content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import json def user_config(filename): """user-provided configuration file""" try: with open(filename) as file: return json.loads(file.read(None)) except FileNotFoundError as fnf: raise RuntimeError(f"File '{filename}' could not be found") from fnf except json.JSONDecodeError as jsond: raise RuntimeError(f"Error while parsing '{filename}'") from jsond
a6aa05d76b4aaa12c02ff97e4ab5ba4ba1245324
18,400
def _decomposed_dilated_conv2d(x, kernel_size, num_o, dilation_factor, name, top_scope, biased=False): """ Decomposed dilated conv2d without BN or relu. """ # padding so that the input dims are multiples of dilation_factor H = tf.shape(x)[1] W = tf.shape(x)[2] pad_bottom = (dilation_factor - H % dilation_factor) if H % dilation_factor != 0 else 0 pad_right = (dilation_factor - W % dilation_factor) if W % dilation_factor != 0 else 0 pad = [[0, pad_bottom], [0, pad_right]] # decomposition to smaller-sized feature maps # [N,H,W,C] -> [N*d*d, H/d, W/d, C] o = tf.space_to_batch(x, paddings=pad, block_size=dilation_factor) # perform regular conv2d num_x = x.shape[3].value with tf.variable_scope(name) as scope: w = tf.get_variable('weights', shape=[kernel_size, kernel_size, num_x, num_o]) s = [1, 1, 1, 1] o = tf.nn.conv2d(o, w, s, padding='SAME') if biased: b = tf.get_variable('biases', shape=[num_o]) o = tf.nn.bias_add(o, b) o = tf.batch_to_space(o, crops=pad, block_size=dilation_factor) return o
578d9308834294a80e778548faba9eb9fe0329c5
18,401
from datetime import datetime from typing import Tuple async def post_autodaily(text_channel: TextChannel, latest_message_id: int, change_mode: bool, current_daily_message: str, current_daily_embed: Embed, utc_now: datetime.datetime) -> Tuple[bool, bool, Message]: """ Returns (posted, can_post, latest_message) """ posted = False if text_channel and current_daily_message: error_msg_delete = f'could not delete message [{latest_message_id}] from channel [{text_channel.id}] on guild [{text_channel.guild.id}]' error_msg_edit = f'could not edit message [{latest_message_id}] from channel [{text_channel.id}] on guild [{text_channel.guild.id}]' error_msg_post = f'could not post a message in channel [{text_channel.id}] on guild [{text_channel.guild.id}]' post_new = change_mode != server_settings.AutoDailyChangeMode.EDIT can_post = True latest_message: Message = None use_embeds = await server_settings.get_use_embeds(None, bot=BOT, guild=text_channel.guild) if use_embeds: colour = utils.discord.get_bot_member_colour(BOT, text_channel.guild) embed = current_daily_embed.copy() embed.colour = colour else: embed = None if can_post: can_post, latest_message = await daily_fetch_latest_message(text_channel, latest_message_id) if can_post: if latest_message and latest_message.created_at.day == utc_now.day: latest_message_id = latest_message.id if change_mode == server_settings.AutoDailyChangeMode.DELETE_AND_POST_NEW: try: deleted = await utils.discord.try_delete_message(latest_message) if deleted: latest_message = None utils.dbg_prnt(f'[post_autodaily] deleted message [{latest_message_id}] from channel [{text_channel.id}] on guild [{text_channel.guild.id}]') else: print(f'[post_autodaily] could not delete message [{latest_message_id}] from channel [{text_channel.id}] on guild [{text_channel.guild.id}]') except errors.NotFound: print(f'[post_autodaily] {error_msg_delete}: the message could not be found') except errors.Forbidden: print(f'[post_autodaily] {error_msg_delete}: the bot doesn\'t have the required permissions.') can_post = False except Exception as err: print(f'[post_autodaily] {error_msg_delete}: {err}') can_post = False elif change_mode == server_settings.AutoDailyChangeMode.EDIT: try: if use_embeds: await latest_message.edit(embed=embed) else: await latest_message.edit(content=current_daily_message) posted = True utils.dbg_prnt(f'[post_autodaily] edited message [{latest_message_id}] in channel [{text_channel.id}] on guild [{text_channel.guild.id}]') except errors.NotFound: print(f'[post_autodaily] {error_msg_edit}: the message could not be found') except errors.Forbidden: print(f'[post_autodaily] {error_msg_edit}: the bot doesn\'t have the required permissions.') can_post = False except Exception as err: print(f'[post_autodaily] {error_msg_edit}: {err}') can_post = False else: post_new = True if not posted and can_post and post_new: try: if use_embeds: latest_message = await text_channel.send(embed=embed) else: latest_message = await text_channel.send(current_daily_message) posted = True utils.dbg_prnt(f'[post_autodaily] posted message [{latest_message.id}] in channel [{text_channel.id}] on guild [{text_channel.guild.id}]') except errors.Forbidden: print(f'[post_autodaily] {error_msg_post}: the bot doesn\'t have the required permissions.') can_post = False except Exception as err: print(f'[post_autodaily] {error_msg_post}: {err}') can_post = False else: can_post = False if latest_message: return posted, can_post, latest_message else: return posted, can_post, None else: return posted, None, None
309ad1c4554b2dcef6b2ddbcfd2d5652ea291488
18,402
def room_from_loc(env, loc): """ Get the room coordinates for a given location """ if loc == 'north': return (1, 0) if loc == 'south': return (1, 2) if loc == 'west': return (0, 1) if loc == 'east': return (2, 1) if loc == 'left': return (1, 0) if loc == 'right': return (1, 2) if loc == 'front': return (2, 1) if loc == 'behind': return (0, 1) # By default, use the central room return (1, 1)
75192c47fd8d4b56332b35ec7c3b355927e50ca2
18,403
def count_encoder(df, cols): """count encoding Args: df: カテゴリ変換する対象のデータフレーム cols (list of str): カテゴリ変換する対象のカラムリスト Returns: pd.Dataframe: dfにカテゴリ変換したカラムを追加したデータフレーム """ out_df = pd.DataFrame() for c in cols: series = df[c] vc = series.value_counts(dropna=False) _df = pd.DataFrame(df[c].map(vc)) out_df = pd.concat([out_df, _df], axis=1) out_df = out_df.add_suffix('_count_enc') return pd.concat([df, out_df], axis=1)
c8e5b0995d2915871e7614099cf3260566f75f05
18,404
def wrap_response(response): """Wrap a tornado response as an open api response""" mimetype = response.headers.get('Content-Type') or 'application/json' return OpenAPIResponse( data=response.body, status_code=response.code, mimetype=mimetype, )
38edef05e0d2d0ae80c235ed82f00080b86c6cb1
18,405
def shifted(x): """Shift x values to the range [-0.5, 0.5)""" return -0.5 + (x + 0.5) % 1
c40585748120af5d0acd85e4fed49f0575a92a3d
18,406
def computeAlignmentError(pP1, pP2, etype = 2, doPlot = False): """ Compute area-based alignment error. Assume that the warping paths are on the same grid :param pP1: Mx2 warping path 1 :param pP2: Nx2 warping path 2 :param etype: Error type. 1 (default) is area ratio. 2 is L1 Hausdorff distance :param doPlot: Whether to plot the results """ P1 = rasterizeWarpingPath(pP1) P2 = rasterizeWarpingPath(pP2) score = 0 if etype == 1: M = np.max(P1[:, 0]) N = np.max(P1[:, 1]) A1 = np.zeros((M, N)) A2 = np.zeros((M, N)) for i in range(P1.shape[0]): [ii, jj] = [P1[i, 0], P1[i, 1]] [ii, jj] = [min(ii, M-1), min(jj, N-1)] A1[ii, jj::] = 1.0 for i in range(P2.shape[0]): [ii, jj] = [P2[i, 0], P2[i, 1]] [ii, jj] = [min(ii, M-1), min(jj, N-1)] A2[ii, jj::] = 1.0 A = np.abs(A1 - A2) score = np.sum(A)/(float(M)*float(N)) if doPlot: plt.imshow(A) plt.hold(True) plt.scatter(pP1[:, 1], pP1[:, 0], 5, 'c', edgecolor = 'none') plt.scatter(pP2[:, 1], pP2[:, 0], 5, 'r', edgecolor = 'none') plt.title("Score = %g"%score) else: C = getCSM(np.array(P1, dtype = np.float32), np.array(P2, dtype = np.float32)) score = (np.sum(np.min(C, 0)) + np.sum(np.min(C, 1)))/float(P1.shape[0]+P2.shape[0]) if doPlot: plt.scatter(P1[:, 1], P1[:, 0], 20, 'c', edgecolor = 'none') plt.scatter(P2[:, 1], P2[:, 0], 20, 'r', edgecolor = 'none') idx = np.argmin(C, 1) for i in range(len(idx)): plt.plot([P1[i, 1], P2[idx[i], 1]], [P1[i, 0], P2[idx[i], 0]], 'k') plt.title("Score = %g"%score) return score
cce79f3f1fa83475bc18f18004d8e2c79a8e59fa
18,407
def _cumulative_grad(grad_sum, grad): """Apply grad sum to cumulative gradient.""" add = ops.AssignAdd() return add(grad_sum, grad)
cb2b3ab6131fb4e289df29d33876f69c265c6e62
18,408
def run_node(node): """Python multiprocessing works strangely in windows. The pool function needed to be defined globally Args: node (Node): Node to be called Returns: rslts: Node's call output """ return node.run_with_loaded_inputs()
a0f52020db20b4b67e83599bc0fb6c86ec2f9514
18,409
def getitimer(space, which): """getitimer(which) Returns current value of given itimer. """ with lltype.scoped_alloc(itimervalP.TO, 1) as old: c_getitimer(which, old) return itimer_retval(space, old[0])
86716d3faedab3436bc1fcb5f77b80129884cf2d
18,410
def substitute_T_and_RH_for_interpolated_dataset(dataset): """ Input : dataset : Dataset interpolated along height Output : dataset : Original dataset with new T and RH Function to remove interoplated values of T and RH in the original dataset and replace with new values of T and RH, calculated from values of interpolated theta and q, respetively """ T = f3.calc_T_from_theta(dataset) rh = f3.calc_rh_from_q(dataset, T=T) dataset["ta"] = (dataset.p.dims, T) dataset["rh"] = (dataset.p.dims, rh.values) return dataset
fe2fca2ea3889fca17d2e676d1d2a95634ac1782
18,411
def get_base_required_fields(): """ Get required fields for base asset from UI. Fields required for update only: 'id', 'uid', ['lastModifiedTimestamp', 'location', 'events', 'calibration'] Present in input, not required for output: 'coordinates', 'hasDeploymentEvent', 'augmented', 'deployment_numbers', 'deployment_number', 'Ref Des', 'depth', 2016-08-24: removed 'coordinates' 2016-08-26: removed 'augmented', 'Ref Des', 'remoteDocuments', 'hasDeploymentEvent', 2016-09-26: removed 'tense', 2016-10-11: removed 'tense', """ base_required_fields = [ 'assetInfo', 'assetType', 'dataSource', 'deployment_numbers', 'deployment_number', 'depth', 'editPhase', 'latitude', 'longitude', 'manufactureInfo', 'mobile', 'notes', 'orbitRadius', 'partData', 'physicalInfo', 'purchaseAndDeliveryInfo', 'ref_des', 'remoteResources', 'uid' ] return base_required_fields
273c539d0c0b0da249e2bb171107aa775ce52ddf
18,412
def reg_tab_ext(*model): """ Performs weighted linear regression for various models building upon the model specified in section 4, while additionally including education levels of a council candidate (university degree, doctoral/PhD degree) A single model (i.e. function argument) takes on the form: model=[df,polynomial, bw, dependant variable, bandwidth-type] df: dataframe containing all relevant data polynomial (str): "quadratic" includes quadratic values of "margin_1" and "inter_1" in regressionmodel; default is "linear" bw (float): specifying data to be included relative to cut-off point ("margin_1"=0) dependant variable (str): name of dependant variable bandwidth-type (str): method used to calculate bandwidth :return: df containing results of regression """ # pd.set_option('mode.chained_assignment', None) table = pd.DataFrame( {'Model': [], 'Female Mayor': [], 'Std.err_Female Mayor': [], 'University': [], 'Std.err_University': [], 'PhD': [], 'Std.err_PhD': [], 'Bandwidth type': [], 'Bandwidth size': [], 'Polynomial': [], 'Observations': [], 'Elections': [], 'Municipalities': [], 'Mean': [], 'Std.err (Mean)': []}) table = table.set_index(['Model']) for counter, i in enumerate(model): data_i = subset_by_margin(i[0], i[2]) weight(data_i, i[2]) y = data_i[i[3]] w = data_i["weight" + str(i[2]) + ""] x = data_i[["female_mayor", "margin_1", "inter_1", 'university', 'phd']] polynomial_i = str("Linear") if i[1] == "quadratic": x = data_i[["female_mayor", "margin_1", "inter_1", 'university', 'phd', "margin_2", "inter_2"]] polynomial_i = str("Quadratic") x = sm_api.add_constant(x) wls_model = sm_api.WLS(y, x, missing='drop', weights=w) results = wls_model.fit(cov_type='cluster', cov_kwds={'groups': data_i["gkz"]}) betas = [1, 2, 3] cov = ["female_mayor", 'university', 'phd'] for j in cov: betas[cov.index(j)] = significance_level(results.pvalues[j], results.params[(cov.index(j) + 1)].round(3)) bw_size_i = str(round(i[2], 2)) bw_type_i = str(i[4]) output = [betas[0], results.bse[1], betas[1], results.bse[4], betas[2], results.bse[5], bw_type_i, bw_size_i, polynomial_i, results.nobs, data_i["gkz_jahr"].value_counts().count(), data_i["gkz"].value_counts().count(), y.mean().round(2), np.std(y)] table.loc["(" + str(counter + 1) + ")"] = output table = table.round(3) return table
be61f85e918c2cf91b720b9495968c9c9f4f7b6e
18,413
def load_pdf(filename: str) -> pd.DataFrame: """ Read PDF dataset to pandas dataframe """ tables = tabula.read_pdf(basedir + '\\' + filename, pages="all") merged_tables = pd.concat(tables[1:]) merged_tables.head() return merged_tables
c3d7a1c5b78a62d6d6b822ecc2a90246e1c3a6aa
18,414
def he_xavier(in_size: int, out_size: int, init_only=False): """ Xavier initialization according to Kaiming He in: *Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification (https://arxiv.org/abs/1502.01852) """ stddev = tf.cast(tf.sqrt(2 / in_size), tf.float32) W = tf.random_normal([in_size, out_size], stddev=stddev) b = tf.zeros([out_size]) if init_only: return W, b return tf.Variable(W, name="weights"), tf.Variable(b, name="biases")
f76501537a25226f1a3f3fcb0953438dbfaa996f
18,415
def GET_v1_keyboards_build_log(): """Returns a dictionary of keyboard/layout pairs. Each entry is a dictionary with the following keys: * `works`: Boolean indicating whether the compile was successful * `message`: The compile output for failed builds """ json_data = qmk_redis.get('qmk_api_configurator_status') return jsonify(json_data)
b1e2c3f5da654987bdb7530be8f62effbf878613
18,416
def logprod(lst): """Computes the product of a list of numbers""" return sum(log(i) for i in lst)
fd42df8ca7170f70453ef58d46035ec2ac6b6446
18,417
import torch def nms(dets, iou_thr, device_id=None): """Dispatch to either CPU or GPU NMS implementations. The input can be either a torch tensor or numpy array. GPU NMS will be used if the input is a gpu tensor or device_id is specified, otherwise CPU NMS will be used. The returned type will always be the same as inputs. Arguments: dets (torch.Tensor or np.ndarray): bboxes with scores. iou_thr (float): IoU threshold for NMS. device_id (int, optional): when `dets` is a numpy array, if `device_id` is None, then cpu nms is used, otherwise gpu_nms will be used. Returns: tuple: kept bboxes and indice, which is always the same data type as the input. """ # convert dets (tensor or numpy array) to tensor if isinstance(dets, torch.Tensor): is_numpy = False dets_th = dets elif isinstance(dets, np.ndarray): is_numpy = True device = 'cpu' if device_id is None else 'cuda:{}'.format(device_id) dets_th = torch.from_numpy(dets).to(device) else: raise TypeError( 'dets must be either a Tensor or numpy array, but got {}'.format( type(dets))) # execute cpu or cuda nms if dets_th.shape[0] == 0: inds = dets_th.new_zeros(0, dtype=torch.long) else: if dets_th.is_cuda: if dets_th.shape[1] == 7: inds = nms_cuda.nms_3d(dets_th, iou_thr) elif dets_th.shape[1] == 5: inds = nms_cuda.nms(dets_th, iou_thr) else: inds = nms_cpu.nms(dets_th, iou_thr) if is_numpy: inds = inds.cpu().numpy() return dets[inds, :], inds
6a00022a6903fc73429cb0f893de3b5f018315e9
18,418
def render_template(template_name_or_list, **context): """Renders a template from the template folder with the given context. :param template_name_or_list: the name of the template to be rendered, or an iterable with template names the first one existing will be rendered :param context: the variables that should be available in the context of the template. """ ctx = _app_ctx_stack.top ctx.app.update_template_context(context) return _render( ctx.app.jinja_env.get_or_select_template(template_name_or_list), context, ctx.app, )
a712c5db36a0ed512411c592c695ddff8a51e8fb
18,419
import re def _ReplaceUrlWithPlaceholder(results): """Fix a bug by replacing domain names with placeholders There was a bug in early dogfood versions of the survey extension in which URLs were included in questions where they were supposed to have a placeholder. The fix was to replace text like "Proceed to www.example.com" with "[CHOSEN]", and "Back to safety." with "[ALTERNATIVE]." These questions were the first question asked, so this function will only do the replacement in the first question in each result. Args: results: A list of dicts containing parsed and filtered results. Is it assumed that results has been filtered for a given survey condition, such that attributes questions should all appear in the same place. Returns: The fixed results. Changes the input results list as well. """ for r in results: q = r['responses'][0]['question'] # Do replacement in first question only chosenMatch = re.search('\"Proceed to.*?\"', q) alternateMatch = re.search('\"Back to safety\.\"', q) if chosenMatch: q = q.replace(chosenMatch.group(0), '\"[CHOSEN]\"') if alternateMatch: q = q.replace(alternateMatch.group(0), '\"[ALTERNATIVE].\"') r['responses'][0]['question'] = q return results
f20318bd4338b16940181dad3bc32439a77e0c2f
18,420
def XCL(code, error, mag=0.0167, propagation='random', NEV=True, **kwargs): """ Dummy function to manage the ISCWSA workbook not correctly defining the weighting functions. """ tortuosity = kwargs['tortuosity'] if code == "XCLA": return XCLA( code, error, mag=mag, propagation=propagation, NEV=NEV, tortuosity=tortuosity ) else: return XCLH( code, error, mag=mag, propagation=propagation, NEV=NEV, tortuosity=tortuosity )
90efd4d07c66923d2b98739fd7684ac1ee5141e8
18,421
def to_bgr(image): """Convert image to BGR format Args: image: Numpy array of uint8 Returns: bgr: Numpy array of uint8 """ # gray scale image if image.ndim == 2: bgr = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR) return bgr # BGRA format if image.shape[2] == 4: bgr = cv2.cvtColor(image, cv2.COLOR_RGBA2BGR) return bgr bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) return bgr
51d8455bb4060ff2db662a34846a4f957d33af81
18,422
import pathlib import yaml def load(path: pathlib.Path) -> dict: """Load a YAML file, returning its contents. :raises: RuntimeError """ with path.open() as handle: try: return yaml.safe_load(handle) except scanner.ScannerError as error: LOGGER.critical('Failed to parse YAML from %s: %s', path, error) raise RuntimeError('YAML parse failure')
d91ba626619ec25e2dbdbe35202b26cd43d27dc3
18,423
import os import sys def find_package(dir): """ Given a directory, finds the equivalent package name. If it is directly in sys.path, returns ''. """ dir = os.path.abspath(dir) orig_dir = dir path = map(os.path.abspath, sys.path) packages = [] last_dir = None while 1: if dir in path: return '.'.join(packages) packages.insert(0, os.path.basename(dir)) dir = os.path.dirname(dir) if last_dir == dir: raise ValueError( "%s is not under any path found in sys.path" % orig_dir) last_dir = dir
0bc904165620daa2f408a3f1c526bfe4a34def97
18,424
import warnings def validate_settings(raw_settings): """Return cleaned settings using schemas collected from INSTALLED_APPS.""" # Perform early validation on Django's INSTALLED_APPS. installed_apps = raw_settings['INSTALLED_APPS'] schemas_mapping = raw_settings.get('CONFIT_SCHEMAS', {}) # Create schema instance using INSTALLED_APPS. settings_schema = composite_schema( installed_apps=installed_apps, mapping=schemas_mapping) # Actually validate settings. cleaned_settings = settings_schema.deserialize(raw_settings) # Highlight differences between raw and cleaned settings. # Warn users when raw settings contain directives that are not used in # schemas. raw_keys = set(raw_settings.keys()) cleaned_keys = set(cleaned_settings.keys()) unused_keys = raw_keys.difference(cleaned_keys) if unused_keys: warnings.warn( 'The following settings are mentioned in your configuration, but ' 'are not in cleaned settings. They may be missing in ' 'configuration schemas, or you do not need to set them up: \n' '- {settings}'.format(settings='\n- '.join(unused_keys)), Warning) # Return. return cleaned_settings
ba764cc54eee27a8317f21d6bd69ee85b9deadbf
18,425
from torch.cuda.amp import autocast def is_autocast_module_decorated(module: nn.Module): """ Return `True` if a nn.Module.forward was decorated with torch.cuda.amp.autocast """ try: decorators = _get_decorators(module.forward) for d in decorators: if isinstance(d, autocast): return True except: pass return False
9f4db5438cb7e14ae20fd552a54121d9ce6c0d46
18,426
def timestamp_format_is_valid(timestamp: str) -> bool: """ Determines if the supplied timestamp is valid for usage with Graylog. :param timestamp: timestamp that is to be checked :return: whether the timestamp is valid (True) or invalid (False) """ try: get_datetime_from_timestamp(timestamp) except ValueError: return False return True
9c1623bede646c9ebbd5cd4200db193437728590
18,427
def indices(n, dtype): """Indices of each element in upper/lower triangle of test matrix.""" size = tri.tri_n(n - 1) return np.arange(size, dtype=dtype)
0ecdcad0d66e268125826e0e415b410a07143b6c
18,428
def _sample(n, k): """ Select k number out of n without replacement unless k is greater than n """ if k > n: return np.random.choice(n, k, replace=True) else: return np.random.choice(n, k, replace=False)
cde012459ddb64dc7700ec0238e222fd4d26d3a2
18,429
def set_price_filter(request, category_slug): """Saves the given price filter to session. Redirects to the category with given slug. """ req = request.POST if request.method == 'POST' else request.GET try: min_val = lfs.core.utils.atof(req.get("min", "0")) except (ValueError): min_val = 0 try: max_val = lfs.core.utils.atof(req.get("max", "99999")) except: max_val = 0 try: float(min_val) except (TypeError, ValueError): min_val = "0" try: float(max_val) except (TypeError, ValueError): max_val = "0" request.session["price-filter"] = {"min": min_val, "max": max_val} url = reverse("lfs_category", kwargs={"slug": category_slug}) return HttpResponseRedirect(url)
1adf1798e7fbf290d98e1b47b94cd9c9038732fe
18,430
def _get_config(): """Returns a dictionary with server parameters, or ask them to the user""" # tries to figure if we can authenticate using a configuration file data = read_config() # this does some sort of validation for the "webdav" data... if "webdav" in data: if ( "server" not in data["webdav"] or "username" not in data["webdav"] or "password" not in data["webdav"] ): raise KeyError( 'If the configuration file contains a "webdav" ' "section, it should contain 3 variables defined inside: " '"server", "username", "password".' ) else: # ask the user for the information, in case nothing available logger.warn( "Requesting server information for webDAV operation. " "(To create a configuration file, and avoid these, follow " "the Setup subsection at our Installation manual.)" ) webdav_data = dict() webdav_data["server"] = input("The base address of the server: ") webdav_data["username"] = input("Username: ") webdav_data["password"] = input("Password: ") data["webdav"] = webdav_data return data["webdav"]
c2105753cb4ae551bea53c0a2aaf0432dd275422
18,431
import requests def lastfmcompare(text, nick, bot,): """[user] ([user] optional) - displays the now playing (or last played) track of LastFM user [user]""" api_key = bot.config.get("api_keys", {}).get("lastfm") if not api_key: return "No last.fm API key set." if not text: return "please specify a lastfm username to compare" try: user1, user2 = text.split() except: user2 = text user1 = nick user2_check = get_account(user2) if user2_check: user2 = user2_check user1_check = get_account(user1) if user1_check: user1 = user1_check params = { 'method': 'tasteometer.compare', 'api_key': api_key, 'type1': 'user', 'value1': user1, 'type2': 'user', 'value2': user2 } request = requests.get(api_url, params=params) if request.status_code != requests.codes.ok: return "Failed to fetch info ({})".format(request.status_code) data = request.json() if 'error' in data: return "Error: {}.".format(data["message"]) score = float(data["comparison"]["result"]["score"]) score = float("{:.3f}".format(score * 100)) if score == 0: return "{} and {} have no common listening history.".format(user2, user1) level = "Super" if score > 95 else "Very High" if score > 80 else "High" if score > 60 else \ "Medium" if score > 40 else "Low" if score > 10 else "Very Low" # I'm not even going to try to rewrite this line artists = [f["name"] for f in data["comparison"]["result"]["artists"]["artist"]] if \ type(data["comparison"]["result"]["artists"]["artist"]) == list else \ [data["comparison"]["result"]["artists"]["artist"]["name"]] if "artist" \ in data["comparison"]["result"]["artists"] else "" artist_string = "\x02In Common:\x02 " + \ ", ".join(artists) if artists else "" return "Musical compatibility between \x02{}\x02 and \x02{}\x02: {} (\x02{}%\x02) {}".format(user1, user2, level, score, artist_string)
42b23961f210b4004aac987ca1146ee748392949
18,432
def fourier_ellipsoid(inp, size, n=-1, axis=-1, output=None): """ Multidimensional ellipsoid Fourier filter. The array is multiplied with the fourier transform of a ellipsoid of given sizes. Parameters ---------- inp : array_like The inp array. size : float or sequence The size of the box used for filtering. If a float, `size` is the same for all axes. If a sequence, `size` has to contain one value for each axis. n : int, optional If `n` is negative (default), then the inp is assumed to be the result of a complex fft. If `n` is larger than or equal to zero, the inp is assumed to be the result of a real fft, and `n` gives the length of the array before transformation along the real transform direction. axis : int, optional The axis of the real transform. output : Tensor, optional If given, the result of filtering the inp is placed in this array. None is returned in this case. Returns ------- fourier_ellipsoid : Tensor The filtered inp. Notes ----- This function is implemented for arrays of rank 1, 2, or 3. """ inp = np.asarray(inp) output = _get_output_fourier(output, inp) axis = normalize_axis_index(axis, inp.ndim) sizes = cndsupport._normalize_sequence(size, inp.ndim) sizes = np.asarray(sizes, dtype=np.float64) if not sizes.flags.contiguous: sizes = sizes.copy() cndi.fourier_filter(inp, sizes, n, axis, output, 2) return output
41128d7972bdb0cb6100991c1dc22031b7f3e6b3
18,433
def gaussian1D(x: np.ndarray, amplitude: Number, center: Number, stdev: Number) -> np.ndarray: """A one dimensional gaussian distribution. = amplitude * exp(-0.5 (x - center)**2 / stdev**2) """ return amplitude * np.exp(-0.5 * (x - center)**2 / stdev**2)
5c5c36ea71a08aec3246a2ca1dedf1d62c3fd331
18,434
def BuildImportLibs(flags, inputs_by_part, deffiles): """Runs the linker to generate an import library.""" import_libs = [] Log('building import libs') for i, (inputs, deffile) in enumerate(zip(inputs_by_part, deffiles)): libfile = 'part%d.lib' % i flags_with_implib_and_deffile = flags + ['/IMPLIB:%s' % libfile, '/DEF:%s' % deffile] RunLinker(flags_with_implib_and_deffile, i, inputs, 'implib', None) import_libs.append(libfile) return import_libs
f29bcf16917cf8509662cf44c7881f8c7282b37d
18,435
def gather_sparse(a, indices, axis=0, mask=None): """ SparseTensor equivalent to tf.gather, assuming indices are sorted. :param a: SparseTensor of rank k and nnz non-zeros. :param indices: rank-1 int Tensor, rows or columns to keep. :param axis: int axis to apply gather to. :param mask: boolean mask corresponding to indices. Computed if not provided. :return gathered_a: SparseTensor masked along the given axis. :return values_mask: bool Tensor indicating surviving values, shape [nnz]. """ in_size = _square_size(a.dense_shape) out_size = tf.size(indices) if mask is None: mask = ops.indices_to_mask(indices, in_size) inverse_map = _indices_to_inverse_map(indices, in_size) return _boolean_mask_sparse( a, mask, axis=axis, inverse_map=inverse_map, out_size=out_size )
87e68a99c660448a11d32fa090ca3921552cd122
18,436
def Window(node, size=-1, full_only=False): """Lazy wrapper to collect a window of values. If a node is executed 3 times, returning 1, 2, 3, then the window node will collect those values in a list. Arguments: node (node): input node size (int): size of windows to use full_only (bool): only return if list is full """ def foo(node=node, size=size, full_only=full_only): if size == 0: return node.value() if ret._accum is None: ret._accum = [node.value()] elif ret.dependencyIsDirty(node): ret._accum.append(node.value()) if size > 0: ret._accum = ret._accum[-size:] if full_only and len(ret._accum) == size: return ret._accum elif full_only: return None return ret._accum # make new node ret = node._gennode("Window[{}]".format(size if size > 0 else "∞"), foo, [node]) ret._accum = None return ret
1f85b576455f3b379e41a7247ff486281bf21f8f
18,437
def fixed_rate_loan(amount, nrate, life, start, freq='A', grace=0, dispoints=0, orgpoints=0, prepmt=None, balloonpmt=None): """Fixed rate loan. Args: amount (float): Loan amount. nrate (float): nominal interest rate per year. life (float): life of the loan. start (int, tuple): init period for the loan. pyr (int): number of compounding periods per year. grace (int): number of periods of grace (without payment of the principal) dispoints (float): Discount points of the loan. orgpoints (float): Origination points of the loan. prepmt (pandas.Series): generic cashflow representing prepayments. balloonpmt (pandas.Series): generic cashflow representing balloon payments. Returns: A object of the class ``Loan``. >>> pmt = cashflow(const_value=0, start='2016Q1', periods=11, freq='Q') >>> pmt['2017Q4'] = 200 >>> fixed_rate_loan(amount=1000, nrate=10, life=10, start='2016Q1', freq='Q', ... grace=0, dispoints=0, ... orgpoints=0, prepmt=pmt, balloonpmt=None) # doctest: +NORMALIZE_WHITESPACE Amount: 1000.00 Total interest: 129.68 Total payment: 1129.68 Discount points: 0.00 Origination points: 0.00 <BLANKLINE> Beg_Ppal_Amount Nom_Rate Tot_Payment Int_Payment Ppal_Payment \\ 2016Q1 1000.000000 10.0 0.000000 0.000000 0.000000 2016Q2 1000.000000 10.0 114.258763 25.000000 89.258763 2016Q3 910.741237 10.0 114.258763 22.768531 91.490232 2016Q4 819.251005 10.0 114.258763 20.481275 93.777488 2017Q1 725.473517 10.0 114.258763 18.136838 96.121925 2017Q2 629.351591 10.0 114.258763 15.733790 98.524973 2017Q3 530.826618 10.0 114.258763 13.270665 100.988098 2017Q4 429.838520 10.0 314.258763 10.745963 303.512800 2018Q1 126.325720 10.0 114.258763 3.158143 111.100620 2018Q2 15.225100 10.0 15.605727 0.380627 15.225100 2018Q3 0.000000 10.0 0.000000 0.000000 0.000000 <BLANKLINE> End_Ppal_Amount 2016Q1 1000.000000 2016Q2 910.741237 2016Q3 819.251005 2016Q4 725.473517 2017Q1 629.351591 2017Q2 530.826618 2017Q3 429.838520 2017Q4 126.325720 2018Q1 15.225100 2018Q2 0.000000 2018Q3 0.000000 """ if not isinstance(float(nrate), float): TypeError('nrate must be a float.') nrate = interest_rate(const_value=nrate, start=start, periods=life+grace+1, freq=freq) if prepmt is None: prepmt = cashflow(const_value=0, start=start, periods=len(nrate), freq=freq) else: verify_period_range([nrate, prepmt]) if balloonpmt is None: balloonpmt = nrate.copy() balloonpmt[:] = 0 else: verify_period_range([nrate, balloonpmt]) # present value of the balloon payments if balloonpmt is not None: balloonpv = timevalue(cflo=balloonpmt, prate=nrate, base_date=grace) else: balloonpv = 0 pyr = getpyr(nrate) pmt = pvpmt(pmt=None, pval=-amount+balloonpv, nrate=nrate[0], nper=len(nrate)-1, pyr=pyr) pmts = nrate.copy() pmts[:] = 0 for time in range(1, life + 1): pmts[grace + time] = pmt # balance begppalbal = nrate.copy() intpmt = nrate.copy() ppalpmt = nrate.copy() totpmt = nrate.copy() endppalbal = nrate.copy() begppalbal[:] = 0 intpmt[:] = 0 ppalpmt[:] = 0 totpmt[:] = 0 endppalbal[:] = 0 # payments per period for time, _ in enumerate(totpmt): totpmt[time] = pmts[time] + balloonpmt[time] + prepmt[time] # balance calculation for time in range(grace + life + 1): if time == 0: begppalbal[0] = amount endppalbal[0] = amount totpmt[time] = amount * (dispoints + orgpoints) / 100 ### intpmt[time] = amount * dispoints / 100 else: begppalbal[time] = endppalbal[time - 1] if time <= grace: intpmt[time] = begppalbal[time] * nrate[time] / pyr / 100 totpmt[time] = intpmt[time] endppalbal[time] = begppalbal[time] else: intpmt[time] = begppalbal[time] * nrate[time] / pyr / 100 ppalpmt[time] = totpmt[time] - intpmt[time] if ppalpmt[time] < 0: capint = - ppalpmt[time] ppalpmt[time] = 0 else: capint = 0 endppalbal[time] = begppalbal[time] - ppalpmt[time] + capint if endppalbal[time] < 0: totpmt[time] = begppalbal[time] + intpmt[time] ppalpmt[time] = begppalbal[time] endppalbal[time] = begppalbal[time] - ppalpmt[time] pmts[time] = 0 prepmt[time] = 0 data = {'Beg_Ppal_Amount':begppalbal} result = Loan(life=life, amount=amount, grace=grace, nrate=nrate, dispoints=dispoints, orgpoints=orgpoints, data=data) result['Nom_Rate'] = nrate result['Tot_Payment'] = totpmt result['Int_Payment'] = intpmt result['Ppal_Payment'] = ppalpmt result['End_Ppal_Amount'] = endppalbal return result
10681a99ec381ec64517891d8d1101ed5eae78f4
18,438
import json def get_results(): """ Returns the scraped results for a set of inputs. Inputs: The URL, the type of content to scrap and class/id name. This comes from the get_results() function in script.js Output: Returns a JSON list of the results """ # Decode the json data and turn it into a python dict post_data = json.loads(request.data.decode()) # Extract the inputs from the JSON data req_url = post_data.get('url') req_type = post_data.get('type') req_selector = post_data.get('selector') results = [] # Each of the types of extraction is handled here if req_type == 'head': results = Webpage(req_url).get_head_tag() elif req_type == 'content': results = Webpage(req_url).get_all_contents() elif req_type == 'class': results = Webpage(req_url).get_content_by_class(req_selector) elif req_type == 'id': results = Webpage(req_url).get_content_by_id(req_selector) elif req_type == 'images': results = Webpage(req_url).get_all_images() # The scraped results are turned into JSON format # and sent to the frontend serialized = json.dumps(results) return serialized
59af271fc024854258c488f17489383f424dfae3
18,439
def _mocked_presets(*args, **kwargs): """Return a list of mocked presets.""" return [MockPreset("1")]
ebf48fb23dff67b2d1a9faac6e72764f2a5f8f0a
18,440
def play(context, songpos=None): """ *musicpd.org, playback section:* ``play [SONGPOS]`` Begins playing the playlist at song number ``SONGPOS``. The original MPD server resumes from the paused state on ``play`` without arguments. *Clarifications:* - ``play "-1"`` when playing is ignored. - ``play "-1"`` when paused resumes playback. - ``play "-1"`` when stopped with a current track starts playback at the current track. - ``play "-1"`` when stopped without a current track, e.g. after playlist replacement, starts playback at the first track. *BitMPC:* - issues ``play 6`` without quotes around the argument. """ if songpos is None: return context.core.playback.play().get() elif songpos == -1: return _play_minus_one(context) try: tl_track = context.core.tracklist.slice(songpos, songpos + 1).get()[0] return context.core.playback.play(tl_track).get() except IndexError: raise exceptions.MpdArgError('Bad song index')
fc2cee0b3cca2df33b844004ecaaaa1b0eaa5347
18,441
from typing import Union def SMLB(x: Union[float, np.ndarray]) -> Union[float, np.ndarray]: """ Taken from Minerbo, G. N. and Levy, M. E., "Inversion of Abel’s integral equation by means of orthogonal polynomials.", SIAM J. Numer. Anal. 6, 598-616 and swapped to satisfy SMLB(0) = 0. """ return (np.where((x > 0.00000000001), 1.241 * np.multiply(np.power(2 * x - x ** 2, -1.5), np.exp(1.21 * (1 - np.power(2 * x - x ** 2, -1)))), 0)) / 0.9998251040790366
ed9b59ccbf99458796d11521825ba6ab0215144d
18,442
def add_colon(in_str): """Add colon after every 4th character.""" return ':'.join([in_str[i:i+4] for i in range(0, len(in_str), 4)])
fa4258aa9d684a087d2a81ae09a2702d6e58e3e1
18,443
def fetch_partial_annotations(): """ Returns the partial annotations as an array Returns: partial_annotations: array of annotation data - [n_annotations, 5] row format is [T, L, X, Y, Z] """ raw_mat = loadmat(PARTIAL_ANNOTATIONS_PATH) annotations = raw_mat['divisionAnnotations'] # chop extra mystery column return annotations[:, :-1]
69d57df06576af141dcc0eb9b00c7834e1a4a2c2
18,444
def get_alt_pos_info(rec): """Returns info about the second-most-common nucleotide at a position. This nucleotide will usually differ from the reference nucleotide, but it may be the reference (i.e. at positions where the reference disagrees with the alignment's "consensus"). This breaks ties arbitrarily. Parameters ========== rec: dict pysamstats record for a given position in an alignment produced by stat_variation(). Returns ======= (cov, alt nt freq, alt nt): tuple of (int, int, str) Describes the second-most-common nucleotide at a position. The first entry in this tuple is the (mis)match coverage at this position. This is an integer defined as the sum of A, C, G, T nucleotides at this position (note that this excludes degenerate nucleotides like N -- we could change this in the future if that'd be useful, I suppose). Note that this coverage could be zero, if no reads are aligned to this specific position. The second entry is the raw frequency of this nucleotide at this position: this will be an integer greater than or equal to 0. This is also referred to in the paper, etc. as alt(pos). The third entry is just the alternate nucleotide (one of A, C, G, T), represented as a string. This is returned for reference -- as of writing this isn't actually needed for Pleuk itself, but I have other code outside of Pleuk that benefits from this! """ cov = rec["A"] + rec["C"] + rec["G"] + rec["T"] ordered_nts = sorted("ACGT", key=rec.get) # The literal nucleotide used in the numerator of freq(pos): one of A, C, # G, T alt_nt = ordered_nts[-2] # The raw frequency (in counts) of alt_nt. An integer >= 0. alt_nt_freq = rec[alt_nt] return (cov, alt_nt_freq, alt_nt)
3abe3fcbbf0ddbccb44025f2e476f77dc3e8abf9
18,445
import torch def accuracy(output, target, topk=(1,)): """ Computes the accuracy over the k top predictions for the specified values of k. """ with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res
d2edbbff872670f1637696e63fe448a749138985
18,446
def grim(n, mu, prec=2, n_items=1): """ Test that a mean mu reported with a decimal precision prec is possible, given a number of observations n and a number of items n_items. :param n: The number of observations :param mu: The mean :param prec: The precision (i.e., number of decimal places) of the mean :param n_items: The number of scale items that were averaged. Default is 1. :return: True if the mean is possible, False otherwise. """ if n*n_items >= 10**prec: warn("The effective number of data points is such that GRIM will always find a solution.") cval = np.round(mu * n * n_items, 0) valid = np.round(cval/n/n_items, prec) == np.round(mu, prec) return valid
093fdea1b59157b477642b31afa8388192188020
18,447
def split_dataframe(df:pd.DataFrame,split_index:np.ndarray): """ Split out the continuous variables from a dataframe \n Params: df : Pandas dataframe split_index : Indices of continuous variables """ return df.loc[:,split_index].values
842f9b04d0d546b8bef28f0b110e7d570eb8f0a0
18,448
def user_select_columns(): """ Useful columns from the users table, omitting authentication-related columns like password. """ u = orm.User.__table__ return [ u.c.id, u.c.user_name, u.c.email, u.c.first_name, u.c.last_name, u.c.org, u.c.created_at, u.c.updated_at, u.c.sign_in_count, u.c.last_sign_in_at ]
faf7ffd18a2fc6c55c1f8a4c19d176a34f79e19f
18,449
def remove_query_param(url, key): """ Given a URL and a key/val pair, remove an item in the query parameters of the URL, and return the new URL. """ (scheme, netloc, path, query, fragment) = urlparse.urlsplit(url) query_dict = urlparse.parse_qs(query) query_dict.pop(key, None) query = urlparse.urlencode(sorted(list(query_dict.items())), doseq=True) return urlparse.urlunsplit((scheme, netloc, path, query, fragment))
4a7ac5b2b1767a6fbc082e7e5b4f2d10dbd87926
18,450
def test_ap_hs20_sim(dev, apdev): """Hotspot 2.0 with simulated SIM and EAP-SIM""" if not hlr_auc_gw_available(): return "skip" hs20_simulated_sim(dev[0], apdev[0], "SIM") dev[0].request("INTERWORKING_SELECT auto freq=2412") ev = dev[0].wait_event(["INTERWORKING-ALREADY-CONNECTED"], timeout=15) if ev is None: raise Exception("Timeout on already-connected event")
cbda3f0ebc33c3d0e8ee6a99a088a61c57655480
18,451
def FreshReal(prefix='b', ctx=None): """Return a fresh real constant in the given context using the given prefix. >>> x = FreshReal() >>> y = FreshReal() >>> eq(x, y) False >>> x.sort() Real """ ctx = _get_ctx(ctx) return ArithRef(Z3_mk_fresh_const(ctx.ref(), prefix, RealSort(ctx).ast), ctx)
afc312fbd85387adcfe72c81c5af5b06fe0ccee1
18,452
def ndim_rectangles_integral( # main args func, up_limits, low_limits, ndim, nsamples=10000, args_func = {}, # demo plot args verbose=False, args_subplots = {'sharex':True, 'sharey':True, 'figsize':(10,10)}, args_suptitle = {'fontsize':16}, args_scatter_mesh = {'marker':"+", 'color':"black", 'label':"rectangular mesh"}, args_scatter_func = {'marker':"o", 'label':"computed points"}, args_legend = {}, dim_labels = None ): """ Returns the integral of a function in n-dimensions using the textbook rectangle method. Heavy usage of numpy functions to benefit from parallization. Tip: To save RAM, divide integration space into sub-spaces and integrate one at a time. v0.1 Parameters ---------- func : function A Python function or method to integrate. The function takes an array of coordinates of shape=(ndim) and/or shape=(ndim, nsamples) to be integrated as first argument. Other arguments can be passed using the args_func dictionary argument. up_limits: array_like Upward bounds of integrations. Expected shape = (ndim) low_limits: array_like Downward bounds of integrations. Expected shape = (ndim) nsamples: integer or array_like, optional #Samples of integrations in each dimension. Expected shape = (ndim). If an integer is given, #samples are divided between each dimension by nsamples**(1/ndim). args_func: dictionary, optional Supplementary arguments to pass to func. verbose: boolean, optional Generates a matplotlib (plt) figure of the integration space meshing and samples. This involves the computation of an histogram which is significantly computationaly intensive. Verbose=True should be used for verifications only with a low number of samples. args_subplots: dictionary, optional Supplementary arguments to pass to the plt.subplot function for pdf sample / space meshing visualisation (for verbose=True). args_suptitle: dictionary, optional Supplementary arguments to pass to the plt.suptitle function for pdf sample / space meshing visualisation (for verbose=True). args_scatter_mesh: dictionary, optional Supplementary arguments to pass to the plt.scatter function for space meshing visualisation (for verbose=True). args_scatter_func: dictionary, optional Supplementary arguments to pass to the plt.scatter function for pdf sample visualisation (for verbose=True). args_legend: dictionary, optional Supplementary arguments to pass to the plt.legend function for pdf sample / space meshing visualisation (for verbose=True). dim_labels = array_like, optional Label of each dimension for pdf sample / space meshing visualisation (for verbose=True). Expected shape = (ndim) Returns ------- result : float The result of the integration. Example -------- from scipy import stats import numpy as np import matplotlib.pyplot as plt dim_labels = ["x", "y", "z"] ndim = len(dim_labels) df_func = lambda x:stats.multivariate_normal.pdf(x, mean=np.zeros(ndim), cov=np.eye(ndim)) integral = ndim_rectangles_integral (func = df_func, up_limits = np.full(ndim,4), low_limits = np.full(ndim,-4), ndim=ndim, nsamples = np.full(ndim,11), verbose = True, dim_labels = dim_labels,) print("integral = %f"%(integral)) plt.show() """ #--------------------------------------------------------------- # supporting int as n_samples argument if isinstance(nsamples, int): nsamples = np.full(ndim,int(nsamples**(1/ndim))) # checking arguments if not(len(up_limits)==len(low_limits)==ndim==len(nsamples)): raise ValueError("Shapes should be len(up_limits)=len(low_limits)=ndim") #--------------------------------------------------------------- # todo: max_memory argument. automated space division #--------------------------------------------------------------- # hyperrectangles edge size in each dimension ndx = np.array([(up_limits[dim] - low_limits[dim])/(nsamples[dim]-1) for dim in range(ndim)]) # hyperrectangle volume vol = np.prod(ndx) # hyperrectangles centers: edges ncenters = np.array([np.linspace(start=low_limits[dim]+ndx[dim]/2, stop=up_limits[dim]-ndx[dim]/2, num=nsamples[dim]-1) for dim in range(ndim)]) del ndx # hyperrectangles centers: coords ncoords_centers = np.array(np.meshgrid(*ncenters)) del ncenters ncoords_centers = ncoords_centers.reshape(ncoords_centers.shape[0],np.prod(ncoords_centers.shape[1:])) # equivalent to ncoords_centers = ncoords_centers.reshape(ndim,np.prod(nsamples-1)) ncoords_centers = ncoords_centers.transpose() #--------------------------------------------------------------- # integral computation try: # if func supports array of coords mapped_func = func(ncoords_centers, **args_func) except: # if func only supports 1 coord at a time mapped_func = np.array([func(ncoords_centers[i], **args_func) for i in range (ncoords_centers.shape[0])]) # dividing by volume integral = np.sum(mapped_func)*vol #--------------------------------------------------------------- #todo: error computation # # not sure about this... # mapped_err = np.abs(mapped_func-np.roll(mapped_func, 1))/2 # err = np.sum(mapped_err)*vol #--------------------------------------------------------------- # mesh plot for visualisation purposes if verbose==1: # meshing edges for display nedges = np.array([np.linspace(start=low_limits[dim], stop=up_limits[dim], num=nsamples[dim]) for dim in range(ndim)], dtype=object) # nedges.shape = (ndim, nsamples in dim) ncoords_edges = np.array(np.meshgrid(*nedges)) ncoords_edges = ncoords_edges.reshape(ncoords_edges.shape[0],np.prod(ncoords_edges.shape[1:])) # plot fig, ax = plt.subplots(ndim ,ndim, **args_subplots) #title args_suptitle_default = {'t':"Mesh and func samples used. Integral = %f"%(integral)} # default title args_suptitle_default.update(args_suptitle) fig.suptitle(**args_suptitle_default) for i in range(ndim): for j in range (ndim): # mesh: plot ax[i,j].scatter(ncoords_edges[i,:], ncoords_edges[j,:], **args_scatter_mesh) # df sample points: cleaning supperposed values, summing prob along other dimensions temp_centers_ij = np.append(ncoords_centers[:,[i,j]], mapped_func.reshape(mapped_func.shape[0],1),axis=1) temp_centers_ij = temp_centers_ij[np.lexsort((temp_centers_ij[:,0], temp_centers_ij[:,1]))] unique_centers = [] unique_prob = [] counter = -1 for k in range(temp_centers_ij.shape[0]): if np.sum(temp_centers_ij[k,0:2] != temp_centers_ij[k-1,0:2]): unique_prob.append(temp_centers_ij[k,2]) unique_centers.append(temp_centers_ij[k,0:2]) counter+=1 else: unique_prob[counter]+=temp_centers_ij[k,2] unique_centers = np.array(unique_centers) unique_prob = np.array(unique_prob) #todo: use an image instead of points for the sampled pdf # df sample points: plot df_plot = ax[i,j].scatter(unique_centers[:,0], unique_centers[:,1], c=unique_prob, **args_scatter_func) plt.colorbar(df_plot, ax=ax[i,j]) # labels if dim_labels != None: ax[i,j].set_xlabel(dim_labels[i]) ax[i,j].set_ylabel(dim_labels[j]) # legend handles, labels = plt.gca().get_legend_handles_labels() by_label = collections_OrderedDict(zip(labels, handles)) fig.legend(by_label.values(), by_label.keys(), **args_legend) #--------------------------------------------------------------- return integral
60a78a14fedc571276520d71c99669829253c062
18,453
import threading def handle_readable(client): """ Return True: The client is re-registered to the selector object. Return False: The server disconnects the client. """ data = client.recv(1028) if data == b'': return False client.sendall(b'SERVER: ' + data) print(threading.active_count()) return True
9a77bb893a5da4e76df5593feb6ecf49022e6ef3
18,454
from datetime import datetime import logging def fund_wallet(): """ --- post: summary: fund a particular wallet description: sends funds to a particular user given the user id the amount will be removed from the wallet with the respective currency, if not it falls to the default wallet. if the sender is admin no money will be deducted from any wallet else an amount will be deducted from the sender wallet with the respective currency. so that means that admin can geenrate cash while other users can perform transactions between wallets. requestBody: required: true content: application/json: schema: Fund responses: '200': description: success content: application/json: schema: TransactionResponse tags: - user - admin """ try: required = ["currency", "amount", "receiver"] data = request.get_json() if not all([rq in data.keys() for rq in required]): return jsonify(status=error, message="Missing Required JSON Field!") amount = data["amount"] currency = data["currency"] receiver_id = data["receiver"] if not CurrencyUtils.iscurrency_valid(currency): return jsonify(status=error, message="Please Enter a valid Currency code"), 400 if g.user.role.name != "Admin": sender_wallet = g.user.wallet.filter_by(currency=currency).first() if sender_wallet is None: sender_wallet = g.user.wallet.filter_by( currency=g.user.main_currency) if CurrencyUtils.convert_currency(sender_wallet.currency.upper(), currency.upper(), sender_wallet.balance) < amount: return jsonify(status=error, message="Insufficient fund!"), 403 amount = CurrencyUtils.convert_currency( sender_wallet.currency.upper(), currency.upper(), amount) else: if sender_wallet.balance < amount: return jsonify(status=error, message="Insufficient fund!"), 403 receiver = User.query.filter_by(id=receiver_id).first() if not receiver: return jsonify(status=error, message=f"Sorry User with id {receiver_id} does not exsits!"), 400 if receiver.role.name == "Admin": return jsonify(status=unauthorized, message="Sorry Admin account can't be funded!"), 403 receiver_wallet = receiver.wallet.filter_by(currency=currency).first() if receiver_wallet is None: if receiver.role.name == "Elite": new_wallet = Wallet(currency=currency, user_id=receiver.id) db.session.add(new_wallet) db.session.commit() receiver_wallet = new_wallet elif receiver.role.name == "Noob": receiver_wallet = receiver.wallet.filter_by( currency=receiver.main_currency.lower()).first() if g.user.role.name == "Admin": tx = Transaction(receiver=receiver_wallet.id, sender=None, amount=amount, currency=currency, at=datetime.datetime.utcnow()) else: tx = Transaction(receiver=receiver_wallet.id, sender=sender_wallet.id, amount=amount, currency=currency, at=datetime.datetime.utcnow()) if receiver.role.name == "Noob": tx.isapproved = False db.session.add(tx) db.session.commit() return jsonify(status=ok, data=tx.serialize), 200 except SyntaxError as e: logging.error(e) return jsonify(status=error, message=str(e)), 400
55955335f4462ad118fb792f3335db8090f7439e
18,455
import numpy def create_objective(dist, abscissas): """Create objective function.""" abscissas_ = numpy.array(abscissas[1:-1]) def obj(absisa): """Local objective function.""" out = -numpy.sqrt(dist.pdf(absisa)) out *= numpy.prod(numpy.abs(abscissas_ - absisa)) return out return obj
c63eeadffd067c2a94470ddbf03fb009265fbbbc
18,456
def get_party_to_seats(year, group_id, party_to_votes): """Give votes by party, compute seats for party.""" eligible_party_list = get_eligible_party_list( group_id, party_to_votes, ) if not eligible_party_list: return {} n_seats = YEAR_TO_REGION_TO_SEATS[year][group_id] n_seats_bonus = 0 if (group_id == COUNTRY_ID) else 1 n_seats_non_bonus = n_seats - n_seats_bonus winning_party = sorted(party_to_votes.items(), key=lambda x: -x[1],)[ 0 ][0] party_to_seats = {winning_party: n_seats_bonus} relevant_num = sum( list( map( lambda party: party_to_votes[party], eligible_party_list, ) ) ) party_r = [] n_seats_r = n_seats_non_bonus resulting_num = (int)(relevant_num / n_seats_non_bonus) for party in eligible_party_list: seats_r = party_to_votes[party] / resulting_num seats_non_bonus_whole = (int)(seats_r) party_to_seats[party] = ( party_to_seats.get(party, 0) + seats_non_bonus_whole ) party_r.append((party, seats_r % 1)) n_seats_r -= seats_non_bonus_whole party_r = sorted(party_r, key=lambda x: -x[1]) for i in range(0, n_seats_r): party = party_r[i][0] party_to_seats[party] = party_to_seats.get(party, 0) + 1 return party_to_seats
02270cfeefb87b3da0ec4fa88dfb692a4645df5e
18,457
def get_product(name, version): """Get info about a specific version of a product""" product = registry.get_product(name, version) return jsonify(product.to_dict())
0c461d672ef4d07578b098b3cb937027ad8946f1
18,458
def _is_segment_in_block_range(segment, blocks): """Return whether the segment is in the range of one of the blocks.""" for block in blocks: if block.start <= segment.start and segment.end <= block.end: return True return False
e7509f18f0a72cf90fb1aa643c77c2e13154f0d0
18,459
from operator import add from sys import prefix def acrobatic(m): """More power and accuracy at the cost of increased complexity; can stun""" if 'do_agility_based_dam' in m['functions'] or 'do_strength_based_dam' in m['functions']: return None if 'takedown' in m['features']: return None m = m.copy() mult(m, 'stam_cost', 1.25) add(m, 'complexity', 2) up_tier(m, 3) add_fun(m, 'do_agility_based_dam') add_fun(m, 'do_strength_based_dam') add(m, 'freq', -2, mn=1) prefix(m, 'Acrobatic') return m
b15980d1bc68e495c9e86f16a708e80e90245954
18,460
import configparser import sys import os import subprocess def systemd(config, args): """ Build and install systemd scripts for the server """ try: config = load_config(args.cfg_file, explicit=True) except (OSError, configparser.ParsingError) as exc: print(exc, file=sys.stderr) return 1 print("Building systemd services") using_venv = sys.prefix != sys.base_prefix if using_venv: print(f" - Detected virtualenv: {sys.prefix}") print(" Service files will be built for this virutalenv") site_path = None global_site = config.get("taky", "cfg_path") == "/etc/taky/taky.conf" if global_site: print(" - Detected system-wide site install") svcs = { "taky": "taky.service", "cot": "taky-cot.service", "dps": "taky-dps.service", } else: site_path = os.path.dirname(config.get("taky", "cfg_path")) hostname = config.get("taky", "hostname") print(f" - Detected site install: {site_path}") svcs = { "taky": f"taky-{hostname}.service", "cot": f"taky-{hostname}-cot.service", "dps": f"taky-{hostname}-dps.service", } if not args.user: print( " - WARNING: taky will run as root! It's strongly recommended", file=sys.stderr, ) print(" to create a system user for taky!", file=sys.stderr) # Do not overwrite files if they exist for svc in svcs: path = os.path.join(args.path, svcs[svc]) if os.path.exists(path): print(f"ERROR: Refusing to overwite service file: {path}", file=sys.stderr) return 1 print(f" - Writing services to {args.path}") try: print(f" - Writing {svcs['cot']}") write_cot_svc(svcs, config, args, using_venv, site_path) if args.dps: print(f" - Writing {svcs['dps']}") write_dps_svc(svcs, config, args, using_venv, site_path) print(f" - Writing {svcs['taky']}") write_uni_svc(svcs, config, args, using_venv, site_path) except PermissionError as exc: print(f"ERROR: Unable to write service files to {args.path}", file=sys.stderr) return 1 except OSError as exc: print(f"ERROR: {exc}", file=sys.stderr) return 1 if args.install: try: print(" - Reloading systemctl services") subprocess.check_output(["systemctl", "daemon-reload"]) print(" - Enabling service") subprocess.check_output(["systemctl", "enable", svcs["taky"]]) print(" - Starting service") subprocess.check_output(["systemctl", "start", svcs["taky"]]) except subprocess.CalledProcessError as exc: print(f"ERROR: systemctl calls failed: {exc}") return 1 return 0
1a1a8caad38fedc016f1ef6efea9adc6ab020c95
18,461
def compute_snes_color_score(img): """ Returns the ratio of SNES colors to the total number of colors in the image Parameters: img (image) -- Pillow image Returns: count (float) -- ratio of SNES colors """ score = _get_distance_between_palettes(img, util.get_snes_color_palette()) return score # colors, snes_color_count = get_color_count(img, util.get_snes_color_palette()) w, h = img.size colors = np.array(img.getcolors(maxcolors=w * h)) total_color_count = len(colors) invalid_color_count = np.sum([((r & 0x03) & (g & 0x03) & (b & 0x03)) for (_, (r, g, b)) in colors]) # zero out valid bits, leaving only invalid bits snes_color_count = total_color_count - invalid_color_count # count remaining colors with invalid bits return snes_color_count / total_color_count
b52ae8d7d98700f455e126cfb447e41c1762528c
18,462
def get_assignments_for_team(user, team): """ Get openassessment XBlocks configured for the current teamset """ # Confirm access if not has_specific_team_access(user, team): raise Exception("User {user} is not permitted to access team info for {team}".format( user=user.username, team=team.team_id )) # Limit to team-enabled ORAs for the matching teamset in the course return modulestore().get_items( team.course_id, qualifiers={'category': 'openassessment'}, settings={'teams_enabled': True, 'selected_teamset_id': team.topic_id} )
67b72b34b8549127728c33dfac8599d979d09f6f
18,463
def is_flexible_uri(uri: Uri_t) -> bool: """Judge if specified `uri` has one or more flexible location. Args: uri: URI pattern to be judged. Returns: True if specified `uri` has one or more flexible location, False otherwise. """ for loc in uri: if isinstance(loc, FlexibleLocation): return True return False
fd5138d3dfc44c36e7b5ccfe911f6640e22bc7f2
18,464
def load_frame_gray(img_path, gray_flag=False): """Load image at img_path, and convert the original image to grayscale if gray_flag=True. Return image and grayscale image if gray_flag=True; otherwise only return original image. img_path = a string containing the path to an image file readable by cv.imread """ try: img = cv.imread(img_path) except Exception as err: print(f"The following error occurred when reading the image file at {img_path}: \n{err}") img = None if gray_flag and isinstance(img, np.ndarray): gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) else: gray = None return (img, gray) if gray_flag else img
8b792f2bf5f22f34e0b880c934019c238a3cc360
18,465
def read_vocab_file(path): """ Read voc file. This reads a .voc file, stripping out empty lines comments and expand parentheses. It returns each line as a list of all expanded alternatives. Args: path (str): path to vocab file. Returns: List of Lists of strings. """ LOG.warning("read_vocab_file is deprecated! " "use SkillResources class instead") vocab = [] with open(path, 'r', encoding='utf8') as voc_file: for line in voc_file.readlines(): if line.startswith('#') or line.strip() == '': continue vocab.append(expand_options(line.lower())) return vocab
cdf230f1fbeafbcc3839a02ce86b33719dfcf806
18,466
import re def natural_key(string_): """See http://www.codinghorror.com/blog/archives/001018.html""" return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_)]
f49aca918e4efc2f5e7f6541df2d5329bc2752f7
18,467
import subprocess def _set_wpa_supplicant_config(interface, config, opt): """Starts or restarts wpa_supplicant unless doing so would be a no-op. The no-op case (i.e. wpa_supplicant is already running with an equivalent config) can be overridden with --force-restart. Args: interface: The interface on which to start wpa_supplicant. config: A wpa_supplicant configuration, as a string. opt: The OptDict parsed from command line options. Returns: Whether wpa_supplicant was started successfully. Raises: BinWifiException: On various errors. """ tmp_config_filename = utils.get_filename( 'wpa_supplicant', utils.FILENAME_KIND.config, interface, tmp=True) forced = False current_config = None band = opt.band try: with open(tmp_config_filename) as tmp_config_file: current_config = tmp_config_file.read() except IOError: pass already_running = _is_wpa_supplicant_running(interface) if not already_running: utils.log('wpa_supplicant not running yet, starting.') elif current_config != config: # TODO(rofrankel): Consider using wpa_cli reconfigure here. utils.log('wpa_supplicant config changed, reconfiguring.') elif opt.force_restart: utils.log('Forced restart requested.') forced = True else: utils.log('wpa_supplicant-%s already configured and running', interface) return True if not forced: utils.atomic_write(tmp_config_filename, config) # TODO(rofrankel): Consider removing all the restart hostapd stuff when # b/30140131 is resolved. hostapd seems to keep working without being # restarted, at least on Camaro. restart_hostapd = False ap_interface = iw.find_interface_from_band(band, iw.INTERFACE_TYPE.ap, opt.interface_suffix) if _is_hostapd_running(ap_interface): restart_hostapd = True opt_without_persist = options.OptDict({}) opt_without_persist.persist = False opt_without_persist.band = opt.band opt_without_persist.interface_suffix = opt.interface_suffix if not stop_ap_wifi(opt_without_persist): raise utils.BinWifiException( "Couldn't stop hostapd to start wpa_supplicant.") if already_running: subprocess.check_call(['ifdown', interface]) subprocess.check_call(['/etc/ifplugd/ifplugd.action', interface, 'down']) if not _reconfigure_wpa_supplicant(interface): raise utils.BinWifiException('Failed to reconfigure wpa_supplicant.') subprocess.check_call(['ifup', interface]) subprocess.check_call(['/etc/ifplugd/ifplugd.action', interface, 'up']) elif not _start_wpa_supplicant(interface, tmp_config_filename): raise utils.BinWifiException( 'wpa_supplicant failed to start. Look at wpa_supplicant logs for ' 'details.') if restart_hostapd: _restart_hostapd(ap_interface) return True
09197b75393182087651d9625483928e2b92d802
18,468
def generate_episode(sim, policy, horizon=200): """ Generate an episode from a policy acting on an simulation. Returns: sequence of state, action, reward. """ obs = sim.reset() policy.reset() # Reset the policy too so that it knows its the beginning of the episode. states, actions, rewards = [], [], [] states.append(obs) for _ in range(horizon): action = policy.act(obs) obs, reward, done, _ = sim.step(action) states.append(obs) actions.append(action) rewards.append(reward) if done: break states.pop() # Pop off the terminating state return states, actions, rewards
73a0bbb2703c047d3305e93dd2a340c83db12277
18,469
import asyncio async def _ensure_meadowrun_vault(location: str) -> str: """ Gets the meadowrun key vault URI if it exists. If it doesn't exist, also creates the meadowrun key vault, and tries to assign the Key Vault Administrator role to the current user. """ subscription_id = await get_subscription_id() vault_name = get_meadowrun_vault_name(subscription_id) resource_group_path = await ensure_meadowrun_resource_group(location) vault_path = ( f"{resource_group_path}/providers/Microsoft.KeyVault/vaults/{vault_name}" ) try: vault = await azure_rest_api("GET", vault_path, "2019-09-01") return vault["properties"]["vaultUri"] except ResourceNotFoundError: # theoretically key_vault_client.vaults.get_deleted() should be faster, # but that requires specifying a location and there's no way to know what # location the key vault may have been originally created in. deleted_vault_found = False async for page in azure_rest_api_paged( "GET", f"/subscriptions/{subscription_id}/providers/Microsoft.KeyVault/" f"deletedVaults", "2019-09-01", ): for vault in page["value"]: if vault["name"] == vault_name: deleted_vault_found = True break if deleted_vault_found: break if deleted_vault_found: # if we have a deleted vault, then we should try to recover it create_mode = "recover" print(f"The meadowrun Key Vault {vault_name} was deleted, recovering") else: create_mode = "default" print( f"The meadowrun Key Vault {vault_name} does not exist, creating it " "now" ) # if we're creating or recreating the Key Vault, assume that we need to add the # current user to the Key Vault Administrator role so that the current user can # access secrets. assign_role_task = asyncio.create_task( assign_role_to_principal( "Key Vault Administrator", await get_current_user_id(), location ) ) # Now we can create/recover the Key Vault. # https://docs.microsoft.com/en-us/rest/api/keyvault/keyvault/vaults/create-or-update#vaultproperties vault, _ = await wait_for_poll( await azure_rest_api_poll( "PUT", vault_path, "2019-09-01", "AsyncOperationJsonStatus", json_content={ "location": location, "properties": { "tenantId": await get_tenant_id(), "sku": {"family": "A", "name": "Standard"}, "enableRbacAuthorization": True, "createMode": create_mode, }, }, ) ) try: await assign_role_task except Exception as e: print( "Warning: we were not able to assign the Key Vault Administrator role " f"to the current user. You may not be able to create/read secrets: {e}" ) return vault["properties"]["vaultUri"]
9e16940a56ae83b47d42d7583ad6efc9c5d63d23
18,470
from typing import Iterable from typing import Dict from typing import List from typing import Union from pathlib import Path from typing import Tuple import logging def get_dataset_splits( datasets: Iterable[HarmonicDataset], data_dfs: Dict[str, pd.DataFrame] = None, xml_and_csv_paths: Dict[str, List[Union[str, Path]]] = None, splits: Iterable[float] = (0.8, 0.1, 0.1), seed: int = None, ) -> Tuple[List[List[HarmonicDataset]], List[List[int]], List[List[Piece]]]: """ Get datasets representing splits of the data in the given DataFrames. Parameters ---------- datasets : Iterable[HarmonicDataset] An Iterable of HarmonicDataset class objects, each representing a different type of HarmonicDataset subclass to make a Dataset from. These are all passed so that they will have identical splits. data_dfs : Dict[str, pd.DataFrame] If using dataframes, a mapping of 'files', 'measures', 'chords', and 'notes' dfs. xml_and_csv_paths : Dict[str, List[Union[str, Path]]] If using the MusicXML ('xmls') and label csvs ('csvs'), a list of paths of the matching xml and csv files. splits : Iterable[float] An Iterable of floats representing the proportion of pieces which will go into each split. This will be normalized to sum to 1. seed : int A numpy random seed, if given. Returns ------- dataset_splits : List[List[HarmonicDataset]] An iterable, the length of `dataset` representing the splits for each given dataset type. Each element is itself an iterable the length of `splits`. split_ids : List[List[int]] A list the length of `splits` containing the file_ids for each data point in each split. split_pieces : List[List[Piece]] A list of the pieces in each split. """ split_ids, split_pieces = get_split_file_ids_and_pieces( data_dfs=data_dfs, xml_and_csv_paths=xml_and_csv_paths, splits=splits, seed=seed, ) dataset_splits = np.full((len(datasets), len(splits)), None) for split_index, (split_prop, pieces) in enumerate(zip(splits, split_pieces)): if len(pieces) == 0: logging.warning( "Split %s with prop %s contains no pieces. Returning None for those.", split_index, split_prop, ) continue for dataset_index, dataset_class in enumerate(datasets): dataset_splits[dataset_index][split_index] = dataset_class(pieces) return dataset_splits, split_ids, split_pieces
c1389dad05aa2911735b1e9099acda9e2a8a1c05
18,471
from PilotErrors import PilotException from movers import JobMover from movers.trace_report import TraceReport import traceback def put_data_es(job, jobSite, stageoutTries, files, workDir=None, activity=None): """ Do jobmover.stageout_outfiles or jobmover.stageout_logfiles (if log_transfer=True) or jobmover.stageout_logfiles_os (if special_log_transfer=True) :backward compatible return: (rc, pilotErrorDiag, rf, "", filesNormalStageOut, filesAltStageOut) """ tolog("Mover put data started [new implementation]") si = getSiteInformation(job.experiment) si.setQueueName(jobSite.computingElement) # WARNING: SiteInformation is singleton: may be used in other functions! FIX me later workDir = workDir or os.path.dirname(job.workdir) mover = JobMover(job, si, workDir=workDir, stageoutretry=stageoutTries) eventType = "put_es" mover.trace_report = TraceReport(pq=jobSite.sitename, localSite=jobSite.sitename, remoteSite=jobSite.sitename, dataset="", eventType=eventType) mover.trace_report.init(job) error = None storageId = None try: if not activity: activity = "es_events" file = files[0] if file.storageId and file.storageId != -1: storageId = file.storageId copytools = [('objectstore', {'setup': ''})] else: copytools = None transferred_files, failed_transfers = mover.stageout(activity=activity, files=files, copytools=copytools) except PilotException, e: error = e except Exception, e: tolog("ERROR: Mover put data failed [stageout]: exception caught: %s" % e) tolog(traceback.format_exc()) error = PilotException('STAGEOUT FAILED, exception=%s' % e, code=PilotErrors.ERR_STAGEOUTFAILED, state='STAGEOUT_FAILED') if error: ## send trace mover.trace_report.update(clientState=error.state or 'STAGEOUT_FAILED', stateReason=error.message, timeEnd=time()) mover.sendTrace(mover.trace_report) return error.code, error.message, None tolog("Mover put data finished") # prepare compatible output # keep track of which files have been copied not_transferred = [e.lfn for e in files if e.status not in ['transferred']] if not_transferred: err_msg = 'STAGEOUT FAILED: not all output files have been copied: remain files=%s, errors=%s' % ('\n'.join(not_transferred), ';'.join([str(ee) for ee in failed_transfers])) tolog("Mover put data finished: error_msg=%s" % err_msg) return PilotErrors.ERR_STAGEOUTFAILED, err_msg, None return 0, "", storageId
b3841dc487e19ca989575e37b95a9e8f2949258b
18,472
def floor(data): """ Returns element-wise largest integer not greater than x. Args: data (tvm.tensor.Tensor): Tensor of type float16, and float32 Returns: tvm.tensor.Tensor, has the same shape as data and type of int32. """ vc_util.ops_dtype_check(data.dtype, vc_util.DtypeForDavinci.ALL_FLOAT) shape = [x.value for x in data.shape] vc_util.check_shape(shape) if utils.product_is_mini() and data.dtype == "float32": # solve the problem of 87==floor(86.9996) when high_precision is needed. # problem is caused by such as fp16(86.9996)==87. # detect problem by fp32(86.9996) - fp32(floor(fp16(86.9996))) < 0 # floor could only apply on float16 data_fp16 = akg.lang.cce.cast_to(data, "float16") floor_data = akg.lang.cce.floor(data_fp16) floor_fp16 = akg.lang.cce.cast_to(floor_data, "float16") floor_fp32 = akg.lang.cce.cast(floor_fp16, "float32") # if diff=1e-7, we cannot get right sign of fp16(diff) # but we can get right sign of 10000*diff = 1e-3, which has the same # sign as diff diff = (data - floor_fp32) * 10000 diff_fp16 = akg.lang.cce.cast_to(diff, "float16") # if diff < 0 and floor == ceil, then it's 87 = floor(86.99999) res = akg.tvm.compute(shape, lambda *i: akg.tvm.expr.Select( diff_fp16(*i) < tvm.const(0, "float16"), floor_fp16(*i) - tvm.const(1, "float16"), floor_fp16(*i)), name="res") res = akg.lang.cce.cast_to(res, "int32") else: res = akg.lang.cce.floor(data) return res
3d553d54330c3237908b33600fae560a92f20975
18,473
def pixel_link_model(inputs, config): """ PixelLink architecture. """ if config['model_type'] == 'mobilenet_v2_ext': backbone = mobilenet_v2(inputs, original_stride=False, weights_decay=config['weights_decay']) elif config['model_type'] == 'ka_resnet50': backbone = keras_applications_resnet50(inputs) elif config['model_type'] == 'ka_vgg16': backbone = keras_applications_vgg16(inputs) elif config['model_type'] == 'ka_mobilenet_v2_1_0': backbone = keras_applications_mobilenetv2(inputs, alpha=1.0) elif config['model_type'] == 'ka_mobilenet_v2_1_4': backbone = keras_applications_mobilenetv2(inputs, alpha=1.4) elif config['model_type'] == 'ka_xception': backbone = keras_applications_xception(inputs) segm_logits = fcn_head(backbone, num_classes=2, name='segm_logits', weights_decay=config['weights_decay']) link_logits = fcn_head(backbone, num_classes=16, name='link_logits_', weights_decay=config['weights_decay']) new_shape = tf.shape(link_logits)[1], tf.shape(link_logits)[2], 8, 2 link_logits = tf.keras.layers.Reshape(new_shape, name='link_logits')(link_logits) return tf.keras.Model(inputs, [segm_logits, link_logits])
0bf606e5b06d94bce98865147fb6a1cf45b04560
18,474
def ingresar_datos(): """Pide al usuario los datos para calcular el precio de la compra de boletos. :return: tipo, cantidad :rtype: tuple """ text_align("Datos de la compra", width=35) tipo: str = choice_input(tuple(TIPO.keys())) cantidad: int = int_input("Ingrese el número de boletos: ", min=1, max=12) return tipo, cantidad
eb9b1c90fbc44a639a7760848723f5579eced4df
18,475
def trim_spectrum(freqs, power_spectra, f_range): """Extract a frequency range from power spectra. Parameters ---------- freqs : 1d array Frequency values for the power spectrum. power_spectra : 1d or 2d array Power spectral density values. f_range: list of [float, float] Frequency range to restrict to, as [lowest_freq, highest_freq]. Returns ------- freqs_ext : 1d array Extracted frequency values for the power spectrum. power_spectra_ext : 1d or 2d array Extracted power spectral density values. Notes ----- This function extracts frequency ranges >= f_low and <= f_high. It does not round to below or above f_low and f_high, respectively. Examples -------- Using a simulated spectrum, extract a frequency range: >>> from fooof.sim import gen_power_spectrum >>> freqs, powers = gen_power_spectrum([1, 50], [1, 1], [10, 0.5, 1.0]) >>> freqs, powers = trim_spectrum(freqs, powers, [3, 30]) """ # Create mask to index only requested frequencies f_mask = np.logical_and(freqs >= f_range[0], freqs <= f_range[1]) # Restrict freqs & spectra to requested range # The if/else is to cover both 1d or 2d arrays freqs_ext = freqs[f_mask] power_spectra_ext = power_spectra[f_mask] if power_spectra.ndim == 1 \ else power_spectra[:, f_mask] return freqs_ext, power_spectra_ext
a522a384033fc38d3bba5e7d91ca8debfdedec68
18,476
def _get_variable_for(v): """Returns the ResourceVariable responsible for v, or v if not necessary.""" if v.op.type == "VarHandleOp": for var in ops.get_collection(ops.GraphKeys.RESOURCES): if (isinstance(var, resource_variable_ops.ResourceVariable) and var.handle.op is v.op): return var raise ValueError("Got %s but could not locate source variable." % (str(v))) return v
5e8f4b83495c89f728c30148e9b05e06713d6b82
18,477
def load_prefixes(filepath): """Dado um arquivo txt contendo os prefixos utilizados na SPARQL, é devolvida uma string contendo os prefixos e uma lista de tuplas contendo os prefixos. Parameters ---------- filepath : str Caminho do arquivo txt contendo o conjunto de prefixos. Returns ------- tuple of str Uma tupla contendo os prefixos carregados na forma de string e uma lista de tuplas, onde a primeira posição é o nome dado ao URI e a segunda contém a URI correspondente. Examples -------- .. code-block:: python >>> from QApedia.io import load_prefixes >>> filename = "prefixes.txt" >>> prefixes = load_prefixes(filename) >>> for uri_name, uri in prefixes[1]: ... print(uri_name, uri) ... owl: http://www.w3.org/2002/07/owl# xsd: http://www.w3.org/2001/XMLSchema# rdfs: http://www.w3.org/2000/01/rdf-schema# rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns# foaf: http://xmlns.com/foaf/0.1/ dc: http://purl.org/dc/elements/1.1/ dbpedia2: http://dbpedia.org/property/ dbpedia: http://dbpedia.org/ skos: http://www.w3.org/2004/02/skos/core# """ f = open(filepath, "r") lines = f.readlines() f.close() prefixes = "\n".join(line.rstrip() for line in lines) list_of_prefixes = convert_prefixes_to_list(prefixes) return prefixes, list_of_prefixes
a6c2f3c014dbfae73718c579da914f840489e701
18,478
def build_convolutional_box_predictor(is_training, num_classes, conv_hyperparams_fn, min_depth, max_depth, num_layers_before_predictor, use_dropout, dropout_keep_prob, kernel_size, box_code_size, apply_sigmoid_to_scores=False, add_background_class=True, class_prediction_bias_init=0.0, use_depthwise=False, box_encodings_clip_range=None): """Builds the ConvolutionalBoxPredictor from the arguments. Args: is_training: Indicates whether the BoxPredictor is in training mode. num_classes: number of classes. Note that num_classes *does not* include the background category, so if groundtruth labels take values in {0, 1, .., K-1}, num_classes=K (and not K+1, even though the assigned classification targets can range from {0,... K}). conv_hyperparams_fn: A function to generate tf-slim arg_scope with hyperparameters for convolution ops. min_depth: Minimum feature depth prior to predicting box encodings and class predictions. max_depth: Maximum feature depth prior to predicting box encodings and class predictions. If max_depth is set to 0, no additional feature map will be inserted before location and class predictions. num_layers_before_predictor: Number of the additional conv layers before the predictor. use_dropout: Option to use dropout or not. Note that a single dropout op is applied here prior to both box and class predictions, which stands in contrast to the ConvolutionalBoxPredictor below. dropout_keep_prob: Keep probability for dropout. This is only used if use_dropout is True. kernel_size: Size of final convolution kernel. If the spatial resolution of the feature map is smaller than the kernel size, then the kernel size is automatically set to be min(feature_width, feature_height). box_code_size: Size of encoding for each box. apply_sigmoid_to_scores: If True, apply the sigmoid on the output class_predictions. add_background_class: Whether to add an implicit background class. class_prediction_bias_init: Constant value to initialize bias of the last conv2d layer before class prediction. use_depthwise: Whether to use depthwise convolutions for prediction steps. Default is False. box_encodings_clip_range: Min and max values for clipping the box_encodings. Returns: A ConvolutionalBoxPredictor class. """ box_prediction_head = box_head.ConvolutionalBoxHead( is_training=is_training, box_code_size=box_code_size, kernel_size=kernel_size, use_depthwise=use_depthwise, box_encodings_clip_range=box_encodings_clip_range) class_prediction_head = class_head.ConvolutionalClassHead( is_training=is_training, num_class_slots=num_classes + 1 if add_background_class else num_classes, use_dropout=use_dropout, dropout_keep_prob=dropout_keep_prob, kernel_size=kernel_size, apply_sigmoid_to_scores=apply_sigmoid_to_scores, class_prediction_bias_init=class_prediction_bias_init, use_depthwise=use_depthwise) other_heads = {} return convolutional_box_predictor.ConvolutionalBoxPredictor( is_training=is_training, num_classes=num_classes, box_prediction_head=box_prediction_head, class_prediction_head=class_prediction_head, other_heads=other_heads, conv_hyperparams_fn=conv_hyperparams_fn, num_layers_before_predictor=num_layers_before_predictor, min_depth=min_depth, max_depth=max_depth)
3e3b79cbd6e99b8b9d3da5ff2545e17a92ef3f38
18,479
import os def _get_default_directory(): """Returns the default directory for the Store. This is intentionally underscored to indicate that `Store.get_default_directory` is the intended way to get this information. This is also done so `Store.get_default_directory` can be mocked in tests and `_get_default_directory` can be tested. """ return os.environ.get('PRE_COMMIT_HOME') or os.path.join( os.environ.get('XDG_CACHE_HOME') or os.path.expanduser('~/.cache'), 'pre-commit', )
28636cc7c6d3d804a7baea4a95a1e40c8247308c
18,480
def parse_command_line(): """ :return: """ parser = argp.ArgumentParser(prog='TEPIC/findBackground.py', add_help=True) ag = parser.add_argument_group('Input/output parameters') ag.add_argument('--input', '-i', type=str, dest='inputfile', required=True, help='Path to input file. First three columns in file' ' are expected to be chrom - start - end.') ag.add_argument('--genome', '-g', type=str, dest='genome', required=True, help='Path to genome reference file in 2bit format.') ag.add_argument('--output', '-o', type=str, dest='outputfile', default='stdout', help='Path to output file or stdout. Default: stdout') ag = parser.add_argument_group('Runtime parameters') ag.add_argument('--workers', '-w', type=int, dest='workers', default=1, help='Number of CPU cores to use. 1 CPU core' ' processes 1 chromosome at a time. Default: 1') ag.add_argument('--time-out', '-to', type=int, dest='timeout', default=3, help='Maximal number of minutes to spend searching for' ' background regions per chromosome. Default: 3 minutes') ag.add_argument('--threshold', '-th', type=int, dest='threshold', default=90, help='Stop searching after having found more than <THRESHOLD>%%' ' matches per chromosome. Default: 90%%') ag.add_argument('--eps-init', '-ei', type=float, dest='epsinit', default=1., help='Init value for epsilon. Error tolerance in percentage points' ' for similarity matching. Default: 1.0 ppt') ag.add_argument('--eps-step', '-es', type=float, dest='epsstep', default=0.5, help='Increment epsilon at each iteration by this value. Default: 0.5') ag.add_argument('--eps-max', '-em', type=float, dest='epsmax', default=2., help='Maximal value for epsilon. After reaching this value, restart' ' search with different starting positions. Default: 2.0') return parser.parse_args()
1f12e08cf4c86f40a84a09303d75a5d3506a3a14
18,481
import torch def disparity_to_idepth(K, T_right_in_left, left_disparity): """Function athat transforms general (non-rectified) disparities to inverse depths. """ assert(len(T_right_in_left.shape) == 3) # assert(T_right_in_left.shape[0] == self.batch_size) assert(T_right_in_left.shape[1] == 4) assert(T_right_in_left.shape[2] == 4) assert(len(K.shape) == 3) # assert(K.shape[0] == self.batch_size) assert(K.shape[1] == 4) assert(K.shape[2] == 4) batch_size = K.shape[0] rows = left_disparity.shape[-2] cols = left_disparity.shape[-1] # Create tensor of homogeneous pixel coordinates of size (batch, 3, rows*cols). y_grid, x_grid = torch.meshgrid(torch.arange(0, rows, device=left_disparity.device), torch.arange(0, cols, device=left_disparity.device)) xys = torch.cat([x_grid.reshape(-1, rows * cols).float(), y_grid.reshape(-1, rows * cols).float()], dim=0) xys = xys.unsqueeze(0).repeat(batch_size, 1, 1) ones = torch.ones(batch_size, 1, rows * cols, dtype=torch.float32, device=xys.device) xyz_pix = torch.cat([xys, ones], 1) Kinv = torch.inverse(K) T_left_in_right = torch.inverse(T_right_in_left) R_left_in_right = T_left_in_right[:, :3, :3] KRKinv = torch.matmul(K[:, :3, :3], torch.matmul(R_left_in_right, Kinv[:, :3, :3])) KRKinv3 = KRKinv[:, 2, :] # (batch, 3) KRKinv3_rep = torch.unsqueeze(KRKinv3, dim=2).repeat(1, 1, rows*cols) # (batch, 3, rows*cols) KT_left_in_right = torch.matmul(K, T_left_in_right) Kt = KT_left_in_right[:, :3, 3] # (batch, 3) Kt_rep = torch.unsqueeze(Kt, dim=2).repeat(1, 1, rows*cols) # (batch, 3, rows*cols) # (batch, rows*cols) left_disparity_flat = left_disparity.reshape(batch_size, -1) # Compute pixels at infinite depth. pix_inf = torch.matmul(KRKinv, xyz_pix) # (batch, 3, rows*cols) pix_inf[:, 0, :] /= pix_inf[:, 2, :] pix_inf[:, 1, :] /= pix_inf[:, 2, :] pix_inf[:, 2, :] /= pix_inf[:, 2, :] # Compute epipolar lines (must point from far to near depth). pix_far = torch.matmul(KRKinv, xyz_pix * 1e2) pix_far += Kt_rep pix_far[:, 0, :] /= pix_far[:, 2, :] pix_far[:, 1, :] /= pix_far[:, 2, :] pix_far[:, 2, :] /= pix_far[:, 2, :] epi_diff = pix_far[:, :2, :] - pix_inf[:, :2, :] epi_norm = torch.sqrt(torch.sum(epi_diff**2, dim=1)) epiline = epi_diff[:, :2, :] # (batch, 2, rows*cols) epiline[:, 0, :] /= (epi_norm + 1e-6) epiline[:, 1, :] /= (epi_norm + 1e-6) mask = epi_norm < 1e-6 mask = mask.reshape(batch_size, 1, rows, cols) # Convert disparity to idepth. # (batch, rows*cols) w = KRKinv3_rep[:, 0, :] * xyz_pix[:, 0, :] + \ KRKinv3_rep[:, 1, :] * xyz_pix[:, 1, :] + \ KRKinv3_rep[:, 2, :] # (batch, rows*cols) A0 = Kt_rep[:, 0, :] - Kt_rep[:, 2, :]*(pix_inf[:, 0, :] + left_disparity_flat * epiline[:, 0, :]) A1 = Kt_rep[:, 1, :] - Kt_rep[:, 2, :]*(pix_inf[:, 1, :] + left_disparity_flat * epiline[:, 1, :]) b0 = w * left_disparity_flat * epiline[:, 0, :] b1 = w * left_disparity_flat * epiline[:, 1, :] ATA = A0 * A0 + A1 * A1 ATb = A0 * b0 + A1 * b1 left_idepthmap = ATb / ATA left_idepthmap = left_idepthmap.reshape(batch_size, 1, rows, cols) # Set bad points to 0 idepth. left_idepthmap = (~mask).float() * left_idepthmap return left_idepthmap
454bda2fd9ec4e4ef5615dbdb054c2f3b454f31a
18,482
def processPhoto(photoInfo, panoramioreview=False, reviewer='', override=u'', addCategory=u'', autonomous=False, site=None): """Process a single Panoramio photo.""" if not site: site = pywikibot.Site('commons', 'commons') if isAllowedLicense(photoInfo) or override: # Should download the photo only once photo = downloadPhoto(photoInfo.get(u'photo_file_url')) # Don't upload duplicate images, should add override option duplicates = findDuplicateImages(photo, site=site) if duplicates: pywikibot.output(u'Found duplicate image at %s' % duplicates.pop()) else: filename = getFilename(photoInfo, site=site) pywikibot.output(filename) description = getDescription(photoInfo, panoramioreview, reviewer, override, addCategory) pywikibot.output(description) if not autonomous: (newDescription, newFilename, skip) = Tkdialog( description, photo, filename).show_dialog() else: newDescription = description newFilename = filename skip = False # pywikibot.output(newPhotoDescription) # if (pywikibot.Page(title=u'File:'+ filename, # site=pywikibot.Site()).exists()): # # I should probably check if the hash is the same and if not upload # # it under a different name # pywikibot.output(u'File:' + filename + u' already exists!') # else: # Do the actual upload # Would be nice to check before I upload if the file is already at # Commons # Not that important for this program, but maybe for derived # programs if not skip: bot = UploadRobot(photoInfo.get(u'photo_file_url'), description=newDescription, useFilename=newFilename, keepFilename=True, verifyDescription=False, site=site) bot.upload_image(debug=False) return 1 return 0
e753f411b028caf74ca12b5e7215f161d290afa7
18,483
def auto_apilado(datos,target,agrupacion,porcentaje=False): """ Esta función recibe un set de datos DataFrame, una variable target, y la variable sobre la que se desean agrupar los datos (eje X). Retorna un grafico de barras apilado. """ total = datos[[target,agrupacion]].groupby(agrupacion).count() tabla = pd.DataFrame([]) fig = go.Figure() #Creamos una traza for value in datos[target].unique(): trace = datos[[target,agrupacion]].loc[datos[target]==value].groupby(agrupacion).count() if porcentaje: #Las columnas deben tener el mismo nombre trace = 100*trace/total y_title ='Porcentaje (Individuos)' trace.rename(columns={target:str(value)},inplace=True) tabla = pd.concat([tabla, trace],axis = 1) #Creación de la figura fig.add_trace(go.Bar( x = tabla.index, y = tabla[str(value)], name=str(value), # marker_color='rgb(26, 118, 255)' )) y_title='Conteo (Individuos)' fig.update_layout( title='Conteo de '+str(target)+' agrupado por '+str(agrupacion), xaxis_tickfont_size=14, yaxis=dict( title=y_title, titlefont_size=16, tickfont_size=14, ), xaxis=dict( title=str(agrupacion) )) fig.update_layout(barmode='stack') return fig, tabla
b3b13e0e5bd56628971004c0d6d5171929ab6de3
18,484
from datetime import datetime def month_from_string(month_str: str) -> datetime.date: """ Accepts year-month strings with hyphens such as "%Y-%m" """ return datetime.datetime.strptime(month_str, "%Y-%m").date()
cfb901f6676d40398bd6f49c438541f00e5389e3
18,485
import hashlib def get_isomorphic_signature(graph: DiGraph) -> str: """ Generate unique isomorphic id with pynauty """ nauty_graph = pynauty.Graph(len(graph.nodes), directed=True, adjacency_dict=nx.to_dict_of_lists(graph)) return hashlib.md5(pynauty.certificate(nauty_graph)).hexdigest()
8dfd7dd44409fee7dddd88f21681ed93232f1dba
18,486
from typing import Callable from typing import Any import sys import time def watchdog(timeout: int | float, function: Callable, *args, **kwargs) -> Any: """Time-limited execution for python function. TimeoutError raised if not finished during defined time. Args: timeout (int | float): Max time execution in seconds. function (Callable): Function that will be evaluated. *args: Args for the function. *kwargs: Kwargs for the function. Raises: TimeoutError: If defined time runs out. RuntimeError: If function call with defined params fails. Returns: Any: Depends on used function. Examples: >>> import time >>> def sleep(sec): ... for _ in range(sec): ... time.sleep(1) >>> watchdog(1, sleep, 0) >>> watchdog(1, sleep, 10) Traceback (most recent call last): TimeoutError: ... """ old_tracer = sys.gettrace() def tracer(frame, event, arg, start=time.time()): "Helper." now = time.time() if now > start + timeout: raise TimeoutError("Time exceeded") return tracer if event == "call" else None try: sys.settrace(tracer) result = function(*args, **kwargs) except TimeoutError: sys.settrace(old_tracer) raise TimeoutError( mylogging.return_str( "Timeout defined in watchdog exceeded.", caption="TimeoutError", level="ERROR", ) ) except Exception: sys.settrace(old_tracer) raise RuntimeError( mylogging.return_str( f"Watchdog with function {function.__name__}, args {args} and kwargs {kwargs} failed." ) ) finally: sys.settrace(old_tracer) return result
f9a54bee2d444831439d710ef882e4e117b85d62
18,487
def _encode_raw_string(str): """Encodes a string using the above encoding format. Args: str (string): The string to be encoded. Returns: An encoded version of the input string. """ return _replace_all(str, _substitutions)
bb33875b276fe822c2b43ec3ebcc57b0d2f4c7b9
18,488
from typing import Callable def char_pred(pred: Callable[[int], bool]) -> Parser: """Parses a single character passing a given predicate.""" def f(x): if pred(x): return value(x) else: raise Failure(f"Character '{chr(x)}' fails predicate" " `{pred.__name__}`") return item >> f
2b7be4f740e7f7afad1ef66c0d544208d679fc5c
18,489
def convert_bound(bound, coord_max, coord_var): """ This function will return a converted bound which which matches the range of the given input file. Parameters ---------- bound : np.array 1-dimensional 2-element numpy array which represent the lower and upper bounding box on this coordinate, respectively. coord_max : integer The max value which is possible given this coordinate. For example, the max for longitude is 360. coord_var : xarray.DataArray The xarray variable for some coordinate. Returns ------- np.array 1-dimensional 2-element number array which represents the lower and upper bounding box on this coordinate and has been converted based on the valid bounds coordinate range of the dataset. Notes ----- Assumption that 0 is always on the prime meridian/equator. """ scale = coord_var.attrs.get('scale_factor', 1.0) offset = coord_var.attrs.get('add_offset', 0.0) valid_min = coord_var.attrs.get('valid_min', None) if valid_min is None or valid_min > 0: # If coord var doesn't contain valid min, attempt to find # manually. Note: Given the perfect storm, this could still fail # to find the actual bounds. # Filter out _FillValue from data before calculating min and max fill_value = coord_var.attrs.get('_FillValue', None) var_values = coord_var.values if fill_value: var_values = np.where(var_values != fill_value, var_values, np.nan) var_min = np.nanmin(var_values) var_max = np.nanmax(var_values) if 0 <= var_min <= var_max <= (coord_max / scale): valid_min = 0 # If the file coords are 0 --> max if valid_min == 0: bound = (bound + coord_max) % coord_max # If the right/top bound is 0, set to max. if bound[1] == 0: bound[1] = coord_max # If edges are the same, assume it wraps and return all if bound[0] == bound[1]: bound = np.array([0, coord_max]) # If the file longitude is -coord_max/2 --> coord_max/2 if valid_min != 0: # If edges are the same, assume it wraps and return all if bound[0] == bound[1]: bound = np.array([-(coord_max / 2), coord_max / 2]) # Calculate scale and offset so the bounds match the coord data return apply_scale_offset(scale, offset, bound)
5784167af65b2f406bfa5c428f1421a8915359f3
18,490
def tk_window_focus(): """Return true if focus maintenance under TkAgg on win32 is on. This currently works only for python.exe and IPython.exe. Both IDLE and Pythonwin.exe fail badly when tk_window_focus is on.""" if rcParams['backend'] != 'TkAgg': return False return rcParams['tk.window_focus']
757963dce9d9dc00be54ffbcbf694656f2f770e9
18,491
from functools import reduce def cc_filter_set_variables(operator, bk_biz_id, bk_obj_id, bk_obj_value): """ 通过集群ID、过滤属性ID、过滤属性值,过滤集群 :param operator: 操作者 :param bk_biz_id: 业务ID :param bk_obj_id: 过滤属性ID :param bk_obj_value: 过滤属性值 :return: """ client = get_client_by_user(operator) obj_value_list = bk_obj_value.split(",") results = [] # 多个过滤属性值时循环请求接口 for obj_value in obj_value_list: kwargs = { "bk_biz_id": int(bk_biz_id), "condition": {bk_obj_id: obj_value}, } result = client.cc.search_set(kwargs) if not result["result"]: err_msg = _( "[cc_filter_set_variables] 调用 cc.search_set 接口获取集群失败, " "kwargs={kwargs}, result={result}" ).format(kwargs=kwargs, result=result) logger.error(err_msg) raise ApiRequestError(err_msg) results += result["data"]["info"] if not results: return [], set() bk_attributes = reduce(set.intersection, [set(result.keys()) for result in results]) return results, bk_attributes
3e1f849c59d3e3553f1c8b6f725a36921cae9451
18,492
def distance(mags, spt, spt_unc): """ mags is a dictionary of bright and faint mags set a bias """ res={} f110w=mags['F110W'] f140w=mags['F140W'] f160w=mags['F160W'] relations=POLYNOMIAL_RELATIONS['abs_mags'] nsample=1000 for k in mags.keys(): #take the standard deviation spt=make_spt_number(spt) absmag_scatter=relations[k][1] spts=np.random.normal(spt, spt_unc, nsample) #trim out spectral types outside range of validitiy mask=(spts<15) & (spts >40) absmags=(relations[k][0])(spts)[~mask] #total_uncertainty mag_unc=(absmag_scatter**2+mags[k][1]**2)**0.5 relmags=np.random.normal(mags[k][0], mag_unc, nsample)[~mask] dists=get_distance(absmags, relmags) res[str('dist')+k]=np.nanmedian(dists) res[str('dist_er')+k]=np.nanstd(dists) return res
cece86e80c03ce8d9753fe864bd746e68500fca3
18,493
import torch import sys def loss_function(recon_x, x, mu, logvar, cl, target, natural): """ Universally calculates the loss, be it for training or testing. Hardcoded to use mse_loss. Change below to binary_cross_entropy if desired. @param recon_x: images reconstructed by the decoder(s) @param x: original images for comparison @param mu: latent mean @param logvar: latent log variance @param cl: cell count predictions for given images @param target: cell count label for given labeled images @param natural: bool, true if x is of type natural @return: float, float, float, the summed loss as well as the Kullback-Leibler divergence and the loss of the regressor in separate """ global decoder_nat_loss, decoder_syn_loss, KLD_syn_loss, KLD_nat_loss, regressor_nat, regressor_syn # decoder_loss = F.binary_cross_entropy(recon_x, x.view(-1, 1, img_size, img_size), reduction='sum') * decoder_l_factor decoder_loss = F.mse_loss(recon_x, x) * decoder_l_factor # see Appendix B from VAE paper: Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014 # https://arxiv.org/abs/1312.6114 # 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2) beta = 1 / (batch_size * boundary_dim) # disentanglement factor#extremely small KLD = -0.5 * beta * torch.sum(1 + logvar - mu.pow(2) - logvar.exp()) * KLD_l_factor regressor_loss = F.mse_loss(cl, target.view(-1, 1)) * regressor_l_factor if epoch < regressor_start: regressor_loss *= 0 if natural: decoder_nat_loss += decoder_loss KLD_nat_loss += KLD regressor_nat += regressor_loss else: decoder_syn_loss += decoder_loss KLD_syn_loss += KLD regressor_syn += regressor_loss if KLD > 1e10: playSound() print('KLD diverged') # print(KLD) # print(torch.max(logvar)) # print(logvar) # print(mu) # print(beta) sys.exit('KLD diverged') return decoder_loss + KLD + regressor_loss, KLD, regressor_loss
8fc5773dbecd3f445ffb849a91ad0a95a93bc45c
18,494
import math def foo(X): """The function to evaluate""" ret = [] for x in X: r = 2*math.sqrt(sum([n*n for n in x])); if r == 0: ret.append(0) else: ret.append(math.sin(r) / r); return ret
7b241cf45757cdf9a5a28ee56c59ee41099ccb1e
18,495
def measure_curv(left_fit, right_fit, plot_points, ym_per_pix, xm_per_pix): """ calculates the curvature using a given polynom Args: left_fit ([type]): [description] right_fit ([type]): [description] plot_points ([type]): [description] """ #get the max y value (start of the lane) this is the place we want to calc the curvature y_curve = np.max(plot_points) #calculate/defin the new polynom values to get m instead of pixel cofA_left = xm_per_pix / (ym_per_pix**2) * left_fit[0] cofB_left = (xm_per_pix/ym_per_pix) * left_fit[1] cofA_right = xm_per_pix / (ym_per_pix**2) * right_fit[0] cofB_right = (xm_per_pix/ym_per_pix) * right_fit[1] #calculate the curvature using the formula: R = (1+(2Ay+B)^2)^3/2)/|2A| with y = A*y^2+B*y+C left_curv_m = ((1+(2*cofA_left*y_curve*ym_per_pix+cofB_left)**2)**(2/2))/np.absolute(2*cofA_left) right_curv_m = ((1+(2*cofA_right*y_curve*ym_per_pix+cofB_right)**2)**(2/2))/np.absolute(2*cofA_right) #calculate the mean curvature (curvatur from the middle of the lane) curv_mean = (left_curv_m + right_curv_m) / 2 return curv_mean, left_curv_m, right_curv_m
7ae6d1e390906c3011349716aad0d0640a4c3a65
18,496
import logging from datetime import datetime def get_external_dns(result): """ Function to validate the ip address. Used to extract EXTERNAL_DNS server information Args: result(dict): Input result dictionary with all network parameters and boolean flags Returns: result(dict): The updated result dictionary with network parameters Raises: Exception on Invalid IP addresses """ logging.info('[%s] - Collect the external dns.', datetime.datetime.today()) try: is_answer = False while not is_answer: external_dns = case_check(input("Do you have public EXTERNAL DNS IP servers? y or n \n")) if external_dns == 'n' or external_dns == 'y': result['external_dns_flag'] = external_dns is_answer = True if external_dns == 'y': is_internal = False while not is_internal: external = case_check( input("Enter the EXTERNAL DNS public IP address(s) comma separated or 's' to skip \n")) if external == 's': result['external_dns_flag'] = 's' logging.info("EXTERNAL_DNS option skipped by user ") break if len(external) > 0: result, is_internal = ip_validation('EXTERNAL_DNS', external, result, is_internal) else: print(f'{Style.RED}Wrong value! Please input y or n{Style.RESET}') return result except Exception as error: logging.error(error)
14531bcd17dbc036f417ec7eca6d24e9c7931e6f
18,497
def __process_agent(agent_param): """Get the agent id and namespace from an input param.""" if not agent_param.endswith('TEXT'): param_parts = agent_param.split('@') if len(param_parts) == 2: ag, ns = param_parts elif len(param_parts) == 1: ag = agent_param ns = 'HGNC-SYMBOL' else: raise DbAPIError('Unrecognized agent spec: \"%s\"' % agent_param) else: ag = agent_param[:-5] ns = 'TEXT' if ns == 'HGNC-SYMBOL': original_ag = ag ag = hgnc_client.get_hgnc_id(original_ag) if ag is None and 'None' not in agent_param: raise DbAPIError('Invalid agent name: \"%s\"' % original_ag) ns = 'HGNC' return ag, ns
49ebaa4c435422066c0e2345e4cf056caebbdc9e
18,498
def inference(predictions_op, true_labels_op, display, sess): """ Perform inference per batch on pre-trained model. This function performs inference and computes the CER per utterance. Args: predictions_op: Prediction op true_labels_op: True Labels op display: print sample predictions if True sess: default session to evaluate the ops. Returns: char_err_rate: list of CER per utterance. """ char_err_rate = [] # Perform inference of batch worth of data at a time. [predictions, true_labels] = sess.run([predictions_op, true_labels_op]) pred_label = sparse_to_labels(predictions[0][0]) actual_label = sparse_to_labels(true_labels) for (label, pred) in zip(actual_label, pred_label): char_err_rate.append(distance(label, pred)/len(label)) if display: # Print sample responses for i in range(ARGS.batch_size): print(actual_label[i] + ' vs ' + pred_label[i]) return char_err_rate
5e58ab3fff91a2fb5450b37f0bf41b2681d297d9
18,499