content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
def delete_data(data, object_name, **kwargs):
"""
Delete data
"""
data.delete()
is_queryset = isinstance(data, QuerySet)
return {
"is_queryset": is_queryset,
"data": data,
"object_name": object_name,
} | 28405ae426e53fc3637a4b281775cba99e112a0a | 3,659,100 |
def get_g(source):
""" Read the Graph from a textfile """
G = {}
Grev = {}
for i in range(1, N+1):
G[i] = []
Grev[i] = []
fin = open(source)
for line in fin:
v1 = int(line.split()[0])
v2 = int(line.split()[1])
G[v1].append(v2)
Grev[v2].append(v1)
fin.close()
return G, Grev | f2771c28d6c86a0af035cc38cd5cdad2774b0dba | 3,659,101 |
def _mercator(lat_long):
"""
Calculate the 2D X and Y coordinates from a set of coordinates based on radius, latitude and longitude using the
Mercator projection.
:param lat_long: The coordinates of the points to be projected expressed as radius, latitude and longitude.
:type lat_long: list[tuple]
:return: The projected coordinates in the XY-plane.
:rtype: ndarray
"""
x = np.array([coord[0] * coord[2] for coord in lat_long])
y = np.array([coord[0] * np.log(np.tan(np.pi / 4 + coord[1] / 2))
for coord in lat_long])
return np.vstack((x, y)).T | cc1f4eb97f4c5a1505b88ab5aa8fa6992744dccf | 3,659,102 |
def subjectForm(request, experiment_id):
"""
Generates the fourth page, the demographic/participant data form of an experiment.
"""
experiment = get_object_or_404(Experiment, pk=experiment_id)
form = SubjectDataForm(experiment=experiment)
t = Template(experiment.demographic_data_page_tpl)
c = RequestContext(request, {'subject_data_form': form, 'experiment': experiment, 'recaptcha_site_key': settings.GOOGLE_RECAPTCHA_SITE_KEY})
return HttpResponse(t.render(c)) | 48273e891c87b30157c13c726376a9d3052eebe6 | 3,659,103 |
def sigma_0(x):
"""First rotational + shifting mixing function
σ_256_0(x) = ROTR_7(x) ⊕ ROTR_18(x) ⊕ SHR_3(x)
"""
return ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3) | 9090dc6652944189765657ad9b3650f54b10e70a | 3,659,104 |
from datetime import datetime
def edit_entry(edit_result):
"""Edit entry"""
new_entry = edit_result.copy()
edit_key = None
edit_value = None
date_keys = ["Date"]
int_keys = ["Time Spent"]
while edit_key not in edit_result:
reset_screen("key", "Please type the key you want to edit.")
for key, value in edit_result.items():
print(f"{key}: {value}")
edit_key = get_input(str)
if edit_key not in edit_result:
reset_screen(error=True, sub_title="Input is not a valid key.")
if edit_key in date_keys:
input_type = datetime
elif edit_key in int_keys:
input_type = int
else:
input_type = str
while not edit_value:
reset_screen("new value", ENTRY_QUESTIONS[edit_key])
edit_value = get_input(input_type, newline=False)
new_entry[edit_key] = edit_value
entries = get_entries()
entries[entries.index(edit_result)] = new_entry
csvfile = open("entries.csv", "w")
csvfile.close()
for entry in entries:
write_to_csv(entry)
return new_entry | e63b9d94f192fdc2175457ebc1ce7f9562e1cf41 | 3,659,105 |
import sys
import os
def build_input_files(filename, base_path = 'input_files', out = sys.stdout):
"""
build_input_files(filename, base_path = 'input_files')
takes a 'well-formated' input fileand outputs a
directory structure with the properly formated input files
created in them.
"""
calling_dir = os.getcwd()
# I'm doing this because I need it later
file_path, file_name = os.path.split(filename)
with open(filename, 'r') as f:
txt = f.read()
## First Parse the FDS file
param_dict, IOoutput = FDSa_parser(txt, file_name, out)
# param_dict, sweep_param_dict, prms_in_axis = calculate_params(param_dict, axes)
for key_ in param_dict.keys():
txt = txt.replace(param_dict[key_][0], key_)
formatted_trials, logfile, IOoutput = eval_parsed_FDS(param_dict, out)
print("formatted_trials", formatted_trials[0])
## Make input files and directories
for i, value_set in enumerate(formatted_trials):
print(i,value_set)
tmp_txt = txt
# make a directory
case_name = 'case_'+int2base(i, 26)
# FDS uses uppercase reseved keywords, and so will we
value_set['TITLE'] = case_name
input_directory_builder(case_name, base_path)
# populate the input file
print(tmp_txt.count(list(value_set.keys())[1]))
print(value_set)
with open('tmp_txt', 'w') as f:
f.write(str(tmp_txt))
tmp_txt = tmp_txt.format(**value_set) ## The format command doesn't like : or . because it things its a float format
# create the file name
fname = os.path.join(calling_dir, base_path,
case_name, case_name + '.fds')
# write the input file to the directory
with open(fname, 'w') as f:
f.write(str(tmp_txt))
log_path_name = os.path.join(calling_dir, base_path, file_name[:-4] + '.log')
# write the augmented fds log file
with open(log_path_name, 'a') as f:
f.write(logfile)
return IOoutput | a40def5dfc8d52f905e8a82ddafb5f756771a3e7 | 3,659,106 |
def srpd(mvec, k, ra, Nmax, w, V):
"""
Calculate the Steered Response Power Density (SRPD)
:param mvec: SHD coefficients for the TF bin to be analysed
:param k: Wave number (2*pi*f/c)
:param ra: Radius of the microphone array
:param Nmax: Maximum SHD order to be used
:param w: Diagonal eigenvalue matrix
:param V: Reduced eigenvector matrix
:return: SRPD for the given pixel
"""
assert np.size(mvec) == (Nmax + 1) ** 2
V = V[0:(Nmax + 1) ** 2, 0:(Nmax + 1) ** 2]
w = w[0:(Nmax + 1) ** 2]
kra = k * ra
jn, jnp, yn, ynp = sph_jnyn(Nmax, kra)
# jn, jnp, yn, ynp = spec.sph_jnyn(Nmax, kra)
hn = jn - 1j * yn
hnp = jnp - 1j * ynp
bnkra = jn - (jnp / hnp) * hn
b = []
for n in range(Nmax + 1):
for count in range(-n, n + 1):
b.append(1 / (4 * np.pi * (1j) ** n * bnkra[n]))
b = np.array(b)
p = b * mvec
B0 = np.conj(np.matrix(np.conj(p)) * V).T
B0s = np.diag(w) * np.multiply(B0, np.conj(B0))
srpval = B0s.sum()
return srpval | 0506c76812bfdff447f09e4dae8380635e894040 | 3,659,107 |
import torch
def batch_inverse(tensor):
"""
Compute the matrix inverse of a batch of square matrices. This routine is used for removing rotational motion
during the molecular dynamics simulation. Taken from https://stackoverflow.com/questions/46595157
Args:
tensor (torch.Tensor): Tensor of square matrices with the shape n_batch x dim1 x dim1
Returns:
torch.Tensor: Tensor of the inverted square matrices with the same shape as the input tensor.
"""
eye = tensor.new_ones(tensor.size(-1), device=tensor.device).diag().expand_as(tensor)
tensor_inv, _ = torch.gesv(eye, tensor)
return tensor_inv | b8defb26561e38d5e16e2483f27287a334b2cd61 | 3,659,108 |
def create(**kwds):
"""
Add data.
"""
status_code = 200
message = "Successfully added data."
articles = []
for a in kwds.get("articles", []):
a = Article.query.filter_by(id=a).first()
if a:
articles.append(a)
cols = {"user_id": current_user.id, "name": kwds["name"]}
model = Bookmark.query.filter_by(**cols).first()
if model:
for a in articles:
exist = model.articles.filter_by(id=a.id).first()
if not exist:
model.articles.append(a)
db_commit()
else:
cols["articles"] = articles
model = Bookmark(**cols)
db_add(model)
return {"code": status_code, "message": message} | a8add828427b285700f23a041bd2c592346775f2 | 3,659,109 |
def _center_size_bbox_to_corners_bbox(centers, sizes):
"""Converts bbox center-size representation to corners representation.
Args:
centers: a tensor with shape [N, 2] representing bounding box centers
sizes: a tensor with shape [N, 2] representing bounding boxes
Returns:
corners: tensor with shape [N, 4] representing bounding boxes in corners
representation
"""
return tf.concat([centers - .5 * sizes, centers + .5 * sizes], 1) | 885bbbe2760a464c6fd3bad0811e91a70610eb8c | 3,659,110 |
from datetime import datetime
def get_starting_month(number_of_months_to_get,
include_actual_month=True,
actual_date=datetime.datetime.now()):
"""
Get starting month based on parameters
:param number_of_months_to_get: Numbers of months to get - e.g: 2
:param include_actual_month: Include actual month? e.g.: True
:param actual_date: Actual Date e.g: now()
:return: :raise Exception: if number_of_months_to_get less than 1
Initial month & year e.g: (12,2014)
"""
if number_of_months_to_get <= 0:
raise Exception("Number of month's to get should be greater than 0")
initial_year = actual_date.year
if actual_date.month > number_of_months_to_get:
initial_month = actual_date.month - number_of_months_to_get
else:
initial_month = actual_date.month - number_of_months_to_get
if initial_month <= 0:
initial_month += 12
initial_year -= 1
if include_actual_month:
initial_month += 1
if initial_month > 12:
initial_month = 1
initial_year += 1
return initial_month, initial_year | c075ef074b644749ca72955598c098cf76845608 | 3,659,111 |
import token
def cvt_raise_stmt(node: pytree.Base, ctx: Ctx) -> ast_cooked.Base:
"""raise_stmt: 'raise' [test ['from' test | ',' test [',' test]]]"""
# 0 1 2 3 2 3 4 5
#-# Raise(expr? exc, expr? cause)
assert ctx.is_REF, [node]
if len(node.children) == 1:
return ast_cooked.RaiseStmt(items=[])
exc = cvt(node.children[1], ctx)
if len(node.children) > 2:
# TODO: test case
if xcast(Leaf, node.children[2]).value == 'from':
raise_from = cvt(node.children[3], ctx)
exc2 = ast_cooked.OMITTED_NODE
exc3 = ast_cooked.OMITTED_NODE
else:
raise_from = ast_cooked.OMITTED_NODE
assert node.children[2].type == token.COMMA, [node]
exc2 = cvt(node.children[3], ctx)
# TODO: test case
if len(node.children) > 4:
assert node.children[4].type == token.COMMA, [node]
exc3 = cvt(node.children[5], ctx)
else:
exc3 = ast_cooked.OMITTED_NODE
else:
raise_from = ast_cooked.OMITTED_NODE
exc2 = ast_cooked.OMITTED_NODE
exc3 = ast_cooked.OMITTED_NODE
return ast_cooked.RaiseStmt(items=[exc, exc2, exc3, raise_from]) | 8e7809ff9317a285838f0c0a1a25a0b40634b88f | 3,659,112 |
def user_in_user_groups(user_id, **options):
"""
Get all user groups a user belongs to
:param user_id: The id of user
:param user_id: str
:param options: Generic advanced options dict, see online documentation
:type options: dict, optional
:return: List of groups user is in
:rtype: dict
"""
uri = [USER_GROUPS_SUB_PATH, user_id]
return _call_account_api("get", uri, {}, **options) | 70b83b81ee4d03e7ab5fff68be710c02c01aaa0d | 3,659,113 |
def read_book(title_path):
"""Read a book and return it as a string"""
with open(title_path, "r", encoding = "utf8") as current_file: #encoding = "utf8" causes a problem when running the code in Python 2.7. However, it runs normally when using Python 3.5.
text = current_file.read()
text = text.replace("\n","").replace("\r","")
return text | e5273c6b0b71638b47ce5ee5beb33c715c914a1b | 3,659,114 |
from datetime import datetime
def eval_whole_scene_one_epoch(sess, ops, test_writer):
""" ops: dict mapping from string to tf ops """
global EPOCH_CNT
is_training = False
test_idxs = np.arange(0, len(TEST_DATASET_WHOLE_SCENE))
num_batches = len(TEST_DATASET_WHOLE_SCENE)
total_correct = 0
total_seen = 0
loss_sum = 0
total_seen_class = [0 for _ in range(NUM_CLASSES)]
total_correct_class = [0 for _ in range(NUM_CLASSES)]
total_correct_vox = 0
total_seen_vox = 0
total_seen_class_vox = [0 for _ in range(NUM_CLASSES)]
total_correct_class_vox = [0 for _ in range(NUM_CLASSES)]
log_string(str(datetime.now()))
log_string('---- EPOCH %03d EVALUATION WHOLE SCENE----'%(EPOCH_CNT))
labelweights = np.zeros(21)
labelweights_vox = np.zeros(21)
is_continue_batch = False
extra_batch_data = np.zeros((0,NUM_POINT,3))
extra_batch_label = np.zeros((0,NUM_POINT))
extra_batch_smpw = np.zeros((0,NUM_POINT))
for batch_idx in range(num_batches):
if not is_continue_batch:
batch_data, batch_label, batch_smpw = TEST_DATASET_WHOLE_SCENE[batch_idx]
batch_data = np.concatenate((batch_data,extra_batch_data),axis=0)
batch_label = np.concatenate((batch_label,extra_batch_label),axis=0)
batch_smpw = np.concatenate((batch_smpw,extra_batch_smpw),axis=0)
else:
batch_data_tmp, batch_label_tmp, batch_smpw_tmp = TEST_DATASET_WHOLE_SCENE[batch_idx]
batch_data = np.concatenate((batch_data,batch_data_tmp),axis=0)
batch_label = np.concatenate((batch_label,batch_label_tmp),axis=0)
batch_smpw = np.concatenate((batch_smpw,batch_smpw_tmp),axis=0)
if batch_data.shape[0]<BATCH_SIZE:
is_continue_batch = True
continue
elif batch_data.shape[0]==BATCH_SIZE:
is_continue_batch = False
extra_batch_data = np.zeros((0,NUM_POINT,3))
extra_batch_label = np.zeros((0,NUM_POINT))
extra_batch_smpw = np.zeros((0,NUM_POINT))
else:
is_continue_batch = False
extra_batch_data = batch_data[BATCH_SIZE:,:,:]
extra_batch_label = batch_label[BATCH_SIZE:,:]
extra_batch_smpw = batch_smpw[BATCH_SIZE:,:]
batch_data = batch_data[:BATCH_SIZE,:,:]
batch_label = batch_label[:BATCH_SIZE,:]
batch_smpw = batch_smpw[:BATCH_SIZE,:]
aug_data = batch_data
feed_dict = {ops['pointclouds_pl']: aug_data,
ops['labels_pl']: batch_label,
ops['smpws_pl']: batch_smpw,
ops['is_training_pl']: is_training}
summary, step, loss_val, pred_val = sess.run([ops['merged'], ops['step'],
ops['loss'], ops['pred']], feed_dict=feed_dict)
test_writer.add_summary(summary, step)
pred_val = np.argmax(pred_val, 2) # BxN
correct = np.sum((pred_val == batch_label) & (batch_label>0) & (batch_smpw>0)) # evaluate only on 20 categories but not unknown
total_correct += correct
total_seen += np.sum((batch_label>0) & (batch_smpw>0))
loss_sum += loss_val
tmp,_ = np.histogram(batch_label,range(22))
labelweights += tmp
for l in range(NUM_CLASSES):
total_seen_class[l] += np.sum((batch_label==l) & (batch_smpw>0))
total_correct_class[l] += np.sum((pred_val==l) & (batch_label==l) & (batch_smpw>0))
for b in range(batch_label.shape[0]):
_, uvlabel, _ = pc_util.point_cloud_label_to_surface_voxel_label_fast(aug_data[b,batch_smpw[b,:]>0,:], np.concatenate((np.expand_dims(batch_label[b,batch_smpw[b,:]>0],1),np.expand_dims(pred_val[b,batch_smpw[b,:]>0],1)),axis=1), res=0.02)
total_correct_vox += np.sum((uvlabel[:,0]==uvlabel[:,1])&(uvlabel[:,0]>0))
total_seen_vox += np.sum(uvlabel[:,0]>0)
tmp,_ = np.histogram(uvlabel[:,0],range(22))
labelweights_vox += tmp
for l in range(NUM_CLASSES):
total_seen_class_vox[l] += np.sum(uvlabel[:,0]==l)
total_correct_class_vox[l] += np.sum((uvlabel[:,0]==l) & (uvlabel[:,1]==l))
log_string('eval whole scene mean loss: %f' % (loss_sum / float(num_batches)))
log_string('eval whole scene point accuracy vox: %f'% (total_correct_vox / float(total_seen_vox)))
log_string('eval whole scene point avg class acc vox: %f' % (np.mean(np.array(total_correct_class_vox[1:])/(np.array(total_seen_class_vox[1:],dtype=np.float)+1e-6))))
log_string('eval whole scene point accuracy: %f'% (total_correct / float(total_seen)))
log_string('eval whole scene point avg class acc: %f' % (np.mean(np.array(total_correct_class[1:])/(np.array(total_seen_class[1:],dtype=np.float)+1e-6))))
labelweights = labelweights[1:].astype(np.float32)/np.sum(labelweights[1:].astype(np.float32))
labelweights_vox = labelweights_vox[1:].astype(np.float32)/np.sum(labelweights_vox[1:].astype(np.float32))
caliweights = np.array([0.388,0.357,0.038,0.033,0.017,0.02,0.016,0.025,0.002,0.002,0.002,0.007,0.006,0.022,0.004,0.0004,0.003,0.002,0.024,0.029])
caliacc = np.average(np.array(total_correct_class_vox[1:])/(np.array(total_seen_class_vox[1:],dtype=np.float)+1e-6),weights=caliweights)
log_string('eval whole scene point calibrated average acc vox: %f' % caliacc)
per_class_str = 'vox based --------'
for l in range(1,NUM_CLASSES):
per_class_str += 'class %d weight: %f, acc: %f; ' % (l,labelweights_vox[l-1],total_correct_class_vox[l]/float(total_seen_class_vox[l]))
log_string(per_class_str)
EPOCH_CNT += 1
return caliacc | 0c5fd39c8cb464a0b4883be15aa687882a20f94a | 3,659,115 |
def _create_save_name(save_path: str, case_date: date, field_names: list, fix: str = "") -> str:
"""Creates file name for saved images."""
date_string = case_date.strftime("%Y%m%d")
return f"{save_path}{date_string}_{'_'.join(field_names)}{fix}.png" | a731effa50ae291df31fcd4b282a924a057561dd | 3,659,116 |
def list_favorite_queries():
"""List of all favorite queries.
Returns (title, rows, headers, status)"""
headers = ["Name", "Query"]
rows = [(r, favoritequeries.get(r)) for r in favoritequeries.list()]
if not rows:
status = '\nNo favorite queries found.' + favoritequeries.usage
else:
status = ''
return [('', rows, headers, status)] | e3b20d3d06a76d7f621fa830e2d22f0d3e6614ad | 3,659,117 |
def random_portfolio_weights(weights_count) -> np.array:
""" Random portfolio weights, of length weights_count. """
weights = np.random.random((weights_count, 1))
weights /= np.sum(weights)
return weights.reshape(-1, 1) | 47ba5ea84b24ede66fe4d1071fb82f721a550995 | 3,659,118 |
def matrix2list(mat):
"""Create list of lists from blender Matrix type."""
return list(map(list, list(mat))) | 9b4b598eb33e4d709e15fd826f23d06653659318 | 3,659,119 |
def convert_handle(handle):
"""
Takes string handle such as 1: or 10:1 and creates a binary number accepted
by the kernel Traffic Control.
"""
if isinstance(handle, str):
major, minor = handle.split(':') # "major:minor"
minor = minor if minor else '0'
return int(major, 16) << 16 | int(minor, 16)
return handle | ed4ef5107178bd809a421e0b66c621d9bdaceef1 | 3,659,120 |
def index(request):
"""Display start page"""
return HttpResponseRedirect(reverse('admin:index')) | c237e46affb7217bbcfc1146d98f84fb1cc20cc6 | 3,659,121 |
import traceback
from datetime import datetime
async def check_data(user_input, hass, own_id=None):
"""Check validity of the provided date."""
ret = {}
if(CONF_ICS_URL in user_input):
try:
cal_string = await async_load_data(hass, user_input[CONF_ICS_URL])
try:
Calendar.from_ical(cal_string)
except Exception:
_LOGGER.error(traceback.format_exc())
ret["base"] = ERROR_ICS
return ret
except Exception:
_LOGGER.error(traceback.format_exc())
ret["base"] = ERROR_URL
return ret
if(CONF_TIMEFORMAT in user_input):
try:
datetime.datetime.now(get_localzone()).strftime(user_input[CONF_TIMEFORMAT])
except Exception:
_LOGGER.error(traceback.format_exc())
ret["base"] = ERROR_TIMEFORMAT
return ret
if(CONF_ID in user_input):
if(user_input[CONF_ID] < 0):
_LOGGER.error("ICS: ID below zero")
ret["base"] = ERROR_SMALL_ID
return ret
if(CONF_LOOKAHEAD in user_input):
if(user_input[CONF_LOOKAHEAD] < 1):
_LOGGER.error("ICS: Lookahead < 1")
ret["base"] = ERROR_SMALL_LOOKAHEAD
return ret
if(CONF_ID in user_input):
if((own_id != user_input[CONF_ID]) and (hass is not None)):
if(async_generate_entity_id(ENTITY_ID_FORMAT, "ics_" + str(user_input[CONF_ID]), hass=hass) != PLATFORM + ".ics_" + str(user_input[CONF_ID])):
_LOGGER.error("ICS: ID not unique")
ret["base"] = ERROR_ID_NOT_UNIQUE
return ret
if(CONF_N_SKIP in user_input):
if(user_input[CONF_N_SKIP] < 0):
_LOGGER.error("ICS: Skip below zero")
ret["base"] = ERROR_NEGATIVE_SKIP
return ret
return ret | a0b9302cb1f69c98585edb0bae918675ceab32cf | 3,659,122 |
import os
import json
import warnings
def run(
uri,
entry_point="main",
version=None,
parameters=None,
docker_args=None,
experiment_name=None,
experiment_id=None,
backend="local",
backend_config=None,
use_conda=None,
storage_dir=None,
synchronous=True,
run_id=None,
run_name=None,
env_manager=None,
):
"""
Run an MLflow project. The project can be local or stored at a Git URI.
MLflow provides built-in support for running projects locally or remotely on a Databricks or
Kubernetes cluster. You can also run projects against other targets by installing an appropriate
third-party plugin. See `Community Plugins <../plugins.html#community-plugins>`_ for more
information.
For information on using this method in chained workflows, see `Building Multistep Workflows
<../projects.html#building-multistep-workflows>`_.
:raises: :py:class:`mlflow.exceptions.ExecutionException` If a run launched in blocking mode
is unsuccessful.
:param uri: URI of project to run. A local filesystem path
or a Git repository URI (e.g. https://github.com/mlflow/mlflow-example)
pointing to a project directory containing an MLproject file.
:param entry_point: Entry point to run within the project. If no entry point with the specified
name is found, runs the project file ``entry_point`` as a script,
using "python" to run ``.py`` files and the default shell (specified by
environment variable ``$SHELL``) to run ``.sh`` files.
:param version: For Git-based projects, either a commit hash or a branch name.
:param parameters: Parameters (dictionary) for the entry point command.
:param docker_args: Arguments (dictionary) for the docker command.
:param experiment_name: Name of experiment under which to launch the run.
:param experiment_id: ID of experiment under which to launch the run.
:param backend: Execution backend for the run: MLflow provides built-in support for "local",
"databricks", and "kubernetes" (experimental) backends. If running against
Databricks, will run against a Databricks workspace determined as follows:
if a Databricks tracking URI of the form ``databricks://profile`` has been set
(e.g. by setting the MLFLOW_TRACKING_URI environment variable), will run
against the workspace specified by <profile>. Otherwise, runs against the
workspace specified by the default Databricks CLI profile.
:param backend_config: A dictionary, or a path to a JSON file (must end in '.json'), which will
be passed as config to the backend. The exact content which should be
provided is different for each execution backend and is documented
at https://www.mlflow.org/docs/latest/projects.html.
:param use_conda: This argument is deprecated. Use `env_manager='local'` instead.
If True (the default), create a new Conda environment for the run and
install project dependencies within that environment. Otherwise, run the
project in the current environment without installing any project
dependencies.
:param storage_dir: Used only if ``backend`` is "local". MLflow downloads artifacts from
distributed URIs passed to parameters of type ``path`` to subdirectories of
``storage_dir``.
:param synchronous: Whether to block while waiting for a run to complete. Defaults to True.
Note that if ``synchronous`` is False and ``backend`` is "local", this
method will return, but the current process will block when exiting until
the local run completes. If the current process is interrupted, any
asynchronous runs launched via this method will be terminated. If
``synchronous`` is True and the run fails, the current process will
error out as well.
:param run_id: Note: this argument is used internally by the MLflow project APIs and should
not be specified. If specified, the run ID will be used instead of
creating a new run.
:param run_name: The name to give the MLflow Run associated with the project execution.
If ``None``, the MLflow Run name is left unset.
:param env_manager: Specify an environment manager to create a new environment for the run and
install project dependencies within that environment. The following values
are suppported:
- local: use the local environment
- conda: use conda
- virtualenv: use virtualenv (and pyenv for Python version management)
If unspecified, default to conda.
:return: :py:class:`mlflow.projects.SubmittedRun` exposing information (e.g. run ID)
about the launched run.
.. code-block:: python
:caption: Example
import mlflow
project_uri = "https://github.com/mlflow/mlflow-example"
params = {"alpha": 0.5, "l1_ratio": 0.01}
# Run MLflow project and create a reproducible conda environment
# on a local host
mlflow.run(project_uri, parameters=params)
.. code-block:: text
:caption: Output
...
...
Elasticnet model (alpha=0.500000, l1_ratio=0.010000):
RMSE: 0.788347345611717
MAE: 0.6155576449938276
R2: 0.19729662005412607
... mlflow.projects: === Run (ID '6a5109febe5e4a549461e149590d0a7c') succeeded ===
"""
backend_config_dict = backend_config if backend_config is not None else {}
if (
backend_config
and type(backend_config) != dict
and os.path.splitext(backend_config)[-1] == ".json"
):
with open(backend_config, "r") as handle:
try:
backend_config_dict = json.load(handle)
except ValueError:
_logger.error(
"Error when attempting to load and parse JSON cluster spec from file %s",
backend_config,
)
raise
if use_conda is not None and env_manager is not None:
raise MlflowException.invalid_parameter_value(
"`use_conda` cannot be used with `env_manager`"
)
elif use_conda is not None:
warnings.warn(
"`use_conda` is deprecated and will be removed in a future release. "
"Use `env_manager=local` instead",
FutureWarning,
stacklevel=2,
)
env_manager = _EnvManager.CONDA if use_conda else _EnvManager.LOCAL
elif env_manager is not None:
_EnvManager.validate(env_manager)
if backend == "databricks":
mlflow.projects.databricks.before_run_validations(mlflow.get_tracking_uri(), backend_config)
elif backend == "local" and run_id is not None:
backend_config_dict[MLFLOW_LOCAL_BACKEND_RUN_ID_CONFIG] = run_id
experiment_id = _resolve_experiment_id(
experiment_name=experiment_name, experiment_id=experiment_id
)
submitted_run_obj = _run(
uri=uri,
experiment_id=experiment_id,
entry_point=entry_point,
version=version,
parameters=parameters,
docker_args=docker_args,
backend_name=backend,
backend_config=backend_config_dict,
env_manager=env_manager,
storage_dir=storage_dir,
synchronous=synchronous,
run_name=run_name,
)
if synchronous:
_wait_for(submitted_run_obj)
return submitted_run_obj | 56c0c9f333e0b4861533c59db14793e5b3d9af1e | 3,659,123 |
def general_search_v2(params, sed_mod, lnprior, Alambda,
sed_obs, sed_obs_err=0.1,
vpi_obs=None, vpi_obs_err=None,
Lvpi=1.0, Lprior=1.0,
cost_order=2, av_llim=-0.001, debug=False):
"""
when p = [teff, logg, [M/H], Av, DM], theta = [teff, logg, [M/H]],
given a set of SED,
find the best theta and estimate the corresponding Av and DM
"""
n_band = len(sed_obs)
n_mod = sed_mod.shape[0]
# cope with scalar sed_obs_err
if isinstance(sed_obs_err, np.float):
sed_obs_err = np.ones_like(sed_obs, np.float) * sed_obs_err
# select good bands
ind_good_band = np.isfinite(sed_obs) & (sed_obs_err > 0)
n_good_band = np.sum(ind_good_band)
if n_good_band < 4:
# n_good_band = 3: unique solution
# so n_good_band should be at least 4
return [np.ones((4,), ) * np.nan for i in range(3)]
# use a subset of bands
sed_mod_select = sed_mod[:, ind_good_band]
# observed SED
sed_obs_select = sed_obs[ind_good_band]
sed_obs_err_select = sed_obs_err[ind_good_band]
# extinction coefs
Alambda_select = Alambda[ind_good_band]
# WLS to guess Av and DM
av_est, dm_est = guess_avdm_wls(
sed_mod_select, sed_obs_select, sed_obs_err_select, Alambda_select)
# cost(SED)
res_sed = sed_mod_select + av_est.reshape(-1, 1) * Alambda_select \
+ dm_est.reshape(-1, 1) - sed_obs_select
lnprob_sed = -0.5 * np.nansum(
np.abs(res_sed / sed_obs_err_select) ** cost_order, axis=1)
# cost(VPI)
if vpi_obs is not None and vpi_obs_err is not None and Lvpi > 0:
vpi_mod = 10 ** (2 - 0.2 * dm_est)
lnprob_vpi = -0.5 * ((vpi_mod - vpi_obs) / vpi_obs_err) ** 2.
else:
lnprob_vpi = np.zeros((n_mod,), np.float)
lnprob_vpi = np.where(np.isfinite(lnprob_vpi), lnprob_vpi, 0) * Lvpi
# lnprob = cost(SED) + cost(VPI) + prior
if Lprior > 0:
lnprob_prior = lnprior * Lprior
# posterior probability
lnpost = lnprob_sed + lnprob_vpi + lnprob_prior
# eliminate neg Av
lnpost[av_est < av_llim] = -np.inf
lnpost -= np.nanmax(lnpost)
# for debugging the code
if debug:
return dict(params=params,
av_est=av_est,
dm_est=dm_est,
lnprob_sed=lnprob_sed,
lnprob_vpi=lnprob_vpi,
lnprior=lnprior)
# normalization
post = np.exp(lnpost)
L0 = np.sum(post)
# weighted mean
# ind_mle = np.argmax(lnpost)
# av_mle = av_est[ind_mle]
# dm_mle = dm_est[ind_mle]
# p_mle = params[ind_mle]
L1_av = np.sum(av_est * post)
L1_dm = np.sum(dm_est * post)
L1_p = np.sum(params * post.reshape(-1, 1), axis=0)
L2_av = np.sum(av_est ** 2 * post)
L2_dm = np.sum(dm_est ** 2 * post)
L2_p = np.sum(params ** 2 * post.reshape(-1, 1), axis=0)
sigma_av = np.sqrt(L2_av / L0 - L1_av ** 2 / L0 ** 2)
sigma_dm = np.sqrt(L2_dm / L0 - L1_dm ** 2 / L0 ** 2)
sigma_p = np.sqrt(L2_p / L0 - L1_p ** 2 / L0 ** 2)
# MLE model
ind_mle = np.argmax(lnprob_sed + lnprob_vpi)
av_mle = av_est[ind_mle]
dm_mle = dm_est[ind_mle]
p_mle = params[ind_mle]
p_mle = np.hstack([p_mle, av_mle, dm_mle])
p_mean = np.hstack([L1_p/L0, L1_av/L0, L1_dm/L0])
p_err = np.hstack([sigma_p, sigma_av, sigma_dm])
rms_sed_mle = np.sqrt(np.nanmean(res_sed[ind_mle] ** 2.))
rms_sed_min = np.min(np.sqrt(np.nanmean(res_sed ** 2., axis=1)))
return dict(p_mle=p_mle,
p_mean=p_mean,
p_err=p_err,
rmsmle=rms_sed_mle,
rmsmin=rms_sed_min,
ind_mle=ind_mle,
n_good=np.sum(ind_good_band)) | 9629d0ecdec38f4e55bf3becb219c5c348300988 | 3,659,124 |
import re
def demangle_backtrace(backtrace):
"""
Returns a demangled backtrace.
Args:
* backtrace, a backtrace to demangle
"""
new_bt = []
frame_regex = re.compile(FRAME_PATTERN)
lines = backtrace.splitlines()
for line in lines:
frame = frame_regex.match(line)
if frame:
func = frame.group(2)
# A frame with missing symbols is a special case, so skip it
if func == '???':
new_bt.append(line)
continue
# FIXME: this logic will break once the crash probe starts sending
# function argument values; make this more generic!
if func[-2:] == '()':
# The crash probe adds the () to the function name, but c++filt
# cannot demangle a symbol with the () suffix
func_name = func[:-2]
else:
# Assume already demangled, or this is from a kernel crash record
new_bt.append(line)
continue
try:
new_func = cxxfilt.demangle(func_name)
except cxxfilt.InvalidName:
new_bt.append(line)
continue
# c++filt adds a trailing newline to the output
new_func = new_func.rstrip()
# Restore () if this was not a mangled symbol
if new_func == func_name:
new_func = func_name + '()'
repl_str = r'\1{}\3'.format(new_func)
new_line = frame_regex.sub(repl_str, line)
new_bt.append(new_line)
else:
new_bt.append(line)
return '\n'.join(new_bt) | 676b90c16223b24f539520306a7725434eb28363 | 3,659,125 |
import sys
import os
def resource_path(base_path, rel_path):
""" Get absolute path to resource, works for dev and for PyInstaller """
# PyInstaller creates a temp folder and stores path in _MEIPASS
return os.path.join(getattr(sys, '_MEIPASS', base_path), rel_path) | aae3961d92f433aef4b8b3b4a1a946e89282548c | 3,659,126 |
def legendre(N, x):
"""
Returns the value of Legendre Polynomial P_N(x) at position x[-1, 1].
"""
P = np.zeros(2 * N)
if N == 0:
P[0] = 1
elif N == 1:
P[1] = x
else:
P[0] = 1
P[1] = x
for i in range(2, N + 1):
P[i] = (1.0 / float(i)) * ((2 * i - 1) * x * P[i - 1] - (i - 1) *
P[i - 2])
return(P[N]) | 0e02e19ef0a251aa4b30823d1598fc5fb8933288 | 3,659,127 |
def skip_any_whitespace(doc, idx):
"""Iterate through characters in ``doc`` starting from index ``idx`` until
a non-whitespace character is reached. This iteration will also attempt to
ignore comments.
Args:
doc (str): The JSPEC document.
idx (int): The starting index for the iterator.
Returns:
str: The first non-whitespace character, starting at index ``idx``
int: The index of this character in ``doc``
Raises:
JSPECDecodeError: Raised if an unterminated comment is detected.
"""
nextchar = doc[idx:idx + 1]
if nextchar not in WHITESPACE_CHARACTERS:
return nextchar, idx
while True:
idx = WHITESPACE_MATCH(doc, idx).end()
if doc[idx:idx + 2] == '//':
idx = COMMENT_MATCH(doc, idx).end()
continue
if doc[idx:idx + 2] != '/*':
break
m = MULTILINE_COMMENT_MATCH(doc, idx)
if m is None:
raise JSPECDecodeError("Unterminated comment", doc, idx)
idx = m.end()
nextchar = doc[idx:idx + 1]
return nextchar, idx | 18038bce945fb35222254a0fedf5d3936bb83308 | 3,659,128 |
def normalized_cross_correlation(f, g):
""" Normalized cross-correlation of f and g.
Normalize the subimage of f and the template g at each step
before computing the weighted sum of the two.
Hint: you should look up useful numpy functions online for calculating
the mean and standard deviation.
Args:
f: numpy array of shape (Hf, Wf).
g: numpy array of shape (Hg, Wg).
Returns:
out: numpy array of shape (Hf, Wf).
"""
Hf, Wf = f.shape
Hg, Wg = g.shape
if Hg%2 == 0:
Hg = Hg-1
if Wg%2 == 0:
Wg = Wg-1
g = g[:Hg,:Wg]
g_mean = np.mean(g)
g_std = np.std(g)
filter_vector = g.reshape([1,Hg*Wg])
normalized_filter_vec = (g.reshape([1,Hg*Wg]) - g_mean)/g_std
out = np.zeros((Hf, Wf))
### YOUR CODE HERE
pad_height,pad_width = int((Hg-1)/2),int((Wg-1)/2)
im_padded = zero_pad(f, pad_height, pad_width)
for i in range(Hf):
for j in range(Wf):
patch_vector = im_padded[i:i+Hg,j:j+Wg].reshape([Hg*Wg,1])
patch_mean = np.mean(patch_vector)
patch_std = np.std(patch_vector)
normalized_patch_vec = (patch_vector - patch_mean)/patch_std
out[i,j] = np.dot(normalized_filter_vec,normalized_patch_vec)
### END YOUR CODE
return out | fb6057d882b655a43a7d4a7d3c7ced00d32eeabf | 3,659,129 |
import numpy
def sphere_coordinates(sphere, inversion=False):
"""
Compute spherical coordinates (longitude, latitude) on a sphere.
Parameters
----------
sphere: (AimsTimeSurface_3_VOID)
a sphere mesh: vertices must be on a sphere with center 0.
inversion: bool
if True, the longitude coord is inverted (useful for right hemisphere)
Return
------
(longitude, latitude): tuple, each element being a TimeTexture_FLOAT
"""
# a vector of vertices where each vertex is a 3D point
# with coordinates in millimeters
if isinstance(sphere, (aims.AimsTimeSurface_3_VOID,
aims.AimsTimeSurface_2_VOID,
aims.AimsTimeSurface_4_VOID)):
vert = sphere.vertex()
nvert = numpy.asarray(vert)
else:
nvert = numpy.asarray(sphere)
#########################################################################
# A latitude texture #
#########################################################################
radius = numpy.sqrt(numpy.square(nvert[:, 0]) + numpy.square(nvert[:, 1]))
sphere_lat = numpy.arctan2(radius, nvert[:, 2])
sphere_lat = -sphere_lat * 180. / numpy.pi + 180.
slat_tex = aims.TimeTexture(sphere_lat.astype(numpy.float32))
#########################################################################
# A longitude texture #
#########################################################################
sphere_lon = numpy.arctan2(nvert[:, 1], nvert[:, 0])
sphere_lon *= 180. / numpy.pi
sphere_lon += 180
print('inversion: ', inversion)
if inversion == "True":
print("there is an inversion", inversion)
sphere_lon = 360 - sphere_lon
slon_tex = aims.TimeTexture(sphere_lon.astype(numpy.float32))
return slon_tex, slat_tex | 82f9e9c0e969904414761ed2ebe70d30194277e5 | 3,659,130 |
from typing import Dict
def example_parameter_sets() -> Dict[str, ExampleParameterSet]:
"""Lists the available example parameter sets.
They can be downloaded with :py:func:`~download_example_parameter_sets`."""
# TODO how to add a new model docs should be updated with this part
examples = chain(
_wflow.example_parameter_sets(),
_pcrglobwb.example_parameter_sets(),
_lisflood.example_parameter_sets(),
)
return {e.name: e for e in examples} | cd60157809ca2abae77bc4616c7c46db55580818 | 3,659,131 |
def get_height(img):
"""
Returns the number of rows in the image
"""
return len(img) | 765babc9fbc1468ef5045fa925843934462a3d32 | 3,659,132 |
def wpt_ask_for_name_and_coords():
"""asks for name and coordinates of waypoint that should be created"""
name = input("Gib den Namen des Wegpunkts ein: ")
print("Gib die Koordinaten ein (Format: X XX°XX.XXX, X XXX°XX.XXX)")
coordstr = input(">> ")
return name, coordstr | d38a728c5a6ecd1fde9500175ea5895ade8c6880 | 3,659,133 |
def car_following_with_adp(distance_2_tan, radian_at_tan, distance_integral, K, estimated_dis, rec):
""" Control with `distance_2_tan`, `radian_at_tan` and `distance_integral`
with `K` trained from the ADP algorithm.
While following the car in front of it with a simple P controller and `distance_2_car`.
"""
state = np.array([distance_2_tan, radian_at_tan, distance_integral])
MID_K = 1.5
diff = estimated_dis - 70 # try to stay 70cm away from the previous car
pwm_mid = 60
if diff < -40:
return 0, 0
elif diff >= 60:
pwm_mid = 60
else:
pwm_mid = np.clip(45.0 + MID_K * diff, 30, 60)
print('distance:', estimated_dis, 'diff:', diff, 'mid:', pwm_mid)
rec.append([estimated_dis, pwm_mid, distance_2_tan, radian_at_tan, distance_integral])
differential_drive = np.clip(-np.matmul(K, state), -100.0, 100.0)
pwm_l_new = np.clip(pwm_mid - differential_drive / 2, 0, 100)
pwm_r_new = np.clip(pwm_mid + differential_drive / 2, 0, 100)
return pwm_l_new, pwm_r_new | 7a49b257e7361451deae10d37a8d8ec811f4890d | 3,659,134 |
def construct_full_available(cards, suits):
"""
Construct suit availability grid - a list of available suits for each
rank slot in each player's deck. Returns grid and array giving the the
total number of available suits for each slot.
"""
num_players, num_in_deck = cards.shape
num_available = np.ones(cards.shape)*np.nan
# will store the number of possible cards that can fill each deck slot
available = []
# will store the suits that can fill each deck slot
for player in range(num_players):
avail_for_player = []
# holds sublists of available suits for this player for each rank
for rank in np.arange(num_in_deck): # iterate over card ranks
a = get_available(cards, suits, player, rank)
# list suits availed to this player at this rank (can be empty)
avail_for_player.append(a)
num_available[player, rank] = len(a)
available.append(avail_for_player)
return num_available, available | 0f4b2712a1346372d0782edfbc7c7b69a8e9e8e6 | 3,659,135 |
import yaml
def get_commands_blacklist() -> list:
"""
Get commands from `features.yml` to blacklist,
preventing them from being added to the bot
:returns: list
"""
log.info("Getting commands blacklist...")
cmds = []
if osp.isfile(features_path):
with open(features_path, 'r') as file:
data = yaml.full_load(file)
if not "commands" in data:
log.warn("Commands blacklist object not found in features.yml file")
return list() # Return empty list
commands = data["commands"]
if not commands or len(commands) == 0:
log.debug("Empty blacklist commands data, returning...")
return list() # Return empty list
for c in commands:
c_name = c["command"]
e_enabled = c["enabled"] if "enabled" in c else True
if not e_enabled:
cmds.append(c_name)
log.debug(f"Command Found | Blacklist | {c_name}")
log.info(f"Found *{len(cmds)}* commands to blacklist.")
return cmds | 6f76dbf354efff7b845a50ca8180a904b6d3a6d2 | 3,659,136 |
import io
def fit_gaussians(estimated_hapcov,
chromosomes=None, output_dir=None, cov_max=None, cov_min=None, level=0, cov_sample=None):
"""
Fits a 7-component Gaussian mixture model to the coverage distribution of the sample, using the appropriate attributes of the PloidyEstimation
object. The center of the first Gaussian is initialized from a narrow region around the value of the estimated_hapcov attribute. The centers of
the other Gaussians are initialized in a region around the value of estimated_hapcov multiplied by consecutive whole numbers.
The parameters of the fitted model (center, sigma and weight) for all seven Gaussians are both saved to the GaussDistParams.pkl file (in
output_dir, for later reuse) and set as the value of the distribution_dict attribute.
:param cov_sample: a sample of the coverage distribution of the investigated sample, if None, it is loaded from the temporary files of the output_dir (default: None) (array-like)
:param cov_min: the maximum value of the coverage for a position to be considered in the estimation (default: None) (int)
:param output_dir: the path to the output directory of the PloidyEstimator object, where temporary files are located. If not None, distribution parameters are saved there as GaussDistParams.pkl. (default: None) (str)
:param chromosomes: list of chromosomes for the sample (default: None) (array-like)
:param estimated_hapcov: the estimated value for the haploid coverage, used as prior (float)
:param level: the level of indentation used in verbose output (default: 0) (int)
:returns: dictionary containing the fitted parameters of the 7 Gaussians
"""
def get_samples(coverage_distribution, estimated_haploid_cov, number_of_iterations, burn_period):
K = 7
halfwidth_of_uniform = 0.2
__gc.collect()
model = __pm.Model()
with model:
p = __pm.Dirichlet('p', a=__np.array([1., 1., 1., 1., 1., 1., 1.]), shape=K)
c1 = __pm.Uniform('c1', (1 - halfwidth_of_uniform) * estimated_haploid_cov,
(1 + halfwidth_of_uniform) * estimated_haploid_cov)
means = __tt.stack([c1, c1 * 2, c1 * 3, c1 * 4, c1 * 5, c1 * 6, c1 * 7])
order_means_potential = __pm.Potential('order_means_potential',
__tt.switch(means[1] - means[0] < 0, -__np.inf, 0)
+ __tt.switch(means[2] - means[1] < 0, -__np.inf, 0))
sds = __pm.Uniform('sds', lower=0, upper=estimated_haploid_cov / 2, shape=K)
category = __pm.Categorical('category',
p=p,
shape=len(coverage_distribution))
points = __pm.Normal('obs',
mu=means[category],
sd=sds[category],
observed=coverage_distribution)
with model:
step1 = __pm.Metropolis(vars=[p, sds, means])
step2 = __pm.ElemwiseCategorical(vars=[category], values=[0, 1, 2, 3, 4, 5, 6])
__logging.getLogger("pymc3").setLevel(__logging.WARNING)
tr = __pm.sample(draw=number_of_iterations-burn_period, tune=burn_period,
step=[step1, step2], progressbar=False, verbose=0, compute_convergence_checks=False)
# trace = tr[burn_period:]
# return trace
return tr
if cov_sample is None:
cov_sample = io.get_coverage_distribution(chromosomes=chromosomes,
output_dir=output_dir,
cov_max=cov_max,
cov_min=cov_min)
iterations2 = 15000
burn_beginning2 = 10000
# logger = __logging.getLogger("pymc3")
# logger.propagate = False
trace2 = get_samples(coverage_distribution=cov_sample,
estimated_haploid_cov=estimated_hapcov,
number_of_iterations=iterations2,
burn_period=burn_beginning2)
std_trace = trace2.get_values('sds', chains=[0])
p_trace = trace2.get_values('p', chains=[0])
sigma = std_trace.mean(axis=0)
p = p_trace.mean(axis=0)
mu = __np.array([trace2.get_values('c1', chains=[0]).mean() * (i + 1) for i in range(7)])
prior_dict = {'mu': mu, 'sigma': sigma, 'p': p}
del trace2
if output_dir:
io.save_obj(prior_dict, output_dir + '/GaussDistParams')
return prior_dict | 660952140f6ea8685488a108e11ea1ca6f4e7fc5 | 3,659,137 |
from natsort import natsorted
from sklearn.cluster import DBSCAN
def remove_outliers(cords, eps: int = 1, min_samples: int = 2):
"""
Remove outlying cells based on UMAP embeddings with DBScan (density based clustering)
Call as: sub.obs["d_cluster"] = remove_outliers(sub.obsm["X_umap"], min_samples = 10)
Args:
cords: adata UMAP coordinates, typically adata.obsm["X_umap"]
eps: Maximum distance between two clusters to still be considered neighbors
min_samples: Minimum samples of a cluster
Returns:
Pandas DataFrame of clusters
"""
clustering = DBSCAN(eps=eps, min_samples=min_samples).fit(cords)
cluster = clustering.labels_.astype("U")
return pd.Categorical(cluster, categories=natsorted(np.unique(cluster))) | 0b4c581158bc3c074b60ad5d29b333418a4f52ce | 3,659,138 |
def sum_squares(n):
"""
Returns: sum of squares from 1 to n-1
Example: sum_squares(5) is 1+4+9+16 = 30
Parameter n: The number of steps
Precondition: n is an int > 0
"""
# Accumulator
total = 0
for x in range(n):
total = total + x*x
return total | 669a5aa03a9d9a9ffe74e48571250ffa38a7d319 | 3,659,139 |
def resolve_attribute(thing, name):
"""
A replacement resolver function for looking up symbols as members of
*thing*. This is effectively the same as ``thing.name``. The *thing* object
can be a :py:func:`~collections.namedtuple`, a custom Python class or any
other object. Each of the members of *thing* must be of a compatible data
type.
.. warning::
This effectively exposes all members of *thing*. If any members are
sensitive, then a custom resolver should be used that checks *name*
against a whitelist of attributes that are allowed to be accessed.
:param thing: The object on which the *name* attribute will be accessed.
:param str name: The symbol name that is being resolved.
:return: The value for the corresponding attribute *name*.
"""
if not hasattr(thing, name):
raise errors.SymbolResolutionError(name, thing=thing)
return getattr(thing, name) | 76f7b4548a177168d98bb5cdf4c022bfe8e0d36e | 3,659,140 |
def moment_fluxes(indices, wts_left, wts_right, xi_left, xi_right):
"""
Computes moment fluxes
inputs:
-------
num_nodes: number of quadrature nodes, depends on inversion algorithm
indices: moment indices, size [ num_moments, num_internal_coords ]
wts_left: weights on the left side, size [ num_nodes ]
wts_right: weights on the right side, size [ num_nodes ]
xi_left: abscissas on the left side, size [ num_internal_coords, num_nodes ]
xi_right: abscissas on the right side, size [ num_internal_corods, num_nodes ]
"""
num_moments = len(indices)
num_coords, num_nodes = xi_left.shape
flux = np.zeros(num_moments)
for i_moment in range(num_moments):
for i_node in range(num_nodes):
# compute local fluxes
flux_left = local_flux(
wts_left[i_node], xi_left[:, i_node], indices[i_moment, :]
)
flux_right = local_flux(
wts_right[i_node], xi_right[:, i_node], indices[i_moment, :]
)
# limiter (?)
flux_left = flux_left * max(xi_left[0, i_node], 0.0)
flux_right = flux_right * min(xi_right[0, i_node], 0.0)
# quadrature
flux[i_moment] += flux_left + flux_right
return flux | 24ed54b56afe127963e6cc7f9d74448e8415edb0 | 3,659,141 |
import argparse
import sys
def get_args():
"""Get the command-line arguments"""
parser = argparse.ArgumentParser(
description='Emulate wc (word count)',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('file',
help='Input file(s)',
metavar='FILE',
nargs='*',
type=argparse.FileType('rt'),
default=[sys.stdin])
return parser.parse_args() | 8a891c5b3dac1f62db31455d596d7744335d8530 | 3,659,142 |
def froc_curve_per_side(df_gt, df_pred, thresholds, verbose, cases="all"):
"""
Compute FROC curve per side/breast. All lesions in a breast are considered TP if
any lesion in that breast is detected.
"""
assert cases in ["all", "cancer", "benign"]
if not cases == "all":
df_exclude = df_gt[~(df_gt["Class"] == cases)]
df_gt = df_gt[df_gt["Class"] == cases]
df_pred = df_pred[~(df_pred["StudyUID"].isin(set(df_exclude["StudyUID"])))]
df_gt["Side"] = df_gt["View"].astype(str).str[0]
df_pred["Side"] = df_pred["View"].astype(str).str[0]
total_volumes = len(df_pred.drop_duplicates(subset=["StudyUID", "View"]))
total_tps = len(df_gt.drop_duplicates(subset=["PatientID", "Side"]))
tpr = []
fps = []
if verbose:
print("{} cases FROC:".format(cases.upper()))
for th in sorted(thresholds, reverse=True):
df_th = df_pred[df_pred["Score"] >= th]
df_th_unique_tp = df_th.drop_duplicates(subset=["PatientID", "Side", "TP"])
num_tps_th = float(sum(df_th_unique_tp["TP"]))
tpr_th = num_tps_th / total_tps
num_fps_th = float(len(df_th[df_th["TP"] == 0]))
fps_th = num_fps_th / total_volumes
tpr.append(tpr_th)
fps.append(fps_th)
if verbose:
print(
"Sensitivity {0:.2f} at {1:.2f} FPs/volume (threshold: {2:.4f})".format(
tpr_th * 100, fps_th, th
)
)
return tpr, fps | 6a113856a920f775be3ce652fa09d9d79fb9be00 | 3,659,143 |
import itertools
def make_lists(*args, **kwargs):
"""
The make_lists function attaches auxiliary things to an input key_list
of (normally) AD objects. Each key gets exactly one auxiliary thing from
each other list -- these lists can be as long as the key_list, or have
only one item in (in which case they don't have to be lists at all).
Parameters
----------
args: lists of str/AD (or single str/AD)
key_list and auxiliary things to be matched to each AD
kwargs["force_ad"]: bool
coerce strings into AD objects?
Returns
-------
tuple of lists
the lists made from the keys and values
"""
log = logutils.get_logger(__name__)
force_ad = kwargs.pop("force_ad", False)
if kwargs:
raise TypeError("make_lists() got unexpected keyword arguments "
"{}".format(kwargs.keys()))
ret_value = [arg if isinstance(arg, (list, tuple)) else [arg]
for arg in args]
# We allow only one value that can be assigned to multiple keys
len_list = len(ret_value[0])
if len_list > 1:
for i in range(1, len(ret_value)):
if len(ret_value[i]) == 1:
ret_value[i] *= len_list
if force_ad:
# We only want to open as many AD objects as there are unique entries,
# so collapse all items in lists to a set and multiple keys with the
# same value will be assigned references to the same open AD object
ad_map_dict = {}
for x in set(itertools.chain(*ret_value)):
try:
ad_map_dict.update({x: x if isinstance(x, astrodata.AstroData)
or x is None else astrodata.open(x)})
except:
ad_map_dict.update({x: None})
log.warning(f"Cannot open file {x}")
ret_value = [[ad_map_dict[x] for x in List] for List in ret_value]
return ret_value | 5bdfd32ad317238e21f631655d01bf629722c959 | 3,659,144 |
def get_free_comment_url_ajax(content_object, parent=None, ajax_type='json'):
"""
Given an object and an optional parent, this tag gets the URL to POST to for the
creation of new ``FreeThreadedComment`` objects. It returns the latest created object
in the AJAX form of the user's choosing (json or xml).
"""
kwargs = get_contenttype_kwargs(content_object)
kwargs.update({'ajax' : ajax_type})
if parent:
if not isinstance(parent, FreeThreadedComment):
raise template.TemplateSyntaxError, "get_free_comment_url_ajax requires its parent object to be of type FreeThreadedComment"
kwargs.update({'parent_id' : getattr(parent, 'pk', getattr(parent, 'id'))})
return reverse('tc_free_comment_parent_ajax', kwargs=kwargs)
else:
return reverse('tc_free_comment_ajax', kwargs=kwargs) | 7d22d2f2b0e012d462d0244d8154cd9ae00ee608 | 3,659,145 |
import gc
def getDefensivePacts(playerOrID, askingPlayerOrID):
"""
Returns a list of CyPlayers who have a Defensive Pact with playerOrID.
The askingPlayerOrID is used to limit the list to players they have met.
"""
pacts = []
askedPlayer, askedTeam = getPlayerAndTeam(playerOrID)
askingPlayer, askingTeam = getPlayerAndTeam(askingPlayerOrID)
for player in players(alive=True, barbarian=False, minor=False):
if (askedPlayer.getTeam() != player.getTeam() and
(askingTeam.isHasMet(player.getTeam()) or gc.getGame().isDebugMode())):
if askedTeam.isDefensivePact(player.getTeam()):
pacts.append(player)
return pacts | 246c67fa315f41ca2f417a880a970e52d68775c5 | 3,659,146 |
def cosine_score(vector1, vector2):
"""Calculate cosine cosine score between two spectral vectors."""
return np.dot(vector1, vector2)/np.sqrt(np.dot(np.dot(vector1, vector1), np.dot(vector2, vector2))) | 5b206abb179f1635eeda6267e8019901c480afad | 3,659,147 |
def fixture_times() -> Problem[int]:
"""Generate a problem which tests a times function."""
@test_case(4, 6)
@test_case(-2, 16)
@test_case(2, -3, aga_hidden=True, aga_output=-6)
@problem()
def times(x: int, y: int) -> int:
"""Compute x * y."""
return x * y
return times | a00286a5827ec0c4fe7cb390d0d420d11823eb15 | 3,659,148 |
def get_axis_bounds(ax=None):
"""Obtain bounds of axis in format compatible with ipyleaflet
Returns:
bounds np.array with lat and lon bounds.
bounds.tolist() gives [[s, w],[n, e]]
"""
if ax is None:
ax = plt.gca()
return np.array([ax.get_ylim(), ax.get_xlim()]).T | 32bc97cf6596775dbfdffea655f5346a1fd21764 | 3,659,149 |
def get_pymatgen_structure(cell:tuple) -> Structure:
"""
Get pymatgen structure from cell.
Args:
cell: Cell (lattice, scaled_positions, symbols).
"""
return Structure(lattice=cell[0],
coords=cell[1],
species=cell[2]) | c76e0e71da83737f079d36e56b4867e551affeff | 3,659,150 |
def get_next_event(event_id: int):
"""Returns the next event from the selected one.
This route may fail if the event is not repeated, or if the event is
too far ahead in time (to avoid over-generation of events).
"""
# TODO(funkysayu): Implement the user visibility limit.
# Check if we already created the event.
maybe_created = Event.query.filter_by(parent_id=event_id).one_or_none()
if maybe_created is not None:
return jsonify(maybe_created.to_dict())
event = Event.query.filter_by(id=event_id).one_or_none()
if event is None:
return jsonify(error='Event %r not found' % event_id), 404
try:
next_event = event.create_next_event()
except ValueError:
return jsonify(
error='Cannot create the next occurrence of a non-repeated event.'), 412
# Ensure we have an event generation limit.
if next_event.date - event.date > MAX_TIMEDELTA_EVENT_GENERATION:
return jsonify(
error='Event is over the maximum generation period',
max_period=MAX_TIMEDELTA_EVENT_GENERATION), 400
db.session.add(next_event)
db.session.commit()
return jsonify(next_event.to_dict()) | 7a9865352dda9dd44c82a92f7f807a64a5ed993d | 3,659,151 |
def conditional_samples(x_3, x_prime_3, MC_method, M):
"""Generate mixed sample sets of interest distributed accroding to a conditional PDF.
Parameters
----------
x_3 : np.ndarray
Array with shape (n_draws, 3).
x_prime : np.ndarray
Array with shape (n_draws, 3).
MC_method : string
Specify the Monte Carlo estimator. One of ["brute force", "DLR"],
where "DLR" denotes to the double loop reordering approach.
M : int
The number of conditional bins to genetate if `MC_method` is "DLR".
Returns
-------
x_mix : np.ndarray
Mixed sample sets. Shape has the form (n_draws, 3, n_draws, 3).
"""
n_draws, n_params = x_3.shape
if MC_method == "Brute force":
x_3_mix = np.zeros((n_draws, n_params, n_draws, n_params))
for i in range(n_params):
for j in range(n_draws):
x_3_mix[j, i] = x_3
x_3_mix[j, i, :, i] = x_prime_3[j, i]
if MC_method == "DLR":
conditional_bin = x_3[:M]
x_3_mix = np.zeros((M, n_params, n_draws, n_params))
# subdivide unconditional samples into M eaually bins,
# within each bin x_i being fixed.
for i in range(n_params):
for j in range(M):
x_3_mix[j, i] = x_3
x_3_mix[j, i, :, i] = conditional_bin[j, i]
return x_3_mix | e80d238f27a65271115fd3de2f574bfc3bbdb432 | 3,659,152 |
def recombine(geno_matrix, chr_index, no_loci): #, no_samples):
"""
Recombine at randomly generated breakpoints.
"""
recomb = {0: 0, 1: 2, 2: 1, 3: 3} # '0|1' <-> '1|0'
no_samples = geno_matrix.shape[0]
#print(no_samples)
masked, bp_list = designate_breakpoints(chr_index, no_loci, no_samples)
#masked, bp_list = designate_breakpoints(chr_index, no_loci, no_samples)
z = np.copy(geno_matrix)
if np.asarray(bp_list).size > 0:
# this would modify the original geno_matrix too! Work with copy!
try:
z[masked] = np.vectorize(recomb.get)(z[masked])
except:
return z
return z | 455ee154763b31e4d5baa9653caa9f9a118f248e | 3,659,153 |
def update_record_files_async(object_version):
"""Get the bucket id and spawn a task to update record metadata."""
# convert to string to be able to serialize it when sending to the task
str_uuid = str(object_version.bucket_id)
return update_record_files_by_bucket.delay(bucket_id=str_uuid) | ba0ed0af4e6a604801344aa459b6279c5a79dfae | 3,659,154 |
import platform
def check_platform():
"""
str returned
"""
return platform.system() | 73e813c55807e7d84517cb7ce51ce9db34e42c23 | 3,659,155 |
def get_field_keys(table):
""" Field keys for a selected table
:param table:
:return: list op dictionaries
"""
cql = 'SHOW FIELD KEYS FROM \"{}\"'.format(table)
response = db_man.influx_qry(cql).get_points()
return [x for x in response] | ca7be2b79c1641d407fa52ea805e5d99bb2b5c42 | 3,659,156 |
def extract_text_from_spans(spans, join_with_space=True, remove_integer_superscripts=True):
"""
Convert a collection of page tokens/words/spans into a single text string.
"""
if join_with_space:
join_char = " "
else:
join_char = ""
spans_copy = spans[:]
if remove_integer_superscripts:
for span in spans:
flags = span['flags']
if flags & 2**0: # superscript flag
if is_int(span['text']):
spans_copy.remove(span)
else:
span['superscript'] = True
if len(spans_copy) == 0:
return ""
spans_copy.sort(key=lambda span: span['span_num'])
spans_copy.sort(key=lambda span: span['line_num'])
spans_copy.sort(key=lambda span: span['block_num'])
# Force the span at the end of every line within a block to have exactly one space
# unless the line ends with a space or ends with a non-space followed by a hyphen
line_texts = []
line_span_texts = [spans_copy[0]['text']]
for span1, span2 in zip(spans_copy[:-1], spans_copy[1:]):
if not span1['block_num'] == span2['block_num'] or not span1['line_num'] == span2['line_num']:
line_text = join_char.join(line_span_texts).strip()
if (len(line_text) > 0
and not line_text[-1] == ' '
and not (len(line_text) > 1 and line_text[-1] == "-" and not line_text[-2] == ' ')):
if not join_with_space:
line_text += ' '
line_texts.append(line_text)
line_span_texts = [span2['text']]
else:
line_span_texts.append(span2['text'])
line_text = join_char.join(line_span_texts)
line_texts.append(line_text)
return join_char.join(line_texts).strip() | ccb45164f695bdbbc53eac9c4cf6596e67c24fd0 | 3,659,157 |
def cf_resource_pool(cli_ctx, *_):
"""
Client factory for resourcepools.
"""
return cf_connectedvmware(cli_ctx).resource_pools | 6cc838a7ad23786b5d86f945da98410506f7e758 | 3,659,158 |
import os
import logging
import sys
import re
def init_log():
""" Initialise the logging. """
level = script_args.log_level
log_dir = os.path.abspath(script_args.log_dir)
logger = logging.getLogger(__name__)
log_format = (
'[%(asctime)s] [%(levelname)s] '
'[%(name)s] [%(funcName)s():%(lineno)s] '
'[PID:%(process)d] %(message)s')
if not os.path.isdir(log_dir):
logging.error('Logging directory \'%s\' does not exist', log_dir)
sys.exit(os.EX_IOERR)
dir_re = re.compile(u'/$')
if not re.match(dir_re, log_dir):
log_dir += "/"
# Define the logging stream
stream = open(log_dir + LOG_FILE, 'w+')
log_levels = {
'unset': logging.NOTSET,
'debug': logging.DEBUG,
'info': logging.INFO,
'warning': logging.WARNING,
'error': logging.ERROR,
'critical': logging.CRITICAL
}
log_level = log_levels[level]
coloredlogs.install(
level=log_level,
fmt=log_format,
datefmt='%d/%m/%Y %H:%M:%S',
stream=stream)
log('Logging to \'%s\' at level \'%s\'' % (log_dir + LOG_FILE, level))
return logger | ac3a172486980271878914481eaf7fbec3c80ecc | 3,659,159 |
from typing import OrderedDict
def get_bcolz_col_names(cols):
"""整理适应于bcolz表中列名称规范,返回OrderedDict对象"""
trantab = str.maketrans(IN_TABLE, OUT_TABLE) # 制作翻译表
# col_names = OrderedDict(
# {col: get_acronym(col.translate(trantab)) for col in cols})
col_names = OrderedDict()
for col in cols:
if col in (AD_FIELD_NAME, SID_FIELD_NAME, TS_FIELD_NAME):
col_names[col] = col
else:
col_names[col] = regular_name(col, trantab)
if len(col_names.values()) != len(set(col_names.values())):
raise ValueError("整理后得列名称包含重复值")
return col_names | 9f52cd5adba9ef5d45ff74ef9b35825b80e2c621 | 3,659,160 |
def classify_loss(logits, target, eps):
"""
"""
if eps > 0:
loss = cross_entropy_with_smoothing(logits, target, eps, None)
else:
loss = F.cross_entropy(logits, target.view(-1))
return loss | 549d2c1cbd3275153960ffde6f029c231b9e5703 | 3,659,161 |
def flip(position, adjacent):
"""finds the furthest position on grid up to which the player has captured enemy pieces"""
interval = (adjacent[0] - position[0], adjacent[1] - position[1])
if adjacent[0] < 0 or adjacent[0] > (8*tile_size):
return False
elif adjacent[1] < 0 or adjacent[1] > (8*tile_size):
return False
check_piece = (adjacent[0] + interval[0], adjacent[1] + interval[1])
if check_piece in current_piece:
flip_back(adjacent, (interval[0] * -1, interval[1] * -1))
else:
return flip(adjacent, check_piece) | f6691ae4fe078668220c68c1df4706a0f5825faf | 3,659,162 |
def is_android_raw(raw):
"""
Returns a string that describes the type of file, for common Android
specific formats
"""
val = None
# We do not check for META-INF/MANIFEST.MF,
# as you also want to analyze unsigned APKs...
# AndroidManifest.xml should be in every APK.
# classes.dex and resources.arsc are not required!
# if raw[0:2] == b"PK" and b'META-INF/MANIFEST.MF' in raw:
# TODO this check might be still invalid. A ZIP file with stored APK inside would match as well.
# probably it would be better to rewrite this and add more sanity checks.
if raw[0:2] == b"PK" and b'AndroidManifest.xml' in raw:
val = "APK"
elif raw[0:3] == b"dex":
val = "DEX"
elif raw[0:3] == b"dey":
val = "DEY"
elif raw[0:4] == b"\x03\x00\x08\x00" or raw[0:4] == b"\x00\x00\x08\x00":
val = "AXML"
elif raw[0:4] == b"\x02\x00\x0C\x00":
val = "ARSC"
return val | 6bdf574b3c8c36ead45f6f9b84c19705c1597b08 | 3,659,163 |
def zeros_from_spec(nested_spec, batch_size):
"""Create nested zero Tensors or Distributions.
A zero tensor with shape[0]=`batch_size is created for each TensorSpec and
A distribution with all the parameters as zero Tensors is created for each
DistributionSpec.
Args:
nested_spec (nested TensorSpec or DistributionSpec):
batch_size (int): batch size added as the first dimension to the shapes
in TensorSpec
Returns:
nested Tensor or Distribution
"""
def _zero_tensor(spec):
if batch_size is None:
shape = spec.shape
else:
spec_shape = tf.convert_to_tensor(value=spec.shape, dtype=tf.int32)
shape = tf.concat(([batch_size], spec_shape), axis=0)
dtype = spec.dtype
return tf.zeros(shape, dtype)
param_spec = nest_utils.to_distribution_param_spec(nested_spec)
params = tf.nest.map_structure(_zero_tensor, param_spec)
return nest_utils.params_to_distributions(params, nested_spec) | 8c89a930a6fd81d793c95166b90f4621312e69a9 | 3,659,164 |
def type_to_str(t):
"""Return str of variable type."""
if not hasattr(t, "broadcastable"):
return str(t)
s = broadcastable_to_str(t.broadcastable)
if s == "":
s = str(t.dtype)
else:
s = dtype_to_char(t.dtype) + s
return s | a07982cbc6c8922c43620d23a3dcced24bafbef4 | 3,659,165 |
def save(self, fname="", ext="", slab="", **kwargs):
"""Saves all current database information.
APDL Command: SAVE
Parameters
----------
fname
File name and directory path (248 characters maximum,
including the characters needed for the directory path).
An unspecified directory path defaults to the working
directory; in this case, you can use all 248 characters
for the file name.
ext
Filename extension (eight-character maximum).
slab
Mode for saving the database:
ALL - Save the model data, solution data and post data
(element tables, etc.). This value is the default.
MODEL - Save the model data (solid model, finite element
model, loadings, etc.) only.
SOLU - Save the model data and the solution data (nodal
and element results).
Notes
-----
Saves all current database information to a file (File.DB).
In interactive mode, an existing File.DB is first written to a
backup file (File.DBB). In batch mode, an existing File.DB is
replaced by the current database information with no backup.
The command should be issued periodically to ensure a current
file backup in case of a system "crash" or a "line drop." It
may also be issued before a "doubtful" command so that if the
result is not what was intended the database may be easily
restored to the previous state. A save may be time consuming
for large models. Repeated use of this command overwrites the
previous data on the file (but a backup file is first written
during an interactive run). When issued from within POST1,
the nodal boundary conditions in the database (which were read
from the results file) will overwrite the nodal boundary
conditions existing on the database file.
Internal nodes may be created during solution (for example,
via the mixed u-P formulation or generalized plane strain
option for current- technology elements, the Lagrangian
multiplier method for contact elements or the MPC184 elements,
or the quadratic or cubic option of the BEAM188 and PIPE288
elements). It is sometimes necessary to save the internal
nodes in the database for later operations, such as cutting
boundary interpolations (CBDOF) for submodeling. To do so,
issue the SAVE command after the first SOLVE command.
In general, saving after solving is always a good practice.
This command is valid in any processor.
"""
return self.run(f"SAVE,{fname},{ext},,{slab}", **kwargs) | ddc79dc0f54e32d6cd96e115ad9842c1689c17b1 | 3,659,166 |
def rollout(
env,
agent,
max_path_length=np.inf,
render=False,
render_kwargs=None,
fast_rgb=True
):
"""
The following value for the following keys will be a 2D array, with the
first dimension corresponding to the time dimension.
- observations
- actions
- rewards
- next_observations
- terminals
The next two elements will be lists of dictionaries, with the index into
the list being the index into the time
- agent_infos
- env_infos
"""
if render_kwargs is None:
render_kwargs = {}
observations = []
actions = []
rewards = []
terminals = []
agent_infos = []
env_infos = []
rgb_array = []
o = env.reset()
agent.reset()
next_o = None
path_length = 0
if hasattr(env, 'sim') and 'fixed' in env.sim.model.camera_names:
camera_name = 'fixed'
else:
camera_name = None
if render:
# import ipdb; ipdb.set_trace(context=10)
if render_kwargs['mode'] == 'rgb_array':
if not fast_rgb:
rgb_array.append(env.sim.render(500, 500, camera_name=camera_name))
else:
rgb_array.append(np.zeros((500, 500, 3), dtype=np.uint8))
else:
env.render(**render_kwargs)
# print("###############################")
while path_length < max_path_length:
a, agent_info = agent.get_action(o)
# print(a)
next_o, r, d, env_info = env.step(a)
observations.append(o)
rewards.append(r)
terminals.append(d)
actions.append(a)
agent_infos.append(agent_info)
env_infos.append(env_info)
path_length += 1
if d:
break
o = next_o
if render:
if render_kwargs['mode'] == 'rgb_array':
if path_length % 3 == 0 or not fast_rgb:
rgb_array.append(env.sim.render(500, 500, camera_name=camera_name))
else:
rgb_array.append(np.zeros((500, 500, 3), dtype=np.uint8))
else:
env.render(**render_kwargs)
actions = np.array(actions)
if len(actions.shape) == 1:
actions = np.expand_dims(actions, 1)
observations = np.array(observations)
if len(observations.shape) == 1:
observations = np.expand_dims(observations, 1)
next_o = np.array([next_o])
next_observations = np.vstack(
(
observations[1:, :],
np.expand_dims(next_o, 0)
)
)
result = dict(
observations=observations,
actions=actions,
rewards=np.array(rewards).reshape(-1, 1),
next_observations=next_observations,
terminals=np.array(terminals).reshape(-1, 1),
agent_infos=agent_infos,
env_infos=env_infos,
)
if len(rgb_array) > 0 and rgb_array[0] is not None:
result['rgb_array'] = np.array(rgb_array)
return result | a90c712155648773e72d5226b0f2be4c7fe72b2a | 3,659,167 |
import os
import scipy
def _get_colors(data, verbose=False):
"""
Get how often each color is used in data.
Parameters
----------
data : dict
with key 'path' pointing to an image
verbose : bool, optional
Returns
-------
color_count : dict
Maps a grayscale value (0..255) to how often it was in `data`
"""
color_count = {}
for i in range(256):
color_count[i] = 0
for i, data_item in enumerate(data):
if i % 1000 == 0 and i > 0 and verbose:
print("%i of %i done" % (i, len(data)))
fname = os.path.join(".", data_item["path"])
img = scipy.ndimage.imread(fname, flatten=False, mode="L")
for row in img:
for pixel in row:
color_count[pixel] += 1
return color_count | 7c515f3559a00410d6cc382778bc49efdfa387c9 | 3,659,168 |
def data_dir():
"""The data directory."""
return DATA | f7696b434ebdab7ec1619f42bed124ba562de64d | 3,659,169 |
def create_single_test(j):
"""Walk through the json cases and recursively write the test cases"""
si = []
for tnum, c in enumerate(j['cases']):
if 'cases' in c:
si.extend(create_single_test(c))
else:
si.extend(write_testcase(c, tnum))
return si | 4a37a95f59e90b5314ea225f58144fa112b9722e | 3,659,170 |
def _token_text(token):
"""Helper to get the text of a antlr token w/o the <EOF>"""
istream = token.getInputStream()
if istream is None:
return token.text
n = istream.size
if token.start >= n or token.stop >= n:
return []
return token.text | 0821c44eea9dfc229034bebc45211f8e6336c552 | 3,659,171 |
def show_interface(enode, dev, shell=None):
"""
Show the configured parameters and stats of an interface.
:param enode: Engine node to communicate with.
:type enode: topology.platforms.base.BaseNode
:param str dev: Unix network device name. Ex 1, 2, 3..
:rtype: dict
:return: A combined dictionary as returned by both
:func:`topology_lib_ip.parser._parse_ip_addr_show`
:func:`topology_lib_ip.parser._parse_ip_stats_link_show`
"""
assert dev
cmd = 'ip addr list dev {ldev}'.format(ldev=dev)
response = enode(cmd, shell=shell)
first_half_dict = _parse_ip_addr_show(response)
d = None
if (first_half_dict):
cmd = 'ip -s link list dev {ldev}'.format(ldev=dev)
response = enode(cmd, shell=shell)
second_half_dict = _parse_ip_stats_link_show(response)
d = first_half_dict.copy()
d.update(second_half_dict)
return d | 54ae542cf5df747ad45e016b8296a7ae5408635e | 3,659,172 |
def get_params_for_category_api(category):
"""Method to get `GET` parameters for querying MediaWiki for category details.
:param category: category name to be passed in params.
:return: GET parameters `params`
"""
params = CATEGORY_API_PARAMS.copy()
params['cmtitle'] = 'Category:' + category
return params | c97be0a2aae9b1d92e5a02d4376e0a186f669735 | 3,659,173 |
def get_dict_or_generate(dictionary, key, generator):
"""Get value from dict or generate one using a function on the key"""
if key in dictionary:
return dictionary[key]
value = generator(key)
dictionary[key] = value
return value | e31cd2b6661cf45e5345ce57d1e628174e6fd732 | 3,659,174 |
def createNotInConfSubGraph(graphSet, possibleSet):
"""
Return a subgraph by removing all incoming
edges to nodes in the possible set.
"""
subGraph = {}
for i in graphSet:
subGraph[i] = graphSet[i] - possibleSet
return subGraph | d3cbee9049416d7ff865306713e9a12f26717fae | 3,659,175 |
def _backprop_gradient_pure(dL, L):
"""
Given the derivative of an objective fn with respect to the cholesky L,
compute the derivate with respect to the original matrix K, defined as
K = LL^T
where L was obtained by Cholesky decomposition
"""
dL_dK = np.tril(dL).copy()
N = L.shape[0]
for k in range(N - 1, -1, -1):
for j in range(k + 1, N):
for i in range(j, N):
dL_dK[i, k] -= dL_dK[i, j] * L[j, k]
dL_dK[j, k] -= dL_dK[i, j] * L[i, k]
for j in range(k + 1, N):
dL_dK[j, k] /= L[k, k]
dL_dK[k, k] -= L[j, k] * dL_dK[j, k]
dL_dK[k, k] /= (2 * L[k, k])
return dL_dK | 28ab304a375e20f952da341024a09477221d54c5 | 3,659,176 |
import random
def get_random_instance() -> random.Random:
"""
Returns the Random instance in the random module level.
"""
return random._inst | ee66055275153ce8c3eae67eade6e32e50fe1d79 | 3,659,177 |
import types
def to(cond, inclusive = True):
"""
Stream elements until the one that fits some condition.
Arguments:
cond -- Either a function or some other object. In the first case, the
function will be applied to each element; in the second case, the object
will be compared (using ==) with each element.
Keyword Arguments:
inclusive -- Whether the element first matching the criteria is streamed
(default True)
See Also:
:func:`dagpype.filt`
:func:`dagpype.from_`
:func:`dagpype.from_to`
:func:`dagpype.skip`
:func:`dagpype.nth`
:func:`dagpype.slice_`
:func:`dagpype.tail`
Examples:
>>> source([1, 2, 3, 4, 3, 2, 1]) | to(2) | to_list()
[1, 2]
>>> source([1, 2, 3, 4, 3, 2, 1]) | to(2, False) | to_list()
[1]
>>> source([1, 2, 3, 4, 3, 2, 1]) | to(lambda d: d % 3 == 0) | to_list()
[1, 2, 3]
"""
@filters
def _dagpype_internal_fn_act(target):
try:
if isinstance(cond, types.FunctionType):
while True:
e = (yield)
if cond(e):
break
target.send(e)
else:
while True:
e = (yield)
if e == cond:
break
target.send(e)
if inclusive:
target.send(e)
target.close()
except GeneratorExit:
target.close()
return _dagpype_internal_fn_act | bc7b4fec4b868e12f4e075256ada80c05dfd2c4d | 3,659,178 |
def model(X_train, Y_train, X_test, Y_test, num_iterations = 2000, learning_rate = 0.5, print_cost = False):
"""
Builds the logistic regression model by calling the function you've implemented previously
Arguments:
X_train -- training set represented by a numpy array of shape (num_px * num_px * 3, m_train)
Y_train -- training labels represented by a numpy array (vector) of shape (1, m_train)
X_test -- test set represented by a numpy array of shape (num_px * num_px * 3, m_test)
Y_test -- test labels represented by a numpy array (vector) of shape (1, m_test)
num_iterations -- hyperparameter representing the number of iterations to optimize the parameters
learning_rate -- hyperparameter representing the learning rate used in the update rule of optimize()
print_cost -- Set to true to print the cost every 100 iterations
Returns:
d -- dictionary containing information about the model.
"""
# initialize parameters with zeros (≈ 1 line of code)
w, b = initialize_with_zeros(X_train.shape[0])
print(w.shape)
print(b)
# Gradient descent (≈ 1 line of code)
parameters, grads, costs = optimize(b=b,learning_rate=learning_rate,num_iterations=num_iterations,print_cost=print_cost,w=w,X=X_train,Y=Y_train)
# Retrieve parameters w and b from dictionary "parameters"
w = parameters["w"]
b = parameters["b"]
# Predict test/train set examples (≈ 2 lines of code)
Y_prediction_test = predict(b=b,w=w,X=X_test)
Y_prediction_train = predict(b=b,w=w,X=X_train)
# Print train/test Errors
print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))
print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100))
d = {"costs": costs,
"Y_prediction_test": Y_prediction_test,
"Y_prediction_train" : Y_prediction_train,
"w" : w,
"b" : b,
"learning_rate" : learning_rate,
"num_iterations": num_iterations}
return d | 073f474ada5d43811564180026cb9d4b2b052cf4 | 3,659,179 |
def mixlogistic_invcdf(y, *, logits, means, logscales, mix_dim,
tol=1e-8, max_bisection_iters=60, init_bounds_scale=100.):
"""
inverse cumulative distribution function of a mixture of logistics, via bisection
"""
if _FORCE_ACCURATE_INV_CDF:
tol = min(tol, 1e-14)
max_bisection_iters = max(max_bisection_iters, 200)
init_bounds_scale = max(init_bounds_scale, 100.)
return mixlogistic_invlogcdf(y.log(), logits=logits, means=means, logscales=logscales, mix_dim=mix_dim,
tol=tol, max_bisection_iters=max_bisection_iters, init_bounds_scale=init_bounds_scale) | ef25170fbaaa5eae55b22b09d2d2fb66d20d03fe | 3,659,180 |
import cgitb
def FormatException(exc_info):
"""Gets information from exception info tuple.
Args:
exc_info: exception info tuple (type, value, traceback)
Returns:
exception description in a list - wsgi application response format.
"""
return [cgitb.handler(exc_info)] | 733c2170a08f9880f8c191c1c6a52ee1ab455b7f | 3,659,181 |
def trackers_init(box, vid_path, image):
"""Initialize a single tracker"""
tracker = cv2.TrackerCSRT_create()
tracker.init(image, box)
return tracker, cv2.VideoCapture(vid_path) | 9b32501ad68dcc698fad2b734ff140be7a137903 | 3,659,182 |
from typing import Optional
def get_image(id: Optional[int] = None,
name: Optional[str] = None,
slug: Optional[str] = None,
source: Optional[str] = None,
opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetImageResult:
"""
Get information on an image for use in other resources (e.g. creating a Droplet
based on snapshot). This data source provides all of the image properties as
configured on your DigitalOcean account. This is useful if the image in question
is not managed by the provider or you need to utilize any of the image's data.
An error is triggered if zero or more than one result is returned by the query.
## Example Usage
Get the data about a snapshot:
```python
import pulumi
import pulumi_digitalocean as digitalocean
example1 = digitalocean.get_image(name="example-1.0.0")
```
Reuse the data about a snapshot to create a Droplet:
```python
import pulumi
import pulumi_digitalocean as digitalocean
example_image = digitalocean.get_image(name="example-1.0.0")
example_droplet = digitalocean.Droplet("exampleDroplet",
image=example_image.id,
region="nyc2",
size="s-1vcpu-1gb")
```
Get the data about an official image:
```python
import pulumi
import pulumi_digitalocean as digitalocean
example2 = digitalocean.get_image(slug="ubuntu-18-04-x64")
```
:param int id: The id of the image
:param str name: The name of the image.
:param str slug: The slug of the official image.
:param str source: Restrict the search to one of the following categories of images:
"""
__args__ = dict()
__args__['id'] = id
__args__['name'] = name
__args__['slug'] = slug
__args__['source'] = source
if opts is None:
opts = pulumi.InvokeOptions()
if opts.version is None:
opts.version = _utilities.get_version()
__ret__ = pulumi.runtime.invoke('digitalocean:index/getImage:getImage', __args__, opts=opts, typ=GetImageResult).value
return AwaitableGetImageResult(
created=__ret__.created,
description=__ret__.description,
distribution=__ret__.distribution,
error_message=__ret__.error_message,
id=__ret__.id,
image=__ret__.image,
min_disk_size=__ret__.min_disk_size,
name=__ret__.name,
private=__ret__.private,
regions=__ret__.regions,
size_gigabytes=__ret__.size_gigabytes,
slug=__ret__.slug,
source=__ret__.source,
status=__ret__.status,
tags=__ret__.tags,
type=__ret__.type) | 180e133173ddb6e99d1743326ec5dcacbc7d5901 | 3,659,183 |
def _infer_added_params(kw_params):
"""
Infer values for proplot's "added" parameters from stylesheets.
"""
kw_proplot = {}
mpl_to_proplot = {
'font.size': ('tick.labelsize',),
'axes.titlesize': (
'abc.size', 'suptitle.size', 'title.size',
'leftlabel.size', 'rightlabel.size',
'toplabel.size', 'bottomlabel.size',
),
'text.color': (
'abc.color', 'suptitle.color', 'tick.labelcolor', 'title.color',
'leftlabel.color', 'rightlabel.color',
'toplabel.color', 'bottomlabel.color',
),
}
for key, params in mpl_to_proplot.items():
if key in kw_params:
value = kw_params[key]
for param in params:
kw_proplot[param] = value
return kw_proplot | fec171caef3562344ee86684edc944b0d08af3f3 | 3,659,184 |
def create_table_description(config: ConfigLoader):
""" creates the description for the pytables table used for dataloading """
n_sample_values = int(config.SAMPLING_RATE * config.SAMPLE_DURATION)
table_description = {
COLUMN_MOUSE_ID: tables.Int16Col(),
COLUMN_LABEL: tables.StringCol(10)
}
for c in config.CHANNELS:
table_description[c] = tables.Float32Col(shape=n_sample_values)
return table_description | bd26332586a87e66e14427adb3b0c1ddfd809ce9 | 3,659,185 |
def get_target_rank_list(daos_object):
"""Get a list of target ranks from a DAOS object.
Note:
The DaosObj function called is not part of the public API
Args:
daos_object (DaosObj): the object from which to get the list of targets
Raises:
DaosTestError: if there is an error obtaining the target list from the
object
Returns:
list: list of targets for the specified object
"""
try:
daos_object.get_layout()
return daos_object.tgt_rank_list
except DaosApiError as error:
raise DaosTestError(
"Error obtaining target list for the object: {}".format(error)) | 9ce003a4e21ed0fbbf58b57989273939613fff95 | 3,659,186 |
import copy
def find_global_best(particle_best=[]):
"""
Searches for the best particle best to make it the global best.
:param particle_best:
:return:
"""
best_found = None
for particle in particles_best:
if best_found is None:
best_found = copy(particle)
elif particle.total_cost < best_found.total_cost:
best_found = copy(particle)
print('\nBest found: ', best_found)
return best_found | 15a6b0f970e385fdc83fcffe19808c61d2a14d7f | 3,659,187 |
def rename_to_monet_latlon(ds):
"""Short summary.
Parameters
----------
ds : type
Description of parameter `ds`.
Returns
-------
type
Description of returned object.
"""
if "lat" in ds.coords:
return ds.rename({"lat": "latitude", "lon": "longitude"})
elif "Latitude" in ds.coords:
return ds.rename({"Latitude": "latitude", "Longitude": "longitude"})
elif "Lat" in ds.coords:
return ds.rename({"Lat": "latitude", "Lon": "longitude"})
elif "grid_lat" in ds.coords:
return ds.rename({"grid_lat": "latitude", "grid_lon": "longitude"})
else:
return ds | 18647e3bbf82bae9d02db3e965c0ddfd51ddd6dd | 3,659,188 |
def payments_reset():
""" Removes all payments from the database """
Payment.remove_all()
return make_response('', status.HTTP_204_NO_CONTENT) | c5132e8a1809a2b04ba4282d3f05aafbcf996209 | 3,659,189 |
def get_smallerI(x, i):
"""Return true if string x is smaller or equal to i. """
if len(x) <= i:
return True
else:
return False | 1588ef998f4914aa943a063546112766060a9cbf | 3,659,190 |
import re
def _ParseSourceContext(remote_url, source_revision):
"""Parses the URL into a source context blob, if the URL is a git or GCP repo.
Args:
remote_url: The remote URL to parse.
source_revision: The current revision of the source directory.
Returns:
An ExtendedSourceContext suitable for JSON.
"""
# Assume it's a Git URL unless proven otherwise.
context = None
# Now try to interpret the input as a Cloud Repo URL, and change context
# accordingly if it looks like one. Assume any seemingly malformed URL is
# a valid Git URL, since the inputs to this function always come from Git.
#
# A cloud repo URL can take three forms:
# 1: https://<hostname>/id/<repo_id>
# 2: https://<hostname>/p/<project_id>
# 3: https://<hostname>/p/<project_id>/r/<repo_name>
#
# There are two repo ID types. The first type is the direct repo ID,
# <repo_id>, which uniquely identifies a repository. The second is the pair
# (<project_id>, <repo_name>) which also uniquely identifies a repository.
#
# Case 2 is equivalent to case 3 with <repo_name> defaulting to "default".
match = re.match(_CLOUD_REPO_PATTERN, remote_url)
if match:
# It looks like a GCP repo URL. Extract the repo ID blob from it.
id_type = match.group('id_type')
if id_type == 'id':
raw_repo_id = match.group('project_or_repo_id')
# A GCP URL with an ID can't have a repo specification. If it has
# one, it's either malformed or it's a Git URL from some other service.
if not match.group('repo_name'):
context = {
'cloudRepo': {
'repoId': {
'uid': raw_repo_id
},
'revisionId': source_revision}}
elif id_type == 'p':
# Treat it as a project name plus an optional repo name.
project_id = match.group('project_or_repo_id')
repo_name = match.group('repo_name') or 'default'
context = {
'cloudRepo': {
'repoId': {
'projectRepoId': {
'projectId': project_id,
'repoName': repo_name}},
'revisionId': source_revision}}
# else it doesn't look like a GCP URL
if not context:
context = {'git': {'url': remote_url, 'revisionId': source_revision}}
return ExtendContextDict(context) | 3bb14066280e616f103d3aa55710706c967df432 | 3,659,191 |
def decrypt_and_verify(message, sender_key, private_key):
"""
Decrypts and verifies a message using a sender's public key name
Looks for the sender's public key in the public_keys/ directory.
Looks for your private key as private_key/private.asc
The ASN.1 specification for a FinCrypt message resides in asn1spec.py
Raises exceptions if key files are not found, or are malformed.
:param message: Message to decrypt (bytes)
:param private_key: Decrypter's private key (file like object)
:param sender_key: Sender's public key (file like object)
:return: Tuple (decrypted message (bytes), whether the message was verified (boolean))
If message was unable to be decrypted, the tuple will be (None, False)
"""
try:
decryption_key = read_private_key(private_key.read())
except Exception:
raise FinCryptDecodingError('Private key file is malformed.')
try:
sender_key = read_public_key(sender_key.read())
except Exception:
raise FinCryptDecodingError('Sender key file is malformed.')
try:
rsc = reedsolomon.RSCodec(8)
message = bytes(rsc.decode(message)[0])
decoded, _ = decode_ber(message, asn1Spec=FinCryptMessage())
decoded = encode_native(decoded)
except Exception:
return None, False
try:
decrypted_message = decrypt_message(decryption_key['k'], decoded['key'], decoded['message'])
except Exception:
decrypted_message = None
try:
authenticated = authenticate_message(sender_key['kx'], sender_key['ky'], decrypted_message,
decoded['signature'])
except Exception:
authenticated = False
return decrypted_message, authenticated | 9c3d43cc2ee01abd68416eaad4ea21fe066916a7 | 3,659,192 |
def find_best_margin(args):
""" return `best_margin / 0.1` """
set_global_seeds(args['seed'])
dataset = DataLoader(args['dataset'], args)
X_train, X_test, X_val, y_train, y_test, y_val = dataset.prepare_train_test_val(args)
results = []
for margin in MARGINS:
model = Perceptron(feature_dim=X_train.shape[-1], margin=margin)
model.fit(X_train, y_train)
results.append(model.score(X_val, y_val))
return results | 40f3a80c56546e0fc9ae42c70cfc633dc83ba111 | 3,659,193 |
import os
import json
def get_user_balances(userAddress):
"""
:param userAddress:
:return:
"""
try:
data = get_request_data(request) or {}
from_block = data.get("fromBlock", int(os.getenv("BFACTORY_BLOCK", 0)))
ocean = Ocean(ConfigProvider.get_config())
result = ocean.pool.get_user_balances(userAddress, from_block)
return Response(json.dumps(result), 200, content_type="application/json")
except Exception as e:
logger.error(f"pools/user/{userAddress}: {str(e)}")
return f"Get pool user balances failed: {str(e)}", 500 | acb2b6cf91723b0d9d15969d32a7ba58032b607f | 3,659,194 |
def unfold(raw_log_line):
"""Take a raw syslog line and unfold all the multiple levels of
newline-escaping that have been inflicted on it by various things.
Things that got python-repr()-ized, have '\n' sequences in them.
Syslog itself looks like it uses #012.
"""
lines = raw_log_line \
.replace('#012', '\n') \
.replace('\\n', '\n') \
.splitlines()
return lines | 9e23bdd82ac15086468a383a1ef98989aceee25e | 3,659,195 |
import subprocess
def metis(hdf5_file_name, N_clusters_max):
"""METIS algorithm by Karypis and Kumar. Partitions the induced similarity graph
passed by CSPA.
Parameters
----------
hdf5_file_name : string or file handle
N_clusters_max : int
Returns
-------
labels : array of shape (n_samples,)
A vector of labels denoting the cluster to which each sample has been assigned
as a result of the CSPA heuristics for consensus clustering.
Reference
---------
G. Karypis and V. Kumar, "A Fast and High Quality Multilevel Scheme for
Partitioning Irregular Graphs"
In: SIAM Journal on Scientific Computing, Vol. 20, No. 1, pp. 359-392, 1999.
"""
file_name = wgraph(hdf5_file_name)
labels = sgraph(N_clusters_max, file_name)
subprocess.call(['rm', file_name])
return labels | 43b991921ccf62f958fc094dd5bafe9d969cad9c | 3,659,196 |
def _mcs_single(mol, mols, n_atms):
"""Get per-molecule MCS distance vector."""
dists_k = []
n_atm = float(mol.GetNumAtoms())
n_incomp = 0 # Number of searches terminated before timeout
for l in range(0, len(mols)):
# Set timeout to halt exhaustive search, which could take minutes
result = FindMCS([mol, mols[l]], completeRingsOnly=True,
ringMatchesRingOnly=True, timeout=10)
dists_k.append(1. - result.numAtoms /
((n_atm + n_atms[l]) / 2))
if result.canceled:
n_incomp += 1
return np.array(dists_k), n_incomp | fd2adf4ee9e3811acd4acb144f3b7861ac4b64ff | 3,659,197 |
def new_transaction():
"""
新的交易
:return:
"""
values = request.get_json()
# 检查 POST 请求中的字段
required = ['sender', 'recipient', 'amount']
if not all(k in values for k in required):
return 'Missing values', 400
# 创建新的交易
index = blockchain.new_transaction(values['sender'], values['recipient'], values['amount'])
response = {'message': f'交易将会被添加到区块 {index}'}
return jsonify(response), 201 | 06af06839e6afcaf4188cca724cebc7878455534 | 3,659,198 |
async def get_favicon():
"""Return favicon"""
return FileResponse(path="assets/kentik_favicon.ico", media_type="image/x-icon") | 8597f21ad240cd43f59703624d380e3b879a1a8a | 3,659,199 |
Subsets and Splits