content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def check_in_image(paste_image_location, paste_image_size, canvas_image_size): """Checks whether the location for the pasted image is within the canvas. Args: paste_image_location: a namedtuple of utils.XY, with 'x' and 'y' coordinates of the center of the image we want to paste. paste_image_size: a namedtuple of utils.XY, with 'x' and 'y' coordinates corresponding to the size of the image we are pasting. canvas_image_size: the size of the canvas that we are pasting the image to. Returns: True if the pasted image would lie within the canvas, False otherwise. """ offset_x = int(paste_image_size.x / 2) + 1 offset_y = int(paste_image_size.y / 2) + 1 if (paste_image_location.x + offset_x > canvas_image_size or paste_image_location.x - offset_x < 1 or paste_image_location.y + offset_y > canvas_image_size or paste_image_location.y - offset_y < 1): return False return True
173ff3ca7961bff34237512990fb2f103dd7ddc9
9,700
import functools def withSEVCHK(fcn): """decorator to raise a ChannelAccessException if the wrapped ca function does not return status = dbr.ECA_NORMAL. This handles the common case of running :func:`PySEVCHK` for a function whose return value is from a corresponding libca function and whose return value should be ``dbr.ECA_NORMAL``. """ @functools.wraps(fcn) def wrapper(*args, **kwds): "withSEVCHK wrapper" status = fcn(*args, **kwds) return PySEVCHK( fcn.__name__, status) return wrapper
938468e504cb37a154c6165cc052f59995f806bc
9,701
from datetime import datetime def convert_ts_to_date(ts): """ Converts a timestamp to a date object """ # TODO: is this function necessary? return datetime.fromtimestamp(ts)
f081ef4999959b0effb0708a303932dc09a414ad
9,702
from . import ism, gradient, referencebased def available_methods(): """Get all available importance scores """ int_modules = [ism, gradient, referencebased] available_methods = {} for m in int_modules: available_methods = merge_dicts(available_methods, m.METHODS) return available_methods
3f452affeebafdae1571cfb54d6af9235871f798
9,703
import os def templates(): """ .. versionadded:: 2015.5.0 List the available LXC template scripts installed on the minion CLI Examples: .. code-block:: bash salt myminion lxc.templates """ try: template_scripts = os.listdir("/usr/share/lxc/templates") except OSError: return [] else: return [x[4:] for x in template_scripts if x.startswith("lxc-")]
4f79b1baaf2e6434a221bd3ea449d71ce2fad8b5
9,704
def is_sketch_list_empty(): """Check to see if any sketches""" return len(_CVB_SKETCH_LIST) == 0
fdaa5b5a251bde8a8b4d2e5a0c8a1d4b4b3d5f7d
9,705
def pb22(): """ Problem 22 : Names scores. We first open the file, suppress the useless ", put everything into lowercase, and split to get a list. We use merge sort to sort the list by alphabetical order (see utils.merge_sort), and then : - for each word in the list - for each character in the list we get its alphabetical rank (ord - 96, that why we needed lowercase) and we sum. """ res = 0 with open('./resources/input_pb22.txt', 'r') as f: lst = f.readline().replace('"', '').lower().split(sep=',') utils.merge_sort(lst) for i in range(len(lst)): res += sum([ord(char)-96 for char in lst[i]])*(i+1) return res
f8c08fc3c42e0889514d84e2193e10a8be1f8595
9,706
def resize(im, target_size, max_size, stride=0, interpolation = cv2.INTER_LINEAR): """ only resize input image to target size and return scale :param im: BGR image input by opencv :param target_size: one dimensional size (the short side) :param max_size: one dimensional max size (the long side) :param stride: if given, pad the image to designated stride :param interpolation: if given, using given interpolation method to resize image :return: """ im_shape = im.shape im_size_min = np.min(im_shape[0:2]) im_size_max = np.max(im_shape[0:2]) im_scale = float(target_size) / float(im_size_min) # prevent bigger axis from being more than max_size: if np.round(im_scale * im_size_max) > max_size: im_scale = float(max_size) / float(im_size_max) im = cv2.resize(im, None, None, fx=im_scale, fy=im_scale, interpolation=interpolation) if stride == 0: return im, im_scale else: # pad to product of stride im_height = int(np.ceil(im.shape[0] / float(stride)) * stride) im_width = int(np.ceil(im.shape[1] / float(stride)) * stride) im_channel = im.shape[2] padded_im = np.zeros((im_height, im_width, im_channel)) padded_im[:im.shape[0], :im.shape[1], :] = im return padded_im, im_scale
ba2238bfaeb3c3c08ad4c1b9371e87c5e0653edc
9,707
from typing import List from typing import Tuple import json def _add_qc( samples: List[Sample], namespace: str, overwrite_multiqc: bool ) -> Tuple[str, str]: """ Populates s.qc_values for each Sample object. Returns paths to MultiQC html and json files. """ multiqc_html_path = join( f'gs://cpg-{NAGIM_PROJ_ID}-{namespace}-web/qc/multiqc.html' ) multiqc_json_path = join( f'gs://cpg-{NAGIM_PROJ_ID}-{namespace}-analysis/qc/multiqc_data.json' ) if 'QC' in SOURCES_TO_PROCESS: logger.info('Running MultiQC on QC files') parsed_json_fpath = _run_multiqc( samples, multiqc_html_path, multiqc_json_path, tmp_bucket=f'gs://cpg-{NAGIM_PROJ_ID}-{namespace}-tmp/qc', namespace=namespace, overwrite=overwrite_multiqc, ) gfs = gcsfs.GCSFileSystem() with gfs.open(parsed_json_fpath) as f: row_by_sample = json.load(f) for s in samples: if s.nagim_id in row_by_sample: s.qc_values = row_by_sample[s.nagim_id] return multiqc_html_path, multiqc_json_path
8c93cd7c08c3e392b9f79956189295cb5c486048
9,708
def oscillAnglesOfHKLs(hkls, chi, rMat_c, bMat, wavelength, vInv=None, beamVec=bVec_ref, etaVec=eta_ref): """ Takes a list of unit reciprocal lattice vectors in crystal frame to the specified detector-relative frame, subject to the conditions: 1) the reciprocal lattice vector must be able to satisfy a bragg condition 2) the associated diffracted beam must intersect the detector plane Required Arguments: hkls -- (n, 3) ndarray of n reciprocal lattice vectors in the CRYSTAL FRAME chi -- float representing the inclination angle of the oscillation axis (std coords) rMat_c -- (3, 3) ndarray, the COB taking CRYSTAL FRAME components to SAMPLE FRAME bMat -- (3, 3) ndarray, the COB taking RECIPROCAL LATTICE components to CRYSTAL FRAME wavelength -- float representing the x-ray wavelength in Angstroms Optional Keyword Arguments: beamVec -- (3, 1) mdarray containing the incident beam direction components in the LAB FRAME etaVec -- (3, 1) mdarray containing the reference azimuth direction components in the LAB FRAME Outputs: ome0 -- (n, 3) ndarray containing the feasible (tTh, eta, ome) triplets for each input hkl (first solution) ome1 -- (n, 3) ndarray containing the feasible (tTh, eta, ome) triplets for each input hkl (second solution) Notes: ------------------------------------------------------------------------ The reciprocal lattice vector, G, will satisfy the the Bragg condition when: b.T * G / ||G|| = -sin(theta) where b is the incident beam direction (k_i) and theta is the Bragg angle consistent with G and the specified wavelength. The components of G in the lab frame in this case are obtained using the crystal orientation, Rc, and the single-parameter oscillation matrix, Rs(ome): Rs(ome) * Rc * G / ||G|| The equation above can be rearranged to yield an expression of the form: a*sin(ome) + b*cos(ome) = c which is solved using the relation: a*sin(x) + b*cos(x) = sqrt(a**2 + b**2) * sin(x + alpha) --> sin(x + alpha) = c / sqrt(a**2 + b**2) where: alpha = atan2(b, a) The solutions are: / | arcsin(c / sqrt(a**2 + b**2)) - alpha x = < | pi - arcsin(c / sqrt(a**2 + b**2)) - alpha \ There is a double root in the case the reflection is tangent to the Debye-Scherrer cone (c**2 = a**2 + b**2), and no solution if the Laue condition cannot be satisfied (filled with NaNs in the results array here) """ hkls = np.array(hkls, dtype=float, order='C') if vInv is None: vInv = np.ascontiguousarray(vInv_ref.flatten()) else: vInv = np.ascontiguousarray(vInv.flatten()) beamVec = np.ascontiguousarray(beamVec.flatten()) etaVec = np.ascontiguousarray(etaVec.flatten()) bMat = np.ascontiguousarray(bMat) return _transforms_CAPI.oscillAnglesOfHKLs( hkls, chi, rMat_c, bMat, wavelength, vInv, beamVec, etaVec )
37d17027fcaa15613188f0be61b0df4c5965a19c
9,709
def srfFaultSurfaceExtract(SRFfile): """ Generate fault surface from SRF file convention Following the Graves' SRF convention used in BBP and CyberShake """ lines = open( SRFfile, 'r' ).readlines() Nseg = int(lines[1].strip().split()[1]) # loop over segments to get (Nrow,Ncol) of each segments # fault surface for each segment will be read latter srfFaultSurface = {} srfFaultSurface['segments'] = {} dims = [] dips = [] ztors = [] for iseg in xrange( Nseg ): il0 = 2*iseg + 2 # fault geometry info spl = lines[il0].strip().split() lon0, lat0, L, W, Ncol, Nrow = np.array( spl, 'f' ) Ncol, Nrow = int(Ncol), int(Nrow) dims.append( [Ncol,Nrow] ) il1 = il0 + 1 # focal mechanism and hypocenter info spl = lines[il1].strip().split() strike, dip, ztor, hypoAS, hypoDD = np.array(spl,'f') dips.append(dip) # will be used to get the average dip angle (over segments) ztors.append(ztor) srfFaultSurface['segments']['dims'] = dims srfFaultSurface['segments']['dips'] = dips srfFaultSurface['segments']['ztors'] = ztors il0 = 2*(Nseg+1) Npoints = int(lines[il0].strip().split()[1]) il0 = il0 + 1 # jump to the data block (for each segments, there are a data block) locs = []; rakes = [] while il0 < len(lines): spl = lines[il0].strip().split() lon, lat, dep, strike, dip, Area, Tinit, dt = np.array( spl, 'f' ) locs.append( [lon,lat,dep] ) il0 = il0 + 1 spl = lines[il0].strip().split() rake, slipA_AlongRake, Nt = np.array( spl[:3], 'f' ) rakes.append( rake ) # will be used to get average rake (over points) dl = int(Nt/6) + (Nt%6!=0)*1 il0 = il0 + dl + 1 # import (similar to the segments jump) ... Nrow1 = 0; Ncol1 = 0 for iseg in xrange( Nseg ): Nrow1 += dims[iseg][1] Ncol1 += dims[iseg][0] FaultGeom = np.array( locs ).reshape( (Nrow1, Ncol1, 3) ) srfFaultSurface['FaultGeom'] = FaultGeom srfFaultSurface['rakes'] = rakes return srfFaultSurface
6e1197b76b88f92e0d61bee87d57910660192346
9,710
def _to_response( uploaded_protocol: UploadedProtocol, ) -> route_models.ProtocolResponseAttributes: """Create ProtocolResponse from an UploadedProtocol""" meta = uploaded_protocol.data analysis_result = uploaded_protocol.data.analysis_result return route_models.ProtocolResponseAttributes( id=meta.identifier, protocolFile=route_models.FileAttributes( basename=meta.contents.protocol_file.path.name ), supportFiles=[ route_models.FileAttributes(basename=s.path.name) for s in meta.contents.support_files ], lastModifiedAt=meta.last_modified_at, createdAt=meta.created_at, metadata=analysis_result.meta, requiredEquipment=analysis_result.required_equipment, errors=analysis_result.errors, )
1594a90ce1351ad33961819201409167c0f462a7
9,711
def has_valid_chars(token: str) -> bool: """ decides whether this token consists of a reasonable character mix. :param token: the token to inspect :return: True, iff the character mix is considered "reasonable" """ hits = 0 # everything that is not alphanum or '-' or '.' limit = int(len(token) / 10) for c in token: if not (c.isalnum() or c == '.' or c == '-' or c == ' '): hits += 1 if hits > limit: return False return True
b9b65f1bfd3529275847f1d6e227d57dfebea8a8
9,712
import logging def sqlalchemy_engine(args, url): """engine constructor""" environ['PATH'] = args.ora_path # we have to point to oracle client directory url = f'oracle://{args.user}:{pswd(args.host, args.user)}@{args.host}/{args.sid}' logging.info(url) return create_engine(url)
06a670eccf96997c23a9eb5125925db5be33e978
9,713
import os import multiprocessing def cpu_count(): """ Returns the default number of slave processes to be spawned. """ num = os.getenv("OMP_NUM_THREADS") if num is None: num = os.getenv("PBS_NUM_PPN") try: return int(num) except: return multiprocessing.cpu_count()
57dce269531835175e93f6b974be58ae08e2cbd8
9,714
def shortcut_layer(name: str, shortcut, inputs): """ Creates the typical residual block architecture. Residual blocks are useful for training very deep convolutional neural networks because they act as gradient 'highways' that enable the gradient to flow back into the first few initial convolutional layers. Without residual blocks, the gradient tends to disappear at those first inital layers and the model has a difficult time converging. Parameters ---------- name : string The name of the tensor to be used in TensorBoard. shortcut: tensor The output of a previous convolutional layer inputs : tensor The output of the immediately previous convolutional layer. Returns ------- inputs : tensor The resulting tensor. new_shortcut : tensor A new shortcut for a future residual block to connect to. """ with tf.variable_scope(name): inputs += shortcut new_shortcut = inputs return inputs, new_shortcut
b680df8c6415d256ee98d292d491fc30a6a4bb4a
9,715
def event_message(iden, event): """Return an event message.""" return {"id": iden, "type": "event", "event": event}
bfc3fca17a9ad8d3767853c82c5453328d4c07e3
9,716
def match(command): """Match function copied from cd_mkdir.py""" return ( command.script.startswith('cd ') and any(( 'no such file or directory' in command.output.lower(), 'cd: can\'t cd to' in command.output.lower(), 'does not exist' in command.output.lower() )))
e49540995f26b40b4c52879814fe905f35b1c8fd
9,717
def db_remove_game(game: str, channel: str) -> bool: """Removes a game from the database, for a specific channel """ if db_check_game_exists(game, channel): cursor.execute( "DELETE FROM deathcount " "WHERE channel=(?) AND game=(?)", (channel.lower(), game.lower()) ) connection.commit() return True else: return False
536a48201274767f834443d7b1c279c2c5c15e14
9,718
def get_unique_id(): """Return an ID that will be unique over the current segmentation :return: unique_id :rtype: int """ global UNIQUE_ID UNIQUE_ID = UNIQUE_ID + 1 return UNIQUE_ID
e55be0d1619f3435d0b6b76a3da2661c1349213b
9,719
def logout_route(): """logout route""" logout_user() return redirect(url_for('app.index_route'))
097644c147003be394a886c4b796b57e8cc775c7
9,720
import argparse def setup_command_line_parser(): """ Sets up command line argument parser. Additional arguments could be added easily. For example if the version needed to be passed in with -v you could add it as a positional argument like so: parser.add_argument("-v", "--version", help="Current version of application" """ parser = argparse.ArgumentParser() parser.add_argument("-d", "--debug", action='store_true', help="Run script in debug mode") args = parser.parse_args() return parser
6625daeec98cc06b319aab52a5757195b89c88eb
9,721
def get_repo_name( name: str, in_mode: str, include_host_name: bool = False ) -> str: """ Return the full/short name of a Git repo based on the other name. :param in_mode: the values `full_name` or `short_name` determine how to interpret `name` """ repo_map = get_complete_repo_map(in_mode, include_host_name) dbg.dassert_in( name, repo_map, "Invalid name='%s' for in_mode='%s'", name, in_mode ) ret = repo_map[name] return ret
3eebb75487f5eb5c8c8eb7a5a7a46c92dcf4c304
9,722
def binary_search_hi(a,d,lo,hi): """ Created for leetcode prob 34 """ if d!=a[lo]: raise Exception("d should be a[lo]") while hi>lo: mid=(lo+hi)//2+1 if a[mid]==d: lo=mid else: hi=mid-1 if a[hi]==d: return hi else: return lo
4ef9ad63fb83bbb1cb1a9f7d4a3ea4a08ad40d8d
9,723
def check_subscription(func): """Checks if the user signed up for a paid subscription """ @wraps(func) def wrapper(*args, **kwargs): if current_user.is_authenticated(): subscription = current_user.subscription if not subscription.active and subscription.plan.name != 'Free': return redirect(url_for('account.subscribe', plan_id=subscription.plan_id)) return func(*args, **kwargs) return wrapper
853b16cc4a05742f2bd17fd159ac570f92fdb16c
9,724
def spikesbetter(P): """ same as the custom cython function _dice6, a python implementation for easy use on other computers does spin selection procedure based on given array of probabilities -------------------------------------------------------------------- Inputs: P: probability of silence array. shape (loop, xmax, N) ------------------------------------------------------------------- Output: array of spin values in {0,1} with shape (loop, xmax, N) """ spikes=np.zeros(P.shape) for i in range(P.shape[0]): for j in range(P.shape[1]): for k in range(P.shape[2]): if np.random.rand() > P[i,j,k]: spikes[i,j,k] += 1 return spikes
75fcff7e53ccbd392361faf46f2c4f171f85e724
9,725
def t3x1_y(y): """ Translation in y. """ return t3x1(0.0, y, 0.0)
26d99e8a5b5ccd676d5488a8e8aafcd76d5272a5
9,726
def perm_data_time(x, indices): """ Permute data matrix, i.e. exchange node ids, so that binary unions form the clustering tree. """ if indices is None: return x N, M, Q = x.shape Mnew = len(indices) assert Mnew >= M xnew = np.empty((N, Mnew, Q)) for i,j in enumerate(indices): # Existing vertex, i.e. real data. if j < M: xnew[:, i, :] = x[:, j, :] # Fake vertex because of singeltons. # They will stay 0 so that max pooling chooses the singelton. # Or -infty ? else: xnew[:, i, :] = np.zeros((N, Q)) return xnew
ed1201d34cb35debe7653601d0048f099e32db16
9,727
def check_chromium() -> bool: """Check if chromium is placed at correct path.""" return chromium_executable().exists()
21b60e3070ba707ae46e53f68f31ef8e719aed76
9,728
from typing import Dict from typing import Optional def draw_lane(image, extracted_lane: Dict = {}, output_path: Optional[str] = None): """render extracted lane""" # TODO: refactor separate concern moving out the saving to a file lane_annotation_image = image.copy() if "right" in extracted_lane: lane_annotation_image = draw_lines( lane_annotation_image, [extracted_lane["right"]], color=(0, 255, 0), thickness=10) # right side in green if "left" in extracted_lane: lane_annotation_image = draw_lines( lane_annotation_image, [extracted_lane["left"]], color=(255, 0, 0), thickness=10) # left in red output_image = weighted_img(lane_annotation_image, image, .5, .5) save_status = None if output_path: save_status = plt.imsave( output_path, output_image ) # TODO: use cv2.imsave instead return output_image
dd6891fc6c0fc0509084c9b2e063fb46c589d039
9,729
def plot_edges(lattice : Lattice, labels : np.ndarray = 0, color_scheme : np.ndarray = ['k','r','b'], subset : np.ndarray = slice(None, None, None), directions : np.ndarray = None, ax = None, arrow_head_length = None, **kwargs): """ Plot the edges of a lattice with optional arrows. This uses matplotlib.collections.LineColection under the hood and you may pass in any keyword to be passed along to it. Note that arrays for alpha or linestyle don't currently work since they would have to be tiled correctly, and are not currently. If directions is not none, arrows are plotted from the first vertex to the second unless direction[i] == -1 :param lattice: The lattice to use. :type lattice: Lattice :param labels: int or array of ints specifying the colors, defaults to 0. May be the same size as the vertices or of the subset. :type labels: np.ndarray, optional :param color_scheme: List or array of colors, defaults to ['black', ] :type color_scheme: np.ndarray, optional :param subset: An array of indices, boolean array or slice that selects which elements to plot, defaults to plotting all. :type subset: np.ndarray, optional :param directions: An array of arrow directions +/-1, defaults to None. :type directions: np.ndarray, optional :param ax: The axis to plot on, defaults to plt.gca() :type subset: axis, optional """ labels, colors, color_scheme, subset, ax, transform = _process_plot_args(lattice, ax, labels, color_scheme, subset, lattice.n_edges) edge_colors = np.tile(colors, 9) edge_vertices = lattice.vertices.positions[lattice.edges.indices[subset]] edge_vertices[:, 0, :] -= lattice.edges.crossing[subset] unit_cell_vectors = generate_point_array(np.array([0,0]), padding = 1)[:, None, None, :] #shape (9, 2) -> (9, 1, 1, 2) replicated_edges = edge_vertices[None,...] + unit_cell_vectors #shape (n_edges, 2, 2) -> (9, n_edges, 2, 2) replicated_edges = replicated_edges.reshape((-1,2,2)) #shape (9, n_edges, 2, 2) -> (9*n_edges, 2, 2) vis = _lines_cross_unit_cell(replicated_edges) | _line_fully_in_unit_cell(replicated_edges) # print(edge_colors.shape, replicated_edges.shape, vis.shape) lc = LineCollection(replicated_edges[vis, ...], colors = edge_colors[vis], transform = transform, path_effects=[path_effects.Stroke(capstyle="round")], **kwargs) ax.add_collection(lc) if directions is not None: directions = _broadcast_args(directions, subset, lattice.n_edges, dtype = int) directions = np.tile(directions, 9) _plot_edge_arrows(ax, edge_colors[vis],replicated_edges[vis, ...],directions[vis], lc, lattice.unit_cell, arrow_head_length = arrow_head_length) return ax
8f4b6ef68b6eae62637a772621c68ecb0acc1a55
9,730
def menu_items_api(restaurant_id): """Route handler for api endpoint retreiving menu items for a restaurant. Args: restaurant_id: An int representing the id of the restaurant whose menu items are to be retrieved Returns: response: A json object containing all menu items for a given restaurant """ menu_items = ( session.query(MenuItem).filter_by(restaurant_id=restaurant_id).all() ) response = jsonify( menu_items=[menu_item.serialize for menu_item in menu_items] ) return response
472adaa25cd588246aef9f2b9a621723df399503
9,731
import logging import tqdm def run(indata): """indata: event detection DataArray or DataSet""" if isinstance(indata, xr.DataArray): events = indata else: events = indata["Event_ID"] logging.info("events array defined.") # turn events into time x space by stacking lat & lon: events_stacked = events.stack(z=("lat", "lon")) logging.info("Stacked events.") # events_stacked is [time, z] # make sure to only have integers for the event IDs: zint = events_stacked.values.astype(int) logging.info(f"Convert events to integers. Result is shape {zint.shape}.") # should still be [time, z] mx = np.max(zint) logging.info(f"Max number of events is {mx}; output dimesion size (add one for zeros).") ids, ndx, dur = theloop(zint) logging.info("Loop done.") logging.info(f"kind of ids: {type(ids)}\n ndx: {type(ndx)}, shape: {ndx.shape}\n dur: {type(dur)}") # use ndx to go back to 'time' and construct array of datetimes dates = np.full(ndx.shape, np.datetime64('NaT'), dtype='datetime64[D]') # fill value should be numpy's "not a time" value. (what if time is in cftime, though?); dtype needs to be set with correct unit (D = days) for loc in tqdm(np.arange(ndx.shape[0]), desc="Dates Loop"): last_event = ids[loc, :].max() dates[loc, 0:last_event] = indata.time[ndx[loc, 0:last_event]] # loc: int; dates: datetime; ndx: int logging.info("Finished the initial dates reconstruction.") # dates[:, 1:] = np.ma.masked_where(ndx[:, 1:] == 0, dates[:, 1:], copy=False) # mask where eventID == 0 # Convert resulting numpy arrays to Xarray DataArrays ids_da = xr.DataArray(ids, coords={"z":events_stacked['z'], 'events':np.arange(1,mx+2)}, dims=("z", "events")) ndx_da = xr.DataArray(ndx, coords={"z":events_stacked['z'], 'events':np.arange(1,mx+2)}, dims=("z", "events")) cnt_da = xr.DataArray(dur, coords={"z":events_stacked['z'], 'events':np.arange(1,mx+2)}, dims=("z", "events")) dates_da = xr.DataArray(dates, coords={"z":events_stacked['z'], 'events':np.arange(1,mx+2)}, dims=("z", "events")) ids_da.name = "Event_ID" ndx_da.name = "initial_index" cnt_da.name = "duration" dates_da.name = 'initial_date' logging.info("DataArray are made") ids_da = ids_da.unstack() ndx_da = ndx_da.unstack() cnt_da = cnt_da.unstack() dates_da = dates_da.unstack() logging.info("Unstacked.") return xr.merge([ids_da, ndx_da, cnt_da, dates_da])
817bb329638adb39950fac3b3f10d81938515f1a
9,732
def format_trace_id(trace_id: int) -> str: """Format the trace id according to b3 specification.""" return format(trace_id, "032x")
2c0541b4a25d85ae990e68e00dd75012aa1ced60
9,733
def get_count_name(df): """Indicate if a person has a 'Name' Parameters ---------- df : panda dataframe Returns ------- Categorical unique code """ # Feature that tells whether a passenger had a cabin on the Titanic df['Words_Count'] = df['Name'].apply(lambda x: len(x.split())).astype(int) return df
c51dfbcc025908243f20d10f4faa498fa068d4f7
9,734
from django.contrib.auth.models import User def register_action(request): """ 从这个django.contrib/auth.models 库里倒入里User方法。(其实User是orm方式操作用户表的实例) 然后我们直接用User.objects.create_user方法生成一个用户,参数为用户名和密码。然后保存这个生成的用户 就是注册成功了 但是如果用户表中已存在这个用户名,那么,这个生成语句就会报错。所以我们用try来捕获这个异常,如果发送错误那就是“用户已经存在”,如实给用户返回这句话。如果没问题,那么就返回 注册成功 :param request: :return: """ u_name = request.GET['username'] p_word = request.GET['password'] # 开始 联通 django 用户库,查看用户名密码是否正确 try: user = User.objects.create_user(username=u_name, password=p_word) user.save() return HttpResponse('注册成功') except: return HttpResponse('注册失败~用户名好像已经存在了~')
4e0d4cdd6ba3547846738b6483ba242adacb71e0
9,735
from typing import Callable from typing import Any import asyncio import functools async def run_blocking_io(func: Callable, *args, **kwargs) -> Any: """|coro| Run some blocking function in an event loop. If there is a running loop, ``'func'`` is executed in it. Otherwise, a new loop is being created and closed at the end of the execution. Example: .. code-block:: python3 def make_image(): ... # long code of creating an image # somewhere in an async function: await run_blocking_io(make_image) """ loop = acquire_loop(running=True) asyncio.set_event_loop(loop) return await loop.run_in_executor(None, functools.partial(func, *args, **kwargs))
e277d1fca909f26d0226c3085fe0e0fbf03bf257
9,736
def parse_config(cfg, section): """ parse config data structure, return data of required section """ def is_valid_section(s): valid_sections = ["info", "project", "variables", "refdata"] return s in valid_sections cfg_data = None if is_valid_section(section): try: cfg_data = cfg[section] except KeyError: log.critical(cfg.keys()) log.critical("Section <%s> not found in config" % section) exit(1) else: log.critical("Section <%s> not a valid name" % section) exit(1) return cfg_data
72d36dfaf93e17da166cac0c9b786da29107db3e
9,737
from hmmlearn import hmm import collections def _predict_states(freqs): """Use frequencies to predict states across a chromosome. Normalize so heterozygote blocks are assigned state 0 and homozygous are assigned state 1. """ freqs = np.column_stack([np.array(freqs)]) model = hmm.GaussianHMM(2, covariance_type="full") model.fit(freqs) states = model.predict(freqs) freqs_by_state = collections.defaultdict(list) for i, state in enumerate(states): freqs_by_state[state].append(freqs[i]) if np.median(freqs_by_state[0]) > np.median(freqs_by_state[1]): states = [0 if s == 1 else 1 for s in states] return states
be1b1b540b644dc9f412a3d648076a36369e9aae
9,738
def tp(*args) -> np.ndarray: """Tensor product. Recursively calls `np.tensordot(a, b, 0)` for argument list `args = [a0, a1, a2, ...]`, yielding, e.g., tp(a0, a1, a2) = tp(tp(a0, a1), a2) Parameters ---------- args : sequence Sequence of tensors Returns ------- np.ndarray Tensor product Examples -------- >>> a = np.random.rand(2, 3, 4) ... b = np.random.rand(7, 8, 9) ... c = tp(a, b) # c_ijkmno = a_ijk b_mno ... c.shape == (2, 3, 4, 7, 8, 9) """ temp = args[0] for i in range(1, len(args)): temp = np.tensordot(temp, args[i], 0) return temp
c02b74d79d484e7335387e568fda723fcf3851b8
9,739
def aws_aws_page(): """main endpoint""" form = GenericFormTemplate() return render_template( 'aws_page.html', form=form, text=util.get_text(module_path(), config.language), options=g.user.get_options(), )
2605838a948e3b58fe7c669a388a859144c329c6
9,740
import subprocess def popen_program(cmd, minimized=False, pipe=False, shell=False, **kwargs): """Run program and return a subprocess.Popen object.""" LOG.debug( 'cmd: %s, minimized: %s, pipe: %s, shell: %s', cmd, minimized, pipe, shell, ) LOG.debug('kwargs: %s', kwargs) cmd_kwargs = build_cmd_kwargs( cmd, minimized=minimized, pipe=pipe, shell=shell, **kwargs) try: # pylint: disable=consider-using-with proc = subprocess.Popen(**cmd_kwargs) except FileNotFoundError: LOG.error('Command not found: %s', cmd) raise LOG.debug('proc: %s', proc) # Done return proc
fe1e3d508dbd8ed086ea91f538a48ce0a9aeb69b
9,741
def precompute(instr): """ Args: instr: Returns: """ qecc = instr.qecc if qecc.name == '4.4.4.4 Surface Code' and qecc.circuit_compiler.name == 'Check2Circuits': precomputed_data = code_surface4444(instr) elif qecc.name == 'Medial 4.4.4.4 Surface Code' and qecc.circuit_compiler.name == 'Check2Circuits': precomputed_data = code_surface4444medial(instr) else: raise Exception('Can only handle the non-medial surface code!') return precomputed_data
789e1f1f5e37f118f791a5c72c1c0dd7df2cf745
9,742
import re def remove_url(txt): """Replace URLs found in a text string with nothing (i.e. it will remove the URL from the string). Parameters ---------- txt : string A text string that you want to parse and remove urls. Returns ------- The same txt string with url's removed. """ return " ".join(re.sub("([^0-9A-Za-z \t])|(\w+:\/\/\S+)", "", txt).split())
8d1b8b89cb65ca7761c093dc388d1f19729137e7
9,743
def use_database(fn): """ Ensure that the correct database context is used for the wrapped function. """ @wraps(fn) def inner(self, *args, **kwargs): with self.database.bind_ctx(self.models): return fn(self, *args, **kwargs) return inner
71a42974ce2413c0b24863be9397252bcd06f22e
9,744
import imaplib, email, email.header def getImapMailboxEmail(server, user, password, index, path="INBOX", searchSpec=None): """ imap_headers(server, user, password, index, path="INBOX", searchSpec=None) Load specified email header from an imap server. index starts from 0. Example WITH RECURSIVE cnt(x) AS (VALUES(1) UNION ALL SELECT x+1 FROM cnt WHERE x<imap_count("127.0.0.1","jj","pass","test")) select x-1 as num, imap_email("127.0.0.1","jj","pass",x-1,"test") as message FROM cnt; See also https://gist.github.com/robulouski/7441883 https://oracle-base.com/articles/10g/utl_mail-send-email-from-the-oracle-database https://docs.python.org/3/library/sqlite3.html#sqlite3.Connection.create_aggregate """ try: with imaplib.IMAP4_SSL(server) as M: M.login(user,password) typ, data=M.select(path) if(data[0]==b'0'): print ("*SELECT*FAILED",path,typ,data) return "ERR NO MAILBOX:"+path if searchSpec== None: typ, data = M.search(None, 'ALL') else: typ, data = M.search(None, searchSpec) if len(data[0].split()) >0: id2fetch= (data[0].split())[index] typ, data = M.fetch(id2fetch, '(RFC822)') msg_return=data[0][1] else: msg_return=None M.logout() return msg_return except Exception as e: raise SqliteFunctionException( e )
c04569870f9528539e958cc114c11ad80c36800c
9,745
from .shelf import ShelfStorage import redis from .redisobjectstore import RedisObjectStore import os def create_storage(uri=None): """factory to create storage based on `uri`, the ANYVAR_STORAGE_URI environment value, or in-memory storage. The URI format is one of the following: * in-memory dictionary: `memory:` Remaining URI elements ignored, if provided * Python shelf (dbm) persistence `file:///full/path/to/filename.db` `path/to/filename` The `file` scheme permits only full paths. When scheme is not provided, the path may be absolute or relative. * Redis URI `redis://[[username]:[password]]@localhost:6379/0` `rediss://[[username]:[password]]@localhost:6379/0` `unix://[[username]:[password]]@/path/to/socket.sock?db=0` The URIs are passed as-is to `redis.Redis.from_url()` """ uri = uri or os.environ.get("ANYVAR_STORAGE_URI", default_storage_uri) parsed_uri = urlparse(uri) if parsed_uri.scheme == "memory": _logger.warning("Using memory storage; stored data will be discarded when process exits") storage = dict() elif parsed_uri.scheme in ("", "file"): storage = ShelfStorage(parsed_uri.path) elif parsed_uri.scheme == "redis": storage = RedisObjectStore(redis.Redis.from_url(uri)) else: raise ValueError(f"URI scheme {parsed_uri.scheme} is not implemented") _logger.debug(f"create_storage: {uri} → {storage}") return storage
34a6fa22b7f8fd1770aeae28c92f222d2160c901
9,746
def nmatches_mem(txt, pat, t, p, mem): """Find number of matches with recursion + memoization using a dictionary (this solution will also crash when recursion limit is reached) nmatches_mem(text, pattern, len(text), len(pattern), {}) """ if (t,p) in mem: return mem[t, p] if p==0: return 1 if t==0: return 0 matches = 0 for i in range(t, 0, -1): if txt[t-i] == pat[p-1]: matches += nmatches_mem(txt, pat, t-i, p-1, mem) mem[t, p] = matches return matches
5b6a10328ca876481fb9b8425bde2442f603d7e1
9,747
import os import subprocess def get_size_stats(args): """ Calculate size for each of the iterator. It recusively iterate though a directory to find a specific extension file and report their size in preferred format. """ lang_size_dict = {} for (dirpath, dirnames, filenames) in os.walk(args.data_folder_path): for filename in filenames: if not (filename.startswith(args.name_prefix) and filename.endswith(args.extension_name)): continue full_file_path = os.path.join(dirpath, filename) lang_size = subprocess.check_output("du -s {}".format(full_file_path), shell=True) lang_size = int(lang_size.decode("utf-8").split("\t")[0]) if args.size_format == 'KB': _conv = 1 elif args.size_format == 'MB': _conv = 1024 elif args.size_format == 'GB': _conv = 1024 * 1024 elif args.size_format == 'TB': _conv = 1024 * 1024 * 1024 lang_size_ = round(lang_size / float(_conv), 2) lang_size_dict[full_file_path] = lang_size_ return lang_size_dict
11f70bf097fbf39e1b928e73413b8356e2b4986b
9,748
def data_get(): """ Get shared data from this server's local store. """ consistency = request.json["consistency"] name = request.json["name"] field = request.json["field"] value = "" error = "ok" if consistency == "strict": store = globalvars.get_data_store(globalvars.STRICT_CENTRALIZED) with store_lock: try: value = store.get(name, field) except AttributeError as ex: error = str(ex) res = { "value" : value, "error" : error, } return jsonify(res)
c8a56b4171109800f4818d59aaf2b3bd9eed1b78
9,749
def pad_sequences(sequences, maxlen=None, value=0): """ pad sequences (num_samples, num_timesteps) to same length """ if maxlen is None: maxlen = max(len(x) for x in sequences) outputs = [] for x in sequences: x = x[:maxlen] pad_range = (0, maxlen - len(x)) x = np.pad(array=x, pad_width=pad_range, mode='constant', constant_values=value) outputs.append(x) return np.array(outputs)
29204f0f47150f6fac0761876b8045f680032da5
9,750
import traceback import sys def reset_password(): """ Three main states of this controller 1. by default just show the email field 2. in a second step, also show the field for the code and new password 3. in a third step, if code is correct, redirect to login :return: template to be rendered """ form = flask.request.form email = form.get("email", "") code = form.get("code", "") password = form.get("password", "") if email and not code: #generate_code_and_send_email(email) account_management.request_code(email) flash("Now check your inbox for a one-time code") return flask.render_template("account/reset_pass.html", code_active=True, email=email) if email and code and password: try: account_management.reset_password(code, email, password) flash("Password was reset successfully!") return flask.redirect('login') except APIException as e: flash(e.message) traceback.print_exc(file=sys.stdout) return flask.render_template("account/reset_pass.html", message=True) flash("This will be fast. We promise.") return flask.render_template("account/reset_pass.html")
aa11367a202b51f2e0c1a844931fea0561fea0e2
9,751
def download(request, path): """ Downloads a file. This is inspired by django.views.static.serve. ?disposition={attachment, inline} """ decoded_path = urllib.unquote(path) if path != decoded_path: path = decoded_path if not SHOW_DOWNLOAD_BUTTON.get(): return serve_403_error(request) if not request.fs.exists(path): raise Http404(_("File not found: %(path)s.") % {'path': escape(path)}) if not request.fs.isfile(path): raise PopupException(_("'%(path)s' is not a file.") % {'path': path}) content_type = mimetypes.guess_type(path)[0] or 'application/octet-stream' stats = request.fs.stats(path) mtime = stats['mtime'] size = stats['size'] if not was_modified_since(request.META.get('HTTP_IF_MODIFIED_SINCE'), mtime, size): return HttpResponseNotModified() # TODO(philip): Ideally a with statement would protect from leaks, but tricky to do here. fh = request.fs.open(path) # Verify read permissions on file first try: request.fs.read(path, offset=0, length=1) except WebHdfsException, e: if e.code == 403: raise PopupException(_('User %s is not authorized to download file at path "%s"') % (request.user.username, path)) else: raise PopupException(_('Failed to download file at path "%s": %s') % (path, e)) if REDIRECT_DOWNLOAD.get() and hasattr(fh, 'read_url'): response = HttpResponseRedirect(fh.read_url()) setattr(response, 'redirect_override', True) else: response = StreamingHttpResponse(file_reader(fh), content_type=content_type) response["Last-Modified"] = http_date(stats['mtime']) response["Content-Length"] = stats['size'] response['Content-Disposition'] = request.GET.get('disposition', 'attachment; filename="' + stats['name'] + '"') if _can_inline_display(path) else 'attachment' request.audit = { 'operation': 'DOWNLOAD', 'operationText': 'User %s downloaded file %s with size: %d bytes' % (request.user.username, path, stats['size']), 'allowed': True } return response
d2754b9b243e057cda2b20760af050bf908a3763
9,752
import random def spacegroup_a_to_spacegroup_b(atoms, spgroup_a, spgroup_b, target_b_contribution, create_replicas_by, min_nb_atoms=None, target_nb_atoms=None, max_diff_nb_atoms=None, radius=None, target_replicas=None, max_rel_error=0.01, **kwargs): """Remove central atoms for bcc to sc""" # get number of replicas replicas = nb_of_replicas(atoms, create_replicas_by=create_replicas_by, min_nb_atoms=min_nb_atoms, target_nb_atoms=target_nb_atoms, max_diff_nb_atoms=max_diff_nb_atoms, radius=radius, target_replicas=target_replicas) atoms = standardize_cell(atoms, **kwargs) # make a spgroup_a-type supercell before removing atoms atoms_a = atoms.copy() atoms_a = atoms_a * replicas # check initial spacegroup mg_structure = AseAtomsAdaptor.get_structure(atoms) finder = SpacegroupAnalyzer(mg_structure) init_spgroup = finder.get_space_group_symbol() if init_spgroup == spgroup_a: logger.debug('Initial spacegroup is {0} as expected'.format(init_spgroup)) else: raise Exception("Initial spacegroup is {0} " "while the expected spacegroup is {1}".format(init_spgroup, spgroup_a)) # initially the mix structure has all the spgroup_a atoms atoms_mix = atoms_a.copy() idx_remove_list = [] TOL = 1e-03 if spgroup_a == 'Im-3m' and spgroup_b == 'Pm-3m': # from bcc to simple cubic for idx in range(atoms.get_number_of_atoms()): # deleting all atoms from spgroup_a to go in spgroup_b # removing the atoms that are in position (0.0, 0.0, 0.0) if (abs(atoms.positions[idx][0]) <= TOL and abs(atoms.positions[idx][1]) <= TOL and abs( atoms.positions[idx][2]) <= TOL): pass else: idx_remove_list.append(idx) elif spgroup_a == 'Fd-3m' and spgroup_b == 'Fm-3m': # from diamond to fcc for idx in range(atoms.get_number_of_atoms()): # deleting all atoms from spgroup_a to go in spgroup_b # removing the atoms that are "inside" the cube # keep only the atoms that have one coordinate which is # 1/2 of the cell length or position (0.0, 0.0, 0.0) cell_length = atoms.get_cell_lengths_and_angles()[0] if abs(atoms.positions[idx][0] - cell_length / 2.0) <= TOL or abs( atoms.positions[idx][1] - cell_length / 2.0) <= TOL or abs( atoms.positions[idx][2] - cell_length / 2.0) <= TOL: pass elif (abs(atoms.positions[idx][0]) <= TOL and abs(atoms.positions[idx][1]) <= TOL and abs( atoms.positions[idx][2]) <= TOL): pass else: idx_remove_list.append(idx) else: raise NotImplementedError("Transformation from spacegroup {0} to spacegroup {1}" "is not implemented".format(spgroup_a, spgroup_b)) # delete all the indices added to the list del atoms[[atom.index for atom in atoms if atom.index in idx_remove_list]] atoms_b = atoms * replicas # check final spacegroup mg_structure = AseAtomsAdaptor.get_structure(atoms_b) finder = SpacegroupAnalyzer(mg_structure) final_spgroup = finder.get_space_group_symbol() if final_spgroup == spgroup_b: logger.debug('Final spacegroup is {0} as expected'.format(final_spgroup)) else: logger.debug("Final spacegroup is {0}".format(final_spgroup)) logger.debug("Expected final spacegroup is {0}".format(spgroup_b)) raise Exception("The transformation provided does not give the expected final " " spacegroup. Expected: {0}; obtained: {1}".format(spgroup_b, final_spgroup)) # find the rows that are in bcc-type supercell and not in sc atoms_a_rows = atoms_a.positions.view([('', atoms_a.positions.dtype)] * atoms_a.positions.shape[1]) atoms_b_rows = atoms_b.positions.view([('', atoms_b.positions.dtype)] * atoms_b.positions.shape[1]) a_b_diff_pos = np.setdiff1d(atoms_a_rows, atoms_b_rows).view(atoms_a.positions.dtype).reshape(-1, atoms_a.positions.shape[ 1]) atoms_a_only_ids = [] for idx in range(atoms_a.get_number_of_atoms()): for row_idx in range(a_b_diff_pos.shape[0]): if np.allclose(atoms_a.positions[idx], a_b_diff_pos[row_idx, :], rtol=1e-03): atoms_a_only_ids.append(idx) break else: pass # take a random subset of atoms to remove nb_atoms_to_rm = int(len(atoms_a_only_ids) * target_b_contribution) actual_b_contribution = nb_atoms_to_rm / len(atoms_a_only_ids) if target_b_contribution != 0.0: rel_error = abs(target_b_contribution - actual_b_contribution) / target_b_contribution if rel_error > max_rel_error: logger.warning("Difference between target and actual vacancy ratio " "bigger than the threshold ({0}%).\n" "Target/actual vacancy ratio: {1}%/{2}%.".format(max_rel_error * 100.0, target_b_contribution * 100.0, actual_b_contribution * 100.0)) # random sampling of the list without replacement atoms_a_only_ids_subset = random.sample(atoms_a_only_ids, nb_atoms_to_rm) # remove atoms from the bcc_atoms_only_ids del atoms_mix[[atom.index for atom in atoms_mix if atom.index in atoms_a_only_ids_subset]] return atoms_mix
d1254eae056b1229890e38030027ba8fd6670327
9,753
def empty_surface(fill_color, size=None, flags=0): """Returns an empty surface filled with fill_color. :param fill_color: color to fill the surface with :type fill_color: pygame.Color :param size: the size of the new surface, if None its created to be the same size as the screen :type size: int-2-tuple """ if size is None: sr = pygame.display.get_surface().get_rect() surf = pygame.Surface((sr.w, sr.h), flags=flags) else: surf = pygame.Surface(size, flags=flags) surf.fill(fill_color) return surf
b48d21649f279736f531ca0cb6e7dabf083c813b
9,754
def getNetAddress(ip, netmask): """ Get the netaddress from an host ip and the netmask. :param ip: Hosts IP address :type ip: str :param netmask: Netmask of the network :type netmask: :returns: Address of the network calculated using hostIP and netmask :rtype: str """ return str(IPNetwork(ip + "/" + str(getPrefix(netmask))).network)
2bc70d21edcc08d82b146de83389ce94d2fa64ee
9,755
import psutil import os import time def begin_operation(name: str) -> dict: """ Gets the stats for the current operation. Parameters ---------- name: str name of the operation Returns ------- dict dictionary with the operation stats Examples -------- >>> from pymove.utils.mem import begin_operation >>> operation = begin_operation('operation') >>> operation { 'process': psutil.Process( pid=103401, name='python', status='running', started='21:48:11' ), 'init': 293732352, 'start': 1622082973.8825781, 'name': 'operation' } """ process = psutil.Process(os.getpid()) init = process.memory_info()[0] start = time.time() return {'process': process, 'init': init, 'start': start, 'name': name}
b5f6444c5b8868723a6b920d578fec41e54b89a3
9,756
import time import os import pickle import codecs import random from typing import Counter def create_or_load_vocabulary(data_path,training_data_path,vocab_size,test_mode=False,tokenize_style='word',fine_tuning_stage=False,model_name=None): """ create or load vocabulary and label using training data. process as: load from cache if exist; load data, count and get vocabularies and labels, save to file. :param data_path: folder of data :param training_data_path: path of training data :param vocab_size: size of word vocabulary :param test_mode: if True only select few to test functional, else use all data :param tokenize_style: tokenize input as word(default) or character. :return: vocab_word2index, label2index """ print("create_or_load_vocabulary.data_path:",data_path,";training_data_path:",training_data_path,";vocab_size:",vocab_size,";test_mode:",test_mode,";tokenize_style:",tokenize_style) t1 = time.clock() if not os.path.isdir(data_path): # create folder if not exists. os.makedirs(data_path) # 1.if cache exists,load it; otherwise create it. if model_name is not None: cache_path =data_path+model_name+'vocab_label.pik' else: cache_path =data_path+'vocab_label.pik' print("cache_path:",cache_path,"file_exists:",os.path.exists(cache_path)) if os.path.exists(cache_path): with open(cache_path, 'rb') as data_f: print("going to load cache file.vocab of words and labels") return pickle.load(data_f) # 2.load and shuffle raw data file_object = codecs.open(training_data_path, mode='r', encoding='utf-8') lines=file_object.readlines() file_object.close() random.shuffle(lines) if test_mode: lines=lines[0:20000] else: lines = lines# [0:200*1000] # to make create vocabulary process more quicker, we only random select 200k lines. print("==total data==", len(lines)) # 3.loop each line,put to counter c_inputs=Counter() c_labels=Counter() for i,line in enumerate(lines): input_list,input_label=get_input_strings_and_labels(line, tokenize_style=tokenize_style) c_inputs.update(input_list) c_labels.update(input_label) if i % 1000 == 0: # print some information for debug purpose print(i,"create_or_load_vocabulary.line:",line) print(i,"create_or_load_vocabulary.input_label:",input_label,";input_list:",input_list) print() # 4.get most frequency words and all labels if tokenize_style=='char':vocab_size=6000 # if we are using character instead of word, then use small vocabulary size. vocab_list=c_inputs.most_common(vocab_size) vocab_word2index={} vocab_word2index[_PAD]=PAD_ID vocab_word2index[_UNK]=UNK_ID vocab_word2index[_CLS]=CLS_ID vocab_word2index[_MASK]=MASK_ID for i,tuplee in enumerate(vocab_list): word,freq=tuplee # if word in vocab_word2index: # continue vocab_word2index[word]=i+4 label2index={} label_list=c_labels.most_common() for i,tuplee in enumerate(label_list): label_name, freq = tuplee label_name=label_name.strip() label2index[label_name]=i # 5.save to file system if vocabulary of words not exists. if not os.path.exists(cache_path): with open(cache_path, 'ab') as data_f: print("going to save cache file of vocab of words and labels") pickle.dump((vocab_word2index, label2index), data_f) t2 = time.clock() print('create_vocabulary.ended.time spent for generate training data:', (t2 - t1)) print(vocab_word2index[_CLS], _CLS, CLS_ID, "===============================") return vocab_word2index, label2index
51aaa3b373512f1e47eb5e1a77870cf72292a389
9,757
def balance_intent_data(df): """Balance the data for intent detection task Args: df (pandas.DataFrame): data to be balance, should contain "Core Relations" column Returns: pandas.DataFrame: balanced data """ relation_counter = build_counter(df, "Core Relations") # augment each low resource label to average count avg_count = int( sum(relation_counter.values()) / len(relation_counter.values()) ) sample_df = df.sample(0) for k, v in relation_counter.items(): # only augment the low resource label if v >= avg_count: continue # to be sample amount sample_count = avg_count - v idx_of_label_k = df["Core Relations"].apply(lambda label: k in label) # if sample amount if larger, then sample all the value until it exceed the sample count while sample_count > relation_counter[k]: temp_df = df[idx_of_label_k].sample(relation_counter[k]) sample_df = pd.concat([sample_df, temp_df]) sample_count -= relation_counter[k] sample_df = pd.concat( [sample_df, df[idx_of_label_k].sample(sample_count)] ) balance_df = pd.concat([df.copy(), sample_df]) return balance_df
3f759ae229de5e30fe4f13f42e4b8db18f0c913d
9,758
def npareamajority(values, areaclass): """ numpy area majority procedure :param values: :param areaclass: :return: """ uni,ind = np.unique(areaclass,return_inverse=True) return np.array([np.argmax(np.bincount(values[areaclass == group])) for group in uni])[ind]
9e43244ef81e63d9870d281660b738fa3b73a11f
9,759
def calcReward(eventPos, carPos, closeReward, cancelPenalty, openedPenalty): """ this function calculates the reward that will be achieved assuming event is picked up :param eventPos: position of events :param carPos: position of cars :param closeReward: reward if event is closed :param cancelPenalty: penalty if event is canceled (for now assuming events are not canceled) :param openedPenalty: penalty for time events are waiting (for now assuming events dont wait since they are picked up as spesific time) :return: rewardCarsToEvents - R_{cars,events}, rewardEventsToEvents - R_{events,events} """ nCars = carPos.shape[0] nEvents = eventPos.shape[0] distEventsToEvents = cdist(eventPos, eventPos, metric='cityblock') distCarsToEvents = cdist(carPos, eventPos, metric='cityblock') rewardCarsToEvents = -distCarsToEvents + np.ones(shape=(nCars, nEvents))*closeReward rewardEventsToEvents = -distEventsToEvents + np.ones(shape=(nEvents, nEvents))*closeReward timeEventsToEvents = distEventsToEvents timeCarsToEvents = distCarsToEvents return rewardCarsToEvents, rewardEventsToEvents, timeCarsToEvents, timeEventsToEvents
52226496b5338a0ebd3433ae9ee779c036c64809
9,760
from typing import Any def b64encode(s: Any, altchars: Any = None) -> bytes: """Encode bytes using the standard Base64 alphabet. Argument ``s`` is a :term:`bytes-like object` to encode. Optional ``altchars`` must be a byte string of length 2 which specifies an alternative alphabet for the '+' and '/' characters. This allows an application to e.g. generate url or filesystem safe Base64 strings. The result is returned as a :class:`bytes` object. """ if altchars is not None: altchars = _get_bytes(altchars) assert len(altchars) == 2, repr(altchars) return builtin_encode(s, altchars)
deef546ada7679a538afa5432a13846ce765b911
9,761
def select_programs(args, filter_paused=True, force=False): """ Return a list of selected programs from command line arguments """ if not (args.all ^ bool(args.names)): if args.all: log.error("You may not specify a program name when you use the -a/--all option (See -h/--help for more details)") else: log.error("You must select at least one program from the command line (See -h/--help for more details)") raise SystemExit(1) if args.all: programs = list(Program.find_for_user(force=force)) if filter_paused: programs = [prog for prog in programs if not prog.is_paused] else: programs = [Program(name, force=force) for name in args.names] erorrs = 0 for program in programs: if not program.exists(): erorrs += 1 log.error("Program '%s' does not exist" % program.name) if erorrs: raise SystemExit(1) return list(programs)
8b597b043ac7e245bf16aec17a779c5639d451d9
9,762
import math def three_comp_two_objective_functions(obj_vars, hz: int, ttes: SimpleTTEMeasures, recovery_measures: SimpleRecMeasures): """ Two objective functions for recovery and expenditure error that get all required params as arguments :param obj_vars: values that define the three comp agent [anf, ans, m_ae, m_anf, m_ans, theta, gamma, phi] :param hz: estimations per second for agent :param ttes: time to exhaustion tests to use :param recovery_measures: recovery trials to compare to :return: tte_nrmse and rec_nrmse values to minimise (the smaller the better) """ # differences in exhaustion times determine fitness tte_se = [] # TTE standard errors ttes_exp = [] # TTEs that are expected (original) rec_se = [] # Recovery standard errors recs_exp = [] # Recovery ratios expected (original) three_comp_agent = ThreeCompHydAgent(hz=hz, a_anf=obj_vars[0], a_ans=obj_vars[1], m_ae=obj_vars[2], m_ans=obj_vars[3], m_anf=obj_vars[4], the=obj_vars[5], gam=obj_vars[6], phi=obj_vars[7]) # compare tte times for tte_t, tte_p in ttes.iterate_pairs(): # use the simulator try: tte = ThreeCompHydSimulator.do_a_tte(agent=three_comp_agent, p_exp=tte_p) except UserWarning: tte = 5000 # square time difference tte_se.append(pow(tte - tte_t, 2)) ttes_exp.append(tte_t) # get NRMSE (Normalised Root Mean Squared Error) tte_nrmse = math.sqrt(sum(tte_se) / len(tte_se)) / np.mean(ttes_exp) # compare all available recovery ratio measures for p_exp, p_rec, t_rec, expected in recovery_measures.iterate_measures(): # use the simulator try: achieved = ThreeCompHydSimulator.get_recovery_ratio_wb1_wb2(three_comp_agent, p_exp=p_exp, p_rec=p_rec, t_rec=t_rec) except UserWarning: achieved = 200 # add the squared difference rec_se.append(pow(expected - achieved, 2)) recs_exp.append(expected) # get NRMSE rec_nrmse = math.sqrt(sum(rec_se) / len(rec_se)) / np.mean(recs_exp) # determine return value return tte_nrmse, rec_nrmse
f02403d00142556b17371f3adedd32994dbf9fad
9,763
def scale(data, new_min, new_max): """Scales a normalised data series :param data: The norrmalised data series to be scaled :type data: List of numeric values :param new_min: The minimum value of the scaled data series :type new_min: numeric :param new_max: The new maximum of the scaled data series :type new_max: numeric :return: A scaled data series :rtype: list """ return [(x*(new_max-new_min))+new_min for x in data]
3e7720ae90cfdbef1253dbfa39b3e4a10fc118bb
9,764
def default_config() -> ClientConfig: """ :return: Default configuration for the experiment """ simulation_config = SimulationConfig(render=False, sleep=0.8, video=True, log_frequency=1, video_fps=5, video_dir=default_output_dir() + "/videos", num_episodes=1000, gifs=True, gif_dir=default_output_dir() + "/gifs", video_frequency = 1) env_name = "idsgame-v3" client_config = ClientConfig(env_name=env_name, attacker_type=AgentType.RANDOM.value, defender_type=AgentType.DEFEND_MINIMAL_VALUE.value, mode=RunnerMode.SIMULATE.value, simulation_config=simulation_config, output_dir=default_output_dir(), title="RandomAttacker vs DefendMinimalDefender") return client_config
d7e53ccc4ad8818453cd673ddaa21fe0614dfc5a
9,765
def get_same_padding(kernel_size: int, stride: int, dilation: int) -> int: """Calculates the padding size to obtain same padding. Same padding means that the output will have the shape input_shape / stride. That means, for stride = 1 the output shape is the same as the input, and stride = 2 gives an output that is half of the input shape. Args: kernel_size : convolution kernel size. Only tested to be correct with odd values. stride : convolution stride dilation : convolution dilation Raises: ValueError: Only stride or dilation may be greater than 1 Returns: padding value to obtain same padding. """ if stride > 1 and dilation > 1: raise ValueError("Only stride OR dilation may be greater than 1") if dilation > 1: return (dilation * (kernel_size - 1) + 1) // 2 return kernel_size // 2
12548482e855dcfc627c5b0a6ccf69ad4a74b39b
9,766
def move_child_position(context, request): """ Move the child from one position to another. :param context: "Container" node in which the child changes its position. :type context: :class:kotti.resources.Node or descendant :param request: Current request (of method POST). Must contain either "from" and "to" params or a json_body that contain(s) the 0-based old (i.e. the current index of the child to be moved) and new position (its new index) values. :type request: :result: JSON serializable object with a single attribute ("result") that is either "success" or "error". :rtype: dict """ data = request.POST or request.json_body if ("from" in data) and ("to" in data): max_pos = len(context.children) - 1 try: old_position = int(data["from"]) new_position = int(data["to"]) if not ((0 <= old_position <= max_pos) and (0 <= new_position <= max_pos)): raise ValueError except ValueError: return {"result": "error"} # sqlalchemy.ext.orderinglist takes care of the "right" sequence # numbers (immediately consecutive, starting with 0) for us. context.children.insert(new_position, context.children.pop(old_position)) result = "success" else: result = "error" return {"result": result}
082aef1169de6dab4881593ef8abf85e5076f190
9,767
import requests def get_current_version(package: str) -> str: """ Query PyPi index to find latest version of package :param package: str - name of pacahe :return: str - version if available """ url = f'{PYPI_BASE_URL}/pypi/{package}/json' headers = { 'Content-Type': 'application/json' } response = requests.get(url=url, headers=headers) if response.status_code == 200: data = response.json() if 'info' in data and 'version' in data['info']: # only return version if everything went OK, otherwise, too bad! return data['info']['version'] return None
6d65dcb6d381c8cf6cba7c06ccebf538c16b85c7
9,768
import sys import warnings import os def get_model_path(model_name): """ Returns path to the bird species classification model of the given name. Parameters ---------- model_name : str Name of classifier model. Should be in format ``<model id>_<taxonomy version>-<taxonomy md5sum>``. *v0.3.1 UPDATE: model names with taxonomy md5 checksum 2e7e1bbd434a35b3961e315cfe3832fc or beb9234f0e13a34c7ac41db72e85addd are not available in this version but are restored in v0.3.1 for backwards compatibility. They will no longer be supported starting with v0.4. Please use model names with taxonomy md5 checksums 3c6d869456b2705ea5805b6b7d08f870 and 2f6efd9017669ef5198e48d8ec7dce4c (respectively) instead.* Returns ------- model_path : str Path to classifier model weights. Should be in format ``<BirdVoxClassify dir>/resources/models/<model id>_<taxonomy version>-<taxonomy md5sum>.h5`` """ # Python 3.8 requires a different model for compatibility if sys.version_info.major == 3 and sys.version_info.minor == 8: model_name = model_name.replace(MODEL_PREFIX, MODEL_PREFIX + '-py3pt8') if model_name.endswith("2e7e1bbd434a35b3961e315cfe3832fc"): warnings.warn(f"The version of taxonomy with md5 " f"checksum 2e7e1bbd434a35b3961e315cfe3832fc has been " f"deprecated and will be removed in v0.4. Please use " f"model names with " f"3c6d869456b2705ea5805b6b7d08f870 instead.", DeprecationWarning, stacklevel=2) elif model_name.endswith("beb9234f0e13a34c7ac41db72e85addd"): warnings.warn(f"The version of taxonomy with md5 " f"checksum beb9234f0e13a34c7ac41db72e85addd has been " f"deprecated and will be removed in v0.4. Please use " f"model names with " f"2f6efd9017669ef5198e48d8ec7dce4c instead.", DeprecationWarning, stacklevel=2) path = os.path.join(os.path.dirname(__file__), "resources", "models", model_name + '.h5') # Use abspath to get rid of the relative path return os.path.abspath(path)
fa22967a40c53da8693e7aea6043e9e3192dccd5
9,769
def mconcat(xs : [a]) -> a: """ mconcat :: (Monoid m) => [m] -> m Fold a list using the monoid. """ return Monoid[xs[0]].mconcat(xs)
cd87cc91bb4d2c6d1cf653fb45967ecb59d6749d
9,770
def maybe_zero_out_padding(inputs, kernel_size, nonpadding_mask): """If necessary, zero out inputs to a conv for padding positions. Args: inputs: a Tensor with shape [batch, length, ...] kernel_size: an integer or pair of integers nonpadding_mask: a Tensor with shape [batch, length] Returns: Tensor of the same shape as inputs. """ if (kernel_size != 1 and kernel_size != (1, 1) and nonpadding_mask is not None): while nonpadding_mask.get_shape().ndims < inputs.get_shape().ndims: nonpadding_mask = tf.expand_dims(nonpadding_mask, -1) return inputs * nonpadding_mask return inputs
e53c1e181cac554047b9acb8d70d358baa9f8a4c
9,771
import json def display_json(value): """ Display input JSON as a code """ if value is None: return display_for_value(value) if isinstance(value, str): value = json.loads(value) return display_code(json.dumps(value, indent=2, ensure_ascii=False, cls=DjangoJSONEncoder))
727dc50d9844a5b0b7f01231c348652056d334cc
9,772
def get_rgba_from_color(rgba): """Return typle of R, G, B, A components from given color. Arguments: rgba - color """ r = (rgba & 0xFF000000) >> 24 g = (rgba & 0x00FF0000) >> 16 b = (rgba & 0x0000FF00) >> 8 a = (rgba & 0x000000FF) return r, g, b, a
56d3e0dce01cfc4348ae115de81abb55ec85eb56
9,773
def beauty_factor(G): """Return the "beauty factor" of an arbitrary graph, the minimum distance between a vertex and a non-incident edge.""" V, E = G[0], G[1] dists = [] for (i, u) in enumerate(V): for (j, k) in E: if i == j or i == k: continue v, w = V[j], V[k] a, b = u-v, w-v proj = (a.real*b.real+a.imag*b.imag) / abs(b) # scalar projection if 0 <= proj <= abs(b): dists.append(abs(a - b * proj / abs(b))) else: dists.extend((abs(a), abs(u-w))) return min(dists)
9267a534d8453a17561b2c8e1f67e40942069ffe
9,774
def line_plane_cost(line, plane): """ A cost function for a line and a plane """ P = normalised((line|plane)*I5) L = normalised(meet(P, plane)) return line_cost_function(L, line)
34ab1df71f2018544a52020d232514127e16aa3e
9,775
import requests def register_document_to_documentsbundle(bundle_id, payload): """ Relaciona documento com seu fascículo(DocumentsBundle). Utiliza a endpoint do Kernel /bundles/{{ DUNDLE_ID }} """ try: response = hooks.kernel_connect( "/bundles/%s/documents" % bundle_id, "PUT", payload) return response except requests.exceptions.HTTPError as exc: raise LinkDocumentToDocumentsBundleException(str(exc)) from None
df70b6b3556527a10ec7dd3f83ca4bc69fb90e61
9,776
import numpy def force_full_index(dataframe: pd.DataFrame, resampling_step: int = None, resampling_unit: str = "min", timestamp_start: int = None, timestamp_end: int = None) -> pd.DataFrame: """ forces a full index. Missing index will be replaced by Nan. Note: resampling should be done before to benefit from sampling strategies. Args: dataframe(dataframe): data frame containing NaN values resampling_step (int, 8): This is the desired time step of final dataframe. resampling_unit (str, 't'): unit of desired time step timestamp_start (string, none): index at which the dataframe starts timestamp_end (string, none): index at which the dataframe ends Returns dataframe(pandas.Dataframe): dataframe with full index """ if timestamp_start is None: print("start index was not provided") timestamp_start = dataframe.first_valid_index() if timestamp_end is None: print("end index is not provided") timestamp_end = dataframe.last_valid_index() freq = str(resampling_step) + resampling_unit new_index = pd.date_range(start=timestamp_start, end=timestamp_end, freq=freq) new_index = new_index.astype(numpy.int64) // 10 ** 9 delta_time_tmp = dataframe.reindex(index=new_index, fill_value=numpy.nan) return delta_time_tmp
cc08ee348467e5fe335ebf3239ce78880c0f99c4
9,777
def legislature_to_number(leg): """ Takes a full session and splits it down to the values for FormatDocument.asp. session = '49th-1st-regular' legislature_to_number(session) --> '49Leg/1s' """ l = leg.lower().split('-') return '%sLeg/%s%s' % (l[0][0:2], l[1][0], l[2][0])
cffeeea2bad17d9dadcfd75d70417824c7fe3396
9,778
def get_variable_field_type(variable_name, field_name, error_prefix=''): """ 获取某个变量的某个字段的类型 """ schema = get_variable_schema(variable_name) result_type = schema.get(field_name) if not result_type: raise RuntimeError(utf8(error_prefix) + '变量(%s)不包含字段(%s)' % (utf8(variable_name), utf8(field_name))) # 策略中的目前基本是基本类型 if result_type[1]: raise RuntimeError(utf8(error_prefix) + '暂不支持%s(%s)这种复杂数据类型' % (utf8(field_name), utf8(result_type))) return result_type[0]
6038cebd8219350eec5595bd5ca9aa0151f287cf
9,779
def test(input_test_data): """ Run test batches on trained network :return: Test accuracy [0-1] """ print('--- Execute testing ---') one_hot_label = np.zeros(10, dtype=np.uint8) correct_n = 0 total_n = 0 for batch_id, (mini_batch, label) in enumerate(input_test_data): for sample_id, sample in enumerate(mini_batch): # Flatten input, create 748, input vector flat_sample = (np.array(sample)).reshape((network.input_dim, 1)) # Forward pass one sample to network one_hot_label[label[sample_id]] = 1 # we require one-hot encoding for our input data lossr, result = network.forward_pass(flat_sample, one_hot_label) # check if sample was correctly classified if (result == one_hot_label).all(): correct_n += 1 total_n += 1 one_hot_label[:] = 0 # print('batch_id at end: ', batch_id) if total_n != 0: return (correct_n / total_n) * 100 else: print('Warning, total_n should not be 0') return 0
dcdbaad1c1496f7cc611ca81f0cb086c3dd127fc
9,780
def test(net, example): """ Args: net (FlowNet): Instance of networks.flownet.FlowNet model, only to be used for pre-processing. example (dict): Un-processed example. Returns: good (list, DMatch): List of good SIFT matches. """ net.eval() example = net.preprocess(example) cs_arr, tg_arr = np.array(example['resized_cs_im']), np.array(example['resized_tg_im']) cs_mask, tg_mask = example['resized_cs_mask'], example['resized_tg_mask'] # Initiate SIFT detector sift = cv2.xfeatures2d.SIFT_create() # Find the keypoints and descriptors with SIFT kp_cs, des_cs = sift.detectAndCompute(cs_arr, mask=cs_mask) kp_tg, des_tg = sift.detectAndCompute(tg_arr, mask=tg_mask) example['kp_cs'], example['kp_tg'] = kp_cs, kp_tg # Return empty list no matches if no matches are found in either scene or target. if des_cs is None or des_tg is None: return [] # Make sure that there are at-least 2 features in both scene and target for knn with nn=2. if len(des_cs) < 2 or len(des_tg) < 2: return [] FLANN_INDEX_KDTREE = 0 index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5) search_params = dict(checks=50) flann = cv2.FlannBasedMatcher(index_params, search_params) matches = flann.knnMatch(des_tg, des_cs, k=2) # store all the good matches as per Lowe's ratio test. good = [] for m, n in matches: if m.distance < 0.7 * n.distance: good.append(m) return good
b0a864e0468304c6c0060d3ee621d579f806c58f
9,781
def get_hashers(): """ 从settings.py中动态导入一连串hashers对象 Read list of hashers from app.settings.py """ hashers = [] # 导入报名 for hasher_path in current_app.config.get('PASSWORD_HASHERS'): hasher_cls = import_string(hasher_path) hasher = hasher_cls() hashers.append(hashers) if not getattr(hasher, 'algorithm'): raise ImproperlyConfigured("hasher doesn't specify an " "algorithm name: %s" % hasher_path) hashers.append(hasher) return hashers
d44784d077a99ca23190826249fab6bbf8ad57d5
9,782
def str2range(s): """parse a samtools/tabix type region specification 'chr:start-stop' or 'chr:start..stop'""" chrom = None start = 1 stop = None tmp = s.split(':') chrom = tmp[0] if len(tmp)>1: if '-' in tmp[1]: tmp = tmp[1].split('-') else: tmp = tmp[1].split('..') start = str2int(tmp[0]) if len(tmp)>1: stop = str2int(tmp[1]) return (chrom, start, stop)
8a72107495cc0e7587cadc289b80d326b7901c59
9,783
import json def turn_read_content(path, labelIdx, dataIdx): """ sentences: (dialog_num, turn_num, nbest_num, sentence_len) scores: (dialog_num, turn_num, nbest_num) acts: (dialog_num, turn_num, machine_act_len) labels: (dialog_num, turn_num, [label_dim]) """ sentences, scores, acts, labels = [], [], [], [] with open(path) as json_file: data = json.load(json_file) #print data["data"][dataIdx] for dialog in data[dataIdx]: dialog_sentences, dialog_scores, machine_acts, dialog_labels = read_nbest_dialog_content(dialog, labelIdx) sentences.append(dialog_sentences) scores.append(dialog_scores) acts.append(machine_acts) labels.append(dialog_labels) return sentences, scores, acts, labels
09049b9028ab4331de9c71afb35a79d348bfce08
9,784
def index_page() -> dict: """Get data for Index page , interfaces, dp neighbors, arps, and hsrp""" interfaces = GetThisDataFromDevice.get_interfaces(request.json.get('ip'), request.json.get('port'), request.json.get('username'), request.json.get('password')) neighbors = GetThisDataFromDevice.get_dp_neighbors(request.json.get('ip'), request.json.get('port'), request.json.get('username'), request.json.get('password')) arps = GetThisDataFromDevice.get_arps(request.json.get('ip'), request.json.get('port'), request.json.get('username'), request.json.get('password')) hsrp = InCaseRestDoesntWork.get_hsrp_status(request.json.get('username'), request.json.get('password'), request.json.get('ip')) cpu_status = GetThisDataFromDevice.get_cpu_usages(request.json.get('ip'), request.json.get('port'), request.json.get('username'), request.json.get('password')) return {'interfaces': interfaces, 'arps': arps, 'dp': neighbors, 'hsrp': hsrp, 'cpu': cpu_status[0], 'mem': cpu_status[1]}
5506031e11e5ab2c8b40e1f294e04a0ed56a96ac
9,785
def reverse_int_bits(n: int, n_bits: int = 10) -> int: """Reverses the bits of *n*, considering it is padded by *n_bits* first""" return int(format(n, '0' + str(n_bits) + 'b')[::-1], 2)
3c76db59296863161b0bb543e057a82383a780a2
9,786
def get_conn(): """ 获取 :return: """ for name in GENERATOR_MAP: print(name) if not hasattr(g, name): setattr(g, name + '_cookies', eval('CookiesRedisClient' + '(name="' + name + '")')) setattr(g, name + '_account', eval('AccountRedisClient' + '(name="' + name + '")')) return g
7bf4d23db3f829203041560077e0813a94930af0
9,787
def get_rule_satisfaction_matrix(x, y, rules): """ Returns a matrix that shows which instances satisfy which rules Each column of the returned matrix corresponds to a rules and each row to an instance. If an instance satisfies a rule, the corresponding value will be 1, else 0. :param x: np.ndarray :param y: np.array :param rules: list :param opts: AadOpts :return: np.ndarray matrix with x.shape[0] rows and len(rules) rows """ satisfaction_matrix = np.zeros((x.shape[0], len(rules)), dtype=np.int32) for i, rule in enumerate(rules): idxs = rule.where_satisfied(x, y) satisfaction_matrix[idxs, i] = 1 return satisfaction_matrix
1df187006449e2c101f09b88ac2e8fe9851c7698
9,788
def refactor(df, frequency = '1W'): """Refactor/rebin the data to a lower cadence The data is regrouped using pd.Grouper """ low = df.low.groupby(pd.Grouper(freq=frequency)).min() high = df.high.groupby(pd.Grouper(freq=frequency)).max() close = df.close.groupby(pd.Grouper(freq=frequency)).last() open_ = df.open.groupby(pd.Grouper(freq=frequency)).first() volume = df.volume.groupby(pd.Grouper(freq=frequency)).sum() return pd.DataFrame(dict(low=low, high=high, open=open_, close=close, volume=volume))
217e65236994e9a075ef410488250cbb1051dbb4
9,789
def pendulum_derivatives(theta, omega, g=9.8, l=1): """ \dot{\theta} = \omega \dot{\omega} = -\frac{g \sin\theta}{l} :param theta: angel of the pendulum :param omega: angular velocity of the pendulum :param g: gravitational acceleration :param l: length of the pendulum :return: derivative of angel, derivative of angular velocity """ d_theta = omega d_omega = - np.sin(theta) * g / l return d_theta, d_omega
1e83af5ed6028a9cd0ecf5819d3797986493df25
9,790
def get_sql_filtered( source_query, python_types, db_conf_file_name, filters=[]): """ Return list of DBAPI tuples (& prefixed header row) filtered by value Keyword Parameters: source_query -- String, representing SQL definition of requested datasource python_types -- JSON encoded string representing a Dict that maps field names to Python type constructors db_conf_file_name -- String representing the server/ module .ini settings file, defining how to connect to the Source Exceptions: FilterVariableError -- filters variable not found in header >>> args1 = { 'source_query': "schema.InformativeView" ... , 'python_types': '{"a":"str","b":"int","z":"float"}' ... , 'db_conf_file_name': 'db_config.ini' ... } >>> get_sql_filtered( filters=['z=7'], **args1) ('SELECT "raw".* FROM (schema.InformativeView) "raw" WHERE z = %s', [7.0]) >>> get_sql_filtered( filters=['a=77'], **args1) ('SELECT "raw".* FROM (schema.InformativeView) "raw" WHERE a = %s', ['77']) >>> get_sql_filtered( filters=['a=77','z>=77'], **args1) ('SELECT "raw".* FROM (schema.InformativeView) "raw" WHERE a = %s AND z >= %s', ['77', 77.0]) >>> args1['db_conf_file_name'] = 'db_trawl.ini' >>> get_sql_filtered( filters=['z=7'], **args1) ('SELECT "raw".* FROM (schema.InformativeView) "raw" WHERE z = :0', [7.0]) >>> get_sql_filtered( filters=['a=77','z>=77'], **args1) ('SELECT "raw".* FROM (schema.InformativeView) "raw" WHERE a = :0 AND z >= :1', ['77', 77.0]) >>> get_sql_filtered( filters=['z~=7'], **args1) ('SELECT "raw".* FROM (schema.InformativeView) "raw" WHERE REGEXP_LIKE(z, :0)', ['7']) >>> get_sql_filtered( filters=['a|=["5", "77"]'], **args1) ('SELECT "raw".* FROM (schema.InformativeView) "raw" WHERE ( (a = :0) OR (a = :1) )', ['5', '77']) >>> get_sql_filtered( filters=['z|=["5", "77"]'], **args1) ('SELECT "raw".* FROM (schema.InformativeView) "raw" WHERE ( (z = :0) OR (z = :1) )', [5.0, 77.0]) """ # wrap source's table name, or inline view definition, with an outer select manditory_pgsql_alias = '"raw"'#PostgreSQL requires any name for inline view sql_outer_template = "SELECT {alias}.* FROM ({query}) {alias}" str_sql_outer = sql_outer_template.format( query=source_query ,alias=manditory_pgsql_alias) str_pgsql_conn = ['db_config.ini','db_dwsupport.ini']#FIXME:improve detection of SQL dialect # Append filter to end of the outer select, as conditional access clauses binds = [] for str_filter_urlencoded in filters: str_access_clause = "WHERE" if len(binds) > 0: str_access_clause = "AND" bind_start = len(binds) if db_conf_file_name not in str_pgsql_conn: #use the Oracle regexp syntax access_condition, filter_binds =get_filter_condition_oracle_string( python_types ,str_filter_urlencoded ,bind_start) else: #TODO: why not use get_filter_condition_sqlalchemy_pgsql_string ? access_condition, filter_binds = get_filter_condition_pgsql_string( python_types ,str_filter_urlencoded ,bind_start) str_sql_outer += ' ' + str_access_clause + access_condition binds.extend(filter_binds) return str_sql_outer, binds
2eb8333efa7843f32bba1dd63fabad23e8ffbb75
9,791
def task_edit(request, pk=None): """ """ return edit(request, form_model=TaskForm, model=Task, pk=pk)
8ff6f1bd007ff4f6931030da41f5efeaa2380d3a
9,792
def get_intersect(pre_df, post_df, args, aoi=None): """ Computes intersection of two dataframes and reduces extent by an optional defined AOI. :param pre_df: dataframe of raster footprints :param post_df: dataframe of raster footprints :param args: arguments object :param aoi: AOI dataframe :return: tuple of calculated intersection """ pre_env = pre_df.to_crs(args.destination_crs).unary_union post_env = post_df.to_crs(args.destination_crs).unary_union intersect = pre_env.intersection(post_env) logger.debug(f'Pre bounds: {pre_env.bounds}') logger.debug(f'Post bounds: {post_env.bounds}') assert intersect.area > 0, logger.critical('Pre and post imagery do not intersect') if aoi is not None: aoi = aoi.to_crs(args.destination_crs).unary_union intersect = aoi.intersection(intersect) assert intersect.area > 0, logger.critical('AOI does not intersect imagery') logger.info('Intersection calculated with AOI') # Todo: Return tuple of ((bounds), area) to estimate inference time return intersect.bounds
56c35cd0ecd883418bb8b88102721ed9ad6a5654
9,793
import torch def _gradient(P, T, N, A): """ Creates the gradient operator, starting from the point set P, the topology tensor T, the normal tensor N and the triangle area tensor A Parameters ---------- P : Tensor the (N,3,) point set tensor T : LongTensor the (3,M,) topology tensor N : Tensor the (M,3,) triangle normal tensor A : Tensor the (M,) triangle area tensor Returns ------- list the gradient operator data """ device = P.device def V(i): return P[T[i], :] n = row(P) m = col(T) i = LongTensor([], device=device) j = LongTensor([], device=device) w = FloatTensor([], device=device) f = indices(0, m - 1, device=device).squeeze() for k in range(row(T)): # opposite edge e_i indexes s = (k+1) % 3 t = (k+2) % 3 # vector N_f^e_i wk = cross(V(t) - V(s), N, 1) # update the index listing i = torch.cat((i, f), dim=0) j = torch.cat((j, T[k]), dim=0) w = torch.cat((w, wk), dim=0) a = diag(torch.reciprocal(A), rows=m) e = torch.cat((i.unsqueeze(0), j.unsqueeze(0)), dim=0) G = [] for k in range(col(P)): G += [torch.matmul(a, adjacency(e, w[:, k], size=[m, n]))] return G
dd1118218ca6e8ad3ff3202c2a3c6d603f88a3a9
9,794
from typing import Tuple def breast_tissue_diagnostic_black_pen() -> Tuple[ openslide.OpenSlide, str ]: # pragma: no cover """breast_tissue_diagnostic_black_pen() -> Tuple[openslide.OpenSlide, str] Breast tissue, TCGA-BRCA dataset. Diagnostic slide with black pen marks. This image is available here https://portal.gdc.cancer.gov/files/e70c89a5-1c2f-43f8-b6be-589beea55338 or through the API https://api.gdc.cancer.gov/data/e70c89a5-1c2f-43f8-b6be-589beea55338 It corresponds to TCGA file `TCGA-BH-A201-01Z-00-DX1.6D6E3224-50A0-45A2-B231-EEF27CA7EFD2.svs` Access: open Returns ------- breast_tissue : openslide.OpenSlide H&E-stained Whole-Slide-Image of breast tissue with green black marks. path : str Path where the slide is saved """ return _load_svs( "tcga/breast/TCGA-BH-A201-01Z-00-DX1.6D6E3224-50A0-45A2-B231-EEF27CA7EFD2.svs" )
9758d6ac89a5bb4402e89486be624de9fad986d4
9,795
def fitcand(t,fm,p,full=False): """ Perform a non-linear fit to a putative transit. Parameters ---------- t : time fm : flux p : trial parameter (dictionary) full : Retrun tdt and fdt Returns ------- res : result dictionary. """ dtL = LDTwrap(t,fm,p) dt = np.hstack(dtL) fdt = dt['fdt'] tdt = dt['tdt'] p0 = np.array([p['P'],p['epoch'],p['df'],p['tdur']]) p1 = optimize.fmin_powell(objMT,p0,args=(tdt,fdt),disp=False) dp = (p0[:2]-p1[:2]) if (abs(dp) > np.array([dP,depoch])).any(): stbl = False elif (p1[0] < 0) | (p1[3] < 0): stbl = False else: stbl = True tfold = getT(tdt,p['P'],p['epoch'],p['tdur']) fdt = ma.masked_array(fdt,mask=tfold.mask) tdt = ma.masked_array(tdt,mask=tfold.mask) s2n = s2n_fit(fdt,tdt,p1) res = dict(P=p1[0],epoch=p1[1],df=p1[2],tdur=p1[3],s2n=s2n,stbl=stbl) if full: res['fdt'] = fdt res['tdt'] = tdt return res
dbf1252d3a4b9d81d092d983b231b7f25a2ef10b
9,796
def cbar_for_line_plot(axis, num_steps, discrete_ticks=True, **kwargs): """ Adds a colorbar next to a line plot axis Parameters ---------- axis : matplotlib.axes.Axes Axis with multiple line objects num_steps : uint Number of steps in the colorbar discrete_ticks : (optional) bool Whether or not to have the ticks match the number of number of steps. Default = True """ if not isinstance(axis, mpl.axes.Axes): raise TypeError('axis must be a matplotlib.axes.Axes object') if not isinstance(num_steps, int) and num_steps > 0: raise TypeError('num_steps must be a whole number') assert isinstance(discrete_ticks, bool) cmap = get_cmap_object(kwargs.pop('cmap', None)) cmap = discrete_cmap(num_steps, cmap=cmap.name) sm = make_scalar_mappable(0, num_steps - 1, cmap=cmap) if discrete_ticks: kwargs.update({'ticks': np.arange(num_steps)}) cbar = plt.colorbar(sm, ax=axis, orientation='vertical', pad=0.04, use_gridspec=True, **kwargs) return cbar
b9d83d93f7b86259a796cc71638a0bef0c81dce7
9,797
from typing import Union def get_config_based_on_config_file(path: str) -> Union[Config, None]: """ load config and check if section exist or not :param path: path to config file :return: None if section [laziest] not exist in Config object updated with params from section if exist """ cfg = load_config(path) if section_name not in cfg.sections(): return None else: cfg = config[section_name] common_params = deepcopy(default_settings) params_from_config = {key: cfg[key] for key in cfg.keys()} common_params.update(params_from_config) return Config(common_params)
1a537aace82528ff1163deadeea3c48b9289c622
9,798
import typing import asyncio import concurrent def threadpooled( # noqa: F811 func: typing.Optional[typing.Callable[..., typing.Union["typing.Awaitable[typing.Any]", typing.Any]]] = None, *, loop_getter: typing.Union[None, typing.Callable[..., asyncio.AbstractEventLoop], asyncio.AbstractEventLoop] = None, loop_getter_need_context: bool = False, ) -> typing.Union[ ThreadPooled, typing.Callable[..., "typing.Union[concurrent.futures.Future[typing.Any], typing.Awaitable[typing.Any]]"], ]: """Post function to ThreadPoolExecutor. :param func: function to wrap :type func: typing.Optional[typing.Callable[..., typing.Union[typing.Awaitable, typing.Any]]] :param loop_getter: Method to get event loop, if wrap in asyncio task :type loop_getter: typing.Union[ None, typing.Callable[..., asyncio.AbstractEventLoop], asyncio.AbstractEventLoop ] :param loop_getter_need_context: Loop getter requires function context :type loop_getter_need_context: bool :return: ThreadPooled instance, if called as function or argumented decorator, else callable wrapper :rtype: typing.Union[ThreadPooled, typing.Callable[..., typing.Union[concurrent.futures.Future, typing.Awaitable]]] """ if func is None: return ThreadPooled(func=func, loop_getter=loop_getter, loop_getter_need_context=loop_getter_need_context) return ThreadPooled( # type: ignore func=None, loop_getter=loop_getter, loop_getter_need_context=loop_getter_need_context )(func)
77a91a627569a069728531e2baaa92d8ee5609b3
9,799