content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def combine(connected_events): """ Combine connected events into a graph. :param connected_events: see polychronous.filter :return: graph_of_connected_events """ graph_of_connected_events = nx.Graph() graph_of_connected_events.add_edges_from(connected_events) return (graph_of_connected_events)
99471930f70bea0583d36d3c0c13fc62b23d6fe8
3,659,000
import hashlib def calculate_hash(filepath, hash_name): """Calculate the hash of a file. The available hashes are given by the hashlib module. The available hashes can be listed with hashlib.algorithms_available.""" hash_name = hash_name.lower() if not hasattr(hashlib, hash_name): raise Exception('Hash algorithm not available : {}'\ .format(hash_name)) with open(filepath, 'rb') as f: checksum = getattr(hashlib, hash_name)() for chunk in iter(lambda: f.read(4096), b''): checksum.update(chunk) return checksum.hexdigest()
975fe0a2a4443ca3abc67ed950fb7200409f2497
3,659,001
from pathlib import Path from typing import Type from typing import Tuple from typing import List from typing import Dict import logging import yaml import sys def specify_run_step( args: RunConfig, aml_resources: AMLResources, run_script_path: Path, loop_config_class: Type[OptimizerConfig], check_consistency: bool = True, ) -> Tuple[List[PythonScriptStep], List[PipelineData], Dict[str, List[str]], List[str]]: """ Create the pipeline step(s) to run the simulation. Args: aml_resources: an instance of AMLResources which contains the necessary information on AML resources to instantiate pipeline steps run_script_path: script that the run step should invoke loop_config_class: (subclass of) OptimizerConfig that should be instantiated check_consistency: whether to run data_and_simulation_are_consistent; normally we do, but this may be set to False for tests that check other parts of this functionality. Returns: A list of PythonScriptSteps, with one for each expansion, a list of output data locations in AML, a dictionary of styled subsets for plotting, and a list of the temporary spec files that have been created """ # Expand config selections_and_configs = list(load_resolutions_from_command(args, loop_config_class)) temp_spec_files = [] parallel_steps = [] all_run_outputs = [] styled_subsets: Dict[str, List[str]] = {} # For each expansion, create a PythonScriptStep to run the simulator script. num_selections = len(selections_and_configs) for index, pair_list in enumerate(selections_and_configs, 1): config0 = pair_list[0][1] if (not check_consistency) or data_and_simulation_are_consistent(config0): logging.info( f"Config resolution {index} of {num_selections} will have {len(pair_list)} runs included in pipeline" ) else: # pragma: no cover logging.error(f"Dropping config resolution {index} of {num_selections} from pipeline") continue for config_dct, config in pair_list: batch_strategy = config_dct["bayesopt"]["batch_strategy"] acquisition = config_dct["bayesopt"]["acquisition"] experiment_label = f"{batch_strategy} - {acquisition}" # TODO: what about acquisition, optimization_strategy? if batch_strategy not in styled_subsets: styled_subsets[batch_strategy] = [experiment_label] else: styled_subsets[batch_strategy].append(experiment_label) # pragma: no cover # set up the run configuration aml_run_config = RunConfiguration(_name=f"Parallel run combination {config.resolution_spec}.{config.seed}") aml_run_config.target = aml_resources.compute_target aml_run_config.environment = aml_resources.env # type: ignore # auto # create different versions of args for each combination temp_config_path = spec_file_basename(config.resolution_spec, config.seed or 0, suffix="yml") temp_spec_files.append(temp_config_path) with Path(temp_config_path).open("w") as fp: yaml.dump(config_dct, fp, Dumper=CustomDumper) args.spec_file = temp_config_path original_arg_list = sys.argv[1:] simulator_args = original_arg_list spec_file_index = simulator_args.index("--spec_file") simulator_args[spec_file_index + 1] = temp_config_path num_runs_index = simulator_args.index("--num_runs") if isinstance(num_runs_index, int) and num_runs_index >= 0: simulator_args[num_runs_index + 1] = "1" # pragma: no cover else: simulator_args += ["--num_runs", "1"] # create PipelineData to consume the output of this step in the next (plotting) step step_output = PipelineData( name=f"outputs_batch_{config.resolution_spec}_{config.seed}", output_name=f"outputs_batch_{config.resolution_spec}_{config.seed}", datastore=aml_resources.datastore, is_directory=True, ) all_run_outputs += [step_output] simulator_args += ["--output_dir", step_output] step = PythonScriptStep( script_name=str(run_script_path.absolute().relative_to(ROOT_DIR)), source_directory=ROOT_DIR, arguments=simulator_args, outputs=[step_output], compute_target=aml_resources.compute_target, runconfig=aml_run_config, ) parallel_steps.append(step) return parallel_steps, all_run_outputs, styled_subsets, temp_spec_files
30aa58f599559d9be2c29524befe710cc26fac1d
3,659,002
def default_mp_value_parameters(): """Set the different default parameters used for mp-values. Returns ------- dict A default parameter set with keys: rescale_pca (whether the PCA should be scaled by variance explained) and nb_permutations (how many permutations to calculate empirical p-value). Defaults to True and 100, respectively. """ params = {"rescale_pca": True, "nb_permutations": 100} return params
0dcac3981154fbf0cc1fa0eeed6e83a1e1b63294
3,659,003
import os def change_auth_keys(server, user, auth_keys): """ update authorize keys. ath_keys is list of keys. will get current auth_keys, remove keys with auth_tag, and add new auth_keys with auth_tag. return: if success, none. else, a dict: { stdout: xxx, stderr: yyy } """ auth_tag = os.getenv('AUTH_KEY_TAG') retcode, out, err = get_auth_keys(server, user) if retcode != 0: return {'stdout': out, 'stderr': err} current_keys = [x for x in out.strip().split('\n') if auth_tag not in x] for key in auth_keys: current_keys.append(f'{key} {auth_tag}') retcode, out, err = set_auth_keys(server, user, ':'.join(current_keys)) if retcode != 0: return {'stdout': out, 'stderr': err} return 0, None, None
b1b67d168ca5b863ce6ddc62b9ecc988d70aace8
3,659,004
def svn_wc_diff(*args): """ svn_wc_diff(svn_wc_adm_access_t anchor, char target, svn_wc_diff_callbacks_t callbacks, void callback_baton, svn_boolean_t recurse, apr_pool_t pool) -> svn_error_t """ return _wc.svn_wc_diff(*args)
c4fbc11d26b6da2d595cb79314b0d901b084eb52
3,659,005
import re def _FindResourceIds(header, resource_names): """Returns the numerical resource IDs that correspond to the given resource names, as #defined in the given header file." """ pattern = re.compile( r'^#define (%s) _Pragma\S+ (\d+)$' % '|'.join(resource_names)) with open(header, 'r') as f: res_ids = [ int(pattern.match(line).group(2)) for line in f if pattern.match(line) ] if len(res_ids) != len(resource_names): raise Exception('Find resource id failed: the result is ' + ', '.join(str(i) for i in res_ids)) return set(res_ids)
24847b1d4374a2022ae12f5161bd9df4becd110d
3,659,006
import re def resolve_request_path(requested_uri): """ Check for any aliases and alter the path accordingly. Returns resolved_uri """ for key, val in PATH_ALIASES.items(): if re.match(key, requested_uri): return re.sub(key, val, requested_uri) return requested_uri
5405a795a95279a354d455f3702dbf2c3dc6f1e0
3,659,007
def apim_api_delete( client, resource_group_name, service_name, api_id, delete_revisions=None, if_match=None, no_wait=False): """Deletes an existing API. """ cms = client.api return sdk_no_wait( no_wait, cms.delete, resource_group_name=resource_group_name, service_name=service_name, api_id=api_id, if_match="*" if if_match is None else if_match, delete_revisions=delete_revisions if delete_revisions is not None else False)
4be4f895ae576ee1ffd08af31abcdad193b84b2c
3,659,008
def deep_copy(obj): """Make deep copy of VTK object.""" copy = obj.NewInstance() copy.DeepCopy(obj) return copy
c00c4ff44dad5c0c018152f489955f08e633f5ed
3,659,009
def get_dunn_index(fdist, *clusters): """ Returns the Dunn index for the given selection of nodes. J.C. Dunn. Well separated clusters and optimal fuzzy partitions. 1974. J.Cybern. 4. 95-104. """ if len(clusters)<2: raise ValueError, "At least 2 clusters are required" intra_dist = [] for c in clusters: for i in c.get_leaves(): if i is not None: # item intraclsuterdist -> Centroid Diameter a = fdist(i.profile, c.profile)*2 intra_dist.append(a) max_a = numpy.max(intra_dist) inter_dist = [] for i, ci in enumerate(clusters): for cj in clusters[i+1:]: # intracluster dist -> Centroid Linkage b = fdist(ci.profile, cj.profile) inter_dist.append(b) min_b = numpy.min(inter_dist) if max_a == 0.0: D = 0.0 else: D = min_b / max_a return D
c78c5302d78b5d5969a5edf9e19b81ee6f68bfbf
3,659,010
import random def sample(words, n=10) -> str: """Sample n random words from a list of words.""" return [random.choice(words) for _ in range(n)]
cad435238c776b5fcda84d50295ac50298bf3ab2
3,659,011
def extract_peaks( imzml_path, db, tol_ppm=DEFAULT_TOL_PPM, tol_mode=DEFAULT_TOL_MODE, base_mz=DEFAULT_BASE_MZ, ): """ Extract all peaks from the given imzML file for the supplied database of molecules. :param imzml_path: :param db: A pandas DataFrame containing an 'mz' column. Additional metadata columns are also allowed. :param tol_ppm: The maximum distance from a theoretical m/z to search for peaks. e.g. 3 means +/- 3ppm :param tol_mode: The model for adjusting tol_ppm based on the area of the mass range. To match METASPACE, specify 'tof', which means 1ppm is always mz * 1e-6 (i.e. 1ppm at every mass) See the `ppm_to_daltons` function for more examples. :param base_mz: The base m/z for tolerance calculations. Doesn't matter with 'tof'. See the `ppm_to_daltons` function for more details. :return: coords_df - a DataFrame mapping spectrum idx to x,y values. Needed for converting 'peaks_df' values to images peaks - A list of dicts. Each dict contains: 'mol': A NamedTuple of the DB peak row. Access fields with e.g. peak['mol'].formula 'peaks_df': a DataFrame with one row per found peak. Columns: 'sp': Spectrum idx 'mz': m/z 'ints': Intensity value """ assert 'mz' in db.columns, 'db must have an "mz" column' assert tol_mode in TOL_MODES, f'invalid tol_mode: {tol_mode}' p = ImzMLParser(str(imzml_path)) coords_df = pd.DataFrame(p.coordinates, columns=['x', 'y', 'z'][:len(p.coordinates[0])], dtype='i') coords_df['x'] -= np.min(coords_df.x) coords_df['y'] -= np.min(coords_df.y) mz_tol_lo, mz_tol_hi = tol_edges(db.mz, tol_ppm, tol_mode, base_mz) # Uncomment this to add the tolerance boundaries to db for debugging: # db['mz_tol_lo'], db['mz_tol_hi'] = mz_tol_lo, mz_tol_hi mol_peaks = [[] for sp in range(len(coords_df))] for sp, x, y in coords_df[['x', 'y']].itertuples(True, None): mzs, ints = p.getspectrum(sp) mz_range_lo = np.searchsorted(mzs, mz_tol_lo, 'left') mz_range_hi = np.searchsorted(mzs, mz_tol_hi, 'right') mask = mz_range_lo != mz_range_hi for peak, idx_lo, idx_hi in zip(np.flatnonzero(mask), mz_range_lo[mask], mz_range_hi[mask]): for i in range(idx_lo, idx_hi): mol_peaks[peak].append((sp, mzs[i], ints[i])) empty_peaks_df = pd.DataFrame({ 'sp': pd.Series(dtype='i'), 'mz': pd.Series(dtype='f'), 'ints': pd.Series(dtype='f'), }) result = [{ 'mol': db_row, 'peaks_df': pd.DataFrame(peaks, columns=['sp', 'mz', 'ints']) if peaks else empty_peaks_df } for db_row, peaks in zip(db.itertuples(), mol_peaks)] return coords_df, result
b388fc8cd4e7e1be7a2179caddf8f07cf044173e
3,659,012
def cov_dense(n_features=100, scale=0.5, edges='ones', pos=True, force_psd=True, random_state=None): """ Returns a covariance matrix with a constant diagonal and whose off diagnale elements are obtained from adj_mats.complete_graph() Parameters ---------- n_features: int scale: float Scale of the off diagonal entries. edges: str How the edges should be sampled. See adj_mats.complete_graph() pos: bool Should the off-diagonal entries be all positive. force_psd: bool Make sure the covariance matrix is positive semi-definite zeroing out all negative eigenvalues. random_state: None, int Random seed for sampling. Output ------ cov: array-like, (n_features, n_features) The sampled covariance matrix. """ cov = complete_graph(n_nodes=n_features, edges=edges, pos=pos, random_state=random_state) cov = cov * scale np.fill_diagonal(cov, 1.0) if force_psd: cov = project_psd(cov) return cov
48b8f5fec91ea11acaf9ce026d8b1742b5185604
3,659,013
def measure_fwhm(array): """Fit a Gaussian2D model to a PSF and return the FWHM Parameters ---------- array : numpy.ndarray Array containing PSF Returns ------- x_fwhm : float FWHM in x direction in units of pixels y_fwhm : float FWHM in y direction in units of pixels """ yp, xp = array.shape y, x, = np.mgrid[:yp, :xp] p_init = models.Gaussian2D() fit_p = fitting.LevMarLSQFitter() fitted_psf = fit_p(p_init, x, y, array) return fitted_psf.x_fwhm, fitted_psf.y_fwhm
e3ee047b453b979387505a19bdfebb75950a3916
3,659,014
def exists(profile, bucket, name): """Check if a file exists in an S3 bucket. Args: profile A profile to connect to AWS with. bucket The name of the bucket you want to find the file in. name The name of a file. Returns: True if it exists, False if it doesn't. """ result = fetch_by_name(profile, bucket, name) return len(result) > 0
5269cca9198a1d100b76b13f6e2fbf7314d948fd
3,659,015
def fetchquota(adr): """Retrieves the account quota information and passes the interesting part of the json object along to the request source. Arguments: adr (str): The email account address of interest. Returns: The quota part of the json object for the response. """ debuginfo("Fetching quota info for account.") return apirequest("quota", {'emailaccount': adr})["response"]["quota"]
56b5c283ae38bc56c315cd6140d2fd910baeaf98
3,659,016
def project_login(driver): """ 針對多綫程執行設定不同樣本編號,若修改問卷,也許提供該問卷樣本編號的第一順位號碼。 """ SAMPLE_NUMBER = 20200101+sample_add try: WebDriverWait(driver, 3).until(EC.presence_of_element_located((By.XPATH, '//*[@name="{}"][1]' .format(str(SAMPLE_NUMBER))))).click() # 選擇樣本編號作答 sleep(1) driver.find_element_by_class_name('btn.btn-blue').click() # 點擊開始訪問 print("STEP 3[project_login]: Project Login Successfully !") form_basic_info(driver) except NoSuchElementException: driver.find_element_by_xpath('//*[@id="case_in_prj_next"]/a').click() # 若搜尋不到樣本編號則尋找下一頁按鈕 return project_login(driver) else: return "STEP 3[project_login]: Loading took too much time !"
db3ef26e1769cb991c887509427f9d809047398d
3,659,017
def convert_convolutionfunction_to_image(cf): """ Convert ConvolutionFunction to an image :param cf: :return: """ return create_image_from_array(cf.data, cf.grid_wcs, cf.polarisation_frame)
6f5819abce6a987665ff49af9e5fca70f586a478
3,659,018
def macro(libname): """Decorator for macros (Moya callables).""" def deco(f): exposed_elements[libname] = f return f return deco
c4d06d2b9e3fa7913445554794027e68328ab918
3,659,019
import logging import torch def get_dataloaders(dataset, mode='train', root=None, shuffle=True, pin_memory=True, batch_size=8, logger=logging.getLogger(__name__), normalize=False, **kwargs): """A generic data loader Parameters ---------- dataset : {"openimages", "jetimages", "evaluation"} Name of the dataset to load root : str Path to the dataset root. If `None` uses the default one. kwargs : Additional arguments to `DataLoader`. Default values are modified. """ pin_memory = pin_memory and torch.cuda.is_available # only pin if GPU available Dataset = get_dataset(dataset) if root is None: dataset = Dataset(logger=logger, mode=mode, normalize=normalize, **kwargs) else: dataset = Dataset(root=root, logger=logger, mode=mode, normalize=normalize, **kwargs) return DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, num_workers=NUM_DATASET_WORKERS, collate_fn=exception_collate_fn, pin_memory=pin_memory)
6bb40b3eb1bc004418dd8910dab1432cd3984ca5
3,659,020
def stats_file(filename, shape, dtype=None, file_format='raw', out_of_core=True, buffer_size=None, max_memory=None, progress_frequency=None): """stats_file(filename, shape, dtype=None, file_format='raw', out_of_core=True, buffer_size=None, max_memory=None, progress_frequency=None) -> StatsInfo object returns a StatsInfo about the content of 'filename', which is a cube with 'shape'. If 'out_of_core' (out-of-core) is True, process 'buffer_size' elements at a time. """ shape = Shape(shape) filename = interpolate_filename(filename, shape=shape, file_format=file_format, dtype=dtype) if out_of_core and file_format == 'raw': stats_info = stats_info_out_of_core(filename, shape=shape, dtype=dtype, buffer_size=buffer_size, max_memory=max_memory, progress_frequency=progress_frequency) else: cube = read_cube(file=filename, shape=shape, dtype=dtype, file_format=file_format) stats_info = StatsInfo.stats_info(cube) return stats_info
750b4d334aa25a2423e5278eab7cd5ee43385303
3,659,021
def get_info(args): """ Loads todo.txt, sets up file paths, loads in any available star information, saves the relevant parameters for each of the two main routines and sets the plotting parameters. Parameters ---------- args : argparse.Namespace command-line arguments parallel : bool if pysyd will be running in parallel mode CLI : bool, optional if CLI is not being used (i.e. `False`), the modules draw default values from a different location Returns ------- args : argparse.Namespace the updated command-line arguments """ # Get parameters for all modules args = get_parameters(args) # Get invidual/specific star info from csv file (if it exists) args = get_csv_info(args) if args.cli: # Check the input variables check_input_args(args) args = get_command_line(args) set_plot_params() return args
919ae745424c16c6307db460ec2054b250ba72a6
3,659,022
def _weight_func(dist): """Weight function to replace lambda d: d ** -2. The lambda function is not valid because: if d==0 then 0^-2 is not valid.""" # Dist could be multidimensional, flatten it so all values # can be looped with np.errstate(divide="ignore"): retval = 1.0 / dist return retval**2
9052b68592f2f6cf4c59c623a3561f77d3d2b933
3,659,023
def two_poles(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None): """Returns the Cartpole Balance task with two poles.""" physics = Physics.from_xml_string(*get_model_and_assets(num_poles=2)) task = Balance(swing_up=True, sparse=False, random=random) environment_kwargs = environment_kwargs or {} return control.Environment( physics, task, time_limit=time_limit, **environment_kwargs)
b5236731d61464067073c3275cdd03d493f17821
3,659,024
def process_topic_entity(entity: dict, language: str) -> bool: """ Given a topic entity, gather its metadata :param entity :param language: :type entity dict :type language str :returns bool """ try: # Get ID remote_id = entity["title"] print("%s\t%s" % ("ID".ljust(16), remote_id)) # Get name from label name = entity["labels"][language]["value"].lower() print("%s\t%s" % ("name".ljust(16), name)) # Get brief brief = entity["descriptions"][language]["value"].lower() print("%s\t%s" % ("description".ljust(16), brief)) print_end() except Exception as err: print_err("%s error: %s" % (remote_id, err)) return False return True
2f03c0d24f35e49cd05ac11389b91345cc43de6e
3,659,025
import math import torch def _no_grad_trunc_normal_(tensor: Tensor, mean: float, std: float, a: float, b: float) -> Tensor: """Cut & paste from PyTorch official master until it's in a few official releases - RW Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf Args: tensor (Tensor): An n-dimensional `Tensor`. mean (float): Mean of the normal distribution. std (float): Standard deviation of the normal distribution. a (float): Minimum cutoff value. b (float): Maximum cutoff value. """ def norm_cdf(x): # Computes standard normal cumulative distribution function return (1. + math.erf(x / math.sqrt(2.))) / 2. if (mean < a - 2 * std) or (mean > b + 2 * std): error_console.log( "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " "Fdistribution of values may be incorrect.", stacklevel=2 ) with torch.no_grad(): # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) # Uniformly fill image with values from [l, u], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * l - 1, 2 * u - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) return tensor
064fce46591c490999c6495999554700f478878b
3,659,026
def inverse_update(C, m, return_drop=False): """ Compute the inverse of a matrix with the m-th row and column dropped given knowledge of the inverse of the original matrix. C = inv(A) B = drop_col(drop_row(A, m),m) computes inv(B) given only C Args: C: inverse of full matirix m: row and col to drop return_drop: whether to also return the array used to drop the m-th row/col. Returns: B if return_drop: the array to drop row/col using jnp.take(v, drop_array) """ drop = drop_array(C.shape[0], m) _a = jnp.take(C, drop, axis=0) # drop m row a = jnp.take(_a, drop, axis=1) c = jnp.take(C, drop, axis=1)[None, m, :] # drop m col b = _a[:, m, None] d = C[m, m] res = a - (b @ c) / d if return_drop: return res, drop return res
0f368d30d0459fe3d07d6fc1fa19dedc449e23e9
3,659,027
def loss_calc(settings, all_batch, market_batch): """ Calculates nn's NEGATIVE loss. Args: settings: contains the neural net all_batch: the inputs to neural net market_batch: [open close high low] used to calculate loss Returns: cost: loss - l1 penalty """ loss = settings['nn'].loss_np(all_batch, market_batch) return -loss
fdca1bb0fa86d1972c2a0f8b1fab10183e98fb4e
3,659,028
def fits_downloaded_correctly(fits_loc): """ Is there a readable fits image at fits_loc? Does NOT check for bad pixels Args: fits_loc (str): location of fits file to open Returns: (bool) True if file at fits_loc is readable, else False """ try: img, _ = fits.getdata(fits_loc, 0, header=True) return True except Exception: # image fails to open return False
8df470b4b2895fb7d77cbccefbd2eae7f22c649b
3,659,029
def union_of_rects(rects): """ Calculates union of two rectangular boxes Assumes both rects of form N x [xmin, ymin, xmax, ymax] """ xA = np.min(rects[:, 0]) yA = np.min(rects[:, 1]) xB = np.max(rects[:, 2]) yB = np.max(rects[:, 3]) return np.array([xA, yA, xB, yB], dtype=np.int32)
904cb58f593bedfbf0e28136a446b4f877955e49
3,659,030
from typing import List from typing import Dict def configure_services(config: List[Dict]) -> Dict[str, GcpServiceQuery]: """ Generate GcpServiceQuery list from config :param config: list with GcpServieQuery's configuration :return: mapping of service name to GcpServiceQuery objects """ if not isinstance(config, list): raise GcpServiceQueryConfigError(f"Invalid GcpServiceQuery config {config}") result = {} for entry in config: if not isinstance(entry, dict): raise GcpServiceQueryConfigError(f"Invalid GcpServiceQuery entry type: '{entry}'. " f"Should be dict, is {type(entry)}") serviceName = entry.get(SERVICE_NAME, None) version = entry.get(VERSION, None) queries = entry.get(QUERIES, None) if not serviceName or not version or not queries: raise GcpServiceQueryConfigError(f"Missing required key for entry {entry}") gcp_service_query = GcpServiceQuery(serviceName, version) # Check multiple entries with same name if serviceName in result: raise GcpServiceQueryConfigError(f"Multiple GCP service with same name: {serviceName}") result[serviceName] = gcp_service_query return result
3c9b9472de4d319446ec4da1d990ecc1750bd248
3,659,031
def tags_get(): """ Get endpoint /api/tag args: optional company_filter(int) - id of a company, will only return tag relation to said company optional crowd(int) - 0 - 2 specifing crowd sourcing option. Key: 0 - all tags 1 - Only crowd sourced tags 2 - Only non crowd sourced tags optional only_ids - if set only returns ids of tags return: List Tags - A json list of all tags that match the optional args. """ request_data = request.get_json() company_filter = get_if_exist(request_data, "company_filter") only_ids = get_if_exist(request_data,"only_ids") crowd = get_if_exist(request_data, "crowd") if crowd: if crowd > 2: return status.HTTP_400_BAD_REQUEST crowd = 0 if company_filter: t = db.session.query( Tag_company.tag, ).filter(Tag_company.company == int(company_filter)).group_by(Tag_company.tag).subquery('t') Tag_query = Tag.query.filter( Tag.id == t.c.tag ) else: Tag_query = Tag.query if crowd != 0: crowd = (1==crowd) Tag_query = Tag_query.filter_by(crowd_soured = crowd) tags = Tag_query.all() if only_ids: return jsonify([tag.id for tag in tags]), status.HTTP_200_OK else: return jsonify([tag.serialize for tag in tags]), status.HTTP_200_OK
c009c0b84bbc825383dffb1141361dd1732b7b19
3,659,032
import os import re import gzip import shutil def gunzip(filename, targetdir): """Decompress a gzip-compressed file into a target directory. Args: filename: Full path to gzip file. targetdir: Directory to decompress file into. Returns: The output file name. Raises: FileNotFoundError: `filename` does not exist. """ # We delete the .gz suffix and put the decompressed file into `targetdir`. if not os.path.isfile(filename): raise FileNotFoundError(f"File '{filename}' does not exist.") targetfile = os.path.join( targetdir, re.sub('\\.gz$', '', os.path.basename(filename)) ) cprint(f"Decompressing '{filename}'...", 'yellow') try: with open(targetfile, 'xb') as o, gzip.open(filename, 'rb') as i: shutil.copyfileobj(i, o) except Exception: # Clean up target file. if os.path.isfile(targetfile): cprint(f"Removing file '{targetfile}'...", 'red') os.remove(targetfile) raise assert targetfile assert os.path.isfile(targetfile) cprint(f"Successfully created file '{targetfile}'.", 'green') return targetfile
39f3eec7018fcfc95f3a825ee33cec5387b006ed
3,659,033
def get_accept_languages(accept): """Returns a list of languages, by order of preference, based on an HTTP Accept-Language string.See W3C RFC 2616 (http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html) for specification. """ langs = parse_http_accept_header(accept) for index, lang in enumerate(langs): langs[index] = lang_in_gettext_format(lang) return langs
ad329605cd0101e61c2c21aa42f2c81a84db771b
3,659,034
def get_princ_axes_xyz(tensor): """ Gets the principal stress axes from a stress tensor. Modified from beachball.py from ObsPy, written by Robert Barsch. That code is modified from Generic Mapping Tools (gmt.soest.hawaii.edu) Returns 'PrincipalAxis' classes, which have attributes val, trend, plunge Returns T, N, P """ tensor = np.array(tensor) (D, V) = sorted_eigens(tensor) pl = np.arcsin( -V[2] ) # 2 az = np.arctan2( V[0], -V[1] ) # 0 # 1 for i in range(0, 3): if pl[i] <= 0: pl[i] = -pl[i] az[i] += np.pi if az[i] < 0: az[i] += 2 * np.pi if az[i] > 2 * np.pi: az[i] -= 2 * np.pi pl *= 180 / np.pi az *= 180 / np.pi T = PrincipalAxis( D[0], az[0], pl[0] ) # 0 0 0 N = PrincipalAxis( D[1], az[1], pl[1] ) P = PrincipalAxis( D[2], az[2], pl[2] ) # 2 2 2 return(T, N, P)
e9285464e17eb987ebfd21c8e066ff745a856dc1
3,659,035
def extractYoushoku(item): """ """ vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title']) if 'The Other World Dining Hall' in item['tags'] and (chp or vol): return buildReleaseMessageWithType(item, 'The Other World Dining Hall', vol, chp, frag=frag, postfix=postfix) return False
686daef4d594e0e53779be48d7c49a525cabe4ee
3,659,036
def _perform_Miecalculations(diam, wavelength, n, noOfAngles=100.): """ Performs Mie calculations Parameters ---------- diam: NumPy array of floats Array of diameters over which to perform Mie calculations; units are um wavelength: float Wavelength of light in um for which to perform calculations n: complex Ensemble complex index of refraction Returns panda DataTable with the diameters as the index and the mie results in the different collumns total_extinction_coefficient: this takes the sum of all particles crossections of the particular diameter in a qubic meter. This is in principle the AOD of an L """ diam = np.asarray(diam) extinction_efficiency = np.zeros(diam.shape) scattering_efficiency = np.zeros(diam.shape) absorption_efficiency = np.zeros(diam.shape) extinction_crossection = np.zeros(diam.shape) scattering_crossection = np.zeros(diam.shape) absorption_crossection = np.zeros(diam.shape) # phase_function_natural = pd.DataFrame() angular_scattering_natural = pd.DataFrame() # extinction_coefficient = np.zeros(diam.shape) # scattering_coefficient = np.zeros(diam.shape) # absorption_coefficient = np.zeros(diam.shape) # Function for calculating the size parameter for wavelength l and radius r sp = lambda r, l: 2. * np.pi * r / l for e, d in enumerate(diam): radius = d / 2. # print('sp(radius, wavelength)', sp(radius, wavelength)) # print('n', n) # print('d', d) mie = bhmie.bhmie_hagen(sp(radius, wavelength), n, noOfAngles, diameter=d) values = mie.return_Values_as_dict() extinction_efficiency[e] = values['extinction_efficiency'] # print("values['extinction_crosssection']",values['extinction_crosssection']) scattering_efficiency[e] = values['scattering_efficiency'] absorption_efficiency[e] = values['extinction_efficiency'] - values['scattering_efficiency'] extinction_crossection[e] = values['extinction_crosssection'] scattering_crossection[e] = values['scattering_crosssection'] absorption_crossection[e] = values['extinction_crosssection'] - values['scattering_crosssection'] # phase_function_natural[d] = values['phaseFct_natural']['Phase_function_natural'].values angular_scattering_natural[d] = mie.get_angular_scatt_func().natural.values # print('\n') # phase_function_natural.index = values['phaseFct_natural'].index angular_scattering_natural.index = mie.get_angular_scatt_func().index out = pd.DataFrame(index=diam) out['extinction_efficiency'] = pd.Series(extinction_efficiency, index=diam) out['scattering_efficiency'] = pd.Series(scattering_efficiency, index=diam) out['absorption_efficiency'] = pd.Series(absorption_efficiency, index=diam) out['extinction_crossection'] = pd.Series(extinction_crossection, index=diam) out['scattering_crossection'] = pd.Series(scattering_crossection, index=diam) out['absorption_crossection'] = pd.Series(absorption_crossection, index=diam) return out, angular_scattering_natural
4ce8fa518477c3eb38816d8f441207716b3a90df
3,659,037
from typing import Tuple def load_config_dict(pipette_id: str) -> Tuple[ 'PipetteFusedSpec', 'PipetteModel']: """ Give updated config with overrides for a pipette. This will add the default value for a mutable config before returning the modified config value. """ override = load_overrides(pipette_id) model = override['model'] config = fuse_specs(model) if 'quirks' not in override.keys(): override['quirks'] = {key: True for key in config['quirks']} for top_level_key in config.keys(): if top_level_key != 'quirks': add_default(config[top_level_key]) # type: ignore config.update(override) # type: ignore return config, model
485db2aad493eda30e6dad07b3d6c9413bc5c3c8
3,659,038
def ErrorAddEncKey(builder, encKey): """This method is deprecated. Please switch to AddEncKey.""" return AddEncKey(builder, encKey)
c39bb36b3923ca1a0e508b23ef84a6de130700a3
3,659,039
def _read_txs_from_file(f): """ Validate headers and read buy/sell transactions from the open file-like object 'f'. Note: we use the seek method on f. """ ans = [] f.seek(0) workbook = openpyxl.load_workbook(f) sheet = workbook.active all_contents = list(sheet.rows) _validate_header(all_contents[0]) contents = all_contents[1:] for row in contents: item = _tx_from_gemini_row(row) if item is not None: ans.append(item) return ans
0c62c647a2ff1a797fb5e8593279bbf64bc0d495
3,659,040
from typing import Union def get_generator_regulation_lower_term_4(data, trader_id, intervention) -> Union[float, None]: """Get L5RE term 4 in FCAS availability calculation""" # Term parameters enablement_min = get_effective_enablement_min(data, trader_id, 'L5RE') energy_target = lookup.get_trader_solution_attribute(data, trader_id, '@EnergyTarget', float, intervention) lower_slope_coefficient = get_lower_slope_coefficient(data, trader_id, 'L5RE') # Ignore limit if slope coefficient = 0 if lower_slope_coefficient == 0: return None return 0 if (lower_slope_coefficient is None) else (energy_target - enablement_min) / lower_slope_coefficient
626ab26f92feefea25777046c1fc37c4115f7be8
3,659,041
def count_parameters(model): """count model parameters""" return sum(p.numel() for p in model.parameters() if p.requires_grad)
5edcb3ee03794cb66f5986670c4825efab93a1d8
3,659,042
def string_rule_variable(label=None, params=None, options=None, public=True): """ Decorator to make a function into a string rule variable. NOTE: add **kwargs argument to receive Rule as parameters :param label: Label for Variable :param params: Parameters expected by the Variable function :param options: Options parameter to specify expected options for the variable. The value used in the Condition IS NOT checked against this list. :param public: Flag to identify if a variable is public or not :return: Decorator function wrapper """ return _rule_variable_wrapper(StringType, label, params=params, options=options, public=public)
3bd35ac2e27c58ee35f7e13bb359cb8240f8efda
3,659,043
def detect_horizon_lines(image_thre, row, busbar, cell_size, thre=0.6, split=50, peak_interval=None, margin=None): """ Detect horizontal edges by segmenting image into vertical splits Parameters --------- image_thre: array Adaptive threshold of raw images row: int Number of rows of solar module busbar: int Number of busbars of a solar cell cell_size: int Output cell size in pixel thre: float Peak intensity above THRE will be set as 1. Note that the edge's peak intensity should be lowest because edges are black split: int Number of splits peak_interval: int Distance between each peak. Returns ------- hline_abs_couple: array Suppose a line is y=a*x+b. Return 'a' and 'b' of a couple edges (top and bottom of a cell). """ #width = image_thre.shape[1] #end = int(width / split) #image_vsplits = np.hsplit(image_thre[:, :end * split], split) # vertical splits #image_vsplits.append(image_thre[:, end * split:]) image_vsplits = split_img(image_thre, split=split, direction=1) edge_y = [] inx_x = [] for inx, im_split in enumerate(image_vsplits): #sum_split = np.sum(im_split, axis=1) #sum_split = sum_split / np.max(sum_split) #sum_split[sum_split > thre] = 1 #if peak_interval is None: # peak_interval = int(cell_size / (busbar + 1) * 0.5) #peak, _ = find_peaks(-1 * sum_split, distance=peak_interval) peak = detect_peaks(im_split, 1, cell_size, busbar, thre, peak_interval, margin=margin) if len(peak) >= row * (busbar + 1) - 1: peak_new = [peak[0]] for i in range(1, len(peak) - 1): if np.abs(peak[i] - peak[i + 1]) < 15: peak_mean = (peak[i] + peak[i + 1]) / 2 peak_new.append(peak_mean) elif np.abs(peak[i] - peak[i - 1]) > 15: peak_new.append(peak[i]) peak_new.append(peak[-1]) peak_new = np.array(peak_new) peak_new_a = np.delete(peak_new, 0) peak_new_b = np.delete(peak_new, -1) peak_new_detect = peak_new[detectoutliers(np.abs(peak_new_a - peak_new_b), rate=0.5, option=1)] if len(peak_new_detect) == (busbar + 1) * row + 1: edge_y.append(peak_new_detect) inx_mean = ((2 * inx + 1) * (image_thre.shape[1] / split) - 1) / 2 inx_x.append(inx_mean) edge_y = np.array(edge_y) hlines = list(zip(*edge_y)) hlines = np.array(hlines) inx_x = np.array(inx_x) # for lines in hlines: # lines_new = self.detectoutliers(lines, option=0) # while np.std(lines_new) > 10: # lines_new = self.detectoutliers(lines, rate=1, option=0) # hb_abs = [] # all lines including busbar hb_abs = linear_regression(inx_x, hlines, outlier_filter=True) hline_abs_couple = [] # all lines excluding busbar # for horizonline in hlines: # ab, _ = curve_fit(self.linear, inx_x, horizonline) # y = ax + b # hb_abs.append(ab) hline_abs_couple = [(hb_abs[(busbar + 1) * i], hb_abs[(busbar + 1) * (i + 1)]) for i in range(row)] # hline_abs = [(hb_abs[(4+1)*i],hb_abs[(4+1)*(i+1)]) for i in range(6)] # hline_abs = [(hb_abs[(self.busbar+2)*i],hb_abs[(self.busbar+2)*(i+1)-1]) for i in range(self.row)] return hline_abs_couple
e8365b29829d6e1a71c4c9caefff221d9357b0a3
3,659,044
def countRoem(cards, trumpSuit=None): """Counts the amount of roem (additional points) in a list of cards Args: Returns: Integer value how many points of roem are in the cards in total """ roem = 0 # Stuk # Without a trumpSuit, stuk is impossible if trumpSuit is not None: #trumpKing = list(filter(lambda c: c.suit == trumpSuit and c.rank == 4, cards)) #trumpQueen = list(filter(lambda c: c.suit == trumpSuit and c.rank == 5, cards)) trumpKing = [card for card in cards if card.suit == trumpSuit and card.rank == 4] trumpQueen = [card for card in cards if card.suit == trumpSuit and card.rank == 5] if trumpKing and trumpQueen: roem += 20 # Normal roem # For each suit we check whether there are 3 cards in that suit, if so there is chance for roem for i in range(4): #cardsInSuit = list(filter(lambda c: c.suit == i, cards)) cardsInSuit = [card for card in cards if card.suit == i] if len(cardsInSuit) >= 3: cards = cardsInSuit # We sort the list and check the difference between consecutive cards cards.sort(key=lambda c: c.rank) subtractList = [] for i in range(len(cards) - 1): #subtract = abs(cards[i].roemRank - cards[i+1].roemRank) subtract = abs(ROEMRANKS[cards[i].rank] - ROEMRANKS[cards[i].rank]) subtractList.append(subtract) # If more than 1 difference equals 1, we know at least 3 cards have consecutive ranks #lenOfOnes = len(list(filter(lambda x: x == 1, subtractList))) lenOfOnes = len([x for x in subtractList if x == 1]) if lenOfOnes == 2: roem += 20 elif lenOfOnes == 3: roem += 50 return roem
31e2dbf346801fa81e5a5905a480f6d5b8e9ce1a
3,659,045
from typing import Optional def batch_to_space( data: NodeInput, block_shape: NodeInput, crops_begin: NodeInput, crops_end: NodeInput, name: Optional[str] = None, ) -> Node: """Perform BatchToSpace operation on the input tensor. BatchToSpace permutes data from the batch dimension of the data tensor into spatial dimensions. :param data: Node producing the data tensor. :param block_shape: The sizes of the block of values to be moved. :param crops_begin: Specifies the amount to crop from the beginning along each axis of `data`. :param crops_end: Specifies the amount to crop from the end along each axis of `data`. :param name: Optional output node name. :return: The new node performing a BatchToSpace operation. """ return _get_node_factory_opset2().create( "BatchToSpace", as_nodes(data, block_shape, crops_begin, crops_end), )
fe7004243e7c4a6dfd78b1f39df22ba7290c9244
3,659,046
def url_in(url): """ Send a URL and I'll post it to Hive """ custom_json = {'url': url} trx_id , success = send_notification(custom_json) return trx_id, success
ecfcb02cdbd9050a5a305f38d9673d64b9b1d307
3,659,047
def login(): """ Display a basic login form in order to log in a user """ if request.method == 'GET': return render_template('login.html') else: try: usr = User.query.get(request.form['user_id']) if bcrypt.checkpw(request.form['user_password'].encode('utf-8'),usr.password): login_user(usr, remember=True) flash('Logged in successfully') return redirect(session['next_url']) except Exception as e: print("Sorry this user don't exist") print(e) return render_template('login.html')
37702dc290d627544d5714ed21d8804eaa00f354
3,659,048
def hflip(stream): """Flip the input video horizontally. Official documentation: `hflip <https://ffmpeg.org/ffmpeg-filters.html#hflip>`__ """ return FilterNode(stream, hflip.__name__).stream()
140f7d4ceecee09e5f0ba7db9a68cee15e536ffa
3,659,049
def get_diagonal_ripple_rainbows_2(): """ Returns 11 diagonal ripple rainbows Programs that use this function: - Diagonal Ripple 3 - Diagonal Ripple 4 """ rainbow01 = [ [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1H, C2, C3, C4, C5, C6, C7, C8] ] rainbow02 = [ [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1H, C2, C3, C4, C5, C6, C7, C8], [C1, C2H, C3, C4, C5, C6, C7, C8] ] rainbow03 = [ [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1H, C2, C3, C4, C5, C6, C7, C8], [C1, C2H, C3, C4, C5, C6, C7, C8], [C1, C2, C3H, C4, C5, C6, C7, C8] ] rainbow04 = [ [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1H, C2, C3, C4, C5, C6, C7, C8], [C1, C2H, C3, C4, C5, C6, C7, C8], [C1, C2, C3H, C4, C5, C6, C7, C8], [C1, C2, C3, C4H, C5, C6, C7, C8] ] rainbow05 = [ [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1H, C2, C3, C4, C5, C6, C7, C8], [C1, C2H, C3, C4, C5, C6, C7, C8], [C1, C2, C3H, C4, C5, C6, C7, C8], [C1, C2, C3, C4H, C5, C6, C7, C8], [C1, C2, C3, C4, C5H, C6, C7, C8] ] rainbow06 = [ [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1H, C2, C3, C4, C5, C6, C7, C8], [C1, C2H, C3, C4, C5, C6, C7, C8], [C1, C2, C3H, C4, C5, C6, C7, C8], [C1, C2, C3, C4H, C5, C6, C7, C8], [C1, C2, C3, C4, C5H, C6, C7, C8], [C1, C2, C3, C4, C5, C6H, C7, C8] ] rainbow07 = [ [C1, C2, C3, C4, C5, C6, C7, C8], [C1H, C2, C3, C4, C5, C6, C7, C8], [C1, C2H, C3, C4, C5, C6, C7, C8], [C1, C2, C3H, C4, C5, C6, C7, C8], [C1, C2, C3, C4H, C5, C6, C7, C8], [C1, C2, C3, C4, C5H, C6, C7, C8], [C1, C2, C3, C4, C5, C6H, C7, C8], [C1, C2, C3, C4, C5, C6, C7H, C8] ] rainbow08 = [ [C1H, C2, C3, C4, C5, C6, C7, C8], [C1, C2H, C3, C4, C5, C6, C7, C8], [C1, C2, C3H, C4, C5, C6, C7, C8], [C1, C2, C3, C4H, C5, C6, C7, C8], [C1, C2, C3, C4, C5H, C6, C7, C8], [C1, C2, C3, C4, C5, C6H, C7, C8], [C1, C2, C3, C4, C5, C6, C7H, C8], [C1, C2, C3, C4, C5, C6, C7, C8H] ] rainbow09 = [ [C1, C2H, C3, C4, C5, C6, C7, C8], [C1, C2, C3H, C4, C5, C6, C7, C8], [C1, C2, C3, C4H, C5, C6, C7, C8], [C1, C2, C3, C4, C5H, C6, C7, C8], [C1, C2, C3, C4, C5, C6H, C7, C8], [C1, C2, C3, C4, C5, C6, C7H, C8], [C1, C2, C3, C4, C5, C6, C7, C8H], [C1, C2, C3, C4, C5, C6, C7, C8] ] rainbow10 = [ [C1, C2, C3H, C4, C5, C6, C7, C8], [C1, C2, C3, C4H, C5, C6, C7, C8], [C1, C2, C3, C4, C5H, C6, C7, C8], [C1, C2, C3, C4, C5, C6H, C7, C8], [C1, C2, C3, C4, C5, C6, C7H, C8], [C1, C2, C3, C4, C5, C6, C7, C8H], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8] ] rainbow11 = [ [C1, C2, C3, C4H, C5, C6, C7, C8], [C1, C2, C3, C4, C5H, C6, C7, C8], [C1, C2, C3, C4, C5, C6H, C7, C8], [C1, C2, C3, C4, C5, C6, C7H, C8], [C1, C2, C3, C4, C5, C6, C7, C8H], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8] ] rainbow12 = [ [C1, C2, C3, C4, C5H, C6, C7, C8], [C1, C2, C3, C4, C5, C6H, C7, C8], [C1, C2, C3, C4, C5, C6, C7H, C8], [C1, C2, C3, C4, C5, C6, C7, C8H], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8] ] rainbow13 = [ [C1, C2, C3, C4, C5, C6H, C7, C8], [C1, C2, C3, C4, C5, C6, C7H, C8], [C1, C2, C3, C4, C5, C6, C7, C8H], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8] ] rainbow14 = [ [C1, C2, C3, C4, C5, C6, C7H, C8], [C1, C2, C3, C4, C5, C6, C7, C8H], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8] ] rainbow15 = [ [C1, C2, C3, C4, C5, C6, C7, C8H], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8], [C1, C2, C3, C4, C5, C6, C7, C8] ] return rainbow01, rainbow02, rainbow03, rainbow04, rainbow05, \ rainbow06, rainbow07, rainbow08, rainbow09, rainbow10, \ rainbow11, rainbow12, rainbow13, rainbow14, rainbow15
ce917a063de580b2fcacfe2b59991585aefe30a4
3,659,050
def matrix_prod(A, B, display = False): """ Computes the matrix product of two matrices using array slicing and vector operations. """ if A.shape[1] != B.shape[0]: raise ValueError("Dimensions not compatible.") # Not allowed!? #matrix = A.dot(B) # Dotproduct of each A.row*B.clm matrix = np.array([[np.sum(A[i,:]*B[:,j]) for j in range(B.shape[1])] for i in range(A.shape[0])]) if display: print(matrix) return matrix
c38c3c3c9b1d2cc3edf6efb1997fe94a15c870ec
3,659,051
def remove_quat_discontinuities(rotations): """ Removing quat discontinuities on the time dimension (removing flips) :param rotations: Array of quaternions of shape (T, J, 4) :return: The processed array without quaternion inversion. """ rots_inv = -rotations for i in range(1, rotations.shape[0]): # Compare dot products replace_mask = np.sum(rotations[i - 1: i] * rotations[i: i + 1], axis=-1) < np.sum( rotations[i - 1: i] * rots_inv[i: i + 1], axis=-1) replace_mask = replace_mask[..., np.newaxis] rotations[i] = replace_mask * rots_inv[i] + (1.0 - replace_mask) * rotations[i] return rotations
7d3874f5c56f82f3a8951daef48ac115f7f8943a
3,659,052
import glob def compute_profile_from_frames(frames_str, ax, bt, box, N_bins=100, \ shift=None, verbose=False): """ Compute a density profile from a batch of xyz frames. Input ===== - frames_str: a regex containing frames in xyz format - ax: axis along which to compute the profile - bt: bead type - box: box size, a (3, 3) matrix - N_bins: number of bins Output ====== - r: position vector - pr: density profile vector """ frames = glob.glob(frames_str) assert len(frames) != 0, "No xyz frames captured." Nf = len(frames) N = int(open(frames[0], "r").readline()) if verbose: print(frames) L = np.diag(box) bins = np.linspace(0, L[ax], N_bins + 1) dr = bins[1] - bins[0] r = dr / 2.0 + bins[:-1] Lsurf = L[list(set(range(3)).difference([ax]))] # cross-sectional surface pr = np.zeros_like(r) for frame in frames: bl, X0 = read_xyz(frame) if shift is not None: assert len(shift) == 3, "Vector of shifting must be of size 3." shift = np.array(shift) X0 = X0 + shift X0 = X0 % L if bt == -1: X = X0 else: X = X0[bl == bt] pr += np.histogram(X[:, ax], bins=bins)[0] pr = pr / (dr * np.prod(Lsurf)) / Nf return r, pr
70702dbcf73f2a7e9894899ca20f81eadc3046fe
3,659,053
import urllib import requests import json def wikipedia_search(query, lang="en", max_result=1): """ https://www.mediawiki.org/wiki/API:Opensearch """ query = any2unicode(query) params = { "action":"opensearch", "search": query, "format":"json", #"formatversion":2, #"namespace":0, "suggest":"true", "limit": 10 } urlBase = "https://{}.wikipedia.org/w/api.php?".format(lang) url = urlBase + urllib.urlencode(any2utf8(params)) #logging.info(url) r = requests.get(url) jsonData = json.loads(r.content) #logging.info(jsonData) items = [] ret = {"query":query, "itemList":items} for idx, label in enumerate(jsonData[1][0:max_result]): description = jsonData[2][idx] url = jsonData[3][idx] item = { "name": label, "description":description, "url": url, } items.append(item) return ret
e88b50c11d78989e086417d15e91515d24151586
3,659,054
def group_result(result, func): """ :param result: A list of rows from the database: e.g. [(key, data1), (key, data2)] :param func: the function to reduce the data e.g. func=median :return: the data that is reduced. e.g. [(key, (data1+data2)/2)] """ data = {} for key, value in result: if key in data.keys(): data[key].append(value) else: data[key] = [value] for key in data: data[key] = func(data[key]) return data.items()
7687521c216210badcda5ee54bd59a3bc6a234bd
3,659,055
import torch def prep_image(img, inp_dim): """ Prepare image for inputting to the neural network. Returns a Variable """ orig_im = img dim = orig_im.shape[1], orig_im.shape[0] img = cv2.resize(orig_im, (inp_dim, inp_dim)) # img_ = img[:,:,::-1].transpose((2,0,1)).copy() img_ = img.transpose((2,0,1)).copy() img_ = torch.from_numpy(img_).float().div(255.0).unsqueeze(0) return img_, orig_im, dim
65159c8ce3a2df3cb09a6f1f318bb3374943e314
3,659,056
import uuid def extractLogData(context): """ helper function to extract all important data from the web context. :param context: the web.py context object :return: a dictionary with all information for the logging. """ logData = {} logData['ip'] = context.ip logData['account'] = context.env.get('HTTP_RUCIO_ACCOUNT') logData['appid'] = 'clients' # has to changed, but atm no appid is send with the clients logData['clientref'] = context.env.get('HTTP_RUCIO_CLIENTREF') logData['uri'] = context.method + ' ' + context.protocol + "://" + context.host + context.homepath + context.fullpath logData['requestid'] = uuid() logData['requestHeader'] = context.env logData['responseHeader'] = '' logData['httpCode'] = '' logData['duration'] = '' return logData
5fb68d4f19dae0b7175a089dd1366cab0407152b
3,659,057
def Backbone(backbone_type='ResNet50', use_pretrain=True): """Backbone Model""" weights = None if use_pretrain: weights = 'imagenet' def backbone(x_in): if backbone_type == 'ResNet50': return ResNet50(input_shape=x_in.shape[1:], include_top=False, weights=weights)(x_in) elif backbone_type == 'MobileNetV2': return MobileNetV2(input_shape=x_in.shape[1:], include_top=False, weights=weights)(x_in) else: raise TypeError('backbone_type error!') return backbone
23bc493e8306d5dc5dba33cd2f67de231cbb3e02
3,659,058
def start(ctx, vca_client, **kwargs): """ power on server and wait network connection availability for host """ # combine properties obj = combine_properties( ctx, kwargs=kwargs, names=['server'], properties=[VCLOUD_VAPP_NAME, 'management_network']) # get external if obj.get('use_external_resource'): ctx.logger.info('not starting server since an external server is ' 'being used') else: vapp_name = get_vapp_name(ctx.instance.runtime_properties) config = get_vcloud_config() vdc = vca_client.get_vdc(config['vdc']) vapp = vca_client.get_vapp(vdc, vapp_name) _power_on_vm(ctx, vca_client, vapp, vapp_name) if not _get_state(ctx=ctx, vca_client=vca_client): return ctx.operation.retry( message="Waiting for VM's configuration to complete", retry_after=5)
6e3e3a94095ef200e586f7dfdc7e117ae3ee375f
3,659,059
def softplus(z): """Numerically stable version of log(1 + exp(z)).""" # see stabilizing softplus: http://sachinashanbhag.blogspot.com/2014/05/numerically-approximation-of-log-1-expy.html # noqa mu = z.copy() mu[z > 35] = z[z > 35] mu[z < -10] = np.exp(z[z < -10]) mu[(z >= -10) & (z <= 35)] = log1p(np.exp(z[(z >= -10) & (z <= 35)])) return mu
f683c1f2240d053c4ee2c24f64ff5576c0d9d32d
3,659,060
from typing import Mapping from typing import Hashable from typing import Union from typing import Sequence from typing import Set from typing import Tuple from typing import OrderedDict from typing import Any def merge_indexes( indexes: Mapping[Hashable, Union[Hashable, Sequence[Hashable]]], variables: Mapping[Hashable, Variable], coord_names: Set[Hashable], append: bool = False, ) -> "Tuple[OrderedDict[Any, Variable], Set[Hashable]]": """Merge variables into multi-indexes. Not public API. Used in Dataset and DataArray set_index methods. """ vars_to_replace = {} # Dict[Any, Variable] vars_to_remove = [] # type: list error_msg = "{} is not the name of an existing variable." for dim, var_names in indexes.items(): if isinstance(var_names, str) or not isinstance(var_names, Sequence): var_names = [var_names] names, codes, levels = [], [], [] # type: (list, list, list) current_index_variable = variables.get(dim) for n in var_names: try: var = variables[n] except KeyError: raise ValueError(error_msg.format(n)) if ( current_index_variable is not None and var.dims != current_index_variable.dims ): raise ValueError( "dimension mismatch between %r %s and %r %s" % (dim, current_index_variable.dims, n, var.dims) ) if current_index_variable is not None and append: current_index = current_index_variable.to_index() if isinstance(current_index, pd.MultiIndex): try: current_codes = current_index.codes except AttributeError: # fpr pandas<0.24 current_codes = current_index.labels names.extend(current_index.names) codes.extend(current_codes) levels.extend(current_index.levels) else: names.append("%s_level_0" % dim) cat = pd.Categorical(current_index.values, ordered=True) codes.append(cat.codes) levels.append(cat.categories) if not len(names) and len(var_names) == 1: idx = pd.Index(variables[var_names[0]].values) else: for n in var_names: try: var = variables[n] except KeyError: raise ValueError(error_msg.format(n)) names.append(n) cat = pd.Categorical(var.values, ordered=True) codes.append(cat.codes) levels.append(cat.categories) idx = pd.MultiIndex(levels, codes, names=names) vars_to_replace[dim] = IndexVariable(dim, idx) vars_to_remove.extend(var_names) new_variables = OrderedDict( [(k, v) for k, v in variables.items() if k not in vars_to_remove] ) new_variables.update(vars_to_replace) new_coord_names = coord_names | set(vars_to_replace) new_coord_names -= set(vars_to_remove) return new_variables, new_coord_names
b893d118312697d1995a0a42bbff8354b73ca642
3,659,061
def least_squares(m, n): """ Create a least squares problem with m datapoints and n dimensions """ A = np.random.randn(m, n) _x = np.random.randn(n) b = A.dot(_x) x = cp.Variable(n) return (x, cp.Problem(cp.Minimize(cp.sum_squares(A * x - b) + cp.norm(x, 2))))
21b3b4577ec232f6e74d1f096946d0923f867cf7
3,659,062
import sys def getRef(refFile): """Returns a genome reference.""" refDict={} hdList=[] ref='' num=0 try: f=open(refFile) except IOError: errlog.error('Cannot find reference file ' +refFile+'. Please check pathname.') sys.exit('Cannot find reference file '+refFile+'. Please check pathname.') i=f.readline() head=i[1:51].rstrip() i=f.readline().rstrip() while i: if i[0]!='>': ref+=i.rstrip() i=f.readline() else: if head in hdList: num+=1 head=head+str(num) ref=ref.upper() for l in 'RYMKSWHBVD': ref=ref.replace(l,'N') refDict[head]=ref hdList.append(head) head=i[1:51].rstrip() i=f.readline() ref='' ref=ref.upper() for l in 'RYMKSWHBVD': ref=ref.replace(l,'N') refDict[head]=ref errlog.debug('Reference file successfully parsed.') return refDict
bd6f149662077acff88f42029c87deab08e92331
3,659,063
import os def cleanup_path(paths, removedir=True): """ remove unreable files and directories from the input path collection, skipped include two type of elements: unwanted directories if removedir is True or unaccessible files/directories """ checked = [] skipped = [] for ele in paths: ele = os.path.abspath(ele) if os.path.exists(ele) and os.access(ele, os.R_OK): if os.path.isdir(ele) and removedir: skipped.append(ele) else: checked.append(ele) else: skipped.append(ele) return checked, skipped
36105a4617ea0cfffc870dd083540f81aaf56079
3,659,064
def expand_amn(a, kpoints, idx, Rvectors, nproj_atom=None): """ Expand the projections matrix by translations of the orbitals Parameters ---------- a : ndarray, shape (nkpts, nbnds, nproj) kpoints : ndarray, shape (nkpts, 3) idx : ndarray indices of translated orbitals Rvectors: ndarray translation vectors for the orbitals nproj_atom: ndarray, optional number of projections on each atom, with idx and Rvectors now describing atoms instead of orbitals """ assert len(Rvectors) == len(idx) if nproj_atom is not None: assert len(nproj_atom) == len(idx) idx_new = [] Rvectors_new = [] for iatom, i in enumerate(idx): offset = np.sum(nproj_atom[:i]) for j in range(nproj_atom[i]): idx_new.append(offset+j) Rvectors_new.append(Rvectors[iatom]) idx = idx_new Rvectors = Rvectors_new nkpts, nbnds, nproj = a.shape a1 = np.zeros((nkpts, nbnds, len(idx)), dtype=complex) k_dot_R = np.einsum('ki,ri->kr', kpoints, Rvectors) exp_factors = np.exp(-1j * 2*np.pi * k_dot_R) a1 = a[:, :, idx] * exp_factors[:, np.newaxis, :] return a1
d68a7cd4cb019b2d516305d0b6a2b45f6a422ba8
3,659,065
def combine_basis_vectors(weights, vectors, default_value=None, node_num=None): """ Combine basis vectors using ``weights`` as the Manning's n value for each basis vector. If a ``default_value`` is set then all nodes with out data are set to the ``default_value``. :type weights: :class:`numpy.ndarray` :param weights: array of size (num_of_basis_vec, 1) :type vectors: list of dicts OR :class:`numpy.ndarray` of size (node_num, num_of_basis_vec) :param vectors: basis vectors :returns: an array of size (node_num, 1) containing the manningsn value at all nodes in numerical order or a dictionary """ if len(weights) != len(vectors): raise LenError('weights, vectors', 'dimensions do not match') if isinstance(vectors[0], np.array): combine_bv_array(weights, vectors) elif default_value and node_num: return dict_to_array(add_dict(vectors, weights)[0], default_value, node_num) else: return add_dict(vectors, weights)[0]
50a0cc5ba8ad88a480fc589f6fbe184548700485
3,659,066
from typing import List from typing import Tuple from typing import Any def _prepare_data_for_node_classification( graph: nx.Graph, seed_node: int ) -> List[Tuple[Any, Any]]: """ Position seed node as the first node in the data. TensorFlow GNN has a convention whereby the node to be classified, the "seed node", is positioned first in the component. This is for use with layers such as `tfgnn.keras.layers.ReadoutFirstNode` which extracts the first node from a component. """ seed_data = graph.nodes(data=True)[seed_node] data = [(seed_data["features"], seed_data["label"])] data += [ (data["features"], data["label"]) for node, data in graph.nodes(data=True) if node != seed_node ] return data
3ed718e583d9e96b2c5bd28e5640c36e5e009065
3,659,067
import logging def init(): """ Init the application and add routes """ logging.basicConfig(format='%(asctime)s: [%(levelname)s]: %(message)s', level=logging.DEBUG) global theconfig theconfig = get_config() global rc rc = init_redis(theconfig) app = default_app() return app
c9c8694bf389fb52572ccd43a83d7c410a3538a2
3,659,068
def norm_potential(latitude, longitude, h, refell, lmax): """ Calculates the normal potential at a given latitude and height Arguments --------- latitude: latitude in degrees longitude: longitude in degrees height: height above reference ellipsoid in meters refell: reference ellipsoid name lmax: maximum spherical harmonic degree Returns ------- U: normal potential at height h dU_dr: derivative of normal potential with respect to radius dU_dtheta: derivative of normal potential with respect to theta """ #-- get ellipsoid parameters for refell ellip = ref_ellipsoid(refell) a = np.float128(ellip['a']) ecc1 = np.float128(ellip['ecc1']) GM = np.float128(ellip['GM']) J2 = np.float128(ellip['J2']) #-- convert from geodetic latitude to geocentric latitude latitude_geodetic_rad = (np.pi*latitude/180.0).astype(np.float128) longitude_rad = (np.pi*longitude/180.0).astype(np.float128) N = a/np.sqrt(1.0 - ecc1**2.0*np.sin(latitude_geodetic_rad)**2.0) X = (N + h) * np.cos(latitude_geodetic_rad) * np.cos(longitude_rad) Y = (N + h) * np.cos(latitude_geodetic_rad) * np.sin(longitude_rad) Z = (N * (1.0 - ecc1**2.0) + h) * np.sin(latitude_geodetic_rad) rr = np.sqrt(X**2.0 + Y**2.0 + Z**2.0) latitude_geocentric = np.arctan(Z / np.sqrt(X**2.0 + Y**2.0)) #-- calculate even zonal harmonics n = np.arange(2, 12+2, 2, dtype=np.float128) J2n = cosine_even_zonals(J2, ecc1, n/2.0) #-- normalized cosine harmonics: Cn = -Jn/np.sqrt(2.0*n+1.0) #-- J2 = 0.108262982131e-2 C_2 = -J2n[0]/np.sqrt(5.0) #-- J4 = -0.237091120053e-5 C_4 = -J2n[1]/np.sqrt(9.0) #-- J6 = 0.608346498882e-8 C_6 = -J2n[2]/np.sqrt(13.0) #-- J8 = -0.142681087920e-10 C_8 = -J2n[3]/np.sqrt(17.0) #-- J10 = 0.121439275882e-13 C_10 = -J2n[4]/np.sqrt(21.0) #-- J12 = 0.205395070709e-15 C_12 = -J2n[5]/np.sqrt(25.0) #-- calculate legendre polynomials at latitude and their first derivative Pl,dPl = legendre_polynomials(lmax, np.sin(latitude_geocentric), ASTYPE=np.float128) #-- normal potentials and derivatives U = (GM/rr) * (1.0 + (a/rr)**2.*C_2*Pl[2,:] + (a/rr)**4.*C_4*Pl[4,:] + \ (a/rr)**6.*C_6*Pl[6,:] + (a/rr)**8.*C_8*Pl[8,:] + \ (a/rr)**10.*C_10*Pl[10,:] + (a/rr)**12.*C_12*Pl[12,:]) dU_dr = GM * (-1.0 / rr**2.0 - 3.0*(a**2.0/rr**4.0)*C_2*Pl[2,:] - \ 5.0*(a**4.0/rr**6.0)*C_4*Pl[4,:] -7.0*(a**6.0/rr**8.0)*C_6*Pl[6,:] - \ 9.0*(a**8.0/rr**10.)*C_8*Pl[8,:] -11.*(a**10./rr**12.)*C_10*Pl[10,:] - \ 13.*(a**12./rr**14.)*C_12*Pl[12,:]) dU_dtheta = (GM/rr) * (1.0 + (a/rr)**2.0*C_2*dPl[2,:] + \ (a/rr)**4.0*C_4*dPl[4,:] + (a/rr)**6.0*C_6*dPl[6,:] + \ (a/rr)**8.0*C_8*dPl[8,:] + (a/rr)**10.0*C_10*dPl[10,:] + \ (a/rr)**12.0*C_12*dPl[12,:]) #-- return the potentials return (U, dU_dr, dU_dtheta)
5fc9f26a206c4fced5ebd434c84dda26621c08dc
3,659,069
import os import glob def _findPlugInfo(rootDir): """ Find every pluginInfo.json files below the root directory. :param str rootDir: the search start from here :return: a list of files path :rtype: [str] """ files = [] for root, dirnames, filenames in os.walk(rootDir): files.extend(glob.glob(root + '/plugInfo.json')) return files
d3367d8f71598d1fa1303baec0d4f6803b1293b2
3,659,070
def get_pp_gene_chains(chain_class_file, v=False): """Get gene: pp chains dict.""" gene_to_pp_chains = defaultdict(list) # init the dict f = open(chain_class_file, "r") # open file with classifications f.__next__() # skip header for line in f: line_data = line.rstrip().split("\t") # line contains the following fields" # gene orthologs paralogs trans p_pseudogenes trans = line_data[0] # proc_pseudogene chains are in the 4th field pp_genes_field = line_data[4] if pp_genes_field == "0": # it 0 -> no ppgene chains -> skip continue # parse comma-separated string and save to dict pp_genes = [int(x) for x in pp_genes_field.split(",") if x != ""] gene_to_pp_chains[trans] = pp_genes f.close() if v: verbose(f"Extracted {len(gene_to_pp_chains)} genes with proc pseudogenes") return gene_to_pp_chains
d09fe5f7e8aaed0b8aa46593931b3cda655f56e3
3,659,071
import os import fnmatch def rec_search(wildcard): """ Traverse all subfolders and match files against the wildcard. Returns: A list of all matching files absolute paths. """ matched = [] for dirpath, _, files in os.walk(os.getcwd()): fn_files = [os.path.join(dirpath, fn_file) for fn_file in fnmatch.filter(files, wildcard)] matched.extend(fn_files) return matched
47e8bd48956de87a72c996795f94b69979bf992f
3,659,072
def skip_object(change_mode, change): """ If `Mode` is `change`: we do not care about the `Conditions` Else: If `cfn` objects: - We can omit the `Conditions`, objects will be involed when `Mode` is `provision` or `destroy`. (Original design. Backward compatibility.) - In case `Conditions` is declared, objects will be involed when `Mode` matches with `Conditions`. If `aws` objects: we must declare `Conditions` and match with `Mode`, or else the engine will skip that Object/Block. OR If `Mode` is `change`: we do not care about the `Conditions` Else: If we omit the `Conditions`: - Only `cfn` objects are involed when `Mode` is `provision` or `destroy`. (Original design. Backward compatibility.) - Others will be skipped. Else: Objects will be involed when `Mode` matches with `Conditions`. Return: - `True` means skipped - `False` means involved """ if (change_mode!=CHANGE_MODE_CHANGE): if ('Conditions' not in change): if (change['Object']==STR_CFN) and (change_mode in [CHANGE_MODE_PROVISION,CHANGE_MODE_DESTROY]): return False return True elif (change_mode not in change['Conditions']): return True return False
a80365acc6f3390818f4c56a44ad4923f771fcee
3,659,073
def rootfinder(*args): """ rootfinder(str name, str solver, dict:SX rfp, dict opts) -> Function Create a solver for rootfinding problems Takes a function where one of the rootfinder(str name, str solver, dict:MX rfp, dict opts) -> Function rootfinder(str name, str solver, Function f, dict opts) -> Function > rootfinder(str name, str solver, dict:SX rfp, dict opts) ------------------------------------------------------------------------ Create a solver for rootfinding problems Takes a function where one of the inputs is unknown and one of the outputs is a residual function that is always zero, defines a new function where the the unknown input has been replaced by a guess for the unknown and the residual output has been replaced by the calculated value for the input. For a function [y0, y1, ...,yi, .., yn] = F(x0, x1, ..., xj, ..., xm), where xj is unknown and yi=0, defines a new function [y0, y1, ...,xj, .., yn] = G(x0, x1, ..., xj_guess, ..., xm), xj and yi must have the same dimension and d(yi)/d(xj) must be invertable. By default, the first input is unknown and the first output is the residual. General information =================== >List of available options +------------------+-----------------+------------------+------------------+ | Id | Type | Description | Used in | +==================+=================+==================+==================+ | common_options | OT_DICT | Options for | casadi::OracleFu | | | | auto-generated | nction | | | | functions | | +------------------+-----------------+------------------+------------------+ | constraints | OT_INTVECTOR | Constrain the | casadi::Rootfind | | | | unknowns. 0 | er | | | | (default): no | | | | | constraint on | | | | | ui, 1: ui >= | | | | | 0.0, -1: ui <= | | | | | 0.0, 2: ui > | | | | | 0.0, -2: ui < | | | | | 0.0. | | +------------------+-----------------+------------------+------------------+ | error_on_fail | OT_BOOL | When the | casadi::Rootfind | | | | numerical | er | | | | process returns | | | | | unsuccessfully, | | | | | raise an error | | | | | (default false). | | +------------------+-----------------+------------------+------------------+ | implicit_input | OT_INT | Index of the | casadi::Rootfind | | | | input that | er | | | | corresponds to | | | | | the actual root- | | | | | finding | | +------------------+-----------------+------------------+------------------+ | implicit_output | OT_INT | Index of the | casadi::Rootfind | | | | output that | er | | | | corresponds to | | | | | the actual root- | | | | | finding | | +------------------+-----------------+------------------+------------------+ | jacobian_functio | OT_FUNCTION | Function object | casadi::Rootfind | | n | | for calculating | er | | | | the Jacobian | | | | | (autogenerated | | | | | by default) | | +------------------+-----------------+------------------+------------------+ | linear_solver | OT_STRING | User-defined | casadi::Rootfind | | | | linear solver | er | | | | class. Needed | | | | | for | | | | | sensitivities. | | +------------------+-----------------+------------------+------------------+ | linear_solver_op | OT_DICT | Options to be | casadi::Rootfind | | tions | | passed to the | er | | | | linear solver. | | +------------------+-----------------+------------------+------------------+ | monitor | OT_STRINGVECTOR | Set of user | casadi::OracleFu | | | | problem | nction | | | | functions to be | | | | | monitored | | +------------------+-----------------+------------------+------------------+ | specific_options | OT_DICT | Options for | casadi::OracleFu | | | | specific auto- | nction | | | | generated | | | | | functions, | | | | | overwriting the | | | | | defaults from | | | | | common_options. | | | | | Nested | | | | | dictionary. | | +------------------+-----------------+------------------+------------------+ >Input scheme: casadi::RootfinderInput (ROOTFINDER_NUM_IN = 2) +---------------+-------+---------------------------------+ | Full name | Short | Description | +===============+=======+=================================+ | ROOTFINDER_X0 | x0 | Initial guess for the solution. | +---------------+-------+---------------------------------+ | ROOTFINDER_P | p | Parameters. | +---------------+-------+---------------------------------+ >Output scheme: casadi::RootfinderOutput (ROOTFINDER_NUM_OUT = 1) +--------------+-------+--------------------------------------+ | Full name | Short | Description | +==============+=======+======================================+ | ROOTFINDER_X | x | Solution to the system of equations. | +--------------+-------+--------------------------------------+ List of plugins =============== - kinsol - fast_newton - nlpsol - newton Note: some of the plugins in this list might not be available on your system. Also, there might be extra plugins available to you that are not listed here. You can obtain their documentation with Rootfinder.doc("myextraplugin") -------------------------------------------------------------------------------- kinsol ------ KINSOL interface from the Sundials suite >List of available options +---------------------------+-----------------+----------------------------+ | Id | Type | Description | +===========================+=================+============================+ | abstol | OT_DOUBLE | Stopping criterion | | | | tolerance | +---------------------------+-----------------+----------------------------+ | disable_internal_warnings | OT_BOOL | Disable KINSOL internal | | | | warning messages | +---------------------------+-----------------+----------------------------+ | exact_jacobian | OT_BOOL | Use exact Jacobian | | | | information | +---------------------------+-----------------+----------------------------+ | f_scale | OT_DOUBLEVECTOR | Equation scaling factors | +---------------------------+-----------------+----------------------------+ | iterative_solver | OT_STRING | gmres|bcgstab|tfqmr | +---------------------------+-----------------+----------------------------+ | linear_solver_type | OT_STRING | dense|banded|iterative|use | | | | r_defined | +---------------------------+-----------------+----------------------------+ | lower_bandwidth | OT_INT | Lower bandwidth for banded | | | | linear solvers | +---------------------------+-----------------+----------------------------+ | max_iter | OT_INT | Maximum number of Newton | | | | iterations. Putting 0 sets | | | | the default value of | | | | KinSol. | +---------------------------+-----------------+----------------------------+ | max_krylov | OT_INT | Maximum Krylov space | | | | dimension | +---------------------------+-----------------+----------------------------+ | pretype | OT_STRING | Type of preconditioner | +---------------------------+-----------------+----------------------------+ | strategy | OT_STRING | Globalization strategy | +---------------------------+-----------------+----------------------------+ | u_scale | OT_DOUBLEVECTOR | Variable scaling factors | +---------------------------+-----------------+----------------------------+ | upper_bandwidth | OT_INT | Upper bandwidth for banded | | | | linear solvers | +---------------------------+-----------------+----------------------------+ | use_preconditioner | OT_BOOL | Precondition an iterative | | | | solver | +---------------------------+-----------------+----------------------------+ -------------------------------------------------------------------------------- -------------------------------------------------------------------------------- fast_newton ----------- Implements simple newton iterations to solve an implicit function. >List of available options +------------+-----------+-------------------------------------------------+ | Id | Type | Description | +============+===========+=================================================+ | abstol | OT_DOUBLE | Stopping criterion tolerance on ||g||__inf) | +------------+-----------+-------------------------------------------------+ | abstolStep | OT_DOUBLE | Stopping criterion tolerance on step size | +------------+-----------+-------------------------------------------------+ | max_iter | OT_INT | Maximum number of Newton iterations to perform | | | | before returning. | +------------+-----------+-------------------------------------------------+ -------------------------------------------------------------------------------- -------------------------------------------------------------------------------- nlpsol ------ -------------------------------------------------------------------------------- -------------------------------------------------------------------------------- newton ------ Implements simple newton iterations to solve an implicit function. >List of available options +-----------------+-----------+--------------------------------------------+ | Id | Type | Description | +=================+===========+============================================+ | abstol | OT_DOUBLE | Stopping criterion tolerance on max(|F|) | +-----------------+-----------+--------------------------------------------+ | abstolStep | OT_DOUBLE | Stopping criterion tolerance on step size | +-----------------+-----------+--------------------------------------------+ | max_iter | OT_INT | Maximum number of Newton iterations to | | | | perform before returning. | +-----------------+-----------+--------------------------------------------+ | print_iteration | OT_BOOL | Print information about each iteration | +-----------------+-----------+--------------------------------------------+ -------------------------------------------------------------------------------- Joel Andersson > rootfinder(str name, str solver, dict:MX rfp, dict opts) > rootfinder(str name, str solver, Function f, dict opts) ------------------------------------------------------------------------ """ return _casadi.rootfinder(*args)
13ac40736849b6b4240dc5d22ad36aa472583bcb
3,659,074
def f18(x, rotation=None, shift=None, shuffle=None): """ Hybrid Function 8 (N=5) Args: x (array): Input vector of dimension 2, 10, 20, 30, 50 or 100. rotation (matrix): Optional rotation matrix. If None (default), the official matrix from the benchmark suite will be used. shift (array): Optional shift vector. If None (default), the official vector from the benchmark suite will be used. shuffle (array): Optionbal shuffle vector. If None (default), the official permutation vector from the benchmark suite will be used. """ nx = len(x) if rotation is None: rotation = transforms.rotations[nx][17] if shift is None: shift = transforms.shifts[17][:nx] if shuffle is None: shuffle = transforms.shuffles[nx][7] x_transformed = np.matmul(rotation, x - shift) x_parts = _shuffle_and_partition(x_transformed, shuffle, [0.2, 0.2, 0.2, 0.2, 0.2]) y = basic.high_conditioned_elliptic(x_parts[0]) y += basic.ackley(x_parts[1]) y += basic.rastrigin(x_parts[2]) y += basic.h_g_bat(x_parts[3]) y += basic.discus(x_parts[4]) return y + 1800.0
d76b4aef256bdc72bc077adefda5e7a93f8ea500
3,659,075
def shake_256_len(data: bytes, length: int) -> hashes.MessageDigest: """ Convenience function to hash a message. """ return HashlibHash.hash(hashes.shake_256_len(length), data)
c59f1a224264649573d53b67f170c7238b5a9840
3,659,076
def rgb_to_cmyk(color_values: tp.List[float]) -> tp.List[float]: """Converts list of RGB values to CMYK. :param color_values: (list) 3-member RGB color value list :return: (list) 4-member CMYK color value list """ if color_values == [0.0, 0.0, 0.0]: return [0.0, 0.0, 0.0, 1.0] r, g, b = color_values c = 1.0 - r m = 1.0 - g y = 1.0 - b min_cmy = min(c, m, y) c = (c - min_cmy) / (1 - min_cmy) m = (m - min_cmy) / (1 - min_cmy) y = (y - min_cmy) / (1 - min_cmy) k = min_cmy return [c, m, y, k]
f0054c92e862c5f0a8b09f94c115c03150b3363b
3,659,077
def check_family(matrix): """Check the validity of a family matrix for the vine copula. Parameters: ---------- matrix : array The pair-copula families. Returns ------- matrix : array The corrected matrix. """ # TODO: check if the families are in the list of copulas matrix = check_matrix(matrix) matrix = check_triangular(matrix, k=1) dim = matrix.shape[0] for i in range(dim): for j in range(i): if isinstance(matrix[i, j], str): matrix[i, j] = int( R_VINECOPULA.BiCopName(matrix[i, j], False)[0]) elif isinstance(matrix[i, j], np.integer): pass matrix = matrix.astype(int) return matrix
49ef0a621c8c7f4063ff6e886ed5455bfa760213
3,659,078
import re def parse_pgt_programmearray(url): """ Parse filter.js programmearray for pgt information :param url: base url for timetabling system :return: pgt programme name to id dict """ # get filter.js file source = get_filterjs(url) name_to_id = {} # e.g. programmearray[340] [0] = "MSc Finance and Investment (Business Analytics)/F/02 - MSc Finance and # Investment (Business Analytics)"; matches = re.findall(r'programmearray\[(\d{1,3})\] \[0\] = "(.*)";\s+' r'programmearray\[\1\] \[1\] = ".*";\s+' r'programmearray\[\1\] \[2\] = "(PGT/.*)"', source) for match in matches: # match e.g. ('0', 'MA Applied Linguistics/F/01 - EG04 Applied Linguistics', 'PGT/C1014/C7PAPLST/F/01') name_to_id[match[1]] = match[2] return name_to_id
b7901c37cdb931dce75a77422394f98b5e3898d1
3,659,079
def distance_calc(x1, y1, x2, y2): """Calculates distance between two points""" return ((x2 - x1) ** 2 + (y2 - y1) ** 2) ** 0.5
4c0001d90d38371a5336e8163fbf63b3d6e95834
3,659,080
import requests def LoadNasaData(lat, lon, show= False, selectparms= None): """ Execute a request from NASA API for 10 years of atmospheric data required to prepare daily statistical data used in Solar Insolation calculations """ cmd = formulateRequest(-0.2739, 36.3765, selectparms) jdi = requests.get(cmd[0]).json() cols = cmd[1] df = pd.json_normalize(jdi['features'][0]['properties']['parameter'][cols[0]]).T df.index = pd.to_datetime(df.index) df.rename(columns={0: cols[0]}, inplace= True) for c in cols[1:]: dfc = pd.json_normalize(jdi['features'][0]['properties']['parameter'][c]).T dfc.index = pd.to_datetime(df.index) dfc.rename(columns={0: c}, inplace= True) df = df.join(dfc) df['DayofYear'] = df.index.dayofyear df = df[df['DayofYear'] != 366] #drop a day for leap years atmo_dict = dict() dg = df.groupby('DayofYear') for col in cols: dp = pd.DataFrame(dg[col].min()) dp.rename(columns={col: 'Min'}, inplace= True) atmo_dict[col] = dp dp = pd.DataFrame(dg[col].max()) dp.rename(columns={col: 'Max'}, inplace= True) atmo_dict[col] = atmo_dict[col].join(dp) dp = pd.DataFrame(dg[col].mean()) dp.rename(columns={col: 'S-Mean'}, inplace= True) atmo_dict[col] = atmo_dict[col].join(dp) dp = pd.DataFrame(dg[col].std()) dp.rename(columns={col: 'STDV'}, inplace= True) atmo_dict[col] = atmo_dict[col].join(dp) return atmo_dict
a2f61d20f46feee5d86bad2525c3bc20c3e00e14
3,659,081
from datetime import datetime def mmyy_date_slicer(date_str): """Return start and end point for given date in mm-yy format. :param date_str: date in mmyy format, i.e. "1222" or "0108". :return: start and end date string for a given mmyy formatted date string """ # Initialize output start = "" end = "" if mmyy_valid_date(date_str): today = date.today() # Check if date is in the future dt_check = datetime.strptime(date_str, "%m%y") if dt_check.date() <= today: # Determine the start date string datetime_object = datetime.strptime(date_str[0:2], "%m") mo = datetime_object.strftime("%b") yyyy = f"20{date_str[2:]}" start = f'1 {mo}, {yyyy}' # Determine the end date string. mm = int(date_str[0:2]) if mm == today.month: pass elif mm == 12: end = f"1 Jan, {int(yyyy)+1}" else: mm1 = int(date_str[0:2]) + 1 datetime_object = datetime.strptime(f"{mm1}", "%m") mo1 = datetime_object.strftime("%b") end = f'1 {mo1}, {yyyy}' else: # print(f'date in the future! > {date_str}') return "", "" else: # print(f'date malformed! > {date_str}') return "", "" return start, end
f1c7f74f1824d5b4c410f3d8cc6ade15571fe3ca
3,659,082
import typing def constant_arg(name: str): """ Promises that the given arg will not be modified Only affects mutable data types Removes the need to copy the data during inlining """ def annotation(target: typing.Callable): optimiser = _schedule_optimisation(target) optimiser.constant_args.add(name) return target return annotation
fdd132d3beea900b81bfe645616b0c20933e22e3
3,659,083
def place_connection(body): # noqa: E501 """Place an connection request from the SDX-Controller # noqa: E501 :param body: order placed for creating a connection :type body: dict | bytes :rtype: Connection """ if connexion.request.is_json: body = Connection.from_dict(connexion.request.get_json()) # noqa: E501 return 'do some magic!'
c69520f428f257a9eb3df97e060ad2e5cde45c94
3,659,084
def tag_list(request): """展示所有标签""" return render(request, 'admin/tags_list.html')
44b33197b3f8cb3467c8e7d32d4538f4dc2833b1
3,659,085
import requests def scan_url(urls): """ Scan the url using the API Args: urls: the list of urls Returns: A tuple of a bool indicating if all the urls are safe and a list indicating the safeness of individual urls """ is_safe = True safe_list = [True] * len(urls) safe_browsing_url = "https://safebrowsing.googleapis.com/v4/threatMatches:find" params = {"key": GOOGLE_TOKEN} json = { "threatInfo": { "threatTypes": [ "THREAT_TYPE_UNSPECIFIED", "MALWARE", "SOCIAL_ENGINEERING", "UNWANTED_SOFTWARE", "POTENTIALLY_HARMFUL_APPLICATION", ], "platformTypes": ["ANY_PLATFORM"], "threatEntryTypes": ["URL"], "threatEntries": [{"url": url} for url in urls], } } r = requests.post(safe_browsing_url, params=params, json=json) if r.status_code == 200: results = r.json() if "matches" in results and results["matches"]: is_safe = False matches = results["matches"] urls_dict = {k: v for v, k in enumerate(urls)} for match in matches: safe_list[urls_dict[match["threat"]["url"]]] = False return is_safe, safe_list
9d3217a4c69a6a521d372b5692f93387ae7d61ad
3,659,086
def head_to_tree(head, len_, prune, subj_pos, obj_pos): """ Convert a sequence of head indexes into a tree object. """ head = head[:len_].tolist() root = None if prune < 0: nodes = [Tree() for _ in head] for i in range(len(nodes)): h = head[i] nodes[i].idx = i nodes[i].dist = -1 # just a filler if h == 0: root = nodes[i] else: nodes[h-1].add_child(nodes[i]) else: # find dependency path subj_pos = [i for i in range(len_) if subj_pos[i] == 0] obj_pos = [i for i in range(len_) if obj_pos[i] == 0] cas = None subj_ancestors = set(subj_pos) for s in subj_pos: h = head[s] tmp = [s] while h > 0: tmp += [h-1] subj_ancestors.add(h-1) h = head[h-1] if cas is None: cas = set(tmp) else: cas.intersection_update(tmp) obj_ancestors = set(obj_pos) for o in obj_pos: h = head[o] tmp = [o] while h > 0: tmp += [h-1] obj_ancestors.add(h-1) h = head[h-1] cas.intersection_update(tmp) # find lowest common ancestor if len(cas) == 1: lca = list(cas)[0] else: child_count = {k: 0 for k in cas} for ca in cas: if head[ca] > 0 and head[ca] - 1 in cas: child_count[head[ca] - 1] += 1 # the LCA has no child in the CA set for ca in cas: if child_count[ca] == 0: lca = ca break path_nodes = subj_ancestors.union(obj_ancestors).difference(cas) path_nodes.add(lca) # compute distance to path_nodes dist = [-1 if i not in path_nodes else 0 for i in range(len_)] for i in range(len_): if dist[i] < 0: stack = [i] while stack[-1] >= 0 and stack[-1] not in path_nodes: stack.append(head[stack[-1]] - 1) if stack[-1] in path_nodes: for d, j in enumerate(reversed(stack)): dist[j] = d else: for j in stack: if j >= 0 and dist[j] < 0: dist[j] = int(1e4) # aka infinity highest_node = lca nodes = [Tree() if dist[i] <= prune else None for i in range(len_)] for i in range(len(nodes)): if nodes[i] is None: continue h = head[i] nodes[i].idx = i nodes[i].dist = dist[i] if h > 0 and i != highest_node: assert nodes[h-1] is not None nodes[h-1].add_child(nodes[i]) root = nodes[highest_node] assert root is not None return root
0459e6ebb0c64a8170970d44e5c6bcde5bb6221c
3,659,087
def capped_subtraction(x, y): """Saturated arithmetics. Returns x - y truncated to the int64_t range.""" assert_is_int64(x) assert_is_int64(y) if y == 0: return x if x == y: if x == INT_MAX or x == INT_MIN: raise OverflowError( 'Integer NaN: subtracting INT_MAX or INT_MIN to itself') return 0 if x == INT_MAX or x == INT_MIN: return x if y == INT_MAX: return INT_MIN if y == INT_MIN: return INT_MAX return to_capped_int64(x - y)
c4a171497ff351c22df3fc831a1e840366a90c5b
3,659,088
def evaluate_points(func, begin, total_samps, var_list, attr): """ Inputs: func- the lambda function used to generate the data from the evaluation vector begin- the index to start at in the `attr` array total_samps- the total number of samples to generate var_list- list of the variables attr- the attribute that holds the values to be used in the evaluation vector Identical to evaluate_points_verbose, but doesn't check for a verbose option every iteration. This version also deals with indexing only part of eval_vect. """ var_count = len(var_list) term_count = func(np.zeros(var_count)).shape if len(term_count) > 0: term_count = term_count[1] # len(func(np.zeros(var_count))) else: term_count = 1 eval_vect = np.zeros([total_samps, var_count]) matrix = np.zeros([total_samps, term_count]) end = begin + total_samps for j in range(var_count): attr_arr = getattr(var_list[j], attr) eval_vect[:, j] = attr_arr[begin:end].T for i in range(total_samps): matrix[i, :] = func(eval_vect[i, :]) return matrix
68ba7eb95e8d26becbef58f14e3073f7ed184a5b
3,659,089
import os def get_username(): """Return username Return a useful username even if we are running under HT-Condor. Returns ------- str : username """ batch_system = os.environ.get('BATCH_SYSTEM') if batch_system == 'HTCondor': return os.environ.get('USER', '*Unknown user*') return os.getlogin()
1e199e7e38ed6532253ee1f7f229bb1baffc5538
3,659,090
def corresponding_chromaticities_prediction_CIE1994(experiment=1): """ Returns the corresponding chromaticities prediction for *CIE 1994* chromatic adaptation model. Parameters ---------- experiment : integer or CorrespondingColourDataset, optional {1, 2, 3, 4, 6, 8, 9, 11, 12} *Breneman (1987)* experiment number or :class:`colour.CorrespondingColourDataset` class instance. Returns ------- tuple Corresponding chromaticities prediction. References ---------- :cite:`Breneman1987b`, :cite:`CIETC1-321994b` Examples -------- >>> from pprint import pprint >>> pr = corresponding_chromaticities_prediction_CIE1994(2) >>> pr = [(p.uv_m, p.uv_p) for p in pr] >>> pprint(pr) # doctest: +ELLIPSIS [(array([ 0.207, 0.486]), array([ 0.2273130..., 0.5267609...])), (array([ 0.449, 0.511]), array([ 0.4612181..., 0.5191849...])), (array([ 0.263, 0.505]), array([ 0.2872404..., 0.5306938...])), (array([ 0.322, 0.545]), array([ 0.3489822..., 0.5454398...])), (array([ 0.316, 0.537]), array([ 0.3371612..., 0.5421567...])), (array([ 0.265, 0.553]), array([ 0.2889416..., 0.5534074...])), (array([ 0.221, 0.538]), array([ 0.2412195..., 0.5464301...])), (array([ 0.135, 0.532]), array([ 0.1530344..., 0.5488239...])), (array([ 0.145, 0.472]), array([ 0.1568709..., 0.5258835...])), (array([ 0.163, 0.331]), array([ 0.1499762..., 0.4401747...])), (array([ 0.176, 0.431]), array([ 0.1876711..., 0.5039627...])), (array([ 0.244, 0.349]), array([ 0.2560012..., 0.4546263...]))] """ experiment_results = (convert_experiment_results_Breneman1987(experiment) if is_numeric(experiment) else experiment) with domain_range_scale(1): XYZ_t, XYZ_r = experiment_results.XYZ_t, experiment_results.XYZ_r xy_o1, xy_o2 = XYZ_to_xy([XYZ_t, XYZ_r]) uv_t = Luv_to_uv(XYZ_to_Luv(experiment_results.XYZ_ct, xy_o1), xy_o1) uv_m = Luv_to_uv(XYZ_to_Luv(experiment_results.XYZ_cr, xy_o2), xy_o2) Y_r = experiment_results.B_r E_o1, E_o2 = experiment_results.Y_t, experiment_results.Y_r XYZ_1 = experiment_results.XYZ_ct XYZ_2 = chromatic_adaptation_CIE1994(XYZ_1, xy_o1, xy_o2, Y_r, E_o1, E_o2) uv_p = Luv_to_uv(XYZ_to_Luv(XYZ_2, xy_o2), xy_o2) return tuple([ CorrespondingChromaticitiesPrediction(experiment_results.name, uv_t[i], uv_m[i], uv_p[i]) for i in range(len(uv_t)) ])
f138ec844b2712d0d09be630f912f156aa50acbd
3,659,091
def interpExtrap(x, xp, yp): """numpy.interp interpolation function extended by linear extrapolation.""" y = np.interp(x, xp, yp) y = np.where(x < xp[0], yp[0]+(x-xp[0])*(yp[0]-yp[1])/(xp[0]-xp[1]), y) return np.where(x > xp[-1], yp[-1]+(x-xp[-1])*(yp[-1]-yp[-2]) / (xp[-1]-xp[-2]), y)
8a0acc55e146a29171ef6648897cd5eba7e23c12
3,659,092
import logging import subprocess def get_operating(): """Get latest operating budgets from shared drive.""" logging.info('Retrieving latest operating budget') command = "smbclient //ad.sannet.gov/dfs " \ + "--user={adname}%{adpass} -W ad -c " \ + "'prompt OFF;"\ + " cd \"FMGT-Shared/Shared/BUDGET/" \ + "Open Data/Open Data Portal/" \ + "Shared with Performance and Analytics/" \ + "Budget/Operating/\";" \ + " lcd \"/data/temp/\";" \ + " mget FY*BUDGET.xlsx;'" command = command.format(adname=conf['alb_sannet_user'], adpass=conf['alb_sannet_pass'], temp_dir=conf['temp_data_dir']) logging.info(command) try: p = subprocess.check_output(command, shell=True, stderr=subprocess.STDOUT) return p except subprocess.CalledProcessError as e: return e.output
21add01cda622abd366dfb7f5d5af54f5b9de6b0
3,659,093
import json def get_nome_socio(id): """pega o nome de um livro pelo id.""" if request.method == 'GET': try: socio = db.query_bd('select * from socio where id = "%s"' % id) if socio: print(socio) socio = socio[0] print(socio) content = { 'nome': socio['nome'], 'status': socio['status'] } return json.dumps(content) except Exception as e: print(e) return render_template('404.html')
8945ef5bbc46cd8b6c79903f1dd0d3d226860792
3,659,094
def processDeps(element: etree.Element, params: dict = {}) -> None: """Function to NAF deps layer to RDF Args: element: element containing the deps layer params: dict of params to store results Returns: None """ output = params["out"] for dep in element: if dep.tag == "dep": # depname = genDepName(params) # output.write(" xl:type naf-base:dep ;\n") rfunc = dep.attrib["rfunc"] to_term = dep.attrib["to_term"] from_term = dep.attrib["from_term"] output.write( "_:" + from_term + " " + "naf-rfunc:" + rfunc + " _:" + to_term + "\n" ) # for key in dep.attrib.keys(): # if (key != "id"): # if key == "rfunc": # output.write(" naf-base:"+attrib2pred(key)+' naf-base:'+dep.attrib[key]+' ;\n') # else: # output.write(" naf-base:"+attrib2pred(key)+' _:'+dep.attrib[key]+' ;\n') output.write(" .\n") return None
a096e42a3a036048daf97079f9e5bb78f5f068d9
3,659,095
def fit_solution_matrix(weights, design_matrix, cache=None, hash_decimal=10, fit_mat_key=None): """ Calculate the linear least squares solution matrix from a design matrix, A and a weights matrix W S = [A^T W A]^{-1} A^T W Parameters ---------- weights: array-like ndata x ndata matrix of data weights design_matrx: array-like ndata x n_fit_params matrix transforming fit_parameters to data cache: optional dictionary optional dictionary storing pre-computed fitting matrix. hash_decimal: int optional the number of decimals to use in hash for caching. default is 10 fit_mat_key: optional hashable variable optional key. If none is used, hash fit matrix against design and weighting matrix. Returns ----------- array-like n_fit_params x n_fit_params matrix S = [A^T W A]^{-1} A ^T W """ if cache is None: cache = {} ndata = weights.shape[0] if not weights.shape[0] == weights.shape[1]: raise ValueError("weights must be a square matrix") if not design_matrix.shape[0] == ndata: raise ValueError("weights matrix incompatible with design_matrix!") if fit_mat_key is None: opkey = ('fitting_matrix',) + tuple(np.round(weights.flatten(), hash_decimal))\ +tuple(np.round(design_matrix.flatten(), hash_decimal)) else: opkey = fit_mat_key if not opkey in cache: #check condition number cmat = np.conj(design_matrix.T) @ weights @ design_matrix #should there be a conjugation!?! if np.linalg.cond(cmat)>=1e9: warn('Warning!!!!: Poorly conditioned matrix! Your linear inpainting IS WRONG!') cache[opkey] = np.linalg.pinv(cmat) @ np.conj(design_matrix.T) @ weights else: try: cache[opkey] = np.linalg.inv(cmat) @ np.conj(design_matrix.T) @ weights except np.linalg.LinAlgError as error: print(error) cache[opkey] = None return cache[opkey]
3b237600ab2ae266cec1cdc3f1fc650cc02b82d8
3,659,096
def version_from(schema_path, document_path): """HACK A DID ACK derives non-default 1.1 version from path.""" LOG.debug("xml version derivation flat inspection schema_path=%s", schema_path) if CRVF_PRE_OASIS_SEMANTIC_VERSION in str(schema_path): return CRVF_PRE_OASIS_SEMANTIC_VERSION if CRVF_DEFAULT_SEMANTIC_VERSION in str(schema_path): return CRVF_DEFAULT_SEMANTIC_VERSION LOG.debug("xml version derivation deep call document_path=%s", document_path) return version_peek(document_path)
f63c34e5467c098d0461b25699fe2d7a406508d9
3,659,097
def nessus_vuln_check(request): """ Get the detailed vulnerability information. :param request: :return: """ if request.method == 'GET': id_vul = request.GET['vuln_id'] else: id_vul = '' vul_dat = nessus_report_db.objects.filter(vul_id=id_vul) return render(request, 'nessus_vuln_data.html', {'vul_dat': vul_dat})
b1b9e2cce8b00f4a837f2712abd2dc4e2f5edb3d
3,659,098
def wait_for_job_completion(namespace, timeout, error_msg): """ This is a WORKAROUND of particular ocsci design choices: I just wait for one pod in the namespace, and then ask for the pod again to get it's name (but it would be much better to just wait for the job to finish instead, then ask for a name of the successful pod and use it to get logs ...) Returns: str: name of Pod resource of the finished job """ ocp_pod = ocp.OCP(kind="Pod", namespace=namespace) try: ocp_pod.wait_for_resource( resource_count=1, condition=constants.STATUS_COMPLETED, timeout=timeout, sleep=30) except TimeoutExpiredError as ex: # report some high level error as well logger.error(error_msg) # TODO: log both describe and the output from the fio pods, as DEBUG ex.message = error_msg raise(ex) # indentify pod of the completed job pod_data = ocp_pod.get() # explicit list of assumptions, if these assumptions are not met, the # code won't work and it either means that something went terrible # wrong or that the code needs to be changed assert pod_data['kind'] == "List" pod_dict = pod_data['items'][0] assert pod_dict['kind'] == "Pod" pod_name = pod_dict['metadata']['name'] logger.info(f"Identified pod name of the finished Job: {pod_name}") pod_name = pod_dict['metadata']['name'] return pod_name
652834a4d28232895fc6da9c74f7e08cdbee4798
3,659,099