r\n- PyArrow version:", "@albertvillanova Thanks for your reply. The environment info below\r\n\r\n## Environment info\r\n- `datasets` version: 1.18.3\r\n- Platform: Linux-4.19.91-007.ali4000.alios7.x86_64-x86_64-with-debian-buster-sid\r\n- Python version: 3.6.12\r\n- PyArrow version: 6.0.1", "Thanks @lemoner20,\r\n\r\nI cannot reproduce your issue in datasets version 1.18.3 either.\r\n\r\nMaybe redownloading the data file may work if you had already cached this dataset previously. Could you please try passing \"force_redownload\"?\r\n```python\r\nraw_datasets = load_dataset(\"superb\", \"ks\", split=\"train\", download_mode=\"force_redownload\")", "Thanks, @albertvillanova,\r\n\r\nI install the python package of **librosa=0.9.1** again, it works now!\r\n\r\n\r\n", "Cool!", "@albertvillanova, you can actually reproduce the error if you reach the cell `common_voice_train[0][\"path\"]` of this [notebook](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/Fine_Tune_XLSR_Wav2Vec2_on_Turkish_ASR_with_%F0%9F%A4%97_Transformers.ipynb#scrollTo=_0kRndSvqaKk). Error gets solved after updating the versions of the libraries used in there.", "@jvel07, thanks for reporting and finding a solution.\r\n\r\nMaybe we could tell @patrickvonplaten about the version pinning issue in his notebook.", "Should I update the version of datasets @albertvillanova ? " ]
## Load audio dataset error Hi, when I load audio dataset following https://huggingface.co/docs/datasets/audio_process and https://github.com/huggingface/datasets/tree/master/datasets/superb, ``` from datasets import load_dataset, load_metric, Audio raw_datasets = load_dataset("superb", "ks", split="train") print(raw_datasets[0]["audio"]) ``` following errors occur ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-169-3f8253239fa0> in <module> ----> 1 raw_datasets[0]["audio"] /usr/lib/python3.6/site-packages/datasets/arrow_dataset.py in __getitem__(self, key) 1924 """Can be used to index columns (by string names) or rows (by integer index or iterable of indices or bools).""" 1925 return self._getitem( -> 1926 key, 1927 ) 1928 /usr/lib/python3.6/site-packages/datasets/arrow_dataset.py in _getitem(self, key, decoded, **kwargs) 1909 pa_subtable = query_table(self._data, key, indices=self._indices if self._indices is not None else None) 1910 formatted_output = format_table( -> 1911 pa_subtable, key, formatter=formatter, format_columns=format_columns, output_all_columns=output_all_columns 1912 ) 1913 return formatted_output /usr/lib/python3.6/site-packages/datasets/formatting/formatting.py in format_table(table, key, formatter, format_columns, output_all_columns) 530 python_formatter = PythonFormatter(features=None) 531 if format_columns is None: --> 532 return formatter(pa_table, query_type=query_type) 533 elif query_type == "column": 534 if key in format_columns: /usr/lib/python3.6/site-packages/datasets/formatting/formatting.py in __call__(self, pa_table, query_type) 279 def __call__(self, pa_table: pa.Table, query_type: str) -> Union[RowFormat, ColumnFormat, BatchFormat]: 280 if query_type == "row": --> 281 return self.format_row(pa_table) 282 elif query_type == "column": 283 return self.format_column(pa_table) /usr/lib/python3.6/site-packages/datasets/formatting/formatting.py in format_row(self, pa_table) 310 row = self.python_arrow_extractor().extract_row(pa_table) 311 if self.decoded: --> 312 row = self.python_features_decoder.decode_row(row) 313 return row 314 /usr/lib/python3.6/site-packages/datasets/formatting/formatting.py in decode_row(self, row) 219 220 def decode_row(self, row: dict) -> dict: --> 221 return self.features.decode_example(row) if self.features else row 222 223 def decode_column(self, column: list, column_name: str) -> list: /usr/lib/python3.6/site-packages/datasets/features/features.py in decode_example(self, example) 1320 else value 1321 for column_name, (feature, value) in utils.zip_dict( -> 1322 {key: value for key, value in self.items() if key in example}, example 1323 ) 1324 } /usr/lib/python3.6/site-packages/datasets/features/features.py in <dictcomp>(.0) 1319 if self._column_requires_decoding[column_name] 1320 else value -> 1321 for column_name, (feature, value) in utils.zip_dict( 1322 {key: value for key, value in self.items() if key in example}, example 1323 ) /usr/lib/python3.6/site-packages/datasets/features/features.py in decode_nested_example(schema, obj) 1053 # Object with special decoding: 1054 elif isinstance(schema, (Audio, Image)): -> 1055 return schema.decode_example(obj) if obj is not None else None 1056 return obj 1057 /usr/lib/python3.6/site-packages/datasets/features/audio.py in decode_example(self, value) 100 array, sampling_rate = self._decode_non_mp3_file_like(file) 101 else: --> 102 array, sampling_rate = self._decode_non_mp3_path_like(path) 103 return {"path": path, "array": array, "sampling_rate": sampling_rate} 104 /usr/lib/python3.6/site-packages/datasets/features/audio.py in _decode_non_mp3_path_like(self, path) 143 144 with xopen(path, "rb") as f: --> 145 array, sampling_rate = librosa.load(f, sr=self.sampling_rate, mono=self.mono) 146 return array, sampling_rate 147 /usr/lib/python3.6/site-packages/librosa/core/audio.py in load(path, sr, mono, offset, duration, dtype, res_type) 110 111 y = [] --> 112 with audioread.audio_open(os.path.realpath(path)) as input_file: 113 sr_native = input_file.samplerate 114 n_channels = input_file.channels /usr/lib/python3.6/posixpath.py in realpath(filename) 392 """Return the canonical path of the specified filename, eliminating any 393 symbolic links encountered in the path.""" --> 394 filename = os.fspath(filename) 395 path, ok = _joinrealpath(filename[:0], filename, {}) 396 return abspath(path) TypeError: expected str, bytes or os.PathLike object, not _io.BufferedReader ``` ## Expected results ``` >>> raw_datasets[0]["audio"] {'array': array([-0.0005188 , -0.00109863, 0.00030518, ..., 0.01730347, 0.01623535, 0.01724243]), 'path': '/root/.cache/huggingface/datasets/downloads/extracted/bb3a06b491a64aff422f307cd8116820b4f61d6f32fcadcfc554617e84383cb7/bed/026290a7_nohash_0.wav', 'sampling_rate': 16000} ```
3,851
https://github.com/huggingface/datasets/issues/3848
NonMatchingChecksumError when checksum is None
[ "Hi @jxmorris12, thanks for reporting.\r\n\r\nThe objective of `verify_checksums` is to check that both checksums are equal. Therefore if one is None and the other is non-None, they are not equal, and the function accordingly raises a NonMatchingChecksumError. That behavior is expected.\r\n\r\nThe question is: how did you generate the expected checksum? Normally, it should not be None. To properly generate it (it is contained in the `dataset_infos.json` file), you should have runned: https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md\r\n```shell\r\ndatasets-cli test <your-dataset-folder> --save_infos --all_configs\r\n```\r\n\r\nOn the other hand, you should take into account that the generation of this file is NOT mandatory for personal/community datasets (we only require it for \"canonical\" datasets, i.e., datasets added to our library GitHub repository: https://github.com/huggingface/datasets/tree/master/datasets). Therefore, other option would be just to delete the `dataset_infos.json` file. If that file is not present, the function `verify_checksums` is not executed.\r\n\r\nFinally, you can circumvent the `verify_checksums` function by passing `ignore_verifications=True` to `load_dataset`:\r\n```python\r\nload_dataset(..., ignore_verifications=True)\r\n``` ", "Thanks @albertvillanova!\r\n\r\nThat's fine. I did run that command when I was adding a new dataset. Maybe because the command crashed in the middle, the checksum wasn't stored properly. I don't know where the bug is happening. But either (i) `verify_checksums` should properly handle this edge case, where the passed checksum is None or (ii) the `datasets-cli test` shouldn't generate a corrupted dataset_infos.json file.\r\n\r\nJust a more high-level thing, I was trying to follow the instructions for adding a dataset in the CONTRIBUTING.md, so if running that command isn't even necessary, that should probably be mentioned in the document, right? But that's somewhat of a moot point, since something isn't working quite right internally if I was able to get into this corrupted state in the first place, just by following those instructions.", "Hi @jxmorris12,\r\n\r\nDefinitely, your `dataset_infos.json` was corrupted (and wrongly contains expected None checksum). \r\n\r\nWhile we further investigate how this can happen and fix it, feel free to delete your `dataset_infos.json` file and recreate it with:\r\n```shell\r\ndatasets-cli test <your-dataset-folder> --save_infos --all_configs\r\n```\r\n\r\nAlso note that `verify_checksum` is working as expected: if it receives a None and and a non-None checksums as input pair, it must raise an exception: they are not equal. That is not a bug.", "At a higher level, also note that we are preparing the release of `datasets` version 2.0, and some docs are being updated...\r\n\r\nIn order to add a dataset, I think the most updated instructions are in our official documentation pages: https://huggingface.co/docs/datasets/share", "Thanks for the info. Maybe you can update the contributing.md if it's not up-to-date.", "Hi @jxmorris12, we have discovered the bug why `None` checksums wrongly appeared when generating the `dataset_infos.json` file:\r\n- #3892\r\n\r\nThe fix will be accessible once this PR merged. And we are planning to do our 2.0 release today.\r\n\r\nWe are also working on updating all our docs for our release today.", "Thanks @albertvillanova - congrats on the release!" ]
I ran into the following error when adding a new dataset: ```bash expected_checksums = {'https://adversarialglue.github.io/dataset/dev.zip': {'checksum': None, 'num_bytes': 40662}} recorded_checksums = {'https://adversarialglue.github.io/dataset/dev.zip': {'checksum': 'efb4cbd3aa4a87bfaffc310ae951981cc0a36c6c71c6425dd74e5b55f2f325c9', 'num_bytes': 40662}} verification_name = 'dataset source files' def verify_checksums(expected_checksums: Optional[dict], recorded_checksums: dict, verification_name=None): if expected_checksums is None: logger.info("Unable to verify checksums.") return if len(set(expected_checksums) - set(recorded_checksums)) > 0: raise ExpectedMoreDownloadedFiles(str(set(expected_checksums) - set(recorded_checksums))) if len(set(recorded_checksums) - set(expected_checksums)) > 0: raise UnexpectedDownloadedFile(str(set(recorded_checksums) - set(expected_checksums))) bad_urls = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] for_verification_name = " for " + verification_name if verification_name is not None else "" if len(bad_urls) > 0: error_msg = "Checksums didn't match" + for_verification_name + ":\n" > raise NonMatchingChecksumError(error_msg + str(bad_urls)) E datasets.utils.info_utils.NonMatchingChecksumError: Checksums didn't match for dataset source files: E ['https://adversarialglue.github.io/dataset/dev.zip'] src/datasets/utils/info_utils.py:40: NonMatchingChecksumError ``` ## Expected results The dataset downloads correctly, and there is no error. ## Actual results Datasets library is looking for a checksum of None, and it gets a non-None checksum, and throws an error. This is clearly a bug.
3,848
https://github.com/huggingface/datasets/issues/3847
Datasets' cache not re-used
[ "<s>I think this is because the tokenizer is stateful and because the order in which the splits are processed is not deterministic. Because of that, the hash of the tokenizer may change for certain splits, which causes issues with caching.\r\n\r\nTo fix this we can try making the order of the splits deterministic for map.</s>", "Actually this is not because of the order of the splits, but most likely because the tokenizer used to process the second split is in a state that has been modified by the first split.\r\n\r\nTherefore after reloading the first split from the cache, then the second split can't be reloaded since the tokenizer hasn't seen the first split (and therefore is considered a different tokenizer).\r\n\r\nThis is a bit trickier to fix, we can explore fixing this next week maybe", "Sorry didn't have the bandwidth to take care of this yet - will re-assign when I'm diving into it again !", "I had this issue with `run_speech_recognition_ctc.py` for wa2vec2.0 fine-tuning. I made a small change and the hash for the function (which includes tokenisation) is now the same before and after pre-porocessing. With the hash being the same, the caching works as intended.\r\n\r\nBefore:\r\n```\r\n def prepare_dataset(batch):\r\n # load audio\r\n sample = batch[audio_column_name]\r\n\r\n inputs = feature_extractor(sample[\"array\"], sampling_rate=sample[\"sampling_rate\"])\r\n batch[\"input_values\"] = inputs.input_values[0]\r\n batch[\"input_length\"] = len(batch[\"input_values\"])\r\n\r\n # encode targets\r\n additional_kwargs = {}\r\n if phoneme_language is not None:\r\n additional_kwargs[\"phonemizer_lang\"] = phoneme_language\r\n\r\n batch[\"labels\"] = tokenizer(batch[\"target_text\"], **additional_kwargs).input_ids\r\n\r\n return batch\r\n\r\n with training_args.main_process_first(desc=\"dataset map preprocessing\"):\r\n vectorized_datasets = raw_datasets.map(\r\n prepare_dataset,\r\n remove_columns=next(iter(raw_datasets.values())).column_names,\r\n num_proc=num_workers,\r\n desc=\"preprocess datasets\",\r\n )\r\n```\r\nAfter:\r\n```\r\n def prepare_dataset(batch, feature_extractor, tokenizer):\r\n # load audio\r\n sample = batch[audio_column_name]\r\n\r\n inputs = feature_extractor(sample[\"array\"], sampling_rate=sample[\"sampling_rate\"])\r\n batch[\"input_values\"] = inputs.input_values[0]\r\n batch[\"input_length\"] = len(batch[\"input_values\"])\r\n\r\n # encode targets\r\n additional_kwargs = {}\r\n if phoneme_language is not None:\r\n additional_kwargs[\"phonemizer_lang\"] = phoneme_language\r\n\r\n batch[\"labels\"] = tokenizer(batch[\"target_text\"], **additional_kwargs).input_ids\r\n\r\n return batch\r\n\r\n pd = lambda batch: prepare_dataset(batch, feature_extractor, tokenizer)\r\n\r\n with training_args.main_process_first(desc=\"dataset map preprocessing\"):\r\n vectorized_datasets = raw_datasets.map(\r\n pd,\r\n remove_columns=next(iter(raw_datasets.values())).column_names,\r\n num_proc=num_workers,\r\n desc=\"preprocess datasets\",\r\n )\r\n```", "Not sure why the second one would work and not the first one - they're basically the same with respect to hashing. In both cases the function is hashed recursively, and therefore the feature_extractor and the tokenizer are hashed the same way.\r\n\r\nWith which tokenizer or feature extractor are you experiencing this behavior ?\r\n\r\nDo you also experience this ?\r\n> Tokenization for some subsets are repeated at the 2nd and 3rd run. Starting from the 4th run, everything are loaded from cache.", "Thanks ! Hopefully this can be useful to others, and also to better understand and improve hashing/caching ", "`tokenizer.save_pretrained(training_args.output_dir)` produces a different tokenizer hash when loaded on restart of the script. When I was debugging before I was terminating the script prior to this command, then rerunning. \r\n\r\nI compared the tokenizer items on the first and second runs, there are two different items:\r\n1st:\r\n```\r\n('_additional_special_tokens', [AddedToken(\"<s>\", rstrip=False, lstrip=False, single_word=False, normalized=True), AddedToken(\"</s>\", rstrip=False, lstrip=False, single_word=False, normalized=True), AddedToken(\"<s>\", rstrip=False, lstrip=False, single_word=False, normalized=True), AddedToken(\"</s>\", rstrip=False, lstrip=False, single_word=False, normalized=True), AddedToken(\"<s>\", rstrip=False, lstrip=False, single_word=False, normalized=True), AddedToken(\"</s>\", rstrip=False, lstrip=False, single_word=False, normalized=True), AddedToken(\"<s>\", rstrip=False, lstrip=False, single_word=False, normalized=True), AddedToken(\"</s>\", rstrip=False, lstrip=False, single_word=False, normalized=True), AddedToken(\"<s>\", rstrip=False, lstrip=False, single_word=False, normalized=True), AddedToken(\"</s>\", rstrip=False, lstrip=False, single_word=False, normalized=True), AddedToken(\"<s>\", rstrip=False, lstrip=False, single_word=False, normalized=True), AddedToken(\"</s>\", rstrip=False, lstrip=False, single_word=False, normalized=True), AddedToken(\"<s>\", rstrip=False, lstrip=False, single_word=False, normalized=True), AddedToken(\"</s>\", rstrip=False, lstrip=False, single_word=False, normalized=True), AddedToken(\"<s>\", rstrip=False, lstrip=False, single_word=False, normalized=True), AddedToken(\"</s>\", rstrip=False, lstrip=False, single_word=False, normalized=True), AddedToken(\"<s>\", rstrip=False, lstrip=False, single_word=False, normalized=True), AddedToken(\"</s>\", rstrip=False, lstrip=False, single_word=False, normalized=True)])\r\n\r\n...\r\n\r\n('tokens_trie', <transformers.tokenization_utils.Trie object at 0x7f4d6d0ddb38>)\r\n```\r\n\r\n2nd:\r\n```\r\n('_additional_special_tokens', [AddedToken(\"<s>\", rstrip=False, lstrip=False, single_word=False, normalized=True), AddedToken(\"</s>\", rstrip=False, lstrip=False, single_word=False, normalized=True), AddedToken(\"<s>\", rstrip=False, lstrip=False, single_word=False, normalized=True), AddedToken(\"</s>\", rstrip=False, lstrip=False, single_word=False, normalized=True), AddedToken(\"<s>\", rstrip=False, lstrip=False, single_word=False, normalized=True), AddedToken(\"</s>\", rstrip=False, lstrip=False, single_word=False, normalized=True), AddedToken(\"<s>\", rstrip=False, lstrip=False, single_word=False, normalized=True), AddedToken(\"</s>\", rstrip=False, lstrip=False, single_word=False, normalized=True), AddedToken(\"<s>\", rstrip=False, lstrip=False, single_word=False, normalized=True), AddedToken(\"</s>\", rstrip=False, lstrip=False, single_word=False, normalized=True), AddedToken(\"<s>\", rstrip=False, lstrip=False, single_word=False, normalized=True), AddedToken(\"</s>\", rstrip=False, lstrip=False, single_word=False, normalized=True), AddedToken(\"<s>\", rstrip=False, lstrip=False, single_word=False, normalized=True), AddedToken(\"</s>\", rstrip=False, lstrip=False, single_word=False, normalized=True), AddedToken(\"<s>\", rstrip=False, lstrip=False, single_word=False, normalized=True), AddedToken(\"</s>\", rstrip=False, lstrip=False, single_word=False, normalized=True), AddedToken(\"<s>\", rstrip=False, lstrip=False, single_word=False, normalized=True), AddedToken(\"</s>\", rstrip=False, lstrip=False, single_word=False, normalized=True), AddedToken(\"<s>\", rstrip=False, lstrip=False, single_word=False, normalized=True), AddedToken(\"</s>\", rstrip=False, lstrip=False, single_word=False, normalized=True)])\r\n\r\n...\r\n\r\n('tokens_trie', <transformers.tokenization_utils.Trie object at 0x7efc23dcce80>)\r\n```\r\n\r\n On every run of this the special tokens are being added on, and the hash is different on the `tokens_trie`. The increase in the special tokens category could be cleaned, but not sure about the hash for the `tokens_trie`. What might work is that the call for the tokenizer encoding can be translated into a function that strips any unnecessary information out, but that's a guess.\r\n", "Thanks for investigating ! Does that mean that `save_pretrained`() produces non-deterministic tokenizers on disk ? Or is it `from_pretrained()` which is not deterministic given the same files on disk ?\r\n\r\nI think one way to fix this would be to make save/from_pretrained deterministic, or make the pickling of `transformers.tokenization_utils.Trie` objects deterministic (this could be implemented in `transformers`, but maybe let's discuss in an issue in `transformers` before opening a PR)", "Late to the party but everything should be deterministic (afaik at least).\r\n\r\nBut `Trie` is a simple class object, so afaik it's hash function is linked to its `id(self)` so basically where it's stored in memory, so super highly non deterministic. Could that be the issue ?", "> But Trie is a simple class object, so afaik it's hash function is linked to its id(self) so basically where it's stored in memory, so super highly non deterministic. Could that be the issue ?\r\n\r\nWe're computing the hash of the pickle dump of the class so it should be fine, as long as the pickle dump is deterministic", "I've ported wav2vec2.0 fine-tuning into Optimum-Graphcore which is where I found the issue. The majority of the script was copied from the Transformers version to keep it similar, [here is the tokenizer loading section from the source](https://github.com/huggingface/transformers/blob/f0982682bd6fd0b438dda79ec45f3a8fac83a985/examples/pytorch/speech-recognition/run_speech_recognition_ctc.py#L531).\r\n\r\nIn the last comment I have two loaded tokenizers, one from run 'N' of the script and one from 'N+1'. I think what's happening is that when you add special tokens (e.g. PAD and UNK) another AddedToken object is appended when tokenizer is saved regardless of whether special tokens are there already. \r\n\r\nIf there is a AddedTokens cleanup at load/save this could solve the issue, but then is Trie going to cause hash to be different? I'm not sure. ", "Which Python version are you using ?\r\n\r\nThe trie is basically a big dict of dics, so deterministic nature depends on python version:\r\nhttps://stackoverflow.com/questions/2053021/is-the-order-of-a-python-dictionary-guaranteed-over-iterations\r\n\r\nMaybe the investigation is actually not finding the right culprit though (the memory id is changed, but `datasets` is not using that to compare, so maybe we need to be looking within `datasets` so see where the comparison fails)", "Similar issue found on `BartTokenizer`. You can bypass the bug by loading a fresh new tokenizer everytime.\r\n\r\n```\r\n dataset = dataset.map(lambda x: tokenize_func(x, BartTokenizer.from_pretrained(xxx)),\r\n num_proc=num_proc, desc='Tokenize')\r\n```", "Linking in https://github.com/huggingface/datasets/issues/6179#issuecomment-1701244673 with an explanation.", "I got the same problem while using Wav2Vec2CTCTokenizer in a distributed experiment (many processes), and found that the problem was localized in the serialization (pickle dump) of the field `tokenizer.tokens_trie._tokens` (just a python set). I focussed into the set serialization and found it is not deterministic:\r\n\r\n```\r\nfrom datasets.fingerprint import Hasher\r\nfrom pickle import dumps,loads\r\n\r\n# used just once to get a serialized literal\r\n#print(dumps(set(\"abc\")))\r\nserialized = b'\\x80\\x04\\x95\\x11\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x8f\\x94(\\x8c\\x01a\\x94\\x8c\\x01c\\x94\\x8c\\x01b\\x94\\x90.'\r\n\r\nmyset = loads(serialized)\r\nprint(f'{myset=} {Hasher.hash(myset)}')\r\nprint(serialized == dumps(myset))\r\n```\r\n\r\nEvery time you run the python script (different processes) you get a random result. @lhoestq does it make any sense?", "OK, I assume python's set is just a hash table implementation that uses internally the hash() function. The problem is that python's hash() is not deterministic. I believe that setting the environment variable PYTHONHASHSEED to a fixed value, you can force it to be deterministic. I tried it (file `set_pickle_dump.py`):\r\n\r\n```\r\n#!/usr/bin/python3\r\n\r\nfrom datasets.fingerprint import Hasher\r\nfrom pickle import dumps,loads\r\n\r\n# used just once to get a serialized literal (with environment variable PYTHONHASHSEED set to 42)\r\n#print(dumps(set(\"abc\")))\r\nserialized = b'\\x80\\x04\\x95\\x11\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x8f\\x94(\\x8c\\x01b\\x94\\x8c\\x01c\\x94\\x8c\\x01a\\x94\\x90.'\r\n\r\nmyset = loads(serialized)\r\nprint(f'{myset=} {Hasher.hash(myset)}')\r\nprint(serialized == dumps(myset))\r\n```\r\n\r\nand now every run (`PYTHONHASHSEED=42 ./set_pickle_dump.py`) gets tthe same result. I tried then to test it with the tokenizer (file `test_tokenizer.py`):\r\n\r\n```\r\n#!/usr/bin/python3\r\nfrom transformers import AutoTokenizer\r\nfrom datasets.fingerprint import Hasher\r\n\r\ntokenizer = AutoTokenizer.from_pretrained('model')\r\nprint(f'{type(tokenizer)=}')\r\nprint(f'{Hasher.hash(tokenizer)=}')\r\n```\r\n\r\nexecuted as `PYTHONHASHSEED=42 ./test_tokenizer.py` and now the tokenizer fingerprint is allways the same!\r\n", "Thanks for reporting. I opened a PR here to propose a fix: https://github.com/huggingface/datasets/pull/6318 and doesn't require setting `PYTHONHASHSEED`\r\n\r\nCan you try to install `datasets` from this branch and tell me if it fixes the issue ?", "I patched (*) the file `datasets/utils/py_utils.py` and cache is working propperly now. Thanks!\r\n\r\n(*): I am running my experiments inside a docker container that depends on `huggingface/transformers-pytorch-gpu:latest`, so pattched the file instead of rebuilding the container from scratch", "Fixed by #6318.", "The OP issue hasn't been fixed, re-opening", "I think the Trie()._tokens of PreTrainedTokenizer need to be a sorted set So that the results of `hash_bytes(dumps(tokenizer))` are consistent every time", "I believe the issue may be linked to [tokenization_utils.py#L507](https://github.com/huggingface/transformers/blob/main/src/transformers/tokenization_utils.py#L507),specifically in the line where self.tokens_trie.add(token.content) is called. The function _update_trie appears to modify an unordered set. Consequently, this line:\r\n`value = hash_bytes(dumps(tokenizer.tokens_trie._tokens))`\r\ncan lead to inconsistencies when rerunning the code.\r\n\r\nThis, in turn, results in inconsistent outputs for both `hash_bytes(dumps(function))` at [arrow_dataset.py#L3053](https://github.com/huggingface/datasets/blob/main/src/datasets/arrow_dataset.py#L3053) and\r\n`hasher.update(transform_args[key])` at [fingerprint.py#L323](https://github.com/huggingface/datasets/blob/main/src/datasets/fingerprint.py#L323)\r\n\r\n```\r\ndataset_kwargs = {\r\n \"shard\": raw_datasets,\r\n \"function\": tokenize_function,\r\n}\r\ntransform = format_transform_for_fingerprint(Dataset._map_single)\r\nkwargs_for_fingerprint = format_kwargs_for_fingerprint(Dataset._map_single, (), dataset_kwargs)\r\nkwargs_for_fingerprint[\"fingerprint_name\"] = \"new_fingerprint\"\r\nnew_fingerprint = update_fingerprint(raw_datasets._fingerprint, transform, kwargs_for_fingerprint)\r\n```\r\n", "Alternatively, does the \"dumps\" function require separate processing for the set?", "We did a fix that does sorting whenever we hash sets. The fix is available on `main` if you want to try it out. We'll do a new release soon :)", "Is there a documentation chapter that discusses in which cases you should expect your dataset preprocessing to be cached. Including do's and don'ts for the preprocessing functions? I think Datasets team does amazing job at tacking this issue on their side, but it would be great to have some guidelines on the user side as well.\r\n\r\nIn our current project we have two cases (text-to-text classification and summarization) and in one of them the cache is sometimes reused when it's not supposed to be reused while in the other it's never used at all 😅", "You can find some docs here :) \r\nhttps://huggingface.co/docs/datasets/about_cache" ]
## Describe the bug For most tokenizers I have tested (e.g. the RoBERTa tokenizer), the data preprocessing cache are not fully reused in the first few runs, although their `.arrow` cache files are in the cache directory. ## Steps to reproduce the bug Here is a reproducer. The GPT2 tokenizer works perfectly with caching, but not the RoBERTa tokenizer in this example. ```python from datasets import load_dataset from transformers import AutoTokenizer raw_datasets = load_dataset("wikitext", "wikitext-2-raw-v1") # tokenizer = AutoTokenizer.from_pretrained("gpt2") tokenizer = AutoTokenizer.from_pretrained("roberta-base") text_column_name = "text" column_names = raw_datasets["train"].column_names def tokenize_function(examples): return tokenizer(examples[text_column_name], return_special_tokens_mask=True) tokenized_datasets = raw_datasets.map( tokenize_function, batched=True, remove_columns=column_names, load_from_cache_file=True, desc="Running tokenizer on every text in dataset", ) ``` ## Expected results No tokenization would be required after the 1st run. Everything should be loaded from the cache. ## Actual results Tokenization for some subsets are repeated at the 2nd and 3rd run. Starting from the 4th run, everything are loaded from cache. ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 1.18.3 - Platform: Ubuntu 18.04.6 LTS - Python version: 3.6.9 - PyArrow version: 6.0.1
3,847
https://github.com/huggingface/datasets/issues/3841
Pyright reportPrivateImportUsage when `from datasets import load_dataset`
[ "Hi! \r\n\r\nThis issue stems from `datasets` having `py.typed` defined (see https://github.com/microsoft/pyright/discussions/3764#discussioncomment-3282142) - to avoid it, we would either have to remove `py.typed` (added to be compliant with PEP-561) or export the names with `__all__`/`from .submodule import name as name`.\r\n\r\nTransformers is fine as it no longer has `py.typed` (removed in https://github.com/huggingface/transformers/pull/18485)\r\n\r\nWDYT @lhoestq @albertvillanova @polinaeterna \r\n\r\n@sgugger's point makes sense - we should either be \"properly typed\" (have py.typed + mypy tests) or drop `py.typed` as Transformers did (I like this option better).\r\n\r\n(cc @Wauplin since `huggingface_hub` has the same issue.)", "I'm fine with dropping it, but autotrain people won't be happy @SBrandeis ", "> (cc @Wauplin since huggingface_hub has the same issue.)\r\n\r\nHmm maybe we have the same issue but I haven't been able to reproduce something similar to `\"load_dataset\" is not exported from module \"datasets\"` message (using VSCode+Pylance -that is powered by Pyright). `huggingface_hub` contains a `py.typed` file but the package itself is actually typed. We are running `mypy` in our CI tests since ~3 months and so far it seems to be ok. But happy to change if it causes some issues with linters.\r\n\r\nAlso the top-level [`__init__.py`](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/__init__.py) is quite different in `hfh` than `datasets` (at first glance). We have a section at the bottom to import all high level methods/classes in a `if TYPE_CHECKING` block.", "@Wauplin I only get the error if I use Pyright's CLI tool or the Pyright extension (not sure why, but Pylance also doesn't report this issue on my machine)\r\n\r\n> Also the top-level [`__init__.py`](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/__init__.py) is quite different in `hfh` than `datasets` (at first glance). We have a section at the bottom to import all high level methods/classes in a `if TYPE_CHECKING` block.\r\n\r\nI tried to fix the issue with `TYPE_CHECKING`, but it still fails if `py.typed` is present.", "@mariosasko thank for the tip. I have been able to reproduce the issue as well. I would be up for including a (huge) static `__all__` variable in the `__init__.py` (since the file is already generated automatically in `hfh`) but honestly I don't think it's worth the hassle. \r\n\r\nI'll delete the `py.typed` file in `huggingface_hub` to be consistent between HF libraries. I opened a PR here: https://github.com/huggingface/huggingface_hub/pull/1329", "I am getting this error in google colab today:\r\n\r\n![image](https://user-images.githubusercontent.com/3464445/219883967-c7193a23-0388-4ba3-b00c-a53883fb6512.png)\r\n\r\nThe code runs just fine too." ]
## Describe the bug Pyright complains about module not exported. ## Steps to reproduce the bug Use an editor/IDE with Pyright Language server with default configuration: ```python from datasets import load_dataset ``` ## Expected results No complain from Pyright ## Actual results Pyright complain below: ``` `load_dataset` is not exported from module "datasets" Import from "datasets.load" instead [reportPrivateImportUsage] ``` Importing from `datasets.load` does indeed solves the problem but I believe importing directly from top level `datasets` is the intended usage per the documentation. ## Environment info - `datasets` version: 1.18.3 - Platform: macOS-12.2.1-arm64-arm-64bit - Python version: 3.9.10 - PyArrow version: 7.0.0
3,841
https://github.com/huggingface/datasets/issues/3839
CI is broken for Windows
[]
## Describe the bug See: https://app.circleci.com/pipelines/github/huggingface/datasets/10292/workflows/83de4a55-bff7-43ec-96f7-0c335af5c050/jobs/63355 ``` ___________________ test_datasetdict_from_text_split[test] ____________________ [gw0] win32 -- Python 3.7.11 C:\tools\miniconda3\envs\py37\python.exe split = 'test' text_path = 'C:\\Users\\circleci\\AppData\\Local\\Temp\\pytest-of-circleci\\pytest-0\\popen-gw0\\data6\\dataset.txt' tmp_path = WindowsPath('C:/Users/circleci/AppData/Local/Temp/pytest-of-circleci/pytest-0/popen-gw0/test_datasetdict_from_text_spl7') @pytest.mark.parametrize("split", [None, NamedSplit("train"), "train", "test"]) def test_datasetdict_from_text_split(split, text_path, tmp_path): if split: path = {split: text_path} else: split = "train" path = {"train": text_path, "test": text_path} cache_dir = tmp_path / "cache" expected_features = {"text": "string"} > dataset = TextDatasetReader(path, cache_dir=cache_dir).read() tests\io\test_text.py:118: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ C:\tools\miniconda3\envs\py37\lib\site-packages\datasets\io\text.py:43: in read use_auth_token=use_auth_token, C:\tools\miniconda3\envs\py37\lib\site-packages\datasets\builder.py:588: in download_and_prepare self._download_prepared_from_hf_gcs(dl_manager.download_config) C:\tools\miniconda3\envs\py37\lib\site-packages\datasets\builder.py:630: in _download_prepared_from_hf_gcs reader.download_from_hf_gcs(download_config, relative_data_dir) C:\tools\miniconda3\envs\py37\lib\site-packages\datasets\arrow_reader.py:260: in download_from_hf_gcs downloaded_dataset_info = cached_path(remote_dataset_info.replace(os.sep, "/")) C:\tools\miniconda3\envs\py37\lib\site-packages\datasets\utils\file_utils.py:301: in cached_path download_desc=download_config.download_desc, C:\tools\miniconda3\envs\py37\lib\site-packages\datasets\utils\file_utils.py:560: in get_from_cache headers=headers, C:\tools\miniconda3\envs\py37\lib\site-packages\datasets\utils\file_utils.py:476: in http_head max_retries=max_retries, C:\tools\miniconda3\envs\py37\lib\site-packages\datasets\utils\file_utils.py:397: in _request_with_retry response = requests.request(method=method.upper(), url=url, timeout=timeout, **params) C:\tools\miniconda3\envs\py37\lib\site-packages\requests\api.py:61: in request return session.request(method=method, url=url, **kwargs) C:\tools\miniconda3\envs\py37\lib\site-packages\requests\sessions.py:529: in request resp = self.send(prep, **send_kwargs) C:\tools\miniconda3\envs\py37\lib\site-packages\requests\sessions.py:645: in send r = adapter.send(request, **kwargs) C:\tools\miniconda3\envs\py37\lib\site-packages\responses\__init__.py:840: in unbound_on_send return self._on_request(adapter, request, *a, **kwargs) C:\tools\miniconda3\envs\py37\lib\site-packages\responses\__init__.py:780: in _on_request match, match_failed_reasons = self._find_match(request) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ self = <responses.RequestsMock object at 0x000002048AD70588> request = <PreparedRequest [HEAD]> def _find_first_match(self, request): match_failed_reasons = [] > for i, match in enumerate(self._matches): E AttributeError: 'RequestsMock' object has no attribute '_matches' C:\tools\miniconda3\envs\py37\lib\site-packages\moto\core\models.py:289: AttributeError ```
3,839
https://github.com/huggingface/datasets/issues/3838
Add a data type for labeled images (image segmentation)
[]
It might be a mix of Image and ClassLabel, and the color palette might be generated automatically. --- ### Example every pixel in the images of the annotation column (in https://huggingface.co/datasets/scene_parse_150) has a value that gives its class, and the dataset itself is associated with a color palette (eg https://github.com/open-mmlab/mmsegmentation/blob/98a353b674c6052d319e7de4e5bcd65d670fcf84/mmseg/datasets/ade.py#L47) that maps every class with a color. So we might want to render the image as a colored image instead of a black and white one. <img width="785" alt="156741519-fbae6844-2606-4c28-837e-279d83d00865" src="https://user-images.githubusercontent.com/1676121/157005263-7058c584-2b70-465a-ad94-8a982f726cf4.png"> See https://github.com/tensorflow/datasets/blob/master/tensorflow_datasets/core/features/labeled_image.py for reference in Tensorflow
3,838
https://github.com/huggingface/datasets/issues/3835
The link given on the gigaword does not work
[]
## Dataset viewer issue for '*name of the dataset*' **Link:** *link to the dataset viewer page* *short description of the issue* Am I the one who added this dataset ? Yes-No
3,835
https://github.com/huggingface/datasets/issues/3832
Making Hugging Face the place to go for Graph NNs datasets
[ "It will be indeed really great to add support to GNN datasets. Big :+1: for this initiative.", "@napoles-uach identifies the [TUDatasets](https://chrsmrrs.github.io/datasets/) (A collection of benchmark datasets for graph classification and regression). \r\n\r\nAdded to the Tasks in the initial issue.", "Thanks Omar, that is a great collection!", "Great initiative! Let's keep this issue for these 3 datasets, but moving forward maybe let's create a new issue per dataset :rocket: great work @napoles-uach and @omarespejel!" ]
Let's make Hugging Face Datasets the central hub for GNN datasets :) **Motivation**. Datasets are currently quite scattered and an open-source central point such as the Hugging Face Hub would be ideal to support the growth of the GNN field. What are some datasets worth integrating into the Hugging Face hub? Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md). Special thanks to @napoles-uach for his collaboration on identifying the first ones: - [ ] [SNAP-Stanford OGB Datasets](https://github.com/snap-stanford/ogb). - [ ] [SNAP-Stanford Pretrained GNNs Chemistry and Biology Datasets](https://github.com/snap-stanford/pretrain-gnns). - [ ] [TUDatasets](https://chrsmrrs.github.io/datasets/) (A collection of benchmark datasets for graph classification and regression) cc @osanseviero
3,832
https://github.com/huggingface/datasets/issues/3831
when using to_tf_dataset with shuffle is true, not all completed batches are made
[ "Maybe @Rocketknight1 can help here", "Hi @greenned, this is expected behaviour for `to_tf_dataset`. By default, we drop the smaller 'remainder' batch during training (i.e. when `shuffle=True`). If you really want to keep that batch, you can set `drop_remainder=False` when calling `to_tf_dataset()`.", "@Rocketknight1 Oh, thank you. I didn't get **drop_remainder** Have a nice day!", "No problem!\r\n" ]
## Describe the bug when converting a dataset to tf_dataset by using to_tf_dataset with shuffle true, the remainder is not converted to one batch ## Steps to reproduce the bug this is the sample code below https://colab.research.google.com/drive/1_oRXWsR38ElO1EYF9ayFoCU7Ou1AAej4?usp=sharing ## Expected results regardless of shuffle is true or not, 67 rows dataset should be 5 batches when batch size is 16. ## Actual results 4 batches ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 1.18.3 - Platform: Linux-5.4.144+-x86_64-with-Ubuntu-18.04-bionic - Python version: 3.7.12 - PyArrow version: 6.0.1
3,831
https://github.com/huggingface/datasets/issues/3830
Got error when load cnn_dailymail dataset
[ "Was able to reproduce the issue on Colab; full logs below. \r\n\r\n```\r\n---------------------------------------------------------------------------\r\nNotADirectoryError Traceback (most recent call last)\r\n[<ipython-input-2-39967739ba7f>](https://localhost:8080/#) in <module>()\r\n 1 import datasets\r\n 2 \r\n----> 3 train_data = datasets.load_dataset(\"cnn_dailymail\", \"3.0.0\", split=\"train\")\r\n\r\n5 frames\r\n[/usr/local/lib/python3.7/dist-packages/datasets/load.py](https://localhost:8080/#) in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, script_version, **config_kwargs)\r\n 1705 ignore_verifications=ignore_verifications,\r\n 1706 try_from_hf_gcs=try_from_hf_gcs,\r\n-> 1707 use_auth_token=use_auth_token,\r\n 1708 )\r\n 1709 \r\n\r\n[/usr/local/lib/python3.7/dist-packages/datasets/builder.py](https://localhost:8080/#) in download_and_prepare(self, download_config, download_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, **download_and_prepare_kwargs)\r\n 593 if not downloaded_from_gcs:\r\n 594 self._download_and_prepare(\r\n--> 595 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs\r\n 596 )\r\n 597 # Sync info\r\n\r\n[/usr/local/lib/python3.7/dist-packages/datasets/builder.py](https://localhost:8080/#) in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs)\r\n 659 split_dict = SplitDict(dataset_name=self.name)\r\n 660 split_generators_kwargs = self._make_split_generators_kwargs(prepare_split_kwargs)\r\n--> 661 split_generators = self._split_generators(dl_manager, **split_generators_kwargs)\r\n 662 \r\n 663 # Checksums verification\r\n\r\n[/root/.cache/huggingface/modules/datasets_modules/datasets/cnn_dailymail/3cb851bf7cf5826e45d49db2863f627cba583cbc32342df7349dfe6c38060234/cnn_dailymail.py](https://localhost:8080/#) in _split_generators(self, dl_manager)\r\n 253 def _split_generators(self, dl_manager):\r\n 254 dl_paths = dl_manager.download_and_extract(_DL_URLS)\r\n--> 255 train_files = _subset_filenames(dl_paths, datasets.Split.TRAIN)\r\n 256 # Generate shared vocabulary\r\n 257 \r\n\r\n[/root/.cache/huggingface/modules/datasets_modules/datasets/cnn_dailymail/3cb851bf7cf5826e45d49db2863f627cba583cbc32342df7349dfe6c38060234/cnn_dailymail.py](https://localhost:8080/#) in _subset_filenames(dl_paths, split)\r\n 154 else:\r\n 155 logger.fatal(\"Unsupported split: %s\", split)\r\n--> 156 cnn = _find_files(dl_paths, \"cnn\", urls)\r\n 157 dm = _find_files(dl_paths, \"dm\", urls)\r\n 158 return cnn + dm\r\n\r\n[/root/.cache/huggingface/modules/datasets_modules/datasets/cnn_dailymail/3cb851bf7cf5826e45d49db2863f627cba583cbc32342df7349dfe6c38060234/cnn_dailymail.py](https://localhost:8080/#) in _find_files(dl_paths, publisher, url_dict)\r\n 133 else:\r\n 134 logger.fatal(\"Unsupported publisher: %s\", publisher)\r\n--> 135 files = sorted(os.listdir(top_dir))\r\n 136 \r\n 137 ret_files = []\r\n\r\nNotADirectoryError: [Errno 20] Not a directory: '/root/.cache/huggingface/datasets/downloads/1bc05d24fa6dda2468e83a73cf6dc207226e01e3c48a507ea716dc0421da583b/cnn/stories'\r\n```", "Hi @jon-tow, thanks for reporting. And hi @dynamicwebpaige, thanks for your investigation. \r\n\r\nThis issue was already reported \r\n- #3784\r\n\r\nand its root cause is a change in the Google Drive service. See:\r\n- #3786 \r\n\r\nWe have already fixed it. See:\r\n- #3787 \r\n\r\nWe are planning to make a patch release today (indeed, we were planning to do it last Friday).\r\n\r\nIn the meantime, you can get this fix by installing our library from the GitHub master branch:\r\n```shell\r\npip install git+https://github.com/huggingface/datasets#egg=datasets\r\n```\r\nThen, if you had previously tried to load the data and got the checksum error, you should force the redownload of the data (before the fix, you just downloaded and cached the virus scan warning page, instead of the data file):\r\n```shell\r\nload_dataset(\"...\", download_mode=\"force_redownload\")\r\n```\r\n\r\nCC: @lhoestq " ]
When using datasets.load_dataset method to load cnn_dailymail dataset, got error as below: - windows os: FileNotFoundError: [WinError 3] 系统找不到指定的路径。: 'D:\\SourceCode\\DataScience\\HuggingFace\\Data\\downloads\\1bc05d24fa6dda2468e83a73cf6dc207226e01e3c48a507ea716dc0421da583b\\cnn\\stories' - google colab: NotADirectoryError: [Errno 20] Not a directory: '/root/.cache/huggingface/datasets/downloads/1bc05d24fa6dda2468e83a73cf6dc207226e01e3c48a507ea716dc0421da583b/cnn/stories' The code is to load dataset: windows os: ``` from datasets import load_dataset dataset = load_dataset("cnn_dailymail", "3.0.0", cache_dir="D:\\SourceCode\\DataScience\\HuggingFace\\Data") ``` google colab: ``` import datasets train_data = datasets.load_dataset("cnn_dailymail", "3.0.0", split="train") ```
3,830
https://github.com/huggingface/datasets/issues/3829
[📄 Docs] Create a `datasets` performance guide.
[ "Hi ! Yes this is definitely something we'll explore, since optimizing processing pipelines can be challenging and because performance is key here: we want anyone to be able to play with large-scale datasets more easily.\r\n\r\nI think we'll start by documenting the performance of the dataset transforms we provide, and then we can have some tools to help debugging/optimizing them" ]
## Brief Overview Downloading, saving, and preprocessing large datasets from the `datasets` library can often result in [performance bottlenecks](https://github.com/huggingface/datasets/issues/3735). These performance snags can be challenging to identify and to debug, especially for users who are less experienced with building deep learning experiments. ## Feature Request Could we create a performance guide for using `datasets`, similar to: * [Better performance with the `tf.data` API](https://github.com/huggingface/datasets/issues/3735) * [Analyze `tf.data` performance with the TF Profiler](https://www.tensorflow.org/guide/data_performance_analysis) This performance guide should detail practical options for improving performance with `datasets`, and enumerate any common best practices. It should also show how to use tools like the PyTorch Profiler or the TF Profiler to identify any performance bottlenecks (example below). ![image](https://user-images.githubusercontent.com/3712347/156859152-a3cb9565-3ec6-4d39-8e77-56d0a75a4954.png) ## Related Issues * [wiki_dpr pre-processing performance #1670](https://github.com/huggingface/datasets/issues/1670) * [Adjusting chunk size for streaming datasets #3499](https://github.com/huggingface/datasets/issues/3499) * [how large datasets are handled under the hood #1004](https://github.com/huggingface/datasets/issues/1004) * [using map on loaded Tokenizer 10x - 100x slower than default Tokenizer? #1830](https://github.com/huggingface/datasets/issues/1830) * [Best way to batch a large dataset? #315](https://github.com/huggingface/datasets/issues/315) * [Saving processed dataset running infinitely #1911](https://github.com/huggingface/datasets/issues/1911)
3,829
https://github.com/huggingface/datasets/issues/3828
The Pile's _FEATURE spec seems to be incorrect
[ "Hi @dlwh, thanks for reporting.\r\n\r\nPlease note, that the source data files for \"all\" config are different from the other configurations.\r\n\r\nThe \"all\" config contains the official Pile data files, from https://mystic.the-eye.eu/public/AI/pile/\r\nAll data examples contain a \"meta\" dict with a single \"pile_set_name\" key:\r\n```python\r\nIn [1]: from datasets import load_dataset\r\n ds = load_dataset(\"the_pile\", \"all\", split=\"train\", streaming=True)\r\n item = next(iter(ds))\r\nDownloading builder script: 9.09kB [00:00, 4.42MB/s]\r\n\r\nIn [3]: item[\"meta\"]\r\nOut[3]: {'pile_set_name': 'Pile-CC'}\r\n```\r\n\r\nOn the other hand, all the other subset configs data files come from the Pile preliminary components directory: https://mystic.the-eye.eu/public/AI/pile_preliminary_components/\r\nFor theses components, the \"meta\" field may have different keys depending on the subset: \"id\", \"language\", \"pmid\",... Because of that, if we had kept the `dict` data format for the \"meta\" field, we would have an error when trying to concatenate different subsets, whose \"meta\" keys are not identical. In order to avoid that, the \"meta\" field is cast to `str` in all these cases, so that there is no incompatibility in their \"meta\" data type when concatenating.\r\n\r\nYou can check, for example, that for \"pubmed_central\" the \"meta\" field is cast to `str`:\r\n```python\r\nIn [4]: from datasets import load_dataset\r\n ds = load_dataset(\"the_pile\", \"pubmed_central\", split=\"train\", streaming=True)\r\n item = next(iter(ds))\r\n\r\nIn [5]: item[\"meta\"]\r\nOut[5]: \"{'id': 'PMC6071596'}\"\r\n```\r\n\r\nFeel free to reopen this issue if you have further questions. " ]
## Describe the bug If you look at https://huggingface.co/datasets/the_pile/blob/main/the_pile.py: For "all" * the pile_set_name is never set for data * there's actually an id field inside of "meta" For subcorpora pubmed_central and hacker_news: * the meta is specified to be a string, but it's actually a dict with an id field inside. ## Steps to reproduce the bug ## Expected results Feature spec should match the data I'd think? ## Actual results Specify the actual results or traceback. ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: - Platform: - Python version: - PyArrow version:
3,828
https://github.com/huggingface/datasets/issues/3823
500 internal server error when trying to open a dataset composed of Zarr stores
[ "Hi @jacobbieker, thanks for reporting!\r\n\r\nI have transferred this issue to our Hub team and they are investigating it. I keep you informed. ", "Hi @jacobbieker, we are investigating this issue on our side and we'll see if we can fix it, but please note that your repo is considered problematic for git. Here are the results of running https://github.com/github/git-sizer on it:\r\n\r\n```\r\nProcessing blobs: 147448 \r\nProcessing trees: 27 \r\nProcessing commits: 4 \r\nMatching commits to trees: 4 \r\nProcessing annotated tags: 0 \r\nProcessing references: 3 \r\n| Name | Value | Level of concern |\r\n| ---------------------------- | --------- | ------------------------------ |\r\n| Biggest objects | | |\r\n| * Trees | | |\r\n| * Maximum entries [1] | 167 k | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |\r\n| | | |\r\n| Biggest checkouts | | |\r\n| * Number of files [2] | 189 k | *** |\r\n\r\n[1] aa057d2667c34c70c6146efc631f5c9917ff326e (refs/heads/main:2016.zarr/unknown)\r\n[2] 6897b7bf6440fdd16b2c39d08085a669e7eaa59d (refs/heads/main^{tree})\r\n```\r\n\r\nYou can check https://github.com/github/git-sizer for more information on how to avoid such pathological structures.", "Hi, thanks for getting back to me so quick! And yeah, I figured that was probably the problem. I was going to try to delete the repo, but couldn't through the website, so if that's the easiest way to solve it, I can regenerate the dataset in a different format with less tiny files, and you guys can delete the repo as it is. Zarr just saves everything as lots of small files to make chunks easy to load, which is why I was preferring that format, but maybne that just doesn't work well for HF datasets.", "Hi @jacobbieker,\r\n\r\nFor future use cases, our Hub team is still pondering whether to limit the maximum number of files per repo to avoid technical issues...\r\n\r\nOn the meantime, they have made a fix and your dataset is working: https://huggingface.co/datasets/openclimatefix/mrms" ]
## Describe the bug The dataset [openclimatefix/mrms](https://huggingface.co/datasets/openclimatefix/mrms) gives a 500 server error when trying to open it on the website, or through code. The dataset doesn't have a loading script yet, and I did push two [xarray](https://docs.xarray.dev/en/stable/) Zarr stores of data there recentlyish. The Zarr stores are composed of lots of small files, which I am guessing is probably the problem, as we have another [OCF dataset](https://huggingface.co/datasets/openclimatefix/eumetsat_uk_hrv) using xarray and Zarr, but with the Zarr stored on GCP public datasets instead of directly in HF datasets, and that one opens fine. In general, we were hoping to use HF datasets to release some more public geospatial datasets as benchmarks, which are commonly stored as Zarr stores as they can be compressed well and deal with the multi-dimensional data and coordinates fairly easily compared to other formats, but with this error, I'm assuming we should try a different format? For context, we are trying to have complete public model+data reimplementations of some SOTA weather and solar nowcasting models, like [MetNet, MetNet-2,](https://github.com/openclimatefix/metnet) [DGMR](https://github.com/openclimatefix/skillful_nowcasting), and [others](https://github.com/openclimatefix/graph_weather), which all have large, complex datasets. ## Steps to reproduce the bug ```python from datasets import load_dataset dataset = load_dataset("openclimatefix/mrms") ``` ## Expected results The dataset should be downloaded or open up ## Actual results A 500 internal server error ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 1.18.3 - Platform: Linux-5.15.25-1-MANJARO-x86_64-with-glibc2.35 - Python version: 3.9.10 - PyArrow version: 7.0.0
3,823
https://github.com/huggingface/datasets/issues/3822
Add Biwi Kinect Head Pose Database
[ "Official dataset location : https://icu.ee.ethz.ch/research/datsets.html\r\nIn the \"Biwi Kinect Head Pose Database\" section, I do not find any information regarding \"Downloading the dataset.\" . Do we mail the authors regarding this ?\r\n\r\nI found the dataset on Kaggle : [Link](https://www.kaggle.com/kmader/biwi-kinect-head-pose-database) , but since 🤗 does not host any of the datasets, this would require the user to provide their Kaggle username and API key to download. \r\n\r\nAny inputs on how we could proceed ? Thank you.\r\n[ Need your inputs here, @lhoestq or @mariosasko ]", "Hi @dnaveenr! Thanks for tackling this issue. This link should work: https://data.vision.ee.ethz.ch/cvl/gfanelli/kinect_head_pose_db.tgz", "#self-assign", "Added in https://github.com/huggingface/datasets/pull/3903, thanks @dnaveenr !" ]
## Adding a Dataset - **Name:** Biwi Kinect Head Pose Database - **Description:** Over 15K images of 20 people recorded with a Kinect while turning their heads around freely. For each frame, depth and rgb images are provided, together with ground in the form of the 3D location of the head and its rotation angles. - **Data:** [*link to the Github repository or current dataset location*](https://icu.ee.ethz.ch/research/datsets.html) - **Motivation:** Useful pose estimation dataset Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
3,822
https://github.com/huggingface/datasets/issues/3820
`pubmed_qa` checksum mismatch
[ "Hi @jon-tow, thanks for reporting.\r\n\r\nThis issue was already reported and its root cause is a change in the Google Drive service. See:\r\n- #3786 \r\n\r\nWe have already fixed it. See:\r\n- #3787 \r\n\r\nWe are planning to make a patch release today.\r\n\r\nIn the meantime, you can get this fix by installing our library from the GitHub master branch:\r\n```shell\r\npip install git+https://github.com/huggingface/datasets#egg=datasets\r\n```\r\nThen, if you had previously tried to load the data and got the checksum error, you should force the redownload of the data (before the fix, you just downloaded and cached the virus scan warning page, instead of the data file):\r\n```shell\r\nload_dataset(\"...\", download_mode=\"force_redownload\")\r\n```" ]
## Describe the bug Loading [`pubmed_qa`](https://huggingface.co/datasets/pubmed_qa) results in a mismatched checksum error. ## Steps to reproduce the bug ```python # Sample code to reproduce the bug import datasets try: datasets.load_dataset("pubmed_qa", "pqa_labeled") except Exception as e: print(e) try: datasets.load_dataset("pubmed_qa", "pqa_unlabeled") except Exception as e: print(e) try: datasets.load_dataset("pubmed_qa", "pqa_artificial") except Exception as e: print(e) ``` ## Expected results Successful download. ## Actual results Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/usr/local/lib/python3.9/site-packages/datasets/load.py", line 1702, in load_dataset builder_instance.download_and_prepare( File "/usr/local/lib/python3.9/site-packages/datasets/builder.py", line 594, in download_and_prepare self._download_and_prepare( File "/usr/local/lib/python3.9/site-packages/datasets/builder.py", line 665, in _download_and_prepare verify_checksums( File "/usr/local/lib/python3.9/site-packages/datasets/utils/info_utils.py", line 40, in verify_checksums raise NonMatchingChecksumError(error_msg + str(bad_urls)) datasets.utils.info_utils.NonMatchingChecksumError: Checksums didn't match for dataset source files: ['https://drive.google.com/uc?export=download&id=1RsGLINVce-0GsDkCLDuLZmoLuzfmoCuQ', 'https://drive.google.com/uc?export=download&id=15v1x6aQDlZymaHGP7cZJZZYFfeJt2NdS'] ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 1.18.3 - Platform: macOS - Python version: 3.8.1 - PyArrow version: 3.0.0
3,820
https://github.com/huggingface/datasets/issues/3818
Support for "sources" parameter in the add() and add_batch() methods in datasets.metric - SARI
[ "Hi, thanks for reporting! We can add a `sources: datasets.Value(\"string\")` feature to the `Features` dict in the `SARI` script to fix this. Would you be interested in submitting a PR?", "Hi Mario,\r\n\r\nThanks for your message. I did try to add `sources` into the `Features` dict using a script for the metric:\r\n```\r\n features=datasets.Features(\r\n {\r\n \"sources\": datasets.Value(\"string\", id=\"sequence\"),\r\n \"predictions\": datasets.Value(\"string\", id=\"sequence\"),\r\n \"references\": datasets.Sequence(datasets.Value(\"string\", id=\"sequence\"), id=\"references\"),\r\n }\r\n ),\r\n```\r\n\r\nBut that only avoids a failure in `encode_batch` in the `add_batch` method:\r\n```\r\n batch = {\"predictions\": predictions, \"references\": references}\r\n batch = self.info.features.encode_batch(batch)\r\n```\r\n\r\nThe real problem is that `add_batch()`, `add()` and `compute()` does not receive a `sources` param:\r\n```\r\ndef add_batch(self, *, predictions=None, references=None):\r\ndef add(self, *, prediction=None, reference=None):\r\ndef compute(self, *, predictions=None, references=None, **kwargs)\r\n```\r\n\r\nAnd then, it fails:\r\n`TypeError: add_batch() got an unexpected keyword argument sources`\r\n\r\nI need this for adding any metric based on SARI or alike, not only for sari.py :)\r\n\r\nLet me know if I understood correctly the proposed solution.\r\n", "The `Metric` class has been modified recently to support this use-case, but the `add_batch` + `compute` pattern still doesn't work correctly. I'll open a PR." ]
**Is your feature request related to a problem? Please describe.** The methods `add_batch` and `add` from the `Metric` [class](https://github.com/huggingface/datasets/blob/1675ad6a958435b675a849eafa8a7f10fe0f43bc/src/datasets/metric.py) does not work with [SARI](https://github.com/huggingface/datasets/blob/master/metrics/sari/sari.py) metric. This metric not only relies on the predictions and references, but also in the input. For example, when the `add_batch` method is used, then the `compute()` method fails: ``` metric = load_metric("sari") metric.add_batch( predictions=["About 95 you now get in ."], references=[["About 95 species are currently known .","About 95 species are now accepted .","95 species are now accepted ."]]) metric.compute() > TypeError: _compute() missing 1 required positional argument: 'sources' ``` Therefore, the `compute() `method can only be used standalone: ``` metric = load_metric("sari") result = metric.compute( sources=["About 95 species are currently accepted ."], predictions=["About 95 you now get in ."], references=[["About 95 species are currently known .","About 95 species are now accepted .","95 species are now accepted ."]]) > {'sari': 26.953601953601954} ``` **Describe the solution you'd like** Support for an additional parameter `sources` in the `add_batch` and `add` of the `Metric` class. ``` add_batch(*, sources=None, predictions=None, references=None, **kwargs) add(*, sources=None, predictions=None, references=None, **kwargs) compute() ``` **Describe alternatives you've considered** I've tried to override the `add_batch` and `add`, however, these are highly dependent to the `Metric` class. We could also write a simple function that compute the scores of a sentences list, but then we lose the functionality from the original [add](https://huggingface.co/docs/datasets/_modules/datasets/metric.html#Metric.add) and [add_batch method](https://huggingface.co/docs/datasets/_modules/datasets/metric.html#Metric.add_batch). **Additional context** These methods are used in the transformers [pytorch examples](https://github.com/huggingface/transformers/blob/master/examples/pytorch/summarization/run_summarization_no_trainer.py).
3,818
https://github.com/huggingface/datasets/issues/3813
Add MetaShift dataset
[ "I would like to take this up and give it a shot. Any image specific - dataset guidelines to keep in mind ? Thank you.", "#self-assign", "I've started working on adding this dataset. I require some inputs on the following : \r\n\r\nRef for the initial draft [here](https://github.com/dnaveenr/datasets/blob/add_metashift_dataset/datasets/metashift/metashift.py)\r\n1. The dataset does not have a typical - train/test/val split. What do we do for the _split_generators() function ? How do we go about this ?\r\n2. This dataset builds on the Visual Genome dataset, using a metadata file. The dataset is generated using generate_full_MetaShift.py script. By default, the authors choose to generate the dataset only for a SELECTED_CLASSES. The following script is used : \r\nCode : https://github.com/Weixin-Liang/MetaShift/blob/main/dataset/generate_full_MetaShift.py \r\nInfo : https://metashift.readthedocs.io/en/latest/sub_pages/download_MetaShift.html#generate-the-full-metashift-dataset\r\nCan I just copy over the required functions into the metashift.py to generate the dataset ?\r\n3. How do we complete the _generate_examples for this dataset ?\r\n\r\nThe user has the ability to use default selected classes, get the complete dataset or add more specific additional classes. I think config would be a good option here.\r\n\r\nInputs, suggestions would be helpful. Thank you.", "I think @mariosasko and @lhoestq should be able to help here 😄 ", "Hi ! Thanks for adding this dataset :) Let me answer your questions:\r\n\r\n1. in this case you can put everything in the \"train\" split\r\n2. Yes you can copy the script (provided you also include the MIT license of the code in the file header for example). Though we ideally try to not create new directories nor files when generating dataset, so if possible this script should be adapted to not create the file structure they mentioned, but instead yield the images one by one in `_generate_examples`. Let me know if you think this is feasible\r\n3. see point 2 haha\r\n\r\n> The user has the ability to use default selected classes, get the complete dataset or add more specific additional classes. I think config would be a good option here.\r\n\r\nYup ! We can also define a `selected_classes` parameter such that users can do\r\n```python\r\nload_dataset(\"metashift\", selected_classes=[\"cat\", \"dog\", ...])\r\n```", "Great. This is helpful. Thanks @lhoestq .\r\nRegarding Point 2, I'll try using yield instead of creating the directories and see if its feasible. selected_classes config sounds good.", "Closed via #3900 " ]
## Adding a Dataset - **Name:** MetaShift - **Description:** collection of 12,868 sets of natural images across 410 classes- - **Paper:** https://arxiv.org/abs/2202.06523v1 - **Data:** https://github.com/weixin-liang/metashift Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
3,813
https://github.com/huggingface/datasets/issues/3809
Checksums didn't match for datasets on Google Drive
[ "Hi @muelletm, thanks for reporting.\r\n\r\nThis issue was already reported and its root cause is a change in the Google Drive service. See:\r\n- #3786 \r\n\r\nWe have already fixed it. See:\r\n- #3787 \r\n\r\nUntil our next `datasets` library release, you can get this fix by installing our library from the GitHub master branch:\r\n```shell\r\npip install git+https://github.com/huggingface/datasets#egg=datasets\r\n```\r\nThen, if you had previously tried to load the data and got the checksum error, you should force the redownload of the data (before the fix, you just downloaded and cached the virus scan warning page, instead of the data file):\r\n```shell\r\nload_dataset(\"...\", download_mode=\"force_redownload\")\r\n```" ]
## Describe the bug Datasets hosted on Google Drive do not seem to work right now. Loading them fails with a checksum error. ## Steps to reproduce the bug ```python from datasets import load_dataset for dataset in ["head_qa", "yelp_review_full"]: try: load_dataset(dataset) except Exception as exception: print("Error", dataset, exception) ``` Here is a [colab](https://colab.research.google.com/drive/1wOtHBmL8I65NmUYakzPV5zhVCtHhi7uQ#scrollTo=cDzdCLlk-Bo4). ## Expected results The datasets should be loaded. ## Actual results ``` Downloading and preparing dataset head_qa/es (download: 75.69 MiB, generated: 2.86 MiB, post-processed: Unknown size, total: 78.55 MiB) to /root/.cache/huggingface/datasets/head_qa/es/1.1.0/583ab408e8baf54aab378c93715fadc4d8aa51b393e27c3484a877e2ac0278e9... Error head_qa Checksums didn't match for dataset source files: ['https://drive.google.com/u/0/uc?export=download&id=1a_95N5zQQoUCq8IBNVZgziHbeM-QxG2t'] Downloading and preparing dataset yelp_review_full/yelp_review_full (download: 187.06 MiB, generated: 496.94 MiB, post-processed: Unknown size, total: 684.00 MiB) to /root/.cache/huggingface/datasets/yelp_review_full/yelp_review_full/1.0.0/13c31a618ba62568ec8572a222a283dfc29a6517776a3ac5945fb508877dde43... Error yelp_review_full Checksums didn't match for dataset source files: ['https://drive.google.com/uc?export=download&id=0Bz8a_Dbh9QhbZlU4dXhHTFhZQU0'] ``` ## Environment info - `datasets` version: 1.18.3 - Platform: Linux-5.4.144+-x86_64-with-Ubuntu-18.04-bionic - Python version: 3.7.12 - PyArrow version: 6.0.1
3,809
https://github.com/huggingface/datasets/issues/3808
Pre-Processing Cache Fails when using a Factory pattern
[ "Ok - this is still an issue but I believe the root cause is different than I originally thought. I'm now able to get caching to work consistently with the above example as long as I fix the python hash seed `export PYTHONHASHSEED=1234`", "Hi! \r\n\r\nYes, our hasher should work with decorators. For instance, this dummy example:\r\n```python\r\ndef f(arg):\r\n def f1(ex):\r\n return {\"a\": ex[\"col1\"] + arg}\r\n return f1\r\n```\r\ngives the same hash across different Python sessions (`datasets.fingerprint.Hasher.hash(f(\"string1\")` returns `\"408c9059f89dbd6c\"` on my machine).\r\n\r\nCould you please make the example self-contained? This way, we can reproduce the bug. Additionally, you can try to find the problematic object yourself by testing their hash with `datasets.fingerprint.Hasher.hash(obj)`\r\n\r\nThis could be related to https://github.com/huggingface/datasets/issues/3638.", "#3638 was indeed my issue. Thanks!" ]
## Describe the bug If you utilize a pre-processing function which is created using a factory pattern, the function hash changes on each run (even if the function is identical) and therefore the data will be reproduced each time. ## Steps to reproduce the bug ```python def preprocess_function_factory(augmentation=None): def preprocess_function(examples): # Tokenize the texts if augmentation: conversions1 = [ augmentation(example) for example in examples[sentence1_key] ] if sentence2_key is None: args = (conversions1,) else: conversions2 = [ augmentation(example) for example in examples[sentence2_key] ] args = (conversions1, conversions2) else: args = ( (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key]) ) result = tokenizer( *args, padding=padding, max_length=max_seq_length, truncation=True ) # Map labels to IDs (not necessary for GLUE tasks) if label_to_id is not None and "label" in examples: result["label"] = [ (label_to_id[l] if l != -1 else -1) for l in examples["label"] ] return result return preprocess_function capitalize = lambda x: x.capitalize() preprocess_function = preprocess_function_factory(augmentation=capitalize) print(hash(preprocess_function)) # This will change on each run raw_datasets = raw_datasets.map( preprocess_function, batched=True, load_from_cache_file=True, desc="Running transformation and tokenizer on dataset", ) ``` ## Expected results Running the code twice will cause the cache to be re-used. ## Actual results Running the code twice causes the whole dataset to be re-processed
3,808
https://github.com/huggingface/datasets/issues/3807
NonMatchingChecksumError in xcopa dataset
[ "@albertvillanova here's a separate issue for a bug similar to #3792", "Hi @afcruzs-ms, thanks for opening this separate issue for your problem.\r\n\r\nThe root problem in the other issue (#3792) was a change in the service of Google Drive.\r\n\r\nBut in your case, the `xcopa` dataset is not hosted on Google Drive. Therefore, the root cause should be a different one.\r\n\r\nLet me look at it... ", "@afcruzs-ms, I'm not able to reproduce the issue you reported:\r\n```python\r\nIn [1]: from datasets import load_dataset\r\n ...: dataset = load_dataset(\"xcopa\", \"it\")\r\nDownloading builder script: 5.21kB [00:00, 2.75MB/s] \r\nDownloading metadata: 28.6kB [00:00, 14.5MB/s] \r\nDownloading and preparing dataset xcopa/it (download: 627.09 KiB, generated: 76.43 KiB, post-processed: Unknown size, total: 703.52 KiB) to .../.cache/huggingface/datasets/xcopa/it/1.0.0/e1fab65f984b24c8b66bcf7ac27a26a1182f84adfb2e74035861be65e214b9e6...\r\nDownloading data: 642kB [00:00, 5.42MB/s]\r\nDataset xcopa downloaded and prepared to .../.cache/huggingface/datasets/xcopa/it/1.0.0/e1fab65f984b24c8b66bcf7ac27a26a1182f84adfb2e74035861be65e214b9e6. Subsequent calls will reuse this data. \r\n100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 733.27it/s]\r\n\r\nIn [2]: dataset\r\nOut[2]: \r\nDatasetDict({\r\n test: Dataset({\r\n features: ['premise', 'choice1', 'choice2', 'question', 'label', 'idx', 'changed'],\r\n num_rows: 500\r\n })\r\n validation: Dataset({\r\n features: ['premise', 'choice1', 'choice2', 'question', 'label', 'idx', 'changed'],\r\n num_rows: 100\r\n })\r\n})\r\n```\r\n\r\nMaybe you have some issue with your cached data... Could you please try to force the redownload of the data?\r\n```python\r\ndataset = load_dataset(\"xcopa\", \"it\", download_mode=\"force_redownload\")\r\n```", "It works indeed, thanks! ", "unfortunately, i am having a similar problem with the irc_disentaglement dataset :/\r\nmy code:\r\n```\r\nfrom datasets import load_dataset\r\n\r\ndataset = load_dataset(\"irc_disentangle\", download_mode=\"force_redownload\")\r\n```\r\n\r\nhowever, it produces the same error as @afcruzs-ms \r\n```\r\n[38](file:///Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/site-packages/datasets/utils/info_utils.py?line=37) if len(bad_urls) > 0:\r\n [39](file:///Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/site-packages/datasets/utils/info_utils.py?line=38) error_msg = \"Checksums didn't match\" + for_verification_name + \":\\n\"\r\n---> [40](file:///Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/site-packages/datasets/utils/info_utils.py?line=39) raise NonMatchingChecksumError(error_msg + str(bad_urls))\r\n [41](file:///Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/site-packages/datasets/utils/info_utils.py?line=40) logger.info(\"All the checksums matched successfully\" + for_verification_name)\r\n\r\nNonMatchingChecksumError: Checksums didn't match for dataset source files:\r\n['https://github.com/jkkummerfeld/irc-disentanglement/tarball/master']\r\n```\r\n\r\nI attempted to use the `ignore_verifications' as such:\r\n```\r\nds = datasets.load_dataset('irc_disentangle', download_mode=\"force_redownload\", ignore_verifications=True)\r\n\r\n```\r\n```\r\nDownloading builder script: 12.0kB [00:00, 5.92MB/s] \r\nDownloading metadata: 7.58kB [00:00, 3.48MB/s] \r\nNo config specified, defaulting to: irc_disentangle/ubuntu\r\nDownloading and preparing dataset irc_disentangle/ubuntu (download: 112.98 MiB, generated: 60.05 MiB, post-processed: Unknown size, total: 173.03 MiB) to /Users/laylabouzoubaa/.cache/huggingface/datasets/irc_disentangle/ubuntu/1.0.0/0f24ab262a21d8c1d989fa53ed20caa928f5880be26c162bfbc02445dbade7e5...\r\nDownloading data: 118MB [00:09, 12.1MB/s] \r\n \r\nDataset irc_disentangle downloaded and prepared to /Users/laylabouzoubaa/.cache/huggingface/datasets/irc_disentangle/ubuntu/1.0.0/0f24ab262a21d8c1d989fa53ed20caa928f5880be26c162bfbc02445dbade7e5. Subsequent calls will reuse this data.\r\n100%|██████████| 3/3 [00:00<00:00, 675.38it/s]\r\n```\r\nbut, this returns an empty set?\r\n\r\n```\r\nDatasetDict({\r\n train: Dataset({\r\n features: ['id', 'raw', 'ascii', 'tokenized', 'date', 'connections'],\r\n num_rows: 0\r\n })\r\n test: Dataset({\r\n features: ['id', 'raw', 'ascii', 'tokenized', 'date', 'connections'],\r\n num_rows: 0\r\n })\r\n validation: Dataset({\r\n features: ['id', 'raw', 'ascii', 'tokenized', 'date', 'connections'],\r\n num_rows: 0\r\n })\r\n})\r\n```\r\n\r\nnot sure what else to try at this point?\r\nThanks in advanced🤗", "Thanks @labouz for reporting: yes, better opening a new GitHub issue as you did. I'm addressing it:\r\n- #4376" ]
## Describe the bug Loading the xcopa dataset doesn't work, it fails due to a mismatch in the checksum. ## Steps to reproduce the bug ```python from datasets import load_dataset dataset = load_dataset("xcopa", "it") ``` ## Expected results The dataset should be loaded correctly. ## Actual results Fails with: ```python in verify_checksums(expected_checksums, recorded_checksums, verification_name) 38 if len(bad_urls) > 0: 39 error_msg = "Checksums didn't match" + for_verification_name + ":\n" ---> 40 raise NonMatchingChecksumError(error_msg + str(bad_urls)) 41 logger.info("All the checksums matched successfully" + for_verification_name) 42 NonMatchingChecksumError: Checksums didn't match for dataset source files: ['https://github.com/cambridgeltl/xcopa/archive/master.zip'] ``` ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 1.18.3, and 1.18.4.dev0 - Platform: - Python version: 3.8 - PyArrow version:
3,807
https://github.com/huggingface/datasets/issues/3804
Text builder with custom separator line boundaries
[ "Gently pinging @lhoestq", "Hi ! Interresting :)\r\n\r\nCould you give more details on what kind of separators you would like to use instead ?", "In my case, I just want to use `\\n` but not `U+2028`.", "Ok I see, maybe there can be a `sep` parameter to allow users to specify what line/paragraph separator they'd like to use", "Related to:\r\n- #3729 \r\n- #3910", "Thanks for requesting this enhancement. We have recently found a somehow related issue with another dataset:\r\n- #3704\r\n\r\nLet me make a PR proposal." ]
**Is your feature request related to a problem? Please describe.** The current [Text](https://github.com/huggingface/datasets/blob/207be676bffe9d164740a41a883af6125edef135/src/datasets/packaged_modules/text/text.py#L23) builder implementation splits texts with `splitlines()` which splits the text on several line boundaries. Not all of them are always wanted. **Describe the solution you'd like** ```python if self.config.sample_by == "line": batch_idx = 0 while True: batch = f.read(self.config.chunksize) if not batch: break batch += f.readline() # finish current line if self.config.custom_newline is None: batch = batch.splitlines(keepends=self.config.keep_linebreaks) else: batch = batch.split(self.config.custom_newline)[:-1] pa_table = pa.Table.from_arrays([pa.array(batch)], schema=schema) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), pa_table batch_idx += 1 ``` **A clear and concise description of what you want to happen.** Creating the dataset rows with a subset of the `splitlines()` line boundaries.
3,804
https://github.com/huggingface/datasets/issues/3795
can not flatten natural_questions dataset
[ "same issue. downgrade it to a lower version.", "Thanks for reporting, I'll take a look tomorrow :)" ]
## Describe the bug after downloading the natural_questions dataset, can not flatten the dataset considering there are `long answer` and `short answer` in `annotations`. ## Steps to reproduce the bug ```python from datasets import load_dataset dataset = load_dataset('natural_questions',cache_dir = 'data/dataset_cache_dir') dataset['train'].flatten() ``` ## Expected results a dataset with `long_answer` as features ## Actual results Traceback (most recent call last): File "temp.py", line 5, in <module> dataset['train'].flatten() File "/Users/hannibal046/anaconda3/lib/python3.8/site-packages/datasets/fingerprint.py", line 413, in wrapper out = func(self, *args, **kwargs) File "/Users/hannibal046/anaconda3/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 1296, in flatten dataset._data = update_metadata_with_features(dataset._data, dataset.features) File "/Users/hannibal046/anaconda3/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 536, in update_metadata_with_features features = Features({col_name: features[col_name] for col_name in table.column_names}) File "/Users/hannibal046/anaconda3/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 536, in <dictcomp> features = Features({col_name: features[col_name] for col_name in table.column_names}) KeyError: 'annotations.long_answer' ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 1.8.13 - Platform: MBP - Python version: 3.8 - PyArrow version: 6.0.1
3,795
https://github.com/huggingface/datasets/issues/3792
Checksums didn't match for dataset source
[ "Same issue with `dataset = load_dataset(\"dbpedia_14\")`\r\n```\r\nNonMatchingChecksumError: Checksums didn't match for dataset source files:\r\n['https://drive.google.com/uc?export=download&id=0Bz8a_Dbh9QhbQ2Vic1kxMmZZQ1k']", "I think this is a side-effect of #3787. The checksums won't match because the URLs have changed. @rafikg @Y0mingZhang, while this is fixed, maybe you can load the datasets as such:\r\n\r\n`data = datasets.load_dataset(\"wiki_lingua\", name=language, split=\"train[:2000]\", ignore_verifications=True)`\r\n`dataset = load_dataset(\"dbpedia_14\", ignore_verifications=True)`\r\n\r\nThis will, most probably, skip the verifications and integrity checks listed [here](https://huggingface.co/docs/datasets/loading_datasets.html#integrity-verifications)", "Hi! Installing the `datasets` package from master (`pip install git+https://github.com/huggingface/datasets.git`) and then redownloading the datasets with `download_mode` set to `force_redownload` (e.g. `dataset = load_dataset(\"dbpedia_14\", download_mode=\"force_redownload\")`) should fix the issue.", "Hi @rafikg and @Y0mingZhang, thanks for reporting.\r\n\r\nIndeed it seems that Google Drive changed their way to access their data files. We have recently handled that change:\r\n- #3787\r\n\r\nbut it will be accessible to users only in our next release of the `datasets` version.\r\n- Note that our latest release (version 1.18.3) was made before this fix: https://github.com/huggingface/datasets/releases/tag/1.18.3\r\n\r\nIn the meantime, as @mariosasko explained, you can incorporate this \"fix\" by installing our library from the GitHub master branch:\r\n```shell\r\npip install git+https://github.com/huggingface/datasets#egg=datasets\r\n```\r\nThen, you should force the redownload of the data (before the fix, you are just downloading/caching the virus scan warning page, instead of the data file):\r\n```shell\r\ndata = datasets.load_dataset(\"wiki_lingua\", name=language, split=\"train[:2000]\", download_mode=\"force_redownload\")", "@albertvillanova by running:\r\n```\r\npip install git+https://github.com/huggingface/datasets#egg=datasets\r\ndata = datasets.load_dataset(\"wiki_lingua\", name=language, split=\"train[:2000]\", download_mode=\"force_redownload\", ignore_verifications=True)\r\n```\r\n\r\nI had a pickle error **UnpicklingError: invalid load key, '<'** in this part of code both `locally and on google colab`:\r\n\r\n```\r\n\"\"\"Yields examples.\"\"\"\r\nwith open(filepath, \"rb\") as f:\r\n data = pickle.load(f)\r\nfor id_, row in enumerate(data.items()):\r\n yield id_, {\"url\": row[0], \"article\": self._process_article(row[1])}\r\n```\r\n", "This issue impacts many more datasets than the ones mention in this thread. Can we post # of downloads for each dataset by day (by successes and failures)? If so, it should be obvious which ones are failing.", "I can see this problem too in xcopa, unfortunately installing the latest master (1.18.4.dev0) doesn't work, @albertvillanova .\r\n\r\n```\r\nfrom datasets import load_dataset\r\ndataset = load_dataset(\"xcopa\", \"it\")\r\n```\r\n\r\nThrows\r\n\r\n```\r\nin verify_checksums(expected_checksums, recorded_checksums, verification_name)\r\n 38 if len(bad_urls) > 0:\r\n 39 error_msg = \"Checksums didn't match\" + for_verification_name + \":\\n\"\r\n---> 40 raise NonMatchingChecksumError(error_msg + str(bad_urls))\r\n 41 logger.info(\"All the checksums matched successfully\" + for_verification_name)\r\n 42 \r\n\r\nNonMatchingChecksumError: Checksums didn't match for dataset source files:\r\n['https://github.com/cambridgeltl/xcopa/archive/master.zip']\r\n```", "Hi @rafikg, I think that is another different issue. Let me check it... \r\n\r\nI guess maybe you are using a different Python version that the one the dataset owner used to create the pickle file...", "@kwchurch the datasets impacted for this specific issue are the ones which are hosted at Google Drive.", "@afcruzs-ms I think your issue is a different one, because that dataset is not hosted at Google Drive. Would you mind open another issue for that other problem, please? Thanks! :)", "@albertvillanova just to let you know that I tried it locally and on colab and it is the same error", "There are many many datasets on HugggingFace that are receiving this checksum error. Some of these datasets are very popular. There must be a way to track these errors, or to do regression testing. We don't want to catch each of these errors on each dataset, one at a time.", "@rafikg I am sorry, but I can't reproduce your issue. For me it works OK for all languages. See: https://colab.research.google.com/drive/1yIcLw1it118-TYE3ZlFmV7gJcsF6UCsH?usp=sharing", "@kwchurch the PR #3787 fixes this issue (generated by a change in Google Drive service) for ALL datasets with this issue. Once we make our next library release (in a couple of days), the fix will be accessible to all users that update our library from PyPI.", "By the way, @rafikg, I discovered the URL for Spanish was wrong. I've created a PR to fix it:\r\n- #3806 ", "I have the same problem with \"wider_face\" dataset. It seems that \"load_dataset\" function can not download the dataset from google drive.\r\n", "still getting this issue with datasets==2.2.2 for \r\ndataset_fever_original_dev = load_dataset('fever', \"v1.0\", split=\"labelled_dev\")\r\n(this one seems to be hosted by aws though)\r\n\r\nupdate: also tried to install from source to get the latest 2.2.3.dev0, but still get the error below (and also force-redownloaded)\r\n\r\nupdate2: Seems like this issues is linked to a change in the links in the specific fever datasets: https://fever.ai/\r\n\"28/04/2022\r\nDataset download URLs have changed\r\nDownload URLs for shared task data for FEVER, FEVER2.0 and FEVEROUS have been updated. New URLS begin with https://fever.ai/download/[task name]/[filename]. All resource pages have been updated with the new URLs. Previous dataset URLs may not work and should be updated if you require these in your scripts. \"\r\n\r\n=> I don't know how to update the links for HF datasets - would be great if someone could update them :) \r\n\r\n```\r\n\r\nDownloading and preparing dataset fever/v1.0 (download: 42.78 MiB, generated: 38.39 MiB, post-processed: Unknown size, total: 81.17 MiB) to /root/.cache/huggingface/datasets/fever/v1.0/1.0.0/956b0a9c4b05e126fd956be73e09da5710992b5c85c30f0e5e1c500bc6051d0a...\r\n\r\nDownloading data files: 100%\r\n6/6 [00:07<00:00, 1.21s/it]\r\nDownloading data:\r\n278/? [00:00<00:00, 2.34kB/s]\r\nDownloading data:\r\n278/? [00:00<00:00, 1.53kB/s]\r\nDownloading data:\r\n278/? [00:00<00:00, 7.43kB/s]\r\nDownloading data:\r\n278/? [00:00<00:00, 5.54kB/s]\r\nDownloading data:\r\n278/? [00:00<00:00, 6.19kB/s]\r\nDownloading data:\r\n278/? [00:00<00:00, 7.51kB/s]\r\nExtracting data files: 100%\r\n6/6 [00:00<00:00, 108.05it/s]\r\n\r\n---------------------------------------------------------------------------\r\n\r\nNonMatchingChecksumError Traceback (most recent call last)\r\n\r\n[<ipython-input-20-92ec5c728ecf>](https://localhost:8080/#) in <module>()\r\n 27 # get labels for fever-nli-dev from original fever - only works for dev\r\n 28 # \"(The labels for both dev and test are hidden but you can retrieve the label for dev using the cid and the original FEVER data.)\"\" https://github.com/easonnie/combine-FEVER-NSMN/blob/master/other_resources/nli_fever.md\r\n---> 29 dataset_fever_original_dev = load_dataset('fever', \"v1.0\", split=\"labelled_dev\")\r\n 30 df_fever_original_dev = pd.DataFrame(data={\"id\": dataset_fever_original_dev[\"id\"], \"label\": dataset_fever_original_dev[\"label\"], \"claim\": dataset_fever_original_dev[\"claim\"], \"evidence_id\": dataset_fever_original_dev[\"evidence_id\"]})\r\n 31 df_fever_dev = pd.merge(df_fever_dev, df_fever_original_dev, how=\"left\", left_on=\"cid\", right_on=\"id\")\r\n\r\n4 frames\r\n\r\n[/usr/local/lib/python3.7/dist-packages/datasets/utils/info_utils.py](https://localhost:8080/#) in verify_checksums(expected_checksums, recorded_checksums, verification_name)\r\n 38 if len(bad_urls) > 0:\r\n 39 error_msg = \"Checksums didn't match\" + for_verification_name + \":\\n\"\r\n---> 40 raise NonMatchingChecksumError(error_msg + str(bad_urls))\r\n 41 logger.info(\"All the checksums matched successfully\" + for_verification_name)\r\n 42 \r\n\r\nNonMatchingChecksumError: Checksums didn't match for dataset source files:\r\n['https://s3-eu-west-1.amazonaws.com/fever.public/train.jsonl', 'https://s3-eu-west-1.amazonaws.com/fever.public/shared_task_dev.jsonl', 'https://s3-eu-west-1.amazonaws.com/fever.public/shared_task_dev_public.jsonl', 'https://s3-eu-west-1.amazonaws.com/fever.public/shared_task_test.jsonl', 'https://s3-eu-west-1.amazonaws.com/fever.public/paper_dev.jsonl', 'https://s3-eu-west-1.amazonaws.com/fever.public/paper_test.jsonl']\r\n```\r\n", "I think this has to be fixed on the google drive side, but you also have to delete the bad stuff from your local cache. This is not a great design, but it is what it is.", "We have fixed the issues with the datasets:\r\n- wider_face: by hosting their data files on the HuggingFace Hub (CC: @HosseynGT)\r\n- fever: by updating to their new data URLs (CC: @MoritzLaurer)", "The yelp_review_full datasets has this problem as well and can't be fixed with the suggestion.", "This is a super-common failure mode. We really need to find a better workaround. My solution was to wait until the owner of the dataset in question did the right thing, and then I had to delete my cached versions of the datasets with the bad checksums. I don't understand why this happens. Would it be possible to maintain a copy of the most recent version that was known to work, and roll back to that automatically if the checksums fail? And if the checksums fail, couldn't the system automatically flush the cached versions with the bad checksums? It feels like we are blaming the provider of the dataset, when in fact, there are things that the system could do to ease the pain. Let's take these error messages seriously. There are too many of them involving too many different datasets.", "the [exams](https://huggingface.co/datasets/exams) dataset also has this issue and the provided fix above doesn't work", "Same for [DART dataset](https://huggingface.co/datasets/dart):\r\n```\r\nNonMatchingChecksumError: Checksums didn't match for dataset source files:\r\n['https://raw.githubusercontent.com/Yale-LILY/dart/master/data/v1.1.1/dart-v1.1.1-full-train.json', 'https://raw.githubusercontent.com/Yale-LILY/dart/master/data/v1.1.1/dart-v1.1.1-full-dev.json', 'https://raw.githubusercontent.com/Yale-LILY/dart/master/data/v1.1.1/dart-v1.1.1-full-test.json']\r\n```", "same for multi_news dataset", "- @thesofakillers the issue with `exams` was fixed on 16 Aug by this PR:\r\n - #4853\r\n- @Aktsvigun the issue with `dart` has been transferred to the Hub: https://huggingface.co/datasets/dart/discussions/1\r\n - and fixed by PR: https://huggingface.co/datasets/dart/discussions/2\r\n- @Carol-gutianle the issue with `multi_news` have been transferred to the Hub as well: https://huggingface.co/datasets/multi_news/discussions/1\r\n - not reproducible: maybe you should try to update `datasets`\r\n\r\nFor information to everybody, we are removing the checksum verifications (that were creating a bad user experience). This will be in place in the following weeks.", "auto_gptq is required for real quantization\r\n['/home/sam/Doctorproject/OmniQuant-main/main.py', '--model', '/home/sam/Doctorproject/OmniQuant-main/PATH/TO/LLaMA/llama-7b/', '--epochs', '20', '--output_dir', '/home/sam/Doctorproject/OmniQuant-main/outdir/llama-7b-w3a16/', '--eval_ppl', '--wbits', '3', '--abits', '16', '--lwc', '--net', 'llama-7b', '--aug_loss']\r\n[2024-03-13 17:58:48 root](main.py 262): INFO Namespace(model='/home/sam/Doctorproject/OmniQuant-main/PATH/TO/LLaMA/llama-7b/', cache_dir='./cache', output_dir='/home/sam/Doctorproject/OmniQuant-main/outdir/llama-7b-w3a16/', save_dir=None, resume=None, real_quant=False, calib_dataset='wikitext2', nsamples=128, batch_size=1, seed=2, tasks='', eval_ppl=True, num_fewshot=0, wbits=3, abits=16, group_size=None, alpha=0.5, let_lr=0.005, lwc_lr=0.01, wd=0, epochs=20, let=False, lwc=True, aug_loss=True, symmetric=False, disable_zero_point=False, a_dynamic_method='per_token', w_dynamic_method='per_channel', limit=-1, multigpu=False, deactive_amp=False, attn_implementation='eager', net='llama-7b', act_scales=None, act_shifts=None)\r\nLoading checkpoint shards: 0%| | 0/33 [00:00<?, ?it/s]/home/sam/anaconda3/envs/omniquant/lib/python3.10/site-packages/torch/_utils.py:776: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()\r\n return self.fget.__get__(instance, owner)()\r\nLoading checkpoint shards: 100%|██████████| 33/33 [00:11<00:00, 2.98it/s]\r\nvocab size: 32000\r\n[2024-03-13 17:58:59 root](main.py 331): INFO === start quantization ===\r\nget_wikitext2\r\n[2024-03-13 18:02:20 datasets.load](load.py 1586): WARNING Using the latest cached version of the module from /home/sam/.cache/huggingface/modules/datasets_modules/datasets/wikitext/a241db52902eaf2c6aa732210bead40c090019a499ceb13bcbfa3f8ab646a126 (last modified on Wed Mar 13 16:54:26 2024) since it couldn't be found locally at wikitext, or remotely on the Hugging Face Hub.\r\nUsing the latest cached version of the module from /home/sam/.cache/huggingface/modules/datasets_modules/datasets/wikitext/a241db52902eaf2c6aa732210bead40c090019a499ceb13bcbfa3f8ab646a126 (last modified on Wed Mar 13 16:54:26 2024) since it couldn't be found locally at wikitext, or remotely on the Hugging Face Hub.\r\nDownloading data: 243B [00:00, 877kB/s]\r\nGenerating test split: 0%| | 0/4358 [00:00<?, ? examples/s]\r\nTraceback (most recent call last):\r\n File \"/home/sam/anaconda3/envs/omniquant/lib/python3.10/site-packages/datasets/builder.py\", line 1742, in _prepare_split_single\r\n for key, record in generator:\r\n File \"/home/sam/.cache/huggingface/modules/datasets_modules/datasets/wikitext/a241db52902eaf2c6aa732210bead40c090019a499ceb13bcbfa3f8ab646a126/wikitext.py\", line 187, in _generate_examples\r\n with open(data_file, encoding=\"utf-8\") as f:\r\n File \"/home/sam/anaconda3/envs/omniquant/lib/python3.10/site-packages/datasets/streaming.py\", line 75, in wrapper\r\n return function(*args, download_config=download_config, **kwargs)\r\n File \"/home/sam/anaconda3/envs/omniquant/lib/python3.10/site-packages/datasets/download/streaming_download_manager.py\", line 507, in xopen\r\n return open(main_hop, mode, *args, **kwargs)\r\nNotADirectoryError: [Errno 20] Not a directory: '/home/sam/.cache/huggingface/datasets/downloads/94be2a7b3fff32ae7379658c8d3821035b666baddad3a06d29b55ab3a4ab3115/wikitext-2-raw/wiki.test.raw'\r\n\r\nThe above exception was the direct cause of the following exception:\r\n\r\nTraceback (most recent call last):\r\n File \"/home/sam/Doctorproject/OmniQuant-main/main.py\", line 382, in <module>\r\n main()\r\n File \"/home/sam/Doctorproject/OmniQuant-main/main.py\", line 339, in main\r\n dataloader, _ = get_loaders(\r\n File \"/home/sam/Doctorproject/OmniQuant-main/datautils.py\", line 178, in get_loaders\r\n return get_wikitext2(nsamples, seed, seqlen, model)\r\n File \"/home/sam/Doctorproject/OmniQuant-main/datautils.py\", line 37, in get_wikitext2\r\n traindata = load_dataset(path='wikitext', name='wikitext-2-raw-v1', split='train', download_mode=\"force_redownload\")\r\n File \"/home/sam/anaconda3/envs/omniquant/lib/python3.10/site-packages/datasets/load.py\", line 2598, in load_dataset\r\n builder_instance.download_and_prepare(\r\n File \"/home/sam/anaconda3/envs/omniquant/lib/python3.10/site-packages/datasets/builder.py\", line 1021, in download_and_prepare\r\n self._download_and_prepare(\r\n File \"/home/sam/anaconda3/envs/omniquant/lib/python3.10/site-packages/datasets/builder.py\", line 1783, in _download_and_prepare\r\n super()._download_and_prepare(\r\n File \"/home/sam/anaconda3/envs/omniquant/lib/python3.10/site-packages/datasets/builder.py\", line 1116, in _download_and_prepare\r\n self._prepare_split(split_generator, **prepare_split_kwargs)\r\n File \"/home/sam/anaconda3/envs/omniquant/lib/python3.10/site-packages/datasets/builder.py\", line 1621, in _prepare_split\r\n for job_id, done, content in self._prepare_split_single(\r\n File \"/home/sam/anaconda3/envs/omniquant/lib/python3.10/site-packages/datasets/builder.py\", line 1778, in _prepare_split_single\r\n raise DatasetGenerationError(\"An error occurred while generating the dataset\") from e\r\ndatasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset\r\n\r\n\r\n@albertvillanova @Y0mingZhang @kwchurch @HosseynGT @rafikg I tried the solutions you provided above, but none of them worked. Could you please give me some guidance\r\n" ]
## Dataset viewer issue for 'wiki_lingua*' **Link:** *link to the dataset viewer page* `data = datasets.load_dataset("wiki_lingua", name=language, split="train[:2000]") ` *short description of the issue* ``` [NonMatchingChecksumError: Checksums didn't match for dataset source files: ['https://drive.google.com/uc?export=download&id=11wMGqNVSwwk6zUnDaJEgm3qT71kAHeff']]() ``` Am I the one who added this dataset ? No
3,792
https://github.com/huggingface/datasets/issues/3788
Only-data dataset loaded unexpectedly as validation split
[ "I see two options:\r\n1. drop the \"dev\" keyword since it can be considered too generic\r\n2. improve the pattern to something more reasonable, e.g. asking for a separator before and after \"dev\"\r\n```python\r\n[\"*[ ._-]dev[ ._-]*\", \"dev[ ._-]*\"]\r\n```\r\n\r\nI think 2. is nice. If we agree on this one we can even decide to require the separation for the other split keywords \"train\", \"test\" etc.", "Yes, I had something like that on mind: \"dev\" not being part of a word.\r\n```\r\n\"[^a-zA-Z]dev[^a-zA-Z]\"", "Is there a reason why we want that regex? It feels like something that'll still be an issue for some weird case. \"my_dataset_dev\" doesn't match your regex, \"my_dataset_validation\" doesn't either ... Why not always \"train\" unless specified?", "The regex is needed as part of our effort to make datasets configurable without code. In particular we define some generic dataset repository structures that users can follow\r\n\r\n> ```\r\n> \"[^a-zA-Z]*dev[^a-zA-Z]*\"\r\n> ```\r\n\r\nunfortunately our glob doesn't support \"^\": \r\n\r\nhttps://github.com/fsspec/filesystem_spec/blob/3e739db7e53f5b408319dcc9d11e92bc1f938902/fsspec/spec.py#L465-L479", "> \"my_dataset_dev\" doesn't match your regex, \"my_dataset_validation\" doesn't either ... Why not always \"train\" unless specified?\r\n\r\nAnd `my_dataset_dev.foo` would match the pattern, and we also have the same pattern but for the \"validation\" keyword so `my_dataset_validation.foo` would work too", "> The regex is needed as part of our effort to make datasets configurable without code\r\n\r\nThis feels like coding with the filename ^^'", "This is still much easier than having to write a full dataset script right ? :p" ]
## Describe the bug As reported by @thomasw21 and @lhoestq, a dataset containing only a data file whose name matches the pattern `*dev*` will be returned as VALIDATION split, even if this is not the desired behavior, e.g. a file named `datosdevision.jsonl.gz`.
3,788
https://github.com/huggingface/datasets/issues/3786
Bug downloading Virus scan warning page from Google Drive URLs
[ "Once the PR merged into master and until our next `datasets` library release, you can get this fix by installing our library from the GitHub master branch:\r\n```shell\r\npip install git+https://github.com/huggingface/datasets#egg=datasets\r\n```\r\nThen, if you had previously tried to load the data and got the checksum error, you should force the redownload of the data (before the fix, you just downloaded and cached the virus scan warning page, instead of the data file):\r\n```shell\r\nload_dataset(\"...\", download_mode=\"force_redownload\")\r\n```" ]
## Describe the bug Recently, some issues were reported with URLs from Google Drive, where we were downloading the Virus scan warning page instead of the data file itself. See: - #3758 - #3773 - #3784
3,786
https://github.com/huggingface/datasets/issues/3784
Unable to Download CNN-Dailymail Dataset
[ "#self-assign", "@AngadSethi thanks for reporting and thanks for your PR!", "Glad to help @albertvillanova! Just fine-tuning the PR, will comment once I am able to get it up and running 😀", "Fixed by:\r\n- #3787" ]
## Describe the bug I am unable to download the CNN-Dailymail dataset. Upon closer investigation, I realised why this was happening: - The dataset sits in Google Drive, and both the CNN and DM datasets are large. - Google is unable to scan the folder for viruses, **so the link which would originally download the dataset, now downloads the source code of this web page:** ![image](https://user-images.githubusercontent.com/58678541/155658435-c2f497d7-7601-4332-94b1-18a62dd96422.png) - **This leads to the following error**: ```python NotADirectoryError: [Errno 20] Not a directory: '/root/.cache/huggingface/datasets/downloads/1bc05d24fa6dda2468e83a73cf6dc207226e01e3c48a507ea716dc0421da583b/cnn/stories' ``` ## Steps to reproduce the bug ```python import datasets dataset = datasets.load_dataset("cnn_dailymail", "3.0.0", split="train") ``` ## Expected results That the dataset is downloaded and processed just like other datasets. ## Actual results Hit with this error: ```python NotADirectoryError: [Errno 20] Not a directory: '/root/.cache/huggingface/datasets/downloads/1bc05d24fa6dda2468e83a73cf6dc207226e01e3c48a507ea716dc0421da583b/cnn/stories' ``` ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 1.18.3 - Platform: Linux-5.4.144+-x86_64-with-Ubuntu-18.04-bionic - Python version: 3.7.12 - PyArrow version: 6.0.1
3,784