content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def failed_jobs(username, root_wf_id, wf_id): """ Get a list of all failed jobs of the latest instance for a given workflow. """ dashboard = Dashboard(g.master_db_url, root_wf_id, wf_id) args = __get_datatables_args() total_count, filtered_count, failed_jobs_list = dashboard.get_failed_jobs( wf_id, **args ) for job in failed_jobs_list: job.exec_job_id = '<a href="' + url_for( '.job', root_wf_id=root_wf_id, wf_id=wf_id, job_id=job.job_id, job_instance_id=job.job_instance_id ) + '">' + job.exec_job_id + '</a>' job.stdout = '<a target="_blank" href="' + url_for( '.stdout', root_wf_id=root_wf_id, wf_id=wf_id, job_id=job.job_id, job_instance_id=job.job_instance_id ) + '">Application Stdout/Stderr</a>' job.stderr = '<a target="_blank" href="' + url_for( '.stderr', root_wf_id=root_wf_id, wf_id=wf_id, job_id=job.job_id, job_instance_id=job.job_instance_id ) + '">Condor Stderr/Pegasus Lite Log</a>' return render_template( 'workflow/jobs_failed.xhr.json', count=total_count, filtered=filtered_count, jobs=failed_jobs_list, table_args=args )
5d755f6e84f7c406174fb1a7bdb8de64a6e0c049
3,200
def get_vm_types(resources): """ Get all vm_types for a list of heat resources, do note that some of the values retrieved may be invalid """ vm_types = [] for v in resources.values(): vm_types.extend(list(get_vm_types_for_resource(v))) return set(vm_types)
f13e8860d5b25cd03360e859527d61a06d103f53
3,201
import os def list_files(directory, suffix='.nc'): """ Return a list of all the files with the specified suffix in the submission directory structure and sub-directories. :param str directory: The root directory of the submission :param str suffix: The suffix of the files of interest :returns: A list of absolute filepaths """ nc_files = [] dir_files = os.listdir(directory) for filename in dir_files: file_path = os.path.join(directory, filename) if os.path.isdir(file_path): nc_files.extend(list_files(file_path)) elif file_path.endswith(suffix): nc_files.append(file_path) return nc_files
ba9a00ba749930120cfa3677771a24181bf58685
3,202
def interface_names(obj): """ Return: a list of interface names to which `obj' is conformant. The list begins with `obj' itself if it is an interface. Names are returned in depth-first order, left to right. """ return [o.__name__ for o in interfaces(obj)]
99aad05e14daeb13ed7f19599684acc8b324df84
3,203
import six def add_basic(token): """For use with Authorization headers, add "Basic ".""" if token: return (u"Basic " if isinstance(token, six.text_type) else b"Basic ") + token else: return token
cd579e77e243fdfba0853a87087e45cf58bcc6f2
3,204
import json import requests def updateUser(token, leaderboard=None, showUsername=None, username=None): """ Update user account information. Parameters- token: Authentication token. leaderboard: True to show user's profit on leaderboard. showUsername: True to show the username on LN Marktes public data. username: username to display. """ headers = { 'content-type': "application/json", 'accept': "application/json", 'authorization': f"Bearer {token}", } payloadDict = dict() if showUsername is not None: payloadDict['show_username'] = showUsername if leaderboard is not None: payloadDict['show_leaderboard'] = leaderboard if username is not None: payloadDict['username'] = username payload = json.dumps(payloadDict) userInfo = requests.put( APIUrls.lnapi+APIUrls.userUrl, data=payload, headers=headers, ) if userInfo.status_code == 200: return userInfo.json() else: raise RuntimeError( 'Unable to update user information:\n' f'{userInfo.text}' )
9b953256b85327411445729b574cf9b79750e735
3,205
def init_validator(required, cls, *additional_validators): """ Create an attrs validator based on the cls provided and required setting. :param bool required: whether the field is required in a given model. :param cls: the expected class type of object value. :return: attrs validator chained correctly (e.g. optional(instance_of)) """ validator = validators.instance_of(cls) if additional_validators: additional_validators = list(additional_validators) additional_validators.append(validator) validator = composite(*additional_validators) return validator if required else validators.optional(validator)
924b5ff6e77d38c989eef187498f774a2322ed48
3,206
import requests def next_search(request, *args, **kwargs): """ Handle search requests :param request: :return: """ server = FhirServerUrl() in_fmt = "json" get_fmt = get_format(request.GET) if settings.DEBUG: print("Server:", server) print("Kwargs:",kwargs) context = {'display':"Search", 'name': "Search", 'server': server, 'in_fmt': in_fmt, 'get_fmt': get_fmt, 'template': 'v1api/search.html', } request_string = "?" for item in request.GET: request_string += item +"=" + request.GET[item] +"&" if request_string[:0] =="&": request_string = request_string[:-1] if not "patient=Patient/" in request_string: try: xwalk = Crosswalk.objects.get(user=request.user) patient_id = xwalk.fhir_url_id request_string += "&patient=Patient/"+patient_id except Crosswalk.DoesNotExist: return kickout_404("ID for this user not found:%s" % request.user) if settings.DEBUG: print("Gets:", request_string) try: r = requests.get(server+request_string) context = process_page(request, r, context) return publish_page(request, context) except requests.ConnectionError: print("Whoops - Problem connecting to FHIR Server") messages.error(request, "FHIR Server is unreachable. " "Are you on the CMS Network?") return render_to_response(context['template'], RequestContext(request, context, ))
47316d3a127a0c31dfb8ce10b0f8c4465bdfd8ba
3,207
def ShiftRight(x, **unused_kwargs): """Layer to shift the tensor to the right by padding on axis 1.""" if not isinstance(x, (list, tuple)): # non-chunked inputs pad_widths = [(0, 0)] * len(x.shape) pad_widths[1] = (1, 0) # Padding on axis=1 padded = np.pad(x, pad_widths, mode='constant') return padded[:, :-1] # Handling chunked inputs. Recall that the list of chunks represents a big # sequence (the concatenation of the chunks). We want to shift that sequence, # so we put a 0 in the beginning of the first chunk and the last element of # that chunk is used as the new first element of the next chunk, and so on. padded = [] last_value = np.zeros_like(x[0][:, -1]) for chunk in x: padded_chunk = np.concatenate([last_value[:, np.newaxis], chunk], axis=1) last_value = chunk[:, -1] padded.append(padded_chunk[:, :-1]) return padded
ec5265b5937e3e90e2c3267b6501b008ac7090e5
3,208
import os def connect_kafka_producer(): """Return a MSK client to publish the streaming messages.""" # Use a global variable so Lambda can reuse the persisted client on future invocations global kafka_client if kafka_client is None: logger.debug('Creating new Kafka client.') try: kafka_client = KafkaProducer(bootstrap_servers=os.environ['MSK_BOOTSTRAP_SRV']) except Exception as ex: logger.error('Failed to create new Kafka client: {}'.format(ex)) send_sns_alert(str(ex)) raise return kafka_client
c0dc1c98881dd6452fdf8359aec11f3e6cf8b71a
3,209
def empty_record(): """Create an empty record.""" record = dump_empty(Marc21RecordSchema) record["metadata"] = "<record> <leader>00000nam a2200000zca4500</leader></record>" record["is_published"] = False record["files"] = {"enabled": True} return record
7797e1bf0ade98a2400daff1f7937b7af2da280d
3,210
def illuminanceToPhotonPixelRate(illuminance, objective_numerical_aperture=1.0, illumination_wavelength=0.55e-6, camera_pixel_size=6.5e-6, objective_magnification=1, system_magnification=1, sample_quantum_yield=1., **kwargs): """ Function which converts source illuminance and microscope parameters to photons / px / s. Based heavily on the publication: "When Does Computational Imaging Improve Performance?," O. Cossairt, M. Gupta and S.K. Nayar, IEEE Transactions on Image Processing, Vol. 22, No. 2, pp. 447–458, Aug. 2012. However, this function implements the same result for microscopy, replacing f/# with NA, removing reflectance, and including magnification. Args: exposure_time: Integration time, s source_illuminance: Photometric source illuminance, lux numerical_aperture: System numerical aperture pixel_size: Pixel size of detector, um magnification: Magnification of imaging system Returns: Photon counts at the camera. """ # Conversion factor from radiometric to photometric cordinates # https://www.thorlabs.de/catalogPages/506.pdf K = 1 / 680 # Planck's constant # h_bar = 6.626176e-34 h_bar = 1.054572e-34 # Speed of light c = 2.9979e8 # Constant term const = K * illumination_wavelength / h_bar / c # Calculate photon_pixel_rate photon_pixel_rate = sample_quantum_yield * const * (objective_numerical_aperture ** 2) * illuminance * (camera_pixel_size / (system_magnification * objective_magnification)) ** 2 # Return return photon_pixel_rate
cbbb2f6bdce7592f997b7ab3784c15beb2b846b1
3,211
def stop_tuning(step): """ stop tuning the current step method """ if hasattr(step, 'tune'): step.tune = False elif hasattr(step, 'methods'): step.methods = [stop_tuning(s) for s in step.methods] return step
45e02b8d3ec86ceda97de69bbc730aa62affb06d
3,212
import json def assemble_english(): """Assemble each statement into """ if request.method == 'OPTIONS': return {} response = request.body.read().decode('utf-8') body = json.loads(response) stmts_json = body.get('statements') stmts = stmts_from_json(stmts_json) sentences = {} for st in stmts: enga = EnglishAssembler() enga.add_statements([st]) model_str = enga.make_model() sentences[st.uuid] = model_str res = {'sentences': sentences} return res
24c267e2763198056e275feda1e81ef1bf280bdb
3,213
def schema_class(classname, schema, schemarepr=None, basename='SchemaBase'): """Generate code for a schema class Parameters ---------- classname : string The name of the class to generate schema : dict The dictionary defining the schema class basename : string (default: "SchemaBase") The name of the base class to use in the class definition schemarepr : CodeSnippet or object, optional An object whose repr will be used in the place of the explicit schema. This can be useful, for example, when the generated code should reference a predefined schema object. The user must ensure that the schema within the evaluated code is identical to the schema used to generate the code. """ return SCHEMA_CLASS_TEMPLATE.format( classname=classname, basename=basename, schema=schema if schemarepr is None else schemarepr, docstring=docstring(classname, schema, indent=4), init_code=init_code(classname, schema, indent=4) )
2f497de54205e5c180805d77638c9ffe342f76c8
3,214
import requests def orthology_events(ids='R-HSA-6799198,R-HSA-168256,R-HSA-168249', species='49633'): """ Reactome uses the set of manually curated human reactions to computationally infer reactions in twenty evolutionarily divergent eukaryotic species for which high-quality whole-genome sequence data are available, and hence a comprehensive and high-quality set of protein predictions exists. Thus, this method retrieves the orthologies for any given set of events or entities in the specified species. :param ids: The events identifiers for which the orthology is requested :param species: The species id for which the orthology is requested :return: Json dictionary object of the orthologies of a given set of events or entities """ headers = { 'accept': 'application/json', 'content-type': 'text/plain', } data = ids url = 'https://reactome.org/ContentService/data/orthologies/ids/species/%s' % species try: response = requests.post(url=url, headers=headers, data=data) except ConnectionError as e: print(e) if response.status_code == 200: return response.json() else: print('Status code returned a value of %s' % response.status_code)
8a75e2bc9af34358164492d1d2b2d8154d4e696e
3,215
def judge(name): """ Return some sort of score for automatically ranking names based on all the features we can extract so far. I guess we'll just add the scores * weights up for now. """ score = 0 for scoreID, scorer, weight in weights: subscore = scorer(name) score += subscore * weight name.scores[scoreID] = subscore name.score = score return score
34811f49fc8fe6c88ef31978702cacddbacd5314
3,216
import re def parse_year(inp, option='raise'): """ Attempt to parse a year out of a string. Parameters ---------- inp : str String from which year is to be parsed option : str Return option: - "bool" will return True if year is found, else False. - Return year int / raise a RuntimeError otherwise Returns ------- out : int | bool Year int parsed from inp, or boolean T/F (if found and option is bool). Examples -------- >>> year_str = "NSRDB_2018.h5" >>> parse_year(year_str) 2018 >>> year_str = "NSRDB_2018.h5" >>> parse_year(year_str, option='bool') True >>> year_str = "NSRDB_TMY.h5" >>> parse_year(year_str) RuntimeError: Cannot parse year from NSRDB_TMY.h5 >>> year_str = "NSRDB_TMY.h5" >>> parse_year(year_str, option='bool') False """ # char leading year cannot be 0-9 # char trailing year can be end of str or not 0-9 regex = r".*[^0-9]([1-2][0-9]{3})($|[^0-9])" match = re.match(regex, inp) if match: out = int(match.group(1)) if 'bool' in option: out = True else: if 'bool' in option: out = False else: raise RuntimeError('Cannot parse year from {}'.format(inp)) return out
a91efb0614e7d0ad6753118f9b4efe8c3b40b4e2
3,217
def retry_import(e, **kwargs): """ When an exception occurs during channel/content import, if * there is an Internet connection error or timeout error, or HTTPError where the error code is one of the RETRY_STATUS_CODE, return return True to retry the file transfer * the file does not exist on the server or disk, skip the file and return False. This only applies to content import not channel import. * otherwise, raise the exception. return value: * True - needs retry. * False - file is skipped. Does not need retry. """ skip_404 = kwargs.pop("skip_404") if ( isinstance(e, ConnectionError) or isinstance(e, Timeout) or isinstance(e, ChunkedEncodingError) or (isinstance(e, HTTPError) and e.response.status_code in RETRY_STATUS_CODE) or (isinstance(e, SSLERROR) and "decryption failed or bad record mac" in str(e)) ): return True elif skip_404 and ( (isinstance(e, HTTPError) and e.response.status_code == 404) or (isinstance(e, OSError) and e.errno == 2) ): return False else: raise e
b125841dff7154352b2031013ffa7058242e4974
3,218
def cvCloneMat(*args): """cvCloneMat(CvMat mat) -> CvMat""" return _cv.cvCloneMat(*args)
84dc4f59d29580477b7ded41f26d95011b2804b3
3,219
from typing import Callable import time def run_episode(kwargs) -> [Trajectory]: """ Runs a single episode and collects the trajectories of each agent """ total_controller_time = 0 env_dict: Callable = kwargs.get("env_dict") obs_builder = kwargs.get("obs_builder") controller_creator: Callable = kwargs.get("controller_creator") episode_id: int = kwargs.get("episode_id") max_episode_length: int = kwargs.get("max_episode_length", 1000) render: bool = kwargs.get("render", False) # Create and Start Environment _env = load_env(env_dict, obs_builder_object=obs_builder) obs, info = _env.reset(regenerate_rail=False, regenerate_schedule=True, ) score = 0 _trajectories = [Trajectory() for _ in _env.get_agent_handles()] # Create and Start Controller controller: AbstractController = controller_creator() start = time.time() controller.start_of_round(obs=obs, env=_env) total_controller_time += time.time() - start if render: env_renderer = RenderTool(_env) env_renderer.reset() for step in range(max_episode_length): start = time.time() action_dict, processed_obs = controller.act(observation=obs) total_controller_time += time.time() - start next_obs, all_rewards, done, info = _env.step(action_dict) if render: env_renderer.render_env(show=True, show_observations=True, show_predictions=False) # Save actions and rewards for each agent [_trajectories[agent_handle].add_row( state=processed_obs[agent_handle], action=action_dict[agent_handle], reward=all_rewards[agent_handle], done=done[agent_handle]) for agent_handle in _env.get_agent_handles()] score += sum(all_rewards) obs = next_obs.copy() if done['__all__']: break if render: env_renderer.close_window() # print(f"\nController took a total time of: {total_controller_time} seconds", flush=True) return _trajectories
91b64a8df57e1fc47ffecc184b0473d633b545c4
3,220
async def _reverse_proxy_handler(request: web.Request) -> web.Response: """ - Adds auth layer - Adds access layer - Forwards request to catalog service SEE https://gist.github.com/barrachri/32f865c4705f27e75d3b8530180589fb """ user_id = request[RQT_USERID_KEY] # path & queries backend_url = to_backend_service( request.rel_url, request.app[f"{__name__}.catalog_origin"], request.app[f"{__name__}.catalog_version_prefix"], ) # FIXME: hack if "/services" in backend_url.path: backend_url = backend_url.update_query({"user_id": user_id}) logger.debug("Redirecting '%s' -> '%s'", request.url, backend_url) # body raw = None if request.can_read_body: raw: bytes = await request.read() # injects product discovered by middleware in headers fwd_headers = request.headers.copy() product_name = request[RQ_PRODUCT_KEY] fwd_headers.update({X_PRODUCT_NAME_HEADER: product_name}) # forward request return await _request_catalog( request.app, request.method, backend_url, fwd_headers, raw )
f26a4410ab43dd9d3c12f3490f6dfb9fb2da234a
3,221
def get_data(request: Request): """ Get the data page. Parameters ---------- request : Request The request object. Returns ------- HTMLResponse The data page. """ return templates.TemplateResponse("data.html", {"request": request})
4a44df5122f9db9009a769d4d9bec99d924fb0f7
3,222
def remove_last_measurements(dag_circuit, perform_remove=True): """Removes all measurements that occur as the last operation on a given qubit for a DAG circuit. Measurements that are followed by additional gates are untouched. This operation is done in-place on the input DAG circuit if perform_pop=True. Parameters: dag_circuit (qiskit.dagcircuit._dagcircuit.DAGCircuit): DAG circuit. perform_remove (bool): Whether to perform removal, or just return node list. Returns: list: List of all measurements that were removed. """ removed_meas = [] try: meas_nodes = dag_circuit.get_named_nodes('measure') except DAGCircuitError: return removed_meas for idx in meas_nodes: _, succ_map = dag_circuit._make_pred_succ_maps(idx) if len(succ_map) == 2: # All succesors of the measurement are outputs, one for qubit and one for cbit # (As opposed to more gates being applied), and it is safe to remove the # measurement node and add it back after the swap mapper is done. removed_meas.append(dag_circuit.multi_graph.node[idx]) if perform_remove: dag_circuit._remove_op_node(idx) return removed_meas
858a16c33de67f835cf32535f2e69f9c144d6e25
3,223
import urllib3 import certifi import sys def get_html(url): """ Given a URL, will return the HTML using urllib3. :param url: The url to extract the HTML from :return: If extracted successfully, the HTML is returned. If there is a failure, a message with HTTP status. If an exception is thrown, -1 is returned witha description of the error """ try: # urllib3.disable_warnings() # Try with new where function, but sometimes it failes # so then try old where function # Read more: https://github.com/certifi/python-certifi#usage try: http = urllib3.PoolManager( cert_reqs='CERT_REQUIRED', ca_certs=certifi.where() ) except: http = urllib3.PoolManager( cert_reqs='CERT_REQUIRED', ca_certs=certifi.old_where() ) r = http.request('GET', url, timeout=5.0) if str(r.status).startswith("2"): html = r.data.decode("utf-8") return html else: return "Failed to get html, status: " + str(r.status) except Exception as e: sys.stdout.write(str(e)) return "-1: " + str(e)
031a444d28674593b9e6994b6ddcae7dd2c4b8cd
3,224
def J(*args, **kwargs): """Wrapper around jsonify that sets the Content-Type of the response to application/vnd.api+json. """ response = jsonify(*args, **kwargs) response.mimetype = "application/vnd.api+json" return response
714537b180cab60b7ad614018fa551020aeee292
3,225
import os import sys def readable_dir(prospective_dir): """ check if dir is exist or acessable""" if not os.path.isdir(prospective_dir): sys.exit("{} is not a valid path".format(prospective_dir)) if os.access(prospective_dir, os.R_OK): return prospective_dir else: sys.exit("{} is not a readable dir".format(prospective_dir))
8c8ea6928605baa3dfb224c258102b2d263932cd
3,226
def is_gzipped(filename): """ Returns True if the target filename looks like a GZIP'd file. """ with open(filename, 'rb') as fh: return fh.read(2) == b'\x1f\x8b'
b1afb5b9cddc91fbc304392171f04f4b018fa929
3,227
import os def load_data(loc='./data/'): """ Load the SICK semantic-relatedness dataset """ trainA, trainB, devA, devB, testA, testB = [],[],[],[],[],[] trainS, devS, testS = [],[],[] with open(os.path.join(loc, 'sick_train.txt'), 'r') as f: for line in f: text = line.strip().split('\t') trainA.append(text[0]) trainB.append(text[1]) trainS.append(text[2]) with open(os.path.join(loc, 'sick_dev.txt'), 'r') as f: for line in f: text = line.strip().split('\t') devA.append(text[0]) devB.append(text[1]) devS.append(text[2]) with open(os.path.join(loc, 'sick_test.txt'), 'r') as f: for line in f: text = line.strip().split('\t') testA.append(text[0]) testB.append(text[1]) testS.append(text[2]) trainS = [float(s) for s in trainS] devS = [float(s) for s in devS] testS = [float(s) for s in testS] return [trainA, trainB], [devA, devB], [testA, testB], [trainS, devS, testS]
58c15084e3874fa0cdda4cce3b701b18a2529634
3,228
def tag_helper(tag, items, locked=True, remove=False): """ Simple tag helper for editing a object. """ if not isinstance(items, list): items = [items] data = {} if not remove: for i, item in enumerate(items): tagname = '%s[%s].tag.tag' % (tag, i) data[tagname] = item if remove: tagname = '%s[].tag.tag-' % tag data[tagname] = ','.join(items) data['%s.locked' % tag] = 1 if locked else 0 return data
27500df099824fff1d93afbe7649d42141ffa9c1
3,229
def get_keys_from_file(csv): """Extract the credentials from a csv file.""" lines = tuple(open(csv, 'r')) creds = lines[1] access = creds.split(',')[2] secret = creds.split(',')[3] return access, secret
eccf56c52dd82656bf85fef618133f86fd9276e6
3,230
import pkg_resources import json def fix_model(project, models, invert=False): """Fix model name where file attribute is different from values accepted by facets >>> fix_model('CMIP5', ['CESM1(BGC)', 'CESM1-BGC']) ['CESM1(BGC)', 'CESM1(BGC)'] >>> fix_model('CMIP5', ['CESM1(BGC)', 'CESM1-BGC'], invert=True) ['CESM1-BGC', 'CESM1-BGC'] Args: project (str): data project models (list) models to convert invert (bool): Invert the conversion (so go from ``CESM1(BGC)`` to ``CESM1-BGC``) """ project = project.upper().split('-')[0] if project in ['CMIP5', 'CORDEX']: mfile = pkg_resources.resource_filename(__name__, 'data/'+project+'_model_fix.json') with open(mfile, 'r') as f: mdict = json.loads(f.read()) if invert: mfix = {v: k for k, v in mdict.items()} else: mfix = mdict return [mfix[m] if m in mfix.keys() else m for m in models]
b1e91ba7305a75ed376948d92607b1ab97bc93f2
3,231
from re import X def rectified_linear_unit(x): """ Returns the ReLU of x, or the maximum between 0 and x.""" # TODO return np.maximum(0, X)
0cf0057d771a69e01a7c9de94f94544359ee6489
3,232
import os def create_save_directory(path, directory_name): """ This function makes the directory to save the data. Parameters ---------- path : string Where the the directory_name will be. directory_name : string The directory name where the plots will be save Returns ---------- succes : bool True if the directories were created successfully. """ try: if not os.path.isdir(f'{path}'): os.mkdir(f'{path}') os.mkdir(f'{path}\\{directory_name}') return True except OSError: print('Error creating directories') return False
3f449935bd5e3e72fdffd9c31968d8dcef615b0d
3,233
import os def encode_to_filename(folder, animal, session, ftypes="processed_all"): """ :param folder: str folder for data storage :param animal: str animal name: e.g. A2A-15B-B_RT :param session: str session name: e.g. p151_session1_FP_RH :param ftype: list or str: list (or a single str) of typed files to return 'exper': .mat files 'bin_mat': binary file 'green': green fluorescence 'red': red FP 'behavior': .mat behavior file 'FP': processed dff hdf5 file if ftypes=="all" :return: returns all 5 files in a dictionary; otherwise return all file types in a dictionary, None if not found """ # TODO: enable aliasing paths = [os.path.join(folder, animal, session), os.path.join(folder, animal+'_'+session), os.path.join(folder, animal), folder] if ftypes == "raw all": ftypes = ["exper", "bin_mat", "green", "red"] elif ftypes == "processed_all": ftypes = ["processed", "green", "red", "FP"] elif isinstance(ftypes, str): ftypes = [ftypes] results = {ft: None for ft in ftypes} registers = 0 for p in paths: if os.path.exists(p): for f in os.listdir(p): opt = decode_from_filename(f) if opt is not None: ift = opt['ftype'] check_mark = opt['animal'] == animal and opt['session'] == session #print(opt['session'], animal, session) check_mark_mdl = (opt['animal'] == animal) and (opt['session'] in session) cm_mdl = (ift == 'modeling' and check_mark_mdl) # TODO: temporary hacky method for modeling #print(opt['session'], animal, session, check_mark_mdl, ift, cm_mdl) if ift in ftypes and results[ift] is None and (check_mark or cm_mdl): results[ift] = os.path.join(p, f) registers += 1 if registers == len(ftypes): return results if len(results) > 1 else results[ift] return results if len(results) > 1 else list(results.values())[0]
8c976f0522fd3a485f81b9f778c91248f71e9b04
3,234
from typing import Union from typing import List from typing import Tuple def _get_choices(choices: Union[str, List]) -> List[Tuple[str, str]]: """Returns list of choices, used for the ChoiceFields""" result = [('', '')] if isinstance(choices, str): result.append((choices, choices)) else: for choice in choices: result.append((choice, choice)) return result
249a068571b0ddca858cd8dcc4f2f7af25689b9d
3,235
def invalid_file(): """Create an invalid filename string.""" return "/tmp/INVALID.FILE"
9a249f3ef9445cb78bc962e46ef524360bb44bdb
3,236
def get_model(app_label, model_name): """ Fetches a Django model using the app registery. All other methods to acces models might raise an exception about registery not being ready yet. This doesn't require that an app with the given app label exists, which makes it safe to call when the registery is being populated. Raises LookupError if model isn't found """ try: return apps.get_model(app_label, model_name) except AppRegistryNotReady: if apps.apps_ready and not apps.models_ready: # if this function is called while `apps.populate()` is # loading models, ensure that the module thar defines # the target model has been imorted and try looking the # model up in the app registery. This effectiveness emulates # `from path.to.app.models import Model` where we use # `Model = get_model('app', 'Model')` instead app_config = apps.get_app_config(app_label) # `app_config.import_models()` cannot be used here because # it would interfere with `app.populate()` import_module("%s.%s" % (app_config.name, MODELS_MODULE_NAME)) # In order to account for case-insensitivity of model_name, # look up the model through a private API of the app registry. return apps.get_registered_model(app_label, model_name) else: # This must be a different case (e.g. the model really doesn't # exist). We just re-raise the exception. raise
dd3ba70f2220ba09d256ae58b418cd3401f129e6
3,237
def affaires_view(request): """ Return all affaires """ # Check connected if not check_connected(request): raise exc.HTTPForbidden() query = request.dbsession.query(VAffaire).order_by(VAffaire.id.desc()).all() return Utils.serialize_many(query)
c44e703680034230121c426e7496746355b8ee4b
3,238
from typing import Union def metric_try_to_float(s: str) -> Union[float, str]: """ Try to convert input string to float value. Return float value on success or input value on failure. """ v = s try: if "%" in v: v = v[:-1] return float(v) except ValueError: return str(s)
6b0121469d35bc6af04d4808721c3ee06955d02e
3,239
import os import logging def calculate_boot_time(pngs_dir, fps, refer_end_pic): """ 通过一系列的截图文件,计算出启动时间 :param pngs_dir: 截图所在目录 :param fps: 帧数 :param refer_end_pic: 结束位置参考图片 :return: 启动时间 """ # 找启动的开始(点击响应)、结束时间(渲染首页内容)点 pngs = os.listdir(pngs_dir) pngs.sort() start_t, end_t, boot_time = 0, 0, 0 # 找开始点,对比和第一张图的相似度 refer_start_pic = os.path.join(pngs_dir, pngs[0]) for png in pngs[1:]: dest_png = os.path.join(pngs_dir, png) factor = ssim.compute_ssim(refer_start_pic, dest_png) logging.info("%s 相似度:%f" % (png, factor)) if factor < 0.9: start_t = int(png.split('.png')[0]) break if start_t > 0: # 继续找结束点,和灰度的连续匹配两次的最后位置 third_f, second_f, first_f = 0, 0, 0 for png in pngs[start_t:]: dest_png = os.path.join(pngs_dir, png) current_f = ssim.compute_ssim(refer_end_pic, dest_png) logging.info("%s 相似度:%f" % (png, current_f)) third_f = second_f second_f = first_f first_f = current_f # TODO 这个范围根据实际的业务场景自己确定 if third_f > 0.96 and second_f > 0.96 and first_f < 0.96: end_t = int(png.split('.png')[0]) break # 有效性判断和时间计算 if start_t == 0 or end_t == 0: logging.warning("没有找到开始或者结束图片") elif end_t == len(pngs): logging.warning("结束位置错误") else: boot_time = int((end_t - start_t) * 1000 / fps) logging.info("开始位置:%d,结束位置:%d,本次启动耗时:%d毫秒", start_t, end_t, boot_time) return boot_time
ef1d370ad024450956f400f9ee4747b159a6ad01
3,240
def _table_difference(left: TableExpr, right: TableExpr): """ Form the table set difference of two table expressions having identical schemas. A set difference returns only the rows present in the left table that are not present in the right table Parameters ---------- left : TableExpr right : TableExpr Returns ------- difference : TableExpr """ return ops.Difference(left, right).to_expr()
aae66ddb29d30a0bc95750d62ce87c16773d3d63
3,241
def select(receivers, senders, exceptions, timeout): """ receivers - list of one element, the simulated receiver socket senders - list of one element, the simulated sender socket exceptions - empty list, the simulated sockets with exceptions ignore timeout - there is no real concurrency here """ # print 'select: recv buffers "%s", send buffers "%s", bufsize %d' % \ # (''.join(receivers[0].buffers), ''.join(senders[0].buffers), bufsize) #DEBUG inputready = receivers if len(receivers[0].buffers) > 0 else [] outputready = senders if (socket_simulator.bufsize - len(senders[0].buffers)) > 0 else [] exceptions = [] return inputready, outputready, exceptions
4fd94593521c0e0626b574922286b2b374707fce
3,242
def parse_args(): """ It parses the command-line arguments. Parameters ---------- args : list[str] List of command-line arguments to parse Returns ------- parsed_args : argparse.Namespace It contains the command-line arguments that are supplied by the user """ parser = ap.ArgumentParser(description="Encoding algorithm.") parser.add_argument("docking_program", type=str, help="Path to folder containing the PDB files.") parser.add_argument("output", type=str, help="Path to the output file.") parser.add_argument("-c","--n_proc", type=int, help='Number of processor.', default = 1) parser.add_argument("--chain", type=str, help='Chain ID from the ligand protein.', default = 'B') parser.add_argument("--score", type=str, help='Path to normalized scoring file to add in the ' + 'encoding.') parsed_args = parser.parse_args() return parsed_args
7849b9a1422e959be9e5b2504dc7d42c2475572d
3,243
def parse_row(row, entity_dict, span_capture_list, previous_entity): """ updates the entity dict and span capture list based on row contents """ bio_tag, entity = parse_tag(row.tag) if bio_tag == 'B': # update with previous entity, if applicable entity_dict, span_capture_list, previous_entity = update_entity_dict(entity_dict, span_capture_list, previous_entity) # start collecting new entity span_capture_list = [row.word] previous_entity = entity elif bio_tag == 'I': # continue collecting entity span_capture_list.append(row.word) else: # update with previous entity, if applicable entity_dict, span_capture_list, previous_entity = update_entity_dict(entity_dict, span_capture_list, previous_entity) previous_entity = None return entity_dict, span_capture_list, previous_entity
a7d49b6e4dbe747c65688c01652f1d413314b407
3,244
def _is_fn_init( tokens: list[Token] | Token, errors_handler: ErrorsHandler, path: str, namehandler: NameHandler, i: int = 0 ): """ "fn" <fn-name> "("<arg>*")" (":" <returned-type>)? <code-body>""" tokens = extract_tokens_with_code_body(tokens, i) if tokens is None or not is_kw(tokens[0], 'fn'): return False has_type_annotation = len(tokens) >= 4 and is_op(tokens[3], '->') if len(tokens) < 4 or not is_base_name(tokens[1]) or tokens[2].type != TokenTypes.PARENTHESIS \ or not _is_code_body(tokens[-1]) or ( has_type_annotation and not _is_type_expression(tokens[:-1], errors_handler, path, namehandler, 4) ) or (not has_type_annotation and len(tokens) != 4): errors_handler.final_push_segment( path, 'SyntaxError: invalid syntax', tokens[-1], fill=True ) return False args_tokens = tokens[2].value if args_tokens: if args_tokens[0].type == TokenTypes.TUPLE: has_default_argument = False for arg_tokens in args_tokens[0].value: if not arg_tokens: break if not _is_setvalue_expression(arg_tokens, errors_handler, path, namehandler, init_type='let'): errors_handler.final_push_segment( path, 'SyntaxError: invalid syntax', arg_tokens[0], fill=True ) return False if DummyToken(TokenTypes.OP, '=') in arg_tokens: has_default_argument = True elif has_default_argument: errors_handler.final_push_segment( path, 'SyntaxError: non-default argument follows default argument', arg_tokens[0], fill=True ) return False elif not _is_setvalue_expression(args_tokens, errors_handler, path, namehandler, init_type='let'): return False return True
2e65dbe9e7976f7e13215fbf04bd40f08da7e16e
3,245
import asyncio from typing import cast async def http_connect(address: str, port: int) -> HttpConnection: """Open connection to a remote host.""" loop = asyncio.get_event_loop() _, connection = await loop.create_connection(HttpConnection, address, port) return cast(HttpConnection, connection)
2d98815b17f6d0e03763b643a052737f6931a33f
3,246
def make_parallel_transformer_config() -> t5_architecture.EncoderDecoder: """Returns an EncoderDecoder with parallel=True.""" dtype = jnp.bfloat16 num_attn_heads = 8 make_dropout = lambda: nn.Dropout(rate=0.1, broadcast_dims=(-2,)) make_layer_norm = layer_norm.T5LayerNorm def _make_encoder_layer(shared_relative_position_bias): assert shared_relative_position_bias is None return t5_architecture.EncoderLayer( attention=make_attention1(num_attn_heads, dtype), mlp=make_mlp1(dtype), dropout_factory=make_dropout, layer_norm_factory=make_layer_norm, relative_position_bias_factory=( lambda: _make_relative_position_bias(num_attn_heads, dtype)), parallel=True, ) def _make_decoder_layer(shared_relative_position_bias): assert shared_relative_position_bias is None return t5_architecture.DecoderLayer( self_attention=make_attention1(num_attn_heads, dtype), encoder_decoder_attention=make_attention1(num_attn_heads, dtype), mlp=make_mlp1(dtype), dropout_factory=make_dropout, layer_norm_factory=make_layer_norm, relative_position_bias_factory=( lambda: _make_relative_position_bias(num_attn_heads, dtype)), parallel=True, ) def _make_encoder(shared_token_embedder): assert shared_token_embedder is None return t5_architecture.Encoder( num_layers=3, token_embedder_factory=lambda: make_token_emb1(2_000, dtype), layer_factory=_make_encoder_layer, input_dropout_factory=make_dropout, output_dropout_factory=make_dropout, layer_norm_factory=make_layer_norm, dtype=dtype, ) def _make_decoder(shared_token_embedder): assert shared_token_embedder is None return t5_architecture.Decoder( num_layers=2, token_embedder_factory=lambda: make_token_emb1(2_000, dtype), layer_factory=_make_decoder_layer, dropout_factory=make_dropout, layer_norm_factory=make_layer_norm, output_logits_factory=None, dtype=dtype, ) return t5_architecture.EncoderDecoder( shared_token_embedder_factory=lambda: None, encoder_factory=_make_encoder, decoder_factory=_make_decoder, )
f61c02d66075fb71fbecd58e8c369a6ba406c15f
3,247
def get_device_mapping(embedding_sizes, num_gpus, data_parallel_bottom_mlp, experimental_columnwise_split, num_numerical_features): """Get device mappings for hybrid parallelism Bottom MLP running on device 0. Embeddings will be distributed across among all the devices. Optimal solution for partitioning set of N embedding tables into K devices to minimize maximal subset sum is an NP-hard problem. Additionally, embedding tables distribution should be nearly uniform due to the performance constraints. Therefore, suboptimal greedy approach with max bucket size is used. Args: embedding_sizes (Sequence[int]): embedding tables sizes num_gpus (int): Default 8. Returns: device_mapping (dict): """ if num_numerical_features == 0: bottom_mlp_ranks = [] elif data_parallel_bottom_mlp: bottom_mlp_ranks = list(range(num_gpus)) else: bottom_mlp_ranks = [0] if experimental_columnwise_split: gpu_buckets = num_gpus * [list(range(len(embedding_sizes)))] vectors_per_gpu = [len(bucket) for bucket in gpu_buckets] if num_numerical_features > 0: vectors_per_gpu[0] += 1 # count bottom mlp return MultiGpuMetadata(bottom_mlp_ranks=bottom_mlp_ranks, rank_to_categorical_ids=gpu_buckets, rank_to_feature_count=vectors_per_gpu) if num_gpus > 4 and not data_parallel_bottom_mlp and num_numerical_features > 0: # for higher no. of GPUs, make sure the one with bottom mlp has no embeddings gpu_buckets = distribute_to_buckets(embedding_sizes, num_gpus - 1) # leave one device out for the bottom MLP gpu_buckets.insert(0, []) else: gpu_buckets = distribute_to_buckets(embedding_sizes, num_gpus) vectors_per_gpu = [len(bucket) for bucket in gpu_buckets] if not data_parallel_bottom_mlp: for rank in bottom_mlp_ranks: vectors_per_gpu[rank] += 1 # count bottom mlp return MultiGpuMetadata(bottom_mlp_ranks=bottom_mlp_ranks, rank_to_categorical_ids=gpu_buckets, rank_to_feature_count=vectors_per_gpu)
2265831d87d8f48c4b87ca020c7f56293cb62647
3,248
def _generate_relative_positions_embeddings(length, depth, max_relative_position, name): """Generates tensor of size [length, length, depth].""" with tf.variable_scope(name): relative_positions_matrix = _generate_relative_positions_matrix( length, max_relative_position) vocab_size = max_relative_position * 2 + 1 # Generates embedding for each relative position of dimension depth. embeddings_table = tf.get_variable("embeddings", [vocab_size, depth]) embeddings = tf.gather(embeddings_table, relative_positions_matrix) return embeddings
7c69705cf5cc161144181b09a377f66d863b12ae
3,249
def continTapDetector( fs: int, x=[], y=[], z=[], side='right', ): """ Detect the moments of finger-raising and -lowering during a fingertapping task. Function detects the axis with most variation and then first detects several large/small pos/neg peaks, then the function determines sample-wise in which part of a movement or tap the acc-timeseries is, and defines the exact moments of finger-raising, finger-lowering, and the in between stopping moments. Input: - x, y, z (arr): all three one-dimensional data- arrays containing one acc-axis each. Exact labeling x/y/z is not important. Should have equal lengths. Typically timeseries from one run. - fs (int): corresponding sample frequency - side (string): side where acc-data origin from Return: - tapTimes (list of lists): each list contains 4 timestamps (in seconds from array-start) indicating moments of: [finger-raise start, finger raise end, finger-lowering start, finger-lowering end] - moveTimes, restTimes: idem but then for 'other movements' and rest periods (of > 1 sec), each list contains the first and last timestamp of move/rest period. """ # input sanity checks if x != [] and y != []: assert len(x) == len(y), f'Arrays X and Y should' ' have equal lengths' if x != [] and z != []: assert len(x) == len(z), f'Arrays X and Z should' ' have equal lengths' if z != [] and y != []: assert len(y) == len(z), f'Arrays X and Z should' ' have equal lengths' assert side in ['left', 'right'], f'Side should be ' 'left or right' ax_arrs = [] for ax in [x, y, z]: if ax != []: ax_arrs.append(ax) # Find axis with most variation maxVar = np.argmax([variation(arr) for arr in ax_arrs]) # maxRMS = np.argmax([sum(arr) for arr in ax_arrays]) sig = ax_arrs[maxVar] # acc-signal to use # check data for pos/neg and order of magn sig = check_PosNeg_and_Order(sig, fs) # add differential of signal sigdf = np.diff(sig) # timestamps from start (in sec) timeStamps = np.arange(0, len(sig), 1 / fs) # Thresholds for movement detection posThr = np.mean(sig) negThr = -np.mean(sig) # Find peaks to help movement detection peaksettings = { 'peak_dist': 0.1, 'cutoff_time': .25, } # find relevant positive peaks posPeaks = find_peaks( sig, height=(posThr, np.max(sig)), distance=fs * .05, # settings[task]['peak_dist'] )[0] # select Pos-peaks with surrounding >> Pos and Neg Diff endPeaks = [np.logical_or( any(sigdf[i -3:i + 3] < np.percentile(sig, 10)), any(sigdf[i -3:i + 3] > np.percentile(sig, 90)) ) for i in posPeaks] endPeaks = posPeaks[endPeaks] # delete endPeaks from posPeaks for i in endPeaks: idel = np.where(posPeaks == i) posPeaks = np.delete(posPeaks, idel) # delete endPeaks which are too close after each other # by starting with std False before np.diff, the diff- # scores represent the distance to the previous peak tooclose = endPeaks[np.append( np.array(False), np.diff(endPeaks) < (fs / 6))] for p in tooclose: i = np.where(endPeaks == p) endPeaks = np.delete(endPeaks, i) posPeaks = np.append(posPeaks, p) # double check endPeaks with np.diff hop = 3 endP2 = [] for n in np.arange(hop, sig.shape[0]): if np.logical_and( any(np.diff(sig)[n - hop:n] > np.percentile(sig, 90)), any(np.diff(sig)[n- hop:n] < np.percentile(sig, 10)) ): # if diff is above extremes within hop-distance endP2.append(n) endP2 = list(compress(endP2, np.diff(endP2) > hop)) for p2 in endP2: # add to endPeaks if not containing if min(abs(p2 - endPeaks)) > 5: endPeaks = np.append(endPeaks, p2) smallNeg = find_peaks( -1 * sig, # convert pos/neg for negative peaks height=(-.5e-7, abs(np.min(sig)) * .5), distance=fs * peaksettings['peak_dist'] * .5, prominence=abs(np.min(sig)) * .05, # wlen=40, )[0] # largeNeg = find_peaks( # -1 * sig, # height=abs(np.min(sig)) * .4, # # first value is min, second is max # distance=fs * peaksettings['peak_dist'], # # prominence=np.min(yEpoch) * .1, # # wlen=40, # )[0] # Lists to store collected indices and timestamps tapi = [] # list to store indices of tap movei = [] # list to store indices of other move resti = [] # list to store indices of rest resttemp = [] # temp-list to collect rest-indices [1st, Last] starttemp = [np.nan] * 6 # for during detection process # [startUP, fastestUp, stopUP, # startDown, fastestDown, stopDown] tempi = starttemp.copy() # to start process state = 'lowRest' # Sample-wise movement detection for n, y in enumerate(sig[:-1]): if state == 'otherMov': # PM LEAVE OUT OTHER-MOV-STATE if n in endPeaks: # during other Move: end Tap tempi[-1] = n # finish and store index list if (tempi[-1] - tempi[0]) > fs * .1: movei.append(tempi) # save if long enough state='lowRest' tempi = starttemp.copy() # after end: start lowRest continue try: next10 = sum([negThr < Y < posThr for Y in sig[range(n, n + int(fs * .2) )]]) if next10 > (fs * .2) * .8: # End 'other move' if 8 / 10 next samples are inactive tempi[-1] = n # END of OTHER MOVE if (tempi[-1] - tempi[0]) > fs * .1: movei.append(tempi) tempi = starttemp.copy() # after end: start lowRest state = 'lowRest' except IndexError: # prevent indexerror out of range for next10 # print('end of timeseries') continue elif state == 'lowRest': if np.logical_and( y > posThr, # if value is over pos-threshold sigdf[n] > np.percentile(sigdf, 75) # AND diff is over Thr # any([Y in posPeaks for Y in range(n, n + int(fs * .2))]) # USED IN PAUSED ): if resttemp: # close and store active rest period resttemp.append(n) # Add second and last rest-ind if (resttemp[1] - resttemp[0]) > fs: # if rest > 1 sec resti.append(resttemp) # add finished rest-indices resttemp = [] # reset resttemp list state='upAcc1' tempi[0] = n # START TIME Tap-UP # print('save start UP', n) # elif np.logical_or( # np.logical_or(n in posPeaks, n in smallNeg[0]), # ~ (negThr < y < posThr) # ): # if resttemp: # close and store active rest period # resttemp.append(n) # Add second and last rest-ind # if (resttemp[1] - resttemp[0]) > fs: # if rest > 1 sec # resti.append(resttemp) # add finished rest-indices # resttemp = [] # reset resttemp list # state = 'otherMov' # tempi.append(n) # START TIME Othermovement elif n in endPeaks: # during lowRest, endPeak found resttemp.append(n) # Add second and last rest-ind if (resttemp[1] - resttemp[0]) > fs: # if rest > 1 sec resti.append(resttemp) # add finished rest-indices resttemp = [] # reset resttemp list state='lowRest' tempi = starttemp.copy() # after end: start lowRest continue else: # lowRest stays lowRest if not resttemp: # if rest-temp list is empty resttemp.append(n) # start of rest period elif state == 'upAcc1': if n in posPeaks: state='upAcc2' # acc getting less, veloc still increasing # print('acc-peakUP detected', n) elif n in endPeaks: state = 'downDec2' # emergency out if endPeak is found elif state == 'upAcc2': if y < 0: # crossing zero-line, start of decelleration tempi[1] = n # save n as FASTEST MOMENT UP state='upDec1' # print('fastest point UP', n) elif n in endPeaks: state = 'downDec2' # emergency out if endPeak is found elif state=='upDec1': if n in smallNeg: state='upDec2' elif n in endPeaks: state = 'downDec2' # emergency out if endPeak is found elif state == 'upDec2': if np.logical_or(y > 0, sigdf[n] < 0): # if acc is pos, or goes into acceleration # phase of down movement state='highRest' # end of UP-decell tempi[2]= n # END OF UP !!! elif n in endPeaks: state = 'downDec2' # emergency out if endPeak is found elif state == 'highRest': if np.logical_and( y < negThr, sigdf[n] < 0 #np.percentile(sigdf, 25) # from highRest: LOWERING starts when acc # gets below negative-threshold AND when # differential is negative ): state='downAcc1' tempi[3] = n # START OF LOWERING # print('LOWERING START', n) elif n in endPeaks: state = 'downDec2' # emergency out if endPeak is found # elif state == 'downAcc1': # if n in largeNeg[0]: # state='downAcc2' # elif n - tempi[2] > (fs * peaksettings[task]['cutoff_time']): # # if down-move takes > defined cutoff time # state = 'otherMov' # reset to start-state # movei.append(tempi) # newly added # tempi = [] # newly added # elif state == 'downAcc2': elif state == 'downAcc1': if np.logical_and( y > 0, sigdf[n] > 0 ): # if acceleration gets positive again and keeps # one increasing (sigdf) downwards acceleration # is finished -> ADD FASTEST DOWNW MOMENT state='downDec1' tempi[4] = n # print('fastest DOWN @', n) elif n in endPeaks: state = 'downDec2' # emergency out if endPeak is found # elif n - tempi[2] > (fs * peaksettings[task]['cutoff_time']): # # if down-move takes > defined cutoff time # state = 'otherMov' # reset to start-state # movei.append(tempi) # newly added # tempi = [] # newly added elif state == 'downDec1': if n in endPeaks: state = 'downDec2' elif state=='downDec2': if np.logical_or( y < 0, sigdf[n] < 0 ): # after large pos-peak, before around impact # artefectual peaks state='lowRest' tempi[5] = n # store current indices tapi.append(tempi) tempi = starttemp.copy() # restart w/ 6*nan # drop first tap due to starting time tapi = tapi[1:] # convert detected indices-lists into timestamps tapTimes = [] # list to store timeStamps of tap # moveTimes = [] # alternative list for movements # restTimes = [] # list to sore rest-timestamps for tap in tapi: tapTimes.append( [timeStamps[I] for I in tap if I is not np.nan] ) # for tap in movei: moveTimes.append(timeStamps[tap]) # for tap in resti: restTimes.append(timeStamps[tap]) return tapi, tapTimes, endPeaks
742a7f5590e8ad76e521efe5d1c293c43d71de0b
3,250
def parallelize(df, func): """ Split data into max core partitions and execute func in parallel. https://www.machinelearningplus.com/python/parallel-processing-python/ Parameters ---------- df : pandas Dataframe func : any functions Returns ------- data : pandas Dataframe Returned dataframe of func. """ cores = cpu_count() data_split = np.array_split(df, cores) pool = Pool(cores) data = pd.concat(pool.map(func, data_split), ignore_index=1) pool.close() pool.join() return data
dc9c085ada6ffa26675bd9c4a218cc06807f9511
3,251
def get_functional_groups(alkoxy_mol): """ given a molecule object `alkoxy_mol`. This method returns a dictionary of groups used in the Vereecken SAR with the key being the group and the value being the number of occurances it has. """ #print 'getting groups from {}'.format(alkoxy_mol.toSMILES()) alkoxy_mol.assignAtomIDs() labeled_atoms = alkoxy_mol.getLabeledAtoms() assert labeled_atoms['*1'].symbol == 'C' assert labeled_atoms['*3'].symbol == 'C', alkoxy_mol.toAdjacencyList() + str(labeled_atoms) alpha_groups = get_atom_groups(labeled_atoms['*1']) beta_groups = get_atom_groups(labeled_atoms['*3']) # find cyclic groups here (after project finished) all_groups = {} for label, num in alpha_groups.items(): all_groups['alpha{}'.format(label)] = num for label, num in beta_groups.items(): all_groups['beta{}'.format(label)] = num return all_groups
9c0280bb09e6ef606aac2a14fe2826c0a9feb06d
3,252
def rough(material, coverage, scale, det, e0=20.0, withPoisson=True, nTraj=defaultNumTraj, dose=defaultDose, sf=True, bf=True, xtraParams=defaultXtraParams): """rough(material, coverage, scale, det, [e0=20.0], [withPoisson=True], [nTraj=defaultNumTraj], [dose = 120.0], [sf=True], [bf=True], [xtraParams={}]) Monte Carlo simulate a spectrum from a rough surface with roughness modeled as square pillars of the specified scale and fractional coverage. The features are also offset by a randomized x,y offset of size approximately scale to ensure that the beam doesn't always strike at the same sort of a position. + material - Composition of material + coverage of pillars on surface (0.0 to 1.0 -> 0% to 100%) + scale - height and width of pillars + depth - Depth of trough""" tmp = u"MC simulation of a %0.2lg um %d%% coverage rough surface of %s at %0.1f keV%s%s" % (1.0e6 * scale, int(100.0 * coverage), material, e0, (" + CSF" if sf else ""), (" + BSF" if bf else "")) return base(det, e0, withPoisson, nTraj, dose, sf, bf, tmp, buildRough, { "Scale" : scale, "Coverage" : coverage, "Size" : 1.0e-5, "Material" : material }, xtraParams)
0aa6a21a2cdae22bf9f56cd6babfa9c3402ce465
3,253
def jsonify(comment_lower: str) -> str: """pyNastran: SPOINT={'id':10, 'xyz':[10.,10.,10.]}""" sline = comment_lower.split('=') rhs = sline[1].rstrip() return rhs.replace("'", '"').replace('}', ',}').replace(',,}', ',}')
e8641d5e94cff32389f7ade3360935a2abbcf297
3,254
import time def set_attributes_polling(test_case, device_proxy, device_server, poll_periods): """Set attribute polling and restore after test Parameters ---------- test_case : unittest.TestCase instance device_proxy : tango.DeviceProxy instance device_server : tango.Device instance The instance of the device class `device_proxy` is talking to poll_periods : dict {"attribute_name" : poll_period} `poll_poriod` in milliseconds as per Tango APIs, 0 or falsy to disable polling. Return value ------------ restore_polling : function This function can be used to restore polling if it is to happen before the end of the test. Should be idempotent if only one set_attributes_polling() is called per test. """ # TODO (NM 2016-04-11) check if this is still needed after upgrade to Tango 9.x For # some reason it only works if the device_proxy is used to set polling, but the # device_server is used to clear the polling. If polling is cleared using device_proxy # it seem to be impossible to restore the polling afterwards. attributes = poll_periods.keys() initial_polling = { attr: device_proxy.get_attribute_poll_period(attr) for attr in attributes } retry_time = 0.5 for attr in attributes: initial_period = initial_polling[attr] new_period = poll_periods[attr] # Disable polling for attributes with poll_period of zero / falsy # zero initial_period implies no polling currently configed if not new_period and initial_period != 0: LOGGER.debug("not setting polling for {}".format(attr)) device_server.stop_poll_attribute(attr) else: # Set the polling LOGGER.debug("setting polling for {}".format(attr)) try: device_proxy.poll_attribute(attr, new_period) # TODO See (NM 2016-04-11) comment below about back-to-back calls time.sleep(0.05) except Exception: retry = True LOGGER.warning( "Setting polling of attribute {} in {} due to unhandled" "exception in poll_attribute command".format(attr, retry_time), exc_info=True, ) else: retry = False if retry: time.sleep(retry_time) device_proxy.poll_attribute(attr, new_period) def restore_polling(): """Restore initial polling, for use during cleanup / teardown""" for attr, period in initial_polling.items(): if period == 0: continue # zero period implies no polling, nothing to do try: device_proxy.poll_attribute(attr, period) # TODO (NM 2016-04-11) For some reason Tango doesn't seem to handle # back-to-back calls, and even with the sleep it sometimes goes bad. Need # to check if this is fixed (and core dumps) when we upgrade to Tango 9.x time.sleep(0.05) except Exception: retry = True LOGGER.warning( "retrying restore of attribute {} in {} due to unhandled" "exception in poll_attribute command".format(attr, retry_time), exc_info=True, ) else: retry = False if retry: time.sleep(retry_time) device_proxy.poll_attribute(attr, period) test_case.addCleanup(restore_polling) return restore_polling
103d9dba615e0c99ac35766348f016139831c12c
3,255
from catalyst.engines.torch import ( DataParallelEngine, DeviceEngine, DistributedDataParallelEngine, ) from catalyst.engines.amp import ( AMPEngine, DataParallelAMPEngine, DistributedDataParallelAMPEngine, ) from catalyst.engines.apex import ( APEXEngine, DataParallelAPEXEngine, DistributedDataParallelAPEXEngine, ) def get_available_engine( fp16: bool = False, ddp: bool = False, amp: bool = False, apex: bool = False ) -> "IEngine": """Returns available engine based on given arguments. Args: fp16 (bool): option to use fp16 for training. Default is `False`. ddp (bool): option to use DDP for training. Default is `False`. amp (bool): option to use APEX for training. Default is `False`. apex (bool): option to use APEX for training. Default is `False`. Returns: IEngine which match requirements. """ if fp16 and not amp and not apex: amp = SETTINGS.amp_required or (SETTINGS.amp_required and SETTINGS.apex_required) apex = SETTINGS.apex_required and (not SETTINGS.amp_required) if amp: assert ( SETTINGS.amp_required ), "catalyst[amp] is not available, to install it, run `pip install catalyst[amp]`." assert not apex, "Could not use both apex and amp engines" if apex: assert ( SETTINGS.apex_required ), "catalyst[apex] is not available, to install it, run `pip install catalyst[apex]`." assert not amp, "Could not use both apex and amp engines" is_multiple_gpus = NUM_CUDA_DEVICES > 1 if not IS_CUDA_AVAILABLE: return DeviceEngine("cpu") elif is_multiple_gpus: if ddp: if amp: return DistributedDataParallelAMPEngine() elif apex: return DistributedDataParallelAPEXEngine() else: return DistributedDataParallelEngine() else: if amp: return DataParallelAMPEngine() elif apex: return DataParallelAPEXEngine() else: return DataParallelEngine() else: if amp: return AMPEngine() elif apex: return APEXEngine() else: return DeviceEngine("cuda")
6d29e0c1938c5889b6e4a7fa972945065bc2cf3a
3,256
import shutil def disk_usage(pathname): """Return disk usage statistics for the given path""" ### Return tuple with the attributes total,used,free in bytes. ### usage(total=118013599744, used=63686647808, free=48352747520) return shutil.disk_usage(pathname)
c7a36e2f3200e26a67c38d50f0a97dd015f7ccfa
3,257
import os import yaml def get_default_log_config(): """Get the default logging configuration. Returns: dict: The default logging configuration. """ root = os.path.dirname(__file__) config_file = os.path.join(root, "logging.yaml") with open(config_file, "r") as file_object: data = yaml.load(file_object, yaml.FullLoader) return data["logging"]
7fc4479c7efb666b80ddd3e450b107ac73cf3c16
3,258
from typing import Tuple def create_new_deployment( runner: Runner, deployment_arg: str, expose: PortMapping, add_custom_nameserver: bool ) -> Tuple[str, str]: """ Create a new Deployment, return its name and Kubernetes label. """ span = runner.span() run_id = runner.session_id runner.show( "Starting network proxy to cluster using " "new Deployment {}".format(deployment_arg) ) def remove_existing_deployment(quiet=False): if not quiet: runner.show("Cleaning up Deployment {}".format(deployment_arg)) runner.check_call( runner.kubectl( "delete", "--ignore-not-found", "svc,deploy", "--selector=telepresence=" + run_id, ) ) runner.add_cleanup("Delete new deployment", remove_existing_deployment) remove_existing_deployment(quiet=True) command = [ "run", # This will result in using Deployment: "--restart=Always", "--limits=cpu=100m,memory=256Mi", "--requests=cpu=25m,memory=64Mi", deployment_arg, "--image=" + get_image_name(expose), "--labels=telepresence=" + run_id, ] # Provide a stable argument ordering. Reverse it because that happens to # make some current tests happy but in the long run that's totally # arbitrary and doesn't need to be maintained. See issue 494. for port in sorted(expose.remote(), reverse=True): command.append("--port={}".format(port)) if expose.remote(): command.append("--expose") # If we're on local VM we need to use different nameserver to prevent # infinite loops caused by sshuttle: if add_custom_nameserver: command.append( "--env=TELEPRESENCE_NAMESERVER=" + get_alternate_nameserver() ) try: runner.check_call(runner.kubectl(command)) except CalledProcessError as exc: raise runner.fail( "Failed to create deployment {}:\n{}".format( deployment_arg, exc.stderr ) ) span.end() return deployment_arg, run_id
d15e9e1ec9d09669b8becd4e169049d5a1e836ab
3,259
import logging def score_latency( references, reference_wavs, partial_translations, target_language="en-US" ): """Measures the "final" translation lag after all corrections have been made.""" logger = logging.getLogger("evaluation") tokenizer = get_tokenizer(target_language) min_len = min(len(partial_translations), len(references)) if len(partial_translations) != len(references): logger.warning( f"Found {len(references)} references, {len(partial_translations)} partial " + f"translations. Evaluating only the first {min_len}" ) partial_translations = partial_translations[:min_len] references = references[:min_len] # Make case insensitive and tokenize partial_translations_tokenized = [ [(t_time, tokenizer.tokenize(t.upper())) for t_time, t in transcript] for transcript in partial_translations ] references = [tokenizer.tokenize(r.upper()) for r in references] # Compute total lag output_words, total_lag = 0, 0 for reference, (_, reference_wav), partial_translation in zip( references, reference_wavs, partial_translations_tokenized ): if len(partial_translation) == 0: continue final_time, final_translation = partial_translation[-1] reference_duration = get_duration_seconds(reference_wav) for j in range(1, len(final_translation) + 1): # Compare a time a word was finalized in the output # to the time its corresponding word was uttered finalization_time = get_finalization_time( final_translation, j, partial_translation ) original_token = int(j * len(reference) / len(final_translation)) original_time = get_token_time( original_token, reference, reference_duration ) total_lag += max(0, finalization_time - original_time) output_words += 1 return total_lag / max(1, output_words)
9d31e029247e44448103d99760019f0dffa1cf44
3,260
def shapelet_with_w_term( coords, frequency, coeffs, beta, delta_lm, lm, dtype=np.complex128 ): """ shapelet: outputs visibilities corresponding to that of a shapelet Inputs: coords: coordinates in (u,v) space with shape (nrow, 3) frequency: frequency values with shape (nchan,) coeffs: shapelet coefficients with shape, where coeffs[3, 4] = coeffs_l[3] * coeffs_m[4] (nsrc, nmax1, nmax2) beta: characteristic shapelet size with shape (nsrc, 2) delta_l: pixel size in l dim delta_m: pixel size in m dim lm: source center coordinates of shape (nsource, 2) Returns: out_shapelets: Shapelet with shape (nrow, nchan, nsrc) """ nrow = coords.shape[0] nsrc = coeffs.shape[0] nchan = frequency.shape[0] out_shapelets = np.empty((nrow, nchan, nsrc), dtype=np.complex128) delta_l, delta_m = delta_lm for row in range(nrow): u, v, w = coords[row, :] for chan in range(nchan): fu = u * 2 * np.pi * frequency[chan] / lightspeed fv = v * 2 * np.pi * frequency[chan] / lightspeed for src in range(nsrc): nmax1, nmax2 = coeffs[src, :, :].shape beta_u, beta_v = beta[src, :] l, m = lm[src, :] if beta_u == 0 or beta_v == 0: out_shapelets[row, chan, src] = 1 continue tmp_shapelet = 0 + 0j for n1 in range(nmax1): for n2 in range(nmax2): tmp_shapelet += ( 0 if coeffs[src][n1, n2] == 0 else coeffs[src][n1, n2] * basis_function( n1, fu, beta_u, True, delta_x=delta_l ) * basis_function( n2, fv, beta_v, True, delta_x=delta_m ) ) w_term = phase_steer_and_w_correct( (u, v, w), (l, m), frequency[chan] ) out_shapelets[row, chan, src] = tmp_shapelet * w_term return out_shapelets
f6c9f9011306cc2de5054e015857b3b47c7e6cd9
3,261
import numpy def CylindricalVectorsToCartesian(coordinates, data): """ Project the supplied cylindrical coordinates (r-phi-z) vectors to 3D Cartesian (x-y-z). coordinates must be in Cartesian. """ if optimise.DebuggingEnabled(): assert(len(coordinates) == len(data)) for i, coord in enumerate(coordinates): assert(len(coord) == 3) assert(len(data[i]) == 3) newData = numpy.empty((len(data), 3)) for i, coord in enumerate(coordinates): datum = data[i] rMag = L2Norm(coord[:2]) x = [coord[0] / rMag, -coord[1] / rMag] y = [-x[1], x[0]] newData[i, :] = [datum[0] * x[0] + datum[1] * x[1], datum[0] * y[0] + datum[1] * y[1], datum[2]] return newData
abc3bd3eecd6f087dc932b882600e8779903f556
3,262
from typing import Counter def _entropy_counter2(arr): """ calculate the base 2 entropy of the distribution given in `arr` using a `Counter` and the `values` method (for python3) """ arr_len = len(arr) if arr_len == 0: return 0 log_arr_len = np.log2(len(arr)) return -sum(val * (np.log2(val) - log_arr_len) for val in Counter(arr).values()) / arr_len
1f72c7a7e5db56aa9a0e5c3811cf28c600420949
3,263
from sys import path def update_deleted_strain(_, strain_to_del): """Update ``deleted-strain`` var. This happens after a user clicks the OK btn in the confirm strain deletion modal. We also delete the files associated with the strain at this step. :param _: User clicked the OK btn :param strain_to_del: Strain corresponding to del btn user clicked :type strain_to_del: str """ remove(path.join(USER_DATA_DIR, strain_to_del + ".gvf")) rmtree(path.join(USER_SURVEILLANCE_REPORTS_DIR, strain_to_del)) return strain_to_del
0086aa0c17910ed75f480e4a6ac0d2950d5d84dd
3,264
def get_changes_between_models(model1, model2, excludes=None): """ Return a dict of differences between two model instances """ if excludes is None: excludes = [] changes = {} for field in model1._meta.fields: if (isinstance(field, (fields.AutoField, fields.related.RelatedField)) or field.name in excludes): continue if field.value_from_object(model1) != field.value_from_object(model2): changes[field.verbose_name] = (field.value_from_object(model1), field.value_from_object(model2)) return changes
1f62afdc7818574553fa7a53eb05e766c2805edd
3,265
def get_intersect(x1, y1, x2, y2): """ Returns the point of intersection of the lines or None if lines are parallel Ex. p1=(x1,x2)... line_intersection((p1,p2), (p3,p4)) a1: [x, y] a point on the first line a2: [x, y] another point on the first line b1: [x, y] a point on the second line b2: [x, y] another point on the second line """ s = np.vstack([x1, y1, x2, y2]) # s for stacked h = np.hstack((s, np.ones((4, 1)))) # h for homogeneous l1 = np.cross(h[0], h[1]) # get first line l2 = np.cross(h[2], h[3]) # get second line x, y, z = np.cross(l1, l2) # point of intersection if z == 0: # lines are parallel return None, None return x / z, y / z
8e9ed2f2351b41658400badc7339eedc9791db8a
3,266
def removeDuplicateColumns(df): """ Removes columns that have a duplicate name. :return pd.DataFrame: """ duplicates = getDuplicates(df.columns) done = False idx = 0 df_result = df.copy() additions_dict = {} while not done: if idx >= len(df_result.columns): done = True break column = df_result.columns[idx] if column in duplicates: df1 = df_result[column] values = df1.iloc[:,1] del df_result[column] duplicates.remove(column) additions_dict[column] = values else: idx += 1 df_add = pd.DataFrame(additions_dict) df_result = pd.concat([df_result, df_add], axis=1, sort=True) return df_result
dc46580d221b8e4279ba73e8d97eee079e65309c
3,267
def conv_block(data, name, channels, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), epsilon=1e-5): """Helper function to construct conv-bn-relu""" # convolution + bn + relu conv = sym.conv2d(data=data, channels=channels, kernel_size=kernel_size, strides=strides, padding=padding, use_bias=False, layout="NCHW", name=name + "_conv") bn = sym.batch_norm(data=conv, epsilon=epsilon, name=name + "_bn") act = sym.relu(data=bn, name=name + "_relu") return act
90464c208c12a6e9907f5a206ddd324fd92638ff
3,268
import sys def var2fa(stream, gzipped=False): """convert variant calling's .var file to fasta""" for line in stream: if gzipped: line = line.decode() if line[0]!='V': continue line = line.strip().split('\t') _1, chrom, start, end, _2, _3, ref, alt, queryname, q_start, q_end, strand = line if abs(len(ref)-len(alt))<50: continue # not long enough if len(ref)>len(alt): newname = 'DEL_'+'_'.join([queryname, chrom+strand, start+'-'+end, q_start+'-'+q_end]) seq = ref.upper() else: newname = 'INS_'+'_'.join([queryname, chrom+strand, start+'-'+end, q_start+'-'+q_end]) seq = alt.upper() sys.stdout.write('>{0}\n{1}\n'.format(newname, seq)) return 0
48e5c9390dc954dcf602e63152815e5af843d270
3,269
import pickle import torchvision import torch def utzappos_tensor_dset(img_size, observed, binarized, drop_infreq, cache_fn, *dset_args, transform=None, **dset_kwargs): """ Convert folder dataset to tensor dataset. """ cache_fn = UTZapposIDImageFolder.get_cache_name(cache_fn, img_size, observed, binarized, drop_infreq) try: with open(cache_fn, 'rb') as f: dset_samples, dset_labels, dset_label_info = pickle.load(f) except FileNotFoundError: img_transform = torchvision.transforms.Compose([torchvision.transforms.Resize((img_size, img_size)), torchvision.transforms.ToTensor()]) dset = UTZapposIDImageFolder(*dset_args, img_size=img_size, transform=img_transform, observed=observed, binarized=binarized, drop_infreq=drop_infreq, **dset_kwargs) dset_examples = [dset[ind] for ind in range(len(dset))] dset_samples, dset_labels = map(torch.stack, zip(*dset_examples)) # find_duplicates_in_dsets((dset_samples, dset_labels), (dset_samples, dset_labels), # tuple_format=True, itself=True) dset_label_info = dset._label_info with open(cache_fn, 'wb') as handle: pickle.dump((dset_samples, dset_labels, dset_label_info), handle, protocol=4) return CustomTensorDataset(dset_samples, dset_labels, transform=transform), dset_label_info, cache_fn
8008f8d19453884106832746a4cefb55c9813c45
3,270
def compare_versions(aStr, bStr): """ Assumes Debian version format: [epoch:]upstream_version[-debian_revision] Returns: -1 : a < b 0 : a == b 1 : a > b """ # Compare using the version class return cmp(Version(aStr), Version(bStr))
a17e333cc555b1b260cf826a5e4c29b0e291c479
3,271
import sys def alpha_034(code, end_date=None, fq="pre"): """ 公式: MEAN(CLOSE,12)/CLOSE Inputs: code: 股票池 end_date: 查询日期 Outputs: 因子的值 """ end_date = to_date_str(end_date) func_name = sys._getframe().f_code.co_name return JQDataClient.instance().get_alpha_191(**locals())
1f251db49bb5cb6a0326af5cf2d07c4bbef2144a
3,272
import numbers def unscale_parameter(value: numbers.Number, petab_scale: str) -> numbers.Number: """Bring parameter from scale to linear scale. :param value: Value to scale :param petab_scale: Target scale of ``value`` :return: ``value`` on linear scale """ if petab_scale == LIN: return value if petab_scale == LOG10: return np.power(10, value) if petab_scale == LOG: return np.exp(value) raise ValueError(f"Unknown parameter scale {petab_scale}. " f"Must be from {(LIN, LOG, LOG10)}")
f04156220e8a39c31473507a60fee3d5185bda0c
3,273
def perturb(sentence, bertmodel, num): """Generate a list of similar sentences by BERT Arguments: sentence: Sentence which needs to be perturbed bertModel: MLM model being used (BERT here) num: Number of perturbations required for a word in a sentence """ # Tokenize the sentence tokens = tokenizer.tokenize(sent) pos_inf = nltk.tag.pos_tag(tokens) # the elements in the lists are tuples <index of token, pos tag of token> bert_masked_indexL = list() # collect the token index for substitution for idx, (word, tag) in enumerate(pos_inf): if (tag.startswith("JJ") or tag.startswith("JJR") or tag.startswith("JJS") or tag.startswith("PRP") or tag.startswith("PRP$") or tag.startswith("RB") or tag.startswith("RBR") or tag.startswith("RBS") or tag.startswith("VB") or tag.startswith("VBD") or tag.startswith("VBG") or tag.startswith("VBN") or tag.startswith("VBP") or tag.startswith("VBZ") or tag.startswith("NN") or tag.startswith("NNS") or tag.startswith("NNP") or tag.startswith("NNPS")): tagFlag = tag[:2] if (idx!=0 and idx!=len(tokens)-1): bert_masked_indexL.append((idx, tagFlag)) bert_new_sentences = list() # generate similar setences using Bert if bert_masked_indexL: bert_new_sentences = perturbBert(sent, bertmodel, num, bert_masked_indexL) return bert_new_sentences
598ed7e37185de6bf2a977c226bb58677684772d
3,274
import logging def discovery_dispatch(task: TaskRequest) -> TaskResponse: """Runs appropriate discovery function based on protocol Args: task (TaskRequest): namedtuple Returns: TaskResponse[str, dict[str, str|int|bool|list]] """ task = TaskRequest(*task) proto = constant.Proto(task.proto) logging.info( "Dispatching: host=%s, hostname=%s, proto=%s", task.host, task.hostname, proto, ) discoverer = get_discovery(proto) device = discoverer( host=task.host, hostname=task.hostname, sysinfo=task.sysinfo, extra=task.extra, **task.kwargs, ) logging.info("Dispatch received response from %s", task.host) return TaskResponse(task.host, device.dump())
3fe6394cf81fdb3e25343df27479f4b4ab3033fa
3,275
def get_free_times(busy_times, begin_date, end_date): """ Gets a list of free times calculated from a list of busy times. :param busy_times: is the list of busy times in ascending order. :param begin_date: is the start of the selected time interval. :param end_date: is the end of the selected time interval. :return: a list of free times. """ free_times = [] busy_times_original = busy_times begin_date = arrow.get(begin_date).replace(hour=9) end_date = arrow.get(end_date).replace(hour=17) # print('free times') if len(busy_times) == 0: free_times.append((begin_date.isoformat(), end_date.isoformat())) else: begin_date_end = begin_date.replace(hour=17) begin_day = begin_date.format('YYYYMMDD') begin_time = '09:00' end_time = '17:00' end_date_start = arrow.get(end_date).replace(hour=9) end_day = end_date.format('YYYYMMDD') stored_event = busy_times[0] busy_times = busy_times[1:] if len(busy_times) == 0: stored_event_start = arrow.get(stored_event['start']['dateTime']) stored_event_end = arrow.get(stored_event['end']['dateTime']) if (stored_event_start == begin_date and stored_event_end < begin_date_end): free_times.append((stored_event_end.isoformat(), end_date.isoformat())) elif (stored_event_end == end_date and stored_event_start > end_date_start): free_times.append((begin_date.isoformat(), stored_event_start.isoformat())) elif (stored_event_start > begin_date and stored_event_end < end_date): free_times.append((begin_date.isoformat(), stored_event_start.isoformat())) free_times.append((stored_event_end.isoformat(), end_date.isoformat())) for event in busy_times: event_start = arrow.get(event['start']['dateTime']) event_end = arrow.get(event['end']['dateTime']) event_start_time = event_start.format('HH:mm') event_end_time = event_end.format('HH:mm') event_end_day = event_end.format('YYYYMMDD') stored_event_start = arrow.get(stored_event['start']['dateTime']) stored_event_start_time = stored_event_start.format('HH:mm') stored_event_start_day = arrow.get( stored_event['start']['dateTime']).format('YYYYMMDD') stored_event_end = stored_event['end']['dateTime'] stored_event_end_time = arrow.get(stored_event_end).format('HH:mm') event_start = event_start.isoformat() # starting free time on begin day after start of day if (stored_event_start_day == begin_day and stored_event_start_time > begin_time): free_times.append((begin_date.isoformat(), stored_event_start.isoformat())) # print('0 {} - {}'.format(begin_date.isoformat(), # stored_event_start.isoformat())) # middle free times if (stored_event_end < event_start and (stored_event_end, event_start) not in free_times): if event_start_time == '09:00': event_start = arrow.get( event['start']['dateTime']).replace( days=-1, hour=17).isoformat() if stored_event_end_time == '17:00': stored_event_end = arrow.get( stored_event_end).replace(days=+1, hour=START_TIME).isoformat() free_times.append((stored_event_end, event_start)) # print('1 {} - {}'.format(stored_event_end, # event_start)) # ending free time if (event_end_day == end_day and event_end_time != end_time): free_times.append((event_end.isoformat(), end_date.isoformat())) # print('2 {} - {}'.format(event_end.isoformat(), # end_date.isoformat())) # ending free time for final events that end before end_date if (busy_times.index(event) == len(busy_times) - 1 and event_end < end_date): if event_end_time == '17:00': event_end = event_end.replace(days=+1, hour=START_TIME) free_times.append((event_end.isoformat(), end_date.isoformat())) # print('3 {} - {}'.format(event_end.isoformat(), # end_date.isoformat())) # starting free time not on begin day if (arrow.get(free_times[0][0]) != begin_date and stored_event_start != begin_date and begin_date != arrow.get( busy_times_original[0]['start']['dateTime'])): free_times.insert(0, (begin_date.isoformat(), stored_event_start.isoformat())) # print('4 {} - {}'.format(begin_date.isoformat(), # stored_event_start.isoformat())) stored_event = event # print() # print('free times') # for time in free_times: # print(time) return free_times
95f33c22e28e9ed7bc299ac966767a2292cf6d7b
3,276
from datetime import datetime import pytz def upstream_has_data(valid): """Does data exist upstream to even attempt a download""" utcnow = datetime.datetime.utcnow().replace(tzinfo=pytz.utc) # NCEP should have at least 24 hours of data return (utcnow - datetime.timedelta(hours=24)) < valid
e222ca16820f2e9030170877f8e2ae4faff8d5b7
3,277
def encode_array(x, base=2, **kwds): """Encode array of integer-symbols. Parameters ---------- x : (N, k) array_like Array of integer symbols. base : int Encoding base. **kwds : Keyword arguments passed to :py:func:`numpy.ravel`. Returns ------- int Integer code of an array. """ seq = np.ravel(x, **kwds) return encode_sequence(seq, base=base)
b16546350638967dd60812b98295ffc4c95abd4d
3,278
import itertools def str_for_model(model: Model, formatting: str = "plain", include_params: bool = True) -> str: """Make a human-readable string representation of Model, listing all random variables and their distributions, optionally including parameter values.""" all_rv = itertools.chain(model.unobserved_RVs, model.observed_RVs, model.potentials) rv_reprs = [rv.str_repr(formatting=formatting, include_params=include_params) for rv in all_rv] rv_reprs = [rv_repr for rv_repr in rv_reprs if "TransformedDistribution()" not in rv_repr] if not rv_reprs: return "" if "latex" in formatting: rv_reprs = [ rv_repr.replace(r"\sim", r"&\sim &").strip("$") for rv_repr in rv_reprs if rv_repr is not None ] return r"""$$ \begin{{array}}{{rcl}} {} \end{{array}} $$""".format( "\\\\".join(rv_reprs) ) else: # align vars on their ~ names = [s[: s.index("~") - 1] for s in rv_reprs] distrs = [s[s.index("~") + 2 :] for s in rv_reprs] maxlen = str(max(len(x) for x in names)) rv_reprs = [ ("{name:>" + maxlen + "} ~ {distr}").format(name=n, distr=d) for n, d in zip(names, distrs) ] return "\n".join(rv_reprs)
89711e4fd12572339a501698c39fc8b81deca8a3
3,279
from typing import Callable from typing import Optional from typing import Union def get_device( raw_data: dict, control_data: dict, request: Callable ) -> Optional[ Union[ HomeSeerDimmableDevice, HomeSeerFanDevice, HomeSeerLockableDevice, HomeSeerStatusDevice, HomeSeerSwitchableDevice, HomeSeerCoverDevice, HomeSeerSetPointDevice ] ]: """ Parses control_data to return an appropriate device object based on the control pairs detected for the device. On/Off = HomeSeerSwitchableDevice On/Off/Dim = HomeSeerDimmableDevice On/Off/Fan = HomeSeerFanDevice Lock/Unlock = HomeSeerLockableDevice other = HomeSeerStatusDevice """ item = next((x for x in control_data if x["ref"] == raw_data["ref"]), None) supported_features = get_supported_features(item) return build_device(raw_data, item, request, supported_features)
616c16e749fef7dc45539a7eb8bdbc9f11d3edd1
3,280
def wait(): """ Gets the New Block work unit to send to clients """ return _event.get()
d24047d92b3774c675369ee739ec697ab23f0fea
3,281
from typing import Optional def process(msd_id: str, counter: AtomicCounter) -> Optional[dict]: """ Processes the given MSD id and increments the counter. The method will find and return the artist. :param msd_id: the MSD id to process :param counter: the counter to increment :return: the dictionary containing the MSD id and the artist, raises an exception if the file cannot be processed """ try: with tables.open_file(msd_id_to_h5(msd_id, args.path_dataset_dir)) as h5: artist = h5.root.metadata.songs.cols.artist_name[0].decode("utf-8") return {"msd_id": msd_id, "artist": artist} except Exception as e: print(f"Exception during processing of {msd_id}: {e}") finally: counter.increment()
6bd93bf72a7ecfa6ddb41557b0550a629b9612f4
3,282
def choose_run(D, var2align, run): """Get input for the alignment. Do it by indicating a run to align to. Args: D (pd.DataFrame): DataFrame containing columns 'id', 'run', and ... var2align (str): Name of the column to align. run (whatever): The run to align to. Returns: tuple of pd.DataFrames: The data ready for alignment and the remainder. """ X = D[['id', 'run', var2align]] # subselect the data for alignment X.columns = ['id', 'run', 'x'] ref = X.loc[X.run == run] # the reference peptides other = X.loc[X.run != run] # all other peptides # we can align peptides in other runs only to those found in chosen run. alignable_idx = other.id.isin(set(other.id) & set(ref.id)) X = other.loc[alignable_idx,] unalignable = other.loc[~alignable_idx,] ref = ref[['id','x']].set_index('id') ref.columns = ['y'] X = pd.concat([X.set_index('id'), ref], axis=1, join='inner') return X, unalignable
54fc84e61b3874219d473659c85bd369b367a05d
3,283
import os def keyring(homedir, monkeypatch, scope='module'): """Default keyring, using the test profile""" monkeypatch.setattr(os.path, "expanduser", lambda d: homedir) kr = S3Keyring(profile_name='test') kr.configure(ask=False) return kr
c3c5c1a77148338a4457a7a27db7e4bbfb837acf
3,284
def stack(tensor_list, axis=0): """ This function is the same as torch.stack but handles both numpy.ndarray and torch.Tensor :param tensor_list: :param axis: :return: """ if isinstance(tensor_list[0], th.Tensor): return th.stack(tensor_list, axis) else: return np.stack(tensor_list, axis)
9d8e5d8fbd9f89acb40ada362d0ae8d4913df939
3,285
def alias(alias): """Select a single alias.""" return {'alias': alias}
35364346da4d7b1f6de2d7ba6e0b5721b6bef1dd
3,286
def model_creator(config): """Constructor function for the model(s) to be optimized. You will also need to provide a custom training function to specify the optimization procedure for multiple models. Args: config (dict): Configuration dictionary passed into ``PyTorchTrainer``. Returns: One or more torch.nn.Module objects. """ return nn.Linear(1, 1)
81909a284bddd83a62c8c9adacfbe75cf46650bd
3,287
import numbers def ensure_r_vector(x): """Ensures that the input is rendered as a vector in R. It is way more complicated to define an array in R than in Python because an array in R cannot end with an comma. Examples -------- >>> ensure_r_vector("string") "c('string')" >>> ensure_r_vector(1) 'c(1)' >>> ensure_r_vector(list("abcd")) "c('a', 'b', 'c', 'd')" >>> ensure_r_vector((1, 2)) 'c(1, 2)' """ if isinstance(x, str): out = f"c('{x}')" elif isinstance(x, numbers.Number): out = f"c({x})" elif isinstance(x, (tuple, list)): mapped = map(lambda l: str(l) if isinstance(l, numbers.Number) else f"'{l}'", x) concatenated = ", ".join(mapped) out = f"c({concatenated})" else: raise NotImplementedError( f"'ensure_r_vector' is not defined for dtype {type(x)}" ) return out
14fdeb6bf73244c69d9a6ef89ba93b33aa4a66d8
3,288
from typing import Optional def open_and_prepare_avatar(image_bytes: Optional[bytes]) -> Optional[Image.Image]: """Opens the image as bytes if they exist, otherwise opens the 404 error image. then circular crops and resizes it""" if image_bytes is not None: try: with Image.open(BytesIO(image_bytes)) as im: prepared_image = crop_circular_border_w_transparent_bg(im) prepared_image = resize_image(prepared_image) except UnidentifiedImageError as e: log.error("Error loading Avatar", exc_info=e) return None else: with Image.open("resources/404 Avatar Not Found.png") as im: prepared_image = crop_circular_border_w_transparent_bg(im) prepared_image = resize_image(prepared_image) return prepared_image
f5b4543f64b15180deed3cb8e672a3e1b96956f7
3,289
def is_GammaH(x): """ Return True if x is a congruence subgroup of type GammaH. EXAMPLES:: sage: from sage.modular.arithgroup.all import is_GammaH sage: is_GammaH(GammaH(13, [2])) True sage: is_GammaH(Gamma0(6)) True sage: is_GammaH(Gamma1(6)) True sage: is_GammaH(sage.modular.arithgroup.congroup_generic.CongruenceSubgroup(5)) False """ return isinstance(x, GammaH_class)
9cfba55901a45d4482b6926673bfb87fabc88030
3,290
def _run_with_interpreter_if_needed(fuzzer_path, args, max_time): """Execute the fuzzer script with an interpreter, or invoke it directly.""" interpreter = shell.get_interpreter(fuzzer_path) if interpreter: executable = interpreter args.insert(0, fuzzer_path) else: executable = fuzzer_path runner = new_process.UnicodeProcessRunner(executable) return runner.run_and_wait(timeout=max_time, additional_args=args)
3739db213571ed00c5e026f9a768ca610e0ac318
3,291
def remove_vol(im_in, index_vol_user, todo): """ Remove specific volumes from 4D data. :param im_in: [str] input image. :param index_vol: [int] list of indices corresponding to volumes to remove :param todo: {keep, remove} what to do :return: 4d volume """ # get data data = im_in.data nt = data.shape[3] # define index list of volumes to keep/remove if todo == 'remove': index_vol = [i for i in range(0, nt) if i not in index_vol_user] elif todo == 'keep': index_vol = index_vol_user else: printv('ERROR: wrong assignment of variable "todo"', 1, 'error') # define new 4d matrix with selected volumes data_out = data[:, :, :, index_vol] # save matrix inside new Image object im_out = im_in.copy() im_out.data = data_out return im_out
4e5ffe6ade64f4c9dbabf5e090662711bdf926f7
3,292
def cost_logistic(p, x, y): """ Sum of absolute deviations of obs and logistic function L/(1+exp(-k(x-x0))) Parameters ---------- p : iterable of floats parameters (`len(p)=3`) `p[0]` L - Maximum of logistic function `p[1]` k - Steepness of logistic function `p[2]` x0 - Inflection point of logistic function x : float or array_like of floats independent variable y : float or array_like of floats dependent variable, observations Returns ------- float sum of absolute deviations """ return np.sum(np.abs(y-logistic_p(x,p)))
32b89ef7d33d49b7af63c8d11afffeb641b12de1
3,293
from datetime import datetime def estimate_dt(time_array): """Automatically estimate timestep in a time_array Args: time_array ([list]): List or dataframe with time entries Returns: dt ([datetime.timedelta]): Timestep in dt.timedelta format """ if len(time_array) < 2: # Assume arbitrary value return datetime.timedelta(seconds=0) dt = np.median(np.diff(time_array)) if not isinstance(dt, datetime.timedelta): dt = datetime.timedelta(seconds=dt.astype(float)/1e9) # Check if data is all ascending if dt <= datetime.timedelta(0): raise UserWarning('Please only insert time ascending data.') return dt
6e6b8dcd4d2d85b4bfb97137294774bb4bcc2673
3,294
import uu def gen_uuid() -> str: """ 获取uuid :return: uuid """ return uu.uuid4().hex
82fd4fa7a3e39cc0c91ab16be3cf0c6a3f63eb3d
3,295
import inspect def make_signature(arg_names, member=False): """Make Signature object from argument name iterable or str.""" kind = inspect.Parameter.POSITIONAL_OR_KEYWORD if isinstance(arg_names, str): arg_names = map(str.strip, arg_name_list.split(',')) if member and arg_names and arg_names[0] != 'self': arg_names = ['self'] + arg_names return inspect.Signature([inspect.Parameter(n, kind) for n in arg_names])
2730e50ea68e6fe2942c629caa3b3119aea9a325
3,296
def set_trace_platform(*args): """ set_trace_platform(platform) Set platform name of current trace. @param platform (C++: const char *) """ return _ida_dbg.set_trace_platform(*args)
9f581018960cdd0949ca41750286eddf1fa43741
3,297
def leapfrog2(init, tspan, a, beta, omega, h): """ Integrate the damped oscillator with damping factor a using single step Leapfrog for separable Hamiltonians. """ f = forcing(beta, omega) return sym.leapfrog(init, tspan, h, lambda x, p, t: -x-a*p+f(t))
a8eebe1ee7f50c87e515c2c5cca0bdc30605dc8f
3,298
def get_paths(config, action, dir_name): """ Returns 'from' and 'to' paths. @param config: wrapsync configuration @param action: 'push'/'pull' @param dir_name: name of the directory to append to paths from the config @return: dictionary containing 'from' and 'to' paths """ path_from = '' path_to = '' if action == 'push': if dir_name == 'all': path_from = build_local_path(config, False) path_to = build_remote_path(config, True) else: path_from = f"{build_local_path(config, False)}/{dir_name}" path_to = build_remote_path(config, False) else: if dir_name == 'all': path_from = build_remote_path(config, False) path_to = build_local_path(config, True) else: path_from = f"{build_remote_path(config, False)}/{dir_name}" path_to = build_local_path(config, False) return { 'from': path_from, 'to': path_to }
f03ee64a76bafcf832f8dddcdcb4f16c28529c5c
3,299