file
stringlengths 18
26
| data
stringlengths 3
1.04M
|
---|---|
the_stack_data/153268668.c |
void __attribute__ ((naked)) __attribute__ ((noinline)) externalEmpty()
{
__asm__ ("retq");
} |
the_stack_data/92325402.c | #if !defined(GOBLINT_NO_QSORT) || !defined(GOBLINT_NO_BSEARCH)
#include <stddef.h>
#endif
#ifndef GOBLINT_NO_QSORT
void qsort(void *ptr, size_t count, size_t size, int (*comp)(const void*, const void*)) __attribute__((goblint_stub));
void qsort(void *ptr, size_t count, size_t size, int (*comp)(const void*, const void*)) {
// call all possible compares first, before invalidating array elements
for (size_t i = 0; i < count; i++) {
for (size_t j = 0; j < count; j++) {
comp(ptr + i * size, ptr + j * size);
}
}
// randomly swap all possible, invalidates array elements
for (size_t i = 0; i < count; i++) {
for (size_t j = 0; j < count; j++) {
int r; // rand
if (r) {
// swap elements byte-by-byte, no other way to do it, because we cannot allocate and copy/swap abstract elements
for (size_t k = 0; k < size; k++) {
char *a = ptr + i * size + k;
char *b = ptr + j * size + k;
char c = *a;
*a = *b;
*b = c;
}
}
}
}
// array isn't actually sorted! just pretend calls for Goblint
}
#endif
#ifndef GOBLINT_NO_BSEARCH
void* bsearch(const void *key, const void *ptr, size_t count, size_t size, int (*comp)(const void*, const void*)) __attribute__((goblint_stub));
void* bsearch(const void *key, const void *ptr, size_t count, size_t size, int (*comp)(const void*, const void*)) {
// linear search for simplicity
for (size_t i = 0; i < count; i++) {
const void *a = ptr + i * size;
if (comp(key, a) == 0) {
return a;
}
}
return NULL;
}
#endif
|
the_stack_data/232956006.c | /* Verify __builtin_has_attribute return value for variables.
{ dg-do compile }
{ dg-skip-if "No section attribute" { { hppa*-*-hpux* } && { ! lp64 } } }
{ dg-options "-Wall -ftrack-macro-expansion=0" }
{ dg-options "-Wall -Wno-narrowing -Wno-unused -ftrack-macro-expansion=0" { target c++ } }
{ dg-additional-options "-DSKIP_ALIAS" { target *-*-darwin* } }
{ dg-require-visibility "hidden" }
*/
#define ATTR(...) __attribute__ ((__VA_ARGS__))
#define A(expect, sym, attr) \
typedef int Assert [1 - 2 * !(__builtin_has_attribute (sym, attr) == expect)]
int vnone;
ATTR (aligned) char valigned;
ATTR (aligned (1)) char valigned_1;
ATTR (aligned (2)) char valigned_2;
ATTR (aligned (4)) char valigned_4;
ATTR (aligned (8)) char valigned_8;
void test_aligned (void)
{
A (0, vnone, aligned);
A (0, vnone, aligned (0)); /* { dg-warning "requested alignment .0. is not a positive power of 2" } */
A (0, vnone, aligned (1));
A (0, vnone, aligned (2));
A (0, vnone, aligned (4));
A (0, vnone, aligned (8));
A (0, vnone, aligned (16));
A (1, valigned, aligned);
A (0, valigned, aligned (0)); /* { dg-warning "requested alignment .0. is not a positive power of 2" } */
A (0, valigned, aligned (1));
A (0, valigned, aligned (2));
A (1, valigned_1, aligned);
A (0, valigned_1, aligned (0)); /* { dg-warning "requested alignment .0. is not a positive power of 2" } */
A (1, valigned_1, aligned (1));
A (0, valigned_1, aligned (2));
A (0, valigned_1, aligned (4));
A (1, valigned_2, aligned);
A (0, valigned_2, aligned (0)); /* { dg-warning "requested alignment .0. is not a positive power of 2" } */
A (0, valigned_2, aligned (1));
A (1, valigned_2, aligned (2));
A (0, valigned_2, aligned (4));
}
#ifndef SKIP_ALIAS
int vtarget;
extern ATTR (alias ("vtarget")) int valias;
void test_alias (void)
{
A (0, vnone, alias);
A (1, valias, alias);
A (1, valias, alias ("vtarget"));
A (0, valias, alias ("vnone"));
}
#endif
void test_cleanup (void)
{
extern void fpv (void*);
extern void fcleanup (void*);
int var;
ATTR (cleanup (fcleanup)) int var_cleanup;
A (0, var, cleanup);
A (1, var_cleanup, cleanup);
A (1, var_cleanup, cleanup (fcleanup));
A (0, var_cleanup, cleanup (fpv));
}
ATTR (common) int vcommon;
ATTR (nocommon) int vnocommon;
void test_common (void)
{
A (0, vnone, common);
A (0, vnone, nocommon);
A (1, vcommon, common);
A (0, vcommon, nocommon);
A (0, vnocommon, common);
A (1, vnocommon, nocommon);
}
void test_externally_visible (void)
{
extern int vexternally_visible;
A (0, vexternally_visible, externally_visible);
extern ATTR (externally_visible) int vexternally_visible;
A (1, vexternally_visible, externally_visible);
}
int test_mode (void)
{
ATTR (mode (byte)) int i8;
return __builtin_has_attribute (i8, mode); /* { dg-warning ".mode. attribute not supported in .__builtin_has_attribute." } */
}
void test_nonstring (void)
{
char arr[1];
char* ptr = arr;
ATTR (nonstring) char arr_nonstring[1];
ATTR (nonstring) char *ptr_nonstring = arr_nonstring;
A (0, arr, nonstring);
A (0, ptr, nonstring);
A (1, arr_nonstring, nonstring);
A (1, ptr_nonstring, nonstring);
}
struct PackedMember
{
char c;
short s;
int i;
ATTR (packed) int a[2]; /* { dg-warning "attribute ignored" "" { target default_packed } } */
} gpak[2];
void test_packed (struct PackedMember *p)
{
int vunpacked;
ATTR (packed) int vpacked; /* { dg-warning ".packed. attribute ignored" } */
A (0, vunpacked, packed);
A (0, vpacked, packed);
int arr_unpacked[2];
ATTR (packed) int arr_packed[2]; /* { dg-warning ".packed. attribute ignored" } */
A (0, arr_unpacked, packed);
A (0, arr_packed, packed);
A (0, arr_unpacked[0], packed);
A (0, arr_packed[0], packed);
A (0, gpak, packed);
A (0, gpak[0], packed);
A (0, *gpak, packed);
A (0, gpak[0].c, packed);
A (0, gpak[1].s, packed);
A (1, gpak->a, packed);
/* It's the array that's declared packed but not its elements. */
A (0, (*gpak).a[0], packed);
/* The following fails because in C it's represented as
INDIRECT_REF (POINTER_PLUS (NOP_EXPR (ADDR_EXPR (gpak)), ...))
with no reference to the member. Avoid testing it.
A (1, *gpak[9].a, packed); */
A (0, p->c, packed);
A (0, p->s, packed);
A (1, p->a, packed);
/* It's the array that's declared packed but not its elements. */
A (0, p->a[0], packed);
/* Similar to the comment above.
A (1, *p->a, packed); */
}
ATTR (section ("sectA")) int var_sectA;
ATTR (section ("sectB")) int var_sectB;
void test_section (void)
{
int var = 0;
A (0, var, section);
A (0, var, section ("sectA"));
A (1, var_sectA, section);
A (1, var_sectA, section ("sectA"));
A (0, var_sectA, section ("sectB"));
A (1, var_sectB, section);
A (0, var_sectB, section ("sectA"));
A (1, var_sectB, section ("sectB"));
}
void test_vector_size (void)
{
char c;
extern int arrx[];
extern int arr1[1];
A (0, c, vector_size);
A (0, c, vector_size (1));
A (0, arrx, vector_size);
A (0, arrx, vector_size (4));
A (0, arr1, vector_size);
A (0, arr1, vector_size (8));
ATTR (vector_size (4)) char cv4;
ATTR (vector_size (16)) int iv16;
A (1, cv4, vector_size);
A (0, cv4, vector_size (1));
A (0, cv4, vector_size (2));
A (1, cv4, vector_size (4));
A (0, cv4, vector_size (8));
A (1, iv16, vector_size);
A (0, iv16, vector_size (1));
A (0, iv16, vector_size (8));
A (1, iv16, vector_size (16));
A (0, iv16, vector_size (32));
/* Verify that the attribute not detected on an array of vectors
but is detected on its elements. */
typedef ATTR (vector_size (8)) float afv8_t[4];
A (0, afv8_t, vector_size);
A (0, afv8_t, vector_size (1));
A (0, afv8_t, vector_size (2));
A (0, afv8_t, vector_size (4));
A (0, afv8_t, vector_size (8));
A (0, afv8_t, vector_size (16));
A (1, __typeof__ ((*(afv8_t*)0)[0]), vector_size);
A (0, __typeof__ ((*(afv8_t*)0)[1]), vector_size (1));
A (0, __typeof__ ((*(afv8_t*)0)[2]), vector_size (2));
A (0, __typeof__ ((*(afv8_t*)0)[3]), vector_size (4));
A (1, __typeof__ ((*(afv8_t*)0)[0]), vector_size (8));
A (0, __typeof__ ((*(afv8_t*)0)[1]), vector_size (16));
A (1, __typeof__ (**(afv8_t*)0), vector_size);
A (0, __typeof__ (**(afv8_t*)0), vector_size (1));
A (0, __typeof__ (**(afv8_t*)0), vector_size (2));
A (0, __typeof__ (**(afv8_t*)0), vector_size (4));
A (1, __typeof__ (**(afv8_t*)0), vector_size (8));
A (0, __typeof__ (**(afv8_t*)0), vector_size (16));
ATTR (vector_size (8)) float afv8[4];
A (0, afv8, vector_size);
A (0, afv8, vector_size (1));
A (0, afv8, vector_size (2));
A (0, afv8, vector_size (4));
A (0, afv8, vector_size (8));
A (0, afv8, vector_size (16));
A (1, afv8[0], vector_size);
A (0, afv8[1], vector_size (1));
A (0, afv8[2], vector_size (2));
A (0, afv8[3], vector_size (4));
A (1, afv8[0], vector_size (8));
A (0, afv8[1], vector_size (16));
A (1, *afv8, vector_size);
A (0, *afv8, vector_size (1));
A (0, *afv8, vector_size (2));
A (0, *afv8, vector_size (4));
A (1, *afv8, vector_size (8));
A (0, *afv8, vector_size (16));
/* sizeof (long double) is 12 on i386. */
enum { VecSize = 8 * sizeof (long double) };
ATTR (vector_size (VecSize)) long double aldv[1][2][3];
A (0, aldv, vector_size);
A (0, aldv[0], vector_size);
A (0, aldv[0][0], vector_size);
A (1, aldv[0][0][0], vector_size);
A (0, aldv[0][0][1], vector_size (VecSize / 2));
A (1, aldv[0][0][2], vector_size (VecSize));
A (0, aldv[0][0][0][0], vector_size);
A (0, *aldv, vector_size);
A (0, **aldv, vector_size);
A (1, ***aldv, vector_size);
A (1, ***aldv, vector_size (VecSize));
}
ATTR (visibility ("default")) int vdefault;
ATTR (visibility ("hidden")) int vhidden;
ATTR (visibility ("internal")) int vinternal;
ATTR (visibility ("protected")) int vprotected;
void test_visibility (void)
{
A (0, vnone, visibility ("default"));
A (0, vnone, visibility ("hidden"));
A (0, vnone, visibility ("internal"));
A (0, vnone, visibility ("protected"));
A (1, vdefault, visibility ("default"));
A (0, vdefault, visibility ("hidden"));
A (0, vdefault, visibility ("internal"));
A (0, vdefault, visibility ("protected"));
A (0, vhidden, visibility ("default"));
A (1, vhidden, visibility ("hidden"));
A (0, vhidden, visibility ("internal"));
A (0, vhidden, visibility ("protected"));
A (0, vinternal, visibility ("default"));
A (0, vinternal, visibility ("hidden"));
A (1, vinternal, visibility ("internal"));
A (0, vinternal, visibility ("protected"));
A (0, vprotected, visibility ("default"));
A (0, vprotected, visibility ("hidden"));
A (0, vprotected, visibility ("internal"));
A (1, vprotected, visibility ("protected"));
}
int var_init_strong = 123;
int var_uninit_strong;
static int var_extern_strong;
static int var_static_strong;
ATTR (weak) int var_init_weak = 234;
ATTR (weak) int var_uninit_weak;
void test_weak (void)
{
int var_local = 0;
static int var_static_local = 0;
A (0, var_init_strong, weak);
A (0, var_uninit_strong, weak);
A (0, var_extern_strong, weak);
A (0, var_static_strong, weak);
A (0, var_local, weak);
A (0, var_static_local, weak);
A (1, var_init_weak, weak);
A (1, var_uninit_weak, weak);
} /* { dg-warning "protected visibility attribute not supported" "" { target { *-*-darwin* } } } */
/* { dg-prune-output "specifies less restrictive attribute" } */
|
the_stack_data/242329678.c | /* strcpy: copy t to s; pointer version */
void strcpy1(char *s, char *t)
{
int i;
i = 0;
while ((*s = *t) != '\0') {
s++;
t++;
}
}
/* strcpy: copy t to s; pointer version 2 */
void strcpy2(char *s, char *t)
{
while ((*s++ = *t++) != '\0') { }
}
/* strcpy: copy t to s; pointer version 3 */
void strcpy3(char *s, char *t)
{
while (*s++ = *t++) { }
}
|
the_stack_data/168964.c | #include<stdio.h>
void rvereseArray(int arr[], int start, int end)
{
int temp;
while (start < end)
{
temp = arr[start];
arr[start] = arr[end];
arr[end] = temp;
start++;
end--;
}
}
void printArray(int arr[], int size)
{
int i;
for (i=0; i < size; i++)
printf("%d ", arr[i]);
printf("\n");
}
int main()
{
int arr[] = {1, 2, 3, 4, 5, 6};
int n = sizeof(arr) / sizeof(arr[0]);
printArray(arr, n);
rvereseArray(arr, 0, n-1);
printf("Reversed array is \n");
printArray(arr, n);
return 0;
}
|
the_stack_data/100141460.c | /* cm2feet.c -- 将厘米转换为英寸英尺 */
#include <stdio.h>
int main(void)
{
const float CM_PER_FEET = 30.48;
const int INCH_PER_FEET = 12;
float cm, inch;
float feet;
int int_feet;
printf("Enter a height in centimeters: ");
scanf("%f", &cm);
while (cm > 0) {
feet = cm / CM_PER_FEET;
int_feet = (int)feet;
inch = (feet - int_feet) * INCH_PER_FEET;
printf("%.1f cm = %d feet, %.1f inches\n", cm, int_feet, inch);
printf("Enter a height in centimeters: ");
scanf("%f", &cm);
}
printf("bye\n");
return 0;
} |
the_stack_data/720096.c | /*
Copyright (C) 2021 Westberry Technology (ChangZhou) Corp., Ltd
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
/* This tells Alpha OSF/1 not to define a getopt prototype in <stdio.h>.
Ditto for AIX 3.2 and <stdlib.h>. */
#ifndef _NO_PROTO
# define _NO_PROTO
#endif
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#if !defined __STDC__ || !__STDC__
/* This is a separate conditional since some stdc systems
reject `defined (const)'. */
# ifndef const
# define const
# endif
#endif
#include <stdio.h>
/* Comment out all this code if we are using the GNU C Library, and are not
actually compiling the library itself. This code is part of the GNU C
Library, but also included in many other GNU distributions. Compiling
and linking in this code is a waste when using the GNU C library
(especially if it is a shared library). Rather than having every GNU
program understand `configure --with-gnu-libc' and omit the object files,
it is simpler to just do this in the source for each such file. */
#define GETOPT_INTERFACE_VERSION 2
#if !defined _LIBC && defined __GLIBC__ && __GLIBC__ >= 2
# include <gnu-versions.h>
# if _GNU_GETOPT_INTERFACE_VERSION == GETOPT_INTERFACE_VERSION
# define ELIDE_CODE
# endif
#endif
#ifndef ELIDE_CODE
/* This needs to come after some library #include
to get __GNU_LIBRARY__ defined. */
#ifdef __GNU_LIBRARY__
/* Don't include stdlib.h for non-GNU C libraries because some of them
contain conflicting prototypes for getopt. */
# include <stdlib.h>
# include <unistd.h>
#endif /* GNU C library. */
#ifdef VMS
# include <unixlib.h>
# if HAVE_STRING_H - 0
# include <string.h>
# endif
#endif
#ifndef _
/* This is for other GNU distributions with internationalized messages. */
# if (HAVE_LIBINTL_H && ENABLE_NLS) || defined _LIBC
# include <libintl.h>
# ifndef _
# define _(msgid) gettext(msgid)
# endif
# else
# define _(msgid) (msgid)
# endif
# if defined _LIBC && defined USE_IN_LIBIO
# include <wchar.h>
# endif
#endif
/* This version of `getopt' appears to the caller like standard Unix `getopt'
but it behaves differently for the user, since it allows the user
to intersperse the options with the other arguments.
As `getopt' works, it permutes the elements of ARGV so that,
when it is done, all the options precede everything else. Thus
all application programs are extended to handle flexible argument order.
Setting the environment variable POSIXLY_CORRECT disables permutation.
Then the behavior is completely standard.
GNU application programs can use a third alternative mode in which
they can distinguish the relative order of options and other arguments. */
#include "getopt.h"
/* For communication from `getopt' to the caller.
When `getopt' finds an option that takes an argument,
the argument value is returned here.
Also, when `ordering' is RETURN_IN_ORDER,
each non-option ARGV-element is returned here. */
char *optarg;
/* Index in ARGV of the next element to be scanned.
This is used for communication to and from the caller
and for communication between successive calls to `getopt'.
On entry to `getopt', zero means this is the first call; initialize.
When `getopt' returns -1, this is the index of the first of the
non-option elements that the caller should itself scan.
Otherwise, `optind' communicates from one call to the next
how much of ARGV has been scanned so far. */
/* 1003.2 says this must be 1 before any call. */
int optind = 1;
/* Formerly, initialization of getopt depended on optind==0, which
causes problems with re-calling getopt as programs generally don't
know that. */
int __getopt_initialized;
/* The next char to be scanned in the option-element
in which the last option character we returned was found.
This allows us to pick up the scan where we left off.
If this is zero, or a null string, it means resume the scan
by advancing to the next ARGV-element. */
static char *nextchar;
/* Callers store zero here to inhibit the error message
for unrecognized options. */
int opterr = 1;
/* Set to an option character which was unrecognized.
This must be initialized on some systems to avoid linking in the
system's own getopt implementation. */
int optopt = '?';
/* Describe how to deal with options that follow non-option ARGV-elements.
If the caller did not specify anything,
the default is REQUIRE_ORDER if the environment variable
POSIXLY_CORRECT is defined, PERMUTE otherwise.
REQUIRE_ORDER means don't recognize them as options;
stop option processing when the first non-option is seen.
This is what Unix does.
This mode of operation is selected by either setting the environment
variable POSIXLY_CORRECT, or using `+' as the first character
of the list of option characters.
PERMUTE is the default. We permute the contents of ARGV as we scan,
so that eventually all the non-options are at the end. This allows options
to be given in any order, even with programs that were not written to
expect this.
RETURN_IN_ORDER is an option available to programs that were written
to expect options and other ARGV-elements in any order and that care about
the ordering of the two. We describe each non-option ARGV-element
as if it were the argument of an option with character code 1.
Using `-' as the first character of the list of option characters
selects this mode of operation.
The special argument `--' forces an end of option-scanning regardless
of the value of `ordering'. In the case of RETURN_IN_ORDER, only
`--' can cause `getopt' to return -1 with `optind' != ARGC. */
static enum
{
REQUIRE_ORDER,
PERMUTE,
RETURN_IN_ORDER
} ordering;
/* Value of POSIXLY_CORRECT environment variable. */
static char *posixly_correct;
#ifdef __GNU_LIBRARY__
/* We want to avoid inclusion of string.h with non-GNU libraries
because there are many ways it can cause trouble.
On some systems, it contains special magic macros that don't work
in GCC. */
# include <string.h>
# define my_index strchr
#else
#define HAVE_STRING_H 1
# if HAVE_STRING_H
# include <string.h>
# else
# include <strings.h>
# endif
/* Avoid depending on library functions or files
whose names are inconsistent. */
#ifndef getenv
extern char *getenv();
#endif
static char *my_index(str, chr)
const char *str;
int chr;
{
while (*str)
{
if (*str == chr)
{
return (char *)str;
}
str++;
}
return 0;
}
/* If using GCC, we can safely declare strlen this way.
If not using GCC, it is ok not to declare it. */
#ifdef __GNUC__
/* Note that Motorola Delta 68k R3V7 comes with GCC but not stddef.h.
That was relevant to code that was here before. */
# if (!defined __STDC__ || !__STDC__) && !defined strlen
/* gcc with -traditional declares the built-in strlen to return int,
and has done so at least since version 2.4.5. -- rms. */
extern int strlen(const char *);
# endif /* not __STDC__ */
#endif /* __GNUC__ */
#endif /* not __GNU_LIBRARY__ */
/* Handle permutation of arguments. */
/* Describe the part of ARGV that contains non-options that have
been skipped. `first_nonopt' is the index in ARGV of the first of them;
`last_nonopt' is the index after the last of them. */
static int first_nonopt;
static int last_nonopt;
#ifdef _LIBC
/* Stored original parameters.
XXX This is no good solution. We should rather copy the args so
that we can compare them later. But we must not use malloc(3). */
extern int __libc_argc;
extern char **__libc_argv;
/* Bash 2.0 gives us an environment variable containing flags
indicating ARGV elements that should not be considered arguments. */
# ifdef USE_NONOPTION_FLAGS
/* Defined in getopt_init.c */
extern char *__getopt_nonoption_flags;
static int nonoption_flags_max_len;
static int nonoption_flags_len;
# endif
# ifdef USE_NONOPTION_FLAGS
# define SWAP_FLAGS(ch1, ch2) \
if (nonoption_flags_len > 0) \
{ \
char __tmp = __getopt_nonoption_flags[ch1]; \
__getopt_nonoption_flags[ch1] = __getopt_nonoption_flags[ch2]; \
__getopt_nonoption_flags[ch2] = __tmp; \
}
# else
# define SWAP_FLAGS(ch1, ch2)
# endif
#else /* !_LIBC */
# define SWAP_FLAGS(ch1, ch2)
#endif /* _LIBC */
/* Exchange two adjacent subsequences of ARGV.
One subsequence is elements [first_nonopt,last_nonopt)
which contains all the non-options that have been skipped so far.
The other is elements [last_nonopt,optind), which contains all
the options processed since those non-options were skipped.
`first_nonopt' and `last_nonopt' are relocated so that they describe
the new indices of the non-options in ARGV after they are moved. */
#if defined __STDC__ && __STDC__
static void exchange(char **);
#endif
static void exchange(argv) char **argv;
{
int bottom = first_nonopt;
int middle = last_nonopt;
int top = optind;
char *tem;
/* Exchange the shorter segment with the far end of the longer segment.
That puts the shorter segment into the right place.
It leaves the longer segment in the right place overall,
but it consists of two parts that need to be swapped next. */
#if defined _LIBC && defined USE_NONOPTION_FLAGS
/* First make sure the handling of the `__getopt_nonoption_flags'
string can work normally. Our top argument must be in the range
of the string. */
if (nonoption_flags_len > 0 && top >= nonoption_flags_max_len)
{
/* We must extend the array. The user plays games with us and
presents new arguments. */
char *new_str = malloc(top + 1);
if (new_str == NULL)
{
nonoption_flags_len = nonoption_flags_max_len = 0;
}
else
{
memset(__mempcpy(new_str, __getopt_nonoption_flags,
nonoption_flags_max_len),
'\0', top + 1 - nonoption_flags_max_len);
nonoption_flags_max_len = top + 1;
__getopt_nonoption_flags = new_str;
}
}
#endif
while (top > middle && middle > bottom)
{
if (top - middle > middle - bottom)
{
/* Bottom segment is the short one. */
int len = middle - bottom;
register int i;
/* Swap it with the top part of the top segment. */
for (i = 0; i < len; i++)
{
tem = argv[bottom + i];
argv[bottom + i] = argv[top - (middle - bottom) + i];
argv[top - (middle - bottom) + i] = tem;
SWAP_FLAGS(bottom + i, top - (middle - bottom) + i);
}
/* Exclude the moved bottom segment from further swapping. */
top -= len;
}
else
{
/* Top segment is the short one. */
int len = top - middle;
register int i;
/* Swap it with the bottom part of the bottom segment. */
for (i = 0; i < len; i++)
{
tem = argv[bottom + i];
argv[bottom + i] = argv[middle + i];
argv[middle + i] = tem;
SWAP_FLAGS(bottom + i, middle + i);
}
/* Exclude the moved top segment from further swapping. */
bottom += len;
}
}
/* Update records for the slots the non-options now occupy. */
first_nonopt += (optind - last_nonopt);
last_nonopt = optind;
}
/* Initialize the internal data when the first call is made. */
#if defined __STDC__ && __STDC__
static const char *_getopt_initialize(int, char *const *, const char *);
#endif
static const char *_getopt_initialize(argc, argv, optstring)
int argc;
char *const *argv;
const char *optstring;
{
/* Start processing options with ARGV-element 1 (since ARGV-element 0
is the program name); the sequence of previously skipped
non-option ARGV-elements is empty. */
first_nonopt = last_nonopt = optind;
nextchar = NULL;
posixly_correct = getenv("POSIXLY_CORRECT");
/* Determine how to handle the ordering of options and nonoptions. */
if (optstring[0] == '-')
{
ordering = RETURN_IN_ORDER;
++optstring;
}
else if (optstring[0] == '+')
{
ordering = REQUIRE_ORDER;
++optstring;
}
else if (posixly_correct != NULL)
{
ordering = REQUIRE_ORDER;
}
else
{
ordering = PERMUTE;
}
#if defined _LIBC && defined USE_NONOPTION_FLAGS
if (posixly_correct == NULL
&& argc == __libc_argc && argv == __libc_argv)
{
if (nonoption_flags_max_len == 0)
{
if (__getopt_nonoption_flags == NULL
|| __getopt_nonoption_flags[0] == '\0')
{
nonoption_flags_max_len = -1;
}
else
{
const char *orig_str = __getopt_nonoption_flags;
int len = nonoption_flags_max_len = strlen(orig_str);
if (nonoption_flags_max_len < argc)
{
nonoption_flags_max_len = argc;
}
__getopt_nonoption_flags = (char *)malloc(nonoption_flags_max_len);
if (__getopt_nonoption_flags == NULL)
{
nonoption_flags_max_len = -1;
}
else
memset(__mempcpy(__getopt_nonoption_flags, orig_str, len),
'\0', nonoption_flags_max_len - len);
}
}
nonoption_flags_len = nonoption_flags_max_len;
}
else
{
nonoption_flags_len = 0;
}
#endif
return optstring;
}
/* Scan elements of ARGV (whose length is ARGC) for option characters
given in OPTSTRING.
If an element of ARGV starts with '-', and is not exactly "-" or "--",
then it is an option element. The characters of this element
(aside from the initial '-') are option characters. If `getopt'
is called repeatedly, it returns successively each of the option characters
from each of the option elements.
If `getopt' finds another option character, it returns that character,
updating `optind' and `nextchar' so that the next call to `getopt' can
resume the scan with the following option character or ARGV-element.
If there are no more option characters, `getopt' returns -1.
Then `optind' is the index in ARGV of the first ARGV-element
that is not an option. (The ARGV-elements have been permuted
so that those that are not options now come last.)
OPTSTRING is a string containing the legitimate option characters.
If an option character is seen that is not listed in OPTSTRING,
return '?' after printing an error message. If you set `opterr' to
zero, the error message is suppressed but we still return '?'.
If a char in OPTSTRING is followed by a colon, that means it wants an arg,
so the following text in the same ARGV-element, or the text of the following
ARGV-element, is returned in `optarg'. Two colons mean an option that
wants an optional arg; if there is text in the current ARGV-element,
it is returned in `optarg', otherwise `optarg' is set to zero.
If OPTSTRING starts with `-' or `+', it requests different methods of
handling the non-option ARGV-elements.
See the comments about RETURN_IN_ORDER and REQUIRE_ORDER, above.
Long-named options begin with `--' instead of `-'.
Their names may be abbreviated as long as the abbreviation is unique
or is an exact match for some defined option. If they have an
argument, it follows the option name in the same ARGV-element, separated
from the option name by a `=', or else the in next ARGV-element.
When `getopt' finds a long-named option, it returns 0 if that option's
`flag' field is nonzero, the value of the option's `val' field
if the `flag' field is zero.
The elements of ARGV aren't really const, because we permute them.
But we pretend they're const in the prototype to be compatible
with other systems.
LONGOPTS is a vector of `struct option' terminated by an
element containing a name which is zero.
LONGIND returns the index in LONGOPT of the long-named option found.
It is only valid when a long-named option has been found by the most
recent call.
If LONG_ONLY is nonzero, '-' as well as '--' can introduce
long-named options. */
int _getopt_internal(argc, argv, optstring, longopts, longind, long_only)
int argc;
char *const *argv;
const char *optstring;
const struct option *longopts;
int *longind;
int long_only;
{
int print_errors = opterr;
if (optstring[0] == ':')
{
print_errors = 0;
}
if (argc < 1)
{
return -1;
}
optarg = NULL;
if (optind == 0 || !__getopt_initialized)
{
if (optind == 0)
{
optind = 1; /* Don't scan ARGV[0], the program name. */
}
optstring = _getopt_initialize(argc, argv, optstring);
__getopt_initialized = 1;
}
/* Test whether ARGV[optind] points to a non-option argument.
Either it does not have option syntax, or there is an environment flag
from the shell indicating it is not an option. The later information
is only used when the used in the GNU libc. */
#if defined _LIBC && defined USE_NONOPTION_FLAGS
# define NONOPTION_P (argv[optind][0] != '-' || argv[optind][1] == '\0' \
|| (optind < nonoption_flags_len \
&& __getopt_nonoption_flags[optind] == '1'))
#else
# define NONOPTION_P (argv[optind][0] != '-' || argv[optind][1] == '\0')
#endif
if (nextchar == NULL || *nextchar == '\0')
{
/* Advance to the next ARGV-element. */
/* Give FIRST_NONOPT & LAST_NONOPT rational values if OPTIND has been
moved back by the user (who may also have changed the arguments). */
if (last_nonopt > optind)
{
last_nonopt = optind;
}
if (first_nonopt > optind)
{
first_nonopt = optind;
}
if (ordering == PERMUTE)
{
/* If we have just processed some options following some non-options,
exchange them so that the options come first. */
if (first_nonopt != last_nonopt && last_nonopt != optind)
{
exchange((char **)argv);
}
else if (last_nonopt != optind)
{
first_nonopt = optind;
}
/* Skip any additional non-options
and extend the range of non-options previously skipped. */
while (optind < argc && NONOPTION_P)
{
optind++;
}
last_nonopt = optind;
}
/* The special ARGV-element `--' means premature end of options.
Skip it like a null option,
then exchange with previous non-options as if it were an option,
then skip everything else like a non-option. */
if (optind != argc && !strcmp(argv[optind], "--"))
{
optind++;
if (first_nonopt != last_nonopt && last_nonopt != optind)
{
exchange((char **)argv);
}
else if (first_nonopt == last_nonopt)
{
first_nonopt = optind;
}
last_nonopt = argc;
optind = argc;
}
/* If we have done all the ARGV-elements, stop the scan
and back over any non-options that we skipped and permuted. */
if (optind == argc)
{
/* Set the next-arg-index to point at the non-options
that we previously skipped, so the caller will digest them. */
if (first_nonopt != last_nonopt)
{
optind = first_nonopt;
}
return -1;
}
/* If we have come to a non-option and did not permute it,
either stop the scan or describe it to the caller and pass it by. */
if (NONOPTION_P)
{
if (ordering == REQUIRE_ORDER)
{
return -1;
}
optarg = argv[optind++];
return 1;
}
/* We have found another option-ARGV-element.
Skip the initial punctuation. */
nextchar = (argv[optind] + 1
+ (longopts != NULL && argv[optind][1] == '-'));
}
/* Decode the current option-ARGV-element. */
/* Check whether the ARGV-element is a long option.
If long_only and the ARGV-element has the form "-f", where f is
a valid short option, don't consider it an abbreviated form of
a long option that starts with f. Otherwise there would be no
way to give the -f short option.
On the other hand, if there's a long option "fubar" and
the ARGV-element is "-fu", do consider that an abbreviation of
the long option, just like "--fu", and not "-f" with arg "u".
This distinction seems to be the most useful approach. */
if (longopts != NULL
&& (argv[optind][1] == '-'
|| (long_only && (argv[optind][2] || !my_index(optstring, argv[optind][1])))))
{
char *nameend;
const struct option *p;
const struct option *pfound = NULL;
int exact = 0;
int ambig = 0;
int indfound = -1;
int option_index;
for (nameend = nextchar; *nameend && *nameend != '='; nameend++)
/* Do nothing. */;
/* Test all long options for either exact match
or abbreviated matches. */
for (p = longopts, option_index = 0; p->name; p++, option_index++)
{
if (!strncmp(p->name, nextchar, nameend - nextchar))
{
if ((unsigned int)(nameend - nextchar)
== (unsigned int)strlen(p->name))
{
/* Exact match found. */
pfound = p;
indfound = option_index;
exact = 1;
break;
}
else if (pfound == NULL)
{
/* First nonexact match found. */
pfound = p;
indfound = option_index;
}
else if (long_only
|| pfound->has_arg != p->has_arg
|| pfound->flag != p->flag
|| pfound->val != p->val)
/* Second or later nonexact match found. */
{
ambig = 1;
}
}
}
if (ambig && !exact)
{
if (print_errors)
{
#if defined _LIBC && defined USE_IN_LIBIO
char *buf;
__asprintf(&buf, _("%s: option `%s' is ambiguous\n"),
argv[0], argv[optind]);
if (_IO_fwide(stderr, 0) > 0)
{
__fwprintf(stderr, L"%s", buf);
}
else
{
fputs(buf, stderr);
}
free(buf);
#else
fprintf(stderr, _("%s: option `%s' is ambiguous\n"),
argv[0], argv[optind]);
#endif
}
nextchar += strlen(nextchar);
optind++;
optopt = 0;
return '?';
}
if (pfound != NULL)
{
option_index = indfound;
optind++;
if (*nameend)
{
/* Don't test has_arg with >, because some C compilers don't
allow it to be used on enums. */
if (pfound->has_arg)
{
optarg = nameend + 1;
}
else
{
if (print_errors)
{
#if defined _LIBC && defined USE_IN_LIBIO
char *buf;
#endif
if (argv[optind - 1][1] == '-')
{
/* --option */
#if defined _LIBC && defined USE_IN_LIBIO
__asprintf(&buf, _("\
%s: option `--%s' doesn't allow an argument\n"),
argv[0], pfound->name);
#else
fprintf(stderr, _("\
%s: option `--%s' doesn't allow an argument\n"),
argv[0], pfound->name);
#endif
}
else
{
/* +option or -option */
#if defined _LIBC && defined USE_IN_LIBIO
__asprintf(&buf, _("\
%s: option `%c%s' doesn't allow an argument\n"),
argv[0], argv[optind - 1][0],
pfound->name);
#else
fprintf(stderr, _("\
%s: option `%c%s' doesn't allow an argument\n"),
argv[0], argv[optind - 1][0], pfound->name);
#endif
}
#if defined _LIBC && defined USE_IN_LIBIO
if (_IO_fwide(stderr, 0) > 0)
{
__fwprintf(stderr, L"%s", buf);
}
else
{
fputs(buf, stderr);
}
free(buf);
#endif
}
nextchar += strlen(nextchar);
optopt = pfound->val;
return '?';
}
}
else if (pfound->has_arg == 1)
{
if (optind < argc)
{
optarg = argv[optind++];
}
else
{
if (print_errors)
{
#if defined _LIBC && defined USE_IN_LIBIO
char *buf;
__asprintf(&buf,
_("%s: option `%s' requires an argument\n"),
argv[0], argv[optind - 1]);
if (_IO_fwide(stderr, 0) > 0)
{
__fwprintf(stderr, L"%s", buf);
}
else
{
fputs(buf, stderr);
}
free(buf);
#else
fprintf(stderr,
_("%s: option `%s' requires an argument\n"),
argv[0], argv[optind - 1]);
#endif
}
nextchar += strlen(nextchar);
optopt = pfound->val;
return optstring[0] == ':' ? ':' : '?';
}
}
nextchar += strlen(nextchar);
if (longind != NULL)
{
*longind = option_index;
}
if (pfound->flag)
{
*(pfound->flag) = pfound->val;
return 0;
}
return pfound->val;
}
/* Can't find it as a long option. If this is not getopt_long_only,
or the option starts with '--' or is not a valid short
option, then it's an error.
Otherwise interpret it as a short option. */
if (!long_only || argv[optind][1] == '-'
|| my_index(optstring, *nextchar) == NULL)
{
if (print_errors)
{
#if defined _LIBC && defined USE_IN_LIBIO
char *buf;
#endif
if (argv[optind][1] == '-')
{
/* --option */
#if defined _LIBC && defined USE_IN_LIBIO
__asprintf(&buf, _("%s: unrecognized option `--%s'\n"),
argv[0], nextchar);
#else
fprintf(stderr, _("%s: unrecognized option `--%s'\n"),
argv[0], nextchar);
#endif
}
else
{
/* +option or -option */
#if defined _LIBC && defined USE_IN_LIBIO
__asprintf(&buf, _("%s: unrecognized option `%c%s'\n"),
argv[0], argv[optind][0], nextchar);
#else
fprintf(stderr, _("%s: unrecognized option `%c%s'\n"),
argv[0], argv[optind][0], nextchar);
#endif
}
#if defined _LIBC && defined USE_IN_LIBIO
if (_IO_fwide(stderr, 0) > 0)
{
__fwprintf(stderr, L"%s", buf);
}
else
{
fputs(buf, stderr);
}
free(buf);
#endif
}
nextchar = (char *)"";
optind++;
optopt = 0;
return '?';
}
}
/* Look at and handle the next short option-character. */
{
char c = *nextchar++;
char *temp = my_index(optstring, c);
/* Increment `optind' when we start to process its last character. */
if (*nextchar == '\0')
{
++optind;
}
if (temp == NULL || c == ':')
{
if (print_errors)
{
#if defined _LIBC && defined USE_IN_LIBIO
char *buf;
#endif
if (posixly_correct)
{
/* 1003.2 specifies the format of this message. */
#if defined _LIBC && defined USE_IN_LIBIO
__asprintf(&buf, _("%s: illegal option -- %c\n"),
argv[0], c);
#else
fprintf(stderr, _("%s: illegal option -- %c\n"), argv[0], c);
#endif
}
else
{
#if defined _LIBC && defined USE_IN_LIBIO
__asprintf(&buf, _("%s: invalid option -- %c\n"),
argv[0], c);
#else
fprintf(stderr, _("%s: invalid option -- %c\n"), argv[0], c);
#endif
}
#if defined _LIBC && defined USE_IN_LIBIO
if (_IO_fwide(stderr, 0) > 0)
{
__fwprintf(stderr, L"%s", buf);
}
else
{
fputs(buf, stderr);
}
free(buf);
#endif
}
optopt = c;
return '?';
}
/* Convenience. Treat POSIX -W foo same as long option --foo */
if (temp[0] == 'W' && temp[1] == ';')
{
char *nameend;
const struct option *p;
const struct option *pfound = NULL;
int exact = 0;
int ambig = 0;
int indfound = 0;
int option_index;
/* This is an option that requires an argument. */
if (*nextchar != '\0')
{
optarg = nextchar;
/* If we end this ARGV-element by taking the rest as an arg,
we must advance to the next element now. */
optind++;
}
else if (optind == argc)
{
if (print_errors)
{
/* 1003.2 specifies the format of this message. */
#if defined _LIBC && defined USE_IN_LIBIO
char *buf;
__asprintf(&buf, _("%s: option requires an argument -- %c\n"),
argv[0], c);
if (_IO_fwide(stderr, 0) > 0)
{
__fwprintf(stderr, L"%s", buf);
}
else
{
fputs(buf, stderr);
}
free(buf);
#else
fprintf(stderr, _("%s: option requires an argument -- %c\n"),
argv[0], c);
#endif
}
optopt = c;
if (optstring[0] == ':')
{
c = ':';
}
else
{
c = '?';
}
return c;
}
else
/* We already incremented `optind' once;
increment it again when taking next ARGV-elt as argument. */
{
optarg = argv[optind++];
}
/* optarg is now the argument, see if it's in the table of longopts. */
for (nextchar = nameend = optarg; *nameend && *nameend != '='; nameend++)
/* Do nothing. */;
/* Test all long options for either exact match or abbreviated matches. */
for (p = longopts, option_index = 0; p->name; p++, option_index++)
{
if (!strncmp(p->name, nextchar, nameend - nextchar))
{
if ((unsigned int)(nameend - nextchar) == strlen(p->name))
{
/* Exact match found. */
pfound = p;
indfound = option_index;
exact = 1;
break;
}
else if (pfound == NULL)
{
/* First nonexact match found. */
pfound = p;
indfound = option_index;
}
else /* Second or later nonexact match found. */
{
ambig = 1;
}
}
}
if (ambig && !exact)
{
if (print_errors)
{
#if defined _LIBC && defined USE_IN_LIBIO
char *buf;
__asprintf(&buf, _("%s: option `-W %s' is ambiguous\n"),
argv[0], argv[optind]);
if (_IO_fwide(stderr, 0) > 0)
{
__fwprintf(stderr, L"%s", buf);
}
else
{
fputs(buf, stderr);
}
free(buf);
#else
fprintf(stderr, _("%s: option `-W %s' is ambiguous\n"),
argv[0], argv[optind]);
#endif
}
nextchar += strlen(nextchar);
optind++;
return '?';
}
if (pfound != NULL)
{
option_index = indfound;
if (*nameend)
{
/* Don't test has_arg with >, because some C compilers don't
allow it to be used on enums. */
if (pfound->has_arg)
{
optarg = nameend + 1;
}
else
{
if (print_errors)
{
#if defined _LIBC && defined USE_IN_LIBIO
char *buf;
__asprintf(&buf, _("\
%s: option `-W %s' doesn't allow an argument\n"),
argv[0], pfound->name);
if (_IO_fwide(stderr, 0) > 0)
{
__fwprintf(stderr, L"%s", buf);
}
else
{
fputs(buf, stderr);
}
free(buf);
#else
fprintf(stderr, _("\
%s: option `-W %s' doesn't allow an argument\n"),
argv[0], pfound->name);
#endif
}
nextchar += strlen(nextchar);
return '?';
}
}
else if (pfound->has_arg == 1)
{
if (optind < argc)
{
optarg = argv[optind++];
}
else
{
if (print_errors)
{
#if defined _LIBC && defined USE_IN_LIBIO
char *buf;
__asprintf(&buf, _("\
%s: option `%s' requires an argument\n"),
argv[0], argv[optind - 1]);
if (_IO_fwide(stderr, 0) > 0)
{
__fwprintf(stderr, L"%s", buf);
}
else
{
fputs(buf, stderr);
}
free(buf);
#else
fprintf(stderr,
_("%s: option `%s' requires an argument\n"),
argv[0], argv[optind - 1]);
#endif
}
nextchar += strlen(nextchar);
return optstring[0] == ':' ? ':' : '?';
}
}
nextchar += strlen(nextchar);
if (longind != NULL)
{
*longind = option_index;
}
if (pfound->flag)
{
*(pfound->flag) = pfound->val;
return 0;
}
return pfound->val;
}
nextchar = NULL;
return 'W'; /* Let the application handle it. */
}
if (temp[1] == ':')
{
if (temp[2] == ':')
{
/* This is an option that accepts an argument optionally. */
if (*nextchar != '\0')
{
optarg = nextchar;
optind++;
}
else
{
optarg = NULL;
}
nextchar = NULL;
}
else
{
/* This is an option that requires an argument. */
if (*nextchar != '\0')
{
optarg = nextchar;
/* If we end this ARGV-element by taking the rest as an arg,
we must advance to the next element now. */
optind++;
}
else if (optind == argc)
{
if (print_errors)
{
/* 1003.2 specifies the format of this message. */
#if defined _LIBC && defined USE_IN_LIBIO
char *buf;
__asprintf(&buf,
_("%s: option requires an argument -- %c\n"),
argv[0], c);
if (_IO_fwide(stderr, 0) > 0)
{
__fwprintf(stderr, L"%s", buf);
}
else
{
fputs(buf, stderr);
}
free(buf);
#else
fprintf(stderr,
_("%s: option requires an argument -- %c\n"),
argv[0], c);
#endif
}
optopt = c;
if (optstring[0] == ':')
{
c = ':';
}
else
{
c = '?';
}
}
else
/* We already incremented `optind' once;
increment it again when taking next ARGV-elt as argument. */
{
optarg = argv[optind++];
}
nextchar = NULL;
}
}
return c;
}
}
int getopt(argc, argv, optstring)
int argc;
char *const *argv;
const char *optstring;
{
return _getopt_internal(argc, argv, optstring,
(const struct option *)0,
(int *)0,
0);
}
int getopt_long(int argc,
char *const *argv,
const char *options,
const struct option *long_options, int *opt_index)
{
return _getopt_internal(argc, argv, options, long_options, opt_index, 0, 0);
}
int getopt_long_only(int argc,
char *const *argv,
const char *options,
const struct option *long_options,
int *opt_index)
{
return _getopt_internal(argc, argv, options, long_options, opt_index, 1, 0);
}
#endif /* Not ELIDE_CODE. */
|
the_stack_data/367632.c | #include <stdio.h>
int add_to_k(int*, int*);
int main(void) // code without static variable in add_to_k().
{
int d[100];
int n, total = 0;
int* pos = d;
scanf("%d", &n);
for (; pos < d + n; pos++)
{
scanf("%d", pos);
total += add_to_k(d, pos);
}
printf("%d\n", total);
return 0;
}
int add_to_k(int* a, int* b)
{
int total = 0;
int* where = a;
for (; where <= b; where++)
total += *where;
return total;
}
|
the_stack_data/73576540.c | //
// Ticker
// Adam R. Nelson ([email protected])
// June 2013
//
// A simple UNIX terminal program that creates a "news
// ticker" effect when called repeatedly. Allows long
// strings of data to be displayed in narrow spaces in
// "monitor" applications (Conky, panels, etc).
//
// Distributed under the BSD License.
//
// --------------------------------------------------------
#include <locale.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <wchar.h>
#include <sys/time.h>
#define CHECK_NULL(var) if (var == NULL) return NULL;
// Option parsing
// --------------------------------------------------------
#define SW_ALWAYS_SHORT 'a'
#define SW_ALWAYS_LONG "always-scroll"
#define SW_BLANK_SHORT 'b'
#define SW_BLANK_LONG "blank"
#define SW_LEN_SHORT 'l'
#define SW_LEN_LONG "length"
#define SW_REVERSE_SHORT 'r'
#define SW_REVERSE_LONG "reverse"
#define SW_TICK_SHORT 't'
#define SW_TICK_LONG "tick"
#define DEFAULT_BLANK L' '
#define DEFAULT_LEN 80
#define DEFAULT_TICK 100
typedef struct Options
{
bool always_scroll;
wchar_t blank;
uint16_t length;
bool reverse;
uint32_t tick;
}
Options;
Options options; // Global options variable.
// Prints a help/usage message.
void help(char* name)
{
fprintf(stderr, "Usage: %s [OPTION]...\n\n"
" -%c, --" SW_ALWAYS_LONG "\n"
" Always scroll, even when the input length is less than the\n"
" ticker length.\n"
" -%c char, --" SW_BLANK_LONG "=char\n"
" Fill blank space with 'char'. Defaults to '%lc'.\n"
" -%c N, --" SW_LEN_LONG "=N\n"
" The length, in columns, of the output. Defaults to %d.\n"
" -%c, --" SW_REVERSE_LONG "\n"
" Scroll from left to right, instead of the default (right to\n"
" left).\n"
" -%c ms, --" SW_TICK_LONG "=ms\n"
" The amount of time, in milliseconds, it takes for the\n"
" ticker to move by one character. Defaults to %d.\n\n"
"Takes a string from standard input, and outputs a portion of it to\n"
"standard output. The portion output depends on the current system\n"
"time. When called repeatedly over time with the same input, creates\n"
"a scrolling 'news ticker' effect.\n\n"
"Written by Adam R. Nelson <http://github.com/ar-nelson>.\n"
"Distributed under the BSD License.\n"
"Post bug reports on GitHub, or send them to <[email protected]>.\n"
"(Be sure to include 'ticker' in the 'Subject' field of emails.)\n",
name,
SW_ALWAYS_SHORT,
SW_BLANK_SHORT, DEFAULT_BLANK,
SW_LEN_SHORT, DEFAULT_LEN,
SW_REVERSE_SHORT,
SW_TICK_SHORT, DEFAULT_TICK);
}
uint8_t parse_short_option(char opt, char* value);
bool parse_long_option(char* opt);
// Parses command-line arguments into the global 'options'
// struct. Returns false if the arguments are invalid.
bool parse_options(int argc, char** argv)
{
options.always_scroll = false;
options.blank = DEFAULT_BLANK;
options.length = DEFAULT_LEN;
options.reverse = false;
options.tick = DEFAULT_TICK;
int i = 1;
while (i < argc)
{
char* arg = argv[i];
if (strlen(arg) < 2)
return false;
if (arg[0] == '-')
{
if (arg[1] == '-')
{
if (!parse_long_option(arg))
{
printf("Invalid argument: '%s'\n", arg);
return false;
}
i += 1;
}
else
{
size_t len = strlen(arg);
char* next = (i < argc-1) ? argv[i+1] : NULL;
uint8_t res;
for (size_t c=1; c<len; c++)
{
res = parse_short_option(arg[c], next);
if (res == 0 || (c < len-1 && res > 1))
{
printf("Invalid argument or value for '-%c'\n", arg[c]);
return false;
}
}
i += res;
}
}
else
{
printf("Invalid argument: '%s'\n", arg);
return false;
}
}
return true;
}
// Attempts to parse a short-form option (single letter
// preceded by a single dash, followed by a space and a
// value). Returns the number of arguments "consumed" (1 or
// 2, depending on whether the option takes a value), or
// 0 if the arguments are invalid.
uint8_t parse_short_option(char opt, char* value)
{
switch (opt)
{
case SW_ALWAYS_SHORT:
options.always_scroll = true;
return 1;
case SW_BLANK_SHORT:
if (value == NULL || mbtowc(&options.blank, value, 4) == -1)
return 0;
return 2;
case SW_LEN_SHORT:
if (value == NULL || (options.length = atoi(value)) == 0)
return 0;
return 2;
case SW_REVERSE_SHORT:
options.reverse = true;
return 1;
case SW_TICK_SHORT:
if (value == NULL || (options.tick = atoi(value)) == 0)
return 0;
return 2;
default:
return 0;
}
}
// Attempts to parse a long-form option (two dashes
// followed by a word, an equals sign, and a value).
// Returns true on success, false on failure.
bool parse_long_option(char* opt)
{
char* name = strtok(opt, "=") + 2;
char* value = strtok(NULL, "=");
if (strcmp(name, SW_ALWAYS_LONG) == 0)
{
options.always_scroll = true;
return true;
}
else if (strcmp(name, SW_BLANK_LONG) == 0)
{
if (value == NULL || mbtowc(&options.blank, value, 4) == -1)
return false;
return true;
}
else if (strcmp(name, SW_LEN_LONG) == 0)
{
if (value == NULL || (options.length = atoi(value)) == 0)
return false;
return true;
}
else if (strcmp(name, SW_REVERSE_LONG) == 0)
{
options.reverse = true;
return true;
}
else if (strcmp(name, SW_TICK_LONG) == 0)
{
if (value == NULL || (options.tick = atoi(value)) == 0)
return false;
return true;
}
else
return false;
}
// Linked-buffer data structure
//
// A linked list of buffers, used to allocate potentially
// endless space for input.
// --------------------------------------------------------
#define BUF_SIZE 1024
#define MAX_CHAIN_LEN 128
typedef struct LinkedBuffer
{
wchar_t buf[BUF_SIZE];
struct LinkedBuffer* next;
}
LinkedBuffer;
// Allocates a new linked buffer. It is the caller's
// responsibility to free the newly-allocated buffer.
LinkedBuffer* create_linked_buffer()
{
LinkedBuffer* newbuf = malloc(sizeof(LinkedBuffer));
CHECK_NULL(newbuf);
newbuf->next = NULL;
return newbuf;
}
// Collapses a linked chain of buffers into a single
// contiguous block of memory. This frees the entire linked
// buffer chain, but also allocates a new block of memory
// (the returned wchar_t*) that must be freed.
wchar_t* collapse_linked_buffer(LinkedBuffer* buf, size_t chainlen)
{
LinkedBuffer* current = buf;
wchar_t* flatbuf = malloc(chainlen*BUF_SIZE*sizeof(wchar_t));
CHECK_NULL(flatbuf);
flatbuf[0] = L'\0';
for (size_t i=0; i<chainlen; i++)
{
wcscat(flatbuf, current->buf);
LinkedBuffer* last = current;
current = current->next;
free(last);
}
return flatbuf;
}
// Reads an unlimited number of characters from a stream
// until EOF, and returns a malloc'd block of memory
// containing the characters read. It is the caller's
// responsibility to free this block.
wchar_t* read_from_stream(FILE* stream)
{
// Try setting the locale to UTF-8 a few different ways.
if (setlocale(LC_CTYPE, "") == NULL)
if (setlocale(LC_CTYPE, "UTF-8") == NULL)
setlocale(LC_CTYPE, NULL); // If this doesn't work, just give up.
LinkedBuffer* rootbuf = create_linked_buffer();
CHECK_NULL(rootbuf);
LinkedBuffer* current = rootbuf;
size_t chainlen = 1;
while(chainlen < MAX_CHAIN_LEN)
{
fgetws(current->buf, BUF_SIZE, stream);
if (ferror(stream))
{
perror("Error reading input");
exit(EXIT_FAILURE);
}
if (feof(stream))
break;
LinkedBuffer* next = create_linked_buffer();
CHECK_NULL(next);
current->next = next;
current = next;
chainlen++;
}
return collapse_linked_buffer(rootbuf, chainlen);
}
// Output processing
// --------------------------------------------------------
// Retrieves the current system time in milliseconds since
// the epoch.
uint64_t current_time_ms()
{
struct timeval tv;
gettimeofday(&tv, NULL);
return (tv.tv_sec) * 1000 + (tv.tv_usec) / 1000;
}
// Replaces the region of 'str' from 'start' to 'end-1'
// with the blank character defined in the global 'options'
// struct.
void fill_with_blanks(wchar_t* str, size_t start, size_t end)
{
for (size_t i=start; i<end; i++)
str[i] = options.blank;
}
// The main entry point of the program.
// This is where the magic happens.
// --------------------------------------------------------
int main(int argc, char** argv)
{
// Parse the command-line options.
if (!parse_options(argc, argv))
{
help(argv[0]);
return EXIT_FAILURE;
}
// Read from standard input.
wchar_t* input = read_from_stream(stdin);
if (input == NULL) goto out_of_memory;
size_t len = wcslen(input);
// Chomp a trailing newline.
if (len > 0 && input[len-1] == L'\n')
{
input[len-1] = L'\0';
len--;
}
// Allocate space for the output string.
wchar_t* output = malloc(sizeof(wchar_t)*(options.length+1));
if (output == NULL)
{
free(input);
goto out_of_memory;
}
// If the input is shorter than the ticker width, just
// return the input.
if (!options.always_scroll && len <= options.length)
{
memcpy(output, input, sizeof(wchar_t)*len);
fill_with_blanks(output, len, options.length);
}
// Otherwise, clip the output and offset it by the
// modulus of the current UNIX timestamp.
else
{
ssize_t end = (current_time_ms()/options.tick) % (len+options.length);
if (options.reverse) end = (len+options.length)-end;
ssize_t start = end - options.length;
if (start < 0)
{
fill_with_blanks(output, 0, -start);
memcpy(output-start, input, end*sizeof(wchar_t));
if (options.always_scroll && end > len)
fill_with_blanks(output, options.length-(end-len),
options.length);
}
else
{
if (end > len)
{
ssize_t overflow = end - len;
fill_with_blanks(output, options.length-overflow,
options.length);
end = len;
}
memcpy(output, input+start, (end-start)*sizeof(wchar_t));
}
}
free(input);
// Convert the output buffer back to the native
// encoding and output it.
output[options.length] = L'\0';
wprintf(output);
free(output);
return EXIT_SUCCESS;
out_of_memory:
fputs("ERROR\n", stdout);
fputs("Out of memory.\n", stderr);
return EXIT_FAILURE;
}
|
the_stack_data/100326.c | /*@ begin PerfTuning (
def build
{
arg build_command = 'gcc -O3 -fopenmp ';
arg libs = '-lm -lrt';
}
def performance_counter
{
arg repetitions = 35;
}
def performance_params
{
# param PERM[] = [
# ['i','j'],
# ['j','i'],
# ];
param T2_I[] = [1,16,32,64,128,256,512];
param T2_J[] = [1,16,32,64,128,256,512];
param T2_Ia[] = [1,64,128,256,512,1024,2048];
param T2_Ja[] = [1,64,128,256,512,1024,2048];
param U2_I[] = range(1,31);
param U2_J[] = range(1,31);
param RT2_I[] = [1,8,32];
param RT2_J[] = [1,8,32];
param U1_J[] = range(1,31);
}
def search
{
arg algorithm = 'Randomsearch';
arg total_runs = 10000;
}
def input_params
{
param N[] = [2000];
}
def input_vars
{
arg decl_file = 'decl_code.h';
arg init_file = 'init_code.c';
}
) @*/
int i,j, k,t;
int it, jt, kt;
int ii, jj, kk;
int iii, jjj, kkk;
#define max(x,y) ((x) > (y)? (x) : (y))
#define min(x,y) ((x) < (y)? (x) : (y))
/*@ begin Loop (
for (k=0; k<=N-1; k++) {
transform Composite(
unrolljam = (['j'],[U1_J]),
)
for (j=k+1; j<=N-1; j++)
A[k][j] = A[k][j]/A[k][k];
transform Composite(
tile = [('i',T2_I,'ii'),('j',T2_J,'jj'),
(('ii','i'),T2_Ia,'iii'),(('jj','j'),T2_Ja,'jjj')],
unrolljam = (['i','j'],[U2_I,U2_J]),
regtile = (['i','j'],[RT2_I,RT2_J]),
)
for(i=k+1; i<=N-1; i++)
for (j=k+1; j<=N-1; j++)
A[i][j] = A[i][j] - A[i][k]*A[k][j];
}
) @*/
/*@ end @*/
/*@ end @*/
|
the_stack_data/80993.c | /**
***********************************************************************************************************************
* Copyright (c) 2020, China Mobile Communications Group Co.,Ltd.
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
* an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
* specific language governing permissions and limitations under the License.
*
* @file drv_i2c.c
*
* @brief This file implements usart driver for stm32
*
* @revision
* Date Author Notes
* 2020-02-20 OneOS Team First Version
***********************************************************************************************************************
*/
#ifdef BSP_USING_I2C0
struct gd_i2c_info i2c0_info = {.hi2c = EVAL_I2C0, .i2c_rcu_clk = EVAL_I2C0_RCU_CLK, .i2c_speed = EVAL_I2C0_SPEED
, .scl_pin = EVAL_I2C0_SCL_PIN, .sda_pin = EVAL_I2C0_SDA_PIN
, .pin_port = EVAL_I2C0_GPIO_PORT, .port_rcu_clk = EVAL_I2C0_PORT_RCU_CLK
};
OS_HAL_DEVICE_DEFINE("I2C_Type", "i2c0", i2c0_info);
#endif
#ifdef BSP_USING_I2C1
struct gd_i2c_info i2c1_info = {.hi2c = EVAL_I2C1, .i2c_rcu_clk = EVAL_I2C1_RCU_CLK, .i2c_speed = EVAL_I2C1_SPEED
, .scl_pin = EVAL_I2C1_SCL_PIN, .sda_pin = EVAL_I2C1_SDA_PIN
, .pin_port = EVAL_I2C1_GPIO_PORT, .port_rcu_clk = EVAL_I2C1_PORT_RCU_CLK
};
OS_HAL_DEVICE_DEFINE("I2C_Type", "i2c1", i2c1_info);
#endif
|
the_stack_data/127460.c | #ifdef INTERFACE
CLASS(NexuizSingleplayerDialog) EXTENDS(NexuizDialog)
METHOD(NexuizSingleplayerDialog, fill, void(entity))
ATTRIB(NexuizSingleplayerDialog, title, string, "Singleplayer")
ATTRIB(NexuizSingleplayerDialog, color, vector, SKINCOLOR_DIALOG_SINGLEPLAYER)
ATTRIB(NexuizSingleplayerDialog, intendedWidth, float, 0.80)
ATTRIB(NexuizSingleplayerDialog, rows, float, 24)
ATTRIB(NexuizSingleplayerDialog, columns, float, 5)
ATTRIB(NexuizSingleplayerDialog, campaignBox, entity, NULL)
ENDCLASS(NexuizSingleplayerDialog)
#endif
#ifdef IMPLEMENTATION
void InstantAction_LoadMap(entity btn, entity dummy)
{
float glob, i, n, fh;
string s;
glob = search_begin("maps/*.instantaction", TRUE, TRUE);
if(glob < 0)
return;
i = ceil(random() * search_getsize(glob)) - 1;
fh = fopen(search_getfilename(glob, i), FILE_READ);
search_end(glob);
if(fh < 0)
return;
while((s = fgets(fh)))
{
if(substring(s, 0, 4) == "set ")
s = substring(s, 4, strlen(s) - 4);
n = tokenize_console(s);
if(argv(0) == "bot_number")
cvar_set("bot_number", argv(1));
else if(argv(0) == "skill")
cvar_set("skill", argv(1));
else if(argv(0) == "timelimit")
cvar_set("timelimit_override", argv(1));
else if(argv(0) == "fraglimit")
cvar_set("fraglimit_override", argv(1));
else if(argv(0) == "changelevel")
{
fclose(fh);
localcmd("\nmenu_loadmap_prepare\n");
gametype_SetMenu(GAME_DEATHMATCH);
MapInfo_LoadMap(argv(1));
cvar_set("lastlevel", "1");
return;
}
}
fclose(fh);
}
void fillNexuizSingleplayerDialog(entity me)
{
entity e, btnPrev, btnNext, lblTitle;
me.TR(me);
me.TDempty(me, (me.columns - 3) / 2);
me.TD(me, 2, 3, e = makeNexuizBigButton("Instant action! (random map with bots)", '0 0 0'));
e.onClick = InstantAction_LoadMap;
e.onClickEntity = NULL;
me.TR(me);
me.TR(me);
me.TR(me);
me.TD(me, 1, 1, btnPrev = makeNexuizButton("<<", '0 0 0'));
me.TD(me, 1, me.columns - 2, lblTitle = makeNexuizTextLabel(0.5, "???"));
me.TD(me, 1, 1, btnNext = makeNexuizButton(">>", '0 0 0'));
me.TR(me);
me.TD(me, me.rows - 6, me.columns, me.campaignBox = makeNexuizCampaignList());
btnPrev.onClick = MultiCampaign_Prev;
btnPrev.onClickEntity = me.campaignBox;
btnNext.onClick = MultiCampaign_Next;
btnNext.onClickEntity = me.campaignBox;
me.campaignBox.buttonNext = btnNext;
me.campaignBox.buttonPrev = btnPrev;
me.campaignBox.labelTitle = lblTitle;
me.campaignBox.campaignGo(me.campaignBox, 0);
me.gotoRC(me, me.rows - 1, 0);
me.TD(me, 1, 2, e = makeNexuizModButton("Singleplayer"));
me.TD(me, 1, me.columns - 2 , e = makeNexuizButton("Start Singleplayer!", '0 0 0'));
e.onClick = CampaignList_LoadMap;
e.onClickEntity = me.campaignBox;
}
#endif
|
the_stack_data/122014991.c | /*
* File: ex1.c
* Author: Vinicius
*/
#include <stdio.h>
#include <stdlib.h>
struct Ponto {
int x;
int y;
};
struct Ponto p,v1,v2;
int dentroRet (struct Ponto* v1, struct Ponto* v2, struct Ponto* p);
int main(int argc, char** argv) {
int retorno;
printf("Digite x e y do ponto v1: ");
scanf("%d %d",&v1.x,&v1.y);
printf("Digite x e y do ponto v2: ");
scanf("%f %f",&v2.x,&v2.y);
retorno = dentroRet(&v1,&v2,&p);
printf("Retorno: %d ",retorno);
return (EXIT_SUCCESS);
}
int dentroRet (struct Ponto* v1, struct Ponto* v2, struct Ponto* p){
p->x = v2->x - v1->x;
p->y = v2->y - v1->y;
if (p->x >=0 & p->y >= 0) return 1;
return 0;
} |
the_stack_data/497533.c | #include<stdio.h>
int main(int argc, char* argv[]){
if (argc < 2) return 1;
long int decimalNumber,remainder,quotient;
int octalNumber[100],i=1,j;
// printf("Enter any decimal number: ");
// scanf("%ld",&decimalNumber);
decimalNumber = (int) argv[1][0];
quotient = decimalNumber;
while(quotient!=0){
octalNumber[i++]= quotient % 8;
quotient = quotient / 8;
}
printf("Equivalent octal value of decimal number %d: \n",decimalNumber);
for(j = i -1 ;j> 0;j--)
printf("%d",octalNumber[j]);
return 0;
}
|
the_stack_data/16453.c |
/**
* Testing LLVM debug information
*/
#include <stdio.h>
int numA(int x) { return x + 1; }
int numB(int x) { return x * 3; }
int main(int argc, char* argv[])
{
int x = numA( 10 );
int y = numB( 20 );
return x + y;
}
|
the_stack_data/97014058.c | int main()
{
int x = 6;
int z = 0;
{
int x = 7;
z = z + x;
}
return x;
}
|
the_stack_data/31315.c | /*
* Benchmarks used in the paper "Commutativity of Reducers"
* which was published at TACAS 2015 and
* written by Yu-Fang Chen, Chih-Duo Hong, Nishant Sinha, and Bow-Yaw Wang.
* http://link.springer.com/chapter/10.1007%2F978-3-662-46681-0_9
*
* We checks if a function is "deterministic" w.r.t. all possible permutations
* of an input array. Such property is desirable for reducers in the
* map-reduce programming model. It ensures that the program always computes
* the same results on the same input data set.
*/
#define N 10
#define fun sum
extern void __VERIFIER_error() __attribute__ ((__noreturn__));
int sum (int x[N])
{
int i;
long long ret;
ret = 0;
for (i = 0; i < N; i++) {
ret = ret + x[i];
}
return ret;
}
int main ()
{
int x[N];
int temp;
int ret;
int ret2;
int ret5;
ret = fun(x);
temp=x[0];x[0] = x[1]; x[1] = temp;
ret2 = fun(x);
temp=x[0];
for(int i =0 ; i<N-1; i++){
x[i] = x[i+1];
}
x[N-1] = temp;
ret5 = fun(x);
if(ret != ret2 || ret !=ret5){
__VERIFIER_error();
}
return 1;
}
|
the_stack_data/247018222.c | #include <stdio.h>
int main()
{
int n;
scanf("%d", &n);
if(n%2 != 0)
printf("Weird\n");
else{
if(n >= 2 && n <= 5)printf("Not Weird\n");
else if(n>=6 && n<= 20)printf("Weird\n");
else printf("Not Weird\n");
}
return 0;
}
|
the_stack_data/32950357.c | #define _GNU_SOURCE
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <string.h>
#include <errno.h>
#include <stdbool.h>
int main(int argc, char** argv) {
const char* help =
"Usage: ./mbr [-gh] <device/partition file>\n"
"\tRequires rw permissions of target file (root, most likely).\n\n"
"\t-g: GPT partition - keep going even if not all patches can be found.\n"
"\t-h (or -v): Print this message\n";
bool gpt = false;
int filepos = 0;
int scanned = 1;
for (; scanned < argc; scanned++) {
/* If this does not start with -, it is not an option,
* it must be the name of the partition. Remember it,
* and keep going. */
if (*argv[scanned] != '-') {
if (filepos != 0) {
fprintf(stderr, "ERROR: A single partition can be specified.\n%s", help);
return 1;
}
filepos = scanned;
continue;
}
/* If this is '--', there are no more options afterward. */
const char* ptr = argv[scanned] + 1;
if (*ptr == '-' && !*(ptr + 1))
break;
/* Scan the actual option argument for flags. */
for (; *ptr; ptr++) {
switch (*ptr) {
case 'h':
case 'v':
printf(help);
return 0;
case 'g':
gpt = true;
break;
}
}
}
/* Either scanning argv did not find the name of the partition,
* or we encountered a --. */
if (!filepos) {
if ((argc - scanned) != 2) {
fprintf(stderr, "ERROR: You must specify a single"
" file/partition.\n%s", help);
return 1;
}
filepos = argc - 1;
}
const char* partition = argv[filepos];
int fd = open(partition, O_RDONLY);
if (fd < 0) {
fprintf(stderr, "Could not open for read %s: %s\n",
partition, strerror(errno));
return 1;
}
printf("opened: %s\n", partition);
char buffer[1024 * 2];
int data = read(fd, buffer, sizeof(buffer));
if (data < 0) {
fprintf(stderr, "Could not read %s: %s\n",
partition, strerror(errno));
return 2;
}
close(fd);
printf("read: %d bytes from %s\n", data, partition);
# define DECLARE_MATCH(str) { str, sizeof(str) - 1 }
struct {
const char* match;
const int length;
} matches[] = {
/* diskboot.S, line ~349 */
DECLARE_MATCH("loading\0.\0\r\n\0Geom\0Read"),
DECLARE_MATCH(".\0\r\n\0Geom\0Read"),
/* boot.S, line ~391 */
DECLARE_MATCH("GRUB \0Geom\0Hard Disk\0"),
/* DECLARE_MATCH("Welcome to GRUB!"), */
};
int found = 0;
for (int i = 0; i < sizeof(matches) / sizeof(matches[0]); ++i) {
const char* match = matches[i].match;
const int length = matches[i].length;
void* ptr = memmem(buffer, data, match, length);
if (!ptr) {
printf("match[%d]: NOT FOUND\n", i);
continue;
}
size_t offset = (char*)ptr - buffer;
printf("match[%d]: found at %ld, \"%s\", '%c'\n",
i, offset, buffer + offset, buffer[offset]);
++found;
buffer[offset] = '\0';
}
/* If we did not find all the required matches on a non gpt partition,
* give up immediately, exit with status 10. */
if (found < (sizeof(matches) / sizeof(matches[0])) && !gpt) {
fprintf(stderr, "Not enough matches were found, giving up.\n");
fprintf(stderr, "If you have a gpt disk, run this with the -g flag.\n");
fprintf(stderr, "(if you run this command more than once, it's good!\n");
fprintf(stderr, "it means the first run succeeded)\n");
return 10;
}
/* On GPT partitions, it is ok to have partial matches. Keep going, but
* warn the user about what to do next. */
if (gpt) {
switch (found) {
case 1:
printf("Found mbr header of gpt disk.\n"
"Make sure to also run this on the ef02 partition of this drive.\n");
break;
case 2:
printf("Found ef02 header of gpt grub partition.\n"
"Make sure to also run this on full drive.\n");
break;
}
}
fd = open(partition, O_RDWR);
if (fd < 0) {
fprintf(stderr, "Could not open for write %s: %s\n",
partition, strerror(errno));
return 3;
}
data = write(fd, buffer, sizeof(buffer));
if (data < 0) {
fprintf(stderr, "Could not write %s, good luck: %s\n",
partition, strerror(errno));
return 4;
}
if (close(fd) < 0) {
fprintf(stderr, "Close failed! Good luck: %s - %s\n",
partition, strerror(errno));
return 5;
}
printf("PATCHED SUCCESSFULLY!\n");
printf("(the message should be gone next time you reboot, good luck!)\n");
return 0;
}
|
the_stack_data/128264223.c | #define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <strings.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#define PORT "5050"
int main(int argc, char *argv[])
{
//checking for arguments
if (argc != 2)
{
printf("Usage: %s <hostname>\n", *argv);
exit(EXIT_FAILURE);
}
else
{
printf("[CLIENT] Parsed input parameters\n");
}
int status; //return value of getaddrinfo()
struct addrinfo hints; //setup the basic socket settings
struct addrinfo *result; //here we have the hints, IP and port
memset(&hints, 0, sizeof(struct addrinfo)); //memset to 0 as described in the documentation
//the function bzero is obsolete, referenced in addrinfo
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_STREAM;
if((status = getaddrinfo(argv[1], PORT, &hints, &result)) != 0)
{
printf("[CLIENT] Error at getaddrinfo(): %s\n", gai_strerror(status));
exit(EXIT_FAILURE);
}
else
{
printf("[CLIENT] Finished getting the information\n");
}
int socketfd; //server socket, this will receive incoming connections
socketfd = socket(result->ai_family, result->ai_socktype, result->ai_protocol);
//domain -> AF_INET which means IPv4 socket
//type -> SOCK_STREAM which means TCP socket
//protocol -> usually 0
if (socketfd < 0)
{
printf("[CLIENT] Error opening socket\n");
exit(EXIT_FAILURE);
}
else
{
printf("[CLIENT] Opened socket on port %d\n", atoi(PORT));
}
//connecting to the server
//we should iterate through the linked list ~result~ so we can pick a valid entry
//as the first entry might be invalid.
if (connect(socketfd, result->ai_addr, result->ai_addrlen) < 0)
{
printf("[CLIENT] Error connecting\n");
exit(EXIT_FAILURE);
}
else
{
printf("[CLIENT] Connected to socket\n");
}
//freeing the linked list
freeaddrinfo(result);
//storage for incoming data
char *buffer = malloc(256 * sizeof(char));
//number of bytes written
int n;
//loop while you want to exchange messages
for(;;) //as in the example from getaddrinfo(3)
{
printf("Enter the message: ");
memset(buffer, 0, 256);
char* ret;
if( (ret = fgets(buffer, 255, stdin)) == NULL)
{
printf("[CLIENT] Error connecting\n");
exit(EXIT_FAILURE);
}
if ((n = write(socketfd, buffer, strlen(buffer))) <= 0)
{
printf("[CLIENT] Error writing to socket\n");
exit(EXIT_FAILURE);
}
else
{
printf("[CLIENT] Written %d bytes\n", n);
}
if (read(socketfd, buffer, 256) <= 0)
{
printf("[CLIENT] Error on reading\n");
exit(EXIT_FAILURE);
}
printf("=> %s", buffer);
}
//shuting down the connection to the server
shutdown(socketfd, SHUT_RDWR);
return 0;
} |
the_stack_data/59957.c | /*
* Copyright 2017 Google, Inc
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <stdio.h>
#include <stdlib.h>
int uart_test( void );
int led_test( void );
int button_test( void );
int pwm_led_test( void );
int tongsong( void );
int servo( void );
int i2c_lcd_test ( void );
int ssd1306_test( void );
char test_menu( void )
{
char ch;
printf( "--- select a test ---\r\n" );
printf( "1. uart test\r\n2. led test\r\n3. button test\r\n4. pwm led test\r\n5. i2c lcd test\r\n6. tongsong\r\n7. servo\r\n8. spi oled test\r\nq. quit\r\n");
ch = getchar();
getchar();
if ( ch == 'q' )
printf( "Goodbye !\r\n" );
return ch;
}
int main() {
char ch;
char test_item;
test_item = '\0';
while( test_item != 'q' ) {
test_item = test_menu();
if ( test_item == '1' ) {
uart_test();
} else if ( test_item == '2' ) {
led_test();
} else if ( test_item == '3' ) {
button_test();
} else if ( test_item == '4' ) {
pwm_led_test();
} else if ( test_item == '5' ) {
i2c_lcd_test();
printf( "press x to exit i2c lcd test\r\n" );
ch = getchar();
getchar();
} else if ( test_item == '6' ) {
tongsong();
} else if ( test_item == '7' ) {
servo();
} else if ( test_item == '8' ) {
ssd1306_test();
}
}
return 0;
}
|
the_stack_data/95451524.c | /* libyywrap - flex run-time support library "yywrap" function */
int yywrap()
{
return 1;
}
|
the_stack_data/924585.c | struct Input {
unsigned a;
};
struct Output {
unsigned short x;
};
void outsource(struct Input *input, struct Output *output)
{
output->x = input->a;
}
|
the_stack_data/1850.c | #include<stdio.h>
#define MAX 100000
int main(void)
{
int arr[MAX],i,n,d;
scanf("%d%d",&n,&d);
for(i=0;i<n;i++)
{
scanf("%d",&arr[i]);
}
for(i=0;i<n;i++)
{
printf("%d ",arr[(i+d)%n]);
}
}
|
the_stack_data/1024211.c | #include <stdio.h>
#include <stdlib.h>
// #include <mpi.h>
#define max_rows 1000
int array[max_rows];
int main(int argc, char **argv){
int i, num_rows;
long int sum;
printf("enter the amount of numbers: \n");
scanf("%d", &num_rows);
if (num_rows > max_rows){
printf("Too many numbers.\n");
exit(1);
}
for (i = 0; i < num_rows; i++){
array[i] = i;
}
sum = 0;
for (i = 0; i < num_rows; i++){
sum += array[i];
}
printf("Sum: %i\n", sum);
} |
the_stack_data/193893208.c | #include <stdio.h>
#include <stdlib.h>
#pragma warning (disable: 4996)
void main()
{
float fhh,cen;
printf("please enter the centigrade value below \n");
scanf("%f",&cen);
fhh = (32 + (cen*1.8));
printf("the fahrenheight value for this is %.2f .\n",fhh);
system("pause");
}
|
the_stack_data/1264043.c | /***
* This code is a part of EvoApproxLib library (ehw.fit.vutbr.cz/approxlib) distributed under The MIT License.
* When used, please cite the following article(s): V. Mrazek, R. Hrbacek, Z. Vasicek and L. Sekanina, "EvoApprox8b: Library of approximate adders and multipliers for circuit design and benchmarking of approximation methods". Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017, Lausanne, 2017, pp. 258-261. doi: 10.23919/DATE.2017.7926993
* This file contains a circuit from evoapprox8b dataset. Note that a new version of library was already published.
***/
#include <stdint.h>
#include <stdlib.h>
/// Approximate function add8_341
/// Library = EvoApprox8b
/// Circuit = add8_341
/// Area (180) = 900
/// Delay (180) = 1.670
/// Power (180) = 272.20
/// Area (45) = 68
/// Delay (45) = 0.630
/// Power (45) = 26.62
/// Nodes = 12
/// HD = 85664
/// MAE = 0.68750
/// MSE = 1.25000
/// MRE = 0.36 %
/// WCE = 3
/// WCRE = 50 %
/// EP = 43.8 %
uint16_t add8_341(uint8_t a, uint8_t b)
{
uint16_t c = 0;
uint8_t n0 = (a >> 0) & 0x1;
uint8_t n2 = (a >> 1) & 0x1;
uint8_t n4 = (a >> 2) & 0x1;
uint8_t n6 = (a >> 3) & 0x1;
uint8_t n8 = (a >> 4) & 0x1;
uint8_t n10 = (a >> 5) & 0x1;
uint8_t n12 = (a >> 6) & 0x1;
uint8_t n14 = (a >> 7) & 0x1;
uint8_t n16 = (b >> 0) & 0x1;
uint8_t n18 = (b >> 1) & 0x1;
uint8_t n20 = (b >> 2) & 0x1;
uint8_t n22 = (b >> 3) & 0x1;
uint8_t n24 = (b >> 4) & 0x1;
uint8_t n26 = (b >> 5) & 0x1;
uint8_t n28 = (b >> 6) & 0x1;
uint8_t n30 = (b >> 7) & 0x1;
uint8_t n32;
uint8_t n53;
uint8_t n58;
uint8_t n63;
uint8_t n79;
uint8_t n82;
uint8_t n132;
uint8_t n133;
uint8_t n182;
uint8_t n183;
uint8_t n232;
uint8_t n233;
uint8_t n282;
uint8_t n283;
uint8_t n332;
uint8_t n333;
uint8_t n382;
uint8_t n383;
n32 = n0 | n16;
n53 = ~(n0 & n18 & n16);
n58 = ~(n53 | n14);
n63 = n2 & n58;
n79 = n63;
n82 = n2 | n18;
n132 = (n4 ^ n20) ^ n79;
n133 = (n4 & n20) | (n20 & n79) | (n4 & n79);
n182 = (n6 ^ n22) ^ n133;
n183 = (n6 & n22) | (n22 & n133) | (n6 & n133);
n232 = (n8 ^ n24) ^ n183;
n233 = (n8 & n24) | (n24 & n183) | (n8 & n183);
n282 = (n10 ^ n26) ^ n233;
n283 = (n10 & n26) | (n26 & n233) | (n10 & n233);
n332 = (n12 ^ n28) ^ n283;
n333 = (n12 & n28) | (n28 & n283) | (n12 & n283);
n382 = (n14 ^ n30) ^ n333;
n383 = (n14 & n30) | (n30 & n333) | (n14 & n333);
c |= (n32 & 0x1) << 0;
c |= (n82 & 0x1) << 1;
c |= (n132 & 0x1) << 2;
c |= (n182 & 0x1) << 3;
c |= (n232 & 0x1) << 4;
c |= (n282 & 0x1) << 5;
c |= (n332 & 0x1) << 6;
c |= (n382 & 0x1) << 7;
c |= (n383 & 0x1) << 8;
return c;
}
|
the_stack_data/14900.c | // SPDX-License-Identifier: GPL-2.0-or-later
/*
* Test cases for compiler-based stack variable zeroing via
* -ftrivial-auto-var-init={zero,pattern} or CONFIG_GCC_PLUGIN_STRUCTLEAK*.
*
* External build example:
* clang -O2 -Wall -ftrivial-auto-var-init=pattern \
* -o test_stackinit test_stackinit.c
*/
#ifdef __KERNEL__
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/string.h>
#else
/* Userspace headers. */
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <stdbool.h>
#include <errno.h>
#include <sys/types.h>
/* Linux kernel-ism stubs for stand-alone userspace build. */
#define KBUILD_MODNAME "stackinit"
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#define pr_err(fmt, ...) fprintf(stderr, pr_fmt(fmt), ##__VA_ARGS__)
#define pr_warn(fmt, ...) fprintf(stderr, pr_fmt(fmt), ##__VA_ARGS__)
#define pr_info(fmt, ...) fprintf(stdout, pr_fmt(fmt), ##__VA_ARGS__)
#define __init /**/
#define __exit /**/
#define __user /**/
#define noinline __attribute__((__noinline__))
#define __aligned(x) __attribute__((__aligned__(x)))
#ifdef __clang__
# define __compiletime_error(message) /**/
#else
# define __compiletime_error(message) __attribute__((__error__(message)))
#endif
#define __compiletime_assert(condition, msg, prefix, suffix) \
do { \
extern void prefix ## suffix(void) __compiletime_error(msg); \
if (!(condition)) \
prefix ## suffix(); \
} while (0)
#define _compiletime_assert(condition, msg, prefix, suffix) \
__compiletime_assert(condition, msg, prefix, suffix)
#define compiletime_assert(condition, msg) \
_compiletime_assert(condition, msg, __compiletime_assert_, __COUNTER__)
#define BUILD_BUG_ON_MSG(cond, msg) compiletime_assert(!(cond), msg)
#define BUILD_BUG_ON(condition) \
BUILD_BUG_ON_MSG(condition, "BUILD_BUG_ON failed: " #condition)
typedef uint8_t u8;
typedef uint16_t u16;
typedef uint32_t u32;
typedef uint64_t u64;
#define module_init(func) static int (*do_init)(void) = func
#define module_exit(func) static void (*do_exit)(void) = func
#define MODULE_LICENSE(str) int main(void) { \
int rc; \
/* License: str */ \
rc = do_init(); \
if (rc == 0) \
do_exit(); \
return rc; \
}
#endif /* __KERNEL__ */
/* Exfiltration buffer. */
#define MAX_VAR_SIZE 128
static u8 check_buf[MAX_VAR_SIZE];
/* Character array to trigger stack protector in all functions. */
#define VAR_BUFFER 32
/* Volatile mask to convince compiler to copy memory with 0xff. */
static volatile u8 forced_mask = 0xff;
/* Location and size tracking to validate fill and test are colocated. */
static void *fill_start, *target_start;
static size_t fill_size, target_size;
static bool range_contains(char *haystack_start, size_t haystack_size,
char *needle_start, size_t needle_size)
{
if (needle_start >= haystack_start &&
needle_start + needle_size <= haystack_start + haystack_size)
return true;
return false;
}
/* Whether the test is expected to fail. */
#define WANT_SUCCESS 0
#define XFAIL 1
#define DO_NOTHING_TYPE_SCALAR(var_type) var_type
#define DO_NOTHING_TYPE_STRING(var_type) void
#define DO_NOTHING_TYPE_STRUCT(var_type) void
#define DO_NOTHING_RETURN_SCALAR(ptr) *(ptr)
#define DO_NOTHING_RETURN_STRING(ptr) /**/
#define DO_NOTHING_RETURN_STRUCT(ptr) /**/
#define DO_NOTHING_CALL_SCALAR(var, name) \
(var) = do_nothing_ ## name(&(var))
#define DO_NOTHING_CALL_STRING(var, name) \
do_nothing_ ## name(var)
#define DO_NOTHING_CALL_STRUCT(var, name) \
do_nothing_ ## name(&(var))
#define FETCH_ARG_SCALAR(var) &var
#define FETCH_ARG_STRING(var) var
#define FETCH_ARG_STRUCT(var) &var
#define FILL_SIZE_STRING 16
#define INIT_CLONE_SCALAR /**/
#define INIT_CLONE_STRING [FILL_SIZE_STRING]
#define INIT_CLONE_STRUCT /**/
#define ZERO_CLONE_SCALAR(zero) memset(&(zero), 0x00, sizeof(zero))
#define ZERO_CLONE_STRING(zero) memset(&(zero), 0x00, sizeof(zero))
/*
* For the struct, intentionally poison padding to see if it gets
* copied out in direct assignments.
* */
#define ZERO_CLONE_STRUCT(zero) \
do { \
memset(&(zero), 0xFF, sizeof(zero)); \
zero.one = 0; \
zero.two = 0; \
zero.three = 0; \
zero.four = 0; \
} while (0)
#define INIT_SCALAR_none(var_type) /**/
#define INIT_SCALAR_zero(var_type) = 0
#define INIT_STRING_none(var_type) [FILL_SIZE_STRING] /**/
#define INIT_STRING_zero(var_type) [FILL_SIZE_STRING] = { }
#define INIT_STRUCT_none(var_type) /**/
#define INIT_STRUCT_zero(var_type) = { }
#define __static_partial { .two = 0, }
#define __static_all { .one = 0, \
.two = 0, \
.three = 0, \
.four = 0, \
}
#define __dynamic_partial { .two = arg->two, }
#define __dynamic_all { .one = arg->one, \
.two = arg->two, \
.three = arg->three, \
.four = arg->four, \
}
#define __runtime_partial var.two = 0
#define __runtime_all var.one = 0; \
var.two = 0; \
var.three = 0; \
var.four = 0
#define INIT_STRUCT_static_partial(var_type) \
= __static_partial
#define INIT_STRUCT_static_all(var_type) \
= __static_all
#define INIT_STRUCT_dynamic_partial(var_type) \
= __dynamic_partial
#define INIT_STRUCT_dynamic_all(var_type) \
= __dynamic_all
#define INIT_STRUCT_runtime_partial(var_type) \
; __runtime_partial
#define INIT_STRUCT_runtime_all(var_type) \
; __runtime_all
#define INIT_STRUCT_assigned_static_partial(var_type) \
; var = (var_type)__static_partial
#define INIT_STRUCT_assigned_static_all(var_type) \
; var = (var_type)__static_all
#define INIT_STRUCT_assigned_dynamic_partial(var_type) \
; var = (var_type)__dynamic_partial
#define INIT_STRUCT_assigned_dynamic_all(var_type) \
; var = (var_type)__dynamic_all
#define INIT_STRUCT_assigned_copy(var_type) \
; var = *(arg)
/*
* @name: unique string name for the test
* @var_type: type to be tested for zeroing initialization
* @which: is this a SCALAR, STRING, or STRUCT type?
* @init_level: what kind of initialization is performed
* @xfail: is this test expected to fail?
*/
#define DEFINE_TEST_DRIVER(name, var_type, which, xfail) \
/* Returns 0 on success, 1 on failure. */ \
static noinline __init int test_ ## name (void) \
{ \
var_type zero INIT_CLONE_ ## which; \
int ignored; \
u8 sum = 0, i; \
\
/* Notice when a new test is larger than expected. */ \
BUILD_BUG_ON(sizeof(zero) > MAX_VAR_SIZE); \
\
/* Fill clone type with zero for per-field init. */ \
ZERO_CLONE_ ## which(zero); \
/* Clear entire check buffer for 0xFF overlap test. */ \
memset(check_buf, 0x00, sizeof(check_buf)); \
/* Fill stack with 0xFF. */ \
ignored = leaf_ ##name((unsigned long)&ignored, 1, \
FETCH_ARG_ ## which(zero)); \
/* Verify all bytes overwritten with 0xFF. */ \
for (sum = 0, i = 0; i < target_size; i++) \
sum += (check_buf[i] != 0xFF); \
if (sum) { \
pr_err(#name ": leaf fill was not 0xFF!?\n"); \
return 1; \
} \
/* Clear entire check buffer for later bit tests. */ \
memset(check_buf, 0x00, sizeof(check_buf)); \
/* Extract stack-defined variable contents. */ \
ignored = leaf_ ##name((unsigned long)&ignored, 0, \
FETCH_ARG_ ## which(zero)); \
\
/* Validate that compiler lined up fill and target. */ \
if (!range_contains(fill_start, fill_size, \
target_start, target_size)) { \
pr_err(#name ": stack fill missed target!?\n"); \
pr_err(#name ": fill %zu wide\n", fill_size); \
pr_err(#name ": target offset by %d\n", \
(int)((ssize_t)(uintptr_t)fill_start - \
(ssize_t)(uintptr_t)target_start)); \
return 1; \
} \
\
/* Look for any bytes still 0xFF in check region. */ \
for (sum = 0, i = 0; i < target_size; i++) \
sum += (check_buf[i] == 0xFF); \
\
if (sum == 0) { \
pr_info(#name " ok\n"); \
return 0; \
} else { \
pr_warn(#name " %sFAIL (uninit bytes: %d)\n", \
(xfail) ? "X" : "", sum); \
return (xfail) ? 0 : 1; \
} \
}
#define DEFINE_TEST(name, var_type, which, init_level, xfail) \
/* no-op to force compiler into ignoring "uninitialized" vars */\
static noinline __init DO_NOTHING_TYPE_ ## which(var_type) \
do_nothing_ ## name(var_type *ptr) \
{ \
/* Will always be true, but compiler doesn't know. */ \
if ((unsigned long)ptr > 0x2) \
return DO_NOTHING_RETURN_ ## which(ptr); \
else \
return DO_NOTHING_RETURN_ ## which(ptr + 1); \
} \
static noinline __init int leaf_ ## name(unsigned long sp, \
bool fill, \
var_type *arg) \
{ \
char buf[VAR_BUFFER]; \
var_type var \
INIT_ ## which ## _ ## init_level(var_type); \
\
target_start = &var; \
target_size = sizeof(var); \
/* \
* Keep this buffer around to make sure we've got a \
* stack frame of SOME kind... \
*/ \
memset(buf, (char)(sp & 0xff), sizeof(buf)); \
/* Fill variable with 0xFF. */ \
if (fill) { \
fill_start = &var; \
fill_size = sizeof(var); \
memset(fill_start, \
(char)((sp & 0xff) | forced_mask), \
fill_size); \
} \
\
/* Silence "never initialized" warnings. */ \
DO_NOTHING_CALL_ ## which(var, name); \
\
/* Exfiltrate "var". */ \
memcpy(check_buf, target_start, target_size); \
\
return (int)buf[0] | (int)buf[sizeof(buf) - 1]; \
} \
DEFINE_TEST_DRIVER(name, var_type, which, xfail)
/* Structure with no padding. */
struct test_packed {
unsigned long one;
unsigned long two;
unsigned long three;
unsigned long four;
};
/* Simple structure with padding likely to be covered by compiler. */
struct test_small_hole {
size_t one;
char two;
/* 3 byte padding hole here. */
int three;
unsigned long four;
};
/* Trigger unhandled padding in a structure. */
struct test_big_hole {
u8 one;
u8 two;
u8 three;
/* 61 byte padding hole here. */
u8 four __aligned(64);
} __aligned(64);
struct test_trailing_hole {
char *one;
char *two;
char *three;
char four;
/* "sizeof(unsigned long) - 1" byte padding hole here. */
};
/* Test if STRUCTLEAK is clearing structs with __user fields. */
struct test_user {
u8 one;
unsigned long two;
char __user *three;
unsigned long four;
};
#define DEFINE_SCALAR_TEST(name, init, xfail) \
DEFINE_TEST(name ## _ ## init, name, SCALAR, \
init, xfail)
#define DEFINE_SCALAR_TESTS(init, xfail) \
DEFINE_SCALAR_TEST(u8, init, xfail); \
DEFINE_SCALAR_TEST(u16, init, xfail); \
DEFINE_SCALAR_TEST(u32, init, xfail); \
DEFINE_SCALAR_TEST(u64, init, xfail); \
DEFINE_TEST(char_array_ ## init, unsigned char, \
STRING, init, xfail)
#define DEFINE_STRUCT_TEST(name, init, xfail) \
DEFINE_TEST(name ## _ ## init, \
struct test_ ## name, STRUCT, init, \
xfail)
#define DEFINE_STRUCT_TESTS(init, xfail) \
DEFINE_STRUCT_TEST(small_hole, init, xfail); \
DEFINE_STRUCT_TEST(big_hole, init, xfail); \
DEFINE_STRUCT_TEST(trailing_hole, init, xfail); \
DEFINE_STRUCT_TEST(packed, init, xfail)
#define DEFINE_STRUCT_INITIALIZER_TESTS(base) \
DEFINE_STRUCT_TESTS(base ## _ ## partial, \
WANT_SUCCESS); \
DEFINE_STRUCT_TESTS(base ## _ ## all, \
WANT_SUCCESS)
/* These should be fully initialized all the time! */
DEFINE_SCALAR_TESTS(zero, WANT_SUCCESS);
DEFINE_STRUCT_TESTS(zero, WANT_SUCCESS);
/* Struct initializers: padding may be left uninitialized. */
DEFINE_STRUCT_INITIALIZER_TESTS(static);
DEFINE_STRUCT_INITIALIZER_TESTS(dynamic);
DEFINE_STRUCT_INITIALIZER_TESTS(runtime);
DEFINE_STRUCT_INITIALIZER_TESTS(assigned_static);
DEFINE_STRUCT_INITIALIZER_TESTS(assigned_dynamic);
DEFINE_STRUCT_TESTS(assigned_copy, XFAIL);
/* No initialization without compiler instrumentation. */
DEFINE_SCALAR_TESTS(none, WANT_SUCCESS);
DEFINE_STRUCT_TESTS(none, WANT_SUCCESS);
/* Initialization of members with __user attribute. */
DEFINE_TEST(user, struct test_user, STRUCT, none, WANT_SUCCESS);
/*
* Check two uses through a variable declaration outside either path,
* which was noticed as a special case in porting earlier stack init
* compiler logic.
*/
static int noinline __leaf_switch_none(int path, bool fill)
{
switch (path) {
/*
* This is intentionally unreachable. To silence the
* warning, build with -Wno-switch-unreachable
*/
uint64_t var;
case 1:
target_start = &var;
target_size = sizeof(var);
if (fill) {
fill_start = &var;
fill_size = sizeof(var);
memset(fill_start, forced_mask | 0x55, fill_size);
}
memcpy(check_buf, target_start, target_size);
break;
case 2:
target_start = &var;
target_size = sizeof(var);
if (fill) {
fill_start = &var;
fill_size = sizeof(var);
memset(fill_start, forced_mask | 0xaa, fill_size);
}
memcpy(check_buf, target_start, target_size);
break;
default:
var = 5;
return var & forced_mask;
}
return 0;
}
static noinline __init int leaf_switch_1_none(unsigned long sp, bool fill,
uint64_t *arg)
{
return __leaf_switch_none(1, fill);
}
static noinline __init int leaf_switch_2_none(unsigned long sp, bool fill,
uint64_t *arg)
{
return __leaf_switch_none(2, fill);
}
/*
* These are expected to fail for most configurations because neither
* GCC nor Clang have a way to perform initialization of variables in
* non-code areas (i.e. in a switch statement before the first "case").
* https://bugs.llvm.org/show_bug.cgi?id=44916
*/
DEFINE_TEST_DRIVER(switch_1_none, uint64_t, SCALAR, XFAIL);
DEFINE_TEST_DRIVER(switch_2_none, uint64_t, SCALAR, XFAIL);
static int __init test_stackinit_init(void)
{
unsigned int failures = 0;
#define test_scalars(init) do { \
failures += test_u8_ ## init (); \
failures += test_u16_ ## init (); \
failures += test_u32_ ## init (); \
failures += test_u64_ ## init (); \
failures += test_char_array_ ## init (); \
} while (0)
#define test_structs(init) do { \
failures += test_small_hole_ ## init (); \
failures += test_big_hole_ ## init (); \
failures += test_trailing_hole_ ## init (); \
failures += test_packed_ ## init (); \
} while (0)
/* These are explicitly initialized and should always pass. */
test_scalars(zero);
test_structs(zero);
/* Padding here appears to be accidentally always initialized? */
test_structs(dynamic_partial);
test_structs(assigned_dynamic_partial);
/* Padding initialization depends on compiler behaviors. */
test_structs(static_partial);
test_structs(static_all);
test_structs(dynamic_all);
test_structs(runtime_partial);
test_structs(runtime_all);
test_structs(assigned_static_partial);
test_structs(assigned_static_all);
test_structs(assigned_dynamic_all);
/* Everything fails this since it effectively performs a memcpy(). */
test_structs(assigned_copy);
/* STRUCTLEAK_BYREF_ALL should cover everything from here down. */
test_scalars(none);
failures += test_switch_1_none();
failures += test_switch_2_none();
/* STRUCTLEAK_BYREF should cover from here down. */
test_structs(none);
/* STRUCTLEAK will only cover this. */
failures += test_user();
if (failures == 0)
pr_info("all tests passed!\n");
else
pr_err("failures: %u\n", failures);
return failures ? -EINVAL : 0;
}
module_init(test_stackinit_init);
static void __exit test_stackinit_exit(void)
{ }
module_exit(test_stackinit_exit);
MODULE_LICENSE("GPL");
|
the_stack_data/193892180.c | #include <stdio.h>
int gcd(int a, int b);
int main(void)
{
int t;
int a, b;
scanf("%d", &t);
while (t--) {
scanf("%d %d", &a, &b);
printf("%d\n", gcd(a, b));
}
return 0;
}
int gcd(int a, int b)
{
int temp;
if (a < b) {
temp = a;
a = b;
b = temp;
}
while (a % b != 0) {
temp = a % b;
a = b;
b = temp;
}
return b;
}
|
the_stack_data/29824056.c | /*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <stdlib.h>
void if_freed_invalid_latent(int x, int* y) {
if (x > 5) {
free(y);
*y = 1;
}
}
void call_if_freed_invalid_latent(int x) {
if (x > 0) {
if_freed_invalid_latent(x, NULL);
}
}
void call_if_freed_invalid2_bad() { call_if_freed_invalid_latent(7); }
// make sure this isn't classified as latent as callers have no control over the
// value of x being tested in the body of the function
void test_modified_value_then_error_bad(int* x) {
*x = random();
if (*x == 5) {
int* p = NULL;
*p = 42;
}
}
// below is a test that the calling context appears in the correct order in the
// trace
void latent(int a) {
if (a == 4) {
int* p = NULL;
*p = 42;
}
}
void propagate_latent_1_latent(int a1) { latent(a1); }
void propagate_latent_2_latent(int a2) { propagate_latent_1_latent(a2); }
void propagate_latent_3_latent(int a3) { propagate_latent_2_latent(a3); }
void make_latent_manifest() { propagate_latent_3_latent(4); }
int* return_first(int* x, int a, int** out) {
int w = x;
*out = w;
return w;
}
int* return_null(int** out) {
int* p = NULL;
*out = p;
return p;
}
// make sure the trace has all the details
int* follow_value_by_ref_bad() {
int* y;
return_null(&y);
int* z;
return_first(y, 12, &z);
*z = 42;
}
// make sure the trace has all the details
int* follow_value_by_ret_bad() {
int *dummy1, dummy2;
int* y = return_null(&dummy1);
int* z = return_first(y, 12, &dummy2);
*z = 42;
}
int* malloc_wrapper_1() {
int* x;
x = (int*)malloc(sizeof(int));
return x;
}
int* malloc_wrapper_2(int b) {
if (b) {
return malloc_wrapper_1();
}
}
void free_wrapper(int* p, int b) {
if (b) {
free(p);
}
}
void trace_correctly_through_wrappers_bad() {
int* x = malloc_wrapper_2(1);
// TODO: ideally we would trace that we didn't go into the free() branch of
// the wrapper explicitly here to help understand the bug report
free_wrapper(x, 0);
}
|
the_stack_data/989094.c | /*
This is a basic test for <math.h> functions.
How to compile for DOS (huge/.EXE, unreal/.EXE, 32-bit DPMI/.EXE):
smlrcc -dosh math.c -o mathh.exe
smlrcc -dosu math.c -o mathu.exe
smlrcc -dosp math.c -o mathp.exe
How to compile for Windows:
smlrcc -win math.c -o mathw.exe
How to compile for Linux:
smlrcc -linux math.c -o mathl
How to compile for MacOS:
smlrcc -macos math.c -o mathm
*/
#include <math.h>
#include <float.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
enum Flt2Flt
{
FSIN,
FCOS,
FTAN,
FATAN,
FASIN,
FACOS,
FEXP,
FEXP2,
FEXPM1,
FSQRT,
FFABS,
FLOG,
FLOG2,
FLOG10,
FCEIL,
FFLOOR,
FTRUNC,
FROUND,
FSINH,
FCOSH,
FTANH
};
static struct
{
float(*fxn)(float); char* name;
} aFlt2Flt[/*enum Flt2Flt*/] =
{
{ &sinf, "sinf",
},{ &cosf, "cosf",
},{ &tanf, "tanf",
},{ &atanf, "atanf",
},{ &asinf, "asinf",
},{ &acosf, "acosf",
},{ &expf, "expf",
},{ &exp2f, "exp2f",
},{ &expm1f, "expm1f",
},{ &sqrtf, "sqrtf",
},{ &fabsf, "fabsf",
},{ &logf, "logf",
},{ &log2f, "log2f",
},{ &log10f, "log10f",
},{ &ceilf, "ceilf",
},{ &floorf, "floorf",
},{ &truncf, "truncf",
},{ &roundf, "roundf",
},{ &sinhf, "sinhf",
},{ &coshf, "coshf",
},{ &tanhf, "tanhf",
}
};
enum FltFlt2Flt
{
FHYPOT,
FATAN2,
FPOW,
FFMOD
};
static struct
{
float(*fxn)(float, float); char* name;
} aFltFlt2Flt[/*enum FltFlt2Flt*/] =
{
{ &hypotf, "hypotf",
},{ &atan2f, "atan2f",
},{ &powf, "powf",
},{ &fmodf, "fmodf",
}
};
int errors;
int cmp(float v, float emin, float emax)
{
// Make sure either both emin and emax are NANs or none.
assert((emin != emin) == (emax != emax));
// Check for NAN.
if (emin != emin)
{
return v != v;
}
assert(emin <= emax);
// Range check.
if (emin <= v && v <= emax)
{
// Special case for comparing with +/-0.
if (emin == 0 && emax == 0 && 1 / emin == 1 / emax)
{
// If emin and emax are both zeroes of the same sign, check the sign.
return 1 / emin == 1 / v;
}
return 1;
}
return 0;
}
void t1(enum Flt2Flt f, float a, float emin, float emax, int err)
{
float v;
int vok, eok;
char* fname = aFlt2Flt[f].name;
errno = 0;
v = aFlt2Flt[f].fxn(a);
vok = cmp(v, emin, emax);
eok = (err == errno);
if (vok + eok != 2)
printf("%s(%+e)=%+e, errno=%d (actual)\n"
"%s(%+e)=%+e...%+e, errno=%d (expected)\n",
fname, a, v, errno,
fname, a, emin, emax, err),
errors++;
}
void t2(enum FltFlt2Flt f, float a, float b, float emin, float emax, int err)
{
float v;
int vok, eok;
char* fname = aFltFlt2Flt[f].name;
errno = 0;
v = aFltFlt2Flt[f].fxn(a, b);
vok = cmp(v, emin, emax);
eok = (err == errno);
if (vok + eok != 2)
printf("%s(%+e,%+e)=%+e, errno=%d (actual)\n"
"%s(%+e,%+e)=%+e...%+e, errno=%d (expected)\n",
fname, a, b, v, errno,
fname, a, b, emin, emax, err),
errors++;
}
#define FPI 3.1415927f
#define FPI_2 (FPI/2)
#define FPI_3 (FPI/3)
#define FPI_4 (FPI/4)
#define FPI_6 (FPI/6)
struct
{
enum Flt2Flt f; float a, emin, emax; int err;
} at1[] =
{
{ FSIN, +INFINITY, NAN,NAN, EDOM,
},{ FSIN, -INFINITY, NAN,NAN, EDOM,
},{ FSIN, NAN, NAN,NAN, 0,
},{ FSIN, +0.0f, +0.0f,+0.0f, 0,
},{ FSIN, -0.0f, -0.0f,-0.0f, 0,
},{ FSIN, +1e-5f, +0.99999e-5f,+1.00001e-5f, 0,
},{ FSIN, -1e-5f, -1.00001e-5f,-0.99999e-5f, 0,
},{ FSIN, 0*FPI_2 + FPI_6, +0.49999f,+0.50001f, 0,
},{ FSIN, 1*FPI_2 + FPI_6, +0.86602f,+0.86603f, 0,
},{ FSIN, 2*FPI_2 + FPI_6, -0.50001f,-0.49999f, 0,
},{ FSIN, 3*FPI_2 + FPI_6, -0.86603f,-0.86602f, 0,
},{ FSIN, 4*FPI_2 + FPI_6, +0.49999f,+0.50001f, 0,
},{ FSIN, 5*FPI_2 + FPI_6, +0.86602f,+0.86603f, 0,
},{ FSIN, 6*FPI_2 + FPI_6, -0.50001f,-0.49999f, 0,
},{ FSIN, 7*FPI_2 + FPI_6, -0.86603f,-0.86602f, 0,
},{ FSIN, -0*FPI_2 - FPI_6, -0.50001f,-0.49999f, 0,
},{ FSIN, -1*FPI_2 - FPI_6, -0.86603f,-0.86602f, 0,
},{ FSIN, -2*FPI_2 - FPI_6, +0.49999f,+0.50001f, 0,
},{ FSIN, -3*FPI_2 - FPI_6, +0.86602f,+0.86603f, 0,
},{ FSIN, -4*FPI_2 - FPI_6, -0.50001f,-0.49999f, 0,
},{ FSIN, -5*FPI_2 - FPI_6, -0.86603f,-0.86602f, 0,
},{ FSIN, -6*FPI_2 - FPI_6, +0.49999f,+0.50001f, 0,
},{ FSIN, -7*FPI_2 - FPI_6, +0.86602f,+0.86603f, 0,
},{ FCOS, +INFINITY, NAN,NAN, EDOM,
},{ FCOS, -INFINITY, NAN,NAN, EDOM,
},{ FCOS, NAN, NAN,NAN, 0,
},{ FCOS, +0.0f, 0.99999f,1.00001f, 0,
},{ FCOS, -0.0f, 0.99999f,1.00001f, 0,
},{ FCOS, 0*FPI_2 + FPI_6, +0.86602f,+0.86603f, 0,
},{ FCOS, 1*FPI_2 + FPI_6, -0.50001f,-0.49999f, 0,
},{ FCOS, 2*FPI_2 + FPI_6, -0.86603f,-0.86602f, 0,
},{ FCOS, 3*FPI_2 + FPI_6, +0.49999f,+0.50001f, 0,
},{ FCOS, 4*FPI_2 + FPI_6, +0.86602f,+0.86603f, 0,
},{ FCOS, 5*FPI_2 + FPI_6, -0.50001f,-0.49999f, 0,
},{ FCOS, 6*FPI_2 + FPI_6, -0.86603f,-0.86602f, 0,
},{ FCOS, 7*FPI_2 + FPI_6, +0.49999f,+0.50001f, 0,
},{ FCOS, -0*FPI_2 - FPI_6, +0.86602f,+0.86603f, 0,
},{ FCOS, -1*FPI_2 - FPI_6, -0.50001f,-0.49999f, 0,
},{ FCOS, -2*FPI_2 - FPI_6, -0.86603f,-0.86602f, 0,
},{ FCOS, -3*FPI_2 - FPI_6, +0.49999f,+0.50001f, 0,
},{ FCOS, -4*FPI_2 - FPI_6, +0.86602f,+0.86603f, 0,
},{ FCOS, -5*FPI_2 - FPI_6, -0.50001f,-0.49999f, 0,
},{ FCOS, -6*FPI_2 - FPI_6, -0.86603f,-0.86602f, 0,
},{ FCOS, -7*FPI_2 - FPI_6, +0.49999f,+0.50001f, 0,
},{ FTAN, +INFINITY, NAN,NAN, EDOM,
},{ FTAN, -INFINITY, NAN,NAN, EDOM,
},{ FTAN, NAN, NAN,NAN, 0,
},{ FTAN, +0.0f, +0.0f,+0.0f, 0,
},{ FTAN, -0.0f, -0.0f,-0.0f, 0,
},{ FTAN, +1e-5f, +0.99999e-5f,+1.00001e-5f, 0,
},{ FTAN, -1e-5f, -1.00001e-5f,-0.99999e-5f, 0,
},{ FTAN, +FPI_4, +0.99999f,+1.00001f, 0,
},{ FTAN, -FPI_4, -1.00001f,-0.99999f, 0,
},{ FTAN, 0*FPI_2 + FPI_6, +0.57734f,+0.57736f, 0,
},{ FTAN, 1*FPI_2 + FPI_6, -1.73206f,-1.73204f, 0,
},{ FTAN, 2*FPI_2 + FPI_6, +0.57734f,+0.57736f, 0,
},{ FTAN, 3*FPI_2 + FPI_6, -1.73206f,-1.73204f, 0,
},{ FTAN, -0*FPI_2 - FPI_6, -0.57736f,-0.57734f, 0,
},{ FTAN, -1*FPI_2 - FPI_6, +1.73204f,+1.73206f, 0,
},{ FTAN, -2*FPI_2 - FPI_6, -0.57736f,-0.57734f, 0,
},{ FTAN, -3*FPI_2 - FPI_6, +1.73204f,+1.73206f, 0,
},{ FATAN, +INFINITY, +1.57079f,+1.57080f, 0,
},{ FATAN, -INFINITY, -1.57080f,-1.57079f, 0,
},{ FATAN, NAN, NAN,NAN, 0,
},{ FATAN, +0.0f, +0.0f,+0.0f, 0,
},{ FATAN, -0.0f, -0.0f,-0.0f, 0,
},{ FATAN, +1e-5f, +0.99999e-5f,+1.00001e-5f, 0,
},{ FATAN, -1e-5f, -1.00001e-5f,-0.99999e-5f, 0,
},{ FATAN, +1, +0.78539f,+0.78540f, 0,
},{ FATAN, -1, -0.78540f,-0.78539f, 0,
},{ FATAN, +1.7320508f, +1.04719f,+1.04720f, 0,
},{ FATAN, -1.7320508f, -1.04720f,-1.04719f, 0,
},{ FATAN, +1e6f, +1.57079f,+1.57080f, 0,
},{ FATAN, -1e6f, -1.57080f,-1.57079f, 0,
},{ FASIN, +INFINITY, NAN,NAN, EDOM,
},{ FASIN, -INFINITY, NAN,NAN, EDOM,
},{ FASIN, NAN, NAN,NAN, 0,
},{ FASIN, +1.00001f, NAN,NAN, EDOM,
},{ FASIN, -1.00001f, NAN,NAN, EDOM,
},{ FASIN, +0.0f, +0.0f,+0.0f, 0,
},{ FASIN, -0.0f, -0.0f,-0.0f, 0,
},{ FASIN, +1e-5f, +0.99999e-5f,+1.00001e-5f, 0,
},{ FASIN, -1e-5f, -1.00001e-5f,-0.99999e-5f, 0,
},{ FASIN, +1, +1.57079f,+1.57080f, 0,
},{ FASIN, -1, -1.57080f,-1.57079f, 0,
},{ FASIN, +0.5f, +0.52359f,+0.52360f, 0,
},{ FASIN, -0.5f, -0.52360f,-0.52359f, 0,
},{ FACOS, +INFINITY, NAN,NAN, EDOM,
},{ FACOS, -INFINITY, NAN,NAN, EDOM,
},{ FACOS, NAN, NAN,NAN, 0,
},{ FACOS, +1.00001f, NAN,NAN, EDOM,
},{ FACOS, -1.00001f, NAN,NAN, EDOM,
},{ FACOS, +0.0f, +1.57079f,+1.57080f, 0,
},{ FACOS, -0.0f, +1.57079f,+1.57080f, 0,
},{ FACOS, +1, +0.0f,+0.0f, 0,
},{ FACOS, -1, +3.14159f,+3.14160f, 0,
},{ FACOS, +0.5f, +1.04719f,+1.04720f, 0,
},{ FACOS, -0.5f, +2.09439f,+2.09440f, 0,
},{ FEXP, +INFINITY, +INFINITY,+INFINITY, 0,
},{ FEXP, -INFINITY, 0,0, 0,
},{ FEXP, NAN, NAN,NAN, 0,
},{ FEXP, +0.0f, 1,1, 0,
},{ FEXP, -0.0f, 1,1, 0,
},{ FEXP, +1, +2.71828f,+2.71829f, 0,
},{ FEXP, -1, +0.367879f,+0.367880f, 0,
},{ FEXP, +10, +22026.4f,+22026.5f, 0,
},{ FEXP, -10, +4.53999e-5f,+4.54000e-5f, 0,
},{ FEXP, -87.336545f, +1.17549e-38f,+1.17550e-38f, 0,
},{ FEXP, +88.029692f, +1.70140e+38f,+1.70142e+38f, 0,
},{ FEXP2, +INFINITY, +INFINITY,+INFINITY, 0,
},{ FEXP2, -INFINITY, 0,0, 0,
},{ FEXP2, NAN, NAN,NAN, 0,
},{ FEXP2, +0.0f, 1,1, 0,
},{ FEXP2, -0.0f, 1,1, 0,
},{ FEXP2, +1, 2,2, 0,
},{ FEXP2, -1, +0.5f,+0.5f, 0,
},{ FEXP2, +10, +1024.0f,+1024.0f, 0,
},{ FEXP2, -10, +9.765625e-4f,+9.765625e-4f, 0,
},{ FEXP2, +0.5f, +1.41421f,+1.41422f, 0,
},{ FEXP2, -0.5f, +0.707106f,+0.707107f, 0,
},{ FEXP2, -126, +1.17549e-38f,+1.17550e-38f, 0,
},{ FEXP2, +127, +1.70140e+38f,+1.70142e+38f, 0,
},{ FEXPM1, +INFINITY, +INFINITY,+INFINITY, 0,
},{ FEXPM1, -INFINITY, -1,-1, 0,
},{ FEXPM1, NAN, NAN,NAN, 0,
},{ FEXPM1, +0.0f, +0.0f,+0.0f, 0,
},{ FEXPM1, -0.0f, -0.0f,-0.0f, 0,
},{ FEXPM1, +1e-5f, +0.99999e-5f,+1.00001e-5f, 0,
},{ FEXPM1, -1e-5f, -1.00001e-5f,-0.99999e-5f, 0,
},{ FEXPM1, +1, +1.71828f,+1.71829f, 0,
},{ FEXPM1, -1, -0.632121f,-0.632120f, 0,
},{ FEXPM1, +10, +22025.4f,+22025.5f, 0,
},{ FEXPM1, -10, -0.999955f,-0.999954f, 0,
},{ FEXPM1, -87.336545f, -1.00001f,-0.99999f, 0,
},{ FEXPM1, +88.029692f, +1.70140e+38f,+1.70142e+38f, 0,
},{ FSQRT, +INFINITY, +INFINITY,+INFINITY, 0,
},{ FSQRT, -INFINITY, NAN,NAN, EDOM,
},{ FSQRT, NAN, NAN,NAN, 0,
},{ FSQRT, -1, NAN,NAN, EDOM,
},{ FSQRT, +0.0f, +0.0f,+0.0f, 0,
},{ FSQRT, -0.0f, -0.0f,-0.0f, 0,
},{ FSQRT, 2, +1.41421f,+1.41422f, 0,
},{ FSQRT, 4, +1.99999f,+2.00001f, 0,
},{ FSQRT, 3.40282347e38f, +1.844674e19f,+1.844675e19f, 0,
},{ FFABS, +INFINITY, +INFINITY,+INFINITY, 0,
},{ FFABS, -INFINITY, +INFINITY,+INFINITY, 0,
},{ FFABS, +NAN, NAN,NAN, 0,
},{ FFABS, -NAN, NAN,NAN, 0,
},{ FFABS, +1, +1,+1, 0,
},{ FFABS, -1, +1,+1, 0,
},{ FFABS, +0.0f, +0.0f,+0.0f, 0,
},{ FFABS, -0.0f, +0.0f,+0.0f, 0,
},{ FLOG2, +INFINITY, +INFINITY,+INFINITY, 0,
},{ FLOG2, -INFINITY, NAN,NAN, EDOM,
},{ FLOG2, NAN, NAN,NAN, 0,
},{ FLOG2, +0.0f, -INFINITY,-INFINITY, ERANGE,
},{ FLOG2, -0.0f, -INFINITY,-INFINITY, ERANGE,
},{ FLOG2, -1, NAN,NAN, EDOM,
},{ FLOG2, +1, -1e-10f,+1e-10f, 0,
},{ FLOG2, 2, +0.99999f,+1.00001f, 0,
},{ FLOG2, 0.5f, -1.00001f,-0.99999f, 0,
},{ FLOG2, 2.71828183f, +1.44269f,+1.44270f, 0,
},{ FLOG2, 10, +3.32192f,+3.32193f, 0,
},{ FLOG2, +1.1754944e-38f, -126.001f,-125.999f, 0,
},{ FLOG2, +1.7014118e+38f, +126.999f,+127.001f, 0,
},{ FLOG10, +INFINITY, +INFINITY,+INFINITY, 0,
},{ FLOG10, -INFINITY, NAN,NAN, EDOM,
},{ FLOG10, NAN, NAN,NAN, 0,
},{ FLOG10, +0.0f, -INFINITY,-INFINITY, ERANGE,
},{ FLOG10, -0.0f, -INFINITY,-INFINITY, ERANGE,
},{ FLOG10, -1, NAN,NAN, EDOM,
},{ FLOG10, +1, -1e-10f,+1e-10f, 0,
},{ FLOG10, 2, +0.301029f,+0.301031f, 0,
},{ FLOG10, 2.71828183f, +0.434294f,+0.434295f, 0,
},{ FLOG10, 10, +0.99999f,+1.00001f, 0,
},{ FLOG10, 0.1f, -1.00001f,-0.99999f, 0,
},{ FLOG10, +1.1754944e-38f, -37.9298f,-37.9297f, 0,
},{ FLOG10, +1.7014118e+38f, +38.2307f,+38.2309f, 0,
},{ FLOG, +INFINITY, +INFINITY,+INFINITY, 0,
},{ FLOG, -INFINITY, NAN,NAN, EDOM,
},{ FLOG, NAN, NAN,NAN, 0,
},{ FLOG, +0.0f, -INFINITY,-INFINITY, ERANGE,
},{ FLOG, -0.0f, -INFINITY,-INFINITY, ERANGE,
},{ FLOG, -1, NAN,NAN, EDOM,
},{ FLOG, +1, -1e-10f,+1e-10f, 0,
},{ FLOG, 2, +0.693146f,+0.693148f, 0,
},{ FLOG, 2.71828183f, +0.99999f,+1.00001f, 0,
},{ FLOG, 10, +2.30258f,+2.30259f, 0,
},{ FLOG, +1.1754944e-38f, -87.3366f,-87.3365f, 0,
},{ FLOG, +1.7014118e+38f, +88.0296f,+88.0298f, 0,
},{ FCEIL, +INFINITY, +INFINITY,+INFINITY, 0,
},{ FCEIL, -INFINITY, -INFINITY,-INFINITY, 0,
},{ FCEIL, NAN, NAN,NAN, 0,
},{ FCEIL, +0.0f, +0.0f,+0.0f, 0,
},{ FCEIL, -0.0f, -0.0f,-0.0f, 0,
},{ FCEIL, +0.25f, +1.0f,+1.0f, 0,
},{ FCEIL, -0.25f, -0.0f,-0.0f, 0,
},{ FCEIL, +0.75f, +1.0f,+1.0f, 0,
},{ FCEIL, -0.75f, -0.0f,-0.0f, 0,
},{ FCEIL, +1.0f, +1.0f,+1.0f, 0,
},{ FCEIL, -1.0f, -1.0f,-1.0f, 0,
},{ FCEIL, +8388607.5f, +8388608.0f,+8388608.0f, 0,
},{ FCEIL, -8388607.5f, -8388607.0f,-8388607.0f, 0,
},{ FFLOOR, +INFINITY, +INFINITY,+INFINITY, 0,
},{ FFLOOR, -INFINITY, -INFINITY,-INFINITY, 0,
},{ FFLOOR, NAN, NAN,NAN, 0,
},{ FFLOOR, +0.0f, +0.0f,+0.0f, 0,
},{ FFLOOR, -0.0f, -0.0f,-0.0f, 0,
},{ FFLOOR, +0.25f, +0.0f,+0.0f, 0,
},{ FFLOOR, -0.25f, -1.0f,-1.0f, 0,
},{ FFLOOR, +0.75f, +0.0f,+0.0f, 0,
},{ FFLOOR, -0.75f, -1.0f,-1.0f, 0,
},{ FFLOOR, +1.0f, +1.0f,+1.0f, 0,
},{ FFLOOR, -1.0f, -1.0f,-1.0f, 0,
},{ FFLOOR, +8388607.5f, +8388607.0f,+8388607.0f, 0,
},{ FFLOOR, -8388607.5f, -8388608.0f,-8388608.0f, 0,
},{ FTRUNC, +INFINITY, +INFINITY,+INFINITY, 0,
},{ FTRUNC, -INFINITY, -INFINITY,-INFINITY, 0,
},{ FTRUNC, NAN, NAN,NAN, 0,
},{ FTRUNC, +0.0f, +0.0f,+0.0f, 0,
},{ FTRUNC, -0.0f, -0.0f,-0.0f, 0,
},{ FTRUNC, +0.25f, +0.0f,+0.0f, 0,
},{ FTRUNC, -0.25f, -0.0f,-0.0f, 0,
},{ FTRUNC, +0.75f, +0.0f,+0.0f, 0,
},{ FTRUNC, -0.75f, -0.0f,-0.0f, 0,
},{ FTRUNC, +1.0f, +1.0f,+1.0f, 0,
},{ FTRUNC, -1.0f, -1.0f,-1.0f, 0,
},{ FTRUNC, +8388607.5f, +8388607.0f,+8388607.0f, 0,
},{ FTRUNC, -8388607.5f, -8388607.0f,-8388607.0f, 0,
},{ FROUND, +INFINITY, +INFINITY,+INFINITY, 0,
},{ FROUND, -INFINITY, -INFINITY,-INFINITY, 0,
},{ FROUND, NAN, NAN,NAN, 0,
},{ FROUND, +0.0f, +0.0f,+0.0f, 0,
},{ FROUND, -0.0f, -0.0f,-0.0f, 0,
},{ FROUND, +0.25f, +0.0f,+0.0f, 0,
},{ FROUND, -0.25f, -0.0f,-0.0f, 0,
},{ FROUND, +0.75f, +1.0f,+1.0f, 0,
},{ FROUND, -0.75f, -1.0f,-1.0f, 0,
},{ FROUND, +1.0f, +1.0f,+1.0f, 0,
},{ FROUND, -1.0f, -1.0f,-1.0f, 0,
},{ FROUND, +0.5f, +1.0f,+1.0f, 0,
},{ FROUND, -0.5f, -1.0f,-1.0f, 0,
},{ FROUND, +8388607.5f, +8388608.0f,+8388608.0f, 0,
},{ FROUND, -8388607.5f, -8388608.0f,-8388608.0f, 0,
},{ FSINH, +INFINITY, +INFINITY,+INFINITY, 0,
},{ FSINH, -INFINITY, -INFINITY,-INFINITY, 0,
},{ FSINH, NAN, NAN,NAN, 0,
},{ FSINH, +0.0f, +0.0f,+0.0f, 0,
},{ FSINH, -0.0f, -0.0f,-0.0f, 0,
},{ FSINH, +1e-5f, +0.99999e-5f,+1.00001e-5f, 0,
},{ FSINH, -1e-5f, -1.00001e-5f,-0.99999e-5f, 0,
},{ FSINH, +1, +1.17519f,+1.17521f, 0,
},{ FSINH, -1, -1.17521f,-1.17519f, 0,
},{ FSINH, +10, +11013.23f,+11013.24f, 0,
},{ FSINH, -10, -11013.24f,-11013.23f, 0,
},{ FSINH, +88.722839f, +1.701411e38f,+1.701413e38f, 0,
},{ FSINH, -88.722839f, -1.701413e38f,-1.701411e38f, 0,
},{ FCOSH, +INFINITY, +INFINITY,+INFINITY, 0,
},{ FCOSH, -INFINITY, +INFINITY,+INFINITY, 0,
},{ FCOSH, NAN, NAN,NAN, 0,
},{ FCOSH, +0.0f, 1,1, 0,
},{ FCOSH, -0.0f, 1,1, 0,
},{ FCOSH, +1, +1.543079f,+1.543081f, 0,
},{ FCOSH, -1, +1.543079f,+1.543081f, 0,
},{ FCOSH, +10, +11013.23f,+11013.24f, 0,
},{ FCOSH, -10, +11013.23f,+11013.24f, 0,
},{ FCOSH, +88.722839f, +1.701411e38f,+1.701413e38f, 0,
},{ FCOSH, -88.722839f, +1.701411e38f,+1.701413e38f, 0,
},{ FTANH, +INFINITY, +1,+1, 0,
},{ FTANH, -INFINITY, -1,-1, 0,
},{ FTANH, NAN, NAN,NAN, 0,
},{ FTANH, +0.0f, +0.0f,+0.0f, 0,
},{ FTANH, -0.0f, -0.0f,-0.0f, 0,
},{ FTANH, +1e-5f, +0.99999e-5f,+1.00001e-5f, 0,
},{ FTANH, -1e-5f, -1.00001e-5f,-0.99999e-5f, 0,
},{ FTANH, +1, +0.76159f,+0.76160f, 0,
},{ FTANH, -1, -0.76160f,+0.76159f, 0,
},{ FTANH, +5, +0.99990f,+0.99992f, 0,
},{ FTANH, -5, -0.99992f,-0.99990f, 0,
},{ FTANH, +10, +0.99999f,+1.0f, 0,
},{ FTANH, -10, -1.0f,-0.99999f, 0,
}
};
struct
{
enum FltFlt2Flt f; float a, b, emin, emax; int err;
} at2[] =
{
{ FHYPOT, +INFINITY, 1, +INFINITY,+INFINITY, 0,
},{ FHYPOT, 1, -INFINITY, +INFINITY,+INFINITY, 0,
},{ FHYPOT, -INFINITY, NAN, +INFINITY,+INFINITY, 0,
},{ FHYPOT, NAN, +INFINITY, +INFINITY,+INFINITY, 0,
},{ FHYPOT, NAN, NAN, NAN,NAN, 0,
},{ FHYPOT, 3, 4, +4.99999f,+5.00001f, 0,
},{ FHYPOT, 3e+36f, 4e+36f, +4.99999e+36f,+5.00001e+36f, 0,
},{ FHYPOT, 3e-36f, 4e-36f, +4.99999e-36f,+5.00001e-36f, 0,
},{ FHYPOT, +1, +0.01f, +1.000049f,+1.000051f, 0,
},{ FHYPOT, +0.01f, -1, +1.000049f,+1.000051f, 0,
},{ FHYPOT, -1, +0.01f, +1.000049f,+1.000051f, 0,
},{ FHYPOT, -0.01f, -1, +1.000049f,+1.000051f, 0,
},{ FATAN2, NAN, NAN, NAN,NAN, 0,
},{ FATAN2, +INFINITY, +INFINITY, +0.78539f,+0.78540f, 0,
},{ FATAN2, -INFINITY, +INFINITY, -0.78540f,-0.78539f, 0,
},{ FATAN2, +INFINITY, -INFINITY, +2.35619f,+2.35620f, 0,
},{ FATAN2, -INFINITY, -INFINITY, -2.35620f,-2.35619f, 0,
},{ FATAN2, +1, +INFINITY, +0.0f,+0.0f, 0,
},{ FATAN2, -1, +INFINITY, -0.0f,-0.0f, 0,
},{ FATAN2, +1, -INFINITY, +3.14159f,+3.14160f, 0,
},{ FATAN2, -1, -INFINITY, -3.14160f,-3.14159f, 0,
},{ FATAN2, +INFINITY, -1, +1.57079f,+1.57080f, 0,
},{ FATAN2, -INFINITY, +1, -1.57080f,-1.57079f, 0,
},{ FATAN2, +0.0f, +0.0f, +0.0f,+0.0f, 0,
},{ FATAN2, -0.0f, +0.0f, -0.0f,-0.0f, 0,
},{ FATAN2, +0.0f, -0.0f, +3.14159f,+3.14160f, 0,
},{ FATAN2, -0.0f, -0.0f, -3.14160f,-3.14159f, 0,
},{ FATAN2, +0.0f, +1, +0.0f,+0.0f, 0,
},{ FATAN2, -0.0f, +1, -0.0f,-0.0f, 0,
},{ FATAN2, +0.0f, -1, +3.14159f,+3.14160f, 0,
},{ FATAN2, -0.0f, -1, -3.14160f,-3.14159f, 0,
},{ FATAN2, +1, +0.0f, +1.57079f,+1.57080f, 0,
},{ FATAN2, +1, -0.0f, +1.57079f,+1.57080f, 0,
},{ FATAN2, -1, +0.0f, -1.57080f,-1.57079f, 0,
},{ FATAN2, -1, -0.0f, -1.57080f,-1.57079f, 0,
},{ FATAN2, +0.57735027e+38f, +1.0e+38f, +0.523598f,+0.523599f, 0,
},{ FATAN2, +0.57735027e-37f, +1.0e-37f, +0.523598f,+0.523599f, 0,
},{ FATAN2, +0.57735027f, +1.0f, +0.523598f,+0.523599f, 0,
},{ FATAN2, +0.57735027f, -1.0f, +2.617990f,+2.618000f, 0,
},{ FATAN2, -0.57735027f, +1.0f, -0.523599f,-0.523598f, 0,
},{ FATAN2, -0.57735027f, -1.0f, -2.618000f,-2.617990f, 0,
},{ FPOW, NAN, NAN, NAN,NAN, 0,
},{ FPOW, NAN, +0.0f, 1,1, 0,
},{ FPOW, NAN, -0.0f, 1,1, 0,
},{ FPOW, +INFINITY, +INFINITY, +INFINITY,+INFINITY, 0,
},{ FPOW, -INFINITY, +INFINITY, +INFINITY,+INFINITY, 0,
},{ FPOW, +INFINITY, -INFINITY, 0,0, 0,
},{ FPOW, -INFINITY, -INFINITY, 0,0, 0,
},{ FPOW, +0.0f, +INFINITY, 0,0, 0,
},{ FPOW, -0.0f, +INFINITY, 0,0, 0,
},{ FPOW, +1, +INFINITY, 1,1, 0,
},{ FPOW, +1, -INFINITY, 1,1, 0,
},{ FPOW, -1, +INFINITY, 1,1, 0,
},{ FPOW, -1, -INFINITY, 1,1, 0,
},{ FPOW, +1.25f, +INFINITY, +INFINITY,+INFINITY, 0,
},{ FPOW, -1.25f, +INFINITY, +INFINITY,+INFINITY, 0,
},{ FPOW, +0.75f, +INFINITY, 0,0, 0,
},{ FPOW, -0.75f, +INFINITY, 0,0, 0,
},{ FPOW, +1e-7f, +INFINITY, 0,0, 0,
},{ FPOW, -1e-7f, +INFINITY, 0,0, 0,
},{ FPOW, +0.0f, -INFINITY, +INFINITY,+INFINITY, 0,
},{ FPOW, -0.0f, -INFINITY, +INFINITY,+INFINITY, 0,
},{ FPOW, +1.25f, -INFINITY, 0,0, 0,
},{ FPOW, -1.25f, -INFINITY, 0,0, 0,
},{ FPOW, +0.75f, -INFINITY, +INFINITY,+INFINITY, 0,
},{ FPOW, -0.75f, -INFINITY, +INFINITY,+INFINITY, 0,
},{ FPOW, +1e-7f, -INFINITY, +INFINITY,+INFINITY, 0,
},{ FPOW, -1e-7f, -INFINITY, +INFINITY,+INFINITY, 0,
},{ FPOW, +INFINITY, +0.0f, 1,1, 0,
},{ FPOW, +INFINITY, +1e-7f, +INFINITY,+INFINITY, 0,
},{ FPOW, +INFINITY, +0.75f, +INFINITY,+INFINITY, 0,
},{ FPOW, +INFINITY, +1.25f, +INFINITY,+INFINITY, 0,
},{ FPOW, +INFINITY, +1e+7f, +INFINITY,+INFINITY, 0,
},{ FPOW, +INFINITY, -0.0f, 1,1, 0,
},{ FPOW, +INFINITY, -1e-7f, 0,0, 0,
},{ FPOW, +INFINITY, -0.75f, 0,0, 0,
},{ FPOW, +INFINITY, -1.25f, 0,0, 0,
},{ FPOW, +INFINITY, -1e+7f, 0,0, 0,
},{ FPOW, -INFINITY, +0.0f, 1,1, 0,
},{ FPOW, -INFINITY, +1, -INFINITY,-INFINITY, 0,
},{ FPOW, -INFINITY, +2, +INFINITY,+INFINITY, 0,
},{ FPOW, -INFINITY, +101, -INFINITY,-INFINITY, 0,
},{ FPOW, -INFINITY, +102, +INFINITY,+INFINITY, 0,
},{ FPOW, -INFINITY, +0.25f, +INFINITY,+INFINITY, 0,
},{ FPOW, -INFINITY, +1.25f, +INFINITY,+INFINITY, 0,
},{ FPOW, -INFINITY, -0.0f, 1,1, 0,
},{ FPOW, -INFINITY, -1, -0.0f,-0.0f, 0,
},{ FPOW, -INFINITY, -2, 0,0, 0,
},{ FPOW, -INFINITY, -101, -0.0f,-0.0f, 0,
},{ FPOW, -INFINITY, -102, 0,0, 0,
},{ FPOW, -INFINITY, -0.25f, 0,0, 0,
},{ FPOW, -INFINITY, -1.25f, 0,0, 0,
},{ FPOW, +0.0f, NAN, NAN,NAN, 0,
},{ FPOW, -0.0f, NAN, NAN,NAN, 0,
},{ FPOW, +1, NAN, 1,1, 0,
},{ FPOW, -1, NAN, NAN,NAN, 0,
},{ FPOW, NAN, -1, NAN,NAN, 0,
},{ FPOW, NAN, +1, NAN,NAN, 0,
},{ FPOW, +INFINITY, NAN, NAN,NAN, 0,
},{ FPOW, -INFINITY, NAN, NAN,NAN, 0,
},{ FPOW, NAN, +INFINITY, NAN,NAN, 0,
},{ FPOW, NAN, -INFINITY, NAN,NAN, 0,
},{ FPOW, -0.25f, +1.25f, NAN,NAN, EDOM,
},{ FPOW, -0.25f, -1.25f, NAN,NAN, EDOM,
},{ FPOW, +0.0f, -1, +INFINITY,+INFINITY, ERANGE,
},{ FPOW, -0.0f, -1, -INFINITY,-INFINITY, ERANGE,
},{ FPOW, +0.0f, -2, +INFINITY,+INFINITY, ERANGE,
},{ FPOW, -0.0f, -2, +INFINITY,+INFINITY, ERANGE,
},{ FPOW, +0.0f, -1.5f, +INFINITY,+INFINITY, ERANGE,
},{ FPOW, -0.0f, -1.5f, +INFINITY,+INFINITY, ERANGE,
},{ FPOW, +2.71828183f, +3.14159265f, +23.1406f,+23.1408f, 0,
},{ FPOW, +3.14159265f, +2.71828183f, +22.4591f,+22.4592f, 0,
},{ FPOW, -2, 3, -8.00001f,-7.99999f, 0,
},{ FPOW, 2, 0.5f, +1.41421f,+1.41422f, 0,
},{ FPOW, 10, +38, +0.99999e+38f,+1.00001e+38f, 0,
},{ FPOW, 10, -38, +0.99999e-38f,+1.00001e-38f, 0,
},{ FPOW, 1e+38f, 1/+38.0f, +9.9999f,+10.0001f, 0,
},{ FPOW, 1e-38f, 1/-38.0f, +9.9999f,+10.0001f, 0,
},{ FFMOD, NAN, NAN, NAN,NAN, 0,
},{ FFMOD, +0.0f, -1, +0.0f,+0.0f, 0,
},{ FFMOD, -0.0f, +1, -0.0f,-0.0f, 0,
},{ FFMOD, +INFINITY, 1, NAN,NAN, EDOM,
},{ FFMOD, -INFINITY, 1, NAN,NAN, EDOM,
},{ FFMOD, 1, +0.0f, NAN,NAN, EDOM,
},{ FFMOD, 1, -0.0f, NAN,NAN, EDOM,
},{ FFMOD, -1, +INFINITY, -1,-1, 0,
},{ FFMOD, -1, -INFINITY, -1,-1, 0,
},{ FFMOD, +1, +INFINITY, +1,+1, 0,
},{ FFMOD, +1, -INFINITY, +1,+1, 0,
},{ FFMOD, +5, +3, +2,+2, 0,
},{ FFMOD, +5, -3, +2,+2, 0,
},{ FFMOD, -5, +3, -2,-2, 0,
},{ FFMOD, -5, -3, -2,-2, 0,
}
};
/*
TBD!!!
float frexpf(float, int*);
float ldexpf(float, int);
float modff(float, float*);
*/
int main(void)
{
unsigned i;
for (i = 0; i < sizeof at1 / sizeof at1[0]; i++)
t1(at1[i].f, at1[i].a, at1[i].emin, at1[i].emax, at1[i].err);
for (i = 0; i < sizeof at2 / sizeof at2[0]; i++)
t2(at2[i].f, at2[i].a, at2[i].b, at2[i].emin, at2[i].emax, at2[i].err);
if (errors)
{
printf("Math test failed with %d error(s)!\n", errors);
return EXIT_FAILURE;
}
puts("Math test passed!");
return 0;
}
|
the_stack_data/3503.c | #include <stdio.h>
int main(void)
{
FILE *pF;
char buff[1000];
pF = fopen("hexToParse", "r");
if (!pF)
return (-1);
while (fgets(buff, 1000, pF) != NULL) {}
fclose(pF);
printf("%s", buff);
return (0);
}
|
the_stack_data/115764368.c | #include <stdio.h>
int main(int argc, char *argv[]) {
int i;
for (i = 0; i < argc; i++) {
/* printf is a "variadic" function: it can take a variable
number of parameters
%s is a "format specifier" to print as a string
%d is a "format specifier" to print as a decimal number
*/
printf("argv[%d] is %s\n", i, argv[i]);
}
i = argc - 1;
while (i >= 0) {
printf("argv[%d] is %s\n", i, argv[i]);
i--;
}
return 0;
}
|
the_stack_data/62186.c | /*
** EPITECH PROJECT, 2020
** my_putchar.c
** File description:
** created fonction write
*/
#include <unistd.h>
void my_putchar(char c)
{
write(1, &c, 1);
}
|
the_stack_data/104827241.c | #include <stdio.h>
#include <stdlib.h>
// Função para calcular o valor que falta
int triangulo_retangulo(float *oposto, float *adjacente, float *hipotenusa) {
// Caso nao saiba o valor do oposto
if(*oposto == 0){
*oposto = sqrt(pow(*hipotenusa,2)-pow(*adjacente,2));
return 0;
// Caso nao saiba o valor do adjacente
} else if (*adjacente == 0){
*adjacente = sqrt(pow(*hipotenusa,2)-pow(*oposto,2));
return 0;
// Caso nao saiba o valor da hipotenusa
} else if (*hipotenusa == 0){
*hipotenusa = sqrt(pow(*oposto,2)+pow(*adjacente,2));
return 0;
} else {
return -1;
}
}
int main()
{
// Variáveis
float Co=0, Ca=0, h=0;
int ret=0;
// Pede o valor pro usuário
printf("Triangulo retangulo (valor desconhecido como '0')\n");
printf("Digite o valor do cateto oposto: ");
scanf("%f", &Co);
printf("Digite o valor do cateto adjacente: ");
scanf("%f", &Ca);
printf("Digite o valor do hipotenusa: ");
scanf("%f", &h);
// Chama a função e coloca o return dentro de "ret"
ret = triangulo_retangulo(&Co, &Ca, &h);
// Verifica se a função conseguiu comprir o que é necessario
// Se sim ele mostra todos os valores
if(ret == 0){
printf("\n\nCateto oposto: %.2f", Co);
printf("\nCateto adjacente: %.2f", Ca);
printf("\nHipotenusa: %.2f", h);
// Se não ele mostra Erro de parametro
} else if (ret == -1){
printf("Erro de parametro!!!");
}
printf("\n\n\nAutor: Joao Pedro Schumacher");
return 0;
}
|
the_stack_data/92327951.c | /***************************************************************************************************************
* 5.1 Feladat *
* Készítsen programot, amely egy számítógép adatait képes tárolni (órajel, memória mérete, háttértár mérete) *
* Billentyűzetről töltse fel a struktúra adatait *
* Írassa ki a számítógép adatait *
* *
* 5.2 Feladat *
* Módosítsa az előző feladatot úgy, hogy a program három számítógép adatait tárolja *
***************************************************************************************************************/
#include <stdio.h>
struct computer
{
int orajel, memoria, hattertar;
};
int main()
{
struct computer gepek[3];
int i;
for (i=0; i<3; i++)
{
printf("Kerem az adatokat a(z) %d. gephez: orajel, memoria, hattertar\n", i+1);
scanf("%d %d %d", &gepek[i].orajel, &gepek[i].memoria, &gepek[i].hattertar);
}
for (i=0; i<3; i++)
{
printf("A(z) %d. gep adatai: orajel: %d, memoria: %d, hattertar: %d\n", i+1, gepek[i].orajel, gepek[i].memoria, gepek[i].hattertar);
}
return 0;
}
|
the_stack_data/83748.c | # 1 "benchmarks/ds-07-impl3.c"
# 1 "<built-in>"
# 1 "<command-line>"
# 1 "/usr/include/stdc-predef.h" 1 3 4
# 1 "<command-line>" 2
# 1 "benchmarks/ds-07-impl3.c"
# 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 1
# 20 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h"
# 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/definitions.h" 1
# 132 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/definitions.h"
int X_SIZE_VALUE = 0;
int overflow_mode = 1;
int rounding_mode = 0;
# 155 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/definitions.h"
typedef struct {
double a[100];
int a_size;
double b[100];
int b_size;
double sample_time;
double a_uncertainty[100];
double b_uncertainty[100];
} digital_system;
typedef struct {
double A[4][4];
double B[4][4];
double C[4][4];
double D[4][4];
double states[4][4];
double outputs[4][4];
double inputs[4][4];
double K[4][4];
unsigned int nStates;
unsigned int nInputs;
unsigned int nOutputs;
} digital_system_state_space;
typedef struct {
int int_bits;
int frac_bits;
double max;
double min;
int default_realization;
double delta;
int scale;
double max_error;
} implementation;
typedef struct {
int push;
int in;
int sbiw;
int cli;
int out;
int std;
int ldd;
int subi;
int sbci;
int lsl;
int rol;
int add;
int adc;
int adiw;
int rjmp;
int mov;
int sbc;
int ld;
int rcall;
int cp;
int cpc;
int ldi;
int brge;
int pop;
int ret;
int st;
int brlt;
int cpi;
} instructions;
typedef struct {
long clock;
int device;
double cycle;
instructions assembly;
} hardware;
typedef struct{
float Ap, Ar, Ac;
float wp, wc, wr;
int type;
}filter_parameters;
# 21 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2
# 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" 1
# 17 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h"
# 1 "/usr/include/stdlib.h" 1 3 4
# 25 "/usr/include/stdlib.h" 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/libc-header-start.h" 1 3 4
# 33 "/usr/include/x86_64-linux-gnu/bits/libc-header-start.h" 3 4
# 1 "/usr/include/features.h" 1 3 4
# 461 "/usr/include/features.h" 3 4
# 1 "/usr/include/x86_64-linux-gnu/sys/cdefs.h" 1 3 4
# 452 "/usr/include/x86_64-linux-gnu/sys/cdefs.h" 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/wordsize.h" 1 3 4
# 453 "/usr/include/x86_64-linux-gnu/sys/cdefs.h" 2 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/long-double.h" 1 3 4
# 454 "/usr/include/x86_64-linux-gnu/sys/cdefs.h" 2 3 4
# 462 "/usr/include/features.h" 2 3 4
# 485 "/usr/include/features.h" 3 4
# 1 "/usr/include/x86_64-linux-gnu/gnu/stubs.h" 1 3 4
# 10 "/usr/include/x86_64-linux-gnu/gnu/stubs.h" 3 4
# 1 "/usr/include/x86_64-linux-gnu/gnu/stubs-64.h" 1 3 4
# 11 "/usr/include/x86_64-linux-gnu/gnu/stubs.h" 2 3 4
# 486 "/usr/include/features.h" 2 3 4
# 34 "/usr/include/x86_64-linux-gnu/bits/libc-header-start.h" 2 3 4
# 26 "/usr/include/stdlib.h" 2 3 4
# 1 "/usr/lib/gcc/x86_64-linux-gnu/9/include/stddef.h" 1 3 4
# 209 "/usr/lib/gcc/x86_64-linux-gnu/9/include/stddef.h" 3 4
# 209 "/usr/lib/gcc/x86_64-linux-gnu/9/include/stddef.h" 3 4
typedef long unsigned int size_t;
# 321 "/usr/lib/gcc/x86_64-linux-gnu/9/include/stddef.h" 3 4
typedef int wchar_t;
# 32 "/usr/include/stdlib.h" 2 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/waitflags.h" 1 3 4
# 52 "/usr/include/x86_64-linux-gnu/bits/waitflags.h" 3 4
typedef enum
{
P_ALL,
P_PID,
P_PGID
} idtype_t;
# 40 "/usr/include/stdlib.h" 2 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/waitstatus.h" 1 3 4
# 41 "/usr/include/stdlib.h" 2 3 4
# 55 "/usr/include/stdlib.h" 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/floatn.h" 1 3 4
# 120 "/usr/include/x86_64-linux-gnu/bits/floatn.h" 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/floatn-common.h" 1 3 4
# 24 "/usr/include/x86_64-linux-gnu/bits/floatn-common.h" 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/long-double.h" 1 3 4
# 25 "/usr/include/x86_64-linux-gnu/bits/floatn-common.h" 2 3 4
# 121 "/usr/include/x86_64-linux-gnu/bits/floatn.h" 2 3 4
# 56 "/usr/include/stdlib.h" 2 3 4
typedef struct
{
int quot;
int rem;
} div_t;
typedef struct
{
long int quot;
long int rem;
} ldiv_t;
__extension__ typedef struct
{
long long int quot;
long long int rem;
} lldiv_t;
# 97 "/usr/include/stdlib.h" 3 4
extern size_t __ctype_get_mb_cur_max (void) __attribute__ ((__nothrow__ , __leaf__)) ;
extern double atof (const char *__nptr)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))) ;
extern int atoi (const char *__nptr)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))) ;
extern long int atol (const char *__nptr)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))) ;
__extension__ extern long long int atoll (const char *__nptr)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))) ;
extern double strtod (const char *__restrict __nptr,
char **__restrict __endptr)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1)));
extern float strtof (const char *__restrict __nptr,
char **__restrict __endptr) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1)));
extern long double strtold (const char *__restrict __nptr,
char **__restrict __endptr)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1)));
# 176 "/usr/include/stdlib.h" 3 4
extern long int strtol (const char *__restrict __nptr,
char **__restrict __endptr, int __base)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1)));
extern unsigned long int strtoul (const char *__restrict __nptr,
char **__restrict __endptr, int __base)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1)));
__extension__
extern long long int strtoq (const char *__restrict __nptr,
char **__restrict __endptr, int __base)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1)));
__extension__
extern unsigned long long int strtouq (const char *__restrict __nptr,
char **__restrict __endptr, int __base)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1)));
__extension__
extern long long int strtoll (const char *__restrict __nptr,
char **__restrict __endptr, int __base)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1)));
__extension__
extern unsigned long long int strtoull (const char *__restrict __nptr,
char **__restrict __endptr, int __base)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1)));
# 385 "/usr/include/stdlib.h" 3 4
extern char *l64a (long int __n) __attribute__ ((__nothrow__ , __leaf__)) ;
extern long int a64l (const char *__s)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))) ;
# 1 "/usr/include/x86_64-linux-gnu/sys/types.h" 1 3 4
# 27 "/usr/include/x86_64-linux-gnu/sys/types.h" 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/types.h" 1 3 4
# 27 "/usr/include/x86_64-linux-gnu/bits/types.h" 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/wordsize.h" 1 3 4
# 28 "/usr/include/x86_64-linux-gnu/bits/types.h" 2 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/timesize.h" 1 3 4
# 29 "/usr/include/x86_64-linux-gnu/bits/types.h" 2 3 4
typedef unsigned char __u_char;
typedef unsigned short int __u_short;
typedef unsigned int __u_int;
typedef unsigned long int __u_long;
typedef signed char __int8_t;
typedef unsigned char __uint8_t;
typedef signed short int __int16_t;
typedef unsigned short int __uint16_t;
typedef signed int __int32_t;
typedef unsigned int __uint32_t;
typedef signed long int __int64_t;
typedef unsigned long int __uint64_t;
typedef __int8_t __int_least8_t;
typedef __uint8_t __uint_least8_t;
typedef __int16_t __int_least16_t;
typedef __uint16_t __uint_least16_t;
typedef __int32_t __int_least32_t;
typedef __uint32_t __uint_least32_t;
typedef __int64_t __int_least64_t;
typedef __uint64_t __uint_least64_t;
typedef long int __quad_t;
typedef unsigned long int __u_quad_t;
typedef long int __intmax_t;
typedef unsigned long int __uintmax_t;
# 141 "/usr/include/x86_64-linux-gnu/bits/types.h" 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/typesizes.h" 1 3 4
# 142 "/usr/include/x86_64-linux-gnu/bits/types.h" 2 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/time64.h" 1 3 4
# 143 "/usr/include/x86_64-linux-gnu/bits/types.h" 2 3 4
typedef unsigned long int __dev_t;
typedef unsigned int __uid_t;
typedef unsigned int __gid_t;
typedef unsigned long int __ino_t;
typedef unsigned long int __ino64_t;
typedef unsigned int __mode_t;
typedef unsigned long int __nlink_t;
typedef long int __off_t;
typedef long int __off64_t;
typedef int __pid_t;
typedef struct { int __val[2]; } __fsid_t;
typedef long int __clock_t;
typedef unsigned long int __rlim_t;
typedef unsigned long int __rlim64_t;
typedef unsigned int __id_t;
typedef long int __time_t;
typedef unsigned int __useconds_t;
typedef long int __suseconds_t;
typedef int __daddr_t;
typedef int __key_t;
typedef int __clockid_t;
typedef void * __timer_t;
typedef long int __blksize_t;
typedef long int __blkcnt_t;
typedef long int __blkcnt64_t;
typedef unsigned long int __fsblkcnt_t;
typedef unsigned long int __fsblkcnt64_t;
typedef unsigned long int __fsfilcnt_t;
typedef unsigned long int __fsfilcnt64_t;
typedef long int __fsword_t;
typedef long int __ssize_t;
typedef long int __syscall_slong_t;
typedef unsigned long int __syscall_ulong_t;
typedef __off64_t __loff_t;
typedef char *__caddr_t;
typedef long int __intptr_t;
typedef unsigned int __socklen_t;
typedef int __sig_atomic_t;
# 30 "/usr/include/x86_64-linux-gnu/sys/types.h" 2 3 4
typedef __u_char u_char;
typedef __u_short u_short;
typedef __u_int u_int;
typedef __u_long u_long;
typedef __quad_t quad_t;
typedef __u_quad_t u_quad_t;
typedef __fsid_t fsid_t;
typedef __loff_t loff_t;
typedef __ino_t ino_t;
# 59 "/usr/include/x86_64-linux-gnu/sys/types.h" 3 4
typedef __dev_t dev_t;
typedef __gid_t gid_t;
typedef __mode_t mode_t;
typedef __nlink_t nlink_t;
typedef __uid_t uid_t;
typedef __off_t off_t;
# 97 "/usr/include/x86_64-linux-gnu/sys/types.h" 3 4
typedef __pid_t pid_t;
typedef __id_t id_t;
typedef __ssize_t ssize_t;
typedef __daddr_t daddr_t;
typedef __caddr_t caddr_t;
typedef __key_t key_t;
# 1 "/usr/include/x86_64-linux-gnu/bits/types/clock_t.h" 1 3 4
typedef __clock_t clock_t;
# 127 "/usr/include/x86_64-linux-gnu/sys/types.h" 2 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/types/clockid_t.h" 1 3 4
typedef __clockid_t clockid_t;
# 129 "/usr/include/x86_64-linux-gnu/sys/types.h" 2 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/types/time_t.h" 1 3 4
typedef __time_t time_t;
# 130 "/usr/include/x86_64-linux-gnu/sys/types.h" 2 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/types/timer_t.h" 1 3 4
typedef __timer_t timer_t;
# 131 "/usr/include/x86_64-linux-gnu/sys/types.h" 2 3 4
# 144 "/usr/include/x86_64-linux-gnu/sys/types.h" 3 4
# 1 "/usr/lib/gcc/x86_64-linux-gnu/9/include/stddef.h" 1 3 4
# 145 "/usr/include/x86_64-linux-gnu/sys/types.h" 2 3 4
typedef unsigned long int ulong;
typedef unsigned short int ushort;
typedef unsigned int uint;
# 1 "/usr/include/x86_64-linux-gnu/bits/stdint-intn.h" 1 3 4
# 24 "/usr/include/x86_64-linux-gnu/bits/stdint-intn.h" 3 4
typedef __int8_t int8_t;
typedef __int16_t int16_t;
typedef __int32_t int32_t;
typedef __int64_t int64_t;
# 156 "/usr/include/x86_64-linux-gnu/sys/types.h" 2 3 4
typedef __uint8_t u_int8_t;
typedef __uint16_t u_int16_t;
typedef __uint32_t u_int32_t;
typedef __uint64_t u_int64_t;
typedef int register_t __attribute__ ((__mode__ (__word__)));
# 176 "/usr/include/x86_64-linux-gnu/sys/types.h" 3 4
# 1 "/usr/include/endian.h" 1 3 4
# 24 "/usr/include/endian.h" 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/endian.h" 1 3 4
# 35 "/usr/include/x86_64-linux-gnu/bits/endian.h" 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/endianness.h" 1 3 4
# 36 "/usr/include/x86_64-linux-gnu/bits/endian.h" 2 3 4
# 25 "/usr/include/endian.h" 2 3 4
# 35 "/usr/include/endian.h" 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/byteswap.h" 1 3 4
# 33 "/usr/include/x86_64-linux-gnu/bits/byteswap.h" 3 4
static __inline __uint16_t
__bswap_16 (__uint16_t __bsx)
{
return __builtin_bswap16 (__bsx);
}
static __inline __uint32_t
__bswap_32 (__uint32_t __bsx)
{
return __builtin_bswap32 (__bsx);
}
# 69 "/usr/include/x86_64-linux-gnu/bits/byteswap.h" 3 4
__extension__ static __inline __uint64_t
__bswap_64 (__uint64_t __bsx)
{
return __builtin_bswap64 (__bsx);
}
# 36 "/usr/include/endian.h" 2 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/uintn-identity.h" 1 3 4
# 32 "/usr/include/x86_64-linux-gnu/bits/uintn-identity.h" 3 4
static __inline __uint16_t
__uint16_identity (__uint16_t __x)
{
return __x;
}
static __inline __uint32_t
__uint32_identity (__uint32_t __x)
{
return __x;
}
static __inline __uint64_t
__uint64_identity (__uint64_t __x)
{
return __x;
}
# 37 "/usr/include/endian.h" 2 3 4
# 177 "/usr/include/x86_64-linux-gnu/sys/types.h" 2 3 4
# 1 "/usr/include/x86_64-linux-gnu/sys/select.h" 1 3 4
# 30 "/usr/include/x86_64-linux-gnu/sys/select.h" 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/select.h" 1 3 4
# 22 "/usr/include/x86_64-linux-gnu/bits/select.h" 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/wordsize.h" 1 3 4
# 23 "/usr/include/x86_64-linux-gnu/bits/select.h" 2 3 4
# 31 "/usr/include/x86_64-linux-gnu/sys/select.h" 2 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/types/sigset_t.h" 1 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/types/__sigset_t.h" 1 3 4
typedef struct
{
unsigned long int __val[(1024 / (8 * sizeof (unsigned long int)))];
} __sigset_t;
# 5 "/usr/include/x86_64-linux-gnu/bits/types/sigset_t.h" 2 3 4
typedef __sigset_t sigset_t;
# 34 "/usr/include/x86_64-linux-gnu/sys/select.h" 2 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/types/struct_timeval.h" 1 3 4
struct timeval
{
__time_t tv_sec;
__suseconds_t tv_usec;
};
# 38 "/usr/include/x86_64-linux-gnu/sys/select.h" 2 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/types/struct_timespec.h" 1 3 4
# 10 "/usr/include/x86_64-linux-gnu/bits/types/struct_timespec.h" 3 4
struct timespec
{
__time_t tv_sec;
__syscall_slong_t tv_nsec;
# 26 "/usr/include/x86_64-linux-gnu/bits/types/struct_timespec.h" 3 4
};
# 40 "/usr/include/x86_64-linux-gnu/sys/select.h" 2 3 4
typedef __suseconds_t suseconds_t;
typedef long int __fd_mask;
# 59 "/usr/include/x86_64-linux-gnu/sys/select.h" 3 4
typedef struct
{
__fd_mask __fds_bits[1024 / (8 * (int) sizeof (__fd_mask))];
} fd_set;
typedef __fd_mask fd_mask;
# 91 "/usr/include/x86_64-linux-gnu/sys/select.h" 3 4
# 101 "/usr/include/x86_64-linux-gnu/sys/select.h" 3 4
extern int select (int __nfds, fd_set *__restrict __readfds,
fd_set *__restrict __writefds,
fd_set *__restrict __exceptfds,
struct timeval *__restrict __timeout);
# 113 "/usr/include/x86_64-linux-gnu/sys/select.h" 3 4
extern int pselect (int __nfds, fd_set *__restrict __readfds,
fd_set *__restrict __writefds,
fd_set *__restrict __exceptfds,
const struct timespec *__restrict __timeout,
const __sigset_t *__restrict __sigmask);
# 126 "/usr/include/x86_64-linux-gnu/sys/select.h" 3 4
# 180 "/usr/include/x86_64-linux-gnu/sys/types.h" 2 3 4
typedef __blksize_t blksize_t;
typedef __blkcnt_t blkcnt_t;
typedef __fsblkcnt_t fsblkcnt_t;
typedef __fsfilcnt_t fsfilcnt_t;
# 227 "/usr/include/x86_64-linux-gnu/sys/types.h" 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/pthreadtypes.h" 1 3 4
# 23 "/usr/include/x86_64-linux-gnu/bits/pthreadtypes.h" 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/thread-shared-types.h" 1 3 4
# 44 "/usr/include/x86_64-linux-gnu/bits/thread-shared-types.h" 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/pthreadtypes-arch.h" 1 3 4
# 21 "/usr/include/x86_64-linux-gnu/bits/pthreadtypes-arch.h" 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/wordsize.h" 1 3 4
# 22 "/usr/include/x86_64-linux-gnu/bits/pthreadtypes-arch.h" 2 3 4
# 45 "/usr/include/x86_64-linux-gnu/bits/thread-shared-types.h" 2 3 4
typedef struct __pthread_internal_list
{
struct __pthread_internal_list *__prev;
struct __pthread_internal_list *__next;
} __pthread_list_t;
typedef struct __pthread_internal_slist
{
struct __pthread_internal_slist *__next;
} __pthread_slist_t;
# 74 "/usr/include/x86_64-linux-gnu/bits/thread-shared-types.h" 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/struct_mutex.h" 1 3 4
# 22 "/usr/include/x86_64-linux-gnu/bits/struct_mutex.h" 3 4
struct __pthread_mutex_s
{
int __lock;
unsigned int __count;
int __owner;
unsigned int __nusers;
int __kind;
short __spins;
short __elision;
__pthread_list_t __list;
# 53 "/usr/include/x86_64-linux-gnu/bits/struct_mutex.h" 3 4
};
# 75 "/usr/include/x86_64-linux-gnu/bits/thread-shared-types.h" 2 3 4
# 87 "/usr/include/x86_64-linux-gnu/bits/thread-shared-types.h" 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/struct_rwlock.h" 1 3 4
# 23 "/usr/include/x86_64-linux-gnu/bits/struct_rwlock.h" 3 4
struct __pthread_rwlock_arch_t
{
unsigned int __readers;
unsigned int __writers;
unsigned int __wrphase_futex;
unsigned int __writers_futex;
unsigned int __pad3;
unsigned int __pad4;
int __cur_writer;
int __shared;
signed char __rwelision;
unsigned char __pad1[7];
unsigned long int __pad2;
unsigned int __flags;
# 55 "/usr/include/x86_64-linux-gnu/bits/struct_rwlock.h" 3 4
};
# 88 "/usr/include/x86_64-linux-gnu/bits/thread-shared-types.h" 2 3 4
struct __pthread_cond_s
{
__extension__ union
{
__extension__ unsigned long long int __wseq;
struct
{
unsigned int __low;
unsigned int __high;
} __wseq32;
};
__extension__ union
{
__extension__ unsigned long long int __g1_start;
struct
{
unsigned int __low;
unsigned int __high;
} __g1_start32;
};
unsigned int __g_refs[2] ;
unsigned int __g_size[2];
unsigned int __g1_orig_size;
unsigned int __wrefs;
unsigned int __g_signals[2];
};
# 24 "/usr/include/x86_64-linux-gnu/bits/pthreadtypes.h" 2 3 4
typedef unsigned long int pthread_t;
typedef union
{
char __size[4];
int __align;
} pthread_mutexattr_t;
typedef union
{
char __size[4];
int __align;
} pthread_condattr_t;
typedef unsigned int pthread_key_t;
typedef int pthread_once_t;
union pthread_attr_t
{
char __size[56];
long int __align;
};
typedef union pthread_attr_t pthread_attr_t;
typedef union
{
struct __pthread_mutex_s __data;
char __size[40];
long int __align;
} pthread_mutex_t;
typedef union
{
struct __pthread_cond_s __data;
char __size[48];
__extension__ long long int __align;
} pthread_cond_t;
typedef union
{
struct __pthread_rwlock_arch_t __data;
char __size[56];
long int __align;
} pthread_rwlock_t;
typedef union
{
char __size[8];
long int __align;
} pthread_rwlockattr_t;
typedef volatile int pthread_spinlock_t;
typedef union
{
char __size[32];
long int __align;
} pthread_barrier_t;
typedef union
{
char __size[4];
int __align;
} pthread_barrierattr_t;
# 228 "/usr/include/x86_64-linux-gnu/sys/types.h" 2 3 4
# 395 "/usr/include/stdlib.h" 2 3 4
extern long int random (void) __attribute__ ((__nothrow__ , __leaf__));
extern void srandom (unsigned int __seed) __attribute__ ((__nothrow__ , __leaf__));
extern char *initstate (unsigned int __seed, char *__statebuf,
size_t __statelen) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (2)));
extern char *setstate (char *__statebuf) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1)));
struct random_data
{
int32_t *fptr;
int32_t *rptr;
int32_t *state;
int rand_type;
int rand_deg;
int rand_sep;
int32_t *end_ptr;
};
extern int random_r (struct random_data *__restrict __buf,
int32_t *__restrict __result) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2)));
extern int srandom_r (unsigned int __seed, struct random_data *__buf)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (2)));
extern int initstate_r (unsigned int __seed, char *__restrict __statebuf,
size_t __statelen,
struct random_data *__restrict __buf)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (2, 4)));
extern int setstate_r (char *__restrict __statebuf,
struct random_data *__restrict __buf)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2)));
extern int rand (void) __attribute__ ((__nothrow__ , __leaf__));
extern void srand (unsigned int __seed) __attribute__ ((__nothrow__ , __leaf__));
extern int rand_r (unsigned int *__seed) __attribute__ ((__nothrow__ , __leaf__));
extern double drand48 (void) __attribute__ ((__nothrow__ , __leaf__));
extern double erand48 (unsigned short int __xsubi[3]) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1)));
extern long int lrand48 (void) __attribute__ ((__nothrow__ , __leaf__));
extern long int nrand48 (unsigned short int __xsubi[3])
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1)));
extern long int mrand48 (void) __attribute__ ((__nothrow__ , __leaf__));
extern long int jrand48 (unsigned short int __xsubi[3])
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1)));
extern void srand48 (long int __seedval) __attribute__ ((__nothrow__ , __leaf__));
extern unsigned short int *seed48 (unsigned short int __seed16v[3])
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1)));
extern void lcong48 (unsigned short int __param[7]) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1)));
struct drand48_data
{
unsigned short int __x[3];
unsigned short int __old_x[3];
unsigned short int __c;
unsigned short int __init;
__extension__ unsigned long long int __a;
};
extern int drand48_r (struct drand48_data *__restrict __buffer,
double *__restrict __result) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2)));
extern int erand48_r (unsigned short int __xsubi[3],
struct drand48_data *__restrict __buffer,
double *__restrict __result) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2)));
extern int lrand48_r (struct drand48_data *__restrict __buffer,
long int *__restrict __result)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2)));
extern int nrand48_r (unsigned short int __xsubi[3],
struct drand48_data *__restrict __buffer,
long int *__restrict __result)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2)));
extern int mrand48_r (struct drand48_data *__restrict __buffer,
long int *__restrict __result)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2)));
extern int jrand48_r (unsigned short int __xsubi[3],
struct drand48_data *__restrict __buffer,
long int *__restrict __result)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2)));
extern int srand48_r (long int __seedval, struct drand48_data *__buffer)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (2)));
extern int seed48_r (unsigned short int __seed16v[3],
struct drand48_data *__buffer) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2)));
extern int lcong48_r (unsigned short int __param[7],
struct drand48_data *__buffer)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2)));
extern void *malloc (size_t __size) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__malloc__))
__attribute__ ((__alloc_size__ (1))) ;
extern void *calloc (size_t __nmemb, size_t __size)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__malloc__)) __attribute__ ((__alloc_size__ (1, 2))) ;
extern void *realloc (void *__ptr, size_t __size)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__warn_unused_result__)) __attribute__ ((__alloc_size__ (2)));
extern void *reallocarray (void *__ptr, size_t __nmemb, size_t __size)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__warn_unused_result__))
__attribute__ ((__alloc_size__ (2, 3)));
extern void free (void *__ptr) __attribute__ ((__nothrow__ , __leaf__));
# 1 "/usr/include/alloca.h" 1 3 4
# 24 "/usr/include/alloca.h" 3 4
# 1 "/usr/lib/gcc/x86_64-linux-gnu/9/include/stddef.h" 1 3 4
# 25 "/usr/include/alloca.h" 2 3 4
extern void *alloca (size_t __size) __attribute__ ((__nothrow__ , __leaf__));
# 569 "/usr/include/stdlib.h" 2 3 4
extern void *valloc (size_t __size) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__malloc__))
__attribute__ ((__alloc_size__ (1))) ;
extern int posix_memalign (void **__memptr, size_t __alignment, size_t __size)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))) ;
extern void *aligned_alloc (size_t __alignment, size_t __size)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__malloc__)) __attribute__ ((__alloc_size__ (2))) ;
extern void abort (void) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__noreturn__));
extern int atexit (void (*__func) (void)) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1)));
extern int at_quick_exit (void (*__func) (void)) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1)));
extern int on_exit (void (*__func) (int __status, void *__arg), void *__arg)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1)));
extern void exit (int __status) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__noreturn__));
extern void quick_exit (int __status) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__noreturn__));
extern void _Exit (int __status) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__noreturn__));
extern char *getenv (const char *__name) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))) ;
# 647 "/usr/include/stdlib.h" 3 4
extern int putenv (char *__string) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1)));
extern int setenv (const char *__name, const char *__value, int __replace)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (2)));
extern int unsetenv (const char *__name) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1)));
extern int clearenv (void) __attribute__ ((__nothrow__ , __leaf__));
# 675 "/usr/include/stdlib.h" 3 4
extern char *mktemp (char *__template) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1)));
# 688 "/usr/include/stdlib.h" 3 4
extern int mkstemp (char *__template) __attribute__ ((__nonnull__ (1))) ;
# 710 "/usr/include/stdlib.h" 3 4
extern int mkstemps (char *__template, int __suffixlen) __attribute__ ((__nonnull__ (1))) ;
# 731 "/usr/include/stdlib.h" 3 4
extern char *mkdtemp (char *__template) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))) ;
# 784 "/usr/include/stdlib.h" 3 4
extern int system (const char *__command) ;
# 800 "/usr/include/stdlib.h" 3 4
extern char *realpath (const char *__restrict __name,
char *__restrict __resolved) __attribute__ ((__nothrow__ , __leaf__)) ;
typedef int (*__compar_fn_t) (const void *, const void *);
# 820 "/usr/include/stdlib.h" 3 4
extern void *bsearch (const void *__key, const void *__base,
size_t __nmemb, size_t __size, __compar_fn_t __compar)
__attribute__ ((__nonnull__ (1, 2, 5))) ;
extern void qsort (void *__base, size_t __nmemb, size_t __size,
__compar_fn_t __compar) __attribute__ ((__nonnull__ (1, 4)));
# 840 "/usr/include/stdlib.h" 3 4
extern int abs (int __x) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)) ;
extern long int labs (long int __x) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)) ;
__extension__ extern long long int llabs (long long int __x)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)) ;
extern div_t div (int __numer, int __denom)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)) ;
extern ldiv_t ldiv (long int __numer, long int __denom)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)) ;
__extension__ extern lldiv_t lldiv (long long int __numer,
long long int __denom)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)) ;
# 872 "/usr/include/stdlib.h" 3 4
extern char *ecvt (double __value, int __ndigit, int *__restrict __decpt,
int *__restrict __sign) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (3, 4))) ;
extern char *fcvt (double __value, int __ndigit, int *__restrict __decpt,
int *__restrict __sign) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (3, 4))) ;
extern char *gcvt (double __value, int __ndigit, char *__buf)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (3))) ;
extern char *qecvt (long double __value, int __ndigit,
int *__restrict __decpt, int *__restrict __sign)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (3, 4))) ;
extern char *qfcvt (long double __value, int __ndigit,
int *__restrict __decpt, int *__restrict __sign)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (3, 4))) ;
extern char *qgcvt (long double __value, int __ndigit, char *__buf)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (3))) ;
extern int ecvt_r (double __value, int __ndigit, int *__restrict __decpt,
int *__restrict __sign, char *__restrict __buf,
size_t __len) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (3, 4, 5)));
extern int fcvt_r (double __value, int __ndigit, int *__restrict __decpt,
int *__restrict __sign, char *__restrict __buf,
size_t __len) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (3, 4, 5)));
extern int qecvt_r (long double __value, int __ndigit,
int *__restrict __decpt, int *__restrict __sign,
char *__restrict __buf, size_t __len)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (3, 4, 5)));
extern int qfcvt_r (long double __value, int __ndigit,
int *__restrict __decpt, int *__restrict __sign,
char *__restrict __buf, size_t __len)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (3, 4, 5)));
extern int mblen (const char *__s, size_t __n) __attribute__ ((__nothrow__ , __leaf__));
extern int mbtowc (wchar_t *__restrict __pwc,
const char *__restrict __s, size_t __n) __attribute__ ((__nothrow__ , __leaf__));
extern int wctomb (char *__s, wchar_t __wchar) __attribute__ ((__nothrow__ , __leaf__));
extern size_t mbstowcs (wchar_t *__restrict __pwcs,
const char *__restrict __s, size_t __n) __attribute__ ((__nothrow__ , __leaf__));
extern size_t wcstombs (char *__restrict __s,
const wchar_t *__restrict __pwcs, size_t __n)
__attribute__ ((__nothrow__ , __leaf__));
extern int rpmatch (const char *__response) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))) ;
# 957 "/usr/include/stdlib.h" 3 4
extern int getsubopt (char **__restrict __optionp,
char *const *__restrict __tokens,
char **__restrict __valuep)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2, 3))) ;
# 1003 "/usr/include/stdlib.h" 3 4
extern int getloadavg (double __loadavg[], int __nelem)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1)));
# 1013 "/usr/include/stdlib.h" 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/stdlib-float.h" 1 3 4
# 1014 "/usr/include/stdlib.h" 2 3 4
# 1023 "/usr/include/stdlib.h" 3 4
# 18 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" 2
# 1 "/usr/include/assert.h" 1 3 4
# 66 "/usr/include/assert.h" 3 4
extern void __assert_fail (const char *__assertion, const char *__file,
unsigned int __line, const char *__function)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__noreturn__));
extern void __assert_perror_fail (int __errnum, const char *__file,
unsigned int __line, const char *__function)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__noreturn__));
extern void __assert (const char *__assertion, const char *__file, int __line)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__noreturn__));
# 19 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" 2
# 1 "/usr/include/stdio.h" 1 3 4
# 27 "/usr/include/stdio.h" 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/libc-header-start.h" 1 3 4
# 28 "/usr/include/stdio.h" 2 3 4
# 1 "/usr/lib/gcc/x86_64-linux-gnu/9/include/stddef.h" 1 3 4
# 34 "/usr/include/stdio.h" 2 3 4
# 1 "/usr/lib/gcc/x86_64-linux-gnu/9/include/stdarg.h" 1 3 4
# 40 "/usr/lib/gcc/x86_64-linux-gnu/9/include/stdarg.h" 3 4
typedef __builtin_va_list __gnuc_va_list;
# 37 "/usr/include/stdio.h" 2 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/types/__fpos_t.h" 1 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/types/__mbstate_t.h" 1 3 4
# 13 "/usr/include/x86_64-linux-gnu/bits/types/__mbstate_t.h" 3 4
typedef struct
{
int __count;
union
{
unsigned int __wch;
char __wchb[4];
} __value;
} __mbstate_t;
# 6 "/usr/include/x86_64-linux-gnu/bits/types/__fpos_t.h" 2 3 4
typedef struct _G_fpos_t
{
__off_t __pos;
__mbstate_t __state;
} __fpos_t;
# 40 "/usr/include/stdio.h" 2 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/types/__fpos64_t.h" 1 3 4
# 10 "/usr/include/x86_64-linux-gnu/bits/types/__fpos64_t.h" 3 4
typedef struct _G_fpos64_t
{
__off64_t __pos;
__mbstate_t __state;
} __fpos64_t;
# 41 "/usr/include/stdio.h" 2 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/types/__FILE.h" 1 3 4
struct _IO_FILE;
typedef struct _IO_FILE __FILE;
# 42 "/usr/include/stdio.h" 2 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/types/FILE.h" 1 3 4
struct _IO_FILE;
typedef struct _IO_FILE FILE;
# 43 "/usr/include/stdio.h" 2 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/types/struct_FILE.h" 1 3 4
# 35 "/usr/include/x86_64-linux-gnu/bits/types/struct_FILE.h" 3 4
struct _IO_FILE;
struct _IO_marker;
struct _IO_codecvt;
struct _IO_wide_data;
typedef void _IO_lock_t;
struct _IO_FILE
{
int _flags;
char *_IO_read_ptr;
char *_IO_read_end;
char *_IO_read_base;
char *_IO_write_base;
char *_IO_write_ptr;
char *_IO_write_end;
char *_IO_buf_base;
char *_IO_buf_end;
char *_IO_save_base;
char *_IO_backup_base;
char *_IO_save_end;
struct _IO_marker *_markers;
struct _IO_FILE *_chain;
int _fileno;
int _flags2;
__off_t _old_offset;
unsigned short _cur_column;
signed char _vtable_offset;
char _shortbuf[1];
_IO_lock_t *_lock;
__off64_t _offset;
struct _IO_codecvt *_codecvt;
struct _IO_wide_data *_wide_data;
struct _IO_FILE *_freeres_list;
void *_freeres_buf;
size_t __pad5;
int _mode;
char _unused2[15 * sizeof (int) - 4 * sizeof (void *) - sizeof (size_t)];
};
# 44 "/usr/include/stdio.h" 2 3 4
# 52 "/usr/include/stdio.h" 3 4
typedef __gnuc_va_list va_list;
# 84 "/usr/include/stdio.h" 3 4
typedef __fpos_t fpos_t;
# 133 "/usr/include/stdio.h" 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/stdio_lim.h" 1 3 4
# 134 "/usr/include/stdio.h" 2 3 4
extern FILE *stdin;
extern FILE *stdout;
extern FILE *stderr;
extern int remove (const char *__filename) __attribute__ ((__nothrow__ , __leaf__));
extern int rename (const char *__old, const char *__new) __attribute__ ((__nothrow__ , __leaf__));
extern int renameat (int __oldfd, const char *__old, int __newfd,
const char *__new) __attribute__ ((__nothrow__ , __leaf__));
# 173 "/usr/include/stdio.h" 3 4
extern FILE *tmpfile (void) ;
# 187 "/usr/include/stdio.h" 3 4
extern char *tmpnam (char *__s) __attribute__ ((__nothrow__ , __leaf__)) ;
extern char *tmpnam_r (char *__s) __attribute__ ((__nothrow__ , __leaf__)) ;
# 204 "/usr/include/stdio.h" 3 4
extern char *tempnam (const char *__dir, const char *__pfx)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__malloc__)) ;
extern int fclose (FILE *__stream);
extern int fflush (FILE *__stream);
# 227 "/usr/include/stdio.h" 3 4
extern int fflush_unlocked (FILE *__stream);
# 246 "/usr/include/stdio.h" 3 4
extern FILE *fopen (const char *__restrict __filename,
const char *__restrict __modes) ;
extern FILE *freopen (const char *__restrict __filename,
const char *__restrict __modes,
FILE *__restrict __stream) ;
# 279 "/usr/include/stdio.h" 3 4
extern FILE *fdopen (int __fd, const char *__modes) __attribute__ ((__nothrow__ , __leaf__)) ;
# 292 "/usr/include/stdio.h" 3 4
extern FILE *fmemopen (void *__s, size_t __len, const char *__modes)
__attribute__ ((__nothrow__ , __leaf__)) ;
extern FILE *open_memstream (char **__bufloc, size_t *__sizeloc) __attribute__ ((__nothrow__ , __leaf__)) ;
extern void setbuf (FILE *__restrict __stream, char *__restrict __buf) __attribute__ ((__nothrow__ , __leaf__));
extern int setvbuf (FILE *__restrict __stream, char *__restrict __buf,
int __modes, size_t __n) __attribute__ ((__nothrow__ , __leaf__));
extern void setbuffer (FILE *__restrict __stream, char *__restrict __buf,
size_t __size) __attribute__ ((__nothrow__ , __leaf__));
extern void setlinebuf (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__));
extern int fprintf (FILE *__restrict __stream,
const char *__restrict __format, ...);
extern int printf (const char *__restrict __format, ...);
extern int sprintf (char *__restrict __s,
const char *__restrict __format, ...) __attribute__ ((__nothrow__));
extern int vfprintf (FILE *__restrict __s, const char *__restrict __format,
__gnuc_va_list __arg);
extern int vprintf (const char *__restrict __format, __gnuc_va_list __arg);
extern int vsprintf (char *__restrict __s, const char *__restrict __format,
__gnuc_va_list __arg) __attribute__ ((__nothrow__));
extern int snprintf (char *__restrict __s, size_t __maxlen,
const char *__restrict __format, ...)
__attribute__ ((__nothrow__)) __attribute__ ((__format__ (__printf__, 3, 4)));
extern int vsnprintf (char *__restrict __s, size_t __maxlen,
const char *__restrict __format, __gnuc_va_list __arg)
__attribute__ ((__nothrow__)) __attribute__ ((__format__ (__printf__, 3, 0)));
# 379 "/usr/include/stdio.h" 3 4
extern int vdprintf (int __fd, const char *__restrict __fmt,
__gnuc_va_list __arg)
__attribute__ ((__format__ (__printf__, 2, 0)));
extern int dprintf (int __fd, const char *__restrict __fmt, ...)
__attribute__ ((__format__ (__printf__, 2, 3)));
extern int fscanf (FILE *__restrict __stream,
const char *__restrict __format, ...) ;
extern int scanf (const char *__restrict __format, ...) ;
extern int sscanf (const char *__restrict __s,
const char *__restrict __format, ...) __attribute__ ((__nothrow__ , __leaf__));
extern int fscanf (FILE *__restrict __stream, const char *__restrict __format, ...) __asm__ ("" "__isoc99_fscanf")
;
extern int scanf (const char *__restrict __format, ...) __asm__ ("" "__isoc99_scanf")
;
extern int sscanf (const char *__restrict __s, const char *__restrict __format, ...) __asm__ ("" "__isoc99_sscanf") __attribute__ ((__nothrow__ , __leaf__))
;
# 432 "/usr/include/stdio.h" 3 4
extern int vfscanf (FILE *__restrict __s, const char *__restrict __format,
__gnuc_va_list __arg)
__attribute__ ((__format__ (__scanf__, 2, 0))) ;
extern int vscanf (const char *__restrict __format, __gnuc_va_list __arg)
__attribute__ ((__format__ (__scanf__, 1, 0))) ;
extern int vsscanf (const char *__restrict __s,
const char *__restrict __format, __gnuc_va_list __arg)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__format__ (__scanf__, 2, 0)));
extern int vfscanf (FILE *__restrict __s, const char *__restrict __format, __gnuc_va_list __arg) __asm__ ("" "__isoc99_vfscanf")
__attribute__ ((__format__ (__scanf__, 2, 0))) ;
extern int vscanf (const char *__restrict __format, __gnuc_va_list __arg) __asm__ ("" "__isoc99_vscanf")
__attribute__ ((__format__ (__scanf__, 1, 0))) ;
extern int vsscanf (const char *__restrict __s, const char *__restrict __format, __gnuc_va_list __arg) __asm__ ("" "__isoc99_vsscanf") __attribute__ ((__nothrow__ , __leaf__))
__attribute__ ((__format__ (__scanf__, 2, 0)));
# 485 "/usr/include/stdio.h" 3 4
extern int fgetc (FILE *__stream);
extern int getc (FILE *__stream);
extern int getchar (void);
extern int getc_unlocked (FILE *__stream);
extern int getchar_unlocked (void);
# 510 "/usr/include/stdio.h" 3 4
extern int fgetc_unlocked (FILE *__stream);
# 521 "/usr/include/stdio.h" 3 4
extern int fputc (int __c, FILE *__stream);
extern int putc (int __c, FILE *__stream);
extern int putchar (int __c);
# 537 "/usr/include/stdio.h" 3 4
extern int fputc_unlocked (int __c, FILE *__stream);
extern int putc_unlocked (int __c, FILE *__stream);
extern int putchar_unlocked (int __c);
extern int getw (FILE *__stream);
extern int putw (int __w, FILE *__stream);
extern char *fgets (char *__restrict __s, int __n, FILE *__restrict __stream)
;
# 603 "/usr/include/stdio.h" 3 4
extern __ssize_t __getdelim (char **__restrict __lineptr,
size_t *__restrict __n, int __delimiter,
FILE *__restrict __stream) ;
extern __ssize_t getdelim (char **__restrict __lineptr,
size_t *__restrict __n, int __delimiter,
FILE *__restrict __stream) ;
extern __ssize_t getline (char **__restrict __lineptr,
size_t *__restrict __n,
FILE *__restrict __stream) ;
extern int fputs (const char *__restrict __s, FILE *__restrict __stream);
extern int puts (const char *__s);
extern int ungetc (int __c, FILE *__stream);
extern size_t fread (void *__restrict __ptr, size_t __size,
size_t __n, FILE *__restrict __stream) ;
extern size_t fwrite (const void *__restrict __ptr, size_t __size,
size_t __n, FILE *__restrict __s);
# 673 "/usr/include/stdio.h" 3 4
extern size_t fread_unlocked (void *__restrict __ptr, size_t __size,
size_t __n, FILE *__restrict __stream) ;
extern size_t fwrite_unlocked (const void *__restrict __ptr, size_t __size,
size_t __n, FILE *__restrict __stream);
extern int fseek (FILE *__stream, long int __off, int __whence);
extern long int ftell (FILE *__stream) ;
extern void rewind (FILE *__stream);
# 707 "/usr/include/stdio.h" 3 4
extern int fseeko (FILE *__stream, __off_t __off, int __whence);
extern __off_t ftello (FILE *__stream) ;
# 731 "/usr/include/stdio.h" 3 4
extern int fgetpos (FILE *__restrict __stream, fpos_t *__restrict __pos);
extern int fsetpos (FILE *__stream, const fpos_t *__pos);
# 757 "/usr/include/stdio.h" 3 4
extern void clearerr (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__));
extern int feof (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)) ;
extern int ferror (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)) ;
extern void clearerr_unlocked (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__));
extern int feof_unlocked (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)) ;
extern int ferror_unlocked (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)) ;
extern void perror (const char *__s);
# 1 "/usr/include/x86_64-linux-gnu/bits/sys_errlist.h" 1 3 4
# 26 "/usr/include/x86_64-linux-gnu/bits/sys_errlist.h" 3 4
extern int sys_nerr;
extern const char *const sys_errlist[];
# 782 "/usr/include/stdio.h" 2 3 4
extern int fileno (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)) ;
extern int fileno_unlocked (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)) ;
# 800 "/usr/include/stdio.h" 3 4
extern FILE *popen (const char *__command, const char *__modes) ;
extern int pclose (FILE *__stream);
extern char *ctermid (char *__s) __attribute__ ((__nothrow__ , __leaf__));
# 840 "/usr/include/stdio.h" 3 4
extern void flockfile (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__));
extern int ftrylockfile (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)) ;
extern void funlockfile (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__));
# 858 "/usr/include/stdio.h" 3 4
extern int __uflow (FILE *);
extern int __overflow (FILE *, int);
# 873 "/usr/include/stdio.h" 3 4
# 20 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" 2
# 21 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h"
void __DSVERIFIER_assume(_Bool expression){
__CPROVER_assume(expression);
}
void __DSVERIFIER_assert(_Bool expression){
# 36 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" 3 4
((void) sizeof ((
# 36 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h"
expression
# 36 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" 3 4
) ? 1 : 0), __extension__ ({ if (
# 36 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h"
expression
# 36 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" 3 4
) ; else __assert_fail (
# 36 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h"
"expression"
# 36 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" 3 4
, "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h", 36, __extension__ __PRETTY_FUNCTION__); }))
# 36 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h"
;
}
void __DSVERIFIER_assert_msg(_Bool expression, char * msg){
printf("%s", msg);
# 41 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" 3 4
((void) sizeof ((
# 41 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h"
expression
# 41 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" 3 4
) ? 1 : 0), __extension__ ({ if (
# 41 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h"
expression
# 41 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" 3 4
) ; else __assert_fail (
# 41 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h"
"expression"
# 41 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" 3 4
, "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h", 41, __extension__ __PRETTY_FUNCTION__); }))
# 41 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h"
;
}
# 22 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2
# 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/fixed-point.h" 1
# 27 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/fixed-point.h"
# 1 "/usr/lib/gcc/x86_64-linux-gnu/9/include/stdint.h" 1 3 4
# 9 "/usr/lib/gcc/x86_64-linux-gnu/9/include/stdint.h" 3 4
# 1 "/usr/include/stdint.h" 1 3 4
# 26 "/usr/include/stdint.h" 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/libc-header-start.h" 1 3 4
# 27 "/usr/include/stdint.h" 2 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/wchar.h" 1 3 4
# 29 "/usr/include/stdint.h" 2 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/wordsize.h" 1 3 4
# 30 "/usr/include/stdint.h" 2 3 4
# 1 "/usr/include/x86_64-linux-gnu/bits/stdint-uintn.h" 1 3 4
# 24 "/usr/include/x86_64-linux-gnu/bits/stdint-uintn.h" 3 4
# 24 "/usr/include/x86_64-linux-gnu/bits/stdint-uintn.h" 3 4
typedef __uint8_t uint8_t;
typedef __uint16_t uint16_t;
typedef __uint32_t uint32_t;
typedef __uint64_t uint64_t;
# 38 "/usr/include/stdint.h" 2 3 4
typedef __int_least8_t int_least8_t;
typedef __int_least16_t int_least16_t;
typedef __int_least32_t int_least32_t;
typedef __int_least64_t int_least64_t;
typedef __uint_least8_t uint_least8_t;
typedef __uint_least16_t uint_least16_t;
typedef __uint_least32_t uint_least32_t;
typedef __uint_least64_t uint_least64_t;
typedef signed char int_fast8_t;
typedef long int int_fast16_t;
typedef long int int_fast32_t;
typedef long int int_fast64_t;
# 71 "/usr/include/stdint.h" 3 4
typedef unsigned char uint_fast8_t;
typedef unsigned long int uint_fast16_t;
typedef unsigned long int uint_fast32_t;
typedef unsigned long int uint_fast64_t;
# 87 "/usr/include/stdint.h" 3 4
typedef long int intptr_t;
typedef unsigned long int uintptr_t;
# 101 "/usr/include/stdint.h" 3 4
typedef __intmax_t intmax_t;
typedef __uintmax_t uintmax_t;
# 10 "/usr/lib/gcc/x86_64-linux-gnu/9/include/stdint.h" 2 3 4
# 28 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/fixed-point.h" 2
# 1 "/usr/include/inttypes.h" 1 3 4
# 34 "/usr/include/inttypes.h" 3 4
typedef int __gwchar_t;
# 266 "/usr/include/inttypes.h" 3 4
typedef struct
{
long int quot;
long int rem;
} imaxdiv_t;
# 290 "/usr/include/inttypes.h" 3 4
extern intmax_t imaxabs (intmax_t __n) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__));
extern imaxdiv_t imaxdiv (intmax_t __numer, intmax_t __denom)
__attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__));
extern intmax_t strtoimax (const char *__restrict __nptr,
char **__restrict __endptr, int __base) __attribute__ ((__nothrow__ , __leaf__));
extern uintmax_t strtoumax (const char *__restrict __nptr,
char ** __restrict __endptr, int __base) __attribute__ ((__nothrow__ , __leaf__));
extern intmax_t wcstoimax (const __gwchar_t *__restrict __nptr,
__gwchar_t **__restrict __endptr, int __base)
__attribute__ ((__nothrow__ , __leaf__));
extern uintmax_t wcstoumax (const __gwchar_t *__restrict __nptr,
__gwchar_t ** __restrict __endptr, int __base)
__attribute__ ((__nothrow__ , __leaf__));
# 432 "/usr/include/inttypes.h" 3 4
# 29 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/fixed-point.h" 2
# 30 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/fixed-point.h"
extern implementation impl;
typedef int64_t fxp_t;
fxp_t _fxp_one;
fxp_t _fxp_half;
fxp_t _fxp_minus_one;
fxp_t _fxp_min;
fxp_t _fxp_max;
double _dbl_max;
double _dbl_min;
fxp_t _fxp_fmask;
fxp_t _fxp_imask;
static const double scale_factor[31] = { 1.0, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0,
128.0, 256.0, 512.0, 1024.0, 2048.0, 4096.0, 8192.0, 16384.0, 32768.0,
65536.0, 131072.0, 262144.0, 524288.0, 1048576.0, 2097152.0, 4194304.0,
8388608.0, 16777216.0, 33554432.0, 67108864.0, 134217728.0,
268435456.0, 536870912.0, 1073741824.0 };
static const double scale_factor_inv[31] = { 1.0, 0.5, 0.25, 0.125, 0.0625,
0.03125, 0.015625, 0.0078125, 0.00390625, 0.001953125, 0.0009765625,
0.00048828125, 0.000244140625, 0.0001220703125, 0.00006103515625,
0.000030517578125, 0.000015258789063, 0.000007629394531,
0.000003814697266, 0.000001907348633, 0.000000953674316,
0.000000476837158, 0.000000238418579, 0.000000119209290,
0.000000059604645, 0.000000029802322, 0.000000014901161,
0.000000007450581, 0.000000003725290, 0.000000001862645,
0.000000000931323 };
static const float rand_uni[10000] = { -0.486240329978498f, -0.0886462298529236f, -0.140307596103306f, 0.301096597450952f, 0.0993171079928659f, 0.971751769763271f, 0.985173975730828f, 0.555993645184930f, 0.582088652691427f, -0.153377496651175f, 0.383610009058905f, -0.335724126391271f, 0.978768141636516f, -0.276250018648572f, 0.390075705739569f, -0.179022404038782f, 0.690083827115783f, -0.872530132490992f, -0.970585763293203f, -0.581476053441704f, -0.532614615674888f, -0.239699306693312f, -0.678183014035494f, 0.349502640932782f, -0.210469890686263f, 0.841262085391842f, -0.473585465151401f, 0.659383565443701f, -0.651160036945754f, -0.961043527561335f, -0.0814927639199137f, 0.621303110569702f, -0.784529166943541f, 0.0238464770757800f, 0.392694728594110f, 0.776848735202001f, 0.0870059709310509f, 0.880563655271790f, 0.883457036977564f, -0.249235082877382f, -0.691040749216870f, 0.578731120064320f, -0.973932858000832f, -0.117699105431720f, -0.723831748151088f, -0.483149657477524f, -0.821277691383664f, -0.459725618100875f, 0.148175952221864f, 0.444306875534854f, -0.325610376336498f, 0.544142311404910f, -0.165319440455435f, 0.136706800705517f, 0.543312481350682f, 0.467210959764607f, -0.349266618228534f, -0.660110730565862f, 0.910332331495431f, 0.961049802789367f, -0.786168905164629f, 0.305648402726554f, 0.510815258508885f, 0.0950733260984060f, 0.173750645487898f, 0.144488668408672f, 0.0190031984466126f, -0.299194577636724f, 0.302411647442273f, -0.730462524226212f, 0.688646006554796f, 0.134948379722118f, 0.533716723458894f, -0.00226300779660438f, -0.561340777806718f, 0.450396313744017f, -0.569445876566955f, 0.954155246557698f, -0.255403882430676f, -0.759820984120828f, -0.855279790307514f, -0.147352581758156f, -0.302269055643746f, -0.642038024364086f, -0.367405981107491f, 0.491844011712164f, -0.542191710121194f, -0.938294043323732f, 0.683979894338020f, 0.294728290855287f, 0.00662691839443919f, -0.931040350582855f, 0.152356209974418f, 0.678620860551457f, -0.534989269238408f, 0.932096367913226f, -0.0361062818028513f, -0.847189697149530f, -0.975903030160255f, 0.623293205784014f, -0.661289688031659f, 0.724486055119603f, 0.307504095172835f, 0.00739266163731767f, -0.393681596442097f, 0.0313739422974388f, 0.0768157689673350f, -0.652063346886817f, 0.864188030044388f, -0.588932092781034f, 0.496015896758580f, -0.872858269231211f, 0.978780599551039f, -0.504887732991147f, -0.462378791937628f, 0.0141726829338038f, 0.769610007653591f, 0.945233033188923f, -0.782235375325016f, -0.832206533738799f, 0.745634368088673f, -0.696969510157151f, -0.0674631869948374f, -0.123186450806584f, -0.359158959141949f, -0.393882649464391f, 0.441371446689899f, -0.829394270569736f, -0.301502651277431f, -0.996215501187289f, 0.934634037393066f, -0.282431114746289f, -0.927550795619590f, -0.437037530043415f, -0.360426812995980f, 0.949549724575862f, 0.502784616197919f, 0.800771681422909f, -0.511398929004089f, 0.309288504642554f, -0.207261227890933f, 0.930587995125773f, -0.777029876696670f, -0.489329175755640f, -0.134595132329858f, 0.285771358983518f, 0.182331373854387f, -0.544110494560697f, 0.278439882883985f, -0.556325158102182f, 0.579043806545889f, 0.134648133801916f, 0.602850725479294f, -0.151663563868883f, 0.180694361855878f, -0.651591295315595f, 0.281129147768056f, -0.580047306475484f, 0.687883075491433f, 0.279398670804288f, -0.853428128249503f, -0.532609367372680f, -0.821156786377917f, -0.181273229058573f, -0.983898569846882f, -0.0964374318311501f, 0.880923372124250f, 0.102643371392389f, 0.893615387135596f, -0.259276649383649f, 0.699287743639363f, 0.402940604635828f, -0.110721596226581f, 0.0846246472582877f, 0.820733021865405f, 0.795578903285308f, -0.495144122011537f, 0.273150029257472f, -0.268249949701437f, 0.231982193341980f, 0.694211299124074f, 0.859950868718233f, 0.959483382623794f, -0.422972626833543f, -0.109621798738360f, 0.433094703426531f, 0.694025903378851f, 0.374478987547435f, -0.293668545105608f, -0.396213864190828f, -0.0632095887099047f, -0.0285139536748673f, 0.831794132192390f, -0.548543088139238f, 0.791869201724680f, 0.325211484201845f, 0.155274810721772f, -0.112383643064821f, -0.674403070297721f, 0.642801068229810f, -0.615712048835242f, -0.322576771285566f, -0.409336818836595f, 0.548069973193770f, -0.386353709407947f, -0.0741664985357784f, 0.619639599324983f, -0.815703814931314f, 0.965550307223862f, 0.623407852683828f, -0.789634372832984f, 0.736750050047572f, -0.0269443926793700f, 0.00545706093721488f, -0.315712479832091f, -0.890110021644720f, -0.869390443173846f, -0.381538869981866f, -0.109498998005949f, 0.131433952330613f, -0.233452413139316f, 0.660289822785465f, 0.543381186340023f, -0.384712418750451f, -0.913477554164890f, 0.767102957655267f, -0.115129944521936f, -0.741161985822647f, -0.0604180020782450f, -0.819131535144059f, -0.409539679760029f, 0.574419252943637f, -0.0440704617157433f, 0.933173744590532f, 0.261360623390448f, -0.880290575543046f, 0.329806293425492f, 0.548915621667952f, 0.635187167795234f, -0.611034070318967f, 0.458196727901944f, 0.397377226781023f, 0.711941361933987f, 0.782147744383368f, -0.00300685339552631f, 0.384687233450957f, 0.810102466029521f, 0.452919847968424f, -0.183164257016897f, -0.755603185485427f, -0.604334477365858f, -0.786222413488860f, -0.434887500763099f, -0.678845635625581f, -0.381200370488331f, -0.582350534916068f, -0.0444427346996734f, 0.116237247526397f, -0.364680921206275f, -0.829395404347498f, -0.258574590032613f, -0.910082114298859f, 0.501356900925997f, 0.0295361922006900f, -0.471786618165219f, 0.536352925101547f, -0.316120662284464f, -0.168902841718737f, 0.970850119987976f, -0.813818666854395f, -0.0861183123848732f, 0.866784827877161f, 0.535966478165739f, -0.806958669103425f, -0.627307415616045f, -0.686618354673079f, 0.0239165685193152f, 0.525427699287402f, 0.834079334357391f, -0.527333932295852f, 0.130970034225907f, -0.790218350377199f, 0.399338640441987f, 0.133591886379939f, -0.181354311053254f, 0.420121912637914f, -0.625002202728601f, -0.293296669160307f, 0.0113819513424340f, -0.882382002895096f, -0.883750159690028f, 0.441583656876336f, -0.439054135454480f, 0.873049498123622f, 0.660844523562817f, 0.0104240153103699f, 0.611420248331623f, -0.235926309432748f, 0.207317724918460f, 0.884691834560657f, 0.128302402592277f, -0.283754448219060f, 0.237649901255856f, 0.610200763264703f, -0.625035441247926f, -0.964609592118695f, -0.323146562743113f, 0.961529402270719f, -0.793576233735450f, -0.843916713821003f, 0.314105102728384f, -0.204535560653294f, 0.753318789613803f, 0.160678386635821f, -0.647065919861379f, -0.202789866826280f, 0.648108234268198f, -0.261292621025902f, 0.156681828732770f, 0.405377351820066f, 0.228465381497500f, 0.972348516671163f, 0.288346037401522f, -0.0799068604307178f, 0.916939290109587f, -0.279220972402209f, -0.203447523864279f, -0.533640046855273f, 0.543561961674653f, 0.880711097286889f, -0.549683064687774f, 0.0130107219236368f, -0.554838164576024f, -0.379442406201385f, -0.00500104610043062f, 0.409530122826868f, -0.580423080726061f, 0.824555731914455f, -0.254134502966922f, 0.655609706875230f, 0.629093866184236f, -0.690033250889974f, -0.652346551677826f, 0.169820593515952f, 0.922459552232043f, 0.351812083539940f, 0.876342426613034f, -0.513486005850680f, -0.626382302780497f, -0.734690688861027f, 0.245594886018314f, -0.875740935105191f, -0.388580462918006f, 0.0127041754106421f, -0.0330962560066819f, -0.425003146474193f, 0.0281641353527495f, 0.261441358666622f, 0.949781327102773f, 0.919646340564270f, 0.504503377003781f, 0.0817071051871894f, 0.319968570729658f, 0.229065413577318f, -0.0512608414259468f, -0.0740848540944785f, -0.0974457038582892f, 0.532775710298005f, -0.492913317622840f, 0.492871078783642f, -0.289562388384881f, 0.229149968879593f, 0.697586903105899f, 0.900855243684925f, 0.969700445892771f, -0.618162745501349f, -0.533241431614228f, -0.937955908995453f, 0.886669636523452f, 0.498748076602594f, 0.974106016180519f, -0.199411214757595f, 0.725270392729083f, -0.0279932700005097f, -0.889385821767448f, -0.452211028905500f, -0.487216271217731f, -0.577105004471439f, 0.777405674160298f, 0.390121144627092f, -0.595062864225581f, -0.844712795815575f, -0.894819796738658f, 0.0556635002662202f, 0.200767245646242f, 0.481227096067452f, -0.0854169009474664f, 0.524532943920022f, -0.880292014538901f, -0.127923833629789f, -0.929275628802356f, 0.233276357260949f, -0.776272194935070f, 0.953325886548014f, -0.884399921036004f, -0.504227548828417f, -0.546526107689276f, 0.852622421886067f, 0.947722695551154f, -0.668635552599119f, 0.768739709906834f, 0.830755876586102f, -0.720579994994166f, 0.761613532216491f, 0.340510345777526f, 0.335046764810816f, 0.490102926886310f, -0.568989013749608f, -0.296018470377601f, 0.979838924243657f, 0.624231653632879f, 0.553904401851075f, -0.355359451941014f, 0.267623165480721f, 0.985914275634075f, -0.741887849211797f, 0.560479100333108f, -0.602590162007993f, -0.874870765077352f, -0.0306218773384892f, 0.963145768131215f, 0.544824028787036f, -0.133990816021791f, 0.0679964588712787f, -0.156401335214901f, -0.0802554171832672f, 0.856386218492912f, 0.143013580527942f, 0.403921859374840f, -0.179029058044097f, 0.770723540077919f, -0.183650969350452f, -0.340718434629824f, 0.217166124261387f, -0.171159949445977f, 0.127493767348173f, -0.649649349141405f, -0.0986978180993434f, 0.301786606637125f, 0.942172200207855f, 0.0323236270151113f, -0.579853744301016f, -0.964413060851558f, 0.917535782777861f, 0.442144649483292f, -0.684960854610878f, -0.418908715566712f, 0.617844265088789f, 0.897145578082386f, 0.235463167636481f, 0.0166312355859484f, 0.948331447443040f, -0.961085640409103f, -0.0386086809179784f, -0.949138997977665f, 0.738211385880427f, 0.613757309091864f, -0.606937832993426f, 0.825253298062192f, 0.932609757667859f, -0.169023247637751f, -0.411237965787391f, 0.550590803600950f, -0.0561729280137304f, -0.559663108323671f, -0.718592671237337f, 0.885889621415361f, -0.364207826334344f, -0.839614660327507f, 0.265502694339344f, 0.394329270534417f, -0.270184577808578f, -0.865353487778069f, -0.528848754655393f, -0.179961524561963f, 0.571721065613544f, -0.774363220756696f, 0.251123315200792f, -0.217722762975159f, 0.0901359910328954f, -0.329445470667965f, 0.366410356722994f, -0.777512662632715f, 0.654844363477267f, -0.882409911562713f, -0.613612530795153f, -0.926517759636550f, 0.111572665207194f, 0.0729846382226607f, 0.789912813274098,
0.784452109264882f, -0.949766989295825f, 0.318378232675431f, 0.732077593075111f, 0.786829143208386f, -0.134682559823644f, 0.733164743374965f, 0.978410877665941f, 0.992008491438409f, -0.319064303035495f, 0.958430683602029f, 0.514518212363212f, 0.101876224417090f, 0.642655735778237f, -0.170746516901312f, 0.252352078365623f, -0.761327278132210f, 0.724119717129199f, 0.889374997869224f, -0.785987369200692f, -0.594670344572584f, 0.805192297495935f, -0.990523259595814f, 0.483998949026664f, 0.747350619254878f, -0.824845161088780f, 0.543009506581798f, -0.208778528683094f, -0.314149951901368f, 0.943576771177672f, -0.102633559170861f, -0.947663019606703f, -0.557033071578968f, 0.419150797499848f, 0.251214274356296f, 0.565717763755325f, 0.126676667925064f, -0.0213369479214840f, 0.342212953426240f, -0.288015274572288f, 0.121313363277304f, 0.452832374494206f, 0.545420403121955f, -0.616024063400938f, -0.0320352392995826f, -0.400581850938279f, 0.0642433474653812f, -0.673966224453150f, 0.951962939602010f, -0.241906012952983f, 0.0322060960995099f, -0.449185553826233f, -0.709575766146540f, 0.0283340814242898f, 0.234237103593580f, -0.285526615094797f, -0.793192668153991f, -0.437130485497140f, -0.956132143306919f, 0.601158367473616f, 0.238689691528783f, 0.173709925321432f, 0.437983847738997f, 0.397380645202102f, 0.432093344086237f, -0.0338869881121104f, -0.966303269542493f, 0.875351570183604f, -0.0584554089652962f, 0.294207497692552f, 0.200323088145182f, 0.826642387259759f, 0.284806025494260f, -0.00660991970522007f, 0.682493772727303f, -0.151980775670668f, 0.0470705546940635f, -0.236378427235531f, -0.844780853112247f, 0.134166207564174f, -0.586842667384924f, 0.0711866699414370f, 0.311698821368897f, -0.361229767252053f, 0.750924311039976f, 0.0764323989785694f, 0.898463708247144f, 0.398232179543916f, -0.515644913011399f, -0.189067061520362f, -0.567430593060929f, -0.641924269747436f, -0.0960378699625619f, -0.792054031692334f, 0.803891878854351f, -0.233518627249889f, -0.892523453249154f, 0.707550017996875f, -0.782288435525895f, -0.156166443894764f, -0.543737876329167f, 0.565637809380957f, -0.757689989749326f, -0.612543942167974f, -0.766327195073259f, 0.587626843767440f, -0.280769385897397f, -0.457487372245825f, 0.0862799426622438f, -0.616867284053547f, 0.121778903484808f, -0.451988651573766f, -0.618146087265495f, -0.285868777534354f, 0.108999472244014f, -0.620755183347358f, -0.268563184810196f, -0.721678169615489f, -0.146060198874409f, -0.661506858070617f, 0.901707853998409f, 0.222488776533930f, 0.679599685031679f, 0.974760448601209f, 0.535485953830496f, -0.562345697123585f, 0.369219363331071f, -0.0282801684694869f, -0.0734880727832297f, 0.733216287314358f, -0.514352095765627f, -0.850813063545195f, 0.642458447327163f, 0.118661521915783f, -0.907015526838341f, 0.789277766886329f, -0.719864125961721f, 0.274329068829509f, 0.830124687647056f, 0.719352367261587f, -0.821767317737384f, -0.840153496829227f, 0.650796781936517f, 0.381065387870166f, 0.341870564586224f, -0.00174423702285131f, -0.216348832349188f, 0.678010477635713f, -0.748695103596683f, -0.819659325555269f, 0.620922373008647f, 0.471659250504894f, 0.417848292160984f, -0.990577315445198f, -0.509842007818877f, 0.705761459091187f, 0.723072116074702f, -0.606476484252158f, -0.871593699865195f, -0.662059658667501f, -0.207267692377271f, -0.274706370444270f, 0.317047325063391f, 0.329780707114887f, -0.966325651181920f, -0.666131009799803f, 0.118609206658210f, 0.232960448350140f, -0.139134616436389f, -0.936412642687343f, -0.554985387484625f, -0.609914445911143f, -0.371023087262482f, -0.461044793696911f, 0.0277553171809701f, -0.241589304772568f, -0.990769995548029f, 0.114245771600061f, -0.924483328431436f, 0.237901450206836f, -0.615461633242452f, 0.201497106528945f, -0.599898812620374f, 0.982389910778332f, 0.125701388874024f, -0.892749115498369f, 0.513592673006880f, 0.229316745749793f, 0.422997355912517f, 0.150920221978738f, 0.447743452078441f, 0.366767059168664f, -0.605741985891581f, 0.274905013892524f, -0.861378867171578f, -0.731508622159258f, 0.171187057183023f, 0.250833501952177f, -0.609814068526718f, -0.639397597618127f, -0.712497631420166f, -0.539831932321101f, -0.962361328901384f, 0.799060001548069f, 0.618582550608426f, -0.603865594092701f, -0.750840334759883f, -0.432368099184739f, -0.581021252111797f, 0.134711953024238f, 0.331863889421602f, -0.172907726656169f, -0.435358718118896f, -0.689326993725649f, 0.415840315809038f, -0.333576262820904f, 0.279343777676723f, -0.0393098862927832f, 0.00852090010085194f, -0.853705195692250f, 0.526006696633762f, -0.478653377052437f, -0.584840261391485f, 0.679261003071696f, 0.0367484618219474f, -0.616340335633997f, -0.912843423145420f, -0.221248732289686f, -0.477921890680232f, -0.127369625511666f, 0.865190146410824f, 0.817916456258544f, 0.445973590438029f, -0.621435280140991f, -0.584264056171687f, 0.718712277931876f, -0.337835985469843f, 0.00569064504159345f, -0.546546294846311f, 0.101653624648361f, -0.795498735829364f, -0.249043531299132f, -0.112839395737321f, -0.350305425122331f, -0.910866368205041f, 0.345503177966105f, -0.549306515692918f, 0.711774722622726f, 0.283368922297518f, 0.0401988801224620f, 0.269228967910704f, 0.408165826013612f, -0.306571373865680f, 0.937429053394878f, 0.992154362395068f, 0.679431847774404f, 0.660561953302554f, 0.903254489326130f, -0.939312119455540f, -0.211194531611303f, 0.401554296146757f, -0.0373187111351370f, -0.209143098987164f, -0.483955198209448f, -0.860858509666882f, 0.847006442151417f, 0.287950263267018f, 0.408253171937961f, -0.720812569529331f, 0.623305171273525f, 0.543495760078790f, -0.364025150023839f, -0.893335585394842f, -0.757545415624741f, -0.525417020183382f, -0.985814550271000f, -0.571551008375522f, 0.930716377819686f, -0.272863385293023f, 0.982334910750391f, 0.297868844366342f, 0.922428080219044f, 0.917194773824871f, 0.846964493212884f, 0.0641834146212110f, 0.279768184306094f, 0.591959126556958f, 0.355630573995206f, 0.839818707895839f, 0.219674727597944f, -0.174518904670883f, 0.708669864813752f, -0.224562931791369f, 0.677232454840133f, -0.904826802486527f, -0.627559033402838f, 0.263680517444611f, 0.121902314059156f, -0.704881790282995f, 0.242825089229032f, -0.309373554231866f, -0.479824461459095f, -0.720536286348018f, -0.460418173937526f, 0.774174710513849f, 0.452001499049874f, -0.316992092650694f, 0.153064869645527f, -0.209558599627989f, 0.685508351648252f, -0.508615450383790f, 0.598109567185095f, 0.391177475074196f, 0.964444988755186f, 0.336277292954506f, -0.0367817159101076f, -0.668752640081528f, 0.169621732437504f, -0.440925495294537f, 0.352359477392856f, 0.300517139597811f, 0.464188724292127f, 0.342732840629593f, -0.772028689116952f, 0.523987886508557f, 0.920723209445309f, 0.325634245623597f, 0.999728757965472f, -0.108202444213629f, -0.703463061246440f, -0.764321104361266f, 0.153478091277821f, 0.400776808520781f, 0.0362608595686520f, 0.602660289034871f, -0.00396673312072204f, 0.296881393918662f, 0.563978362789779f, 0.849699999703012f, 0.699481370949461f, -0.517318771826836f, 0.488696839410786f, -0.863267084031406f, 0.0353144039838211f, 0.346060763700543f, 0.964270355001567f, 0.354899825242107f, 0.806313705199543f, 0.675286452110240f, 0.0873918818789949f, -0.595319879813140f, 0.768247284622921f, 0.424433552458434f, -0.308023836359512f, 0.802163480612923f, -0.348151008192881f, -0.889061130591849f, -0.593277042719599f, -0.669426232128590f, 0.758542808803890f, 0.515943031751579f, -0.359688459650311f, 0.568175936707751f, 0.741304023515212f, 0.260283681057109f, 0.957668849401749f, -0.665096753421305f, 0.769229664798946f, -0.0871019488695104f, -0.362662093346394f, -0.411439775739547f, 0.700347493632751f, 0.593221225653487f, 0.712841887456470f, 0.413663813878195f, -0.868002281057698f, -0.704419248587642f, 0.497097875881516f, -0.00234623694758684f, 0.690202361192435f, -0.850266199595343f, 0.315244026446767f, 0.709124123964306f, 0.438047076925768f, 0.798239617424585f, 0.330853072912708f, 0.581059745965701f, 0.449755612947191f, -0.462738032798907f, 0.607731925865227f, 0.0898348455002427f, -0.762827831849901f, 0.895598896497952f, -0.752254194382105f, -0.0916186048978613f, -0.906243795607547f, 0.229263971313788f, 0.401148319671400f, -0.699999035942240f, 0.949897297168705f, 0.442965954562621f, -0.836602533575693f, 0.960460356865877f, -0.588638958628591f, -0.826876652501322f, 0.358883606332526f, 0.963216314331105f, -0.932992215875777f, -0.790078242370583f, 0.402080896170037f, -0.0768348888017805f, 0.728030138891631f, -0.259252300581205f, -0.239039520569651f, -0.0343187629251645f, -0.500656851699075f, 0.213230170834557f, -0.806162554023268f, -0.346741158269134f, 0.593197383681288f, -0.874207905790597f, 0.396896283395687f, -0.899758892162590f, 0.645625478431829f, 0.724064646901595f, 0.505831437483414f, -0.592809028527107f, 0.191058921738261f, 0.329699861086760f, 0.637747614705911f, 0.228492417185859f, 0.350565075483143f, 0.495645634191973f, 0.0378873636406241f, -0.558682871042752f, -0.0463515226573312f, -0.699882077624744f, -0.727701564368345f, -0.185876979038391f, 0.969357227041006f, -0.0396554302826258f, 0.994123321254905f, -0.103700411263859f, -0.122414150286554f, -0.952967253268750f, -0.310113557790019f, 0.389885130024049f, 0.698109781822753f, -0.566884614177461f, -0.807731715569885f, 0.295459359747620f, 0.353911434620388f, -0.0365360121873806f, -0.433710246410727f, -0.112374658849445f, -0.710362620548396f, -0.750188568899340f, -0.421921409270312f, -0.0946825033112555f, -0.207114343395422f, -0.712346704375406f, -0.762905208265238f, 0.668705185793373f, 0.874811836887758f, 0.734155331047614f, 0.0717699959166771f, -0.649642655211151f, 0.710177200600726f, -0.790892796708330f, -0.609051316139055f, 0.158155751049403f, 0.273837117392194f, 0.101461674737037f, -0.341978434311156f, 0.358741707078855f, 0.415990974906378f, 0.760270133083538f, 0.164383469371383f, 0.559847879549422f, 0.209104118141764f, -0.265721227148806f, 0.165407943936551f, 0.611035396421350f, -0.626230501208063f, -0.116714293310250f, -0.696697517286888f, 0.0545261414014888f, 0.440139257477096f, 0.202311640602444f, -0.369311356303593f, 0.901884565342531f, 0.256026357399272f, -0.673699547202088f, 0.108550667621349f, -0.961092940829968f, -0.254802826645023f, 0.553897912330318f, 0.110751075533042f, -0.587445414043347f, 0.786722059164009,
0.182042556749386f, 0.398835909383655f, 0.431324012457533f, 0.587021142157922f, -0.644072183989352f, 0.187430090296218f, 0.516741122998546f, -0.275250933267487f, -0.933673413249875f, -0.767709448823879f, 0.00345814033609182f, -0.585884382069128f, 0.463549040471035f, 0.666537178805293f, -0.393605927315148f, -0.260156573858491f, -0.298799291489529f, -0.246398415746503f, 0.970774181159203f, -0.485708631308223f, -0.456571313115555f, -0.264210030877189f, -0.442583504871362f, 0.0585567697312368f, 0.955769232723545f, 0.651822742221258f, 0.667605490119116f, -0.178564750516287f, 0.744464599638885f, -0.0962758978504710f, -0.538627454923738f, -0.844634654117462f, 0.109151162611125f, -0.862255427201396f, -0.478955305843323f, 0.645965860697344f, 0.345569271369828f, 0.930605011671297f, -0.195523686135506f, 0.927940875293964f, 0.0529927450986318f, -0.537243314646225f, 0.0815400161801159f, -0.528889663721737f, -0.0803965087898244f, 0.722188412643543f, -0.115173100460772f, 0.391581967064874f, 0.609102624309301f, -0.726409099849031f, -0.924071529212721f, -0.424370859730340f, -0.932399086010354f, -0.679903916227243f, 0.398593637781810f, -0.395942610474455f, 0.911017267923838f, 0.830660098751580f, 0.485689056693942f, -0.634874052918746f, 0.558342102044082f, 0.153345477027740f, -0.418797532948752f, -0.962412446404476f, 0.499334884055701f, 0.772755578982235f, 0.486905718186221f, -0.680415982465391f, -0.983589696155766f, 0.0802707365440833f, -0.108186099494932f, 0.272227706025405f, 0.651170828846750f, -0.804713753056757f, 0.778076504684911f, 0.869094633196957f, -0.213764089899489f, -0.289485853647921f, -0.248376169846176f, -0.273907386272412f, -0.272735585352615f, -0.851779302143109f, 0.777935500545070f, 0.610526499062369f, -0.825926925832998f, -0.00122853287679647f, -0.250920102747366f, -0.0333860483260329f, 0.562878228390427f, 0.685359102189134f, 0.909722844787783f, -0.686791591637469f, 0.700018932525581f, -0.975597558640926f, 0.111273045778084f, 0.0313167229308478f, -0.185767397251192f, -0.587922465203314f, -0.569364866257444f, -0.433710470415537f, 0.744709870476354f, 0.812284989338678f, -0.835936210940005f, 0.409175739115410f, 0.364745324015946f, -0.526496413512530f, -0.0949041293633228f, -0.710914623019602f, -0.199035360261516f, 0.249903358254580f, 0.799197892184193f, -0.974131439735146f, -0.962913228246770f, -0.0584067290846062f, 0.0678080882131218f, 0.619989552612058f, 0.600692636138022f, -0.325324145536173f, 0.00758797937831957f, -0.133193608214778f, -0.312408219890363f, -0.0752971209304969f, 0.764751638735404f, 0.207290375565515f, -0.965680055629168f, 0.526346325957267f, 0.365879948128040f, -0.899713698342006f, 0.300806506284083f, 0.282047017067903f, -0.464418831301796f, -0.793644005532544f, -0.338781149582286f, 0.627059412508279f, -0.624056896643864f, -0.503708045945915f, 0.339203903916317f, -0.920899287490514f, -0.753331218450680f, -0.561190137775443f, 0.216431106588929f, -0.191601189620092f, 0.613179188721972f, 0.121381145781083f, -0.477139741951367f, 0.606347924649253f, 0.972409497819530f, 0.00419185232258634f, 0.786976564006247f, 0.716984027373809f, -0.577296880358192f, 0.336508364109364f, -0.837637061538727f, -0.706860533591818f, 0.655351330285695f, -0.799458036429467f, 0.804951754011505f, 0.405471126911303f, 0.485125485165526f, 0.0354103156047567f, 0.774748847269929f, 0.396581375869036f, 0.420464745452802f, -0.544531741676535f, -0.779088258182329f, -0.129534599431145f, 0.228882319223921f, 0.669504936432777f, -0.158954596495398f, -0.171927546721685f, 0.675107968066445f, -0.201470217862098f, -0.185894687796509f, 0.244174688826684f, 0.310288210346694f, -0.0674603586289346f, 0.138103839181198f, 0.269292861340219f, 0.121469813317732f, 0.168629748875041f, 0.581112629873687f, 0.499508530746584f, -0.741772433024897f, -0.311060071316150f, -0.263697352439521f, 0.180487383518774f, -0.800786488742242f, -0.949903966987338f, 0.134975524166410f, 0.213364683193138f, -0.684441197699222f, -0.254697287796379f, -0.260521050814253f, -0.757605554637199f, -0.134324873215927f, -0.699675596579060f, 0.136000646890289f, 0.355272520354523f, -0.712620797948690f, -0.729995036352282f, 0.323100037780915f, -0.718364487938777f, 0.807709622188084f, 0.289336059472722f, -0.558738026311145f, -0.591811756545896f, -0.894952978489225f, -0.354996929975694f, -0.142213103464027f, -0.651950180085633f, 0.182694586161578f, -0.193492058009904f, -0.540079537334588f, -0.300927433533712f, 0.119585035086049f, 0.895807833710939f, -0.413843745301811f, -0.209041322713332f, 0.808094803654324f, 0.0792829008489782f, 0.314806980452270f, 0.502591873175427f, -0.0474189387090473f, -0.407131047818007f, 0.797117088440354f, 0.902395237588928f, -0.783327055804990f, -0.591709085168646f, 0.628191184754911f, -0.454649879692076f, -0.588819444306752f, 0.250889716959370f, -0.582306627010669f, -0.145495766591841f, -0.634137346823528f, 0.667934845545285f, 0.873756470938530f, 0.425969845715827f, -0.779543910541245f, -0.265210219994391f, 0.781530681845886f, 0.304461599274577f, 0.211087853085430f, 0.281022407596766f, 0.0701313665097776f, 0.342337400087349f, -0.0618264046031387f, 0.177147380816613f, 0.751693209867024f, -0.279073264607508f, 0.740459307255654f, -0.352163564204507f, -0.726238685136937f, -0.565819729501492f, -0.779416133306559f, -0.783925450697670f, 0.542612245021260f, -0.810510148278478f, -0.693707081804938f, 0.918862988543900f, -0.368717045271828f, 0.0654919784331340f, -0.438514219239944f, -0.923935138084824f, 0.913316783811291f, -0.961646539574340f, 0.734888382653474f, -0.464102713631586f, -0.896154678819649f, 0.349856565392685f, 0.646610836502422f, -0.104378701809970f, 0.347319102015858f, -0.263947819351090f, 0.343722186197186f, 0.825747554146473f, 0.0661865525544676f, 0.918864908112419f, -0.999160312662909f, -0.904953244747070f, 0.246613032125664f, 0.123426960800262f, -0.294364203503845f, -0.150056966431615f, 0.904179479721301f, 0.517721252782648f, 0.661473373608678f, -0.784276966825964f, -0.984631287069650f, 0.239695484607744f, -0.499150590123099f, 0.00153518224500027f, -0.817955534401114f, 0.221240310713583f, 0.114442325207070f, -0.717650856748245f, -0.722902799253535f, -0.962998380704103f, 0.214092155997873f, -0.226370691123970f, 0.536806140446569f, 0.111745807092858f, 0.657580594136395f, -0.239950592200226f, 0.0981270621736083f, -0.173398466414235f, 0.414811672195735f, 0.147604904291238f, -0.649219724907210f, 0.907797399703411f, -0.496097071857490f, -0.0958082520749422f, -0.700618145301611f, 0.238049932994406f, 0.946616020659334f, 0.143538494511824f, 0.0641076718667677f, 0.377873848622552f, -0.413854028741624f, -0.838831021130186f, 0.0208044297354626f, 0.476712667979210f, 0.850908020233298f, 0.0692454021020814f, 0.841788714865238f, -0.251777041865926f, 0.512215668857165f, 0.827988589806208f, -0.399200428030715f, 0.999219950547600f, -0.00465542086542259f, 0.279790771964531f, -0.683125623289052f, 0.988128867315143f, 0.00697090775456410f, -0.409501680375786f, -0.190812202162744f, -0.154565639467601f, 0.305734586628079f, -0.922825484202279f, -0.0622811516391562f, -0.502492855870975f, 0.358550513844403f, 0.678271216185703f, -0.940222215291861f, 0.568581934651071f, 0.953835466578938f, -0.476569789986603f, 0.0141049472573418f, 0.722262461730185f, -0.128913572076972f, -0.583948340870808f, -0.254358587904773f, -0.390569309413304f, -0.0495119137883056f, -0.486356443935695f, -0.112768011009410f, -0.608763417511343f, -0.145843822867367f, 0.767829603838659f, 0.791239479733126f, 0.0208376062066382f, -0.524291005204912f, -0.200159553848628f, -0.835647719235620f, -0.222774380961612f, 0.0617292533934060f, 0.233433696650208f, -0.543969878951657f, -0.628168009147650f, -0.725602523060817f, -0.273904472034828f, 0.320527317085229f, -0.556961185821848f, 0.261533413201255f, 0.696617398495973f, 0.200506775746016f, -0.395581923906907f, 0.0196423782530712f, -0.0552577396777472f, -0.594078139517501f, -0.816132673139052f, -0.898431571909616f, 0.879105843430143f, 0.949666380003024f, -0.245578843355682f, 0.528960018663897f, 0.201586039072583f, -0.651684706542954f, 0.596063456431086f, -0.659712784781056f, -0.213702651629353f, -0.629790163054887f, -0.0572029778771013f, 0.645291034768991f, -0.453266855343461f, -0.581253959024410f, 0.632682730071992f, 0.991406037765467f, 0.701390336150136f, -0.879037255220971f, -0.304180069776406f, 0.0969095808767941f, -0.465682778651712f, 0.815108046274786f, -0.532850846043973f, 0.950550134670033f, 0.296008118726089f, -0.198390447541329f, 0.159049143352201f, 0.105169964332594f, -0.482506131358523f, 0.493753482281684f, 0.292058685647414f, 0.283730532860951f, 0.00323819209092657f, 0.765838273699203f, -0.0753176377562099f, -0.679824808630431f, 0.548180003463159f, -0.996048798712591f, 0.782768288046545f, 0.396509190560532f, 0.848686742379558f, 0.750049741585178f, 0.730186188655936f, -0.0220701180542726f, -0.487618042364281f, -0.403562199756249f, -0.0693129490117646f, 0.947019452953246f, -0.731947366410442f, 0.198175872470120f, -0.329413252854837f, -0.641319161749268f, 0.186271826190842f, -0.0739989831663739f, -0.334046268448298f, -0.191676071751509f, -0.632573515889708f, -0.999115061914042f, -0.677989795015932f, 0.289828136337821f, 0.696081747094487f, 0.965765319961706f, -0.203649463803737f, -0.195384468978610f, 0.746979659338745f, 0.701651229142588f, -0.498361303522421f, 0.289120104962302f, 0.270493509228559f, -0.132329670835432f, 0.385545665843914f, -0.265371843427444f, 0.306155119003788f, -0.859790373316264f, -0.0198057838521546f, 0.233572324299025f, 0.426354273793125f, -0.510901479579029f, -0.600001464460011f, -0.972316846268671f, 0.531678082677910f, -0.0543913028234813f, -0.860333915321655f, 0.0717414549918496f, -0.992726205437930f, 0.587189647572868f, -0.710120198811545f, -0.712433353767817f, 0.000905613890617163f, 0.323638959833707f, -0.148002344942812f, 0.422217478090035f, -0.512122539396176f, -0.652032513920892f, -0.0749826795945674f, 0.689725543651565f, 0.00708142459169103f, 0.612282380092436f, -0.182868915402510f, -0.478704046524703f, 0.630078231167476f, -0.201694106935605f, 0.471080354222778f, 0.705764111397718f, 0.504296612895499f, -0.245442802115836f, -0.0255433216413170f, 0.244606720514349f, -0.620852691611321f, 0.130333792055452f, -0.0404066268217753f, 0.533698497858480f, 0.569324696850915f, -0.0208385747745345f, -0.344454279574176f, 0.697793551353488f, 0.223740789443046,
0.0819835387259940f, -0.378565059057637f, 0.265230570199009f, -0.654654047270763f, -0.959845479426107f, -0.524706200047066f, -0.320773238900823f, 0.133125806793072f, 0.204919719422386f, 0.781296208272529f, 0.357447172843949f, -0.295741363322007f, -0.531151992759176f, -0.928760461863525f, -0.492737999698919f, 0.185299312597934f, 0.0308933157463984f, 0.0940868629278078f, -0.223134180713975f, -0.728994909644464f, 0.748645378716214f, 0.602424843862873f, 0.939628558971957f, -0.601577015562304f, -0.178714119359324f, 0.812720866753088f, -0.864296642561293f, 0.448439532249340f, 0.423570043689909f, 0.883922405988390f, -0.121889129001415f, -0.0435604321758833f, -0.823641147317994f, -0.775345608718704f, -0.621149628042832f, 0.532395431283659f, -0.803045105215129f, 0.897460124955135f, 0.432615281777583f, -0.0245386640589920f, -0.822321626075771f, -0.992080038736755f, -0.829220327319793f, 0.125841786813822f, 0.277412627470833f, 0.623989234604340f, -0.207977347981346f, -0.666564975567417f, 0.419758053880881f, -0.146809205344117f, 0.702495819380827f, 0.802212477505035f, 0.161529115911938f, 0.987832568197053f, -0.885776673164970f, -0.608518024629661f, -0.126430573784758f, 0.168260422890915f, -0.517060428948049f, -0.766296586196077f, -0.827624510690858f, -0.149091785188351f, -0.643782325842734f, 0.768634567718711f, 0.815278279059715f, -0.648037361329720f, -0.480742843535214f, 0.983809287193308f, -0.701958358623791f, 0.0797427982273327f, 0.903943825454071f, 0.980486658260621f, 0.207436790541324f, -0.536781321571165f, -0.885473392956838f, -0.626744905152131f, 0.279917970592554f, -0.489532633799085f, 0.402084958261836f, -0.566738134593205f, -0.0990017532286025f, 0.458891753618823f, 0.893734110503312f, 0.541822126435773f, -0.856210577956263f, -0.0354679151809227f, -0.868531503535520f, 0.150589222911699f, 0.611651396802303f, 0.524911319413221f, 0.555472734209632f, -0.723626819813614f, -0.162106613127807f, 0.602405197560299f, 0.903198408993777f, 0.329150411562290f, -0.806468536757339f, -0.671787125844359f, -0.707262852044556f, 0.474934689940169f, -0.379636706541612f, 0.404933387269815f, 0.332303761521238f, 0.394233678536033f, -0.0366067593524413f, 0.904405677123363f, -0.356597686978725f, -0.623034135107067f, 0.572040316921149f, 0.799160684670195f, -0.507817199545094f, -0.533380730448667f, -0.884507921224020f, -0.00424735629746076f, 0.647537115339283f, 0.456309536956504f, -0.766102127867730f, -0.625121831714406f, 0.341487890703535f, -0.360549668352997f, -0.229900108098778f, -0.666760418812903f, 0.813282715359911f, 0.115522674116703f, -0.221360306077384f, 0.0297293679340875f, 0.00682810040637105f, 0.0115235719886584f, 0.887989949086462f, 0.792212187398941f, 0.415172771519484f, -0.600202208047434f, 0.949356119962045f, -0.526700730890731f, 0.946712583567682f, -0.392771116330410f, 0.0144823046999243f, -0.649518061223406f, 0.724776068810104f, 0.00920735790862981f, -0.461670796134611f, 0.217703889787716f, 0.846151165623083f, -0.202702970245097f, 0.314177560430781f, -0.761102867343919f, 0.0528399640076420f, -0.986438508940994f, -0.595548022863232f, -0.430067198426456f, 0.150038004203120f, 0.738795383589380f, -0.605707072657181f, -0.597976219376529f, 0.375792542283657f, -0.321042914446039f, 0.902243988712398f, 0.463286578609220f, -0.739643422607773f, 0.210980536147575f, -0.539210294582617f, 0.405318056313257f, -0.876865698043818f, -0.0883135270940518f, 0.0300580586347285f, -0.657955040210154f, 0.159261648552234f, 0.288659459148804f, 0.274488527537659f, 0.646615145281349f, 0.431532024055095f, -0.982045186676854f, -0.777285361097106f, -0.124875006659614f, 0.503004910525253f, 0.824987340852061f, -0.859357943951028f, -0.894837450578304f, 0.744772864540654f, 0.415263521487854f, 0.337833126081168f, -0.612498979721313f, 0.391475686177086f, 0.573982630935632f, -0.391044576636065f, 0.669493459114130f, -0.763807443372196f, -0.898924075896803f, -0.969897663976237f, -0.266947396046322f, 0.198506503481333f, -0.355803387868922f, 0.787375525807664f, 0.655019979695179f, -0.266247398074148f, -0.665577607941915f, 0.0617617780742654f, -0.303207459096743f, 0.807119242186051f, -0.864431193732911f, 0.711808914065391f, 0.267969697417500f, -0.643939259651104f, -0.723685356192067f, 0.887757759160107f, -0.318420101532538f, -0.984559057628900f, -0.123118506428834f, 0.264872379685241f, 0.258477870902406f, -0.727462993670953f, -0.223845786938221f, 0.683462211502638f, -0.989811504909606f, 0.292644294487220f, -0.926087081411227f, -0.801377664261936f, -0.337757621052903f, 0.356167431525877f, 0.974619379699180f, 0.456124311183874f, 0.664192098344107f, -0.910993234571633f, -0.484097468631090f, -0.128534589958108f, -0.770879324529314f, 0.320053414246682f, 0.249818479771296f, 0.0153345543766990f, 0.696352481669035f, -0.397719804512483f, 0.670333638147646f, -0.678192291329959f, 0.190143924397131f, 0.342035884244954f, -0.350791038317704f, 0.0218450632953668f, 0.437133719806156f, 0.659960895652910f, 0.903378806323159f, 0.855089775229062f, 0.946706092624795f, 0.335540975081955f, 0.838337968455111f, -0.102693592034237f, -0.702102376052106f, 0.409624309223486f, -0.654483499569910f, 0.886576641430416f, -0.200573725141884f, -0.461284656727627f, 0.262661770963709f, 0.867505406245483f, -0.0688648080253220f, -0.707487995489326f, -0.248871627068848f, -0.197869870234198f, -0.243745607075197f, -0.244106806741608f, 0.489848112299788f, -0.0909708869175492f, -0.377678949786167f, 0.0385783576998284f, -0.470361956031595f, 0.802403491439449f, -0.408319987166305f, 0.345170991986463f, -0.433455880962420f, 0.00950587287655291f, -0.441888155900165f, -0.817874450719479f, 0.818308133775667f, 0.931915253798354f, 0.818494801634479f, 0.787941704188320f, 0.882012210451449f, 0.0749985961399193f, 0.259772455233352f, -0.655786948552735f, 0.0824323575519799f, 0.980211564632039f, -0.798619050684746f, 0.496019643929772f, -0.727312997781404f, -0.999839600489443f, 0.625938920414345f, -0.561059012154101f, 0.215650518505246f, 0.121571798563274f, 0.161863493108371f, -0.340322748036792f, 0.521792371708641f, 0.655248389359818f, -0.180967013066484f, 0.936797969156762f, 0.523749660366580f, 0.764744126333943f, 0.384701560810431f, -0.744092118301334f, 0.719721922905938f, 0.365931545158250f, -0.720202871171563f, 0.121662048491076f, -0.355501954289222f, 0.379420491208481f, -0.593818415223405f, -0.433690576121147f, -0.766763563509045f, -0.377445104709670f, -0.955638620720410f, 0.309622585052195f, -0.613767678153186f, 0.0177719922394908f, 0.362917537485277f, -0.297613292472489f, 0.0275561832152067f, -0.962345352767599f, 0.452866577068408f, -0.307485159523065f, 0.931778412136845f, 0.639592220588070f, 0.00782144244951311f, -0.0466407334447796f, -0.134392603781566f, 0.895314655361308f, -0.537785271016286f, 0.663926391064792f, -0.886126633268266f, -0.0975129470189278f, -0.429791706025144f, -0.440337831994928f, -0.00156267573188829f, 0.933113069253665f, -0.560704402651437f, -0.201658150324907f, 0.465819560354530f, 0.0701448781871696f, 0.859597672251104f, -0.525851890358272f, -0.992674038068357f, -0.0846761339576128f, -0.401686794568758f, -0.886069686075370f, -0.480254412625133f, 0.432758053902000f, 0.168651590377605f, -0.453397134906684f, 0.340250287733381f, -0.972972507965963f, 0.0560333167197302f, -0.180812774382952f, -0.689848943619717f, -0.427945332505659f, 0.771841237806370f, 0.329334772795521f, 0.573083591606505f, 0.280711890938316f, -0.265074342340277f, -0.166538165045598f, -0.0612128221482104f, 0.458392746490372f, 0.199475931235870f, 0.681819191997175f, 0.356837960840067f, 0.756968760265553f, 0.763288512531608f, -0.890082643508294f, -0.322752448111365f, 0.799445915816577f, -0.956403501496524f, 0.723055987751969f, 0.943900989848643f, -0.217092255585658f, -0.426893469064855f, 0.834596828462842f, 0.723793256883097f, 0.781491391875921f, 0.928040296363564f, -0.468095417622644f, 0.758584798435784f, 0.589732897992602f, 0.929077658343636f, 0.829643041135239f, 0.0947252609994522f, 0.554884923338572f, -0.513740258764285f, -0.221798194292427f, 0.499855133319165f, -0.0237986912033636f, 0.559618648100625f, -0.509812142428963f, -0.444047241791607f, 0.678274420898738f, -0.983706185790147f, -0.295400077545522f, -0.688769625375228f, 0.729259863393412f, 0.889478872450658f, 0.928277502215167f, -0.429388564745762f, -0.790568684428380f, 0.930220908227667f, -0.796970618648576f, -0.980240003047008f, 0.0372716153521411f, -0.290828043433527f, -0.303854123029680f, 0.160774056645456f, -0.712081432630280f, 0.390787025293754f, 0.981202442873064f, -0.679439021090013f, 0.183053153027806f, 0.665002789261745f, -0.708708782620398f, 0.254574948166343f, 0.0575397183305137f, -0.723713533137924f, -0.732816726186887f, 0.501983534740534f, 0.879998734527489f, 0.825871571001792f, 0.920880943816000f, 0.311565022703289f, -0.788226302840017f, -0.223197800016568f, 0.850662847422425f, -0.365181128095578f, 0.958907951854379f, -0.0421327708909884f, -0.153860389403659f, -0.219620959578892f, -0.469076971423126f, -0.523348925540362f, -0.287762354299832f, -0.913332930679763f, 0.403264134926789f, 0.725849051303960f, 0.743650157693605f, -0.382580349065687f, -0.297138545454038f, -0.480092092629432f, 0.0412697614821378f, -0.396203822475830f, -0.0721078217568973f, 0.979038611510460f, -0.766187876085830f, -0.344262922592081f, 0.943351952071948f, -0.219460259008486f, 0.115393587800227f, -0.342675526066015f, 0.926460460401492f, -0.486133445041596f, 0.0722019534490863f, -0.571069005453629f, -0.0854568609959852f, 0.370182934471805f, -0.554007448618166f, 0.899885956615126f, -0.188476209845590f, -0.548132066932086f, 0.0559544259937872f, -0.161750926638529f, -0.532342080900202f, 0.585205009957713f, -0.374876171959848f, -0.169253952741901f, -0.473665572804341f, 0.942267543457416f, -0.515867520277168f, -0.706362509002908f, -0.320672724679343f, -0.398410016134417f, 0.733774712982205f, 0.449599271169282f, 0.109119420842892f, -0.285090495549516f, 0.0854116107702212f, 0.0603189331827261f, -0.943780826189008f, 0.0679186452322331f, 0.0975973769951632f, -0.870728474197789f, -0.153122881744074f, -0.519939625069588f, -0.633620207951748f, -0.767551214057718f, -0.905802311420298f, -0.841350087901049f, -0.271805404203346f, 0.282221543099561f, -0.0874121080198842f, 0.0634591013505281f, 0.318965595714934f, -0.865047622711268f, -0.401960840475322f, 0.637557181177199f, -0.664578054110050f, -0.871253510227744,
-0.893972634695541f, 0.442396058421524f, -0.427901040556135f, -0.740186385510743f, 0.788155411447006f, -0.541278113339818f, 0.509586521956676f, -0.461159620800394f, 0.664671981848839f, 0.880365181842209f, -0.0831685214800200f, 0.952827020902887f, 0.183226454466898f, -0.176729350626920f, 0.851946105206441f, -0.361976142339276f, 0.357209010683668f, 0.982462882042961f, -0.690757734204635f, 0.178681657923363f, -0.0804395784672956f, 0.971787623805611f, 0.875217157810758f, 0.160844021450331f, -0.359951755747351f, 0.0178495935461525f, 0.0203610854761294f, 0.413933338290502f, -0.676038601090005f, -0.111093077131977f, -0.381792206260952f, -0.459903351782575f, 0.308522841938619f, 0.324961267942541f, 0.365201262605939f, 0.732543185546895f, -0.559558093250200f, 0.848266528378337f, -0.185546299813159f, 0.997052205707190f, -0.932554828383249f, -0.106322273904826f, -0.0690562674587807f, 0.919489002936141f, 0.137210930163322f, -0.664517238270193f, -0.985856844408119f, -0.0719443995256963f, -0.602400574547167f, -0.398979518518077f, -0.581117055144305f, -0.0626081333075188f, -0.0372763806643306f, -0.688808592854889f, 0.703980953746103f, -0.480647539644480f, 0.615510592326288f, -0.940226159289884f, -0.953483236094818f, -0.300312284206625f, -0.819419230573751f, 0.657560634657022f, -0.0500336389233971f, 0.628589817614501f, 0.717012803783103f, -0.0315450822394920f, -0.445526173532186f, 0.521475917548504f, -0.479539088650145f, 0.695075897089419f, -0.0365115706205694f, 0.0256264409967832f, -0.0121306374106025f, -0.817618774100623f, 0.375407640753000f, 0.944299492219378f, -0.717119961760812f, -0.120740746804286f, 0.995225399986245f, -0.460846026818625f, 0.904552069467540f, 0.807270804870602f, -0.842962924665094f, -0.923108139392625f, -0.130295037856512f, 0.760624035683226f, 0.986419847047289f, -0.959218334866074f, -0.203345611185410f, -0.474420035241129f, -0.872329912560413f, 0.485994152094788f, -0.515456811755484f, -0.948541161235413f, 0.509659433909651f, 0.783030335970347f, -4.41004028146619e-05f, -0.664795573083349f, 0.917509788523214f, -0.824045573084530f, -0.461857767121051f, -0.667434409929092f, -0.00822974230444418f, 0.825606347148302f, -0.396378080991589f, 0.0161379983198293f, -0.940751675506308f, -0.520997013834332f, -0.239727035024153f, -0.354546027474561f, 0.430652211989940f, -0.557416557692462f, -0.357117274957257f, -0.891975448321656f, -0.0775302131779423f, 0.716775563686830f, -0.903453980341467f, 0.946455001410598f, -0.615060907661003f, 0.964288374469340f, 0.0506144897273089f, 0.720601612869967f, -0.991323837622476f, 0.647403093538608f, -0.400304988135589f, -0.883732066109751f, -0.792060477777513f, 0.710867542231890f, -0.840766000234525f, 0.460362174479788f, -0.834771343071341f, -0.329399142231491f, -0.139853203297018f, -0.760035442359396f, -0.546795911275364f, -0.598172518777125f, 0.244198671304740f, 0.0816980976432087f, -0.978470883754859f, -0.425173722072458f, -0.469868865988971f, 0.847396146045236f, 0.0513388454446360f, -0.545662072513986f, -0.130534232821355f, -0.654100097045099f, 0.0409163969999120f, 0.573001152600502f, 0.706046270983569f, 0.587208280138624f, 0.237670099964068f, 0.848355476872244f, -0.318971649676775f, -0.659343733364940f, 0.321817022392701f, -0.595779268050966f, -0.114109784140171f, 0.998897482902424f, -0.615792624357560f, -0.384232465470235f, 0.156963634764123f, 0.499645454164798f, -0.627603624482829f, 0.169440948996654f, 0.109888994819522f, -0.492231461622548f, -0.463014567947703f, 0.825436145613203f, -0.0271223123229367f, 0.497887971992266f, 0.811868354230459f, -0.192668816770168f, 0.287930938097264f, 0.0283112173817568f, 0.791359470942568f, 0.365100854153897f, -0.566922537281877f, 0.915510517906894f, 0.674211624006981f, 0.505848146007678f, 0.509348889158374f, -0.0477364348461706f, 0.409703628204478f, -0.820970358007873f, -0.565377675052345f, 0.810052924776160f, -0.448904038826591f, -0.830251135876445f, -0.660589978662428f, -0.890196028167542f, 0.130526506200048f, 0.924600157422957f, 0.587215078998604f, 0.727552064386916f, -0.224172021948978f, -0.182984019951690f, 0.308546229024235f, 0.971188035736775f, 0.0229902398155457f, 0.0608728749867729f, -0.0712317776940203f, 0.549832674352445f, -0.600015690750697f, -0.0495103483291919f, -0.564669458296125f, 0.726873201108802f, -0.197851942682556f, -0.983422510445155f, -0.905314463127421f, 0.453289030588920f, 0.792504915504518f, -0.840826310621539f, 0.0979339624518987f, -0.506416975007688f, -0.143310751135128f, -0.451251909709310f, -0.356156486602212f, -0.430777119656356f, -0.593002001098269f, -0.212505135257792f, -0.378005313269430f, 0.516460778234704f, -0.574171750919822f, -0.702870049350445f, 0.190454765104412f, 0.694962035659523f, 0.177498499962424f, -0.00126954773922439f, -0.766110586126502f, -0.769862303237397f, -0.208905136673906f, 0.0728026097773338f, -0.467480087700933f, -0.368839893652514f, -0.608806955889496f, -0.531329879815774f, 0.411920547737697f, -0.407318902586407f, 0.922406353838750f, -0.0272310683929855f, 0.781051179942937f, 0.860271807949640f, -0.703736733439623f, -0.285650334863399f, -0.466904334435873f, -0.716816768536707f, 0.0869377378786880f, -0.280331892461309f, 0.773946156883160f, -0.139856444064730f, 0.575680110908147f, -0.887887626173303f, 0.314286545048942f, 0.673119170729964f, 0.520399233930039f, 0.581347801663144f, 0.731708017815653f, 0.672583525027818f, -0.0534590776637494f, -0.880572908687369f, 0.171150522778545f, -0.377041265530122f, -0.478003213002057f, 0.458602883802583f, 0.836824527658741f, -0.0686622680764437f, -0.301000630566919f, -0.652562984155554f, 0.604631263268903f, 0.791770979838877f, 0.0790491584346489f, 0.812646960034949f, 0.138794042671596f, 0.709411730079774f, 0.226484869016811f, 0.797388098554019f, -0.162225991160828f, -0.0295749256270541f, 0.218242165083417f, 0.442845427695148f, -0.480622209857766f, 0.873464432574125f, -0.868017543466245f, -0.435489784247438f, 0.0589001507244313f, 0.829134536020168f, 0.614063504046069f, -0.0498036542372153f, -0.803122689381969f, -0.495207870035615f, -0.126836582496751f, -0.0715271574335641f, -0.600815700055194f, 0.434993547671690f, -0.891665893518364f, 0.515259516482513f, 0.475325173737397f, -0.716548558025405f, -0.881097306400870f, 0.738462585443836f, -0.244486212870867f, -0.750368936394211f, 0.303496411011494f, -0.602701428305057f, -0.400346153635480f, -0.300002744969481f, -0.518552440201900f, 0.437964598712580f, -0.816689813412280f, -0.814392666138757f, -0.888568091915377f, 0.449416911306476f, -0.231889259488176f, 0.589775175288682f, 0.817224890217553f, 0.518646001325967f, -0.406046689874425f, -0.822100925750380f, 0.0528571826460145f, 0.502410576690672f, -0.795964394123106f, 0.0587614583641718f, -0.960750994569408f, 0.0366871534513058f, 0.723018804498087f, 0.0607565140068052f, 0.337380735516841f, 0.810682513202583f, -0.636743814403438f, 0.287171363373943f, -0.651998050401509f, -0.913606366413836f, 0.642186273694795f, -0.197674788034638f, -0.261253290776174f, 0.696450222503413f, -0.178859131737947f, -0.388167582041093f, -0.0593965887764258f, -0.638517356081890f, 0.804955770174156f, 0.220726627737384f, 0.263712659676167f, -0.214285245576410f, -0.267640297291737f, -0.268009369634837f, -0.957726158424482f, 0.708674977585603f, 0.336764494287156f, -0.985742981232916f, -0.883053422617300f, 0.560301189759340f, -0.692967747323003f, 0.977419052658484f, 0.0749830817523358f, 0.916618822945019f, 0.941660769630849f, 0.454145712080114f, 0.176036352526593f, 0.103229925297037f, 0.936507745325933f, -0.870159095287666f, -0.106465234217744f, 0.684178938709319f, 0.669775326656340f, -0.620857222834950f, 0.939074959093680f, -0.592224920792423f, 0.620706594809134f, 0.0456831422421473f, 0.738727999152789f, -0.751090911501446f, 0.683669216540363f, 0.153825621938168f, -0.255671723273688f, -0.773772764499189f, -0.667753952059522f, 0.887641972124558f, -0.664358118222428f, 0.512196622998674f, -0.0234362604874272f, 0.942878420215240f, -0.406617487191566f, -0.140379594627198f, -0.0587253931185765f, 0.419570878799757f, 0.533674656399007f, 0.108777047479414f, -0.695880604462579f, 0.481525582104998f, 0.511165135231064f, 0.136105196996658f, -0.481918536916982f, 0.757546893769363f, 0.957648176032083f, -0.908743619686586f, -0.395640537583668f, 0.0493439519763970f, 0.293569612893396f, 0.387420368421925f, 0.0928482742403196f, 0.407302666835821f, -0.787979245337637f, -0.968269218296593f, -0.409517247978962f, 0.775076200793689f, -0.217738166217447f, -0.370002483875998f, -0.570975789421316f, 0.844070553036478f, 0.668620483679341f, 0.00139813137293987f, -0.0912495442122028f, -0.0375370940595317f, 0.723007849224616f, 0.369999774115317f, 0.862240371150479f, 0.749525689790910f, 0.742992309993137f, -0.495813719545874f, -0.101947508108870f, -0.152536889610560f, 0.0598123624723883f, -0.436496899502871f, 0.520026918467263f, 0.241005798945400f, 0.970456690492966f, -0.376417224463442f, 0.614223236672359f, 0.336733945081746f, 0.376602027190701f, 0.00373987228923456f, -0.415425448787442f, 0.330560415319813f, -0.277250467297048f, 0.861008806111330f, -0.00655914035278493f, 0.810375656135324f, -0.0113631690466840f, -0.191699616402287f, -0.808952204107388f, 0.813180054552450f, 0.472985418265257f, 0.180147510998781f, -0.262580568975063f, 0.211152909221457f, -0.882514639604489f, -0.575589191561861f, 0.106927561961233f, 0.964591320892138f, 0.738192954342001f, 0.687649298588472f, -0.229142519883570f, -0.354434619656716f, -0.420522788056562f, 0.684638470896597f, -0.608080686160634f, 0.172668231197353f, 0.571295073068563f, -0.202258974457565f, 0.183035733721930f, -0.425589835248751f, -0.181955831301366f, 0.798193178080558f, -0.719799491928433f, -0.376418218727565f, 0.100370714244854f, -0.674685331738723f, -0.528950922374114f, 0.480443520097694f, 0.432497368954013f, 0.887439714903326f, 0.598241701759478f, -0.250064970303242f, -0.743111010477448f, 0.936189907099845f, -0.867383557331633f, 0.852536175309851f, -0.426378707286007f, 0.793838638663137f, 0.856262917294594f, 0.734157059815547f, 0.00452009494051664f, -0.884258713402709f, -0.0835595438259760f, -0.735457210599502f, -0.710727075357488f, 0.858050351034768f, -0.626070522205317f, -0.848201957131499f, 0.0180933910837406f, -0.0350884878366737f, -0.893836321618480f, -0.0682788306189803f, -0.539993219329871f, -0.557660404374917f, 0.268969847256868f, 0.505363999910409f, -0.0464757944714727f, -0.529689906951922,
-0.138445378586710f, 0.992531054118938f, 0.974585450054910f, 0.940349645687053f, 0.648085319100986f, -0.410736404028701f, 0.804131759246012f, -0.774897101314247f, 0.178246382655493f, -0.361699623232501f, -0.836093509684016f, 0.806309487627613f, -0.758182371322663f, 0.718410035716663f, -0.213136487421868f, -0.0563465521625497f, 0.0411192849612654f, -0.532497330327019f, -0.0419839515250475f, 0.769432068229678f, 0.253556234192255f, -0.745131216530268f, -0.890639235422577f, -0.140643637034330f, 0.318127074868768f, -0.497415632768561f, -0.383508820416842f, -0.468783454456628f, -0.289531078129000f, -0.0831555730758713f, 0.0107128404847427f, -0.567754537918270f, 0.926366772604370f, -0.600154724486768f, -0.0920759547805206f, 0.889582307602381f, -0.0710437157605615f, -0.182724716112986f, 0.228135065644420f, 0.851015495602628f, 0.653035806598961f, -0.986676404958677f, -0.871714951288816f, -0.824734086356281f, -0.490239304888267f, 0.244318295619814f, -0.923794688606381f, 0.670566388343457f, 0.849438492633058f, -0.225318912425116f, 0.461075616917687f, 0.656436404012820f, -0.416403369651597f, 0.205630417444150f, -0.163509095777762f, -0.0670299490212758f, -0.315561491397908f, -0.0952855008191476f, -0.377993693497066f, 0.860172853824826f, -0.669622978211317f, 0.595058880455053f, -0.425661849490015f, -0.0405359106780283f, 0.129968697438974f, -0.156244199842099f, 0.996996665434629f, -0.888570357356090f, -0.925646614993414f, -0.753998082238076f, 0.714491335460749f, -0.307849905639463f, 0.536274323586448f, -0.462944722411129f, 0.622202376598447f, -0.215582012734053f, -0.115115003363232f, 0.128168110175570f, -0.556263623663708f, 0.921813264386344f, -0.288173574121268f, -0.175054002159610f, 0.0621862747516269f, -0.468862899314091f, 0.976184545317535f, 0.468469061953779f, 0.679394669665911f, -0.0651943232114096f, 0.872740953203360f, -0.917720162541254f, 0.271535917769933f, 0.265441861283112f, 0.542190484993772f, -0.0208550501604048f, 0.983272473294640f, -0.522164666401537f, 0.833823680455458f, 0.414337644113416f, 0.588576354535126f, 0.318369292694380f, 0.870442561030567f, -0.422722224743553f, -0.200185003922166f, -0.770185495487048f, -0.878134057034045f, -0.712873198675798f, 0.647706512601268f, 0.593648188899773f, 0.126171748161942f, -0.189622212946038f, 0.707877641788638f, 0.790070498218410f, 0.698576567863428f, 0.594748885238005f, 0.567439045931572f, -0.591839707769224f, -0.632709967090349f, 0.415471238430617f, 0.115403276784208f, -0.375797954748234f, 0.123611001678020f, -0.864109581464288f, 0.115346512920739f, -0.515581940111704f, 0.880606114362175f, 0.356011740142007f, -0.318112820131587f, 0.765766689783476f, -0.226772670084743f, 0.442067390135885f, 0.348547568069751f, 0.862154389627291f, -0.894863284060244f, 0.475714942110286f, 0.552377629980789f, -0.0838875341374268f, -0.227654706745770f, 0.0998522598030438f, 0.870812229993830f, -0.518250234958224f, -0.0635791579471283f, -0.284101882205902f, -0.454751668241269f, 0.720773434493943f, 0.0756117818245317f, -0.0572317848090118f, -0.692584830354208f, 0.776250173796276f, 0.514052484701885f, 0.00770839936587864f, 0.775668871262837f, 0.933055956393907f, 0.0501713700022097f, -0.922194089981246f, 0.266653852930886f, -0.408584553416038f, 0.797066793752635f, -0.785570848747099f, 0.931403610887599f, 0.660859952465710f, -0.630963871875185f, -0.673000673345695f, 0.518897255252506f, -0.342041914345720f, 0.405613809903414f, -0.373516504843492f, -0.208292396009356f, 0.0510871025610438f, 0.396765368381847f, 0.00537609874241829f, 0.935717099427788f, -0.564801066383885f, -0.907523685862547f, 0.670551481631625f, -0.457309616171932f, 0.364001526470449f, 0.140805524345232f, -0.349945327329409f, -0.0361532758624807f, -0.304268551311720f, 0.618482952755668f, -0.0120110524971313f, 0.106364353621731f, -0.427587198043230f, 0.464249033810121f, -0.808297048471569f, 0.675277128303038f, -0.0663762607268352f, -0.431951364170808f, 0.953951718476660f, -0.725934553905574f, -0.685163723789561f, 0.164132617720945f, 0.934798872032034f, -0.695343627424553f, -0.420317401094920f, -0.689247558220342f, -0.605894279765940f, -0.693832779320227f, 0.455037128281788f, 0.968645000038447f, -0.0839147410947130f, 0.603463489419899f, 0.776913738299999f, -0.491560292499776f, 0.692235227850848f, 0.0824017593921889f, 0.459024952691847f, -0.918050509352710f, -0.777463066447746f, -0.161045596440278f, 0.982603547894360f, 0.700884888820475f, 0.998304481713913f, -0.362488733430088f, 0.171493948866881f, 0.565871153533442f, -0.965620428705067f, -0.835532968802398f, 0.885598629033760f, 0.609604257914327f, 0.725300244775050f, 0.153524048564152f, -0.662541112390878f, 0.912145212201290f, 0.135610445338421f, -0.0813934125800109f, 0.242209063597546f, -0.264886126609115f, -0.335070345839122f, 0.823958964903978f, -0.313110855907701f, -0.354068037633970f, -0.0381190024996405f, 0.117794735211134f, -0.604442743379238f, 0.524930955656444f, -0.754959642694882f, -0.359151666678207f, -0.247910739722172f, 0.573570999369016f, 0.543167570010806f, -0.718553346110069f, 0.202415372555816f, -0.860091438569300f, -0.0125446132328610f, 0.509348782140749f, 0.349261188228469f, 0.424395913611831f, 0.0557092265870811f, 0.740276822496471f, 0.479158001215769f, -0.221873518706244f, -0.744883456979009f, 0.393114117430743f, -0.733203119089531f, -0.506531269498885f, -0.505532097672033f, -0.509440981371663f, 0.666118722468113f, 0.0164067375520756f, -0.530276655546078f, 0.786338654343788f, -0.985008085364936f, 0.479988836226036f, -0.233652481382475f, 0.838641098910395f, -0.407379719374768f, -0.314266358910263f, -0.938033692224531f, -0.627320971378707f, -0.229174127295511f, 0.642505983671691f, -0.387855473250297f, 0.360324209821339f, -0.900766206699468f, 0.176676285751262f, 0.833894117554548f, -0.0207873177403817f, -0.202625183820044f, 0.706644325019314f, -0.817922707040537f, -0.242742059004419f, 0.282109349674866f, 0.0164603911954744f, -0.504625902855950f, 0.0415496120997125f, -0.787777778295785f, 0.362588721999523f, -0.371357162843751f, -0.818375262182416f, 0.727779997467707f, -0.836502839702384f, 0.0423869176265037f, -0.283934686546853f, 0.665864224978728f, -0.0428162304637920f, 0.243534621880753f, -0.803789304599586f, 0.570866852088607f, 0.340615579467880f, -0.323456502239327f, 0.403242371952148f, -0.0679158901587793f, -0.866985651416456f, -0.439873628406335f, -0.246357367033863f, 0.436234859832243f, 0.560714706225535f, -0.632564381913014f, -0.316451076258298f, -0.977122780282003f, 0.0741405862954117f, -0.217862250253606f, 0.887093089232476f, -0.418281865182365f, -0.638553415535034f, -0.262631979211197f, -0.567499176465252f, 0.676178859605923f, 0.933551699581608f, -0.0139735129263516f, -0.610719575803582f, 0.565123751720690f, 0.230672823422021f, 0.323935439339366f, 0.635142215896104f, 0.981184609133698f, 0.883668802319366f, -0.281281673616891f, 0.583204242495555f, 0.150854689098149f, -0.775890223139644f, 0.419951701513177f, -0.565767744791652f, -0.855232478054420f, 0.472188579901153f, -0.501463211798228f, 0.727960518524943f, 0.977187851385321f, 0.908113737694915f, -0.570200931535418f, 0.716036980035073f, 0.147838037485588f, 0.218820342222622f, -0.0673193461152677f, 0.433612519652386f, 0.449601736390411f, 0.556458722303960f, 0.417345590820787f, -0.783345413347895f, 0.858903187230710f, 0.178354025272247f, -0.130619018471658f, 0.858282827806003f, 0.508916167873459f, 0.139535936201634f, 0.240400109521332f, -0.102942705407161f, 0.841682417072375f, -0.696350979494975f, -0.793644449061670f, -0.698273636720141f, -0.228676865074326f, -0.195917865828574f, -0.306483109792438f, -0.865320326812636f, 0.659185969805107f, -0.368847387975239f, 0.337343722359231f, 0.0723822170210744f, 0.907475280998826f, 0.515168301614856f, 0.0790167120323961f, -0.756697420780699f, 0.966477562469936f, -0.663190129982788f, 0.145761851826854f, 0.376079225193173f, 0.631883071958707f, -0.956568110802436f, -0.735990864315730f, -0.795999578321461f, 0.958459465243432f, 0.319180429028702f, -0.907664654881857f, 0.992381284978014f, -0.511208110440365f, -0.714797966909523f, -0.717021870210999f, 0.545775837604423f, -0.0443828768329362f, 0.333311879948434f, 0.617237628406207f, -0.0895192882305207f, 0.506491005527430f, -0.354205929841282f, 0.777993157224477f, -0.667532693120319f, -0.105006112097613f, -0.337191911902220f, -0.337964429160738f, 0.609014812897482f, -0.368922911475613f, 0.889184378947484f, -0.676392242654630f, 0.429716870038086f, 0.916751115281822f, -0.655611878274175f, 0.538928395264007f, 0.382674384886170f, 0.0580742902089004f, -0.0124611362991478f, -0.0240388340005702f, -0.726296501832402f, -0.805701334732693f, 0.945344279474230f, -0.668066000378724f, 0.761436128738929f, -0.314275650172792f, -0.394331510439346f, 0.262887592668013f, 0.155064800148016f, -0.561829218656134f, -0.491542446753775f, 0.922248338472926f, 0.574575887413700f, 0.631722295929094f, -0.368854197209698f, 0.984780657580794f, 0.845286034922662f, -0.965631634115590f, -0.435710392440405f, -0.616488688868478f, 0.885865616625930f, 0.425733070487506f, 0.776721663555227f, -0.0652930284860209f, -0.734431875923792f, 0.725517937762654f, -0.474146253075108f, 0.895357779508529f, -0.0725048758018345f, -0.360185856190223f, 0.559350280666427f, 0.363695103660096f, 0.152231254765544f, 0.698196273442671f, 0.0518001104801953f, -0.139037096279713f, 0.340637636595997f, 0.584243998596814f, -0.442304329829130f, -0.501574294329747f, 0.250155103662225f, 0.320493999001502f, -0.150217982700108f, -0.0381390799255577f, 0.734760815545772f, -0.574574233376749f, 0.593440338163725f, 0.408049858247104f, -0.0845023181203484f, -0.855507806920297f, -0.473198309372409f, 0.331033392104072f, 0.196445364460658f, -0.799745050834061f, -0.973517526224363f, 0.333748727500822f, -0.772356831553232f, -0.430793038424357f, 0.649852557262489f, 0.504357958431509f, 0.779588082810134f, 0.0111847677569461f, -0.995526851285634f, -0.676007517368195f, 0.216774012875664f, -0.618928775636485f, -0.418043155155598f, -0.532063904545563f, -0.566979013994587f, 0.246319907266774f, 0.868651379198082f, -0.0433430896891542f, 0.463004686009427f, -0.162112430964754f, 0.285379745117090f, 0.901512987149549f, -0.706916206313139f, 0.685678130935725f, -0.673017501666538f, 0.0616272859909088f, 0.147532779463338f, -0.0108539826652629f, 0.960841184863269f, -0.950190006701182f, 0.992171414792924f, 0.715577145884581,
0.975908103138584f, -0.769014520827696f, -0.463212420186382f, -0.0761813427220397f, -0.704830850508594f, -0.220579724380686f, 0.840893269946637f, -0.432181989863148f, -0.956790418498701f, 0.122344784859397f, -0.242133592220528f, 0.908514497715246f, 0.303653521236872f, 0.756500828196849f, -0.752207807361831f, 0.367894642791072f, -0.702474131286247f, 0.189226989057138f, 0.401804209353236f, 0.608493473010907f, -0.437378101171900f, -0.158801297891213f, -0.381027984311046f, -0.949403985394057f, 0.370189685252539f, -0.872655295458655f, -0.337934909993878f, -0.0619622888328213f, 0.352094440420005f, 0.128759637109350f, 0.432413186229881f, -0.497474226759161f, 0.552933107875735f, 0.332665936587804f, -0.559261497212156f, -0.886188834336549f, 0.0170548801295034f, 0.192729852728271f, -0.674432365770129f, -0.526014722983374f, 0.425009223123802f, -0.186164676538888f, 0.190362042383007f, -0.0930204201587825f, 0.794188212052413f, -0.243549629178106f, 0.118970185744958f, -0.216230226310237f, 0.412570247218594f, 0.659556685538155f, -0.150540425515543f, -0.850858266540316f, -0.843827815842486f, 0.629298164439457f, 0.944304062363374f, -0.117764731240517f, 0.558568737697335f, 0.731745392387362f, -0.00413812760139165f, -0.251933493011685f, -0.473346352965658f, 0.178783613032362f, 0.547769344759580f, -0.414330113592064f, -0.550251453379012f, -0.925253680779905f, 0.623832825809309f, -0.494251081521428f, 0.0643361026845244f, 0.727107898350051f, 0.814864886916156f, 0.0177325632172460f, 0.749324691554934f, -0.266301024849295f, 0.675202550635588f, -0.0748462128620644f, -0.747853513216831f, -0.222563643557406f, -0.608884446788701f, -0.0374135649675464f, 0.852579123003940f, -0.585927920129879f, 0.604065857569210f, 0.573072924781108f, 0.816831955879520f, 0.723975232584095f, 0.367887024581694f, 0.765292601085641f, 0.836490699448589f, 0.623434131440044f, 0.743568762340577f, 0.140474444458222f, -0.746327891490507f, 0.700496422194197f, 0.549693846244016f, 0.729372970291116f, 0.728185563682229f, -0.614909046853182f, -0.756209631211223f, -0.530222413502955f, -0.312453162783936f, -0.752364704008701f, -0.634475515424180f, -0.133239439768175f, 0.252790153178337f, 0.760626105409900f, -0.838262213452153f, -0.266093046689486f, 0.549339088324875f, -0.278178592347115f, 0.190458706141960f, 0.906814275056971f, -0.579827980376046f, -0.134191470195968f, 0.244720998349483f, 0.795502128014338f, 0.287019836683889f, -0.906277889518234f, -0.817071933038363f, 0.613378274793081f, 0.518208081766432f, -0.388902790616382f, -0.785778461147273f, 0.574976429920521f, -0.283168065839246f, -0.857322381041868f, 0.424932015236353f, 0.919756642423073f, 0.412896759578072f, -0.976511020897041f, 0.157825653359643f, -0.0606591903280758f, 0.508438714729350f, -0.513115001652116f, 0.881391940997543f, -0.129708782033534f, 0.382462819411800f, -0.538751535594113f, 0.816770663497783f, 0.869013288394013f, -0.728381721932439f, -0.956736333819522f, -0.839107107637575f, 0.394821058517234f, 0.721983518815999f, -0.0847231453556103f, 0.0206545030491683f, 0.414707730497861f, 0.246591855656934f, -0.546187573590839f, -0.578957978692654f, 0.162844799084821f, 0.493731081270802f, -0.765815587549615f, 0.151613093585910f, -0.112883397239635f, 0.879319928900002f, 0.295375250614654f, -0.505370201033860f, -0.635319167339584f, -0.309818465920078f, 0.768627024018538f, -0.544374452091825f, 0.758974060573473f, -0.106050973670013f, 0.508616501970226f, -0.207224226211215f, 0.616842248601645f, 0.688381226662374f, 0.643728558619948f, -0.906982649598668f, 0.526262112978799f, -0.666644270400075f, 0.314806313630502f, -0.292000096972562f, -0.358353880616007f, 0.156344541906829f, 0.637606941586786f, -0.199572501073669f, -0.669369278061572f, 0.237513395315133f, -0.576741807179552f, 0.0750117203638310f, -0.633877533594996f, 0.829285089669934f, 0.622345234313277f, -0.892617583855908f, -0.280449892200797f, 0.241147361581176f, -0.0784016295955696f, 0.414945819313502f, 0.287238318044040f, -0.691458270387106f, 0.597656137422422f, 0.549022082569726f, -0.590776624040652f, 0.666740423918019f, -0.743115212424850f, 0.164036350785269f, -0.229427480781113f, 0.283602991107853f, -0.533993445778340f, 0.185806116700093f, -0.317953364055307f, 0.140412503708198f, 0.280706883979940f, 0.0439806827213221f, 0.176471515460512f, -0.614144204292693f, 0.314194083857125f, 0.519572839644130f, -0.850547081260782f, -0.515460990713008f, 0.353087995032390f, -0.0241014119925820f, 0.269453276643829f, -0.608515317887958f, -0.777818225534647f, -0.834277444316067f, -0.842707175235771f, -0.929547602540323f, -0.884691870945475f, 0.710591809809692f, 0.143423776629673f, 0.797136471728128f, 0.233311155245426f, -0.923169961754164f, 0.627911916101674f, -0.338187201367212f, 0.211044396110784f, -0.443699655795038f, 0.256593551969761f, -0.406688684034041f, 0.364900889856600f, 0.900530571350288f, -0.160476177153537f, 0.0634217008071056f, 0.709241599309354f, -0.789562037599596f, 0.00891621061029158f, 0.801674768895422f, -0.704378031949125f, 0.430576706378041f, 0.796937507044124f, -0.193348850174576f, -0.493924902919358f, -0.935781577118986f, 0.468142331108629f, 0.00965840085728753f, 0.0834398764999438f, 0.599712941235232f, -0.735675950275295f, 0.200152501800787f, -0.751603779675650f, 0.0697488403240092f, 0.300634243862625f, -0.901969784333300f, -0.958816237033024f, -0.754976119377363f, 0.719702182489622f, -0.338038642556184f, -0.703280944186943f, -0.579148694005994f, 0.556115731092296f, -0.920710928208685f, -0.278178108839470f, -0.793795308512285f, 0.916547680808212f, 0.419467216101691f, 0.177932177026735f, 0.682833725334600f, -0.926849803428705f, 0.179045225389745f, -0.209414969718359f, -0.889551871881532f, 0.961659420127890f, -0.250341627298645f, 0.105606170554974f, -0.547860346689080f, 0.845704098204057f, 0.886892635683680f, 0.768134466622042f, -0.954777823503721f, -0.718106389777233f, -0.580779231998609f, -0.0241800476518665f, 0.815063484178525f, -0.351971452344303f, 0.770369263680192f, 0.520886146470712f, -0.236456125482696f, 0.0900173391919312f, -0.00610611501589697f, 0.0986788038317752f, 0.277083194173223f, 0.0877085076786761f, 0.695814138412262f, 0.281021332783082f, -0.701468161850407f, -0.785496560046616f, -0.805623403379156f, -0.0524204125046179f, 0.0836418099696601f, 0.467252832788807f, 0.148967572323544f, 0.314141193557124f, -0.722297309069329f, 0.147068590429361f, -0.868307069306109f, 0.118712645744921f, 0.737896544941878f, 0.897526485681248f, 0.842207508585120f, 0.817408479766998f, 0.522315328909182f, -0.409136979179218f, 0.580654760034574f, -0.384701243761730f, -0.769398544059918f, -0.791317178699730f, 0.357020281620118f, -0.235410423267782f, -0.326332500533018f, -0.416891876268284f, -0.863029987000052f, 0.505171215727166f, -0.728709553380428f, 0.554546891580919f, 0.737429989077498f, -0.355088598334119f, 0.911987317939763f, 0.525846127625130f, 0.851549830104189f, -0.772303673276796f, 0.0421942169353806f, -0.521836640530782f, 0.995279650924240f, -0.186831960875832f, 0.421233670121556f, -0.0891583750230474f, 0.661100169663965f, 0.393809652414978f, 0.346165179707090f, 0.384203760628548f, -0.329281932973211f, 0.446133401546675f, -0.748200766224366f, -0.0275154142375615f, 0.771701580845288f, -0.0177829993094090f, 0.406813206251131f, 0.606021648140155f, 0.218435152341115f, 0.236571855064013f, -0.513495776515847f, 0.729086381137554f, -0.137775825035815f, 0.0320966747364262f, -0.313487802206023f, 0.105472520924239f, 0.423606700821375f, -0.231301628369264f, 0.465218832919270f, 0.379671652150568f, -0.00497780485272159f, 0.509290230688327f, 0.467240127182068f, 0.353587964503845f, 0.390455232684039f, 0.721536288927627f, -0.838922323815237f, 0.827628029266859f, 0.768844149796201f, -0.813963144642386f, -0.797054297232628f, -0.933039367361175f, -0.0723957249866136f, -0.664824147893300f, 0.695914840901794f, -0.206071660300270f, 0.879389414398409f, 0.181872681691416f, -0.582831210733033f, 0.624249199449935f, 0.204959730900228f, 0.354831594370532f, 0.337152636438178f, 0.596132114241829f, -0.295619496794481f, -0.443402055665686f, 0.743995051028396f, 0.543706744165365f, 0.825846155044062f, -0.764982315603181f, -0.0355223730700034f, -0.682467026736627f, -0.914037445162109f, -0.222823484413727f, 0.825323277024566f, 0.0769459194171547f, 0.696453968928934f, 0.760786120466962f, -0.525470048583831f, 0.764981036001869f, 0.458525204937000f, -0.612703584870878f, 0.626016142683351f, 0.284799326870320f, -0.130410894642153f, -0.730659587111424f, 0.0251896513929686f, 0.744421417725379f, 0.481278905427271f, -0.718686189713675f, -0.972110566787501f, -0.178005803066219f, -0.761536801353512f, 0.675177569459847f, -0.613068600254845f, -0.854757540148688f, 0.641823580903407f, 0.112536000301536f, 0.201235170163357f, -0.332623522893231f, 0.602028236317460f, 0.487529253813741f, -0.936537443253385f, 0.932862477850079f, -0.0977461167435834f, -0.485449569929182f, -0.575807340541437f, -0.920527242558033f, -0.938208754460503f, 0.890054000488493f, -0.154888511872567f, -0.106629818916523f, 0.323343252623500f, 0.105328135407289f, -0.837197492121459f, 0.497769113944639f, -0.234127101891878f, 0.840922493788059f, -0.994297350473539f, 0.241966031396186f, -0.241143860453769f, -0.598953146106117f, 0.839112451637864f, -0.639567866338402f, -0.219908091959649f, -0.778137266578287f, -0.201424793310289f, -0.486105622640452f, 0.874947034932591f, -0.131437343585340f, -0.674427373037920f, -0.161007203320351f, 0.215285933912207f, -0.963047650748652f, -0.841020847986178f, 0.259702280444602f, -0.165325097679823f, 0.572379756389254f, -0.435802768396928f, -0.0776125194906274f, -0.0293182206559168f, -0.847945015803839f, -0.576891917046364f, 0.728544652294888f, 0.110676857648527f, 0.760459056611184f, 0.486936926897001f, 0.680603035572503f, 0.330358411271561f, 0.901153157113818f, -0.893323547516767f, 0.268679990552354f, 0.794615743189695f, 0.221637368947158f, -0.0207579360252996f, -0.585634995914835f, 0.587646126395593f, -0.317780705107399f, 0.790321547328449f, 0.251610679655279f, -0.0386445267248654f, 0.881542790650722f, -0.469258891944944f, -0.900544881246558f, -0.344978220866601f, -0.271404539202745f, 0.863631450621357f, 0.805892242474368f, -0.325004362330199f, -0.649692260224921f, 0.535815472185538f, 0.427767946389023f, 0.924517987543855f, 0.571059970962007f, 0.549923246060706f, -0.639468249016352,
0.307213071097954f, -0.885892976847170f, -0.526002656640427f, 0.733743042788359f, 0.186919211020217f, 0.322167483598106f, -0.933484010727969f, 0.307181642341518f, -0.391959805653480f, -0.892298105797306f, 0.100065710151584f, -0.932962740784651f, -0.643536993204857f, 0.200747180046148f, 0.310831344540979f, -0.923416823619512f, 0.440768799148345f, -0.666930667413366f, -0.485487251971431f, -0.0627811951952384f, -0.331082293469460f, 0.0335811939608148f, -0.653610782697787f, -0.320586426505716f, 0.559163070852115f, -0.497363452770543f, -0.329886484503569f, -0.146612217140156f, -0.0265272745798242f, -0.288663397675155f, -0.996138396801714f, 0.705746028666908f, 0.634215549629091f, 0.165248482682243f, -0.110791752682943f, -0.0583711657160508f, 0.704663932851230f, 0.105987046073574f, -0.674234600022039f, -0.852792911043127f, 0.779458558047699f, -0.506163961277651f, 0.661431789813829f, 0.362986600662932f, 0.677673397902417f, 0.909704544299484f, -0.678129611146149f, -0.700854916363125f, -0.954905799366644f, 0.819329178422143f, -0.278866438326573f, 0.240572863896085f, -0.597973444252616f, 0.520707363092687f, -0.891796539359942f, -0.0707113684027092f, 0.730270237241197f, -0.202809887987925f, 0.712903235793333f, 0.815918058519912f, -0.619284883130692f, 0.620432327799984f, 0.215462902206797f, 0.913706499476201f, -0.284266999538807f, 0.137669223817851f, -0.320599930994154f, -0.279885143029947f, 0.0759863610502050f, 0.362519848337183f, 0.0897184432777523f, 0.730407126330006f, -0.715664883515070f, -0.964294244830797f, 0.337668374417089f, 0.563780948124681f, 0.534272089774928f, 0.670003495251274f, 0.976582736706313f, -0.576021162432801f, 0.318863740329612f, 0.374838616807691f, 0.437628782275460f, 0.629331465907672f, 0.800673318445353f, -0.964950925853698f, -0.115288102568929f, 0.581179798077059f, 0.892103220665649f, -0.224009831257430f, -0.486848659265476f, 0.768601825625188f, -0.478996958061453f, 0.987216084861456f, -0.00828256241998737f, 0.443388113322642f, -0.209225960405120f, 0.784392408672073f, -0.821157008960409f, 0.169088259578466f, 0.188648958653604f, 0.796321723736402f, 0.804915614204973f, -0.947435972579018f, -0.320368366702004f, -0.0857043727442930f, -0.229914128505395f, -0.802013870592427f, 0.497444368231634f, 0.791040716463223f, 0.586369970276563f, 0.871236424247704f, 0.770091868124107f, -0.458396647683594f, 0.871149873224889f, 0.753895449519495f, 0.295832468734546f, 0.574616471536691f, 0.384408809311353f, -0.978021020306570f, 0.0397482936794495f, 0.628095200786834f, -0.968059492217325f, -0.404306711220928f, 0.659301030460980f, -0.345766174675525f, -0.0517956907600681f, -0.640289082986305f, 0.965202733073502f, 0.909703156044274f, -0.744545066259015f, -0.676836498528477f, 0.0507393165493961f, 0.394673166210436f, 0.250366706754377f, -0.287411651947684f, -0.521760552601739f, 0.214487178617345f, -0.922260536787078f, -0.970217444063294f, -0.632705652784150f, -0.720016326822300f, -0.506393579710801f, 0.774172771450182f, 0.891546338793249f, 0.559706491124446f, -0.513481979527671f, 0.735727350850420f, -0.207760672132971f, 0.956672164225499f, -0.516696999265124f, -0.846015525317730f, -0.199370940530009f, 0.927580907007946f, 0.669786891276299f, -0.208316500739886f, -0.349932032863852f, 0.382722440637189f, -0.455635180187178f, -0.573852668753046f, 0.237990995216907f, -0.00210628303929439f, 0.846035951941252f, 0.921932267818374f, 0.141873820779935f, 0.871317167610738f, -0.632607355185838f, -0.565801401210940f, -0.959881482283947f, -0.732559764685905f, -0.655277252471118f, 0.136770193226314f, 0.206392768880907f, 0.0946932052352707f, -0.147722827344946f, 0.142504821799194f, -0.891443939735724f, -0.660161817562772f, -0.918683225740157f, 0.524851053279394f, -0.841532325411647f, -0.662931925252737f, 0.450018807591706f, 0.157794014139767f, -0.562525486647545f, 0.604051451992330f, 0.859220943805127f, 0.943321402026900f, 0.511188518123118f, -0.332990520726740f, 0.904709059147998f, -0.336911302156504f, -0.0329301811082998f, 0.307263624236174f, -0.640655394434152f, 0.791676792853669f, 0.450137270831791f, 0.746000232170803f, -0.915436267533878f, 0.976514418439799f, 0.828073391112522f, 0.990695018409237f, 0.419713963781614f, -0.286897378037841f, 0.111527193084439f, -0.956913449095442f, 0.263769440437253f, 0.534739246489713f, -0.918314908283506f, 0.680501951418845f, -0.0258330390798596f, -0.696521999550769f, 0.274590593565720f, -0.821334538131451f, 0.104139627465949f, -0.790104923997319f, 0.399265830301725f, 0.118854169469537f, 0.309552488812324f, -0.961100729890863f, -0.665645274594184f, -0.125767140532335f, 0.377154316156289f, -0.971986633153292f, -0.148225730575294f, -0.801072242848910f, 0.735673216754228f, 0.247753694178141f, 0.759093842520115f, -0.529946694334253f, 0.594235069164038f, -0.801015868726278f, 0.141962211231124f, 0.135473683510959f, -0.0431660672944612f, -0.437176231417910f, 0.467008031415084f, 0.324675317141816f, 0.122578305547357f, -0.0351479470228342f, -0.437236315511244f, -0.822621846670407f, 0.989461679354308f, -0.242059902390237f, 0.800837521050356f, -0.387832478851607f, 0.316362161826139f, 0.602440060427024f, 0.890992007298149f, 0.319686042477150f, 0.930326885903916f, -0.170779817104763f, -0.437602177375177f, 0.835764105962134f, 0.522922752459604f, 0.295156847627349f, -0.857646277751538f, -0.451421990712551f, 0.752856133268497f, -0.826193868550830f, -0.906961130052697f, 0.118621494342013f, -0.627099634988204f, 0.163256363060383f, -0.719362770410877f, -0.576563943780491f, -0.369939711177846f, -0.294180430088591f, 0.868430622614485f, 0.945955651201780f, -0.879259966782947f, 0.376142233233261f, -0.549019623646418f, -0.366403875933169f, -0.631308623984507f, -0.398270064613022f, 0.631780765950599f, -0.497821177556814f, -0.0754938097555216f, 0.358298259390762f, -0.438971283619577f, -0.835962846436280f, 0.771544885338102f, 0.132031497593111f, 0.0964144932127649f, -0.171144812197942f, 0.734241841669664f, 0.773828279651661f, 0.591442573315395f, 0.449840299498767f, -0.249196666141921f, 0.910274822633449f, -0.623687862912847f, -0.954398427932048f, 0.700975370671540f, -0.128268698036002f, 0.723971772247224f, -0.239872317271662f, 0.599101633280873f, 0.323504979356466f, 0.726076237951951f, 0.775013638477775f, -0.736157118505210f, 0.681129332563739f, -0.989456914597076f, -0.860559243921100f, -0.652547050354339f, 0.227533741410917f, 0.263244425371628f, -0.412800042549063f, -0.774547399227093f, 0.959749220773555f, 0.0285018454625012f, 0.0260964660594436f, -0.817249773797516f, -0.275510098931589f, -0.957071090655421f, 0.755874233806472f, 0.0601247360044190f, 0.155148678178749f, 0.744458452388040f, 0.206143083045583f, 0.405575258734775f, 0.591273066531951f, -0.286358679634110f, 0.168522523380964f, -0.0740663582251186f, 0.991796969736415f, 0.00304472789286958f, 0.0955103281360055f, 0.595292305224677f, -0.633460800851610f, 0.969720344590438f, -0.788939516987962f, -0.690852963213444f, -0.751849610482179f, -0.454105756229298f, 0.527652178438853f, -0.249156091787771f, -0.395486634371019f, -0.586329259469701f, 0.774216673365643f, 0.000796185912973479f, 0.753872935709907f, 0.691883261316931f, -0.599798140130743f, 0.140718954973018f, 0.400016581571111f, -0.412934563119652f, 0.782683275869451f, -0.837415681080234f, 0.503344297140354f, 0.443222186121185f, -0.869067764953740f, 0.891507832007671f, -0.258782538717313f, -0.592111951047753f, 0.542828422857983f, -0.959476625230936f, -0.373353196174649f, 0.558975637763876f, 0.848608638566440f, -0.861701716955403f, -0.937645215971517f, 0.0456695238513540f, -0.643462752057364f, -0.194887894642735f, 0.576940690214110f, -0.889414400002951f, -0.120401270393403f, 0.581976128201341f, -0.914549817300516f, 0.619675229253819f, -0.446355411157033f, -0.686510097388917f, 0.199022704414501f, 0.0679083509214176f, 0.939286059873160f, 0.919854436895475f, -0.921420499961796f, -0.933865152326639f, -0.173428453947994f, 0.0481843697148709f, 0.282408667923603f, 0.411093542307595f, 0.332739798472214f, -0.539048264159821f, -0.704491312083244f, -0.502163632960363f, 0.955228344617550f, 0.620064399129425f, -0.470222569036376f, 0.754614931250763f, -0.616308595262807f, -0.914574682979899f, 0.624066330640082f, 0.836911269770582f, 0.913639510454430f, 0.653228461676548f, -0.269928008555249f, 0.313006679186127f, 0.984676487220296f, -0.492012769698267f, 0.956868299674771f, 0.291679581317590f, 0.0391808383867289f, 0.572884371819903f, 0.0424011452585180f, 0.955486550514640f, -0.402317209279260f, -0.606465037288902f, 0.547296561663929f, -0.262634118959448f, -0.555413611714328f, -0.328781770154915f, 0.145794994289916f, 0.141260540582646f, -0.451655981927315f, 0.305553535897825f, 0.828724940454557f, 0.263943455052409f, -0.609183422737396f, 0.691170220321907f, -0.372701931956834f, 0.750237424665146f, -0.249353280856890f, 0.379870697565802f, 0.385751069018950f, -0.515117494253264f, 0.716937491491901f, 0.343749563024118f, -0.462962268225808f, -0.542579750084113f, 0.865163879545508f, 0.348358741505572f, -0.309602240547849f, -0.0504864877295679f, -0.822856269672862f, 0.199343960697129f, -0.790668167630170f, -0.0910655952543342f, -0.0243531696455832f, 0.832501734319368f, 0.604933598167068f, 0.899053047900036f, 0.270668041381131f, 0.523691409964688f, -0.0841567002292820f, -0.844392287920523f, -0.910987838261586f, -0.470654231510287f, -0.103828495683496f, 0.253788695977573f, -0.103172947809401f, -0.339896741661867f, -0.447251997825083f, 0.217200476817515f, -0.474840886373359f, 0.227876267254650f, -0.851351819181938f, -0.902078585170911f, 0.445464427415683f, -0.842484493463611f, -0.141606736723087f, 0.104224619207891f, -0.554900879859470f, 0.818556374444811f, -0.832710463532413f, -0.284760316465868f, 0.697962734672817f, 0.235137001970259f, 0.538298155374871f, -0.598477541924834f, -0.833959821954974f, -0.164556670763502f, -0.443902305525605f, 0.484290717235912f, 0.319356252041167f, 0.0834544406255109f, -0.839174383593280f, -0.514784811627172f, 0.466424623987191f, 0.597641402168886f, -0.344706573843316f, 0.346954604803744f, 0.150560726232471f, -0.963838773301094f, -0.210406119881130f, 0.740751216241446f, -0.519896828058978f, 0.882277568799242f, 0.982734995306564f, -0.691486807580351f, -0.120653164608028f, 0.263039860106709f, -0.472131671311566f, -0.469155525952548f, -0.562705921604020f, -0.737502946123759f, 0.151863404645485,
-0.367233093688652f, 0.149585386378220f, -0.152980596399920f, 0.572826412281344f, -0.498718037086228f, -0.0794332639424211f, 0.659760386972575f, -0.574814983564964f, 0.451329484188896f, 0.473066930128670f, -0.135151886005125f, 0.379571405476121f, -0.308712078323501f, -0.136843563834117f, 0.395667583713552f, 0.196238140324408f, 0.588147058383512f, 0.770505301611929f, -0.865188840370228f, 0.266437694165002f, -0.428134513764013f, 0.661967260527446f, -0.752421375452379f, -0.556389852423621f, 0.424944298468302f, -0.480554454112605f, 0.916159659428765f, -0.112147362457396f, 0.363475545209813f, 0.698805683596358f, -0.862382341730295f, -0.489415523853276f, 0.453056404353730f, -0.606183761884457f, -0.00869682692408680f, -0.288739722701460f, 0.487988005841341f, 0.566870040344668f, 0.0894575138005909f, 0.887832293799319f, -0.0981274237649674f, -0.279935090781560f, 0.506891141525948f, 0.952901245338457f, 0.458002767525373f, -0.569410776125351f, 0.849518291873527f, -0.585020953514368f, 0.676037258640625f, 0.299076264841081f, 0.911385441491479f, -0.954959555659035f, -0.681285607891366f, 0.631368118385947f, 0.522268523899537f, 0.900701101674748f, -0.647701850365577f, 0.567960815808216f, -0.138958982219446f, 0.267024801687456f, -0.975771109955874f, 0.314682157086949f, -0.378801381286130f, 0.665990927256163f, -0.573674360032848f, -0.860450785684384f, 0.516581474078532f, -0.190844183471714f, -0.451971355445856f, -0.808113003973650f, 0.860446168028895f, 0.377778958059242f, 0.126949039950121f, -0.892203650250330f, 0.572503460980517f, 0.975224974978800f, -0.202312370945465f, 0.500665599343084f, -0.0510413720986291f, 0.353231752436633f, -0.805555931906752f, -0.199761377956955f, -0.829487282239605f, 0.0282459088867508f, 0.814545057118991f, 0.557652277921578f, 0.613951716518862f, -0.678811366342345f, 0.896500288318877f, -0.627622562398925f, 0.802545092571611f, 0.211382709497062f, -0.979380222642662f, 0.826784411456488f, -0.670689878657734f, 0.788878029765924f, 0.137070906151783f, 0.901907287859132f, -0.526217367070263f, -0.545043827128876f, 0.494756249972086f, 0.236657948774128f, 0.156603327087660f, 0.516397244064118f, -0.325837179590292f, 0.460683385171580f, -0.196022953760504f, -0.441996357332195f, -0.808932369852494f, 0.291980108741838f, -0.833583979826152f, 0.365574438479475f, -0.797139524158001f, -0.0649288183732912f, -0.000696491493834994f, 0.100125393693922f, 0.598035350719377f, -0.312548404453564f, 0.0414605409182345f, -0.675913083156432f, 0.236245026389435f, 0.550464243484224f, 0.193366907856750f, -0.903654015709839f, -0.00993172527377806f, 0.0180900754210873f, 0.880678290110106f, 0.166539520562349f, -0.984509466189118f, 0.810283124477894f, -0.925371921448173f, 0.193528916069728f, -0.748644561903135f, 0.534508666819454f, 0.364436869280188f, -0.386979667637943f, 0.427958998441480f, 0.362750270039032f, 0.420886957715891f, 0.0300301961707390f, -0.655220626875711f, 0.0504522662127427f, 0.472640818703213f, -0.417745816013639f, 0.0689992794158720f, 0.461232479061866f, -0.483517586427718f, -0.411463769964024f, 0.622740736364726f, 0.659687134578680f, 0.243900134982579f, -0.684356227282321f, -0.688699031115733f, -0.316032121634021f, -0.644296362948831f, -0.236133265458216f, 0.880259454885881f, -0.956880609581177f, 0.737775899964131f, -0.529059297472703f, 0.794119601436042f, -0.375698158660466f, 0.493447663117292f, -0.752511119115434f, -0.941143365329844f, 0.610101048864035f, 0.253791011658991f, -0.369994602049336f, -0.697364270085742f, -0.681360550250048f, -0.571943442128960f, -0.749697324128684f, 0.611997629275096f, 0.892727938106141f, -0.440225399106758f, 0.00196047981855352f, 0.951252158369648f, 0.0351885308766962f, -0.471806546113710f, -0.657231535594911f, -0.0873481442406481f, -0.0341288006282565f, 0.579184398564974f, -0.224334624306026f, -0.298557652719061f, -0.509401519638379f, 0.188853505083675f, -0.321619146497229f, -0.613159956450671f, 0.570042044631281f, 0.699213203307007f, 0.537439231469861f, 0.529440733283839f, -0.744527226912905f, 0.362949055807175f, 0.529758698714545f, -0.114804719889245f, 0.991089489396930f, -0.186716454683287f, -0.218189173574106f, -0.0493780858124198f, -0.928812411399224f, -0.101855573638590f, 0.454268528366586f, 0.617591620012079f, -0.197519518988231f, 0.0973277590468935f, -0.185672509894105f, 0.649922648337967f, -0.896862900376972f, 0.594999589349510f, -0.746978997769556f, 0.590642952628647f, 0.935109901616311f, -0.293310684054096f, 0.783281817912060f, -0.189898897214222f, 0.414859016240278f, -0.0858574647662298f, 0.0810260863380805f, -0.633024441577653f, 0.248442861097829f, 0.984586601784679f, 0.982811638387854f, 0.547456083836220f, 0.476239638753291f, -0.897709902882279f, -0.208045489357872f, -0.860637131636973f, -0.496740558564284f, -0.944185351410090f, 0.157610983944341f, 0.975214099838643f, 0.550265718083095f, -0.630360326400067f, 0.672420341653334f, -0.897139264107564f, -0.670556423663785f, 0.298764071000339f, -0.310465384759529f, -0.978153640586955f, 0.189785151994709f, 0.929291975296760f, 0.758271912876084f, 0.806829662560108f, -0.472787451147715f, -0.802032434276146f, 0.455809631085663f, 0.985520713417984f, 0.739637167649794f, 0.311705106454777f, -0.120539152808323f, 0.977785717545631f, -0.848554870988208f, -0.281179241544089f, 0.931102239520177f, -0.255243432382956f, -0.284952242030900f, -0.189341152192864f, 0.647573166562597f, -0.474203015584843f, -0.545915610099538f, 0.672696420688916f, -0.239274489717776f, 0.956544960216021f, -0.0858024073600807f, -0.758223415922611f, -0.00817763648068581f, -0.500893489164054f, -0.669386983409311f, -0.344450617815217f, -0.728051392792875f, 0.804121117816188f, 0.00718436691280910f, 0.195237363230272f, -0.472485206728796f, 0.642070241911164f, -0.272384993247314f, -0.731715323915071f, -0.791266589031733f, 0.0339783427570857f, 0.0696513783219659f, -0.894169486972683f, 0.00234016305501483f, -0.0403382685361653f, -0.943600572111266f, -0.788181603936192f, 0.851406365407377f, -0.100015982664501f, 0.145502229793638f, -0.528736628076536f, -0.0313760382570432f, -0.662221611141088f, -0.885722031379862f, -0.744257140212482f, 0.524976313116033f, 0.186092035304635f, 0.181669793648209f, -0.606482674165339f, 0.849303544554227f, 0.226118051135263f, -0.690025550727719f, -0.256543384397548f, -0.207714017766381f, -0.447913202664626f, 0.375270273897879f, -0.884312586292038f, -0.0838720085819762f, 0.969898436757285f, -0.736808033249456f, 0.668875150485586f, -0.599937439969920f, 0.470077288925414f, 0.903135367105719f, -0.895619185450694f, -0.637694108244489f, 0.572669535020987f, -0.696211470281632f, -0.820577518545193f, 0.937364674938455f, 0.422458818039761f, -0.593964370461091f, -0.586264791612426f, 0.0282373486927521f, 0.298051147134121f, 0.592825359583763f, 0.716195674857467f, -0.684008410968338f, -0.167523841045924f, -0.370794208549223f, 0.768054740581884f, 0.997835641681024f, -0.366262133888883f, -0.523114034556271f, -0.457946740456489f, -0.530941146838744f, 0.298744841822404f, 0.390761228562591f, 0.0871171594445448f, 0.764002674223649f, 0.233966808661423f, -0.116573523634048f, 0.426118986433559f, -0.255934695328716f, 0.302314199650152f, -0.254971729124577f, -0.330865677738578f, -0.0840307537517577f, -0.711910586170446f, 0.622585361690409f, 0.367595248366733f, 0.422102667722561f, 0.269580206097961f, 0.707083822001774f, 0.625367208198523f, -0.729594790471199f, 0.708679674727951f, 0.00355767003560614f, 0.379158300246371f, -0.688791438249760f, 0.261637457245975f, 0.704008781391790f, -0.917586017594177f, 0.886443038824615f, -0.923559496787343f, 0.360365726214756f, 0.547058288460181f, -0.279853192856989f, -0.996331953899586f, -0.323735921605962f, -0.618788277975037f, 0.314597206161166f, 0.106380963133907f, -0.235044228453968f, 0.0406899091091886f, 0.687339428801573f, 0.344837805924860f, 0.123214914005620f, -0.735264225932133f, 0.0396243248944774f, 0.270602083588730f, -0.316104623194235f, 0.201800731173529f, -0.348987679395254f, 0.994312100135549f, -0.986073454140000f, -0.787571177818193f, 0.508460947811657f, -0.443663972776222f, 0.800303477136838f, 0.712158443474503f, 0.958364684407633f, -0.0512343510942759f, -0.391095518504938f, -0.291911155637644f, 0.721770656984705f, -0.163541232110535f, 0.0366644501980513f, 0.700853097239887f, -0.508089885354834f, -0.375072588159867f, 0.161585369564288f, 0.686325557438797f, -0.113188612544717f, 0.859354598908873f, -0.723198679696606f, 0.398879124170303f, 0.139357627051752f, 0.484780500073663f, -0.0437501438537016f, -0.868783676783105f, -0.147865612288567f, -0.116480069295514f, -0.986846049950927f, -0.859405305954576f, -0.631359938031082f, -0.0310065270390489f, -0.288382201791710f, -0.500960878568203f, -0.805633068309090f, -0.837604329816134f, 0.0325253228618525f, -0.538953832190091f, 0.913844038280417f, 0.681967460199437f, -0.656775429658090f, 0.922492558885196f, -0.689527254640680f, 0.688263898240070f, -0.225450858342925f, 0.0287239965989763f, -0.407744573364816f, -0.477326718671529f, -0.780374037627418f, 0.500400378743065f, -0.532646941279704f, 0.999679272201893f, 0.136003002234441f, -0.811267727922649f, -0.585019862511894f, 0.125465493193590f, 0.203160759437510f, -0.101322607820275f, 0.543784310894398f, 0.630139383695983f, 0.775322422120693f, 0.229262447827729f, -0.656821799421711f, 0.795940998463793f, 0.263281283116320f, -0.377237794697631f, -0.714267543277316f, -0.161924029976839f, 0.804294011825499f, -0.500488029613262f, 0.716655543045374f, -0.709565530287520f, -0.260746944768714f, -0.496886497176178f, -0.896154699339640f, -0.891352204187934f, 0.0589172685048254f, -0.952496908556348f, -0.543314015084183f, 0.0724005345282401f, -0.132089156895576f, 0.694937364018361f, -0.884509342587775f, -0.944587795707932f, 0.346949362800262f, -0.587900264454839f, 0.531217960795664f, 0.404240620498887f, 0.182769547944683f, 0.804826966991636f, 0.601398794220406f, -0.767933817870427f, -0.329693990599177f, -0.880648189418561f, 0.0370834298504716f, -0.405270662847564f, -0.551993194163015f, 0.357335885219159f, -0.442910616174561f, -0.978355051725551f, -0.638907517841606f, 0.266841057307734f, 0.778698832906031f, -0.967180516636130f, -0.772940622039654f, -0.268706136695081f, -0.326082261974967f, 0.0386785617389067f, 0.576293286973562f, 0.446884000380730f, 0.396703264915684f, -0.718633572608705f, 0.586041202195072f, -0.791039546767268f, 0.556638124682382,
0.728711593864679f, -0.576551104247230f, 0.690227524206044f, 0.0451432373341216f, -0.0569690667958747f, 0.877674150343795f, -0.268602876493051f, -0.770720641807978f, 0.630269600593677f, 0.801702094819180f, 0.177071915997341f, -0.0764831522886398f, -0.476930347674815f, 0.0196833210809626f, -0.566188434097295f, 0.309890567123613f, -0.642682312350471f, -0.645839718540077f, -0.985031719881713f, 0.153028235575708f, -0.446724738384881f, -0.616280949001367f, -0.306418078463084f, 0.313048512921978f, 0.944732667717825f, -0.292311689238647f, 0.263616032352334f, 0.776777395064071f, -0.529182830991988f, -0.418996105801001f, 0.286960890623362f, 0.588336822287104f, 0.268219370126612f, -0.696727535489037f, 0.806089151192541f, 0.0396168299208206f, -0.613570658239778f, 0.358002315998429f, -0.0576147175733950f, -0.859664908314368f, 0.930793190364908f, -0.108955403960031f, 0.640347446939098f, 0.0301817512477458f, 0.508435547839785f, -0.774928250619894f, 0.254548271045827f, -0.192551571812315f, -0.401867317012389f, -0.136220787532581f, -0.480363308055205f, 0.146599399729624f, 0.225767301672040f, -0.207158678688912f, 0.763491487133281f, 0.161192803873192f, -0.574968151683314f, -0.454043408746924f, 0.427131132989065f, 0.170648543751820f, 0.0690597676805780f, 0.0360172652133248f, -0.244429817416531f, -0.973014074152018f, -0.172642279134011f, -0.798684796670922f, -0.622626145444778f, -0.743408670602069f, -0.316057396003030f, 0.908608689971065f, 0.948356574904685f, 0.573858539226522f, 0.457065605245418f, -0.246203048690671f, -0.750525340546383f, 0.612971646035183f, 0.951528788403619f, -0.529776510809815f, 0.0886901849846271f, -0.0254136796699882f, 0.978897595553096f, 0.293893753097695f, 0.620217642132267f, 0.862352989549627f, -0.379040515436326f, 0.790157871471479f, 0.147151952442201f, 0.688271487774812f, -0.897847532497188f, -0.0355337105008888f, -0.850253422176695f, -0.0354384862653523f, -0.625796807949394f, 0.851730076897135f, 0.294773618291289f, 0.834287219330433f, 0.0758749738551283f, 0.912613321307355f, -0.326698079590551f, -0.844748577890143f, -0.685263599922107f, -0.197029963909655f, 0.591416614029013f, -0.130921826828109f, -0.524292687689084f, 0.356220524225632f, -0.150091552835503f, -0.935232109847821f, -0.302103008478127f, -0.998557516519010f, -0.477012685701094f, -0.882343341754284f, 0.210797034143964f, -0.963566378978947f, -0.855600913755685f, -0.790231379847513f, -0.625235937382084f, 0.106405105589857f, -0.760544427202586f, 0.0103124858505332f, -0.610157345750845f, 0.968354521575116f, 0.602472069136318f, -0.216458111191680f, 0.935180184275450f, -0.369261245032360f, -0.289325139062185f, -0.772389696964545f, -0.345513639348744f, 0.135539262008296f, -0.747409495863324f, -0.849724942811800f, -0.739393030129744f, -0.0301380087411172f, 0.373808817820448f, 0.760444548005323f, -0.365739960428504f, 0.121859476627292f, -0.719257541809299f, -0.136914676340304f, -0.178479405732130f, -0.336676444507223f, -0.795056125367297f, -0.0872862684496700f, -0.950510559362909f, -0.395266512078238f, 0.636773305385949f, -0.150667208767723f, 0.534401287220298f, -0.349371424663528f, -0.784729313810243f, -0.0510904599006878f, -0.938702345462904f, 0.616929636007953f, -0.228578318449040f, 0.239101663221907f, 0.0390879233281141f, -0.294705782740043f, -0.847928516841798f, -0.0480433695823821f, 0.487351505367245f, -0.820736333448301f, 0.128692585024021f, -0.305133215914817f, 0.344900079505924f, -0.764316168982242f, 0.717529584295197f, 0.655848670831377f, 0.479849611138232f, -0.107624564628078f, -0.345816374073252f, 0.0822414215758816f, -0.0120870567528208f, 0.475870901669481f, -0.00594923432583361f, 0.869227669945672f, -0.262862047504512f, 0.272430399676396f, -0.734262318791166f, 0.980593493214018f, 0.110413869658192f, -0.732486564250777f, 0.470756873196238f, 0.897133387901917f, -0.151953973158384f, -0.591296220619271f, -0.113167158942796f, -0.103020520738423f, 0.220384226627647f, -0.0570027879342681f, 0.0923157145066511f, -0.523010309215342f, 0.385053964060568f, -0.223938668105458f, -0.0566497019068211f, 0.636390081595965f, -0.753651530578004f, -0.765450358896516f, 0.790370075460245f, 0.622949415286967f, -0.0947634056426396f, 0.122381201893998f, -0.138573523511105f, -0.544298107235542f, 0.535416341314523f, -0.341107295330707f, 0.266262786345860f, 0.620108481133049f, 0.190424987800150f, 0.978559599202704f, -0.925772919482004f, -0.300038300695816f, 0.963372836978511f, -0.501235224357981f, 0.828375446308031f, -0.595716120481773f, -0.889271354193173f, -0.389843123593065f, 0.659433696092409f, -0.633476165557619f, -0.708607689555741f, -0.737738480460783f, 0.985245299432648f, 0.976853985813928f, -0.863072444190232f, -0.785830171723126f, 0.309433061520758f, 0.166813366328975f, -0.552916412621405f, 0.0385101740167735f, 0.445866961855263f, 0.222557362424800f, 0.0710515871571971f, -0.368563489700928f, 0.317406114361191f, 0.326902000037272f, 0.868261309598320f, -0.897838476369198f, 0.664364291232529f, -0.373333343843574f, -0.599809263387549f, -0.411236387818613f, -0.118186587264933f, 0.544960929851182f, 0.395925813072269f, 0.337332244255533f, -0.0195528742963547f, -0.580383437020279f, 0.0779554182143842f, -0.902635825594202f, -0.821554429188969f, 0.869996816042779f, 0.646142135585380f, -0.0824693320525758f, 0.643317857725100f, -0.903892480205129f, -0.457595546004975f, 0.540461917564665f, -0.467530238695992f, 0.107497588388074f, -0.122360487746121f, -0.276968072230331f, -0.436413500733568f, 0.0719555518906898f, -0.794937479672675f, -0.641344733876686f, -0.934734152781945f, -0.0610463967348016f, -0.302623058375597f, 0.281116298309257f, 0.557459622053789f, -0.350054779110337f, 0.681853624031498f, -0.0454067482892435f, -0.897204174835461f, 0.0289327275291300f, 0.664312739864751f, -0.368814604980581f, -0.576946854776660f, -0.187886132141311f, 0.424385580259236f, 0.257994303715228f, -0.567650112011742f, -0.0453371545575014f, -0.362909825264387f, 0.450095578912812f, -0.713870209574945f, -0.956583539581944f, -0.969891699048729f, -0.417755773448598f, -0.230738535348142f, -0.153353095644968f, 0.539368458440622f, 0.591116036659417f, 0.779095541288385f, -0.578525766017613f, -0.587777137316663f, -0.301051260910212f, -0.319655538885669f, -0.343495369437935f, 0.908167583226333f, 0.764220052027033f, 0.0536418758245909f, -0.0529753241803754f, 0.249066042857931f, -0.840152142252005f, -0.529971459254312f, -0.449462194610696f, 0.467144819001113f, -0.500103828192601f, -0.758390449663076f, 0.369740436821770f, 0.189153926151852f, -0.188283227959439f, -0.427563759945909f, -0.186773725840825f, -0.00989853573399446f, -0.783648829817413f, -0.626450875837851f, -0.328015817185970f, 0.760383401930071f, -0.00804531008117837f, -0.982799468341000f, 0.392730506677802f, 0.117799138097530f, 0.351088974844522f, -0.259750164530173f, 0.776495358243216f, -0.703059519879109f, -0.362866233240751f, -0.421345310205860f, -0.818968876330675f, 0.936887497269786f, 0.713300632813635f, 0.916608801523944f, -0.147818975792564f, 0.317064988534009f, 0.885779227314381f, -0.897706599297367f, 0.685423132064732f, 0.907830438936990f, 0.0636614655685575f, -0.423018627861747f, 0.411565657893159f, 0.911060408474647f, -0.617833142759668f, -0.709543522964145f, -0.817633731247023f, -0.252433983274424f, 0.160456393103956f, -0.160765428576997f, -0.622001061437904f, -0.470257555319641f, 0.790643274059634f, -0.648181378655916f, -0.828694900506363f, -0.0234091767546987f, -0.562865077760768f, 0.369299949506391f, -0.423850142805423f, 0.520699811923658f, -0.877662359466779f, -0.739844704434180f, 0.300520939787139f, 0.0655718600121620f, 0.970843358712180f, -0.634231195336845f, 0.324880041395596f, -0.479089635857354f, -0.196422753715449f, 0.568762754402869f, 0.699215376070842f, 0.445741923102597f, 0.679868900756090f, 0.107609859752086f, -0.980983474461865f, -0.788419140653730f, 0.0696289436185713f, 0.00330944186568516f, 0.392265626672398f, 0.803469542460994f, 0.131029913648810f, -0.845408454497170f, -0.754797811352229f, -0.824208086798235f, 0.510072775586974f, -0.809491727769575f, -0.0228491196350333f, 0.920014947791232f, 0.441066319826495f, 0.969846842038360f, -0.199024726691046f, 0.886564290041856f, 0.203997575245743f, 0.481547443573126f, -0.637742489331117f, 0.0664642070998316f, 0.109187062068770f, -0.952676759642045f, 0.309247049771982f, 0.880534651306060f, -0.269363005485603f, 0.280012695899358f, 0.853031642671923f, -0.216236966392235f, 0.903180305900435f, 0.837949615815047f, 0.748563816043584f, 0.266735542018788f, -0.685176037557414f, 0.505893787666761f, 0.977721983069541f, -0.667151469253569f, -0.451774081267849f, -0.385755850727233f, 0.681037251596535f, 0.550130384863457f, 0.704080312734731f, 0.519624533199220f, 0.789651392050294f, 0.176325856625025f, 0.684011432098839f, -0.469125761119035f, -0.841814129063957f, -0.901473334652527f, -0.117747872709914f, -0.608533033968273f, 0.199709646080986f, -0.349430401438670f, -0.435162733168206f, -0.368150014673779f, 0.699084004342174f, -0.446068942643995f, 0.197420740774886f, 0.524893584115327f, 0.706475758890142f, 0.912020785879679f, -0.820472223153770f, -0.334742316079635f, -0.851724976994477f, -0.702164662784812f, -0.649654462810552f, 0.411435475616403f, -0.0438368033650360f, 0.799231452421757f, 0.713371883779316f, 0.252437083518609f, -0.685658163265283f, 0.0734649179831324f, -0.400549431226783f, -0.415602545578540f, 0.233864615718965f, 0.828846528739923f, 0.606577491175688f, -0.266016048272811f, -0.619106744484090f, -0.690853262778644f, -0.503499724631377f, -0.409761822901473f, 0.0576293548519007f, 0.551582021066584f, 0.132631452787255f, -0.838228405334512f, -0.107475742619267f, -0.875306852866273f, -0.184700469068763f, -0.317074087896838f, -0.580912620700556f, 0.453916157844897f, 0.690470988649940f, 0.712835197480083f, 0.314786689622726f, 0.759835688452120f, -0.671090442836235f, -0.408277610289776f, -0.815988422173708f, 0.227854929660384f, -0.0482646895577266f, 0.968141192561708f, 0.373896367655818f, 0.820435826598941f, 0.817746838197885f, -0.0970819110331989f, 0.679170154451559f, -0.577986561676471f, -0.0523570914231941f, -0.776930151133931f, -0.560456597170701f, 0.927747720961181f, 0.0350177837302503f, 0.844938034137843f, 0.00849044473190053f, 0.325089161670337f, -0.851825175889265f, 0.835251667623832f, -0.266397917890485f, 0.108463887056499f, -0.817868888235156f, 0.590399913800720f, 0.699274619715208,
0.200782223352391f, -0.936155874445214f, 0.218471971175575f, -0.890402779861849f, 0.268496441855317f, 0.881231954583528f, 0.279360358017994f, -0.492400368838405f, -0.894376670076375f, 0.585129064098519f, 0.340135248071744f, 0.455880107692993f, -0.861081993524584f, -0.303321115935151f, -0.562781799622214f, -0.526041750296426f, 0.999581943964160f, 0.249814139040315f, -0.0537475603822974f, -0.845239239849439f, -0.874024176808607f, 0.997751771128387f, -0.861617607547820f, 0.671357923629889f, -0.687974310115279f, -0.969462039056016f, -0.448304961870341f, 0.713064428261850f, -0.00718668165564318f, -0.450608596544700f, -0.106059234376561f, -0.591961308554238f, 0.588633089685867f, -0.755341317752403f, -0.542715401462936f, 0.759199260356047f, 0.0297710796506234f, -0.997343196630657f, 0.574076752994254f, -0.696719940193256f, -0.852227517176613f, 0.906332566627663f, -0.171801252847090f, -0.925131151948528f, -0.0212194634560026f, -0.940316444070044f, 0.262965279952363f, 0.902198615594563f, -0.265057066430189f, 0.161983092277652f, 0.0181345459457500f, 0.467973650469608f, 0.857351800575040f, -0.889882538061811f, 0.728868283859490f, 0.671187732362764f, -0.296882575397444f, -0.793099233276668f, 0.335561922676737f, 0.0671874495572633f, -0.0857142329385701f, -0.352870876674233f, -0.119927139078065f, 0.814127111105761f, -0.323910302649634f, -0.313495077982818f, 0.0690526899468447f, 0.877155536890319f, 0.768040884649443f, 0.158910636324140f, -0.824414709871474f, 0.00718921022841235f, -0.868917281154898f, -0.564967532196669f, 0.206261416621150f, -0.0699574404456100f, -0.0547095858591442f, 0.811674902353136f, -0.562993920383635f, 0.441212008804309f, 0.917951119557396f, 0.915571961092301f, 0.0901952529553498f, 0.614118141118295f, 0.760473529905706f, -0.566505475760865f, 0.00880029006400429f, 0.975626259597421f, 0.370738159620831f, -0.0242162976348563f, 0.828887690189252f, -0.665240810020082f, 0.00123256686221063f, 0.184020074202841f, 0.829917510366750f, -0.447854906466885f, 0.529356328938248f, -0.995192699858126f, -0.843748622724646f, -0.422765372440245f, -0.386179414096638f, 0.206325400140261f, -0.369817591904938f, 0.266933785902425f, 0.892617584642659f, 0.740018647415220f, -0.481907279471296f, 0.248268418729551f, -0.382770749117505f, 0.974424303757207f, -0.879320252286332f, -0.0294961755317245f, 0.638693329623790f, -0.765127178629299f, -0.160881380476610f, -0.725001019123526f, 0.00294709357263234f, -0.701949969294570f, -0.708933381768328f, -0.463893635537772f, 0.476650147791524f, -0.206043208566879f, 0.223011684523516f, -0.258637160422673f, 0.206325908651728f, -0.432336904344548f, 0.921979975841259f, -0.944396630315761f, -0.00680582426415510f, 0.319263487872783f, -0.836389324192867f, 0.111532890274445f, -0.938142383682239f, -0.637288670131655f, -0.834211558255576f, 0.251969378874330f, -0.970874587083192f, 0.831662411079802f, -0.446568187924869f, -0.659109068071113f, -0.877869176622375f, -0.890670252448197f, 0.477602927742628f, 0.324737705007923f, -0.147513413112549f, -0.186594638422632f, -0.282864808082840f, 0.745093922271927f, 0.915500859154332f, 0.0421588655873384f, -0.483320910754088f, 0.00503734690385604f, 0.555792895688253f, 0.129412601050279f, -0.229347983583150f, -0.680101211823600f, -0.866063899229274f, 0.437769924839021f, 0.133958234316391f, 0.589233411145099f, -0.498053917701437f, 0.180863681584405f, 0.525955777469479f, -0.581250985307273f, -0.327934857804250f, 0.482381204171926f, -0.867703472610278f, 0.833733008515087f, -0.607761820334944f, -0.758512235503178f, 0.0380785706067470f, 0.719862150842292f, 0.651283470517919f, -0.614218162858801f, -0.239754124815405f, -0.733992057859951f, -0.422541764223845f, 0.951215428883086f, 0.882569470276544f, 0.937054481646402f, 0.184532408731968f, -0.104097666585483f, 0.693277433170057f, 0.800241936558839f, -0.998230532922071f, 0.259835639125661f, 0.562745639592536f, 0.220441127510705f, 0.313735993201991f, 0.330940415696351f, -0.602872424656300f, 0.841677792852844f, 0.749701489563795f, 0.266727039860087f, 0.696379094133993f, -0.430719144952456f, -0.276768289732264f, -0.0872580230244173f, -0.722033206227688f, -0.837309584159114f, -0.629739366225350f, -0.185692585028452f, -0.110619837317415f, 0.515881116042359f, -0.105875685978079f, -0.513700186568578f, 0.961245417898430f, 0.655513716233953f, -0.0921704793645632f, -0.694925472850399f, -0.872174817305748f, 0.0307133806779607f, 0.531120672076921f, 0.965271277398122f, -0.00974420246777163f, -0.497322783064087f, 0.693565685926388f, 0.546918707342947f, -0.230039497490898f, -0.316024461029338f, 0.684231559582941f, -0.306362794944468f, 0.861366189035942f, 0.378922635334764f, 0.259443877770437f, -0.838617128408830f, -0.205350631644011f, -0.139772960377519f, -0.192918167939180f, 0.602404904043886f, -0.537407583974730f, -0.877007125624351f, 0.361539942609439f, -0.732030207831016f, -0.488792995226420f, 0.612591017966442f, 0.567185560938756f, 0.195543595335781f, -0.428955670554558f, -0.666590144318038f, -0.702467396810860f, -0.894350832807439f, -0.0620405855731709f, -0.583114546325259f, -0.482155957064968f, 0.212152442925647f, 0.112603107288251f, 0.0683986906619714f, 0.639176340917929f, 0.642610005510521f, -0.708605273163374f, 0.739594669131005f, -0.492786220480274f, -0.308196102291547f, 0.918748221553053f, 0.186736140989674f, 0.438437026242591f, 0.638769573344929f, 0.928896220524135f, 0.579945520523175f, 0.218608554904045f, -0.526070140579576f, -0.140303420071590f, 0.304347769360423f, 0.488123173638490f, 0.987207018313181f, -0.536397951752998f, -0.553296120219359f, 0.184294880372153f, -0.101502970339396f, 0.287041514309517f, 0.658172721877726f, -0.270141883431914f, -0.0196021946303913f, 0.000779126872975988f, -0.0500294515684538f, -0.588505226599557f, 0.550916571982769f, 0.703271386531766f, 0.982335628009701f, 0.942133544852489f, 0.690741953320684f, 0.0466423349204477f, -0.941178278727504f, 0.121655023640973f, 0.777925151322362f, 0.132430336075323f, -0.114812120408198f, -0.694094073965245f, -0.441397675924967f, -0.187253074701348f, -0.672248118097589f, -0.688869123609503f, -0.0723581859661586f, 0.553779536791160f, 0.380610143087564f, -0.392032089052147f, -0.709403552653908f, -0.607184251637473f, 0.698227587629545f, -0.272885954851784f, 0.0736609147840435f, 0.687106303730018f, -0.230362931709251f, 0.393640839382244f, -0.846905732907407f, 0.0727598538725249f, -0.0119849190815611f, 0.470122652313157f, -0.171681529301612f, -0.329268850654460f, -0.433013841687086f, -0.943499527192280f, -0.123404693276305f, -0.0861435714812342f, -0.228816973160929f, 0.0531549757963279f, 0.901446101051298f, 0.470738280922993f, 0.238383552115632f, 0.292841887198914f, -0.617423653544601f, -0.865786115828523f, 0.586332203179351f, 0.267618252846898f, 0.888575002575769f, -0.0220649407038027f, -0.946385428026066f, 0.317436113017866f, -0.277195072909682f, -0.207326502081016f, 0.735387675940421f, 0.961386190882120f, -0.564038045970629f, 0.840007249305217f, -0.262593952346269f, -0.556378761937190f, -0.346529850864238f, 0.00895460576800877f, -0.695431082536551f, -0.105261635693881f, -0.658342101938401f, -0.631093613961188f, 0.601639903111316f, 0.886830692209879f, -0.600591324826329f, -0.350296019796741f, 0.294348102011741f, 0.555826495708193f, 0.216370653207427f, -0.672654026881445f, -0.572202359802723f, 0.202776438466314f, -0.490708964058038f, 0.0148723360197853f, -0.799031226692943f, -0.221164759306209f, 0.0323674121757880f, -0.130290693568615f, 0.613592603765503f, 0.372755498065474f, -0.540502917956863f, -0.740021877141017f, 0.652888612951242f, -0.666157898478327f, 0.476156241264794f, -0.632081251666311f, -0.538341981270842f, -0.275717185193560f, 0.332983363477103f, -0.989659450166330f, 0.212868816589688f, -0.238985653168422f, -0.453005976359810f, -0.805975530848911f, -0.948192632970312f, -0.291329963979224f, 0.549811667826684f, 0.291147979443248f, 0.909805561757383f, 0.0728533843443158f, 0.737767652888933f, 0.605331616290165f, 0.274826946403577f, 0.710517586349601f, 0.666670055891909f, 0.522059053677516f, -0.553398792071804f, -0.406610321679562f, -0.893232547853708f, 0.549587730399741f, 0.714498083720551f, 0.281833380830291f, 0.652788061587949f, 0.825163748516741f, 0.381299333971584f, -0.485549061474930f, -0.881961689917888f, 0.308937809723222f, -0.524542880617761f, 0.329114405956449f, 0.434631551667457f, -0.894732322264538f, -0.831528385961058f, 0.669760583803638f, -0.674650675537928f, -0.373119878846435f, 0.456602566684508f, 0.387804792569985f, -0.556983911869482f, 0.000826745899317194f, 0.687973801099889f, 0.0471935422816141f, 0.0768302380434509f, 0.317557055919800f, -0.823316513699125f, 0.394699119350099f, 0.609556161256400f, -0.0413041171293194f, -0.244100882405517f, -0.939678976894569f, 0.403390183804743f, -0.933567523933859f, -0.331149894636631f, -0.0265881324103010f, 0.224249195386459f, 0.888271870759308f, -0.119845268644579f, -0.357275416804345f, -0.597001288429956f, -0.486847206619720f, -0.181232488650601f, 0.115441291842326f, -0.599055795186955f, 0.213179364205327f, -0.205238322081458f, -0.373942142629613f, -0.610680997090469f, -0.495737765362772f, -0.257634306994249f, 0.583708320566486f, -0.372047136603982f, 0.953878668619925f, -0.632595987923462f, 0.452049761997455f, 0.166602807787896f, 0.773555002555059f, -0.277154387560832f, -0.557129156714301f, -0.985242402457283f, -0.441173064787937f, 0.561221765682284f, -0.352004972295446f, 0.970292440826449f, 0.855523836321424f, -0.528113079339624f, 0.685454746939680f, 0.322200261898966f, 0.953249967336372f, 0.825673980624808f, 0.177229970128320f, -0.728281956776614f, -0.479030792350269f, -0.00697019557862144f, 0.851652517094715f, 0.853865750362844f, 0.514736989335681f, -0.943509205199198f, -0.0524009027225623f, -0.0798997671509367f, -0.355414349557791f, -0.366273957594958f, -0.565729285138989f, -0.931573923976439f, 0.345119269147864f, 0.638375370217726f, 0.711524360229150f, 0.331664704859388f, -0.986788646426241f, 0.521200596781614f, 0.656290865944842f, -0.436907564088290f, 0.305075696150381f, -0.848337345127939f, 0.354044695448027f, 0.690691708552038f, 0.900352213238582f, 0.475181192463882f, 0.219103309687964f, 0.885437995493547f, 0.421455288320496f, -0.879874221804522f, 0.893371290952196f, -0.545214090169942f, 0.800731783168682f, 0.249421864783476f, 0.0766192343033301f, -0.745747520609971f, -0.613575150364454f, -0.700199720327423,
0.0694373671332735f, 0.759953164582251f, -0.0973030480378387f, -0.298615297250225f, 0.0176506580013247f, -0.269562553201540f, -0.405489169051539f, -0.00491991297033256f, -0.0327449030548885f, -0.688168836745951f, 0.703014457338754f, -0.0909491575673764f, 0.738417882180070f, 0.202377973915515f, 0.338436193625848f, -0.408790267504483f, 0.611776208408261f, -0.711043784659083f, 0.841495665411188f, -0.0445715899008592f, -0.127281559164749f, -0.778797832908623f, 0.210344625249896f, 0.287086540530447f, -0.703702357088620f, -0.151146112491418f, -0.785180444786487f, 0.427963227387140f, 0.873814130606035f, -0.344356753075357f, -0.755726746591465f, 0.846013365191461f, 0.126678120904524f, 0.166687962199295f, -0.148273386834835f, -0.770559345875477f, -0.999129219024862f, -0.223692721084046f, -0.652712854614213f, 0.468054498362978f, -0.911782175948953f, 0.555084850374905f, 0.103972972463380f, -0.414021910330282f, 0.938793897617340f, 0.515461292224815f, -0.127677414947037f, 0.510661477088580f, 0.898409443447962f, 0.528096097102698f, -0.444620870908750f, -0.275909952832928f, -0.516074838791812f, 0.110104492330694f, -0.293114842926621f, -0.596621371059734f, 0.152807456749103f, -0.592864305196648f, 0.948295231208874f, -0.575278847840010f, -0.312463646261757f, 0.664597237604897f, -0.177619554099550f, -0.932259652303036f, -0.295074750863924f, 0.731539128777660f, 0.860409131570119f, -0.0947206503071862f, 0.106073387018718f, -0.235389180430490f, -0.494787189603633f, -0.536357147973158f, -0.680862001049455f, 0.618979489665256f, 0.613893487415732f, -0.308605775713246f, 0.694789556987429f, -0.440049894326668f, 0.908690328690240f, 0.233612239829512f, -0.190662564463532f, -0.344799878911344f, -0.185877286582818f, -0.553543917790750f, -0.859543533414720f, -0.996044831818542f, 0.0388505104043095f, 0.650508591477642f, -0.425233346101631f, -0.576839967180874f, 0.378730359294024f, 0.531713629917424f, 0.506096660522796f, 0.854779196325727f, 0.725302682547051f, -0.414685510902716f, 0.654208477287561f, 0.580368151427426f, -0.000356066597174687f, -0.897393734991154f, -0.845565244312410f, 0.615044057364182f, 0.0434592638759266f, 0.342119048500289f, -0.696414680186901f, -0.713269554140146f, -0.580866925323696f, -0.290886355957456f, -0.473082507703548f, 0.517942229000179f, -0.846159512055215f, -0.715410253368047f, -0.526272663742330f, 0.114004124940380f, -0.207397773975621f, -0.920379649009572f, -0.277970833475531f, -0.636533427057722f, -0.972531734576472f, -0.687000156900366f, 0.872752357637196f, 0.617872391924648f, -0.835274231587444f, -0.383282792481497f, 0.399233665040770f, -0.191230601890140f, 0.620222785371960f, 0.106379326744619f, 0.987222511696630f, 0.219022023664391f, 0.179689082166371f, -0.961619514581522f, 0.570178582343486f, -0.811091514477978f, 0.924484469376845f, 0.744507591138529f, 0.272936430096096f, 0.0646316580619510f, 0.314005111302676f, 0.558833629327024f, -0.329744916784918f, -0.544045568909541f, 0.895769679770795f, 0.798125821580789f, 0.877473384028199f, 0.616163339432501f, 0.441057381106904f, -0.642498173762053f, 0.989059595616979f, -0.374771110304453f, 0.480877593471524f, 0.904941689893360f, 0.428742160807762f, -0.430483645585549f, 0.0830560957640680f, 0.694220841170708f, -0.602964792788891f, -0.522672782287498f, 0.717494777479591f, -0.918002255923909f, -0.454075191574169f, -0.378662039464110f, 0.221482629450150f, 0.750918040362614f, -0.636211037178780f, -0.254529141198887f, -0.944623201010144f, -0.720775773991847f, -0.674641067104323f, -0.208243950413264f, -0.959488786545901f, -0.619966503980330f, 0.599486634018692f, -0.0955439064236721f, -0.458181000169795f, 0.736914498713083f, -0.176789993854223f, 0.676652697410790f, -0.967275583857650f, 0.319377813603719f, -0.427030468653864f, 0.0670640089595258f, 0.769945699222976f, 0.767923203047440f, 0.985790354694142f, -0.207111795449682f, 0.219134401666738f, 0.548513609112215f, 0.977227384558063f, -0.198131173309759f, 0.914163808432723f, 0.178214485462450f, -0.240590252223318f, 0.356128697574950f, 0.453093488702627f, -0.0401152114159198f, 0.818060948361957f, -0.880551400213416f, 0.631519794065582f, 0.658832307703964f, -0.179752451562622f, -0.237844011105596f, 0.739834592198990f, 0.711355594921083f, 0.774856912009109f, 0.321864249971600f, 0.470574585274056f, 0.261964793641569f, -0.634481134262705f, 0.461363065389595f, 0.0879014163867016f, 0.698353456328335f, 0.0611830044908546f, 0.918599000791453f, -0.147822590771951f, -0.208296009525534f, 0.775436805889909f, 0.0380914463017457f, -0.954468558268744f, -0.620451283908529f, -0.770251739379244f, 0.772246778681563f, 0.326462458587915f, 0.417738473564738f, 0.0942643452092895f, 0.486153909005530f, -0.720202618855819f, 0.0172425211828453f, -0.460430186764708f, -0.582933725313246f, -0.439721219285309f, -0.694337374508112f, 0.493516461453915f, -0.993527345413430f, -0.562763570629586f, -0.0644937992008268f, 0.741476357523546f, -0.668588797988340f, 0.594184164979780f, -0.605220767543645f, 0.110074204567278f, -0.599398769115359f, 0.723882026196765f, 0.678747828159456f, -0.608589528492249f, -0.881419419882399f, -0.139357674240927f, 0.873828011683502f, 0.314798068434754f, -0.457017849147976f, -0.526003289738433f, -0.411404919696823f, -0.792254466556923f, -0.299635866135236f, 0.0102316480137963f, 0.161921266554201f, 0.981427028530907f, -0.647351555346480f, -0.183312260273700f, -0.348651484808239f, -0.198142718294920f, 0.589869434168343f, -0.201926511662287f, 0.0337896878721506f, -0.0276515055864679f, 0.236943449722327f, -0.473103622922213f, 0.954358213176107f, -0.536519478008862f, -0.603363977756898f, 0.776267386457251f, 0.780662223932714f, 0.289187291033147f, -0.439954328280331f, 0.0429585232791456f, 0.457321950803212f, 0.236810565417317f, 0.167393310927116f, 0.634521586990289f, 0.154409349572581f, -0.750588956901316f, 0.862647670558265f, 0.800182258889404f, -0.342011510602950f, -0.102697321575297f, -0.797254530582515f, -0.718599505627591f, -0.729105921762328f, -0.152424255231618f, -0.702781451563249f, -0.0212710413372206f, 0.961258625954530f, -0.598484979483616f, 0.188043416567111f, -0.511990501189325f, -0.437449883017104f, -0.352443017251219f, 0.0991554004559394f, -0.663282401319921f, -0.835139403797870f, 0.587602722898819f, -0.939771062270554f, 0.613878515061637f, -0.523857415147229f, 0.444842501987166f, -0.297001528475358f, -0.914581150341453f, 0.554844832376064f, -0.816400014706997f, 0.823726509832068f, 0.704425080572720f, -0.819397910034912f, 0.999003444973468f, -0.968751535943602f, 0.0311500939174130f, 0.247867291448898f, 0.835560943875924f, 0.169794916341582f, -0.302041142019408f, 0.289549413666482f, 0.672141268085176f, 0.947060095876251f, 0.324754171403184f, 0.800014020753458f, -0.785428883146460f, -0.463092135879982f, 0.659192831110219f, 0.118301326248760f, -0.542297334341874f, -0.335957421787428f, 0.794808066256455f, 0.625133567458879f, 0.227917183877260f, 0.533557157748932f, -0.948877884679630f, 0.186417887458649f, 0.859592912781013f, -0.0183320237921572f, 0.967066787435574f, -0.141349529637213f, 0.958107445094614f, 0.264359167622140f, -0.631325355674829f, 0.684598042547604f, -0.527467468151933f, 0.294659298854560f, -0.439220168509424f, 0.391038218778621f, 0.0155669207052447f, -0.681384294454809f, 0.146739459198561f, -0.756404876084652f, 0.381192113543008f, 0.442850940158445f, 0.964002016096921f, -0.0507253848694798f, 0.563462880019551f, 0.190980650425415f, 0.482598778123453f, -0.273426091300166f, 0.980640722167518f, 0.198298590133615f, 0.678100193958147f, 0.530416610025615f, 0.196483886579908f, -0.00515783872303177f, 0.0273438459465027f, -0.257248394117661f, -0.576964504105195f, -0.331030677719652f, 0.389178134459083f, 0.0714066784585938f, 0.915179137858455f, 0.529738860096996f, -0.0851681338619263f, -0.692212896293625f, 0.0786352959300358f, -0.122712774017974f, -0.154641019547052f, -0.487537192251297f, 0.0435645872670241f, 0.856938631597551f, 0.351874085305670f, 0.708100804109985f, -0.701200509799317f, 0.0804479422214388f, -0.0794375302823220f, 0.543751723132725f, 0.346144383452864f, -0.680373368944156f, -0.572281173045994f, 0.237981706511708f, 0.0671482960376590f, 0.852393956008547f, -0.301262907769845f, 0.523762878044853f, 0.0885512158718469f, 0.885168455552951f, -0.333351382431635f, -0.914187358461713f, 0.657220242471575f, 0.202238670865175f, -0.660684692864216f, 0.641271628674064f, 0.795923699912913f, -0.332641448887164f, -0.297595219329770f, 0.427283618553541f, 0.601893958036382f, 0.355248259075043f, -0.420766820174961f, 0.355159952778514f, -0.806733697216087f, -0.694403711049608f, -0.719250654428532f, 0.580487742419744f, 0.959156165420351f, -0.941898541689400f, 0.960568821753178f, 0.119007749103819f, -0.973468502734443f, -0.627534816021182f, 0.331394418445345f, -0.415230278112412f, 0.225355270950915f, -0.216818510922154f, 0.716553646689289f, 0.149097723527982f, -0.212491921692561f, 0.681645638056938f, 0.675358683729395f, 0.0591550775861416f, -0.221626142364110f, -0.235878877821190f, 0.168188057112471f, -0.709738432254387f, 0.842890391064944f, -0.331175752377862f, 0.231375360302226f, -0.714989093452242f, -0.492645353426504f, 0.552424848261518f, -0.436987392663331f, -0.336155191719795f, 0.137666231065822f, 0.739347397348610f, 0.493222787180627f, 0.283646543313800f, -0.603522923409923f, -0.474181275984451f, 0.249315354427624f, 0.323736714335287f, 0.933612934150728f, -0.651555022796413f, -0.743229221575077f, -0.648309364385349f, 0.115117716036212f, -0.0689988553878600f, 0.0394979772968704f, 0.732729774997258f, 0.487584669162102f, 0.808754952095239f, 0.827617962775983f, 0.550826738558347f, 0.890858298785235f, 0.152998196795770f, 0.401198245071198f, 0.187173931669199f, 0.576387011979054f, -0.464903903379260f, 0.735172244343599f, -0.0393734341215035f, -0.501927105416023f, -0.852926247859480f, 0.384774001880198f, 0.723957370923565f, 0.869614310250896f, 0.698124990202440f, -0.0618370378422302f, -0.273879540781302f, -0.0745005910544518f, -0.754408143155094f, -0.859084370639359f, -0.709011936778905f, -0.883595552533659f, 0.326386065122049f, 0.756686513420982f, -0.639817612043620f, -0.536531544653662f, -0.596858657734988f, -0.187117983404806f, 0.760208405412209f, 0.191383034225783f, -0.771443976174702f, -0.371171018178012f, 0.723338724416329f, -0.325113980261468f, -0.652823731845602f, -0.902765567501679f, -0.109945188610355,
0.863727536109734f, 0.762531987550249f, 0.484671237555863f, -0.376731181566557f, -0.961176245257487f, 0.374503763045540f, -0.275274129954644f, 0.947951135663002f, 0.891610575724484f, 0.233179187366345f, 0.868694446846928f, -0.201812205484274f, -0.676342903796604f, 0.962133604967067f, 0.0941637112283598f, -0.0856261317646829f, 0.375061189807232f, -0.275342940020193f, 0.0614298144531287f, -0.183234253182376f, 0.146964792162229f, -0.307180215012337f, -0.139123531176191f, 0.130840221889238f, -0.0654726742084248f, 0.988722897887987f, -0.805684911622576f, 0.763299463922693f, 0.148136188784880f, -0.432183160161832f, -0.592185939638987f, -0.593835208842770f, -0.366135084813261f, 0.840566739882685f, 0.572052978307971f, -0.825682529425410f, -0.970222226210689f, -0.554421263584439f, 0.324648156825255f, 0.0472246837302466f, 0.168098848238140f, 0.00634984653176796f, 0.850237261066903f, 0.286624344510407f, 0.196043215794080f, 0.289161416244007f, 0.334801090322515f, 0.871286740072183f, -0.754609531300255f, 0.623871003889383f, 0.0843430009639772f, -0.736369938040848f, 0.400507674511444f, 0.816325383600297f, -0.500667496861800f, 0.453092855162135f, 0.281798170796444f, 0.631969623501011f, 0.472467114651372f, 0.525988741184527f, -0.124862967293674f, -0.882904489381606f, -0.501090007558747f, 0.631622297793485f, -0.0234210285578584f, -0.521093811962915f, -0.0402368492672573f, -0.762999364505356f, 0.948716268452360f, -0.572740830308272f, -0.261042904339051f, -0.506108365537530f, 0.585933508412429f, -0.362463094458446f, -0.885375028242576f, -0.835757117571791f, 0.337250829139564f, 0.298618238243588f, -0.744903291826588f, -0.979848674056393f, -0.488518944548476f, -0.000297116577397283f, -0.137863396173336f, -0.627207234158244f, -0.970417810284170f, -0.601487862773028f, -0.999527775716382f, 0.116672274325216f, -0.786330829714504f, 0.740118245374718f, 0.856485463622646f, -0.555144930193560f, -0.0168912375666686f, -0.774544329159697f, -0.782767315598991f, -0.600844843420598f, 0.885816107471180f, 0.577075799078571f, 0.663829997048111f, -0.359000184287277f, -0.390009578642891f, 0.202240602818017f, -0.0191477232064394f, -0.566459499064884f, 0.288883557382261f, 0.962583478738218f, 0.782123756762393f, -0.312311582870785f, -0.749354208187204f, 0.205679267602357f, 0.804004517387718f, -0.733078779233144f, -0.426195645938973f, 0.686872484317089f, -0.398704803137823f, -0.267786412313359f, -0.374306263341615f, 0.632992513422251f, -0.972217744254910f, -0.167080739523409f, 0.608176739669718f, -0.935550125875275f, -0.422451600932096f, 0.499643952974426f, -0.491034978653149f, -0.0256130378373849f, -0.158669355267388f, 0.360503946885584f, 0.227714934784132f, -0.138648043280479f, -0.0707461296301128f, 0.0638330442765616f, -0.168811643868974f, -0.575670642767690f, -0.162143785491822f, 0.528621079903453f, 0.581283330394272f, 0.444430744183000f, 0.859288341846780f, -0.170487584890459f, -0.440175706710406f, -0.184806402672108f, 0.676010805169568f, -0.0117535553470483f, -0.231606756742133f, -0.210042044569361f, -0.517950708003565f, -0.805772781723687f, 0.156938933772370f, 0.892075905739393f, 0.403874478002384f, 0.572031508558373f, -0.604145909072008f, -0.330076696654475f, 0.0314560087228033f, 0.683787496948704f, -0.788582181996934f, 0.835276281386949f, -0.0644658492206380f, 0.938270191882745f, -0.344927907293928f, -0.976720519493346f, 0.906264084343827f, -0.648152742145255f, -0.776984965421811f, -0.299470572593974f, -0.423690646950321f, 0.749911693814570f, -0.701929894551648f, -0.665191316321370f, -0.568359320650352f, -0.957309362369509f, 0.914088966355983f, 0.770952996203681f, 0.0924190787439159f, 0.844599990803978f, -0.613336716591875f, -0.683270165308367f, 0.358563204319583f, 0.934597169812267f, 0.236596595813630f, -0.895964332479994f, -0.673302324943916f, 0.454883302340070f, -0.473926010524343f, -0.576000657136217f, -0.644850950007290f, -0.980218836434995f, 0.321620362364719f, -0.799924718666919f, 0.0619872524925393f, -0.609255645268410f, 0.159243124858648f, -0.339764623434603f, 0.379865023026277f, -0.923132229333074f, -0.0300494021321296f, -0.183835365297645f, 0.122648511393234f, 0.887652015676064f, -0.616448517838488f, -0.920600866006207f, 0.352861591267815f, -0.930578364778234f, -0.378819076263050f, 0.775423778544869f, 0.836977798656885f, 0.0472244767469148f, 0.484934339557912f, -0.939155187409193f, 0.261555270800537f, 0.143595058480400f, -0.323517719771947f, 0.483466454684928f, -0.423163689969697f, 0.356966814701025f, -0.843907304366205f, 0.945903563730962f, -0.495952298317153f, 0.972277051575873f, 0.153052037173145f, -0.715894882755676f, -0.617028915483254f, -0.332307224095366f, -0.171207102890728f, 0.841771328272651f, -0.0308707743261867f, -0.626480028747696f, -0.729235538916864f, -0.743517330301179f, -0.733868915239511f, -0.449192858200231f, 0.362286468575150f, 0.327436676142902f, 0.609768663831898f, -0.147499187968100f, -0.470195300907973f, -0.232167856443943f, 0.225074905574485f, -0.0818541072414634f, 0.793403933843056f, 0.267628199755028f, -0.391701371806294f, -0.846991992740029f, -0.776221590294324f, 0.121351482320532f, -0.189789365942677f, -0.894392208695015f, -0.632864319945356f, 0.927817761109627f, -0.732454610273421f, 0.260011686544283f, -0.713973491605344f, 0.469764032416604f, -0.608895265807545f, -0.684992974060601f, -0.745556289276139f, -0.536308213076133f, 0.586581187207818f, 0.149804345860779f, 0.401576742698496f, -0.719670291046630f, 0.618659855530024f, -0.256639783379370f, -0.862966031725668f, 0.893866512913152f, 0.861800793529066f, -0.704895723095590f, 0.154163397540805f, -0.0775797186536984f, -0.252297335448882f, 0.869851864160888f, 0.428747373815147f, -0.818372805928921f, -0.739117647833389f, -0.697378012429133f, 0.182997863108567f, 0.689563104159966f, -0.0506114067037338f, -0.705077813920782f, 0.452892458862023f, -0.365069844049503f, -0.889224821648518f, 0.0194889225677406f, 0.847743515500726f, -0.0650338075825718f, -0.108889937983496f, -0.168485037502421f, 0.912533003086865f, 0.428132366084106f, 0.692652998111620f, 0.130599999674344f, 0.411245435867244f, -0.194909473459497f, 0.562152151569866f, 0.503795293326445f, 0.801805532943245f, 0.795718119772331f, -0.327975015537058f, 0.771389506217327f, 0.237139782375987f, -0.793798852884360f, 0.537824655594807f, -0.0767253125021830f, 0.444538451472890f, 0.623473048970629f, -0.500663871860675f, -0.890399840538612f, 0.389528755348857f, -0.915832255765501f, 0.000652855725217894f, -0.121310443088642f, 0.206662014558968f, -0.409513641801496f, -0.0496262665388731f, -0.313314447256644f, -0.994839397423865f, 0.344513198428247f, 0.250828855150578f, 0.845438302422055f, -0.728803841305459f, 0.249670562418639f, 0.543601559270672f, 0.0138774767713057f, -0.0667600054234216f, -0.803421294778238f, -0.222729734665659f, 0.461896933387103f, -0.378537171475208f, -0.464200027877777f, -0.363170335357481f, 0.616070694104851f, -0.316407896795124f, 0.131719997218670f, 0.0622146037260092f, -0.881713850066484f, 0.400811652868418f, 0.163777537634682f, -0.528768052383715f, 0.553072310703894f, 0.931393033749660f, 0.410062835546529f, -0.190904471223264f, 0.0533617852685424f, -0.911780226731855f, 0.823696403963215f, 0.756735978125573f, -0.849701310148249f, 0.106070214350541f, 0.747890454578944f, -0.559823302095172f, 0.976181619002882f, 0.506524051225122f, -0.0735228576098872f, 0.635610640336510f, 0.607728217052133f, -0.383443012662118f, -0.640835123345673f, 0.0897243696426577f, 0.722421963278953f, -0.368833835044170f, 0.684790387373836f, -0.0336846755494535f, 0.199819176553169f, 0.351822803019512f, -0.433387005248570f, 0.709401898386598f, -0.0149217994364210f, -0.549115733466769f, -0.774049259429836f, 0.440376751789406f, 0.740171176715015f, -0.322301969056869f, -0.148261856544327f, 0.724527166150266f, -0.744178178219827f, -0.743031462890542f, -0.00997727490160383f, 0.550074849063942f, 0.147825200269716f, 0.777182602759074f, -0.625412073440604f, -0.0614214671235789f, -0.400121310797195f, 0.864511820640236f, 0.327656445569618f, 0.765838911283705f, -0.906185069285438f, 0.543656228031101f, -0.527337383463707f, 0.544932532036177f, 0.453966596910417f, -0.422906847383216f, 0.803455668330395f, 0.496651297123425f, -0.254890927444284f, -0.940902660088963f, -0.0691448074129200f, 0.0165534278793877f, 0.510199004798987f, -0.0286331020627788f, -0.141471298460923f, 0.872000980716430f, -0.752995088893842f, 0.167696515625982f, -0.181673581299286f, 0.496236252387172f, 0.854022562040503f, 0.388320660177419f, 0.499320363074588f, 0.173522726183149f, 0.0334192536945390f, 0.631347719906229f, -0.832803059709609f, -0.523826088751894f, 0.322557683663180f, 0.0263621365506006f, 0.948982322858062f, -0.253991680115490f, -0.165970359640120f, 0.331700483099733f, 0.808731855823033f, 0.159862831431822f, -0.438178259673022f, -0.943749594272300f, -0.967819867274861f, 0.263403865531262f, 0.710981741513574f, -0.274597382335371f, 0.929606564147885f, 0.125943272920181f, 0.691306164809532f, -0.607946869004681f, 0.284352421048012f, -0.421663515398071f, -0.409479725854699f, -0.152265311389352f, 0.630868673855242f, 0.123144840061153f, -0.645105689918733f, 0.360153393247973f, 0.683885744053582f, 0.752598814717991f, -0.581494857182821f, -0.469116962448560f, -0.0691726199196117f, 0.174679188611332f, 0.351269328558955f, 0.394815335607621f, 0.710281940645013f, -0.618593505217632f, -0.721546422551907f, -0.974088703589852f, 0.939556772536401f, 0.599407011070674f, -0.342213391542906f, -0.387135346574836f, -0.572027944718123f, -0.622717582512866f, -0.676949872287677f, 0.993953153886700f, -0.784539234625462f, 0.788778188174951f, -0.0652679971583152f, -0.988740647590182f, 0.748989697777310f, 0.412949190397683f, 0.206661198525718f, 0.573116044772809f, 0.938498079842984f, 0.743167714677278f, 0.755679122637903f, -0.295095987460132f, 0.217166189740252f, 0.230160404687938f, -0.504654557405015f, 0.472402206737240f, -0.867751757044285f, 0.869050101160567f, -0.905285205825199f, -0.0698843699947245f, 0.762379282963140f, 0.634191197174691f, -0.498487028811837f, -0.284257632541078f, 0.224245853978976f, 0.412950901773606f, -0.831984679101472f, -0.375663639002356f, 0.153699995838016f, -0.953997055484851f, -0.545360745186449f, 0.637687001020610f, 0.465459355638311f, 0.0769011654935299f, 0.267123343048604f, 0.545842501706277f, 0.778890986545214f, -0.363432183057524f, 0.479786652022207,
-0.600912698239979f, -0.738845504293020f, -0.775987143750184f, -0.705559714187038f, -0.310523750352236f, -0.576081829930414f, -0.0341897834633795f, -0.388414434291246f, -0.790681299048144f, -0.169440674711419f, 0.219815472280053f, -0.323451599202462f, 0.835623141427806f, -0.932446301638351f, -0.831480966559550f, -0.185050128422203f, 0.946045240208487f, 0.864740749402213f, 0.916918979039328f, -0.204049261822351f, -0.807183358636872f, -0.484543897885746f, 0.974235382435000f, -0.208019257024664f, 0.647411336652954f, 0.0961385231960816f, -0.800258527388060f, 0.352982142334643f, 0.917274278881503f, -0.733934252997685f, -0.229420044045673f, -0.358499183112933f, 0.469156578609832f, -0.859359096702447f, -0.937762141277625f, 0.389776419837803f, 0.458425599271073f, 0.542973137971009f, 0.675023236195573f, 0.944029213696263f, -0.774027667733194f, 0.262984845114612f, 0.842689106929982f, 0.349251854560315f, 0.815938991679117f, -0.226283690374971f, 0.144356327986477f, -0.610588223452142f, 0.539695204296007f, 0.655759463021729f, -0.725805170479948f, -0.194977831685847f, -0.306105075607822f, 0.725461617920836f, 0.678283785172857f, 0.250577882812283f, -0.571672652704059f, 0.112132856850530f, -0.236412229648694f, 0.768173015701816f, -0.799251028098975f, 0.100723381526471f, 0.113856811781171f, -0.0281630563735495f, -0.0727902548617043f, -0.515248547261805f, 0.795765010992038f, 0.505540143557856f, -0.496124371632015f, -0.363010091302494f, -0.302067159683438f, 0.941309812688142f, 0.0564765277142674f, 0.733027295879568f, 0.582734217224559f, -0.159007222603058f, 0.827637470837748f, -0.163060519537145f, 0.352357500273427f, 0.920405360379926f, -0.280691553157313f, -0.401974149240862f, -0.131353114797667f, 0.0719728276882135f, 0.795795661384902f, -0.348203323368113f, 0.946184663961743f, -0.188400643814906f, 0.979319203447783f, -0.132195434304746f, 0.585832597473452f, -0.894730397941282f, -0.998045985412111f, -0.717844040997160f, -0.706372640246558f, 0.237517748136224f, 0.767232946579208f, -0.246080656591091f, -0.767887803661775f, 0.139501344992184f, -0.545658806327887f, 0.480755550666584f, -0.355750609145607f, -0.493518864013929f, 0.832011102158605f, 0.122542855024589f, 0.179356501845966f, 0.630805165349165f, -0.888557403477561f, 0.861375782261841f, 0.963467658712489f, -0.00498707715217361f, 0.341894517453263f, 0.654808049991043f, -0.826909952854692f, 0.101446328788119f, 0.401514152845232f, -0.830556985096328f, 0.832187560444347f, -0.657254039822149f, 0.0304197382717133f, -0.718462386339415f, -0.592343549551534f, -0.356333235896531f, 0.674135547073730f, 0.606490641440102f, -0.707328770155748f, 0.0251846271186025f, 0.763024927861424f, -0.258224600040528f, 0.456384203436896f, 0.626482995304888f, 0.162353458245830f, 0.964280614412026f, 0.869262296229816f, -0.0659501568862260f, -0.712869755397848f, -0.946968242335746f, -0.852822740386429f, 0.791522782900379f, 0.824530390150335f, -0.369383609091590f, 0.118366422602132f, -0.713278848975255f, 0.549165545117801f, -0.00201102645336770f, 0.748955154405439f, -0.173689412898754f, 0.175162399203493f, 0.0819730422177463f, -0.804833155982895f, 0.972966530563786f, -0.0614871820303859f, -0.293463394754661f, 0.885919261783643f, 0.498531250561504f, -0.808874001349436f, 0.364344357769432f, -0.945616638616975f, -0.285864129675031f, -0.0438177789332626f, 0.303981486324719f, 0.362653007142366f, -0.543157427730716f, 0.174551703296805f, 0.140105048664068f, -0.704163993684247f, -0.647461975308389f, 0.831243960763754f, -0.364954329841192f, -0.730289885595360f, 0.0119708019435723f, 0.796338505809816f, -0.227851954967331f, -0.927330125804492f, 0.0602265250934577f, -0.485204061877453f, 0.198319346525046f, -0.529723177394882f, -0.321493822700232f, -0.839566193416413f, -0.187812484529161f, -0.396142329367383f, 0.367600156667632f, -0.922657847865138f, 0.893508892950972f, -0.504434314314017f, 0.663184814192863f, 0.887813887366393f, 0.267103483259066f, 0.984313142773772f, -0.667515321448428f, 0.0718416862496054f, -0.733363156570869f, 0.00186343206374962f, -0.316531364321301f, -0.467549697367438f, 0.569865535259013f, -0.556502178434536f, -0.650896672234238f, 0.564462797319346f, 0.585276582729153f, -0.433005641153548f, 0.847012427243871f, -0.462088105064984f, -0.379468633087939f, -0.0104892833799723f, 0.654191676584918f, -0.893278846859767f, -0.689350274835588f, -0.333220721049179f, -0.0461703436190983f, -0.463411501818667f, -0.995085073808794f, 0.526075522777196f, -0.0686703698159610f, -0.855908120278260f, -0.239774384006192f, -0.524142243888286f, 0.119526621106050f, -0.838266471869898f, -0.459366707886497f, -0.974921205300089f, -0.680517660007036f, 0.507695286553230f, 0.0920009889477380f, -0.674459855090400f, 0.554585280302756f, 0.357871391273056f, 0.453052004120624f, -0.991707675828263f, 0.144725488641274f, 0.0886535789688503f, 0.708257184179799f, 0.579351194763774f, 0.902098539548710f, 0.0104715251706708f, 0.112677648152527f, 0.0513772996762050f, -0.647561525299580f, 0.321958856072156f, -0.433510239079594f, -0.481493822802105f, 0.651663699618654f, 0.922649363108760f, -0.751799312011289f, -0.0336105332513619f, 0.236872038257485f, -0.0434863841224971f, 0.150810692021768f, -0.217629544451037f, 0.345890414626050f, -0.471941673338326f, 0.675001035054686f, -0.986585320322202f, -0.784679789758475f, 0.270727429189404f, 0.595792127677512f, -0.485969146811564f, 0.222507692419212f, -0.850070310429306f, -0.575184466843042f, -0.220860571657717f, -0.749449040845746f, 0.743039624335149f, 0.463892797640518f, 0.224829531690830f, 0.935410439714992f, 0.00609595972560872f, 0.830877831388658f, 0.0270299847557276f, -0.648763861115704f, 0.471982277585509f, -0.145722971031426f, 0.650947186397952f, -0.266164907037466f, -0.962378355156458f, 0.354855353373398f, -0.184127215272909f, -0.825621979621661f, 0.595495186093792f, 0.448679578752395f, -0.839671989567806f, 0.302158874138200f, -0.735484620769119f, -0.891040803749876f, 0.880298595525880f, -0.281199581528421f, 0.0195033020490396f, -0.511515485794419f, 0.447303195702203f, 0.375317547074287f, 0.964442757731427f, 0.167643569291013f, 0.0118587246816413f, 0.958187068873858f, 0.315395458761821f, 0.188852872643367f, 0.417450657662866f, -0.540566147670448f, -0.422709015019828f, 0.101425586029329f, -0.235465301656357f, -0.806044548641562f, -0.617153815671298f, 0.350658348898447f, -0.738540593521098f, 0.291893065415692f, 0.335435501842245f, 0.832048727909480f, -0.609539777284250f, -0.436992256701542f, -0.685315947977391f, -0.502107715051164f, -0.893460699283628f, -0.262263680492396f, 0.454417031133778f, 0.223227655510993f, 0.605288383003966f, -0.698800586984034f, 0.864843125666124f, 0.363752223710394f, -0.354571459375900f, -0.575008718239530f, 0.423061550052490f, -0.272459660313524f, -0.116932919064239f, 0.547073367599225f, -0.890822451422250f, -0.884262586749836f, -0.889803003239001f, 0.217660629852574f, 0.154863581361214f, -0.333284425759330f, -0.826087281020982f, -0.958198419703014f, 0.850114828540176f, -0.391190814837661f, 0.956578087128909f, 0.0541599967910713f, 0.0988550815990206f, 0.851903747125444f, 0.361959550717838f, -0.901818125706440f, -0.0561477675277424f, 0.522090821863134f, 0.263383912024089f, -0.161061362097086f, -0.983707460720128f, -0.333128836619106f, -0.546535222349413f, 0.627261888412583f, 0.408731616102241f, 0.754700916401496f, 0.869772826180715f, 0.362242883540519f, 0.853587698951791f, -0.698910717068557f, -0.671945256263701f, 0.802655941071284f, 0.338701009518668f, -0.0297818698247327f, -0.881311052338108f, -0.296717226328950f, -0.965699941652671f, -0.737164428831818f, 0.00804554422537485f, 0.989716933531351f, -0.832438692682457f, 0.454553001515962f, -0.933801685729775f, -0.644562445615081f, 0.104508389084640f, -0.535426180524709f, -0.937041822784313f, 0.599911275476691f, -0.789109397888652f, 0.821293320968620f, 0.818032308067912f, -0.838306491947354f, -0.172883985566904f, -0.185775969502745f, -0.672256019841514f, -0.412525056012874f, 0.142272136963196f, 0.792136721788200f, -0.726314486042219f, -0.445981475954073f, -0.857821372905156f, -0.783006950965519f, 0.438776336055643f, 0.400193156140386f, 0.177525578340235f, -0.435380642286229f, 0.547815754835977f, 0.0496394855194708f, -0.442174406426496f, -0.0856142956982360f, -0.0247840885457120f, -0.779016166389253f, -0.511802368745331f, 0.319887353303028f, 0.721806644023428f, 0.770423389111803f, 0.809969588377187f, -0.196191981856391f, -0.105718971622809f, -0.301674515042257f, 0.613622254387482f, -0.969517273103490f, 0.0144576310630131f, -0.668829420461301f, 0.750377960820232f, 0.696858494013122f, -0.563485511352760f, 0.726226115587466f, -0.227540741583116f, 0.665488592033944f, -0.124611809537824f, 0.489550286613580f, -0.579185308695604f, 0.628687311174276f, -0.295770837727116f, 0.240358361854250f, -0.155642183802961f, -0.885945841456110f, 0.388592282428421f, -0.663862196774143f, 0.363779469451472f, -0.371285870971327f, 0.563159689631810f, 0.102725415308920f, -0.320909176496511f, 0.334328794247963f, -0.401664407219370f, 0.726728495517480f, -0.192310060924823f, -0.107973316004269f, 0.898177814643418f, 0.456682306673978f, 0.890742303266606f, -0.742770990765425f, 0.0337493848747046f, 0.786190819119190f, 0.911503487800545f, 0.288384155888888f, -0.249479393879906f, -0.431949793185094f, -0.0847659302921913f, -0.475416985100444f, -0.362720571751962f, 0.676910741300893f, 0.00488530543559529f, -0.227678010632002f, -0.0632947771540859f, -0.990261099329279f, -0.708485805011827f, -0.304846597458441f, -0.480289782580152f, -0.593254971635338f, -0.656335976085053f, 0.584373334310954f, -0.493268395245234f, -0.00212668034894836f, -0.480221591678953f, 0.622365041709782f, -0.258845071515928f, 0.943825418665593f, -0.716642329101759f, -0.765317239111819f, 0.324487844009035f, 0.108158868464706f, -0.790583201992229f, -0.649218622127061f, 0.751409704126257f, 0.301455204388007f, 0.620482350165047f, 0.411016780608874f, -0.878843779367281f, -0.779673415191805f, 0.616508572699874f, 0.0750844738292273f, 0.341011338533919f, -0.553376665552953f, 0.277561087965059f, 0.527499935800293f, -0.489644680144407f, 0.514353996113782f, 0.229842524701725f, 0.139172928186734f, 0.793753206591897f, 0.835555341130211f, 0.794120687009671f, -0.0994745468343306f, 0.109098970584400f, 0.383123470993648f, 0.272549010931094f, 0.683070582699418f, 0.522823199313615f, 0.235903759158310,
-0.269490013000195f, -0.103775744391749f, -0.994083979953753f, 0.754983594207459f, 0.806308398378106f, -0.997543362839150f, -0.00396367603607373f, -0.873768378178592f, -0.755907732827809f, 0.703713206520365f, -0.0716773056166142f, 0.0792968663717508f, -0.113760825029016f, 0.828188140127672f, -0.103062543982628f, 0.0455017026983378f, 0.330658414568756f, -0.615810862221588f, 0.827890015477212f, -0.507551960954374f, -0.371044788092612f, 0.723489294741891f, 0.169072478802524f, 0.885612989356318f, -0.496475905980558f, 0.114400438991609f, 0.427961880327008f, -0.0456714004002505f, 0.0246660859589438f, 0.175616122301987f, -0.349777838484285f, -0.939474935533562f, -0.215061649130134f, 0.907049169335834f, -0.0553600192559760f, -0.982464152311714f, 0.405919915647442f, 0.755952405091542f, -0.695422520039876f, 0.373280568864688f, 0.483909023765611f, 0.784896384994620f, 0.978722132488262f, -0.113866140463085f, -0.630016943176703f, 0.512742627309861f, -0.829104067044703f, -0.240982431155520f, 0.0107361024967163f, -0.438682584788413f, 0.935730031472303f, -0.953447901200043f, -0.984218956474073f, -0.745077052885218f, -0.466232938128846f, 0.0326267564209573f, 0.303877586274065f, -0.199843777507458f, 0.674317529952029f, 0.448678903834397f, -0.681863209154081f, 0.273397524216090f, 0.193101955704959f, -0.342858479278718f, -0.485179713360910f, -0.586067050491890f, 0.393099777352274f, -0.982324485510343f, -0.852553426343700f, 0.773613825101220f, -0.590256032959421f, 0.837952413540589f, -0.643137731235821f, -0.311955662956384f, -0.888588599835619f, 0.304629859477166f, -0.810098957400030f, -0.534291626181040f, 0.878601703692302f, 0.362706441157764f, -0.254447668911795f, 0.604309282304246f, -0.977266419340276f, 0.250927873824064f, 0.549600558999971f, -0.796155833245480f, 0.226373301058549f, 0.0137578302483823f, 0.819708534464965f, 0.185662636424304f, -0.450456459548662f, 0.0953849597308440f, 0.736872088617975f, -0.582024306116842f, -0.0522261513001507f, 0.394348349710790f, -0.461023913227183f, 0.139996201153565f, -0.790168851966909f, 0.692544084408690f, -0.580603732841955f, -0.584540773580447f, -0.967062276813525f, -0.00886260208554912f, -0.0520831218167985f, -0.999614949922684f, -0.965820736077636f, 0.366390034326646f, 0.0323069925013668f, 0.164651515113853f, 0.300260003499445f, -0.340634856317630f, -0.238157231550037f, -0.291645957143165f, -0.773881882387456f, -0.144494053860223f, 0.660329619628580f, -0.626727996257997f, -0.994965090982706f, 0.161018019917379f, -0.327211572176153f, 0.0410991278573425f, 0.0123663905917732f, 0.747176159655312f, -0.485981637435718f, 0.00667961234248971f, 0.631625759154389f, -0.831294487064668f, 0.449606477050286f, 0.768845094514142f, 0.928354534843426f, 0.812647997969340f, 0.353418126917875f, -0.872184763557736f, -0.579130598386915f, -0.912928075675835f, -0.779484407508668f, 0.534916834944041f, 0.326353225230543f, 0.395431557674662f, -0.842103899863317f, 0.196590107332985f, -0.261317824893025f, 0.750190543523333f, -0.103409967857074f, -0.201452426430379f, -0.213633615009587f, 0.578822104214576f, -0.130809161238349f, -0.774608769872343f, -0.0222201705228122f, 0.126990738965544f, 0.785780586747108f, 0.0379484317527632f, 0.837140835706189f, -0.191007948387153f, 0.106781679021568f, 0.990298140861558f, 0.618337701073777f, 0.460255491901774f, 0.716379796730692f, -0.159421014009881f, -0.560212468621569f, -0.147263014783522f, -0.962301694075771f, -0.327702010262213f, -0.773959532468388f, 0.351239668535113f, -0.682281479449518f, 0.342188824054257f, -0.743039216419066f, 0.700710268270439f, 0.919651386092770f, 0.626343233048871f, -0.157189576636596f, 0.781882574006976f, 0.349953565654219f, 0.361235312853466f, 0.313242228422046f, 0.582185182102266f, 0.554504358491139f, 0.711217954194576f, 0.332473377627418f, 0.165078226255772f, -0.228349029389292f, 0.899730713958153f, 0.653894503448836f, -0.0452904440925501f, 0.0328806142413372f, 0.793701315832839f, -0.703826261467540f, -0.901648894320192f, -0.195631966969018f, -0.0470590812056508f, 0.487185699934959f, 0.175961644103331f, 0.818028721319245f, -0.224389104974946f, 0.901974203693823f, -0.153212477843726f, -0.472747796173897f, -0.587471692952684f, 0.452340198339707f, 0.996443894349412f, -0.849126217374502f, -0.403800337277983f, 0.923427876645159f, -0.0516037992113898f, -0.380335341989182f, -0.299914673109747f, 0.764492139190834f, 0.773463290027243f, 0.0175454601261817f, -0.400742340353541f, 0.912354892189422f, 0.999766609328281f, -0.521321752061712f, -0.365769506846305f, 0.477612405338644f, -0.0522578739905535f, -0.479259238587280f, 0.645161410912429f, -0.702546085166056f, 0.359736398041538f, 0.638130894056863f, 0.115633419893101f, -0.674410360620500f, -0.150824943737990f, -0.824854463897591f, -0.504410162129685f, 0.560317574021813f, -0.159611666752889f, 0.997647540626334f, 0.702777895178414f, -0.946494281691535f, -0.0109619562916898f, -0.383756482005404f, 0.872670066971334f, -0.453527506439184f, -0.635719199113957f, 0.932852122005178f, -0.800755479140234f, -0.225213334363716f, 0.251163542389519f, -0.598147625383133f, -0.155241293946661f, 0.967736510890644f, -0.0157250628103103f, 0.250570924071858f, 0.209749651169078f, -0.381016062687537f, -0.679300447230592f, 0.160197663113971f, -0.749803147200800f, 0.596917045783617f, -0.0878737681749431f, 0.642402180339789f, 0.261614973684270f, -0.111833224093973f, 0.300170844971678f, 0.317966800167647f, 0.0585375534708252f, -0.842709435910728f, 0.760207701069839f, -0.979366191145221f, 0.940703569377911f, 0.866488078693979f, 0.553497107695259f, 0.127260247084497f, 0.530106152060111f, 0.725171359852920f, 0.356742729430045f, -0.209841680046178f, -0.164239817187855f, -0.888858150931758f, 0.0367561852378047f, 0.803496113779956f, -0.594927045375575f, -0.00347281985657166f, 0.114118941713783f, -0.427864462568672f, 0.719021423892768f, 0.335845790828654f, 0.0207216235296064f, -0.523146933862102f, -0.145001077781793f, 0.490566784879983f, 0.461904660734682f, -0.897010089735077f, -0.895737903861849f, 0.343397505472310f, -0.684377591381862f, -0.0154016881290400f, -0.462987614871549f, 0.884045010701589f, 0.192617174725234f, 0.226497290324550f, -0.788151335932529f, -0.190538526746651f, -0.556614046330326f, -0.139480186854974f, 0.196785300148418f, 0.978844132512627f, -0.290726060479808f, -0.591813978495167f, -0.0769033757443105f, -0.467044929381376f, 0.171585053083057f, 0.408215527269010f, -0.818706013465989f, -0.328144984930982f, 0.790275356337217f, -0.977491163139178f, -0.979679268318504f, -0.524875121608236f, -0.263859024168277f, 0.0180787743488171f, -0.984390626106750f, 0.952274619010224f, -0.851400664579601f, 0.692959439369046f, -0.150312001943653f, 0.712066554169562f, -0.492336226254660f, -0.453559897031351f, -0.159679763180474f, 0.745834647687870f, -0.725963425297178f, -0.720341794596050f, 0.370674334928492f, -0.845974926208293f, -0.00448769398027360f, -0.595973105115042f, 0.967372249596385f, 0.512949503724102f, 0.889619262804735f, 0.990718232652913f, -0.662246751886904f, 0.333846293708563f, -0.423114421367372f, 0.549637439543149f, -0.987876053136374f, -0.782714958794276f, 0.294868983681807f, 0.931284560597614f, 0.445522387300861f, -0.388400162488578f, -0.182673246109423f, -0.773488958971573f, 0.438788569593725f, 0.578106509978236f, -0.373449127435319f, -0.301996528814967f, -0.227124771031239f, 0.700176189695036f, -0.910948938567526f, 0.733412403327578f, 0.486154072292544f, -0.974058632864456f, 0.216693355653246f, 0.147564301397678f, -0.715192277853558f, -0.366996833259925f, 0.568909126406069f, -0.0810069456450131f, -0.371253841044151f, 0.254736918036059f, -0.868966383080701f, 0.190312518076662f, 0.457253801337437f, 0.941043431633233f, -0.297470749600241f, 0.244270515950156f, -0.240122562119888f, -0.766384662307300f, 0.765045432900429f, -0.608250739173787f, -0.733052557932594f, -0.268433000443065f, 0.733598123424154f, -0.0550005774741753f, 0.273893221740822f, -0.659641650983149f, 0.967032725204337f, 0.390126626361090f, 0.518740746381756f, -0.859387560527806f, 0.554117289841284f, 0.648904904654236f, -0.755880975555381f, 0.834231592524942f, -0.137512395743275f, 0.0477027353535724f, -0.880364563062979f, 0.458763614093086f, 0.650036413308116f, 0.496385905878033f, -0.418537115548864f, -0.565561960782851f, -0.227941684691245f, -0.165031891659812f, 0.204464989908300f, -0.688093624763916f, -0.678874848552394f, 0.813764873880514f, -0.561723359541237f, -0.575805702297063f, -0.288097000970518f, 0.950119107184838f, 0.709879842972902f, 0.730067219897393f, 0.710813066057284f, -0.192333836978130f, -0.190446300563246f, 0.872679304648751f, 0.134143163657763f, -0.979443835407234f, -0.103872104041761f, -0.0568328979324004f, -0.863020133862081f, -0.0257801722427251f, -0.577962771617033f, -0.0500056799801032f, 0.191817418291914f, -0.799853775410853f, -0.110019424741421f, 0.840753817223395f, 0.355588322976119f, 0.274501278628024f, 0.757538306972136f, 0.771547320156202f, 0.0394143752709530f, 0.120744072764658f, 0.324337882930581f, -0.380086709776951f, -0.772025774284869f, 0.473986846199588f, 0.703247561676381f, 0.734667480205300f, -0.594290184210087f, 0.760158653782445f, 0.624553744314883f, -0.941053266957965f, -0.165913770936962f, -0.0497972870738055f, -0.0435608680908517f, -0.663165366083943f, -0.570972482385751f, 0.427845034528880f, 0.0897903148165149f, -0.481825010950428f, -0.0901127105939594f, 0.887770435656611f, 0.770985476674623f, 0.00966158758316293f, -0.331059327378268f, -0.286033645163736f, -0.0698945910210471f, 0.834392309773299f, 0.875537383319608f, -0.657919190548359f, 0.583890957562885f, -0.418481077359384f, -0.282242397022386f, 0.864577023994874f, -0.898367126143440f, 0.815804441243808f, 0.616061408588373f, 0.132365642864798f, -0.221099752471970f, -0.852722283680675f, -0.269499596712950f, 0.360828136129415f, -0.120022743070141f, -0.0354652134632905f, -0.718389836602256f, 0.973490047219112f, -0.201775047168341f, 0.348769511760972f, -0.338750368577880f, -0.269769414088757f, 0.498910931428472f, -0.787648791515347f, 0.508408064858444f, -0.904215976374529f, -0.778575029821227f, -0.662889546847757f, -0.787503064261069f, -0.915166838630178f, -0.415784802770356f, 0.731806835017609f, -0.903922155472207f, 0.0872811033112211f, -0.452516774501827f, 0.577942533813694f, -0.200909337658770f, 0.866167939661793f, 0.982552542055944f, -0.332277333696961f, 0.201673960342839,
0.881239812364993f, -0.0293753746942893f, 0.0967170348490725f, -0.765573023404242f, -0.179225339525953f, -0.931530757069740f, -0.702596334762137f, 0.439106079307245f, -0.469364154277323f, 0.211063395888038f, -0.245858633045693f, 0.936376071219385f, 0.0334087380010875f, 0.0765265939183459f, 0.417091701258078f, 0.962467059286170f, -0.180698008768999f, -0.129816441691123f, -0.833694435146788f, -0.800582099046532f, 0.736376297618233f, 0.0164704176688124f, 0.207462305741760f, 0.300555292898496f, 0.777154212278295f, -0.0804533056660695f, -0.279940128908185f, 0.203101811030871f, 0.447496959357837f, 0.508353359025257f, 0.644333822521829f, 0.897259297488483f, -0.675785952117501f, 0.149337263319588f, 0.350953290584184f, 0.600296681944338f, -0.606098182955297f, -0.418312129297725f, 0.792551232171214f, -0.944025948110651f, -0.923106441737020f, 0.508989820072736f, 0.101554011154237f, -0.799369609980037f, -0.229001813644938f, 0.196367996268564f, -0.634078446275840f, 0.267446716753553f, 0.943765754688567f, 0.329924442019441f, -0.898235312442524f, 0.563592978494850f, -0.976934293161001f, -0.609744819901837f, 0.498989633313589f, -0.105680058480959f, -0.400730747241191f, 0.264919109340783f, -0.313066735594123f, -0.465399967597728f, -0.425123918113080f, -0.609514085808810f, 0.916560800692384f, 0.0173757138934230f, 0.147814399202503f, 0.594152503614559f, -0.145681097751433f, -0.427232299718493f, 0.233460382614713f, 0.337361272635241f, 0.376106438004541f, 0.900277274651600f, 0.424547631957395f, -0.710790444715071f, 0.0846761090154495f, -0.0122707338404220f, 0.119989812955904f, -0.239774389963524f, -0.692300891031819f, -0.735109129583214f, 0.802276300301071f, 0.348982047806247f, 0.916302084278941f, -0.0838164783829127f, -0.989134997097880f, 0.832909602224562f, -0.701363449605445f, -0.150487976031971f, -0.728594035984111f, -0.144393031996783f, -0.458856761770637f, 0.733295441303064f, -0.405608670768629f, 0.522871610912813f, 0.468223399458939f, -0.575139530810903f, -0.241684287862418f, -0.499140599234906f, -0.395586476697394f, 0.692745485195348f, -0.125142235859546f, -0.342212246193052f, 0.133841188490164f, -0.539478395228865f, -0.887973984329817f, -0.474033882236453f, -0.837114132429830f, 0.773392302912611f, 0.117697651876253f, -0.461595011213406f, -0.528669601602068f, -0.957799577987062f, -0.468654423525192f, -0.0602288998398475f, 0.154553704272891f, -0.422854231304259f, -0.496136532114270f, -0.348154983723668f, 0.0576478341707483f, 0.542088962901856f, -0.0465812136931592f, -0.280128217727361f, -0.900695482510248f, 0.525110685457899f, -0.957266165874283f, 0.136490670826643f, -0.213221811269364f, 0.690040133288898f, 0.269408771473479f, -0.0488994830172422f, -0.837526616586426f, -0.289127052660601f, 0.149325279006459f, -0.694169700971401f, -0.0230547571616897f, -0.368313297034846f, 0.344434270521740f, 0.859135365902404f, 0.839336654691204f, -0.511783987355355f, -0.0349625753049687f, 0.935857929664427f, 0.820032045433520f, -0.0394079346656324f, -0.656352913407746f, -0.874383371678169f, -0.425836335156061f, 0.208600154889275f, -0.135596548598733f, 0.566430757256762f, 0.820840891306264f, 0.735746624790780f, -0.765482927015804f, -0.0195537720748045f, 0.606216172027628f, 0.436027839798869f, -0.609233580289002f, -0.963547951222316f, -0.575271468261977f, 0.692873344771925f, 0.143031668657597f, 0.890157114774225f, 0.762299295692265f, 0.653618249618643f, -0.957258626549595f, 0.521895225378123f, -0.607922211531407f, -0.956795748110572f, 0.477633684273092f, 0.794301967670603f, 0.139753218894595f, 0.371726372555490f, -0.804791987531745f, 0.837080126047059f, -0.440992020192054f, 0.584986017638085f, 0.950442046050057f, 0.613109120495913f, 0.633948971396891f, -0.581246845000116f, 0.730290176291093f, 0.599119212595240f, 0.120096101936515f, -0.144169383323758f, 0.930776406826440f, -0.0209712926465206f, 0.572995665695966f, 0.924623298379120f, -0.751832867985678f, 0.630196806059302f, 0.506634179395662f, 0.0388997263873157f, -0.311041196366299f, -0.729049093325017f, -0.918815504666740f, -0.103935429478766f, -0.000623544124330300f, 0.102880227280474f, -0.563637096166535f, -0.332148269587814f, 0.472114131256244f, 0.295717126494164f, 0.246944592105312f, -0.713191555660498f, 0.160410320426559f, 0.110992936470077f, 0.213877527744528f, 0.541660996543375f, -0.872405734998843f, 0.388515073094269f, -0.840811647524440f, -0.968008592072007f, 0.669947948420772f, -0.122943215855172f, 0.565929115911552f, -0.695408966310186f, 0.361296950635219f, 0.574282481983669f, 0.0877180513263536f, -0.694316083550519f, 0.327696487191071f, 0.289746985823208f, -0.241476327174879f, 0.605084742574250f, 0.0929272338220821f, -0.391399761658219f, -0.612928183827531f, 0.0471987261466311f, 0.157388702609590f, 0.575695018001234f, 0.450453491026024f, 0.876623108212541f, -0.456500163180038f, 0.436901006801809f, 0.796734433864345f, 0.771008396172517f, -0.784740610155705f, 0.405172719255834f, 0.958393667559228f, 0.787380105147761f, -0.262826016234054f, 0.773327117333271f, 0.482142068916266f, -0.461607549022954f, -0.153993688218026f, -0.129280134980317f, 0.901812622560630f, -0.111520793491644f, -0.0973214524989203f, -0.293695817178366f, -0.190045093887485f, -0.204792515844396f, 0.501086384719391f, 0.755953359112033f, -0.425886872154604f, -0.0883029298084141f, 0.763071371252921f, -0.556289447935984f, 0.577370462369201f, 0.0480599614417476f, -0.794423686623353f, 0.756645959967545f, 0.570538730848462f, 0.872575422156333f, -0.443572567528656f, -0.0487937634747691f, 0.283986553648095f, -0.170910821134099f, -0.329867000423004f, -0.982322841409943f, 0.555344201026651f, -0.351964643393940f, 0.776172688776518f, -0.148102477734717f, 0.889532618676503f, -0.310979434517253f, 0.711839903052208f, -0.646385596147085f, 0.145592596381502f, 0.233949589173221f, -0.825471565980294f, -0.370248763132654f, -0.777194557275684f, -0.224658064754195f, 0.263281286751478f, 0.849661910468068f, 0.271261490445121f, -0.915885420717958f, -0.947144520818678f, 0.227960459606299f, 0.784463828083640f, 0.995882406349565f, -0.987273766396493f, 0.0792453274840108f, -0.788403526960056f, -0.619975942121645f, 0.801181796307713f, 0.967884377026145f, -0.781223064263388f, -0.300716486479280f, 0.994748932974184f, -0.200152360574411f, -0.101898131541608f, 0.542914585925881f, 0.407729967031792f, -0.105215843903154f, 0.638066037611924f, -0.563777780161298f, 0.134189395993685f, -0.503320561486155f, -0.0379170306314711f, 0.723638115686875f, 0.747948383928228f, 0.928239905995551f, -0.736883772878758f, 0.892242913709735f, 0.468998243295705f, -0.224406388545097f, 0.758754382878863f, 0.994739001052496f, -0.749837906573089f, -0.938777322178786f, -0.619168635741936f, 0.827875717654585f, 0.294033159230782f, -0.372766318349126f, -0.292752124932124f, 0.396629951868878f, -0.986760927173237f, -0.0841834195975009f, 0.999760803826313f, 0.0142305924173638f, -0.820393900206961f, 0.409972278573230f, 0.227315924377402f, -0.641500351639361f, -0.470788010535406f, -0.486171076557593f, -0.758140688442947f, -0.971539708794928f, -0.949039718833189f, -0.146844988902767f, -0.0183627478820223f, 0.402918762093981f, 0.0620266698060286f, -0.182527786403967f, -0.374395326540229f, 0.566584207940253f, 0.879546558847970f, 0.853360173786566f, -0.515321950652696f, 0.511692631053674f, 0.342152084355850f, 0.374686420595610f, -0.794372980760555f, -0.648670375991101f, 0.761192158420166f, 0.223791993225057f, -0.342720055148453f, 0.965612513218950f, -0.796193009647904f, 0.215057114709867f, -0.0459498239576994f, 0.871047701509015f, 0.664672380241520f, -0.546301701630944f, -0.939910946986200f, -0.213195706858966f, 0.559543622118596f, -0.255844807516886f, 0.509576048776352f, -0.699005089750431f, -0.520317652140772f, -0.924306703712950f, -0.923814193467638f, 0.868401299001930f, -0.571229497763863f, 0.984740691690212f, -0.911782692220985f, -0.265295471266664f, 0.0479848731515942f, -0.195328058836883f, 0.758281465939343f, -0.418177229854869f, -0.263323557662932f, 0.0230762644115943f, 0.382605016442608f, -0.576209059863238f, -0.739785100410209f, 0.0956412509899256f, 0.0369702493097637f, 0.0738922616872486f, 0.589371657036664f, 0.548586250623500f, 0.996096574632666f, -0.574178408335425f, -0.827059309028347f, 0.600283403682961f, -0.0651062813338117f, 0.985857002071398f, 0.982700721670305f, 0.777628710286989f, -0.139415722014730f, 0.951156387462424f, 0.806391217144736f, 0.135433009714206f, 0.252388414319270f, 0.485541324740928f, 0.270688932431637f, 0.892850103229909f, 0.440168171407923f, 0.515384398158669f, 0.600884162546465f, 0.947986221531091f, 0.339440884303404f, 0.403857490690436f, -0.937015609644647f, 0.729529495316627f, -0.389601866986821f, -0.420712615666380f, -0.763003723744745f, -0.0619534667970105f, 0.486654476027536f, -0.943536854881494f, 0.471171699317719f, 0.996886209046820f, -0.945316270673373f, 0.230772742042993f, -0.621222111022648f, 0.838934157721328f, 0.124035987915113f, 0.737576768711407f, -0.217898078842006f, 0.0429859145211120f, 0.223685413947773f, 0.820073956039170f, -0.378381145423743f, -0.335672684173821f, 0.649791267584388f, -0.457253860252872f, -0.664776842833046f, 0.150429615666837f, 0.974812973893170f, 0.00119972362050369f, 0.140744912838368f, -0.252632269055503f, -0.124205752907507f, -0.383194456927254f, -0.356455432479067f, 0.0694989880525767f, 0.188230048541949f, -0.854592697407303f, -0.902559387772971f, 0.454054169179423f, 0.534684767654295f, 0.806837289706952f, 0.274203715752641f, -0.765433763984323f, 0.459365005291520f, -0.896797218412250f, 0.382900474341852f, 0.169400421233177f, -0.184111368111075f, 0.0323514487432812f, 0.621015577938758f, 0.139872518806323f, 0.480965263781330f, 0.0649386999855643f, 0.815365754221614f, 0.761990264098834f, -0.0927412249348933f, -0.580853742457387f, 0.211615321410605f, 0.165159968106305f, 0.305515629345863f, 0.725748395743965f, -0.667649812347274f, -0.621843189978885f, -0.939317191264789f, -0.197108718554958f, 0.902152006895939f, -0.889744652803018f, 0.667113256888905f, 0.929471703711725f, 0.660025836042506f, -0.0712223078913006f, 0.416152292126436f, -0.602223852277700f, -0.828462878627106f, -0.956915163338265f, 0.298196541541469f, -0.933863927954050f, -0.198745190221695f, 0.749101206471011f, -0.922366396086261f, 0.769953026855636f, 0.971459582749177f, -0.226637139032289f, -0.593509265485619f, -0.635649447577657,
-0.443127775644156f, 0.350464269654307f, 0.379979516655134f, 0.896282784801247f, 0.00871209446887344f, 0.401818712823609f, 0.815422566258939f, 0.215868289995843f, 0.682217845700443f, 0.508819667108007f, -0.988484263336122f, 0.216656890144568f, -0.185777888700071f, 0.522106353117928f, 0.894211314619113f, -0.779300881699217f, 0.137801937535128f, -0.818740955579722f, 0.637214461095055f, 0.187867696634722f, 0.184985729971243f, 0.315323389557324f, -0.0312525033775366f, 0.498559120407008f, 0.855778208118391f, 0.936851170962385f, -0.0524308158818188f, 0.257087262622978f, 0.816141818246927f, -0.147192803443011f, 0.194545158383538f, -0.655428449892669f, -0.650441844539509f, 0.536015423540886f, 0.0250060573607953f, -0.863380305825989f, 0.0605420782823460f, -0.963662464088496f, 0.689136717877590f, -0.929664162821947f, -0.327349437742288f, 0.713122240487331f, 0.765587094162777f, -0.314350325341316f, 0.409992519686522f, 0.753377832105546f, -0.756848529995586f, 0.760787899507869f, 0.512213162407276f, -0.674820237484644f, 0.560776719592082f, -0.874905891603855f, 0.925202682923872f, -0.907405002733482f, -0.575836335118172f, -0.248173888600965f, -0.187923239740639f, 0.230951002247789f, -0.540190666146588f, 0.390890663320481f, -0.705511708249712f, 0.0980457138183717f, 0.879979753648798f, -0.378326046226794f, -0.645363625221967f, 0.883365508962968f, 0.728720763588748f, -0.191571576393619f, -0.941989254130187f, 0.944312154950866f, -0.367184985473008f, -0.974124559264444f, -0.579946765132286f, 0.509825236656578f, 0.952047194261820f, -0.0955445631918663f, -0.00500764501201401f, -0.00111382665477655f, -0.0404281661495578f, -0.265706359102834f, 0.865881843285797f, -0.947915521623861f, -0.820337973623839f, 0.0843747524022067f, -0.948599514028391f, -0.464018526769358f, 0.600790429663803f, -0.0779017384430381f, 0.756949801920938f, -0.955436496929340f, -0.553346424499498f, -0.401256107066610f, 0.569624108543687f, 0.179455179577041f, -0.189386842296675f, -0.467166492259358f, 0.367644583467601f, -0.722338735126514f, 0.863903729827081f, 0.0631027352569811f, -0.982269235503679f, -0.837788470642698f, 0.421730643738386f, -0.671745211565315f, 0.858467932275763f, -0.745298219348761f, -0.659594977600028f, 0.403238381269873f, 0.951987904652099f, 0.228887404582426f, -0.331665752024408f, 0.794789885033899f, 0.669978127515269f, 0.977583870328654f, -0.346398989178462f, 0.692053246433782f, -0.159407706019695f, 0.710808563527500f, -0.555701359319642f, 0.625665798239905f, -0.711048329414687f, -0.672431532474912f, -0.474897384314332f, -0.196250611816064f, 0.902140605659856f, -0.459732035217428f, 0.651412290305649f, -0.686137550630920f, -0.803228611526547f, 0.371120664039117f, 0.289869860968561f, -0.720979161638185f, -0.0940498575417996f, 0.185025844935128f, 0.401524077274769f, 0.811721346556136f, 0.224659861626089f, 0.106438807548742f, -0.117458956991326f, -0.407361487623449f, 0.683891165426988f, -0.216582410631386f, 0.710644530504861f, 0.867797453793643f, 0.626683550176870f, 0.115061097783331f, 0.976742668387085f, 0.250700864990527f, 0.272723539841862f, 0.159923684669346f, 0.167713264013185f, -0.445764377935606f, -0.489538472614810f, 0.227880894824940f, 0.670702116476237f, 0.610361511284318f, 0.503801949624464f, -0.687816091694902f, -0.0413765153535617f, 0.155769004545734f, 0.921910233366689f, -0.467299226678025f, -0.991984541712805f, -0.527009262324220f, 0.248157897392517f, 0.661145853979517f, -0.975947426744844f, -0.242453990684693f, -0.277956284573619f, 0.162010437415540f, 0.889456199489152f, -0.171259539670729f, -0.0636124576727060f, 0.311318764402696f, -0.227771282875219f, -0.567702050585727f, -0.132881625149059f, 0.870846950418812f, 0.440078398779761f, -0.0908818839265000f, 0.410077545060762f, 0.917678125288724f, 0.975295290129489f, 0.736514272579886f, 0.653896379317074f, -0.166512942888681f, -0.218665383726096f, -0.0688642360506688f, -0.596589868100824f, -0.180873413844075f, 0.229002598511067f, -0.647630976455599f, 0.722615884501717f, 0.760194030884127f, 0.253262836539679f, 0.0734191803957118f, -0.941427952376035f, 0.224118866807764f, 0.634990976599086f, 0.538622500570355f, -0.591487367587299f, 0.829253069890529f, 0.426659996899884f, -0.562435396124737f, 0.924178169394878f, -0.693964899988321f, -0.520472617448914f, 0.845157115508053f, 0.162984246343684f, -0.212032053476592f, 0.0482566706558292f, 0.820584028875367f, 0.676120066619505f, 0.590174358812695f, -0.457289938956925f, -0.351282540371674f, 0.322162683499620f, -0.683726196205246f, -0.279636659553935f, -0.186133028676429f, 0.965481755833750f, -0.0550172560314044f, -0.437844829991532f, -0.448670532146325f, -0.438916826946834f, 0.830205353164842f, -0.0125988502002286f, 0.733716462327519f, 0.870000673588185f, -0.189915082276716f, -0.676269331249200f, -0.336432931956768f, -0.288892891213265f, -0.912569275291884f, 0.509853767908707f, -0.658452317958678f, -0.562848133961047f, -0.102082581799095f, 0.904062026055565f, 0.473339990381854f, 0.210234896873676f, -0.0884007008398613f, 0.720872020499257f, 0.538315255331760f, -0.884485227439286f, 0.160844002639634f, 0.625863524205804f, -0.947487159926400f, 0.362643826956149f, -0.189913270725334f, -0.110428721523612f, -0.666510263156819f, -0.214827103263521f, 0.912669747474334f, -0.973896103049543f, 0.665373714127588f, 0.148135031012834f, 0.126524689644449f, 0.00283763548841764f, 0.312700495893193f, 0.579520771033243f, 0.677583023476560f, -0.779567427807191f, 0.0694994546110597f, -0.298762697062437f, 0.655210050716681f, 0.435909078048151f, 0.322095567178671f, 0.764827170021089f, -0.713736794113842f, 0.992844460358584f, -0.735915506109616f, 0.280204875392391f, 0.584446532772711f, 0.796955505835788f, 0.742508124239176f, 0.0785523490091065f, -0.562359397016753f, 0.874448473576734f, -0.794251927759664f, -0.658767152705445f, 0.120015806343044f, 0.662372174700575f, -0.719334975225296f, -0.663474261357014f, -0.637663874969148f, 0.706137632813821f, 0.734790814693796f, -0.449118755654663f, -0.758125670003823f, 0.719059339327447f, -0.228679956701166f, -0.0782671261690160f, 0.637830522744746f, -0.178696376536345f, -0.848273935253246f, 0.840882430630200f, 0.977813953976437f, 0.565474986185913f, -0.807314895274907f, -0.100534840844589f, -0.436186956483089f, 0.854663592026441f, -0.547576146320248f, -0.621784076386717f, 0.688687549426321f, -0.688962085987764f, -0.998914668418794f, 0.751493418398842f, -0.203018738091861f, -0.881317097659280f, -0.422480898609404f, -0.321074554557095f, -0.759379357125740f, -0.806503084491033f, -0.496837315822352f, 0.217087355208111f, -0.776801484423500f, -0.445747498145286f, 0.710204776554782f, 0.274276964033182f, 0.650397224484409f, -0.709395921248168f, 0.862663541330686f, -0.946166202558813f, 0.826638502366159f, -0.450587332736099f, -0.808257632193740f, -0.414360554482101f, -0.471118187583276f, 0.981592919290155f, 0.192794908371370f, -0.314979855997427f, 0.722518962804398f, -0.795914669179603f, 0.121447532644509f, 0.0446893237592363f, 0.651720955387594f, 0.897128141094619f, 0.283834144643742f, 0.369570391543943f, -0.163784005163726f, -0.799144231493300f, 0.338136741961422f, 0.795991730702685f, 0.601735561139351f, -0.556654767533027f, 0.907044495725416f, -0.374604065784494f, 0.814308532452677f, -0.254295412850351f, 0.443103437041340f, -0.0218296619602199f, 0.826728672505738f, 0.773205771668962f, 0.171909022893217f, 0.497670481959597f, 0.954178712898056f, 0.0840098577761919f, -0.705861127301893f, 0.145663865959608f, -0.436204975766037f, 0.479359595998989f, -0.719493824988072f, -0.523146212355768f, -0.917822711649927f, -0.610003715217602f, -0.192266667446473f, -0.377507163265653f, -0.250419291332051f, 0.873627391381727f, 0.922899703740095f, -0.902411671519496f, 0.285830821349708f, -0.577368595723736f, -0.598296174995687f, -0.0152478418690674f, 0.503725955636280f, 0.946501779740920f, 0.261108140547963f, 0.206258978593364f, -0.887022338332430f, 0.989187042741485f, 0.461764104690670f, 0.305280284664753f, 0.243972878436235f, -0.573704516784209f, 0.111805651228880f, -0.373590027525854f, 0.574564836347642f, -0.712884790778729f, -0.0570130063179222f, 0.244209425500712f, -0.717492787619277f, -0.476920207759357f, -0.444169983027413f, -0.254851417015366f, -0.505678630542571f, -0.953549022234155f, -0.0316841901798541f, 0.198256779602804f, 0.151938229162240f, -0.0259028503944394f, -0.799645893003010f, -0.889308912372168f, 0.339221517072804f, 0.904784479404768f, -0.367330903112591f, 0.866281762131661f, 0.112765232993802f, -0.0852946527317187f, -0.283538359072154f, -0.734951426632046f, 0.502970854898684f, -0.541434927857400f, 0.881496286285600f, -0.227404039639917f, -0.636983936776183f, -0.0799774217214970f, -0.833780310813424f, -0.222787370954425f, 0.433143783060434f, 0.0953330524947187f, 0.965400264971588f, 0.308927931247299f, 0.344316393259575f, 0.122880788538352f, -0.898509922382301f, -0.187062523329053f, 0.705352247460646f, -0.817811000761718f, 0.303714513401701f, 0.714863075518907f, -0.00862372607283035f, -0.842715848975590f, 0.816504077307885f, 0.924594085591125f, 0.334618732730041f, -0.212414743241377f, -0.758289625449925f, 0.586405661412351f, 0.909247363444287f, -0.800422609846793f, 0.397430897916299f, -0.408827454151232f, -0.411913213123543f, -0.602703152770135f, -0.893591462026327f, 0.417648762458765f, -0.766362696266534f, -0.166060103951854f, 0.883234167729589f, -0.0741908774062401f, 0.113912882075078f, -0.268248292164738f, -0.825585719915457f, 0.885446166477969f, -0.996523379251940f, -0.000841720632677401f, 0.940286529247477f, -0.528330498750176f, 0.0938880690147421f, -0.966296878893937f, 0.891956527154360f, -0.483384605653306f, 0.257210342748458f, -0.820220338820906f, 0.363913841603935f, 0.0364865250689275f, 0.0619156958713947f, -0.645447937080250f, 0.548279343062761f, -0.289526240449473f, -0.506780094171335f, -0.901771170107367f, -0.437874075223813f, 0.748512212111141f, -0.529884246718074f, 0.924062132675193f, -0.365432219122282f, -0.263296006595835f, -0.927083881647913f, -0.192737974697553f, -0.450051159199964f, -0.543528645806642f, 0.834976909049276f, -0.426975046433596f, -0.361056079272416f, 0.883880063360531f, 0.680380429911630f, -0.553642515320953f, 0.548847108935282f, -0.357430246936948f, 0.210445016993628f, 0.949511601115471f, -0.611278947360487f, 0.344744934459962f, 0.0684247970496175f, -0.877154656281116f, -0.521992702610556,
-0.0303764312006813f, -0.647220068176984f, 0.693175336224119f, -0.0955602614554496f, -0.765579758912278f, -0.821318118938906f, -0.220936603794347f, 0.159013709512021f, 0.0222743973539492f, 0.569438412513281f, 0.896083437551563f, 0.973699071868637f, -0.403438951991928f, -0.976931032127622f, -0.0720613180573018f, 0.0788813367661694f, -0.430781354548607f, 0.580378296309349f, -0.175446689199481f, -0.256743557012462f, -0.696667845393283f, 0.870473046831235f, 0.146660713923108f, 0.277741407197705f, 0.502075064404417f, 0.396530064046844f, -0.000209092342246420f, -0.977003947244262f, 0.451457326960000f, 0.420509664462095f, -0.0826395067671402f, 0.461120688156973f, 0.786867285802415f, 0.429254905841222f, 0.894426863739026f, -0.670297281923597f, -0.833650409296060f, -0.908588009702110f, 0.516311115539149f, 0.975234001829324f, -0.532953533466378f, 0.775291582519158f, -0.0136022600428900f, 0.654817093112596f, 0.363512141498233f, 0.624779024037534f, 0.0237004661473674f, -0.172570506046968f, 0.401807838319043f, 0.997391258152958f, -0.553969395939123f, -0.415425175833161f, -0.758032843655304f, -0.482766088920005f, 0.637574309072414f, -0.729000055114342f, 0.699851428676091f, -0.827508053421131f, 0.900655803848482f, -0.431149800814228f, 0.0369409101983413f, -0.378608101457895f, 0.237564147838841f, 0.533020461112441f, -0.280269627508005f, -0.864065787343603f, -0.0381481642453043f, -0.566886547530062f, 0.539727700361167f, 0.166859339425035f, 0.850080295054718f, 0.384690146030125f, -0.384995288415294f, 0.303656036600558f, -0.580297619022502f, 0.0649069482840878f, -0.162922327392773f, -0.235019427063355f, -0.265468718118809f, -0.121827312187455f, 0.0416628805824146f, 0.343481543012411f, -0.251429566892972f, -0.868100204320718f, -0.802636407512128f, -0.549547579028752f, -0.570017983863503f, -0.853634311513627f, -0.564570567173235f, 0.955944215494794f, -0.0930750790375956f, -0.160319122401953f, -0.640886790354213f, 0.798634607857513f, 0.503051518023559f, 0.765247226736789f, 0.909476811674882f, 0.677590253114963f, -0.110641683440517f, -0.336445241915220f, -0.684064840782028f, 0.962285048920031f, 0.883303701653897f, 0.981819291389659f, -0.597290928759656f, 0.215792997443025f, -0.847656608719347f, 0.679887992445640f, 0.299901700372808f, -0.677306526467426f, -0.348340058872692f, 0.651490451411335f, -0.133387041637395f, 0.718311240322040f, 0.0869279817052975f, 0.155413706090559f, -0.869119988858735f, -0.566773040844476f, -0.0513826414151206f, -0.368087669232071f, -0.978175512831125f, -0.229213501073727f, 0.344608572405871f, -0.663307667219997f, 0.437238632879575f, 0.00205230197288353f, -0.0897076092856746f, 0.834529513214144f, 0.131872357342232f, 0.113081940417244f, -0.418620232731326f, -0.317993033651213f, -0.740303025960662f, 0.423423655701288f, -0.300833032468860f, -0.458960388256530f, 0.692670405117589f, -0.559944357561921f, 0.0168623577148430f, 0.568661331088367f, -0.385055363002398f, -0.356055436463140f, -0.794446573681063f, 0.908870080953069f, -0.295500656666577f, 0.800625150733729f, 0.206307902542489f, 0.729591183391974f, -0.0655746333947396f, -0.261707022686154f, -0.802380330579914f, 0.0812359238243023f, -0.00528231140765212f, -0.725740453383981f, 0.919076065030463f, -0.896497189839174f, 0.861919731820265f, -0.804273875755869f, 0.230339021648310f, 0.296779613186519f, -0.349872572510143f, -0.270230381483447f, 0.0368924200249658f, 0.581340248642417f, 0.943620537648739f, 0.715012058065301f, 0.528414993233909f, 0.695917111744314f, -0.634354198968852f, -0.483786223099716f, 0.565405035681248f, -0.530076864213017f, 0.363019522302994f, -0.825556544716473f, 0.891096876998683f, -0.990692760548295f, -0.450641405862313f, -0.597008073985341f, -0.464377765418678f, -0.942926913464693f, -0.871399725569805f, 0.232335933943403f, 0.858786794807406f, -0.528589179815518f, -0.324757177062634f, 0.595880088750788f, -0.976574570427974f, -0.423824220654658f, -0.832990206908489f, 0.198704682807118f, -0.168244652325292f, 0.843066822744011f, 0.0912498543932607f, 0.485570815146582f, -0.104653316420662f, -0.623461298489716f, -0.807713596811018f, 0.737782734425857f, 0.456364368166532f, -0.430703367862900f, -0.188953991637209f, -0.827984282695373f, 0.0246267653665548f, 0.891225605267640f, 0.910600867999638f, 0.345236086687552f, -0.600682365520065f, 0.833182106437698f, 0.213749250288017f, -0.0866339102562885f, -0.618385082289017f, 0.859527120927500f, 0.749978780964161f, -0.334770513867011f, 0.242140166670949f, -0.196268320459958f, 0.611789869603675f, 0.655057159657307f, -0.603759576722096f, 0.614654509385217f, 0.144145218488192f, 0.959930150756613f, 0.485009777784726f, -0.564230295010912f, -0.404716165405314f, 0.0442672151313601f, 0.929486639423805f, 0.409386317338224f, 0.527053707674182f, 0.899087569745327f, -0.933259779365388f, 0.265159475034860f, -0.858300862890810f, -0.870994388031662f, 0.354868177430506f, 0.00956840260511749f, 0.429740959889133f, 0.649668163567379f, -0.744532888765288f, -0.967499901569196f, 0.556703631745254f, 0.535130550118618f, -0.639502350153040f, -0.604586469532735f, 0.0799683564329623f, -0.156074786599444f, -0.348308700325411f, 0.217829052228100f, 0.545642400171123f, -0.303317700019152f, -0.473220675222451f, -0.239688108834945f, 0.0998500862725149f, -0.962734081833842f, 0.870743993144299f, 0.464578557934316f, 0.184511089576136f, 0.559729843314504f, 0.0702052363354577f, 0.632714874625648f, 0.212930743289312f, -0.454606863365109f, -0.592679055778218f, 0.287649993384466f, -0.457293694071368f, -0.423493046785686f, -0.0674763327876298f, 0.242131064298176f, 0.488581911885965f, -0.464567743213882f, -0.387515661812354f, -0.914585596974616f, -0.255803162310627f, 0.941267268311980f, 0.690278917089395f, 0.302397314111962f, -0.178461434689705f, -0.949279941481428f, 0.160440202901122f, -0.970582196769486f, -0.0119478205074164f, -0.206440255898676f, 0.221640403444713f, -0.819801447827624f, 0.263614394802488f, 0.616376195532700f, -0.596859494305351f, -0.118659509995453f, 0.458168997595326f, -0.0400474705134108f, 0.934465050133603f, -0.852936731989621f, 0.0191637795580570f, 0.298534793677081f, -0.857491630206749f, -0.0141198383157879f, -0.365027350962024f, 0.450964838023674f, 0.351383095290905f, -0.387039947149600f, -0.983994933095116f, 0.610531582220017f, -0.0446025524732094f, 0.216718014780746f, -0.676819246943449f, 0.0385619292249610f, 0.192482456707739f, -0.288809653393521f, 0.241774557042318f, -0.444638770943313f, 0.535319194413803f, 0.374773141606987f, 0.186364279454450f, 0.0701814972821988f, -0.452753172654203f, -0.350918291268194f, -0.332963791049667f, 0.179301863965318f, 0.954101654404080f, -0.687960044344130f, 0.611454049205213f, -0.696789567124132f, -0.551566492897529f, 0.656434797122885f, -0.601779335396959f, -0.265656331560395f, -0.528821434638507f, 0.153601151147409f, 0.514739334540489f, -0.0517769842323894f, -0.659246830986894f, -0.453055366696259f, -0.0515886000780059f, 0.958478845408115f, 0.0221452906045994f, -0.159960643390796f, 0.816263632871352f, 0.245244170325114f, -0.0919839688704780f, 0.947170598807362f, 0.846772793441790f, 0.247105133025056f, -0.801972939368103f, -0.224977420586025f, 0.130099925027197f, 0.497816036746753f, 0.308139730113712f, -0.0536876417759813f, -0.492022090866895f, 0.188938438822753f, -0.400894058284033f, 0.314370104391157f, 0.618580768947071f, 0.830051263404639f, -0.228700130023340f, 0.811855169643177f, 0.0924092179787017f, 0.273652523319809f, -0.0624274843235475f, -0.503696982048589f, 0.510545161203341f, 0.341823133345436f, -0.437486933663093f, 0.0134072800031224f, 0.613837993234983f, 0.740945655313894f, 0.135311460882606f, 0.464832228842466f, -0.973962843371452f, -0.519388256678232f, 0.631469277357519f, -0.936937468616713f, 0.208677911871604f, -0.0946010975796272f, 0.560587233611855f, 0.230925763372331f, -0.637408482848184f, -0.679175194353885f, -0.408696637706987f, -0.0837464598184048f, -0.911070817707239f, 0.985815432104941f, -0.208807972878988f, 0.741966810464688f, 0.162772839973564f, 0.717702638881939f, 0.490767958961575f, -0.835565390813677f, -0.878516167634055f, -0.956727838876563f, -0.00772081382858891f, 0.355227897612178f, 0.202889185809854f, -0.431078767653467f, 0.106936101717808f, 0.354494042302258f, -0.619623833602791f, 0.193065593078352f, -0.105803087758606f, 0.151828327005194f, -0.141094922099930f, 0.847569902283069f, -0.656683924792181f, -0.880754505470701f, -0.421714047610595f, 0.681762288858050f, 0.633712681698887f, 0.947060360650644f, -0.959122611588459f, -0.0690574969687099f, -0.805062392278087f, 0.226501754467861f, -0.414732397455275f, 0.242398867364043f, -0.831838824773804f, 0.00787391802290793f, -0.860692119913991f, -0.391321299589110f, -0.0548681430681355f, -0.992920640472037f, 0.0975642331777702f, 0.894630836703243f, 0.767919825689366f, -0.260878774442215f, 0.407457430171103f, 0.140688657702825f, 0.737494845272763f, -0.650969054257040f, 0.230613259000797f, -0.0986876345046772f, 0.0996951163848971f, -0.679173062298700f, -0.760174222364469f, -0.613840714529317f, -0.692138390397415f, -0.0919103790884603f, 0.0259548517830916f, 0.463763807478796f, -0.859327137970617f, 0.298600182982665f, -0.591236092977368f, -0.994984881037264f, -0.0533840054951049f, 0.544979189292485f, 0.652482875230260f, 0.897548627394727f, -0.340241293753474f, 0.508237349558163f, -0.611986702936889f, -0.399952468536369f, -0.758494484998191f, -0.148960755782999f, 0.895231513826071f, -0.870487943961511f, -0.172763884748068f, -0.652702954266129f, 0.784450103085903f, -0.428504279168614f, -0.347266234450861f, -0.0897193897382391f, 0.760686883857503f, -0.0863659842493281f, -0.453544362916610f, 0.713112885874267f, -0.529914378597266f, -0.134507787695203f, -0.590955798880753f, -0.372583442870916f, 0.646730663631020f, -0.809515553972267f, 0.0226873348847205f, -0.209338539804651f, -0.737170063193136f, 0.365916689978321f, 0.658019395382111f, 0.733982378695990f, -0.579926149814113f, 0.973814182111372f, 0.933875763922095f, -0.985234946636757f, -0.103124599698243f, -0.798304574918884f, -0.119705341414667f, 0.205941898284561f, 0.111088288053652f, 0.418598493379981f, 0.309112287901667f, 0.0865232803642195f, -0.281174085998345f, -0.158426951248790f, 0.156672456990889f, 0.608691108739118f, -0.124654784531448f, -0.372060827503666f, 0.555750853569654f, -0.481715370485256f, 0.411012047999522f, 0.265636511301544f, 0.164466400718006f, 0.427292785417094,
-0.407665783814271f, 0.0463239131527564f, 0.0109249300633605f, 0.0949704798708169f, 0.223291931618591f, 0.708651599857453f, 0.810927407452143f, -0.298811874805995f, 0.347215272448441f, 0.778225160999446f, -0.981258755328673f, -0.629231280170021f, -0.948786159268210f, -0.0530522786747270f, -0.665046033882002f, 0.776993795678436f, -0.604492154463805f, -0.906360689482177f, 0.543616910115371f, -0.501547360013149f, 0.571784796850774f, 0.868511495621889f, 0.783008382563488f, 0.571870376568081f, 0.0471150346240308f, 0.402433510592678f, 0.661353159662286f, 0.0253381317208246f, 0.720141243708461f, -0.478805385943742f, 0.989639021624774f, 0.538614599364854f, -0.282810721919526f, 0.888399971333007f, 0.118572990347886f, 0.564528382703688f, 0.988296121763412f, 0.509638594649021f, -0.797738059997026f, 0.0363326380089621f, 0.978315833815278f, -0.483368013204689f, 0.879051054425480f, 0.632539830439323f, 0.722677742708361f, 0.578919286433726f, -0.250721628167261f, 0.534435049744896f, -0.0404568429105234f, 0.00805525426120179f, 0.841210870775473f, -0.731771544679396f, 0.713758914490801f, 0.830250762535296f, 0.436563669872217f, 0.567024378980237f, 0.983941121609744f, -0.253548560865555f, 0.647105012325159f, 0.434994339049196f, 0.130837710207442f, -0.775136733344706f, 0.234917279141211f, -0.498429841761386f, -0.273571256415041f, 0.247467425899991f, -0.970396693506149f, 0.975835855884816f, -0.347896516486866f, -0.552856369180847f, -0.887336234316568f, -0.573271015958957f, 0.910862901097874f, -0.807236601077904f, -0.523971593712952f, -0.263589563369279f, 0.591056276091253f, -0.320168527954128f, 0.726795865615521f, -0.731502115921006f, -0.942225519371229f, 0.268573107637337f, 0.380348127119473f, -0.284539943611895f, 0.117478291379931f, -0.817442486350524f, 0.0734705767013011f, -0.626880755668906f, -0.873066996524459f, -0.528675805715351f, 0.490255491577847f, 0.398142666604162f, -0.911320079669940f, -0.870350237514323f, 0.854587452657144f, 0.736349579728106f, 0.948232845958681f, -0.00126774478569258f, 0.905641169934000f, -0.965500575551565f, 0.0831330388550517f, -0.892713267782484f, -0.277958019172831f, 0.312987842344813f, 0.484268977417485f, -0.365960524226328f, 0.177956605738091f, 0.913776767689874f, -0.897537691614058f, 0.473075982698961f, 0.913190042662185f, -0.00843862630950820f, 0.972679442298938f, -0.856058592202917f, 0.264007224067230f, -0.138444823656136f, -0.386195416368251f, -0.286657907928107f, -0.231200657384828f, 0.917365701941188f, -0.271317547281263f, -0.252691685075831f, 0.893742787021399f, 0.512463051119608f, 0.979155111008605f, -0.472272776864686f, 0.238767541974988f, -0.672234403865928f, -0.846783135777377f, 0.0877594573148737f, 0.493055606176910f, -0.289012308379085f, 0.416463895880697f, -0.0795051375851281f, -0.476692131327163f, -0.430471976159529f, -0.701875030095239f, 0.724684336417516f, 0.984802039066595f, 0.798285421773762f, 0.000509924988974175f, -0.0852199551444761f, -0.709724122158260f, -0.332735158942919f, -0.741119907407496f, 0.729608513555970f, 0.500578022862182f, 0.520862987462710f, 0.565678561009731f, -0.393741545311224f, -0.568866018100912f, 0.571654318026290f, -0.817900961532165f, -0.793268461448962f, 0.614914392385859f, 0.763415306986536f, 0.450074180772758f, -0.737435729799608f, 0.841185794339245f, 0.894276069286366f, -0.276262284222369f, -0.798623475612628f, -0.280994234105732f, 0.821175230597885f, -0.474251640366966f, -0.190039801864015f, 0.0663032720971493f, 0.884162053156770f, -0.162023139878049f, -0.963135153785511f, -0.582213329804047f, -0.328536493809765f, -0.938405687658462f, -0.0171569611327957f, -0.727260847907578f, 0.419920927745257f, -0.361592243835530f, 0.476989471873569f, -0.146161675185107f, 0.431817832405826f, -0.371528849369885f, -0.940567978751516f, 0.165203770962029f, 0.781321525273307f, 0.0585592625092357f, 0.573299596753579f, -0.378869924017182f, 0.523139576520889f, 0.385605607116478f, -0.235893429970747f, 0.285814921067909f, -0.121941292771133f, 0.621558611608942f, -0.0860979132283732f, -0.627097832687809f, -0.312083243705910f, -0.494490796681559f, -0.987187334387934f, -0.0804474888246625f, 0.496400656176795f, -0.851811189314651f, -0.791398271297849f, -0.868174317799275f, -0.226794668997878f, -0.335339474552766f, -0.276765924750817f, -0.395876032147377f, -0.740529136126816f, -0.167799472110453f, 0.593129248263724f, 0.336783120133436f, 0.248892158925787f, 0.950120283075237f, -0.795216613504226f, -0.574731116508357f, -0.822689608026685f, 0.973698546284335f, 0.125166556654624f, 0.588150318080073f, 0.128654744345192f, -0.219207714307262f, -0.271053050307713f, 0.124071241265810f, -0.618209718015327f, -0.766619799595349f, -0.478340220431165f, -0.446873929629545f, 0.978019432749647f, -0.627041040766022f, 0.169323691066764f, -0.714079827532216f, 0.386101296128268f, -0.360225804976135f, -0.236797717782837f, -0.311635747131794f, 0.0482888201705840f, -0.477302740867809f, -0.427349080854399f, 0.390352470816329f, 0.611790541936623f, -0.648292156214605f, -0.345871618789073f, 0.509300603302844f, -0.0142202703124219f, -0.570248077753979f, -0.0629178211029751f, -0.737806048037047f, 0.497750084049821f, -0.761650107803135f, -0.788756591098617f, -0.994497286039420f, -0.987344273533962f, 0.657151987467984f, -0.763708299084062f, -0.0729359162118841f, 0.0455275633022023f, -0.101919187896584f, 0.457804242981095f, 0.0117715388281796f, -0.274125197027132f, -0.949738804931191f, 0.762108173886486f, 0.405150754308562f, -0.733330375873553f, -0.712774896799572f, -0.791947616412901f, 0.444023894424500f, 0.00507562975249609f, -0.900698136223538f, -0.576055334977054f, -0.948895529956106f, -0.832665060374124f, -0.992753953473078f, -0.0674086978315183f, 0.569494111501383f, -0.962269067721443f, -0.489700810475570f, 0.972626508328545f, -0.777400448149780f, 0.115588644128954f, 0.0730469703310024f, 0.523584488072518f, 0.659055312807301f, 0.134198234373838f, -0.797833055125151f, -0.167842823235145f, -0.662347837139732f, -0.537544370279756f, -0.622353549740796f, -0.789789664448618f, 0.985300123665319f, 0.862449845163424f, 0.973193986256980f, 0.148883268671144f, 0.283619537155083f, 0.508503183151258f, -0.246167305966866f, -0.259543094514413f, -0.778029136807597f, 0.128978622849116f, -0.920978818238085f, -0.116324837544276f, -0.261472397833253f, 0.772449038068069f, -0.696754008784325f, 0.980778877985902f, -0.227636956328402f, -0.472493776528032f, -0.568519858000960f, -0.151689463117960f, -0.102997587484899f, 0.464752146042376f, -0.839114793935065f, -0.0325074343587592f, -0.180618880765978f, 0.0132253638432844f, -0.646173464496730f, 0.821983901071593f, 0.657453744559881f, 0.786315172070382f, -0.438718096604728f, 0.702691078885442f, 0.859957412428682f, -0.505281395658564f, -0.236722160990303f, -0.698465568366759f, -0.746418979540090f, -0.218205126412646f, -0.808715244840435f, -0.949813739800491f, 0.176975348790769f, 0.723960974918154f, -0.139253733704369f, -0.387224393658603f, -0.869945438924443f, -0.396979039594941f, 0.0256060022407458f, -0.566074790002811f, -0.161564565183606f, -0.736189868188370f, -0.205593811665825f, -0.628996407588712f, -0.0266462623004120f, -0.344127255771429f, -0.229003801178142f, -0.469786561635510f, 0.258249378153965f, 0.160442939158622f, 0.0528817242116550f, 0.261960766261548f, -0.571069557415276f, 0.411333771884545f, -0.145205354714326f, 0.249324532476397f, 0.163889600722793f, 0.649915677347011f, 0.147077371087195f, -0.227104208942068f, 0.867390199578604f, -0.0734153565896754f, 0.0491208061060167f, 0.0360590744216485f, 0.181620126101180f, 0.0567549454976457f, -0.856976992549465f, -0.242511192726339f, -0.624770508991394f, -0.793161214564285f, -0.251208532727981f, -0.833192309869275f, 0.368166434661069f, 0.939730260791580f, 0.305796202211942f, -0.598830491282818f, -0.0575368190467946f, 0.371329658849021f, -0.227872714677810f, 0.707539568196379f, 0.795186297468385f, 0.475847791658551f, 0.829361555893632f, 0.405386540930889f, 0.213282954068900f, 0.767339023510319f, 0.525055513018554f, 0.259437496637378f, -0.524342591286100f, -0.731515526086696f, -0.233118783725590f, 0.237972339628935f, -0.933985285078109f, 0.537013420173496f, 0.498819465200784f, -0.407713459607516f, 0.382821417923595f, -0.416894700661466f, 0.0787266904103943f, -0.0627973593192392f, -0.320105342653426f, -0.844066834407447f, 0.138221622417319f, -0.676665423871596f, -0.961043785105959f, 0.832268610130385f, -0.905530890441773f, -0.114191325652611f, -0.376697124207843f, 0.390323137798417f, 0.953143142925101f, 0.983427991280007f, -0.0895687386326503f, -0.681543125061097f, 0.677131540142176f, -0.867715848764628f, -0.812718786220309f, -0.212509939486840f, -0.990002327123638f, -0.0682855560011961f, 0.129310729289606f, -0.623746296335073f, -0.285580241032587f, 0.235626081900812f, -0.611973228709249f, 0.539189737955466f, 0.970058678533189f, 0.901944358898624f, 0.168094826408153f, -0.666711281252260f, 0.965612752173968f, 0.651034558458719f, 0.687501917067508f, 0.758614314567106f, -0.839396045781239f, -0.552775028233564f, -0.528941743867256f, 0.174761156721889f, 0.243585712774679f, 0.588913151268911f, -0.306898192880627f, 0.921540023069231f, -0.0223654942298541f, -0.102408576957649f, 0.612577852207921f, 0.835809058447089f, -0.437118459197839f, 0.455316033239981f, 0.311435507416257f, -0.648992336007256f, 0.346823844785409f, -0.632080213667648f, -0.599678627679202f, -0.653822991854328f, 0.484305292443427f, 0.782046295685087f, 0.960987598814982f, 0.627169162605570f, 0.948092598306120f, -0.185268381817018f, 0.602489977060513f, -0.885827813790617f, -0.00179203147433582f, -0.175476447614991f, 0.0461282236560925f, -0.898013889602944f, 0.256310837914276f, -0.733422110056865f, -0.740091677658095f, 0.966724540497493f, 0.328056986822768f, -0.267854591449557f, 0.670545831663244f, -0.356204313297688f, 0.0729865206358908f, -0.594530723723669f, 0.519965324048968f, 0.0632129606097647f, -0.878434885663544f, -0.497945943395010f, 0.0151854050905818f, -0.218036856012343f, 0.547721213710874f, -0.0915514918588898f, -0.279344098401951f, -0.228654882218650f, 0.100432155997130f, 0.802024600677294f, 0.175832345686877f, 0.0551231013299744f, 0.938247319394824f, 0.639298571360036f, -0.291461603371678f, -0.853503115314794f, -0.604829242631156f, 0.0291571486740745f, -0.932575328418390f, -0.621235088415116f, 0.403040314052094f, -0.809695618266849f, 0.966605888732736f, -0.199254401023053,
-0.540808222970056f, -0.0141840769249790f, 0.114579158224093f, 0.466889318471371f, -0.145415211797766f, -0.846707387707480f, -0.881237200733915f, -0.410798723199712f, -0.637697860299854f, -0.196366036081372f, 0.193267531425712f, -0.258591200841940f, -0.173003722066551f, 0.478121376006132f, 0.953819951501542f, 0.969916001975448f, 0.131515861287576f, -0.499829658784781f, 0.320952777516193f, -0.226980682212371f, 0.766886115655233f, 0.647310434110803f, -0.772594685974992f, 0.772645949480187f, -0.936357605801364f, -0.671842916281206f, -0.595127074295355f, 0.335132581825520f, 0.648964430112689f, -0.793376819398441f, -0.963663232647360f, 0.914308824314478f, -0.397663128784982f, 0.803240040231588f, -0.291039120047626f, -0.339918835846510f, -0.208620988780609f, 0.278177231697424f, -0.833157746552451f, 0.260554706029473f, -0.580537744139231f, 0.918561093477862f, 0.641368468308093f, 0.827379039283645f, -0.412231303854834f, -0.518315486749742f, 0.423356687848085f, 0.0777277584993787f, 0.394127392657178f, 0.609705410002715f, 0.264669032561337f, -0.460555696512027f, -0.0858908123066196f, -0.281781559603429f, -0.179777723960362f, -0.00449990348855067f, 0.803703377739133f, -0.155074032314596f, -0.00206139428833696f, 0.0661730930565525f, -0.737509215752079f, 0.620182143819587f, 0.114750705414661f, 0.545663051433958f, 0.661601724477194f, -0.592280382351976f, 0.609240020031149f, -0.968781019917808f, -0.668068368389875f, 0.206915551463500f, 0.0951453192552747f, 0.268580107578401f, -0.0450052302342363f, -0.933589842483940f, 0.236570492858402f, 0.0688734168318912f, 0.930163232697303f, 0.435953476823146f, 0.533759385687075f, 0.368282038662015f, -0.602312961473778f, 0.709516631712345f, -0.168303926671961f, 0.130670870119294f, -0.657736111745007f, 0.115028598388756f, 0.173728026281032f, -0.681671363429886f, -0.538786035950873f, 0.481457671665448f, 0.0136795278434168f, -0.570065342244344f, 0.188187050857249f, -0.352869308173680f, -0.979175308628854f, 0.223702879460018f, 0.994220466087713f, -0.147795166105729f, 0.218427535879435f, -0.120050826084179f, -0.0124939247430063f, -0.645134875027126f, -0.503122688484778f, 0.534123007328982f, 0.619710972635444f, -0.234248243706177f, 0.987144458053815f, 0.261284702576427f, 0.851827092094236f, 0.750019654249059f, -0.926154630610335f, 0.449356103243440f, 0.783011320523296f, -0.459228158107270f, -0.228877816937867f, 0.271108937592868f, -0.676085611673506f, 0.783114428240160f, 0.636093784021493f, -0.754110314308629f, -0.546386104880684f, 0.0385811136139234f, -0.768951137117397f, -0.644624743947807f, 0.00890157035391148f, -0.0792572116273387f, -0.989980668770044f, 0.603057533157075f, 0.280835727469123f, -0.634716709420524f, -0.712669415138995f, -0.424129916157595f, -0.436923748487354f, 0.467366013559791f, 0.907740481011987f, 0.788617065944311f, -0.152237692069130f, -0.963044404518533f, 0.907393322909416f, 0.806867676446313f, 0.699270310021791f, 0.107867603776547f, 0.127360747415417f, -0.502645789696788f, -0.511744166872327f, -0.121672719343072f, -0.596527146770249f, 0.410180172377510f, -0.852889849908704f, 0.278972213674154f, 0.0260156356783650f, 0.997558501949683f, -0.499245840292893f, -0.451169267624132f, -0.881643497362337f, 0.986957209874262f, -0.129608292321380f, 0.935829016346258f, -0.649021465281634f, 0.550436689069794f, 0.278888743082679f, 0.0137769346664500f, -0.660666060213522f, -0.416709136728042f, -0.302903068397225f, 0.180657445835459f, -0.908195955986293f, 0.280056533234627f, -0.660025789034158f, -0.798207438952561f, 0.901575224780405f, -0.608702932295102f, 0.318860199910414f, 0.874005722023406f, -0.0816057579181704f, 0.981671341873017f, -0.339234700161323f, 0.559717959858931f, 0.390363525109105f, -0.309384476087470f, 0.956563156784297f, -0.623734354817613f, -0.196627375289105f, -0.702076014509088f, 0.293098766889643f, -0.617152224560368f, 0.859117491438645f, 0.661015739867647f, 0.0747554166353739f, -0.282417009682732f, -0.667461537762524f, -0.451029960388404f, -0.464518668674360f, 0.591389440503293f, 0.552648871601186f, -0.242406315814918f, 0.147876771864331f, -0.00605730052917419f, -0.850648363553678f, -0.659957159486993f, -0.165475362851332f, 0.204150315434812f, -0.665767311591476f, -0.716154682563576f, 0.417487456932076f, 0.448184990956287f, 0.733843802413198f, -0.170228277851921f, -0.346809954182150f, 0.956058632188011f, 0.0315623945930987f, 0.509027121691627f, -0.147826185909834f, 0.717423768198044f, -0.153258078639530f, -0.586190749016474f, 0.122228033051868f, -0.884999045468193f, -0.364729711773548f, 0.0869976154696972f, -0.793532199218799f, 0.533748273468951f, -0.852754376244435f, 0.294752047699830f, 0.136764278163013f, 0.838074791168389f, 0.795224598541123f, -0.778005568697498f, -0.260924769562304f, -0.303759147861313f, 0.273726011325558f, 0.530476779331216f, 0.0866801234357086f, 0.0677702376031544f, 0.724353404182035f, -0.974710312543683f, 0.791838170482991f, 0.247768259921660f, 0.979431048271259f, -0.386992541899814f, 0.0640038231299192f, -0.00457726816166693f, 0.371455553726539f, 0.647649995487707f, 0.268304945808406f, -0.320428608173924f, 0.0927511620029309f, 0.256010036486838f, 0.740396212690346f, -0.656873241472848f, 0.823534292439413f, -0.820380362458844f, -0.453300307443023f, 0.784238355222248f, 0.912791840124321f, 0.0999478035440859f, -0.212620916988855f, 0.0170290625008669f, -0.589062380565879f, -0.171833624145497f, -0.524918122866141f, 0.961528292650892f, 0.101262818636430f, 0.941455114569308f, -0.967226220138929f, 0.616781547648562f, -0.913823148383971f, 0.274508821885917f, 0.924653374107756f, -0.866302908989783f, 0.227541907715857f, 0.0907574361370582f, -0.127499097943315f, -0.942071371521895f, -0.119419163649152f, 0.674284088819523f, 0.881328505929745f, 0.246290207551702f, 0.0547607254148590f, -0.462882918359077f, 0.888969728230585f, 0.666583509571921f, 0.238417203582380f, -0.279842248122727f, 0.855260336845903f, 0.314306869401155f, -0.188654877893078f, -0.609304918228150f, 0.169453885325888f, 0.265617874907016f, -0.943423537926184f, 0.493118676869450f, -0.386147750024858f, 0.0103920154342951f, 0.753677832518483f, 0.363353012331066f, -0.286620106520429f, -0.623332994906295f, 0.183966714365642f, -0.124278942882867f, -0.687889346448110f, -0.509002319646341f, -0.705769785650865f, 0.600586126467172f, 0.814989294939922f, 0.198959025256652f, 0.477897007911356f, 0.757957814363899f, 0.617755921094230f, -0.353589871947529f, 0.419688673189503f, -0.860584865805600f, -0.0232779635193843f, -0.789951030889387f, -0.893196700185750f, 0.610996462535201f, 0.847373590985131f, -0.989553358501822f, -0.367651771428081f, 0.741563712056747f, -0.923595352848971f, -0.580174215739367f, 0.577092000574232f, -0.910872910110270f, -0.907499077314190f, 0.692372247654077f, 0.810694134592084f, -0.608596332548047f, 0.761254615051625f, 0.0546240611947364f, -0.393956427117691f, -0.116127831535139f, -0.0352014590913388f, 0.374742194768889f, -0.927344099730091f, 0.939301337232488f, -0.969831716293845f, -0.0489333404770240f, -0.586719398908953f, 0.0235541378462407f, 0.388882981728285f, -0.0728483242295113f, 0.418280445244943f, -0.574289337805456f, -0.779962057565259f, -0.835190719754123f, 0.918717316922657f, -0.765889988109173f, -0.935310664146932f, -0.0750906135370848f, -0.256246546197534f, 0.693865929543926f, 0.592800255527084f, 0.836743344551035f, -0.801953470827580f, 0.0595524153568945f, 0.158376549012192f, -0.429364776412726f, -0.450531184162532f, -0.169317185285268f, 0.420344570579195f, -0.902838087574441f, -0.654676904337469f, 0.941802178622893f, -0.411034608875500f, -0.455381371659872f, 0.582371240315256f, -0.276150504466756f, 0.164276403376185f, -0.960238817086774f, 0.590055303394028f, -0.995185688656226f, -0.285809748360467f, -0.792066171752882f, -0.456123303649101f, -0.864169187700384f, 0.798745251308383f, -0.517673464079948f, 0.523086536900369f, 0.398784615211052f, 0.908677185333852f, -0.434846969584770f, -0.277024535706464f, 0.575800013122065f, -0.0423952171673019f, -0.327530749916683f, -0.401220909875065f, -0.232577533032385f, 0.577630268254944f, -0.733290201484409f, -0.297499739456838f, 0.166541885572822f, -0.646828619904039f, 0.0312662656272755f, 0.754145050600965f, -0.908499825108811f, 0.315379190361296f, 0.366242661082351f, 0.867903806940678f, -0.613391940567782f, 0.00760147209048068f, 0.953424134034927f, -0.812551125910811f, 0.734998935207065f, 0.781720854678504f, -0.653974423413561f, 0.612587888218526f, -0.297359914095386f, -0.409559158758694f, -0.143962230212734f, -0.814888102841114f, 0.359131810502055f, 0.356924557741016f, -0.872415989401612f, 0.716849887848809f, -0.374916928585818f, -0.0702264435280595f, 0.329843438660215f, 0.0956097573088677f, -0.937528128860310f, -0.322293489817529f, 0.781444964993177f, -0.810141738751828f, -0.150295079242497f, 0.846909181293597f, -0.128124277517711f, -0.752611695817661f, 0.839996835828451f, -0.0705685941510277f, 0.000366462394740585f, 0.0788016995849923f, -0.246053200655556f, -0.156645099915028f, -0.460752333796863f, 0.622021359864204f, 0.722871957583123f, -0.257873353238499f, -0.309810184480446f, 0.765248644407833f, -0.553316047243663f, -0.612742789838491f, 0.354017349601509f, 0.923293368553697f, 0.630695912377860f, -0.148750121613537f, -0.821801680234240f, 0.368247966228196f, 0.405416044101496f, -0.803232509711354f, -0.429778551911399f, -0.723837414527446f, -0.963925147452133f, 0.190882872226757f, 0.477008077263598f, -0.661282403679070f, 0.271643442525556f, -0.915994079618801f, 0.196564556546175f, 0.378359035245796f, 0.584016730657668f, -0.0377864332655202f, -0.327376192853106f, 0.850744189707984f, 0.799571679043808f, -0.111126908452029f, 0.525587242291601f, -0.404486180733535f, -0.134496922397279f, 0.0890128096708100f, -0.815560643303157f, -0.920166023598312f, -0.360079578314899f, -0.556238898466371f, -0.220978103133838f, -0.571530268052405f, 0.573332217175226f, -0.133862258696460f, -0.982130330352248f, -0.352538465285082f, 0.318683937697894f, -0.790927430842686f, 0.691168535237102f, 0.806014327242002f, -0.981639450008060f, 0.407200095027265f, 0.918249921845949f, 0.776880149695420f, -0.437773083955269f, -0.385117533333437f, 0.0115152415796460f, 0.687224538003991f, 0.992524870612626f, 0.471003324792228f, -0.873541777412034f, -0.560923118634380f, -0.726151823613842f, -0.538941951730010f, 0.772057551475325f, 0.858490725829641f, -0.168849338472479f };
# 102 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/fixed-point.h"
fxp_t wrap(fxp_t kX, fxp_t kLowerBound, fxp_t kUpperBound)
{
int32_t range_size = kUpperBound - kLowerBound + 1;
if (kX < kLowerBound){
kX += range_size * ((kLowerBound - kX) / range_size + 1);
}
return kLowerBound + (kX - kLowerBound) % range_size;
}
fxp_t fxp_get_int_part(fxp_t in) {
return ((in < 0) ? -((-in) & _fxp_imask) : in & _fxp_imask);
}
fxp_t fxp_get_frac_part(fxp_t in) {
return ((in < 0) ? -((-in) & _fxp_fmask) : in & _fxp_fmask);
}
float fxp_to_float(fxp_t fxp);
fxp_t fxp_quantize(fxp_t aquant) {
if (overflow_mode == 2) {
if(aquant < _fxp_min) {
return _fxp_min;
}
else if(aquant > _fxp_max) {
return _fxp_max;
}
}
else if (overflow_mode == 3) {
if(aquant < _fxp_min || aquant > _fxp_max) {
return wrap(aquant, _fxp_min, _fxp_max);
}
}
return (fxp_t) aquant;
}
void fxp_verify_overflow(fxp_t value){
fxp_quantize(value);
printf("An Overflow Occurred in system's output");
__DSVERIFIER_assert(value <= _fxp_max && value >= _fxp_min);
}
void fxp_verify_overflow_node(fxp_t value, char* msg){
if (1 == 2)
{
printf("%s",msg);
__DSVERIFIER_assert(value <= _fxp_max && value >= _fxp_min);
}
}
void fxp_verify_overflow_array(fxp_t array[], int n){
int i=0;
for(i=0; i<n;i++){
fxp_verify_overflow(array[i]);
}
}
fxp_t fxp_int_to_fxp(int in) {
fxp_t lin;
lin = (fxp_t) in*_fxp_one;
return lin;
}
int fxp_to_int(fxp_t fxp) {
if(fxp >= 0){
fxp += _fxp_half;
} else {
fxp -= _fxp_half;
}
fxp >>= impl.frac_bits;
return (int) fxp;
}
fxp_t fxp_float_to_fxp(float f) {
fxp_t tmp;
double ftemp;
ftemp = f * scale_factor[impl.frac_bits];
if(f >= 0) {
tmp = (fxp_t)(ftemp + 0.5);
}
else {
tmp = (fxp_t)(ftemp - 0.5);
}
return tmp;
}
fxp_t fxp_double_to_fxp(double value) {
fxp_t tmp;
double ftemp = value * scale_factor[impl.frac_bits];
if (rounding_mode == 0){
if(value >= 0) {
tmp = (fxp_t)(ftemp + 0.5);
}
else {
tmp = (fxp_t)(ftemp - 0.5);
}
} else if(rounding_mode == 1){
tmp = (fxp_t) ftemp;
double residue = ftemp - tmp;
if ((value < 0) && (residue != 0)){
ftemp = ftemp - 1;
tmp = (fxp_t) ftemp;
}
} else if (rounding_mode == 0){
tmp = (fxp_t) ftemp;
}
return tmp;
}
void fxp_float_to_fxp_array(float f[], fxp_t r[], int N) {
int i;
for(i = 0; i < N; ++i) {
r[i] = fxp_float_to_fxp(f[i]);
}
}
void fxp_double_to_fxp_array(double f[], fxp_t r[], int N) {
int i;
for(i = 0; i < N; ++i) {
r[i] = fxp_double_to_fxp(f[i]);
}
}
# 275 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/fixed-point.h"
float fxp_to_float(fxp_t fxp) {
float f;
int f_int = (int) fxp;
f = f_int * scale_factor_inv[impl.frac_bits];
return f;
}
double fxp_to_double(fxp_t fxp) {
double f;
int f_int = (int) fxp;
f = f_int * scale_factor_inv[impl.frac_bits];
return f;
}
void fxp_to_float_array(float f[], fxp_t r[], int N) {
int i;
for(i = 0; i < N; ++i) {
f[i] = fxp_to_float(r[i]);
}
}
void fxp_to_double_array(double f[], fxp_t r[], int N) {
int i;
for(i = 0; i < N; ++i) {
f[i] = fxp_to_double(r[i]);
}
}
fxp_t fxp_abs(fxp_t a) {
fxp_t tmp;
tmp = ((a < 0) ? -(fxp_t)(a) : a);
tmp = fxp_quantize(tmp);
return tmp;
}
fxp_t fxp_add(fxp_t aadd, fxp_t badd) {
fxp_t tmpadd;
tmpadd = ((fxp_t)(aadd) + (fxp_t)(badd));
tmpadd = fxp_quantize(tmpadd);
return tmpadd;
}
fxp_t fxp_sub(fxp_t asub, fxp_t bsub) {
fxp_t tmpsub;
tmpsub = (fxp_t)((fxp_t)(asub) - (fxp_t)(bsub));
tmpsub = fxp_quantize(tmpsub);
return tmpsub;
}
fxp_t fxp_mult(fxp_t amult, fxp_t bmult) {
fxp_t tmpmult, tmpmultprec;
tmpmult = (fxp_t)((fxp_t)(amult)*(fxp_t)(bmult));
if (tmpmult >= 0) {
tmpmultprec = (tmpmult + ((tmpmult & 1 << (impl.frac_bits - 1)) << 1)) >> impl.frac_bits;
} else {
tmpmultprec = -(((-tmpmult) + (((-tmpmult) & 1 << (impl.frac_bits - 1)) << 1)) >> impl.frac_bits);
}
tmpmultprec = fxp_quantize(tmpmultprec);
return tmpmultprec;
}
# 372 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/fixed-point.h"
fxp_t fxp_div(fxp_t a, fxp_t b){
__DSVERIFIER_assume( b!=0 );
fxp_t tmpdiv = ((a << impl.frac_bits) / b);
tmpdiv = fxp_quantize(tmpdiv);
return tmpdiv;
}
fxp_t fxp_neg(fxp_t aneg) {
fxp_t tmpneg;
tmpneg = -(fxp_t)(aneg);
tmpneg = fxp_quantize(tmpneg);
return tmpneg;
}
# 398 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/fixed-point.h"
fxp_t fxp_sign(fxp_t a) {
return ((a == 0) ? 0 : ((a < 0) ? _fxp_minus_one : _fxp_one) );
}
fxp_t fxp_shrl(fxp_t in, int shift) {
return (fxp_t) (((unsigned int) in) >> shift);
}
fxp_t fxp_square(fxp_t a) {
return fxp_mult(a, a);
}
void fxp_print_int(fxp_t a) {
printf("\n%i", (int32_t)a);
}
void fxp_print_float(fxp_t a) {
printf("\n%f", fxp_to_float(a));
}
void fxp_print_float_array(fxp_t a[], int N) {
int i;
for(i = 0; i < N; ++i) {
printf("\n%f", fxp_to_float(a[i]));
}
}
void print_fxp_array_elements(char * name, fxp_t * v, int n){
printf("%s = {", name);
int i;
for(i=0; i < n; i++){
printf(" %jd ", v[i]);
}
printf("}\n");
}
# 23 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2
# 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/util.h" 1
# 24 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/util.h"
void initialize_array(double v[], int n){
int i;
for(i=0; i<n; i++){
v[i] = 0;
}
}
void revert_array(double v[], double out[], int n){
initialize_array(out,n);
int i;
for(i=0; i<n; i++){
out[i] = v[n-i-1];
}
}
double internal_pow(double a, double b){
int i;
double acc = 1;
for (i=0; i < b; i++){
acc = acc*a;
}
return acc;
}
double internal_abs(double a){
return a < 0 ? -a : a;
}
int fatorial(int n){
return n == 0 ? 1 : n * fatorial(n-1);
}
int check_stability(double a[], int n){
int lines = 2 * n - 1;
int columns = n;
double m[lines][n];
int i,j;
double current_stability[n];
for (i=0; i < n; i++){
current_stability[i] = a[i];
}
double sum = 0;
for (i=0; i < n; i++){
sum += a[i];
}
if (sum <= 0){
printf("[DEBUG] the first constraint of Jury criteria failed: (F(1) > 0)");
return 0;
}
sum = 0;
for (i=0; i < n; i++){
sum += a[i] * internal_pow(-1, n-1-i);
}
sum = sum * internal_pow(-1, n-1);
if (sum <= 0){
printf("[DEBUG] the second constraint of Jury criteria failed: (F(-1)*(-1)^n > 0)");
return 0;
}
if (internal_abs(a[n-1]) > a[0]){
printf("[DEBUG] the third constraint of Jury criteria failed: (abs(a0) < a_{n}*z^{n})");
return 0;
}
for (i=0; i < lines; i++){
for (j=0; j < columns; j++){
m[i][j] = 0;
}
}
for (i=0; i < lines; i++){
for (j=0; j < columns; j++){
if (i == 0){
m[i][j] = a[j];
continue;
}
if (i % 2 != 0 ){
int x;
for(x=0; x<columns;x++){
m[i][x] = m[i-1][columns-x-1];
}
columns = columns - 1;
j = columns;
}else{
m[i][j] = m[i-2][j] - (m[i-2][columns] / m[i-2][0]) * m[i-1][j];
}
}
}
int first_is_positive = m[0][0] >= 0 ? 1 : 0;
for (i=0; i < lines; i++){
if (i % 2 == 0){
int line_is_positive = m[i][0] >= 0 ? 1 : 0;
if (first_is_positive != line_is_positive){
return 0;
}
continue;
}
}
return 1;
}
void poly_sum(double a[], int Na, double b[], int Nb, double ans[], int Nans){
int i;
Nans = Na>Nb? Na:Nb;
for (i=0; i<Nans; i++){
if (Na>Nb){
ans[i]=a[i];
if (i > Na-Nb-1){
ans[i]=ans[i]+b[i-Na+Nb];
}
}else {
ans[i]=b[i];
if (i> Nb - Na -1){
ans[i]=ans[i]+a[i-Nb+Na];
}
}
}
}
void poly_mult(double a[], int Na, double b[], int Nb, double ans[], int Nans){
int i;
int j;
int k;
Nans = Na+Nb-1;
for (i=0; i<Na; i++){
for (j=0; j<Nb; j++){
k= Na + Nb - i - j - 2;
ans[k]=0;
}
}
for (i=0; i<Na; i++){
for (j=0; j<Nb; j++){
k= Na + Nb - i - j - 2;
ans[k]=ans[k]+a[Na - i - 1]*b[Nb - j - 1];
}
}
}
void double_check_oscillations(double * y, int y_size){
__DSVERIFIER_assume(y[0] != y[y_size - 1]);
int window_timer = 0;
int window_count = 0;
int i, j;
for (i = 2; i < y_size; i++){
int window_size = i;
for(j=0; j<y_size; j++){
if (window_timer > window_size){
window_timer = 0;
window_count = 0;
}
int window_index = j + window_size;
if (window_index < y_size){
if (y[j] == y[window_index]){
window_count++;
# 209 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/util.h" 3 4
((void) sizeof ((
# 209 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/util.h"
!(window_count == window_size)
# 209 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/util.h" 3 4
) ? 1 : 0), __extension__ ({ if (
# 209 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/util.h"
!(window_count == window_size)
# 209 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/util.h" 3 4
) ; else __assert_fail (
# 209 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/util.h"
"!(window_count == window_size)"
# 209 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/util.h" 3 4
, "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/util.h", 209, __extension__ __PRETTY_FUNCTION__); }))
# 209 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/util.h"
;
}
}else{
break;
}
window_timer++;
}
}
}
void double_check_limit_cycle(double * y, int y_size){
double reference = y[y_size - 1];
int idx = 0;
int window_size = 1;
for(idx = (y_size-2); idx >= 0; idx--){
if (y[idx] != reference){
window_size++;
}else{
break;
}
}
__DSVERIFIER_assume(window_size != y_size && window_size != 1);
printf("window_size %d\n", window_size);
int desired_elements = 2 * window_size;
int found_elements = 0;
for(idx = (y_size-1); idx >= 0; idx--){
if (idx > (y_size-window_size-1)){
printf("%.0f == %.0f\n", y[idx], y[idx-window_size]);
int cmp_idx = idx - window_size;
if ((cmp_idx > 0) && (y[idx] == y[idx-window_size])){
found_elements = found_elements + 2;
}else{
break;
}
}
}
printf("desired_elements %d\n", desired_elements);
printf("found_elements %d\n", found_elements);
__DSVERIFIER_assert(desired_elements != found_elements);
}
void double_check_persistent_limit_cycle(double * y, int y_size){
int idy = 0;
int count_same = 0;
int window_size = 0;
double reference = y[0];
for(idy = 0; idy < y_size; idy++){
if (y[idy] != reference){
window_size++;
} else if (window_size != 0){
break;
} else {
count_same++;
}
}
window_size += count_same;
__DSVERIFIER_assume(window_size > 1 && window_size <= y_size/2);
double lco_elements[window_size];
for(idy = 0; idy < y_size; idy++){
if (idy < window_size){
lco_elements[idy] = y[idy];
}
}
idy = 0;
int lco_idy = 0;
_Bool is_persistent = 0;
while (idy < y_size){
if(y[idy++] == lco_elements[lco_idy++]){
is_persistent = 1;
}else{
is_persistent = 0;
break;
}
if (lco_idy == window_size){
lco_idy = 0;
}
}
__DSVERIFIER_assert(is_persistent == 0);
}
void print_array_elements(char * name, double * v, int n){
printf("%s = {", name);
int i;
for(i=0; i < n; i++){
printf(" %.32f ", v[i]);
}
printf("}\n");
}
void double_add_matrix( unsigned int lines, unsigned int columns, double m1[4][4], double m2[4][4], double result[4][4]){
unsigned int i, j;
for (i = 0; i < lines; i++){
for (j = 0; j < columns; j++){
result[i][j] = m1[i][j] + m2[i][j];
}
}
}
void double_sub_matrix( unsigned int lines, unsigned int columns, double m1[4][4], double m2[4][4], double result[4][4]){
unsigned int i, j;
for (i = 0; i < lines; i++){
for (j = 0; j < columns; j++){
result[i][j] = m1[i][j] - m2[i][j];
}
}
}
void double_matrix_multiplication( unsigned int i1, unsigned int j1, unsigned int i2, unsigned int j2, double m1[4][4], double m2[4][4], double m3[4][4]){
unsigned int i, j, k;
if (j1 == i2) {
for (i=0; i<i1; i++) {
for (j=0; j<j2; j++) {
m3[i][j] = 0;
}
}
for (i=0;i<i1; i++) {
for (j=0; j<j2; j++) {
for (k=0; k<j1; k++) {
double mult = (m1[i][k] * m2[k][j]);
m3[i][j] = m3[i][j] + (m1[i][k] * m2[k][j]);
}
}
}
} else {
printf("\nError! Operation invalid, please enter with valid matrices.\n");
}
}
void fxp_matrix_multiplication( unsigned int i1, unsigned int j1, unsigned int i2, unsigned int j2, fxp_t m1[4][4], fxp_t m2[4][4], fxp_t m3[4][4]){
unsigned int i, j, k;
if (j1 == i2) {
for (i=0; i<i1; i++) {
for (j=0; j<j2; j++) {
m3[i][j] = 0;
}
}
for (i=0;i<i1; i++) {
for (j=0; j<j2; j++) {
for (k=0; k<j1; k++) {
m3[i][j] = fxp_add( m3[i][j], fxp_mult(m1[i][k] , m2[k][j]));
}
}
}
} else {
printf("\nError! Operation invalid, please enter with valid matrices.\n");
}
}
void fxp_exp_matrix(unsigned int lines, unsigned int columns, fxp_t m1[4][4], unsigned int expNumber, fxp_t result[4][4]){
unsigned int i, j, l, k;
fxp_t m2[4][4];
if(expNumber == 0){
for (i = 0; i < lines; i++){
for (j = 0; j < columns; j++){
if(i == j){
result[i][j] = fxp_double_to_fxp(1.0);
} else {
result[i][j] = 0.0;
}
}
}
return;
}
for (i = 0; i < lines; i++)
for (j = 0; j < columns; j++) result[i][j] = m1[i][j];
if(expNumber == 1){
return;
}
for(l = 1; l < expNumber; l++){
for (i = 0; i < lines; i++)
for (j = 0; j < columns; j++) m2[i][j] = result[i][j];
for (i = 0; i < lines; i++)
for (j = 0; j < columns; j++) result[i][j] = 0;
for (i=0;i<lines; i++) {
for (j=0; j<columns; j++) {
for (k=0; k<columns; k++) {
result[i][j] = fxp_add( result[i][j], fxp_mult(m2[i][k] , m1[k][j]));
}
}
}
}
}
void double_exp_matrix(unsigned int lines, unsigned int columns, double m1[4][4], unsigned int expNumber, double result[4][4]){
unsigned int i, j, k, l;
double m2[4][4];
if(expNumber == 0){
for (i = 0; i < lines; i++){
for (j = 0; j < columns; j++){
if(i == j){
result[i][j] = 1.0;
} else {
result[i][j] = 0.0;
}
}
}
return;
}
for (i = 0; i < lines; i++)
for (j = 0; j < columns; j++) result[i][j] = m1[i][j];
if(expNumber == 1){
return;
}
for(l = 1; l < expNumber; l++){
for (i = 0; i < lines; i++)
for (j = 0; j < columns; j++) m2[i][j] = result[i][j];
for (i = 0; i < lines; i++)
for (j = 0; j < columns; j++) result[i][j] = 0;
for (i=0;i<lines; i++) {
for (j=0; j<columns; j++) {
for (k=0; k<columns; k++) {
result[i][j] = result[i][j] + (m2[i][k] * m1[k][j]);
}
}
}
}
}
void fxp_add_matrix( unsigned int lines, unsigned int columns, fxp_t m1[4][4], fxp_t m2[4][4], fxp_t result[4][4]){
unsigned int i, j;
for (i = 0; i < lines; i++)
for (j = 0; j < columns; j++) {
result[i][j] = fxp_add(m1[i][j] , m2[i][j]);
}
}
void fxp_sub_matrix( unsigned int lines, unsigned int columns, fxp_t m1[4][4], fxp_t m2[4][4], fxp_t result[4][4]){
unsigned int i, j;
for (i = 0; i < lines; i++)
for (j = 0; j < columns; j++) result[i][j] = fxp_sub(m1[i][j] , m2[i][j]);
}
void print_matrix(double matrix[4][4], unsigned int lines, unsigned int columns){
printf("\nMatrix\n=====================\n\n");
unsigned int i, j;
for (i=0; i<lines; i++) {
for (j=0; j<columns; j++) {
printf("#matrix[%d][%d]: %2.2f ", i,j,matrix[i][j]);
}
printf("\n");
}
printf("\n");
}
double determinant(double a[4][4],int n)
{
int i,j,j1,j2;
double det = 0;
double m[4][4];
if (n < 1) {
} else if (n == 1) {
det = a[0][0];
} else if (n == 2) {
det = a[0][0] * a[1][1] - a[1][0] * a[0][1];
} else {
det = 0;
for (j1=0;j1<n;j1++) {
for (i=0;i<n-1;i++)
for (i=1;i<n;i++) {
j2 = 0;
for (j=0;j<n;j++) {
if (j == j1)
continue;
m[i-1][j2] = a[i][j];
j2++;
}
}
det += internal_pow(-1.0,1.0+j1+1.0) * a[0][j1] * determinant(m,n-1);
}
}
return(det);
}
double fxp_determinant(fxp_t a_fxp[4][4],int n)
{
int i,j,j1,j2;
double a[4][4];
for(i=0; i<n;i++){
for(j=0; j<n;j++){
a[i][j]= fxp_to_double(a_fxp[i][j]);
}
}
double det = 0;
double m[4][4];
if (n < 1) {
} else if (n == 1) {
det = a[0][0];
} else if (n == 2) {
det = a[0][0] * a[1][1] - a[1][0] * a[0][1];
} else {
det = 0;
for (j1=0;j1<n;j1++) {
for (i=0;i<n-1;i++)
for (i=1;i<n;i++) {
j2 = 0;
for (j=0;j<n;j++) {
if (j == j1)
continue;
m[i-1][j2] = a[i][j];
j2++;
}
}
det += internal_pow(-1.0,1.0+j1+1.0) * a[0][j1] * determinant(m,n-1);
}
}
return(det);
}
void transpose(double a[4][4], double b[4][4],int n, int m)
{
int i,j;
for (i=0;i<n;i++) {
for (j=0;j<m;j++) {
b[j][i] = a[i][j];
}
}
}
void fxp_transpose(fxp_t a[4][4], fxp_t b[4][4],int n, int m)
{
int i,j;
for (i=0;i<n;i++) {
for (j=0;j<m;j++) {
b[j][i] = a[i][j];
}
}
}
# 24 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2
# 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 1
# 19 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h"
extern int generic_timer;
extern hardware hw;
double generic_timing_shift_l_double(double zIn, double z[], int N) {
generic_timer += ((2 * hw.assembly.push) + (3 * hw.assembly.in) + (3 * hw.assembly.out) + (1 * hw.assembly.sbiw) + (1 * hw.assembly.cli) + (8 * hw.assembly.std));
int i;
double zOut;
zOut = z[0];
generic_timer += ((5 * hw.assembly.ldd) + (2 * hw.assembly.mov) + (4 * hw.assembly.std) + (1 * hw.assembly.ld));
generic_timer += ((2 * hw.assembly.std) + (1 * hw.assembly.rjmp));
for (i = 0; i < N - 1; i++) {
generic_timer += ((17 * hw.assembly.ldd) + (4 * hw.assembly.lsl) + (4 * hw.assembly.rol) + (2 * hw.assembly.add) + (2 * hw.assembly.adc) + (6 * hw.assembly.mov) + (2 * hw.assembly.adiw) + (5 * hw.assembly.std) + (1 * hw.assembly.ld) + (1 * hw.assembly.st) + (1 * hw.assembly.subi) + (1 * hw.assembly.sbc)+ (1 * hw.assembly.cp) + (1 * hw.assembly.cpc) + (1 * hw.assembly.brlt));
z[i] = z[i + 1];
}
z[N - 1] = zIn;
generic_timer += ((12 * hw.assembly.ldd) + (6 * hw.assembly.mov) + (3 * hw.assembly.std) + (2 * hw.assembly.lsl) + (2 * hw.assembly.rol) + (1 * hw.assembly.adc) + (1 * hw.assembly.add) + (1 * hw.assembly.subi) + (1 * hw.assembly.sbci) + (1 * hw.assembly.st) + (1 * hw.assembly.adiw) + (1 * hw.assembly.in)+ (1 * hw.assembly.cli));
generic_timer += ((3 * hw.assembly.out) + (2 * hw.assembly.pop) + (1 * hw.assembly.ret));
return (zOut);
}
double generic_timing_shift_r_double(double zIn, double z[], int N) {
generic_timer += ((2 * hw.assembly.push) + (3 * hw.assembly.in) + (3 * hw.assembly.out) + (1 * hw.assembly.sbiw) + (1 * hw.assembly.cli) + (8 * hw.assembly.std));
int i;
double zOut;
zOut = z[N - 1];
generic_timer += ((7 * hw.assembly.ldd) + (2 * hw.assembly.rol) + (2 * hw.assembly.lsl) + (2 * hw.assembly.mov) + (4 * hw.assembly.std) + (1 * hw.assembly.add) + (1 * hw.assembly.adc) + (1 * hw.assembly.ld) + (1 * hw.assembly.subi) + (1 * hw.assembly.sbci));
generic_timer += ((2 * hw.assembly.ldd) + (2 * hw.assembly.std) + (1 * hw.assembly.sbiw) + (1 * hw.assembly.rjmp));
for (i = N - 1; i > 0; i--) {
z[i] = z[i - 1];
generic_timer += ((15 * hw.assembly.ldd) + (4 * hw.assembly.lsl) + (4 * hw.assembly.rol) + (2 * hw.assembly.add) + (2 * hw.assembly.adc) + (4 * hw.assembly.mov) + (5 * hw.assembly.std) + (1 * hw.assembly.subi) + (1 * hw.assembly.sbci) + (1 * hw.assembly.ld) + (1 * hw.assembly.st) + (1 * hw.assembly.sbiw) + (1 * hw.assembly.cp) + (1 * hw.assembly.cpc) + (1 * hw.assembly.brlt));
}
z[0] = zIn;
generic_timer += ((10 * hw.assembly.ldd) + (5 * hw.assembly.mov) + (3 * hw.assembly.std) + (3 * hw.assembly.out) + (2 * hw.assembly.pop) + (1 * hw.assembly.ret) + (1 * hw.assembly.ret) + (1 * hw.assembly.cli) + (1 * hw.assembly.in) + (1 * hw.assembly.st) + (1 * hw.assembly.adiw));
return zOut;
}
fxp_t shiftL(fxp_t zIn, fxp_t z[], int N) {
int i;
fxp_t zOut;
zOut = z[0];
for (i = 0; i < N - 1; i++) {
z[i] = z[i + 1];
}
z[N - 1] = zIn;
return (zOut);
}
fxp_t shiftR(fxp_t zIn, fxp_t z[], int N) {
int i;
fxp_t zOut;
zOut = z[N - 1];
for (i = N - 1; i > 0; i--) {
z[i] = z[i - 1];
}
z[0] = zIn;
return zOut;
}
float shiftLfloat(float zIn, float z[], int N) {
int i;
float zOut;
zOut = z[0];
for (i = 0; i < N - 1; i++) {
z[i] = z[i + 1];
}
z[N - 1] = zIn;
return (zOut);
}
float shiftRfloat(float zIn, float z[], int N) {
int i;
float zOut;
zOut = z[N - 1];
for (i = N - 1; i > 0; i--) {
z[i] = z[i - 1];
}
z[0] = zIn;
return zOut;
}
double shiftRDdouble(double zIn, double z[], int N) {
int i;
double zOut;
zOut = z[0];
for (i = 0; i < N - 1; i++) {
z[i] = z[i + 1];
}
z[N - 1] = zIn;
return (zOut);
}
double shiftRdouble(double zIn, double z[], int N) {
int i;
double zOut;
zOut = z[N - 1];
for (i = N - 1; i > 0; i--) {
z[i] = z[i - 1];
}
z[0] = zIn;
return zOut;
}
double shiftLDouble(double zIn, double z[], int N) {
int i;
double zOut;
zOut = z[0];
for (i = 0; i < N - 1; i++) {
z[i] = z[i + 1];
}
z[N - 1] = zIn;
return (zOut);
}
void shiftLboth(float zfIn, float zf[], fxp_t zIn, fxp_t z[], int N) {
int i;
fxp_t zOut;
float zfOut;
zOut = z[0];
zfOut = zf[0];
for (i = 0; i < N - 1; i++) {
z[i] = z[i + 1];
zf[i] = zf[i + 1];
}
z[N - 1] = zIn;
zf[N - 1] = zfIn;
}
void shiftRboth(float zfIn, float zf[], fxp_t zIn, fxp_t z[], int N) {
int i;
fxp_t zOut;
float zfOut;
zOut = z[N - 1];
zfOut = zf[N - 1];
for (i = N - 1; i > 0; i--) {
z[i] = z[i - 1];
zf[i] = zf[i - 1];
}
z[0] = zIn;
zf[0] = zfIn;
}
int order(int Na, int Nb) {
return Na > Nb ? Na - 1 : Nb - 1;
}
void fxp_check_limit_cycle(fxp_t y[], int y_size){
fxp_t reference = y[y_size - 1];
int idx = 0;
int window_size = 1;
for(idx = (y_size-2); idx >= 0; idx--){
if (y[idx] != reference){
window_size++;
}else{
break;
}
}
__DSVERIFIER_assume(window_size != y_size && window_size != 1);
printf("window_size %d\n", window_size);
int desired_elements = 2 * window_size;
int found_elements = 0;
for(idx = (y_size-1); idx >= 0; idx--){
if (idx > (y_size-window_size-1)){
printf("%.0f == %.0f\n", y[idx], y[idx-window_size]);
int cmp_idx = idx - window_size;
if ((cmp_idx > 0) && (y[idx] == y[idx-window_size])){
found_elements = found_elements + 2;
}else{
break;
}
}
}
__DSVERIFIER_assume(found_elements > 0);
printf("desired_elements %d\n", desired_elements);
printf("found_elements %d\n", found_elements);
__DSVERIFIER_assume(found_elements == desired_elements);
__DSVERIFIER_assert(0);
}
void fxp_check_persistent_limit_cycle(fxp_t * y, int y_size){
int idy = 0;
int count_same = 0;
int window_size = 0;
fxp_t reference = y[0];
for(idy = 0; idy < y_size; idy++){
if (y[idy] != reference){
window_size++;
} else if (window_size != 0){
break;
} else {
count_same++;
}
}
window_size += count_same;
__DSVERIFIER_assume(window_size > 1 && window_size <= y_size/2);
fxp_t lco_elements[window_size];
for(idy = 0; idy < y_size; idy++){
if (idy < window_size){
lco_elements[idy] = y[idy];
}
}
idy = 0;
int lco_idy = 0;
_Bool is_persistent = 0;
while (idy < y_size){
if(y[idy++] == lco_elements[lco_idy++]){
is_persistent = 1;
}else{
is_persistent = 0;
break;
}
if (lco_idy == window_size){
lco_idy = 0;
}
}
__DSVERIFIER_assert(is_persistent == 0);
}
void fxp_check_oscillations(fxp_t y[] , int y_size){
__DSVERIFIER_assume((y[0] != y[y_size - 1]) && (y[y_size - 1] != y[y_size - 2]));
int window_timer = 0;
int window_count = 0;
int i, j;
for (i = 2; i < y_size; i++){
int window_size = i;
for(j=0; j<y_size; j++){
if (window_timer > window_size){
window_timer = 0;
window_count = 0;
}
int window_index = j + window_size;
if (window_index < y_size){
if (y[j] == y[window_index]){
window_count++;
__DSVERIFIER_assert(!(window_count == window_size));
}
}else{
break;
}
window_timer++;
}
}
}
int fxp_ln(int x) {
int t, y;
y = 0xa65af;
if (x < 0x00008000)
x <<= 16, y -= 0xb1721;
if (x < 0x00800000)
x <<= 8, y -= 0x58b91;
if (x < 0x08000000)
x <<= 4, y -= 0x2c5c8;
if (x < 0x20000000)
x <<= 2, y -= 0x162e4;
if (x < 0x40000000)
x <<= 1, y -= 0x0b172;
t = x + (x >> 1);
if ((t & 0x80000000) == 0)
x = t, y -= 0x067cd;
t = x + (x >> 2);
if ((t & 0x80000000) == 0)
x = t, y -= 0x03920;
t = x + (x >> 3);
if ((t & 0x80000000) == 0)
x = t, y -= 0x01e27;
t = x + (x >> 4);
if ((t & 0x80000000) == 0)
x = t, y -= 0x00f85;
t = x + (x >> 5);
if ((t & 0x80000000) == 0)
x = t, y -= 0x007e1;
t = x + (x >> 6);
if ((t & 0x80000000) == 0)
x = t, y -= 0x003f8;
t = x + (x >> 7);
if ((t & 0x80000000) == 0)
x = t, y -= 0x001fe;
x = 0x80000000 - x;
y -= x >> 15;
return y;
}
double fxp_log10_low(double x) {
int xint = (int) (x * 65536.0 + 0.5);
int lnum = fxp_ln(xint);
int lden = fxp_ln(655360);
return ((double) lnum / (double) lden);
}
double fxp_log10(double x) {
if (x > 32767.0) {
if (x > 1073676289.0) {
x = x / 1073676289.0;
return fxp_log10_low(x) + 9.030873362;
}
x = x / 32767.0;
return fxp_log10_low(x) + 4.515436681;
}
return fxp_log10_low(x);
}
float snrVariance(float s[], float n[], int blksz) {
int i;
double sm = 0, nm = 0, sv = 0, nv = 0, snr;
for (i = 0; i < blksz; i++) {
sm += s[i];
nm += n[i];
}
sm /= blksz;
nm /= blksz;
for (i = 0; i < blksz; i++) {
sv += (s[i] - sm) * (s[i] - sm);
nv += (n[i] - nm) * (n[i] - nm);
}
if (nv != 0.0f) {
# 373 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4
((void) sizeof ((
# 373 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h"
sv >= nv
# 373 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4
) ? 1 : 0), __extension__ ({ if (
# 373 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h"
sv >= nv
# 373 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4
) ; else __assert_fail (
# 373 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h"
"sv >= nv"
# 373 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4
, "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h", 373, __extension__ __PRETTY_FUNCTION__); }))
# 373 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h"
;
snr = sv / nv;
return snr;
} else {
return 9999.9f;
}
}
float snrPower(float s[], float n[], int blksz) {
int i;
double sv = 0, nv = 0, snr;
for (i = 0; i < blksz; i++) {
sv += s[i] * s[i];
nv += n[i] * n[i];
}
if (nv != 0.0f) {
# 394 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4
((void) sizeof ((
# 394 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h"
sv >= nv
# 394 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4
) ? 1 : 0), __extension__ ({ if (
# 394 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h"
sv >= nv
# 394 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4
) ; else __assert_fail (
# 394 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h"
"sv >= nv"
# 394 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4
, "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h", 394, __extension__ __PRETTY_FUNCTION__); }))
# 394 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h"
;
snr = sv / nv;
return snr;
} else {
return 9999.9f;
}
}
float snrPoint(float s[], float n[], int blksz) {
int i;
double ratio = 0, power = 0;
for (i = 0; i < blksz; i++) {
if(n[i] == 0) continue;
ratio = s[i] / n[i];
if(ratio > 150.0f || ratio < -150.0f) continue;
power = ratio * ratio;
# 412 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4
((void) sizeof ((
# 412 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h"
power >= 1.0f
# 412 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4
) ? 1 : 0), __extension__ ({ if (
# 412 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h"
power >= 1.0f
# 412 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4
) ; else __assert_fail (
# 412 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h"
"power >= 1.0f"
# 412 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4
, "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h", 412, __extension__ __PRETTY_FUNCTION__); }))
# 412 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h"
;
}
return 9999.9f;
}
unsigned long next = 1;
int rand(void)
{
next = next*1103515245 + 12345;
return (unsigned int)(next/65536) % 32768;
}
void srand(unsigned int seed)
{
next = seed;
}
float iirIIOutTime(float w[], float x, float a[], float b[], int Na, int Nb) {
int timer1 = 0;
float *a_ptr, *b_ptr, *w_ptr;
float sum = 0;
a_ptr = &a[1];
b_ptr = &b[0];
w_ptr = &w[1];
int k, j;
timer1 += 71;
for (j = 1; j < Na; j++) {
w[0] -= *a_ptr++ * *w_ptr++;
timer1 += 54;
}
w[0] += x;
w_ptr = &w[0];
for (k = 0; k < Nb; k++) {
sum += *b_ptr++ * *w_ptr++;
timer1 += 46;
}
timer1 += 38;
# 450 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4
((void) sizeof ((
# 450 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h"
(double)timer1*1 / 16000000 <= (double)1 / 100
# 450 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4
) ? 1 : 0), __extension__ ({ if (
# 450 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h"
(double)timer1*1 / 16000000 <= (double)1 / 100
# 450 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4
) ; else __assert_fail (
# 450 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h"
"(double)timer1*CYCLE <= (double)DEADLINE"
# 450 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4
, "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h", 450, __extension__ __PRETTY_FUNCTION__); }))
# 450 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h"
;
return sum;
}
float iirIItOutTime(float w[], float x, float a[], float b[], int Na, int Nb) {
int timer1 = 0;
float *a_ptr, *b_ptr;
float yout = 0;
a_ptr = &a[1];
b_ptr = &b[0];
int Nw = Na > Nb ? Na : Nb;
yout = (*b_ptr++ * x) + w[0];
int j;
timer1 += 105;
for (j = 0; j < Nw - 1; j++) {
w[j] = w[j + 1];
if (j < Na - 1) {
w[j] -= *a_ptr++ * yout;
timer1 += 41;
}
if (j < Nb - 1) {
w[j] += *b_ptr++ * x;
timer1 += 38;
}
timer1 += 54;
}
timer1 += 7;
# 477 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4
((void) sizeof ((
# 477 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h"
(double)timer1*1 / 16000000 <= (double)1 / 100
# 477 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4
) ? 1 : 0), __extension__ ({ if (
# 477 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h"
(double)timer1*1 / 16000000 <= (double)1 / 100
# 477 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4
) ; else __assert_fail (
# 477 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h"
"(double)timer1*CYCLE <= (double)DEADLINE"
# 477 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4
, "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h", 477, __extension__ __PRETTY_FUNCTION__); }))
# 477 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h"
;
return yout;
}
double iirIItOutTime_double(double w[], double x, double a[], double b[], int Na, int Nb) {
int timer1 = 0;
double *a_ptr, *b_ptr;
double yout = 0;
a_ptr = &a[1];
b_ptr = &b[0];
int Nw = Na > Nb ? Na : Nb;
yout = (*b_ptr++ * x) + w[0];
int j;
timer1 += 105;
for (j = 0; j < Nw - 1; j++) {
w[j] = w[j + 1];
if (j < Na - 1) {
w[j] -= *a_ptr++ * yout;
timer1 += 41;
}
if (j < Nb - 1) {
w[j] += *b_ptr++ * x;
timer1 += 38;
}
timer1 += 54;
}
timer1 += 7;
# 504 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4
((void) sizeof ((
# 504 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h"
(double)timer1*1 / 16000000 <= (double)1 / 100
# 504 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4
) ? 1 : 0), __extension__ ({ if (
# 504 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h"
(double)timer1*1 / 16000000 <= (double)1 / 100
# 504 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4
) ; else __assert_fail (
# 504 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h"
"(double)timer1*CYCLE <= (double)DEADLINE"
# 504 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4
, "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h", 504, __extension__ __PRETTY_FUNCTION__); }))
# 504 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h"
;
return yout;
}
void iirOutBoth(float yf[], float xf[], float af[], float bf[], float *sumf_ref,
fxp_t y[], fxp_t x[], fxp_t a[], fxp_t b[], fxp_t *sum_ref, int Na, int Nb) {
fxp_t *a_ptr, *y_ptr, *b_ptr, *x_ptr;
float *af_ptr, *yf_ptr, *bf_ptr, *xf_ptr;
fxp_t sum = 0;
float sumf = 0;
a_ptr = &a[1];
y_ptr = &y[Na - 1];
b_ptr = &b[0];
x_ptr = &x[Nb - 1];
af_ptr = &af[1];
yf_ptr = &yf[Na - 1];
bf_ptr = &bf[0];
xf_ptr = &xf[Nb - 1];
int i, j;
for (i = 0; i < Nb; i++) {
sum = fxp_add(sum, fxp_mult(*b_ptr++, *x_ptr--));
sumf += *bf_ptr++ * *xf_ptr--;
}
for (j = 1; j < Na; j++) {
sum = fxp_sub(sum, fxp_mult(*a_ptr++, *y_ptr--));
sumf -= *af_ptr++ * *yf_ptr--;
}
*sum_ref = sum;
*sumf_ref = sumf;
}
fxp_t iirOutFixedL(fxp_t y[], fxp_t x[], fxp_t xin, fxp_t a[], fxp_t b[], int Na, int Nb) {
fxp_t *a_ptr, *y_ptr, *b_ptr, *x_ptr;
fxp_t sum = 0;
a_ptr = &a[Na - 1];
y_ptr = &y[1];
b_ptr = &b[Nb - 1];
x_ptr = &x[0];
int i, j;
for (i = 0; i < Nb - 1; i++) {
x[i] = x[i+1];
sum = fxp_add(sum, fxp_mult(*b_ptr--, *x_ptr++));
}
x[Nb - 1] = xin;
sum = fxp_add(sum, fxp_mult(*b_ptr--, *x_ptr++));
for (j = 1; j < Na - 1; j++) {
sum = fxp_sub(sum, fxp_mult(*a_ptr--, *y_ptr++));
y[j] = y[j+1];
}
if(Na>1) sum = fxp_sub(sum, fxp_mult(*a_ptr--, *y_ptr++));
y[Na - 1] = sum;
return sum;
}
float iirOutFloatL(float y[], float x[], float xin, float a[], float b[], int Na, int Nb) {
float *a_ptr, *y_ptr, *b_ptr, *x_ptr;
float sum = 0;
a_ptr = &a[Na - 1];
y_ptr = &y[1];
b_ptr = &b[Nb - 1];
x_ptr = &x[0];
int i, j;
for (i = 0; i < Nb - 1; i++) {
x[i] = x[i+1];
sum += *b_ptr-- * *x_ptr++;
}
x[Nb - 1] = xin;
sum += *b_ptr-- * *x_ptr++;
for (j = 1; j < Na - 1; j++) {
sum -= *a_ptr-- * *y_ptr++;
y[j] = y[j+1];
}
if(Na>1) sum -= *a_ptr-- * *y_ptr++;
y[Na - 1] = sum;
return sum;
}
float iirOutBothL(float yf[], float xf[], float af[], float bf[], float xfin,
fxp_t y[], fxp_t x[], fxp_t a[], fxp_t b[], fxp_t xin, int Na, int Nb) {
fxp_t *a_ptr, *y_ptr, *b_ptr, *x_ptr;
fxp_t sum = 0;
a_ptr = &a[Na - 1];
y_ptr = &y[1];
b_ptr = &b[Nb - 1];
x_ptr = &x[0];
float *af_ptr, *yf_ptr, *bf_ptr, *xf_ptr;
float sumf = 0;
af_ptr = &af[Na - 1];
yf_ptr = &yf[1];
bf_ptr = &bf[Nb - 1];
xf_ptr = &xf[0];
int i, j;
for (i = 0; i < Nb - 1; i++) {
x[i] = x[i+1];
sum = fxp_add(sum, fxp_mult(*b_ptr--, *x_ptr++));
xf[i] = xf[i+1];
sumf += *bf_ptr-- * *xf_ptr++;
}
x[Nb - 1] = xin;
sum = fxp_add(sum, fxp_mult(*b_ptr--, *x_ptr++));
xf[Nb - 1] = xfin;
sumf += *bf_ptr-- * *xf_ptr++;
for (j = 1; j < Na - 1; j++) {
sum = fxp_sub(sum, fxp_mult(*a_ptr--, *y_ptr++));
y[j] = y[j+1];
sumf -= *af_ptr-- * *yf_ptr++;
yf[j] = yf[j+1];
}
if(Na>1) sum = fxp_sub(sum, fxp_mult(*a_ptr--, *y_ptr++));
y[Na - 1] = sum;
if(Na>1) sumf -= *af_ptr-- * *yf_ptr++;
yf[Na - 1] = sumf;
return fxp_to_float(sum) - sumf;
}
float iirOutBothL2(float yf[], float xf[], float af[], float bf[], float xfin,
fxp_t y[], fxp_t x[], fxp_t a[], fxp_t b[], fxp_t xin, int Na, int Nb) {
fxp_t *a_ptr, *y_ptr, *b_ptr, *x_ptr;
fxp_t sum = 0;
a_ptr = &a[Na - 1];
y_ptr = &y[1];
b_ptr = &b[Nb - 1];
x_ptr = &x[0];
float *af_ptr, *yf_ptr, *bf_ptr, *xf_ptr;
float sumf = 0;
af_ptr = &af[Na - 1];
yf_ptr = &yf[1];
bf_ptr = &bf[Nb - 1];
xf_ptr = &xf[0];
int i=0, j=1;
for (i = 0; i < Nb - 1; i++) {
x[i] = x[i+1];
sum = fxp_add(sum, fxp_mult(b[Nb - 1 - i], x[i]));
xf[i] = xf[i+1];
sumf += bf[Nb - 1 - i] * xf[i];
}
x[Nb - 1] = xin;
sum = fxp_add(sum, fxp_mult(b[Nb - 1 - i], x[i]));
xf[Nb - 1] = xfin;
sumf += bf[Nb - 1 - i] * xf[i];
for (j = 1; j < Na - 1; j++) {
sum = fxp_sub(sum, fxp_mult(a[Na - j], y[j]));
y[j] = y[j+1];
sumf -= af[Na - j] * yf[j];
yf[j] = yf[j+1];
}
if(Na>1) sum = fxp_sub(sum, fxp_mult(a[Na - j], y[j]));
y[Na - 1] = sum;
if(Na>1) sumf -= af[Na - j] * yf[j];
yf[Na - 1] = sumf;
return fxp_to_float(sum) - sumf;
}
# 25 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2
# 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" 1
# 19 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h"
extern digital_system ds;
extern hardware hw;
extern int generic_timer;
fxp_t fxp_direct_form_1(fxp_t y[], fxp_t x[], fxp_t a[], fxp_t b[], int Na, int Nb) {
fxp_t *a_ptr, *y_ptr, *b_ptr, *x_ptr;
fxp_t sum = 0;
a_ptr = &a[1];
y_ptr = &y[Na - 1];
b_ptr = &b[0];
x_ptr = &x[Nb - 1];
int i, j;
for (i = 0; i < Nb; i++) {
sum = fxp_add(sum, fxp_mult(*b_ptr++, *x_ptr--));
}
for (j = 1; j < Na; j++) {
sum = fxp_sub(sum, fxp_mult(*a_ptr++, *y_ptr--));
}
fxp_verify_overflow_node(sum, "An Overflow Occurred in the node a0");
sum = fxp_div(sum,a[0]);
return fxp_quantize(sum);
}
fxp_t fxp_direct_form_2(fxp_t w[], fxp_t x, fxp_t a[], fxp_t b[], int Na, int Nb) {
fxp_t *a_ptr, *b_ptr, *w_ptr;
fxp_t sum = 0;
a_ptr = &a[1];
b_ptr = &b[0];
w_ptr = &w[1];
int k, j;
for (j = 1; j < Na; j++) {
w[0] = fxp_sub(w[0], fxp_mult(*a_ptr++, *w_ptr++));
}
w[0] = fxp_add(w[0], x);
w[0] = fxp_div(w[0], a[0]);
fxp_verify_overflow_node(w[0], "An Overflow Occurred in the node b0");
w_ptr = &w[0];
for (k = 0; k < Nb; k++) {
sum = fxp_add(sum, fxp_mult(*b_ptr++, *w_ptr++));
}
return fxp_quantize(sum);
}
fxp_t fxp_transposed_direct_form_2(fxp_t w[], fxp_t x, fxp_t a[], fxp_t b[], int Na, int Nb) {
fxp_t *a_ptr, *b_ptr;
fxp_t yout = 0;
a_ptr = &a[1];
b_ptr = &b[0];
int Nw = Na > Nb ? Na : Nb;
yout = fxp_add(fxp_mult(*b_ptr++, x), w[0]);
yout = fxp_div(yout, a[0]);
int j;
for (j = 0; j < Nw - 1; j++) {
w[j] = w[j + 1];
if (j < Na - 1) {
w[j] = fxp_sub(w[j], fxp_mult(*a_ptr++, yout));
}
if (j < Nb - 1) {
w[j] = fxp_add(w[j], fxp_mult(*b_ptr++, x));
}
}
fxp_verify_overflow_node(w[j], "An Overflow Occurred in the node a0");
return fxp_quantize(yout);
}
double double_direct_form_1(double y[], double x[], double a[], double b[], int Na, int Nb) {
double *a_ptr, *y_ptr, *b_ptr, *x_ptr;
double sum = 0;
a_ptr = &a[1];
y_ptr = &y[Na - 1];
b_ptr = &b[0];
x_ptr = &x[Nb - 1];
int i, j;
for (i = 0; i < Nb; i++) {
sum += *b_ptr++ * *x_ptr--;
}
for (j = 1; j < Na; j++) {
sum -= *a_ptr++ * *y_ptr--;
}
sum = (sum / a[0]);
return sum;
}
double double_direct_form_2(double w[], double x, double a[], double b[], int Na, int Nb) {
double *a_ptr, *b_ptr, *w_ptr;
double sum = 0;
a_ptr = &a[1];
b_ptr = &b[0];
w_ptr = &w[1];
int k, j;
for (j = 1; j < Na; j++) {
w[0] -= *a_ptr++ * *w_ptr++;
}
w[0] += x;
w[0] = w[0] / a[0];
w_ptr = &w[0];
for (k = 0; k < Nb; k++) {
sum += *b_ptr++ * *w_ptr++;
}
return sum;
}
double double_transposed_direct_form_2(double w[], double x, double a[], double b[], int Na, int Nb) {
double *a_ptr, *b_ptr;
double yout = 0;
a_ptr = &a[1];
b_ptr = &b[0];
int Nw = Na > Nb ? Na : Nb;
yout = (*b_ptr++ * x) + w[0];
yout = yout / a[0];
int j;
for (j = 0; j < Nw - 1; j++) {
w[j] = w[j + 1];
if (j < Na - 1) {
w[j] -= *a_ptr++ * yout;
}
if (j < Nb - 1) {
w[j] += *b_ptr++ * x;
}
}
return yout;
}
float float_direct_form_1(float y[], float x[], float a[], float b[], int Na, int Nb) {
float *a_ptr, *y_ptr, *b_ptr, *x_ptr;
float sum = 0;
a_ptr = &a[1];
y_ptr = &y[Na - 1];
b_ptr = &b[0];
x_ptr = &x[Nb - 1];
int i, j;
for (i = 0; i < Nb; i++) {
sum += *b_ptr++ * *x_ptr--;
}
for (j = 1; j < Na; j++) {
sum -= *a_ptr++ * *y_ptr--;
}
sum = (sum / a[0]);
return sum;
}
float float_direct_form_2(float w[], float x, float a[], float b[], int Na, int Nb) {
float *a_ptr, *b_ptr, *w_ptr;
float sum = 0;
a_ptr = &a[1];
b_ptr = &b[0];
w_ptr = &w[1];
int k, j;
for (j = 1; j < Na; j++) {
w[0] -= *a_ptr++ * *w_ptr++;
}
w[0] += x;
w[0] = w[0] / a[0];
w_ptr = &w[0];
for (k = 0; k < Nb; k++) {
sum += *b_ptr++ * *w_ptr++;
}
return sum;
}
float float_transposed_direct_form_2(float w[], float x, float a[], float b[], int Na, int Nb) {
float *a_ptr, *b_ptr;
float yout = 0;
a_ptr = &a[1];
b_ptr = &b[0];
int Nw = Na > Nb ? Na : Nb;
yout = (*b_ptr++ * x) + w[0];
yout = yout / a[0];
int j;
for (j = 0; j < Nw - 1; j++) {
w[j] = w[j + 1];
if (j < Na - 1) {
w[j] -= *a_ptr++ * yout;
}
if (j < Nb - 1) {
w[j] += *b_ptr++ * x;
}
}
return yout;
}
double double_direct_form_1_MSP430(double y[], double x[], double a[], double b[], int Na, int Nb){
int timer1 = 0;
double *a_ptr, *y_ptr, *b_ptr, *x_ptr;
double sum = 0;
a_ptr = &a[1];
y_ptr = &y[Na-1];
b_ptr = &b[0];
x_ptr = &x[Nb-1];
int i, j;
timer1 += 91;
for (i = 0; i < Nb; i++){
sum += *b_ptr++ * *x_ptr--;
timer1 += 47;
}
for (j = 1; j < Na; j++){
sum -= *a_ptr++ * *y_ptr--;
timer1 += 57;
}
timer1 += 3;
# 235 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" 3 4
((void) sizeof ((
# 235 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h"
(double) timer1 * hw.cycle <= ds.sample_time
# 235 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" 3 4
) ? 1 : 0), __extension__ ({ if (
# 235 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h"
(double) timer1 * hw.cycle <= ds.sample_time
# 235 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" 3 4
) ; else __assert_fail (
# 235 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h"
"(double) timer1 * hw.cycle <= ds.sample_time"
# 235 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" 3 4
, "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h", 235, __extension__ __PRETTY_FUNCTION__); }))
# 235 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h"
;
return sum;
}
double double_direct_form_2_MSP430(double w[], double x, double a[], double b[], int Na, int Nb) {
int timer1 = 0;
double *a_ptr, *b_ptr, *w_ptr;
double sum = 0;
a_ptr = &a[1];
b_ptr = &b[0];
w_ptr = &w[1];
int k, j;
timer1 += 71;
for (j = 1; j < Na; j++) {
w[0] -= *a_ptr++ * *w_ptr++;
timer1 += 54;
}
w[0] += x;
w[0] = w[0] / a[0];
w_ptr = &w[0];
for (k = 0; k < Nb; k++) {
sum += *b_ptr++ * *w_ptr++;
timer1 += 46;
}
timer1 += 38;
# 262 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" 3 4
((void) sizeof ((
# 262 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h"
(double) timer1 * hw.cycle <= ds.sample_time
# 262 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" 3 4
) ? 1 : 0), __extension__ ({ if (
# 262 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h"
(double) timer1 * hw.cycle <= ds.sample_time
# 262 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" 3 4
) ; else __assert_fail (
# 262 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h"
"(double) timer1 * hw.cycle <= ds.sample_time"
# 262 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" 3 4
, "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h", 262, __extension__ __PRETTY_FUNCTION__); }))
# 262 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h"
;
return sum;
}
double double_transposed_direct_form_2_MSP430(double w[], double x, double a[], double b[], int Na, int Nb) {
int timer1 = 0;
double *a_ptr, *b_ptr;
double yout = 0;
a_ptr = &a[1];
b_ptr = &b[0];
int Nw = Na > Nb ? Na : Nb;
yout = (*b_ptr++ * x) + w[0];
int j;
timer1 += 105;
for (j = 0; j < Nw - 1; j++) {
w[j] = w[j + 1];
if (j < Na - 1) {
w[j] -= *a_ptr++ * yout;
timer1 += 41;
}
if (j < Nb - 1) {
w[j] += *b_ptr++ * x;
timer1 += 38;
}
timer1 += 54;
}
timer1 += 7;
# 291 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" 3 4
((void) sizeof ((
# 291 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h"
(double) timer1 * hw.cycle <= ds.sample_time
# 291 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" 3 4
) ? 1 : 0), __extension__ ({ if (
# 291 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h"
(double) timer1 * hw.cycle <= ds.sample_time
# 291 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" 3 4
) ; else __assert_fail (
# 291 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h"
"(double) timer1 * hw.cycle <= ds.sample_time"
# 291 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" 3 4
, "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h", 291, __extension__ __PRETTY_FUNCTION__); }))
# 291 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h"
;
return yout;
}
double generic_timing_double_direct_form_1(double y[], double x[], double a[], double b[], int Na, int Nb){
generic_timer += ((6 * hw.assembly.push) + (3 * hw.assembly.in) + (1 * hw.assembly.sbiw) + (1 * hw.assembly.cli) + (3 * hw.assembly.out) + (12 * hw.assembly.std));
double *a_ptr, *y_ptr, *b_ptr, *x_ptr;
double sum = 0;
a_ptr = &a[1];
y_ptr = &y[Na-1];
b_ptr = &b[0];
x_ptr = &x[Nb-1];
generic_timer += ((12 * hw.assembly.std) + (12 * hw.assembly.ldd) + (2 * hw.assembly.subi) + (2 * hw.assembly.sbci) + (4 * hw.assembly.lsl) + (4 * hw.assembly.rol) + (2 * hw.assembly.add) + (2 * hw.assembly.adc) + (1 * hw.assembly.adiw));
int i, j;
generic_timer += ((2 * hw.assembly.std) + (1 * hw.assembly.rjmp));
for (i = 0; i < Nb; i++){
generic_timer += ((20 * hw.assembly.ldd) + (24 * hw.assembly.mov) + (2 * hw.assembly.subi) + (1 * hw.assembly.sbci) + (1 * hw.assembly.sbc) + (10 * hw.assembly.std) + (2 * hw.assembly.ld) + (2 * hw.assembly.rcall) + (1 * hw.assembly.adiw) + (1 * hw.assembly.cp) + (1 * hw.assembly.cpc) + (1 * hw.assembly.adiw) + (1 * hw.assembly.brge) + (1 * hw.assembly.rjmp));
sum += *b_ptr++ * *x_ptr--;
}
generic_timer += ((2 * hw.assembly.ldi) + (2 * hw.assembly.std) + (1 * hw.assembly.rjmp));
for (j = 1; j < Na; j++){
generic_timer += ((22 * hw.assembly.ldd) + (24 * hw.assembly.mov) + (2 * hw.assembly.subi) + (8 * hw.assembly.std) + (1 * hw.assembly.sbci) + (2 * hw.assembly.ld) + (2 * hw.assembly.rcall) + (1 * hw.assembly.sbc) + (1 * hw.assembly.adiw) + (1 * hw.assembly.cp) + (1 * hw.assembly.cpc) + (1 * hw.assembly.adiw) + (1 * hw.assembly.brge) + (1 * hw.assembly.rjmp));
sum -= *a_ptr++ * *y_ptr--;
}
generic_timer += ((4 * hw.assembly.ldd) + (4 * hw.assembly.mov) + (1 * hw.assembly.adiw) + (1 * hw.assembly.in) + (1 * hw.assembly.cli) + (3 * hw.assembly.out) + (6 * hw.assembly.pop) + (1 * hw.assembly.ret));
return sum;
}
double generic_timing_double_direct_form_2(double w[], double x, double a[], double b[], int Na, int Nb) {
generic_timer += ((8 * hw.assembly.push) + (14 * hw.assembly.std) + (3 * hw.assembly.out) + (3 * hw.assembly.in) + (1 * hw.assembly.sbiw) + (1 * hw.assembly.cli));
double *a_ptr, *b_ptr, *w_ptr;
double sum = 0;
a_ptr = &a[1];
b_ptr = &b[0];
w_ptr = &w[1];
int k, j;
generic_timer += ((10 * hw.assembly.std) + (6 * hw.assembly.ldd) + (2 * hw.assembly.adiw));
generic_timer += ((2 * hw.assembly.ldi) + (2 * hw.assembly.std) + (1 * hw.assembly.rjmp));
for (j = 1; j < Na; j++) {
w[0] -= *a_ptr++ * *w_ptr++;
generic_timer += ((23 * hw.assembly.ldd) + (32 * hw.assembly.mov) + (9 * hw.assembly.std) + (2 * hw.assembly.subi) + (3 * hw.assembly.ld) + (2 * hw.assembly.rcall) + (2 * hw.assembly.sbci) + (1 * hw.assembly.st) + (1 * hw.assembly.adiw) + (1 * hw.assembly.cp) + (1 * hw.assembly.cpc) + (1 * hw.assembly.brge));
}
w[0] += x;
w_ptr = &w[0];
generic_timer += ((13 * hw.assembly.ldd) + (12 * hw.assembly.mov) + (5 * hw.assembly.std) + (1 * hw.assembly.st) + (1 * hw.assembly.ld) + (1 * hw.assembly.rcall));
generic_timer += ((2 * hw.assembly.std) + (1 * hw.assembly.rjmp));
for (k = 0; k < Nb; k++) {
sum += *b_ptr++ * *w_ptr++;
generic_timer += ((20 * hw.assembly.ldd) + (24 * hw.assembly.mov) + (10 * hw.assembly.std) + (2 * hw.assembly.rcall) + (2 * hw.assembly.ld) + (2 * hw.assembly.subi) + (2 * hw.assembly.sbci) + (1 * hw.assembly.adiw) + (1 * hw.assembly.cp) + (1 * hw.assembly.cpc) + (1 * hw.assembly.brge) + (1 * hw.assembly.rjmp));
}
generic_timer += ((4 * hw.assembly.ldd) + (4 * hw.assembly.mov) + (1 * hw.assembly.adiw) + (1 * hw.assembly.in) + (1 * hw.assembly.cli) + (3 * hw.assembly.out) + (8 * hw.assembly.pop) + (1 * hw.assembly.ret));
return sum;
}
double generic_timing_double_transposed_direct_form_2(double w[], double x, double a[], double b[], int Na, int Nb) {
generic_timer += ((8 * hw.assembly.push) + (14 * hw.assembly.std) + (3 * hw.assembly.out) + (3 * hw.assembly.in) + (1 * hw.assembly.sbiw) + (1 * hw.assembly.cli));
double *a_ptr, *b_ptr;
double yout = 0;
a_ptr = &a[1];
b_ptr = &b[0];
int Nw = Na > Nb ? Na : Nb;
yout = (*b_ptr++ * x) + w[0];
int j;
generic_timer += ((15 * hw.assembly.std) + (22 * hw.assembly.ldd) + (24 * hw.assembly.mov) + (2 * hw.assembly.rcall) + (2 * hw.assembly.ld) + (1 * hw.assembly.cp) + (1 * hw.assembly.cpc) + (1 * hw.assembly.subi) + (1 * hw.assembly.sbci) + (1 * hw.assembly.brge) + (1 * hw.assembly.adiw));
generic_timer += ((2 * hw.assembly.std) + (1 * hw.assembly.rjmp));
for (j = 0; j < Nw - 1; j++) {
w[j] = w[j + 1];
if (j < Na - 1) {
w[j] -= *a_ptr++ * yout;
}
if (j < Nb - 1) {
w[j] += *b_ptr++ * x;
}
generic_timer += ((70 * hw.assembly.mov) + (65 * hw.assembly.ldd) + (12 * hw.assembly.lsl) + (12 * hw.assembly.rol) + (15 * hw.assembly.std) + (6 * hw.assembly.add) + (6 * hw.assembly.adc) + (2 * hw.assembly.adiw) + (3 * hw.assembly.cpc) + (3 * hw.assembly.cp) + (5 * hw.assembly.ld) + (4 * hw.assembly.rcall) + (5 * hw.assembly.subi) + (3 * hw.assembly.rjmp) + (2 * hw.assembly.brlt) + (3 * hw.assembly.st) + (2 * hw.assembly.sbci) + (3 * hw.assembly.sbc) + (1 * hw.assembly.brge));
}
generic_timer += ((4 * hw.assembly.ldd) + (4 * hw.assembly.mov) + (8 * hw.assembly.pop) + (3 * hw.assembly.out) + (1 * hw.assembly.in) + (1 * hw.assembly.cli) + (1 * hw.assembly.adiw) + (1 * hw.assembly.ret));
return yout;
}
void double_direct_form_1_impl2(double x[], int x_size, double b[], int b_size, double a[], int a_size, double y[]){
int i = 0; int j = 0;
double v[x_size];
for(i = 0; i < x_size; i++){
v[i] = 0;
for(j = 0; j < b_size; j++){
if (j > i) break;
v[i] = v[i] + x[i-j] * b[j];
}
}
y[0] = v[0];
for(i = 1; i < x_size; i++){
y[i] = 0;
y[i] = y[i] + v[i];
for(j = 1; j < a_size; j++){
if (j > i) break;
y[i] = y[i] + y[i-j] * ((-1) * a[j]);
}
}
}
void fxp_direct_form_1_impl2(fxp_t x[], int x_size, fxp_t b[], int b_size, fxp_t a[], int a_size, fxp_t y[]){
int i = 0; int j = 0;
fxp_t v[x_size];
for(i = 0; i < x_size; i++){
v[i] = 0;
for(j = 0; j < b_size; j++){
if (j > i) break;
v[i] = fxp_add(v[i], fxp_mult(x[i-j], b[j]));
}
}
y[0] = v[0];
for(i = 1; i < x_size; i++){
y[i] = 0;
y[i] = fxp_add(y[i], v[i]);
for(j = 1; j < a_size; j++){
if (j > i) break;
y[i] = fxp_add(y[i], fxp_mult(y[i-j] , -a[j]));
}
}
}
# 26 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2
# 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/delta-operator.h" 1
# 19 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/delta-operator.h"
# 1 "/usr/include/assert.h" 1 3 4
# 20 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/delta-operator.h" 2
# 1 "/usr/include/assert.h" 1 3 4
# 23 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/delta-operator.h" 2
int nchoosek(int n, int k){
if (k == 0)
return 1;
return (n * nchoosek(n - 1, k - 1)) / k;
}
void generate_delta_coefficients(double vetor[], double out[], int n, double delta){
int i,j;
int N = n - 1;
double sum_delta_operator;
for(i=0; i<=N; i++)
{
sum_delta_operator = 0;
for(j=0; j<=i; j++)
{
sum_delta_operator = sum_delta_operator + vetor[j]*nchoosek(N-j,i-j);
}
out[i] = internal_pow(delta,N-i)*sum_delta_operator;
}
}
void get_delta_transfer_function(double b[], double b_out[], int b_size, double a[], double a_out[], int a_size, double delta){
generate_delta_coefficients(b, b_out, b_size, delta);
generate_delta_coefficients(a, a_out, a_size, delta);
}
void get_delta_transfer_function_with_base(double b[], double b_out[], int b_size, double a[], double a_out[], int a_size, double delta){
int i,j;
int N = a_size - 1;
int M = b_size - 1;
double sum_delta_operator;
for(i=0; i<=N; i++)
{
sum_delta_operator = 0;
for(j=0; j<=i; j++)
{
sum_delta_operator = sum_delta_operator + a[j]*nchoosek(N-j,i-j);
}
a_out[i] = internal_pow(delta,N-i)*sum_delta_operator;
}
for(i=0; i<=M; i++)
{
sum_delta_operator = 0;
for(j=0; j<=i; j++)
{
sum_delta_operator = sum_delta_operator + b[j]*nchoosek(M-j,i-j);
}
b_out[i] = internal_pow(delta,M-i)*sum_delta_operator;
}
}
# 27 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2
# 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/closed-loop.h" 1
# 28 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/closed-loop.h"
void ft_closedloop_series(double c_num[], int Nc_num, double c_den[], int Nc_den, double model_num[], int Nmodel_num, double model_den[], int Nmodel_den, double ans_num[], int Nans_num, double ans_den[], int Nans_den){
Nans_num = Nc_num + Nmodel_num - 1;
Nans_den = Nc_den + Nmodel_den - 1 ;
double den_mult [Nans_den];
poly_mult(c_num, Nc_num, model_num, Nmodel_num, ans_num, Nans_num);
poly_mult(c_den, Nc_den, model_den, Nmodel_den, den_mult, Nans_den );
poly_sum(ans_num, Nans_num , den_mult, Nans_den , ans_den, Nans_den);
}
void ft_closedloop_sensitivity(double c_num[], int Nc_num, double c_den[], int Nc_den, double model_num[], int Nmodel_num, double model_den[], int Nmodel_den, double ans_num[], int Nans_num, double ans_den[], int Nans_den){
int Nans_num_p = Nc_num + Nmodel_num-1;
Nans_den = Nc_den + Nmodel_den-1;
Nans_num = Nc_den + Nmodel_den-1;
double num_mult [Nans_num_p];
poly_mult(c_den, Nc_den, model_den, Nmodel_den, ans_num, Nans_num);
poly_mult(c_num, Nc_num, model_num, Nmodel_num, num_mult, Nans_num_p);
poly_sum(ans_num, Nans_num, num_mult, Nans_num_p, ans_den, Nans_den);
}
void ft_closedloop_feedback(double c_num[], int Nc_num, double c_den[], int Nc_den, double model_num[], int Nmodel_num, double model_den[], int Nmodel_den, double ans_num[], int Nans_num, double ans_den[], int Nans_den){
Nans_num = Nc_den + Nmodel_num - 1;
Nans_den = Nc_den + Nmodel_den - 1;
int Nnum_mult = Nc_num + Nmodel_num - 1;
double den_mult [Nans_den];
double num_mult [Nnum_mult];
poly_mult(c_num, Nc_num, model_num, Nmodel_num, num_mult, Nnum_mult);
poly_mult(c_den, Nc_den, model_den, Nmodel_den, den_mult, Nans_den);
poly_sum(num_mult, Nnum_mult, den_mult, Nans_den, ans_den, Nans_den);
poly_mult(c_den, Nc_den, model_num, Nmodel_num, ans_num, Nans_num);
}
int check_stability_closedloop(double a[], int n, double plant_num[], int p_num_size, double plant_den[], int p_den_size){
int columns = n;
double m[2 * n - 1][n];
int i,j;
int first_is_positive = 0;
double * p_num = plant_num;
double * p_den = plant_den;
double sum = 0;
for (i=0; i < n; i++){
sum += a[i];
}
__DSVERIFIER_assert(sum > 0);
sum = 0;
for (i=0; i < n; i++){
sum += a[i] * internal_pow(-1, n-1-i);
}
sum = sum * internal_pow(-1, n-1);
__DSVERIFIER_assert(sum > 0);
__DSVERIFIER_assert(internal_abs(a[n-1]) < a[0]);
for (i=0; i < 2 * n - 1; i++){
for (j=0; j < columns; j++){
m[i][j] = 0;
if (i == 0){
m[i][j] = a[j];
continue;
}
if (i % 2 != 0 ){
int x;
for(x=0; x<columns;x++){
m[i][x] = m[i-1][columns-x-1];
}
columns = columns - 1;
j = columns;
}else{
__DSVERIFIER_assert(m[i-2][0] > 0);
m[i][j] = m[i-2][j] - (m[i-2][columns] / m[i-2][0]) * m[i-1][j];
__DSVERIFIER_assert((m[0][0] >= 0) && (m[i][0] >= 0));
}
}
}
return 1;
}
# 28 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2
# 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/initialization.h" 1
# 17 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/initialization.h"
extern digital_system ds;
extern digital_system plant;
extern digital_system control;
extern implementation impl;
extern filter_parameters filter;
extern hardware hw;
void initialization(){
if (impl.frac_bits >= 32){
printf("impl.frac_bits must be less than word width!\n");
}
if (impl.int_bits >= 32 - impl.frac_bits){
printf("impl.int_bits must be less than word width subtracted by precision!\n");
# 33 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/initialization.h" 3 4
((void) sizeof ((
# 33 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/initialization.h"
0
# 33 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/initialization.h" 3 4
) ? 1 : 0), __extension__ ({ if (
# 33 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/initialization.h"
0
# 33 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/initialization.h" 3 4
) ; else __assert_fail (
# 33 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/initialization.h"
"0"
# 33 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/initialization.h" 3 4
, "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/initialization.h", 33, __extension__ __PRETTY_FUNCTION__); }))
# 33 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/initialization.h"
;
}
if(impl.frac_bits >= 31){
_fxp_one = 0x7fffffff;
}else{
_fxp_one = (0x00000001 << impl.frac_bits);
}
_fxp_half = (0x00000001 << (impl.frac_bits - 1));
_fxp_minus_one = -(0x00000001 << impl.frac_bits);
_fxp_min = -(0x00000001 << (impl.frac_bits + impl.int_bits - 1));
_fxp_max = (0x00000001 << (impl.frac_bits + impl.int_bits - 1)) - 1;
_fxp_fmask = ((((int32_t) 1) << impl.frac_bits) - 1);
_fxp_imask = ((0x80000000) >> (32 - impl.frac_bits - 1));
_dbl_min = _fxp_min;
_dbl_min /= (1 << impl.frac_bits);
_dbl_max = _fxp_max;
_dbl_max /= (1 << impl.frac_bits);
if ((impl.scale == 0) || (impl.scale == 1)){
impl.scale = 1;
return;
}
if (impl.min != 0){
impl.min = impl.min / impl.scale;
}
if (impl.max != 0){
impl.max = impl.max / impl.scale;
}
# 80 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/initialization.h"
}
# 29 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2
# 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/state-space.h" 1
# 19 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/state-space.h"
extern digital_system_state_space _controller;
extern int nStates;
extern int nInputs;
extern int nOutputs;
double double_state_space_representation(void){
double result1[4][4];
double result2[4][4];
int i, j;
for(i=0; i<4;i++){
for(j=0; j<4;j++){
result1[i][j]=0;
result2[i][j]=0;
}
}
double_matrix_multiplication(nOutputs,nStates,nStates,1,_controller.C,_controller.states,result1);
double_matrix_multiplication(nOutputs,nInputs,nInputs,1,_controller.D,_controller.inputs,result2);
double_add_matrix(nOutputs,
1,
result1,
result2,
_controller.outputs);
double_matrix_multiplication(nStates,nStates,nStates,1,_controller.A,_controller.states,result1);
double_matrix_multiplication(nStates,nInputs,nInputs,1,_controller.B,_controller.inputs,result2);
double_add_matrix(nStates,
1,
result1,
result2,
_controller.states);
return _controller.outputs[0][0];
}
double fxp_state_space_representation(void){
fxp_t result1[4][4];
fxp_t result2[4][4];
int i, j;
for(i=0; i<4;i++){
for(j=0; j<4;j++){
result1[i][j]=0;
result2[i][j]=0;
}
}
fxp_t A_fpx[4][4];
fxp_t B_fpx[4][4];
fxp_t C_fpx[4][4];
fxp_t D_fpx[4][4];
fxp_t states_fpx[4][4];
fxp_t inputs_fpx[4][4];
fxp_t outputs_fpx[4][4];
for(i=0; i<4;i++){
for(j=0; j<4;j++){
A_fpx[i][j]=0;
}
}
for(i=0; i<4;i++){
for(j=0; j<4;j++){
B_fpx[i][j]=0;
}
}
for(i=0; i<4;i++){
for(j=0; j<4;j++){
C_fpx[i][j]=0;
}
}
for(i=0; i<4;i++){
for(j=0; j<4;j++){
D_fpx[i][j]=0;
}
}
for(i=0; i<4;i++){
for(j=0; j<4;j++){
states_fpx[i][j]=0;
}
}
for(i=0; i<4;i++){
for(j=0; j<4;j++){
inputs_fpx[i][j]=0;
}
}
for(i=0; i<4;i++){
for(j=0; j<4;j++){
outputs_fpx[i][j]=0;
}
}
for(i=0; i<nStates;i++){
for(j=0; j<nStates;j++){
A_fpx[i][j]= fxp_double_to_fxp(_controller.A[i][j]);
}
}
for(i=0; i<nStates;i++){
for(j=0; j<nInputs;j++){
B_fpx[i][j]= fxp_double_to_fxp(_controller.B[i][j]);
}
}
for(i=0; i<nOutputs;i++){
for(j=0; j<nStates;j++){
C_fpx[i][j]= fxp_double_to_fxp(_controller.C[i][j]);
}
}
for(i=0; i<nOutputs;i++){
for(j=0; j<nInputs;j++){
D_fpx[i][j]= fxp_double_to_fxp(_controller.D[i][j]);
}
}
for(i=0; i<nStates;i++){
for(j=0; j<1;j++){
states_fpx[i][j]= fxp_double_to_fxp(_controller.states[i][j]);
}
}
for(i=0; i<nInputs;i++){
for(j=0; j<1;j++){
inputs_fpx[i][j]= fxp_double_to_fxp(_controller.inputs[i][j]);
}
}
for(i=0; i<nOutputs;i++){
for(j=0; j<1;j++){
outputs_fpx[i][j]= fxp_double_to_fxp(_controller.outputs[i][j]);
}
}
fxp_matrix_multiplication(nOutputs,nStates,nStates,1,C_fpx,states_fpx,result1);
fxp_matrix_multiplication(nOutputs,nInputs,nInputs,1,D_fpx,inputs_fpx,result2);
fxp_add_matrix(nOutputs,
1,
result1,
result2,
outputs_fpx);
fxp_matrix_multiplication(nStates,nStates,nStates,1,A_fpx,states_fpx,result1);
fxp_matrix_multiplication(nStates,nInputs,nInputs,1,B_fpx,inputs_fpx,result2);
fxp_add_matrix(nStates,
1,
result1,
result2,
states_fpx);
for(i=0; i<nStates;i++){
for(j=0; j<1;j++){
_controller.states[i][j]= fxp_to_double(states_fpx[i][j]);
}
}
for(i=0; i<nOutputs;i++){
for(j=0; j<1;j++){
_controller.outputs[i][j]= fxp_to_double(outputs_fpx[i][j]);
}
}
return _controller.outputs[0][0];
}
# 30 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2
# 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/filter_functions.h" 1
# 20 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/filter_functions.h"
double sinTyl(double x, int precision){
double sine;
double xsquared = x*x;
double aux;
if (precision < 0)
{
printf("Warning: Function sinTyl from bmc/core/filter_functions.h: "
"Precision must be a positive integer. Assuming 0 precision\n");
precision = 0;
}
if (precision >= 0)
{
aux = 0;
sine = aux;
if (precision >= 1)
{
aux = x;
sine += aux;
if (precision >= 2)
{
aux = aux*xsquared;
sine -= aux/6;
if (precision >= 3)
{
aux = aux*xsquared;
sine +=aux/120;
if(precision >=4)
{
aux = aux*xsquared;
sine -=aux/5040;
if(precision >= 5)
{
aux = aux*xsquared;
sine +=aux/362880;
if(precision >= 6)
{
aux = aux*xsquared;
sine -=aux/39916800;
if (precision >= 7)
printf("Warning: Function sinTyl "
"from bmc/core/filter_functions.h: Precision "
"representation exceeded. Assuming maximum precision of 6\n");
}
}
}
}
}
}
}
return sine;
}
double cosTyl(double x, int precision){
double cosine;
double xsquared = x*x;
double aux;
if (precision < 0)
{
printf("Warning: Function cosTyl from bmc/core/filter_functions.h: "
"Precision must be a positive integer. Assuming 0 precision\n");
precision = 0;
}
if (precision >= 0)
{
aux = 0;
cosine = aux;
if (precision >= 1)
{
aux = 1;
cosine = 1;
if (precision >= 2)
{
aux = xsquared;
cosine -= aux/2;
if (precision >= 3)
{
aux = aux*xsquared;
cosine += aux/24;
if(precision >=4)
{
aux = aux*xsquared;
cosine -=aux/720;
if(precision >= 5)
{
aux = aux*xsquared;
cosine +=aux/40320;
if(precision >= 6)
{
aux = aux*xsquared;
cosine -=aux/3628800;
if (precision >= 7) printf("Warning: Function sinTyl "
"from bmc/core/filter_functions.h: Precision "
"representation exceeded. Assuming maximum precision of 6\n");
}
}
}
}
}
}
}
return cosine;
}
double atanTyl(double x, int precision){
double atangent;
double xsquared = x*x;
double aux;
if (precision < 0)
{
printf("Warning: Function sinTyl from bmc/core/filter_functions.h: "
"Precision must be a positive integer. Assuming 0 precision\n");
precision = 0;
}
if (precision >= 0)
{
aux = 0;
atangent = aux;
if (precision >= 1)
{
aux = x;
atangent = aux;
if (precision >= 2)
{
aux = xsquared;
atangent -= aux/3;
if (precision >= 3)
{
aux = aux*xsquared;
atangent += aux/5;
if(precision >=4)
{
aux = aux*xsquared;
atangent -=aux/7;
if (precision >= 7)
printf("Warning: Function sinTyl from bmc/core/filter_functions.h: "
"Precision representation exceeded. Assuming maximum precision of 4\n");
}
}
}
}
}
return atangent;
}
float sqrt1(const float x)
{
const float xhalf = 0.5f*x;
union
{
float x;
int i;
} u;
u.x = x;
u.i = 0x5f3759df - (u.i >> 1);
return x*u.x*(1.5f - xhalf*u.x*u.x);
}
float sqrt2(const float x)
{
union
{
int i;
float x;
} u;
u.x = x;
u.i = (1<<29) + (u.i >> 1) - (1<<22);
return u.x;
}
float fabsolut(float x)
{
if (x < 0)
x = -x;
return x;
}
static float sqrt3(float val)
{
float x = val/10;
float dx;
double diff;
double min_tol = 0.00001;
int i, flag;
flag = 0;
if (val == 0 ) x = 0;
else
{
for (i=1;i<20;i++)
{
if (!flag)
{
dx = (val - (x*x)) / (2.0 * x);
x = x + dx;
diff = val - (x*x);
if (fabsolut(diff) <= min_tol) flag = 1;
}
else x =x;
}
}
return (x);
}
# 31 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2
# 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_overflow.h" 1
# 19 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_overflow.h"
int nondet_int();
float nondet_float();
extern digital_system ds;
extern implementation impl;
int verify_overflow(void) {
fxp_t a_fxp[ds.a_size];
fxp_t b_fxp[ds.b_size];
fxp_double_to_fxp_array(ds.a, a_fxp, ds.a_size);
fxp_double_to_fxp_array(ds.b, b_fxp, ds.b_size);
# 73 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_overflow.h"
fxp_t min_fxp = fxp_double_to_fxp(impl.min);
fxp_t max_fxp = fxp_double_to_fxp(impl.max);
fxp_t y[X_SIZE_VALUE];
fxp_t x[X_SIZE_VALUE];
int i;
for (i = 0; i < X_SIZE_VALUE; ++i) {
y[i] = 0;
x[i] = nondet_int();
__DSVERIFIER_assume(x[i] >= min_fxp && x[i] <= max_fxp);
}
int Nw = 0;
Nw = ds.a_size > ds.b_size ? ds.a_size : ds.b_size;
fxp_t yaux[ds.a_size];
fxp_t xaux[ds.b_size];
fxp_t waux[Nw];
for (i = 0; i < ds.a_size; ++i) {
yaux[i] = 0;
}
for (i = 0; i < ds.b_size; ++i) {
xaux[i] = 0;
}
for (i = 0; i < Nw; ++i) {
waux[i] = 0;
}
fxp_t xk, temp;
fxp_t *aptr, *bptr, *xptr, *yptr, *wptr;
int j;
for (i = 0; i < X_SIZE_VALUE; ++i) {
# 123 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_overflow.h"
shiftR(0, waux, Nw);
y[i] = fxp_direct_form_2(waux, x[i], a_fxp, b_fxp, ds.a_size, ds.b_size);
# 174 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_overflow.h"
}
overflow_mode = 1;
fxp_verify_overflow_array(y, X_SIZE_VALUE);
return 0;
}
# 33 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2
# 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" 1
# 15 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h"
extern digital_system ds;
extern implementation impl;
extern digital_system_state_space _controller;
extern int nStates;
extern int nInputs;
extern int nOutputs;
int verify_limit_cycle_state_space(void){
double stateMatrix[4][4];
double outputMatrix[4][4];
double arrayLimitCycle[4];
double result1[4][4];
double result2[4][4];
int i, j, k;
for(i=0; i<4;i++){
for(j=0; j<4;j++){
result1[i][j]=0;
result2[i][j]=0;
stateMatrix[i][j]=0;
outputMatrix[i][j]=0;
}
}
double_matrix_multiplication(nOutputs,nStates,nStates,1,_controller.C,_controller.states,result1);
double_matrix_multiplication(nOutputs,nInputs,nInputs,1,_controller.D,_controller.inputs,result2);
double_add_matrix(nOutputs,
1,
result1,
result2,
_controller.outputs);
k = 0;
for (i = 1; i < 0; i++) {
double_matrix_multiplication(nStates,nStates,nStates,1,_controller.A,_controller.states,result1);
double_matrix_multiplication(nStates,nInputs,nInputs,1,_controller.B,_controller.inputs,result2);
double_add_matrix(nStates,
1,
result1,
result2,
_controller.states);
double_matrix_multiplication(nOutputs,nStates,nStates,1,_controller.C,_controller.states,result1);
double_matrix_multiplication(nOutputs,nInputs,nInputs,1,_controller.D,_controller.inputs,result2);
double_add_matrix(nOutputs,
1,
result1,
result2,
_controller.outputs);
int l;
for(l = 0; l < nStates; l++){
stateMatrix[l][k] = _controller.states[l][0];
}
for(l = 0; l < nOutputs; l++){
stateMatrix[l][k] = _controller.outputs[l][0];
}
k++;
}
printf("#matrix STATES -------------------------------");
print_matrix(stateMatrix,nStates,0);
printf("#matrix OUTPUTS -------------------------------");
print_matrix(outputMatrix,nOutputs,0);
# 93 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" 3 4
((void) sizeof ((
# 93 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h"
0
# 93 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" 3 4
) ? 1 : 0), __extension__ ({ if (
# 93 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h"
0
# 93 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" 3 4
) ; else __assert_fail (
# 93 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h"
"0"
# 93 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" 3 4
, "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h", 93, __extension__ __PRETTY_FUNCTION__); }))
# 93 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h"
;
for(i=0; i<nStates;i++){
for(j=0; j<0;j++){
arrayLimitCycle[j] = stateMatrix[i][j];
}
double_check_persistent_limit_cycle(arrayLimitCycle,0);
}
for(i=0; i<nOutputs;i++){
for(j=0; j<0;j++){
arrayLimitCycle[j] = outputMatrix[i][j];
}
double_check_persistent_limit_cycle(arrayLimitCycle,0);
}
# 110 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" 3 4
((void) sizeof ((
# 110 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h"
0
# 110 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" 3 4
) ? 1 : 0), __extension__ ({ if (
# 110 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h"
0
# 110 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" 3 4
) ; else __assert_fail (
# 110 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h"
"0"
# 110 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" 3 4
, "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h", 110, __extension__ __PRETTY_FUNCTION__); }))
# 110 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h"
;
}
int verify_limit_cycle(void){
overflow_mode = 3;
int i;
int Set_xsize_at_least_two_times_Na = 2 * ds.a_size;
printf("X_SIZE must be at least 2 * ds.a_size");
__DSVERIFIER_assert(X_SIZE_VALUE >= Set_xsize_at_least_two_times_Na);
fxp_t a_fxp[ds.a_size];
fxp_t b_fxp[ds.b_size];
fxp_double_to_fxp_array(ds.a, a_fxp, ds.a_size);
fxp_double_to_fxp_array(ds.b, b_fxp, ds.b_size);
# 168 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h"
fxp_t y[X_SIZE_VALUE];
fxp_t x[X_SIZE_VALUE];
fxp_t min_fxp = fxp_double_to_fxp(impl.min);
fxp_t max_fxp = fxp_double_to_fxp(impl.max);
fxp_t xaux[ds.b_size];
int nondet_constant_input = nondet_int();
__DSVERIFIER_assume(nondet_constant_input >= min_fxp && nondet_constant_input <= max_fxp);
for (i = 0; i < X_SIZE_VALUE; ++i) {
x[i] = nondet_constant_input;
y[i] = 0;
}
for (i = 0; i < ds.b_size; ++i) {
xaux[i] = nondet_constant_input;
}
int Nw = 0;
Nw = ds.a_size > ds.b_size ? ds.a_size : ds.b_size;
fxp_t yaux[ds.a_size];
fxp_t y0[ds.a_size];
fxp_t waux[Nw];
fxp_t w0[Nw];
# 206 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h"
for (i = 0; i < Nw; ++i) {
waux[i] = nondet_int();
__DSVERIFIER_assume(waux[i] >= min_fxp && waux[i] <= max_fxp);
w0[i] = waux[i];
}
fxp_t xk, temp;
fxp_t *aptr, *bptr, *xptr, *yptr, *wptr;
int j;
for(i=0; i<X_SIZE_VALUE; ++i){
# 228 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h"
shiftR(0, waux, Nw);
y[i] = fxp_direct_form_2(waux, x[i], a_fxp, b_fxp, ds.a_size, ds.b_size);
# 278 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h"
}
fxp_check_persistent_limit_cycle(y, X_SIZE_VALUE);
return 0;
}
# 34 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2
# 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error.h" 1
# 17 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error.h"
extern digital_system ds;
extern implementation impl;
int verify_error(void){
overflow_mode = 2;
double a_cascade[100];
int a_cascade_size;
double b_cascade[100];
int b_cascade_size;
fxp_t a_fxp[ds.a_size];
fxp_t b_fxp[ds.b_size];
fxp_double_to_fxp_array(ds.a, a_fxp, ds.a_size);
fxp_double_to_fxp_array(ds.b, b_fxp, ds.b_size);
# 69 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error.h"
fxp_t min_fxp = fxp_double_to_fxp(impl.min);
fxp_t max_fxp = fxp_double_to_fxp(impl.max);
fxp_t y[X_SIZE_VALUE];
fxp_t x[X_SIZE_VALUE];
double yf[X_SIZE_VALUE];
double xf[X_SIZE_VALUE];
int Nw = 0;
Nw = ds.a_size > ds.b_size ? ds.a_size : ds.b_size;
fxp_t yaux[ds.a_size];
fxp_t xaux[ds.b_size];
fxp_t waux[Nw];
double yfaux[ds.a_size];
double xfaux[ds.b_size];
double wfaux[Nw];
int i;
for (i = 0; i < ds.a_size; ++i) {
yaux[i] = 0;
yfaux[i] = 0;
}
for (i = 0; i < ds.b_size; ++i) {
xaux[i] = 0;
xfaux[i] = 0;
}
for (i = 0; i < Nw; ++i) {
waux[i] = 0;
wfaux[i] = 0;
}
for (i = 0; i < X_SIZE_VALUE; ++i) {
y[i] = 0;
x[i] = nondet_int();
__DSVERIFIER_assume(x[i] >= min_fxp && x[i] <= max_fxp);
yf[i] = 0.0f;
xf[i] = fxp_to_double(x[i]);
}
for (i = 0; i < X_SIZE_VALUE; ++i) {
# 139 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error.h"
shiftRboth(0.0f, wfaux, 0, waux, Nw);
y[i] = fxp_direct_form_2(waux, x[i], a_fxp, b_fxp, ds.a_size, ds.b_size);
yf[i] = double_direct_form_2(wfaux, xf[i], ds.a, ds.b, ds.a_size, ds.b_size);
# 169 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error.h"
double absolute_error = yf[i] - fxp_to_double(y[i]);
__DSVERIFIER_assert(absolute_error < (impl.max_error) && absolute_error > (-impl.max_error));
}
return 0;
}
# 35 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2
# 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h" 1
# 13 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h"
extern digital_system ds;
extern implementation impl;
int verify_zero_input_limit_cycle(void){
overflow_mode = 3;
int i,j;
int Set_xsize_at_least_two_times_Na = 2 * ds.a_size;
printf("X_SIZE must be at least 2 * ds.a_size");
# 23 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h" 3 4
((void) sizeof ((
# 23 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h"
X_SIZE_VALUE >= Set_xsize_at_least_two_times_Na
# 23 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h" 3 4
) ? 1 : 0), __extension__ ({ if (
# 23 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h"
X_SIZE_VALUE >= Set_xsize_at_least_two_times_Na
# 23 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h" 3 4
) ; else __assert_fail (
# 23 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h"
"X_SIZE_VALUE >= Set_xsize_at_least_two_times_Na"
# 23 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h" 3 4
, "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h", 23, __extension__ __PRETTY_FUNCTION__); }))
# 23 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h"
;
fxp_t a_fxp[ds.a_size];
fxp_t b_fxp[ds.b_size];
fxp_double_to_fxp_array(ds.a, a_fxp, ds.a_size);
fxp_double_to_fxp_array(ds.b, b_fxp, ds.b_size);
# 71 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h"
fxp_t min_fxp = fxp_double_to_fxp(impl.min);
fxp_t max_fxp = fxp_double_to_fxp(impl.max);
fxp_t y[X_SIZE_VALUE];
fxp_t x[X_SIZE_VALUE];
for (i = 0; i < X_SIZE_VALUE; ++i) {
y[i] = 0;
x[i] = 0;
}
int Nw = 0;
Nw = ds.a_size > ds.b_size ? ds.a_size : ds.b_size;
fxp_t yaux[ds.a_size];
fxp_t xaux[ds.b_size];
fxp_t waux[Nw];
fxp_t y0[ds.a_size];
fxp_t w0[Nw];
# 104 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h"
for (i = 0; i < Nw; ++i) {
waux[i] = nondet_int();
__DSVERIFIER_assume(waux[i] >= min_fxp && waux[i] <= max_fxp);
w0[i] = waux[i];
}
for (i = 0; i < ds.b_size; ++i) {
xaux[i] = 0;
}
fxp_t xk, temp;
fxp_t *aptr, *bptr, *xptr, *yptr, *wptr;
for(i=0; i<X_SIZE_VALUE; ++i){
# 132 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h"
shiftR(0, waux, Nw);
y[i] = fxp_direct_form_2(waux, x[i], a_fxp, b_fxp, ds.a_size, ds.b_size);
# 188 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h"
}
fxp_check_persistent_limit_cycle(y, X_SIZE_VALUE);
return 0;
}
# 36 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2
# 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_generic_timing.h" 1
# 16 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_generic_timing.h"
int nondet_int();
float nondet_float();
extern digital_system ds;
extern implementation impl;
extern hardware hw;
int generic_timer = 0;
int verify_generic_timing(void) {
double y[X_SIZE_VALUE];
double x[X_SIZE_VALUE];
int i;
for (i = 0; i < X_SIZE_VALUE; ++i) {
y[i] = 0;
x[i] = nondet_float();
__DSVERIFIER_assume(x[i] >= impl.min && x[i] <= impl.max);
}
int Nw = 0;
Nw = ds.a_size > ds.b_size ? ds.a_size : ds.b_size;
double yaux[ds.a_size];
double xaux[ds.b_size];
double waux[Nw];
for (i = 0; i < ds.a_size; ++i) {
yaux[i] = 0;
}
for (i = 0; i < ds.b_size; ++i) {
xaux[i] = 0;
}
for (i = 0; i < Nw; ++i) {
waux[i] = 0;
}
double xk, temp;
double *aptr, *bptr, *xptr, *yptr, *wptr;
int j;
generic_timer += ((2 * hw.assembly.std) + (1 * hw.assembly.rjmp));
double initial_timer = generic_timer;
for (i = 0; i < X_SIZE_VALUE; ++i) {
generic_timer += ((2 * hw.assembly.ldd) + (1 * hw.assembly.adiw) + (2 * hw.assembly.std));
generic_timer += ((2 * hw.assembly.ldd) + (1 * hw.assembly.cpi) + (1 * hw.assembly.cpc) + (1 * hw.assembly.brlt));
# 79 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_generic_timing.h"
generic_timing_shift_r_double(0, waux, Nw);
y[i] = generic_timing_double_direct_form_2(waux, x[i], ds.a, ds.b, ds.a_size, ds.b_size);
double spent_time = (((double) generic_timer) * hw.cycle);
# 89 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_generic_timing.h" 3 4
((void) sizeof ((
# 89 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_generic_timing.h"
spent_time <= ds.sample_time
# 89 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_generic_timing.h" 3 4
) ? 1 : 0), __extension__ ({ if (
# 89 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_generic_timing.h"
spent_time <= ds.sample_time
# 89 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_generic_timing.h" 3 4
) ; else __assert_fail (
# 89 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_generic_timing.h"
"spent_time <= ds.sample_time"
# 89 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_generic_timing.h" 3 4
, "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_generic_timing.h", 89, __extension__ __PRETTY_FUNCTION__); }))
# 89 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_generic_timing.h"
;
generic_timer = initial_timer;
}
return 0;
}
# 37 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2
# 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_timing_msp430.h" 1
# 16 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_timing_msp430.h"
int nondet_int();
float nondet_float();
extern digital_system ds;
extern implementation impl;
int verify_timing_msp_430(void) {
double y[X_SIZE_VALUE];
double x[X_SIZE_VALUE];
int i;
for (i = 0; i < X_SIZE_VALUE; ++i) {
y[i] = 0;
x[i] = nondet_float();
__DSVERIFIER_assume(x[i] >= impl.min && x[i] <= impl.max);
}
int Nw = 0;
Nw = ds.a_size > ds.b_size ? ds.a_size : ds.b_size;
double yaux[ds.a_size];
double xaux[ds.b_size];
double waux[Nw];
for (i = 0; i < ds.a_size; ++i) {
yaux[i] = 0;
}
for (i = 0; i < ds.b_size; ++i) {
xaux[i] = 0;
}
for (i = 0; i < Nw; ++i) {
waux[i] = 0;
}
double xk, temp;
double *aptr, *bptr, *xptr, *yptr, *wptr;
int j;
for (i = 0; i < X_SIZE_VALUE; ++i) {
# 69 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_timing_msp430.h"
shiftR(0, waux, Nw);
y[i] = double_direct_form_2_MSP430(waux, x[i], ds.a, ds.b, ds.a_size, ds.b_size);
# 121 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_timing_msp430.h"
}
return 0;
}
# 38 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2
# 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability.h" 1
# 21 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability.h"
extern digital_system ds;
extern implementation impl;
int verify_stability(void){
overflow_mode = 0;
fxp_t a_fxp[ds.a_size];
fxp_double_to_fxp_array(ds.a, a_fxp, ds.a_size);
double _a[ds.a_size];
fxp_to_double_array(_a, a_fxp, ds.a_size);
# 37 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability.h" 3 4
((void) sizeof ((
# 37 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability.h"
check_stability(_a, ds.a_size)
# 37 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability.h" 3 4
) ? 1 : 0), __extension__ ({ if (
# 37 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability.h"
check_stability(_a, ds.a_size)
# 37 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability.h" 3 4
) ; else __assert_fail (
# 37 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability.h"
"check_stability(_a, ds.a_size)"
# 37 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability.h" 3 4
, "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability.h", 37, __extension__ __PRETTY_FUNCTION__); }))
# 37 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability.h"
;
# 83 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability.h"
return 0;
}
# 39 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2
# 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_minimum_phase.h" 1
# 21 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_minimum_phase.h"
extern digital_system ds;
extern implementation impl;
int verify_minimum_phase(void){
overflow_mode = 0;
fxp_t b_fxp[ds.b_size];
fxp_double_to_fxp_array(ds.b, b_fxp, ds.b_size);
double _b[ds.b_size];
fxp_to_double_array(_b, b_fxp, ds.b_size);
__DSVERIFIER_assert(check_stability(_b, ds.b_size));
# 85 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_minimum_phase.h"
return 0;
}
# 40 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2
# 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability_closedloop.h" 1
# 17 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability_closedloop.h"
extern digital_system plant;
extern digital_system plant_cbmc;
extern digital_system controller;
int verify_stability_closedloop_using_dslib(void){
double * c_num = controller.b;
int c_num_size = controller.b_size;
double * c_den = controller.a;
int c_den_size = controller.a_size;
fxp_t c_num_fxp[controller.b_size];
fxp_double_to_fxp_array(c_num, c_num_fxp, controller.b_size);
fxp_t c_den_fxp[controller.a_size];
fxp_double_to_fxp_array(c_den, c_den_fxp, controller.a_size);
double c_num_qtz[controller.b_size];
fxp_to_double_array(c_num_qtz, c_num_fxp, controller.b_size);
double c_den_qtz[controller.a_size];
fxp_to_double_array(c_den_qtz, c_den_fxp, controller.a_size);
# 48 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability_closedloop.h"
double * p_num = plant_cbmc.b;
int p_num_size = plant.b_size;
double * p_den = plant_cbmc.a;
int p_den_size = plant.a_size;
double ans_num[100];
int ans_num_size = controller.b_size + plant.b_size - 1;
double ans_den[100];
int ans_den_size = controller.a_size + plant.a_size - 1;
# 68 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability_closedloop.h"
printf("Verifying stability for closedloop function\n");
__DSVERIFIER_assert(check_stability_closedloop(ans_den, ans_den_size, p_num, p_num_size, p_den, p_den_size));
return 0;
}
# 41 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2
# 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle_closedloop.h" 1
# 23 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle_closedloop.h"
extern digital_system plant;
extern digital_system plant_cbmc;
extern digital_system controller;
double nondet_double();
int verify_limit_cycle_closed_loop(void){
overflow_mode = 3;
double * c_num = controller.b;
int c_num_size = controller.b_size;
double * c_den = controller.a;
int c_den_size = controller.a_size;
fxp_t c_num_fxp[controller.b_size];
fxp_double_to_fxp_array(c_num, c_num_fxp, controller.b_size);
fxp_t c_den_fxp[controller.a_size];
fxp_double_to_fxp_array(c_den, c_den_fxp, controller.a_size);
double c_num_qtz[controller.b_size];
fxp_to_double_array(c_num_qtz, c_num_fxp, controller.b_size);
double c_den_qtz[controller.a_size];
fxp_to_double_array(c_den_qtz, c_den_fxp, controller.a_size);
# 58 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle_closedloop.h"
double * p_num = plant_cbmc.b;
int p_num_size = plant.b_size;
double * p_den = plant_cbmc.a;
int p_den_size = plant.a_size;
double ans_num[100];
int ans_num_size = controller.b_size + plant.b_size - 1;
double ans_den[100];
int ans_den_size = controller.a_size + plant.a_size - 1;
int i;
double y[X_SIZE_VALUE];
double x[X_SIZE_VALUE];
double xaux[ans_num_size];
double nondet_constant_input = nondet_double();
__DSVERIFIER_assume(nondet_constant_input >= impl.min && nondet_constant_input <= impl.max);
for (i = 0; i < X_SIZE_VALUE; ++i) {
x[i] = nondet_constant_input;
y[i] = 0;
}
for (i = 0; i < ans_num_size; ++i) {
xaux[i] = nondet_constant_input;
}
double yaux[ans_den_size];
double y0[ans_den_size];
int Nw = ans_den_size > ans_num_size ? ans_den_size : ans_num_size;
double waux[Nw];
double w0[Nw];
# 105 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle_closedloop.h"
for (i = 0; i < Nw; ++i) {
waux[i] = nondet_int();
__DSVERIFIER_assume(waux[i] >= impl.min && waux[i] <= impl.max);
w0[i] = waux[i];
}
double xk, temp;
double *aptr, *bptr, *xptr, *yptr, *wptr;
int j;
for(i=0; i<X_SIZE_VALUE; ++i){
# 128 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle_closedloop.h"
shiftRDdouble(0, waux, Nw);
y[i] = double_direct_form_2(waux, x[i], ans_den, ans_num, ans_den_size, ans_num_size);
}
double_check_persistent_limit_cycle(y, X_SIZE_VALUE);
return 0;
}
# 42 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2
# 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_closedloop.h" 1
# 23 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_closedloop.h"
extern digital_system plant;
extern digital_system plant_cbmc;
extern digital_system controller;
int verify_error_closedloop(void){
overflow_mode = 3;
double * c_num = controller.b;
int c_num_size = controller.b_size;
double * c_den = controller.a;
int c_den_size = controller.a_size;
fxp_t c_num_fxp[controller.b_size];
fxp_double_to_fxp_array(c_num, c_num_fxp, controller.b_size);
fxp_t c_den_fxp[controller.a_size];
fxp_double_to_fxp_array(c_den, c_den_fxp, controller.a_size);
double c_num_qtz[controller.b_size];
fxp_to_double_array(c_num_qtz, c_num_fxp, controller.b_size);
double c_den_qtz[controller.a_size];
fxp_to_double_array(c_den_qtz, c_den_fxp, controller.a_size);
# 56 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_closedloop.h"
double * p_num = plant_cbmc.b;
int p_num_size = plant.b_size;
double * p_den = plant_cbmc.a;
int p_den_size = plant.a_size;
double ans_num_double[100];
double ans_num_qtz[100];
int ans_num_size = controller.b_size + plant.b_size - 1;
double ans_den_qtz[100];
double ans_den_double[100];
int ans_den_size = controller.a_size + plant.a_size - 1;
# 77 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_closedloop.h"
int i;
double y_qtz[X_SIZE_VALUE];
double y_double[X_SIZE_VALUE];
double x_qtz[X_SIZE_VALUE];
double x_double[X_SIZE_VALUE];
double xaux_qtz[ans_num_size];
double xaux_double[ans_num_size];
double xaux[ans_num_size];
double nondet_constant_input = nondet_double();
__DSVERIFIER_assume(nondet_constant_input >= impl.min && nondet_constant_input <= impl.max);
for (i = 0; i < X_SIZE_VALUE; ++i) {
x_qtz[i] = nondet_constant_input;
x_double[i] = nondet_constant_input;
y_qtz[i] = 0;
y_double[i] = 0;
}
for (i = 0; i < ans_num_size; ++i) {
xaux_qtz[i] = nondet_constant_input;
xaux_double[i] = nondet_constant_input;
}
double yaux_qtz[ans_den_size];
double yaux_double[ans_den_size];
double y0_qtz[ans_den_size];
double y0_double[ans_den_size];
int Nw = ans_den_size > ans_num_size ? ans_den_size : ans_num_size;
double waux_qtz[Nw];
double waux_double[Nw];
double w0_qtz[Nw];
double w0_double[Nw];
for (i = 0; i < Nw; ++i) {
waux_qtz[i] = 0;
waux_double[i] = 0;
}
for(i=0; i<X_SIZE_VALUE; ++i){
# 140 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_closedloop.h"
shiftRDdouble(0, waux_qtz, Nw);
y_qtz[i] = double_direct_form_2(waux_qtz, x_qtz[i], ans_den_qtz, ans_num_qtz, ans_den_size, ans_num_size);
shiftRDdouble(0, waux_double, Nw);
y_double[i] = double_direct_form_2(waux_double, x_double[i], ans_den_double, ans_num_double, ans_den_size, ans_num_size);
# 156 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_closedloop.h"
double absolute_error = y_double[i] - fxp_to_double(y_qtz[i]);
__DSVERIFIER_assert(absolute_error < (impl.max_error) && absolute_error > (-impl.max_error));
}
return 0;
}
# 43 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2
# 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" 1
# 20 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h"
extern digital_system_state_space _controller;
extern double error_limit;
extern int closed_loop;
double new_state[4][4];
double new_stateFWL[4][4];
digital_system_state_space _controller_fxp;
digital_system_state_space _controller_double;
double ss_system_quantization_error(fxp_t inputs){
digital_system_state_space __backupController;
int i;
int j;
_controller.inputs[0][0] = inputs;
for(i=0; i<nStates;i++){
for(j=0; j<nStates;j++){
__backupController.A[i][j]= (_controller.A[i][j]);
}
}
for(i=0; i<nStates;i++){
for(j=0; j<nInputs;j++){
__backupController.B[i][j]= (_controller.B[i][j]);
}
}
for(i=0; i<nOutputs;i++){
for(j=0; j<nStates;j++){
__backupController.C[i][j]= (_controller.C[i][j]);
}
}
for(i=0; i<nOutputs;i++){
for(j=0; j<nInputs;j++){
__backupController.D[i][j]= (_controller.D[i][j]);
}
}
for(i=0; i<nStates;i++){
for(j=0; j<1;j++){
__backupController.states[i][j]= (_controller.states[i][j]);
}
}
for(i=0; i<nInputs;i++){
for(j=0; j<1;j++){
__backupController.inputs[i][j]= (_controller.inputs[i][j]);
}
}
for(i=0; i<nOutputs;i++){
for(j=0; j<1;j++){
__backupController.outputs[i][j]= (_controller.outputs[i][j]);
}
}
double __quant_error = 0.0;
for(i=0; i<nStates;i++){
for(j=0; j<1;j++){
_controller.states[i][j]= (new_state[i][j]);
}
}
double output_double = double_state_space_representation();
for(i=0; i<nStates;i++){
for(j=0; j<1;j++){
new_state[i][j]= (_controller.states[i][j]);
}
}
__backupController.inputs[0][0] = inputs;
for(i=0; i<nStates;i++){
for(j=0; j<nStates;j++){
_controller.A[i][j] = __backupController.A[i][j];
}
}
for(i=0; i<nStates;i++){
for(j=0; j<nInputs;j++){
_controller.B[i][j] = __backupController.B[i][j];
}
}
for(i=0; i<nOutputs;i++){
for(j=0; j<nStates;j++){
_controller.C[i][j] = __backupController.C[i][j];
}
}
for(i=0; i<nOutputs;i++){
for(j=0; j<nInputs;j++){
_controller.D[i][j] = __backupController.D[i][j];
}
}
for(i=0; i<nStates;i++){
for(j=0; j<1;j++){
_controller.states[i][j] = __backupController.states[i][j];
}
}
for(i=0; i<nInputs;i++){
for(j=0; j<1;j++){
_controller.inputs[i][j] = __backupController.inputs[i][j];
}
}
for(i=0; i<nOutputs;i++){
for(j=0; j<1;j++){
_controller.outputs[i][j] = __backupController.outputs[i][j];
}
}
for(i=0; i<nStates;i++){
for(j=0; j<1;j++){
_controller.states[i][j]= (new_stateFWL[i][j]);
}
}
double output_fxp = fxp_state_space_representation();
for(i=0; i<nStates;i++){
for(j=0; j<1;j++){
new_stateFWL[i][j]= (_controller.states[i][j]);
}
}
__quant_error = output_double - output_fxp;
return __quant_error;
}
double fxp_ss_closed_loop_quantization_error(double reference){
double reference_aux[4][4];
double result1[4][4];
double temp_result1[4][4];
double result2[4][4];
double temp_states[4][4];
fxp_t K_fxp[4][4];
fxp_t states_fxp[4][4];
fxp_t result_fxp[4][4];
unsigned int i;
unsigned int j;
unsigned int k;
short unsigned int flag = 0;
for(i=0; i<nOutputs;i++){
for(j=0; j<nInputs;j++){
if(_controller_fxp.D[i][j] != 0){
flag = 1;
}
}
}
for(i=0; i<4;i++){
for(j=0; j<4;j++){
reference_aux[i][j]=0;
K_fxp[i][j] = 0;
}
}
for(i=0; i<nInputs;i++){
reference_aux[i][0]= reference;
}
for(i=0; i<4;i++){
states_fxp[i][0]=0;
}
for(i=0; i<nStates;i++){
K_fxp[0][i]= fxp_double_to_fxp(_controller_fxp.K[0][i]);
}
for(i=0; i<4;i++){
for(j=0; j<4;j++){
result1[i][j]=0;
result2[i][j]=0;
}
}
for(k=0; k<nStates;k++)
{
states_fxp[k][0]= fxp_double_to_fxp(_controller_fxp.states[k][0]);
}
fxp_matrix_multiplication(nOutputs,nStates,nStates,1,K_fxp,states_fxp,result_fxp);
fxp_t reference_fxp[4][4];
fxp_t result_fxp2[4][4];
for(k=0;k<nInputs;k++)
{
reference_fxp[k][0] =fxp_double_to_fxp(fxp_quantize(reference_aux[k][0]));
}
fxp_sub_matrix(nInputs,1, reference_fxp, result_fxp, result_fxp2);
for(k=0; k<nInputs;k++)
{
_controller_fxp.inputs[k][0] = fxp_to_double(fxp_quantize(result_fxp2[k][0]));
}
double_matrix_multiplication(nOutputs,nStates,nStates,1,_controller_fxp.C,_controller_fxp.states,result1);
if(flag == 1)
{
double_matrix_multiplication(nOutputs,nInputs,nInputs,1,_controller_fxp.D,_controller_fxp.inputs,result2);
}
double_add_matrix(nOutputs,1,result1,result2,_controller_fxp.outputs);
double_matrix_multiplication(nStates,nStates,nStates,1,_controller_fxp.A,_controller_fxp.states,result1);
double_matrix_multiplication(nStates,nInputs,nInputs,1,_controller_fxp.B,_controller_fxp.inputs,result2);
double_add_matrix(nStates,1,result1,result2,_controller_fxp.states);
return _controller_fxp.outputs[0][0];
}
double ss_closed_loop_quantization_error(double reference){
double reference_aux[4][4];
double result1[4][4];
double result2[4][4];
unsigned int i;
unsigned int j;
short unsigned int flag = 0;
for(i=0; i<nOutputs;i++){
for(j=0; j<nInputs;j++){
if(_controller_double.D[i][j] != 0){
flag = 1;
}
}
}
for(i=0; i<nInputs;i++){
for(j=0; j<1;j++){
reference_aux[i][j]= reference;
}
}
for(i=0; i<4;i++){
for(j=0; j<4;j++){
result1[i][j]=0;
result2[i][j]=0;
}
}
double_matrix_multiplication(nOutputs,nStates,nStates,1,_controller_double.K,_controller_double.states,result1);
double_sub_matrix(nInputs,1,reference_aux,result1, _controller_double.inputs);
double_matrix_multiplication(nOutputs,nStates,nStates,1,_controller_double.C,_controller_double.states,result1);
if(flag == 1)
double_matrix_multiplication(nOutputs,nInputs,nInputs,1,_controller_double.D,_controller_double.inputs,result2);
double_add_matrix(nOutputs,1,result1,result2,_controller_double.outputs);
double_matrix_multiplication(nStates,nStates,nStates,1,_controller_double.A,_controller_double.states,result1);
double_matrix_multiplication(nStates,nInputs,nInputs,1,_controller_double.B,_controller_double.inputs,result2);
double_add_matrix(nStates,1,result1,result2,_controller_double.states);
return _controller_double.outputs[0][0];
}
int verify_error_state_space(void){
int i,j;
for(i=0; i<nStates;i++){
for(j=0; j<1;j++){
new_state[i][j]= (_controller.states[i][j]);
}
}
for(i=0; i<nStates;i++){
for(j=0; j<1;j++){
new_stateFWL[i][j]= (_controller.states[i][j]);
}
}
_controller_fxp = _controller;
_controller_double = _controller;
overflow_mode = 0;
fxp_t x[0];
fxp_t min_fxp = fxp_double_to_fxp(impl.min);
fxp_t max_fxp = fxp_double_to_fxp(impl.max);
double nondet_constant_input = nondet_double();
__DSVERIFIER_assume(nondet_constant_input >= min_fxp && nondet_constant_input <= max_fxp);
for (i = 0; i < 0; ++i) {
x[i] = nondet_constant_input;
}
double __quant_error;
if(closed_loop){
for (i = 0; i < 0; ++i) {
__quant_error = ss_closed_loop_quantization_error(x[i]) - fxp_ss_closed_loop_quantization_error(x[i]);
# 354 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" 3 4
((void) sizeof ((
# 354 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h"
__quant_error < error_limit && __quant_error > ((-1)*error_limit)
# 354 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" 3 4
) ? 1 : 0), __extension__ ({ if (
# 354 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h"
__quant_error < error_limit && __quant_error > ((-1)*error_limit)
# 354 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" 3 4
) ; else __assert_fail (
# 354 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h"
"__quant_error < error_limit && __quant_error > ((-1)*error_limit)"
# 354 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" 3 4
, "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h", 354, __extension__ __PRETTY_FUNCTION__); }))
# 354 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h"
;
}
}
else {
for (i=0; i < 0; i++)
{
__quant_error = ss_system_quantization_error(x[i]);
# 361 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" 3 4
((void) sizeof ((
# 361 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h"
__quant_error < error_limit && __quant_error > ((-1)*error_limit)
# 361 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" 3 4
) ? 1 : 0), __extension__ ({ if (
# 361 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h"
__quant_error < error_limit && __quant_error > ((-1)*error_limit)
# 361 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" 3 4
) ; else __assert_fail (
# 361 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h"
"__quant_error < error_limit && __quant_error > ((-1)*error_limit)"
# 361 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" 3 4
, "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h", 361, __extension__ __PRETTY_FUNCTION__); }))
# 361 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h"
;
}
}
return 0;
}
# 44 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2
# 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_safety_state_space.h" 1
# 17 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_safety_state_space.h"
extern digital_system_state_space _controller;
extern double error_limit;
extern int closed_loop;
double fxp_ss_closed_loop_safety(){
double reference[4][4];
double result1[4][4];
double result2[4][4];
fxp_t K_fpx[4][4];
fxp_t outputs_fpx[4][4];
fxp_t result_fxp[4][4];
unsigned int i;
unsigned int j;
unsigned int k;
short unsigned int flag = 0;
for(i=0; i<nOutputs;i++){
for(j=0; j<nInputs;j++){
if(_controller.D[i][j] != 0){
flag = 1;
}
}
}
for(i=0; i<nInputs;i++){
for(j=0; j<1;j++){
reference[i][j]= (_controller.inputs[i][j]);
}
}
for(i=0; i<nInputs;i++){
for(j=0; j<nOutputs;j++){
K_fpx[i][j]=0;
}
}
for(i=0; i<nOutputs;i++){
for(j=0; j<1;j++){
outputs_fpx[i][j]=0;
}
}
for(i=0; i<4;i++){
for(j=0; j<4;j++){
result_fxp[i][j]=0;
}
}
for(i=0; i<nInputs;i++){
for(j=0; j<nOutputs;j++){
K_fpx[i][j]= fxp_double_to_fxp(_controller.K[i][j]);
}
}
for(i=0; i<4;i++){
for(j=0; j<4;j++){
result1[i][j]=0;
result2[i][j]=0;
}
}
for (i = 1; i < 0; i++) {
double_matrix_multiplication(nOutputs,nStates,nStates,1,_controller.C,_controller.states,result1);
if(flag == 1){
double_matrix_multiplication(nOutputs,nInputs,nInputs,1,_controller.D,_controller.inputs,result2);
}
double_add_matrix(nOutputs,
1,
result1,
result2,
_controller.outputs);
for(k=0; k<nOutputs;k++){
for(j=0; j<1;j++){
outputs_fpx[k][j]= fxp_double_to_fxp(_controller.outputs[k][j]);
}
}
fxp_matrix_multiplication(nInputs,nOutputs,nOutputs,1,K_fpx,outputs_fpx,result_fxp);
for(k=0; k<nInputs;k++){
for(j=0; j<1;j++){
result1[k][j]= fxp_to_double(result_fxp[k][j]);
}
}
printf("### fxp: U (before) = %.9f", _controller.inputs[0][0]);
printf("### fxp: reference = %.9f", reference[0][0]);
printf("### fxp: result1 = %.9f", result1[0][0]);
printf("### fxp: reference - result1 = %.9f", (reference[0][0] - result1[0][0]));
double_sub_matrix(nInputs,
1,
reference,
result1,
_controller.inputs);
printf("### fxp: Y = %.9f", _controller.outputs[0][0]);
printf("### fxp: U (after) = %.9f \n### \n### ", _controller.inputs[0][0]);
double_matrix_multiplication(nStates,nStates,nStates,1,_controller.A,_controller.states,result1);
double_matrix_multiplication(nStates,nInputs,nInputs,1,_controller.B,_controller.inputs,result2);
double_add_matrix(nStates,
1,
result1,
result2,
_controller.states);
}
return _controller.outputs[0][0];
}
int verify_safety_state_space(void){
fxp_t output_fxp = fxp_ss_closed_loop_safety();
double output_double = fxp_to_double(output_fxp);
# 140 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_safety_state_space.h" 3 4
((void) sizeof ((
# 140 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_safety_state_space.h"
output_double <= error_limit
# 140 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_safety_state_space.h" 3 4
) ? 1 : 0), __extension__ ({ if (
# 140 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_safety_state_space.h"
output_double <= error_limit
# 140 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_safety_state_space.h" 3 4
) ; else __assert_fail (
# 140 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_safety_state_space.h"
"output_double <= error_limit"
# 140 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_safety_state_space.h" 3 4
, "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_safety_state_space.h", 140, __extension__ __PRETTY_FUNCTION__); }))
# 140 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_safety_state_space.h"
;
return 0;
}
# 45 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2
# 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 1
# 14 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h"
extern digital_system_state_space _controller;
int verify_controllability(void){
int i;
int j;
fxp_t A_fpx[4][4];
fxp_t B_fpx[4][4];
fxp_t controllabilityMatrix[4][4];
fxp_t backup[4][4];
fxp_t backupSecond[4][4];
double controllabilityMatrix_double[4][4];
for(i=0; i<nStates;i++){
for(j=0; j<(nStates*nInputs);j++){
A_fpx[i][j] = 0.0;
B_fpx[i][j] = 0.0;
controllabilityMatrix[i][j] = 0.0;
backup[i][j] = 0.0;
backupSecond[i][j] = 0.0;
controllabilityMatrix_double[i][j] = 0.0;
}
}
for(i=0; i<nStates;i++){
for(j=0; j<nStates;j++){
A_fpx[i][j]= fxp_double_to_fxp(_controller.A[i][j]);
}
}
for(i=0; i<nStates;i++){
for(j=0; j<nInputs;j++){
B_fpx[i][j]= fxp_double_to_fxp(_controller.B[i][j]);
}
}
if(nInputs > 1){
int l = 0;
for(j=0; j<(nStates*nInputs);){
fxp_exp_matrix(nStates,nStates,A_fpx,l,backup);
l++;
fxp_matrix_multiplication(nStates,nStates,nStates,nInputs,backup,B_fpx,backupSecond);
for(int k = 0; k < nInputs; k++){
for(i = 0; i<nStates;i++){
controllabilityMatrix[i][j]= backupSecond[i][k];
}
j++;
}
}
for(i=0; i<nStates;i++){
for(j=0; j<(nStates*nInputs);j++){
backup[i][j]= 0.0;
}
}
fxp_transpose(controllabilityMatrix,backup,nStates,(nStates*nInputs));
fxp_t mimo_controllabilityMatrix_fxp[4][4];
fxp_matrix_multiplication(nStates,(nStates*nInputs),(nStates*nInputs),nStates,controllabilityMatrix,backup,mimo_controllabilityMatrix_fxp);
for(i=0; i<nStates;i++){
for(j=0; j<nStates;j++){
controllabilityMatrix_double[i][j]= fxp_to_double(mimo_controllabilityMatrix_fxp[i][j]);
}
}
# 91 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4
((void) sizeof ((
# 91 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h"
determinant(controllabilityMatrix_double,nStates) != 0
# 91 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4
) ? 1 : 0), __extension__ ({ if (
# 91 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h"
determinant(controllabilityMatrix_double,nStates) != 0
# 91 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4
) ; else __assert_fail (
# 91 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h"
"determinant(controllabilityMatrix_double,nStates) != 0"
# 91 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4
, "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h", 91, __extension__ __PRETTY_FUNCTION__); }))
# 91 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h"
;
} else {
for(j=0; j<nStates;j++){
fxp_exp_matrix(nStates,nStates,A_fpx,j,backup);
fxp_matrix_multiplication(nStates,nStates,nStates,nInputs,backup,B_fpx,backupSecond);
for(i = 0; i<nStates;i++){
controllabilityMatrix[i][j]= backupSecond[i][0];
}
}
for(i=0; i<nStates;i++){
for(j=0; j<nStates;j++){
controllabilityMatrix_double[i][j]= fxp_to_double(controllabilityMatrix[i][j]);
}
}
# 113 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4
((void) sizeof ((
# 113 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h"
determinant(controllabilityMatrix_double,nStates) != 0
# 113 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4
) ? 1 : 0), __extension__ ({ if (
# 113 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h"
determinant(controllabilityMatrix_double,nStates) != 0
# 113 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4
) ; else __assert_fail (
# 113 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h"
"determinant(controllabilityMatrix_double,nStates) != 0"
# 113 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4
, "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h", 113, __extension__ __PRETTY_FUNCTION__); }))
# 113 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h"
;
}
return 0;
}
int verify_controllability_double(void){
int i;
int j;
double controllabilityMatrix[4][4];
double backup[4][4];
double backupSecond[4][4];
double controllabilityMatrix_double[4][4];
if(nInputs > 1){
int l = 0;
for(j=0; j<(nStates*nInputs);){
double_exp_matrix(nStates,nStates,_controller.A,l,backup);
l++;
double_matrix_multiplication(nStates,nStates,nStates,nInputs,backup,_controller.B,backupSecond);
for(int k = 0; k < nInputs; k++){
for(i = 0; i<nStates;i++){
controllabilityMatrix[i][j]= backupSecond[i][k];
}
j++;
}
}
for(i=0; i<nStates;i++){
for(j=0; j<(nStates*nInputs);j++){
backup[i][j]= 0.0;
}
}
transpose(controllabilityMatrix,backup,nStates,(nStates*nInputs));
double mimo_controllabilityMatrix_double[4][4];
double_matrix_multiplication(nStates,(nStates*nInputs),(nStates*nInputs),nStates,controllabilityMatrix,backup,mimo_controllabilityMatrix_double);
# 154 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4
((void) sizeof ((
# 154 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h"
determinant(mimo_controllabilityMatrix_double,nStates) != 0
# 154 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4
) ? 1 : 0), __extension__ ({ if (
# 154 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h"
determinant(mimo_controllabilityMatrix_double,nStates) != 0
# 154 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4
) ; else __assert_fail (
# 154 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h"
"determinant(mimo_controllabilityMatrix_double,nStates) != 0"
# 154 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4
, "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h", 154, __extension__ __PRETTY_FUNCTION__); }))
# 154 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h"
;
} else {
for(j=0; j<nStates;j++){
double_exp_matrix(nStates,nStates,_controller.A,j,backup);
double_matrix_multiplication(nStates,nStates,nStates,nInputs,backup,_controller.B,backupSecond);
for(i = 0; i<nStates;i++){
controllabilityMatrix[i][j]= backupSecond[i][0];
}
}
# 163 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4
((void) sizeof ((
# 163 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h"
determinant(controllabilityMatrix,nStates) != 0
# 163 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4
) ? 1 : 0), __extension__ ({ if (
# 163 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h"
determinant(controllabilityMatrix,nStates) != 0
# 163 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4
) ; else __assert_fail (
# 163 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h"
"determinant(controllabilityMatrix,nStates) != 0"
# 163 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4
, "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h", 163, __extension__ __PRETTY_FUNCTION__); }))
# 163 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h"
;
}
return 0;
}
# 46 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2
# 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" 1
# 17 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h"
extern digital_system_state_space _controller;
int verify_observability(void){
int i;
int j;
fxp_t A_fpx[4][4];
fxp_t C_fpx[4][4];
fxp_t observabilityMatrix[4][4];
fxp_t backup[4][4];
fxp_t backupSecond[4][4];
double observabilityMatrix_double[4][4];
for(i=0; i<nStates;i++){
for(j=0; j<nStates;j++){
observabilityMatrix[i][j]= 0;
A_fpx[i][j]=0;
C_fpx[i][j]= 0;
backup[i][j]= 0;
backupSecond[i][j]= 0;
}
}
for(i=0; i<nStates;i++){
for(j=0; j<nStates;j++){
A_fpx[i][j]= fxp_double_to_fxp(_controller.A[i][j]);
}
}
for(i=0; i<nOutputs;i++){
for(j=0; j<nStates;j++){
C_fpx[i][j]= fxp_double_to_fxp(_controller.C[i][j]);
}
}
if(nOutputs > 1){
int l;
j = 0;
for(l=0; l<nStates;){
fxp_exp_matrix(nStates,nStates,A_fpx,l,backup);
l++;
fxp_matrix_multiplication(nOutputs,nStates,nStates,nStates,C_fpx,backup,backupSecond);
for(int k = 0; k < nOutputs; k++){
for(i = 0; i<nStates;i++){
observabilityMatrix[j][i]= backupSecond[k][i];
}
j++;
}
}
# 80 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h"
for(i=0; i<nStates;i++){
for(j=0; j<(nStates*nOutputs);j++){
backup[i][j]= 0.0;
}
}
fxp_transpose(observabilityMatrix,backup,(nStates*nOutputs),nStates);
# 99 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h"
fxp_t mimo_observabilityMatrix_fxp[4][4];
fxp_matrix_multiplication(nStates,(nStates*nOutputs),(nStates*nOutputs),nStates,backup,observabilityMatrix,mimo_observabilityMatrix_fxp);
# 112 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h"
for(i=0; i<nStates;i++){
for(j=0; j<nStates;j++){
observabilityMatrix_double[i][j]= fxp_to_double(mimo_observabilityMatrix_fxp[i][j]);
}
}
# 119 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" 3 4
((void) sizeof ((
# 119 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h"
determinant(observabilityMatrix_double,nStates) != 0
# 119 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" 3 4
) ? 1 : 0), __extension__ ({ if (
# 119 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h"
determinant(observabilityMatrix_double,nStates) != 0
# 119 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" 3 4
) ; else __assert_fail (
# 119 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h"
"determinant(observabilityMatrix_double,nStates) != 0"
# 119 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" 3 4
, "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h", 119, __extension__ __PRETTY_FUNCTION__); }))
# 119 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h"
;
}else{
for(i=0; i<nStates;i++){
fxp_exp_matrix(nStates,nStates,A_fpx,i,backup);
fxp_matrix_multiplication(nOutputs,nStates,nStates,nStates,C_fpx,backup,backupSecond);
for(j = 0; j<nStates;j++){
observabilityMatrix[i][j]= backupSecond[0][j];
}
}
for(i=0; i<nStates;i++){
for(j=0; j<nStates;j++){
observabilityMatrix_double[i][j]= fxp_to_double(observabilityMatrix[i][j]);
}
}
# 134 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" 3 4
((void) sizeof ((
# 134 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h"
determinant(observabilityMatrix_double,nStates) != 0
# 134 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" 3 4
) ? 1 : 0), __extension__ ({ if (
# 134 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h"
determinant(observabilityMatrix_double,nStates) != 0
# 134 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" 3 4
) ; else __assert_fail (
# 134 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h"
"determinant(observabilityMatrix_double,nStates) != 0"
# 134 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" 3 4
, "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h", 134, __extension__ __PRETTY_FUNCTION__); }))
# 134 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h"
;
}
return 0;
}
# 47 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2
# 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_magnitude.h" 1
# 16 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_magnitude.h"
extern filter_parameters filter;
extern implementation impl;
extern digital_system ds;
# 28 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_magnitude.h"
void resp_mag(double* num, int lnum, double* den, int lden, double* res, int N) {
double w;
int m, i;
double out_numRe[N + 1];
double out_numIm[N + 1];
double out_denRe[N + 1];
double out_denIm[N + 1];
double old_out_Re;
double zero_test;
for (w = 0, i = 0; w <= 3.14159265358979323846; w += 3.14159265358979323846 / N, ++i) {
out_numRe[i] = num[0];
out_numIm[i] = 0;
for (m = 1; m < lnum; ++m) {
old_out_Re = out_numRe[i];
out_numRe[i] = cosTyl(w, 6) * out_numRe[i] - sinTyl(w, 6) * out_numIm[i] + num[m];
out_numIm[i] = sinTyl(w, 6) * old_out_Re + cosTyl(w, 6) * out_numIm[i];
}
out_denRe[i] = den[0];
out_denIm[i] = 0;
for (m = 1; m < lden; ++m) {
old_out_Re = out_denRe[i];
out_denRe[i] = cosTyl(w, 6) * out_denRe[i] - sinTyl(w, 6) * out_denIm[i] + den[m];
out_denIm[i] = sinTyl(w, 6) * old_out_Re + cosTyl(w, 6) * out_denIm[i];
}
res[i] = sqrt3(out_numRe[i] * out_numRe[i] + out_numIm[i] * out_numIm[i]);
zero_test = sqrt3(out_denRe[i] * out_denRe[i] + out_denIm[i] * out_denIm[i]);
__DSVERIFIER_assume(zero_test != 0);
res[i] = res[i] / zero_test;
}
}
int verify_magnitude(void) {
int freq_response_samples = 100;
double w;
double w_incr = 1.0 / freq_response_samples;
double res[freq_response_samples+1];
int i,j;
fxp_t a_fxp[ds.a_size];
fxp_double_to_fxp_array(ds.a, a_fxp, ds.a_size);
double _a[ds.a_size];
fxp_to_double_array(_a, a_fxp, ds.a_size);
fxp_t b_fxp[ds.b_size];
fxp_double_to_fxp_array(ds.b, b_fxp, ds.b_size);
double _b[ds.b_size];
fxp_to_double_array(_b, b_fxp, ds.b_size);
resp_mag(ds.b, ds.b_size, ds.a, ds.a_size, res, freq_response_samples);
if (filter.type == 1) {
for (i = 0, w = 0; (w <= 1.0); ++i, w += w_incr) {
if (w <= filter.wp) {
__DSVERIFIER_assert_msg(res[i] >= filter.Ap, "|----------------Passband Failure-------------|");
} else if (w == filter.wc) {
__DSVERIFIER_assert_msg(res[i] <= filter.Ac, "|-------------Cutoff Frequency Failure--------|");
} else if ((w >= filter.wr) && (w <= 1)) {
__DSVERIFIER_assert_msg(res[i] <= filter.Ar, "|----------------Stopband Failure-------------|");
}
}
} else if (filter.type == 2) {
for (i = 0, w = 0; (w <= 1.0); ++i, w += w_incr) {
if (w <= filter.wr) {
__DSVERIFIER_assert_msg(res[i] <= filter.Ar, "|----------------Stopband Failure-------------|");
} else if (w == filter.wc) {
__DSVERIFIER_assert_msg(res[i] <= filter.Ac, "|-------------Cutoff Frequency Failure--------|");
} else if ((w > filter.wp) && (w <= 1)) {
__DSVERIFIER_assert_msg(res[i] >= filter.Ap, "|----------------Passband Failure-------------|");
}
}
} else {
__DSVERIFIER_assert(0);
}
return 0;
}
# 48 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2
extern digital_system ds;
extern digital_system plant;
digital_system plant_cbmc;
extern digital_system controller;
extern implementation impl;
extern hardware hw;
extern digital_system_state_space _controller;
extern filter_parameters filter;
unsigned int nondet_uint();
extern void initials();
void validation();
void call_verification_task(void * verification_task);
void call_closedloop_verification_task(void * closedloop_verification_task);
float nondet_float();
double nondet_double();
int main(){
initialization();
validation();
if (1 == 0)
rounding_mode = 0;
else if (1 == 1)
rounding_mode = 1;
else if (1 == 2)
rounding_mode = 2;
if (7 == 3)
{
call_verification_task(&verify_overflow);
}
else if (7 == 2)
{
call_verification_task(&verify_limit_cycle);
}
else if (7 == 6)
{
call_verification_task(&verify_error);
}
else if (7 == 1)
{
call_verification_task(&verify_zero_input_limit_cycle);
}
else if (7 == 4)
{
call_verification_task(&verify_timing_msp_430);
}
else if (7 == 5)
{
call_verification_task(&verify_generic_timing);
}
else if (7 == 7)
{
call_verification_task(&verify_stability);
}
else if (7 == 8)
{
call_verification_task(&verify_minimum_phase);
}
else if (7 == 9)
{
call_closedloop_verification_task(&verify_stability_closedloop_using_dslib);
}
else if (7 == 10)
{
call_closedloop_verification_task(&verify_limit_cycle_closed_loop);
}
else if (7 == 11)
{
call_closedloop_verification_task(&verify_error_closedloop);
}
else if (7 == 12)
{
verify_error_state_space();
}
else if (7 == 16)
{
verify_safety_state_space();
}
else if (7 == 13)
{
verify_controllability();
}
else if (7 == 14)
{
verify_observability();
}
else if (7 == 15)
{
verify_limit_cycle_state_space();
}
else if (7 == 18)
{
call_verification_task(&verify_magnitude);
}
return 0;
}
void validation()
{
if (7 == 12 || 7 == 16 ||
7 == 15 || 7 == 13 ||
7 == 14)
{
if (0 == 0)
{
printf("\n\n********************************************************************************************\n");
printf("* set a K_SIZE to use this property in DSVerifier (use: -DK_SIZE=VALUE) *\n");
printf("********************************************************************************************\n");
__DSVERIFIER_assert(0);
exit(1);
}
initials();
return;
}
if (((7 != 9) && (7 != 10) &&
(7 != 11)) && (ds.a_size == 0 || ds.b_size == 0))
{
printf("\n\n****************************************************************************\n");
printf("* set (ds and impl) parameters to check with DSVerifier *\n");
printf("****************************************************************************\n");
__DSVERIFIER_assert(0);
}
if ((7 == 9) || (7 == 10) ||
(7 == 11))
{
if (controller.a_size == 0 || plant.b_size == 0 || impl.int_bits == 0 )
{
printf("\n\n*****************************************************************************************************\n");
printf("* set (controller, plant, and impl) parameters to check CLOSED LOOP with DSVerifier *\n");
printf("*****************************************************************************************************\n");
__DSVERIFIER_assert(0);
}
else
{
printf("\n\n*****************************************************************************************************\n");
printf("* set (controller and impl) parameters so that they do not overflow *\n");
printf("*****************************************************************************************************\n");
unsigned j;
for (j = 0; j < controller.a_size; ++j)
{
const double value=controller.a[j];
__DSVERIFIER_assert(value <= _dbl_max);
__DSVERIFIER_assert(value >= _dbl_min);
}
for (j = 0; j < controller.b_size; ++j)
{
const double value=controller.b[j];
__DSVERIFIER_assert(value <= _dbl_max);
__DSVERIFIER_assert(value >= _dbl_min);
}
}
if (controller.b_size > 0)
{
unsigned j, zeros=0;
for (j = 0; j < controller.b_size; ++j)
{
if (controller.b[j]==0)
++zeros;
}
if (zeros == controller.b_size)
{
printf("\n\n*****************************************************************************************************\n");
printf("* The controller numerator must not be zero *\n");
printf("*****************************************************************************************************\n");
__DSVERIFIER_assert(0);
}
}
if (controller.a_size > 0)
{
unsigned j, zeros=0;
for (j = 0; j < controller.a_size; ++j)
{
if (controller.a[j]==0)
++zeros;
}
if (zeros == controller.a_size)
{
printf("\n\n*****************************************************************************************************\n");
printf("* The controller denominator must not be zero *\n");
printf("*****************************************************************************************************\n");
__DSVERIFIER_assert(0);
}
}
if (0 == 0)
{
printf("\n\n***************************************************************************************************************\n");
printf("* set a connection mode to check CLOSED LOOP with DSVerifier (use: --connection-mode TYPE) *\n");
printf("***************************************************************************************************************\n");
__DSVERIFIER_assert(0);
}
}
if (7 == 0)
{
printf("\n\n***************************************************************************************\n");
printf("* set the property to check with DSVerifier (use: --property NAME) *\n");
printf("***************************************************************************************\n");
__DSVERIFIER_assert(0);
}
if ((7 == 3) || (7 == 2) || (7 == 1) ||
(7 == 10) || (7 == 11) ||
(7 == 4 || 7 == 5) || 7 == 6)
{
if ((5 == 0) && !(0 == 1))
{
printf("\n\n********************************************************************************************\n");
printf("* set a X_SIZE to use this property in DSVerifier (use: --x-size VALUE) *\n");
printf("********************************************************************************************\n");
__DSVERIFIER_assert(0);
}
else if (0 == 1)
{
X_SIZE_VALUE = nondet_uint();
__DSVERIFIER_assume( X_SIZE_VALUE > (2 * ds.a_size));
}
else if (5 < 0)
{
printf("\n\n********************************************************************************************\n");
printf("* set a X_SIZE > 0 *\n");
printf("********************************************************************************************\n");
__DSVERIFIER_assert(0);
}
else
{
X_SIZE_VALUE = 5;
}
}
if ((2 == 0) && (7 != 9) && (7 != 18))
{
printf("\n\n*********************************************************************************************\n");
printf("* set the realization to check with DSVerifier (use: --realization NAME) *\n");
printf("*********************************************************************************************\n");
__DSVERIFIER_assert(0);
}
if (7 == 6 || 7 == 11)
{
if (impl.max_error == 0)
{
printf("\n\n***********************************************************************\n");
printf("* provide the maximum expected error (use: impl.max_error) *\n");
printf("***********************************************************************\n");
__DSVERIFIER_assert(0);
}
}
if (7 == 4 || 7 == 5)
{
if (7 == 5 || 7 == 4)
{
if (hw.clock == 0l)
{
printf("\n\n***************************\n");
printf("* Clock could not be zero *\n");
printf("***************************\n");
__DSVERIFIER_assert(0);
}
hw.cycle = ((double) 1.0 / hw.clock);
if (hw.cycle < 0)
{
printf("\n\n*********************************************\n");
printf("* The cycle time could not be representable *\n");
printf("*********************************************\n");
__DSVERIFIER_assert(0);
}
if (ds.sample_time == 0)
{
printf("\n\n*****************************************************************************\n");
printf("* provide the sample time of the digital system (ds.sample_time) *\n");
printf("*****************************************************************************\n");
__DSVERIFIER_assert(0);
}
}
}
if (7 == 18)
{
if (!((filter.Ap > 0) && (filter.Ac >0) && (filter.Ar >0)))
{
printf("\n\n*****************************************************************************\n");
printf("* set values bigger than 0 for Ap, Ac and Ar* \n");
printf("*****************************************************************************\n");
__DSVERIFIER_assert(0);
}
}
if ((2 == 7) || (2 == 8) || (2 == 9) ||
(2 == 10) || (2 == 11) || (2 == 12))
{
printf("\n\n******************************************\n");
printf("* Temporarily the cascade modes are disabled *\n");
printf("**********************************************\n");
__DSVERIFIER_assert(0);
}
}
void call_verification_task(void * verification_task)
{
int i = 0;
_Bool base_case_executed = 0;
if (0 == 2)
{
for(i=0; i<ds.b_size; i++)
{
if (ds.b_uncertainty[i] > 0)
{
double factor = ds.b_uncertainty[i];
factor = factor < 0 ? factor * (-1) : factor;
double min = ds.b[i] - factor;
double max = ds.b[i] + factor;
if ((factor == 0) && (base_case_executed == 1))
{
continue;
}
else if ((factor == 0) && (base_case_executed == 0))
{
base_case_executed = 1;
}
ds.b[i] = nondet_double();
__DSVERIFIER_assume((ds.b[i] >= min) && (ds.b[i] <= max));
}
}
for(i=0; i<ds.a_size; i++)
{
if (ds.a_uncertainty[i] > 0)
{
double factor = ds.a_uncertainty[i];
factor = factor < 0 ? factor * (-1) : factor;
double min = ds.a[i] - factor;
double max = ds.a[i] + factor;
if ((factor == 0) && (base_case_executed == 1))
{
continue;
}
else if ((factor == 0) && (base_case_executed == 0))
{
base_case_executed = 1;
}
ds.a[i] = nondet_double();
__DSVERIFIER_assume((ds.a[i] >= min) && (ds.a[i] <= max));
}
}
}
else
{
int i=0;
for(i=0; i<ds.b_size; i++)
{
if (ds.b_uncertainty[i] > 0)
{
double factor = ((ds.b[i] * ds.b_uncertainty[i]) / 100);
factor = factor < 0 ? factor * (-1) : factor;
double min = ds.b[i] - factor;
double max = ds.b[i] + factor;
if ((factor == 0) && (base_case_executed == 1))
{
continue;
}
else if ((factor == 0) && (base_case_executed == 0))
{
base_case_executed = 1;
}
ds.b[i] = nondet_double();
__DSVERIFIER_assume((ds.b[i] >= min) && (ds.b[i] <= max));
}
}
for(i=0; i<ds.a_size; i++)
{
if (ds.a_uncertainty[i] > 0)
{
double factor = ((ds.a[i] * ds.a_uncertainty[i]) / 100);
factor = factor < 0 ? factor * (-1) : factor;
double min = ds.a[i] - factor;
double max = ds.a[i] + factor;
if ((factor == 0) && (base_case_executed == 1))
{
continue;
}
else if ((factor == 0) && (base_case_executed == 0))
{
base_case_executed = 1;
}
ds.a[i] = nondet_double();
__DSVERIFIER_assume((ds.a[i] >= min) && (ds.a[i] <= max));
}
}
}
((void(*)())verification_task)();
}
void call_closedloop_verification_task(void * closedloop_verification_task)
{
_Bool base_case_executed = 0;
int i=0;
for(i=0; i<plant.b_size; i++)
{
if (plant.b_uncertainty[i] > 0)
{
double factor = ((plant.b[i] * plant.b_uncertainty[i]) / 100);
factor = factor < 0 ? factor * (-1) : factor;
double min = plant.b[i] - factor;
double max = plant.b[i] + factor;
if ((factor == 0) && (base_case_executed == 1))
{
continue;
}
else if ((factor == 0) && (base_case_executed == 0))
{
base_case_executed = 1;
}
plant_cbmc.b[i] = nondet_double();
__DSVERIFIER_assume((plant_cbmc.b[i] >= min) && (plant_cbmc.b[i] <= max));
}else{
plant_cbmc.b[i] = plant.b[i];
}
}
for(i=0; i<plant.a_size; i++)
{
if (plant.a_uncertainty[i] > 0)
{
double factor = ((plant.a[i] * plant.a_uncertainty[i]) / 100);
factor = factor < 0 ? factor * (-1) : factor;
double min = plant.a[i] - factor;
double max = plant.a[i] + factor;
if ((factor == 0) && (base_case_executed == 1))
{
continue;
}
else if ((factor == 0) && (base_case_executed == 0))
{
base_case_executed = 1;
}
plant_cbmc.a[i] = nondet_double();
__DSVERIFIER_assume((plant_cbmc.a[i] >= min) && (plant_cbmc.a[i] <= max));
}
else
{
plant_cbmc.a[i] = plant.a[i];
}
}
((void(*)())closedloop_verification_task)();
}
# 2 "benchmarks/ds-07-impl3.c" 2
digital_system ds = {
.b = { 0.1, -0.09998 },
.b_size = 2,
.a = { 1.0, -1.0 },
.a_size = 2,
.sample_time = 0.02
};
implementation impl = {
.int_bits = 10,
.frac_bits = 6,
.max = 1.0,
.min = -1.0
};
|
the_stack_data/50137120.c | /*
Q2. Sort the given set of elements present in three stack data structures and put
them in a single stack, without using any other variable.
*/
#include<stdio.h>
#include<limits.h>
#define SIZE 50
void push(int *, int *, int);
int pop(int *, int *);
void display(int *, int);
void pushAscending(int *stack, int *top, int x)
{
if(*top==-1 || x>stack[*top])
{
push(stack, top, x);
return;
}
int tem=pop(stack, top);
pushAscending(stack, top, x);
push(stack, top, tem);
}
void sort3Stacks(int stack[][SIZE], int *top){
if(top[0]+top[1]+top[2]+3>SIZE) {
printf("Final Stack will overeflow!! Total no. of elements > Stack SIZE\n");
return;
}
for(int i=1; i<3; i++){
while(top[i]!=-1){
push(stack[0], &top[0], pop(stack[i], &top[i]));
}
}
if(top[0]!=-1){
int tem = pop(stack[0], &top[0]);
sort3Stacks(stack, top);
pushAscending(stack[0], &top[0], tem);
}
}
int main(){
int stack[3][SIZE], top[3]={-1, -1, -1};
for(int i=0; i<3; i++){
char yn = 'y';
while(yn=='y'){
printf("Push Element in Stack %d:\n",i+1);
printf("Enter Element: ");
int elem; scanf(" %d", &elem);
push(stack[i], &top[i], elem);
display(stack[i],top[i]);
printf("Do you want to add more? (y/n)\n");
scanf(" %c", &yn);
}
}
sort3Stacks(stack, top);
printf("Sorted elements in one stack: \n");
display(stack[0], top[0]);
return 0;
}
void push(int *stack, int *top, int elem){
if(*top==SIZE){
printf("Stack Overflow!!");
return;
}
stack[++*top]=elem;
}
int pop(int *stack, int *top){
if(*top==-1){
printf("Stack Underflow!!");
return INT_MIN;
}
return stack[(*top)--];
}
void display(int *stack, int top){
while(top!=-1){
printf("| %d |\n", stack[top--]);
}
} |
the_stack_data/107952731.c | #include <stdio.h>
#include <stdlib.h>
struct matrix create_matrix(int *data, int n_rows, int n_cols);
void print_matrix(struct matrix matrix1);
struct matrix zeros_matrix(int n_rows, int n_cols);
struct matrix random_matrix (int n_rows, int n_cols, int b, int e);
struct matrix i_matrix(int n);
int get_element(struct matrix a_matrix, int ri, int ci);
void put_element(struct matrix a_matrix, int ri, int ci, int elem);
//struct matrix transpose(struct matrix a_matrix);
struct matrix reshape(struct matrix a_matrix, int new_n_rows, int new_n_cols);
struct matrix flatten(struct matrix a_matrix);
int sum(struct matrix a_matrix);
float mean(struct matrix a_matrix);
int min(struct matrix a_matrix);
int max(struct matrix a_matrix);
struct matrix add(struct matrix a_matrix, struct matrix b_matrix);
struct matrix sub(struct matrix a_matrix, struct matrix b_matrix);
struct matrix division(struct matrix a_matrix, struct matrix b_matrix);
struct matrix mul(struct matrix a_matrix, struct matrix b_matrix);
struct matrix{
int *data ;
int n_rows;
int n_cols;
int stride_rows;
int stride_cols;
int offset;
};
int main (void){
struct matrix matrix1, matrix_zero, matrix_random, matrix_identity, matrix_add, matrix_sub, matrix_div, matrix_mul;
int array[6] = {1,2,3,4,5,6};
matrix1 = create_matrix(array, 3, 2);
matrix_zero = zeros_matrix(5,5);
matrix_random = random_matrix(3,2,0,10);
matrix_identity = i_matrix(5);
matrix_add = add(matrix1, matrix1);
matrix_sub = sub(matrix1,matrix1);
matrix_div = division(matrix1,matrix1);
matrix_mul = mul(matrix1,matrix1);
printf("\n...Matriz Inicial...");
print_matrix(matrix1);
printf("\n...Matriz Zeros...");
print_matrix(matrix_zero);
printf("\n...Matriz Aleatória...");
print_matrix(matrix_random);
printf("\n...Matriz Identidade...");
print_matrix(matrix_identity);
printf("\n...Elemento Escolhido...");
printf("\n%d\n", get_element(matrix1, 1, 0));
printf("\n...Mudando Elemento...");
put_element(matrix1, 0, 0, 0);
printf("\n...Mudando Dimensões...");
matrix1 = reshape(matrix1, 2, 3);
print_matrix(matrix1);
// matrix1 = transpose(matrix1);
//printf("\n...Matriz Transposta...\n");
//print_matrix(matrix1);
//print_matrix(matrix1);
printf("\n...Matriz em 1 linha...");
matrix1 = flatten(matrix1);
print_matrix(matrix1);
printf("\n...Soma da matriz...");
printf("\n%d\n", sum(matrix1));
printf("\n...Média da matriz...");
printf("\n%f\n", mean(matrix1));
printf("\n...Menor elemento da matriz...");
printf("\n%d\n", min(matrix1));
printf("\n...Maior elemento da matriz...");
printf("\n%d\n", max(matrix1));
printf("\n...Soma de matrizes...");
print_matrix(matrix_add);
printf("\n...Subtração de matrizes...");
print_matrix(matrix_sub);
printf("\n...Divisão de matrizes...");
print_matrix(matrix_div);
printf("\n...Multiplicação de matrizes...");
print_matrix(matrix_mul);
return 0;
}
/********************************
*Função para printar as matrizes.
*********************************/
void print_matrix(struct matrix a_matrix){
int cont = 0;
int total = a_matrix.n_rows * a_matrix.n_cols;
for (int i=0; i<total; i++){
if ((cont % a_matrix.stride_rows) == 0){
printf("\n");}
printf("%d ", a_matrix.data[i]);
cont++;
}
printf("\n");
}
/****************************************
*Função para criar uma variável da struct.
*****************************************/
struct matrix create_matrix(int *data, int n_rows, int n_cols){
struct matrix a; //Criando um struct
a.data = data;
a.n_rows = n_rows;
a.n_cols = n_cols;
a.stride_rows = n_cols;
a.stride_cols = 1;
a.offset = 0;
return a;
}
/**************************************
*Função para criar uma matriz de zeros.
***************************************/
struct matrix zeros_matrix(int n_rows, int n_cols){
int total = n_rows * n_cols;
int *zero_array;
zero_array = malloc(total * sizeof(int)); //Alocando espaço dinamicamente
for (int i=0;i<total;i++){
zero_array[i] = 0;
}
struct matrix b = create_matrix(zero_array, n_rows, n_cols); //Chamando novamente a função create para não repetir código.
return b;
}
/**************************************************
*Função pra gerar uma matriz com valores aleatórios.
***************************************************/
struct matrix random_matrix (int n_rows, int n_cols, int b, int e){
int total = n_rows * n_cols;
int *random_array;
random_array = malloc(total * sizeof(int));
for (int i=0;i<total;i++){
random_array[i] = b + rand() % e;
}
struct matrix c = create_matrix(random_array, n_rows, n_cols);
return c;
}
/***************************************
*Função para criar uma matriz identidade
****************************************/
struct matrix i_matrix(int n){
int div = n+1; //A posiução do 1 sempre pula o número de colunas + 1.
int total = n*n;
int *identity_array;
identity_array = malloc(total * sizeof(int));
for (int i=0; i<total; i++){
if((i % div) == 0){
identity_array[i] = 1;}
else{
identity_array[i] = 0;}
}
struct matrix d = create_matrix(identity_array, n, n);
return d;
}
/****************************************
*Função para pegar um elemento escolhido.
*****************************************/
int get_element(struct matrix a_matrix, int ri, int ci){
int total = a_matrix.n_rows * a_matrix.n_cols;
int inicio = a_matrix.stride_rows * ri; //Definindo a posição do elemento inicial.
for (int i=inicio; i<total; i++){
if (i == (inicio + ci)){
return a_matrix.data[i];
}
}
}
/*************************************************************
*Função para colocar um elemento na matriz na posição desejada
**************************************************************/
void put_element(struct matrix a_matrix, int ri, int ci, int elem){
int total = a_matrix.n_rows * a_matrix.n_cols;
int inicio = a_matrix.stride_rows * ri;
for (int i=inicio; i<total; i++){
if (i == (inicio + ci)){
a_matrix.data[i] = elem;
}
}
print_matrix(a_matrix);
}
/*
struct matrix transpose(struct matrix a_matrix){
int aux;
// printf("Cols:%d, Rows:%d, Stride_rows:%d",a_matrix.n_cols, a_matrix.n_rows, a_matrix.stride_rows);
aux = a_matrix.n_cols;
a_matrix.n_cols = a_matrix.n_rows;
a_matrix.n_rows = aux;
a_matrix.stride_rows = a_matrix.n_cols;
//printf("\n\nCols:%d, Rows:%d, Stride_rows:%d",a_matrix.n_cols, a_matrix.n_rows, a_matrix.stride_rows);
return a_matrix;
}
*/
/****************************************
*Função para mudar as dimensões da matriz.
*****************************************/
struct matrix reshape(struct matrix a_matrix, int new_n_rows, int new_n_cols){
int quant_elementos = a_matrix.n_rows * a_matrix.n_cols;
int new_shape = new_n_rows * new_n_cols;
if (quant_elementos == new_shape){
a_matrix.n_cols = new_n_cols;
a_matrix.n_rows = new_n_rows;
a_matrix.stride_rows = new_n_cols;
}
return a_matrix;
}
/***********************************************
*Função para deixar a matriz com apenas 1 linha.
************************************************/
struct matrix flatten(struct matrix a_matrix){
int quant_elementos = a_matrix.n_rows * a_matrix.n_cols;
a_matrix.n_rows = 1;
a_matrix.n_cols = quant_elementos;
a_matrix.stride_rows = quant_elementos;
return a_matrix;
}
/***********************************************
*Função para somar todos os elementos da matriz.
************************************************/
int sum(struct matrix a_matrix){
int sum = 0;
int total = a_matrix.n_rows * a_matrix.n_cols;
for (int i=0; i<total; i++){
sum += a_matrix.data[i];}
return sum;
}
float mean(struct matrix a_matrix){
int soma = sum(a_matrix);
int total = a_matrix.n_rows * a_matrix.n_cols;
float media = soma/total;
return media;
}
/***********************************************
*Função para retornar o menor elemento da matriz.
************************************************/
int min(struct matrix a_matrix){
int total = a_matrix.n_rows * a_matrix.n_cols;
int min = a_matrix.data[0];
for (int i=0; i<total; i++){
if (a_matrix.data[i] < min){
min = a_matrix.data[i];
}
}
return min;
}
/***********************************************
*Função para retornar o maior elemento da matriz.
************************************************/
int max(struct matrix a_matrix){
int total = a_matrix.n_rows * a_matrix.n_cols;
int max = 0;
for (int i=0; i<total; i++){
if (a_matrix.data[i] > max){
max = a_matrix.data[i];
}
}
return max;
}
/*****************************************
*Função para somar elementos de 2 matrizes.
******************************************/
struct matrix add(struct matrix a_matrix, struct matrix b_matrix){
int total = a_matrix.n_rows * a_matrix.n_cols;
int *new_array;
new_array = malloc(total * sizeof(int));
for (int i=0; i<total; i++){
new_array[i] = a_matrix.data[i] + b_matrix.data[i];
}
struct matrix e = create_matrix(new_array, a_matrix.n_rows, a_matrix.n_cols);
return e;
}
/*********************************************
*Função para subtrair elementos de 2 matrizes.
**********************************************/
struct matrix sub(struct matrix a_matrix, struct matrix b_matrix){
int total = a_matrix.n_rows * a_matrix.n_cols;
int *new_array;
new_array = malloc(total * sizeof(int));
for (int i=0; i<total; i++){
new_array[i] = a_matrix.data[i] - b_matrix.data[i];
}
struct matrix f = create_matrix(new_array, a_matrix.n_rows, a_matrix.n_cols);
return f;
}
/********************************************
*Função para dividir elementos de 2 matrizes.
*********************************************/
struct matrix division(struct matrix a_matrix, struct matrix b_matrix){
int total = a_matrix.n_rows * a_matrix.n_cols;
int *new_array;
new_array = malloc(total * sizeof(int));
for (int i=0; i<total; i++){
new_array[i] = a_matrix.data[i] / b_matrix.data[i];
}
struct matrix g = create_matrix(new_array, a_matrix.n_rows, a_matrix.n_cols);
return g;
}
/********************************************
*Função para multiplicar elementos de 2 matrizes.
*********************************************/
struct matrix mul(struct matrix a_matrix, struct matrix b_matrix){
int total = a_matrix.n_rows * a_matrix.n_cols;
int *new_array;
new_array = malloc(total * sizeof(int));
for (int i=0; i<total; i++){
new_array[i] = a_matrix.data[i] * b_matrix.data[i];
}
struct matrix h = create_matrix(new_array, a_matrix.n_rows, a_matrix.n_cols);
return h;
}
|
the_stack_data/162643933.c | int safe (int);
static unsigned foo (unsigned ui1, unsigned ui2)
{
return ui1 + ui2;
}
int g_22;
int *volatile g_23 = &g_22;
int **g_282[8][10][1];
int *g_330 = &g_22;
volatile unsigned g_348;
int g_397;
void int32func (const unsigned char p_10)
{
if (foo
(~
(p_10 |
(*g_282[(unsigned long) g_397 % 8][(unsigned) g_22 % 10][g_348 % 1]) ==
(*g_282[(unsigned long) g_397 % 8][(unsigned) g_22 % 10][g_348 % 1])),
1))
{
}
else if (*g_330 >=
safe (*g_23 ^
(**g_282[(unsigned long) g_397 % 8][(unsigned) g_22 % 10]
[g_348 % 1])) & **g_282[8][10][1], 1)
{
}
}
|
the_stack_data/125933.c | #include <stdio.h>
int main () {
const double pi = 3.14159;
double r;
scanf ("%lf", &r);
printf ("%.2lf\n", 2*pi*r);
printf ("%.2lf\n", pi*r*r);
return 0;
} |
the_stack_data/950050.c | // RUN: %ucc -fsyntax-only %s
int f(int x, int y[*]);
void g(int (*y)[*]);
int f(int x, int y[x])
{
int buf[x];
g(buf);
return buf[2];
}
|
the_stack_data/44548.c | extern float __VERIFIER_nondet_float(void);
extern int __VERIFIER_nondet_int(void);
typedef enum {false, true} bool;
bool __VERIFIER_nondet_bool(void) {
return __VERIFIER_nondet_int() != 0;
}
int main()
{
bool _J3862, _x__J3862;
float x_1, _x_x_1;
bool _J3857, _x__J3857;
float x_23, _x_x_23;
bool _EL_U_3830, _x__EL_U_3830;
float x_26, _x_x_26;
float x_24, _x_x_24;
float x_15, _x_x_15;
float x_18, _x_x_18;
bool _EL_X_3828, _x__EL_X_3828;
bool _EL_U_3834, _x__EL_U_3834;
float x_34, _x_x_34;
float x_0, _x_x_0;
float x_4, _x_x_4;
float x_3, _x_x_3;
float x_13, _x_x_13;
float x_2, _x_x_2;
float x_5, _x_x_5;
float x_21, _x_x_21;
float x_6, _x_x_6;
float x_8, _x_x_8;
float x_7, _x_x_7;
float x_9, _x_x_9;
float x_10, _x_x_10;
float x_14, _x_x_14;
float x_11, _x_x_11;
float x_35, _x_x_35;
float x_16, _x_x_16;
float x_17, _x_x_17;
float x_22, _x_x_22;
float x_19, _x_x_19;
float x_20, _x_x_20;
float x_27, _x_x_27;
float x_25, _x_x_25;
float x_28, _x_x_28;
float x_29, _x_x_29;
float x_30, _x_x_30;
float x_31, _x_x_31;
float x_32, _x_x_32;
float x_33, _x_x_33;
float x_12, _x_x_12;
int __steps_to_fair = __VERIFIER_nondet_int();
_J3862 = __VERIFIER_nondet_bool();
x_1 = __VERIFIER_nondet_float();
_J3857 = __VERIFIER_nondet_bool();
x_23 = __VERIFIER_nondet_float();
_EL_U_3830 = __VERIFIER_nondet_bool();
x_26 = __VERIFIER_nondet_float();
x_24 = __VERIFIER_nondet_float();
x_15 = __VERIFIER_nondet_float();
x_18 = __VERIFIER_nondet_float();
_EL_X_3828 = __VERIFIER_nondet_bool();
_EL_U_3834 = __VERIFIER_nondet_bool();
x_34 = __VERIFIER_nondet_float();
x_0 = __VERIFIER_nondet_float();
x_4 = __VERIFIER_nondet_float();
x_3 = __VERIFIER_nondet_float();
x_13 = __VERIFIER_nondet_float();
x_2 = __VERIFIER_nondet_float();
x_5 = __VERIFIER_nondet_float();
x_21 = __VERIFIER_nondet_float();
x_6 = __VERIFIER_nondet_float();
x_8 = __VERIFIER_nondet_float();
x_7 = __VERIFIER_nondet_float();
x_9 = __VERIFIER_nondet_float();
x_10 = __VERIFIER_nondet_float();
x_14 = __VERIFIER_nondet_float();
x_11 = __VERIFIER_nondet_float();
x_35 = __VERIFIER_nondet_float();
x_16 = __VERIFIER_nondet_float();
x_17 = __VERIFIER_nondet_float();
x_22 = __VERIFIER_nondet_float();
x_19 = __VERIFIER_nondet_float();
x_20 = __VERIFIER_nondet_float();
x_27 = __VERIFIER_nondet_float();
x_25 = __VERIFIER_nondet_float();
x_28 = __VERIFIER_nondet_float();
x_29 = __VERIFIER_nondet_float();
x_30 = __VERIFIER_nondet_float();
x_31 = __VERIFIER_nondet_float();
x_32 = __VERIFIER_nondet_float();
x_33 = __VERIFIER_nondet_float();
x_12 = __VERIFIER_nondet_float();
bool __ok = (1 && (((_EL_U_3834 || (( !_EL_X_3828) || ((18.0 <= (x_18 + (-1.0 * x_26))) && _EL_U_3830))) && ( !_J3857)) && ( !_J3862)));
while (__steps_to_fair >= 0 && __ok) {
if ((_J3857 && _J3862)) {
__steps_to_fair = __VERIFIER_nondet_int();
} else {
__steps_to_fair--;
}
_x__J3862 = __VERIFIER_nondet_bool();
_x_x_1 = __VERIFIER_nondet_float();
_x__J3857 = __VERIFIER_nondet_bool();
_x_x_23 = __VERIFIER_nondet_float();
_x__EL_U_3830 = __VERIFIER_nondet_bool();
_x_x_26 = __VERIFIER_nondet_float();
_x_x_24 = __VERIFIER_nondet_float();
_x_x_15 = __VERIFIER_nondet_float();
_x_x_18 = __VERIFIER_nondet_float();
_x__EL_X_3828 = __VERIFIER_nondet_bool();
_x__EL_U_3834 = __VERIFIER_nondet_bool();
_x_x_34 = __VERIFIER_nondet_float();
_x_x_0 = __VERIFIER_nondet_float();
_x_x_4 = __VERIFIER_nondet_float();
_x_x_3 = __VERIFIER_nondet_float();
_x_x_13 = __VERIFIER_nondet_float();
_x_x_2 = __VERIFIER_nondet_float();
_x_x_5 = __VERIFIER_nondet_float();
_x_x_21 = __VERIFIER_nondet_float();
_x_x_6 = __VERIFIER_nondet_float();
_x_x_8 = __VERIFIER_nondet_float();
_x_x_7 = __VERIFIER_nondet_float();
_x_x_9 = __VERIFIER_nondet_float();
_x_x_10 = __VERIFIER_nondet_float();
_x_x_14 = __VERIFIER_nondet_float();
_x_x_11 = __VERIFIER_nondet_float();
_x_x_35 = __VERIFIER_nondet_float();
_x_x_16 = __VERIFIER_nondet_float();
_x_x_17 = __VERIFIER_nondet_float();
_x_x_22 = __VERIFIER_nondet_float();
_x_x_19 = __VERIFIER_nondet_float();
_x_x_20 = __VERIFIER_nondet_float();
_x_x_27 = __VERIFIER_nondet_float();
_x_x_25 = __VERIFIER_nondet_float();
_x_x_28 = __VERIFIER_nondet_float();
_x_x_29 = __VERIFIER_nondet_float();
_x_x_30 = __VERIFIER_nondet_float();
_x_x_31 = __VERIFIER_nondet_float();
_x_x_32 = __VERIFIER_nondet_float();
_x_x_33 = __VERIFIER_nondet_float();
_x_x_12 = __VERIFIER_nondet_float();
__ok = ((((((((((((((((((((((((((((((((((((((((x_34 + (-1.0 * _x_x_0)) <= -9.0) && (((x_33 + (-1.0 * _x_x_0)) <= -17.0) && (((x_32 + (-1.0 * _x_x_0)) <= -18.0) && (((x_24 + (-1.0 * _x_x_0)) <= -11.0) && (((x_22 + (-1.0 * _x_x_0)) <= -17.0) && (((x_21 + (-1.0 * _x_x_0)) <= -4.0) && (((x_20 + (-1.0 * _x_x_0)) <= -20.0) && (((x_19 + (-1.0 * _x_x_0)) <= -10.0) && (((x_17 + (-1.0 * _x_x_0)) <= -18.0) && (((x_12 + (-1.0 * _x_x_0)) <= -16.0) && (((x_11 + (-1.0 * _x_x_0)) <= -8.0) && (((x_10 + (-1.0 * _x_x_0)) <= -8.0) && (((x_8 + (-1.0 * _x_x_0)) <= -13.0) && (((x_6 + (-1.0 * _x_x_0)) <= -9.0) && (((x_3 + (-1.0 * _x_x_0)) <= -5.0) && (((x_2 + (-1.0 * _x_x_0)) <= -13.0) && (((x_0 + (-1.0 * _x_x_0)) <= -5.0) && ((x_1 + (-1.0 * _x_x_0)) <= -11.0)))))))))))))))))) && (((x_34 + (-1.0 * _x_x_0)) == -9.0) || (((x_33 + (-1.0 * _x_x_0)) == -17.0) || (((x_32 + (-1.0 * _x_x_0)) == -18.0) || (((x_24 + (-1.0 * _x_x_0)) == -11.0) || (((x_22 + (-1.0 * _x_x_0)) == -17.0) || (((x_21 + (-1.0 * _x_x_0)) == -4.0) || (((x_20 + (-1.0 * _x_x_0)) == -20.0) || (((x_19 + (-1.0 * _x_x_0)) == -10.0) || (((x_17 + (-1.0 * _x_x_0)) == -18.0) || (((x_12 + (-1.0 * _x_x_0)) == -16.0) || (((x_11 + (-1.0 * _x_x_0)) == -8.0) || (((x_10 + (-1.0 * _x_x_0)) == -8.0) || (((x_8 + (-1.0 * _x_x_0)) == -13.0) || (((x_6 + (-1.0 * _x_x_0)) == -9.0) || (((x_3 + (-1.0 * _x_x_0)) == -5.0) || (((x_2 + (-1.0 * _x_x_0)) == -13.0) || (((x_0 + (-1.0 * _x_x_0)) == -5.0) || ((x_1 + (-1.0 * _x_x_0)) == -11.0))))))))))))))))))) && ((((x_35 + (-1.0 * _x_x_1)) <= -7.0) && (((x_33 + (-1.0 * _x_x_1)) <= -9.0) && (((x_31 + (-1.0 * _x_x_1)) <= -11.0) && (((x_30 + (-1.0 * _x_x_1)) <= -12.0) && (((x_29 + (-1.0 * _x_x_1)) <= -4.0) && (((x_28 + (-1.0 * _x_x_1)) <= -8.0) && (((x_27 + (-1.0 * _x_x_1)) <= -13.0) && (((x_25 + (-1.0 * _x_x_1)) <= -2.0) && (((x_24 + (-1.0 * _x_x_1)) <= -1.0) && (((x_20 + (-1.0 * _x_x_1)) <= -13.0) && (((x_16 + (-1.0 * _x_x_1)) <= -14.0) && (((x_14 + (-1.0 * _x_x_1)) <= -15.0) && (((x_12 + (-1.0 * _x_x_1)) <= -17.0) && (((x_9 + (-1.0 * _x_x_1)) <= -19.0) && (((x_7 + (-1.0 * _x_x_1)) <= -15.0) && (((x_6 + (-1.0 * _x_x_1)) <= -15.0) && (((x_3 + (-1.0 * _x_x_1)) <= -11.0) && ((x_5 + (-1.0 * _x_x_1)) <= -1.0)))))))))))))))))) && (((x_35 + (-1.0 * _x_x_1)) == -7.0) || (((x_33 + (-1.0 * _x_x_1)) == -9.0) || (((x_31 + (-1.0 * _x_x_1)) == -11.0) || (((x_30 + (-1.0 * _x_x_1)) == -12.0) || (((x_29 + (-1.0 * _x_x_1)) == -4.0) || (((x_28 + (-1.0 * _x_x_1)) == -8.0) || (((x_27 + (-1.0 * _x_x_1)) == -13.0) || (((x_25 + (-1.0 * _x_x_1)) == -2.0) || (((x_24 + (-1.0 * _x_x_1)) == -1.0) || (((x_20 + (-1.0 * _x_x_1)) == -13.0) || (((x_16 + (-1.0 * _x_x_1)) == -14.0) || (((x_14 + (-1.0 * _x_x_1)) == -15.0) || (((x_12 + (-1.0 * _x_x_1)) == -17.0) || (((x_9 + (-1.0 * _x_x_1)) == -19.0) || (((x_7 + (-1.0 * _x_x_1)) == -15.0) || (((x_6 + (-1.0 * _x_x_1)) == -15.0) || (((x_3 + (-1.0 * _x_x_1)) == -11.0) || ((x_5 + (-1.0 * _x_x_1)) == -1.0)))))))))))))))))))) && ((((x_35 + (-1.0 * _x_x_2)) <= -19.0) && (((x_34 + (-1.0 * _x_x_2)) <= -13.0) && (((x_33 + (-1.0 * _x_x_2)) <= -7.0) && (((x_32 + (-1.0 * _x_x_2)) <= -9.0) && (((x_30 + (-1.0 * _x_x_2)) <= -20.0) && (((x_29 + (-1.0 * _x_x_2)) <= -15.0) && (((x_28 + (-1.0 * _x_x_2)) <= -5.0) && (((x_27 + (-1.0 * _x_x_2)) <= -18.0) && (((x_25 + (-1.0 * _x_x_2)) <= -17.0) && (((x_17 + (-1.0 * _x_x_2)) <= -9.0) && (((x_15 + (-1.0 * _x_x_2)) <= -13.0) && (((x_14 + (-1.0 * _x_x_2)) <= -3.0) && (((x_13 + (-1.0 * _x_x_2)) <= -14.0) && (((x_8 + (-1.0 * _x_x_2)) <= -4.0) && (((x_7 + (-1.0 * _x_x_2)) <= -16.0) && (((x_5 + (-1.0 * _x_x_2)) <= -5.0) && (((x_1 + (-1.0 * _x_x_2)) <= -6.0) && ((x_3 + (-1.0 * _x_x_2)) <= -20.0)))))))))))))))))) && (((x_35 + (-1.0 * _x_x_2)) == -19.0) || (((x_34 + (-1.0 * _x_x_2)) == -13.0) || (((x_33 + (-1.0 * _x_x_2)) == -7.0) || (((x_32 + (-1.0 * _x_x_2)) == -9.0) || (((x_30 + (-1.0 * _x_x_2)) == -20.0) || (((x_29 + (-1.0 * _x_x_2)) == -15.0) || (((x_28 + (-1.0 * _x_x_2)) == -5.0) || (((x_27 + (-1.0 * _x_x_2)) == -18.0) || (((x_25 + (-1.0 * _x_x_2)) == -17.0) || (((x_17 + (-1.0 * _x_x_2)) == -9.0) || (((x_15 + (-1.0 * _x_x_2)) == -13.0) || (((x_14 + (-1.0 * _x_x_2)) == -3.0) || (((x_13 + (-1.0 * _x_x_2)) == -14.0) || (((x_8 + (-1.0 * _x_x_2)) == -4.0) || (((x_7 + (-1.0 * _x_x_2)) == -16.0) || (((x_5 + (-1.0 * _x_x_2)) == -5.0) || (((x_1 + (-1.0 * _x_x_2)) == -6.0) || ((x_3 + (-1.0 * _x_x_2)) == -20.0)))))))))))))))))))) && ((((x_34 + (-1.0 * _x_x_3)) <= -5.0) && (((x_31 + (-1.0 * _x_x_3)) <= -8.0) && (((x_30 + (-1.0 * _x_x_3)) <= -14.0) && (((x_29 + (-1.0 * _x_x_3)) <= -11.0) && (((x_28 + (-1.0 * _x_x_3)) <= -10.0) && (((x_27 + (-1.0 * _x_x_3)) <= -5.0) && (((x_26 + (-1.0 * _x_x_3)) <= -7.0) && (((x_22 + (-1.0 * _x_x_3)) <= -2.0) && (((x_21 + (-1.0 * _x_x_3)) <= -7.0) && (((x_19 + (-1.0 * _x_x_3)) <= -5.0) && (((x_18 + (-1.0 * _x_x_3)) <= -1.0) && (((x_17 + (-1.0 * _x_x_3)) <= -15.0) && (((x_16 + (-1.0 * _x_x_3)) <= -4.0) && (((x_13 + (-1.0 * _x_x_3)) <= -10.0) && (((x_11 + (-1.0 * _x_x_3)) <= -5.0) && (((x_9 + (-1.0 * _x_x_3)) <= -17.0) && (((x_3 + (-1.0 * _x_x_3)) <= -18.0) && ((x_7 + (-1.0 * _x_x_3)) <= -11.0)))))))))))))))))) && (((x_34 + (-1.0 * _x_x_3)) == -5.0) || (((x_31 + (-1.0 * _x_x_3)) == -8.0) || (((x_30 + (-1.0 * _x_x_3)) == -14.0) || (((x_29 + (-1.0 * _x_x_3)) == -11.0) || (((x_28 + (-1.0 * _x_x_3)) == -10.0) || (((x_27 + (-1.0 * _x_x_3)) == -5.0) || (((x_26 + (-1.0 * _x_x_3)) == -7.0) || (((x_22 + (-1.0 * _x_x_3)) == -2.0) || (((x_21 + (-1.0 * _x_x_3)) == -7.0) || (((x_19 + (-1.0 * _x_x_3)) == -5.0) || (((x_18 + (-1.0 * _x_x_3)) == -1.0) || (((x_17 + (-1.0 * _x_x_3)) == -15.0) || (((x_16 + (-1.0 * _x_x_3)) == -4.0) || (((x_13 + (-1.0 * _x_x_3)) == -10.0) || (((x_11 + (-1.0 * _x_x_3)) == -5.0) || (((x_9 + (-1.0 * _x_x_3)) == -17.0) || (((x_3 + (-1.0 * _x_x_3)) == -18.0) || ((x_7 + (-1.0 * _x_x_3)) == -11.0)))))))))))))))))))) && ((((x_35 + (-1.0 * _x_x_4)) <= -1.0) && (((x_32 + (-1.0 * _x_x_4)) <= -19.0) && (((x_29 + (-1.0 * _x_x_4)) <= -13.0) && (((x_27 + (-1.0 * _x_x_4)) <= -13.0) && (((x_26 + (-1.0 * _x_x_4)) <= -17.0) && (((x_23 + (-1.0 * _x_x_4)) <= -19.0) && (((x_19 + (-1.0 * _x_x_4)) <= -18.0) && (((x_17 + (-1.0 * _x_x_4)) <= -16.0) && (((x_16 + (-1.0 * _x_x_4)) <= -14.0) && (((x_15 + (-1.0 * _x_x_4)) <= -3.0) && (((x_14 + (-1.0 * _x_x_4)) <= -1.0) && (((x_12 + (-1.0 * _x_x_4)) <= -16.0) && (((x_11 + (-1.0 * _x_x_4)) <= -16.0) && (((x_10 + (-1.0 * _x_x_4)) <= -7.0) && (((x_7 + (-1.0 * _x_x_4)) <= -5.0) && (((x_3 + (-1.0 * _x_x_4)) <= -18.0) && (((x_0 + (-1.0 * _x_x_4)) <= -5.0) && ((x_2 + (-1.0 * _x_x_4)) <= -7.0)))))))))))))))))) && (((x_35 + (-1.0 * _x_x_4)) == -1.0) || (((x_32 + (-1.0 * _x_x_4)) == -19.0) || (((x_29 + (-1.0 * _x_x_4)) == -13.0) || (((x_27 + (-1.0 * _x_x_4)) == -13.0) || (((x_26 + (-1.0 * _x_x_4)) == -17.0) || (((x_23 + (-1.0 * _x_x_4)) == -19.0) || (((x_19 + (-1.0 * _x_x_4)) == -18.0) || (((x_17 + (-1.0 * _x_x_4)) == -16.0) || (((x_16 + (-1.0 * _x_x_4)) == -14.0) || (((x_15 + (-1.0 * _x_x_4)) == -3.0) || (((x_14 + (-1.0 * _x_x_4)) == -1.0) || (((x_12 + (-1.0 * _x_x_4)) == -16.0) || (((x_11 + (-1.0 * _x_x_4)) == -16.0) || (((x_10 + (-1.0 * _x_x_4)) == -7.0) || (((x_7 + (-1.0 * _x_x_4)) == -5.0) || (((x_3 + (-1.0 * _x_x_4)) == -18.0) || (((x_0 + (-1.0 * _x_x_4)) == -5.0) || ((x_2 + (-1.0 * _x_x_4)) == -7.0)))))))))))))))))))) && ((((x_30 + (-1.0 * _x_x_5)) <= -10.0) && (((x_29 + (-1.0 * _x_x_5)) <= -10.0) && (((x_28 + (-1.0 * _x_x_5)) <= -19.0) && (((x_25 + (-1.0 * _x_x_5)) <= -8.0) && (((x_24 + (-1.0 * _x_x_5)) <= -20.0) && (((x_21 + (-1.0 * _x_x_5)) <= -19.0) && (((x_18 + (-1.0 * _x_x_5)) <= -20.0) && (((x_17 + (-1.0 * _x_x_5)) <= -10.0) && (((x_16 + (-1.0 * _x_x_5)) <= -12.0) && (((x_15 + (-1.0 * _x_x_5)) <= -18.0) && (((x_14 + (-1.0 * _x_x_5)) <= -7.0) && (((x_13 + (-1.0 * _x_x_5)) <= -13.0) && (((x_11 + (-1.0 * _x_x_5)) <= -20.0) && (((x_10 + (-1.0 * _x_x_5)) <= -3.0) && (((x_9 + (-1.0 * _x_x_5)) <= -5.0) && (((x_4 + (-1.0 * _x_x_5)) <= -8.0) && (((x_0 + (-1.0 * _x_x_5)) <= -5.0) && ((x_3 + (-1.0 * _x_x_5)) <= -8.0)))))))))))))))))) && (((x_30 + (-1.0 * _x_x_5)) == -10.0) || (((x_29 + (-1.0 * _x_x_5)) == -10.0) || (((x_28 + (-1.0 * _x_x_5)) == -19.0) || (((x_25 + (-1.0 * _x_x_5)) == -8.0) || (((x_24 + (-1.0 * _x_x_5)) == -20.0) || (((x_21 + (-1.0 * _x_x_5)) == -19.0) || (((x_18 + (-1.0 * _x_x_5)) == -20.0) || (((x_17 + (-1.0 * _x_x_5)) == -10.0) || (((x_16 + (-1.0 * _x_x_5)) == -12.0) || (((x_15 + (-1.0 * _x_x_5)) == -18.0) || (((x_14 + (-1.0 * _x_x_5)) == -7.0) || (((x_13 + (-1.0 * _x_x_5)) == -13.0) || (((x_11 + (-1.0 * _x_x_5)) == -20.0) || (((x_10 + (-1.0 * _x_x_5)) == -3.0) || (((x_9 + (-1.0 * _x_x_5)) == -5.0) || (((x_4 + (-1.0 * _x_x_5)) == -8.0) || (((x_0 + (-1.0 * _x_x_5)) == -5.0) || ((x_3 + (-1.0 * _x_x_5)) == -8.0)))))))))))))))))))) && ((((x_33 + (-1.0 * _x_x_6)) <= -3.0) && (((x_29 + (-1.0 * _x_x_6)) <= -15.0) && (((x_27 + (-1.0 * _x_x_6)) <= -17.0) && (((x_24 + (-1.0 * _x_x_6)) <= -18.0) && (((x_23 + (-1.0 * _x_x_6)) <= -4.0) && (((x_20 + (-1.0 * _x_x_6)) <= -20.0) && (((x_18 + (-1.0 * _x_x_6)) <= -8.0) && (((x_17 + (-1.0 * _x_x_6)) <= -16.0) && (((x_15 + (-1.0 * _x_x_6)) <= -1.0) && (((x_13 + (-1.0 * _x_x_6)) <= -17.0) && (((x_11 + (-1.0 * _x_x_6)) <= -9.0) && (((x_10 + (-1.0 * _x_x_6)) <= -10.0) && (((x_9 + (-1.0 * _x_x_6)) <= -19.0) && (((x_8 + (-1.0 * _x_x_6)) <= -7.0) && (((x_7 + (-1.0 * _x_x_6)) <= -18.0) && (((x_2 + (-1.0 * _x_x_6)) <= -18.0) && (((x_0 + (-1.0 * _x_x_6)) <= -17.0) && ((x_1 + (-1.0 * _x_x_6)) <= -11.0)))))))))))))))))) && (((x_33 + (-1.0 * _x_x_6)) == -3.0) || (((x_29 + (-1.0 * _x_x_6)) == -15.0) || (((x_27 + (-1.0 * _x_x_6)) == -17.0) || (((x_24 + (-1.0 * _x_x_6)) == -18.0) || (((x_23 + (-1.0 * _x_x_6)) == -4.0) || (((x_20 + (-1.0 * _x_x_6)) == -20.0) || (((x_18 + (-1.0 * _x_x_6)) == -8.0) || (((x_17 + (-1.0 * _x_x_6)) == -16.0) || (((x_15 + (-1.0 * _x_x_6)) == -1.0) || (((x_13 + (-1.0 * _x_x_6)) == -17.0) || (((x_11 + (-1.0 * _x_x_6)) == -9.0) || (((x_10 + (-1.0 * _x_x_6)) == -10.0) || (((x_9 + (-1.0 * _x_x_6)) == -19.0) || (((x_8 + (-1.0 * _x_x_6)) == -7.0) || (((x_7 + (-1.0 * _x_x_6)) == -18.0) || (((x_2 + (-1.0 * _x_x_6)) == -18.0) || (((x_0 + (-1.0 * _x_x_6)) == -17.0) || ((x_1 + (-1.0 * _x_x_6)) == -11.0)))))))))))))))))))) && ((((x_35 + (-1.0 * _x_x_7)) <= -15.0) && (((x_34 + (-1.0 * _x_x_7)) <= -13.0) && (((x_32 + (-1.0 * _x_x_7)) <= -13.0) && (((x_31 + (-1.0 * _x_x_7)) <= -14.0) && (((x_29 + (-1.0 * _x_x_7)) <= -1.0) && (((x_27 + (-1.0 * _x_x_7)) <= -12.0) && (((x_26 + (-1.0 * _x_x_7)) <= -19.0) && (((x_25 + (-1.0 * _x_x_7)) <= -4.0) && (((x_19 + (-1.0 * _x_x_7)) <= -6.0) && (((x_15 + (-1.0 * _x_x_7)) <= -18.0) && (((x_14 + (-1.0 * _x_x_7)) <= -8.0) && (((x_9 + (-1.0 * _x_x_7)) <= -20.0) && (((x_7 + (-1.0 * _x_x_7)) <= -4.0) && (((x_5 + (-1.0 * _x_x_7)) <= -6.0) && (((x_4 + (-1.0 * _x_x_7)) <= -2.0) && (((x_3 + (-1.0 * _x_x_7)) <= -7.0) && (((x_1 + (-1.0 * _x_x_7)) <= -17.0) && ((x_2 + (-1.0 * _x_x_7)) <= -18.0)))))))))))))))))) && (((x_35 + (-1.0 * _x_x_7)) == -15.0) || (((x_34 + (-1.0 * _x_x_7)) == -13.0) || (((x_32 + (-1.0 * _x_x_7)) == -13.0) || (((x_31 + (-1.0 * _x_x_7)) == -14.0) || (((x_29 + (-1.0 * _x_x_7)) == -1.0) || (((x_27 + (-1.0 * _x_x_7)) == -12.0) || (((x_26 + (-1.0 * _x_x_7)) == -19.0) || (((x_25 + (-1.0 * _x_x_7)) == -4.0) || (((x_19 + (-1.0 * _x_x_7)) == -6.0) || (((x_15 + (-1.0 * _x_x_7)) == -18.0) || (((x_14 + (-1.0 * _x_x_7)) == -8.0) || (((x_9 + (-1.0 * _x_x_7)) == -20.0) || (((x_7 + (-1.0 * _x_x_7)) == -4.0) || (((x_5 + (-1.0 * _x_x_7)) == -6.0) || (((x_4 + (-1.0 * _x_x_7)) == -2.0) || (((x_3 + (-1.0 * _x_x_7)) == -7.0) || (((x_1 + (-1.0 * _x_x_7)) == -17.0) || ((x_2 + (-1.0 * _x_x_7)) == -18.0)))))))))))))))))))) && ((((x_35 + (-1.0 * _x_x_8)) <= -20.0) && (((x_34 + (-1.0 * _x_x_8)) <= -5.0) && (((x_33 + (-1.0 * _x_x_8)) <= -4.0) && (((x_31 + (-1.0 * _x_x_8)) <= -13.0) && (((x_30 + (-1.0 * _x_x_8)) <= -16.0) && (((x_28 + (-1.0 * _x_x_8)) <= -7.0) && (((x_26 + (-1.0 * _x_x_8)) <= -11.0) && (((x_24 + (-1.0 * _x_x_8)) <= -14.0) && (((x_22 + (-1.0 * _x_x_8)) <= -4.0) && (((x_17 + (-1.0 * _x_x_8)) <= -7.0) && (((x_14 + (-1.0 * _x_x_8)) <= -19.0) && (((x_12 + (-1.0 * _x_x_8)) <= -8.0) && (((x_11 + (-1.0 * _x_x_8)) <= -17.0) && (((x_10 + (-1.0 * _x_x_8)) <= -20.0) && (((x_6 + (-1.0 * _x_x_8)) <= -8.0) && (((x_5 + (-1.0 * _x_x_8)) <= -20.0) && (((x_2 + (-1.0 * _x_x_8)) <= -20.0) && ((x_4 + (-1.0 * _x_x_8)) <= -2.0)))))))))))))))))) && (((x_35 + (-1.0 * _x_x_8)) == -20.0) || (((x_34 + (-1.0 * _x_x_8)) == -5.0) || (((x_33 + (-1.0 * _x_x_8)) == -4.0) || (((x_31 + (-1.0 * _x_x_8)) == -13.0) || (((x_30 + (-1.0 * _x_x_8)) == -16.0) || (((x_28 + (-1.0 * _x_x_8)) == -7.0) || (((x_26 + (-1.0 * _x_x_8)) == -11.0) || (((x_24 + (-1.0 * _x_x_8)) == -14.0) || (((x_22 + (-1.0 * _x_x_8)) == -4.0) || (((x_17 + (-1.0 * _x_x_8)) == -7.0) || (((x_14 + (-1.0 * _x_x_8)) == -19.0) || (((x_12 + (-1.0 * _x_x_8)) == -8.0) || (((x_11 + (-1.0 * _x_x_8)) == -17.0) || (((x_10 + (-1.0 * _x_x_8)) == -20.0) || (((x_6 + (-1.0 * _x_x_8)) == -8.0) || (((x_5 + (-1.0 * _x_x_8)) == -20.0) || (((x_2 + (-1.0 * _x_x_8)) == -20.0) || ((x_4 + (-1.0 * _x_x_8)) == -2.0)))))))))))))))))))) && ((((x_33 + (-1.0 * _x_x_9)) <= -2.0) && (((x_28 + (-1.0 * _x_x_9)) <= -8.0) && (((x_27 + (-1.0 * _x_x_9)) <= -17.0) && (((x_26 + (-1.0 * _x_x_9)) <= -11.0) && (((x_25 + (-1.0 * _x_x_9)) <= -6.0) && (((x_24 + (-1.0 * _x_x_9)) <= -10.0) && (((x_23 + (-1.0 * _x_x_9)) <= -2.0) && (((x_20 + (-1.0 * _x_x_9)) <= -5.0) && (((x_19 + (-1.0 * _x_x_9)) <= -15.0) && (((x_18 + (-1.0 * _x_x_9)) <= -15.0) && (((x_16 + (-1.0 * _x_x_9)) <= -15.0) && (((x_13 + (-1.0 * _x_x_9)) <= -14.0) && (((x_12 + (-1.0 * _x_x_9)) <= -17.0) && (((x_11 + (-1.0 * _x_x_9)) <= -16.0) && (((x_10 + (-1.0 * _x_x_9)) <= -18.0) && (((x_9 + (-1.0 * _x_x_9)) <= -20.0) && (((x_0 + (-1.0 * _x_x_9)) <= -5.0) && ((x_4 + (-1.0 * _x_x_9)) <= -20.0)))))))))))))))))) && (((x_33 + (-1.0 * _x_x_9)) == -2.0) || (((x_28 + (-1.0 * _x_x_9)) == -8.0) || (((x_27 + (-1.0 * _x_x_9)) == -17.0) || (((x_26 + (-1.0 * _x_x_9)) == -11.0) || (((x_25 + (-1.0 * _x_x_9)) == -6.0) || (((x_24 + (-1.0 * _x_x_9)) == -10.0) || (((x_23 + (-1.0 * _x_x_9)) == -2.0) || (((x_20 + (-1.0 * _x_x_9)) == -5.0) || (((x_19 + (-1.0 * _x_x_9)) == -15.0) || (((x_18 + (-1.0 * _x_x_9)) == -15.0) || (((x_16 + (-1.0 * _x_x_9)) == -15.0) || (((x_13 + (-1.0 * _x_x_9)) == -14.0) || (((x_12 + (-1.0 * _x_x_9)) == -17.0) || (((x_11 + (-1.0 * _x_x_9)) == -16.0) || (((x_10 + (-1.0 * _x_x_9)) == -18.0) || (((x_9 + (-1.0 * _x_x_9)) == -20.0) || (((x_0 + (-1.0 * _x_x_9)) == -5.0) || ((x_4 + (-1.0 * _x_x_9)) == -20.0)))))))))))))))))))) && ((((x_35 + (-1.0 * _x_x_10)) <= -16.0) && (((x_30 + (-1.0 * _x_x_10)) <= -5.0) && (((x_29 + (-1.0 * _x_x_10)) <= -19.0) && (((x_28 + (-1.0 * _x_x_10)) <= -4.0) && (((x_27 + (-1.0 * _x_x_10)) <= -12.0) && (((x_24 + (-1.0 * _x_x_10)) <= -2.0) && (((x_21 + (-1.0 * _x_x_10)) <= -19.0) && (((x_20 + (-1.0 * _x_x_10)) <= -10.0) && (((x_19 + (-1.0 * _x_x_10)) <= -2.0) && (((x_17 + (-1.0 * _x_x_10)) <= -2.0) && (((x_16 + (-1.0 * _x_x_10)) <= -20.0) && (((x_13 + (-1.0 * _x_x_10)) <= -20.0) && (((x_12 + (-1.0 * _x_x_10)) <= -6.0) && (((x_9 + (-1.0 * _x_x_10)) <= -15.0) && (((x_7 + (-1.0 * _x_x_10)) <= -20.0) && (((x_6 + (-1.0 * _x_x_10)) <= -7.0) && (((x_1 + (-1.0 * _x_x_10)) <= -3.0) && ((x_5 + (-1.0 * _x_x_10)) <= -6.0)))))))))))))))))) && (((x_35 + (-1.0 * _x_x_10)) == -16.0) || (((x_30 + (-1.0 * _x_x_10)) == -5.0) || (((x_29 + (-1.0 * _x_x_10)) == -19.0) || (((x_28 + (-1.0 * _x_x_10)) == -4.0) || (((x_27 + (-1.0 * _x_x_10)) == -12.0) || (((x_24 + (-1.0 * _x_x_10)) == -2.0) || (((x_21 + (-1.0 * _x_x_10)) == -19.0) || (((x_20 + (-1.0 * _x_x_10)) == -10.0) || (((x_19 + (-1.0 * _x_x_10)) == -2.0) || (((x_17 + (-1.0 * _x_x_10)) == -2.0) || (((x_16 + (-1.0 * _x_x_10)) == -20.0) || (((x_13 + (-1.0 * _x_x_10)) == -20.0) || (((x_12 + (-1.0 * _x_x_10)) == -6.0) || (((x_9 + (-1.0 * _x_x_10)) == -15.0) || (((x_7 + (-1.0 * _x_x_10)) == -20.0) || (((x_6 + (-1.0 * _x_x_10)) == -7.0) || (((x_1 + (-1.0 * _x_x_10)) == -3.0) || ((x_5 + (-1.0 * _x_x_10)) == -6.0)))))))))))))))))))) && ((((x_35 + (-1.0 * _x_x_11)) <= -8.0) && (((x_31 + (-1.0 * _x_x_11)) <= -4.0) && (((x_30 + (-1.0 * _x_x_11)) <= -1.0) && (((x_25 + (-1.0 * _x_x_11)) <= -8.0) && (((x_24 + (-1.0 * _x_x_11)) <= -4.0) && (((x_23 + (-1.0 * _x_x_11)) <= -19.0) && (((x_22 + (-1.0 * _x_x_11)) <= -2.0) && (((x_20 + (-1.0 * _x_x_11)) <= -8.0) && (((x_17 + (-1.0 * _x_x_11)) <= -10.0) && (((x_16 + (-1.0 * _x_x_11)) <= -19.0) && (((x_14 + (-1.0 * _x_x_11)) <= -18.0) && (((x_13 + (-1.0 * _x_x_11)) <= -7.0) && (((x_11 + (-1.0 * _x_x_11)) <= -8.0) && (((x_9 + (-1.0 * _x_x_11)) <= -11.0) && (((x_8 + (-1.0 * _x_x_11)) <= -19.0) && (((x_6 + (-1.0 * _x_x_11)) <= -12.0) && (((x_0 + (-1.0 * _x_x_11)) <= -18.0) && ((x_4 + (-1.0 * _x_x_11)) <= -9.0)))))))))))))))))) && (((x_35 + (-1.0 * _x_x_11)) == -8.0) || (((x_31 + (-1.0 * _x_x_11)) == -4.0) || (((x_30 + (-1.0 * _x_x_11)) == -1.0) || (((x_25 + (-1.0 * _x_x_11)) == -8.0) || (((x_24 + (-1.0 * _x_x_11)) == -4.0) || (((x_23 + (-1.0 * _x_x_11)) == -19.0) || (((x_22 + (-1.0 * _x_x_11)) == -2.0) || (((x_20 + (-1.0 * _x_x_11)) == -8.0) || (((x_17 + (-1.0 * _x_x_11)) == -10.0) || (((x_16 + (-1.0 * _x_x_11)) == -19.0) || (((x_14 + (-1.0 * _x_x_11)) == -18.0) || (((x_13 + (-1.0 * _x_x_11)) == -7.0) || (((x_11 + (-1.0 * _x_x_11)) == -8.0) || (((x_9 + (-1.0 * _x_x_11)) == -11.0) || (((x_8 + (-1.0 * _x_x_11)) == -19.0) || (((x_6 + (-1.0 * _x_x_11)) == -12.0) || (((x_0 + (-1.0 * _x_x_11)) == -18.0) || ((x_4 + (-1.0 * _x_x_11)) == -9.0)))))))))))))))))))) && ((((x_34 + (-1.0 * _x_x_12)) <= -15.0) && (((x_33 + (-1.0 * _x_x_12)) <= -19.0) && (((x_30 + (-1.0 * _x_x_12)) <= -13.0) && (((x_29 + (-1.0 * _x_x_12)) <= -4.0) && (((x_27 + (-1.0 * _x_x_12)) <= -3.0) && (((x_26 + (-1.0 * _x_x_12)) <= -7.0) && (((x_25 + (-1.0 * _x_x_12)) <= -5.0) && (((x_22 + (-1.0 * _x_x_12)) <= -2.0) && (((x_20 + (-1.0 * _x_x_12)) <= -12.0) && (((x_19 + (-1.0 * _x_x_12)) <= -5.0) && (((x_13 + (-1.0 * _x_x_12)) <= -2.0) && (((x_11 + (-1.0 * _x_x_12)) <= -1.0) && (((x_10 + (-1.0 * _x_x_12)) <= -5.0) && (((x_9 + (-1.0 * _x_x_12)) <= -2.0) && (((x_8 + (-1.0 * _x_x_12)) <= -8.0) && (((x_6 + (-1.0 * _x_x_12)) <= -9.0) && (((x_3 + (-1.0 * _x_x_12)) <= -1.0) && ((x_5 + (-1.0 * _x_x_12)) <= -17.0)))))))))))))))))) && (((x_34 + (-1.0 * _x_x_12)) == -15.0) || (((x_33 + (-1.0 * _x_x_12)) == -19.0) || (((x_30 + (-1.0 * _x_x_12)) == -13.0) || (((x_29 + (-1.0 * _x_x_12)) == -4.0) || (((x_27 + (-1.0 * _x_x_12)) == -3.0) || (((x_26 + (-1.0 * _x_x_12)) == -7.0) || (((x_25 + (-1.0 * _x_x_12)) == -5.0) || (((x_22 + (-1.0 * _x_x_12)) == -2.0) || (((x_20 + (-1.0 * _x_x_12)) == -12.0) || (((x_19 + (-1.0 * _x_x_12)) == -5.0) || (((x_13 + (-1.0 * _x_x_12)) == -2.0) || (((x_11 + (-1.0 * _x_x_12)) == -1.0) || (((x_10 + (-1.0 * _x_x_12)) == -5.0) || (((x_9 + (-1.0 * _x_x_12)) == -2.0) || (((x_8 + (-1.0 * _x_x_12)) == -8.0) || (((x_6 + (-1.0 * _x_x_12)) == -9.0) || (((x_3 + (-1.0 * _x_x_12)) == -1.0) || ((x_5 + (-1.0 * _x_x_12)) == -17.0)))))))))))))))))))) && ((((x_34 + (-1.0 * _x_x_13)) <= -15.0) && (((x_32 + (-1.0 * _x_x_13)) <= -14.0) && (((x_29 + (-1.0 * _x_x_13)) <= -15.0) && (((x_28 + (-1.0 * _x_x_13)) <= -16.0) && (((x_27 + (-1.0 * _x_x_13)) <= -14.0) && (((x_26 + (-1.0 * _x_x_13)) <= -8.0) && (((x_25 + (-1.0 * _x_x_13)) <= -15.0) && (((x_23 + (-1.0 * _x_x_13)) <= -2.0) && (((x_22 + (-1.0 * _x_x_13)) <= -8.0) && (((x_20 + (-1.0 * _x_x_13)) <= -18.0) && (((x_18 + (-1.0 * _x_x_13)) <= -1.0) && (((x_17 + (-1.0 * _x_x_13)) <= -17.0) && (((x_12 + (-1.0 * _x_x_13)) <= -4.0) && (((x_10 + (-1.0 * _x_x_13)) <= -10.0) && (((x_9 + (-1.0 * _x_x_13)) <= -16.0) && (((x_4 + (-1.0 * _x_x_13)) <= -3.0) && (((x_0 + (-1.0 * _x_x_13)) <= -13.0) && ((x_3 + (-1.0 * _x_x_13)) <= -9.0)))))))))))))))))) && (((x_34 + (-1.0 * _x_x_13)) == -15.0) || (((x_32 + (-1.0 * _x_x_13)) == -14.0) || (((x_29 + (-1.0 * _x_x_13)) == -15.0) || (((x_28 + (-1.0 * _x_x_13)) == -16.0) || (((x_27 + (-1.0 * _x_x_13)) == -14.0) || (((x_26 + (-1.0 * _x_x_13)) == -8.0) || (((x_25 + (-1.0 * _x_x_13)) == -15.0) || (((x_23 + (-1.0 * _x_x_13)) == -2.0) || (((x_22 + (-1.0 * _x_x_13)) == -8.0) || (((x_20 + (-1.0 * _x_x_13)) == -18.0) || (((x_18 + (-1.0 * _x_x_13)) == -1.0) || (((x_17 + (-1.0 * _x_x_13)) == -17.0) || (((x_12 + (-1.0 * _x_x_13)) == -4.0) || (((x_10 + (-1.0 * _x_x_13)) == -10.0) || (((x_9 + (-1.0 * _x_x_13)) == -16.0) || (((x_4 + (-1.0 * _x_x_13)) == -3.0) || (((x_0 + (-1.0 * _x_x_13)) == -13.0) || ((x_3 + (-1.0 * _x_x_13)) == -9.0)))))))))))))))))))) && ((((x_32 + (-1.0 * _x_x_14)) <= -14.0) && (((x_30 + (-1.0 * _x_x_14)) <= -13.0) && (((x_28 + (-1.0 * _x_x_14)) <= -5.0) && (((x_27 + (-1.0 * _x_x_14)) <= -13.0) && (((x_25 + (-1.0 * _x_x_14)) <= -19.0) && (((x_24 + (-1.0 * _x_x_14)) <= -10.0) && (((x_23 + (-1.0 * _x_x_14)) <= -7.0) && (((x_22 + (-1.0 * _x_x_14)) <= -1.0) && (((x_21 + (-1.0 * _x_x_14)) <= -9.0) && (((x_16 + (-1.0 * _x_x_14)) <= -20.0) && (((x_13 + (-1.0 * _x_x_14)) <= -17.0) && (((x_12 + (-1.0 * _x_x_14)) <= -11.0) && (((x_9 + (-1.0 * _x_x_14)) <= -18.0) && (((x_8 + (-1.0 * _x_x_14)) <= -16.0) && (((x_7 + (-1.0 * _x_x_14)) <= -10.0) && (((x_6 + (-1.0 * _x_x_14)) <= -18.0) && (((x_0 + (-1.0 * _x_x_14)) <= -8.0) && ((x_5 + (-1.0 * _x_x_14)) <= -8.0)))))))))))))))))) && (((x_32 + (-1.0 * _x_x_14)) == -14.0) || (((x_30 + (-1.0 * _x_x_14)) == -13.0) || (((x_28 + (-1.0 * _x_x_14)) == -5.0) || (((x_27 + (-1.0 * _x_x_14)) == -13.0) || (((x_25 + (-1.0 * _x_x_14)) == -19.0) || (((x_24 + (-1.0 * _x_x_14)) == -10.0) || (((x_23 + (-1.0 * _x_x_14)) == -7.0) || (((x_22 + (-1.0 * _x_x_14)) == -1.0) || (((x_21 + (-1.0 * _x_x_14)) == -9.0) || (((x_16 + (-1.0 * _x_x_14)) == -20.0) || (((x_13 + (-1.0 * _x_x_14)) == -17.0) || (((x_12 + (-1.0 * _x_x_14)) == -11.0) || (((x_9 + (-1.0 * _x_x_14)) == -18.0) || (((x_8 + (-1.0 * _x_x_14)) == -16.0) || (((x_7 + (-1.0 * _x_x_14)) == -10.0) || (((x_6 + (-1.0 * _x_x_14)) == -18.0) || (((x_0 + (-1.0 * _x_x_14)) == -8.0) || ((x_5 + (-1.0 * _x_x_14)) == -8.0)))))))))))))))))))) && ((((x_30 + (-1.0 * _x_x_15)) <= -10.0) && (((x_29 + (-1.0 * _x_x_15)) <= -7.0) && (((x_27 + (-1.0 * _x_x_15)) <= -1.0) && (((x_26 + (-1.0 * _x_x_15)) <= -20.0) && (((x_25 + (-1.0 * _x_x_15)) <= -7.0) && (((x_22 + (-1.0 * _x_x_15)) <= -5.0) && (((x_21 + (-1.0 * _x_x_15)) <= -12.0) && (((x_19 + (-1.0 * _x_x_15)) <= -3.0) && (((x_14 + (-1.0 * _x_x_15)) <= -13.0) && (((x_12 + (-1.0 * _x_x_15)) <= -5.0) && (((x_11 + (-1.0 * _x_x_15)) <= -20.0) && (((x_10 + (-1.0 * _x_x_15)) <= -8.0) && (((x_8 + (-1.0 * _x_x_15)) <= -10.0) && (((x_5 + (-1.0 * _x_x_15)) <= -19.0) && (((x_4 + (-1.0 * _x_x_15)) <= -2.0) && (((x_3 + (-1.0 * _x_x_15)) <= -16.0) && (((x_0 + (-1.0 * _x_x_15)) <= -12.0) && ((x_2 + (-1.0 * _x_x_15)) <= -4.0)))))))))))))))))) && (((x_30 + (-1.0 * _x_x_15)) == -10.0) || (((x_29 + (-1.0 * _x_x_15)) == -7.0) || (((x_27 + (-1.0 * _x_x_15)) == -1.0) || (((x_26 + (-1.0 * _x_x_15)) == -20.0) || (((x_25 + (-1.0 * _x_x_15)) == -7.0) || (((x_22 + (-1.0 * _x_x_15)) == -5.0) || (((x_21 + (-1.0 * _x_x_15)) == -12.0) || (((x_19 + (-1.0 * _x_x_15)) == -3.0) || (((x_14 + (-1.0 * _x_x_15)) == -13.0) || (((x_12 + (-1.0 * _x_x_15)) == -5.0) || (((x_11 + (-1.0 * _x_x_15)) == -20.0) || (((x_10 + (-1.0 * _x_x_15)) == -8.0) || (((x_8 + (-1.0 * _x_x_15)) == -10.0) || (((x_5 + (-1.0 * _x_x_15)) == -19.0) || (((x_4 + (-1.0 * _x_x_15)) == -2.0) || (((x_3 + (-1.0 * _x_x_15)) == -16.0) || (((x_0 + (-1.0 * _x_x_15)) == -12.0) || ((x_2 + (-1.0 * _x_x_15)) == -4.0)))))))))))))))))))) && ((((x_35 + (-1.0 * _x_x_16)) <= -3.0) && (((x_34 + (-1.0 * _x_x_16)) <= -20.0) && (((x_30 + (-1.0 * _x_x_16)) <= -6.0) && (((x_28 + (-1.0 * _x_x_16)) <= -2.0) && (((x_26 + (-1.0 * _x_x_16)) <= -6.0) && (((x_22 + (-1.0 * _x_x_16)) <= -1.0) && (((x_21 + (-1.0 * _x_x_16)) <= -9.0) && (((x_20 + (-1.0 * _x_x_16)) <= -14.0) && (((x_18 + (-1.0 * _x_x_16)) <= -1.0) && (((x_17 + (-1.0 * _x_x_16)) <= -20.0) && (((x_16 + (-1.0 * _x_x_16)) <= -8.0) && (((x_14 + (-1.0 * _x_x_16)) <= -6.0) && (((x_13 + (-1.0 * _x_x_16)) <= -7.0) && (((x_6 + (-1.0 * _x_x_16)) <= -13.0) && (((x_5 + (-1.0 * _x_x_16)) <= -13.0) && (((x_4 + (-1.0 * _x_x_16)) <= -18.0) && (((x_1 + (-1.0 * _x_x_16)) <= -14.0) && ((x_3 + (-1.0 * _x_x_16)) <= -12.0)))))))))))))))))) && (((x_35 + (-1.0 * _x_x_16)) == -3.0) || (((x_34 + (-1.0 * _x_x_16)) == -20.0) || (((x_30 + (-1.0 * _x_x_16)) == -6.0) || (((x_28 + (-1.0 * _x_x_16)) == -2.0) || (((x_26 + (-1.0 * _x_x_16)) == -6.0) || (((x_22 + (-1.0 * _x_x_16)) == -1.0) || (((x_21 + (-1.0 * _x_x_16)) == -9.0) || (((x_20 + (-1.0 * _x_x_16)) == -14.0) || (((x_18 + (-1.0 * _x_x_16)) == -1.0) || (((x_17 + (-1.0 * _x_x_16)) == -20.0) || (((x_16 + (-1.0 * _x_x_16)) == -8.0) || (((x_14 + (-1.0 * _x_x_16)) == -6.0) || (((x_13 + (-1.0 * _x_x_16)) == -7.0) || (((x_6 + (-1.0 * _x_x_16)) == -13.0) || (((x_5 + (-1.0 * _x_x_16)) == -13.0) || (((x_4 + (-1.0 * _x_x_16)) == -18.0) || (((x_1 + (-1.0 * _x_x_16)) == -14.0) || ((x_3 + (-1.0 * _x_x_16)) == -12.0)))))))))))))))))))) && ((((x_35 + (-1.0 * _x_x_17)) <= -6.0) && (((x_34 + (-1.0 * _x_x_17)) <= -20.0) && (((x_31 + (-1.0 * _x_x_17)) <= -15.0) && (((x_30 + (-1.0 * _x_x_17)) <= -17.0) && (((x_27 + (-1.0 * _x_x_17)) <= -8.0) && (((x_23 + (-1.0 * _x_x_17)) <= -1.0) && (((x_21 + (-1.0 * _x_x_17)) <= -20.0) && (((x_20 + (-1.0 * _x_x_17)) <= -20.0) && (((x_18 + (-1.0 * _x_x_17)) <= -9.0) && (((x_17 + (-1.0 * _x_x_17)) <= -15.0) && (((x_16 + (-1.0 * _x_x_17)) <= -18.0) && (((x_15 + (-1.0 * _x_x_17)) <= -10.0) && (((x_11 + (-1.0 * _x_x_17)) <= -19.0) && (((x_9 + (-1.0 * _x_x_17)) <= -4.0) && (((x_7 + (-1.0 * _x_x_17)) <= -10.0) && (((x_6 + (-1.0 * _x_x_17)) <= -1.0) && (((x_0 + (-1.0 * _x_x_17)) <= -13.0) && ((x_4 + (-1.0 * _x_x_17)) <= -10.0)))))))))))))))))) && (((x_35 + (-1.0 * _x_x_17)) == -6.0) || (((x_34 + (-1.0 * _x_x_17)) == -20.0) || (((x_31 + (-1.0 * _x_x_17)) == -15.0) || (((x_30 + (-1.0 * _x_x_17)) == -17.0) || (((x_27 + (-1.0 * _x_x_17)) == -8.0) || (((x_23 + (-1.0 * _x_x_17)) == -1.0) || (((x_21 + (-1.0 * _x_x_17)) == -20.0) || (((x_20 + (-1.0 * _x_x_17)) == -20.0) || (((x_18 + (-1.0 * _x_x_17)) == -9.0) || (((x_17 + (-1.0 * _x_x_17)) == -15.0) || (((x_16 + (-1.0 * _x_x_17)) == -18.0) || (((x_15 + (-1.0 * _x_x_17)) == -10.0) || (((x_11 + (-1.0 * _x_x_17)) == -19.0) || (((x_9 + (-1.0 * _x_x_17)) == -4.0) || (((x_7 + (-1.0 * _x_x_17)) == -10.0) || (((x_6 + (-1.0 * _x_x_17)) == -1.0) || (((x_0 + (-1.0 * _x_x_17)) == -13.0) || ((x_4 + (-1.0 * _x_x_17)) == -10.0)))))))))))))))))))) && ((((x_35 + (-1.0 * _x_x_18)) <= -15.0) && (((x_32 + (-1.0 * _x_x_18)) <= -17.0) && (((x_30 + (-1.0 * _x_x_18)) <= -2.0) && (((x_27 + (-1.0 * _x_x_18)) <= -14.0) && (((x_24 + (-1.0 * _x_x_18)) <= -14.0) && (((x_21 + (-1.0 * _x_x_18)) <= -13.0) && (((x_20 + (-1.0 * _x_x_18)) <= -7.0) && (((x_19 + (-1.0 * _x_x_18)) <= -16.0) && (((x_18 + (-1.0 * _x_x_18)) <= -10.0) && (((x_16 + (-1.0 * _x_x_18)) <= -13.0) && (((x_15 + (-1.0 * _x_x_18)) <= -3.0) && (((x_13 + (-1.0 * _x_x_18)) <= -4.0) && (((x_11 + (-1.0 * _x_x_18)) <= -16.0) && (((x_9 + (-1.0 * _x_x_18)) <= -10.0) && (((x_6 + (-1.0 * _x_x_18)) <= -19.0) && (((x_3 + (-1.0 * _x_x_18)) <= -10.0) && (((x_0 + (-1.0 * _x_x_18)) <= -3.0) && ((x_2 + (-1.0 * _x_x_18)) <= -15.0)))))))))))))))))) && (((x_35 + (-1.0 * _x_x_18)) == -15.0) || (((x_32 + (-1.0 * _x_x_18)) == -17.0) || (((x_30 + (-1.0 * _x_x_18)) == -2.0) || (((x_27 + (-1.0 * _x_x_18)) == -14.0) || (((x_24 + (-1.0 * _x_x_18)) == -14.0) || (((x_21 + (-1.0 * _x_x_18)) == -13.0) || (((x_20 + (-1.0 * _x_x_18)) == -7.0) || (((x_19 + (-1.0 * _x_x_18)) == -16.0) || (((x_18 + (-1.0 * _x_x_18)) == -10.0) || (((x_16 + (-1.0 * _x_x_18)) == -13.0) || (((x_15 + (-1.0 * _x_x_18)) == -3.0) || (((x_13 + (-1.0 * _x_x_18)) == -4.0) || (((x_11 + (-1.0 * _x_x_18)) == -16.0) || (((x_9 + (-1.0 * _x_x_18)) == -10.0) || (((x_6 + (-1.0 * _x_x_18)) == -19.0) || (((x_3 + (-1.0 * _x_x_18)) == -10.0) || (((x_0 + (-1.0 * _x_x_18)) == -3.0) || ((x_2 + (-1.0 * _x_x_18)) == -15.0)))))))))))))))))))) && ((((x_35 + (-1.0 * _x_x_19)) <= -4.0) && (((x_34 + (-1.0 * _x_x_19)) <= -9.0) && (((x_33 + (-1.0 * _x_x_19)) <= -9.0) && (((x_31 + (-1.0 * _x_x_19)) <= -8.0) && (((x_27 + (-1.0 * _x_x_19)) <= -19.0) && (((x_25 + (-1.0 * _x_x_19)) <= -8.0) && (((x_23 + (-1.0 * _x_x_19)) <= -19.0) && (((x_18 + (-1.0 * _x_x_19)) <= -12.0) && (((x_17 + (-1.0 * _x_x_19)) <= -1.0) && (((x_16 + (-1.0 * _x_x_19)) <= -2.0) && (((x_12 + (-1.0 * _x_x_19)) <= -10.0) && (((x_11 + (-1.0 * _x_x_19)) <= -8.0) && (((x_10 + (-1.0 * _x_x_19)) <= -7.0) && (((x_7 + (-1.0 * _x_x_19)) <= -20.0) && (((x_6 + (-1.0 * _x_x_19)) <= -4.0) && (((x_5 + (-1.0 * _x_x_19)) <= -4.0) && (((x_0 + (-1.0 * _x_x_19)) <= -9.0) && ((x_2 + (-1.0 * _x_x_19)) <= -5.0)))))))))))))))))) && (((x_35 + (-1.0 * _x_x_19)) == -4.0) || (((x_34 + (-1.0 * _x_x_19)) == -9.0) || (((x_33 + (-1.0 * _x_x_19)) == -9.0) || (((x_31 + (-1.0 * _x_x_19)) == -8.0) || (((x_27 + (-1.0 * _x_x_19)) == -19.0) || (((x_25 + (-1.0 * _x_x_19)) == -8.0) || (((x_23 + (-1.0 * _x_x_19)) == -19.0) || (((x_18 + (-1.0 * _x_x_19)) == -12.0) || (((x_17 + (-1.0 * _x_x_19)) == -1.0) || (((x_16 + (-1.0 * _x_x_19)) == -2.0) || (((x_12 + (-1.0 * _x_x_19)) == -10.0) || (((x_11 + (-1.0 * _x_x_19)) == -8.0) || (((x_10 + (-1.0 * _x_x_19)) == -7.0) || (((x_7 + (-1.0 * _x_x_19)) == -20.0) || (((x_6 + (-1.0 * _x_x_19)) == -4.0) || (((x_5 + (-1.0 * _x_x_19)) == -4.0) || (((x_0 + (-1.0 * _x_x_19)) == -9.0) || ((x_2 + (-1.0 * _x_x_19)) == -5.0)))))))))))))))))))) && ((((x_35 + (-1.0 * _x_x_20)) <= -18.0) && (((x_30 + (-1.0 * _x_x_20)) <= -17.0) && (((x_28 + (-1.0 * _x_x_20)) <= -5.0) && (((x_27 + (-1.0 * _x_x_20)) <= -17.0) && (((x_26 + (-1.0 * _x_x_20)) <= -10.0) && (((x_25 + (-1.0 * _x_x_20)) <= -15.0) && (((x_23 + (-1.0 * _x_x_20)) <= -13.0) && (((x_20 + (-1.0 * _x_x_20)) <= -10.0) && (((x_19 + (-1.0 * _x_x_20)) <= -20.0) && (((x_17 + (-1.0 * _x_x_20)) <= -7.0) && (((x_16 + (-1.0 * _x_x_20)) <= -3.0) && (((x_14 + (-1.0 * _x_x_20)) <= -15.0) && (((x_10 + (-1.0 * _x_x_20)) <= -5.0) && (((x_8 + (-1.0 * _x_x_20)) <= -16.0) && (((x_6 + (-1.0 * _x_x_20)) <= -8.0) && (((x_5 + (-1.0 * _x_x_20)) <= -18.0) && (((x_2 + (-1.0 * _x_x_20)) <= -11.0) && ((x_3 + (-1.0 * _x_x_20)) <= -15.0)))))))))))))))))) && (((x_35 + (-1.0 * _x_x_20)) == -18.0) || (((x_30 + (-1.0 * _x_x_20)) == -17.0) || (((x_28 + (-1.0 * _x_x_20)) == -5.0) || (((x_27 + (-1.0 * _x_x_20)) == -17.0) || (((x_26 + (-1.0 * _x_x_20)) == -10.0) || (((x_25 + (-1.0 * _x_x_20)) == -15.0) || (((x_23 + (-1.0 * _x_x_20)) == -13.0) || (((x_20 + (-1.0 * _x_x_20)) == -10.0) || (((x_19 + (-1.0 * _x_x_20)) == -20.0) || (((x_17 + (-1.0 * _x_x_20)) == -7.0) || (((x_16 + (-1.0 * _x_x_20)) == -3.0) || (((x_14 + (-1.0 * _x_x_20)) == -15.0) || (((x_10 + (-1.0 * _x_x_20)) == -5.0) || (((x_8 + (-1.0 * _x_x_20)) == -16.0) || (((x_6 + (-1.0 * _x_x_20)) == -8.0) || (((x_5 + (-1.0 * _x_x_20)) == -18.0) || (((x_2 + (-1.0 * _x_x_20)) == -11.0) || ((x_3 + (-1.0 * _x_x_20)) == -15.0)))))))))))))))))))) && ((((x_34 + (-1.0 * _x_x_21)) <= -2.0) && (((x_33 + (-1.0 * _x_x_21)) <= -11.0) && (((x_31 + (-1.0 * _x_x_21)) <= -19.0) && (((x_29 + (-1.0 * _x_x_21)) <= -11.0) && (((x_28 + (-1.0 * _x_x_21)) <= -19.0) && (((x_25 + (-1.0 * _x_x_21)) <= -19.0) && (((x_23 + (-1.0 * _x_x_21)) <= -12.0) && (((x_22 + (-1.0 * _x_x_21)) <= -16.0) && (((x_19 + (-1.0 * _x_x_21)) <= -18.0) && (((x_17 + (-1.0 * _x_x_21)) <= -2.0) && (((x_16 + (-1.0 * _x_x_21)) <= -20.0) && (((x_11 + (-1.0 * _x_x_21)) <= -12.0) && (((x_10 + (-1.0 * _x_x_21)) <= -3.0) && (((x_9 + (-1.0 * _x_x_21)) <= -14.0) && (((x_8 + (-1.0 * _x_x_21)) <= -13.0) && (((x_7 + (-1.0 * _x_x_21)) <= -14.0) && (((x_1 + (-1.0 * _x_x_21)) <= -15.0) && ((x_4 + (-1.0 * _x_x_21)) <= -17.0)))))))))))))))))) && (((x_34 + (-1.0 * _x_x_21)) == -2.0) || (((x_33 + (-1.0 * _x_x_21)) == -11.0) || (((x_31 + (-1.0 * _x_x_21)) == -19.0) || (((x_29 + (-1.0 * _x_x_21)) == -11.0) || (((x_28 + (-1.0 * _x_x_21)) == -19.0) || (((x_25 + (-1.0 * _x_x_21)) == -19.0) || (((x_23 + (-1.0 * _x_x_21)) == -12.0) || (((x_22 + (-1.0 * _x_x_21)) == -16.0) || (((x_19 + (-1.0 * _x_x_21)) == -18.0) || (((x_17 + (-1.0 * _x_x_21)) == -2.0) || (((x_16 + (-1.0 * _x_x_21)) == -20.0) || (((x_11 + (-1.0 * _x_x_21)) == -12.0) || (((x_10 + (-1.0 * _x_x_21)) == -3.0) || (((x_9 + (-1.0 * _x_x_21)) == -14.0) || (((x_8 + (-1.0 * _x_x_21)) == -13.0) || (((x_7 + (-1.0 * _x_x_21)) == -14.0) || (((x_1 + (-1.0 * _x_x_21)) == -15.0) || ((x_4 + (-1.0 * _x_x_21)) == -17.0)))))))))))))))))))) && ((((x_34 + (-1.0 * _x_x_22)) <= -12.0) && (((x_32 + (-1.0 * _x_x_22)) <= -10.0) && (((x_31 + (-1.0 * _x_x_22)) <= -8.0) && (((x_28 + (-1.0 * _x_x_22)) <= -16.0) && (((x_27 + (-1.0 * _x_x_22)) <= -7.0) && (((x_26 + (-1.0 * _x_x_22)) <= -20.0) && (((x_23 + (-1.0 * _x_x_22)) <= -6.0) && (((x_22 + (-1.0 * _x_x_22)) <= -11.0) && (((x_21 + (-1.0 * _x_x_22)) <= -12.0) && (((x_18 + (-1.0 * _x_x_22)) <= -1.0) && (((x_13 + (-1.0 * _x_x_22)) <= -17.0) && (((x_12 + (-1.0 * _x_x_22)) <= -6.0) && (((x_10 + (-1.0 * _x_x_22)) <= -19.0) && (((x_8 + (-1.0 * _x_x_22)) <= -10.0) && (((x_7 + (-1.0 * _x_x_22)) <= -8.0) && (((x_6 + (-1.0 * _x_x_22)) <= -15.0) && (((x_0 + (-1.0 * _x_x_22)) <= -5.0) && ((x_5 + (-1.0 * _x_x_22)) <= -17.0)))))))))))))))))) && (((x_34 + (-1.0 * _x_x_22)) == -12.0) || (((x_32 + (-1.0 * _x_x_22)) == -10.0) || (((x_31 + (-1.0 * _x_x_22)) == -8.0) || (((x_28 + (-1.0 * _x_x_22)) == -16.0) || (((x_27 + (-1.0 * _x_x_22)) == -7.0) || (((x_26 + (-1.0 * _x_x_22)) == -20.0) || (((x_23 + (-1.0 * _x_x_22)) == -6.0) || (((x_22 + (-1.0 * _x_x_22)) == -11.0) || (((x_21 + (-1.0 * _x_x_22)) == -12.0) || (((x_18 + (-1.0 * _x_x_22)) == -1.0) || (((x_13 + (-1.0 * _x_x_22)) == -17.0) || (((x_12 + (-1.0 * _x_x_22)) == -6.0) || (((x_10 + (-1.0 * _x_x_22)) == -19.0) || (((x_8 + (-1.0 * _x_x_22)) == -10.0) || (((x_7 + (-1.0 * _x_x_22)) == -8.0) || (((x_6 + (-1.0 * _x_x_22)) == -15.0) || (((x_0 + (-1.0 * _x_x_22)) == -5.0) || ((x_5 + (-1.0 * _x_x_22)) == -17.0)))))))))))))))))))) && ((((x_30 + (-1.0 * _x_x_23)) <= -15.0) && (((x_28 + (-1.0 * _x_x_23)) <= -19.0) && (((x_27 + (-1.0 * _x_x_23)) <= -9.0) && (((x_26 + (-1.0 * _x_x_23)) <= -1.0) && (((x_25 + (-1.0 * _x_x_23)) <= -1.0) && (((x_24 + (-1.0 * _x_x_23)) <= -6.0) && (((x_22 + (-1.0 * _x_x_23)) <= -12.0) && (((x_21 + (-1.0 * _x_x_23)) <= -18.0) && (((x_20 + (-1.0 * _x_x_23)) <= -7.0) && (((x_18 + (-1.0 * _x_x_23)) <= -15.0) && (((x_16 + (-1.0 * _x_x_23)) <= -18.0) && (((x_14 + (-1.0 * _x_x_23)) <= -1.0) && (((x_13 + (-1.0 * _x_x_23)) <= -20.0) && (((x_12 + (-1.0 * _x_x_23)) <= -5.0) && (((x_9 + (-1.0 * _x_x_23)) <= -11.0) && (((x_4 + (-1.0 * _x_x_23)) <= -13.0) && (((x_0 + (-1.0 * _x_x_23)) <= -2.0) && ((x_2 + (-1.0 * _x_x_23)) <= -6.0)))))))))))))))))) && (((x_30 + (-1.0 * _x_x_23)) == -15.0) || (((x_28 + (-1.0 * _x_x_23)) == -19.0) || (((x_27 + (-1.0 * _x_x_23)) == -9.0) || (((x_26 + (-1.0 * _x_x_23)) == -1.0) || (((x_25 + (-1.0 * _x_x_23)) == -1.0) || (((x_24 + (-1.0 * _x_x_23)) == -6.0) || (((x_22 + (-1.0 * _x_x_23)) == -12.0) || (((x_21 + (-1.0 * _x_x_23)) == -18.0) || (((x_20 + (-1.0 * _x_x_23)) == -7.0) || (((x_18 + (-1.0 * _x_x_23)) == -15.0) || (((x_16 + (-1.0 * _x_x_23)) == -18.0) || (((x_14 + (-1.0 * _x_x_23)) == -1.0) || (((x_13 + (-1.0 * _x_x_23)) == -20.0) || (((x_12 + (-1.0 * _x_x_23)) == -5.0) || (((x_9 + (-1.0 * _x_x_23)) == -11.0) || (((x_4 + (-1.0 * _x_x_23)) == -13.0) || (((x_0 + (-1.0 * _x_x_23)) == -2.0) || ((x_2 + (-1.0 * _x_x_23)) == -6.0)))))))))))))))))))) && ((((x_32 + (-1.0 * _x_x_24)) <= -15.0) && (((x_31 + (-1.0 * _x_x_24)) <= -4.0) && (((x_28 + (-1.0 * _x_x_24)) <= -10.0) && (((x_27 + (-1.0 * _x_x_24)) <= -5.0) && (((x_26 + (-1.0 * _x_x_24)) <= -3.0) && (((x_25 + (-1.0 * _x_x_24)) <= -8.0) && (((x_24 + (-1.0 * _x_x_24)) <= -7.0) && (((x_23 + (-1.0 * _x_x_24)) <= -10.0) && (((x_21 + (-1.0 * _x_x_24)) <= -11.0) && (((x_20 + (-1.0 * _x_x_24)) <= -14.0) && (((x_19 + (-1.0 * _x_x_24)) <= -1.0) && (((x_17 + (-1.0 * _x_x_24)) <= -20.0) && (((x_16 + (-1.0 * _x_x_24)) <= -6.0) && (((x_15 + (-1.0 * _x_x_24)) <= -17.0) && (((x_12 + (-1.0 * _x_x_24)) <= -14.0) && (((x_7 + (-1.0 * _x_x_24)) <= -11.0) && (((x_1 + (-1.0 * _x_x_24)) <= -15.0) && ((x_5 + (-1.0 * _x_x_24)) <= -19.0)))))))))))))))))) && (((x_32 + (-1.0 * _x_x_24)) == -15.0) || (((x_31 + (-1.0 * _x_x_24)) == -4.0) || (((x_28 + (-1.0 * _x_x_24)) == -10.0) || (((x_27 + (-1.0 * _x_x_24)) == -5.0) || (((x_26 + (-1.0 * _x_x_24)) == -3.0) || (((x_25 + (-1.0 * _x_x_24)) == -8.0) || (((x_24 + (-1.0 * _x_x_24)) == -7.0) || (((x_23 + (-1.0 * _x_x_24)) == -10.0) || (((x_21 + (-1.0 * _x_x_24)) == -11.0) || (((x_20 + (-1.0 * _x_x_24)) == -14.0) || (((x_19 + (-1.0 * _x_x_24)) == -1.0) || (((x_17 + (-1.0 * _x_x_24)) == -20.0) || (((x_16 + (-1.0 * _x_x_24)) == -6.0) || (((x_15 + (-1.0 * _x_x_24)) == -17.0) || (((x_12 + (-1.0 * _x_x_24)) == -14.0) || (((x_7 + (-1.0 * _x_x_24)) == -11.0) || (((x_1 + (-1.0 * _x_x_24)) == -15.0) || ((x_5 + (-1.0 * _x_x_24)) == -19.0)))))))))))))))))))) && ((((x_34 + (-1.0 * _x_x_25)) <= -2.0) && (((x_33 + (-1.0 * _x_x_25)) <= -8.0) && (((x_31 + (-1.0 * _x_x_25)) <= -13.0) && (((x_30 + (-1.0 * _x_x_25)) <= -3.0) && (((x_26 + (-1.0 * _x_x_25)) <= -20.0) && (((x_25 + (-1.0 * _x_x_25)) <= -1.0) && (((x_24 + (-1.0 * _x_x_25)) <= -4.0) && (((x_23 + (-1.0 * _x_x_25)) <= -19.0) && (((x_18 + (-1.0 * _x_x_25)) <= -17.0) && (((x_17 + (-1.0 * _x_x_25)) <= -3.0) && (((x_16 + (-1.0 * _x_x_25)) <= -12.0) && (((x_10 + (-1.0 * _x_x_25)) <= -14.0) && (((x_9 + (-1.0 * _x_x_25)) <= -3.0) && (((x_8 + (-1.0 * _x_x_25)) <= -11.0) && (((x_7 + (-1.0 * _x_x_25)) <= -17.0) && (((x_5 + (-1.0 * _x_x_25)) <= -16.0) && (((x_2 + (-1.0 * _x_x_25)) <= -10.0) && ((x_3 + (-1.0 * _x_x_25)) <= -12.0)))))))))))))))))) && (((x_34 + (-1.0 * _x_x_25)) == -2.0) || (((x_33 + (-1.0 * _x_x_25)) == -8.0) || (((x_31 + (-1.0 * _x_x_25)) == -13.0) || (((x_30 + (-1.0 * _x_x_25)) == -3.0) || (((x_26 + (-1.0 * _x_x_25)) == -20.0) || (((x_25 + (-1.0 * _x_x_25)) == -1.0) || (((x_24 + (-1.0 * _x_x_25)) == -4.0) || (((x_23 + (-1.0 * _x_x_25)) == -19.0) || (((x_18 + (-1.0 * _x_x_25)) == -17.0) || (((x_17 + (-1.0 * _x_x_25)) == -3.0) || (((x_16 + (-1.0 * _x_x_25)) == -12.0) || (((x_10 + (-1.0 * _x_x_25)) == -14.0) || (((x_9 + (-1.0 * _x_x_25)) == -3.0) || (((x_8 + (-1.0 * _x_x_25)) == -11.0) || (((x_7 + (-1.0 * _x_x_25)) == -17.0) || (((x_5 + (-1.0 * _x_x_25)) == -16.0) || (((x_2 + (-1.0 * _x_x_25)) == -10.0) || ((x_3 + (-1.0 * _x_x_25)) == -12.0)))))))))))))))))))) && ((((x_34 + (-1.0 * _x_x_26)) <= -5.0) && (((x_33 + (-1.0 * _x_x_26)) <= -16.0) && (((x_31 + (-1.0 * _x_x_26)) <= -10.0) && (((x_29 + (-1.0 * _x_x_26)) <= -16.0) && (((x_28 + (-1.0 * _x_x_26)) <= -5.0) && (((x_26 + (-1.0 * _x_x_26)) <= -18.0) && (((x_25 + (-1.0 * _x_x_26)) <= -13.0) && (((x_21 + (-1.0 * _x_x_26)) <= -1.0) && (((x_20 + (-1.0 * _x_x_26)) <= -3.0) && (((x_19 + (-1.0 * _x_x_26)) <= -1.0) && (((x_18 + (-1.0 * _x_x_26)) <= -17.0) && (((x_17 + (-1.0 * _x_x_26)) <= -15.0) && (((x_15 + (-1.0 * _x_x_26)) <= -14.0) && (((x_9 + (-1.0 * _x_x_26)) <= -9.0) && (((x_6 + (-1.0 * _x_x_26)) <= -3.0) && (((x_4 + (-1.0 * _x_x_26)) <= -2.0) && (((x_1 + (-1.0 * _x_x_26)) <= -19.0) && ((x_2 + (-1.0 * _x_x_26)) <= -7.0)))))))))))))))))) && (((x_34 + (-1.0 * _x_x_26)) == -5.0) || (((x_33 + (-1.0 * _x_x_26)) == -16.0) || (((x_31 + (-1.0 * _x_x_26)) == -10.0) || (((x_29 + (-1.0 * _x_x_26)) == -16.0) || (((x_28 + (-1.0 * _x_x_26)) == -5.0) || (((x_26 + (-1.0 * _x_x_26)) == -18.0) || (((x_25 + (-1.0 * _x_x_26)) == -13.0) || (((x_21 + (-1.0 * _x_x_26)) == -1.0) || (((x_20 + (-1.0 * _x_x_26)) == -3.0) || (((x_19 + (-1.0 * _x_x_26)) == -1.0) || (((x_18 + (-1.0 * _x_x_26)) == -17.0) || (((x_17 + (-1.0 * _x_x_26)) == -15.0) || (((x_15 + (-1.0 * _x_x_26)) == -14.0) || (((x_9 + (-1.0 * _x_x_26)) == -9.0) || (((x_6 + (-1.0 * _x_x_26)) == -3.0) || (((x_4 + (-1.0 * _x_x_26)) == -2.0) || (((x_1 + (-1.0 * _x_x_26)) == -19.0) || ((x_2 + (-1.0 * _x_x_26)) == -7.0)))))))))))))))))))) && ((((x_31 + (-1.0 * _x_x_27)) <= -19.0) && (((x_30 + (-1.0 * _x_x_27)) <= -11.0) && (((x_28 + (-1.0 * _x_x_27)) <= -15.0) && (((x_27 + (-1.0 * _x_x_27)) <= -11.0) && (((x_26 + (-1.0 * _x_x_27)) <= -11.0) && (((x_23 + (-1.0 * _x_x_27)) <= -10.0) && (((x_22 + (-1.0 * _x_x_27)) <= -6.0) && (((x_19 + (-1.0 * _x_x_27)) <= -4.0) && (((x_18 + (-1.0 * _x_x_27)) <= -20.0) && (((x_17 + (-1.0 * _x_x_27)) <= -13.0) && (((x_16 + (-1.0 * _x_x_27)) <= -10.0) && (((x_13 + (-1.0 * _x_x_27)) <= -4.0) && (((x_12 + (-1.0 * _x_x_27)) <= -5.0) && (((x_11 + (-1.0 * _x_x_27)) <= -12.0) && (((x_10 + (-1.0 * _x_x_27)) <= -20.0) && (((x_9 + (-1.0 * _x_x_27)) <= -16.0) && (((x_6 + (-1.0 * _x_x_27)) <= -20.0) && ((x_8 + (-1.0 * _x_x_27)) <= -16.0)))))))))))))))))) && (((x_31 + (-1.0 * _x_x_27)) == -19.0) || (((x_30 + (-1.0 * _x_x_27)) == -11.0) || (((x_28 + (-1.0 * _x_x_27)) == -15.0) || (((x_27 + (-1.0 * _x_x_27)) == -11.0) || (((x_26 + (-1.0 * _x_x_27)) == -11.0) || (((x_23 + (-1.0 * _x_x_27)) == -10.0) || (((x_22 + (-1.0 * _x_x_27)) == -6.0) || (((x_19 + (-1.0 * _x_x_27)) == -4.0) || (((x_18 + (-1.0 * _x_x_27)) == -20.0) || (((x_17 + (-1.0 * _x_x_27)) == -13.0) || (((x_16 + (-1.0 * _x_x_27)) == -10.0) || (((x_13 + (-1.0 * _x_x_27)) == -4.0) || (((x_12 + (-1.0 * _x_x_27)) == -5.0) || (((x_11 + (-1.0 * _x_x_27)) == -12.0) || (((x_10 + (-1.0 * _x_x_27)) == -20.0) || (((x_9 + (-1.0 * _x_x_27)) == -16.0) || (((x_6 + (-1.0 * _x_x_27)) == -20.0) || ((x_8 + (-1.0 * _x_x_27)) == -16.0)))))))))))))))))))) && ((((x_34 + (-1.0 * _x_x_28)) <= -15.0) && (((x_32 + (-1.0 * _x_x_28)) <= -2.0) && (((x_27 + (-1.0 * _x_x_28)) <= -6.0) && (((x_25 + (-1.0 * _x_x_28)) <= -4.0) && (((x_22 + (-1.0 * _x_x_28)) <= -16.0) && (((x_21 + (-1.0 * _x_x_28)) <= -1.0) && (((x_20 + (-1.0 * _x_x_28)) <= -4.0) && (((x_19 + (-1.0 * _x_x_28)) <= -6.0) && (((x_18 + (-1.0 * _x_x_28)) <= -18.0) && (((x_17 + (-1.0 * _x_x_28)) <= -4.0) && (((x_15 + (-1.0 * _x_x_28)) <= -3.0) && (((x_14 + (-1.0 * _x_x_28)) <= -9.0) && (((x_13 + (-1.0 * _x_x_28)) <= -19.0) && (((x_8 + (-1.0 * _x_x_28)) <= -9.0) && (((x_7 + (-1.0 * _x_x_28)) <= -10.0) && (((x_6 + (-1.0 * _x_x_28)) <= -16.0) && (((x_0 + (-1.0 * _x_x_28)) <= -12.0) && ((x_3 + (-1.0 * _x_x_28)) <= -11.0)))))))))))))))))) && (((x_34 + (-1.0 * _x_x_28)) == -15.0) || (((x_32 + (-1.0 * _x_x_28)) == -2.0) || (((x_27 + (-1.0 * _x_x_28)) == -6.0) || (((x_25 + (-1.0 * _x_x_28)) == -4.0) || (((x_22 + (-1.0 * _x_x_28)) == -16.0) || (((x_21 + (-1.0 * _x_x_28)) == -1.0) || (((x_20 + (-1.0 * _x_x_28)) == -4.0) || (((x_19 + (-1.0 * _x_x_28)) == -6.0) || (((x_18 + (-1.0 * _x_x_28)) == -18.0) || (((x_17 + (-1.0 * _x_x_28)) == -4.0) || (((x_15 + (-1.0 * _x_x_28)) == -3.0) || (((x_14 + (-1.0 * _x_x_28)) == -9.0) || (((x_13 + (-1.0 * _x_x_28)) == -19.0) || (((x_8 + (-1.0 * _x_x_28)) == -9.0) || (((x_7 + (-1.0 * _x_x_28)) == -10.0) || (((x_6 + (-1.0 * _x_x_28)) == -16.0) || (((x_0 + (-1.0 * _x_x_28)) == -12.0) || ((x_3 + (-1.0 * _x_x_28)) == -11.0)))))))))))))))))))) && ((((x_35 + (-1.0 * _x_x_29)) <= -14.0) && (((x_32 + (-1.0 * _x_x_29)) <= -10.0) && (((x_31 + (-1.0 * _x_x_29)) <= -11.0) && (((x_30 + (-1.0 * _x_x_29)) <= -12.0) && (((x_29 + (-1.0 * _x_x_29)) <= -12.0) && (((x_28 + (-1.0 * _x_x_29)) <= -19.0) && (((x_27 + (-1.0 * _x_x_29)) <= -14.0) && (((x_26 + (-1.0 * _x_x_29)) <= -5.0) && (((x_25 + (-1.0 * _x_x_29)) <= -12.0) && (((x_23 + (-1.0 * _x_x_29)) <= -1.0) && (((x_22 + (-1.0 * _x_x_29)) <= -4.0) && (((x_21 + (-1.0 * _x_x_29)) <= -6.0) && (((x_20 + (-1.0 * _x_x_29)) <= -6.0) && (((x_17 + (-1.0 * _x_x_29)) <= -11.0) && (((x_16 + (-1.0 * _x_x_29)) <= -19.0) && (((x_15 + (-1.0 * _x_x_29)) <= -19.0) && (((x_3 + (-1.0 * _x_x_29)) <= -7.0) && ((x_9 + (-1.0 * _x_x_29)) <= -17.0)))))))))))))))))) && (((x_35 + (-1.0 * _x_x_29)) == -14.0) || (((x_32 + (-1.0 * _x_x_29)) == -10.0) || (((x_31 + (-1.0 * _x_x_29)) == -11.0) || (((x_30 + (-1.0 * _x_x_29)) == -12.0) || (((x_29 + (-1.0 * _x_x_29)) == -12.0) || (((x_28 + (-1.0 * _x_x_29)) == -19.0) || (((x_27 + (-1.0 * _x_x_29)) == -14.0) || (((x_26 + (-1.0 * _x_x_29)) == -5.0) || (((x_25 + (-1.0 * _x_x_29)) == -12.0) || (((x_23 + (-1.0 * _x_x_29)) == -1.0) || (((x_22 + (-1.0 * _x_x_29)) == -4.0) || (((x_21 + (-1.0 * _x_x_29)) == -6.0) || (((x_20 + (-1.0 * _x_x_29)) == -6.0) || (((x_17 + (-1.0 * _x_x_29)) == -11.0) || (((x_16 + (-1.0 * _x_x_29)) == -19.0) || (((x_15 + (-1.0 * _x_x_29)) == -19.0) || (((x_3 + (-1.0 * _x_x_29)) == -7.0) || ((x_9 + (-1.0 * _x_x_29)) == -17.0)))))))))))))))))))) && ((((x_35 + (-1.0 * _x_x_30)) <= -17.0) && (((x_32 + (-1.0 * _x_x_30)) <= -1.0) && (((x_31 + (-1.0 * _x_x_30)) <= -12.0) && (((x_27 + (-1.0 * _x_x_30)) <= -2.0) && (((x_23 + (-1.0 * _x_x_30)) <= -4.0) && (((x_18 + (-1.0 * _x_x_30)) <= -11.0) && (((x_17 + (-1.0 * _x_x_30)) <= -1.0) && (((x_16 + (-1.0 * _x_x_30)) <= -15.0) && (((x_14 + (-1.0 * _x_x_30)) <= -10.0) && (((x_13 + (-1.0 * _x_x_30)) <= -12.0) && (((x_12 + (-1.0 * _x_x_30)) <= -13.0) && (((x_10 + (-1.0 * _x_x_30)) <= -5.0) && (((x_9 + (-1.0 * _x_x_30)) <= -10.0) && (((x_8 + (-1.0 * _x_x_30)) <= -19.0) && (((x_7 + (-1.0 * _x_x_30)) <= -9.0) && (((x_6 + (-1.0 * _x_x_30)) <= -16.0) && (((x_0 + (-1.0 * _x_x_30)) <= -9.0) && ((x_5 + (-1.0 * _x_x_30)) <= -9.0)))))))))))))))))) && (((x_35 + (-1.0 * _x_x_30)) == -17.0) || (((x_32 + (-1.0 * _x_x_30)) == -1.0) || (((x_31 + (-1.0 * _x_x_30)) == -12.0) || (((x_27 + (-1.0 * _x_x_30)) == -2.0) || (((x_23 + (-1.0 * _x_x_30)) == -4.0) || (((x_18 + (-1.0 * _x_x_30)) == -11.0) || (((x_17 + (-1.0 * _x_x_30)) == -1.0) || (((x_16 + (-1.0 * _x_x_30)) == -15.0) || (((x_14 + (-1.0 * _x_x_30)) == -10.0) || (((x_13 + (-1.0 * _x_x_30)) == -12.0) || (((x_12 + (-1.0 * _x_x_30)) == -13.0) || (((x_10 + (-1.0 * _x_x_30)) == -5.0) || (((x_9 + (-1.0 * _x_x_30)) == -10.0) || (((x_8 + (-1.0 * _x_x_30)) == -19.0) || (((x_7 + (-1.0 * _x_x_30)) == -9.0) || (((x_6 + (-1.0 * _x_x_30)) == -16.0) || (((x_0 + (-1.0 * _x_x_30)) == -9.0) || ((x_5 + (-1.0 * _x_x_30)) == -9.0)))))))))))))))))))) && ((((x_35 + (-1.0 * _x_x_31)) <= -15.0) && (((x_34 + (-1.0 * _x_x_31)) <= -5.0) && (((x_32 + (-1.0 * _x_x_31)) <= -2.0) && (((x_30 + (-1.0 * _x_x_31)) <= -9.0) && (((x_24 + (-1.0 * _x_x_31)) <= -16.0) && (((x_21 + (-1.0 * _x_x_31)) <= -5.0) && (((x_19 + (-1.0 * _x_x_31)) <= -18.0) && (((x_17 + (-1.0 * _x_x_31)) <= -11.0) && (((x_16 + (-1.0 * _x_x_31)) <= -10.0) && (((x_14 + (-1.0 * _x_x_31)) <= -12.0) && (((x_13 + (-1.0 * _x_x_31)) <= -3.0) && (((x_12 + (-1.0 * _x_x_31)) <= -8.0) && (((x_8 + (-1.0 * _x_x_31)) <= -17.0) && (((x_7 + (-1.0 * _x_x_31)) <= -17.0) && (((x_6 + (-1.0 * _x_x_31)) <= -2.0) && (((x_4 + (-1.0 * _x_x_31)) <= -1.0) && (((x_1 + (-1.0 * _x_x_31)) <= -20.0) && ((x_3 + (-1.0 * _x_x_31)) <= -14.0)))))))))))))))))) && (((x_35 + (-1.0 * _x_x_31)) == -15.0) || (((x_34 + (-1.0 * _x_x_31)) == -5.0) || (((x_32 + (-1.0 * _x_x_31)) == -2.0) || (((x_30 + (-1.0 * _x_x_31)) == -9.0) || (((x_24 + (-1.0 * _x_x_31)) == -16.0) || (((x_21 + (-1.0 * _x_x_31)) == -5.0) || (((x_19 + (-1.0 * _x_x_31)) == -18.0) || (((x_17 + (-1.0 * _x_x_31)) == -11.0) || (((x_16 + (-1.0 * _x_x_31)) == -10.0) || (((x_14 + (-1.0 * _x_x_31)) == -12.0) || (((x_13 + (-1.0 * _x_x_31)) == -3.0) || (((x_12 + (-1.0 * _x_x_31)) == -8.0) || (((x_8 + (-1.0 * _x_x_31)) == -17.0) || (((x_7 + (-1.0 * _x_x_31)) == -17.0) || (((x_6 + (-1.0 * _x_x_31)) == -2.0) || (((x_4 + (-1.0 * _x_x_31)) == -1.0) || (((x_1 + (-1.0 * _x_x_31)) == -20.0) || ((x_3 + (-1.0 * _x_x_31)) == -14.0)))))))))))))))))))) && ((((x_35 + (-1.0 * _x_x_32)) <= -1.0) && (((x_34 + (-1.0 * _x_x_32)) <= -14.0) && (((x_32 + (-1.0 * _x_x_32)) <= -8.0) && (((x_31 + (-1.0 * _x_x_32)) <= -11.0) && (((x_29 + (-1.0 * _x_x_32)) <= -12.0) && (((x_28 + (-1.0 * _x_x_32)) <= -15.0) && (((x_26 + (-1.0 * _x_x_32)) <= -8.0) && (((x_24 + (-1.0 * _x_x_32)) <= -11.0) && (((x_23 + (-1.0 * _x_x_32)) <= -18.0) && (((x_19 + (-1.0 * _x_x_32)) <= -19.0) && (((x_18 + (-1.0 * _x_x_32)) <= -19.0) && (((x_17 + (-1.0 * _x_x_32)) <= -1.0) && (((x_16 + (-1.0 * _x_x_32)) <= -16.0) && (((x_13 + (-1.0 * _x_x_32)) <= -8.0) && (((x_12 + (-1.0 * _x_x_32)) <= -1.0) && (((x_11 + (-1.0 * _x_x_32)) <= -5.0) && (((x_5 + (-1.0 * _x_x_32)) <= -11.0) && ((x_10 + (-1.0 * _x_x_32)) <= -16.0)))))))))))))))))) && (((x_35 + (-1.0 * _x_x_32)) == -1.0) || (((x_34 + (-1.0 * _x_x_32)) == -14.0) || (((x_32 + (-1.0 * _x_x_32)) == -8.0) || (((x_31 + (-1.0 * _x_x_32)) == -11.0) || (((x_29 + (-1.0 * _x_x_32)) == -12.0) || (((x_28 + (-1.0 * _x_x_32)) == -15.0) || (((x_26 + (-1.0 * _x_x_32)) == -8.0) || (((x_24 + (-1.0 * _x_x_32)) == -11.0) || (((x_23 + (-1.0 * _x_x_32)) == -18.0) || (((x_19 + (-1.0 * _x_x_32)) == -19.0) || (((x_18 + (-1.0 * _x_x_32)) == -19.0) || (((x_17 + (-1.0 * _x_x_32)) == -1.0) || (((x_16 + (-1.0 * _x_x_32)) == -16.0) || (((x_13 + (-1.0 * _x_x_32)) == -8.0) || (((x_12 + (-1.0 * _x_x_32)) == -1.0) || (((x_11 + (-1.0 * _x_x_32)) == -5.0) || (((x_5 + (-1.0 * _x_x_32)) == -11.0) || ((x_10 + (-1.0 * _x_x_32)) == -16.0)))))))))))))))))))) && ((((x_35 + (-1.0 * _x_x_33)) <= -7.0) && (((x_33 + (-1.0 * _x_x_33)) <= -19.0) && (((x_31 + (-1.0 * _x_x_33)) <= -11.0) && (((x_28 + (-1.0 * _x_x_33)) <= -7.0) && (((x_26 + (-1.0 * _x_x_33)) <= -18.0) && (((x_22 + (-1.0 * _x_x_33)) <= -2.0) && (((x_21 + (-1.0 * _x_x_33)) <= -19.0) && (((x_19 + (-1.0 * _x_x_33)) <= -4.0) && (((x_14 + (-1.0 * _x_x_33)) <= -12.0) && (((x_13 + (-1.0 * _x_x_33)) <= -1.0) && (((x_11 + (-1.0 * _x_x_33)) <= -20.0) && (((x_8 + (-1.0 * _x_x_33)) <= -18.0) && (((x_7 + (-1.0 * _x_x_33)) <= -17.0) && (((x_6 + (-1.0 * _x_x_33)) <= -4.0) && (((x_4 + (-1.0 * _x_x_33)) <= -11.0) && (((x_3 + (-1.0 * _x_x_33)) <= -18.0) && (((x_0 + (-1.0 * _x_x_33)) <= -13.0) && ((x_1 + (-1.0 * _x_x_33)) <= -16.0)))))))))))))))))) && (((x_35 + (-1.0 * _x_x_33)) == -7.0) || (((x_33 + (-1.0 * _x_x_33)) == -19.0) || (((x_31 + (-1.0 * _x_x_33)) == -11.0) || (((x_28 + (-1.0 * _x_x_33)) == -7.0) || (((x_26 + (-1.0 * _x_x_33)) == -18.0) || (((x_22 + (-1.0 * _x_x_33)) == -2.0) || (((x_21 + (-1.0 * _x_x_33)) == -19.0) || (((x_19 + (-1.0 * _x_x_33)) == -4.0) || (((x_14 + (-1.0 * _x_x_33)) == -12.0) || (((x_13 + (-1.0 * _x_x_33)) == -1.0) || (((x_11 + (-1.0 * _x_x_33)) == -20.0) || (((x_8 + (-1.0 * _x_x_33)) == -18.0) || (((x_7 + (-1.0 * _x_x_33)) == -17.0) || (((x_6 + (-1.0 * _x_x_33)) == -4.0) || (((x_4 + (-1.0 * _x_x_33)) == -11.0) || (((x_3 + (-1.0 * _x_x_33)) == -18.0) || (((x_0 + (-1.0 * _x_x_33)) == -13.0) || ((x_1 + (-1.0 * _x_x_33)) == -16.0)))))))))))))))))))) && ((((x_33 + (-1.0 * _x_x_34)) <= -7.0) && (((x_32 + (-1.0 * _x_x_34)) <= -7.0) && (((x_29 + (-1.0 * _x_x_34)) <= -2.0) && (((x_28 + (-1.0 * _x_x_34)) <= -8.0) && (((x_25 + (-1.0 * _x_x_34)) <= -6.0) && (((x_22 + (-1.0 * _x_x_34)) <= -12.0) && (((x_20 + (-1.0 * _x_x_34)) <= -6.0) && (((x_17 + (-1.0 * _x_x_34)) <= -8.0) && (((x_16 + (-1.0 * _x_x_34)) <= -17.0) && (((x_14 + (-1.0 * _x_x_34)) <= -2.0) && (((x_11 + (-1.0 * _x_x_34)) <= -17.0) && (((x_10 + (-1.0 * _x_x_34)) <= -16.0) && (((x_8 + (-1.0 * _x_x_34)) <= -8.0) && (((x_6 + (-1.0 * _x_x_34)) <= -19.0) && (((x_4 + (-1.0 * _x_x_34)) <= -15.0) && (((x_3 + (-1.0 * _x_x_34)) <= -14.0) && (((x_0 + (-1.0 * _x_x_34)) <= -6.0) && ((x_2 + (-1.0 * _x_x_34)) <= -5.0)))))))))))))))))) && (((x_33 + (-1.0 * _x_x_34)) == -7.0) || (((x_32 + (-1.0 * _x_x_34)) == -7.0) || (((x_29 + (-1.0 * _x_x_34)) == -2.0) || (((x_28 + (-1.0 * _x_x_34)) == -8.0) || (((x_25 + (-1.0 * _x_x_34)) == -6.0) || (((x_22 + (-1.0 * _x_x_34)) == -12.0) || (((x_20 + (-1.0 * _x_x_34)) == -6.0) || (((x_17 + (-1.0 * _x_x_34)) == -8.0) || (((x_16 + (-1.0 * _x_x_34)) == -17.0) || (((x_14 + (-1.0 * _x_x_34)) == -2.0) || (((x_11 + (-1.0 * _x_x_34)) == -17.0) || (((x_10 + (-1.0 * _x_x_34)) == -16.0) || (((x_8 + (-1.0 * _x_x_34)) == -8.0) || (((x_6 + (-1.0 * _x_x_34)) == -19.0) || (((x_4 + (-1.0 * _x_x_34)) == -15.0) || (((x_3 + (-1.0 * _x_x_34)) == -14.0) || (((x_0 + (-1.0 * _x_x_34)) == -6.0) || ((x_2 + (-1.0 * _x_x_34)) == -5.0)))))))))))))))))))) && ((((x_33 + (-1.0 * _x_x_35)) <= -11.0) && (((x_32 + (-1.0 * _x_x_35)) <= -16.0) && (((x_31 + (-1.0 * _x_x_35)) <= -7.0) && (((x_30 + (-1.0 * _x_x_35)) <= -18.0) && (((x_29 + (-1.0 * _x_x_35)) <= -18.0) && (((x_28 + (-1.0 * _x_x_35)) <= -6.0) && (((x_25 + (-1.0 * _x_x_35)) <= -5.0) && (((x_20 + (-1.0 * _x_x_35)) <= -19.0) && (((x_19 + (-1.0 * _x_x_35)) <= -5.0) && (((x_17 + (-1.0 * _x_x_35)) <= -1.0) && (((x_16 + (-1.0 * _x_x_35)) <= -19.0) && (((x_11 + (-1.0 * _x_x_35)) <= -19.0) && (((x_10 + (-1.0 * _x_x_35)) <= -16.0) && (((x_7 + (-1.0 * _x_x_35)) <= -18.0) && (((x_6 + (-1.0 * _x_x_35)) <= -19.0) && (((x_5 + (-1.0 * _x_x_35)) <= -17.0) && (((x_2 + (-1.0 * _x_x_35)) <= -11.0) && ((x_4 + (-1.0 * _x_x_35)) <= -18.0)))))))))))))))))) && (((x_33 + (-1.0 * _x_x_35)) == -11.0) || (((x_32 + (-1.0 * _x_x_35)) == -16.0) || (((x_31 + (-1.0 * _x_x_35)) == -7.0) || (((x_30 + (-1.0 * _x_x_35)) == -18.0) || (((x_29 + (-1.0 * _x_x_35)) == -18.0) || (((x_28 + (-1.0 * _x_x_35)) == -6.0) || (((x_25 + (-1.0 * _x_x_35)) == -5.0) || (((x_20 + (-1.0 * _x_x_35)) == -19.0) || (((x_19 + (-1.0 * _x_x_35)) == -5.0) || (((x_17 + (-1.0 * _x_x_35)) == -1.0) || (((x_16 + (-1.0 * _x_x_35)) == -19.0) || (((x_11 + (-1.0 * _x_x_35)) == -19.0) || (((x_10 + (-1.0 * _x_x_35)) == -16.0) || (((x_7 + (-1.0 * _x_x_35)) == -18.0) || (((x_6 + (-1.0 * _x_x_35)) == -19.0) || (((x_5 + (-1.0 * _x_x_35)) == -17.0) || (((x_2 + (-1.0 * _x_x_35)) == -11.0) || ((x_4 + (-1.0 * _x_x_35)) == -18.0)))))))))))))))))))) && ((((_EL_U_3834 == (_x__EL_U_3834 || ((_x__EL_U_3830 && (18.0 <= (_x_x_18 + (-1.0 * _x_x_26)))) || ( !_x__EL_X_3828)))) && ((_EL_X_3828 == ((_x_x_16 + (-1.0 * _x_x_31)) <= -13.0)) && (_EL_U_3830 == ((_x__EL_U_3830 && (18.0 <= (_x_x_18 + (-1.0 * _x_x_26)))) || ( !_x__EL_X_3828))))) && (_x__J3857 == (( !(_J3857 && _J3862)) && ((_J3857 && _J3862) || ((( !_EL_X_3828) || ( !(( !_EL_X_3828) || ((18.0 <= (x_18 + (-1.0 * x_26))) && _EL_U_3830)))) || _J3857))))) && (_x__J3862 == (( !(_J3857 && _J3862)) && ((_J3857 && _J3862) || (((( !_EL_X_3828) || ((18.0 <= (x_18 + (-1.0 * x_26))) && _EL_U_3830)) || ( !(_EL_U_3834 || (( !_EL_X_3828) || ((18.0 <= (x_18 + (-1.0 * x_26))) && _EL_U_3830))))) || _J3862))))));
_J3862 = _x__J3862;
x_1 = _x_x_1;
_J3857 = _x__J3857;
x_23 = _x_x_23;
_EL_U_3830 = _x__EL_U_3830;
x_26 = _x_x_26;
x_24 = _x_x_24;
x_15 = _x_x_15;
x_18 = _x_x_18;
_EL_X_3828 = _x__EL_X_3828;
_EL_U_3834 = _x__EL_U_3834;
x_34 = _x_x_34;
x_0 = _x_x_0;
x_4 = _x_x_4;
x_3 = _x_x_3;
x_13 = _x_x_13;
x_2 = _x_x_2;
x_5 = _x_x_5;
x_21 = _x_x_21;
x_6 = _x_x_6;
x_8 = _x_x_8;
x_7 = _x_x_7;
x_9 = _x_x_9;
x_10 = _x_x_10;
x_14 = _x_x_14;
x_11 = _x_x_11;
x_35 = _x_x_35;
x_16 = _x_x_16;
x_17 = _x_x_17;
x_22 = _x_x_22;
x_19 = _x_x_19;
x_20 = _x_x_20;
x_27 = _x_x_27;
x_25 = _x_x_25;
x_28 = _x_x_28;
x_29 = _x_x_29;
x_30 = _x_x_30;
x_31 = _x_x_31;
x_32 = _x_x_32;
x_33 = _x_x_33;
x_12 = _x_x_12;
}
}
|
the_stack_data/73574813.c | //*****************************************************************************
//
// startup_ccs.c - Startup code for use with TI's Code Composer Studio.
//
// Copyright (c) 2006-2013 Texas Instruments Incorporated. All rights reserved.
// Software License Agreement
//
// Texas Instruments (TI) is supplying this software for use solely and
// exclusively on TI's microcontroller products. The software is owned by
// TI and/or its suppliers, and is protected under applicable copyright
// laws. You may not combine this software with "viral" open-source
// software in order to form a larger program.
//
// THIS SOFTWARE IS PROVIDED "AS IS" AND WITH ALL FAULTS.
// NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT
// NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. TI SHALL NOT, UNDER ANY
// CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
// DAMAGES, FOR ANY REASON WHATSOEVER.
//
// This is part of revision 10636 of the EK-LM3S2965 Firmware Package.
//
//*****************************************************************************
//*****************************************************************************
//
// Forward declaration of the default fault handlers.
//
//*****************************************************************************
void ResetISR(void);
static void NmiSR(void);
static void FaultISR(void);
static void IntDefaultHandler(void);
//*****************************************************************************
//
// External declaration for the reset handler that is to be called when the
// processor is started
//
//*****************************************************************************
extern void _c_int00(void);
//*****************************************************************************
//
// Linker variable that marks the top of the stack.
//
//*****************************************************************************
extern unsigned long __STACK_TOP;
//*****************************************************************************
//
// External declaration for the interrupt handler used by the application.
//
//*****************************************************************************
extern void GPIOGIntHandler(void);
//*****************************************************************************
//
// The vector table. Note that the proper constructs must be placed on this to
// ensure that it ends up at physical address 0x0000.0000 or at the start of
// the program if located at a start address other than 0.
//
//*****************************************************************************
#pragma DATA_SECTION(g_pfnVectors, ".intvecs")
void (* const g_pfnVectors[])(void) =
{
(void (*)(void))((unsigned long)&__STACK_TOP),
// The initial stack pointer
ResetISR, // The reset handler
NmiSR, // The NMI handler
FaultISR, // The hard fault handler
IntDefaultHandler, // The MPU fault handler
IntDefaultHandler, // The bus fault handler
IntDefaultHandler, // The usage fault handler
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
IntDefaultHandler, // SVCall handler
IntDefaultHandler, // Debug monitor handler
0, // Reserved
IntDefaultHandler, // The PendSV handler
IntDefaultHandler, // The SysTick handler
IntDefaultHandler, // GPIO Port A
IntDefaultHandler, // GPIO Port B
IntDefaultHandler, // GPIO Port C
IntDefaultHandler, // GPIO Port D
IntDefaultHandler, // GPIO Port E
IntDefaultHandler, // UART0 Rx and Tx
IntDefaultHandler, // UART1 Rx and Tx
IntDefaultHandler, // SSI0 Rx and Tx
IntDefaultHandler, // I2C0 Master and Slave
IntDefaultHandler, // PWM Fault
IntDefaultHandler, // PWM Generator 0
IntDefaultHandler, // PWM Generator 1
IntDefaultHandler, // PWM Generator 2
IntDefaultHandler, // Quadrature Encoder 0
IntDefaultHandler, // ADC Sequence 0
IntDefaultHandler, // ADC Sequence 1
IntDefaultHandler, // ADC Sequence 2
IntDefaultHandler, // ADC Sequence 3
IntDefaultHandler, // Watchdog timer
IntDefaultHandler, // Timer 0 subtimer A
IntDefaultHandler, // Timer 0 subtimer B
IntDefaultHandler, // Timer 1 subtimer A
IntDefaultHandler, // Timer 1 subtimer B
IntDefaultHandler, // Timer 2 subtimer A
IntDefaultHandler, // Timer 2 subtimer B
IntDefaultHandler, // Analog Comparator 0
IntDefaultHandler, // Analog Comparator 1
IntDefaultHandler, // Analog Comparator 2
IntDefaultHandler, // System Control (PLL, OSC, BO)
IntDefaultHandler, // FLASH Control
IntDefaultHandler, // GPIO Port F
GPIOGIntHandler, // GPIO Port G
IntDefaultHandler, // GPIO Port H
IntDefaultHandler, // UART2 Rx and Tx
IntDefaultHandler, // SSI1 Rx and Tx
IntDefaultHandler, // Timer 3 subtimer A
IntDefaultHandler, // Timer 3 subtimer B
IntDefaultHandler, // I2C1 Master and Slave
IntDefaultHandler, // Quadrature Encoder 1
IntDefaultHandler, // CAN0
IntDefaultHandler, // CAN1
IntDefaultHandler, // CAN2
IntDefaultHandler, // Ethernet
IntDefaultHandler // Hibernate
};
//*****************************************************************************
//
// This is the code that gets called when the processor first starts execution
// following a reset event. Only the absolutely necessary set is performed,
// after which the application supplied entry() routine is called. Any fancy
// actions (such as making decisions based on the reset cause register, and
// resetting the bits in that register) are left solely in the hands of the
// application.
//
//*****************************************************************************
void
ResetISR(void)
{
//
// Jump to the CCS C initialization routine.
//
__asm(" .global _c_int00\n"
" b.w _c_int00");
}
//*****************************************************************************
//
// This is the code that gets called when the processor receives a NMI. This
// simply enters an infinite loop, preserving the system state for examination
// by a debugger.
//
//*****************************************************************************
static void
NmiSR(void)
{
//
// Enter an infinite loop.
//
while(1)
{
}
}
//*****************************************************************************
//
// This is the code that gets called when the processor receives a fault
// interrupt. This simply enters an infinite loop, preserving the system state
// for examination by a debugger.
//
//*****************************************************************************
static void
FaultISR(void)
{
//
// Enter an infinite loop.
//
while(1)
{
}
}
//*****************************************************************************
//
// This is the code that gets called when the processor receives an unexpected
// interrupt. This simply enters an infinite loop, preserving the system state
// for examination by a debugger.
//
//*****************************************************************************
static void
IntDefaultHandler(void)
{
//
// Go into an infinite loop.
//
while(1)
{
}
}
|
the_stack_data/977716.c | #include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define null 0
struct processData
{
int arrivaltime;
int priority;
int runningtime;
int id;
};
int main(int argc, char * argv[])
{
FILE * pFile;
pFile = fopen("processes.txt", "w");
int no;
struct processData pData;
printf("Please enter the number of processes you want to generate: ");
scanf("%d", &no);
srand(time(null));
//fprintf(pFile,"%d\n",no);
fprintf(pFile, "#id arrival runtime priority\n");
pData.arrivaltime = 1;
for (int i = 1 ; i <= no ; i++)
{
//generate Data Randomly
//[min-max] = rand() % (max_number + 1 - minimum_number) + minimum_number
pData.id = i;
pData.arrivaltime += rand() % (11); //processes arrives in order
pData.runningtime = rand() % (30);
pData.priority = rand() % (11);
fprintf(pFile, "%d\t%d\t%d\t%d\n", pData.id, pData.arrivaltime, pData.runningtime, pData.priority);
}
fclose(pFile);
}
|
the_stack_data/745791.c | /* { dg-do compile } */
/* { dg-options "-O3 -Wall" } */
/* based on PR 37861 */
extern int printf (__const char *__restrict __format, ...);
static int f2(char formatstr[10][100])
{
int anz;
for( anz = 0; anz < 10; ++anz ) {
printf( "%d %s\n", anz, formatstr[anz] );
}
return anz;
}
static char formatstr[10][100];
int main( void )
{
int anz;
anz = f2(formatstr);
printf( " %d\n",anz);
return 0;
}
|
the_stack_data/50138136.c | /*
* ISC License
*
* Copyright (C) 1988-2018 by
* O. Hol
* S. de Graaf
* A.J. van Genderen
* N.P. van der Meijs
* Delft University of Technology
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <stdio.h>
#include <stdarg.h>
/* BTNAND : returns result of nand-operation of given bits */
char BTNAND (int arg0, ...)
{
va_list ap;
char tmps;
char res;
res = 'O';
if ((tmps = (char)arg0) != '@' && res != 'I') {
if (tmps == 'O')
res = 'I';
else if (tmps == 'X')
res = 'X';
va_start (ap, arg0);
while ((tmps = (char)va_arg (ap, int)) != '@' && res != 'I') {
if (tmps == 'O')
res = 'I';
else if (tmps == 'X')
res = 'X';
}
va_end (ap);
}
return (res);
}
|
the_stack_data/182953920.c | /* ************************************************************************** */
/* */
/* ::: :::::::: */
/* rush01.c :+: :+: :+: */
/* +:+ +:+ +:+ */
/* By: mpatrini <[email protected]> +#+ +:+ +#+ */
/* +#+#+#+#+#+ +#+ */
/* Created: 2021/11/27 12:57:50 by mpatrini #+# #+# */
/* Updated: 2021/11/27 12:57:54 by mpatrini ### ########.fr */
/* */
/* ************************************************************************** */
#include <unistd.h>
void ft_putchar(char c);
void ft_print(int x, int y, int o, int v)
{
if ((o == -1 && v == -1) || (o == x && v == y && v != -1 && x != -1))
{
ft_putchar('A');
}
else if ((v == -1 && o == x) || (v == y && o == -1))
{
ft_putchar('C');
}
else if (v == -1 || v == y || o == x || o == -1)
{
ft_putchar('B');
}
else
{
ft_putchar(' ');
}
}
void ft_print_rev(int x, int y, int o, int v)
{
if ((o == -1 && v == -1) || (o == x && v == y && v != -1 && x != -1))
{
ft_putchar('C');
}
else if ((v == -1 && o == x) || (v == y && o == -1))
{
ft_putchar('A');
}
else if (v == -1 || v == y || o == x || o == -1)
{
ft_putchar('B');
}
else
{
ft_putchar(' ');
}
}
void ft_posneg(int x, int y)
{
int o;
int v;
v = -1;
if (x > 0)
x *= -1;
if (y > 0)
y *= -1;
while (v >= y)
{
o = -1;
while (o >= x)
{
ft_print(x, y, o, v);
o--;
}
if (x != 0)
{
write(1, "\n", 1);
}
v--;
}
}
void ft_mixed(int x, int y)
{
int o;
int v;
v = -1;
if (x > 0)
x *= -1;
if (y > 0)
y *= -1;
while (v >= y)
{
o = -1;
while (o >= x)
{
ft_print_rev(x, y, o, v);
o--;
}
if (x != 0)
{
write(1, "\n", 1);
}
v--;
}
}
void rush(int x, int y)
{
if ((x > 0 && y > 0) || (x < 0 && y < 0))
{
ft_posneg(x, y);
}
else
{
ft_mixed(x, y);
}
}
|
the_stack_data/856033.c | #include <stdlib.h>
lldiv_t lldiv(long long num, long long den)
{
return (lldiv_t){ num / den, num % den };
} |
the_stack_data/11074753.c | // aoi
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include <math.h>
#include <assert.h>
#define DEFAULT_OBJ_SIZE 32
#define OBJ_MASK 0xffffff
#define AOI_MARKER 0x01
#define AOI_WATCHER 0x02
#ifndef MAX
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
#endif
#ifndef MIN
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
#endif
typedef void (*aoi_free)(void *ud);
typedef struct aoi_node aoi_node;
typedef struct aoi_tower aoi_tower;
typedef struct aoi_set {
int cap;
int len;
void **slot; // 里面的元素指针由外部创建好后传入
} aoi_set;
typedef struct aoi_node {
int id;
aoi_tower *tower;
aoi_node *prev;
aoi_node *next;
} aoi_node;
typedef struct aoi_list {
aoi_node *head;
aoi_node *tail;
} aoi_list;
typedef struct aoi_obj {
int id;
int pos[3];
uint8_t mode;
bool inuse;
aoi_node *marker_node;
aoi_set *watcher_nodes;
} aoi_obj;
typedef struct aoi_tower {
int idx;
int pos[3];
aoi_list marker_list;
aoi_list watcher_list;
} aoi_tower;
typedef struct aoi_result {
aoi_set *leave_send;
aoi_set *enter_send;
aoi_set *leave_recv;
aoi_set *enter_recv;
} aoi_result;
typedef struct aoi_t {
int map_size[3];
int tower_size[3];
int tower_limit[3];
int radius_limit[3];
int around_cap;
/* obj */
aoi_set *obj_set;
aoi_set *rcv_set;
/* tower */
aoi_tower *tower_list;
aoi_set *tmp_set;
aoi_set *enter_set;
aoi_set *leave_set;
/* result */
aoi_result result;
} aoi_t;
/************* aoi_private *************/
/* aoi set */
static aoi_set *
_aoi_set_new(int cap) {
aoi_set *set = malloc(sizeof(*set));
set->cap = cap;
set->len = 0;
set->slot = malloc(sizeof(void *) * set->cap);
memset(set->slot, 0, sizeof(void *) * set->cap);
return set;
}
static int
_aoi_set_add(aoi_set *set, void *elem) {
if (set->len >= set->cap) {
int new_cap = set->cap * 2;
assert((new_cap - 1) < OBJ_MASK);
set->slot = realloc(set->slot, new_cap);
set->cap = new_cap;
}
set->slot[set->len++] = elem;
return set->len;
}
static void
_aoi_set_del(aoi_set *set, void *elem) {
for (int i = 0; i < set->len; ++i) {
if (set->slot[i] == elem) {
if (i < (set->len - 1)) {
memmove(set->slot+i, set->slot+i+1, (set->len-i-1)*sizeof(void *));
}
set->slot[--set->len] = NULL;
break;
}
}
}
static void *
_aoi_set_pop(aoi_set *set) {
if (set->len > 0) {
int idx = --set->len;
void* elem = set->slot[idx];
set->slot[idx] = NULL;
return elem;
}
return NULL;
}
static void
_aoi_set_clean(aoi_set *set) {
int len = set->len;
for (int i = 0; i < len; ++i) {
set->slot[--set->len] = NULL;
}
}
static void
_aoi_set_free(aoi_set *set) {
set->cap = set->len = 0;
free(set->slot);
free(set);
}
static void
_aoi_set_destory(aoi_set *set, aoi_free cb) {
for (int i = 0; i < set->len; ++i) {
if (cb) {
cb(set->slot[i]);
} else {
free(set->slot[i]);
}
}
_aoi_set_free(set);
}
static void
_aoi_set_dump(const char *prefix, aoi_set *set) {
if (set->len > 0) {
printf("%s set = ", prefix);
for (int i = 0; i < set->len; ++i) {
printf("%p ", set->slot[i]);
}
printf("\n");
}
}
/* aoi tower */
static int
_aoi_tower_idx(aoi_t *a, int tower_x, int tower_y, int tower_z) {
int tidx = tower_z*(a->tower_limit[0]*a->tower_limit[1]) + tower_y*a->tower_limit[0] + tower_x;
return tidx;
}
static int
_aoi_fix_pos(int v, int maxv) {
v = MAX(v, 0);
v = MIN(v, maxv);
return v;
}
static int
_offset_tower(aoi_t *a, aoi_tower *t, int idx, int offset) {
int val = t->pos[idx] + offset;
return _aoi_fix_pos(val, a->tower_limit[idx] - 1);
}
static aoi_set *
_aoi_around_towers(aoi_t *a, aoi_tower *t, aoi_set *set) {
int x1 = _offset_tower(a, t, 0, -a->radius_limit[0]);
int x2 = _offset_tower(a, t, 0, a->radius_limit[0]);
int y1 = _offset_tower(a, t, 1, -a->radius_limit[1]);
int y2 = _offset_tower(a, t, 1, a->radius_limit[1]);
int z1 = _offset_tower(a, t, 2, -a->radius_limit[2]);
int z2 = _offset_tower(a, t, 2, a->radius_limit[2]);
_aoi_set_clean(set);
for (int z = z1; z <= z2; ++z) {
for (int y = y1; y <= y2; ++y) {
for (int x = x1; x <= x2; ++x) {
int tidx = _aoi_tower_idx(a, x, y, z);
aoi_tower *t = &a->tower_list[tidx];
_aoi_set_add(set, t);
}
}
}
return set;
}
static aoi_tower *
_aoi_locate_tower(aoi_t *a, int x, int y, int z) {
int tower_x = (int)ceil((x+1)*1.0 / a->tower_size[0]) - 1;
int tower_y = (int)ceil((y+1)*1.0 / a->tower_size[1]) - 1;
int tower_z = (int)ceil((z+1)*1.0 / a->tower_size[2]) - 1;
int tidx = _aoi_tower_idx(a, tower_x, tower_y, tower_z);
aoi_tower *t = &a->tower_list[tidx];
return t;
}
static void
_aoi_list_add(aoi_list *list, aoi_node *node) {
if (list->tail){
list->tail->next = node;
node->prev = list->tail;
list->tail = node;
} else {
list->head = list->tail = node;
}
}
static void
_aoi_list_del(aoi_list *list, aoi_node *node) {
if (node == list->head) {
list->head = node->next;
if (node->next) {
node->next->prev = NULL;
} else {
list->head = list->tail = NULL;
}
} else if (node == list->tail) {
list->tail = node->prev;
if (node->prev) {
node->prev->next = NULL;
} else {
list->head = list->tail = NULL;
}
} else {
node->prev->next = node->next;
node->next->prev = node->prev;
}
node->next = node->prev = NULL;
node->tower = NULL;
}
static void
_aoi_result_add(aoi_tower *t, int self, uint8_t mode, aoi_result *result, bool isenter) {
if (result == NULL){
return;
}
aoi_node *node = NULL;
if (mode & AOI_MARKER) {
// 进入/离开后广播消息给观察者
aoi_set *sends = isenter ? result->enter_send : result->leave_send;
node = t->watcher_list.head;
while(node != NULL) {
if (node->id != self) {
_aoi_set_add(sends, (void *)(uintptr_t)node->id);
}
node = node->next;
}
}
if (mode & AOI_WATCHER) {
// 离开/进入后更新被观察者列表
aoi_set *recvs = isenter ? result->enter_recv : result->leave_recv;
node = t->marker_list.head;
while(node != NULL) {
if (node->id != self) {
_aoi_set_add(recvs, (void *)(uintptr_t)node->id);
}
node = node->next;
}
}
}
static void
_aoi_result_clear(aoi_result *result) {
_aoi_set_clean(result->enter_send);
_aoi_set_clean(result->enter_recv);
_aoi_set_clean(result->leave_send);
_aoi_set_clean(result->leave_recv);
}
static void
_aoi_towerlist_add(aoi_tower *t, aoi_obj *obj, uint8_t mode, aoi_result *result) {
int id = obj->id;
if (mode & AOI_MARKER) {
aoi_node *mnode = obj->marker_node;
if (mnode) {
assert(mnode->tower == NULL);
mnode->tower = t;
} else {
mnode = malloc(sizeof(*mnode));
mnode->id = id;
mnode->tower = t;
mnode->prev = NULL;
mnode->next = NULL;
obj->marker_node = mnode;
}
_aoi_list_add(&t->marker_list, mnode);
_aoi_result_add(t, id, mode, result, true);
}
if (mode & AOI_WATCHER) {
aoi_node *wnode = NULL;
for (int i = 0; i < obj->watcher_nodes->len; ++i) {
aoi_node *wn = (aoi_node *)obj->watcher_nodes->slot[i];
if (wn->tower == t) {
assert(0);
return;
} else if (wn->tower == NULL) {
wnode = wn;
break;
}
}
if (wnode) {
wnode->tower = t;
} else {
wnode = malloc(sizeof(*wnode));
wnode->id = id;
wnode->tower = t;
wnode->prev = NULL;
wnode->next = NULL;
_aoi_set_add(obj->watcher_nodes, wnode);
}
_aoi_list_add(&t->watcher_list, wnode);
_aoi_result_add(t, id, mode, result, true);
}
}
static void
_aoi_towerlist_del(aoi_tower *t, aoi_obj *obj, uint8_t mode, aoi_result *result) {
if (mode & AOI_MARKER) {
aoi_node *mnode = obj->marker_node;
assert(mnode->tower == t);
_aoi_list_del(&t->marker_list, mnode);
_aoi_result_add(t, obj->id, mode, result, false);
}
if (mode & AOI_WATCHER) {
for (int i = 0; i < obj->watcher_nodes->len; ++i) {
aoi_node *wnode = (aoi_node *)obj->watcher_nodes->slot[i];
if (wnode->tower == t) {
_aoi_list_del(&t->watcher_list, wnode);
_aoi_result_add(t, obj->id, mode, result, false);
break;
}
}
}
}
static void
_aoi_tower_diff(aoi_t *a, aoi_tower *ot, aoi_tower *nt) {
// clear
_aoi_set_clean(a->enter_set);
_aoi_set_clean(a->leave_set);
int dx = nt->pos[0] - ot->pos[0];
int dy = nt->pos[1] - ot->pos[1];
int dz = nt->pos[2] - ot->pos[2];
int dx_abs = abs(dx);
int dy_abs = abs(dy);
int dz_abs = abs(dz);
if (dx_abs <= 2*a->radius_limit[0]
&& dy_abs <= 2*a->radius_limit[1]
&& dz_abs <= 2*a->radius_limit[2]) {
int maxv;
int range1[3][2] = {0};
for (int i = 0; i < 3; ++i) {
maxv = a->tower_limit[i] - 1;
range1[i][0] = _aoi_fix_pos(ot->pos[i] - a->radius_limit[i], maxv);
range1[i][1] = _aoi_fix_pos(ot->pos[i] + a->radius_limit[i], maxv);
}
int range2[3][2] = {0};
for (int i = 0; i < 3; ++i) {
maxv = a->tower_limit[0] - 1;
range2[i][0] = _aoi_fix_pos(nt->pos[i] - a->radius_limit[i], maxv);
range2[i][1] = _aoi_fix_pos(nt->pos[i] + a->radius_limit[i], maxv);
}
int dir = 0;
int tidx = -1;
// x 轴
dir = dx/dx_abs;
for (int i = 0; i < dx_abs; ++i) {
if (a->radius_limit[0] > 0) {
int x0 = ot->pos[0] + i*dir;
int x1 = x0 - dir*a->radius_limit[0];
int x2 = x0 + dir*(a->radius_limit[0]+1);
for (int y = range1[1][0]; y <= range1[1][1]; ++y) {
for (int z = range1[2][0]; z <= range1[2][1]; ++z) {
// del
if (x1 >= 0 && x1 < a->tower_limit[0]) {
tidx = _aoi_tower_idx(a, x1, y, z);
aoi_tower *t = &a->tower_list[tidx];
_aoi_set_add(a->leave_set, t);
}
// add
if (x2 >= 0 && x2 < a->tower_limit[0]) {
if (y >= range2[1][0] && y <= range2[1][1]
&& z >= range2[2][0] && z <= range2[2][1]) {
tidx = _aoi_tower_idx(a, x2, y, z);
aoi_tower *t = &a->tower_list[tidx];
_aoi_set_add(a->enter_set, t);
}
}
}
}
}
}
// y 轴
dir = dy/dy_abs;
for (int i = 0; i < dy_abs; ++i) {
if (a->radius_limit[1] > 0) {
int y0 = ot->pos[1] + i*dir;
int y1 = y0 - dir*a->radius_limit[1];
int y2 = y0 + dir*(a->radius_limit[1]+1);
for (int x = range2[1][0]; x <= range2[1][1]; ++x) {
for (int z = range1[2][0]; z <= range1[2][1]; ++z) {
// del
if (y1 >= 0 && y1 < a->tower_limit[1]) {
if (x >= range1[0][0] && x <= range1[0][1]) {
tidx = _aoi_tower_idx(a, x, y1, z);
aoi_tower *t = &a->tower_list[tidx];
_aoi_set_add(a->leave_set, t);
}
}
// add
if (y2 >= 0 && y2 < a->tower_limit[1]) {
if (z >= range2[2][0] && z <= range2[2][1]) {
tidx = _aoi_tower_idx(a, x, y2, z);
aoi_tower *t = &a->tower_list[tidx];
_aoi_set_add(a->enter_set, t);
}
}
}
}
}
}
// z 轴
dir = dz/dz_abs;
for (int i = 0; i < dz_abs; ++i) {
if (a->radius_limit[2] > 0) {
int z0 = ot->pos[2] + i*dir;
int z1 = z0 - dir*a->radius_limit[2];
int z2 = z0 + dir*(a->radius_limit[2]+1);
for (int x = range2[1][0]; x <= range2[1][1]; ++x) {
for (int y = range2[2][0]; y <= range2[2][1]; ++y) {
// del
if (z1 >= 0 && z1 < a->tower_limit[2]) {
if (x >= range1[0][0] && x <= range1[0][1]
&& y >= range1[1][0] && y <= range1[1][1]) {
tidx = _aoi_tower_idx(a, x, y, z1);
aoi_tower *t = &a->tower_list[tidx];
_aoi_set_add(a->leave_set, t);
}
}
// add
if (z1 >= 0 && z1 < a->tower_limit[2]) {
tidx = _aoi_tower_idx(a, x, y, z2);
aoi_tower *t = &a->tower_list[tidx];
_aoi_set_add(a->enter_set, t);
}
}
}
}
}
} else {
_aoi_around_towers(a, ot, a->leave_set);
_aoi_around_towers(a, nt, a->enter_set);
}
}
/* aoi object */
static aoi_obj *
_aoi_obj_new(aoi_t *a, uint8_t mode, int x, int y, int z) {
aoi_obj *obj = _aoi_set_pop(a->rcv_set);
if (obj == NULL){
obj = (aoi_obj *)malloc(sizeof(*obj));
obj->id = _aoi_set_add(a->obj_set, obj);
obj->marker_node = NULL;
obj->watcher_nodes = NULL;
} else {
assert(!obj->inuse);
}
obj->pos[0] = x;
obj->pos[1] = y;
obj->pos[2] = z;
obj->mode = mode;
obj->inuse = true;
if (!obj->watcher_nodes && (mode & AOI_WATCHER)) {
obj->watcher_nodes = _aoi_set_new(a->around_cap);
}
return obj;
}
static void
_aoi_obj_free(void *ud) {
aoi_obj *obj = (aoi_obj *)ud;
aoi_node *mnode = obj->marker_node;
if (mnode) {
free(mnode);
obj->marker_node = NULL;
}
aoi_set *wnodes = obj->watcher_nodes;
if (wnodes) {
_aoi_set_destory(wnodes, NULL);
}
free(obj);
}
/************* aoi_public *************/
static aoi_t *
aoi_create(int *map_size, int *tower_size) {
aoi_t *a = malloc(sizeof(*a));
memset(a, 0, sizeof(*a));
memcpy(a->map_size, map_size, 3*sizeof(int));
memcpy(a->tower_size, tower_size, 3*sizeof(int));
a->radius_limit[0] = 1;
a->radius_limit[1] = 1;
a->radius_limit[2] = 0;
a->around_cap = (2*a->radius_limit[0]+1) * (2*a->radius_limit[1]+1) * (2*a->radius_limit[2]+1);
// init object slot
a->obj_set = _aoi_set_new(DEFAULT_OBJ_SIZE);
a->rcv_set = _aoi_set_new(DEFAULT_OBJ_SIZE);
// new tower list
int x_limit = (int)ceil(a->map_size[0]*1.0 / a->tower_size[0]);
int y_limit = (int)ceil(a->map_size[1]*1.0 / a->tower_size[1]);
int z_limit = (int)ceil(a->map_size[2]*1.0 / a->tower_size[2]);
a->tower_limit[0] = x_limit;
a->tower_limit[1] = y_limit;
a->tower_limit[2] = z_limit;
int tower_amt = x_limit * y_limit * z_limit;
assert(tower_amt > 0);
printf("%d %d %d, tower_amt=%d\n", x_limit, y_limit, z_limit, tower_amt);
a->tower_list = malloc(tower_amt * sizeof(aoi_tower));
// init tower_list
int idx = 0;
for (int z = 0; z < z_limit; ++z) {
for (int y = 0; y < y_limit; ++y) {
for (int x = 0; x < x_limit; ++x) {
aoi_tower *t = &a->tower_list[idx];
int tmp = _aoi_tower_idx(a, x, y, z);
assert(tmp == idx);
printf("%d %d %d, idx=%d\n", x, y, z, idx);
t->idx = idx;
t->pos[0] = x;
t->pos[1] = y;
t->pos[2] = z;
t->marker_list.head = t->marker_list.tail = NULL;
t->watcher_list.head = t->watcher_list.tail = NULL;
++idx;
}
}
}
// init set
a->tmp_set = _aoi_set_new(a->around_cap);
a->enter_set = _aoi_set_new(a->around_cap);
a->leave_set = _aoi_set_new(a->around_cap);
// ids
a->result.leave_send = _aoi_set_new(4);
a->result.enter_send = _aoi_set_new(4);
a->result.leave_recv = _aoi_set_new(4);
a->result.enter_recv = _aoi_set_new(4);
return a;
}
static void
aoi_destroy(aoi_t *a) {
// free tower
free(a->tower_list);
a->tower_list = NULL;
// free objs
_aoi_set_free(a->rcv_set);
_aoi_set_destory(a->obj_set, _aoi_obj_free);
// free set
_aoi_set_free(a->tmp_set);
_aoi_set_free(a->enter_set);
_aoi_set_free(a->leave_set);
// free result
_aoi_set_free(a->result.leave_send);
_aoi_set_free(a->result.enter_send);
_aoi_set_free(a->result.leave_recv);
_aoi_set_free(a->result.enter_recv);
free(a);
}
static int
aoi_enter(aoi_t *a, uint8_t mode, int x, int y, int z) {
assert(x>=0 && x < a->map_size[0]);
assert(y>=0 && y < a->map_size[1]);
assert(z>=0 && z < a->map_size[2]);
// obj new
aoi_obj *obj = _aoi_obj_new(a, mode, x, y, z);
aoi_tower *lt = _aoi_locate_tower(a, x, y, z);
printf("[%d] enter aoi, mode = %d, tower idx = %d\n", obj->id, mode, lt->idx);
// aoi result
aoi_result *result = &a->result;
_aoi_result_clear(result);
if (obj->mode & AOI_MARKER) {
_aoi_towerlist_add(lt, obj, AOI_MARKER, result);
}
if (obj->mode & AOI_WATCHER) {
aoi_set *set = _aoi_around_towers(a, lt, a->tmp_set);
for (int i = 0; i < set->len; ++i) {
aoi_tower *nt = set->slot[i];
_aoi_towerlist_add(nt, obj, AOI_WATCHER, result);
}
}
return obj->id;
}
static void
aoi_leave(aoi_t *a, int id) {
if (id <= 0 || id > a->obj_set->cap) {
printf("[leave] obj id error, id=%d\n", id);
return;
}
aoi_obj *obj = (aoi_obj *)a->obj_set->slot[id-1];
assert(obj->inuse);
// aoi result
aoi_result *result = &a->result;
_aoi_result_clear(result);
if (obj->mode & AOI_MARKER) {
aoi_node *mnode = obj->marker_node;
aoi_tower *lt = mnode->tower;
_aoi_towerlist_del(lt, obj, AOI_MARKER, result);
}
if (obj->mode & AOI_WATCHER) {
aoi_set *wnodes = obj->watcher_nodes;
for (int i = 0; i < wnodes->len; ++i) {
aoi_node *wn = (aoi_node*)wnodes->slot[i];
_aoi_list_del(&wn->tower->watcher_list, wn);
}
}
// push obj to recv set
obj->inuse = false;
_aoi_set_add(a->rcv_set, obj);
}
static void
aoi_move(aoi_t *a, int id, int x, int y, int z) {
if (id <= 0 || id > a->obj_set->cap) {
printf("[move] obj id error, id=%d\n", id);
return;
}
aoi_obj *obj = a->obj_set->slot[id-1];
int ox = obj->pos[0];
int oy = obj->pos[1];
int oz = obj->pos[2];
if (ox == x && oy == y && oz == z) {
printf("[move] obj same pos, id=%d\n", id);
return;
}
// update object postion
obj->pos[0] = x;
obj->pos[1] = y;
obj->pos[2] = z;
aoi_tower *nt = _aoi_locate_tower(a, x, y, z);
aoi_tower *ot = _aoi_locate_tower(a, ox, oy, oz);
assert(ot == obj->marker_node->tower);
if (ot->idx == nt->idx) {
return;
}
// aoi result
aoi_result *result = &a->result;
_aoi_result_clear(result);
if (obj->mode & AOI_MARKER) {
_aoi_towerlist_del(ot, obj, AOI_MARKER, result);
_aoi_towerlist_add(nt, obj, AOI_MARKER, result);
}
if (obj->mode & AOI_WATCHER) {
// tower diff
_aoi_tower_diff(a, ot, nt);
for (int i = 0; i < obj->watcher_nodes->len; ++i) {
aoi_node *wn = (aoi_node *)obj->watcher_nodes->slot[i];
// del from leave tower set
for (int j = 0; j < a->leave_set->len; ++j) {
aoi_tower *lt = a->leave_set->slot[j];
if (wn->tower && wn->tower == lt) {
_aoi_set_del(a->leave_set, lt);
_aoi_list_del(<->watcher_list, wn);
_aoi_result_add(lt, id, AOI_WATCHER, result, false);
// pop 并且复用
aoi_tower *et = _aoi_set_pop(a->enter_set);
if (et) {
_aoi_list_add(&et->watcher_list, wn);
_aoi_result_add(et, id, AOI_WATCHER, result, true);
}
break;
}
}
}
assert(a->leave_set->len == 0);
for (int i = 0; i < a->enter_set->len; ++i) {
aoi_tower *et = a->enter_set->slot[i];
_aoi_towerlist_add(et, obj, AOI_WATCHER, result);
}
}
}
int main(int argc, char const *argv[]){
printf("%f\n", 1*1.0/3);
int maps[3] = {10, 10, 1};
int towers[3] = {3, 3, 1};
aoi_t *aoi_ptr = aoi_create(maps, towers);
printf("\n----------- enter test -----------\n");
int id1 = aoi_enter(aoi_ptr, AOI_MARKER|AOI_WATCHER, 0, 0, 0);
int id2 = aoi_enter(aoi_ptr, AOI_MARKER|AOI_WATCHER, 3, 0, 0);
int id3 = aoi_enter(aoi_ptr, AOI_WATCHER, 0, 3, 0);
int id4 = aoi_enter(aoi_ptr, AOI_MARKER, 3, 3, 0);
int id5 = aoi_enter(aoi_ptr, AOI_MARKER|AOI_WATCHER, 9, 3, 0);
printf("\n----------- leave test -----------\n");
//aoi_leave(aoi_ptr, id1);
printf("\n----------- move test -----------\n");
aoi_move(aoi_ptr, id1, 9, 0, 0);
printf("\n----------- dump -----------\n");
_aoi_set_dump("leave_send", aoi_ptr->result.leave_send);
_aoi_set_dump("enter_send", aoi_ptr->result.enter_send);
_aoi_set_dump("leave_recv", aoi_ptr->result.leave_recv);
_aoi_set_dump("enter_recv", aoi_ptr->result.enter_recv);
aoi_destroy(aoi_ptr);
return 0;
} |
the_stack_data/225143451.c | /* ************************************************************************** */
/* */
/* ::: :::::::: */
/* ex05.c :+: :+: :+: */
/* +:+ +:+ +:+ */
/* By: llima-ce <[email protected]> +#+ +:+ +#+ */
/* +#+#+#+#+#+ +#+ */
/* Created: 2021/07/18 14:46:48 by llima-ce #+# #+# */
/* Updated: 2021/07/22 00:44:44 by llima-ce ### ########.fr */
/* */
/* ************************************************************************** */
#include <stdio.h>
void ft_putstr(char *str);
int main(void){
char *str;
str = "./r1xrolkd4dt26pp7n0y7s9p0\n";
ft_putstr(str);
return(0);
}
|
the_stack_data/22011596.c | #include <stdio.h>
#include <stdlib.h>
struct circular
{
int i;
struct circular *next;
};
struct circular *temp;
struct circular *head;
struct circular *p;
struct circular *mid;
struct circular *move;
int cnt=0;
void create(void);
void insert(void);
void display(void);
void del(void);
void main()
{
int ch=0;
while(ch!=5)
{
printf("\n1.CREATE");
printf("\n2.INSERT");
printf("\n3.DELETE");
printf("\n4.DISPLAY");
printf("\n5.EXIT");
scanf("%d",&ch);
if(ch==1)
{
create();
cnt++;
cnt++;
}
if(ch==2)
{
insert();
cnt++;
}
if(ch==3)
{
del();
cnt--;
}
if(ch==4)
{
display();
}
if(ch==5)
{
break;
}
}
}
void create()
{
head=(struct circular *)malloc(sizeof(struct circular));
head->next=head;
printf("ENETER THE DATA");
scanf("%d",&head->i);
temp=head;
temp->next=(struct circular *)malloc(sizeof(struct circular));
temp=temp->next;
temp->next=head;
printf("ENETER THE DATA");
scanf("%d",&temp->i);
}
void insert()
{
int add,t;
printf("\n\t ENTER ANY NUMBER BETWEEN 1 AND %d",cnt);
scanf("%d",&add);
p=head;
t=1;
while(t<add)
{
p=p->next;
t++;
}
printf("%d",p->i);
mid=(struct circular *)malloc(sizeof(struct circular));
printf("ENETER THE DATA");
scanf("%d",&mid->i);
mid->next=p->next;
p->next=mid;
}
void display()
{
p=head;
printf("%d-->",p->i);
p=p->next;
while(p!=head)
{
printf("%d-->",p->i);
p=p->next;
}
}
void del(void)
{
int add,t;
printf("\n\t ENTER ANY NUMBER BETWEEN 1 AND %d",cnt);
scanf("%d",&add);
p=head;
t=1;
while(t<add-1)
{
p=p->next;
t++;
}
printf("%d",p->i);
mid=p->next;
p->next=mid->next;
}
|
the_stack_data/92328947.c | // REQUIRES: powerpc-registered-target
// RUN: %clang_cc1 -triple powerpc64-unknown-unknown -target-cpu pwr10 \
// RUN: -emit-llvm %s -o - | FileCheck %s
unsigned long long ulla, ullb;
unsigned long long test_pdepd(void) {
// CHECK: @llvm.ppc.pdepd
return __builtin_pdepd(ulla, ullb);
}
unsigned long long test_pextd(void) {
// CHECK: @llvm.ppc.pextd
return __builtin_pextd(ulla, ullb);
}
unsigned long long test_cfuged(void) {
// CHECK: @llvm.ppc.cfuged
return __builtin_cfuged(ulla, ullb);
}
unsigned long long test_cntlzdm(void) {
// CHECK: @llvm.ppc.cntlzdm
return __builtin_cntlzdm(ulla, ullb);
}
unsigned long long test_cnttzdm(void) {
// CHECK: @llvm.ppc.cnttzdm
return __builtin_cnttzdm(ulla, ullb);
}
|
the_stack_data/181392810.c | #include<stdio.h>
int main(){
int num;
scanf("%d",&num);
if(num % 2 == 0){
printf("4444\n");
}else{
printf("5555\n");
}
return 0;
} |
the_stack_data/104828257.c | int plus(int a, int b) {
return a+b;
}
int minus(int a, int b) {
return a-b;
}
int (*foo(int a, int b, int (*a_fptr)(int, int), int(*b_fptr)(int, int) ))(int, int) {
return b_fptr;
}
int clever(int a, int b, int (*a_fptr)(int, int), int(*b_fptr)(int, int)) {
int (*s_fptr)(int, int);
s_fptr = foo(a, b, a_fptr, b_fptr);
return s_fptr(a, b);
}
int moo(char x, int op1, int op2) {
int (*a_fptr)(int, int) = plus;
int (*s_fptr)(int, int) = minus;
int (*t_fptr)(int, int) = 0;
if (x == '+') {
t_fptr = a_fptr;
}
else if (x == '-') {
t_fptr = s_fptr;
}
unsigned result = clever(op1, op2, a_fptr, t_fptr);
return 0;
}
/// 15 : foo
/// 16 : plus, minus
/// 32 : clever
|
the_stack_data/142367.c | /* Copyright (C) 1998-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Zack Weinberg <[email protected]>, 1998.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <errno.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <termios.h>
/* Unlock the slave pseudo terminal associated with the master pseudo
terminal specified by FD. */
int
unlockpt (int fd)
{
#ifdef TIOCSPTLCK
int save_errno = errno;
int unlock = 0;
if (__ioctl (fd, TIOCSPTLCK, &unlock))
{
if (errno == EINVAL)
{
__set_errno (save_errno);
return 0;
}
else
return -1;
}
#endif
/* If we have no TIOCSPTLCK ioctl, all slave pseudo terminals are
unlocked by default. */
return 0;
}
|
the_stack_data/45449806.c | typedef struct IMMENSE {unsigned long l,r;} immense;
float ran4(idum)
int *idum;
{
static int newkey,iff=0;
static immense inp,key,jot;
static double pow[66];
unsigned long isav,isav2;
int j;
double r4;
void des();
if (*idum < 0 || iff == 0) {
iff=1;
*idum %= 11979;
if (*idum < 0) *idum += 11979;
pow[1]=0.5;
key.r=key.l=inp.r=inp.l=0L;
for (j=1;j<=64;j++) {
*idum = ((long) (*idum)*430 +2531) % 11979;
isav=2*(unsigned long)(*idum)/11979;
if (isav) isav=0x80000000L;
isav2=(4*(unsigned long)(*idum)/11979) % 2;
if (isav2) isav2=0x80000000L;
if (j <= 32) {
key.r=(key.r >>= 1) | isav;
inp.r=(inp.r >>= 1) | isav2;
} else {
key.l=(key.l >>= 1) | isav;
inp.l=(inp.l >>= 1) | isav2;
}
pow[j+1]=0.5*pow[j];
}
newkey=1;
}
isav=inp.r & 0x80000000L;
if (isav) isav=1L;
if (inp.l & 0x80000000L)
inp.r=((inp.r ^ 1L +4L +8L) << 1) | 1L;
else
inp.r <<= 1;
inp.l=(inp.l << 1) | isav;
des(inp,key,&newkey,0,&jot);
r4=0.0;
for (j=1;j<=24;j++) {
if (jot.r & 1L) r4 += pow[j];
jot.r >>= 1;
}
return r4;
}
|
the_stack_data/73354.c | /*
* refclock_pcf - clock driver for the Conrad parallel port radio clock
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#if defined(REFCLOCK) && defined(CLOCK_PCF)
#include "ntpd.h"
#include "ntp_io.h"
#include "ntp_refclock.h"
#include "ntp_calendar.h"
#include "ntp_stdlib.h"
/*
* This driver supports the parallel port radio clock sold by Conrad
* Electronic under order numbers 967602 and 642002.
*
* It requires that the local timezone be CET/CEST and that the pcfclock
* device driver be installed. A device driver for Linux is available at
* http://home.pages.de/~voegele/pcf.html. Information about a FreeBSD
* driver is available at http://schumann.cx/pcfclock/.
*/
/*
* Interface definitions
*/
#define DEVICE "/dev/pcfclocks/%d"
#define OLDDEVICE "/dev/pcfclock%d"
#define PRECISION (-1) /* precision assumed (about 0.5 s) */
#define REFID "PCF"
#define DESCRIPTION "Conrad parallel port radio clock"
#define LENPCF 18 /* timecode length */
/*
* Function prototypes
*/
static int pcf_start P((int, struct peer *));
static void pcf_shutdown P((int, struct peer *));
static void pcf_poll P((int, struct peer *));
/*
* Transfer vector
*/
struct refclock refclock_pcf = {
pcf_start, /* start up driver */
pcf_shutdown, /* shut down driver */
pcf_poll, /* transmit poll message */
noentry, /* not used */
noentry, /* initialize driver (not used) */
noentry, /* not used */
NOFLAGS /* not used */
};
/*
* pcf_start - open the device and initialize data for processing
*/
static int
pcf_start(
int unit,
struct peer *peer
)
{
struct refclockproc *pp;
int fd;
char device[128];
/*
* Open device file for reading.
*/
(void)sprintf(device, DEVICE, unit);
fd = open(device, O_RDONLY);
if (fd == -1) {
(void)sprintf(device, OLDDEVICE, unit);
fd = open(device, O_RDONLY);
}
#ifdef DEBUG
if (debug)
printf ("starting PCF with device %s\n",device);
#endif
if (fd == -1) {
return (0);
}
pp = peer->procptr;
pp->io.clock_recv = noentry;
pp->io.srcclock = (caddr_t)peer;
pp->io.datalen = 0;
pp->io.fd = fd;
/*
* Initialize miscellaneous variables
*/
peer->precision = PRECISION;
pp->clockdesc = DESCRIPTION;
/* one transmission takes 172.5 milliseconds since the radio clock
transmits 69 bits with a period of 2.5 milliseconds per bit */
pp->fudgetime1 = 0.1725;
memcpy((char *)&pp->refid, REFID, 4);
return (1);
}
/*
* pcf_shutdown - shut down the clock
*/
static void
pcf_shutdown(
int unit,
struct peer *peer
)
{
struct refclockproc *pp;
pp = peer->procptr;
(void)close(pp->io.fd);
}
/*
* pcf_poll - called by the transmit procedure
*/
static void
pcf_poll(
int unit,
struct peer *peer
)
{
struct refclockproc *pp;
char buf[LENPCF];
struct tm tm, *tp;
time_t t;
pp = peer->procptr;
buf[0] = 0;
if (read(pp->io.fd, buf, sizeof(buf)) < sizeof(buf) || buf[0] != 9) {
refclock_report(peer, CEVNT_FAULT);
return;
}
tm.tm_mday = buf[11] * 10 + buf[10];
tm.tm_mon = buf[13] * 10 + buf[12] - 1;
tm.tm_year = buf[15] * 10 + buf[14];
tm.tm_hour = buf[7] * 10 + buf[6];
tm.tm_min = buf[5] * 10 + buf[4];
tm.tm_sec = buf[3] * 10 + buf[2];
tm.tm_isdst = (buf[8] & 1) ? 1 : (buf[8] & 2) ? 0 : -1;
/*
* Y2K convert the 2-digit year
*/
if (tm.tm_year < 99)
tm.tm_year += 100;
t = mktime(&tm);
if (t == (time_t) -1) {
refclock_report(peer, CEVNT_BADTIME);
return;
}
#if defined(__GLIBC__) && defined(_BSD_SOURCE)
if ((tm.tm_isdst > 0 && tm.tm_gmtoff != 7200)
|| (tm.tm_isdst == 0 && tm.tm_gmtoff != 3600)
|| tm.tm_isdst < 0) {
#ifdef DEBUG
if (debug)
printf ("local time zone not set to CET/CEST\n");
#endif
refclock_report(peer, CEVNT_BADTIME);
return;
}
#endif
pp->lencode = strftime(pp->a_lastcode, BMAX, "%Y %m %d %H %M %S", &tm);
#if defined(_REENTRANT) || defined(_THREAD_SAFE)
tp = gmtime_r(&t, &tm);
#else
tp = gmtime(&t);
#endif
if (!tp) {
refclock_report(peer, CEVNT_FAULT);
return;
}
get_systime(&pp->lastrec);
pp->polls++;
pp->year = tp->tm_year + 1900;
pp->day = tp->tm_yday + 1;
pp->hour = tp->tm_hour;
pp->minute = tp->tm_min;
pp->second = tp->tm_sec;
pp->nsec = buf[16] * 31250000;
if (buf[17] & 1)
pp->nsec += 500000000;
#ifdef DEBUG
if (debug)
printf ("pcf%d: time is %04d/%02d/%02d %02d:%02d:%02d UTC\n",
unit, pp->year, tp->tm_mon + 1, tp->tm_mday, pp->hour,
pp->minute, pp->second);
#endif
if (!refclock_process(pp)) {
refclock_report(peer, CEVNT_BADTIME);
return;
}
record_clock_stats(&peer->srcadr, pp->a_lastcode);
if ((buf[1] & 1) && !(pp->sloppyclockflag & CLK_FLAG2))
pp->leap = LEAP_NOTINSYNC;
else
pp->leap = LEAP_NOWARNING;
pp->lastref = pp->lastrec;
refclock_receive(peer);
}
#else
int refclock_pcf_bs;
#endif /* REFCLOCK */
|
the_stack_data/218892140.c | extern float __VERIFIER_nondet_float(void);
extern int __VERIFIER_nondet_int(void);
typedef enum {false, true} bool;
bool __VERIFIER_nondet_bool(void) {
return __VERIFIER_nondet_int() != 0;
}
int main()
{
bool _J1308, _x__J1308;
bool _J1299, _x__J1299;
bool _EL_U_1281, _x__EL_U_1281;
float x_12, _x_x_12;
float x_15, _x_x_15;
float x_3, _x_x_3;
bool _EL_U_1279, _x__EL_U_1279;
float x_16, _x_x_16;
float x_10, _x_x_10;
float x_18, _x_x_18;
float x_13, _x_x_13;
float x_0, _x_x_0;
float x_1, _x_x_1;
float x_2, _x_x_2;
float x_4, _x_x_4;
float x_5, _x_x_5;
float x_6, _x_x_6;
float x_7, _x_x_7;
float x_14, _x_x_14;
float x_17, _x_x_17;
float x_19, _x_x_19;
float x_9, _x_x_9;
float x_8, _x_x_8;
float x_11, _x_x_11;
int __steps_to_fair = __VERIFIER_nondet_int();
_J1308 = __VERIFIER_nondet_bool();
_J1299 = __VERIFIER_nondet_bool();
_EL_U_1281 = __VERIFIER_nondet_bool();
x_12 = __VERIFIER_nondet_float();
x_15 = __VERIFIER_nondet_float();
x_3 = __VERIFIER_nondet_float();
_EL_U_1279 = __VERIFIER_nondet_bool();
x_16 = __VERIFIER_nondet_float();
x_10 = __VERIFIER_nondet_float();
x_18 = __VERIFIER_nondet_float();
x_13 = __VERIFIER_nondet_float();
x_0 = __VERIFIER_nondet_float();
x_1 = __VERIFIER_nondet_float();
x_2 = __VERIFIER_nondet_float();
x_4 = __VERIFIER_nondet_float();
x_5 = __VERIFIER_nondet_float();
x_6 = __VERIFIER_nondet_float();
x_7 = __VERIFIER_nondet_float();
x_14 = __VERIFIER_nondet_float();
x_17 = __VERIFIER_nondet_float();
x_19 = __VERIFIER_nondet_float();
x_9 = __VERIFIER_nondet_float();
x_8 = __VERIFIER_nondet_float();
x_11 = __VERIFIER_nondet_float();
bool __ok = (1 && (((((12.0 <= (x_0 + (-1.0 * x_13))) || (((x_10 + (-1.0 * x_16)) <= -2.0) && _EL_U_1279)) || (((x_3 + (-1.0 * x_12)) <= 19.0) && _EL_U_1281)) && ( !_J1299)) && ( !_J1308)));
while (__steps_to_fair >= 0 && __ok) {
if ((_J1299 && _J1308)) {
__steps_to_fair = __VERIFIER_nondet_int();
} else {
__steps_to_fair--;
}
_x__J1308 = __VERIFIER_nondet_bool();
_x__J1299 = __VERIFIER_nondet_bool();
_x__EL_U_1281 = __VERIFIER_nondet_bool();
_x_x_12 = __VERIFIER_nondet_float();
_x_x_15 = __VERIFIER_nondet_float();
_x_x_3 = __VERIFIER_nondet_float();
_x__EL_U_1279 = __VERIFIER_nondet_bool();
_x_x_16 = __VERIFIER_nondet_float();
_x_x_10 = __VERIFIER_nondet_float();
_x_x_18 = __VERIFIER_nondet_float();
_x_x_13 = __VERIFIER_nondet_float();
_x_x_0 = __VERIFIER_nondet_float();
_x_x_1 = __VERIFIER_nondet_float();
_x_x_2 = __VERIFIER_nondet_float();
_x_x_4 = __VERIFIER_nondet_float();
_x_x_5 = __VERIFIER_nondet_float();
_x_x_6 = __VERIFIER_nondet_float();
_x_x_7 = __VERIFIER_nondet_float();
_x_x_14 = __VERIFIER_nondet_float();
_x_x_17 = __VERIFIER_nondet_float();
_x_x_19 = __VERIFIER_nondet_float();
_x_x_9 = __VERIFIER_nondet_float();
_x_x_8 = __VERIFIER_nondet_float();
_x_x_11 = __VERIFIER_nondet_float();
__ok = ((((((((((((((((((((((((x_19 + (-1.0 * _x_x_0)) <= -1.0) && (((x_18 + (-1.0 * _x_x_0)) <= -14.0) && (((x_17 + (-1.0 * _x_x_0)) <= -3.0) && (((x_16 + (-1.0 * _x_x_0)) <= -19.0) && (((x_15 + (-1.0 * _x_x_0)) <= -16.0) && (((x_13 + (-1.0 * _x_x_0)) <= -10.0) && (((x_12 + (-1.0 * _x_x_0)) <= -11.0) && (((x_9 + (-1.0 * _x_x_0)) <= -8.0) && (((x_1 + (-1.0 * _x_x_0)) <= -6.0) && ((x_3 + (-1.0 * _x_x_0)) <= -9.0)))))))))) && (((x_19 + (-1.0 * _x_x_0)) == -1.0) || (((x_18 + (-1.0 * _x_x_0)) == -14.0) || (((x_17 + (-1.0 * _x_x_0)) == -3.0) || (((x_16 + (-1.0 * _x_x_0)) == -19.0) || (((x_15 + (-1.0 * _x_x_0)) == -16.0) || (((x_13 + (-1.0 * _x_x_0)) == -10.0) || (((x_12 + (-1.0 * _x_x_0)) == -11.0) || (((x_9 + (-1.0 * _x_x_0)) == -8.0) || (((x_1 + (-1.0 * _x_x_0)) == -6.0) || ((x_3 + (-1.0 * _x_x_0)) == -9.0))))))))))) && ((((x_19 + (-1.0 * _x_x_1)) <= -15.0) && (((x_15 + (-1.0 * _x_x_1)) <= -8.0) && (((x_14 + (-1.0 * _x_x_1)) <= -16.0) && (((x_12 + (-1.0 * _x_x_1)) <= -14.0) && (((x_9 + (-1.0 * _x_x_1)) <= -15.0) && (((x_7 + (-1.0 * _x_x_1)) <= -13.0) && (((x_5 + (-1.0 * _x_x_1)) <= -15.0) && (((x_4 + (-1.0 * _x_x_1)) <= -17.0) && (((x_0 + (-1.0 * _x_x_1)) <= -7.0) && ((x_3 + (-1.0 * _x_x_1)) <= -14.0)))))))))) && (((x_19 + (-1.0 * _x_x_1)) == -15.0) || (((x_15 + (-1.0 * _x_x_1)) == -8.0) || (((x_14 + (-1.0 * _x_x_1)) == -16.0) || (((x_12 + (-1.0 * _x_x_1)) == -14.0) || (((x_9 + (-1.0 * _x_x_1)) == -15.0) || (((x_7 + (-1.0 * _x_x_1)) == -13.0) || (((x_5 + (-1.0 * _x_x_1)) == -15.0) || (((x_4 + (-1.0 * _x_x_1)) == -17.0) || (((x_0 + (-1.0 * _x_x_1)) == -7.0) || ((x_3 + (-1.0 * _x_x_1)) == -14.0)))))))))))) && ((((x_17 + (-1.0 * _x_x_2)) <= -7.0) && (((x_16 + (-1.0 * _x_x_2)) <= -16.0) && (((x_14 + (-1.0 * _x_x_2)) <= -16.0) && (((x_13 + (-1.0 * _x_x_2)) <= -9.0) && (((x_9 + (-1.0 * _x_x_2)) <= -17.0) && (((x_6 + (-1.0 * _x_x_2)) <= -15.0) && (((x_4 + (-1.0 * _x_x_2)) <= -19.0) && (((x_3 + (-1.0 * _x_x_2)) <= -20.0) && (((x_0 + (-1.0 * _x_x_2)) <= -6.0) && ((x_1 + (-1.0 * _x_x_2)) <= -18.0)))))))))) && (((x_17 + (-1.0 * _x_x_2)) == -7.0) || (((x_16 + (-1.0 * _x_x_2)) == -16.0) || (((x_14 + (-1.0 * _x_x_2)) == -16.0) || (((x_13 + (-1.0 * _x_x_2)) == -9.0) || (((x_9 + (-1.0 * _x_x_2)) == -17.0) || (((x_6 + (-1.0 * _x_x_2)) == -15.0) || (((x_4 + (-1.0 * _x_x_2)) == -19.0) || (((x_3 + (-1.0 * _x_x_2)) == -20.0) || (((x_0 + (-1.0 * _x_x_2)) == -6.0) || ((x_1 + (-1.0 * _x_x_2)) == -18.0)))))))))))) && ((((x_19 + (-1.0 * _x_x_3)) <= -13.0) && (((x_14 + (-1.0 * _x_x_3)) <= -15.0) && (((x_13 + (-1.0 * _x_x_3)) <= -6.0) && (((x_9 + (-1.0 * _x_x_3)) <= -19.0) && (((x_8 + (-1.0 * _x_x_3)) <= -17.0) && (((x_7 + (-1.0 * _x_x_3)) <= -6.0) && (((x_6 + (-1.0 * _x_x_3)) <= -18.0) && (((x_5 + (-1.0 * _x_x_3)) <= -20.0) && (((x_0 + (-1.0 * _x_x_3)) <= -5.0) && ((x_2 + (-1.0 * _x_x_3)) <= -7.0)))))))))) && (((x_19 + (-1.0 * _x_x_3)) == -13.0) || (((x_14 + (-1.0 * _x_x_3)) == -15.0) || (((x_13 + (-1.0 * _x_x_3)) == -6.0) || (((x_9 + (-1.0 * _x_x_3)) == -19.0) || (((x_8 + (-1.0 * _x_x_3)) == -17.0) || (((x_7 + (-1.0 * _x_x_3)) == -6.0) || (((x_6 + (-1.0 * _x_x_3)) == -18.0) || (((x_5 + (-1.0 * _x_x_3)) == -20.0) || (((x_0 + (-1.0 * _x_x_3)) == -5.0) || ((x_2 + (-1.0 * _x_x_3)) == -7.0)))))))))))) && ((((x_19 + (-1.0 * _x_x_4)) <= -11.0) && (((x_16 + (-1.0 * _x_x_4)) <= -6.0) && (((x_15 + (-1.0 * _x_x_4)) <= -10.0) && (((x_14 + (-1.0 * _x_x_4)) <= -18.0) && (((x_13 + (-1.0 * _x_x_4)) <= -10.0) && (((x_12 + (-1.0 * _x_x_4)) <= -9.0) && (((x_11 + (-1.0 * _x_x_4)) <= -6.0) && (((x_10 + (-1.0 * _x_x_4)) <= -3.0) && (((x_0 + (-1.0 * _x_x_4)) <= -16.0) && ((x_5 + (-1.0 * _x_x_4)) <= -5.0)))))))))) && (((x_19 + (-1.0 * _x_x_4)) == -11.0) || (((x_16 + (-1.0 * _x_x_4)) == -6.0) || (((x_15 + (-1.0 * _x_x_4)) == -10.0) || (((x_14 + (-1.0 * _x_x_4)) == -18.0) || (((x_13 + (-1.0 * _x_x_4)) == -10.0) || (((x_12 + (-1.0 * _x_x_4)) == -9.0) || (((x_11 + (-1.0 * _x_x_4)) == -6.0) || (((x_10 + (-1.0 * _x_x_4)) == -3.0) || (((x_0 + (-1.0 * _x_x_4)) == -16.0) || ((x_5 + (-1.0 * _x_x_4)) == -5.0)))))))))))) && ((((x_19 + (-1.0 * _x_x_5)) <= -18.0) && (((x_18 + (-1.0 * _x_x_5)) <= -4.0) && (((x_16 + (-1.0 * _x_x_5)) <= -7.0) && (((x_15 + (-1.0 * _x_x_5)) <= -9.0) && (((x_14 + (-1.0 * _x_x_5)) <= -17.0) && (((x_12 + (-1.0 * _x_x_5)) <= -4.0) && (((x_10 + (-1.0 * _x_x_5)) <= -7.0) && (((x_9 + (-1.0 * _x_x_5)) <= -16.0) && (((x_0 + (-1.0 * _x_x_5)) <= -6.0) && ((x_2 + (-1.0 * _x_x_5)) <= -5.0)))))))))) && (((x_19 + (-1.0 * _x_x_5)) == -18.0) || (((x_18 + (-1.0 * _x_x_5)) == -4.0) || (((x_16 + (-1.0 * _x_x_5)) == -7.0) || (((x_15 + (-1.0 * _x_x_5)) == -9.0) || (((x_14 + (-1.0 * _x_x_5)) == -17.0) || (((x_12 + (-1.0 * _x_x_5)) == -4.0) || (((x_10 + (-1.0 * _x_x_5)) == -7.0) || (((x_9 + (-1.0 * _x_x_5)) == -16.0) || (((x_0 + (-1.0 * _x_x_5)) == -6.0) || ((x_2 + (-1.0 * _x_x_5)) == -5.0)))))))))))) && ((((x_19 + (-1.0 * _x_x_6)) <= -17.0) && (((x_17 + (-1.0 * _x_x_6)) <= -4.0) && (((x_16 + (-1.0 * _x_x_6)) <= -8.0) && (((x_13 + (-1.0 * _x_x_6)) <= -3.0) && (((x_7 + (-1.0 * _x_x_6)) <= -4.0) && (((x_6 + (-1.0 * _x_x_6)) <= -4.0) && (((x_5 + (-1.0 * _x_x_6)) <= -8.0) && (((x_3 + (-1.0 * _x_x_6)) <= -20.0) && (((x_1 + (-1.0 * _x_x_6)) <= -2.0) && ((x_2 + (-1.0 * _x_x_6)) <= -19.0)))))))))) && (((x_19 + (-1.0 * _x_x_6)) == -17.0) || (((x_17 + (-1.0 * _x_x_6)) == -4.0) || (((x_16 + (-1.0 * _x_x_6)) == -8.0) || (((x_13 + (-1.0 * _x_x_6)) == -3.0) || (((x_7 + (-1.0 * _x_x_6)) == -4.0) || (((x_6 + (-1.0 * _x_x_6)) == -4.0) || (((x_5 + (-1.0 * _x_x_6)) == -8.0) || (((x_3 + (-1.0 * _x_x_6)) == -20.0) || (((x_1 + (-1.0 * _x_x_6)) == -2.0) || ((x_2 + (-1.0 * _x_x_6)) == -19.0)))))))))))) && ((((x_17 + (-1.0 * _x_x_7)) <= -16.0) && (((x_16 + (-1.0 * _x_x_7)) <= -17.0) && (((x_15 + (-1.0 * _x_x_7)) <= -16.0) && (((x_13 + (-1.0 * _x_x_7)) <= -6.0) && (((x_12 + (-1.0 * _x_x_7)) <= -5.0) && (((x_11 + (-1.0 * _x_x_7)) <= -6.0) && (((x_9 + (-1.0 * _x_x_7)) <= -4.0) && (((x_4 + (-1.0 * _x_x_7)) <= -7.0) && (((x_1 + (-1.0 * _x_x_7)) <= -12.0) && ((x_3 + (-1.0 * _x_x_7)) <= -3.0)))))))))) && (((x_17 + (-1.0 * _x_x_7)) == -16.0) || (((x_16 + (-1.0 * _x_x_7)) == -17.0) || (((x_15 + (-1.0 * _x_x_7)) == -16.0) || (((x_13 + (-1.0 * _x_x_7)) == -6.0) || (((x_12 + (-1.0 * _x_x_7)) == -5.0) || (((x_11 + (-1.0 * _x_x_7)) == -6.0) || (((x_9 + (-1.0 * _x_x_7)) == -4.0) || (((x_4 + (-1.0 * _x_x_7)) == -7.0) || (((x_1 + (-1.0 * _x_x_7)) == -12.0) || ((x_3 + (-1.0 * _x_x_7)) == -3.0)))))))))))) && ((((x_18 + (-1.0 * _x_x_8)) <= -2.0) && (((x_15 + (-1.0 * _x_x_8)) <= -12.0) && (((x_14 + (-1.0 * _x_x_8)) <= -16.0) && (((x_12 + (-1.0 * _x_x_8)) <= -8.0) && (((x_11 + (-1.0 * _x_x_8)) <= -2.0) && (((x_10 + (-1.0 * _x_x_8)) <= -11.0) && (((x_6 + (-1.0 * _x_x_8)) <= -13.0) && (((x_4 + (-1.0 * _x_x_8)) <= -10.0) && (((x_2 + (-1.0 * _x_x_8)) <= -3.0) && ((x_3 + (-1.0 * _x_x_8)) <= -15.0)))))))))) && (((x_18 + (-1.0 * _x_x_8)) == -2.0) || (((x_15 + (-1.0 * _x_x_8)) == -12.0) || (((x_14 + (-1.0 * _x_x_8)) == -16.0) || (((x_12 + (-1.0 * _x_x_8)) == -8.0) || (((x_11 + (-1.0 * _x_x_8)) == -2.0) || (((x_10 + (-1.0 * _x_x_8)) == -11.0) || (((x_6 + (-1.0 * _x_x_8)) == -13.0) || (((x_4 + (-1.0 * _x_x_8)) == -10.0) || (((x_2 + (-1.0 * _x_x_8)) == -3.0) || ((x_3 + (-1.0 * _x_x_8)) == -15.0)))))))))))) && ((((x_18 + (-1.0 * _x_x_9)) <= -5.0) && (((x_15 + (-1.0 * _x_x_9)) <= -6.0) && (((x_14 + (-1.0 * _x_x_9)) <= -18.0) && (((x_10 + (-1.0 * _x_x_9)) <= -10.0) && (((x_9 + (-1.0 * _x_x_9)) <= -2.0) && (((x_5 + (-1.0 * _x_x_9)) <= -19.0) && (((x_4 + (-1.0 * _x_x_9)) <= -5.0) && (((x_3 + (-1.0 * _x_x_9)) <= -6.0) && (((x_0 + (-1.0 * _x_x_9)) <= -20.0) && ((x_2 + (-1.0 * _x_x_9)) <= -12.0)))))))))) && (((x_18 + (-1.0 * _x_x_9)) == -5.0) || (((x_15 + (-1.0 * _x_x_9)) == -6.0) || (((x_14 + (-1.0 * _x_x_9)) == -18.0) || (((x_10 + (-1.0 * _x_x_9)) == -10.0) || (((x_9 + (-1.0 * _x_x_9)) == -2.0) || (((x_5 + (-1.0 * _x_x_9)) == -19.0) || (((x_4 + (-1.0 * _x_x_9)) == -5.0) || (((x_3 + (-1.0 * _x_x_9)) == -6.0) || (((x_0 + (-1.0 * _x_x_9)) == -20.0) || ((x_2 + (-1.0 * _x_x_9)) == -12.0)))))))))))) && ((((x_19 + (-1.0 * _x_x_10)) <= -14.0) && (((x_17 + (-1.0 * _x_x_10)) <= -12.0) && (((x_15 + (-1.0 * _x_x_10)) <= -6.0) && (((x_13 + (-1.0 * _x_x_10)) <= -7.0) && (((x_12 + (-1.0 * _x_x_10)) <= -5.0) && (((x_11 + (-1.0 * _x_x_10)) <= -19.0) && (((x_7 + (-1.0 * _x_x_10)) <= -15.0) && (((x_6 + (-1.0 * _x_x_10)) <= -14.0) && (((x_0 + (-1.0 * _x_x_10)) <= -10.0) && ((x_2 + (-1.0 * _x_x_10)) <= -13.0)))))))))) && (((x_19 + (-1.0 * _x_x_10)) == -14.0) || (((x_17 + (-1.0 * _x_x_10)) == -12.0) || (((x_15 + (-1.0 * _x_x_10)) == -6.0) || (((x_13 + (-1.0 * _x_x_10)) == -7.0) || (((x_12 + (-1.0 * _x_x_10)) == -5.0) || (((x_11 + (-1.0 * _x_x_10)) == -19.0) || (((x_7 + (-1.0 * _x_x_10)) == -15.0) || (((x_6 + (-1.0 * _x_x_10)) == -14.0) || (((x_0 + (-1.0 * _x_x_10)) == -10.0) || ((x_2 + (-1.0 * _x_x_10)) == -13.0)))))))))))) && ((((x_19 + (-1.0 * _x_x_11)) <= -12.0) && (((x_17 + (-1.0 * _x_x_11)) <= -20.0) && (((x_15 + (-1.0 * _x_x_11)) <= -10.0) && (((x_12 + (-1.0 * _x_x_11)) <= -10.0) && (((x_11 + (-1.0 * _x_x_11)) <= -4.0) && (((x_9 + (-1.0 * _x_x_11)) <= -4.0) && (((x_8 + (-1.0 * _x_x_11)) <= -2.0) && (((x_4 + (-1.0 * _x_x_11)) <= -13.0) && (((x_0 + (-1.0 * _x_x_11)) <= -10.0) && ((x_2 + (-1.0 * _x_x_11)) <= -5.0)))))))))) && (((x_19 + (-1.0 * _x_x_11)) == -12.0) || (((x_17 + (-1.0 * _x_x_11)) == -20.0) || (((x_15 + (-1.0 * _x_x_11)) == -10.0) || (((x_12 + (-1.0 * _x_x_11)) == -10.0) || (((x_11 + (-1.0 * _x_x_11)) == -4.0) || (((x_9 + (-1.0 * _x_x_11)) == -4.0) || (((x_8 + (-1.0 * _x_x_11)) == -2.0) || (((x_4 + (-1.0 * _x_x_11)) == -13.0) || (((x_0 + (-1.0 * _x_x_11)) == -10.0) || ((x_2 + (-1.0 * _x_x_11)) == -5.0)))))))))))) && ((((x_18 + (-1.0 * _x_x_12)) <= -17.0) && (((x_17 + (-1.0 * _x_x_12)) <= -2.0) && (((x_16 + (-1.0 * _x_x_12)) <= -11.0) && (((x_14 + (-1.0 * _x_x_12)) <= -9.0) && (((x_13 + (-1.0 * _x_x_12)) <= -5.0) && (((x_11 + (-1.0 * _x_x_12)) <= -10.0) && (((x_9 + (-1.0 * _x_x_12)) <= -16.0) && (((x_8 + (-1.0 * _x_x_12)) <= -7.0) && (((x_4 + (-1.0 * _x_x_12)) <= -20.0) && ((x_7 + (-1.0 * _x_x_12)) <= -17.0)))))))))) && (((x_18 + (-1.0 * _x_x_12)) == -17.0) || (((x_17 + (-1.0 * _x_x_12)) == -2.0) || (((x_16 + (-1.0 * _x_x_12)) == -11.0) || (((x_14 + (-1.0 * _x_x_12)) == -9.0) || (((x_13 + (-1.0 * _x_x_12)) == -5.0) || (((x_11 + (-1.0 * _x_x_12)) == -10.0) || (((x_9 + (-1.0 * _x_x_12)) == -16.0) || (((x_8 + (-1.0 * _x_x_12)) == -7.0) || (((x_4 + (-1.0 * _x_x_12)) == -20.0) || ((x_7 + (-1.0 * _x_x_12)) == -17.0)))))))))))) && ((((x_19 + (-1.0 * _x_x_13)) <= -15.0) && (((x_17 + (-1.0 * _x_x_13)) <= -17.0) && (((x_15 + (-1.0 * _x_x_13)) <= -16.0) && (((x_14 + (-1.0 * _x_x_13)) <= -20.0) && (((x_12 + (-1.0 * _x_x_13)) <= -1.0) && (((x_11 + (-1.0 * _x_x_13)) <= -3.0) && (((x_9 + (-1.0 * _x_x_13)) <= -19.0) && (((x_8 + (-1.0 * _x_x_13)) <= -12.0) && (((x_1 + (-1.0 * _x_x_13)) <= -10.0) && ((x_6 + (-1.0 * _x_x_13)) <= -1.0)))))))))) && (((x_19 + (-1.0 * _x_x_13)) == -15.0) || (((x_17 + (-1.0 * _x_x_13)) == -17.0) || (((x_15 + (-1.0 * _x_x_13)) == -16.0) || (((x_14 + (-1.0 * _x_x_13)) == -20.0) || (((x_12 + (-1.0 * _x_x_13)) == -1.0) || (((x_11 + (-1.0 * _x_x_13)) == -3.0) || (((x_9 + (-1.0 * _x_x_13)) == -19.0) || (((x_8 + (-1.0 * _x_x_13)) == -12.0) || (((x_1 + (-1.0 * _x_x_13)) == -10.0) || ((x_6 + (-1.0 * _x_x_13)) == -1.0)))))))))))) && ((((x_19 + (-1.0 * _x_x_14)) <= -5.0) && (((x_18 + (-1.0 * _x_x_14)) <= -4.0) && (((x_17 + (-1.0 * _x_x_14)) <= -16.0) && (((x_15 + (-1.0 * _x_x_14)) <= -3.0) && (((x_14 + (-1.0 * _x_x_14)) <= -19.0) && (((x_10 + (-1.0 * _x_x_14)) <= -14.0) && (((x_4 + (-1.0 * _x_x_14)) <= -7.0) && (((x_3 + (-1.0 * _x_x_14)) <= -3.0) && (((x_0 + (-1.0 * _x_x_14)) <= -13.0) && ((x_2 + (-1.0 * _x_x_14)) <= -20.0)))))))))) && (((x_19 + (-1.0 * _x_x_14)) == -5.0) || (((x_18 + (-1.0 * _x_x_14)) == -4.0) || (((x_17 + (-1.0 * _x_x_14)) == -16.0) || (((x_15 + (-1.0 * _x_x_14)) == -3.0) || (((x_14 + (-1.0 * _x_x_14)) == -19.0) || (((x_10 + (-1.0 * _x_x_14)) == -14.0) || (((x_4 + (-1.0 * _x_x_14)) == -7.0) || (((x_3 + (-1.0 * _x_x_14)) == -3.0) || (((x_0 + (-1.0 * _x_x_14)) == -13.0) || ((x_2 + (-1.0 * _x_x_14)) == -20.0)))))))))))) && ((((x_17 + (-1.0 * _x_x_15)) <= -17.0) && (((x_16 + (-1.0 * _x_x_15)) <= -3.0) && (((x_11 + (-1.0 * _x_x_15)) <= -17.0) && (((x_10 + (-1.0 * _x_x_15)) <= -8.0) && (((x_9 + (-1.0 * _x_x_15)) <= -6.0) && (((x_8 + (-1.0 * _x_x_15)) <= -7.0) && (((x_3 + (-1.0 * _x_x_15)) <= -15.0) && (((x_2 + (-1.0 * _x_x_15)) <= -3.0) && (((x_0 + (-1.0 * _x_x_15)) <= -9.0) && ((x_1 + (-1.0 * _x_x_15)) <= -15.0)))))))))) && (((x_17 + (-1.0 * _x_x_15)) == -17.0) || (((x_16 + (-1.0 * _x_x_15)) == -3.0) || (((x_11 + (-1.0 * _x_x_15)) == -17.0) || (((x_10 + (-1.0 * _x_x_15)) == -8.0) || (((x_9 + (-1.0 * _x_x_15)) == -6.0) || (((x_8 + (-1.0 * _x_x_15)) == -7.0) || (((x_3 + (-1.0 * _x_x_15)) == -15.0) || (((x_2 + (-1.0 * _x_x_15)) == -3.0) || (((x_0 + (-1.0 * _x_x_15)) == -9.0) || ((x_1 + (-1.0 * _x_x_15)) == -15.0)))))))))))) && ((((x_19 + (-1.0 * _x_x_16)) <= -15.0) && (((x_17 + (-1.0 * _x_x_16)) <= -17.0) && (((x_15 + (-1.0 * _x_x_16)) <= -13.0) && (((x_12 + (-1.0 * _x_x_16)) <= -13.0) && (((x_11 + (-1.0 * _x_x_16)) <= -4.0) && (((x_9 + (-1.0 * _x_x_16)) <= -19.0) && (((x_8 + (-1.0 * _x_x_16)) <= -5.0) && (((x_4 + (-1.0 * _x_x_16)) <= -13.0) && (((x_2 + (-1.0 * _x_x_16)) <= -20.0) && ((x_3 + (-1.0 * _x_x_16)) <= -12.0)))))))))) && (((x_19 + (-1.0 * _x_x_16)) == -15.0) || (((x_17 + (-1.0 * _x_x_16)) == -17.0) || (((x_15 + (-1.0 * _x_x_16)) == -13.0) || (((x_12 + (-1.0 * _x_x_16)) == -13.0) || (((x_11 + (-1.0 * _x_x_16)) == -4.0) || (((x_9 + (-1.0 * _x_x_16)) == -19.0) || (((x_8 + (-1.0 * _x_x_16)) == -5.0) || (((x_4 + (-1.0 * _x_x_16)) == -13.0) || (((x_2 + (-1.0 * _x_x_16)) == -20.0) || ((x_3 + (-1.0 * _x_x_16)) == -12.0)))))))))))) && ((((x_19 + (-1.0 * _x_x_17)) <= -2.0) && (((x_17 + (-1.0 * _x_x_17)) <= -3.0) && (((x_15 + (-1.0 * _x_x_17)) <= -4.0) && (((x_14 + (-1.0 * _x_x_17)) <= -16.0) && (((x_13 + (-1.0 * _x_x_17)) <= -13.0) && (((x_7 + (-1.0 * _x_x_17)) <= -20.0) && (((x_6 + (-1.0 * _x_x_17)) <= -2.0) && (((x_5 + (-1.0 * _x_x_17)) <= -10.0) && (((x_0 + (-1.0 * _x_x_17)) <= -18.0) && ((x_4 + (-1.0 * _x_x_17)) <= -8.0)))))))))) && (((x_19 + (-1.0 * _x_x_17)) == -2.0) || (((x_17 + (-1.0 * _x_x_17)) == -3.0) || (((x_15 + (-1.0 * _x_x_17)) == -4.0) || (((x_14 + (-1.0 * _x_x_17)) == -16.0) || (((x_13 + (-1.0 * _x_x_17)) == -13.0) || (((x_7 + (-1.0 * _x_x_17)) == -20.0) || (((x_6 + (-1.0 * _x_x_17)) == -2.0) || (((x_5 + (-1.0 * _x_x_17)) == -10.0) || (((x_0 + (-1.0 * _x_x_17)) == -18.0) || ((x_4 + (-1.0 * _x_x_17)) == -8.0)))))))))))) && ((((x_18 + (-1.0 * _x_x_18)) <= -8.0) && (((x_16 + (-1.0 * _x_x_18)) <= -17.0) && (((x_15 + (-1.0 * _x_x_18)) <= -18.0) && (((x_14 + (-1.0 * _x_x_18)) <= -15.0) && (((x_12 + (-1.0 * _x_x_18)) <= -16.0) && (((x_10 + (-1.0 * _x_x_18)) <= -9.0) && (((x_8 + (-1.0 * _x_x_18)) <= -7.0) && (((x_6 + (-1.0 * _x_x_18)) <= -2.0) && (((x_2 + (-1.0 * _x_x_18)) <= -3.0) && ((x_5 + (-1.0 * _x_x_18)) <= -19.0)))))))))) && (((x_18 + (-1.0 * _x_x_18)) == -8.0) || (((x_16 + (-1.0 * _x_x_18)) == -17.0) || (((x_15 + (-1.0 * _x_x_18)) == -18.0) || (((x_14 + (-1.0 * _x_x_18)) == -15.0) || (((x_12 + (-1.0 * _x_x_18)) == -16.0) || (((x_10 + (-1.0 * _x_x_18)) == -9.0) || (((x_8 + (-1.0 * _x_x_18)) == -7.0) || (((x_6 + (-1.0 * _x_x_18)) == -2.0) || (((x_2 + (-1.0 * _x_x_18)) == -3.0) || ((x_5 + (-1.0 * _x_x_18)) == -19.0)))))))))))) && ((((x_19 + (-1.0 * _x_x_19)) <= -19.0) && (((x_17 + (-1.0 * _x_x_19)) <= -19.0) && (((x_16 + (-1.0 * _x_x_19)) <= -10.0) && (((x_14 + (-1.0 * _x_x_19)) <= -7.0) && (((x_7 + (-1.0 * _x_x_19)) <= -2.0) && (((x_6 + (-1.0 * _x_x_19)) <= -16.0) && (((x_5 + (-1.0 * _x_x_19)) <= -7.0) && (((x_3 + (-1.0 * _x_x_19)) <= -10.0) && (((x_0 + (-1.0 * _x_x_19)) <= -13.0) && ((x_2 + (-1.0 * _x_x_19)) <= -4.0)))))))))) && (((x_19 + (-1.0 * _x_x_19)) == -19.0) || (((x_17 + (-1.0 * _x_x_19)) == -19.0) || (((x_16 + (-1.0 * _x_x_19)) == -10.0) || (((x_14 + (-1.0 * _x_x_19)) == -7.0) || (((x_7 + (-1.0 * _x_x_19)) == -2.0) || (((x_6 + (-1.0 * _x_x_19)) == -16.0) || (((x_5 + (-1.0 * _x_x_19)) == -7.0) || (((x_3 + (-1.0 * _x_x_19)) == -10.0) || (((x_0 + (-1.0 * _x_x_19)) == -13.0) || ((x_2 + (-1.0 * _x_x_19)) == -4.0)))))))))))) && ((((_EL_U_1279 == ((_x__EL_U_1279 && ((_x_x_10 + (-1.0 * _x_x_16)) <= -2.0)) || (12.0 <= (_x_x_0 + (-1.0 * _x_x_13))))) && (_EL_U_1281 == (((_x__EL_U_1279 && ((_x_x_10 + (-1.0 * _x_x_16)) <= -2.0)) || (12.0 <= (_x_x_0 + (-1.0 * _x_x_13)))) || (_x__EL_U_1281 && ((_x_x_3 + (-1.0 * _x_x_12)) <= 19.0))))) && (_x__J1299 == (( !(_J1299 && _J1308)) && ((_J1299 && _J1308) || (((12.0 <= (x_0 + (-1.0 * x_13))) || ( !((12.0 <= (x_0 + (-1.0 * x_13))) || (((x_10 + (-1.0 * x_16)) <= -2.0) && _EL_U_1279)))) || _J1299))))) && (_x__J1308 == (( !(_J1299 && _J1308)) && ((_J1299 && _J1308) || ((((12.0 <= (x_0 + (-1.0 * x_13))) || (((x_10 + (-1.0 * x_16)) <= -2.0) && _EL_U_1279)) || ( !(((12.0 <= (x_0 + (-1.0 * x_13))) || (((x_10 + (-1.0 * x_16)) <= -2.0) && _EL_U_1279)) || (((x_3 + (-1.0 * x_12)) <= 19.0) && _EL_U_1281)))) || _J1308))))));
_J1308 = _x__J1308;
_J1299 = _x__J1299;
_EL_U_1281 = _x__EL_U_1281;
x_12 = _x_x_12;
x_15 = _x_x_15;
x_3 = _x_x_3;
_EL_U_1279 = _x__EL_U_1279;
x_16 = _x_x_16;
x_10 = _x_x_10;
x_18 = _x_x_18;
x_13 = _x_x_13;
x_0 = _x_x_0;
x_1 = _x_x_1;
x_2 = _x_x_2;
x_4 = _x_x_4;
x_5 = _x_x_5;
x_6 = _x_x_6;
x_7 = _x_x_7;
x_14 = _x_x_14;
x_17 = _x_x_17;
x_19 = _x_x_19;
x_9 = _x_x_9;
x_8 = _x_x_8;
x_11 = _x_x_11;
}
}
|
the_stack_data/54412.c |
int glui_img_rightarrow[] = { 16, 16, /* width, height */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 192,192,192, 128,128,128, 128,128,128, 128,128,128,
128,128,128, 128,128,128, 128,128,128, 128,128,128, 128,128,128,
128,128,128, 128,128,128, 128,128,128, 128,128,128, 128,128,128,
128,128,128, 0, 0, 0, 192,192,192, 255,255,255, 192,192,192,
192,192,192, 192,192,192, 192,192,192, 192,192,192, 192,192,192,
192,192,192, 192,192,192, 192,192,192, 192,192,192, 192,192,192,
192,192,192, 128,128,128, 0, 0, 0, 192,192,192, 255,255,255,
192,192,192, 192,192,192, 192,192,192, 192,192,192, 192,192,192,
192,192,192, 192,192,192, 192,192,192, 192,192,192, 192,192,192,
192,192,192, 192,192,192, 128,128,128, 0, 0, 0, 192,192,192,
255,255,255, 192,192,192, 192,192,192, 192,192,192, 192,192,192,
192,192,192, 192,192,192, 192,192,192, 192,192,192, 192,192,192,
192,192,192, 192,192,192, 192,192,192, 128,128,128, 0, 0, 0,
192,192,192, 255,255,255, 192,192,192, 192,192,192, 192,192,192,
192,192,192, 0, 0, 0, 192,192,192, 192,192,192, 192,192,192,
192,192,192, 192,192,192, 192,192,192, 192,192,192, 128,128,128,
0, 0, 0, 192,192,192, 255,255,255, 192,192,192, 192,192,192,
192,192,192, 192,192,192, 0, 0, 0, 0, 0, 0, 192,192,192,
192,192,192, 192,192,192, 192,192,192, 192,192,192, 192,192,192,
128,128,128, 0, 0, 0, 192,192,192, 255,255,255, 192,192,192,
192,192,192, 192,192,192, 192,192,192, 0, 0, 0, 0, 0, 0,
0, 0, 0, 192,192,192, 192,192,192, 192,192,192, 192,192,192,
192,192,192, 128,128,128, 0, 0, 0, 192,192,192, 255,255,255,
192,192,192, 192,192,192, 192,192,192, 192,192,192, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 192,192,192, 192,192,192,
192,192,192, 192,192,192, 128,128,128, 0, 0, 0, 192,192,192,
255,255,255, 192,192,192, 192,192,192, 192,192,192, 192,192,192,
0, 0, 0, 0, 0, 0, 0, 0, 0, 192,192,192, 192,192,192,
192,192,192, 192,192,192, 192,192,192, 128,128,128, 0, 0, 0,
192,192,192, 255,255,255, 192,192,192, 192,192,192, 192,192,192,
192,192,192, 0, 0, 0, 0, 0, 0, 192,192,192, 192,192,192,
192,192,192, 192,192,192, 192,192,192, 192,192,192, 128,128,128,
0, 0, 0, 192,192,192, 255,255,255, 192,192,192, 192,192,192,
192,192,192, 192,192,192, 0, 0, 0, 192,192,192, 192,192,192,
192,192,192, 192,192,192, 192,192,192, 192,192,192, 192,192,192,
128,128,128, 0, 0, 0, 192,192,192, 255,255,255, 192,192,192,
192,192,192, 192,192,192, 192,192,192, 192,192,192, 192,192,192,
192,192,192, 192,192,192, 192,192,192, 192,192,192, 192,192,192,
192,192,192, 128,128,128, 0, 0, 0, 192,192,192, 255,255,255,
192,192,192, 192,192,192, 192,192,192, 192,192,192, 192,192,192,
192,192,192, 192,192,192, 192,192,192, 192,192,192, 192,192,192,
192,192,192, 192,192,192, 128,128,128, 0, 0, 0, 192,192,192,
255,255,255, 255,255,255, 255,255,255, 255,255,255, 255,255,255,
255,255,255, 255,255,255, 255,255,255, 255,255,255, 255,255,255,
255,255,255, 255,255,255, 255,255,255, 128,128,128, 0, 0, 0,
192,192,192, 192,192,192, 192,192,192, 192,192,192, 192,192,192,
192,192,192, 192,192,192, 192,192,192, 192,192,192, 192,192,192,
192,192,192, 192,192,192, 192,192,192, 192,192,192, 192,192,192,
0, 0, 0,
};
|
the_stack_data/135869.c | /****************************************************************
Copyright (C) 1997 Lucent Technologies
All Rights Reserved
Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of Lucent or any of its entities
not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.
LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.
****************************************************************/
/* Binary search for keywords. */
/* Assuming
*
* typedef struct { char *name; ... } option_word;
* option_word keywords[] = { ... };
*
* b_search has calling sequence
*
* b_search((char *)keywords, (int)sizeof(option_word),
* (int)(number of keywords = sizeof(keywords)/sizeof(option_word),
* char **sp, char **peq)
*
* where *sp is a string that may contain a keyword.
* No keyword ==> b_search returns 0 with **sp = 0.
* Bad keyword ==> b_search returns 0 with *sp = the bad keyword.
* Keyword matched ==> b_search returns the matched option_word*,
* sets *sp to the next token (skipping '=' if present), and sets
* *peq to "=" if '=' is present and to " " otherwise.
*/
#ifdef __cplusplus
extern "C" {
#endif
#ifdef Use_tolower
#include "ctype.h"
#define Tolower(x) tolower(x)
#else
static unsigned char lc[256];
static void
lc_init(void)
{
int i;
const char *s;
for(i = 0; i < 256; i++)
lc[i] = i;
for(s = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; *s; s++)
lc[(int)*s] = *s + 'a' - 'A';
}
#define Tolower(x) lc[x]
#endif
void *
b_search_ASL(void *ow, int owsize, int n, char **sp, char **peq)
{
int c, c1, c2, n1;
char *s, *s1, *s2;
void *ow1;
static char Blank[] = " ", Eq[] = "=";
#ifndef Use_tolower
static int first = 1;
if (first) {
lc_init();
first = 0;
}
#endif
for(s = *sp; (c = *(unsigned char *)s) <= ' '; s++)
if (!c)
goto no_ow1;
/* binary search */
while(n > 0) {
ow1 = (char*)ow + (n1 = n >> 1)*owsize;
s2 = *(char **)ow1;
for(s1 = s;; s1++) {
c1 = Tolower(*(unsigned char *)s1);
if (!(c2 = *s2++)) {
if (c1 <= ' ' || c1 == '=')
goto found;
break;
}
if (c1 != c2)
break;
}
if (c1 == '=' || c1 < c2)
n = n1;
else {
n -= n1 + 1;
ow = (char*)ow1 + owsize;
}
continue;
found:
*peq = Blank;
while(*s1 && *s1 <= ' ')
s1++;
if (*s1 == '=') {
*peq = Eq;
while(*++s1 && *s1 <= ' ');
}
*sp = s1;
return ow1;
}
no_ow1:
ow1 = 0;
*sp = s;
return 0;
}
#ifdef __cplusplus
}
#endif
|
the_stack_data/156394418.c | /* Copyright (C) 2000 Free Software Foundation.
by Alexandre Oliva <[email protected]> */
/* { dg-do compile } */
/* { dg-options "-O2 -finline-functions -Wunused -Wreturn-type" } */
static void
foo ()
{
skip_it: ; /* { dg-warning "defined but not used" "unused label warning" } */
}
void
bar ()
{
foo ();
}
|
the_stack_data/93612.c | #include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <assert.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>
#include <stdlib.h>
#include <sys/epoll.h>
#define MAX_EVENT_NUMBER 1024
#define BUFFER_SIZE 10
// gcc -Wall -std=c99 server.c -o server
int setnonblocking(int fd) {
int old_option = fcntl(fd, F_GETFL);
int new_option = old_option | O_NONBLOCK;
fcntl(fd,F_SETFL,new_option);
return old_option;
}
void addfd(int epollfd,int fd, int enable_et){
struct epoll_event event;
event.data.fd = fd;
event.events = EPOLLIN;
if (enable_et) {
event.events |= EPOLLET;
}
epoll_ctl(epollfd,EPOLL_CTL_ADD,fd,&event);
setnonblocking(fd);
}
// lt工作流程
void lt(struct epoll_event* events, int number, int epollfd,int listenfd) {
char buf[BUFFER_SIZE];
for (int i = 0; i < number; ++i) {
int sockfd = events[i].data.fd;
if (sockfd == listenfd){
struct sockaddr_in client_address;
socklen_t client_addrlength = sizeof(client_address);
int connfd = accept(listenfd,(struct sockaddr*)&client_address,
&client_addrlength);
addfd(epollfd,connfd,0); // 对connfd 禁用ET
}else if (events[i].events & EPOLLIN) {
// 只要socket里面读缓存中还有未读的数据,这段代码被触发
printf("event trigger once\n");
memset(buf,'\0',BUFFER_SIZE);
int ret = recv(sockfd,buf,BUFFER_SIZE-1,0);
if(ret <= 0) {
close(sockfd);
continue;
}
printf("get %d bytes of content:%s\n", ret, buf );
}else {
printf("something else happend\n");
}
}
}
// et工作流程
void et(struct epoll_event* events,int number, int epollfd, int listenfd) {
char buf[BUFFER_SIZE];
for (int i = 0; i < number; ++i) {
int sockfd = events[i].data.fd;
if (sockfd == listenfd) {
int sockfd = events[i].data.fd;
if (sockfd == listenfd) {
struct sockaddr_in client_address;
socklen_t client_addrlength = sizeof(client_address);
int connfd = accept(listenfd,(struct sockaddr*)&client_address,
&client_addrlength);
addfd(epollfd,connfd,1);
}
}else if(events[i].events & EPOLLIN) {
// 这段代码不断重复触发,所以我们循环读取数据,以确保把socket读取缓存中的所有数据读出
// 假设现在对方一口气发送了大量数据过来,以至于这边没法通过一次read就全部读取完毕。
// 由于ET模式只会通知一次,所以这边对应的数据读取函数中不得不循环read多次,以保证把对方本次发送的数据全部读取完毕
printf("et event trigger once\n");
while(1) {
memset(buf,'\0',BUFFER_SIZE);
int ret = recv(sockfd,buf,BUFFER_SIZE-1,0);
if (ret < 0) {
// 对于非阻塞IO,下面的条件成立表示数据已经全部读取完毕。
// 此后,epoll就能再次触发sockfd上面的EPOLLIN事情,以驱动下一次读操作。
if( (errno== EAGAIN) || (errno == EWOULDBLOCK)){
printf("read later\n");
break;
}
close(sockfd);
break;
}else if ( ret == 0) {
close(sockfd);
}else {
printf("get %d bytes of content:%s\n",ret,buf);
}
}
}else {
printf("something else happend\n");
}
}
}
// server localhost 6666 1
int main(int argc, char* argv[]) {
if (argc <= 2) {
printf("usage: %s ip_address port_numbder\n", basename(argv[0]) );
return 1;
}
const char* ip = argv[1];
int port = atoi(argv[2]);
int ret = 0;
int isEt = 0;
if (argc == 4) {
isEt = atoi(argv[3]);
}
struct sockaddr_in address;
bzero(&address, sizeof(address));
address.sin_family = AF_INET;
inet_pton(AF_INET,ip,&address.sin_addr);
address.sin_port = htons(port);
int listenfd = socket(PF_INET,SOCK_STREAM,0);
assert( listenfd >= 0);
ret = bind(listenfd,(struct sockaddr*)&address, sizeof(address));
assert(ret != -1);
ret = listen(listenfd,5);
assert(ret != -1);
struct epoll_event events[MAX_EVENT_NUMBER];
int epollfd = epoll_create(5);
assert(epollfd != -1);
addfd(epollfd,listenfd,1);
while( 1 ) {
int ret = epoll_wait(epollfd,events,MAX_EVENT_NUMBER,-1);
if ( ret < 0) {
printf("epoll failure\n");
break;
}
if (isEt){
et(events,ret, epollfd,listenfd);
}else {
lt(events,ret, epollfd,listenfd);
}
}
close(listenfd);
return 0;
}
|
the_stack_data/1122272.c | #include <stdio.h>
int main()
{
int n = 5;
for(int i = n; i >= 1; i--) {
for(int j = 1; j <= n*2; j++) {
if(j == n - i + 1 || j == n + i - 1)
printf("%c", i + 64);
else
printf(" ");
}
printf("\n");
}
return 0;
} |
the_stack_data/675266.c | #include <stdio.h>
#include <omp.h>
static long num_steps = 100000000;
double step;
int main ()
{
int i;
double x, pi, sum = 0.0;
double start_time, run_time;
step = 1.0 / (double) num_steps;
start_time = omp_get_wtime();
for (i = 0; i < num_steps; i++){
x = (i + 0.5) * step;
sum += 4.0 / (1.0 + x * x);
}
pi = step * sum;
run_time = omp_get_wtime() - start_time;
printf("pi = \%lf, \%ld steps \%lf, \%lf secs\n ",
pi, num_steps, run_time);
}
|
the_stack_data/103264218.c | #include <stdlib.h>
#include <stdio.h>
#include <sys/stat.h>
#include <string.h>
__mode_t get_perms(unsigned int r, unsigned int w, unsigned int x, char op, char target, char* filename, __mode_t ret) {
unsigned int modes[3] = {r, w, x};
unsigned int targets[3] = {0, 0, 0};
if (target == 'a') {
targets[0] = 1;
targets[1] = 1;
targets[2] = 1;
} else {
if (target == 'u') targets[2] = 1;
if (target == 'g') targets[1] = 1;
if (target == 'o') targets[0] = 1;
}
if (op == '+') {
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
ret |= modes[i]*targets[j] << ((2 - i) + 3*j);
}
}
} else if (op == '-') {
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
ret &= ~(modes[i]*targets[j] << (((2 - i) + 3*j)));
}
}
}
return ret;
}
__mode_t parse_perms(char* perms, char* filename, int verbosity) {
__mode_t ret = 0;
struct stat stb;
if (stat(filename, &stb) != 0) { // get permissions
perror("Stat");
return __UINT32_MAX__;
}
ret = stb.st_mode;
char* copy = (char *) malloc(strlen(perms) * sizeof(char) + 1) ;
strcpy(copy, perms);
char* input = strtok(copy, " ");
for ( ; input != NULL ; ) {
size_t len = strlen(input);
char target = 'a';
char mode;
unsigned int read = 0, write = 0, execute = 0;
for (int i = len - 1; input[i] != '+' && input[i] != '-' && input[i] != '=' && i > 0; i--) {
if (input[i] == 'r') read = 1;
if (input[i] == 'w') write = 1;
if (input[i] == 'x') execute = 1;
}
if (!read && !write && !execute) {
fprintf(stderr, "Invalid input\n");
return __UINT32_MAX__;
}
switch (input[0]) {
case 'u':
target = 'u';
mode = input[1];
break;
case 'g':
target = 'g';
mode = input[1];
break;
case 'o':
target = 'o';
mode = input[1];
break;
case 'a':
mode = input[1];
break;
default:
mode = input[1];
break;
}
__mode_t temp = 0, sec_temp = 0;
if (mode == '+') {
temp = get_perms(read, write, execute, mode, target, filename, 0);
if (temp == __UINT32_MAX__) return __UINT32_MAX__;
ret |= temp;
} else if (mode == '=') {
temp = get_perms(1, 1, 1, '+', target, filename, 0);
if (temp == __UINT32_MAX__) return __UINT32_MAX__;
sec_temp = get_perms(read, write, execute, '+', target, filename, 0);
if (sec_temp == __UINT32_MAX__) return __UINT32_MAX__;
ret &= ~(temp);
ret |= sec_temp;
} else {
temp = get_perms(read, write, execute, mode, target, filename, ret);
if (temp == __UINT32_MAX__) return __UINT32_MAX__;
ret &= temp;
}
input = strtok(NULL, " ");
}
free(copy);
return ret;
}
|
the_stack_data/56941.c | #include <stdio.h>
int main(){
//variaveis
int metros, tamPista, pontoParada;
//entrada
scanf("%d %d", &metros, &tamPista);
//processamento
pontoParada = metros;
if(metros >= tamPista){
pontoParada = metros % tamPista;
}
//saida
printf("%d\n", pontoParada);
return 0;
} |
the_stack_data/28263377.c | #include <stdio.h>
#define SIZE 31
#define MAXINF 0x7fffffff
int main(){
int n;
while(scanf("%d", &n)==1 && n){
int list[SIZE] = {0};
int punishPoint[SIZE] = {0};
int last[SIZE] = {0};
for(int i = 1; i < n + 1; i++){
scanf("%d", list + i);
int min = MAXINF, index = 0;
for(int j = 0; j < i; j++){
int temp = (200 - (list[i] - list[j]));
temp *= temp;
temp += punishPoint[j];
if(temp < min){
min = temp;
index = j;
}
}
punishPoint[i] = min;
last[i] = index;
}
/*for(int i=0;i<n+1;i++)printf("%d ",punishPoint[i]);
putchar('\n');*/
int out[SIZE] = {n}, len = 1;
for(int i = last[n]; i > 0; i = last[i], len++)
out[len] = i;
for(int i = len; i >= 0; i--)
printf("%d ",out[i]);
putchar('\n');
}
}
|
the_stack_data/98575340.c | // #include <stdio.h>
// int main(){
// float valor, imposto;
// scanf("%f", &valor);
// imposto = 1+valor*17/100+valor*7.6/100+valor*1.65/100;
// printf("O total de impostos de um produto com valor %.2f eh: %.2f\n", valor, imposto);
// return 0;
// } |
the_stack_data/1226002.c | #include <stdio.h>
/**
* Tower of Hanoi.
* Recursive function.
*
* @param int n number of disks
* @param int A first column, also from
* @param int B second column
* @param int C third column, also to
*
* @return int
*/
int hanoi(int n, int A, int B, int C)
{
if (n > 0) {
hanoi(n - 1, A, C, B);
printf("Moving disk %d from %d to %d\n", n, A, C);
hanoi(n - 1, B, A, C);
}
}
/**
* Main.
*/
int main () {
hanoi(4,1,2,3);
return 0;
} |
the_stack_data/36074537.c | #include<stdio.h>
void heap_sort(int [],int );//Main function to perform heap sort
void max_heapify(int [],int ,int);//Function to create Max heap
void main()
{
int arr[20];
int i,n;
printf("Enter Size of Array: ");
scanf("%d",&n);
printf("Enter Data inside array\n");
for(i=1;i<=n;i++)
{
scanf("%d",&arr[i]);
}
heap_sort(arr,n);
printf("Array After Sorting\n");
for(i=1;i<=n;i++)
{
printf("%d\n",arr[i]);
}
}
void max_heapify(int arr[],int n,int i)
{
int largest,rc,lc,temp;
largest=i;
lc=2*i;
rc=2*i+1;
while(lc<=n && arr[lc]>arr[largest])
{
largest=lc;
}
while(rc<=n && arr[rc]>arr[largest])
{
largest=rc;
}
if(largest!=i)
{
//swap value present in arr[large] and arr[i]
temp=arr[largest];
arr[largest]=arr[i];
arr[i]=temp;
// call maxheapify again;
max_heapify(arr,n,largest);
}
}
void heap_sort(int arr[],int n)
{
int i,temp;
for(i=n/2;i>=1;i--)
{
max_heapify(arr,n,i);
}
for(i=n;i>=1;i--)
{
temp=arr[1];
arr[1]=arr[i];
arr[i]=temp;
n--;
max_heapify(arr,n,1);
}
}
|
the_stack_data/247017234.c | #include <stdio.h>
int main () {
int year;
while (~scanf("%d", &year)) {
if (year % 100 == 0 && year % 400 == 0 ||
year % 100 != 0 && year % 4 == 0) {
printf ("is LEAP!\n");
} else {
printf ("is NOT LEAP!\n");
}
}
return 0;
} |
the_stack_data/103265190.c | #include <stdio.h>
int main(void)
{
const float PI = 3.1415;
int D = 0;
float R = 0;
float Aire = 0;
float Peri = 0;
printf("Entrez la valeur du diamètre : ");
scanf("%d",&D);
R = (float)D/2;
Aire = (float)PI * R * R; // formule : PiR²
Peri = (float)2 * PI * R; // formule : 2PiR
printf ("\nLa valeur du rayon est de %.2f cm.\n", R);
printf ("Aire du Cercle : %f cm².\n", Aire);
printf ("Perimètre du Cercle %f cm.\n", Peri);
return 0;
}
|
the_stack_data/19445.c | //Classification: #default/p/DAM/NP/aS/D(v)/fr/rp+cd
//Written by: Sergey Pomelov
//Reviewed by: Igor Eremeev
//Comment:
#include <stdio.h>
int *func(void)
{
static int q = 1;
int *p = &q;
return p;
};
int main(void)
{
int a = 1;
int c;
int i;
scanf("%d",&c);
for(i=1; i<100; i++) {
if (c==i)
a = *func();
}
printf("%d %d",a,c);
return 0;
}
|
the_stack_data/206393907.c | #include <stdio.h>
float bezier(float t, float p0, float p1) {
return (1 - t) * p0 + t * p1;
}
|
the_stack_data/128476.c | //
// KSCPU_arm.c
//
// Created by Karl Stenerud on 2012-01-29.
//
// Copyright (c) 2012 Karl Stenerud. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall remain in place
// in this source code.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
#if defined (__arm__)
#include "KSCPU.h"
#include "KSCPU_Apple.h"
#include "KSMachineContext.h"
#include "KSMachineContext_Apple.h"
#include <stdlib.h>
//#define KSLogger_LocalLevel TRACE
#include "KSLogger.h"
static const char* g_registerNames[] =
{
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "ip",
"sp", "lr", "pc", "cpsr"
};
static const int g_registerNamesCount =
sizeof(g_registerNames) / sizeof(*g_registerNames);
static const char* g_exceptionRegisterNames[] =
{
"exception", "fsr", "far"
};
static const int g_exceptionRegisterNamesCount =
sizeof(g_exceptionRegisterNames) / sizeof(*g_exceptionRegisterNames);
uintptr_t kscpu_framePointer(const KSMachineContext* const context)
{
return context->machineContext.__ss.__r[7];
}
uintptr_t kscpu_stackPointer(const KSMachineContext* const context)
{
return context->machineContext.__ss.__sp;
}
uintptr_t kscpu_instructionAddress(const KSMachineContext* const context)
{
return context->machineContext.__ss.__pc;
}
uintptr_t kscpu_linkRegister(const KSMachineContext* const context)
{
return context->machineContext.__ss.__lr;
}
void kscpu_getState(KSMachineContext* context)
{
thread_t thread = context->thisThread;
STRUCT_MCONTEXT_L* const machineContext = &context->machineContext;
kscpu_i_fillState(thread, (thread_state_t)&machineContext->__ss, ARM_THREAD_STATE, ARM_THREAD_STATE_COUNT);
kscpu_i_fillState(thread, (thread_state_t)&machineContext->__es, ARM_EXCEPTION_STATE, ARM_EXCEPTION_STATE_COUNT);
}
int kscpu_numRegisters(void)
{
return g_registerNamesCount;
}
const char* kscpu_registerName(const int regNumber)
{
if(regNumber < kscpu_numRegisters())
{
return g_registerNames[regNumber];
}
return NULL;
}
uint64_t kscpu_registerValue(const KSMachineContext* const context, const int regNumber)
{
if(regNumber <= 12)
{
return context->machineContext.__ss.__r[regNumber];
}
switch(regNumber)
{
case 13: return context->machineContext.__ss.__sp;
case 14: return context->machineContext.__ss.__lr;
case 15: return context->machineContext.__ss.__pc;
case 16: return context->machineContext.__ss.__cpsr;
}
KSLOG_ERROR("Invalid register number: %d", regNumber);
return 0;
}
int kscpu_numExceptionRegisters(void)
{
return g_exceptionRegisterNamesCount;
}
const char* kscpu_exceptionRegisterName(const int regNumber)
{
if(regNumber < kscpu_numExceptionRegisters())
{
return g_exceptionRegisterNames[regNumber];
}
KSLOG_ERROR("Invalid register number: %d", regNumber);
return NULL;
}
uint64_t kscpu_exceptionRegisterValue(const KSMachineContext* const context, const int regNumber)
{
switch(regNumber)
{
case 0:
return context->machineContext.__es.__exception;
case 1:
return context->machineContext.__es.__fsr;
case 2:
return context->machineContext.__es.__far;
}
KSLOG_ERROR("Invalid register number: %d", regNumber);
return 0;
}
uintptr_t kscpu_faultAddress(const KSMachineContext* const context)
{
return context->machineContext.__es.__far;
}
int kscpu_stackGrowDirection(void)
{
return -1;
}
#endif
|
the_stack_data/125139397.c | #include <stdio.h>
#include <openssl/bn.h>
int main (int argc, const char * argv[])
{
BIGNUM *bn1 = NULL;
BIGNUM *bn2 = NULL;
BIGNUM *result = BN_new();
BN_CTX *bn_ctx = BN_CTX_new();
BN_dec2bn(&bn1, "120");
BN_dec2bn(&bn2, "21234121234");
BN_add(result, bn2, bn1);
printf("Result is %s\n", BN_bn2dec(result));
BN_mul(result, bn2, bn1, bn_ctx);
printf("Result is %s\n", BN_bn2dec(result));
BN_exp(result, bn2, bn1, bn_ctx);
printf("Result is %s\n", BN_bn2dec(result));
BN_free(bn1);
BN_free(bn2);
BN_free(result);
BN_CTX_free(bn_ctx);
return 0;
}
|
the_stack_data/1170369.c | #include <stdio.h>
int atoi(const char s[]) {
int i, n;
n = 0;
for (i = 0; s[i] >= '0' && s[i] <= '9'; ++i) {
n = 10 * n + (s[i] - '0');
}
return n;
}
int main() {
printf("%d\n", atoi("1234"));
return 0;
}
|
the_stack_data/148577329.c | /*
** my_memset.c for my_memset in /home/thibrex
**
** Made by Thibaut Cornolti
** Login <[email protected]>
**
** Started on Mon Oct 24 21:52:16 2016 Thibaut Cornolti
** Last update Tue Oct 25 13:18:26 2016 Thibaut Cornolti
*/
void *my_memset(void *src, int c, int n)
{
int i;
i = 0;
while (i < n)
{
((int *)src)[i] = c;
i += 1;
}
return (src);
}
|
the_stack_data/151705180.c | #include <stdio.h>
void swap(int *, int *);
void b_sort(int *, int *, int *);
void swap(int *nx, int *ny) {
int temp = *nx;
*nx = *ny;
*ny = temp;
}
void b_sort(int *n1, int *n2, int *n3) {
if (*n1 > *n2) swap(n1, n2);
if (*n2 > *n3) swap(n2, n3);
if (*n1 > *n2) swap(n1, n2);
}
int main() {
int a, b, c;
scanf("%d %d %d", &a, &b, &c);
b_sort(&a, &b, &c);
printf("%d %d %d",a, b, c);
return 0;
} |
the_stack_data/281317.c | #include <stdio.h>
struct date
{
int month;
int day;
int year;
};
int main(int argc, char const *aegv[])
{
struct date today, today2, today3;
//结构体声明方式1
struct abc
{
int month;
int day;
int year;
};
struct abc p_1;
//结构体声明方式2:
struct
{
int x;
int y;
} p1, p2; //p1和p2都是一种无名结构,里面有x和y
//结构体声明方式3:
struct point
{
int x;
int y;
} p3, p4; //p1和p2都是point类型的变量,里面有x和y的值
//这种方式同时进行了构造和声明。
today.month = 7;
today.day = 31;
today.year = 2014;
// today2 = {7, 31, 2014};
// today3 = {.month = 7, .year = 2014};
printf("Today's date is %i - %i - %i.\n", today.year, today.month, today.day);
// printf("Today's date is %i - %i - %i.\n", today2.year, today2.month, today2.day);
// printf("Today's date is %i - %i - %i.\n", today3.year, today3.month, today3.day);
//结构运算
p3 = (struct point){5, 10}; //相当于p3.x = 5, p3.y = 10;
p4 = p3; //相当于p4.x = p3.x, p4.y = p3.y;
//结构指针
//和数组变量不同,结构变量的名字并不是结构变量的地址,必须使用 & 运算符
struct date *pDate = &today;
(*pDate).month = 12;
//或
pDate->month = 12; //用->表示指针所指的结构变量中的成员
//结构体作为函数参数的时候,会重新复制一份,而不是直接引用
//如果想通过一个方法改变这个结构体,有以下方法:
//1.创建一个临时的结构变量,然后把这个结构返回给调用者
//2.把结构指针作为参数(k & R,第131页),推荐这种方式
//->的优先级比&高
return 0;
} |
the_stack_data/225141902.c | #ifdef DEVICE_MODEL_ENABLED
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#if !defined(DEPRECATED_LINKKIT)
#include "iot_import.h"
#include "iot_export.h"
#include "cut.h"
#include "single_config_new.h"
DATA(test_linkkit_single_api_open)
{
user_example_ctx_t *user_example_ctx;
iotx_linkkit_dev_meta_info_t master_meta_info;
};
SETUP(test_linkkit_single_api_open)
{
data->user_example_ctx = user_example_get_ctx();
memset(data->user_example_ctx, 0, sizeof(user_example_ctx_t));
memset(&data->master_meta_info, 0, sizeof(iotx_linkkit_dev_meta_info_t));
cJSON_Hooks cjson_hooks = {(void *)test_malloc, (void *)test_free};
cJSON_InitHooks(&cjson_hooks);
IOT_SetLogLevel(IOT_LOG_DEBUG);
}
TEARDOWN(test_linkkit_single_api_open)
{
IOT_Linkkit_Close(data->user_example_ctx->master_devid);
}
// 正常调用open
CASE2(test_linkkit_single_api_open, case_01)
{
TEST_REPLACE_DEVCERT(&TEST_PRODUCT_KEY, &TEST_PRODUCT_SECRET, &TEST_DEVICE_NAME, &TEST_DEVICE_SECRET);
memcpy(data->master_meta_info.product_key, TEST_PRODUCT_KEY, strlen(TEST_PRODUCT_KEY));
memcpy(data->master_meta_info.product_secret, TEST_PRODUCT_SECRET, strlen(TEST_PRODUCT_SECRET));
memcpy(data->master_meta_info.device_name, TEST_DEVICE_NAME, strlen(TEST_DEVICE_NAME));
memcpy(data->master_meta_info.device_secret, TEST_DEVICE_SECRET, strlen(TEST_DEVICE_SECRET));
data->user_example_ctx->master_devid = IOT_Linkkit_Open(IOTX_LINKKIT_DEV_TYPE_MASTER, &data->master_meta_info);
ASSERT_GE(data->user_example_ctx->master_devid, 0);
}
// dev_type = -1
CASE2(test_linkkit_single_api_open, case_02)
{
TEST_REPLACE_DEVCERT(&TEST_PRODUCT_KEY, &TEST_PRODUCT_SECRET, &TEST_DEVICE_NAME, &TEST_DEVICE_SECRET);
memcpy(data->master_meta_info.product_key, TEST_PRODUCT_KEY, strlen(TEST_PRODUCT_KEY));
memcpy(data->master_meta_info.product_secret, TEST_PRODUCT_SECRET, strlen(TEST_PRODUCT_SECRET));
memcpy(data->master_meta_info.device_name, TEST_DEVICE_NAME, strlen(TEST_DEVICE_NAME));
memcpy(data->master_meta_info.device_secret, TEST_DEVICE_SECRET, strlen(TEST_DEVICE_SECRET));
data->user_example_ctx->master_devid = IOT_Linkkit_Open(-1, &data->master_meta_info);
ASSERT_EQ(data->user_example_ctx->master_devid, -1);
}
// dev_type = MAX
CASE2(test_linkkit_single_api_open, case_03)
{
TEST_REPLACE_DEVCERT(&TEST_PRODUCT_KEY, &TEST_PRODUCT_SECRET, &TEST_DEVICE_NAME, &TEST_DEVICE_SECRET);
memcpy(data->master_meta_info.product_key, TEST_PRODUCT_KEY, strlen(TEST_PRODUCT_KEY));
memcpy(data->master_meta_info.product_secret, TEST_PRODUCT_SECRET, strlen(TEST_PRODUCT_SECRET));
memcpy(data->master_meta_info.device_name, TEST_DEVICE_NAME, strlen(TEST_DEVICE_NAME));
memcpy(data->master_meta_info.device_secret, TEST_DEVICE_SECRET, strlen(TEST_DEVICE_SECRET));
data->user_example_ctx->master_devid = IOT_Linkkit_Open(IOTX_LINKKIT_DEV_TYPE_MAX, &data->master_meta_info);
ASSERT_EQ(data->user_example_ctx->master_devid, -1);
}
// master_meta_info = NULL
CASE2(test_linkkit_single_api_open, case_04)
{
TEST_REPLACE_DEVCERT(&TEST_PRODUCT_KEY, &TEST_PRODUCT_SECRET, &TEST_DEVICE_NAME, &TEST_DEVICE_SECRET);
memcpy(data->master_meta_info.product_key, TEST_PRODUCT_KEY, strlen(TEST_PRODUCT_KEY));
memcpy(data->master_meta_info.product_secret, TEST_PRODUCT_SECRET, strlen(TEST_PRODUCT_SECRET));
memcpy(data->master_meta_info.device_name, TEST_DEVICE_NAME, strlen(TEST_DEVICE_NAME));
memcpy(data->master_meta_info.device_secret, TEST_DEVICE_SECRET, strlen(TEST_DEVICE_SECRET));
data->user_example_ctx->master_devid = IOT_Linkkit_Open(IOTX_LINKKIT_DEV_TYPE_MASTER, NULL);
ASSERT_EQ(data->user_example_ctx->master_devid, -1);
}
// 重复调用
CASE2(test_linkkit_single_api_open, case_05)
{
int res = 0;
TEST_REPLACE_DEVCERT(&TEST_PRODUCT_KEY, &TEST_PRODUCT_SECRET, &TEST_DEVICE_NAME, &TEST_DEVICE_SECRET);
memcpy(data->master_meta_info.product_key, TEST_PRODUCT_KEY, strlen(TEST_PRODUCT_KEY));
memcpy(data->master_meta_info.product_secret, TEST_PRODUCT_SECRET, strlen(TEST_PRODUCT_SECRET));
memcpy(data->master_meta_info.device_name, TEST_DEVICE_NAME, strlen(TEST_DEVICE_NAME));
memcpy(data->master_meta_info.device_secret, TEST_DEVICE_SECRET, strlen(TEST_DEVICE_SECRET));
data->user_example_ctx->master_devid = IOT_Linkkit_Open(IOTX_LINKKIT_DEV_TYPE_MASTER, &data->master_meta_info);
ASSERT_EQ(data->user_example_ctx->master_devid, 0);
res = IOT_Linkkit_Open(IOTX_LINKKIT_DEV_TYPE_MASTER, &data->master_meta_info);
ASSERT_EQ(res, -1);
}
SUITE(test_linkkit_single_api_open) = {
ADD_CASE(test_linkkit_single_api_open, case_01),
ADD_CASE(test_linkkit_single_api_open, case_02),
ADD_CASE(test_linkkit_single_api_open, case_03),
ADD_CASE(test_linkkit_single_api_open, case_04),
ADD_CASE(test_linkkit_single_api_open, case_05),
ADD_CASE_NULL
};
#endif /* !defined(DEPRECATED_LINKKIT) */
#endif /* #ifdef DEVICE_MODEL_ENABLED */
|
the_stack_data/548594.c | /* ************************************************************************** */
/* */
/* :::::::: */
/* sassaa_bonus.c :+: :+: */
/* +:+ */
/* By: goosterl <[email protected]> +#+ */
/* +#+ */
/* Created: 2021/01/06 14:20:45 by goosterl #+# #+# */
/* Updated: 2021/04/13 11:54:47 by goosterl ######## odam.nl */
/* */
/* ************************************************************************** */
#if IS_BONUS == 1
# include <init.h>
# include <utils.h>
# include <math.h>
# include <filter.h>
# include <minirt.h>
/*
** Sobel filter using 5x5 matrix instead of 3x3, more accurate
*/
static t_rgb sobel(t_buffer *in, int u, int v)
{
t_rgb x;
t_rgb y;
t_vec2 knl;
int lt[2];
knl = (t_vec2){0.0, 0.0};
x = vec3_zero();
y = vec3_zero();
while (knl.u <= 2)
{
while (knl.v <= 2)
{
lt[0] = clamp(knl.u + u, 0, in->width - 1);
lt[1] = clamp(knl.v + v, 0, in->height - 1);
x = vec3_add(x, vec3_mult_s(get_color_at(in, lt[0], lt[1]),
sobel5x5(knl.u + 2, knl.v + 2, 1)));
y = vec3_add(y, vec3_mult_s(get_color_at(in, lt[0], lt[1]),
sobel5x5(knl.u + 2, knl.v + 2, 0)));
knl.v += 1;
}
knl.v = -2;
knl.u += 1;
}
return (sobel_sum3(x, y));
}
static t_rgb ssaa_rand(t_scene *scene, int samples)
{
t_rgb total;
t_rgb traced;
int idx;
t_ray ray;
idx = 0;
total = get_color_at(&scene->main, scene->u, scene->v);
while (idx < samples)
{
camera_ray_init(scene, &ray,
scene->u + rt_rand(), scene->v + rt_rand());
trace(scene, ray, &traced);
total = vec3_add(total, traced);
idx += 1;
}
return (vec3_div_s(total, samples + 1));
}
static void sbl_make(t_scene *scene, t_buffer *save)
{
int scalar;
t_real sample_count;
sample_count = clamp(fabs(greyscale(sobel(&scene->main,
scene->u, scene->v))), 0.0, 1.0);
scalar = (int)(scene->aa_samples * sample_count);
if (scalar)
write_color_at(save, scene->u, scene->v,
ssaa_rand(scene, scalar));
}
t_bool sassaa(t_scene *scene)
{
t_buffer save;
if (!copy_buffer(&scene->main, scene->mlx.ptr, &save))
return (false);
scene->u = 0;
scene->v = 0;
console_put(RT_AA_PASS);
scene->completion = 0;
while (scene->u < scene->main.width)
{
while (scene->v < scene->main.height)
{
sbl_make(scene, &save);
scene->v += 1;
}
scene_completion(&scene->completion, scene->prog_add);
scene->v = 0;
scene->u += 1;
}
copy_buffer(&save, NULL, &scene->main);
destroy_buffer(&save, scene->mlx.ptr);
return (true);
}
#endif
|
the_stack_data/234519429.c | /*#include <stdio.h>
#include <stdlib.h>
#include <time.h>
// Generates and prints 'count' random
// numbers in range [L, U].
void printRandoms(int L, int U, int count)
{
int i;
for (i = 0; i < count; i++) {
int num=(rand()%(U-L+1))+L;
printf("%d ",num);
}
}
// Driver code
int main()
{
int L = 0, U = 49, count = 5;
// Use current time as
// seed for random generator
srand(time(0));
printRandoms(L, U, count);
return 0;
}
*/
|
the_stack_data/11075590.c | #include <stdio.h>
#include <stdlib.h>
int main()
{
int a ,b;
printf("enter the two values to swap\n ");
scanf("%d%d,&a ,&b");
printf("before swapping a = %d and b = %d a ,b");
a = a+b;
b = a-b;
a = a-b;
printf("after swapping a = %d and b = %d a ,b ");
return 0;
}
|
the_stack_data/198581998.c | /*
* You are given an array of n+2 elements. All elements of the array
* are in range 1 to n. And all elements occur once except two numbers
* which occur twice. Find the two repeating numbers. For example,
* array = {4, 2, 4, 5, 2, 3, 1} and n = 5. The above array has n + 2 = 7
* elements with all elements occurring once except 2 and 4 which occur twice.
* So the output should be 4 2. For more information on this problem, please
* refer to the following link:-
* http://www.geeksforgeeks.org/find-the-two-repeating-elements-in-a-given-array/
* TODO:CODE
* TODO:DOC
* TODO:TESTS
*/
#include<stdio.h>
#include<assert.h>
void find_two_repeating_numbers_in_array (int* array, int len, int num,
int *num1, int *num2)
{
int sum_array, diff, sum_len;
int index, left, right;
if (!array || (len <= 0) || (num <= 0) || !num1 || !num2) {
return;
}
if ((len - num) != 2) {
return;
}
sum_array = 0;
for (index = 0; index < len; ++index) {
sum_array += array[index];
}
sum_len = 0;
for (index = 1; index <= num; ++index) {
sum_len += index;
}
diff = sum_array - sum_len;
left = 1;
right = num;
while (left < right) {
if ((left + right) == diff) {
*num1 = left;
*num2 = right;
break;
} else if ((left + right) < diff) {
++left;
} else {
--right;
}
}
}
int main ()
{
int array0[] = {4, 2, 4, 5, 2, 3, 1};
int len0 = sizeof(array0)/sizeof(int);
int num0 = 5;
int exp_num01 = 2, exp_num02 = 4;
int act_num01, act_num02;
find_two_repeating_numbers_in_array(array0, len0, num0,
&act_num01, &act_num02);
printf("num1 = %d, num2 = %d\n", act_num01, act_num02);
assert((exp_num01 == act_num01) && (exp_num02 == act_num02));
int array1[] = {2, 1, 2, 1};
int len1 = sizeof(array1)/sizeof(int);
int num1 = 2;
int exp_num11 = 1, exp_num12 = 2;
int act_num11, act_num12;
find_two_repeating_numbers_in_array(array1, len1, num1,
&act_num11, &act_num12);
assert((exp_num11 == act_num11) && (exp_num12 == act_num12));
return(0);
}
|
the_stack_data/104829094.c | #include <stddef.h>
#include <stdio.h>
#include <stdint.h>
/**
* _print_hex_buffer - Prints a buffer in its hexadecimal form
*
* @buf: Pointer to the buffer to be printed
* @len: Number of bytes from @buf to be printed
*/
void _print_hex_buffer(uint8_t const *buf, size_t len)
{
size_t i;
for (i = 0; buf && i < len; i++)
printf("%02x", buf[i]);
}
|
the_stack_data/1155837.c | /* グラフ構造の深さ優先探索 */
#include<stdio.h>
#define TRUE 1
#define FALSE 0
#define MAX_SIZE 11
typedef struct character{
int no; /* キー */
char name; /* 名前 */
struct character *next_addr; /* 次のデータのアドレス */
}CELL;
char *graph_data[] = {
"CI", /* A : C I */
"DGH", /* B : D G H */
"ADG", /* C : A D G */
"BCHIJ", /* D : B C H I J */
"FHJ", /* E : F H J */
"EGK", /* F : E G K */
"BCF", /* G : B C F */
"BDEJ", /* H : B D E J */
"AD", /* I : A D */
"DEHK", /* J : D E H K */
"FJ" /* K : F J */
};
CELL *adjacent[MAX_SIZE]; /* 隣接リスト */
int visited[MAX_SIZE];
int path[MAX_SIZE];
/* リスト構造で並んでいる様子を表示する */
void disp(void) {
int i = 0;
CELL *current_addr;
printf("隣接リスト:\n");
for( i = 0; i < MAX_SIZE; i++ ){
if( adjacent[i] != NULL ){
current_addr = adjacent[i];
do{
printf("-|%c|-",current_addr->name);
current_addr = current_addr->next_addr;
}while( current_addr != NULL );
}
printf("\n");
}
}
/* データの追加 */
void add(int parent, int child) {
CELL *p;
CELL *q;
p = (CELL *)malloc(sizeof(CELL));
p->no = child;
p->name = 'A' + child;
p->next_addr = NULL;
q = adjacent[parent];
while ( q->next_addr != NULL ) {
q = q->next_addr;
}
q->next_addr = p;
}
/* グラフの初期化 */
void init_graph(void) {
int i, j;
for( i = 0; i < MAX_SIZE; i++ ){
CELL *p;
p = (CELL *)malloc(sizeof(CELL));
p->no = i;
p->name = 'A'+i;
p->next_addr = NULL;
adjacent[i] = p;
}
for( i = 0; i < MAX_SIZE; i++ ){
for( j = 0; graph_data[i][j] != '\0'; j++ ){
//add関数を利用して graph_data[i][j] からリストを作成する
add(i, graph_data[i][j]-'A');
}
}
}
/* 経路の表示 */
void print_path(int num) {
int i;
for( i = 0; i <= num; i++ ){
printf("%c ", path[i] + 'A' );
}
printf("\n");
}
/* 経路の探索(深さ優先探索) */
void search(int num, int now, int end) {
CELL *p;
visited[now] = 1;
path[num] = now;
if(now == end){
print_path(num);
}else{
p=adjacent[now];
do {
if(visited[p->no] != 1) search(num+1, p->no, end);
p = p->next_addr;
} while(p != NULL);
}
visited[now] = 0;
}
/* メイン関数 */
int main(void) {
init_graph();
disp();
search( 0, 0, 10 ); /* A(0) から K(10) の経路 */
return 0;
}
|
the_stack_data/11074618.c | /*Exercise 3 - Repetition
Write a C program to calculate the sum of the numbers from 1 to n.
Where n is a keyboard input.
e.g.
n -> 100
sum = 1+2+3+....+ 99+100 = 5050
n -> 1-
sum = 1+2+3+...+10 = 55 */
#include <stdio.h>
int main() {
int n;
float sum;
printf("Enter number : ");
scanf("%d",&n);
for (int i = 1;i<=n;i++)
{
sum = sum+i;
}
printf("Sum = %f", sum);
return 0;
}
|
the_stack_data/161079711.c | #include <unistd.h>
#include <string.h>
#include <stdio.h>
int main(int argc, const char *argv[]) {
if (argc <= 1) {
printf("Hello World!\n");
} else {
const char *echo_msg = argv[1];
printf("%s\n", echo_msg);
}
return 0;
}
|
the_stack_data/856178.c | /* Copyright (c) 1995-2013 Xilinx, Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* 1. Redistributions source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of Xilinx nor the names of its contributors may be
* used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <ctype.h>
#include <string.h>
#include <stdarg.h>
extern void outbyte (char);
/*----------------------------------------------------*/
/* Use the following parameter passing structure to */
/* make xil_printf re-entrant. */
/*----------------------------------------------------*/
typedef struct params_s {
int len;
int num1;
int num2;
char pad_character;
int do_padding;
int left_flag;
} params_t;
/*---------------------------------------------------*/
/* The purpose of this routine is to output data the */
/* same as the standard printf function without the */
/* overhead most run-time libraries involve. Usually */
/* the printf brings in many kilobytes of code and */
/* that is unacceptable in most embedded systems. */
/*---------------------------------------------------*/
typedef char* charptr;
typedef int (*func_ptr)(int c);
/*---------------------------------------------------*/
/* */
/* This routine puts pad characters into the output */
/* buffer. */
/* */
static void padding( const int l_flag, params_t *par)
{
int i;
if (par->do_padding && l_flag && (par->len < par->num1))
for (i=par->len; i<par->num1; i++)
outbyte( par->pad_character);
}
/*---------------------------------------------------*/
/* */
/* This routine moves a string to the output buffer */
/* as directed by the padding and positioning flags. */
/* */
static void outs( charptr lp, params_t *par)
{
/* pad on left if needed */
par->len = strlen( lp);
padding( !(par->left_flag), par);
/* Move string to the buffer */
while (*lp && (par->num2)--)
outbyte( *lp++);
/* Pad on right if needed */
/* CR 439175 - elided next stmt. Seemed bogus. */
/* par->len = strlen( lp); */
padding( par->left_flag, par);
}
/*---------------------------------------------------*/
/* */
/* This routine moves a number to the output buffer */
/* as directed by the padding and positioning flags. */
/* */
static void outnum( const long n, const long base, params_t *par)
{
charptr cp;
int negative;
char outbuf[32];
const char digits[] = "0123456789ABCDEF";
unsigned long num;
/* Check if number is negative */
if (base == 10 && n < 0L) {
negative = 1;
num = -(n);
}
else{
num = (n);
negative = 0;
}
/* Build number (backwards) in outbuf */
cp = outbuf;
do {
*cp++ = digits[(int)(num % base)];
} while ((num /= base) > 0);
if (negative)
*cp++ = '-';
*cp-- = 0;
/* Move the converted number to the buffer and */
/* add in the padding where needed. */
par->len = strlen(outbuf);
padding( !(par->left_flag), par);
while (cp >= outbuf)
outbyte( *cp--);
padding( par->left_flag, par);
}
/*---------------------------------------------------*/
/* */
/* This routine gets a number from the format */
/* string. */
/* */
static int getnum( charptr* linep)
{
int n;
charptr cp;
n = 0;
cp = *linep;
while (isdigit(*cp))
n = n*10 + ((*cp++) - '0');
*linep = cp;
return(n);
}
/*---------------------------------------------------*/
/* */
/* This routine operates just like a printf/sprintf */
/* routine. It outputs a set of data under the */
/* control of a formatting string. Not all of the */
/* standard C format control are supported. The ones */
/* provided are primarily those needed for embedded */
/* systems work. Primarily the floaing point */
/* routines are omitted. Other formats could be */
/* added easily by following the examples shown for */
/* the supported formats. */
/* */
/* void esp_printf( const func_ptr f_ptr,
const charptr ctrl1, ...) */
void xil_printf( const charptr ctrl1, ...)
{
int long_flag;
int dot_flag;
params_t par;
char ch;
va_list argp;
charptr ctrl = ctrl1;
va_start( argp, ctrl1);
for ( ; *ctrl; ctrl++) {
/* move format string chars to buffer until a */
/* format control is found. */
if (*ctrl != '%') {
outbyte(*ctrl);
continue;
}
/* initialize all the flags for this format. */
dot_flag = long_flag = par.left_flag = par.do_padding = 0;
par.pad_character = ' ';
par.num2=32767;
try_next:
ch = *(++ctrl);
if (isdigit(ch)) {
if (dot_flag)
par.num2 = getnum(&ctrl);
else {
if (ch == '0')
par.pad_character = '0';
par.num1 = getnum(&ctrl);
par.do_padding = 1;
}
ctrl--;
goto try_next;
}
switch (tolower(ch)) {
case '%':
outbyte( '%');
continue;
case '-':
par.left_flag = 1;
break;
case '.':
dot_flag = 1;
break;
case 'l':
long_flag = 1;
break;
case 'd':
if (long_flag || ch == 'D') {
outnum( va_arg(argp, long), 10L, &par);
continue;
}
else {
outnum( va_arg(argp, int), 10L, &par);
continue;
}
case 'x':
outnum((long)va_arg(argp, int), 16L, &par);
continue;
case 's':
outs( va_arg( argp, charptr), &par);
continue;
case 'c':
outbyte( va_arg( argp, int));
continue;
case '\\':
switch (*ctrl) {
case 'a':
outbyte( 0x07);
break;
case 'h':
outbyte( 0x08);
break;
case 'r':
outbyte( 0x0D);
break;
case 'n':
outbyte( 0x0D);
outbyte( 0x0A);
break;
default:
outbyte( *ctrl);
break;
}
ctrl++;
break;
default:
continue;
}
goto try_next;
}
va_end( argp);
}
/*---------------------------------------------------*/
|
the_stack_data/15763377.c | #include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <netdb.h>
#include <fcntl.h>
#define FALSE 0
#define TRUE !FALSE
#define PORT 8000
#define WEBROOT "./views"
#define MAX_CONNECTIONS 20
#define END_OF_LINE "\r\n"
#define END_OF_LINE_SIZE 2
void request_acceptance_message(int);
void handle_http_request(int, struct sockaddr_in *);
void handle_fatal_error(char *);
int get_filesize(int);
int send_a_line_to_socket(int, unsigned char *);
int receive_a_line_from_socket(int, unsigned char *);
int main(void) {
int acceptance_socket_file_descriptor;
int connected_socket_file_descriptor;
int option_value = 1;
struct sockaddr_in host_address;
struct sockaddr_in client_address;
socklen_t socket_in_address_size;
host_address.sin_family = AF_INET;
host_address.sin_port = htons(PORT);
host_address.sin_addr.s_addr = INADDR_ANY;
// TODO
while(TRUE) {
// todo
}
exit(EXIT_SUCCESS);
}
void request_acceptance_message(int port) {}
void handle_http_request(
int acceptance_socket_file_descriptor,
struct sockaddr_in *p_client_address
) {}
void handle_fatal_error(char *message) {}
int get_filesize(int file_descriptor) { return 0; }
int send_a_line_to_socket(
int acceptance_socket_file_descriptor,
unsigned char *buffer
) { return 1; }
int receive_a_line_from_socket(
int acceptance_socket_file_descriptor,
unsigned char *ucp_destination_buffer
) { return 0; }
|
the_stack_data/225142692.c | #include <stdio.h>
#include <stdlib.h>
void clear() //clear terminal or cmd
{
#ifdef _WIN32 //if windows
system("cls");
#elif defined(__linux__) //if linux
system("clear");
#endif
}
void stop()
{
printf("Tekan ENTER untuk melanjutkan");
getchar();
getchar();
}
struct node {
int data;
struct node *next;
};
struct node *head;
void createHead(void) {
struct node *pointer;
int item;
pointer = (struct node *) malloc(sizeof(struct node *));
if(pointer == NULL)
{
printf("\n OVERFLOW");
pause();
}
else
{
printf("Masukkan Data: ");
scanf("%d", &item);
pointer->data = item;
pointer->next = head;
head = pointer;
printf("DATA SAVED AT HEAD!\n");
pause();
}
}
void createTail()
{
struct node *pointer, *temp;
int item;
pointer = (struct node *) malloc(sizeof(struct node *));
if(pointer == NULL)
{
printf("\n OVERFLOW");
pause();
}
else
{
printf("Masukkan Data: ");
scanf("%d", &item);
pointer->data = item;
if(head == NULL)
{
pointer->next = NULL;
head = pointer;
printf("DATA SAVED!");
pause();
}
else
{
temp = head;
while(temp -> next != NULL)
{
temp = temp->next;
}
temp->next = pointer;
pointer->next = NULL;
printf("DATA SAVED AT TAIL!\n");
pause();
}
}
}
void createAny()
{
int i, loc, item;
struct node *pointer, *temp;
pointer = (struct node *)malloc(sizeof(struct node));
if(pointer == NULL)
{
printf("\n OVERFLOW");
pause();
}
else
{
printf("Masukkan Data: ");
scanf("%d", &item);
pointer->data = item;
printf("Simpan di lokasi: ");
scanf("%d", &loc);
temp = head;
for(i = 0; i < loc; i++)
{
temp = temp->next;
if(temp == NULL)
{
printf("DATA NOT SAVED!\n");
pause();
return;
}
}
pointer->next = temp->next;
temp->next = pointer;
printf("DATA SAVED!\n");
pause();
}
}
void read(void) {
struct node *pointer;
pointer = head;
clear();
if (pointer == NULL) {
printf("NO DATA!\n");
pause();
} else {
printf("Data: ");
while(pointer != NULL) {
if(pointer->next != NULL) {
printf("%d - ", pointer->data);
} else {
printf("%d\n", pointer->data);
}
pointer = pointer->next;
}
pause();
}
}
int main(void) {
int choice = -1;
do {
clear();
printf("MENU LINKED LIST\n\n");
printf("[1] Input data at head\n");
printf("[2] Input data at tail\n");
printf("[3] Input data at any\n");
printf("[4] Print data\n");
printf("[0] EXIT\n");
printf("[*] Input: ");
scanf("%d", &choice);
switch (choice)
{
case 1:
createHead();
break;
case 2:
createTail();
break;
case 3:
createAny();
break;
case 4:
read();
break;
default:
break;
}
} while(choice != 0);
return 0;
} |
the_stack_data/1122339.c | #include <stdio.h>
#include <string.h>
char languages[][80] = {
"# .NET",
"A# (Axiom)",
"A-0 System",
"A+",
"A++",
"ABAP",
"ABC",
"ABC ALGOL",
"ABLE",
"ABSET",
"ABSYS",
"ACC",
"Accent",
"Ace DASL",
"ACL2",
"ACT-III",
"Action!",
"ActionScript",
"Ada",
"Adenine",
"Agda",
"Agilent VEE",
"Agora",
"AIMMS",
"Alef",
"ALF",
"ALGOL 58",
"ALGOL 60",
"ALGOL 68",
"ALGOL W",
"Alice",
"Alma-0",
"AmbientTalk",
"Amiga E",
"AMOS",
"AMPL",
"APL",
"AppleScript",
"Arc",
"ARexx",
"Argus",
"AspectJ",
"Assembly language",
"ATS",
"Ateji PX",
"AutoHotkey",
"Autocoder",
"AutoIt",
"AutoLISP / Visual LISP",
"Averest",
"AWK",
"Axum",
};
int main()
{
printf("Please enter a language to search for: ");
char search_term[80];
scanf("%80s", search_term);
int found = 0;
int i;
for (i = 0; i < 52; i ++)
{
if (strstr(languages[i], search_term))
{
printf("Found search term in word %s at index %i \n", languages[i], i);
found ++;
}
}
int item_count = strlen(*languages);
printf("Found %i results out of %i items. Goodbye! \n", found, item_count);
return 0;
};
|
the_stack_data/412639.c | #include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
void GetArrayFromInput(int *arr, int n);
void SortArray(int *arr, int n);
bool BubbleSort(int *arr, int n);
void Swap(int *a, int *b);
void PrintTheSorted(int *arr, int n);
bool FindSum(int* arr, int n, int sum);
void PrintLength();
void PrintArray();
void PrintSum();
void PrintExist();
void PrintDoNotExist();
int main() {
PrintLength();
int n = 0;
scanf("%d", &n);
int *arr = malloc(sizeof(int) * n);
if (!arr) {
// Allocation error
return 0;
}
PrintArray();
GetArrayFromInput(arr, n);
SortArray(arr, n);
//PrintTheSorted(arr, n);
PrintSum();
int sum = 0;
scanf("%d", &sum);
bool sum_exists = false;
sum_exists = FindSum(arr, n, sum);
if (sum_exists) {
PrintExist();
} else {
PrintDoNotExist();
}
free(arr);
return 0;
}
/**
* Checks if an input sum is available from 3 different elements in the array
* @param arr The array
* @param n The array length
* @param sum The sum to check
* @return True if the sum exists, false otherwise
*/
bool FindSum(int* arr, int n, int sum) {
int left;
int right;
for (int i = 0; i < n - 2; ++i) {
left = i+1;
right = n-1;
while (left < right) {
if (arr[i] + arr[left] + arr[right] == sum) {
return true;
} else if (arr[i] + arr[left] + arr[right] > sum) {
right = right - 1;
} else {
left = left + 1;
}
}
}
return false;
}
/**
* Fills an array with given length with values from stdin
* @param arr The array to fill
* @param n The length of the array
*/
void GetArrayFromInput(int *arr, int n) {
int i = 0;
int current = 0;
while (i < n) {
scanf("%d", ¤t);
arr[i] = current;
i++;
}
}
/**
* Performs a bubble sort on an input array
* @param arr The array to sort
* @param n The size of the array
*/
void SortArray(int *arr, int n) {
bool not_sorted = true;
while (n > 1 && not_sorted) {
not_sorted = BubbleSort(arr, n--);
}
}
/**
* Performs a bubble sort iteration on the input array
* @param arr The array to sort
* @param n The size of the current portion of the array to sort
* @return True if sorting was performed in this iteration, false otherwise
*/
bool BubbleSort(int *arr, int n) {
int swap_performed = 0;
for (int i = 1; i < n; ++i) {
if (arr[i - 1] > arr[i]) {
Swap(&arr[i], &arr[i - 1]);
swap_performed = 1;
}
}
return swap_performed;
}
/**
* Swaps two integer values between pointers
* @param a The first value
* @param b The second value
*/
void Swap(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;
}
/**
* Prints an array
* @param arr The array to print
* @param n The size of the array
*/
void PrintTheSorted(int *arr, int n) {
for (int i = 0; i < n; ++i) {
printf("%d, ", arr[i]);
}
printf("\n");
}
void PrintLength() {
printf("Please enter length:\n");
}
void PrintArray() {
printf("Please enter array:\n");
}
void PrintSum() {
printf("Please enter sum:\n");
}
void PrintExist() {
printf("Such elements do exist.");
}
void PrintDoNotExist() {
printf("Such elements do not exist.");
}
|
the_stack_data/93759.c | #include <omp.h>
#include <math.h>
#include <math.h>
#include <assert.h>
#include <stdio.h>
#define IDX_OPT_MAX 1
int openmp_floorx (double x ){
int ax = x ;
if ( ( ax > x ) ){
(ax = ( ax + -1 ));
}else{
0;
}
return ax ;}
void openmp_geo_rel_1st_fwd_scmc_kernel (double * inoutput ,int * xyzw ,double * cu_cache ,int * cu_xyzw ,int * xoffset ,int * yoffset ,int * zoffset ,double * fieldE ,double * fieldB ,double * fieldB1 ,double * FoutJ ,long XLEN ,long YLEN ,long ZLEN ,int ovlp ,long numvec ,int num_ele ,long grid_cache_len ,long cu_cache_length ,double DELTA_X ,double DELTA_Y ,double DELTA_Z ,double Mass0 ,double Charge0 ,double Deltat ,double Tori_X0 ,double Solve_Err ,long scmc_internal_g_idy ,long scmc_internal_g_ylen ){
const long pscmc_compute_unit_id = omp_get_thread_num ( ) ;
const long pscmc_num_compute_units = omp_get_num_threads ( ) ;
#ifdef IDX_LOCAL_XLEN
#undef IDX_LOCAL_XLEN
#endif
#define IDX_LOCAL_XLEN 1
const long idx = 0 ;
const long idy = scmc_internal_g_idy ;
const long xlen = 1 ;
const long ylen = scmc_internal_g_ylen ;
const long global_idx = ( idx + ( idy * xlen ) ) ;
void * call_stack_pointer [4]; int cur_frame_num = 0 ;
long numgrid = ( XLEN * ( YLEN * ZLEN ) ) ;
long numallgrid = ( ( XLEN + ( ovlp + ovlp ) ) * ( ( YLEN + ( ovlp + ovlp ) ) * ( ZLEN + ( ovlp + ovlp ) ) ) ) ;
long numgrid_cu = ( numgrid * numvec ) ;
long grid_base_offset = ( idy * ( numgrid * ( grid_cache_len * 6 ) ) ) ;
int cu_load = (cu_xyzw)[ ( 4 * idy )] ;
int call_sort = 1 ;
int cr_allgid = 0 ;
int use_local_particle_position = 1 ;
int mdx ;
int mdy ;
int mdz ;
double shB0 [375]; double shB1 [375]; double shE0 [375]; double shJ0 [375]; double * particle_head_general ;
int load0 ;
int new_load ;
int global_idy_tmp ;
goto beg_prog; core_fun:
{
int idy = global_idy_tmp ;
if ( load0 ){
double DELTAT = Deltat ;
double grid_geo_x = ( DELTA_X / ( DELTA_Y * DELTA_Z ) ) ;
double grid_geo_y = ( DELTA_Y / ( DELTA_Z * DELTA_X ) ) ;
double grid_geo_z = ( DELTA_Z / ( DELTA_X * DELTA_Y ) ) ;
double XO = (xoffset)[idy] ;
int Midx = openmp_floorx ( (particle_head_general)[0] ) ;
int Midy = openmp_floorx ( (particle_head_general)[1] ) ;
int Midz = openmp_floorx ( (particle_head_general)[2] ) ;
int Bidx = ( Midx - 2 ) ;
int Bidy = ( Midy - 2 ) ;
int Bidz = ( Midz - 2 ) ;
double Mass = 1.00000000000000000e+00 ;
double Charge = ( Charge0 / Mass0 ) ;
{
long xyzz ;
for ((xyzz = 0) ; ( xyzz < 5 ) ; (xyzz = ( xyzz + 1 )))
{
{
long xyzy ;
for ((xyzy = 0) ; ( xyzy < 5 ) ; (xyzy = ( xyzy + 1 )))
{
{
long xyzx ;
for ((xyzx = 0) ; ( xyzx < 1 ) ; (xyzx = ( xyzx + 1 )))
{
int total_idx = ( 3 * ( 5 * ( xyzy + ( 5 * xyzz ) ) ) ) ;
{
long lg = 0 ;
for (0 ; ( lg < ( 3 * 5 ) ) ; (lg = ( lg + xlen )))
{
int ridx = ( lg + idx ) ;
if ( ( ridx < ( 3 * 5 ) ) ){
(( ( shE0 + total_idx ))[ridx] = ( ( fieldE + ( ( num_ele * ( idy * ( ( XLEN + ( 2 * ovlp ) ) * ( ( YLEN + ( 2 * ovlp ) ) * ( ZLEN + ( 2 * ovlp ) ) ) ) ) ) + ( 0 + ( num_ele * ( ( Bidx + ovlp ) + ( ( XLEN + ( 2 * ovlp ) ) * ( ( ( xyzy + Bidy ) + ovlp ) + ( ( YLEN + ( 2 * ovlp ) ) * ( ( xyzz + Bidz ) + ovlp ) ) ) ) ) ) ) ) ))[ridx]);
}else{
0;
}
}}{
long lg = 0 ;
for (0 ; ( lg < ( 3 * 5 ) ) ; (lg = ( lg + xlen )))
{
int ridx = ( lg + idx ) ;
if ( ( ridx < ( 3 * 5 ) ) ){
(( ( shB0 + total_idx ))[ridx] = ( ( fieldB + ( ( num_ele * ( idy * ( ( XLEN + ( 2 * ovlp ) ) * ( ( YLEN + ( 2 * ovlp ) ) * ( ZLEN + ( 2 * ovlp ) ) ) ) ) ) + ( 0 + ( num_ele * ( ( Bidx + ovlp ) + ( ( XLEN + ( 2 * ovlp ) ) * ( ( ( xyzy + Bidy ) + ovlp ) + ( ( YLEN + ( 2 * ovlp ) ) * ( ( xyzz + Bidz ) + ovlp ) ) ) ) ) ) ) ) ))[ridx]);
}else{
0;
}
}}{
long lg = 0 ;
for (0 ; ( lg < ( 3 * 5 ) ) ; (lg = ( lg + xlen )))
{
int ridx = ( lg + idx ) ;
if ( ( ridx < ( 3 * 5 ) ) ){
(( ( shB1 + total_idx ))[ridx] = ( ( fieldB1 + ( ( num_ele * ( idy * ( ( XLEN + ( 2 * ovlp ) ) * ( ( YLEN + ( 2 * ovlp ) ) * ( ZLEN + ( 2 * ovlp ) ) ) ) ) ) + ( 0 + ( num_ele * ( ( Bidx + ovlp ) + ( ( XLEN + ( 2 * ovlp ) ) * ( ( ( xyzy + Bidy ) + ovlp ) + ( ( YLEN + ( 2 * ovlp ) ) * ( ( xyzz + Bidz ) + ovlp ) ) ) ) ) ) ) ) ))[ridx]);
}else{
0;
}
}}{
long lg = 0 ;
for (0 ; ( lg < ( 3 * 5 ) ) ; (lg = ( lg + xlen )))
{
int ridx = ( lg + idx ) ;
if ( ( ridx < ( 3 * 5 ) ) ){
(( ( shJ0 + total_idx ))[ridx] = ( ( FoutJ + ( ( num_ele * ( idy * ( ( XLEN + ( 2 * ovlp ) ) * ( ( YLEN + ( 2 * ovlp ) ) * ( ZLEN + ( 2 * ovlp ) ) ) ) ) ) + ( 0 + ( num_ele * ( ( Bidx + ovlp ) + ( ( XLEN + ( 2 * ovlp ) ) * ( ( ( xyzy + Bidy ) + ovlp ) + ( ( YLEN + ( 2 * ovlp ) ) * ( ( xyzz + Bidz ) + ovlp ) ) ) ) ) ) ) ) ))[ridx]);
}else{
0;
}
}}}}}}}}{
long gMYGEN114 = 0 ;
for (0 ; ( ( gMYGEN114 + ( idx * 1 ) ) < load0 ) ; (gMYGEN114 = ( gMYGEN114 + ( 1 * xlen ) )))
{
long iba_tmp = ( ( idx * 1 ) + gMYGEN114 ) ;
long numcp = 1 ;
double local_particle_head [ ( 1 * 6 )];{
{
long inner_step ;
for ((inner_step = 0) ; ( inner_step < numcp ) ; (inner_step = ( inner_step + 1 )))
{
{
long inner_g ;
for ((inner_g = 0) ; ( inner_g < 6 ) ; (inner_g = ( inner_g + 1 )))
{
(( ( local_particle_head + ( 0 * 6 ) ))[ ( ( inner_step * 6 ) + inner_g )] = ( ( particle_head_general + ( iba_tmp * 6 ) ))[ ( ( inner_step * 6 ) + inner_g )]);
}}}}} double a_f [ ( 1 * 3 )];0;
{
long g ;
for ((g = 0) ; ( g < numcp ) ; (g = ( g + 1 )))
{
double vx0 = ( ( local_particle_head + ( g * 6 ) ))[3] ;
double vy0 = ( ( local_particle_head + ( g * 6 ) ))[4] ;
double vz0 = ( ( local_particle_head + ( g * 6 ) ))[5] ;
double xx1 = ( ( ( local_particle_head + ( g * 6 ) ))[0] - 5.00000000000000000e-01 ) ;
double xy1 = ( ( ( local_particle_head + ( g * 6 ) ))[1] - 5.00000000000000000e-01 ) ;
double xz1 = ( ( ( local_particle_head + ( g * 6 ) ))[2] - 5.00000000000000000e-01 ) ;
double xx0 = ( xx1 - ( Deltat * vx0 ) ) ;
double xy0 = ( xy1 - ( Deltat * vy0 ) ) ;
double xz0 = ( xz1 - ( Deltat * vz0 ) ) ;
double Midx0 = openmp_floorx ( xx0 ) ;
double Midy0 = openmp_floorx ( xy0 ) ;
double Midz0 = openmp_floorx ( xz0 ) ;
double Midx1 = openmp_floorx ( xx1 ) ;
double Midy1 = openmp_floorx ( xy1 ) ;
double Midz1 = openmp_floorx ( xz1 ) ;
double rx0 = ( xx0 - Midx0 ) ;
double ry0 = ( xy0 - Midy0 ) ;
double rz0 = ( xz0 - Midz0 ) ;
double rx1 = ( xx1 - Midx1 ) ;
double ry1 = ( xy1 - Midy1 ) ;
double rz1 = ( xz1 - Midz1 ) ;
double X0 = xx0 ;
double X1 = xx1 ;
double Y0 = xy0 ;
double Y1 = xy1 ;
double Z0 = xz0 ;
double Z1 = xz1 ;
{
double f0_x0 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f0_x0)[i] = 0);
}} double f1_x0 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f1_x0)[i] = 0);
}} double if1_x0 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((if1_x0)[i] = 0);
}} double f0_y0 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f0_y0)[i] = 0);
}} double f1_y0 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f1_y0)[i] = 0);
}} double if1_y0 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((if1_y0)[i] = 0);
}} double f0_z0 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f0_z0)[i] = 0);
}} double f1_z0 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f1_z0)[i] = 0);
}} double if1_z0 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((if1_z0)[i] = 0);
}} double f0_x1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f0_x1)[i] = 0);
}} double f1_x1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f1_x1)[i] = 0);
}} double if1_x1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((if1_x1)[i] = 0);
}} double f0_y1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f0_y1)[i] = 0);
}} double f1_y1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f1_y1)[i] = 0);
}} double if1_y1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((if1_y1)[i] = 0);
}} double f0_z1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f0_z1)[i] = 0);
}} double f1_z1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f1_z1)[i] = 0);
}} double if1_z1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((if1_z1)[i] = 0);
}} int ixx0 = (( ( xx0 >= Midx ))?(1):(0)) ;
int ixy0 = (( ( xy0 >= Midy ))?(1):(0)) ;
int ixz0 = (( ( xz0 >= Midz ))?(1):(0)) ;
int ixx1 = (( ( xx1 >= Midx ))?(1):(0)) ;
int ixy1 = (( ( xy1 >= Midy ))?(1):(0)) ;
int ixz1 = (( ( xz1 >= Midz ))?(1):(0)) ;
((if1_x0)[0] = 1);
((if1_x0)[1] = 1);
((if1_y0)[0] = 1);
((if1_y0)[1] = 1);
((if1_z0)[0] = 1);
((if1_z0)[1] = 1);
((if1_x1)[0] = 1);
((if1_x1)[1] = 1);
((if1_y1)[0] = 1);
((if1_y1)[1] = 1);
((if1_z1)[0] = 1);
((if1_z1)[1] = 1);
((f0_x0)[ ( 0 + ixx0 )] = ( 2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx0 ) ) , 2 ) ));
((f1_x0)[ ( 0 + ixx0 )] = ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx0 ) ) ));
((if1_x0)[ ( 0 + ixx0 )] = ( 1.00000000000000000e+00 + ( -2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx0 ) ) , 2 ) ) ));
((f0_x0)[ ( 1 + ixx0 )] = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx0 ) ) , 2 ) + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx0 ) ) ) ) ) ));
((f1_x0)[ ( 1 + ixx0 )] = ( ( 2.50000000000000000e-01 * ( 2.00000000000000000e+00 + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx0 ) ) ) ) ) + ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx0 ) ) ) ));
((if1_x0)[ ( 1 + ixx0 )] = ( ( 2.50000000000000000e-01 * pow ( rx0 , 2 ) ) + ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * rx0 ) + pow ( rx0 , 2 ) ) ) ) ));
((f0_x0)[ ( 2 + ixx0 )] = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * rx0 ) + pow ( rx0 , 2 ) ) ) ));
((f1_x0)[ ( 2 + ixx0 )] = ( 5.00000000000000000e-01 * rx0 ));
((if1_x0)[ ( 2 + ixx0 )] = ( 2.50000000000000000e-01 * pow ( rx0 , 2 ) ));
((f0_x0)[ ( 3 + ixx0 )] = ( 2.50000000000000000e-01 * pow ( rx0 , 2 ) ));
((f0_y0)[ ( 0 + ixy0 )] = ( 2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry0 ) ) , 2 ) ));
((f1_y0)[ ( 0 + ixy0 )] = ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry0 ) ) ));
((if1_y0)[ ( 0 + ixy0 )] = ( 1.00000000000000000e+00 + ( -2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry0 ) ) , 2 ) ) ));
((f0_y0)[ ( 1 + ixy0 )] = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry0 ) ) , 2 ) + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry0 ) ) ) ) ) ));
((f1_y0)[ ( 1 + ixy0 )] = ( ( 2.50000000000000000e-01 * ( 2.00000000000000000e+00 + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry0 ) ) ) ) ) + ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry0 ) ) ) ));
((if1_y0)[ ( 1 + ixy0 )] = ( ( 2.50000000000000000e-01 * pow ( ry0 , 2 ) ) + ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * ry0 ) + pow ( ry0 , 2 ) ) ) ) ));
((f0_y0)[ ( 2 + ixy0 )] = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * ry0 ) + pow ( ry0 , 2 ) ) ) ));
((f1_y0)[ ( 2 + ixy0 )] = ( 5.00000000000000000e-01 * ry0 ));
((if1_y0)[ ( 2 + ixy0 )] = ( 2.50000000000000000e-01 * pow ( ry0 , 2 ) ));
((f0_y0)[ ( 3 + ixy0 )] = ( 2.50000000000000000e-01 * pow ( ry0 , 2 ) ));
((f0_z0)[ ( 0 + ixz0 )] = ( 2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz0 ) ) , 2 ) ));
((f1_z0)[ ( 0 + ixz0 )] = ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz0 ) ) ));
((if1_z0)[ ( 0 + ixz0 )] = ( 1.00000000000000000e+00 + ( -2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz0 ) ) , 2 ) ) ));
((f0_z0)[ ( 1 + ixz0 )] = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz0 ) ) , 2 ) + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz0 ) ) ) ) ) ));
((f1_z0)[ ( 1 + ixz0 )] = ( ( 2.50000000000000000e-01 * ( 2.00000000000000000e+00 + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz0 ) ) ) ) ) + ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz0 ) ) ) ));
((if1_z0)[ ( 1 + ixz0 )] = ( ( 2.50000000000000000e-01 * pow ( rz0 , 2 ) ) + ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * rz0 ) + pow ( rz0 , 2 ) ) ) ) ));
((f0_z0)[ ( 2 + ixz0 )] = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * rz0 ) + pow ( rz0 , 2 ) ) ) ));
((f1_z0)[ ( 2 + ixz0 )] = ( 5.00000000000000000e-01 * rz0 ));
((if1_z0)[ ( 2 + ixz0 )] = ( 2.50000000000000000e-01 * pow ( rz0 , 2 ) ));
((f0_z0)[ ( 3 + ixz0 )] = ( 2.50000000000000000e-01 * pow ( rz0 , 2 ) ));
((f0_x1)[ ( 0 + ixx1 )] = ( 2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx1 ) ) , 2 ) ));
((f1_x1)[ ( 0 + ixx1 )] = ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx1 ) ) ));
((if1_x1)[ ( 0 + ixx1 )] = ( 1.00000000000000000e+00 + ( -2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx1 ) ) , 2 ) ) ));
((f0_x1)[ ( 1 + ixx1 )] = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx1 ) ) , 2 ) + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx1 ) ) ) ) ) ));
((f1_x1)[ ( 1 + ixx1 )] = ( ( 2.50000000000000000e-01 * ( 2.00000000000000000e+00 + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx1 ) ) ) ) ) + ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx1 ) ) ) ));
((if1_x1)[ ( 1 + ixx1 )] = ( ( 2.50000000000000000e-01 * pow ( rx1 , 2 ) ) + ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * rx1 ) + pow ( rx1 , 2 ) ) ) ) ));
((f0_x1)[ ( 2 + ixx1 )] = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * rx1 ) + pow ( rx1 , 2 ) ) ) ));
((f1_x1)[ ( 2 + ixx1 )] = ( 5.00000000000000000e-01 * rx1 ));
((if1_x1)[ ( 2 + ixx1 )] = ( 2.50000000000000000e-01 * pow ( rx1 , 2 ) ));
((f0_x1)[ ( 3 + ixx1 )] = ( 2.50000000000000000e-01 * pow ( rx1 , 2 ) ));
((f0_y1)[ ( 0 + ixy1 )] = ( 2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry1 ) ) , 2 ) ));
((f1_y1)[ ( 0 + ixy1 )] = ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry1 ) ) ));
((if1_y1)[ ( 0 + ixy1 )] = ( 1.00000000000000000e+00 + ( -2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry1 ) ) , 2 ) ) ));
((f0_y1)[ ( 1 + ixy1 )] = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry1 ) ) , 2 ) + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry1 ) ) ) ) ) ));
((f1_y1)[ ( 1 + ixy1 )] = ( ( 2.50000000000000000e-01 * ( 2.00000000000000000e+00 + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry1 ) ) ) ) ) + ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry1 ) ) ) ));
((if1_y1)[ ( 1 + ixy1 )] = ( ( 2.50000000000000000e-01 * pow ( ry1 , 2 ) ) + ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * ry1 ) + pow ( ry1 , 2 ) ) ) ) ));
((f0_y1)[ ( 2 + ixy1 )] = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * ry1 ) + pow ( ry1 , 2 ) ) ) ));
((f1_y1)[ ( 2 + ixy1 )] = ( 5.00000000000000000e-01 * ry1 ));
((if1_y1)[ ( 2 + ixy1 )] = ( 2.50000000000000000e-01 * pow ( ry1 , 2 ) ));
((f0_y1)[ ( 3 + ixy1 )] = ( 2.50000000000000000e-01 * pow ( ry1 , 2 ) ));
((f0_z1)[ ( 0 + ixz1 )] = ( 2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz1 ) ) , 2 ) ));
((f1_z1)[ ( 0 + ixz1 )] = ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz1 ) ) ));
((if1_z1)[ ( 0 + ixz1 )] = ( 1.00000000000000000e+00 + ( -2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz1 ) ) , 2 ) ) ));
((f0_z1)[ ( 1 + ixz1 )] = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz1 ) ) , 2 ) + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz1 ) ) ) ) ) ));
((f1_z1)[ ( 1 + ixz1 )] = ( ( 2.50000000000000000e-01 * ( 2.00000000000000000e+00 + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz1 ) ) ) ) ) + ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz1 ) ) ) ));
((if1_z1)[ ( 1 + ixz1 )] = ( ( 2.50000000000000000e-01 * pow ( rz1 , 2 ) ) + ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * rz1 ) + pow ( rz1 , 2 ) ) ) ) ));
((f0_z1)[ ( 2 + ixz1 )] = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * rz1 ) + pow ( rz1 , 2 ) ) ) ));
((f1_z1)[ ( 2 + ixz1 )] = ( 5.00000000000000000e-01 * rz1 ));
((if1_z1)[ ( 2 + ixz1 )] = ( 2.50000000000000000e-01 * pow ( rz1 , 2 ) ));
((f0_z1)[ ( 3 + ixz1 )] = ( 2.50000000000000000e-01 * pow ( rz1 , 2 ) ));
double Ex1 ;
{
double sum0 = 0.00000000000000000e+00 ;
{
long xyzz ;
for ((xyzz = 0) ; ( xyzz < 5 ) ; (xyzz = ( xyzz + 1 )))
{
{
long xyzy ;
for ((xyzy = 0) ; ( xyzy < 5 ) ; (xyzy = ( xyzy + 1 )))
{
{
long xyzx ;
for ((xyzx = 0) ; ( xyzx < 5 ) ; (xyzx = ( xyzx + 1 )))
{
int allidx = ( xyzx + ( 5 * ( xyzy + ( 5 * xyzz ) ) ) ) ;
(sum0 = ( sum0 + ( (shE0)[ ( ( allidx * 3 ) + 0 )] * ( (f1_x1)[xyzx] * ( (f0_y1)[xyzy] * (f0_z1)[xyzz] ) ) ) ));
}}}}}}(Ex1 = sum0);
} double Ey1 ;
{
double sum0 = 0.00000000000000000e+00 ;
{
long xyzz ;
for ((xyzz = 0) ; ( xyzz < 5 ) ; (xyzz = ( xyzz + 1 )))
{
{
long xyzy ;
for ((xyzy = 0) ; ( xyzy < 5 ) ; (xyzy = ( xyzy + 1 )))
{
{
long xyzx ;
for ((xyzx = 0) ; ( xyzx < 5 ) ; (xyzx = ( xyzx + 1 )))
{
int allidx = ( xyzx + ( 5 * ( xyzy + ( 5 * xyzz ) ) ) ) ;
(sum0 = ( sum0 + ( (shE0)[ ( ( allidx * 3 ) + 1 )] * ( (f1_y1)[xyzy] * ( (f0_x1)[xyzx] * (f0_z1)[xyzz] ) ) ) ));
}}}}}}(Ey1 = sum0);
} double Ez1 ;
{
double sum0 = 0.00000000000000000e+00 ;
{
long xyzz ;
for ((xyzz = 0) ; ( xyzz < 5 ) ; (xyzz = ( xyzz + 1 )))
{
{
long xyzy ;
for ((xyzy = 0) ; ( xyzy < 5 ) ; (xyzy = ( xyzy + 1 )))
{
{
long xyzx ;
for ((xyzx = 0) ; ( xyzx < 5 ) ; (xyzx = ( xyzx + 1 )))
{
int allidx = ( xyzx + ( 5 * ( xyzy + ( 5 * xyzz ) ) ) ) ;
(sum0 = ( sum0 + ( (shE0)[ ( ( allidx * 3 ) + 2 )] * ( (f1_z1)[xyzz] * ( (f0_x1)[xyzx] * (f0_y1)[xyzy] ) ) ) ));
}}}}}}(Ez1 = sum0);
}{
double B0y_intzX1Y1Z0Z1 ;
{
double sum0 = 0.00000000000000000e+00 ;
{
long xyzz ;
for ((xyzz = 0) ; ( xyzz < 5 ) ; (xyzz = ( xyzz + 1 )))
{
{
long xyzy ;
for ((xyzy = 0) ; ( xyzy < 5 ) ; (xyzy = ( xyzy + 1 )))
{
{
long xyzx ;
for ((xyzx = 0) ; ( xyzx < 5 ) ; (xyzx = ( xyzx + 1 )))
{
int allidx = ( xyzx + ( 5 * ( xyzy + ( 5 * xyzz ) ) ) ) ;
(sum0 = ( sum0 + ( (shB0)[ ( ( allidx * 3 ) + 1 )] * ( (f0_y1)[xyzy] * ( ( (if1_z1)[xyzz] - (if1_z0)[xyzz] ) * (f1_x1)[xyzx] ) ) ) ));
}}}}}}(B0y_intzX1Y1Z0Z1 = sum0);
} double B0z_intyX1Y0Z0Y1 ;
{
double sum0 = 0.00000000000000000e+00 ;
{
long xyzz ;
for ((xyzz = 0) ; ( xyzz < 5 ) ; (xyzz = ( xyzz + 1 )))
{
{
long xyzy ;
for ((xyzy = 0) ; ( xyzy < 5 ) ; (xyzy = ( xyzy + 1 )))
{
{
long xyzx ;
for ((xyzx = 0) ; ( xyzx < 5 ) ; (xyzx = ( xyzx + 1 )))
{
int allidx = ( xyzx + ( 5 * ( xyzy + ( 5 * xyzz ) ) ) ) ;
(sum0 = ( sum0 + ( (shB0)[ ( ( allidx * 3 ) + 2 )] * ( (f0_z0)[xyzz] * ( ( (if1_y1)[xyzy] - (if1_y0)[xyzy] ) * (f1_x1)[xyzx] ) ) ) ));
}}}}}}(B0z_intyX1Y0Z0Y1 = sum0);
}(( ( a_f + ( ( g % 1 ) * 3 ) ))[0] = ( ( Charge * Ex1 ) + ( ( Charge * ( pow ( DELTAT , -1 ) * ( B0z_intyX1Y0Z0Y1 + ( -1.00000000000000000e+00 * B0y_intzX1Y1Z0Z1 ) ) ) ) + ( -5.00000000000000000e-01 * ( Mass * ( ( ( -2.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * ( ( -1.00000000000000000e+00 * X0 ) + X1 ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( Tori_X0 , -1 ) * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( ( 1.00000000000000000e+00 + ( pow ( Tori_X0 , -1 ) * ( ( 5.00000000000000000e-01 * ( X0 + X1 ) ) + XO ) ) ) * pow ( ( ( -1.00000000000000000e+00 * Y0 ) + Y1 ) , 2 ) ) ) ) ) ) ) * ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X0 ) + X1 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( ( 1.00000000000000000e+00 + ( pow ( Tori_X0 , -1 ) * ( ( 5.00000000000000000e-01 * ( X0 + X1 ) ) + XO ) ) ) , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y0 ) + Y1 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z0 ) + Z1 ) , 2 ) ) ) ) ) ) ) , -1.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X0 ) + X1 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( ( 1.00000000000000000e+00 + ( pow ( Tori_X0 , -1 ) * ( ( 5.00000000000000000e-01 * ( X0 + X1 ) ) + XO ) ) ) , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y0 ) + Y1 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z0 ) + Z1 ) , 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ));
}{
double B0x_intzX1Y1Z0Z1 ;
{
double sum0 = 0.00000000000000000e+00 ;
{
long xyzz ;
for ((xyzz = 0) ; ( xyzz < 5 ) ; (xyzz = ( xyzz + 1 )))
{
{
long xyzy ;
for ((xyzy = 0) ; ( xyzy < 5 ) ; (xyzy = ( xyzy + 1 )))
{
{
long xyzx ;
for ((xyzx = 0) ; ( xyzx < 5 ) ; (xyzx = ( xyzx + 1 )))
{
int allidx = ( xyzx + ( 5 * ( xyzy + ( 5 * xyzz ) ) ) ) ;
(sum0 = ( sum0 + ( (shB0)[ ( ( allidx * 3 ) + 0 )] * ( (f0_x1)[xyzx] * ( ( (if1_z1)[xyzz] - (if1_z0)[xyzz] ) * (f1_y1)[xyzy] ) ) ) ));
}}}}}}(B0x_intzX1Y1Z0Z1 = sum0);
}(( ( a_f + ( ( g % 1 ) * 3 ) ))[1] = ( ( Charge * Ey1 ) + ( ( Charge * ( pow ( DELTAT , -1 ) * B0x_intzX1Y1Z0Z1 ) ) + ( Mass * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( ( 1.00000000000000000e+00 + ( pow ( Tori_X0 , -1 ) * ( ( 5.00000000000000000e-01 * ( X0 + X1 ) ) + XO ) ) ) , 2 ) * ( ( ( -1.00000000000000000e+00 * Y0 ) + Y1 ) * ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X0 ) + X1 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( ( 1.00000000000000000e+00 + ( pow ( Tori_X0 , -1 ) * ( ( 5.00000000000000000e-01 * ( X0 + X1 ) ) + XO ) ) ) , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y0 ) + Y1 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z0 ) + Z1 ) , 2 ) ) ) ) ) ) ) , -1.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X0 ) + X1 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( ( 1.00000000000000000e+00 + ( pow ( Tori_X0 , -1 ) * ( ( 5.00000000000000000e-01 * ( X0 + X1 ) ) + XO ) ) ) , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y0 ) + Y1 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z0 ) + Z1 ) , 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ));
}(( ( a_f + ( ( g % 1 ) * 3 ) ))[2] = ( ( Charge * Ez1 ) + ( Mass * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * ( ( ( -1.00000000000000000e+00 * Z0 ) + Z1 ) * ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X0 ) + X1 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( ( 1.00000000000000000e+00 + ( pow ( Tori_X0 , -1 ) * ( ( 5.00000000000000000e-01 * ( X0 + X1 ) ) + XO ) ) ) , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y0 ) + Y1 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z0 ) + Z1 ) , 2 ) ) ) ) ) ) ) , -1.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X0 ) + X1 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( ( 1.00000000000000000e+00 + ( pow ( Tori_X0 , -1 ) * ( ( 5.00000000000000000e-01 * ( X0 + X1 ) ) + XO ) ) ) , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y0 ) + Y1 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z0 ) + Z1 ) , 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ));
}}}{
long g ;
for ((g = 0) ; ( g < numcp ) ; (g = ( g + 1 )))
{
double res_0 = ( ( a_f + ( ( g % 1 ) * 3 ) ))[0] ;
double res_1 = ( ( a_f + ( ( g % 1 ) * 3 ) ))[1] ;
double res_2 = ( ( a_f + ( ( g % 1 ) * 3 ) ))[2] ;
double vx0 = ( ( local_particle_head + ( g * 6 ) ))[3] ;
double vy0 = ( ( local_particle_head + ( g * 6 ) ))[4] ;
double vz0 = ( ( local_particle_head + ( g * 6 ) ))[5] ;
double xx1 = ( ( ( local_particle_head + ( g * 6 ) ))[0] - 5.00000000000000000e-01 ) ;
double xy1 = ( ( ( local_particle_head + ( g * 6 ) ))[1] - 5.00000000000000000e-01 ) ;
double xz1 = ( ( ( local_particle_head + ( g * 6 ) ))[2] - 5.00000000000000000e-01 ) ;
double xx0 = ( xx1 - ( Deltat * vx0 ) ) ;
double xy0 = ( xy1 - ( Deltat * vy0 ) ) ;
double xz0 = ( xz1 - ( Deltat * vz0 ) ) ;
double Midx0 = openmp_floorx ( xx0 ) ;
double Midy0 = openmp_floorx ( xy0 ) ;
double Midz0 = openmp_floorx ( xz0 ) ;
double Midx1 = openmp_floorx ( xx1 ) ;
double Midy1 = openmp_floorx ( xy1 ) ;
double Midz1 = openmp_floorx ( xz1 ) ;
double rx0 = ( xx0 - Midx0 ) ;
double ry0 = ( xy0 - Midy0 ) ;
double rz0 = ( xz0 - Midz0 ) ;
double rx1 = ( xx1 - Midx1 ) ;
double ry1 = ( xy1 - Midy1 ) ;
double rz1 = ( xz1 - Midz1 ) ;
double X0 = xx0 ;
double X1 = xx1 ;
double X2 = ( ( 2 * xx1 ) - xx0 ) ;
double Y0 = xy0 ;
double Y1 = xy1 ;
double Y2 = ( ( 2 * xy1 ) - xy0 ) ;
double Z0 = xz0 ;
double Z1 = xz1 ;
double Z2 = ( ( 2 * xz1 ) - xz0 ) ;
double f0_x1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f0_x1)[i] = 0);
}} double f1_x1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f1_x1)[i] = 0);
}} double if1_x1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((if1_x1)[i] = 0);
}} double df0_x1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((df0_x1)[i] = 0);
}} double dif1_x1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((dif1_x1)[i] = 0);
}} double f0_y1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f0_y1)[i] = 0);
}} double f1_y1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f1_y1)[i] = 0);
}} double if1_y1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((if1_y1)[i] = 0);
}} double df0_y1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((df0_y1)[i] = 0);
}} double dif1_y1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((dif1_y1)[i] = 0);
}} double f0_z1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f0_z1)[i] = 0);
}} double f1_z1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f1_z1)[i] = 0);
}} double if1_z1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((if1_z1)[i] = 0);
}} double df0_z1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((df0_z1)[i] = 0);
}} double dif1_z1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((dif1_z1)[i] = 0);
}} double f0_x2 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f0_x2)[i] = 0);
}} double f1_x2 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f1_x2)[i] = 0);
}} double if1_x2 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((if1_x2)[i] = 0);
}} double df0_x2 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((df0_x2)[i] = 0);
}} double dif1_x2 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((dif1_x2)[i] = 0);
}} double f0_y2 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f0_y2)[i] = 0);
}} double f1_y2 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f1_y2)[i] = 0);
}} double if1_y2 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((if1_y2)[i] = 0);
}} double df0_y2 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((df0_y2)[i] = 0);
}} double dif1_y2 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((dif1_y2)[i] = 0);
}} double f0_z2 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f0_z2)[i] = 0);
}} double f1_z2 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f1_z2)[i] = 0);
}} double if1_z2 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((if1_z2)[i] = 0);
}} double df0_z2 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((df0_z2)[i] = 0);
}} double dif1_z2 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((dif1_z2)[i] = 0);
}} int ixx0 = (( ( xx0 >= Midx ))?(1):(0)) ;
int ixy0 = (( ( xy0 >= Midy ))?(1):(0)) ;
int ixz0 = (( ( xz0 >= Midz ))?(1):(0)) ;
int ixx1 = (( ( xx1 >= Midx ))?(1):(0)) ;
int ixy1 = (( ( xy1 >= Midy ))?(1):(0)) ;
int ixz1 = (( ( xz1 >= Midz ))?(1):(0)) ;
((if1_x1)[0] = 1);
((if1_x1)[1] = 1);
((if1_y1)[0] = 1);
((if1_y1)[1] = 1);
((if1_z1)[0] = 1);
((if1_z1)[1] = 1);
((f0_x1)[ ( 0 + ixx1 )] = ( 2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx1 ) ) , 2 ) ));
((f1_x1)[ ( 0 + ixx1 )] = ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx1 ) ) ));
((if1_x1)[ ( 0 + ixx1 )] = ( 1.00000000000000000e+00 + ( -2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx1 ) ) , 2 ) ) ));
((f0_x1)[ ( 1 + ixx1 )] = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx1 ) ) , 2 ) + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx1 ) ) ) ) ) ));
((f1_x1)[ ( 1 + ixx1 )] = ( ( 2.50000000000000000e-01 * ( 2.00000000000000000e+00 + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx1 ) ) ) ) ) + ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx1 ) ) ) ));
((if1_x1)[ ( 1 + ixx1 )] = ( ( 2.50000000000000000e-01 * pow ( rx1 , 2 ) ) + ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * rx1 ) + pow ( rx1 , 2 ) ) ) ) ));
((f0_x1)[ ( 2 + ixx1 )] = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * rx1 ) + pow ( rx1 , 2 ) ) ) ));
((f1_x1)[ ( 2 + ixx1 )] = ( 5.00000000000000000e-01 * rx1 ));
((if1_x1)[ ( 2 + ixx1 )] = ( 2.50000000000000000e-01 * pow ( rx1 , 2 ) ));
((f0_x1)[ ( 3 + ixx1 )] = ( 2.50000000000000000e-01 * pow ( rx1 , 2 ) ));
((f0_y1)[ ( 0 + ixy1 )] = ( 2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry1 ) ) , 2 ) ));
((f1_y1)[ ( 0 + ixy1 )] = ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry1 ) ) ));
((if1_y1)[ ( 0 + ixy1 )] = ( 1.00000000000000000e+00 + ( -2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry1 ) ) , 2 ) ) ));
((f0_y1)[ ( 1 + ixy1 )] = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry1 ) ) , 2 ) + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry1 ) ) ) ) ) ));
((f1_y1)[ ( 1 + ixy1 )] = ( ( 2.50000000000000000e-01 * ( 2.00000000000000000e+00 + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry1 ) ) ) ) ) + ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry1 ) ) ) ));
((if1_y1)[ ( 1 + ixy1 )] = ( ( 2.50000000000000000e-01 * pow ( ry1 , 2 ) ) + ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * ry1 ) + pow ( ry1 , 2 ) ) ) ) ));
((f0_y1)[ ( 2 + ixy1 )] = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * ry1 ) + pow ( ry1 , 2 ) ) ) ));
((f1_y1)[ ( 2 + ixy1 )] = ( 5.00000000000000000e-01 * ry1 ));
((if1_y1)[ ( 2 + ixy1 )] = ( 2.50000000000000000e-01 * pow ( ry1 , 2 ) ));
((f0_y1)[ ( 3 + ixy1 )] = ( 2.50000000000000000e-01 * pow ( ry1 , 2 ) ));
((f0_z1)[ ( 0 + ixz1 )] = ( 2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz1 ) ) , 2 ) ));
((f1_z1)[ ( 0 + ixz1 )] = ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz1 ) ) ));
((if1_z1)[ ( 0 + ixz1 )] = ( 1.00000000000000000e+00 + ( -2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz1 ) ) , 2 ) ) ));
((f0_z1)[ ( 1 + ixz1 )] = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz1 ) ) , 2 ) + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz1 ) ) ) ) ) ));
((f1_z1)[ ( 1 + ixz1 )] = ( ( 2.50000000000000000e-01 * ( 2.00000000000000000e+00 + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz1 ) ) ) ) ) + ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz1 ) ) ) ));
((if1_z1)[ ( 1 + ixz1 )] = ( ( 2.50000000000000000e-01 * pow ( rz1 , 2 ) ) + ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * rz1 ) + pow ( rz1 , 2 ) ) ) ) ));
((f0_z1)[ ( 2 + ixz1 )] = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * rz1 ) + pow ( rz1 , 2 ) ) ) ));
((f1_z1)[ ( 2 + ixz1 )] = ( 5.00000000000000000e-01 * rz1 ));
((if1_z1)[ ( 2 + ixz1 )] = ( 2.50000000000000000e-01 * pow ( rz1 , 2 ) ));
((f0_z1)[ ( 3 + ixz1 )] = ( 2.50000000000000000e-01 * pow ( rz1 , 2 ) ));
{
double maxerr = 0.00000000000000000e+00 ;
double RPL00 ;
double RPL10 ;
double RPL20 ;
double RES [3]; double L_RES [3]; double JAC [9]; double IJAC [9];{
long z ;
for ((z = 0) ; ( z < 32 ) ; (z = ( z + 1 )))
{
{
double xx2 = X2 ;
double xy2 = Y2 ;
double xz2 = Z2 ;
int Midx2 = openmp_floorx ( xx2 ) ;
int Midy2 = openmp_floorx ( xy2 ) ;
int Midz2 = openmp_floorx ( xz2 ) ;
double rx2 = ( xx2 - Midx2 ) ;
double ry2 = ( xy2 - Midy2 ) ;
double rz2 = ( xz2 - Midz2 ) ;
(RPL00 = ( 1.00000000000000000e+00 + ( pow ( Tori_X0 , -1 ) * ( ( 5.00000000000000000e-01 * ( X1 + X2 ) ) + XO ) ) ));
(RPL10 = ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ));
(RPL20 = ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * RPL10 ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) , 0.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * RPL10 ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) ));
{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f0_x2)[i] = 0);
}}{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f1_x2)[i] = 0);
}}{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((if1_x2)[i] = 0);
}}{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((df0_x2)[i] = 0);
}}{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((dif1_x2)[i] = 0);
}}{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f0_y2)[i] = 0);
}}{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f1_y2)[i] = 0);
}}{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((if1_y2)[i] = 0);
}}{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((df0_y2)[i] = 0);
}}{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((dif1_y2)[i] = 0);
}}{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f0_z2)[i] = 0);
}}{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f1_z2)[i] = 0);
}}{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((if1_z2)[i] = 0);
}}{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((df0_z2)[i] = 0);
}}{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((dif1_z2)[i] = 0);
}}((if1_x2)[0] = 1);
((if1_x2)[1] = 1);
((if1_y2)[0] = 1);
((if1_y2)[1] = 1);
((if1_z2)[0] = 1);
((if1_z2)[1] = 1);
double ixx2 = (( ( xx2 >= Midx ))?(1.00000000000000000e+00):(0.00000000000000000e+00)) ;
double ixy2 = (( ( xy2 >= Midy ))?(1.00000000000000000e+00):(0.00000000000000000e+00)) ;
double ixz2 = (( ( xz2 >= Midz ))?(1.00000000000000000e+00):(0.00000000000000000e+00)) ;
double f0_0x2_nv_bac ;
(f0_0x2_nv_bac = ( 2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx2 ) ) , 2 ) ));
double df0_0x2_nv_bac ;
(df0_0x2_nv_bac = ( -5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx2 ) ) ));
double dif1_0x2_nv_bac ;
(dif1_0x2_nv_bac = -5.00000000000000000e-01);
double f1_0x2_nv_bac ;
(f1_0x2_nv_bac = ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx2 ) ) ));
double if1_0x2_nv_bac ;
(if1_0x2_nv_bac = ( 1.00000000000000000e+00 + ( -2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx2 ) ) , 2 ) ) ));
double f0_1x2_nv_bac ;
(f0_1x2_nv_bac = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx2 ) ) , 2 ) + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx2 ) ) ) ) ) ));
double df0_1x2_nv_bac ;
(df0_1x2_nv_bac = ( -2.50000000000000000e-01 * ( 2.00000000000000000e+00 + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx2 ) ) ) ) ));
double dif1_1x2_nv_bac ;
(dif1_1x2_nv_bac = 0.00000000000000000e+00);
double f1_1x2_nv_bac ;
(f1_1x2_nv_bac = ( ( 2.50000000000000000e-01 * ( 2.00000000000000000e+00 + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx2 ) ) ) ) ) + ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx2 ) ) ) ));
double if1_1x2_nv_bac ;
(if1_1x2_nv_bac = ( ( 2.50000000000000000e-01 * pow ( rx2 , 2 ) ) + ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * rx2 ) + pow ( rx2 , 2 ) ) ) ) ));
double f0_2x2_nv_bac ;
(f0_2x2_nv_bac = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * rx2 ) + pow ( rx2 , 2 ) ) ) ));
double df0_2x2_nv_bac ;
(df0_2x2_nv_bac = ( -2.50000000000000000e-01 * ( -2.00000000000000000e+00 + ( 2.00000000000000000e+00 * rx2 ) ) ));
double dif1_2x2_nv_bac ;
(dif1_2x2_nv_bac = 5.00000000000000000e-01);
double f1_2x2_nv_bac ;
(f1_2x2_nv_bac = ( 5.00000000000000000e-01 * rx2 ));
double if1_2x2_nv_bac ;
(if1_2x2_nv_bac = ( 2.50000000000000000e-01 * pow ( rx2 , 2 ) ));
double f0_3x2_nv_bac ;
(f0_3x2_nv_bac = ( 2.50000000000000000e-01 * pow ( rx2 , 2 ) ));
double df0_3x2_nv_bac ;
(df0_3x2_nv_bac = ( 5.00000000000000000e-01 * rx2 ));
double f0_0y2_nv_bac ;
(f0_0y2_nv_bac = ( 2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry2 ) ) , 2 ) ));
double df0_0y2_nv_bac ;
(df0_0y2_nv_bac = ( -5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry2 ) ) ));
double dif1_0y2_nv_bac ;
(dif1_0y2_nv_bac = -5.00000000000000000e-01);
double f1_0y2_nv_bac ;
(f1_0y2_nv_bac = ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry2 ) ) ));
double if1_0y2_nv_bac ;
(if1_0y2_nv_bac = ( 1.00000000000000000e+00 + ( -2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry2 ) ) , 2 ) ) ));
double f0_1y2_nv_bac ;
(f0_1y2_nv_bac = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry2 ) ) , 2 ) + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry2 ) ) ) ) ) ));
double df0_1y2_nv_bac ;
(df0_1y2_nv_bac = ( -2.50000000000000000e-01 * ( 2.00000000000000000e+00 + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry2 ) ) ) ) ));
double dif1_1y2_nv_bac ;
(dif1_1y2_nv_bac = 0.00000000000000000e+00);
double f1_1y2_nv_bac ;
(f1_1y2_nv_bac = ( ( 2.50000000000000000e-01 * ( 2.00000000000000000e+00 + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry2 ) ) ) ) ) + ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry2 ) ) ) ));
double if1_1y2_nv_bac ;
(if1_1y2_nv_bac = ( ( 2.50000000000000000e-01 * pow ( ry2 , 2 ) ) + ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * ry2 ) + pow ( ry2 , 2 ) ) ) ) ));
double f0_2y2_nv_bac ;
(f0_2y2_nv_bac = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * ry2 ) + pow ( ry2 , 2 ) ) ) ));
double df0_2y2_nv_bac ;
(df0_2y2_nv_bac = ( -2.50000000000000000e-01 * ( -2.00000000000000000e+00 + ( 2.00000000000000000e+00 * ry2 ) ) ));
double dif1_2y2_nv_bac ;
(dif1_2y2_nv_bac = 5.00000000000000000e-01);
double f1_2y2_nv_bac ;
(f1_2y2_nv_bac = ( 5.00000000000000000e-01 * ry2 ));
double if1_2y2_nv_bac ;
(if1_2y2_nv_bac = ( 2.50000000000000000e-01 * pow ( ry2 , 2 ) ));
double f0_3y2_nv_bac ;
(f0_3y2_nv_bac = ( 2.50000000000000000e-01 * pow ( ry2 , 2 ) ));
double df0_3y2_nv_bac ;
(df0_3y2_nv_bac = ( 5.00000000000000000e-01 * ry2 ));
double f0_0z2_nv_bac ;
(f0_0z2_nv_bac = ( 2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz2 ) ) , 2 ) ));
double df0_0z2_nv_bac ;
(df0_0z2_nv_bac = ( -5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz2 ) ) ));
double dif1_0z2_nv_bac ;
(dif1_0z2_nv_bac = -5.00000000000000000e-01);
double f1_0z2_nv_bac ;
(f1_0z2_nv_bac = ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz2 ) ) ));
double if1_0z2_nv_bac ;
(if1_0z2_nv_bac = ( 1.00000000000000000e+00 + ( -2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz2 ) ) , 2 ) ) ));
double f0_1z2_nv_bac ;
(f0_1z2_nv_bac = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz2 ) ) , 2 ) + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz2 ) ) ) ) ) ));
double df0_1z2_nv_bac ;
(df0_1z2_nv_bac = ( -2.50000000000000000e-01 * ( 2.00000000000000000e+00 + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz2 ) ) ) ) ));
double dif1_1z2_nv_bac ;
(dif1_1z2_nv_bac = 0.00000000000000000e+00);
double f1_1z2_nv_bac ;
(f1_1z2_nv_bac = ( ( 2.50000000000000000e-01 * ( 2.00000000000000000e+00 + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz2 ) ) ) ) ) + ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz2 ) ) ) ));
double if1_1z2_nv_bac ;
(if1_1z2_nv_bac = ( ( 2.50000000000000000e-01 * pow ( rz2 , 2 ) ) + ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * rz2 ) + pow ( rz2 , 2 ) ) ) ) ));
double f0_2z2_nv_bac ;
(f0_2z2_nv_bac = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * rz2 ) + pow ( rz2 , 2 ) ) ) ));
double df0_2z2_nv_bac ;
(df0_2z2_nv_bac = ( -2.50000000000000000e-01 * ( -2.00000000000000000e+00 + ( 2.00000000000000000e+00 * rz2 ) ) ));
double dif1_2z2_nv_bac ;
(dif1_2z2_nv_bac = 5.00000000000000000e-01);
double f1_2z2_nv_bac ;
(f1_2z2_nv_bac = ( 5.00000000000000000e-01 * rz2 ));
double if1_2z2_nv_bac ;
(if1_2z2_nv_bac = ( 2.50000000000000000e-01 * pow ( rz2 , 2 ) ));
double f0_3z2_nv_bac ;
(f0_3z2_nv_bac = ( 2.50000000000000000e-01 * pow ( rz2 , 2 ) ));
double df0_3z2_nv_bac ;
(df0_3z2_nv_bac = ( 5.00000000000000000e-01 * rz2 ));
((f0_x2)[0] = ( ( ixx2 * 0.00000000000000000e+00 ) + ( ( 1.00000000000000000e+00 - ixx2 ) * f0_0x2_nv_bac ) ));
((df0_x2)[0] = ( ( ixx2 * 0.00000000000000000e+00 ) + ( ( 1.00000000000000000e+00 - ixx2 ) * df0_0x2_nv_bac ) ));
((dif1_x2)[0] = ( ( ixx2 * 0.00000000000000000e+00 ) + ( ( 1.00000000000000000e+00 - ixx2 ) * dif1_0x2_nv_bac ) ));
((f1_x2)[0] = ( ( ixx2 * 0.00000000000000000e+00 ) + ( ( 1.00000000000000000e+00 - ixx2 ) * f1_0x2_nv_bac ) ));
((if1_x2)[0] = ( ( ixx2 * 1.00000000000000000e+00 ) + ( ( 1.00000000000000000e+00 - ixx2 ) * if1_0x2_nv_bac ) ));
((f0_x2)[1] = ( ( ixx2 * f0_0x2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixx2 ) * f0_1x2_nv_bac ) ));
((df0_x2)[1] = ( ( ixx2 * df0_0x2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixx2 ) * df0_1x2_nv_bac ) ));
((dif1_x2)[1] = ( ( ixx2 * dif1_0x2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixx2 ) * dif1_1x2_nv_bac ) ));
((f1_x2)[1] = ( ( ixx2 * f1_0x2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixx2 ) * f1_1x2_nv_bac ) ));
((if1_x2)[1] = ( ( ixx2 * if1_0x2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixx2 ) * if1_1x2_nv_bac ) ));
((f0_x2)[2] = ( ( ixx2 * f0_1x2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixx2 ) * f0_2x2_nv_bac ) ));
((df0_x2)[2] = ( ( ixx2 * df0_1x2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixx2 ) * df0_2x2_nv_bac ) ));
((dif1_x2)[2] = ( ( ixx2 * dif1_1x2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixx2 ) * dif1_2x2_nv_bac ) ));
((f1_x2)[2] = ( ( ixx2 * f1_1x2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixx2 ) * f1_2x2_nv_bac ) ));
((if1_x2)[2] = ( ( ixx2 * if1_1x2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixx2 ) * if1_2x2_nv_bac ) ));
((f0_x2)[3] = ( ( ixx2 * f0_2x2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixx2 ) * f0_3x2_nv_bac ) ));
((df0_x2)[3] = ( ( ixx2 * df0_2x2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixx2 ) * df0_3x2_nv_bac ) ));
((dif1_x2)[3] = ( ( ixx2 * dif1_2x2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixx2 ) * 0 ) ));
((f1_x2)[3] = ( ( ixx2 * f1_2x2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixx2 ) * 0 ) ));
((if1_x2)[3] = ( ( ixx2 * if1_2x2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixx2 ) * 0 ) ));
((f0_x2)[4] = ( ( ixx2 * f0_3x2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixx2 ) * 0 ) ));
((df0_x2)[4] = ( ( ixx2 * df0_3x2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixx2 ) * 0 ) ));
((f0_y2)[0] = ( ( ixy2 * 0.00000000000000000e+00 ) + ( ( 1.00000000000000000e+00 - ixy2 ) * f0_0y2_nv_bac ) ));
((df0_y2)[0] = ( ( ixy2 * 0.00000000000000000e+00 ) + ( ( 1.00000000000000000e+00 - ixy2 ) * df0_0y2_nv_bac ) ));
((dif1_y2)[0] = ( ( ixy2 * 0.00000000000000000e+00 ) + ( ( 1.00000000000000000e+00 - ixy2 ) * dif1_0y2_nv_bac ) ));
((f1_y2)[0] = ( ( ixy2 * 0.00000000000000000e+00 ) + ( ( 1.00000000000000000e+00 - ixy2 ) * f1_0y2_nv_bac ) ));
((if1_y2)[0] = ( ( ixy2 * 1.00000000000000000e+00 ) + ( ( 1.00000000000000000e+00 - ixy2 ) * if1_0y2_nv_bac ) ));
((f0_y2)[1] = ( ( ixy2 * f0_0y2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixy2 ) * f0_1y2_nv_bac ) ));
((df0_y2)[1] = ( ( ixy2 * df0_0y2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixy2 ) * df0_1y2_nv_bac ) ));
((dif1_y2)[1] = ( ( ixy2 * dif1_0y2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixy2 ) * dif1_1y2_nv_bac ) ));
((f1_y2)[1] = ( ( ixy2 * f1_0y2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixy2 ) * f1_1y2_nv_bac ) ));
((if1_y2)[1] = ( ( ixy2 * if1_0y2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixy2 ) * if1_1y2_nv_bac ) ));
((f0_y2)[2] = ( ( ixy2 * f0_1y2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixy2 ) * f0_2y2_nv_bac ) ));
((df0_y2)[2] = ( ( ixy2 * df0_1y2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixy2 ) * df0_2y2_nv_bac ) ));
((dif1_y2)[2] = ( ( ixy2 * dif1_1y2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixy2 ) * dif1_2y2_nv_bac ) ));
((f1_y2)[2] = ( ( ixy2 * f1_1y2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixy2 ) * f1_2y2_nv_bac ) ));
((if1_y2)[2] = ( ( ixy2 * if1_1y2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixy2 ) * if1_2y2_nv_bac ) ));
((f0_y2)[3] = ( ( ixy2 * f0_2y2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixy2 ) * f0_3y2_nv_bac ) ));
((df0_y2)[3] = ( ( ixy2 * df0_2y2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixy2 ) * df0_3y2_nv_bac ) ));
((dif1_y2)[3] = ( ( ixy2 * dif1_2y2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixy2 ) * 0 ) ));
((f1_y2)[3] = ( ( ixy2 * f1_2y2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixy2 ) * 0 ) ));
((if1_y2)[3] = ( ( ixy2 * if1_2y2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixy2 ) * 0 ) ));
((f0_y2)[4] = ( ( ixy2 * f0_3y2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixy2 ) * 0 ) ));
((df0_y2)[4] = ( ( ixy2 * df0_3y2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixy2 ) * 0 ) ));
((f0_z2)[0] = ( ( ixz2 * 0.00000000000000000e+00 ) + ( ( 1.00000000000000000e+00 - ixz2 ) * f0_0z2_nv_bac ) ));
((df0_z2)[0] = ( ( ixz2 * 0.00000000000000000e+00 ) + ( ( 1.00000000000000000e+00 - ixz2 ) * df0_0z2_nv_bac ) ));
((dif1_z2)[0] = ( ( ixz2 * 0.00000000000000000e+00 ) + ( ( 1.00000000000000000e+00 - ixz2 ) * dif1_0z2_nv_bac ) ));
((f1_z2)[0] = ( ( ixz2 * 0.00000000000000000e+00 ) + ( ( 1.00000000000000000e+00 - ixz2 ) * f1_0z2_nv_bac ) ));
((if1_z2)[0] = ( ( ixz2 * 1.00000000000000000e+00 ) + ( ( 1.00000000000000000e+00 - ixz2 ) * if1_0z2_nv_bac ) ));
((f0_z2)[1] = ( ( ixz2 * f0_0z2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixz2 ) * f0_1z2_nv_bac ) ));
((df0_z2)[1] = ( ( ixz2 * df0_0z2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixz2 ) * df0_1z2_nv_bac ) ));
((dif1_z2)[1] = ( ( ixz2 * dif1_0z2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixz2 ) * dif1_1z2_nv_bac ) ));
((f1_z2)[1] = ( ( ixz2 * f1_0z2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixz2 ) * f1_1z2_nv_bac ) ));
((if1_z2)[1] = ( ( ixz2 * if1_0z2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixz2 ) * if1_1z2_nv_bac ) ));
((f0_z2)[2] = ( ( ixz2 * f0_1z2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixz2 ) * f0_2z2_nv_bac ) ));
((df0_z2)[2] = ( ( ixz2 * df0_1z2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixz2 ) * df0_2z2_nv_bac ) ));
((dif1_z2)[2] = ( ( ixz2 * dif1_1z2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixz2 ) * dif1_2z2_nv_bac ) ));
((f1_z2)[2] = ( ( ixz2 * f1_1z2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixz2 ) * f1_2z2_nv_bac ) ));
((if1_z2)[2] = ( ( ixz2 * if1_1z2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixz2 ) * if1_2z2_nv_bac ) ));
((f0_z2)[3] = ( ( ixz2 * f0_2z2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixz2 ) * f0_3z2_nv_bac ) ));
((df0_z2)[3] = ( ( ixz2 * df0_2z2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixz2 ) * df0_3z2_nv_bac ) ));
((dif1_z2)[3] = ( ( ixz2 * dif1_2z2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixz2 ) * 0 ) ));
((f1_z2)[3] = ( ( ixz2 * f1_2z2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixz2 ) * 0 ) ));
((if1_z2)[3] = ( ( ixz2 * if1_2z2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixz2 ) * 0 ) ));
((f0_z2)[4] = ( ( ixz2 * f0_3z2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixz2 ) * 0 ) ));
((df0_z2)[4] = ( ( ixz2 * df0_3z2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixz2 ) * 0 ) ));
}((RES)[0] = ( ( -5.00000000000000000e-01 * ( Mass * ( ( ( 2.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * ( ( -1.00000000000000000e+00 * X1 ) + X2 ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( Tori_X0 , -1 ) * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( ( 1.00000000000000000e+00 + ( pow ( Tori_X0 , -1 ) * ( ( 5.00000000000000000e-01 * ( X1 + X2 ) ) + XO ) ) ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) ) ) * ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( ( 1.00000000000000000e+00 + ( pow ( Tori_X0 , -1 ) * ( ( 5.00000000000000000e-01 * ( X1 + X2 ) ) + XO ) ) ) , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) , -1.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( ( 1.00000000000000000e+00 + ( pow ( Tori_X0 , -1 ) * ( ( 5.00000000000000000e-01 * ( X1 + X2 ) ) + XO ) ) ) , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) ) ) ) ) ) + res_0 ));
{
double B1z_intxX1Y1Z1X2 ;
{
double sum0 = 0.00000000000000000e+00 ;
{
long xyzz ;
for ((xyzz = 0) ; ( xyzz < 5 ) ; (xyzz = ( xyzz + 1 )))
{
{
long xyzy ;
for ((xyzy = 0) ; ( xyzy < 5 ) ; (xyzy = ( xyzy + 1 )))
{
{
long xyzx ;
for ((xyzx = 0) ; ( xyzx < 5 ) ; (xyzx = ( xyzx + 1 )))
{
int allidx = ( xyzx + ( 5 * ( xyzy + ( 5 * xyzz ) ) ) ) ;
(sum0 = ( sum0 + ( (shB1)[ ( ( allidx * 3 ) + 2 )] * ( (f0_z1)[xyzz] * ( ( (if1_x2)[xyzx] - (if1_x1)[xyzx] ) * (f1_y1)[xyzy] ) ) ) ));
}}}}}}(B1z_intxX1Y1Z1X2 = sum0);
}((RES)[1] = ( ( ( -1.00000000000000000e+00 * ( Charge * ( pow ( DELTAT , -1 ) * B1z_intxX1Y1Z1X2 ) ) ) + ( -1.00000000000000000e+00 * ( Mass * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( ( 1.00000000000000000e+00 + ( pow ( Tori_X0 , -1 ) * ( ( 5.00000000000000000e-01 * ( X1 + X2 ) ) + XO ) ) ) , 2 ) * ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) * ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( ( 1.00000000000000000e+00 + ( pow ( Tori_X0 , -1 ) * ( ( 5.00000000000000000e-01 * ( X1 + X2 ) ) + XO ) ) ) , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) , -1.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( ( 1.00000000000000000e+00 + ( pow ( Tori_X0 , -1 ) * ( ( 5.00000000000000000e-01 * ( X1 + X2 ) ) + XO ) ) ) , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) + res_1 ));
}{
double B1x_intyX2Y1Z1Y2 ;
{
double sum0 = 0.00000000000000000e+00 ;
{
long xyzz ;
for ((xyzz = 0) ; ( xyzz < 5 ) ; (xyzz = ( xyzz + 1 )))
{
{
long xyzy ;
for ((xyzy = 0) ; ( xyzy < 5 ) ; (xyzy = ( xyzy + 1 )))
{
{
long xyzx ;
for ((xyzx = 0) ; ( xyzx < 5 ) ; (xyzx = ( xyzx + 1 )))
{
int allidx = ( xyzx + ( 5 * ( xyzy + ( 5 * xyzz ) ) ) ) ;
(sum0 = ( sum0 + ( (shB1)[ ( ( allidx * 3 ) + 0 )] * ( (f0_x2)[xyzx] * ( ( (if1_y2)[xyzy] - (if1_y1)[xyzy] ) * (f1_z1)[xyzz] ) ) ) ));
}}}}}}(B1x_intyX2Y1Z1Y2 = sum0);
} double B1y_intxX1Y1Z1X2 ;
{
double sum0 = 0.00000000000000000e+00 ;
{
long xyzz ;
for ((xyzz = 0) ; ( xyzz < 5 ) ; (xyzz = ( xyzz + 1 )))
{
{
long xyzy ;
for ((xyzy = 0) ; ( xyzy < 5 ) ; (xyzy = ( xyzy + 1 )))
{
{
long xyzx ;
for ((xyzx = 0) ; ( xyzx < 5 ) ; (xyzx = ( xyzx + 1 )))
{
int allidx = ( xyzx + ( 5 * ( xyzy + ( 5 * xyzz ) ) ) ) ;
(sum0 = ( sum0 + ( (shB1)[ ( ( allidx * 3 ) + 1 )] * ( (f0_y1)[xyzy] * ( ( (if1_x2)[xyzx] - (if1_x1)[xyzx] ) * (f1_z1)[xyzz] ) ) ) ));
}}}}}}(B1y_intxX1Y1Z1X2 = sum0);
}((RES)[2] = ( ( ( Charge * ( pow ( DELTAT , -1 ) * ( B1y_intxX1Y1Z1X2 + ( -1.00000000000000000e+00 * B1x_intyX2Y1Z1Y2 ) ) ) ) + ( -1.00000000000000000e+00 * ( Mass * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) * ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( ( 1.00000000000000000e+00 + ( pow ( Tori_X0 , -1 ) * ( ( 5.00000000000000000e-01 * ( X1 + X2 ) ) + XO ) ) ) , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) , -1.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( ( 1.00000000000000000e+00 + ( pow ( Tori_X0 , -1 ) * ( ( 5.00000000000000000e-01 * ( X1 + X2 ) ) + XO ) ) ) , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) + res_2 ));
}(maxerr = 0);
{
long i ;
for ((i = 0) ; ( i < 3 ) ; (i = ( i + 1 )))
{
double absvalv = fabs ( (RES)[i] ) ;
double absval = absvalv ;
(maxerr = (( ( absval > maxerr ))?(absval):(maxerr)));
}} if ( ( maxerr < Solve_Err ) ){
break;
}else{
0;
}
((JAC)[0] = ( ( 2.50000000000000000e-01 * ( Mass * ( ( ( -2.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * ( ( -1.00000000000000000e+00 * X1 ) + X2 ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( Tori_X0 , -1 ) * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( RPL00 * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) ) ) * ( ( ( 2.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * ( ( -1.00000000000000000e+00 * X1 ) + X2 ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( Tori_X0 , -1 ) * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( RPL00 * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) ) ) * ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) , -2.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) ) ) ) ) ) ) + ( -5.00000000000000000e-01 * ( Mass * ( ( ( 2.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * pow ( DELTAT , -2 ) ) ) + ( -5.00000000000000000e-01 * ( pow ( Tori_X0 , -2 ) * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) ) * ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) , -1.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) ) ) ) ) ) ));
{
double B1z_intx_xX1Y1Z1X2 ;
{
double sum0 = 0.00000000000000000e+00 ;
{
long xyzz ;
for ((xyzz = 0) ; ( xyzz < 5 ) ; (xyzz = ( xyzz + 1 )))
{
{
long xyzy ;
for ((xyzy = 0) ; ( xyzy < 5 ) ; (xyzy = ( xyzy + 1 )))
{
{
long xyzx ;
for ((xyzx = 0) ; ( xyzx < 5 ) ; (xyzx = ( xyzx + 1 )))
{
int allidx = ( xyzx + ( 5 * ( xyzy + ( 5 * xyzz ) ) ) ) ;
(sum0 = ( sum0 + ( (shB1)[ ( ( allidx * 3 ) + 2 )] * ( (f0_z1)[xyzz] * ( (dif1_x2)[xyzx] * (f1_y1)[xyzy] ) ) ) ));
}}}}}}(B1z_intx_xX1Y1Z1X2 = sum0);
}((JAC)[1] = ( ( -1.00000000000000000e+00 * ( Charge * ( pow ( DELTAT , -1 ) * B1z_intx_xX1Y1Z1X2 ) ) ) + ( ( 5.00000000000000000e-01 * ( Mass * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) * ( ( ( -2.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * ( ( -1.00000000000000000e+00 * X1 ) + X2 ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( Tori_X0 , -1 ) * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( RPL00 * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) ) ) * ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) , -2.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) + ( -1.00000000000000000e+00 * ( Mass * ( pow ( Tori_X0 , -1 ) * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( RPL00 * ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) * ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) , -1.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ));
}{
double B1x_inty_xX2Y1Z1Y2 ;
{
double sum0 = 0.00000000000000000e+00 ;
{
long xyzz ;
for ((xyzz = 0) ; ( xyzz < 5 ) ; (xyzz = ( xyzz + 1 )))
{
{
long xyzy ;
for ((xyzy = 0) ; ( xyzy < 5 ) ; (xyzy = ( xyzy + 1 )))
{
{
long xyzx ;
for ((xyzx = 0) ; ( xyzx < 5 ) ; (xyzx = ( xyzx + 1 )))
{
int allidx = ( xyzx + ( 5 * ( xyzy + ( 5 * xyzz ) ) ) ) ;
(sum0 = ( sum0 + ( (shB1)[ ( ( allidx * 3 ) + 0 )] * ( (df0_x2)[xyzx] * ( ( (if1_y2)[xyzy] - (if1_y1)[xyzy] ) * (f1_z1)[xyzz] ) ) ) ));
}}}}}}(B1x_inty_xX2Y1Z1Y2 = sum0);
} double B1y_intx_xX1Y1Z1X2 ;
{
double sum0 = 0.00000000000000000e+00 ;
{
long xyzz ;
for ((xyzz = 0) ; ( xyzz < 5 ) ; (xyzz = ( xyzz + 1 )))
{
{
long xyzy ;
for ((xyzy = 0) ; ( xyzy < 5 ) ; (xyzy = ( xyzy + 1 )))
{
{
long xyzx ;
for ((xyzx = 0) ; ( xyzx < 5 ) ; (xyzx = ( xyzx + 1 )))
{
int allidx = ( xyzx + ( 5 * ( xyzy + ( 5 * xyzz ) ) ) ) ;
(sum0 = ( sum0 + ( (shB1)[ ( ( allidx * 3 ) + 1 )] * ( (f0_y1)[xyzy] * ( (dif1_x2)[xyzx] * (f1_z1)[xyzz] ) ) ) ));
}}}}}}(B1y_intx_xX1Y1Z1X2 = sum0);
}((JAC)[2] = ( ( Charge * ( pow ( DELTAT , -1 ) * ( B1y_intx_xX1Y1Z1X2 + ( -1.00000000000000000e+00 * B1x_inty_xX2Y1Z1Y2 ) ) ) ) + ( 5.00000000000000000e-01 * ( Mass * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * ( ( ( -2.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * ( ( -1.00000000000000000e+00 * X1 ) + X2 ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( Tori_X0 , -1 ) * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( RPL00 * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) ) ) * ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) * ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) , -2.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ));
}((JAC)[3] = ( ( -5.00000000000000000e-01 * ( Mass * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) * ( ( ( 2.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * ( ( -1.00000000000000000e+00 * X1 ) + X2 ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( Tori_X0 , -1 ) * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( RPL00 * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) ) ) * ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) , -2.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) + ( 1.00000000000000000e+00 * ( Mass * ( pow ( Tori_X0 , -1 ) * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( RPL00 * ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) * ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) , -1.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ));
((JAC)[4] = ( ( -1.00000000000000000e+00 * ( Mass * ( pow ( DELTA_Y , 4 ) * ( pow ( DELTAT , -4 ) * ( pow ( RPL00 , 4 ) * ( pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) * ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) , -2.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) + ( -1.00000000000000000e+00 * ( Mass * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) , -1.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ));
{
double B1x_inty_yX2Y1Z1Y2 ;
{
double sum0 = 0.00000000000000000e+00 ;
{
long xyzz ;
for ((xyzz = 0) ; ( xyzz < 5 ) ; (xyzz = ( xyzz + 1 )))
{
{
long xyzy ;
for ((xyzy = 0) ; ( xyzy < 5 ) ; (xyzy = ( xyzy + 1 )))
{
{
long xyzx ;
for ((xyzx = 0) ; ( xyzx < 5 ) ; (xyzx = ( xyzx + 1 )))
{
int allidx = ( xyzx + ( 5 * ( xyzy + ( 5 * xyzz ) ) ) ) ;
(sum0 = ( sum0 + ( (shB1)[ ( ( allidx * 3 ) + 0 )] * ( (f0_x2)[xyzx] * ( (dif1_y2)[xyzy] * (f1_z1)[xyzz] ) ) ) ));
}}}}}}(B1x_inty_yX2Y1Z1Y2 = sum0);
}((JAC)[5] = ( ( -1.00000000000000000e+00 * ( Charge * ( pow ( DELTAT , -1 ) * B1x_inty_yX2Y1Z1Y2 ) ) ) + ( -1.00000000000000000e+00 * ( Mass * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -4 ) * ( pow ( RPL00 , 2 ) * ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) * ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) * ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) , -2.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ));
}((JAC)[6] = ( -5.00000000000000000e-01 * ( Mass * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * ( ( ( 2.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * ( ( -1.00000000000000000e+00 * X1 ) + X2 ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( Tori_X0 , -1 ) * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( RPL00 * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) ) ) * ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) * ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) , -2.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ));
((JAC)[7] = ( -1.00000000000000000e+00 * ( Mass * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -4 ) * ( pow ( RPL00 , 2 ) * ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) * ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) * ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) , -2.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ));
((JAC)[8] = ( ( -1.00000000000000000e+00 * ( Mass * ( pow ( DELTA_Z , 4 ) * ( pow ( DELTAT , -4 ) * ( pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) * ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) , -2.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) + ( -1.00000000000000000e+00 * ( Mass * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) , -1.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ));
{
double r00 = (JAC)[0] ;
double r10 = (JAC)[3] ;
double r20 = (JAC)[6] ;
double r01 = (JAC)[1] ;
double r11 = (JAC)[4] ;
double r21 = (JAC)[7] ;
double r02 = (JAC)[2] ;
double r12 = (JAC)[5] ;
double r22 = (JAC)[8] ;
double jactmp = ( 1 / ( ( r02 * ( ( -1.00000000000000000e+00 * ( r11 * r20 ) ) + ( r10 * r21 ) ) ) + ( ( -1.00000000000000000e+00 * ( r01 * ( ( -1.00000000000000000e+00 * ( r12 * r20 ) ) + ( r10 * r22 ) ) ) ) + ( r00 * ( ( -1.00000000000000000e+00 * ( r12 * r21 ) ) + ( r11 * r22 ) ) ) ) ) ) ;
((IJAC)[0] = ( jactmp * ( ( -1.00000000000000000e+00 * ( r12 * r21 ) ) + ( r11 * r22 ) ) ));
((IJAC)[3] = ( jactmp * ( ( r12 * r20 ) + ( -1.00000000000000000e+00 * ( r10 * r22 ) ) ) ));
((IJAC)[6] = ( jactmp * ( ( -1.00000000000000000e+00 * ( r11 * r20 ) ) + ( r10 * r21 ) ) ));
((IJAC)[1] = ( jactmp * ( ( r02 * r21 ) + ( -1.00000000000000000e+00 * ( r01 * r22 ) ) ) ));
((IJAC)[4] = ( jactmp * ( ( -1.00000000000000000e+00 * ( r02 * r20 ) ) + ( r00 * r22 ) ) ));
((IJAC)[7] = ( jactmp * ( ( r01 * r20 ) + ( -1.00000000000000000e+00 * ( r00 * r21 ) ) ) ));
((IJAC)[2] = ( jactmp * ( ( -1.00000000000000000e+00 * ( r02 * r11 ) ) + ( r01 * r12 ) ) ));
((IJAC)[5] = ( jactmp * ( ( r02 * r10 ) + ( -1.00000000000000000e+00 * ( r00 * r12 ) ) ) ));
((IJAC)[8] = ( jactmp * ( ( -1.00000000000000000e+00 * ( r01 * r10 ) ) + ( r00 * r11 ) ) ));
}((L_RES)[0] = ( ( (IJAC)[0] * (RES)[0] ) + ( ( (IJAC)[1] * (RES)[1] ) + ( (IJAC)[2] * (RES)[2] ) ) ));
((L_RES)[1] = ( ( (IJAC)[3] * (RES)[0] ) + ( ( (IJAC)[4] * (RES)[1] ) + ( (IJAC)[5] * (RES)[2] ) ) ));
((L_RES)[2] = ( ( (IJAC)[6] * (RES)[0] ) + ( ( (IJAC)[7] * (RES)[1] ) + ( (IJAC)[8] * (RES)[2] ) ) ));
(X2 = ( X2 - (L_RES)[0] ));
(Y2 = ( Y2 - (L_RES)[1] ));
(Z2 = ( Z2 - (L_RES)[2] ));
}}}(( ( local_particle_head + ( g * 6 ) ))[0] = ( X2 + 5.00000000000000000e-01 ));
(( ( local_particle_head + ( g * 6 ) ))[1] = ( Y2 + 5.00000000000000000e-01 ));
(( ( local_particle_head + ( g * 6 ) ))[2] = ( Z2 + 5.00000000000000000e-01 ));
(( ( local_particle_head + ( g * 6 ) ))[3] = ( ( X2 - xx1 ) / Deltat ));
(( ( local_particle_head + ( g * 6 ) ))[4] = ( ( Y2 - xy1 ) / Deltat ));
(( ( local_particle_head + ( g * 6 ) ))[5] = ( ( Z2 - xz1 ) / Deltat ));
{
{
long xyzz ;
for ((xyzz = 0) ; ( xyzz < 5 ) ; (xyzz = ( xyzz + 1 )))
{
{
long xyzy ;
for ((xyzy = 0) ; ( xyzy < 5 ) ; (xyzy = ( xyzy + 1 )))
{
{
long xyzx ;
for ((xyzx = 0) ; ( xyzx < 5 ) ; (xyzx = ( xyzx + 1 )))
{
int allidx = ( xyzx + ( 5 * ( xyzy + ( 5 * xyzz ) ) ) ) ;
double Jx ;
double Jy ;
double Jz ;
(Jx = ( grid_geo_x * ( ( (if1_x2)[xyzx] - (if1_x1)[xyzx] ) * ( (f0_y1)[xyzy] * (f0_z1)[xyzz] ) ) ));
(Jy = ( grid_geo_y * ( ( (if1_y2)[xyzy] - (if1_y1)[xyzy] ) * ( (f0_x2)[xyzx] * (f0_z1)[xyzz] ) ) ));
(Jz = ( grid_geo_z * ( ( (if1_z2)[xyzz] - (if1_z1)[xyzz] ) * ( (f0_x2)[xyzx] * (f0_y2)[xyzy] ) ) ));
((shJ0)[ ( ( 3 * allidx ) + 0 )] = ( (shJ0)[ ( ( 3 * allidx ) + 0 )] + ( ( Tori_X0 / ( Tori_X0 + ( XO + ( Bidx + xyzx ) ) ) ) * ( Charge0 * Jx ) ) ));
((shJ0)[ ( ( 3 * allidx ) + 1 )] = ( (shJ0)[ ( ( 3 * allidx ) + 1 )] + ( ( ( Tori_X0 + ( XO + ( Bidx + xyzx ) ) ) / Tori_X0 ) * ( Charge0 * Jy ) ) ));
((shJ0)[ ( ( 3 * allidx ) + 2 )] = ( (shJ0)[ ( ( 3 * allidx ) + 2 )] + ( ( Tori_X0 / ( Tori_X0 + ( XO + ( Bidx + xyzx ) ) ) ) * ( Charge0 * Jz ) ) ));
}}}}}}}}}{
long inner_step ;
for ((inner_step = 0) ; ( inner_step < numcp ) ; (inner_step = ( inner_step + 1 )))
{
{
long inner_g ;
for ((inner_g = 0) ; ( inner_g < 6 ) ; (inner_g = ( inner_g + 1 )))
{
(( ( particle_head_general + ( iba_tmp * 6 ) ))[ ( ( inner_step * 6 ) + inner_g )] = ( ( local_particle_head + ( 0 * 6 ) ))[ ( ( inner_step * 6 ) + inner_g )]);
}}}}0;
}}{
long xyzz ;
for ((xyzz = 0) ; ( xyzz < 5 ) ; (xyzz = ( xyzz + 1 )))
{
{
long xyzy ;
for ((xyzy = 0) ; ( xyzy < 5 ) ; (xyzy = ( xyzy + 1 )))
{
{
long xyzx ;
for ((xyzx = 0) ; ( xyzx < 1 ) ; (xyzx = ( xyzx + 1 )))
{
int total_idx = ( 3 * ( 5 * ( xyzy + ( 5 * xyzz ) ) ) ) ;
{
long Gll_P9918 ;
for ((Gll_P9918 = 0) ; ( Gll_P9918 < ( 3 * 5 ) ) ; (Gll_P9918 = ( Gll_P9918 + 1 )))
{
(( ( FoutJ + ( ( num_ele * ( idy * ( ( XLEN + ( 2 * ovlp ) ) * ( ( YLEN + ( 2 * ovlp ) ) * ( ZLEN + ( 2 * ovlp ) ) ) ) ) ) + ( 0 + ( num_ele * ( ( Bidx + ovlp ) + ( ( XLEN + ( 2 * ovlp ) ) * ( ( ( xyzy + Bidy ) + ovlp ) + ( ( YLEN + ( 2 * ovlp ) ) * ( ( xyzz + Bidz ) + ovlp ) ) ) ) ) ) ) ) ))[Gll_P9918] = ( ( shJ0 + total_idx ))[Gll_P9918]);
}}}}}}}}
}else{
0;
}
}(cur_frame_num = ( cur_frame_num + -1 ));
goto * ( (call_stack_pointer)[cur_frame_num] ); beg_prog:
0;
{
long l1 ;
for ((l1 = 0) ; ( l1 < cu_load ) ; (l1 = ( l1 + 1 )))
{
(load0 = 1);
(use_local_particle_position = 1);
(particle_head_general = ( cu_cache + ( ( idy * ( 6 * cu_cache_length ) ) + ( l1 * 6 ) ) ));
(new_load = load0);
(call_sort = 0);
(global_idy_tmp = idy);
call_stack_pointer[cur_frame_num]=&&LAB_TMP1;
(cur_frame_num = ( cur_frame_num + 1 ));
goto core_fun;
LAB_TMP1:
0;
}}{
long allgid ;
for ((allgid = 0) ; ( allgid < numgrid ) ; (allgid = ( allgid + 1 )))
{
int new_load_tmp = (xyzw)[ ( 4 * ( ( idy * numgrid ) + allgid ) )] ;
long c_gid = allgid ;
(cr_allgid = allgid);
(use_local_particle_position = 0);
(mdx = ( c_gid % XLEN ));
(mdy = ( ( c_gid / XLEN ) % YLEN ));
(mdz = ( c_gid / ( XLEN * YLEN ) ));
(load0 = new_load_tmp);
(call_sort = 0);
(particle_head_general = ( inoutput + ( grid_base_offset + ( 6 * ( allgid * grid_cache_len ) ) ) ));
(new_load = load0);
(global_idy_tmp = idy);
call_stack_pointer[cur_frame_num]=&&LAB_TMP2;
(cur_frame_num = ( cur_frame_num + 1 ));
goto core_fun;
LAB_TMP2:
0;
if ( ( load0 != new_load ) ){
((xyzw)[ ( 4 * ( ( idy * numgrid ) + allgid ) )] = new_load);
}else{
0;
}
}}}
void openmp_geo_rel_1st_bwd_scmc_kernel (double * inoutput ,int * xyzw ,double * cu_cache ,int * cu_xyzw ,int * xoffset ,int * yoffset ,int * zoffset ,double * fieldE ,double * fieldB ,double * fieldB1 ,double * FoutJ ,long XLEN ,long YLEN ,long ZLEN ,int ovlp ,long numvec ,int num_ele ,long grid_cache_len ,long cu_cache_length ,double DELTA_X ,double DELTA_Y ,double DELTA_Z ,double Mass0 ,double Charge0 ,double Deltat ,double Tori_X0 ,double Solve_Err ,long scmc_internal_g_idy ,long scmc_internal_g_ylen ){
const long pscmc_compute_unit_id = omp_get_thread_num ( ) ;
const long pscmc_num_compute_units = omp_get_num_threads ( ) ;
#ifdef IDX_LOCAL_XLEN
#undef IDX_LOCAL_XLEN
#endif
#define IDX_LOCAL_XLEN 1
const long idx = 0 ;
const long idy = scmc_internal_g_idy ;
const long xlen = 1 ;
const long ylen = scmc_internal_g_ylen ;
const long global_idx = ( idx + ( idy * xlen ) ) ;
void * call_stack_pointer [4]; int cur_frame_num = 0 ;
long numgrid = ( XLEN * ( YLEN * ZLEN ) ) ;
long numallgrid = ( ( XLEN + ( ovlp + ovlp ) ) * ( ( YLEN + ( ovlp + ovlp ) ) * ( ZLEN + ( ovlp + ovlp ) ) ) ) ;
long numgrid_cu = ( numgrid * numvec ) ;
long grid_base_offset = ( idy * ( numgrid * ( grid_cache_len * 6 ) ) ) ;
int cu_load = (cu_xyzw)[ ( 4 * idy )] ;
int call_sort = 1 ;
int cr_allgid = 0 ;
int use_local_particle_position = 1 ;
int mdx ;
int mdy ;
int mdz ;
double shB0 [375]; double shB1 [375]; double shE0 [375]; double shJ0 [375]; double * particle_head_general ;
int load0 ;
int new_load ;
int global_idy_tmp ;
goto beg_prog; core_fun:
{
int idy = global_idy_tmp ;
if ( load0 ){
double DELTAT = Deltat ;
double grid_geo_x = ( DELTA_X / ( DELTA_Y * DELTA_Z ) ) ;
double grid_geo_y = ( DELTA_Y / ( DELTA_Z * DELTA_X ) ) ;
double grid_geo_z = ( DELTA_Z / ( DELTA_X * DELTA_Y ) ) ;
double XO = (xoffset)[idy] ;
int Midx = openmp_floorx ( (particle_head_general)[0] ) ;
int Midy = openmp_floorx ( (particle_head_general)[1] ) ;
int Midz = openmp_floorx ( (particle_head_general)[2] ) ;
int Bidx = ( Midx - 2 ) ;
int Bidy = ( Midy - 2 ) ;
int Bidz = ( Midz - 2 ) ;
double Mass = 1.00000000000000000e+00 ;
double Charge = ( Charge0 / Mass0 ) ;
{
long xyzz ;
for ((xyzz = 0) ; ( xyzz < 5 ) ; (xyzz = ( xyzz + 1 )))
{
{
long xyzy ;
for ((xyzy = 0) ; ( xyzy < 5 ) ; (xyzy = ( xyzy + 1 )))
{
{
long xyzx ;
for ((xyzx = 0) ; ( xyzx < 1 ) ; (xyzx = ( xyzx + 1 )))
{
int total_idx = ( 3 * ( 5 * ( xyzy + ( 5 * xyzz ) ) ) ) ;
{
long lg = 0 ;
for (0 ; ( lg < ( 3 * 5 ) ) ; (lg = ( lg + xlen )))
{
int ridx = ( lg + idx ) ;
if ( ( ridx < ( 3 * 5 ) ) ){
(( ( shE0 + total_idx ))[ridx] = ( ( fieldE + ( ( num_ele * ( idy * ( ( XLEN + ( 2 * ovlp ) ) * ( ( YLEN + ( 2 * ovlp ) ) * ( ZLEN + ( 2 * ovlp ) ) ) ) ) ) + ( 0 + ( num_ele * ( ( Bidx + ovlp ) + ( ( XLEN + ( 2 * ovlp ) ) * ( ( ( xyzy + Bidy ) + ovlp ) + ( ( YLEN + ( 2 * ovlp ) ) * ( ( xyzz + Bidz ) + ovlp ) ) ) ) ) ) ) ) ))[ridx]);
}else{
0;
}
}}{
long lg = 0 ;
for (0 ; ( lg < ( 3 * 5 ) ) ; (lg = ( lg + xlen )))
{
int ridx = ( lg + idx ) ;
if ( ( ridx < ( 3 * 5 ) ) ){
(( ( shB0 + total_idx ))[ridx] = ( ( fieldB + ( ( num_ele * ( idy * ( ( XLEN + ( 2 * ovlp ) ) * ( ( YLEN + ( 2 * ovlp ) ) * ( ZLEN + ( 2 * ovlp ) ) ) ) ) ) + ( 0 + ( num_ele * ( ( Bidx + ovlp ) + ( ( XLEN + ( 2 * ovlp ) ) * ( ( ( xyzy + Bidy ) + ovlp ) + ( ( YLEN + ( 2 * ovlp ) ) * ( ( xyzz + Bidz ) + ovlp ) ) ) ) ) ) ) ) ))[ridx]);
}else{
0;
}
}}{
long lg = 0 ;
for (0 ; ( lg < ( 3 * 5 ) ) ; (lg = ( lg + xlen )))
{
int ridx = ( lg + idx ) ;
if ( ( ridx < ( 3 * 5 ) ) ){
(( ( shB1 + total_idx ))[ridx] = ( ( fieldB1 + ( ( num_ele * ( idy * ( ( XLEN + ( 2 * ovlp ) ) * ( ( YLEN + ( 2 * ovlp ) ) * ( ZLEN + ( 2 * ovlp ) ) ) ) ) ) + ( 0 + ( num_ele * ( ( Bidx + ovlp ) + ( ( XLEN + ( 2 * ovlp ) ) * ( ( ( xyzy + Bidy ) + ovlp ) + ( ( YLEN + ( 2 * ovlp ) ) * ( ( xyzz + Bidz ) + ovlp ) ) ) ) ) ) ) ) ))[ridx]);
}else{
0;
}
}}{
long lg = 0 ;
for (0 ; ( lg < ( 3 * 5 ) ) ; (lg = ( lg + xlen )))
{
int ridx = ( lg + idx ) ;
if ( ( ridx < ( 3 * 5 ) ) ){
(( ( shJ0 + total_idx ))[ridx] = ( ( FoutJ + ( ( num_ele * ( idy * ( ( XLEN + ( 2 * ovlp ) ) * ( ( YLEN + ( 2 * ovlp ) ) * ( ZLEN + ( 2 * ovlp ) ) ) ) ) ) + ( 0 + ( num_ele * ( ( Bidx + ovlp ) + ( ( XLEN + ( 2 * ovlp ) ) * ( ( ( xyzy + Bidy ) + ovlp ) + ( ( YLEN + ( 2 * ovlp ) ) * ( ( xyzz + Bidz ) + ovlp ) ) ) ) ) ) ) ) ))[ridx]);
}else{
0;
}
}}}}}}}}{
long gMYGEN127 = 0 ;
for (0 ; ( ( gMYGEN127 + ( idx * 1 ) ) < load0 ) ; (gMYGEN127 = ( gMYGEN127 + ( 1 * xlen ) )))
{
long iba_tmp = ( ( idx * 1 ) + gMYGEN127 ) ;
long numcp = 1 ;
double local_particle_head [ ( 1 * 6 )];{
{
long inner_step ;
for ((inner_step = 0) ; ( inner_step < numcp ) ; (inner_step = ( inner_step + 1 )))
{
{
long inner_g ;
for ((inner_g = 0) ; ( inner_g < 6 ) ; (inner_g = ( inner_g + 1 )))
{
(( ( local_particle_head + ( 0 * 6 ) ))[ ( ( inner_step * 6 ) + inner_g )] = ( ( particle_head_general + ( iba_tmp * 6 ) ))[ ( ( inner_step * 6 ) + inner_g )]);
}}}}} double a_f [ ( 1 * 3 )];0;
{
long g ;
for ((g = 0) ; ( g < numcp ) ; (g = ( g + 1 )))
{
double vx0 = ( ( local_particle_head + ( g * 6 ) ))[3] ;
double vy0 = ( ( local_particle_head + ( g * 6 ) ))[4] ;
double vz0 = ( ( local_particle_head + ( g * 6 ) ))[5] ;
double xx1 = ( ( ( local_particle_head + ( g * 6 ) ))[0] - 5.00000000000000000e-01 ) ;
double xy1 = ( ( ( local_particle_head + ( g * 6 ) ))[1] - 5.00000000000000000e-01 ) ;
double xz1 = ( ( ( local_particle_head + ( g * 6 ) ))[2] - 5.00000000000000000e-01 ) ;
double xx0 = ( xx1 - ( Deltat * vx0 ) ) ;
double xy0 = ( xy1 - ( Deltat * vy0 ) ) ;
double xz0 = ( xz1 - ( Deltat * vz0 ) ) ;
double Midx0 = openmp_floorx ( xx0 ) ;
double Midy0 = openmp_floorx ( xy0 ) ;
double Midz0 = openmp_floorx ( xz0 ) ;
double Midx1 = openmp_floorx ( xx1 ) ;
double Midy1 = openmp_floorx ( xy1 ) ;
double Midz1 = openmp_floorx ( xz1 ) ;
double rx0 = ( xx0 - Midx0 ) ;
double ry0 = ( xy0 - Midy0 ) ;
double rz0 = ( xz0 - Midz0 ) ;
double rx1 = ( xx1 - Midx1 ) ;
double ry1 = ( xy1 - Midy1 ) ;
double rz1 = ( xz1 - Midz1 ) ;
double X0 = xx0 ;
double X1 = xx1 ;
double Y0 = xy0 ;
double Y1 = xy1 ;
double Z0 = xz0 ;
double Z1 = xz1 ;
{
double f0_x0 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f0_x0)[i] = 0);
}} double f1_x0 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f1_x0)[i] = 0);
}} double if1_x0 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((if1_x0)[i] = 0);
}} double f0_y0 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f0_y0)[i] = 0);
}} double f1_y0 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f1_y0)[i] = 0);
}} double if1_y0 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((if1_y0)[i] = 0);
}} double f0_z0 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f0_z0)[i] = 0);
}} double f1_z0 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f1_z0)[i] = 0);
}} double if1_z0 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((if1_z0)[i] = 0);
}} double f0_x1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f0_x1)[i] = 0);
}} double f1_x1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f1_x1)[i] = 0);
}} double if1_x1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((if1_x1)[i] = 0);
}} double f0_y1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f0_y1)[i] = 0);
}} double f1_y1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f1_y1)[i] = 0);
}} double if1_y1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((if1_y1)[i] = 0);
}} double f0_z1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f0_z1)[i] = 0);
}} double f1_z1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f1_z1)[i] = 0);
}} double if1_z1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((if1_z1)[i] = 0);
}} int ixx0 = (( ( xx0 >= Midx ))?(1):(0)) ;
int ixy0 = (( ( xy0 >= Midy ))?(1):(0)) ;
int ixz0 = (( ( xz0 >= Midz ))?(1):(0)) ;
int ixx1 = (( ( xx1 >= Midx ))?(1):(0)) ;
int ixy1 = (( ( xy1 >= Midy ))?(1):(0)) ;
int ixz1 = (( ( xz1 >= Midz ))?(1):(0)) ;
((if1_x0)[0] = 1);
((if1_x0)[1] = 1);
((if1_y0)[0] = 1);
((if1_y0)[1] = 1);
((if1_z0)[0] = 1);
((if1_z0)[1] = 1);
((if1_x1)[0] = 1);
((if1_x1)[1] = 1);
((if1_y1)[0] = 1);
((if1_y1)[1] = 1);
((if1_z1)[0] = 1);
((if1_z1)[1] = 1);
((f0_x0)[ ( 0 + ixx0 )] = ( 2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx0 ) ) , 2 ) ));
((f1_x0)[ ( 0 + ixx0 )] = ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx0 ) ) ));
((if1_x0)[ ( 0 + ixx0 )] = ( 1.00000000000000000e+00 + ( -2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx0 ) ) , 2 ) ) ));
((f0_x0)[ ( 1 + ixx0 )] = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx0 ) ) , 2 ) + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx0 ) ) ) ) ) ));
((f1_x0)[ ( 1 + ixx0 )] = ( ( 2.50000000000000000e-01 * ( 2.00000000000000000e+00 + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx0 ) ) ) ) ) + ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx0 ) ) ) ));
((if1_x0)[ ( 1 + ixx0 )] = ( ( 2.50000000000000000e-01 * pow ( rx0 , 2 ) ) + ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * rx0 ) + pow ( rx0 , 2 ) ) ) ) ));
((f0_x0)[ ( 2 + ixx0 )] = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * rx0 ) + pow ( rx0 , 2 ) ) ) ));
((f1_x0)[ ( 2 + ixx0 )] = ( 5.00000000000000000e-01 * rx0 ));
((if1_x0)[ ( 2 + ixx0 )] = ( 2.50000000000000000e-01 * pow ( rx0 , 2 ) ));
((f0_x0)[ ( 3 + ixx0 )] = ( 2.50000000000000000e-01 * pow ( rx0 , 2 ) ));
((f0_y0)[ ( 0 + ixy0 )] = ( 2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry0 ) ) , 2 ) ));
((f1_y0)[ ( 0 + ixy0 )] = ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry0 ) ) ));
((if1_y0)[ ( 0 + ixy0 )] = ( 1.00000000000000000e+00 + ( -2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry0 ) ) , 2 ) ) ));
((f0_y0)[ ( 1 + ixy0 )] = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry0 ) ) , 2 ) + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry0 ) ) ) ) ) ));
((f1_y0)[ ( 1 + ixy0 )] = ( ( 2.50000000000000000e-01 * ( 2.00000000000000000e+00 + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry0 ) ) ) ) ) + ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry0 ) ) ) ));
((if1_y0)[ ( 1 + ixy0 )] = ( ( 2.50000000000000000e-01 * pow ( ry0 , 2 ) ) + ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * ry0 ) + pow ( ry0 , 2 ) ) ) ) ));
((f0_y0)[ ( 2 + ixy0 )] = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * ry0 ) + pow ( ry0 , 2 ) ) ) ));
((f1_y0)[ ( 2 + ixy0 )] = ( 5.00000000000000000e-01 * ry0 ));
((if1_y0)[ ( 2 + ixy0 )] = ( 2.50000000000000000e-01 * pow ( ry0 , 2 ) ));
((f0_y0)[ ( 3 + ixy0 )] = ( 2.50000000000000000e-01 * pow ( ry0 , 2 ) ));
((f0_z0)[ ( 0 + ixz0 )] = ( 2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz0 ) ) , 2 ) ));
((f1_z0)[ ( 0 + ixz0 )] = ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz0 ) ) ));
((if1_z0)[ ( 0 + ixz0 )] = ( 1.00000000000000000e+00 + ( -2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz0 ) ) , 2 ) ) ));
((f0_z0)[ ( 1 + ixz0 )] = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz0 ) ) , 2 ) + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz0 ) ) ) ) ) ));
((f1_z0)[ ( 1 + ixz0 )] = ( ( 2.50000000000000000e-01 * ( 2.00000000000000000e+00 + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz0 ) ) ) ) ) + ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz0 ) ) ) ));
((if1_z0)[ ( 1 + ixz0 )] = ( ( 2.50000000000000000e-01 * pow ( rz0 , 2 ) ) + ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * rz0 ) + pow ( rz0 , 2 ) ) ) ) ));
((f0_z0)[ ( 2 + ixz0 )] = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * rz0 ) + pow ( rz0 , 2 ) ) ) ));
((f1_z0)[ ( 2 + ixz0 )] = ( 5.00000000000000000e-01 * rz0 ));
((if1_z0)[ ( 2 + ixz0 )] = ( 2.50000000000000000e-01 * pow ( rz0 , 2 ) ));
((f0_z0)[ ( 3 + ixz0 )] = ( 2.50000000000000000e-01 * pow ( rz0 , 2 ) ));
((f0_x1)[ ( 0 + ixx1 )] = ( 2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx1 ) ) , 2 ) ));
((f1_x1)[ ( 0 + ixx1 )] = ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx1 ) ) ));
((if1_x1)[ ( 0 + ixx1 )] = ( 1.00000000000000000e+00 + ( -2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx1 ) ) , 2 ) ) ));
((f0_x1)[ ( 1 + ixx1 )] = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx1 ) ) , 2 ) + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx1 ) ) ) ) ) ));
((f1_x1)[ ( 1 + ixx1 )] = ( ( 2.50000000000000000e-01 * ( 2.00000000000000000e+00 + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx1 ) ) ) ) ) + ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx1 ) ) ) ));
((if1_x1)[ ( 1 + ixx1 )] = ( ( 2.50000000000000000e-01 * pow ( rx1 , 2 ) ) + ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * rx1 ) + pow ( rx1 , 2 ) ) ) ) ));
((f0_x1)[ ( 2 + ixx1 )] = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * rx1 ) + pow ( rx1 , 2 ) ) ) ));
((f1_x1)[ ( 2 + ixx1 )] = ( 5.00000000000000000e-01 * rx1 ));
((if1_x1)[ ( 2 + ixx1 )] = ( 2.50000000000000000e-01 * pow ( rx1 , 2 ) ));
((f0_x1)[ ( 3 + ixx1 )] = ( 2.50000000000000000e-01 * pow ( rx1 , 2 ) ));
((f0_y1)[ ( 0 + ixy1 )] = ( 2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry1 ) ) , 2 ) ));
((f1_y1)[ ( 0 + ixy1 )] = ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry1 ) ) ));
((if1_y1)[ ( 0 + ixy1 )] = ( 1.00000000000000000e+00 + ( -2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry1 ) ) , 2 ) ) ));
((f0_y1)[ ( 1 + ixy1 )] = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry1 ) ) , 2 ) + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry1 ) ) ) ) ) ));
((f1_y1)[ ( 1 + ixy1 )] = ( ( 2.50000000000000000e-01 * ( 2.00000000000000000e+00 + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry1 ) ) ) ) ) + ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry1 ) ) ) ));
((if1_y1)[ ( 1 + ixy1 )] = ( ( 2.50000000000000000e-01 * pow ( ry1 , 2 ) ) + ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * ry1 ) + pow ( ry1 , 2 ) ) ) ) ));
((f0_y1)[ ( 2 + ixy1 )] = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * ry1 ) + pow ( ry1 , 2 ) ) ) ));
((f1_y1)[ ( 2 + ixy1 )] = ( 5.00000000000000000e-01 * ry1 ));
((if1_y1)[ ( 2 + ixy1 )] = ( 2.50000000000000000e-01 * pow ( ry1 , 2 ) ));
((f0_y1)[ ( 3 + ixy1 )] = ( 2.50000000000000000e-01 * pow ( ry1 , 2 ) ));
((f0_z1)[ ( 0 + ixz1 )] = ( 2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz1 ) ) , 2 ) ));
((f1_z1)[ ( 0 + ixz1 )] = ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz1 ) ) ));
((if1_z1)[ ( 0 + ixz1 )] = ( 1.00000000000000000e+00 + ( -2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz1 ) ) , 2 ) ) ));
((f0_z1)[ ( 1 + ixz1 )] = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz1 ) ) , 2 ) + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz1 ) ) ) ) ) ));
((f1_z1)[ ( 1 + ixz1 )] = ( ( 2.50000000000000000e-01 * ( 2.00000000000000000e+00 + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz1 ) ) ) ) ) + ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz1 ) ) ) ));
((if1_z1)[ ( 1 + ixz1 )] = ( ( 2.50000000000000000e-01 * pow ( rz1 , 2 ) ) + ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * rz1 ) + pow ( rz1 , 2 ) ) ) ) ));
((f0_z1)[ ( 2 + ixz1 )] = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * rz1 ) + pow ( rz1 , 2 ) ) ) ));
((f1_z1)[ ( 2 + ixz1 )] = ( 5.00000000000000000e-01 * rz1 ));
((if1_z1)[ ( 2 + ixz1 )] = ( 2.50000000000000000e-01 * pow ( rz1 , 2 ) ));
((f0_z1)[ ( 3 + ixz1 )] = ( 2.50000000000000000e-01 * pow ( rz1 , 2 ) ));
double Ex1 ;
{
double sum0 = 0.00000000000000000e+00 ;
{
long xyzz ;
for ((xyzz = 0) ; ( xyzz < 5 ) ; (xyzz = ( xyzz + 1 )))
{
{
long xyzy ;
for ((xyzy = 0) ; ( xyzy < 5 ) ; (xyzy = ( xyzy + 1 )))
{
{
long xyzx ;
for ((xyzx = 0) ; ( xyzx < 5 ) ; (xyzx = ( xyzx + 1 )))
{
int allidx = ( xyzx + ( 5 * ( xyzy + ( 5 * xyzz ) ) ) ) ;
(sum0 = ( sum0 + ( (shE0)[ ( ( allidx * 3 ) + 0 )] * ( (f1_x1)[xyzx] * ( (f0_y1)[xyzy] * (f0_z1)[xyzz] ) ) ) ));
}}}}}}(Ex1 = sum0);
} double Ey1 ;
{
double sum0 = 0.00000000000000000e+00 ;
{
long xyzz ;
for ((xyzz = 0) ; ( xyzz < 5 ) ; (xyzz = ( xyzz + 1 )))
{
{
long xyzy ;
for ((xyzy = 0) ; ( xyzy < 5 ) ; (xyzy = ( xyzy + 1 )))
{
{
long xyzx ;
for ((xyzx = 0) ; ( xyzx < 5 ) ; (xyzx = ( xyzx + 1 )))
{
int allidx = ( xyzx + ( 5 * ( xyzy + ( 5 * xyzz ) ) ) ) ;
(sum0 = ( sum0 + ( (shE0)[ ( ( allidx * 3 ) + 1 )] * ( (f1_y1)[xyzy] * ( (f0_x1)[xyzx] * (f0_z1)[xyzz] ) ) ) ));
}}}}}}(Ey1 = sum0);
} double Ez1 ;
{
double sum0 = 0.00000000000000000e+00 ;
{
long xyzz ;
for ((xyzz = 0) ; ( xyzz < 5 ) ; (xyzz = ( xyzz + 1 )))
{
{
long xyzy ;
for ((xyzy = 0) ; ( xyzy < 5 ) ; (xyzy = ( xyzy + 1 )))
{
{
long xyzx ;
for ((xyzx = 0) ; ( xyzx < 5 ) ; (xyzx = ( xyzx + 1 )))
{
int allidx = ( xyzx + ( 5 * ( xyzy + ( 5 * xyzz ) ) ) ) ;
(sum0 = ( sum0 + ( (shE0)[ ( ( allidx * 3 ) + 2 )] * ( (f1_z1)[xyzz] * ( (f0_x1)[xyzx] * (f0_y1)[xyzy] ) ) ) ));
}}}}}}(Ez1 = sum0);
}(( ( a_f + ( ( g % 1 ) * 3 ) ))[0] = ( ( Charge * Ex1 ) + ( -5.00000000000000000e-01 * ( Mass * ( ( ( -2.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * ( ( -1.00000000000000000e+00 * X0 ) + X1 ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( Tori_X0 , -1 ) * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( ( 1.00000000000000000e+00 + ( pow ( Tori_X0 , -1 ) * ( ( 5.00000000000000000e-01 * ( X0 + X1 ) ) + XO ) ) ) * pow ( ( ( -1.00000000000000000e+00 * Y0 ) + Y1 ) , 2 ) ) ) ) ) ) ) * ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X0 ) + X1 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( ( 1.00000000000000000e+00 + ( pow ( Tori_X0 , -1 ) * ( ( 5.00000000000000000e-01 * ( X0 + X1 ) ) + XO ) ) ) , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y0 ) + Y1 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z0 ) + Z1 ) , 2 ) ) ) ) ) ) ) , -1.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X0 ) + X1 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( ( 1.00000000000000000e+00 + ( pow ( Tori_X0 , -1 ) * ( ( 5.00000000000000000e-01 * ( X0 + X1 ) ) + XO ) ) ) , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y0 ) + Y1 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z0 ) + Z1 ) , 2 ) ) ) ) ) ) ) ) ) ) ) ) ));
{
double B0z_intxX0Y1Z1X1 ;
{
double sum0 = 0.00000000000000000e+00 ;
{
long xyzz ;
for ((xyzz = 0) ; ( xyzz < 5 ) ; (xyzz = ( xyzz + 1 )))
{
{
long xyzy ;
for ((xyzy = 0) ; ( xyzy < 5 ) ; (xyzy = ( xyzy + 1 )))
{
{
long xyzx ;
for ((xyzx = 0) ; ( xyzx < 5 ) ; (xyzx = ( xyzx + 1 )))
{
int allidx = ( xyzx + ( 5 * ( xyzy + ( 5 * xyzz ) ) ) ) ;
(sum0 = ( sum0 + ( (shB0)[ ( ( allidx * 3 ) + 2 )] * ( (f0_z1)[xyzz] * ( ( (if1_x1)[xyzx] - (if1_x0)[xyzx] ) * (f1_y1)[xyzy] ) ) ) ));
}}}}}}(B0z_intxX0Y1Z1X1 = sum0);
}(( ( a_f + ( ( g % 1 ) * 3 ) ))[1] = ( ( Charge * Ey1 ) + ( ( -1.00000000000000000e+00 * ( Charge * ( pow ( DELTAT , -1 ) * B0z_intxX0Y1Z1X1 ) ) ) + ( Mass * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( ( 1.00000000000000000e+00 + ( pow ( Tori_X0 , -1 ) * ( ( 5.00000000000000000e-01 * ( X0 + X1 ) ) + XO ) ) ) , 2 ) * ( ( ( -1.00000000000000000e+00 * Y0 ) + Y1 ) * ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X0 ) + X1 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( ( 1.00000000000000000e+00 + ( pow ( Tori_X0 , -1 ) * ( ( 5.00000000000000000e-01 * ( X0 + X1 ) ) + XO ) ) ) , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y0 ) + Y1 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z0 ) + Z1 ) , 2 ) ) ) ) ) ) ) , -1.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X0 ) + X1 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( ( 1.00000000000000000e+00 + ( pow ( Tori_X0 , -1 ) * ( ( 5.00000000000000000e-01 * ( X0 + X1 ) ) + XO ) ) ) , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y0 ) + Y1 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z0 ) + Z1 ) , 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ));
}{
double B0y_intxX0Y1Z1X1 ;
{
double sum0 = 0.00000000000000000e+00 ;
{
long xyzz ;
for ((xyzz = 0) ; ( xyzz < 5 ) ; (xyzz = ( xyzz + 1 )))
{
{
long xyzy ;
for ((xyzy = 0) ; ( xyzy < 5 ) ; (xyzy = ( xyzy + 1 )))
{
{
long xyzx ;
for ((xyzx = 0) ; ( xyzx < 5 ) ; (xyzx = ( xyzx + 1 )))
{
int allidx = ( xyzx + ( 5 * ( xyzy + ( 5 * xyzz ) ) ) ) ;
(sum0 = ( sum0 + ( (shB0)[ ( ( allidx * 3 ) + 1 )] * ( (f0_y1)[xyzy] * ( ( (if1_x1)[xyzx] - (if1_x0)[xyzx] ) * (f1_z1)[xyzz] ) ) ) ));
}}}}}}(B0y_intxX0Y1Z1X1 = sum0);
} double B0x_intyX0Y0Z1Y1 ;
{
double sum0 = 0.00000000000000000e+00 ;
{
long xyzz ;
for ((xyzz = 0) ; ( xyzz < 5 ) ; (xyzz = ( xyzz + 1 )))
{
{
long xyzy ;
for ((xyzy = 0) ; ( xyzy < 5 ) ; (xyzy = ( xyzy + 1 )))
{
{
long xyzx ;
for ((xyzx = 0) ; ( xyzx < 5 ) ; (xyzx = ( xyzx + 1 )))
{
int allidx = ( xyzx + ( 5 * ( xyzy + ( 5 * xyzz ) ) ) ) ;
(sum0 = ( sum0 + ( (shB0)[ ( ( allidx * 3 ) + 0 )] * ( (f0_x0)[xyzx] * ( ( (if1_y1)[xyzy] - (if1_y0)[xyzy] ) * (f1_z1)[xyzz] ) ) ) ));
}}}}}}(B0x_intyX0Y0Z1Y1 = sum0);
}(( ( a_f + ( ( g % 1 ) * 3 ) ))[2] = ( ( Charge * Ez1 ) + ( ( Charge * ( pow ( DELTAT , -1 ) * ( ( -1.00000000000000000e+00 * B0x_intyX0Y0Z1Y1 ) + B0y_intxX0Y1Z1X1 ) ) ) + ( Mass * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * ( ( ( -1.00000000000000000e+00 * Z0 ) + Z1 ) * ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X0 ) + X1 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( ( 1.00000000000000000e+00 + ( pow ( Tori_X0 , -1 ) * ( ( 5.00000000000000000e-01 * ( X0 + X1 ) ) + XO ) ) ) , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y0 ) + Y1 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z0 ) + Z1 ) , 2 ) ) ) ) ) ) ) , -1.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X0 ) + X1 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( ( 1.00000000000000000e+00 + ( pow ( Tori_X0 , -1 ) * ( ( 5.00000000000000000e-01 * ( X0 + X1 ) ) + XO ) ) ) , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y0 ) + Y1 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z0 ) + Z1 ) , 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ));
}}}}{
long g ;
for ((g = 0) ; ( g < numcp ) ; (g = ( g + 1 )))
{
double res_0 = ( ( a_f + ( ( g % 1 ) * 3 ) ))[0] ;
double res_1 = ( ( a_f + ( ( g % 1 ) * 3 ) ))[1] ;
double res_2 = ( ( a_f + ( ( g % 1 ) * 3 ) ))[2] ;
double vx0 = ( ( local_particle_head + ( g * 6 ) ))[3] ;
double vy0 = ( ( local_particle_head + ( g * 6 ) ))[4] ;
double vz0 = ( ( local_particle_head + ( g * 6 ) ))[5] ;
double xx1 = ( ( ( local_particle_head + ( g * 6 ) ))[0] - 5.00000000000000000e-01 ) ;
double xy1 = ( ( ( local_particle_head + ( g * 6 ) ))[1] - 5.00000000000000000e-01 ) ;
double xz1 = ( ( ( local_particle_head + ( g * 6 ) ))[2] - 5.00000000000000000e-01 ) ;
double xx0 = ( xx1 - ( Deltat * vx0 ) ) ;
double xy0 = ( xy1 - ( Deltat * vy0 ) ) ;
double xz0 = ( xz1 - ( Deltat * vz0 ) ) ;
double Midx0 = openmp_floorx ( xx0 ) ;
double Midy0 = openmp_floorx ( xy0 ) ;
double Midz0 = openmp_floorx ( xz0 ) ;
double Midx1 = openmp_floorx ( xx1 ) ;
double Midy1 = openmp_floorx ( xy1 ) ;
double Midz1 = openmp_floorx ( xz1 ) ;
double rx0 = ( xx0 - Midx0 ) ;
double ry0 = ( xy0 - Midy0 ) ;
double rz0 = ( xz0 - Midz0 ) ;
double rx1 = ( xx1 - Midx1 ) ;
double ry1 = ( xy1 - Midy1 ) ;
double rz1 = ( xz1 - Midz1 ) ;
double X0 = xx0 ;
double X1 = xx1 ;
double X2 = ( ( 2 * xx1 ) - xx0 ) ;
double Y0 = xy0 ;
double Y1 = xy1 ;
double Y2 = ( ( 2 * xy1 ) - xy0 ) ;
double Z0 = xz0 ;
double Z1 = xz1 ;
double Z2 = ( ( 2 * xz1 ) - xz0 ) ;
double f0_x1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f0_x1)[i] = 0);
}} double f1_x1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f1_x1)[i] = 0);
}} double if1_x1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((if1_x1)[i] = 0);
}} double df0_x1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((df0_x1)[i] = 0);
}} double dif1_x1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((dif1_x1)[i] = 0);
}} double f0_y1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f0_y1)[i] = 0);
}} double f1_y1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f1_y1)[i] = 0);
}} double if1_y1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((if1_y1)[i] = 0);
}} double df0_y1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((df0_y1)[i] = 0);
}} double dif1_y1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((dif1_y1)[i] = 0);
}} double f0_z1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f0_z1)[i] = 0);
}} double f1_z1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f1_z1)[i] = 0);
}} double if1_z1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((if1_z1)[i] = 0);
}} double df0_z1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((df0_z1)[i] = 0);
}} double dif1_z1 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((dif1_z1)[i] = 0);
}} double f0_x2 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f0_x2)[i] = 0);
}} double f1_x2 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f1_x2)[i] = 0);
}} double if1_x2 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((if1_x2)[i] = 0);
}} double df0_x2 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((df0_x2)[i] = 0);
}} double dif1_x2 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((dif1_x2)[i] = 0);
}} double f0_y2 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f0_y2)[i] = 0);
}} double f1_y2 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f1_y2)[i] = 0);
}} double if1_y2 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((if1_y2)[i] = 0);
}} double df0_y2 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((df0_y2)[i] = 0);
}} double dif1_y2 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((dif1_y2)[i] = 0);
}} double f0_z2 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f0_z2)[i] = 0);
}} double f1_z2 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f1_z2)[i] = 0);
}} double if1_z2 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((if1_z2)[i] = 0);
}} double df0_z2 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((df0_z2)[i] = 0);
}} double dif1_z2 [5];{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((dif1_z2)[i] = 0);
}} int ixx0 = (( ( xx0 >= Midx ))?(1):(0)) ;
int ixy0 = (( ( xy0 >= Midy ))?(1):(0)) ;
int ixz0 = (( ( xz0 >= Midz ))?(1):(0)) ;
int ixx1 = (( ( xx1 >= Midx ))?(1):(0)) ;
int ixy1 = (( ( xy1 >= Midy ))?(1):(0)) ;
int ixz1 = (( ( xz1 >= Midz ))?(1):(0)) ;
((if1_x1)[0] = 1);
((if1_x1)[1] = 1);
((if1_y1)[0] = 1);
((if1_y1)[1] = 1);
((if1_z1)[0] = 1);
((if1_z1)[1] = 1);
((f0_x1)[ ( 0 + ixx1 )] = ( 2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx1 ) ) , 2 ) ));
((f1_x1)[ ( 0 + ixx1 )] = ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx1 ) ) ));
((if1_x1)[ ( 0 + ixx1 )] = ( 1.00000000000000000e+00 + ( -2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx1 ) ) , 2 ) ) ));
((f0_x1)[ ( 1 + ixx1 )] = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx1 ) ) , 2 ) + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx1 ) ) ) ) ) ));
((f1_x1)[ ( 1 + ixx1 )] = ( ( 2.50000000000000000e-01 * ( 2.00000000000000000e+00 + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx1 ) ) ) ) ) + ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx1 ) ) ) ));
((if1_x1)[ ( 1 + ixx1 )] = ( ( 2.50000000000000000e-01 * pow ( rx1 , 2 ) ) + ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * rx1 ) + pow ( rx1 , 2 ) ) ) ) ));
((f0_x1)[ ( 2 + ixx1 )] = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * rx1 ) + pow ( rx1 , 2 ) ) ) ));
((f1_x1)[ ( 2 + ixx1 )] = ( 5.00000000000000000e-01 * rx1 ));
((if1_x1)[ ( 2 + ixx1 )] = ( 2.50000000000000000e-01 * pow ( rx1 , 2 ) ));
((f0_x1)[ ( 3 + ixx1 )] = ( 2.50000000000000000e-01 * pow ( rx1 , 2 ) ));
((f0_y1)[ ( 0 + ixy1 )] = ( 2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry1 ) ) , 2 ) ));
((f1_y1)[ ( 0 + ixy1 )] = ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry1 ) ) ));
((if1_y1)[ ( 0 + ixy1 )] = ( 1.00000000000000000e+00 + ( -2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry1 ) ) , 2 ) ) ));
((f0_y1)[ ( 1 + ixy1 )] = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry1 ) ) , 2 ) + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry1 ) ) ) ) ) ));
((f1_y1)[ ( 1 + ixy1 )] = ( ( 2.50000000000000000e-01 * ( 2.00000000000000000e+00 + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry1 ) ) ) ) ) + ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry1 ) ) ) ));
((if1_y1)[ ( 1 + ixy1 )] = ( ( 2.50000000000000000e-01 * pow ( ry1 , 2 ) ) + ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * ry1 ) + pow ( ry1 , 2 ) ) ) ) ));
((f0_y1)[ ( 2 + ixy1 )] = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * ry1 ) + pow ( ry1 , 2 ) ) ) ));
((f1_y1)[ ( 2 + ixy1 )] = ( 5.00000000000000000e-01 * ry1 ));
((if1_y1)[ ( 2 + ixy1 )] = ( 2.50000000000000000e-01 * pow ( ry1 , 2 ) ));
((f0_y1)[ ( 3 + ixy1 )] = ( 2.50000000000000000e-01 * pow ( ry1 , 2 ) ));
((f0_z1)[ ( 0 + ixz1 )] = ( 2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz1 ) ) , 2 ) ));
((f1_z1)[ ( 0 + ixz1 )] = ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz1 ) ) ));
((if1_z1)[ ( 0 + ixz1 )] = ( 1.00000000000000000e+00 + ( -2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz1 ) ) , 2 ) ) ));
((f0_z1)[ ( 1 + ixz1 )] = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz1 ) ) , 2 ) + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz1 ) ) ) ) ) ));
((f1_z1)[ ( 1 + ixz1 )] = ( ( 2.50000000000000000e-01 * ( 2.00000000000000000e+00 + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz1 ) ) ) ) ) + ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz1 ) ) ) ));
((if1_z1)[ ( 1 + ixz1 )] = ( ( 2.50000000000000000e-01 * pow ( rz1 , 2 ) ) + ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * rz1 ) + pow ( rz1 , 2 ) ) ) ) ));
((f0_z1)[ ( 2 + ixz1 )] = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * rz1 ) + pow ( rz1 , 2 ) ) ) ));
((f1_z1)[ ( 2 + ixz1 )] = ( 5.00000000000000000e-01 * rz1 ));
((if1_z1)[ ( 2 + ixz1 )] = ( 2.50000000000000000e-01 * pow ( rz1 , 2 ) ));
((f0_z1)[ ( 3 + ixz1 )] = ( 2.50000000000000000e-01 * pow ( rz1 , 2 ) ));
{
double maxerr = 0.00000000000000000e+00 ;
double RPL00 ;
double RPL10 ;
double RPL20 ;
double RES [3]; double L_RES [3]; double JAC [9]; double IJAC [9];{
long z ;
for ((z = 0) ; ( z < 32 ) ; (z = ( z + 1 )))
{
{
double xx2 = X2 ;
double xy2 = Y2 ;
double xz2 = Z2 ;
int Midx2 = openmp_floorx ( xx2 ) ;
int Midy2 = openmp_floorx ( xy2 ) ;
int Midz2 = openmp_floorx ( xz2 ) ;
double rx2 = ( xx2 - Midx2 ) ;
double ry2 = ( xy2 - Midy2 ) ;
double rz2 = ( xz2 - Midz2 ) ;
(RPL00 = ( 1.00000000000000000e+00 + ( pow ( Tori_X0 , -1 ) * ( ( 5.00000000000000000e-01 * ( X1 + X2 ) ) + XO ) ) ));
(RPL10 = ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ));
(RPL20 = ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * RPL10 ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) , 0.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * RPL10 ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) ));
{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f0_x2)[i] = 0);
}}{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f1_x2)[i] = 0);
}}{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((if1_x2)[i] = 0);
}}{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((df0_x2)[i] = 0);
}}{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((dif1_x2)[i] = 0);
}}{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f0_y2)[i] = 0);
}}{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f1_y2)[i] = 0);
}}{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((if1_y2)[i] = 0);
}}{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((df0_y2)[i] = 0);
}}{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((dif1_y2)[i] = 0);
}}{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f0_z2)[i] = 0);
}}{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((f1_z2)[i] = 0);
}}{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((if1_z2)[i] = 0);
}}{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((df0_z2)[i] = 0);
}}{
long i ;
for ((i = 0) ; ( i < 5 ) ; (i = ( i + 1 )))
{
((dif1_z2)[i] = 0);
}}((if1_x2)[0] = 1);
((if1_x2)[1] = 1);
((if1_y2)[0] = 1);
((if1_y2)[1] = 1);
((if1_z2)[0] = 1);
((if1_z2)[1] = 1);
double ixx2 = (( ( xx2 >= Midx ))?(1.00000000000000000e+00):(0.00000000000000000e+00)) ;
double ixy2 = (( ( xy2 >= Midy ))?(1.00000000000000000e+00):(0.00000000000000000e+00)) ;
double ixz2 = (( ( xz2 >= Midz ))?(1.00000000000000000e+00):(0.00000000000000000e+00)) ;
double f0_0x2_nv_bac ;
(f0_0x2_nv_bac = ( 2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx2 ) ) , 2 ) ));
double df0_0x2_nv_bac ;
(df0_0x2_nv_bac = ( -5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx2 ) ) ));
double dif1_0x2_nv_bac ;
(dif1_0x2_nv_bac = -5.00000000000000000e-01);
double f1_0x2_nv_bac ;
(f1_0x2_nv_bac = ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx2 ) ) ));
double if1_0x2_nv_bac ;
(if1_0x2_nv_bac = ( 1.00000000000000000e+00 + ( -2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx2 ) ) , 2 ) ) ));
double f0_1x2_nv_bac ;
(f0_1x2_nv_bac = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx2 ) ) , 2 ) + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx2 ) ) ) ) ) ));
double df0_1x2_nv_bac ;
(df0_1x2_nv_bac = ( -2.50000000000000000e-01 * ( 2.00000000000000000e+00 + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx2 ) ) ) ) ));
double dif1_1x2_nv_bac ;
(dif1_1x2_nv_bac = 0.00000000000000000e+00);
double f1_1x2_nv_bac ;
(f1_1x2_nv_bac = ( ( 2.50000000000000000e-01 * ( 2.00000000000000000e+00 + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx2 ) ) ) ) ) + ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rx2 ) ) ) ));
double if1_1x2_nv_bac ;
(if1_1x2_nv_bac = ( ( 2.50000000000000000e-01 * pow ( rx2 , 2 ) ) + ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * rx2 ) + pow ( rx2 , 2 ) ) ) ) ));
double f0_2x2_nv_bac ;
(f0_2x2_nv_bac = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * rx2 ) + pow ( rx2 , 2 ) ) ) ));
double df0_2x2_nv_bac ;
(df0_2x2_nv_bac = ( -2.50000000000000000e-01 * ( -2.00000000000000000e+00 + ( 2.00000000000000000e+00 * rx2 ) ) ));
double dif1_2x2_nv_bac ;
(dif1_2x2_nv_bac = 5.00000000000000000e-01);
double f1_2x2_nv_bac ;
(f1_2x2_nv_bac = ( 5.00000000000000000e-01 * rx2 ));
double if1_2x2_nv_bac ;
(if1_2x2_nv_bac = ( 2.50000000000000000e-01 * pow ( rx2 , 2 ) ));
double f0_3x2_nv_bac ;
(f0_3x2_nv_bac = ( 2.50000000000000000e-01 * pow ( rx2 , 2 ) ));
double df0_3x2_nv_bac ;
(df0_3x2_nv_bac = ( 5.00000000000000000e-01 * rx2 ));
double f0_0y2_nv_bac ;
(f0_0y2_nv_bac = ( 2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry2 ) ) , 2 ) ));
double df0_0y2_nv_bac ;
(df0_0y2_nv_bac = ( -5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry2 ) ) ));
double dif1_0y2_nv_bac ;
(dif1_0y2_nv_bac = -5.00000000000000000e-01);
double f1_0y2_nv_bac ;
(f1_0y2_nv_bac = ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry2 ) ) ));
double if1_0y2_nv_bac ;
(if1_0y2_nv_bac = ( 1.00000000000000000e+00 + ( -2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry2 ) ) , 2 ) ) ));
double f0_1y2_nv_bac ;
(f0_1y2_nv_bac = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry2 ) ) , 2 ) + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry2 ) ) ) ) ) ));
double df0_1y2_nv_bac ;
(df0_1y2_nv_bac = ( -2.50000000000000000e-01 * ( 2.00000000000000000e+00 + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry2 ) ) ) ) ));
double dif1_1y2_nv_bac ;
(dif1_1y2_nv_bac = 0.00000000000000000e+00);
double f1_1y2_nv_bac ;
(f1_1y2_nv_bac = ( ( 2.50000000000000000e-01 * ( 2.00000000000000000e+00 + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry2 ) ) ) ) ) + ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * ry2 ) ) ) ));
double if1_1y2_nv_bac ;
(if1_1y2_nv_bac = ( ( 2.50000000000000000e-01 * pow ( ry2 , 2 ) ) + ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * ry2 ) + pow ( ry2 , 2 ) ) ) ) ));
double f0_2y2_nv_bac ;
(f0_2y2_nv_bac = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * ry2 ) + pow ( ry2 , 2 ) ) ) ));
double df0_2y2_nv_bac ;
(df0_2y2_nv_bac = ( -2.50000000000000000e-01 * ( -2.00000000000000000e+00 + ( 2.00000000000000000e+00 * ry2 ) ) ));
double dif1_2y2_nv_bac ;
(dif1_2y2_nv_bac = 5.00000000000000000e-01);
double f1_2y2_nv_bac ;
(f1_2y2_nv_bac = ( 5.00000000000000000e-01 * ry2 ));
double if1_2y2_nv_bac ;
(if1_2y2_nv_bac = ( 2.50000000000000000e-01 * pow ( ry2 , 2 ) ));
double f0_3y2_nv_bac ;
(f0_3y2_nv_bac = ( 2.50000000000000000e-01 * pow ( ry2 , 2 ) ));
double df0_3y2_nv_bac ;
(df0_3y2_nv_bac = ( 5.00000000000000000e-01 * ry2 ));
double f0_0z2_nv_bac ;
(f0_0z2_nv_bac = ( 2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz2 ) ) , 2 ) ));
double df0_0z2_nv_bac ;
(df0_0z2_nv_bac = ( -5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz2 ) ) ));
double dif1_0z2_nv_bac ;
(dif1_0z2_nv_bac = -5.00000000000000000e-01);
double f1_0z2_nv_bac ;
(f1_0z2_nv_bac = ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz2 ) ) ));
double if1_0z2_nv_bac ;
(if1_0z2_nv_bac = ( 1.00000000000000000e+00 + ( -2.50000000000000000e-01 * pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz2 ) ) , 2 ) ) ));
double f0_1z2_nv_bac ;
(f0_1z2_nv_bac = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( pow ( ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz2 ) ) , 2 ) + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz2 ) ) ) ) ) ));
double df0_1z2_nv_bac ;
(df0_1z2_nv_bac = ( -2.50000000000000000e-01 * ( 2.00000000000000000e+00 + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz2 ) ) ) ) ));
double dif1_1z2_nv_bac ;
(dif1_1z2_nv_bac = 0.00000000000000000e+00);
double f1_1z2_nv_bac ;
(f1_1z2_nv_bac = ( ( 2.50000000000000000e-01 * ( 2.00000000000000000e+00 + ( -2.00000000000000000e+00 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz2 ) ) ) ) ) + ( 5.00000000000000000e-01 * ( 1.00000000000000000e+00 + ( -1.00000000000000000e+00 * rz2 ) ) ) ));
double if1_1z2_nv_bac ;
(if1_1z2_nv_bac = ( ( 2.50000000000000000e-01 * pow ( rz2 , 2 ) ) + ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * rz2 ) + pow ( rz2 , 2 ) ) ) ) ));
double f0_2z2_nv_bac ;
(f0_2z2_nv_bac = ( -2.50000000000000000e-01 * ( -1.00000000000000000e+00 + ( ( -2.00000000000000000e+00 * rz2 ) + pow ( rz2 , 2 ) ) ) ));
double df0_2z2_nv_bac ;
(df0_2z2_nv_bac = ( -2.50000000000000000e-01 * ( -2.00000000000000000e+00 + ( 2.00000000000000000e+00 * rz2 ) ) ));
double dif1_2z2_nv_bac ;
(dif1_2z2_nv_bac = 5.00000000000000000e-01);
double f1_2z2_nv_bac ;
(f1_2z2_nv_bac = ( 5.00000000000000000e-01 * rz2 ));
double if1_2z2_nv_bac ;
(if1_2z2_nv_bac = ( 2.50000000000000000e-01 * pow ( rz2 , 2 ) ));
double f0_3z2_nv_bac ;
(f0_3z2_nv_bac = ( 2.50000000000000000e-01 * pow ( rz2 , 2 ) ));
double df0_3z2_nv_bac ;
(df0_3z2_nv_bac = ( 5.00000000000000000e-01 * rz2 ));
((f0_x2)[0] = ( ( ixx2 * 0.00000000000000000e+00 ) + ( ( 1.00000000000000000e+00 - ixx2 ) * f0_0x2_nv_bac ) ));
((df0_x2)[0] = ( ( ixx2 * 0.00000000000000000e+00 ) + ( ( 1.00000000000000000e+00 - ixx2 ) * df0_0x2_nv_bac ) ));
((dif1_x2)[0] = ( ( ixx2 * 0.00000000000000000e+00 ) + ( ( 1.00000000000000000e+00 - ixx2 ) * dif1_0x2_nv_bac ) ));
((f1_x2)[0] = ( ( ixx2 * 0.00000000000000000e+00 ) + ( ( 1.00000000000000000e+00 - ixx2 ) * f1_0x2_nv_bac ) ));
((if1_x2)[0] = ( ( ixx2 * 1.00000000000000000e+00 ) + ( ( 1.00000000000000000e+00 - ixx2 ) * if1_0x2_nv_bac ) ));
((f0_x2)[1] = ( ( ixx2 * f0_0x2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixx2 ) * f0_1x2_nv_bac ) ));
((df0_x2)[1] = ( ( ixx2 * df0_0x2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixx2 ) * df0_1x2_nv_bac ) ));
((dif1_x2)[1] = ( ( ixx2 * dif1_0x2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixx2 ) * dif1_1x2_nv_bac ) ));
((f1_x2)[1] = ( ( ixx2 * f1_0x2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixx2 ) * f1_1x2_nv_bac ) ));
((if1_x2)[1] = ( ( ixx2 * if1_0x2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixx2 ) * if1_1x2_nv_bac ) ));
((f0_x2)[2] = ( ( ixx2 * f0_1x2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixx2 ) * f0_2x2_nv_bac ) ));
((df0_x2)[2] = ( ( ixx2 * df0_1x2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixx2 ) * df0_2x2_nv_bac ) ));
((dif1_x2)[2] = ( ( ixx2 * dif1_1x2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixx2 ) * dif1_2x2_nv_bac ) ));
((f1_x2)[2] = ( ( ixx2 * f1_1x2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixx2 ) * f1_2x2_nv_bac ) ));
((if1_x2)[2] = ( ( ixx2 * if1_1x2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixx2 ) * if1_2x2_nv_bac ) ));
((f0_x2)[3] = ( ( ixx2 * f0_2x2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixx2 ) * f0_3x2_nv_bac ) ));
((df0_x2)[3] = ( ( ixx2 * df0_2x2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixx2 ) * df0_3x2_nv_bac ) ));
((dif1_x2)[3] = ( ( ixx2 * dif1_2x2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixx2 ) * 0 ) ));
((f1_x2)[3] = ( ( ixx2 * f1_2x2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixx2 ) * 0 ) ));
((if1_x2)[3] = ( ( ixx2 * if1_2x2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixx2 ) * 0 ) ));
((f0_x2)[4] = ( ( ixx2 * f0_3x2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixx2 ) * 0 ) ));
((df0_x2)[4] = ( ( ixx2 * df0_3x2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixx2 ) * 0 ) ));
((f0_y2)[0] = ( ( ixy2 * 0.00000000000000000e+00 ) + ( ( 1.00000000000000000e+00 - ixy2 ) * f0_0y2_nv_bac ) ));
((df0_y2)[0] = ( ( ixy2 * 0.00000000000000000e+00 ) + ( ( 1.00000000000000000e+00 - ixy2 ) * df0_0y2_nv_bac ) ));
((dif1_y2)[0] = ( ( ixy2 * 0.00000000000000000e+00 ) + ( ( 1.00000000000000000e+00 - ixy2 ) * dif1_0y2_nv_bac ) ));
((f1_y2)[0] = ( ( ixy2 * 0.00000000000000000e+00 ) + ( ( 1.00000000000000000e+00 - ixy2 ) * f1_0y2_nv_bac ) ));
((if1_y2)[0] = ( ( ixy2 * 1.00000000000000000e+00 ) + ( ( 1.00000000000000000e+00 - ixy2 ) * if1_0y2_nv_bac ) ));
((f0_y2)[1] = ( ( ixy2 * f0_0y2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixy2 ) * f0_1y2_nv_bac ) ));
((df0_y2)[1] = ( ( ixy2 * df0_0y2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixy2 ) * df0_1y2_nv_bac ) ));
((dif1_y2)[1] = ( ( ixy2 * dif1_0y2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixy2 ) * dif1_1y2_nv_bac ) ));
((f1_y2)[1] = ( ( ixy2 * f1_0y2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixy2 ) * f1_1y2_nv_bac ) ));
((if1_y2)[1] = ( ( ixy2 * if1_0y2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixy2 ) * if1_1y2_nv_bac ) ));
((f0_y2)[2] = ( ( ixy2 * f0_1y2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixy2 ) * f0_2y2_nv_bac ) ));
((df0_y2)[2] = ( ( ixy2 * df0_1y2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixy2 ) * df0_2y2_nv_bac ) ));
((dif1_y2)[2] = ( ( ixy2 * dif1_1y2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixy2 ) * dif1_2y2_nv_bac ) ));
((f1_y2)[2] = ( ( ixy2 * f1_1y2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixy2 ) * f1_2y2_nv_bac ) ));
((if1_y2)[2] = ( ( ixy2 * if1_1y2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixy2 ) * if1_2y2_nv_bac ) ));
((f0_y2)[3] = ( ( ixy2 * f0_2y2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixy2 ) * f0_3y2_nv_bac ) ));
((df0_y2)[3] = ( ( ixy2 * df0_2y2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixy2 ) * df0_3y2_nv_bac ) ));
((dif1_y2)[3] = ( ( ixy2 * dif1_2y2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixy2 ) * 0 ) ));
((f1_y2)[3] = ( ( ixy2 * f1_2y2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixy2 ) * 0 ) ));
((if1_y2)[3] = ( ( ixy2 * if1_2y2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixy2 ) * 0 ) ));
((f0_y2)[4] = ( ( ixy2 * f0_3y2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixy2 ) * 0 ) ));
((df0_y2)[4] = ( ( ixy2 * df0_3y2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixy2 ) * 0 ) ));
((f0_z2)[0] = ( ( ixz2 * 0.00000000000000000e+00 ) + ( ( 1.00000000000000000e+00 - ixz2 ) * f0_0z2_nv_bac ) ));
((df0_z2)[0] = ( ( ixz2 * 0.00000000000000000e+00 ) + ( ( 1.00000000000000000e+00 - ixz2 ) * df0_0z2_nv_bac ) ));
((dif1_z2)[0] = ( ( ixz2 * 0.00000000000000000e+00 ) + ( ( 1.00000000000000000e+00 - ixz2 ) * dif1_0z2_nv_bac ) ));
((f1_z2)[0] = ( ( ixz2 * 0.00000000000000000e+00 ) + ( ( 1.00000000000000000e+00 - ixz2 ) * f1_0z2_nv_bac ) ));
((if1_z2)[0] = ( ( ixz2 * 1.00000000000000000e+00 ) + ( ( 1.00000000000000000e+00 - ixz2 ) * if1_0z2_nv_bac ) ));
((f0_z2)[1] = ( ( ixz2 * f0_0z2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixz2 ) * f0_1z2_nv_bac ) ));
((df0_z2)[1] = ( ( ixz2 * df0_0z2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixz2 ) * df0_1z2_nv_bac ) ));
((dif1_z2)[1] = ( ( ixz2 * dif1_0z2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixz2 ) * dif1_1z2_nv_bac ) ));
((f1_z2)[1] = ( ( ixz2 * f1_0z2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixz2 ) * f1_1z2_nv_bac ) ));
((if1_z2)[1] = ( ( ixz2 * if1_0z2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixz2 ) * if1_1z2_nv_bac ) ));
((f0_z2)[2] = ( ( ixz2 * f0_1z2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixz2 ) * f0_2z2_nv_bac ) ));
((df0_z2)[2] = ( ( ixz2 * df0_1z2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixz2 ) * df0_2z2_nv_bac ) ));
((dif1_z2)[2] = ( ( ixz2 * dif1_1z2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixz2 ) * dif1_2z2_nv_bac ) ));
((f1_z2)[2] = ( ( ixz2 * f1_1z2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixz2 ) * f1_2z2_nv_bac ) ));
((if1_z2)[2] = ( ( ixz2 * if1_1z2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixz2 ) * if1_2z2_nv_bac ) ));
((f0_z2)[3] = ( ( ixz2 * f0_2z2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixz2 ) * f0_3z2_nv_bac ) ));
((df0_z2)[3] = ( ( ixz2 * df0_2z2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixz2 ) * df0_3z2_nv_bac ) ));
((dif1_z2)[3] = ( ( ixz2 * dif1_2z2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixz2 ) * 0 ) ));
((f1_z2)[3] = ( ( ixz2 * f1_2z2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixz2 ) * 0 ) ));
((if1_z2)[3] = ( ( ixz2 * if1_2z2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixz2 ) * 0 ) ));
((f0_z2)[4] = ( ( ixz2 * f0_3z2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixz2 ) * 0 ) ));
((df0_z2)[4] = ( ( ixz2 * df0_3z2_nv_bac ) + ( ( 1.00000000000000000e+00 - ixz2 ) * 0 ) ));
}{
double B1z_intyX1Y1Z2Y2 ;
{
double sum0 = 0.00000000000000000e+00 ;
{
long xyzz ;
for ((xyzz = 0) ; ( xyzz < 5 ) ; (xyzz = ( xyzz + 1 )))
{
{
long xyzy ;
for ((xyzy = 0) ; ( xyzy < 5 ) ; (xyzy = ( xyzy + 1 )))
{
{
long xyzx ;
for ((xyzx = 0) ; ( xyzx < 5 ) ; (xyzx = ( xyzx + 1 )))
{
int allidx = ( xyzx + ( 5 * ( xyzy + ( 5 * xyzz ) ) ) ) ;
(sum0 = ( sum0 + ( (shB1)[ ( ( allidx * 3 ) + 2 )] * ( (f0_z2)[xyzz] * ( ( (if1_y2)[xyzy] - (if1_y1)[xyzy] ) * (f1_x1)[xyzx] ) ) ) ));
}}}}}}(B1z_intyX1Y1Z2Y2 = sum0);
} double B1y_intzX1Y1Z1Z2 ;
{
double sum0 = 0.00000000000000000e+00 ;
{
long xyzz ;
for ((xyzz = 0) ; ( xyzz < 5 ) ; (xyzz = ( xyzz + 1 )))
{
{
long xyzy ;
for ((xyzy = 0) ; ( xyzy < 5 ) ; (xyzy = ( xyzy + 1 )))
{
{
long xyzx ;
for ((xyzx = 0) ; ( xyzx < 5 ) ; (xyzx = ( xyzx + 1 )))
{
int allidx = ( xyzx + ( 5 * ( xyzy + ( 5 * xyzz ) ) ) ) ;
(sum0 = ( sum0 + ( (shB1)[ ( ( allidx * 3 ) + 1 )] * ( (f0_y1)[xyzy] * ( ( (if1_z2)[xyzz] - (if1_z1)[xyzz] ) * (f1_x1)[xyzx] ) ) ) ));
}}}}}}(B1y_intzX1Y1Z1Z2 = sum0);
}((RES)[0] = ( ( ( Charge * ( pow ( DELTAT , -1 ) * ( ( -1.00000000000000000e+00 * B1y_intzX1Y1Z1Z2 ) + B1z_intyX1Y1Z2Y2 ) ) ) + ( -5.00000000000000000e-01 * ( Mass * ( ( ( 2.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * ( ( -1.00000000000000000e+00 * X1 ) + X2 ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( Tori_X0 , -1 ) * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( ( 1.00000000000000000e+00 + ( pow ( Tori_X0 , -1 ) * ( ( 5.00000000000000000e-01 * ( X1 + X2 ) ) + XO ) ) ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) ) ) * ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( ( 1.00000000000000000e+00 + ( pow ( Tori_X0 , -1 ) * ( ( 5.00000000000000000e-01 * ( X1 + X2 ) ) + XO ) ) ) , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) , -1.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( ( 1.00000000000000000e+00 + ( pow ( Tori_X0 , -1 ) * ( ( 5.00000000000000000e-01 * ( X1 + X2 ) ) + XO ) ) ) , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) ) ) ) ) ) ) + res_0 ));
}{
double B1x_intzX1Y1Z1Z2 ;
{
double sum0 = 0.00000000000000000e+00 ;
{
long xyzz ;
for ((xyzz = 0) ; ( xyzz < 5 ) ; (xyzz = ( xyzz + 1 )))
{
{
long xyzy ;
for ((xyzy = 0) ; ( xyzy < 5 ) ; (xyzy = ( xyzy + 1 )))
{
{
long xyzx ;
for ((xyzx = 0) ; ( xyzx < 5 ) ; (xyzx = ( xyzx + 1 )))
{
int allidx = ( xyzx + ( 5 * ( xyzy + ( 5 * xyzz ) ) ) ) ;
(sum0 = ( sum0 + ( (shB1)[ ( ( allidx * 3 ) + 0 )] * ( (f0_x1)[xyzx] * ( ( (if1_z2)[xyzz] - (if1_z1)[xyzz] ) * (f1_y1)[xyzy] ) ) ) ));
}}}}}}(B1x_intzX1Y1Z1Z2 = sum0);
}((RES)[1] = ( ( ( Charge * ( pow ( DELTAT , -1 ) * B1x_intzX1Y1Z1Z2 ) ) + ( -1.00000000000000000e+00 * ( Mass * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( ( 1.00000000000000000e+00 + ( pow ( Tori_X0 , -1 ) * ( ( 5.00000000000000000e-01 * ( X1 + X2 ) ) + XO ) ) ) , 2 ) * ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) * ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( ( 1.00000000000000000e+00 + ( pow ( Tori_X0 , -1 ) * ( ( 5.00000000000000000e-01 * ( X1 + X2 ) ) + XO ) ) ) , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) , -1.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( ( 1.00000000000000000e+00 + ( pow ( Tori_X0 , -1 ) * ( ( 5.00000000000000000e-01 * ( X1 + X2 ) ) + XO ) ) ) , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) + res_1 ));
}((RES)[2] = ( ( -1.00000000000000000e+00 * ( Mass * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) * ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( ( 1.00000000000000000e+00 + ( pow ( Tori_X0 , -1 ) * ( ( 5.00000000000000000e-01 * ( X1 + X2 ) ) + XO ) ) ) , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) , -1.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( ( 1.00000000000000000e+00 + ( pow ( Tori_X0 , -1 ) * ( ( 5.00000000000000000e-01 * ( X1 + X2 ) ) + XO ) ) ) , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) + res_2 ));
(maxerr = 0);
{
long i ;
for ((i = 0) ; ( i < 3 ) ; (i = ( i + 1 )))
{
double absvalv = fabs ( (RES)[i] ) ;
double absval = absvalv ;
(maxerr = (( ( absval > maxerr ))?(absval):(maxerr)));
}} if ( ( maxerr < Solve_Err ) ){
break;
}else{
0;
}
((JAC)[0] = ( ( 2.50000000000000000e-01 * ( Mass * ( ( ( -2.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * ( ( -1.00000000000000000e+00 * X1 ) + X2 ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( Tori_X0 , -1 ) * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( RPL00 * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) ) ) * ( ( ( 2.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * ( ( -1.00000000000000000e+00 * X1 ) + X2 ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( Tori_X0 , -1 ) * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( RPL00 * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) ) ) * ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) , -2.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) ) ) ) ) ) ) + ( -5.00000000000000000e-01 * ( Mass * ( ( ( 2.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * pow ( DELTAT , -2 ) ) ) + ( -5.00000000000000000e-01 * ( pow ( Tori_X0 , -2 ) * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) ) * ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) , -1.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) ) ) ) ) ) ));
((JAC)[1] = ( ( 5.00000000000000000e-01 * ( Mass * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) * ( ( ( -2.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * ( ( -1.00000000000000000e+00 * X1 ) + X2 ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( Tori_X0 , -1 ) * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( RPL00 * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) ) ) * ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) , -2.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) + ( -1.00000000000000000e+00 * ( Mass * ( pow ( Tori_X0 , -1 ) * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( RPL00 * ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) * ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) , -1.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ));
((JAC)[2] = ( 5.00000000000000000e-01 * ( Mass * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * ( ( ( -2.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * ( ( -1.00000000000000000e+00 * X1 ) + X2 ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( Tori_X0 , -1 ) * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( RPL00 * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) ) ) * ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) * ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) , -2.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ));
{
double B1z_inty_yX1Y1Z2Y2 ;
{
double sum0 = 0.00000000000000000e+00 ;
{
long xyzz ;
for ((xyzz = 0) ; ( xyzz < 5 ) ; (xyzz = ( xyzz + 1 )))
{
{
long xyzy ;
for ((xyzy = 0) ; ( xyzy < 5 ) ; (xyzy = ( xyzy + 1 )))
{
{
long xyzx ;
for ((xyzx = 0) ; ( xyzx < 5 ) ; (xyzx = ( xyzx + 1 )))
{
int allidx = ( xyzx + ( 5 * ( xyzy + ( 5 * xyzz ) ) ) ) ;
(sum0 = ( sum0 + ( (shB1)[ ( ( allidx * 3 ) + 2 )] * ( (f0_z2)[xyzz] * ( (dif1_y2)[xyzy] * (f1_x1)[xyzx] ) ) ) ));
}}}}}}(B1z_inty_yX1Y1Z2Y2 = sum0);
}((JAC)[3] = ( ( Charge * ( pow ( DELTAT , -1 ) * B1z_inty_yX1Y1Z2Y2 ) ) + ( ( -5.00000000000000000e-01 * ( Mass * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) * ( ( ( 2.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * ( ( -1.00000000000000000e+00 * X1 ) + X2 ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( Tori_X0 , -1 ) * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( RPL00 * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) ) ) * ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) , -2.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) + ( 1.00000000000000000e+00 * ( Mass * ( pow ( Tori_X0 , -1 ) * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( RPL00 * ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) * ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) , -1.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ));
}((JAC)[4] = ( ( -1.00000000000000000e+00 * ( Mass * ( pow ( DELTA_Y , 4 ) * ( pow ( DELTAT , -4 ) * ( pow ( RPL00 , 4 ) * ( pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) * ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) , -2.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) + ( -1.00000000000000000e+00 * ( Mass * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) , -1.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ));
((JAC)[5] = ( -1.00000000000000000e+00 * ( Mass * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -4 ) * ( pow ( RPL00 , 2 ) * ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) * ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) * ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) , -2.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ));
{
double B1z_inty_zX1Y1Z2Y2 ;
{
double sum0 = 0.00000000000000000e+00 ;
{
long xyzz ;
for ((xyzz = 0) ; ( xyzz < 5 ) ; (xyzz = ( xyzz + 1 )))
{
{
long xyzy ;
for ((xyzy = 0) ; ( xyzy < 5 ) ; (xyzy = ( xyzy + 1 )))
{
{
long xyzx ;
for ((xyzx = 0) ; ( xyzx < 5 ) ; (xyzx = ( xyzx + 1 )))
{
int allidx = ( xyzx + ( 5 * ( xyzy + ( 5 * xyzz ) ) ) ) ;
(sum0 = ( sum0 + ( (shB1)[ ( ( allidx * 3 ) + 2 )] * ( (df0_z2)[xyzz] * ( ( (if1_y2)[xyzy] - (if1_y1)[xyzy] ) * (f1_x1)[xyzx] ) ) ) ));
}}}}}}(B1z_inty_zX1Y1Z2Y2 = sum0);
} double B1y_intz_zX1Y1Z1Z2 ;
{
double sum0 = 0.00000000000000000e+00 ;
{
long xyzz ;
for ((xyzz = 0) ; ( xyzz < 5 ) ; (xyzz = ( xyzz + 1 )))
{
{
long xyzy ;
for ((xyzy = 0) ; ( xyzy < 5 ) ; (xyzy = ( xyzy + 1 )))
{
{
long xyzx ;
for ((xyzx = 0) ; ( xyzx < 5 ) ; (xyzx = ( xyzx + 1 )))
{
int allidx = ( xyzx + ( 5 * ( xyzy + ( 5 * xyzz ) ) ) ) ;
(sum0 = ( sum0 + ( (shB1)[ ( ( allidx * 3 ) + 1 )] * ( (f0_y1)[xyzy] * ( (dif1_z2)[xyzz] * (f1_x1)[xyzx] ) ) ) ));
}}}}}}(B1y_intz_zX1Y1Z1Z2 = sum0);
}((JAC)[6] = ( ( Charge * ( pow ( DELTAT , -1 ) * ( ( -1.00000000000000000e+00 * B1y_intz_zX1Y1Z1Z2 ) + B1z_inty_zX1Y1Z2Y2 ) ) ) + ( -5.00000000000000000e-01 * ( Mass * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * ( ( ( 2.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * ( ( -1.00000000000000000e+00 * X1 ) + X2 ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( Tori_X0 , -1 ) * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( RPL00 * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) ) ) * ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) * ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) , -2.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ));
}{
double B1x_intz_zX1Y1Z1Z2 ;
{
double sum0 = 0.00000000000000000e+00 ;
{
long xyzz ;
for ((xyzz = 0) ; ( xyzz < 5 ) ; (xyzz = ( xyzz + 1 )))
{
{
long xyzy ;
for ((xyzy = 0) ; ( xyzy < 5 ) ; (xyzy = ( xyzy + 1 )))
{
{
long xyzx ;
for ((xyzx = 0) ; ( xyzx < 5 ) ; (xyzx = ( xyzx + 1 )))
{
int allidx = ( xyzx + ( 5 * ( xyzy + ( 5 * xyzz ) ) ) ) ;
(sum0 = ( sum0 + ( (shB1)[ ( ( allidx * 3 ) + 0 )] * ( (f0_x1)[xyzx] * ( (dif1_z2)[xyzz] * (f1_y1)[xyzy] ) ) ) ));
}}}}}}(B1x_intz_zX1Y1Z1Z2 = sum0);
}((JAC)[7] = ( ( Charge * ( pow ( DELTAT , -1 ) * B1x_intz_zX1Y1Z1Z2 ) ) + ( -1.00000000000000000e+00 * ( Mass * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -4 ) * ( pow ( RPL00 , 2 ) * ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) * ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) * ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) , -2.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ));
}((JAC)[8] = ( ( -1.00000000000000000e+00 * ( Mass * ( pow ( DELTA_Z , 4 ) * ( pow ( DELTAT , -4 ) * ( pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) * ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) , -2.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) + ( -1.00000000000000000e+00 * ( Mass * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) , -1.00000000000000000e+00 ) * sqrt ( ( 1.00000000000000000e+00 + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_X , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * X1 ) + X2 ) , 2 ) ) ) ) + ( ( -1.00000000000000000e+00 * ( pow ( DELTA_Y , 2 ) * ( pow ( DELTAT , -2 ) * ( pow ( RPL00 , 2 ) * pow ( ( ( -1.00000000000000000e+00 * Y1 ) + Y2 ) , 2 ) ) ) ) ) + ( -1.00000000000000000e+00 * ( pow ( DELTA_Z , 2 ) * ( pow ( DELTAT , -2 ) * pow ( ( ( -1.00000000000000000e+00 * Z1 ) + Z2 ) , 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ));
{
double r00 = (JAC)[0] ;
double r10 = (JAC)[3] ;
double r20 = (JAC)[6] ;
double r01 = (JAC)[1] ;
double r11 = (JAC)[4] ;
double r21 = (JAC)[7] ;
double r02 = (JAC)[2] ;
double r12 = (JAC)[5] ;
double r22 = (JAC)[8] ;
double jactmp = ( 1 / ( ( r02 * ( ( -1.00000000000000000e+00 * ( r11 * r20 ) ) + ( r10 * r21 ) ) ) + ( ( -1.00000000000000000e+00 * ( r01 * ( ( -1.00000000000000000e+00 * ( r12 * r20 ) ) + ( r10 * r22 ) ) ) ) + ( r00 * ( ( -1.00000000000000000e+00 * ( r12 * r21 ) ) + ( r11 * r22 ) ) ) ) ) ) ;
((IJAC)[0] = ( jactmp * ( ( -1.00000000000000000e+00 * ( r12 * r21 ) ) + ( r11 * r22 ) ) ));
((IJAC)[3] = ( jactmp * ( ( r12 * r20 ) + ( -1.00000000000000000e+00 * ( r10 * r22 ) ) ) ));
((IJAC)[6] = ( jactmp * ( ( -1.00000000000000000e+00 * ( r11 * r20 ) ) + ( r10 * r21 ) ) ));
((IJAC)[1] = ( jactmp * ( ( r02 * r21 ) + ( -1.00000000000000000e+00 * ( r01 * r22 ) ) ) ));
((IJAC)[4] = ( jactmp * ( ( -1.00000000000000000e+00 * ( r02 * r20 ) ) + ( r00 * r22 ) ) ));
((IJAC)[7] = ( jactmp * ( ( r01 * r20 ) + ( -1.00000000000000000e+00 * ( r00 * r21 ) ) ) ));
((IJAC)[2] = ( jactmp * ( ( -1.00000000000000000e+00 * ( r02 * r11 ) ) + ( r01 * r12 ) ) ));
((IJAC)[5] = ( jactmp * ( ( r02 * r10 ) + ( -1.00000000000000000e+00 * ( r00 * r12 ) ) ) ));
((IJAC)[8] = ( jactmp * ( ( -1.00000000000000000e+00 * ( r01 * r10 ) ) + ( r00 * r11 ) ) ));
}((L_RES)[0] = ( ( (IJAC)[0] * (RES)[0] ) + ( ( (IJAC)[1] * (RES)[1] ) + ( (IJAC)[2] * (RES)[2] ) ) ));
((L_RES)[1] = ( ( (IJAC)[3] * (RES)[0] ) + ( ( (IJAC)[4] * (RES)[1] ) + ( (IJAC)[5] * (RES)[2] ) ) ));
((L_RES)[2] = ( ( (IJAC)[6] * (RES)[0] ) + ( ( (IJAC)[7] * (RES)[1] ) + ( (IJAC)[8] * (RES)[2] ) ) ));
(X2 = ( X2 - (L_RES)[0] ));
(Y2 = ( Y2 - (L_RES)[1] ));
(Z2 = ( Z2 - (L_RES)[2] ));
}}}(( ( local_particle_head + ( g * 6 ) ))[0] = ( X2 + 5.00000000000000000e-01 ));
(( ( local_particle_head + ( g * 6 ) ))[1] = ( Y2 + 5.00000000000000000e-01 ));
(( ( local_particle_head + ( g * 6 ) ))[2] = ( Z2 + 5.00000000000000000e-01 ));
(( ( local_particle_head + ( g * 6 ) ))[3] = ( ( X2 - xx1 ) / Deltat ));
(( ( local_particle_head + ( g * 6 ) ))[4] = ( ( Y2 - xy1 ) / Deltat ));
(( ( local_particle_head + ( g * 6 ) ))[5] = ( ( Z2 - xz1 ) / Deltat ));
{
{
long xyzz ;
for ((xyzz = 0) ; ( xyzz < 5 ) ; (xyzz = ( xyzz + 1 )))
{
{
long xyzy ;
for ((xyzy = 0) ; ( xyzy < 5 ) ; (xyzy = ( xyzy + 1 )))
{
{
long xyzx ;
for ((xyzx = 0) ; ( xyzx < 5 ) ; (xyzx = ( xyzx + 1 )))
{
int allidx = ( xyzx + ( 5 * ( xyzy + ( 5 * xyzz ) ) ) ) ;
double Jx = ( grid_geo_x * ( ( (if1_x2)[xyzx] - (if1_x1)[xyzx] ) * ( (f0_y2)[xyzy] * (f0_z2)[xyzz] ) ) ) ;
((shJ0)[ ( ( 3 * allidx ) + 0 )] = ( (shJ0)[ ( ( 3 * allidx ) + 0 )] + ( ( Tori_X0 / ( Tori_X0 + ( XO + ( Bidx + xyzx ) ) ) ) * ( Charge0 * Jx ) ) ));
double Jy = ( grid_geo_y * ( ( (if1_y2)[xyzy] - (if1_y1)[xyzy] ) * ( (f0_x1)[xyzx] * (f0_z2)[xyzz] ) ) ) ;
((shJ0)[ ( ( 3 * allidx ) + 1 )] = ( (shJ0)[ ( ( 3 * allidx ) + 1 )] + ( ( ( Tori_X0 + ( XO + ( Bidx + xyzx ) ) ) / Tori_X0 ) * ( Charge0 * Jy ) ) ));
double Jz = ( grid_geo_z * ( ( (if1_z2)[xyzz] - (if1_z1)[xyzz] ) * ( (f0_x1)[xyzx] * (f0_y1)[xyzy] ) ) ) ;
((shJ0)[ ( ( 3 * allidx ) + 2 )] = ( (shJ0)[ ( ( 3 * allidx ) + 2 )] + ( ( Tori_X0 / ( Tori_X0 + ( XO + ( Bidx + xyzx ) ) ) ) * ( Charge0 * Jz ) ) ));
}}}}}}}}}{
long inner_step ;
for ((inner_step = 0) ; ( inner_step < numcp ) ; (inner_step = ( inner_step + 1 )))
{
{
long inner_g ;
for ((inner_g = 0) ; ( inner_g < 6 ) ; (inner_g = ( inner_g + 1 )))
{
(( ( particle_head_general + ( iba_tmp * 6 ) ))[ ( ( inner_step * 6 ) + inner_g )] = ( ( local_particle_head + ( 0 * 6 ) ))[ ( ( inner_step * 6 ) + inner_g )]);
}}}}0;
}}{
long xyzz ;
for ((xyzz = 0) ; ( xyzz < 5 ) ; (xyzz = ( xyzz + 1 )))
{
{
long xyzy ;
for ((xyzy = 0) ; ( xyzy < 5 ) ; (xyzy = ( xyzy + 1 )))
{
{
long xyzx ;
for ((xyzx = 0) ; ( xyzx < 1 ) ; (xyzx = ( xyzx + 1 )))
{
int total_idx = ( 3 * ( 5 * ( xyzy + ( 5 * xyzz ) ) ) ) ;
{
long Gll_P9918 ;
for ((Gll_P9918 = 0) ; ( Gll_P9918 < ( 3 * 5 ) ) ; (Gll_P9918 = ( Gll_P9918 + 1 )))
{
(( ( FoutJ + ( ( num_ele * ( idy * ( ( XLEN + ( 2 * ovlp ) ) * ( ( YLEN + ( 2 * ovlp ) ) * ( ZLEN + ( 2 * ovlp ) ) ) ) ) ) + ( 0 + ( num_ele * ( ( Bidx + ovlp ) + ( ( XLEN + ( 2 * ovlp ) ) * ( ( ( xyzy + Bidy ) + ovlp ) + ( ( YLEN + ( 2 * ovlp ) ) * ( ( xyzz + Bidz ) + ovlp ) ) ) ) ) ) ) ) ))[Gll_P9918] = ( ( shJ0 + total_idx ))[Gll_P9918]);
}}}}}}}}
}else{
0;
}
}(cur_frame_num = ( cur_frame_num + -1 ));
goto * ( (call_stack_pointer)[cur_frame_num] ); beg_prog:
0;
{
long l1 ;
for ((l1 = 0) ; ( l1 < cu_load ) ; (l1 = ( l1 + 1 )))
{
(load0 = 1);
(use_local_particle_position = 1);
(particle_head_general = ( cu_cache + ( ( idy * ( 6 * cu_cache_length ) ) + ( l1 * 6 ) ) ));
(new_load = load0);
(call_sort = 0);
(global_idy_tmp = idy);
call_stack_pointer[cur_frame_num]=&&LAB_TMP3;
(cur_frame_num = ( cur_frame_num + 1 ));
goto core_fun;
LAB_TMP3:
0;
}}{
long allgid ;
for ((allgid = 0) ; ( allgid < numgrid ) ; (allgid = ( allgid + 1 )))
{
int new_load_tmp = (xyzw)[ ( 4 * ( ( idy * numgrid ) + allgid ) )] ;
long c_gid = allgid ;
(cr_allgid = allgid);
(use_local_particle_position = 0);
(mdx = ( c_gid % XLEN ));
(mdy = ( ( c_gid / XLEN ) % YLEN ));
(mdz = ( c_gid / ( XLEN * YLEN ) ));
(load0 = new_load_tmp);
(call_sort = 0);
(particle_head_general = ( inoutput + ( grid_base_offset + ( 6 * ( allgid * grid_cache_len ) ) ) ));
(new_load = load0);
(global_idy_tmp = idy);
call_stack_pointer[cur_frame_num]=&&LAB_TMP4;
(cur_frame_num = ( cur_frame_num + 1 ));
goto core_fun;
LAB_TMP4:
0;
if ( ( load0 != new_load ) ){
((xyzw)[ ( 4 * ( ( idy * numgrid ) + allgid ) )] = new_load);
}else{
0;
}
}}}
|
the_stack_data/72197.c | //
// Created by zing on 5/29/2020.
//
#include <ctype.h>
#include <assert.h>
int main(){
assert(isascii('0'));
assert(isascii('b'));
assert(__isascii('['));
assert((((125) & ~0x7f) == 0));
assert((((127 ) & ~0x7f) == 0));
assert(!(((128 ) & ~0x7f) == 0));
return 0;
} |
the_stack_data/218893383.c | #include <stdio.h>
int main(){
printf("Hello world!\n");
return 0;
}
|
the_stack_data/156394553.c | #include<stdio.h>
int main(void){
float a, b, c, i;
printf("Digite tres numeros: ",a);
scanf("%f",&a);
printf("Digite tres numeros: ",b);
scanf("%f",&b);
printf("Digite tres numeros: ",c);
scanf("%f",&c);
//logica
if(a<=0 || b <= 0 || c <= 0){
for(i=0;i<45;i++){;
printf("*");
i=i+1;;
}
printf("\nERROR! Numero invalido.\n");
for(i=0;i<45;i++){;
printf("*");
i=i+1;;
}
}
else if(a==b && a==c && b==c){
printf("E um triangulo equilatero");
}
else if(a==b || b==c || c==a){
printf("E um triangulo isosceles");
}
else if(a!=b && b!=c && c!=a){
printf("E um triangulo escaleno");
}
return 0;
}
|
the_stack_data/54559.c | #include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main()
{
char firstName[32];
char lastName[32];
memset(firstName, 0, sizeof(firstName));
memset(lastName, 0, sizeof(lastName));
scanf("%s %s", firstName, lastName);
printf("%s, %s\n", lastName, firstName);
return 0;
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.