content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import logging def update_softwaretitle_packages(api, jssid, pkgs): """ Update packages of software title :param jssid: Patch Software Title ID :param pkgs: dict of {version: package, ...} :returns: None """ logger = logging.getLogger(__name__) data = api.get(f"patchsoftwaretitles/id/{jssid}") title = data['patch_software_title'] title_name = title['name'] logger.info(f"updating patch software title: {title_name} ({jssid})") # single version (dict), multiple versions (list) version = title['versions']['version'] _modified = False try: # access key of single version and count on TypeError being raised v = version['software_version'] if v in pkgs.keys(): version['package'] = {'name': pkgs[v]} _modified = True except TypeError: # looks like it was actually a list for _version in version: v = _version['software_version'] if v in pkgs.keys(): _version['package'] = {'name': pkgs[v]} _modified = True if _modified: result = api.put(f"patchsoftwaretitles/id/{jssid}", data) logger.info(f"succesfully updated: {title_name}") return result else: logger.info(f"software title was not modified")
0acb3dfbff0e85a2e8a876d5e5d484c4d1e52068
5,900
from typing import List def get_balances(session: Session, redis: Redis, user_ids: List[int]): """Gets user balances. Returns mapping { user_id: balance } Enqueues in Redis user balances requiring refresh. """ # Find user balances query: List[UserBalance] = ( (session.query(UserBalance)).filter(UserBalance.user_id.in_(user_ids)).all() ) # Construct result dict from query result result = { user_balance.user_id: { "owner_wallet_balance": user_balance.balance, "associated_wallets_balance": user_balance.associated_wallets_balance, "associated_sol_wallets_balance": user_balance.associated_sol_wallets_balance, "waudio_balance": user_balance.waudio, "total_balance": str( int(user_balance.balance) + int(user_balance.associated_wallets_balance) + int(user_balance.associated_sol_wallets_balance) * 10 ** WAUDIO_DECIMALS + int(user_balance.waudio) * 10 ** WAUDIO_DECIMALS ), } for user_balance in query } # Find user_ids that don't yet have a balance user_ids_set = set(user_ids) fetched_user_ids_set = {x.user_id for x in query} needs_balance_set = user_ids_set - fetched_user_ids_set # Add new balances to result set no_balance_dict = { user_id: { "owner_wallet_balance": "0", "associated_wallets_balance": "0", "associated_sol_wallets_balance": "0", "total_balance": "0", "waudio_balance": "0", } for user_id in needs_balance_set } result.update(no_balance_dict) # Get old balances that need refresh needs_refresh = [ user_balance.user_id for user_balance in query if does_user_balance_need_refresh(user_balance) ] # Enqueue new balances to Redis refresh queue # 1. All users who need a new balance # 2. All users who need a balance refresh enqueue_lazy_balance_refresh(redis, list(needs_balance_set) + needs_refresh) return result
82f6fdf0fcc8bcd241c97ab50a89ba640793b704
5,901
from typing import Optional from typing import Tuple def kmeans(observations: ndarray, k: Optional[int] = 5) -> Tuple[ndarray, ndarray]: """Partition observations into k clusters. Parameters ---------- observations : ndarray, `shape (N, 2)` or `shape (N, 3)` An array of observations (x, y) to be clustered. Data should be provided as: `[(x, y), (x, y), (x, y), ...]` or `[(x, y, z), (x, y, z), (x, y, z), ...]` k : int, optional Amount of clusters to partition observations into, by default 5 Returns ------- center : ndarray, `shape (k, 2)` or `shape (k, 3)` An array of positions to center of each cluster. count : ndarray, `shape (k, )` Array of counts of datapoints closest to the center of its cluster. Examples ------- >>> observations = [[6, 1], [-4, -4], [1, -7], [9, -2], [6, -6]] >>> center, count = kmeans_2d(observations, k=2) >>> center [[-4, -4 5, -3]] >>> count [1, 4] """ if not isinstance(observations, ndarray): raise TypeError("Observations must be a ndarray.") if observations.shape[-1] == 3: return kmeans_3d(observations, k) elif observations.shape[-1] == 2: return kmeans_2d(observations, k) else: pass
1a8cb2e61e8d96a45d4165edf1b148fd7c8ab5e3
5,902
def encloses(coord, points): """ """ sc = constants.CLIPPER_SCALE coord = st(coord.to_list(), sc) points = st(points, sc) return pyclipper.PointInPolygon(coord, points) != 0
d5d7aeb8f52087653027d57c7a718832dbf32200
5,903
def arpls(y, lam, ratio=1e-6, niter=1000, progressCallback=None): """ Return the baseline computed by asymmetric reweighted penalized least squares smoothing, arPLS. Ref: Baseline correction using asymmetrically reweighted penalized least squares smoothing Sung-June Baek, Aaron Park, Young-Jin Ahn and Jaebum Choo Analyst, 2015, 140, 250-257. DOI: 10.1039/C4AN01061B In this implementation, W is not squared so p carries the same meaning as in AsLS. Parameters: y: one spectrum to correct, or multiple as an array of shape (spectrum, wavenumber) lam: lambda, the smoothness parameter ratio: convergence criterion; target relative change in weights between iterations niter: maximum number of iterations progressCallback(int a, int b): callback function called to indicated that the processing is complete to a fraction a/b. Returns: baseline of the spectrum, measured at the same points """ L = y.shape[-1] D = sparse.csc_matrix(np.diff(np.eye(L), 2)) D = lam * D.dot(D.T) def arpls_one(yy): w = np.ones(L) for i in range(niter): W = sparse.spdiags(w, 0, L, L) z = sparse.linalg.spsolve(W + D, w * yy) d = yy - z dn = d[d < 0] s = dn.std() wt = 1. / (1 + np.exp(2 / s * (d - (2*s-dn.mean())))) if np.linalg.norm(w - wt) / np.linalg.norm(w) < ratio: break w = wt return z return mp_bgcorrection(arpls_one, y, progressCallback=progressCallback)
d149397827d89b8708a09f4ceb7c38c989d99e17
5,904
async def test_function_raised_exception(dut): """ Test that exceptions thrown by @function coroutines can be caught """ @cocotb.function async def func(): raise ValueError() @external def ext(): return func() with pytest.raises(ValueError): await ext()
acd31a1142dea0cd300861e75721a4597e2b5bbc
5,905
def dismiss_notification_mailbox(notification_mailbox_instance, username): """ Dismissed a Notification Mailbox entry It deletes the Mailbox Entry for user Args: notification_mailbox_instance (NotificationMailBox): notification_mailbox_instance username (string) Return: bool: Notification Mailbox Dismissed """ profile_instance = get_self(username) NotificationMailBox.objects.filter(target_profile=profile_instance, pk=notification_mailbox_instance.id).delete() return True
9955361ac42c079adefcd8402fb9a1d5e3822a57
5,906
import operator def knn(x, y, k, predict_x): """ knn็ฎ—ๆณ•ๅฎž็Žฐ๏ผŒไฝฟ็”จๆฌงๆฐ่ท็ฆป :param x: ๆ ทๆœฌๅ€ผ :param y: ๆ ‡็ญพ :param k: ไธชๆ•ฐ :return: """ assert isinstance(y, np.ndarray) y = y.flatten('F') def cal_distance(a, b): return np.sqrt(np.sum(np.power(a - b, 2), axis=0)) dists = { } for (index, sample) in enumerate(x): dists[index] = cal_distance(sample, predict_x) k_sample = sorted(dists.items(), key=operator.itemgetter(1))[:k] k_labels = y[[key for (key, value) in k_sample]] counters = { } for k in k_labels: if k not in counters.keys(): counters[k] = 1 else: counters[k] += 1 return sorted(counters.items(), key=operator.itemgetter(1))[0]
425095898acce2fc966d00d4ba6bc8716f1062f8
5,907
def piano(): """A piano instrument.""" return lynames.Instrument('Piano', abbr='Pno.', transposition=None, keyboard=True, midi='acoustic grand', family='percussion', mutopianame='Piano')
792a1dd3655ac038bdde27f9d1ad27451e2b9121
5,908
from typing import Any from typing import Dict def extract_fields(obj: Any) -> Dict[str, Any]: """A recursive function that extracts all fields in a Django model, including related fields (e.g. many-to-many) :param obj: A Django model :return: A dictionary containing fields and associated values """ sub_content = {} if obj is not None: # Gets a list of any Django model fields fields = type(obj)._meta.get_fields() for field in fields: if issubclass(field.__class__, ForeignKey): sub_content[field.name] = extract_fields(getattr(obj, field.name)) elif issubclass(field.__class__, RelatedField): sub_content[field.name] = [extract_fields(sub_obj) for sub_obj in list(getattr(obj, field.name).all())] elif issubclass(field.__class__, Field): sub_content[field.name] = getattr(obj, field.name) return sub_content
bc6b45a82ab2a336e116ce528aaed45b2b77ef39
5,909
from re import T def decomposeM(modified): """Auxiliary in provenance filtering: split an entry into name and date.""" splits = [m.rsplit(ON, 1) for m in modified] return [(m[0], dtm(m[1].replace(BLANK, T))[1]) for m in splits]
1f613d11d2f8c3ceec4f6c853b9412b5b7eb3e0c
5,910
import logging def update(data): """ TODO: find a way to call collection.findOneAndUpdate(), currently pymodm .update() only returns the number of updated record. """ try: required_fields = ['id'] validator.validate_required_fields(required_fields, data) cleaned_data = user_prevalidation(data) updated_data = {key: val for key, val in cleaned_data.items() if val is not None} db_id = updated_data.pop('id') _get_user({'id': db_id}) # call to validate if user exist user_entitymanager.update(db_id, updated_data) user = _get_user({'id': db_id}) # call to get the updated data. return flask_helper.ResponseHelper(user.to_dict(), http_status_code.OK) except Exception as e: logging.error(e) raise
a3895574b5e811e91db2063bdabc3bd297d7a904
5,911
def get_2d_peaks_coords( data: np.ndarray, size: int = None, threshold: float = 0.5 ) -> np.ndarray: """Detect peaks in image data, return coordinates. If neighborhoods size is None, default value is the highest value between 50 pixels and the 1/40th of the smallest image dimension. Detection threshold is relative to difference between data maximum and minimum. """ if size is None: size = max(min(data.shape) // 40, 50) data_max = spf.maximum_filter(data, size) data_min = spf.minimum_filter(data, size) data_diff = data_max - data_min abs_threshold = (data_diff.max() - data_diff.min()) * threshold diff = (data_max - data_min) > abs_threshold maxima = data == data_max maxima[diff == 0] = 0 labeled, _num_objects = spi.label(maxima) slices = spi.find_objects(labeled) coords = [] for dy, dx in slices: x_center = int(0.5 * (dx.start + dx.stop - 1)) y_center = int(0.5 * (dy.start + dy.stop - 1)) coords.append((x_center, y_center)) if len(coords) > 1: # Eventually removing duplicates dist = distance_matrix(coords) for index in reversed(np.unique(np.where((dist < size) & (dist > 0))[1])): coords.pop(index) return np.array(coords)
815979bd0105acc7bb3fb58db691a8963d9ca2f4
5,912
def border_positions_from_texts(texts, direction, only_attr=None): """ From a list of textboxes in <texts>, get the border positions for the respective direction. For vertical direction, return the text boxes' top and bottom border positions. For horizontal direction, return the text boxes' left and right border positions. <direction> must be DIRECTION_HORIZONTAL or DIRECTION_VERTICAL from pdftabextract.common. optional <only_attr> must be either 'low' (only return 'top' or 'left' borders) or 'high' (only return 'bottom' or 'right'). Border positions are returned as sorted NumPy array. """ if direction not in (DIRECTION_HORIZONTAL, DIRECTION_VERTICAL): raise ValueError("direction must be DIRECTION_HORIZONTAL or DIRECTION_VERTICAL (see pdftabextract.common)") if only_attr is not None and only_attr not in ('low', 'high'): raise ValueError("only_attr must be either 'low' or 'high' if not set to None (default)") if direction == DIRECTION_VERTICAL: attr_lo = 'top' attr_hi = 'bottom' else: attr_lo = 'left' attr_hi = 'right' positions = [] for t in texts: if only_attr is None or only_attr == 'low': positions.append(t[attr_lo]) if only_attr is None or only_attr == 'high': positions.append(t[attr_hi]) return np.array(sorted(positions))
8b0f57e21b015b6092104454195254861432b610
5,913
def progress(self): """Check if foo can send to corge""" return True
89a0c9671645f9fa855db35bf5e383145d6b7616
5,914
def write_sample_sdf(input_file_name, valid_list): """ Function for writing a temporary file with a subset of pre-selected structures :param input_file_name: name of input file :param valid_list: list of indexes of pre-selected structures :return: name of subsampled file """ sample_file_name = '{}_sample.sdf'.format(input_file_name.split('.')[0]) sample_file = open(sample_file_name, 'w') mol = [] i = 0 for line in open(input_file_name): mol.append(line) if line[:4] == '$$$$': i += 1 if i in valid_list: for mol_line in mol: sample_file.write(mol_line) valid_list.remove(i) mol = [] else: mol = [] sample_file.close() return sample_file_name
0b22c14452f6de978e7ea811d761195d92bfe6c4
5,915
import math def rotx(theta, unit="rad"): """ ROTX gives rotation about X axis :param theta: angle for rotation matrix :param unit: unit of input passed. 'rad' or 'deg' :return: rotation matrix rotx(THETA) is an SO(3) rotation matrix (3x3) representing a rotation of THETA radians about the x-axis rotx(THETA, "deg") as above but THETA is in degrees """ check_args.unit_check(unit) if unit == "deg": theta = theta * math.pi / 180 ct = math.cos(theta) st = math.sin(theta) mat = np.matrix([[1, 0, 0], [0, ct, -st], [0, st, ct]]) mat = np.asmatrix(mat.round(15)) return mat
b05a6116c64837de163ad26dc36ffe1a7166635d
5,916
from typing import Sequence def _table(*rows: Sequence) -> str: """ >>> _table(['a', 1, 'c', 1.23]) '|a|1|c|1.23|' >>> _table(['foo', 0, None]) '|foo|||' >>> print(_table(['multiple', 'rows', 0], ['each', 'a', 'list'])) |multiple|rows|| |each|a|list| """ return '\n'.join([ '|'.join(['', *[str(cell or '') for cell in row], '']) for row in rows ])
d566da2ad9240e73b60af00d3e4b4e25607234b4
5,917
def trunc(s, n): """ Truncate a string to N characters, appending '...' if truncated. trunc('1234567890', 10) -> '1234567890' trunc('12345678901', 10) -> '1234567890...' """ if not s: return s return s[:n] + '...' if len(s) > n else s
0f3c9f03f566f9f50a557f6b5592ec20a12e92bc
5,918
import os def sgrib_variable_crop(tmp_grib, nthreads_w, fp_out, logger): """ Take the small grib file from grib_to_small_grib and cut it down to the variables we need Args: tmp_grib: File path to small grib2 file nthreads_w: Number of threads for running wgrib2 commands fp_out: Path for outputting final grib2 file Returns: """ # call to grab correct variables action2 = "wgrib2 {} -ncpu {} -match \ 'TMP:2 m|UGRD:10 m|VGRD:10 m|TCDC:' -GRIB {}" action2 = action2.format(tmp_grib, nthreads_w, fp_out) fatl = call_wgrib2(action2, logger) if fatl: logger.warning( 'Cutting variables from grib did not work') os.remove(tmp_grib) return not fatl
25c55b6e8a2af23e10c11aa5e7df2caa9cd79bdd
5,919
def cs_geo(): """Geographic lat/lon coordinates in WGS84 datum. """ cs = CSGeo() cs.inventory.datumHoriz = "WGS84" cs.inventory.datumVert = "mean sea level" cs.inventory.spaceDim = 2 cs._configure() cs.initialize() return cs
28df90e7b1490d681c9d13f4604dbc3966d896dc
5,920
def make_range(value): """ Given an integer 'value', return the value converted into a range. """ return range(value)
385d23eaebd04249f9384e0d592b7fb3a9bbb457
5,921
def run(actor, observer, content): """ Shortcut to run an Onirim and return the result. Returns: True if win, False if lose, None if other exception thrown. """ return Flow(Core(actor, observer, content)).whole()
03b1dee5bd993d8a88debd558878de5a32e9c318
5,922
def GetPoseBoneFCurveFromArmature(armatureObj, poseBoneName, data_path, parameterIndex): """ In Blender the FCurves are used to define the Key Frames. In general, for a single object, there's one FCurve for each of the following properties. data_path, index 'location', 0 (.x) 'location', 1 (.y) 'location', 2 (.z) 'rotation_quaternion', 0 (.w) 'rotation_quaternion', 1 (.x) 'rotation_quaternion', 2 (.y) 'rotation_quaternion', 3 (.z) 'scale', 0 (.x) 'scale', 1 (.y) 'scale', 2 (.z) For more tips about this, see: https://docs.blender.org/api/blender_python_api_2_75_release/info_quickstart.html#animation Returns a bpy.types.FCurve """ completePath = BuildPoseBoneFCurveDataPath(poseBoneName, data_path) return armatureObj.animation_data.action.fcurves.find(completePath, index=parameterIndex)
450d98306adf43ea171dffa0fe6afa71ebabce57
5,923
def get_document_instance(conf=None): """ Helper function to get a database Document model instance based on CLA configuration. :param conf: Same as get_database_models(). :type conf: dict :return: A Document model instance based on configuration specified. :rtype: cla.models.model_interfaces.Document """ return get_database_models(conf)['Document']()
054f6ff6acc38ed44a9bd2a97e0598ed34b322f8
5,924
from typing import List def get_full_private_keys(gpg: gnupg.GPG) -> List[GPGKey]: """Get a list of private keys with a full private part. GPG supports exporting only the subkeys for a given key, and in this case a stub of the primary private key is also exported (the stub). This stub cannot be used to do anything with the primary key, so it's useful to list only keys that can actually be used. :param gpg: The GPG interface used by the gnupg library :return: The list of fully available private keys in the keyring """ return [key for key in get_private_keys(gpg) if key.key_token == KeyToken.FULL]
d2bbb248613c3be9ed103212e0ca2a433de07e03
5,925
def create_blueprint(): """Creates a Blueprint""" blueprint = Blueprint('Health Check Blueprint', __name__) blueprint.route('/')(healthcheck.healthcheck) return blueprint
348c6ff172bb0d230d83eab73dd451edba0d1b00
5,926
def playable_card(card, fireworks, n_colors): # if isinstance(card, pyhanabi.HanabiCard): # card = {'color':colors[card.color],'rank':card.rank} """A card is playable if it can be placed on the fireworks pile.""" if (card.color == pyhanabi.HanabiCard.ColorType.kUnknownColor and card().rank != pyhanabi.HanabiCard.RankType.kUnknownRank): for color in range(n_colors): if fireworks[color] == card.rank: continue else: return False return True # elif card['color'] == None or card['rank'] == None: if (card.color == pyhanabi.HanabiCard.ColorType.kUnknownColor and card().rank == pyhanabi.HanabiCard.RankType.kUnknownRank): return False else: return card.rank == fireworks[card.color]
a96c6935c6b57ead9c639f13d8eccccbaf21aa4b
5,927
def get_transformation_id(action): """ Get the id of a transformation. Parameters ---------- action: function The transformation function Returns ------- int The id of the action (-1 if not found) """ for index, trans in TRANSFORMATIONS.items(): if trans == action: return index return -1
2f08e7bb2b0418d39421e6b03e011d8ab4d68380
5,928
def getString(t): """If t is of type string, return it, otherwise raise InvalidTypeError. """ s = c_char_p() if PL_get_chars(t, byref(s), REP_UTF8|CVT_STRING): return s.value else: raise InvalidTypeError("string")
1f128369f1ce3950ed352e43eea5db30f6da2d6e
5,929
def prep_data(filename, in_len, pred_len): """load data from the file and chunk it into windows of input""" # Columns are # 0:datetime, 1:temperature, 2:humidity, 3:pressure, 4:wind_direction, 5:wind_speed data = np.genfromtxt(filename, delimiter=',', skip_header=1, usecols=(1, 2, 3, 4, 5), dtype=float) # Remove rows that are missing values data = data[~np.isnan(data).any(axis=1)] # We will save the last 1/8th of the data for validation/testing data, # 1/16 for validation, 1/16 for testing total_len = data.shape[0] val_len = total_len // 16 test_len = total_len // 16 train_len = total_len - val_len - test_len train_data = data[:train_len] val_data = data[train_len:train_len + val_len] test_data = data[train_len + val_len:] # To stay in the most accurate ranges of the ESN, and to put the various # features on equal footing, we standardize the training data. train_data, mu_arr, sigma_arr = standardize_traindata(train_data) # We now need to scale our validation and test data by the means and standard # deviations determined from the training data val_data = scale_data(val_data, mu_arr, sigma_arr) test_data = scale_data(test_data, mu_arr, sigma_arr) # We need to convert the time series data to forecast form for one-step # prediction training. For simplicity we will discard the remainder batches rU, rY train_batch_size = 200 val_batch_size = in_len + pred_len + 1 test_batch_size = in_len + pred_len + 1 trainU, trainY, rU, rY = to_forecast_form(train_data, batch_size=train_batch_size) valU, valY, rU, rY = to_forecast_form(val_data, batch_size=val_batch_size) testU, testY, rU, rY = to_forecast_form(test_data, batch_size=test_batch_size) return trainU, trainY, valU, valY, testU, testY, mu_arr, sigma_arr
33e1348acdcf6025159b7ed81e18358d56838d3e
5,930
import subprocess import os import glob def should_build_ib(): """ Helper function that detects the system's IB support and returns if we should build with IB support. """ ib_util_found = False ib_lib_found = False ib_header_found = False try: # If the command doesn't exist, we can directly return instead of # making a subprocess call full_cmd_path = get_command_path(IB_DEVINFO_CMD) if not full_cmd_path: ib_util_found = False subprocess.check_output([full_cmd_path, "--list"]) # Here we just would like to simply run the command to test if IB # related tools / lib are installed without parsing the output. We # will enable IB build as long as the command runs successfully. # # The output should look like either: # # > ibv_devinfo --list # 0 HCAs founds: # # or # # > ibv_devinfo --list # 4 HCAs found: # mlx5_3 # mlx5_2 # mlx5_1 # mlx5_0 ib_util_found = True except Exception: # We just take all the exceptions here without affecting the build ib_util_found = False lib_paths = list(filter(bool, [ "/usr/lib/", "/usr/lib/x86_64-linux-gnu/", "/usr/lib/powerpc64le-linux-gnu/", "/usr/lib/aarch64-linux-gnu/", ] + gather_paths([ "LIBRARY_PATH", ]) + gather_paths([ "LD_LIBRARY_PATH", ]))) include_paths = [ "/usr/include/", ] if IS_CONDA: lib_paths.append(os.path.join(CONDA_DIR, "lib")) include_paths.append(os.path.join(CONDA_DIR, "include")) for path in lib_paths: if path is None or not os.path.exists(path): continue ib_libraries = sorted(glob.glob(os.path.join(path, "libibverbs*"))) if ib_libraries: ib_lib_found = True break for path in include_paths: if path is None or not os.path.exists(path): continue if os.path.exists(os.path.join(path, "infiniband/verbs.h")): ib_header_found = True break return ib_util_found and ib_lib_found and ib_lib_found
f5b26870f39b124690a7869e2c56997d51e6d499
5,931
def _get_security_group_id(connection, security_group_name): """ Takes a security group name and returns the ID. If the name cannot be found, the name will be attempted as an ID. The first group found by this name or ID will be used.) :param connection: :param security_group_name: :return: """ if not security_group_name: print('The bees need a security group to run under. Need to open a port from where you are to the target ' 'subnet.') return # Try by name security_groups = connection.describe_security_groups( Filters=[{'Name': 'group-name', 'Values': [security_group_name, ]}, ] ) security_groups = security_groups['SecurityGroups'] if not security_groups: # Try by id security_groups = connection.describe_security_groups( Filters=[{'Name': 'group-id', 'Values': [security_group_name, ]}, ] ) security_groups = security_groups['SecurityGroups'] if not security_groups: print('The bees need a security group to run under. The one specified was not found. ' 'Create a sg that has access to port 22 ie. from 0.0.0.0/0') return return security_groups[0]['GroupId'] if security_groups else None
70c9b8357a9634043f07ad0019ff3cc621ba859c
5,932
def viz_preprocessing(df_path): """ Preprocess the aggregation csv into a good format for visualization """ df = pd.read_csv(df_path) res = df.T res = res.rename(columns=res.iloc[0]).drop(res.index[0]) res = res.astype("int64") res.reset_index(inplace=True) res["index"] = res["index"].apply( lambda x: "{}-{}-{}".format(x[0:4], x[4:6], x[6:]) ) res["index"] = pd.to_datetime(res["index"]) return res
fc1c39d094934aa47ac26f6e5a70f071c1df4fbd
5,933
def build_encoded_broadcast_from_model(model_fn, encoder_fn): """Builds `StatefulBroadcastFn` for weights of model returned by `model_fn`. This method creates a `SimpleEncoder` for every weight of model created by `model_fn`, as returned by `encoder_fn`. Args: model_fn: A Python callable with no arguments function that returns a `tff.learning.Model`. encoder_fn: A Python callable with a single argument, which is expected to be a `tf.Tensor` of shape and dtype to be encoded. The function must return a `tensor_encoding.core.SimpleEncoder`, which expects a `tf.Tensor` with compatible type as the input to its `encode` method. Returns: A `StatefulBroadcastFn` for encoding and broadcasting the weights of model created by `model_fn`. Raises: TypeError: If `model_fn` or `encoder_fn` are not callable objects. """ py_typecheck.check_callable(model_fn) py_typecheck.check_callable(encoder_fn) # TODO(b/144382142): Keras name uniquification is probably the main reason we # still need this. with tf.Graph().as_default(): values = model_utils.enhance(model_fn()).weights encoders = tf.nest.map_structure(encoder_fn, values) return tff.utils.build_encoded_broadcast(values, encoders)
59b7290fe00b565467a66f72f6591f27448b9372
5,934
def adjacency(G, nodelist=None, weight="weight"): """ Returns the sparse adjacency matrix representation of the graph. """ if nodelist is None: nodelist = G.nodes() A = nx.to_scipy_sparse_matrix(G, nodelist=nodelist, weight=weight, format="csr") return A
e17c0030a7d2c4e13659ca3585820e1c8da89101
5,935
from datetime import datetime def sample_movie(user, **params): """Create and return a movie""" defaults = { 'title': 'A Walk to Remember', 'duration': datetime.timedelta(hours=2, minutes=15), 'price': 8.99 } defaults.update(params) return Movie.objects.create(user=user, **defaults)
d07716fbe4b043022592ae2465bb02d02f45fe41
5,936
import difflib def lines_diff(lines1, lines2): """Show difference between lines.""" is_diff = False diffs = list() for line in difflib.ndiff(lines1, lines2): if not is_diff and line[0] in ('+', '-'): is_diff = True diffs.append(line) return is_diff, diffs
50916d46871980fadfd854dc698481a4b0f35834
5,937
import re def parse_ipmi_hpm(output): """Parse the output of the hpm info retrieved with ipmitool""" hrdw = [] line_pattern = re.compile(r'^\|[^0-9]*([0-9]+)\|[^a-zA-Z ]* ?([^\|]*)\|([^\|]*)\|([^\|]*)\|([^\|]*)\|') for line in output: match = line_pattern.match(line) if match: name = match.group(2).strip() version = match.group(3).strip().split(" ")[0] hrdw.append(('firmware', name, 'version', version)) return hrdw
001731ce46fa6bbdb5103727265a0bdd353773be
5,938
def get_genes_and_pathways(reactions, r_numbers, species): """Returns a CSV-formatted string with the list of genes and pathways where the reaction(s) of 'species' appear. :param reactions: list of reactions for species :param r_numbers: RNumbers object :param species: KEGG organism code :return: CSV-formatted string with genes and pathways where reactions of species are present """ gene_set = set() pathway_set = set() for reaction in reactions: organism = r_numbers.find(reaction).find(species) assert organism is not None for gene in organism.genes: gene_set.add(gene.replace(species + ':', '')) for pathway in organism.pathways: pathway_set.add(pathway) gene_col = ' '.join(sorted(gene_set)) pathway_col = ' '.join(sorted(pathway_set)) return gene_col.rstrip() + ';' + pathway_col.rstrip() + ';'
0ecddcaf50650b04125be73bcf6b304a77df011d
5,939
import os def datasetFiles(request): """ Return a list all dataset files in the datasets directory, by looking for files ending with .h5 suffix. eg. ['/Users/jarnyc/BioPyramid/data/datasets/lanner.1.0.h5'] """ # This is the dataset directory, set by the config file datadir = request.registry.settings['biopyramid.model.datadir'] # Go through each file in the directory and fetch files with .h5 suffix filepaths = [] for filename in os.listdir(datadir): if filename.endswith(".h5"): filepaths.append(os.path.join(datadir, filename)) return filepaths
0c4e2ffff720ec24b6f673f059baa023458f72e9
5,940
def relate_ca(assessment, template): """Generates custom attribute list and relates it to Assessment objects Args: assessment (model instance): Assessment model template: Assessment Temaplte instance (may be None) """ if not template: return None ca_definitions = all_models.CustomAttributeDefinition.query.options( orm.undefer_group('CustomAttributeDefinition_complete'), ).filter_by( definition_id=template.id, definition_type="assessment_template", ).order_by( all_models.CustomAttributeDefinition.id ) created_cads = [] for definition in ca_definitions: cad = all_models.CustomAttributeDefinition( title=definition.title, definition=assessment, attribute_type=definition.attribute_type, multi_choice_options=definition.multi_choice_options, multi_choice_mandatory=definition.multi_choice_mandatory, mandatory=definition.mandatory, helptext=definition.helptext, placeholder=definition.placeholder, ) db.session.add(cad) created_cads.append(cad) return created_cads
31744ac40f385746e6d4e13a97ed461312280d99
5,941
def getSenderNumberMgtURL(request): """ ๋ฐœ์‹ ๋ฒˆํ˜ธ ๊ด€๋ฆฌ ํŒ์—… URL์„ ๋ฐ˜ํ™˜ํ•ฉ๋‹ˆ๋‹ค. - ๋ณด์•ˆ์ •์ฑ…์— ๋”ฐ๋ผ ๋ฐ˜ํ™˜๋œ URL์€ 30์ดˆ์˜ ์œ ํšจ์‹œ๊ฐ„์„ ๊ฐ–์Šต๋‹ˆ๋‹ค. - https://docs.popbill.com/fax/python/api#GetSenderNumberMgtURL """ try: # ํŒ๋นŒํšŒ์› ์‚ฌ์—…์ž๋ฒˆํ˜ธ CorpNum = settings.testCorpNum # ํŒ๋นŒํšŒ์› ์•„์ด๋”” UserID = settings.testUserID url = faxService.getSenderNumberMgtURL(CorpNum, UserID) return render(request, 'url.html', {'url': url}) except PopbillException as PE: return render(request, 'exception.html', {'code': PE.code, 'message': PE.message})
371ca0a813c54061c68af34719ca132081f0bfda
5,942
def closest_match(match, specs, depth=0): """ Recursively iterates over type, group, label and overlay key, finding the closest matching spec. """ new_specs = [] match_lengths = [] for i, spec in specs: if spec[0] == match[0]: new_specs.append((i, spec[1:])) else: if all(isinstance(s[0], basestring) for s in [spec, match]): match_length = max(i for i in range(len(match[0])) if match[0].startswith(spec[0][:i])) elif is_number(match[0]) and is_number(spec[0]): m = bool(match[0]) if isinstance(match[0], np.bool_) else match[0] s = bool(spec[0]) if isinstance(spec[0], np.bool_) else spec[0] match_length = -abs(m-s) else: match_length = 0 match_lengths.append((i, match_length, spec[0])) if len(new_specs) == 1: return new_specs[0][0] elif new_specs: depth = depth+1 return closest_match(match[1:], new_specs, depth) else: if depth == 0 or not match_lengths: return None else: return sorted(match_lengths, key=lambda x: -x[1])[0][0]
3a212d880004fad843fe2d254ac96315bd1d12cf
5,943
def average(w, axis=-1): """Calculate average Example: >>> w1=Waveform([range(2), range(2)],array([[1.0, 3.0], [0.0, 5.0]])) >>> average(w1) Waveform(array([0, 1]), array([ 2. , 2.5])) >>> w1=Waveform([range(2), range(2)],array([[1.0, 3.0], [0.0, 5.0]]), \ xlabels=['row','col']) >>> average(w1, axis='row') Waveform(array([0, 1]), array([ 0.5, 4. ])) """ return reducedim(w, np.mean(w._y, axis=w.getaxis(axis)), axis=w.getaxis(axis))
bd5510e78c995e0a9f656144393b0496e071cdf5
5,944
def random(): """Return a random parameter set for the model.""" total_thickness = 10**np.random.uniform(2, 4.7) Nlayers = np.random.randint(2, 200) d_spacing = total_thickness / Nlayers thickness = d_spacing * np.random.uniform(0, 1) length_head = thickness * np.random.uniform(0, 1) length_tail = thickness - length_head Caille_parameter = np.random.uniform(0, 0.8) pars = dict( length_head=length_head, length_tail=length_tail, Nlayers=Nlayers, d_spacing=d_spacing, Caille_parameter=Caille_parameter, ) return pars
958410bb8a696652b5a58cb15168719c2391179d
5,945
def extract_features_to_dict(image_dir, list_file): """extract features and save them with dictionary""" label, img_list = load_image_list(image_dir, list_file) ftr = feature integer_label = label_list_to_int(label) feature_dict = {'features': ftr, 'label': integer_label, 'label_original': string_list_to_cells(label), 'image_path': string_list_to_cells(img_list)} return feature_dict
2fe641d7bcc24f293fae0c8badf274c9f32051d4
5,946
import torch from typing import List from typing import Dict def roi_heads_forward( self, features, # type: Dict[str, Tensor] proposals, # type: List[Tensor] image_shapes, # type: List[Tuple[int, int]] targets=None, # type: Optional[List[Dict[str, Tensor]]] ): # type: (...) -> Tuple[List[Dict[str, Tensor]], Dict[str, Tensor]] """ Args: features (List[Tensor]) proposals (List[Tensor[N, 4]]) image_shapes (List[Tuple[H, W]]) targets (List[Dict]) """ if targets is not None: for t in targets: # TODO: https://github.com/pytorch/pytorch/issues/26731 floating_point_types = (torch.float, torch.double, torch.half) assert t["boxes"].dtype in floating_point_types, "target boxes must of float type" assert t["labels"].dtype == torch.int64, "target labels must of int64 type" if self.has_keypoint(): assert t["keypoints"].dtype == torch.float32, "target keypoints must of float type" if self.training: proposals, matched_idxs, labels, regression_targets, length_labels = self.select_training_samples(proposals, targets) else: labels = None regression_targets = None matched_idxs = None box_features = self.box_roi_pool(features, proposals, image_shapes) box_features = self.box_head(box_features) class_logits, box_regression, length_logits = self.box_predictor(box_features) result: List[Dict[str, torch.Tensor]] = [] losses = {} if self.training: assert labels is not None and regression_targets is not None and length_labels is not None loss_classifier, loss_box_reg, loss_length = fastrcnn_loss(class_logits, box_regression, labels, regression_targets, length_labels, length_logits) losses = {"loss_classifier": loss_classifier, "loss_box_reg": loss_box_reg, "loss_vessel_length": loss_length} else: boxes, scores, labels, lengths = postprocess_detections(class_logits, box_regression, proposals, image_shapes, length_logits) num_images = len(boxes) for i in range(num_images): result.append( { "boxes": boxes[i], "labels": labels[i], "scores": scores[i], "lengths": lengths[i] } ) if self.has_mask(): mask_proposals = [p["boxes"] for p in result] if self.training: assert matched_idxs is not None # during training, only focus on positive boxes num_images = len(proposals) mask_proposals = [] pos_matched_idxs = [] for img_id in range(num_images): pos = torch.where(labels[img_id] > 0)[0] mask_proposals.append(proposals[img_id][pos]) pos_matched_idxs.append(matched_idxs[img_id][pos]) else: pos_matched_idxs = None if self.mask_roi_pool is not None: mask_features = self.mask_roi_pool(features, mask_proposals, image_shapes) mask_features = self.mask_head(mask_features) mask_logits = self.mask_predictor(mask_features) else: raise Exception("Expected mask_roi_pool to be not None") loss_mask = {} if self.training: assert targets is not None assert pos_matched_idxs is not None assert mask_logits is not None gt_masks = [t["masks"] for t in targets] gt_labels = [t["labels"] for t in targets] rcnn_loss_mask = maskrcnn_loss(mask_logits, mask_proposals, gt_masks, gt_labels, pos_matched_idxs) loss_mask = {"loss_mask": rcnn_loss_mask} else: labels = [r["labels"] for r in result] masks_probs = maskrcnn_inference(mask_logits, labels) for mask_prob, r in zip(masks_probs, result): r["masks"] = mask_prob losses.update(loss_mask) # keep none checks in if conditional so torchscript will conditionally # compile each branch if ( self.keypoint_roi_pool is not None and self.keypoint_head is not None and self.keypoint_predictor is not None ): keypoint_proposals = [p["boxes"] for p in result] if self.training: # during training, only focus on positive boxes num_images = len(proposals) keypoint_proposals = [] pos_matched_idxs = [] assert matched_idxs is not None for img_id in range(num_images): pos = torch.where(labels[img_id] > 0)[0] keypoint_proposals.append(proposals[img_id][pos]) pos_matched_idxs.append(matched_idxs[img_id][pos]) else: pos_matched_idxs = None keypoint_features = self.keypoint_roi_pool(features, keypoint_proposals, image_shapes) keypoint_features = self.keypoint_head(keypoint_features) keypoint_logits = self.keypoint_predictor(keypoint_features) loss_keypoint = {} if self.training: assert targets is not None assert pos_matched_idxs is not None gt_keypoints = [t["keypoints"] for t in targets] rcnn_loss_keypoint = keypointrcnn_loss( keypoint_logits, keypoint_proposals, gt_keypoints, pos_matched_idxs ) loss_keypoint = {"loss_keypoint": rcnn_loss_keypoint} else: assert keypoint_logits is not None assert keypoint_proposals is not None keypoints_probs, kp_scores = keypointrcnn_inference(keypoint_logits, keypoint_proposals) for keypoint_prob, kps, r in zip(keypoints_probs, kp_scores, result): r["keypoints"] = keypoint_prob r["keypoints_scores"] = kps losses.update(loss_keypoint) return result, losses
fae859b8e986694d457e9d4933071eed76a49142
5,947
def capitalize(s): """capitalize(s) -> string Return a copy of the string s with only its first character capitalized. """ return s.capitalize()
1c9b86e2bbffc486d624e7305f303d517a282b75
5,948
def S_tunnel_e0(self, mu, sig, Efl, Efr, Tl, Tr): """energy flux Conduction band edge 0 at higher of the two """ a = mu-sig/2 b = mu+sig/2 kTl = sc.k*Tl kTr = sc.k*Tr Blr = (a/kTl+1)*np.exp(-a/kTl)-(b/kTl+1)*np.exp(-b/kTl) Brl = (a/kTr+1)*np.exp(-a/kTr)-(b/kTr+1)*np.exp(-b/kTr) Slr = kTl**3*Blr*np.exp(Efl/kTl) Srl = -kTr**3*Brl*np.exp(Efr/kTr) # Slr = kTl**3*Blr # Srl = -kTr**3*Brl ret = self._cS*(Slr+Srl) return ret
224b115d7205994e897bc74010fd4f24d562cc6c
5,949
def to_camel_java(text, first_lower=True): """Returns the text in camelCase or CamelCase format for Java """ return to_camelcase(text, first_lower=first_lower, reserved_keywords=JAVA_KEYWORDS, suffix="_")
c14b102502d7caa1dc51511ffd3c97f736a5c17b
5,950
def rectangle_field(N_1, N_2, B_1, B_2, H, D, r_b): """ Build a list of boreholes in a rectangular bore field configuration. Parameters ---------- N_1 : int Number of borehole in the x direction. N_2 : int Number of borehole in the y direction. B_1 : float Distance (in meters) between adjacent boreholes in the x direction. B_2 : float Distance (in meters) between adjacent boreholes in the y direction. H : float Borehole length (in meters). D : float Borehole buried depth (in meters). r_b : float Borehole radius (in meters). Returns ------- boreField : list of Borehole objects List of boreholes in the rectangular bore field. Examples -------- >>> boreField = gt.boreholes.rectangle_field(N_1=3, N_2=2, B_1=5., B_2=5., H=100., D=2.5, r_b=0.05) The bore field is constructed line by line. For N_1=3 and N_2=2, the bore field layout is as follows:: 3 4 5 0 1 2 """ borefield = [] for j in range(N_2): for i in range(N_1): borefield.append(Borehole(H, D, r_b, x=i*B_1, y=j*B_2)) return borefield
955bc7f2bf3a79d790683e7589010bc81af98f85
5,951
def convertHunit(conc, from_unit='H/10^6 Si', to_unit='ppm H2O', phase='Fo90', printout=True): """ Convert hydrogen concentrations to/from H/10^6 Si and ppm H2O. Based on Table 3 of Denis et al. 2013 """ if phase == 'Fo90': H_to_1_ppm = 16.35 elif phase == 'opx': H_to_1_ppm = 11.49 elif phase == 'cpx': H_to_1_ppm = 11.61 else: print('Valid options for phase are Fo90, opx, and cpx') return if from_unit == 'H/10^6 Si': if to_unit == 'ppm H2O': new_conc = conc / H_to_1_ppm elif to_unit == 'per m3': new_conc = conc * (1.0/308.67) * (1e30) else: print('only going to units "ppm H2O" and "per m3"') return elif from_unit == 'ppm H2O': if to_unit == 'H/10^6 Si': new_conc = conc * H_to_1_ppm elif to_unit == 'per m3': new_conc = (conc * H_to_1_ppm) * (1.0/308.67) * (1e30) else: print('only going to "H/10^6 Si" or "per m3"') return elif from_unit == 'per m3': if to_unit == 'H/10^6 Si': new_conc = conc / ((1.0/308.67) * (1e30)) elif to_unit == 'ppm H2O': new_conc = (conc / ((1.0/308.67) * (1e30))) / H_to_1_ppm else: print('only going to "H/10^6 Si" or "ppm H2O"') return else: print('Only going from H/10^6 Si, ppm H2O, and per m3 for now') return if printout is True: output = ' '.join(('{:.2f}'.format(conc), from_unit, '=', '{:.2f}'.format(new_conc), to_unit, 'for', phase)) print(output) return new_conc
fdd0646a09f3a2c3a8cbbc02410103caa9e023dd
5,952
import re def countBasesInFasta(fastaFile): """ Given a fasta file, return a dict where the number of records and the total number of bases are given by 'records' and 'bases' respectively. """ recordRE = re.compile(r'^>') whiteSpaceRE = re.compile(r'\s+') total_bases = 0 total_seqs = 0 with open(fastaFile) as f: for line in f: if recordRE.match(line): total_seqs += 1 continue total_bases += len(whiteSpaceRE.sub('', line)) return {'records': total_seqs, 'bases': total_bases}
45eaa5b8d36b4bae6b97bb29fdead1efc0aed8c2
5,953
import torchvision import torch def load_mnist_denoising(path_raw_dataset, batch_size=1, mu=0., sigma=0.6, deterministic=True): """ 1. Get the MNIST dataset via PyTorch built-in APIs. 2. Wrap it with customized wrapper with additive Gaussian noise processor 3. Build PyTorch data loader objects. :param path_raw_dataset: :param batch_size: :param mu: :param sigma: :param deterministic: :return: dict of pytorch DataLoader objects. { 'train': (iterable) [noisy_image, (clean_image, noise)] noisy_image shape: [batch, c, w, h] clean_image shape: [batch, c, w, h] noise shape: [batch, 1, c, w, h] 'val': (iterable) [noisy_image, (clean_image, noise)] noisy_image shape: [batch, c, w, h] clean_image shape: [batch, c, w, h] noise shape: [batch, 1, c, w, h] } """ MNIST = P.data_processor_wrapper(torchvision.datasets.MNIST, P.Processor_Denoising_AddGau(mu, sigma, deterministic, grayscale=True)) transform_input = transforms.Compose([ transforms.ToTensor(), P.TransTo3Channels() ]) try: data_train = MNIST(root=path_raw_dataset, train=True, download=False, transform=transform_input) except: torch_dataset_download_helper() data_train = MNIST(root=path_raw_dataset, train=True, download=True, transform=transform_input) try: data_val = MNIST(root=path_raw_dataset, train=False, download=False, transform=transform_input) except: torch_dataset_download_helper() data_val = MNIST(root=path_raw_dataset, train=False, download=True, transform=transform_input) datasets = {'train': data_train, 'val': data_val} data_loaders = {i: torch.utils.data.DataLoader(datasets[i], batch_size=batch_size, shuffle=False) for i in ['train', 'val']} return data_loaders
4dbd365a0fa6d795714aa90828fe7bb2cbc9b99f
5,954
def make_triplet_freqs(sentence, triplet_freqs): """ ๆ–‡ๅญ—ๅˆ—ใ‚’3ใค็ต„ใซใ™ใ‚‹ """ # Janomeใงๅ˜่ชžใซๅˆ†ๅ‰ฒใ™ใ‚‹ t = Tokenizer() morphemes = [token.surface for token in t.tokenize(sentence)] if len(morphemes) < 3: return {} # ็นฐใ‚Š่ฟ”ใ— for i in range(len(morphemes) - 2): triplet = tuple(morphemes[i:i+3]) triplet_freqs[triplet] += 1 # beginใ‚’่ฟฝๅŠ  triplet = (BEGIN, morphemes[0], morphemes[1]) triplet_freqs[triplet] = 1 # endใ‚’่ฟฝๅŠ  triplet = (morphemes[-2], morphemes[-1], END) triplet_freqs[triplet] = 1 return triplet_freqs
97fc3affd841e148f58de487d171df61745d17a9
5,955
def test_train_val_split(patient_id, sub_dataset_ids, cv_fold_number): """ if cv_fold_number == 1: if patient_id in sub_dataset_ids[-5:]: return 'test' elif patient_id in sub_dataset_ids[-7:-5]: return 'validation' else: return 'train' elif cv_fold_number == 2: if patient_id in sub_dataset_ids[-10:-5]: return 'test' elif patient_id in sub_dataset_ids[-12:-10]: return 'validation' else: return 'train' # used for accumulating results of tests on cv1 and cv2 if cv_fold_number == 3: if patient_id in sub_dataset_ids[-10:]: return 'test' elif patient_id in sub_dataset_ids[-12:-11]: return 'validation' else: return 'train' """ if patient_id in [1, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]: return 'test' elif patient_id == 36: return 'validation' else: return 'train'
129f3856875033505555241408577f8885c9c393
5,956
import os def get_convertible_info(): """ D:\Trade\TDX\cjzq_tdx\T0002\hq_cache\speckzzdata.txt :return: """ filename = '{}{}{}'.format(TDX_DIR, os.sep, 'T0002\\hq_cache\\speckzzdata.txt') columns = [ 'exchange', 'code', 'stock_code', 'convert_price', 'current_interest', 'list_amount', 'call_price', 'redeem_price', 'convert_start', 'due_price', 'convert_end', 'convert_code', 'current_amount', 'list_date', 'convert_ratio(%)' ] df = pd.read_csv(filename, names=columns) df['exchange'] = df['exchange'].apply(lambda x: 'sse' if x else 'szse') df[['code', 'stock_code']] = df[['code', 'stock_code']].applymap(lambda x: '{:0>6d}'.format(x)) df[['list_amount', 'current_amount']] = df[['list_amount', 'current_amount']] * 10000 return df
82d7b9485095b504f3d3a39bf446ccf7bc170558
5,957
def test_striplog_colour_plot(): """ Tests mpl image of striplog with the ladder option. """ legend = Legend.builtin('NSDOE') imgfile = "tutorial/M-MG-70_14.3_135.9.png" striplog = Striplog.from_image(imgfile, 14.3, 135.9, legend=legend) for iv in striplog: iv.data['porosity'] = iv.top.z/100 fig = striplog.plot(colour='porosity', aspect=3, return_fig=True) return fig
a76f01a5b6255a0dfe39aca7cc3e352787457d17
5,958
import subprocess import sys def fetch_data( o_included: str, flowcharts: dict, o_metadata_file: str, o_biom_file: str, p_redbiom_context: str, p_bloom_sequences: str, p_reads_filter: int, unique: bool, update: bool, dim: bool) -> pd.DataFrame: """ Parameters ---------- o_included : str Path to output metadata for the included samples only. flowcharts : dict Steps of the workflow with samples counts (simpler representation). o_metadata_file : str [if --fetch] Path to the output metadata table file. o_biom_file : str [if --fetch] Path to the output biom table file. p_redbiom_context : str [if --fetch] Redbiom context for fetching 16S data from Qiita. p_bloom_sequences : str [if --fetch] Fasta file containing the sequences known to bloom in fecal samples. p_reads_filter : int [if --fetch] Minimum number of reads per sample. unique : bool [if --fetch] Whether to keep a unique sample per host or not. update : bool [if --fetch] Update the sample names to remove Qiita-prep info. dim : bool [if --fetch] Whether to add the number of samples in the final biom file name before extension or not. Returns ------- included : pd.DataFrame Metadata for the included samples only. """ cmd = 'Xrbfetch' cmd += ' -m %s' % o_included if o_metadata_file: o_meta = o_metadata_file else: o_meta = '%s_fetched.tsv' % splitext(o_included)[0] cmd += ' -o %s' % o_meta if o_biom_file: cmd += ' -b %s' % o_biom_file else: cmd += ' -b %s_fetched.biom' % splitext(o_included)[0] if p_bloom_sequences: cmd += ' -s %s' % p_bloom_sequences cmd += ' -r %s' % p_redbiom_context cmd += ' -f %s' % p_reads_filter if unique: cmd += ' --unique' if update: cmd += ' --update' if dim: cmd += ' --dim' cmd += ' --force' cmd += ' --no-simple' print('- fetch on redbiom:') redbiom_fetching = subprocess.getoutput(cmd).split('\n') print('Done.') flowcharts['data'] = [] for step in redbiom_fetching: step_line = step.strip() if step_line.startswith('- Load biom table...'): print('[fetch]', step_line) n = step_line.split()[6] flowcharts['data'].append( ['Fetch', n, 'redbiom', p_redbiom_context, None]) elif step_line.startswith('- Filter blooms...'): print('[fetch]', step_line) n = step_line.split()[5] flowcharts['data'].append( ['Filter blooms', n, None, None, None]) elif step_line.startswith('- Get best samples from ambiguous'): print('[fetch]', step_line) n = step_line.split()[8] flowcharts['data'].append( ['Solve redbiom ambiguous', n, 'most reads', '...or... ', 'most features']) elif step_line.startswith('- Filter biom for min'): print('[fetch]', step_line) f = step_line.split()[5] n = step_line.split()[11] flowcharts['data'].append( ['Filter reads', n, 'min %s' % f, None]) elif step_line.startswith('- Already one sample per host_subject_id'): print('[fetch]', step_line) n = step_line.split()[8] flowcharts['data'].append( ['One per sample ID', n, None, None, None]) elif step_line.startswith('- Keep the best sample per host_subject_id'): print('[fetch]', step_line) n = step_line.split()[9] flowcharts['data'].append( ['One per sample ID', n, None, None, None]) if 'Outputs:' in redbiom_fetching: outs = redbiom_fetching[(redbiom_fetching.index('Outputs:') + 1):] if len(outs): return read_meta_pd(outs[0]) print('nothing fetched: check command:\n%s\nExiting...' % cmd) sys.exit(1)
f7cb52b2dfc7c33038f448dfd8578a6e54d1d2fa
5,959
def searchArtist(artistName, session=models.session): """Search for artist. Returns models.ArtistSearch""" return models.ArtistSearch(artistName, session)
4fd9e45b633285a9ee1817a84508749d1ba724e7
5,960
def _ddnone(): """allow defaultdict to be pickled""" return defaultdict(_none)
9a050e08b0c47bc789f0238489c679d01a42c1ba
5,961
from operator import and_ def apply_join(query: Select, table: Table, join_table: Table, join: TableJoin): """ Performs a inner or outer join between two tables on a given query object. TODO: enable multiple joins :param query: A SQLAlchemy select object. :param table: The Table we are joining from. :param join_table: The Table we are joining to. :param join: The Join object describing how to join the tables. :return: A SQLAlchemy select object modified to join two tables. """ error_msg = 'Invalid join, "{}" is not a column on table "{}"' join_conditions = [] for column_pair in join.column_pairs: from_col = table.columns.get(column_pair.from_column) to_col = join_table.columns.get(column_pair.to_column) if from_col is None: raise ValueError(error_msg.format(column_pair.from_column, table.name)) if to_col is None: raise ValueError(error_msg.format(column_pair.to_column, join_table.name)) join_conditions.append(from_col == to_col) return query.select_from(table.join(join_table, onclause=and_(*join_conditions), isouter=join.outer_join))
1c5bfc7de3f1c7b9e17588e730085e5dc87d7c49
5,962
def filter_shapely(feature): """ feature1 = feature_extract(feature) feature2 = filter_shapely(feature1) """ tmp = extract_Accumulation_entropy_list(feature) tmp2=[] for i in range(len(tmp)): if i!=0: tmp2.append(tmp[i]-tmp[i-1]) else: tmp2.append(tmp[i]) return tmp2
54654130340a3485a7de9a3d5a51d3def8a01037
5,963
def stations_by_river(stations): """Returns a dictionary mapping river names (key) to a list of stations (object)""" rivers_stations_dict = {} # Create empty dictionary for i in range(len(stations)): # Iterate through list of stations # Data type checks if type(stations[i]) is MonitoringStation: pass # Checks if stations are correct class else: raise TypeError("ERROR: Station is not a MonitoringStation") if type(stations[i].name) is str: # Checks if name is string pass else: raise TypeError("ERROR: Station 'name' attribute is not a string") if type(stations[i].river) is str: # Checks if river is string pass else: raise TypeError("ERROR: Station 'river' attribute is not a string") if not stations[i].river in rivers_stations_dict: # Checks if river is not in dictionary rivers_stations_dict[stations[i].river] = [] # Adds river to dictionary with blank list if not stations[i].name in rivers_stations_dict: rivers_stations_dict[stations[i].river].append(stations[i].name) # Adds station name to object list return rivers_stations_dict
d57bc06b60d6669bf6a10b7ad05363124f2312b5
5,964
def getCurrentProfile(): """ Get the name of the current profile. """ return __createJSON("GetCurrentProfile", {})
6627d01348d566f0d079b8e7bcf04e35ad6ed0ba
5,965
def get_params_from_request(req: web.Request) -> QueryParams: """ This function need for convert query string to filter parameters. """ page = int(req.rel_url.query.get('page', '1')) cursor = req.rel_url.query.get('cursor') sort = req.rel_url.query.get('sort') sort_dir = req.rel_url.query.get('sortDir') if sort and sort_dir == 'desc': sort = f'-{sort}' return QueryParams( page=page, cursor=int(cursor) if cursor else None, order_by=sort, )
b0deb4e5a1dc10fe82745e6c3c0869015424e2e0
5,966
def norm_mem_interval(pt): """Normalize membership in interval.""" return pt.on_prop(arg_conv(binop_conv(auto.auto_conv())))
b50aa86d942fe1c2f35c6bcffae350042ff86090
5,967
def create_figure(): """ Creates a simple example figure. """ fig = Figure() a = fig.add_subplot(111) t = np.arange(0.0, 3.0, 0.01) s = np.sin(2 * np.pi * t) a.plot(t, s) return fig
532a4eda745cb969f8ef60e66d6f63e761b8a5ff
5,968
def rdf_reader(src): """rdf = rdf_reader(src) src rdf filename rdf The RDF mapping object""" return RDF(*list(rdf_include(src)))
cf64ee6ed12a3e0d1667a537ac696918d26f80ba
5,969
def draw_signalData(Nsamp=1, alpha=__alpha, beta=__beta, **kwargs): """ draw an SNR from the signal distribution """ return np.array([ncx2.rvs(__noise_df, nc) for nc in __draw_truncatedPareto(Nsamp, alpha=alpha, beta=beta)])
6dc320e2289c30a0e68696be71ded30066d7fa74
5,970
def choose_weighted_images_forced_distribution(num_images, images, nodes): """Returns a list of images to cache Enforces the distribution of images to match the weighted distribution as closely as possible. Factors in the current distribution of images cached across nodes. It is important to note that there may be circumstances which prevent this function from attaining the desired ideal distribution, but the function will always try its best to reach the desired distribution based on the specified weights. num_images - the number (integer) of images to choose to cache images - a list of to ImageInputs consider for caching nodes - a list of NodeInputs to use for determining which images need to be cached the most """ named_distribution = _get_named_image_distribution(images, nodes) # Take the difference of the desired distribution with the current # one. scaled_weights = _get_scaled_weights( images, _get_scale_factor_for_caching_nodes(num_images, images, nodes)) distribution_difference = [ [image, (scaled_weights[image.name] - named_distribution[image.name])] for image in images ] def decrement_distribution(distribution_pair, diff_dict): distribution_pair[1] -= 1 return _pick_images( images, distribution_difference, num_images, picker_func=lambda diff: max(diff, key=lambda pair: pair[1]), distribution_mutator_func=decrement_distribution)
8cf49fd376893be254d5075930475de9cedee004
5,971
def predict_lumbar_ankles_model(data): """Generate lumbar + 2 ankles model predictions for data. Args: data (dict): all data matrices/lists for a single subject. Returns: labels (dict): columns include 'probas' (from model) and 'true' (ground truth). One row for each fold. """ RESULT_DIR = '../results/imus6_subjects7/sensors03_lumbar_ankles/'\ 'iteration0/' data = selectFeats(data, ['lumbar','ankle_r','ankle_l']) test_dset = (data['X'], data['y']) subject = str(int(data['subjectID'])) model = load_model_and_weights(subject, RESULT_DIR) labels = make_predictions(model, test_dset) return labels
581a45a71bb17ebebf3a8ea63dbbfb898c6e3567
5,972
def breakOnEnter(func=None, *, debugger='pdb'): """ A function wrapper that causes debug mode to be entered when the wrapped function is called. Parameters ---------- func : The function to wrap. debugger : The debugger used when debug mode is entered. This can be either the debugging module itself or a string containing the name of the debugging module. Currently, pdb and ipdb are supported. """ if func is None: return partial(breakOnEnter, debugger=debugger) debugger = import_(debugger) @wraps(func) def wrapper(*args, **kwargs): return debugger.runcall(func, *args, **kwargs) return wrapper
58b1e965a563ca19c886eef6a623af84ae9ae29c
5,973
def linear_search(iterable, item): """Returns the index of the item in the unsorted iterable. Iterates through a collection, comparing each item to the target item, and returns the index of the first item that is equal to the target item. * O(n) time complexity * O(1) space complexity Args: iterable: A collection that is iterable. item: An object to search for. Returns: The index of the item in the sorted iterable, or -1 if not found. Raises: TypeError: If iterable is not iterable. """ try: _ = iter(iterable) except TypeError: raise TypeError('\'{}\' object is not iterable'.format( type(iterable).__name__)) for index, _item in enumerate(iterable): if _item == item: return index return -1
bdbd7e70cea79deef1375648bde61067df1d2221
5,974
def create_MD_tag(reference_seq, query_seq): """Create MD tag Args: reference_seq (str) : reference sequence of alignment query_seq (str) : query bases of alignment Returns: md_tag(str) : md description of the alignment """ no_change = 0 md = [] for ref_base, query_base in zip(reference_seq, query_seq): if ref_base.upper() == query_base: no_change += 1 else: if no_change > 0: md.append(str(no_change)) md.append(ref_base) no_change = 0 if no_change > 0: md.append(str(no_change)) return ''.join(md)
4b711521d00af132e8e29fe4fc44785b985c2607
5,975
import subprocess import os def get_diff(base, head=None): """Return a git diff between the base and head revision. :type base: str :type head: str | None :rtype: list[str] """ if not head or head == 'HEAD': head = subprocess.check_output(['git', 'rev-parse', 'HEAD']).strip() cache = '/tmp/git-diff-cache-%s-%s.log' % (base, head) if os.path.exists(cache): with open(cache, 'r') as cache_fd: lines = cache_fd.read().splitlines() else: lines = subprocess.check_output(['git', 'diff', base, head]).splitlines() with open(cache, 'w') as cache_fd: cache_fd.write('\n'.join(lines)) assert lines return lines
a69fc80c03c2cf89ec47b510397bf60c8dc5732c
5,976
def split_last(dataframe, target_col, sort_col='date', cut=.9): """Splits the dataframe on sort_column at the given cut ratio, and splits the target column Args: dataframe: dataframe to be cut sort_col: column to be sorted on. Default='date' cut: cut ratio for the train/eval sets Returns: X_train: dataframe of the first cut of the data set without the target y_train: dataframe of the first cut of the data set only target values X_eval: dataframe of the remaining slice of the data set without target y_eval: dataframe of the remaining slice of the data set only targets """ if sort_col != None: dataframe = dataframe.sort_values(by=sort_col, axis='columns') cutoff = dataframe.shape[0]*cut first_df = dataframe.reset_index(drop=True).loc[:cutoff] last_df = dataframe.reset_index(drop=True).loc[cutoff:] X_train = first_df.drop(columns=[target_col]) y_train = np.array(first_df[target_col]).ravel() X_eval = last_df.drop(columns=[target_col]) y_eval = np.array(last_df[target_col]).ravel() return X_train, y_train, X_eval, y_eval
090144fa9c68f8ffc9e9e7c2e9c8427f0aff862d
5,977
def ignore_warnings(obj=None): """ Context manager and decorator to ignore warnings Note. Using this (in both variants) will clear all warnings from all python modules loaded. In case you need to test cross-module-warning-logging this is not your tool of choice. Examples -------- >>> with ignore_warnings(): ... warnings.warn('buhuhuhu') >>> def nasty_warn(): ... warnings.warn('buhuhuhu') ... print(42) >>> ignore_warnings(nasty_warn)() 42 """ if callable(obj): return _ignore_warnings(obj) else: return _IgnoreWarnings()
2fc8c4d12467ab3c0b86201271f42b7d22130b82
5,978
import csv def readCSV(associated_ipaddr, ipaddr, timestamp): """ Method that extracts observations from a CSV file. Parameters: associated_ipaddr (str): The name of the column that specifies IP addresses of VPN clients ipaddr (str): The name of the column that specifies IP addresses of users on the public internet timestamp (str): The name of the column that specifies the observation creation time Returns: observations (list): A list of observation dictionaries """ observations = [] with open(CSV_FILE, "rt", encoding="ascii") as f: reader = csv.reader(f) header = next(reader, None) for row in reader: observations.append( { "associated_ipaddr": row[header.index(associated_ipaddr)], "ipaddr": row[header.index(ipaddr)], "timestamp": translateTime(row[header.index(timestamp)]), } ) return observations
77594e98b83cd5d49bd8a70b28b54cab92dcadeb
5,979
def interp2d(x, y, z, outshape, verbose=True, doplot=True): """ Parameters ---------- x, y : int X and Y indices of `z`. z : float Values for given `x` and `y`. outshape : tuple of int Shape of 2D output array. verbose : bool, optional Print info to screen. doplot : bool, optional Plot results. Returns ------- im : float array 2-D array of interpolated data. """ # Print the data to screen for checking if verbose: print 'DATA USED FOR INTERPOLATION:' for i, (xx, yy, zz) in enumerate(zip(x, y, z), start=1): print '{}: {} {} {}'.format(i, xx, yy, zz) # Perform 2D interpolation func = interpolate.interpolate.interp2d(x, y, z) im = func(np.mgrid[:outshape[1]], np.mgrid[:outshape[0]]) if doplot: # Get min/max to use same colorbar on for base and overlay pmin = im.min() pmax = im.max() fig, ax = plt.subplots() # Show interpolated 2D image p = ax.imshow(im, vmin=pmin, vmax=pmax) # Overlay data points used for interpolation ax.scatter(x, y, s=100, c=z, vmin=pmin, vmax=pmax, marker='s') # Display colorbar. # Shrink to make it same width as display. c = fig.colorbar(p, orientation='horizontal', shrink=0.7) c.set_label('Pixel value') # Plot labels ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_title('Interpolated image') plt.draw() return im
05558e413139a0ad71a4240e3f44c4bb9019c314
5,980
import shlex import subprocess def run_cmd(cmd: Text, split: bool = True, shell=False, verbose: bool = True): """Run a system command and print output.""" print(f'CMD: {cmd}') cmd = shlex.split(cmd) if split else [cmd] process = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=shell) while True: output = process.stdout.readline().decode('utf-8').strip() if output == '' and process.poll() is not None: break if output and verbose: print(output) return_code = process.poll() if return_code != 0: print(f'\tERROR ({return_code}) running command!') return return_code
071df0f5b185249128b3c52a48aa1787d1299fe9
5,981
def _nms_boxes(detections, nms_threshold): """Apply the Non-Maximum Suppression (NMS) algorithm on the bounding boxes with their confidence scores and return an array with the indexes of the bounding boxes we want to keep. # Args detections: Nx7 numpy arrays of [[x, y, w, h, box_confidence, class_id, class_prob], ......] """ x_coord = detections[:, 0] y_coord = detections[:, 1] width = detections[:, 2] height = detections[:, 3] box_confidences = detections[:, 4] * detections[:, 6] areas = width * height ordered = box_confidences.argsort()[::-1] keep = list() while ordered.size > 0: # Index of the current element: i = ordered[0] keep.append(i) xx1 = np.maximum(x_coord[i], x_coord[ordered[1:]]) yy1 = np.maximum(y_coord[i], y_coord[ordered[1:]]) xx2 = np.minimum(x_coord[i] + width[i], x_coord[ordered[1:]] + width[ordered[1:]]) yy2 = np.minimum(y_coord[i] + height[i], y_coord[ordered[1:]] + height[ordered[1:]]) width1 = np.maximum(0.0, xx2 - xx1 + 1) height1 = np.maximum(0.0, yy2 - yy1 + 1) intersection = width1 * height1 union = (areas[i] + areas[ordered[1:]] - intersection) iou = intersection / union indexes = np.where(iou <= nms_threshold)[0] ordered = ordered[indexes + 1] keep = np.array(keep) return keep
9d3ad16396f1e94e4ac8efe1e73e8f06b529ff0f
5,982
import types def dht_get_key(data_key): """ Given a key (a hash of data), go fetch the data. """ dht_client = get_dht_client() ret = dht_client.get(data_key) if ret is not None: if type(ret) == types.ListType: ret = ret[0] if type(ret) == types.DictType and ret.has_key("value"): ret = ret["value"] else: raise Exception("No data returned from %s" % data_key) return ret
0c8680996e21b7dcc02cd4b7d81f3fa500b02076
5,983
def get_dataframe_from_table(table_name, con): """ put table into DataFrame """ df = pd.read_sql_table(table_name, con) return df
cdf94277c2f4e3acdd22b87de7cd9d0fee63b24c
5,984
from typing import List from typing import Dict import requests def _find_links_in_headers(*, headers, target_headers: List[str]) -> Dict[str, Dict[str, str]]: """Return a dictionary { rel: { url: 'url', mime_type: 'mime_type' } } containing the target headers.""" found: Dict[str, Dict[str, str]] = {} links = headers.get("link") if links: # [{'url': 'https://micropub.jamesg.blog/micropub', 'rel': 'micropub'} ] parsed_link_headers: List[Dict[str, str]] = requests.utils.parse_header_links(links) else: return found for header in parsed_link_headers: url = header.get("url", "") rel = header.get("rel", "") mime_type = header.get("type", "") if _is_http_url(url) and rel in target_headers: found[rel] = { "url": url, "mime_type": mime_type, } # Add check for x-pingback header if "x-pingback" in target_headers: pingback_url = headers.get("x-pingback") if _is_http_url(pingback_url): # assign as "pingback" key in dictionary found["pingback"] = { "url": url, "mime_type": "", } return found
ee23c9c7ca2633d11ea33ac2695a46eca4188af5
5,985
import re def calc_word_frequency(my_string, my_word): """Calculate the number of occurrences of a given word in a given string. Args: my_string (str): String to search my_word (str): The word to search for Returns: int: The number of occurrences of the given word in the given string. """ # Remove all non alphanumeric characters from the string filtered_string = re.sub(r'[^A-Za-z0-9 ]+', '', my_string) # Return the number of occurrences of my_word in the filtered string return filtered_string.split().count(my_word)
15ff723dd2ff089fb12cccb38283f1f75e37079d
5,986
from typing import Counter def asyn_lpa_communities(G, weight=None, seed=None): """Returns communities in `G` as detected by asynchronous label propagation. The asynchronous label propagation algorithm is described in [1]_. The algorithm is probabilistic and the found communities may vary on different executions. The algorithm proceeds as follows. After initializing each node with a unique label, the algorithm repeatedly sets the label of a node to be the label that appears most frequently among that nodes neighbors. The algorithm halts when each node has the label that appears most frequently among its neighbors. The algorithm is asynchronous because each node is updated without waiting for updates on the remaining nodes. This generalized version of the algorithm in [1]_ accepts edge weights. Parameters ---------- G : Graph weight : string The edge attribute representing the weight of an edge. If None, each edge is assumed to have weight one. In this algorithm, the weight of an edge is used in determining the frequency with which a label appears among the neighbors of a node: a higher weight means the label appears more often. seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. Returns ------- communities : iterable Iterable of communities given as sets of nodes. Notes ------ Edge weight attributes must be numerical. References ---------- .. [1] Raghavan, Usha Nandini, Rรฉka Albert, and Soundar Kumara. "Near linear time algorithm to detect community structures in large-scale networks." Physical Review E 76.3 (2007): 036106. """ labels = {n: i for i, n in enumerate(G)} cont = True while cont: cont = False nodes = list(G) seed.shuffle(nodes) # Calculate the label for each node for node in nodes: if len(G[node]) < 1: continue # Get label frequencies. Depending on the order they are processed # in some nodes with be in t and others in t-1, making the # algorithm asynchronous. label_freq = Counter() for v in G[node]: label_freq.update({labels[v]: G.edges[v, node][weight] if weight else 1}) # Choose the label with the highest frecuency. If more than 1 label # has the highest frecuency choose one randomly. max_freq = max(label_freq.values()) best_labels = [label for label, freq in label_freq.items() if freq == max_freq] new_label = seed.choice(best_labels) labels[node] = new_label # Continue until all nodes have a label that is better than other # neighbour labels (only one label has max_freq for each node). cont = cont or len(best_labels) > 1 # TODO In Python 3.3 or later, this should be `yield from ...`. return iter(groups(labels).values())
d6696f9347684dee6a81c8dc7c240a3c200ec629
5,987
def _make_warmstart_dict_env(): """Warm-start VecNormalize by stepping through BitFlippingEnv""" venv = DummyVecEnv([make_dict_env]) venv = VecNormalize(venv) venv.reset() venv.get_original_obs() for _ in range(100): actions = [venv.action_space.sample()] venv.step(actions) return venv
67e0ee3e8440c24a08e306afbb9891dee64dd11d
5,988
def record_attendance(lesson_id): """ Record attendance for a lesson. """ # Get the UserLessonAssociation for the current and # the given lesson id. (So we can also display attendance etc.) lesson = Lesson.query.filter(Lesson.lesson_id == lesson_id).first() # Ensure the lesson id/association object is found. if not lesson: abort(404) record_single_attendance_form = RecordSingleAttendanceForm() if request.method == 'POST' and record_single_attendance_form.validate_on_submit(): assoc = UserLessonAssociation.query.filter( UserLessonAssociation.lesson_id == lesson_id ).filter( UserLessonAssociation.user_id == int(record_single_attendance_form.user_id.data) ).first() if assoc: assoc.attendance_code = record_single_attendance_form.attendance_code.data flash("Successfully updated lesson attendance.") else: abort(500) # We only want to send updates if they we're late or not there. if assoc.attendance_code == 'L' or assoc.attendance_code == 'N': # Send an email update. html = 'Attendance for your lesson on: ' + assoc.lesson.get_lesson_date() \ + ' has been updated. Your attendance is now recorded as: ' + \ assoc.get_lesson_attendance_str() # Send a lesson update. send_lesson_update( assoc.user, html, url_for( 'student.view_lesson', lesson_id=lesson_id, _external=True ), parent=True ) if check_attendance_complete(lesson): # The attendance is complete. lesson.update_lesson_details(attendance_recorded=True) else: lesson.update_lesson_details(attendance_recorded=False) # Save Changes db.session.commit() # Refresh return redirect(url_for('staff.record_attendance', lesson_id=lesson_id)) # Render the view lesson template and pass in the association and the lesson object. return render_template( 'staff/record_attendance.html', lesson=lesson, record_single_attendance_form=record_single_attendance_form )
237fb1df5eaf1f1b7d9555ca636971318f23c360
5,989
def ts_to_datestr(ts, fmt="%Y-%m-%d %H:%M"): """ๅฏ่ฏปๆ€ง""" return ts_to_datetime(ts).strftime(fmt)
29b180c0d569768b173afb960d9cb09e86519741
5,990
def _ComplexAbsGrad(op, grad): """Returns the gradient of ComplexAbs.""" # TODO(b/27786104): The cast to complex could be removed once arithmetic # supports mixtures of complex64 and real values. return (math_ops.complex(grad, array_ops.zeros_like(grad)) * math_ops.sign(op.inputs[0]))
f150a36bb852e4c722771220d4ed976875fce0ef
5,991
def so3_rotate(batch_data): """ Randomly rotate the point clouds to augument the dataset rotation is per shape based along up direction Input: BxNx3 array, original batch of point clouds Return: BxNx3 array, rotated batch of point clouds """ rotated_data = np.zeros(batch_data.shape, dtype=np.float32) for k in range(batch_data.shape[0]): rotation_angle_A = np.random.uniform() * 2 * np.pi rotation_angle_B = np.random.uniform() * 2 * np.pi rotation_angle_C = np.random.uniform() * 2 * np.pi cosval_A = np.cos(rotation_angle_A) sinval_A = np.sin(rotation_angle_A) cosval_B = np.cos(rotation_angle_B) sinval_B = np.sin(rotation_angle_B) cosval_C = np.cos(rotation_angle_C) sinval_C = np.sin(rotation_angle_C) rotation_matrix = np.array([[cosval_B*cosval_C, -cosval_B*sinval_C, sinval_B], [sinval_A*sinval_B*cosval_C+cosval_A*sinval_C, -sinval_A*sinval_B*sinval_C+cosval_A*cosval_C, -sinval_A*cosval_B], [-cosval_A*sinval_B*cosval_C+sinval_A*sinval_C, cosval_A*sinval_B*sinval_C+sinval_A*cosval_C, cosval_A*cosval_B]]) shape_pc = batch_data[k, ...] rotated_data[k, ...] = np.dot(shape_pc.reshape((-1, 3)), rotation_matrix) return rotated_data
84c184c920833bf2037b0f4181e9f25bcf6fd5ce
5,992
import hashlib def intmd5(source: str, nbytes=4) -> int: """ Generate a predictive random integer of nbytes*8 bits based on a source string. :param source: seed string to generate random integer. :param nbytes: size of the integer. """ hashobj = hashlib.md5(source.encode()) return int.from_bytes(hashobj.digest()[:nbytes], byteorder="big", signed=False)
c03eb99a67af00a4a081423ecca3a724111514e1
5,993
def trisolve(a, b, c, y, inplace=False): """ The tridiagonal matrix (Thomas) algorithm for solving tridiagonal systems of equations: a_{i}x_{i-1} + b_{i}x_{i} + c_{i}x_{i+1} = y_{i} in matrix form: Mx = y TDMA is O(n), whereas standard Gaussian elimination is O(n^3). Arguments: ----------- a: (n - 1,) vector the lower diagonal of M b: (n,) vector the main diagonal of M c: (n - 1,) vector the upper diagonal of M y: (n,) vector the result of Mx inplace: if True, and if b and y are both float64 vectors, they will be modified in place (may be faster) Returns: ----------- x: (n,) vector the solution to Mx = y References: ----------- http://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm http://www.netlib.org/lapack/explore-html/d1/db3/dgtsv_8f.html """ if (a.shape[0] != c.shape[0] or a.shape[0] >= b.shape[0] or b.shape[0] != y.shape[0]): raise ValueError('Invalid diagonal shapes') yshape_in = y.shape if y.ndim == 1: # needs to be (ldb, nrhs) y = y[:, None] rtype = np.result_type(a, b, c, y) if not inplace: # force a copy a = np.array(a, dtype=rtype, copy=True, order='C') b = np.array(b, dtype=rtype, copy=True, order='C') c = np.array(c, dtype=rtype, copy=True, order='C') y = np.array(y, dtype=rtype, copy=True, order='C') # this may also force copies if arrays have inconsistent types / incorrect # order a, b, c, y = (np.array(v, dtype=rtype, copy=False, order='C') for v in (a, b, c, y)) # y will now be modified in place to give the result if rtype == np.float32: _fnndeconv.TDMAs_lapacke(a, b, c, y) elif rtype == np.float64: _fnndeconv.TDMAd_lapacke(a, b, c, y) else: raise ValueError('Unsupported result type: %s' %rtype) return y.reshape(yshape_in)
ead814b1025e8458f7e1eabeecf3eb89cb9edd5d
5,994
def calc_mean_pred(df: pd.DataFrame): """ Make a prediction based on the average of the predictions of phones in the same collection. from https://www.kaggle.com/t88take/gsdc-phones-mean-prediction """ lerp_df = make_lerp_data(df=df) add_lerp = pd.concat([df, lerp_df]) # each time step == only one row, average over all phone latDeg, # lanDeg at each time step # eg. mean(original Deg Pixel4 and interpolated Deg 4XLModded with `make_lerp_data`) mean_pred_result = ( add_lerp.groupby(["collectionName", "millisSinceGpsEpoch"])[ ["latDeg", "lngDeg"] ] .mean() .reset_index() ) base_cols = ["collectionName", "phoneName", "phone", "millisSinceGpsEpoch"] try: mean_pred_df = df[base_cols + ["latDeg_gt", "lngDeg_gt", "speedMps"]].copy() except Exception: mean_pred_df = df[base_cols].copy() mean_pred_df = mean_pred_df.merge( mean_pred_result[["collectionName", "millisSinceGpsEpoch", "latDeg", "lngDeg"]], on=["collectionName", "millisSinceGpsEpoch"], how="left", ) return mean_pred_df
a4f6cdb0d5efb72cd6b503a8eb3a0f4b13cee0bf
5,995
def get_meals(v2_response, venue_id): """ Extract meals into old format from a DiningV2 JSON response """ result_data = v2_response["result_data"] meals = [] day_parts = result_data["days"][0]["cafes"][venue_id]["dayparts"][0] for meal in day_parts: stations = [] for station in meal["stations"]: items = [] for item_id in station["items"]: item = result_data["items"][item_id] new_item = {} new_item["txtTitle"] = item["label"] new_item["txtPrice"] = "" new_item["txtNutritionInfo"] = "" new_item["txtDescription"] = item["description"] new_item["tblSide"] = "" new_item["tblFarmToFork"] = "" attrs = [{"description": item["cor_icon"][attr]} for attr in item["cor_icon"]] if len(attrs) == 1: new_item["tblAttributes"] = {"txtAttribute": attrs[0]} elif len(attrs) > 1: new_item["tblAttributes"] = {"txtAttribute": attrs} else: new_item["tblAttributes"] = "" if isinstance(item["options"], list): item["options"] = {} if "values" in item["options"]: for side in item["options"]["values"]: new_item["tblSide"] = {"txtSideName": side["label"]} items.append(new_item) stations.append({"tblItem": items, "txtStationDescription": station["label"]}) meals.append({"tblStation": stations, "txtDayPartDescription": meal["label"]}) return meals
9d27d225a39248690529167f7ff18777a086bcc6
5,996
async def async_setup(hass, config_entry): """ Disallow configuration via YAML """ return True
759cc705a82a0f9ff9d4d43cb14d641d7e552aaa
5,997
def blend(im1, im2, mask): """ Blends and shows the given images according to mask :param im1: first image :param im2: second image :param mask: binary mask :return: result blend """ res = [] for i in range(3): res.append(pyramid_blending(im1[:, :, i], im2[:, :, i], mask, 7, 5, 5)) res = np.dstack(res) fig, a = plt.subplots(nrows=2, ncols=2) a[0][0].imshow(im1, cmap='gray') a[0][1].imshow(im2, cmap='gray') a[1][0].imshow(mask, cmap='gray') a[1][1].imshow(res, cmap='gray') plt.show() return res
4b4a635d1f44ced411b9dfe2037b0f42805f38b2
5,998
def parse(fileName): """ Pull the EXIf info from a photo and sanitize it so for sending as JSON by converting values to strings. """ f = open(fileName, 'rb') exif = exifread.process_file(f, details=False) parsed = {} for key, value in exif.iteritems(): parsed[key] = str(value) return parsed
3f5aca5b38dd7f3b3a9defae1fc5f645e255a191
5,999