content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
import torch
def train_epoch(loader, vae, optimizer, device, epoch_idx, log_interval,
loss_weights, stats_logger, clip_gradients=None):
"""Train VAE for an epoch"""
vae.train()
train_losses = {}
train_total_loss = 0
for batch_idx, data in enumerate(loader):
data = data.to(device).float()
target = data
optimizer.zero_grad()
decoder_output, z, mu, logvar = vae(data)
losses = vae.loss(decoder_output, target, z, mu, logvar)
total_loss = sum(loss_weights.get(loss_name, 1) * loss
for loss_name, loss in losses.items()
if '_unweighted' not in loss_name)
total_loss.backward()
if clip_gradients is not None:
torch.nn.utils.clip_grad_value_(vae.parameters(), clip_gradients)
optimizer.step()
train_total_loss += total_loss.item() * len(data)
for name, loss in losses.items():
train_loss = train_losses.setdefault(name, 0)
train_losses[name] = train_loss + loss.item() * len(data)
if batch_idx % log_interval == 0:
s = ('Train Epoch: {} [{}/{} ({:.0f}%)]\t'
.format(epoch_idx,
batch_idx * len(data),
len(loader.dataset),
100. * batch_idx / len(loader)))
s += ', '.join('Loss {}: {:.7f}'.format(name, loss.item())
for name, loss in losses.items())
print(s)
stats = {name: loss / len(loader.dataset)
for name, loss in train_losses.items()}
stats['total_loss'] = train_total_loss / len(loader.dataset)
s = ('====> Epoch: {} Avg. total loss: {:.7f}, '
.format(epoch_idx, stats['total_loss']))
s += ', '.join('{} loss: {:.7f}'.format(name, loss)
for name, loss in stats.items() if name != 'total_loss')
print(s)
# Add weighted losses for logging
for name, loss in train_losses.items():
weight = loss_weights.get(name, 1)
stats['weighted_' + name] = weight * loss / len(loader.dataset)
return stats | e846987844933359a67f7b6581a8429ef88bfb0b | 3,400 |
from mpl_toolkits.axes_grid1.parasite_axes import SubplotHost
def phased_multi_axes(times, data, std, ephemeris, thin=1,
colours='midnightblue', ylim_shrink=0.8,
subplot_kw=None, gridspec_kw=None, **kws):
"""
Parameters
----------
times
data
std
ephemeris
thin
colours
subplot_kw
gridspec_kw
Returns
-------
"""
# sharex=True, # not sharing x since it shares
# all the ticks which is NOT desired here.
# instead set range for all
# NOTE: could try:
# for tck in ax.xaxis.get_major_ticks():
# tck.label1.set_visible(True)
n = len(times)
fig, axes = plt.subplots(n, 1,
sharey=True,
subplot_kw=subplot_kw,
gridspec_kw=gridspec_kw
)
# hack to get dual axes on topmost
pos = axes[0].get_position()
axes[0].remove()
ax = fig.axes[0] = axes[0] = SubplotHost(fig, n, 1, 1, **subplot_kw)
axp = make_twin(ax, 45, ephemeris.P)
fig.add_subplot(ax)
ax.set_position(pos)
# get colours
if not isinstance(colours, (list, tuple, np.ndarray)):
colours = [colours] * n
# plot options
opts = dict(fmt='o', ms=1, alpha=0.75, clip_on=False)
opts.update(**kws)
# do plotting
s = np.s_[::thin]
xlim = [np.inf, -np.inf]
ylim = [np.inf, -np.inf]
for i, (ax, t, y, u) in enumerate(zip(axes, times, data, std)):
first = (i == 0)
last = (i == n - 1)
#
phase = ephemeris.phase(t)
phase -= max(np.floor(phase[0]) + 1, 0)
if np.all(phase < 0):
phase += 1
ebc = ax.errorbar(phase[s], y[s], u if u is None else u[s],
color=colours[i], **opts)
xlim = [min(xlim[0], phase[0]),
max(xlim[1], phase[-1])]
ylim = [min(ylim[0], y.min()),
max(ylim[1], y.max())]
# ticks
ax.tick_params('y', which='minor', length=2.5, left=True, right=True)
ax.tick_params('y', which='major', length=5, left=True, right=True)
ax.yaxis.set_minor_locator(ticker.AutoMinorLocator())
if last:
ax.tick_params('x', which='minor', length=2.5, bottom=(not first),
top=(not last))
ax.tick_params('x', which='major', length=5, bottom=(not first),
top=(not last))
ax.xaxis.set_minor_locator(ticker.AutoMinorLocator())
else:
ax.tick_params('x', length=0)
# remove top & bottom spines
if not first:
ax.spines['top'].set_visible(False)
if not last:
ax.spines['bottom'].set_visible(False)
ax.xaxis.set_ticklabels([])
ax.tick_params(labelright=True, labelleft=True)
ax.grid(True)
# axes limits
stretch = np.ptp(xlim) * 0.025
xlim = np.add(xlim, [-stretch, stretch])
ylim[1] *= ylim_shrink
for ax in axes:
ax.set(xlim=xlim, ylim=ylim)
# axes[0].set_ylim(-0.15, 1.65)
# x label
axes_label_font_spec = dict(weight='bold', size=14)
ax.set_xlabel('Orbital Phase', fontdict=axes_label_font_spec)
# y label
y_middle = 0.5 # (fig.subplotpars.top - fig.subplotpars.bottom) / 2
for x, va in zip((0.01, 1), ('top', 'bottom')):
fig.text(x, y_middle, 'Relative Flux', axes_label_font_spec,
rotation=90, rotation_mode='anchor',
ha='center', va=va)
# top ticks
# axp.xaxis.set_ticks(np.r_[-2.5:3.5:0.5])
axp.set_xlabel('Time (hours)', fontdict=dict(weight='bold'))
axp.tick_params('x', which='minor', length=2.5, bottom=False,
top=True)
return fig | 32d2da62acde2a2424c310e1bd0196dbac9309cf | 3,401 |
def get_delta(K):
"""This function returns the delta matrix needed calculting Pj = delta*S + (1-delta)*(1-S)
Args:
inputs:
K: Integers below 2^K will be considered
outputs:
delta: Matrix containing binary codes of numbers (1, 2^K) each one arranged row-wise. shape [2^K x K]
one_minus_delta: Matrix containing complement of binary codes of numbers (1, 2^K) each one arranged row-wise. shape [2^K x K]
"""
delta = np.arange(1, 2 ** K)[:, np.newaxis] >> np.arange(K)[::-1] & 1
# all_ones = np.array(
# [list(np.binary_repr(2 ** int(np.ceil(np.log2(1 + x))) - 1, K)) for x in
# range(1, 2 ** K)], dtype=int)
all_ones = np.array([[1 for _ in range(K)] for _ in range(2**K-1)])
one_minus_delta = all_ones - delta
return delta, one_minus_delta | 84e72790024c7294e715dd5efc03f001a7ab887d | 3,402 |
def string_split_readable(inp, length):
"""
Convenience function to chunk a string into parts of a certain length,
whilst being wary of spaces.
This means that chunks will only be split on spaces, which means some
chunks will be shorter, but it also means that the resulting list will
only contain readable strings.
ValueError is thrown if there's a word that's longer than the max chunk
size.
:param inp: The string to be split
:param length: Maximum length of the chunks to return
:return: List containing the split chunks
"""
done = []
current = ""
for word in inp.split():
if len(current) == length:
done.append(current)
current = ""
if len(word) > length:
raise ValueError(_("Word %s is longer than %s characters") %
(word, length))
else:
if len(current + word) > length:
done.append(current)
current = ""
current += word
if len(current) <= (length - 1):
current += " "
if len(current):
done.append(current)
return done | 1f1d3641cc293754c174d32d397dab252c009eca | 3,403 |
import torch
def get_similarity_transform_matrix(
from_pts: torch.Tensor, to_pts: torch.Tensor) -> torch.Tensor:
"""
Args:
from_pts, to_pts: b x n x 2
Returns:
torch.Tensor: b x 3 x 3
"""
mfrom = from_pts.mean(dim=1, keepdim=True) # b x 1 x 2
mto = to_pts.mean(dim=1, keepdim=True) # b x 1 x 2
a1 = (from_pts - mfrom).square().sum([1, 2], keepdim=False) # b
c1 = ((to_pts - mto) * (from_pts - mfrom)).sum([1, 2], keepdim=False) # b
to_delta = to_pts - mto
from_delta = from_pts - mfrom
c2 = (to_delta[:, :, 0] * from_delta[:, :, 1] - to_delta[:,
:, 1] * from_delta[:, :, 0]).sum([1], keepdim=False) # b
a = c1 / a1
b = c2 / a1
dx = mto[:, 0, 0] - a * mfrom[:, 0, 0] - b * mfrom[:, 0, 1] # b
dy = mto[:, 0, 1] + b * mfrom[:, 0, 0] - a * mfrom[:, 0, 1] # b
ones_pl = torch.ones_like(a1)
zeros_pl = torch.zeros_like(a1)
return torch.stack([
a, b, dx,
-b, a, dy,
zeros_pl, zeros_pl, ones_pl,
], dim=-1).reshape(-1, 3, 3) | 76524a1f85644cfedfda9dd60497768614a058b0 | 3,404 |
def get_current_daily_puzzle(**kwargs) -> ChessDotComResponse:
"""
:returns: ``ChessDotComResponse`` object containing
information about the daily puzzle found in www.chess.com.
"""
return Resource(
uri = "/puzzle",
top_level_attr = "puzzle",
**kwargs
) | 733ce2eaa45b773cdfc04395ceb4dbe101ae8b78 | 3,405 |
def stroke_negative():
"""
render template if user is predicted negative for stroke
"""
return render_template("negative.html") | 2f1a07b57b19143e6755f3067c4923bb7231fb89 | 3,406 |
import sirepo.sim_data
def default_data(sim_type):
"""New simulation base data
Args:
sim_type (str): simulation type
Returns:
dict: simulation data
"""
return open_json_file(
sim_type,
path=sirepo.sim_data.get_class(sim_type).resource_path(f'default-data{sirepo.const.JSON_SUFFIX}')
) | 47791f63a6b6c636d8e0a5513e47ab10bd2db209 | 3,407 |
def get_instance_name_to_id_map(instance_info):
"""
generate instance_name to instance_id map.
Every instance without a name will be given a key 'unknownx', where x is an incrementing number of instances without a key.
"""
instance_name_to_id = {}
unknown_instance_count = 0
for instance_id in instance_info:
instance = instance_info[instance_id]
instance_name = "unnamed" + str(unknown_instance_count)
if "Tags" in instance:
for tag in instance["Tags"]:
if tag["Key"] == "Name":
instance_name = tag["Value"]
if instance_name == "unnamed" + str(unknown_instance_count):
unknown_instance_count = unknown_instance_count + 1
instance_name_to_id[instance_name] = instance["InstanceId"]
return instance_name_to_id | 293923476a19362fbbc2b3bb0b34bc35523bdfa1 | 3,408 |
def log_get_stdio_record(log):
"""
Returns a darshan log record for STDIO.
Args:
log: handle returned by darshan.open
Returns:
dict: log record
"""
return log_get_generic_record(log, "STDIO", "struct darshan_stdio_file **") | 6438d1ca88357cb3928492ddb89c4beab643f9fb | 3,409 |
import subprocess
def gits_set_profile(args):
"""
Function that prints hello message
to user console
"""
# print(args.email)
# print("Hello from GITS Commandline Tools-Profile")
try:
# check regex
check_val = check(args.email)
# print(check_val)
if check_val:
process = subprocess.Popen(["git", "config", "--global",
"--unset", "user.email"],
stdout=PIPE,
stderr=PIPE)
stdout, stderr = process.communicate()
process1 = subprocess.Popen(["git", "config", "--global",
"--unset", "user.name"],
stdout=PIPE,
stderr=PIPE)
stdout, stderr = process1.communicate()
process2 = subprocess.Popen(["git", "config", "--global",
"user.name", args.name],
stdout=PIPE,
stderr=PIPE)
stdout, stderr = process2.communicate()
process3 = subprocess.Popen(["git", "config", "--global",
"user.email", args.email],
stdout=PIPE,
stderr=PIPE)
stdout, stderr = process3.communicate()
profile_verify_name_command = list()
profile_verify_name_command.append("git")
profile_verify_name_command.append("config")
profile_verify_name_command.append("--list")
profile_verify_name = list()
profile_verify_name.append("grep")
profile_verify_name.append('user.name')
process4 = subprocess.Popen(profile_verify_name_command,
stdout=PIPE,
stderr=PIPE)
process41 = subprocess.Popen(profile_verify_name,
stdin=process4.stdout,
stdout=PIPE,
stderr=PIPE)
stdout, stderr = process41.communicate()
print("Setting name and email..\n")
print(stdout.decode('utf-8'))
profile_verify_email_command = list()
profile_verify_email_command.append("git")
profile_verify_email_command.append("config")
profile_verify_email_command.append("--list")
profile_verify_email = list()
profile_verify_email.append("grep")
profile_verify_email.append("user.email")
process5 = subprocess.Popen(profile_verify_email_command,
stdout=PIPE,
stderr=PIPE)
process51 = subprocess.Popen(profile_verify_email,
stdin=process5.stdout,
stdout=PIPE,
stderr=PIPE)
stdout, stderr = process51.communicate()
print(stdout.decode('utf-8'))
else:
print("Enter a valid email id")
except Exception as e:
print("ERROR: gits profile command caught an exception")
print("ERROR: {}".format(str(e)))
return False
return True | 0235498f539046ea5eddedecec56be1980dbb129 | 3,410 |
def generate_spiral2d(nspiral=1000,
ntotal=500,
nsample=100,
start=0.,
stop=1, # approximately equal to 6pi
noise_std=.1,
a=0.,
b=1.,
savefig=True):
"""Parametric formula for 2d spiral is `r = a + b * theta`.
Args:
nspiral: number of spirals, i.e. batch dimension
ntotal: total number of datapoints per spiral
nsample: number of sampled datapoints for model fitting per spiral
start: spiral starting theta value
stop: spiral ending theta value
noise_std: observation noise standard deviation
a, b: parameters of the Archimedean spiral
savefig: plot the ground truth for sanity check
Returns:
Tuple where first element is true trajectory of size (nspiral, ntotal, 2),
second element is noisy observations of size (nspiral, nsample, 2),
third element is timestamps of size (ntotal,),
and fourth element is timestamps of size (nsample,)
"""
# add 1 all timestamps to avoid division by 0
orig_ts = np.linspace(start, stop, num=ntotal)
samp_ts = orig_ts[:nsample]
# generate clock-wise and counter clock-wise spirals in observation space
# with two sets of time-invariant latent dynamics
zs_cw = stop + 1. - orig_ts
rs_cw = a + b * 50. / zs_cw
xs, ys = rs_cw * np.cos(zs_cw) - 5., rs_cw * np.sin(zs_cw)
orig_traj_cw = np.stack((xs, ys), axis=1)
zs_cc = orig_ts
rw_cc = a + b * zs_cc
xs, ys = rw_cc * np.cos(zs_cc) + 5., rw_cc * np.sin(zs_cc)
orig_traj_cc = np.stack((xs, ys), axis=1)
if savefig:
plt.figure()
plt.plot(orig_traj_cw[:, 0], orig_traj_cw[:, 1], label='clock')
plt.plot(orig_traj_cc[:, 0], orig_traj_cc[:, 1], label='counter clock')
plt.legend()
plt.savefig('./ground_truth.png', dpi=500)
print('Saved ground truth spiral at {}'.format('./ground_truth.png'))
# sample starting timestamps
orig_trajs = []
samp_trajs = []
for _ in range(nspiral):
# don't sample t0 very near the start or the end
t0_idx = npr.multinomial(
1, [1. / (ntotal - 2. * nsample)] * (ntotal - int(2 * nsample)))
t0_idx = np.argmax(t0_idx) + nsample
cc = bool(npr.rand() > .5) # uniformly select rotation
orig_traj = orig_traj_cc if cc else orig_traj_cw
orig_trajs.append(orig_traj)
samp_traj = orig_traj[t0_idx:t0_idx + nsample, :].copy()
samp_traj += npr.randn(*samp_traj.shape) * noise_std
samp_trajs.append(samp_traj)
# batching for sample trajectories is good for RNN; batching for original
# trajectories only for ease of indexing
orig_trajs = np.stack(orig_trajs, axis=0)
samp_trajs = np.stack(samp_trajs, axis=0)
return orig_trajs, samp_trajs, orig_ts, samp_ts | 4d5129f651fd3a817c9be3beb9c2358895dd3654 | 3,411 |
import math
def AUC_confidence(auc_value, num, interval=0.95):
"""
Calculate upper and lower 95% CI for area under the roc curve
Inspired by https://stats.stackexchange.com/questions/18887
:param r: spearman's rho
:param num: number of data points
:param interval: confidence interval (0-1.0)
:return: lower bound, upper bound
"""
stderr = 1.0 / math.sqrt(num - 3)
z_score = norm.ppf(interval)
delta = z_score * stderr
lower = math.tanh(math.atanh(auc_value) - delta)
upper = math.tanh(math.atanh(auc_value) + delta)
return lower, upper | 5beab0e62171d49dcfb0fbd126243e4906787273 | 3,412 |
def add_data(data):
""" This adds data """
item = data
db.insert(data)
return 'chain updated' | 52efd328097c95768de7f049335dbad9761e5715 | 3,413 |
import os
import logging
def detect_face(img_path, cc_path='../files/haarcascade_frontalface_default.xml'):
"""
Detect the face from the image, return colored face
"""
cc = cv2.CascadeClassifier(os.path.abspath(cc_path))
img_path = os.path.abspath(img_path)
img = cv2.imread(img_path)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = cc.detectMultiScale(gray, 1.3, 5)
roi_color = None
if len(faces) == 0:
logging.exception(img_path + ': No face found')
else:
x,y,w,h = faces[0]
_h, _w = compute_size(h, w)
roi_color = img[y - _h:y + h + _h, x - _w:x + w + _w]
return roi_color | 3d3d6786d7830bf1e03ab7bcc07052c5dd25a089 | 3,414 |
from typing import Counter
def build_node_to_name_map(head):
"""
:type head: DecisionGraphNode
:return:
"""
node_to_name_map = {}
name_to_next_idx_map = Counter()
def add_node_name(node):
assert node not in node_to_name_map
node_type_name = node.get_node_type_name()
idx = name_to_next_idx_map[node_type_name]
name_to_next_idx_map[node_type_name] += 1
name = "{}_{}".format(node_type_name, idx)
node_to_name_map[node] = name
bfs(head, add_node_name)
return node_to_name_map | 9d4b21317030c30539a5ec5947e574e3bd4fdd60 | 3,415 |
def ReduceFloat(f, op=None):
"""Reduce a single float value over MPI"""
if not hasMPI:
raise Exception("mpi4py required for Reduce operations: not found")
if op is None:
op = MPI.SUM
fa = np.array([f]) # can only reduce over numpy arrays
MPI.COMM_WORLD.Allreduce(MPI.IN_PLACE,
fa,
op=MPI.SUM)
return fa[0] | 12ca088e19a20eed145e1a90d8d88941f5d249ac | 3,416 |
def GetVerificationStepsKeyName(name):
"""Returns a str used to uniquely identify a verification steps."""
return 'VerificationSteps_' + name | e50e9bd7b586d8bbfaf8902ce343d35d752948a4 | 3,417 |
def annotate_ms1_peaks(ms1_data, ms2_data, analyte_list):
"""Interpolate MS1 intensities for the time points for the MS2 scans for the largest mass peak in each analyte.
Use relative changes in intensity between interpolated MS1 data and real MS2 data to find MS2 peaks that go with
each analyte. """
ms2_data["analyte_id"] = None
# Extract list of unique scan numbers and corresponding retention times
ms2_scans = ms2_data[["scan", "rt"]].drop_duplicates().sort_values(by=["scan"])
for analyte in analyte_list:
max_peak_data = ms1_data[ms1_data["peak_id"] == analyte.max_peak_id][["scan", "rt", "intensity"]].sort_values(by=["scan"])
interpolated_range = ms2_scans[ms2_scans["scan"].between(max_peak_data["scan"].min(), max_peak_data["scan"].max())].copy()
if len(interpolated_range.index) >= config.matched_scan_minimum:
if len(max_peak_data.index) > 3:
tck = interpolate.splrep(max_peak_data["rt"].to_numpy(), max_peak_data["intensity"].to_numpy(), s=0)
elif len(max_peak_data.index) == 3:
tck = interpolate.splrep(max_peak_data["rt"].to_numpy(), max_peak_data["intensity"].to_numpy(), s=0, k=2)
else:
continue
interpolated_intensities = interpolate.splev(interpolated_range["rt"].to_numpy(), tck, der=0)
interpolated_range["intensity"] = interpolated_intensities
ms2_data = ms2_to_analyte_vectorized(ms2_data,
interpolated_range[["scan", "intensity"]],
analyte.analyte_id)
else:
continue
return ms2_data | 32e0712ed27d802d99290cf01ba1f5f0dc07bae2 | 3,418 |
def split_tblastn_hits_into_separate_genes(query_res_obj, max_gap):
"""Take a SearchIO QueryResult object and return a new object with hits
split into groups of HSPs that represent distinct genes. This is important,
because there may be multiple paralogous genes present in a single
nucleotide subject sequence (such as a chromosome or scaffold).
"""
# Print message.
print('\n\tSearch program was tblastn.\n\tChecking number of distinct genes represented by HSPs.\n')
# Copy the query result object.
#query_res_obj2 = copy.deepcopy(query_res_obj)
# Compile a list of all HSP clusters.
# Display a simple visualization of HSP location.
# List hits and HSPs in original object.
num_dots = 150
all_hsp_clusters = []
hit_num = 0
for hit in query_res_obj:
hit_num += 1
print('\tQuery: ' + hit.query_id)
print('\tHit '+ str(hit_num) + ': ' + hit.id + ' ' + hit.description)
print('\t' + 'HSP positions in subject sequence (1 dot = ' +\
str(int(hit.seq_len / num_dots)) + ' bp):')
print('\t ' + '0' + ' ' * (num_dots -2) + str(hit.seq_len))
print('\t ' + 'v' + ' ' * (num_dots -2) + 'v')
print('\t ' + '.' * num_dots + ' ' + 'Query range:')
# Make a list of hsps.
hsps = []
for hsp in hit:
hsps.append(hsp)
# Sort the HSPs.
hsps2 = sorted(hsps, key=lambda x: x.hit_start)
# Display the HSPs.
for hsp in hsps2:
string = '\t'
sign = None
if hsp.hit_frame > 0:
sign = '+'
elif hsp.hit_frame < 0:
sign = '-'
prepend_dots = '.' * int((hsp.hit_start*num_dots)/(hit.seq_len))
string = string + sign + prepend_dots
span_string = str(hsp.hit_start) + ', ' + str(hsp.hit_end)
string = string + span_string
string = string + '.' * max([0, num_dots - len(prepend_dots) - len(span_string)])
string = string + ' ' + str(hsp.query_range) #+ ' ' + str(hsp.evalue)
print(string)
#print(hsp.hit.seq)
print('\n')
# Generate an expanded list of hit objects.
# Recursively find clusters of HSPs that likely represent different
# genes, and return as a list of lists.
hsp_clusters = get_hsp_clusters(hit, max_gap)
all_hsp_clusters = all_hsp_clusters + hsp_clusters
# Display HSPs in each cluster.
cluster_num = 0
for clusterplus in hsp_clusters:
cluster = clusterplus[0]
cluster_num += 1
# Call function for printing visualization.
print_cluster(clusterplus, hit_num, cluster_num, num_dots) #***
## ***Redundant?:
## Check that the clusters do not overlap with each other on the subject
## sequence.
#for cluster1 in hsp_clusters:
# for cluster2 in hsp_clusters:
# if cluster1[0] != cluster2[0]:
# if clusters_overlap(cluster1[0], cluster2[0]):
# # Visualize overlapping clusters (for troubleshooting).
# startend = get_cluster_range(cluster1[0] + cluster2[0])
# print('Overlapping clusters:')
# print_cluster(cluster1,\
# str(get_cluster_range(cluster1[0])),\
# cluster_num, num_dots, startend)
# print_cluster(cluster2,\
# str(get_cluster_range(cluster2[0])),\
# cluster_num, num_dots, startend)
# ## Assert no overlap.
# #assert not clusters_overlap(cluster1[0], cluster2[0]),\
# #"""Clusters overlap: %s and %s""" %\
# #(cluster1[0][0].hit_id + str(get_cluster_range(cluster1[0])),\
# # cluster2[0][0].hit_id + str(get_cluster_range(cluster2[0])))
## Check that the clusters do not overlap with each other on the subject
## sequence.
#for cluster1 in all_hsp_clusters:
# for cluster2 in all_hsp_clusters:
# if cluster1[0] != cluster2[0]:
# assert not clusters_overlap(cluster1[0], cluster2[0]),\
# """Clusters overlap: %s and %s""" %\
# (cluster1[0][0].hit_id + str(get_cluster_range(cluster1[0])),\
# cluster2[0][0].hit_id + str(get_cluster_range(cluster2[0])))
# Sort HSPs according to E-value (the ranking may change because when
# TBLASTN HSPs for the same scaffold sequence are split into those
# representing potentially separate genes, then some may have higher
# E-values).
all_hsp_clusters.sort(key=lambda x: min([y.evalue for y in x[0]]))
# Return the list of SearchIO HSP (not Hit) object clusters/lists.
return all_hsp_clusters | f33bc8ed36343cb4e0c00c186546d6f979885c92 | 3,419 |
def to_entity_values(entity_group):
""" Parse current entity group content into a CreateEntity[]
"""
values = []
for _, row in entity_group.iterrows():
value = row[ENTITY_VALUE_COLUMN]
if not value: # Handle reserved entities
continue
synonyms = []
patterns = []
# Drop first two item and iterate the rest items (synonym or pattern)
for _, val in row.drop([ENTITY_COLUMN, ENTITY_VALUE_COLUMN]) \
.iteritems():
if not pd.isnull(val):
if val.startswith('/'): # is pattern?
patterns.append(val[:-1][1:])
else:
synonyms.append(val)
# Construct CreateValue[]
if len(patterns) != 0:
values.append({'value': value, 'patterns': patterns,
'type': 'patterns'})
else:
values.append({'value': value, 'synonyms': synonyms,
'type': 'synonyms'})
return values | 278f9d5a7c8294338d83ba025c67fe23f36a8ac2 | 3,420 |
import codecs
import logging
def read_file(file_path):
"""
Read the contents of a file using utf-8 encoding, or return an empty string
if it does not exist
:param file_path: str: path to the file to read
:return: str: contents of file
"""
try:
with codecs.open(file_path, 'r', encoding='utf-8', errors='xmlcharrefreplace') as infile:
return infile.read()
except OSError as e:
logging.exception('Error opening {}'.format(file_path))
return '' | 13a72bc939021e3046243ed9afc7014cb403652a | 3,421 |
def scrub(data):
"""
Reads a CSV file and organizes it neatly into a DataFrame.
Arguments:
data {.csv} -- the csv file to be read and scrubbed
Returns:
DataFrame -- the logarithmic returns of selected ticker symbols
"""
df = pd.read_csv(data, header=0, index_col=0, parse_dates=True)
df.dropna(axis=1, inplace=True)
logret = np.log(df).diff().iloc[1:]
return logret | cce082da1d1f4c4308b4f30df918750f91de3f3f | 3,422 |
import argparse
def parse_args():
"""read arguments from command line
"""
parser = argparse.ArgumentParser(
description='preprocess.py',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--dataset',
type=str,
nargs='?',
default='data/datasets/solid-state_dataset_2019-09-27_upd.json',
help="Path to dataset to use")
parser.add_argument('--elem-dict',
type=str,
nargs='?',
default='data/elem_dict',
help="Path to element to index dictionary without extension")
parser.add_argument('--action-dict',
type=str,
nargs='?',
default='data/action_dict',
help="Path to element to index dictionary without extension")
parser.add_argument('--magpie-embed',
type=str,
nargs='?',
default='data/magpie_embed',
help="Path to magpie embeddings dictionary without extension")
parser.add_argument('--clean-set',
type=str,
nargs='?',
default='data/dataset',
help="Path to full clean dataset to use without extension")
parser.add_argument('--train-set',
type=str,
nargs='?',
default='data/train',
help="Path to train dataset to use without extension")
parser.add_argument('--test-set',
type=str,
nargs='?',
default='data/test',
help="Path to test dataset to use without extension")
parser.add_argument('--val-set',
type=str,
nargs='?',
default='data/val',
help="Path to val dataset to use without extension")
parser.add_argument('--test-size',
type=float,
nargs='?',
default=0.2,
help="size of clean dataset for testing")
parser.add_argument('--val-size',
type=float,
nargs='?',
default=0,
help="size of clean dataset for validation")
parser.add_argument('--seed',
type=int,
nargs='?',
default=0,
help="Random seed for splitting data")
parser.add_argument('--ps',
type=str,
nargs='?',
default='',
help="postscript on path for save files")
parser.add_argument('--max-prec',
type=int,
nargs='?',
default=10,
help='Max number of precursors per reaction.')
parser.add_argument('--min-prec',
type=int,
nargs='?',
default=2,
help='Min number of precursors per reaction. Default 2')
parser.add_argument('--augment',
action="store_true",
help="augment data with precursor rearrangements")
parser.add_argument('--split-prec-amts',
action="store_true",
help="split out data for the baseline model")
parser.add_argument('--num-elem',
type=int,
metavar='N',
nargs='?',
default=-1,
help='Take N most common elements only. Default: -1 (all)')
args = parser.parse_args()
return args | 7896e1e6edf431a3293ecc2a3970714212132322 | 3,423 |
def _get_lto_level():
"""
Returns the user-specific LTO parallelism level.
"""
default = 32 if config.get_lto_type() else 0
return read_int("cxx", "lto", default) | 1d0279d363aaa02dcf820f3a064e9b2023ae36a4 | 3,424 |
from typing import List
from typing import Any
def slice_label_rows(labeldf: pd.DataFrame, label: str, sample_list: List[str],
row_mask: NDArray[Any]) -> NDArray[Any]:
"""
Selects rows from the Pandas DataFrame of labels corresponding to the samples in a particular sample_block.
Args:
labeldf : Pandas DataFrame containing the labels
label : Header for the particular label to slice. Can be 'all' if all labels are desired.
sample_list : List of sample ids corresponding to the sample_block to be sliced out.
row_mask : 1D numpy array of size n_rows containing booleans used to mask samples from the rows sliced from
labeldf.
Returns:
Matrix of [number of samples in sample_block - number of samples masked] x [number of labels to slice]
"""
if row_mask.size == 0:
row_mask = np.full(len(sample_list), True)
if label == 'all':
return labeldf.loc[sample_list, :].to_numpy()[row_mask, :]
else:
return labeldf[label].loc[sample_list].to_numpy().reshape(-1, 1)[row_mask, :] | 859bac2e577b534592a3428cd163f123608c9d72 | 3,425 |
def rollback(var_list, ckpt_folder, ckpt_file=None):
""" This function provides a shortcut for reloading a model and calculating a list of variables
:param var_list:
:param ckpt_folder:
:param ckpt_file: in case an older ckpt file is needed, provide it here, e.g. 'cifar.ckpt-6284'
:return:
"""
global_step = global_step_config()
# register a session
sess = tf.Session(config=tf.ConfigProto(
allow_soft_placement=True,
log_device_placement=False))
# initialization
init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
sess.run(init_op)
# load the training graph
saver = tf.compat.v1.train.Saver(max_to_keep=2)
ckpt = get_ckpt(ckpt_folder, ckpt_file=ckpt_file)
if ckpt is None:
raise FileNotFoundError('No ckpt Model found at {}.'.format(ckpt_folder))
saver.restore(sess, ckpt.model_checkpoint_path)
FLAGS.print('Model reloaded.')
# run the session
coord = tf.train.Coordinator()
# threads = tf.train.start_queue_runners(sess=sess, coord=coord)
var_value, global_step_value = sess.run([var_list, global_step])
coord.request_stop()
# coord.join(threads)
sess.close()
FLAGS.print('Variable calculated.')
return var_value, global_step_value | e434ba292b842ee29ca5e61e33b24089a34b52a8 | 3,426 |
import numpy
def read_interaction_file_mat(file):
"""
Renvoie la matrice d'adjacence associée au graph d'intéraction entre protéines ainsi que la liste
ordonnée des sommets
:param file: tableau contenant un graphe
:type file: dataframe
:return: une matrice d'adjascence de ce graphe et une liste ordonnée des sommets
:rtype: tuple
"""
list_sommets = pd.concat([file.Sommet, file.Interaction])
list_sommets = sorted(list(dict.fromkeys(list_sommets)))
res_mat = numpy.zeros((len(list_sommets), len(list_sommets)), dtype=int)
res_list = read_interaction_file_list(file)
for interaction in res_list:
res_mat[list_sommets.index(interaction[0])][list_sommets.index(interaction[1])] = 1
res_mat[list_sommets.index(interaction[1])][list_sommets.index(interaction[0])] = 1
return res_mat, list_sommets | de62b45810ada6a69b779f42c39b589092d95428 | 3,427 |
def load_figures(fig_names):
"""
Uses a list of the figure names to load them into a list
@param fig_names:
@type fig_names:
@return: A list containing all the figures
@rtype: list
"""
fig_list = []
for i, name in enumerate(fig_names):
fig_list.append(pl.load(open(f"{name}.pickle", "rb")))
return fig_list | 6e90a2c9c7fbbbb89d793b8e0c8e7b521f797f64 | 3,428 |
def define_mimonet_layers(input_shape, classes, regularized=False):
"""
Use the functional API to define the model
https://keras.io/getting-started/functional-api-guide/
params: input_shape (h,w,channels)
"""
layers = { 'inputs' : None,
'down_path' : {},
'bottle_neck' : None,
'up_path' : {},
'outputs' : None }
layers['inputs'] = [Input(input_shape[0],name='in1'),Input(input_shape[1],name='in2'),Input(input_shape[2],name='in3')]
layers['down_path'][4] = cnv3x3Relu(64,regularized=regularized)(layers['inputs'][0])
layers['down_path'][4] = cnv3x3Relu(64,regularized=regularized)(layers['down_path'][4])
layers['down_path'][3] = crop_concatenate(layers['inputs'][1],
new_down_level(128,layers['down_path'][4],regularized=regularized))
layers['down_path'][2] = crop_concatenate(layers['inputs'][2],
new_down_level(256,layers['down_path'][3],regularized=regularized))
layers['down_path'][1] = new_down_level(512,layers['down_path'][2],regularized=regularized)
layers['bottle_neck'] = new_down_level(1024,layers['down_path'][1],regularized=regularized)
layers['up_path'][1] = new_up_level(512,layers['bottle_neck'],layers['down_path'][1],regularized=regularized)
layers['up_path'][2] = new_up_level(256,layers['up_path'][1],layers['down_path'][2],padding='same',regularized=regularized)
layers['up_path'][3] = new_up_level(128,layers['up_path'][2],layers['down_path'][3],padding='same',regularized=regularized)
layers['up_path'][4] = new_up_level(64,layers['up_path'][3],layers['down_path'][4],regularized=regularized)
auxla1, la1 = feature_mask(4,256,64,classes,layers['up_path'][2],'la1')
auxla2, la2 = feature_mask(2,128,64,classes,layers['up_path'][3],'la2')
auxla3 = layers['up_path'][4]
layers['outputs'] = [ la1,la2 ]
layers['outputs'] += [ Conv2D(classes, (1, 1), activation='softmax', name='la3')(auxla3) ]
l0 = crop_concatenate(auxla1, auxla2)
l0 = crop_concatenate(l0,auxla3)
l0 = cnv3x3Relu(64,regularized=regularized, padding='same')(l0)
l0 = cnv3x3Relu(32,regularized=regularized, padding='same')(l0)
layers['outputs'] += [ Conv2D(classes, (1, 1), activation='softmax', name='l0')(l0) ]
return layers | e3151f29590cbd523063e13fffc29290a19d071a | 3,429 |
import sys
def scattering_angle( sza, vza, phi, Expand=False, Degree=False ):
"""
Function scattering_angle() calculates the scattering angle.
cos(pi-THETA) = cos(theta)cos(theta0) + sin(theta)sin(theta0)cos(phi)
Input and output are in the unit of PI
Parameters
----------
sza: solar zenith angle is radian
vza: viewing zenith angle in radian
phi: relative azimuth angle in radian
Expand: (optional) Ture/False to expand the dimension of calculated THETA
Returns
-------
THETA: scattering angle in radian
"""
# Change angle from degree to radian if needed
if Degree:
angle2rad = np.pi / 180.
sza = sza * angle2rad
vza = vza * angle2rad
phi = phi * angle2rad
# define the
m,n,l = np.size(sza),np.size(vza),np.size(phi)
if Expand:
THETA = np.zeros( (m,n,l) )
for k in range(l):
for j in range(n):
for i in range(m):
t1 = np.cos(vza[j]) * np.cos(sza[i]) \
+ np.sin(vza[j]) * np.sin(sza[i]) * np.cos(phi[k])
t2 = np.arccos(t1)
THETA[i,j,k] = np.pi - t2
else:
# Check the dimension
if (( m != n) | (m != l )):
sys.ext("scattering_angle() error #1 in util.py")
t1 = np.cos(vza) * np.cos(sza) \
+ np.sin(vza) * np.sin(sza) * np.cos(phi)
t2 = np.arccos(t1)
THETA = np.pi - t2
if Degree:
THETA = THETA * 180. / np.pi
return THETA | c3c96ab2852857528495b932b7e42af9ebd719d5 | 3,430 |
def _list_subclasses(cls):
"""
Recursively lists all subclasses of `cls`.
"""
subclasses = cls.__subclasses__()
for subclass in cls.__subclasses__():
subclasses += _list_subclasses(subclass)
return subclasses | 4cebf48916c64f32fcd5dfff28ecde7a155edb90 | 3,431 |
import logging
def main(from_json: bool = True, filename: str = DEFAULT_ARGS['pipeline_config_save_path']):
"""
Calls the specified pipeline.
:param filename: json filename
:param from_json: whether to run pipeline from json file or not
:return: pipeline call function
"""
# Parsing arguments
parser = HfArgumentParser((ModelArguments, DatabuilderArguments, TrainingArguments, PipelineArguments))
model_args, databuilder_args, training_args, pipeline_args = parser.parse_json_file(
json_file=filename) if from_json else parser.parse_args_into_dataclasses()
# Asserting specified pipeline does exist
assert pipeline_args.pipeline in PIPELINES, \
"Unknown pipeline {}, available pipelines are {}".format(pipeline_args.pipeline, list(PIPELINES.keys()))
# Logging session informations
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
)
# Loading model & tokenizer
model = AutoModelForSeq2SeqLM.from_pretrained(training_args.output_dir)
tokenizer = AutoTokenizer.from_pretrained(training_args.output_dir)
# Getting specified pipeline
task_pipeline = PIPELINES[pipeline_args.pipeline]["impl"]
logger.info(f'Pipeline has been loaded and is ready for inference. ')
return task_pipeline(model=model, tokenizer=tokenizer) | ccd975889d639f3a642e820e4d7ce5e2ef583609 | 3,432 |
def put(url, **kwargs):
"""PUT to a URL."""
return session.put(url, **kwargs) | 64618fc239164a73fa90f2348de8402c5a593394 | 3,433 |
def cod_records(mocker, cod_records_json):
"""Fixture for COD records metric instance."""
mocker.patch.object(RecordsMetric, 'collect',
new=records_collect(cod_records_json))
return metrics.records('cod_records', 'http://www.google.com') | d4ac73421f3fcef9b175aa42c02354ff437581ad | 3,434 |
def add_computed_document_features(input_dict):
"""
TODO: Add a feature to Annotated Document Corpus.
:param adc: Annotated Document Corpus
:param feature_name: the name of new feature
:param feature_computation: "New Feature Computatation
:param feature_spec: Comma separated list of names of old features used in the 'New Feature Computataion'.
:return: new adc
"""
adc=input_dict["adc"]
compute_new_features(adc.documents,input_dict["feature_name"],input_dict["feature_computation"])
return {"adc":adc} | 2673eae356c3fc5717d7ba6aa735aa8f6f129731 | 3,435 |
def get_lite_addons():
"""Load the lite addons file as a set."""
return set_from_file('validations/lite-addons.txt') | 68f26084b5e7e13492f61fc65fe504d1b5d53384 | 3,436 |
def GetApexPlayerStatus_TRN(api_key, platform, playerName):
"""
Get the status of a player on Apex Legends.
:param api_key: The API key to use.
:param platform: The platform to use.
:param playerName: The player name to use.
"""
platform = _fixplatform(platform)
if _checkplatform(platform):
url = f'https://public-api.tracker.gg/{API_VER}/apex/standard/profile/{platform}/{playerName}'
try:
res = get_request(url, {'TRN-Api-Key': api_key})
response = res[0]
if response.status_code == 200:
r = response.json()
list_legends_data = []
my_append = list_legends_data.append
for d in r['data']['segments']:
if d["type"] == "overview":
continue
else:
my_append(d)
res = ApexTrackerPy.Apexclass.TRN_PlayerStatus(
row_json=r,
elapsed_time=res[1],
platformUserId=r['data']['platformInfo']['platformUserId'],
activelegend=r['data']['metadata']['activeLegend'],
userlevel=r['data']['segments'][0]['stats']['level']['value'],
totalkill=r['data']['segments'][0]['stats']['kills']['value'],
totaldamage=r['data']['segments'][0]['stats']['damage']['value'],
totalheadshots=r['data']['segments'][0]['stats']['headshots']['value'],
CurrentRank=r['data']['segments'][0]['stats']['rankScore']['metadata']['rankName'],
CurrentRankScore=r['data']['segments'][0]['stats']['rankScore']['value'],
ArenaRankedName=r['data']['segments'][0]['stats']['arenaRankScore']['metadata']['rankName'],
ArenaRankedScore=r['data']['segments'][0]['stats']['arenaRankScore']['value'],
legends_json=list_legends_data,
)
return res
else:
raise Exception('HttpError!:The API returned status code '+str(response.status_code))
except Exception as e:
raise Exception('HttpError!:An error has occurred during the API call.\n'+str(e))
else:
raise Exception('Invalid platform!') | 296f9900e3e95afa24a0e643ed45563b57fb172a | 3,437 |
def subFactoryGet(fixture, **kwargs):
"""
To be used in fixture definition (or in the kwargs of the fixture constructor) to reference a other
fixture using the :meth:`.BaseFix.get` method.
:param fixture: Desired fixture
:param kwargs: *Optional:* key words to overwrite properties of this fixture
:return: Proxy object for the desired fixture including the altered properties
"""
return SubFactory(fixture, METHOD_GET, **kwargs) | 480db102897a3edd682acef6ee95a42b6f937b03 | 3,438 |
def hello():
"""Return the dashboard homepage."""
return render_template('index.html') | adac182b3c8dd2ae0f17425205203c5493499f19 | 3,439 |
def rapid_ping(client, dst_ip):
"""TODO: Docstring for ping.
:returns: TODO
"""
status = False
# run ping command with count 10 rapidly
command = 'exec cli ping ' + dst_ip + ' count 10 rapid'
stdin, stdout, stderr = client.exec_command(command, get_pty=True)
for line in iter(stdout.readline, ""):
if ("!!!!!!!!!" in line):
status = True
return status | 9533995412eb10ee66b437c7e28b697dcb156b50 | 3,440 |
from pathlib import Path
def test_data_dir():
"""
Returns path of test datas like excel
Used for test or notebook
"""
path = Path(__file__).parent.parent / 'testdata'
return path | f410f26276797204dd100d884b162f893b5ce4aa | 3,441 |
import sys
def classify_audio(model, callback,
labels_file=None,
inference_overlap_ratio=0.1,
buffer_size_secs=2.0,
buffer_write_size_secs=0.1,
audio_device_index=None):
"""
Continuously classifies audio samples from the microphone, yielding results
to your own callback function.
Your callback function receives the top classification result for every
inference performed. Although the audio sample size is fixed based on the
model input size, you can adjust the rate of inference with
``inference_overlap_ratio``. A larger overlap means the model runs inference
more frequently but with larger amounts of sample data shared between
inferences, which can result in duplicate results.
Args:
model (str): Path to a ``.tflite`` file.
callback: A function that takes two arguments (in order): a string for
the classification label, and a float for the prediction score.
The function must return a boolean: True to continue running
inference, or False to stop.
labels_file (str): Path to a labels file (required only if the model
does not include metadata labels). If provided, this overrides the
labels file provided in the model metadata.
inference_overlap_ratio (float): The amount of audio that should overlap
between each sample used for inference. May be 0.0 up to (but not
including) 1.0. For example, if set to 0.5 and the model takes a
one-second sample as input, the model will run an inference every
half second, or if set to 0, then there is no overlap and
it will run once each second.
buffer_size_secs (float): The length of audio to hold in the audio
buffer.
buffer_write_size_secs (float): The length of audio to capture into the
buffer with each sampling from the microphone.
audio_device_index (int): The audio input device index to use.
"""
if not model:
raise ValueError('model must be specified')
if buffer_size_secs <= 0.0:
raise ValueError('buffer_size_secs must be positive')
if buffer_write_size_secs <= 0.0:
raise ValueError('buffer_write_size_secs must be positive')
if inference_overlap_ratio < 0.0 or \
inference_overlap_ratio >= 1.0:
raise ValueError('inference_overlap_ratio must be in [0.0 .. 1.0)')
sample_rate_hz, channels = model_audio_properties(model)
if labels_file is not None:
labels = dataset.read_label_file(labels_file)
else:
labels = utils.read_labels_from_metadata(model)
print('Say one of the following:')
for value in labels.values():
print(' %s' % value)
interpreter = tflite.Interpreter(model_path=model)
interpreter.allocate_tensors()
# Input tensor
input_details = interpreter.get_input_details()
waveform_input_index = input_details[0]['index']
_, num_audio_frames = input_details[0]['shape']
waveform = np.zeros(num_audio_frames, dtype=np.float32)
# Output tensor
output_details = interpreter.get_output_details()
scores_output_index = output_details[0]['index']
ring_buffer_size = int(buffer_size_secs * sample_rate_hz)
frames_per_buffer = int(buffer_write_size_secs * sample_rate_hz)
remove_size = int((1.0 - inference_overlap_ratio) * len(waveform))
rb = ring_buffer.ConcurrentRingBuffer(
np.zeros(ring_buffer_size, dtype=np.float32))
def stream_callback(in_data, frame_count, time_info, status):
try:
rb.write(np.frombuffer(in_data, dtype=np.float32), block=False)
except ring_buffer.Overflow:
print('WARNING: Dropping input audio buffer', file=sys.stderr)
return None, pyaudio.paContinue
with pyaudio_stream(format=pyaudio.paFloat32,
channels=channels,
rate=sample_rate_hz,
frames_per_buffer=frames_per_buffer,
stream_callback=stream_callback,
input=True,
input_device_index=audio_device_index) as stream:
keep_listening = True
while keep_listening:
rb.read(waveform, remove_size=remove_size)
interpreter.set_tensor(waveform_input_index, [waveform])
interpreter.invoke()
scores = interpreter.get_tensor(scores_output_index)
scores = np.mean(scores, axis=0)
prediction = np.argmax(scores)
keep_listening = callback(labels[prediction], scores[prediction]) | d8462b689b8e5e3ad24933265f4b6b740e71ace4 | 3,442 |
def is_leap_year(year: int) -> bool:
"""Returns whether the given year is a leap year"""
if year % 100 == 0:
return year % 400 == 0
else:
return year % 4 == 0 | fccaa3de6378e62b937748c671a21aa5427781e8 | 3,443 |
import os
def find_manifests(pkgnames, verbose=True):
""" return a dictionary keyed by pkgname with the found manifest's full path """
(abspath, dirname) = (os.path.abspath, os.path.dirname)
(ret,stdout,stderr) = spawn("git rev-parse --show-toplevel")
root = stdout[0] if ret == 0 else os.getcwd()
jsonfiles = all_json_files(root)
def ensure_json(pkgname):
return pkgname if pkgname.endswith(".json") else "{}.json".format(pkgname)
def match(pkg, jsonfile):
return jsonfile.endswith(ensure_json(pkg)) and is_manifest(jsonfile, verbose)
return {p:j for p in pkgnames for j in jsonfiles if match(p,j)} | a23fdab47c8c26a154e484036c52d77b6b4d3ed1 | 3,444 |
def is_valid_distribution(qk: np.ndarray, axis: int) -> bool:
"""valid is e.g.: [], [1.0], [0.5, 0.5]"""
"""not valid is e.g.: [-1.0], [0.6, 0.6], [np.nan], [np.nan, 0.6], [1.2]"""
assert 0 <= axis < len(qk.shape)
if qk.shape[axis] == 0:
return True
if np.any(qk < 0.0):
return False
if np.any(qk > 1.0):
return False
result = np.all(np.sum(qk, axis=axis) == 1)
return result | fdbb1ac82f2d5cf93843f3d8d1f4f4d02a3ab408 | 3,445 |
def srt(data, cube, **kwargs):
"""
Define Solar Rotational Tomography model with optional masking of
data and map areas. Can also define priors.
Parameters
----------
data: InfoArray
data cube
cube: FitsArray
map cube
obj_rmin: float
Object minimal radius. Areas below obj_rmin are masked out.
obj_rmax: float
Object maximal radius. Areas above obj_rmax are masked out.
data_rmin: float
Data minimal radius. Areas below data_rmin are masked out.
data_rmax: float
Data maximal radius. Areas above data_rmax are masked out.
mask_negative: boolean
If true, negative values in the data are masked out.
Returns
-------
P : The projector with masking
D : Smoothness priors
obj_mask : object mask array
data_mask : data mask array
"""
# Model : it is Solar rotational tomography, so obstacle="sun".
data_mask = solar.define_data_mask(data, **kwargs)
P = siddon_lo(data.header, cube.header, mask=data_mask, obstacle="sun")
D = smoothness_prior(cube, kwargs.get("height_prior", False))
P, D, obj_mask = _apply_object_mask(P, D, cube, **kwargs)
return P, D, obj_mask, data_mask | e0af1f5d0d00e8651c3668091165beaf0aaa6f55 | 3,446 |
def get(status_id):
"""Fetches a status of previously submitted PushFunds request.
Returns a status of :func:`~pyvdp.visadirect.fundstransfer.MultiPushFundsTransactionsModel` request by transaction
identifier, returned with 202 response.
:param str status_id: **Required**. Transaction status identifier.
:return: Dictionary with VDP API response.
**Usage:**
.. code:: python
from pyvdp.visadirect.fundstransfer import multipushfundstransactions
status_id = "1491819372_186_81_l73c003_VDP_ARM"
result = pushfundstransactions.send(status_id)
print(result)
"""
query_string = '/' + status_id
c = VisaDirectDispatcher(resource='visadirect',
api='fundstransfer',
method='multipushfundstransactions',
http_verb='GET',
query_string=query_string)
return c.send() | fb8951355f342405e93f44747e670afcaf094322 | 3,447 |
import os
def getLocalDir(jobdir, dirname=''):
"""
Assemble destination directory for job results.
Raises:
TargetDirExistsError: Destination for job results already exists.
"""
if dirname:
dstDir = os.path.join(dirname, jobdir)
else:
dstDir = os.path.join(os.getcwd(), jobdir)
if not os.path.exists(dstDir):
return dstDir
else:
raise TargetDirExistsError(dstDir) | a7bd503b86a60761f09abb139e696efadbf899b5 | 3,448 |
def eval_pop_thread(args):
"""
Evaluates solutions, returns a list of floats, between 0 and 1
(probabilities of survival and reproduction).
"""
m_solutions, m_state_hash_table, id_mi = args[0], args[1], args[2]
step = int(N_POP/N_PROC)
prob_surv = np.zeros(step)
for index_sol in range(len(m_solutions)):
print("Solution ", index_sol, " Id: ", id_mi)
sol = m_solutions[index_sol]
tmp_points = 0
max_sol = np.max(sol)
for state_key in m_state_hash_table:
state = m_state_hash_table[state_key]
tmp_w = compute_heuristic(state_key, 'WHITE', sol)
tmp_b = compute_heuristic(state_key, 'BLACK', sol)
if tmp_w < 0 and state['value']['white'] / state['games'] > 0.5:
tmp_points += 1
elif tmp_w > 0 and state['value']['black'] / state['games'] > 0.5:
tmp_points += 1
elif 0+ERROR_ZERO * max_sol >= tmp_w >= 0-ERROR_ZERO * max_sol and \
state['value']['black'] / state['games'] < 0.5 and state['value']['white'] / state['games'] < 0.5:
tmp_points += 1
if tmp_b < 0 and state['value']['black'] / state['games'] > 0.5:
tmp_points += 1
elif tmp_b > 0 and state['value']['white'] / state['games'] > 0.5:
tmp_points += 1
elif 0 + ERROR_ZERO * max_sol >= tmp_b >= 0-ERROR_ZERO * max_sol and \
state['value']['black'] / state['games'] < 0.5 and state['value']['white'] / state['games'] < 0.5:
tmp_points += 1
tmp_points /= 2
prob_surv[index_sol] = tmp_points
return prob_surv | 8acdb0acae737a8bf48578ec48c3dcc1b66c7adb | 3,449 |
def _mini_batch_convergence(model, iteration_idx, n_iter, tol,
n_samples, centers_squared_diff, batch_inertia,
context, verbose=0):
"""Helper function to encapsulate the early stopping logic"""
# Normalize inertia to be able to compare values when
# batch_size changes
batch_inertia /= model.batch_size
centers_squared_diff /= model.batch_size
# Compute an Exponentially Weighted Average of the squared
# diff to monitor the convergence while discarding
# minibatch-local stochastic variability:
# https://en.wikipedia.org/wiki/Moving_average
ewa_diff = context.get('ewa_diff')
ewa_inertia = context.get('ewa_inertia')
if ewa_diff is None:
ewa_diff = centers_squared_diff
ewa_inertia = batch_inertia
else:
alpha = float(model.batch_size) * 2.0 / (n_samples + 1)
alpha = 1.0 if alpha > 1.0 else alpha
ewa_diff = ewa_diff * (1 - alpha) + centers_squared_diff * alpha
ewa_inertia = ewa_inertia * (1 - alpha) + batch_inertia * alpha
# Log progress to be able to monitor convergence
if verbose:
progress_msg = (
'Minibatch iteration %d/%d:'
' mean batch inertia: %f, ewa inertia: %f ' % (
iteration_idx + 1, n_iter, batch_inertia,
ewa_inertia))
print(progress_msg)
# Early stopping based on absolute tolerance on squared change of
# centers position (using EWA smoothing)
if tol > 0.0 and ewa_diff <= tol:
if verbose:
print('Converged (small centers change) at iteration %d/%d'
% (iteration_idx + 1, n_iter))
return True
# Early stopping heuristic due to lack of improvement on smoothed inertia
ewa_inertia_min = context.get('ewa_inertia_min')
no_improvement = context.get('no_improvement', 0)
if ewa_inertia_min is None or ewa_inertia < ewa_inertia_min:
no_improvement = 0
ewa_inertia_min = ewa_inertia
else:
no_improvement += 1
if (model.max_no_improvement is not None
and no_improvement >= model.max_no_improvement):
if verbose:
print('Converged (lack of improvement in inertia)'
' at iteration %d/%d'
% (iteration_idx + 1, n_iter))
return True
# update the convergence context to maintain state across successive calls:
context['ewa_diff'] = ewa_diff
context['ewa_inertia'] = ewa_inertia
context['ewa_inertia_min'] = ewa_inertia_min
context['no_improvement'] = no_improvement
return False | 701488e530913bfc2e5d382a544679315dc1f013 | 3,450 |
def rho_MC(delta, rhoeq=4.39e-38):
"""
returns the characteristic density of an
axion minicluster in [solar masses/km^3]
forming from an overdensity with
overdensity parameter delta.
rhoeq is the matter density at matter
radiation equality in [solar masses/km^3]
"""
return 140 * (1 + delta) * delta**3 * rhoeq | f28e382cfcf661199728363b3ebe86f25e92760c | 3,451 |
from typing import Dict
from typing import Union
from typing import List
from typing import Optional
def _parse_parameter_from_value(
string: str,
parameter_to_wordlist_mapping: Dict[Union[TimeResolution, PeriodType, Parameter], List[List[str]]]
) -> Optional[Union[TimeResolution, PeriodType, Parameter]]:
"""
Function to parse a parameter from a given string based on a list of parameter enumerations and corresponding list
of words.
Args:
string: string containing the circa name of the parameter
parameter_to_wordlist_mapping: mapping of parameter and list of words
Returns:
None or one of the found enumerations
"""
string_split = string.split("_")
for parameter, wordlist in parameter_to_wordlist_mapping.items():
cond1 = len(wordlist) == len(string_split)
cond2 = _find_any_one_word_from_wordlist(string_split, wordlist)
if cond1 and cond2:
return parameter
return None | 0fa1e2f7edf5e6be31e0e2ae514ecc22a512e8f7 | 3,452 |
def AffineMomentsF(I, returnShape=False):
"""
Input: - I: A 2D image
Output: - Out: A (1x6) vector containing 6 moment features
"""
# ************************************************************************
# Modified for MRI feature extraction by the Department of Diagnostic
# and Interventional Radiology, University Hospital of Tuebingen, Germany
# and the Institute of Signal Processing and System Theory University of
# Stuttgart, Germany. Last modified: November 2016
#
# This implementation is part of ImFEATbox, a toolbox for image feature
# extraction and analysis. Available online at:
# https://github.com/annikaliebgott/ImFEATbox
#
# Contact: [email protected]
# ************************************************************************
#
# Implementation based on: Tomas Suk, Jan Flusser, "Combined Blur and
# Affine Moment Invariants and their use in
# Pattern Recognition", Pattern Recognition,
# vol. 36, 2003.
#
# Implemented by: Asad Ali. Email: [email protected]
if returnShape:
return (6,1)
# x,y = np.nonzero(I[:,:,1]) TODO: how to handle color image?
x,y = np.nonzero(I)
pixelValues = I[x,y]
m00 = np.sum(pixelValues)
x = x - np.sum(x*pixelValues)/m00
y = y - np.sum(y*pixelValues)/m00
## calculate moments
# second order central moments
m20 = CentralMoments(x,y,2,0,pixelValues)
m02 = CentralMoments(x,y,0,2,pixelValues)
m11 = CentralMoments(x,y,1,1,pixelValues)
# third order central moments
m30 = CentralMoments(x,y,3,0,pixelValues)
m03 = CentralMoments(x,y,0,3,pixelValues)
m21 = CentralMoments(x,y,2,1,pixelValues)
m12 = CentralMoments(x,y,1,2,pixelValues)
# fouth order central moments
m40 = CentralMoments(x,y,4,0,pixelValues)
m04 = CentralMoments(x,y,0,4,pixelValues)
m31 = CentralMoments(x,y,3,1,pixelValues)
m13 = CentralMoments(x,y,1,3,pixelValues)
m22 = CentralMoments(x,y,2,2,pixelValues)
# fifth order central moments
m50 = CentralMoments(x,y,5,0,pixelValues)
m05 = CentralMoments(x,y,0,5,pixelValues)
m41 = CentralMoments(x,y,4,1,pixelValues)
m14 = CentralMoments(x,y,1,4,pixelValues)
m32 = CentralMoments(x,y,3,2,pixelValues)
m23 = CentralMoments(x,y,2,3,pixelValues)
# seventh order central moments
m70 = CentralMoments(x,y,7,0,pixelValues)
m07 = CentralMoments(x,y,0,7,pixelValues)
m16 = CentralMoments(x,y,1,6,pixelValues)
m61 = CentralMoments(x,y,6,1,pixelValues)
m52 = CentralMoments(x,y,5,2,pixelValues)
m25 = CentralMoments(x,y,2,5,pixelValues)
m43 = CentralMoments(x,y,4,3,pixelValues)
m34 = CentralMoments(x,y,3,4,pixelValues)
# for blur invariance we recompute certain values
m50 = m50 - (10*m30*m20/m00)
m41 = m41 - (2*(3*m21*m20 + 2*m30*m11)/m00)
m32 = m32 - ((3*m12*m20 + m30*m02 + 6*m21*m11)/m00)
m23 = m23 - ((3*m21*m02 + m03*m20 + 6*m12*m11)/m00)
m14 = m14 - (2*(3*m12*m02 + 2*m03*m11)/m00)
m05 = m05 - (10*m03*m02/m00)
# for blur invariance seventh order moments recomputed
m70 = m70 - 7 * (3*m50*m20 + 5*m30*m40)/m00 + (210*m30*m20**2 / m00**2)
m61 = m61 - (6*m50*m11 + 15*m41*m20 + 15*m40*m21 + 20*m31*m30)/m00 + 30*(3*m21*m20**2 + 4*m30*m20*m11)/m00**2
m52 = m52 - (m50*m02 +10*m30*m22 + 10*m32*m20 + 20*m31*m21 +10*m41*m11 + 5*m40*m12)/m00 + 10* (3*m12*m20**2 + 2*m30*m20*m02 + 4*m30*m11**2 + 12*m21*m20*m11)/m00**2
m43 = m43 - (m40*m03 + 18*m21*m22 + 12*m31*m12 + 4*m30*m13 + 3*m41*m02 + 12*m32*m11 + 6*m23*m20)/m00 + 6*(m03*m20**2 + 4*m30*m11*m02 + 12*m21*m11**2 + 12*m12*m20*m11 + 6*m21*m02*m20)
m34 = m34 - (m04*m30 + 18*m12*m22 + 12*m13*m21 + 4*m03*m31 + 3*m14*m20 + 12*m23*m11 + 6*m32*m02)/m00 + 6 *(m30*m02**2 + 4*m03*m11*m20 + 12*m12*m11**2 + 12*m21*m02*m11 + 6*m12*m20*m02)/m00**2
m25 = m25 - (m05*m20 + 10*m03*m22 + 10*m23*m02 + 20*m13*m12 + 10*m14*m11 + 5*m04*m21)/m00 + 10*(3*m21*m02**2 + 2*m03*m02*m20 +4*m03*m11**2 + 12*m12*m02*m11)/m00**2
m16 = m16 - (6*m05*m11 + 15*m14*m02 + 15*m04*m12 + 20*m13*m03)/m00 + 30*(3*m12*m02**2 + 4*m03*m02*m11)/m00**2
m07 = m07 - 7*(3*m05*m02 + 5*m03*m04)/m00 + (210*m03*m02**2 / m00**2)
# first invariant computed from the determinant of the polynomial
I1 = (m30**2*m03**2 - 6*m30*m21*m12*m03 + 4*m30*m12**3 + 4*m21**3*m03 - 3*m21**2*m12**2) / m00**10
I2 = (m50**2*m05**2 - 10*m50*m41*m14*m05 + 4*m50*m32*m23*m05 + 16*m50*m32*m14**2 - 12*m50*m23**2*m14 + 16*m41**2*m23*m05 + 9*m41**2*m14**2 - 12*m41*m32**2*m05 - 76*m41*m32*m23*m14 + 48*m41*m23**3 + 48*m32**3*m14 - 32*m32**2*m23**2)/m00**14
I3 = (m30**2*m12*m05 - m30**2*m03*m14 - m30*m21**2*m05 - 2*m30*m21*m12*m14 + 4*m30*m21*m03*m23 + 2*m30*m12**2*m23 - 4*m30*m12*m03*m32 + m30*m03**2*m41 + 3*m21**3*m14 - 6*m21**2*m12*m23 - 2*m21**2*m03*m32 + 6*m21*m12**2*m32 + 2*m21*m12*m03*m41 - m21*m03**2*m50 - 3*m12**3*m41 + m12**2*m03*m50) / m00**11
I4 = (2*m30*m12*m41*m05 - 8*m30*m12*m32*m14 + 6*m30*m12*m23**2 - m30*m03*m50*m05 + 3*m30*m03*m41*m14 - 2*m30*m03*m32*m23 - 2*m21**2*m41*m05 + 8*m21**2*m32*m14 - 6*m21**2*m23**2 + m21*m12*m50*m05 - 3*m21*m12*m41*m14 + 2*m21*m12*m32*m23 + 2*m21*m03*m50*m14 - 8*m21*m03*m41*m23 + 6*m21*m03*m32**2 - 2*m12**2*m50*m14 + 8*m12**2*m41*m23 - 6*m12**2*m32**2)/m00**12
I5 = (m30*m41*m23*m05 - m30*m41*m14**2 - m30*m32**2*m05 + 2*m30*m32*m23*m14 - m30*m23**3 - m21*m50*m23*m05 + m21*m50*m14**2 + m21*m41*m32*m05 - m21*m41*m23*m14 - m21*m32**2*m14 + m21*m32*m23**2 + m12*m50*m32*m05 - m12*m50*m23*m14 - m12*m41**2*m05 + m12*m41*m32*m14 + m12*m41*m23**2 - m12*m32**2*m23 - m03*m50*m32*m14 + m03*m50*m23**2 + m03*m41**2*m14 - 2*m03*m41*m32*m23 + m03*m32**3)/m00**13
I6 = (m70**2*m07**2 - 14*m70*m61*m16*m07 + 18*m70*m52*m25*m07 + 24*m70*m52*m16**2 - 10*m70*m43*m34*m07 - 60*m70*m43*m25*m16 + 40*m70*m34**2*m16 + 24*m61**2*m25*m07 + 25*m61**2*m16**2 - 60*m61*m52*m34*m07 - 234*m61*m52*m25*m16 + 40*m61*m43**2*m07 + 50*m61*m43*m34*m16 + 360*m61*m43*m25**2 - 240*m61*m34**2*m25 + 360*m52**2*m34*m16 + 81*m52**2*m25**2 - 240*m52*m43**2*m16 - 990*m52*m43*m34*m25 + 600*m52*m34**3 + 600*m43**3*m25 - 375*m43**2*m34**2)/m00**18
## return feature vector
Out = np.array([I1, I2, I3, I4, I5, I6])
return Out
# Calculate Central Moments | cb275aeacb4c4350a738b424bae0a284f4d40043 | 3,453 |
def render(scene):
"""
:param scene: Scene description
:return: [H, W, 3] image
"""
# Construct rays from the camera's eye position through the screen coordinates
camera = scene['camera']
eye, ray_dir, H, W = generate_rays(camera)
# Ray-object intersections
scene_objects = scene['objects']
obj_intersections, ray_dist, normals, material_idx = ray_object_intersections(eye, ray_dir, scene_objects)
# Valid distances
pixel_dist = ray_dist
valid_pixels = (camera['near'] <= ray_dist) & (ray_dist <= camera['far'])
pixel_dist[~valid_pixels] = np.inf # Will have to use gather operation for TF and pytorch
# Nearest object needs to be compared for valid regions only
nearest_obj = np.argmin(pixel_dist, axis=0)
C = np.arange(0, nearest_obj.size) # pixel idx
# Create depth image for visualization
# use nearest_obj for gather/select the pixel color
im_depth = pixel_dist[nearest_obj, C].reshape(H, W)
##############################
# Fragment processing
##############################
# Lighting
color_table = scene['colors']
light_pos = scene['lights']['pos']
light_clr_idx = scene['lights']['color_idx']
light_colors = color_table[light_clr_idx]
# Generate the fragments
"""
Get the normal and material for the visible objects.
"""
frag_normals = normals[nearest_obj, C]
frag_pos = obj_intersections[nearest_obj, C]
frag_albedo = scene['materials']['albedo'][material_idx[nearest_obj]]
# Fragment shading
light_dir = light_pos[np.newaxis, :] - frag_pos[:, np.newaxis, :]
light_dir_norm = np.sqrt(np.sum(light_dir ** 2, axis=-1))[..., np.newaxis]
light_dir_norm[light_dir_norm <= 0 | np.isinf(light_dir_norm)] = 1
light_dir = ops.nonzero_divide(light_dir, light_dir_norm)
im_color = np.sum(frag_normals[:, np.newaxis, :] * light_dir, axis=-1)[..., np.newaxis] * \
light_colors[np.newaxis, ...] * frag_albedo[:, np.newaxis, :]
im = np.sum(im_color, axis=1).reshape(H, W, 3)
im[(im_depth < camera['near']) | (im_depth > camera['far'])] = 0
# clip negative values
im[im < 0] = 0
# Tonemapping
if 'tonemap' in scene:
im = tonemap(im, **scene['tonemap'])
return {'image': im,
'depth': im_depth,
'ray_dist': ray_dist,
'obj_dist': pixel_dist,
'nearest': nearest_obj.reshape(H, W),
'ray_dir': ray_dir,
'valid_pixels': valid_pixels
} | 35f8cf34fea266034a76f3857213fcb83e334174 | 3,454 |
def state_fidelity(state1, state2):
"""Return the state fidelity between two quantum states.
Either input may be a state vector, or a density matrix. The state
fidelity (F) for two density matrices is defined as::
F(rho1, rho2) = Tr[sqrt(sqrt(rho1).rho2.sqrt(rho1))] ^ 2
For a pure state and mixed state the fidelity is given by::
F(|psi1>, rho2) = <psi1|rho2|psi1>
For two pure states the fidelity is given by::
F(|psi1>, |psi2>) = |<psi1|psi2>|^2
Args:
state1 (array_like): a quantum state vector or density matrix.
state2 (array_like): a quantum state vector or density matrix.
Returns:
array_like: The state fidelity F(state1, state2).
"""
# convert input to numpy arrays
s1 = np.array(state1)
s2 = np.array(state2)
# fidelity of two state vectors
if s1.ndim == 1 and s2.ndim == 1:
return np.abs(s2.conj().dot(s1)) ** 2
# fidelity of vector and density matrix
elif s1.ndim == 1:
# psi = s1, rho = s2
return np.abs(s1.conj().dot(s2).dot(s1))
elif s2.ndim == 1:
# psi = s2, rho = s1
return np.abs(s2.conj().dot(s1).dot(s2))
# fidelity of two density matrices
s1sq = _funm_svd(s1, np.sqrt)
s2sq = _funm_svd(s2, np.sqrt)
return np.linalg.norm(s1sq.dot(s2sq), ord='nuc') ** 2 | 9df10584ce9376df5690ebaccaa07046778b097c | 3,455 |
def process_state(request):
"""Procesa una request GET o POST para consultar datos de provincias.
En caso de ocurrir un error de parseo, se retorna una respuesta HTTP 400.
Args:
request (flask.Request): Request GET o POST de flask.
Returns:
flask.Response: respuesta HTTP
"""
return _process_entity(request, N.STATES, params.PARAMS_STATES, {
N.ID: 'ids',
N.NAME: 'name',
N.INTERSECTION: 'geo_shape_ids',
N.EXACT: 'exact',
N.ORDER: 'order',
N.FIELDS: 'fields',
N.OFFSET: 'offset',
N.MAX: 'size'
}) | 8e748dd73845438f768ecd34730a94c2e8696387 | 3,456 |
def is_ascii(string):
"""Return True is string contains only is us-ascii encoded characters."""
def is_ascii_char(char):
return 0 <= ord(char) <= 127
return all(is_ascii_char(char) for char in string) | cd3aeddcad7610de83af6ec5a67ecbac95f11fd8 | 3,457 |
from typing import Union
from typing import Tuple
from typing import Optional
from typing import List
def _get_predictions_from_data(
model: Union[Model, SKLEARN_MODELS],
data: Union[
tf.data.Dataset,
Tuple[Inputs, Outputs],
Tuple[Inputs, Outputs, Paths],
],
batch_size: Optional[int],
tensor_maps_in: Optional[List[TensorMap]],
tensor_maps_out: Optional[List[TensorMap]],
) -> Tuple[Predictions, Outputs, Optional[Paths]]:
"""
Get model predictions, output data, and paths from data source. Data must not
be infinite.
:param model: Model
:param data: finite tensorflow Dataset or tuple of inputs, outputs, and
optionally paths
:param batch_size: Number of samples to use in a batch, required if data is a
tuple input and output numpy arrays
:return: Tuple of predictions as a list of numpy arrays, a dictionary of
output data, and optionally paths
"""
if isinstance(data, tuple):
if len(data) == 2:
input_data, output_data = data
paths = None
elif len(data) == 3:
input_data, output_data, paths = data
else:
raise ValueError(
f"Expected 2 or 3 elements to dataset tuple, got {len(data)}",
)
if batch_size is None:
raise ValueError(
"When providing dataset as tuple of inputs and outputs, batch_size "
"is required, got {batch_size}",
)
y_predictions = model.predict(x=input_data, batch_size=batch_size)
elif isinstance(data, tf.data.Dataset):
y_prediction_batches = defaultdict(list)
output_data_batches = defaultdict(list)
id_batches = []
if isinstance(model, Model):
for batch in data:
output_data_batch = batch[BATCH_OUTPUT_INDEX]
for output_name, output_tensor in output_data_batch.items():
output_data_batches[output_name].append(output_tensor.numpy())
batch_y_predictions = model.predict(batch[BATCH_INPUT_INDEX])
if not isinstance(batch_y_predictions, list):
batch_y_predictions = [batch_y_predictions]
for prediction_idx, batch_y_prediction in enumerate(
batch_y_predictions,
):
y_prediction_batches[prediction_idx].append(batch_y_prediction)
if len(batch) == 3:
id_batches.append(batch[BATCH_IDS_INDEX].numpy().astype(str))
y_predictions = [
np.concatenate(y_prediction_batches[prediction_idx])
for prediction_idx in sorted(y_prediction_batches)
]
elif isinstance(model, SKLEARN_MODELS.__args__):
data = get_dicts_of_arrays_from_dataset(dataset=data)
assert all(tm.axes == 1 for tm in tensor_maps_in + tensor_maps_out)
assert len(tensor_maps_out) == 1
# Isolate arrays from datasets for desired tensor maps
X = get_array_from_dict_of_arrays(
tensor_maps=tensor_maps_in,
data=data[BATCH_INPUT_INDEX],
drop_redundant_columns=False,
)
y_predictions = model.predict_proba(X)
for output_name, output_tensor in data[BATCH_OUTPUT_INDEX].items():
output_data_batches[output_name].append(output_tensor)
if len(data) == 3:
id_batches.append(data[BATCH_IDS_INDEX])
else:
raise NotImplementedError(
f"Cannot perform inference on model of type {type(model).__name}",
)
# Iterate over batches and concatenate into dict of arrays
output_data = {
output_name: np.concatenate(output_data_batches[output_name])
for output_name in output_data_batches
}
paths = None if len(id_batches) == 0 else np.concatenate(id_batches).tolist()
else:
raise NotImplementedError(
"Cannot get data for inference from data of type "
"{type(data).__name__}: {data}",
)
if not isinstance(y_predictions, list):
y_predictions = [y_predictions]
return y_predictions, output_data, paths | 29a91481989d283ac1dddd831a9746ada5971a5a | 3,458 |
import pickle
def get_data(data, frame_nos, dataset, topic, usernum, fps, milisec, width, height, view_width, view_height):
"""
Read and return the viewport data
"""
VIEW_PATH = '../../Viewport/'
view_info = pickle.load(open(VIEW_PATH + 'ds{}/viewport_ds{}_topic{}_user{}'.format(dataset, dataset, topic, usernum), 'rb'), encoding='latin1')
if dataset == 1:
max_frame = int(view_info[-1][0]*1.0*fps/milisec)
for i in range(len(view_info)-1):
frame = int(view_info[i][0]*1.0*fps/milisec)
frame += int(offset*1.0*fps/milisec)
frame_nos.append(frame)
if(frame > max_frame):
break
X={}
X['VIEWPORT_x']=int(view_info[i][1][1]*width/view_width)
X['VIEWPORT_y']=int(view_info[i][1][0]*height/view_height)
data.append((X, int(view_info[i+1][1][1]*width/view_width),int(view_info[i+1][1][0]*height/view_height)))
elif dataset == 2:
for k in range(len(view_info)-1):
if view_info[k][0]<=offset+60 and view_info[k+1][0]>offset+60:
max_frame = int(view_info[k][0]*1.0*fps/milisec)
break
for k in range(len(view_info)-1):
if view_info[k][0]<=offset and view_info[k+1][0]>offset:
min_index = k+1
break
prev_frame = 0
for i in range(min_index,len(view_info)-1):
frame = int((view_info[i][0])*1.0*fps/milisec)
if frame == prev_frame:
continue
if(frame > max_frame):
break
frame_nos.append(frame)
X={}
X['VIEWPORT_x']=int(view_info[i][1][1]*width/view_width)
X['VIEWPORT_y']=int(view_info[i][1][0]*height/view_height)
data.append((X, int(view_info[i+1][1][1]*width/view_width),int(view_info[i+1][1][0]*height/view_height)))
prev_frame = frame
return data, frame_nos, max_frame | f78f3b7505b3ca5ab2cac67f2634b71cfa383707 | 3,459 |
import os
import requests
def getListGroups(config):
"""
Get list of groups
"""
print("Retrieve list of group")
data = None
grpList = None
__grpList = gitlabGroupList()
if (DUMMY_DATA):
curDir = os.path.dirname(os.path.abspath(__file__))
testFile = getFullFilePath(GROUPS_TEST_FILE)
with open (testFile, 'rt') as f:
data = f.read()
f.close()
else:
# retrieve data from server
url = getApiUrl(config, "groups")
logD("URL " + url)
token = config.getToken()
hdrs = {"PRIVATE-TOKEN":config.getToken()}
__totalPage = 0
__page = 1
while True:
logD("Page %d" % (__page))
params = {'page': __page}
logD("header %s" % hdrs)
resp = requests.get(url, headers=hdrs, params=params)
logD("resp status_code %s" % resp.status_code)
if (resp.status_code == 200):
data = resp.content
logD (resp.headers)
if (len(resp.headers.get('X-Next-Page')) > 0):
__page = int(resp.headers.get('X-Next-Page'))
else:
__page = 0
logD("next page %d" % (__page))
else:
__page = 0
break
if (data is not None) and (len(data) > 0):
logD("data %s" % data)
__grpList.parseData(data)
__totalPage += 1
if (config.getMaxGroup() is not None) and (__grpList.getLen() >= config.getMaxGroup()):
print("Reach max %s/%s" % (__grpList.getLen(), config.getMaxGroup()))
break
if (__page == 0): #ok, reach end, out
break
if (__totalPage > 500): # 500 pages? no way, something wrong, out
print("SOMETHING WRONG, total is to big, out")
break
print("Total pages %d" % (__totalPage))
return __grpList | 4c50964a5954d0132659297e0469119a150e20fd | 3,460 |
import copy
def call(args, version):
"""Converts callList into functionString."""
# Find keyword
keywords = [i for i in args if i in Variables.keywords(version)]
# Too many keywords is a syntax error.
if len(keywords) > 1:
raise UdebsSyntaxError("CallList contains to many keywords '{}'".format(args))
# No keywords creates a tuple object.
elif len(keywords) == 0:
return "(" + ",".join(formatS(i, version) for i in args) + ")"
keyword = keywords[0]
# Get and fix data for this keyword.
data = copy.copy(Variables.default)
data.update(Variables.keywords(version)[keyword])
# Create dict of values
current = args.index(keyword)
nodes = copy.copy(data["default"])
for index in range(len(args)):
value = "$" if index >= current else "-$"
value += str(abs(index - current))
if args[index] != keyword:
nodes[value] = args[index]
# Force strings into quoted arguments.
for string in data["string"]:
nodes[string] = "'" + str(nodes[string]).replace("'", "\\'") + "'"
# Claim keyword arguments.
kwargs = {}
for key, value in data["kwargs"].items():
if value in nodes:
new_value = nodes[value]
del nodes[value]
else:
new_value = value
kwargs[key] = formatS(new_value, version)
arguments = []
# Insert positional arguments
for key in data["args"]:
if key in nodes:
arguments.append(formatS(nodes[key], version))
del nodes[key]
else:
arguments.append(formatS(key, version))
# Insert ... arguments.
if data["all"]:
for key in sorted(nodes.keys(), key=lambda x: int(x.replace("$", ""))):
arguments.append(formatS(nodes[key], version))
del nodes[key]
if len(nodes) > 0:
raise UdebsSyntaxError("Keyword contains unused arguments. '{}'".format(" ".join(args)))
# Insert keyword arguments.
for key in sorted(kwargs.keys()):
arguments.append(str(key) + "=" + str(kwargs[key]))
return data["f"] + "(" + ",".join(arguments) + ")" | 0f5be8582903973ec3ae4077e51a11e084bcc2f8 | 3,461 |
from typing import List
from typing import Dict
from typing import Any
import ray
def get_object_locations(obj_refs: List[ObjectRef], timeout_ms: int = -1
) -> Dict[ObjectRef, Dict[str, Any]]:
"""Lookup the locations for a list of objects.
It returns a dict maps from an object to its location. The dict excludes
those objects whose location lookup failed.
Args:
object_refs (List[ObjectRef]): List of object refs.
timeout_ms (int): The maximum amount of time in micro seconds to wait
before returning. Wait infinitely if it's negative.
Returns:
A dict maps from an object to its location. The dict excludes those
objects whose location lookup failed.
The location is stored as a dict with following attributes:
- node_ids (List[str]): The hex IDs of the nodes that have a
copy of this object.
- object_size (int): The size of data + metadata in bytes.
Raises:
RuntimeError: if the processes were not started by ray.init().
ray.exceptions.GetTimeoutError: if it couldn't finish the
request in time.
"""
if not ray.is_initialized():
raise RuntimeError("Ray hasn't been initialized.")
return ray.worker.global_worker.core_worker.get_object_locations(
obj_refs, timeout_ms) | c7b4aa6761024853468e09f846af0ada8f7ebbba | 3,462 |
from conf.hosts import getPlateformObject
from core.exceptions import EnvironmentDoesNotExist
def remove_host(plateform=None, name=None, environment=None):
""" Remove Host Object from Platform Object attribute hosts and return updated Platform Object.
:param: plateform: host's plateform (same as type yaml file) passed by user
:param: name: host's name passed by user
:param: name: host's environment passed by user
:type: plateform: list of one str
:type: name: list of one str
:type: environment: list of one str
:return: Updated Plateform
:rtype: Plateform Object
.. seealso:: heimdall.conf.hosts.getPlateformObject(), heimdall.core.plateform.Plateform
"""
p = getPlateformObject(plateform[0])
try:
if not p.check_environment(environment[0]):
raise EnvironmentDoesNotExist('Environment %s in plateform %s does not exists!' % (environment[0], p.name),
p.name)
except EnvironmentDoesNotExist as ede:
print ede
exit(ede.code)
if name[0] == -1: # remove all
p.environment[environment[0]] = []
else:
[p.remove_host(host) for host in p.environment[environment[0]] for n in name if host.name == n]
return p | bc8e8681718f763c382230297087b9ce27a37e20 | 3,463 |
import argparse
def command_line_parsing():
""" Parse the command line arguments, set global TESTING and return the
current position as a tuple (either default or one given on command line """
global TESTING
parser = argparse.ArgumentParser(description='Food Truck Finder.')
parser.add_argument('latlong', metavar='latlong', type=str, nargs='?',
help='current location as latitude,longitude ' \
'(no spaces)')
parser.add_argument('--test', dest='am_testing', action='store_const',
const=True, default=False,
help='testing mode with canned data')
args = parser.parse_args()
TESTING = args.am_testing
if args.latlong is None:
return DEFAULT_POSITION
parts = args.latlong.split(',')
return (float(parts[0]), float(parts[1])) | 511fcd1893767fd93a73f112f7e6230d05ea2562 | 3,464 |
def read_samplesheet(config):
"""
read samplesheet
"""
sample_sheet = pd.read_csv(config["info_dict"]["flowcell_path"]+"/SampleSheet.csv",
sep = ",", skiprows=[0])
# sample_sheet = sample_sheet.fillna("no_bc")
sample_sheet['I7_Index_ID'] = sample_sheet['I7_Index_ID'].str.replace('No_index1','no_bc', regex = True) # TODO!! need to be applied on bc kit too!
# assert(len(sample_sheet["barcode_kits"].unique())==1)
# bc_kit = sample_sheet["barcode_kits"].unique()[0]
if any(sample_sheet['I7_Index_ID'].str.contains('no_bc')):
bc_kit = "no_bc"
else:
bc_kit = "SQK-PCB109" # TODO just for testing
print(sample_sheet)
data=dict()
for index, row in sample_sheet.iterrows():
assert(row["Sample_ID"] not in data.keys())
data[row["Sample_ID"]] = dict({"Sample_Name": row["Sample_Name"],
"Sample_Project": row["Sample_Project"],
# "barcode_kits": row["barcode_kits"], TODO
"barcode_kits": bc_kit, # TODO just for testing
"index_id": row["I7_Index_ID"],
"Sample_ID": row["Sample_ID"]})
print(bc_kit)
return bc_kit, data | 7bd47c5af471862600fd9c2522f018a463ddeac4 | 3,465 |
def convert_to_float_if_possible(x, elsevalue=MISSING):
"""
Return float version of value x, else elsevalue (MISSING or other specified value
if conversion fails
"""
if isnonnumeric(x):
return elsevalue
else:
return float(x) | 74b1ca5d4ed63758ef9d56fb2be94cbbdec00b56 | 3,466 |
from typing import Union
import requests
def resolve(
names: Union[list, pd.Series, str],
data_source_ids: list = None,
resolve_once: bool = False,
best_match_only: bool = False,
with_context: bool = False,
with_vernaculars: bool = False,
with_canonical_ranks: bool = False
) -> pd.DataFrame:
"""
Receives a list of names and resolves each against the entire resolver
database or against specific data sources using the Global Names
Resolver (GNR) API. Underlying resolving and scoring algorithms are
described at: http://resolver.globalnames.org/about
Parameters
----------
names
List of species names to resolve.
data_source_ids
List of specific data sources IDs to resolve against. A list of
all the available data sources and their IDs can be found at:
http://resolver.globalnames.org/data_sources.
resolve_once
Find the first available match instead of matches across all data
sources with all possible renderings of a name.
best_match_only
Returns just one result with the highest score.
with_context
Reduce the likelihood of matches to taxonomic homonyms. When True,
a common taxonomic context is calculated for all supplied names
from matches in data sources that have classification tree paths.
Names out of determined context are penalized during score
calculation.
with_vernaculars
Return 'vernacular' field to present common names provided by a
data source for a particular match.
with_canonical_ranks
Returns 'canonical_form' with infraspecific ranks, if they are
present.
Returns
-------
pd.DataFrame
DataFrame where rows are the result for each match.
"""
if isinstance(names, str):
names = [names]
if data_source_ids is None:
data_source_ids = []
# Apparently, the GNR API does not accept Booleans so they need to be
# converted to lowercase strings first.
params = {
"data": "\n".join(names),
"data_source_ids": "|".join(data_source_ids),
"resolve_once": str(resolve_once).lower(),
"best_match_only": str(best_match_only).lower(),
"with_context": str(with_context).lower(),
"with_vernaculars": str(with_vernaculars).lower(),
"with_canonical_ranks": str(with_canonical_ranks).lower()
}
try:
response = requests.post(API_URL, json=params)
response.raise_for_status()
except requests.exceptions.HTTPError as err:
raise Exception(f"Error calling Global Name Resolver API. {err}")
data = response.json()["data"]
# The pd.json_normalize() function does not work when record_path
# is not found in every single item inside the list of elements
# passed. In some cases, the GNR API returns items without this key,
# so it needs to be added (including an empty dictionary) before
# normalizing the result.
for item in data:
if "results" not in item:
item["results"] = [{}]
return pd.json_normalize(data, record_path="results", meta="supplied_name_string") | a25bd275e8222058e5926bf9a8b53de7a1cb3ccc | 3,467 |
import numpy
def polarisation_frame_from_wcs(wcs, shape) -> PolarisationFrame:
"""Convert wcs to polarisation_frame
See FITS definition in Table 29 of https://fits.gsfc.nasa.gov/standard40/fits_standard40draft1.pdf
or subsequent revision
1 I Standard Stokes unpolarized
2 Q Standard Stokes linear
3 U Standard Stokes linear
4 V Standard Stokes circular
−1 RR Right-right circular
−2 LL Left-left circular
−3 RL Right-left cross-circular
−4 LR Left-right cross-circular
−5 XX X parallel linear
−6 YY Y parallel linear
−7 XY XY cross linear
−8 YX YX cross linear
stokesI [1]
stokesIQUV [1,2,3,4]
circular [-1,-2,-3,-4]
linear [-5,-6,-7,-8]
For example::
pol_frame = polarisation_frame_from_wcs(im.wcs, im.shape)
:param wcs: World Coordinate System
:param shape: Shape corresponding to wcs
:returns: Polarisation_Frame object
"""
# The third axis should be stokes:
polarisation_frame = None
if len(shape) == 2:
polarisation_frame = PolarisationFrame("stokesI")
else:
npol = shape[1]
pol = wcs.sub(['stokes']).wcs_pix2world(range(npol), 0)[0]
pol = numpy.array(pol, dtype='int')
for key in PolarisationFrame.fits_codes.keys():
keypol = numpy.array(PolarisationFrame.fits_codes[key])
if numpy.array_equal(pol, keypol):
polarisation_frame = PolarisationFrame(key)
return polarisation_frame
if polarisation_frame is None:
raise ValueError("Cannot determine polarisation code")
assert isinstance(polarisation_frame, PolarisationFrame)
return polarisation_frame | a2ed057be23add9a6c2041a243286bf06519306f | 3,468 |
import random
import json
import logging
def _update_traffic_class(class_name, class_type, **kwargs):
"""
Perform a PUT call to version-up a traffic class. This is required whenever entries of a traffic class are changed
in any way.
:param class_name: Alphanumeric name of the traffic class
:param class_type: Class type should be one of "ipv4," "ipv6," or "mac"
:param kwargs:
keyword s: requests.session object with loaded cookie jar
keyword url: URL in main() function
:return: True if successful, False otherwise
"""
traffic_class_data = _get_traffic_class(class_name, class_type, **kwargs)
# # must remove these fields from the data since they can't be modified
# traffic_class_data.pop('origin', None)
# traffic_class_data.pop('name', None)
# traffic_class_data.pop('type', None)
traffic_class_data['cfg_version'] = random.randrange(9007199254740991)
target_url = kwargs["url"] + "system/classes/%s,%s" % (class_name, class_type)
put_data = json.dumps(traffic_class_data, sort_keys=True, indent=4)
response = kwargs["s"].put(target_url, data=put_data, verify=False)
if not common_ops._response_ok(response, "PUT"):
logging.warning("FAIL: Updating %s traffic class '%s' failed with status code %d: %s"
% (class_type, class_name, response.status_code, response.text))
return False
else:
logging.info("SUCCESS: Updating %s traffic class '%s' succeeded" % (class_type, class_name))
return True | 8a19fedcce20a94a3e5c8f06f7fb1ee901dcc6dd | 3,469 |
def eff_w_error(n_before, n_after):
"""
n_before = entries before
n_after = entries after
"""
eff = n_after/n_before
eff_error = np.sqrt(eff*(1-eff)/n_before)
return (eff, eff_error) | 307945af0acc2eb04686b5453f2905be1111944a | 3,470 |
import scipy
def hurst(x):
"""Estimate Hurst exponent on a timeseries.
The estimation is based on the second order discrete derivative.
Parameters
----------
x : 1D numpy array
The timeseries to estimate the Hurst exponent for.
Returns
-------
h : float
The estimation of the Hurst exponent for the given timeseries.
"""
y = np.cumsum(np.diff(x, axis=1), axis=1)
b1 = [1, -2, 1]
b2 = [1, 0, -2, 0, 1]
# second order derivative
y1 = scipy.signal.lfilter(b1, 1, y, axis=1)
y1 = y1[:, len(b1) - 1:-1] # first values contain filter artifacts
# wider second order derivative
y2 = scipy.signal.lfilter(b2, 1, y, axis=1)
y2 = y2[:, len(b2) - 1:-1] # first values contain filter artifacts
s1 = np.mean(y1 ** 2, axis=1)
s2 = np.mean(y2 ** 2, axis=1)
return 0.5 * np.log2(s2 / s1) | 0632f0e4c5912410568c25774c1da66c160ff78e | 3,471 |
import yaml
def explode_on_matched_columns(df, safe_columns, other_columns):
"""Given the name of multiple columns where each entry is a string encoding
a list, and where for each row the lists in all columns are the same length,
return a dataframe where the each row is transformed into len(list)
rows, each of which contains one entry of the various lists and the
remaining columns are identical.
The columns are split into 'safe_columns', which must always contain strings
that encode lists and 'other_columns' which can sometimes be np.nan. If
a column from other_columns has a np.nan entry in some row, it will be
replaced with a list of np.nan values, with the list the same length
as the lists in safe_columns for that row.
Lists from different rows need not have the same number of elements."""
stringlist_columns = safe_columns + other_columns
copied_df = df.copy()
# Only keep rows where at least one of the stringlist columns is present
copied_df = copied_df.dropna(subset=stringlist_columns, how='all')
# Map the safe columns from strings (strings encoding lists) to lists
for stringlist_column in safe_columns:
copied_df[stringlist_column] = copied_df[stringlist_column].map(yaml.safe_load)
for column in other_columns:
# Replace any nan values with an empty list, matching the list lengths
# from one of the safe columns
copied_df[column] = replace_nan_with_empty_list(column,
safe_columns[0],
copied_df)
exploded = pd.DataFrame({
col:np.repeat(copied_df[col].values, copied_df[stringlist_columns[0]].str.len())
for col in copied_df.columns.drop(stringlist_columns)}
)
exploded_with_col = exploded.assign(**{column_to_expand:np.concatenate(copied_df[column_to_expand].values)
for column_to_expand in stringlist_columns})[df.columns]
return exploded_with_col | 4f38310e563c8081ee7297ec2af2211ca8084504 | 3,472 |
import networkx
def plot_time_series_graph(val_matrix,
var_names=None,
fig_ax=None,
figsize=None,
sig_thres=None,
link_matrix=None,
link_colorbar_label='MCI',
save_name=None,
link_width=None,
arrow_linewidth=20.,
vmin_edges=-1,
vmax_edges=1.,
edge_ticks=.4,
cmap_edges='RdBu_r',
order=None,
node_size=10,
arrowhead_size=20,
curved_radius=.2,
label_fontsize=10,
alpha=1.,
node_label_size=10,
label_space_left=0.1,
label_space_top=0.,
network_lower_bound=0.2,
undirected_style='dashed'
):
"""Creates a time series graph.
This is still in beta. The time series graph's links are colored by
val_matrix.
Parameters
----------
val_matrix : array_like
Matrix of shape (N, N, tau_max+1) containing test statistic values.
var_names : list, optional (default: None)
List of variable names. If None, range(N) is used.
fig_ax : tuple of figure and axis object, optional (default: None)
Figure and axes instance. If None they are created.
figsize : tuple
Size of figure.
sig_thres : array-like, optional (default: None)
Matrix of significance thresholds. Must be of same shape as val_matrix.
Either sig_thres or link_matrix has to be provided.
link_matrix : bool array-like, optional (default: None)
Matrix of significant links. Must be of same shape as val_matrix. Either
sig_thres or link_matrix has to be provided.
save_name : str, optional (default: None)
Name of figure file to save figure. If None, figure is shown in window.
link_colorbar_label : str, optional (default: 'MCI')
Test statistic label.
link_width : array-like, optional (default: None)
Array of val_matrix.shape specifying relative link width with maximum
given by arrow_linewidth. If None, all links have same width.
order : list, optional (default: None)
order of variables from top to bottom.
arrow_linewidth : float, optional (default: 30)
Linewidth.
vmin_edges : float, optional (default: -1)
Link colorbar scale lower bound.
vmax_edges : float, optional (default: 1)
Link colorbar scale upper bound.
edge_ticks : float, optional (default: 0.4)
Link tick mark interval.
cmap_edges : str, optional (default: 'RdBu_r')
Colormap for links.
node_size : int, optional (default: 20)
Node size.
arrowhead_size : int, optional (default: 20)
Size of link arrow head. Passed on to FancyArrowPatch object.
curved_radius, float, optional (default: 0.2)
Curvature of links. Passed on to FancyArrowPatch object.
label_fontsize : int, optional (default: 10)
Fontsize of colorbar labels.
alpha : float, optional (default: 1.)
Opacity.
node_label_size : int, optional (default: 10)
Fontsize of node labels.
link_label_fontsize : int, optional (default: 6)
Fontsize of link labels.
label_space_left : float, optional (default: 0.1)
Fraction of horizontal figure space to allocate left of plot for labels.
label_space_top : float, optional (default: 0.)
Fraction of vertical figure space to allocate top of plot for labels.
network_lower_bound : float, optional (default: 0.2)
Fraction of vertical space below graph plot.
undirected_style : string, optional (default: 'dashed')
Style of undirected contemporaneous links.
"""
if fig_ax is None:
fig = pyplot.figure(figsize=figsize)
ax = fig.add_subplot(111, frame_on=False)
else:
fig, ax = fig_ax
if sig_thres is None and link_matrix is None:
raise ValueError("Need to specify either sig_thres or link_matrix")
elif sig_thres is not None and link_matrix is None:
link_matrix = np.abs(val_matrix) >= sig_thres
if link_width is not None and not np.all(link_width >= 0.):
raise ValueError("link_width must be non-negative")
N, N, dummy = val_matrix.shape
tau_max = dummy - 1
max_lag = tau_max + 1
if var_names is None:
var_names = range(N)
if order is None:
order = range(N)
if set(order) != set(range(N)):
raise ValueError("order must be a permutation of range(N)")
def translate(row, lag):
return row * max_lag + lag
# Define graph links by absolute maximum (positive or negative like for
# partial correlation)
tsg = np.zeros((N * max_lag, N * max_lag))
tsg_attr = np.zeros((N * max_lag, N * max_lag))
for i, j, tau in np.column_stack(np.where(link_matrix)):
# print '\n',i, j, tau
# print np.where(nonmasked[:,j])[0]
for t in range(max_lag):
if (0 <= translate(i, t - tau) and
translate(i, t - tau) % max_lag <= translate(j, t) % max_lag):
# print translate(i, t-tau), translate(j, t), val_matrix[i,j,tau]
tsg[translate(i, t - tau), translate(j, t)
] = val_matrix[i, j, tau]
tsg_attr[translate(i, t - tau), translate(j, t)
] = val_matrix[i, j, tau]
G = networkx.DiGraph(tsg)
# node_color = np.zeros(N)
# list of all strengths for color map
all_strengths = []
# Add attributes, contemporaneous and directed links are handled separately
for (u, v, dic) in G.edges(data=True):
dic['directed_attribute'] = None
if u != v:
if u % max_lag == v % max_lag:
dic['undirected'] = True
dic['directed'] = False
else:
dic['undirected'] = False
dic['directed'] = True
dic['undirected_alpha'] = alpha
dic['undirected_color'] = _get_absmax(
np.array([[[tsg_attr[u, v],
tsg_attr[v, u]]]])
).squeeze()
dic['undirected_width'] = arrow_linewidth
all_strengths.append(dic['undirected_color'])
dic['directed_alpha'] = alpha
dic['directed_width'] = arrow_linewidth
# value at argmax of average
dic['directed_color'] = tsg_attr[u, v]
all_strengths.append(dic['directed_color'])
dic['label'] = None
dic['directed_edge'] = False
dic['directed_edgecolor'] = None
dic['undirected_edge'] = False
dic['undirected_edgecolor'] = None
# If no links are present, set value to zero
if len(all_strengths) == 0:
all_strengths = [0.]
posarray = np.zeros((N * max_lag, 2))
for i in range(N * max_lag):
posarray[i] = np.array([(i % max_lag), (1. - i // max_lag)])
pos_tmp = {}
for i in range(N * max_lag):
# for n in range(N):
# for tau in range(max_lag):
# i = n*N + tau
pos_tmp[i] = np.array([((i % max_lag) - posarray.min(axis=0)[0]) /
(posarray.max(axis=0)[0] -
posarray.min(axis=0)[0]),
((1. - i // max_lag) -
posarray.min(axis=0)[1]) /
(posarray.max(axis=0)[1] -
posarray.min(axis=0)[1])])
pos = {}
for n in range(N):
for tau in range(max_lag):
pos[n * max_lag + tau] = pos_tmp[order[n] * max_lag + tau]
node_rings = {0: {'sizes': None, 'color_array': None,
'label': '', 'colorbar': False,
}
}
# ] for v in range(max_lag)]
node_labels = ['' for i in range(N * max_lag)]
_draw_network_with_curved_edges(
fig=fig, ax=ax,
G=deepcopy(G), pos=pos,
# dictionary of rings: {0:{'sizes':(N,)-array, 'color_array':(N,)-array
# or None, 'cmap':string,
node_rings=node_rings,
# 'vmin':float or None, 'vmax':float or None, 'label':string or None}}
node_labels=node_labels, node_label_size=node_label_size,
node_alpha=alpha, standard_size=node_size,
standard_cmap='OrRd', standard_color='grey',
log_sizes=False,
cmap_links=cmap_edges, links_vmin=vmin_edges,
links_vmax=vmax_edges, links_ticks=edge_ticks,
cmap_links_edges='YlOrRd', links_edges_vmin=-1., links_edges_vmax=1.,
links_edges_ticks=.2, link_edge_colorbar_label='link_edge',
arrowstyle='simple', arrowhead_size=arrowhead_size,
curved_radius=curved_radius, label_fontsize=label_fontsize,
label_fraction=.5,
link_colorbar_label=link_colorbar_label, undirected_curved=True,
network_lower_bound=network_lower_bound,
undirected_style=undirected_style
)
for i in range(N):
trans = transforms.blended_transform_factory(
fig.transFigure, ax.transData)
ax.text(label_space_left, pos[order[i] * max_lag][1],
'%s' % str(var_names[order[i]]), fontsize=label_fontsize,
horizontalalignment='left', verticalalignment='center',
transform=trans)
for tau in np.arange(max_lag - 1, -1, -1):
trans = transforms.blended_transform_factory(
ax.transData, fig.transFigure)
if tau == max_lag - 1:
ax.text(pos[tau][0], 1.-label_space_top, r'$t$',
fontsize=label_fontsize,
horizontalalignment='center',
verticalalignment='top', transform=trans)
else:
ax.text(pos[tau][0], 1.-label_space_top,
r'$t-%s$' % str(max_lag - tau - 1),
fontsize=label_fontsize,
horizontalalignment='center', verticalalignment='top',
transform=trans)
# fig.subplots_adjust(left=0.1, right=.98, bottom=.25, top=.9)
# savestring = os.path.expanduser(save_name)
if save_name is not None:
pyplot.savefig(save_name)
else:
pyplot.show() | e4acb78dbb8809f3b1604b4a44437c775c0cdfb7 | 3,473 |
def get_configuration_docname(doctype=None, txt=None, searchfield=None, start=None, page_len=None, filters=None):
"""get relevant fields of the configuration doctype"""
return frappe.db.sql("""select soi.configuration_docname, so.name, so.customer from `tabSales Order Item` soi
inner join `tabSales Order` so on soi.parent=so.name where
soi.configuration_doctype = %(configuration_doctype)s and soi.configuration_docname is not null
and (soi.configuration_docname like %(txt)s or so.name like %(txt)s)""",
{'configuration_doctype':filters.get('configuration_doctype'),
'txt': "%%%s%%" % txt}) | fb9494aacfbff6ec77f0e512daab35ffcd9c7fb9 | 3,474 |
import pickle
def run_cnn_dist(
X_bytes: bytes,
) -> bytes:
"""Run distributed CNN on bytes_in and return the calculated result."""
X = pickle.loads(X_bytes)
# TODO: <He> Process the X data with the fancy neural network.
result_data = X
# MARK: Metadata could be added here to mark the processing status of the
# data.
bytes_out = pickle.dumps(result_data)
return bytes_out | 4a1996ed0ddc0ae8be0543c1de016f845b99020e | 3,475 |
import requests
import re
def skymapper_search(searchrad,waveband,targetra,targetdec):
""" Search for stars within search radius of target in Skymapper
catalogue
"""
# set up arrays and url
star_ra = []
star_dec = []
star_mag = []
star_magerr = []
sky_ra = []
sky_dec = []
sky_u_petro = []
sky_u_petro_err = []
sky_u_psf = []
sky_u_psf_err = []
sky_v_petro = []
sky_v_petro_err = []
sky_v_psf = []
sky_v_psf_err = []
sky_g_petro = []
sky_g_petro_err = []
sky_g_psf = []
sky_g_psf_err = []
sky_r_petro = []
sky_r_petro_err = []
sky_r_psf = []
sky_r_psf_err = []
sky_i_petro = []
sky_i_petro_err = []
sky_i_psf = []
sky_i_psf_err = []
sky_z_petro = []
sky_z_petro_err = []
sky_z_psf = []
sky_z_psf_err = []
sr_deg = float(searchrad*0.0166667)
sky_url = "http://skymapper.anu.edu.au/sm-cone/query?RA={0}&DEC={1}&SR={2}"
sky_url = sky_url.format(targetra,targetdec,sr_deg)
# Attempt to parse url to find stars within search radius of filter
try:
skytable = requests.get(sky_url,timeout=30).text
sc = 0
for lines in skytable.split('<TR>'):
sc += 1
if sc >= 2:
columns = re.split("<TD>|</TD>|\n",lines)
sky_ra.append(columns[5])
sky_dec.append(columns[7])
sky_u_petro.append(columns[33])
sky_u_petro_err.append(columns[35])
sky_u_psf.append(columns[29])
sky_u_psf_err.append(columns[31])
sky_v_petro.append(columns[41])
sky_v_petro_err.append(columns[43])
sky_v_psf.append(columns[37])
sky_v_psf_err.append(columns[39])
sky_g_petro.append(columns[49])
sky_g_petro_err.append(columns[51])
sky_g_psf.append(columns[45])
sky_g_psf_err.append(columns[47])
sky_r_petro.append(columns[57])
sky_r_petro_err.append(columns[59])
sky_r_psf.append(columns[53])
sky_r_psf_err.append(columns[55])
sky_i_petro.append(columns[65])
sky_i_petro_err.append(columns[67])
sky_i_psf.append(columns[61])
sky_i_psf_err.append(columns[63])
sky_z_petro.append(columns[73])
sky_z_petro_err.append(columns[75])
sky_z_psf.append(columns[69])
sky_z_psf_err.append(columns[71])
# Raise error if something goes wrong
except requests.exceptions.RequestException as e:
print ('\nException raised for Skymapper url!!')
print (e)
print ('')
# Save parsed star properties for a given filter and remove extended
# shaped sources
for i in range(len(sky_ra)):
if (sky_g_psf[i] != '' and sky_g_petro[i] != '' and
sky_r_psf[i] != '' and sky_r_petro[i] != ''):
if (np.abs(float(sky_g_psf[i]) - float(sky_g_petro[i])) < 0.25
and np.abs(float(sky_r_psf[i]) - float(sky_r_petro[i]))
< 0.25):
if waveband == 'V':
V_mag = float(sky_g_psf[i])-0.0038
V_mag = (V_mag-0.5784*(float(sky_g_psf[i])
-float(sky_r_psf[i])))
gerr = float(sky_g_psf_err[i])**2
rerr = float(sky_r_psf_err[i])**2
V_magerr = np.sqrt((0.5784*rerr)**2+(0.4216*gerr)**2)
star_mag.append(V_mag)
star_magerr.append(V_magerr)
star_ra.append(float(sky_ra[i]))
star_dec.append(float(sky_dec[i]))
if waveband == 'B':
B_mag = float(sky_g_psf[i])+0.2271
B_mag = (B_mag+0.3130*(float(sky_g_psf[i])-
float(sky_r_psf[i])))
gerr = float(sky_g_psf_err[i])**2
rerr = float(sky_r_psf_err[i])**2
B_magerr = np.sqrt((0.3130*rerr)**2+(1.3130*gerr)**2)
star_mag.append(B_mag)
star_magerr.append(B_magerr)
star_ra.append(float(sky_ra[i]))
star_dec.append(float(sky_dec[i]))
if waveband == 'R':
R_mag = float(sky_r_psf[i])-0.0971
R_mag = (R_mag-0.1837*(float(sky_g_psf[i])-
float(sky_r_psf[i])))
gerr = float(sky_g_psf_err[i])**2
rerr = float(sky_r_psf_err[i])**2
R_magerr = np.sqrt((1.1837*rerr)**2+(0.1837*gerr)**2)
star_mag.append(R_mag)
star_magerr.append(R_magerr)
star_ra.append(float(sky_ra[i]))
star_dec.append(float(sky_dec[i]))
if waveband == 'u':
if (sky_u_psf[i] != '' and sky_u_petro[i] != ''):
if (np.abs(float(sky_u_psf[i]) - float(sky_u_petro[i]))<0.25):
star_mag.append(float(sky_u_psf[i]))
star_magerr.append(float(sky_u_psf_err[i]))
star_ra.append(float(sky_ra[i]))
star_dec.append(float(sky_dec[i]))
if waveband == 'g':
if (sky_g_psf[i] != '' and sky_g_petro[i] != ''):
if (np.abs(float(sky_g_psf[i]) - float(sky_g_petro[i]))<0.25):
star_mag.append(float(sky_g_psf[i]))
star_magerr.append(float(sky_g_psf_err[i]))
star_ra.append(float(sky_ra[i]))
star_dec.append(float(sky_dec[i]))
if waveband == 'r':
if (sky_r_psf[i] != '' and sky_r_petro[i] != ''):
if (np.abs(float(sky_r_psf[i]) - float(sky_r_petro[i]))<0.25):
star_mag.append(float(sky_r_psf[i]))
star_magerr.append(float(sky_r_psf_err[i]))
star_ra.append(float(sky_ra[i]))
star_dec.append(float(sky_dec[i]))
if waveband == 'i' :
if (sky_i_psf[i] != '' and sky_i_petro[i] != ''):
if (np.abs(float(sky_i_psf[i]) - float(sky_i_petro[i]))<0.25):
star_mag.append(float(sky_i_psf[i]))
star_magerr.append(float(sky_i_psf_err[i]))
star_ra.append(float(sky_ra[i]))
star_dec.append(float(sky_dec[i]))
if waveband == 'z' :
if (sky_z_psf[i] != '' and sky_z_petro[i] != ''):
if (np.abs(float(sky_z_psf[i]) - float(sky_z_petro[i]))<0.25):
star_mag.append(float(sky_z_psf[i]))
star_magerr.append(float(sky_z_psf_err[i]))
star_ra.append(float(sky_ra[i]))
star_dec.append(float(sky_dec[i]))
# Create list with catalogue name
star_cat = ['SkyMapper'] * len(star_ra)
return star_ra,star_dec,star_mag,star_magerr,star_cat | 3ebed23f2ec73f6a8e859e645a2c3b5f936ac674 | 3,476 |
import random
def Decimal_to_Hexadecimal(x : str) -> str:
"""
It Converts the Given Decimal Number into Hexadecimal Number System of Base `16` and takes input in `str` form
Args:
x `(str)` : It is the Positional Argument by order which stores the Decimal Input from User.
Returns (str) : The Output `returned` is in the form of a `str` which is the Hexadecimal Converted Number.
"""
""" For Recognising the Dot """
list1 = list(x)
left = []
right = []
flag = False
for val in range(len(list1)):
if list1[val] == "." or flag == True:
if list1[val] != ".":
right.append(list1[val])
else:
flag = True
continue
else:
num = int(list1[val])
left.append(num)
""" For Shifting the left elements in list into a variable """
leftmost = 0
for val in left:
leftmost = leftmost*10 + val
""" For Shifting the right elements in list into a variable """
rightmost = ''
for val in right:
rightmost = rightmost + val
dict = {10: "A", 11 : "B", 12 : "C", 13 : "D", 14 : "E", 15 : "F"}
""" Calculation of the left part """
cur = 0
rem = 0
next = leftmost
list_of_numbers = []
while next != 0:
rem = next%16
if rem > 9:
if rem in dict:
rem = dict[rem]
list_of_numbers.append(rem)
else:
pass
else:
list_of_numbers.append(rem)
cur = next//16
next = cur
list_of_numbers.reverse()
numbers = ''
for val in range(len(list_of_numbers)):
string = str(list_of_numbers[val])
numbers = numbers + string
""" Calculation of the right part """
zeros = '1' + len(rightmost)*'0'
length = int(zeros)
next = int(rightmost)/length
list_of_numbers = []
length = 0
while length <= 20:
if next * 16< 1:
list_of_numbers.append(0)
next = (next * 16)
else:
next = (next * 16)
num2 = int(next)
if num2 > 9:
if num2 in dict:
alter = dict[num2]
list_of_numbers.append(alter)
else:
pass
else:
list_of_numbers.append(num2)
num = int(next)
next = next - num
pass
length += 1
numbers2 = ''
for val in range(len(list_of_numbers)):
number = str(list_of_numbers[val])
numbers2 = numbers2 + number
# print(f"The Decimal -> Hexadecimal Conversion is {numbers}.{numbers2.rstrip('0')}")
color = random.choice([RED, GREEN, YELLOW, BLUE, MAGENTA, CYAN])
return f" {BOLD} {color} The Decimal -> Hexadecimal Conversion is {numbers}.{numbers2.rstrip('0')} {RESET}" | ffe5050a834a9111a50f28c425f1bd21f60605ff | 3,477 |
def hardcorenas_d(pretrained=False, **kwargs):
""" hardcorenas_D """
arch_def = [['ds_r1_k3_s1_e1_c16_nre'], ['ir_r1_k5_s2_e3_c24_nre_se0.25', 'ir_r1_k5_s1_e3_c24_nre_se0.25'],
['ir_r1_k5_s2_e3_c40_nre_se0.25', 'ir_r1_k5_s1_e4_c40_nre_se0.25', 'ir_r1_k3_s1_e3_c40_nre_se0.25'],
['ir_r1_k5_s2_e4_c80_se0.25', 'ir_r1_k3_s1_e3_c80_se0.25', 'ir_r1_k3_s1_e3_c80_se0.25',
'ir_r1_k3_s1_e3_c80_se0.25'],
['ir_r1_k3_s1_e4_c112_se0.25', 'ir_r1_k5_s1_e4_c112_se0.25', 'ir_r1_k3_s1_e3_c112_se0.25',
'ir_r1_k5_s1_e3_c112_se0.25'],
['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25',
'ir_r1_k3_s1_e6_c192_se0.25'], ['cn_r1_k1_s1_c960']]
model = _gen_hardcorenas(pretrained=pretrained, variant='hardcorenas_d', arch_def=arch_def, **kwargs)
return model | ff9be560a0061101fd672bd115fbfd8920537177 | 3,478 |
import tqdm
def refine(weights, trees, X, Y, epochs, lr, batch_size, optimizer, verbose):
"""Performs SGD using the MSE loss over the leaf nodes of the given trees on the given data. The weights of each tree are respected during optimization but not optimized.
Args:
weights (np.array): The weights of the trees.
trees (list of Tree): The trees.
X (2d np.array): The data.
Y (np.array): The targe.
epochs (int): The number of epochs SGD is performed.
lr (float): The learning rate of SGD.
batch_size (int): The batch size of SGD
optimizer (str): The optimizer used for optimization. Can be {{"sgd", "adam"}}.
verbose (bool): If True outputs the loss during optimization.
Returns:
list of trees: The refined trees.
"""
n_classes = trees[0].n_classes
if batch_size > X.shape[0]:
if verbose:
print("WARNING: The batch size for SGD is larger than the dataset supplied: batch_size = {} > X.shape[0] = {}. Using batch_size = X.shape[0]".format(batch_size, X.shape[0]))
batch_size = X.shape[0]
# To make the following SGD somewhat efficient this code extracts all the leaf nodes and gathers them in an array. To do so it iterates over all trees and all nodes in the trees. Each leaf node is added to the leafs array and the corresponding node.id is stored in mappings. For scikit-learn trees this would be much simpler as they already offer a dedicated leaf field:
# leafs = []
# for tree in trees:
# tmp = tree.tree_.value / tree.tree_.value.sum(axis=(1,2))[:,np.newaxis,np.newaxis]
# leafs.append(tmp.squeeze(1))
mappings = []
leafs = []
for t, w in zip(trees, weights):
leaf_mapping = {}
l = []
for i, n in enumerate(t.nodes):
if n.prediction is not None:
leaf_mapping[n.id] = len(l)
# Normalize the values in the leaf nodes for SGD. This is usually a better initialization
pred = np.array(n.prediction) / sum(n.prediction)
l.append(pred)
mappings.append(leaf_mapping)
leafs.append(np.array(l))
if optimizer == "adam":
m = []
v = []
t = 1
for l in leafs:
m.append(np.zeros_like(l))
v.append(np.zeros_like(l))
for epoch in range(epochs):
mini_batches = create_mini_batches(X, Y, batch_size, True)
batch_cnt = 0
loss_sum = 0
accuracy_sum = 0
with tqdm(total=X.shape[0], ncols=150, disable = not verbose) as pbar:
for x,y in mini_batches:
# Prepare the target and apply all trees
target_one_hot = np.array( [ [1.0 if yi == i else 0.0 for i in range(n_classes)] for yi in y] )
indices = [apply(t, m, x) for t,m in zip(trees, mappings)]
pred = []
for i, idx, w in zip(range(len(trees)), indices, weights):
pred.append(w * leafs[i][idx])
pred = np.array(pred)
fbar = pred.sum(axis=0)
# SGD
if optimizer == "sgd":
deriv = 2 * (fbar - target_one_hot) * 1.0 / x.shape[0] * 1.0 / n_classes #* 1.0 / len(trees)
for i, idx in zip(range(len(trees)), indices):
np.add.at(leafs[i], idx, - lr * deriv)
else:
# Adam
deriv = 2 * (fbar - target_one_hot) * 1.0 / x.shape[0] * 1.0 / n_classes #* 1.0 / len(trees)
beta1 = 0.9
beta2 = 0.999
for i, idx in zip(range(len(trees)), indices):
grad = np.zeros_like(leafs[i])
np.add.at(grad, idx, deriv)
m[i] = beta1 * m[i] + (1-beta1) * grad
v[i] = beta2 * v[i] + (1-beta2) * (grad ** 2)
m_corrected = m[i] / (1-beta1**t)
v_corrected = v[i] / (1-beta2**t)
leafs[i] += - lr * m_corrected / (np.sqrt(v_corrected) + 1e-8)
t += 1
# compute some statistics
loss_sum += ((fbar - target_one_hot)**2).mean()
accuracy_sum += (fbar.argmax(axis=1) == y).mean() * 100.0
batch_cnt += 1
pbar.update(x.shape[0])
desc = '[{}/{}] loss {:2.4f} accuracy {:2.4f}'.format(
epoch,
epochs-1,
loss_sum / batch_cnt,
accuracy_sum / batch_cnt,
)
pbar.set_description(desc)
# Copy the optimized leafs back into the trees with the pre-computed mapping
for t, m, l in zip(trees, mappings, leafs):
for nid, i in m.items():
t.nodes[nid].prediction = l[i].tolist()
return trees | 6704e36b61ac9bda65ba0e118590aa2b627c8e2a | 3,479 |
from typing import ClassVar
from typing import Any
from typing import Dict
def fetch_db_object(cls: ClassVar, body: Any):
"""Fetch a database object via SQLAlchemy.
:param cls: the class of object to fetch.
:param body: the body of the object. If the body is None then None is returned (for the case where no object
exists), if the body is already of type cls then the body is returned as the object and if the body is a dictionary
with the key 'id' a query is made to fetch the given object.
:return: the object.
"""
if body is None:
item = None
elif isinstance(body, cls):
item = body
elif isinstance(body, Dict):
if "id" not in body:
raise AttributeError(f"id not found in {body}")
id = body["id"]
item = session_.query(cls).filter(cls.id == id).one_or_none()
if item is None:
raise ValueError(f"{item} with id {id} not found")
else:
raise ValueError(f"Unknown item type {body}")
return item | ae4a96ac9875d5b936df1d9c05f8a022a9a4b51e | 3,480 |
def should_skip_cred_test():
"""
Returns `True` if a test requiring credentials should be skipped.
Otherwise returns `False`
"""
if username is None or password is None:
return True
return False | c5f45a20f7febc100a2f2eb950697c91837e0281 | 3,481 |
from typing import List
from pathlib import Path
def list_input_images(img_dir_or_csv: str,
bucket_name: str = None,
glob_patterns: List = None):
"""
Create list of images from given directory or csv file.
:param img_dir_or_csv: (str) directory containing input images or csv with list of images
:param bucket_name: (str, optional) name of aws s3 bucket
:param glob_patterns: (list of str) if directory is given as input (not csv), these are the glob patterns that will be used
to find desired images
returns list of dictionaries where keys are "tif" and values are paths to found images. "meta" key is also added
if input is csv and second column contains a metadata file. Then, value is path to metadata file.
"""
if bucket_name:
s3 = boto3.resource('s3')
bucket = s3.Bucket(bucket_name)
if img_dir_or_csv.endswith('.csv'):
bucket.download_file(img_dir_or_csv, 'img_csv_file.csv')
list_img = read_csv('img_csv_file.csv')
else:
raise NotImplementedError(
'Specify a csv file containing images for inference. Directory input not implemented yet')
else:
if img_dir_or_csv.endswith('.csv'):
list_img = read_csv(img_dir_or_csv)
elif is_url(img_dir_or_csv):
list_img = []
img_path = Path(img_dir_or_csv)
img = {}
img['tif'] = img_path
list_img.append(img)
else:
img_dir = Path(img_dir_or_csv)
assert img_dir.is_dir() or img_dir.is_file(), f'Could not find directory/file "{img_dir_or_csv}"'
list_img_paths = set()
if img_dir.is_dir():
for glob_pattern in glob_patterns:
assert isinstance(glob_pattern, str), f'Invalid glob pattern: "{glob_pattern}"'
list_img_paths.update(sorted(img_dir.glob(glob_pattern)))
else:
list_img_paths.update(img_dir)
list_img = []
for img_path in list_img_paths:
img = {}
img['tif'] = img_path
list_img.append(img)
assert len(list_img) >= 0, f'No .tif files found in {img_dir_or_csv}'
return list_img | 0dccd2d0356b8f89991a1ab1f8a621e696918ab5 | 3,482 |
def get_insta_links(L: Instaloader, url: str) -> tuple:
"""
Return list of shortcodes
:param url: URL
:return: success status and list of shortcodes
"""
try:
shortcode = get_insta_shortcode(url)
post = Post.from_shortcode(L.context, shortcode)
return True, post
except Exception as e:
print(str(e))
return False, [] | 6ee9eac712d4603d1b7cffedd11cf07e4345ec0a | 3,483 |
import re
import os
def read_snli(data_dir, is_train):
"""将SNLI数据集解析为前提、假设和标签"""
def extract_text(s):
# 删除我们不会使用的信息
s = re.sub('\\(', '', s)
s = re.sub('\\)', '', s)
# 用一个空格替换两个或多个连续的空格
s = re.sub('\\s{2,}', ' ', s)
return s.strip()
label_set = {'entailment': 0, 'contradiction': 1, 'neutral': 2}
file_name = os.path.join(data_dir, 'snli_1.0_train.txt'
if is_train else 'snli_1.0_test.txt')
with open(file_name, 'r') as f:
rows = [row.split('\t') for row in f.readlines()[1:]]
premises = [extract_text(row[1]) for row in rows if row[0] in label_set]
hypotheses = [extract_text(row[2]) for row in rows if row[0] \
in label_set]
labels = [label_set[row[0]] for row in rows if row[0] in label_set]
return premises, hypotheses, labels | 96f552d900327a2c78c69f1a0b9aa9188852cf89 | 3,484 |
async def http_request_callback(_request: HttpRequest) -> HttpResponse:
"""A response handler which returns some text"""
with open(__file__, 'rb') as file_pointer:
buf = file_pointer.read()
headers = [
(b'content-type', b'text/plain'),
(b'content-length', str(len(buf)).encode('ascii'))
]
return HttpResponse(200, headers, bytes_writer(buf, chunk_size=-1)) | 2c5bdf2e4617c7780fe9c8d0b4a65b363e05babc | 3,485 |
import os
def ensure_directory_exists(directory, domain=None, permissions=0o777):
"""Create a directory and give access rights to all
Args:
directory (str): Root directory
domain (str): Domain. Basically a subdirectory to prevent things like
overlapping signal filenames.
rights (int): Directory permissions (default is 0o777)
Returns:
(str) a path to the directory
"""
if domain:
directory = os.path.join(directory, domain)
# Expand and normalize the path
directory = os.path.normpath(directory)
directory = os.path.expanduser(directory)
if not os.path.isdir(directory):
try:
save = os.umask(0)
os.makedirs(directory, permissions)
except OSError:
LOG.warning("Failed to create: " + directory)
finally:
os.umask(save)
return directory | 0fe89ea6d23deffa67260bb9a465a3189fde6d0d | 3,486 |
from typing import Tuple
from typing import List
from typing import Union
def item_coverage(
possible_users_items: Tuple[List[Union[int, str]], List[Union[int, str]]],
recommendations: List[Tuple[Union[int, str], Union[int, str]]],
) -> float:
"""
Calculates the coverage value for items in possible_users_items[1] given the collection of recommendations.
Recommendations over users/items not in possible_users_items are discarded.
Args:
possible_users_items (Tuple[List[Union[int, str]], List[Union[int, str]]]): contains exactly TWO sub-lists,
first one with users, second with items
recommendations (List[Tuple[Union[int, str], Union[int, str]]]): contains user-item recommendation tuples,
e.g. [(user1, item1),(user2, item2),]
Returns: item coverage (float): a metric showing the fraction of items which got recommended at least once.
"""
if len(possible_users_items) != 2:
raise ValueError("possible_users_items must be of length 2: [users, items]")
if np.any([len(x) == 0 for x in possible_users_items]):
raise ValueError("possible_users_items cannot hold empty lists!")
possible_items = set(possible_users_items[1])
items_with_recommendations = set([x[1] for x in recommendations])
items_without_recommendations = possible_items.difference(items_with_recommendations)
item_cov = 1 - len(items_without_recommendations) / len(possible_items)
return round(item_cov, 3) | f3eb59e0146561c8a18f74c548539b8cc9dcbb5b | 3,487 |
def calc_area(img_it, contours, conv_sq, list_save):
"""
Summary
Parameters
----------
yearstr : TYPE
DESCRIPTION.
Returns
-------
TYPE
DESCRIPTION.
"""
# Calculate areas
sum_file = 0
for c in contours:
M = cv2.moments(c)
area = M['m00']
area_conv = area * conv_sq
sum_file = sum_file + area_conv
# print(sum_file)
list_save.append([img_it, sum_file])
return(list_save) | f3bdba8892041edfe5ba0497c927f846fd8110d9 | 3,488 |
def truth_seed_box(true_params, init_range, az_ind=4, zen_ind=5):
"""generate initial box limits from the true params
Parameters
----------
true_params : np.ndarray
init_range : np.ndarray
Returns
-------
np.ndarray
shape is (n_params, 2); returned energy limits are in units of log energy
"""
n_params = len(true_params)
true_params = np.copy(true_params[:, np.newaxis])
# clip true energies between 0.3 GeV and 1000 GeV
true_params[-2:] = true_params[-2:].clip(0.3, 1000)
limits = np.empty((n_params, 2), np.float32)
limits[:-2] = true_params[:-2] + init_range[:-2]
limits[-2:] = np.log10(true_params[-2:]) + init_range[-2:]
limits[az_ind] = limits[az_ind].clip(0, 2 * np.pi)
limits[zen_ind] = limits[zen_ind].clip(0, np.pi)
return limits | 3c3087702be4b91589f7e75f5c7e2f18776a658a | 3,489 |
from xia2.Driver.DriverFactory import DriverFactory
from xia2.Handlers.Streams import Debug
def Report(DriverType=None):
"""A factory for ReportWrapper classes."""
DriverInstance = DriverFactory.Driver(DriverType)
class ReportWrapper(DriverInstance.__class__):
def __init__(self):
DriverInstance.__class__.__init__(self)
self.set_executable("dials.report")
self._experiments_filename = None
self._reflections_filename = None
self._html_filename = None
def set_experiments_filename(self, experiments_filename):
self._experiments_filename = experiments_filename
def set_reflections_filename(self, reflections_filename):
self._reflections_filename = reflections_filename
def set_html_filename(self, html_filename):
self._html_filename = html_filename
def run(self, wait_for_completion=False):
Debug.write("Running dials.report")
self.clear_command_line()
assert (
self._experiments_filename is not None
or self._reflections_filename is not None
)
if self._experiments_filename is not None:
self.add_command_line(self._experiments_filename)
if self._reflections_filename is not None:
self.add_command_line(self._reflections_filename)
if self._html_filename is not None:
self.add_command_line("output.html=%s" % self._html_filename)
self.start()
if wait_for_completion:
self.close_wait()
else:
self.close()
self.check_for_errors()
return ReportWrapper() | 918ed6d0acad9d80fdd9c0a1ef6e33a19216c8c9 | 3,490 |
def summary(task):
"""Given an ImportTask, produce a short string identifying the
object.
"""
if task.is_album:
return u'{0} - {1}'.format(task.cur_artist, task.cur_album)
else:
return u'{0} - {1}'.format(task.item.artist, task.item.title) | 87387c47e90998c270f6f8f2f63ceacebd4cdc78 | 3,491 |
def ds_tc_resnet_model_params(use_tf_fft=False):
"""Generate parameters for ds_tc_resnet model."""
# model parameters
model_name = 'ds_tc_resnet'
params = model_params.HOTWORD_MODEL_PARAMS[model_name]
params.causal_data_frame_padding = 1 # causal padding on DataFrame
params.clip_duration_ms = 160
params.use_tf_fft = use_tf_fft
params.mel_non_zero_only = not use_tf_fft
params.feature_type = 'mfcc_tf'
params.window_size_ms = 5.0
params.window_stride_ms = 2.0
params.wanted_words = 'a,b,c'
params.ds_padding = "'causal','causal','causal','causal'"
params.ds_filters = '4,4,4,2'
params.ds_repeat = '1,1,1,1'
params.ds_residual = '0,1,1,1' # no residuals on strided layers
params.ds_kernel_size = '3,3,3,1'
params.ds_dilation = '1,1,1,1'
params.ds_stride = '2,1,1,1' # streaming conv with stride
params.ds_pool = '1,2,1,1' # streaming conv with pool
params.ds_filter_separable = '1,1,1,1'
# convert ms to samples and compute labels count
params = model_flags.update_flags(params)
# compute total stride
pools = model_utils.parse(params.ds_pool)
strides = model_utils.parse(params.ds_stride)
time_stride = [1]
for pool in pools:
if pool > 1:
time_stride.append(pool)
for stride in strides:
if stride > 1:
time_stride.append(stride)
total_stride = np.prod(time_stride)
# override input data shape for streaming model with stride/pool
params.data_stride = total_stride
params.data_shape = (total_stride * params.window_stride_samples,)
# set desired number of frames in model
frames_number = 16
frames_per_call = total_stride
frames_number = (frames_number // frames_per_call) * frames_per_call
# number of input audio samples required to produce one output frame
framing_stride = max(
params.window_stride_samples,
max(0, params.window_size_samples -
params.window_stride_samples))
signal_size = framing_stride * frames_number
# desired number of samples in the input data to train non streaming model
params.desired_samples = signal_size
params.batch_size = 1
return params | b018fa56efd67d8378496d5b4b1975580fc92f89 | 3,492 |
def expected_calibration_error_evaluator(test_data: pd.DataFrame,
prediction_column: str = "prediction",
target_column: str = "target",
eval_name: str = None,
n_bins: int = 100,
bin_choice: str = "count") -> EvalReturnType:
"""
Computes the expected calibration error (ECE), given true label and prediction scores.
See "On Calibration of Modern Neural Networks"(https://arxiv.org/abs/1706.04599) for more information.
The ECE is the distance between the actuals observed frequency and the predicted probabilities,
for a given choice of bins.
Perfect calibration results in a score of 0.
For example, if for the bin [0, 0.1] we have the three data points:
1. prediction: 0.1, actual: 0
2. prediction: 0.05, actual: 1
3. prediction: 0.0, actual 0
Then the predicted average is (0.1 + 0.05 + 0.00)/3 = 0.05, and the empirical frequency is (0 + 1 + 0)/3 = 1/3.
Therefore, the distance for this bin is::
|1/3 - 0.05| ~= 0.28.
Graphical intuition::
Actuals (empirical frequency between 0 and 1)
| *
| *
| *
______ Predictions (probabilties between 0 and 1)
Parameters
----------
test_data : Pandas' DataFrame
A Pandas' DataFrame with with target and prediction scores.
prediction_column : Strings
The name of the column in `test_data` with the prediction scores.
target_column : String
The name of the column in `test_data` with the binary target.
eval_name : String, optional (default=None)
The name of the evaluator as it will appear in the logs.
n_bins: Int (default=100)
The number of bins.
This is a trade-off between the number of points in each bin and the probability range they span.
You want a small enough range that still contains a significant number of points for the distance to work.
bin_choice: String (default="count")
Two possibilities:
"count" for equally populated bins (e.g. uses `pandas.qcut` for the bins)
"prob" for equally spaced probabilities (e.g. uses `pandas.cut` for the bins),
with distance weighed by the number of samples in each bin.
Returns
-------
log: dict
A log-like dictionary with the expected calibration error.
"""
if eval_name is None:
eval_name = "expected_calibration_error_evaluator__" + target_column
if bin_choice == "count":
bins = pd.qcut(test_data[prediction_column], q=n_bins)
elif bin_choice == "prob":
bins = pd.cut(test_data[prediction_column], bins=n_bins)
else:
raise AttributeError("Invalid bin_choice")
metric_df = pd.DataFrame({"bins": bins,
"predictions": test_data[prediction_column],
"actuals": test_data[target_column]})
agg_df = metric_df.groupby("bins").agg({"bins": "count", "predictions": "mean", "actuals": "mean"})
sample_weight = None
if bin_choice == "prob":
sample_weight = agg_df["bins"].values
distance = mean_absolute_error(agg_df["actuals"].values, agg_df["predictions"].values, sample_weight=sample_weight)
return {eval_name: distance} | 0f34a5c0883325324b11fd9b97a8a55250574392 | 3,493 |
def format_bytes(size):
"""
Takes a byte size (int) and returns a formatted, human-interpretable string
"""
# 2**10 = 1024
power = 2 ** 10
n = 0
power_labels = {0: " bytes", 1: "KB", 2: "MB", 3: "GB", 4: "TB"}
while size >= power:
size /= power
n += 1
return str(round(size, 2)) + power_labels[n] | 332b9d43c044da92ef7a9b16e57cfa7d552de12f | 3,494 |
def load_input_data(filenames, Ag_class):
"""
Load the files specified in filenames.
Parameters
---
filenames: a list of names that specify the files to
be loaded.
Ag_class: classification of sequences from MiXCR txt file
(i.e., antigen binder = 1, non-binder = 0)
"""
# Combine the non-binding sequence data sets.
# Non-binding data sets include Ab+ data and Ag-
# sorted data for all 3 libraries
l_data = []
for file in filenames:
l_data.append(
mixcr_input('data/' + file, Ag_class, seq_len=15)
)
mHER_H3 = pd.concat(l_data)
# Drop duplicate sequences
mHER_H3 = mHER_H3.drop_duplicates(subset='AASeq')
# Remove 'CAR/CSR' motif and last two amino acids
mHER_H3['AASeq'] = [x[3:-2] for x in mHER_H3['AASeq']]
# Shuffle sequences and reset index
mHER_H3 = mHER_H3.sample(frac=1).reset_index(drop=True)
return mHER_H3 | 9ae9cc814f150168ca1703b1a4af54bc440b4425 | 3,495 |
from typing import Optional
def get_maximum_value(
inclusive: Optional[Edge] = None,
exclusive: Optional[Edge] = None,
ignore_unlimited: bool = False,
) -> Result[Boundary, TestplatesError]:
"""
Gets maximum boundary.
:param inclusive: inclusive boundary value or None
:param exclusive: exclusive boundary value or None
:param ignore_unlimited: indicates whether to ignore unlimited values or not
"""
return get_value_boundary(
MAXIMUM_EXTREMUM,
inclusive=inclusive,
exclusive=exclusive,
ignore_unlimited=ignore_unlimited,
) | 3ef7557ed3f7f353e0765a92fb008449409039a8 | 3,496 |
from typing import List
def build_graph(order: int, edges: List[List[int]]) -> List[List[int]]:
"""Builds an adjacency list from the edges of an undirected graph."""
adj = [[] for _ in range(order)]
for u, v in edges:
adj[u].append(v)
adj[v].append(u)
return adj | 86bdd0d4314777ff59078b1c0f639e9439f0ac08 | 3,497 |
import torch
import math
def construct_scheduler(
optimizer,
cfg: OmegaConf,
):
"""
Creates a learning rate scheduler for a given model
:param optimizer: the optimizer to be used
:return: scheduler
"""
# Unpack values from cfg.train.scheduler_params
scheduler_type = cfg.train.scheduler
decay_factor = cfg.train.scheduler_params.decay_factor
decay_steps = cfg.train.scheduler_params.decay_steps
patience = cfg.train.scheduler_params.patience
warmup_epochs = cfg.train.scheduler_params.warmup_epochs
warmup = warmup_epochs != -1
if scheduler_type == "multistep":
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer,
milestones=decay_steps,
gamma=1.0 / decay_factor,
)
elif scheduler_type == "plateau":
lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer,
mode="max",
factor=1.0 / decay_factor,
patience=patience,
verbose=True,
# threshold_mode="rel",
# min_lr=2.5e-4,
)
elif scheduler_type == "exponential":
lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
optimizer,
gamma=decay_factor,
last_epoch=-1,
)
elif scheduler_type == "cosine":
size_dataset = DATASET_SIZES[cfg.dataset]
if warmup:
# If warmup is used, then we need to substract this from T_max.
T_max = (cfg.train.epochs - warmup_epochs) * math.ceil(
size_dataset / float(cfg.train.batch_size)
) # - warmup epochs
else:
T_max = cfg.train.epochs * math.ceil(
size_dataset / float(cfg.train.batch_size)
)
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer,
T_max=T_max,
eta_min=1e-6,
)
else:
lr_scheduler = None
print(
f"WARNING! No scheduler will be used. cfg.train.scheduler = {scheduler_type}"
)
if warmup and lr_scheduler is not None:
size_dataset = DATASET_SIZES[cfg.dataset]
lr_scheduler = ckconv.nn.LinearWarmUp_LRScheduler(
optimizer=optimizer,
lr_scheduler=lr_scheduler,
warmup_iterations=warmup_epochs
* math.ceil(size_dataset / float(cfg.train.batch_size)),
)
return lr_scheduler | d0ed907aa3582978cb3adf5eada895366dc1282f | 3,498 |
import numpy
def GenerateSerialGraph(num_samples, block_size):
""" Generates a (consistent) serial graph. """
N = num_samples
num_blocks = N // block_size
if N % block_size != 0:
err = "num_samples(%d) must be a multiple of block_size (%d)" % (num_samples, block_size)
raise Exception(err)
if num_blocks < 2:
err = "the number of blocks %d should be at least 2 (%d/%d)" % (num_blocks, num_samples, block_size)
raise Exception(err)
node_weights = numpy.ones(N) * 2.0
node_weights[:block_size] = 1.0
node_weights[-block_size:] = 1.0
edge_weights = {}
w = 1.0
for block in range(num_blocks - 1):
for i in range(block_size):
for j in range(block_size):
edge_weights[(i + block * block_size, j + (block + 1) * block_size)] = w
edge_weights[(j + (block + 1) * block_size, i + block * block_size)] = w # Loops are simply overwritten
return node_weights, edge_weights | 7348c08051aa0b7ec51f79f1f6f2097ab5857ef8 | 3,499 |
Subsets and Splits