content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def first(id_): """The first service of the station.""" return jsonify( [ (n.removeprefix("_"), t) for n, t in r.zrange(f"Station:_{id_}:first", 0, -1, withscores=True) ] )
5de7ef49c1deb0edea3f3d4ddcc30da8c4ae2d3a
9,900
def sample(df, n, shape): """ randomly sample patch images from DataFrame Parameters ---------- df : pd.DataFrame DataFrame containing name of image files n : int number of patches to extract shape : list shape of patches to extract Returns ------- images : (n, n_channels, shape[0], shape[1], ...) ndarray input patches labels : (n, shape[0], shape[1], ...) ndarray label patches """ N = len(df) assert N >= n, "n should be smaller than or equal to " + str(N) indices = np.random.choice(N, n, replace=False) image_files = df["image"][indices] label_files = df["label"][indices] images = [] labels = [] for image_file, label_file in zip(image_files, label_files): image = load_nifti(image_file) label = load_nifti(label_file).astype(np.int32) mask = np.int32(label > 0) slices = [slice(len_ / 2, -len_ / 2) for len_ in shape] mask[slices] *= 2 indices = np.where(mask > 1.5) i = np.random.choice(len(indices[0])) slices = [ slice(index[i] - len_ / 2, index[i] + len_ / 2) for index, len_ in zip(indices, shape)] image_patch = image[slices] label_patch = label[slices] image_patch = image_patch.transpose(3, 0, 1, 2) images.append(image_patch) labels.append(label_patch) images = np.array(images) labels = np.array(labels) return images, labels
a0f655ad71a7ef47c71ecc23f45365f721bc2085
9,901
def bitsizeof_varint32(value: int) -> int: """ Gets bit size of variable 32-bit signed integer value. :param value: Value to use for bit size calculation. :returns: Bit size of the value. :raises PythonRuntimeException: Throws if given value is out of range for varint32 type. """ return _bitsizeof_varnum(abs(value), VARINT32_MAX_VALUES, "varint32")
16fd942d23b6ec26a300119e56fbbad6f37a203d
9,902
import requests import json def slack(channel, message, subject=''): """ Sends a notification to meerkat slack server. Channel is '#deploy' only if in live deployment, otherwise sent privately to the developer via slackbot. Args: channel (str): Required. The channel or username to which the message should be posted. message (str): Required. The message to post to slack. subject (str): Optional. Placed in bold and seperated by a pipe. return "sent" """ # Assemble the message text string text = str(message) if subject: text = "*_{}_* | {}".format(subject, message) # Send the slack message message = {'text': text, 'channel': channel, 'username': 'Meerkat'} url = ('https://hooks.slack.com/services/T050E3XPP/' 'B0G7UKUCA/EtXIFB3CRGyey2L7x5WbT32B') headers = {'Content-Type': 'application/json'} r = requests.post(url, data=json.dumps(message), headers=headers) # Return the slack response return r
274111901fd3b7545c8e2128ce3e98716eca8406
9,903
def compute_similarity(img_one,img_two): """Performs image resizing just to compute the cosine similarity faster Input: Two images Output: Cosine Similarity """ x = cv2.resize(img_one, dsize=(112, 112), interpolation=cv2.INTER_CUBIC) y = cv2.resize(img_two, dsize=(112, 112), interpolation=cv2.INTER_CUBIC) x = x.ravel().reshape(-1, 1) y = y.ravel().reshape(-1, 1) if x.shape[0] != y.shape[0]: dist = 0 else: dist = 1 - distance.cosine(x, y) return dist
24d02db8c685480572fae2ab02f9648e3798fdf3
9,904
def get_results_from_firebase(firebase): """ The function to download all results from firebase Parameters ---------- firebase : pyrebase firebase object initialized firebase app with admin authentication Returns ------- results : dict The results in a dictionary with the following format: { "task_id" { "user1_id": { "data": {...} }, "user2_id": { "data": {...} }, } } """ fb_db = firebase.database() results = fb_db.child("results").get().val() return results
ca06c24367d778d4b601eab6fa31009fe6ecb372
9,905
def mtci_vi(imgData, wave, mask=0, bands=[-1,-1,-1]): """ Function that calculates the MERIS Terrestrial Chlorophyll Index. This functions uses wavelengths 753.75, 708.75, and 681.25 nm. The closest bands to these values will be used. Citation: Dash, J. and Curran, P.J. 2004. The MERIS terrestrial chlorophyll index, International Journal of Remote Sensing, 25(23), 5403–5413. INPUTS: 1) imgData: an array of hyperspectral data either as 3D [n_row x n_col x n_band] or 2D [n_row x n_band] 2) wave: an array of wavelengths in nanometers that correspond to the n_bands in imgData 3) mask: OPTIONAL - a binary array (same size as imgData) that designates which pixels should be included in analysis. Pixels with 1 are used, while pixels with 0 are not. 4) bands: OPTIONAL - if the user wants to define the bands used in the function provide the band index (not in nm) for each wavelength in this order [681.25, 708.75, 753.75 nm]. OUTPUTS: 1) vi: the calculated spectral index value for each pixel either returned as [n_row x n_col x 1] or [n_row x 1] 02/2020 - Susan Meerdink """ # Determine the bands used in function if len(bands) == 3: if bands[0] == -1: idx_681 = (np.abs(wave - 681.25)).argmin() else: idx_681 = bands[0] if bands[1] == -1: idx_708 = (np.abs(wave - 708.75)).argmin() else: idx_708 = bands[1] if bands[2] == -1: idx_753 = (np.abs(wave - 753.75)).argmin() else: idx_753 = bands[2] print('MTCI calls for bands 681.25, 708.75, and 753.75 nm. Using bands ' + str(wave[idx_681]) +', '+ str(wave[idx_708])+', '+ str(wave[idx_753])) else: raise Exception('Not enough band indexes are provided by user.') # 3D data, hyperspectral image, [n_row x n_col x n_band] if imgData.ndim > 2: data_753 = np.reshape(imgData[:,:,idx_753],[-1,1]) data_708 = np.reshape(imgData[:,:,idx_708],[-1,1]) data_681 = np.reshape(imgData[:,:,idx_681],[-1,1]) # 2D data, flattened hyperspectral data, [n_row x n_band] else: data_753 = imgData[:,idx_753] data_708 = imgData[:,idx_708] data_681 = imgData[:,idx_681] # Calculate MTCI index = (data_753 - data_708)/(data_708 - data_681) # If data was 3D, reshape the index value back into 3D shape if imgData.ndim > 2: index = np.reshape(index,[imgData.shape[0],imgData.shape[1]]) if isinstance(mask, int) is False: idx_x, idx_y = np.where(mask==0) index[idx_x,idx_y] = 0 return index
b1f88d2041d8cf9fa645316b47db472e3626f1f8
9,906
def GetSourceFile(file, sourcepath): """Return a relative file if it is embedded in a path.""" for root in sourcepath: if file.find(root) == 0: prefix_length = len(root) if not root.endswith('/'): prefix_length += 1 relative_file = file[prefix_length:] return relative_file return None
b241497131c3595f78ebf9d1481c8d9d50887e5a
9,907
import os import subprocess def trace_cmd_installed(): """Return true if trace-cmd is installed, false otherwise""" with open(os.devnull) as devnull: try: subprocess.check_call(["trace-cmd", "options"], stdout=devnull) except OSError: return False return True
7135c0b2ebfa46b69df5b692178e6b569d3014dd
9,908
import configparser import sys def getmessage(msg_type) : """ Renvoie le message qui doit être affiché """ cfg = configparser.ConfigParser() cfg.read(clt_path) if not msg_type in cfg.options('Messages') : sys.stderr.write("{} is not a valide type message : {}".format(msg_type, cfg.options('Messages'))) sys.stderr.flush() return cfg.get('Messages', msg_type)
5e751d2f1a5df998f409f07f191f759e935a8b9d
9,909
def refine_gene_list(adata, layer, gene_list, threshold, return_corrs=False): """Refines a list of genes by removing those that don't correlate well with the average expression of those genes Parameters ---------- adata: an anndata object. layer: `str` or None (default: `None`) The layer of data to use for calculating correlation. If None, use adata.X. gene_list: list of gene names threshold: threshold on correlation coefficient used to discard genes (expression of each gene is compared to the bulk expression of the group and any gene with a correlation coefficient less than this is discarded) return_corrs: whether to return the correlations along with the gene names (default: False) Returns ------- Refined list of genes that are well correlated with the average expression trend """ gene_list, corrs = group_corr(adata, layer, gene_list) if (return_corrs): return corrs[corrs >= threshold] else: return gene_list[corrs >= threshold]
0b26b5265bf62a6f771bb762cd3c497fa628c5c3
9,910
def shape_to_coords(value, precision=6, wkt=False, is_point=False): """ Convert a shape (a shapely object or well-known text) to x and y coordinates suitable for use in Bokeh's `MultiPolygons` glyph. """ if is_point: value = Point(*value).buffer(0.1 ** precision).envelope x_coords = list() y_coords = list() if wkt: value = loads(value) if not hasattr(value, '__len__'): value = [value] for v in value: x_dict = dict() y_dict = dict() if not hasattr(v, 'exterior'): v = v.buffer(0) x_dict['exterior'] = [round(x, precision) for x in v.exterior.coords.xy[0]] x_dict['holes'] = [[round(y, precision) for y in x.coords.xy[0]] for x in v.interiors] y_dict['exterior'] = [round(x, precision) for x in v.exterior.coords.xy[1]] y_dict['holes'] = [[round(y, precision) for y in x.coords.xy[1]] for x in v.interiors] x_coords.append(x_dict) y_coords.append(y_dict) return x_coords, y_coords
1b585f6bb9831db63b2e0e8c52b6fb29ba0d9ab9
9,911
import argparse def get_args(): """ Supports the command-line arguments listed below. """ parser = argparse.ArgumentParser( description='Test Runner script') parser.add_argument('-c', '--controller', type=str, required=True, help='Controller host name') parser.add_argument('-s', '--server', type=str, required=True, help='Cluster Server hostname') parser.add_argument('-e', '--export', type=str, help='NFS Export Name', default="/") parser.add_argument('-n', '--nodes', type=int, help='Number of active nodes', default=0) parser.add_argument('-d', '--domains', type=int, help='Number of fs domains', default=0) parser.add_argument('-m', '--mtype', type=str, help='Mount Type', choices=['nfs3', 'nfs4', 'nfs4.1', 'smb1', 'smb2', 'smb3'], default="nfs3") parser.add_argument('--start_vip', type=str, help="Start VIP address range") parser.add_argument('--end_vip', type=str, help="End VIP address range") parser.add_argument('-l', '--locking', type=str, help='Locking Type', choices=['native', 'application', 'off'], default="native") args = parser.parse_args() return args
8bb488e026c13ddc008ea2877b1d0ae9f904f970
9,912
def max_union(map_list): """ Element-wise maximum of the union of a list of HealSparseMaps. Parameters ---------- map_list : `list` of `HealSparseMap` Input list of maps to compute the maximum of Returns ------- result : `HealSparseMap` Element-wise maximum of maps """ return _apply_operation(map_list, np.fmax, 0, union=True, int_only=False)
169fef50486e22468f8942f6968630e8fdef6648
9,913
def getDtypes(attributes, forecastHorizon): """ Auxillary function to generate dictionary of datatypes for data queried from dynamo. Parameters ---------- attributes : list, Attributes queried from dynamo. forecastHorizon : integer, Number of forecast horizons which have been queried. Returns ------- attributeDtypes : dict, Dictionary to pass to dataframe to specify dtypes of all data queried. """ dtypes = { "apparentTemperature": np.float64, "cloudCover": np.float64, "dewPoint": np.float64, "humidity": np.float64, "precipIntensity": np.float64, "precipProbability": np.float64, "pressure": np.float64, "temperature": np.float64, "uvIndex": np.float64, "visibility": np.float64, "windBearing": np.float64, "windGust": np.float64, "windSpeed": np.float64, "carbonFactor": np.float64, "carbonIndex": str } attributeDtypes = dict() attributeDtypes["unixTimestamp"] = np.int32 for attribute in attributes: dtype = dtypes[attribute] for x in range(forecastHorizon+1): attributeDtypes[attribute + "_" + str(x)] = dtype return attributeDtypes
4974b7fe8107b36556da41173508c908785ddf5f
9,914
def cazy_synonym_dict(): """Create a dictionary of accepted synonms for CAZy classes.""" cazy_dict = { "Glycoside Hydrolases (GHs)": ["Glycoside-Hydrolases", "Glycoside-Hydrolases", "Glycoside_Hydrolases", "GlycosideHydrolases", "GLYCOSIDE-HYDROLASES", "GLYCOSIDE-HYDROLASES", "GLYCOSIDE_HYDROLASES", "GLYCOSIDEHYDROLASES", "glycoside-hydrolases", "glycoside-hydrolases", "glycoside_hydrolases", "glycosidehydrolases", "GH", "gh"], "GlycosylTransferases (GTs)": ["Glycosyl-Transferases", "GlycosylTransferases", "Glycosyl_Transferases", "Glycosyl Transferases", "GLYCOSYL-TRANSFERASES", "GLYCOSYLTRANSFERASES", "GLYCOSYL_TRANSFERASES", "GLYCOSYL TRANSFERASES", "glycosyl-transferases", "glycosyltransferases", "glycosyl_transferases", "glycosyl transferases", "GT", "gt"], "Polysaccharide Lyases (PLs)": ["Polysaccharide Lyases", "Polysaccharide-Lyases", "Polysaccharide_Lyases", "PolysaccharideLyases", "POLYSACCHARIDE LYASES", "POLYSACCHARIDE-LYASES", "POLYSACCHARIDE_LYASES", "POLYSACCHARIDELYASES", "polysaccharide lyases", "polysaccharide-lyases", "polysaccharide_lyases", "polysaccharidelyases", "PL", "pl"], "Carbohydrate Esterases (CEs)": ["Carbohydrate Esterases", "Carbohydrate-Esterases", "Carbohydrate_Esterases", "CarbohydrateEsterases", "CARBOHYDRATE ESTERASES", "CARBOHYDRATE-ESTERASES", "CARBOHYDRATE_ESTERASES", "CARBOHYDRATEESTERASES", "carbohydrate esterases", "carbohydrate-esterases", "carbohydrate_esterases", "carbohydrateesterases", "CE", "ce"], "Auxiliary Activities (AAs)": ["Auxiliary Activities", "Auxiliary-Activities", "Auxiliary_Activities", "AuxiliaryActivities", "AUXILIARY ACTIVITIES", "AUXILIARY-ACTIVITIES", "AUXILIARY_ACTIVITIES", "AUXILIARYACTIVITIES", "auxiliary activities", "auxiliary-activities", "auxiliary_activities", "auxiliaryactivities", "AA", "aa"], "Carbohydrate-Binding Modules (CBMs)": ["Carbohydrate-Binding-Modules", "Carbohydrate_Binding_Modules", "Carbohydrate_Binding Modules", "CarbohydrateBindingModules", "CARBOHYDRATE-BINDING-MODULES", "CARBOHYDRATE_BINDING_MODULES", "CARBOHYDRATE_BINDING MODULES", "CARBOHYDRATEBINDINGMODULES", "carbohydrate-binding-modules", "carbohydrate_binding_modules", "carbohydrate_binding modules", "carbohydratebindingmodules", "CBMs", "CBM", "cbms", "cbm"] } return cazy_dict
0d635075901cc3e6ba7b432c68e5be3f7d2c34d6
9,915
def new_oauth2ProviderLimited(pyramid_request): """this is used to build a new auth""" validatorHooks = CustomValidator_Hooks(pyramid_request) provider = oauth2_provider.OAuth2Provider( pyramid_request, validator_api_hooks=validatorHooks, validator_class=CustomValidator, server_class=WebApplicationServer, ) return provider
ef15f43dfa0549431931210d788fd8ccde611634
9,916
def rand_color(red=(92, 220), green=(92, 220), blue=(92, 220)): """ Random red, green, blue with the option to limit the ranges. The ranges are tuples 0..255. """ r = rand_byte(red) g = rand_byte(green) b = rand_byte(blue) return f"#{r:02x}{g:02x}{b:02x}"
43244b5912585a4496abbd6868f97a368fd785f0
9,917
import base64 def tile_to_html(tile, fig_size=None): """ Provide HTML string representation of Tile image.""" b64_img_html = '<img src="data:image/png;base64,{}" />' png_bits = tile_to_png(tile, fig_size=fig_size) b64_png = base64.b64encode(png_bits).decode('utf-8').replace('\n', '') return b64_img_html.format(b64_png)
9e22304c9ee44a850e17930088b0fc81b390fded
9,918
def generate_buchwald_hartwig_rxns(df): """ Converts the entries in the excel files from Sandfort et al. to reaction SMILES. """ df = df.copy() fwd_template = '[F,Cl,Br,I]-[c;H0;D3;+0:1](:[c,n:2]):[c,n:3].[NH2;D1;+0:4]-[c:5]>>[c,n:2]:[c;H0;D3;+0:1](:[c,n:3])-[NH;D2;+0:4]-[c:5]' methylaniline = 'Cc1ccc(N)cc1' pd_catalyst = Chem.MolToSmiles(Chem.MolFromSmiles('O=S(=O)(O[Pd]1~[NH2]C2C=CC=CC=2C2C=CC=CC1=2)C(F)(F)F')) methylaniline_mol = Chem.MolFromSmiles(methylaniline) rxn = rdChemReactions.ReactionFromSmarts(fwd_template) products = [] for i, row in df.iterrows(): reacts = (Chem.MolFromSmiles(row['Aryl halide']), methylaniline_mol) rxn_products = rxn.RunReactants(reacts) rxn_products_smiles = set([Chem.MolToSmiles(mol[0]) for mol in rxn_products]) assert len(rxn_products_smiles) == 1 products.append(list(rxn_products_smiles)[0]) df['product'] = products rxns = [] can_smiles_dict = {} for i, row in df.iterrows(): aryl_halide = canonicalize_with_dict(row['Aryl halide'], can_smiles_dict) can_smiles_dict[row['Aryl halide']] = aryl_halide ligand = canonicalize_with_dict(row['Ligand'], can_smiles_dict) can_smiles_dict[row['Ligand']] = ligand base = canonicalize_with_dict(row['Base'], can_smiles_dict) can_smiles_dict[row['Base']] = base additive = canonicalize_with_dict(row['Additive'], can_smiles_dict) can_smiles_dict[row['Additive']] = additive reactants = f"{aryl_halide}.{methylaniline}.{pd_catalyst}.{ligand}.{base}.{additive}" rxns.append(f"{reactants}>>{row['product']}") return rxns
80351743c2f651965735f38b514d7af017fc25ce
9,919
from niworkflows.engine.workflows import LiterateWorkflow as Workflow from niworkflows.interfaces.fixes import FixHeaderApplyTransforms as ApplyTransforms from niworkflows.interfaces.itk import MultiApplyTransforms from niworkflows.interfaces.utility import KeySelect from niworkflows.interfaces.nibabel import GenerateSamplingReference from niworkflows.interfaces.nilearn import Merge from niworkflows.utils.spaces import format_reference def init_bold_std_trans_wf( mem_gb, omp_nthreads, spaces, name="bold_std_trans_wf", use_compression=True, use_fieldwarp=False, ): """ Sample fMRI into standard space with a single-step resampling of the original BOLD series. .. important:: This workflow provides two outputnodes. One output node (with name ``poutputnode``) will be parameterized in a Nipype sense (see `Nipype iterables <https://miykael.github.io/nipype_tutorial/notebooks/basic_iteration.html>`__), and a second node (``outputnode``) will collapse the parameterized outputs into synchronous lists of the output fields listed below. Workflow Graph .. workflow:: :graph2use: colored :simple_form: yes from niworkflows.utils.spaces import SpatialReferences from fprodents.workflows.bold.resampling import init_bold_std_trans_wf wf = init_bold_std_trans_wf( mem_gb=3, omp_nthreads=1, spaces=SpatialReferences( spaces=['MNI152Lin', ('MNIPediatricAsym', {'cohort': '6'})], checkpoint=True), ) Parameters ---------- mem_gb : :obj:`float` Size of BOLD file in GB omp_nthreads : :obj:`int` Maximum number of threads an individual process may use spaces : :py:class:`~niworkflows.utils.spaces.SpatialReferences` A container for storing, organizing, and parsing spatial normalizations. Composed of :py:class:`~niworkflows.utils.spaces.Reference` objects representing spatial references. Each ``Reference`` contains a space, which is a string of either TemplateFlow template IDs (e.g., ``MNI152Lin``, ``MNI152NLin6Asym``, ``MNIPediatricAsym``), nonstandard references (e.g., ``T1w`` or ``anat``, ``sbref``, ``run``, etc.), or a custom template located in the TemplateFlow root directory. Each ``Reference`` may also contain a spec, which is a dictionary with template specifications (e.g., a specification of ``{'resolution': 2}`` would lead to resampling on a 2mm resolution of the space). name : :obj:`str` Name of workflow (default: ``bold_std_trans_wf``) use_compression : :obj:`bool` Save registered BOLD series as ``.nii.gz`` use_fieldwarp : :obj:`bool` Include SDC warp in single-shot transform from BOLD to MNI Inputs ------ anat2std_xfm List of anatomical-to-standard space transforms generated during spatial normalization. bold_mask Skull-stripping mask of reference image bold_split Individual 3D volumes, not motion corrected fieldwarp a :abbr:`DFM (displacements field map)` in ITK format hmc_xforms List of affine transforms aligning each volume to ``ref_image`` in ITK format bold2anat Affine transform from ``ref_bold_brain`` to T1 space (ITK format) name_source BOLD series NIfTI file Used to recover original information lost during processing templates List of templates that were applied as targets during spatial normalization. Outputs ------- bold_std BOLD series, resampled to template space bold_std_ref Reference, contrast-enhanced summary of the BOLD series, resampled to template space bold_mask_std BOLD series mask in template space template Template identifiers synchronized correspondingly to previously described outputs. """ workflow = Workflow(name=name) output_references = spaces.cached.get_spaces(nonstandard=False, dim=(3,)) std_vol_references = [ (s.fullname, s.spec) for s in spaces.references if s.standard and s.dim == 3 ] if len(output_references) == 1: workflow.__desc__ = """\ The BOLD time-series were resampled into standard space, generating a *preprocessed BOLD run in {tpl} space*. """.format( tpl=output_references[0] ) elif len(output_references) > 1: workflow.__desc__ = """\ The BOLD time-series were resampled into several standard spaces, correspondingly generating the following *spatially-normalized, preprocessed BOLD runs*: {tpl}. """.format( tpl=", ".join(output_references) ) inputnode = pe.Node( niu.IdentityInterface( fields=[ "anat2std_xfm", "bold_mask", "bold_split", "fieldwarp", "hmc_xforms", "bold2anat", "name_source", "templates", ] ), name="inputnode", ) iterablesource = pe.Node( niu.IdentityInterface(fields=["std_target"]), name="iterablesource" ) # Generate conversions for every template+spec at the input iterablesource.iterables = [("std_target", std_vol_references)] split_target = pe.Node( niu.Function( function=_split_spec, input_names=["in_target"], output_names=["space", "template", "spec"], ), run_without_submitting=True, name="split_target", ) select_std = pe.Node( KeySelect(fields=["anat2std_xfm"]), name="select_std", run_without_submitting=True, ) select_tpl = pe.Node( niu.Function(function=_select_template), name="select_tpl", run_without_submitting=True, ) gen_ref = pe.Node( GenerateSamplingReference(), name="gen_ref", mem_gb=0.3 ) # 256x256x256 * 64 / 8 ~ 150MB) mask_std_tfm = pe.Node( ApplyTransforms(interpolation="MultiLabel"), name="mask_std_tfm", mem_gb=1 ) ref_std_tfm = pe.Node( ApplyTransforms(interpolation="LanczosWindowedSinc"), name="ref_std_tfm", mem_gb=1 ) # Write corrected file in the designated output dir mask_merge_tfms = pe.Node( niu.Merge(2), name="mask_merge_tfms", run_without_submitting=True, mem_gb=DEFAULT_MEMORY_MIN_GB, ) nxforms = 3 + use_fieldwarp merge_xforms = pe.Node( niu.Merge(nxforms), name="merge_xforms", run_without_submitting=True, mem_gb=DEFAULT_MEMORY_MIN_GB, ) workflow.connect([(inputnode, merge_xforms, [("hmc_xforms", "in%d" % nxforms)])]) if use_fieldwarp: workflow.connect([(inputnode, merge_xforms, [("fieldwarp", "in3")])]) bold_to_std_transform = pe.Node( MultiApplyTransforms( interpolation="LanczosWindowedSinc", float=True, copy_dtype=True ), name="bold_to_std_transform", mem_gb=mem_gb * 3 * omp_nthreads, n_procs=omp_nthreads, ) merge = pe.Node(Merge(compress=use_compression), name="merge", mem_gb=mem_gb * 3) # fmt:off workflow.connect([ (iterablesource, split_target, [('std_target', 'in_target')]), (iterablesource, select_tpl, [('std_target', 'template')]), (inputnode, select_std, [('anat2std_xfm', 'anat2std_xfm'), ('templates', 'keys')]), (inputnode, mask_std_tfm, [('bold_mask', 'input_image')]), (inputnode, ref_std_tfm, [('bold_mask', 'input_image')]), (inputnode, gen_ref, [(('bold_split', _first), 'moving_image')]), (inputnode, merge_xforms, [ (('bold2anat', _aslist), 'in2')]), (inputnode, merge, [('name_source', 'header_source')]), (inputnode, mask_merge_tfms, [(('bold2anat', _aslist), 'in2')]), (inputnode, bold_to_std_transform, [('bold_split', 'input_image')]), (split_target, select_std, [('space', 'key')]), (select_std, merge_xforms, [('anat2std_xfm', 'in1')]), (select_std, mask_merge_tfms, [('anat2std_xfm', 'in1')]), (split_target, gen_ref, [(('spec', _is_native), 'keep_native')]), (select_tpl, gen_ref, [('out', 'fixed_image')]), (merge_xforms, bold_to_std_transform, [('out', 'transforms')]), (gen_ref, bold_to_std_transform, [('out_file', 'reference_image')]), (gen_ref, mask_std_tfm, [('out_file', 'reference_image')]), (mask_merge_tfms, mask_std_tfm, [('out', 'transforms')]), (gen_ref, ref_std_tfm, [('out_file', 'reference_image')]), (mask_merge_tfms, ref_std_tfm, [('out', 'transforms')]), (bold_to_std_transform, merge, [('out_files', 'in_files')]), ]) # fmt:on output_names = [ "bold_mask_std", "bold_std", "bold_std_ref", "spatial_reference", "template", ] poutputnode = pe.Node( niu.IdentityInterface(fields=output_names), name="poutputnode" ) # fmt:off workflow.connect([ # Connecting outputnode (iterablesource, poutputnode, [ (('std_target', format_reference), 'spatial_reference')]), (merge, poutputnode, [('out_file', 'bold_std')]), (ref_std_tfm, poutputnode, [('output_image', 'bold_std_ref')]), (mask_std_tfm, poutputnode, [('output_image', 'bold_mask_std')]), (select_std, poutputnode, [('key', 'template')]), ]) # fmt:on # Connect parametric outputs to a Join outputnode outputnode = pe.JoinNode( niu.IdentityInterface(fields=output_names), name="outputnode", joinsource="iterablesource", ) # fmt:off workflow.connect([ (poutputnode, outputnode, [(f, f) for f in output_names]), ]) # fmt:on return workflow
5953ae62d40002283b41b4289fc45b96b50e319c
9,920
def _get_indent(node): """Determine the indentation level of ``node``.""" indent = None while node: indent = find_first(node, TOKEN.INDENT) if indent is not None: indent = indent.value break node = node.parent return indent
ed54eb8c1ea227534af0a3bd8eda9ab9089755d7
9,921
def distancesarr(image_centroid, object_centroids): """gets the distances between image and objects""" distances = [] j = 0 for row in object_centroids: distance = centroid_distance(image_centroid, object_centroids, j) distances.append(distance) j +=1 return distances
7abae0c58a2cc672b789d4c8620878b7e3b46375
9,922
def obs_agent_has_neighbour(agent_id: int, factory: Factory) -> np.ndarray: """Does this agent have a neighbouring node?""" agent: Table = factory.tables[agent_id] return np.asarray( [ agent.node.has_neighbour(Direction.up), agent.node.has_neighbour(Direction.right), agent.node.has_neighbour(Direction.down), agent.node.has_neighbour(Direction.left), ] )
d91b4d7eabcac6ed71149ad9220c2594e5054e36
9,923
def P_split_prob(b): """Returns the probability of b according to the P_split() distribution. """ """n = b.length if n <= 2: p = 1.0 else: k = 1 # si el arbol es binario y n > 2 seguro que tiene que ser splittable. #while k < n and not b.splittable(k): while not b.splittable(k): k += 1 p = (1.0 / float(n)) * gP_split_prob(b, 0, k) * gP_split_prob(b, k, n) return p""" return gP_split_prob(b, b.start_index, b.start_index+b.length)
94577a96e926686107a154aa82d55ceef6b9ab24
9,924
def t(): """Or time(). Returns the number of seconds elapsed since the cartridge was run.""" global begin return py_time.time() - begin
1b43767629c9585fcd29c1293ee043a189332ed7
9,925
import sys def data_provider(data_provider_function, verbose=True): """PHPUnit style data provider decorator""" def test_decorator(test_function): def new_test_function(self, *args): i = 0 if verbose: print("\nTest class : " + get_class_that_defined_method(test_function)) print("Test function: " + test_function.__name__) for data_set in data_provider_function(): try: if verbose: print(" #" + str(i).rjust(2, '0') + ": ", end='') test_function(self, *data_set) i += 1 except AssertionError: if verbose: print("Failed with data set #%d: " % i, end='', file=sys.stderr) print(data_set, file=sys.stderr) raise else: if verbose: print("passed") if verbose: print("----------------------------\n") return new_test_function return test_decorator
a291b715c18afd9af877dc8d7efa35a48a2c2365
9,926
import argparse def main(): """Console script for ceda_intake.""" parser = argparse.ArgumentParser() parser.add_argument('--test', dest='test_mode', action='store_true', help='Create small catalog in test mode') parser.add_argument('-p', '--project', type=str, required=True, help='Project catalog to generate') args = parser.parse_args() make_intake_catalog(args.project, test_mode=args.test_mode) return 0
fe98c133afbdf75fce18e2d21e60d8b3a414ee0f
9,927
from typing import Any def convert_none( key: str, attr_type: bool, attr: dict[str, Any] = {}, cdata: bool = False ) -> str: """Converts a null value into an XML element""" key, attr = make_valid_xml_name(key, attr) if attr_type: attr["type"] = get_xml_type(None) attrstring = make_attrstring(attr) return f"<{key}{attrstring}></{key}>"
c04efd6ed52cb092d6987f627b7222668da32dfd
9,928
def is_title(ngram, factor = 2.0): """ Define the probability of a ngram to be a title. Factor is for the confidence coex max. """ confidence = 1 to_test = [n for n in ngram if n not in stop_words] for item in to_test: if item.istitle(): confidence += factor / len(to_test) # print item, confidence return confidence
678959cdafc966d05b5ef213b0727799f20a8e0f
9,929
import os import base64 def img_to_b64(img_path): """显示一副图片""" assert os.path.isfile(img_path) with open(img_path, 'rb') as f: img = f.read() b64 = base64.b64encode(img) return b64
6ab67dc503c7bf077fb8772b1c5708eb10efe7e7
9,930
def ul(microliters): """Unicode function name for creating microliter volumes""" if isinstance(microliters,str) and ':' in microliters: return Unit(microliters).to('microliter') return Unit(microliters,"microliter")
4d5d489191166a76e02cdc0211d52bec45cd65e1
9,931
def read_glh(filename): """ Read glitch parameters. Parameters ---------- filename : str Name of file to read Returns ------- glhParams : array Array of median glitch parameters glhCov : array Covariance matrix """ # Extract glitch parameters glhFit = np.genfromtxt(filename, skip_header=3) glhParams = np.zeros(3) glhParams[0] = np.median(glhFit[:, 8]) glhParams[1] = np.median(glhFit[:, 4]) glhParams[2] = np.median(glhFit[:, 5]) # Compute covariance matrix tmpFit = np.zeros((len(glhFit[:, 0]), 3)) tmpFit[:, 0] = glhFit[:, 8] tmpFit[:, 1] = glhFit[:, 4] tmpFit[:, 2] = glhFit[:, 5] glhCov = MinCovDet().fit(tmpFit).covariance_ # iglhCov = np.linalg.pinv(glhCov, rcond=1e-8) return glhParams, glhCov
6948e0f5571c6d5f7a62dad1fb136cec48e476ae
9,932
def update_user_group(user_group_id, name, **options): """ Update a user group :param user_group_id: The id of the user group to update :type user_group_id: str :param name: Name of the user group :type name: str, optional :param options: Generic advanced options dict, see online documentation :type options: dict, optional :return: The updated group :rtype: dict """ uri = [USER_GROUPS_SUB_PATH, user_group_id] params = {"name": name} return _call_account_api("put", uri, params, **options)
20784b935675c459b7dc258c210aedd86d7b4fb9
9,933
def longitudinal_kmeans(X, n_clusters=5, var_reg=1e-3, fixed_clusters=True, random_state=None): """Longitudinal K-Means Algorithm (Genolini and Falissard, 2010)""" n_time_steps, n_nodes, n_features = X.shape # vectorize latent positions across time X_vec = np.moveaxis(X, 0, -1).reshape(n_nodes, n_time_steps * n_features) # perform normal k-means on the vectorized features kmeans = KMeans(n_clusters=n_clusters, random_state=random_state).fit(X_vec) # this method assigns a single cluster to each point across time. labels = kmeans.labels_.reshape(-1, 1) labels = np.hstack([labels] * n_time_steps).T # un-vectorize centers, shape (n_time_steps, n_centers, n_features) centers_vec = kmeans.cluster_centers_ if fixed_clusters: centers = np.empty((n_clusters, n_features)) for k in range(n_clusters): muk = centers_vec[k].reshape(-1, n_time_steps).T centers[k] = muk.mean(axis=0) # average position overtime else: centers = np.empty((n_time_steps, n_clusters, n_features)) for k in range(n_clusters): centers[:, k] = centers_vec[k].reshape(-1, n_time_steps).T # calculate cluster variances (assumed spherical and constant over-time) variances = np.zeros(n_clusters, dtype=np.float64) for k in range(n_clusters): for t in range(n_time_steps): variances[k] += np.var(X[t][labels[t] == k], axis=0).mean() variances[k] /= n_time_steps # clusters with a single data point will have zero-variance. # assign a fudge factor in this case variances[variances == 0.] = var_reg return centers, variances, labels
a76581a7784480fa90afa9ab9e080a09ce5662f4
9,934
import decimal def do_payment( checkout_data, # Dict[str, str] parsed_checkout, # Dict[str, str] enable_itn, # type: bool ): # type: (...) -> Dict[str, str] """ Common test helper: do a payment, and assert results. This takes a checkout's data and page parse (for session info and assertions). This will enable and verify ITN processing if `enable_itn` is true. Return the payment confirmation page's parse. """ def _post_payment(): # type: () -> requests.Response return post_sandbox_payment( parsed_checkout['session_type'], parsed_checkout['session_id'], parsed_checkout['payment_method'], ) if enable_itn: require_itn_configured() with itn_handler(ITN_HOST, ITN_PORT) as itn_queue: # type: Queue response = _post_payment() itn_data = itn_queue.get(timeout=2) else: response = _post_payment() parsed_payment = parse_payfast_page(response) assert { 'payment_summary': parsed_checkout['payment_summary'], 'notice': 'Your payment was successful\n' } == parsed_payment if enable_itn: # Check the ITN result. # Expect whitespace-stripped versions of the checkout data. expected = {name: value.strip(api.CHECKOUT_SIGNATURE_IGNORED_WHITESPACE) for (name, value) in checkout_data.items()} expected_amount_gross = '{:.2f}'.format(decimal.Decimal(checkout_data['amount'].strip())) expected_signature = api.itn_signature(itn_data) assert { 'm_payment_id': expected.get('m_payment_id', ''), 'pf_payment_id': itn_data.get('pf_payment_id', 'MISSING'), 'payment_status': 'COMPLETE', 'item_name': expected.get('item_name', 'MISSING'), 'item_description': expected.get('item_description', ''), 'amount_gross': expected_amount_gross, 'amount_fee': itn_data.get('amount_fee', 'MISSING'), 'amount_net': itn_data.get('amount_net', 'MISSING'), 'custom_str1': expected.get('custom_str1', ''), 'custom_str2': expected.get('custom_str2', ''), 'custom_str3': expected.get('custom_str3', ''), 'custom_str4': expected.get('custom_str4', ''), 'custom_str5': expected.get('custom_str5', ''), 'custom_int1': expected.get('custom_int1', ''), 'custom_int2': expected.get('custom_int2', ''), 'custom_int3': expected.get('custom_int3', ''), 'custom_int4': expected.get('custom_int4', ''), 'custom_int5': expected.get('custom_int5', ''), # The sandbox seems to fix these names, rather than using the checkout submission data. 'name_first': 'Test', 'name_last': 'User 01', 'email_address': expected.get('email_address', '[email protected]'), 'merchant_id': '10000100', 'signature': expected_signature, } == itn_data return parsed_payment
f69383f779ce68ef28ced79d794479a4e3a4dff9
9,935
from sphinx_astropy import __version__ as sphinx_astropy_version # noqa def ensure_sphinx_astropy_installed(): """ Make sure that sphinx-astropy is available. This returns the available version of sphinx-astropy as well as any paths that should be added to sys.path for sphinx-astropy to be available. """ # We've split out the Sphinx part of astropy-helpers into sphinx-astropy # but we want it to be auto-installed seamlessly for anyone using # build_docs. We check if it's already installed, and if not, we install # it to a local .eggs directory and add the eggs to the path (these # have to each be added to the path, we can't add them by simply adding # .eggs to the path) sys_path_inserts = [] sphinx_astropy_version = None try: except ImportError: raise ImportError("sphinx-astropy needs to be installed to build " "the documentation.") return sphinx_astropy_version, sys_path_inserts
f20911b11beaf3483d1f2f829c63d654cb0557ef
9,936
def SPEED_OF_LIGHT(): """ The `SPEED_OF_LIGHT` function returns the speed of light in vacuum (unit is ms-1) according to the IERS numerical standards (2010). """ return 299792458.0
5f0b6e6fb81018983d541a6492eb2c5aac258ff6
9,937
from typing import Optional import abc import math from typing import Tuple def odd_factory(NATIVE_TYPE): # pylint: disable=invalid-name """ Produces a Factory for OddTensors with underlying tf.dtype NATIVE_TYPE. """ assert NATIVE_TYPE in (tf.int32, tf.int64) class Factory: """ Represents a native integer data type. It is currently not considered for general use, but only to support subprotocols of SecureNN. One value of the native dtype is removed in order to obtain an odd modulus. More concretely, this data type wraps either tf.int32 or tf.int64 but removes -1, which is instead mapped to 0. """ def tensor(self, value): """ Wrap `value` in this data type, performing type conversion as needed. Internal use should consider explicit construction as an optimization that avoids redundant correction. """ if isinstance(value, tf.Tensor): if value.dtype is not NATIVE_TYPE: value = tf.cast(value, dtype=NATIVE_TYPE) # no assumptions are made about the tensor here and hence we need to # apply our mapping for invalid values value = _map_minusone_to_zero(value, NATIVE_TYPE) return OddDenseTensor(value) raise TypeError("Don't know how to handle {}".format(type(value))) def constant(self, value): raise NotImplementedError() def variable(self, initial_value): raise NotImplementedError() def placeholder(self, shape): raise NotImplementedError() @property def modulus(self): if NATIVE_TYPE is tf.int32: return 2**32 - 1 if NATIVE_TYPE is tf.int64: return 2**64 - 1 raise NotImplementedError(("Incorrect native type ", "{}.".format(NATIVE_TYPE))) @property def native_type(self): return NATIVE_TYPE def sample_uniform(self, shape, minval: Optional[int] = None, maxval: Optional[int] = None): """Sample a tensor from a uniform distribution.""" assert minval is None assert maxval is None if secure_random.supports_seeded_randomness(): seed = secure_random.secure_seed() return OddUniformTensor(shape=shape, seed=seed) if secure_random.supports_secure_randomness(): sampler = secure_random.random_uniform else: sampler = tf.random_uniform value = _construct_value_from_sampler(sampler=sampler, shape=shape) return OddDenseTensor(value) def sample_bounded(self, shape, bitlength: int): raise NotImplementedError() def stack(self, xs: list, axis: int = 0): raise NotImplementedError() def concat(self, xs: list, axis: int): raise NotImplementedError() master_factory = Factory() class OddTensor(AbstractTensor): """ Base class for the concrete odd tensors types. Implements basic functionality needed by SecureNN subprotocols from a few abstract properties implemented by concrete types below. """ @property def factory(self): return master_factory @property @abc.abstractproperty def value(self) -> tf.Tensor: pass @property @abc.abstractproperty def shape(self): pass def __repr__(self) -> str: return '{}(shape={}, NATIVE_TYPE={})'.format( type(self), self.shape, NATIVE_TYPE, ) def __getitem__(self, slc): return OddDenseTensor(self.value[slc]) def __add__(self, other): return self.add(other) def __sub__(self, other): return self.sub(other) def add(self, other): """Add other to this tensor.""" x, y = _lift(self, other) bitlength = math.ceil(math.log2(master_factory.modulus)) with tf.name_scope('add'): # the below avoids redundant seed expansion; can be removed once # we have a (per-device) caching mechanism in place x_value = x.value y_value = y.value z = x_value + y_value with tf.name_scope('correct_wrap'): # we want to compute whether we wrapped around, ie `pos(x) + pos(y) >= m - 1`, # for correction purposes which, since `m - 1 == 1` for signed integers, can be # rewritten as: # -> `pos(x) >= m - 1 - pos(y)` # -> `m - 1 - pos(y) - 1 < pos(x)` # -> `-1 - pos(y) - 1 < pos(x)` # -> `-2 - pos(y) < pos(x)` wrapped_around = _lessthan_as_unsigned(-2 - y_value, x_value, bitlength) z += wrapped_around return OddDenseTensor(z) def sub(self, other): """Subtract other from this tensor.""" x, y = _lift(self, other) bitlength = math.ceil(math.log2(master_factory.modulus)) with tf.name_scope('sub'): # the below avoids redundant seed expansion; can be removed once # we have a (per-device) caching mechanism in place x_value = x.value y_value = y.value z = x_value - y_value with tf.name_scope('correct-wrap'): # we want to compute whether we wrapped around, ie `pos(x) - pos(y) < 0`, # for correction purposes which can be rewritten as # -> `pos(x) < pos(y)` wrapped_around = _lessthan_as_unsigned(x_value, y_value, bitlength) z -= wrapped_around return OddDenseTensor(z) def bits(self, factory=None): if factory is None: return OddDenseTensor(binarize(self.value)) return factory.tensor(binarize(self.value)) def cast(self, factory): if factory is master_factory: return self return factory.tensor(self.value) class OddDenseTensor(OddTensor): """ Represents a tensor with explicit values, as opposed to OddUniformTensor with implicit values. Internal use only and assume that invalid values have already been mapped. """ def __init__(self, value): assert isinstance(value, tf.Tensor) self._value = value @property def value(self) -> tf.Tensor: return self._value @property def shape(self): return self._value.shape class OddUniformTensor(OddTensor): """ Represents a tensor with uniform values defined implicitly through a seed. Internal use only. """ def __init__(self, shape, seed): self._seed = seed self._shape = shape @property def shape(self): return self._shape @property def value(self) -> tf.Tensor: # TODO(Morten) result should be stored in a (per-device) cache with tf.name_scope('expand-seed'): sampler = partial(secure_random.seeded_random_uniform, seed=self._seed) value = _construct_value_from_sampler(sampler=sampler, shape=self._shape) return value def _lift(x, y) -> Tuple[OddTensor, OddTensor]: """ Attempts to lift x and y to compatible OddTensors for further processing. """ if isinstance(x, OddTensor) and isinstance(y, OddTensor): assert x.factory == y.factory, "Incompatible types: {} and {}".format( x.factory, y.factory) return x, y if isinstance(x, OddTensor): if isinstance(y, int): return x, x.factory.tensor(np.array([y])) if isinstance(y, OddTensor): if isinstance(x, int): return y.factory.tensor(np.array([x])), y raise TypeError("Don't know how to lift {} {}".format(type(x), type(y))) def _construct_value_from_sampler(sampler, shape): """Sample from sampler and correct for the modified dtype.""" # to get uniform distribution over [min, max] without -1 we sample # [min+1, max] and shift negative values down by one unshifted_value = sampler(shape=shape, dtype=NATIVE_TYPE, minval=NATIVE_TYPE.min + 1, maxval=NATIVE_TYPE.max) value = tf.where(unshifted_value < 0, unshifted_value + tf.ones(shape=unshifted_value.shape, dtype=unshifted_value.dtype), unshifted_value) return value def _lessthan_as_unsigned(x, y, bitlength): """ Performs comparison `x < y` on signed integers *as if* they were unsigned, e.g. `1 < -1`. Taken from Section 2-12, page 23, of [Hacker's Delight](https://www.hackersdelight.org/). """ with tf.name_scope('unsigned-compare'): not_x = tf.bitwise.invert(x) lhs = tf.bitwise.bitwise_and(not_x, y) rhs = tf.bitwise.bitwise_and(tf.bitwise.bitwise_or(not_x, y), x - y) z = tf.bitwise.right_shift(tf.bitwise.bitwise_or(lhs, rhs), bitlength - 1) # turn 0/-1 into 0/1 before returning return tf.bitwise.bitwise_and(z, tf.ones(shape=z.shape, dtype=z.dtype)) def _map_minusone_to_zero(value, native_type): """ Maps all -1 values to zero. """ zeros = tf.zeros(shape=value.shape, dtype=native_type) return tf.where(value == -1, zeros, value) return master_factory
c8e55e3d5ad16568dbdadca9430d890bb4299e5e
9,938
def filter_by_is_awesome(resources): """The resources being that is_awesome Arguments: resources {[type]} -- A list of resources """ return [resource for resource in resources if resource.is_awesome]
46717a93e75dfed53bba03b5b7f8a5e8b8315876
9,939
def topograph_image(image, step): """ Takes in NxMxC numpy matrix and a step size and a delta returns NxMxC numpy matrix with contours in each C cell """ step_gen = _step_range_gen(step) new_img = np.array(image, copy=True) """step_gen ~ (255, 245, 235, 225,...) """ def myfunc(color): for tops, bots in window(step_gen, 2): if (color <= tops) and (color > bots): return tops if color > tops: break return 0 topograph = np.vectorize(myfunc) return new_img if step == 1 else topograph(new_img)
c3a340c422bb16de83b132506e975fecf21a335c
9,940
def _etag(cur): """Get current history ETag during request processing.""" h_from, h_until = web.ctx.ermrest_history_snaprange cur.execute(("SELECT _ermrest.tstzencode( GREATEST( %(h_until)s::timestamptz, (" + _RANGE_AMENDVER_SQL + ")) );") % { 'h_from': sql_literal(h_from), 'h_until': sql_literal(h_until), }) return cur.fetchone()[0]
bd04dca4ef140003c0df867fa258beb5c60c77dd
9,941
import requests import time def send_request(url, method='GET', headers=None, param_get=None, data=None): """实际发送请求到目标服务器, 对于重定向, 原样返回给用户 被request_remote_site_and_parse()调用""" final_hostname = urlsplit(url).netloc dbgprint('FinalRequestUrl', url, 'FinalHostname', final_hostname) # Only external in-zone domains are allowed (SSRF check layer 2) if final_hostname not in allowed_domains_set and not developer_temporary_disable_ssrf_prevention: raise ConnectionAbortedError('Trying to access an OUT-OF-ZONE domain(SSRF Layer 2):', final_hostname) # set zero data to None instead of b'' if not data: data = None prepped_req = requests.Request( method, url, headers=headers, params=param_get, data=data, ).prepare() # get session if enable_connection_keep_alive: _session = connection_pool.get_session(final_hostname) else: _session = requests.Session() # Send real requests parse.time["req_start_time"] = time() r = _session.send( prepped_req, proxies=requests_proxies, allow_redirects=False, stream=enable_stream_content_transfer, verify=not developer_do_not_verify_ssl, ) # remote request time parse.time["req_time_header"] = time() - parse.time["req_start_time"] dbgprint('RequestTime:', parse.time["req_time_header"], v=4) # Some debug output # print(r.request.headers, r.headers) if verbose_level >= 3: dbgprint(r.request.method, "FinalSentToRemoteRequestUrl:", r.url, "\nRem Resp Stat: ", r.status_code) dbgprint("RemoteRequestHeaders: ", r.request.headers) if data: dbgprint('RemoteRequestRawData: ', r.request.body) dbgprint("RemoteResponseHeaders: ", r.headers) return r
b7ab08d5157964d03089c4db1a64b4f6461b3fe9
9,942
def MakeListOfPoints(charts, bot, test_name, buildername, buildnumber, supplemental_columns): """Constructs a list of point dictionaries to send. The format output by this function is the original format for sending data to the perf dashboard. Args: charts: A dictionary of chart names to chart data, as generated by the log processor classes (see process_log_utils.GraphingLogProcessor). bot: A string which comes from perf_id, e.g. linux-release. test_name: A test suite name, e.g. sunspider. buildername: Builder name (for stdio links). buildnumber: Build number (for stdio links). supplemental_columns: A dictionary of extra data to send with a point. Returns: A list of dictionaries in the format accepted by the perf dashboard. Each dictionary has the keys "master", "bot", "test", "value", "revision". The full details of this format are described at http://goo.gl/TcJliv. """ results = [] # The master name used for the dashboard is the CamelCase name returned by # GetActiveMaster(), and not the canonical master name with dots. master = slave_utils.GetActiveMaster() for chart_name, chart_data in sorted(charts.items()): point_id, revision_columns = _RevisionNumberColumns(chart_data, prefix='r_') for trace_name, trace_values in sorted(chart_data['traces'].items()): is_important = trace_name in chart_data.get('important', []) test_path = _TestPath(test_name, chart_name, trace_name) result = { 'master': master, 'bot': bot, 'test': test_path, 'revision': point_id, 'supplemental_columns': {} } # Add the supplemental_columns values that were passed in after the # calculated revision column values so that these can be overwritten. result['supplemental_columns'].update(revision_columns) result['supplemental_columns'].update( _GetStdioUriColumn(test_name, buildername, buildnumber)) result['supplemental_columns'].update(supplemental_columns) result['value'] = trace_values[0] result['error'] = trace_values[1] # Add other properties to this result dictionary if available. if chart_data.get('units'): result['units'] = chart_data['units'] if is_important: result['important'] = True results.append(result) return results
fe903667b0e3a4c381dbcbc3205ba87b2d0ef26b
9,943
import csv from io import StringIO def parse_csv(string): """ Rough port of wq/pandas.js to Python. Useful for validating CSV output generated by Django REST Pandas. """ if not string.startswith(','): data = [] for row in csv.DictReader(StringIO(string)): for key, val in row.items(): try: row[key] = float(val) except ValueError: pass data.append(row) return [{ 'data': data }] reader = csv.reader(StringIO(string)) val_cols = None val_start = None id_cols = None for row in reader: if row[0] == '' and not val_cols: val_start = row.count('') val_cols = row[val_start:] col_meta = [{} for v in val_cols] elif row[-1] != '' and val_cols and not id_cols: key = row[0] for i, meta in enumerate(row[val_start:]): col_meta[i].update(**{key: meta}) elif row[-1] == '' and not id_cols: id_cols = row[:row.index('')] meta_index = {} meta_i = 0 datasets = [] for i, ds1 in enumerate(col_meta): if i in meta_index: continue meta_index[i] = meta_i meta_i += 1 datasets.append(ds1) if i < len(col_meta): for j, ds2 in enumerate(col_meta[i + 1:]): if ds1 == ds2: meta_index[i + j + 1] = i for d in datasets: d['data'] = [] elif val_cols and id_cols: ids = { key: val for key, val in zip(id_cols, row[:len(id_cols)]) } records = {} for i, val in enumerate(row[len(id_cols):]): mi = meta_index[i] if mi not in records: data = ids.copy() else: data = records[mi] try: val = float(val) except ValueError: pass if val != '': data[val_cols[i]] = val records[mi] = data for mi, data in records.items(): datasets[mi]['data'].append(data) return datasets
bdf32e3ff1a2d63c568200e75d5f694ef5f49ce9
9,944
def list_system_configurations(): """ List all the system configuration parameters Returns: .. code-block:: python [ { "ParameterName": "ParameterValue" }, ... ] Raises: 500 - ChaliceViewError """ try: print("Listing all the system configuration parameters") system_table = ddb_resource.Table(SYSTEM_TABLE_NAME) response = system_table.scan( ConsistentRead=True ) configs = response["Items"] while "LastEvaluatedKey" in response: response = system_table.scan( ExclusiveStartKey=response["LastEvaluatedKey"], ConsistentRead=True ) configs.extend(response["Items"]) except Exception as e: print(f"Unable to list the system configuration parameters: {str(e)}") raise ChaliceViewError(f"Unable to list the system configuration parameters: {str(e)}") else: return replace_decimals(configs)
5989cc6f1bd79e5f7bd4889883dccb7fa9bf1bd4
9,945
def add_dbnsfp_to_vds(hail_context, vds, genome_version, root="va.dbnsfp", subset=None, verbose=True): """Add dbNSFP fields to the VDS""" if genome_version == "37": dbnsfp_schema = DBNSFP_SCHEMA_37 elif genome_version == "38": dbnsfp_schema = DBNSFP_SCHEMA_38 else: raise ValueError("Invalid genome_version: " + str(genome_version)) expr = convert_vds_schema_string_to_annotate_variants_expr( root=root, other_source_fields=dbnsfp_schema, other_source_root="vds", ) if verbose: print(expr) dbnsfp_vds = read_dbnsfp_vds(hail_context, genome_version, subset=subset) return vds.annotate_variants_vds(dbnsfp_vds, expr=expr)
f3c652c77858b9e859bd47e48002a1de3d865fa0
9,946
import bisect def look_for_time_position(target, source, begin_pos=0): """ Given a time stamp, find its position in time series. If target does NOT exist in source, then return the value of the smallest time point that is larger than the given target. Parameters ------------- target : DateTime obj A datetime obj to look for source : list, type=DateTime A list of DateTime objects to search from begin_pos : int, default=0 The start position to search. Default to search from the beginning. Returns --------------- position : int The location """ # TODO: make use of the unused parameter - begin_pos for i, t in enumerate(source[begin_pos:]): if t >= target: ans = i + begin_pos # return ans insert_index = bisect.bisect(source, target, lo=begin_pos) if insert_index >= len(source): # print("Error (look_for_time_position): the time is out of scope.") return -1 return insert_index """ # TODO: use binary search to speed up for i, t in enumerate(source): if t >= target: return i print("Error (look_for_time_position): the time is out of scope.") return -1 """
352e2e2aa0081926894867e0e6b67a5452685323
9,947
import torch def get_wav2vec_preds_for_wav( path_to_wav: str, model, processor, device: torch.device, bs: int = 8, loading_step: float = 10, extra_step: float = 1, ) -> str: """ Gets binary predictions for wav file with a wav2vec 2.0 model Args: path_to_wav (str): absolute path to wav file model: a wav2vec 2.0 model processor: a wav2vec 2.0 processor device: a torch.device object bs (int, optional): Batch size. Defaults to 8. loading_step (float, optional): length of fixed segments. Defaults to 10. extra_step (float, optional): size of extra step to load before and after. Defaults to 1. Returns: str: binary predictions """ def my_collate_fn(batch: list[np.array]) -> list[np.array]: return [example for example in batch] dataset = TokenPredDataset(path_to_wav, extra_step, loading_step) dataloader = DataLoader( dataset, batch_size=bs, shuffle=False, collate_fn=my_collate_fn, num_workers=min(cpu_count() // 2, 4), drop_last=False, ) # for the extra frames loaded before and after each segment correction = int(extra_step / dataset.wav2vec_frame_length) all_preds = [] i = 0 with torch.no_grad(): for wav_batch in iter(dataloader): tokenized_audio = processor( wav_batch, return_tensors="pt", padding="longest", sampling_rate=16000 ) input_values = tokenized_audio.input_values.to(device) attention_mask = tokenized_audio.attention_mask.to(device) logits = model(input_values, attention_mask=attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) for j, preds in enumerate(predicted_ids.tolist()): true_length = ( attention_mask[j].cpu().numpy().sum() / dataset.sr / dataset.wav2vec_frame_length ) # apply corrections if i == 0: preds = preds[:-correction] true_length -= correction elif i == len(dataset) - 1: preds = preds[correction:] true_length -= correction else: preds = preds[correction:-correction] true_length -= 2 * correction # remove padding all_preds.extend(preds[: int(true_length)]) i += 1 tokens_preds = processor.tokenizer.convert_ids_to_tokens(all_preds) predictions = "".join(["0" if char == "<pad>" else "1" for char in tokens_preds]) return predictions
2f9abc97559d1853631dcdf79599190714f618c8
9,948
import jinja2 import sys def get_template(parsed_args): """Initialize jinja2 and return the right template""" env = jinja2.Environment( loader=jinja2.PackageLoader(__name__, TEMPLATES_PATH), trim_blocks=True, lstrip_blocks=True, ) # Make the missingvalue() function available in the template so that the # template fails to render if we don't provide the values it needs. env.globals["missingvalue"] = missingvalue env.filters["format_hex"] = format_hex if "arty" in parsed_args.board or "vc707" in parsed_args.board or "vcu118" in parsed_args.board: template = env.get_template("fpga.cfg") elif "hifive" in parsed_args.board: template = env.get_template("hifive.cfg") else: print("Board %s is not supported!" % parsed_args.board, file=sys.stderr) sys.exit(1) return template
2fb7c683cd660a92b542bdfdb973c91c0dafbb10
9,949
import logging def get_node_cmd(config): """ Get the node CLI call for Least Cost Xmission Parameters ---------- config : reVX.config.least_cost_xmission.LeastCostXmissionConfig Least Cost Xmission config object. Returns ------- cmd : str CLI call to submit to SLURM execution. """ args = ['-n {}'.format(SLURM.s(config.name)), 'local', '-cost {}'.format(SLURM.s(config.cost_fpath)), '-feats {}'.format(SLURM.s(config.features_fpath)), '-cap {}'.format(SLURM.s(config.capacity_class)), '-res {}'.format(SLURM.s(config.resolution)), '-xcfg {}'.format(SLURM.s(config.xmission_config)), '-gids {}'.format(SLURM.s(config.sc_point_gids)), '-nn {}'.format(SLURM.s(config.nn_sinks)), '-buffer {}'.format(SLURM.s(config.clipping_buffer)), '-bmult {}'.format(SLURM.s(config.barrier_mult)), '-mw {}'.format(SLURM.s(config.execution_control.max_workers)), '-o {}'.format(SLURM.s(config.dirout)), '-log {}'.format(SLURM.s(config.logdir)), ] if config.log_level == logging.DEBUG: args.append('-v') cmd = ('python -m reVX.least_cost_xmission.least_cost_xmission_cli {}' .format(' '.join(args))) logger.debug('Submitting the following cli call:\n\t{}'.format(cmd)) return cmd
b81fb7d6c06122122a8a4ec1cc2b5bc4724948a6
9,950
def header_lines(filename): """Read the first five lines of a file and return them as a list of strings.""" with open(filename, mode='rb') as f: return [f.readline().decode().rstrip() for _ in range(5)]
35056152c1566ea2d14452308f00d6903b6e4dff
9,951
import sys from meerschaum.utils.debug import dprint def deactivate_venv( venv: str = 'mrsm', color : bool = True, debug: bool = False ) -> bool: """ Remove a virtual environment from sys.path (if it's been activated). """ global active_venvs if venv is None: return True if debug: dprint(f"Deactivating virtual environment '{venv}'...", color=color) if venv in active_venvs: _locks['active_venvs'].acquire() active_venvs.remove(venv) _locks['active_venvs'].release() if sys.path is None: return False target = venv_target_path(venv, debug=debug) _locks['sys.path'].acquire() if str(target) in sys.path: sys.path.remove(str(target)) _locks['sys.path'].release() if debug: dprint(f'sys.path: {sys.path}', color=color) return True
6938497201d2e8f78b64b709a1e7b9191048e1c7
9,952
async def load_last_cotd(chat_id: int): """Load the time when the user has last received his card of the day. Args: chat_id (int): user chat_id """ QUERY = "SELECT last_cotd FROM users WHERE id = %(id)s" async with aconn.cursor() as cur: await cur.execute(QUERY, {"id": chat_id}) record = await cur.fetchone() return record[0] if record else None
2e2aabc18a014e9f96fee91f6e8d85b875edcf2a
9,953
from pathlib import Path import json import torch def load_model(targets, model_name='umxhq', device='cpu'): """ target model path can be either <target>.pth, or <target>-sha256.pth (as used on torchub) """ model_path = Path(model_name).expanduser() if not model_path.exists(): raise NotImplementedError else: # load model from disk with open(Path(model_path, str(len(targets)) + '.json'), 'r') as stream: results = json.load(stream) target_model_path = Path(model_path) / "model.pth" state = torch.load( target_model_path, map_location=device ) max_bin = utils.bandwidth_to_max_bin( 44100, results['args']['nfft'], results['args']['bandwidth'] ) unmix = model.OpenUnmixSingle( n_fft=results['args']['nfft'], n_hop=results['args']['nhop'], nb_channels=results['args']['nb_channels'], hidden_size=results['args']['hidden_size'], max_bin=max_bin ) unmix.load_state_dict(state) unmix.stft.center = True unmix.eval() unmix.to(device) print('loadmodel function done') return unmix
8fdafa6ac28ed2277337dc1f3ded295668963c8a
9,954
from typing import Callable from typing import Optional from typing import Tuple from typing import List import scipy def model_gradient_descent( f: Callable[..., float], x0: np.ndarray, *, args=(), rate: float = 1e-1, sample_radius: float = 1e-1, n_sample_points: int = 100, n_sample_points_ratio: Optional[float] = None, rate_decay_exponent: float = 0.0, stability_constant: float = 0.0, sample_radius_decay_exponent: float = 0.0, tol: float = 1e-8, known_values: Optional[Tuple[List[np.ndarray], List[float]]] = None, max_iterations: Optional[int] = None, max_evaluations: Optional[int] = None) -> scipy.optimize.OptimizeResult: """Model gradient descent algorithm for black-box optimization. The idea of this algorithm is to perform gradient descent, but estimate the gradient using a surrogate model instead of, say, by finite-differencing. The surrogate model is a least-squared quadratic fit to points sampled from the vicinity of the current iterate. This algorithm works well when you have an initial guess which is in the convex neighborhood of a local optimum and you want to converge to that local optimum. It's meant to be used when the function is stochastic. Args: f: The function to minimize. x0: An initial guess. args: Additional arguments to pass to the function. rate: The learning rate for the gradient descent. sample_radius: The radius around the current iterate to sample points from to build the quadratic model. n_sample_points: The number of points to sample in each iteration. n_sample_points_ratio: This specifies the number of points to sample in each iteration as a coefficient of the number of points required to exactly determine a quadratic model. The number of sample points will be this coefficient times (n+1)(n+2)/2, rounded up, where n is the number of parameters. Setting this overrides n_sample_points. rate_decay_exponent: Controls decay of learning rate. In each iteration, the learning rate is changed to the base learning rate divided by (i + 1 + S)**a, where S is the stability constant and a is the rate decay exponent (this parameter). stability_constant: Affects decay of learning rate. In each iteration, the learning rate is changed to the base learning rate divided by (i + 1 + S)**a, where S is the stability constant (this parameter) and a is the rate decay exponent. sample_radius_decay_exponent: Controls decay of sample radius. tol: The algorithm terminates when the difference between the current iterate and the next suggested iterate is smaller than this value. known_values: Any prior known values of the objective function. This is given as a tuple where the first element is a list of points and the second element is a list of the function values at those points. max_iterations: The maximum number of iterations to allow before termination. max_evaluations: The maximum number of function evaluations to allow before termination. Returns: Scipy OptimizeResult """ if known_values is not None: known_xs, known_ys = known_values known_xs = [np.copy(x) for x in known_xs] known_ys = [np.copy(y) for y in known_ys] else: known_xs, known_ys = [], [] if max_iterations is None: max_iterations = np.inf if max_evaluations is None: max_evaluations = np.inf n = len(x0) if n_sample_points_ratio is not None: n_sample_points = int( np.ceil(n_sample_points_ratio * (n + 1) * (n + 2) / 2)) _, f = wrap_function(f, args) res = OptimizeResult() current_x = np.copy(x0) res.x_iters = [] # initializes as lists res.xs_iters = [] res.ys_iters = [] res.func_vals = [] res.model_vals = [None] res.fun = 0 total_evals = 0 num_iter = 0 converged = False message = None while num_iter < max_iterations: current_sample_radius = (sample_radius / (num_iter + 1)**sample_radius_decay_exponent) # Determine points to evaluate # in ball around current point new_xs = [np.copy(current_x)] + [ current_x + _random_point_in_ball(n, current_sample_radius) for _ in range(n_sample_points) ] if total_evals + len(new_xs) > max_evaluations: message = 'Reached maximum number of evaluations.' break # Evaluate points res.xs_iters.append(new_xs) new_ys = [f(x) for x in new_xs] res.ys_iters.append(new_ys) total_evals += len(new_ys) known_xs.extend(new_xs) known_ys.extend(new_ys) # Save function value res.func_vals.append(new_ys[0]) res.x_iters.append(np.copy(current_x)) res.fun = res.func_vals[-1] # Determine points to use to build model model_xs = [] model_ys = [] for x, y in zip(known_xs, known_ys): if np.linalg.norm(x - current_x) < current_sample_radius: model_xs.append(x) model_ys.append(y) # Build and solve model model_gradient, model = _get_least_squares_model_gradient( model_xs, model_ys, current_x) # calculate the gradient and update the current point gradient_norm = np.linalg.norm(model_gradient) decayed_rate = ( rate / (num_iter + 1 + stability_constant)**rate_decay_exponent) # Convergence criteria if decayed_rate * gradient_norm < tol: converged = True message = 'Optimization converged successfully.' break # Update current_x -= decayed_rate * model_gradient res.model_vals.append( model.predict([-decayed_rate * model_gradient])[0]) num_iter += 1 if converged: final_val = res.func_vals[-1] else: final_val = f(current_x) res.func_vals.append(final_val) if message is None: message = 'Reached maximum number of iterations.' res.x_iters.append(current_x) total_evals += 1 res.x = current_x res.fun = final_val res.nit = num_iter res.nfev = total_evals res.message = message return res
d5bd32f21cdc871175c3f4c1601c1da240866e14
9,955
def index(): """Show the index.""" return render_template( "invenio_archivematica/index.html", module_name=_('Invenio-Archivematica'))
9c5e62bc29466bd4eae463d1dcd71c0d880fc5f8
9,956
from sys import path def get_functions_and_macros_from_doc(pmdk_path): """ Returns names of functions and macros in a list based on names of files from the doc directory. """ path_to_functions_and_macros = path.join(pmdk_path, 'doc') functions_and_macros_from_doc = [] for _, _, files in walk(path_to_functions_and_macros): for f in files: if not f.endswith('.3'): continue # Files with extension '.3' have the same name as functions and # macros of PMDK library. 'pmemobj_action' is excluded, because # it is not a name of the function. if f.startswith('pmemobj_action'): continue if not 'libpmem2' in PMDK_LIBRARIES and f.startswith('pmem2'): continue functions_and_macros_from_doc.append(f.split('.')[0]) return functions_and_macros_from_doc
d234c7fb445574522b103ec39f8c478806588fbc
9,957
def kmv_tet_polyset(m, mf, mi): """Create the polynomial set for a KMV space on a tetrahedron.""" poly = polynomial_set(3, 1, m) # TODO: check this for axes in [(x[0], x[1]), (x[0], x[2]), (x[1], x[2]), (x[1] - x[0], x[2] - x[0])]: b = axes[0] * axes[1] * (1 - axes[0] - axes[1]) for i in range(mf - 2): for j in range(mf - 2 - i): poly.append(x[0] ** i * x[1] ** j * x[2] ** (mf - 3 - i - j) * b) b = x[0] * x[1] * x[2] * (1 - x[0] - x[1] - x[2]) for i in range(mi - 3): for j in range(mi - 3 - i): poly.append(x[0] ** i * x[1] ** j * x[2] ** (mf - 4 - i - j) * b) return poly
cbf87063e6ae6523acf897d6e03fd288f48e04e6
9,958
import re def word_detokenize(tokens): """ A heuristic attempt to undo the Penn Treebank tokenization above. Pass the --pristine-output flag if no attempt at detokenizing is desired. """ regexes = [ # Newlines (re.compile(r'[ ]?\\n[ ]?'), r'\n'), # Contractions (re.compile(r"\b(can)\s(not)\b"), r'\1\2'), (re.compile(r"\b(d)\s('ye)\b"), r'\1\2'), (re.compile(r"\b(gim)\s(me)\b"), r'\1\2'), (re.compile(r"\b(gon)\s(na)\b"), r'\1\2'), (re.compile(r"\b(got)\s(ta)\b"), r'\1\2'), (re.compile(r"\b(lem)\s(me)\b"), r'\1\2'), (re.compile(r"\b(mor)\s('n)\b"), r'\1\2'), (re.compile(r"\b(wan)\s(na)\b"), r'\1\2'), # Ending quotes (re.compile(r"([^' ]) ('ll|'re|'ve|n't)\b"), r"\1\2"), (re.compile(r"([^' ]) ('s|'m|'d)\b"), r"\1\2"), (re.compile(r'[ ]?”'), r'"'), # Double dashes (re.compile(r'[ ]?--[ ]?'), r'--'), # Parens and brackets (re.compile(r'([\[\(\{\<]) '), r'\1'), (re.compile(r' ([\]\)\}\>])'), r'\1'), (re.compile(r'([\]\)\}\>]) ([:;,.])'), r'\1\2'), # Punctuation (re.compile(r"([^']) ' "), r"\1' "), (re.compile(r' ([?!\.])'), r'\1'), (re.compile(r'([^\.])\s(\.)([\]\)}>"\']*)\s*$'), r'\1\2\3'), (re.compile(r'([#$]) '), r'\1'), (re.compile(r' ([;%:,])'), r'\1'), # Starting quotes (re.compile(r'(“)[ ]?'), r'"') ] text = ' '.join(tokens) for regexp, substitution in regexes: text = regexp.sub(substitution, text) return text.strip()
577c2ed235aaf889699efc291d2b206a922f1f4a
9,959
def googlenet_paper(pretrained=False, **kwargs): """ GoogLeNet Model as given in the official Paper. """ kwargs['aux'] = True if 'aux' not in kwargs else kwargs['aux'] kwargs['replace5x5with3x3'] = False if 'replace5x5with3x3' not in kwargs \ else kwargs['replace5x5with3x3'] return get_net(GoogLeNet, pretrained=pretrained, pretrain_url=None, fname='googlenet', kwargs_net=kwargs, attr='classifier', inn=1024)
01eaf2cf89648b334f634e83ca2d774e58970999
9,960
import argparse def get_parser(): """ Parses the command line arguments .. todo:: Adapter services related to alerts/messaging, and local device/Edge management :returns: An object with attributes based on the arguments :rtype: argparse.ArgumentParser """ parser = argparse.ArgumentParser(description="Inmarsat Modbus Proxy Adapter for ClearBlade") parser.add_argument('--url', default='https://platform.clearblade.com', help="The URL of the ClearBlade Platform the adapter will connect to.") parser.add_argument('--systemKey', required=True, help="The System Key of the ClearBlade platform System the adapter will connect to.") parser.add_argument('--systemSecret', required=True, help="The System Secret of the ClearBlade plaform System the adapter will connect to.") parser.add_argument('--deviceName', default=ADAPTER_DEVICE_ID, help="The id/name of the device that will be used for device \ authentication against the ClearBlade platform or Edge, defined \ within the devices table of the ClearBlade platform.") parser.add_argument('--deviceKey', required=True, help="The active key of the device that will be used for device \ authentication against the ClearBlade platform or Edge, defined within \ the Devices table of the ClearBlade platform.") parser.add_argument('--_slaves', dest='slaves_collection', default=DEVICE_PROXY_CONFIG_COLLECTION, help="The ClearBlade Collection name with RTU proxy definitions") parser.add_argument('--data', dest='data_collection', default=DATA_COLLECTION, help="The ClearBlade Collection name with proxy data") parser.add_argument('--net', dest='net_if', default='eth0', help="The physical port of the network listener") parser.add_argument('--ip', dest='ip_address', default='localhost', help="The local IP Address the PyModbus server will listen on") parser.add_argument('--tcp', dest='tcp_port', default=502, help="The local TCP Port the PyModbus server will listen on") parser.add_argument('--logLevel', dest='log_level', default='INFO', choices=['INFO', 'DEBUG'], help="The level of logging that will be utilized by the adapter.") parser.add_argument('--heartbeat', dest='heartbeat', default=30, help="The logging heartbeat interval in seconds.") # parser.add_argument('--messagingUrl', dest='messagingURL', default='localhost', # help="The MQTT URL of the ClearBlade Platform or Edge the adapter will connect to.") # # parser.add_argument('--messagingPort', dest='messagingPort', default=1883, # help="The MQTT Port of the ClearBlade Platform or Edge the adapter will connect to.") # # parser.add_argument('--topicRoot', dest='adapterTopicRoot', default='modbusProxy', # help="The root of MQTT topics this adapter will subscribe and publish to.") # # parser.add_argument('--deviceProvisionSvc', dest='deviceProvisionSvc', default='', # help="The name of a service that can be invoked to provision IoT devices \ # within the ClearBlade Platform or Edge.") # # parser.add_argument('--deviceHealthSvc', dest='deviceHealthSvc', default='', # help="The name of a service that can be invoked to provide the health of \ # an IoT device to the ClearBlade Platform or Edge.") # # parser.add_argument('--deviceLogsSvc', dest='deviceLogsSvc', default='', # help="The name of a service that can be invoked to provide IoT device \ # logging information to the ClearBlade Platform or Edge.") # # parser.add_argument('--deviceStatusSvc', dest='deviceStatusSvc', default='', # help="The name of a service that can be invoked to provide the status of \ # an IoT device to the ClearBlade Platform or Edge.") # # parser.add_argument('--deviceDecommissionSvc', dest='deviceDecommissionSvc', default='', # help="The name of a service that can be invoked to decommission IoT \ # devices within the ClearBlade Platform or Edge.") return parser
1765c6021e4ad7175ccc54d27e9c5a71bda645e9
9,961
import os def get_prefix(path): """Generate a prefix for qresource in function of the passed path. Args: path (str): Relative path of a folder of resources from project dir. Returns; str: Prefix corresponding to `path` """ # Remove finishing separator from path if exist if path[-1] == os.sep: path = path[:-1] # Return the prefix corresponding to the path return "/" + os.path.basename(path)
e412826cbc0ae631e5084a6619b73912cdd0ce40
9,962
def is_regex(obj): """Cannot do type check against SRE_Pattern, so we use duck typing.""" return hasattr(obj, 'match') and hasattr(obj, 'pattern')
cfd4fc702fb121735f49d4ba61395ce8f6508b1a
9,963
import functools def GetDefaultScopeLister(compute_client, project=None): """Constructs default zone/region lister.""" scope_func = { compute_scope.ScopeEnum.ZONE: functools.partial(zones_service.List, compute_client), compute_scope.ScopeEnum.REGION: functools.partial(regions_service.List, compute_client), compute_scope.ScopeEnum.GLOBAL: lambda _: [ResourceStub(name='')] } def Lister(scopes, _): prj = project or properties.VALUES.core.project.Get(required=True) results = {} for scope in scopes: results[scope] = scope_func[scope](prj) return results return Lister
25069007b68a74b26e2767e146c25466b65e3377
9,964
def find_user(username): """ Function that will find a user by their username and return the user """ return User.find_by_username(username)
ef036f0df72bbdcb9aa8db519120209e20678e83
9,965
from typing import List def filter_by_author(resources: List[Resource], author: Author) -> List[Resource]: """The resources by the specified author Arguments: resources {List[Resource]} -- A list of resources """ return [resource for resource in resources if resource.author == author]
d03673ed8c45f09996e29eb996fc31fa3d073315
9,966
import time def cpu_bound_op(exec_time, *data): """ Simulation of a long-running CPU-bound operation :param exec_time: how long this operation will take :param data: data to "process" (sum it up) :return: the processed result """ logger.info("Running cpu-bound op on {} for {} seconds".format(data, exec_time)) time.sleep(exec_time) return sum(data)
a52d3e25a75f9c7b0ab680a9ad1cb0e5d40de92a
9,967
def elastic_transform_approx( img, alpha, sigma, alpha_affine, interpolation=cv2.INTER_LINEAR, border_mode=cv2.BORDER_REFLECT_101, value=None, random_state=None, ): """Elastic deformation of images as described in [Simard2003]_ (with modifications for speed). Based on https://gist.github.com/erniejunior/601cdf56d2b424757de5 .. [Simard2003] Simard, Steinkraus and Platt, "Best Practices for Convolutional Neural Networks applied to Visual Document Analysis", in Proc. of the International Conference on Document Analysis and Recognition, 2003. """ if random_state is None: random_state = np.random.RandomState(1234) height, width = img.shape[:2] # Random affine center_square = np.float32((height, width)) // 2 square_size = min((height, width)) // 3 alpha = float(alpha) sigma = float(sigma) alpha_affine = float(alpha_affine) pts1 = np.float32( [ center_square + square_size, [center_square[0] + square_size, center_square[1] - square_size], center_square - square_size, ] ) pts2 = pts1 + random_state.uniform(-alpha_affine, alpha_affine, size=pts1.shape).astype(np.float32) matrix = cv2.getAffineTransform(pts1, pts2) warp_fn = _maybe_process_in_chunks( cv2.warpAffine, M=matrix, dsize=(width, height), flags=interpolation, borderMode=border_mode, borderValue=value ) img = warp_fn(img) dx = random_state.rand(height, width).astype(np.float32) * 2 - 1 cv2.GaussianBlur(dx, (17, 17), sigma, dst=dx) dx *= alpha dy = random_state.rand(height, width).astype(np.float32) * 2 - 1 cv2.GaussianBlur(dy, (17, 17), sigma, dst=dy) dy *= alpha x, y = np.meshgrid(np.arange(width), np.arange(height)) map_x = np.float32(x + dx) map_y = np.float32(y + dy) remap_fn = _maybe_process_in_chunks( cv2.remap, map1=map_x, map2=map_y, interpolation=interpolation, borderMode=border_mode, borderValue=value ) return remap_fn(img)
9684847e756e0299be6766b5bb8220e6a1b4fc8d
9,968
def uncompleted_task(request): """ Make the completed task incomplete if use uncheck the task.""" task_list = TaskList.objects.all() context = {'task_list': task_list} if request.POST: task_is_unchecked = request.POST['task_is_unchecked'] task_unchecked_id = request.POST['task_unchecked_id'] get_task = TaskList.objects.get(pk=task_unchecked_id) if task_is_unchecked: get_task.is_completed = False get_task.save() if request.is_ajax(): return JsonResponse({'task_is_unchecked': task_is_unchecked, 'task_unchecked_id': task_unchecked_id, 'unchecked_view_text': "From View UnChecked:"}, status=200) return render(request, 'todos/home.html', context)
1a12d3fc8cc7dc60b8b26d4c25041ed12abc0cd1
9,969
def jitter(t, X, amountS): """Return a random number (intended as a time offset, i.e. jitter) within the range +/-amountS The jitter is different (but constant) for any given day in t (epoch secs) and for any value X (which might be e.g. deviceID)""" dt = ISO8601.epoch_seconds_to_datetime(t) dayOfYear = int(dt.strftime("%j")) year = int(dt.strftime("%Y")) uniqueValue = year*367+dayOfYear+abs(hash(X)) # Note that hash is implementation-dependent so may give different results on different platforms rand = utils.hashIt(uniqueValue,100) sign = int(str(uniqueValue)[0]) < 5 v = (rand / 100.0) * amountS if sign: v = -v return v
db62c4365bf4cbf9d2ed0587c51846a274a691a4
9,970
import string def check_DNA(DNA_sequence): """Check that we have a DNA sequence without junk""" # # Remove all spaces DNA_sequence=string.replace(DNA_sequence,' ','') # Upper case DNA_sequence=string.upper(DNA_sequence) # Check that we only have DNA bases in the seq ok=1 garbage={} DNA_bases=['A','G','C','T'] for letter in DNA_sequence: if not letter in DNA_bases: ok=None garbage[letter]=1 if ok: return ok, DNA_sequence return ok,garbage.keys()
d73b8176938716b5c3710055750f05b24eab80a5
9,971
def read(): """ read() : Fetches documents from Firestore collection as JSON warehouse : Return document that matches query ID all_warehouses : Return all documents """ try: warehouse_id = request.args.get('id') if warehouse_id: warehouse = warehouse_ref.document(warehouse_id).get() return jsonify(warehouse.to_dict()), 200 else: all_warehouses = [doc.to_dict() for doc in warehouse_ref.stream()] return jsonify(all_warehouses), 200 except Exception as e: return f"An Error Occured: {e}"
17d3622f9f0770edb333907298112487432c7025
9,972
def transposeC(array, axes=None): """ Returns the (conjugate) transpose of the input `array`. Parameters ---------- array : array_like Input array that needs to be transposed. Optional -------- axes : 1D array_like of int or None. Default: None If *None*, reverse the dimensions. Else, permute the axes according to the values given. Returns ------- array_t : :obj:`~numpy.ndarray` object Input `array` with its axes transposed. Examples -------- Using an array with only real values returns its transposed variant: >>> array = np.array([[1, 2.5], [3.5, 5]]) >>> array array([[ 1. , 2.5], [ 3.5, 5. ]]) >>> transposeC(array) array([[ 1. , 3.5], [ 2.5, 5. ]]) And using an array containing complex values returns its conjugate transposed: >>> array = np.array([[1, -2+4j], [7.5j, 0]]) >>> array array([[ 1.+0.j , -2.+4.j ], [ 0.+7.5j, 0.+0.j ]]) >>> transposeC(array) array([[ 1.-0.j , 0.-7.5j], [-2.-4.j , 0.-0.j ]]) """ # Take the transpose of the conjugate or the input array and return it return(np.transpose(np.conjugate(array), axes))
fecd60d72c4c38dc87d59f430365cefe72f40ef4
9,973
from typing import List def _partition_files(files: List[str], num_partitions: int) -> List[List[str]]: """Split files into num_partitions partitions of close to equal size""" id_to_file = defaultdict(list) for f in files: id_to_file[_sample_id_from_path(f)[0]].append(f) sample_ids = np.array(list(id_to_file)) np.random.shuffle(sample_ids) split_ids = np.array_split(sample_ids, num_partitions) splits = [ sum((id_to_file[sample_id] for sample_id in split), []) for split in split_ids ] return [split for split in splits if split]
e9fac329f8e1c1c7682984216c34e7b259776c82
9,974
import json from pathlib import Path import time import requests def run_vscode_command( command: str, *args: str, wait_for_finish: bool = False, expect_response: bool = False, decode_json_arguments: bool = False, ): """Execute command via vscode command server.""" # NB: This is a hack to work around the fact that talon doesn't support # variable argument lists args = list( filter( lambda x: x is not NotSet, args, ) ) if decode_json_arguments: args = [json.loads(arg) for arg in args] port_file_path = Path(gettempdir()) / "vscode-port" original_contents = port_file_path.read_text() # Issue command to VSCode telling it to update the port file. Because only # the active VSCode instance will accept keypresses, we can be sure that # the active VSCode instance will be the one to write the port. if is_mac: actions.key("cmd-shift-alt-p") else: actions.key("ctrl-shift-alt-p") # Wait for the VSCode instance to update the port file. This generally # happens within the first millisecond, but we give it 3 seconds just in # case. start_time = time.monotonic() new_contents = port_file_path.read_text() sleep_time = 0.0005 while True: if new_contents != original_contents: try: decoded_contents = json.loads(new_contents) # If we're successful, we break out of the loop break except ValueError: # If we're not successful, we keep waiting; we assume it was a # partial write from VSCode pass time.sleep(sleep_time) sleep_time *= 2 if time.monotonic() - start_time > 3.0: raise Exception("Timed out waiting for VSCode to update port file") new_contents = port_file_path.read_text() port = decoded_contents["port"] response = requests.post( f"http://localhost:{port}/execute-command", json={ "commandId": command, "args": args, "waitForFinish": wait_for_finish, "expectResponse": expect_response, }, timeout=(0.05, 3.05), ) response.raise_for_status() actions.sleep("25ms") if expect_response: return response.json()
4fa3626f1371c0c03923f37136616fb7055ef9cf
9,975
import threading def run_with_timeout(proc, timeout, input=None): """ Run Popen process with given timeout. Kills the process if it does not finish in time. You need to set stdout and/or stderr to subprocess.PIPE in Popen, otherwise the output will be None. The returncode is 999 if the process was killed. :returns: (returncode, stdout string, stderr string) """ output = [] def target(): output.extend(proc.communicate(input)) thread = threading.Thread(target=target) thread.daemon = True thread.start() killed = False thread.join(timeout) if thread.is_alive(): proc.terminate() killed = True thread.join() returncode = proc.returncode if killed: returncode = 999 return returncode, output[0], output[1]
414e18dae8f31b20c472f7da14475f8da5761781
9,976
def dot(x, y, alpha=0): """ Compute alpha = xy + alpha, storing the incremental sum in alpha x and y can be row and/or column vectors. If necessary, an implicit transposition happens. """ assert type(x) is matrix and len(x.shape) is 2, \ "laff.dot: vector x must be a 2D numpy.matrix" assert type(y) is matrix and len(y.shape) is 2, \ "laff.dot: vector y must be a 2D numpy.matrix" if(type(alpha) is matrix): m_alpha, n_alpha = alpha.shape assert isinstance(alpha,(int,float,complex)) or (m_alpha is 1 and n_alpha is 1), \ "laff.scal: alpha must be a 1 x 1 matrix" if(type(alpha) is matrix): alpha[0,0] = 0 else: alpha = 0 m_x, n_x = x.shape m_y, n_y = y.shape assert m_x is 1 or n_x is 1, "laff.dot: x is not a vector" assert m_y is 1 or n_y is 1, "laff.dot: y is not a vector" if m_x is 1 and m_y is 1: # x is a row, y is a row assert n_x == n_y, "laff.dot: size mismatch between x and y" if(type(alpha) is matrix): for i in range(n_x): alpha[0,0] += y[0, i] * x[0, i] else: for i in range(n_x): alpha += y[0, i] * x[0, i] elif n_x is 1 and n_y is 1: # x is a column, y is a column assert m_x == m_y, "laff.dot: size mismatch between x and y" if(type(alpha) is matrix): for i in range(m_x): alpha[0,0] += y[i, 0] * x[i, 0] else: for i in range(m_x): alpha += y[i, 0] * x[i, 0] elif m_x is 1 and n_y is 1: # x is a row, y is a column assert n_x == m_y, "laff.dot: size mismatch between x and y" if(type(alpha) is matrix): for i in range(n_x): alpha[0,0] += y[i, 0] * x[0, i] else: for i in range(n_x): alpha += y[i, 0] * x[0, i] elif n_x is 1 and m_y is 1: # x is a column, y is a row assert m_x == n_y, "laff.dot: size mismatch between x and y" if(type(alpha) is matrix): for i in range(m_x): alpha += y[0, i] * x[i, 0] else: for i in range(m_x): alpha += y[0, i] * x[i, 0] return alpha
2ef9fd4b02a586e9caff70b75bd598e925608171
9,977
def load_train_test_data( train_data_path, label_binarizer, test_data_path=None, test_size=None, data_format="list"): """ train_data_path: path. path to JSONL data that contains text and tags fields label_binarizer: MultiLabelBinarizer. multilabel binarizer instance used to transform tags test_data_path: path, default None. path to test JSONL data similar to train_data test_size: float, default None. if test_data_path not provided, dictates portion to be used as test data_format: str, default list. controls data are returned as lists or generators for memory efficiency """ if data_format == "list": if test_data_path: X_train, Y_train, _ = load_data(train_data_path, label_binarizer) X_test, Y_test, _ = load_data(test_data_path, label_binarizer) else: X, Y, _ = load_data(train_data_path, label_binarizer) X_train, X_test, Y_train, Y_test = train_test_split( X, Y, random_state=42, test_size=test_size ) else: if test_data_path: X_train = partial(yield_texts, train_data_path) Y_train = partial(yield_tags, train_data_path, label_binarizer) X_test = partial(yield_texts, test_data_path) Y_test = partial(yield_tags, test_data_path, label_binarizer) else: # need to split train / test and shuffle in memory efficient way raise NotImplementedError return X_train, X_test, Y_train, Y_test
51aaf916f948b198e1f25c002655731008c173ed
9,978
import os def delete_courrier_affaire_view(request): """ Supprimer le fichier une fois téléchargé """ settings = request.registry.settings filename = request.params['filename'] temporary_directory = settings["temporary_directory"] file_path = os.path.join(temporary_directory, filename) if os.path.exists(file_path): os.remove(file_path) return "ok" else: raise exc.HTTPNotFound("Le fichier est indisponible")
96b89ae5ed378b38af5a4426c6b1e9004d215bc9
9,979
def get_token() -> str: """Obtains the Access Token from the Authorization Header""" # Get the authorization header authorization_header = request.headers.get("Authorization", None) # Raise an error if no Authorization error is found if not authorization_header: payload = { "code": "authorization_header_missing", "description": "Authorization header is expected", } raise AuthError(payload, 401) authorization_header_parts = authorization_header.split() # We are expecting the Authorization header to contain a Bearer token if authorization_header_parts[0].lower() != "bearer": payload = { "code": "invalid_header", "description": "Authorization header must be a Bearer token", } raise AuthError(payload, 401) # The Authorization header is prefixed with Bearer, but does not contain the actual token elif len(authorization_header_parts) == 1: payload = {"code": "invalid_header", "description": "Token not found"} raise AuthError(payload, 401) # We only expect 2 parts, "Bearer" and the access token elif len(authorization_header_parts) > 2: payload = { "code": "invalid_header", "description": "Authorization header must be a valid Bearer token", } raise AuthError(payload, 401) # If all checks out, we return the access token return authorization_header_parts[1]
5e1d05f705ad1c7505963e96c8637e5ab42aff79
9,980
def load_image(path, grayscale=False): """Summary Args: path (str): Path to image grayscale (bool): True loads image as grayscale, False loads image as color Returns: numpy.ndarray: Image loaded from path """ # TODO: Load image img = cv2.imread(path, cv2.IMREAD_GRAYSCALE) if grayscale else cv2.imread(path) return img
dd4ec76a2cd057f384b1894bc675c54abcff04a2
9,981
def convert_op_str(qubit_op_str, op_coeff): """ Convert qubit operator into openfermion format """ converted_Op=[f'{qOp_str}{qNo_index}' for qNo_index, qOp_str in enumerate(qubit_op_str) if qOp_str !='I'] seperator = ' ' #space Openfermion_qubit_op = QubitOperator(seperator.join(converted_Op), op_coeff) return Openfermion_qubit_op
a6a512758a706b3a788f686331747ac9224c2f8b
9,982
def __state_resolving_additional_facts(conversation, message, just_acknowledged): """ Bot is asking the user questions to resolve additional facts :param conversation: The current conversation :param message: The user's message :param just_acknowledged: Whether or not an acknowledgement just happened. Used to skip fact resolution and instead asks a question immediately. :return: A question to as """ question = None # Retrieve current_fact from conversation current_fact = conversation.current_fact if just_acknowledged: question = Responses.fact_question(current_fact.name) else: # Extract entity from message based on current fact fact_entity_value = __extract_entity(current_fact.name, current_fact.type, message) if fact_entity_value is not None: next_fact = fact_service.submit_resolved_fact(conversation, current_fact, fact_entity_value) new_fact_id = next_fact['fact_id'] new_fact = None if new_fact_id: new_fact = db.session.query(Fact).get(new_fact_id) conversation.current_fact = new_fact # Additional facts remain to be asked if fact_service.has_additional_facts(conversation): # Additional fact limit reached, time for a new prediction if fact_service.count_additional_facts_resolved(conversation) % MAX_ADDITIONAL_FACTS == 0: conversation.bot_state = BotState.GIVING_PREDICTION else: question = Responses.fact_question(new_fact.name) else: # There are no more additional facts! Give a prediction conversation.bot_state = BotState.GIVING_PREDICTION return question
d1e75e0d67aa2b1bcc899885c83132a47df015dc
9,983
import json def load_dataset(path): """Load json file and store fields separately.""" with open(path) as f: data = json.load(f)['data'] output = {'qids': [], 'questions': [], 'answers': [], 'contexts': [], 'qid2cid': []} for article in data: for paragraph in article['paragraphs']: output['contexts'].append(paragraph['context']) for qa in paragraph['qas']: output['qids'].append(qa['id']) output['questions'].append(qa['question']) output['qid2cid'].append(len(output['contexts']) - 1) if 'answers' in qa: output['answers'].append(qa['answers']) return output
4ba01f49d6a0aa3329b076fc0de9dd38fb99f2f8
9,984
def generate_rand_enex_by_prob_nb(shape: tp.Shape, entry_prob: tp.MaybeArray[float], exit_prob: tp.MaybeArray[float], entry_wait: int, exit_wait: int, entry_pick_first: bool, exit_pick_first: bool, flex_2d: bool, seed: tp.Optional[int] = None) -> tp.Tuple[tp.Array2d, tp.Array2d]: """Pick entries by probability `entry_prob` and exits by probability `exit_prob` one after another. `entry_prob` and `exit_prob` should be 2-dim arrays of shape `shape`. Specify `seed` to make output deterministic.""" if seed is not None: np.random.seed(seed) temp_idx_arr = np.empty((shape[0],), dtype=np.int_) return generate_enex_nb( shape, entry_wait, exit_wait, entry_pick_first, exit_pick_first, rand_by_prob_choice_nb, (entry_prob, entry_pick_first, temp_idx_arr, flex_2d), rand_by_prob_choice_nb, (exit_prob, exit_pick_first, temp_idx_arr, flex_2d) )
fbb7fc4bcf50139f455049edd4af62e9c0429dd3
9,985
def bresenham_3d_line_of_sight(observers, targets, raster, obs_height_field, tar_height_field, radius, raster_crs, fresnel=False): """Naive bresenham line of sight algorithm""" writePoints = [] lines_for_shp = [] start, end = 0, 0 raster_transform = raster.GetGeoTransform() pixelWidth = raster_transform[1] pix = pixelWidth pixelHeight = raster_transform[5] xOrigin = raster_transform[0] yOrigin = raster_transform[3] raster_band = raster.GetRasterBand(1) info = [] for obs in range(observers.GetFeatureCount()): observer = observers.GetFeature(obs) # get Observer point geometry obs_geom = observer.geometry() try: obs_x = obs_geom.GetPoints()[0][0] obs_y = obs_geom.GetPoints()[0][1] except ValueError: debugHere() # offset x,y values to equivalent raster index values obs_x_off = int((obs_x - xOrigin) / pixelWidth) obs_y_off = int((obs_y - yOrigin) / pixelHeight) mask_x = obs_x - radius mask_y = obs_y - radius mask_x_pix = int((mask_x - xOrigin) / pixelWidth) mask_y_pix = int((mask_y - yOrigin) / pixelHeight) radius_pix = int(radius / pixelWidth) mask_width = radius_pix * 2 mask_height = radius_pix * 2 if mask_x_pix < 0: # mask has overflow beyond raster edge mask_width += mask_x_pix # clip mask width by the overflow mask_x_pix = 0 # set mask origin x to edge of raster mask_x = xOrigin if mask_y_pix < 0: mask_height += mask_y_pix mask_y_pix = 0 mask_y = yOrigin # truncate positive overflow if mask_width + mask_x_pix > raster_band.XSize: overflow = raster_band.XSize - (mask_width + mask_x_pix) mask_width += overflow if mask_height + mask_y_pix > raster_band.YSize: overflow = raster_band.YSize - (mask_height + mask_y_pix) mask_height += overflow mask_x_pix = int(mask_x_pix) mask_y_pix = int(mask_y_pix) mask_width = int(mask_width) mask_height = int(mask_height) new_obs_x = obs_x_off - mask_x_pix new_obs_y = mask_y_pix - obs_y_off # x_geog, y_geog = raster_x_min + x * pix + pix / 2, raster_y_max - y * pix - pix / 2 # areaOfInterest = QgsRectangle(x_geog - radius, y_geog - radius, x_geog + radius, y_geog + radius) # set observer height # Raster used is smaller than radius, so no clipping nescesarry try: if raster_band.YSize < radius * 2 or raster_band.YSize < radius * 2: mask_x = xOrigin mask_y = yOrigin new_obs_x = obs_x_off new_obs_y = obs_y_off raster_array = raster_band.ReadAsArray().astype(np.float) else: raster_array = raster_band.ReadAsArray(mask_x_pix, mask_y_pix, mask_width, mask_height).astype(np.float) except: debugHere() try: obs_height = observer.items()[obs_height_field] if obs_height is None: obs_height = 1.6 # set observer height to person height z = obs_height + raster_array[new_obs_y, new_obs_x] except(IndexError, TypeError) as e: print e debugHere() start = (new_obs_y, new_obs_x, z) writePoints.append([(mask_x, mask_y), (mask_x, mask_y + (mask_height * pixelHeight)), (mask_x + (mask_width * pixelWidth) , mask_y), (mask_x + (mask_width * pixelWidth), mask_y + (mask_height * pixelHeight))]) # raster_crs for tar in range(targets.GetFeatureCount()): target_in_radius = True target = targets.GetFeature(tar) # get Target point geometry tar_geom = target.geometry() x, y = tar_geom.GetPoints()[0] target_outside_radius = euclidian_distance((obs_x, obs_y), (x, y)) > radius if target_outside_radius: continue # offset x,y values to equivalent raster index values x = int((x - mask_x) / pixelWidth) y = int((y - mask_y) / pixelHeight) # check if target point is out of search area # if target_outside_radius: # continue # get target height z = target.items()[tar_height_field] try: landscape_height = raster_array[y, x] except IndexError: target_in_radius = False continue # get target height z = target.items()[tar_height_field] + landscape_height end = (y, x, z) # Unpack start/end tuples x, y, z = start x2, y2, z2 = end z_value = z # Calculate differentials diff_x = x2 - x diff_y = y2 - y diff_z = z2 - z # Assign incremental slope values for x, y, z incr_x = -1 if (diff_x < 0) else 1 incr_y = -1 if (diff_y < 0) else 1 incr_z = -1 if (diff_z < 0) else 1 abs_diff_x = abs(diff_x) abs_diff_y = abs(diff_y) abs_diff_z = abs(diff_z) diff_x2 = abs_diff_x * 2 diff_y2 = abs_diff_y * 2 diff_z2 = abs_diff_z * 2 # Find the steepest axis and find line segments accordingly if (abs_diff_x >= abs_diff_y) and (abs_diff_x >= abs_diff_z): steepest = 'x' z_line_length = np.sqrt(pow(diff_x, 2) + pow(diff_z, 2)) z_segment_length = z_line_length / diff_x elif (abs_diff_y > abs_diff_x) and (abs_diff_y >= abs_diff_z): steepest = 'y' z_line_length = np.sqrt(pow(diff_y, 2) + pow(diff_z, 2)) z_segment_length = z_line_length / diff_y elif (abs_diff_z > abs_diff_x) and (abs_diff_z > abs_diff_y): steepest = 'z' z_line_length = np.sqrt(pow(diff_x, 2) + pow(diff_z, 2)) z_segment_length = z_line_length / diff_z else: return "Error when finding steepest line" incr_z_value = np.sqrt(abs(pow(z_segment_length, 2) - pow(1, 2))) incr_z_value = -incr_z_value if (diff_z < 0) else incr_z_value xm, ym, zm = (x2 + x) / 2, (y2 + y) / 2, (z2 + z) / 2 zm = z + xm * incr_z_value mid_fresnel = get_fresnel_radius(z_line_length / 2, z_line_length / 2) if fresnel: try: visibility = zm - mid_fresnel > raster_array[xm, ym] except: debugHere() if not visibility: lines_for_shp.append(build_return_package(observer, target, visibility)) continue if 'x' in steepest: err_1 = diff_y2 - abs_diff_x err_2 = diff_z2 - abs_diff_x for i in np.arange(abs_diff_x - 1): if (err_1 > 0): y += incr_y err_1 -= diff_x2 if (err_2 > 0): z += incr_z err_2 -= diff_x2 err_1 += diff_y2 err_2 += diff_z2 x += incr_x z_value += incr_z_value visibility = z_value > raster_array[x, y] if not visibility: break if 'y' in steepest: err_1 = diff_x2 - abs_diff_y err_2 = diff_z2 - abs_diff_y for i in np.arange(abs_diff_y - 1): if (err_1 > 0): x += incr_x err_1 -= diff_y2 if (err_2 > 0): z += incr_z err_2 -= diff_y2 err_1 += diff_x2 err_2 += diff_z2 y += incr_y z_value += incr_z_value visibility = z_value > raster_array[x, y] if not visibility: break if 'z' in steepest: err_1 = diff_y2 - abs_diff_z err_2 = diff_x2 - abs_diff_z for i in np.arange(abs_diff_z - 1): if (err_1 > 0): y += incr_y err_1 -= diff_z2 if (err_2 > 0): x += incr_x err_2 -= diff_z2 err_1 += diff_y2 err_2 += diff_x2 z += incr_z z_value += incr_z_value visibility = z_value > raster_array[x, y] if not visibility: break lines_for_shp.append(build_return_package(observer, target, visibility)) return lines_for_shp
d11cfdf5c9d8f33b86a7dfc1026e6c668aebd3a4
9,986
import glob import os def delete(): """ Receives requests for deleting certain files at the back-end """ path = request.form['path'] files = glob.glob(path) for f in files: os.remove(f) return 'Successfull'
1ea2eb7dece5b3a1148b48b057a9e28780f52ce1
9,987
from datetime import datetime import html import requests from textwrap import dedent def retrieve(last_updated=datetime.now()): """ Crawls news and returns a list of tweets to publish. """ print('Retrieving {} alzheimer news since {}.'.format(SITE, last_updated)) to_ret = list() # Get all the content from the last page of the site's news tree = html.fromstring(requests.get(URL).content) # Get list of articles articles = CSSSelector('article')(tree) for article in articles: # For each article parse the date on the metadata and compare to the last update of the bot. # If the article is newer it should go on until it finds one that's not link = CSSSelector('article .ue-c-cover-content__link')(article)[0].get('href') if "promo" in link.lower() or "follow" in link.lower(): continue news_page = html.fromstring(requests.get(link).content) news_date = CSSSelector('time')(news_page)[0].get('datetime') news_datetime = datetime.strptime(news_date, '%Y-%m-%dT%H:%M:%SZ') if news_datetime < last_updated: break # Get the useful parts of each article to compose a tweet. title = CSSSelector('article .ue-c-cover-content__headline')(article)[0].text author = CSSSelector('.ue-c-article__byline-name a, .ue-c-article__byline-name')(news_page)[0].text article_body = str(etree.tostring(CSSSelector('.ue-l-article__body')(news_page)[0])) if "alzheimer" not in article_body.lower(): continue # Compose a tweet with the article's information tweet = """ {title} Autor/a: {author} Enlace: https:{link} ({site}) """.format(title=title, author=author, link=link, site=SITE) to_ret.append(dedent(tweet)) # Returns a list of tweets ready for the bot to tweet. return to_ret
ba194b84a50164ca8a238a77d0e80d5e80c93ae2
9,988
import binascii def check_seal(item): """ Given a message object, use the "seal" attribute - a cryptographic signature to prove the provenance of the message - to check it is valid. Returns a boolean indication of validity. """ try: item_dict = to_dict(item) raw_sig = item_dict['seal'] signature = binascii.unhexlify(raw_sig.encode('ascii')) key = rsa.PublicKey.load_pkcs1(item_dict['sender'].encode('ascii')) del item_dict['seal'] del item_dict['message'] root_hash = _get_hash(item_dict).hexdigest() return rsa.verify(root_hash.encode('ascii'), signature, key) except: pass return False
86bb7b22d2efe4e7117b3c65fad2a7dc4853b428
9,989
def plot_win_prob(times, diff, end_lim, probs, team_abr, bools): """ This function plots the win probability and score differential for the game @param times (list): list containing actual_times and times. times contains all of the times at which win probability was calculated @param diff (list): List of score differentials corresponding to all times in actual_times @param end_lim (int): Time at which the last win probability value is calculated @param probs (list): List of win probability lists (probs_home and probs_away). probs_home contains all of the home win probability values for all times in the times list. probs_away is the same, but for win probability for the away team @param team_abr (list): List contraining the home team abbreviation in the first index and the away team abbreviation in the second index @param bools (list): List of booleans controlling which figures are plotted Returns: - fig (matplotlib.figure.Figure): Figure containing score differential and/or win probability. None if all of the booleans are False """ actual_times, times = times probs_home, probs_away = probs plot_diff, plot_home, plot_away = bools plt.rcParams["figure.figsize"] = (20,6) # Score differential if plot_diff: fig, pltting = \ plot_score_differential(actual_times, diff, end_lim) else: fig,ax = plt.subplots() pltting = ax # Quarter deliniation for normal_q in range(0,4): pltting.plot([2880-normal_q*12*60, 2880-normal_q*12*60], [0,1], 'gray') # OT deliniation for ot in range(0,10): pltting.plot([-ot*5*60, -ot*5*60], [0,1], 'gray') # Win probability if plot_home: pltting.plot(times, probs_home, 'blue', label=team_abr[0]) if plot_away: pltting.plot(times, probs_away, 'orange', label=team_abr[-1]) pltting.set_xlim(2880, end_lim) pltting.set_ylim(0.0, 1.0) pltting.set_title("Win Probability") plt.legend(loc='best') plt.show() return fig
139906b4a2db3cf3a7ffa531ec0701be0d395b13
9,990
def add_office(): """Given that i am an admin i should be able to add a political office When i visit ../api/v2/offices endpoint using POST method""" if is_admin() is not True: return is_admin() errors = [] try: if not request.get_json(): errors.append( make_response(jsonify({'status': 409, "message": "missing input data"}), 409)) office_data = request.get_json() check_missingfields = validate.missing_value_validator(['name', 'type'], office_data) if check_missingfields is not True: return check_missingfields check_emptyfield = validate.empty_string_validator(['name', 'type'], office_data) if check_emptyfield is not True: return check_emptyfield check_if_text_only = validate.text_arrayvalidator(['name', 'type'], office_data) if check_if_text_only is not True: return check_if_text_only office_name = office_data['name'] office_type = office_data['type'] if len(errors) > 0: for e in errors: return e res = office.add_office(office_name, office_type) return res except Exception as e: return make_response(jsonify({'message': "something went wrong " + str(e.args[0]), 'status': 400}), 400)
ee990cb55ca819a1b4fdd2eed4346f7fca21a7c3
9,991
from pathlib import Path import click def send_message( mg: mailgun.MailGun, templates: t.Tuple[str, str], contact_name: str, contact_email: str, sender: str, reply_to: str, sponsorship_package: t.Optional[Path], dry_run: bool, ) -> bool: """ Send an individual email and report if it was successful :param mg: the MailGun instance :param templates: the text and html templates respectively :param contact_name: the name of the contact at the company :param contact_email: the email of the contact at the company :param sender: the name of the person sending the email :param reply_to: the email which replies are directed to :param sponsorship_package: an optional file for the sponsorship package :param dry_run: whether to actually send the email :return: whether the sending was successful """ text, html = templates # Format the sender email sender_email = f"{sender[0]}{sender[sender.index(' ') + 1:].replace('-', '')}@{mg.domain}".lower() # Get and format the contact email(s) pairs = getaddresses([contact_email.replace(" ", "")]) emails = [] for _, email in pairs: if email == "": logger.error(f'invalid email address found in "{contact_email}"') return False emails.append(f"{contact_name} <{email.lower()}>") # Print out the content on dry runs if dry_run: click.echo( f"To: {', '.join(emails)}\n" f"From: {sender} <{sender_email}>\n" f"Subject: WaffleHacks Sponsorship Opportunity\n" f"Reply To: {reply_to}\n\n\n" f"{text}", file=open(f"./dry-run-out/{contact_name} - {uuid4()}", "w"), ) return True try: # Open the package if necessary files = [] if sponsorship_package: files.append(sponsorship_package.open("rb")) mg.send( from_=f"{sender} <{sender_email}>", to=emails, subject="WaffleHacks Sponsorship Opportunity", text=text, html=html, files=files, headers={"Reply-To": reply_to}, ) except mailgun.MailGunException as e: logger.error(f"failed to send message: {e}") return False return True
62d03de5fa7a3c579ff2351e2c4623b3bf0e8a8e
9,992
def multi_class5_classification_dataset_sparse_labels() -> tf.data.Dataset: """ TensorFlow dataset instance with multi-class sparse labels (5 classes) :return: Multi-class sparse (labels) classification dataset """ # Create features X = tf.random.normal(shape=(100, 3)) # Create one multi-class (one hot) labels y = tf.random.uniform(minval=0, maxval=5, dtype=tf.int32, shape=(100,)) return tf.data.Dataset.from_tensor_slices((X, y))
05bd5f809e08fde21270c286351ed32b9ed2cb97
9,993
def skipIfNAN(proteinPath): """ Test if there is a NAN (not a number) in the lists """ overlapArrayWhole = None overlapArrayInterface = None overlapTApproxWhole = None overlapTApproxInterface = None try: overlapArrayWhole = np.loadtxt(proteinPath+"overlapArrayWhole.txt") except IOError: pass try: overlapArrayInterface = np.loadtxt(proteinPath+"overlapArrayInterface.txt") except IOError: pass try: overlapTApproxWhole = np.loadtxt(proteinPath+"overlapTApproxWhole.txt") except IOError: pass try: overlapTApproxInterface = np.loadtxt(proteinPath+"overlapTApproxInterface.txt") except IOError: pass if overlapArrayWhole is not None and np.isnan(overlapArrayWhole).any(): print "skipped" return True if overlapArrayInterface is not None and np.isnan(overlapArrayInterface).any(): print "skipped" return True if overlapTApproxWhole is not None and np.isnan(overlapTApproxWhole).any(): print "skipped" return True if overlapTApproxInterface is not None and np.isnan(overlapTApproxInterface).any(): print "skipped" return True return False
0993fe55879e2c965b9856435e38f3a33d803e33
9,994
import json def alignment_view(request, project_uid, alignment_group_uid): """View of a single AlignmentGroup. """ project = get_object_or_404(Project, owner=request.user.get_profile(), uid=project_uid) alignment_group = get_object_or_404(AlignmentGroup, reference_genome__project=project, uid=alignment_group_uid) # Initial javascript data. init_js_data = json.dumps({ 'project': adapt_model_instance_to_frontend(project), 'alignment_group': adapt_model_instance_to_frontend(alignment_group) }) context = { 'project': project, 'tab_root': TAB_ROOT__DATA, 'alignment_group': alignment_group, 'experiment_sample_to_alignment_list_json': adapt_model_to_frontend( ExperimentSampleToAlignment, {'alignment_group': alignment_group}), 'init_js_data': init_js_data, 'flag_genome_finishing_enabled': int(settings.FLAG__GENOME_FINISHING_ENABLED) } return render(request, 'alignment.html', context)
50f9420dca7c939524e1e243d667ddd76d7687d0
9,995
from typing import Optional async def get_latest_disclosure(compass_id: int, api: ci.CompassInterface = Depends(ci_user)) -> Optional[ci.MemberDisclosure]: """Gets the latest disclosure for the member given by `compass_id`.""" logger.debug(f"Getting /{{compass_id}}/latest-disclosure for {api.user.membership_number}") async with error_handler: return api.people.latest_disclosure(compass_id)
d5cce38ecce559b9bd9ac8306f88e32da1d2b4c6
9,996
def get_matching_string(matches, inputText, limit=0.99): """Return the matching string with all of the license IDs matched with the input license text if none matches then it returns empty string. Arguments: matches {dictionary} -- Contains the license IDs(which matched with the input text) with their respective sorensen dice score as valus. limit {float} -- limit at which we will consider the match as a perfect match. inputText {string} -- license text input by the user. Returns: string -- matching string containing the license IDs that actually matched else returns empty string. """ if not matches: matchingString = 'There is not enough confidence threshold for the text to match against the SPDX License database.' return matchingString elif 1.0 in matches.values() or all(limit < score for score in matches.values()): matchingString = 'The following license ID(s) match: ' + ", ".join(matches.keys()) return matchingString else: for licenseID in matches: listedLicense = getListedLicense(licenseID) isTextStandard = checkTextStandardLicense(listedLicense, inputText) if not isTextStandard: matchingString = 'The following license ID(s) match: ' + licenseID return matchingString else: return ''
be0fe152e530ec8244f892bfb4887b78bf89027b
9,997
def get_review(annotation): """ Get annotation's review (if exists). """ try: review = Comment.objects.get(annotation=annotation) return review except Comment.DoesNotExist: return None
89aeee2dc8811c57265ebbc30ede9cfafcd5e696
9,998
def load_grid(grdfiles, blocks, dimpart, nsigma, **kwargs): """Setup a `grid` by reading `grdfiles` on `blocks` """ ncgrid = nct.MDataset(grdfiles, blocks, dimpart, **kwargs) # dummy time, to be updated later time = ma.Marray(np.arange(10), dims=tdims) lat = nct.readmarray(ncgrid, "lat_rho", hdims) lon = nct.readmarray(ncgrid, "lon_rho", hdims) if ncgrid.halow > 0: halow = ncgrid.halow # extend lon-lat on the halow=1 to infer correctly @ f-points fill_halo(lat, halow) fill_halo(lon, halow) depth = nct.readmarray(ncgrid, "h", hdims) angle = nct.readmarray(ncgrid, "angle", hdims) mask = nct.readmarray(ncgrid, "mask_rho", hdims) pm = nct.readmarray(ncgrid, "pm", hdims) pn = nct.readmarray(ncgrid, "pn", hdims) f = nct.readmarray(ncgrid, "f", hdims) sigma = ma.Marray((np.arange(nsigma)+0.5)/nsigma, dims=vdims) coords = {"t": time, "sigma": sigma, "eta": lat, "xi": lon} return gr.Grid(coords, dims, depth=depth, angle=angle, mask=mask, pm=pm, pn=pn, f=f, **kwargs)
08d102c4a1ef163e2af4801d7ffe2b572b747a58
9,999