content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
import os
def get_scenario():
"""
Get scenario
"""
try:
scenario = os.environ['DEPLOY_SCENARIO']
except KeyError:
logger.error("Impossible to retrieve the scenario")
scenario = "Unknown_scenario"
return scenario | dc8ce4bb231ff9174f59f27a5a2dee618d6d4647 | 6,000 |
from typing import Optional
from typing import Callable
import requests
def make_request(
endpoint: str, method: str = "get", data: Optional[dict] = None, timeout: int = 15
) -> Response:
"""Makes a request to the given endpoint and maps the response
to a Response class"""
method = method.lower()
request_method: Callable = getattr(requests, method)
if method not in SAFE_METHODS and data is None:
raise ValueError("Data must be provided for POST, PUT and PATCH requests.")
r: RequestsResponse
if method not in SAFE_METHODS:
r = request_method(endpoint, json=data, timeout=timeout)
else:
r = request_method(endpoint, timeout=timeout)
return Response(status_code=r.status_code, data=r.json()) | 8dd88583f61e5c42689461dd6d316297d910f197 | 6,001 |
import socket
def _is_rpc_timeout(e):
""" check whether an exception individual rpc timeout. """
# connection caused socket timeout is being re-raised as
# ThriftConnectionTimeoutError now
return isinstance(e, socket.timeout) | ec832bec086b59698eed12b18b7a37e5eb541329 | 6,002 |
def fake_quantize_with_min_max(inputs,
f_min,
f_max,
bit_width,
quant_zero=True):
"""The fake quantization operation kernel.
Args:
inputs: a tensor containing values to be quantized.
f_min: the minimum input value
f_max: the maximum input value
bit_width: the bit width
Returns:
a tensor containing quantized values.
"""
@tf.function
def forward(inputs, f_min, f_max, bit_width, quant_zero):
with tf.name_scope("FakeQuantizeWithMinMax"):
float_bit_width = tf.cast(bit_width, dtype=tf.float32, name="bit_width")
bound = tf.math.pow(2.0, float_bit_width - 1)
q_min = tf.math.negative(bound, name="q_min")
q_max = tf.math.subtract(bound, 1, name="q_max")
scale = get_scale(f_min, f_max, q_min, q_max)
if quant_zero:
q_zero_point, new_f_min, new_f_max = quantize_zero_point(
scale, f_min, f_max, q_min, q_max)
shift = new_f_min if quant_zero else f_min
quantized = quantize(inputs, scale, shift, q_min, q_max)
dequantized = dequantize(quantized, scale, shift, q_min, q_max)
return dequantized
@tf.function
def grad_fn(dy):
float_bit_width = tf.cast(bit_width, dtype=tf.float32, name="bit_width")
bound = tf.math.pow(2.0, float_bit_width - 1)
q_min = tf.math.negative(bound, name="q_min")
q_max = tf.math.subtract(bound, 1, name="q_max")
scale = get_scale(f_min, f_max, q_min, q_max)
if quant_zero:
q_zero_point, new_f_min, new_f_max = quantize_zero_point(
scale, f_min, f_max, q_min, q_max)
between_min_max = (inputs >= new_f_min) & (inputs <= new_f_max)
below_min = (inputs <= new_f_min)
above_max = (inputs >= new_f_max)
else:
between_min_max = (inputs >= f_min) & (inputs <= f_max)
below_min = (inputs <= f_min)
above_max = (inputs >= f_max)
ones = tf.ones_like(dy)
zeros = tf.zeros_like(dy)
grad_wrt_inputs = dy * tf.where(between_min_max, ones, zeros)
grad_wrt_f_min = tf.reduce_sum(dy * tf.where(below_min, ones, zeros))
grad_wrt_f_max = tf.reduce_sum(dy * tf.where(above_max, ones, zeros))
return grad_wrt_inputs, grad_wrt_f_min, grad_wrt_f_max, None
results = forward(inputs, f_min, f_max, bit_width, quant_zero)
return results, grad_fn | 2034dbe02d50ce0317dc4dbb6f2ed59137e671d2 | 6,003 |
def lorentzian(coordinates, center, fwhm):
"""
Unit integral Lorenzian function.
Parameters
----------
coordinates : array-like
Can be either a list of ndarrays, as a meshgrid coordinates list, or a
single ndarray for 1D computation
center : array-like
Center of the lorentzian. Should be the same shape as `coordinates.ndim`.
fwhm : float
Full-width at half-max of the function.
Returns
-------
out : ndarray
Lorentzian function of unit integral.
Notes
-----
The functional form of the Lorentzian is given by:
.. math::
L(x) = \\frac{1}{\pi} \\frac{(\gamma/2)}{(x-c)^2 + (\gamma/2)^2}
where :math:`\gamma` is the full-width at half-maximum, and :math:`c` is the
center.
For n dimensions, the functional form of the Lorentzian is given by:
.. math::
L(x_1, ..., x_n) = \\frac{1}{n \pi} \\frac{(\gamma/2)}{(\sum_i{(x_i - c_i)^2} + (\gamma/2)^2)^{\\frac{1+n}{2}}}
Example
-------
>>> import numpy as np
>>> from skued import lorentzian
>>>
>>> span = np.arange(-10, 10, 0.1)
>>> xx, yy = np.meshgrid(span, span)
>>> center = [0,0]
>>> l = lorentzian( coordinates = [xx,yy], center = [0,0], fwhm = 1)
>>> l.shape == xx.shape #True
>>> np.sum(l)*0.1**2 #Integral should be unity (spacing = 0.1)
"""
width = 0.5 * fwhm
# 1D is a special case, as coordinates are not given as a list of arrays
if not isinstance(coordinates, (list, tuple)): # iterable but not ndarray
return (width / pi) / ((coordinates - center) ** 2 + width ** 2)
dim = len(coordinates)
core = width / (
(sum([(x - c) ** 2 for x, c in zip(coordinates, center)]) + width ** 2)
) ** ((dim + 1) / 2)
factor = 1 / (dim * pi)
return factor * core | 8631ef30f0fd50ac516f279cd130d6d9b099d953 | 6,004 |
def _to_gzip_base64(self, **kwargs):
""" Reads the file as text, then turns to gzip+base64"""
data = self.read_text(**kwargs)
return Base.b64_gzip_encode(data) | bb3e01bcac5e551d862629e79f4c54827ca3783c | 6,005 |
import traceback
def get_recipe_data(published=False, complete_data=False):
"""Return published or unpublished recipe data."""
try:
Changed = User.alias()
recipes = recipemodel.Recipe.select(
recipemodel.Recipe, storedmodel.Stored,
pw.fn.group_concat(tagmodel.Tag.tagname).alias("taglist")
).where(
recipemodel.Recipe.published == published
).join(
storedmodel.Stored, pw.JOIN.LEFT_OUTER, on=(storedmodel.Stored.recipeID == recipemodel.Recipe.id)
).join(
tagmodel.RecipeTags, pw.JOIN.LEFT_OUTER, on=(tagmodel.RecipeTags.recipeID == recipemodel.Recipe.id)
).join(
tagmodel.Tag, pw.JOIN.LEFT_OUTER, on=(tagmodel.Tag.id == tagmodel.RecipeTags.tagID)
).group_by(
recipemodel.Recipe.id)
if complete_data:
# Load in User table
recipes = recipes.select(
User, Changed, recipemodel.Recipe, storedmodel.Stored,
pw.fn.group_concat(tagmodel.Tag.tagname).alias("taglist")
).switch(
recipemodel.Recipe
).join(
User, pw.JOIN.LEFT_OUTER, on=(User.id == recipemodel.Recipe.created_by).alias("a")
).switch(
recipemodel.Recipe
).join(
Changed, pw.JOIN.LEFT_OUTER, on=(Changed.id == recipemodel.Recipe.changed_by).alias("b"))
data = recipemodel.get_recipes(recipes, complete_data=complete_data)
return utils.success_response(msg="Data loaded", data=data, hits=len(data))
except Exception as e:
current_app.logger.error(traceback.format_exc())
return utils.error_response(f"Failed to load data: {e}") | 35afc8247912bd6814b5f4e76716f39d9f244e90 | 6,006 |
def html_anchor_navigation(base_dir, experiment_dir, modules):
"""Build header of an experiment with links to all modules used for rendering.
:param base_dir: parent folder in which to look for an experiment folders
:param experiment_dir: experiment folder
:param modules: list of all loaded modules
:return: str
"""
return "\n".join((
"""<header class="w3-container w3-dark-grey">
<h5><a href='#'>{folder}</a></h5>
</header>""".format(folder=experiment_dir),
"\n".join("""
<div style='white-space: nowrap;'>
<div class=\"show toggle-cookie padding-right\" data-toggle='toggle-{id}-all' data-class-off='no-show'> </div>
<a class='' href='#{module_title}'>{module_title}</a>
</div>""".format(
folder=experiment_dir,
module_title=module.title,
id=module.id)
for module in modules),
"<hr />"
)) | 1fea16c0aae2f73be713271de5f003e608cee7e9 | 6,007 |
from re import M
def connect_and_play(player, name, channel, host, port,
logfilename=None, out_function=None, print_state=True,
use_debugboard=False, use_colour=False, use_unicode=False):
"""
Connect to and coordinate a game with a server, return a string describing
the result.
"""
# Configure behaviour of this function depending on parameters:
out = out_function if out_function else (lambda *_, **__: None) # no-op
if print_state:
def display_state(players_str, game):
out("displaying game info:")
out(players_str, depth=1)
out(game, depth=1)
else:
def display_state(players, game): pass
# Set up a connection with the server
out("connecting to battleground", depth=-1)
out("attempting to connect to the server...")
server = Server.from_address(host, port)
out("connection established!")
# Wait for some matching players
out("looking for a game", depth=-1)
channel_str = f"channel '{channel}'" if channel else "open channel"
out(f"submitting game request as '{name}' in {channel_str}...")
server.send(M.PLAY, name=name, channel=channel)
server.recv(M.OKAY)
out("game request submitted.")
out(f"waiting for opponents in {channel_str}...")
out("(press ^C to stop waiting)")
# (wait through some OKAY-OKAY msg exchanges until a GAME message comes---
# the server is asking if we are still here waiting, or have disconnected)
gamemsg = server.recv(M.OKAY|M.GAME)
while gamemsg['mtype'] is not M.GAME:
server.send(M.OKAY)
gamemsg = server.recv(M.OKAY|M.GAME)
# when we get a game message, it's time to play!
out("setting up game", depth=-1, clear=True)
out("opponents found!")
out("white player:", gamemsg['white'])
out("black player:", gamemsg['black'])
# Initialise the player
out("initialising player", depth=-1)
out("waiting for colour assignment...")
initmsg = server.recv(M.INIT)
out("playing as", initmsg['colour'], depth=1)
out("initialising your player class...")
player.init(initmsg['colour'])
out("ready to play!")
server.send(M.OKAY)
# Set up a new game and display the initial state and players
out("game start", depth=-1)
players_str = format_players_str(gamemsg, player.colour)
game = Game(logfilename=logfilename, debugboard=use_debugboard,
colourboard=use_colour, unicodeboard=use_unicode)
display_state(players_str, game)
# Now wait for messages from the sever and respond accordingly
while True:
msg = server.recv(M.TURN|M.UPD8|M.OVER|M.ERRO)
if msg['mtype'] is M.TURN:
# it's our turn!
out("your turn!", depth=-1, clear=True)
display_state(players_str, game)
# decide on action and submit it to server
action = player.action()
server.send(M.ACTN, action=action)
elif msg['mtype'] is M.UPD8:
# someone made a move!
colour = msg['colour']
action = msg['action']
# update our local state,
out("receiving update", depth=-1, clear=True)
game.update(colour, action)
display_state(players_str, game)
player.update(colour, action)
# then notify server we are ready to continue:
server.send(M.OKAY)
elif msg['mtype'] is M.OVER:
# the game ended!
return msg['result']
elif msg['mtype'] is M.ERRO:
# seems like the server encountered an error, but not
# with our connection
raise ServerEncounteredError(msg['reason']) | 2b8a9fe1e0e2edeb888e57d7ffd9cc59e3bd4e4e | 6,008 |
import typing
def _to_int_and_fraction(d: Decimal) -> typing.Tuple[int, str]:
"""convert absolute decimal value into integer and decimal (<1)"""
t = d.as_tuple()
stringified = ''.join(map(str, t.digits))
fraction = ''
if t.exponent < 0:
int_, fraction = stringified[:t.exponent], stringified[t.exponent:]
fraction = fraction.rjust(-t.exponent, '0')
else:
int_ = stringified + t.exponent * '0'
return int(int_ or 0), fraction | d1f83df06ae42cdc3e6b7c0582397ee3a79ff99b | 6,009 |
import json
def json_to_obj(my_class_instance):
"""
Получает на вход JSON-представление,
выдает на выходе объект класса MyClass.
>>> a = MyClass('me', 'my_surname', True)
>>> json_dict = get_json(a)
>>> b = json_to_obj(json_dict)
<__main__.MyClass object at 0x7fd8e9634510>
"""
some_dict = json.loads(my_class_instance)
return MyClass(**some_dict) | 1f881e609f1c895173f4c27ebdaf413a336a4b8f | 6,010 |
def all_tags(path) -> {str: str}:
"""Method to return Exif tags"""
file = open(path, "rb")
tags = exifread.process_file(file, details=False)
return tags | 29132ad176ba68d7026ebb78d9fed6170833255e | 6,011 |
def static(request):
"""
Backport django.core.context_processors.static to Django 1.2.
"""
return {'STATIC_URL': djangoSettings.STATIC_URL} | cf74daed50e7e15f15fbe6592f36a523e388e11e | 6,012 |
def genBoard():
"""
Generates an empty board.
>>> genBoard()
["A", "B", "C", "D", "E", "F", "G", "H", "I"]
"""
# Empty board
empty = ["A", "B", "C", "D", "E", "F", "G", "H", "I"]
# Return it
return empty | c47e766a0c897d3a1c589a560288fb52969c04a3 | 6,013 |
def _partition_at_level(dendrogram, level) :
"""Return the partition of the nodes at the given level
A dendrogram is a tree and each level is a partition of the graph nodes.
Level 0 is the first partition, which contains the smallest snapshot_affiliations, and the best is len(dendrogram) - 1.
The higher the level is, the bigger are the snapshot_affiliations
"""
partition = dendrogram[0].copy()
for index in range(1, level + 1) :
for node, community in partition.items() :
partition[node] = dendrogram[index][community]
return partition | b179127076c386480c31a18a0956eb30d5f4ef2a | 6,014 |
import logging
import collections
import sys
def filter_multi_copy_clusters(idx):
"""
{cluster_id : {taxonomy : {genomeid : [gene_uuid,...]}}}
"""
logging.info('Filtering out multi-copy genes...')
clust_cnt = collections.defaultdict(dict)
to_remove = []
for cluster_id,v in idx.items():
per_genome_copy = {}
for tax,vv in v.items():
for genome_id,x in vv.items():
per_genome_copy[genome_id] = len(set(x['gene_ids']))
# any multi-copy?
if any([x > 1 for x in per_genome_copy.values()]):
to_remove.append(cluster_id)
for cluster_id in to_remove:
idx.pop(cluster_id, None)
# status
logging.info(' Number of multi-copy clusters removed: {}'.format(len(to_remove)))
logging.info(' Number of single-copy clusters remaining: {}'.format(len(idx.keys())))
if len(idx.keys()) < 1:
logging.info('Exiting due to a lack of clusters')
sys.exit(0)
metadata_summary(idx)
return idx | 0c4122fb6119f827bd7b61debc12701064ec7d34 | 6,015 |
def generate_ab_data():
"""
Generate data for a second order reaction A + B -> P
d[A]/dt = -k[A][B]
d[B]/dt = -k[A][B]
d[P]/dt = k[A][B]
[P] = ([B]0 - [A]0 h(t)) / (1 - h(t)) where
h(t) = ([B]0 / [A]0) e^(kt ([B]0 - [A]0))
Data printed in a .csv file
"""
times = np.linspace(0, 10, num=100) # s
a0 = 0.6 # mol dm^-3
b0 = 0.5 # mol dm^-3
k = 1.7 # mol^-1 dm^3 s^-1
with open('ab.csv', 'w') as data_file:
print('Data for A + B -> P where v = k[A][B]', file=data_file)
for i, t in enumerate(times):
h = (b0 / a0) * np.exp(k * t * (b0 - a0))
p = (b0 - a0 * h) / (1.0 - h)
a = a0 - p
b = b0 - p
# Time, [A], [B], [P]
print(f'{t:.6f},{a:.6f},{b:.6f},{p:.6f}', file=data_file)
return None | d36521953129b5e002d3a3d2bcf929322c75470c | 6,016 |
import typing
def autocomplete(segment: str, line: str, parts: typing.List[str]):
"""
:param segment:
:param line:
:param parts:
:return:
"""
if parts[-1].startswith('-'):
return autocompletion.match_flags(
segment=segment,
value=parts[-1],
shorts=['f', 'a', 'd'],
longs=['force', 'append', 'directory']
)
if len(parts) == 1:
return autocompletion.match_path(segment, parts[0])
return [] | 8d929e96684d8d1c3ad492424821d27c4d1a2e66 | 6,017 |
def elast_tri3(coord, params):
"""Triangular element with 3 nodes
Parameters
----------
coord : ndarray
Coordinates for the nodes of the element (3, 2).
params : tuple
Material parameters in the following order:
young : float
Young modulus (>0).
poisson : float
Poisson coefficient (-1, 0.5).
dens : float, optional
Density (>0).
Returns
-------
stiff_mat : ndarray
Local stiffness matrix for the element (6, 6).
mass_mat : ndarray
Local mass matrix for the element (6, 6).
Examples
--------
>>> coord = np.array([
... [0, 0],
... [1, 0],
... [0, 1]])
>>> params = [8/3, 1/3]
>>> stiff, mass = uel3ntrian(coord, params)
>>> stiff_ex = 1/2 * np.array([
... [4, 2, -3, -1, -1, -1],
... [2, 4, -1, -1, -1, -3],
... [-3, -1, 3, 0, 0, 1],
... [-1, -1, 0, 1, 1, 0],
... [-1, -1, 0, 1, 1, 0],
... [-1, -3, 1, 0, 0, 3]])
>>> np.allclose(stiff, stiff_ex)
True
"""
stiff_mat = np.zeros([6, 6])
mass_mat = np.zeros([6, 6])
C = fem.umat(params[:2])
if len(params) == 2:
dens = 1
else:
dens = params[-1]
gpts, gwts = gau.gauss_tri(order=2)
for cont in range(gpts.shape[0]):
r, s = gpts[cont, :]
H, B, det = fem.elast_diff_2d(r, s, coord, fem.shape_tri3)
factor = det * gwts[cont]
stiff_mat += 0.5 * factor * (B.T @ C @ B)
mass_mat += 0.5 * dens * factor * (H.T @ H)
return stiff_mat, mass_mat | 5a0381bb7961b811650cc57af7317737995dd866 | 6,018 |
import torch
def make_offgrid_patches_xcenter_xincrement(n_increments:int, n_centers:int, min_l:float, patch_dim:float, device):
"""
for each random point in the image and for each increments, make a square patch
return: I x C x P x P x 2
"""
patches_xcenter = make_offgrid_patches_xcenter(n_centers, min_l, patch_dim, device) # C x P x P x 2
increments = min_l * torch.arange(0,n_increments,device=patches_xcenter.device)
# expand patches for each increments
size = (n_increments, *patches_xcenter.shape)
patches_xcenter_xincrement = patches_xcenter.unsqueeze(0).expand(size)
assert torch.allclose(patches_xcenter_xincrement[0,:,:], patches_xcenter)
assert torch.allclose(patches_xcenter_xincrement[1,:,:], patches_xcenter)
patches_xcenter_xincrement = patches_xcenter_xincrement + increments[:,None,None,None,None]
# some checks
assert len(patches_xcenter_xincrement.shape) == 5
assert patches_xcenter_xincrement.shape[-1] == 2
assert patches_xcenter_xincrement.shape[0] == n_increments
assert patches_xcenter_xincrement.shape[1] == n_centers
assert patches_xcenter_xincrement.shape[2] == patches_xcenter_xincrement.shape[3] == patch_dim*2
return patches_xcenter_xincrement | dc7fe393e6bee691f9c6ae399c52668ef98372c4 | 6,019 |
def load_gazes_from_xml(filepath: str) -> pd.DataFrame:
"""loads data from the gaze XML file output by itrace.
Returns the responses as a pandas DataFrame
Parameters
----------
filepath : str
path to XML
Returns
-------
pd.DataFrame
Gazes contained in the xml file
"""
root = ET.parse(filepath)
return pd.DataFrame(list(map(lambda e: e.attrib, root.findall("./gazes/response")))) | b1fd17eace5ea253ce82617f5e8c9238a78d925a | 6,020 |
def axis_rotation(points, angle, inplace=False, deg=True, axis='z'):
"""Rotate points angle (in deg) about an axis."""
axis = axis.lower()
# Copy original array to if not inplace
if not inplace:
points = points.copy()
# Convert angle to radians
if deg:
angle *= np.pi / 180
if axis == 'x':
y = points[:, 1] * np.cos(angle) - points[:, 2] * np.sin(angle)
z = points[:, 1] * np.sin(angle) + points[:, 2] * np.cos(angle)
points[:, 1] = y
points[:, 2] = z
elif axis == 'y':
x = points[:, 0] * np.cos(angle) + points[:, 2] * np.sin(angle)
z = - points[:, 0] * np.sin(angle) + points[:, 2] * np.cos(angle)
points[:, 0] = x
points[:, 2] = z
elif axis == 'z':
x = points[:, 0] * np.cos(angle) - points[:, 1] * np.sin(angle)
y = points[:, 0] * np.sin(angle) + points[:, 1] * np.cos(angle)
points[:, 0] = x
points[:, 1] = y
else:
raise ValueError('invalid axis. Must be either "x", "y", or "z"')
if not inplace:
return points | dccb663a9d8d4f6551bde2d6d26868a181c3c0a7 | 6,021 |
async def unhandled_exception(request: Request, exc: UnhandledException):
"""Raises a custom TableKeyError."""
return JSONResponse(
status_code=400,
content={"message": "Something bad happened" f" Internal Error: {exc.message!r}"},
) | bff466190f5804def1416ee6221dccb3739c7dec | 6,022 |
def register_view(request):
"""Render HTTML page"""
form = CreateUserForm()
if request.method == 'POST':
form = CreateUserForm(request.POST)
if form.is_valid():
form.save()
user = form.cleaned_data.get('username')
messages.success(request, "Account was created for "+ user)
return redirect('loginPage')
context = {'form': form}
return render(request, 'register.html', {'data': context}) | c129a561c31c442ca091cfe38cb2f7a27f94a25d | 6,023 |
def luv2rgb(luv, *, channel_axis=-1):
"""Luv to RGB color space conversion.
Parameters
----------
luv : (..., 3, ...) array_like
The image in CIE Luv format. By default, the final dimension denotes
channels.
Returns
-------
out : (..., 3, ...) ndarray
The image in RGB format. Same dimensions as input.
Raises
------
ValueError
If `luv` is not at least 2-D with shape (..., 3, ...).
Notes
-----
This function uses luv2xyz and xyz2rgb.
"""
return xyz2rgb(luv2xyz(luv)) | bac8e7155f2249135158786d39c1f2d95af22fc8 | 6,024 |
def deposit_fetcher(record_uuid, data):
"""Fetch a deposit identifier.
:param record_uuid: Record UUID.
:param data: Record content.
:returns: A :class:`invenio_pidstore.fetchers.FetchedPID` that contains
data['_deposit']['id'] as pid_value.
"""
return FetchedPID(
provider=DepositProvider,
pid_type=DepositProvider.pid_type,
pid_value=str(data['_deposit']['id']),
) | c4505eff50473204c5615991f401a45cc53779a1 | 6,025 |
import time
def make_filename():
""""This functions creates a unique filename."""
unique_filename = time.strftime("%Y%m%d-%H%M%S")
#unique_filename = str(uuid.uuid1())
#unique_filename = str(uuid.uuid1().hex[0:7])
save_name = 'capture_ferhat_{}.png'.format(unique_filename)
return(save_name) | bf16b642884381d795148e045de2387d0acaf23d | 6,026 |
import re
def compareLists(sentenceList, majorCharacters):
"""
Compares the list of sentences with the character names and returns
sentences that include names.
"""
characterSentences = defaultdict(list)
for sentence in sentenceList:
for name in majorCharacters:
if re.search(r"\b(?=\w)%s\b(?!\w)" % re.escape(name),
sentence,
re.IGNORECASE):
characterSentences[name].append(sentence)
return characterSentences | 4b41da794ff936a3769fe67580b989e0de343ee7 | 6,027 |
import re
def is_live_site(url):
"""Ensure that the tool is not used on the production Isaac website.
Use of this tool or any part of it on Isaac Physics and related websites
is a violation of our terms of use: https://isaacphysics.org/terms
"""
if re.search("http(s)?://isaac(physics|chemistry|maths|biology|science)\.org", url):
return True
else:
return False | 407624a049e92740eb82753d941780a446b1facf | 6,028 |
def score_false(e, sel):
"""Return scores for internal-terminal nodes"""
return e*(~sel).sum() | 077cd38c6d1186e2d70fd8a93f44249b0cef2885 | 6,029 |
import os
import tkinter as tk
import tkinter.font as TkFont
from .BiblioSys import DISPLAYS,GUI_DISP
def Select_multi_items(list_item,mode='multiple', fact=2, win_widthmm=80, win_heightmm=100, font_size=16):
"""interactive selection of items among the list list_item
Args:
list_item (list): list of items used for the selection
Returns:
val (list): list of selected items without duplicate
"""
# Standard library imports
# Local imports
global val
def selected_item():
global val
val = [listbox.get(i) for i in listbox.curselection()]
if os.name == 'nt': window.destroy()
# Getting the ppi of the selected prime display.
ppi = DISPLAYS[GUI_DISP]['ppi']
# Setting the window title
if mode == 'single':
title = 'Single item selection'
else:
title = 'Multiple items selection'
# Creating the gui window
window = tk.Tk()
# Setting the window geometry parameters
font_title = TkFont.Font(family='arial', size=font_size, weight='bold')
title_widthmm,_ = _str_size_mm(title, font_title, ppi)
win_widthmm = max(title_widthmm*fact,win_widthmm)
win_widthpx = str(_mm_to_px(win_widthmm,ppi))
win_heightpx = str(_mm_to_px(win_heightmm,ppi))
#win_heightpx = '500'
win_xpx = str(int(DISPLAYS[GUI_DISP]['x']) + 50)
win_ypx = str(int(DISPLAYS[GUI_DISP]['y']) + 50)
window.geometry(f'{win_widthpx}x{win_heightpx}+{win_xpx}+{win_ypx}')
window.attributes("-topmost", True)
window.title(title)
yscrollbar = tk.Scrollbar(window)
yscrollbar.pack(side = tk.RIGHT, fill = tk.Y)
selectmode = tk.MULTIPLE
if mode == 'single':selectmode = tk.SINGLE
listbox = tk.Listbox(window, width=40, height=10, selectmode=selectmode,
yscrollcommand = yscrollbar.set)
x = list_item
for idx,item in enumerate(x):
listbox.insert(idx, item)
listbox.itemconfig(idx,
bg = "white" if idx % 2 == 0 else "white")
btn = tk.Button(window, text='OK', command=selected_item)
btn.pack(side='bottom')
listbox.pack(padx = 10, pady = 10,expand = tk.YES, fill = "both")
yscrollbar.config(command = listbox.yview)
window.mainloop()
return val | ba0eacf5d05e0a51ef5a2415ef94a39d395afbdf | 6,030 |
import logging
import numpy
def retrieveXS(filePath, evMin=None, evMax=None):
"""Open an ENDF file and return the scattering XS"""
logging.info('Retrieving scattering cross sections from file {}'
.format(filePath))
energies = []
crossSections = []
with open(filePath) as fp:
line = fp.readline()
while line[0] == '#':
line = fp.readline()
while line != '' and '#END' not in line:
ev, xs = [float(xx) for xx in line.split()[:2]]
energies.append(ev)
crossSections.append(xs)
line = fp.readline()
logging.info('Done')
energies = numpy.array(energies)
crossSections = numpy.array(crossSections)
bounds = energies.min(), energies.max()
if evMin is None:
evMin = bounds[0]
else:
if bounds[0] > evMin:
logging.warning('Could not find requested minimum energy '
'{:.4E} eV in cross section file {}. '
'Using minimum found: {:.4E} eV'
.format(evMin, filePath, bounds[0]))
evMin = bounds[0]
indices = numpy.where(energies >= evMin)
energies = energies[indices]
crossSections = crossSections[indices]
if evMax is None:
evMax = bounds[1]
else:
if bounds[1] < evMax:
logging.warning('Could not find requested maximum energy '
'{:.4E} eV in cross section file {}. '
'Using maximum found: {:.4E} eV'
.format(evMax, filePath, bounds[1]))
evMax = bounds[1]
indices = numpy.where(energies <= evMax)
energies = energies[indices]
crossSections = crossSections[indices]
return energies, crossSections | 388986facd75540983870f1f7e0a6f51b6034271 | 6,031 |
import string
def _parse_java_simple_date_format(fmt):
"""
Split a SimpleDateFormat into literal strings and format codes with counts.
Examples
--------
>>> _parse_java_simple_date_format("'Date:' EEEEE, MMM dd, ''yy")
['Date: ', ('E', 5), ', ', ('M', 3), ' ', ('d', 2), ", '", ('y', 2)]
"""
out = []
quoted = False
prev_c = None
prev_count = 0
literal_text = ''
k = 0
while k < len(fmt):
c = fmt[k]
k += 1
if not quoted and c == "'" and k < len(fmt) and fmt[k] == "'":
# Repeated single quote.
if prev_c is not None:
out.append((prev_c, prev_count))
prev_c = None
prev_count = 0
literal_text += c
k += 1
continue
if c == "'":
if not quoted:
if prev_c is not None:
out.append((prev_c, prev_count))
prev_c = None
prev_count = 0
if literal_text:
out.append(literal_text)
literal_text = ''
quoted = not quoted
continue
if quoted:
literal_text += c
continue
if c not in string.ascii_letters:
if prev_c is not None:
out.append((prev_c, prev_count))
prev_c = None
prev_count = 0
literal_text += c
continue
if c not in 'GyMdhHmsSEDFwWakKzZ':
raise ValueError(f"unknown format character {c}")
if literal_text != '':
out.append(literal_text)
literal_text = ''
if prev_c is not None and c != prev_c:
out.append((prev_c, prev_count))
prev_count = 0
prev_c = c
prev_count += 1
else:
if quoted:
raise ValueError("missing closing quote; input ends "
f"with '{literal_text}")
if literal_text != '':
out.append(literal_text)
elif prev_c is not None:
out.append((prev_c, prev_count))
return out | 3fe42e4fc96ee96c665c3c240cb00756c8534c84 | 6,032 |
import logging
def rekey_by_sample(ht):
"""Re-key table by sample id to make subsequent ht.filter(ht.S == sample_id) steps 100x faster"""
ht = ht.key_by(ht.locus)
ht = ht.transmute(
ref=ht.alleles[0],
alt=ht.alleles[1],
het_or_hom_or_hemi=ht.samples.het_or_hom_or_hemi,
#GQ=ht.samples.GQ,
HL=ht.samples.HL,
S=ht.samples.S,
)
ht = ht.key_by(ht.S)
ht = ht.transmute(
chrom=ht.locus.contig.replace("chr", ""),
pos=ht.locus.position
)
logging.info("Schema after re-key by sample:")
ht.describe()
return ht | 3e879e6268017de31d432706dab9e672e85673aa | 6,033 |
import collections
def _sample_prior_fixed_model(formula_like, data=None,
a_tau=1.0, b_tau=1.0, nu_sq=1.0,
n_iter=2000,
generate_prior_predictive=False,
random_state=None):
"""Sample from prior for a fixed model."""
rng = check_random_state(random_state)
y, X = patsy.dmatrices(formula_like, data=data)
y, X = _check_design_matrices(y, X)
outcome_names = y.design_info.column_names
coef_names = [rdu.get_default_coefficient_name(n)
for n in X.design_info.column_names]
n_coefs = len(coef_names)
beta, tau_sq, lp = _sample_parameters_conjugate_priors(
n_coefs, a_tau=a_tau, b_tau=b_tau, nu_sq=nu_sq,
size=n_iter, random_state=rng)
chains = collections.OrderedDict({'tau_sq': tau_sq})
for j, t in enumerate(coef_names):
chains[t] = beta[:, j]
chains['lp__'] = lp
outcome_chains = None
if generate_prior_predictive:
sampled_outcomes, _ = _sample_outcomes(
X, beta, tau_sq, random_state=rng)
outcome_chains = collections.OrderedDict(
{n: sampled_outcomes[..., i]
for i, n in enumerate(outcome_names)})
args = {'random_state': random_state, 'n_iter': n_iter}
results = {'chains': chains,
'args': args,
'acceptance': 1.0,
'accept_stat': np.ones((n_iter,), dtype=float),
'mean_lp__': np.mean(chains['lp__'])}
prior_predictive = None
if generate_prior_predictive:
prior_predictive = {
'chains': outcome_chains,
'args': args,
'acceptance': 1.0,
'accept_stat': np.ones((n_iter,), dtype=float)
}
return results, prior_predictive | 1e57cd3f8812e28a8d178199d3dd9c6a23614dc0 | 6,034 |
from typing import Any
async def validate_input(
hass: core.HomeAssistant, data: dict[str, Any]
) -> dict[str, str]:
"""Validate the user input allows us to connect.
Data has the keys from STEP_USER_DATA_SCHEMA with values provided by the user.
"""
zeroconf_instance = await zeroconf.async_get_instance(hass)
async_client = get_async_client(hass)
device = Device(data[CONF_IP_ADDRESS], zeroconf_instance=zeroconf_instance)
await device.async_connect(session_instance=async_client)
await device.async_disconnect()
return {
SERIAL_NUMBER: str(device.serial_number),
TITLE: device.hostname.split(".")[0],
} | 5ececb6dfc84e232d413b2ada6c6076a75420b49 | 6,035 |
def closeWindow(plotterInstance=None):
"""Close the current or the input rendering window."""
if not plotterInstance:
plotterInstance = settings.plotter_instance
if not plotterInstance:
return
if plotterInstance.interactor:
plotterInstance.interactor.ExitCallback()
plotterInstance.closeWindow()
return plotterInstance | af3df7fa07069413c59f498529f4d21a9b88e9f4 | 6,036 |
def _format_stages_summary(stage_results):
"""
stage_results (list of (tuples of
(success:boolean, stage_name:string, status_msg:string)))
returns a string of a report, one line per stage.
Something like:
Stage: <stage x> :: SUCCESS
Stage: <stage y> :: FAILED
Stage: <stage z> :: SUCCESS
"""
#find the longest stage name to pad report lines
max_name_len = 0
for entry in stage_results:
x, stage_name, y = entry
name_len = len(stage_name)
if name_len > max_name_len:
max_name_len = name_len
summary = ""
for entry in stage_results:
x, stage_name, status_msg = entry
summary += 'Stage: ' + stage_name.ljust(max_name_len) + ":: "
summary += status_msg + '\n'
return summary | 2f5c757342e98ab258bdeaf7ffdc0c5d6d4668ca | 6,037 |
import json
def pack(envelope, pack_info):
"""Pack envelope into a byte buffer.
Parameters
----------
envelope : data structure
pack_info : packing information
Returns
-------
packet : bytes
"""
ptype = pack_info.ptype
packer = packers[ptype]
payload = packer.pack(envelope)
hdr = dict(packer=packer.kind, ver=packer.version,
nbytes=len(payload))
hdr_buf = json.dumps(hdr).encode()
packet = hdr_buf + partition + payload
return packet | 5202e9eef7fc658157798d7f0d64820b1dfa3ac3 | 6,038 |
import tempfile
def tmpnam_s():
"""Implementation of POSIX tmpnam() in scalar context"""
ntf = tempfile.NamedTemporaryFile(delete=False)
result = ntf.name
ntf.close()
return result | a8c193a0e1ed6cd386dda9e0c084805cbed5f189 | 6,039 |
def timezone_lookup():
"""Force a timezone lookup right now"""
TZPP = NSBundle.bundleWithPath_("/System/Library/PreferencePanes/"
"DateAndTime.prefPane/Contents/"
"Resources/TimeZone.prefPane")
TimeZonePref = TZPP.classNamed_('TimeZonePref')
ATZAdminPrefererences = TZPP.classNamed_('ATZAdminPrefererences')
atzap = ATZAdminPrefererences.defaultPreferences()
pref = TimeZonePref.alloc().init()
atzap.addObserver_forKeyPath_options_context_(pref, "enabled", 0, 0)
result = pref._startAutoTimeZoneDaemon_(0x1)
# If this is not set to 1 then AutoTimezone still isn't enabled.
# This additional preference check makes this script work with 10.12
if pref.isTimeZoneAutomatic() is not 1:
return False
return True | a78a7f32f02e4f6d33b91bb68c1330d531b0208e | 6,040 |
def rollingCPM(dynNetSN:DynGraphSN,k=3):
"""
This method is based on Palla et al[1]. It first computes overlapping snapshot_communities in each snapshot based on the
clique percolation algorithm, and then match snapshot_communities in successive steps using a method based on the
union graph.
[1] Palla, G., Barabási, A. L., & Vicsek, T. (2007).
Quantifying social group evolution.
Nature, 446(7136), 664.
:param dynNetSN: a dynamic network (DynGraphSN)
:param k: the size of cliques used as snapshot_communities building blocks
:return: DynCommunitiesSN
"""
DynCom = DynCommunitiesSN()
old_communities = None
old_graph = nx.Graph()
graphs=dynNetSN.snapshots()
for (date, graph) in graphs.items():
communitiesAtT = list(_get_percolated_cliques(graph, k)) #get the percolated cliques (snapshot_affiliations) as a list of set of nodes
for c in communitiesAtT:
DynCom.add_community(date, c)
if old_communities == None: #if first snapshot
old_graph = graph
dateOld=date
old_communities = communitiesAtT
else:
if len(communitiesAtT)>0: #if there is at least one community
union_graph = nx.compose(old_graph, graph) #create the union graph of the current and the previous
communities_union = list(_get_percolated_cliques(union_graph, k)) #get the snapshot_affiliations of the union graph
jaccardBeforeAndUnion = _included(old_communities, communities_union) #we only care if the value is above 0
jaccardUnionAndAfter = _included(communitiesAtT,communities_union) #we only care if the value is above 0
for c in jaccardBeforeAndUnion: #for each community in the union graph
matched = []
born = []
killed = []
allJaccards = set()
for oldC in jaccardBeforeAndUnion[c]:
for newC in jaccardUnionAndAfter[c]:
allJaccards.add(((oldC,newC),_singleJaccard(oldC,newC))) #compute jaccard between candidates before and after
allJaccards = sorted(allJaccards, key=itemgetter(1), reverse=True)
sortedMatches = [k[0] for k in allJaccards]
oldCToMatch = dict(jaccardBeforeAndUnion[c]) #get all coms before
newCToMatch = dict(jaccardUnionAndAfter[c]) #get all new coms
while len(sortedMatches)>0: #as long as there are couples of unmatched snapshot_affiliations
matchedKeys = sortedMatches[0] #pair of snapshot_affiliations of highest jaccard
matched.append(matchedKeys) #this pair will be matched
del oldCToMatch[matchedKeys[0]] #delete chosen com from possible to match
del newCToMatch[matchedKeys[1]]
sortedMatches = [k for k in sortedMatches if len(set(matchedKeys) & set(k))==0] #keep only pairs of unmatched snapshot_affiliations
if len(oldCToMatch)>0:
killed.append(list(oldCToMatch.keys())[0])
if len(newCToMatch)>0:
born.append(list(newCToMatch.keys())[0])
for aMatch in matched:
DynCom.events.add_event((dateOld, DynCom._com_ID(dateOld, aMatch[0])), (date, DynCom._com_ID(date, aMatch[1])), dateOld, date, "continue")
for kil in killed:#these are actual merge (unmatched snapshot_affiliations are "merged" to new ones)
for com in jaccardUnionAndAfter[c]:
DynCom.events.add_event((dateOld, DynCom._com_ID(dateOld, kil)), (date, DynCom._com_ID(date, com)), dateOld, date, "merged")
for b in born:#these are actual merge (unmatched snapshot_affiliations are "merged" to new ones)
for com in jaccardBeforeAndUnion[c]:
DynCom.events.add_event((dateOld, DynCom._com_ID(dateOld, com)), (date, DynCom._com_ID(date, b)), dateOld, date, "split")
old_graph = graph
dateOld=date
old_communities = communitiesAtT
print(DynCom.snapshots)
print(DynCom.events.nodes)
DynCom._relabel_coms_from_continue_events()
return(DynCom) | b4050544cd8a98346f436c75e5c3eeeb9a64c030 | 6,041 |
def penalty_eqn(s_m, Dt):
"""
Description:
Simple function for calculating the penalty for late submission of a project.
Args:
:in (1): maximum possible score
:in (2): difference between the date of deadline and the date of assignment of the project (in hours)
:out (1): rounded result of the calculation
"""
# difference between the date of deadline and the date of assignment
delta_p = s_m/10
# main equation of penalty for late submission
p_s = abs((Dt/24)*np.exp(0.5)) + delta_p
return round(s_m - p_s) | 694a2b77c1612d7036c46768ee834043a1af3902 | 6,042 |
import re
def stop(name=None, id=None):
"""
Stop (terminate) the VM identified by the given id or name.
When both a name and id are provided, the id is ignored.
name:
Name of the defined VM.
id:
VM id.
CLI Example:
.. code-block:: bash
salt '*' vmctl.stop name=alpine
"""
ret = {}
cmd = ["vmctl", "stop"]
if not (name or id):
raise SaltInvocationError('Must provide either "name" or "id"')
elif name:
cmd.append(name)
else:
cmd.append(id)
result = __salt__["cmd.run_all"](cmd, output_loglevel="trace", python_shell=False)
if result["retcode"] == 0:
if re.match("^vmctl: sent request to terminate vm.*", result["stderr"]):
ret["changes"] = True
else:
ret["changes"] = False
else:
raise CommandExecutionError(
"Problem encountered running vmctl",
info={"errors": [result["stderr"]], "changes": ret},
)
return ret | 3dbb2771f7407f3a28a9249551268b9ba23d906e | 6,043 |
def ky_att(xs, b, Mach, k0, Att=-20):
"""
Returns the spanwise gust wavenumber 'ky_att' with response at 'xs' attenuated by 'Att' decibels
Parameters
----------
xs : float
Chordwise coordinate of reference point, defined in interval (-b, +b].
b : float
Airfoil semi chord.
Mach : float
Mean flow Mach number.
k0 : float
Acoustic wavenumber 'k0'. Can be obtained from the
temporal frequency 'f' [in Hz] and the speed of sound 'c0' [in m/s]
as 'k0 = 2*pi*f/c0'.
Att : float, optional
Level of attenuation of the surface pressure at point 'xs', in decibels.
Defaults to -20 dB.
Returns
-------
ky_att : float
Subcritical gust spanwise wavenumber 'ky_att' such that the aerofoil
response at point 'xs' is 'Att' dB reduced.
"""
beta = np.sqrt(1-Mach**2)
# critical gust spanwise wavenumber
ky_crit = k0/beta
term1 = -(beta**2)*np.log(10**(Att/20))/(k0*(xs + b))
return ky_crit*np.sqrt(term1**2 + 1) | 78d62081d0849d035953a694bbb7a0fcf956f76b | 6,044 |
from typing import Optional
def has_multiline_items(strings: Optional[Strings]) -> bool:
"""Check whether one of the items in the list has multiple lines."""
return any(is_multiline(item) for item in strings) if strings else False | 75dd6ce7d7152a200ff12c53104ff839a21d28f4 | 6,045 |
from typing import Optional
from typing import Tuple
import inspect
def eval_ctx(
layer: int = 0, globals_: Optional[DictStrAny] = None, locals_: Optional[DictStrAny] = None
) -> Tuple[DictStrAny, DictStrAny]:
"""获取一个上下文的全局和局部变量
Args:
layer (int, optional): 层数. Defaults to 0.
globals_ (Optional[DictStrAny], optional): 全局变量. Defaults to None.
locals_ (Optional[DictStrAny], optional): 局部变量. Defaults to None.
Returns:
Tuple[DictStrAny, DictStrAny]: 全局和局部变量字典.
"""
frame = inspect.stack()[layer + 1].frame # add the current frame
global_dict, local_dict = frame.f_globals, frame.f_locals
global_dict.update(globals_ or {})
local_dict.update(locals_ or {})
return global_dict, local_dict | 81b782596bcc29f1be4432cc1b95230ac952bf2b | 6,046 |
import os
import re
def find_ports(device):
"""
Find the port chain a device is plugged on.
This is done by searching sysfs for a device that matches the device
bus/address combination.
Useful when the underlying usb lib does not return device.port_number for
whatever reason.
"""
bus_id = device.bus
dev_id = device.address
for dirent in os.listdir(USB_SYS_PREFIX):
matches = re.match(USB_PORTS_STR + '$', dirent)
if matches:
bus_str = readattr(dirent, 'busnum')
if bus_str:
busnum = float(bus_str)
else:
busnum = None
dev_str = readattr(dirent, 'devnum')
if dev_str:
devnum = float(dev_str)
else:
devnum = None
if busnum == bus_id and devnum == dev_id:
return str(matches.groups()[1]) | aec31745b0d28ea58803242faca43258e8a78dd6 | 6,047 |
def extract_vcalendar(allriscontainer):
"""Return a list of committee meetings extracted from html content."""
vcalendar = {
'vevents': findall_events(allriscontainer),
}
if vcalendar.get('vevents'):
base_url = allriscontainer.base_url
vcalendar['url'] = find_calendar_url(base_url)
vcalendar['uid'] = find_calendar_uid(base_url)
vcalendar['borough'] = find_calendar_borough(base_url)
vcalendar['committee'] = find_calendar_committee(allriscontainer)
vcalendar['name'] = '{}: {}'.format(
vcalendar['borough'],
vcalendar['committee']
)
return vcalendar | f792ae3d8826d37b2fba874524ec78ac502fb1f0 | 6,048 |
def rnn_helper(inp,
length,
cell_type=None,
direction="forward",
name=None,
reuse=None,
*args,
**kwargs):
"""Adds ops for a recurrent neural network layer.
This function calls an actual implementation of a recurrent neural network
based on `cell_type`.
There are three modes depending on the value of `direction`:
forward: Adds a forward RNN.
backward: Adds a backward RNN.
bidirectional: Adds both forward and backward RNNs and creates a
bidirectional RNN.
Args:
inp: A 3-D tensor of shape [`batch_size`, `max_length`, `feature_dim`].
length: A 1-D tensor of shape [`batch_size`] and type int64. Each element
represents the length of the corresponding sequence in `inp`.
cell_type: Cell type of RNN. Currently can only be "lstm".
direction: One of "forward", "backward", "bidirectional".
name: Name of the op.
*args: Other arguments to the layer.
**kwargs: Keyword arugments to the layer.
Returns:
A 3-D tensor of shape [`batch_size`, `max_length`, `num_nodes`].
"""
assert cell_type is not None
rnn_func = None
if cell_type == "lstm":
rnn_func = lstm_layer
assert rnn_func is not None
assert direction in ["forward", "backward", "bidirectional"]
with tf.variable_scope(name, reuse=reuse):
if direction in ["forward", "bidirectional"]:
forward = rnn_func(
inp=inp,
length=length,
backward=False,
name="forward",
reuse=reuse,
*args,
**kwargs)
if isinstance(forward, tuple):
# lstm_layer returns a tuple (output, memory). We only need the first
# element.
forward = forward[0]
if direction in ["backward", "bidirectional"]:
backward = rnn_func(
inp=inp,
length=length,
backward=True,
name="backward",
reuse=reuse,
*args,
**kwargs)
if isinstance(backward, tuple):
# lstm_layer returns a tuple (output, memory). We only need the first
# element.
backward = backward[0]
if direction == "forward":
out = forward
elif direction == "backward":
out = backward
else:
out = tf.concat(axis=2, values=[forward, backward])
return out | d6d457a10bd921560a76bc54a083271c82b144ec | 6,049 |
def get_data(dataset):
"""
:return: encodings array of (2048, n)
labels list of (n)
"""
query = "SELECT * FROM embeddings WHERE label IS NOT NULL"
cursor, connection = db_actions.connect(dataset)
cursor.execute(query)
result_list = cursor.fetchall()
encodings = np.zeros((2048, len(result_list)))
labels = []
for i in range(len(result_list)):
encodings[:, i] = result_list[i][0]
labels.append(result_list[i][1].encode())
encodings = np.nan_to_num(encodings)
labels = [x.decode('utf-8') for x in labels]
return encodings.astype('float32'), labels | 9f23631c6e263f99bab976e1225adbb448323783 | 6,050 |
def read_hdr(name, order='C'):
"""Read hdr file."""
# get dims from .hdr
h = open(name + ".hdr", "r")
h.readline() # skip line
l = h.readline()
h.close()
dims = [int(i) for i in l.split()]
if order == 'C':
dims.reverse()
return dims | 57daadfdf2342e1e7ef221cc94f2e8f70c504944 | 6,051 |
def IsTouchDevice(dev):
"""Check if a device is a touch device.
Args:
dev: evdev.InputDevice
Returns:
True if dev is a touch device.
"""
keycaps = dev.capabilities().get(evdev.ecodes.EV_KEY, [])
return evdev.ecodes.BTN_TOUCH in keycaps | 6fd36c4921f3ee4bf37c6ce8bcaf435680fc82d5 | 6,052 |
def load_users():
"""
Loads users csv
:return:
"""
with open(USERS, "r") as file:
# creates dictionary to separate csv values to make it easy to iterate between them
# the hash() function is used to identify the values in the csv, as they have their individual hash
# keys, and as the csv is immutable it'll be the same throughout
users = {}
for user in file:
user = user.strip().split(",")
user_tuple = create_user(*user[:5], int(user[5]))
users[hash(user_tuple)] = user_tuple
return users | 255745d36b5b995dfd9a8c0b13a154a87ab6f25e | 6,053 |
import re
import sys
def main(argv):
"""
Push specified revision as a specified bookmark to repo.
"""
args = parse_arguments(argv)
pulled = check_output([args.mercurial_binary, 'pull', '-B', args.bookmark, args.repo]).decode('ascii')
print(pulled)
if re.match("adding changesets", pulled):
print("Unseen changes found on bookmark", args.bookmark, "you should probably rebase first", file=sys.stderr)
check_call([args.mercurial_binary, 'bookmark', '-f', '-r', args.rev, args.bookmark])
check_call([args.mercurial_binary, 'push', '-B', args.bookmark, args.repo])
return 0 | 83bb61ab9a1a1fcd138782b268d78a1f63164131 | 6,054 |
def clustering_consistency_check(G):
""" Check consistency of a community detection algorithm by running it a number of times.
"""
Hun = G.to_undirected()
Hun = nx.convert_node_labels_to_integers(Hun,label_attribute='skeletonname')
WHa = np.zeros((len(Hun.nodes()),len(Hun.nodes())))
for i in range(100):
partition = community.best_partition(Hun, randomize=None, resolution=1.0)
for com in set(partition.values()) :
list_nodes = [nodes for nodes in partition.keys()
if partition[nodes] == com]
list_nodes = np.array(list_nodes)
WHa[np.ix_(list_nodes,list_nodes)] += 1
print('Iteration:', i)
return WHa | 917bb7a23b651821389edbcc62c81fbe4baf3d08 | 6,055 |
def l2_normalize_rows(frame):
"""
L_2-normalize the rows of this DataFrame, so their lengths in Euclidean
distance are all 1. This enables cosine similarities to be computed as
dot-products between these rows.
Rows of zeroes will be normalized to zeroes, and frames with no rows will
be returned as-is.
"""
if frame.shape[0] == 0:
return frame
index = frame.index
return pd.DataFrame(
data=normalize(frame, norm='l2', copy=False, axis=1), index=index
) | 889c2f4473fdab4661fecdceb778aae1bb62652d | 6,056 |
import socket
def canonical_ipv4_address(ip_addr):
"""Return the IPv4 address in a canonical format"""
return socket.inet_ntoa(socket.inet_aton(ip_addr)) | edacc70ccc3eef12030c4c597c257775d3ed5fa4 | 6,057 |
def _build_dynatree(site, expanded):
"""Returns a dynatree hash representation of our pages and menu
hierarchy."""
subtree = _pages_subtree(site.doc_root, site.default_language, True, 1,
expanded)
subtree['activate'] = True
pages_node = {
'title': 'Pages',
'key': 'system:pages',
'expand': True,
'icon': 'fatcow/folders_explorer.png',
'children': [subtree, ],
}
language = site.default_language
menus = []
for menu in Menu.objects.filter(site=site):
items = []
for item in menu.first_level.all():
items.append(_menuitem_subtree(item, language, True, 1, expanded))
menus.append({
'title': menu.name,
'key': 'menu:%d' % menu.id,
'expand': True,
'icon': 'fatcow/folders.png',
'children':items,
})
menus_node = {
'title': 'Menus',
'key': 'system:menus',
'expand': True,
'icon': 'fatcow/folders_explorer.png',
'children': menus,
}
tags = []
for tag in Tag.objects.filter(site=site):
title = tag.display_text(language)
if not title:
title = '<i>None</i>'
tags.append({
'title': title,
'key':'tag:%d' % tag.id,
'icon': 'fatcow/document_tag.png',
'expand': False,
})
tags_node = {
'title':'Tags',
'key':'system:tags',
'expand':False,
'icon': 'fatcow/folders_explorer.png',
'children': tags,
}
tree = [pages_node, menus_node, tags_node]
return tree | 38dd222ed5cde6b4d6bff4a632c6150666580b92 | 6,058 |
import logging
def check_tie_condition(board):
""" tie = if no empty cells and no win """
logging.debug('check_tie_condition()')
# is the board full and no wins
empty_cells = board.count('-')
logging.debug(f'Number of empty cells {empty_cells}')
tie = (empty_cells == 0)
return tie | 81325de769d401d1dd11dcf60f490bb76653b6e9 | 6,059 |
def aggregator(df, groupbycols):
"""
Aggregates flowbyactivity or flowbysector df by given groupbycols
:param df: Either flowbyactivity or flowbysector
:param groupbycols: Either flowbyactivity or flowbysector columns
:return:
"""
# tmp replace null values with empty cells
df = replace_NoneType_with_empty_cells(df)
# drop columns with flowamount = 0
df = df[df['FlowAmount'] != 0]
# list of column headers, that if exist in df, should be aggregated using the weighted avg fxn
possible_column_headers = ('Spread', 'Min', 'Max', 'DataReliability', 'TemporalCorrelation',
'GeographicalCorrelation', 'TechnologicalCorrelation',
'DataCollection')
# list of column headers that do exist in the df being aggregated
column_headers = [e for e in possible_column_headers if e in df.columns.values.tolist()]
df_dfg = df.groupby(groupbycols).agg({'FlowAmount': ['sum']})
# run through other columns creating weighted average
for e in column_headers:
df_dfg[e] = weighted_average(df, e, 'FlowAmount', groupbycols)
df_dfg = df_dfg.reset_index()
df_dfg.columns = df_dfg.columns.droplevel(level=1)
# if datatypes are strings, ensure that Null values remain NoneType
df_dfg = replace_strings_with_NoneType(df_dfg)
return df_dfg | f8333087efc4a48d70aa6e3d727f73a7d03c8252 | 6,060 |
def unpack(X):
""" Unpack a comma separated list of values into a flat list """
return flatten([x.split(",") for x in list(X)]) | 1033fd5bdcd292a130c08a8f9819bf66a38fccac | 6,061 |
def doize(tock=0.0, **opts):
"""
Decorator that returns Doist compatible decorated generator function.
Usage:
@doize
def f():
pass
Parameters:
tock is default tock attribute of doized f
opts is dictionary of remaining parameters that becomes .opts attribute
of doized f
"""
def decorator(f):
# must create copy not wrapper so inspect.isgeneratorfunction works
# result of decoration
g = helping.copy_func(f)
g.tock = tock # default tock attributes
g.done = None # default done state
g.opts = dict(opts) # default opts attribute
return g
return decorator | 0c4a4220546b8c0cbc980c10de0476c9fc6c7995 | 6,062 |
import codecs
import yaml
import logging
def get_env(path):
"""
Read the environment file from given path.
:param path: Path to the environment file.
:return: the environment (loaded yaml)
"""
with codecs.open(path, 'r', 'UTF-8') as env_file:
conf_string = env_file.read()
env = yaml.load(conf_string)
logging.debug('env: %s', env)
return env | 92118337c73a2d01df27242145687619dc7571a7 | 6,063 |
def make_chained_transformation(tran_fns, *args, **kwargs):
"""Returns a dataset transformation function that applies a list of
transformations sequentially.
Args:
tran_fns (list): A list of dataset transformation.
*args: Extra arguments for each of the transformation function.
**kwargs: Extra keyword arguments for each of the transformation
function.
Returns:
A transformation function to be used in
:tf_main:`tf.data.Dataset.map <data/Dataset#map>`.
"""
def _chained_fn(data):
for tran_fns_i in tran_fns:
data = tran_fns_i(data, *args, **kwargs)
return data
return _chained_fn | 5f24e030df74a0617e633ca8f8d4a3954674b001 | 6,064 |
def configure_optimizer(learning_rate):
"""Configures the optimizer used for training.
Args:
learning_rate: A scalar or `Tensor` learning rate.
Returns:
An instance of an optimizer.
Raises:
ValueError: if FLAGS.optimizer is not recognized.
"""
if FLAGS.optimizer == 'adadelta':
optimizer = tf.train.AdadeltaOptimizer(
learning_rate,
rho=FLAGS.adadelta_rho,
epsilon=FLAGS.opt_epsilon)
elif FLAGS.optimizer == 'adagrad':
optimizer = tf.train.AdagradOptimizer(
learning_rate,
initial_accumulator_value=FLAGS.adagrad_initial_accumulator_value)
elif FLAGS.optimizer == 'adam':
optimizer = tf.train.AdamOptimizer(
learning_rate,
beta1=FLAGS.adam_beta1,
beta2=FLAGS.adam_beta2,
epsilon=FLAGS.opt_epsilon)
elif FLAGS.optimizer == 'ftrl':
optimizer = tf.train.FtrlOptimizer(
learning_rate,
learning_rate_power=FLAGS.ftrl_learning_rate_power,
initial_accumulator_value=FLAGS.ftrl_initial_accumulator_value,
l1_regularization_strength=FLAGS.ftrl_l1,
l2_regularization_strength=FLAGS.ftrl_l2)
elif FLAGS.optimizer == 'momentum':
optimizer = tf.train.MomentumOptimizer(
learning_rate,
momentum=FLAGS.momentum,
name='Momentum')
elif FLAGS.optimizer == 'rmsprop':
optimizer = tf.train.RMSPropOptimizer(
learning_rate,
decay=FLAGS.rmsprop_decay,
momentum=FLAGS.rmsprop_momentum,
epsilon=FLAGS.opt_epsilon)
elif FLAGS.optimizer == 'sgd':
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
elif FLAGS.optimizer == "adamweightdecay":
optimizer = AdamWeightDecayOptimizer(
learning_rate=learning_rate,
weight_decay_rate=0.01,
beta_1=FLAGS.adam_beta1,
beta_2=FLAGS.adam_beta2,
epsilon=FLAGS.opt_epsilon,
exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"])
else:
raise ValueError('Optimizer [%s] was not recognized' % FLAGS.optimizer)
return optimizer | bf7dd03c4133675d58428a054cc16e7be41e88b4 | 6,065 |
import functools
def train_and_evaluate(config, workdir):
"""Runs a training and evaluation loop.
Args:
config: Configuration to use.
workdir: Working directory for checkpoints and TF summaries. If this
contains checkpoint training will be resumed from the latest checkpoint.
Returns:
Training state.
"""
rng = jax.random.PRNGKey(config.seed)
rng, data_rng = jax.random.split(rng)
# Make sure config defines num_epochs and num_train_steps appropriately.
utils.check_epochs_and_steps(config)
# Check that perturbed-topk is selection method.
assert config.selection_method == "perturbed-topk", (
"ntsnet only supports perturbed-topk as selection method. Got: {}".format(
config.selection_method))
train_preprocessing_fn, eval_preprocessing_fn = data.parse_preprocessing_strings(
config.get("train_preprocess_str", ""),
config.get("eval_preprocess_str", ""))
assert config.batch_size % jax.local_device_count() == 0, (
f"Batch size ({config.batch_size}) should be divisible by number of "
f"devices ({jax.local_device_count()}).")
per_device_batch_size = config.batch_size // jax.local_device_count()
train_ds, eval_ds, num_classes = data.get_dataset(
config.dataset,
per_device_batch_size,
data_rng,
train_preprocessing_fn=train_preprocessing_fn,
eval_preprocessing_fn=eval_preprocessing_fn,
**config.get("data", {}))
module = AttentionNet.partial(config=config, num_classes=num_classes)
optimizer = create_optimizer(config)
loss_fn = functools.partial(ntsnet_loss, config=config)
train_metrics_dict = {
"train_loss": loss_fn,
"train_loss_raw": cross_entropy_raw_logits,
"train_loss_concat": cross_entropy_concat_logits,
"train_loss_part": cross_entropy_part_logits,
"train_accuracy": accuracy,
"train_rpn_scores_entropy": rpn_scores_entropy,
}
eval_metrics_dict = {
"eval_loss": loss_fn,
"eval_loss_raw": cross_entropy_raw_logits,
"eval_loss_concat": cross_entropy_concat_logits,
"eval_loss_part": cross_entropy_part_logits,
"eval_accuracy": accuracy,
"eval_rpn_scores_entropy": rpn_scores_entropy,
}
# Enables relevant statistics aggregator.
stats_aggregators = []
def add_image_prefix(image_aggregator):
def aggregator(stats):
d = image_aggregator(stats)
return {f"image_{k}": v for k, v in d.items()}
return aggregator
if config.get("log_images", True):
@add_image_prefix
def plot_patches(stats):
d = {
"part_imgs": (stats["part_imgs"] + 1.0) / 2.0,
"x": (stats["x"] + 1.0) / 2.0
}
for i, sc in enumerate(stats["scores"]):
d[f"scores_{i}"] = sc
return d
stats_aggregators.append(plot_patches)
stats_aggregators.append(lambda x: {"sigma": x["sigma"]})
state = classification_lib.training_loop(
module=module,
rng=rng,
train_ds=train_ds,
eval_ds=eval_ds,
loss_fn=loss_fn,
optimizer=optimizer,
train_metrics_dict=train_metrics_dict,
eval_metrics_dict=eval_metrics_dict,
stats_aggregators=stats_aggregators,
config=config,
workdir=workdir)
return state | 87f1dba561563acc0033663a30f105fe4056d235 | 6,066 |
def increment(i,k):
""" this is a helper function for a summation of the type :math:`\sum_{0 \leq k \leq i}`,
where i and k are multi-indices.
Parameters
----------
i: numpy.ndarray
integer array, i.size = N
k: numpy.ndarray
integer array, k.size = N
Returns
-------
changes k on return
Example
-------
k = [1,0,1]
i = [2,0,2]
increment(i, k) # changes k to [1,0,2]
increment(i, k) # changes k to [2,0,0]
increment(i, k) # changes k to [2,0,1]
"""
carryover = 1
if len(k) != len(i):
raise ValueError('size of i and k do not match up')
for n in range(len(k))[::-1]:
if i[n] == 0:
continue
tmp = k[n] + carryover
# print 'tmp=',tmp
carryover = tmp // (i[n]+1)
# print 'carryover=',carryover
k[n] = tmp % (i[n]+1)
if carryover == 0:
break
return k | 1ac8ef592376fbfa0d04cdd4b1c6b29ad3ed9fbd | 6,067 |
def sample_lopt(key: chex.PRNGKey) -> cfgobject.CFGObject:
"""Sample a small lopt model."""
lf = cfgobject.LogFeature
rng = hk.PRNGSequence(key)
task_family_cfg = para_image_mlp.sample_image_mlp(next(rng))
lopt_name = parametric_utils.choice(
next(rng), [
"LearnableAdam", "LearnableSGDM", "LearnableSGD", "MLPLOpt",
"AdafacMLPLOpt"
])
kwargs = {}
if lopt_name in ["MLPLOpt", "AdafacMLPLOpt"]:
kwargs["hidden_size"] = lf(parametric_utils.log_int(next(rng), 2, 512))
kwargs["hidden_layers"] = parametric_utils.log_int(next(rng), 1, 4)
kwargs["exp_mult"] = lf(parametric_utils.log_float(next(rng), 1e-5, 1))
kwargs["step_mult"] = lf(parametric_utils.log_float(next(rng), 1e-5, 1))
lopt_cfg = cfgobject.CFGObject(lopt_name, kwargs)
num_steps = lf(parametric_utils.log_int(next(rng), 1, 100))
outer_bs = lf(parametric_utils.log_int(next(rng), 1, 8))
return cfgobject.CFGObject(
"ParametricLOpt", {
"lopt": lopt_cfg,
"task_family": task_family_cfg,
"num_steps": num_steps,
"outer_batch_size": outer_bs,
}) | b52a7640532ed8ce7760474edbd9832d93e7bdc3 | 6,068 |
import numpy
import time
def gen_df_groupby_usecase(method_name, groupby_params=None, method_params=''):
"""Generate df groupby method use case"""
groupby_params = {} if groupby_params is None else groupby_params
groupby_params = get_groupby_params(**groupby_params)
func_text = groupby_usecase_tmpl.format(**{
'method_name': method_name,
'groupby_params': groupby_params,
'method_params': method_params
})
global_vars = {'np': numpy, 'time': time}
loc_vars = {}
exec(func_text, global_vars, loc_vars)
_df_groupby_usecase = loc_vars[f'df_groupby_{method_name}_usecase']
return _df_groupby_usecase | 3a4f5745744299db354c17198d3175ad8b7ce4e4 | 6,069 |
import os
def hydra_breakpoints(in_bam, pair_stats):
"""Detect structural variation breakpoints with hydra.
"""
in_bed = convert_bam_to_bed(in_bam)
if os.path.getsize(in_bed) > 0:
pair_bed = pair_discordants(in_bed, pair_stats)
dedup_bed = dedup_discordants(pair_bed)
return run_hydra(dedup_bed, pair_stats)
else:
return None | 8df6dc1e4b8649cf9059c9871955fc7e24ff01b6 | 6,070 |
import csv
def merge_csvfiles(options):
""" Think of this as a 'join' across options.mergefiles on equal values of
the column options.timestamp. This function takes each file in
options.mergefiles, reads them, and combines their columns in
options.output. The only common column should be options.timestamp. The
results are undefined if the mergefiles share other column names.
Args:
options.mergefiles - list of csv filenames
options.output - filename of merged csv file from this operation
Returns:
bool - True if success
Raises:
AssertionError - if merging encounters an error.
"""
records = {}
all_header_names = []
records_list = []
# collect all header fields from mergefiles
for filename in options.mergefiles:
records = read_csvfile(filename, True)
records_list.append(records)
all_header_names += records.fieldnames
all_header_names = sorted(set(all_header_names))
# eliminate duplicate $header
output_fd = open(options.output,'w')
writer = csv.DictWriter(output_fd, all_header_names)
writer.writeheader()
try:
# read all values until StopIteration is reached.
while True:
merge_list = [ records.next() for records in records_list ]
merge_dict = merge_rows(merge_list, options)
writer.writerow(merge_dict)
except StopIteration:
pass
output_fd.close()
return True | 171b448c2b49584ce5a601f7d8789d7198fdf935 | 6,071 |
import html
def row_component(cards):
"""
Creates a horizontal row used to contain cards.
The card and row_component work together to create a
layout that stretches and shrinks when the user changes the size of the window,
or accesses the dashboard from a mobile device.
See https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout for more information.
"""
return html.Div(
cards, className="govuk-list card-container", style={"alignItems": "stretch"}
) | baa9f86bcac786a94802d003b1abcc75686e08d8 | 6,072 |
def recCopyElement(oldelement):
"""Generates a copy of an xml element and recursively of all
child elements.
:param oldelement: an instance of lxml.etree._Element
:returns: a copy of the "oldelement"
.. warning::
doesn't copy ``.text`` or ``.tail`` of xml elements
"""
newelement = ETREE.Element(oldelement.tag, oldelement.attrib)
if len(oldelement.getchildren()) > 0:
for childelement in oldelement.getchildren():
newelement.append(recCopyElement(childelement))
return newelement | 981f0c5ccdeacc1d82ebbde2de6f51298e82fa14 | 6,073 |
def NameExpansionIterator(command_name,
debug,
logger,
gsutil_api,
url_strs,
recursion_requested,
all_versions=False,
cmd_supports_recursion=True,
project_id=None,
ignore_symlinks=False,
continue_on_error=False,
bucket_listing_fields=None):
"""Static factory function for instantiating _NameExpansionIterator.
This wraps the resulting iterator in a PluralityCheckableIterator and checks
that it is non-empty. Also, allows url_strs to be either an array or an
iterator.
Args:
command_name: name of command being run.
debug: Debug level to pass to underlying iterators (range 0..3).
logger: logging.Logger object.
gsutil_api: Cloud storage interface. Settable for testing/mocking.
url_strs: Iterable URL strings needing expansion.
recursion_requested: True if -r specified on command-line. If so,
listings will be flattened so mapped-to results contain objects
spanning subdirectories.
all_versions: Bool indicating whether to iterate over all object versions.
cmd_supports_recursion: Bool indicating whether this command supports a '-r'
flag. Useful for printing helpful error messages.
project_id: Project id to use for the current command.
ignore_symlinks: If True, ignore symlinks during iteration.
continue_on_error: If true, yield no-match exceptions encountered during
iteration instead of raising them.
bucket_listing_fields: Iterable fields to include in expanded results.
Ex. ['name', 'acl']. Underyling iterator is responsible for converting
these to list-style format ['items/name', 'items/acl']. If this is
None, only the object name is included in the result.
Raises:
CommandException if underlying iterator is empty.
Returns:
Name expansion iterator instance.
For example semantics, see comments in NameExpansionIterator.__init__.
"""
url_strs = PluralityCheckableIterator(url_strs)
name_expansion_iterator = _NameExpansionIterator(
command_name,
debug,
logger,
gsutil_api,
url_strs,
recursion_requested,
all_versions=all_versions,
cmd_supports_recursion=cmd_supports_recursion,
project_id=project_id,
ignore_symlinks=ignore_symlinks,
continue_on_error=continue_on_error,
bucket_listing_fields=bucket_listing_fields)
name_expansion_iterator = PluralityCheckableIterator(name_expansion_iterator)
if name_expansion_iterator.IsEmpty():
raise CommandException(NO_URLS_MATCHED_GENERIC)
return name_expansion_iterator | d84575c5e26e489853f3ead760af60cc15c7a84c | 6,074 |
import hashlib
def KETAMA(key):
"""
MD5-based hashing algorithm used in consistent hashing scheme
to compensate for servers added/removed from memcached pool.
"""
d = hashlib.md5(key).digest()
c = _signed_int32
h = c((ord(d[3])&0xff) << 24) | c((ord(d[2]) & 0xff) << 16) | \
c((ord(d[1]) & 0xff) << 8) | c(ord(d[0]) & 0xff)
return h | 6baec2ea79a166389625b19c56cbcd3734e819b7 | 6,075 |
import calendar
def add_months(dt, months):
"""
月加减
"""
month = dt.month - 1 + months
year = dt.year + month / 12
month = month % 12 + 1
day = min(dt.day, calendar.monthrange(year, month)[1])
return dt.replace(year=year, month=month, day=day) | 5770c1b61e53fc692f3b13efef203d2f5d544b80 | 6,076 |
def _decomposer_interp(fp, x=None, xp=None):
"""Do the actual interpolation for multiprocessing"""
return np.interp(x, xp, fp) | eef6debf668c62f4d817a0b3697019d0bd4007c9 | 6,077 |
import tensorflow as tf
from nn4omtf import utils
import numpy as np
def create_nn(x, x_shape, is_training):
"""
Args:
x: input hits array
x_shape: input tensor shape for single event
is_training: placeholder for indicating train or valid/test phase
Note: Only code in `create_nn` function scope will be exctracted and saved
in model directory. It's important to provide all necessary imports
within.
"""
arr = [0, 5, 10, 15, 20, 25, 30]
out_sz = 2 * len(arr) + 1
in_sz = np.prod(x_shape)
hidden_layers = [128, 64, 64]
x = tf.reshape(x, [-1, in_sz])
for sz in hidden_layers:
# Pass is_training to setup batch normalization on these layers
x = utils.mk_fc_layer(x, sz, act_fn=tf.nn.relu, is_training=is_training)
logits = utils.mk_fc_layer(x, out_sz, is_training=is_training)
return logits, arr | 8c7a4ce128e434e964b951ca6fe65722c9936be9 | 6,078 |
import os
from unittest.mock import call
def create_new_case(case_dir):
"""Creates new case directory"""
# Check that the specified case directory does not already exist
if os.path.exists(case_dir):
call(["rm", "-r", "snappy"])
#raise RuntimeError(
# 'Refusing to write to existing path: {}'.format(case_dir)
#)
# Create the case
return Case(case_dir) | b9aba60caa0862e09037b16712f35ff5ca993143 | 6,079 |
def generate_outlier_bounds_iqr(df, column, multiplier=1.5):
"""
Takes in a dataframe, the column name, and can specify a multiplier (default=1.5). Returns the upper and lower bounds for the
values in that column that signify outliers.
"""
q1 = df[column].quantile(.25)
q3 = df[column].quantile(.75)
iqr = q3 - q1
upper = q3 + (multiplier * iqr)
lower = q1 - (multiplier * iqr)
return upper, lower | 7f096d5f5cf2417cbc161713715a39560efd140a | 6,080 |
import random
def generate_data(Type):
"""
随机生成CAN帧中所包含的数据
:param Type: 需要生成数据的类型
:return: 生成的随机数据序列,长度为8,如['88', '77', '55', '44', '22', '11', '33'', '44']
"""
data = []
if Type == 1:
# 生成反馈帧单体电池Cell1-24电压信息
standard_vol = 35
offset = random.randint(0, 15)
max_vol = standard_vol + offset
min_vol = standard_vol - offset // 2
data.append('44')
data.append(str(max_vol))
data.append('44')
data.append(str(min_vol))
offset = random.randint(0, 15)
max_vol = standard_vol + offset
min_vol = standard_vol - offset // 2
data.append('44')
data.append(str(max_vol))
data.append('44')
data.append(str(min_vol))
elif Type == 2:
# 生成反馈帧单体电池Cell1-8温度信息
stanard_temp = 45
offest = random.randint(0, 20)
max_temp = stanard_temp + offest
min_temp = stanard_temp - offest - 5
data.append(str(max_temp))
data.append('6c')
data.append(str(min_temp))
data.append('6c')
offest = random.randint(0, 20)
max_temp = stanard_temp + offest
min_temp = stanard_temp - offest - 5
data.append(str(max_temp))
data.append('6c')
data.append(str(min_temp))
data.append('6c')
elif Type == 3:
# 生成反馈帧单体电池最高最低电压温度信息
standard_vol = 35
standard_temp = 45
vol_offset = random.randint(0, 15)
temp_offset = random.randint(0, 20)
max_temp = standard_temp + temp_offset
min_temp = standard_temp - temp_offset - 5
max_vol = standard_vol + vol_offset
min_vol = standard_vol - vol_offset // 2
data.append('44')
data.append(str(max_vol))
data.append('44')
data.append((str(min_vol)))
data.append(str(max_temp))
data.append('5c')
data.append(str(min_temp))
data.append('5c')
elif Type == 4:
# 生成常发帧系统电压信息
standard_vol = 55
offset = random.randint(0, 10)
max_vol = standard_vol * offset * 10
min_vol = standard_vol - offset - 5
data.append('c5')
data.append(str(max_vol))
data.append('f2')
data.append(str(min_vol))
data.append('ed')
for i in range(3):
data.append(str(standard_vol + 5 * i))
elif Type == 5:
pass
else:
pass
return data | 3a920be4b7ef5c5c3e258b3e3c79bc028004179a | 6,081 |
def counting_sort(array):
"""
SORTING FUNCTION USING COUNTING SORT ALGORITHM
ARG array = LIST(ARRAY) OF NUMBERS
"""
## counter lists has elements for every
maximum = max(array)
counter = [0]*(maximum+1)
for i in range(len(array)):
counter[array[i]] += 1
for i in range(1, maximum + 1):
counter[i] = counter[i] + counter[i-1]
#print_array(counter)
result = [0]*len(array)
for i in range(len(array)):
result[counter[array[i]] -1] = array[i]
counter[array[i]] -= 1
return result | 986e2f9277fa71dcd9897ac409653009c651c49f | 6,082 |
import math
from PIL import ImageColor
def indexedcolor(i, num, npersat=15, lightness=60):
"""Returns an rgb color triplet for a given index, with a finite max 'num'.
Thus if you need 10 colors and want to get color #5, you would call this with (5, 10).
The colors are "repeatable".
"""
nsats = int(math.ceil(num/float(npersat)))
sat = 100 - int((i//npersat)*(100/nsats))
l = lightness
nhues = int(math.ceil(num/float(nsats)))
hue = (i % nhues) * (360//nhues)
#print >>sys.stderr, 'For i %d, num %d, got %d sats, %d hues -> %d, %d, %d' % (i, num, nsats, nhues, hue, sat, l)
return ImageColor.getrgb('hsl(%d,%d%%,%d%%)' % (hue, sat, l)) | 418a875bc8ae50ce21f9667f46718863ba0f55e3 | 6,083 |
def make_customer_satisfaction(branch_index='A'):
"""Create average customer satisfaction heat map"""
customer_satisfaction = make_heat_map(branch_index, 'mean(Rating)', 'Average Satisfaction')
return customer_satisfaction | b891b74a8942da7c212ba7112ffb865deb52aec2 | 6,084 |
def extract_infos(fpath):
"""Extract information about file"""
try:
pe = pefile.PE(fpath)
except pefile.PEFormatError:
return {}
res = {}
res['Machine'] = pe.FILE_HEADER.Machine
res['SizeOfOptionalHeader'] = pe.FILE_HEADER.SizeOfOptionalHeader
res['Characteristics'] = pe.FILE_HEADER.Characteristics
res['MajorLinkerVersion'] = pe.OPTIONAL_HEADER.MajorLinkerVersion
res['MinorLinkerVersion'] = pe.OPTIONAL_HEADER.MinorLinkerVersion
res['SizeOfCode'] = pe.OPTIONAL_HEADER.SizeOfCode
res['SizeOfInitializedData'] = pe.OPTIONAL_HEADER.SizeOfInitializedData
res['SizeOfUninitializedData'] = pe.OPTIONAL_HEADER.SizeOfUninitializedData
res['AddressOfEntryPoint'] = pe.OPTIONAL_HEADER.AddressOfEntryPoint
res['BaseOfCode'] = pe.OPTIONAL_HEADER.BaseOfCode
try:
res['BaseOfData'] = pe.OPTIONAL_HEADER.BaseOfData
except AttributeError:
res['BaseOfData'] = 0
res['ImageBase'] = pe.OPTIONAL_HEADER.ImageBase
res['SectionAlignment'] = pe.OPTIONAL_HEADER.SectionAlignment
res['FileAlignment'] = pe.OPTIONAL_HEADER.FileAlignment
res['MajorOperatingSystemVersion'] = pe.OPTIONAL_HEADER.MajorOperatingSystemVersion
res['MinorOperatingSystemVersion'] = pe.OPTIONAL_HEADER.MinorOperatingSystemVersion
res['MajorImageVersion'] = pe.OPTIONAL_HEADER.MajorImageVersion
res['MinorImageVersion'] = pe.OPTIONAL_HEADER.MinorImageVersion
res['MajorSubsystemVersion'] = pe.OPTIONAL_HEADER.MajorSubsystemVersion
res['MinorSubsystemVersion'] = pe.OPTIONAL_HEADER.MinorSubsystemVersion
res['SizeOfImage'] = pe.OPTIONAL_HEADER.SizeOfImage
res['SizeOfHeaders'] = pe.OPTIONAL_HEADER.SizeOfHeaders
res['CheckSum'] = pe.OPTIONAL_HEADER.CheckSum
res['Subsystem'] = pe.OPTIONAL_HEADER.Subsystem
res['DllCharacteristics'] = pe.OPTIONAL_HEADER.DllCharacteristics
res['SizeOfStackReserve'] = pe.OPTIONAL_HEADER.SizeOfStackReserve
res['SizeOfStackCommit'] = pe.OPTIONAL_HEADER.SizeOfStackCommit
res['SizeOfHeapReserve'] = pe.OPTIONAL_HEADER.SizeOfHeapReserve
res['SizeOfHeapCommit'] = pe.OPTIONAL_HEADER.SizeOfHeapCommit
res['LoaderFlags'] = pe.OPTIONAL_HEADER.LoaderFlags
res['NumberOfRvaAndSizes'] = pe.OPTIONAL_HEADER.NumberOfRvaAndSizes
# Sections
res['SectionsNb'] = len(pe.sections)
entropy = list(map(lambda x: x.get_entropy(), pe.sections))
res['SectionsMeanEntropy'] = sum(entropy) / float(len(entropy))
res['SectionsMinEntropy'] = min(entropy)
res['SectionsMaxEntropy'] = max(entropy)
raw_sizes = list(map(lambda x: x.SizeOfRawData, pe.sections))
res['SectionsMeanRawsize'] = sum(raw_sizes) / float(len(raw_sizes))
res['SectionsMinRawsize'] = min(raw_sizes)
res['SectionsMaxRawsize'] = max(raw_sizes)
virtual_sizes = list(map(lambda x: x.Misc_VirtualSize, pe.sections))
res['SectionsMeanVirtualsize'] = sum(
virtual_sizes) / float(len(virtual_sizes))
res['SectionsMinVirtualsize'] = min(virtual_sizes)
res['SectionMaxVirtualsize'] = max(virtual_sizes)
# Imports
try:
res['ImportsNbDLL'] = len(pe.DIRECTORY_ENTRY_IMPORT)
imports = sum([x.imports for x in pe.DIRECTORY_ENTRY_IMPORT], [])
res['ImportsNb'] = len(imports)
res['ImportsNbOrdinal'] = len(
list(filter(lambda x: x.name is None, imports)))
except AttributeError:
res['ImportsNbDLL'] = 0
res['ImportsNb'] = 0
res['ImportsNbOrdinal'] = 0
# Exports
try:
res['ExportNb'] = len(pe.DIRECTORY_ENTRY_EXPORT.symbols)
except AttributeError:
# No export
res['ExportNb'] = 0
# Resources
resources = get_resources(pe)
res['ResourcesNb'] = len(resources)
if len(resources) > 0:
entropy = list(map(lambda x: x[0], resources))
res['ResourcesMeanEntropy'] = sum(entropy) / float(len(entropy))
res['ResourcesMinEntropy'] = min(entropy)
res['ResourcesMaxEntropy'] = max(entropy)
sizes = list(map(lambda x: x[1], resources))
res['ResourcesMeanSize'] = sum(sizes) / float(len(sizes))
res['ResourcesMinSize'] = min(sizes)
res['ResourcesMaxSize'] = max(sizes)
else:
res['ResourcesNb'] = 0
res['ResourcesMeanEntropy'] = 0
res['ResourcesMinEntropy'] = 0
res['ResourcesMaxEntropy'] = 0
res['ResourcesMeanSize'] = 0
res['ResourcesMinSize'] = 0
res['ResourcesMaxSize'] = 0
# Load configuration size
try:
res['LoadConfigurationSize'] = pe.DIRECTORY_ENTRY_LOAD_CONFIG.struct.Size
except AttributeError:
res['LoadConfigurationSize'] = 0
# Version configuration size
try:
version_infos = get_version_info(pe)
res['VersionInformationSize'] = len(version_infos.keys())
except AttributeError:
res['VersionInformationSize'] = 0
return res | f7f3cbef72f7b9d05c25e2aabde33c7a814d05bd | 6,085 |
def calibrate_eye_in_hand(calibration_inputs):
"""Perform eye-in-hand calibration.
Args:
calibration_inputs: List of HandEyeInput
Returns:
A HandEyeOutput instance containing the eye-in-hand transform
"""
return HandEyeOutput(
_zivid.calibration.calibrate_eye_in_hand(
[
calibration_input._HandEyeInput__impl # pylint: disable=protected-access
for calibration_input in calibration_inputs
]
)
) | d8bc7b8cfe821809c441d3151297edf7f8267803 | 6,086 |
from typing import Optional
def get_intersect(A: np.ndarray, B: np.ndarray, C: np.ndarray, D: np.ndarray) -> Optional[np.ndarray]:
"""
Get the intersection of [A, B] and [C, D]. Return False if segment don't cross.
:param A: Point of the first segment
:param B: Point of the first segment
:param C: Point of the second segment
:param D: Point of the second segment
:return: The intersection if any, otherwise None.
"""
det = (B[0] - A[0]) * (C[1] - D[1]) - (C[0] - D[0]) * (B[1] - A[1])
if det == 0:
# Parallel
return None
else:
t1 = ((C[0] - A[0]) * (C[1] - D[1]) - (C[0] - D[0]) * (C[1] - A[1])) / det
t2 = ((B[0] - A[0]) * (C[1] - A[1]) - (C[0] - A[0]) * (B[1] - A[1])) / det
if t1 > 1 or t1 < 0 or t2 > 1 or t2 < 0:
# not intersect
return None
else:
xi = A[0] + t1 * (B[0] - A[0])
yi = A[1] + t1 * (B[1] - A[1])
return np.array([xi, yi]) | 1c3fab6d189f218e9f5f7e6648a46a9e53683366 | 6,087 |
from typing import Callable
def _make_vector_laplace_scipy_nd(bcs: Boundaries) -> Callable:
""" make a vector Laplacian using the scipy module
This only supports uniform discretizations.
Args:
bcs (:class:`~pde.grids.boundaries.axes.Boundaries`):
|Arg_boundary_conditions|
Returns:
A function that can be applied to an array of values
"""
scaling = bcs._uniform_discretization**-2
args = bcs._scipy_border_mode
dim = bcs.grid.dim
shape_out = (dim,) + bcs.grid.shape
def vector_laplace(arr, out=None):
""" apply vector Laplacian operator to array `arr` """
if out is None:
out = np.empty(shape_out)
for i in range(dim):
ndimage.laplace(arr[i], output=out[i], **args)
return out * scaling
return vector_laplace | 3cda36d53755c84fcb47259ade64752610aeffbe | 6,088 |
def dot_to_dict(values):
"""Convert dot notation to a dict. For example: ["token.pos", "token._.xyz"]
become {"token": {"pos": True, "_": {"xyz": True }}}.
values (iterable): The values to convert.
RETURNS (dict): The converted values.
"""
result = {}
for value in values:
path = result
parts = value.lower().split(".")
for i, item in enumerate(parts):
is_last = i == len(parts) - 1
path = path.setdefault(item, True if is_last else {})
return result | a2c56a01b179d27eabc728d6ff2ec979885d5feb | 6,089 |
def _draw_edges(G, pos, nodes, ax):
"""Draw the edges of a (small) networkx graph.
Params:
G (nx.classes.*) a networkx graph.
pos (dict) returned by nx.layout methods.
nodes (dict) of Circle patches.
ax (AxesSubplot) mpl axe.
Return:
(dict) of Circle patches.
"""
pointer = ArrowStyle.Fancy(head_width=10, head_length=15)
curved_edge = ConnectionStyle('arc3', rad=.2)
arrow_kwargs = {'arrowstyle': pointer,
'antialiased': True,
'connectionstyle': curved_edge,
'edgecolor': None,
'facecolor': None,
'linewidth': None}
edges = {}
for i, (a, b, attr) in enumerate(G.edges.data()):
arrow_kwargs['edgecolor'] = attr['color']
arrow_kwargs['facecolor'] = attr['color']
arrow_kwargs['linewidth'] = 1.0
edge = FancyArrowPatch(pos[a], pos[b],
patchA=nodes[a], patchB=nodes[b],
shrinkA=5, shrinkB=5,
**arrow_kwargs)
ax.add_patch(edge)
edges[(a, b)] = edge
return edges | 28a207a190a7066656518de7c8e8626b2f534146 | 6,090 |
def benjamini_hochberg_stepup(p_vals):
"""
Given a list of p-values, apply FDR correction and return the q values.
"""
# sort the p_values, but keep the index listed
index = [i[0] for i in sorted(enumerate(p_vals), key=lambda x:x[1])]
# keep the p_values sorted
p_vals = sorted(p_vals)
q_vals = [None]*len(p_vals) # initialize an empty list
prev_q = 0
# BH Step Up begins here.
for i, p in enumerate(p_vals):
q = len(p_vals)/(i+1)*p # calculate the q_value for the current point
q = min(q, 1) # if q >1, make it == 1
q = max(q, prev_q) # preserve monotonicity
q_vals[i] = q # store the q_value
prev_q = q # update the previous q_value
# prevent the lowest q value from going to zero
if np.sum(q_vals == 0) > 0:
# set the min q-value to 10x less than the smallest non-zero value
q_vals[np.where(q_vals == 0)] = np.min(q_vals[np.where(q_vals != 0)])/10
# return q_vals and the index so we can match up each q-value to its index
return q_vals, index | 7cff2e8d28cda37c4271935ef2e6fb48441137c3 | 6,091 |
def remove_transcription_site(rna, foci, nuc_mask, ndim):
"""Distinguish RNA molecules detected in a transcription site from the
rest.
A transcription site is defined as as a foci detected within the nucleus.
Parameters
----------
rna : np.ndarray, np.int64
Coordinates of the detected RNAs with shape (nb_spots, 4) or
(nb_spots, 3). One coordinate per dimension (zyx or yx coordinates)
plus the index of the foci assigned to the RNA. If no foci was
assigned, value is -1.
foci : np.ndarray, np.int64
Array with shape (nb_foci, 5) or (nb_foci, 4). One coordinate per
dimension for the foci centroid (zyx or yx coordinates),
the number of RNAs detected in the foci and its index.
nuc_mask : np.ndarray, bool
Binary mask of the nuclei region with shape (y, x).
ndim : int
Number of spatial dimensions to consider (2 or 3).
Returns
-------
rna_out_ts : np.ndarray, np.int64
Coordinates of the detected RNAs with shape (nb_spots, 4) or
(nb_spots, 3). One coordinate per dimension (zyx or yx coordinates)
plus the index of the foci assigned to the RNA. If no foci was
assigned, value is -1. RNAs from transcription sites are removed.
foci : np.ndarray, np.int64
Array with shape (nb_foci, 5) or (nb_foci, 4). One coordinate per
dimension for the foci centroid (zyx or yx coordinates),
the number of RNAs detected in the foci and its index.
ts : np.ndarray, np.int64
Array with shape (nb_ts, 5) or (nb_ts, 4). One coordinate per
dimension for the transcription site centroid (zyx or yx coordinates),
the number of RNAs detected in the transcription site and its index.
"""
# check parameters
check_array(rna,
ndim=2,
dtype=np.int64)
# discriminate foci from transcription sites
ts, foci = identify_objects_in_region(
nuc_mask, foci, ndim)
# filter out rna from transcription sites
rna_in_ts = ts[:, ndim + 1]
mask_rna_in_ts = np.isin(rna[:, ndim], rna_in_ts)
rna_out_ts = rna[~mask_rna_in_ts]
return rna_out_ts, foci, ts | 3f6fe083cb85dbf2f7bc237e750be57f13398889 | 6,092 |
def hexagonal_numbers(length: int) -> list[int]:
"""
:param len: max number of elements
:type len: int
:return: Hexagonal numbers as a list
Tests:
>>> hexagonal_numbers(10)
[0, 1, 6, 15, 28, 45, 66, 91, 120, 153]
>>> hexagonal_numbers(5)
[0, 1, 6, 15, 28]
>>> hexagonal_numbers(0)
Traceback (most recent call last):
...
ValueError: Length must be a positive integer.
"""
if length <= 0 or not isinstance(length, int):
raise ValueError("Length must be a positive integer.")
return [n * (2 * n - 1) for n in range(length)] | 632e60505cb17536a17b20305a51656261e469f5 | 6,093 |
def get_free_remote_port(node: Node) -> int:
"""Returns a free remote port.
Uses a Python snippet to determine a free port by binding a socket
to port 0 and immediately releasing it.
:param node: Node to find a port on.
"""
output = node.run("python -c 'import socket; s=socket.socket();"
" s.bind((str(), 0)); print(s.getsockname()[1]);"
" s.close()'")
return int(output) | 4cdb0f62909abae1af8470611f63fcc9f5495095 | 6,094 |
from typing import Tuple
from typing import List
import tqdm
def read_conll_data(data_file_path: str) -> Tuple[List[Sentence], List[DependencyTree]]:
"""
Reads Sentences and Trees from a CONLL formatted data file.
Parameters
----------
data_file_path : ``str``
Path to data to be read.
"""
sentences: List[Sentence] = []
trees: List[DependencyTree] = []
with open(data_file_path, 'r') as file:
sentence_tokens = []
tree = DependencyTree()
for line in tqdm(file):
line = line.strip()
array = line.split('\t')
if len(array) < 10:
if sentence_tokens:
trees.append(tree)
sentences.append(sentence_tokens)
tree = DependencyTree()
sentence_tokens = []
else:
word = array[1]
pos = array[4]
head = int(array[6])
dep_type = array[7]
token = Token(word=word, pos=pos,
head=head, dep_type=dep_type)
sentence_tokens.append(token)
tree.add(head, dep_type)
if not sentences:
raise Exception(f"No sentences read from {data_file_path}. "
f"Make sure you have not replaced tabs with spaces "
f"in conll formatted file by mistake.")
return sentences, trees | 6bee76277fb6a15d03c5c80a5d083920a4412222 | 6,095 |
from typing import Optional
def get_algo_meta(name: AlgoMeta) -> Optional[AlgoMeta]:
"""
Get meta information of a built-in or registered algorithm.
Return None if not found.
"""
for algo in get_all_algo_meta():
if algo.name == name:
return algo
return None | 3a568356d56d26192a1e38be6ec5dd57b52a9bba | 6,096 |
def do_eval(sess,input_ids,input_mask,segment_ids,label_ids,is_training,loss,probabilities,vaildX, vaildY, num_labels,batch_size,cls_id):
"""
evalution on model using validation data
"""
num_eval=1000
vaildX = vaildX[0:num_eval]
vaildY = vaildY[0:num_eval]
number_examples = len(vaildX)
eval_loss, eval_counter, eval_f1_score, eval_p, eval_r = 0.0, 0, 0.0, 0.0, 0.0
label_dict = init_label_dict(num_labels)
print("do_eval.number_examples:",number_examples)
f1_score_micro_sklearn_total=0.0
# batch_size=1 # TODO
for start, end in zip(range(0, number_examples, batch_size), range(batch_size, number_examples, batch_size)):
input_mask_, segment_ids_, input_ids_ = get_input_mask_segment_ids(vaildX[start:end],cls_id)
feed_dict = {input_ids: input_ids_,input_mask:input_mask_,segment_ids:segment_ids_,
label_ids:vaildY[start:end],is_training:False}
curr_eval_loss, prob = sess.run([loss, probabilities],feed_dict)
target_labels=get_target_label_short_batch(vaildY[start:end])
predict_labels=get_label_using_logits_batch(prob)
if start%100==0:
print("prob.shape:",prob.shape,";prob:",prob)
print("predict_labels:",predict_labels)
#print("predict_labels:",predict_labels)
label_dict=compute_confuse_matrix_batch(target_labels,predict_labels,label_dict,name='bert')
eval_loss, eval_counter = eval_loss + curr_eval_loss, eval_counter + 1
f1_micro, f1_macro = compute_micro_macro(label_dict) # label_dictis a dict, key is: accusation,value is: (TP,FP,FN). where TP is number of True Positive
f1_score_result = (f1_micro + f1_macro) / 2.0
return eval_loss / float(eval_counter+0.00001), f1_score_result, f1_micro, f1_macro | f3059d0dbbf00c0d0a93273dbf3f1335d2feefeb | 6,097 |
def read_gbt_target(sdfitsfile, objectname, verbose=False):
"""
Give an object name, get all observations of that object as an 'obsblock'
"""
bintable = _get_bintable(sdfitsfile)
whobject = bintable.data['OBJECT'] == objectname
if verbose:
print("Number of individual scans for Object %s: %i" % (objectname,whobject.sum()))
calON = bintable.data['CAL'] == 'T'
# HACK: apparently bintable.data can sometimes treat itself as scalar...
if np.isscalar(calON):
calON = np.array([(val in ['T',True]) for val in bintable.data['CAL']])
n_nods = np.unique(bintable.data['PROCSIZE'])
blocks = {}
for sampler in np.unique(bintable.data[whobject]['SAMPLER']):
whsampler = bintable.data['SAMPLER'] == sampler
nods = np.unique(bintable.data['PROCSEQN'][whsampler*whobject])
for nod in nods:
whnod = bintable.data['PROCSEQN'] == nod
for onoff in ('ON','OFF'):
calOK = (calON - (onoff=='OFF'))
whOK = (whobject*whsampler*calOK*whnod)
if whOK.sum() == 0:
continue
if verbose:
print("Number of spectra for sampler %s, nod %i, cal%s: %i" % (sampler,nod,onoff,whOK.sum()))
crvals = bintable.data[whOK]['CRVAL1']
if len(crvals) > 1:
maxdiff = np.diff(crvals).max()
else:
maxdiff = 0
freqres = np.max(bintable.data[whOK]['FREQRES'])
if maxdiff < freqres:
splist = [read_gbt_scan(bintable,ii) for ii in np.where(whOK)[0]]
blocks[sampler+onoff+str(nod)] = pyspeckit.ObsBlock(splist,force=True)
blocks[sampler+onoff+str(nod)]._arithmetic_threshold = np.diff(blocks[sampler+onoff+str(nod)].xarr).min() / 5.
else:
print("Maximum frequency difference > frequency resolution: %f > %f" % (maxdiff, freqres))
return blocks | 1215fdccee50f0ab5d135a5cccf0d02da09410e2 | 6,098 |
def regression_target(label_name=None,
weight_column_name=None,
target_dimension=1):
"""Creates a _TargetColumn for linear regression.
Args:
label_name: String, name of the key in label dict. Can be null if label
is a tensor (single headed models).
weight_column_name: A string defining feature column name representing
weights. It is used to down weight or boost examples during training. It
will be multiplied by the loss of the example.
target_dimension: dimension of the target for multilabels.
Returns:
An instance of _TargetColumn
"""
return _RegressionTargetColumn(loss_fn=_mean_squared_loss,
label_name=label_name,
weight_column_name=weight_column_name,
target_dimension=target_dimension) | 064954b58b57caeb654ed30f31b9560ab01d7c42 | 6,099 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.